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Abstract

In this thesis, we define the fundamental quandle of knotoids and
linkoids and prove that it is invariant under the under forbidden-move
and hence encodes only the information of the underclosure of the kno-
toid.
We then introduce n-pointed quandles, which generalize quandles by spec-
ifying n elements as ordered basepoints. This leads to the notion of fun-
damental pointed quandles of linkoids, which enhances the fundamental
quandle. Using 2-pointed quandle allows us to distinguish 1-linkoids with
equivalent under-closures and leads to a couple of 1-linkoid invariants. In
particular we study implications on the 2-cocyle invariant. We then de-
fine n-pointed biquandles in a similar way to use biquandle colorings to
distinguish 1-linkoids.
We also generalize the notion of homogeneity of quandles to n-homogeneity
of quandles. We classify all ∞-homogeneous, finite quandles.
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1 Introduction
Knotoids were introduced by Turaev in 2010 [Tur10]. Knotoids can be under-
stood as knot diagrams with distinct open endpoints which cannot be moved
over or under other strands in the diagram. Since then, a lot of research on
knotoids was done, as for example in [GK17], [Mol22] or [BBHL19]. Similarly,
Turaev introduced 1-linkoids (under the name multi-knotoids) as knotoids with
additional closed components.
This was generalized in [GG22] to linkoids (under the name of multi-linkoids),
which are a union of multiple open and closed components.

(a) A 1-linkoid with two components (b) a knotoid

Because knots, and hence linkoids as well, are very hard to distinguish in
general, multiple approaches for invariants were developed to discriminate be-
tween different knots. One important approach is to color each arc in a diagram.
This leads to the algebraic structure called quandles, which is designed to have
exactly the properties we need to color a knot diagram with so that it only
depends on the knot and not the diagram. Quandles where introduced indepen-
dently by Joyce in [Joy82] and Matveev in [Mat84] (under the name distributive
groupoids). Both proved that quandles can distinguish all knots up to mirror
image with reversed orientation. On the other hand, this means that quandles
are as complex as knots themselves.

Since then, a lot on research of quandles was done. Some research on the al-
gebraic structure can be found for example in [EMRL10], [Nel02] and [BLRY10].
Research regarding methods to distinguish different knots and links using quan-
dles can be found for example in [CJK+01], [CN18] and [CESY14].

There is, however, only very little research explicitly on studying knotoids
and linkoids using quandles. Especially the notion of the fundamental quandle
of a linkoid as a direct generalization of the fundamental quandle of a link is
not studied yet. There is some research on coloring 1-tangles with quandles, for
example in [CSV16] and [CDS16, Chapter 3]. These can be understood as knot-
type knotoids, which means knotoids with both endpoints in the same region.
There are also approaches to transfer shadow quandle colorings to knotoids, for
example in [Caz22]. Biquandle colorings of knotoids, a generalization of quandle
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colorings were studied in [GN18].

In this thesis we define the fundamental quandle of a linkoid and study its
basic properties. We show that the fundamental quandle is invariant under
moving an endpoint under another arc. This is called an under forbidden move.
It is named forbidden, because it can change the linkoid to a non-equivalent one.
To detect this move, we then introduce a new generalization of quandles, called
n-pointed quandles. These are quandles with n ordered basepoints. With these
basepoints, we can fix the color of the endpoints in a linkoid. This leads to the
new concept of a fundamental pointed quandle of a linkoid. In section 3.4, we
provide classes of knotoids that cannot be distinguished using regular quandles
but can be distinguished using pointed quandles.

A quandle X is homogeneous if the group of quandle automorphisms Aut(X)
of the quandle act transitively on it. With our new definition of n-pointed quan-
dles, we introduce the notion of quandles being n-homogeneous, which means
that all pointed quandles, with the same underlying quandle, are isomorphic
whenever „possible“. In Theorem 4.25, we classify all finite quandles that are
k-homomgeneous, where k = |X| is the cardinality of the quandle.

A cohomology theory for quandles was introduced in [CJK+01]. This leads
to the 2-cocycle invariant for links. This uses a 2-cocycle to give weights to the
crossings in a link diagram. Then one sums the weighted colorings to compute
the 2-cocycle invariant. We define the 2-cocycle invariant for linkoids and show
that is does on the explicit cocycle, instead of its cohomology class as it is the
case for links. We then use the structure of pointed quandles to introduce an
enhancement the 2-cocyclce invariant for linkoids.

Finally, in Section 6 we review biquandles and introduce pointed biquandles,
similar to pointed quandles. This way, we can distinguish linkoids that cannot
be distinguished using biquandle colorings or pointed quandle colorings.

2 Fundamental notions of knots and linkoids
In this section, we study knotoids and linkoids. We will begin with the definition
of a linkoid and see knotoids as a special case of linkoids.

Definition 2.1. An (oriented) linkoid diagram in S2 is a generic immersion of a
finite number of unit intervals [0, 1] and unit circles S1 into S2 with finitely many
transverse double points. Each such double point is endowed with over/under-
crossing data.

We call a component open, if it is the image of [0, 1] and closed if it is the
image of S1. Every component has an orientation, where [0, 1] is oriented from
0 to 1. There are two types of crossings with respect to the orientation, called
positive and negative crossing as specified in Figure 2 below.
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(a) Positive crossing (b) negative crossing

Figure 2

In an open component, we call the image of 0 the leg (or tail), and the image
of 1 the head of the component.

Remark 2.2. Linkoids can in general be defined as generic immersions into
any orientable surface. We will only consider spherical linkoids in this thesis.
More general surfaces lead to the notion of virtual knot(oid) and link(oid) dia-
grams. These were first introduced in [Kau98] and further studied for instance
in [GK17], [KR01] or [FJSK04].

Definition 2.3. Two linkoid diagrams are equivalent, if one can be moved
into the other by a finite sequence of local oriented Reidemeister moves R0 -
R3 depicted in Figure 3. These moves happen away from the endpoints and
cannot move endpoints over or under a strand. The equivalence classes of these
diagrams are called linkoids.

(a) R0-move (b) R1-move (c) R2-move

(d) R3-move (e) S-move

Figure 3: Reidemeister moves (a) - (d) and the spherical move (e)

Remark 2.4. In Figure 3 above unoriented Reidemeister moves are depicted.
That means the orientation of the strands is not taken into account. If we choose
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an orientation for each strand in the diagram, there are four oriented versions of
R1, four of R2, and eight types of R3. As shown in [Pol10, Thm 1.1], all eight R1
and R2 moves together with the R3 move with only positive crossings generate
all oriented Reidemeister moves. This set of generating moves is not minimal.
A minimal generating set of oriented Reidemeister moves has five elements by
[Pol10, Thm 1.2]

Because we consider diagrams in S2, the equivalence class doesn’t change
under the so-called spherical move (S-move) as shown in Figure 3e. It is simply
a planar isotopy (R0-move) where we pull the strand around the S2. Note that
if a linkoid is a link, we can pull the strand over every crossing using a sequence
of R2 and R3 moves, instead of pulling it around the “back” of S2. So there is
a one to one correspondence for equivalence classes of link diagrams in R2 and
in S2. However, this is in general not true once the diagram has at least one
open component, because we cannot pull an arc over the endpoints in this case.

Because pulling an endpoint over or under an adjacent strand can potentially
change the linkoid, these moves as depicted in Figure 4 are called the forbidden
moves Ω+ and Ω−.

Figure 4: The over and under forbidden under

In the context of this thesis we find it useful to introduce the notation of an
n-linkoid.

Definition 2.5. A (non-empty) linkoid with n open components (and any num-
ber of closed components) is also called an n-linkoid. In particular a

• 0-linkoid is called a link.

• 0-linkoid with only one component is called a knot.

• 1-linkoid with no closed component is called a knotoid.

• linkoid with no closed components is called a full linkoid.

Remark 2.6. In Turaev’s paper [Tur10], a 1-linkoid is called a multi-knotoid.
A full linkoid is called a linkoid in [GG22].

A linkoid that is equivalent to a linkoid with zero crossings is called trivial.
The trivial knot is called the unknot.
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There is an operation to combine two knots K and K ′ into one single knot
K#K ′. This is called the connected sum. We do this by cutting open both
knots and connecting the open ends such that in matches the orientation.

A knot that can not be written as a sum of two non-trivial knots is called
prime.

The above definition of a knot (or link) is exactly definition of an equivalent
class of knot diagrams as we know it from usual knot theory. That is, we can
also view (tame) knots as simple closed curves in three-dimensional space. Here
two knots are equivalent, if they are ambient isotopic. That is, two knots K0 and
K1 are equivalent if there exists a continuous map H : R3× [0, 1] → R3 such that
H(K0, 0) = K0, and H(K0, 1) = K1 and H(x, t) is injective for every t ∈ [0, 1].
We can think of this as moving the knot around in space without tearing the
knot or the surrounding space apart. Reidemeister [Rei27] and Alexander and
Briggs [AB26] showed independently that these both definitions give the same
classes of knots. We mostly work with the diagrammatic point of view, because
it is a bit more complicated to describe the corresponding three-dimensional
representation for linkoids.

Remark 2.7. In [Tur10] it is shown that a knotoid is in one-to-one correspon-
dence to so-called simple theta-graphs. These are embeddings of a graph with
two vertices and three edges between them into three-space. So the graph looks
a bit like the symbol Θ. The term simple means that if we remove the middle
edge, the graph is homotopic to S1.

We can think of this correspondence as considering the diagram close to the
horizontal plane in 3D and the endpoints of a knotoid diagram as vertices. We
then add edges connecting both endpoints. One “over” the diagram and one
“under” the diagram. See Figure 5 for a diagram of the theta graph correspond-
ing to the knotoid in Figure 1b.

For linkoids in S2 there is a similar representation in three-space that was
introduced and studied in [GG22]. There, every component has such a closing
edge over and under the diagram. However, there are two extra vertices, one
over and one under the diagram, where all the closing edges meet on the cor-
responding side of the diagram. We will not use these concepts here, but they
might be helpful to keep in mind for a better intuition.
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Figure 5: The theta graph of the knotoid shown in Figure 1b

A linkoid diagram divides S2 into regions, the areas between the arcs.
A knotoid K with both endpoints in the same region is called a knot-type

knotoid. We call a 1-linkoid L with both endpoints in the same region a link-type
1-linkoid.

There are some transformations that look similar to the forbidden moves Ω+

or Ω−, but can be obtained by a sequence of Reidemeister or spherical moves.
For example on a given link-type 1-linkoid diagram, we can pull both endpoints
under (or over) an adjacent strand simultaneously as in Figure 6. This move
can be obtained by pulling the strand to the outside region of the diagram using
R2 and R3 moves, then using the S-move to pull the strand around the S2 and
finally using again R2 and R3 moves to pull the strand back to the region with
the endpoints. We call this move under (or over) fake forbidden move and de-
note it by F− (or F+). Note that such a move does not exist for n-linkoids with
n ≥ 2, because then there are more endpoints, which we cannot pull strands
over (or under).

Figure 6: The under fake forbidden move F−

Given a 1-linkoid L, we can obtain a link as follows. Choose an in S2 from
the head to the leg of L that intersects L only transversely at a finite set of
points. We call this arc a shortcut of the 1-linkoid. If this arc goes under every
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strand of L, the resulting link L− := L ∪ a is called the under closure of L. If
it goes over every strand of L it is called the over closure of M and denoted by
L+.
We say the 1-linkoid L represents the link L−. If L is a link-type linkoid then
L− = L+ and we say L is of type L−.

Lemma 2.8. Two 1-linkoids L and L′ represent the same link, if they can
be transformed into each other by a finite sequence of Reidemeister moves and
under forbidden moves Ω−.

Proof. We will transform the link L− to the link L′
− using the moves of given

sequence of moves. Every R-move on L can be performed on L− as well, since
the shortcut of L crosses under every arc. This might need some extra R2 or R3
moves to pass over the shortcut. For the forbidden moves we move the „endpoint
position“ of the link along the arc. This does not change the diagram. This way
we end up with a diagram of L′

− as L combined with its shortcut.

Proposition 2.9. Any two knot-type knotoids of the same type are equivalent.

Proof. Let K and K ′ be two knot-type knotoids of the same type. So their
closures are related by a finite sequence of R-moves. We will perform these
moves on K. Whenever we need to move an arc under or over the endpoints we
perform a fake forbidden move F− or F+. The resulting diagram looks equal to
K ′ but can have the endpoints in a different region. We can again use F− or F+

moves to pull both endpoints along the diagram. This transforms the knotoid
K to K ′.

On the other hand, given a knot, we can obtain a knotoid removing an arc
which is disjoint from any crossing. If we choose different arcs in the diagram,
we might get different knotoid diagrams. With the observation in Proposition
2.9 we see that all of these diagrams are equivalent.

This proves the following.

Corollary 2.10. There is a one-to-one correspondence between knots and knot-
type knotoids.

Because we can transform any knotoid into a knot-type knotoid using un-
der forbidden moves, Corollary 2.10 together with Lemma 2.8 proves the next
corollary.

Corollary 2.11. Two knotoids represent the same knot if and only if they can
be transformed into each other by a finite sequence of Reidemeister moves and
under forbidden moves Ω−.

This is not true for links and 1-linkoids because we can choose any component
to open the link, therefore the resulting 1-linkoids can be non-equivalent.
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3 A review on quandles
3.1 Basic quandle definitions
In this section we learn about quandles, see some instructive examples and define
properties of quandles we need later.

Definition 3.1. A quandle is a set (X, .) equipped with an operation . : X ×
X → X such that

(1) x . x = x for all x ∈ X. (idempotent)

(2) For any y ∈ X, the map βy : X → X defined as βy(x) = x . y is bijective.
(right invertible)

(3) (x . y) . z = (x . z) . (y . z) for all x, y, z ∈ X (right self-distributive).

We often only write X for the quandle (X, .), if the structure is clear. We
write x .−1 y := β−1

y (x) and see immediately

(x . y) .−1 y = x = (x .−1 y) . y

for all x, y ∈ X. We think of x . y as y “acting” on x. For x . y we read it
as “x quandle y” or “we quandle x with y”. A quandle is in general neither
commutative nor associative. This means it is important to write parentheses.

Remark 3.2. Different authors use different conventions for the quandle oper-
ation. Most texts related to knot theory use . as the operation symbol. Texts
with a more algebraic focus often use ∗ as operation symbol.

A particular kind of quandles is a so-called kei. It is mainly used for unori-
ented links.

Definition 3.3. A quandle X with β−1
y = βy for all y ∈ X is called a kei.

Next, let us provide a few explicit examples.

Example 3.4.

• Let X be any set and x . y = x for all x ∈ X. This defines a quandle
structure. It is called the trivial quandle. If |X| = n is finite, it is denoted
by Tn. In particular a trivial quandle can have any number of elements,
unlike for example the trivial group, which has only one element.

• For any group G we can define a quandle structure on G using conjugation:
g . h := hngh−n. Here g .−1 h = h−nghn. This is called the n-conjugation
quandle and denoted by Conjn(G) or Conj(G) if n = 1. Note that if G
is abelian, this is again a trivial quandle.

9



• Now let n ∈ N and X = Z/nZ or X = Z. We can define a quandle
structure on X by x . y := 2y − x(mod n). To see that this is indeed a
quandle we check the first quandle axiom. We see x . x = 2x = x = x for
all x. Next we want to find the inverse map to βy. Note that

βy ◦ βy(x) = βy(2y − x) = 2y − (2y − x) = x

for all x, y ∈ X. So β−1
y = βy. To check the third quandle axiom we

compute

(x . y) . z = 2z − (2y − x) = 2(2z − y)− (2z − x) = (x . z) . (y . z).

This quandle is called the dihedral quandle and denoted as Rn. In partic-
ular, it is a kei.

For (small) finite quandles it is convenient to write them down as operation
tables. For example the dihedral quandle R4 is given by

. 0 1 2 3
0 0 2 0 2
1 3 1 3 1
2 2 0 2 0
3 1 3 1 3

Definition 3.5. A quandle homomorphism between two quandles (X, .X) and
(Y, .Y ) is a map f : X → Y such that

f(x1 .X x2) = f(x1) .Y f(x2).

We denote the category of quandles by Qnd. A bijective quandle homomorphism
is called an isomorphism.

For example if X = Z and x . y = 2y − x and a ∈ Z. Then the maps
f : x 7→ ax and g : x 7→ x+ a are both quandle homomorphisms. We see that f
is only bijective for a = ±1 while g is bijective, giving us examples of automor-
phisms. We denote the group of automorphisms of a quandle X by Aut(X).

Another example for an automorphism is the maps βy for y ∈ X. The
fact that these maps are indeed quandle homomorphisms follows from the third
quandle axiom:

βy(x1 . x2) = (x1 . x2) . y = (x1 . y) . (x2 . y) = βy(x1) . βy(x2).

The subgroup of Aut(X) generated by these maps is called the group of inner
automorphisms and denoted by Inn(X).

Definition 3.6. A quandle X is faithful, if the map x 7→ βx is injective.

For example R4 is not faithful, because in the operation table above, the
zeroth and second column are identical, hence β0 = β2.
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Definition 3.7. The algebraic components of a quandle Q are the orbits under
action of the inner automorphism group Inn(Q).

Definition 3.8. A quandle X is connected, if it has only one component. So
for each x, y ∈ X there are x1, . . . , xn ∈ X and ε1, . . . , εn ∈ {−1, 1}such that

(. . . ((x .ε1 x1) .
ε2 x2) . . .) .

εn xn = y.

Definition 3.9. A quandle X is homogeneous, if Aut(X) acts transitively on
X. So for each x, y ∈ X there is an f ∈ Aut(X) with f(x) = y.

Any connected quandle is homogeneous, but the converse is not true. For
example any trivial quandle T is homogeneous, because every permutation is
an automorphism. But it is not connected for |T | > 1.

Recall the conjugate quandle Conj(G) in Example 3.4 for a given group
G. This is indeed a functor Conj : Grp → Qnd. To see that any group
homomorphism f : G → H respects the quandle structures, we compute for
x, y ∈ Conj(G)

f(x . y) = f(y−1xy) = f(y)−1f(x)f(y) = f(x) . f(y) ∈ Conj(H).

This functor has a left adjoint functor, which was also introduced in [Joy82,
Chapter 6].

Definition 3.10. Let X be a quandle. Then the associated group As(X) is
defined as

As(X) = 〈ex, x ∈ X|e−1
y exey = ex.y, x, y ∈ X〉.

This group is sometimes called “conjugate group” ([Win11]) or “enveloping
group” ([Car10]). For a quandle homomorphism f : X → Y let As(f) : As(X) →
As(Y ) be the group homomorphism defined by As(f)(ex) = ef(x) on generators.

For example if T is a trivial quandle, then As(T ) = Z|T |. In particular these
groups do not need to be finite even for finite quandles.

3.2 Combinatorial definition of the fundamental quandles
of a link

Fundamental quandles are so far mostly used to understand knots and links.
Even though Turaev suggested defining fundamental quandles for knotoids in
[Tur10], we are not aware of any resource defining it. There are papers related
to this idea, for example Cazet examines shadow quandle colorings of knotoids
in [Caz22] and Gügümcü and Nelson look at biquandle colorings of knotoids in
[GN18]. These are both generalizations or enhancements of quandle colorings.
We discuss some ideas and results of fundamental quandles of knots and links
in this section. In the next section we further look at linkoids and how quandle
colorings interact with endpoints.
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Let D be an oriented link diagram and X a finite quandle. An arc of the
diagram is a continuous strand in the diagram from one under crossing to the
next under crossing. An arc can cross over several other arcs. We can color D
with X by assigning an element of X to every arc in D, which we call color.
The coloring has to be done in a way such that at every crossing in D the colors
satisfy the crossing relation shown in Figure 7 below. Note that both relations
are equivalent if we only consider the orientation of the over-crossing arc, since
(x .−1 y) . y = x.

Figure 7: Quandle relation given on a crossing

We can always color a linkoid with only one color because the first quandle
axiom ensures that all the relations are satisfied. A coloring like this is called
trivial.

Now we examine what happens with these relations when we change the
diagram by Reidemeister moves. Assume we have a given coloring of a diagram.
We see in Figure 8a how the diagram changes under an R1-move. Because
x . x = x by the first quandle axiom, the outgoing arcs on the left and right
have the same label. So adding a kink gives a unique coloring that is consistent
with the rest of the coloring.

If we change the diagram by an R2-move as in Figure 8b, the outgoing arcs
on the left and right have the same label assigned to them as the corresponding
arc after the R2-move, because (x . y) .−1 y = x by the second quandle axiom.
Because the coloring on the right side is completely determined by x and y,
there is again a one-to-one correspondence between colorings before and after
the R2-move.

Similarly, if we change the diagram by the R3-move as in Figure 8c, the
outgoing arcs have the same label before and after the move. This is due to the
third quandle axiom (x . y) . z = (x . z) . (y . z).

This shows that if we have two equivalent diagrams D and D′, every coloring
of D gives a unique coloring of D′, because we can turn them into each other by
a finite sequence of Reidemeister moves. So the above described coloring only
depends on the link and not on the diagram we chose.
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(a) R1-move (b) R2-move

(c) R3-move

Figure 8: Quandle relations on Reidemeister moves

With this in mind we now define the fundamental quandle of a linkoid,
sometimes also called the knot/link quandle

Definition 3.11 ([Joy82, Chp. 15], [Mat84]). Let L be an oriented link diagram
and A(L) the set of arcs in the diagram. Then the fundamental quandle of L is
defined as

Q(L) := Q〈x ∈ A(L) | rτ for all crossings τ〉,

where the quandle consists of words in A(L) modulo the quandle axiom relations
and the relations rτ given by each crossing τ as in Figure 7.

Theorem 3.12. The fundamental quandle is an invariant for links in the sense
that it is invariant under Reidemeister moves.

Our observation above illustrates the proof of this Theorem. For a complete
proof with all variants of oriented Reidemeister moves see for example [Joy82,
Thm 15.1].

Example 3.13. Let L be the unlink with n components. Then Q(L) =
Q〈a1, . . . , an〉 is the free quandle with n generators. In particular if L is the
unknot then Q(L) = T1, the trivial quandle with one element.

Example 3.14. Let X be the trefoil knot 31 as in Figure 9. Its fundamental
quandle has three generators (since there are three arcs) and three relations, one
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Figure 9: The trefoil knot 31

for each crossing. Namely, a = b . c, b = c . a and c = a . b. So the fundamental
quandle is

Q(31) = Q〈a, b, c|b = c . a, a = b . c, c = a . b〉

The presentation of this quandle is not unique. For example, we can replace c
by a . b in every relation and get the isomorphic presentation

Q〈a, b|a = b . (a . b), b = a . (b . a)〉 ∼= Q〈a, b|a = (b . a) . b, b = (a . b) . a〉

where the second isomorphism uses the first and third quandle axiom, so b. (a.
b) = (b . b) . (a . b) = (a . b) . b. This quandle is infinite, because for example
((a . b) . b . . .) . b ∈ Q(31) cannot be simplified further. This turns out to be
true for nearly all links.

Theorem 3.15 ([CHMS19, Prop. 2]). The fundamental quandle Q(L) of an
oriented link L is finite if and only if L is either the unknot or the Hopf link.

Lemma 3.16 ([FR92]). Let L be a link. There is a one-to-one correspondence
between components of L and algebraic components of Q(L).

We will see a proof of this in Lemma 3.22 since links are 0-linkoids, so a
special case of linkoids.

With the notion of the fundamental quandle we can understand the coloring
of a link L with a quandle X as a quandle homomorphism ϕ : Q(L) → X which
is defined by mapping the generators of Q(L) to the color the corresponding
arc is colored with. With this understanding, we can now give the following
definition.

Definition 3.17. The space of all such homomorphisms Qnd(Q(L), X) is called
the coloring space. The number of colorings for a given finite quandle X is called
the quandle counting invariant with respect to X, which we denote as

ΦZ
X(L) := |Qnd(Q(L), X)|.

Because we can always color the link trivially, we see immediately ΦZ
X(L) ≥

|X|.
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Example 3.18. We compute the quandle counting invariant ΦZ
R3

(31) for the
trefoil with the dihedral quandle R3 = {0, 1, 2} with x . y = 2y − x (mod 3).
Therefore, we write

Q(31) = Q〈a, b|a = (b . a) . b, b = (a . b) . a〉

as before. If we examine the relations in R3 we get (b . a) . b = 2b − (b . a) =
2b − (2a − b) = 3b − 2a ≡ a(mod 3). So these relations are always satisfied.
Hence, we can choose any color for a and b. In particular ΦZ

R3
(31) = 3 · 3 = 9.

Now, to compute ΦZ
R4

(31), we again look at

(b . a) . b = 2b− (2a− b) = 3b− 2a ≡ 2a− b(mod 4) = b . a.

The relation in Q(31)becomes a = (b . a) . b = b . a. In the same way, we
compute b = a . b. Combining these two gives a = b . a = (a . b) . a = b. This
means, we can color the trefoil only trivially with R4 and hence, ΦZ

R3
(31) = 4.

3.3 Geometric definition of the fundamental quandle of a
link

So far we have considered fundamental quandles as a structure defined on the
diagram of a linkoid. For links, there is also a geometric definition that gives an
equivalent definition for the fundamental quandle. It was introduced together
with the notion of quandles in [Joy82] and [Mat84]. We follow the approach
as in [EN15, Chapter 4]. For a more detailed and in depths description see for
instance [Win11, Section 3.3]. For the proof that these quandle definitions are
indeed isomorphic see [Joy82] or [Mat84].

We define the fundamental quandle as homotopy classes of paths in S3. Let
K be a thickened knot in S3. Then the boundary of S3\K looks like a (knotted)
torus. Now choose a basepoint ∗ in the interior of S3 \K. We consider paths
x : [0, 1] → S3 \K from the basepoint ∗ to the boundary of S3 \K, that is to
the knot K, as depicted in Figure 10.

Figure 10: Path x from the basepoint to K
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In this context, a homotopy Ht between two paths x and y has to be such
that Ht(0) = ∗ for all t and Ht(1) ∈ ∂(S3\K) for all t, staying on the boundary.
Note that the endpoint of the path can be moved around the boundary during
the homotopy.

Now for any point p ∈ ∂(S3 \ K) we define the meridian mp at p as the
circle around K which links with the (non-thickened) knot once. With this we
can define a quandle operation for paths x and y by x . y := ym−1

y y−1x. So we
first walk the path y, then around the knot at the endpoint of y, back to the
basepoint and finally walk x. This gives the path to x . y in Figure 11 via the
homotopy that drags the endpoint along the undergoing arc.

Figure 11: The path x . y = ym−1
y y−1x

With this construction Joyce and Matveev independently showed the follow-
ing theorem.

Theorem 3.19 ( [Joy82] and [Mat84]). Let K and K ′ be two tame knots. Then
Q(K) ∼= Q(K ′) if and only if K and K ′ are weakly equivalent.

For a given oriented link L we define the reversed link r(L) as L with reversed
orientation of every component and the mirror link m(L) where we change ev-
ery over crossing to an under crossing and vice versa. We write rm(L) for the
reversed mirror of L.
We call two links L and L′ weakly equivalent if either L ∼ L′ or L ∼ rm(L′).

The fact that Q(K) ∼= Q(rm(K)) is easily seen from the diagrammatic def-
inition. If we change the orientation and the type of a given crossing (and flip
the labels), then we get the exact same relation for each crossing and hence the
same presentation for the quandles.

The theorem above means that the fundamental quandle is, in a way, the
algebraic version of the knot. It should be possible to derive all knot invariants
from the fundamental quandle.

For example can we get the knot group π1(S
3 \K) as the associated group

As(Q(K)) of the fundamental quandle of a knot (or link). To see this, note
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that the definition of the associated group and the relations in the fundamental
quandle directly give the Wirtinger presentation of the knot group (see [Joy82]).

We know that the knot group can distinguish prime knots, but it can fail
to distinguish composite knots. For example the square knot and granny knot
in Figure 12 have isomorphic knot groups, but non-isomorphic fundamental
quandles. This is the case because loops around the connecting arcs (here the
two horizontal arcs in the middle) are homotopic by pulling them over one
component of the knot. However, these arcs generally have different labels in
the fundamental quandle.

Figure 12: The square knot (left) and granny knot (right)

3.4 The fundamental quandle of a linkoid
In this section we generalize fundamental quandles to linkoids and examine how
the fundamental quandle behaves with endpoints and on knotoids.

Definition 3.20. Let L be an oriented linkoid diagram and A(L) the set of
arcs in the diagram. Then the fundamental quandle of L is defined as

Q(L) := Q〈x ∈ A(L) | rτ for all crossings τ〉,

where the quandle consists of words in A(L) modulo the quandle axiom relations
and the relations given by each crossing as in Figure 7.

Theorem 3.21. The fundamental quandle is invariant for linkoids.

Proof. Two equivalent diagrams can be transformed into each other with a finite
sequence of Reidemeister moves. Because changing a diagram by a Reidemeister
move gives an isomorphic fundamental quandle, the fundamental quandle does
only depend on the linkoid and not on the diagram.

Lemma 3.22. Let L be a linkoid. There is a one-to-one correspondence between
components of L and algebraic components of Q(L).

Proof. Let a, b be labels of arcs in L. Assume a and b lie in the same component
of L, then we can ”walk” through the diagram from a to b. At each crossing
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where we go under an arc, we need to quandle with the label of the over-crossing
arc ci, where i counts the times we pass a crossing this way. This corresponds
to the inner isomorphism βci . After completing the walk from a to b we get a
morphism f = βcn ◦ · · · ◦ βc1 ∈ Inn(Q(L)) with f(a) = b.

Now let a and b be two labels of arcs in L and assume there is a series of
generators of Q(L) such that ((((a . c1) . c2) . . . . ) . cn) = b. For every crossing
relation x = y . z the arcs with label x and y lie in the same component of the
linkoid and the quandle axioms do not change the element input of the inner
homomorphisms, therefore a and b lie in the same component of L.

This proves that there is a one-to-one correspondence between components
of L and algebraic components of Q(L).

The main difference between links and linkoids with open components are
the endpoints. We will now see what happens at or with the endpoints in the
fundamental quandle.

Lemma 3.23. The fundamental quandle of a linkoid is invariant under the
forbidden move Ω−.

Figure 13: The under forbidden move with labeled arcs

Proof. Let L and L′ be two linkoids that differ only by one forbidden under move
Ω−. So the presentation of the fundamental quandle of one linkoid, let’s say
Q(L), has one extra generator c and one extra relation a .ε b = c as depicted in
figure 13. Here ε = ±1 is the sign of the crossing that got added by the Ω−-move.
Note that c appears in no other relation in the presentation of Q(L). This means
the map ϕ : Q(L) → Q(L′) defined by ϕ(x) = x for all generators x 6= c ∈ Q(L)
and ϕ(c) = a .ε b (and extended to the quandle) satisfies all relations in Q(L′)
(because the relations in both quandles are the same). Hence, ϕ is a quandle
homomorphism. Now ϕ has the inverse map given by ϕ−1(x) = x ∈ Q(L), so it
is an isomorphism. This shows Q(L) ∼= Q(L′).

Together with Corollary 2.11 the following Corollary follows.

Corollary 3.24. If two knotoids K and K ′ represent the same knot, then
Q(K) ∼= Q(K ′).
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This means that when we consider a coloring as a map in Qnd(Q(K), X)
for some finite quandle X, the coloring does not depend on the specific knotoid
we choose to color, but only on the knot it represents. We will enhance the
fundamental quandle for linkoids in Section 4 in a way that it can track the
color of end-arcs.

On the other hand, Corollary 3.24 means we can study knotoids to under-
stand fundamental quandles of knot-type knotoids (and vice versa), which only
differ by one relation from knot quandles. But a knotoid can potentially have
fewer crossings and arcs, hence the quandle has fewer generators and relations.
Specifically for computational purposes, this can be very helpful.

We will now examine how the quandle of a knotoid corresponds to the quan-
dle of the knot it represents.

First, let K be a knot-type knotoid representing the knot K−. Let’s denote
the labels of the arcs connected to the leg and head of K by l and h ∈ Q(K).
The presentation of the fundamental quandle of K and K− only differs by the
extra relation l = h in Q(K−) (because both end-arcs are connected). So we
can write Q(K−) ∼= Q(K) / (l = h) where the quotient is defined by adding the
new relation to the quandle.
In particular if l = h ∈ Q(K−) then Q(K) ∼= Q(K−). However, this is generally
not the case.

Lemma 3.25. Let K− be a knot that is not equivalent to its reversed mirror
rm(K−) and let K be a knot-type knotoid representing K−. Denote the labels
corresponding to the end arcs in Q(K) by l and h. Then l 6= h ∈ Q(K).

Remark 3.26. When we talk about the mirror knotoid or mirror linkoid of a
knotoid or linkoid, we have to be careful. There are two variants of mirroring a
knotoid. We can either change the sign of every crossing (imagine holding the
mirror behind the linkoid), or by reflecting it on an axis in the plane, outside the
diagram. For links both of these are equivalent by turning the link around 180°
in three-dimensional space. However, we are not allowed to do this for linkoids,
due to the endpoints. Here, m(L) refers to the second concept of a mirror image.
By rm(L) we denote this mirror linkoid with reversed orientation.

Proof of Lemma 3.25. By Theorem 3.19 we know Q(K) ∼= Q(rm(K)). The
knot K− can be written as K ∪ α for some arc α. Now we take the connected
sum of K and K or K and rm(K) along this arc α connecting the endpoints.
The composite knots K−#K− and K−#rm(K−) can be seen as two copies of
K (or of K and rm(K)) connected on the endpoints, one time head to leg and
one time head to head (and reversed orientation). See Figure 14 below. So by
assumption rm(K−#K−) 6∼ K−#K− 6∼ K−#rm(K−).

We will examine the fundamental quandles of the composite knots K−#K−

19



Figure 14: The knot K−#rm(K−) as sum of K and rm(K)

and K−#rm(K−). Therefore, let

Q(K) = Q〈l, h, xi|rj〉

be the presentation of Q(K) given by the diagram of K, where l and h are the
leg and head of K. The generators and relations of K−#K− are given by

Q(K−#K−) = Q〈l, h, xi, l′, h′, xi, x′i|rj , r′j , l = l′, h = h′〉

where l, h, xi and ri are coming from the left and l′, h′, x′i and r′j right side of
the composite knot. Similarly,

Q(K−#rm(K−)) = Q〈l, h, xi, l′, h′, xi, x′i|rj , r′j , l = h′, h = l′〉.

Now assume l = h ∈ Q(K). Then Q(K#K) ∼= Q(K#rm(K)) which contradicts
the assumption that K and rm(K) are not equivalent by using Theorem 3.19.

In particular Q(K) 6∼= Q(K−) in the situation of the lemma above. Together
with Corollary 3.24 we see

Corollary 3.27. Let K− be a knot that is not equivalent to its reversed mirror
rm(K−) and let K be a knotoid that represents K−. Then Q(K) 6∼= Q(K−).

Let K be a knotoid that represents the trivial knot. Then we see immediately
that Q(K) ∼= T1 ∼= Q(K−). So some condition on K or is necessary for the above
corollary. Maybe a more precise condition can be found in future work.

Remark 3.28. Recall that knot quandles can be defined as homotopy classes of
paths from a chosen basepoint to the knot (or to a tubular neighborhood of the
knot) as described in Section 3.3. In this setting the expression x . y means to
first walk a loop around the arc corresponding to y and then walk (the path to) x.

If we now consider the knot K−#K− ∈ S3, we see that the loop around
the arcs l and h are homotopic by simply dragging the loop around one of the
component knots. This, in fact, does not depend on K− at all. For any knot-
type knotoid, the loops around the end-arcs (at least if we consider the knotoid
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as part of a composite knot, so we have a three-dimensional representation of
it) are homotopic. So we could assume βa = βb.
Now this argument does not work, because our three-dimensional representation
of a knotoid as summarized in Remark 2.7 does not give us a geometric quandle
definition that coincides with the combinatorial one.

Nevertheless, the intuition in the remark above proves to lead to the correct
statement.

Lemma 3.29. Let L be a link-type 1-linkoid and denote the labels corresponding
to the end-arcs in Q(L) by l and h. Then βl = βh. In particular Q(L) is not
faithful.

The proof can be found in [Nos11, Lemma 5.6] and uses shadow quandle
colorings of 1-tangles. Shadow quandle coloring means we do not only color the
arcs of the diagram but also the regions around the diagram.

Corollary 3.30. Let L be a link-type 1-linkoid, X a faithful quandle and f ∈
Qnd(Q(L), X) any coloring. Then f(l) = f(h) where l and h ∈ Q(L) denote
the end-arc labels.

Remark 3.31. Let L be a link-type 1-linkoid. If for a given quandle X, every
coloring assigns the same color to both end-arcs, the pair (L,X) is called end
monochromatic. By the corollary above this is always the case if X is faithful.
But there are also end monochromatic pairs with non-faithful quandles. This
is studied for example in [CSV16] and [CDS16] to better understand quandle
colorings of composite knots.

4 Pointed quandles
In this section we introduce pointed quandles. These are quandles with marked
points which we call basepoints. This way we are able to remember the labels
of the endpoints. This lets us detect the under forbidden move on linkoids.

4.1 Introduction of n-pointed quandles
Definition 4.1. An n-pointed quandle (X,x1, . . . , xn) is an ordered tuple con-
sisting of a quandle X together with n (ordered) elements x1, . . . , xn of X. We
call x1, . . . , xn the basepoints of the pointed quandle.

Note that a 0-pointed quandle is again a quandle.

Definition 4.2. A homomorphism between two n-pointed quandles

ϕ : (X,x1, . . . , xn)to(Y, y1, . . . , yn)

is a quandle homomorphism ϕ : X → Y such that ϕ(xi) = (yi) for i = 1, . . . , n.
We denote the category of n-pointed quandles by PQndn.
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There is a forgetful functor Un : PQndn → Qnd mapping (X,x1, . . . , xn) to
X, forgetting the basepoints. The set of all n-pointed quandles with underlying
quandle X is denoted by U−1

n (X).
For readability, we denote pointed quandles by calligraphic letters, for ex-

ample X = (X,x1, . . . , xn).

Remark 4.3. For a given pointed quandle X = (X,x1, . . . , xn) every (un-
pointed) quandle homomorphism (ϕ : X → Y ) ∈ Qnd(X,Y ) gives a pointed
quandle homomorphism X → (Y, ϕ(x1), . . . , ϕ(xn)). We write

ϕ(X ) := (Y, ϕ(x1), . . . , ϕ(xn)).

The map ϕ : X → Y is a quandle isomorphism if and only if ϕ : X → ϕ(X ) is a
pointed quandle isomorphism.

Definition 4.4. An ordered n-linkoid is an n-linkoid with a given ordering of
the open components.

Note that the ordering is invariant under Reidemeister moves.

Definition 4.5. Given an ordered n-linkoid L, we define the fundamental
pointed quandle of L as the 2n-pointed quandle P (L) := (Q(L), l1, h1, . . . , ln, hn),
where Q(L) is the fundamental quandle of L as defined in 3.11 and li and hi
are the generator corresponding to the arc attached to the leg and head of the
i-th component of L.

Theorem 4.6. The fundamental pointed quandle is invariant under Reidemeis-
ter moves and the spherical move.

Proof. This follows directly from the fact that Reidemeister moves happen away
from the endpoints. So the quandle isomorphism between the fundamental
quandle before and after a Reidemeister move maps the endpoint labels to end-
point labels, hence it is a pointed quandle isomorphism.

If L is a link (that is a 0-linkoid) then the fundamental pointed quandle is
a 0-pointed quandle which is simply a quandle. So P (L) = Q(L). In this sense
the fundamental pointed quandle is a generalization of the fundamental quandle.

We will now see an example of fundamental pointed quandle of two knotoids
that represent the same knot.

Example 4.7. Consider the knotoids K1 and K2 in Figure 15. Because both
knotoids represent the trefoil knot their fundamental quandles are isomorphic
by Proposition 3.24. We explicitly compute them as

Q(K1) ∼= Q〈a, b, c, d|b = a . c, c = b . a, d = c . b〉
∼= Q〈a, b, c|b = a . c, c = b . a〉 ∼= Q(K2).

Their fundamental n-pointed quandles are then P (K1) = (Q(K1), a, c . b) and
P (K2) = (Q(K1), a, c). To see that these are not isomorphic as pointed quan-
dles let X = ((R3), 0, 0) be a pointed dihedral quandle and consider a pointed
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(a) K1 (b) K2

Figure 15: Two knotoids representing the same knot

quandle homomorphism f : P (K1) → X . Because f maps basepoints to base-
points we know f(a) = 0 = f(c . b). Assume f(b) = 1, then f(c) = f(b . a) =
f(b) . f(a) = 1 . 2. We need to check the other relation in Q(K1): f(b) = 1 =
0 . 2 = f(a . 2). So this is a non-constant 2-pointed quandle homomorphism.

Now consider a pointed quandle homomorphism g : P (K2) → X . So g(a) =
0 = f(c). Then g(b) = g(a . c) = 0 . 0 = 0. Hence, the constant homomorphism
g(x) = 0 is the only such morphism. It follows that P (K1) 6∼= P (K2).

This shows that the fundamental pointed quandle is not invariant under
the under forbidden move and that it can potentially distinguish knotoids or
1-linkoids that represent the same knot or link.

Remark 4.8. Note that if a knotoid K represents the unknot, then Q(K) = T1
has only one element. This means its fundamental pointed quandle can only
have this element as basepoints. Hence, the fundamental pointed quandle has
the same information as the fundamental quandle in this case (which is only
very little).

Using the fundamental pointed quandle we will now see a sufficient condition
for two 1-linkoids to represent the same link.

Lemma 4.9. Let L, L′ be two link-type 1-linkoids such that P (L) ∼= P (L′) and
let L− and L′

− be the closure of L and L′, respectively. Then Q(L−) ∼= Q(L′
−).

Proof. Let ϕ : P (L) = (Q(L), l, h) → P (L′) = (Q(L′), l′, h′) be the pointed
quandle isomorphism. In particular, ϕ is a quandle isomorphism. Because
ϕ(h) = h′ and ϕ(l) = l′, also the map on the quotients

ϕ̃ : Q(L)
/
(h = l) →

Q(L′)
/
(h′ = l′)

is a quandle isomorphism. Now Q(L−) ∼= Q(L) / (h = t), which completes the
proof.

Now let L be any 1-linkoid (not necessarily link-type) representing the link
L− with fundamental pointed quandle (Q(L), l, h). Consider the link-type 1-
linkoid L∼ which is derived from L by moving the head of (the open component
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of) L to the region with the leg using forbidden under moves and denote its end-
arcs by h̃ and l ∈ Q(L) ∼= Q(L∼). Now write h̃ = f(h) where f ∈ Inn(Q(L)) is
the map we derive from the series of consecutive under forbidden moves. Then

Q(L−) ∼= Q(L∼)
/
(h̃ = l)

∼= Q(L)
/
(f(h) = l) =

Q(L)
/
rL
.

The relation f(h) = l in this setting is called the closing relation of L and
denoted by rL. Note that for link-type 1-linkoids the closing relation is simply
l = h.

Example 4.10. Consider again the knotoid K2 in Figure 15b. Its closing
relation is rK2

: a = c . b = βb(c) in Q(K2) = Q〈a, b, c|b = a . c, c = b . a〉,
because we need to move the head under the arc labeled b to move it into the
region with the leg.

With the closing relation we can now write the fundamental pointed quandle
of L∼ as (Q(L), l, f(h)). Together with Lemma 4.9 this shows the following
corollary.

Corollary 4.11. Let L and L′ be two 1-linkoids with closing relations rL : f(h) =
l and rL′ : g(h′) = l′ as above. If there exists a pointed quandle isomorphism
ϕ : (Q(L), l, f(h)) → (Q(L′), l′, g(h′)), then Q(L−) ∼= Q(L′

−).

In the case that the 1-linkoid is a knotoid, we can use theorem 3.19 to prove
the following corollary.

Corollary 4.12. Let K and K ′ be two knotoids with closing relations rK : f(h) =
l and rK′ : g(h′) = l′. If there exists a pointed quandle isomorphism

ϕ : (Q(K), l, f(h)) → (Q(K ′), l′, g(h′)),

then K− and K ′
− represent weakly equivalent knots.

4.2 Isomorphism classes of pointed quandles
For a quandle X, n ∈ N and the forgetful functor Un, we define

Pn(X) := U−1
n (X)

/
Aut(X),

the classes of pointed n-quandles with underlying quandle X under isomorphy.
Here X ∼ Y ∈ Pn(X) if they are isomorphic n-pointed quandles. By Remark
4.3 this is exactly the case if there exists ϕ ∈ Aut(X) with Y = ϕ(X ). We
denote the number of such classes by dn(X) := |Pn(X)|.

Because U−1
n (X) = {(X,x1, . . . , xn)|xi ∈ X} ∼= Xn as sets we only write

(x1, . . . , xn) instead of (X,x1, . . . , xn), if X is clear from the context.

Let us compute the isomorphism classes of quandles of some examples:
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Example 4.13.

1. Let X = R3 be the dihedral quandle {0, 1, 2} with x.y ≡ 2y−x (mod 3).
Note that the automorphism group Aut(R3) is a subgroup of S3, the
symmetric group. This means we can describe inner automorphisms as
permutations. In particular (01) = β2, (12) = β0 and (02) = β1. So
S3 = Inn(R3) ⊆ Aut(R3).
In P1(R3) we see

(R3, 0) = (0)
(01)∼ (1)

(12)∼ (2),

so P1(R3) = {[(0)]} and d1(R3) = 1.

For P2(R3), we see
(0, 0)

(01)∼ (1, 1)
(12)∼ (2, 2)

and
(0, 1)

(12)∼ (0, 2)
(01)∼ (1, 2)

(02)∼ (1, 0)
(12)∼ (2, 0)

(01)∼ (2, 1)

so P2(R3) = {[(0, 0)], [(0, 1)]} has two equivalent classes.

2. Let X = T3 be the trivial quandle. We see that Inn(T3) = {id}, since
βx = id for all x ∈ T3. For any f ∈ S3, we notice that f(a . b) = f(a) =
f(a) . f(b) so f ∈ Aut(T3). This shows that Aut(T3) = S3 and hence
P2(T3) = {[(0, 0)], [(0, 1)]}.

3. There are only three non-isomorphic quandles with three elements. So now
let V3 be the remaining quandle with three elements, that is β0 = (12)
and β1 = β2 = id. Let f ∈ Aut(V3). If f(0) = 0 then either f = id
or f = (12). In both cases f ∈ Inn(V3). Now assume f(0) = 1.
Then f(2) = f(1) . f(0) = f(1) . 1 = f(1) which is a contradiction
to f being a bijection. Similarly, if we assume f(0) = 2. This shows
Aut(V3) = Inn(V3) = {id, (12)}.
So (1) ∼ (2) and P1(V3) = {[(0), (1)]} with d1(V3) = 2.

For P2(V3), we observe

(1, 1) ∼ (2, 2)

(0, 1) ∼ (0, 2)

(1, 0) ∼ (2, 0)

(1, 2) ∼ (2, 1),

but the other combinations are not equivalent. This gives

P2(V3) = {[(0, 0)], [(1, 0)], [(0, 1)], [(1, 1)], [(1, 2)]}.

In particular d2(V3) = |P2(V3)| = 5.
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Now, we study which values dn(X) can have. For a finite quandle X with
k = |X|, we immediately see 1 ≤ dn(X) ≤ kn because {(X,x1, . . . , xn)|xi ∈
X} ∼= Xn. Our goal is to find a better lower bound for dn(X) for an arbitrary
finite quandle X with k elements.

Because Aut(X) is a subgroup of the symmetric group Sk we will count the
number of orbits of Xn under the diagonal action of Sk. That is (x1, . . . , xn) ∼
(y1, . . . , yn) if there is a permutation π ∈ Sk such that xi = π(yi) for all
i = 1, . . . , n. This is a lower bound for dn(X). We denote this number by
d0,n,k and compute it in the following part.

For example d0,1,k = 1 for all k, since for every x, y ∈ X the transposition
(xy) ∈ Sk maps x to y, so all elements lie in the same orbit. If k = 1 then
d0,n,1 = 1 because there is only one element in Xn.

If k ≥ 2 then d0,2,k = 2 because (x, x) ∼ (y, y) for all x, y ∈ X as in the
case n = 1. To see this, we note (x1, x2) ∼ (y1, y2) for all x1 6= x2 and y1 6= y2
using the permutation (x2y2)(x1y1) if x2 6= y1 and the permutation (x1y1x2) if
x2 = y1. But (x, x) 6∼ (y1, y2) with y1 6= y2 because permutations are bijections.

This is the case for any n:

Lemma 4.14. Two n-tuples, x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Xn, lie
in the same orbit under the action of Sk if and only if xi = xj ⇔ yi = yj for
all i, j = 1, . . . , n, i.e. they have equal entries in the same positions.

Proof. Assume x ∼ y so there exists π ∈ Sk with π(xi) = π(yi) for all i. Because
π is a bijection, we see xi = xj ⇐⇒ yi = π(xi) = π(xj) = yj .
On the other hand if xi = xj ⇐⇒ yi = yj , we can define a permutation on the
set {x1, . . . xn, y1, . . . , yn} of unique elements in the tuples with π(xi) = yi. So
π(x) = y and hence x ∼ y.

Note that the statement in the lemma does not depend on k. By the lemma
above we need to count the possibilities of how many entries are equal in a tuple
and in which position these entries are. We will count these recursively over the
number of entries in the tuple.

We extend our notation to dm,n,k for m,n ∈ N, k ∈ N≥1 ∪ {∞} and m ≤ k
which denotes the number of equivalence classes of tuples (x1, . . . , xm+n) ∈
Xm+n where x1, . . . xm are fixed unique elements. Of course this is not possible
if we would allow m > k.

For instance, d1,1,k = 2 for k ≥ 2 because given any fixed element x1, we
can either have x1 = x2 or x1 6= x2. These are all equivalence classes. We
immediately observe

dm,0,k = 1,

since all entries are already fixed.
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The reason we only allow unique elements in the fixed entries is that there are
the same number of classes completing the tuple (x1, . . . , xm,−, . . . ,−) ∈ Xm+n

as there are completing the tuple (x1, x1, . . . , xm,−, . . . ,−) ∈ Xm+1+n. So while
counting the orbits, we can remove a fixed element if it is already fixed in an-
other entry.

Now assume k > m. For a given a tuple (x1, . . . , xm,−, . . . ,−), we count
the number of non-equivalent possibilities for the (n+ 1)-th entry.
We can either choose one of the distinct elements x1, . . . , xm. There are m such
choices. For each choice there are now dm,n−1,k possibilities to complete the
tuple, having no new fixed element in the tuple.
Or we choose a new element. Then there are dm+1,n−1,k many ways to complete
the tuple. This leads us to

dm,n,k = m · dm,n−1,k + dm+1,n−1,k.

If k = m, then {x1, . . . xm} = X. This means we can only choose elements that
are already in the tuple. This proves the following theorem.
Theorem 4.15. Let X be a set with |X| = k ∈ N ∪ {∞}. Let dm,0,k = 1 and

dm,n,k =

{
dm,n,k = m · dm,n−1,k + dm+1,n−1,k if m < k

dm,n,k = m · dm,n−1,k if m = k.

Then |(Xn /Sk)| = d0,n,k.
Example 4.16. With this result we can explicitly compute dm,n,k for n+m ≤ k:

• n = 1: We see that

dm,1,k = mdm,0,k + dm+1,0,k = m+ 1.

This shows d0,1,k = 1, as we have seen before.

• n = 2:

dm,2,k = mdm,1,k + dm+1,1,k = m(m+ 1) +m+ 2 = m2 + 2m+ 2

So as expected d0,2,k = 2.

• n = 3:

dm,3,k = mdm,2,k + dm+1,2,k = . . . = m3 + 3m2 + 5m+ 5

and d0,3,k = 5.

• Further d0,4,k = 15, d0,5,k = 52 and d0,6,k = 203.
On the other hand for n = 3 and k = 2 we compute

d0,3,2 = d1,2,2 = 1 · d1,1,2 + d2,1,2 = (d1,0,2 + d2,0,2) + 2 · d2,0,2 = 4.

Thinking about triplets in {a, b}3, there are exactly the four equivalent classes
[(a, a, a)], [(a, a, b)], [(a, b, a)] and [(b, a, a)]. In {a, b, c}3 there is one more class,
namely [(a, b, c)].
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4.3 n-homogeneous quandles
Recall that in Section 4.2 we defined

dn(X) := |Pn(X)| =
∣∣∣({(X,x1, . . . , xn)|xi ∈ X}/

Aut(X)

)∣∣∣ .
We give quandles with minimal dn(X) a special name and study them in

more detail.

Definition 4.17. Let X be a quandle and n ∈ N. We say X is n-homogeneous
if dn(X) = dn,0,|X|. We say X is uniform or ∞-homogeneous if X is n-
homogeneous for all n ∈ N.

Proposition 4.18. A quandle is 1-homogeneous if and only if it is homogeneous
(as defined in Definition 3.9).

Proof. Observe that d1(X) = 1 means (X,x1) ∼ (X,x2) for all x1, x2 ∈ X.
Hence, there is a quandle automorphism f ∈ Aut(X) with x2 = f(x1). This is
exactly the definition of being homogeneous.

Remark 4.19. In [TAM13] the concept of a two-pointed homogeneous quandle
is introduced. A quandle X is two-pointed homogeneous if the action of Inn(X)
on U−1

2 (X) has two orbits. There we act on U−1
2 (X) only with automorphisms

that are inner automorphisms. This implies X being connected. Every two-
pointed homogeneous quandle is of course 2-homogeneous as in our definition
above. The opposite is not true.

Lemma 4.20. Let X be a quandle, n ∈ N. The following are equivalent.

(1) X is n-homogeneous.

(2) X is (n − 1)-homogeneous and if xi 6= xj and yi 6= yj for all i 6= j then
(X,x1, . . . , xn) ∼= (X, y1, . . . , yn).

(3) Any two n-pointed quandles X = (X,x1, . . . , xn) and Y = (X, y1, . . . , yn)
with underlying quandle X are isomorphic if and only if xi = xj ⇔ yi = yj
for all i, j = 1, . . . , n.

Proof. We first proof (1) ⇔ (3) and use this to show (2) ⇔ (3).

(1) ⇒ (3) Let X be n-homogeneous. If X ∼= Y, then the right-hand side of (3) follows
immediately.
Let’s assume xi = xj ⇔ yi = yj for all i, j = 1, . . . , n holds. By Lemma
4.14 (x1, . . . , xn) and (y1, . . . , yn) lie in the same orbit under the action of
Sk. Because Aut(X) is a subgroup of Sk, the orbit Aut(X) ·x ⊆ Sk ·x for
all x ∈ X. Now X is n-homogeneous, meaning there are the same number
of orbits under the action of Aut(X) and Sk. Since orbits are either equal
or disjoint the orbits must be all equal. So Aut(X) · x = Sk · x. Hence,
indeed X ∼Aut(X) Y ∈ Pn(X) which shows X ∼= Y.
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(3) ⇒ (1) Assume (3). So X ∼= Y if and only if (x1, . . . , xn) ∼Sk
(y1, . . . , yn). This

means Sk · x = Aut(X) · x for all x ∈ Xn. Hence, X is n-homogeneous.

(2) ⇒ (3) Let X = (X,x1, . . . , xn) and Y = (X, y1, . . . , yn) with xi = xj ⇔ yi = yj
for all i, j = 1, . . . , n. If all xi are different (and hence all yi), then
X ∼= Y by the second part of (2). If there are i 6= j with xi = xj (and
therefore yi = yj), then (X,x1, . . . , x̂j , . . . , xn) ∼= (X, y1, . . . , ŷj , . . . , xn)
are isomorphic (n−1)-pointed quandles because X is (n−1)-homogeneous
and (1) ⇔ (3). The same quandle isomorphism gives X ∼= Y.

(3) ⇒ (2) Assume (3), so (X,x1, . . . xn−1, xn−1) ∼= (X, y1, . . . , yn−1, yn−1) if and only
if xi = xj ⇔ yi = yj for all i, j = 1, . . . , n−1. This shows that X is indeed
(n− 1)-homogeneous. The second part of (2) also follows immediately.

In particular 4.20(2) implies the following corollary.

Corollary 4.21. If a quandle X is n-homogeneous, then it is m-homogeneous
for all m ≤ n.

Lemma 4.20 above says that a quandle X is n-homogeneous if and only
if all n-pointed quandles X and Y with Un(X ) = X = Un(Y) are isomorphic
whenever possible. Here possible means xi = xj ⇔ yi = yj for all i, j = 1, . . . , n.

Proposition 4.22. Let X be a quandle and k = |X| ∈ N ∪ {∞}.

(1) X is uniform if and only if X is k-homogeneous.

(2) X is uniform if and only if X is (k − 1)-homogeneous.

(3) If Aut(X) ∼= Sk, then X is uniform.

(4) If k <∞ is finite and X uniform, then Aut(X) ∼= Sk.

Proof. (1) A uniform quandle is obviously k-homogeneous. Let X be k-
homogeneous. If k = ∞, we are done. So let k ∈ N be finite. By
Lemma 4.20 (2), it is n-homogeneous for all n ≤ k. On the other hand,
if X is n-homogeneous with n ≥ k, there is no pointed (n + 1) quandle
(X,x1, . . . xn+1) with yi 6= yj for all i 6= j ∈ {1, . . . , n + 1}. So again
Lemma 4.20 (2) shows that X is (n + 1)-homogeneous. Because X is
k-homogeneous, it is by induction uniform.

(2) Let X be a (k − 1)-homogeneous quandle. We want to show that X is
k-homogeneous and use (1). Again by Lemma 4.20 it is enough to show
(x1, . . . , xk) ∼ (y1, . . . , yk) for xi 6= xj and yi 6= yj for all i 6= j. We know
that there exists f ∈ Aut(X) with f(xi) = yi for i = 1, . . . , k − 1 since
X is (k − 1)-homogeneous. Because k = |X| and f is a bijection we find
f(xk) = yk, so indeed (x1, . . . , xk)

f∼ (y1, . . . , yk).

(3) Follows immediately from the definition together with 4.15.
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(4) Let X = {x1, . . . , xk} be uniform and assume Aut(X) $ Sk. Then there
exists f ∈ Sk \Aut(X). This means (x1, . . . , xk) �

Aut(X)
(f(x1), . . . , f(xk))

by assumption. This contradicts X being k-homogeneous because of
4.20(2).

Example 4.23.

• All trivial quandles are uniform, since Aut(Tk) = Sk for all k ∈ N ∪ {∞}.
Note that trivial quandles are not two-point homogeneous as described in
Remark 4.19.

• R3 is uniform as we have seen in Example 4.13.

• V3 in Example 4.13 is not 2-homogeneous.

• Let us consider the regular tetrahedron quandle X = {0, 1, 2, 3} with

β0 = (123), β1 = (032), β2 = (013), β3 = (021).

Note that X is connected, so in particular 1-homogeneous. Now (x, y)
βi
x∼

(x, z) for some i for all y 6= x 6= z. This way we can reach every tuple
which does not have equal entries. Here we see for example

(0, 1)
β0∼ (0, 2)

β2∼ (1, 2)
β1∼ (1, 0).

So X is 2-homogeneous. Assume there exists f ∈ Aut(X) such that
(0, 1, 2)

f∼ (1, 0, 2), so 1 = f(0) = f(2 . 1) = f(2) . f(1) = 2 . 0 = 3
which is a contradiction. Hence, (0, 1, 2) � (1, 0, 2). This means X is not
3-homogeneous and in particular not uniform.

The last example can be generalized to a wider set of examples. A finite
quandle X with k = |X| is called of cyclic type if for every x ∈ X, the map βx
acts on X \ {x} as a cyclic permutation of order (k − 1) as defined in [TAM13,
Def. 3.5]. We immediately see that for example the regular tetrahedron quandle
is of cyclic type.

Proposition 4.24 ([TAM13, Prop. 3.6]). Every finite quandle of cyclic type is
2-homogeneous.

Now we classify all uniform quandles.

Theorem 4.25. Let X be a uniform and finite quandle. Then either X ∼= R3

or X is trivial.

Proof. Let X be a nontrivial uniform quandle. This means there is a0, a1, a2 ∈
X with a0 . a1 = a2 and a0 6= a2. Then also a0, a2 6= a1. Since X is uniform,
Aut(X) ∼= S|X| by Proposition 4.22, in particular are the transpositions (aiaj)
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in Aut(X). So a1 = (a1a2)(a2) = (a1a2)(a0 .a1) = a0 .a2, similarly a0 = a2 .a1
and therefore

ai . aj = ak = (aiaj)(ak) = (aiaj)(ai . aj) = aj . ai

for all {i, j, k} = {0, 1, 2}. This computes the following section of the operation
table of X.

. a0 a1 a2 . . .
a0 a0 a2 a1
a1 a2 a1 a0 ?
a2 a1 a0 a2
... ?

If X has only three elements, this means it is isomorphic to R3.
Suppose X has another element x 6= a0, a1, a2 and assume ai .x 6= ai for some i.
Then choose aj 6= ai, ai .x (which exists since we have three elements to choose
from). Now we see

ai . x =
ai.x 6=ai,aj

(aiaj)(ai . x) = aj . x,

which is a contradiction to βx being bijective. So ai . x = ai for all i.
But now we see, using the transposition (a0x) ∈ Aut(X), that (a0x)(a1 . x) =
(a0x)(a1) = a1 but (a0x)(a1).(a0x)(x) = a1.a0 = a2. But this is a contradiction
to (a0x) being a homomorphism. This shows that X either has only three
elements or is trivial.

For x ∈ X, denote Aut(X)x := {f ∈ Aut(X)|f(x) = x} the stabilizer
subgroup with respect to x. We follow the proof of [TAM13, Proposition 3.3]
to prove the next Proposition.

Proposition 4.26. Let X be a quandle with |X| ≥ 3. Then the following are
equivalent:

(1) X is 2-homogeneous.

(2) For every x ∈ X, the action of Aut(X)x on X \ {x} is transitive.

(3) X is homogeneous and there exists x ∈ X such that the action of Aut(X)x
on X \ {x} is transitive.

Proof.

(1) ⇒ (2) Let X be 2-homogeneous. For arbitrary x ∈ X, we know that (x, y1)
f∼

(x, y2) for any y1, y2 6= x for some f ∈ Aut(X). So f ∈ Aut(X)x and
f(y1) = y2. This shows that the action of Aut(X)x is transitive on X\{x}.

(2) ⇒ (3) We only need to show that X is homogeneous. For any y1, y2 ∈ X we
can choose x ∈ X \ {y1, y2} because |X| ≥ 3. By assumption, there exists
f ∈ Aut(X)x ⊆ Aut(X) with f(y1) = y2.
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(3) ⇒ (1) Assume (3). So X is 1-homogenous. By Lemma 4.20, it is enough to
show that (x1, x2) ∼ (y1, y2) for all x1 6= x2 and y1 6= y2. By assumption,
there exists x ∈ X such that Aut(X)x acts transitive on X \{x}. Because
X is (1-)homogeneous, there exists f, g ∈ Aut(X) with f(x1) = x and
g(y1) = x. Because x1 6= x2 and y1 6= y2 and f and g are bijective, we see
f(x2), g(y2) 6= x. Hence, there exists h ∈ Aut(X)x with h(f(x2)) = g(y2).
Now we can see

g−1 ◦ h ◦ f(x1, x2) = g−1 ◦ h(x, f(x2)) = g−1(x, g(y2)) = (y1, y2)

which shows (x1, x2) ∼ (y1, y2).

4.4 Pointed quandle counting invariant and quandle count-
ing matrix

We now turn our attention back towards linkoids and introduce n-pointed quan-
dle colorings of linkoids.

Definition 4.27. Let X be a 2n-pointed quandle and L an n-linkoid. We define
the pointed quandle counting invariant as

ΦZ
X (L) := |PQnd2n(P (L),X )|.

Theorem 4.28. The pointed quandle counting invariant is invariant under
Reidemeister moves.

Proof. This follows immediately from the fact that P (L) is a linkoid invariant.

Note that the (unpointed) quandle counting invariant with respect to a quan-
dle X is always at least 1 because we can color the diagram trivially. For the
pointed quandle counting invariant this is in general not true. If not all base-
points of a pointed quandle X are equal, we cannot color the diagram trivially.
This means ΦZ

X (L) can be zero.

We can combine all pointed quandles in U−1
2 (X), the set of 2-pointed quan-

dles with underlying quandle X, into one matrix.

Definition 4.29. Let L be a 1-linkoid and X = {1, . . . , k} a finite quandle. We
define the quandle counting matrix ΦMk

X (L) of L with respect to X by the k×k
matrix (

ΦMk

X (L)
)
i,j

:= ΦZ
(X,i,j)(L),

with the pointed quandle counting invariant for each possible combination of
basepoints as entries.

Theorem 4.30. Let X be a finite quandle, L a 1-linkoid. The quandle counting
matrix ΦMk

(X,i,j)(L) is an invariant of L.
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Proof. This follows immediately from the fact that the pointed quandle counting
invariant is invariant under Reidemeister moves.

We first collect some basic properties and observations and then see some ex-
amples. Therefore, we use the fact that for two isomorphic 2n-pointed quandles
X and Y the pointed quandle counting invariant is equal, that is ΦZ

X (L) = ΦZ
Y(L)

for any n-linkoid.

Proposition 4.31. Let L be a 1-linkoid and X a finite quandle, i, j ∈ X. Then

(1) (ΦMk

X (L))i,j ≥ 0.

(2) (ΦMk

X (L))i,i ≥ 1.

(3) ΦMk

X (L) = Ik the identity matrix if and only if L is only trivially colorable
by X.

(4)
∑k

i,j=1(Φ
Mk

X (L))i,j = ΦZ
X(L) = |Qnd(Q(L), X)| the (unpointed) quandle

coloring counting invariant.

(5) If X is homogeneous, then (ΦMk

X (L))i,i = (ΦMk

X (L))j,j.

(6) If X is 2-homogeneous, then (ΦMk

X (L))i1,j1 = (ΦMk

X (L))i2,j2 for all i1 6= j1
and i2 6= j2 ∈ X.

Proof. (1) is obvious, (2) and (3) follow from the fact that every knotoid is
trivially colorable. (4) is the fact that the quandle coloring counting invariant
counts all possible colorings, independent of the endpoint colors.
To see (5) and (6), note that if (i1, j1) ∼ (i2, j2) ∈ X2 /Aut(X) ∼= P2(X), then
ΦZ

(X,i1,j1)
(L) = ΦZ

(X,i2,j2)
(L) since the pointed quandles are isomorphic. So if X

is homogeneous then (i, i) ∼ (j, j) for all i, j ∈ X and if X is 2-homogeneous
(i1, j1) ∼ (i2, j2) for all i1 6= j1 and i2 6= j2 ∈ X.

Note that any 2-homogeneous quandle is also homogeneous, so all values on
the diagonal are also equal, but not necessarily equal to the values not on the
diagonal.

Lemma 4.32. Let L be a 1-linkoid and X a finite quandle. If i, j ∈ X are in
the same algebraic component of X (that is in the same orbit under the action
of Inn(X) on X), then (ΦMk

X (L))i,i = (ΦMk

X (L))j,j.

Proof. If i, j lie in the same component of X then there exists an inner auto-
morphism f ∈ Inn(X) ⊆ Aut(X) with f(i) = j. So (i, i)

f∼ (j, j).

Proposition 4.33. Let L be a link-type 1-linkoid and X a finite quandle,
i, j ∈ X. Then:
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(1) The trace tr
(
ΦMk

X (L)
)
= ΦZ

X(L−), the (unpointed) quandle counting in-
variant of the under-closure of L.

(2) If X is faithful, then ΦMk

X (L))i,j = 0 for all i 6= j

Proof. To see (1), we note that

Qnd(Q(K−), X) ∼= Qnd
(
(Q(K))

/
(h = l), X

)
∼=

k⋃
i=1

PQnd2(P (K), (X, i, i))

as sets. The first bijection follows from the fact that Q(K−) ∼= Q(K) / (h = l)
where h and l are the arcs attached to the head and leg of X. To see the
second bijection we note that a quandle homomorphism ϕ : (Q(K)) / (h = l) →
X is the same as a quandle homomorphism Q(K) → X with ϕ(h) = ϕ(l)
and therefore an element in PQnd2(P (K), (X,ϕ(l), ϕ(h))). And of course every
pointed homomorphism in ψ ∈ PQnd2(P (K), (X, i, i) satisfies ψ(h) = i = ψ(l)
and so is an element of Qnd ((Q(K)) / (h = l), X).
(2) follows immediately from Corollary 3.30 which states that every coloring by a
faithful quandle assigns the same color to both endpoints. Hence, ΦMk

X (K)i,j = 0
for all i 6= j.

Combining Proposition 4.31 (4) and 4.33 proves the following corollary.

Corollary 4.34. Let L be a link-type 1-linkoid and X a finite, faithful quandle.
Then ΦZ

X(L) = ΦZ
X(L−).

We now compute some quandle counting matrices.

Example 4.35. Let K1 be the knotoid from Figure 15. So

Q(K1) ∼= Q〈a, b, c, d|b = a . c, c = b . a, d = c . b〉
∼= Q〈a, b, c|b = a . c, c = b . a〉

and P (K1) = (Q(K1), a, c . b).

Consider the pointed quandle X = (R3, 0, 0). A homomorphism P2(K1) →
X maps a, d 7→ 0. For any given value of f(b) we compute f(c) = f(b . a) =
f(b) . 0 = 2 · 0 − f(b) = −f(b) (mod 3). We need to check the other relations
in Q(K1), to see which values give indeed a quandle homomorphism. That is
f(a . c) = 0 . f(c) = 2 · 0 − f(c) = f(c) (mod 3) and f(c . b) = f(c) . f(b) =
2f(b) − f(c) = 3f(b) = 0 (mod 3). So every value for f(b) determines exactly
on coloring by X . This shows ΦZ

X(K1) = 3.

Now we can compute the quandle coloring matrix of K1. Since R3 is 2-
homogeneous, all diagonal entries are equal by Proposition 4.31. By Proposition
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4.33 all other entries are zero, since K1 is of knot type. In total, this gives

ΦM3

R3
(K1) =

3 0 0
0 3 0
0 0 3

 .
Computing the trace tr(ΦM3

R3
(K1)) = 9 = ΦZ

R3
(K−), we again get the quan-

dle counting invariant that we already computed in Example 3.18.

Let now K2 be the other knotoid in Figure 15. Because Q(K1) ∼= Q(K2) we
write P (K2) = (Q(K1), a, c). A homomorphism f : P2(K2) → (R3, i, j) maps
a 7→ i and c 7→ j. So f(b) = f(a . c) = i . j hence f is already completely
determined. Because f(b . a) = (i . j) . i = 2i − (i . j) = 2i − 2j + i ≡ j =
f(c) (mod 3) every such map is a quandle homomorphism. Then ΦZ

(R3,i,j)
(K2) =

1 for all i, j and

ΦM3

R3
(K2) =

1 1 1
1 1 1
1 1 1

 .

Figure 16

As a last example consider the 1-linkoid L in Figure 16 and the quandle
V3 with three elements and β0 = (12) and β1 = β2 = id. We have seen in
Example 4.13 that d2(V3) = 5. This means there are five isomorphism classes
of pointed quandles with underlying quandle V3. So we have to compute five
pointed coloring counting invariants for the coloring matrix.
The fundamental quandle of L is given by

Q(L) = Q〈a, b, c, d|c = d . b, a = b . c, d = c . a〉.

We now compute the pointed quandle counting invariant for all five isomorphism
classes of pointed quandles with underlying quandle V3.

• A pointed quandle homomorphism f : P (L) → (V3, 0, 0) maps a, b 7→ 0. If
f(c) = 0 then f(d) = f(0.0) = 0 gives only the trivial coloring. If f(c) = 1
then f(d) = f(c . a) = 1 . 0 = 2. This satisfies f(d . b) = 2 . 0 = 1 = f(c)
and f(b . c) = 0 . 1 = 0 = f(a). So ΦZ

(V3,0,0)
(L) = 3.
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• Now consider a map f : P (L) → (V3, 0, 1). Then 0 = f(a) = f(b . c) =
1 . f(b) which cannot happen.

• Similarly, for a map f : P (L) → (V3, 1, 0) we have 0 = f(b) = f(a .−1 c) =
1 .−1 f(b) which is also not possible.

• A homomorphism f : P (L) → (V3, 1, 1) map f(c) = f(d . b) = f(d) . b =
f(d). Now f(a) = f(b) . f(c) gives 1 = 1 . f(c) so f(c) = 1, 2. Both
values satisfy the third relation f(d) = f(c . a) = fa(c). This shows
ΦZ

(V3,0,0)
(L) = 2.

• Lastly let f : P (L) → (V3, 1, 2). Because 1 = f(a) = f(b) . f(c) = 2 . f(c)
we obtain f(c) = 2. Then f(d) = 2.1 = 2. This satisfies f(d.b) = 2.1 =
2 = f(c). So ΦZ

(V3,1,2)
(L) = 1.

This yields the quandle counting matrix

ΦM3

V3
(L) =

3 0 0
0 2 1
0 1 2

 .
5 Cohomology and the quandle 2-cocycle invari-

ant
In [CJK+01] a (co-)homology theory for quandles was introduced. We review the
definition and then focus on 2-cocycles to review the definition of the 2-cocycle
invariant associated to a given 2-cocyle. Then we introduce an enhancement
of the 2-cocycle invariant which we name pointed quandle 2-cocycle invariant.
This uses pointed quandles we studied in the previous section.

There are also applications for 3-cocycles on links that can be generalized to
linkoids, for example in [Caz22] for knotoids. We do not study 3-cocycles and
their applications to linkoids here.

5.1 Review of quandle (co-)homology
We begin with the definition of a chain complex following [CJK+01, Chapter
3]. Let X be a quandle. Define CR

n (X) as the free abelian group generated by
n-tuples (x1, . . . , xn) of elements of X. We write CR

n (X) additively for now.
Let CD

n (X) ⊆ CR
n (X) be the subgroup generated by n-tuples (x1, . . . , xn) with

xi = xi+1 for some i ∈ 1 . . . n − 1 if n ≥ 2 and CD
1 (X) = 0. Finally, let

Cn(X) := CR
n (X) /CD

n (X).

An element in Cn(X) is a linear combination
∑

α nα(x1, . . . , xn) for some
nα ∈ Z. Note that even though (x1, . . . , xn) looks like a vector, it is not. We
cannot simplify terms like (x1, . . . , xn) + (y1, . . . , yn) for xi, yi ∈ X unless both
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terms are equal. For example let X = R3 then (1, 0) + 2(1, 0) = 3(1, 0), but
(1, 0) + (0, 1) 6= (1, 1) = (0, 0) in C2(R3).

Now define the boundary map ∂n : C
R
n → CR

n−1 on generators by

∂n(x1, . . . , xn) =

n∑
i=2

(−1)i
[
(x1, . . . , x̂i, . . . , xn)

− (x1 . xi, x2 . xi, . . . , xi−1 . xi, xi+1, . . . , xn)
]

for n > 2 and ∂n = 0 for n ≤ 1, where x̂i means xi is removed from the tuple.

Theorem 5.1. It holds that ∂n−1 ◦ ∂n = 0, and ∂n(C
D
n (X)) ⊆ CD

n−1(X). So
the above construction is a chain complex.

We will see the proof of this theorem after defining homology groups and
seeing some examples.

As usual in homology theory, we can allow coefficients in any fixed abelian
group A. We do this by defining

Cn(X;A) := Cn(X)⊗A and ∂ = ∂ ⊗ id

We can think of elements in Cn(X;A) as linear combinations
∑

α nα(x1, . . . , xn)
but now with coefficients nα ∈ A.

Definition 5.2. We define cycle and boundary groups as Zn(X;A) := ker(∂n)
and Bn(X;A) := im(∂n+1) and homology groups

Hn(X;A) := Zn(X;A)
/
Bn(X;A).

For cohomology, we define the cochain groups as

Cn(X;A) := Hom(Cn(X), A),

the dual groups. The coboundary map δn : Cn(X;A) → Cn+1(X;A) is the
precomposition with the boundary map ∂n+1 from above. Because ∂n−1∂n = 0
also δnδn−1 = 0. Following the usual concepts of homology, we define:

Definition 5.3. The cocycle groups are given by Zn(X;A) := ker(δn) and the
coboundary groups by Bn(X;A) := im(δi−1). We define cohomology groups as

Hn(X;A) := Zn(X;A)
/
Bn(X;A).

For now, we are mostly interested in cocycles.

Example 5.4. A quandle 1-cocycle f ∈ Z1(X;A) = ker(δ1) ⊆ C1 is a linear
function A[X] → A or equivalently, a function ϕ : X → A that extends linearly
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to A[X]. For a 1-cocycle ϕ ∈ ker(δ1), we see δ1 ◦ ϕ = 0 ∈ C2(X;A). This gives
for x, y ∈ X the following condition.

0 = (δ1 ◦ ϕ)(x, y) = (ϕ ◦ ∂2)(x, y) = ϕ((x)− (x . y)) = ϕ(x)− ϕ(x . y).

A 1-cocycle is a function ϕ : X → A that satisfies

ϕ(x)− ϕ(x . y) = 0

for all x, y ∈ X.

Example 5.5. Let ϕ ∈ Z2(X;A) be a 2-cocycle. So we have a function ϕ : X×
X → A that we extend linearly as before. Here there is a bit of abuse of notation,
because in Z2(X;A) we write ϕ(n(x1,x2)(x1, x2)) but as a map X ×X → A we
write n(x1,x2)ϕ(x1, x2) for x1, x2 ∈ X, and all nα ∈ A.
Because (x, x) = 0 ∈ C2(X) for all x, we immediately see ϕ(x, x) = ϕ(0) = 0
for all x ∈ X since ϕ is linear. The formula for ∂3 from above is

∂3(x, y, z) = [(x, z)− (x . y, z)]− [(x, y)− (x . z, y . z)].

Inserting it to ϕ ∈ ker(δ2) ⇐⇒ ϕ ◦ ∂3 = 0 gives

0 = ϕ ◦ ∂3(x, y, z) = ϕ([(x, z)− (x . y, z)]− [(x, y)− (x . z, y . z)])

= [ϕ(x, z)− ϕ(x . y, z)]− [ϕ(x, y)− ϕ(x . z, y . z)]

for all x, y, z ∈ X. Rearranging that, we can summarize that a 2-cocycle of the
quandle X with coefficients in A is a function ϕ : X ×X → A such that for all
x, y, z ∈ X the conditions

ϕ(x, x) = 0

ϕ(x, z) + ϕ(x . z, y . z) = ϕ(x, y) + ϕ(x . y, z)

are satisfied.

Example 5.6. We now want to understand 2-coboundaries ϕ ∈ B2(X,A).
Given a function f ∈ C1 we compute

(δ1 ◦ f)(x, y) = (f ◦ ∂2)(x, y) = f(x− x . y) = f(x)− f(x . y)

Hence, 2-coboundaries are exactly the 2-cocyles given by ϕ(x, y) = f(x)−f(x.y)
for any function f : X → A.

Proof of Theorem 5.1. For the first statement ∂n−1◦∂n = 0, we want to compute

∂n−1 ◦ ∂n(x1, . . . , xn) =
n∑

i=2

(−1)i∂n−1(x1, . . . , xn−1, xn+1, . . . , xn)

−
n∑

i=2

(−1)i∂n−1(x1 . xi, x2 . xi, . . . , xi−1 . xi, xi+1, . . . , xn).
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We compute both sums separately.
n∑

i=2

(−1)i∂n−1(x1, . . . , x̂i, . . . , xn)

=

n∑
i=2

( i∑
j=2

(−1)i(−1)j
[
(x1, . . . , x̂j , . . . , x̂i, . . . , xn)

− (x1 . xj , . . . , xi−1 . xj , xi+1, . . . , x̂i, . . . , xn)
]

+

n∑
j=i+1

(−1)i(−1)j−1
[
(x1, . . . , x̂i, . . . , x̂j , . . . , xn)

− (x1 . xj , . . . , x̂i . xj , . . . , xj−1 . xj , xj+1, . . . , xn)
])
.

Here we used an index shift on j in the second sum. Similarly,

n∑
i=2

(−1)i∂n−1(x1 . xi, . . . , xi−1 . xi, xi+1, . . . , xn)

=

n∑
i=2

( i∑
j=2

(−1)i(−1)j
[
(x1 . xi, . . . , x̂j . xi, . . . , xi−1 . xi, xi+1, . . . , xn)

−
(
(x1 . xi) . (xj . xi), . . . , (xj−1 . xi) . (xj . xi),

xj+1 . xi, . . . , xi−1 . xi, xi+1, . . . , xn
)]

+

n∑
j=i+1

(−1)i(−1)j−1
[
(x1 . xi, . . . , xi−1 . xi, xi+1, . . . , x̂j , xn)

−
(
(x1 . xi) . xj , . . . , (xi−1 . xi) . xj ,

xi+1 . xj , . . . , xj−1 . xj , xj+1, . . . xn
)])

.

We now see that the terms with matching colors cancel since after switching i
and j in one of them, it is the negative of the other. In the blue term we also
used the third quandle axiom (xk . xj) . xi = (xk . xi) . (xj . xi).

For the second statement in the theorem let (x1, . . . , xn) be such that xj =
xj+1 = a for some j. Then for each i 6= j, j + 1 the corresponding summand is
again in CD

n−1(X). If j = 1, then the first term (i = 2)is

(−1)2((a, x3, . . . , xn)− (a . a, x3, . . . , xn)) = 0.

For j > 2 the summands for i = j and i = j + 1 are equal but with sign
(−1)j and (−1)j+1. Hence, both cancel. The total sum is therefore a linear
combination of elements in CD

n−1(X).
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5.2 Quandle 2-cocycle invariant
From now on we write A multiplicatively to simplify the notation. Let X be
a finite quandle, L a linkoid and f : Q(L) → X a coloring. We give weights to
each crossing to enhance the quandle counting invariant as defined in Definition
3.17. Therefore, let ϕ ∈ Z2(X;A) be a 2-cocycle. We give every crossing a
(Boltzmann) weight that depends on the chosen coloring f as shown in Figure
17. Note that the inputs for ϕ are the labels of the arcs on the left of the
diagram, unlike in the diagrams we used to define quandle relations on a given
crossing. Note also the position of x and y in the negative crossing.

Figure 17: Weights for positive and negative crossings

With these we can define the product over all crossings.

Definition 5.7. The quandle 2-cocycle invariant associated with the 2-cocycle
ϕ of a linkoid diagram L is defined as the formal sum

Φϕ(L) :=
∑

f∈Qnd(Q(L),X)

∏
τ

ϕ(x, y)ετ

where the product is taken over all crossings τ . Here ετ = ±1 denotes the sign
of the crossing and the sum is taken over all colorings of L with X. So x, y are
the colors of the arcs in the crossing τ .

The quandle 2-cocycle invariant was introduced in [CJK+01] under the name
state-sum invariant and partitioning function.

Because ϕ(x, x) = 0 by definition of a 2-cocycle, adding or removing a R1
move does not change the quandle 2-cocycle invariant. Similarly, an R2 move
multiplies the quandle 2-cocycle invariant by ϕ(x, y)ϕ(x, y)−1 = 1, hence it also
is not changing the quandle 2-cocycle invariant.

If we change the diagram by an R3-move, we replace the factor

ϕ(x, y)ϕ(y, z)ϕ(x . y, z) with ϕ(x, z)ϕ(y, z)ϕ(x . z, y . z)

as we can see in Figure 18 below. If we cancel ϕ(y, z) on both sides, this is
exactly one of the conditions for a 2-cocycle we found in Example 5.5 written
now in multiplicative notation.

This sketches the proof of the following lemma.
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Figure 18: Inputs of ϕ for an R3-move

Lemma 5.8. Let ϕ be a 2-cocycle. For a given coloring of a diagram, the product∏
τ ϕ(x, y)

ετ , using the notation from above, is invariant under Reidemeister
moves.

A rigid proof can be found, for example, in [CJK+01, Thm 4.4]. A direct
consequence of this is the following theorem.

Theorem 5.9. The quandle 2-cocycle invariant associated with a given 2-cycle
is invariant under Reidemeister moves and hence, is an invariant for linkoids.

Lemma 5.10. Let L be a linkoid and denote its fundamental pointed quandle by
P (L) = (Q(L), l1, h1, . . . ln, hn). Let X a finite quandle and ϕ(x, y) = g(x)g(x .
y)−1 ∈ B2(X;A) be a coboundary. Then

Φϕ(L) =
∑

f∈Qnd(Q(L),X)

n∏
i=1

g(li)g(hi)
−1.

To prove this lemma, we follow the ideas of the proof of [CJK+01, Proposi-
tion 4.5] which is here Corollary 5.12 below.

Proof. For a given coloring f we can interpret the weight ϕ(x, y) of a positive
crossing as weights g(x) and g(x . y)−1 on the corresponding strands of the
under-arc (which have labels x and x . y). Similarly, the weights for a negative
crossing are g(x)−1 and g(x . y). In both cases, the incoming strand has a
”positive” weight and the outgoing arc has an inverted weight of its label.
If we now take the product over all crossings, an arc x that is not attached to
an endpoint contributes g(x)g(x)−1 = 1 to the product. Every li contributes
g(li) and every hi contributes g(hi)−1 because these only appear in exactly one
crossing.

The lemma above means, for a given coloring, any closed component of a
linkoid contributes 1 to the sum. Summing over all possible colorings proves:
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Corollary 5.11. Let L be a link and ϕ a coboundary. Then Φϕ(L) = ΦZ
X(L) ∈ Z

is the coloring counting invariant.

Here we write 1 = e ∈ A as the neutral element.

Corollary 5.12. Let L be a link and ϕ,ϕ′ ∈ Z2(X;A) 2-cocycles that are
cohomologuos, that is ϕ = ϕ′δψ for a 1-cochain ψ. Then Φϕ(L) = Φϕ′(L).

On the other hand, Lemma 5.10 means that the quandle 2-cocycle invari-
ant for linkoids really depends on the associated 2-cocyle and not only on the
equivalence class in the cohomology group.

(a) L1 (b) L2

Figure 19: Two 2-linkoid with two crossings

Example 5.13. Let L1 and L2 be the 2-linkoids in Figure 19. We immediately
see that we can transform both into trivial 2-linkoids by under forbidden moves,
so both fundamental quandles are free quandles with two generators, that is

Q(L1) ∼= Q(L2) ∼= Q〈a, b〉.

We can see this isomorphism explicitly by noting that c = b . a in Q(L1) and
c = a . b, d = b . a in Q(L2).

Now we want to color both linkoids with the quandle R4 = {0, 1, 2, 3} with
x . y ≡ 2y − x (mod 4). With our observation above, we can choose two colors
freely. This then determines the coloring. So the quandle counting invariants
are

ΦZ
R4

(L1) = ΦZ
R4

(L2) = 42 = 16.

To distinguish these linkoids, we will use the 2-cocycle invariant. Assume A =
Z = 〈t〉 (in multiplicative notation). Consider the 2-cocylce

ϕ(x, y) =

{
t if (x, y) = (0, 1) or (0, 3)

1 otherwise.

42



In L1, we see that in one crossing both inputs are equal. So this does not
contribute to the 2-cocycle. The other crossing is a positive crossing. This
means we can write

Φϕ(L1) =
∑

f∈Qnd(Q(L1),X)

∏
τ

ϕ(x, y) =
∑

f∈Qnd(Q(L1),X)

ϕ(f(b), f(a)).

Because every combination of colors for a and b gives exactly one coloring of the
diagram, there are two summands with value t while the other 14 have value 1.
In total, we see

Φϕ(L1) = 2t+ 14.

Now in L2 both crossings are positive. We compute

Φϕ(L2) =
∑

f∈Qnd(Q(L2),X)

∏
τ

ϕ(x, y) =
∑

f∈Qnd(Q(L2),X)

ϕ(f(a), f(b))·ϕ(f(b), f(a)),

where ϕ(f(a), f(b)) comes from the left crossing and ϕ(f(b), f(a)) from the right
crossing in the diagram. Here, four summands are equal to t, namely if we color
(a, b) by (0, 1), (1, 0), (0, 3) or (3, 0). The total sum is

Φϕ(L1) = 4t+ 12.

In particular this shows that L1 and L2 are non-equivalent 2-linkoids.

As we did for the quandle counting invariant we can define the 2-cocycle
invariant for pointed quandles by simply summing only over the pointed color-
ings.

Definition 5.14. Let X be a 2n-pointed quandle. The pointed quandle 2-
cocycle invariant, (associated with the 2-cocycle ϕ), of an n-linkoid diagram L
is defined as

Φϕ,X (L) :=
∑

f∈PQnd2n(P (L),X )

∏
τ

ϕ(x, y)ετ

with notation as in Definition 5.7.

Theorem 5.15. The pointed quandle 2-cocylce invariant associated with a given
2-cocycle is an invariant for linkoids.

Proof. This follows immediately from Lemma 5.8.

The advantage for pointed quandle 2-cocylce invariants, similar to pointed
quandle counting invariants etc. is that we do not need to compute the sum
over all colorings, but only over those where we might suspect the linkoids differ.
Especially for large linkoids, this might simplify the computations significantly.
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6 Biquandles for links and linkoids
6.1 Review on biquandles
Biquandles are a generalization of quandles. They were introduced in [FJSK04]
to study virtual knots. We will see that biquandles can detect the under for-
bidden move on linkoids.

Definition 6.1. (as in [NOR15]) A biquandle is a set X with two binary oper-
ations ., . : X ×X → X satisfying for all x, y, z ∈ X

(1) x.x = x.x.

(2) The maps αy, βy : X → X and S : X×X → X×X defined by αy(x) = x.y,
βy(x) = x.y and S(x, y) = (y.x, x.y) = (αa(b), βb(a)) are invertible.

(3) The following exchange laws are satisfied

(x.y).(z.y) = (x.z).(y.z)

(x.y).(z.y) = (x.z).(y.z)

(x.y).(z.y) = (x.z).(y.z)

We write x.−1y for α−1
y (x) and similarly x.−1y for β−1

y (x).

Example 6.2.

• Let X be a set with a bijection σ : X → X. Then we define x.y = x.y =
σ(x). This is called the constant action biquandle. Note that we cannot
define a quandle in this way, because the first axiom is different. If σ = id,
then this is the trivial quandle.

• Any quandle X is a biquandle with x.y := x . y and x.y := x for all
x, y ∈ X. Inserting these operations into the three biquandle axioms gives
exactly the quandle axioms.

• Let R be a commutative ring with identity and X be an R[s±1, t±1]-
module. We define the Alexander biquandle as

x.y = tx+ (s− t)y and x.y = sx

For s = 1, this is a quandle, called Alexander quandle.

Lemma 6.3. [IIK+17, Lemma 2.8] Let X be a biquandle.

(1) For x, y ∈ X, if x.y = y.x, then x = y.

(2) For any x ∈ X there exists a unique y ∈ X such that y.y = y.y = x.
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Proof. To proof (1) let x.y = y.x. Then

x.x
(1)
= x.x

(2)
= (x.x).(y.x).−1(y.x)

(3)
= (x.y).(x.y).−1(y.x)

(1)
= (y.x).(y.x).−1(y.x) = (y.x).

Here, the numbers indicate which of the biquandle axioms we use. Because αx

is a bijection, this shows x = y.
To proof (2) consider (y1, y2) := S−1(x, x). Note that this tuple is unique. So

(x, x) = S(y1, y2) = (y2.y1, y1.y2).

Using the first part of this lemma gives y1 = y2.

Definition 6.4. A biquandle homomorphism is a map f : X → Y between two
biquandles X and Y such that for all x, y ∈ X we have

f(x.y) = f(x).f(y) and f(x.y) = f(x).f(y).

This forms the locally small category of biquandles which we denote by Bqnd.

We can color linkoid diagrams with biquandles. Instead of coloring each
arc, we divide the diagrams into semiarcs. Remember, an arc is the portion
of a diagram between two under-crossings. That is, one continuous line in the
diagram. For semiarcs we divide the diagram on every crossing, instead of only
on under-crossings. To color a diagram with a biquandle X, we assign to each
semiarc an element of X. We do that in such a way that on each crossing, the
relations in Figure 20 are satisfied. So if an arc with color x goes above y, then
the semiarc on the other side of the diagram has color x.y = αy(x) and if it
goes below y, then it has color x.y = βy(x).

Figure 20: Biquandle relations for positive and negative crossings

Remark 6.5. Note that the inputs for α and β in Figure 20 are on the left of
both crossings, unlike for quandles. When introduced in [FJSK04], biquandles
were defined so the inputs are at the top. Even though the definitions are
equivalent, it turned out that the notation of biquandles and the corresponding
calculations are easier and clearer the way we defined it here. Especially the
third biquandle axiom, which is derived from a R3 move, is a lot simpler. (See
[EN15, Chapter 3 ] for a more detailed discussion of this).
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Figure 21: A biquandle coloring under R1 move

We again observe what happens under Reidemeister moves.

Consider the situation in Figure 21. Lemma 6.3 shows that x = y on the
right site. On the other hand, if we add a kink, then x = y, so x.x = x.x by
the first biquandle axiom. This shows that there is a one to one correspondence
between colorings before and after adding or removing a kink via a R1 move.
The other types of oriented R1 moves are similar.

Figure 22: A biquandle coloring under an R2 move

Now, we examine the situation for R2 moves. There are two types of R2-
moves which use different biquandle properties. First, consider the situation in
Figure 22. Note that on the left side, we can write the label of the right strand
as y.x = αx(y) since αx is a bijection.
If we add an R2-move, then z = x on the right side, so we immediately see that
this gives a unique and valid coloring.
Now assume that we have the situation on the right-hand side. Then, because
βy(x) = βy(z), we find that (x = z).

Figure 23: A biquandle coloring under another R2 move

Consider an R2-move where the strands have opposite orientations, as in
Figure 23. Adding an R2-move again gives a unique coloring. If we start with
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the right-hand side, we use the map S from the second biquandle axiom. So

S(x, y) = (y.x, x.y) = (u.v, v.u) = S(u, v).

Because S is a bijection, this shows (x, y) = (u, v).

Lastly, when we change the diagram with the R3-move in Figure 24 we see
that the labels on the top and bottom are equal on both sides, using the third
biquandle axiom. Similarly, the equation on the right side in the middle hold,
using the last relation in the third biquandle axiom.

Figure 24: A biquandle coloring under an R3 move

This means if L and L′ are equivalent linkoid diagrams, then every coloring
of L with a given biquandle X gives a unique coloring of L′.

Similar to quandles we can define a fundamental biquandle.

Definition 6.6. Let L be an oriented linkoid diagram with a set of semiarcs
S(L). Then the fundamental biquandle of L is defined as

B(L) := B〈x ∈ S(L) | rτ for all crossings τ〉,

the biquandle consisting of words in S(L) modulo the biquandle axiom relations
and the relations rτ given by each crossing as shown in Figure 20.

Theorem 6.7. The fundamental biquandle B(L) is an invariant of the linkoid
L.

Proof. In the discussion above, we have seen that changing a diagram by Rei-
demeister moves give isomorphic fundamental quandles. The missing oriented
Reidemeister moves work in exactly the same way as the ones we discussed
above.

Remark 6.8. In [Hor20] a topological construction for biquandles of knots was
studied. It is similar to the one for quandles described in Section 3.3. The
resulting biquandle is in general not isomorphic to the fundamental biquandle,
but to a quotient of the fundamental biquandle of the knot.
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We can now understand a coloring of L with a finite biquandle X as a bi-
quandle homomorphism ϕ : B(L) → X.

Note that unlike in the quandle coloring case, there is not always a trivial
biquandle coloring of a knotoid because in general x.x = x.x 6= x.

Definition 6.9. Let X a finite biquandle. The biquandle counting invariant for
a linkoid L is defined as ΦZ

X(L) := |Bqnd(B(L), X)|, the number of colorings.

Theorem 6.10. The biquandle counting invariant is an invariant of linkoids.

Proof. This follows directly from Theorem 6.7, since B(L) is the only part that
depends on L.

We compute some biquandle counting invariants in the following examples.

Example 6.11. Let K1 be the knotoid in Figure 25a.

(a) K1 (b) K2

Figure 25: Two knotoids with labeled semiarcs

These are the same diagrams we studied in Example 4.7. Now we assigned
a label to every semiarc, instead of every arc. The biquandle relations given by
the crossings are

e = d.b and a = b.d,

c = b.f and e = f.b,

g = f.d and c = d.f.

Here, the two relations in the same line belong to the same crossing in the
diagram. Because a, c and e only appear on the left side of the relations, these
are merely alternative names for the element on the right. So the fundamental
biquandle is

B(K1) = B〈a, b, c, d, e, f, y | rτ for all crossings τ〉
∼= B〈b, d, f | d.b = f.b, b.f = d.f〉
∼= B〈b, f | (f.b).−1b = (b.f).−1f〉.

Let X = {1, 2, 3} be the biquandle with β1 = (12), β2 = (23), β3 = (13) and
α∗ = (123) for all ∗ ∈ X. In other words, X has the following operation tables.
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. 1 2 3
1 2 1 3
2 1 3 2
3 3 2 1

. 1 2 3
1 2 2 2
2 3 3 3
3 1 1 1

Note that α−1
∗ = (132). For x, y, z ∈ X we can check that the relations in B(L)

always hold in X:

(y.x).−1x = α−1
∗ ◦ βx(y) =

{
y if x = y
z 6= x, y if x 6=y

}
= βx ◦ α∗(y) = (y.x).−1x

where z is the third element in X. This means, any choice of two elements
x, y ∈ X gives a biquandle homomorphism ϕ : B(K1) → X by defining ϕ(b) = x
and ϕ(f) = y. In particular, ϕZ

X(K1) = 9.

Example 6.12. Consider the knotoid K2 in Figure 25b. The corresponding
crossing relations with respect to the given labeling are

d = c.b and a = b.c,

c = b.e and d = e.b.

So its fundamental biquandle is given by

B(K2) = B〈a, b, c, d, e | rτ for all crossings τ〉
∼= B〈b, c, e | c.b = e.b, c = b.e〉
∼= B〈b, e | (b.e).b = e.b〉.

Let X be the biquandle above. We will compute ΦZ
X(K2). Therefore, we need

to check for which x, y ∈ X the equation (x.y).x = x.y holds.
If x = y, then (x.x).x = x because β2

x = id, but x.x 6= x. Checking the
remaining six combinations for x, y we obtain the following table.

x y (x.y).x = y.x?
1 2 1 6= 3
1 3 2 6= 1
2 1 1 6= 2
2 3 3 6= 1
3 1 1 6= 2
3 2 2 6= 3

This means, there are no such homomorphisms and the biquandle counting
invariant ΦZ

X(K2) = 0.

The last two examples show in particular that the fundamental biquandle
can distinguish some 1-linkoids that represent the same link. So, unlike quan-
dles, the fundamental biquandle might change under the under forbidden move.

49



This is especially helpful when studying linkoids that can be transformed
into trivial linkoids using only under forbidden-moves. By Lemma 3.23 the
fundamental quandle of these linkoids are free quandles with one generator for
each component. So if we consider the pointed fundamental quandles, then all
basepoints are equal to the corresponding generator of the component, hence
it too cannot carry any information about the linkoid (besides the number of
components).

Figure 26: Twisting move with labeled semiarcs

In the next part we consider the twisting move on two endpoints as in Figure
26 above. Of course a twisting move can only happen in an n-linkoid with
n ≥ 1. If it takes place in a 1-linkoid, this is a fake forbidden move as in Figure
6 together with an R1-move. If it takes place in an n-linkoid with n ≥ 2, then
this can yield a non-equivalent linkoid. We will see some examples for this later
in Example 6.20.

Lemma 6.13. The fundamental biquandle is invariant under the twisting move.

Proof. Let L and L′ be two linkoid diagrams such that L′ can be derived from
L by removing one twist using the twisting move. We can, without loss of
generality, assume the orientation as in Figure 26 and will use its labeling. If we
look at the fundamental biquandles, we see that B(L) has two extra generators,
namely c and d as well as two additional relations, namely c = b.a and d = a.c.
So c and d are labels for elements that are already in the biquandle B(L′).
In other words, the biquandle homomorphism ϕ : B(L) → B(L′) defined as
ϕ(x) = x for all generators x 6= c, d ∈ B(L), ϕ(c) = b.a and ϕ(d) = a.b is an
isomorphism.

If we look at the 2-linkoids in Figure 27 above, we immediately know by
Lemma 6.13 that the three linkoids all isomorphic fundamental biquandles,
namely

B(L1) ∼= B(L2) ∼= B(L3) ∼= B〈a, b〉,

the free biquandle with two generators.

Remark 6.14. Because quandles are a special case of biquandles, Lemma 6.13
shows that the fundamental quandle of a linkoid is also invariant under the
twisting move. But the twisting move can be obtained by an under forbidden
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(a) L1 (b) L2 (c) L3

Figure 27: Three 2-linkoids with isomorphic fundamental biquandle

move. This means, the fact that the fundamental quandle is invariant under
the twisting move is already implied by Lemma 3.23.

6.2 Pointed biquandles
Similar to the definition of pointed quandles in 4.1 we now introduce pointed
biquandles. These are able to detect twisting moves.

Definition 6.15. An n-pointed biquandle X = (X,x1, . . . , xn) is an ordered tu-
ple consisting of a biquandle X together with n elements x1, . . . , xn ∈ X. A ho-
momorphism between two n-pointed biquandles is a biquandle homomorphism
ϕ : (X,x1, . . . , xn) → (Y, y1, . . . , yn) such that ϕ(xi) = yi for all i = 1, . . . , n.
This forms the category of n-pointed biquandles PBqndn.

We use calligraphic letters for pointed biquandles.

Definition 6.16. Let L be an ordered n-linkoid. The fundamental pointed
biquandle of L is the 2n-pointed biquandle

PB(L) := (B(L), l1, h1, . . . , ln, hn),

where li and hi are the labels of the semiarcs attached to the leg and head of
the i-th component of L.

Theorem 6.17. The fundamental pointed biquandle is an invariant of an or-
dered linkoid.

Proof. This follows directly from the fact that Reidemeister moves happen away
from the endpoints. So the biquandle isomorphism between the fundamental
biquandle before and after a Reidemeister move maps the endpoint labels to
endpoint labels and hence is a pointed biquandle isomorphism.

Following our strategy for (pointed) quandles, we count the number of col-
orings for a given pointed biquandle.

Definition 6.18. Let X be a 2n-pointed biquandle and L an n-linkoid. Define
the pointed biquandle counting invariant as

ΦZ
X (L) := |PBqnd2n(PB(L),X )|
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Theorem 6.19. For a given 2n-pointed biquandle, the pointed biquandle count-
ing invariant is an invariant of n-linkoids.

Proof. This is a direct consequence of Theorem 6.17.

Example 6.20. Let L1, L2 and L3 be again the linkoids in Figure 27 and order
the components as the under-passing component first in L1 and L2, and the
left component first in L3. By only using the labels of the end-semiarcs, as in
Figure 28, we see that h1 = l1.(h2.l2) and l2.h2 = (h2.l2).l1 in B(L1).

Figure 28: A 2-linkoid L1 with biquandle labels

For a pointed biquandle homomorphism ϕ : PB(L1) → X to exist, we need
the same relations to hold for X = (X,x1, x2, x3, x4) with respect to its corre-
sponding endpoints.

Let X be the biquandle from Example 6.11. Since α∗ does not depend on
∗ ∈ X, the equations are equivalent to x3 = x4.x3 and x1 = x2.x4. This holds
for example for X1 = (X, 2, 1, 1, 2), since 1 = 2.1 and 2 = 1.2. Now the colors
of the end-arcs determine the coloring completely, so this shows ΦZ

X1
(L1) = 1.

If we consider X2 := (X, 1, 2, 1, 2), then we see that x1 = 1 6= 3 = 2.2 = x2.x4.
So ΦZ

X2
(L1) = 0.

Now consider L2, the second linkoid in Figure 27. Here we have the equa-
tions h1 = l1.l2 and h2 = l2.l1. For X1 we see that x2 = 1 6= 3 = 2.2 = x1.x4,
so ΦZ

X1
(L2) = 0. But for X2 we have 2 = 1.1 and 2 = 1.1, so ΦZ

X2
(L1) = 1.

Lastly, in PB(L3) we have l1 = h1 and l2 = h2, so ΦZ
X1

(L3) = ΦZ
X2

(L3) = 0.
But for X3 = (X, 1, 1, 1, 1) we see that ΦZ

X3
(L3) = 1. Whereas ΦZ

X3
(L1) =

ΦZ
X3

(L2) = 0, since 1.1 = 2 6= 1.

Similar to the concept for pointed quandles, we can collect all pointed bi-
quandle coloring invariants of a linkoid into one matrix.

Definition 6.21. Let L be a 1-linkoid and X = {1, . . . , k} a finite biquandle.
We define the biquandle counting matrix ΦMk

X (L) of L with respect to X as the
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k × k matrix given by (
ΦMk

X (L)
)
i,j

:= ΦZ
(X,i,j)(L).

So the entries are the pointed biquandle counting invariants with respect to
the pointed biquandle with the given basepoints. In particular all entries are
integers.

Theorem 6.22. The biquandle counting matrix is an invariant of 1-linkoids.

Proof. This follows directly from the fact that the pointed biquandle coloring
invariant, that is, every entry in the biquandle counting matrix, is an invariant
of linkoids (6.19).

This definition coincides with the definition of the biquandle counting matrix
in [GN18, Definition 4]. The definition there is only for knotoids and does not
use fundamental quandles or pointed quandles, but explicitly defines the entries
to be the number of colorings (as in, giving labels to each semiarc) with fixed
colors on the end-semiarcs.

Example 6.23. Consider the following two knotoids 517 and 528 in Figure 29
from the knotoid table in [Bar21].

Figure 29: The knotoids 517 and 528

Let X again be the quandle from Example 6.11. Then

ΦM3

X (517) =

3 0 0
0 3 0
0 0 3

 ΦM3

X (528) =

0 1 0
0 0 1
1 0 0

 (1)

as computed in [GN18, Example 6].

7 Discussion
We end the thesis with some open questions that emerged in the thesis and
possible future directions for the research of linkoids.
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(1) Are there 1-linkoids that represent different links but have isomorphic
fundamental quandles?

(2) In our examples of non-equivalent linkoids with isomorphic fundamental
pointed quandle we only considered linkoids that could be transformed
to trivial linkoids using under forbidden moves. Are there other pairs of
linkoids with non-equivalent fundamental quandles? And if so, what can
we say about such a pair?

(3) Computing quandle coloring matrices of 1-linkoids is a hard task when
done as direct computations by hand. There is a lot of potential for
developing tools to compute examples and as well as developing a tool to
compute a list of all n-homogeneouos quandles for some n.

(4) In Section 4.2 we computed a lower bound for the number of isomorphism
classes of n-pointed quandles for a given underlying quandle X. We only
gave the trivial upper bound |X|n. What upper bounds can we find for
this?

(5) In theorem 4.15 we gave a recursive formula for |Xn /Sk|. Is there a direct
formula for this?

(6) We have introduced the forgetful functor Un : PQndn → Qnd in Section
4.1. Is there an adjoint functor of Un?.

References
[AB26] Alexander, J. W. ; Briggs, G. B.: On Types of Knotted Curves.

In: Annals of Mathematics 28 (1926), Nr. 1/4, 562–586. http:
//www.jstor.org/stable/1968399. – ISSN 0003486X

[Bar21] Bartholomew, Andrew: Andrew Bartholomew’s Mathematics
Page. https://www.layer8.co.uk/maths/knotoids/index.htm.
Version: 02 2021. – Accessed: 2023-11-07

[BBHL19] Barbensi, Agnese ; Buck, Dorothy ; Harrington, Heather A. ;
Lackenby, Marc: Double branched covers of knotoids. 2019

[BLRY10] Bunch, Eric ; Lofgren, P. ; Rapp, A. ; Yetter, David: ON quo-
tients of quandles. In: Journal of Knot Theory and its Ramifications
9 (2010), 09. http://dx.doi.org/10.1142/S021821651000839X. –
DOI 10.1142/S021821651000839X

[Car10] Carter, J. S.: A Survey of Quandle Ideas. 2010

[Caz22] Cazet, Nicholas: The shadow quandle cocycle invariant of knotoids.
2022

54

http://www.jstor.org/stable/1968399
http://www.jstor.org/stable/1968399
https://www.layer8.co.uk/maths/knotoids/index.htm
http://dx.doi.org/10.1142/S021821651000839X


[CDS16] Clark, W. E. ; Dunning, Larry A. ; Saito, Masahico: Computa-
tion of quandle 2-cocycle knot invariants without explicit 2-cocycles.
http://dx.doi.org/10.48550/ARXIV.1607.04348. Version: 2016

[CESY14] Clark, W. E. ; Elhamdadi, Mohamed ; Saito, Masahico ; Yeat-
man, Timothy: Quandle colorings of knots and applications. In:
Journal of Knot Theory and Its Ramifications 23 (2014), may, Nr.
06, 1450035. http://dx.doi.org/10.1142/s0218216514500357. –
DOI 10.1142/s0218216514500357

[CHMS19] Crans, Alissa S. ; Hoste, Jim ; Mellor, Blake ; Shanahan,
Patrick D.: Finite n-quandles of torus and two-bridge links. 2019

[CJK+01] Carter, J. S. ; Jelsovsky, Daniel ; Kamada, Seiichi ; Langford,
Laurel ; Saito, Masahico: Quandle Cohomology and State-sum
Invariants of Knotted Curves and Surfaces. 2001

[CN18] Cho, Karina ; Nelson, Sam: Quandle Coloring Quivers. http:
//dx.doi.org/10.48550/ARXIV.1807.10465. Version: 2018

[CSV16] Clark, W. E. ; Saito, Masahico ; Vendramin, Leandro: Quan-
dle coloring and cocycle invariants of composite knots and abelian
extensions. In: Journal of Knot Theory and Its Ramifications
25 (2016), apr, Nr. 05, 1650024. http://dx.doi.org/10.1142/
s0218216516500243. – DOI 10.1142/s0218216516500243

[EMRL10] Elhamdadi, Mohamed ; Macquarrie, Jennifer ; Re-
strepo López, Ricardo: Automorphism groups of Quan-
dles. In: Journal of Algebra and Its Applications 11 (2010),
12. http://dx.doi.org/10.1142/S0219498812500089. – DOI
10.1142/S0219498812500089

[EN15] Elhamdadi, M. ; Nelson, S.: Quandles: An Introduction to the
Algebra of Knots. American Mathematical Society, 2015 (Student
Mathematical Library). – ISBN 9781470422134

[FJSK04] Fenn, Roger ; Jordan-Santana, Mercedes ; Kauffman,
Louis: Biquandles and virtual links. In: Topology and
its Applications 145 (2004), Nr. 1, 157-175. http://dx.doi.
org/https://doi.org/10.1016/j.topol.2004.06.008. – DOI
https://doi.org/10.1016/j.topol.2004.06.008. – ISSN 0166–8641

[FR92] Fenn, Roger ; Rourke, Colin: Racks and Links in Codi-
mension Two. In: Journal of Knot Theory and Its Ramifica-
tions 01 (1992), Nr. 04, 343-406. http://dx.doi.org/10.1142/
S0218216592000203. – DOI 10.1142/S0218216592000203

[GG22] Gabrovšek, Boštjan ; Gügümcü, Neslihan: Invariants of
multi-linkoids. http://dx.doi.org/10.48550/ARXIV.2204.11234.
Version: 2022

55

http://dx.doi.org/10.48550/ARXIV.1607.04348
http://dx.doi.org/10.1142/s0218216514500357
http://dx.doi.org/10.48550/ARXIV.1807.10465
http://dx.doi.org/10.48550/ARXIV.1807.10465
http://dx.doi.org/10.1142/s0218216516500243
http://dx.doi.org/10.1142/s0218216516500243
http://dx.doi.org/10.1142/S0219498812500089
http://dx.doi.org/https://doi.org/10.1016/j.topol.2004.06.008
http://dx.doi.org/https://doi.org/10.1016/j.topol.2004.06.008
http://dx.doi.org/10.1142/S0218216592000203
http://dx.doi.org/10.1142/S0218216592000203
http://dx.doi.org/10.48550/ARXIV.2204.11234


[GK17] Gügümcü, Neslihan ; Kauffman, Louis H.: New in-
variants of knotoids. In: Eur. J. Comb. 65 (2017), S.
186–229. http://dx.doi.org/10.1016/j.ejc.2017.06.004. –
DOI 10.1016/j.ejc.2017.06.004. – ISSN 0195–6698

[GN18] Gügümcü, Neslihan ; Nelson, Sam: Biquandle Coloring Invariants
of Knotoids. http://dx.doi.org/10.48550/ARXIV.1803.11308.
Version: 2018

[Hor20] Horvat, Eva: Constructing biquandles. In: Fundamenta Mathe-
maticae 251 (2020), Nr. 2, 203–218. http://dx.doi.org/10.4064/
fm715-12-2019. – DOI 10.4064/fm715–12–2019

[IIK+17] Ishii, Atsushi ; Iwakiri, Masahide ; Kamada, Seiichi ; Kim, Jieon
; Matsuzaki, Shosaku ; Oshiro, Kanako: A multiple conjugation
biquandle and handlebody-links. 2017

[Joy82] Joyce, David: A classifying invariant of knots, the knot quandle.
In: Journal of Pure and Applied Algebra 23 (1982), S. 37–65

[Kau98] Kauffman, Louis H.: Virtual Knot Theory. In: Eur. J. Comb. 20
(1998), 663-691. https://api.semanticscholar.org/CorpusID:
5993431

[KR01] Kauffman, Louis H. ; Radford, David E.: Bi-oriented Quantum
Algebras, and a Generalized Alexander Polynomial for Virtual Links.
2001

[Mat84] Matveev, Sergei: DISTRIBUTIVE GROUPOIDS IN KNOT THE-
ORY. In: Mathematics of The Ussr-sbornik 47 (1984), 73-83.
https://api.semanticscholar.org/CorpusID:56069452

[Mol22] Moltmaker, Wout: Framed Knotoids and Their Quantum
Invariants. In: Communications in Mathematical Physics 393
(2022), Juni, Nr. 2, 1035–1061. http://dx.doi.org/10.1007/
s00220-022-04382-1. – DOI 10.1007/s00220–022–04382–1. – ISSN
1432–0916

[Nel02] Nelson, Sam: Classification of Finite Alexander Quandles.
(2002). http://dx.doi.org/10.48550/ARXIV.MATH/0202281. –
DOI 10.48550/ARXIV.MATH/0202281

[NOR15] Nelson, Sam ; Orrison, Michael E. ; Rivera, Veronica: Quantum
Enhancements and Biquandle Brackets. http://dx.doi.org/10.
48550/ARXIV.1508.06573. Version: 2015

[Nos11] Nosaka, Takefumi: On homotopy groups of quandle spaces
and the quandle homotopy invariant of links. In: Topology and
its Applications 158 (2011), Nr. 8, 996-1011. http://dx.doi.
org/https://doi.org/10.1016/j.topol.2011.02.006. – DOI
https://doi.org/10.1016/j.topol.2011.02.006. – ISSN 0166–8641

56

http://dx.doi.org/10.1016/j.ejc.2017.06.004
http://dx.doi.org/10.48550/ARXIV.1803.11308
http://dx.doi.org/10.4064/fm715-12-2019
http://dx.doi.org/10.4064/fm715-12-2019
https://api.semanticscholar.org/CorpusID:5993431
https://api.semanticscholar.org/CorpusID:5993431
https://api.semanticscholar.org/CorpusID:56069452
http://dx.doi.org/10.1007/s00220-022-04382-1
http://dx.doi.org/10.1007/s00220-022-04382-1
http://dx.doi.org/10.48550/ARXIV.MATH/0202281
http://dx.doi.org/10.48550/ARXIV.1508.06573
http://dx.doi.org/10.48550/ARXIV.1508.06573
http://dx.doi.org/https://doi.org/10.1016/j.topol.2011.02.006
http://dx.doi.org/https://doi.org/10.1016/j.topol.2011.02.006


[Pol10] Polyak, Michael: Minimal generating sets of Reidemeister moves.
2010

[Rei27] Reidemeister, Kurt van: Elementare Begründung der Knotenthe-
orie. In: Abhandlungen aus dem Mathematischen Seminar der Uni-
versität Hamburg 5 (1927), 24-32. https://api.semanticscholar.
org/CorpusID:120149796

[TAM13] TAMARU, Hiroshi: Two-point homogeneous quandles with prime
cardinality. In: Journal of the Mathematical Society of Japan 65
(2013), oct, Nr. 4. http://dx.doi.org/10.2969/jmsj/06541117.
– DOI 10.2969/jmsj/06541117

[Tur10] Turaev, Vladimir: Knotoids. In: Osaka Journal of Mathematics
49 (2010), 02

[Win11] Winker, Steven: Quandles knot invariants and the N-fold branched
cover. (2011), 05

57

https://api.semanticscholar.org/CorpusID:120149796
https://api.semanticscholar.org/CorpusID:120149796
http://dx.doi.org/10.2969/jmsj/06541117

	Introduction
	Fundamental notions of knots and linkoids
	A review on quandles
	Basic quandle definitions
	Combinatorial definition of the fundamental quandles of a link
	Geometric definition of the fundamental quandle of a link
	The fundamental quandle of a linkoid

	Pointed quandles
	Introduction of n-pointed quandles
	Isomorphism classes of pointed quandles
	n-homogeneous quandles
	Pointed quandle counting invariant and quandle counting matrix

	Cohomology and the quandle 2-cocycle invariant
	Review of quandle (co-)homology
	Quandle 2-cocycle invariant

	Biquandles for links and linkoids
	Review on biquandles
	Pointed biquandles

	Discussion

