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I. List of Figures  

Extended summary figures: 

ES Figure 1. The flux theme of the basic glucose metabolism divided into glycolysis (r1 to r5), tricarboxylic acid 

circle (TCA, r6 – r7), gluconeogenesis (r14 – r17) and pentose phosphate pathway (PPP, r9 – r12) 

ES Figure 2. Three levels of post-genomic biochemical regulation: (1) transcriptome, (2) proteome and (3) 

metabolome complemented with metabolic flux modelling. 

ES Figure 3. Overview of the degradation sequence from the intact (S0) to severely degraded (S5) stage. 

ES Figure 4. Microcosm lab experiment conducted in air-tight 100 ml glass bottles with 25 g of agricultural soil 

incubated with treatment solutions containing glucose (None, Low and High) and nutrients (None 

and N+P) and labelled with uniformly and position-specific glucose tracers in 4 replicates. Destructive 

sampling at 0, 24 and 96 h (times marked above the time scale) and 13CO2 measurements over the 

course of the experiment (times marked below the time scale). 

ES Figure 5. NMDS (non-metric multidimensional scaling) plots derived from Illumina MiSeq sequencing data 

of the bacterial (A) and fungal (B) communities along degradation stages. Shaded areas mark each 

degradation stage, symbols indicate soil depth, and blue arrows show significantly correlated abiotic 

factors (by CCA, canonical-correlation analysis). 

ES Figure 6. Correlation between the metatranscriptome and metaproteome metabolic processes. Only 

significant correlations are displayed, and R values are indicating their positive or negative 

relationships. 

 

Studies 1 – 4 figures: 

S1 Figure 1. Changes in soil characteristics with depth according to degradation stage. A soil organic carbon 

(SOC) core study site, B SOC literature study, C total nitrogen (N) core study site, D total N literature 

study, E bulk density (BD) core study site, F BD literature study, G clay content core study site. All 

parameters are presented for each soil horizon at the midpoint of the depth increment. Error bars 

display standard error. Exact data are provided in Supplementary Table 2. 

S1 Figure 2. Changes in soil characteristics with depth according to degradation stage. A Penetration resistance, 

B root density, C δ13C of soil and roots, D δ13C of soil organic carbon (SOC), E content of lignin 

monomers vanillyl, syringyl, and cinnamyl (VSC). All parameters (means ± SE, n = 4) are presented 

for each soil horizon at depth midpoint, except for penetration resistance (A) and δ13C values of soil 

and roots (C), which are shown in 1 and 5 cm increments, respectively. Exact data are given in 

Supplementary Table 2. Progressive changes along the degradation sequence can be explained by 

the following processes: (a) root-mat cracking by desiccation and frost, (b) root death and 

decomposition, (c) kinetic 13C fractionation during root decomposition, (d) SOC loss due to reduced 
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root carbon (C) input and greater SOC mineralization, (e) relative lignin accumulation and 13CSOC 

depletion (S0–S3), (f) relative lignin accumulation during stages S0–S3, (g) lignin degradation and 

13CSOC enrichment (S4, S5). 

 

S1 Figure 3. Overview of generalized changes in microbial community composition and functioning along the 

degradation sequence from intact (S0) to severely degraded (S5) stage. Generalized changes in 

microbial community composition and enzyme activities (A). Simplified non-metric multidimensional 

scaling (NMDS) plots derived from terminal restriction fragment length polymorphism (t-RFLP) data 

for the bacterial (B) and fungal (C) communities. Shaded areas mark each degradation stage, symbols 

indicate soil depth, and arrows show most important driving factors (canonical correspondence 

analysis, p < 0.05). Individual variables underlying the processes described by the blue and red arrows 

are shown in Supplementary Fig. 6. 

S1 Figure 4. Soil organic carbon (SOC) stocks and losses with increasing degradation. Total SOC stocks along the 

degradation sequence (S0–S5) down to 30 cm for each horizon (A). SOC losses by erosion and by 

reduced C input and increased SOC mineralization (B) during degradation (S1–S5). Lowercase letters 

indicate significant differences in SOC stocks between degradation stages. The absence of significant 

differences (n.s.) between quantified total SOC losses (red outline) and the calculated sum of 

erosion- and mineralization-induced SOC losses confirms the validity of the estimations. Error bars 

display standard error. 

S1 Figure 5. Overview of the degradation sequence from the intact (S0) to severely degraded (S5) stage, 

showing the driving forces of degradation. Polygons describe main biotic and abiotic degradation 

mechanisms with a focus on soil organic carbon (SOC) pools, in accordance with the hypotheses. The 

white/red scale on the left shows a soil depth of 30 cm in 5 cm increments. 

 

S2 Figure 1. Relative abundances of metabolic processes related to glycolysis, pentose phosphate pathway 

(PPP), gluconeogenesis and tricarboxylic acid cycle (TCA) in the metatranscriptome and 

metaproteome. Significant differences of the posthoc Tukey HSD are indicated with small letters 

(emmeans ANOVA, p < 0,05)  

S2 Figure 2. Ratios of Phi (φ) and Rho (ρ). Significant differences of the posthoc Tukey HSD are indicated with 

small letters (emmeans ANOVA, p < 0,05)  

S2 Figure 3. Relative abundances of metabolic processes related to storage compounds PHB and NLFA. 

Significant differences of the posthoc Tukey HSD are indicated with small letters (emmeans 

ANOVA, p < 0,05)  

S2 Figure 4. Correlations between relative abundances of the metatranscriptome and metaproteome of the 

metabolic processes glycolysis, pentose phosphate pathway (PPP), gluconeogenesis and 

tricarboxylic acid cycle (TCA). 
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S2 Figure 5. Correlation between the metabolic processes in the metatranscriptome (A) and metaproteome 

(B). Only significant correlations are displayed, and R values are indicating their positive or negative 

relationships. 

S2 Figure 6. Correlation between the metatranscriptome and metaproteome metabolic processes. Only 

significant correlations are displayed, and R values are indicating their positive or negative 

relationships. 

 

S3 Figure 1. A: The flux theme of the basic glucose metabolism divided into glycolysis (r1 to r5), tricarboxylic 

acid circle (TCA, r6 – r7), gluconeogenesis (r14 – r17) and pentose phosphate pathway (PPP, r9 – 

r12); B and C: flux model sensitivity for storage compound formation represented in three levels 

of flux into br5 (10, 30, 50%) and set parameters for a mean br1 flux at 2.2 and two levels of fluxes 

into PPP at 10% (B) and 90% (C). 

S3 Figure 2. Labelled CO2 efflux depending on glucose and nutrient amendment over the curse of the 

experiment. Data points represent arithmetic means and error bars standard error of the mean. 

S3 Figure 3. Comparison of both flux model outcomes excluding (left) and allowing for (right) storage 

compound formation. Relative C fluxes into representative metabolic processes: 𝜑 (phi) 

representing the C flux partitioning between glycolysis and PPP towards PPP, br1 as representative 

flux for biomass formation (letters indicate significant differences p < 0.05, Kruskal-Wallis) and br5 

as sum of the biomass formation and storage compound formation starting from Acetyl-CoA 

(Kruskal- Wallis test). Significant differences between models with and without storage compound 

formation (t-test, see suppl. table 2) are indicated with *. 

S3 Figure 4. Relative C flux into storage compound synthesis (see equation 3). Letters a-c indicate significant 

differences determined by Kruskal-Wallis test. 

 

S4 Figure 1. Time-series of the CO2 efflux from soil microcosms. A Total CO2 efflux following addition of a 

readily degradable 13C-labelled carbon source (glucose at 0, 90, and 400 μg C g−1 soil) with or 

without mineral nutrient supply (N, P, K, S). Each point reflects the average rate of CO2 efflux at 

the mid-point of the sampling interval. B Percent of total CO2 derived from the added glucose. Error 

bars show standard deviation (n = 4 independent soil microcosms). 

S4 Figure 2. Response of soil microbial storage to organic carbon and nutrient supply. Storage compounds 

PHB A, B and TAGs C, D in soil 24 h A, C, and 96h B, D after addition of a readily degradable, 13C-

labelled carbon source (glucose at 0, 90 and 400 μg C g−1 soil) with or without mineral nutrient 

supply (ntr.; N, P, K, S). The source of the stored C is shown in contrasting colors as determined by 

isotopic composition, with light grey error bars reflecting mean ± standard deviation of the relative 

composition. Black error bars show mean ± standard deviation of the total storage compound 

pools, while color bar heights show medians, as used in the robust analysis of medians (n = 4 
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independent soil microcosms, except for 1 treatment in each of TAGs and PHB where n = 3). 

Lowercase letters above the plots show post-hoc differences in total storage with p < 0.05 (2-sided 

pairwise comparison of medians with Benjamini-Hochberg adjustment for multiple comparisons). 

S4 Figure 3. Extractable soil microbial biomass determined by chloroform fumigation-extraction. A 24 h and 

B 96 h after addition of a readily degradable, 13C-labelled carbon source (glucose at 0, 90, and 400 

μg C g−1 soil) with or without mineral nutrient supply (ntr.; N, P, K, S). The heights of the bars 

represent the mean ± standard deviation as black error bars (n = 4 independent soil microcosms 

except for one treatment with n = 3: zero glucose, no nutrients at 96 h). Contrasting colors reflect 

the source of the extractable biomass as determined by isotopic composition, with light grey error 

bars showing mean ± standard deviation of the relative composition. Lowercase letters above the 

plots show post-hoc differences in mean total storage with p < 0.05 (2-sided Tukey HSD test, which 

adjusts for multiple comparisons). Corresponding C:N ratios are presented in Supplementary Fig. 

S3. 

S4 Figure 4. Comparison of new storage biosynthesis with DNA-based microbial growth reveals storage as a 

substantial, overlooked component of biomass growth in soil. 13C-labelled storage compound 

synthesis (PHB and TAGs) and DNA-based growth (incorporation of 18O) were measured in soil 24 

A and 96 h B after addition of a readily degradable, 13C-labelled carbon source (glucose at 0, 90, 

and 400 μg C g−1 soil) with or without mineral nutrient supply (ntr.; N, P, K, S). Error bars represent 

mean ± standard deviation in each component of the stacked bar (n =4 independent soil 

microcosms). Lowercase letters above the plots show post-hoc differences in total observed 

growth with p < 0.05 (2-sided Tukey HSD test, which adjusts for multiple comparisons). 

S4 Figure 5. Intracellular storage represents an alternative pathway for growth of microbial biomass. In this 

conceptual figure the y-coordinates reflect the measured incorporation of added C into storage 

after 96 h, and the x-axis represents replicative growth measured by 18O incorporation into DNA 

(see also Fig. 4). According to contemporary assumptions, all growth should follow the 

stoichiometric growth curve that maintains constant element ratios in the biomass (dashed line to 

the right). The microbial population is shown schematically by bacterial cells, with yellow lipid 

inclusion bodies representing storage. Without C supply, only low levels of replicative growth occur 

A. Low C additions (with ample nutrients) stimulate replicative growth and limited C incorporation 

into storage B, with the ratio of new storage to non-storage biomass staying close to that predicted 

by assuming constant biomass stoichiometry. High C addition with complementary nutrients 

stimulates both strong replicative growth as well as disproportionately large storage synthesis C, 

moderately violating the stoichiometric assumption. However, nutrient limitation switches growth 

strongly towards storage D, incorporating C into biomass with little replicative growth, closer to 

the extreme case of pure storage without replication than the assumption of stoichiometric 

growth.  
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Supplementary Figures 

S1 Suppl. Fig. 1. Selected examples of polygonal cracking and extension on the Tibetan Plateau (TP). Red dots 

show locations of polygonal cracks based on observations during field trips on the TP and the 

Himalayas between 1982 and 2015. The map reflects the widespread distribution of this specific 

degradation phenomenon, but not its actual distribution or intensity. Photo credits: E. Seeber (1, 

2), G. Miehe (3–5, 9, 11, 12), P.-M. Schleuss (6–8) and R. Bäumler (10). Cartography: C. Enderle. 

S1 Suppl. Fig. 2. Effect sizes of SOC (soil organic carbon) content, total nitrogen (TN) content and soil bulk 

density (BD) for degradation stages S1 to S4 compared to non-degraded pastures (S0). The 

percentage value at the top shows the average effect size of the four degradation stages (meta-

analysis including 594 single observations from literature studies published between 2002 and 

2020, error bars display standard error). 

S1 Suppl. Fig. 3. Changes in particle size distribution for each soil horizon at each degradation stage. The soil 

texture was measured for each soil horizon (Ah2, Ah3, Ah4, Bwg), except for the densely rooted 

and thin Ah1 horizon, with low amounts of mineral soil. Circled in blue are the “protected horizons” 

having an overlying horizon. Circled in red are the upper soil horizons, which are prone to erosion 

processes and shift toward a coarser soil texture. 

S1 Suppl. Fig. 4. Relationship between soil organic carbon (SOC) density and root density for all soil horizons 

at each degradation stage. Linear regression covers degradation stages S0 to S3. At degradation 

stages S4 and S5, SOC density is independent of root density and represents remnant SOC. 

S1 Suppl. Fig. 5. Relationship between δ13C values and (A) content of lignin monomers vanillyl, syringyl, and 

cinnamyl (VSC) or (B) soil organic carbon (SOC) content in the Ah3 horizon for each degradation 

stage. The pattern along the degradation sequence can be explained by the following processes: 

(1) decreasing SOC concentrations associated with a relative accumulation of lignin and an 

associated decrease in δ13CSOC values (S0–S3) and (2) decreasing SOC concentrations associated 

with lignin degradation and 13CSOC enrichment (S4, S5). 

S1 Suppl. Fig. 6. : NMDS (non-metric multidimensional scaling) plots derived from t-RFLP data for the bacterial 

(A) and fungal (B) communities. Shaded areas mark each degradation stage, symbols indicate soil 

depth, and blue arrows show significantly correlated abiotic factors (canonical correspondence 

analysis, p < 0.05). Red arrows mark key structural shifts of the microbial community.  

S1 Suppl. Fig. 7. Relative abundance of key microbial functional groups. Shifts are indicated by red arrows for 

the lowest depth, representing the complete range of degradation stages (S0–S5): (1) decline of 

bacterial (A) and fungal (G) litter degraders, (2) increase in bacterial (D) and fungal (F) litter 

degraders, (3) increase in nitrifying (B, C) and denitrifying (E) bacteria, (4) increase in arbuscular 

mycorrhizal fungi (AMF) until S2 (H), (6) which are then replaced by ectomycorrhizal fungi (ECM) 

(I); (7) ECM decline toward S5 (I) as new plants with new AMF (5) become established after 

Kobresia pygmaea disappears (H). Key enzyme activities (J) reflect shifts in microbial community 

functions from hydrolytic to oxidative soil organic carbon (SOC) decomposition. 
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S1 Suppl. Fig. 8. 8: NMDS (non-metric multidimensional scaling) plots derived from Illumina MiSeq 

sequencing data of the bacterial (A) and fungal (B) communities along degradation stages. 

Shaded areas mark each degradation stage, symbols indicate soil depth, and blue arrows show 

significantly correlated abiotic factors (by CCA, canonical-correlation analysis). 

S1 Suppl. Fig. 9. Heat map of the bacterial community along degradation stages (soil depth 15–35 cm). Shades 

of color indicate abundance of bacterial phyla as z-values. 

S1 Suppl. Fig. 10. Heat map of the fungal community along degradation stages (soil depth 15–35 cm). Shades 

of color indicate abundance of fungal phyla as z-values. 

S1 Suppl. Fig. 11. Relative abundance of bacterial (A) and fungal (B) phyla found along the degradation 

sequence (soil depth 15–35 cm). Phyla amounting to less than 0.5% were grouped as ‘rare taxa’. 

S1 Suppl. Fig. 12. Enzyme activities of carbon-hydrolyzing enzymes (A, B), lignin-oxidizing enzyme (C), and 

enzymes hydrolyzing nitrogen (D) and phosphorus (E) compounds. Significant differences (p < 

0.05) from Kruskal–Wallis and Dunn’s tests (Holm’s p adjustment) indicated with lowercase letters 

(a, b). Error bars display standard error. 

 

S3 Suppl. Fig.1. Glucose position C2 and C3 comparison whether either pentose phosphate pathway (PPP) or 

Entner–Doudoroff pathway (ED) are active. For the treatments of low glucose without nutrients 

(L-, A), low glucose with nutrients (L+, B), high glucose without nutrients (H-, C) and high glucose 

with nutrients (H+, D) after 24 h. 

S3 Suppl. Fig.2. Glucose position C2 and C3 comparison whether either pentose phosphate pathway (PPP) or 

Entner–Doudoroff pathway (ED) are active. For the treatments of low glucose without nutrients 

(L-, A), low glucose with nutrients (L+, B), high glucose without nutrients (H-, C) and high glucose 

with nutrients (H+, D) after 96 h. 

 

S4 Suppl. Fig. 1. Dissolve nitrogen and C:N ratio. Dissolved nitrogen after 24 h (A) and 96 h (B) following addition 

of glucose at 0, 90 and 400 μg C g-1 soil (Zero, Low, High) with or without mineral nutrient supply 

(N, P, K, S), and the corresponding dissolved C:N ratio (dissolved organic C to total dissolved N) at 

the corresponding timepoints (C and D). Error bars show mean ± standard deviation, with n = 4 

independent soil microcosms. Different letters above the plots indicate significant differences with 

p < 0.05 (2-sided Tukey HSD test on log-transformed values, which adjusts for multiple 

comparisons). 

S4 Suppl. Fig. 2. Dissolved organic carbon. Organic carbon extractable into 0.5 M K2SO4 after 24 h (A) and 96 h (B) 

following addition of glucose at 0, 90 and 400 μg C g-1 soil (Zero, Low, High) with or without mineral 

nutrient supply (N, P, K, S). Contrasting colors reflect the source of the extractable biomass as 

determined by isotopic composition, with light gray error bars showing mean ± standard deviation 

of the relative composition. Black error bars show mean ± standard deviation of the total. Different 
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letters above the plots indicate significant differences in total DOC with p < 0.05 (2-sided Tukey 

HSD test on log-transformed values, which adjusts for multiple comparisons), with n = 4 

independent soil microcosms. 

S4 Suppl. Fig. 3. C:N ratio of extractable microbial biomass. (A) 24 h and (B) 96 h after glucose and/or nutrient 

addition to soil microcosms. Error bars show mean ± standard deviation, with n = 4 independent 

soil microcosms, except for one treatment n = 3 (zero glucose, no nutrients at 96 h). 

S4 Suppl. Fig. 4. Fatty acid profile of glucose-derived TAGs. (A) 24 h and (B) 96 h following addition of glucose at 

0, 90 and 400 μg C g-1 soil (Zero, Low, High) with or without mineral nutrient supply (N, P, K, S). The 

diagnostic bacterial biomarker 16:1ω6 (highlighted blue on the horizontal axis) and fungal 

biomarker 18:2ω6 (highlighted in green) showed substantial incorporation of glucose-derived C. 

Error bars show mean ± standard deviation, with n = 4 independent soil microcosms. Note that the 

vertical axis scale varies between glucose treatments. 

S4 Suppl. Fig. 5. Total soil content of fungal biomarker TAG 18:2ω6. (A) 24 h and (B) 96 h following addition of 

glucose at 0, 90 and 400 μg C g-1 soil (Zero, Low, High) with or without mineral nutrient supply (N, 

P, K and S). Error bars show mean ± standard deviation, with n = 4 independent soil microcosms. 

Lowercase letters above the plots show post-hoc differences with p<0.05 (2-sided pairwise 

comparison of medians with Benjamini-Hochberg adjustment for multiple comparisons). 
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IV. Summary 

Soil functions are key in all ecosystems globally. Specifically soils play a pivotal role in ecosystem 

biogeochemical cycles, sequestering but also mineralizing carbon (C), and in this context releasing 

nutrients from the soil organic matter (SOM). This thesis aims to improve our understanding of key soil 

microbial functions involved in C and nutrient cycling, starting with a case study from a grassland 

ecosystem where degradation induces massive C losses and by that shifts in C and nutrient 

stoichiometry, which induce cascading effects of the interaction of microbes and plants with C and 

nutrient cycling. This relation of key microbial functions to element stoichiometry is then further 

deepened in a laboratory study to generate a more holistic understanding on the control of the 

microbial metabolism by C and nutrient availability. 

About 2.5 % of global soil organic carbon (SOC) are stored in Tibetan Plateau’s Kobresia pygmaea 

grasslands. Topsoil degradation due to climate change and overgrazing with life stock led to a 

substantial loss in SOC and nitrogen (N), both vital elements for the flora and fauna. The erosion and 

depletion of C sources due to decreased C input and increased C mineralization forced a shift of the 

taxonomic composition of the microbial community and in consequence the enzymatic activities 

expressed. This led to a change in microbial functions from the utilization of hydrolytic enzymes 

towards enzymes capable of oxidizing the remaining recalcitrant SOM, being the initial step of the 

second phase of degradation of the pasture’s root mats and thereby removing Kobresia’s ability to 

further grow on the degraded sites. As the key switch towards oxidizing enzymes is controlled by 

microbial C and nutrient deficiency, further laboratory experiments were needed to elucidate the 

response of the microbial metabolism on such stoichiometric shifts. Especially deepened insights into 

the base C metabolism help to understand changes in soil microorganisms’ growth modes, the key 

feature of predicting their C and nutrient demand: (1) Under which conditions is the available soil C 

sufficient to invest into the formation of new biomass? (2) How does a natural soil microbial 

community react when C sources are scare or plentiful? (3) Under which conditions do they “merely” 

invest into the formation of storage compounds and not into growth? (4) How does nutrient availability 

in this context interact with C availability? To answer these research questions, it is necessary to also 

understand the regulatory processes from the transcription of base C metabolism genes towards the 

translation to actual proteins and to trace the C fluxes of the soil microbial metabolism.  

The samples from the field experiment in Tibet were analyzed using terminal restriction fragment 

length polymorphism (t-RFLP) and Illumina MiSeq sequencing to elucidate the microbial community 

structure. In addition, the enzyme activity of SOM degrading enzymes and N cycling related 

exoenzymes were measured. The research question regarding regulatory processes in the C 
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metabolism would have been impossible to be answered in a field experiment, therefore the key 

questions were targeted by a laboratory experiment with natural agricultural soil. Under controlled 

laboratory conditions it was possible to manipulate the glucose amounts by adding low and high 

concentrations of glucose and N and phosphate (P) as nutrients. Over the course of the experiment of 

96 h, microcosms were harvested after 24 and 96 hours for the measurements of phospho- (PLFA) and 

neutral lipid fatty acids (NLFA), polyhydroxybutyrate (PHB), microbial biomass carbon (MBC), the 

metatranscriptome and metaproteome. For 13C flux modelling, the glucose treatment solutions were 

also treated with uniformly and position-specifically labelled glucose and 13CO2 respiration was 

measured in time intervals.  

The degradation of the Kobresia pastures and the loss of the topsoil layer led to a shift in the microbial 

community structure especially in their mycorrhizal partners. As Kobresia pygmeae was first associated 

with arbuscular mycorrhizal fungi, the increasing severity of the degradation then led to a shift towards 

an association of Kobresia with ectomycorrhizal fungi. Furthermore, the bacterial community shifted 

towards species capable of degrading complex SOM and nitrifying bacteria further depleting the 

nutrient stocks on the plateau. The underlying regulatory change in microbial C metabolism of this shift 

were revealed by the laboratory experiment with reduced C availability in the agricultural soil: 

Metabolic flux modelling suggests that C fluxes were primarily directed into the catabolic glycolysis 

rather than the anabolic pentose phosphate pathway (PPP) in low glucose concentrations. After 

glycolysis, the C fluxes from acetyl-CoA usually enter the strongly catabolic tricarboxylic acid cycle 

(TCA), where the most energy can be generated. However, flux modelling also detected that from 

acetyl-CoA the C fluxes were directed towards storage compound formation in low glucose conditions. 

This hints towards a reserve storage strategy by the microbial community, which was supported by 

triacylglycerols (TAG) storage compound extraction. In contrast, the direct measurement of the 

storage compound metabolite PHB revealed a strong contribution to the formation of biomass under 

glucose excess conditions, a surplus storage strategy. So that both storage compounds fulfill different 

roles in microbial communities’ growth modes. The strong negative relationship between the TCA cycle 

and storage pathways in the metatranscriptome and metaproteome also underlined the importance 

of storage compound formation, which is a C resource of intermediate microbial availability, not 

contributing to the long-term SOC storage of an ecosystem. 

In conclusion, environmental changes such as climate change or anthropogenic induced degradation 

often exert unfavorable consequences on the soil microbial communities by shifting their structural 

composition and their functioning with implication on various scales. C availability and contents play a 

major role rather than other nutrients in the regulatory processes on the post-genomic levels, as C is 

the most restrictive growth factor in soils for bacteria and fungi. The formation of storage compounds 
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seems to play a much bigger role in soil C cycling than anticipated before. Well-established molecular 

biology methods on the genome level can give a broad overview of the microbial community structure 

and – by some extend – of their potential function, but only the combination of metatranscriptomics, 

metaproteomics and meta-fluxomics in multi-meta-omics approaches will help broaden the insight 

into the microbial metabolism and deepen the understanding of microbial responses on environmental 

changes. However, transcription, translation, and the direction of C fluxes towards energy production, 

replicative growth or storage compound biosynthesis are not always coherent between the post-

genomic levels. Therefore, the interpretation of regulatory processes remains a complex and difficult 

endeavor in natural microbial environments but harbor the possibility of a more profound 

understanding of the microbial C metabolism if further deepened in comparative, time-resolved 

approaches. By that, microbial feedbacks within degradation cascades can be revealed and potential 

mitigation strategies elaborated.  
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V. Zusammenfassung 

Bodenfunktionen haben global eine enorme Wichtigkeit in allen Ökosystemen, insbesondere spielen 

Böden eine entscheidende Rolle in ökosystemweiten biogeochemischen Stoffkreisläufen, beim 

Speichern aber auch Mineralisieren von Kohlenstoff (C) und damit zusammenhängend beim Freisetzen 

von Nährstoffen aus der organischen Bodensubstanz (soil organic matter, SOM). In dieser Dissertation 

soll unser Verständnis der Schlüsselfunktionen des Bodens im C- und Nährstoffkreislauf verbessert 

werden. Der Fokus liegt dabei auf einer Feldstudie aus einem Graslandökosystem, wo Veränderungen 

der Stöchiometrie einem Degradationsprozess unterliegen. Dies hat Konsequenzen für die 

Interaktionen der Bakterien und Pilze, sowie ihren C- und Nährstoffkreisläufen. Die Beziehung 

zwischen mikrobiellen Schlüsselfunktionen zur Stöchiometrie wird danach durch ein Laborexperiment, 

in welchem ein ganzheitliches Verständnis der Regulation des mikrobiellen Metabolismus durch C- und 

Nährstoffverfügbarkeit generiert werden soll, weiter vertieft. 

Das Tibetische Hochland speichert 2,5% des weltweiten bodengebundenen organischen Kohlenstoffs 

(soil organic carbon, SOC) in seinen Kobresia pygmaea Graslandschaften. Die Degradation des 

Oberbodens, welche durch den Klimawandel und Überweidung mit Nutztieren hervorgerufen wird, 

führt zu einem substanziellen Verlust des SOC und Stickstoffs (N), beide lebensnotwendige Elemente 

für Flora und Fauna. Die Erosion und der Schwund der C Quellen durch den verminderten C-Eintrag 

und erhöhte C-Mineralisierung erzwingt einen Wechsel in der taxonomischen Zusammensetzung der 

mikrobiellen Gemeinschaft und in der Konsequenz eine Veränderung der Enzymaktivitäten. Dies führt 

zu einer Verlagerung der mikrobiellen Funktionen von der Verwendung von hydrolytischen Enzymen 

hin zu Enzymen, die zur Oxidierung von verbleibender persistenter organischen Bodensubstanz in der 

Lage sind. Dies ist der initiale Schritt der zweiten Phase der Degradation der Wurzelmatten des 

Graslandes und verhindert, dass Kobresia weiterhin auf den degradierten Flächen wachsen kann. Da 

der Wechsel zu oxidierenden Enzymen durch einen Mangel an C und Nährstoffen in der mikrobiellen 

Gemeinschaft verursacht wird, waren weitere Laborexperimente, zur Ergründung der Antwort des 

mikrobiellen Metabolismus erforderlich. Besonders der Kohlenstoffbasismetabolismus hilft dabei das 

Verständnis von Veränderungen in den Wachstumsmodi der mikrobiellen Gemeinschaften zu 

vertiefen: Unter welchen Bedingungen reicht der verfügbare Kohlenstoff aus, um in die Erzeugung 

neuer Biomasse investiert zu werden? Wie reagiert eine natürliche mikrobielle Gemeinschaft im Boden 

wenn C rar wird oder C im Überfluss vorhanden ist? Unter welchen Bedingungen investiert sie “nur” 

in die Neubildung von Speicherstoffen und nicht in Wachstum? Wie wirkt sich die 

Nährstoffverfügbarkeit in diesem Zusammenhang auf die C Verfügbarkeit aus? Es ist daher notwendig 

die regulativen Prozesse von der Transkription vom C-Basismetabolismusgenen hin zu der Translation 
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der vorhandenen Proteine zu verstehen und die C-Flüsse des mikrobiellen Metabolismus 

nachzuverfolgen. 

Für das Feldexperiment in Tibet wurde die Struktur der mikrobiellen Gemeinschaft mittels terminalem 

Restriktionsfragmentlängenpolymorphismus (t-RFLP) und Illumina MiSeq Sequenzierung gemessen. 

Des Weiteren wurden die Enzymaktivitäten von SOM zersetzenden Enzymen und Enzyme des N-

Kreislaufs gemessen. Da es unmöglich ist diese essenziellen Forschungsfragen aus einem 

Feldexperiment heraus zu beantworten, sie der Fokus eines Laborexperiments mit natürlichem, 

landwirtschaftlich genutztem Boden. Unter kontrollierten Laborbedingungen war es möglich die 

Glukosemengen gezielt zu manipulieren indem geringe und hohe Glukosekonzentrationen, sowie 

Stickstoff- und Phosphatnährstoffe zugesetzt wurden. Während der Experimentdauer von 96 h, 

wurden nach 24 und 96 h Mikrokosmen geerntet, um Messungen für Phospholipid- (PLFA) und 

Neutral-Fettsäuren (NLFA), Polyhydroxybuttersäure (PHB), Kohlenstoff in der mikrobiellen Biomasse 

(microbial biomass carbon, MBC), dem Metatranskriptom und Metaproteom durchzuführen. Für die 

13C Fluss-Modellierung wurden die Glukoselösungen zusätzlich mit uniform- und positions-spezifischen 

13C Glukose-„Tracer“-Lösungen versetzt und das freigesetzte 13CO2 in Zeitintervallen gemessen.  

Die Degradation der Kobresia Weiden führte zu einer Veränderung der Struktur der mikrobiellen 

Gemeinschaft, im Besonderen bei deren Mykorrhiza-Partnern. Die Degradation des Graslandes und 

der Verlust des Oberbodens führte zu einer Verschiebung in der Zusammensetzung der Vegetation 

und deren assoziierten Mykorrhizapilzen. Zu Anfang ist Kobresia pygmeae mit arbuskulärer Mykorrhiza 

verbunden, aber mit den zunehmenden Folgen der Degradation wechselt Kobresia zu einer 

Partnerschaft mit Ektomykorrhizapilzen. Nach dem Verschwinden von Kobresia, verlassen sich die 

nachfolgenden Sträucher wieder auf arbuskuläre Mykorrhia-Partner. Des Weiteren änderte sich auch 

die bakterielle Gemeinschaft hin zu Spezies welche komplexe SOM abbauen können und nitrifizierende 

Bakterien laugen die Nährstoffspeicher des Plateaus weiter aus. Ähnlich ist die reduzierte C 

Verfügbarkeit im Boden mit der regulativen Veränderung des mikrobiellen C Stoffwechsels aus dem 

Laborexperiment verbunden: Die C-Flussmodellierung ergab, dass C Flüsse unter niedrigen 

Glukosekonzentrationen primär eher in die katabole Glykolyse geleitet werden als in den anabolen 

Pentosephosphatweg. Nach der Glykolyse tritt der C-Fluss aus dem Acetyl-CoA normalerweise in den 

stark katabolen Tricarbonsäurezyklus (TCA) ein, wo die meiste Energie gewonnen werden kann. 

Allerdings konnte durch die C-Flussmodellierung festgestellt warden, dass C-Flüsse aus dem Acetyl-

CoA in Richtung Speicherstoffbildung gelenkt wurden, wenn niedrige Glukosekonzentrationen 

vorherrschen. Dies weist auf eine bevorratende Speicherstoffstrategie der mikrobiellen Gemeinschaft 

hin, welches durch die Messungen von Triglyceriden (TAG) unterstützt wurde. Im Gegensatz dazu, 

ergab die direkten Messungen des Speicherstoffmetabolites PHB eine starke Beteiligung an der 
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Bildung von Biomasse unter Glukose C Überschuss, eine Rücklagenspeicherstoffsttrategie. Beide 

Speicherstoffe erfüllen somit unterschiedliche Rollen in den Wachstumsmodi der mikrobiellen 

Gemeinschaften. Die starken negativen Wechselwirkungen zwischen dem Tricarbonsäurezyklus- (TCA) 

und dem Speicherstoff-Pfad im Metatranskriptom und dem Metaproteom untermalen die Wichtigkeit 

von Speicherstoffbildung, welche eine intermediäre C Quelle für die mikrobielle Gemeinschaft 

darstellt. Speicherstoffe sind jedoch keine langanhaltenden SOC-Speicher im Ökosystem.  

In der Schlussfolgerung sorgen Umweltveränderungen wie der Klimawandel oder anthropogen 

verursachte Degradation für nachteilige Konsequenzen für die mikrobielle Gemeinschaft im Boden 

durch einen hervorgerufenen Wechsel in deren struktureller Zusammensetzung und Funktionsweise 

mit Auswirkungen auf etlichen Ebenen des Ökosystems. C Verfügbarkeit und Gehalt spielen große 

Rollen in den regulativen Prozessen der post-genomischen Ebenen im Vergleich zu anderen 

Nährstoffen, da C der limitirendste Faktor für die Bakterien und Pilze des Bodens ist. Die Bildung von 

Speicherstoffen scheint eine weitaus größere Rolle im C Zyklus des Bodens zu spielen als bisher 

angenommen. Gut etablierte molekularbiologische Methoden auf der Genomebene können einen 

groben Überblick über die Strukturen der mikrobiellen Gemeinschaften – und in begrenztem Umfang 

– auch über deren Funktionen geben, aber Metatranskriptomiks, Metaproteomiks und Meta-

Fluxomiks erweitern diese Einsicht in den mikrobiellen Metabolismus und vertiefen das Verständnis 

über mikrobielle Reaktion auf Umweltveränderungen. Jedoch sind die Richtungen der Regulation in 

der Transkription, der Translation und der Kohlenstoffflüsse zu Energieproduktion, Replikation oder 

Speicherstoffbiosynthese nicht immer schlüssig. Daher bleibt die Interpretation der 

Regulationsprozesse im Besonderen in natürlichen mikrobiellen Umgebungen ein komplexes und 

schwieriges Unterfangen, welches jedoch bei einer Vertiefung vergleichender und zeitlich aufgelöster 

Ansätze einen tiefgreifenderen Einblick in den mikrobiellen C Metabolismus erlaubt. 
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Extended Summary 

1.1. Introduction 

1.1.1. Factors of carbon loss promoting structural changes of the microbial 

community. 

Soil functions play a pivotal role in global ecosystems, especially in biochemical cycles involving carbon 

(C) and nutrients such as nitrogen (N) and phosphorus (P) when storing these nutrients in soil organic 

matter (SOM). Advancing effects of climate change on ecosystems become more important as 

increasing temperatures, erosion and microbial turn-over rates create a positive feedback loop on C 

and nutrient loss bringing C sink ecosystems to the brink of climate tipping points (Armstrong McKay 

et al., 2022; Heimann and Reichstein, 2008). Ecosystems like arctic (Evgrafova et al., 2018) or alpine 

permafrost soils such as the Tibetan Plateau (TP) (Yao et al., 2012) store vast amounts of carbon and 

are deeply affected by the advancement of climate change. The TP is capable of storing 2.5% of the 

world’s soil organic carbon (SOC) in its Kobresia pygmaea grasslands (Genxu et al., 2002). However, 

the ecosystem function of the TP as C sink is endangered due to climate change and anthropogenically 

induced overgrazing with life stock leading to a dramatically increased erosion and degradation of the 

Kobresia pastures (Babel et al., 2014; Qiu, 2016). The Kobresia grasslands are essential for water 

retention, erosion prevention and carbon sequestration due to their root mat properties forming a 

dense root net allocating vast amounts of C (Hafner et al., 2012; Qiu, 2016). Housing policies 

transformed the nomad lifestyle of Tibetan inhabitants to being stationary increasing grazing pressure 

on grasslands surrounding the settlements intensifying their degradation (Qiu, 2016). The degradation 

of Kobresia pastures jeopardizes Tibetan Plateau role as carbon sink, water source for major rivers like 

the Yangtze and Mekong which provide water for millions of people (Qiu, 2016). Degradation of the 

Kobresia grassland means that the root mats are gradually destroyed by trampling during overgrazing 

and make the underlying soil prone to water and wind erosion. This affects the N and C cycles in soil 

which are mainly driven by microbial metabolic activity. Formerly stabilized N is being mineralized to 

mobile forms of gaseous N2O or leached in water-soluble form as NH4
+ and NO3

- (Zhang et al., 2017). 

Intact Kobresia pygmaea pastures which were moderately grazed increased the C sequestration in its 

above- and below-ground biomass, so that the combination of plant C input and generation of 

microbial C necromass in deeper soil depth lead to the stabilization of C and therefore the TP 

ecosystem’s role as C sink (Hafner et al., 2012; He et al., 2021). With the destruction of Kobresia root 

mats, the plant C input is interrupted and already sequestered C in deeper soil layers is then prone for 

microbial decomposition and released as CO2 to the atmosphere. Sequestration and decomposition 

are both driven by the soil microbial community and their metabolic shift from stabilizing to 
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mineralizing C needs to be understood. It is therefore crucial to understand the regulatory processes 

of microbial C metabolism. 

1.1.2. Base C metabolism as central hub in soil C cycle 

Microbes are able to break down a vast variety of C-sources in aerobic and anaerobic conditions to 

gain energy in form of ATP and reduction equivalents such as NAD+, NADP+ or FAD+ (Jurtshuk, 1996; 

Voet et al., 2008). Their ability to oxidize C structures such as glucose and even rather complex 

molecules such as hemi-/cellulose and lignin enables soil microbial communities the ability to grow 

under various environmental conditions (Ottow, 2011; Voet et al., 2008). Under anaerobic conditions 

bacteria are able to metabolize glucose through fermentation of pyruvate to either lactate or ethanol 

after the glycolysis pathway (Jurtshuk, 1996; Voet et al., 2008). However, the most energy can be 

gained through the tricarboxylic acid cycle (TCA) under aerobe conditions. After the cleavage of 

complex C compounds such as cellulose and lignin, the metabolic products will at some point enter 

glycolysis or the TCA (Ottow, 2011). Other metabolic products such as galactose, mannose or fructose 

are able to enter the glycolysis at their specific entry step of the pathway. A glucose molecule can also 

enter other pathways such as the Entner-Doudroff (ED), an alternative pathway to gain energy, or the 

pentose phosphate pathway (PPP), a pathway for the biosynthesis of DNA and RNA precursors, 

reduction equivalents etc. (Voet et al., 2008). The gluconeogenesis is the de novo synthesis of glucose 

from pyruvate, alanine or amino acids over oxalacetate and the reverse reaction path of glycolysis 

(Fig.1) (Apostel et al., 2018; Voet et al., 2008). At several points during glycolysis, biomass pathways 

can branch off e.g., those which are responsible for the biosynthesis of cell membrane components 

such as phospholipid fatty acids (PLFA) or the synthesis of storage compounds like neutral lipid fatty 

acids (NLFA) and polyhydroxybutyrate (PHB) (br1 – br5, Fig. 1). Finally, the base C metabolism, 

consistent of the glycolysis, gluconeogenesis PPP and TCA and is an essential hub in soil C cycling (Fig. 

1). A vast network of microbial metabolic pathways branch off or lead towards this base C metabolism 

and it is therefore well-researched and provides vast possibilities to gain information about microbial 

metabolism and their growth state. Metabolic flux modelling studies try to trace the path of C fluxes 

throughout the base C metabolism and therefore employ 13C isotopomere tracers in various forms: 

alanine (Apostel et al., 2018) and pyruvate (Dijkstra et al., 2011a, 2011b; Hagerty et al., 2014) and other 

low molecular weight organic substances (LMWOS) have been used in the past and also some (but not 

all) labeled C position in glucose (Apostel et al., 2015; Dijkstra et al., 2011b). The recognition of storage 

compounds like PHB and triacylglycerols (TAG, component of neutral lipid fatty acids, NLFA) (Harwood 

and Russell, 1984; López et al., 2015) as growth factor in microbial communities has long been 

neglected, but recent studies (Manzoni et al., 2021; Mason-Jones et al., 2021) have shown their 

potential for soil ecology and C flux modelling because of their quantity and the existence of reliable 
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extraction methods from soils (Mason‐Jones et al., 2019). It is therefore crucial to investigate a vast 

variety of essential basic pathways such as storage compound formation into base C metabolism 

modelling in order to elucidate and characterize microbial C metabolism in more detail (Dijkstra et al., 

2022).  

 

 

ES Figure 1: The flux theme of the basic glucose metabolism divided into glycolysis (r1 to r5), tricarboxylic 

acid circle (TCA, r6 – r7), gluconeogenesis (r14 – r17) and pentose phosphate pathway (PPP, r9 – r12) 
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1.1.3. Advances in molecular biology methods 

Methods in molecular biology are developing continuously for discovering changes in microbial 

communities, characterizing their composition and structure. 16S, 18S and ITS rDNA-based methods 

are well-established: terminal restriction fragment length polymorphism (t-RFLP) is one of the base 

methods of microbial community structure analysis with the advantage of giving a quick overview of 

structural changes (Grün et al., 2018). Without the need of extensive bioinformatics t-RFLP has the 

potential for comparing microbial community structures but on the disadvantage that t-RFLP does not 

provide any information on the taxonomic composition of a sample. Additionally, t-RFLP requires the 

use of fluorescence-marked primers and proof-reading polymerase. As taxonomic data is required for 

a more detailed insight into the microbial community structure Illumina sequencing of 16s rDNA is able 

to provide this information besides the community structure but requires more bioinformatic analyzes 

than a t-RFLP analysis (see 2.1.5.9). Both methods have the disadvantage of not providing functional 

information of the microbial community with the exception that with the taxonomic information from 

Illumina sequencing it is possible to gain functional information from databases (Aßhauer et al., 2015; 

Nguyen et al., 2016). A shortcoming of 16S rDNA-based functional databases are microbial phyla which 

are hard to culture and functionally characterize in single-culture studies so that functional information 

might not be available or could be falsely linked (Aßhauer et al., 2015). Besides the path over 16S and 

functional databases, qPCR is a way of quantifying functional genes directly by employing specially 

designed primer pairs targeting the desired microbial functional genes (Song et al., 2019). There also 

lies the disadvantage in qPCR, when investigating natural complex microbial communities, some 

functional genes of metabolic processes are not located in highly conserved regions like the 16S rRNA 

gene. Therefore, it is sometimes necessary to use more specific primer sets for a functional gene for 

some bacterial groups, such as hgcA primers for δ-Proteobacteria, Firmicutes and Archaea in 

Christensen et al. (2016). Furthermore, the numerous proteins and thus gene sequences involved in a 

metabolic pathway would also need a primer pair for each step of the individual reactions within a 

pathway. For complex metabolic processes like the base C metabolism, qPCR would be unfeasible and 

rather applicable on short metabolic processes such as mercury methylation (Christensen et al., 2019) 

The development of “omic”-techniques revealed to be one possible solution to the above-mentioned 

disadvantages of 16S rDNA-based sequencing and qPCR of functional genes: metagenomics, 

metatranscriptomics and metaproteomics are able to provide taxonomic information, functional 

information and can be interlinked with each other as gene-, mRNA- and peptide-sequences can be 

translated into one another (Kohlstedt et al., 2010; Schimel, 2016). Additionally, another advantage to 

the primer-based sequencing methods is that, meta-omics techniques disentangle the entirety of the 

microbial metabolism in their respective genome, transcriptome and proteome which can then be 
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distilled down to the metabolic processes relevant to the research question (Beulig et al., 2016; 

Schimel, 2016). These genes of interest (GOI) can be universally applied to the analyzed genome, 

transcriptome, and proteome. In situ the degradation of the TP seems to induce complex metabolic 

responses in the microbial community to which the application of multi-meta-omics would not lead to 

constructive results. Therefore, an experiment under controlled laboratory conditions on the C 

metabolism was chosen as the base C metabolism consists of well-researched pathways. C metabolism 

might help in the understanding of C loss in soil and its metabolic mechanism of microbial growth 

under scarce C-glucose conditions or when C-glucose is plentiful in soil hotspots (Kuzyakov and 

Blagodatskaya, 2015). 

 

1.1.4. Objectives 

This thesis addresses the role of microbial communities’ metabolism in C and nutrient loss in soil on 

the Tibetan Plateau. For this, it was necessary to deepen the understanding of the microbiota’s 

influence on C cycling in soils through employing a wide range of well-established and state of the art 

methods to characterize the soil microbiome and its metabolism such as t-RFLP and 16S rDNA 

sequencing. As microbial community’s phylogenetic characterization often only provides indirect 

information on C cycling functions, this thesis furthermore aimed to develop novel multi-meta-omics 

approaches for complex soil communities combining three post-genomic levels: metatranscriptomics 

(level 1), metaproteomics (level 2), and targeted metabolomics (level 3, Fig. 2) in form of biomarker 

extraction of PHB and NLFA storage compounds. These analyses were combined with application of 

labeled 13C and 14C glucose (uniformly and 13C position-specifically labeled) for a modified meta-flux 

modelling approach to uncover the mechanisms of C cycling in microbial metabolism throughout 

various levels of post-genomic metabolic regulation depending on soil resource availability.  

The main objectives of this thesis were: 

I) Identifying key microbial players and their functions involved in the C losses during SOM 

degradation of the globally important pasture ecosystem on the Tibetan Plateau by 

molecular biological analysis of fungal and bacterial community shifts.  

II) Identifying key functional changes in the microbial metabolism under varying C availability 

utilizing enzyme activity measurements of successively degraded Tibetan root mats and 

state of the art omics-techniques in controlled laboratory incubations with manipulation 

of C to nutrient stoichiometry. 
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III) Assessing the role of storage compounds, a long-term neglected C pool, for soil C cycling 

by tracing their de-novo formation by isotope tracing and metabolic flux modeling of base 

C metabolism. 

 

ES Figure 2: Three levels of post-genomic biochemical regulation: (1) transcriptome, (2) proteome and (3) 

metabolome interlinked by its metabolic fluxes. 

 

1.2. Approaches 

1.2.1. Field experiment 

The severity of Kobresia grassland degradation was assessed by a literature study conducted by 

searching for information about the depletion of SOC, TN, clay content and bulk density (BD) 

(keywords, see 2.1.5.). The parameters from the chosen studies were then compared to the measured 

values from our field study of SOC, TN and BD as to assure the representativeness of the study to the 

degradation of the TP grasslands. The TP Kobresia grasslands undergo severe root mat degradation 

which was classified into 6 stages for this study (ES Fig. 1) and sampled within our sampling site near 

Nagqu (Tibet, China, (NW: 31.274748°N, 92.108963°E; NE: 31.274995°N, 92.111482°E; SW: 

31.273488°N, 92.108906°E; SE: 31.273421°N, 92.112025°E) on an area of 4 ha at 4,484 m a.s.l.: from 

an intact stage (S0) over increasing degradation and erosion affected stages (S1 – S4) to the most 

degraded stage (S5). Within the classified stages, SOC loss, potential shifts in the microbial community 

and their functions are to be identified. The intact soils were classified as Stagnic Eutric Cambisol 

(Humic) developed on a loess layer and on glacial sediments. The samples were taken in replicates of 

4 from the soil horizons at 0 – 5 cm, 5 – 15 cm and 15 – 35 cm. SOC and N characteristics were measured 

as δ13C and δ15N using an isotope ratio mass spectrometer (IRMS, Delta plus, Conflo III, Thermo 

Electron Cooperation, Bremen Germany) coupled with an elemental analyzer (NA 1500, Fisons  
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Instruments, Milano, Italy) at the Centre for Stable Isotope Research and Analysis (KOSI, University of 

Göttingen, Göttingen, Germany). SOC stock and loss were determined as well as lignin content as sum 

of vanillyl, syringyl and cinnamyl structural units. For the characterization of the potential functional 

shifts in the microbial community, enzyme activity of extracellular enzymes was directly measured on 

site following protocols from Schinner et al. (2012): two hydrolases (β-glucosidase and xylanase), 

phenol oxidase, urease and alkaline phosphatase to identify C, N and P transformations. Soil samples 

for the characterization of the microbial community were directly frozen at -20 °C on site. DNA was 

extracted from soil using the PowerSoil DNA isolation kit (MoBio Laboratories In., Carlsbad, CA, USA) 

following the manufacturer’s manual. DNA concentration was then determined with a NanoDrop 1000 

nanophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). For the t-RFLP, DNA was amplified 

with a fluorescence marked (FAM) primer set while DNA for the Illimina MiSeq sequencing (Illumina 

Inc., San Diego, USA) was amplified with a primer set with adaptor sequences (forward: 5’-TCG TCG 

GCA GCG TCA GAT GTG TAT AAG AGA CAG-3’; reverse: 5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA 

GAG ACA G-3’). Both methods used the same primer pairs for bacterial 16S rDNA V3 (5’-CCT ACG GGN 

GGC WGC AG-3’) and V4 (5’-GAC TAC HVG GGT ATC TAA TCC-3’) and ITS primers for fungi: ITS1 (5’-CTT 

 

ES Figure 3: Overview of the degradation sequence from the intact (S0) to severely degraded (S5) stage.  
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GGT CAT TTA GAG GAA GTA A-3’), ITS1-F_KYO1 (5’CTH GGT CAT TTA GAG GAA STA A-3’), ITS2 (5’-GCT 

GCG TTC TTC ATC GAT GC-3’) and ITS4 (5’-TCC TCC GCT TAT TGA TAT GC-3’). After PCR (protocol see 

2.1.5.7) and agarose gel control, the PCR product was digested with either of two restriction enzymes 

and then measured in an ABI Prism 3130 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA) for 

t-RFLP analysis or sequenced with Illumina MiSeq (Illumina Inc., San Diego, USA) (details see 2.1.5.8 

and 9). 

1.2.2. Laboratory experiment 

 

ES Figure 4: Microcosm lab experiment conducted in air-tight 100 ml glass bottles with 25 g of agricultural 

soil incubated with treatment solutions containing glucose (None, Low and High) and nutrients (None and 

N+P) and labelled with uniformly and position-specific glucose tracers in 4 replicates. Destructive sampling at 

0, 24 and 96 h (times marked above the time scale) and 13CO2 measurements over the course of the 

experiment (times marked below the time scale). 

 

The degradation of the TP is a complex ecosystem process with numerous drivers of C and nutrient 

loss; therefore, it is necessary to transfer the process of C mineralization to a more controlled 

environment. In a lab experiment with natural soils, we could control any aspect of the environmental 

conditions such as moisture, aeration and temperature, add treatment solutions with 13C and 14C 

glucose tracers (uniformly and position-specifically labelled) and manipulate the C amount and 

nutrients available for the microbial community in soil.  

The soil for the lab experiment was a Haplic Luvisol which, like the soil on the TP developed on loess 

and was sampled at the experimental farm Reinshof near Göttingen, Germany (51°29′51.0′′ N, 

9°55′59.0′′ E). Its low total organic C (TOC) content at 1.4%, and 0.17% total N (TN) at a pH 5.4 would 

guarantee a microbial reaction when treated with glucose and nutrient solutions. The 100 ml air-tight 
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microcosm glass bottles were filled with 25 g of soil at 48% water holding capacity (WHC). The 

treatment solutions consisted of three glucose treatments depending on the microbial biomass carbon 

(MBC): 0, 90 and 400 µg C g-1 soil. Furthermore, the glucose treatments were also divided into a  

no-nutrient and nutrients in form of ammonium sulfate ((NH4)2SO4, 17 µg N g-1 soil) and tripotassium 

phosphate (KH2PO4, 3.3 µg P g-1 soil) as nitrogen (N) and phosphate (P) sources. With the help of 13C 

(3at%) and 14C (0.19 kBq) uniformly and position-specifically (1.5at%, all 6 glucose-C positions) labelled 

glucose tracers added to the treatment solutions the fate of the added glucose could be traced in 

various ways. Each treatment was conducted in a replicate of 4.  

The 13CO2 efflux from uniformly- and pos.-spec.-labelled microcosm was measured over the course of 

the entire 4- day experiment (Fig. 4) with evacuated exetainers (Labco, Ceredigion, U.K.) and measured 

on an GC-IRMS (GC-Box coupled via a Conflo III interface to a Delta plus XP mass spectrometer, all 

Thermo Fischer, Bremen, Germany) at the Centre for Stable Isotope Research and Analysis (KOSI, 

University of Göttingen, Göttingen, Germany). Beside the estimation of glucose-derived respiration 

from 13CO2 efflux, 13CO2 from uniformly and pos.-spec. glucose were used to calculate the F values for 

each U-13C samples and every pos-spec. 13C samples. Ratios from those F values were then calculated 

(x13CO2/U13CO2) as input for our unmodified flux model without storage and storage-optimized C flux 

model (details see 2.3.3.). The model is able to calculate each flux of the base C metabolism (Fig. 1), so 

that the fate of every glucose-C atom can be traced. 

Destructive sampling was done at the beginning of the experiment (t0), after 24 h and at the end at 

96 h and the soil was used for several extractions: MBC was extracted via chloroform fumigation 

extraction (CFE) to measure the growth in biomass. Radionuclide-labelled 14C glucose enabled the 

tracing of de novo synthesized MBC from glucose and was measured via scintillation counting after 

CFE. Storage compounds PHB and NLFA, as well as cell membrane component PLFA biomarker were 

extracted and measured after derivatization on a 7890 A GC-MS and on an IRMS-GC for their 13C 

incorporation at the KOSI. As an alternative to the 13/14C approach, growth was also estimated via 18O 

incorporation into DNA in a parallelly conducted microcosm experiment with the same parameters 

and the use of 97at% H2
18O water (resulting in 4.2at% 18O in soil) following the protocol of Spohn et al. 

(2016) and measurement at the KOSI (for details see 2.3.3. or 2.4.4).  

Soil samples from the 24 h destructive sampling point were also used for RNA and protein extraction 

for metatranscriptome and metaproteome analysis. After the RNA extraction with the Qiagen RNeasy 

PowerSoil kit (Qiagen GmbH, Hilden, Gemany) at the ZALF (Müncheberg, Germany) samples were sent 

to Macrogen Inc. (Seoul, Republic of Korea) for further preparation and mRNA sequencing. The protein 

extraction was conducted at the Helmholtz Centre for Environmental Research – UFZ GmbH (Leipzig, 

Germany) following established protocols by Bastida et al. (2016, 2014). Peptide sequences were 
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obtained by separating with a Dionex Ultimate RSLC 3000 nano-LC system (Thermo Fisher Scientific, 

Idstein, Germany) and peptide analysis was performed on a Orbitrap Fusion MS (Thermo Fisher 

Scientific, Idstein, Germany) coupled with a TriVersa NanoMate source (Advion, Ltd., Harlow, UK). The 

peptide sequences were then searched against the bacterial NCBInr database for the determination of 

the contained proteins and their abundances were calculated. 

 

1.3. Results and Discussion 

1.3.1. Overview of main results 

ES Table 1 gives an overview of the objectives, and conclusions of the studies included in this thesis: 

ES Table 1: Titles, objectives, and conclusions of the individual four studies presented in in this thesis. 

Study Objectives Main Conclusions 

Study 1: Microbial functional 

changes mark irreversible 

course of Tibetan grassland 

degradation 

➢ Identify critical points of 

microbial functioning and their 

consequences for SOC and N 

storage. 

➢ Characterization of SOM 

quality and quantity coupled 

with feedback loops to 

microbial community 

structure and functions. 

➢ A highly interrelated process of 

pasture degradation with freeze-

thaw cycles, topsoil erosion and 

microbial decomposition diminish 

the SOC and N stock. 

➢ SOC decomposition and N loss are 

accompanied by a shift in microbial 

functioning as an adaptation to the 

altered availability of C and N. 

➢ Kobresia’s mycorrhizal partners 

shifted from arbuscular- to 

ectomycorrhizal partners with 

increasing degradation 

Study 2: Multi-Meta-Omics in 

soils: What to learn about the 

regulation of the basic C 

metabolism under shifts in 

habitat element stoichiometry 

➢ Disentangle post-genomic 

responses of the base C 

metabolism to glucose 

addition on two post-genomic 

levels. 

➢ Identify whether excess 

glucose levels are directed 

towards storage compound 

biosynthesis on both post-

genomic levels. 

➢ Characterize the impact of 

glucose and nutrient addition 

on the microbial community. 

➢ Regulatory processes and time-lag 

seem to interfere with a coherent 

response to glucose addition 

downstream the metatranscriptome 

and metaproteome. 

➢ Storage compound pathways were 

active throughout both post-

genomic levels but decreased with 

excess glucose. 

➢ Glucose and nutrient addition are 

affecting the microbial community 

on every metabolic level with a high 

regulatory response in between the 

two post-genomic levels. 

Study 3: Accounting for 

storage compounds in soil 

microbial communities alters 

carbon flux modelling 

outcome. 

➢ Distinguish between de novo 

synthesis of biomass and 

storage compound formation 

via metabolic flux modelling 

under varying glucose and 

nutrient amendments. 

➢ Excess glucose did not direct 

modelled fluxes towards surplus 

storage synthesis, but reserve 

storage mode was enabled at low 

glucose condition as an adaptation 

to limited C in soils. 

Study 4: Intracellular carbon 

storage by microorganisms is 

➢ Identify surplus storage 

formation under C replete and 

➢ PHB storage is used as surplus 

storage under excess glucose 
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an overlooked pathway of 

biomass growth. 

nutrient-limited conditions in 

soil. 

➢ Analyze the role of storage 

synthesis in microbial biomass 

growth. 

➢ Disentangle the role of 

nutrient availability in the 

formation of storage 

compounds. 

whereas TAG storage is used in 

reserve storage mode. 

➢ Storage compounds harbors 

substantial amounts of C and 

increases total microbial biomass 

aside replicative growth. 

➢ Nutrient addition suppresses PHB 

formation whereas TAG was not 

affected. 

 

1.3.2. Degradation of Kobresia pastures on the Tibetan plateau induced structural 

changes in the microbial community. 

The degradation of the Kobresia root mats had severe consequences to the SOC stock as 42% of it were 

lost from S0 to S5 due to erosion, overgrazing, freeze-thaw processes in permafrost soils, decreased 

root litter input and mineralization (Wang et al., 2020). Furthermore, also 33% of N was released from 

the ecosystem. In consequence, vital structural and functional changes in the soil microbial 

communities are at play. Soil microbes play an important role in sequestering and mineralizing C and 

N while C is distributed heterogeneously, it is also sequestered in recalcitrant forms such as vanillyl, 

syringyl, and cinnamyl (VSC), so that C sources are challenging to break down and C becomes a scarce 

resource in soils (Kuzyakov and Blagodatskaya, 2015). On the other hand, easily degradable C sources 

such as glucose-rich root exudates, amino acids, carboxylic acids are available for microbial 

decomposition in hotspots in the detritus-, drilossphere and rhizosphere (Bååth, 2003; Gunina et al., 

2014; Kuzyakov and Blagodatskaya, 2015; Rasse et al., 2005). When Kobresia root mats degraded, root 

litter input is interrupted, and those easily degradable SOC pools are prone for microbial mineralization 

first. Exoenzyme activity for those C sources declined with the severity of the Kobresia pasture 

degradation. Likewise, the microbial communities’ shift towards nitrifying and denitrifying bacteria 

suggest a major microbial role in N-transformation and N leaching from TP’s N-limited ecosystem 

(Craine et al., 2007; Schleuss et al., 2015). After the disappearance of easily degradable LMWOS, 

increasing enzyme activity of lignin degrading phenol oxidases and a structural shift towards bacterial 

and fungal species capable of degrading complex C sources suggest a severe loss of SOC quantity and 

quality (Fig. 5). Furthermore, with the increasing degradation of Kobresia grasslands, its arbuscular 

mycorrhizal (AMF) partners decline and get replaced by more specialized ectomycorrhizal (EM) 

partners capable of mineralization of SOM-bound nutrients until the total disappearance of Kobresia 

pygmaea. Then, on the most degraded sites, pioneer plants and their AMF partners are established.  

During the increasing degradation of TP’s Kobresia grasslands the mineralization of easily hydrolysable 

LMWOS as well as lignin monomers (VSC) were driven by microbials’ base C metabolism: When 

LMWOS, like (hemi-) celluloses, decomposition led into glycolysis delivering the most energy output.  
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The microbial community can also gain an intermediate level of energy when proteins are 

decomposed. Protein monomers can enter the base C metabolism at several entry points when being 

mineralized and release not only CO2 but also N. For example, the amino acid alanine can enter the 

glycolysis when transformed into pyruvate and is frequently sorbed to soil particles in the SOM 

 

ES Figure 5: NMDS (non-metric multidimensional scaling) plots derived from Illumina MiSeq sequencing 

data of the bacterial (A) and fungal (B) communities along degradation stages. Shaded areas mark each 

degradation stage, symbols indicate soil depth, and blue arrows show significantly correlated abiotic factors 

(by CCA, canonical-correlation analysis). 
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(Apostel et al., 2017). Finally, complex compounds such as lignin enter the TCA cycle but gain the least 

energy when decomposed (Ottow, 2011). Therefore, increasing degradation of the TP pastures 

strongly influences the base C metabolism of the microbial communities as they need to adapt to the 

ever-changing substrate composition. Analyzing the linkages between substrate composition and base 

C metabolism will broaden the understanding of microbial contribution to SOM degradation. 

Measuring enzyme activities of exoenzymes do not give enough insight into the functional shift and 

metabolic regulatory processes of the TP’s microbial community. Additionally, 16S rDNA primer-based 

sequencing methods only provide information on microbial structural changes and species (Fig. 5). 

Therefore, the utilization of “omics”-techniques on the base C metabolism is necessary to fully 

disentangle the microbial processes when an ecosystem such as the TP is facing irreversible changes. 

1.3.3. Multi-meta-omics give insight into metabolic regulation under altered C 

availability and nutrients. 

Employing state-of-the-art metatranscriptome and metaproteome analysis on the base C metabolism 

gave new insights into microbial regulatory processes. Depending on the stoichiometry of C and 

nutrients, the metaproteome showed deviating patterns in relative abundance in the selected 

pathways in comparison to the metatranscriptome hinting towards strong regulatory processes in 

protein translation. The only exception were parts of the glycolysis and TCA. On the one hand glucose 

amendments greatly affected the metatranscriptome, on the other hand the addition of N and P 

mainly had an effect on the metaproteome throughout the chosen pathways. While high glucose levels 

had a reducing effect on the abundance of proteins involved in PHB storage biosynthesis, this reduction 

was not visible in the abundance of the related genes in the metatranscriptome. Similarly, the 

abundance of NLFA storage pathway related transcripts and proteins was negatively affected by high 

glucose concentrations. Nutrient addition seemed to have no regulatory effects on both the 

metatranscriptome and metaproteome related to the pathways of storage synthesis of PHB and NLFA. 

These conditions had a similar effect on the extracted PHB and NLFA contents where PHB was also 

synthesized in low glucose conditions (see 2.4 study 4). Altogether, the two post-genomic levels seem 

to be strongly influenced by the addition of glucose-C in a C limited agricultural soil rather than by the 

availability of N and P (Soong et al., 2020). The addition of nutrients solely influenced PPP related genes 

while disappearing on the translational level as similarly described by Kohlstedt et al. (2010). 

Furthermore, the pathways in the metatranscriptome seem to be strongly co-regulated with each 

other as a correlation analysis revealed: gluconeogenesis was negatively related to both storage 

pathways and positively related with the TCA. These co-regulatory processes were not represented in 

the metaproteome. Additionally, PPP was positively correlated with fatty acid biosynthesis and  
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negatively correlated with TCA in the proteome. Nevertheless, hinting towards an active pathway 

towards the de novo biosynthesis of biomass. These observations hint towards an inter-regulatory 

process in between the metatranscriptome and metaproteome (Fig. 6). Several consecutive pathways 

like glycolysis (mRNA level) and TCA (protein level) were positively correlated suggesting jointly 

controlled and functional energy producing pathways. Also, storage pathways were positively 

correlated in both post-genomic levels hinting towards active storage biosynthesis under the 

underlying glucose conditions. Pathways related to replicative growth (fatty acid biosynthesis, PPP, 

gluconeogenesis, and TCA) in the metatranscriptome and glyoxylate metabolism in the metaproteome 

suggest a constant demand of C for anabolism. The excess of glucose in our experiment greatly affected 

the activation of the transcription and translation of TCA cycle genes related to a strongly catabolic 

and energy producing pathway (Voet et al., 2008). This hints towards the need of a quick reaction of 

the microbial community when additional C is available in hotspots in the rhizosphere or 

detritussphere of an otherwise C-limited (and more strongly SOM-depleted) agricultural soil (Kuzyakov 

and Blagodatskaya, 2015; Soong et al., 2020). In contrast, glucose amendments led to the inhibition of 

 

ES Figure 6: Correlation between the metatranscriptome and metaproteome metabolic processes. Only 

significant correlations are displayed, and R values are indicating their positive or negative relationships 
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the anabolic PPP mRNAs at the translational level as a response to the stoichiometric shifts. This 

indicates a multi-level regulatory system on all “omic”-levels which can also be interrelated (Kohlstedt 

et al., 2010). Leading to the suggestion that examining solely one post-genomic level is not sufficient 

for interpretation of microbial metabolic processes especially in complex communities as genes could 

be not transcribed, mRNA not translated into proteins or proteins inhibited (Kohlstedt et al., 2010; 

Schimel, 2016). Therefore, only multi-meta-omic experiments are capable of disentangling the 

regulatory processes in soil microbiomes (Herold et al., 2020; Kohlstedt et al., 2010; Schimel, 2016). 

Another factor in regulating metabolic processes is time - while the transcriptome reacts rather fast 

on altered environmental conditions with mRNA half-lifes of 1 -10 min (Laalami et al., 2014), the 

translation to proteins takes 10 to 90 min (Takahashi et al., 2011), meaning that the metaproteome 

has a time-lag response on the past environmental conditions or the metatranscriptome is already 

reacting to the depletion of the glucose addition at that time. The TCA seems to be a constantly needed 

process, as it is not affected by the high dynamic response of regulatory processes as much as other 

pathways and also not affected by the time-lag. This observation is important as the TCA is strongly 

negatively related to the carbon use efficiency (CUE) (Wu et al., 2022) and can therefore be used to 

deduce the CUE from transcripts and protein abundance.  

1.3.4. Meta-flux modelling and storage compound extraction reveal different growth 

modes under different glucose and nutrient conditions. 

The addition of glucose greatly enhanced CO2 efflux while nutrient addition only played a role at the 

high glucose amendments where N and P accelerated glucose mineralization in the first 24 h (see 2.4). 

The C flux modelling from isotopomere glucose 13C input was done with two modes: one unmodified 

model and the other with a modelled flux into storage formation which showed an effect on CO2 

respiration when storage formation was enabled. The br5* flux into storage was higher than in the br5 

flux in the unmodified model, underlining the importance of storage flux adjustments in modelling 

approaches. This importance was further highlighted by the direct measurements of storage 

compounds: PHB and TAG represented one fourth of the MBC pool even in the control soils without 

glucose or nutrient addition indicating biosynthesis of storage compounds also in C-limited conditions. 

With increasing glucose levels, a great proportion of new PHB was synthesized (+308% increase over 

the control). While PHB formation was mainly driven by resource stoichiometry, TAG also depended 

on the addition of nutrients resembling reserve storage mode (Bååth, 2003; Dijkstra et al., 2022; 

Mason-Jones et al., 2021) - so that both storage compounds fulfill different roles in a microbial 

community: On the one hand, PHB is rather responsible for surplus storage when excess C is available 

(Kourmentza et al., 2017; Sekar et al., 2020). On the other hand, TAG synthesis was not stimulated by 

surplus stoichiometry and rather resembled a reserve storage strategy where storage compound 
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formation is active through constant C resource stress (Mason-Jones et al., 2021). Since TAG is not only 

a storage compound in fungi, but is also produced by some bacterial species (Alvarez, 2003; Kalscheuer 

et al., 2001), both storage compounds seem to fulfill different roles in a soil microbial community. The 

modelling results in regard of excess glucose levels triggering surplus storage formation were 

contradictory to the directly measured storage compounds as the high glucose amendments indicated 

no flux into storage but rather into the de novo formation of biomass through cell devision. While our 

C flux model relies solely on 13CO2 efflux quantified after glucose 13C isotopmere labeling, the directly 

measured storage pool can also be synthesized from SOM which was seen in the TAG data. Therefore, 

the flux model neglects metabolic processes from SOM, necromass or sorbed substances, putting an 

emphasis on rapidly growing and C efficient – glucose utilizing – bacteria (Apostel et al., 2018; Kashi et 

al., 2022). In the control and low glucose treatments the modelled C flux into storage was playing a 

more important role than in high glucose hinting towards reserve storage mode preparing for 

extended periods of C starvation and were comparable to the findings in measured TAG pools (Bååth, 

2003; Matin et al., 1979). Our parallel experiment under the same conditions as the main experiment 

with the incorporation of 18O into DNA to quantify replicative growth is calibrated with MBC from CFE 

and therefore does not take PHB and TAG into account (Spohn et al., 2016). In comparison with the 

measured C allocation into storage compounds, 18O-based microbial growth substantially 

underestimated growth by neglecting storage by 279% (± 72%). Microbial growth is a pivotal factor in 

C cycle modelling, and storage compound formation needs to be taken into account (Wieder et al., 

2018). The assumption of stoichiometric homoeostasis from biomass growth and total biomass under 

C surplus needs to be adjusted since storage compounds as part of total biomass growth lead to an 

imbalanced stoichiometry (Mooshammer et al., 2014; Wutzler et al., 2017). Storage compounds are 

key players in C and nutrient retention in short-term resource pulses by which C can stored in bacterial 

cells over a long term creating a more resistant and resilient microbial community to ecosystem 

disruptions (Loreau and de Mazancourt, 2013; Manzoni et al., 2021). 

 

1.4. Conclusions 

The degradation of the Tibetan Plateau’s Kobresia grassland demonstrated the severity of 

anthropogenically induced soil degradation and erosion due to overgrazing into an irreversible final 

state. The pasture ecosystem underwent drastic SOC and N losses in proceeding stages of degradation 

of Kobresia root mats, altering the nutrient stoichiometry. The disruption of root litter input for C 

sequestration into mineralization of remaining C stocks was mainly driven by an ever-adapting 

microbial community. Well-established primer-based sequencing techniques, measuring exoenzyme 

activity and the use of 16S-based functional databases aided in revealing a structural and functional 
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shift in the bacterial and fungal community with the advancing degradation. Until the degradation 

stage S3, the microbial community seemed to be able to resist the ecosystem disruption in C and N 

loss, but the exact metabolic response mechanics were only up for debate, as the employed methods 

have their limitations to investigate the regulative response of the basic C metabolism on successive C 

depletion of soils. To fully understand the microbial role such a soil degradation, the microbial 

processes dominating in C scarce soils need to be fully understood.  

Therefore, our multi-layered laboratory experiment manipulating C availability and element 

stoichiometry by addition of easily available glucose-C sources and nutrients could give new and more 

detailed insights into microbial growth, the regulation of the base C metabolism, and the involvement 

of storage compounds in environmental stress conditions or excess of glucose-based C availability. 

With the combination of state-of-the-art metatranscriptome and metaproteome analysis, C flux 

modelling and extraction of storage compounds, we were able to determine the fate of glucose-C in 

every step of the base C metabolism in microbial communities. Throughout our experiment we could 

detect the biosynthesis of storage compounds at all post-genomic levels (i.e from transcriptome until 

down to targeted metabolite measuring itself) and in our C flux model. We could detect storage 

compounds even in C depleted soils hinting towards reserve storage as a key strategy under limited C 

– a processes which might also have been possible in advancing TP degradation stages. The linkages 

between the metatranscriptome and metaproteome, the measured storage compounds and the 

outcome of C flux modelling revealed several regulatory steps in microbial metabolism when metabolic 

processes were not visible in the levels below (e.g., high φ ratios in high glucose treatments in the 

metatranscriptome and partially in the metaproteome while meta flux modelling revealed an inversed 

pattern with high φ ratios in low glucose treatments), hinting towards downregulation (e.g., high 

abundances of mRNA of PHB biosynthetic process genes across the glucose treatments while being 

downregulated at high glucose levels in the metaproteome) or protein inhibition. Surplus storage was 

identified by Mason-Jones et al. (2021) via direct quantification of PHB and by Manzoni et al. (2021) 

via modeling, but was not visible in the flux model output, which rather suggested a reserve storage 

mode. TAG storage compounds were identified to be most responsible for a reserve storage mode 

mostly independent from the usage of glucose but rather surrounding SOM (see 2.4.3.2). In conclusion, 

the flux model needs to be adjusted towards the different storage modes distinguishing between the 

two roles of PHB (surplus storage) and TAG (reserve storage). Furthermore, the C flux model’s input 

sources could be broadened with the utilization of more complex 13C input sources such as long-chain 

dicarboxylic acids (Kashi et al., 2022) instead of easily available glucose-C and therefore representing 

SOM utilization in the base C metabolism. This might help interpret the role of SOM in building up TAG 

storage compounds in reserve storage mode. It would therefore be possible to extend the C flux model 



Extended Summary 
 

38 
 

to community members utilizing rather complex C sources and take their contributions to overall 

microbiomes’ metabolic fluxes into account (Wu et al., 2020). 

Following metabolic processes along the post-genomic levels remains a challenge especially when 

stepping into regulatory processes in highly complex soil microbial communities. However, by focusing 

on the base C metabolism and defining highly controlled suitable treatment parameters as here done 

by altering C and nutrient stoichiometry, it was possible to gain some insight into soil microorganisms’ 

C metabolism. Especially, the investment of C into storage compounds even in C depleted control soils 

might suggest that microbial communities in degraded Kobresia pastures are also directing their C flux 

into producing storage compounds, which buffers degradation until stage S3, when then towards stage 

S4 an irreversible stage of degradation is reached. Applying multi-meta-omics to a complex soil 

ecosystem such as the TP would give new opportunities in revealing the key players and key microbial 

processes in the degradation of Kobresia root mats. While this thesis focused on C metabolic processes, 

meta-omics techniques retain much more information on other metabolic processes such as N cycle 

related genes, transcripts, and proteins - another crucial player in nutrient loss and stoichiometric 

imbalance on the TP. Furthermore, other stress-related genes could also give information when the 

microbial community has reached its pivoting point in the degrading ecosystem.  

On the one hand, the structural and functional analyses based on 16S rDNA sequencing techniques 

and their (functional) databases of the microbial community on the TP have shown their limitations 

especially in identifying key players and key functional processes where multi-meta-omics would give 

potentially more insight. On the other hand, the complexity of analyzing and interpreting the outcome 

of “-omics” techniques in comparison to the rather quick and more cost-effective 16S rDNA sequencing 

techniques need to be considered, when conducting a field experiment and sample transport may be 

a critical issue. This thesis has shown that multi-meta-omics’ applications seem to now have reached 

a step-up form single cultures and mock community studies towards more complex natural microbial 

communities (in soils) in controlled lab experiments. It is now possible to explore the linkages between 

several post-genomic levels and even find metabolic processes which can be used as substitute for 

analyzing microbial metabolic activity like the TCA cycle. The measured TCA process activity can be 

utilized as a stable proxy for the catabolic activity or help deduce the CUE in the soil microbial 

communities. Therefore, TCA activity measured on any post-genomic level could reasonably 

complement taxonomic characterizations of microbial communities. Furthermore, this thesis 

underlined the importance of storage compounds as a microbial growth factor when it could 

demonstrate the relevance of storage compound formation on all post-genomic levels. 

  



Extended Summary 
 

39 
 

1.5. References 

Alvarez, H.M., 2003. Relationship between β-oxidation pathway and the hydrocarbon-degrading 
profile in actinomycetes bacteria. International Biodeterioration & Biodegradation 52, 35–42. 
https://doi.org/10.1016/S0964-8305(02)00120-8 

Apostel, C., Dippold, M., Kuzyakov, Y., 2015. Biochemistry of hexose and pentose transformations in 
soil analyzed by position-specific labeling and 13C-PLFA. Soil Biology and Biochemistry 80, 199–
208. https://doi.org/10.1016/j.soilbio.2014.09.005 

Apostel, C., Dippold, M.A., Bore, E., Kuzyakov, Y., 2017. Sorption of Alanine changes microbial 
metabolism in addition to availability. Geoderma 292, 128–134. 
https://doi.org/10.1016/j.geoderma.2017.01.016 

Apostel, C., Herschbach, J., Bore, E.K., Spielvogel, S., Kuzyakov, Y., Dippold, M.A., 2018. Food for 
microorganisms: Position-specific 13 C labeling and 13 C-PLFA analysis reveals preferences for 
sorbed or necromass C. Geoderma 312, 86–94. 
https://doi.org/10.1016/j.geoderma.2017.09.042 

Armstrong McKay, D.I., Staal, A., Abrams, J.F., Winkelmann, R., Sakschewski, B., Loriani, S., Fetzer, I., 
Cornell, S.E., Rockström, J., Lenton, T.M., 2022. Exceeding 1.5°C global warming could trigger 
multiple climate tipping points. Science 377, eabn7950. 
https://doi.org/10.1126/science.abn7950 

Aßhauer, K.P., Wemheuer, B., Daniel, R., Meinicke, P., 2015. Tax4Fun: predicting functional profiles 
from metagenomic 16S rRNA data: Fig. 1. Bioinformatics 31, 2882–2884. 
https://doi.org/10.1093/bioinformatics/btv287 

Bååth, E., 2003. The Use of Neutral Lipid Fatty Acids to Indicate the Physiological Conditions of Soil 
Fungi. Microbial Ecology 45, 373–383. 

Babel, W., Biermann, T., Coners, H., Falge, E., Seeber, E., Ingrisch, J., Schleuß, P.-M., Gerken, T., 
Leonbacher, J., Leipold, T., Willinghöfer, S., Schützenmeister, K., Shibistova, O., Becker, L., 
Hafner, S., Spielvogel, S., Li, X., Xu, X., Sun, Y., Zhang, L., Yang, Y., Ma, Y., Wesche, K., Graf, H.-
F., Leuschner, C., Guggenberger, G., Kuzyakov, Y., Miehe, G., Foken, T., 2014. Pasture 
degradation modifies the water and carbon cycles of the Tibetan highlands. Biogeosciences 
11, 6633–6656. https://doi.org/10.5194/bg-11-6633-2014 

Bastida, F., Jehmlich, N., Lima, K., Morris, B.E.L., Richnow, H.H., Hernández, T., von Bergen, M., García, 
C., 2016. The ecological and physiological responses of the microbial community from a 
semiarid soil to hydrocarbon contamination and its bioremediation using compost 
amendment. Journal of Proteomics 135, 162–169. 
https://doi.org/10.1016/j.jprot.2015.07.023 

Bastida, F., Jehmlich, N., Ondoño, S., von Bergen, M., García, C., Moreno, J.L., 2014. Characterization 
of the microbial community in biological soil crusts dominated by Fulgensia desertorum 
(Tomin) Poelt and Squamarina cartilaginea (With.) P. James and in the underlying soil. Soil 
Biology and Biochemistry 76, 70–79. https://doi.org/10.1016/j.soilbio.2014.05.004 

Beulig, F., Urich, T., Nowak, M., Trumbore, S.E., Gleixner, G., Gilfillan, G.D., Fjelland, K.E., Küsel, K., 
2016. Altered carbon turnover processes and microbiomes in soils under long-term extremely 
high CO2 exposure. Nat Microbiol 1, 15025. https://doi.org/10.1038/nmicrobiol.2015.25 

Christensen, G.A., Gionfriddo, C.M., King, A.J., Moberly, J.G., Miller, C.L., Somenahally, A.C., Callister, 
S.J., Brewer, H., Podar, M., Brown, S.D., Palumbo, A.V., Brandt, C.C., Wymore, A.M., Brooks, 
S.C., Hwang, C., Fields, M.W., Wall, J.D., Gilmour, C.C., Elias, D.A., 2019. Determining the 
Reliability of Measuring Mercury Cycling Gene Abundance with Correlations with Mercury and 
Methylmercury Concentrations. Environmental Science and Technology 53. 
https://doi.org/10.1021/acs.est.8b06389 

Christensen, G.A., Wymore, A.M., King, A.J., Podar, M., Hurt, R.A., Santillan, E.U., Soren, A., Brandt, 
C.C., Brown, S.D., Palumbo, A.V., Wall, J.D., Gilmour, C.C., Elias, D.A., 2016. Development and 
Validation of Broad-Range Qualitative and Clade-Specific Quantitative Molecular Probes for 



Extended Summary 
 

40 
 

Assessing Mercury Methylation in the Environment. Applied and Environmental Microbiology 
82, 6068–6078. https://doi.org/10.1128/AEM.01271-16 

Craine, J.M., Morrow, C., Fierer, N., 2007. MICROBIAL NITROGEN LIMITATION INCREASES 
DECOMPOSITION. Ecology 88, 2105–2113. https://doi.org/10.1890/06-1847.1 

Dijkstra, P., Blankinship, J.C., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011a. 
Probing carbon flux patterns through soil microbial metabolic networks using parallel position-
specific tracer labeling. Soil Biology and Biochemistry 43, 126–132. 
https://doi.org/10.1016/j.soilbio.2010.09.022 

Dijkstra, P., Dalder, J.J., Selmants, P.C., Hart, S.C., Koch, G.W., Schwartz, E., Hungate, B.A., 2011b. 
Modeling soil metabolic processes using isotopologue pairs of position-specific 13C-labeled 
glucose and pyruvate. Soil Biology and Biochemistry 43, 1848–1857. 
https://doi.org/10.1016/j.soilbio.2011.05.001 

Dijkstra, P., Wu, W., Dippold, M., Schwartz, E., Hungate, B., Megonigal, P., Thomas, S., Seymour, C., 
Martinez, A., 2022. On Maintenance and Metabolisms in Soil Microbial Communities 
(preprint). In Review. https://doi.org/10.21203/rs.3.rs-1193625/v1 

Evgrafova, A., de la Haye, T.R., Haase, I., Shibistova, O., Guggenberger, G., Tananaev, N., Sauheitl, L., 
Spielvogel, S., 2018. Small-scale spatial patterns of soil organic carbon and nitrogen stocks in 
permafrost-affected soils of northern Siberia. Geoderma 329, 91–107. 
https://doi.org/10.1016/j.geoderma.2018.05.014 

Genxu, W., Ju, Q., Guodong, C., Yuanmin, L., 2002. Soil organic carbon pool of grassland soils on the 
Qinghai-Tibetan Plateau and its global implication. Science of The Total Environment 291, 207–
217. https://doi.org/10.1016/S0048-9697(01)01100-7 

Grün, A.Y., App, C.B., Breidenbach, A., Meier, J., Metreveli, G., Schaumann, G.E., Manz, W., 2018. 
Effects of low dose silver nanoparticle treatment on the structure and community composition 
of bacterial freshwater biofilms. PLoS ONE 13, e0199132. 
https://doi.org/10.1371/journal.pone.0199132 

Gunina, A., Dippold, M.A., Glaser, B., Kuzyakov, Y., 2014. Fate of low molecular weight organic 
substances in an arable soil: From microbial uptake to utilisation and stabilisation. Soil Biology 
and Biochemistry 77, 304–313. https://doi.org/10.1016/j.soilbio.2014.06.029 

Hafner, S., Unteregelsbacher, S., Seeber, E., Lena, B., Xu, X., Li, X., Guggenberger, G., Miehe, G., 
Kuzyakov, Y., 2012. Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan 
montane pasture revealed by 13CO2 pulse labeling. Glob Change Biol 18, 528–538. 
https://doi.org/10.1111/j.1365-2486.2011.02557.x 

Hagerty, S.B., van Groenigen, K.J., Allison, S.D., Hungate, B.A., Schwartz, E., Koch, G.W., Kolka, R.K., 
Dijkstra, P., 2014. Accelerated microbial turnover but constant growth efficiency with warming 
in soil. Nature Clim Change 4, 903–906. https://doi.org/10.1038/nclimate2361 

Harwood, J.L., Russell, N.J., 1984. Lipids in Plants and Microbes. Springer Netherlands, Dordrecht. 
https://doi.org/10.1007/978-94-011-5989-0 

He, M., Fang, K., Chen, L., Feng, X., Qin, S., Kou, D., He, H., Liang, C., Yang, Y., 2021. Depth‐dependent 
drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Glob Change Biol 
gcb.15969. https://doi.org/10.1111/gcb.15969 

Heimann, M., Reichstein, M., 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. 
Nature 451, 289–292. https://doi.org/10.1038/nature06591 

Herold, M., Martínez Arbas, S., Narayanasamy, S., Sheik, A.R., Kleine-Borgmann, L.A.K., Lebrun, L.A., 
Kunath, B.J., Roume, H., Bessarab, I., Williams, R.B.H., Gillece, J.D., Schupp, J.M., Keim, P.S., 
Jäger, C., Hoopmann, M.R., Moritz, R.L., Ye, Y., Li, S., Tang, H., Heintz-Buschart, A., May, P., 
Muller, E.E.L., Laczny, C.C., Wilmes, P., 2020. Integration of time-series meta-omics data 
reveals how microbial ecosystems respond to disturbance. Nat Commun 11, 5281. 
https://doi.org/10.1038/s41467-020-19006-2 

Jurtshuk, P., 1996. Bacterial Metabolism, in: Baron, S. (Ed.), Medical Microbiology. University of Texas 
Medical Branch at Galveston, Galveston (TX). 



Extended Summary 
 

41 
 

Kalscheuer, R., Wältermann, M., Alvarez, H., Steinbüchel, A., 2001. Preparative isolation of lipid 
inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-
associated proteins. Arch Microbiol 177, 20–28. https://doi.org/10.1007/s00203-001-0355-5 

Kashi, H., Loeppmann, S., Herschbach, J., Schink, C., Imhof, W., Kouchaksaraee, R.M., Dippold, M.A., 
Spielvogel, S., 2022. Size matters: biochemical mineralization and microbial incorporation of 
dicarboxylic acids in soil. Biogeochemistry. https://doi.org/10.1007/s10533-022-00990-0 

Kohlstedt, M., Becker, J., Wittmann, C., 2010. Metabolic fluxes and beyond—systems biology 
understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 88, 1065–
1075. https://doi.org/10.1007/s00253-010-2854-2 

Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H.N., Reis, M.A.M., 
2017. Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) 
Production. Bioengineering 4, 55. https://doi.org/10.3390/bioengineering4020055 

Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: Concept & review. 
Soil Biology and Biochemistry 83, 184–199. https://doi.org/10.1016/j.soilbio.2015.01.025 

Laalami, S., Zig, L., Putzer, H., 2014. Initiation of mRNA decay in bacteria. Cell. Mol. Life Sci. 71, 1799–
1828. https://doi.org/10.1007/s00018-013-1472-4 

López, N.I., Pettinari, M.J., Nikel, P.I., Méndez, B.S., 2015. Polyhydroxyalkanoates, in: Advances in 
Applied Microbiology. Elsevier, pp. 73–106. https://doi.org/10.1016/bs.aambs.2015.06.001 

Loreau, M., de Mazancourt, C., 2013. Biodiversity and ecosystem stability: a synthesis of underlying 
mechanisms. Ecology Letters 16, 106–115. https://doi.org/10.1111/ele.12073 

Manzoni, S., Ding, Y., Warren, C., Banfield, C.C., Dippold, M.A., Mason-Jones, K., 2021. Intracellular 
Storage Reduces Stoichiometric Imbalances in Soil Microbial Biomass – A Theoretical 
Exploration. Front. Ecol. Evol. 9, 714134. https://doi.org/10.3389/fevo.2021.714134 

Mason‐Jones, K., Banfield, C.C., Dippold, M.A., 2019. Compound‐specific 13 C stable isotope probing 
confirms synthesis of polyhydroxybutyrate by soil bacteria. Rapid Commun Mass Spectrom 33, 
795–802. https://doi.org/10.1002/rcm.8407 

Mason-Jones, K., Breidenbach, A., Dyckmans, J., Banfield, C.C., Dippold, M.A., 2023. Intracellular 
carbon storage by microorganisms is an overlooked pathway of biomass growth. Nature 
Communications 14, 2240. https://doi.org/10.1038/s41467-023-37713-4 

Mason-Jones, K., Robinson, S.L., Veen, G.F., Manzoni, S., van der Putten, W.H., 2021. Microbial storage 
and its implications for soil ecology. ISME J. https://doi.org/10.1038/s41396-021-01110-w 

Matin, A., Veldhuis, C., Stegeman, V., Veenhuis, M., 1979. Selective Advantage of a Spirillum sp. in a 
Carbon-limited Environment. Accumulation of Poly- -hydroxybutyric Acid and Its Role in 
Starvation. Journal of General Microbiology 112, 349–355. 
https://doi.org/10.1099/00221287-112-2-349 

Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., 2014. Stoichiometric 
imbalances between terrestrial decomposer communities and their resources: mechanisms 
and implications of microbial adaptations to their resources. Frontiers in Microbiology 5. 

Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 
2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological 
guild. Fungal Ecology 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006 

Ottow, J.C.G., 2011. Mikrobiologie von Böden, Springer-Lehrbuch. Springer Berlin Heidelberg, Berlin, 
Heidelberg. https://doi.org/10.1007/978-3-642-00824-5 

Qiu, J., 2016. Trouble in Tibet. Nature 529, 142–145. https://doi.org/10.1038/529142a 
Rasse, D.P., Rumpel, C., Dignac, M.-F., 2005. Is soil carbon mostly root carbon? Mechanisms for a 

specific stabilisation. Plant Soil 269, 341–356. https://doi.org/10.1007/s11104-004-0907-y 
Robinson, C.H., Ritson, J.P., Alderson, D.M., Malik, A.A., Griffiths, R.I., Heinemeyer, A., Gallego-Sala, 

A.V., Quillet, A., Robroek, B.J.M., Evans, C., Chandler, D.M., Elliott, D.R., Shutttleworth, E.L., 
Lilleskov, E.A., Kitson, E., Cox, F., Worrall, F., Clay, G.D., Crosher, I., Pratscher, J., Bird, J., Walker, 
J., Belyea, L.R., Dumont, M.G., Bell, N.G.A., Artz, R.R.E., Bardgett, R.D., Andersen, R., 
Hutchinson, S.M., Page, S.E., Thom, T.J., Burn, W., Evans, M.G., 2023. Aspects of microbial 



Extended Summary 
 

42 
 

communities in peatland carbon cycling under changing climate and land use pressures. Mires 
and Peat 29, 1–36. https://doi.org/10.19189/MaP.2022.OMB.StA.2404 

Schimel, J., 2016. Microbial ecology: Linking omics to biogeochemistry. Nat Microbiol 1, 15028. 
https://doi.org/10.1038/nmicrobiol.2015.28 

Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R., 2012. Methods in Soil Biology. Springer Science & 
Business Media. 

Schleuss, P.-M., Heitkamp, F., Sun, Y., Miehe, G., Xu, X., Kuzyakov, Y., 2015. Nitrogen Uptake in an 
Alpine Kobresia Pasture on the Tibetan Plateau: Localization by 15N Labeling and Implications 
for a Vulnerable Ecosystem. Ecosystems 18, 946–957. https://doi.org/10.1007/s10021-015-
9874-9 

Sekar, K., Linker, S.M., Nguyen, J., Grünhagen, A., Stocker, R., Sauer, U., 2020. Bacterial Glycogen 
Provides Short-Term Benefits in Changing Environments. Applied and Environmental 
Microbiology 86, e00049-20. https://doi.org/10.1128/AEM.00049-20 

Song, Y., Song, C., Ren, J., Ma, X., Tan, W., Wang, X., Gao, J., Hou, A., 2019. Short-Term Response of the 
Soil Microbial Abundances and Enzyme Activities to Experimental Warming in a Boreal 
Peatland in Northeast China. Sustainability 11, 590. https://doi.org/10.3390/su11030590 

Soong, J.L., Fuchslueger, L., Marañon‐Jimenez, S., Torn, M.S., Janssens, I.A., Penuelas, J., Richter, A., 
2020. Microbial carbon limitation: The need for integrating microorganisms into our 
understanding of ecosystem carbon cycling. Glob Change Biol 26, 1953–1961. 
https://doi.org/10.1111/gcb.14962 

Spohn, M., Klaus, K., Wanek, W., Richter, A., 2016. Microbial carbon use efficiency and biomass 
turnover times depending on soil depth – Implications for carbon cycling. Soil Biology and 
Biochemistry 96, 74–81. https://doi.org/10.1016/j.soilbio.2016.01.016 

Takahashi, H., Morioka, R., Ito, R., Oshima, T., Altaf-Ul-Amin, Md., Ogasawara, N., Kanaya, S., 2011. 
Dynamics of Time-Lagged Gene-to-Metabolite Networks of Escherichia coli Elucidated by 
Integrative Omics Approach. OMICS: A Journal of Integrative Biology 15, 15–23. 
https://doi.org/10.1089/omi.2010.0074 

Voet, D., Voet, J.G., Pratt, C.W., 2008. Fundamentals of biochemistry: life at the molecular level, 3rd 
ed. ed. Wiley, Hoboken, NJ. 

Wang, T., Yang, D., Yang, Y., Piao, S., Li, X., Cheng, G., Fu, B., 2020. Permafrost thawing puts the frozen 
carbon at risk over the Tibetan Plateau. Science Advances 6, eaaz3513. 
https://doi.org/10.1126/sciadv.aaz3513 

Wieder, W.R., Hartman, M.D., Sulman, B.N., Wang, Y.-P., Koven, C.D., Bonan, G.B., 2018. Carbon cycle 
confidence and uncertainty: Exploring variation among soil biogeochemical models. Global 
Change Biology 24, 1563–1579. https://doi.org/10.1111/gcb.13979 

Wu, W., Dijkstra, P., Dippold, M.A., 2020. 13C analysis of fatty acid fragments by gas chromatography 
mass spectrometry for metabolic flux analysis. Geochimica et Cosmochimica Acta 284, 92–106. 
https://doi.org/10.1016/j.gca.2020.05.032 

Wu, W., Dijkstra, P., Hungate, B.A., Shi, L., Dippold, M.A., 2022. In situ diversity of metabolism and 
carbon use efficiency among soil bacteria. Science Advances 8, eabq3958. 
https://doi.org/10.1126/sciadv.abq3958 

Wutzler, T., Zaehle, S., Schrumpf, M., Ahrens, B., Reichstein, M., 2017. Adaptation of microbial resource 
allocation affects modelled long term soil organic matter and nutrient cycling. Soil Biology and 
Biochemistry 115, 322–336. https://doi.org/10.1016/j.soilbio.2017.08.031 

Yao, T., Thompson, L.G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B., Yang, X., Joswiak, D.R., Wang, 
W., Joswiak, M.E., Devkota, L.P., Tayal, S., Jilani, R., Fayziev, R., 2012. Third Pole Environment 
(TPE). Environmental Development 3, 52–64. https://doi.org/10.1016/j.envdev.2012.04.002 

Zhang, L., Unteregelsbacher, S., Hafner, S., Xu, X., Schleuss, P., Miehe, G., Kuzyakov, Y., 2017. Fate of 
Organic and Inorganic Nitrogen in Crusted and Non‐Crusted Kobresia Grasslands. Land Degrad. 
Develop. 28, 166–174. https://doi.org/10.1002/ldr.2582 

  



Publications and Manuscripts 
 

43 
 

2. Publications and Manuscripts 

2.1.1. Study 1: Microbial functional changes mark irreversible course of 

Tibetan grassland degradation 

Andreas Breidenbach1,2,#, Per-Marten Schleuss3,#, Shibin Liu4, Dominik Schneider5, Michaela A. 

Dippold1,2, Tilman de la Haye6, Georg Miehe7, Felix Heitkamp8, Elke Seeber9, Kyle Mason-Jones10, 

Xingliang Xu11,12, Yang Huanming13, Jianchu Xu14, Tsechoe Dorji12,15, Matthias Gube16, Helge Norf17, Jutta 

Meier18, Georg Guggenberger19, Yakov Kuzyakov20 & Sandra Spielvogel6* 

 

1 Department for Crop Sciences, Biogeochemistry of Agroecosystems, University of Goettingen, 

Buesgenweg 2, 37077 Goettingen, Germany.  

2 Department of Geosciences, Geo-Biosphere Interactions, University of Tuebingen, 

Schnarrenbergstrasse 94-96, 72076 Tuebingen, Germany.  

3 Department of Soil Ecology, University of Bayreuth, Dr. Hans-Frisch Strasse 1-3, 95448 Bayreuth, 

Germany.  

4 Institute of Ecological Environment, Chengdu University of Technology, 610059 Chengdu, China.  

5 Institute of Microbiology and Genetics and Goettingen Genomics Laboratory, University of 

Goettingen, Grisebachstrasse. 8, 37077 Goettingen, Germany.  

6 Department of Soil Science, University of Kiel, Hermann-Rodewald-Strasse 2, 24118 Kiel, Germany.  

7 Faculty of Geography, University of Marburg, Deutschhausstrasse 10, 35032 Marburg, Germany.  

8 Environmental Control, Northwest German Forest Research Institute, Graetzelstrasse 2, 37079 

Goettingen, Germany.  

9 Department of Botany, Senckenberg Museum of Natural History Goerlitz, 02806 Goerlitz, Germany.  

10 Netherlands Institute of Ecology, Department of Terrestrial Ecology, Postbus 50, 6700 AB 

Wageningen, the Netherlands.  

11 Key Laboratory Ecosystem Network Observation and Modeling, Institute of Geographic Science and 

Natural Resources Research, Chinese Academy of Science, 11A Datun Road, 100101 Beijing, China.  

12 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences (CAS), 

100101 Beijing, China.  



Publications and Manuscripts 
 

44 
 

13 Beijing Genomics Institute, BGI Park No. 21 Hongan 3rd Street, Yantian District, 518083 Shenzhen, 

China.  

14 Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 

Kunming, China.  

15 Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang 

District, 100101 Beijing, China.  

16 Soil Science of Temperate Ecosystems, University of Goettingen, Buesgenweg 2, 37077 Goettingen, 

Germany.  

17 Department of River Ecology, Department of Aquatic Ecosystems Analysis and Management, 

Helmholtz Centre for Environmental Research GmbH UFZ, Brueckstrasse 3a, 39114 Magdeburg, 

Germany.  

18 Institute for Integrated Natural Sciences, University of Koblenz-Landau, Universitätsstrasse. 1, 56070 

Koblenz, Germany.  

19 Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, 

Germany.  

20 Agricultural Soil Science, University of Goettingen, Buesgenweg 2, 37077 Goettingen, Germany. 

 

#These authors contributed equally: Andreas Breidenbach, Per-Marten Schleuss.  

*Corresponding author E-mail address: s.spielvogel@soils.uni-kiel.de 

  



Publications and Manuscripts 
 

45 
 

2.1.2. Abstract 

The Tibetan Plateau’s Kobresia pastures store 2.5% of the world’s soil organic carbon (SOC). Climate 

change and overgrazing render their topsoils vulnerable to degradation, with SOC stocks declining by 

42% and nitrogen (N) by 33% at severely degraded sites. We resolved these losses into erosion 

accounting for two-thirds, and decreased carbon (C) input and increased SOC mineralization 

accounting for the other third and confirmed these results by comparison with a meta-analysis of 594 

observations. The microbial community responded to the degradation through altered taxonomic 

composition and enzymatic activities. Hydrolytic enzyme activities were reduced, while degradation of 

the remaining recalcitrant soil organic matter by oxidative enzymes was accelerated, demonstrating a 

severe shift in microbial functioning. This may irreversibly alter the world’s largest alpine pastoral 

ecosystem by diminishing its C sink function and nutrient cycling dynamics, negatively impacting local 

food security, regional water quality and climate. 

2.1.3. Introduction 

The Tibetan Plateau (TP) hosts the world’s largest high-altitude grasslands, contributing 2.5% to global 

SOC stocks (Genxu et al., 2002) but covering only 0.3% of the Earth’s total terrestrial area. It influences 

the Asian monsoon climate (Babel et al. 2014), is the water source for one-fifth of the global population 

(Qui, 2016) and provides grazing grounds for >8 million sheep, yaks, and goats (Zhou et al. 2005). 

Approximately one-fifth of the TP is covered by Kobresia grasslands (Babel et al., 2014). Kobresia 

pygmaea forms a 2–4 cm high grazing lawn with low shoot biomass but very compact root mats (root-

to-shoot ratio >20) (Schleuss et al., 2015), induced by a long history of low-to-moderate grazing 

intensity, which increases belowground carbon allocation and root biomass (Ingrisch et al., 2015, Wang 

& Wesche 2016). Kobresia pygmaea’s dense root network protects it from trampling-induced soil 

erosion and enables fast regrowth after defoliation (Miehe et al., 2019). 

Pasture degradation has increased dramatically in recent decades (Babel et al. 2014, Qui 2016), and 

about 30% of the Tibetan grasslands are considered to be degraded (Harris, 2010). This has 

indisputably severe consequences for ecosystem functions, most importantly the major decline in SOC 

and N storage. Three mechanisms contribute to this—erosion, decreased C and N input, and increased 

soil organic matter (SOM) mineralization—but their relative importance remains unclear (Wang et al. 

2009). We conducted a meta-analysis including 594 single observations from 49 literature studies 

published between 2002 and 2020 (Supplementary Table 1) to quantify the SOC and N losses for 

Kobresia pygmaea’s core area. In a detailed field study, we determined the relative contributions of 

erosion and net mineralization to SOC losses and identified the underlying changes in microbial 

community structure and functioning. For this, we categorized six successive stages of degradation, 
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from intact Kobresia root mats (S0) to stages with increasing extents of surface cracks (S1–S4) to bare 

soil patches without root mats (S5) (Supplementary Fig. 1). 

We hypothesize that substantial parts of the Kobresia pastures are close to a critical point of microbial 

functioning changes with substantial consequences for SOC and N storage. We further hypothesize 

that these abrupt shifts are characterized by changes in SOM quality and quantity that are coupled by 

feedback loops to microbial community structure and functions, which in turn control C and N 

mineralization. 

2.1.4. Results 

2.1.4.1. Root-mat cracking and soil erosion. 

The formation of polygonal surface cracks is widespread between the Qilian Mountains and the 

Himalayas (Supplementary Fig. 1). These surface cracks represent the early stages of a degradation 

process that, in its final stage (S5), is associated with a loss of 42% of SOC compared to non-degraded 

pastures (Fig. 1A, B; Supplementary Fig. 2). Nitrogen losses were comparably high (33%; Fig. 1C, D; 

Supplementary Fig. 2). Soil erosion induced preferential loss of the easily erodible fine particles, 

resulting in a relative accumulation of coarser soil material from S0 to S5 (Fig. 1G, Supplementary Fig. 

3), with soil clay content being 60% lower at the most degraded sites compared to intact pastures (Fig. 

1G; Supplementary Fig. 3). At the most extreme degradation stage (S5) of our own study site, 81 kg 

m−2 of the most fertile SOC- and N-rich topsoil had been lost to erosion. This corresponds to 5 kg C m−2 

or 45% of the total soil C stock (Fig. 1A), in agreement with the mean soil C loss found in the literature 

study (42%). Degradation of the Kobresia turf was furthermore associated with a large decrease in 

penetration resistance (Fig. 2A) and root density (Fig. 2B) from S1 to S5. Intensified degradation 

decreased vegetation cover, leaving the soil prone to erosion with extended size and depth of cracks 

(Supplementary Table 2). 



Publications and Manuscripts 
 

47 
 

 

S1 Figure 1: Changes in soil characteristics with depth according to degradation stage. A soil organic carbon 

(SOC) core study site, B SOC literature study, C total nitrogen (N) core study site, D total N literature study, E 

bulk density (BD) core study site, F BD literature study, G clay content core study site. All parameters are 

presented for each soil horizon at the midpoint of the depth increment. Error bars display standard error. 

Exact data are provided in Supplementary Table 2. 
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2.1.4.2. SOC losses through mineralisation and decreased root carbon input. 

 

The SOC and N contents were closely positively correlated with root density (Supplementary Fig. 4) 

and showed a consistent relationship in isotopic composition (δ13C) with the associated roots at each 

depth (Fig. 2C). This demonstrates the importance of roots as the dominant SOC source for intact 

Kobresia pastures. An association of increasing δ13C values with declining SOC content (Fig. 2D) due to 

kinetic isotope fractionation during decomposition was observed only at the final degradation stage. 

With degradation from S1 to S4, the SOC content in the upper 20 cm decreased (Fig. 1A, B), while δ13C 

values already decreased from S0 to S1 (Fig. 2D). We quantified the sum of lignin monomers vanillyl, 

syringyl, and cinnamyl as an indicator of complex organic compounds (Kögel-Knabner, 2002)11. Vanillyl, 

 

S1 Figure 2: Changes in soil characteristics with depth according to degradation stage. A Penetration 

resistance, B root density, C δ13C of soil and roots, D δ13C of soil organic carbon (SOC), E content of lignin 

monomers vanillyl, syringyl, and cinnamyl (VSC). All parameters (means ± SE, n = 4) are presented for each soil 

horizon at depth midpoint, except for penetration resistance (A) and δ13C values of soil and roots (C), which 

are shown in 1 and 5 cm increments, respectively. Exact data are given in Supplementary Table 2. Progressive 

changes along the degradation sequence can be explained by the following processes: (a) root-mat cracking 

by desiccation and frost, (b) root death and decomposition, (c) kinetic 13C fractionation during root 

decomposition, (d) SOC loss due to reduced root carbon (C) input and greater SOC mineralization, (e) relative 

lignin accumulation and 13CSOC depletion (S0–S3), (f) relative lignin accumulation during stages S0–S3, (g) lignin 

degradation and 13CSOC enrichment (S4, S5). 
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syringyl, and cinnamyl contents increased from S0 to S4 (Fig. 2E), indicating selective lignin 

preservation during early degradation stages. The close negative correlation between δ13C and vanillyl, 

syringyl, and cinnamyl contents in the mineral horizon indicates the selective enrichment of the 

isotopically light lignin (Supplementary Fig. 5A). However, the decrease of vanillyl, syringyl, and 

cinnamyl contents from S4 to S5 in the mineral soil (Fig. 2E), accompanied by 13C enrichment (Fig. 2D) 

and a decrease in SOC content (Supplementary Fig. 5B), indicates a pronounced lignin decomposition 

at the final degradation stage (S5). 

2.1.4.3. Soil microbial community structure and functions 

The bacterial (Supplementary Figs. 6A, and 9) and fungal (Supplementary Figs. 6B, and 10) community 

composition changed significantly (p < 0.05, MANOVA) along the degradation sequence. Bacterial 

groups (Supplementary Table 3) associated with decomposition of low-molecular-weight organic 

compounds, e.g., Actinobacteria (Supplementary Figs. 7A, and 9), declined with pasture degradation, 

whereas lignin-degrading groups such as Rhizobiales increased (Supplementary Fig. 7D). Nitrifying 

(Nitrospirales and Nitrosomonadaceae; Supplementary Fig. 7B, C) and denitrifying (Pseudomonadales; 

Supplementary Fig. 7E) bacteria increased from S0 to S3 and then declined towards S5. These shifts 

indicate severe changes in N-cycling towards the accelerated microbial transformation of organic N to 

mineral N in the early stages of degradation. Similarly, fungal groups specialized in efficient lignin 

degradation increased in relative abundance at later degradation stages, as evidenced by 

Agaricomycetes (Cragg et al., 2015, Andlar et al., 2018) (Supplementary Fig. 7F), which include the 

brown-rot and white-rot fungi. Correspondingly, groups generally incapable of efficient lignin 

degradation (Cragg et al., 2015), such as Ascomycota (Supplementary Fig. 7G), decreased along the 

degradation sequence (Supplementary Fig. 10a, b). After a peak at degradation stage S2, Kobresia 

pygmaea successively lost its arbuscular mycorrhizal fungal partners (Glomeromycota, Supplementary 

Fig. 7H), which were replaced by ectomycorrhizal ones (Thelephoraceae and Inocybaceae, 

Supplementary Fig. 7I). When Kobresia pygmaea largely disappeared (S5), the abundance of its 

ectomycorrhizal partners also declined and the first arbuscular mycorrhizal partners of the newly 

establishing pioneer plants appeared (Supplementary Fig. 7H). 

Non-metric multidimensional scaling (NMDS), including C/N, δ13C, total N, δ15N, total phosphorus (P), 

pH, cation exchange capacity, calcium, potassium, iron and aluminum content, clay content and 

vanillyl, syringyl, and cinnamyl content as explanatory factors revealed a strong correlation between 

microbial community structure and SOC quality (C/N, δ13C, N, P and vanillyl, syringyl, and cinnamyl) 

during early degradation stages (Fig. 3). However, changes in microbial community structure during 

later degradation stages (from S3 to S5) were mainly driven by abiotic soil properties such as increasing 

pH and decreasing clay content, which had a stronger effect on fungi than on bacterial communities. 
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S1 Figure 3: Overview of generalized changes in microbial community composition and functioning along 

the degradation sequence from intact (S0) to severely degraded (S5) stage. Generalized changes in microbial 

community composition and enzyme activities (A). Simplified non-metric multidimensional scaling (NMDS) 

plots derived from terminal restriction fragment length polymorphism (t-RFLP) data for the bacterial (B) and 

fungal (C) communities. Shaded areas mark each degradation stage, symbols indicate soil depth, and arrows 

show most important driving factors (canonical correspondence analysis, p < 0.05). Individual variables 

underlying the processes described by the blue and red arrows are shown in Supplementary Fig. 6. 
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Maximal activities of enzymes for utilizing easily hydrolyzable C sources (β-glucosidase and xylanase) 

significantly increased from S0 to S3 and declined when pasture degradation reached stage S4 

(Supplementary Figs. 7J, and 12). Likewise, the activity of N- and P-mobilizing enzymes (urease and 

alkaline phosphatase) declined from S3 to S4 (Supplementary Figs. 7J, and 12). In contrast, the activity 

of lignin-degrading phenol oxidases increased steadily with the degradation from S2 to S4 along with 

the relative increase in vanillyl, syringyl, and cinnamyl monomers (Supplementary Figs. 7J, and 12). 

2.1.4.4. Disentangling processes contributing to SOC losses 

In the study area, SOC stocks at 0–30 cm depth declined strongly by 7.5 kg C m−2 from the stage of 

intact Kobresia root mats (S0) to that of bare soil patches (S5). This corresponds to a 45% reduction 

(Fig. 4) and matches well with the mean SOC loss observed for degraded areas across the whole TP 

(42%). SOC losses were attributed to topsoil erosion, which accounted for two-thirds of the decline 

(for S5: 5.0 kg C m−2, Fig. 4B), with the combined effects of decreasing root carbon input and 

accelerated mineralization of root litter and SOC accounting for the remaining one third of the decline 

(2.5 kg C m−2; Fig. 4B). 

2.1.5. Discussion 

Above- and belowground linkages of organic matter and energy flux play a central role in the responses 

of the TP Kobresia ecosystem to anthropogenic forcing and climate warming, as reported for mountain 

ecosystems worldwide (Hagedorn et al., 2019). Severe soil degradation of the Kobresia ecosystem 

results from complex reinforcing interactions of biotic and abiotic processes, as well as anthropogenic 

pressure (Fig. 5). Frost events at the beginning of the cold season, when the soil is moist, cause the 

 

S1 Figure 4: Soil organic carbon (SOC) stocks and losses with increasing degradation. Total SOC stocks along 

the degradation sequence (S0–S5) down to 30 cm for each horizon (A). SOC losses by erosion and by reduced 

C input and increased SOC mineralization (B) during degradation (S1–S5). Lowercase letters indicate significant 

differences in SOC stocks between degradation stages. The absence of significant differences (n.s.) between 

quantified total SOC losses (red outline) and the calculated sum of erosion- and mineralization-induced SOC 

losses confirms the validity of the estimations. Error bars display standard error. 
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formation of polygonal surface cracks, a process severely enhanced by permafrost thaw (Wang et al., 

2020). Overgrazing induced trampling, followed by root death and decomposition, expand these 

surface cracks (S1, S2). Exacerbated polygonal cracking then promotes soil erosion with preferential 

loss of fine-textured material, containing SOC and nutrients (S3–S4). This implies, among others, a 

strong reduction in the water holding capacity with as yet unforeseeable consequences for the water 

supply and quality of one-fifth of the world’s population. Moreover, erosion of soil material and the 

associated loss of SOC carry severe consequences for ecosystem energy, water, and C fluxes, e.g., 

regionally earlier initiation of convection and cloud generation, affecting the strength and variability 

of the TP summer monsoon (Babel et al, 2014). 

 

δ13C patterns in roots and SOC in undegraded pastures demonstrate that SOC accumulation depends 

heavily on root biomass input and rhizodeposition. A close correlation between SOC stocks and root 

density across all degradation stages demonstrates that decreasing C input with degradation is a major 

driver of decreasing SOC content. Decreasing SOC content along the degradation gradient indicates 

that root necromass was not stabilized in degraded soils, and consequently labile constituents of root 

necromass were rapidly mineralized. The large root litter input from dying Kobresia stimulated 

 

S1 Figure 5: Overview of the degradation sequence from the intact (S0) to severely degraded (S5) stage, 

showing the driving forces of degradation. Polygons describe main biotic and abiotic degradation 

mechanisms with a focus on soil organic carbon (SOC) pools, in accordance with the hypotheses. The white/red 

scale on the left shows a soil depth of 30 cm in 5 cm increments. 
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microorganisms to decompose the old SOC pool (root litter priming). This was confirmed by the 

increased activity of hydrolyzing enzymes during the early degradation stages. Such priming effects 

were triggered by the three to four times higher C/N ratio in roots compared to soil, driving microbes 

in this N-limited ecosystem5 to decompose SOM to obtain N (N mining) (Craine et al, 2007). Similar 

effects of N limitation were observed along a thawing permafrost chronosequence in grassland soils 

of the TP, where N limitation in the late stages of permafrost collapse induced SOC decomposition 

through priming effects (Chen et al., 2018). In the case of permafrost thawing, a decrease in metabolic 

efficiency was the major mechanism underlying priming, without a response in hydrolytic enzyme 

activity. The root litter decomposition observed along our degradation sequence was, however, clearly 

related to an increase in hydrolytic enzyme activity from S0 to S3. Thus, the successive degradation 

and subsequent mineralization of the organic N stocks increased the abundance of nitrifying and 

denitrifying bacteria during the early degradation stages (S0–S3). Using N-cycling gene abundances 

(amoA), Che et al. (2017) identified an up to five-fold increase in nitrifiers associated with a major shift 

in the N cycle during the degradation of Tibetan pasture meadows. Nitrification produces easily 

leachable nitrate, a limiting substrate for denitrification in alpine meadows (Xie et al., 2014), which 

consequently increases in periods of high soil moisture or in moist soil microhabitats. We observed an 

increase in N-hydrolyzing enzymes, an increase in plant litter decomposers, and an increasing 

abundance of nitrifier- and denitrifier-hosting bacterial orders and families (Nitrospirales and 

Nitrosomonadaceae (Supplementary Fig. 7B, C) and Pseudomonadales (Supplementary Fig. 7E), 

respectively) from degradation state S0–S3. This suggests that all three processes - N mineralization, 

nitrification, and denitrification—increase along the degradation gradient, which leads to severe 

nitrogen losses from this ecosystem via leaching, emissions of nitrous oxide and nitrogen gas, and NH3 

volatilization (Liu et al., 2017). Quantification of the net and gross rates of these processes (Gao et al., 

2008) as well as corresponding gene abundances (Dong et al., 2020) confirmed that these three key 

steps of the N cycle accelerate with increased grazing intensity in Tibetan meadows. Concomitant 

increases in mineral N availability (Gao et al., 2008) induced a change in the mycorrhizal partners of 

Kobresia pygmaea. Arbuscular mycorrhizal fungi, capable of capturing nutrients released by other 

microorganisms’ hydrolytic enzymes, increased along the sequence of increasing hydrolytic organic 

matter decomposition (S0–S2) and optimized the access to otherwise rapidly leached or consumed 

ammonia and nitrate. However, toward stage S4, there was a shift in favor of ectomycorrhizal partners 

of Kobresia pygmaea, being specialized for the active mobilization of organic matter-bound nutrients 

using their own oxidative enzymes. The concurrent decrease in urease activity from S3 to S4, reflecting 

successive depletion of the easily accessible N in the soil, is evidence of a shift in ecosystem nutrition 

strategy: mineral nutrient release through AMF-mediated and prokaryote-driven hydrolysis was 

replaced by fungi-based nutrient scavenging for nutritional elements “locked up” in complex structural 
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root-mat tissues using oxidative enzymes. Such fundamental shifts in nutritional strategies and 

biogeochemical cycles suggest that degradation will have large-scale feedback on multiple 

environmental processes.  

As a result of organic matter decomposition, we expected kinetic isotope fractionation to induce a 

continuous δ13C increase along the degradation gradient (Schweizer & Cadisch, 1999). However, the 

opposite was found for early degradation stages. δ13C values decreased from S0 to S4 within the upper 

20 cm, while δ13C values increased from S4 to S5. We attribute the δ13C decrease (S0–S4) to a relative 

accumulation of more complex, 13C-depleted organic compounds such as lignin (Hobbie & Werner, 

2004). Assuming a 4.3‰ depletion in lignin δ13C compared to bulk plant material (Hobbie & Werner, 

2004) and a recovery of 38% of the lignin C by the vanillyl, syringyl, cinnamyl method (Pepper et al., 

1967), the relative increase of lignin from 0.9 to 4.7% of SOC accounts for nearly 23% of the observed 

δ13C shift across the degradation sequence. However, lignin is only one compound class among others 

(cutins, suberins, etc.) with complex structures and depleted δ13C values. Lipids have even more 

depleted δ13C values than lignin (Hobbie & Werner, 2004). The negative δ13C shifts observed with soil 

degradation from S0 to S4 likely reflect the relative accumulation of these rather persistent compounds 

in addition to lignin. The intact Kobresia root mats at the research site consist of about 6 kg root dry 

matter m−2 (Schleuss et al., 2015), including many woody roots that contain large amounts of lignin 

and suberin. Root dieback during soil degradation, therefore, provides a substantial source of complex, 

13C-depleted compounds. Relative lignin enrichment of the SOC pool was evident not only in the δ13C 

decrease but also in the increased abundance of fungal and bacterial specialists decomposing complex 

SOM (e.g., Rhizobiales and Agaricomycetes). The elevated abundance of these groups was 

accompanied by increased phenoloxidase activity, which catalyzes the nonspecific oxidation of 

complex organic substances, especially lignin. Consequently, after easily available C pools are depleted 

(S3), complex organic compounds are successively degraded as microbial communities adapt to these 

distinct carbon sources. While microbial communities changed gradually from S0 to S3, a profound 

shift in community structure and functions occurred from S3 to S4 (evidenced by a vertical shift in 

direction in the NMDS plots; Supplementary Figs. 6 and 8). This transition coincided with (a) the 

exhaustion of easily accessible, hydrolyzable N sources, (b) the complete loss of the topsoil through 

mineralization and erosion, and (c) the first establishment of pioneer plants on the bare subsoil 

between Kobresia root-mat remnants. The new fungal symbionts of these pioneer plants explain the 

particularly pronounced shift in the fungal community from S3 to S4, representing this new ecosystem 

state. Degradation exceeding S4, therefore, constitutes a severe alteration of microbial community 

composition and functioning, beyond which biotic and abiotic ecosystem properties have changed so 

severely that ecosystem recovery is unlikely. 
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Taken together, overgrazing of Kobresia pastures on the TP induces a highly interrelated sequence of 

abiotic and biotic degradation processes. Polygonal crack extension and root-mat dieback as a result 

of freeze-thaw cycles and overgrazing induce topsoil erosion and progressive SOC decomposition and 

N loss. This is accompanied by a shift in microbial community structure and functions to adapt to the 

altered availability of SOC and N. Studies of the past decade predict an intensification of the 

degradation of this pastoral ecosystem because of the large population that is dependent on livestock 

products (Qui, 2016), increasing stocking rates close to settlements (Zhou et al., 2005) and diminishing 

availability of high-quality grazing grounds following degradation (Harris, 2010). Once the critical point 

between S3 and S4 has been passed, conventional strategies for mitigating degradation are unlikely to 

prevent complete loss of the entire C-rich topsoil, with cascading effects on microbial functioning and 

the related ecosystem services. 

The challenges brought about by TP degradation can only be addressed through lowering livestock 

densities, and perhaps more importantly increasing livestock mobility to maintain important functions 

of the vulnerable Kobresia ecosystem. In 2011, China proposed the Ecological Conservation Redline 

strategy that protects ecologically fragile zones like the TP (Gao et al., 2020) by prioritizing and 

prohibiting rangeland degradation. Tibetan pastoralists increasingly manage their rangelands through 

contracting, assessing limits to livestock holdings based on land availability (Yeh et al.,2017), e.g., by 

“multi-household management pattern”. This practice has been shown to reduce SOC losses 

considerably (Cao et al. 2017), more closely resembling pre-settlement grassland management. 

Further, the reintroduction of seasonal livestock grazing in the framework of community-based villages 

can protect or even restore vegetation and soil (Zhuang et al., 2019), provided that a certain 

degradation stage has not been surpassed. Once this critical point is crossed, reseeding has been 

proposed as a restoration strategy (Liu et al., 2018). However, reseeding of heavily degraded areas 

generally requires N and P fertilization (Liu et al., 2018), which carries the risk of nutrient leaching and 

headwater pollution and is nevertheless often unsuccessful (Dong et al., 2012). Dong et al. (2012) 

studied the restoration potential of TP grasslands and their soil chemical and physical properties in 

three depth increments (0–4, 4–10, and 10–20 cm). The results show that neither the decreased water 

holding capacity, nor the SOC and N content could be restored in the reestablished artificial grasslands 

this was attributed to the loss of the topsoil, changed soil texture, and changes in vegetation 

composition. This demonstrates the threshold behavior of TP’s pastures, where a complete recovery 

from highly degraded stages is unlikely, due to slow pedogenic processes and vegetation restoration, 

as well as continuously increasing global warming. 
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2.1.6. Methods 

2.1.6.1. Literature study 

Literature considering the effect of pasture degradation on SOC, N, and clay content, as well as bulk 

density (BD), was assembled by searching (i) Web of Science V.5.22.1, (ii) ScienceDirect (Elsevier B.V.) 

(iii) Google Scholar, and (iv) the China Knowledge Resource Integrated Database (CNKI). Search terms 

were “degradation gradient”, “degradation stages”, “alpine meadow”, “Tibetan Plateau”, “soil”, “soil 

organic carbon”, and “soil organic matter” in different combinations. The criteria for including a study 

in the analysis were: (i) a clear and comprehensible classification of degradation stages was presented, 

(ii) data on SOC, N, and/or BD were reported, (iii) a non-degraded pasture site was included as a 

reference to enable an effect size analysis and the calculation of SOC and N losses, (iv) sampling depths 

and study location were clearly presented. (v) Studies were only considered that took samples in 10 

cm depth intervals, to maintain comparability to the analyses from our own study site. The degradation 

stages in the literature studies were regrouped into the six successive stages (S0–S5) according to the 

respective degradation descriptions. In total, we compiled the results of 49 publications published 

between 2002 and 2020.  

When SOM content was presented, this was converted to SOC content using a conversion factor of 2.0 

(Pribyl, 2010). SOC and N stocks were calculated using the following equation:  

(1) 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑡𝑜𝑐𝑘 =  100 ∗ 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ∗ 𝐵𝐷 ∗ 𝑑𝑒𝑝𝑡ℎ 

where elemental stock is SOC or N stock [kg ha−1]; content is SOC or N content [g kg−1]; BD is soil bulk 

density [g cm−3] and depth is the soil sampling depth [cm].  

The effect sizes of individual variables (i.e., SOC and N stocks as well as BD) were quantified as follows:  

(2) 𝐸𝑆 =  
(𝐷−𝑅)

𝑅∗100%
 

where ES is the effect size in %, D is the value of the corresponding variable in the relevant degradation 

stage and R is the value of each variable in the non-degraded stage (reference site). When ES is positive, 

zero, or negative, this indicates an increase, no change, or decrease, respectively, of the parameter 

compared to the non-degraded stage. 

2.1.6.2. Experimental design of the field study 

Large areas in the study region are impacted by grassland degradation. In total, 45% of the surface 

area of the Kobresia pasture ecosystem on the TP is already degraded (Babel et al., 2014). The 

experiment was designed to differentiate and quantify SOC losses by erosion vs. net decomposition 

and identify underlying shifts in microbial community composition and link these to changes in key 



Publications and Manuscripts 
 

57 
 

microbial functions in the soil C cycle. We categorized the range of Kobresia root-mat degradation from 

non-degraded to bare soils into six successive degradation stages (S0–S5). Stage S0 represented non-

degraded root mats, while stages S1–S4 represented increasing degrees of surface cracks, and bare 

soil patches without root mats defined stage S5 (Supplementary Fig. 1). All six degradation stages were 

selected within an area of about 4 ha to ensure equal environmental conditions and each stage was 

sampled in four field replicates. However, the studied degradation patterns are common for the entire 

Kobresia ecosystem (Supplementary Fig. 1). 

2.1.6.3. Site description 

The field study was conducted near Nagqu (Tibet, China) in the late summer 2013 and 2015. The study 

site of about 4 ha (NW: 31.274748°N, 92.108963°E; NE: 31.274995°N, 92.111482°E; SW: 31.273488°N, 

92.108906°E; SE: 31.273421°N, 92.112025°E) was located on gentle slopes (2–5%) at 4,484 m a.s.l. in 

the core area of the Kobresia pygmaea ecosystem according to Miehe et al. (2019).The vegetation 

consists mainly of K. pygmaea, which covers up to 61% of the surface. Other grasses, sedges, or dwarf 

rosette plants (Carex ivanoviae, Carex spp., Festuca spp., Kobresia pusilla, Poa spp., Stipa purpurea, 

Trisetum spp.) rarely cover more than 40%. The growing season is strongly restricted by temperature 

and water availability. At most, it lasts from mid-May to mid-September, but varies strongly depending 

on the onset and duration of the summer monsoon. Mean annual precipitation is 431 mm, with 

roughly 80% falling as summer rains. The mean annual temperature is −1.2 °C, while the mean 

maximum temperature of the warmest month (July) is +9.0 °C (Babel et al., 2014). A characteristic 

feature of Kobresia pastures is their very compact root mats, with an average thickness of 15 cm at the 

study site. These consist mainly of living and dead K. pygmaea roots and rhizomes, leaf bases, large 

amounts of plant residue, and mineral particles. Intact soil is a Stagnic Eutric Cambisol (Humic), 

developed on a loess layer overlying glacial sediments and containing 50% sand, 33% silt, and 17% clay 

in the topsoil (0–25 cm). The topsoil is free of carbonates and is of neutral pH (pH in H2O: 6.8) (Schleuss 

et al., 2015). Total soil depth was on average 35 cm. The site is used as a winter pasture for yaks, sheep, 

and goats from January to April. Besides livestock, large numbers of plateau pikas (Ochotona) are found 

on the sites. These animals have a considerable impact on the plant cover through their burrowing 

activity, in particular the soil thrown out of their burrows, which can cover and destroy the Kobresia 

turf. 

2.1.6.4. Sampling design 

The vertical and horizontal extent of the surface cracks was measured for each plot (Supplementary 

Table 2). Vegetation cover was measured, and the aboveground biomass was collected in the cracks 

(Supplementary Table 2). In general, intact Kobresia turf (S0) provided high resistance to penetration 

as measured by a penetrologger (Eijkelkamp Soil and Water, Giesbeek, NL) in 1 cm increments and 
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four replicates per plot. Soil sampling was conducted using soil pits (30 cm length × 30 cm width × 40 

cm depth). Horizons were classified and then soil, and roots were sampled for each horizon directly 

below the cracks. Bulk density and root biomass were determined in undisturbed soil samples, using 

soil cores (10 cm height and 10 cm diameter). Living roots were separated from dead roots and root 

debris by their bright color and soft texture using tweezers under magnification, and the roots were 

subsequently washed with distilled water to remove the remaining soil. Because over 95% of the roots 

occurred in the upper 25 cm (Schleuss et al., 2015), we did not sample for root biomass below this 

depth. Additional soil samples were taken from each horizon for further analysis. Microbial community 

and functional characterization were performed on samples from the same pits but with a fixed depth 

classification (0–5cm, 5–15 cm, 15–35 cm) to reduce the number of samples. 

2.1.6.5. Plant and soil analyses 

Soil and roots were separated by sieving (2 mm) and the roots subsequently washed with distilled 

water. Bulk density and root density were determined by dividing the dry soil mass (dried at 105 °C for 

24 h) and the dry root biomass (60 °C) by the volume of the sampling core. To reflect the root biomass, 

root density was expressed per soil volume (mg cm−3). Soil and root samples were milled for 

subsequent analysis. 

2.1.6.6. Elemental concentrations and SOC characteristics 

Total SOC and total N contents and stable isotope signatures (δ13C and δ15N) were analyzed using an 

isotope ratio mass spectrometer (Delta plus, Conflo III, Thermo Electron Cooperation, Bremen, 

Germany) coupled to an elemental analyzer (NA 1500, Fisons Instruments, Milano, Italy). 

Measurements were conducted at the Centre for Stable Isotope Research and Analysis (KOSI) of the 

University of Göttingen. The δ13C and δ15N values were calculated by relating the isotope ratio of each 

sample (Rsample = 13C/12C or 15N/14N) to the international standards (Pee Dee Belemnite 13C/12C ratio 

for δ13C; the atmospheric 15N/14N composition for δ15N). Soil pH of air-dried soil was measured 

potentiometrically at a ratio (v/v) of 1.0:2.5 in distilled water. Lignin phenols were depolymerized using 

the CuO oxidation method (Pepper et al., 1967) and analyzed with a gas chromatography-mass 

spectrometry (GC–MS) system (GC 7820 A, MS 5977B, Agilent Technologies, Waldbronn, Germany). 

Vanillyl and syringyl units were calculated from the corresponding aldehydes, ketones, and carboxylic 

acids. Cinnamyl units were derived from the sum of p-coumaric acid and ferulic acid. The sum of the 

three structural units (VSC = V + S + C) was considered to reflect the lignin phenol content in a sample. 

2.1.6.7. DNA extraction and PCR 

Samples were directly frozen on site at −20 °C and transported to Germany for analysis of microbial 

community structure. Total DNA was extracted from the soil samples with the PowerSoil DNA isolation 

kit (MoBio Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer’s instructions, and DNA 
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concentration was determined using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE, USA). The extracted DNA was amplified with forward and reverse primer sets suitable 

for either t-RFLP (fluorescence marked, FAM) or Illumina MiSeq sequencing (Illumina Inc., San Diego, 

USA): V3 (5’-CCT ACG GGN GGC WGC AG-3’) and V4 (5’-GAC TAC HVG GGT ATC TAA TCC-3’) primers 

were used for bacterial 16 S rRNA genes whereas ITS1 (5’-CTT GGT CAT TTA GAG GAA GTA A-3’), ITS1-

F_KYO1 (5’CTH GGT CAT TTA GAG GAA STA A-3’), ITS2 (5’-GCT GCG TTC TTC ATC GAT GC-3’) and ITS4 

(5’-TCC TCC GCT TAT TGA TAT GC-3’) were used for fungi (Klindworth et al., 2013, Toju et al., 2012). 

Primers for Illumina MiSeq sequencing included adaptor sequences (forward: 5’-TCG TCG GCA GCG 

TCA GAT GTG TAT AAG AGA CAG-3’; reverse: 5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G-

3’) (Klindworth et al., 2013). PCR was performed with the Phusion High-Fidelity PCR kit (New England 

Biolabs Inc., Ipswich, MA, USA) creating a 50 μl master mix with 28.8 μl H2Omolec, 2.5 μl DMSO, 10 μl 

Phusion GC buffer, 1 μl of forward and reverse primer, 0.2 μl MgCl2, 1 μl dNTPs, 0.5 μl Phusion HF DNA 

Polymerase, and 5 μl template DNA. PCR temperatures started with initial denaturation at 98 °C for 1 

min, followed by denaturation (98 °C, 45 s), annealing (48/60 °C, 45 s), and extension (72 °C, 30 s). 

These steps were repeated 25 times, finalized again with a final extension (72 °C, 5 min), and cooling 

to 10 °C. Agarose gel electrophoresis was used to assess the success of the PCR and the amount of 

amplified DNA (0.8% gel:1.0 g Rotigarose, 5 μl Roti-Safe Gelstain, Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany; and 100 ml 1× TAE-buffer). PCR product was purified after initial PCR and restriction 

digestion (t-RFLP) with either NucleoMag 96 PCR (16 S rRNA gene amplicons, Macherey-Nagel GmbH 

& Co. KG, Düren, Germany) or a modified clean-up protocol after Moreau (2014) (t-RFLP): 3× the 

volume of the reaction solution as 100% ethanol and ¼x vol. 125 mM EDTA was added and mixed by 

inversion or vortex. After incubation at room temperature for 15 min, the product was centrifuged at 

25,000 × g for 30 min at 4 °C. Afterwards the supernatant was removed, and the inverted 96-well plate 

was centrifuged shortly for 2 min. Seventy microliters ethanol (70%) were added and centrifuged at 

25,000 × g for 30 min at 4 °C. Again, the supernatant was removed, and the pallet was dried at room 

temperature for 30 min. Finally, the ethanol-free pallet was resuspended in H2Omolec. 

2.1.6.8. T-RFLP fingerprinting 

The purified fluorescence-labeled PCR products were digested with three different restriction enzymes 

(MspI and BstUI, HaeIII) according to the manufacturer’s guidelines (New England Biolabs Inc., Ipswich, 

MA, USA) with a 20 μl master mix: 16.75 μl H2Omolec, 2 μl CutSmart buffer, 0.25 or 0.5 μl restriction 

enzyme, and 1 μl PCR product for 15 min at 37 °C (MspI) and 60 °C (BstUI, HaeIII), respectively. The 

digested PCR product was purified a second time (Moreau, 2014), dissolved in Super-DI Formamide 

(MCLAB, San Francisco, CA, USA) and, along with Red DNA size standard (MCLAB, San Francisco, USA), 

analyzed in an ABI Prism 3130 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA). Terminal 
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restriction fragments shorter than 50 bp and longer than 800 bp were removed from the t-RFLP 

fingerprints. 

2.1.6.9. 16S rRNA gene and internal transcribed spacer (ITS) sequencing and sequence 

processing 

The 16 S rRNA gene and ITS paired-end raw reads for the bacterial and fungal community analyses 

were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive 

(SRA) and can be found under the BioProject accession number PRJNA626504. This BioProject contains 

70 samples and 139 SRA experiments (SRR11570615–SRR11570753) which were processed using 

CASAVA software (Illumina, San Diego, CA, USA) for demultiplexing of MiSeq raw sequences (2 × 300 

bp, MiSeq Reagent Kit v3). Paired-end sequences were quality-filtered with fastp (version 0.19.4) (Chen 

et al., 2018) using default settings with the addition of an increased per base phred score of 20, 

basepair corrections by overlap (-c), as well as 5′- and 3′-end read trimming with a sliding window of 

4, a mean quality of 20 and minimum sequence size of 50 bp. Paired-end sequences were merged using 

PEAR v0.9.11 (Zhang et al., 2014) with default parameters. Subsequently, unclipped reverse and 

forward primer sequences were removed with cutadapt v1.18 (Martin, 2011) with default settings. 

Sequences were then processed using VSEARCH (v2.9.1) (Rognes et al., 2016). This included sorting 

and size-filtering (—sortbylength, minseqlength) of the paired reads to ≥300 bp for bacteria and ≥140 

bp for ITS1, dereplication (—derep_fulllength). Dereplicated sequences were denoised with UNOISE3 

(Edgar, 2016) using default settings (—cluster_unoise—minsize 8) and chimeras were removed (—

uchime3_denovo). An additional reference-based chimera removal was performed (—uchime_ref) 

against the SILVA (Quast et al., 2013) SSU NR database (v132) and UNITE (Abarenkov et al., 2010) 

database (v7.2) resulting in the final set of amplicon sequence variants (ASVs) (Callahan et al., 2017). 

Quality-filtered and merged reads were mapped to ASVs (usearch_global–id 0.97). Classification of 

ASVs was performed with BLAST 2.7.1+ against the SILVA SSU NR (v132) and UNITE (v7.2) database 

with an identity of at least 90%. The ITS sequences contained unidentified fungal ASVs after UNITE 

classification, these sequences were checked (blastn) (Altschult et al.,1990) against the “nt” database 

(Nov 2018) to remove non-fungal ASVs and only as fungi classified reads were kept. Sample 

comparisons were performed at the same surveying effort, utilizing the lowest number of sequences 

by random selection (total 15,800 bacteria, 20,500 fungi). Species richness, alpha and beta diversity 

estimates, and rarefaction curves were determined using the QIIME 1.9.1 (Caporaso et al., 2010) script 

alpha_rarefaction.py. The final ASV tables were used to compute heatmaps showing the effect of 

degradation on the community using R (Version 3.6.1, R Foundation for Statistical Computing, Vienna, 

Austria) and R packages “gplots”, “vegan”, “permute” and “RColorBrewer”. Fungal community 

functions were obtained from the FunGuild database (Nguyen et al., 2016). Plant mycorrhizal 
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association types were compiled from the literature (Gai et al., 2006, Shi et al., 2006, Tian et al.,2009, 

Wang & Qiu, 2006). If no direct species match was available, the mycorrhizal association was assumed 

to remain constant within the same genus. 

2.1.6.10. Enzyme activity 

Enzyme activity was measured to characterize the functional activity of the soil microorganisms. The 

following extracellular enzymes, involved in C, N, and P transformations, were considered: two 

hydrolases (β-glucosidase and xylanase), phenoloxidase, urease, and alkaline phosphatase. Enzyme 

activities were measured directly at the sampling site according to protocols after Schinner et al. 

(1996). Beta-glucosidase was incubated with saligenin for 3 h at 37 °C, xylanase with glucose for 24 h 

at 50 °C, phenoloxidase with L-3,4-dihydroxy phenylalanine (DOPA) for 1 h at 25 °C, urease with urea 

for 2 h at 37 °C and alkaline phosphatase on P-nitrophenyl phosphate for 1 h at 37 °C. Reaction 

products were measured photometrically at recommended wavelengths (578, 690, 475, 660, and 400 

nm, respectively). 

2.1.6.11. SOC stocks and SOC loss 

The SOC stocks (in kg C m−2) for the upper 30 cm were determined by multiplying the SOC content (g 

C kg−1) by the BD (g cm−3) and the thickness of the soil horizons (m). SOC losses (%) were calculated for 

each degradation stage and horizon and were related to the mean C stock of the reference stage (S0). 

The erosion-induced SOC loss of the upper horizon was estimated by considering the topsoil removal 

(extent of vertical soil cracks) of all degraded soil profiles (S1–S5) and the SOC content and BD of the 

reference (S0). To calculate the mineralization-derived SOC loss, we accounted for the effects of SOC 

and root mineralization on both SOC content and BD. Thus, we used the SOC content and BD from 

each degradation stage (S1–S5) and multiplied it by the mean thickness of each horizon (down to 30 

cm) from the reference site (S0). The disentanglement of erosion-derived SOC loss from mineralization-

derived SOC loss was based on explicit assumptions that (i) erosion-derived SOC losses are mainly 

associated with losses from the topsoil, and (ii) the decreasing SOC contents in the erosion-unaffected 

horizons were mainly driven by mineralization and decreasing root C input. 

2.1.6.12. Statistical analysis 

Statistical analyses were performed using PASW Statistics (IBM SPSS Statistics) and R software (Version 

3.6.1). Soil and plant characteristics are presented as means and standard errors (means ± SE). The 

significance of treatment effects (S0–S5) and depth was tested by one-way ANOVA at p < 0.05. Prior 

to this, we checked for normality and homogeneity of variance using the Shapiro–Wilk test and 

Levene’s test, respectively. Post-hoc multiple comparisons were carried out using the LSD or Tukey 

HSD ANOVA, if normality was indicated. In cases of non-normal distribution, the nonparametric 

Kruskal–Wallis test was implemented coupled with a Bonferroni correction. To detect relationships 
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between various plant and soil characteristics, we used linear and nonlinear regressions. Correlations 

were deemed significant for single regressions at p < 0.05. Before testing for significant differences, 

three outliers were detected by Grubbs outlier test (p < 0.05) in the bacterial t-RFLP and MiSeq 

datasets: MspI: S0_B_0-5, S1_E_0-5; BstuI: S5_A_15-35; MiSeq: S3_E_5-15 and were excluded from 

the analysis. T-RFLP and MiSeq data of all degradation stages were compared for significant differences 

with MANOVA, based on the Bray–Curtis index for dissimilarity. For pairwise multilevel comparisons, 

“pairwiseAdonis” was used (Martinez, 2020). Differences in microbial community data from t-RFLP and 

MiSeq were displayed in non-metric multidimensional scaling (NMDS) plots and environmental factors 

were correlated by canonical correspondence analysis (CCA). Statistics on community data were 

carried out with R statistical software (Version 3.6.1). 

2.1.6.13. Reporting summary 

Further information on research design is available in the Nature Research Reporting Summary linked 

to this article. 

2.1.7. Data availability 

The data generated in this study have been deposited in the PANGAEA Open Access library under 

accession code https://doi.org/10.1594/PANGAEA.918249. The 16 S rRNA and ITS gene paired-end raw 

reads for the bacterial and fungal community analyses have been deposited in the National Center for 

Biotechnology In-formation (NCBI) Sequence Read Archive (SRA) under the accession code 

PRJNA626504; BioProject: Tibetan plateau microbiome. 
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2.2.1. Abstract 

Soil microbial communities play a key role in mineralizing carbon (C) while building up biomass, the 

basis of C sequestration, by replicative and storage growth. Understanding the regulatory processes of 

the microbial base C metabolism, i.e. the channeling of C between cata- and anabolism, is therefore 

essential. Shifts in microbial functions due to changes in environmental conditions were usually 

deduced from CO2 efflux changes, enzymatic activity, indirect growth measurements or the 

quantification of metabolites. Whereas traditionally molecular biological methods were mainly used 

to gain a phylogenetic fingerprint of microbial communities, they meanwhile increasingly get also 

employed to acquire detailed information on microbial functions. Therefore, the utilization of state-

of-the-art “omics”-techniques provide new insight in microbial functioning. In our study we aim to 

elucidate the regulatory processes of the base C metabolism in soil microbial communities by 

employing and linking metatranscriptomics and metaprotemomics. In a laboratory microcosm 

experiment using natural agricultural soil we treated the soil with ascending glucose concentrations 

with or without nutrient addition and extracted and purified total mRNA and proteins for a multi-meta-

omics study. The metatranscriptome and metaproteome revealed complex regulatory processes from 

the expression of genes to the actual translation of proteins where transcribed genes were not 

necessarily also translated. The tricarboxylic acid cycle (TCA) was an exception to this finding, showing 

a positive correlation between the metatranscriptome and metaproteome suggesting a stable 

response across all post-genomic levels with lower temporal dynamic than many other reactions. The 

process of storages compound biosynthesis was highly depended on the glucose concentration in soil. 

The linkage of both “omics-techniques revealed strong regulatory responses in the base C metabolism 

in consequence of an altered resource stoichiometry in soils, but temporal shifts between formation 

of a transcript and the respective protein need to be taken into account for interpretation. It looks 

promising to exploit TCA cycle gene transcripts or proteins as indicator for shifts in carbon use 

efficiency (CUE) – an observation to be further confirmed by comparison with metaflux modeling to 

finally decipher the actual C partitioning between cata- and anabolism in soils. 

2.2.2. Introduction 

Microbial communities play an important role in soil as they mobilize and transform carbon (C) and 

nutrient sources to gain energy, invest into cell growth or build-up storage (Malik et al., 2018; Mason-

Jones et al., 2021; Robinson et al., 2023). Therefore, a fundamental understanding of the microbial 

metabolism is essential to understand the regulatory principles underlying soil C and nutrient fluxes. 

Microbial turnover and functional changes in microbial communities were deduced from CO2 

respiration, shifts in nutrient contents or the profile of metabolic products (Blagodatskaya et al., 2011; 

Bonkowski and Roy, 2005; de Graaff et al., 2014). For many years, understanding functions of microbial 
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communities was limited due to their complex composition with different metabolic roles and 

capabilities. Usually, functions such as storage compound synthesis were deducted from single culture 

studies of bacteria in an artificial environment in laboratory experiments and such experiments feed 

majorly into our databases about bacterial and fungal functions (Carter and Bull, 1969; Gasser et al., 

2009; Hansen, 1993). Through 16S rDNA sequencing and functional databases like “Tax4Fun” or 

“FUNGuild” in-situ microbial communities can be assigned to their functions (Aßhauer et al., 2015; 

Breidenbach et al., 2022; Nguyen et al., 2016), but only known and tested functions are part of these 

databases. However, if the responsible gene for a metabolic function is known, qPCR can be utilized to 

quantify the amount of the genes of interest (GoI) in the microbial community and after reverse 

transcription of the respective rRNA even the gene expression. But this is also limited to functions 

where the corresponding proteins and their gene sequences are already identified and a suitable set 

of soil-applicable primers exist. A major challenge remains untouched by these well-established 

methods: linking the metabolic potential from microbial communities’ complex and highly divers 

genomic inventory and structure to their actual present proteins and active pathways represented by 

their metabolites to reveal their functional potential in the environment (Robinson et al., 2023).  

Metagenomics tell the potential metabolic capabilities of microbial communities down to the species 

level, but this is not yet a function, but only a theoretical functional capacity. Metatranscriptomics 

disentangle the actively transcribed genes in the microbial community, but they are not able to 

distinguish if the mRNA gets translated into a protein or if it gets down-regulated in between (Herold 

et al., 2020; Kohlstedt et al., 2010). Therefore, metaproteome analyzes is additionally needed to 

illustrate the actual protein inventory of a microbial community (Bastida et al., 2009). Several studies 

employed either metatranscriptomics (Nacke et al., 2014) or metraproteomics (Malik et al., 2018), but 

attempts in combining both on complex native microbial communities in ecosystems are yet rare to 

find. It is predicted, that only when post-genomic levels such as metatranscriptomics and 

metaproteomics are combined, it is possible to elucidate the regulatory controls of the microbial 

metabolism (Malik et al., 2016). Protein- and mRNA-sequences can be inter-linked with each other so 

that regulatory processes and responses of the microbial community to changing environmental 

conditions can be interpreted easier than with other established methods.  

Combining “-omics”-techniques from the metagenome, -transcriptome, -proteome and -metabolome 

is a key to fully unravel microbial communities’ responses to changes in environmental conditions 

(Zhang et al., 2010). It is especially challenging when employed on samples from natural systems such 

as soils, but as Robinson et al. (2023) states, structural and functional changes of a microbial 

community are still desperately needed in understanding the impact on whole environmental systems. 

Therefore, utilizing well-known and well-researched metabolic pathways of the base C metabolism as 
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key examples for our understanding of regulatory principles in microbial growth, catabolism, and 

storage formation is a first step in disentangling the role of microbial communities’ regulatory 

responses in the ecosystem. Multi-omics single culture studies about the base C metabolism aid in 

understanding the mechanisms of metabolic regulation but are not near the complexity of interactions 

and regulatory processes in a complex natural microbial community (Kohlstedt et al., 2014; Kukurugya 

et al., 2019). For that, our study chose to incubate natural agricultural soil in a controlled laboratory 

experiment with maximal contrasting stoichiometric conditions, i.e. with increasing C availability and 

nutrient addition in form of nitrogen (N) and phosphate (P). As soils are generally C limited habitats , 

this setup was hypothesized to enforce a maximum metabolic response of the microbial communities 

in the base C metabolism (Kuzyakov and Blagodatskaya, 2015; Soong et al., 2020). Extremely elevated 

C and nutrient content might also trigger an extreme response in the C storage metabolism as storage 

formation of microbial communities is controlled by the stoichiometry of available nutrients to convert 

into energy or biomass (Manzoni et al., 2021). Such a response in storage and base C metabolism is 

expected to be measurable in both metatranscriptome and metaproteome leading towards our study’s 

hypotheses: (1) Glucose addition will trigger a cascade of post-genomic response of genes responsible 

for the base C metabolism detectable throughout the metatranscriptome and the metaproteome. (2) 

The soil microbial community will direct its metabolism toward storage compound biosynthesis when 

excess glucose levels are available which will be visible in both post-genomic levels. (3) The addition of 

glucose will have a stronger effect on the regulation of the base C metabolism than the addition of 

nutrients in form of N and P, as C is the most limited element restricting replicative growth. With our 

experimental design with an agricultural soil and its natural microbial community in a controlled 

laboratory environment, we analyzed key processes in the microbial base C metabolism. We unravel 

the regulatory checks and balances controlling the microbial metabolism where between the 

metatranscriptome and metaproteome can only be revealed by a multi-meta-omic approach covering 

metatranscriptome and metaproteome. 

 

2.2.3. Material and methods 

2.2.3.1. Experimental setup 

The soil for the microcosm experiment was sampled from the Ap horizon (0 - 25 cm) at the 

experimental farm “Reinshof” (51°29'51.0"N, 9°55'59.0"E) of the faculty of agricultural sciences at the 

University of Goettingen in November 2017. The organically managed fields had been harvested two 

months prior to sampling. The soil was a haplic luvisol, developed from aeolian loess and had a pH 5.4, 

1.4% TOC, 0.17% TN and a C/N ratio of 8.2 These low TOC and TN amounts ensure that the addition of 

glucose and nutrients would result in a strong response of the microbial base C metabolism.  
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Soil was sieved (2 mm) and stored at 4 °C before the start of the experiment. Then, 25 g of this soil was 

transferred airtight 125 ml glass bottle and adjusted to a 70% WHC. After applying the treatment 

solutions (glucose and/or nutrient addition), the further incubation was conducted in a dark climate 

chamber at 15 °C for a period of 4 days. The treatment solutions consisted of a “Low” glucose 

concentration (90 µg C g-1 soil, 45% of extractable MBC), a “High” glucose concentration (400 µg C g-

1 soil, 200%) and a control without glucose addition (Zero). Besides Glucose, also nitrogen (N) and 

phosphate (P) nutrients were added as ammonium sulfate (17 µg N g-1 soil) and tripotassium 

phosphate (3.3 µg P g-1 soil). Soil microcosms were replicated four times and destructively sampled at 

0, 24 and 96 h after the addition of the solutions. 

2.2.3.2. Protein extraction and mass spectrometry 

Soil samples from the 24 h sampling point were transported to the Helmholtz Centre for Environmental 

Research – UFZ GmbH (Leipzig, Germany) and proteins extracted according to Bastida et al. (2016): 5 

g of each sample were treated with 10 ml of SDS lysis buffer (including 50 mM dithiothreitol) and 

vortexed for 2 min, followed by cell lysis in a boiling water bath for 10 min. Adding trichloroacetic acid 

(TCAA) achieved protein precipitation followed by three acetone washes of the pellet afterwards. 

Samples were then dissolved in 10 ml deionized water in an ultrasonic bath for 5 min and then mixed 

with 2x SDS loading buffer (consisting of 1.25 ml 1 M Tris-HCl pH 6.8, 4.0 ml 10% (w/v) SDS, 2.0 ml 

glycerol, 0.5 ml 0.5 M EDTA, 4 mg bromophenol blue, 0.2 ml β-mercaptoethanol 14.3 M) (Laemmli, 

1970). This mixture was then incubated for 5 min at 90 °C and loaded on a 4% stacking gel and 12% 

separating gel. The SDS-gel was only run short for about 10 min. Colloidal Coomassie brilliant blue was 

used to stain the protein band. The protein band was cut into three pieces, washed and proteolytically 

cleaved into peptides using trypsin (Sigma, Munich, Germany) at 37 °C overnight, followed by two 

acetonitrile extractions and vacuum concentration for 15 min. Peptide lysates were dissolved in 20 µL 

0.1% formic acid before injection into the mass spectrometer. In total, 5 µl of peptide lysates were 

loaded to a Dionex Ultimate RSLC 3000 nano-LC system (Thermo Fisher Scientific, Idstein, Germany) to 

separate the peptides according Bastida et al. (2014). Peptide analysis was performed on a Orbitrap 

Fusion MS (Thermo Fisher Scientific, Idstein, Germany) coupled with a TriVersa NanoMate source 

(Advion, Ltd., Harlow, UK) as described in Bastida et al. (2016). The Proteome Discoverer software 

(v1.4.0288, Thermo Scientific) was used to search the acquired MS/MS data with the SEQUEST HT 

algorithm against the bacterial NCBInr database with the following settings by Bastida et al. (2016). To 

assign the proteins to their phylogeny and calculating their abundances, the software PROPHANE 

(Schneider et al., 2011) and NSAF (Zybailov et al., 2006) was used. 
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2.2.3.3. Nucleic acid extraction 

RNA was extracted from the 24 h soil samples with the Qiagen RNeasy PowerSoil kit (Qiagen GmbH, 

Hilden, Germany). RNA was sent to Macrogen Inc. (Seoul, Republic of Korea) for further processing for 

metatranscriptome analysis. After quality control on a TapeStation D1000 (Agilent Technologies, Santa 

Clara, CA, USA), the samples were prepared with the TruSeq Stranded Total RNA LT Sample Prep Kit 

(Illumina, San Diego, CA, USA) This included rRNA depletion and mRNA purification (Ribo-Zero), the 

reverse transcribtion of the mRNA to double stranded cDNA. A single adenine is ligated to the 3’-end 

of the cDNA to prevent ligation to each other. Adapters were ligated to the cDNA ends and enriched 

with PCR targeting cDNA that have adapters attached. Success of the adapter ligation, amplification 

and quality of the cDNA with adapters was then again controlled with a TapeStation D1000. Raw RNA 

reads were then provided by Macrogen for further bioinformatic processing. 

2.2.3.4. Data processing for metatranscriptome data 

Quality control (QC) for the reads of 14 metatranscriptomes was performed using kneaddata version 

0.8.0 with default options for trimmomatic and added trimming of repetitive sequences (--run-trim-

repetitive). Reads were then filtered for remaining rRNA using SortMeRNA 4.2.0 (Kopylova et al., 2012), 

which lead to a removal of an average of 12% of reads. 

The taxonomic composition of samples checked by running “kraken2” (Wood and Salzberg, 2014) 

followed by “bracken” on quality controlled reads with a custom microbial database built from 

National Center for Biotechnologie Information (NCBI) refseq genomes for archaea, bacteria, fungi, 

protozoa, viral and Univex_Core sequences (access date 08-2020). Results were visualized with 

“Krona” (Ondov et al., 2011). 

To quantify genes, GoI forward and reverse reads were combined and screened against a custom 

reference database using “diamond” version 2.0.9 (Buchfink et al., 2015) with parameter setting -k 1. 

For the reference database we gathered the IDs from KEGG Orthologues (KO) involved in pathways of 

interest from the KEGG website (Kanehisa and Goto, 2000) and downloaded the set of connected 

protein reference sequences from Uniprot using in-house python scripts. The counts (number or reads 

mapped on each reference gene) were extracted from “diamond” result files and normalized by gene 

length. 

2.2.3.5. Statistics 

Protein and RNA data were normalized by the total amount of found proteins to achieve a comparable 

relative abundance for the targeted metabolism processes. Alongside our research questions, we 

chose to filter all proteins, and protein sequences for specific processes related to C metabolism 

(glycolysis, gluconeogenesis, tricarboxylic acid cycle, pentose phosphate pathway and glyoxylate 
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metabolism), storage compound formation (PHB and NLFA) and fatty acid biosynthesis. The ratio φ 

(phi) expresses the partitioning of glycolysis compared to PPP as the main glucose consuming 

pathways, considering the influence of gluconeogenesis:  

(1) 

 φ =
𝐺𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 − 𝐺𝑙𝑢𝑐𝑜𝑛𝑒𝑜𝑔𝑒𝑛𝑒𝑠𝑖𝑠

𝐺𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 − 𝐺𝑙𝑢𝑐𝑜𝑛𝑒𝑜𝑔𝑒𝑛𝑒𝑠𝑖𝑠 + 𝑃𝑃𝑃
 

Furthermore, 𝜌 (rho) is calculated to emphasize energy-generating versus energy-demanding 

metabolic modes of the microbial communities, and to assess whether the microbial community are 

breaking down glucose to gain energy or build up glucose molecules from proteins due to a lack of 

monosaccharide C sources: 

(2) 

 𝜌 =
𝐺𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠

𝐺𝑙𝑢𝑐𝑜𝑛𝑒𝑜𝑔𝑒𝑛𝑒𝑠𝑖𝑠
 

 

All mRNA- and proteins sequences belonging to these pathways were summarized. Sequences present 

in more than one pathway were accounted for every pathway these sequences were listed. Pathways 

from metaproteome data were tested for significant differences with a two-way ANOVA and a post-

hoc TukeyHSD which were performed for single comparisons of the treatments (R 4.2.2). Due to poor 

mRNA quality and/or quantity, replicates of soil samples dedicated for RNA extraction were lost. 

Fortunately, all treatments had at least one replicate left. Statistical tests had to be chosen who took 

these circumstances into account for the metatranscriptome, so that we chose an ANOVA type 3 

(“emmeans” package, R 4.2.2). 

 

2.2.4. Results 

2.2.4.1. Effects of C and nutrient amendment on mRNA and protein abundance of the 

base C metabolism 

The relative protein abundances for the selected pathways of the base carbon metabolism showed a 

strongly deviating pattern from the relative transcript abundance depending on stoichiometry, except 

for the TCA and partially for the glycolysis (Fig. 1). The addition of high amounts of glucose induced the 

transcription of glycolysis genes which got also translated into glycolysis proteins, but this effect solely 

exists for high glucose and high nutrient additions (Fig. 1, Table 1). Glucose and nutrient addition had  
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 a significant effect on inducing the transcription of PPP genes (Table 1). Unexpectedly, 

gluconeogenesis genes relative abundance were about 5 times higher than the relative abundances in 

the metaproteome and seemed to be expressed at the high glucose amendments. In contrast, 

gluconeogenesis related proteins displayed a pattern where nutrient addition hindered the translation 

to proteins in the zero and low treatments. Whereas PPP genes were largely unaffected by glucose 

 

S2 Figure 1: Relative abundances of metabolic processes related to glycolysis, pentose phosphate pathway 

(PPP), gluconeogenesis and tricarboxylic acid cycle (TCA) in the metatranscriptome and metaproteome. 

Significant differences of the posthoc Tukey HSD are indicated with small letters (emmeans ANOVA, p < 0,05)  
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addition, its proteins experience a downregulation at the metaproteome level under high glucose 

amendment. In contrast to this often with anabolic demand linked pathway the merely catabolic TCA 

enzymes increased in abundance on high glucose availability, which is only weakly visible in the 

metatranscriptome.  

S2 Table 1: p values (marked in bolt) of ANOVA from metranscriptome and metaproteome demonstrating 

single effects of glucose, nutrients, and the combination of both. 

 Metatranscriptome Metaproteome 

Pathway p value 

glucose 

p value 

nutrient 

p value 

glucose: 

nutrient 

p value 

glucose 

p value 

nutrient 

p value 

glucose: 

nutrient 

Glycolysis 0.0008 0.1485 0.7280 0.2102 0.4234 0.2751 

PPP 0.0332 0.0006 0.4941 <0.0001 0.5615 0.1339 

Gluconeogenesis 0.3678 0.8701 0.7132 0.1208 0.1634 0.0568 

TCA 0.0128 0.3324 0,0352 0.0001 0.0392 0.2549 

Storage PHB 0.3582 0.2509 0.0217 <0.0001 0.4504 0.0353 

Storage NLFA 0.0162 0.0167 0.6030 0.0425 0.8347 0.1367 
 

 

 

S2 Figure 2: Ratios of Phi (φ) and Rho (ρ). Significant differences of the posthoc Tukey HSD are indicated with 

small letters (emmeans ANOVA, p < 0,05)  
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The φ ratio showed a clear allocation towards energy metabolism under high glucose amendments in 

the metatranscriptome, which was also visible in the metaproteome but only when additional 

nutrients were provided (Fig. 2). The ρ ratio revealed that nutrient addition without strongly increasing 

C availability led to an increase in the anabolic, energy-demanding gluconeogenesis pathway in relation 

to catabolic glycolysis in the metatranscriptome, which was not imprinted in the metaproteome (Fig. 

2). 

The glucose and nutrient amendment had significant effects on NLFA but not on the PHB gene 

expression, whereas only the glucose treatment had significant effects on both storage compounds 

(Table 1). The abundance of proteins involved in the synthesis of PHB got reduced upon high C supply 

supposedly a regulatory effect which is not reflected in the relative abundances of the underlying 

genes in the metatranscriptome (Fig. 3). Similarly, NLFA metabolism also showed a tendency in 

reducing the abundance of NLFA synthesis related transcripts and proteins with increasing C 

availability, but this effect is much less pronounced than for PHB (Fig. 3). No significant effect of 

nutrient amendment on the regulation of storage-producing enzymes in either the metatranscriptome 

or the metaproteome was observed. 

 

S2 Figure 3: Relative abundances of metabolic processes related to storage compounds PHB and NLFA.  

Significant differences of the posthoc Tukey HSD are indicated with small letters (emmeans ANOVA, p < 0,05) 
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2.2.4.2. Interrelations of protein- and mRNA abundances within and between pathways 

Across the major glucose-related pathways, solely the TCA cycle displayed a significant correlation 

between mRNA and the respective protein abundance (Fig. 4). Most notable, PPP and Gluconeogenesis 

even showed a negative relation between the mRNA abundance and the number of proteins of the 

respective pathway (Fig. 4). There was no indication for a specific effect or a responsibility of either C 

or nutrient amendment on regression between the metatranscriptome and the respective 

metaproteome.  

 

S2 Figure 4: Correlations between relative abundances of the metatranscriptome and metaproteome of the 

metabolic processes glycolysis, pentose phosphate pathway (PPP), gluconeogenesis and tricarboxylic acid 

cycle (TCA). 
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We furthermore tested for potential relations within the metatranscriptome, indicating that various 

metabolic pathways are co-regulated. The correlation analysis revealed that gluconeogenesis had a 

negative relation with the synthesis of PHB (R = -0.78) and also slightly with NLFA (R = -0.46) build-up 

(Fig. 5A). The corresponding correlation of gluconeogenesis and storage compound synthesis pathways 

was not significant in the metaproteome (Fig. 5B). The positive co-regulation of gluconeogenesis and 

TCA (R = 0.97) on the mRNA level is highly significant but was not represented on the metaproteome 

level. When TCA is upregulated PHB storage was downregulated in both the metatranscriptome (R = -

0.8) and metaproteome (R = -0.6). While PPP and the biosynthesis of fatty acids correlated positively 

(R = 0.79) hinting towards a co-regulation of pathways forming new biomass during replicative growth 

on the metatranscriptome level, the PPP was negatively correlated with TCA in the metaproteome (R 

= -0.79) indicating a reduction of energy production during de novo biomass formation (Fig. 5). 

 

S2 Figure 5: Correlation between the metabolic processes in the metatranscriptome (A) and metaproteome 

(B). Only significant correlations are displayed, and R values are indicating their positive or negative 

relationships. 
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This observation suggests potential cross-regulatory effects between the regulation of transcription 

and translation of different pathways and motivated us to examine the correlation between the 

metatranscriptome and metaproteome of the base C metabolism (Fig. 6). We observed a noteworthy 

positive correlation (R = 0.72) between glycolysis at the mRNA level and the tricarboxylic acid cycle 

(TCA) at the metaproteome level suggesting the two successive energy producing pathways to be 

jointly controlled, i.e., no downregulation of proteins of the TCA when glycolysis is enhanced by mRNA 

formation. Additionally, also NLFA storage related gene sequences are transcribed and positively 

correlated with the PHB storage in the proteome (R = 0.56), which hints towards similar soil conditions 

inducing storage compound formation, even if the key regulatory step might be located on different 

post-genomic levels. Fatty acid biosynthesis (R = 0.65), gluconeogenesis (R = 0.38), PPP (R = 0.75) and 

TCA (R = 0.45) gene transcriptions were positively correlated with glyoxylate metabolism enzyme 

abundance suggesting a potential demand of replicative growth building blocks is ensured by their co-

regulation, i.e., the anaplerotic glyoxylate pathway providing C for anabolism and gluconeogenesis 

within the TCA. This is also supported by the negative correlation between proteins for PHB synthesis 

and glycolysis (R = -0.77), and TCA (R = -0.85) transcripts, all known to be enhanced under high energy 

demand.  

 

S2 Figure 6: Correlation between the metatranscriptome and metaproteome metabolic processes. Only 

significant correlations are displayed, and R values are indicating their positive or negative relationships. 
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2.2.5. Discussion 

2.2.5.1. Effects of C and nutrient availability on the regulation of the base C metabolism 

The metatranscriptome and metaproteome of the base metabolism were more strongly influenced by 

C than by nutrient availability in soil. Even in the rather low-fertilized soil of this study, the N- and P- 

sources seemed to be sufficient and microbial dynamics and metabolism were rather controlled by C 

limitation (Soong et al., 2020). Nutrient addition solely influenced the transcription of PPP related 

genes, but this effect disappeared on the translational level as similarly described by Kohlstedt et al. 

(2010).  

Generally, soils (and more strongly SOM-depleted agricultural soils) are usually C limited and thus the 

microbial community needs to react quickly on sudden additional C supply, the underlying principle of 

the formation of hotspots such as the rhizosphere or detritusphere (Kuzyakov and Blagodatskaya, 

2015; Soong et al., 2020). When the soil microbial community is faced with an excess of glucose, like 

in our experiment, the bacteria react by activating transcripts and translation of proteins of the TCA 

cycle, a strongly catabolic, energy producing pathway (Voet et al., 2008). Additionally, high glucose 

amendment induced transcription of glycolysis and unexpectedly also gluconeogenesis genes, but only 

the corresponding TCA and glycolysis proteins were also visible in the metaproteome. As glycolysis and 

gluconeogenesis share largely the same genes, a generic upregulation and interruption at a later post-

genomic regulatory level, i.e. during translation, seems probable and 5x lower relative abundances in 

the metaproteome are hinting towards such downregulatory process. The increase in energy 

metabolism by glucose amendment were accompanied by a downregulation of the anabolic precursor 

producing PPP on the level of the metaproteome. As this was not visible in the metatranscriptome, 

this very likely occurred by an inhibition of the translation of the PPP mRNAs. This indicates that 

regulatory processes in response to stoichiometric shifts can occur on both levels, metatranscriptome 

or metaproteome, and that even regulatory processes on the translational level blocking an altered 

transcription process or that altered translation rates without altered transcript abundances can occur 

within the regulation of the base C metabolism. This observation suggests that conclusions from 

altered transcript or protein profiles are not easy to convert to conclusions about the final process 

rates. The regulatory processes specifically in complex communities where individual members may 

have different sensitivities, thresholds and response behaviors seem to be highly complex with many 

potential regulatory responses on the various post-genomic levels, strongly aggravating 

interpretations of mere mRNA or protein abundances.  

2.2.5.2. Time-lag response to changing environmental conditions. 

The correlation results between metatranscriptome and metaproteome revealed that the altered C 

and nutrient conditions had not the anticipated coherent downstream effect on the targeted 
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metabolic processes from genome over mRNA to protein. This can be explained by regulatory 

processes at the level of mRNA translation to proteins that interrupt or counteract a 

metatranscriptomes’ response. Additionally, the weak correlations of metatranscriptome and -

proteome (Fig. 4) could also be explained by a time-lag response of the metaproteome on past 

environmental conditions or vice versa an already modified response of transcription regulation on 

altered conditions such as a depletion of a glucose level. As Takahashi et al. (2011) pointed out, the 

time of transcription of a gene to mRNA over the translation to its corresponding proteins can take 60 

min until it’s measurable in the metabolome in a single culture study. Additionally, mRNA has different 

half-lives in bacteria ranging from 1 – 10 min depending on the bacteria’s turn-over times (Laalami et 

al., 2014) Given that a soil microbial community is much more complex than a single culture, the time-

lag and mRNA half-lives in a microbial community may play an even more important role than for single 

cultures. It is known that glucose is consumed very rapidly in soil e.g. (Jones and Murphy, 2007) 

demonstrated an instantaneous uptake of glucose by the microbial community and (Gunina and 

Kuzyakov, 2015) reported glucose decomposition rates of 1.1% min-1 of the added glucose. Considering 

the short half-life time of mRNA and the rapid de novo production of new mRNA responding to the 

already strongly reduced amount of glucose in the soil solution after 24 h, our measurement may have 

lost most of the mRNAs specifically expressed as response to high C availability. This indicates that the 

simultaneous measurement of mRNA and proteins is critical and may not represent a corresponding 

response of metatranscriptome and metaproteome on the addition of glucose and nutrients. As the 

transcription of mRNA is induced much faster in response to changing environmental conditions as the 

translation of the metaproteome, a considerably earlier sampling of mRNA is required and may have 

resulted in an improved match of the two omics datasets. 

The TCA seems to be partially exceptional to that, as there is similar response at least on C addition 

(Fig. 1) and a correlation between mRNA and protein abundance (Fig. 4). Counterregulatory effects 

and smoothing down of mRNA regulation on the level of translation or vice versa induction of protein 

production on the level of mRNA translation seems to be not as strong for this major energy producing 

pathway as for the other pathways, producing or consuming the pyruvate precursor. This result alone 

without further time resolved analysis and higher treatment diversity is hardly to explain, as the 

ongoing ATP demand even if precursor demand changes or the final regulation of activity by absence 

or presence of acetyl-CoA (which is metabolically cheaper than removing existing proteins) may be 

explanatory here. Irrespective of the potential underlying reason, this observation is important, as Wu 

et al. (2022) have shown, that it’s the TCA activity which is ultimately negatively linked with the carbon 

use efficiency (CUE). In consequence, if finally, the linkage of protein abundance (which correlates with 

mRNA abundance) with TCA activity can be confirmed, the metaproteome but also metatranscriptome 
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data can be used for deducing CUEs of soil samples, even if potentially the ideal timepoint of maximal 

transcript or protein abundance are not met by the sampling event.  

2.2.5.3. Regulation of metabolic processes of the base C metabolism 

The multi-meta-omic approach of this study reveals a complex network of strongly cross-regulated 

processes in the base C metabolism of soil microbiomes. Only these multi-meta-omic experiments are 

capable of revealing these regulatory interactions in soil microbiomes (Herold et al., 2020; Kohlstedt 

et al., 2010; Schimel, 2016), which can even with further analysis be attributed to individual groups of 

microorganisms. Especially the regulatory relationship between the TCA and PHB storage pathways 

were apparent not only in the metatranscriptome but also in the metaproteome and clearly 

demonstrate that either energy for immediate consumption is produced as ATP or that C and energy 

are stored in PHBs. Mason-Jones et al. (2023) demonstrated that soil microbiomes respond on 

conditions as simulated in this study by strong response in enhanced or reduced C storage in PHBs, 

reflected here in a response of both, PHB gene transcription and mRNA translation but also that of TCA 

genes. As the strongly negative relationship between TCA and PHB could be observed in the 

metatranscriptome and the metaproteome, this hints towards a strong, long lasting regulatory process 

with low dynamics along the 24 h of this experiment. As TCA is clearly linked to CUE, a close 

interdependency of CUE and C storage in the soil microbiome is likely (Manzoni et al., 2012) and waits 

upon confirmation in further experimental studies.  

 

2.2.6. Conclusion 

Our study managed to show that a controlled laboratory microcosm experiment with natural soils is a 

suitable framework to study the linkage of metatranscriptome and metaproteome in complex 

environmental microbiomes e.g., found in soils. We focused on the base C metabolism as our main 

interest was related to implications of stoichiometric resource shifts in C metabolizing pathways with 

implications for soil C cycling. The correlations between mRNA and proteins hint towards a time-lag 

between transcript and protein level, with regulatory processes modulating responses on the 

translational level and leading to differences in metatranscriptome and -proteome among the 

treatments, when sampled at a single time point. Short half-life of mRNA and the much longer time 

span required for protein biosynthesis suggest that sampling at the same time point should be adjusted 

towards time shift sampling where samples for metatranscriptomics are taken at least 60 min before 

sampling for metaproteomics. As to complete the understanding the regulatory processes on all post-

genomic levels in natural soil microbiomes, it would be necessary to extend the studies parameters for 

the meta-metabolome and the metafluxome to cover all potential regulatory stages of the base C 
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metabolism down to the endpoints of the pathways and their C fluxes. This would finally allow us to 

conclude, which processes relevant for soil C cycling can be covered by high-throughput 

metatrancriptome studies versus more complex mass-spectrometric analysis of metaproteoms or 

meta-metabolomes and which processes can only be adequately studied, if really a process rate itself 

by quantifying the respective C flux (i.e., the metafluxome) via isotope labeling approaches is 

necessary. 
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2.3.1. Abstract 

Carbon (C) sources in soils are consumed by microbial communities to be metabolized into energy, 

new biomass, while respiring CO2. Microbes utilize easily available glucose-C in nutrient hotspots in 

soil to replicate or synthesize storage compounds. C flux modelling with 13C position specifically 

labelled glucose enables us to decipher the fate of each C atom through microbial metabolic pathways. 

Therefore, it can be determined whether the microbial community is investing soil C into energy 

through glycolysis, replicative growth from pentose phosphate pathway or redirecting C flux into 

storage compounds. These storage compounds are usually neglected in metabolic modelling but play 

an important role in microbial growth and stress resistance. We modified a C flux model to additionally 

fit for storage synthesis under altering glucose-C levels and nutrient availability in a lab controlled 

natural soil microbial community. Microbial communities especially invest into storage compounds in 

conditions with low glucose concentrations and available nutrients hinting towards a reserve storage 

strategy. Contradictory to widespread understanding, high glucose concentration had not initiated 

surplus storage formation. Overall, the implementation of storage compound formation into C flux 

models will broaden the understanding of soil microbial metabolism. 

2.3.2. Introduction 

Soil microbial communities utilize various carbon (C) sources of soil organic matter (SOM) to generate 

biomass and drive their metabolism. Due to its heterogeneously distributed C and nutrient sources, 

soils harbor bacteria and fungi in nutrient hotspots in the detritus-, drilossphere and rhizosphere 

where they can utilize, root exudates, such as carbohydrates, amino acids, and carboxylic acids for 

their microbial growth (Apostel et al., 2015; Bååth, 2003; Gunina et al., 2014; Kuzyakov and 

Blagodatskaya, 2015; Rasse et al., 2005). As of the labile structure of these low molecular weight 

organic substances (LMWOS), they are mainly stabilized in soil by microbial uptake and incorporated 

into newly formed, more stable biomass compounds (Gunina et al., 2014). Usually, it is thought that 

the soil C and nutrient sources are used for cellular replication, including DNA replication and the 

extension of cell membranes, both prerequisites enabling cell division and thus growth of the microbial 

populations. Therefore, an increase of microbial biomass carbon (MBC) is often perceived as sufficient 

method to calculate microbial growth However, many soil microorganisms are capable of 

incorporating C into intracellular storage compounds, which constitutes an alternative mechanism for 

biomass growth (Mason-Jones et al., 2021). Conventional biomass methods, however, commonly 

neglect storage compound formation or underestimated as a growth factor while storage compounds 

can make up a large proportion of C allocation in microbial communities (Mason-Jones et al., 2022; 

Mason‐Jones et al., 2019; Rinnan and Bååth, 2009). As storage compounds are usually not extractable 

via established chloroform fumigation extraction (CFE) protocols, Mason‐Jones et al. (2019) suggested 
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that storage compound formation and additional extraction of storage compounds need to be taken 

into account when discussing biomass growth. This is especially important considering their 

quantitative relevance, e.g., 68% of glucose C was allocated to the bacterial storage compound 

polyhydroxybutyrate (PHB) relative to C allocated to extractable MBC (Mason‐Jones et al., 2019). 

However, besides their quantitative measurement, which requires compound-specific elaborated 

laboratory techniques, they can and should also be considered in modeling approaches as of with this 

study. In contrast to (Manzoni et al., 2021) theoretical approach on a laboratory experiment, we chose 

to execute such endeavor and performed a microcosm experiment with isotopomerically 13C-labelled 

glucose to gain actual measured position-specific 13CO2 efflux as input for our storage compound-

optimized model. 

When bacteria and fungi redirect their C metabolism towards the biosynthesis of storage compounds 

in an environment where resources such as C are available in excess, the storage mode is defined as 

surplus storage (Mason-Jones et al., 2021). As previous data suggests, that can often happen when 

other nutrients such as nitrogen (N) or phosphor (P) are lacking (Bååth, 2003; Mason‐Jones et al., 

2019). However, ecological theories also suggest that reserve storage irrespective of surplus may be 

an advantageous strategy for soil microbes (Manzoni et al. 2021). When organisms divert their nutrient 

fluxes towards the formation of storage compounds instead of their other functions in normal 

environmental conditions, they can ensure survival during future food scarcity events or warrant 

reproductive success among their competitors in the future (Mason-Jones et al., 2021). 

PHB and triacylglycerols (TAG, constituent of neutral lipid fatty acids, NLFA) (Harwood and Russell, 

1984; López et al., 2015) are especially relevant for soil ecology and C flux modelling as they are 

quantitatively significant and the only lipid storage compounds with existing methods for their 

measurement in soil (Mason‐Jones et al., 2019). Both, PHB and TAG are widespread intracellular 

storage compounds in bacteria and fungi and their synthesis are a common metabolic trait found in 

soil microbial communities (Mason-Jones et al., 2021). For the formation of storage compounds, the C 

flux from glucose is therefore redirected from glycolysis at the acetyl-CoA step towards storage 

compound synthesis instead of TCA for producing reducing equivalents and generating ATP. PHB is 

derived from an acetyl-CoA branch when entry into the tricarboxylic acid cycle (TCA) is inhibited and is 

subsequently synthesized via an acetoacetyl-CoA reductase, a beta-ketothiolase and a PHB synthase 

(López et al., 2015). Similarly to PHB, TAG are also directly derived from acetyl-CoA and compete with 

each other for their precursor and are closely related in their synthesis as inhibition of PHB synthesis 

can trigger the biosynthesis of TAG in mutant Rhodococcus ruber cultures (Alvarez and Steinbüchel, 

2002; Pieper, 1993).  
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The reactions of the major metabolic pathways have been highly characterized, such that the fate of 

each atom in a degraded molecule is known, if a particular pathway is followed. Metabolic flux 

modelling turns this around by using position-specifically labelled substrates to determine the fate of 

each substrate atom in particular products (e.g., CO2), thereby allowing qualitative and quantitative 

reconstruction of metabolic C fluxes through different pathways (Apostel et al., 2015). Position-specific 

labelling of key metabolic precursors is widely established in biochemistry and enables tracing of 13C 

from specific molecular positions throughout the metabolism. In the past, isotopomers from different 

LMWOS like alanine (Apostel et al., 2018) and pyruvate (Dijkstra et al., 2011b, 2011a; Hagerty et al., 

2014) as well as some (but often not all) labeled C positions in glucose (Apostel et al., 2015; Dijkstra et 

al., 2011b) were used in soil studies for qualitative metabolism analysis. However, for robust 

quantitative metabolic flux modelling of heterotrophic metabolism the use of glucose, separately 

labelled at each of the six C positions, is established as an ideal standard, whenever this number of 

parallel assays can be performed experimentally (Dijkstra et al., 2015; Klingner et al., 2015; Wu et al., 

2020; Zamboni et al., 2009). However, as these experiments require a large number of microcosms, 

this approach is rather time consuming and systematic applications are still rather rare. Here we 

applied this comprehensive position-specific glucose labeling for a robust reconstruction of glucose 

metabolism covering glycolysis, pentose phosphate pathway (PPP), gluconeogenesis and tricarboxylic 

acid cycle (TCA). As storage is a significant microbial biomass pool, we additionally aimed to take this 

flux into account within the applied metabolic flux model, considering a flexible flux from acetyl-CoA 

towards a quantitatively non-restricted biomass pool in contrast to the unmodified flux model where 

the flux into storage compound formation was a fixed ratio dependent on other fluxes into biomass 

formation.  

With our experiment, we aimed to shed a light on the various growth and storage modes in a soil 

microbial community using metabolic flux modelling and decipher the switch between growth by de 

novo synthesis of biomass and the creation of storage compounds. Therefore, we conducted a 

microcosm experiment with agricultural soil adding low and high amounts of glucose and accompanied 

them with trace amounts of position-specifically 13C-labelled glucose. Additionally, to the variating 

glucose concentrations, treatment solutions were treated with or without nutrients (N and P). The 

respective 13CO2 effluxes were used to predict metabolic fluxes in a model with and without the option 

for storage. We hypothesized that: (1) The addition of excess glucose without nutrients will result in 

the redirection of C fluxes towards storage compound synthesis (surplus storage). (2) In contrast, the 

microbial community will utilize excess glucose and nutrients for the de novo synthesis of biomass 

through cell division when both, glucose and nutrients are provided. With our study, we try to apply 
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metabolic flux models that account for storage compound formation on experimental data and prove 

the importance to consider storage for accessing C fluxes in natural soil microbial communities. 

 

2.3.3. Material and Methods 

2.3.3.1. Experimental setup 

The soil for the microcosm experiment was sampled from the Ap horizon (0-25 cm) at the experimental 

farm “Reinshof” (51°29'51.0"N, 9°55'59.0"E) of the Faculty of Agricultural Sciences of the University of 

Goettingen in November 2017. The fields are organically farmed consecutively with red clover and 

summer wheat and were harvested two months before sampling. The soil is characterized as haplic 

Luvisol developed from aeolian loess with pH 5.4, 1.4% TOC, 0.17% TN and a C/N ratio of 8.2. These 

low amounts of available carbon and nitrogen were intended to ensure that the glucose and nutrient 

treatments resulted in an adequate metabolic reaction of the microbial community. Until the start of 

the experiment, the soil was sieved with 2 mm and stored at 4 °C. For the microcosm experiment, air-

tight 100 ml glass bottles were filled with 25 g of soil which was adjusted to 70% WHC. The experiment 

took place in a darkened climate chamber at 15°C over 4 days. The treatment solutions were applied, 

consisting of a low glucose concentration (90 µg C g-1 soil, 45% of extractable MBC), a high glucose 

concentration (400 µg C g-1 soil, 200%) and a control without glucose addition. In Addition, nutrients 

in form of ammonium sulfate (17 µg N g-1 soil) and tripotassium phosphate (3.3 µg P g-1 soil) were 

added as nitrogen (N) and phosphate (P) sources. All treatment solutions were split up for labeling 

with 13C: uniformly labelled glucose (3 at%, U-13C) and position-specifically labelled glucose (1.5 at%) 

for each C position (113C to 613C) in glucose in 4 replicates, resulting in 96 uniformly labeled microcosms 

and 192 position specifically labelled microcosms. CO2 was sampled with an air-tight gas syringe from 

the microcosms’ headspace, transferred to exetainers (Labco, Ceredigion, UK), where we measured 

their CO2 concentration and at% 13C /12C a 0, 1, 3, 6, 12, 24, 33, 48, 72 and 96 h after adding glucose 

and/or nutrients. After every CO2 sampling, the headspace of each microcosm was flushed with CO2-

free synthetic air. 13CO2 and CO2 concentrations were measured on a Trace-GC coupled via GC Isolink 

and ConFlo IV to a MAT 253 IRMS (Thermo Scientific, Bremen, Germany) at the KOSI (Centre for Staple 

Isotope Research and Analysis, Goettingen, Germany). 

2.3.3.2. Flux model and its modification for storage compound formation 

As input for the flux model, the F values (fraction of glucose-derived C) of the 13CO2 at% values of the 

at% 13C emitted from labelled C, background at% 13C from controls and originally added at% 13C from 

labelled glucose from the 24 and 96 h time points were calculated using the following equation: 

(1) 
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𝐹 =
 𝑎𝑡%13𝐶 − 𝑎𝑡%𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑎𝑡%𝐺𝑙𝑢𝑐𝑜𝑠𝑒 − 𝑎𝑡%𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 

These F values from position-specific and uniformly labelled microcosms were then used to calculate 

ratios for the model input as follows: As microcosms of uniformly and position-specific samples are 

independent from each other, every possible 13CO2 combination of uniformly and position-specifically 

labelled microcosm replicates were used for calculating x13CO2/U13CO2 ratios (x = position of labelled 

13C in glucose 1-6, U =uniformly labelled glucose), resulting more than 130,000 combinations. Form 

these combinations, 128 CO2 ratios (4 combinations for each 4 uniformly labelled replicates) were 

randomly chosen. As an example for pairing uniformly labeled microcosms with isotopomeric ones: 

uniformly labelled replicate “a” from the “Low N+P” glucose amendment was paired with the same 

treatment of position-specific replicates in a random combination: “ccddbb” (Supple. Table 1). Those 

combinations were then used in a modified flux model by (Dijkstra et al., 2011b) where the flux rates 

are calculated throughout the base C metabolism until they match the observed 13CO2 ratios from 

isotopomere glucose-C: The model calculated each carbon flux from each metabolic transformation of 

glucose (Fig. 1A) into glycolysis (r1 – r5), tricarboxylic acid circle (TCA, r6 – r7), gluconeogenesis (r14 – 

r17) and pentose phosphate pathway (PPP, r9 – r12). Additionally, to the values of flux entry points 

into PPP (r9), gluconeogenesis (r17) and biomass formation (br1), we used one model version where 

the flux into biomass (br5) got now extended for an additional storage term that sum up to br5*. The 

br5 flux was formerly a fixed fraction of br1 and could therefore not account a shift in microbial 

metabolism to storage compound formation. In consequence, br5* of the storage-adjusted model is 

now variable and br5*was constrained by being equal or higher than the biomass-associated br5 

derived from the fixed precursor ration for biomass production. The partitioning of C to glycolysis (r2) 

compared to PPP (r9) as one of the two glucose C consuming pathways was expressed as 𝜑 (phi), 

considering the gluconeogenesis-related fluxes: 

(2) 

 𝜑 =
𝑟2 − 𝑟14

𝑟2 − 𝑟14 + 𝑟9
 

Total storage production is then calculated by subtracting the flux of stoichiometric biomass demand 

using acetyl-CoA (br5) from the newly generated br5* flux, containing this biomass demand plus 

storage to calculate the C flux into the Acetyl-CoA derived storage pool. 

(3) 

  𝑆𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑏𝑟5∗ − 7.065 ∗ 𝑏𝑟1 = 𝑏𝑟5∗ − 𝑏𝑟5 
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S3 Figure 1: A: The flux scheme of the basic glucose metabolism divided into glycolysis (r1 to r5), tricarboxylic 

acid circle (TCA, r6 – r7), gluconeogenesis (r14 – r17) and pentose phosphate pathway (PPP, r9 – r12); B and 

C: flux model sensitivity for storage compound formation represented in three levels of flux into br5 (10, 30, 

50%) and set parameters for a mean br1 flux at 2.2 and two levels of fluxes into PPP at 10% (B) and 90% (C). 

 

2.3.3.3. Model sensitivity for flux into storage formation 

Our approach using position-specific isotopomeres of glucose for metabolic flux tracing was tested for 

its sensitivity to be able to identify C allocation towards storage compound formation form Acetyl-CoA. 

Therefore, we tested whether an increase in storage formation would result in considerable (i.e. 

detectable) changes of the CO2 respiration from the glucose isotopomeres. Therefore, two scenarios 

were set-up: i) a 10% (Fig. 1B) and 90% flux (Fig. 1C) into PPP as 13CO2 efflux patterns are severely 

influenced by the PPP similar to (Dijkstra et al., 2015). ii) We used a fixed 2.2% flux into br1 derived 

from the mean value of this dataset resulting from model runs without the option for storage 

compound formation. iii) Three levels of relative fluxes into br5, which comprises the flux into storage 

compound synthesis were tested to proof the sensitivity and influence of the br5 flux: 10, 30 and 50% 

of glucose C input. 

2.3.3.4. Statistics 

Data was checked for normality with the Shapiro-Wilk test and variance homogeneity was inspected 

using R statistical software (version 4.1.1). Possible outliers were removed when they exceeded a 1.5x 

interquartile range (Tukey fence). Beta regression was used to inspect x 13CO2/U 13CO2 ratios for 
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significant differences (Suppl. Fig. 3). The CO2 fluxes were then checked for significant differences 

between the treatments by testing them with Kruskal-Wallis test. Comparisons between each 

treatment were determined by a post hoc Dunn test. Furthermore, the 𝜑 (phi) ratio, br1 and br5 fluxes 

of each treatment from the model without storage adaptation was compared with its counterpart from 

the storage-adjusted model via using either t-test. 

 

S3 Figure 2: Labelled CO2 efflux depending on glucose and nutrient amendment over the curse of the 

experiment. Data points represent arithmetic means and error bars standard error of the mean. 

 

2.3.4. Results 

2.3.4.1. Microbial respiration 

Labelled CO2 efflux over the course of the incubation experiment were determined by considering the 

individual positions as replicates (Fig. 2). CO2 respiration showed an identical pattern for both 

treatments with low glucose addition, “Low none” and “Low N+P” with maximum CO2 efflux of 2.93 

µg C g-1 h-1after 1 h and a steady decline to a steady respiration of 0.3 µg C g-1 h-1 after 20 h. The high 

glucose treatments showed overall higher CO2 respiration rates than the low treatments, but in 

contrast to them exhibited different respiration curves between the two nutrient treatments with a 

higher CO2 rate for N+P. Furthermore, high glucose treatments reached their peak CO2 efflux later than 

low treatments at 4.8 µg C g-1 h-1 (“High none”) after 12 h and 10.14 µg C g-1 h-1 (“High N+P”) after 24 h, 



Publications and Manuscripts 
 

95 
 

respectively. After its peak, the CO2 rate “High none” declined steadily towards 0.46 µg C g-1 h-1 at the 

end of the experiment after 96 h. In contrast, “High N+P” experienced a steep decline after its peak to 

2.0 µg C g-1 h-1 33 h into the experiment, reaching a similar respiration rate to “High none” and higher 

than the low treatments at 0.5 µg C g-1 h-1 after 48 h.  

2.3.4.2. Response of glucose isotopomere composition to storage formation 

Our chosen predefined model conditions of 2.2 % mean br1 flux, 10% or 90% flux into PPP and an 

increasing br5 flux from 10, 30 to 50% influenced the 13CO2 production of the glucose-C positions. 

Increasing the C flux into PPP up to 90%, influenced the proportion of CO2 released from different C 

positions: where at 10% flux into PPP (Fig. 1B) the highest proportion of CO2 from glucose-C was 

respired from positions C3 and C4 from glycolysis, at 90% PPP mostly positions C1 and C4 of glucose-C 

played a role in CO2 production (Fig. 1C). While these patterns of CO2 production are expected, the 

model sensitivity to the adjustment of br5 was more important. We could show that the increasing 

flux into br5 had an effect on CO2 production at various C positions: Under high glycolysis (PPP 10%), 

most pronounced difference occurs in positions C3 and C4 respiration, by an increase of released CO2 

from 20 to 25% when br5 flux was increased from 10 to 50%. For the remaining C positions, raising br5 

led to a decrease in CO2 production (Fig. 1B). A similar pattern was visible for positions C1 and C4 in 

the model for 90% C flux into PPP (Fig. 1C), it also expressed a sensitivity towards a br5 flux increase 

as those C positions experienced a relative increase in levels of CO2 production. Besides these 

important C positions, the remaining C positions in both model outcomes were respirated less and 

rather showed a decrease in CO2 release with increased br5 flux. 

2.3.4.3. Prediction of C fluxes through basic metabolism with and without storage 

The results from both models (with and without storage flux model fit) were significantly different 

from each other (Fig. 3, * t- test, p < 0.05). However, the relative C fluxes of 𝜑, br1 and br5 or br5*, 

respectively, showed higher variability in the model with storage. The 𝜑 values for low glucose 

treatments were significantly higher than those of the high glucose treatments regardless of nutrient 

treatment (Kruskal-Wallis, p <0.05) in both model runs showing a shift from glucose allocation via 

glycolysis towards PPP with increasing glucose addition. For the br1 flux, representing biomass 

formation, the model result without storage consideration had significantly lower C flux into br1 in the 

lower glucose treatments than under high glucose amendment. Nutrient addition caused a 

significantly lower influx into br1 under “High” glucose amendment in comparison to the treatment  
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S3 Figure 3: Comparison of both flux model outcomes excluding (left) and allowing for (right) storage 

compound formation. Relative C fluxes into representative metabolic processes: 𝜑 (phi) representing the C 

flux partitioning between glycolysis and PPP towards PPP, br1 as representative flux for biomass formation 

(letters indicate significant differences p < 0.05, Kruskal-Wallis) and br5 as sum of the biomass formation and 

storage compound formation starting from Acetyl-CoA (Kruskal- Wallis test). Significant differences between 

models with and without storage compound formation (t-test, see suppl. table 2) are indicated with *. 
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without addition of nutrients (Fig. 3). Overall, the model result with storage for br1 showed the same 

pattern with significant differences between the glucose treatments, but without a nutrient effect. The 

flux br5*, a flux into all biomass products of acetyl-CoA including phospholipid fatty acid (PLFA) and 

storage compounds (PHB and TAG) formation had significantly lower rates in the “Low” treatments 

than the “High” ones without a nutrient effect in the model results without consideration of storage 

compound formation. In the “High” glucose treatments br5 was significantly lower in the treatment 

with nutrient addition. Flux into br5* was overall higher in the model with storage fit than in the model 

without storage formation br5 (p < 0.05, t-test, Fig. 3, suppl. table 1). Only br5* in “Low None” was 

significantly lower than br5* in “High” treatments in the storage model.  

Correcting the C flow into br5* for the flux that is needed for biomass production (br5), following the 

stoichiometric precursor ratio approach, yielded finally the flux into storage compound formation 

represented in figure 4. This revealed that the high biomass flux in the high glucose treatments was 

nearly solely used for biomass formation irrespective of nutrient addition and no storage compounds 

were synthesized. Low treatments showed storage production but without a significant nutrient effect 

although the variety in the “Low N+P” treatment was higher than in the “Low None” treatment. 

 

S3 Figure 4: Relative C flux into storage compound synthesis (see equation 3). Letters a-c indicate significant 

differences determined by Kruskal-Wallis test. 

 



Publications and Manuscripts 
 

98 
 

2.3.5. Discussion 

2.3.5.1. Metabolism of glucose-induced microbial growth 

The glucose and nutrient treatments triggered a significant response of the soil microbial community 

visible in the overall CO2 production. CO2 data demonstrated that in high glucose treatments nutrient 

addition led to a rapid and most pronounced CO2 release in the first 24 h of the experiment in contrast 

to the same “High” treatment without nutrient addition. A clear nutrient effect in high glucose 

treatments in the overall respiratory CO2 efflux was not as expressed in the individual metabolic 

pathways from the flux model results. However, flux modelling offered a more detailed look into the 

fate of glucose-C into various pathways of the basic C metabolism: Low values of ϕ in both high glucose 

treatments show a high flux into PPP suggesting an elevated synthesis of compounds required for 

biomass synthesis such as new DNA. This is backed up by a high flux into the de novo formation of 

biomass (br1) under high glucose amendment. 

For both low treatments, slightly elevated C3 and C4 CO2 production leading to high ϕ values point 

towards higher glycolysis in these treatments (Suppl. Fig. 1A, B) (Dijkstra et al., 2022). Currently, the 

flux models do not include the Entner-Doudoroff (ED) pathway, a pathway that yields smaller amounts 

of ATP and reduction equivalents than glycolysis but starts from glucose-6-phosphate like PPP (Dijkstra 

et al., 2022; Voet et al., 2008). Dijkstra et al. (2022) have recently shown, that high rates of r9 in models 

without ED can be misinterpreted as high fluxes into PPP associate to biomass production although it 

could alternatively represent an increased C allocation through the ED pathway. Dijkstra et al. (2022) 

suggested a quick qualitative check for quantitatively relevant C fluxes directed into ED versus PPP by 

the relation of CO2 production from C positions C2 and C3 from glucose: ED dominance is indicated by 

a higher proportion of C2 in comparison to C3, vice versa flux into PPP is determined by a higher C3 

respiration than that of C2. Following this interpretation of CO2 patterns ED pathway seemed only to 

be relevant in the high glucose treatment with nutrient addition (Suppl. Fig. 1D), which could be 

proposedly assigned to a high relative C allocation through gram negative bacteria, which are known 

for utilizing the ED pathway (Kersters and De Ley, 1968). They are also known as copiotrophs, dealing 

well with optimum conditions in a high C environment (Fierer et al., 2007). Future modelling efforts 

should therefore implement the ED into their flux models especially when contrasting C availability 

scenarios shall be studied. Furthermore, it seems necessary to combine flux models of soil microbial 

communities with state-of-the-art metagenomic and metatranscriptomic methods to identify ED 

enzyme sequences and the community members responsible for their expression.  

Treatments without nutrient addition showed a trend towards a higher br1 flux i.e., formation of new 

biomass. Besides biomass formation, this could also point towards the synthesis of nutrient mining 

enzymes to gain nutrients from SOM and therefore ensure cellular maintenance without growth. The 
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model is not able to distinguish the production of exoenzymes from the production of structural or 

functional proteins involved in cellular replicative growth and both scenarios may lead to such a slightly 

enhanced br1 flux. The model’s underestimation of those exoenzyme therefore might have led to an 

underrepresentation of fungi and other bacteria with the metabolic preferences for e.g. complex 

polymeric compounds like microbial necromass or sorbed substrates, thus showing a microbial 

response to glucose addition be dominated by microorganisms with capabilities for rapid and efficient 

glucose metabolism, predominantly gram negative bacteria (Apostel et al., 2018; Kashi et al., 2022). 

This suggest future environmentally applicable metabolic flux models to be extended for the vast 

variety of substrates included in the highly diverse organic matter in ecosystems. (Dijkstra et al., 2022, 

2011c). 

2.3.5.2. Glucose induces reserve storage but no surplus storage. 

It is most likely that the microbial community in high glucose treatments is growing by cell division 

rather than building up a surplus storage supply as suggested by Mason-Jones et al. (2021) and 

Manzoni et al. (2021). We rather observed the contrasting scenario, i.e., that storage compound 

synthesis in both high glucose treatments was completely shut down in our model (Fig. 4). In contrast 

to the high glucose treatments, in both low treatments the microbial community shifted its basic C 

metabolism to glycolysis, maintaining their existence but also directing their C flux into the synthesis 

of storage compounds rather than investing into growth through cell division like the community with 

excess glucose.  The addition of the option for storage compound formation into the flux model 

proofed itself to have a significant effect on the C fluxes of the basic glucose metabolism of the soil 

microbial community. However, de novo synthesis of biomass was of higher relevance for high glucose 

treatments, whereas storage compound synthesis appeared to play an important role in low glucose 

treatments. There, the soil microbial community relied on cell maintenance with a high C flux rate into 

glycolysis, represented via a high ϕ, from which a high proportion with up to 50 % of C is directing 

towards storage formation. This creates a reserve storage pool to save resources for a later use while 

competing with the rest of microbial metabolism. Reserve storage is considered as a resource deposit 

for future needs, e.g. insurance against environmental changes (Manzoni et al., 2021). Declining CO2 

efflux (Fig. 2) in the low glucose treatments before the 24 h mark suggest that reserve storage has 

already been synthesized, therefore the measured 13CO2 for low glucose treatments as model input 

had already depleted glucose isotopomere tracer sources so that the effect of low glucose 

concentrations could be underestimated at the 24 h. An earlier time point for modelling low glucose 

treatments would therefore be necessary. Most likely, microbiomes of rather C poor soils, as 

intentionally selected for this experiment, exhibit a rather high threshold of C addition required to 

induce replicative growth, whereas a moderate increase in C availability may rather be used for storage 
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formation preventing for frequent and extended periods of C starvation they are used to (Bååth, 2003; 

Matin et al., 1979).  

The addition of nutrients did not have a significant effect on the microbial communities’ investment 

into biomass. Nutrient addition in C limited conditions had a favorable effect on storage formation 

when soil microbial communities built up reserve storage (Bååth, 2003; Dijkstra et al., 2022). The here 

applied flux models with and without storage compound adjustment were unable to differentiate 

between bacterial or fungal groups and their different ecological roles in a soil microbial community 

so that different ecological niches such as C nutrient sources were not considered. Thus, it cannot be 

finally stated whether the whole community profited from the added glucose as C source or only single 

bacterial groups which profited most from the addition of glucose (Dijkstra et al., 2011c). Others, e.g. 

Actinobacteria are known to gain energy from necromass and would rather display 13C labelled 

compound uptake from dead bacteria previously fed on the added glucose (Apostel et al., 2018). 

However, we chose our experimental period with 96 h rather short to avoid such secondary, food-web 

C utilization in the observed position specific patterns, as e.g. Apostel et al. (2018) demonstrated 

necromass C incorporation to occur only after 10 days approximately. Nevertheless, it is necessary to 

identify key role players in the soil microbial community and advance with metabolic tracing 

techniques towards a resolution of individual community members contribution to the overall 

microbiomes’ metabolic fluxes (Wu et al., 2020). Additionally, it is essential to couple the storage 

compound adjusted flux model with high-throughput molecular biological metagenomics and 

metatranscriptomics techniques to reveal their composition and active enzyme repertoire carrying out 

the here quantified functions of the basic C metabolism. Furthermore, interpreting modelled C fluxes 

should not solely rely on measured 13CO2 data, but also be accompanied by measuring key metabolites 

such as storage compounds (PHB, TAG) (Bååth, 2003; Mason‐Jones et al., 2019) or phospholipid fatty 

acids (PLFA) and 18O DNA for differencing between replicative or storage growth in microbial 

communities (Spohn et al., 2016).  

 

2.3.6. Conclusion 

Like any microbial communities, soil microbes have various methods in gaining (and storing) energy 

from SOM where glycolysis and pentose-phosphate pathway are not the only pathways how 

monomers enter basic C metabolism. The Entner-Doudoroff pathway appears to be a frequently used 

metabolism mode in microorganisms under certainly high C concentrations and therefore needs be 

included into flux models (Dijkstra et al., 2015). Furthermore, Mason-Jones et al. (2021) proclaimed to 
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also take extracellular polymeric substances (EPS) as significant sink of microbial C into account – a 

compound class with many functional roles but which could also serve as microbial storage. 

The recent proofs of high relevance of reserve and surplus storage as quantitative biomass compound, 

makes it essential to implement the process of storage compound formation into metabolic flux 

modelling. Our flux model could demonstrate that C is directed towards storage synthesis depending 

on the stoichiometric conditions. 

Contradicting the rather widespread understanding that high C input will result in build-up of surplus 

storage and that surplus storage is the dominant storage mode of microbes, our model could not 

confirm storage synthesis from excess glucose addition. On the other hand, reserve storage formation 

in low glucose treatments was clearly predicted by our metabolic flux model and could be an ecological 

adaptation to strongly C limited soils with long bare-soil periods without C input throughout the 

cropping season. 
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2.4.1. Abstract  

The concept of biomass growth is central to microbial carbon (C) cycling and ecosystem nutrient 

turnover. Microbial biomass is usually assumed to grow by cellular replication, despite 

microorganisms’ capacity to increase biomass by synthesizing storage compounds. Resource 

investment in storage allows microbes to decouple their metabolic activity from immediate resource 

supply, supporting more diverse microbial responses to environmental changes. Here we show that 

microbial C storage in the form of triacylglycerides (TAGs) and polyhydroxybutyrate (PHB) contributes 

significantly to the formation of new biomass, i.e., growth, under contrasting conditions of C 

availability and complementary nutrient supply in soil. Together these compounds can comprise a C 

pool 0.19 ± 0.03 to 0.46 ± 0.08 times as large as extractable soil microbial biomass and reveal up to 

279 ± 72% more biomass growth than observed by a DNA-based method alone. Even under C 

limitation, storage represented an additional 16–96% incorporation of added C into microbial biomass. 

These findings encourage greater recognition of storage synthesis as a key pathway of biomass growth 

and an underlying mechanism for resistance and resilience of microbial communities facing 

environmental change. 

2.4.2. Introduction 

Microbial assimilation of organic resources is crucial to the flow of C and other nutrients through 

ecosystems. Soil heterotrophs perform key steps in terrestrial carbon (C) and nutrient cycles, yet how 

microorganisms use the available organic resources and regulate their allocation to competing 

metabolic demands remains a subject of research and debate (Dijktra et al., 2015, Geyer et al., 2019, 

Sokol et al, 2022). Microbial assimilation of organic C into an organism is conceptualized as biomass 

growth. This is frequently understood as synonymous with an increase in individuals, in other words, 

the replicative growth of microbial populations. However, many microorganisms are capable of 

storage, defined as the accumulation of chemical resources in particular forms or compartments to 

secure their availability for future use by the storing organism (Mason-Jones et al., 2021). Various 

microbial storage compounds are known, among them polyhydroxybutyrate (PHB) and 

triacylglycerides (TAGs) (López et al., 2015, Murphy, 2012). These two C-rich storage compounds are 

of particular interest as they are accumulated by diverse microbial taxa (Mason-Jones et al., 2021) and 

methods are available for their measurement in soil (Banfield et al., 2017, Mason-Jones et al., 2019). 

These are both hydrophobic lipids that are stored as inclusion bodies in the cytosol (i.e., intracellular 

lipid droplets) (Murphy, 2012). PHB is a high-molecular-weight polyester of β-hydroxybutyrate, while 

TAGs consist of three fatty acids (of diverse structures) esterified to a glycerol backbone (Mason-Jones 

et al., 2021). PHB storage is only known among bacteria, while TAGs are accumulated by both bacteria 
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and fungi (Mason-Jones et al., 2021). Biosynthesis of PHB has been demonstrated by compound-

specific measurement in soil (Mason-Jones et al., 2019) and TAGs in marine and soil systems show 

responsiveness to resource supply consistent with a C-storage function (Bååth et al., 2003, Becker et 

al., 2018). Microbial storage could substantially influence microbial fluxes of C and other nutrients 

(Manzoni et al., 2021), changing our understanding of soil biogeochemical fluxes and their response to 

environmental changes. Biomass growth is a cornerstone concept at scales from the ecological 

stoichiometry of individual cells to microbially-explicit models of the C cycle (Manzoni & Poporato, 

2009, Wieder et al., 2015), and for defining the nutrient demands of organisms and their productivity 

(Manzoni & Poporato, 2009). Accumulation of storage compounds corresponds to an increase in 

microbial biomass without replication, and therefore represents an alternative pathway for growth 

that is not usually considered in the C cycle. There is therefore a need to assess how severely the 

omission of storage may bias our understanding of C assimilation and utilization (Mason-Jones et al., 

2021). Conventional measurement of soil microbial biomass uses fumigation with chloroform to lyse 

cells, followed by extraction of the released biomass into an aqueous solution for measurement 

(chloroform fumigation-extraction, CFE) (Vance et al., 1987). This method assumes a proportionality 

between extractable and non-extractable biomass (Jenkinson et al., 2004). Other measures in 

widespread use are proxies such as cell membrane lipids or substrate-induced respiration (Anderson 

& Domsch, 1978, Baily et al., 2002, Zelles et al. 1995). Only CFE provides biomass in units of C, however, 

and these other methods are typically calibrated against it. However, hydrophobic storage compounds 

like PHB and TAGs are not extractable in aqueous solution and are therefore overlooked by CFE. 

Furthermore, there is no biological reason to expect proportionality between these storage 

compounds and any of the conventional biomass proxies. DNA-based measures of microbial 

abundance and replication also do not capture storage (Blaszewicz & Schwartz, 2011, Spohn et al., 

2016), since it is not expected to form a constant proportion of each cell’s biomass. Interpretation of 

microbial storage patterns is facilitated by distinguishing two storage modes, which represent the end-

members on a gradient of storage strategies (Chapin et al., 1990, Mason-Jones et al., 2021). Surplus 

storage is the accumulation of resources that are available in excess of immediate needs, at little to no 

opportunity cost, while reserve storage accumulates limited resources at the cost of other metabolic 

functions. Surplus storage of C would be predicted under conditions of C oversupply, when replicative 

growth is constrained by other factors such as nutrient limitation. Reserve storage, on the other hand, 

indicates that storage may also occur under C-limited conditions. The evidence assembled from pure 

culture studies confirms the operation of both storage modes among microorganisms (Kourmentza et 

al., 2017, Mason-Jones et al., 2021, Matin et al., 1979, Poblete-Castro et al., 2012). Here we 

experimentally investigate the importance of microbial storage in soil, and show how storage 



Publications and Manuscripts 
 

107 
 

responses to resource supply and stoichiometry can advance our understanding of resource allocation 

and microbial biomass growth. We hypothesized as follows:  

1. Microbial storage compounds are a quantitatively important pool of soil microbial biomass under C-

replete, nutrient-limited conditions.  

2. Microbial biomass growth is substantially underestimated by neglecting intracellular storage 

synthesis.  

3. Due to low opportunity costs, surplus storage is likely to be quantitatively more important than 

reserve storage when measured across an entire soil community. Therefore, nutrient supplementation 

(N, P, K, and S) will suppress storage compound accumulation in favour of replicative growth.  

Soil microcosms were incubated under controlled conditions, with C availability manipulated through 

additions of isotopically labelled (13C and 14C) glucose, which is common in soil, including as a 

component of plant root exudates and the most abundant product of plant-derived organic matter 

decomposition (Gunina & Kuzyakov, 2015). A combined nutrient treatment (N, P, K, and S) provided 

inorganic fertilizers common in agriculture. A fully crossed design included three levels of C addition 

(zero-C, low-C and high-C; 0, 90 and 400 μg C g-1 soil) and two levels of nutrient supply (no-nutrient 

and nutrient-supplemented) with nutrients added at a level predicted to enable full C assimilation 

under the high-C treatment, based on microbial biomass C:N:P ratios typical of agricultural soil (Xu et 

al., 2013) and an assumed C-use efficiency of 50%. CO2 efflux and its isotopic composition was 

monitored at regular intervals. Microcosms were harvested after 24 and 96 h, with these incubation 

times selected to balance the synthesis of storage (previously observed over a timeframe of days, 

Mason-Jones et al., 2019) with the risk of artefacts induced by recycling of labelled biomass (Blazewicz 

& Schwartz, 2011). Harvested soil was analyzed for microbial biomass (by CFE), dissolved organic 

carbon (DOC), dissolved nitrogen (DN) and the storage compounds PHB and TAGs. In parallel, a set of 

smaller microcosms (0.5 g soil) was incubated under otherwise identical conditions to measure 

microbial growth as the incorporation of 18O from H2
18O into DNA (Spohn et al., 2016). This method 

captures replicative growth better than tracing specific C substrates. Together these provide 

integrated observations of heterotrophic microbial biomass, growth, and storage in a natural 

microbiome, examining the importance of storage as a resource-use strategy in response to 

environmental resource supply and changes in element stoichiometry. 

2.4.3. Results and DiscussionMicrobial nutrient limitations and CO2 efflux 

We first describe observed patterns of soil respiration and dissolved nutrients that aid interpretation 

of the prevailing resource limitations during storage compound synthesis and degradation. Glucose 
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addition stimulated large increases in CO2 efflux (Fig. 1), primarily derived from glucose mineralization 

(Fig. 1B). Nutrient supplementation barely affected CO2 efflux rates from the zero- or low-C additions 

and for none of the zero- or low-C treatments was N availability (measured as DN) significantly reduced 

relative to the control at 24 h (Supplementary Fig. S1A, B). Thus, C limitation dominated in the zero- 

and low-C treatments throughout the experimental period, irrespective of nutrient additions. 

 

S4 Figure 1: Time-series of the CO2 efflux from soil microcosms. A Total CO2 efflux following addition of a 

readily degradable 13C-labelled carbon source (glucose at 0, 90, and 400 μg C g−1 soil) with or without mineral 

nutrient supply (N, P, K, S). Each point reflects the average rate of CO2 efflux at the mid-point of the sampling 

interval. B Percent of total CO2 derived from the added glucose. Error bars show standard deviation (n = 4 

independent soil microcosms). 

 

With high-C addition, CO2 efflux rates under the two nutrient levels diverged strongly after 12 h, with 

the no-nutrient treatment declining steadily from 12 h until the end of the experiment. This early 

decline in mineralization was consistent with the onset of nutrient limitation, after microbial growth 

on the added glucose had depleted easily available soil nitrogen and driven up the C:N ratio of 

dissolved resources (Supplementary Fig. S1). This depletion in the high-C, no-nutrient treatment was 

reflected in suppressed DN after 24 h, with only 35.8 – 62.5% of the zero-C, no-nutrient control (family-

wise 95% confidence interval; Supplementary Fig. S1). Nutrient limitation was accompanied by an 

accumulation of highly labelled DOC at 24 h in the soil solution, reflecting unused glucose or soluble 
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by-products in an amount 19.6 ± 2.1% (mean ± standard deviation) of the original C addition 

(Supplementary Fig. S2). Therefore, high C addition without supplementary nutrients resulted in rapid 

mineralization at first, but nutrient limitation set in within 12 h and continued for the remaining 

experimental period.  

Nutrient addition had a strong effect in combination with high-C supply: it accelerated glucose 

mineralization until 24 h after addition (Fig. 1), after which CO2 efflux dropped precipitously to below 

that of the high-C, no-nutrient treatment. For this high-C, nutrient supplemented treatment, dissolved 

N decreased only moderately over 24 h (56.2 – 97.9% relative to the zero-C, no-nutrient treatment). 

With high-C addition after 24 h, DOC was far lower with nutrient supplementation than without 

(Cohen’s d >> 1, family-wise p < 0.001), and DOC level for this treatment did not change further to 96 

h, despite having higher N availability at 24 h than the no-nutrient treatment (Cohen’sd»1, family-wise 

p < 0.001). This indicates that the microbial community had depleted the added C and re-entered C-

limited conditions. Therefore, high C addition with supplementary nutrients maintained rapid C 

mineralization through the first 24 h, but glucose depletion then reasserted C-limitation for the rest of 

the experimental period. 

2.4.3.2. Presence and synthesis of microbial compounds 

PHB and TAGs were both found in the control soil (zero-C, no nutrients after 24 h; Fig. 2A, C), together 

representing a C pool 0.25 ± 0.03 (mean ± standard deviation) times as large as the extractable 

microbial biomass C (MBC, by CFE; Fig. 3). This ratio of stored C (PHB + TAG) to extractable MBC ranged 

from 0.19 ± 0.02 to 0.46 ± 0.08 over all treatments, indicating that storage is a significant pool of 

biomass not only under C-replete conditions, as hypothesized, but even when C availability is limited. 

Furthermore, the common measures of soil microbial biomass rely on extraction of water-soluble C 

after chloroform fumigation, which does not capture these highly hydrophobic storage compounds. 

This suggests that microbial biomass C may be widely underestimated in soil and calls for 

methodological advancements to more systematically capture these (and possibly other) storage 

compounds in assessments of microbial growth. 

The two storage compounds were both responsive to the supply of C and complementary nutrients (p 

< 0.01), but with very different behaviors. At both timepoints, the low input of C stimulated only a 

moderate increase in total PHB, irrespective of nutrient supply. In contrast, high C input stimulated a 

large increase in PHB, particularly when not supplemented with nutrients (a 308% increase over the 

zero-glucose, no-nutrient treatment at 96 h, with Hodges-Lehmann median difference of 36.0–42.9 μg 

C g−1). In comparison, extractable biomass reflected a non-significant mean difference of only 33% 

between these treatments. Nutrient supply significantly suppressed PHB storage, even in the absence 
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of added C (nutrient main effect, robust ANOVA of medians 24 h: F(1,∞) =35, p <0.001; 96h: F(1,∞) =275, 

p < 0.001). Isotopic composition (13C) indicated that assimilation of glucose C into new PHB continued  

 

S4 Figure 2: Response of soil microbial storage to organic carbon and nutrient supply. Storage compounds 

PHB A, B and TAGs C, D in soil 24 h A, C, and 96h B, D after addition of a readily degradable, 13C-labelled carbon 

source (glucose at 0, 90 and 400 μg C g−1 soil) with or without mineral nutrient supply (ntr.; N, P, K, S). The 

source of the stored C is shown in contrasting colors as determined by isotopic composition, with light grey 

error bars reflecting mean ± standard deviation of the relative composition. Black error bars show mean ± 

standard deviation of the total storage compound pools, while color bar heights show medians, as used in the 

robust analysis of medians (n = 4 independent soil microcosms, except for 1 treatment in each of TAGs and 
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PHB where n = 3). Lowercase letters above the plots show post-hoc differences in total storage with p < 0.05 

(2-sided pairwise comparison of medians with Benjamini-Hochberg adjustment for multiple comparisons). 

between 24 and 96 h under the nutrient-limited conditions of the high-C, no-nutrient treatment 

(Hodges-Lehmann median difference of 10.2–13.3 μg C g−1, 95% confidence interval), while extractable 

microbial biomass C showed no significant change. For the high-C, nutrient-supplemented treatment, 

the increased C limitation after 24 h induced degradation of PHB during this later incubation period 

(median reduction of 2.7–8.6 μg C g−1). The PHB storage pool therefore responded dynamically to shifts 

in resource stoichiometry on a timescale of hours to days, with changes as expected from a surplus 

storage strategy. These observations are consistent with PHB biosynthesis in pure culture (Sekar et al., 

2020), which is stimulated by excess C availability in diverse bacterial taxa (Kourmentza et al., 2017). 

This study demonstrates such microbial storage dynamics in a terrestrial ecosystem. At the end of the 

incubation, stored C across the various treatments was sufficient to support 109 – 347 h of microbial 

respiration at the CO2 efflux rate of the zero-C, no-nutrient treatment (i.e., basal respiration). Much 

longer periods would be envisaged if accompanied by strong downregulation of energy use in response 

to the stress (Dijkstra et al., 2022). Storage could thus be a crucial resource for withstanding starvation 

or other stress. A surplus storage strategy is particularly effective at buffering microbial activity by 

levelling out fluctuations in resource availability and stoichiometry (Manzoni et al., 2021). 

Furthermore, storage representing a substantial proportion of biomass offers a resource for regrowth 

following disturbance, indicating a potential role of storage in supporting resilience of this soil 

microbial community. In these ways, the resources stored in PHB could support the resistance and 

resilience of this soil microbial community against environmental disturbance (Mason-Jones et al., 

2021).  

Storage of TAGs was enhanced by C input (Fig. 2C, D), but its response to resource stoichiometry 

differed greatly from PHB. Over 24 h, nutrient supplementation stimulated more TAG accumulation, 

rather than suppressing it (main nutrient effect F(1,∞) = 10.8, p =0.001 and nutrient:glucose interactions 

between zero-C and the two C-supplemented treatments, both p < 0.01), while over 96 h, nutrient 

supply had little effect with C addition and increased TAGs when C was not added (95% confidence 

interval for Hodges-Lehmann median difference 0.5 – 4.7 μg C g−1). The TAG response to C and nutrient 

supply over 96 h resembled changes in extractable microbial biomass (Fig. 3), which was increased by 

C supply but not significantly enhanced by nutrients (ANOVA main effect of C supply at 96 h: F(2,17) = 

7.1, p = 0.006). Therefore, unlike PHB, TAG synthesis was not stimulated by a stoichiometric surplus of 

available C, suggesting a reserve storage function for this compound. Notably, the relative allocation 

of glucose C between PHB and TAG remained relatively constant (PHB:TAG ratio of glucose-derived C 

ranged between 7.0 and 11.5 across all treatments) because the C source used for TAG biosynthesis 
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varied more strongly than total TAG levels in response to C supply. This corroborates a reserve storage 

function of TAG, with total storage synthesis regulated independently of C supply and drawing on  

 

S4 Figure 3: Extractable soil microbial biomass determined by chloroform fumigation-extraction. A 24 h and 

B 96 h after addition of a readily degradable, 13C-labelled carbon source (glucose at 0, 90, and 400 μg C g−1 

soil) with or without mineral nutrient supply (ntr.; N, P, K, S). The heights of the bars represent the mean ± 

standard deviation as black error bars (n = 4 independent soil microcosms except for one treatment with n = 

3: zero glucose, no nutrients at 96 h). Contrasting colors reflect the source of the extractable biomass as 

determined by isotopic composition, with light grey error bars showing mean ± standard deviation of the 

relative composition. Lowercase letters above the plots show post-hoc differences in mean total storage with 

p < 0.05 (2-sided Tukey HSD test, which adjusts for multiple comparisons). Corresponding C:N ratios are 

presented in Supplementary Fig. S3. 

 

whichever C resources are available, whether glucose- or soil-derived. One advantage of a reserve 

storage strategy is that strategic stores are assembled even under conditions of chronic resource 

shortage. This allows for bursts of activity to support, for example, reproduction or transition to a 

resilient starvation state (Mason-Jones et al., 2021). Therefore, while reserve storage may be 

quantitatively smaller than surplus storage (reflected here in the lower amounts and changes in TAG 

relative to PHB; Fig. 2), it can help communities to persist under conditions of sustained stress, and 

even exhibit resilience against additional disturbances. 

A reserve storage function for TAG contrasts with most observations of TAG accumulation in pure 

culture in response to excess C (Ratledge, 2004). Our observations also contrast with an earlier report 
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that fungal TAG accumulation in a forest soil was largely eliminated by complementary nutrient supply 

(Bååth et al., 2003), but much larger amounts of C were provided in that experiment (16 mg glucose-C 

g−1). The observed patterns of TAG storage are however consistent with abundant evidence of reserve 

storage among microorganisms, in particular that C storage occurs despite or in response to declining 

or limiting C availability (Mason-Jones et al.,2021). For example, Rhodococcus opacus accumulated 

21% of cell dry weight as TAG in the presence of excess N (Alvarez et al., 1996). In our experiment C 

was traced into both bacterial (16:1ω7) and fungal (18:2ω6) TAGs (Supplementary material Figs. S4 

and S5). The fungal biomarker 18:2ω6 was only a minor contributor to TAG incorporation in the current 

experiment, yet even this fungal TAG was not suppressed by nutrient addition. Our results suggest that 

both fungi and bacteria employed TAGs as a reserve storage form, with overall levels of TAG storage 

more closely linked to replicative growth than to resource stoichiometry. 

In summary, the response of PHB storage to different C and nutrient conditions was largely consistent 

with the hypothesized surplus storage mode. In contrast, patterns of TAG storage were better 

characterized by the reserve storage mode. There is no a priori reason to expect distinct storage 

strategies to correspond to different compounds, since both PHB and TAG can in principle provide C 

storage and mobilization under comparable conditions. Since some bacterial taxa can synthesize both 

PHB and TAGs (Alvarez et al., 2003, Kalscheuer et al., 2001), the question arises whether these 

compounds fulfil different storage functions in individual organisms, or whether the different 

responses emerge at a community scale, with each compound used by a different set of microbial taxa 

following divergent storage strategies. The first possibility would suggest as-yet unidentified 

differences in the metabolism of these compounds that distinguish them for different storage 

purposes. On the other hand, if storage strategy and preferred storage forms are correlated across 

taxa, then storage traits could prove useful as proxies of resource allocation strategy in microbial trait-

based frameworks. 

2.4.3.3. Microbial storage as a component of biomass growth 

The incorporation of C into soil microbial biomass is an essential step in the terrestrial C cycle (Sokol 

et al., 2022), and appropriate estimates of these flows are required for understanding and managing 

ecosystem C balances (Kallenbach et al., 2019). We simultaneously performed a parallel experiment 

using identical treatments and temperature and moisture conditions to measure microbial growth 

using 18O incorporation into DNA (Spohn et al., 2016). This method is calibrated to units of C based on 

extractable biomass from the CFE method, and therefore does not capture hydrophobic PHB or TAG 

storage. We compared the 18O-DNA-based measure of growth with the incorporation of isotopically 

labelled glucose C into storage compounds (Fig. 4). This provides a comparison of magnitude using a 

lower bound for storage synthesis by neglecting the biosynthesis of storage from other C sources and 
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any degradation of labelled storage during the incubation. Furthermore, only two storage forms were 

measured here, whereas other microbial storage compounds are also known (Mason-Jones et al., 

2021). Storage comprised up to 279 ± 72% more biomass growth than observed by the DNA-based 

method (for the high-C, no-nutrient treatment at 24 h, Fig. 4A). Even under conditions of C limitation 

(zero and low-C treatments), biomass growth through allocation to storage represented an additional 

16–96% incorporation of C into biomass. Intracellular storage evidently plays a quantitatively 

significant role in microbial assimilation of C under a broad range of stoichiometric conditions, and 

biomass growth would be substantially underestimated by neglecting storage. Microbial growth is a 

central variable in microbially-explicit models of the C cycle (Wieder et al., 2018), so the substantial 

scale of storage also encourages a reassessment of model inputs and interpretation of results 

wherever short-term measurements or dynamic changes are involved. The important model 

parameter of carbon-use efficiency is typically measured over 24-h periods (Geyer et al., 2016), but 

over this timeframe we observed storage changes that constituted a substantial component of the 

microbial C balance. This suggests that more nuanced representations of microbial metabolism and C 

allocation may be required to accurately account for microbial C use.  

 

S4 Figure 4: Comparison of new storage biosynthesis with DNA-based microbial growth reveals storage as a 

substantial, overlooked component of biomass growth in soil. 13C-labelled storage compound synthesis (PHB 

and TAGs) and DNA-based growth (incorporation of 18O) were measured in soil 24 A and 96 h B after addition 

of a readily degradable, 13C-labelled carbon source (glucose at 0, 90, and 400 μg C g−1 soil) with or without 

mineral nutrient supply (ntr.; N, P, K, S). Error bars represent mean ± standard deviation in each component 

A Bab a b b c d ab a ab b c c

24 hours 96 hours

Growth pool

Storage (PHB + TAG)
DNA-based (extractable)
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of the stacked bar (n =4 independent soil microcosms). Lowercase letters above the plots show post-hoc 

differences in total observed growth with p < 0.05 (2-sided Tukey HSD test, which adjusts for multiple 

comparisons). 

 

S4 Figure 5: Intracellular storage represents an alternative pathway for growth of microbial biomass. In this 

conceptual figure the y-coordinates reflect the measured incorporation of added C into storage after 96 h, and 

the x-axis represents replicative growth measured by 18O incorporation into DNA (see also Fig. 4). According 

to contemporary assumptions, all growth should follow the stoichiometric growth curve that maintains 

constant element ratios in the biomass (dashed line to the right). The microbial population is shown 

schematically by bacterial cells, with yellow lipid inclusion bodies representing storage. Without C supply, only 

low levels of replicative growth occur A. Low C additions (with ample nutrients) stimulate replicative growth 

and limited C incorporation into storage B, with the ratio of new storage to non-storage biomass staying close 

to that predicted by assuming constant biomass stoichiometry. High C addition with complementary nutrients 

stimulates both strong replicative growth as well as disproportionately large storage synthesis C, moderately 

violating the stoichiometric assumption. However, nutrient limitation switches growth strongly towards 

storage D, incorporating C into biomass with little replicative growth, closer to the extreme case of pure 

storage without replication than the assumption of stoichiometric growth. 

 

Microbial biomass growth is frequently understood as synonymous with the replicative growth of 

microbial populations. However, the incorporation of C into storage compounds represents an 

alternative growth pathway (Fig. 5), which differs from replicative growth in crucial ways. Models of 

microbial growth typically assume that increases in biomass match the elemental stoichiometry of the 

total biomass (the assumption of stoichiometric homoeostasis, Mooshammer et al., 2014), and 

therefore implement overflow respiration of excess C under conditions of C surplus (Wutzler et al., 
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2017). However, substantial incorporation of C into otherwise nutrient-free PHB and TAG clearly does 

not follow whole-organism stoichiometry. Growth in storage therefore increases total biomass in a 

stoichiometrically unbalanced manner. The short experimental timeframe here is representative of 

environmental resource pulse and depletion processes, such as the arrival of a root tip in a particular 

soil volume or death and decay of a nearby organism. Storage provides stoichiometric buffering during 

such transient resource pulses, which is predicted to increase C and N retention over the longer term 

(Manzoni et al., 2021). By enhancing the efficiency with which microbes incorporate transient resource 

pulses and supporting metabolic activity through periods of resource scarcity, storage can contribute 

to the survival of microbes facing stressful habitat changes. Resource availability in natural and 

agroecosystems changes over various time-scales, and we hypothesize that microbial storage may also 

be responsive to, for example, seasonal changes in belowground C inputs, supporting microbial activity 

through resource-poor winter periods or dry summers. Moreover, storage enables a diversification of 

resource-use strategies, reflected here in the contrasting responses of PHB and TAG. Ecosystem 

stability is promoted by diverse strategies within the community (Loreau & Mazancourt, 2013), 

suggesting that storage can contribute to resistance and resilience of microbial communities facing 

environmental disturbances.  

These findings encourage greater recognition of storage synthesis and degradation as pathways of 

microbial biomass change, in addition to cellular replication. Accounting for microbial storage as a key 

ecophysiological strategy can enrich our understanding of microbial resource use and its contributions 

to biogeochemical cycles and ecosystem responses under global change. 

2.4.4. Methods 

2.4.4.2. Experimental design 

Topsoil (0–25 cm) was collected in November 2017 from the Reinshof experimental farm near 

Göttingen, Germany (51°29′51.0′′ N, 9°55′59.0′′ E) following an oat crop. Five samples along a 50 m 

field transect were mixed to provide a single homogenized soil sample. The soil was a Haplic Luvisol, 

pH 5.4 (CaCl2), Corg 1.4% (Ehlers et al., 2000). Soil was stored at 4 °C for one week prior to sieving (2 

mm) and then distributed into airtight 100 mL microcosms in laboratory bottles with the equivalent of 

25 g dry soil at 48% of water holding capacity (WHC). Four replicates were prepared for each treatment 

and sampling timepoint. Microcosms were placed in a climate-controlled room at 15 °C and 

preincubated for one week before adding treatment solutions.  

Treatment solutions provided glucose as a C source (0, 90 or 400 μg C g-1 soil) in a fully crossed design 

with added nutrients or a no-nutrient control (combined (NH4)2SO4 and KH2PO4, respectively 0.613 and 

0.106 μmol g−1 soil). Glucose levels were selected to probe the effects of C supply on storage, with 
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additions above and below the magnitude of MBC having potentially contrasting effects on microbial 

growth (Blagodatskaya & Kuzyakov, 2008). Glucose treatments contained uniformly isotopically 

labelled glucose (3 at% 13C and 0.19 kBq 14C per microcosm, respectively from Sigma-Aldrich, Munich, 

Germany and from American Radiolabelled Chemicals, Saint Louis, U.S.A.). The 14C label in the added 

glucose enabled rapid and accurate measurement of glucose-derived C in liquid extracts by scintillation 

counting, while 13C was traced in all other pools. The same amount of nutrients was used in all nutrient-

addition treatments, with this set to be sufficient for the complete utilisation of all C added in the high 

glucose treatment, assuming a C:N:P ratio of 38:5:1 for an agricultural microbial community (Xu et al., 

2013) and a C-use efficiency of 50% (Manzoni et al., 2012). Addition of the treatment solutions raised 

the soil moisture to 70% of WHC, after which the microcosms were sealed with air-tight butyl rubber 

septa and their headspace flushed with CO2-free synthetic air. Headspace gas was sampled with a 30 

mL gas syringe at regular intervals and collected in evacuated exetainers (Labco, Ceredigion, U.K.) for 

measurement by gas chromatography—isotope ratio mass spectrometry (GC-IRMS, GC-Box coupled 

via a Conflo III interface to a Delta plus XP mass spectrometer, all Thermo Fischer, Bremen, Germany). 

After gas sampling, the headspace in each microcosm was again flushed with CO2-free air. Microcosms 

were harvested 24 and 96 h after application of the treatment solutions. The soil in each microcosm 

was thoroughly mixed by hand for 30 sec and subsampled for chemical analysis. 

2.4.4.3. Chemical analysis 

Extractable microbial biomass was measured by CFE (Gunina et al., 2014, Vance et al., 1987). A total 

of two 5 g subsamples of moist soil were taken from each microcosm. One was immediately extracted 

by shaking in 20 mL of 0.05 M K2SO4 for 1 h at room temperature, then centrifuged and the supernatant 

filtered. The other was exposed to a chloroform-saturated atmosphere for 24 h, after which residual 

chloroform was removed by repeated evacuation and the fumigated soil was extracted in the same 

manner as the nonfumigated subsample. Extractable MBC was calculated as the difference in DOC 

between the fumigated and non-fumigated samples, measured on a Multi N/C 2100 S analyser 

(Analytik Jena, Jena, Germany). CFE biomass is reported here as extractable biomass, without 

conversion with uncertain extraction efficiencies. Glucose-derived MBC was similarly calculated from 

the difference in radioactivity (14C) of the extracts as measured on a Hidex 300 SL scintillation counter 

(TDCR efficiency correction, Hidex, Turku, Finland) using Rotiszint Eco Plus scintillation cocktail (Carl 

Roth, Karlsruhe, Germany). DOC and DN were determined respectively as organic carbon and total 

nitrogen in the extracts of the unfumigated soil. 

PHB was determined by Soxhlet extraction of 4 g freeze-dried soil into chloroform, followed by acid-

catalysed transesterification in ethanol and GC-MS quantification of the resulting ethyl 

hydroxybutyrate on a 7890 A gas chromatograph (DB1‐MS column, 100% dimethyl polysiloxane, 15 m 
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long, inner diameter 0.25 mm, film thickness 0.25 μm), with helium (5.0) as the mobile phase at a flow 

rate of 1mL min−1, coupled to a 7000 A triple quadrupole mass spectrometer (all Agilent, Waldbronn, 

Germany) (Mason-Jones et al., 2019).Injection volume was 1 μL at an inlet temperature of 270 °C and 

split ratio of 25:1. The GC temperature was: 42 °C isothermal for 7 min; ramped to 77 °C at 5 °C min−1; 

then to 155 °C at 15 °C min−1; held for 15 min; and then ramped to 200 °C at 10 °C min−1. The transfer 

line temperature was 280 °C, with electron ionization at 70 eV. Quantification was based on ions at 

m/z 43, 60, and 87 for the ethyl 3‐hydroxybutyrate analyte, and at m/z 57, 71, and 85 for the undecane 

internal standard. Identity and purity of peaks was confirmed by scan measurement across the range 

m/z 40 to 300. The same chromatographic conditions were used for determination of the PHB isotopic 

composition on a Thermo GC Isolink coupled with a Conflo IV interface to a MAT 253 isotope ratio 

mass spectrometer (all Thermo Fisher, Bremen, Germany), but with splitless injection. The measured 

isotopic compositions were corrected for C added in derivatization (Glaser & Amelung, 2002). 

TAGs were quantified as neutral lipid fatty acids as follows (Banfield et al., 2017): Lipids were first 

extracted from 5 g frozen soil into a single-phase chloroform–methanol–water solution, purified by 

solvent extraction, and neutral lipids separated from more polar lipids on a silica solid-phase extraction 

column. Following removal of the solvent by evaporation, the purified TAGs were hydrolyzed (0.5 M 

NaOH in MeOH, 10 min at 100 °C) and methylated (12.5 M BF3 in MeOH, 15 min at 85 °C), followed by 

extraction into hexane, drying and redissolution in toluene. The resulting fatty acid methyl esters were 

quantified by GC-MS on a 7890 A gas chromatograph (DB-5 MS column, 5%-phenyl methylpolysiloxane, 

30 m coupled to a DB1‐MS 15 m long, both with an inner diameter 0.25 mm and film thickness 0.25 

μm) with an injection volume of 1 μl into the splitless inlet heated to 270 °C, and at a constant flow of 

helium (4.6) of 1.2 mL min−1, coupled to a 5977B series mass spectrometer (Agilent, Waldbronn, 

Germany), set to 70 eV electron impact energy, with the GC oven programme as follows: initial 

temperature 80 °C isothermal for 1 min, ramped at 10 °C min−1 to 171 °C, ramped at 0.7 °C min−1 to 

196 °C, isothermal for 4 min, ramped at 0.5 °C min−1 to 206°C,and ramped at 10°C min−1 to the final 

temperature of 300 °C, isothermal for 10 min for column reconditioning. Isotopic composition was 

determined in triplicate using a Trace GC 2000 (CE Instruments ThermoQuest Italia, S.p.A), coupled 

with a Combustion Interface III to a DeltaPlus isotope-ratio mass spectrometer (Thermo Finnigan, 

Bremen, Germany) using the same GC parameters. 

Growth was estimated by 18O incorporation into DNA (Blazewicz & Schwartz, 2011, Spohn et al., 2016). 

Parallel microcosms were prepared with 0.50 g soil in 2 mL Eppendorf tubes (Eppendorf, Hamburg, 

Germany) and incubated alongside the larger microcosms. This smaller scale was necessitated by the 

cost of 18O-water. This is nevertheless larger than the soil amounts typically used for DNA extraction, 

which achieve consistent measures of bacterial and fungal community composition. This is also orders 
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of magnitude larger than the scale of microbial interactions (Nunan, 2017). These considerations, 

alongside the care taken to ensure identical conditions of temperature, moisture and handling, give 

confidence that this incubation was representative of the same processes occurring in the larger 

microcosms. Treatment solutions were prepared at the same concentrations as for the larger 

microcosms but enriched with 97 at% H2
18O so that addition provided a final soil solution of 4.2 at% 

18O. Tubes were withdrawn from incubation 24 h and 96 h after addition and immediately frozen at 

−80 °C. DNA was subsequently extracted using MP Bio FastDNA Spin Kit for Soil (MP Biomedicals, Solon, 

OH, USA). DNA concentration in the extract was measured on an Implen MP80 nanophotometer 

(Implen, Munich, Germany) at 260 nm, with A260/280 and A260/A230 to confirm quality, and 50 μL 

was pipetted into silver capsules, freeze dried, and measured by TC/EA (Thermo Finnigan, Bremen, 

Germany) coupled with a Conflo III interface to a Delta V Plus isotope ratio mass spectrometer (all 

Thermo Finnigan, Bremen, Germany). The total measured O content of the sample, the O content of 

the DNA (31% by mass), and the 18O natural abundance of unlabeled control samples were used to 

calculate the background 18O from the kit. This background 18O was deducted to obtain 18O abundance 

of the DNA, which was applied in a 2-pool mixing model with 70% of O in new DNA derived from water 

(Pold et al., 2020) (model detailed in Supplementary B). This provided the fraction of extracted DNA 

that had been newly synthesized during the incubation period. This fraction was multiplied by 

extractable microbial biomass to arrive at gross biomass growth in units of μg C g−1 soil. 

2.4.4.4. Statistical analysis 

Statistical analysis was performed in R (R Core Team, 2020) with preliminary calculations in Microsoft 

Excel (version 16.67). Results for CO2, MBC, DOC, DN, TAG, PHB, and isotopic compositions were 

calculated for each independent sample and reported as mean ± standard deviation for each treatment 

group, unless otherwise noted. Comparisons between these pools were similarly calculated at the 

sample level before expressing as mean ± standard deviation. 

DN and DOC data were log-transformed to satisfy assumptions for ANOVA (Shapiro-Wilk’s test of 

normality and Levene’s test for homogeneity of variance), followed by Tukey’s HSD test for pairwise 

comparisons of treatment effects. The same analyses were performed on untransformed extractable 

microbial biomass data. Ranges for treatment effects on DN, DOC and MBC reported in the text reflect 

95% family-wise confidence intervals from pair-wise Tukey’s HSDtests. Where relevant, effect sizes 

were computed as Cohen’s d, using the effsize package (Torchiano, 2020). 

Levels of labelled storage compounds showed considerable heteroskedasticity that could not be 

consistently corrected by transformation, particularly due to very high levels of unsaturated fatty acids 

in one of the 24 h samples. This conceivably reflected a hotspot of fungal activity in the soil. This 

datapoint was therefore conservatively retained since this would comprise relevant variability in the 
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soil. Analysis of storage compounds (PHB and TAG) proceeded by robust ANOVA of medians for each 

timepoint separately using the R package WRS2 (Mair & Wilcox, 2020). Consistent with the median-

based robust ANOVA, storage differences between treatments reported in the text are median 

differences, with uncertainty given as 95% confidence intervals calculated by the Hodges-Lehmann 

estimator (R package DescTools, Signorell et al., 2021). Comprehensive pairwise post-hoc comparisons 

of medians was performed using medpb to provide significance indicators in figures (Fig. 2) (R package 

WRS, Wilcox, 2016), with Benjamini-Hochberg adjustment of p values for multiple comparisons. 

Growth estimation by 18O incorporation used DNA concentration and its 18O enrichment to determine 

mean gross microbial growth for each treatment in relative terms, and the associated standard 

deviation. The corresponding mean extractable microbial biomass values were applied to convert to 

absolute units of μg C, using standard rules of error propagation (Meyer, 1975), to provide the DNA-

based measure of mean microbial biomass growth for each treatment. These DNA-based growth 

estimates were combined with the mean production of labelled storage compounds (sum of C in 

glucose-derived PHB and TAG), again using rules of error propagation, to obtain estimates of total 

(DNA-based and storage) mean biomass growth and associated standard deviations. These were 

subjected to 2-way ANOVA and Tukey HSD to test the significance and size of treatment effects (Fig. 

3). Arithmetic comparisons between MBC, growth, and storage pools (for example, the relative scales 

of DNA-based growth and storage growth) were calculated using mean values with error propagation. 

2.4.5. Reporting Summary 

Further information on research design is available in the Nature Portfolio Reporting Summary linked 

to this article. 

2.4.6. Data availability 

All source data generated in this study has been deposited in the Zenodo open data repository (Mason-

Jones et al., 2023) under https://doi.org/10.5281/zenodo. 6386047. This data is publicly available. 

2.4.7. Code availability 

R scripts used for data analysis are publicly available on the Zenodo open data repository under 

https://doi.org/10.5281/zenodo.6386047. 
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2.4.13.  Abstract of additional Manuscripts: Organic Nutrients 

Induced Coupled C- and P-Cycling Enzyme Activities During Microbial 

Growth in Forest Soils 

 

Besides environmental and soil physical drivers, the functional properties of microbial populations, 

i. e., growth rate, enzyme production, and maintenance requirements are dependent on the microbes’ 

environment. The soil nutrition status and the quantity and quality of the substrate input, both infer 

different growth strategies of microorganisms. It is uncertain, how enzyme systems respond during 

the different phases of microbial growth and retardation in soil. The objective of this study was to 

uncover the changes of microbial functioning and their related enzyme systems in nutrient-poor and 

nutrient-rich beech forest soil during the phases of microbial growth. We determined microbial growth 

via kinetic approach by substrate-induced respiratory response of microorganisms, enabling the 

estimation of total, and growing biomass of the microbial community. To induce microbial growth we 

used glucose, while yeast extract simulated additional input of nutrients and factors indicating 

microbial residues (i.e., necromass compounds). Microbial growth on glucose showed a 12 – 18 h delay 

in associated enzyme activity increase or the absence of distinct activity responses (Vmax). β-glucosidase 

and chitinase (NAG) demonstrated clear differences of Vmax in time and between P-rich and P-poor 

soils. However, during microbial growth on glucose + yeast extract, the exponential increase in 

enzymatic activity was clearly stimulated accompanied by a delay of 8 – 12 h, smoothing the 

differences in nutrient-acquisition dynamics between the two soils. Furthermore, cross-correlation of 

β-glucosidase and acid phosphatase between the two sites demonstrated harmonized time 

constraints, which reflected the establishment of comparable and balanced enzymatic systems within 

the decomposition network. The network accelerated nutrient acquisition to maintain microbial 

growth, irrespective of the contrasting soil properties and initial nutrient stocks, indicating similar 

tradeoffs of C- and P- cycling enzymes in both soils. This reflects comparable temporal dynamics of 

activities in nutrient-poor and nutrient-rich soil when the glucose + yeast extract was added. During 

lag phase and phase of exponential microbial growth, substrate turnover time of all enzymes was 

shortened in nutrient-poor forest soil exclusively, reflecting that the quality of the added substrate 

strongly matters during all stages of microbial growth in soil. 
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3. Appendix 

3.1.1. Supplement 

3.1.2. Study 1: Microbial functional changes mark irreversible course of 

Tibetan grassland degradation 

Andreas Breidenbach1,2,#, Per-Marten Schleuss3,#, Shibin Liu4, Dominik Schneider5, Michaela A. 

Dippold1,2, Tilman de la Haye6, Georg Miehe7, Felix Heitkamp8, Elke Seeber9, Kyle Mason-Jones10, 

Xingliang Xu11,12, Yang Huanming13, Jianchu Xu14, Tsechoe Dorji12,15, Matthias Gube16, Helge Norf17, Jutta 

Meier18, Georg Guggenberger19, Yakov Kuzyakov20 & Sandra Spielvogel6* 

 

S1 Suppl. Fig. 1: Selected examples of polygonal cracking and extension on the Tibetan Plateau (TP). Red 

dots show locations of polygonal cracks based on observations during field trips on the TP and the Himalayas 

between 1982 and 2015. The map reflects the widespread distribution of this specific degradation 

phenomenon, but not its actual distribution or intensity. Photo credits: E. Seeber (1, 2), G. Miehe (3–5, 9, 11, 

12), P.-M. Schleuss (6–8) and R. Bäumler (10). Cartography: C. Enderle. 
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S1 Suppl. Fig. 2: Effect sizes of SOC (soil organic carbon) content, total nitrogen (TN) content and soil bulk 

density (BD) for degradation stages S1 to S4 compared to non-degraded pastures (S0). The percentage value 

at the top shows the average effect size of the four degradation stages (meta-analysis including 594 single 

observations from literature studies published between 2002 and 2020, error bars display standard error). 

 

 

 

S1 Suppl. Fig. 3: Changes in particle size distribution for each soil horizon at each degradation stage. The soil 

texture was measured for each soil horizon (Ah2, Ah3, Ah4, Bwg), except for the densely rooted and thin Ah1 

horizon, with low amounts of mineral soil. Circled in blue are the “protected horizons” having an overlying 

horizon. Circled in red are the upper soil horizons, which are prone to erosion processes and shift toward a 

coarser soil texture. 
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S1 Suppl. Fig. 4: Relationship between soil organic carbon (SOC) density and root density for all soil horizons 

at each degradation stage. Linear regression covers degradation stages S0 to S3. At degradation stages S4 and 

S5, SOC density is independent of root density and represents remnant SOC. 

 

 

S1 Suppl. Fig. 5: Relationship between δ13C values and (A) content of lignin monomers vanillyl, syringyl, and 

cinnamyl (VSC) or (B) soil organic carbon (SOC) content in the Ah3 horizon for each degradation stage. The 

pattern along the degradation sequence can be explained by the following processes: (1) decreasing SOC 

concentrations associated with a relative accumulation of lignin and an associated decrease in δ13CSOC values 

(S0–S3) and (2) decreasing SOC concentrations associated with lignin degradation and 13CSOC enrichment (S4, 

S5). 
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S1 Suppl. Fig. 6: NMDS (non-metric multidimensional scaling) plots derived from t-RFLP data for the bacterial 

(A) and fungal (B) communities. Shaded areas mark each degradation stage, symbols indicate soil depth, and 

blue arrows show significantly correlated abiotic factors (canonical correspondence analysis, p < 0.05). Red 

arrows mark key structural shifts of the microbial community. 

  

               

            

             

            

 
   

 

 

 

 
   

   

   

  

   
  

   
  

   
  

 
   



Appendix 
 

130 
 

 

S1 Suppl. Fig. 7: Relative abundance of key microbial functional groups. Shifts are indicated by red arrows for 

the lowest depth, representing the complete range of degradation stages (S0–S5): (1) decline of bacterial (A) 

and fungal (G) litter degraders, (2) increase in bacterial (D) and fungal (F) litter degraders, (3) increase in 

nitrifying (B, C) and denitrifying (E) bacteria, (4) increase in arbuscular mycorrhizal fungi (AMF) until S2 (H), (6) 

which are then replaced by ectomycorrhizal fungi (ECM) (I); (7) ECM decline toward S5 (I) as new plants with 

new AMF (5) become established after Kobresia pygmaea disappears (H). Key enzyme activities (J) reflect 

shifts in microbial community functions from hydrolytic to oxidative soil organic carbon (SOC) decomposition. 
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S1 Suppl. Fig. 8: NMDS (non-metric multidimensional scaling) plots derived from Illumina MiSeq sequencing 

data of the bacterial (A) and fungal (B) communities along degradation stages. Shaded areas mark each 

degradation stage, symbols indicate soil depth, and blue arrows show significantly correlated abiotic factors 

(by CCA, canonical-correlation analysis). 
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S1 Suppl. Fig. 9: Heat map of the bacterial community along degradation stages (soil depth 15–35 cm). 

Shades of color indicate abundance of bacterial phyla as z-values. 
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S1 Suppl. Fig. 10a: Heat map of the fungal community along degradation stages (soil depth 15–35 cm). 

Shades of color indicate abundance of fungal phyla as z-values. 
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S1 Suppl. Fig. 10b: Heat map of the fungal community along degradation stages (soil depth 15–35 cm). 

Shades of color indicate abundance of fungal phyla as z-values (continuation from S10a). 
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S1 Suppl. Fig. 11: Relative abundance of bacterial (A) and fungal (B) phyla found along the degradation 

sequence (soil depth 15–35 cm). Phyla amounting to less than 0.5% were grouped as ‘rare taxa’. 
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S1 Suppl. Fig. 12: Enzyme activities of carbon-hydrolyzing enzymes (A, B), ligninoxidizing enzyme (C), and 

enzymes hydrolyzing nitrogen (D) and phosphorus (E) compounds. Significant differences (p < 0.05) from 

Kruskal–Wallis and Dunn’s tests (Holm’s p adjustment) indicated with lowercase letters (a, b). Error bars 

display standard error. 
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S1 Suppl. Table 1: List of publications included in the meta-analysis to quantify the SOC and N losses 

for Kobresia pygmaea’s core area. 

Authors  Year Journal Title Pages 

Ma Y, et al. 2002 Pratacultural 

Science 

Study on rehabilitating and rebuilding technologies 

for degenerated alpine meadow in the Changjiang 

and Yellow river source region 

1-5 

Zhou H, et al. 2005 Acta 

Prataculturae 

Sinica 

A study on correlations between vegetation 

degradation and soil degradation in the ‘alpine 

meadow’ of the Qinghai-Tibetan Plateau 

31-40 

Wang W, et al. 2006 Ecology and 

Environment 

Effects of land degradation and rehabilitation on 

soil carbon and nitrogen content on alpine Kobresia 

meadow 

362-366 

Wang J, et al. 2007 Chinese Science 

Bulletin 

Effects of swamp and alpine meadow degradation 

on CO2 emission during growing season in Qinghai-

Tibetan Plateau 

1554-1560 

Wang JF, et al. 2007 Chinese Science 

Bulletin 

Influences of the degradation of swamp and alpine 

meadows on CO2 emission during growing season 

on the Qinghai-Tibet Plateau 

2565-2574 

Wang W, et al. 2007 Journal of Plant 

Ecology (Chinese 

Version) 

Effects of land degradation and rehabilitation on 

vegetation carbon and nitrogen content of alpine 

meadow in China 

1073-1078 

Zhao D & Xu Z 2007 Prataculture & 

Animal 

Husbandry 

Research on the effect of degradation degree of 

subalpine meadow on soil nutrient in Laji Mountain 

Area 

4-7 

Li Y, et al. 2008 Chinese Journal 

of Grassland 

Effect of typical alpine meadow degradation on soil 

enzyme and soil nutrient in source region of three 

rivers 

51-58 

Liu X, et al. 2008 Acta 

Prataculturae 

Sinica 

Community structure and plant diversity of alpine 

meadow under different degrees of degradation in 

the Eastern Qilian Mountains 

1-11 

Wang C, et al. 2008 Chinese Journal 

of Applied and 

Environmental 

Biology 

Changes in soil organic carbon and microbial 

biomass carbon at different degradation 

successional stages of alpine meadows in the 

headwater region of three rivers in China 

225-230 

Liu Y, et al. 2009 Journal of Agro-

Environment 

Science 

Vegetation decline and reduction of soil organic 

carbon stock in high-altitude meadow grasslands in 

the source area of Three Major Rivers of China 

2559-2567 
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Wang CT, et 

al. 

2009 Land 

Degradation & 

Development 

Changes in plant diversity, biomass and soil C, in 

alpine meadows at different degradation stages in 

the headwater region of three rivers, China 

187-198 

Wang J, et al. 2009 China 

Environmental 

Science 

Influence of degradation of the swamp and alpine 

meadows on CH4 and CO2 fluxes on the Qinghai-

Tibetan Plateau 

474-480 

Xing X 2009 Journal of Anhui 

Agricultural 

Sciences 

Different stages of degradation characteristics of 

alpine meadow in the Yellow River Source Area 

10578-

10580 

Sheng L & 

Wang Y 

2010 Chinese Qinghai 

Journal of Animal 

and Veterinary 

Sciences 

Characteristics variation of soil nutrition in different 

degraded degree alpine meadow in Dawu Region of 

Guoluo Prefecture 

4-6 

Wang J, et al. 2010 Environmental 

Earth Sciences 

The influence of degradation of the swamp and 

alpine meadows on CH4 and CO2 fluxes on the 

Qinghai-Tibetan Plateau 

537-548 

Cao L, et al. 2011 Pratacultural 

Science 

Distribution of soil organic carbon and its 

relationship with soil physical and chemical 

properties on degraded alpine meadows 

1411-1415 

Yu J & Shi H 2011 Acta 

Agroculturae 

Boreali-

occidentalis 

Sinica 

Changes of microbes’ population in the different 

degraded alpine meadows on the Qinghai-Tibetan 

Plateau 

77-81 

Luo Y, et al. 2012 Chinese Journal 

of Ecology 

Soil stoichiometry characteristics of alpine meadow 

at its different degradation stages 

254-260 

Wang Y, et al. 2012 Environmental 

Earth Sciences 

Correlation of alpine vegetation degradation and 

soil nutrient status of permafrost in the source 

regions of the Yangtze River, China 

1215-1223 

Yi XS, et al. 2012 Procedia 

Environmental 

Sciences 

The impacts of grassland vegetation degradation on 

soil hydrological and ecological effects in the source 

region of the Yellow River-A case study in 

Junmuchang region of Maqin Country 

967-981 

Yu X, et al. 2012 Journal of Geo-

Information 

Science 

Spectral analysis of different degradation level 

alpine meadow in ‘Three-River headwater’ region 

398-404 
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Zhang S, et al. 2012 Pratacultural 

Science 

Soil nutrient characteristics of alpine meadow at 

different degradation degrees in Eastern Qilian 

Mountains 

1028-1032 

Zhang Z 2012 Heilongjiang 

Animal Science 

and Veterinary 

Medicine 

Vegetation community structure and productivity 

of different degraded alpine meadow 

83-85 

Li Y, et al. 2013 Journal of 

Environmental 

Management 

The effects of fencing on carbon stocks in the 

degraded alpine grasslands of the Qinghai-Tibetan 

Plateau 

393-399 

Wen L, et al. 2013 Plosone Effect of degradation intensity on grassland 

ecosystem services in the alpine region of Qinghai-

Tibetan Plateau, China 

e58432 

Wen L, et al. 2013 Plant and Soil The impact of land degradation on the C pools in 

alpine grasslands of the Qinghai-Tibet Plateau 

329-340 

Zeng C, et al. 2013 Journal of 

Hydrology 

Impact of alpine meadow degradation on soil 

hydraulic properties over the Qinghai-Tibetan 

Plateau 

148-156 

Li Y, et al. 2014 Geoderma Soil carbon and nitrogen pools and their 

relationship to plant and soil dynamics of degraded 

and artificially restored grasslands of the Qinghai-

Tibetan Plateau 

178-184 

Lu J, et al. 2014 Environmental 

Earth Sciences 

The effect of desertification on carbon and nitrogen 

status in the northeastern margin of the Qinghai-

Tibetan Plateau 

807-815 

Wang X, et al. 2014 Environmental 

Monitoring and 

Assessment 

The effects of grassland degradation on plant 

diversity primary productivity, and soil fertility in 

the alpine region of Asian’s headwaters 

6903-6917 

Wu GL, et al. 2014 Clean Soil Air 

Water 

Above- and belowground response along 

degradation gradient in an alpine grassland of the 

Qinghai-Tibetan Plateau 

319-323 

Li J, et al. 2015 Ecological 

Research 

Response of the plant community and soil water 

status to alpine Kobresia meadow degradation 

gradients on the Qinghai–Tibetan Plateau, China 

589-596 

Li Y, et al. 2015 Soil Biology 

&Biochemistry 

Seasonal changes of CO2, CH4 and N2O fluxes in 

different types of alpine grassland in the Qinghai-

Tibetan Plateau of China 

306-314 
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Lin L, et al. 2015 Solid Earth Predicting parameters of degradation succession 

processes of Tibetan Kobresia grasslands 

1237-1246 

Liu Y, et al. 2015 Acta Agriculturae 

Boreali-

occidentalis 

Sinica 

Characteristics of soil organic carbon fractions in 

alpine meadow with different degradation 

168-174 

Liu Y, et al. 2015 Hubei 

Agricultural 

Sciences 

Distribution characteristics of soil carbon on 

different degraded degree alpine meadow in the 

source area of Three Major Rivers in China 

308-312 

Shang ZH, et 

al. 

2015 Plant Ecology & 

Diversity 

Recruitment of seedlings versus ramets as affected 

by pasture degradation in alpine meadows and the 

implications for ecological restoration 

547-557 

Su X, et al. 2015 Journal of 

Mountain 

Sciences 

Effects of grassland degradation and re-vegetation 

on carbon and nitrogen storage in the soils of the 

headwater area nature reserve on the Qinghai-

Tibetan Plateau, China 

582-591 

Wu P, et al. 2015 Applied Soil 

Ecology 

The response of soil macroinvertebrates to alpine 

meadow degradation in the Qinghai-Tibetan 

Plateau, China 

60-67 

Yu H, et al. 2015 Acta Agrestia 

Sinica 

Distribution patterns of ratio of root to soil and soil 

physical chemical characteristics at the different 

degraded successional stages in an alpine meadow 

1151-1160 

Li Y, et al. 2016 Agriculture, 

Ecosystems & 

Environment 

Changes of soil microbial community under 

different degraded gradients of alpine meadow 

213-222 

Liu SL, et al. 2016 Pratacultural 

Science 

Effects of grazing season and degradation degree on 

the soil organic carbon in alpine meadow 

11-18 

Shang Z, et al. 2016 Ecological 

Engineering 

Soil seed bank and its relation with above-ground 

vegetation along the degraded gradients of alpine 

meadow 

268-277 

Li W, et al. 2018 Ecological 

Engineering 

Effect of degradation and rebuilding of artificial 

grasslands on soil respiration and carbon and 

nitrogen pools on an alpine meadow of the Qinghai-

Tibetan Plateau 

134-142 

Lai ZM, et al. 2019 Pratacultural 

Science 

Alpine meadows at different levels of degradation 

in the Beiluhe Basin of Tibetan Plateau 

Characteristics of soil respiration 

952-959 
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Yang J, et al. 2020 Chinese Journal 

of Applied 

Ecology 

Plant community and soil nutrient of alpine 

meadow in different degradation stages on the 

Tibetan Plateau, China 

4067-4072 

Yuan ZQ, et al. 2020 Journal of Soils 

and Sediments 

Pasture degradation impact on soil carbon and 

nitrogen fractions of alpine meadow in a Tibetan 

permafrost region 

2330-2342 

Zhang ZH, et 

al. 

2020 Journal of Arid 

Land 

Degradation leads to dramatic decrease in topsoil 

but not subsoil root biomass in an alpine meadow 

on the Tibetan Plateau, China 

806-818 
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S1 Suppl. Table 2: Soil and plant characteristics with successive degradation (own field study). Values are means 

± SE. Lowercase letters indicate significant differences between degradation stages (p < 0.05). Missing values 

with increasing degradation result from erosion removing the upper soil horizons. 

 Degradation stage 
 S0 S1 S2 S3 S4 S5 

Horizontal crack (cm) 
 - 4.0 (0.9)c 6.6 (0.6)bc 10.3 (1.9)ab 17 (1.2)a - 

Vertical crack (cm) 
 - 0.6 (0.1)e 2.0 (0.3)d 5.8 (0.3)c 8.0 (0.4)b 10.4 (0.8)a 

Vegetation cover (%) 
 95 (0.6)a 92 (1.0)ab 79 (3.5)b 30 (3.0)c 24 (2.9)c 9 (0.9)d 

Shoot biomass (g m-2) 
 179 (11)ab 210 (8)a 70 (4)bc 41 (5)c 48 (11)cd 22 (1)d 

Root biomass in 0–25 cm (kg m-2) 
 5.2 (0.12)a 5.4 (0.06)a 4.1 (0.33)b 3.2 (0.42)b 0.15 (0.02)c 0.17 (0.01)c 

Root density (mg cm-3) 
Ah1 31 (2.8)a 33 (2.5)a         
Ah2 34 (1.7)ab 32 (2.2)a 28 (2.3)b 28 (1.3)c    
Ah3 23 (0.4)a 22 (0.9)ab 19 (1.4)bc 16 (1.1)ab 1.5 (0.2)d 1.3 (0.1)cd 
Ah4 12 (1.1)a 13 (1.1)ab 12 (1.0)ab 11 (0.8)ab 0.6 (0.1)bc 0.9 (0.1)c 

Bulk density (mg cm-3) 
Ah1 0.62 (0.01)a 0.72 (0.14)a         
Ah2 0.72 (0.07)a 0.77 (0.09)a 0.68 (0.01)a 0.84 (0.00)a    
Ah3 1.03 (0.06)a 1.03 (0.06)a 0.96 (0.01)ab 0.82 (0.10)b 0.98 (0.07)a 1.24 (0.06)c 
Ah4 1.19 (0.02)ab 1.06 (0.12)b 1.13 (0.01)b 1.24 (0.05)ab 1.26 (0.07)ab 1.37 (0.02)a 
Bwg 1.54 (0.02)a 1.54 (0.04)a 1.43 (0.01)a 1.51 (0.08)a 1.59 (0.06)a 1.59 (0.03)a 

SOC (g C kg-1) 
Ah1 74 (4.6)a 74 (6.0)a         
Ah2 70 (0.7)a 65 (5.0)ab 53 (2.9)bc 51 (4.6)c    
Ah3 46 (2.1)a 42 (2.2)a 32 (3.4)b 27 (4.6)b 26 (2.3)b 15 (1.4)c 
Ah4 25 (1.4)a 19 (3.2)ab 17 (2.4)ab 13 (4.6)b 19 (1.5)ab 14 (1.4)b 
Bwg 4 (0.4)a 4 (0.4)a 5 (4.6)a 5 (1.0)a 5 (0.3)a 4 (0.5)a 

δ13C of SOC (‰) 
Ah1 -24.16 (0.12)a -24.28 (0.27)a         
Ah2 -23.13 (0.11)a -23.69 (0.31)a -23.76 (0.34)a -24.02 (0.32)a    
Ah3 -22.81 (0.08)a -23.30 (0.11)bc -23.56 (0.18)c -23.97 (0.18)d -24.30 (0.11)e -23.68 (0.10)cd 
Ah4 -22.90 (0.08)a -22.94 (0.09)a -23.21 (0.10)ab -23.58 (0.10)b -23.64 (0.08)b -23.19 (0.11)ab 
Bwg -23.00 (0.10)a -22.84 (0.10)ab -22.91 (0.11)ab -23.01 (0.11)a -22.93 (0.11)a -22.62 (0.14)b 

VSC of OC (mg g-1) 
Ah1 11.1 (1.6)a 11.8 (1.1)a         
Ah2 9.8 (2.4)b 9.9 (1.5)b 9.8 (0.6)b 18.3 (1.5)a    
Ah3 3.7 (0.3)c 6.4 (0.9)bc 15.0 (0.9)abc 24.3 (0.6)a 19.4 (3.0)a 21.4 (4.6)ab 
Ah4 6.5 (0.8)c 8.3 (1.3)bc 14.0 (2.3)abc 15.1 (5.4)abc 20.8 (3.5)a 18.1 (4.8)ab 
Bwg 14.1 (1.6)a 15.5 (1.5)a 12.9 (2.4)a 9.9 (2.1)a 10.1 (3.9)a 17.9 (3.9)a 

SOC, soil organic carbon; VSC, vanillyl, syringyl and cinnamyl units  
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S1 Suppl. Table 3: Important microbial taxonomic groups described for the Kobresia ecosystem. 

Taxonomic group Function Literature 

Actinobacteria 
Degrading low-molecular-mass 
compounds 

Šnajdr et al. (44) 

Agaricomycetes Lignin degrader Ahmad et al. (45) 

Ascomycota Litter degrader Rajala et al. (46) 

Glomeromycota AMF/VAM Brundrett (47) 

Inocybaceae  ECM partner of Kobresia sp. Gao and Yang (48) 

Nitrosomonadaceae Nitrifier Jetten et al. (49) 

Nitrospirales Nitrifier Jetten et al. (49) 

Pseudomonadales Denitrifier, lignin degrader Ahmad et al. (45) 

Rhizobiales Lignin degrader Nacke et al. (50)  

Thelephoraceae ECM partner of Kobresia sp. Gao and Yang (48) 
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3.1.3. Study 3: Accounting for storage compounds in soil microbial 

communities alters carbon flux modelling outcome. 

 

S3 Suppl. Fig.1: Glucose position C2 and C3 comparison whether either pentose phosphate pathway (PPP) 

or Entner–Doudoroff pathway (ED) are active. For the treatments of low glucose without nutrients (L-, A), 

low glucose with nutrients (L+, B), high glucose without nutrients (H-, C) and high glucose with nutrients (H+, 

D) after 24 h. 

 

S3 Suppl. Fig.2: Glucose position C2 and C3 comparison whether either pentose phosphate pathway (PPP) 

or Entner–Doudoroff pathway (ED) are active. For the treatments of low glucose without nutrients (L-, A), 

low glucose with nutrients (L+, B), high glucose without nutrients (H-, C) and high glucose with nutrients (H+, 

D) after 96 h. 
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S3 Suppl. Table 1: Model input combinations of uniformly labelled and position-specific replicate F-values at the 

24 h sampling point. 

Treatment 
U-

replicate 

F value 

combination U C1 C2 C3 C4 C5 C6 

Low None a 0.403 0.183 0.185 0.231 0.227 0.134 0.143 baaddd 

Low None a 0.403 0.183 0.194 0.217 0.227 0.132 0.143 bbddad 

Low None a 0.403 0.113 0.194 0.231 0.213 0.129 0.149 cbaccb 

Low None a 0.403 0.189 0.200 0.230 0.226 0.133 0.149 dccabb 

Low None b 0.378 0.241 0.213 0.232 0.241 0.141 0.159 acddbb 

Low None b 0.378 0.120 0.197 0.246 0.241 0.143 0.147 cdadda 

Low None b 0.378 0.120 0.207 0.246 0.227 0.137 0.152 cbaccd 

Low None b 0.378 0.241 0.213 0.245 0.227 0.143 0.152 acccdd 

Low None c 0.394 0.232 0.205 0.235 0.232 0.135 0.141 accdaa 

Low None c 0.394 0.194 0.189 0.222 0.218 0.132 0.158 dadccc 

Low None c 0.394 0.187 0.205 0.236 0.218 0.136 0.146 bcacbd 

Low None c 0.394 0.187 0.198 0.236 0.232 0.137 0.153 bbaddb 

Low None d 0.402 0.113 0.194 0.242 0.228 0.134 0.143 cbbbdd 

Low None d 0.402 0.227 0.185 0.231 0.213 0.133 0.138 aaacba 

Low None d 0.402 0.183 0.185 0.230 0.227 0.132 0.155 bacdac 

Low None d 0.402 0.183 0.185 0.242 0.213 0.134 0.143 babcdd 

Low N+P a 0.411 0.161 0.214 0.192 0.222 0.148 0.176 adadba 

Low N+P a 0.411 0.158 0.203 0.206 0.222 0.148 0.154 ccddbb 

Low N+P a 0.411 0.167 0.203 0.203 0.236 0.150 0.154 dccccb 

Low N+P a 0.411 0.178 0.220 0.203 0.250 0.145 0.176 bacada 

Low N+P b 0.398 0.164 0.223 0.209 0.229 0.149 0.197 cbcdad 

Low N+P b 0.398 0.172 0.209 0.213 0.229 0.150 0.197 dcdddd 

Low N+P b 0.398 0.184 0.227 0.199 0.229 0.155 0.205 baadcc 

Low N+P b 0.398 0.184 0.209 0.199 0.267 0.149 0.197 bcabad 

Low N+P c 0.342 0.200 0.257 0.248 0.311 0.173 0.238 dddbac 

Low N+P c 0.342 0.214 0.244 0.292 0.311 0.174 0.212 bcbbda 

Low N+P c 0.342 0.193 0.259 0.248 0.311 0.180 0.185 abdbcb 

Low N+P c 0.342 0.193 0.259 0.231 0.311 0.174 0.185 ababdb 

Low N+P d 0.422 0.174 0.209 0.236 0.216 0.144 0.150 bdbdbb 

Low N+P d 0.422 0.157 0.209 0.236 0.252 0.140 0.186 adbbad 

Low N+P d 0.422 0.162 0.214 0.201 0.243 0.146 0.150 dadacb 

Low N+P d 0.422 0.154 0.197 0.236 0.230 0.141 0.172 ccbcda 

High None a 0.889 0.429 0.188 0.191 0.326 0.121 0.152 adcacd 

High None a 0.889 0.429 0.190 0.188 0.327 0.123 0.152 aabcad 

High None a 0.889 0.429 0.188 0.188 0.326 0.122 0.152 adbadd 

High None a 0.889 0.429 0.188 0.188 0.326 0.123 0.151 adbdac 

High None b 0.890 0.433 0.190 0.189 0.325 0.122 0.151 caabdc 

High None b 0.890 0.426 0.190 0.190 0.327 0.120 0.147 badcca 

High None b 0.890 0.426 0.190 0.190 0.325 0.123 0.152 bcdbad 

High None b 0.890 0.433 0.188 0.189 0.325 0.122 0.147 cdabba 

High None c 0.893 0.424 0.189 0.188 0.326 0.121 0.151 babcdd 
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High None c 0.893 0.427 0.189 0.188 0.325 0.122 0.151 aaaaac 

High None c 0.893 0.431 0.189 0.188 0.326 0.120 0.151 caaccc 

High None c 0.893 0.427 0.189 0.188 0.324 0.120 0.149 aaadcb 

High None d 0.892 0.427 0.188 0.188 0.324 0.122 0.147 ababda 

High None d 0.892 0.431 0.188 0.188 0.324 0.122 0.147 dbabba 

High None d 0.892 0.431 0.187 0.188 0.324 0.122 0.151 ddabad 

High None d 0.892 0.425 0.189 0.188 0.325 0.122 0.151 babadc 

High N+P a 0.950 0.427 0.219 0.193 0.279 0.142 0.167 cdbbdb 

High N+P a 0.950 0.432 0.219 0.192 0.280 0.142 0.167 addcdd 

High N+P a 0.950 0.429 0.216 0.193 0.280 0.143 0.167 bcadcd 

High N+P a 0.950 0.432 0.218 0.193 0.280 0.142 0.166 abbdbc 

High N+P b 0.950 0.428 0.217 0.193 0.279 0.142 0.166 baabaa 

High N+P b 0.950 0.427 0.216 0.193 0.279 0.142 0.166 ccadad 

High N+P b 0.950 0.429 0.219 0.193 0.273 0.142 0.166 ddbadc 

High N+P b 0.950 0.427 0.217 0.192 0.279 0.142 0.167 cadbbb 

High N+P c 0.948 0.428 0.219 0.193 0.280 0.142 0.166 cbccac 

High N+P c 0.948 0.432 0.219 0.193 0.280 0.142 0.166 adabdc 

High N+P c 0.948 0.430 0.219 0.193 0.280 0.142 0.167 ddbdba 

High N+P c 0.948 0.428 0.216 0.193 0.280 0.144 0.167 ccbcca 

High N+P d 0.950 0.427 0.216 0.192 0.279 0.142 0.166 ccdcdc 

High N+P d 0.950 0.431 0.219 0.192 0.279 0.142 0.166 addcbd 

High N+P d 0.950 0.429 0.219 0.193 0.279 0.142 0.166 bdadac 

High N+P d 0.950 0.431 0.219 0.192 0.279 0.143 0.166 adcccd 

 

S3 Suppl. Table 2: T-test p-values from the comparison of the model with and without storage adaptation for phi 

ratio, br1 and br5 for each treatment. 

Flux Treatment p Significant 

br1 

High None 1.0165E-11 significant 

High N+P 5.6195E-18 significant 

Low None 0.04801107 significant 

Low N+P 0.00036796 significant 

br5 

High None 5.6204E-29 significant 

High N+P 7.6701E-28 significant 

Low None 2.3181E-17 significant 

Low N+P 2.7095E-10 significant 

phi 

High None 1.3545E-15 significant 

High N+P 1.0324E-18 significant 

Low None 2.6331E-09 significant 

Low N+P 1.0965E-07 significant 
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3.1.4. Study 4: Intracellular carbon storage by microorganisms is an 

overlooked pathway of biomass growth 

Supplement A: Supplementary figures 

 
S4 Suppl. Fig. 1: Dissolve nitrogen and C:N ratio. Dissolved nitrogen after 24 h (A) and 96 h (B) following 
addition of glucose at 0, 90 and 400 μg C g-1 soil (Zero, Low, High) with or without mineral nutrient supply (N, 
P, K, S), and the corresponding dissolved C:N ratio (dissolved organic C to total dissolved N) at the 
corresponding timepoints (C and D). Error bars show mean ± standard deviation, with n = 4 independent soil 
microcosms. Different letters above the plots indicate significant differences with p < 0.05 (2-sided Tukey HSD 
test on log-transformed values, which adjusts for multiple comparisons). 
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S4 Suppl. Fig. 2: Dissolved organic carbon. Organic carbon extractable into 0.5 M K2SO4 after 24 h (A) and 96 
h (B) following addition of glucose at 0, 90 and 400 μg C g-1

 soil (Zero, Low, High) with or without mineral 
nutrient supply (N, P, K, S). Contrasting colors reflect the source of the extractable biomass as determined by 
isotopic composition, with light gray error bars showing mean ± standard deviation of the relative 
composition. Black error bars show mean ± standard deviation of the total. Different letters above the plots 
indicate significant differences in total DOC with p < 0.05 (2-sided Tukey HSD test on log-transformed values, 
which adjusts for multiple comparisons), with n = 4 independent soil microcosms. 
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S4 Suppl. Fig. 3: C:N ratio of extractable microbial biomass. (A) 24 h and (B) 96 h after glucose and/or nutrient 
addition to soil microcosms. Error bars show mean ± standard deviation, with n = 4 independent soil 
microcosms, except for one treatment n = 3 (zero glucose, no nutrients at 96 h). 
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S4 Suppl. Fig. 4: Fatty acid profile of glucose-derived TAGs. (A) 24 h and (B) 96 h following addition of glucose 
at 0, 90 and 400 μg C g-1 soil (Zero, Low, High) with or without mineral nutrient supply (N, P, K, S). The diagnostic 
bacterial biomarker 16:1ω6 (highlighted blue on the horizontal axis) and fungal biomarker 18:2ω6 (highlighted 
in green) showed substantial incorporation of glucose-derived C. Error bars show mean ± standard deviation, 
with n = 4 independent soil microcosms. Note that the vertical axis scale varies between glucose treatments. 

  



Appendix 
 

151 
 

 

 
S4 Suppl. Fig. 5: Total soil content of fungal biomarker TAG 18:2ω6. (A) 24 h and (B) 96 h following addition 
of glucose at 0, 90 and 400 μg C g-1

 soil (Zero, Low, High) with or without mineral nutrient supply (N, P, K and 
S). Error bars show mean ± standard deviation, with n = 4 independent soil microcosms. Lowercase letters 
above the plots show post-hoc differences with p<0.05 (2-sided pairwise comparison of medians with 
Benjamini-Hochberg adjustment for multiple comparisons). 
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Supplement B: Two-pool mixing model 

The fraction of O atoms in DNA originating from the added H2
18O was calculated using a standard two-

pool isotope mixing model (Mason-Jones et al., 2018), which is derived from mass-balance principles: 

𝑂𝑎𝑑𝑑  =  
(𝑎𝑡𝑜𝑚%𝑡𝑜𝑡 − 𝑎𝑡𝑜𝑚%𝑛𝑎𝑡)

𝑎𝑡𝑜𝑚%𝑎𝑑𝑑 − 𝑎𝑡𝑜𝑚%𝑛𝑎𝑡
 

where 

Oadd is the fraction of O in DNA that originated from the added (18O-labelled) water 

atom%tot is the isotopic abundance of 18O in the total extracted DNA (in atom percent) 

atom%add is the 18O isotopic abundance of soil water during the incubation (in atom percent) 

atom%nat is the 18O isotopic abundance of DNA in the absence of 18O-labelled water (i.e. the natural 

18O abundance in DNA from the experimental soil prior to labelling) 

Reference: 

Mason-Jones, K., Schmucker, N. & Kuzyakov, Y. Contrasting effects of organic and mineral 

nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol. Biochem. 

124, 38–46 (2018). 
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Comments on the manuscript All co-authors 

Contribution Andreas Breidenbach high 
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