Die Rolle der endothelialen Progenitorzellen bei Patienten mit axialer Spondylarthropathie

INAUGURAL-DISSEPTION
zur Erlangung des Doktorgrades
der Medizinischen Fakultät
der Georg-August-Universität zu Göttingen

vorgelegt von

Maria Elisabeth Vogt, geb. Struve

aus

Frankfurt an der Oder

Göttingen 2018
Dekan: Prof. Dr. rer. nat. H. K. Kroemer

Referentin: Priv.-Doz. Dr. med. Susann Patschan
Ko-Referent/in: Prof. Dr. med. Rotraut Mößner
Dritttreferent/in: Prof. Dr. med. Margarete Schöm

Datum der mündlichen Prüfung: 12. Juni 2019
Hiermit erkläre ich, die Dissertation mit dem Titel „Die Rolle der endothelialen Progenitorzellen bei Patienten mit axialer Spondylarthropathie“ eigenständig angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben.

Osnabrück, den
Inhalt

Abbildungsverzeichnis .. VI
Tabellenverzeichnis ... VII
Abkürzungsverzeichnis ... VIII

1. Einführung und Zielsetzung .. 1

2. Einleitung ... 3
 2.1 Spondyloarthritiden und axiale Spondylarthropathie 3
 2.2 Definition und Geschichte ... 4
 2.3 Epidemiologie / Krankheitsverlauf 4
 2.4 Pathogenese ... 5
 2.5 Klinik und Verlauf .. 7
 2.6 Diagnostik ... 11
 2.6.1 Körpliche Untersuchung 11
 2.6.2 Scores ... 11
 2.6.3 Klassifikationskriterien ... 11
 2.6.4 Bildgebung .. 13
 2.6.5 Labor .. 13
 2.7 Therapie/Management der AS 14
 2.8 Atherosklerose / kardiovaskuläres Risiko bei Patienten mit axSpA 16
 2.9 Endothel ... 17
 2.10 Vaskulogenese und Angiogenese 18
 2.11 Endotheliale Dysfunktion .. 19
 2.12 Endotheliale Progenitorzellen – Übersicht 19
 2.13 Experimentelle Beschreibung; Isolierung und Kultivierung .. 23
 2.14 EPCs und verschiedene Zytokine 26
 2.15 Weitere Stimulanzien und inhibierende Faktoren auf die EPC-Anzahl 29
 2.16 EPCs im Rahmen pathologischer Zustände – Stand der Forschung 30

3 Material und Methoden ... 32
 3.1 Patientenkollektiv und Datengewinnung 32
 3.2 Bestimmung der EPCs .. 33
 3.3 Scores und klinische Untersuchungsmethoden 40
Abbildungsverzeichnis

Abbildung 1: Definitionen des entzündlichen Rückenschmerzes 8
Abbildung 2: Einteilung der radiologisch darstellbaren sakroiliakalen Veränderungen zur Verwendung in den modifizierten New-York-Kriterien 11
Abbildung 3: Modifizierte New-York-Kriterien für die Spondylitis ankylosans von 1984 12
Abbildung 4: ASAS-Klassifikationskriterien für die axSpA 12
Abbildung 5: Verschiedene EPC-Subtypen und deren Eigenschaften 23
Abbildung 6: Festlegen des gewünschten Messbereiches am FACScalibur (gating) 36
Abbildung 7: CFU-Hill-Assay, Kolonien an Tag 6, Bild 1 38
Abbildung 8: CFU-Hill-Assay, Kolonien an Tag 6, Bild 2 38
Abbildung 9: Schematische Darstellung Schober- und Ott-Maß 40
Abbildung 10: Schematische Darstellung Wirbelsäulen-Seitneigung 41
Abbildung 11: Schematische Darstellung Tragus-Wand-Abstand 42
Abbildung 12: Signifikanter Unterschied der Anzahl der CFU-ECs zwischen Patienten- und Kontrollgruppe 47
Abbildung 13: Signifikanter Unterschied der Anzahl der CFU-ECs der Männer versus der Anzahl der CFU-ECs der Frauen 49
Abbildung 14: Scatterplot zu dem Zusammenhang zwischen Anzahl der CFU-ECs und dem Patientenalter am Untersuchungstag 50
Abbildung 15: Scatterplot zu dem Zusammenhang zwischen Anzahl der CFU-ECs und der Erkrankungsdauer 51
Abbildung 16: Anzahl der CFU-ECs, eingeteilt nach dem BASDAI 52
Abbildung 17: Anzahl der CFU-ECs, eingeteilt nach Begleiterkrankungen 53
Abbildung 18: Anzahl der CFU-ECs, eingeteilt nach dem Nikotinkonsum 55
Abbildung 19: cEPCs (in %) bei Patienten und Kontrollgruppe 56
Abbildung 20: cEPCs eingeteilt nach dem Geschlecht 57
Abbildung 21: Verlaufskontrolle nach einem mittleren Zeitraum von 33,2±1,9 Monaten 58
Abbildung 22: Schema zu den Ergebnissen dieser Arbeit 66
Tabellenverzeichnis

Tabelle 1: Liste der verwendeten Verbrauchsmaterialien .. 38
Tabelle 2: Zusammenfassung der verwendeten Instrumente/Geräte 39
Tabelle 3: Liste der verwendeten Reagenzien .. 39
Tabelle 4: Deskriptive Statistik grundlegender Charakteristika des Patientenkollektivs 46
Tabelle 5: Klinische Messwerte zur Beurteilung der Wirbelsäulenbeweglichkeit 46
 /des Krankheitsverlaufs
Tabelle 6: Deskriptive Statistik für die Anzahl der CFU-ECs in der Patientengruppe und Kontrollgruppe ... 47
Tabelle 7: Auflistung der p-Werte für die Anzahl der CFU-ECs, eingeteilt nach verschiedenen Variablen / Merkmalen ... 48
Tabelle 8: Deskriptive Statistik für die Anzahl der CFU-ECs, eingeteilt nach dem Geschlecht ... 49
Tabelle 9: Deskriptive Statistik für die Anzahl der CFU-ECs, eingeteilt nach dem ASDAS .. 52
<table>
<thead>
<tr>
<th>Abkürzungsverzeichnis</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>acLDL</td>
<td>acetylated low-density lipoprotein</td>
</tr>
<tr>
<td>Ankylose</td>
<td>vollständige Gelenkversteifung</td>
</tr>
<tr>
<td>AS</td>
<td>ankylosierende Spondylitis = Morbus Bechterew</td>
</tr>
<tr>
<td>ASAS</td>
<td>Assessment of SpondyloArthritis international Society</td>
</tr>
<tr>
<td>ASDAS</td>
<td>Ankylosing Spondylitis Disease Activity Score</td>
</tr>
<tr>
<td>axSpA</td>
<td>axiale Spondylarthropathie</td>
</tr>
<tr>
<td>BASDAI</td>
<td>Bath Ankylosing Spondylitis Disease Index</td>
</tr>
<tr>
<td>BASFI</td>
<td>Bath Ankylosing Spondylitis Functional Index</td>
</tr>
<tr>
<td>BASG</td>
<td>Bath Ankylosing Spondylitis Global Score</td>
</tr>
<tr>
<td>BASMI</td>
<td>Bath Ankylosing Spondylitis Metrology Index</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BSG</td>
<td>Blutsenkungsgeschwindigkeit</td>
</tr>
<tr>
<td>CAC</td>
<td>circulating angiogenic cell</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CEC</td>
<td>circulating endothelial cell, zirkulierende Endothelzellen</td>
</tr>
<tr>
<td>CED</td>
<td>chronisch entzündliche Darmerkrankung</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>CFU-EC</td>
<td>colony forming unit-endothelial cell</td>
</tr>
<tr>
<td>CPC</td>
<td>circulating progenitor cell</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Protein</td>
</tr>
<tr>
<td>DMARD</td>
<td>disease-modifying antirheumatic drug</td>
</tr>
<tr>
<td>ECFC</td>
<td>endothelial colony-forming cell</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked Immunosorbent Assay</td>
</tr>
<tr>
<td>Enthesitis</td>
<td>Entzündung im Bereich von Sehnen-, Bänder- oder Kapselansätzen</td>
</tr>
<tr>
<td>EC</td>
<td>Endothelzellen</td>
</tr>
<tr>
<td>eCFC</td>
<td>late outgrowths EPC</td>
</tr>
<tr>
<td>EPC</td>
<td>endothelial progenitor cell</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ESSG</td>
<td>European Spondyloarthropathy Study Group</td>
</tr>
<tr>
<td>FACS</td>
<td>fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>FBA</td>
<td>Finger-Boden-Abstand</td>
</tr>
<tr>
<td>FLK-1</td>
<td>VEGF-Rezeptor-2 ≙ CD309 ≙ KDR</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>HLA</td>
<td>humanes Leukozyten-Antigen</td>
</tr>
<tr>
<td>HSC</td>
<td>hämatopoetische Stammzelle</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin-6</td>
</tr>
<tr>
<td>KDR</td>
<td>kinase insert domain receptor</td>
</tr>
<tr>
<td>KHK</td>
<td>koronare Herzkrankheit</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>LWS</td>
<td>Lendenwirbelsäule</td>
</tr>
<tr>
<td>MC</td>
<td>myeloische Stammzelle</td>
</tr>
<tr>
<td>MRT</td>
<td>Magnetresonanztomographie</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>NSAR</td>
<td>nichtsteroidale Antirheumatika</td>
</tr>
<tr>
<td>nr-axSpA</td>
<td>non-radiographic axial spondyloarthritis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet derived growth factor</td>
</tr>
<tr>
<td>PPI</td>
<td>Protonenpumpeninhibitoren</td>
</tr>
<tr>
<td>RA</td>
<td>rheumatoide Arthritis</td>
</tr>
<tr>
<td>SDF-1</td>
<td>stromal cell derived factor 1a</td>
</tr>
<tr>
<td>SpA</td>
<td>Spondyloarthritis, Spondyloarthropathie, Spondylarthropathie</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TPC</td>
<td>tissue resident progenitor cell</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
</tbody>
</table>
1. **Einführung und Zielsetzung**

„Apes, cattle, horses, the giant wolf (...) and dinosaurs have all left evidence in their skeletons of an ankylosing spondylitis which in their lifetime thousands of years ago must surely have severely limited their movement and caused them considerable pain.“ So beschrieb der Wissenschaftler Moody seine Beobachtungen bereits im Jahre 1923 (Moody 1923). Aktuelle Untersuchungen gehen von einer deutlich höheren Prävalenz der Gruppe der Spondyloarthritiden (bis zu 2%) gegenüber der rheumatoiden Arthritis aus. Damit gehört die nr-axSpA zu den häufigsten rheumatischen Erkrankungen.

Mittlerweile stehen verschiedenste Therapiemöglichkeiten zur Verfügung. Das Wissen um die Erkrankung wächst stetig, eine Kontrolle der Grundkrankung unter medikamentöser Therapie kann erreicht werden, ein vollständige Heilung jedoch weiterhin nicht.

In der vorliegenden Arbeit wurde das System der endothelialen Progenitorzellen (EPCs), im Speziellen deren Funktion und Anzahl bei Patienten mit axialer Spondylarthropathie, untersucht.
Folgenden Fragen wurde nachgegangen:

1. Welche Rolle spielen EPCs bei der axialen Spondylarthropathie?
2. Ist ihre Zahl oder Funktionsweise im Vergleich zur gesunden Kontrollgruppe verändert?
3. Korrelieren Anzahl bzw. Funktion der EPCs mit dem Schweregrad des klinischen Verlaufs, der angewandten medikamentösen Therapie oder der Aktivität der Erkrankung?
4. Spielen EPCs eine Rolle für den Progress der Erkrankung bei dem einzelnen Patienten?

Das Ergebnis unserer Studie, so die Hoffnung, könnte einen Effekt auf therapeutische Möglichkeiten oder prognostische Parameter haben.
2. Einleitung

2.1 Spondyloarthritiden und axiale Spondylarthropathie

Die Gruppe der Spondyloarthritiden (SpA) umfasst eine heterogene Gruppe entzündlich-rheumatischer Erkrankungen mit einer Reihe gemeinsamer pathophysiologischer und genetischer Merkmale. Genetisches Charakteristikum ist die Assoziation mit dem MHC-Klasse-I-Antigen HLA-B27, klinisch finden wir die Beteiligung des Achsenskeletts und der Enthesien (Braun und Sieper 2007).

Zu der Gruppe gehören die axiale Spondylarthropathie (axSpA) inklusive der ankylosierenden Spondylitis (AS), die Psoriasis-Arthritis, enteropathische Arthritiden (eine chronisch entzündliche Darmerkrankung begleitend), die reaktive Arthritis und die undifferenzierte Spondylarthropathie. Weiterhin gehören auch juvenile Spondylarthritiden dazu (Manger und Schulze-Koops 2012; Rudwaleit et al. 2009a).

ein fortgeschrittenes Stadium mit radiologisch erkennbaren Veränderungen des Skelettsystems.
Frühe Stadien beschreibt der Begriff der nr-axSpA (s. o.).

2.2 Definition und Geschichte

2.3 Epidemiologie / Krankheitsverlauf

Die AS gehört zu den häufigsten rheumatischen Erkrankungen mit einer Prävalenz von bis zu 1 % in Europa (Herold 2013). Dies ist mit der Häufigkeit der rheumatoiden Arthritis zu vergleichen (Prävalenz 1 %, Herold 2013). Die axSpA scheint weltweit mit bis zu 1,4 % wesentlich häufiger zu sein (Rudwaleit und Sieper 2005; Slobodin et al. 2012).

Je nach Literatur geht man davon aus, dass Männer im Gegensatz zu Frauen mehr als doppelt so häufig (2,5-fach) von der AS betroffen sind (Rudwaleit und Sieper 2005; Herold 2013). In jüngsten Studien konnte für die axSpA kein Geschlechtsunterschied nachgewiesen werden.

Frauen leiden häufiger an atypischen Symptomen und entwickeln insgesamt langsamer die typischen Veränderungen in der Bildgebung (Rudwaleit et al. 2009a; Slobodin et al. 2012; Slobodin et al. 2011). Daher ist der Diagnosezeitpunkt bei ihnen häufig besonders verzögert (Braun und Sieper 2007).

Prozent (Braun und Sieper 2007) der Patienten sind bei der Erstmanifestation älter als 40 Jahre.

Mittlerweile scheint sich der Zeitraum bis zur Erstdiagnose, dank neuer diagnostischer Methoden, wie etwa der MRT, und neuer Diagnosekriterien, zu verkürzen (Reed et al. 2008).

HLA-B27-positive Patienten erkranken im Schnitt 3-10 Jahre früher als HLA-B27-negative Patienten (Feldtkeller et al. 2003; Manger und Schulze-Koops 2012). Eine familiäre Häufung ist zu beobachten (Herold 2013).

2.4 Pathogenese

Genetische Faktoren

Kürzlich erschienene Studien ziehen die Möglichkeit in Betracht, dass HLA-B27 im endoplasmatischen Retikulum nicht korrekt synthetisiert und gefaltet wird und infolgedessen eine fehlerhafte Struktur annimmt, oder aber, dass HLA-B27 schwere Kettendimere an der Zelloberfläche bildet, wodurch die Zellen von den T-Killer-Zellen erkannt werden (Slobodin et al. 2012; Taurog et al. 2009).

Für die axSpA scheinen noch weitere genetische Dispositionen vorzulegen und werden erforscht. So tritt bei eineigenen Zwillingen häufiger bei beiden Geschwistern die Erkrankung auf (60-75 %), als bei HLA-B27-positiven zweieigen Zwillingen (24 %) (Braun und Sieper 2007).
Bakterielle Stimulation

Die initiale Läsion im Rahmen der Erkrankung ist eine Entzündung im Bereich der Knorpel-Knochen-Grenze und enthesialer Strukturen, die man im MRT erkennen kann (Slobodin et al. 2012; Manger und Schulze-Koops 2012).

2.5 Klinik und Verlauf

Auf internationaler Ebene gibt es bisher keine einheitliche Definition des entzündlichen Rückenschmerzes. Die in Abbildung 1 dargestellten Definitionen werden in der Klinik herangezogen.

<table>
<thead>
<tr>
<th></th>
<th>Rudwaleit (nach Studiendaten)</th>
<th>Sieper (Expertenmeinung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter</td>
<td>< 45 Jahre</td>
<td>≤ 40 Jahre</td>
</tr>
<tr>
<td>Dauer</td>
<td>≥ 3 Monate</td>
<td></td>
</tr>
<tr>
<td>Beginn</td>
<td>Schleichend</td>
<td></td>
</tr>
<tr>
<td>Klinik</td>
<td>Morgensteifigkeit > 30 Minuten</td>
<td>Besserung durch Bewegung</td>
</tr>
<tr>
<td></td>
<td>Keine Verbesserung durch Ruhe</td>
<td>Keine Verbesserung durch Ruhe</td>
</tr>
<tr>
<td></td>
<td>Alternierender Gesäßschmerz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aufwachen in der 2. Nachthälfte</td>
<td>Nächtliche Schmerzen</td>
</tr>
<tr>
<td>Sensitivität</td>
<td>Bei 2 von 4 Kriterien: 70%</td>
<td>Bei 4 von 5 Kriterien: 80%</td>
</tr>
<tr>
<td>Spezifität</td>
<td>Bei 2 von 4 Kriterien: 81%</td>
<td>Bei 4 von 5 Kriterien: 72%</td>
</tr>
</tbody>
</table>

Abbildung 1: Definitionen des entzündlichen Rückenschmerzes (nach Rudwaleit et al. 2006, Sieper et al. 2009)

Häufig (bei ca. 40-50 % der AS-Patienten) zu finden sind weiterhin Enthesitiden (Entzündungen der Sehnenansätze), zumeist im Bereich der Achilles- oder Plantarsehne (Puchner 2012). Die Patienten klagen in der Regel über (Druck-) Schmerzen in der entsprechenden Region.

Extraskelettale Manifestationen finden sich typischerweise im Bereich der Augen und des Magen-Darm-Trakts (CED bei 3-10 %, ileokoloskopisch ohne klinische Symptome in 70 % entzündlich verändert; nach Manger und Schulze-Koops 2012).

Selten sind innere Organe wie die Aorta in Form einer Aortitis bis hin zur Aorteninsuffizienz, die Niere (IgA-Nephritis), das Reizleitungssystem des Herzens (Erregungsleitungsstörungen) oder das Herz selbst (Kardiomyopathie) beteiligt (Puchner 2012).

Eine Beteiligung der Haut in Form einer Psoriasis vulgaris findet man in bis zu 20 % der AS-Patienten. Weitaus häufiger sind psoriasiforme Hautläsionen (Brophy und Calin 2001).

Signifikant ungünstige Prognosefaktoren nach einer französischen Studie sind neben der Coxitis eine BSG > 30, schlechtes Ansprechen auf die Therapie mit NSARs, eingeschränkte Beweglichkeit der LWS, ein früher Krankheitsbeginn (vom 17. Lebensjahr), Organmanifestationen oder eine Oligoarthritis (Puchner 2012). Auch Nikotinkonsum und unterlassene oder nur gelegentlich durchgeführte Krankengymnastik wirken sich negativ auf den Verlauf aus.

Die Mortalität ist insbesondere durch ein erhöhtes kardiovaskuläres Risiko erhöht (Manger und Schulze-Koops 2012).
2.6 Diagnostik

2.6.1 Körperliche Untersuchung

2.6.2 Scores

2.6.3 Klassifikationskriterien

<table>
<thead>
<tr>
<th>Einteilung</th>
<th>Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grad 0</td>
<td>Keine Veränderung</td>
</tr>
<tr>
<td>Grad 1</td>
<td>Mögliche Veränderungen</td>
</tr>
<tr>
<td>Grad 2</td>
<td>Minimale Veränderungen, minimale Sakroiliitis (geringe Sklerose, Erosionen, keine Gelenkspaltveränderungen)</td>
</tr>
<tr>
<td>Grad 3</td>
<td>Eindeutige Veränderungen, moderate Sakroiliitis (deutliche Sklerose, Erosionen, Gelenkspaltverbreiterung oder –verschmälerung)</td>
</tr>
<tr>
<td>Grad 4</td>
<td>Ankylose</td>
</tr>
</tbody>
</table>

Abbildung 2: Einteilung der radiologisch darstellbaren sakroiliakalen Veränderungen zur Verwendung in den modifizierten New-York-Kriterien (s. Abbildung 3)

Klinische Kriterien:
1. tiefsetzende Kreuzschmerzen und Steifigkeit seit mehr als 3 Monaten, Besserung bei Bewegung, nicht in Ruhe
2. Bewegungseinschränkung der Lendenwirbelsäule in sagittaler und frontaler Richtung
3. Einschränkung der Thoraxexkursion im Vergleich zu Gesunden gleichen Alters und Geschlechts

Radiolog. Kriterien:
- **Sacroiliitis** (Grad > 2 beidseits oder Grad 3-4 einseitig)

- **Gesicherte AS**: Radiologisches Kriterium & mindestens 1 klinisches Kriterium erfüllt.
- **Verdacht auf AS**: 3 klinische Kriterien erfüllt
 oder radiologisches Kriterium erfüllt

Abbildung 3: Modifizierte New-York-Kriterien für die Spondylitis ankylosans (Braun und Sieper 2007)

Präsenz von Rückenschmerzen > 3 Monate und Erkrankungsbeginn ≤ 45 Jahre:

HLA-B27 plus ≥ 2 andere SpA-Merkmale

oder

Sacroiliitis (Bildgebung) plus ≥ 1 anderes SpA-Merkmal

Sacroiliitis in der Bildgebung:
1. akute Entzündung in der MRT
2. Sakroiliitis im Röntgen nach den mod. N.-Y.-Kriterien

Abbildung 4: ASAS-Klassifikationskriterien für die axSpA nach Rudwaleit et al. 2009b
Vergangen zuvor häufig mehrere Jahre bis zu Erstdiagnose, ist nun eine Verkürzung dieser Zeit im klinischen Alltag festzustellen (Rudwaleit et al. 2009a).

2.6.4 Bildgebung

Diese Veränderungen sind jedoch zu Beginn der Erkrankung nicht vorhanden. Sie entstehen erst im Verlauf des chronischen Prozesses.

Sollen die entzündlichen Veränderungen im Bereich der Sakroiliakalgelenke (Sakroiliitis) dargestellt werden, ist die MRT die beste Darstellungsmethode. Hiermit können die Veränderungen zu Beginn der Erkrankung vor einer chronischen Schädigung dargestellt werden. Die gegenüber der Röntgendiagnostik höhere Sensitivität und Spezifität führte zur Aufnahme der MRT in die neuen ASAS-Klassifikationskriterien (s.o. Slobodin et al. 2012; Manger und Schulze-Koops 2012).

2.6.5 Labor

Bisher ist kein die axSpA spezifisch kennzeichnender Laborwert bekannt.

In der Diagnostik stützt man sich auf das HLA-B27 und in der Initial- und Verlaufsbeurteilung auf systemische Entzündungsparameter wie das C-reaktive Protein (CRP). Weiterhin wird die BSG bestimmt, spielt jedoch nur eine untergeordnete klinische Rolle.

Etwa 80-95 % der AS-Patienten und 60-85 % der axSpA-Patienten sind HLA-B27 positiv (Sampaio-Barros et al. 2010; Rudwaleit et al. 2009a). Die Bestimmung des HLA-B27 weist eine recht hohe Spezifität (90-96 %) und gut ausreichende Sensitivität (83-96 %) auf (Rudwaleit et al. 2004). Die Subtypen des HLA-B27 werden in Mitteleuropa nicht standardmäßig bestimmt. Interessanterweise könnte dies bei chinesischen Patienten eine Rolle spielen, da in der chinesischen Population zwei Subtypen beobachtet wurden, die nicht mit der AS assoziiert sind (Braun und Sieper 2007).

2.7 Therapie/Management der AS

Eine chirurgische Therapie kommt nur bei ausgewählten Patienten mit körperlicher Behinderung, beispielsweise bei instabiler Wirbelsäule, infrage.

Neben der pharmakologischen Therapie spielen nicht-medikamentöse Maßnahmen, insbesondere die Physiotherapie, eine grundlegende Rolle. Studien zeigen, dass bei regelmäßiger Durchführung der Bewegungstherapie eine Verbesserung der körperlichen Funktion, der Schmerzen und des globalen Befindens nachweisbar ist (Dagfinrud et al. 2008).
2.8 Atherosklerose / kardiovaskuläres Risiko bei Patienten mit axSpA

Auch die Wahrscheinlichkeit, zerebrovaskuläre Ereignisse zu erleiden, ist laut Szabo et al. (2011) erhöht.

Für die AS-Patienten resultiert ein im Vergleich zu Altersgenossen um 30 % erhöhtes Risiko stationärer Behandlungen (Szabo et al. 2011). In einer europäischen Studie beobachteten Bakland et al. 2011 weiterhin eine erhöhte Mortalität unter 667 AS-Patienten im Vergleich zur Kontrollgruppe. Durchblutungsstörungen und Kreislaufkrankeungen waren darunter die häufigste (in 40 %) Todesursache (van der Horst-Bruinsma und Nurmohamed 2012).

2.9 Endothel

Das Endothel ist grundlegender Bestandteil der Gefäße, es kleidet die inneren Gefäßwände aus. Bei einem durchschnittlichen Erwachsenen besteht es aus etwa 10^{13} Endothelzellen, das entspricht insgesamt etwa einer Fläche von etwa 7 m² (Lin et al. 2000).

Endothelzellen bilden die natürliche Grenzschicht zwischen dem Blut bzw. der Lymphflüssigkeit und dem umgebenden Gewebe. Sie regulieren den Nährstoff- und Blutbestandteilttransport und agieren als aktive Signalübermittler. Ein weiterer Mechanismus ist die Produktion verschiedenster Faktoren, die etwa der Änderung des Gefäßtonus oder der zellulären Adhäsion dienen und eine Reaktion auf Gefäßwandentzündungen oder thrombotische Ereignisse modulieren (Deanfield et al. 2007). Das Endothel ist an verschiedensten
physiologischen Prozessen beteiligt, wie etwa der Hämostase, Entzündungen und der Angiogenese bzw. der Vaskulogenese (Lin et al. 2000).

2.10 Vaskulogenese und Angiogenese

Für die Entwicklung des Körpers ist ein weiterer Mechanismus vonnöten - die Angiogenese. Hierunter versteht man den Umbau und das Wachstum des Gefäßsystems durch Teilung bereits bestehender differenzierter Endothelzellen sowohl beim Embryo als auch im adulten Organismus.

Das im Rahmen der Vaskulogenese angelegte Gefäßnetz wird durch den Prozess der Angiogenese weiter ausgebaut bzw. modifiziert. Dies geschieht per sprouting der Gefäße und einstülpendem Wachstum (Intussception oder non-sprouting angiogenesis). Wesentlich beteiligt an diesem Prozess sind Stickstoffmonoxid (NO) und der vascular endothelial growth factor (VEGF) (Kalka et al. 2000).

Lange Zeit ging man davon aus, dass die Vaskulogenese lediglich pränatal stattfindet und dem erwachsenen Organismus nicht mehr zur Verfügung steht.

2.11 Endotheliale Dysfunktion

Verschiedene klinische Untersuchungen zeigten, dass eine Dysfunktion des Endothels sich bereits im ersten Lebensjahrzehnt als Antwort auf Umwelt- und genetische Faktoren entwickeln kann (Deanfield et al. 2007).

2.12 Endotheliale Progenitorzellen – Übersicht

Endotheliale Progenitorzellen (EPCs) werden seit mittlerweile über 20 Jahren intensiv beforscht. Asahara et al. waren 1997 die ersten, die zu dieser Zellpopulation publizierten. Sie stellten fest, dass sich zirkulierende CD34-positive hämatopoetische Vorläuferzellen in vivo zu Endothelzellen differenzieren können und nannten diese Zellen endotheliale Progenitorzellen.
Bis heute sind unzählige Veröffentlichungen zu diesem Thema erschienen. Trotzdem ist eine Charakterisierung der Zellen weiterhin nicht einfach, unter anderem weil bisher keine spezifischen Oberflächenmarker bekannt sind (Timmermans et al. 2009).

Man schätzt, dass EPCs einen Anteil von etwa 0,01% an den peripheren mononukleären Zellen ausmachen (Ablin et al. 2009; Diskrepanz: 0,1-0,5% (Kalka et al. 2000). Im Knochenmark soll ihr Anteil das Hundertfache ausmachen.

Urbich und Dimmeler entwickelten 2004 eine einfache Arbeitshypothese für EPCs:

1. EPCs sind dem Knochenmark entstammende Zellen, die peripher zirkulieren, sich aber funktionell und phänotypisch eindeutig von ausgereiften Endothelzellen unterscheiden.
2. In vitro können sie sich zu Endothelzellen differenzieren.
3. In vivo tragen sie zur Vaskulogenese und vaskulären Homöostase bei.

Yoder passte diese Definition 2012 neuen wissenschaftlichen Erkenntnissen an. Er definierte EPCs analog den embryonalen Angioblasten als grundsätzlich zirkulierende Zellen,

1. die eine Vielfalt von Oberflächenmarkern exprimieren, ähnlich denen der zirkulierenden, vaskulären Endothelzellen,
2. die am Endothel in hypoxischen/ischämischen Gewebearealen haften und
3. die sich an der Neubildung der Gefäße beteiligen.

Mittlerweile geht man davon aus, dass es verschiedene EPC-Populationen mit unterschiedlicher regenerativer Kapazität gibt (Khakoo und Finkel 2005; Zaccone et al. 2015). Ihnen gemein sind oben genannte Eigenschaften.
Nach Mayr et al. (2011) entstammen die verschiedenen Zellen, die mit dem Namen EPC assoziiert sind, außerdem verschiedenen Ursprüngen:

1. hämatopoetischen Stammzellen (HSC)
2. myeloischen Zellen (MC)
3. anderen zirkulierenden Progenitorzellen (CPC, auch side population cells)
4. zirkulierenden reifen Endothelzellen, die sich von der Zellwand abgelöst haben (CEC)

Die genaue Entwicklung von einer Vorläuferzelle hin zur EPC ist bisher nicht nachgewiesen oder definiert (Piatkowski et al. 2013).

Mit der Annahme verschiedener Ursprungslokalisationen haben sich unterschiedliche Isolierungsverfahren entwickelt, an deren Ende verschiedene EPC-Subpopulationen (s. Abbildung 5) stehen:

Nach drei bis fünf Tagen Kultivierung findet man sogenannte zirkulierende angiogene Zellen (CACs), mit niedrigem proliferativem Potenzial. Diese Zellen sind nicht direkt an der Gefäßneubildung beteiligt, sondern wirken über eigens zur Förderung der Angiogenese produzierte Cytokine und angiogene Faktoren. Morphologisch zeichnen sie sich durch die Formation gestreckter, spindelförmiger Zellen aus (Hur et al. 2004; Sieveking et al. 2008).

Da CACs und CFU-ECs bereits nach kurzer Zeit Kolonien bilden, werden sie zusammen als early outgrowth EPCs definiert (Hur et al. 2004; Zaccone et al. 2015). Es ist anzunehmen, dass die heterogene Gruppe der early EPCs die Vorläuferzellen der late EPCs beinhalten (Zaccone et al. 2015).

Aus dem Knochenmark isolierte murine mononukleäre Zellen differenzieren sich nach Kultivierung in preconditioned endothelial medium zu EPCs mit hohem proliferativem Potenzial und bilden in vitro tubuläre Strukturen aus. Nach Asahara et al. 1999 wandern sie in ischämisches Gewebe ein und sind so etwa fähig, die myokardiale Funktion zu verbessern.

Aicher und Heeschen 2007 untersuchten weitere Herkunftsmöglichkeiten der EPCs (Leber und Darm). Ihre Studien geben Anlass zu der Vermutung, dass es verschiedenste weitere Ressourcen für EPCs geben könnte. Progenitorzellen, die aus peripheren Geweben gewonnen werden, werden als gewebeständige Progenitorzellen (tissue resident progenitor cell = TPCs) bezeichnet.

Ingram et al. 2005 isolierten aus dem erwachsenen Organismus zirkulierende reife Endothelzellen und erstellten das Konzept von ECs und EPCs, die sich von der Gefäßwand gelöst haben. Potenzial und Funktion dieser EPCs sind noch unklar (Lin et al. 2000).
Es sollten also stets Ursprung und Methode der Isolierung genannt werden, ist die Rede von EPCs. Mithilfe der Durchflusszytometrie werden die sogenannten zirkulierenden EPCs (cEPCs) anhand verschiedener Oberflächenmarker identifiziert. Das Fehlen spezifischer Oberflächenmoleküle hat zu einer Vielfalt an verwendeten Kombinationen geführt (Kap. 4.5) (Timmermans et al. 2009).

<table>
<thead>
<tr>
<th>CFU-Hill</th>
<th>CAC</th>
<th>eCFC</th>
<th>cEPC</th>
<th>TPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulivivierung mittels Hill-Verfahren</td>
<td>Kultivierung, erscheinen nach 3-5 Tagen</td>
<td>Kultivierung, erscheinen nach 4-7 Tagen</td>
<td>FACS</td>
<td>gewebsständig</td>
</tr>
<tr>
<td>early outgrowth EPCs</td>
<td>late outgrowth EPCs</td>
<td>Keine Kultivierung möglich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 5: Verschiedene EPC-Subtypen und deren Eigenschaften

2.13 Experimentelle Beschreibung; Isolierung und Kultivierung

Zum experimentellen Nachweis von EPCs aus humanem peripherem Blut kann man sich verschiedener Methoden bedienen (s.o.), die im Folgenden genauer beschrieben werden sollen.

Nach 5-9 Tagen (Zaccone et al. 2015) entstehen bei dieser Methode zentral runde und peripher spindelartige Zellen. Diese wurden später (s.u.) als CFU-ECs definiert und spiegeln die Anzahl der mutmaßlichen EPCs wider (Zaccone et al. 2015).

Nach 7 Tagen Kultivierung zeigen CFU-ECs folgende Oberflächenmarker: CD34, CD105, CD144, VEGFR2, D31, Tie-2 und E-selectin (Zaccone et al. 2015). Sie besitzen die Fähigkeit AcLDL aufzunehmen (Critser und Yoder 2010).

Eine zweite Methode der Kultivierung sieht vor, dass die mononukleären Zellen 4 Tage in einem Medium wachsen. Anschließend werden die dem Boden anhaftenden Zellen analysiert, der Rest verworfen. Die so gewonnenen Zellen sind die bereits beschriebenen CACs. Diese sind phänotypisch und funktionell den CFU-ECs sehr ähnlich (Critser und Yoder 2010).

Nach einer dritten Methode werden mononukleäre Zellen auf einem Substrat aus Kollagen Typ 1 (zur Unterstützung endothelialen Wachstums) für 10-21 Tage kultiviert. In dieser Zeit
werden nicht anhaftende Zellen wiederholt entfernt. Die Zellen, die nach dieser Zeit Kolonien bilden, entsprechen den ECFC (Critser und Yoder 2010).

Seit den ersten Publikationen von Asahara et al. (1997) sind CD34 und FLK1 als Marker für cEPCs gebräuchlich.

FLK1 (der Maus entstammend) oder KDR (menschlich, entspricht dem VEGFR-2 oder CD309) sind Rezeptoren für VEGF. Diese Oberflächenantigene sind weit verbreitet, etwa auch auf endothelialen und kardialen Zellen. So erklärt sich, dass FLK1 allein kein helfender Diskriminator, jedoch in Kombination geeignet ist, cEPCs zu identifizieren.

Peichev et al. (2000) diskutierten, dass endotheliale Zellen, die beide Moleküle (CD133 und KDR) exprimieren, unreifere Vorläuferzellpopulationen darstellen müssten, als Zellen, die nur eines der Antigene exprimieren. Da KDR auch auf embryonalen Angioblasten zu finden ist, gingen sie davon aus, dass dieses Antigen auch auf CD133-positiven Zellen mit angio-

In verschiedensten Studien konnten seitdem statistisch signifikante Zusammenhänge zwischen der Blutkonzentration der cEPCs und den Krankheitsstadien verschiedener Erkrankungen nachgewiesen werden. Mithilfe der FACS-Messung konnte gezeigt werden, dass fast alle (> 90%; Khakoo und Finkel 2005) CD133+FLK+CD34+-Zellen auch CD45 tragen, ein nicht auf Endothelzellen vorkommendes übliches Leukozyten-Antigen. Damit sind sie per definitionem hämatopoetischer Abstammung.

Zu den typischen Oberflächenmarkern, die auf hämatopoetischen Zellen exprimiert werden, gehören CD34, CD117, CD105, CD144, CD184, CD309 und azetyliertes LDL (Yoder 2013).

2.14 EPCs und verschiedene Zytokine

Im Bereich geschädigter Arteriolen, Kapillaren und Venolen wirken EPCs reparativ, indem sie sich zu Endothelzellen differenzieren und in die Gefäßwände einlagern (Ablin et al. 2009).

Diese Wachstumsfaktoren wiederum dienen der Proliferation, Migration und dem Überleben der reifen Endothelzellen (parakrine Effekte).

Die Mechanismen des Homings der EPCs und der Differenzierung bedürfen allerdings weiterer Forschung. Sie sind bisher nur schlecht verstanden (Urbich und Dimmeler 2004).

Vascular Endothelial Growth Factor

SDF-1

SDF-1 (*stromal-cell-derived factor-1a* oder CXCL12) ist ein weiterer chemotaktischer Faktor der hämatopoetischen Stammzelle. Auch für ihn wurde nachgewiesen, dass eine EPC-Zellbewegung ausgelöst wird. SDF-1a wird bei Tumorwachstum oder im Rahmen einer Hypoxie ausgeschüttet (Fang und Salven 2011; Foresta et al. 2011; Peichev et al. 2000; Schuh et al. 2008).

Angiopoetin-1 / Angiopoetin-2

PDGF (*platelet derived growth factor*)

PDGF umfasst eine Gruppe weiterer Wachstumsfaktoren, die äußerst wichtig für das Überleben und die Funktion verschiedenster Zellen zu sein scheinen. PDGF wird von EPCs sezerniert (Wyler von Ballmoos et al. 2010) und erhöht die Rekrutierung und Proliferation von perivaskulären Zellen in Gewebearealen, in denen Angiogenese stattfindet.

TGF-β (*transforming growth factor-β*)

2.15 Weitere Stimulanzien und inhibierende Faktoren auf die EPC-Anzahl

Stimulierende und inhibierende Faktoren modulieren die Anzahl der EPCs und beeinflussen die vaskuläre reparative Kapazität des Körpers.

Auch Östrogene bewirken eine Mobilisierung von EPCs aus dem Knochenmark in die Peripherie. Die Reendothelialisierung der Carotiden geht wesentlich schneller vonstatten bei Mäusen, die mit Östrogenen behandelt wurden, als bei jenen, die keine Östrogene erhielten (Iwakura et al. 2006).

Desweiteren wirken externe Faktoren auf das System der EPC. Dazu gehört etwa Rotwein. Der Genuss scheint die Anzahl der EPCs zu erhöhen und ihre Funktionalität zu verbessern (Huang et al. 2010). Nikotinkonsum, Risikofaktoren für die KHK oder Hypercholesterinämie auf der anderen Seite wirken inhibierend auf das System der EPC (Hill et al. 2003; Vasa et al. 2001).

Ferner haben verschiedene Medikamente Einfluss auf die Funktion und Anzahl der EPCs. So konnte in verschiedenen Studie gezeigt werden, dass bestimmte HMG-CoA-Reduktase-Inhibitoren (Statine) die Anzahl der zirkulierenden EPCs erhöhen (Walter et al. 2002; Lle vadot et al. 2001). Dieser positive Effekt scheint jedoch nur über einen Zeitraum von maximal einem Monat anzudauern, ehe die Anzahl der cEPCs unter Statin-Therapie (Atorvastatin und Simvastatin) sinkt (Hristov et al. 2007). Bei der RA wurden insgesamt erniedrigte EPC-Level gemessen. Wurden die Patienten jedoch mit Infliximab, einem TNF-α-Blocker, behandelt, schienen die Zahlen wieder zu steigen (Urbich und Dimmeler 2004). Die Wirkung weiterer Medikamente ist steter Bestandteil der Forschung.
2.16 EPCs im Rahmen pathologischer Zustände – Stand der Forschung

Im Tierversuch beobachteten Asahara et al. (1999) erstmals, dass EPCs sich in Bereichen der Neovaskularisation von ischämischem Gewebe ansiedeln und dort den Blutfluss sowie die Endorganfunktion verbessern (Urbich und Dimmeler 2004). Auch im Rahmen einer akuten renalen Ischämie, die im Mausmodell induziert wurde, konnte zumindest eine erhöhte Mobilisierung der EPCs zunächst in die Milz, später dann in die medullarpapilläre Region der Niere mit schützendem Effekt nachgewiesen werden (Patschan et al. 2006).

Klinische Untersuchungen bestätigten ähnliche Beobachtungen auch für den Menschen. So führen aus dem Knochenmark ausgeschwemmte EPCs beim akuten ischämischem Insult zu einem besseren funktionellen Outcome (Sobrino et al. 2007). Bei Patienten nach Myokardinfarkt konnten EPCs in den Gefäßen der Infarktzone nachgewiesen werden. Infundierte EPCs verbesserten hier signifikant den Blutfluss, die kardiale Funktion und verminderten die ventrikuläre Narbenbildung (Urbich und Dimmeler 2004). Die Forschungsergebnisse zu dem Vorliegen von EPCs in ischämischem Arealen haben die Hoffnung geweckt, dass diese Zellen auch für therapeutische Zwecke, im Sinne einer therapeutischen Vaskulogenese, genutzt werden können.

Die Zahl der cEPCs ist bei Patienten mit erhöhtem kardiovaskulären Risiko bzw. in Anwesenheit kardiovaskulärer Risikofaktoren signifikant vermindert (Rehman et al. 2003). Beispielsweise Diabetes, Hypercholesterinämie, Hypertension und Rauchen beeinträchtigen die Zahl und die funktionelle Aktivität der EPCs auch bei gesunden Freiwilligen (Urbich und Dimmeler 2004).

Da die entzündlichen rheumatischen Erkrankungen, wie auch die axSpA, meist mit einem erhöhten Atheroskleroserisiko einhergehen, interessierte die Funktionsweise der EPCs bei diesen Erkrankungen besonders:

3 Material und Methoden

In die vorliegende Arbeit wurde ein Patientenkollektiv von 50 Patienten einbezogen. Im Vorfeld wurde die Studie durch die Ethikkommission der Universitätsmedizin Göttingen genehmigt. Alle Patienten wurden mündlich und schriftlich aufgeklärt und haben die Einverständniserklärung vor Einschluss in die Studie unterschrieben.

3.1 Patientenkollektiv und Datengewinnung

3.2 Bestimmung der EPCs

Um das System der EPCs bei Patienten mit axSpA beurteilen zu können, wurden jeweils ein CFU-Hill-Assay und eine FACS-Messung durchgeführt. Anschließend folgte desweiteren ein ELISA.

Zellisolation aus heparinisertem Blut

Das Blut wurde in Lithium-Heparin-Röhrchen gewonnen. Ein Volumen von durchschnittlich etwa 20 ml, entsprechend zwei gefüllten großen Monovetten, war für die folgenden Versuche notwendig.

Anschließend wurden die Proben eine halbe Stunde bei 1400 Umdrehungen pro Minute zentrifugiert. Die Bremse war hierbei ausgeschaltet. So konnten die mononukleären Zellen in einer bestimmten Schicht gehalten werden, was die anschließende Gewinnung erleichterte.

Mit Hilfe der Trennlösung hatte sich im Greiner-Röhrchen nun eine Dreischichtung gebildet. Ficoll (Dichte: 1,077 g/ml) hatte einen Dichtegradienten erzeugt. Die Erythrozyten- und Granulozytenfraktion befand sich am Boden des Greiner-Röhrchens unterhalb der Trennlösung. Die gewünschte Lymphozyten- und Monozytenfraktion, inklusive der EPCs, bildete die Schicht darüber.

Zur Isolierung der EPCs wurde nun die Lymphozyten- und Monozytenfraktion abpipettiert, die sich an der Grenze zwischen Ficoll-Trennlösung und Plasma befand.
Mit etwa 50 ml PBS (phosphate-buffered saline) aufgefüllt, wurden die Zellen anschließend 10 Minuten bei 1400 Umdrehungen mit Bremse zentrifugiert. Es bildete sich ein Zell-Pellet am Boden des Greiner-Röhrenchens. Der Überstand wurde verworfen.

PBS ist eine isotonische Pufferlösung, die das Arbeiten bei konstantem pH-Wert ermöglicht. Dies ist für die empfindlichen menschlichen Zellen unbedingt erforderlich. Insbesondere um ein mögliches Zellwachstum bzw. eine Kolonienbildung zu überprüfen, ist die Gewährleistung eines stabilen pH-Werts unabdingbar.

Ermittlung der Zellzahl

Die Zell-Pellets wurden wiederum mit 50 ml PBS aufgefüllt und darin gelöst.

Ein Hämoyzometer (Neubauer-Zählkammer) wurde vorbereitet. Das Glas musste vor der Verwendung frei von Staub, Zellen oder anderen Rückständen sein. Das Deckglas wurde auf die einem Objektträger ähnliche Grundplatte gedrückt bis Newton’sche Interferenzfarben sichtbar wurden. Diese gewährleisten die gewünschte Höhe des Zwischenraums (0,1 mm) und somit die Vergleichbarkeit der verschiedenen Proben. 12 µl der Teilchensuspension wurden auf die Oberfläche gegeben und unter einem Mikroskop bei 125 facher Vergrößerung ausgezählt. Stets wurden mehrere Eckquadrate ausgezählt und der errechnete Mittelwert, um eventuelle Verteilungsfehler auszugleichen, weiter verwendet. Standardmäßig wird der Mittelwert pro Eckquadrat mit zehn multipliziert, um die Zellzahl pro µl (Mikroliter) zu erhalten. Hieraus ergibt sich die Gesamtzellzahl in 50 ml PBS.

Die gewonnenen Zellen wurden für die Anlage der Zellkultur und zur FACS-Analyse verwendet.

Für die FACS-Analyse wurden 1,5x10⁶ Zellen/100 µl verwendet. Der Rest diente der Anlage der Zellkultur und wurde im weiteren Verlauf auf die verschiedenen Wells aufgeteilt.

Die Röhrchen wurden nun ein weiteres Mal bei 1400 Umdrehungen mit Bremse zentrifugiert, die Überstände verworfen.
Aufbereitung der Zellen für die quantitative Messung am FACS-Gerät

Zur Bestimmung der Zellzahl am Durchflusszytometer wurde ein Zell-Pellet mit 1,5x10⁶ Zellen/100 µl in 666 µl PBS BSA (1 %) gelöst. Fünf Versuchsansätze wurden mit jeweils 100 µl dieser Lösung angesetzt (in 100 µl dieser Zellösung befanden sich etwa 0,5x10⁶ Zellen):

1. ungefärbte Vergleichsprobe
2. isotyp-Kontrollprobe
3. Kontrolle, gefärbt mit sekundärem Antikörper
4. Antikörper gegen CD133 und FLK
5. Antikörper gegen CD133 und cKit

In einem ersten Schritt wurde zu allen Ansätzen 1 µl FcR blocking reagent gegeben, um unspezifische Bindungen abzufangen. Nach 10 Minuten Inkubation bei 4 °C wurde mit 2 ml PBS-BSA gewaschen und 5 Minuten bei 1400 Umdrehungen pro Minute zentrifugiert. Die Überstände wurden verworfen.

In einem zweiten Schritt wurden Probe 4 und 5 mit den beiden Primärantikörpern versetzt (3 µl FLK bzw. 3 µl cKITT sowie jeweils zusätzlich 100 µl des CD 133 (verdünnt auf 1:400)) Probe 4 diente der Oberflächenmarkierung der EPCs. Beide Proben wurden 30 Minuten bei 4 °C inkubiert, anschließend mit PBS-BSA gewaschen und zentrifugiert. Der Überstand wurde verworfen.

In einem letzten Schritt wurde Probe 2 zur Kontrolle mit 1 µl eines unspezifischen Antikörpers (IgG-FITC/IgG2a-PE) versetzt, um diese auf unspezifische Bindungen zu testen. Die Proben 3, 4, 5 wurden mit 1 µl eines sekundären Antikörpers (PE goat anti rabbit FAB) versetzt. Es erfolgte die erneute Inkubation bei 4 °C für maximal 30 Minuten (bei längerem Zeitraum hätte es zu unspezifischen Bindungen kommen können). Anschließend wurden wiederum alle Proben mit PBS-BSA gewaschen und zentrifugiert.

Nun erfolgte jeweils die Lösung in 500 µl PBS-BSA und die Messung am Durchflusszytometer.
Durchflusszytometrie zur quantitativen Beurteilung der EPCs

Dazu besteht das FACS-Gerät

1. aus einem Flüssigkeitssystem, das die einzelnen Partikel in einem Strom zwecks Analyse zum Laserstrahl transportiert,
2. aus einem optischen System, bestehend aus Lasern und optischen Filtern zur Beleuchtung der einzelnen Partikel in dem Flüssigkeitsstrom,
3. aus einem elektronischen System, das dafür sorgt, dass die Lichtsignale in elektrische Signale umgewandelt werden, diese Ergebnisse entsprechend speichert und zur Auswertung bereitstellt.

Am FACS-Calibur wurden jeweils alle 5 Röhrchen gemessen. Die ungefärbten Proben dienten dem sogenannten gating (Abbildung 6). Bei dieser ersten Messung wird der Bereich bestimmt, in dem die Zellen basierend auf ihrer Zellgröße und Granularität gezählt werden sollen.

Abbildung 6: Festlegen des gewünschten Messbereiches am FACS-Calibur („gating“)
SSC=side scatter (Seitwärtsstreulicht),
FSC=forward scatter (Vorwärtsstreulicht)
Vor der Auswertung wurden falsch positive Zellen in der Sekundärantikörper-Kontrolle abgezogen, um unspezifische Bindungssignale auszuschließen.

CFU-Hill-Assay

Die Durchführung des etablierten 5-day-CFU-Hill-Colony-Assay erfolgte nach Hill et al. (2003).

Die 6er Wellplatten wurden zum Ausplattieren vorbereitet. Dazu wurden die einzelnen Wells mit 2 ml Fibronektin (0,1 prozentig) benetzt und eine Stunde bei Raumtemperatur inkubiert. Anschließend wurde das Fibronektin abpipettiert und die Wellplatten eine weitere Stunde steril getrocknet. Sie waren nun zur Beschichtung bereit.

Auf die gleiche Art und Weise wurde mit den ersten sechs Wells der 24er Wellplatten verfahren, die erst am dritten Tag benötigt wurden. Well 4-6 wurden vor der Fibronektin-Benetzung mit sterilen Glasplättchen bestückt.

Das Pellet mit den isolierten Zellen wurde in einem Nährmedium, dessen Komponenten (EndoCult® Basal Medium und EndoCult® Supplements) vorher entsprechend zusammengefügt worden waren, gelöst. 2 ml der Nährmedium-Zellsuspension enthielten 5x10⁶ Zellen. Jedes Well wurde mit 2 ml der Zellsuspension bestückt.

Das 6er Well wurde 2 Tage bei 37 °C, über 95 % Luftfeuchtigkeit und 5 % CO₂ im Wärmeschrank inkubiert. Dieser Schritt diente der Entfernung von reifen Endothelzellen und Monozyten. Sie hatten sich nach dieser Zeit auf dem Plattenboden abgesetzt.

Nach zwei Tagen wurden die sich noch in Lösung befindlichen EPCs auf das vorbereitete 24er Well übertragen und mit frischem Nährmedium aufgefüllt. Der Inhalt von Well 1 wurde exakt in Well 1 des 24er Wells übertragen, der Rest auf die nächsten 5 Wells verteilt. Nochmals wurden die Proben über drei Tage unter gleichen Bedingungen inkubiert.

Bestimmung von VEGF, PDGF, TGF-β, Angiopoetin-1 und -2

Die Serumkonzentration der folgenden vasomodulatorischen Mediatoren wurde mittels Sandwich-ELISA bestimmt: VEGF, PDGF, TGF-β, Angiopoetin-1 und -2.

Materialien zur einmaligen Nutzung

<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller</th>
<th>Katalognummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Cup, 1,5 ml</td>
<td>Eppendorf AG, Hamburg</td>
<td>0030 125.150</td>
</tr>
<tr>
<td>Pipettenspitzen, diverse</td>
<td>Eppendorf AG, Hamburg</td>
<td></td>
</tr>
<tr>
<td>Röhrchen, 50ml</td>
<td>Sarstedt AG& Co, Nümbrecht</td>
<td>62.547.254</td>
</tr>
<tr>
<td>Röhrchen, 5ml, für FACS-Analyse</td>
<td>Sarstedt AG& Co, Nümbrecht</td>
<td>55.1579</td>
</tr>
<tr>
<td>24-Well cell Culture Plate</td>
<td>CELLSTAR</td>
<td>662160</td>
</tr>
<tr>
<td>MULTIWELL™ 6 Well</td>
<td>FALCON</td>
<td>353046</td>
</tr>
</tbody>
</table>

Tabelle 1: Liste der verwendeten Verbrauchsmaterialien
Materialien

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 INCUBATOR (Wärmeschrank)</td>
<td>Sanyo</td>
</tr>
<tr>
<td>Eppendorf-Pipetten</td>
<td>Eppendorf AG, Hamburg</td>
</tr>
<tr>
<td>FACS-Calibur</td>
<td>Becton Dickinson</td>
</tr>
<tr>
<td>Gefrierschrank</td>
<td>Sanyo</td>
</tr>
<tr>
<td>Kühlschrank</td>
<td>Liebherr</td>
</tr>
<tr>
<td>Mikroskop: Diavert Inverses Zellkulturmikroskop Olympus IX-81</td>
<td>Leica Microsystems</td>
</tr>
<tr>
<td>Sterilbank Clean Air Typ CA/R</td>
<td>Biohazard</td>
</tr>
<tr>
<td>Vortex Genie 2</td>
<td>Bodo Schmidt GmbH</td>
</tr>
<tr>
<td>Zentrifuge: Megafuge 1.0R</td>
<td>Heraeus instruments GmbH</td>
</tr>
<tr>
<td>Zentrifuge: Rotixa/A</td>
<td>Hettich</td>
</tr>
</tbody>
</table>

Tabelle 2: Zusammenfassung der verwendeten Instrumente / Geräte

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Herstellerfirma</th>
<th>Katalognummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biocoll 1,0777 g/ml</td>
<td>Biochrom AG, Belin</td>
<td>L6115</td>
</tr>
<tr>
<td>BSA pH 7.0</td>
<td>LabClinics SA</td>
<td>K41-001</td>
</tr>
<tr>
<td>Dil AcLDL</td>
<td>Molecular Probes</td>
<td>L3484</td>
</tr>
<tr>
<td>Endocult Basal Medium</td>
<td>StemCell Technologies Inc</td>
<td>05901</td>
</tr>
<tr>
<td>Endocult Supplement</td>
<td>StemCell Technologies Inc</td>
<td>05902</td>
</tr>
<tr>
<td>FcR Blocking Reagent</td>
<td>Millenyi Biotec</td>
<td>120-000-442</td>
</tr>
<tr>
<td>Fibronektin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLK = mouse-anti-human VEGFR2</td>
<td>R&D Systems, Minneapolis</td>
<td>FAB 357F</td>
</tr>
<tr>
<td>Formalin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrochlorid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lectin from Ulex europaeus</td>
<td>SIGMA-ALDRICH</td>
<td>L9006-1MG</td>
</tr>
<tr>
<td>PBS pH7.4</td>
<td>GIBCO</td>
<td>10010-015</td>
</tr>
<tr>
<td>sekundärer PE-Antikörper</td>
<td>Jackson Immunoresearch, Baltimore, USA</td>
<td>111-116-144</td>
</tr>
</tbody>
</table>

Tabelle 3: Liste der verwendeten Reagenzien
3.3 Scores und klinische Untersuchungsmethoden

Im Rahmen der klinischen Untersuchung wurden verschiedene Untersuchungsmethoden zur Beurteilung der Beweglichkeit angewandt, die im Folgenden kurz erläutert werden. Aus einem Teil der klinischen Messwerte ergab sich der BASMI. Weiterhin wurden von allen Probanden mehrere Fragebögen zur Krankheitsaktivität und dem allgemeinen Gesundheitszustand bearbeitet (s.u.).

Ott-Maß (oberes Schober-Zeichen)

Modifiziertes Schober-Maß nach Macrae und Wright

Finger-Boden-Abstand (FBA)

Wirbelsäulen-Seitneigung

Am aufrecht stehenden Patienten wird der Abstand zwischen Fußboden und der am Körper geführten ausgestreckten Mittelfingerspitze gemessen. Eine erneute Messung erfolgt in maximaler Seitneigung, bei weiterhin durchgestreckten Beinen (keine Drehung!). Aus der Differenz zwischen erstem und zweitem Wert, für beide Seiten gemessen, wird der Mittelwert gebildet (Norm > 10 cm) und dient der Berechnung des BASMI (van der Heijde et al. 2008).

Fußknöchel-Abstand

Dieses Maß dient der Beurteilung der Hüftgelenksbeweglichkeit. Beim liegenden Patienten wird der Abstand zwischen den Innenknöcheln bei maximal gespreizten Beinen (gestreckte Knie, Fußspitzen nach oben) gemessen (Norm > 100 cm). Dieser Wert geht in den BASMI mit ein (Feldtkeller und van der Heijde 2005).
Tragus-Wand-Abstand

Diese Messung dient der Beurteilung der Kyphose. Der Abstand zwischen Tragus und Wand wird beim aufrecht mit dem Rücken und den Fersen an der Wand stehenden Patienten gemessen und ist ebenfalls Bestandteil des BASMI (Feldtkeller und van der Heijde 2005).

Halswirbelsäulen-Rotation

Bei aufrecht sitzendem Patienten, mit geradeaus gerichtetem Blick wird der Kopf, so weit es geht, nach rechts und links rotiert (Norm > 70°). Der Winkel zwischen maximaler Drehung und der Null-Stellung dient der Berechnung des BASMI. Die Schultern dürfen nicht mitgedreht werden (Feldtkeller und van der Heijde 2005).

BASMI

Der Bath Ankylosing Spondylitis Metrology Index wird aus verschiedenen klinischen Messwerten zur Beurteilung der Wirbelsäulenbeweglichkeit und eventueller Einschränkungen gebildet. Dazu gehören das modifizierte Schober-Maß, die Lendenwirbelsäulen-Seitneigung, maximaler Fußknöchelabstand, Tragus-Wand-Abstand, Halswirbelsäulen-Rotation (Berechnung s. Anhang). Dieser Index wurde 1994 in der englischen Stadt Bath eingeführt. In
der Klinik werden die einzelnen Messwerte häufiger verwendet als dieses Summenmaß (van der Heijde et al. 2008).

BASDAI/ASDAS

Der wichtigste und zurzeit am häufigsten in der Klinik eingesetzte Score ist der BASDAI-Index (Bath Ankylosing Spondylitis Disease Index). Dies ist ein Fragebogen (s. Abbildungsverzeichnis) mit 10 zu beantwortenden Fragen über den Alltag des Patienten und dient der Beurteilung der Krankheitsaktivität. Ein BASDAI ≥ 4 spricht für eine hohe Krankheitsaktivität (Garrett et al. 1994).

BASFI

Seit 1997 dient der BASFI (Bath Ankylosing Spondylitis Functional Index) der Erhebung von körperlichen Beeinträchtigungen der Patienten im alltäglichen Leben. Auch dazu wird ein Fragebogen beantwortet (s. Anhang) und anschließend ein Score zwischen 0 (keine Einschränkungen) und 10 (maximale Einschränkungen) errechnet (Calin et al. 1994).

BAS-G

Der BAS-G (Bath Ankylosing Spondylitis Global Score) soll auf einer Skala zwischen 0 und 10 den allgemeinen Gesundheitszustand der Patienten beurteilen (s. Anhang). Dieser Score korreliert mit BASDAI und BASFI (Jones et al. 1996).
3.4 Statistische Auswertung

Die Auswertung der Ergebnisse erfolgte mit dem Programm STATISTICA von statsoft.

Zur Veranschaulichung der Ergebnisse wurden Box-Plots und Scatterplots erstellt.
4 Ergebnisse

4.1 Patientenkollektiv

In die vorliegende Studie wurden 50 Patienten eingeschlossen, davon 42 % Frauen und 58 % Männer. Die Patienten hatten zum Zeitpunkt der Untersuchung ein mittleres Alter von 45 (+15) Jahren.

74 % der Patienten waren HLA-B27-positiv. Über eine für die Spondylitis ankylosans positive Familienanamnese (eingeteilt nach Rudwaleit et al. 2009b: AS, reaktive Arthritis, Psoriasis, CED, Uveitis) berichteten 38 % der Patienten.

Bei 33 Patienten (66 %) war eine manifeste Spondylitis ankylosans diagnostiziert. Bei 17 Patienten (34 %) lag eine nicht radiogene axiale Spondylarthropathie vor.

Zum Zeitpunkt der Untersuchung betrug das mittlere CRP 8,1 mg/l (+18,7) und die mittlere BSG 11/21 mm (+18/23 mm). Damit hatten 42 % der Patienten ein erhöhtes CRP.

Krankengymnastik führten 30 von 50 Patienten (60 %) regelmäßig durch. Eine von den Probanden beschriebene Morgensteifigkeit hielt im Schnitt 32,6 (+35,4) Minuten an.

Begleiterkrankungen waren in der Patientenkohorte sehr häufig. So fand sich mindestens eine definierte (AS, reaktive Arthritis, Psoriasis, CED, Uveitis) Erkrankung bei insgesamt 25 Patienten (50 %).

32 % der Patienten litten an einer arteriellen Hypertonie. Die für die axSpA typische Uveitis war bei 20 % der Patienten schon einmal aufgetreten. Eine chronisch entzündliche Darmerkrankung fand sich bei 10 %. Ein Diabetes mellitus (Typ2) wurde nur bei 2 Patienten behandelt (4 %).

82 % der Patienten nahmen NSAR ein, davon 71 % regelmäßig als festen Bestandteil der medikamentösen Therapie und der Rest der Patienten (29 %) nur bei Bedarf. Protonen-pumpen-Inhibitoren gehörten bei 54 % der Patienten zur medikamentösen Therapie. 8 % wurden mit Statinen behandelt. Bei 32 Patienten (64 %) erfolgte eine Therapie mit selektiven Immunsuppressiva (Adalimumab, Etanercept, Infliximab) zum Zeitpunkt der Untersuchung. Sulfasalazin nahmen 30 % der Patienten ein.

Es wurden verschiedene klinische Messwerte zur Beurteilung der Wirbelsäulenbeweglichkeit und des Krankheitsverlaufs erhoben (siehe Tabelle 5). Hieraus wurde außerdem

<table>
<thead>
<tr>
<th>Variablen</th>
<th>n</th>
<th>Min</th>
<th>Median</th>
<th>Mittelwert</th>
<th>Max</th>
<th>SD</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (Jahre)</td>
<td>50</td>
<td>21</td>
<td>46</td>
<td>45</td>
<td>80</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Erkrankungsdauer (Min)</td>
<td>38</td>
<td>0</td>
<td>7</td>
<td>9</td>
<td>33</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Morgensteifigkeit (Min)</td>
<td>49</td>
<td>0</td>
<td>30</td>
<td>33</td>
<td>150</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>CRP (mg/l)</td>
<td>45</td>
<td>0,1</td>
<td>2,4</td>
<td>8,1</td>
<td>119,1</td>
<td>18,6</td>
<td>5</td>
</tr>
<tr>
<td>BASDAI</td>
<td>48</td>
<td>0</td>
<td>3,1</td>
<td>3,4</td>
<td>8,9</td>
<td>2,2</td>
<td>2</td>
</tr>
<tr>
<td>Schober (cm)</td>
<td>47</td>
<td>0,5</td>
<td>3,5</td>
<td>3,6</td>
<td>7</td>
<td>1,4</td>
<td>3</td>
</tr>
<tr>
<td>Ott (cm)</td>
<td>46</td>
<td>0</td>
<td>2</td>
<td>2,4</td>
<td>8</td>
<td>1,6</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabelle 4: Deskriptive Statistik der grundlegenden Charakteristika des Patientenkollektivs
Alter auf volle Jahre gerundet, SD=Standardabweichung, NA=ohne Angabe

<table>
<thead>
<tr>
<th>Variablen</th>
<th>n</th>
<th>Min</th>
<th>Median</th>
<th>Mittelwert</th>
<th>Max</th>
<th>SD</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBA (cm)</td>
<td>38</td>
<td>0</td>
<td>12</td>
<td>17</td>
<td>60</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>Ott (cm)</td>
<td>46</td>
<td>0</td>
<td>2</td>
<td>2,4</td>
<td>8</td>
<td>1,6</td>
<td>4</td>
</tr>
<tr>
<td>Schober (cm)</td>
<td>47</td>
<td>0,5</td>
<td>3,5</td>
<td>3,6</td>
<td>7</td>
<td>1,4</td>
<td>3</td>
</tr>
<tr>
<td>WS-SN re (cm)</td>
<td>44</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>26</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>WS-SN li (cm)</td>
<td>44</td>
<td>1</td>
<td>12</td>
<td>13</td>
<td>29</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>TWA re (cm)</td>
<td>44</td>
<td>9</td>
<td>16</td>
<td>17</td>
<td>38</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>TWA li (cm)</td>
<td>44</td>
<td>10</td>
<td>15</td>
<td>17</td>
<td>36</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>HWS-Rot. re (cm)</td>
<td>38</td>
<td>20</td>
<td>45</td>
<td>49</td>
<td>90</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>HWS-Rot. li (cm)</td>
<td>38</td>
<td>20</td>
<td>45</td>
<td>50</td>
<td>90</td>
<td>18</td>
<td>12</td>
</tr>
</tbody>
</table>

Tabelle 5: Klinische Messwerte zur Beurteilung der Wirbelsäulenbeweglichkeit/des Krankheitsverlaufs
WS-SN=Wirbelsäulen-Seitneigung, FBA=Finger-Boden-Abstand,
TWA=Tragus-Wand-Abstand, HWS-Rot.=Halswirbelsäulenrotation, re=rechts, li=links
der BASMI berechnet. Dieser betrug im Mittel 4,3 (± 1,83). Die Patienten beantworteten weiterhin Fragebögen zum BASDAI (3,4 ± 2,2), BASFI (3,2 ± 3,0) und BASG (4,4 ± 2,7).

Bei 17 Patienten erfolgte nach mindestens einem halben Jahr eine Kontrolle im Verlauf inklusive Anamnese und Untersuchung (siehe Kapitel 4.5).

4.2 Ergebnisse des CFU-Hill-Assay

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Min</th>
<th>Median</th>
<th>Mittelwert</th>
<th>Max</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kolonien P</td>
<td>50</td>
<td>0</td>
<td>20</td>
<td>25</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Kolonien K</td>
<td>42</td>
<td>0</td>
<td>31,5</td>
<td>37</td>
<td>100</td>
<td>25,6</td>
</tr>
</tbody>
</table>

Tabelle 6: Deskriptive Statistik für die Anzahl der CFU-ECs in der Patientengruppe (P) und Kontrollgruppe (K)

Abbildung 12: Signifikanter Unterschied der Anzahl der CFU-ECs zwischen Patienten- und Kontrollgruppe

\[p = 0,02 \text{ (signifikant ab } p < 0,05) \]

Der Zusammenhang zwischen CFU-ECs der Kontrollgruppe und des Patientenkollektivs wurde mittels Mann-Whitney-U-Test auf Signifikanz getestet. Der Unterschied der CFU-EC zwischen Patienten- und Kontrollgruppe ist mit einem \textbf{p-Wert von 0,02} deutlich statistisch signifikant. Die Anzahl der CFU-ECs bei den Patienten ist um fast ein Viertel (23\%) niedriger als die CFU-EC der Kontrollgruppe.

Im Folgenden finden sich die Ergebnisse der Gegenüberstellung der CFU-EC-Anzahl verschiedener Untergruppen. Einen signifikanten Unterschied zeigte lediglich die Anzahl der CFU-ECs, eingeteilt nach dem Geschlecht. Alle anderen Untergruppen wiesen keine Signifikanzen auf.

<table>
<thead>
<tr>
<th>Variable</th>
<th>p-Wert</th>
<th>Variable</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschlecht (männl./weibl.)</td>
<td>0,03 *</td>
<td>NSAR (Einnahme ja /nein)</td>
<td>0,69</td>
</tr>
<tr>
<td>Alter bei Probenentnahme</td>
<td>0,23</td>
<td>Biologika (Einnahme ja /nein)</td>
<td>0,23</td>
</tr>
<tr>
<td>Alter bei Erstdiagnose</td>
<td>0,095</td>
<td>Statine (Einnahme ja /nein)</td>
<td>0,9</td>
</tr>
<tr>
<td>HLA-B27 (neg./pos.)</td>
<td>0,9</td>
<td>PPI (Einnahme ja /nein)</td>
<td>0,36</td>
</tr>
<tr>
<td>BMI</td>
<td>0,7</td>
<td>BASMI</td>
<td>0,37</td>
</tr>
<tr>
<td>Morgensteifigkeit</td>
<td>0,2</td>
<td>BASFI</td>
<td>0,86</td>
</tr>
<tr>
<td>HTN (vorh./nicht vorh.)</td>
<td>0,13</td>
<td>BASG</td>
<td>0,87</td>
</tr>
<tr>
<td>Nikotin (ja/nein)</td>
<td>0,3</td>
<td>BASDAI < 4 / ≥ 4</td>
<td>0,08</td>
</tr>
<tr>
<td>CRP (< 5 mg/dl / > 5 mg/dl)</td>
<td>0,78</td>
<td>Schober</td>
<td>0,68</td>
</tr>
<tr>
<td>Krankengymnastik (ja/nein)</td>
<td>0,8</td>
<td>Ott</td>
<td>0,15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FBA</td>
<td>0,89</td>
</tr>
</tbody>
</table>

Tabelle 7: Auflistung der p-Werte für die Anzahl der CFU-ECs, eingeteilt nach verschiedenen Variablen / Merkmalen; signifikant ab p<0,05
CFU-ECs und Geschlecht

Der Mann-Whitney-U-Test ergab für die CFU-ECs der weiblichen und männlichen Patienten einen signifikanten Unterschied mit einem \textbf{p-Wert von 0,03}. Die Anzahl der CFU-ECs bei Männern ist in unserer Studie um mehr als ein Drittel vermindert gegenüber den CFU-ECs der Frauen.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline
\textbf{Variablen} & \textbf{n} & \textbf{Min} & \textbf{Median} & \textbf{Mittelwert} & \textbf{Max} & \textbf{SD} \\
\hline
männlich & 29 & 0 & 16 & 20 & 54 & 14 \\
weiblich & 21 & 0 & 33 & 32 & 100 & 25 \\
\hline
\end{tabular}
\caption{Tabelle 8: Deskriptive Statistik für die Anzahl der CFU-ECs, eingeteilt nach dem Geschlecht}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{boxplot.png}
\caption{Abbildung 13: Signifikanter Unterschied, Anzahl der CFU-ECs der Männer versus Anzahl der CFU-ECs der Frauen, p=0,03 (signifikan ab p<0,05)}
\end{figure}
CFU-ECs und Alter zum Zeitpunkt der Untersuchung

Werden die Patienten nach ihrem Alter zum Zeitpunkt der Untersuchung eingeteilt, zeigt sich eine gewisse Tendenz zur geringeren CFU-Anzahl mit zunehmendem Patientenalter, wie im nachfolgenden Scatterblot zu erahnen. Diese Beobachtung ist jedoch statistisch nicht signifikant (p = 0,23).

Abbildung 14: Scatterplot zu dem Zusammenhang zwischen Anzahl der CFU-ECs und dem Patientenalter am Untersuchungstag

CFU-ECs und BMI

Patienten mit einem niedrigen BMI scheinen tendentiell eine höhere Anzahl an CFU-ECs aufzuweisen. Diese Beobachtung ist jedoch nicht signifikant (p = 0,7, signifikant ab p < 0,05, N = 41).

CFU-ECs und HLA-B27

Die Patienten wurden in zwei Gruppen nach dem Vorliegen des HLA-B27 Merkmals eingeteilt. Auch hier zeigte sich kein signifikanter Unterschied in der Bildung der CFU-EC (p = 0,9, signifikant ab p < 0,05; HLA-B27 pos.: N = 39 (78 %), CFU-EC -x: 25; HLA-B27 neg: N = 11 (22 %), CFU-EC -x: 26).
CFU-ECs und Erkrankungsdauer

Mit zunehmender Erkrankungsdauer (gemessen am Jahr der Erstdiagnose) zeigt sich eine Tendenz zu vermindelter Bildung der CFU-ECs (p = 0,095, signifikant ab p < 0,05). Diese Beobachtung ist nicht signifikant und könnte auch mit dem steigenden Alter der Patienten zusammenhängen (s. Diskussion).

Abbildung 15: Scatterplot zu dem Zusammenhang zwischen Anzahl der CFU-ECs und der Erkrankungsdauer

CFU-ECs und Krankheitsaktivität

Mittels des ASDAS wurden einmal vier Gruppen und einmal zwei Gruppen gebildet.

Die Berechnung des ASDAS erfolgte mittels des ASDAS-Rechners der ASAS.

Es zeigte sich die Tendenz zu einer höheren Anzahl an CFU-EC bei hoher Krankheitsaktivität, sowohl entsprechend dem BASDAI, als auch dem ASDAS. Die Anzahl der CFU-EC ist bei einem BASDAI < 4 signifikant vermindert gegenüber der Kontrollgruppe (p = 0,001).
Die Tendenz zu einer geringeren Anzahl an CFU-ECs bei geringerer Krankheitsaktivität zeigt auch die Einteilung nach dem ASDAS. Patienten aus Gruppe 1 nach dem ASDAS (entsprechend inaktiv) haben signifikant niedrigere CFU-ECs verglichen mit der Kontrollgruppe (Mittelwert Gruppe 1: 16, Kontrollgruppe: 37, p = 0,02 (signifikant ab < 0,05).

Nach dem ASDAS erfolgte aufgrund der geringen Größe der Untergruppen eine weitere Einteilung in eine Gruppe mit hoher (N = 24; \(\bar{x} = 21 \)) und eine mit niedriger Krankheitsaktivität (N = 20; \(\bar{x} = 22 \)). Hier fand sich kein statistisch signifikanter Unterschied (p = 0,4).

CFU-ECs und Begleiterkrankungen

Viele Patienten wiesen typische Begleiterkrankungen auf (s.o.). Bei Patienten mit Begleiterkrankungen zeigte sich im Vergleich zur Kontrollgruppe eine signifikant geringere Anzahl von Kolonien (p = 0,01).

Bei Patienten mit einer arteriellen Hypertonie lagen die niedrigsten CFU-EC Zahlen vor (19 vs. 22 bei Patienten mit verschiedenen Begleiterkrankungen). Auch dieser Unterschied ist im Vergleich zur Kontrollgruppe signifikant.

![Box-Plot](image-url)

Abbildung 17: Anzahl der CFU-ECs, eingeteilt nach Begleiterkrankungen Signifikante Unterschiede zwischen Patienten mit Begleiterkrankungen (p=0,01) und Kontrollgruppe, sowie Patienten mit arterieller Hypertonie (HTN) und Kontrollgruppe (p=signifikant ab <0,05)
CFU-ECs und Morgensteifigkeit

Die Morgensteifigkeit wirkt sich unserer Studie nicht signifikant auf die Bildung der Kolonien aus. Es zeigt sich eine Tendenz zu einer höheren Anzahl an CFU-ECs bei länger andauernder Morgensteifigkeit (p = 0,2).

CFU-ECs und Medikamente

Das Patientenkollektiv wurde mit unterschiedlichsten Medikamenten behandelt. Die Einnahme von NSAR wirkte sich nicht auf die Bildung der Kolonien aus (p = 0,9). Die Behandlung mit Biologika (Adalimumab, Etanercept, Infliximab; N = 32; CFU-ECs: $\bar{x} = 28$) zeigt lediglich eine Tendenz zu vermehrten CFU-EC im Vergleich zu Patienten ohne Biologika-Therapie (N = 18; CFU-ECs: $\bar{x} = 20$; p = 0,23).

Auch die Einnahme von Statinen oder PPIs scheint sich nicht auf die Bildung der CFU-EC auszuwirken (p = 0,9 und p = 0,36).

CFU-ECs und Beweglichkeit/allgemeiner Gesundheitszustand

Im Rahmen der klinischen Untersuchung wurden verschiedene klinische Messwerte zur Beschreibung der Beweglichkeit der Patienten und des Krankheitsverlaufs erhoben (siehe Tabelle 8). Hieraus wurde außerdem der BASMI (4,3 \pm 1,83) berechnet. Es ergaben sich keine Signifikanzen für den Zusammenhang zwischen CFU-ECs und BASMI (p = 0,37), BASFI (p = 0,03), BAS-G (p = 0,87), Schober (p = 0,68), Ott (p = 0,15) oder FBA (p = 0,89).

CFU-ECs und Krankengymnastik

Der grundlegende Therapieansatz der axSpA ist eine regelmäßige Krankengymnastik. Auf die Bildung der CFU-EC wirkt sich die Durchführung der Krankengymnastik in dieser Studie jedoch nicht aus (p = 0,8).

CFU-ECs und CRP

Als empfindlicher Laborwert wird das CRP bei der axSpA stets mitbestimmt. Das Patientenkollektiv wurde nach dem CRP in zwei Gruppen eingeteilt.

Gruppe1: $< 0,5$ mg/dl (normal) - 5 mg/dl (mäßig erhöht) - N = 26; CFU-EC $\bar{x} = 21$
Gruppe2: 5 mg/dl (deutlich erhöht) - > 10 mg/dl (hoch) - N = 19; CFU-EC $\bar{x} = 24$

Ein Unterschied in der CFU-Bildung je nach CRP-Wert zeigte sich nicht (p = 0,58).
CFU-ECs und Rauchen

Es zeigt sich eine Tendenz zu einer geringeren Anzahl an CFU-ECs bei Rauchern. Der Unterschied zu Nichtrauchern ist statistisch jedoch nicht signifikant (p = 0,37).

Abbildung 18: Anzahl der CFU-ECs, eingeteilt nach dem Nikotinkonsum
4.3 FACS-Analyse

Auch konnte keine statistisch signifikante Korrelation zwischen den gemessenen CFU-EPCs und den durch das FACS gemessenen CD133+/FLK+-Zellen aufgezeigt werden.

Abbildung 19: cEPCs (in %) bei Patienten und Kontrollgruppe
FACS und Krankheitsaktivität

Eine Aufteilung der cEPCs nach der Krankheitsaktivität, gemessen am BASDAI, zeigte eine statistisch nicht signifikante Tendenz zu einer höheren Anzahl an cEPCs bei hoher Krankheitsaktivität (entsprechend BASDAI > 4; p = 0,1).

FACS und Geschlecht

Eine Einteilung der per FACS gemessenen cEPCs nach dem Geschlecht zeigte keinen signifikanten Unterschied (p = 0,08). Es findet sich eine Tendenz zu einer geringeren Anzahl an cEPCs bei männlichen Patienten.

4.4 Vasomodulatorische Mediatoren

Unterschiede zwischen den Konzentrationen der verschiedenen vasomodulatorischen Mediatoren (VEGF, PDGF, TGF-β, Angiopoetin -1 und -2) bei Kontrollgruppe und Patienten waren statistisch nicht signifikant.
4.5 Verläufe

Es erfolgte eine Verlaufsuntersuchung nach einem mittleren Zeitraum von 33,2 ± 1,9 Monaten. Diese konnte bei 34 von 50 Patienten durchgeführt werden (68 %).

Abbildung 21: Verlaufskontrolle nach einem mittleren Zeitraum von 33,2±1,9 Monaten (durchgeführt bei 34 von 50 Patienten). Die Parameter Geschlecht, mittlere Anzahl der EPC Kolonien, periphere zirkulierende EPCs, mittlere VEGF-Level, Angiopoetin-1 und-2, PDGF und TGF-β wurden verwendet, um Differenzen des BASDAI, Ott-Zeichens und Finger-Boden-Abstand (beides in cm) zu vergleichen. Hierbei zeigten sich keine Signifikanzen.
5 Diskussion

Die axiale Spondylarthropathie gehört zu den entzündlich-rheumatischen Erkrankungen. Immer wieder wurde in Zusammenhang mit der Erkrankung ein erhöhtes Atheroskleroserisiko beobachtet. Von Han et al. wurde es als um das 1,5-fache erhöht im Vergleich zu gesunden Individuen angegeben.

Ziel dieser Arbeit war es der Frage nachzugehen, ob endotheliale Progenitorzellen in ihrer Funktion oder Anzahl bei der axialen Spondylarthropathie verändert sind und ob sie für die genannte Problematik einen Erklärungsansatz bieten.

Analyse der EPC-Proliferation (Colony-Forming-Unit-Assay)

Unsere Daten zeigten eine verminderte Anzahl an CFU-ECs seitens der Patientengruppe (25 Kolonien) im Vergleich zur Kontrollgruppe (37 Kolonien). Dieser Unterschied ist mit einem p-Wert von 0,02 statistisch signifikant.

Dementsprechend ist die axiale Spondylarthropathie mit einer verminderten Kolonienbildung der EPCs assoziiert, was für eine beeinträchtigte EPC-Proliferation und eine beeinträchtigte vaskuläre Gesundheit im Rahmen der Erkrankung spricht.

Verschiedene weitere rheumatische Erkrankungen waren bereits intensiver Bestandteil der EPC-Forschung:

Die in unserer Studie nachgewiesene herabgesetzte EPC-Regenerationsfähigkeit könnte einen Erklärungsansatz für das erhöhte kardiovaskuläre Risiko im Rahmen der axSpA bieten. Optimalerweise wären mittels neuer Erkenntnisse hierzu sogar neue therapeutische oder diagnostiche Optionen im weiteren Verlauf denkbar. In einer entsprechenden Follow-up-Studie wäre es ggf. interessant, nicht nur die EPCs zu untersuchen, sondern gleichzeitig auch das kardiovaskuläre Risiko zu bestimmen, beispielsweise mittels des Framingham Scores.

CFU-ECs und Geschlecht

CFU-ECs und Alter

Weiterhin zeigte sich ein Trend zu vermindelter Bildung der CFUs mit steigendem Alter. Ein weiterer Trend, der bereits mehrfach in der Literatur beschrieben ist und somit die Wertigkeit unserer Studie unterstützt.

CFU-ECs und Krankheitsaktivität

Wir bestimmten die Krankheitsaktivität der Patienten mittels zweier verschiedener Scores, dem BASDAI-Index und dem ASDAS-Score. Stets konnten wir beobachten, dass eine niedrige Krankheitsaktivität mit einem Trend zu niedrigen Kolonienzahlen einherging (und umgekehrt). Diese Beobachtung steht der bisherigen Studienlage entgegen und ist daher schwierig zu interpretieren.

In der Literatur findet man bei verschiedenen Erkrankungen, etwa der RA, dem Diabetes mellitus oder der COPD stets eine inverse Korrelation zwischen Krankheitaktivität und Zahl der zirkulierenden EPCs (Grisar et al. 2005). Auch Verma et al. beschrieben einen inversen Zusammenhang zwischen EPCs und Krankheitsaktivität (gemessen am BASDAI und an der Anzahl der EPCs gemessen durch die FACS-Analyse).

Einen geringen Ausschlag könnte hier gegeben haben, dass in unserer Studie deutlich mehr Männer einen niedrigen BASDAI aufwiesen. 72 % der Männer, aber nur 28 % der Frauen gaben einen BASDAI kleiner als vier an. Gleiches galt für den ASDAS, dessen Werte bei
Männern tendenziell niedriger lagen als bei Frauen (ASDAS < 2,1 68 % männlich; ASDAS > 2,1 52 % männlich). Fraglich ist, ob dieser Erklärungsansatz unsere Beobachtung zum Zusammenhang zwischen Krankheitsaktivität und EPCs hinreichend erklären kann.

In weiteren Studien sollte der Zusammenhang zwischen Krankheitsaktivität und EPCs bei der axSpA noch genauer untersucht werden, möglichst unter Ausschluss eventueller Störfaktoren (wie etwa der Einnahme von Immunsuppressiva).

CFU-ECs und Rauchen

CFU-ECs und Medikamente

Quantitative Beurteilung der zirkulierenden EPCs mittels FACS-Analyse

Auch für den systemischen Lupus erythematodes und die Sklerodermie ist ein beeinträchtigtes System der EPCs (defizitäre Regeneration wie Mobilisierung) beschrieben (Patschan et al. 2013; Brunasso und Massone 2016).

Im Gegensatz zu unseren Ergebnissen konnten Verma et al. (2015) in ihrer Studie zur axSpA in Verbindung mit EPCs signifikant niedrigere Konzentrationen von EPCs im peripheren Blut bei den Patienten im Vergleich zu der Kontrollgruppe nachweisen. Auch in unserer Studie wurde bei Patienten mit axialer Spondylarthropathie die Zahl der EPCs mittels FACS-Analyse untersucht. Allerdings wurden andere Oberflächenmarker zugrunde gelegt (CD34+/CD133+), was eine Vergleichsmöglichkeit erschwert.

Insgesamt machen die verschiedenen Identifikationstechniken der EPCs die Forschung in diesem Gebiet weiterhin schwierig und erschweren die Vergleichbarkeit der verschiedenen Studien untereinander.
Zu berücksichtigen ist auch, dass die FACS-Analyse ein recht aufwendiges methodisches Verfahren ist und somit hoch anfällig für Fehler sein kann (Notwendigkeit verschiedener Geräte, mehrere Färbeverfahren, wesentlich größere Anzahl an Färbestoffen notwendig).

Eine entsprechende Follow-up-Studie sollte im Sinne der Validität eine wesentlich größere Patientenkohorte einschließen.

EPCs und Knochen

Eine 2014 veröffentlichte Studie von Park et al. zu verschiedenen, die zirkulierenden EPCs beeinflussenden Faktoren bei der rheumatoiden Arthritis offenbarte neue Aspekte der cEPCs. Höheres Alter, erniedrigte Spiegel des HDL und vor allem höhere Werte verschiedener Knochenerosions-Scores waren hier unabhängige negative Einflussfaktoren auf die EPC-Zahl.

Verlaufsbeobachtung

Fehlerdiskussion

Bei der Betrachtung unserer Ergebnisse sind einige bislang nicht genannte Punkte zu bedenken:

Abbildung 22: Schema zu den Ergebnissen dieser Arbeit

- Beeinträchtigte vaskuläre Gesundheit mit erhöhtem kardiovaskulären Risiko
- Anzahl der CFU-ECs vermindert
 - Männliches Geschlecht / art. Hypertension / Begleiterkrankungen / Nikotinabusus als zusätzliche Risikofaktoren
 - Aktuell eingeschränkte Verwendbarkeit des EPC-Systems zur Verlaufsbeurteilung der axSPA per se bzw. als Parameter zur Beurteilung der vaskulären Gesundheit
6 Zusammenfassung

Ziel dieser Arbeit war es, einen möglichen Zusammenhang zwischen der axialen Spondylarthropathie und endothelialen Progenitorzellen zu untersuchen. Es sollte insbesondere geklärt werden, inwiefern es bei der Erkrankung mit ihrem erhöhten kardiovaskulären Risiko zu einer Beeinträchtigung der Mobilisation oder funktionellen Potenz der EPCs kommt.

Name: ____________________________
Datum: __________________________

BASDAI
Maß für die Krankheitsaktivität
bei Spondylitis ankylosans (Morbus Bechterew)

Bitte Kreuz an die betreffende Stelle setzen:

<table>
<thead>
<tr>
<th>Fragestellung</th>
<th>Skala 0-10</th>
<th>Auswahl durch den Arzt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wie ausgeprägt war Ihre Müdigkeit und Erschöpfung in den vergangenen 7 Tagen insgesamt?</td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>Wie ausgeprägt waren Ihre durch den Morbus Bechterew bedingten Nacken-, Rücken- oder Hüftschmerzen in den vergangenen 7 Tagen insgesamt?</td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>Wie ausgeprägt waren Ihre Schmerzen/Schwellungen in anderen Gelenken in den vergangenen 7 Tagen insgesamt?</td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>Wie ausgeprägt waren Ihre Beschwerden in den Bereichen, die bei Berührung oder Druck empfindlich reagiert haben, in den vergangenen 7 Tagen insgesamt?</td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>Wie ausgeprägt war die Morgensteifigkeit nach dem Aufwachen in den vergangenen 7 Tagen insgesamt?</td>
<td>0-10</td>
<td></td>
</tr>
<tr>
<td>Wie viele Stunden dauerte die Morgensteifigkeit nach dem Aufwachen in den vergangenen 7 Tagen im Durchschnitt an?</td>
<td>0-10</td>
<td></td>
</tr>
</tbody>
</table>

BASDAI = (Summe aus Fragen 1 bis 4 plus Mittelwert aus Fragen 5 und 6) dividiert durch 6

Deutsche Vereinigung Morbus Bechterew e.V.
Ernennungsfähige Selbsthilfeeinrichtung
Metzgergasse 18, 67421 Schweinitz, Tel. 09721 22033, Fax 09721 22055
Homepage: www.bechterew.de – eMail: DVMB@bechterew.de
Können Sie
1. ohne Hilfe und Hilfsmittel (z.B. Strumpfanzieher) Socken oder Strümpfe anziehen?
 - einfach
 - unmöglich
2. ohne Hilfe von der Hüfte aus nach vorn beugen, um einen Kugelschreiber vom Boden aufzuheben?
 - einfach
 - unmöglich
3. ohne Hilfsmittel (z.B. Greifzange) etwas von einem hohen Regal herunternehmen?
 - einfach
 - unmöglich
4. von einem Stuhl ohne Armlehne aufstehen, ohne dabei die Hände oder eine andere Hilfe zu benutzen?
 - einfach
 - unmöglich
5. ohne Hilfe vom Boden aufstehen, wenn Sie auf dem Rücken liegen?
 - einfach
 - unmöglich
6. ohne Schmerzen 10 Minuten stehen, ohne sich anzulehnen?
 - einfach
 - unmöglich
7. ohne Beutzung eines Geländers oder von Gehhilfen 12–15 Treppenstufen steigen, 1 Schritt pro Stufe?
 - einfach
 - unmöglich
8. über die Schulter schauen, ohne den Körper zu drehen?
 - einfach
 - unmöglich
9. körperlich anstrengende Tätigkeiten verrichten (z.B. krankengymnastische Übungen, Gartenarbeit oder Sport)?
 - einfach
 - unmöglich
10. zuhause oder bei der Arbeit den ganzen Tag aktiv sein?
 - einfach
 - unmöglich
BAS-G
Maß für den allgemeinen Gesundheitszustand bei Spondylitis ankylosans (Morbus Bechterew)

Name: __________________________
Datum: _______________________

Bitte Kreuz an die betroffene Stelle setzen:

1. Welche Auswirkung hatte die Krankheit auf Ihr Wohlbefinden während der vergangenen 7 Tage?
 - keine
 - 1 2 3 4 5 6 7 8 9 10 - extrem starke

2. Welche Auswirkung hatte die Krankheit auf Ihr Wohlbefinden während der vergangenen 6 Monate?
 - keine
 - 1 2 3 4 5 6 7 8 9 10 - extrem starke

BAS-G = []
(Mittelwert aus Frage 1 und 2)

Deutsche Vereinigung Morbus Bechterew e.V.
Ehrenamtlich geführte Selbsthilfeorganisation
Metzgergasse 16, 97421 Schweinfurt, Tel. 09721 22033, Fax 09721 22955
Homepage: www.bechterew.de – eMail: DVMB@bechterew.de
Name: ____________________________
Datum: __________________________

1. **Lendenwirbelsäule-Beugung (modifiziertes Schobermaß):** In aufrechter Stellung des Patienten ausgehend vom Dornfortsatz des 5. Lendenwirbels (zwischen dem rechten und linken beidseitigen Lumbalgruben) eine Markierung 10 cm weiter oben und eine weitere 5 cm weiter unten anbringen; 1. Verlängerung des Abstands dieser beiden Marken bei maximaler Beugung mit gestreckten Knien messen (in cm). Zugehörige Bewertung in der Tabelle ablesen und im Kasten rechts außen eintragen.

 Unter den veröffentlichten modifizierten Schobermaßen wird die von Nacrae und Wright empfohlene Version verwendet.

<table>
<thead>
<tr>
<th>cm</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. **Wirbelsäule-Seitneigung:** Abstand zwischen der entlang des Oberschenkels so weit wie möglich nach unten gestreckten Mittelfingerspitze und dem Fußboden messen, einmal in gerader Haltung und einmal in maximaler Seitneigung (siehe DVMB-Schriftenreihe Heft 13 Seite 9), ohne Rotation und ohne veränderte Schulterhaltung (z.B. Fersen, Gesäß und Schultern an der Wand). Differenz links und Differenz rechts auf der roten Skala markieren. *Mittelwert* auf der blauen Skala ablesen (mindestens 0, höchstens 10) und in den Kasten rechts übertragen.

<table>
<thead>
<tr>
<th>cm</th>
<th>20</th>
<th>18</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cm</th>
<th>12</th>
<th>10</th>
<th>8</th>
<th>6</th>
<th>4</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. **Maximaler Internalleistabstand:** Den Patienten in Rückenlage auf flacher Unterlage auffordern, die Beine mit gestreckten Knien und seitwärts nach oben gerichtet Fußspitzen entlang der Unterlage so weit wie möglich zu spreizen. Abstand zwischen den inneren Fußknöcheln rasch messen (siehe DVMB-Schriftenreihe Heft 13 Seite 10) und auf der roten Skala markieren. Wert auf der blauen Skala ablesen (mindestens 0, höchstens 10) und in den Kasten rechts übertragen.

<table>
<thead>
<tr>
<th>cm</th>
<th>120</th>
<th>110</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>110</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>109</td>
<td>99</td>
<td>89</td>
<td>79</td>
<td>69</td>
<td>59</td>
<td>49</td>
<td>39</td>
<td>29</td>
<td>19</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>108</td>
<td>98</td>
<td>88</td>
<td>78</td>
<td>68</td>
<td>58</td>
<td>48</td>
<td>38</td>
<td>28</td>
<td>18</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>107</td>
<td>97</td>
<td>87</td>
<td>77</td>
<td>67</td>
<td>57</td>
<td>47</td>
<td>37</td>
<td>27</td>
<td>17</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>106</td>
<td>96</td>
<td>86</td>
<td>76</td>
<td>66</td>
<td>56</td>
<td>46</td>
<td>36</td>
<td>26</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>105</td>
<td>95</td>
<td>85</td>
<td>75</td>
<td>65</td>
<td>55</td>
<td>45</td>
<td>35</td>
<td>25</td>
<td>15</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>104</td>
<td>94</td>
<td>84</td>
<td>74</td>
<td>64</td>
<td>54</td>
<td>44</td>
<td>34</td>
<td>24</td>
<td>14</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>103</td>
<td>93</td>
<td>83</td>
<td>73</td>
<td>63</td>
<td>53</td>
<td>43</td>
<td>33</td>
<td>23</td>
<td>13</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>102</td>
<td>92</td>
<td>82</td>
<td>72</td>
<td>62</td>
<td>52</td>
<td>42</td>
<td>32</td>
<td>22</td>
<td>12</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>101</td>
<td>91</td>
<td>81</td>
<td>71</td>
<td>61</td>
<td>51</td>
<td>41</td>
<td>31</td>
<td>21</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>100</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>°</th>
<th>80</th>
<th>70</th>
<th>60</th>
<th>50</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>69</td>
<td>59</td>
<td>49</td>
<td>39</td>
<td>29</td>
<td>19</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>68</td>
<td>58</td>
<td>48</td>
<td>38</td>
<td>28</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>67</td>
<td>57</td>
<td>47</td>
<td>37</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>66</td>
<td>56</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anmerkung:

Azevedo VF, Pecoits-Filho R (2010): Atherosclerosis and endothelial dysfunction in patients with ankylosing spondylitis. Rheumatol Int 30, 1411–1416

Feldtkeller E, van der Heijde D: DVMB: Morbus Bechterew - Messwerte für den Krankheitsverlauf Klassifikations- und Diagnosekriterien. (Schriftenreihe der Deutschen Vereinigung Morbus Bechterew (DVMB) Heft 13); Schweinfurt 2005

Feldtkeller E, Khan MA, van der Heijde D, van der Linden S, Braun J (2003): Age at disease onset and diagnosis delay in HLA-B27 negative vs. positive patients with ankylosing spondylitis. Rheumatol Int 23, 61–66

Manger B, Schulze-Koops H: Checkliste Rheumatologie. 4. Auflage; Thieme, Stuttgart 2012

Mehta NN, Azfar RS, Shin DB, Neumann AL, Troxel AB, Gelfand JM (2010): Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the General Practice Research Database. Eur Heart J 31, 1000–1006

Poddubnyi DA, Gaïdukova IZ, Rebrov AP (2009): [Heart rate variability in patients with ankylosing spondilitis (Bekhterev’s disease)]. Ter Arkhiv 81, 56–62

Rehman J, Li J, Orschell CM, March KL (2003): Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169

Rudwaleit M, Sieper J (2005): [Early diagnosis of spondyloarthritis with special attention to the axial forms]. Z Für Rheumatol 64, 524–530

Internetquellen:

http://www.asas-group.org/clinical-instruments/asdas_calculator/asdas.html; Zugriff am 04.10.2017
Lebenslauf