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Abstract

The escalating problems of pollution, traffic congestion, resource consumption, and envi-
ronmental degradation are becoming increasingly significant due to the growing demand
for urban mobility. This mounting crisis is largely attributed to the dominant use of
private cars as the primary mode of transportation. While other alternatives like public
transport offer a promising solution, they are often perceived as inconvenient and less at-
tractive. In this Ph.D. thesis, we propose an alternative hybrid mode of transportation,
bi-modal transportation, that combines a fixed rail service with on-demand shuttles. Line
services, characterized by fixed routes and schedules, facilitate high vehicle occupancy and
faster service. Meanwhile, shuttles offer seamless on-demand transportation to and from
line service stops. In a first approach, we consider an idealized model geometry with a
square grid of railways (line service) on which transport occurs via trains. We identify
the conflicting objectives for optimization, i.e., user convenience and energy consumption,
and evaluate the system’s performance in terms of Pareto fronts. By means of simulation
and analytical theory, we find that energy consumption can be significantly reduced as
compared to private cars, at line service densities typically found in real settings. We
then study the impact of rail stop density on system performance, revealing that, within
realistic technical parameters, more stops can slow down trains without substantial im-
provements in overall performance. Consequently, we propose reducing the number of
stops in existing railway systems and integrating bi-modal transit as a complementary
solution. Finally, we study the feasibility of bi-modal transportation in Berlin and Bran-
denburg. We find that the existing network of rails with shuttles can be used to deploy
a bi-modal public transit system that can reduce energy consumption while providing a
service quality superior to customary public transit systems. With this work, we pro-
vide a possible answer to the pressing question of designing sustainable future mobility
solutions.

xi



Transportation is a vital function of human soci-

ety, just as blood is essential to human life. Both

blood and transportation move essential materi-

als.

Damian J. Kush [1]

1
Introduction

The invention of the wheel marked a pivotal moment in human history, propelling us

from nomadic hunter-gatherer societies into the realm of civilization. It revolutionized

the movement of goods, opening up pathways for flourishing trade and the exchange of

ideas. With efficient transportation at their disposal, explorers embarked on voyages,

uncovering new continents and expanding the boundaries of human knowledge. Without

these advances in mobility, humans might have remained confined to nomadic ways of

life, and the very idea of setting foot on the moon would have been inconceivable. The

ever-expanding capabilities of transportation have not only facilitated physical movement

but have also been instrumental in fostering social, cultural, and economic activities on

all scales. They played a pivotal role in propelling the Industrial Revolution. In essence,

the progress of civilization is deeply intertwined with the evolution of transportation

systems.

During the Industrial Revolution, several innovations reshaped transportation forever:

the invention of the railroad, the advent of the internal combustion engine (ICE), and

the introduction of the assembly-line method. The latter two gave birth to motorized

individual vehicles (MIVs), commonly known as cars, which revolutionized the way peo-

ple traveled, making longer journeys for both work and leisure more comfortable and

accessible. It is no surprise that, to this day, MIVs maintain their dominant position in

the transportation market [2, 3], primarily due to their unmatched convenience.

Empowered by the technological shift that characterized the Industrial Revolution,

human influence on Earth underwent a profound and far-reaching expansion. This era

1
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marked an extraordinary departure from traditional agrarian civilization. As technolog-

ical innovations swept across industries, previously labor-intensive tasks became mecha-

nized and more efficient. This, in turn, fueled an unprecedented surge in productivity,

economic growth, and global interconnectedness.

The impact of anthropogenic activities on Earth has been so profound that it might

mark the onset of a new geological epoch known as the Anthropocene [4, 5]. The transition

from the Holocene to the Anthropocene might be a perilous moment in Earth’s history,

signifying a shift from a relatively stable and favorable environment for human civilization

to a more uncertain and challenging era. The Holocene, which began around 11,700 years

ago, provided the stable climatic conditions that allowed agriculture to flourish, giving

rise to settled societies and the foundations of modern civilization.

In 2009, Johan Rockström and his colleagues proposed the concept of ”safe operating

space for humanity” in their influential paper titled ”A Safe Operating Space for Human-

ity” [6]. In order to maintain the Holocene epoch, they proposed nine boundaries that

define the safe operating space for humanity with respect to the Earth system that are as-

sociated with the planet’s biophysical subsystems or processes. Three of the boundaries,

those concerning biodiversity, biogeochemistry (nitrogen cycle), and climate have already

been exceeded. In this thesis, we will focus on mitigating the effect of anthropogenic

activities, particularly those associated with transportation activities, on climate change.

1.1 Climate crisis

In the annals of human history, the current epoch stands at a crossroads, a pivotal moment

where the very sustenance of our species hangs in the balance. The challenges that loom

large on our collective horizon are complex and inextricably intertwined. At the forefront

of these challenges lies the climate crisis, an existential threat that transcends borders,

ideologies, and generations.

1.1.1 Historical roots

The seeds of the climate crisis were sown during the late 18th century with the advent of

the Industrial Revolution [7]. This transformative period saw the widespread adoption

of fossil fuels, such as coal and later oil, to power factories and machinery. While this

marked a remarkable leap in technological progress and economic growth, it also initiated

the mass release of greenhouse gases into the atmosphere.

Throughout the 19th and 20th centuries, industrialization and urbanization intensified,

leading to even greater emissions of carbon dioxide and other greenhouse gases. The con-

sequences of these emissions became evident in the 20th century, as global temperatures

began to rise, glaciers started to melt, and extreme weather events became more frequent
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Figure 1.1: Keeling Curve: CO2 in ppm at Mauna Loa observatory [8]. The oscillating
black curve tracks the monthly average of measured atmospheric CO2 over time.

and severe.

1.1.2 Milestones in climate awareness

The 20th century also witnessed significant milestones in climate awareness and research.

In 1958, Charles David Keeling began recording atmospheric CO2 concentrations at

Mauna Loa Observatory, revealing an alarming upward trend, now known as the Keeling

Curve (see Fig. 1.1). This empirical evidence linked human activities to rising CO2 levels,

global warming, and climate change.

Alarmed by climate change concerns, the First World Climate Conference (FWCC

or WCC-1) was sponsored by the World Meteorological Organization (WMO) in 1979

[9] and the United Nations established the Intergovernmental Panel on Climate Change

(IPCC) in 1988 to assess scientific information related to climate change. The IPCC’s

reports have been instrumental in shaping global climate policy.

1.1.3 Contemporary climate crisis

In 21st century, the climate crisis has intensified. The Earth’s average temperature con-

tinues to rise, leading to more frequent and severe heatwaves, hurricanes, floods, and wild-

fires. Melting ice caps and rising sea levels threaten coastal communities, and ecosystems

are under duress.

The effects of the climate crisis can be felt by a global average surface temperature

which has increased by 1oC since the pre-industrial era [10], furthermore, there is a

growing convergence towards an increase by 2oC [6]. When considering the heat capacity

of oceans, a temperature rise as small as 1 degree Celsius requires immense heat, and
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most of this heat is stored in oceans. The direct impact of global temperature rise on

climate is felt by reduced snow cover [11], rising sea levels and intensified rain, causing

floods [12, 13]. This is alarming because the world’s most populous cities like Mumbai,

and Kolkata (India), Miami and New York (USA), Amsterdam (Netherlands), etc. are

located close to the sea. Global CO2 emissions are the leading cause of climate change

[6] and current level of CO2 concentration exceeds the threshold of 350ppm [6]. This

increases the risk of irreversible climate change, such as the loss of ice sheets, accelerated

sea-level rise, etc. [6].

1.2 Impact of transportation on climate crisis

The energy-intensive nature of transportation, largely reliant on fossil fuels, has triggered

a concerning surge in greenhouse gas (GHG) emissions. In regions like the USA and

Europe, where road transportation is deeply ingrained in daily life, this sector is a major

contributor, accounting for more than a quarter of total GHG emissions stemming from

anthropogenic activities [14].

The very force that propelled humanity toward civilization, transportation, now stands

as a looming threat to our sustainability. It is a stark reminder that the systems that

once ushered us into an era of progress now demands our immediate attention and trans-

formation. Addressing this alarming rise in emissions from transportation is not just a

matter of environmental stewardship, but it is a critical step toward preserving the planet

for future generations. The intertwining of transportation with our daily lives makes it a

challenge we can no longer ignore. The climate crisis compels us to rethink our approach

to mobility, embrace sustainable alternatives, and innovate for a cleaner, greener future.



The system of transportation is not coherent; it

is not treated as integral. Roads compete with

railroads and airlines in a chaotic fashion and at

immense cost to the nation.

Anthony Stafford Beer

2
Pathways of mobility: unveiling

transportation modes

This chapter examines contemporary modes of transportation. We discuss the limitations

and challenges of the modes and present a novel approach to address these challenges.

2.1 Traditional modes of transportation

Traditional transportation modes have an enduring legacy in urban life. For generations,

the private automobile has symbolized personal freedom and mobility, while public transit

systems have formed the arteries of cities, connecting people and places. Walking and

bicycling, often overshadowed by their motorized counterparts, remain elemental modes of

human movement. Let us unravel the significance, challenges, and the evolving landscapes

they have shaped.

2.1.1 Private automobiles

Private automobiles, primarily Motorized Individual Vehicles (MIVs), commonly known

as private cars, offer elevated comfort, unmatched flexibility, and unparalleled conve-

nience. As eloquently stated,

“rarely...has technology provided a more successful satisfier of basic human

needs and motives than the car, and it is unlikely that the feat will ever be

5
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Figure 2.1: Global and regional car sales 1980-2050 [27]

repeated [15].”

However, the utilization of MIVs for passenger transportation is notably inefficient

because for the following reasons:

• Wastefulness: It necessitates the movement of a ton of material to transport just

one person. [16, 17]. Also, on average, a car spends 95% of its lifetime parked. This

wastefulness causes air pollution [18, 19] and other environmental impact [20, 21].

• Traffic congestion: The proliferation of private vehicles has led to severe traffic

congestion [22, 23, 24, 25] in many cities, resulting in time and productivity losses.

• Urban sprawl: The prevalence of private automobiles necessitates the develop-

ment of extensive infrastructure like roads and parking facilities, consuming valuable

land resources and contributing to urban sprawl.

Despite these concerns, the continued dominance of MIVs in the market persists, primar-

ily owing to their undeniable convenience [26]. Globally, car sales have almost doubled

between 1980 and 2014 (see Fig. 2.1). These challenges underscore the urgent need for

more sustainable and efficient transportation solutions. As we continue to rely heavily on

MIVs, their environmental impact has become increasingly evident. The emissions from

these vehicles contribute significantly to air pollution and greenhouse gases, exacerbating

climate change and posing severe health risks.

2.1.2 Public transit

Public transit is a system of shared vehicles and infrastructure designed to transport

large numbers of people within urban and suburban areas. It is a service provided by
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governments or private entities to help residents move around in a more efficient, cost-

effective, and environmentally friendly way compared to using private cars.

Public transit systems typically include buses, trams, subways (metros or under-

grounds), commuter trains, light rail, and other forms of shared transportation. These

systems operate on scheduled routes, have designated stops or stations, and charge pas-

sengers a fare for their services. Public transit is a highly efficient mode of transportation

for the following reasons:

• Mass mobility: Public transit systems provide efficient mass transportation, re-

ducing the number of private vehicles on the road [28].

• Support Urban Planning: Public transit can influence urban development by

encouraging higher-density, mixed-use developments near transit hubs, reducing the

need for extensive suburban sprawl.

Therefore, many large cities (e.g., Tokyo) rely heavily on transportation by line services

[29, 30, 31]. They come, however, with a serious downside when compared to MIV. With

the latter, users can freely choose the starting time, location, and destination. This is not

possible for line services, which must follow fixed schedules and fixed routes [32]. Users

thus may have to walk significant distances to and from stations and need to know the

schedules of the involved lines. This severely limits the utilization of public transit to its

full potential.

2.1.3 Walking and bicycling

Active transportation modes, such as walking and bicycling, are typically used for com-

muting shorter distances within urban and suburban areas. While they offer numerous

advantages, including health benefits and reduced environmental impact, they are less

frequently employed for long-distance travel primarily due to practical limitations related

to time and physical exertion.

2.1.4 Taxi

Taxis, a ubiquitous presence in urban transportation systems, play a vital role in pro-

viding convenient, on-demand mobility services to passengers. These vehicles for hire

offer flexible point-to-point travel options, allowing individuals to reach their destina-

tions swiftly and comfortably. However, the convenience offered by taxis often comes

at a price beyond the fare, they contribute significantly to urban traffic congestion and

environmental challenges. The high density of taxis in metropolitan areas can exacerbate

traffic woes, leading to increased travel times and reduced overall road efficiency. Fur-

thermore, due to the reliance on internal combustion engines, these vehicles contribute

to air pollution and greenhouse gas emissions, posing environmental concerns.
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2.2 Emerging trends in urban transportation

As urban landscapes continue to evolve, so do the methods by which we navigate them. A

new era of urban mobility has dawned, marked by the emergence of innovative transporta-

tion trends. Ride-pooling and on-demand services have disrupted the traditional taxi

paradigm, electric vehicles are redefining the automotive industry, and micro-mobility

options offer nimble solutions for the short urban journey.

2.2.1 Demand responsive ride pooling

Demand-responsive ride-pooling (DRRP) [33] deploys many shuttles that pick up and

drop off users at the desired locations. This service relies on a centralized facility that

collects travel requests and employs powerful algorithms that combine these requests to

formulate optimized shuttle routes [34], thus providing door-to-door transport, similar to

MIVs and taxis and better pooling. However, in order to pool people, these services neces-

sitate detour [33, 35] when compared to the direct routes feasible via individually owned

vehicles (MIVs) and taxis. This trade-off [36] inevitably caps the achievable pooling

efficiency, often restricting it to well below ten passengers per vehicle [37]. It’s notewor-

thy that DRRP systems, in their pursuit of convenience, may inadvertently contribute

to urban traffic congestion, thus presenting a trade-off in terms of traffic management.

Furthermore, they often find themselves in competition with traditional public trans-

portation systems, which possess superior pooling efficiency through their fixed routes

and schedules.

2.2.2 Micromobility

Micromobility options, including electric scooters and e-bikes, are gaining prominence

in urban environments, serving as practical solutions, especially for short-distance travel

needs. They excel in addressing the crucial first and last-mile connectivity puzzle within

urban transportation systems. However, their suitability diminishes when considering

longer journeys due to limitations in range and speed compared to conventional vehicles.

It is imperative to highlight that the effective deployment of micromobility solutions

hinges on the presence of dedicated infrastructure. This infrastructure often includes

designated lanes, akin to those designated for bicycles, ensuring safe and efficient mobility

for these options within the urban landscape.
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2.3 Challenges

The world of urban transportation is a multifaceted system, and as our cities grow and

transform, they bring forth a new set of challenges. These challenges revolve around find-

ing a balance between mitigating traffic issues and environmental harm while preserving

the convenience of transportation.

Personal vehicles, like cars, offer exceptional convenience, yet they pose significant

environmental threats. On the other hand, public transportation, such as light rail with

fixed routes, has the potential to transport many passengers, thus conserving resources

efficiently. However, it often sacrifices convenience due to fixed routes and schedules.

The door-to-door shuttle services like demand responsive ride-pooling (DRRP) pro-

vide exceptional convenience by picking passengers up at their doorstep, but they struggle

to pool passengers efficiently because they often need to take detours in order to pool

people. This detouring becomes more pronounced as more passengers share the shuttle.

These services also pose a competition to the more efficient public transport service.

Our objective within this intricate urban transportation realm is to harmonize vi-

tal urban convenience with strategies that alleviate traffic challenges and environmental

impacts.

2.4 Our approach

Combining line services with a fleet of shared shuttles in an integrated so-called bi-

modal system may provide on-demand door-to-door service at a service level superior

to current public transport with significantly less resource consumption than MIV. In

chapter 3, we introduce a generic model of bi-modal public transit and characterize

its critical parameters of operation. We will gradually increase the complexity of our

model in subsequent chapters, aligning our model more closely with real-world scenarios.

With each step, we gain deeper insights into the operational dynamics that underpin

the functionality and efficiency of bi-modal transit systems within the intricate urban

landscapes of urban mobility.



In the realm of complex systems, toy models are

physicist’s conduit to profound understanding.

3
Bi-modal public transit systems

This chapter lays down the foundations for the research conducted in this thesis. First,

the system under study and its critical parameters of operations are defined. This is

followed by a detailed discussion on demand-responsive ride-pooling (DRRP) and public

transit systems. Toward the end, theoretical results for a bi-modal public transit system

are presented.

3.1 Definition of the system

3.1.1 Bi-modal transit

A bi-modal public transit system consists of a combination of demand-responsive ride-

pooling and public transit modes. A line service, with fixed routes and schedule, shall

coexist with a fleet of shuttles that pick up users and bring them either to or from line

service stations, or serve shorter-distance requests directly. This provides both door-to-

door transport by virtue of the shuttles and a large average pooling efficiency due to the

involvement of line service vehicles.

3.1.2 User environment

For the sake of conciseness and simplicity, we consider a planar area uniformly populated

at density E with potential users of the public transit system under study. Users are

10
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city/district type E D v0 m ℓ̃ Λ
[km−2] [km] [km/h] [km2]

New York City dense urban 1.1 · 104 4.99 11.3 2.0 0.28 1.5 · 104
Berlin urban 4.1 · 103 5.90 19.8 3.6 0.32 5.0 · 103
Ruhr (north) urban 3.6 · 103 15.7 44.9 94 0.62 3.6 · 104
Emsland rural 1.1 · 102 16.7 58.7 1200 2.1 1.0 · 103

Table 3.1: City data. Typical values of population density E, average traveled distance
D, speeds of shuttles v0, as well as the resulting dimensionless demand Λ = D3Eν/v0,
and dimensionless mess size ℓ̃, for a few selected areas. ℓ̃ =

√
m/D, where m is the

average area enclosed by surrounding rail services. We assume ν = 2/17h−1, i.e., two
trips per day per user given time of service of 17 h per day. Road vehicle velocities for
Ruhr (north) and Emsland have been obtained by averaging Google navigator data over
many relations randomly chosen within the respective area.

assumed to place transit requests in an uncorrelated fashion, each consisting of a desired

pick-up (P) and drop-off (D) location, at an average rate ν per passenger. Requested

travel distances d = PD are assumed to follow a certain distribution, p(d), with mean D

[33].

For a transparent discussion, it is useful to introduce dimensionless parameters char-

acterizing the system under study. By combining the intrinsic length scale D with a

characteristic road vehicle velocity, v0, we obtain an intrinsic time scale, t0 = D/v0. This

is the average time a travel request would need to be completed by MIV. The demand of

transport within the system can then be characterized by the dimensionless parameter

Λ = EνD3/v0
1, which can reach well beyond 104 in a densely populated area. Tab. 3.1

provides a few typical parameters encountered in real systems for reference. Note that

ℓ̃ = ℓ/D =
√
m/D, where m is the average area enclosed by surrounding rail (line)

services, and ℓ̃ is the spacing of line service routes (see Fig.3.1a)

3.1.3 Model system geometry

For an overarching systematic study, it is useful to consider an idealized model geometry

(see Fig. 3.1). We assume that transport occurs via the DRRP shuttle service, combined

with a square grid of railways on which transport occurs via trains. The connection

points (train stations) between the two subsystems lie at all railway intersections and are

spaced with a lattice constant ℓ (see Fig. 3.1). The transit system is further characterized

by a shuttle density B in the plane and a train frequency µ at all train stations, with

trains having a seating capacity k. Shuttles and trains move with velocities v0 and vtrain,

respectively. They require energy eshuttle and etrain, respectively, per unit distance of

travel.

1Average number of incoming requests in an area D2 in time t0.
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(a) (b)

Figure 3.1: Bi-modal transport network on a square grid. (a) A bi-modal network
with trains (grey vehicles) operating along the solid lines. Shuttles (black vehicles) are
used as a feeder service to carry people to and from the train stations (black dots at
intersection points) separated by distance ℓ. Trains operate periodically at a frequency
µ, with vehicle seating capacity k. (b) Two alternative ways to serve a transport request
from P (pick-up) to D (drop-off). Bi-modal transport involves a shuttle ride from P to
the train station, transport by train (arrows, here with one change (circle)), and another
shuttle ride from the train station to D. Uni-modal transport service is a direct shuttle
(grey) ride from P to D. A major task of the system is to appropriately decide which of
these two types of transport services to choose.
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X

DP

Figure 3.2: Ellipse criterion: An elliptical area of acceptance. The dotted line with
length l represents the detour incurred due to the extra stop at X . The latter is within
the ellipse, meaning that the detour incurred is less than the maximum allowed detour.

The main goal of the bi-modal system under consideration is to provide high-quality

(i.e., rapid) door-to-door transportation service at minimal energy consumption, thereby

minimal carbon emission. To reach this goal, the provider of bi-modal transit may vary

certain parameters of operation, which we discuss in Sec. 3.3.

3.2 Components

This section discusses the two essential components of the bi-modal transit system.

3.2.1 Demand responsive ride pooling (DRRP)

It is an essential component of our bi-modal transit system, where it acts as a feeder

service that brings people to and from the train station. The main challenge here is

assigning routes to vehicles in real-time under the constraints set by previous requests.

We discuss the critical parameters and constraints of DRRP.

Occupancy

It is paramount for DRRP service to maintain a high vehicle occupancy, b. To do so,

the vehicles must deviate from their direct path to accommodate more passengers in the

same trip.

Detour

When serving ith request going from P to D, the vehicle may not be able to follow the

shortest path PD of length Di, because there may be other requests to serve. We define
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the detour, δ, as the ratio between the actual path taken and the direct path, i.e.,

δi =
li
Di

=
PX + XD

PD . (3.1)

A new request can share the ride with an existing passenger if δ ≤ δmax, where δmax

is the detour parameter. Note that this criterion defines an ellipse with the foci on P
and D as shown in Fig. 3.2. A request arising within the ellipse can be pooled with the

existing request. A higher pooling can be achieved for a higher detour parameter.

Pooling efficiency

The trade-off between pooling passengers and detours encountered severely restricts the

pooling efficiency. We define the pooling efficiency, η, as the ratio between mean occu-

pancy of the vehicles, b, and mean detour, δ,

η =
b

δ
. (3.2)

Pooling efficiency, η, gives an estimate of the ratio of requested direct distance by the

users and the driven distance by the shuttle [38]. In simulations of the uni-modal system

(shuttles only), it has been observed that η scales with demand Λ roughly in an algebraic

manner, η(Λ) ∝ Λγ, with γ ≈ 0.12 [38].

Waiting time

Unlike private cars, where users can immediately embark on the journey, users have to

wait for a certain time to be picked up. For the sake of conciseness and simplicity, we

will assume a mean waiting time, τw. The mean waiting time is characterized by the

system under study. We use simulation results to determine the average waiting time

for shuttles, τw, and the average detour, δ. In Fig. 3.3, mean detour and mean waiting

time are plotted as a function of user demand. Users are assumed to have a maximum

accepted waiting time of t0. We observe that mean waiting time τw grows with demand

and saturates around 0.65. Similarly the mean detour δ grows with demand and saturates

around 1.65.

Speed

The speed at which shuttles move is characteristic of the environment in which the system

is deployed. For the sake of simplicity, we assume that the shuttles move at an average

speed v0, which is equal to the average speed of a car.
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Figure 3.3: Detour factor (δ) and mean waiting time (τw) for various demands [39].
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Energy consumption

We use the numbers found for frequently used transport vehicles for shuttle services.

Specifically, we consider the Mercedes Sprinter (8.8 liters of Diesel per 100km)[40], yield-

ing, eshuttle = 3.28kN.

3.2.2 Public transit (PT)

Public transit is used as a primary mode of transportation because people can be pooled

together. It is used to travel over larger distances. While public transit typically includes

buses, trams, subways, light rails, etc., in this chapter, we consider electric light rails for

our analysis. Below we discuss the essential ingredients of the public transit system.

Speed

Unlike shuttles, public transit operates on fixed routes and schedules, thus making them

a faster and more reliable mode of transit. The effective train speed vtrain, depends on

the inter-station distance ℓ. If trains are assumed to have a maximum operating speed

of vm, acceleration and deceleration time ta, and a stop time of ts at every station. The

effective average train speed is therefore

vtrain =





ℓ
ℓ

vm
+ta+ts

, if ℓ ≥ vm · ta
ℓ

2
√

ℓta
vm

+ts
, otherwise

. (3.3)

For New York, we use vm = 89 km/h and vtrain = 28 km/h [41] at ℓ̃ = 0.28 (see Tab. 3.1).

We use Eq. 3.3 to determine ta and ts by assuming that ta = ts. Similarly, for Berlin we

use vm = 72 km/h and vtrain = 30.7 km/h [42] at ℓ̃ = 0.32. For our analysis, we use New

York train speed as a proxy for Λ = 104 and Berlin train speed for Λ = {103, 102}.

Frequency and capacity

Trains operate at regular intervals, defined by a frequency, µ. Additionally, these trains

are assumed to operate at a capacity of k = 100 passengers. The choice of the fre-

quency parameter µ is crucial, to optimize the efficient utilization of resources. Detailed

discussion on this frequency parameter can be found in Subsec. 3.3.2.

Energy consumption

We consider electric light rails with a maximum seating capacity, k = 100, and etrain =

9.72kN[43].
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3.3 Parameters of operation

In order to achieve the objective of providing a highly efficient door-to-door transporta-

tion service with minimal energy consumption, the providers of bi-modal transit must

carefully consider and strategically adjust specific parameters of operation. These critical

adjustments play a pivotal role in optimizing the overall performance and sustainability

of the transportation system (which we discuss in Sec. 3.4), ultimately benefiting both the

service providers and the environment. In this section, we will explore the key parameters

that influence the operation of bi-modal transit.

3.3.1 Choosing the type of transport service

Within the framework of our model system, an individual traveler has the option of

utilizing either a uni-modal service, which exclusively employs shuttles (referred to as

DRRP), or a more versatile bimodal service. The bimodal service involves a sequence of

steps, commencing with a shuttle ride from their origin point P = (xp, yp) to the nearest

train station. From there, the journey continues with a train ride, and finally, another

shuttle journey takes the traveler to their destination at point D = (xd, yd) (see Fig. 3.1b).

In addition to the intricate task of optimizing shuttle routes to maximize pooling

efficiency, the dispatching system assumes a central role in the decision-making process.

Specifically, it is tasked with the critical responsibility of determining, for each individual

travel request, (P ,D), whether the most effective means of providing door-to-door service

is through the uni-modal or bi-modal service option. This decision is pivotal in ensuring

the efficient and tailored provision of transportation services to meet the diverse needs of

travelers within our system.

Convenience

If only user convenience were considered relevant, one would just need to calculate which

type of transport service (uni-modal or bi-modal) requires less time for completing the

transit, and then to choose that one. This requires knowledge of the parameters v0, vtrain,

and the frequency of line service, µ. The latter can be assumed to be just sufficient

to carry the bi-modal passenger load. Its derivation will be discussed further below

(see Subsec. 3.3.2). By sampling random transport requests in the plane, and distances

from the probability distribution p(d) of travel distances, we can compile a histogram of

relative travel times, tbi and tuni. In Fig. 3.4a, we compare the time it takes to serve a

new user request (P ,D) by bi-modal and uni-modal transportation. In order to do so we

sample N = 105 pick-up (P) and drop-off (D) pairs. The trains operate at µ̃ = 2.

The time it takes to serve a randomly sampled user request (P ,D) by bi-modal trans-

portation (tbi) comprises of driving time in two shuttles to the nearest train station,
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Figure 3.4: Choosing the type of transport service. Relative characteristics of
either bi-modal (shuttle-train(s)-shuttle) or uni-modal (just shuttle) service, in the plane
spanned by the individual trip vector from pick-up P = (xp, yp) to drop-off D = (xd, yd).
(a) Bi-modal travel time, tbi, divided by uni-modal travel time, tuni. The black curve
represents the contour line where both are equal. Requests outside this region are served
faster with bi-modal transportation. (b) Increment in total energy consumption if a
new user is served by bi-modal transportation, (∆E)bi divided by the increment in total
energy consumption if the same user is served by uni-modal transportation, (∆E)uni. The
black curve represents the contour line where both are equal, i.e., from the perspective
of energy consumption both types of transport service are equivalent. Requests outside
the white region lead to lower energy consumption if served by bi-modal transportation.
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driving time in train between the two train stations, waiting time due to shuttles and

waiting time at the train station. If SP and SD represent the location of the train station

next to P and D, respectively, then

tbi = 2tshuttlew + δ
PSP
v0

+ δ
DSD
v0︸ ︷︷ ︸

two shuttle trips

+ ttrainw +
SPSD
vtrain︸ ︷︷ ︸

train

, (3.4)

where tshuttlew , ttrainw are the waiting times incurred due to shuttles and trains and are

assumed to take the values t0/2 and 1/2µ, respectively.

The time taken to serve the same request by uni-modal transportation (shuttles only)

is:

tuni = tshuttlew + δ
PD
v0

. (3.5)

The resulting ratio tbi/tuni is displayed as a scatter heat map in the plane spanned

by the vector PD. Requests corresponding to the area within the black curve (contour

curve of tbi/tuni = 1) would then be served uni-modally by a single shuttle services, while

for all others, the dispatcher would offer bi-modal transport service.

Energy

In order to choose, for an incoming request (P ,D), the type of transport service that con-

sumes the least incremental amount of energy, we have to compute the energy increment

(∆E)bi needed for bi-modal transport, and compare it to the energy increment (∆E)uni
assuming direct transport via a single shuttle. This ratio of energy increments is equal

to the ratio of driven distances by the shuttles for each type of service. We assume that

a single request does not alter the line service frequency, i.e, the energy consumption of

the line service does not change. In analogy to the travel times shown in Fig. 3.4a, we

plot the ratio of increment in energy usage for serving a new user request in Fig. 3.4b.

The increment in energy usage when serving a new request by bi-modal transportation

comprises of the increment in energy usage by two shuttle trips,

(∆E)bi = η−1 · eshuttle · (PSP +DSD) . (3.6)

The increment in energy usage, when served by uni-modal transportation, comprises only

a single shuttle trip,

(∆E)uni = η−1 · eshuttle · PD. (3.7)

The ratio (∆E)bi/(∆E)uni, i.e., PSP+DSD
PD , if greater than 1 (less than 1), indicates whether

the two trips to/from the train stations are longer (shorter) than a direct trip.

Note that only shuttles contribute to ∆E because a single user request is assumed to

have no effect on train operations. Again, we see that while for small requested distances
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uni-modal service is advisable, bi-modal service should be preferred for larger distances,

corresponding to the area outside the black contour curve.

Comparison of Figs. 3.4a and 3.4b reveals that there is a significant range of distances

that lie outside the solid curve in Fig. 3.4b, but still well inside the curve depicted in

Fig. 3.4a. This shows that we may have to deal with conflicting objectives for quite a

number of incoming transport requests. The notion of optimality then depends upon the

relative valuation of energy consumption and service quality. As a generally accepted

way of dealing with conflicting objectives, we will tackle this problem by means of Pareto

fronts [44, 45, 46] further below (see Subsec. 3.5.1).

While the plot in Fig. 3.4b represents a rather isotropic structure, we encounter a

shamrock-like shape in Fig. 3.4a. This reflects the orthogonal geometry of our model

line service system (Fig. 3.1). In a real situation, the geometry will in general not be

this simple. Instead, the directions at which rails are installed will vary from one station

to another. We thus expect a structure like the ‘shamrock’ to be less pronounced in

reality, if discernible at all. Hence although a perfectly isotropic structure may not be

expected, the anisotropy will certainly be less pronounced. We assume that it will be

a reasonable approximation to consider the contour line of service times as ‘sufficiently’

circular. Therefore we consider henceforth only the requested travel distance, d = |PD|,
as the discriminating parameter for the choice of type of transport service, irrespective

of its direction. The task of the dispatcher will then be to determine a proper cutoff

distance, dc, such that for d > dc, bi-modal service is offered, while for d ≤ dc, the

system will provide uni-modal service, by shuttle only.

Note that the above approximation provides a lower bound of the performance achiev-

able. In a real system, the type of transport service may be decided upon the true

expected travel times and energy consumption, for which data will be available with

ever-improving quality over time.

3.3.2 Choice of line service frequency

It is clear that the capacity k and frequency µ of the line service must be sufficient to

carry the flux of shuttle passengers towards and from the train stations. The total number

of requests emanating in unit time in an area of ℓ2 around a train station is νEℓ2. Out

of these, only a fraction F = F (dc) =
∫∞
dc

p(d) dd is served by bi-modal transportation.

However, trains are also occupied by passengers from previous stations. If Dtrain is the

average distance that users travel on trains, then a user travels Dtrain/ℓ stations on train

on average. Therefore, the total number of users to be transported at this station per

unit time is

Jin = νEℓ2F
Dtrain

ℓ
. (3.8)
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We find that Dtrain = 4
π
⟨d⟩d>dc

2, with ⟨d⟩d>dc the mean of requested distances larger than

dc.

A similar relation holds for the number of users per unit time that can be transported

by trains arriving at one train station (with frequency µ0 and going into four directions),

namely

Jout = 4 · µ0 · k . (3.9)

Balancing Jin with Jout, we obtain

µ̃0 =
Λℓ̃

πk
⟨d̃⟩d̃>d̃c

F (3.10)

for the minimum frequency required to carry all passengers conveyed by the shuttles.

The ˜ indicates quantities non-dimensionalized via division by the respective unit, i.e.,

D or t0. We refer to Eq. 3.10 as passenger flux balance.

If we allow trains to operate at a frequency µ̃ larger than the minimum required

frequency µ̃0, the train occupancy is given by α = µ̃0/µ̃ ∈ [0, 1]. As this can be adjusted

within some range when operating the line service, α provides an additional free variable

in system operation.

3.4 Objectives of operation

We identify the conflicting objectives for optimization, i.e., user convenience and energy

consumption. Below we discuss these objectives in details and their dependence on the

parameters of operation (discussed in Sec. 3.3).

3.4.1 Service quality

We define the service quality as the ratio between average travel time by MIV and by

the bi-modal system

Q =
t0

(1− F ) · tuni + F · tbi
. (3.11)

For assessing the overall quality of service, suitable averaging has to be applied. Trans-

portation by shuttles is always assumed to be delayed with respect to MIV by a waiting

time, which we assume (on average) to be of order one half the direct travel time, t0/2

(see Fig. 3.3 for motivation). The average time taken to serve a request in a bi-modal

system (i.e., the denominator of Q in Eq. 3.11) is then

t0Q−1 =(1− F ) ·
(
t0
2
+

δ⟨d⟩d<dc

v0

)

︸ ︷︷ ︸
tuni

+F ·
(
t0 +

2βℓδ

v0
+

1

µ
+

4

π

⟨d⟩d>dc

vtrain

)

︸ ︷︷ ︸
tbi

,
(3.12)

2Averaging the 1-norm ∥PD∥1 over distances and orientations.
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where ⟨d⟩d<dc represents the mean of all requested distances less than dc (i.e., served

uni-modally) and δ is the average detour3 incurred by the shuttles due to the necessity of

pooling several different transport requests into one vehicle route. For the second term

(tbi), t0 is the total average waiting time for two shuttle trips (to and from the station),

1/µ is the average waiting time for two train rides (usually there is a change involved),

βℓ is the average distance of a randomly chosen point from the next train station, with

a geometrical constant β ≈ 0.3834, and 4π−1⟨d⟩d>dc is the average distance traveled on

trains. The effective train velocity, vtrain, depends on the inter-station distance ℓ and is

modeled based on train vehicle data (see Subsec. 3.2.2).

If we use D, t0, and v0 as units for length, time, and velocity, respectively, we can

write:

Q−1 = (1− F ) ·
(
1

2
+ δ⟨d̃⟩d̃≤d̃c

)
+ F ·

(
1 + 2βℓ̃δ +

1

µ̃
+

4

π

⟨d̃⟩d̃>d̃c

ṽtrain

)
. (3.13)

3.4.2 Energy consumption

In order to assess the efficiency of a transit system in terms of energy consumption, it is

essential to consider the total distances over which passengers are being transported in

the different vehicles involved (see Eq. 3.14). The bi-modal energy consumption can be

written as

E ≡ ∆shuttle · eshuttle +∆train · etrain
∆MIV · eMIV

, (3.14)

where ∆· denotes the (mode-specific) total distance traveled in a unit cell of size ℓ2 per unit

time, and eshuttle/train is the vehicle-specific energy consumption per unit distance. Note

that this expression is already normalized with respect to the MIV energy consumption

(denominator), as this is the door-to-door transportation system we intend to compare

with. For E > 1 (< 1) energy requirement for bi-modal transportation is more (less) than

for private cars serving the same requests.

Shuttles Both uni-modal (shuttle only) and bi-modal trips contribute to the total dis-

tance driven by shuttles per unit time due to requests from a unit cell of size ℓ2, hence

∆shuttle =
νEℓ2

η


⟨d⟩d<dc(1− F )︸ ︷︷ ︸

shuttle only

+ 2βℓF︸ ︷︷ ︸
two shuttle trips


 , (3.15)

3driven distance / direct distance
4A simple calculation shows that β = 1

6 (
√
2 + log(1 +

√
2)) = 0.383.
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where η is the DRRP pooling efficiency, which is the ratio of requested direct distance

by the users and the driven distance by the shuttles (for MIV, η = 1).

In simulations of the uni-modal system (shuttles only), it has been observed that η

scales with demand Λ roughly in an algebraic manner, η(Λ) ∝ Λγ, with γ ≈ 0.12 [38]. In

a bi-modal system, however, some of the demand Λ is directed towards trains, therefore,

we need to compute an adjusted demand, Λshuttle ≡ (EνshuttleD
3
shuttle)/v0, considering

shuttle trips only; νshuttle is the effective request frequency for shuttle trips and Dshuttle is

the average distance of a shuttle trip. Bi-modal trips consist of two shuttle trips (from

and to the station), therefore

νshuttle = 2νF︸︷︷︸
two shuttle trips

+ ν(1− F )︸ ︷︷ ︸
shuttles only

= ν(1 + F ) . (3.16)

Similarly, the average requested distance for shuttle-borne trips involved in bi-modal

transport is

Dshuttle =
(

2βℓF︸ ︷︷ ︸
two shuttle trips

+ ⟨d⟩d<dc(1− F )︸ ︷︷ ︸
shuttles only

)
/(1 + F ) , (3.17)

where (1 + F ) is due to normalization. The bi-modal demand for shuttles is thus given

by:

Λshuttle = (EνshuttleD
3
shuttle)/v0

= Λ (1 + F )−2((1− F )⟨d̃⟩d̃≤d̃c
+ 2βℓ̃F )3 . (3.18)

In simulations, we observe a higher efficiency than suggested by η ∝ Λ0.12
shuttle (see

Fig. 3.5 for simulation data). We call this the common stop effect, meaning that pooling

gets more efficient because bi-modal requests are spatially correlated due to shared pick-

up and drop-off locations, i.e., the train stations. We account for this effect via an

empirical function h(F ) (1 ≤ h ≤ 1.35, see Fig. 3.5). In particular, we set

η ≡ Λ0.12
shuttle · h(F ) . (3.19)

Line Service and MIV Trains are recurrent every 1/µ time units. Therefore, the

cumulative distance driven by all trains in a unit cell of side length ℓ per unit time is

∆train = 4 · µ · ℓ . (3.20)
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Figure 3.5: h(F (dc)) as a function of F (dc). The ’common stop effect’ is maximal for
F = 1, this is when all trips are served by bi-modal transport and all trips have either
common origin or destination [39].
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There is a multiplicative factor of 4 because trains go in four directions at every train

station. The total distance driven via MIV for requests from the unit cell amounts to

∆MIV = νEℓ2D. (3.21)

Replacing ∆shuttle, ∆train, and ∆MIV in Eq. 3.14 from Eq. 3.15, 3.20, and 3.21 we

obtain the final expression for the energy consumption of bi-modal transit normalized

with respect to MIV

E = η−1
(
⟨d̃⟩d̃≤d̃c

(1− F ) + 2βℓ̃F
)
· eshuttle
eMIV︸ ︷︷ ︸

shuttles

+
4µ̃

Λℓ̃
· etrain
eMIV

.
︸ ︷︷ ︸

train

(3.22)

3.5 Results

We now analyze how the objectives, i.e., energy consumption (Eqs. 3.14, 3.22) and quality

(Eqs. 3.11, 3.13), can be optimized by choice of parameters of operation, i.e., cutoff

distance dc and train occupancy α, under different ‘external’ conditions, Λ and ℓ̃. Notice

that the two control parameters, α and dc, enter the objectives, Q and E , via ⟨d̃⟩d̃≶d̃c
,

F (dc), and µ̃ = µ̃0(dc)/α (Eq. 3.10).
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F (d̃c)
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0.2
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0.6

Q
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Figure 3.6: Bi-modal performance characteristics. Energy consumption E and ser-
vice quality Q for bi-modal transport, normalized with respect to MIV, as a function of
the bi-modal fraction F (dc), for three different values of demand Λ = {102, 103, 104}. All
data for ℓ̃ = 0.8 and fully-occupied trains, α = 1.

In Fig. 3.6, energy consumption, E , and service quality, Q, for the combined system

are shown as a function of the share of bi-modal transport F (dc) at ℓ̃ = 0.8 for three

different values of dimensionless demand, Λ. Trains are operated at full occupancy,

i.e., α = 1. The general trend of reduction of energy consumption with increasing
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demand and involvement of line services is obvious from the data for E . We encounter

a minimum of energy consumption at around F ≈ 0.6 for all values of Λ investigated.

Energy consumption can be less than 30% of MIV for sufficiently large (but realistic, see

Tab. 3.1) demand. For service quality, we find that typical values are around one half

the service quality of MIV, i.e., about twice the travel time. This is customary for public

transport systems [47, 48] and generally well accepted by users. Note that our data for

service quality represent a safe lower bound, as the (sometimes quite substantial) time

required for parking spot search [49, 50] is neglected here in t0. While for low Λ the

involvement of line service seems to generally increase travel times (i.e., reduce service

quality), we find an optimum at F ≈ 0.25 for large Λ. The primary message from Fig. 3.6,

however, is that minimizing energy consumption and maximizing service quality cannot

be simultaneously achieved.

3.5.1 Pareto fronts in energy consumption and service quality

A tuple of parameter values, in our case (E ,Q), is called Pareto optimal if none of the

parameters (or objectives) can be further optimized without compromising on at least

one of the others. The set of all such tuples of parameters is called the Pareto front.

To illustrate this concept, in Fig. 3.7a, we show all values {E(dc,α),Q(dc,α)} obtained

for different values of dc and α as grey dots. The solid black line represents the Pareto-

optimal subset, i.e., the Pareto front.

In order to choose the truly optimal point on the Pareto front, one needs to define the

relative valuation of the objectives, E and Q. In other words, the authorities operating

the system have to decide how much reduction in service quality they (i.e., the users)

would be willing to accept for how much savings in energy. The ratio of these valuations

is then expressed in the slope of the dashed line in Fig. 3.7a, which is a tangent to the

Pareto front. The point where it touches the front (black dot) represents the optimal set

of parameters, under the given valuation.

For our analysis, we fix the train capacity to k = 100, and choose a representative

set of values for line service mesh size ℓ̃ = {0.2, 0.4, 0.8} and demand Λ = {102, 103, 104},
corresponding to a typical parameter range encountered in real systems (see Tab. 3.1).

Note that fixing k does not reduce the generality of our study, because a different k can

be compensated for by properly readjusting µ0 (see Eq. 3.10).

Fig. 3.7b demonstrates the effect of Λ on the overall performance of the system. Pareto

fronts are shown in black. We see that for typical values of Λ, as listed in Tab. 3.1, energy

consumption reaches down to well below 40% (even below 20%) of MIV for large values

of Λ. At the same time, quality levels are comparable to, mostly even in excess of, what is

found in existing public transport in terms of transit time (see Tab. 3.1). Note, however,

that our system even provides on-demand door-to-door service, comparable to MIV.
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Figure 3.7: Emergence of Pareto fronts and effects of train occupancy. (a) Grey
circles: admissible data for full variation of α and dc, at ℓ̃ = 0.2 and Λ = 103. Black curve:
Pareto front, i.e., the boundary of the full data set towards optimality (low E and high
Q). The slope of the dashed tangent to the Pareto front represents the ratio of valuations
(see text). (b). Black curves: Pareto fronts for variable train occupancy α < 1 at
Λ = {102, 103,104} and ℓ̃ = 0.2. Grey dashed curves: degenerate Pareto fronts obtained
at full train occupancy (α = 1) at corresponding values of Λ. Grey circles mark the ends
of these fronts which are determined by minimum achievable energy consumption and
maximum achievable service quality, specific to Λ and ℓ̃. (c) Same as (b) but for ℓ̃ = 0.8.

The dashed grey curves indicate the subset of data for train occupancy α = 1. We will

henceforth call them degenerate Pareto fronts, as they correspond to the variation of only

one parameter. They are lying, slightly but consistently, above the Pareto fronts. This

indicates that by reducing train occupancy below its maximum (α < 1), i.e., operating

trains at higher frequency than necessary, one can enhance the overall performance of

the system. Service quality increases because the time spent waiting for trains, which is

proportional to 1/µ, is smaller when trains are operated more frequently. The increase

in service quality is found to overcompensate the increase in energy consumption due to

higher operation frequency. Since waiting time is inversely proportional to both Λ and

ℓ̃ (see Eq. 3.10), this effect is more pronounced for small Λ and ℓ̃, which is qualitatively

corroborated in Fig. 3.7c which shows corresponding data for large mesh size (ℓ̃ = 0.8).

At the resolution of the figure, the Pareto fronts (black) and their degenerate partner

(dashed grey) are distinguishable only for smallest values of Λ. Hence for typical values

of Λ and ℓ̃ it appears sufficient to discuss the degenerate Pareto fronts, which only need

one parameter (dc) to be varied. We keep in mind that the true Pareto optimum will

still be superior.

Degenerate Pareto fronts are shown in Fig. 3.8 in various presentations. Fig. 3.8a has

basically the same information as Fig. 3.7c, but here we show the full data set (grey),

where the black curves are the Pareto-optimal subset, i.e., the degenerate Pareto fronts.
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Figure 3.8: Bi-modal performance with fully-occupied trains. (a) Black curves
show degenerate Pareto fronts for fully-occupied trains (α = 1) for varying demands
Λ = {102, 103, 104} shown as annotations and ℓ̃ = 0.8. Black circles mark the end
points of the Pareto fronts which are determined by the minimum achievable energy
consumption and the maximum achievable service quality. Grey curves show the entire
data, i.e., not only the Pareto-optimal set, but all admissible values with dc as the control
parameter. (b) Data as in (a), but normalized with respect to the performance, (Q0, E0),
of the uni-modal system (shuttles only). (c) Degenerate Pareto fronts as in (a), but for
ℓ̃ = {0.2, 0.4, 0.8} in blue, orange, and black, respectively.

They terminate wherever the tangent becomes either vertical or horizontal (black dots),

thus offsetting any tradeoff between the objectives.

Fig. 3.8b shows these data normalized with respect to the performance of a uni-modal

(shuttles only) DRRP system, represented by E0 and Q0. Clearly in relevant parameter

regions the combined bi-modal system outperforms the uni-modal system in both energy

consumption (E < E0) and service quality (Q > Q0).

The effect of inter-station distance (mesh size) on the (degenerate) Pareto fronts is

explored in Fig. 3.8c. We see that a dense network of rails (small ℓ̃, blue fronts) achieves

the best results concerning energy consumption, reaching down to below 20% of MIV,

but compromises on achievable service quality. For admissible quality Q ≈ 0.5, sparse

train networks (black fronts) are Pareto-optimal for low demands. For larger demands,

denser train networks (orange and blue fronts) are advantageous.

However, it is remarkable that the overall position of the Pareto fronts in the plane

spanned by Q and E does not vary dramatically with mesh size, as the position on the

front at which the system is operated is largely at the discretion of the operator. This

suggests that the density of currently installed rail track systems might already be well

suited for deploying a bi-modal on-demand transport systems of the kind we have studied.
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3.5.2 Traffic volume

Energy consumption and service quality are not the only possible objectives for opti-

mization of public transport. Road traffic, for example, is a source of noise and local air

pollution and occupies significant shares of urban space. Bi-modal ride-pooling reduces

traffic by use of shared shuttles, and by directing certain trips towards trains. We quan-

tify this reduction by introducing the relative bi-modal traffic ∆̃shuttle as the ratio of the

number of on-road vehicles necessary for bi-modal transportation (i.e., shuttles) to the

number of MIV (i.e., cars) needed to serve the same demand.

To derive an expression for road traffic due to shuttles we connect the distance served

by busses (left hand side) and the distance traveled by customers (right hand side), with

average distance ⟨d⟩ traveled on road, for an area of reference A during time t0 = D/v0,

with shuttle speed v0

BAv0b pdriving t0︸ ︷︷ ︸
distance served by busses

= νEA t0 ⟨d⟩δ paccept .︸ ︷︷ ︸
distance traveled by customers

(3.23)

Here B is the shuttle density, b is the average shuttle occupancy, νEAt0 is the number

of requests in the reference area A during reference time t0 (with request frequency ν,

population density E), δ is the average relative detour of customers (no detour means

δ = 1), pdriving is the probability of vehicles driving (i.e., not being idle), and paccept is the

probability that a user request is accepted. In this study, we assume that all requests can

be served (paccept = 1), i.e., no request has to be rejected because certain constraints (like

a maximum waiting time) cannot be fulfilled. Substituting η ≡ b/δ (see [38]) in Eq. 3.23,

we define the traffic volume, Γ, by the number of driving vehicles, i.e.:

Γ ≡ BA · pdriving =
νE⟨d⟩A
ηv0

. (3.24)

Note that for private cars, η = 1 and ⟨d⟩ ≡ D, and for a bi-modal service, ⟨d⟩ = Dshuttle

and νshuttle = (1 + F )ν (Eq.3.17, 3.16). Substituting these expressions in Eq. 3.24, we

define the normalized traffic volume, Γ̃, as the ratio of traffic volume by shuttles in the

bi-modal system, Γbi, and the traffic volume by private cars, ΓMIV, i.e.,

Γ̃ ≡ Γbi/ΓMIV = η−1(1 + F ) D̃shuttle . (3.25)

In Fig. 3.9, Γ̃ is plotted against service quality Q as determined along the degenerate

Pareto fronts shown in Fig. 3.8c. For low demand (Λ = 102), uni-modal (shuttles only)

transportation allows for about 50% reduction in traffic as compared to MIV (triangle).

Bi-modal transportation allows for further reduction in traffic at the cost of service quality.

For intermediate and high demand (Λ = {103, 104}), uni-modal transportation allows for
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Figure 3.9: Traffic volume in bi-modal transit. Relative bi-modal traffic Γ̃, as defined
in Eq. 3.25, determined along the Pareto fronts in Fig. 3.8c, against corresponding service
quality Q. Data are presented for Λ = 102 (triangle, dotted), Λ = 103 (square, dashed),
and Λ = 104 (circle, solid). Symbols represent uni-modal traffic volume, 1/η. Color code
is as in Fig. 3.8, i.e., ℓ̃ = {0.2, 0.4, 0.8} in blue, orange, and black, respectively.
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about 70% to 80% reduction in traffic as compared to MIV (square, circle). In these

cases, bi-modal transportation allows for truly dramatic reductions in traffic (> 90%), at

equal or even higher service quality than for uni-modal transport. Combining this finding

with typical parameter values in Tab. 3.1, we recognize that even in rural settings, traffic

volume is expected to decrease by an order of magnitude, relative to MIV. In urban

environments, traffic volume may even be reduced by more than a factor of ten.

3.6 Discussion

In this chapter, our goal was to find whether and under what circumstances bi-modal

transport, i.e., on-demand ride-pooling with shared shuttles combined with fixed sched-

ule line services (railway), can be a viable alternative to customary public transportation

(line services or DRRP alone) or MIV. For that purpose we introduced a simple model

system for bi-modal transport, combined with a mean-field approach, which allowed us to

parameterize the user environment (dimensionless demand) as well as the bi-modal ser-

vice operations (cutoff distance, train occupancy) with few variables, and to write down

analytic expressions for key performance characteristics, namely energy consumption and

service quality (i.e., transit times), as well as road traffic volume. Our results, in form

of Pareto fronts, indicate that bi-modal public transportation systems have the potential

to provide on-demand door-to-door service with a quality superior to customary public

transportation, while at the same time consuming only a fraction of the energy a corre-

sponding fleet of MIV would require, and with a road traffic volume reduced by an order

of magnitude.

In our model, we assume customer demand to be given, more precisely, we assume a

spatially uniform demand with constant average request frequency. However, in realistic

scenarios, demand will be heterogeneous in space, due to non-homogeneous population

density and individual mobility patterns, and fluctuating in time due to phenomena like

rush hours or workdays versus weekends. Such spatio-temporal demand patterns can be

taken into account by structured railway networks (e.g., more dense in highly-populated

areas), spatially varying shuttle densities, and variable service frequencies. In future case

studies or real-world applications, these context-specific adjustments can be implemented

to provide tailored solutions.

Although demand patterns can be estimated from historical data, there will be fun-

damental uncertainties in predicting future demand. Such uncertainties will alter the

performance of a bi-modal system. Nevertheless, our considerations based on known (av-

erage) transportation demand give a valuable estimate of the performance potential of

bi-modal transport under various external conditions.



A model should be as simple as possible but not

simpler.

Albert Einstein

4
Impact of the density of line service stations

4.1 Introduction

In the previous chapter, we adopted a simplified ‘cartesian’ network as sketched in

Fig. 4.1a, where we assumed line service stations to exist at each crossing. In most

cities, however, a line has more stops than crossings with other lines, as sketched in

Fig. 4.1b. The impact of these intermediate stops on the overall performance of the

system is hitherto not known. On the one hand, intermediate stops increase the user’s

proximity to transit stations, resulting in shorter shuttle trips to and from train stations.

On the other hand, additional stations slow down the trains, potentially impacting the

service quality for longer trips. In this chapter, we investigate the impact of intermediate

stops on bimodal transit via agent-based simulations. By studying realistic sets of pa-

rameters, we aim to provide valuable insights into how the addition of intermediate stops

affects factors such as travel time, passenger waiting time, and vehicle occupancy.

In addition, we validate the findings of our study in the previous chapter, which were

based on a mean-field approach.

4.2 Methods

For simulating a system of bi-modal transport, with on-demand shuttles and trains op-

erating on lines, we deploy the open-source, multi-agent transport simulation framework,

MATSim [51]. In contrast to the mean-field study by in chapter 3, where observables

32
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(a) (b)

(c) (d)

Figure 4.1: Bi-modal transport network on a square grid. (a) Idealized line service
network. Green nodes at the intersection of railway lines represent the train stations. (b)
A network as in (a), but with additional (intermediate) stations. (c) A snapshot of a
simulation where passengers use MIVs (red dots) as the only mode of transportation. (d)
A snapshot of bi-modal simulations on a network with one intermediate station (Θ = 1).
Demand is the same as in (c). Red dots represent shuttles (DRRP), gray rectangles
represent trains, and green diamonds represent train stations. The number of required
shuttles in a bi-modal system (d) is much lower than the number of MIVS required in
(c). See Subsec. 4.3.2 for a quantitative analysis.
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like waiting time, vehicle occupancy, or mean detour were estimated by heuristics, in

this agent-based framework, transportation requests are served explicitly by individual

vehicles (the agents), such that the aforementioned quantities emerge solely based on

the user environment and the parameters of operation of the bi-modal transit system.

Our methodological contribution lies in the implementation of a bi-modal transit system

within an agent-based simulation framework.

4.2.1 Intermediate stops in real cities

We analyzed the subway networks of the cities of Berlin [52] and New York (NYC) [53]

with respect to the average number of intermediate stops, Θ, between crossings of disjunct

lines. For NYC, we considered Manhattan south of Central Park because in that part of

the city, the network is closest to a grid-like structure, as assumed in our study. North of

Manhattan, lines are mostly unidirectional (north-south). For Berlin, we took the subway

lines inside the “S-Bahn-Ring” (closed loop of the suburban rail system, see Fig. 4.2) from

2016, as a reference. We find on average, Θ = 1.08 for Berlin and Θ = 0.983 for NYC.

4.2.2 Simulation framework

We use an open-source, multi-agent transport simulation framework, MATSim [51]. It

can be used for large-scale simulations of microscopic dynamics on (street) networks. The

routing is performed using the AStarLandmarks algorithm, which is a modified version

of the A∗ algorithm [54].

MATSim simulation comprises individual users, which are called agents. An initial

demand characterizes the trips of the agents. Other inputs for simulations like traffic net-

work, transit schedules for trains and a configuration file that define specific parameters

used in the simulations characterize the system under study. Mobility simulations are

performed for the specified demand and input parameters. Mobility simulations reported

in the chapter paper are queue-based and time-step-based. The links or allowed routes

for vehicles are modeled as first-in-first-out (FIFO) queues. Vehicles in the queue leave

the link after a time equal to the free flow travel time specific to the link has elapsed. A

link is also characterized by the maximum number of vehicles that can be queued. For

the purpose of the simulations reported here, we assume that the link capacity is large

enough. For the simulations reported here, we consider the uniformly populated planar

region of area A and edges of length L = 20 km. The distance ℓ
′
that separates adjacent

transit stations is chosen to be 0.5, 1.0 and 2.0 km, corresponding to Θ = 3, 1, and 0,

respectively. The distance between major junction stations is fixed to a value of 2 km.

For each simulation, N uncorrelated requests are generated in the region A over the time

T = 1hr.
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Figure 4.2: Berlin subway and S-Bahn network [52].
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4.2.3 User environment

In simulations, we consider a uniformly populated planar region of side length L =

20 km, i.e., an area of A = 400 km2, and a total number of transit requests N , uniformly

randomly spread over a time T = 1h. Introducing population density E and average

request frequency per inhabitant ν, the number of transit requests per time N /T = νEA.

Users are assumed to place transit requests in an uncorrelated fashion, each consisting

of a desired pick-up (P) and drop-off (D) location with a requested distance d = PD
following a distribution p(·)1. As average requested distance we choose D = 5km [39] in

simulations. We defineD as the intrinsic length scale of our system. Shuttles and MIV are

assumed to have a characteristic road vehicle velocity, v0, which we choose to be 30 km/h

[39] in simulations. We can thus obtain the intrinsic time scale2 t0 = D/v0 = 10min.

This is the average time a travel request would need to be completed by MIV 3. We

denote (non-dimensional) variables measured in these units (D, t0) with the ˜ symbol.

The demand of transport within the system can be characterized by the dimensionless

parameter Λ = ND3

AT v0
= ν̃Ẽ, which measures the number of requests for transport in an

area of D2 during time D/v0 [39]. Typical values range from Λ = 102 to 104 for rural up

to dense urban transportation scenarios [39].

4.2.4 Bi-modal transit system

We distinguish two types of train stations. Train stations at railway intersections are

called junction stations. They are separated by the lattice constant ℓ. Additional train

stations are called intermediate stations. The distance between two adjacent train sta-

tions along a train line is ℓ
′
. The number of intermediate stations between two junctions

is then Θ = ℓ/ℓ
′−1. All train stations (intermediate and junction) serve as the connection

points between DRRP and line service (see Fig. 4.1b). We restrict our analysis to realistic

values of up to three (Θ ∈ {0, 1, 3}) intermediate stations on a grid of length ℓ = 2km [39].

This is motivated by what we observe in agglomerations like Berlin and New York, where

we find about one intermediate stop on average, and only rarely more than two (see Sub-

sec. 4.2.1). We observed previously in the chapter 3 that the performance of the system

is optimal for ℓ/D ≈ 0.4 across an extensive range of user demand [39]. This value is also

close to what is found, e.g., for Berlin [39]. Therefore, we fix ℓ/D ≈ 0.4 throughout this

study.

The trains operate along orthogonal lines from source to end, the first and the last

station of the transit network line in the direction of travel (see Fig. 4.1). The trains

1We are using the inverse-gamma distribution as it has been observed in NYC, for example [33].
2Introduction of intrinsic length and time scales, D and t0, as units reduce the number of parameters

by two.
3D = 5km is at the lower end of typical values for cities/regions and v0 = 30 km/h is at the upper

end (see table in [39]), leading to a comparatively short estimate for the average driving time by car.
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arrive at stations with a frequency µ = 1/10min−1 and travel at an average speed vtrain.

We assume that trains attain a maximum speed of 3 · v0 and the time taken to reach this

speed starting from rest is assumed to be 0.05 · t0. The trains stop at each connecting

station for 0.05 · t0. These values are inspired from real data (see [39]). Note that due to

these factors, the effective train velocity, vtrain, depends on the inter-station distance ℓ
′
.

Trains require energy etrain per unit distance of travel.

The transit system is further characterized by a number of shuttles, S, in the plane.

For the sake of conciseness and simplicity, we assume that the number of shuttles S is

just sufficient to serve all user requests emanating in the system over time T . Shuttles

require energy eshuttle per unit distance of travel. User requests served by DRRP/shuttles

are subject to the constraint that the maximum accepted detour (traveled distance /

direct distance) is δm = 3, the maximum waiting time is τw,max = 5min = 0.5 · t0 and the

maximum travel time is α · tdirect+γ, where α = 3, γ = 10min are simulation parameters

and tdirect is the direct travel time.

We let trains and DRRP operate for a time 2T = 2h in order to ensure that all user

requests are served during simulation time.

4.2.5 Average train speed

We assume that trains achieve a maximum speed of vm = 3 · v0. This value is inspired by

data found for New York City subway [55]. The time taken to reach this speed starting

from rest is assumed to be ta = 0.05 · t0. The trains stop at each connecting station for

ts = 0.05 · t0. The average train speed can then be obtained as

vtrain =





ℓ
′

ℓ
′

Vm
+ta+ts

, if ℓ
′ ≥ vm · ta

ℓ
′

2

√
ℓ
′
ta

Vm
+ts

, otherwise
, (4.1)

with ℓ′ being the inter-station distance. See Fig. 4.3 for explicit values of train speed as

a function of inter-station distance.

4.3 Results

We organize our results as follows. First, we present how DRRP performs within a bi-

modal system in Subsec. 4.3.1. Then we characterize the overall performance of bi-modal

transit systems in terms of energy consumption and service quality in Subsecs. 4.3.2 and

4.3.2. We conclude the results section with an analysis of potential reductions in traffic

volume (Subsec. 4.3.2).
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Figure 4.3: Train speed as a function of station density. Train speed is plotted as
a function of ℓ

′
. Values of Θ are annotated in the figure. Data for mesh size ℓ̃ = 0.4.
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4.3.1 DRRP performance

Occupancy

Fig. 4.4a shows the mean DRRP occupancy averaged over driving vehicles, namely b,

against the bi-modal fraction, F , for various numbers of intermediate stations, Θ, and

demands, Λ. We observe that shuttles generally have a higher mean occupancy for large

demands because of the greater possibility of pooling. Mean occupancy is observed to

decrease with the involvement of trains (increasing F ) because trips by shuttles are short-

ened, resulting in passengers spending less time in shuttles during their transit. We also

observe a general trend of decreasing mean occupancy with more intermediate stations,

because trips by shuttles for the users assigned to bi-modal transportation become 1)

more dispersed and 2) shorter due to the higher number and proximity of train stations,

therefore providing less opportunity for pooling.

Detours

From Fig. 4.4b, the general trend of increasing detour with demand is evident. This trend,

together with the trend for mean occupancy, b, in Fig. 4.4a, shows the well-known trade-

off between detour and pooling for DRRP, i.e., desirable pooling necessitates undesirable

detours for passengers [33]. A trend of decreasing detours with increasing involvement of

line services (increasing F ) can be attributed to a ’common stop effect’, that is, passengers

are picked up or dropped off at the same train station, thereby reducing detours. We

also observe a trend of decreasing detours with more intermediate stations which is due

to the lower potential for pooling due to shorter trips, as well as a reduced ’common stop

effect’.

Notice that the black dashed curve represents the assumed value of δ = 1.5 for the

theoretical analysis in chapter 3. We observe in Sec. 4.3.2, that this assumption does not

severely impact the agreement between the theoretical and simulated overall performance

of the system.

Pooling efficiency

The ratio between mean occupancy and mean detour, shown in Fig. 4.4c, provides a rea-

sonable estimate for pooling efficiency, η [38], which is defined as the ratio of requested

direct distance by the users and driven distance by the shuttles (for MIV, η = 1). In

Fig. 4.4c, we observe a general trend of increasing pooling efficiency, η, with demand,

which suggests that deploying shuttles in a region with high demand is favorable. In-

volvement of line services decreases the DRRP pooling efficiency because user requests

are diverted toward the lines, thus shortening the average distance a passenger travels on
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Figure 4.4: DRRP performance statistics: DRRP/Shuttle performance parameters
are plotted against bi-modal fraction F . Green, blue, and red curves represent Λ =
{13.7, 123, 1201}, respectively. Triangles, circles and squares represent Θ = {0, 1, 3},
respectively, for all colors. Black square, circle, and triangle represent uni-modal transport
(shuttles only) (a)Mean DRRP occupancy for non-standing vehicles, b. (b)Mean detour,
δ, for shuttle users. The black dashed curve represents the detour assumed for theory [39].
(c) Mean DRRP pooling efficiency η ≡ b/δ. Dashed curves represent the theoretical data
for pooling efficiency, as determined by Eq.3.19. (d) Mean waiting time, τ̃w, for shuttles
normalized with t0. The black dashed curve represents the assumed value for theory [39].
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the shuttle during the entire journey. We observe that the effect of intermediate stations

on η is mostly insignificant, except for higher demand at a large bi-modal fraction, F .

The dashed curves represent the theoretical prediction for pooling efficiency, deter-

mined by Eq. 3.19, which follows a trend similar to the simulations. We observe that the

theoretical data underestimates the pooling efficiency when compared with the simula-

tion data. This underestimation can be attributed to the ’common stop effect’ mentioned

earlier, which is not accounted for in theoretical predictions in Eq. 3.19.

Waiting time

In Fig. 4.4d, we study the mean waiting time for trips with shuttles. Mean waiting time

normalized with the average trip duration, t0, is plotted against the bi-modal fraction

F . The black dashed curve represents the assumed value for the theoretical study. We

observe a trend of increasing waiting time for higher demands because shuttles become

busier. Involvement of line services generally decreases the waiting time for trips with

shuttles because of the ’common stop effect’ and a lower share of distance traveled in

shuttles. The latter holds, too, for more intermediate stations, thus explaining the lower

waiting time for larger Θ.

In summary, the main messages from Fig. 4.4 are: 1) Shuttles become more efficient

with demand, while user experience suffers due to larger detours and waiting times. 2)

Intermediate stations enhance the user experience due to shorter detours and waiting

times. The effect on pooling efficiency is insignificant. 3) Trips with shuttles become

more convenient for users with the involvement of line services due to reductions in

waiting time and detours.

4.3.2 Overall energy consumption and service quality of bi-

modal transit

We now analyze the overall objectives, i.e., energy consumption (Eq. 3.14) and service

quality (Eq. 3.11) of the combined bi-modal system.

Energy Consumption

In Fig. 4.5a, relative energy consumption, E , is plotted as a function of bi-modal frac-

tion, F , for various numbers of intermediate stations, Θ. We observe a general trend

of decreasing energy consumption with the involvement of line services. This is because

∆shuttle decreases with the involvement of line services (see Fig. 4.6a) while ∆train is con-

stant due to a constant service frequency µ, thus decreasing the total energy consumption

by the bi-modal system (see Eq. 3.14). We observe that the relative energy consump-

tion is reduced with increasing demand, Λ, as is evident from the direct contribution
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Figure 4.5: Effect of intermediate stations on the overall performance of bi-
modal transit: The bimodal fraction F has been varied in the range [0,1) in simulations
to obtain the data shown. Blue and red curves represent data for Λ = {123, 1201},
respectively. Triangles, circles and squares represent Θ = {0, 1, 3}, respectively. (a)
Energy consumption, E , as a function of F . The dashed curves represent the theoretical
data determined by Eq. 3.22. (b) Quality, Q, as a function of F . Black dashed curve
represents the theoretical data determined by Eq. 3.13. Notice that the theoretical
data for quality is assumed the same across all demands. (c) Pareto fronts of energy
consumption, E , vs. service quality, Q determined from the data shown in (a), (b). Data
not part of Pareto fronts is not shown. The dashed curves represent the theoretical data
as in (a), (b). Black circle and triangle represent uni-modal transport (shuttles-only)
data for Λ = {123, 1201}, respectively. (d) Pareto fronts as in (c), but normalized with
respect to the performance, (Q0, E0), of the uni-modal system (shuttles only).
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in Eq. 3.22, as well as via the enhanced pooling efficiency, η (see Fig. 4.4c). Fig. 4.5a

reveals that the energy consumption can be lower than 25% of the energy consumption

for MIV for demands in large cities like Berlin (Λ ≈ 5 · 103, [39]). Energy consumption is

observed to decrease slightly with the increasing number of intermediate stations because

the normalized distance driven by shuttles is reduced (see Fig. 4.6a). We find reasonable

agreement between theoretical data (Eq. 3.22) and simulations.

Quality

In Fig. 4.5b, we plot the overall quality of the system against the bi-modal fraction,

F . We observe that Q is non-monotonic in F . This is due to the competing effects of

decreasing waiting time for shuttles with more involvement of trains (see Fig. 4.4d), on

the one hand, and additional waiting time for trains at the train stations for a larger user

fraction (F ), on the other hand.

We observe that the overall service quality, Q, decreases with demand, which is due

to the trend we observed for waiting times for trips with shuttles in Fig. 4.4d.

The dashed black curve represents the theoretical predictions determined by Eq. 3.13.

Notice that the theoretical prediction for quality does not depend on the demand because

the train frequency µ is maintained at a constant value of 0.1min−1 across all demands

(see Subsec. 4.2.3). The difference between theory and simulation data primarily stems

from the waiting time of shuttles, which we approximated as 0.25 t0 in our theory, for

all demands. However, we see in Fig. 4.4d that the waiting time varies with demand,

bi-modal fraction, and the number of intermediate stations.

In Fig. 4.5b, we observe that the overall service quality of the combined bi-modal

system decreases with more intermediate stops, despite a trend of decreasing waiting

times and detours for trips with shuttles (see Figs. 4.4b, d). Apparently, this trend is

dominated by a slowing down of trains due to intermediate stations, which increases the

average trip duration.

The general trend of reduction in consumption of energy with increasing demand and

involvement of line services hints towards the merit of bi-modal transportation for high-

demand scenarios. For service quality, we find that typical values are around one-half the

service quality of MIV, i.e., about twice the travel time. This quality is customary for

public transport systems [56, 48] and is generally well accepted by users. Note that our

data for service quality represent a safe lower bound, as the (sometimes quite substantial)

time required for parking spot search [49, 50] is neglected in t0.

We observe that service quality attains a maximum for a bi-modal fraction, F , where

energy consumption is not minimal. Jointly optimizing such conflicting objectives can be

done in the framework of Pareto optimization, which we will discuss next.
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Optimization

We determine the optimal parameters of operation by using the Pareto frontiers (see

Subsec. 3.5.1), keeping in mind that we aim at maximum service quality at minimum

energy consumption. Hence, in diagrams spanned by Q as the abscissa and E as the

ordinate, system operation as far as possible to the lower right is desirable.

In order to study the effect of density of line service stations on the overall perfor-

mance of the bi-modal transit system, we have introduced Θ = {0, 1, 3} as the number of

intermediate stations. For Θ = 0, transit stops are only at the intersection between two

transit lines. For each value of Θ, we vary dc to obtain the Pareto fronts.

In Fig. 4.5c, we show the Pareto fronts obtained for data in Figs. 4.5a, b. Note that for

a better resolution of the curves, we only show the data for Λ = {123, 1201}. We observe

that intermediate stations reduce the energy consumption to as low as 20% of MIV for

larger demand. However, the service quality is worsened due to the reduced average

speed of trains. Black triangles and circles represent the data for the uni-modal system

(shuttles only), and dashed curves represent the theoretical estimates. We observe a fair

agreement between previous theoretical estimates and simulation results for the overall

performance of the bi-modal system. Discrepancies mainly result from the simplifying

assumptions for mean waiting time, τ̃w and detour, δ, as described in Subsec. 4.3.1.

In Fig. 4.5d, the same Pareto fronts as in Fig. 4.5c are plotted normalized with respect

to energy consumption and service quality of a uni-modal system, (E0,Q0). We observe

that the bi-modal system can provide a service quality superior to a uni-modal (shuttles

only) system with a lower energy consumption. This observation holds for both demand

values presented.

Traffic volume

Road traffic is a source of local noise and air pollution and occupies significant shares of

urban space. Bi-modal transit aims at reduction of road traffic by utilizing line services

for trips over larger distances. Fig. 4.1c and Fig. 4.1d provide qualitative evidence by

comparing abundance of MIV and shuttles for the same request pattern.

To obtain a quantitative estimate, we define as bi-modal traffic volume, ∆̃shuttle, the

cumulative distance driven by shuttles, ∆shuttle (Eq. 3.15), normalized with respect to the

equivalent of total MIV distance requested, ∆MIV (Eq. 3.21), or, equivalently, the relative

number of driving shuttles as compared to MIV.
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For our theoretical estimates, we use the analytical expression,

∆̃shuttle ≡ ∆shuttle/∆MIV = η−1 (1 + F ) D̃shuttle , (4.2)

with pooling efficiency, η, bimodal fraction, F , and average requested distance for trips

by shuttles involved in bi-modal transit, D̃shuttle.

In Fig. 4.6a, we plot bi-modal traffic in simulations on a vertical axis as a function

of bi-modal fraction for various demands and number of intermediate stations. Dashed

curves represent the theoretical data (Eq. 4.2) for an idealized square grid network without

any intermediate stops (Θ = 0).

We observe a trend of decreasing bi-modal traffic with involvement of line services,

i.e., with increasing F . Also, ∆̃shuttle decreases with increasing demand, because shuttles

become more efficient due to the possibility of larger pooling (see also Fig. 4.4c). We fur-

thermore observe that, for low demand, bi-modal traffic decreases with more intermediate

stations. This is despite an insignificant impact on pooling efficiency, η (see Fig. 4.4c).

It is rather the reduced average requested distance for trips with shuttles, D̃shuttle, due to

the increased proximity of train stations, which accounts for the reduced traffic volume

(see Eq. 4.2).
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Figure 4.6: Impact of intermediate stations on traffic volume. Green, blue, and
red curves represent Λ = {13.7, 123, 1201}, respectively. Triangles, circles, and squares
represent Θ = {0, 1, 3}, respectively. (a) Relative bi-modal traffic in simulations, ∆̃shuttle,
as defined in Eq. 4.2, as a function of the bi-modal fraction, F . Black square, circle, and
triangle represent uni-modal transport (shuttles-only) data for Λ = {13.7, 123, 1201},
respectively. Dashed curves represent the theoretical data, determined by Eq. 4.2. (b)
Relative bi-modal traffic in simulations, ∆̃shuttle, determined along the Pareto fronts in
Fig. 4.5, against corresponding service quality Q. Dashed curves and black symbols
represent the theoretical and uni-modal data, respectively, as in (a).

In Fig. 4.6b, we plot the relative bi-modal traffic volume, ∆̃shuttle, for simulations on

a vertical scale, determined along the Pareto fronts in Fig. 4.5c, against corresponding
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service quality Q. The traffic volume for uni-modal (shuttle-only) scenarios is plotted

with black symbols. We observe that the relative traffic volume for uni-modal scenarios

decreases with demand due to increased pooling efficiency, η (see Fig. 4.4c). The relative

traffic volume for the uni-modal case can be reduced to 80% of MIV for very low demand

and down to 50% and 40% for low and medium demand, respectively.

Bi-modal public transportation allows for further reduction in relative traffic volume

below the uni-modal case at a superior service quality. For an idealized square grid with-

out any intermediate stations (represented by colored triangles), bi-modal transportation

reduces traffic volume down to about 30% of MIV for very low and low demand and

even below 20% for medium demand. Intermediate stops allow for further reduction in

traffic. This reduction, however, comes at the cost of reduced service quality. Due to

computational limitations, we could only simulate scenarios with the demand of the order

of Λ = 103. However, the demand can be as high as 104 for very dense areas like New

York. Earlier findings suggest that bi-modal public transportation can reduce traffic in

such areas even below 10% of MIV [39].

4.4 Discussion

Our investigation had two primary goals. First, to study the impact of the number of

intermediate line service stops on the performance of bi-modal public transport systems.

Second, to evaluate the analytical framework proposed in chapter 3 through simulations.

The parameters investigated in this chapter drew inspiration from real-world agglomera-

tions. The grid constant ℓ̃ = ℓ/D = 0.4 in our model is close to what is found for, e.g.,

New York and Berlin. Other technical parameters, including shuttle speed (v0) and train

speed (vtrain), have been carefully chosen to reflect the observed real-life environments

(see Subsec. 4.2.3).

Below, we first discuss the comparison between agent-based simulations and the an-

alytical study in chapter 3. Simulations reveal that observables characterizing shuttle

performance, namely detour and waiting time, vary with demand, bi-modal fraction, and

the number of intermediate stops, in contrast to the constant values assumed by the

previous chapter.

Furthermore, we observe that the pooling efficiency for shuttles in a bi-modal scenario

is higher than the one estimated by power-law (see Eq. 3.19). This is because of the

’common stop effect’ (see Subsec¿ 4.3.1). The findings above highlight that shuttle waiting

time, detours, and pooling efficiency are complex observables, which, in bi-modal transit,

depend on line service operations, and thus must be modeled carefully to assess the

performance of bi-modal transit systems accurately.

Adding intermediate stations between line crossings had limited benefits. While there

was a marginal reduction in energy consumption and traffic volume, the resulting slow-
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down of trains made them less suitable as a faster mode of transportation than MIVs and

shuttles, i.e., lead to substantial reduction of service quality. Our research hence suggests

that reducing the number of intermediate stops within an existing railway system and

complementing an on-demand shuttle service as bi-modal transit may improve the overall

performance of public transport.

It should be noted that the network structure employed in our research, although

inspired by real-world urban agglomerations, is still a simplified representation. In the

next chapter, we consider a more complex and realistic network topology to capture the

nuances of the urban environment and evaluate the generalizability of our findings.

In summary, our study confirms that bi-modal transit can provide door-to-door service

with satisfactory service quality while consuming only a fraction of the energy required

by an equivalent fleet of MIVs, and significantly reducing road traffic volume. These

advantages hold for low-demand regions as well as medium-sized cities. Although our

simulations were limited to a medium user demand of approximately Λ = 103 due to

computational constraints, we anticipate that bi-modal transit would outperform MIVs

and uni-modal ride-pooling even more significantly under higher demand conditions, as

suggested in previous research [39]. It is important to note that our analysis did not

consider other MIV-specific drawbacks, such as parking time or traffic congestion during

rush hours [57, 58, 50], which would further enhance the relative performance of bi-modal

transit.



It doesn’t matter how beautiful your theory is, it

doesn’t matter how smart you are. If it doesn’t

agree with experiment, it’s wrong.

Richard P. Feynmann

5
Bi-modal transit in Berlin and Brandenburg

5.1 Introduction

In chapters 3 and 4, we considered a spatially uniform demand with constant average

request frequency. However, in realistic scenarios, demand is heterogeneous in space, due

to non-homogeneous population density and individual mobility patterns, and fluctuating

in time due to phenomena like rush hours. Furthermore, the trains were assumed to run

periodically at the same constant speed throughout the system and the shuttles were also

assumed to operate at a constant speed. These assumptions undermine the nuances in

real settings. The network topology, for example, is much more complex in real settings

(see Fig. 5.1) and vehicles barely operate at the same constant speed, if at all. It is

unclear how these heterogeneities affect the overall performance of the system.

A prevalent assumption in chapters 3 and 4 was that all transportation requests within

a given study region exclusively relied on the public transit system, these requests were

then assigned to bi-modal (shuttle-train-shuttle) or uni-modal (shuttles only) transporta-

tion. However, the reality is far more intricate, as user adoption of public transportation

systems exhibits significant variability. In this chapter, we study the effects of such adop-

tion variability on the holistic performance of bi-modal transportation systems for Berlin

and Brandenburg (see Fig. 5.2). We explore two distinct scenarios: one where x = 1% of

the total population utilizes public transportation and another where the adoption rate

increases to x = 10% of the total population. For both scenarios, we assume that the

rest of the people use private cars or MIVs to commute.

48
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Figure 5.1: Transit network for Berlin and Brandenburg. Black curves represent the road
network and red curves represent the public transit network including buses and rails
(also long-distance trains) [59].
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(a)

(b)

Figure 5.2: Bi-modal transport network in Berlin and Brandenburg A snapshot
of simulations for 1% user-adoption fraction (x = 0.01) zoomen in around Berlin. (a)
A bi-modal scenario where grey rectangles represent trains and red dots represent the
shuttles. (b)MIV scenario where people use private cars to commute. Red dots represent
private cars. The number of required shuttles in a bi-modal system (a) is much lower
than the number of MIVS required in (b). See Subsec. 5.3.3 for quantitative analysis.
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5.2 Methods

For simulating a system of bi-modal transport, with on-demand shuttles and trains op-

erating on lines, we deploy the open-source, multi-agent transport simulation framework

MATSim [51]. We used the map from [60]. We used the passenger travel patterns that

were artificially generated using the census data [59]. The data is provided by the Trans-

port Systems Planning and Transport Telematics group of Technische Universität Berlin.

We used an openly available General Transit Feed Specification GTFS dataset for the

Berlin-Brandenburg region [61] to generate MATSim public transport schedule and vehi-

cle files and to add public transport links to the network. The dataset provides schedules

and vehicles for various transport modes available, however, we only use rail-bound line

services as a means of public transport. Each link on the transportation network has an

associated speed for the vehicles. We explore two distinct scenarios: one where x = 1% of

the total population utilizes public transportation and another where the adoption rate

increases to x = 10% of the total population. For both scenarios, we assume that the

rest of the people use private cars or MIVs to commute. Our study unveils the dynamics

between user adoption patterns and the overall performance of bi-modal transportation

systems, offering insights essential for optimizing their design and operation.

5.3 Results

Below in Subsec. 5.3.1, we first present how DRRP performs with a bi-modal system when

the bi-modal transit system is used by 10%, and 1% population. Then in Subsecs. 5.3.2

and 5.3.3, we describe the overall performance of the bi-modal transit system for the

two used cases above. We conclude the results section with an analysis of the potential

reduction in traffic volume.

5.3.1 DRRP performance

Occupancy

In Fig. 5.3a, we show the mean DRRP occupancy, b, averaged over non-empty driving

vehicles against the bi-modal fraction, F , for 10% and 1% use case. We observe that the

shuttles have a higher mean occupancy for larger use case, i.e., larger demand because

of the greater possibility of pooling. Mean occupancy decreases with the involvement

of trains (increasing F ). This is because shuttle trips are shortened causing passengers

to spend less time in shuttles during their transit. The black symbols represent mean

occupancy for a uni-modal (shuttles only) scenario. We observe that the mean occupancy

is larger for uni-modal scenarios.
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Detours

In Fig. 5.3b, we observe that higher use case, i.e., 10% population has larger detours. The

detour δ and occupancy b trend observed above shows a well-known trade-off between

detour and pooling for DRRP, i.e., desirable pooling necessitates undesirable detours

for passengers [33]. We observe that the detours decrease with the involvement of line

services, this can be attributed to the ’common stop effect’, a phenomenon observed in

the previous study [62]. With greater involvement of line services, more passengers are

picked up and dropped of at the same train station, thereby reducing detours.

Pooling efficiency

The pooling efficiency which is defined as the ratio between mean occupancy and mean

detour is shown in Fig. 5.3c. We observe that the pooling efficiency, η, is higher for

larger demand, i.e., 10% use case as also reported in previous study [62]. This suggests

that the larger use of shuttles or bi-modal service will be favorable for pooling efficiency.

We observe that the involvement of line service reduces DRRP pooling efficiency because

user requests are diverted toward the line which shortens the average distance a passenger

travels on the shuttle during the entire journey.

Waiting time

In Fig. 5.3d, we study the mean waiting time for shuttle-borne trips. We plot the mean

waiting time normalized with the average trip duration, t0, against the bi-modal fraction,

F . We observe that larger demand, that is, the use case of ten percent has larger waiting

times because shuttles are busier. We also observe that the involvement of line services

decreases the waiting time for shuttle trips because of the ’common stop effect’ and a

lower share of distance traveled in shuttles.

The main messages form Fig. 5.3 are: 1) Shuttles become more efficient with demand,

while user experience suffers due to larger detours and waiting times, as also found in

the previous study [62]. 2) The involvement of line services makes the shuttle trips more

convenient for users by reducing the waiting time and detours.

5.3.2 Overall energy consumption and service quality of bi-

modal transit

Now, we will analyze the overall objectives, i.e., energy consumption (Eq. 3.22) and

service quality (Eq. 3.13) of the transportation system for the two use cases.

Energy consumption In Fig. 5.4a, relative energy consumption, E , is plotted as a

function of bi-modal fraction, F , for the two use cases discussed above. We observe a
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general trend of decreasing energy consumption with the involvement of line services.

This is because ∆̃shuttle decreases with the involvement of line services (see Fig. 5.6a)

while ∆̃train is constant due to a fixed schedule of trains in the simulations, thus reducing

the total energy consumption by the bi-modal transportation system. We also observe

that energy consumption is reduced with increasing demand, i.e., for a higher used case.

This is evident from Eq. 3.22. Note that the emission curves for bi-modal transporta-

tion start above the emissions for uni-modal scenarios (black symbols). This is because

in our bi-modal simulations, trains are always running at fixed schedules. For low bi-

modal fraction, F , trains are underutilized because they operate at low occupancies (see

Fig. 5.5b). We observe that for 10% use case, the energy consumption can easily drop

below 20%, however, for a 1% use case, it’s not advisable to use bi-modal transportation,

suggesting that a larger adoption of bi-modal transportation can significantly reduce the

energy consumption.

Quality In Fig. 5.4b, the overall quality of the system is plotted against the bi-modal

fraction, F , for the two use cases. We observe that the demand doesn’t significantly

impact the overall service quality and service quality decreases with the involvement of

the line services. Large waiting times (see Fig. 5.5a) contribute to degrading quality with

the bi-modal fraction, F . This suggests that user quality can be improved by increasing

the train frequency and adapting the train capacity, k, depending on the demand. We

see in Fig. 5.5b that trains are barely full.

5.3.3 Optimization

We determine the optimal parameters of operation by using the Pareto frontiers. Hence,

in diagrams spanned by Q as the abscissa and E as the ordinate, system operation as far

as possible to the lower right is desirable.

In order to study the overall performance of bi-modal transportation in real scenarios

and the impact of user adoption, we explore two distinct scenarios: one where 1% of the

total population utilizes bi-modal transportation, and another where the adoption rate

increases to 10% of the total population. In each case, we vary dc to obtain the Pareto

fronts.

In Fig. 5.4c, we show the Pareto fronts obtained for data in Figs. 5.4a,b. We observe

that the energy consumption can go below 20% for a service quality of around 0.25 for

the 10% use case. The black circle represents the uni-modal data for the 10% use case.

We observe that bi-modal transportation can significantly reduce emissions as compared

to uni-modal (shuttles only) case with a compromise on service quality. This is clear from

Fig. 5.4d, where we plot the Pareto-optimal E and Q normalized with uni-modal E0 and

Q0 respectively.
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Figure 5.3: DRRP performance statistics: DRRP/Shuttle performance parameters
are plotted against bi-modal fraction F . Blue circles and red triangles represent 10%, and
1% population of Greater Berlin, respectively. Black circle, and triangle represent uni-
modal transport (shuttles only) (a) Mean DRRP occupancy for non-standing vehicles, b.
(b) Mean detour, δ, for shuttle users. (c) Mean DRRP pooling efficiency η ≡ b/δ. (d)
Mean waiting time, τ̃w, for shuttles normalized with t0.
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Figure 5.4: Overall performance of bi-modal transit: Blue circles and red triangles
represent data for 10%, and 1% greater Berlin population respectively. (b) Quality, Q,
as a function of F . (c) Pareto fronts of energy consumption, E , vs. service quality, Q
determined from the data shown in (a), (b). Data not part of Pareto fronts is not shown.
The black circle and triangle represent uni-modal transport (shuttles-only) data for 10%,
and 1% greater Berlin population respectively. (d) Pareto fronts as in (c), but normalized
with respect to the performance, (Q0, E0), of the uni-modal system (shuttles only).
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Figure 5.5: Mean waiting time and Train occupancy: Blue circles and red triangles
represent 10% and 1% population of Greater Berlin, respectively. (a) Mean waiting times
normalized with t0. (b) Mean train occupancy.
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Figure 5.6: Traffic volume. Blue circles and red triangles represent 10%, and 1% greater
Berlin population respectively. (a)Relative bi-modal traffic in simulations, ∆̃shuttle, as
defined in Eq. 4.2, as a function of the bi-modal fraction, F . Black circle and triangle
represent uni-modal transport (shuttles-only) data for 10%, and 1% greater Berlin pop-
ulation respectively. (b) Relative bi-modal traffic in simulations, ∆̃shuttle, determined
along the Pareto fronts in Fig. 5.4, against corresponding service quality Q.
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For the 1% use case, it is not advisable to deploy bi-modal transportation at all

because requests are better served by uni-modal transportation (black triangle) both in

terms of energy consumption and service quality.

Traffic volume

In Fig. 5.6a, we plot the total relative traffic volume, ∆̃shuttle, described in Eq. 4.2 on the

vertical axis as a function of bi-modal fraction, F , for the two used cases. We observe

a trend of decreasing bi-modal traffic with the involvement of line services, i.e., with

increasing F . Also, ∆̃shuttle decreases when the user adoption goes from 1% to 10%

because the shuttles become more efficient due to the possibility of larger pooling (see

also Fig. 5.3c).

In Fig. 5.6b, we plot the total relative traffic volume, ∆̃shuttle, for simulations, deter-

mined along the Pareto fronts in Fig. 5.4c, against corresponding service quality, Q. The

traffic volume for uni-modal (shuttles-only) scenarios is plotted with black symbols. We

observe that the relative traffic volume for uni-modal scenarios decreases with demand

due to increased pooling efficiency, η (see Fig. 5.3c). The relative traffic volume for uni-

modal (shuttles only) scenario for 1% use case is not significantly less than that of MIV

because of low pooling efficiency, η (see Fig. 5.3c). The uni-modal traffic volume for the

10% use case is around 60% of MIV traffic. This suggests that the relative uni-modal

traffic volume can be further reduced if more people adopt ride pooling.

Bi-modal public transportation allows for further reduction in relative traffic volume

Below the uni-modal scenario, albeit, at a lower service quality. The bi-modal traffic can

go as low as 15% for 10% user adoption.

5.3.4 Discussion

Our investigation had two primary goals. First to study the feasibility of bi-modal

demand-responsive public transportation in Berlin and Brandenburg with the existing

rail network. Second, to study the impact of user adoption of public transit on the

overall performance of bi-modal demand-responsive public transportation in Berlin and

Brandenburg.

Our study suggests that bi-modal demand-responsive transportation can be deployed

in Berlin and Brandenburg with the existing rail network of public transportation. We

find that the overall performance of bi-modal transportation improves with higher user

adoption. While 10% user adoption can significantly reduce emissions and vehicular

traffic, it is not advisable to deploy bi-modal transit with existing rail network and train

schedules if the user adoption is 1%. This suggests that the overall performance of the

bi-modal transit can be further improved by devising strategies to attract users towards

bi-modal transportation.



Isn’t it funny how day by day nothing changes,

but when you look back everything is different?

C.S. Lewis

6
Conclusion and Outlook

6.1 Conclusion

In this thesis, our aim was to harmonize vital urban convenience with strategies that al-

leviate traffic challenges and environmental impacts. To that end, we introduce a hybrid

model of bi-modal public transit that combines high-speed line service with a fleet of shut-

tles. In a first approach, we consider an idealized model geometry with a square grid of

railways (line service) on which transport occurs via trains. The connection points (train

stations) between the two subsystems lie at all railway intersections and are spaced with

a lattice constant ℓ. We identify the conflicting objectives for optimization, i.e., service

quality and energy consumption. We then ask the following questions in chronology while

gradually increasing the complexity of our model to align our model more closely with

real-world scenarios. With each step, we gain insights into the operational dynamics that

underpin the functionality and efficiency of bi-modal transit systems within the intricate

urban landscapes of urban mobility.

1. What performance, regarding energy consumption and convenience, can we achieve

for an idealized square grid geometry by diligently choosing the control parameters?

2. How does the performance change with the density of line service stations, i.e.,

what if we have intermediate train stations between line crossings?

3. Can we deploy the system in real cities like Berlin with an existing network of

trains?

58
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By means of simulations and analytical theory, we find that,

1. Bi-modal transportation is sustainable and convenient. We find that the

energy consumption by bi-modal transportation can reach as low as 30% of the

energy consumption by private cars for a service quality of around 50% of private

cars. We find that the performance of the system improves with a larger demand.

Furthermore, we find that the vehicular traffic can be reduced to 10% of the ve-

hicular traffic when all users use their private cars. The overall performance does

not vary dramatically with mesh size (ℓ), as the control parameters at which the

system is operated are largely at the operator’s discretion, i.e., similar performance

can be achieved for different ℓ by tuning the cutoff distance dc appropriately. This

suggests that the density of currently installed rail track systems might already be

well suited for deploying a bi-modal on-demand transport systems of the kind we

have studied (see [39]).

2. Intermediate stations are not beneficial. We find that within a range of real-

istic technical parameters, additional stops, in excess of the stops at rail crossings,

tend to impede train speed without significantly enhancing the overall performance

of bi-modal transit in terms of service quality and energy consumption. Hence,

reducing the number of stops within an existing railway system and implementing

bi-modal transit as a complement can be beneficial (see [62]).

3. Bi-modal transportation can be deployed in Berlin and Brandenburg

with the existing rail network. With the previous learnings from analytical

theory and agent-based simulations, we finally study the feasibility of bi-modal

demand-responsive ride-pooling in Berlin and Brandenburg. We deploy the open-

source, multi-agent transport simulation framework MATSim. We use the map

from OpenStreetMap. We use the passenger travel patterns artificially generated

using the census data. We find that the existing network of rails with shuttles

can be used to deploy a bi-modal public transit system that can reduce energy

consumption and vehicular traffic.

6.2 Outlook

It is important to note that our results represent only a lower bound on bi-modal perfor-

mance, in particular as far as service quality is concerned because the bi-modal service of

the kind studied here potentially provides door-to-door service, while MIV involves the

search for parking space, which was completely disregarded in our study due to lack of

reliable data. This can be quite significant, and fully adds to the MIV transit time, thus

further improving on the relative service quality, Q, of bi-modal service.

Moreover, it should be mentioned that riding the bi-modal transport system neither
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involves having to drive nor taking care of vehicle maintenance. In summary, it appears

that bi-modal public transport systems have the potential to outperform the MIV in a

number of respects.

Following could be the future research directions based on our work:

6.2.1 A better strategy to assign users to uni-modal or bi-modal

transportation.

We have based the decision on the type of transport service (uni-modal or bi-modal)

on a single scalar parameter, dc, which amounts to representing the decision process by

a binary-valued function of a single scalar variable, d −→ {0, 1}. The true structure

would be a binary-valued field Φ on the four-dimensional space of the pick-up and drop-

off coordinates, Φ: (xp, yp, xd, yd) −→ {0, 1}. This would be extremely cumbersome to

study in a statistical manner. However, in a real system, data on Φ(xp, yp, xd, yd) are

being collected on a daily basis, such that over time the system can be ever improving

its performance over the data we have presented here.

6.2.2 User adoption coupling with service quality

In reality, demand will couple to service quality and other parameters concerning user

satisfaction; a well-functioning system of transportation attracts demand. Since service

quality depends on demand, too—as seen in this study—modeling user behavior intro-

duces a feedback loop. Future studies should integrate this feedback loop into the model-

ing framework, a step towards resolving user adoption dynamically. Broader analysis of

user adoption of bi-modal transportation based on incentives, customer convenience, and

customer preferences remains to be explored. Recent results from experimental social

science, however, point into a very favorable direction [63, 64, 65].
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a b s t r a c t 

Mobility is an indispensable part of modern human societies, but the dominance of motorized 

individual traffic (MIV, i.e., the private car) leads to a prohibitive waste of energy as well as 

other resources. Public transportation with line services, such as light rail, can pool many more 

passengers, thereby saving resources, but often is less convenient (longer transit times). Door-to- 

door shuttle services, on the other hand, are convenient but have a limited pooling efficiency due 

to detours scaling with shuttle occupancy. Combining line services with a fleet of shared shuttles 

in an integrated so-called bi-modal system may provide on-demand door-to-door service at a 

service level superior to current public transport with significantly less resource consumption 

than MIV. Here we introduce a generic model of bi-modal public transit and characterize its 

critical parameters of operation. We identify the conflicting objectives for optimization, i.e., user 

convenience and energy consumption, and evaluate the system’s performance in terms of Pareto 

fronts. By means of simulation and analytical theory, we find that energy consumption can be 

as low as 20% of MIV, at line service densities typically found in real settings. Road traffic can 

be reduced to less than 10% of MIV. Surprisingly, we find favorable performance not only in 

urban, but also in rural settings. We thereby provide a possible answer to the pressing question 

of designing sustainable future mobility solutions. 

1. Introduction 

Transportation accounts for about one fifth of global anthropogenic carbon emissions ( Fan et al., 2018 ; Kontovas and 

Psaraftis, 2016 ), owing mainly to the fact that humans rely mostly on motorized individual vehicles (MIV), i.e., private cars 

( Douglas et al., 2011 ; Newman and Kenworthy, 1989 ). Aside from the ensuing logistic ( Jang et al., 2016 ; Manville and Shoup, 2005 ; 

Mingardo et al., 2022 ; Park et al., 2012 ; Swenseth and Godfrey, 2002 ) and environmental ( eea, 2020 ; Joireman et al., 2004 ) problems 

of traffic congestion ( Arnott and Small, 1994 ; Barth and Boriboonsomsin, 2009 ; Chin, 1996 ; Ko ź lak and Wach, 2018 ) and air pollution 

( eeab, 2020 ; Caiazzo et al., 2013 ), MIV represents an enormous waste of energy. On average it amounts to moving about a ton of 

material ( MacKenzie et al., 2014 ) in order to move just one person ( Tachet et al., 2017 ). Nevertheless, it maintains a leading market 

position ( eurostat, 2022 ; Fiorello et al., 2016 ) because it is convenient ( Kent, 2013 ) and relatively cheap for its users. 

A well-known answer to this problem is ride-pooling ( Chen et al., 2017 ; Shaheen and Cohen, 2019 ; Zwick et al., 2021 ), i.e., 

combining routes of several passengers such that they can be served by one vehicle ( Merlin, 2019 ). This is done most efficiently by 

line services, like trains, light rail, or the underground. A light rail car easily takes a hundred passengers or more, uses much less 
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Table 1 

City data. Typical values of population density 𝐸, average traveled distance 𝐷, speeds of shuttles 𝑣 0 , as well as the resulting dimensionless demand 

Λ = 𝐷 

3 𝐸𝜈∕ 𝑣 0 , service quality  (see Eq. 4 ) and dimensionless mesh size 𝓁 , for a few selected areas. 𝓁 = 
√
𝑚 ∕ 𝐷, where 𝑚 is the average area enclosed 

by surrounding rail services. We assume 𝜈 = 2∕17 ℎ −1 , i.e., two trips per day per user given a time of service of 17 ℎ per day. Road vehicle velocities 

for Ruhr (north) and Emsland, as well as data for  , have been obtained by averaging Google navigator data over many relations randomly chosen 

within the respective area. 

city/district type 𝐸 𝐷 𝑣 0 𝑚 𝓁 Λ  ref. 

[ 𝑘𝑚 −2 ] [ 𝑘𝑚 ] [ 𝑘𝑚 ∕ ℎ ] [ 𝑘𝑚 2 ] 

New York City dense urban 1 . 1 ⋅ 10 4 4.99 11.3 2.0 0.28 1 . 5 ⋅ 10 4 0.33 Herminghaus, 2019 ; 

NYCDOT, 2018 ; TLC, 2022 ; 

USCB, 2020 

Berlin urban 4 . 1 ⋅ 10 3 5.90 19.8 3.6 0.32 5 . 0 ⋅ 10 3 0.64 AfS, 2021 ; Gerike et al., 2018 

Ruhr (north) urban 3 . 6 ⋅ 10 3 15.7 44.9 94 0.62 3 . 6 ⋅ 10 4 0.34 Haller and Dauth, 2018 

Emsland rural 1 . 1 ⋅ 10 2 16.7 58.7 1200 2.1 1 . 0 ⋅ 10 3 0.35 IAB, 2018 ; StBA, 2020 

energy than the same number of MIV and contributes next to nothing to traffic congestion ( Pietrzak, 2016 ). Therefore, many large 

cities (like, e.g., Tokyo) rely heavily on transportation by line services ( Ferbrache and Knowles, 2017 ; Kato et al., 2014 ; Pietrzak and 

Pietrzak, 2019 ). 

They come, however, with a serious downside when compared to MIV. With the latter, users can freely choose the starting time 

and location as well as the destination. This is not possible for line services, which must follow fixed schedules and fixed routes 

( Alam et al., 2015 ). Users thus may have to walk significant distances to and from stations, and need to know the schedules of the 

involved lines. Demand-responsive ride-pooling (DRRP) ( Herminghaus, 2019 ) services try to address this problem by deploying a 

large number of shuttles which pick up and drop off users at the desired locations. This requires a central facility which collects travel 

requests, along with a powerful algorithm which combines these requests into appropriate routes of the shuttles ( Alonso-Mora et al., 

2017 ). In such systems, users necessarily experience some detour ( Herminghaus, 2019 ; Lobel and Martin, 2020 ) with respect to the 

direct route they could have taken via MIV. This trade-off ( Daganzo et al., 2020 ) severely limits the achievable pooling efficiency to 

well below ten passengers per vehicle ( Zwick et al., 2021 ). Hence while DRRP is more attractive than line services because it provides 

door-to-door transport, its pooling efficiency is intrinsically much inferior. 

The observations above suggest the following question: “Can we achieve both, high pooling efficiency and attractive service quality, 

by combining line services with on-demand door-to-door transport in a single system of transportation? ” While there have been quite 

a number of studies on ride-pooling systems before ( Chen et al., 2017 ; Lotze et al., 2022 ; Molkenthin et al., 2020 ; Salonen, Toivonen, 

2013 ; Santi et al., 2014 ; Sorge et al., 2015 ; Storch et al., 2021 ; Sundt et al., 2021 ; Tachet et al., 2017 ; Vazifeh et al., 2018 ; Wolf et al., 

2022 ), the combination of different transport modes has so far been only scarcely addressed and remains to be explored. Thus, in 

this paper we fill this gap and investigate a bi-modal public transit system, which consists of a combination of both transport modes. 

A line service, with fixed routes and schedule, shall coexist with a fleet of shuttles which pick-up users and bring them either to 

and from line service stations, or serve shorter-distance requests directly. This provides both door-to-door transport by virtue of the 

shuttles and a large average pooling efficiency due to the involvement of line service vehicles. 

In Section 2 , we first introduce the bi-modal model system with a square-grid geometry together with a mean-field description. We 

identify the relevant parameters in Section 3 , which need to be controlled in such a combined system of transportation to optimize 

the objectives of operation (see Section 4 ). By computing Pareto fronts, we explore in Section 5 what performance may be achieved 

in terms of energy consumption, quality of service, and traffic volume. We find that bi-modal transit has the potential to provide 

on-demand door-to-door service with a quality superior to customary public transportation, while at the same time consuming only a 

fraction of the energy a corresponding fleet of MIV would require, and with a road traffic volume reduced by an order of magnitude. 

2. Definition of the system 

2.1. User environment 

For the sake of conciseness and simplicity, we consider a planar area uniformly populated at density 𝐸 with potential users of the 

public transit system under study. Users are assumed to place transit requests in an uncorrelated fashion, each consisting of a desired 

pick-up ( ) and drop-off (  ) location, at an average rate 𝜈 per passenger. Requested travel distances 𝑑 =  are assumed to follow 

a certain distribution, 𝑝 ( 𝑑) , with mean 𝐷 ( Herminghaus, 2019 ). 

For a transparent discussion, it is useful to introduce dimensionless parameters characterizing the system under study. By com- 

bining the intrinsic length scale 𝐷 with a characteristic road vehicle velocity, 𝑣 0 , we obtain an intrinsic time scale, 𝑡 0 = 𝐷∕ 𝑣 0 . This 

is the average time a travel request would need to be completed by MIV. The demand of transport within the system can then be 

characterized by the dimensionless parameter Λ = 𝐸𝜈𝐷 

3 ∕ 𝑣 0 1 , which can reach well beyond 10 4 in a densely populated area. Tab. 1 

provides a few typical parameters encountered in real systems for reference. Note that 𝓁 = 𝓁∕ 𝐷 = 

√
𝑚 ∕ 𝐷, where 𝑚 is the average 

area enclosed by surrounding rail (line) services, and 𝓁 is the spacing of line service routes (see below, Fig. 2.2 ). 

1 Average number of incoming requests in an area 𝐷 

2 in time 𝑡 0 . 
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Fig. 1. Bi-modal transport network on a square grid. (a) A bi-modal network with trains (grey vehicles) operating along the solid lines. Shuttles 

(black vehicles) are used as a feeder service to carry people to and from the train stations (black dots at intersection points) separated by distance 𝓁. 

Trains operate periodically at a frequency 𝜇, with vehicle seating capacity 𝑘 . (b) Two alternative ways to serve a transport request from  (pick-up) 

to  (drop-off). Bi-modal transport involves a shuttle ride from  to the train station, transport by train (arrows, here with one change (circle)), and 

another shuttle ride from the train station to  . Uni-modal transport service is a direct shuttle (grey) ride from  to  . A major task of the system 

is to appropriately decide which of these two types of transport services to choose. 

2.2. Model system geometry 

For an overarching systematic study, it is useful to consider an idealized model geometry (see Fig. 2.2 ). We assume that transport 

occurs via DRRP shuttle service, combined with a square grid of railways on which transport occurs via trains. The connection points 

(train stations) between the two subsystems lie at all railway intersections and are spaced with a lattice constant 𝓁 (see Fig. 2.2 ). 

The transit system is further characterized by a shuttle density 𝐵 in the plane and a train frequency 𝜇 at all train stations, with trains 

having a seating capacity 𝑘 . Shuttles and trains move with velocities 𝑣 0 and 𝑣 train , respectively. They require energy 𝑒 shut t le and 𝑒 train , 
respectively, per unit distance of travel. 

The main goal of the bi-modal system under consideration is to provide high quality (i.e., rapid) door-to-door transportation 

service at minimal energy consumption, thereby minimal carbon emission. To reach this goal, the provider of bi-modal transit may 

vary certain parameters of operation. We will first introduce these control parameters in Section 3 and then derive expressions for 

the system’s service quality and energy consumption as functions of these parameters in Section 4 . 

3. Parameters of operation 

3.1. Choosing the type of transport service 

A single user in the model system may either be transported by uni-modal service, i.e., by shuttle (DRRP) only, or by bi-modal 

service, i.e., be brought from  = ( 𝑥 𝑝 , 𝑦 𝑝 ) to the nearest train station by means of a shuttle, followed by a train journey, which is 

again followed by a shuttle journey to  = ( 𝑥 𝑑 , 𝑦 𝑑 ) (see Fig. 2.2 ). Aside from assembling the routes of the shuttles such as to optimize 

pooling efficiency, one central task of the dispatcher system will be to decide, for each individual request (  ,  ) , whether the desired 

door-to-door service should be completed uni-modally or bi-modally. 

If only user convenience were considered relevant, one would just need to calculate which type of transport service (uni-modal 

or bi-modal) requires less time for completing the transit, and then to choose that one. This requires knowledge of the parameters 

𝑣 0 , 𝑣 train , and the frequency of line service, 𝜇. The latter can be assumed to be just sufficient to carry the bi-modal passenger load. 

Its derivation will be discussed further below (see Subsec. 3.2 ). By sampling random transport requests in the plane, and distances 

from the probability distribution 𝑝 ( 𝑑) of travel distances, we can compile a histogram of relative travel times, 𝑡 bi and 𝑡 uni , as shown in 

Fig. 2 a. It displays the resulting ratio 𝑡 bi ∕ 𝑡 uni 2 as a scatter heat map in the plane spanned by the vector  . Requests corresponding 

to the area within the black curve (contour curve of 𝑡 bi ∕ 𝑡 uni = 1 ) would then be served uni-modally by a single shuttle services, while 

for all others, the dispatcher would offer bi-modal transport service. 

In order to choose, for an incoming request (  ,  ) , the type of transport service which consumes the least incremental amount 

of energy, we have to compute the energy increment (Δ) bi needed for bi-modal transport, and compare it to the energy increment 

2 Subsec. 4.1 displays the mathematical expressions of 𝑡 bi , 𝑡 uni . 
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Fig. 2. Choosing the type of transport service. Relative characteristics of either bi-modal (shuttle-train(s)-shuttle) or uni-modal (just shuttle) service, 

in the plane spanned by the individual trip vector from pick-up  = ( 𝑥 𝑝 , 𝑦 𝑝 ) to drop-off  = ( 𝑥 𝑑 , 𝑦 𝑑 ) . (a) Bi-modal travel time, 𝑡 bi , divided by uni- 

modal travel time, 𝑡 uni . The black curve represents the contour line where both are equal. Requests outside this region are served faster with bi-modal 

transportation. (b) Increment in total energy consumption if a new user is served by bi-modal transportation, (Δ) bi divided by the increment in 

total energy consumption if the same user is served by uni-modal transportation, (Δ) uni . The black curve represents the contour line where both 

are equal, i.e., from the perspective of energy consumption both types of transport service are equivalent. Requests outside the white region lead to 

lower energy consumption if served by bi-modal transportation. See Supporting Information for details. 

(Δ) uni assuming direct transport via a single shuttle. This ratio of energy increments is equal to the ratio of driven distances by the 

shuttles for each type of service (see also Fig. 2.2 ). We assume that a single request does not alter the line service frequency, i.e, 

the energy consumption of the line service does not change. In analogy to the travel times shown in Fig. 2 a, the ratio of the energy 

consumption increments (i.e., traveled distances by shuttles) is depicted in Fig. 2 b. Again, we see that while for small requested 

distances uni-modal service is advisable, bi-modal service should be preferred for larger distances, corresponding to the area outside 

the black contour curve. 

Comparison of Fig. 2 a and 2 b reveals that there is a significant range of distances which lie outside the solid curve in Fig. 2 b, but 

still well inside the curve depicted in Fig. 2 a. This shows that we may have to deal with conflicting objectives for quite a number of 

incoming transport requests. The notion of optimality then depends upon the relative valuation of energy consumption and service 

quality. As a generally accepted way of dealing with conflicting objectives, we will tackle this problem by means of Pareto fronts 

( Debreu, 1959 ; Greenwald and Stiglitz, 1959 ; Magill and Quinzii, 2002 ) further below (see Subsec. 5.1 ). 

While the plot in Fig. 2 b represents a rather isotropic structure, we encounter a shamrock-like shape in Fig. 2 a. This reflects 

the orthogonal geometry of our model line service system ( Fig. 2.2 ). In a real situation, the geometry will in general not be this 

simple. Instead, the directions at which rails are installed will vary from one station to another. We thus expect a structure like the 

‘shamrock’ to be less pronounced in reality, if discernible at all. Hence although a perfectly isotropic structure may not be expected, 

the anisotropy will certainly be less pronounced. We assume that it will be a reasonable approximation to consider the contour 

line of service times as ‘sufficiently’ circular. Therefore we consider henceforth only the requested travel distance, 𝑑 = | |, as the 

discriminating parameter for the choice of type of transport service, irrespective of its direction. The task of the dispatcher will then 

be to determine a proper cutoff distance, 𝒅 𝐜 , such that for 𝑑 > 𝒅 𝐜 , bi-modal service is offered, while for 𝑑 ≤ 𝒅 𝐜 , the system will provide 

uni-modal service, by shuttle only. 

Note that the above approximation provides a lower bound of the performance achievable. In a real system, the type of transport 

service may be decided upon the true expected travel times and energy consumption, for which data will be available with ever 

improving quality over time. 

3.2. Choice of line service frequency 

It is clear that the capacity 𝑘 and frequency 𝜇 of the line service must be sufficient to carry the flux of shuttle passengers towards 

and from the train stations. The total number of requests emanating in unit time in an area of 𝓁 2 around a train station is 𝜈𝐸𝓁 2 . Out of 

these, only a fraction 𝐹 = 𝐹 ( 𝒅 𝐜 ) = ∫ ∞
𝒅 𝐜 

𝑝 ( 𝑑 ) d 𝑑 is served by bi-modal transportation. However, trains are also occupied by passengers 

from previous stations. If 𝐷 train is the average distance that users travel on trains, then a user travels 𝐷 train ∕ 𝓁 stations on train on 

average. Therefore, the total number of users to be transported at this station per unit time is 

 in = 𝜈𝐸𝓁 2 𝐹 
𝐷 train 
𝓁 

. (1) 

We find that 𝐷 train = 

4 
𝜋 ⟨𝑑⟩𝑑> 𝒅 𝐜 3 , with ⟨𝑑⟩𝑑> 𝒅 𝐜 the mean of requested distances larger than 𝒅 𝐜 . 

3 Averaging the 1-norm ‖ ‖1 over distances and orientations. 
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A similar relation holds for the number of users per unit time that can be transported by trains arriving at one train station (with 

frequency 𝜇0 and going into four directions), namely 

 out = 4 ⋅ 𝜇0 ⋅ 𝑘 . (2) 

Balancing  in with  out , we obtain 

�̃�0 = 

Λ𝓁 
𝜋𝑘 

⟨𝑑 ⟩𝑑 > ̃𝒅 𝐜 𝐹 (3) 

for the minimum frequency required to carry all passengers conveyed by the shuttles. The ̃ indicates quantities non-dimensionalized 

via division by the respective unit, i.e., 𝐷 or 𝑡 0 . We refer to Eq. 3 as passenger flux balance. 

If we allow trains to operate at a frequency �̃� larger than the minimum required frequency �̃�0 , the train occupancy is given by 

𝜶 = �̃�0 ∕ ̃𝜇 ∈ [0 , 1] . As this can be adjusted within some range when operating the line service, 𝜶 provides an additional free variable 

in system operation. 

4. Objectives of operation 

4.1. Service quality 

We define the service quality as the ratio between average travel time by MIV and by the bi-modal system 

 = 

𝑡 0 
(1 − 𝐹 ) ⋅ 𝑡 uni + 𝐹 ⋅ 𝑡 bi 

. (4) 

For assessing the overall quality of service, suitable averaging has to be applied. Transportation by shuttles is always assumed to be 

delayed with respect to MIV by a waiting time, which we assume (on average) to be of order one half the direct travel time, 𝑡 0 ∕2 (see 

Supporting Information for motivation). The average time taken to serve a request in a bi-modal system (i.e., the denominator of  

in Eq. 4 ) is then 

𝑡 0  

−1 = (1 − 𝐹 ) ⋅

( 

𝑡 0 
2 
+ 

𝛿⟨𝑑⟩𝑑< 𝒅 𝐜 
𝑣 0 

) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑡 uni 

+ 𝐹 ⋅

( 

𝑡 0 + 

2 𝛽𝓁𝛿
𝑣 0 

+ 

1 
𝜇
+ 

4 
𝜋

⟨𝑑⟩𝑑> 𝒅 𝐜 
𝑣 train 

) 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑡 bi 

, 
(5) 

where ⟨𝑑⟩𝑑< 𝒅 𝐜 represents the mean of all requested distances less than 𝒅 𝐜 (i.e., served uni-modally) and 𝛿 is the average detour 4 

incurred by the shuttles due to the necessity of pooling several different transport requests into one vehicle route. For the expected 

detour with a shuttle we set 𝛿 = 1 . 5 (see Supporting Information for details). For the second term ( 𝑡 bi ), 𝑡 0 is the total average waiting 

time for two shuttle trips (to and from the station), 1∕ 𝜇 is the average waiting time for two train rides (usually there is a change 

involved), 𝛽𝓁 is the average distance of a randomly chosen point from the next train station, with a geometrical constant 𝛽 ≈ 0 . 383 5 , 
and 4 𝜋−1 ⟨𝑑⟩𝑑> 𝒅 𝐜 is the average distance traveled on trains. The effective train velocity, 𝑣 train , depends on the inter-station distance 𝓁
and is modeled based on train vehicle data (see Supporting Information for details). 

If we use 𝐷, 𝑡 0 , and 𝑣 0 as units for length, time, and velocity, respectively, we can write: 

 

−1 = (1 − 𝐹 ) ⋅
(
1 
2 + 𝛿⟨𝑑 ⟩𝑑 < ̃𝒅 𝐜 

)
+ 𝐹 ⋅

( 

1 + 2 𝛽𝓁 𝛿 + 

1 
�̃� + 

4 
𝜋

⟨𝑑 ⟩𝑑 > ̃𝒅 𝐜 
�̃� train 

) 

. (6) 

4.2. Energy consumption 

In order to assess the efficiency of a transit system in terms of energy consumption, it is essential to consider the total distances 

over which passengers are being transported in the different vehicles involved (see Eq. 7 ). The bi-modal energy consumption can be 

written as 

 ≡ Δshut t le ⋅ 𝑒 shut t le + Δtrain ⋅ 𝑒 train 
ΔMIV ⋅ 𝑒 MIV 

, (7) 

where Δ⋅ denotes the (mode-specific) total distance traveled in a unit cell of size 𝓁 2 per unit time, and 𝑒 shut t le ∕ train is the vehicle-specific 

energy consumption per unit distance. Note that this expression is already normalized with respect to the MIV energy consumption 

(denominator), as this is the door-to-door transportation system we intend to compare with. For  > 1 ( < 1 ) energy requirement for 

bi-modal transportation is more (less) than for private cars serving the same requests. 

For the simulations we will describe below, we use numbers found for frequently used transport vehicles. Specifically, we consider 

electric light rails with a maximum seating-capacity 𝑘 = 100 and 𝑒 train = 9 . 72 kN ( Knörr et al. (2016) ) for the line service. For MIV we 

consider Diesel cars with 𝑒 MIV = 2 . 47 kN ( BMDV, 2022 ). For the shuttle we choose Mercedes Sprinter (8.8 liters of Diesel per 100 km 

( mbenz, 2022 ), thus 𝑒 shuttle = 3 . 28 kN . 

4 driven distance / direct distance 
5 A simple calculation shows that 𝛽 = 1 

6 
( 
√
2 + log (1 + 

√
2 )) = 0 . 383 . 
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Shuttles Both uni-modal (shuttle only) and bi-modal trips contribute to the total distance driven by shuttles per unit time due to 

requests from a unit cell of size 𝓁 2 , hence 

Δshut t le = 

𝜈𝐸𝓁 2 

𝜂

⎛ 
⎜ ⎜ ⎜ ⎜ ⎝ 
⟨𝑑⟩𝑑< 𝒅 𝐜 (1 − 𝐹 ) 
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

shut t leonly 

+ 2 𝛽𝓁𝐹 
⏟⏟⏟

t woshut t let rips 

⎞ 
⎟ ⎟ ⎟ ⎟ ⎠ 
, (8) 

where 𝜂 is the DRRP pooling efficiency, which is the ratio of requested direct distance by the users and the driven distance by the 

shuttles (for MIV, 𝜂 = 1 ). 
In simulations of the uni-modal system (shuttles only), it has been observed that 𝜂 scales with demand Λ roughly in an algebraic 

manner, 𝜂(Λ) ∝ Λ𝛾 , with 𝛾 ≈ 0 . 12 ( Mühle (2022) ). In a bi-modal system, however, some of the demand Λ is directed towards trains, 

therefore, we need to compute an adjusted demand, Λshut t le ≡ ( 𝐸𝜈shut t le 𝐷 

3 
shut t le )∕ 𝑣 0 , considering shuttle trips only; 𝜈shut t le is the effective 

request frequency for shuttle trips and 𝐷 shut t le is the average distance of a shuttle trip. Bi-modal trips consist of two shuttle trips (from 

and to the station), therefore 

𝜈shut t le = 2 𝜈𝐹 
⏟⏟⏟

t woshut t let rips 

+ 𝜈(1 − 𝐹 ) 
⏟⏞⏟⏞⏟
shut t lesonly 

= 𝜈(1 + 𝐹 ) . (9) 

Similarly, the average requested distance for shuttle-borne trips involved in bi-modal transport is 

𝐷 shut t le = 

(
2 𝛽𝓁𝐹 
⏟⏟⏟

t woshut t let rips 

+ ⟨𝑑⟩𝑑< 𝒅 𝐜 (1 − 𝐹 ) 
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

shut t lesonly 

)
∕(1 + 𝐹 ) , (10) 

where (1 + 𝐹 ) is due to normalization. The bi-modal demand for shuttles is thus given by: 

Λshut t le = ( 𝐸𝜈shut t le 𝐷 

3 
shut t le )∕ 𝑣 0 

= Λ (1 + 𝐹 ) −2 ((1 − 𝐹 ) ⟨𝑑 ⟩𝑑 < ̃𝒅 𝐜 + 2 𝛽𝓁 𝐹 ) 3 . (11) 

In simulations we observe a higher efficiency than suggested by 𝜂 ∝ Λ0 . 12 
shut t le (see Supporting Information for simulation data). We 

call this the common stop effect , meaning that pooling gets more efficient because bi-modal requests are spatially correlated due to 

shared pick-up and drop-off locations, i.e., the train stations. We account for this effect via an empirical function ℎ ( 𝐹 ) ( 1 ≤ ℎ ≤ 1 . 35 , 
see Supporting Information for details). In particular, we set 

𝜂 ≡ Λ0 . 12 
shut t le ⋅ ℎ ( 𝐹 ) . (12) 

Line Service and MIV Trains are recurrent every 1∕ 𝜇 time units. Therefore, the cumulative distance driven by all trains in a unit 

cell of side length 𝓁 per unit time is 

Δtrain = 4 ⋅ 𝜇 ⋅ 𝓁 . (13) 

There is a multiplicative factor of 4 because trains go in four directions at every train station. The total distance driven via MIV for 

requests from the unit cell amounts to 

ΔMIV = 𝜈𝐸𝓁 2 𝐷. (14) 

Replacing Δshut t le , Δtrain , and ΔMIV in Eq. 7 from Eq. 8, 13 , and 14 we obtain the final expression for the energy consumption of 

bi-modal transit normalized with respect to MIV 

 = 𝜂−1 
(
⟨𝑑 ⟩𝑑 < ̃𝒅 𝐜 (1 − 𝐹 ) + 2 𝛽𝓁 𝐹 

)
⋅
𝑒 shut t le 
𝑒 MIV 

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
shut t les 

+ 

4 ̃𝜇
Λ𝓁 

⋅
𝑒 train 
𝑒 MIV 

. 

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
train 

(15) 

5. Results 

We now analyze how the objectives, i.e., energy consumption ( Eqs. 7, 15 ) and quality ( Eqs. 4, 6 ), can be optimized by choice of 

parameters of operation, i.e., cutoff distance 𝒅 𝐜 and train occupancy 𝜶, under different ‘external’ conditions, Λ and 𝓁 . Notice that the 

two control parameters, 𝜶 and 𝒅 𝐜 , enter the objectives,  and  , via ⟨𝑑 ⟩𝑑 ≶𝒅 𝐜 , 𝐹 ( 𝒅 𝐜 ) , and �̃� = �̃�0 ( 𝒅 𝐜 )∕ 𝜶 ( Eq. 3 ). 

In Fig. 3 , energy consumption,  , and service quality,  , for the combined system are shown as a function of the share of bi-modal 

transport 𝐹 ( 𝒅 𝐜 ) at 𝓁 = 0 . 8 for three different values of dimensionless demand, Λ. Trains are operated at full occupancy, i.e., 𝜶 = 1 . The 

general trend of reduction of energy consumption with increasing demand and involvement of line services is obvious from the data 

for  . We encounter a minimum of energy consumption at around 𝐹 ≈ 0 . 6 for all values of Λ investigated. Energy consumption can 

be less than 30% of MIV for sufficiently large (but realistic, see Table 1 ) demand. For service quality, we find that typical values are 

around one half the service quality of MIV, i.e., about twice the travel time. This is customary for public transport systems ( Liao et al., 

2020 ; Salonen and Toivonen, 2013b ) and generally well accepted by users. Note that our data for service quality represent a safe 

lower bound, as the (sometimes quite substantial) time required for parking spot search ( Chaniotakis and Pel, 2015 ; Fulman and 

Benenson, 2021 ) is neglected here in 𝑡 0 . While for low Λ the involvement of line service seems to generally increase travel times (i.e., 

reduce service quality), we find an optimum at 𝐹 ≈ 0 . 25 for large Λ. The primary message from Fig. 3 , however, is that minimizing 

energy consumption and maximizing service quality cannot be simultaneously achieved. 
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Fig. 3. Bi-modal performance characteristics. Energy consumption  and service quality  for bi-modal transport, normalized with respect to MIV, 

as a function of the bi-modal fraction 𝐹 ( 𝒅 𝐜 ) , for three different values of demand Λ = {10 2 , 10 3 , 10 4 } . All data for 𝓁 = 0 . 8 and fully-occupied trains, 

𝜶 = 1 . 

Fig. 4. Emergence of Pareto fronts and effects of train occupancy. (a) Grey circles: admissible data for full variation of 𝜶 and 𝒅 𝐜 , at 𝓁 = 0 . 2 and 

Λ = 10 3 . Black curve: Pareto front, i.e., the boundary of the full data set towards optimality (low  and high  ). The slope of the dashed tangent to 

the Pareto front represents the ratio of valuations (see text). (b) . Black curves: Pareto fronts for variable train occupancy 𝜶 < 1 at Λ = {10 2 , 10 3 , 10 4 } 
and 𝓁 = 0 . 2 . Grey dashed curves: degenerate Pareto fronts obtained at full train occupancy ( 𝜶 = 1 ) at corresponding values of Λ. Grey circles mark 

the ends of these fronts which are determined by minimum achievable energy consumption and maximum achievable service quality, specific to Λ
and 𝓁 . (c) Same as (b) but for 𝓁 = 0 . 8 . 

5.1. Pareto fronts in energy consumption and service quality 

A tuple of parameter values, in our case (  ,  ) , is called Pareto optimal if none of the parameters (or objectives) can be further 

optimized without compromising on at least one of the others. The set of all such tuples of parameters is called the Pareto front. To 

illustrate this concept, in Fig. 4 a, we show all values { ( 𝒅 𝐜 , 𝜶) ,  ( 𝒅 𝐜 , 𝜶)} obtained for different values of 𝒅 𝐜 and 𝜶 as grey dots. The 

solid black line represents the Pareto-optimal subset, i.e., the Pareto front. 

In order to choose the truly optimal point on the Pareto front, one needs to define the relative valuation of the objectives,  and 

 . In other words, the authorities operating the system have to decide how much reduction in service quality they (i.e., the users) 

would be willing to accept for how much savings in energy. The ratio of these valuations is then expressed in the slope of the dashed 

line in Fig. 4 a, which is a tangent to the Pareto front. The point where it touches the front (black dot) represents the optimal set of 

parameters, under the given valuation. 

For our analysis, we fix the train capacity to 𝑘 = 100 , and choose a representative set of values for line service mesh size 𝓁 = 

{0 . 2 , 0 . 4 , 0 . 8} and demand Λ = {10 2 , 10 3 , 10 4 } , corresponding to a typical parameter range encountered in real systems (see Table 1 ). 

Note that fixing 𝑘 does not reduce the generality of our study, because a different 𝑘 can be compensated for by properly readjusting 

𝜇0 (see Eq. 3 ). 
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Fig. 5. Bi-modal performance with fully-occupied trains. (a) Black curves show degenerate Pareto fronts for fully-occupied trains ( 𝜶 = 1 ) for varying 

demands Λ = {10 2 , 10 3 , 10 4 } shown as annotations and 𝓁 = 0 . 8 . Black circles mark the end points of the Pareto fronts which are determined by the 

minimum achievable energy consumption and the maximum achievable service quality. Grey curves show the entire data, i.e., not only the Pareto- 

optimal set, but all admissible values with 𝒅 𝐜 as the control parameter. (b) Data as in (a), but normalized with respect to the performance, (  0 ,  0 ) , 
of the uni-modal system (shuttles only). (c) Degenerate Pareto fronts as in (a), but for 𝓁 = {0 . 2 , 0 . 4 , 0 . 8} in blue, orange, and black, respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4 b demonstrates the effect of Λ on the overall performance of the system. Pareto fronts are shown in black. We see that for 

typical values of Λ, as listed in Table 1 , energy consumption reaches down to well below 40% (even below 20%) of MIV for large 

values of Λ. At the same time, quality levels are comparable to, mostly even in excess of, what is found in existing public transport 

in terms of transit time (see Table 1 ). Note, however, that our system even provides on-demand door-to-door service, comparable to 

MIV. 

The dashed grey curves indicate the subset of data for train occupancy 𝜶 = 1 . We will henceforth call them degenerate Pareto 

fronts, as they correspond to the variation of only one parameter. They are lying, slightly but consistently, above the Pareto fronts. 

This indicates that by reducing train occupancy below its maximum ( 𝜶 < 1 ), i.e., operating trains at higher frequency than necessary, 

one can enhance the overall performance of the system. Service quality increases because the time spent waiting for trains, which is 

proportional to 1∕ 𝜇, is smaller when trains are operated more frequently. The increase in service quality is found to overcompensate 

the increase in energy consumption due to higher operation frequency. Since waiting time is inversely proportional to both Λ and 𝓁 
(see Eq. 3 ), this effect is more pronounced for small Λ and 𝓁 , which is qualitatively corroborated in Fig. 4 c which shows corresponding 

data for large mesh size ( ̃𝓁 = 0 . 8 ). At the resolution of the figure, the Pareto fronts (black) and their degenerate partner (dashed grey) 

are distinguishable only for smallest values of Λ. Hence for typical values of Λ and 𝓁 it appears sufficient to discuss the degenerate 

Pareto fronts, which only need one parameter ( 𝒅 𝐜 ) to be varied. We keep in mind that the true Pareto optimum will still be superior. 

Degenerate Pareto fronts are shown in Fig. 5 in various presentations. Fig. 5 a has basically the same information as Fig. 4 c, but 

here we show the full data set (grey), where the black curves are the Pareto-optimal subset, i.e., the degenerate Pareto fronts. They 

terminate wherever the tangent becomes either vertical or horizontal (black dots), thus offsetting any tradeoff between the objectives. 

Fig. 5 b shows these data normalized with respect to the performance of a uni-modal (shuttles only) DRRP system, represented 

by  0 and  0 . Clearly in relevant parameter regions the combined bi-modal system outperforms the uni-modal system in both energy 

consumption (  <  0 ) and service quality (  >  0 ). 

The effect of inter-station distance (mesh size) on the (degenerate) Pareto fronts is explored in Fig. 5 c. We see that a dense network 

of rails (small 𝓁 , blue fronts) achieves the best results concerning energy consumption, reaching down to below 20% of MIV, but 

compromises on achievable service quality. For admissible quality  ≈ 0 . 5 , sparse train networks (black fronts) are Pareto-optimal 

for low demands. For larger demands, denser train networks (orange and blue fronts) are advantageous. 

However, it is remarkable that the overall position of the Pareto fronts in the plane spanned by  and  does not vary dramatically 

with mesh size, as the position on the front at which the system is operated is largely at the discretion of the operator. This suggests 

that the density of currently installed rail track systems might already be well suited for deploying a bi-modal on-demand transport 

systems of the kind we have studied. 

5.2. Traffic volume 

Energy consumption and service quality are not the only possible objectives for optimization of public transport. Road traffic, for 

example, is a source of noise and local air pollution and occupies significant shares of urban space. Bi-modal ride-pooling reduces 

traffic by use of shared shuttles, and by directing certain trips towards trains. We quantify this reduction by introducing the relative 

bi-modal traffic Γ̃ as the ratio of the number of on-road vehicles necessary for bi-modal transportation (i.e., shuttles) to the number 
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Fig. 6. Traffic volume in bi-modal transit. Relative bi-modal traffic Γ̃, as defined in Eq. 16 , determined along the Pareto fronts in Fig. 5 c, against 

corresponding service quality  . Data are presented for Λ = 10 2 (triangle, dotted), Λ = 10 3 (square, dashed), and Λ = 10 4 (circle, solid). Symbols 

represent uni-modal traffic volume, 1∕ 𝜂. Color code is as in Fig. 5 , i.e., 𝓁 = {0 . 2 , 0 . 4 , 0 . 8} in blue, orange, and black, respectively. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

of MIV (i.e., cars) needed to serve the same demand. We have (see Supporting Information for details) 

Γ̃ = 𝜂−1 (1 + 𝐹 ) �̃� shut t le . (16) 

In Fig. 6 , Γ̃ is plotted against service quality  as determined along the degenerate Pareto fronts shown in Fig. 5 c. For low demand 

(Λ = 10 2 ) , uni-modal (shuttles only) transportation allows for about 50% reduction in traffic as compared to MIV (triangle). Bi-modal 

transportation allows for further reduction in traffic at the cost of service quality. For intermediate and high demand (Λ = {10 3 , 10 4 }) , 
uni-modal transportation allows for about 70% to 80% reduction in traffic as compared to MIV (square, circle). In these cases, bi-modal 

transportation allows for truly dramatic reductions in traffic ( > 90% ), at equal or even higher service quality than for uni-modal 

transport. Combining this finding with typical parameter values in Table 1 , we recognize that even in rural settings, traffic volume 

is expected to decrease by an order of magnitude, relative to MIV. In urban environments, traffic volume may even be reduced by 

more than a factor of ten. 

6. Discussion 

The goal of this study was to find whether and under what circumstances bi-modal transport, i.e., on-demand ride-pooling with 

shared shuttles combined with fixed schedule line services (railway), can be a viable alternative to customary public transportation 

(line services or DRRP alone) or MIV. For that purpose we introduced a simple model system for bi-modal transport, combined with 

a mean-field approach, which allowed us to parameterize the user environment (dimensionless demand) as well as the bi-modal 

service operations (cutoff distance, train occupancy) with few variables, and to write down analytic expressions for key performance 

characteristics, namely energy consumption and service quality (i.e., transit times), as well as road traffic volume. Our results, in 

form of Pareto fronts, indicate that bi-modal public transportation systems have the potential to provide on-demand door-to-door 

service with a quality superior to customary public transportation, while at the same time consuming only a fraction of the energy a 

corresponding fleet of MIV would require, and with a road traffic volume reduced by an order of magnitude. 

In our model, we assume customer demand to be given, more precisely, we assume a spatially uniform demand with constant aver- 

age request frequency. However, in realistic scenarios, demand will be heterogeneous in space, due to non-homogeneous population 

density and individual mobility patterns, and fluctuating in time due to phenomena like rush hours or workdays versus weekends. 

Such spatio-temporal demand patterns can be taken into account by structured railway networks (e.g., more dense in highly-populated 

areas), spatially varying shuttle densities, and variable service frequencies. In future case studies or real-world applications, these 

context-specific adjustments can be implemented to provide tailored solutions. 

Although demand patterns can be estimated from historical data, there will be fundamental uncertainties in predicting future de- 

mand. Such uncertainties will alter the performance of a bi-modal system. Nevertheless, our considerations based on known (average) 

transportation demand give a valuable estimate of the performance potential of bi-modal transport under various external conditions. 

Moreover, in reality, demand will couple to service quality and other parameters concerning user satisfaction; a well-functioning 

system of transportation attracts demand. Since service quality depends on demand, too —as seen in this study —modeling user 
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behavior introduces a feedback loop. In a forthcoming study we will integrate this feedback loop into our modeling framework, a 

step towards resolving user adoption dynamically. Broader analysis of user adoption of bi-modal transportation based on incentives, 

customer convenience, and customer preferences remains to be explored. Recent results from experimental social science, however, 

point into a very favorable direction ( Avermann and Schlüter, 2019 ; Nyga et al., 2020 ; Sörensen et al., 2021 ). 

It is important to note that our results, represent only a lower bound on bi-modal performance, in particular as far as service 

quality is concerned. First, we have based the decision on the type of transport service (uni-modal or bi-modal) on a single scalar 

parameter, 𝒅 𝐜 , which amounts to representing the decision process by a binary-valued function of a single scalar variable, 𝑑 ⟶
{0 , 1} . The true structure would be a binary-valued field Φ on the four-dimensional space of the pick-up and drop-off coordinates, 

Φ ∶ ( 𝑥 𝑝 , 𝑦 𝑝 , 𝑥 𝑑 , 𝑦 𝑑 ) ⟶ {0 , 1} . This would be extremely cumbersome to study in a statistical manner. However, in a real system, data 

on Φ( 𝑥 𝑝 , 𝑦 𝑝 , 𝑥 𝑑 , 𝑦 𝑑 ) are being collected on a daily basis, such that over time the system can be ever improving its performance over 

the data we have presented here. 

Second, bi-modal service of the kind studied here provides door-to-door service, while MIV involves the search for parking space, 

which was disregarded in our study due to lack of reliable data. This can be quite significant, and fully adds to the MIV transit time, 

thus further improving on the relative service quality,  , of bi-modal service. 

Moreover, it should be mentioned that riding a bi-modal transport system neither involves having to drive nor taking care of 

vehicle maintenance. 

In summary, bi-modal public transport systems have the potential of outperforming customary public transportation and the 

private car in a number of ways. With this study, we provided broad fundamental evidence and laid the foundation for taking the 

idea of bi-modal public transit systems to real-world applications. 
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1. Traffic volume5

To derive an expression for road traffic due to shuttles we connect the distance served by
busses (left hand side) and the distance traveled by customers (right hand side), with average
distance ⟨d⟩ traveled on road, for an area of reference A during time t0 = D/v0, with shuttle
speed v0

BA v0⟨b⟩ pdriving t0︸                ︷︷                ︸
distance served by busses

= νEA t0 ⟨d⟩⟨δ⟩ paccept .︸                     ︷︷                     ︸
distance traveled by customers

(1)

Here B is the shuttle density, ⟨b⟩ is the average shuttle occupancy, νEAt0 is the number of requests6

in the reference area A during reference time t0 (with request frequency ν, population density7

E), ⟨δ⟩ is the average relative detour of customers (no detour means ⟨δ⟩ = 1), pdriving is the8

probability of vehicles driving (i.e., not being idle), and paccept is the probability that a user9

request is accepted. In this study, we assume that all requests can be served (paccept = 1), i.e., no10

request has to be rejected because certain constraints (like a maximum waiting time) cannot be11

fulfilled (see (1) for a detailed analysis of paccept). Substituting η ≡ ⟨b⟩/⟨δ⟩1 in Eq. 1, we define12

the traffic volume, Γ, by the number of driving vehicles, i.e.:13

Γ ≡ BA · pdriving =
νE⟨d⟩A
ηv0

. (2)

Note that for private cars, η = 1 and ⟨d⟩ ≡ D, and for a bi-modal service, ⟨d⟩ = Dshuttle and14

νshuttle = (1 + F)ν (Eq. 10, 11 in the main manuscript). Substituting these expressions in Eq. 2,15

we define the normalized traffic volume, Γ̃, as the ratio of traffic volume by shuttles in the bi-16

modal system, Γbi, and the traffic volume by private cars, ΓMIV, i.e.,17

Γ̃ ≡ Γbi/ΓMIV = η
−1(1 + F) D̃shuttle . (3)

2. DRRP pooling efficiency in bi-modal transport18

Simulations (2) show that the DRRP pooling efficiency η in a bi-modal system of transporta-19

tion is larger than expected by the relation η ∝ Λγshuttle, with γ ≈ 0.12, as derived in (1). This20

observation we attribute to what we call ’common stop effect’, meaning that pooling gets more21

efficient because bi-modal requests are spatially correlated due to shared pick-up and drop-off22

1See (1) for details on why this identity holds.
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locations, i.e., the train stations. Here we present the empirical scaling function h(F) accounting23

for this effect (see Eq. 12 in the main manuscript), assuming that the ’common stop effect’ is only24

governed by the fraction F of people assigned to bi-modal transportation. We plot the empirical25

data for h(F) as a function of F in Fig. 1. As expected the ’common stop effect’ is maximal for26

F = 1.27

3. Waiting time (τw) and detour (δ)28

We use simulation results to determine the average waiting time for shuttles, τw, and the29

average detour, δ. In Fig. 2, mean detour and mean waiting time are plotted as a function of user30

demand. Users are assumed to have a maximum accepted waiting time of t0. We observe that31

mean waiting time τw grows with demand and saturates around 0.65. Similarly the mean detour32

δ grows with demand and saturates around 1.65.33

4. Decision on transport service type34

We compare the time it takes to serve a new user request (P,D) by bi-modal and uni-modal35

transportation. In order to do so we sample N = 105 pick-up (P) and drop-off (D) pairs. The36

trains operate at µ̃ = 2.37

The time it takes to serve a randomly sampled user request (P,D) by bi-modal transportation38

(tbi) comprises of driving time in two shuttles to the nearest train station, driving time in train39

between the two train stations, waiting time due to shuttles and waiting time at the train station.40

If SP and SD represent the location of the train station next to P andD, respectively, then41

tbi = 2tshuttle
w + δ

PSP
v0
+ δ
DSD

v0︸                            ︷︷                            ︸
two shuttle trips

+ ttrain
w +

SPSD
vtrain︸           ︷︷           ︸

train

, (4)

where tshuttle
w , ttrain

w are the waiting times incurred due to shuttles and trains and are assumed to42

take the values t0/2 and 1/2µ, respectively.43

The time taken to serve the same request by uni-modal transportation (shuttles only) is:44

tuni = tshuttle
w + δ

PD
v0
. (5)

The ratio, tbi/tuni is plotted in Fig.2a in the main text.45

In order to obtain Fig.2b, we plot the ratio of increment in energy usage for serving a new user46

request. The increment in energy usage when serving a new request by bi-modal transportation47

comprises of the increment in energy usage by two shuttle trips,48

(∆E)bi = η
−1 · eshuttle · (PSP +DSD) . (6)

The increment in energy usage when served by uni-modal transportation comprises of only a49

single shuttle trip,50

(∆E)uni = η
−1 · eshuttle · PD. (7)

The ratio (∆E)bi/(∆E)uni, i.e., PSP+DSDPD is plotted in Fig. 2b in the main text. This ratio, if greater51

than 1 (less than 1), indicates whether the two trips to/from the train stations are longer (shorter)52

than a direct trip.53
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Figure 1: h(F(dc)) as a function of F(dc). The ’common stop effect’ is maximal for F = 1, this is when all trips are
served by bi-modal transport and all trips have either common origin or destination.

Note that only shuttles contribute to ∆E because a single user request is assumed to have no54

effect on train operations.55

5. Dependence of train speed on inter-station distance.56

Trains are assumed to have a maximum operating speed of vm, acceleration and deceleration57

time ta and a stop time of ts at every station. The effective average train speed is therefore58

vtrain =



ℓ
ℓ

vm
+ta+ts
, if ℓ ≥ vm · ta

ℓ

2
√
ℓta
vm
+ts

, otherwise . (8)

For New York, we use vm = 89 km/h and vtrain = 28 km/h (3) at ℓ̃ = 0.28 (see Tab. 1 in the main59

text). We use Eq. 8 to determine ta and ts by assuming that ta = ts. Similarly, for Berlin we use60

vm = 72 km/h and vtrain = 30.7 km/h (4) at ℓ̃ = 0.32. For our analysis, we use New York train61

speed as a proxy for Λ = 104 and Berlin train speed for Λ = {103, 102}.62
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Figure 2: Detour factor (δ) and mean waiting time (τw) for various demands.
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Impact of the density of line service stations on overall
performance in bi-modal public transport settings

Abstract

Human mobility is mostly dominated by the use of private cars, leading to disproportionate
carbon emissions, resource consumption, traffic jams, and pollution. Public transport, with buses,
trains, etc., can mitigate these issues via its higher pooling potential. However, often times, public
transport is considered less convenient and is therefore avoided. Here, we study a bi-modal
public transport system consisting of a rail bound line service and a fleet of on-demand shuttles
providing connections to the line service stops, aiming at fast transit at low energy and resource
consumption. By means of agent-based simulations and analytical theory, we demonstrate that
bi-modal transit indeed has the potential to significantly reduce energy consumption of human
mobility at reasonable service quality. We further investigate the influence of the stop density
along the rails upon the performance of the bi-modal system. We find that within a range of
realistic technical parameters, additional stops tend to impede train speed without significantly
enhancing the overall performance of bi-modal transit in terms of service quality and energy
consumption. Hence, it can be beneficial to reduce the number of stops within an existing railway
system and to implement bi-modal transit as a complement.

Keywords:
Sustainable public transport, human mobility, ride-pooling, carbon emissions, traffic reduction,
agent-based simulations

1. Introduction

Transportation plays a vital role in our society, enabling people to move from one place to
another. However, the traditional motorized individual vehicle (MIV, i.e., the private car) used
for passenger transportation is highly inefficient, requiring the movement of a ton of material
to transport just one person (MacKenzie et al., 2014; Tachet et al., 2017). This wastefulness,
causing air pollution (European Environment Agency, 2020; Caiazzo et al., 2013) and other
environmental impact (European Environment Agency, 2020; Joireman et al., 2004) as well as
traffic congestion (Chin, 1996; Koźlak, Aleksandra and Wach, Dagmara, 2018; Arnott and Small,
1994; Barth and Boriboonsomsin, 2009), highlights the need for more sustainable and efficient
transportation solutions.

In stark contrast to MIV, line services can carry hundreds of passengers at a time (e.g., light
rails). This makes them an ideal candidate for sustainable public transportation (PT) (Pietrzak,
2019; Ferbrache, 2017; Kato and Kaneko Y. & Soyama, 2014). However, owing to its seemingly
higher convenience (Kent, 2013), the MIV dominates the global mobility market (Eurostat, 2022;
Fiorello et al., 2016), compared to line services, with their downsides of fixed routes, fixed
schedules, and a limited set of fixed stops for accessing and leaving the vehicles.

Demand responsive ride-pooling (DRRP) services, on the other hand, offer flexible routes
and schedules by deploying shuttles which pick up and drop off users at the desired locations.
Preprint submitted to Multimodal Transportation October 23, 2023



(c) (d)

(a) (b)

(c) (d)

Figure 1: Bi-modal transport network on a square grid. (a) Idealized line service network. Green nodes at the
intersection of railway lines represent the train stations. (b) A network as in (a), but with additional (intermediate)
stations. (c) A snapshot of a simulation where passengers use MIVs (red dots) as the only mode of transportation. (d) A
snapshot of bi-modal simulations on a network with one intermediate station (Θ = 1). Demand is the same as in (c). Red
dots represent shuttles (DRRP), gray rectangles represent trains, green diamonds represent train stations. The number of
required shuttles in a bi-modal system (d) is much lower than the number of MIVS required in (c). See Subsec. 3.4 for a
quantitative analysis.

2



Combining individual user requests into an appropriate set of routes of the shuttles (Alonso-Mora
et al., 2017), they provide door-to-door transport, similar to the MIV, but at higher occupancy.
In such systems, however, users necessarily experience some undesirable detour with respect
to the direct route due to the necessity to pick up and drop off other passengers (Herminghaus,
2019; Lobel and Martin, 2020). This trade-off between pooling and detouring severely limits
the achievable pooling efficiency (Zwick et al., 2021), and therefore the achievable reduction in
traffic and emissions.

A promising solution is bi-modal transport, in which DRRP is combined with line services.
Line services, with their fixed routes and schedules, facilitate high vehicle occupancy, while
DRRP shuttles provide on-demand transport to and from the line service stops. Additionally,
shuttles can serve short distance requests door-to-door, where usage of line services is inefficient.
This integration of line services and DRRP has the potential to achieve high pooling efficiency
while maintaining user convenience.

In a previous, mean-field based approach, Sharma et al. (2023) identified user convenience
and energy consumption as the relevant conflicting objectives for optimization of bi-modal tran-
sit. They found that with a diligent choice of system parameters, energy consumption may be
reduced to about 20% relative to MIV, and traffic volume to less than 10% relative to MIV. Their
findings suggested that bi-modal public transport systems have the potential to outperform cus-
tomary public transportation as well as MIV in several respects. This appears promising, because
most agglomerations have a passenger transport line service system already in place, and DRRP
shuttles can be deployed on the streets in between. It therefore suggests itself to study bi-modal
transport in a geometry akin to what one finds in real settings, in order to come close to advising
authorities and policy makers.

Sharma et al. (2023) adopted a simplified ‘cartesian’ network as sketched in Fig. 1a, where
they assumed line service stations to exist at each crossing. In most cities, however, a line
has more stops than crossings with other lines, as sketched in Fig. 1b. The impact of these
intermediate stops on the overall performance of the system is hitherto not known. On the one
hand, intermediate stops increase the user’s proximity to transit stations, resulting in shorter
shuttle trips to and from train stations. On the other hand, additional stations slow down the
trains, potentially impacting the service quality for longer trips.

In the present paper, we investigate the impact of intermediate stops on bimodal-transit via
agent-based simulations. By studying realistic sets of parameters, we aim to provide valuable
insights into how the addition of intermediate stops affects factors such as travel time, passenger
waiting time, and vehicle occupancy. In addition, we validate the findings of our previous study
(Sharma et al., 2023), which were based on a mean-field approach.

We find that 1) intermediate stops reduce average shuttle occupancy, detours, and waiting
times. The maximum size of this effect increases with demand. 2) Intermediate stops do not
improve overall performance because reduction in quality due to slower trains dominates over
slight improvements in energy consumption and traffic volume. 3) With or without intermediate
stops, average shuttle occupancy, detours, and waiting times vary significantly with the fraction
of bi-modal trips, and increase with demand, in contrast with the assumption of constant waiting
times and detours in Sharma et al. (2023). 4) None the less, our agent-based simulations validate
the performance potential of bi-modal transit as suggested in Sharma et al. (2023), however, they
provide a refined quantitative picture, especially regarding achievable service quality.

In the following, we first introduce the geometry and parameters of the system under consid-
eration (Sec. 2.1). Subsequently, we describe the objectives of optimization and the parameters
of operation (Sec. 2.2). We then present results from our simulations and compare them to theo-
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retical modeling in Sec. 3. In the results part we discuss performance of DRRP (shuttles) within
bi-modal transit (Subsec. 3.1), energy consumption and service quality of bi-modal transit as a
whole (Subsec. 3.2), Pareto-optimal solutions (Subsec. 3.3), and potential for traffic reduction
(Subsec. 3.4). We end with a discussion of our findings (Sec. 4).

2. Methods

2.1. Definition of the system

For simulating a system of bi-modal transport, with on-demand shuttles and trains operat-
ing on lines, we deploy the open-source, multi-agent transport simulation framework, MATSim
(Horni et al., 2016). In contrast to the mean-field study by Sharma et al. (2023), where observ-
ables like waiting time, vehicle occupancy, or mean detour were estimated by heuristics, in this
agent-based framework, transportation requests are served explicitly by individual vehicles (the
agents), such that the aforementioned quantities emerge solely based on the user environment and
the parameters of operation of the bi-modal transit system. Our methodological contribution lies
in the implementation of a bi-modal transit system within an agent-based simulation framework.

To assess the validity of the assumptions, as well as findings on potential reductions in en-
ergy consumption and traffic volume in Sharma et al. (2023), we choose the same parameters
in our simulations as in Sharma et al. (2023), where applicable. In addition, we introduce in-
termediate stations between line crossings (see Fig. 1 b) to study the impact of the density of
line service stations on the overall performance in bi-modal public transport settings. We refer
to Supporting Information for algorithmic details of this framework. In the following we present
the characteristic parameters of this model.

User environment. In simulations, we consider a uniformly populated planar region of side
length L = 20 km, i.e., an area of A = 400 km2, and a total number of transit requests N ,
uniformly randomly spread over a time T = 1 h. Introducing population density E and average
request frequency per inhabitant ν, the number of transit requests per time N/T = νEA. Users
are assumed to place transit requests in an uncorrelated fashion, each consisting of a desired
pick-up (P) and drop-off (D) location with a requested distance d = PD following a distribu-
tion p(·)1. As average requested distance we choose D = 5 km in simulations. We define D as
the intrinsic length scale of our system. Shuttles and MIV are assumed to have a characteristic
road vehicle velocity, v0, which we choose to be 30 km/h in simulations. We can thus obtain the
intrinsic time scale2 t0 = D/v0 = 10 min. This is the average time a travel request would need
to be completed by MIV3. We denote (non-dimensional) variables measured in these units (D,
t0) with the ˜ symbol. The demand of transport within the system can be characterized by the
dimensionless parameter Λ = ND3

AT v0
= ν̃Ẽ, which measures the number of requests for transport

in an area of D2 during time D/v0 (Sharma et al., 2023). Typical values range from Λ = 102 to
104 for rural up to dense urban transportation scenarios (Sharma et al., 2023).

1We are using the inverse-gamma distribution as it has been observed in NYC, for example (Herminghaus, 2019).
2Introduction of intrinsic length and time scales, D and t0, as units reduces the number of parameters by two.
3D = 5 km is at the lower end of typical values for cities/regions and v0 = 30 km/h is at the upper end (see table in

Sharma et al. (2023)), leading to a comparatively short estimate for the average driving time by car.
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Bi-modal transit system. We distinguish two types of train stations. Train stations at railway
intersections are called junction stations. They are separated by the lattice constant ℓ. Additional
train stations are called intermediate stations. The distance between two adjacent train stations
along a train line is ℓ

′
. The number of intermediate stations between two junctions is then Θ =

ℓ/ℓ
′ − 1. All train stations (intermediate and junction) serve as the connection points between

DRRP and line service (see Fig. 1b). We restrict our analysis to values of up to three (Θ ∈
{0, 1, 3}) intermediate stations, motivated by agglomerations like Berlin and New York, where
we find about one intermediate stop on average, and only rarely more than two (see Supporting
Information for details). We choose a grid of length ℓ = 2 km (Sharma et al., 2023), since
we observed previously that the performance of the system is optimal for ℓ/D ≈ 0.4 across an
extensive range of user demand (Sharma et al., 2023). This value is also close to what is found,
e.g., for Berlin (Sharma et al., 2023). Therefore, we fix ℓ/D = 0.4 throughout this study.

The trains operate along orthogonal lines from source to end, the first and the last station of
the transit network line in the direction of travel (see Fig. 1). The trains arrive at stations with
a frequency µ = 1/10 min−1 (as in metropolitan regions like Berlin (S-Bahn Berlin, 2023)) and
travel at an average speed vtrain. We assume that trains attain a maximum speed of 3 · v0 and the
time taken to reach this speed starting from rest is assumed to be 0.05 · t0. The trains stop at
each connecting station for 0.05 · t0. These values are inspired from real data (see Supporting
Information for details) and are equal to the ones in Sharma et al. (2023). Note that due to these
factors, the effective train velocity, vtrain, depends on the inter-station distance ℓ

′
. Trains require

energy etrain per unit distance of travel.
The transit system is further characterized by a number of shuttles, S, in the plane. For the

sake of conciseness and simplicity, we assume that the number of shuttles S is just sufficient
to serve all user requests emanating in the system over time T . Shuttles require energy eshuttle
per unit distance of travel. User requests served by DRRP/shuttles are subject to the constraint
that the maximum accepted detour (traveled distance / direct distance) is δm = 3, the maximum
waiting time is τw,max = 5 min = 0.5 · t0 and the maximum travel time is α · tdirect + γ, where
α = 3, γ = 10 min are simulation parameters and tdirect is the direct travel time4. Requests are
assigned to feasible shuttles so as to minimize the total distance driven by the shuttles.

We let trains and DRRP operate for a time 2T = 2 h in order to ensure that all user requests
are served during simulation time.

2.2. Parameters and objectives of operation

Choosing the type of transport service. A single user in the model system may either be trans-
ported by uni-modal service, i.e., by shuttle (DRRP) only, or by bi-modal service, i.e., be brought
from P = (xp, yp) to the nearest train station by means of a shuttle, followed by a train jour-
ney, which is again followed by a shuttle journey to D = (xd, yd). It is the task of the dis-
patcher system to decide, for each individual request (P,D), whether the desired door-to-door
service should be completed by uni-modal transportation (shuttles only) or bi-modal transporta-
tion (shuttle-train(s)-shuttle). Sharma et al. (2023) showed that the requested travel distance,
d = |PD|, irrespective of the direction of travel, may serve as a reasonable discriminating pa-
rameter. Therefore, in order to choose the mode of transportation for an individual user request,
we adhere to the previous policy (Sharma et al., 2023) of assigning user requests with travel dis-
tance d > dc to bi-modal transportation (shuttle-train(s)-shuttle). Shorter trips, i.e., user requests

4For the mean-field theory, Sharma et al. (2023) require averages, they assume ⟨δ⟩ = δm/2 and ⟨τw⟩ = τw,max/2.
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with travel distance d ≤ dc, are assigned to uni-modal transportation (shuttle only). The cut-off
distance, dc, is the control parameter we will use to optimize the performance of the system. It
is in one-to-one correspondence to the fraction of bi-modal transportation F(dc) =

∫ ∞
dc

p(x) dx,
with p(·) the probability density of requested distances.

Service quality. We define the service quality as the ratio between the average travel times by
MIV and bi-modal transit, respectively,

Q = t0
(1 − F) · tuni + F · tbi

, (1)

where F = F(dc) is the fraction of requests served by bi-modal transportation.
To compute the average travel time by MIV for a simulated scenario, we perform independent

simulations where the MIV is the only allowed mode of transportation. If tMIV
i represents the

travel time for user i, then t0 can be obtained by averaging over all users in the system, i.e.,
t0 = 1/N ∑ tMIV

i . Similarly, we compute the denominator in Eq. 1, from simulations by averaging
over all users in the system.

In a mean-field approach, Sharma et al. (2023) derived an analytical expression for Q as

Q−1 = (1 − F) ·
(
τ̃w + δ⟨d̃⟩d̃≤d̃c

)
︸             ︷︷             ︸

t̃uni

+F ·
2τ̃w + 2βℓ̃δ +

1
µ̃
+

4
π

⟨d̃⟩d̃>d̃c

ṽtrain


︸                                 ︷︷                                 ︸

t̃bi

.
(2)

The ˜ indicates quantities non-dimensionalized via division by the respective unit (D, t0, and v0
as units for length, time, and velocity, respectively). ⟨d̃⟩d̃>d̃c

is the mean of requested distances
larger than dc and δ is the average detour incurred by a user during the DRRP trip, τ̃w is the
average waiting time for shuttles and µ̃ the train frequency. β = 1

6 (
√

2 + log(1 +
√

2)) ≈ 0.383 is
a geometrical constant, and 4π−1⟨d̃⟩d̃>d̃c

is the average distance traveled on trains.

Energy consumption. To assess the overall energy consumption by the bi-modal transportation
system, we define the dimensionless energy consumption E as the ratio of total energy consumed
by bi-modal transportation and a fleet of MIV, mathematically, E can be written as

E ≡ ∆shuttle · eshuttle + ∆train · etrain

∆MIV · eMIV
, (3)

where ∆· denotes the (mode-specific) total distance traveled in a unit cell of area ℓ2 per unit
time. e· is the vehicle-specific energy consumption per unit distance. Note that E is already
normalized with respect to the MIV energy consumption (denominator), as this is the door-to-
door transportation system we intend to compare with. For E > 1 (< 1), energy requirement for
bi-modal transportation is larger (smaller) than for MIV serving the same requests.

Both, uni-modal (shuttle only) and bi-modal trips, contribute to the total distance driven by
shuttles per unit time due to requests from a unit cell of area ℓ2, hence

∆shuttle =
νEℓ2

η


⟨d⟩d<dc (1 − F)︸           ︷︷           ︸

shuttle only

+ 2βℓF︸︷︷︸
two shuttle trips


, (4)

6



where η is the DRRP pooling efficiency, which is the ratio of direct distance requested by the
users and the distance actually driven by the shuttles (for MIV, η = 1). Mühle (2023) has
observed that η scales with demand Λ roughly in an algebraic manner, η(Λ) ≈ Λγ, with γ ≈ 0.12.
In a bi-modal system, however, some of the demand Λ is directed towards trains. Therefore, we
need to compute an adjusted demand, Λshuttle ≡ (EνshuttleD3

shuttle)/v0, considering shuttle trips
only. νshuttle is the effective request frequency for shuttle trips and Dshuttle is the average distance
of a shuttle trip. One can show that (Sharma et al., 2023)

Λshuttle = Λ (1 + F)−2((1 − F)⟨d̃⟩d̃≤d̃c
+ 2βℓ̃F)3 . (5)

We compute the theoretical pooling efficiency, η, according to the power law mentioned above

η ≡ Λ0.12
shuttle . (6)

The distance travelled per unit cell by line service, ∆train, remains constant throughout our
study because trains operate at a constant frequency µ, mathematically,

∆train = 4 · µ · ℓ . (7)

∆MIV is the total distance requested by users per unit time,

∆MIV = νEℓ2D . (8)

Analytically, Eq. 3 can then be written as

E = η−1
(
⟨d̃⟩d̃≤d̃c

(1 − F) + 2βℓ̃F
)
· eshuttle

eMIV︸                                          ︷︷                                          ︸
shuttles

+
4µ̃
Λℓ̃
· etrain

eMIV
.

︸        ︷︷        ︸
train

(9)

In analogy to Sharma et al. (2023), we consider electric light rails with a maximum seating-
capacity k = 100 and etrain = 9.72 kN (Knörr et al., 2016) for the line service. For MIV we
consider Diesel cars with eMIV = 2.47 kN (BMDV, 2022). For the shuttles we choose Mercedes
Sprinter (8.8 liters of Diesel per 100 km (Mercedes-Benz, 2022)), resulting in eshuttle = 3.28 kN.

In order to compute the ratio above in Eq. 3 for a simulated scenario, we perform indepen-
dent simulations for MIV and bi-modal transit with identical user requests. The denominator in
Eq. 3 is obtained from MIV simulations by multiplying the total driven distance by eMIV. The
numerator in Eq. 3 is obtained from bi-modal simulations by multiplying mode-specific total
driven distance5 with the respective vehicle-specific energy consumption per unit distance.

3. Results

We organize our results as follows. First we present how DRRP performs within a bi-modal
system in Subsec. 3.1. Then we characterize the overall performance of bi-modal transit systems
in terms of energy consumption and service quality in Subsecs. 3.2 and 3.3. We conclude the
results section with an analysis of potential reductions in traffic volume (Subsec. 3.4).
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Figure 2: DRRP performance statistics: DRRP/Shuttle performance parameters are plotted against bi-modal fraction
F. Green, blue and red curves represent Λ = {13.7, 123, 1201}, respectively. Triangles, circles and squares represent
Θ = {0, 1, 3}, respectively, for all colors. Black square, circle and triangle represent uni-modal transport (shuttles only)
(a) Mean DRRP occupancy for non-standing vehicles, b. (b) Mean detour, δ, for shuttle users. Black dashed curve
represents the detour assumed for theory (Sharma et al., 2023). (c) Mean DRRP pooling efficiency η ≡ b/δ. Dashed
curves represent the theoretical data for pooling efficiency, as determined by Eq.6. (d) Mean waiting time, τ̃w, for
shuttles normalized with t0. Black dashed curve represents the assumed value for theory (Sharma et al., 2023).
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3.1. DRRP performance

Occupancy. Fig. 2a shows the mean DRRP occupancy averaged over driving vehicles, namely b,
against the bi-modal fraction, F, for various numbers of intermediate stations, Θ, and demands,
Λ. We observe that shuttles generally have a higher mean occupancy for large demands because
of the greater possibility of pooling. Mean occupancy is observed to decrease with the involve-
ment of trains (increasing F) because trips by shuttles are shortened, resulting in passengers
spending less time in shuttles during their transit. We also observe a general trend of decreasing
mean occupancy with more intermediate stations, because trips by shuttles for the users assigned
to bi-modal transportation become 1) more dispersed and 2) shorter due to the higher number
and proximity of train stations, therefore providing less opportunity for pooling.

Detours. From Fig. 2b, the general trend of increasing detour with demand is evident. This
trend, together with the trend for mean occupancy, b, in Fig. 2a, shows the well known trade-off
between detour and pooling for DRRP, i.e., desirable pooling necessitates undesirable detours
for passengers (Herminghaus, 2019). A trend of decreasing detours with increasing involvement
of line services (increasing F) can be attributed to a ’common stop effect’, that is, passengers are
picked up or dropped off at the same train station, thereby reducing detours. We also observe a
trend of decreasing detours with more intermediate stations which is due to the lower potential
for pooling due to shorter trips, as well as a reduced ’common stop effect’.

Notice that the black dashed curve represents the assumed value of δ = 1.5 for the theoretical
analysis (Sharma et al., 2023). We observe in Sec. 3.3, that this assumption does not severely
impact the agreement between the theoretical and simulated overall performance of the system.

Pooling efficiency. The ratio between mean occupancy and mean detour, shown in Fig. 2c, pro-
vides a reasonable estimate for pooling efficiency, η (Mühle, 2023), which is defined as the ratio
of requested direct distance by the users and driven distance by the shuttles (for MIV, η = 1).
In Fig. 2c, we observe a general trend of increasing pooling efficiency, η, with demand, which
suggests that deploying shuttles in a region with high demand is favourable. Involvement of line
services decreases the DRRP pooling efficiency because user requests are diverted toward the
lines, thus shortening the average distance a passenger travels on the shuttle during the entire
journey. We observe that the effect of intermediate stations on η is mostly insignificant, except
for higher demand at large bi-modal fraction, F.

The dashed curves represent the theoretical prediction for pooling efficiency, determined by
Eq. 6, which follows a trend similar to the simulations. We observe that the theoretical data
underestimates the pooling efficiency when compared with the simulation data. This underesti-
mation can be attributed to the ’common stop effect’ mentioned earlier, which is not accounted
for in theoretical predictions in Eq. 6.

Waiting time. In Fig. 2d, we study the mean waiting time for trips with shuttles. Mean waiting
time normalized with the average trip duration, t0, is plotted against bi-modal fraction F. The
black dashed curve represents the assumed value for the theoretical study (see Supporting Infor-
mation for details). We observe a trend of increasing waiting time for higher demands because
shuttles become busier. Involvement of line services generally decreases the waiting time for
trips with shuttles because of the ’common stop effect’ and a lower share of distance travelled in

5Note that we only consider the total distance that trains drive during the time interval T .
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shuttles. The latter holds, too, for more intermediate stations, thus explaining the lower waiting
time for larger Θ.

In summary, the main messages from Fig. 2 are: 1) Shuttles become more efficient with
demand, while user experience suffers due to larger detours and waiting times. 2) Intermediate
stations enhance the user experience due to shorter detours and waiting times. The effect on
pooling efficiency is insignificant. 3) Trips with shuttles become more convenient for users with
involvement of line services due to reductions in waiting time and detours.

3.2. Overall energy consumption and service quality of bi-modal transit

We now analyze the overall objectives, i.e., energy consumption (Eq. 3) and service quality
(Eq. 1) of the combined bi-modal system.

Energy consumption. In Fig. 3a, relative energy consumption, E, is plotted as a function of bi-
modal fraction, F, for various numbers of intermediate stations, Θ. We observe a general trend
of decreasing energy consumption with involvement of line services. This is because ∆shuttle
decreases with involvement of line services (see Fig. 4a) while ∆train is constant due to a constant
service frequency µ, thus decreasing the total energy consumption by the bi-modal system (see
Eq. 3). We observe that the relative energy consumption is reduced with increasing demand, Λ,
as is evident from the direct contribution in Eq. 9, as well as via the enhanced pooling efficiency,
η (see Fig. 2c). Fig. 3a reveals that the energy consumption can be lower than 25% of the energy
consumption for MIV for demands in large cities like Berlin (Λ ≈ 5 · 103, Sharma et al. (2023)).
Energy consumption is observed to decrease slightly with increasing number of intermediate
stations, because the normalized distance driven by shuttles is reduced (see Fig. 4a). We find
reasonable agreement between theoretical data (Eq. 9) and simulations.

Quality. In Fig. 3b, we plot the overall quality of the system against the bi-modal fraction, F.
We observe that Q is non-monotonic in F. This is due to the competing effects of decreasing
waiting time for shuttles with more involvement of trains (see Fig. 2d), on the one hand, and
additional waiting time for trains at the train stations for a larger user fraction (F), on the other
hand.

We observe that the overall service quality, Q, decreases with demand, which is due to the
trend we observed for waiting times for trips with shuttles in Fig. 2d.

The dashed black curve represents the theoretical predictions determined by Eq. 2. Notice
that the theoretical prediction for quality does not depend on the demand because the train fre-
quency µ is maintained at a constant value of 0.1 min−1 across all demands (see Subsec. 2.1). The
difference between theory and simulation data primarily stems from the waiting time of shuttles,
which we approximated as 0.25 t0 in our theory, for all demands (see Supporting Information for
motivation). However, we see in Fig. 2d that the waiting time varies with demand, bi-modal
fraction and number of intermediate stations.

In Fig. 3b, we observe that the overall service quality of the combined bi-modal system
decreases with more intermediate stops, despite a trend of decreasing waiting times and detours
for trips with shuttles (see Figs. 2b, d). Apparently, this trend is dominated by a slowing down
of trains due to intermediate stations, which increases the average trip duration.

The general trend of reduction in consumption of energy with increasing demand and in-
volvement of line services hints towards the merit of bi-modal transportation for high-demand
scenarios. For service quality, we find that typical values are around one-half the service quality
of MIV, i.e., about twice the travel time. This quality is customary for public transport systems
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Figure 3: Effect of intermediate stations on the overall performance of bi-modal transit: The bimodal fraction F
has been varied in the range [0,1) in simulations to obtain the data shown. Blue and red curves represent data for Λ =
{123, 1201}, respectively. Triangles, circles and squares represent Θ = {0, 1, 3}, respectively. (a) Energy consumption, E,
as a function of F. The dashed curves represent the theoretical data determined by Eq. 9. (b) Quality, Q, as a function of
F. Black dashed curve represents the theoretical data determined by Eq. 2. Notice that the theoretical data for quality is
assumed the same across all demands. (c) Pareto fronts of energy consumption, E, vs. service quality, Q determined from
the data shown in (a), (b). Data not part of Pareto fronts is not shown. The dashed curves represent the theoretical data as
in (a), (b). Black circle and triangle represent uni-modal transport (shuttles-only) data for Λ = {123, 1201}, respectively.
(d) Pareto fronts as in (c), but normalized with respect to the performance, (Q0,E0), of the uni-modal system (shuttles
only).
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(Salonen, 2013; Liao et al., 2020) and is generally well accepted by users. Note that our data for
service quality represent a safe lower bound, as the (sometimes quite substantial) time required
for parking spot search (Fulman and Benenson, 2021; Chaniotakis and Pel, 2015) is neglected in
t0.

We observe that service quality attains a maximum for a bi-modal fraction, F, where energy
consumption is not minimal. Jointly optimizing such conflicting objectives can be done in the
framework of Pareto optimization, which we will discuss next.

3.3. Pareto optimization

A tuple of parameter values, in our case (E,Q), is called Pareto-optimal if none of the param-
eters (or objectives) can be further optimized without compromising on at least one of the others.
The set of all such tuples of parameters is called the Pareto front (Debreu, 1959; Greenwald and
Stiglitz, 1959; Magill and Quinzii, 2002). We now apply this concept to our results, keeping
in mind that we aim at maximum service quality at minimum energy consumption. Hence, in
diagrams spanned by Q as the abscissa and E as the ordinate, system operation as far as possible
to the lower right is desirable.

In order to study the effect of density of line service stations on the overall performance of the
bi-modal transit system, we have introduced Θ = {0, 1, 3} as the number of intermediate stations.
For Θ = 0, transit stops are only at the intersection between two transit lines. For each value of
Θ, we vary dc to obtain the Pareto fronts.

In Fig. 3c, we show the Pareto fronts obtained for data in Figs. 3a, b. Note that for a better
resolution of the curves, we only show the data forΛ = {123, 1201}. We observe that intermediate
stations reduce the energy consumption to as low as 20% of MIV for larger demand. However,
the service quality is worsened due to reduced average speed of trains. Black triangle and circle
represent the data for the uni-modal system (shuttles only), and dashed curves represent the
theoretical estimates. We observe a fair agreement between previous theoretical estimates and
simulation results for the overall performance of the bi-modal system. Discrepancies mainly
result from the simplifying assumptions for mean waiting time, τ̃w and detour, δ, as described in
Subsec. 3.1.

In Fig. 3d, the same Pareto fronts as in Fig. 3c are plotted normalized with respect to energy
consumption and service quality of a uni-modal system, (E0,Q0). We observe that the bi-modal
system can provide a service quality superior to a uni-modal (shuttles only) system with a lower
energy consumption. This observation holds for both demand values presented.

3.4. Traffic volume

Road traffic is a source of local noise and air pollution and occupies significant shares of
urban space. Bi-modal transit aims at reduction of road traffic by utilizing line services for trips
over larger distances. Fig. 1c and Fig. 1d provide qualitative evidence by comparing abundance
of MIV and shuttles for the same request pattern.

To obtain a quantitative estimate, we define as bi-modal traffic volume, ∆̃shuttle, the cumulative
distance driven by shuttles, ∆shuttle (Eq. 4), normalized with respect to the equivalent of total
MIV distance requested, ∆MIV (Eq. 8), or, equivalently, the relative number of driving shuttles as
compared to MIV. For our theoretical estimates, we use the analytical expression,

∆̃shuttle ≡ ∆shuttle/∆MIV = η
−1 (1 + F) D̃shuttle , (10)
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with pooling efficiency, η, bimodal fraction, F, and average requested distance for trips by shut-
tles involved in bi-modal transit, D̃shuttle.

In Fig. 4a, we plot bi-modal traffic in simulations on a vertical logarithmic axis as a function
of bi-modal fraction for various demands and number of intermediate stations. Dashed curves
represent the theoretical data (Eq. 10) for an idealized square grid network without any interme-
diate stops (Θ = 0).

We observe a trend of decreasing bi-modal traffic with involvement of line services, i.e.,
with increasing F. Also, ∆̃shuttle decreases with increasing demand, because shuttles become
more efficient due to the possibility of larger pooling (see also Fig. 2c). We furthermore observe
that, for low demand, bi-modal traffic decreases with more intermediate stations. This is despite
an insignificant impact on pooling efficiency, η (see Fig. 2c). It is rather the reduced average
requested distance for trips with shuttles, D̃shuttle, due to increased proximity of train stations,
which accounts for the reduced traffic volume (see Eq. 10).
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Figure 4: Impact of intermediate stations on traffic volume. Green, blue and red curves represent Λ =

{13.7, 123, 1201}, respectively. Triangles, circles and squares represent Θ = {0, 1, 3}, respectively. (a) Relative bi-
modal traffic in simulations, ∆̃shuttle, as defined in Eq. 10, as a function of the bi-modal fraction, F. Black square, circle,
and triangle represent uni-modal transport (shuttles-only) data for Λ = {13.7, 123, 1201}, respectively. Dashed curves
represent the theoretical data, determined by Eq. 10. (b) Relative bi-modal traffic in simulations, ∆̃shuttle, determined
along the Pareto fronts in Fig. 3, against corresponding service quality Q. Dashed curves and black symbols represent
the theoretical and uni-modal data, respectively, as in (a).

In Fig. 4b, we plot the relative bi-modal traffic volume, ∆̃shuttle, for simulations on a vertical
axis, determined along the Pareto fronts in Fig. 3c, against corresponding service quality Q. The
traffic volume for uni-modal (shuttle-only) scenarios is plotted with black symbols. We observe
that the relative traffic volume for uni-modal scenarios decreases with demand due to increased
pooling efficiency, η (see Fig. 2c). The relative traffic volume for the uni-modal case can be
reduced to 80% of MIV for very low demand and down to 50% and 40% for low and medium
demand, respectively.

Bi-modal public transportation allows for further reduction in relative traffic volume below
the uni-modal case at a superior service quality. For an idealized square grid without any interme-
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diate stations (represented by coloured triangles), bi-modal transportation reduces traffic volume
down to about 30% of MIV for very low and low demand and even below 20% for medium de-
mand. Intermediate stops allow for further reduction in traffic. This reduction, however, comes
at the cost of reduced service quality. Due to computational limitations, we could only simulate
scenarios with the demand of the order of Λ = 103. However, the demand can be as high as 104

for very dense areas like New York. Earlier findings suggest that bi-modal public transportation
can reduce traffic in such areas even below 10% of MIV (Sharma et al., 2023).

4. Discussion

Our investigation had two primary goals. First, to study the impact of the number of inter-
mediate line service stops on the performance of bi-modal public transport systems. Second, to
evaluate the analytical framework proposed by Sharma et al. (2023) through simulations. The
parameters investigated in our study drew inspiration from real-world agglomerations. The grid
constant ℓ̃ = D/ℓ = 0.4 in our model is close to what is found for, e.g., New York and Berlin.
Other technical parameters, including shuttle speed (v0) and train speed (vtrain) have been care-
fully chosen to reflect the observed real-life environments (see Subsec. 2.1).

Below, we first discuss the comparison between agent-based simulations and the analytical
study by Sharma et al. (2023). Simulations reveal that observables characterizing shuttle perfor-
mance, namely detour and waiting time, vary with demand, bi-modal fraction and the number of
intermediate stops, in contrast to the constant values assumed by the previous analytical study
(Sharma et al., 2023). Furthermore, the previous analytical study approximated the pooling ef-
ficiency using an algebraic power-law (see Eq. 6), which underestimated the actual pooling effi-
ciency due to a ’common stop effect’ (see Subsec. 3.1). The findings above highlight that shuttle
waiting time, detours, and pooling efficiency are complex observables, which, in bi-modal transit,
depend on line service operations, and thus must be modeled carefully to assess the performance
of bi-modal transit systems accurately.

Adding intermediate stations between line crossings had limited benefits. While there was a
marginal reduction in energy consumption and traffic volume, the resulting slowdown of trains
made them less suitable as a faster mode of transportation than MIVs and shuttles, i.e., lead to
substantial reduction of service quality.

It should be noted that the network structure employed in our research, although inspired
by real-world urban agglomerations, is still a simplified representation. Future studies should
consider more complex and realistic network typologies to capture the nuances of different urban
environments and evaluate the generality of our findings. Moreover, realistic demand patterns,
like rush hours and spatial commuting patterns can be included.

In summary, our study confirms that bi-modal transit can provide door-to-door service with
satisfactory service quality while consuming only a fraction of the energy required by an equiv-
alent fleet of MIVs, and significantly reducing road traffic volume. These advantages hold for
low-demand regions as well as medium-sized cities. Although our simulations were limited to
a medium user demand of approximately Λ = 103 due to computational constraints, we an-
ticipate that bi-modal transit would outperform MIVs and uni-modal ride-pooling even more
significantly under higher demand conditions, as suggested in previous research (Sharma et al.,
2023). It is important to note that our analysis did not consider other MIV-specific drawbacks,
such as parking time or traffic congestion during rush hours (Mingardo et al., 2022; Manville and
Shoup, 2005; Chaniotakis and Pel, 2015), which would further enhance the relative performance
of bi-modal transit.
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The findings of this research paper have significant implications for the improvement of
public transportation systems. One practical application of these findings is in the design and
optimization of line service networks. Public transit authorities and city planners can consider
reducing the number of intermediate stops within existing railway systems and complementing
on-demand shuttle services to improve the overall performance of public transport. Furthermore,
the research suggests that bi-modal transit is not only suitable for high-demand regions but also
holds promise for medium-sized cities. As humanity must reduce its carbon footprint, insights
from this study can guide the development of more sustainable and efficient public transportation
solutions, benefiting both the environment and the quality of life for residents.
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Supplementary material for the article “Impact of the density of1

line service stations on overall performance in bi-modal public2

transport settings”3

Puneet Sharmaa, Stephan Herminghausa, Helge Heuera, Knut M. Heidemanna,
4

aMax Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany

1. Average train speed5

We assume that trains achieve a maximum speed of vm = 3 · v0. This values is inspired from6

data found for New York City subway (1). The time taken to reach this speed starting from rest7

is assumed to be ta = 0.05 · t0. The trains stop at each connecting station for ts = 0.05 · t0. The8

average train speed can then be obtained as9

vtrain =



ℓ
′

ℓ
′

Vm
+ta+ts
, if ℓ

′ ≥ vm · ta
ℓ

2
√
ℓta
Vm
+ts

, otherwise
, (1)

with ℓ′ being the inter-station distance. See Fig. 1 for a explicit values of train speed as function10

of inter-station distance.11

2. DRRP waiting time and detour12

Similarly to our previous study (2), we used estimates from simulations (3) to determine the13

average waiting time and detours. In Fig. 2, mean detour and mean waiting time are plotted as14

a function of user demand. Users are assumed to have a maximum accepted waiting time of15

τw,max = t0. We observe that mean waiting time, τw, grows with demand and saturates around16

0.65 t0. The variation for realistic demands is small. In the theoretical model used in the main17

manuscript we thus approximate the average waiting time as τw = 0.5 τw,max.18

Similarly, the mean detour, δ, grows with demand and saturates around 1.65. Again, variation19

for realistic demands is limited. In our theory we thus assume a constant average detour of20

δ = 1.5.21

3. Intermediate stops in real cities22

We analyzed the subway networks of the cities of Berlin (4) and New York (NYC) (5) with23

respect to the average number of intermediate stops, Θ, between crossings of disjunct lines. For24

NYC, we considered Manhattan south of Central Park because in that part of the city the network25

is closest to a grid-like structure, as assumed in our study. North of Manhattan, lines are mostly26

unidirectional (north-south). For Berlin, we took the subway lines inside the “S-Bahn-Ring”27

(closed loop of suburban rail system, see Fig. 3) from 2016, as reference. We find on average,28

Θ = 1.08 for Berlin and Θ = 0.983 for NYC.29
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Figure 1: Train speed as a function of station density. Train speed is plotted as a function of ℓ
′
. Values of Θ are

annotated in the figure. Data for mesh size ℓ̃ = 0.4.

4. Simulation framework30

We use an open-source, multi-agent transport simulation framework, MATSim (6). It can be31

used for large-scale simulations of microscopic dynamics on (street) networks. The routing is32

performed using the AStarLandmarks algorithm, which is a modified version of the A∗ algorithm.33

MATSim simulation comprises individual users, which are called agents. An initial demand34

characterizes the trips of the agents. Other inputs for simulations like traffic network, transit35

schedules for trains and a configuration file that define specific parameters used in the simula-36

tions characterize the system under study. Mobility simulations are performed for the specified37

demand and input parameters. Mobility simulations reported in this paper are queue-based and38

time-step-based. The links or allowed routes for vehicles are modelled as first-in-first-out (FIFO)39

queues. Vehicles in the queue leave the link after a time equal to the free flow travel time specific40

to the link is elapsed. A link is also characterized by the maximum number of vehicles that can41

be queued. For the purpose of the simulations reported here, we assume that the link capacity42

is large enough. For the simulations reported here, we consider the uniformly populated planar43

region of area A and edges of length L = 20 km. The distance ℓ
′

that separates adjacent transit44

stations is chosen to be 0.5, 1.0 and 2.0 km, corresponding to Θ = 3, 1, and 0, respectively. The45

2



Figure 2: Detour factor, δ and mean waiting time, τw for various demands determined from simulations (3).

3



Figure 3: Berlin subway and S-Bahn network (4).

distance between major junction stations is fixed to a value of 2 km. For each simulation, N46

uncorrelated requests are generated in the regionA over the time T = 1 hr.47
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I. INTRODUCTION

The energy-intensive nature of transportation, largely reliant on fossil fuels, has triggered a concerning surge in
greenhouse gas (GHG) emissions. In the USA and Europe, this sector is a major contributor, accounting for more
than a quarter of total GHG emissions from anthropogenic activities [1]. The prevalent use of motorized individual
vehicles (MIVs), i.e., private cars, for passenger transportation is a cause for concern. MIVs exhibit inefficiencies,
as they involve the movement of over a ton of materials to transport a single person [2, 3]. This wastefulness has
dire consequences, including air pollution and adverse environmental impacts [4–7], as well as contributing to traffic
congestion [8–11].

Line services, represented by systems like light rails, have the potential to accommodate large numbers of passengers
simultaneously, making them an ideal candidate for sustainable public transportation (PT) [12–14]. Despite their
advantages, MIVs continue to dominate the global mobility market[15, 16] due to their perceived convenience[17],
flexible routes, and schedules.

Demand-responsive ride-pooling (DRRP) services present an alternative to both MIVs and line services. These
services employ shuttle vehicles that adapt their routes and schedules based on user requests to combine individual user
requests into an appropriate set of routes of the shuttle [18], thus providing door-to-door transportation. However, the
trade-off between pooling and detour [19, 20] limits the achievable pooling efficiency of DRRP services [21], hindering
their potential to reduce traffic and emissions significantly.

Previous studies [22] have suggested a promising solution to this challenge, i.e., bi-modal transport. In a bi-modal
public transport system, DRRP services are integrated with line services. Line services, characterized by fixed routes
and schedules facilitate high vehicle occupancy and faster service. Meanwhile, DRRP shuttles offer seamless on-
demand transportation to and from line service stops. Furthermore, shuttles are well-suited to serve short-distance
routes with door-to-door service, where the use of line services is inefficient. This integration of line services and
DRRP has been found to achieve high pooling efficiency for a simplified square grid geometry while ensuring user
convenience.

In a previous, mean-field-based approach, [22] identified the key conflicting objectives of optimization as user
convenience and energy consumption. It was found that the energy consumption may be reduced significantly relative
to MIV, and traffic volume can be reduced by an order of magnitude relative to MIV. This suggested that bi-modal
public transport systems have the potential to outperform customary public transportation as well as MIV in several
respects. They also found that the overall performance of the system based on the objectives of emission and quality,
does not vary dramatically with mesh size. Motivated by this, [23] studied the bi-modal transportation by means
of agent-based simulation on a geometry akin to what one finds in real settings. The study further reinforced the
previous claim by [22].

While previous studies were motivating, they considered a spatially uniform demand with constant average request
frequency. However, in realistic scenarios, demand is heterogeneous in space, due to non-homogeneous population
density and individual mobility patterns, and fluctuating in time due to phenomena like rush hours. Furthermore,
the trains were assumed to run periodically at the same constant speed throughout the system and the shuttles were
also assumed to operate at a constant speed. These assumptions undermine the nuances in real settings. The network
topology, for example, is much more complex in real settings and vehicles barely operate at the same constant speed,
if at all. It is unclear how these heterogeneities affect the overall performance of the system.

In previous studies, a prevalent assumption was that all transportation requests within a given study region ex-
clusively relied on the public transit system, these requests were then assigned to bi-modal (shuttle-train-shuttle)
or uni-modal (shuttles only) transportation. However, the reality is far more intricate, as user adoption of public
transportation systems exhibits significant variability. In the present paper, we study the effects of such adoption
variability on the holistic performance of bi-modal transportation systems. We explore two distinct scenarios: one
where x = 1% of the total population utilizes public transportation and another where the adoption rate increases
to x = 10% of the total population. For both scenarios, we assume that the rest of the people use private cars or
MIVs to commute. Our study unveils the dynamics between user adoption patterns and the overall performance of
bi-modal transportation systems, offering insights essential for optimizing their design and operation.

By studying bi-modal transportation in real cities, we aim to provide valuable insights into how effective bi-modal
transportation can be when operated with the existing infrastructure of the rail network.
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(a)

(b)

FIG. 1: Bi-modal transport network in Berlin and Brandenburg A snapshot of simulations for 1%
user-adoption fraction (x = 0.01). (a) A bi-modal scenario where grey rectangles represent trains and red dots

represent the shuttles. (b) MIV scenario where people use private cars to commute. Red dots represent private cars.
The number of required shuttles in a bi-modal system (a) is much lower than the number of MIVS required in (b).

See Subsec. III C 0 a for quantitative analysis.
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II. METHODS

A. Definition of the system

For simulating a system of bi-modal transport, with on-demand shuttles and trains operating on lines, we deploy
the open-source, multi-agent transport simulation framework MATSim [24]. We used the map from [25]. We used
the passenger travel patterns that were artificially generated using the census data [26]. The data is provided by the
Transport Systems Planning and Transport Telematics group of Technische Universität Berlin. We used an openly
available General Transit Feed Specification (GTFS) dataset for the Berlin-Brandenburg region [27] to generate
MATSim public transport schedule and vehicle files and to add public transport links to the network. The dataset
provides schedules and vehicles for various transport modes available, however, we only use rail-bound line services
as a means of public transport. Each link on the transportation network has an associated speed for the vehicles.

a. Bi-modal transit system The trains operating in the study area serve as the primary mode of transportation
similar to what has been proposed in the previous study [22]. These trains run according to the schedule described
above.

The transit system is further characterized by a number of shuttles, S, in the plane. For the sake of conciseness
and simplicity, we assume that the number of shuttles S is just sufficient to serve all user requests emanating in the
system in a day. Shuttles require energy eshuttle per unit distance of travel. User requests served by DRRP/shuttles
are subject to the constraint that the maximum accepted detour (traveled distance / direct distance) is δm = 3, the
maximum waiting time is τw,max = 5min = 0.5 · t0 and the maximum travel time is α · tdirect + γ, where α = 3,
γ = 10min are simulation parameters and tdirect is the direct travel time. Note that we consider trains and shuttles
a part of the public transit system.

1. Parameters and objectives of operation

a. Choosing the type of transport service A single user that adopts public transit in the model system may either
be transported by uni-modal service, i.e., by shuttle (DRRP) only, or by bi-modal service, i.e., be brought from
P = (xp, yp) to the nearest train station by means of a shuttle, followed by a train journey, which is again followed by
a shuttle journey to D = (xd, yd). It is the task of the dispatcher system to decide, for each individual request (P,D),
whether the desired door-to-door service should be completed by uni-modal transportation (shuttles only) or bi-modal
transportation (shuttle-train(s)-shuttle). [22] showed that the requested travel distance, d = |PD|, irrespective of the
direction of travel, may serve as a reasonable discriminating parameter. Therefore, in order to choose the mode of
transportation for an individual user request, we adhere to the previous policy [22] of assigning user requests with
travel distance d > dc to bi-modal transportation (shuttle-train(s)-shuttle). Shorter trips, i.e., user requests with
travel distance d ≤ dc, are assigned to uni-modal transportation (shuttle only). The cut-off distance, dc, is the
control parameter we will use to optimize the performance of the system. It is in one-to-one correspondence to the
fraction of bi-modal transportation F (dc) =

∫∞
dc

p(y) dy, out of the fraction of people, x, that adopt the public transit
system, with p(·) the probability density of requested distances.

b. Service quality For the two 10% and 1% population scenarios, we define the service quality as the ratio between
the average travel times by MIV and bi-modal transit, respectively, for the corresponding population fraction,

Q =
t0

(1− F ) · tuni + F · tbi
, (1)

where F = F (dc) is the fraction of requests served by bi-modal transportation.
To compute the average travel time by MIV for a simulated scenario, we perform independent simulations where

the MIV is the only allowed mode of transportation. If tMIV
i represents the travel time for user i, then t0 can be

obtained by averaging over all users in the system, i.e., t0 = 1/N∑
tMIV
i . Similarly, we compute the denominator in

Eq. 1, from simulations by averaging over all users in the system.
In a mean-field approach, with square-grid geometry, [22] derived an analytical expression for Q as

Q−1 = (1− F ) ·
(
τ̃w + δ⟨d̃⟩d̃<d̃c

)

︸ ︷︷ ︸
t̃uni

+F ·
(
2τ̃w + 2βℓ̃δ +

1

µ̃
+

4

π

⟨d̃⟩d̃>d̃c

ṽtrain

)

︸ ︷︷ ︸
t̃bi

.
(2)

The ˜ indicates quantities non-dimensionalized via division by the respective unit (D, t0, and v0 as units for length,
time, and velocity, respectively). ⟨d̃⟩d̃>d̃c

is the mean of requested distances larger than dc and δ is the average detour
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incurred by a user during the DRRP trip, τ̃w is the average waiting time for shuttles and µ̃ the train frequency, ℓ̃
is grid constant or distance between two nearest train stations. β = 1

6 (
√
2 + log(1 +

√
2)) ≈ 0.383 is a geometrical

constant, and 4π−1⟨d̃⟩d̃>d̃c
is the average distance traveled on trains.

c. Energy consumption We assess the overall energy consumption by transportation in the two use cases discussed
above. To assess the overall energy consumption by the transportation system, we define the dimensionless energy
consumption E as the ratio of total energy consumed when 10% and 1% population uses the bi-modal transportation
and the total population using fleet of MIV, mathematically, E can be written as

E ≡ ∆shuttle · eshuttle +∆train · etrain

∆MIV · eMIV
, (3)

where ∆· denotes the (mode-specific) total distance traveled in a unit cell of area ℓ2 per unit time. e· is the vehicle-
specific energy consumption per unit distance, x is the user-adoption fraction. Note that E is already normalized with
respect to the MIV energy consumption (denominator), as this is the door-to-door transportation system we intend
to compare with. For E > 1 (< 1), energy requirement for bi-modal transportation is larger (smaller) than for MIV
serving the same requests.

[22] derived an analytical expression for a mean-field approach in a square grid geometry as follows. Both, uni-modal
(shuttle only) and bi-modal trips, contribute to the total distance driven by shuttles per unit time due to requests
from a unit cell of area ℓ2, hence

∆shuttle =
νEℓ2

η


⟨d⟩d<dc(1− F )︸ ︷︷ ︸

shuttle only

+ 2βℓF︸ ︷︷ ︸
two shuttle trips


 , (4)

where η is the DRRP pooling efficiency, which is the ratio of direct distance requested by the users and the distance
actually driven by the shuttles (for MIV, η = 1). [28] has observed that η scales with demand Λ roughly in an algebraic
manner, η(Λ) ≈ Λγ , with γ ≈ 0.12. In a bi-modal system, however, some of the demand Λ is directed towards trains.
Therefore, we need to compute an adjusted demand, Λshuttle ≡ (EνshuttleD

3
shuttle)/v0, considering shuttle trips only.

νshuttle is the effective request frequency for shuttle trips and Dshuttle is the average distance of a shuttle trip. One
can show that [22]

Λshuttle = Λ(1 + F )−2((1− F )⟨d̃⟩d̃<d̃c
+ 2βℓ̃F )3 . (5)

We compute the theoretical pooling efficiency, η, according to the power law mentioned above

η ≡ Λ0.12
shuttle . (6)

The distance travelled per unit cell by line service, ∆train, remains constant throughout our study because trains
operate at a constant frequency µ, mathematically,

∆train = 4 · µ · ℓ . (7)

∆MIV is the total distance requested by users per unit time,

∆MIV = νEℓ2D . (8)

Analytically, Eq. 3 can then be written as

E = η−1
(
⟨d̃⟩d̃<d̃c

(1− F ) + 2βℓ̃F
)
· eshuttle

eMIV︸ ︷︷ ︸
shuttles

+
4µ̃

Λℓ̃
· etrain

eMIV︸ ︷︷ ︸
train

.
(9)

We consider electric light rails with a maximum seating-capacity k = 100 and etrain = 9.72 kN [29] for the line service.
For MIV we consider Diesel cars with eMIV = 2.47 kN [30]. For the shuttles we choose Mercedes Sprinter (8.8 liters
of Diesel per 100 km [31]), resulting in eshuttle = 3.28 kN.

In order to compute the ratio above in Eq. 3 for a simulated scenario, we perform independent simulations for
MIV and bi-modal transit with identical user requests. The denominator in Eq. 3 is obtained from MIV simulations
by multiplying the total driven distance by eMIV. The numerator in Eq. 3 is obtained from bi-modal simulations
by multiplying mode-specific total driven distance with the respective vehicle-specific energy consumption per unit
distance.
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d. Traffic Road traffic is a source of local noise and air pollution and occupies significant shares of urban space.
Bi-modal transit aims at the reduction of road traffic by utilizing line services for trips over larger distances.

To obtain a quantitative estimate, we define as traffic volume for the two used cases, ∆̃, cumulative distance driven
by shuttles, ∆shuttle normalized with respect to the equivalent of total MIV distance requested, ∆MIV (Eq. 8), or,
equivalently, the relative number of driving shuttles as compared to MIV.

∆̃ ≡ ∆shuttle

∆MIV
= η−1 · (1 + F ) D̃shuttle , (10)

with pooling efficiency, η, bimodal fraction, F , and average requested distance for trips by shuttles involved in bi-modal
transit, D̃shuttle.

III. RESULTS

Below in Subsec. III A, we first present how DRRP performs with a bi-modal system when the bi-modal transit
system is used by 10%, and 1% population. Then in Subsecs. III B , and III C, we describe the overall performance
of the bi-modal transit system for the two used cases above. We conclude the results section with an analysis of the
potential reduction in traffic volume.

A. DRRP performance

a. Occupancy In Fig. 2a, we show the mean DRRP occupancy, b, averaged over non-empty driving vehicles against
the bi-modal fraction, F , for 10% and 1% use case. We observe that the shuttles have a higher mean occupancy for
larger use case, i.e., larger demand because of the greater possibility of pooling. Mean occupancy decreases with the
involvement of trains (increasing F ). This is because shuttle trips are shortened causing passengers to spend less
time in shuttles during their transit. The black symbols represent mean occupancy for a uni-modal (shuttles only)
scenario. We observe that the mean occupancy is larger for uni-modal scenarios.

b. Detours In Fig. 2b, we observe that higher use case, i.e., 10% population has larger detours. Detour δ and
b trend observed above shows a well-known trade-off between detour and pooling for DRRP, i.e., desirable pooling
necessitates undesirable detours for passengers [19]. We observe that the detours decrease with the involvement of
line services, this can be attributed to the ’common stop effect’, a phenomenon observed in the previous study [23].
With greater involvement of line services, more passengers are picked up and dropped of at the same train station,
thereby reducing detours.

c. Pooling efficiency The pooling efficiency which is defined as the ratio between mean occupancy and mean
detour is shown in Fig. 2c. We observe that the pooling efficiency, η, is higher for larger demand, i.e., 10% use case
as also reported in previous studies [23, 28]. This suggests that the larger use of shuttles or bi-modal service will
be favorable for pooling efficiency. We observe that the involvement of line service reduces DRRP pooling efficiency
because user requests are diverted toward the line which shortens the average distance a passenger travels on the
shuttle during the entire journey.

d. Waiting time In Fig. 2d, we study the mean waiting time for shuttle-borne trips. We plot the mean waiting
time normalized with the average trip duration, t0, against the bi-modal fraction, F . We observe that larger demand,
that is, the use case of ten percent has larger waiting times because shuttles are busier. We also observe that the
involvement of line services decreases the waiting time for shuttle trips because of the ’common stop effect’ and a
lower share of distance traveled in shuttles.

The main messages from Fig. 2 are: 1) Shuttles become more efficient with demand, while user experience suffers
due to larger detours and waiting times, as also found in the previous study [23]. 2) The involvement of line services
makes the shuttle trips more convenient for users by reducing the waiting time and detours.

B. Overall energy consumption and service quality of bi-modal transit

Now, we will analyze the overall objectives, i.e., energy consumption (Eq. 9) and service quality (Eq. 2) of the
transportation system for the two use cases.

a. Energy consumption In Fig. 3a, relative energy consumption, E , is plotted as a function of bi-modal fraction,
F , for the two use cases discussed above. We observe a general trend of decreasing energy consumption with the
involvement of line services. This is because ∆̃shuttle decreases with the involvement of line services (see Fig. 5a) while
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FIG. 2: DRRP performance statistics: DRRP/Shuttle performance parameters are plotted against bi-modal
fraction F . Blue circles and red triangles represent 10%, and 1% population of Greater Berlin, respectively. Black

circle, and triangle represent uni-modal transport (shuttles only) (a) Mean DRRP occupancy for non-standing
vehicles, b. (b) Mean detour, δ, for shuttle users. (c) Mean DRRP pooling efficiency η ≡ b/δ. (d) Mean waiting

time, τ̃w, for shuttles normalized with t0.

∆̃train is constant due to a fixed schedule of trains in the simulations, thus reducing the total energy consumption by
the bi-modal transportation system. We also observe that energy consumption is reduced with increasing demand,
i.e., for a higher used case. This is evident from Eq. 9. Note that the emission curves for bi-modal transportation
start above the emissions for uni-modal scenarios (black symbols). This is because in our bi-modal simulations, trains
are always running at fixed schedules. For low bi-modal fraction, F , trains are underutilized because they operate
at low occupancies (see Fig. 4b). We observe that for 10% use case, the energy consumption can easily drop below
20%, however, for a 1% use case, it’s not advisable to use bi-modal transportation, suggesting that a larger adoption
of bi-modal transportation can significantly reduce the energy consumption.

b. Quality In Fig. 3b, the overall quality of the system is plotted against the bi-modal fraction, F , for the two
use cases. We observe that the demand doesn’t significantly impact the overall service quality and service quality
decreases with the involvement of the line services. Large waiting times (see Fig. 4a) contribute to degrading quality
with the bi-modal fraction, F . This suggests that user quality can be improved by increasing the train frequency and
adapting the train capacity, k, depending on the demand. We see in Fig. 4b that trains are barely full.
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FIG. 3: Overall performance of bi-modal transit: Blue circles and red triangles represent data for 10%, and
1% greater Berlin population respectively. (b) Quality, Q, as a function of F . (c) Pareto fronts of energy

consumption, E , vs. service quality, Q determined from the data shown in (a), (b). Data not part of Pareto fronts is
not shown. The black circle and triangle represent uni-modal transport (shuttles-only) data for 10%, and 1% greater
Berlin population respectively. (d) Pareto fronts as in (c), but normalized with respect to the performance, (Q0, E0),

of the uni-modal system (shuttles only).

C. Pareto optimization

A tuple of parameter values, in our case (E ,Q), is called Pareto-optimal if none of the parameters (or objectives)
can be further optimized without compromising on at least one of the others. The set of all such tuples of parameters
is called the Pareto front [32–34]. We now apply this concept to our results, keeping in mind that we aim at maximum
service quality at minimum energy consumption. Hence, in diagrams spanned by Q as the abscissa and E as the
ordinate, system operation as far as possible to the lower right is desirable.

In order to study the overall performance of bi-modal transportation in real scenarios and the impact of user
adoption, we explore two distinct scenarios: one where 1% of the total population utilizes bi-modal transportation,
and another where the adoption rate increases to 10% of the total population. In each case, we vary dc to obtain the
Pareto fronts.

In Fig. 3c, we show the Pareto fronts obtained for data in Figs. 3a,b. We observe that the energy consumption can
go below 20% for a service quality of around 0.25 for the 10% use case. The black circle represents the uni-modal
data for the 10% use case. We observe that bi-modal transportation can significantly reduce emissions as compared
to uni-modal (shuttles only) case with some compromise on service quality. This is clear from Fig. 3d, where we plot
the Pareto-optimal E and Q normalized with uni-modal E0 and Q0 respectively.



9

0.0 0.5

F (dc)

0.3

0.4

0.5
M

ea
n

w
ai

ti
ng

ti
m

e/
t 0

(a)

0.0 0.5

F (dc)

0

10

20

T
ra

in
o

cc
cu

pa
nc

y

(b)

FIG. 4: Mean waiting time and Train occupancy: Blue circles and red triangles represent 10% and 1%
population of Greater Berlin, respectively. (a) Mean waiting times normalized with t0. (b) Mean train occupancy.
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FIG. 5: Traffic volume. Blue circles and red triangles represent 10%, and 1% greater Berlin population
respectively. (a)Relative bi-modal traffic in simulations, Γ̃, as defined in Eq. 10, as a function of the bi-modal

fraction, F . Black circle and triangle represent uni-modal transport (shuttles-only) data for 10%, and 1% greater
Berlin population respectively. (b) Relative bi-modal traffic in simulations, Γ̃, determined along the Pareto fronts in

Fig. 3, against corresponding service quality Q.

For the 1% use case, it is not advisable to deploy bi-modal transportation at all because requests are better served
by uni-modal transportation (black triangle) both in terms of energy consumption and service quality.

a. Traffic volume In Fig. 5a, we plot the total relative traffic volume, ∆̃, described above in subsec II A 1 d on the
vertical axis as a function of bi-modal fraction, F , for the two used cases. We observe a trend of decreasing bi-modal
traffic with the involvement of line services, i.e., with increasing F . Also, ∆̃ decreases when the user adoption goes
from 1% to 10% because the shuttles become more efficient due to the possibility of larger pooling (see also Fig. 2c).

In Fig. 5b, we plot the total relative traffic volume, ∆̃, for simulations, determined along the Pareto fronts in Fig. 3c,
against corresponding service quality, Q. The traffic volume for uni-modal (shuttles-only) scenarios is plotted with
black symbols. We observe that the relative traffic volume for uni-modal scenarios decreases with demand due to
increased pooling efficiency, η (see Fig. 2c). The relative traffic volume for uni-modal (shuttles only) scenario for 1%
use case is not significantly less than that of MIV because of low pooling efficiency, η (see Fig. 2c). The uni-modal
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traffic volume for the 10% use case is around 60% of MIV traffic. This suggests that the relative uni-modal traffic
volume can be further reduced if more people adopt ride pooling.

Bi-modal public transportation allows for further reduction in relative traffic volume Below the uni-modal scenario,
albeit, at a lower service quality. The bi-modal traffic can go as low as 15% for 10% user adoption.

D. Discussion

Our investigation had two primary goals. First to study the feasibility of bi-modal demand-responsive public
transportation in Berlin and Brandenburg with the existing rail network. Second, to study the impact of user
adoption of public transit on the overall performance of bi-modal demand-responsive public transportation in Berlin
and Brandenburg.

Our study suggests that bi-modal demand-responsive transportation can be deployed in Berlin and Brandenburg
with the existing rail network of public transportation. We find that the overall performance of bi-modal transportation
improves with higher user adoption. While 10% user adoption can significantly reduce emissions and vehicular traffic,
it is not advisable to deploy bi-modal transit with existing rail network and train schedules if the user adoption is 1%.
This suggests that the overall performance of the bi-modal transit can be further improved by devising strategies to
attract users towards bi-modal transportation.
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