Aus dem Institut fur Zuckerribenforschung

Gottingen 62/2024

Abel Andree Barreto Alcantara

Sensing and automatic scoring of sugar-beet
fields by using UAV-imagery systems for

disease quantification



Sensing and automatic scoring of sugar-beet fields by using UAV-imagery

systems for disease quantification

Dissertation
to attain the doctoral degree (Dr. sc. agr.)
of the Faculty of Agricultural Sciences
Georg-August-Universitat Gottingen, Germany
by
Abel Andree Barreto Alcantara
born in Ancash, Peru

Gottingen, November 2023



1st Examiner: Prof. Dr. Anne-Katrin Mahlein
2" Examiner: Prof. Dr.-Ing. Frank Beneke
3 Examiner: Prof. Dr. Mark Varrelmann

4t Examiner: Prof. Dr. Uwe Rascher

Date of oral examination: 30.01.2024

This dissertation is registered with the permanent identifier DOI: 10.53846/goediss-
10336



Kurzfassung

Die Cercospora-Blattfleckenkrankheit (Cercospora leaf spot, CLS) ist die bedeutendste
Blattkrankheit im Zuckerribenanbau. Sie wird durch den pilzlichen Erreger Cercospora
beticola Sacc. verursacht und kann zu erheblichen ErtragseinbuRen fiihren. Die Kontrolle
von CLS ist aufgrund einer schnellen Sporenproduktion und einer hohen genetischen
Variabilitat aufBerst herausfordernd. Derzeit besteht die Bekampfungsstrategie
hauptsachlich aus den Leitlinien des integrierten Pflanzenschutzes. Diese umfassen
ackerbauliche MafRnahmen, Sortenresistenzen und Strategien zum Fungizideinsatz. Die
Bewertung der Krankheitsintensitat spielt eine entscheidende Rolle fir das
Resistenzscreening in  der Pflanzenzichtung und fir die Empfehlung von
Pflanzenschutzmalnahmen in der landwirtschaftlichen Praxis. Der Einsatz von Drohnen
(UAVs), ausgestattet mit optischer Sensortechnologie wie beispielweise multispektralen
oder hyperspektralen Kameras bietet eine neuartige Alternative fir das
Krankheitsmonitoring von CLS gegeniber den herkdmmlich durchgefiihrten manuellen
Bonituren. Maschinelle- und Deep-Learning Verfahren kénnen eingesetzt werden, um
multispektrale UAV-Bilder zu analysieren und relevante Informationen zur
Krankheitsbewertung zu extrahieren. Durch diesen methodischen Ansatz kann eine
Automatisierung der Erfassung von Parametern wie der Befallshaufigkeit (disease
incidence, DI) und der Befallsstarke (disease severity, DS) erreicht werden, welche eine

Grundlage fir die Entscheidungsfindung bilden.

Die vorliegende Arbeit konzentriert sich auf den Einsatz von UAVs, ausgestattet mit
bildgebender RGB- und multispektraler Sensortechnologie, und die Nutzung von
maschinellem Lernen zur Uberwachung und Bewertung von CLS im Zuckerriibenanbau.
Zwei Anwendungsgebiete wurden untersucht: eine digitale Bewertung von Toleranzen
und Resistenzen in Sortenversuchen; sowie die Beurteilung von Parametern zur
Entscheidungsfindung fur integrierte BekdmpfungsmafRnahmen von CLS. Die Ergebnisse
dieser Arbeit empfehlen den Einsatz von multispektralen UAV-Systemen zur Bewertung
der CLS-Resistenz, insbesondere durch eine bildbasierte und pixelweise Quantifizierung
gesunder Blattbereiche und Differenzierung von symptomatischen Bereichen und Boden.
Der enge Zusammenhang zwischen gesundem Blattapparat und Ertragsergebnissen
betont die Bedeutung der vorgeschlagenen pixelweisen Methoden  flr



Zuchtungsverfahren. Daruber hinaus ist die Identifizierung und Standardisierung von
bildbasierten Bewertungseinheiten fir KontrollmalRnahmen und die Anwendung von
Pflanzenschutzmittel von entscheidender Bedeutung. Die digitale Erkennung von
Befallsparametern ist flir ein zeitlich prézises und teilflachenspezifisches
Krankheitsmanagement unerlasslich. In der vorliegenden Arbeit wurden Modelle des
maschinellen Lerners angepasst und entwickelt, um mit hoher Genauigkeit die Parameter
DI und DS zu erfassen. Fur die Optimierung der Entscheidungsfindung wurden Verfahren
zur Berlcksichtigung der Bewertungseinheiten Pflanze, Kreis und Blatt integriert.
Einschrankungen bei der raumlichen Aufldsung des Sensors und der Nadir UAV-
Perspektive sowie Probleme bei der Unterscheidung von krankem Gewebe und Boden
unter bestimmten Lichtverhaltnissen kdnnen jedoch die Verlasslichkeit bei der Erkennung
erster Krankheitssymptome beeintrachtigen. Kurative und teilflachenspezifische
Fungizidapplikationen und die Erstellung von Applikationskarten fiir mehrere, simultan
auftretende Krankheiten sind weitere potenzielle Anwendungsgebiete.

Insgesamt zeigt die Arbeit das Potenzial von multispektralen UAV-basierten Methoden
zur Anwendung in der Resistenzziichtung und dem prazisen Pflanzenschutzmitteleinsatz
und bietet weitere wertvolle Ansatze zur Verbesserung der integrierten Kontrolle von CLS.
Das im Rahmen der Dissertationsschrift gewonnene Wissen kann auf weitere relevante
Zuckerribenkrankheiten wie den Echter Mehltau, Riibenrost oder die virdse Vergilbungen

Ubertragen werden.



Abstract

Cercospora leaf spot (CLS) in sugar beet is a damaging leaf disease caused by the fungal
pathogen Cercospora beticola Sacc. This disease leads to substantial yield diminishment,
and its management poses a challenge owing to rapid sporulation and high genetic
variability. Integrated pest management strategies, including cultural practices, cultivar
resistance, and fungicide management, are used to mitigate the disease. Disease
intensity evaluation plays a crucial role in plant breeding for resistance screening and in
agricultural practice for guiding control measures. The use of optical sensor technology
and unmanned aerial vehicles (UAVs) with multispectral or hyperspectral cameras
provides a novel alternative to human-based disease assessment. These sensors capture
reflected light in multiple wavelength bands, allowing high spatial resolution imaging with
spectral information. Machine and deep learning techniques are utilized to analyze
multispectral UAV images and extract relevant disease assessment information. The
combination of multispectral UAV data and machine learning approaches holds great
promise for assessing parameters such as disease incidence (DI) and disease severity
(DS) as a basis for decision-making.

This thesis focuses on using RGB and multispectral imaging sensor technologies, UAVs,
and machine learning to monitor and assess CLS in sugar beet. Two main application
scenarios were investigated: evaluating tolerance and resistance in variety trials, and
assessing parameters for decision-making in integrated CLS control in agricultural
practice. The results of this dissertation recommended utilizing multispectral UAV systems
for evaluating CLS resistance, particularly through an image-based and pixel-wise
quantification of healthy foliage and soil regions. The close association between healthy
foliage and yield outcomes emphasizes the importance of the proposed pixel-wise
methods in breeding procedures. Furthermore, the identification and standardization of
image-based scoring units are crucial for crop protection. Accurate detection of diseased
specimens is essential for efficient site-specific disease management. In the present work,
machine learning models were adapted and developed to detect DI and DS parameters
with high accuracy. Procedures considering plant, circle, and leaf scoring units were
incorporated to optimize decision-making. However, limitations in spatial resolution and

nadir UAV-perspective, as well as challenges in discriminating diseased tissue from bare

\



soil under certain light conditions, may impact the sensitivity for detecting first symptoms
of disease. Curative site-specific fungicide application and generation of multidisease

application maps are potential future developments.

Overall, the dissertation demonstrates the potential of multispectral UAV-based
methodologies for advancing disease resistance breeding and precise disease control,
offering valuable applications in practical agriculture for integrated control of CLS. The
knowledge gained from studying Cercospora beticola Sacc. and sugar beet can be
transferred to other relevant sugar beet diseases such as Powdery mildew, Rust, and
virus yellows using the established UAV-based assessment pipeline.
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SVML Support vector machine linear
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Mathematical Expressions

Angle of incidence between the canopy surface and light
source within instance

Area based disease severity within leaf instance

Average cluster area within leaf instance

Average cover of CLS cluster by unit of foliage cover
Average slope or angle between surface and normal to
horizontal within a leaf instance

Average surface area of CLS cluster by unit of foliage area
Cover based disease severity at I level
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Cover of diseased foliage within instance

Cover of foliage within instance

Cover of healthy foliage within instance

Difference between RED and BLUE band index
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Image surface area within leaf instance

Individual instance

Individual leaf instance

Green vegetation index
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Modified chlorophyll absorption in reflectance index 2
Modified simple ratio index
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Normalized saturation-value difference index

Number of clusters

Number of clusters per unit of foliage area

Number of clusters within leaf instance

Plot-wise disease incidence considering leaf instances
Plot-wise disease severity considering leaf instances
Resolution in GSD of DSM

Resolution in GSD of multispectral orthomosaic

Slope or angle between surface and normal to horizontal
within instance

Surface area of diseased foliage within instance
Surface area of healthy foliage within instance
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Introduction

CHAPTER 1: Introduction

1.1.Sugar beet production and pests and diseases

Sugar, the common name of sucrose, is a basic component of food, pharmaceuticals and
beverages (Meghana and Shastri, 2020). Worldwide, approximately 20% of the sugar
production is originated from sugar beet (Beta vulgaris ssp. vulgaris) reaching about 37Mt.
of total raw sugar produced (WVZ and VdZ, 2021). In 2020/2021, sugar beet was
cultivated on approximately 1.49 million hectares within the EU including the UK, whereas
350,000 hectares were produced in Germany (WVZ and VdZ, 2021). The expectation for
productivity in sugar beet cultivation is high; especially because of the low cost of cane
sugar (Stevanato et al., 2019). Since 1930, sugar yield has been increased from 3.2 to
10.3 t/ha in average (Draycott, 2006; WVZ and VdZ, 2021). Breeding has been the driving
force for this yield improvement by introducing tolerant and resistant varieties to biotic and
abiotic stresses (Loel et al., 2014). The introduction of hybrids in sugar beet was the first
breeding stone for increasing root yield in the early 20th century. The finding of
monogerminity in the mid-1960 allowed efficiency in cultivation; moreover, improved sugar
mass accumulation was fomented with the development of mechanism of genetic control
arising a sugar production never seen before (Hoffmann et al., 2021). High-yield varieties,
optimized plant nutrition, soil and weed management secured sugar beet productivity and
quality (Draycott, 2006). However, there is a tradeoff between yield and plant susceptibility
to fungal pathogens, viral diseases and pest attack since those breeding traits and yield
are negatively correlated to each other (Oerke and Dehne, 2004). In the early 19th
century, farmers learned to avoid repeated narrow rotations after observing a steady
decline in yield due to the proliferation of the Beet cyst nematode (Heterodera
schachtii)(Draycott, 2006). Fast forward two centuries, pests continue to expand into new
areas in Central Europe, likely propelled by climate change, giving rise to emerging
diseases such as the syndrome basses richesses disease (SBR), capable of reducing
yields by up to 26% (Pfitzer et al., 2022). SBR is caused by the phloem-restricted y-3
proteobacterium Candidatus Arsenophonus phytopathogenicus which is transmitted by P.
leporinus and becomes a focus of research in recent years. Viral diseases account for up
to 6% sugar yield losses (Oerke and Dehne, 2004). The green peach aphid (Myzus
persicae) is the principal vector for transmission of different and economically important

13



Introduction

virus yellows species (Hossain et al., 2021; Koztowska-Makulska et al., 2009). At least
two years of cropping interval are suggested to avoid the damage of soil borne diseases
such Beet cyst nematode, Rhizoctonia root rots (Rhizoctonia solani), and damping off
(Aphanomyces cochlioides, Pythium ssp. (Koch et al., 2018). In addition to viral and root
diseases, beet yield losses are attributed to the impairment of the photosynthetic leaf area.
Among these, fungal leaf diseases emerge as the primary cause of direct leaf tissue
damage, posing a significant risk to productivity. Some diseases such as Powdery mildew
(Erysiphe betae), Rust (Uromyces betae), Ramularia leaf Spot (Ramularia beticola)
present for the moment minor risk in productivity due to their late appearance in the
growing season and slow development (Wolf and Verreet, 2002). Moreover the leaf
disease caused by the fungus Cercospora beticola has posed a serious threat to high
production standards in recent decades, leading to intensive research on plant breeding
for resistance and on disease control (Jones and Windels, 1991; Wolf and Verreet, 2002,
1997).

1.2.Cercospora leaf spot, yield effect, infection biology and integrated

management

Cercospora leaf spot (CLS) is the leaf disease caused by the ascomycete fungus
Cercospora beticola Sacc. CLS represents a significant obstacle for sugar beet farmers,
as it has detrimental effects on productivity and presents challenges in efficiently
mitigating pathogen spread (Windels et al., 1998). In the absence of disease management
strategies, fields containing infected sugar beets exhibit compromised processing quality
and can incur up to 50% in yield losses (Shane and Teng, 1992; Vogel et al., 2018; Wolf
et al., 1998). The availability of primary C. beticola inoculum, an asexual and polycyclic
manner of propagation, as well as the capacity to produce substomatal pseudostromata
as survival structure (Rangel et al., 2020; Weiland and Koch, 2004), are relevant
epidemiological parameters to establish knowledge based measures of CLS control.
Previous research identified various factors responsible for the spread of conidia,
including wind, water splash, rain, irrigation, but also insects and contaminated machinery
(Khan et al., 2009; Lawrence and Meredith, 1970; Rangel et al., 2020). Currently, there is
a lack of definitive evidence regarding the wind-mediated dispersal of primary inoculation,
and the origins of the primary inoculum source remain a subject of ongoing investigation

14
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(Imbusch et al., 2021). The infection initiates when conidia make contact with abaxial
surface of sugar beet leaves (Rangel et al., 2020). Conidia germination requires relative
humidity close to 100%, and temperatures higher than 17°C (optimal by 25°C) (Khan et
al., 2009; Skaracis et al., 2010). After germination and hyphae elongation, appressoria is
produced to penetrate stomata and spread intercellularly without visual symptoms
(Rathaiah, 1977; Steinkamp et al., 1979). The initiation of the necrotic phase occurs
through the synthesis of phytotoxins and degradative enzymes, leading to the demise of
infected cells (Steinkamp et al., 1979). Infected leaves with C. beticola present the
following symptoms: they develop spots that appear in shades ranging from tan to gray.
These spots are frequently surrounded by borders that range in color from tan-brown to
reddish-purple, and they can measure between 3 to 5 millimeters in diameter (Rangel et
al., 2020; Weiland and Koch, 2004). Spots can merge to form bigger areas of dead tissue,
leading to the withering and death of the leaves that are severely affected.

Due to its high reproductive ability and fast sporulation, the pathogen can complete a
lifecycle in only 9-12 days under field conditions (Varrelmann and Marlander, 2018). This
polycyclic property, coupled with high genetic variability, produces epidemic which can
only be controlled with repeated fungicide applications, leading to increased production
costs and the risk of developing pathogen-resistant strains (Birla et al., 2012). In the
1980s, reports of immoderate use of fungicides due to continuous strong epidemics in the
USA led to the first cases of pathogen resistance being reported (Windels et al., 1998).
Fungicide applications took place every 10 to 14 days in some regions; this results those
fungicides especially for benzimidazole group, were no longer recommended for growers.
A similar case was reported in the south of Germany a decade later (Wolf ef al., 1995). In
the USA, an early integrated pest management (IPM) model was based on three pillars:
cultural practices, cultivar resistance, and fungicide management (Windels et al., 1998).
Cultural practices recommended a minimum rotation of sugar beets every third year with
non-host crops. Varieties with low susceptibility and high yield performance even under
no infection pressure suggested ensuring high sugar beet productivity. Fungicide
management based on protectant and curative fungicides supported by forecast models
such as Daily Infection Values (DIVs) for the first application were recommended (Windels

etal., 1998). The same pillars are used for an integrated management of CLS in Germany,
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Italy, France and Spain (Cioni et al., 2014; Gummert and Ladewig, 2012; Jarroudiet al.,
2021; Martin Gil et al., 2018). In Germany, the IPM model differs slightly to the American.
The principal difference is on the fungicide management, which require additionally to the
warning signal a disease assessment on field. A forecasting model called CERCBET 3
triggers a warning signal (Gummert and Ladewig, 2012). Then, this signal alerts growers
to perform visual assessments in the field, followed by a decision on application if
threshold values of CLS incidence are achieved.

The losses caused by a pathogen such as C. beticola are strongly associated with the
intensity of disease (Nutter et al., 1991). The evaluation of disease intensity through
phytopathometry supports two important applications for integrated disease management,
namely screening for resistance in plant breeding and providing indicators for control

measures (Kranz, 1988).

1.3.Phytopathometry, disease intensity and sources of error for disease
assessment
Phytopathometry is a branch discipline of plant pathology, focusing on measuring the
amount of plant disease or disease assessment. The intensity of the disease is estimated
using parameters such as disease incidence (DI) and disease severity (DS). DI refers to
the proportion of diseased specimens, while DS measures the degree of the diseased
region within specimens (Bock et al., 2021; Kranz, 1988; Madden et al., 2007a).

The definition of the specimen or scoring unit can significantly influence disease
estimation over time. The most common scoring units for diseases are individual plants,
leaves, and roots (Madden et al., 2007a). In the case of CLS, a descriptive epidemic
development is mostly expressed as DI at plant level (Dlpiant), and DI and DS at leaf level
(Dlieaf and DSiear) (Wolf and Verreet, 2002).

The choice of whether to use DI or DS depends on the objectives of the epidemiological
or breeding study. DI is a parameter with high sensitivity for pathogen spread, particularly
during the initial stages of disease development (Madden et al., 2007a). As a result of this
characteristic, levels of DI parameter have been applied in thresholds as indicators to

trigger warning signals for fungicide management (Wolf, 2002). DS, on the other hand, is
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commonly used to evaluate productivity and yield loss and its principal application is for

assessing new varieties for resistance and fungicide tests (Madden et al., 2007a).

Nature of data is relevant for quantifying disease intensity, especially in the case of
determining DS. Ordinal and ratio scales are the most common data types for quantifying
DS. Ordinal scales are commonly used to give levels of severity during disease
development. Examples for quantifying severity in CLS in an ordinal scale are the KWS
scale and the Agronomica diagram (Anonymous, 1970; Vereijssen et al., 2003). The KWS
scale is a severity diagram that ranges from 1 to 9. A rating of 1 indicates the complete
absence of symptoms, while a rating of 3 indicates the presence of leaf spots on older
leaves. A rating of 5 signifies the merging of leaf spots, resulting in the formation of
necrotic areas. A rating of 7 is assigned when the disease advances from the oldest leaves
to the inner leaves, leading to their death. Finally, a rating of 9 is given when the foliage
experiences complete death (Anonymous, 1970). A ratio scale is data assessed in a
continues but truncated range. For CLS, the ratio scale represents the ratio of diseased
tissue from complete leaf area (Wolf et al., 1998). The principal advantage of a ratio scale
consists in delivering more detailed epidemiolocal information in comparison to ordinal
scales supporting significant differences in the statistic (Madden et al., 2007a; Vereijssen
et al., 2003). However, a ratio scale is less reliable and accurate than ordinal requiring a

high level of expertise for the assessment.

Decisions are taken based on parameters assessed on the field, farmers decide for
disease control by determining DI, breeders identify a potential resistance line based on
DS. Therefore, trained, well-structured and aided raters are required, the so-called
experts. Experts can produce or estimate acute measurements close to “standard gold”
values (Madden et al., 2007a). Experts’ assessment fulfills two characteristics, these are
reliability and accuracy (Bock et al., 2010). An assessment is reliable when repeated
estimations or measurements of the same specimen are close to each other. Reliability
can be divided on inter-rater reliability (reliability of different raters) or intra-rater reliability
(reliability of the rater) (Madden et al., 2007a; Nutter et al., 1991). Regarding to accuracy,
an accurate assessment has a high degree of closeness to the “gold standard” (Bock et
al., 2020; Kranz, 1988; Madden et al., 2007a). The lack of accuracy in disease
assessment can result in error of type Il, false negative (FN) or missed detection of
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diseased specimen; however, the level of accuracy required varies to each disease
quantification case (Bock et al., 2020). Up today, no error of type | was reported, false

positive (FP) or diseased classification of healthy specimen, in disease assessment.

Beside experts, there are some object-dependent sources of error. Robustness of
assessment can drop due to illumination. Varying illumination conditions are more serious
in direct sunlight in comparison to cloudy conditions; color blindness caused by direct
sunlight in the quantification of powdery mildew in sugar beet is an example for drop of
scoring performance (Bock et al., 2020). Complexity of the scoring unit can also affect
accuracy, whereas three-dimensional samples are more difficult to assess in comparison
with two-dimensional specimens such as leaves. Size and shape of lesions can promote
a tendency to overestimation, in the case of CLS, the number and size of spots during the
first disease development stages, can be challenging for beginners. Finally, leaf wetness
is also source of error leading to deviating estimations (Kranz, 1988). All mentioned points
can influence the performance of assessments because affecting in the physiological
stimuli and psychological response of raters (Kranz, 1988).

Reliable and accurate quantification of disease intensity are the principal support of two
from three pillars for an integrated CLS management: visual assessment for screening
disease resistance, and visual assessment for determining indicators for fungicide
application. The following sections will provide detailed information on breeding principals

for enhancing CLS resistance in plants as well as plant protection measures.

1.4.Resistance breeding
The development of CLS-resistant sugar beet plants through the breeding process has
been reported as a crucial factor in preventing yield losses in recent years, where inclusive
low yield penalty is mentioned in the absence of the disease (Vogel et al., 2018). In
Germany, cultivating less susceptible varieties can help reduce fungicide usage and
extend the authorization period for the application of a fungicide product
(Bundessortenamt, 2022). Resistant and tolerant varieties have two further advantages.
They reduce the intensity of fungicide application, increasing eco-efficiency (Wiessner et
al., 2010), and they reduce the risk of stronger epidemics in the following years by

contributing less plant debris (Wolf and Verreet, 2002). Gene sources of CLS resistance
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have been identified in the wild sea beet, Beta vulgaris ssp. maritima (Rossi, 1995). At
least four quantitative trait loci have been identified to be responsible for CLS resistance
to present time (Rangel et al., 2020). The maritima line is the primary genetic resource
used in breeding programs to develop CLS-resistant varieties (Stevanato et al., 2019).
(Weltmeier et al., 2011) documented a molecular mechanism for sugar beet defense
response against CLS, which is based on high expression of pathogenesis-related (PR)
and WRKY genes. This defense response can be triggered 1 day after inoculation and
inhibit C. beticola biomass development in monogenic resistance varieties, while
susceptible varieties require 15 days to initiate this gene expression. PR and WRKY gene
expression might overcome pathogen-induced suppression of phenylalanine ammonia
lyase (PAL) gene which is the initial defense response of interaction between sugar beet
and C. beticola (Schmidt et al., 2008). PAL gene expression is involved in plant-related
pathways for secondary metabolites such as lignin, flavonoids, and phytoalexins (Rangel
et al., 2020).

The breeding process for producing new resistant varieties is divided in four stages; mass
selection, family selection, recurrent selection, and hybrid production (Biancardi et al.,
2010). During mass selection an improved population with resistance characteristics is
generated after intercrossing by open pollination. In the family selection stage, undesired
F1 hybrids are discarded by half-sib or full-sib selection. Seeds of this last stage can be
already used as pollinators for hybrid production. The aim of the recurrent selection is to
increase the frequency of superior alleles and allelic combinations of desired traits
including disease resistance in lines which are used as pollinators. The last stage of
breeding process uses potential disease resistant family lines and pollinator and a
selected phenotypic male sterile hybrid with complementary desired traits to generate
offspring with combined abilities in yield and resistance (Biancardi et al., 2010; Setiawan
et al., 2000). Overall, multiyear field trials must be designed in multiple locations. Disease
assessment, specially DS, is the principal quantification parameter for phenotyping
disease resistance under field conditions (Setiawan et al., 2000). When resistant hybrids
are identified, breeders produce a large amount of seeds to initiate the registration
procedure (Biancardi et al., 2010). In Germany, the national variety offices corroborate
this superiority and approve a new variety for commercialization by after testing resistance
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of candidates in multi-year and multi-site variety trials (Gummert et al., 2015; Ossenkop
et al., 2005, 2002). Here again intensive phenotyping activities are required for screening

susceptibility, quality and yield performance (Bundessortenamt, 2022).

1.5.Plant protection and limitations of expert assessment

In situations where cultural practices and cultivar resistance fail to effectively control the
spread of CLS, plant protection emerges as the final recourse to ensure the preservation
of sugar production in terms of both quantity and quality (Hoffmann, 2010). As mentioned
in Section 1.2, nowadays the intensive use of pesticides promoted natural selection of
fungal pathogens including C. beticola. Considering a sustainable use of fungicide
applications as integrated management to control CLS, epidemic thresholds were
proposed as spraying indicators by using DI and DS at plant and leaf level (Wolf et al.,
1995). During the nineties by implementing an early IPM model in Germany, the first
epidemic threshold considered the plant-to-plant spread of CLS and was defined as half
of infested plants from a complete sugar beet population (50% Dlpiant; Wolf and Verreet,
1997). A diseased plant was counted when at least a CLS spot is identified in complete
canopy. For the plant protection measure of this IPM, further thresholds of epidemics were
identified such as 25-35% Dlieaf or 0.2-0.4 DSiear (Wolf et al., 1998). However, the
monitoring of two different scoring units (leaf and plant) and two different disease intensity
parameters (DI and DS) unable the practical application of the threshold-based fungicide
management in early German IPM (Wolf et al., 1998). As a solution, correlations were
evaluated to standardize scoring unit and parameter, moreover, middle leaves were
identified as the most informative samples in the sugar beet canopy to describe CLS
epidemic. The chosen standardized parameter was Dliear considering middle leaves as
scoring unit for the sampling. Standardized the unit, equivalent thresholds were
determined to describe epidemics; five infested from 100 middle leaves sampled should
equivalent the half of infested plant in the population (50% Dlpiant = 5% Dliear), in addition,
25-35% Dlieat from the complete canopy should equivalent 35-45% Dliear from middle
leaves (Wolf et al., 1998).

Epidemic threshold and economic damage threshold are two different concepts in plant
protection. As mentioned before, the first concept describes development of epidemics,
while the second is defined as the tolerance limit for economic damage (Wolf and Verreet,
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2002). For CLS, economic damage threshold was determined by 5% DS ieaf from complete
canopy at harvesting (Wolf et al., 1998). With a magnitude for economic damage
threshold, the decision system is further oriented based on the developing stage of the
sugar beet crop during the vegetation period and calendar. Fungicide spraying should
take place if 5% Dliear was overcome in the period July to mid-August. From mid to end
August sprays should take place if 45% Dliear was overcome (Wolf and Verreet, 2002).
With this last condition the second application should also take place in the case of
unsuccessful first application. After some years of practical use of epidemics thresholds
as indicators in the IPM, two negative aspects were observed (Lang, 2005). Firstly,
applications performed at the beginning of August based on the overcome from 5% Dlieat
threshold were not necessary because by harvesting economic damage threshold was
not achieved. Dry and cold locations were frequently the exceptions. Secondly, strong
epidemic development was observed also in September with significant yield losses for
late harvested fields, requiring an extension of disease monitoring and control period. As
improvement, new guidelines for a IPM model against leaf diseases were published in
Germany including the management of CLS (Gummert and Ladewig, 2012). The new
model is adjusted with an additional epidemic threshold (15% Dliear) for the first
application. The first application is Dlieat and calendar dependent, where the indicator is
5% Dliear until 31.07, 15% Dliear until 15.08, and since 16.08 the indicator is 45% Dliear. A
second application takes place when this last epidemic threshold is achieved (Lang,
2005).

In summary, disease assessment plays a crucial role in IPM by contributing to both plant
breeding and plant protection efforts. The selection of appropriate disease parameters,
scoring units, and thresholds greatly influences the effectiveness of identifying resistant
lines against CLS and implementing successful disease control strategies. Consequently,
the importance of reliable and accurate disease assessment cannot be overstated. While
expert assessment is highly accurate, there are certain drawbacks associated with
human-based disease quantification. Expert assessments tend to be time-consuming,
costly, and have limited throughput capacity for large-scale (Bock et al., 2020). In the
breeding process, screening for resistance requires exhaustive and time-consuming

phenotyping activities to identify suitable plant materials (Mahlein, 2015). In plant
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protection, disease intensity within a field can exhibit heterogeneity, as observed in cases
involving R. solani and H. schachtii (Hillnhitter et al., 2011), leading to the potential for
varying indicators for fungicide application within the same field (Mahlein et al., 2018).
However, for experts the determination of disease intensity parameters is only feasible by
sampling methods that represents with a single magnitude disease intensity of the
complete field. To optimize CLS management, it is imperative to enhance the efficiency,
reliability, and site-specificity of disease assessment information. This can be achieved by
improving assessment methods, utilizing advanced technologies, and incorporating
spatial variability analyses to ensure more precise and targeted disease management

strategies.

1.6. Optical sensor technology and UAV-systems

A novel alternative for the human-based disease assessment is the use of optical sensors
such multispectral or hyperspectral cameras (Bohnenkamp et al., 2021; Hillnhitter et al.,
2012; Leucker et al., 2016; Mahlein, 2015; Mahlein et al., 2018; Reynolds et al., 2011).
The principle of optical sensors is based on the measure of the amount of light, commonly
the reflected light, reaching the imaging sensor and store as information (Thomas et al.,
2018). The recorded information or two-dimensional image present high spatial and
spectral resolution, containing up to several bands of spectral information within the
wavelength range of sensor. Many optical sensors are able to address the visible part of
the electromagnetic spectrum (400-700 nm, VIS), but also, they are able to measure the
near-infrared wavelength (700-1000 nm, NIR) calling them as VISNIR sensors (Maes and
Steppe, 2019; Mahlein et al., 2018). The main distinction between multispectral and
hyperspectral sensors lies in their spectral resolution. Multispectral sensors typically
capture broad wavelength bands within the BLUE, GREEN, and RED spectral regions, as
well as bands within the NIR range (Mahlein, 2015). Moreover, current multispectral
sensors present relatively high spatial resolution, low integration time, wide field of view,
and parallel camera arrangement allowing multispectral cameras to record multispectral
information on the field with high throughput (Aasen et al., 2018; Wierzbicki, 2018).

When proper image-processing techniques are applied, unmanned aerial vehicles (UAVs)
carrying multispectral imaging sensors becomes a tool for field mapping, and constitute a
monitoring system with potential to solve previous mentioned drawbacks of disease
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assessments by experts: regarding bias, limitations of workload and low throughput (Bock
et al., 2020). Easy mapping operation, flexibility, and a continuous technological
improvement of the last years from both components, UAV and image sensor, makes the
past limitations of flight time and image resolution no longer an aspect for restricting the
support in disease monitoring tasks (Deng et al., 2018). Optical sensors were used in the
past to monitor CLS development. The first study reported, used multispectral, ground
based non-imaging data to assess disease severity of CLS under field conditions based
single reflectance of wavelength bands and vegetation indices (Steddom, 2005). Since
the commencement of this preliminary investigation, significant advancements have
occurred in sensor technology. Furthermore, remarkable progress has been witnessed in
the field of machine learning (ML) and deep learning, which have harnessed the potential
of high-resolution multispectral data for disease assessment applications (Mahlein et al.,
2018).

1.7.Data analysis: machine learning, deep learning and image post-processing
In the analysis of multispectral UAV images, ML and deep learning are the principal
support to extract relevant information for disease assessment. ML and deep learning are
subsets of artificial intelligence that allows systems to learn automatically from data by
identifying patterns (Bishop and Nasrabadi, 2006). Statistical models and singular
algorithms are trained and learn how to make predictions and take decisions based on
delivered data not just with such as data like spectral information, but also 3D arrays like
RGB images. Supervised learning are machine learning techniques that learn from
labelled data (Bishop and Nasrabadi, 2006). Some typical supervised learning techniques
are K-nearest neighbors (KNN), partial least squares discriminant analysis (PLS-DA),
random forest (RF), support vector machines (SVM). In previous studies, the utilization of
spectral imaging data, specifically employing RF and PLS-DA techniques, demonstrated
in the past high reliability in determining DI and enabling early detection of R. solani

infection in sugar beet plants (Barreto et al., 2020).

The principal difference between deep learning and machine learning is the use of artificial
neural networks (ANNs) arranged in multiple layers in a deep learning approach
(Schmidhuber, 2015). ANNs are designed to emulate the structure of human brain. ANNs
past through multiple layers collected data, optimize prediction or decisions, learning
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complex features from data. Convolutional Neural Networks (CNNs) and Fully
Convolutional Networks (FCNs) are types of ANNs, which are specialized in learning
patterns from images. To segment objects from an image, computer vision techniques are
available including semantic segmentation and instance segmentation, those computer
vision techniques contain as main structure CNNs and or FCNs models. Semantic
segmentation involves ordering a label to each pixel belonging to a kind of object (Chen
etal., 2018; Long et al., 2015). Furthermore, instance segmentation delivers more details
and segment within a kind of object a pixel-wise label for each individual (instance) (He et
al., 2017; Neven et al., 2019). The analysis of RGB and multispectral images by ML and
deep learning approaches have been reported to detect infected tissue and quantify DS
of CLS in more recent works on sugar beet (Gorlich et al., 2021; Jay et al., 2020; Mahlein
et al., 2013; Ziya et al., 2018), however, most of them requiring a post-processing step.

Post-processing techniques are relevant in computer vision because they can help to
improve the accuracy and robustness of algorithms, making them more suitable for real-
world applications. An example of post-processing technique for agriculture application
was proposed by (Lottes et al., 2018b). Here an FCNs output, a probabilistic and
multiclass array for detecting stems of sugar beet and weeds, was adapted to local
maximal in order to deliver stem location to make comparable with the plant counting
assessments on the field. Post processing techniques were applied for disease
quantification as described in (Jay et al., 2020). In this work, post-processing algorithms
were employed to extract a list of disease severity parameters including spot density, area
of healthy tissue, and an ordinal scaled CLS DS parameter. With this post-processing a
time-series analysis via Area Under Disease Progress Curve (AUDPC) (Madden et al.,
2007b) of DS parameters was performed allowing resistance screening in two years
variety trials (Jay et al., 2020).

The aforementioned studies collectively underscore the substantial potential of
harnessing multispectral UAV information for disease assessment purposes. This
encompasses the utilization of UAV data to determine essential disease intensity
parameters, namely DI and DS. These parameters play a pivotal role in facilitating the

successful integrated management of CLS.
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CHAPTER 2:  Research objectives

The objectives of this thesis focus on the challenge of using optical sensor technologies

and unmanned aerial vehicles (UAVs) in a methodological approach with machine

learning for assessing and monitoring Cercospora leaf spot (CLS) in sugar beet. The

investigated applications scenarios were (A) evaluating tolerance and resistance in variety

trials to substitute the manual phenotyping process and (B) the assessment of the

parameters disease incidence (DI) and disease severity (DS) for decision-making in

integrated control of CLS. To provide practicable solutions and process pipelines for these

application scenarios, the objectives of this thesis were:

Identify plants as scoring unit within UAV images from experimental fields. A deep
learning approach for semantic segmentation was adapted to this aim, and the best
timing for plant unit quantification was determined. Subsequently, to understand
CLS epidemiologic, an image-processing pipeline for calculating DSpiant in an
ordinal scale emulating KWS scale will be proposed and tested.

The automatic determination of DS with a continuous ratio scale. For this task a
machine learning multiclass classifier was trained to quantify diseased and healthy
tissue in a pixel-wise manner. Due to incompatibility to merge a plant-level scoring,
arbitrary scoring units must be temporally proposed. The pipeline was applied in
variety trials to rank resistance against CLS.

Develop and evaluate image-based leaf segmentation for seeking segmented
scoring unit, using an instance segmentation technique called Mask-RCNN.
Subsequently, the previously trained multiclass classifier was integrated to the leaf
instance segmentation to deliver, DSieaf, as output.

Utilizing the most promising approach for site-specific disease control. Therefore
UAV-based assessments of DI were conducted to generate application maps using
threshold values for fungicide applications. Additionally, the control efficiency in

terms of fungicide consumption was investigated.

At the end of this thesis, current challenges, and perspectives for further research in

automatic disease quantification and site-specific CLS control by using multispectral UAV-

systems are critically discussed.
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ARTICLE INFO ABSTRACT

Keywards: Counting crop scedlings is a time-demanding activity involved in diverse agriculoral practices like plant
Tcep learning culrivaring, experimental crials, plant breeding procedures, and weed control. Unmanned Aerial Vehiclas (TTAVS)
m carrying RGHE cameras are novel toals for automatic feld mapping, and e analysls of UAY images by deep
lu:\.. st learning methuds can provide relevant agronomic information. UAV-based camers systems and a deep lesmning
Plant segasentation image analysis pipeline arc impl for a fully { plant counting in sugar beet, maize, and
me-serles strawherry fields in the present study. Five Incatians were monitored ar different growth stages, and the crop
Intra-row distanes number per plou was aulomatically predicted by using a Dully convoludonal nelwaork {FCNG pip L Our FCN-
Growth stage based approach is o single model for juindy detcrmining both the cxact swem levation of crop and weed plants

and & pivel-wise plant classification eonsidering orap, weed, and soil_ To detarminate the appraach performance,
predicted crop counting was compared to visually assessed ground teuth data, Results show that UAY-hased
counting of sugar-beel plants delivers forecast eorors lower thin 4.6%. s the main factors for performance
arc related to the inma-row distance and the growth stage. The pipeline’s cxtension to other crops is possible; the
errars of the predictions are Iower than 4% under practical field conditinns for maize and stirewherry fields, This
wark highlight the Feasibility of automatic crop counting, which can reduce manual effort 1o the frmers.

1. Introduction counring of sugar-beer seedlings at a growing stage (BECH) 10 12ina

proviausly defined and reprosentative patches of 10 m?, the average

The counting of sugar-beet seedlings is a time-demanding activity
necessary in divernse aspeets of beet production such as plant cultivating,
experimental trials, plant breeding, plant phenotyping, and weed con-
trail. At the beginning of the cultivation season and fow days after sowing
(das), plant population and location becomes a relevant parameter to
destribe plant distribution’s homageneity on the field.

Previous studies highlighted the relevance of plant density in final
heet yield and quality, as well as for the white sugar yield (WSY;
Marlander, 19900, Sub-optimal plant discribution can be caused not only
by hiotic factors like insects or fungi but also by abiotic factors like
drought, erust formation, hail, wind, or frost damage [Smit, 1993). In
Germany, farmers determine plant populatien by an intensive manual
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value of all counts are extrapolated to the entire field. In Europe, the
cotmted number of emerged plants defines the decision of resowing,
where fields with a population lower than 45 thousand plants per
hectare are decided to e replanted. Moteover, plant populations be-
tween 82 and 110 thousand plants per hectare are considered as optimal
(Miirlinder, 1990, where seeds are frequently sown with a row distance
af 45 and 50 em and an intra-row distance from 18 to 25 em. In
experimental fields, a narrow sowing method is used where seeds are
sown with a Intra-row distance from 4 to 16 cm (Durrant el al., 1985
Pospisil et al., 2000; Ségit and Arioglu, 2004) to achieve two or three
times the population number emploved In the practice, later young
plants are commonly thinned our to manually achieve the oprimal
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population.

Automatic counting of sugar-beet plants presents a potential for
experimental fields, In the Ewepean Union (EU), the demand for im-
provements in the sugar-beet cultivation to secure the crop vield and
[ulfill the principles of integrated pest management (IPM) leads to
constant evaluations of new sugar-heet varieties, fungicides, insecticides
and herbicides. Unlike counting made by sugar-beet growers, counting
in field experiments varies according to experimental aims and requires
a precise number of emerged plants per plol Manual counting of field
trials could amount from 120 to 250 person-hours per counted hectare,
and counted area can represent 20w 50% of the entire experimental
tield. Plant breeding trials alzo require the detsiled monitering of plant
emergence, germination capacily of sceds under the Reld conditions is a
time-demanding key parameter to quancify seed quality. Emergence
rale, logether with vigarous secdlings, determine if a new sugar-beet
variety is accepted or rejected by the marker (Milogevié et al, 20100,
Finally, competition for light and nutrents between uncontrolled weed
and sugar beet can cause root yield losses from up to 95% (Petersen,
2004); therefore, modern post-emergence weed control activities Tike
weeding through tractor-mounted hoes or herbicide application in
wendkinfested areas demands techniques for precise weed detection,
locatien and distribution o the field to ensure crop yield and avold the
environmental impact of intensive herbicide application (Cioni an
20150

Unmanned Aerial Vehicles carrying RGB cameras appeat as a novel
aulomalic approach Lo sequential images for field mapping. Advantages
for plant phenotyping are related to ease of operation, high spatial
resolulion, and acguisition of data on demand (De al., 2018). RGB
and RGB-NIR images were used in the past to detect sugar beet and
weeds. The image processing pipeline includes the use of an end-to-end
trainable fully convelutional networl acquired from field robot plat-
forms {Lotles ol al., 2008; Wo ot al., 2020; Mo ) This
algorithm can deliver information to wack erops and weeds, including
the number of planes, their location, and disiribution on the field. ' The
TCN is also able to detect stem position of sugar beets and weeds from
RUR images with a ground sampling distance (GS0) of 2 mm (Lottes
et al, 2018). To emulate the complexity of field conditdons. an
improvement of this algorithm approach was alse developed for field
robot platlorms and RGB-NIR images with 1 mm GS5D to deteet sugar-
beet and weed stems under varying weed pressure, varions weed
types, and for different locations and growth stages of 2-, 4-leal and 6-to-
H-leaf (I ottes et al., 2019), Nevertheless, and althongh mentioned ad-
vanlages of the Image processing approach, there is sull a lack of
knowledge in following aspects: (1) the possibility to extend the
approach Lo UAV-RGE systems and ils robustness in different lecalions
and in time-series, especially because UAV-systems in comparison with
field rubuots deliver, due to distance camera-aliject, higher spatial reso-
lution and outpur images quality depends of the sunlight conditions; (2)
Dbehavior of forceast performance for crop counting bebween different
growth stages; and (3) the effect of different intra-row distances in the
forecast performance of crop counting, considering the most demanding
counting activities for experimental fields but also for practice.

Besides, the performance of UAV-recorded ROGB images and a FON
pipeline to determine the plant number in other erops is also unknown
but valuahle for practitioners to predict the yield, RGR images snd deep-
learning approaches were already reported to be useful for counting
diverse plant species like rice plants and acacia trees (Lo et al., 2021;
al., 2021} The use of a previously trained model to other crop
species hag to consider differences in shape and color which could
decrease the robustuess of the methodology. Despite this disadvantage,
twio points might be beneficial in the extension of the method to other
crops: (1) the reliability of the plant identification step (plant-soil seg-
mentation), and (2) the ability of previously trained FCN hased
approach w differentiate diverse weeds of various botanical familics
[crop-weed discrimination), Whereas the sugar-beet experimental fields
include natural weed development, it 1s proposd to evaluate a practical

Maines, 2010; Kunz et al

Tony
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approach ¢lose to the productive application on strawberry and maize
fields. In this study, the described FCN pipeline, which is madeled for
sugar beet will be adapted and applied to swawberries, and maize for
CTOp Ccounting.

The general objectives of this study are: (1) evaluate the performance
of forecasting the number of sugar-heer plants an the field by using a
FCN-based approach and RGD images of mapped Helds with two
different intra-row distances, (2) determinate the best performance of
Ihe approach comparing different growing stages and in tlime-series and
(3} evaluate the possibility of extending the methodelogy established for
sugar-beels Lo strawberry and maize.

2, Materials and methods
2.1, Experimental fields

Location 1 - sugar-beet variety trial This field presented a
simplilied sugar-beet variety trial design, and was located in Gittingen,
Lower Saxony, Germany. The design showed 24 plats arranged in six
rows, each plot with a size of 2.7 = 8.0 m. The trial field presented two
sugar-heet varieties with different leaf orientation, a planophile and an
erectophile. Seeds were sowed on the Sth of April in 2019; the initial
intra-row distance was 6.8 em, and the distance between row was 45 em,
Two days before the UAV-measurement, plant population was reduced
to 1/3in order to increase intra-row to 21 cm. The soil type was Chromic
Luvisol.

Location 2 - proof of concept A second trial was located in Borfum,
Lower Saxony, Germany (Fig. la). The design was structured into 84
plots with a size of 1.35 = 7 m. The wial field pressnted 21 sugar-beet
varictivs. Seeds were sown on the 10th of Aprilin 2019, with an original
Inra-row distance of 6.5 cm and 435 ¢ between rows, Previous to UAV-
measurement, plant population was reduced as location 1 1a 21 em, T
soil type was Chromie Luviscl.

Manitoring amd preliminary evaluation of data from locations 1 and
2 were perlormed as a background [or a "prool of concept” and support
the design for a time-series monitoring to determinate crop population
under "harsh weed conditions.™

Location 3 - time-series monitoring in harsh weed conditions for
sugar beet The feld trlal for weed control was lecaled In Hockelheim,
Lower Saxony, Germany. The design was originally structured into 40
plots with a size of 1.35 7 m. The sowing date was the 15th of August
2019, and the initial intra-row distance was 6.8 cm and 45 cm between
rows. Prevdous (o UAV-measurement, plant popalaton was reduced Lo
‘2. No herbicides were applied to this field. The soil type was Chromic
Luvispl.

Location 4 and 5 - maize and strawberry These fields were located
in Klein-Allendorf, Morth Rhine-Westphalia, Germany. ‘The maiee
dartaset (location 4) had originally no plot scructwee (Tig. 1b). Therefore,
2( images were extracted from a single row, each representing a plot
with a size of 0.56 = 28,9 m. The dataset contains almost no weeds and
rofl aize plants in it post-emergence growth stage, Howe
of the maize plants were already overlapped. The strawberry dataset
{location 5) presents also ne plot structure, Thus, we define 40 squared
regions of @« O m. The dataset also contains small weeds that are
located hetween and within the rows of strawherry plants, The soil type
for Trolh trials was Haplic Luvisol.

2.2 UAY momitoring systems

Three UAV-monitoring systems were used for the present study,
Technieal specilications are described in Table 1.

2.3 UAV-moniroring compaign and flighe planning

The monitoring campaign started when plants achieved the growing
slages between BBCH 12 and 16 for sugar beets, and BBCH 13-17 and
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Fig. 1. fields: (a) UAV

and analysis of a sugar-beet field at 28th May 2019 in Borlum (location 2), 1) plot segmentation, 2) row detection,

3) stem detection and crop counting. (b) UAV-acquisition and analysis of maize field in Klein-Altendorf (location 4), 1) stem detection and plant counting.

BBCH 13-16 in the case of the maize and strawberry fields, respectively.
Flights were perfc d in all 1 in on one with the
exception of location 3 (time-series itoring), which was itored
on three occasions (1able 2). For this location, ground control points
(GCPs) were installed in the field corner points. In all locations, flights
were performed within three hours of local solar noon. Flight mission
was i using the softy UgCs (SPH i Riga,

speed between 1/1400 s and 1/1000 s, and a sidelap/frontlap of 80%.
The resolution in GSD was fitted to field size between 1.5 and 3 mm

(Table 2). Image to an orth ic was perf d using Agi-
Soft MetaShape (Agisoft LLC, St. Petersburg, Russia).
Sky ditions of each UAV- was d in four

classes: (1) clear, (2) low cloudy, (3) middle cloudy, and (4) cloudy;

to cloud covers from 0 to 33, 34 to 65, 66 to 95, and 96 to

Latvia), and the flight time was between 12 and 22 min. RGB images
were captured in the photo mode (single shot) by distance with a shutter

100% of effective cloud amounts (Schreines et ol 1993),
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Table 1
Technical specifications of our UAV-based monitoring systems.
st AV camers monofcturer sensoe rmscheion facal
size lengtiz
1 Tnspire 2 Zenmise ™ 4/3- 52680 ~ a5
] inch 3956 rm
2 Phantom il T Linch 5472 AR
ARTE atached B8 un
a Phavtom  glubal- L Ldach 5472« EL
LG ausched 64 px uun

2.4. Collecring ground truth

Ground truth object (GT) was defined as the number of crops counted
per plot. Crops were labeled and counled manually in images [or cach
plot from the segmented orthomosaic image, In total, 24, 84, 120, 20,
and 40 plots were counted for locations 1-5, respectively. In the case of
location 3, the counts were done separately for each flight date
Cralile 2).

2.5, Esimaron of crop density and distunce

Crop density (O n crops per m* was caleulated per plot by using
the ground truth counts. Deeause the size of the plots in each lecation
was the same hut different herween locations, the average GT (counted
crops) and the average CD was caleulated per location, Intra-row dis-
tance (D) was calenlated by using T and the number of tows and row
length of each plot.
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26, Fully comvolurional network-based plant classification

n this publication, the principal axis of the young shoot of sugar-heet
seedling will be consider as stem. Keeping this clarifieation in mind. this
section describes onr FON-hased approach for joint plant classification
and stem decection, which is based on a previous publication which was
implemented in Python (Keras) (1ottes et al, 2018), This system pro-
vides two oulpuls simultaneously. First, a planl mask represents a pixel-
wise classification considering the classes crop, weed. and background
(mostly soil). Second, lhe stems’ positons for the detecled crop and
weed objects are represented by a stem mask, The approach's key
architectural design feature is that the network shares the encoded
features for classifying the stem regions and the pixel-wise classification
using one encoder network and two lask-specific deeoder networks.

The processing pipeline executes the following lkev steps and is
illustrated in Fig. 2. First, ca 5 preprocessed. Mext, the pre-
processed images were fed into the one-encoder-two-decoder structured
Fully enmvnlutional netwerk. Quepats first include a per-pixel probabilitg
distributivn P ] for describing the plant das
desired class labels af'™™ < {erop, weed, il for cach observed pixel (2);
second, a per-pixel probability distribution Pie™"|Z) with ™™ & {crop
weed, soil} representing regions within the image, which correspond to
crop and weed stems, The label for each pixel is determined as the one
with the highest probability by: (see Figs. 3 and 4)

over the

o argmua P e Z]. 1
w

Finally, pixel-accurate stem positions were extracted, e, the stem

mask, through a post-processing step, which will be described in Section

Table 2
Trial fields, location, crop, growing stage and flight specifications.
Na, lecaron GES-cocrims T RECH Righr date Y semp Fdght GST
1 [1} Gotringen S1UIING53E sugar beet 14-16 22052019 clondy 1 4im 20 mm
2 12} Béiram G2 40N 107 36E supar hret 16-18 2605.2019 mmiddle: clondy 1 40m 2.0 mm
a 03] Héckelbwin 172N STE sugar el 12 05092019 chowdy 3 15
4 12-14 11092009 elear Z 1.5 mm
E 14-1 Z009.2019 low cloudy Z 1.5 mm
6 147 Klein-atendof S IENE SO maize 1317 25.05.2015 Jow eloudy 3 W 40
7 3 Klein-Aeendorf S IGNGSAE stranwhorry 13-16 26062018 o cloudy 1 40m 20 mm
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Fig. 2. FCN architeeture, Encuce of input images using the encoder and following by the pass the feature volumes o the task-spevific decotlers, the stem and the
plant decoder. Obtained outputs were: the plant mask considering the classes erop, weed, soil for the pixclwise classification of the plants, and the scem mask
cansidering the classes crop, weed, sl far the segmentarian crop-weed stem reginns. Finally, fhe extraction of the stem positians from the stem mask in the stem
excraction. [nside e layers, it Is shown the number of outpur featiures maps. L represents e number of stacked consecutive 213 convolutional layers,
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Fig. 3. Extraction of pixel-wise stem by a weighted
center of miss of the stem regions predicted by the PCNL Fm- the weighting. it
wAS the predicted ies for each pixel belonging to a
steim region.

2.6.1. Image preprocessing

‘The preprocessing slep was applied Lo image patches oblained [rom
orthomosaics. These images presented a width and height dimension of
512 pixcls, and 1 mm of GSD afier downsampling. To deliver high per-
formance of the classitiers the different input data was preprocessed, In
preprocessing steps, transformations were applied o the data o reduce
its complexity and standardize it to some degree, increasing the chance
that the machinc-learning algorithm cm provide better performance
than without preprocessing it. Technically speaking, preprocessing can
imprave a classification system’s generalization capabilities by aligning
the training and test data distribution, The preprocessing was performed
independently Far each image and separately on all channels, i, red,
areen, blue. First, noise [rom each channel was removed by perferming a
hlurring operation using a [5 = 5] Ganssian kernel given hy the standard
normal distribution, Le, o — 0and & — 1. Second, each image channel
was standardized by its mean and standard deviation, respectively,
Third, conlrast stretch of the inlensilies 1o the mnge |05 0.5] was
performed, which implies a zero-centering of the dara.

262 One-encoder two-decoder network wrehitechure

Fiw. 2 depiels the proposed archilecture of our juint plant and stem
detection approach. This approach’s main processing steps are the
preprocessing (red), the encoder, the plant decoder, the stem decoeder,
and the stem extraction {(brown).

Twa separate feature volumes were generated from the encoded and
compressed visual code, one specialized for pixel-wise plant elassifica-
tiom, samd snother for stem detecdon. Thus, two task-specific decoders
were obtained, which perform an upsampling using a steidden transpose
convalution (Dumoulin and Visin, 2006 with [2 « 2] kerne] and a stride
of 2. Both decoders alse use dense blocks as their main building blocks
and follow the same architectural design to produce the plant features
and slem features. Moreover, both lask-specific decoders use [eature
maps procduced hy the encader through skip connections, The corre-
sponding leature maps was concalenaled by sharing the same spatial
resalution from the encoder before wsing dense blocks for feature
computation. Skip connections from the encoder (o the decoders faci
tate the recovery of spatial information { Badrinarayanan et al., 20
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Finally, the feature maps produced by the stem decoder and the plant
decoder was transformed into the pixel-wise prohability distribution
over their respective class labels by a 1 » 1] convolution followed by a
softmax layer to obtain P« |Z) and P{w™™|Z), Note that It was tried
to predict the area of the stem instead of regressing the stem loca
This is kev to use the same architecture for learning plant classilication
and stem locations,

on.

2.6.3 FON maining

For learning, an NVIDLA 2080 T1 card with 11 GE of VRAM was parl
of the equipment for our experiment. A dataset of 500 RGB images were
used in a ratio of 75%, 5% and 20%, from these 375 images were
considered for training and 25 images for validation as mentioned in
Lotles etal. (2018,), Additonal 100 images were used as testing dalasel.
For better results, all datasets were diversified according image condi-
tions by considering wied prassure, illumination, and growing stage. A
muld-task losz ¥ was used combining the loss for the plant segmenta.
lion 7 yam and the Toss for the stem rogion segmentation 7, as
follows:

F={1-m —nF

e 2

where & — 0.5, The loss ¥, is the weighted cross-entropy, where
errors reganding the crop plants and weeds were penalized by a factor of
10. The loss .-, Is based on an approximation of the intersection over
union (loll) metric, as it is more stable with imbalanced class labels
(Rs ud Wang, 2016), which s the case in our problen with under-
represented stems as compared to the amount of soil. The multi-task loss
also enables the sharing of informalion for learning the encoder, which
«can use the loss information frem both decoders in the backward pass of
the backpropagation. The slem locations were encoded as blobs with a
diameter of 10 mm in ebject space for training,

2.7, Btem Extraction

Given the probability disteibution Pie~™ Z) encoding reglons within
the image, which correspond to crop stems and weed stems, a well-
defined stem detection by a specific pixel location for the crop and
weeds was desired. To this end, it was firstly calenlated the stem mask
according Lo Eg. | by seleeting the class with the highest label proba-
bility for each pixel, Next, the connected companents was deter-
mined fur the erop and weed dlass and computed the weighted mean 5
of the pixel locations by:

5 Ple — @ x)x
u R 3]
hd 's_' Plin = mfx)

with & — crop,weed, The weighted means x!
detections that are reported by our approach.

for class ¢ are then the stem

Fig, 4, Uustration of difficult conditions for b

| classific

plants using

ivn approaches, Lefo Mutwally ercrlapping sugar bects. Right: Due to

narrow seeding, the sugar beets overlap carly after the cmergence phase. In addition, individual snd contgueus plants are separated by straw in the image space.
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2.7.1. FCNs mpplicability for crop counting using adapted transfer learming

“Trained data based an a from previous wark for sugat heets was nsed
and can therefore realize a stable primary classifier, The classifiers’
adaptation to strawherries and maize was made with additional naining
data from earlier projects in a supervised transfer learning manner, Le.,
through a re-training of the model with further training data that in-
cludes strawberrles and maize samples. The dataset used for teaining
indivicdual classifier for sorawberry and maize, consisted of 130 RGB
images per crop, considering from this total 120 images [or training and
10 images for testing with a reselution of 512 » 512 pixels (Section
2.6.1). No validation sel was used in this transler leaming stage because
it was tried to minimize modifications in h¥perparameter settings. For
processing the test dataset, patch images presented a resolution of 2048
» 2048 pixels, and the processing-time per image was around (.4 s with
the hardware mentioned on Seclion 263,

2.8 Fvaluation Metrics

After checking the absence of outliers. normality of variables. line-
arity, and homoscedasticity of each location, the Pearson Product-
Moment Correlation Coefficient [PPMC) was caleulated to determine
the degree of linear correlation and whether significant differences
between prediction (PY and GT in terms of counted crops.

Forecast error of pipeline approach was determined by calenlating
the mean bias error (MBE), mean absolute error (MAE), and mean ab-
solute percentage error (MAPE) (Sheherhakov et al., 20703 Kato, 2016),
For a better agricultural interpretation. MAE was calculated per unit af
evaluated area {(MAEA) and the area for unitary predicted error is given
as A,

The systematic error to under- or over-forecast of the pipeline
approach was evalualed by using the MBE parameter, this was defined
by Eq. 4

st

1< .
MEE .\-Z”" T )

where:

« N total number of forecast events

» i = forecast event for plant counting in a plot
o 1 = yround truth count

« P, = prediction count

The magnitude of the forecast error was determined by the MAE of
the predicted event given by:

Based on the ground truth plant count, a pereentage emror of all forecast
events was quantified using the MAPE of predicted numbers of crop
plants by the following Fq. 6:

- p
= (2]

1 i,
MAPE = % 100 %
N e i

By considering MAE as a scaled magnitude of forecast error of events
amd as a forecast event is applied in a specific smea of the ficld, the MAFA
expresses the number of erop units, which are under- or over-counted
per unit area (o, 7):
MAE
MALA 7
0

where:

« MAE = mean absolute error expressed in counted erop units
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» ¢ area of forecast event

The area for unitary Yorecast error (Ae) is derived from MAEA. It is
interpreted as the atea to wnder- or aver-count a crop by the employed
pipeline approach (Cg. 8%

1

T MAEA &

A,
3. Results

Far all locations the average of counted and predicied crops pre-
sented a strong and significant correlation (Table ).

3.1. Proof of concepl assessiments

The average of counted and predicied plant numbers were 232.3 and
228.1, and 95.9 and 958 plants for location 1 and 2, respectively
(lable 31 The number of counted plants allows determining the CD
wvalues for locations 1 and 2, 10.75 and 10,15 plants/m? The average
intra-row distance calealated was 21 and 22 em, respectively, for loca-
tons 1 and 2.

The use of FCN pipeline delivers a negative MBE value in hoth To-
cations or tends to under-count sugar-beet plants (Table 3. In locaton
1, MAE's magnitude is four sugar-beet plants in a plat &
and with plants at BBCIT 14-16. According to the dell
and Ae, in location 1 and at BRCH 14-16; for every 4.5 m?, one sugar-
beet plant is wrongly considered in the count. In location 2, the pipe-
line presents the lowest MAE and the highest correlation (PPMC = (,95),
the magnitude for the count error s less than a plant for every ploLarea
of 9.5 m* at BECH 16 18, The Ae value shows that one sugar-beet plant
is wrongly counted every 26.0 m® under field arrangement conditions of
location 2 and at BRCH 16 18, The lowest MAPE value is shown he-
tween both locations with the growing stage of BBCH 16-18 in sugar
beet,

3.2, Low intra-row distance in dme series

The time-series assessiment of location 3 delivers the counted number
of erop plants per plot between 181.6 and 185.4, with the highest plant
number at 17 das, The predicted average number of crops presents a
range from T80.8 to 1814 plants per plot, with the highest amount of
counted plants at 34 das (Table 3). The average value of crop density in
the trial decreased from 19.6 ta 192 plants/m? through the three
MEASUreMENLS,

Over the monitoring period, predictions present negative MBE values
or a lendency o under-count crop plants similarly Lo locatlons 1 and 2
[Tahle 3). The magnitude of the error count range between 7 and 8 sugar
beets per ploL. The Ae value range between 1.3 and 1.5 m®. Eilher the
smallest error or the highest degree of correlation was found at BBCH
14-16 with a MAPE value of 3.96% and a PPMC of 0.83.

Sugar-beet plants presented an average soil cover of 1.14 + 0.31%,
195 = 067%, and 200 — 0.88% at 17, 25 and 34 das (Mg 5).
Furthermore, weeds covered the soil with average values of 1.05%,
1.19%0, and 1.80% al the previously mentoned dates, and the respective
standard deviations were 0,03%, 0.26%, and 0.16%,

3.3, Generalized application of trained FCN o maize and strawberry

The average of counted and predicted crop numbers for the maize
and strawherry field was 153.6 and 157.4, 291 and 30.2 plants,
respectively (Table 33 The €D value [or the maize [eld was 9.49 plants/
m*, and in the case of the strawberry field, crop density was 0,36 plants/
m®,

The forecast events for counting maize and strawherry plants present
positive MBE values or a lendency Lo over-count crops in the plol
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Tahle 3
experimental resulls for crop counting, caleulaton of plant distribution paramelers,and error metrics based on predicted crop numbers for sugar beet, matee and
strawberry felds.
dria! confipuracion prediciion & calenlavion LS
location PN das BBCH  GSD G [ PI¢ g MEE MAE MAEA Ae MAFE PRI
1 2 T4 1418 an 2921 221 wrE h2 421 146 0.21 1.4 152 LI
2 B 15 1618 an L= e LURLIN -] 0.0 n.az 004 26.04 047 0.05 ¢
3 sugar beel Rl 17 12 15 185.4 1805 196z 01 465 BAl 077 129 457 LX-R
sugar beer 5 1418 15 WO TELE 196 012 —0.70 7.10 065 153 596 LR
sugar beer a4 16-18 15 WLe  1l4 1w DAz -8 EXIR] 0.7 135 444 wrE ¢
4 mize 20 - 14-18 0 1586 1574 0.3z w1y EX] 240 0.2¢ 415 255 opze
5 srawherne 40 - 16 20 21 202 036 0.31 Los 115 013 783 296 DOFF
where: PN = plar number, das = days after snwing, BRCH = growing stage, GSI2 = ground sample distanes in mn, GT = average value of ground ruh expressed in

number of plants, ¥

average value of predictions expressed [n number of plants, 1)
o Tow distance of 45 cm for sugar beets, and 56 and 100 em for maize and stravwberry respectiv

plant dens

n plants per w2, 11 distance of craps b the row i n congidering
 MBE = mean bias crror, MAE = mean absolute error in plent plot,

MAFA = mean absnlure error of predicted aren in plans per ", Ae= area for unitary forecast error in m? per plant, MAPE = mean absolute percentage errar in

duct

percentage, PEM( = Pearsan |

W sugar best
waad

denity estimation

EI I S

L [+) significance level of @ = 005, (a) Parameter hased an gronnd truth daca.

£od cover [%)

Fig. 5. Development of vegetation cover: time series laheling of sugar beet {green) and weed (red) covered area al 17, 25 and 34 das, (*] Density estimation of 4

plots of trial field lovated in Hickelheim Qocativn 35, Evaluated feld arca 9.5 m?,

(Table 3). In the maize feld, MAE's magnitude Is almost four plants per
plat. In the srawherry figld, the MAE value is more than one plant in a
plot. The Ae value is 4.1 and 7.8 respectively for the malze and
strawberry,

4. Discussion

4.1, Effect of the monitoring system and the sysrem resoliecion for plant
counting

A relevant task s the develupment of approaches which can be
generalized across measuring systems, different fields and/ or ditferent
crups. By using three different sensor and UAY setups, this contribution
confirms that the previously tested and used pipeline {Lottes et al.,
2018), can be generalized to evaluste RGE UAV-hased images. Never-
theless, the principal difference was ebserved during the establi:
of a flight plan, setup 1 in comparison with setup 2 and 3 (Tahle 1),
presenied a bigger sensor size (4/3-inch against 1-inch) and a longer
focal length (45 against 8.8 mm), that allows a greater field of view in
high resolution as mentioned in Pepe et al. (2018), and therefore this
system was able to map higger field area with the same flight time. No
advanlages in terms of reduced Dight lines and use of fewer GCPs were
ohserved for the setup 2 with real-time kinematic (RTK) system (Rahah

et al, 2018]), probably related e the small size of the mapped area and
the less challenging and planar characteristics of the observed object, in
this case, the trial [eld with small vegetation during first growing stages.

The: principal changing factor, the ground sample distance, is not a
limiting factor [or the dalaset with lower resolution (G50 of 0.3 em). 5a
et al. (2018) mentioned that a resolution of 0.85-1.18 cm (G812 can
compromise performance of weed detection by using a Deep Convalu-
tional encoder-encader architecture for crop/weed segmentation. This
study found that In early season a dassification between crops and
weeds is difficult beeanze of morphological similarities. Using image
resolubions of (.02, 0.2, and 0.5 cm (G50 and & similar image pro-
cessing approach, Lottes et al, (2017) mentioned that field arrangement
is the best supporter for detection of crop and weeds, highlighting the
importance for row detection and the spatial relationships among mul-
tiple individual plimts which remain constant st the mentioned image
resolutions.

4.2 Sky conditons

In the past, it was affirmed that the vse of spectral images in high
resolullon for the analysis of vegetation could negatively allect the
classification of areas under shadows. This phenomenon eould lead to a
false interpretation of physiological and metabolic aclvides (Zarco-

33



Detection of sugar beet plants - Manuscript |

A Tarretn ot ol.

Tejada et al, 2015). n our tmeseries case using RGB-images, the
lowest torecast error is acquired under clear sky conditions, which tells
us that the used FUN pipeline approach could be used in shaded sce-
narios witheut losing performance. Another possibility is to expect a
lower MAPE value under mare favorable sky conditions; this means that
under the same date and place of experimental leld, but different sky
condition like clondy/ no-shaded scenario, the forecast error can be
lower than 3,968 {Table 3). The employed Lme series analysis has o be
conwasted. with similar categories of crop growth stage conditions
[BECH 12, 12-14 and 14-16) and weed pressure and in various sky
conditions to derermine the effeet of shadow in the counting
purformance.

4.3, Inma-row distance as a crirical facror for @ FON pipeline

In this study, the experimental field with 11-12 em intra-row dis-
lance presenled a high emergence of wheat from previous seasons,
correctly classified as weeds. We furthermore avoid using herbicide in
this experiment (o increase the chances of emerging inlra-row weeds.
The detection of sugar-beet stems and hence counting of crop plants can
be performed with an average precision of 78 8% by using UAV-RGE
images in grass plants’ presence according to past results (Loctes et al.,
2014), supporting uhserved oulpuls of the limeserics analysis. In the
past, a similar study based on mask B-CNN approach using robot-based
RGE images for detection of common beans and maize presented similar
precision values for crop segmentation (60-80%) and highlighted the
impartance of the weed cover for misdetection (Champ et al, 20200, this
study found that small weed cover presents a high probability to be
pisel-wise classified and counted as a crop hy caleulating the harycenter.
A YOLOVE CNN architecture also mentioned a high mean average pre-
cision of 86% for connting stems in corton seedling, although the effect
of weed pressure was not evaluated, there are some disndvantages by
overlapping and detecting small seedling (Oh et ., 20200,

The intra-row dislance of 21-22 cm presented, over all calegories of
growing stages, less connting error than the intra-row distance of 11 12
cm. In the past, CNN and FCN pipelines for cropsweed delection used
images containing crops arranged in a tvpical distribution, 15 25 cm of
intra-row distance, and 30-60 cm distance between rows (52 0! al,
2018; Lottes et al.. 2018), For the employed ine, images for training
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intra-row distance is that neighbor sugar-heet stems are difficulc o
count. Sometimes two plants are counted as one, mostly if the midrib
and tip lesf is aligned and Ty close to the crap stem
(Fig. ba).

4.4 Importatce of prowing stage for successful counting

In this paper, one of our main purpose is o specify optimal condi-
tions for plant counting. In the vegetation period, crop growth is dy-
namic, and UAY-flights 1o capture imayges have to be performed on time
1o obtain the best results, To provide crop numbers, the determination of
stem pasition in different growth stages is a crucial point, the perfor-
mance to detect stems of plants with two-leal to later growth stages can
achieve 95.5% of precision and 98.0% of recall according to a past
experience, but the best growth stage was not specified (Lottes et al.,
201 49). This smdy specifies that the oprimal growth stage is dependent
on intra-row distance. Tor the case of practice felds or intra-row dis-
tance of 20-21 em and 45 cm hetween tows, the flight has to be per-
formed [n preference between 16-18 BBCII stage compared with the
BECH 14 16, In experimental fields with an intra-row distance of 11 12
cm, UAV-[light provides the best resulis with the BBCIT stage of 14-16.

4.5, RGE-UAV for monitoring sugar beet/weed competition

In a past experiment, Lottes ol ol (2018) determined plant-soi] cover
by labeling pixel-wise images into crop and weed; for their objective,
they used RGB-NIR fmages containing sugar beets in different growth
stages obtained from Held robot platform and a similar FCN pipeline,
After aptimization and analysis of performance, the pixel-wise approach
achleved 91% of Fl-score. Our study is based on the above-mentioned
excellent performance to derermine the soil cover of weeds and sugar
beets. In this way, we have used a similar approach that [ocuses on
LaVs' impartance for agronomic application. This includes using the
advantage of UAVS [or Mexdble image acqulsition in the agronomic goal
of weed control (Pens et al, 2012) and the possibility to support the
decision for weeding during the enlire eritical period of competilion,
which usuallv takes place between EBCH 14 and 32 during approxi-
mately 21-28 days under normal growing conditions (Pelersen, 2004).
A poine to cl in future studies is which threshold of sugar beet/weed

presented erops distributed in the same fashion. By olserving the output
images, an explanation of the higher rate of under-counting crops by low

a Classification

RGB

average is the most effective o reduce yield losses by using o spoeific
weed control method.

RGB

Figr. 6. Counting performanee after classification in the upper left triangle: (a) counted sugar-beet plants (white dots) and one under-count of sugar-bect stem at 34

days after sowing in Hickelheim - lacation 3 () pe - of

heet imege

ing pipeline extended tn a strawherry field, counted strawherry fgreen

dots] over-count case of false classification of weed Cred dot) - location 5, The lower right triangle shows the ariginal RGI paich image.
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4.6. Pipeline extension to additional craps

By analyzing the pipeline outputs, maize and strawherries” over-
counting Is related to crop counting of stems belonging to weeds
lacated in the intra-row space (Fig. oh), A similar phenemenon of
overestimation was observed In the past, but not by over-counting but
by over-segmenting (Bosilj et al, 2019). The mentioned work also
transferred learning from a SegNel CNN maodel by relraining [rom sugar
beets to oniens data, This tendency of overestimation must slightly
impact the Precision from the transferred erop and is an aspect 1o study
in future investigations. Despite this, calculated results show low
counting crrors, and as mentioned on Section 4.1 crops distribution, and
regular intra-row distance should be the principal reasons for control-
ling the counting after retraining a model on a small seale.

In this extension, the counting error for other dicot as strawbeny is
higher than the error from & monoeot as maize. The same effect was
abserved in a past study using transter of knowledge of a CNN approach
from sugar beets o carrots and onions (Bosilj et al., 20749). In this
experience, the monocot crop presented 224 less performance drop than
a dhivat erop by a pheel-wise elassification of the input image. Quan of a1,
(201%) mentioned, that a pixel-wise segmentation of maize seedlings
can achieve a segmentation of up to 98% nsing RGR-images and a faster
R-CNN approach, and suniy conditions ean negatively influence the
performance of seedling detection. Furthermore, a precision of up o
95% was reported using RetinaNet and CenterNet CNN architectures for
connting maize seedling [Karami et al., 2020}, Nevertheless, the per-
formance of Lthis approach could not be contrasted due (o the lack of a
labeled testing dataset, Thiz paper confirms the feasibility of nsing a
pipuline developed and modeled for sugar beets and applying it with less
labeling effort on maize and stwawberry fields. Counting error is lower
than 4% and less or as high ax the experimental ficld with low intra-row
distance,

5. Conclusion

Monitoring and counting crops on the field are of high interest for
farmers, experimentsl ficlds, smd the seed-producing industry. The
presented UAV-RGD image processing pipeline can deliver the number
of sugar beers on the field with an error lower than 4.6%, The intra-row
distance and the growing stage of sugar beets are relevant parameters
for accurate plant connting. This evaluated variables present the most
elfective constellation with a crop distance of 21-22 cm and at BBCII
16 18, In experimental-field plant density, with an intra-row distance of
11-12 em, the smallest forecast error for crop number 15 shown at BBCH
12 14, The extension of the previously trained FCM pipeline to other
crops is possible with a small training datasel, the errors of predictions
are lower than 4% by evaluating practical fields of maize and staw-
berry, which highlivhes the potential use of the image processing
approach to wide numbers of crops, Overall, considering the parameters
us mentioned carlier, automatic momitueing of crop ficds using UAV-
images followed by proper processing of these can output reliable in-
formatian that incroases efficiency in the crop production by reducing
the manual counting effort of the fanmers.
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Facundo R. Ispizua Yamati; Abel Barreto; Maurice Gunder; Christian Bauckhage; Anne-Katrin Mahlein

Sensing the occurrence and dynamics of Cercospora leaf spot
disease using UAV-supported image data and deep learning

Erfassung des Auftretens und der Dynamik von Cercospora-Blattflecken-
krankheit mittels UAV-gest(itzter Bilddaten und Deep Learning

The most damaging foliar disease in sugar beet is Cerco-
spora leaf spot (CLS), caused by Cercospora beticola Sace. The
pathogen is expanding its territory due to elimate condi-
rions, generating the need for early and accurate deteetion
to avoid yield losses. In Germany, monitoring and control
strategies are based on visual field assessments, with the
parameter disease incidence (D). This parameter triggers
warning systems when a threshold is achieved, and deci-
sion-making takes place for fungicide application. However,
visual scoring is a time-consuming activity that requires
well-trained personnel and is the principal bottleneck for
CLS control. Digital technolegies can suppert this process.
Thus, the present work is based on two trial fields conducted
and maonitored in 2020 using an unmanned aerial vehicle
(UAV) equipped with a multispectral camera. Image data
were collected in time series during the vegetation period.
Trials were sown with different sugar beet varieties; for
field management, there was employed diverse fungicide
strategies, and artificial inoculation teok place in a spot
manner. Parallel to the flight mission and additienal assess-
ment of DI, disease severity (D5) via KWS scale was collected
by experts as so-called ground truth (GT). Combined with
image-processing, it was possible to catalogize plants in
field trials, identify them over time, and use them for train-
ing and testing models. A convelutional neural networl
(CMIM) supported by cataloged data was trained to perform
classification of the disease presence in time-series, and per-
formance was evaluated. As the last image processing step,
maps were generated showing site-specific distribution of
the diseased plants in the field. Generated maps can serve
as a basis for application maps in practical cultivation or
the evaluation of variety performance in variety trials. The
presented methodological approach provides high precision
and sensitivity in CLS detection and offers the potential to
autamate processes of CLS monitoring for different applica-
tion areas

Key words: Cercospom beticolz, romvohitional nevral network,

disease incidence, disease severity

" Paper presented at the 15" Gottingen Sugar Feer Conference, Gotelngen, Germang,
Septermher 12, 202
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Die Cercospora-Blartfleckenlerankheit (CLS, engl. Cerco-
spora leaf spot) ist die bedeutendste Blattkrankheit bei
Zuckerriben. Der pilzliche Erreger Cercosporn beticola Sace.
breitet sich aufgrund klimatischer Bedingungen immer wei-
ter aus, eine frithzeitige und genaue Erkennung ist wichtig,
um Ertragseinbufien zu vermeiden. In Deutschland beruhen
die Uberwachungs- und Bekampfungsstrategien auf visueller
Bewertung der Felder mit demn Parameter Befallshiufigheir
{disease incidence = DI}. Dieser Parameter last bei Erreichen
eines Schwellenwerts Warnsysteme aus, woraufhin Ent-
scheidungsschritte fir den Binsatz von Fungiziden getroffen
werden. Die visuelle Bonitur ist jedoch eine zeitaufwindige
Tatigkeit, die gut geschultes Personal erfordert und einen
groffen Engpass bei der CLS-Bekdmpfung darstellt. Digitale
Technologien kinnen diesen Prozess unterstiitzen, Die vor-
liegende Arbeit basiert daher auf zwei Versuchsfeldern, die
im Jahr 2020 mit Hilfe eines unbemannten Luftfahrzeugs
(UAV), das mit einer Multispektralkamera ausgestattet ist,
angelegt und iiberwacht wurden. Die Bilddaten wurden wah-
rend der Vegetationsperiode als Zeitreihe erfasst. In den
Versuchen wurden verschiedene Zuckerribensorten aus-
gesat, verschiedene Fungizidstrategien eingesctat und es
erfolgte eine kinstliche Inokulation. Parallel zur Flugmis-
sion und zusitzlichen visuellen Beurtellung der Befallshiu-
figkeit wurde die Befallsstarke (disease severtity = D8) mit-
tels KWS-Skala von Experten als sogenannte Ground Truth
(GT) erhoben. In Kombination mit der Bildverarbeitung war
es maglich, Pflanzen in den Feldversuchen individuell zu
katalogisieren, iber die Zeit zu identifizieren und far das
Training und Testen von Modellen zu verwenden. Mit Hilfe
der katalogisierten Daten wurde ein Convolutional Meu-
ral Metwork (CNN) Modell trainiert, das die Befallssitua-
tion in den Bildzeitreihen klassifiziert. Die Performance des
Modells wurde zudem ausgewertet. Als letzter Schritt der
Bildverarbeitung wurden Karten erstellt, die die Verteilung
der kranken Pflanzen im Feld zeigen, Die erstellten Karten
konnen als Grundlage fiir Applilationslearten im prakei-
schen Anbau oder zur Bewertung der Sortenleistung in Sor-
tenversuchen dienen. Die vorgestellte Methodik bietet eine
hohe Prazision und Empfindlichleeit bei der Erkennung von
CLS und hat das Potenzial, Prozesse der CLS-Uberwachung
fiir verschiedene Anwendungsbereiche zu automatisieren.

Schlagwérter: o, Comvolutional Menral Mer

work, Befallshaufigkeis, Befallzarirke
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1 Introduction

The mest serions sugar beet leaf discase n the world s Cer
cospora leaf spot {CLS) Weiland and Koch (2004). CLS affects
both the technical quality and the mass of harvested beet
(Woll and Verreel 2009}, When infected felds are nol ade-
quately treated with fungicides, yield lesses can be more than
42% {Smith and Martin 1878). Similarly, final beat mass is
reduced when atleast 3% of the leaf area is affected (Wolf and
Werreet 2009). This disadvantage highlights the importance
af carly and accurate detectinn of pathogen emergence for
inteprated control strategies to avoid yield losses (Wolf and
Werreet 20089} In thiz context, control thresholds have been
employed for years for sugar heet growers in Germangy, The
thresholds ave set on the calendar base and dizease incidence
{11, Gummert et al. 2018). Such warning systems are bazed on

1

intensive feld monitoring, which is a time-consuming activ-
ity that requires well riained peraonnel for assessments Tn
recent years, there have been grear advances in field manitor-
ing with the support of remote sensing, especially in the use
af sypatems hased on cameras mounted in Unmanned Aevial
Wehicles (UAVs). The successes and achievements in plant dis-
ease detection with image sensors were described by [Mahlein
(2018}, reporting several Lypes of research being abile Lo detect
aused by CLS. Jay et al. (20203 and Garlich ot
alized CLS detection under field conditions with
imagery systems, and in the same line, Gorlich et al. (2021)
has shown the power of adding a CNN approach Lo the analy-
. Howepwar, the threshold values ©

«d on D are determined
for a certain number of individuals leaves or plants). lhis
leads to the need Lo be able to individualive and detect plants
sand standardized DL
There have already been advances in plant detection af sugar
beet and counting in the field, as demonstrated by Barreto et
al. (20213, but this work has not focused oo tracking plants
aver time for an application after canopy closure. The use of
threzheld values in integrated pest management (IPM) has
as one of its objectives the reduction of pesticide use. b
reduction can be supparted by acrial mapping and precision
muided fungicide applicarion (Booth et al. 2021, Dammer et al
20151 In this werk, 2 list of image-processing approaches is
ensembled that combine machine learning and deep learning

in the field in arder to deliver accura

approaches o deliver parameters for disease quantification
ot individual plants in the field during the vegetation period.

2 Material and methods
2.1 Experimental fields

[n 2020, within the context of the projects: “COBRL: Sensing
of plant diseases by hyperspectral imaging and UVAYs" and
“PhenoRob: Robotics and Fhenetyping for Sustainable Crop
Froduction”, twn cxperimental trizls were carried our near
Gitringen, Germany. The main ohjective of the first trial, fur-
ther called “training trial”, was to develop 2 model to eztimate
the resistance level of caltivars by using & multispectral UAV
system and comparison with plot scoring. The informarion
different kinds of models,
On one side, this will serve as a pipeline for a pixel-wise and

collected was used to train and tes

Ol 10 3636173

multi-class task to classify healthy, diseased, and bare sail-
based multispectral data (this will not be the focus of this
wark), On the other side, & CNN model based on ROE images
fram the plant level will be elaborated and presented in this
paper. Lhe training trial presented a two-factorial randomized
complete block design, One factor was Lhe resislance level
{susceptible or resistant), the second factor was the fungi

cide strategy considering three lavels: (i) not moculated and
treated with fungicide as a control, (1) not ineculated without
Tungicide, and (i} inoculated without fungicide.

The main objective of the second experiment, also calle sl

ing trial” was to develop models for accurate and early forecast-
ing by monitoring the dizeaze with information from optical
and ervironmental sensers, considering the pathogen's spread
the environment. For this purpese,
the experimental trial and individual plots were considerably
more extensive and had only one susceptible variety; inocula-
tion was applied only in the center of the three plarz 2z 2 spar
manner directly by seeding; for this work and as 2 use case,
the datz obtained from this experiment were used to test the

nreraction

and 1

created model with the datasel generated by the training izl

22 UAV-data acquisition and image stitching

LAY flights were conducted to take images every week until
harvest from May te October onwards, & quadrocopler DJT
Matrice 210 (Shenzhen DIT Sciences and Technologics Ted.,

China) was used to callect aerial data. The camera mounted

was a Micasense Altum multspectral camera {MicaSense,
Ine., USA) with six bands: BLUE (475 + 32 mn), GREEN
(560 + 27 nm), RET{EER + 14 nm, REDEDGE (717 + 12 nm),
MIR {842 + 57 nm!, and long-wave thermal infrared (LWIR,
B000-14000 nm) with & Downwelling Light Sensor (DLS2).
Tn this work, the information provided by the thermal band
has not been considerad. The automatic flight mizsions were

designed with the software UGCS (Version 4.4).

In both trials, Qight altitude was established to acguire mul-
rigpectral images with a ground sampling distance {GSD)
between 0.2-0.5 am, allowing single leaf apot detaction. Haw-
ever, the testing trial was monitored at o slightly higher alti-
tude, Josing seme resolution to complets the mission with a
single flight.

lhe multispectral imapes taken with UAY system were prepro-
cessed with Agisoll Melashape Professional (Version 1.6.5)
to generate erthomosaic images of the entire field. The G135
program QGLS (Version 3,181 w
areas, manage the scoring data, and generate the visualiza-
tionz, Al the end of the season and aller preprocessing, the
following data were ohtained: 27 multispectral orthomnsaics

zed to delimit the analysis

fram training trial, and 10 multispectral orthomosaics from
testing trial.

23 Ground truth
In parallel with all UAV flights, experta determined the disease
severity of each plot as ground truth bazed on the KWS scale

Ite ranges from 1 te 9, in which 1 represents the absence of

Sugar Industry 147 (2022} Mo, 2 | 79-86
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Fig. 1: Representative mage categorization to address disease sevenity based on the WS scale from 0-%

symptoms of Cercospora leaf spats; 3 when leat spots are pres-
ent on eld leaves, & when leal spols merge to Torm necrotic
arcas, 7 iz assigned when the oldest leaves died, and the dis
ease progresses to the internal leaves, and & applies o the
total death of the foliage (Khan et 2l 2007)

Howwewer, hecanae plants ohzerved from their adaxial side are

analyzed, there are two classes of plants that could be mixed
and confused, these being when the plant is too young or
when the plant bas lost all its foliar material, gensrating a new
healthy leaf growth in the center. For this reazon, a3 is shown

ork,

m Figure 1, claza O was added by the authors of ©
which represents healthy plants befors canopy dosure.
In the test trial, heterogeneity with a range of different plant
development stages was expected Tn cach plot, Trwas scored in
Y geareferenced points of each plat, between 10 and 20 plants,
respectively, being a total of 191 measurement points,

Orthorectified
RGB image

taken before

canopy closure

Automatic crop rows
detection

Fig. 2: Calaluging and image exlracbion for single slants o
feed mogel training with annotations, incuding the exgpert
sconing, olant labeling and labeled seqmentation

He. 2 (2022) Sugar Industry 147 | F-56

24 Modeling

The cataloging of plants will be explained n the nest section
This step supplies RGE camposite images in time se ot
indreidual plants. Bach plant was labeled with a class accord-
ing 1o GT. The plants cleac to the plot's edges were removed
to aveid canfusing images and adge effects. The 1magas gener-
ated of each plant were 224 % 224 pixels in size, represent-
ing 0.2 m?, This process of selecting images lor use as model
training can be seen in Tigure 2, Mareover, to further extend

the data and to improve the ganeralizzbility of the modsl,
data augmentation was applied during traning. lmages were
rotated, mirrored, and slightly zoomed. In total, after fltering,
29,200 images were generated for training. The Leletr CH2
model was chosen to deal with this classification task. LelMet

waz created by Lecun et al (19857, and has been extensively

o

Automatic plant detection and weed filtering
between rows
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used for patlern recognilion, eg, in Lext detection, This nel
is in facr a sitple O wich a emall architecrore, widely nsed

1on problems, lhe Lelet archi-
(2017

nal, activation, and poaling

to respond to image classific
tecture used in this work was proposed by Roset

as follov T ts of convolat

5, followed by a fully-connectad layer, activation, another
fully-connectad, and finally a softmax classifier. For this pro-

cess, Lhe dalasel was splil in &
the learning rare

0% {Lrainingvalidation),
&, and
ighting due to imbalance of images
during sarly stages of disease development. lhe focus of this
last technigue is to ensure that all ol

fized te 0.007, the barch sine wa

classas were balanced by

s are present during
each training step

polied if the accuracy did not increase during the last five

and to prevent overfitting. Early stopping

epochs, The used computer [or training and laler prediction
an Tntel(R) Core (TR 7 8700 CPT a1 3.206H2 379 GHz
h 2 Quadra RTX 5000 GPU and 128 GE of RAM.

2.5  Process flow

This work is based on the chaining of workload and algorithoms
ata science, and artificial inrelligence. Tr

frar image analysis,
can be arranged for practical purposes in the following order:
L.UaY-data acquisidon

2.Plant cataloging and extraction

3. Digital plant scoring

4. Map generation
A relevanl Python packages, iU was used in addition te Ten-
aorFlawe for classification, Marplatlib and Scaborn for visual

ization, Rasta

and Gecpandas for managing georef:

data and images. Por applying flters and working

Seikit-image, Scikit-learn, and OpenCV were used

2.6  Plant cataloging

Identifying the gecraferenced location of the plants in the
field is required to analyze images at
instance, Therefore, this work proposes the use of generated
images from tlights in early crop stages, preferably
canopy closure, as implemented by Gonder et al. (2022). In

b

e plant level or plant

setare

elaborated algorithm ind
h filtering and computer v

the first stage
these images

siclually analyees

o techniques
Later, the images are connected by aligning and pattern rec-
cgnifon methods. Lhis additionally enables the recognition of
seeding lines and the filtering of off-line weed, As a resull, the
pesition of indivi
allowing o ider

ual plant

vas retriceed at multiple points,

each plant's centroid coordinates, and =

ing Lthem Lo 15 compatible Oles, As following slep, by using
centroid roardinates, RGR composite images can he created of
individual plants at different tima points and m a large scale.
‘lhess imapes were used mn the training process of the modsl.
Figure ws schematically the cataloging procedure.

Scored dataset

2020-05-04 290 KNS Apeg  020-09-14 MAOKWS Bng  2020-09-04_ 241 KWS_Bog

2020-00-04.243 KWS Apeg  2020-09-04 244 KWS Spng  2020-09-04 351 KW5 Bng

Fig 3: Scherne of the algonthm for plant cataloging including orthor
fization, row detection and weed discrimnetion

Sugar Industry 147 {2022) He. 2 | 79
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2.7 Digital plant scoring of testing field

When plants are cataloged and ROB composite images are
crealed, predictions Lake place using modeled CHIL Bvery
categorical ourput is embedded in the respective plant con
troid coordmate, and thiz is the principal procedure to create

georeferenced application maps. Considering this, the testing
of the model has been run in the corresponding trial, The st
o missions were used to detect the plants, and the remain

ing eight nussions from July onwards were used for scoring,
Class U, which corresponded to small plants, was arbitarily
assigned (o class 117 they appeared before July 75 and class 3
if they appeared after that date. To determine the metrics
of the results, the average of the results in the same georef-
erenced area, where the experts carried out the scoring, was
calculated fivat. For this purpose, a bufer area was delimited to
caver approximately scored ten to twenty plants

= Training loss

= Validation loss

— Training accuracy
—— Validation accuracy

Loss / Accuracy
]

) 1 U 1 1 1
20 30 40 50 60 70
Epoch

Fig. 4: Lass and accuracy history of training step for lenet CHN model
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3 Results and discussion

Luring training, the best training loss in the validating set
was 08265 and ils accuracy 006426 (Tig, 23, The normalized
comfusion matrix for each class for the walidation set (30% of
the total training ser) 1s shown in Figure 5A. Generally, clas-

zification performance is inaccurate with a elight deviation te
under- and overestimate the class level in one unit distance,
eapecially for classes herween 3 to & This effact may be due o
the significant heterageneity in the development of symptoms
and the different resistance mechanisms to keep the foliags
healthy of the two warieties from the training field, malking ic
challenging Additionally, due ta their
higher density in the training field in comparizon to testing

sort the correct clas

field, the overlapping of leaves does not allow the complete
abservation of the entire leaf mass of cach plant and can alao
influence the performance. It is believed that when neighbor
plants are healthier than the centroid plant, a tendency to
unelersstirnale could Lake place, The opposite eflect is expecied
when neighbor plants present more severe symptoms. Fur
thermore, it should also be noted that the weather conditions
and sky conditions during bmage acquisition could have a
significant influence an the results. Balancing rraining sreps
with dara contaming sunny and cdoudy sky conditions must
be considered m future studies, lhis phenomenon was also
obzerved by Barreto etal, (2021).

Tn the testing experiment, 49 plants were automatically
detected and then directly analyzed with the trained modal,
and the results obtained are displayed in Figure 55; here, the
ervar hetween neighboring classes showed a slight increase.
There was zlso a clear difference in performance for dasses 3
and 7, being the last with better results. Such differences may
be caused due to the diverse development in the symptom-
atic, Since it was inoculated at sowing date, the symptoms
appear on the leaves closer ta the ground. On the ather side,
the training trial has been inoculated by row closure, which

1.0

-0.2

005 005 000 000

005 D08 003 000 am

1
2 08
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_ 4 06
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E 5
6 000 005 000 007 0;4
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Fig. 5: Marmalized confusion matri of the analyrens maesel an validation datasat (&) and testing datasat (B}
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increases the presence of diseased leaves in the most aerial
part cauzing error in classification for clazs 3. The increase
or decrease of classes must be analyzed in-depth to find a
method that improves the precision of the analysis, Battilani
et al. (1590 orst a class reduction cd on a relationship
with the DS percentage, along with Smith and Martin (1978)
whose describes a scale of 10 classes. Shane (1992) describes
the magnitudes of the scale of 9 classes, and thal of more
clazaes; an important point to nate is thar the KWS scale only

describes classes 1, 3, 5, 7, and 9 leaving the dassification of
the mtermediate classes to interpolation and interpretation
by experts. Therefore, selecting the apprapriate number of
classes for detecting CLS symproms with aerizl images should
also be analyzed in-depth.

Additionally, Shane (1982 and Vereijssen et al. (2003) high-
lighred the lack of precision of raregorical srales to derermine
lawr intensities af the diseaze. To overcome this drawback, a

classification analysis at the pixel level and leaf sepmentation
in those low classes could be necessary Lo increase the accu-
vacy of the detecrions, Trtegrating this worle ro improve preci
sion at low infection levels may be of great interest m future
work, Inthe same order, the difference in (ight height may
have generated a distortion even though a pixel size rescaling
was performed so that both experimencs have the same GSC
Future work should be forused on determining the best G50
Tor this method.

Onee all the plants of the testing feld bave been analyeed, itis
possible to render them on maps. Thus, Figure 6 shows three
flights in 2 time series mapped in a heatmap manner, the least
affected plants being marked with Lght red tones and the
most affected in the darkest red seale. In this (igure, the Geld
dynam rewispalized, the inconlated areas are detected, and
the spread of CLS i
Thus, it is possible to determine the DI for the whole experi-
ment far each fight date, abtaining the total number of plants

izible in dme

and the number of diseased plants. It is alse possible to deter-
mine Ul following the same method used for 1P, 1t is deter-
mined for 100 plants chosen in a transect in a feld and counting,
the diseased. For example, Figure 7 shows the caleularion of
the twao methods for the date of July 28, 2020; all plancs with
2 value greater or equal to 2 were considered diseased. For the
100 plants, the DI was 58%, and for all detected plants was 60%,

4 Conclusion

Lt can be concluded that the combination of UAY imagery with
deep learning syste
parameters for CLS control on the feld. This technalogy can
raduce the very laborious work of monitoring and thereby
improve the georeferenced fungicide application and contrib-
wte to times and eco-efficiency in sugar heet production

s o valusble instrument to determine

W
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Fig. 7= Image dassification of 100 selected olants by July 28, 2020 according ta the KMVS scale (19, light red to dark rad). In green and eranga colour
rardamly selected plants, in arange plants considered diseasad with o cisease severity class of at least 2

Flant cataloging has proven to be a handy tool for plant track-
ing through the growing season and generating annotations
for training desp learning models.

Increasing the depth of the trained model is possibly the key
to model detection improvement. Also, higher image reso-
lution and thus generaling @ greal number of high-quality
annotations helps to ohtain hetter results, Additionally, it is
assential to take advantage of the production and develop-
ment of cameras and UAVs,

Generated maps can serve as a hasiz far application maps in
practical cultivation ar the evaluation of variety parformance
in variety trials. Lhis output will be “the frst step” to provide
decision making for practical agriculture or breeding hased on
TIAV imagery in the coming years.
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Supplementary materials

Table 4-1. Performance of pipeline for multiclass image classification based on the KWS

scale prediction and visual scoring

sli‘:{:a Frequency® Precision Recall Specificity F1
1 0.47 0.87 0.66 0.93 0.75
2 0.06 0.15 0.59 0.79 0.23
3 0.10 0.46 0.23 0.97 0.31
4 0.09 0.40 0.32 0.96 0.35
5 0.04 0.24 0.39 0.96 0.30
6 0.02 0.28 0.43 0.97 0.34
7 0.03 0.35 0.47 0.95 0.40
8 0.06 0.74 0.47 0.98 0.57
9 0.12 0.92 0.72 0.99 0.81

aClass 1, represents the absence of symptoms of Cercospora leaf spots; class 3, when
leaf spots are present on old leaves, 5 when leaf spots merge to form necrotic areas; class
7 is assigned when the oldest leaves died, and the disease progresses to the internal
leaves, and class 9 applies to the total death of the foliage. ® In total 5842 images were

evaluated with the same distribution as the training set.
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Disease Incidence and Severity of Cercospora Leaf Spot in Sugar Beet Assessed
by Multispectral Unmanned Aerial Images and Machine Learning

Abel Barreto,'

Institute of Sugar Beet Research, 37079 Gottingen, Germany

Facundo Ramdn Ispizua Yamati, Mark Varrelmann, Stefan Panlus, and Anne-Katrin Mahlein

Abstract

Disense incidence (0 and merics of disease severity are relevant pa-
rameters for decision making in plant pratection and plant broeding, To
develop amomated and sensor-based routines, a sugar beet variety trial
was inocalated with Cercospera beticola and monitored with a nmlti-
apectial camera system mounted o an unmanned aerial vehicle (UAY)
over the vegelation period. A pipeline hased on machine leaming
methods was established Tor image dals amalysis and extracion of
lisease-relevant parsmeters, Feares buased on the digil surface model,
vegetation indices, shadow condition, and image resalotion impreved
classification performanee in comparizon with uging single multispectral
channels in 12 and 6% of diseased and soil regions, respectively, With a
st @ step. area-reli s were computed after clas-
sification, Results of this pipeline b included extraction of DF and

ilisease severity (D25 from TTAV data, The calenlated area under disease
progress eurve of D8 was 28104 to 7.05% 8% days for human visusl
scaring and 1400.5 to 4,343 2% days for UAY-based scoring. Moreover, a
sharper ditferentiation of varieties compared with visual scoring was ob-
served in area-celated parameters such as area of complete Toliage 145,
area ur healthy foliage (A0 and mean area of lesion by unit of loliage
(elzp 0 These ..d\dnLug:\ prowvide the aption ko replace thes Tahoriou, wurk
o 5ual divesse aysesyments 0 the field with a more precise, non-
destructive assessment via multispectral data acquired by UAV tlighes,

Keywordy:, automatic scoring, digital surface model, multiclass
classification, partial least squarcs discriminant analysis, suppert veetor
machine radial. rime-series, unmanned acrial vehicle

Cereospory leal spon (CLS) is one ol the most widespread oliar
diseases in sugar beet. This discase is cavsed by the fungus Cercosparg
Detivela Sace. And, under moderate to high disease pressure, yield
losses of up to 30% of recoverable sucrose were reported for infected
fields (Shane and Teng 19920 For disease management, protectant
and systemic fungicides from the group of ethylene bisdithiocarbuamate,
benzimidazoles, gquinone outside inhibitors, and demethylation in-
hibitors have mainly been used. The extensive use of these fungicide
groups led g the appearance of resistant isolates of €. bericoda over
recent years (Rangel et al. 2020)),

Wew generations of resistant sugar beel from the recent breeding
process ane important pillars of CLS manugement und, vl the same
time, reduce the chance of emergenee of fungicide-resistant strains
(Wogel et al. 201%). Resistant varieties mainly present three advan-
tages: {i} minimal yield penalty even under low infection pressure.
(i) apportuni i beet production by
reduced Tungicide spplication, snd @) reducion of the sk of in-
cressed moculum potential and stronger epidemics in the following
wears (Wolf and Verreet 2002). CLS -resistant sugar beet can only be
achieved by continuous breeding of new varieties. A crucial pa-
rameter 1o determing quantitative resistance in a sugar heel variety is
disease severity (D81 (Nutter et al. 19913, representing the damage of

to increase ecoelliciency of sug
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phoosynithenic leal area. Additional but less-used paramelers such
as lesion size, lesion numbers, or sporulation rate were also re-
ported as relevant to identify CLS-resistant varieties (Feindt et al.
1981: Leucker et al. 2016: Rossi et al. 20000 Another important
parameter for C1.5 control is disease incidence (D) (Mutler et al.
19917, In the Leld, most of the systemic fungicides sre spplied al
certain thresheld values of D1, This control measure avoids ceo-
nomie losses in terms of vield in monitored regions (Wolf and
Verreer 20021

The as 1ol these | § Teguines a tin
visual seoring in the field by experts (Bock el al, 2020, 2021; Nutler
19940), Wisuul scoring and (he role of experts [or discase dingnosi:
crucial but, at the same time, it is the bottlencck in the brecding
process and for disease control {De Coninck et al. 2002 Mahlein
20146). Experts are highly qualified to identify typical symptoms of

CLS such as tan o gray-colored circular spots (310 5 mm} by canapy
closure, Neerotie aress develop alier inilial tssoe collapse and they

are also quantificd as CLS damage during visual scoring (Weiland
and Koch 2004). Under severe cpidemics and before harvesting,
experts are trained o differentiate new leaf growth emerging from
middle collapsed leaves during scoring, Mullispectral cameras al-
tached o an unmanned aerdal vehicle (UAV) constitute 2 monitoring
system that, wgether with an appropriate image-provessing pipeline.
can golve the mentioned drawbacks of visual seoring by human ex-
perts regarding bias snd limitations regarding workload (Bock et al.
20240 Multispectral UAY ems also exhibit several benefits for
disease defection in comparison with satellite or aeral remote-
sensing imaginary, regunding (1) exibility of operslion, (i) high
spatial resolution, and (111} acquisition of data on demand (Deng ct al.
2018; Jay er al. 2018). Since the first study o evaluate CLS with
multispectral, ground-based nonimaging data (Seeddom et al. 2005),
enormeus progress inosensor lechnology and analvsis algarithms
from machine learning (ML) have taken place (Mahlein ecal. 2008).
The unalysis of RGB und muliispectrl images by thresholding,
quantification of vegetation indices, ML, as well as deep leaming
approaches have been reported o detect and quantify CLS in more
tecent works on sugar beet (Gaelich et al. 20212 Jay e al. 20020,
Mahlein et al. 2003; Ziva et al. 2018). Key aspects Tor image-based
CLS guantification were mentioned by Jay et al, (20200, In this work,
spol densily or the number ol spots per leal aren and the healthy
region of image perspective, named ss normalized green fraction,
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were found to be the mostrelevant parameters for scoring CLS. From
these two parameters, the green fracton was the most robust and
consistent parameter over time whereas, quantitatively, the spot
density presents the disadvaniage of an abrupt drop as the necrotic
arey expands around the G lesions, Tay el al, (20200 caleulated from
TAY imuges the aren under disease progress curve (AUDPC)
(Madden et al. 2007) and. for future works and for better perfor-
mance, recommended standardizing image reselution and consider-
ing the changing light conditions during a flight mission for
ion, The present study provides significant im-
rics analysis of multispeciral UAV duata ac-
To rawe guantitative CLS resistance of two
differing sugar-bect varieties. AUDPCp; together with yicld loss
were used. The digital surface model (ID5M), an available but not
previously used output from photogrammetry, was included in the
analysis toimplement a robust workilow. The aims of the sudy were
1 (1) propose un ML classi Hestion model sod o pixelwise approach o
detect CLS -discascd tissuc of sugar beet by multispectral UAV im-
agery; {ii) apply the advantages of multispectral and 1XSM features w
improve classification; (i) formulate a pipeline to assess 08, 01, and
relevant parameders from multispectral images for monitoring dis-
vast development; and (v identily principal dilferences betwesn
UAV-based and expert human scoring

radiometric calibe
provements for Lim
quircd in a varety

Materials and Methods

Experimental field

In 2019, 4 CLS variely trial was conducted near Gisllingen, Ger-
many {51°33"3.9" N, 9°54°0.6" E). The tial was amanged with two
sugar beet varieties and three fungicide strategies in a two-factorial
block design with three blocks or repetiions {Fig. 1% The three
fungicide strategies were conuol with Tungicide, inoculated with
Tungicide, and inoculawd withow fungivide (see the fungicide re-
gime in Supplementary Table 83} Two varctics of sugar bect (Bera
vitlgaris subsp. vilgaris) were sclected from the national variety list
of the German Federal Plant Yariety Office (Bundessortenamt 2017)
and, for hetter description in this study, assigned as “susceplible” and

madeling area

calibration sphere

scoring area

Flg. 1. Composed RGE image of expedmental figld an 21 August 2018 under sunny condiicns. Specification of areas for modeling and scor
istricution of experimental trezimenis, fungicide strategies, and variety [righ

for digital surface model (DEM) features within the plot (leff),

“resistant” according to resistance propertics agamst the fungus
Cercospara (registration identifier numbers 3012 and 2444y
{Bundessortenamt 2017). Additional information about the varieties
is specilied in Supplementary Table S1. Sugar beet p'\anb. WL SOWN
on 9 April in sig-row plots with sn aven of 216 m°, Al row closune
(14 June 20193, plots of insculuted treatments were infected by h.and
with CLS diseased, air-dred sugar beet lesf matedal at 4 g m™

produced as described by Imbusch et al. (2021). Fungicide apphca—
tion searted ar the onset of occurrence of first lesions of CLS diseases
and was repeated i symploms recurmed following the Tocal man-
agemenl practices, In total, [our applicolions wok place (Supple-
mentary Table 833 At harvest. oot yicld and guality were determined.
The beet roots were weighed after washing and processed to beet brei.
The brei samples were analyzed tor sucrose, potassium, soedium, and
v slandardized procedures. The key
indicators of variety performance, while sugar yield (WSY) and loss off
WEY due 1o CLS (WSY ) were caloulated from rool yield and quality
parameters according to German standard cquations (Midinder o al
20K03). "This experiment was repeated in 2020 with slight modifications:
one additional repetition and less disease pressure by changing the in-
aculated with fungicide level by control witheut fungicide; and, in 2021,
calemnded with thres: further varetics than in scasons 2019 w0 2020,

amino-nitrogen content according

Disease assessment

Visual scoring of CLYS as ground truth was carried out simulta-
neously wr TTAY Mlights (Supplementary Table $23. Symploms were
quantified as a mean value of the plat by assessing middle leaves in
percentage, eslimaling o representutive infected from wial leal uwen
(Wolf and Yerreet 2002). The detormination of Df was also con-
ductecl at plant level (DJ-plant). In total, 75 plants were randomly
selected per treatment and inspectad for CLY symptoms. Average
prercentage of infected plants delivered the D-plant score (Wolf and
Verreer 2002,

Technical specifications, flight mission, and photogrammetry
A quad copter (D1 Inspire 2; Da-Jiang Innovations Science and
Technology Co., Taud) was used a5 a UAV platform 1o cary the

inoculated/fungicide(-)
controlifungicide(+)

inoculatedffungicide(+)

resistant variety

e
—
) 2 4 m

. and location of calibration sphere
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multispectral imaging sensor (RedBdge-M; MicaSense, Inc.} 1o map
the area of study. The camera provides three visible spectral bands of
475 £ 20 nm (BLUE), 560 £ 20 nm (GFREEN), 668 £ 10 nm (RED).
and two near-infrared spectral bands of 840 £ 40 nm (NR)yand 717 £
10 nm {REDEDGE). For time-series overlaving and accuracz
peoreferencing, ground control points were installed in the field
carner paints and identified as markers on the images for conrdinate
cormection, Images wene caplured in light missions within 3 h of
local solar noon, with a Might time of 1% min, The Dighl mission
included a forward overlap of 70%, a lateral overlap of 70%. a flight
speed of 0.4 mds. and a flight altitude of 3 m above ground level,
delivering an average ground sample distance (GSD) of 4.1 mm for
mulispeciral orthomaosaic images, The moniloring campaign siaried
1 day belote inoculation with C beticole (13 June 2009, In wotyl, 14
missions were completed under diverse weather conditions (Sup-
plementary Table $2), Radiometric calibration was implemented in
R software {version 3.5.3) (R Core Team 2020), considering speci-
fications recommended by MicaSense. For (his step, the gray
reference panel (RPO2-1701160-SC) was cmployed [or spectral
cormection. As the frst step of radiometric calibration, raw images
were converted to radiance to account for image capture metadata
such as pain, exposure setting. and vignette effects. Afterward. the
radinnce images were converted 1o reflectance 0 account Tor the
time-dependent factor calculated from caplured gray panel images
bc[on: the sterl vnd afler UAY landing, Quipul reflectance imiages

vere stitched using the software Agisoft Metashape Professional
(\rcrswn 1.6.3, build 10732, 64 bit; Agisoft LLC, St. Petersburg.
Russia) for stitching of reflectance images. Multispectral orthoma-
saic in refleclance values were exporied as well as the respective
digital elevation model from the photogrammetry procedure in the
WEGSS4 coordinules systemn,

Defining feature types

Five types of features were considered to support ML models:
simple vectorization of single bands (SB), detormination of vegeta-
tion indices (V1s). features related to DSM (DSM), a featurs for
quantifying shaded regions as index (SH), and a feawre type that
includes resolution (RE} af rnu]l|>.||e|.1rn1 orthomosaic images and
D3SM. VI features included six selected indices; dillerence h,l\\ wen
red and blue band (Dgqgsan) (Merzlyak ot al. 1999, modified chlo-
rophyll abserption in reflectance index 2 (MCARS,) (Haboudane
2004%. MCARIISAVE (Main et al. 2(01), modified soil adjusted
vegetation index 2 (SAVE) (O el al. 1994), modified simple ratio
[M5R} (Chen 1996), and green vegelation index (GV) (Bannur e al,
19951, Computation of individual ¥s is specificd in Table 1.
culation of SH feature is based on previous studies which highlighted
the effect of the environment and passive illumination on the de-
tection of CLS (Girlich et al. 20275 Jay et al. 2020). Therelore,
shaded areax were quantilied using the nommalized saration-value
dilTerence index (NSVD) as proposed by Ma et al. (2008), which

value colar system and considers the saturation {8} and value (V)
for calculation, as shown in equations 1 and 2:

V= i Rere, Rowerne, Rien) 1
S={ mox(Rprpe. Reerew. Man) — odn(Rpres. Renery - Rreo)| 1
[rax{Bppee, Koansew, Kagn]
2
Then, the index was delermined us Tellws;
NSVIH =(S-V1/(5+V) 3]

Ta abtain 1¥SM features, we consider the smallest surface or pixel of
the arthomosaic digital surfice model as the plane enclosed by four
Piels: T Ziep e S 800 Sy, where 2 s the altiede at s pisel
with row i, column J position, As mentioned in Comipio (2003) and
for a regular pixel of GSIr value of & the x. v, £ components of the
vectors along the neighbor pixels are defined as:

)

Considering this, the normal vector image (1, ) can be calenlated as
Tollows:

uxh+r:xa‘ 1 ; fI] )

= = =]

rd 2 2 )
o !

The determinant image of n,;
area (A,
deliver the image »,,
mal to surface:

can be interpreted as the surface

where A = [n, ), and the division of by I | can

()

Qu (2018) mentioned the prnciples for quandtative reflectance.
which varies at specific wavelengths and is ruled by incidence and
viewing peametries of the light source, surface vbserved, and the

surfuce and lght source (0,)in this slud;
considered the slope (L) (angle between surface and normal to hor-
izontal) as the closest angle t the viewing angle. (hr argumentation
is hased on the dynamic ol the UAY system o acquite images during
the IMight mission. The sope can he caleulated with a dot product of

the normal veclor the lermain (2, where 7, = O_r.'+0?+ 1%y and M
as follows:

transforms multispectral reflectance values w the hue-saturation- =arecos( Ly ] (7
Tuble 1. Vep indices and ul handst

Vegetation index Computation Literature
Dhegsen Rieens = Rorvs Merclyak ol (1999)
MCART, Habaudane (20043
MCARTQSAVT Muin et al (2001
MEAVL Qi eval. (1994)

MR Chen {1996}

G ORI R g — U BEDR gy + 057 oz + D3R8 R e Bunnari et ul, {1995)

" Dygsssan = dillerwnve between red and blue bund. MCART, = mudified chlorophy
fram MOCART and Q5AVE, MEAV, maditicd seil adj
spevtral bund expressed in rellectnce. NIR = near-nfrored.
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il vegetation index 2, MSR = modditied simpla ratie, and £V

sorption io rellectunve index 2. MEARIOSAV] = vegelation index derved

green vogetation index. R reprosents
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If we consider the sun as the light source. the angle of incidence
between the sun and the canopy cover surface (8,) can be determined:

B, =arreeasi S, ) (B3]

Finally, becase of RE features and observations of the relative het-
crogeneous values of resolution obtained by the monitodng systom {Sup-
plemenary Table 52), and basecl on the recommendations of Jay et al.
(20200, the resohation in GSL from each multispecteal orthomosaic (u) and
their respective DSM i) were considered as additional features. An over-
view al culeulated features 3 provided in Supplementry Figune S1,

Labeling

In all, 1000 image patches {apprasimately 105 by 205 pixels) were
Taheled pinelwise for the modeling stage. OF these, 6(Himage patches
were considered for trining and 0 [or lesting. Pixclwise annotation
included four classes: “discased” for arcas affecred by CLS.
“healthy™ for apparently healthy leaf tissue, “soil” for soil regions,
ancl “other” for any other region that does nol belong i the afore-
mentioned classes (see Supplementary Fig. 81,

Maodeling

The vbjective of this step was lo identily the most eleyvint ML
methods w solve the four-class wsk. High computing dme for
training and unbalanced class distribution (Fig. 2A) led to a reduction
of sampled pixels for testing various ML methods. Over 1 million
pixel values were reduced w 15000 samples by down-sampling

guided by the lowest pixel frequency in Figure 2B, In total, five
ML methods were tested and compared: K-neavest neighbors (KNN3,
partial least squares discriminant analysis (PLS-DA), random forest
(RT), the support vector machine linear (SYMIL), and the suppor
veetor machine radial (SWMRD AN methods used included repeated
cross-validution, resumpling of (maining daty, wnd optimized model
parameterization according to Barreto et al. (2020). Aiming for
complete feamre reduetion, the contribution of individual feature
type performance was evaluated. Six classifiers were trained using
the best method identified in the previous step. The relerence clas-
sifier used only 8B leatures. For the next foor classifiers, sddidonal
feature types such as VI SH, and DSMewere sdded to SB features for
training. Finally, we rained a classifier based only on ¥1 features.
After evaluating feamre type reduction, the optimized pipeline was
established. The pipeline starls with radiometric calibration and
photagrammetric processing of raw images, resulting in the mul-
tispeciral orthom = and TSM. RE features of both phothog-
rammetry outputs arc stored (m.0} and. from the multispectral
orthomaosaic. reflectance values of all five channels are directly
extracted and vectorized (SB). ¥1 and SH features are caleulated
and vectorized in the same way: £ and 1), or DSM features were
determined [rom DSM, ollowing eyuation: and 8, All [ealure
types fod the best-performing multiclass classifier (PLS-DA) the
output class healthy was reshaped in a binary matrix (H): and, by &
healthy foliage cover lower than 40% (KO < 40%) (Table 2), a
second classifier was activated for classifying pixel values as other,

A class distribution B class "diseased"
7.7 % 63.9 %
40000 4
N= 2166195 N 5 64703
1500000 diseased
30000 4
1000000
@ ©
2 X
o 220000 4
z =
500000
A 10000
4.9 % 4.5 %,
= 0.3 %
1] —— 04
healthy diseased soil other first symptoms severe sympltoms
label class image-based class
pixel fabel path-image category
D healthy . diseased B cloudy
H - O other B sunny

Fig. 2. Distribution of poels. A, Class distibution of pxehiss image-based armedation of training dataset. B, Addibenal annatation of piels from class “diseazed® [*) based on “first
symptomns” of Cercospora leaf spot (untl 16% of disease severity), and “severe sympioms” (more than 15% of diseass severity) at different ambient light conditions, N represents

the total number of pxels evalusted.
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soil. discascd. or healthy, Outputs of these two classificrs were
segmented or split into four binary masks, as shown in the fol-
lowing example for diseased class:

8]

1 owtputy; © diseased”
D= o
! o else

As a next step, masks were merged following operation 10 D,
OR, D", D7 and operation 2: M, = (M€ O, 5 HIM - AND, (M,
£3)}. "The final output consists of four images: (. 5. O, and H, .
assigned 10 classes other, soil, diseased, or healthy, respectively. An
overview of the complete pipeling is shown in re 30,

Postprocessing, UAV-parameter definition, and automatic scoring
Clonsidering the scoring arca (Fig. 1) and w0 achicve at least 100
samples per teatment. wi used 34 individual objects per plot (n = 34),
called instances, to run our pipeline. An individual instance (4,) isa circle
with a radius of 5 cm, Scoring insances were randomly distributed
actoss the plof, avoiding instance overapping. Tn a following post-
processing step, CLS clusters were determined considering the dynamic
development of diseased regions from single spots to necrotic tissue (Jay
etal. 20200, For this, a cluster {C ) was extracted form the output image
mask £2 (Fig. 3C by labeling eight connected cluster pixels {He et al.
2007y, B8 for an individual instance (1) was determined as follows:

The plotwise 225 (DSl was defined as the average of all ds; be-
longing to the evalation area of a plot:

ERX

i

:D.a+!f,u)><»h}}xlf][] (1

n
¥ DS
DSy =""" * 100% (11
n

e determine £, it is necessary to define an affected or diseased unit
() as mentioned by Nutter et al. (1991} in our case, a diseased
nstamee, W defined an instanee as discased, based on Nulter of al,
(19910, A an lewst one lesion was present or i the pixel summaltion in

Table 2, Nefinition for parameters inside instance

L ; was different from zero fat least one CLS cluster), The total
nuwber of dypein a plot or for a weatment was determined as fol-
lows in algorithm 1z

Algorithm 1: Counting of diseased instances (dyea)

Resull: d, a0
Ay =0
forns{l,.

if Y 1,
.

) do
1) then
av = gy + 1

1
2
3
4
5
G
Considering this. £, was calculated as:

i = [y () % WD (12

At this stage of image postprocessing, from a wide choice to compute
purameters, we focused additionally on calenlating the following
parameters {mathematically defined in "Table 2): foliage cover (#C),
cover ol healthy foliage (7C, ), cover ol diseased loliage (FC,), area
of folisge (40, area ol healthy Tolinge (Ay), area of discased [oliage
{Apl DS (eover bused. dsy), number of clusters (¢), number of
clusters per wnit of foliage arca (cr), mean cluster arca {Az), mean
cover cluster per unit of foliage cover (Cr), and mean area of cluster
Ty unit of foliage area (A,

Temporal analysis for parameters

Tn wevordunee with Madden et ul, (2007), AUDPC was culeuluted
for UAY- and expert-based parameters using cquation 13, Our first
assessment was considered on 13 June. 1 day before inoculation.

=% (faut = 1) (13

where & = number of assessment limes, @ = assessment (ime, ¥ =
acquired parameter from UAY or visual scoring, and 7 = days before
o after inoculation.

Statistics
Aller checking the absence of oulliers, nommal distdbulion of vari-
ables, lineurity, and homoscedasticity of AUDPCs for purameiers,

Parameter Ahbreyiation Formula
Arca of discased folisge An Yy DpmAr
Area of [oliage Ar TR+ H I x A,
Area of healthy folise Ay YV Hy A
Cover of diseased foliage Fi e 0
Coveer of healthy foliage Fly « 100
Discase severity (eover hased) i

Meun cluster area AL

Meun cover cluster per unil of folisge cover

Mean area of cluster by unil of folinge area

Nomber of clusters

Number of elusters per unit of foliage area

Liih 1
B e

Agr TEGeA |
ER e
¢ P
o AW
TR R
FC ot My

= T
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Spesrman's correlation coctficient () was caleulated to determine
the degree of lincar cormelation and whether significant differences
existed between £AY,; . and expert-based £ in percentage erms
Statistical analysis was carried oul with the “agricolae”™ package in R
soltware, Anulysis of vadance (ANOY A) for a randomized compleie
block Tactorial design was used (0 delermine the signilicinee of

variety and fungicide factor. For evaluation of quantitative resis-
tance, 4 two-sample ¢ test was performed to WEY ., and AUDPC 5
{innculated with fungicide) to compare significant mean ditferences
of the susceptible amd resistamt varieties. For each oeatment, no
posthoe evaluation was done because of the simplicity of the wo-
warieties trial feld design.,

pls output
FC=73%

svmr output Hi

classification output

(o)

C instance(s) parameters

c=16
DS;= 4%

10cm

Fig. 3. Image processing flovichart of mullispectral unmanned serial vehicle (UAV] imsges. A, Overdew of inputimagery, photegrammetry. and dassification resuits, as well as final
output of pipaling. B, Flowchart for multispactral DAY imagary from raw imagas to multiclass-sagmentad binary autputs for casses “othar, “soil’, *diseased”, and *haalty®
Ahbreviations 5B, RE. VI, 5H, and DSM, are addressed io single bands, resclution, vegetation indioes, shadow, and digital surface model feature types, respecively.
Operation 1: 0y, = OR,(0°. 0) and operation 2 M, = {M = 07, &, HIW — AND, (M. 0} G, Determination of number of clusters () and disease saverity (DS} for an
individual instance with circular form of 10 ¢m in diameter in projection te soil

Tahle 3. Performance of madels and pipeline for cl at
Diseased Healthy Snil Cither

Method" Ace Pree Ree F1 Proc Ree T1 Prec Ree F1 Prec Ree 13
PLE-DA B5.8 2432 255 48 321 5.4 B5.6 611 B o 672 4.2 4R
SVML 311 23 159 175 EL1 248 829 39.4 854 70l 531 90.1 66.9
SWMR 8.0 4.1 730 0.5 £2.8 0 834 60,1 744 6.5 7.1 96.4 336
RF 817 251 088 368 #3.6 B0 #4.1 625 712 a6 220 NI o
KNN ok 192 LiEE A 227 77 HiL1 BEX i} 9.5 QXS] AT G4 e
Pipeline 6.3 z 22 434 G 421 U35 0.3 fit4 i3 716 3.0 HLG
* Age = acvurcy, Prec = precision, and Rec = recall. Numbers in bold indivate ibe best perfonmunce vverall classes; and the metuds with relevant perfunmance

mefries for chasse ascd” and “healihy™.
" PLS-DA. S¥WML, 5VMR, RE, and KNN e abbreviations for partial least squares discriminant analyvsis, support vector machine linear, support vector machine
radial, randam forest, and k-nearcst neighthor method, respectively,
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Results

ML methods and multiclass perfermance

The PLE-DA method showed the highest overall classification
wecuracy in the test dulasel (83.8%) (Tuble 33 and the highest Fl
score for the classes healthy, soil, and other, An Fl score berween 1
and 6% higher was obscrved compared with the rest of the classifiers
for the most frequent class, healthy 'Table 3; Fig. 2). A disadvantage
af the PLS-DA methad in terms of precision 2 ecall was ohserved
in the class diseased. The SWVMR method performed betier in clas-
sification of diseused pixels mom precision and recall scores (28 and
73%, respectively ). This method presented clear advantages in torms
of F1 seotes, yielding up to 16% higher precision-recal] balance in
comparison with the PLS-DA method. The RF method had a similar
but lower FI score in the diseased class and less overall accuracy than
the SYMR muthod, while the SYML and KNN methosds were neither
the best [or the multiclass task in erms of accurscy nor presented
advantages for detecting diseased pixels. The proposed pipeline
combines advantages of the best-performing classifiers. The pipeline
shiowed the hest performance in precicion for the healthy class, bheter

F1 score in the class discased, and a slight improvement of the overall
accuracy compared with single classifiers.

Dynamic of feature type for performance contribution

The sres under the curve CATUC) values from the precision-recall {PR)
curve is shown in Figure 4 aod vsed 10 understand the dynamic of (he
contribution of cach class to the overall performance. For this sim, $B
features were taken as reference and, by individually adding each feature
tpe. a comparison of performance was feasible through AUC values.
The class healthy showed a high classilication performance for all
combinations in generl (AUTC close 1o 13, A slightly belier perlomunee
was observed for all feature combinations that included VI featunes (VI-,
SB-VI. and SB-VI-SH-DSMRE feamres). For the class discased, all
feature types showed a better performance than single bands. V1and SH
leatures contributed the mest (o performance alier the all leatures clas-
sifier, followed by TYSM and R featres. For classes healthy, diseased,
suil, snd other, the best classilication performamee was oblained osing
the PLS method with all features. An inerease in AUC values of 1 12, 6,
and 2%. respectively. for each class is observed compared with the
reference model (5B features |

A healthy B diseased
100 100 AUC
{1) 0.26
{2) 0:25
3] 018
75 75 < {4) 046
= = {5) 0.15
fl ) (B 0.14
5 5 {7) 0.:20
§ 50 ALC 2 50
= (1) 0.99 pe
(2} 0.99
25 (3} 0.98 25
(4} 0.98°
(5} .98
{6} 0.98
ol imosog 0
1] 25 50 75 100 1] 25 50 75 100
Recall [%] Recall [%]
soil other
100 100
75 75
E )
5 5
@ 50 = 50
o i
25 25
a 0
4] 25 50 75 100 1] 25 50 75 100
Recall [%] Recall [%]
data f feature type
— (1) SB-VI-SH-DSM-RE - (3) SB-SH -4~ (5) SB-RE 7V
—.- (2} 5BV —— {4) SB-DSM, = (6) 58

Fig. 4. Area undsr the curve (AUC) for Precision-Recall curve from partial least squarss disciminant analysis olassifiers. Abbreviations S8, RE, VI, 84, and DSM, are addressed to
single bands, rezelution, vegetation indices. shadew. and digital surface model festure types, respectively. Companson of diverse feature types o contribute in perfarmance in tha

A, healthy; B, diszased; €, soi; and D, other classas
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Only two cases were observed with lower performanee than the ref-
crence: by adding DSM and RE features for the classes soil and other,
respectively. Although the PR curve was not evaluated for the VMR
method, it i relevant o mention the recalts of the available anal off
Feature importamce for buth classifiers, as well as the individua] behavior
of features belonging w DSM and RE. RE [eatunes showed low im-
portance values in all four classes (0 to 4% both m and § contributed 0%
in the class soil. From DSM;; individual relevance was observed as well:
slope (L) had a range of importance in all classes of 3 to 18% for the PLS-
A classitier and 2 w0 6T Tor the 5% MR classifier; this feaure affected
principally the classes diseised and healthy. Angle ol incidence belween
the canopy surface and lighe source (#,) showed only a low contribution,
with an importance range from 1 to 9 and O to 3% for the PLS-DA and
SYMR classifier, respectively.

Epidemiological development of DS and scoring comparison
Development of DS svoring for expert-based and UAV-bused data
for the trestment inoculated without fungicide is shown in Figure 54,

I=

100 ;
O susceptible 7058.8
+ resistant e
#
751 —UAY -

---expert

I~
o

UAV- & expert-based disease severity [%]
=

=3

g

O susceptible
# resistant

-
o
B

5]
[=]

1]
o

T
G e
0 gi.ﬁigal i

UAV-based disease severity [%]

o] 25 50 75
expert-based disease severity [%)]

100

Fig. 5. A, Dynamic of diseasa sevedly [DS) basad an unmanned aedal vahicls {UAY)- and exper-basad

In the susceptible variety, the exponential phase of DS was observed
from the middle of July until the beginning of August. The resistant
variety showed a later and longer exponential increase from the
middle o August uniil the end of Seplember. Inoall experimental
treatments, AUDPCy values obluined from experl seores were ina
romge from 2,810.4 10 7,058, 8% duys, while UAV-bused values were
generally lower. in a range from 14005 to 4,343 2% days. Sus-
ceptible and resistant varleties showed clear differences in the
AUDPC,,, values. Emphasizing quantitative resistance and observ-
ing the fungicide strafegy with highest disease pressure (inoculated
without Nungicide), TTAV scores for susceplible and resistant geno-
types were 4,343 2 and 2.403.3% days, respectively; likewise, expert
scores were 7,058 8 and 4,874 8% days (Fig. 34). Moreover, mean
values of AU, were significantly different between the tested
varieties and for both expert and UAY assessments (lwo-sample 1
test, P = (1030, DA development of the inoculated with Tungicide and
nominoculated with [ungicide trestment is shown in Supplementary
Figure 53A and B.

C

RGE compose

classification

{ingrayk area under disease pregn watkies in . days) and

B, degres of relstionship of both scores based onUAY scores. Symbaols: r; = Spearmans rank comelation cosficient, asterisks () = significant i the P = 0.001 level, slops =DE2 and
Intereepl = —2.F €, RGE compose, near-infrared [MR}-bard Image, and resull of classification of a seored feld reglon; dentfication of regions for explaiing underestimation of LAV
based DS scores,
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After evaluation of nommal disnibution. the nonparmmenic correlation of July, as shown in Figure 6A for the inoculated treatment. The
test delivered a Spearman’s comrelation cocfficient {r,) of 0.91, with a minimum value of Df coincides in time with the maximum values for
strong comrelation of expert and UAY scores (P = L the cover of healthy foliage (Fig. 6BY. Under the highest disease

Tnn the case of P woring, UAV-hased values chowed a strong de- pressure, the susceplible variety reached the maximum O score by the
wreise [Tom the frst monitering dute to the end of June und bﬂ.glnmng end of Tuly, 2 weeks curlier than the muximum DS score (Fig. 5A) In

=
-
=]
=]

106955 p———= ; ] D
* scoring region  instances  classification  clustering

-
o

n
[=]

P
o

UAV-based disease incidence (%)

(=]

Jul Aug Sep Oct

o
=]

-~
5

cover of healthy foliage - Ech [%]
[N [+1]
w [=]

=]

Jul Aug Sep Oct

(9]

-
=]
=]

1106955

<] =~
= o

UAV-based disease incidence [%)]
ra
o

o

Jul Aug Sep Oct

Osusceptible - --application @ inoculated +
+ resistant mcontrol + 4 inoculated -

Fig. B. Drsease incidence (D) based on unmanned aerial vehicle [LAV] scoring. Dewslopment of OF &, hetwesn varieties under the highest disease prassure; B, fliage cover of
ezlity vegetation: and C, wanety within all . Symbais + of — ndicate presence or absence, respectively, of fungicide application. In gray boxes, area
undér diseaze prograss curva valuag in %.days. D, Delermiralion of DI aflar selecting a seorng regon, identfication of 34 ingtances, multiclags pradiction, and dustering inside a
ohot for susceptible variaty and inocuiated without fungicide aoplication on 10 July 2018,
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comtrast, the resistamt vadety reached the highest D value simule-
neously with the highest 28 value, Within fungicide levels, 4 peeuliar
zig-zag behavior was observed for the noninoculated fungicide-
applied treaiment (Fig. 6B). Three Tocal minima weme ohserved al
the middle of July, end of July, und end of Avgust, L4, 5, and 19 days
aller lungicide spphcativn, respeclively, A similar behavior wus ob-
served in the inoculatod fungicide-applicd teatment with two local
minima ALUDPCy,, vales for the DM, parameter in all treatments
ranged trom 7.617.8 to M,695.9% days, and individual plotwise
scones rom UAY and experts wene significantly correlated (r, = (159,
F===0.01). The behavior of UAV-hased DI curve for the Uwo additional
fungicide levels is shown in Supplementary Figure 83C and D,

ANOVA and quality parameters

Fungicide strategy was theonly significant factor that afTected root
yield, sucrose content, and WY (Table 4). The variety and com-
hined eifect varety-fungicide did not affect quality parimeters.
WEY r due to CLS was 32.6 and 47.1% for the resistant and sus-
ceptible variety, respectively. Mean values were significantly dif-
ferent (twa-sample 7 test. £ == (L05) and complement AUDPC ,y for
quantitative resistant belween hoth varieties,

ANOVA of AUDPC from expert-based and UAV-bused scores of
parameters £4§ and £ wore similar and showed that D8 was sig-
nificantly affected by the varicty and fungicide factor (Table 4),
whereas 2 was only affected by fungicide strategy. The top three £
values for the factor Tungicide were also A4 ud the parameter
Cere In general, all expert-based snd UAV-buged paramelers were
significantly affected by the factor fungicide. In the same mode, A
Ay and A pp present the highest Fyalues and are the most significant
paramelers for (he Taclor varcly,

Discussion

Precision, recall, and specificity for disease detection
We noticed on the images & (vpical chatactenstic of the so-calked
“reul-world” cases of imbalaneed moliiclass Juta. Facing imbalance,

4 robust classification over all classes is achicved with the help of
high precision (Gautheron ct al. 2009y, The proposed pipeline can
fulfill this condition for the best results {Table 31. As a single clas-
sifier, the PLS-DA methed delivered the best resulis Tor the muli-
cluss sk, Supremacy of the classilier is mainly observed in the high
precision snd high recall value of the most Tequent elass, heulthy
{Fig. 2). PLS is a lincar method originally designed for regression;
hewever, it is possible to use it for classification by implementing a
diserimination function (Barker and Rayens 2003: Liland and Indahl
20097, Tn the past, PLS-TYA showed advantages for disease detection
in spectoscopy, Gold el al. (2020} oblyined the best perlormanee
with PLS-DA by comparing three classification methods for a mul-
ticlass task. In thelr work. plant leaves were assessed, and non-
imaging spectral informarion from 400 to 2400 nm was used o
classify potato late blight disease in four different disease stages. Far
atwa-class task, Barreto et al. (20200 alsa found the hest performance
with a FLS-DA clussifier 1w diseriminate healthy and disensed sogar
beet plants affected with Rhizoctonia root ot discase. In their review,
Lee et al. (2001%) amibuted the popularity of PLS-DA in chemametrics
to characteristics of spectral data: a high number of samples. a high
nurmber of varables, and a tendency ol collinearity among the vari-
ables. SWMR was the best method 1o classily CLS-alTecied regions in
our study, because a lower false-positive (FF) rawe than for FLS-DA
concerning the diserimination of discased pixels wa 3
so0il and healthy were observed around two-thind less in $¥ MR than in
he PLE-T}A classifier. This led us o that a nonlinear decision
haundary can perform a betler cla easedd pixels (Ghosh
et ul, 2019, Our pipeline combined advantages of both classifiers,
achicving a high recall but low precision for the class discased.
Diespite the good overall aceuracy of 86.3%. the imbalance in class
distribution in the dataset has to be critically considered. Moreover,
the class diseased was relatively undemepresented. In a previous
study  [or image-based classification of CLS-diseused  negions,
Girlich et al. (2021} came to precision and recall values similar to
those in our pipeline (32 and 67%). According to Maxim ct al
(20141, a methodolagy with high recall is fit for disease detection

Tahle 4, Analysis of variance resuls for quality, visual rating, and unmanncd acrial vehicle {1JAV} parameters

£ values
Parameter Block Variely Tungicide Variely-lungicide
Quuality’
Roct yield (RY) 06 a3 Gk 20
Suciose content (5 26 a0 o L&
White sugar vield [WSY) 472 34 127 20
Expent
Liscase seventy (£5-lcaf) [¥] L% 15.R4=s 1.3
Dnsease meidence (£4-plant) [¥N 0.3 4.7+ {5
TA
Area of foliage (A8 o 22 4t=% 10, 1= e
Area of healthy foliage (Ag) (X 15%% 13,1*= [
Mean arca of cluster by unit of foliage arca a= 144+ 1554 1.3
3l
Disease severiny (ds-cover based) 15 13,97 1097 L
Discase severity (IH-area based) 1% 1374 10,44 [N
Mean cover cluster per unit of foliage cover o1= 1364 135+ 1.3
(Coork
Caver of healthy feliage 1FCqH) 1.6 9.5* 114 .3
Murnber of clusters per unit of foliage arca 13 T Todwe 27
()
Folioge cover (FO) X T4 X L8
Caver of discased foliage (FCa 17 a1t EX A 06
Mean cluster area (4, LN 5.3 1510w 14
Area of discased Folinge (4,5 1.4 47 AL e
Number of clusters 1c) 14 P 67 L%
Disease mcidence (24,0 22 02 G 1o

* Plorsdse qu
b Plotwise ar

PAFAITETELS,

under disense Progress cuTve paramilers

¢ Degrees of freaedom of 1, 1, 2, and 23 for block, varery, fungicide, and varicry—tungicide factor Tevels, Asterisks *, #*, and = indicare significant ar the P =

(.05 001, und D00 levels.
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because pixels labeled as discased are corrcetly classificd as this class
(Maxim ct al. 2014}, Nevertheless, under low precision and high
recall, the key parameter “specificity”™ was not reported until now.
Specificity is the ability of the classilier o designate nonalTected
regrions correctly snd is bused on the FP rate (Maximel al, 20143, Our
pipeline shows o speailicity in the cluss diseused of 93% (valovulated
from Supplementary Table 52), which is a robust number for clas-
sification. This number signifies that 95% of pixels belonging m
classes healthy, other, and soil are not classified as diseased (Akobeng
2(K7). For a hypothetical case ol high precision and low recall, the
classifier would present poor delection resulls duc w g high Galse-
negative (FN) rate, where most of the labeled diseased pixels would
be misclassificd ay healthy, soil. or other. FN results labeled healthy
are mainly chlorotic tissue swrounding CLS lesions as an indirect
effect belome necrosis (Baranski el al. 2005; Mahlein el al. 2(H3), FN
al'class soil is the main constraint of the classifier and pipeling; here,
harvest residues of the previous crep used us mulch sre commonly
classificd as discascd regions, which is probably cavscd by the
spectral similarity of collapsed leaves after severe CLS infesta-
tion. This constraint is the main reason for using the condition of
SRy, <4057 to reduce the FN rate of the SVMR in the final pipeline.

Influence of feature type reduction on performance

Bascd on the presented results and the complexity of the recorded
object, individual instead of complete feature type reduction is rec-
ammended. V1 lzatures contribuwe principally with the class diseased
in the PLR-DA method, Although the contribution ol YT in the
SVMR classifier was nol evaluated, SVME place the Deagsng, MSR,
and MCARIISAVE index within the top five variables for the class
diseased (Supplementary Table S4). Dyrpsny and MCARIOSAVE are
vegetation indices with high sensitivity to changes of chlorophyll
content {Daughtry et al. 2000k Merslyak et al. 1999}, while MSR was
repored o cormelae sitomgly with the leal ares index and the fion
of photosynthetically active radiation absorbed by the canopics
(Chen 19961, The SH feature or NSVD! is also a crucial varable for
the classification, shown by its place in the top five in the importance
ranking for the classes healthy, diseased, and other (Supplementary
Tahle 54). This emphasizes the relevance of quantifying light
conditions and shaded regions Jurng the analysis of mullispecical
UaV-based images. Loss of information and commupted blophysical
parameters are the principal constraints of shaded regions in vege-
tation (Aboutalebi et al 201%; Zarco-Tejada et al. 2004; Zhang et al.
20HS5). The elfectof RE features onoverall perfonmance is sull unclear,
This study presented relative homogencous resolution values (m = 3.6
to 5.2 mm) in comparisen with the past work of Jay etal, (20200090t
23,0 mm). Technical limitations in terms of sensor resolution and CLS
spot size do not allow testing a wider resolution range. From the used
DSM,, mativated by the quantitative reflectance theary (Chu 2008), £ is
the mast relevant angular variable for both classifiers. The angle be-
tween sensor and object surlace is crucial for the discased and healthy
class according to this study. Furthermore, for future models classi-
fying CLS infection, it is recommended to drop 8, computation duc to
poar contribution to the overall performance.

Comparison of expert and automatic scoring

As mentioned by Buck et al. (2021), DS van be exprossed in
multiple metrics and is used o rate a discase quantitatively by usinga
nmeric seale. This means that CLS can be rated by the description of
symptoms, as Jay et al, (2020 did in their work, or 28 can be rated by
the propartian of diseased foliage area, as presented in this work, Our
results confinm that the Latter tvpe of 28 meiric can be caleulated by o
pixelwise approach with a high correlation to visual scores. How-
ever, the slope of 0.63 from linesr regression indicates that the UAY
scoring estimates only a low percentage of actual £8. This tendency
oy underestimaie 725 can he explained by the TTAY imaging per-
spective from nadir (Fig. 5C). The pipeling includes healthy middle

2019: Thomas ct al. 2018). The present work presents the computing
of D8 (Fig. 5A) using clemental parameters as ¢ and A, (Supple-
mentary Fig, S4A and B, allowing a hetter understanding of disease
development. Curves deseribe o first incresse inthe number of CLS
clusters [ollowed by un imerense of the area of those clusters, We
observed that, in terms of number of clusters, the susceptible varety
presents the highest number of local maximums during the season
(Supplementary Fig. 84A ), nevertheless, the parameter A, shows
potential o Wentily resistance with signilicunt differentiation of
varetics (Table 41, The present study proposed a pipeline to de-
termine £ considering the principles of Nutter et al. (1991). Spec-
imens to evaluate for the disease were the complete plant (expert) and
the defined instance (UAW), The exponential phase of UAV-hased
I ok place 2 fo 3 weeks earlier than the exponential phase of
DE, showing the polentisl for creating spplication maps by geone-
fereneing a scoring arca, In the relationship between UAY and visual
seoring for values of 21, the degree of correlation is lower compared
with results of D5, Woll and Verreet (2002) showed the differences
of assessing DI for plant and leaves; here, the plant-based develop-
menl reached the masimal D7 values corlicr than leal-bused visual
assessments. The proposed £y also achicves the maximal score
later than the plant-based human estimations. For this reason, we
recommend performing visual scoring on a leaf scale in future
studies, because we expect this modification w increase the degree of
comelation with the UAY assessment

A zig-zag development was ebserved inoall experimentul Lreal-
ments with fungicide application but not in treatments without fun-
picide. Beyond the fungicide weatment, the zip-zag effect can be
Turther explained with the nadie perspective of LAV imaging, the
growth rate of sugar heet during the vegelation period, and the dis-
cuse pressure, From June (o Tuly, sugar beet plants display the highest
growth rate of leaves in the season (Kenter et al. 2006), which can be
seen in the development of healthy foliage cover (Fig. 6B). After
applying fungicide, new unfolded leaves remain healthy with this
protective ellect and are recorded with the muliispeciral sensor, de-
creasing the number of diseased units. The same effect is ohserved
Tor the second und third upplivation (Fig, 6C) but, afier the feurth
application at the beginning of Scptember. no decrease of £ was
abserved, and this coincides with the lowest leaf growth rate, where
values are very close to (0 g of leat in dry matter (grams per square
meter per day) Fram September until harvesting, A lower number af
local minimum smd a shight deercase in P values were abserved afler
fungicide applications to the inoculsted plots. We attribute this
smoother behavior of the 4 curve to high disease pressure exerted by
the pathogen. Finally, computing £ presents inaccurate values
during low foliage cover. This elfect is awributed 1o classifier per-
Formance as discussed before, where harvest residues ol previous
crops are misclussified as discased [olinge. Here, un approach for
instance scgmentation at the leaf organ will decrease Inaccuracy of
classifiers and largely reduce the compuring time for a pixelwise
appraach.

Contribution of DSM to the library of parameters and variety
differentiation

The principal advaniage of using DEM (o calculate parameiers for
disease quantilication is the area of the surface (4). A higher dif-
Terenliation belween the varielies is observed by compuring area-
bascd and cover-based parameters. This highlights the potential of
area-based parameters to deliver more precise variery differentiation
Forexample, Ay presents a higher degree of significance in the Tactor
variety than FCy. The same eflect is observed hetween A g and P, as
well as Az and their folivge cover version (Czq). The density of
lesions or, as we called them in this work, the number of clusters, is a
type of metric o quantify 08 according to Bock et al. {2021). In this
waork, it was found that, by counting the number of lesions, sep-
mentulion of regions (including folivge. soil, and others) maees o

letves, unlolded new Teaves, und peticles, whereus esperts consider
only the middle leaves as the object of assessment. Inclined leaves
should also contribute in the underestimation due 10 a mixed-pixel
eftect of healthy and diseased labeled samples {Bohnenkamp et al.
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Tilference for evaluatin Infirmatien in Tuble 4 comob-
orates this statement. When a parameter to quantify CLS lesions by
unsegmented area (¢ is compared with a parameter with segmented
foliage swiace {e,), the factor variety becomes relevant. A similar
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effect could be observed when comparing the experi-based and
AV hased I parmmelers hecanse diseased specimens are being
counled ignomng the gquantily of loliage. Jay el al, (20200 also
mentioned the relevance of lesion density and the cover of healthy
faliage to monitor the development of CLS. However. the effects of
variety and fungicide strategy were not specified. Lastlv, it was
demonstrated in the present study that three parmneters based on
are, including Ag, Ay, #nd the lesion-based DS metric can
deliver a stronger varicty differentiation than the well-known D8
parameter. The computing of those parameters {5 easy to extract from

plant disease severity: Stats end chullenges for Improving  acoumey.
Phytopethol. Res, 24,

Luek, €, Pelnybnuge, 8. 0, Burbedu, J. G A Lsker, P D, Mahlein, A K. and
Pomle, LML 1D, 2021 Ap ¥ glussury Lor the | Ly-Li nlury:
Towards cumn.le:n\y sod precision in nimn. and ioter- disciplinary dialogues.

i Panlbol. &

Sens, 11: 2495,
Mais OF und

Fr s, T i i 20T,
Chen, 1. M. 1996, Fualuation of atinn indices and a modified simple atin fore

boreal applications. Can. T, Rem. Sens. 22:229.242
Corripin, I G 2003 Vearorial alachra algorithing for calealating rerrain
from TEMS and solar adiation modelling in mountainous emain.

the analysis of UAV monitoring data,

Jay et al. (2020) ioned the di tages of mullispectral
UAY monilodng regarding low-resolulion images when compared
with high-resolution, robot-based RGB images. This work shows
that, when resolution is not a limiting factor, the same parameters can
be extracted by both approaches even under the passive illumination
ol UAY monitoring.

Advantages of automated UAY scoring for determination of
resistance and potsntial improvements

The present work successfully establishes a pipeline to process
multispeetral UAY images for a pixclwise detection of CLS discase
in field oials. Strength and weaknesses were discussed with the help
ol the PR curves and the analysis of confusion matrix. Advaniages in
the use of DEM were highlighted, especially by contributing o the
differeniiation of resislanee for sugar beel va DSM allows
calculation of a new branch of parameters to describe £25 and the CLS
development. £18 and £ were caleulated in diverse metries accord-
ing to the last recommendation of Bock etal. (20211 UAV-bhased £27
showed a potential use Tor creating application maps due 1o earlier
sensilivity for CLS quuntilication than DS, Improvements of (his
paramcter can be achieved by the scgmentation at leaf level and, in
future studics, a test for mtegrated management of CLS has o be
conducted. Finally, by comparing the perfarmance of visual scoring
and autematic LAV-based scoring, hoth results came in the same
direction and, as mentioned hefore, differentiation of resistance
properlivs bolween varietics is sharper from TUAV-scoring than the
bumin visual scoring, Considering the arguments cxposed, we
conclude that multispecral UAV systems are potential wools ro de-
termine the resistance of new sugar beet varieties under field con-
ditians, Here, it was proven that the technology can replace the very
laborions work of viswal scoring by supplying clliciently trustiul
parsmelers, (hereby scceleraling the breeding process itsell. The
presented approach can be transferred to agricultural practice for
decision making in integrated pest management.
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Supplementary materials

Glossary
A

Ap

Ap

Ay
Agr
Cerr

DI

DS
De78500
FC

FC,
FC,

GVI

MCARIOSAVI
MCARI,
MSAVI,

MSR

NSVDI

Os

source.

Surface area.

Surface area of diseased foliage.

Surface area of complete foliage.

Surface area of healthy foliage.

Mean surface area of CLS cluster by unit of foliage area.
Mean cover of CLS cluster by unit of foliage cover.
Disease incidence.

Disease severity.

VI called “difference between RED and BLUE band”.
Foliage cover.

Cover of diseased foliage.

Cover of healthy foliage.

Green vegetation index.

Individual instance.

MCARIOSAVI index.

Modified chlorophyll absorption in reflectance index 2.
Modified soil adjusted vegetation index 2.

Modified simple ratio index.

Normalized saturation-value difference index.

Angle of incidence between the canopy surface and light

61



Pixel-wise disease quantification - Manuscript IlI

14 Slope or angle between surface and normal to horizontal.
c Number of clusters.

Cr Number of clusters per unit of foliage area.
ds; Cover based disease severity at I level.

l Resolution in GSD of DSM.

m Resolution in GSD of multispectral orthomosaic.
AUC Area under the curve.

AUDPC Area under disease progress curve.

CLS Cercospora leaf spot.

DMIs Demethylation Inhibitors.

DSM Digital surface model.

DSMr Abbreviation for DSM features.

GSD Ground sample distance.

KNN K-nearest neighbors.

ML Machine learning.

PLS-DA Partial least squares discriminant analysis.
PR Precision-recall.

Qols Quinone outside Inhibitors.

RE Abbreviation for resolution features.

RF Random forest.

RI Registration identifier.

SB Abbreviation for single bands features.

SH Abbreviation for shadow feature or NSVDI.
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SVML

SVMR

UAV

\

WSY

WS Y loss

Support vector machine linear.
Support vector machine radial.

Unmanned aerial vehicle.

Vegetation index and abbreviation for VI features.

White sugar yield.

Loss of white sugar yield.
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Table 5-1. In Manuscript Il as Table S1, properties of susceptibility to Cercospora
beticola, yield and quality according to national variety list (Bundessortenamt 2017)

Susceptibility to Cescospora

Variety RI RY WSY SC K+Na AmN
beticola

susceptible 3012 5 5 6 6 2 5

resistant 2444 3 6 6 6 4 5

value of 1: parameter is missing or very low developed, value of 5: parameter is
moderately developed, value of 9: parameter is very strongly developed. RI, registration
identifier of the German Federal Variety Office Bundessortenamt; RY, root yield; WSY,
white sugar yield; SC, sucrose content; K + Na, concentration of potassium plus sodium;

AmN, amino-nitrogen concentration.
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Table 5-2. In Manuscript Il as Table S2, technical specifications of UAV flights

Date m l Sky Su

13th June 3.6 144 sunny -0.677+0.25] +0.70k
19" June 43 17.0 sunny 0.447+0.39f + 0.81k
26 June 52 20.8 sunny 0.567+0.32] +0.76k
1st July 42 16.8 sunny 0.437+0.39] + 0.81k
10t July 40 158 cloudy 0.537+0.36] + 0.77k
16! July 4.0 16.0 cloudy 0.417+0.43]+ 0.81k
231 July 41 165 sunny 0.317+0.48] +0.82k
30" July 40 161 sunny 0.447+0.46] + 0.77k
14 August 41 16.6 sunny .0.277+0.57] + 0.77k
21st August 3.8 153 sunny 0.397+0.57j +0.72k
27" August 45 182 sunny 0467+ 0.57] + 0.68k
18" September 3.4 13.5 sunny  (0.577+ 0.62] + 0.54k
26" September 4.2 16.9 cloudy 0.367 + 0.74] + 0.56k
22n QOctober 44 17.7 cloudy 0.567+0.75] + 0.35k

where m and [ are the ground sample distance (GSD) in mm from the multispectral

orthomosaic and the digital elevation model respectively. S, is the unit vector of the trial

field in the direction of the sun.
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Table 5-3. In Manuscript Il as Table S3, fungicide applications and specifications

Application
Rate Product Active substance Group
date
0.6 Duett Thiophanat-Methyl,
2 July benzimidazole,DMIs
liter/Ha Ultra Epoxiconazol
0.6 Duett Thiophanat-Methyl,
251 July ) ) benzimidazole,DMIs
liter/Ha Ultra Epoxiconazol
1.0
8t August Amista