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Kurzfassung 

Die Cercospora-Blattfleckenkrankheit (Cercospora leaf spot, CLS) ist die bedeutendste 

Blattkrankheit im Zuckerrübenanbau. Sie wird durch den pilzlichen Erreger Cercospora 

beticola Sacc. verursacht und kann zu erheblichen Ertragseinbußen führen. Die Kontrolle 

von CLS ist aufgrund einer schnellen Sporenproduktion und einer hohen genetischen 

Variabilität äußerst herausfordernd. Derzeit besteht die Bekämpfungsstrategie 

hauptsächlich aus den Leitlinien des integrierten Pflanzenschutzes. Diese umfassen 

ackerbauliche Maßnahmen, Sortenresistenzen und Strategien zum Fungizideinsatz. Die 

Bewertung der Krankheitsintensität spielt eine entscheidende Rolle für das 

Resistenzscreening in der Pflanzenzüchtung und für die Empfehlung von 

Pflanzenschutzmaßnahmen in der landwirtschaftlichen Praxis. Der Einsatz von Drohnen 

(UAVs), ausgestattet mit optischer Sensortechnologie wie beispielweise multispektralen 

oder hyperspektralen Kameras bietet eine neuartige Alternative für das 

Krankheitsmonitoring von CLS gegenüber den herkömmlich durchgeführten manuellen 

Bonituren. Maschinelle- und Deep-Learning Verfahren können eingesetzt werden, um 

multispektrale UAV-Bilder zu analysieren und relevante Informationen zur 

Krankheitsbewertung zu extrahieren. Durch diesen methodischen Ansatz kann eine 

Automatisierung der Erfassung von Parametern wie der Befallshäufigkeit (disease 

incidence, DI) und der Befallsstärke (disease severity, DS) erreicht werden, welche eine 

Grundlage für die   Entscheidungsfindung bilden.  

Die vorliegende Arbeit konzentriert sich auf den Einsatz von UAVs, ausgestattet mit 

bildgebender RGB- und multispektraler Sensortechnologie, und die Nutzung von 

maschinellem Lernen zur Überwachung und Bewertung von CLS im Zuckerrübenanbau. 

Zwei Anwendungsgebiete wurden untersucht: eine digitale Bewertung von Toleranzen 

und Resistenzen in Sortenversuchen; sowie die Beurteilung von Parametern zur 

Entscheidungsfindung für integrierte Bekämpfungsmaßnahmen von CLS. Die Ergebnisse 

dieser Arbeit empfehlen den Einsatz von multispektralen UAV-Systemen zur Bewertung 

der CLS-Resistenz, insbesondere durch eine bildbasierte und pixelweise Quantifizierung 

gesunder Blattbereiche und Differenzierung von symptomatischen Bereichen und Boden. 

Der enge Zusammenhang zwischen gesundem Blattapparat und Ertragsergebnissen 

betont die Bedeutung der vorgeschlagenen pixelweisen Methoden für 
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Züchtungsverfahren. Darüber hinaus ist die Identifizierung und Standardisierung von 

bildbasierten Bewertungseinheiten für Kontrollmaßnahmen und die Anwendung von 

Pflanzenschutzmittel von entscheidender Bedeutung. Die digitale Erkennung von 

Befallsparametern ist für ein zeitlich präzises und teilflächenspezifisches 

Krankheitsmanagement unerlässlich. In der vorliegenden Arbeit wurden Modelle des 

maschinellen Lerners angepasst und entwickelt, um mit hoher Genauigkeit die Parameter 

DI und DS zu erfassen. Für die Optimierung der Entscheidungsfindung wurden Verfahren 

zur Berücksichtigung der Bewertungseinheiten Pflanze, Kreis und Blatt integriert. 

Einschränkungen bei der räumlichen Auflösung des Sensors und der Nadir UAV-

Perspektive sowie Probleme bei der Unterscheidung von krankem Gewebe und Boden 

unter bestimmten Lichtverhältnissen können jedoch die Verlässlichkeit bei der Erkennung 

erster Krankheitssymptome beeinträchtigen. Kurative und teilflächenspezifische 

Fungizidapplikationen und die Erstellung von Applikationskarten für mehrere, simultan 

auftretende Krankheiten sind weitere potenzielle Anwendungsgebiete. 

Insgesamt zeigt die Arbeit das Potenzial von multispektralen UAV-basierten Methoden 

zur Anwendung in der Resistenzzüchtung und dem präzisen Pflanzenschutzmitteleinsatz 

und bietet weitere wertvolle Ansätze zur Verbesserung der integrierten Kontrolle von CLS. 

Das im Rahmen der Dissertationsschrift gewonnene Wissen kann auf weitere relevante 

Zuckerrübenkrankheiten wie den Echter Mehltau, Rübenrost oder die viröse Vergilbungen 

übertragen werden.   
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Abstract 

Cercospora leaf spot (CLS) in sugar beet is a damaging leaf disease caused by the fungal 

pathogen Cercospora beticola Sacc. This disease leads to substantial yield diminishment, 

and its management poses a challenge owing to rapid sporulation and high genetic 

variability. Integrated pest management strategies, including cultural practices, cultivar 

resistance, and fungicide management, are used to mitigate the disease. Disease 

intensity evaluation plays a crucial role in plant breeding for resistance screening and in 

agricultural practice for guiding control measures. The use of optical sensor technology 

and unmanned aerial vehicles (UAVs) with multispectral or hyperspectral cameras 

provides a novel alternative to human-based disease assessment. These sensors capture 

reflected light in multiple wavelength bands, allowing high spatial resolution imaging with 

spectral information. Machine and deep learning techniques are utilized to analyze 

multispectral UAV images and extract relevant disease assessment information. The 

combination of multispectral UAV data and machine learning approaches holds great 

promise for assessing parameters such as disease incidence (DI) and disease severity 

(DS) as a basis for decision-making. 

This thesis focuses on using RGB and multispectral imaging sensor technologies, UAVs, 

and machine learning to monitor and assess CLS in sugar beet. Two main application 

scenarios were investigated: evaluating tolerance and resistance in variety trials, and 

assessing parameters for decision-making in integrated CLS control in agricultural 

practice. The results of this dissertation recommended utilizing multispectral UAV systems 

for evaluating CLS resistance, particularly through an image-based and pixel-wise 

quantification of healthy foliage and soil regions. The close association between healthy 

foliage and yield outcomes emphasizes the importance of the proposed pixel-wise 

methods in breeding procedures. Furthermore, the identification and standardization of 

image-based scoring units are crucial for crop protection. Accurate detection of diseased 

specimens is essential for efficient site-specific disease management. In the present work, 

machine learning models were adapted and developed to detect DI and DS parameters 

with high accuracy. Procedures considering plant, circle, and leaf scoring units were 

incorporated to optimize decision-making. However, limitations in spatial resolution and 

nadir UAV-perspective, as well as challenges in discriminating diseased tissue from bare 
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soil under certain light conditions, may impact the sensitivity for detecting first symptoms 

of disease. Curative site-specific fungicide application and generation of multidisease 

application maps are potential future developments. 

Overall, the dissertation demonstrates the potential of multispectral UAV-based 

methodologies for advancing disease resistance breeding and precise disease control, 

offering valuable applications in practical agriculture for integrated control of CLS. The 

knowledge gained from studying Cercospora beticola Sacc. and sugar beet can be 

transferred to other relevant sugar beet diseases such as Powdery mildew, Rust, and 

virus yellows using the established UAV-based assessment pipeline.  
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SH Abbreviation for shadow feature or 끫뢂끫롮끫뢀끫롮끫롮 

SVML Support vector machine linear 

SVMR Support vector machine radial 

UAV Unmanned aerial vehicle 

VI Vegetation index and abbreviation for VI features 

WSY White sugar yield 

WSY  Loss of white sugar yield 

Mathematical Expressions 

Angle of incidence between the canopy surface and light 

source within instance 

끫븆끫룀 

Area based disease severity within leaf instance 끫롮끫롮끫뢲 
Average cluster area within leaf instance 끫롨끫뢠̅ 
Average cover of CLS cluster by unit of foliage cover 끫롲끫뢠̅/끫롲 

Average slope or angle between surface and normal to 

horizontal within a leaf instance 

끫븂끫뢲 
Average surface area of CLS cluster by unit of foliage area 끫롨끫뢠̅/끫롲 

Cover based disease severity at 끫롮 level 끫뢢끫뢢끫롸 
Cover based disease severity within leaf instance 끫뢢끫뢢끫뢲 
Cover of diseased foliage within instance 끫롲끫롲끫뢢 

Cover of foliage within instance 끫롲끫롲 

Cover of healthy foliage within instance 끫롲끫롲ℎ 

Difference between RED and BLUE band index 끫롮678500 

Image slope or angle between surface and normal to 

Horizontal within a leaf instance 

끫븂끫롾 

Image surface area within leaf instance 끫롨끫롾 

Individual instance  끫롮 

Individual leaf instance 끫롾 

Green vegetation index 끫뢊끫뢀끫롮 

Modified chlorophyll absorption in reflectance and optimized 

soil adjusted vegetation index 

끫뢀끫롲끫롨끫뢀끫롮끫뢀끫롮끫롨끫뢀끫롮 
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Modified chlorophyll absorption in reflectance index 2 끫뢀끫롲끫롨끫뢀끫롮2 

Modified simple ratio index 끫뢀끫롮끫뢀 

Modified soil adjusted vegetation index 2 끫뢀끫롮끫롨끫뢀끫롮2 

Normalized saturation-value difference index 끫뢂끫롮끫뢀끫롮끫롮 

Number of clusters 끫뢠 

Number of clusters per unit of foliage area 끫뢠끫롲 

Number of clusters within leaf instance 끫뢠끫롾 

Plot-wise disease incidence considering leaf instances 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 

Plot-wise disease severity considering leaf instances 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 

Resolution in GSD of DSM 끫뢲 
Resolution in GSD of multispectral orthomosaic 끫뢴 

Slope or angle between surface and normal to horizontal 

within instance  

끫븂 

Surface area of diseased foliage within instance 끫롨끫롮 

Surface area of healthy foliage within instance 끫롨끫롶 

Surface area within instance 끫롨 

Surface area within leaf instance 끫롨끫뢲 
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CHAPTER 1:  Introduction 

1.1. Sugar beet production and pests and diseases 

Sugar, the common name of sucrose, is a basic component of food, pharmaceuticals and 

beverages (Meghana and Shastri, 2020). Worldwide, approximately 20% of the sugar 

production is originated from sugar beet (Beta vulgaris ssp. vulgaris) reaching about 37Mt. 

of total raw sugar produced (WVZ and VdZ, 2021). In 2020/2021, sugar beet was 

cultivated on approximately 1.49 million hectares within the EU including the UK, whereas 

350,000 hectares were produced in Germany (WVZ and VdZ, 2021). The expectation for 

productivity in sugar beet cultivation is high; especially because of the low cost of cane 

sugar (Stevanato et al., 2019). Since 1930, sugar yield has been increased from 3.2 to 

10.3 t/ha in average (Draycott, 2006; WVZ and VdZ, 2021). Breeding has been the driving 

force for this yield improvement by introducing tolerant and resistant varieties to biotic and 

abiotic stresses (Loel et al., 2014).  The introduction of hybrids in sugar beet was the first 

breeding stone for increasing root yield in the early 20th century. The finding of 

monogerminity in the mid-1960 allowed efficiency in cultivation; moreover, improved sugar 

mass accumulation was fomented with the development of mechanism of genetic control 

arising a sugar production never seen before (Hoffmann et al., 2021). High-yield varieties, 

optimized plant nutrition, soil and weed management secured sugar beet productivity and 

quality (Draycott, 2006). However, there is a tradeoff between yield and plant susceptibility 

to fungal pathogens, viral diseases and pest attack since those breeding traits and yield 

are negatively correlated to each other (Oerke and Dehne, 2004). In the early 19th 

century, farmers learned to avoid repeated narrow rotations after observing a steady 

decline in yield due to the proliferation of the Beet cyst nematode (Heterodera 

schachtii)(Draycott, 2006). Fast forward two centuries, pests continue to expand into new 

areas in Central Europe, likely propelled by climate change, giving rise to emerging 

diseases such as the syndrome basses richesses disease (SBR), capable of reducing 

yields by up to 26% (Pfitzer et al., 2022). SBR is caused by the phloem-restricted 끫뷼-3 

proteobacterium Candidatus Arsenophonus phytopathogenicus which is transmitted by P. 

leporinus and becomes a focus of research in recent years. Viral diseases account for up 

to 6% sugar yield losses (Oerke and Dehne, 2004). The green peach aphid (Myzus 

persicae) is the principal vector for transmission of different and economically important 
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virus yellows species (Hossain et al., 2021; Kozłowska-Makulska et al., 2009). At least 

two years of cropping interval are suggested to avoid the damage of soil borne diseases 

such Beet cyst nematode, Rhizoctonia root rots (Rhizoctonia solani), and damping off 

(Aphanomyces cochlioides, Pythium ssp. (Koch et al., 2018). In addition to viral and root 

diseases, beet yield losses are attributed to the impairment of the photosynthetic leaf area. 

Among these, fungal leaf diseases emerge as the primary cause of direct leaf tissue 

damage, posing a significant risk to productivity. Some diseases such as Powdery mildew 

(Erysiphe betae), Rust (Uromyces betae), Ramularia leaf Spot (Ramularia beticola) 

present for the moment minor risk in productivity due to their late appearance in the 

growing season and slow development (Wolf and Verreet, 2002). Moreover the leaf 

disease caused by the fungus Cercospora beticola has posed a serious threat to high 

production standards in recent decades, leading to intensive research on plant breeding 

for resistance and on disease control (Jones and Windels, 1991; Wolf and Verreet, 2002, 

1997). 

1.2. Cercospora leaf spot, yield effect, infection biology and integrated 

management 

Cercospora leaf spot (CLS) is the leaf disease caused by the ascomycete fungus 

Cercospora beticola Sacc. CLS represents a significant obstacle for sugar beet farmers, 

as it has detrimental effects on productivity and presents challenges in efficiently 

mitigating pathogen spread (Windels et al., 1998). In the absence of disease management 

strategies, fields containing infected sugar beets exhibit compromised processing quality 

and can incur up to 50% in yield losses (Shane and Teng, 1992; Vogel et al., 2018; Wolf 

et al., 1998). The availability of primary C. beticola inoculum, an asexual and polycyclic 

manner of propagation, as well as the capacity to produce substomatal pseudostromata 

as survival structure (Rangel et al., 2020; Weiland and Koch, 2004), are relevant 

epidemiological parameters to establish knowledge based measures of CLS control. 

Previous research identified various factors responsible for the spread of conidia, 

including wind, water splash, rain, irrigation, but also insects and contaminated machinery 

(Khan et al., 2009; Lawrence and Meredith, 1970; Rangel et al., 2020). Currently, there is 

a lack of definitive evidence regarding the wind-mediated dispersal of primary inoculation, 

and the origins of the primary inoculum source remain a subject of ongoing investigation 
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(Imbusch et al., 2021). The infection initiates when conidia make contact with abaxial 

surface of sugar beet leaves (Rangel et al., 2020). Conidia germination requires relative 

humidity close to 100%, and temperatures higher than 17°C (optimal by 25°C) (Khan et 

al., 2009; Skaracis et al., 2010). After germination and hyphae elongation, appressoria is 

produced to penetrate stomata and spread intercellularly without visual symptoms 

(Rathaiah, 1977; Steinkamp et al., 1979). The initiation of the necrotic phase occurs 

through the synthesis of phytotoxins and degradative enzymes, leading to the demise of 

infected cells (Steinkamp et al., 1979). Infected leaves with C. beticola present the 

following symptoms: they develop spots that appear in shades ranging from tan to gray. 

These spots are frequently surrounded by borders that range in color from tan-brown to 

reddish-purple, and they can measure between 3 to 5 millimeters in diameter (Rangel et 

al., 2020; Weiland and Koch, 2004). Spots can merge to form bigger areas of dead tissue, 

leading to the withering and death of the leaves that are severely affected. 

Due to its high reproductive ability and fast sporulation, the pathogen can complete a 

lifecycle in only 9-12 days under field conditions (Varrelmann and Märländer, 2018). This 

polycyclic property, coupled with high genetic variability, produces epidemic which can 

only be controlled with repeated fungicide applications, leading to increased production 

costs and the risk of developing pathogen-resistant strains (Birla et al., 2012). In the 

1980s, reports of immoderate use of fungicides due to continuous strong epidemics in the 

USA led to the first cases of pathogen resistance being reported (Windels et al., 1998). 

Fungicide applications took place every 10 to 14 days in some regions; this results those 

fungicides especially for benzimidazole group, were no longer recommended for growers. 

A similar case was reported in the south of Germany a decade later (Wolf et al., 1995). In 

the USA, an early integrated pest management (IPM) model was based on three pillars: 

cultural practices, cultivar resistance, and fungicide management (Windels et al., 1998). 

Cultural practices recommended a minimum rotation of sugar beets every third year with 

non-host crops. Varieties with low susceptibility and high yield performance even under 

no infection pressure suggested ensuring high sugar beet productivity. Fungicide 

management based on protectant and curative fungicides supported by forecast models 

such as Daily Infection Values (DIVs) for the first application were recommended (Windels 

et al., 1998). The same pillars are used for an integrated management of CLS in Germany, 
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Italy, France and Spain (Cioni et al., 2014; Gummert and Ladewig, 2012; Jarroudiet al., 

2021; Martín Gil et al., 2018). In Germany, the IPM model differs slightly to the American. 

The principal difference is on the fungicide management, which require additionally to the 

warning signal a disease assessment on field. A forecasting model called CERCBET 3 

triggers a warning signal (Gummert and Ladewig, 2012). Then, this signal alerts growers 

to perform visual assessments in the field, followed by a decision on application if 

threshold values of CLS incidence are achieved.  

The losses caused by a pathogen such as C. beticola are strongly associated with the 

intensity of disease (Nutter et al., 1991). The evaluation of disease intensity through 

phytopathometry supports two important applications for integrated disease management, 

namely screening for resistance in plant breeding and providing indicators for control 

measures (Kranz, 1988). 

1.3. Phytopathometry, disease intensity and sources of error for disease 

assessment 

Phytopathometry is a branch discipline of plant pathology, focusing on measuring the 

amount of plant disease or disease assessment. The intensity of the disease is estimated 

using parameters such as disease incidence (DI) and disease severity (DS). DI refers to 

the proportion of diseased specimens, while DS measures the degree of the diseased 

region within specimens (Bock et al., 2021; Kranz, 1988; Madden et al., 2007a). 

The definition of the specimen or scoring unit can significantly influence disease 

estimation over time. The most common scoring units for diseases are individual plants, 

leaves, and roots (Madden et al., 2007a). In the case of CLS, a descriptive epidemic 

development is mostly expressed as DI at plant level (DIplant), and DI and DS at leaf level 

(DIleaf and DSleaf) (Wolf and Verreet, 2002). 

The choice of whether to use DI or DS depends on the objectives of the epidemiological 

or breeding study. DI is a parameter with high sensitivity for pathogen spread, particularly 

during the initial stages of disease development (Madden et al., 2007a). As a result of this 

characteristic, levels of DI parameter have been applied in thresholds as indicators to 

trigger warning signals for fungicide management (Wolf, 2002). DS, on the other hand, is 
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commonly used to evaluate productivity and yield loss and its principal application is for 

assessing new varieties for resistance and fungicide tests (Madden et al., 2007a). 

Nature of data is relevant for quantifying disease intensity, especially in the case of 

determining DS. Ordinal and ratio scales are the most common data types for quantifying 

DS. Ordinal scales are commonly used to give levels of severity during disease 

development. Examples for quantifying severity in CLS in an ordinal scale are the KWS 

scale and the Agronomica diagram (Anonymous, 1970; Vereijssen et al., 2003). The KWS 

scale is a severity diagram that ranges from 1 to 9. A rating of 1 indicates the complete 

absence of symptoms, while a rating of 3 indicates the presence of leaf spots on older 

leaves. A rating of 5 signifies the merging of leaf spots, resulting in the formation of 

necrotic areas. A rating of 7 is assigned when the disease advances from the oldest leaves 

to the inner leaves, leading to their death. Finally, a rating of 9 is given when the foliage 

experiences complete death (Anonymous, 1970). A ratio scale is data assessed in a 

continues but truncated range. For CLS, the ratio scale represents the ratio of diseased 

tissue from complete leaf area (Wolf et al., 1998). The principal advantage of a ratio scale 

consists in delivering more detailed epidemiolocal information in comparison to ordinal 

scales supporting significant differences in the statistic (Madden et al., 2007a; Vereijssen 

et al., 2003). However, a ratio scale is less reliable and accurate than ordinal requiring a 

high level of expertise for the assessment.  

Decisions are taken based on parameters assessed on the field, farmers decide for 

disease control by determining DI, breeders identify a potential resistance line based on 

DS. Therefore, trained, well-structured and aided raters are required, the so-called 

experts. Experts can produce or estimate acute measurements close to “standard gold” 

values (Madden et al., 2007a). Experts’ assessment fulfills two characteristics, these are 

reliability and accuracy (Bock et al., 2010). An assessment is reliable when repeated 

estimations or measurements of the same specimen are close to each other. Reliability 

can be divided on inter-rater reliability (reliability of different raters) or intra-rater reliability 

(reliability of the rater) (Madden et al., 2007a; Nutter et al., 1991). Regarding to accuracy, 

an accurate assessment has a high degree of closeness to the “gold standard” (Bock et 

al., 2020; Kranz, 1988; Madden et al., 2007a). The lack of accuracy in disease 

assessment can result in error of type II, false negative (FN) or missed detection of 
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diseased specimen; however, the level of accuracy required varies to each disease 

quantification case (Bock et al., 2020). Up today, no error of type I was reported, false 

positive (FP) or diseased classification of healthy specimen, in disease assessment. 

Beside experts, there are some object-dependent sources of error. Robustness of 

assessment can drop due to illumination. Varying illumination conditions are more serious 

in direct sunlight in comparison to cloudy conditions; color blindness caused by direct 

sunlight in the quantification of powdery mildew in sugar beet is an example for drop of 

scoring performance (Bock et al., 2020). Complexity of the scoring unit can also affect 

accuracy, whereas three-dimensional samples are more difficult to assess in comparison 

with two-dimensional specimens such as leaves. Size and shape of lesions can promote 

a tendency to overestimation, in the case of CLS, the number and size of spots during the 

first disease development stages, can be challenging for beginners. Finally, leaf wetness 

is also source of error leading to deviating estimations (Kranz, 1988). All mentioned points 

can influence the performance of assessments because affecting in the physiological 

stimuli and psychological response of raters (Kranz, 1988). 

Reliable and accurate quantification of disease intensity are the principal support of two 

from three pillars for an integrated CLS management: visual assessment for screening 

disease resistance, and visual assessment for determining indicators for fungicide 

application. The following sections will provide detailed information on breeding principals 

for enhancing CLS resistance in plants as well as plant protection measures. 

1.4. Resistance breeding 

The development of CLS-resistant sugar beet plants through the breeding process has 

been reported as a crucial factor in preventing yield losses in recent years, where inclusive 

low yield penalty is mentioned in the absence of the disease (Vogel et al., 2018). In 

Germany, cultivating less susceptible varieties can help reduce fungicide usage and 

extend the authorization period for the application of a fungicide product 

(Bundessortenamt, 2022). Resistant and tolerant varieties have two further advantages. 

They reduce the intensity of fungicide application, increasing eco-efficiency (Wiessner et 

al., 2010), and they reduce the risk of stronger epidemics in the following years by 

contributing less plant debris (Wolf and Verreet, 2002). Gene sources of CLS resistance 
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have been identified in the wild sea beet, Beta vulgaris ssp. maritima (Rossi, 1995). At 

least four quantitative trait loci have been identified to be responsible for CLS resistance 

to present time (Rangel et al., 2020). The maritima line is the primary genetic resource 

used in breeding programs to develop CLS-resistant varieties (Stevanato et al., 2019). 

(Weltmeier et al., 2011) documented a molecular mechanism for sugar beet defense 

response against CLS, which is based on high expression of pathogenesis-related (PR) 

and WRKY genes. This defense response can be triggered 1 day after inoculation and 

inhibit C. beticola biomass development in monogenic resistance varieties, while 

susceptible varieties require 15 days to initiate this gene expression. PR and WRKY gene 

expression might overcome pathogen-induced suppression of phenylalanine ammonia 

lyase (PAL) gene which is the initial defense response of interaction between sugar beet 

and C. beticola (Schmidt et al., 2008). PAL gene expression is involved in plant-related 

pathways for secondary metabolites such as lignin, flavonoids, and phytoalexins (Rangel 

et al., 2020). 

The breeding process for producing new resistant varieties is divided in four stages; mass 

selection, family selection, recurrent selection, and hybrid production (Biancardi et al., 

2010). During mass selection an improved population with resistance characteristics is 

generated after intercrossing by open pollination. In the family selection stage, undesired 

F1 hybrids are discarded by half-sib or full-sib selection. Seeds of this last stage can be 

already used as pollinators for hybrid production. The aim of the recurrent selection is to 

increase the frequency of superior alleles and allelic combinations of desired traits 

including disease resistance in lines which are used as pollinators. The last stage of 

breeding process uses potential disease resistant family lines and pollinator and a 

selected phenotypic male sterile hybrid with complementary desired traits to generate 

offspring with combined abilities in yield and resistance (Biancardi et al., 2010; Setiawan 

et al., 2000). Overall, multiyear field trials must be designed in multiple locations. Disease 

assessment, specially DS, is the principal quantification parameter for phenotyping 

disease resistance under field conditions (Setiawan et al., 2000). When resistant hybrids 

are identified, breeders produce a large amount of seeds to initiate the registration 

procedure (Biancardi et al., 2010). In Germany, the national variety offices corroborate 

this superiority and approve a new variety for commercialization by after testing resistance 
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of candidates in multi-year and multi-site variety trials (Gummert et al., 2015; Ossenkop 

et al., 2005, 2002). Here again intensive phenotyping activities are required for screening 

susceptibility, quality and yield performance (Bundessortenamt, 2022). 

1.5. Plant protection and limitations of expert assessment 

In situations where cultural practices and cultivar resistance fail to effectively control the 

spread of CLS, plant protection emerges as the final recourse to ensure the preservation 

of sugar production in terms of both quantity and quality (Hoffmann, 2010). As mentioned 

in Section 1.2, nowadays the intensive use of pesticides promoted natural selection of 

fungal pathogens including C. beticola. Considering a sustainable use of fungicide 

applications as integrated management to control CLS, epidemic thresholds were 

proposed as spraying indicators by using DI and DS at plant and leaf level (Wolf et al., 

1995). During the nineties by implementing an early IPM model in Germany, the first 

epidemic threshold considered the plant-to-plant spread of CLS and was defined as half 

of infested plants from a complete sugar beet population (50% DIplant; Wolf and Verreet, 

1997). A diseased plant was counted when at least a CLS spot is identified in complete 

canopy. For the plant protection measure of this IPM, further thresholds of epidemics were 

identified such as 25-35% DIleaf or 0.2-0.4 DSleaf (Wolf et al., 1998). However, the 

monitoring of two different scoring units (leaf and plant) and two different disease intensity 

parameters (DI and DS) unable the practical application of the threshold-based fungicide 

management in early German IPM (Wolf et al., 1998). As a solution, correlations were 

evaluated to standardize scoring unit and parameter, moreover, middle leaves were 

identified as the most informative samples in the sugar beet canopy to describe CLS 

epidemic. The chosen standardized parameter was DIleaf considering middle leaves as 

scoring unit for the sampling. Standardized the unit, equivalent thresholds were 

determined to describe epidemics; five infested from 100 middle leaves sampled should 

equivalent the half of infested plant in the population (50% DIplant ≈ 5% DIleaf), in addition, 

25-35% DIleaf from the complete canopy should equivalent 35-45% DIleaf from middle 

leaves (Wolf et al., 1998). 

Epidemic threshold and economic damage threshold are two different concepts in plant 

protection. As mentioned before, the first concept describes development of epidemics, 

while the second is defined as the tolerance limit for economic damage (Wolf and Verreet, 
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2002). For CLS, economic damage threshold was determined by 5% DS leaf from complete 

canopy at harvesting (Wolf et al., 1998). With a magnitude for economic damage 

threshold, the decision system is further oriented based on the developing stage of the 

sugar beet crop during the vegetation period and calendar. Fungicide spraying should 

take place if 5% DIleaf was overcome in the period July to mid-August. From mid to end 

August sprays should take place if 45% DIleaf was overcome (Wolf and Verreet, 2002). 

With this last condition the second application should also take place in the case of 

unsuccessful first application. After some years of practical use of epidemics thresholds 

as indicators in the IPM, two negative aspects were observed (Lang, 2005). Firstly, 

applications performed at the beginning of August based on the overcome from 5% DIleaf 

threshold were not necessary because by harvesting economic damage threshold was 

not achieved. Dry and cold locations were frequently the exceptions. Secondly, strong 

epidemic development was observed also in September with significant yield losses for 

late harvested fields, requiring an extension of disease monitoring and control period. As 

improvement, new guidelines for a IPM model against leaf diseases were published in 

Germany including the management of CLS (Gummert and Ladewig, 2012). The new 

model is adjusted with an additional epidemic threshold (15% DIleaf) for the first 

application. The first application is DIleaf and calendar dependent, where the indicator is 

5% DIleaf until 31.07, 15% DIleaf until 15.08, and since 16.08 the indicator is 45% DIleaf. A 

second application takes place when this last epidemic threshold is achieved (Lang, 

2005). 

In summary, disease assessment plays a crucial role in IPM by contributing to both plant 

breeding and plant protection efforts. The selection of appropriate disease parameters, 

scoring units, and thresholds greatly influences the effectiveness of identifying resistant 

lines against CLS and implementing successful disease control strategies. Consequently, 

the importance of reliable and accurate disease assessment cannot be overstated. While 

expert assessment is highly accurate, there are certain drawbacks associated with 

human-based disease quantification. Expert assessments tend to be time-consuming, 

costly, and have limited throughput capacity for large-scale (Bock et al., 2020). In the 

breeding process, screening for resistance requires exhaustive and time-consuming 

phenotyping activities to identify suitable plant materials (Mahlein, 2015). In plant 
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protection, disease intensity within a field can exhibit heterogeneity, as observed in cases 

involving R. solani and H. schachtii (Hillnhütter et al., 2011), leading to the potential for 

varying indicators for fungicide application within the same field (Mahlein et al., 2018). 

However, for experts the determination of disease intensity parameters is only feasible by 

sampling methods that represents with a single magnitude disease intensity of the 

complete field. To optimize CLS management, it is imperative to enhance the efficiency, 

reliability, and site-specificity of disease assessment information. This can be achieved by 

improving assessment methods, utilizing advanced technologies, and incorporating 

spatial variability analyses to ensure more precise and targeted disease management 

strategies. 

1.6. Optical sensor technology and UAV-systems  

A novel alternative for the human-based disease assessment is the use of optical sensors 

such multispectral or hyperspectral cameras (Bohnenkamp et al., 2021; Hillnhütter et al., 

2012; Leucker et al., 2016; Mahlein, 2015; Mahlein et al., 2018; Reynolds et al., 2011). 

The principle of optical sensors is based on the measure of the amount of light, commonly 

the reflected light, reaching the imaging sensor and store as information (Thomas et al., 

2018). The recorded information or two-dimensional image present high spatial and 

spectral resolution, containing up to several bands of spectral information within the 

wavelength range of sensor. Many optical sensors are able to address the visible part of 

the electromagnetic spectrum (400-700 nm, VIS), but also, they are able to measure the 

near-infrared wavelength (700-1000 nm, NIR) calling them as VISNIR sensors (Maes and 

Steppe, 2019; Mahlein et al., 2018). The main distinction between multispectral and 

hyperspectral sensors lies in their spectral resolution. Multispectral sensors typically 

capture broad wavelength bands within the BLUE, GREEN, and RED spectral regions, as 

well as bands within the NIR range (Mahlein, 2015). Moreover, current multispectral 

sensors present relatively high spatial resolution, low integration time, wide field of view, 

and parallel camera arrangement allowing multispectral cameras to record multispectral 

information on the field with high throughput (Aasen et al., 2018; Wierzbicki, 2018). 

When proper image-processing techniques are applied, unmanned aerial vehicles (UAVs) 

carrying multispectral imaging sensors becomes a tool for field mapping, and constitute a 

monitoring system with potential to solve previous mentioned drawbacks of disease 
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assessments by experts: regarding bias, limitations of workload and low throughput (Bock 

et al., 2020). Easy mapping operation, flexibility, and a continuous technological 

improvement of the last years from both components, UAV and image sensor, makes the 

past limitations of flight time and image resolution no longer an aspect for restricting the 

support in disease monitoring tasks (Deng et al., 2018). Optical sensors were used in the 

past to monitor CLS development. The first study reported, used multispectral, ground 

based non-imaging data to assess disease severity of CLS under field conditions based 

single reflectance of wavelength bands and vegetation indices (Steddom, 2005). Since 

the commencement of this preliminary investigation, significant advancements have 

occurred in sensor technology. Furthermore, remarkable progress has been witnessed in 

the field of machine learning (ML) and deep learning, which have harnessed the potential 

of high-resolution multispectral data for disease assessment applications (Mahlein et al., 

2018). 

1.7. Data analysis: machine learning, deep learning and image post-processing 

In the analysis of multispectral UAV images, ML and deep learning are the principal 

support to extract relevant information for disease assessment. ML and deep learning are 

subsets of artificial intelligence that allows systems to learn automatically from data by 

identifying patterns (Bishop and Nasrabadi, 2006). Statistical models and singular 

algorithms are trained and learn how to make predictions and take decisions based on 

delivered data not just with such as data like spectral information, but also 3D arrays like 

RGB images. Supervised learning are machine learning techniques that learn from 

labelled data (Bishop and Nasrabadi, 2006). Some typical supervised learning techniques 

are K-nearest neighbors (KNN), partial least squares discriminant analysis (PLS-DA), 

random forest (RF), support vector machines (SVM). In previous studies, the utilization of 

spectral imaging data, specifically employing RF and PLS-DA techniques, demonstrated 

in the past high reliability in determining DI and enabling early detection of R. solani 

infection in sugar beet plants (Barreto et al., 2020). 

The principal difference between deep learning and machine learning is the use of artificial 

neural networks (ANNs) arranged in multiple layers in a deep learning approach 

(Schmidhuber, 2015). ANNs are designed to emulate the structure of human brain. ANNs 

past through multiple layers collected data, optimize prediction or decisions, learning 
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complex features from data. Convolutional Neural Networks (CNNs) and Fully 

Convolutional Networks (FCNs) are types of ANNs, which are specialized in learning 

patterns from images. To segment objects from an image, computer vision techniques are 

available including semantic segmentation and instance segmentation, those computer 

vision techniques contain as main structure CNNs and or FCNs models. Semantic 

segmentation involves ordering a label to each pixel belonging to a kind of object (Chen 

et al., 2018; Long et al., 2015). Furthermore, instance segmentation delivers more details 

and segment within a kind of object a pixel-wise label for each individual (instance) (He et 

al., 2017; Neven et al., 2019). The analysis of RGB and multispectral images by ML and 

deep learning approaches have been reported to detect infected tissue and quantify DS 

of CLS in more recent works on sugar beet (Görlich et al., 2021; Jay et al., 2020; Mahlein 

et al., 2013; Ziya et al., 2018), however, most of them requiring a post-processing step. 

Post-processing techniques are relevant in computer vision because they can help to 

improve the accuracy and robustness of algorithms, making them more suitable for real-

world applications. An example of post-processing technique for agriculture application 

was proposed by (Lottes et al., 2018b). Here an FCNs output, a probabilistic and 

multiclass array for detecting stems of sugar beet and weeds, was adapted to local 

maximal in order to deliver stem location to make comparable with the plant counting 

assessments on the field. Post processing techniques were applied for disease 

quantification as described in (Jay et al., 2020). In this work, post-processing algorithms 

were employed to extract a list of disease severity parameters including spot density, area 

of healthy tissue, and an ordinal scaled CLS DS parameter. With this post-processing a 

time-series analysis via Area Under Disease Progress Curve (AUDPC) (Madden et al., 

2007b) of DS parameters was performed allowing resistance screening in two years 

variety trials (Jay et al., 2020). 

The aforementioned studies collectively underscore the substantial potential of 

harnessing multispectral UAV information for disease assessment purposes. This 

encompasses the utilization of UAV data to determine essential disease intensity 

parameters, namely DI and DS. These parameters play a pivotal role in facilitating the 

successful integrated management of CLS. 
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CHAPTER 2:  Research objectives 

The objectives of this thesis focus on the challenge of using optical sensor technologies 

and unmanned aerial vehicles (UAVs) in a methodological approach with machine 

learning for assessing and monitoring Cercospora leaf spot (CLS) in sugar beet. The 

investigated applications scenarios were (A) evaluating tolerance and resistance in variety 

trials to substitute the manual phenotyping process and (B) the assessment of the 

parameters disease incidence (DI) and disease severity (DS) for decision-making in 

integrated control of CLS. To provide practicable solutions and process pipelines for these 

application scenarios, the objectives of this thesis were: 

I. Identify plants as scoring unit within UAV images from experimental fields. A deep 

learning approach for semantic segmentation was adapted to this aim, and the best 

timing for plant unit quantification was determined. Subsequently, to understand 

CLS epidemiologic, an image-processing pipeline for calculating DSplant in an 

ordinal scale emulating KWS scale will be proposed and tested.  

II. The automatic determination of DS with a continuous ratio scale. For this task a 

machine learning multiclass classifier was trained to quantify diseased and healthy 

tissue in a pixel-wise manner. Due to incompatibility to merge a plant-level scoring, 

arbitrary scoring units must be temporally proposed. The pipeline was applied in 

variety trials to rank resistance against CLS. 

III. Develop and evaluate image-based leaf segmentation for seeking segmented 

scoring unit, using an instance segmentation technique called Mask-RCNN. 

Subsequently, the previously trained multiclass classifier was integrated to the leaf 

instance segmentation to deliver, DSleaf, as output. 

IV. Utilizing the most promising approach for site-specific disease control. Therefore 

UAV-based assessments of DI were conducted to generate application maps using 

threshold values for fungicide applications. Additionally, the control efficiency in 

terms of fungicide consumption was investigated. 

At the end of this thesis, current challenges, and perspectives for further research in 

automatic disease quantification and site-specific CLS control by using multispectral UAV-

systems are critically discussed.  
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CHAPTER 3:  Detection of sugar beet plants - Manuscript I 

Automatic UAV-based counting of seedlings in sugar-beet field and extension to 
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CHAPTER 4:  Plant-based disease quantification - Manuscript II 
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Supplementary materials 

Table 4-1. Performance of pipeline for multiclass image classification based on the KWS 
scale prediction and visual scoring 

KWS 
scalea 

Frequencyb Precision Recall Specificity F1 

1 0.47 0.87 0.66 0.93 0.75 

2 0.06 0.15 0.59 0.79 0.23 

3 0.10 0.46 0.23 0.97 0.31 

4 0.09 0.40 0.32 0.96 0.35 

5 0.04 0.24 0.39 0.96 0.30 

6 0.02 0.28 0.43 0.97 0.34 

7 0.03 0.35 0.47 0.95 0.40 

8 0.06 0.74 0.47 0.98 0.57 

9 0.12 0.92 0.72 0.99 0.81 
a Class 1, represents the absence of symptoms of Cercospora leaf spots; class 3, when 
leaf spots are present on old leaves, 5 when leaf spots merge to form necrotic areas; class 
7 is assigned when the oldest leaves died, and the disease progresses to the internal 
leaves, and class 9 applies to the total death of the foliage. b In total 5842 images were 
evaluated with the same distribution as the training set.  
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CHAPTER 5:  Pixel-wise disease quantification - Manuscript III 
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Supplementary materials 

Glossary 끫롨    Surface area. 끫롨끫롮    Surface area of diseased foliage.  끫롨끫롲    Surface area of complete foliage.  끫롨끫롶    Surface area of healthy foliage. 끫롨끫뢠̅/끫롲    Mean surface area of CLS cluster by unit of foliage area. 끫롲끫뢠̅/끫롲    Mean cover of CLS cluster by unit of foliage cover. 끫롮끫롮    Disease incidence. 끫롮끫롮    Disease severity. 끫롮678500   VI called “difference between RED and BLUE band”. 끫롲끫롲    Foliage cover. 끫롲끫롲끫뢢    Cover of diseased foliage. 끫롲끫롲ℎ    Cover of healthy foliage. 끫뢊끫뢀끫롮    Green vegetation index. 끫롮    Individual instance.  끫뢀끫롲끫롨끫뢀끫롮끫뢀끫롮끫롨끫뢀끫롮   끫뢀끫롲끫롨끫뢀끫롮끫뢀끫롮끫롨끫뢀끫롮 index. 끫뢀끫롲끫롨끫뢀끫롮2   Modified chlorophyll absorption in reflectance index 2. 끫뢀끫롮끫롨끫뢀끫롮2   Modified soil adjusted vegetation index 2. 끫뢀끫롮끫뢀    Modified simple ratio index. 끫뢂끫롮끫뢀끫롮끫롮    Normalized saturation-value difference index. 끫븆끫룀    Angle of incidence between the canopy surface and light 

source. 
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끫븂    Slope or angle between surface and normal to horizontal.  끫뢠    Number of clusters. 끫뢠끫롲    Number of clusters per unit of foliage area. 끫뢢끫뢢끫롸    Cover based disease severity at 끫롮 level. 끫뢲    Resolution in GSD of DSM. 끫뢴    Resolution in GSD of multispectral orthomosaic. 

AUC    Area under the curve. 

AUDPC   Area under disease progress curve. 

CLS    Cercospora leaf spot. 

DMIs    Demethylation Inhibitors. 

DSM    Digital surface model. 

DSM     Abbreviation for DSM features. 

GSD    Ground sample distance. 

KNN    K-nearest neighbors. 

ML    Machine learning. 

PLS-DA   Partial least squares discriminant analysis. 

PR    Precision-recall. 

QoIs    Quinone outside Inhibitors. 

RE    Abbreviation for resolution features. 

RF    Random forest. 

RI    Registration identifier. 

SB    Abbreviation for single bands features. 

SH    Abbreviation for shadow feature or 끫뢂끫롮끫뢀끫롮끫롮. 
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SVML    Support vector machine linear. 

SVMR    Support vector machine radial. 

UAV    Unmanned aerial vehicle. 

VI    Vegetation index and abbreviation for VI features. 

WSY    White sugar yield. 

WSY    Loss of white sugar yield.  
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Table 5-1. In Manuscript III as Table S1, properties of susceptibility to Cercospora 
beticola, yield and quality according to national variety list (Bundessortenamt 2017) 

Variety RI 
Susceptibility to Cescospora 

beticola 
RY WSY SC K + Na AmN 

susceptible 3012 5 5 6 6 2 5 

resistant 2444 3 6 6 6 4 5 

value of 1: parameter is missing or very low developed, value of 5: parameter is 

moderately developed, value of 9: parameter is very strongly developed. RI, registration 

identifier of the German Federal Variety Office Bundessortenamt; RY, root yield; WSY, 

white sugar yield; SC, sucrose content; K + Na, concentration of potassium plus sodium; 

AmN, amino-nitrogen concentration.  
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Table 5-2. In Manuscript III as Table S2, technical specifications of UAV flights 

Date 끫뤜 끫뤚 Sky 끫룴끫뤬 

13th June 3.6 14.4 sunny -0.67끫뢬 + 0.25끫뢮 + 0.70끫⃗⃗뢰 

19th June 4.3 17.0 sunny 0.44끫뢬 + 0.39끫뢮 + 0.81끫⃗⃗뢰 

26th June 5.2 20.8 sunny 0.56끫뢬 + 0.32끫뢮 + 0.76끫⃗⃗뢰 

1st July 4.2 16.8 sunny 0.43끫뢬 + 0.39끫뢮 + 0.81끫⃗⃗뢰 

10th July 4.0 15.8 cloudy 0.53끫뢬 + 0.36끫뢮 + 0.77끫⃗⃗뢰 

16th July 4.0 16.0 cloudy 0.41끫뢬 + 0.43끫뢮 + 0.81끫⃗⃗뢰 

23rd July 4.1 16.5 sunny 0.31끫뢬 + 0.48끫뢮 + 0.82끫⃗⃗뢰 

30th July 4.0 16.1 sunny 0.44끫뢬 + 0.46끫뢮 + 0.77끫⃗⃗뢰 

14th August 4.1 16.6 sunny -0.27끫뢬 + 0.57끫뢮 + 0.77끫⃗⃗뢰 

21st August 3.8 15.3 sunny 0.39끫뢬 + 0.57끫뢮 + 0.72끫⃗⃗뢰 

27th August 4.5 18.2 sunny 0.46끫뢬 + 0.57끫뢮 + 0.68끫⃗⃗뢰 

18th September 3.4 13.5 sunny 0.57끫뢬 + 0.62끫뢮 + 0.54끫⃗⃗뢰 

26th September 4.2 16.9 cloudy 0.36끫뢬 + 0.74끫뢮 + 0.56끫⃗⃗뢰 

22nd October 4.4 17.7 cloudy 0.56끫뢬 + 0.75끫뢮 + 0.35끫⃗⃗뢰 

where 끫뢴 and 끫뢲 are the ground sample distance (GSD) in mm from the multispectral 

orthomosaic and the digital elevation model respectively. 끫롮끫룄 is the unit vector of the trial 

field in the direction of the sun. 
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Table 5-3. In Manuscript III as Table S3, fungicide applications and specifications 

Application 

date 
Rate Product Active substance Group 

2nd July 
0.6 

liter/Ha 

Duett 

Ultra 

Thiophanat-Methyl, 

Epoxiconazol 
benzimidazole,DMIs 

25th July 
0.6 

liter/Ha 

Duett 

Ultra 

Thiophanat-Methyl, 

Epoxiconazol 
benzimidazole,DMIs 

8th August 
1.0 

liter/Ha 
Amistar Azoxystrobin QoIs 

3rd September 
1.0 

liter/Ha 
Rubric Epoxiconazol DMIs 
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Table 5-4. In Manuscript III as Table S4, top 5 variables according to class importance 
for the PLS-DA- and SVMR-classifier 

 Healthy Diseased Soil Other 

place PLS-DA SVMR PLS-DA SVMR PLS-DA SVMR PLS-DA SVMR 

1 끫뢀끫롲끫롨끫뢀끫롮2 끫뢀끫롮끫뢀 끫뢀끫롲끫롨끫뢀끫롮2 끫롪끫롾끫롪끫롪 끫뢂끫롮끫뢀 끫롮678500 끫뢀끫롲끫롨끫뢀끫롮2 끫롪끫롾끫롪끫롪 

2 끫뢀끫롮끫롨끫뢀끫롮2 끫뢀끫롲끫롨끫뢀끫롮2 끫뢀끫롮끫롨끫뢀끫롮2 끫롮678500 끫뢀끫롪끫롮끫롪끫롮끫뢊끫롪 끫뢀끫롮끫뢀 끫롪끫롾끫롪끫롪 끫뢂끫롮끫뢀끫롮끫롮 
3 끫뢊끫뢀끫롪끫롪끫뢂 끫뢀끫롮끫롨끫뢀끫롮2 끫뢀끫롪끫롮끫롪끫롮끫뢊끫롪 끫뢂끫롮끫뢀끫롮끫롮 끫뢀끫롮끫롨끫뢀끫롮2 끫뢀끫롲끫롨끫뢀끫롮끫뢀끫롮끫롨끫뢀끫롮 끫뢀끫롮끫롨끫뢀끫롮2 끫뢀끫롮끫뢀 

4 끫뢂끫롮끫뢀끫롮끫롮 끫롪끫롾끫롪끫롪 끫뢂끫롮끫뢀 끫뢀끫롮끫뢀 끫뢀끫롲끫롨끫뢀끫롮2 끫뢀끫롲끫롨끫뢀끫롮2 끫뢂끫롮끫뢀끫롮끫롮 끫뢊끫뢀끫롪끫롪끫뢂 

5 끫롪끫롾끫롪끫롪 끫뢀끫롪끫롮 끫뢊끫뢀끫롪끫롪끫뢂 끫뢀끫롲끫롨끫뢀끫롮끫뢀끫롮끫롨끫뢀끫롮 끫뢊끫뢀끫롮 끫뢀끫롮끫롨끫뢀끫롮2 끫롮678500 끫뢀끫롪끫롮 

 

  



Pixel-wise disease quantification - Manuscript III 

 

68 
 

 

Figure 5-1. In Manuscript III as Figure S1, input variables and features, including 
classification output and ground truth image under sunny condition with low cloud 
presence. Assessment of 14th August. Identified outliers by frequency were not 
considered in the color scale: 5% trimming discards, percentile between the 2.5th and 
97.5th percentile of the variable distribution. 
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Figure 5-2. In Manuscript III as Figure S2, confusion matrix to segment the multiclass task 
for the (A) PLS-, and (B) SVMR-classifier, and (C) the proposed pipeline. 
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Figure 5-3. In Manuscript III as Figure S3, development of disease severity based on 
UAV-scores of area data for the treatment inoculated with fungicide (A) and the non-
inoculated treatment with fungicide (B). UAV scores for the disease incidence parameter, 
(C) inoculated with fungicide, and (D) non-inoculated with fungicide treatment. 
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Figure 5-4. In Manuscript III as Figure S4, development of (A) number of CLS clusters 
per evaluated instance (끫뢠) and (B) area of cluster by unit of foliage area in percentage 
(끫롨끫뢠̅/끫롲) based on UAV-scores for the inoculated with fungicide treatment. 
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CHAPTER 6:  Leaf segmentation as scoring unit - Manuscript IV 
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to Extract Leaf-Based Phenotyping Parameters 

Accepted manuscript and online published in KI – Künstliche Intelligenz, 2023. DOI: 

10.1007/s13218-023-00815-8 

Abel Barreto1*, Lasse Reifenrath2, Richard Vogg2, Fabian Sinz2 and Anne-Katrin 

Mahlein1 

1* Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079, Göttingen, 

Lower Saxony, Germany 

2 Department of Computer Science, University of Göttingen, Holtenser Landstraße 77, 

37079 Göttingen, Germany 

*Corresponding author: barreto@ifz-goettingen.de 

Keywords: Mask R-CNN, Leaf segmentation, UAV, Plant disease, Sugar beet 

Author contributions 

Conceptualization: all authors. Methodology: AB, LR, RV and FS. Software: AB, LR and 

RV. Validation: AB and LR. Formal analysis: LR, RV and FS. Investigation: AB, FS and 

AKM. Resources: AKM. Writing-original draft: AB and AKM. Writing-review and editing: 

all authors. Visualization: AB and LR. Project administration: AKM. Supervision: FS and 

AKM. Funding acquisition: AKM. 

  



Leaf segmentation as scoring unit - Manuscript IV 

 

73 
 



Leaf segmentation as scoring unit - Manuscript IV 

 

74 
 



Leaf segmentation as scoring unit - Manuscript IV 

 

75 
 

 



Leaf segmentation as scoring unit - Manuscript IV 

 

76 
 



Leaf segmentation as scoring unit - Manuscript IV 

 

77 
 



Leaf segmentation as scoring unit - Manuscript IV 

 

78 
 



Leaf segmentation as scoring unit - Manuscript IV 

 

79 
 

 



Leaf segmentation as scoring unit - Manuscript IV 

 

80 
 

 



Leaf segmentation as scoring unit - Manuscript IV 

 

81 
 

 



Leaf segmentation as scoring unit - Manuscript IV 

 

82 
 

 



Leaf segmentation as scoring unit - Manuscript IV 

 

83 
 



Leaf segmentation as scoring unit - Manuscript IV 

 

84 
 

 



Leaf segmentation as scoring unit - Manuscript IV 

 

85 
 

 



Leaf segmentation as scoring unit - Manuscript IV 

 

86 
 

 



Site-specific fungicide application based on automated scoring - Manuscript V 

 

87 
 

CHAPTER 7:  Site-specific fungicide application based on 

automated scoring - Manuscript V 

Abel Barreto1 and Anne-Katrin Mahlein1 

1Institute of Sugar Beet Research (IfZ), Holtenser Landstraße 77, 37079, Göttingen, 

Lower Saxony, Germany 

7.1. Abstract 

Plant diseases often exhibit a non-uniform distribution within agricultural fields, and site-

specific disease control management can capitalize on this spatial variability to reduce 

fungicide consumption and provide economic benefits. This study aims to compare the 

effectiveness of uniform and site-specific crop protection measures in managing the 

spread of Cercospora leaf spot, a foliar disease in sugar beet cultivation. Site-specific 

management is achieved by utilizing application maps generated from Unmanned Aerial 

Vehicle (UAV) and multispectral imagery, which are processed to determine disease 

quantification parameters. The study also evaluates the distance to inoculated zones and 

fungicide consumption to gain insights into disease epidemiology and control efficiency, 

respectively. Results show that conducting geo-referenced and UAV-based disease 

assessments allows for earlier disease control measures compared to visual scoring by 

humans. There were no significant differences in yield and quality parameters between 

uniform and site-specific fungicide management. The distance to the inoculation zone 

played a significant role in disease incidence and lesion numbers, highlighting its 

importance in implementing those UAV parameters in effective control measures. 

Surprisingly, site-specific fungicide management required a higher application rate 

compared to uniform management. Future research should focus on establishing UAV-

based thresholds for accurate site-specific disease control and exploring the potential of 

precision crop protection principles to optimize modern sugar beet production. 

Keywords: application map, disease incidence, decision-making, UAV, Cercospora leaf 

spot, sugar beet 
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7.2. Introduction 

The productiveness of crop is predominantly influenced by entviromental factors, which 

can cause stress responses in crops. In this context, plant pathogens are considered biotic 

stress factors that cause plant disease and can heavily harm the productiveness of crops. 

Plant diseases, often exhibit a patchy distribution within agricultural cultivated fields 

(Hillnhütter et al., 2011). However, current disease management practices rely on 

conventional methods that involve the uniform application of pesticides, including 

fungicides, resulting in undesired of over- and under-dosing across the entire field. To 

effectively address the heterogeneity of disease occurrence on field, a potential solution 

is the partition of agricultural fields into smaller areas for more targeted decision-making 

units (Oerke et al., 2010). Site-specific fungicide application is a promising in reducing 

fungicide consumption and optimizing crop production, thereby offering potential 

economic benefits (Maes and Steppe, 2019). Nevertheless, despite its potential 

advantages, site-specific fungicide management approaches are often neglected due to 

the lack of suitable technology for practical application for preventive and curative use 

(Oerke et al., 2010). 

In the last years, site-specific fungicide applications have gained considerable attention 

as a preventive fungal disease management approach, particularly for the cultivation of 

cereal crops. Numerous studies have explored this technique, which revolves around the 

optimization of fungicide doses based on crop biomass (Dammer et al., 2008; Ehlert and 

Dammer, 2006; Tackenberg et al., 2016). Deflection angle and multispectral imaging 

sensors were primarily utilized on acquiring geographic information and providing data for 

both off-line and on-line decision support systems. Site-specific and preventive systems 

have demonstrated the potential in reducing fungicide use from 8% to 23% in comparison 

to uniform fungicide application with no differences in yield performance (Ehlert and 

Dammer, 2006; Tackenberg et al., 2016). Another approach of preventive site-specific 

fungicide application involves leveraging satellite historical imagery and recurrent disease 

occurrence patterns across multiple years. For instance, in annual or perennial crops such 

as cotton, the use of color-infrared composite images and prescription maps to guide 

sprays has resulted in a reported 43% reduction in fungicide use (Yang, 2020). While 

preventive site-specific fungicide application has demonstrated a reduction of fungicide 
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usage, the exploration of spatial disease development poses a significant challenge for 

implementing another kind of site-specific management, curative site-specific applications 

(Thiessen and Heege, 2013). 

Imaging Unmanned Aerial Vehicle (UAV) systems have the capability to assess the 

disease development on fields by collecting data that contributes to the generation of 

detailed disease detection maps. Additionally, they play a crucial role in aiding the 

development of curative site-specific disease control strategies (Maes and Steppe, 2019; 

Mahlein et al., 2018). Modern Imaging UAV systems utilize high-resolution multispectral 

technology, which provides detailed canopy information in the visual and near-infrared 

spectral range, allowing field mapping under natural light conditions (Barreto et al., 2023; 

Ispizua Yamati et al., 2022; Jay et al., 2020). By capturing images and employing 

appropriate analysis routines, UAV systems offer a non-destructive assessment tool that 

delivers valuable disease intensity parameters, including disease severity (DS) (Barreto 

et al., 2023) and disease incidence (DI) (Barreto et al., 2022), which are obtained through 

automated post-processing steps. Furthermore, disease incidence serves as a reliable 

indicator for determining the optimal timing of fungicide applications in a curative response 

for foliar diseases (Wolf and Verreet, 2002). 

In sugar beet cultivation, Cercospora leaf spot (CLS) possess a significant threat to 

productivity and is caused by the fungus Cercospora beticola Sacc. (Jones and Windels, 

1991; Rangel et al., 2020; Skaracis et al., 2010). The integrated management of CLS is 

the standard agricultural practice to minimize the risk of pathogen resistance to fungicide 

and to ensure productivity (Cioni et al., 2014; Gummert and Ladewig, 2012; Jones and 

Windels, 1991; Wolf and Verreet, 2002). However, in cases where integrated measures 

such as crop rotation and resistant cultivars fail, curative applications serve as a last resort 

to safeguard sugar production in terms of both quantity and quality (Hoffmann, 2010). 

Decision-making tools for curative fungicide application are based on disease 

development and use epidemic thresholds as indicators which are expressed in DI (Lang, 

2005; Wolf and Verreet, 2002). Similarly, utilizing multispectral information obtained from 

UAV-based systems allows the determination of georeferenced DI values, offering an 

alternative decision support system for site-specific CLS management (Barreto et al., 

2022; Oerke et al., 2010). 
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The aim of this research was to: (I) adapt an automatic scoring approach for disease 

assessment that utilizes circle- and leaf-based parameters for disease quantification to a 

field experiment inoculated with C. beticola; (II) to generate fungicide application maps 

using threshold values derived from UAV-based disease incidence (DI) data. (III) to 

evaluate the influence of the distance of inoculation zone and two types of fungicide 

management (site-specific and uniform) on UAV-based disease quantification, yield, and 

quality parameters; and (IV) to determine the efficacy of fungicide application in terms of 

fungicide consumption to understand the effectiveness of site-specific and uniform CLS 

management. 

7.3. Material and methods 

Experimental field 

In year 2022, an experimental field study on CLS was carried out in Göttingen, Germany 

(51°33'18.6"N 9°54'01.4"E). The experiment was designed to investigate the effects of 

two fungicide strategies on the distance to the inoculation zone by using a randomized 

two-factorial design with three repetitions (see top part of Figure 7-1). The fungicide 

strategies employed were a uniform fungicide management based on the 

recommendation for the management of leaf diseases described by Gummert and 

Ladewig (2012); and a site-specific fungicide management. The uniform fungicide strategy 

was performed by tractor-based spraying, while the site-specific fungicide strategy was 

performed by a portable sprayer for manual application. Inoculation zones were delimited 

in circular regions with a diameter of 2 m. These regions were inoculated 12 days after 

sowing with effectively 4g per m2 CLS-infected sugar beet air-dried leaf material. In the 

following lines, the inoculation zones will also be referred to as hotspots. Inoculation was 

done in circular regions with a diameter of 2 m by hand, and. Seeking the stratification of 

automatic scoring, every plot was subsample in 50 miniplots (arrangement of 5 rows and 

10 columns). The second factor of the experimental design was determined by measuring 

the distance between the center of each miniplot to the center of the hotspot. During 

harvest, the root yield and quality were assessed in 12 miniplot within each plot (see top 

part of Figure 7-1). The beets were washed, weighed, and processed into beet brei. The 

brei samples were analyzed for sucrose, potassium, sodium, and amino-nitrogen content 

using standardized procedures. Lastly, white sugar yield (WSY) was calculated based on 
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root yield and quality parameters, following German standard equations (Märländer et al., 

2003). 

 

Figure 7-1. Multispectral and RGB-composite orthomosaic image of experimental field 
trial and visualization of fungicide management levels (uniform and site-specific); 
inoculation zones (hotspots); and miniplots to harvest (top). Down-left: heat map of 
georeferenced UAV- and leaf-based disease incidence (끫롮끫롮끫뢲끫뢲끫뢲끫뢲). Down-right: threshold 
value for automatic scoring based on disease incidence using image-based leaves 
instances. 
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Monitoring season 

Two types of monitoring approaches were employed to facilitate decision-making 

regarding fungicide application: a UAV-based and an expert-based monitoring 

respectively for site-specific and uniform treatment. To collect imaging data and mapping 

the study area, the UAV-based monitoring approach used a DJI Matrice 210 quadcopter 

(Da-Jiang Innovations Science and Technology Co., Ltd., China) as an UAV platform 

which carried a multispectral imaging sensor Altum (MicaSense, Inc., USA). The camera 

on the UAV captured imagery in three visible spectral bands (BLUE: 475 nm ± 20 nm, 

GREEN: 560 nm ± 20 nm, red: 668 nm ± 10 nm), two near-infrared spectral bands (NIR : 

840 nm ± 40 nm, REDEDGE: 717 nm ± 10 nm) and one thermal infrared band (LWIR, 11± 

3 µm) according to Barreto et al. (2022), although the thermal band was not considered 

for data analysis (Figure 7-1, top). In order to facilitate accurate georeferencing and time-

series overlaying, ground control points were strategically placed on the field and marked 

as reference points on the images for coordinate correction. These settings sought an 

average ground sample distance (GSD) of 3 mm for the multispectral orthomosaic images. 

The aerial images were acquired during flight missions conducted within three hours of 

local solar noon. In total three missions (each of 19 minutes) were required to map the 

complete experimental field. The flight parameters included a forward overlap of 70%, a 

lateral overlap of 70%, a flight speed of 0.6 m/s, and a flight altitude of 7 m above ground 

level. The expert-based monitoring consisted of visual assessment of DI following 

specifications of Wolf and Verreet (2002), and considering middle leaves as scoring unit. 

In view of an anticipated harvesting campaign concluding in late September 2022. The 

monitoring period for triggering fungicide spraying in both approaches was determined 

based on the growing stage and specific criteria outlined by fungicide producer and 

approved by the German Federal Office of Consumer Protection and Food Safety (BVL) 

in line to the Europe Union legal framework regulation N° 1107/2009 (EC, 2009). The 

monitoring period for application began when sugar beet row closure was achieved, 

indicating that the sugar beets had sufficiently grown and closed together within the row. 

This marked the initiation of monitoring activities for both the UAV system and the expert. 

On the other hand, the monitoring period ended on the last permissible date for fungicide 

application before sugar beet harvesting. This boundary was established to comply with 
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the guidelines and regulations set by the BVL, ensuring proper monitoring and treatment 

of sugar beet crops. During this period, data was collected at four monitoring timepoints 

(Figure 7-2): on June 30th, July 21st, August 8th, and August 19th; and June 30th, July 

14th, August 8th, and August 26th for both the UAV-based and expert monitoring 

respectively. Additionally, for time-series analysis of UAV-based parameters, six further 

monitoring dates were conducted on May 31st, June 7th, June 16th, June 21st, 

September 1st, and November 6th.  
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Figure 7-2. Application schedule for site-specific (left) and uniform (right) fungicide 
management. Gray and black arrows on the timeline visualize the monitoring and 
application date respectively. Decision-making for miniplots were ruled by healthy or 
diseased detection and the spray windows between applications according to fungicide 
manufacturer. 

 

Data processing, automatic scoring, and UAV-based parameters 

Multispectral raw images were truncated and calibrated from digital numbers to 

reflectance according to the camera manufacturer repository (MicaSense, 2018). For the 
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photogrammetry, we use the software Agisoft Metashape Professional (Version: 1.6.3 

build 10732, 64 bit, Agisoft LLC, Russia) for stitching of truncated multichannel images, 

and export the output as orthomosaic as well as the Digital Surface Model (DSM). RGB 

composite image was generated from multispectral orthomosaic and used for leaf 

segmentation according to previous contribution (Barreto et al., 2022), obtaining as result 

a GeoPackage file containing leaves as polygons (instance leaf segmentation array, 끫롮끫뢲끫뢲끫뢲끫뢲). 

For each miniplot, seventeen parameters were extracted from the instances circle (끫롮) and 

leaf (끫롾) as soring units according to Barreto et al. (2022, 2023). The parameters calculated 

were: foliage cover (끫롲끫롲), cover of diseased foliage (끫롲끫롲끫뢢), cover of healthy foliage (끫롲끫롲ℎ), 

area of diseased foliage (끫롨끫롮), area of healthy foliage (끫롨끫롶), area of foliage (끫롨끫롲), leaf area 

(끫롨끫뢲), area- and circle-based disease severity (끫롮끫롮), cover- and circle-based disease 

severity (끫뢢끫뢢), area- and leaf-based disease severity (끫롮끫롮끫뢲끫뢲끫뢲끫뢲), cover- and leaf-based 

disease severity (끫뢢끫뢢끫뢲끫뢲끫뢲끫뢲), leaf slope (끫븂끫뢲), leaf-based average cluster area (끫롨끫뢠̅), number of 

clusters within circle unit (끫뢠끫롸) number of clusters within leaf unit (끫뢠끫롾), leaf-based disease 

incidence (끫롮끫롮끫뢲끫뢲끫뢲끫뢲) circle-based disease incidence (끫롮끫롮). 

Generation of application maps 

The decision-making process for site-specific management relied on the evaluation of the 

UAV- and leaf-based parameter 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 as an indicator. A diseased unit was considered 

present if at least one cluster or CLS spot was detected on a segmented leaf. A visual 

representation of determined georeferenced 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 is shown in Figure 7-1 (bottom-left). 

Drawing upon the findings from our previous study (Barreto et al., 2022) and the 

performance assessment of 끫롮끫롮끫뢲끫뢲끫뢲끫뢲, we established a fixed UAV-based epidemic threshold 

of 25% 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 (Figure 7-1, bottom-right). Due to limited knowledge of UAV-based epidemic 

thresholds and the high occurrence of False Positive (FP) classifications in 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 

calculations, only one threshold was proposed for fungicide application. The timing of 

repetitive fungicide applications was determined by considering the minimal spray 

windows specified by the BVL, as well as exceeding the UAV-based epidemic threshold. 

Application maps were generated based on the scoring of each miniplot and the criteria 

for repetitive fungicide applications. 
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Analysis of temporal disease development 

In accordance to Madden et al. (2007b), Area Under Disease Progress Curve (AUDPC) 

was calculated for UAV-based parameters. Our first assessment was considered on 31 

May (first monitoring date) and the last on 6 November. In total 10 time points were used 

for calculating the AUDPCs. 

Statistic 

Quality analysis parameters and UAV-based AUDPCs were evaluated through various 

statistical tests including the outlier test, dispersion test, and Kolmogorov-Smirnov (KS) 

test. These tests were conducted to ensure the absence of outliers, normal distribution of 

variables, linearity, and homoscedasticity. In cases where no significant deviations were 

observed, linear modeling was employed. Additionally, ANOVA was applied with the 

randomized two-factorial design to determine the significance of fungicide management 

and the distance miniplot-hotspot factor. 

For cases where significant observations were specifically reported for the dispersion and 

KS tests, Generalized Linear Model (GLM) frameworks were applied using various link 

functions such as gamma, gamma inverse, Gaussian, negative binomial, logarithmic 

transformation, Poisson, and Quasi-Poisson regression. The choice of a specific GLM 

framework was based on the outcomes of the dispersion and KS tests, respectively. 

To evaluate the degree of linear correlation and identify significant differences between 

UAV-based parameters and WSY, Pearson's correlation coefficient (끫뢾) or Spearman's 

correlation coefficient (끫뢾끫룀) were calculated. 

7.4. Results 

Evaluated application dates, dynamic of site-specific decision-making, and 

fungicide consume 

Four application dates were scheduled for the site-specific fungicide management 

treatment, while the uniform variant was treated twice with fungicide (Figure 7-2). On 

average, there was a 6-day delay between monitoring and application for the uniform 

fungicide treatment, while the site-specific treatment experienced an average delay of 10 

days. The site-specific fungicide application began 38 days earlier than the uniform 
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treatment and targeted 16 miniplots near hotspots (Figure 7-2 and Table 7-1). The site-

specific treatment followed a unique approach for deciding the fungicide spray on 

miniplots. In the first application, miniplots within plot samples were classified as 

"diseased" and sprayed if they met or exceeded the UAV-based epidemic threshold (25% 끫롮끫롮끫뢲끫뢲끫뢲끫뢲). For the second site-specific application, an additional condition was taken into 

consideration, based on the specifications provided by the fungicide producer. Diseased 

miniplots were not sprayed if the minimum spray window between fungicide applications 

had not elapsed (Figure 7-2). Furthermore, it was possible to track the recovery of 

miniplots. Those miniplots that were sprayed in the previous date but detected as healthy 

in the subsequent assessment were identified. By the second application, 31% of 

miniplots had recovered, while the remaining miniplots were not sprayed due to the 

minimum spray window requirement. Sixty-nine miniplots were treated with the site-

specific management on the second application date (Table 7-1). At the third monitoring 

date, both approaches required fungicide application. The uniform treatment reached the 

first epidemic threshold according to Gummert and Ladewig (2012) and 50 miniplots were 

sprayed (Table 7-1). On the other hand, the site-specific approach showed a 51% 

recovery rate among the miniplots treated in the previous date. Of all the miniplots 

detected as diseased, 68% were not sprayed due to the minimum spray window 

requirement. Only 21 miniplots were treated on this application date using the site-specific 

approach. In the final monitoring date, both approaches once again required fungicide 

applications. In the uniform approach, 100 miniplots met the second epidemic threshold 

and were treated (Figure 7-2 and Table 7-1). The site-specific approach detected 140 

miniplots as diseased, out of which 85% were sprayed. Seventy-nine miniplots were 

treated for the second time, while 29% of the detected miniplots were treated for the first 

time (Table 7-1). Overall, the site-specific treatment involved 225 miniplot sprays, while 

the uniform treatment had 150 sprays, representing a 50% increase in miniplot 

applications compared to the fungicide management approach proposed by Gummert and 

Ladewig (2012). 

Table 7-1. fungicide management for uniform (tractor-based) and site-specific 
application 

    Application  
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(N miniplot) 

 
application 

date 

monitoring 

date 
threshold 1° 2° subtotal 

uniform 
16/08/2022 08/08/2022 끫롮끫롮 (visual) = 5% 50 0  

29/08/2022 25/08/2022 끫롮끫롮 (visual) = 45% 100 0 150 

site-

specific 

08/07/2022 30/06/2022 끫롮끫롮끫뢲끫뢲끫뢲끫뢲(UAV) = 25% 16 0  

28/07/2022 21/07/2022 끫롮끫롮끫뢲끫뢲끫뢲끫뢲(UAV) = 25% 69 0  

19/08/2022 08/08/2022 끫롮끫롮끫뢲끫뢲끫뢲끫뢲(UAV) = 25% 21 0  

01/09/2022 19/08/2022 끫롮끫롮끫뢲끫뢲끫뢲끫뢲(UAV) = 25% 40 79a 225 끫롮끫롮(visual): disease incidence based on visual assessment with leaves as scoring units; 끫롮끫롮끫뢲끫뢲끫뢲끫뢲(UAV): disease incidence based on automatic scoring using image-based leaves 

instances. aPrevious application at 08/07/2022 and 28/07/2022. 

 

Impact of fungicide strategy and inoculation distance on quality and canopy 

parameters 

The results of the quality analysis indicated that neither the fungicide management nor 

the distance hotspot-miniplot factor had a significant effect on any of the sugar beet quality 

parameters, as shown in Table 7-2. However, when considering the combined effect of 

distance and management, there was an impact on the sugar content. Canopy parameters 

assessed by UAV such as 끫롨끫롶, 끫롨끫롲 and 끫롲끫롲끫뢢 were significantly influenced by the fungicide 

management when using circles as the scoring unit. The most notable differences were 

observed in the AUDPC values of 끫롨끫롶 and 끫롨끫롲. On average, the site-specific fungicide 

management resulted in higher accumulative values of 끫롨끫롶 compared to the uniform 

treatment, with AUDPC끫롨끫롶 values of 8754 and 8055 cm2.days, respectively. Similar 

differences were observed with the parameter 끫롨끫롲, with AUDPC끫롨끫롲 values of 9523 and 

8783 cm2.days, respectively. None of the circle-based parameters (끫롲끫롲, 끫롮끫롮, 끫뢢끫뢢, 끫롮끫롮, and 끫롲끫롲ℎ) met the requirements for linear or GLM modeling. 

When using segmented leaves as the scoring unit, both the distance and fungicide 

management factors significantly influenced the disease control parameter 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 
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according to GLM (Gamma inverse) modeling (Table 7-2). On average, the uniform 

management exhibited a lower AUDPC끫롮끫롮끫뢲끫뢲끫뢲끫뢲 compared to the site-specific management. 

In both treatments, the amount of AUDPC끫롮끫롮끫뢲끫뢲끫뢲끫뢲 decreased as the miniplot deviated from 

the inoculation point. The parameter 끫뢠끫롾 was strongly influenced only by the distance to the 

hotspot (Table 7-2), with no significant influence observed for AUDPC끫뢠끫롾 by the fungicide 

management factor. Similar behaviors were observed for AUDPCs of 끫뢢끫뢢끫뢲끫뢲끫뢲끫뢲 and 끫롮끫롮끫뢲끫뢲끫뢲끫뢲, 

but with a lower level of significance for the distance factor. All the mentioned parameters 

with leaves as instances were suitable for modeling with GLMs using Gamma inverse and 

logarithmic transformations as link functions (Table 7-2). Linear modeling was feasible for 

the parameters 끫롨끫뢲 and 끫븂끫뢲. The AUDPC끫롨끫뢲 did not show any significant influence from the 

fungicide management or distance hotspot-miniplot factors. AUDPC끫븂끫뢲 showed a 

combined effect of management and distance, while the leaf-based parameter 끫롨끫뢠̅ did not 

meet the requirements for linear or GLM modeling.  

Relationship between UAV-based AUDPC’s, yield and quality parameters 

After evaluating the normal distribution of the data, both parametric and non-parametric 

correlation tests were conducted to assess the relationship between UAV-based AUDPCs 

and WSY, as shown in Table 7-3. Out of the fourteen parameters analyzed, significant 

correlations were found between WSY and 끫롲끫롲, 끫롲끫롲ℎ, 끫롨끫롶, 끫롨끫롲, 끫롨끫뢲 끫롮끫롮, 끫뢢끫뢢, 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 and 끫뢢끫뢢끫뢲끫뢲끫뢲끫뢲 

(Table 7-3). The circle-based parameters, including 끫롲끫롲, 끫롲끫롲ℎ, 끫롨끫롶, 끫롨끫롲, exhibited the highest 

correlation coefficients. Among them, the area-based parameters allowed for parametric 

correlation testing. Notably, AUDPC끫롨끫뢲 showed the highest correlation with WSY among 

all leaf- and UAV-based parameters (Table 7-3). A significant negative correlation was 

observed between all UAV-based DS parameters and WSY, indicating an inverse 

relationship. The strongest correlations within the DS parameters were observed when 

using circles as the scoring units compared to using leaves. 
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Table 7-3. summary of correlation test between AUDPC of UAV-based parameters and 
white sugar yield (WSY) considering Pearson (parametric) or Spearman’s rank (non-
parametric) method 

Parameter instance coefficient test 

foliage cover (끫롲끫롲) circle 0.76 non-parametric 

cover of healthy foliage (끫롲끫롲ℎ) circle 0.76 non-parametric 

area of healthy foliage (끫롨끫롶) circle 0.76 parametric 

area of foliage (끫롨끫롲) circle 0.75 parametric 

leaf area (끫롨끫뢲) leaf 0.70 non-parametric 

disease severity (끫롮끫롮-area based) circle -0.54 non-parametric 

disease severity (끫뢢끫뢢-cover based) circle -0.54 non-parametric 

disease severity (끫롮끫롮끫뢲끫뢲끫뢲끫뢲 -area based) leaf -0.27 non-parametric 

disease severity (끫뢢끫뢢끫뢲끫뢲끫뢲끫뢲 -cover based) leaf -0.26 non-parametric 

area of diseased foliage (끫롨끫롮) circle -0.23 n.s. non-parametric 

leaf slope (끫븂끫뢲) leaf 0.20 n.s. parametric 

average cluster area (끫롨끫뢠̅) leaf -0.19 n.s. non-parametric 

cover of diseased foliage (끫롲끫롲끫뢢) circle -0.17 n.s. non-parametric 

number of clusters (끫뢠끫롾) leaf -0.17 n.s. non-parametric 

number of clusters (끫뢠끫롸) circle -0.16 n.s. parametric 

disease incidence (끫롮끫롮끫뢲끫뢲끫뢲끫뢲) leaf -0.12 n.s. non-parametric 

disease incidence (끫롮끫롮) circle -0.03 n.s. non-parametric 

n.s. = no significance identified; parametric and non-parametric data used respectively a 
Pearson and Spearman’s rank coefficient  
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Figure 7-3. Relationship of AUDPC for six UAV-based parameters and white sugar yield 
(WSY). The shape of the data points in the graphic enables the identification of both 
uniform and site-specific fungicide management practices. The strength of the correlation 
is represented by the Pearson coefficient (r) and the Spearman's rank coefficient (rs). 
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7.5. Discussion 

In this study we developed a multispectral UAV-imaging data analysis approach for 

disease quantification to deliver geo-referenced fungicide application maps to control CLS 

in sugar beet. By employing a UAV-based CLS epidemic threshold of 25% 끫롮끫롮끫뢲끫뢲끫뢲끫뢲, it was 

possible to generate application maps that strongly supported site-specific CLS control. A 

difference of over a month was observed between the first fungicide application in the site-

specific and uniform management approaches. Despite the year 2022 being characterized 

by low precipitation and high temperatures, which typically indicate slow CLS 

development (Lang, 2005), this study demonstrated that conducting multiple geo-

referenced disease assessments can enable earlier disease control measures within a 

field compared to relying on unique visual assessments as suggested by Wolf and Verreet 

(2002). This highlights the importance of utilizing multispectral UAV systems for 

monitoring sugar beet fields and CLS management. 

No significant effects on yield and quality parameters were observed due to either 

fungicide management or distance to hotspot. When considering the behavior of the white 

sugar yield parameter, it was found that economic losses caused by the pathogen were 

controlled to the same degree by both, the uniform and the site-specific management. The 

main reason for this analogy in performance is that none of the fungicide management 

strategies exceeded the economic damage threshold of 5% DS, indicating control of the 

pathogen (Wolf et al., 1998a). Foliage and healthy foliage area were strongly associated 

with the fungicide management strategy. The miniplots with site-specific fungicide 

management kept over the complete monitoring season the highest amount of healthy 

foliage and total foliage tissue. This strong association is probably related to the higher 

fungicide consume and the systemic effect of used fungicides. Site-specific fungicide 

management used 50% more fungicide compared to the uniform variant. 

The distance to the hotspot has a significant impact on AUDPC끫롮끫롮끫뢲끫뢲끫뢲끫뢲, but it particularly 

affects AUDPC끫뢠끫롾. Using Gamma Inverse models, both AUDPC끫롮끫롮끫뢲끫뢲끫뢲끫뢲 and AUDPC끫뢠끫롾 

exhibited an exponential decay as the miniplot moved further away from the hotspot. This 

characteristic emphasizes the importance of these parameters for implementing effective 
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disease control measures. The parameter 끫뢠끫롾 has the potential to describe the stages of 

CLS disease development in a similar manner to 끫롮끫롮끫뢲끫뢲끫뢲끫뢲. 

Foliage, specifically healthy foliage tissue, plays a crucial role in the absorption of energy 

and dry matter through the surface of photosynthetically active tissues (Draycott, 2006). 

Consequently, the parameters 끫롲끫롲, 끫롲끫롲ℎ, 끫롨끫롶 and 끫롨끫롲 exhibit the strongest correlation in this 

regard. Additionally, the average area of sampled leaves (끫롨끫뢲) could potentially serve as 

an immediate means of quantifying photosynthetically active tissue. The loss of healthy 

tissue, quantified by DS, directly impacts yield reduction (Draycott, 2006). As a result, 

significant correlations between UAV-based DS and WSY are observed in the context of 

this experiment. 

In this study, unexpected amount of fungicide applications were observed for site-specific 

fungicide management, with a 50% higher application rate compared to uniform 

management. Mahlein et al. (2012) have highlighted that the utilization of sensor-based 

support systems for site-specific application necessitates an understanding of disease 

spread to effectively prevent disease intensity from surpassing the economic damage 

threshold. The IPM model proposed by Gummert and Ladewig (2012) is the culmination 

of nearly 20 years of extensive research aimed at optimizing fungicide application through 

the incorporation of knowledge on CLS epidemics. This model utilizes indicators obtained 

through visual assessments (Gummert and Ladewig, 2012; Wolf et al., 1995). However, 

in order to establish new UAV-based thresholds for CLS control, it is imperative to acquire 

a deeper comprehension of the parameters developed using UAV technology for 

monitoring CLS spread, along with their equivalence to the parameters obtained through 

visual assessments. By implementing site-specific management for disease control, 

precisely targeting the right location and timing to minimize fungicide application, the 

principles of precision crop protection are upheld (Oerke et al., 2010). These 

advancements have the potential to make a tremendous contribution to modern and 

sustainable sugar beet production. 

In summary, this study successfully applied a multispectral UAV-imaging data analysis 

approach as a decision-making support system for quantifying CLS disease. This 

approach enabled the implementation of site-specific control measures. The findings 
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highlighted the importance of conducting geo-referenced disease assessments using 

UAV technology to potentially achieve early disease control in sugar beet fields. 

Furthermore, the study highlighted the significant role of fungicide management strategies 

in influencing the health of foliage. It also revealed a strong relationship between yield and 

circle-based foliage parameters. Additionally, the study demonstrated the sensitivity of 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 and 끫뢠끫롾 parameters related to disease intensity and development stages, to hotspot 

distance, which is vital for effective CLS management practices. Overall, these 

advancements hold great potential for enhancing modern and sustainable sugar beet 

production. 
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CHAPTER 8:  General Discussion 

This thesis demonstrated the feasibility of multispectral unmanned aerial vehicle (UAV) 

systems to support an integrated Cercospora leaf spot (CLS) management by assessing 

disease intensity accurately. Screening sugar beet genotypes for CLS resistance in 

breeding programs and decision supporting systems for precise crop protection measures 

are the two main applications scenarios of such a monitoring system. As shown in this 

thesis, multispectral UAV-systems allow determination of CLS susceptibility of sugar beet 

genotypes precisely. However, the application for disease control measures requires 

further optimization in future studies. This chapter bridges the findings of Chapter 3 and 

Chapter 7 with the specific objectives outlined in Chapter 2. These objectives encompass: 

(I) identifying plants as scoring units for quantifying plant-based disease severity (DSplant); 

(II) establishing a continuous ratio-scale parameter for disease severity (DS); (III) 

integrating an instance-based leaf segmentation approach to determine leaf-specific 

disease intensity parameters; and (IV) generating application maps based on UAV-

derived disease incidence (DI) parameter. The ultimate goal is to enable precise, and site-

specific CLS control. 

Image detection and georeferencing of plants for disease severity prediction 

The identification of plants as scoring unit is a primary task for disease quantification. 

Chapter 3 focused on optimal conditions of flight timing and the detection of plant position 

based on UAV images. Two factors were evaluated for performance of detection and 

counting of sugar beet plants: the intra-row distance and the growing stage (BBCH). The 

study used a previously trained fully convolutional network (FCN) pipeline for detection 

and classification of crop and weed plants (Lottes et al., 2018a). The best detection and 

count of sugar beet plants were obtained by BBCH 16-18 with an intra-row distance of 20-

21 cm (Barreto et al., 2021). The principals for robustness of the FCN pipeline are 

connected to the regular field arrangement and intra-row distance of crops (Lottes et al., 

2018b; Sa et al., 2018). Loss of counting performance is observed by reducing the intra-

row distance. Here misdetection and under-count is related to narrow distance by counting 

two plants as one, especially if the midrib and tip leaf is aligned and substantially close to 

the neighbor plant (Barreto et al., 2021). No indications of performance decline were 

observed when comparing the feasible multispectral image resolution (approximately 3 
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mm ground sample distance, GSD) and RGB images (approximately 1 mm GSD) in terms 

of crop detection and counting (Barreto et al., 2021). Unfortunately, the influence of light 

condition, especially on cloudy and sunny days, for detection and counting performance 

was not determined.  

The detection of plant position before canopy closure is a crucial element that allows time-

series image-based monitoring of individual plants, including their health condition. 

Chapter 4 is as well linked to specific objective I, which centers on the quantification of 

DSplant. When plant position or plant centroid are identified before canopy closure and after 

image analysis, the geographic information of plants keep stored and can be used later 

for time-series segmentation of plant regions within orthomosaics, here the estimation of 

disease intensity parameters such as DS is possible. In Chapter 4, an ordinal and 

categorical pipeline was proposed for estimating plant-based DS. The image analysis 

pipeline used the plant centroid coordinates as image center to crop and generate squared 

RGB composite images with 224 x 224 pixels standard by 0.2 cm/px GSD. A trained LeNet 

CNN model classified each plant image into ten categories (0 to 9 scale), where category 

1-9 emulates the KWS-scale explained in Chapter 1, moreover, the category 0 was 

ordered to healthy plants before canopy closure. All plants classified as 0 were reordered 

to category 1 in a post-processing step. In this thesis, we found two limitations of the plant- 

and image-based automatic scoring especially if CLS resistance screening is desired. The 

first is related to the ground truth. As mentioned in Chapter 1, the KWS-scale is a 

categorical and ordinal scale that deliver limited epidemiological information in 

comparison of a ratio scale. This information loss can be essential for ranking disease 

susceptibility, especially in the case of narrow quantitative resistance range. Three-

dimensional scoring objects such as plants are difficult to estimate, being recommended 

the smallest possible scoring units such as a leaf (Kranz, 1988). Lastly, Vereijssen et al. 

(2003) mentioned that a categorical CLS scale delivers assessment errors when 

monitoring in sunny days, on wet plants or on darker colored varieties. However, 

categorical DS assessment is faster, less costly and less destructive in comparison to 

ratio or percentage scales, making these facts attractive for breeders (Bock et al., 2020). 

The second limitation is influenced by the accuracy of categorical automatic prediction, 

but also connected to the performance of the classification task during machine learning 
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modeling. Here aspects such as imbalanced datasets, class separability (Sokolova and 

Lapalme, 2009) and beet field distribution impact the UAV-based assessment of DS 

parameter. In this thesis we found that the degree of KWS-scale is drastically variable on 

the collected data of a field. Both, healthy and diseased plants with total foliage death 

(KWS-scale 1 and 9) are the most frequent samples, collected during the monitoring 

season (Table 4-1). Considering multiclass performance metrics, high F1-score indicates 

a good balance between Precision and Recall, which is especially useful when dealing 

with imbalanced datasets and can indicate that the model is effectively separating different 

disease categories. The best results in terms of F1-score are related to the most frequently 

labeled classes (KWS-scale 1 and 9; healthy and diseased with total foliage death). KWS-

scale 8 is the worthiest trained class with less frequency on the training set with high 

Precision values. The classification of remaining KWS-scales (2, 3, 4, 5, 6, and 7) is 

inaccurate with F1-scores lower than 40%, which suggest limited properties of trained 

classifier for class separability, and this can suggest the reduction of KWS-categories 

(Sokolova and Lapalme, 2009). Besides accuracy of expert estimation, the factors for this 

inaccurate prediction within KWS-categories should be related to similar intra-class 

features for class discrimination (Sokolova and Lapalme, 2009), and sugar beet plants 

distribution on the field, where neighbor plants with low or higher severity affected the 

performance of the prediction (Ispizua Yamati et al., 2022). Reducing the number of 

classes may indeed enhance the robustness of automatic predictions using UAV-based 

data. However, it is important to note that decreasing the granularity of disease severity 

classes/categories may diminish the UAV-pipeline's ability to discern varying resistance 

levels. This, in turn, compromises the primary objective of aiding plant breeding efforts. 

The categorical plant and UAV-based scoring present also a limitation for crop protection. 

By analyzing Table 4-1, diseased plant units during first symptoms (KWS scale 2) present 

the lowest Precision performance (15%). This metric reflects a high ratio of False Positive 

classification of diseased plants (Sokolova and Lapalme, 2009). High accurate 

classification of diseased plants during first symptoms is relevant for the determination of 

DI and decision-making in crop protection measures. The limitations of a plant- and 

categorical-automatic scoring, especially for plant breeding in assessing variety trials but 

also for crop protection measures, promotes the establishment of a new scoring pipeline 
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cover aiming a pixel-wise scoring to avoid DS information leakage and evaluate the 

determination of DI (see Chapter 5). 

Ratio scale disease severity estimation for ranking resistance 

Chapter 5 is connected to the second objective of this thesis for establishing a continuous 

ratio-scale parameter for DS. For this task, it was proposed a pixel-wise classification of 

diseased and healthy tissue from multispectral UAV-images. The image analysis 

approach in Chapter 5 ignores the 2D morphological structure and focuses on exploring 

multispectral bands and features of a digital surface model to feed 1D machine learning 

methods such as partial least squares discriminant analysis (PLS-DA) and support vector 

machine radial (SVMR) in a multiclass classification approach. During machine learning 

modeling, pixels were classified in four classes: “healthy”, “diseased”, “soil”, and “other”. 

In Chapter 5 is observed the same phenomenon as in Chapter 4, imbalance class 

distribution. Only 3% of labeled pixels belonged to diseased canopy tissue, while 77% of 

labeled samples belonged to healthy tissue. The proposed approach in Chapter 5 is a 

two-classifier (PLS-DA and SVMR) pipeline. High perform in terms of Precision and Recall 

was reported for the healthy class (Precision = 95% and Recall= 92%) (Barreto et al., 

2023). However, only 33% of Precision and 62% of Recall was achieved for classifying 

diseased regions. By considering the importance of each input variable to classifiers, it 

was found that the NIR channel or a vegetation index such as MCARI2 highly presents 

impact for classifying healthy tissue and soil regions within an image.  

Implementing the use of the digital surface model (DSM), this thesis proposes the 

calculation of a list of cover-based and area-based phenotyping parameters considering 

circular areas as scoring units. For variety trials, accurate determination of ratio scale DS 

(area based 끫롮끫롮끫뢐끫뢐끫뢐) was observed with a high degree of relationship between 끫롮끫롮끫뢐끫뢐끫뢐 and 

Expert-based DS (R2=0.87%). A slightly underestimation of 끫롮끫롮끫뢐끫뢐끫뢐 was observed in 

comparison to expert-based scoring. This underestimation is likely related to the nadir 

perspective. Multispectral camera arranged in a nadir perspective record middle leaves 

but also unfolded new leaves, and petioles, which are mostly healthy, influencing the score 

of 끫롮끫롮끫뢐끫뢐끫뢐 within circular areas. Leaf inclination and pixel-resolution should also contribute 

to an underestimation, due to the mixed-pixel effect of healthy and diseased inclined 

tissue. Further phenotyping parameters were also defined in this thesis, including foliage 
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cover (끫롲끫롲), cover of healthy foliage (끫롲끫롲ℎ), cover of diseased foliage (끫롲끫롲끫뢢), area of foliage 

(끫롨끫롲), area of healthy foliage (끫롨끫롶), area of diseased foliage (끫롨끫롮), disease severity (cover 

based, 끫뢢끫뢢끫롸), number of clusters (끫뢠), number of clusters per unit of foliage area (끫뢠끫롲), mean 

cluster area (끫롨끫뢠̅), mean cover cluster per unit of foliage cover (끫롲끫뢠̅/끫롲), mean area of cluster 

by unit of foliage area (끫롨끫뢠̅/끫롲), and disease incidence within circular regions (끫롮끫롮끫뢐끫뢐끫뢐).  

This thesis significantly advances our comprehension of epidemiological CLS 

development in distinct varieties. In Chapter 5, the temporal dynamics of both the number 

and area of singular necrotic regions, characterized by parameters 끫뢠 and 끫롨끫뢠̅/끫롲, illustrate 

the contrast between susceptible and resistant varieties (see Figure 5-4). The susceptible 

variety exhibits an early, sharp increase in 끫뢠, followed by a rise in the parameter 끫롨끫뢠̅/끫롲; 

whereas the resistant variety demonstrates a gradual increase in 끫뢠, followed by a more 

subdued rise in 끫롨끫뢠̅/끫롲 compared to its susceptible counterpart. This observation aligns with 

the disease progression described by Rangel et al., (2020), and Weiland and Koch (2004), 

wherein an increase in the number of CLS spots is succeeded by the formation of larger 

necrotic areas after coalescence of individual spots. This thesis introduces a non-

destructive, image-based assessment method to quantify these progression steps using 

the parameters 끫뢠 and 끫롨끫뢠̅/끫롲. 

Time-series UAV monitoring and image analysis allows determination of the area under 

disease progress curve (AUDPC) individually for UAV-based parameters including DS. 

This thesis highlights the applicability of UAV-based AUDPCDS for ranking CLS resistance. 

Area-based DS allows better differentiations of variety performance in comparison to 

cover-based parameters. In Chapter 5, it was also found that parameters such as 끫롨끫롲, 끫롨끫롶, 

and 끫롨끫뢠̅ are relevant parameters for ranking CLS resistance and might be considered if 

multispectral UAV-systems are used as monitoring tools in variety trials.  

Although the mentioned advantages for the application of multispectral UAV-based 

pipeline for ranking CLS resistance in variety trials, crucial limitations for robust application 

in crop protection were observed. The determination of UAV-based DI within circular 

regions showed in time-series a high detection of diseased circular units (circular regions 

with at least one cluster, 끫뢠 ≥ 1), when plants were healthy. This discrepancy is primarily 

attributed to a low Precision and an elevated rate of False Positives (FP) in classifying 
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diseased pixels. As illustrated in Figure 5-2, a substantial decline in Precision is primarily 

caused by the misclassification of soil regions as diseased plant regions. Notably, the 

presence of plant debris on the ground emerges as a predominant factor contributing to 

the misclassification of the 'diseased' class. Organ segmentation such as leaf 

segmentation should reduce the change of any misclassification of regions belonging to 

classes “soil” and “other” by reducing FP rate of “diseased” class and enhancing the 

accuracy of UAV-based DI. This advancement holds promise for expanding the potential 

of multispectral UAV imagery in crop protection measures. Therefore, Chapter 6 focuses 

on the segmentation of singular leaves. 

Controlling false positive rate by leaf segmentation 

In connection to objective III of this thesis, Chapter 6 focuses on the development of an 

image-based leaf segmentation approach including the use of the instance segmentation 

technique called Mask-RCNN (He et al., 2017). The focus of this Chapter is to reduce the 

FP rate of diseased regions. However, a possible improvement in the determination of 

UAV-based DS is also reached by leaf segmentation. The chosen approach includes the 

modeling of a Mask-RCNN approach, having as first disadvantage the requirement of high 

number of labeled images. The demand of labels for training data is compensated by 

implementing augmentation data, where two methodologies were evaluated (standard- 

and copy-paste augmentation). Simple augmentation techniques showed the best 

performance for instance leaf segmentation, while under sunny light condition 

segmentation performance tends to decrease in Precision. The integration of leaf instance 

segmentation allows the determination of new phenotyping parameters including 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 

and 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 (UAV- and leaf-based assessment), but also leaf area (끫롨끫롾), leaf slope (끫븂끫뢲), 
disease leaf area (끫롨끫롮), healthy leaf area (끫롨끫롶), and number of clusters (끫뢠끫롾) and mean 

cluster area (끫롨끫뢠̅). Considering the application scenario in variety trials, it was found that 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 is not relevant for determining CLS resistance in sugar beet varieties. Low 

correlation between UAV-based and expert-based scoring was observed especially under 

heavy CLS damage. When expert-based DS exceed 40%, leaf- and UAV-based 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 

drops. This behavior can be attributed to the regrowth of new leaves as a response of 

sugar beet plants to complete canopy damage (Weiland and Koch, 2004). This regrowth, 

likely captured by the UAV-system, exhibits a healthy leaf appearance. This 
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epidemiological progression of 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 differs from the 끫롮끫롮끫뢐끫뢐끫뢐 (circle-based 끫롮끫롮), 

underscoring the importance of image-based segmentation in defining the scoring unit. A 

similar phenomenon is also observed with parameters 끫뢠 and 끫뢠끫롾,both circle- and leaf-

based. In the variance analysis results presented in Chapter 5, the circle-based parameter 끫뢠 shows no significant influence in terms of variety factor. However, in Chapter 6, clear 

distinctions in the disease progress of 끫뢠끫롾 are visually apparent, providing a means to 

differentiate between sugar beet genotypes. 

The application scenario for controlling CLS necessitates precise UAV-based indicators 

for effective decision-making (Wolf and Verreet, 2002). To enhance the accuracy of UAV-

based DI through leaf segmentation, it is imperative to define 'diseased' units at the image-

based and leaf-level. In Chapter 6, 끫뢠끫롾 emerged as the parameter with the highest potential 

for implementing crop protection measures. By employing the criterion “끫뢠끫롾 ≥ 1” for disease 

detection and calculating 끫롮끫롮끫뢲끫뢲끫뢲끫뢲, a noticeable reduction in the FP rate was achieved when 

compared to the circle-based 끫롮끫롮끫뢐끫뢐끫뢐. However, complete eradication of FP classifications 

proved elusive and may necessitate improvements in the Precision of the pixel-wise 

classification pipeline for robust deployment in crop protection. A potential strategy for 

reducing the FP rate was demonstrated by increasing the threshold for the number of 

clusters within a leaf (끫뢠끫롾 ≥ 5). Nonetheless, this adjustment shifted the exponential phase 

of 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 to a later time point, rendering it suboptimal for practical implementation. 

The question remains whether the delayed development of 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 with a less stringent 

disease detection criteria continues to exhibit advantages, especially when combined with 

georeferencing of scoring. The georeferenced analysis of subsampled areas within the 

field offers the potential to provide georeferenced threshold values, enabling 

individualized decision-making and a potential reduction in fungicide application. This 

issue of site-specific CLS control is addressed in Chapter 7. 

Site-specific disease control based on multispectral UAV-data  

One highlight of this thesis, the first study for site-specific and curative fungicide 

management was reported in Chapter 7. Achievements from Chapter 5 and 6 are 

integrated on the georeferenced and UAV-based assessment to generate application 

maps, considering disease development for calculating 끫롮끫롮끫뢲끫뢲끫뢲끫뢲. Two management 
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strategies, a uniform and a site-specific application were evaluated regarding fungicide 

consumption and within a well-known CLS inoculated regions. White sugar yield (WSY) 

and AUDPCs for UAV-based parameters were evaluated in this Chapter. To better 

understand disease spread after site-specific application, an analysis of distance between 

inoculated zone and subsamples fields was performed. 

It was observed that, AUDPCs of UAV- and leaf-based 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 and number of clusters (끫뢠끫롾) 

are strongly influenced by the distance to inoculation zone, becoming potential 

parameters for site-specific crop protection measures. AUDPCs of parameters foliage 

cover (끫롲끫롲), cover of healthy foliage (끫롲끫롲ℎ), area of healthy foliage (끫롨끫롶), area of foliage (끫롨끫롲), 

and leaf area (끫롨끫뢲) are strongly correlated to yield, however, WSY itself is not influenced 

by distance to inoculation zone and fungicide management.  

For decision-making purposes and generating application maps, UAV-based CLS 

epidemic threshold of 25% 끫롮끫롮끫뢲끫뢲끫뢲끫뢲 was decided to mitigate the FP rate. Although, no 

significant effect on yield and quality parameters was observed due to fungicide 

management; and regarding fungicide use, 50% higher application rate in the site-specific 

management compared to uniform management was reported on this research. Chapter 

7 highlights the importance for establishing accurate UAV-based CLS epidemic thresholds 

for a second or third fungicide application to effectively reduce fungicide consumption. 

CLS economic damage threshold based on UAV-based parameters might take place in 

the future for effective site-specific disease control based on multispectral UAV-imagery 

information.  

Use of imaging UAV-based pipeline in practical scenarios  

The use of imaging UAV-systems for evaluating CLS resistance is highly recommended 

by assessing DS in a ratio scale or by quantifying healthy foliage (Barreto et al., 2023). 

For this purpose, pixel-wise classification pipelines are superior to categorical pipelines. 

The pixel-wise approaches applied to variety trials should result in high Recall and 

Precision for classification of healthy tissue and soil regions. These two classes are the 

most frequent areas observed in images captured from a nadir perspective using UAVs 

in sugar beet fields. Their quantification delivers information of healthy and photosynthetic 

active areas in the canopy positively influencing yield development. Within this context, 
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REDEDGE and NIR channels of multispectral cameras are crucial for discriminating soil 

regions and healthy vegetation, while resolution lower than 5 mm should not be on limiting 

factor. 

The requirements of a machine/deep learning pipeline for the control of CLS are different 

than for plant breeding. Here the identification and standardization of image-based scoring 

units is highly relevant. In the case of leaf diseases, the affected organ is the principal aim 

for individual segmentation and analysis. For identification of the scoring unit, two 

scenarios are identified in this thesis. In the first case, high Precision and principally a low 

rate of FP classification of diseased image-based specimens (pixel, bounding box, 

instance, patch image) are desired, and the consequences of low Precision are related to 

incorrect warning signals and inaccurate application maps in early time points of disease 

development when application is even not required. Decision-making with low Precision 

leads to economical disadvantages due to misspend of fungicide with further 

consequences in development of pathogen resistance. The second case is related to low 

Recall or a low rate of TP which can bring to a low sensitivity of diseased image-based 

specimens and a later detection and decision for fungicide application during the growing 

season with consequences in disease spread and yield loss. High Precision and high 

Recall of diseased image-based specimens are required for efficient site-specific disease 

management. Moreover, the current multispectral UAV-systems present the principal 

limitation in terms of spatial resolution that should contribute to low Recall by comparing 

with ground truth data. Nadir UAV-perspective and development of CLS are also limiting, 

if first symptoms of primary inoculum are affecting middle to old leaves in the canopy, 

because these leaves are hardly recorded by UAV-systems with nadir perspective. In the 

next paragraphs possible development and future perspective are mentioned to contribute 

with the breeding process and deal with an accurate detection of diseased specimens. 

Challenges and Future perspectives 

Future perspective in breeding for resistance: Breeding procedures includes an 

assessment of disease intensity in variety trials conducted across different environments 

and multiple years. Therefore, robustness of the pipeline is compulsory to deliver accurate 

DS parameters. Pipelines based on machine learning and deep learning require 

continuous maintenance to keep their prediction fit for any field situation. Weather 
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conditions, soil tillage, additional pest and diseases occurrence, but also sensor status 

can influence the assessment of disease intensity leading to wrong prediction (Barreto et 

al., 2023). Continuous maintenance by modeling and testing of new datasets according 

to new field conditions, sensors and platform development are necessary to improve 

generalization properties of plant breeding for resistance pipelines. A pipeline for breeding 

should not only be fit for multi-year and multi-site trials, but also cover all stages of 

breeding process from mass selection, throughout family selection, recurrent selection 

and hybrid production (Biancardi et al., 2010). The pipeline for breeding might show 

independence in terms of assessment by dealing with individuals phenotypically diversity 

in leaf form and color by analyzing the canopy. A relevant contribution for automatic 

analysis of multispectral imaging is to consider the parallel quantification of combined 

phenotypic abilities. Breeding for resistance in sugar beet plants includes the discard 

undesired traits, such as lack of bolting resistance, low sugar content and beet yield, low 

germination rate, slow canopy development, etc. (Biancardi et al., 2010). Therefore, 

generalization properties and detection of combined abilities might improve the precision 

in breeding selection for resistance. 

Future perspective for disease control: The use of multispectral UAV-systems for disease 

control scenarios must be a focus of research in the following years due to the challenging 

application in the field. Sensor and platform development are principal promising aspects 

of dealing with low Precision of diseased specimens. In this thesis, the utilized 

multispectral bands do not show advantages for discrimination of diseased tissue, bare 

soil and vegetation rest under sunny light conditions. Novel multispectral sensor are 

available on the market, with additional multispectral bands and their properties for 

detection CLS infected pixels are unknown. Moreover, panchromatic bands and 

pansharpening techniques (AgEagle, 2023a, 2023b) will contribute to deliver high 

resolution information within multispectral bands and reducing the intensity of field 

mapping activities. New spectral or morphological features will be the principal pillars for 

coming machine or deep learning approaches (Chai et al., 2021; Chandra et al., 2020) to 

support high Precision and Recall disease detection. Improvement of performance of 

diseased specimens includes having a new level of ground truth. In this thesis, it was 

mainly acquired ground truth at the plot level. However, the imbalanced distribution, 
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especially low frequency of diseased specimens, and environmental light conditions lead 

to corroborate the disease status of leaf scoring units when first symptoms appear 

(Barreto et al., 2023; Ispizua Yamati et al., 2022). An acquisition of unit-to-unit ground 

truth data will be necessary in future studies for sensitivity determination in future 

approaches. Here, devices such as RTKs and georeferenced sampling of leaves can 

improve proximity of test sets to gold standard. Although unit-to-unit ground truth data will 

support pipeline performance, a decision for disease control can only be taken with UAV-

based thresholds as indicators. In the past human-based DIplant and DIleaf were establish 

as thresholds for fungicide applications and economic damage (Wolf et al., 1998b). 

Equivalents of UAV-based DI to human-based DIplant and DIleaf might be well-known in the 

future, especially for a second or third application when disease pressure is high. As last 

aspect to cover in future studies related to UAV-based disease control, is the dynamic 

curative site-specific fungicide application and the generation of application maps. The 

potential of curative site-specific disease control must be evaluated first by application 

maps based on visual scoring DIleaf, because human-based indicator has been intensively 

studied in the past (Wolf, 2002; Wolf et al., 2001; Wolf and Verreet, 2002) and can deliver 

the maximal possible fungicide reduction. Optimization of the site-specific management 

should be first established in terms of proofing the valuability of indicators created for 

uniform application, determine periods for following site-specific applications, determine 

size of minimal application region, buffer regions, and determine minimal fungicide site-

specific application for economic advantages in term of logistic. When the dynamic of site-

specific application is understandable, it would be possible to integrate the use of UAV-

based application maps. For short term, current UAV-based application maps can fill the 

gap of Precision by complementing input information with buffer zones and IoT sensors, 

adjusted UAV-based thresholds by different light conditions; and can speed processing 

time by changing from off-line to on-line systems and implementing parallel processing on 

computer time demanding procedures.  

Transfer knowledge from CLS to multiple diseases: In this thesis we focused on a plant-

pathogen interaction of Cercospora beticola Sacc. and sugar beet; however, this work 

also gives the principles for establishing UAV-based assessment pipelines for 

quantification of disease intensity of other relevant sugar beet diseases and for foliar 
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diseases in other crops. The pipeline presented in this thesis is highly compatible with 

further leaf diseases such as Powdery mildew, Rust, and virus yellows due to the available 

leaf segmentation Mask-RCNN model. A multiclass object detection for all these three 

additional diseases must be evaluated in future research as well as the capacity of current 

multispectral and morphological features for classification performance. The potential to 

build multi-disease heat maps will deliver new alternatives for disease management in the 

future. Georeferenced assessment of soil-borne diseases may necessitate a plant-center 

approach, with accurate determination of the plant center being a crucial aspect for 

quantifying disease intensity. Disease severity of soil-borne diseases, such as Beet Cyst 

Nematode and Rhizoctonia Root Rot, is assessed using disease diagrams based on 

plants as scoring units. The availability of ground truth data pertaining to plant-based 

metrics and precise plant center detection prior to canopy closure could potentially 

facilitate the application of deep learning models for soil-borne diseases, as corroborated 

by Ispizua Yamati et al. (2023) in their study. 

Employing imaging UAV-systems for evaluating CLS resistance is strongly 

recommended, particularly through the assessment of DS using a ratio scale or 

quantification of healthy foliage. For ranking CLS resistance in variety trials, pixel-wise 

methods should exhibit high Recall and Precision in classifying healthy tissue and soil 

regions. These prevalent regions, commonly observed in imbalanced UAV-based nadir 

perspectives within sugar beet fields, provide essential data on healthy and 

photosynthetically active canopy areas, ultimately contributing to improved yield 

outcomes. The use of multispectral UAV-systems for disease control presents a 

compelling avenue for future research. Overcoming challenges related to low Precision in 

diseased specimen detection and accurate determination of UAV-based DI requires 

advancements in sensor and platform development. Novel multispectral sensors with 

additional bands hold promise for enhancing the discrimination of CLS-infected pixels. 

Panchromatic bands and pansharpening techniques can contribute to higher resolution 

imaging, reducing the need for intensive field mapping activities. 

This study convincingly demonstrates that multispectral UAV-based methodologies can 

advance disease resistance breeding and precise disease control. Optical sensor and 

UAV technologies exposed in this thesis have the potential to be applied in practical 
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agriculture for decision-making in Integrated control of Cercospora leaf spot, laying the 

foundation for more effective and efficient sugar beet production.  
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