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Abstract

This thesis describes the implementation of a high precision laser system which, as a first

demonstration of its capabilities, has been used to measure electronic transitions from

the X2Π3/2, v′′ = 0, J ′′ = 3/2 rovibronic ground state to the 12 lowest levels of the A2Σ+,

v′ = 0 vibronic state in the hydroxyl radical (OH) and the 16 lowest levels of the same

vibronic state in the deuterated hydroxyl radical (OD). The relative uncertainty of the

absolute frequency measurements is within a few parts in 1011. These electronic transition

frequencies are determined by comparing the spectroscopy laser with reference frequency

standards using an optical frequency comb (OFC). The OFC transfers the high short

term stability of a narrow-linewidth I2 stabilized referenced laser onto the spectroscopy

laser around 308 nm. The second reference used with the OFC is an atomic clock, which

provides an absolute accuracy of the measured transitions frequencies. The OH and the

OD molecules are inside a highly collimated molecular beam, with the ultraviolet (UV)

laser beam propagating perpendicular to it. This setup reduces possible pressure shifts

and Doppler-broadening. Additionally, the laser beam is retroreflected to reduce Doppler-

shifts. Shifts due to Zeeman-, AC-Stark- and saturation-effects are also considered in the

analysis, in an effort to determine the zero-field transition frequencies.

Previous studies determined the absolute A← X transition frequencies with an accu-

racy of approximately 100 MHz, based on rich Fourier-transform spectra. In contrast, this

thesis supplies absolute electronic transition frequencies with an uncertainty of less than

100 kHz. These new measurements of the optical transition frequencies were combined

with existing data for fine and hyperfine splittings in the A state and used to fit the pa-

rameters of an effective Hamiltonian model of the A2Σ+, v′ = 0 state of each isotopologue.

Some of these newly-determined spectroscopic constants, are orders of magnitude more

precise than the previous values.

Future experiments will benefit from the improved accuracy of the electronic excitation

frequencies determined in this experiment. As a next step, a new mid infrared laser will

be used to probe the vibrational excitation frequencies of OH. This OFC-stabilized mid-

infrared optical parametric oscillator (OPO), which provides a narrow linewidth and wide

tuning range, is also described in this thesis.
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Chapter 1

Introduction

The standard model (SM) of particle physics is the essential pillar of modern physics.

It has proven reliable in describing various physical phenomena related to three of the

fundamental forces of the universe: the electromagnetic, the weak and the strong interac-

tion. By now, all particles predicted by the SM have been found. However, the effort to

incorporate gravity into the SM has, thus far, been unsuccessful. This blind spot of the

SM is especially inconvenient, considering confirmed astronomical observations of ‘dark

matter’ [1]. The dark matter interacts only by gravitational interaction, and most of it

consists not by particles in the SM [2]. Furthermore, the Nobel prize awarded discovery of

the acceleration of the universe [3–5] demands ‘dark energy’, which interacts as repulsive

gravity. Considering the composition of the universe of 69 % dark energy, 26 % dark mat-

ter and only 5 % matter described in the SM [6], curiosity drives modern physics to get a

glimpse beyond the SM. The large hadron collider (LHC) at CERN provides a direct way

of measuring new particles based on collision experiments at the TeV energy scale, but

there is a second way of observing new physics, with compact setups and at low energies,

namely high-precision spectroscopy on atoms and molecules.

One example for the application of high-precision spectroscopy is the search for electric

dipole moments (EDMs) of fundamental particles. The matter anti-matter asymmetry

in the universe requires a violation of time-reversal symmetry [7], which would also be

observable in an EDM. Theories that include physics beyond the SM predict EDM sizes

that would be within the measurable reach of precision spectroscopy experiments [8]. A

current frontier of measuring the electron EDM is using laser cooling of molecules to further

improve the measurement precision [9]. In addition to the violation of the time-reversal

symmetry, modern theories also predict a violation of the Lorentz symmetry, parity and

charge conjunction [10], as well a variation of the fundamental constants [2,11]. The potential

variation of the fundamental constants is a test of the equivalence principle, which is the

pillar of the general relativity [12]. Since it’s fairly likely that at least some of these symmetry

violations will never be found, the capabilities for finding these small effects grows with the

improvement of atomic clocks. Modern clocks reach a total uncertainty of 2× 10−18 [13].

1



1.1. The Hydroxyl Radical

The core of this thesis is an atomic clock referenced laser system. It is designed to

stabilize both a mid-infrared and an ultraviolet continuous wave (CW) laser, making it a

general purpose system of measuring physics beyond the SM.

1.1 The Hydroxyl Radical

The investigation in this thesis is focused on the hydroxyl radical (OH), although the

application of the laser system is not limited to this particular molecule. OH has a long

history in various scientific fields, since it is a prototypical open-shell diatomic molecule.

For instance, it was the first free radical in microwave spectroscopy [14] and interstellar

radio frequency spectroscopy [15]. Furthermore, it is essential in the fields of atmospheric

and climate science [16] and combustion [17]. Since the first deceleration of the OH [18], it has

been used for low-energy collision studies [19,20], deceleration [21], electrostatic trapping [22]

and evaporative cooling [23]. In laboratory studies, the detection of the OH is commonly

carried out by laser induced fluorescence (LIF) of the A2Σ+-X2Π transitions. However, a

more recent approach is based on the 1 + 1′ multiphoton ionization (MPI), using A← X

excitation as the first step [24]. The best previous measurements of the A-X transition

frequencies resulted in an absolute frequency uncertainty of approximately 0.005 cm−1

(150 MHz) [25–27]. Depending on the application, this accuracy is sufficient for measurements

with a frequency-doubled pulsed dye laser with a typical bandwidth of 0.1 cm−1. For high-

resolution spectroscopy using a narrow linewidth (< 1 MHz) CW laser however, these

uncertainties become inconvenient. Thus, our first step in characterizing OH has been to

make precise measurements of the A2Σ+, v′ = 0→ X2Π3/2, v′′ = 0, J ′′ = 3/2 transitions.

Only with these measurements, it is possible to investigate the vibrational transitions or

even proceed to experimentally more challenging systems.

1.2 Variation of Fundamental Constants

There are a variety of unitless fundamental constants that can only be determined by

precise measurements since their value is not predicted by any theory. In 1937 Dirac

built a hypothesis, which connected the expansion of the universe with the change of the

fundamental constants [28]. The drift rate estimated by Dirac has since been ruled out,

but the general idea of the variation of constants lives on in modern theories beyond the

SM [29].

Historically, Thompson first suggested in 1975 using precise measurements of molecular

absorption lines as a test of the potential variation of the electron to proton mass ratio

µ [30]. Since then, multiple astronomical measurements followed to estimate an upper limit

of the variation ∆µ/µ [11]. The vibrational transition frequency ν is proportional to the

square root of µ (Table 1.1). Therefore, an variation of µ is associated with a change of ν

2



Chapter 1. Introduction

Table 1.1: Scaling factors for different systems in the non-relativistic approximation, with the electron to
proton mass ratio µ, the fine structure constant α ≈ 1/137 and the Rydberg constant Ry = α2mec

2/2 (adapted
from [29,31]).

Sample Transition Scaling
133Cs hyperfine structure µα2Ry

16OH or 16OD electronic Ry
vibrational µ1/2Ry

with

∂ν

∂µ
∝ 1

2
µ−1/2 → ∆ν

ν
≈ 1

2

∆µ

µ
. (1.1)

If there is a potential change of the vibrational frequency ∆ν, we can deduce a change

of the proton to electron mass ratio ∆µ. A variation of ν is more likely to be observed if

the temporal spacing between two measurements is significant. Astronomical observations

make it possible to gaze into the past on time scales beyond comparison on earth. For

example, Levshakov et al. evaluated the spectra of a quasar, which led to a constraint of

|∆µ/µ| < 5.7 × 10−5 between when the light was absorbed by a distant gas cloud and

today [32]. Considering the time of ∆t ≈ 11 Gyr between these observations, one obtains

an upper limit of |∆µ/µ| < 5× 10−15 1
yr

. However, the universe itself is an uncontrolled

environment, and the analysis of the data relies on various cosmological constraints [29].

In contrast to the uncontrolled environment of space, the controlled environment of the

laboratory can permit measurements with much higher precision. However, the time

scales between two measurements in a laboratory is significantly shorter. Still, the labo-

ratory measurements of ∆µ/µ started to compete with astronomical observations after

the progress in laser stabilization techniques [33], optical frequency measurements [34] and

cooling of atomic samples [35]. The cooling of multiple cold-atom samples has provided

fractional frequency instabilities of 6× 10−17 on the one second time scale [36]. Comparing

different transitions types of high precision atomic clocks results in an upper limit of

|∆µ/µ| < 1.6× 10−16 1
yr

[37]. For our future measurements on the vibrational transition

frequencies in OH, the implicit reference would be the SI second as determined by a

collective of the best frequency standards on earth. This frequency is delivered to us with

high precision through the global navigation satellite system (GNSS) and can be decoded

with a high-end GNSS receiver. Since the second is defined based on hyperfine transitions

in 133Cs, a potential variation of the fundamental constants affects both systems simulta-

neously, but with a different rate (Table 1.1). Only the Rydberg constant cancels out in

the 133Cs system and the vibrational transition of OH. The final interpretation of varying

constants depends on which terms are considered constant [38]. Therefore, the investigation

of a potential variation of µ correlates frequently with the fine structure constant α, which

also potentially varies [39]. The fundamental constant α ≈ 1/137 contains information

3



1.3. Outline

about the forces between charged objects, which determine the structure of atoms and

molecules. The quest behind the investigation of these constants is the search for the

mechanism that defines them. Every precision measurement on fundamental constants

constrains theory beyond the SM, by setting a new upper limit for a potential variation.

The pioneer work in this field brings us one step closer to understanding the universe.

1.3 Outline

This thesis describes the design of a precision laser system, that will ultimately be used

in measurements to test physics beyond the SM. The first benchmark system for testing

this apparatus are the A2Σ+, v′ = 0 ← X2Π3/2, v′′ = 0, J ′′ = 3/2 electronic transitions

in OH and its deuterated isotopologue, OD.

Chapter 2 introduces the theory needed to describe the rich electronic structure of

these molecules. Afterwards, Chapter 3 describes the complex laser system used in the

measurement of these electronic transitions, with emphasis on the optical frequency comb

(OFC). The OFC is required to phase stabilize the ultraviolet spectroscopy laser to an

infrared reference laser, which has higher stability. Both of these lasers, as well as the

OFC, rely on nonlinear optical conversion, which is explained in Chapter 4. Furthermore,

this chapter introduces the optical parametric oscillator (OPO), which will be the core of

future vibrational transition measurement in OH. Although no vibrational transitions are

measured in this thesis, they are the long term goal of building the described laser system

in this thesis. Chapter 5 completes the discussion of the involved lasers, by highlighting

the various frequency standards used to stabilize the lasers. In particular, Doppler-free sat-

uration spectroscopy is used to stabilize the laser system on a short time scale, introduced

in Chapter 6. Although the laser system is stable, frequency shifts can still occur when

measuring the molecules in a molecular beam. Thus, Chapter 7 gives a brief overview of

molecular beams, potential frequency shifts of the measured transitions that can occur

due to the Doppler-effect, and discusses ways to correct for these shifts.

Frequency shifts can also occur due to interactions with the electric field of the laser.

Chapter 8 covers these shifts and introduces the theoretical model to fit the measured

electronic transitions described in Chapter 9. A detailed analysis of the measured spectra

and comparison to previous measurements is provided in Chapter 10. Although we suc-

ceeded in precisely measuring electronic transitions in OH, Chapter 11 emphasizes certain

improvements to the measurement setup to make future measurements even more precise.

4



Chapter 2

The Hydroxyl Radical

This chapter introduces the rich electronic structure of the hydroxyl radical (OH). After

explaining the term symbols of diatomic molecules, the Hund’s case (a) basis is discussed,

which is the most suitable for describing the OH electronic ground state. the ground state

of OH is emphasized which is preferably described in Hund’s case (a) basis. The later

introduced Hund’s case (b) basis simplifies the qualitative description of the first electronic

excited state. The quantum numbers of the ground and the excited state provide selection

rules for the electronic transitions between both states. Since this thesis also involves

measurements on the deuterated hydroxyl radical (OD), it is convenient to clarify the

differences between OH and OD.

2.1 Term Schema of Diatomic Molecules

The molecular structure of the OH depends on the motion of both nuclei and the nine elec-

trons. In the Born-Oppenheimer approximation, the motion of the electrons is independent

of the slow motion of the heavy nuclei [40]. This allows separating the wavefunction into an

electronic and nuclear part. The description of the electronic states of a diatomic molecule

is analogous to atomic energy states [41]. In an atom, the individual electronic angular

momenta li of all electrons inside the atom couple to a total electronic angular momentum∑
i li = L, with the associated good quantum number L. A diatomic molecule also has a

total angular momentum L, but L is no longer a good quantum number. In contrast to the

spherical symmetry of an atom, the internuclear axis defines the symmetry of a diatomic

molecule. Thus, the projection of L along the internuclear axis is a good quantum number.

This projection is denoted with the quantum number Λ = 0, 1, 2, ·· and the corresponding

molecular states are Σ,Π,∆, ··, in analogy to the atomic states S, P,D, ··. An important

second degree of freedom is the total electron spin angular momentum S =
∑

i si, with the

corresponding quantum numbers S (total electron spin angular momentum) and Σ (pro-

jection of S along the internuclear axis). Since Σ can range from −Σ to Σ, the multiplicity

2S + 1 describes the number of possible values for Σ. The term symbol 2S+1Λ provides a

5



2.1. Term Schema of Diatomic Molecules

compact way of summarizing the values of S and Λ that define an electronic state. For

example, the state X2Π means S = 1/2 and Λ = 1 (Section 2.2.1). The label ‘X’ in front

of the symbol marks the state as the electronic ground state. The only different letter

from ‘X’ appearing in this thesis is ‘A’, generally denoting the first electronic excited

state with the same S as the ground state. A basis of the quantum mechanical state is

chosen such that the resulting eigenvectors are as diagonal as possible. Consider at the

moment only Hund’s case (a) basis (Section 2.2). In this case, the projection of the total

electron angular momentum along the internuclear axis Ω = Λ + Σ is a good quantum

number and Ω can be added to the term symbol as a subscript, for instance, 2Σ+1Λ|Ω|.

However, not all states will have nearly diagonal eigenvectors in Hund’s case (a), and for

these Ω will not be a good quantum number. In many cases, these states can be better

described by a Hund’s case (b) basis (Section 2.3). In such cases, Ω is left out in the term

symbol. An example is the A2Σ+ state (Section 2.2.1), with the symmetry label ’+’ in

the superscript. This symbol describes the potential sign change of the wave function

after a reflection through a plane, containing the internuclear axis. If the sign of the wave

function stays the same, then the label is ‘+’, otherwise it is ‘−’.

2.1.1 Parity

The discussion of parity is often a source of confusion since more than one kind of sym-

metry operation is possible. For diatomic heteronuclear molecules, the plane through the

internuclear axis is used to consider the effect of reflection on the sign of the wavefunc-

tion. However, reflection across planes is not the only possible symmetry operation. The

inversion operation E∗ is defined as a change of the sign of the space-fixed coordinates

X, Y, Z and is equivalent to a combination of the previous reflection and an additional

rotation of the molecular frame by 180° [42]. If the purely electromagnetic Hamiltonian H

commutes with E∗ such that [H,E] = 0, then simultaneous eigenstates of H and E∗ exist.

Consider the inversion operator acting on the wavefunction ones [42]

E∗φ(X, Y, Z) = φ(−X,−Y,−Z) and twice E∗E∗φ(X, Y, Z) = φ(X, Y, Z). (2.1)

Applying E∗ twice on the wavefunction sets the system back into its original state, meaning

the square of the eigenvalue is 1. Therefore the eigenvalue of E∗ must be ±1. The sign of

the wavefunction after transformation with E∗ defines the parity of the state. The doubly

degenerate states of

|Λ,±〉 =
1√
2

(|Λ〉 ± (−1)p |−Λ〉) for |Λ| > 0 (2.2)

have different parities. While there are interactions that mix different electronic states

and lift this degeneracy, the parity remains a good quantum number. The value of p in
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Chapter 2. The Hydroxyl Radical

Equation (2.2) is given by J − S + s in Hund’s case (a) basis (Section 2.2) and in Hund’s

case (b) (Section 2.3) by N + s. The parameter s is zero for Λ > 0 or Σ+ states and

one for Σ− states. In order to more easily determine the energetic order of the levels in a

nearly-degenerate doublet, it is convenient to define an alternative version formulation of

parity, namely the e and f labeling scheme [43]. These labels depend solely on the parity

and the total angular momentum J . For half-integral J , if (−1)J−1/2 is the sign of the

parity, then the state is labeled e, otherwise it is a f level. For integral J , if the sign of

the parity is (−1)J , then it is an e level, otherwise it is a f level. The lower level in each

parity doublet will always have the same e/f label in a given electronic state.

2.2 Hund’s Case (a)

Hund’s coupling cases supply a basic understanding of the involvement of different angular

momentum couplings in the final energy level distribution [44]. Each case presents an

idealized view of the molecule, that closely approximates a certain set of electronic states.

In Hund’s case (a) the orbital angular momentum L is coupled to an electrostatic field,

caused by the two nuclei of the diatomic molecule. Thus, the precession frequency of L

about the nuclear axis reaches high values and the magnitude of L is unknown. In this

case, the quantum number L is not good [45], but the projection of L along the internuclear

axis, labeled with the quantum number Λ, is well defined and conserved in time. This

makes Λ a good quantum number. Furthermore, a strong spin-orbit coupling exists, that

couples the electron spin angular moment to the internuclear axis, making Σ a good

quantum number. Thus, the projection of the total electron angular momentum along

the internuclear axis Ω = Λ + Σ is also a good quantum number. The entire set of good

quantum numbers of Hund’s case (a) contains: n, v, Λ, S, Σ, J , Ω. The wavefunction

is described by a linear combination of states with positive and negative Λ to form a

definite-parity state [42]

|n2S+1Λ|Ω|; v; JMJ ;±〉 =

1√
2

(
|n,Λ〉 |S,Σ〉 |J,Ω,MJ〉 ± (−1)J−S+s |n,−Λ〉 |S,−Σ〉 |J,−Ω,MJ〉

)
|v〉 .

(2.3)

The separated basis wave functions contains the electronic orbital part |nΛ〉, the electronic

spin part |SΣ〉, the vibrational part |v〉 and the rotational part |JΩMJ〉. MJ defines the

projection of J along a space-fixed axis, with allowed values in the range −J,−J + 1, ··, J .

The MJ quantum number becomes important when considering the Hamiltonian of a

molecule inside an external electric or magnetic field. Without an external field, each

energy level is degenerate in MJ . In a perfect Hund’s case (a) L and S are coupled along the

internuclear axis. The projection of both onto the axis sums up to Ω (Figure 2.1). The total

electron angular momentum couples with the angular momentum of the rotating nuclei R

to produce the total angular momentum J = R+L+S. The general requirement for Hund’s
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2.2. Hund’s Case (a)

Figure 2.1: In a diatomic molecule, R is perpendicular to the internuclear, while characteristic for Hund’s case (a)
L and S are coupled to the internuclear axis. The resulting total angular momentum J is the sum of L, S and R
(adapted from [42]).

case (a) to be a good approximation of the true eigenstates is that AΛ� BJ , where A

is the spin-orbit coupling constant and B the rotational constant [42]. The Hamiltonian

involving these two constants is

H = Hrot +HSO = BR2 + A(L · S), (2.4)

with the rotational part Hrot and the spin-orbit part HSO.

2.2.1 Ground State of OH

The Hund’s case (a) basis is generally well suited to describe a 2-Pi state, which also

happens to be the electronic ground state of OH. In a 2-Pi state, Λ = ±1 and S = 1
2
,

yielding Σ = ±1
2
. Thus, four values are allowed for Ω = Λ + Σ, namely Ω = −3

2
,−1

2
, 1

2
, 3

2
.

The two resulting definite-parity wave functions for |Ω| = 1
2

and |Ω| = 3
2

in Hunds’s

case (a) basis are

|a〉 = |n2Π 1
2
; v; JMJ ;±〉 =

1√
2
(|n, 1〉 |1

2
,−1

2
〉 |J, 1

2
,MJ〉 ± (−1)J−

1
2 |n,−1〉 |1

2
, 1

2
〉 |J,−1

2
,MJ〉) |v〉 ,

(2.5)

|b〉 = |n2Π 3
2
; v; JMJ ;±〉 =

1√
2
(|n, 1〉 |1

2
, 1

2
〉 |J, 3

2
,MJ〉 ± (−1)J−

1
2 |n,−1〉 |1

2
,−1

2
〉 |J,−3

2
,MJ〉) |v〉 .

(2.6)

The quantum numbers are identified with Equation (2.3). The additional parameter ±
denotes the parity of the doubly degenerate states of |Λ| = 1. The rotational and spin-orbit

Hamiltonian of Equation (2.4) can be rewritten as [46]

H =BR2 + A(L · S) = B((J− S)− L)2 + A(L · S)

≈B(J2 − 2JzSz + S2 − 2(Jz − Sz)Lz + L2
z)−B(J+S− + J−S+) + ALzSz.

(2.7)

All term containing the angular lowering and raising operators L+ and L− are neglected,

since they are not well defined. In particular, these terms couple to other electronic states,
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Chapter 2. The Hydroxyl Radical

which is discussed later (Section 2.2.2). The secular determinant is

∣∣∣∣∣
〈b|H |b〉 − E 〈b|H |a〉
〈a|H |b〉 〈a|H |a〉 − E

∣∣∣∣∣ = 0 with

〈b|H |b〉 = Bv(J(J + 1)− 7
4
) + 1

2
Av,

〈a|H |a〉 = Bv(J(J + 1) + 1
4
)− 1

2
Av,

〈a|H |b〉 = 〈b|H |a〉 = −Bv(J(J + 1)− 3
4
)
1
2 .

.

(2.8)

Only the first and the last term in Equation (2.7) contribute to the diagonal elements.

The eigenvalues of the angular momenta are

J2 |JΩMJ〉 = J(J + 1) |JΩMJ〉 , S2 |SΣ〉 = S(S + 1) |SΣ〉 , (2.9)

Jz |JΩMJ〉 = Ω |JΩMJ〉 , Sz |SΣ〉 = Σ |SΣ〉 , Lz |nΛ〉 = Λ |nΛ〉 . (2.10)

The off diagonal elements are solely caused by the second term of Equation (2.7). The

lowering and raising operators of the spin and the angular momentum couple different

basis states with different Ω and Σ quantum numbers

〈JΩ∓ 1MJ | J± |JΩMJ〉 =
√
J(J + 1)− Ω(Ω∓ 1), (2.11)

〈SΣ± 1|S± |SΣ〉 =
√

(S(S + 1)− Σ(Σ± 1). (2.12)

Finally, solving the secular determinant yields the two eigenvalues [46]

E(2Π; v; J) = Bv

((
J − 1

2

) (
J + 3

2

)
± X

2

)
, with

X =
√

4
(
J + 1

2

)2
+ Y (Y − 4),

Y = Av/Bv.

(2.13)

The energy levels associated with the ‘+’ sign are labeled with F2 and the lower levels with

F1. Thus, the absolute ground state is always an F1 state (Figure 2.2). Hund’s case (a) is

an approximation well suited to describe the lowest rotational levels of the 2Π state. It

becomes exact, if the off-diagonal contributions are zero which happens when J = 1/2.

The off-diagonal values of the Hamiltonian increase with J while the difference between

the diagonal values stays the same.

2.2.2 Lambda Doubling

As previously mentioned, states with positive Λ and negative Λ are degenerate and can

be combined to form two states of definite parity. Exceptions are states with Λ = 0:

each J , Ω level of a Sigma-state has a single parity. Λ-doubling originates in the coupling

between different electronic states. In case of the OH ground state, the degenerate 2-Pi

state couples to the non-degenerate 2-Sigma+ and 2-Sigma− states. However, the non-

degenerate states only couple to one component of the degenerate state, especially the
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2.2. Hund’s Case (a)

component of the same parity. The rotational and spin-orbit Hamiltonian of Equation (2.7)

neglects terms that couple to other electronic states. The omitted terms are [46]

H1 = −B(J+L− + J−L+) + (B + 1
2
A)(L+S− + L−S+),

= −B(N+L− +N−L+) + 1
2
A(L+S− + L−S+),

(2.14)

using the total angular momentum N = L − S (Section 2.3). The angular momentum

lowering operators L− and raising operators L+ couple the Π and Σ states. Since the

calculation of L− and L+ is not possible, it is convenient to absorb them into a phase

factor such as [47]1.

〈Λ = ±1| e±2iφ |Λ = ∓1〉 = +1. (2.15)

After performing a Van Vleck transformation [42,48] the Λ-doubling Hamiltonian is [47]

HΛ ≈ 1
2
o(S2

+e
−2iφ+S2

−e
2iφ)− 1

2
p(N+S+e

−2iφ+N−S−e
2iφ)+ 1

2
q(N2

+e
−2iφ+N2

−e
2iφ). (2.16)

The Λ-doubling parameters o, p and q are determined empirically, by comparison with

the experiment. Thus, the Van Vleck transformation introduces additional perturbation

parameters of the 2-Sigma state into the effective Hamiltonian. These parameters resem-

ble a second-order perturbation, which includes a summation over all excited Σ states.

However, the perturbation is dominated by the Σ state closest to the ground state 2Π.

The limit in which only a single state is involved in the Λ-doublet creation, is called the

‘unique perturber’ hypothesis. This assumption is justified empirically [49]. The effect of

Lambda-doubling on the eigenenergies can be determined by including Equation (2.16)

into the Hamiltonian and solving the secular equation, as in Equation (2.8).

2.2.3 Hyperfine Structure and the Spherical Tensor Formalism

The effective Hamiltonian of the diatomic molecule is explained in more detail by Zare [46]

and Brown [50]. This approach is appealing in its intuitive way of describing the interaction

between the angular momenta of a quantum mechanical state. The essential elements are

lowering and raising operators such as J− and J+, which are responsible for the off-diagonal

elements in the Hamiltonian. However, as Klein [51] first noted, the commutation relations

for J are different in the laboratory frame (coordinates X, Y , Z) and the molecular frame

(x, y, z) [52].

[JX , JY ] = JXJY − JY JX = + iJz, (2.17)

[Jx, Jy] =− iJz. (2.18)

1Consider some authors use the opposite sign convention [42].
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Chapter 2. The Hydroxyl Radical

This reverses the effect of J+ and J− dependent on the frame. Thus, with increasingly

complex quantum mechanical systems, the formalism becomes prone to errors. In general,

the favored approach of describing the Hamiltonian uses spherical tensor operators [42].

One benefit of spherical tensor operators is the simple relationship between an operator

in the space fixed frame T kp (J) and one in the molecule fixed frame T kq (J) [42]

T kq (J) =
∑

p=0,±1

D(k)
p,q(ω)T kp (J) and T kp (J) =

∑

q=0,±1

D(k)∗
p,q (ω)T kq (J). (2.19)

The connection between both spaces is supplied by the Wigner D-matrix D
(k)
p,q . The M-

state dependence of any matrix element described using a spherical tensor operator can

be computed using the Wigner-Eckart theorem [53]

〈J,MJ |T kp |J ′,M ′
J〉 = (−1)J−MJ

(
J k J ′

−MJ p M ′
J

)
〈J ||T k ||J ′〉 , (2.20)

with the matrix like factor denoting the Wigner 3-j symbol and 〈J ||T k ||J ′〉 the reduced

matrix element. The 3-j symbol is only non-zero if the triangle rule |J − 1| ≤ J ′ ≤ J + 1

is satisfied and the sum of the projection quantum numbers is MJ = p + M ′
J . These

selection rules are based on conservation of angular momentum. The selection rules

concerning the parity are inside the reduced matrix element. The use of the Wigner-

Eckart theorem reduces the computation of 3(2J + 1)(2J ′+ 1) first-order matrix elements

to just one. Additionally, the anomalous commutator relation is taken care of in a rigorous

way. However, computing matrix elements with more than one momentum operator and

additional coupling terms still requires several extra steps. The explicit matrix elements

are given elsewhere [54,55]. To eliminate the risk of errors associated with typing these

formulae in by hand, this thesis relies on the program PGOPHER [56].

The hyperfine splitting introduces an additional splitting of the Λ-doublet parity states.

It originates with the nuclear spin I, resulting in a total angular momentum F = J + I.

The Hund’s case (a) basis set can be expanded to include the I quantum number [42]

|n2S+1Λ|Ω|; v; JI;FMF 〉 = |nΛ〉 |SΣ〉 |JΩI〉 |F,MF 〉 |v〉 , (2.21)

with the total angular momentum part |F,MF 〉.
MI is the projection of I along a space fixed axis. The allowed values are in the

range −I,−I + 1, ··, I, yielding to a multiplicity of 2I + 1. Assuming further the magnetic

moment is generated by the electrons, but also partly by the nuclear spin resulting in

possible couplings I · L, I · S and I · (J − S). The full Hamiltonian in spherical tensor

notation including this hyperfine interaction is found elsewhere [54,57]. There are sometimes

slight variations of the spectroscopic constants used. For example, some references, when
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2.2. Hund’s Case (a)

describing the interaction between the electron spin and the nuclear spin, use the Fermi

contact parameter bF (with the operator I ·S) and the dipole-dipole coupling parameter c

(operator SzIz − I ·S/3) [58]. Other references choose to simplify the operator for c to SzIz,

which requires the Fermi contact parameter to be replaced with an effective parameter

b = bF − c/3 [54]. The spectroscopic program PGOPHER knows only b and c.

Consider a coupling of I = 1/2 and MI = ±1/2, with a multiplicity of two. Thus, the

ground state 2Π3/2 with J = 3/2, yields a total angular momentum of F = 1 and F = 2

(Figure 2.2). Every transition in this thesis starts from one of these levels.

Figure 2.2: Schema of the OH electronic ground state structure. The left-hand side shows the splitting into two
manifolds F1 and F2 caused by the spin-orbit interaction, but neglecting higher order coupling terms. Including
this terms lifts the degeneracy of Λ and causes splitting into two different parity states (Section 2.2.2). The
hyperfine splitting on the right is caused by an interaction between L, S, J and the nuclear spin I (Section 2.2.3).

2.2.3.1 Zeeman Effect

In most high-resolution experiments in which the earth’s magnetic field has not been

compensated, the Zeeman-effect needs consideration. The Zeeman effect consists of mul-

tiple parts. However, the most dominant parts are the electronic orbital Zeeman effect

and the electronic spin isotropic Zeeman effect, yielding H = gLµBB · L + gSµSB · S [57].

The parameters gL and gS denote the electron orbital and the electron spin g-factors,

respectively. Additionally, µB = e~/(2me) is the Bohr magneton. Orienting the magnetic

field along the space-fixed Z-axis simplifies this expression. The expectation value in

Hund’s case (a) basis and spherical tensor notation is [42]

〈n2S+1Λ|Ω|; v; JI;FMF | gLµBBZT
1
p=0(L) + gSµBBZT

1
p=0(S) |n2S+1Λ|Ω|; v; JI;FMF 〉

= µBBZ(gLΛ + gSΣ)
((F (F + 1) + J(J + 1)− I(I + 1))ΩMF

2F (F + 1)J(J + 1)
.

(2.22)

In a pure Hund’s case (a) at low magnetic field, the frequency shift of an individual Zeeman

level changes linearly with the magnetic field. The ground state 2Π3/2 with J = 3/2 has
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Chapter 2. The Hydroxyl Radical

hyperfine levels with F = 1 or F = 2, which are splitting into three or five Zeeman

levels, respectively, according to the multiplicity of 2F + 1. These levels are labeled with

MF = F, F −1, ··,−F . Thus each shifted level at MF has a counterpart at −MF , resulting

in a symmetric splitting and a zero net shift. Considering the OH molecule inside a

magnetic field of B = 75 µT yields a Zeeman splitting of the hyperfine F = 1 states of

around 1.6 MHz. The splitting of the F = 2 states is around 1 MHz. The values are based

on a calculation using PGOPHER [56], with ground states parameters from [49]. The effect

of the Zeeman level splitting on the measured transition frequencies will be discussed later

(Section 2.4).

2.3 Hund’s Case (b)

In Hund’s case (b) the spin-rotational part (NS) of the Hamiltonian has more weight

relative to the spin-orbit (LS) coupling. Thus, the requirement of the Hund’s case (b)

basis set is AΛ� BJ [42]. Analog to Hund’s case (a) the precession frequency of L about

the internuclear axis is high, leaving the projection Λ as a good quantum number. The

critical difference to Hund’s case (a) is the non-coupling of the spin to the internuclear

axis. Therefore, Ω is no longer a good quantum number. Instead, L couples to R, which

results in the total angular momentum excluding spins N = J − S (Figure 2.3). The

Figure 2.3: In Hund’s case (b) S is not coupled to the internuclear axis. Thus, Ω is no good quantum number.
N and L have the same projection onto the internuclear axis, such that N = Λ (adapted from [42]).

coupling between N and S finally yields the total angular momentum excluding nuclear

spin J = N + S. The new good quantum numbers in Hund’s case (b) are: n, v, N , Λ, S,

J . Thus, the linear combination of the wavefunction into the parity basis sets is [42]

|n2S+1Λ; v;NΛSJM,±〉 =

1√
2

(
|nΛs〉 |N,Λ, S, J,M〉 ± (−1)N+s |n,−Λs〉 |N,−Λ, S, J,M〉

)
|v〉 .

(2.23)

However, Hund’s coupling cases (a) and (b) are both approximations. Most states in light

diatomic molecules are between both ideal cases, leading to an intermediate coupling.

Still, choosing the right basis set of wavefunctions simplifies the labeling of the rotational

levels. Generally, modern computer programs calculate everything in one Hund’s case

independent of the actual state. For example, the program PGOPHER, used in this thesis,
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2.3. Hund’s Case (b)

relies on a Hund’s case (a) basis [56].

2.3.1 First Electronic Excited State of OH

A good example of the application of Hund’s case (b) basis set is the state 2Σ+, which

also happens to be the first electronic excited state of OH. This means Λ = 0 and S = 1
2
.

However, the projections Ω and Σ are no longer good quantum numbers in Hund’s case (b).

Due to Λ = 0, the inverted wave function is equal to the initial wave function. Thus, the

parity phase factor ±(−1)N+s must be +1 in order for the wavefunction in Equation (2.23)

to not vanish. Therefore, the parity of each N -level is (−1)N for a 2-Sigma+ state where

s = 0 (Section 2.1.1). The representation of the wave function as a linear combination of

both parity states becomes unfeasible. The wave function is

|n2Σ; v;NΛSJM〉 = |n, 0〉 |N, 0, 1
2
, J,M〉 |v〉 , (2.24)

with an adjusted normalization factor. For instance, Equation (2.23) assumes that both

terms are orthonormal and the 1/
√

2 factor accounts for it. The normalization changes

accordingly for two identical terms, which is the case for the 2-Sigma+ state. Thus,

rewriting the rotational Hamiltonian yields

H = BvN
2 + γvNS = BvN

2 + γv
1
2

(
J2 −N2 − S2

)
. (2.25)

Since only good quantum numbers remain, the eigenvalues follow instantly

E(2Σ+;NJ ;±) = BvN(N + 1) + 1
2
γv
(
J(J + 1)−N(N + 1)− 3

4

)
(2.26)

Due to spin-rotational coupling, each N state consists of two closely spaced levels also

referred as a ρ-doublet. They are only differing in J with the eigenvalues [46]

E(2Σ+;NJ ;±) = BvN(N + 1) + 1
2
γvN for J = N + 1

2
, (2.27)

E(2Σ+;NJ ;±) = BvN(N + 1)− 1
2
γv(N + 1) for J = N − 1

2
. (2.28)

The exception is N = 0, which only consists of J = 1
2

of parity +. To distinguish between

both states, the state with J = N + 1
2

is labeled F1 and the state with J = N − 1
2

is called

F2
[46]. The separation between both states is

F1(N)− F2(N) = 1
2
γv(2N + 1). (2.29)

In general, γv is not necessarily positive. Thus, the state label with F1 is not always higher

in energy compared to the state F2. It might even cause confusion, since the manifolds of

the state 2Π are also labeled F1 and F2, except the lowest level is always associated with F1

(Section 2.2.1). The hyperfine splitting of the excited state 2Σ+, with I = 1/2, is analogous
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Chapter 2. The Hydroxyl Radical

Figure 2.4: Schema of the OH first electronic excited state structure. The bare rotational states show no splitting.
After coupling N with S the level structure splits into the ρ-doublets. Further coupling between J the nuclear
spin I yields the hyperfine structure.

to the ground state (Section 2.2.3), except with different hyperfine parameters. Thus, the

degeneracy of the MI quantum number gets lifted, resulting into two levels with the

total angular momentum F = J ± I. Also, the Zeeman effect has already been explained

(Section 2.2.3.1). In Hund’s case (b) only one detail changes: the Zeeman splitting of

Hund’s case (a) converges to zero for increasing J values. With Hund’s coupling case (b),

however, the splitting converges to a constant value, which is dependent on the field

strength [59].

2.4 Electron configuration

The electronic term symbols of OH for the ground state (Section 2.2.1) and the excited

state (Section 2.3.1) can be predicted using molecular orbital theory. The electronic

configuration of OH is (1sσ)2(2sσ)2(2pσ)2(2pπ)3 in the united atom picture [41], with the

superscripts 2 or 3 denoting the number of electrons in the σ-orbitals and the π-orbital,

respectively. Comparing the electronic configuration of OH with oxygen (O) and hydrogen

(H) shows that the energy of the hydrogen 1s electron is similar to the energy of the oxygen

2px, 2py and 2py electrons (Figure 2.5a). The spatial overlap of the 1s hydrogen orbitals

(a) (b)

Figure 2.5: (a) Electronic configuration of an oxygen (O) and an hydrogen (H) atom forming the hydroxyl radical
(OH). The dashed lines indicate the bonding oxygen 2pz orbital with the hydrogen 1s orbital. (b) Electronic
configuration with the ground state X2Π and first electronic excited state A2Σ (adapted from [57]).
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and the 2pz oxygen orbital forms the bonding- 2pσ and the anti-bonding 2pσ∗ orbital of

OH [57]. The 2px and 2py orbitals of oxygen have no spatial overlap with the 1s hydrogen

orbital. Thus they are not involved in the bond. The corresponding unpaired electrons

are the reason to denote the molecule as radical.

It is convenient to make the Russell-Saunders approximation to derive the term symbol.

The antiparallel angular momenta λi and spins si of each electron along the internuclear

axis are summed up to Λ =
∑

i λi and S =
∑
si, respectively [41]. Thus, the open (2pπ)3-

orbital of the OH defines the term symbol of the electronic ground state. The three

electrons lead to Λ = 1 and S = 1/2, with the term symbol X2Π (Figure 2.5b). The

electronic transition of an electron from the lower (2pσ)2 orbital into the (2pπ)3-orbital

closes the π-orbital and opens the σ-orbital (Figure 2.5b). The term symbol of the first

electronic excited state depends on the open (2pσ)1-orbital. The remaining π-electron

leads to the total spin of S = 1/2, while the σ-orbital implies Λ = 0. Therefore, the fist

electronic state is labeled A2Σ, with the configuration (1s)2(2sσ)2(2pσ)1(2pπ)4.

2.5 Selection Rules

The observed transitions frequencies are dependent on the spectroscopic constants and the

quantum numbers of the lower and upper state. The states |ψ〉 and |ψ′〉, respectively. A

transition is allowed if the matrix element of the electric dipole moment 〈ψ′|µ |ψ〉 is non-

zero. The dipole moment leads to selection rules that define the allowed transitions. The

rules can be separated into three categories: a set of general selection rules, rules which can

only be applied to specific Hund’s cases and additional rules which emerge from the non-

zero nuclear spin and the interaction with an external magnetic field (Table 2.1) [60]. The

Table 2.1: Selection rules of electric dipole allowed transitions, separated into three categories. Special care must
be taken, considering the Zeeman selection rules. They are in general defined for unpolarized light.

I

General Rules
∆J = 0,±1 except J = 0↔ J = 0

Λ = 0,±1 except Σ+ ↔ Σ−

+↔ −
∆S = 0

II
Hund’s case (a) Hund’s case (b)

∆Σ = 0 ∆N = 0,±1 except Σ↔ Σ

III
Hyperfine Zeeman

∆F = 0,±1 except F = 0→ F = 0 ∆MF = 0,±1

general selection rules address the angular momentum J , the projection Λ, the parity ±
and the electron spin S. The selection rule of most interest is ∆J = 0,±1, meaning an

electronic excitation from the ground state X2Π with J = 3/2 is possible to A-states with

J = 1/2, 3/2, 5/2. Since the quantum number N is only defined for Hund’s case (b) the
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selection rule ∆N = 0,±1 is less stringent considering the X −A transitions. It is mostly

N = 1, but partly also N = 2 for the ground state. Additionally, the non zero nuclear

spin I = 1/2 of the OH proton causes the hyperfine splitting, leading to the selection rule

∆F = 0,±1 between different hyperfine levels.

The degeneracy of the MF states is lifted inside a magnetic field, leading to the

Zeeman selection rule ∆MF = 0,±1 [61]. In more detail, the transition dipole moment

matrix element in spherical tensor notation after applying the Wigner Eckart theorem is

〈F,MF |T 1
p (µ) |F ′M ′

F 〉 = (−1)F−MF

(
F 1 F ′

−MF p M ′
F

)
〈F ||T 1(µ) ||F ′〉 . (2.30)

This 3-j symbol leads to the selection rule MF = M ′
F + p, in which p has to be -1, 0 or 1.

Including now the interaction between the electric dipole moment and the electrical field,

yields [55]

He = −µ · E = −T 1(µ) · T 1(E) = −
∑

p=0,±1

(−1)pT 1
p (µ)T 1

−p(E). (2.31)

The index p is referring to the space fixed components EX , EY , EZ and the rank-1 spherical

tensor are defined by

T 1
0 (E) = EZ and T 1

±1(E) = ∓ 1√
2
E± = ∓ 1√

2
(EX ± iEy). (2.32)

Light is an electromagnetic wave and in vacuum, it has no field component along its

propagation direction. Thus, defining the propagation direction along the Z-axis yields

T 1
0 (E) = 0, which saves the computation of all product terms with p = 0 and results

in the selection rule ∆MF = ±1. This is a particular example, for the detected ∆MF

transitions in this thesis. Considering vibrational transitions, no strict selection rules

exist, although the most pronounced transition strengths are at ∆v = ±1 [60]. Sometimes

it is even possible to measure transitions, which are not allowed by the selection rules.

This has two possible reasons. First, the selection rule is only in approximation true, for

instance, ∆v = ±1. Second, the transition is not an electric dipole transition, but instead

a magnetic dipole, an electric quadrupole or a two-photon transition.

2.6 Isotope Measurements

Measuring transitions opens the possibility of determining the spectroscopic constants

of a molecule. To find the true spectroscopic constants, it is sometimes necessary to

make measurements on different isotopes. This is caused by an indeterminacy of some

parameters, which is inherent to the theoretical model. In the OH X2Π ground state, it

is well known that spin-rotation and spin-orbit centrifugal distortion operators have very
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similar effects on the eigenenergies, making it difficult to determine the values of γ and

AD independently [62]. Consider the Hamiltonian [42]

H = Hrot +Hso +Hsr = BN2 + (A+ ADN2)(L · S) + γ(N · S), (2.33)

with the four parameters B, A, AD and γ. Calculating the secular determinant and

extracting the eigenvalues shows three different dependencies on the angular momentum

J [42], which is overconstrained by four parameters. Building a system of equations around

the dependencies makes at least two parameters impossible to determine uniquely. One

solution is to fit the spectroscopic data assuming γ = 0, which results in an effective value

for AD. This effective constant is related to the true constants by defining an effective

parameter ÃD = AD−2Bγ/(A−2B) [63]. The terms inside ÃD are proportional to different

powers of the reduced mass µ = (M1M2)/(M1 +M2), with Mi denoting the masses of the

two atoms. Measuring different isotopes makes it possible to resolve the indeterminacy

and assign values to γ and AD.

The different dependency of the reduced mass on the ÃD parameter is shared with

various other effective Hamiltonian parameters, although indeterminacy is not an issue.

As an example, the effective rotational constant Bv = B
(1)
v +B

(2)
v includes contributions of

different order. The first order contribution B
(1)
v is only concerned with the rotation of the

two bare nuclei. The second order contribution B
(2)
v takes the electron cloud into account,

which is outside the Born-Oppenheimer approximation. An analysis shows, the first order

contribution is proportional to µ−1, but the second order contribution is proportional to

µ−2 [42]. The effective parameters Bv absorb these effects, thus using the Dunham formalism

dismantles all higher order contributions on the effective parameters [64]. However, the

Dunham model requires measurements on different isotopes including vibrational states,

to construct a more complete picture of the electronic state, including effects due to the

breakdown of the Born Oppenheimer approximation.

2.6.1 Difference between OH and OD

In the Born Oppenheimer approximation, the electron cloud is independent of the mass

of the two nuclei. The nucleus of the hydrogen atom (H) consists only of one proton and

adding a neutron changes only the mass. Thus, replacing the proton with a deuteron (D)

does not affect the electronic structure. Also, the charge distribution of a single proton

is spherical. However, the additional neutron in the deuteron deforms it and causes a

quadrupole moment. Describing the effect of the quadrupole moment on the energetic

structure requires extra parameter eQq0 and eQq2 in the effective Hamiltonian of OD,

which are not included in the OH Hamiltonian.

Additionally, the spin I of the deuteron is different from that of the proton, which affects

the hyperfine splitting (Section 2.2.3). The spin is integral or half-integral, dependent if
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the mass number is even or odd [42]. The proton and the neutron have both a nuclear

spin of I = 1/2, which couple through nuclear interaction. The resultant nuclear spin

angular momenta couple antiparallel, resulting in I = 0, or parallel, resulting in I = 1.

The latter one is lower in energy and defines the ground states, while I = 0 is much

higher in energy. This leads to a nuclear spin multiplicity of three. Compared with the

OH nuclear spin multiplicity of two, more hyperfine transitions are observable with OD.

Additionally, the nuclear spin defines, together with the nuclear gyromagnetic ratio γI ,

the magnetic moment µI = γI~I = gIµNI. The gyromagnetic ratio is the product of the

nuclear g-factor g and the nuclear magneton µN = e~/(2Mp), with the proton mass Mp.

The magnetic hyperfine parameters are proportional to the magnetic moment. Thus, most

hyperfine parameters between OH and OD are approximately scaled by the gyromagnetic

ratio of both molecules. These parameters are for OD a factor 6.514 smaller, than for

OH [42]. Exceptions are, for instance, cI and related parameters, which have an additional

scaling factor involving the reduced mass. This scaling greatly complicates the evaluation

of OD spectra because all hyperfine levels move closer together. For example, in the case of

a Gaussian line broadening with a full width at half maximum (FWHM) wG = 7 MHz, the

individual transitions in OD are not resolved. To illustrate this issue, a typical hyperfine

transitions cluster of OD has been calculated with PGOPHER [56] (Figure 2.6a upper).

The transitions are from the ground states X2Π3/2 with J ′′ = 3/2, F ′′ = 1/2, 3/2, 5/2
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Figure 2.6: (a) Calculated transitions to the excited A2Σ+ state with N ′ = 1, J ′ = 3/2, F ′ = 3/2 and e-parity
from the ground state X2Π3/2 with J ′′ = 3/2, F ′′ = 1/2, 3/2, 5/2 and f -parity. The effect of an external magnetic
field becomes visible after setting wG = 0. (b) Showing the Zeeman effect in more detail, by reducing the Lorentzian
linewidth parameter to 10 kHz.

and f -parity to the excited state A2Σ+ with N ′ = 1, J ′ = 3/2, F ′ = 3/2 and e-parity.

Setting the Gaussian line broadening to wG = 0 highlights three distinct peaks with a
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remaining Lorentzian linewidth setting of 200 kHz. Additionally, an external magnetic

field of B = 75 µT lifts the degeneracy of the MF quantum number (Figure 2.6a lower).

In order to resolve this splitting, the Lorentzian linewidth is set to 10 kHz, and the focus

is on the transitions starting at F ′′ = 3/2, corresponding to the central peak at B = 0 µT

(Figure 2.6a upper). Increasing the magnetic field shows the expected linear trend of the

Zeeman effect (Figure 2.6b lower). Six transitions are observable, as an example, for the

transitions measured in this thesis (Figure 2.6b upper).

Considering the ratio of selected hyperfine parameters between OH and OD, results in

ratios a : 6.469, b : 6.535, c : 6.492 and d : 6.458 [65]. The discrepancy between those and

the ratio of the gyromagnetic moment ratios of 6.514 is rooted in vibrational averaging

effects and a break down of the Born-Oppenheimer approximation [42,66].

2.7 Definition of the Hamiltonian

The effective Hamiltonian in this thesis follows the 1994 international union of pure

and applied chemistry (IUPAC) recommendation for the fine and hyperfine structure

parameters of the linear molecule terms [47]. The quantum numbers follow the conventions

in molecular spectroscopy based on the 1997 IUPAC recommendation [67]. Additionally,

the rotational part of the Hamiltonian follows the N̂2 convention

Ĥrot = BN2 −DN4 +HN6 + LN8 +MN10 + PN12 +QN14. (2.34)

In analogy, for the spin-orbit part of the Hamiltonian follows

Ĥso = AΛΣ + AD[N2,ΛΣ]+ + AH [N4,ΛΣ]+. (2.35)

To understand the motivation for this definition, consider the pure rotational part of the

Hamiltonian Hrot = BR2, with the nuclear rotational angular momentum R = N − L

(Section 2.2.1). One expects a clear representation of the nuclear rotation, without effects

associated with the angular momentum of the electrons. This Hamiltonian leads to the

first order contribution [42]

H
(1)
eff = |0〉 〈0|B(R)(N− L)2 |0〉 〈0| = B(1)(N2 − L2

z), (2.36)

with the first order rotational constant B(1). In analogy to the Lambda doubling, the

higher order interaction arises from the coupling of the zero order state |0〉 to higher

electronic states |η〉. The coupling operators are denoted with L+ and L−. Thus, the
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second order Hamiltonian is [42]

H
(2)
eff =

∑

η 6=0

〈0| −B(N+L− +N−L+) |η〉 〈η| −B(N+L− +N−L+) |0〉 〈0|
(V0 − Vη)

≈ B(2)(N2 −N2
z ),

(2.37)

with terms forming the Lambda doubling omitted (Section 2.2.2). Comparing both Hamil-

tonians H
(1)
eff and H

(2)
eff , shows the same operator form, namely a Heff = Beff(N2 − N2

z )

dependence. Therefore, the effective Hamiltonian absorbs contributions of the electronic

angular momentum into the second order rotational constant B(2). Since some terms have

been already omitted and the N2
z is the same for all levels in the electronic state, it is

justified to omit this term as well. The approximation of a N2 dependent Hamiltonian

greatly simplifies the evaluation. For instance, using R2 instead of N2 requires consider-

ation of the coupling of different electronic states, introduced by L. Spectroscopic data

cannot determine these contributions, and excluding them has no effect on the relative

level positions.

The Comparison between the spectroscopic parameters determined in this thesis, with

the N2 Hamiltonian, to the parameters given by previous works, with the R2 Hamilto-

nian [54], requires a parameter transformation. Although in case of the OH excited 2-Sigma

state, Lz and Nz are both zero, leading to the relation N = R (Equation (2.36)-(2.37)).

However, the effective Hamiltonian parameters of the 2-Pi ground state are different. Since

the measurement of the OH ground states is no concern in this thesis, it is not necessary

to deal with most transformation rules. The exception is the band origin [42]

T ′ = T ′prev + Λ2B′′prev + Λ4D′′prev, (2.38)

with the superscripts ′ and ′′ denoting the excited and ground state, respectively. The

subscript ’prev’ for previous, denotes parameters expressed in the R formalism. The

transformation rule simplifies further for the OH 2Π ground state, with Λ = 1. Some

authors use an additional Λ-doubling parameter o in their definition of the Hamiltonian,

which shifts the band origin [50]

T ′ = T ′prev + Λ2B′′prev + Λ4D′′prev − o′′prev/2. (2.39)

The o parameter can only be calculated dependent on the p parameter [25], thus excluding

it has no effect on the relative level positions. Inside an effective Hamiltonian, it loses

its physical meaning and can as well be directly absorbed into the effective band origin

T . In addition to the different R and N formalism, some authors prefer to define the

centrifugal distortion parameters for γ in terms of J2 instead of N2. This Hamiltonian
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takes the form [27]

H = T +BN2 −D(N2)2 +H(N2)3 − L(N2)4 +M(N2)5

+ (γ + γDJ2 + γH(J2)2)(N · S),
(2.40)

with the rotational constants B, D, H, L, M and the centrifugal parameters γ, γD γH .

In this thesis, each parameter is defined relative to N2. Thus a transformation of the J2

parameters is necessary, for comparison reasons. The transformation rules are most easily

extracted by evaluating the matrix elements of the state of interest. In a 2-Sigma molecule,

which is diagonal in Hund’s case (b), the matrix element using the J2 convention is given

by [27]

〈2Σ+|2Σ+〉 = T +Bx(x± 1)−Dx2(x± 1)2 +Hx3(x± 1)3 − Lx4(x± 1)4

+Mx5(x± 1)5 − 1
2
[γ + γDJ(J + 1) + γHJ

2(J + 1)2](1± x),
(2.41)

with x = J +S = J + 1/2. The matrix element is given for both e- and f -parity sublevels,

with the upper sign referring to the f -parity. It is convenient to note that the term

x(x± 1) = N(N + 1). Now rewriting the explicit J dependent terms, aiming to introduce

the x(x± 1) term, leads to

J(J + 1) = (x− 1
2
)(x+ 1

2
) = x2 − 1

4
= x(x± 1)∓ x− 1

4
, (2.42)

(J(J + 1))2 = x2(x± 1)2 ∓ 2x · x(x± 1) + 1
2
x(x± 1)∓ 1

2
x+ 1

16
. (2.43)

Inserting these terms into Equation (2.41) and sorting out the expression leads to the

transformation rules

B = Bprev + γD,prev/2 + γH,prev/4, (2.44)

D = Dprev − γH,prev, (2.45)

γ = γprev − γD,prev/4 + γH,prev/16 (2.46)

γD = γD,prev + γH,prev/2. (2.47)

These are important for comparing the measured spectroscopic parameters in this thesis

to previous measurements expressed in a different formalism.
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Chapter 3

Precision Laser System

The three essential components of a laser are always an active medium, a resonator and

something pumping the population inversion. Dependent on the application, there are

many different variants of these three components. The spectroscopy in this thesis requires

a laser system with high stability and a wide tuning range that enables readout of the

absolute emission frequency of the spectroscopy lasers. A single laser is not able to meet

these demands, but instead, a combination of different lasers does. Each involved laser

has a different field of application.

3.1 CW Lasers

The potentially narrow linewidth in single mode emission makes continuous wave (CW)

lasers the primary choice for high-resolution spectroscopy. This thesis relies on two CW

lasers: the spectroscopy laser excites the hydroxyl radical (OH) transitions for detection,

and the reference laser is a narrow-linewidth source used to stabilize the other lasers.

3.1.1 Spectroscopy Laser

To investigate the electronic transitions of OH from the rovibronic ground state X2Π3/2,

v′′ = 0, J ′′ = −3/2 to the lowest levels of A2Σ+, v′ = 0, we use an ultraviolet (UV)

laser around 308 nm. The standard approach for producing coherent UV light is by non-

linear conversion of visible light, for instance using second-harmonic generation (SHG)

(Chapter 4). For this, a laser with an emission wavelength of around 616 nm is required.

A semiconductor laser was used first in this thesis to produce light at 616 nm. Electric

current pumps the active medium, and the cavity mirrors are the uncoated crystal sur-

faces [68]. In a simplified picture, the active medium is a p-n semiconductor diode. Applying

current into the conducting direction leads to population inversion of electrons at the

p-n junction. The n part has an electron surplus and the p part an electron deficiency

referred to as holes. The process of electron-hole recombination leads to the emission
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of light. Unfortunately, there are no laser diodes available which operate single mode at

616 nm. The closest wavelengths offered are around 633 nm using diodes with aluminium

gallium indium phosphide (AlGaInP) semiconductor material. The emission wavelength

of the 633 nm diodes can be shortened by cooling them to low temperatures and increasing

the band gap. While the lower temperature forces the laser to operate at 616 nm, it also

decreases the lasers ability to operate with a single mode. An additional weakness of a

diode laser is the limited tuning range. The efforts toward cooling the laser diode are

discussed in Section 9.4.1.

A dye laser can cover, in contrast to a semiconductor laser, nearly the whole visible

spectral range and is used for the spectroscopy presented in this thesis. The specific

tuning range depends on the choice of dye and pump laser [68]. Laser dyes consist of rather

large molecules with a multiplicity of ground and excited states. The interaction with the

solvent leads to a broadening of the transitions frequencies, that exceeds the average level

distance, resulting in a continuum of possible lasing transitions. Pumping these states

with a CW laser of high intensity leads to fluorescence light from this continuum. A cavity

with frequency-selective elements reduces the gain for all frequencies except one, the lasing

frequency. All frequency-selective optics used can potentially contribute to the instability

of the laser frequency. Each mechanical element can potentially move and introduce noise.

Compensating the noise requires control over the cavity length. This control enables laser

stabilization as well as frequency tuning. Both things are necessary for high-resolution

spectroscopy. The dye laser in this thesis is stabilized to a reference laser.

3.1.2 Reference Laser

The free running dye laser is not a stable laser system, due to the amount of associated

optical components inside the laser and the large size of the optical cavity. Therefore, a

laser system without any optics inside the cavity, which is as small as possible, shows

superior stability. A single monolithic crystal of neodymium-doped yttrium aluminum

garnet (Nd:YAG), with a length of just a few millimeters, acts as both the cavity and the

gain medium of the non-planar ring oscillator (NPRO) [69]. The unique shape of the crystal

allows total internal reflection at the facets and simultaneously provides ring oscillation [70].

An early measurement in 1987 of the beat note between two NPRO lasers showed a full

width at half maximum (FWHM) of less than 3 kHz [71]. No other laser design until today

matches this level of stability. NPROs are an essential part of the interferometers used

in the observation of gravitational waves [72]. The bare NPRO laser design is the best

possible starting point for further stabilization, with an external ultra-low expansion

(ULE) cavity [73] or an iodine-based frequency reference reducing frequency fluctuations

on timescales longer than a few milliseconds [74]. In order to stabilize the NPRO to these

references, it is essential to be able to control its frequency. Slow control can be achieved
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by changing the crystal temperature, which leads to thermal expansion and a change of

the refractive index while compressing the laser crystal with a piezoelectric transducer

(PZT) supplies a faster change of the cavity length. Both methods shift the frequency of

the longitudinal modes. The emission wavelength of a Nd:YAG NPRO is around 1064 nm,

and the maximum tuning range is around 30 GHz. Thus, a direct optical lock with the

dye laser at 616 nm is not possible, and an additional step is necessary.

3.2 Mode-Locked Laser

The narrow linewidth and high stability of a NPRO is perfectly suited for spectroscopy

(Section 3.1.2), but its application potential is limited by a small tuning range. Conversely,

the dye laser has a large tuning range, but a less-stable emission frequency. On top of both

issues, a precise determination of the optical frequency is necessary. A mode-locked laser

is a tool that makes it possible to transfer the high stability of the solid-state laser onto

the dye laser and enables a precise determination of the optical frequency. Normally, in a

continuously-pumped laser, the intensity of the radiation traveling through the cavity is

constant, and the laser emits continuously. In a mode-locked laser, the cavity is configured

such that the energy in the cavity coalesces into a short pulse, which results in a train of

pulses being emitted (Section 3.2.1). A train of equally spaced pulses in the time domain

leads to an optical frequency comb (OFC) in the frequency domain. Such a spectrum

is essentially an optical ruler, which allows direct optical frequency comparisons with

other lasers, by measuring the beat note (Section 3.2.3). The OFC makes it possible to

measure an optical frequency with the same precision as a radio frequency. One system

that generates ultrashort optical pulses is the Kerr-lens mode-locked Ti:sapphire laser [75].

This laser relies on self-focusing inside the active medium, with an aperture selecting the

corresponding mode. Dependent on the level of dispersion correction, pulse duration of

fewer than 6 fs are possible [76,77], leading to a one-octave span of the spectrum [78]. The

OFC revolutionized metrology and is the center of each frequency measurement in this

thesis.

3.2.1 Mode-Locking

The basis of pulse generation is the longitudinal mode structure of the laser cavity. In

general, laser operation is possible on a large number of modes and even desired for a

pulse train. The frequency of each mode satisfies the condition [79]

ωm = (2πm+ ∆Φ)
c

Ln(ωm)
, (3.1)

with the mode number m, the effective frequency dependent refractive index n and the

round-trip path Length L. An additional Gouy phase ∆Φ is caused, if the beam goes
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through a focus, which is for the sake of simplicity ignored at the moment, along with

dispersion. Thus, the spacing of two adjacent comb modes is described by the free spectral

range ∆ν = c/(nL). The frequency of mode m is ωc = ωl + m2π∆ν, centered around a

carrier frequency ωc. The resulting electric field is [80]

E(t) =
1

2
E0e

iωct

(M−1)/2∑

m=(1−M)/2

ei(m2π∆νt+φm) + c.c., (3.2)

with M oscillating modes. For simplicity, these modes have the same amplitude E0. The

phase factor φm is random for a free-running laser. Mode-locking forces an equal phase

φ0 = φm onto all modes. Rewriting the electric field, by applying the geometric series

yields [80]

E(t) =
1

2
E0e

iφ0eiωct
sin(Mπ∆νt)

sin(π∆νt)
. (3.3)

The intensity I(t) ∝ |E(t)|2 shows well separated maxima at integer multiples of the time

1/∆ν. At these points in time, the waves inside the laser cavity add up constructively and

create a short pulse of light. The width is linked to the number of interacting cavity modes

M and is approximately 1/(M∆ν). After each round trip inside the cavity, a fraction of

this pulse gets coupled out, so keeping the cavity length constant and shielding it from

acoustic noise and temperature fluctuations is crucial to obtain an equally spaced pulse

train in the time domain.

3.2.2 Frequency Spectrum

A Fourier transform of the time-domain pulse train from a mode-locked laser results in a

comb of evenly spaced modes in the frequency domain. These modes are separated by the

repetition rate of fr, which is associated with the time difference between two subsequent

pulses T = 1/fr.

If there were no dispersion inside the laser cavity, the absolute frequency of each mode

would be a multiple of fr, but with dispersion, all modes are shifted in frequency by

an offset. Consider a decomposition of a single pulse E(t) = A(t)eωct into two factors,

consisting of an envelope function A(t) and a previously used carrier wave with frequency

ωc (Section 3.2.1). Introducing dispersion leads to a changing phase difference between

the carrier wave and the envelope function, which have different velocities inside the laser

cavity. The carrier wave propagates with the phase velocity vph(ωc) = c/n(ωc) while the

envelope propagates with the group velocity

vg(ωc) =
(
∂k(ω)
∂ω

)−1
∣∣∣∣
ωc

=
(

∂
∂ω

(
ω
vph

))−1
∣∣∣∣
ωc

=
(
n(ωc)
c

+ ωc
c
∂n(ω)
∂ω

)−1
∣∣∣∣
ωc

, (3.4)
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resulting in different round-trip times inside the laser cavity. The round-trip carrier-

envelope phase difference yields [79]

∆φ = ωc∆T = ωc

(
L

vg
− L

vph

)
=
ω2
cL

c

∂n(ω)

∂ω

∣∣∣∣
ωc

= −2πL
∂n

∂λ

∣∣∣∣
λc

. (3.5)

Every optical element within the laser cavity contributes to this shift. However, the

periodic nature of waves limits the range to 0 ≤ ∆φ ≤ 2π. The carrier-envelope phase

shift changes by ∆φ from one pulse to the next. In the time domain, the phase difference

between the peak of the envelope A(t) and the closest maximum of the carrier wave define

∆φ (Figure 3.1a). In the frequency domain, this phase shift results in a frequency offset

(a) (b)

Figure 3.1: (a) Pulse train of a mode-locked laser in the time domain, with the electric field in red and the
envelope function in gray. The phase shift between two neighboring pulses is constant. (b) The Fourier transform
of the pulse train leads to equally spaced frequencies fm. An extrapolation of the comb to low frequencies shows
a frequency offset f0 when m = 0.

f0 = ∆φ/(2πT ) for all modes in the comb spectrum [81]. Thus, the optical frequency of a

single comb tooth is described by

fm = mfr + f0, (3.6)

with a mode number m starting at zero and an offset frequency |f0| < fr/2. Essentially,

each of these modes acts as an individual single mode laser with a frequency difference of

fr from its neighboring modes. A hypothetical pulse train with fr = 1 GHz and a pulse

duration of τ = 20 fs leads to 5× 104 interacting cavity modes. If the central wavelength

is 800 nm, the span corresponds to ca. 100 nm. The frequency of a laser under test must

be within the span of the OFC. If the span is too narrow, it is convenient to broaden

it using a photonic crystal fiber (PCF), which creates additional comb modes using the

nonlinear conversion of four-wave mixing (Section 4.0.4). The design of the PCF deviates

from conventional optical fibers, by microscopic air tunnels along its length [82]. Such a

structure supplies strong guiding of the light field [83], which can control dispersion to

keep the fs pulses bunched, as well contributes to a strong activity of nonlinear processes.
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3.2. Mode-Locked Laser

The actual frequency measurement of a CW laser with the OFC requires a heterodyne

detection of both laser beams [34,84].

3.2.3 Optical Beat Note

Optical heterodyne detection is based on the superposition of two monochromatic electro-

magnetic fields E1(t) and E2(t) of different frequencies ω1 and ω2 (Figure 3.2a and 3.2b),

leading to

I(t) = |E1(t) + E2(t)|2 ∝ |eiω1t + eiω2t + c.c.|2

= 2ei(ω1−ω2)t + 2ei(ω1+ω2)t + ei2ω1t + ei2ω2t

︸ ︷︷ ︸
LP−→0

+ 4︸︷︷︸
DC−−→0

+c.c. ≈ 4 cos((ω1 − ω2)t). (3.7)

After eliminating the high frequency components and the direct current (DC) part, only

(a) (b)

Figure 3.2: (a) Time domain representation of two electromagnetic fields E1(t) and E2(t) with nearly identical
optical wavelengths. E3(t) displays an envelope function with a much larger wavelength. (b) The beat note
between a single mode CW laser and the nearest comb tooth is at a frequency ∆f < fr/2.

the low frequency signal at ∆ω = ω1 − ω2 remains, resulting in a beat note frequency

at ∆f = 1
2π
|∆ω|. A photodiode detects the intensity I(t) ∝ |E(t)|2 with a certain

electronic bandwidth. Since optical frequencies are always outside this bandwidth, the

beat note causes the only remaining detectable frequency. An OFC supplies multiple

optical frequencies. The superposition of the OFC beam with an arbitrary CW laser

beam, within the frequency span of the OFC yields an optical beat note between both

lasers. A repetition rate of fr = 1 GHz results in a beat note with ∆f < 500 MHz, which

is within the range of conventional radio frequency technology. Thus, a fully characterized

OFC supplies a high precision measurement of the CW laser’s frequency

fcw = mfr + f0 ±∆f. (3.8)
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Chapter 3. Precision Laser System

The only uncertainties are the mode number m and the sign of the beat note frequency,

which changes depending on whether the closest comb tooth is higher or lower in frequency.

Observing the progression direction of the beat note, dependent on the frequency change

of the CW laser, allows identifying the sign. If ∆f increases with the CW laser frequency,

then the nearest comb tooth is lower in frequency and vice versa. The mode number can

be most easily determined using an independent measurement of the CW laser frequency

with a precision better than 500 MHz. In the experiment, a well-calibrated wavemeter

satisfies this condition. Determining the absolute frequency of the comb tooth requires

radio frequency measurements of fr and f0. The repetition rate fr can be measured

directly by counting the pulses with a fast photodiode. A measurement of the carrier to

envelope offset frequency f0 is possible by two different techniques.

3.2.4 OFC Parameter Control

Self-referencing of the OFC is the most utilized technique of measuring the parameter

f0. A one-octave span of the OFC greatly simplifies this measurement [85]. In this case, the

highest frequencies are a factor of two larger than the lowest frequencies. A heterodyne

setup between the original blue end of the OFC and the frequency-doubled red end leads to

an optical beat note (Figure 3.3a), which allows a direct readout of the carrier to envelope

offset frequency. For simplicity, doubling the frequency on the red end to 2(mfr + f0) and

comparing it to the mode at the blue end of the spectrum 2mfr + f0 leads to the beat

note [85]

∆f = |2fm − f2m| = |2mfr + 2f0 − 2mfr − f0| = f0. (3.9)

In detail, the modes are not only doubled, but also added up such that the mode spacing

(a) (b)

Figure 3.3: (a) Self referencing of OFC by SHG of a low frequency fm and a beat note measurement between
2fm and the closest comb tooth at f2m. For the sake of clarity, only one beat note is draw, even more exist. (b)
The measurement of two beat notes with a CW laser at the low frequency and the high frequency part of the
comb, leads also to a read-out of the carrier to envelope offset frequency.

remains fr instead of 2fr. Also f0 is produced by multiple pairs of comb lines, which

increases the signal to noise ratio (SNR).

A CW-Laser based extraction is more convenient in the apparatus used in this thesis.

Instead of frequency doubling the OFC, a CW laser at the red end of the comb spectrum

is frequency-doubled. Afterwards, two optical beat notes are detected. The first beat
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3.2. Mode-Locked Laser

note with ∆f1 is between the CW laser at fcw and the closest comb tooth at fm. The

beat note at the high-frequency part of the comb spectrum with ∆f2 is between the

frequency doubled CW laser at 2fcw and the comb tooth at f2m. Subtracting both beat

notes frequencies leads to

|2∆f1 −∆f2| = |2(fcw − fm)− (2fcw − f2m)| = f0, (3.10)

|∆f1 −∆f2| = |(fcw − fm)− (2fcw − f2m)| = |mfr − fcw|. (3.11)

An appropriate weighting allows directly to extract the carrier envelope offset frequency,

independent of the interacting CW laser frequency (Equation 3.10). Weighting both beat

notes equally provides the frequency difference between the CW laser frequency and a

high harmonic of the repetition rate fr (Equation 3.11). The OFC parameters can be

tuned using pump power and cavity size, but their effects are not entirely independent of

each other. The repetition rate fr, for example, is associated with the round trip time of a

pulse inside the laser cavity. Shortening the cavity length with a mirror on a piezoelectric

transducer reduces the round trip time, increasing the repetition rate fr. The OFC behaves

like a rubber band, with a fixed anchor at zero frequency for changes of the cavity length

(Figure 3.4a). The frequency change of a mode m is ∆f = m∆fr, resulting in a negligible

(a) (b)

Figure 3.4: (a) Reducing the cavity length increases the repetition rate fr. Thus, the comb spacing increases
and shifts the frequency fm by ∆f . The carrier to envelope offset frequency f0 is nearly unaffected. (b) Changing
the pump power affects both fr and f0, but tends to leave a mode somewhere near the center of the spectrum
fixed in frequency. This leads to a large frequency change of f0 for a small change in fr.

change of f0. The pump power influences the phase and the group velocities differently

which allows the control of f0
[86]. In general, also the repetition rate fr is dependent on the

pump power [87,88]. For small changes of power, the relation between the pump power and

f0 shows a linear trend. In a simplified picture, the OFC gets stretched again, but this time

with a different anchor point. A particular comb tooth near the center of the spectrum

will be independent of the power, and the highest frequency change is experienced at

f0 (Figure 3.4b). Utilizing the independent controls of the OFC parameters, it is now

convenient to stabilize them.

3.2.5 OFC Stabilization

If the two beat notes described in the previous section can be held at constant frequencies,

all degrees of freedom of the comb will be constrained relative to the CW laser, and f0 and
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fr will be fixed. Since the invention of the frequency modulation (FM) radio (1933) by

Armstrong [89], modulating and demodulating signals in a frequency range up to 300 GHz

is a technology used in our daily lives. Many modern radio receivers employ in-phase and

quadrature modulation and demodulation schemes [90]. The same technology is adapted to

demodulate the beat note signal into an in-phase I(t) and a quadrature component Q(t)

relative to the reference frequency. In IQ modulation, the signal waveform is expressed

in the form

x(t) = A(t) cos(ωt+ φ(t)) = A(t) cosφ(t)︸ ︷︷ ︸
I(t)

cos(ωt)− A(t) sinφ(t)︸ ︷︷ ︸
Q(t)

sin(ωt), (3.12)

with the amplitude A(t), the phase φ(t) and the reference waveforms cos(ωt) and sin(ωt).

Multiplying the waveforms by cos(ωt) leads directly to the in-phase component

x(t) cos(ωt) =
1

2
I(t) +

1

2
I(t) cos(2ωt)
︸ ︷︷ ︸

LP−→0

− 1

2
Q(t) sin(2ωt)
︸ ︷︷ ︸

LP−→0

≈ 1

2
I(t). (3.13)

The 2ω frequency components are eliminated using a low-pass filter, leaving only the

in-phase component. Analogous to the in-phase component, multiplying the waveform by

− sin(ωt) results in the quadrature component

−x(t) sin(ωt) =
1

2
Q(t)− 1

2
I(t) sin(2ωt)
︸ ︷︷ ︸

LP−→0

− 1

2
Q(t) cos(2ωt)
︸ ︷︷ ︸

LP−→0

≈ 1

2
Q(t) (3.14)

The I and Q demodulation signals can be represented as a vector in a plane, with the

amplitude A(t) =
√
I(t)2 +Q(t)2 and the angle φ(t) = atan2(Q(t), I(t)). The I and Q

signals can be digitized to calculate the angle φ(t) in software, which is then used as the

error signal in a feedback loop (Section 5.3). One of the lasers is controlled by the feedback

loop, which brings φ(t) back to zero. The stabilization of the OFC in this thesis requires

two such feedback loops. The first feedback loop stabilizes the beatnote at 1064 nm (with

frequency ∆f1064) to a fref = 100 MHz reference frequency (Figure 3.5a). The constraining

equation for this can be written as

|fref −∆f1064| = | 100 MHz− f1064︸ ︷︷ ︸
constant

+ f0︸︷︷︸
f0�mfr

+mfr| !
= 0. (3.15)

The dominant factor in this equation is the repetition rate fr, since other factors are

not determined by the frequency comb or are negligibly small. Thus, the beat note at

1064 nm is well suited to feedback using the cavity length and the associated fr. To

stabilize the beat note at 100 MHz, a reference waveform at 200 MHz is divided by two
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3.2. Mode-Locked Laser

Divide by 2
Phase Splitter

(a) (b)

Figure 3.5: (a) Stabilization scheme of ∆f1064 = 100 MHz to a reference waveform at 200 MHz. The I/Q-
demodulation unit, depicted as dashed gray box, returns the in-phase I(t) and the quadrature Q(t) component of
the waveform. The following calculated phase φ(t) is used to stabilize primary fr (b) The scheme on the left shows
the demodulation between two beat notes to stabilize f0. In analogy, the scheme on the right is the requirement
to lock an arbitrary laser, for example at 616 nm, to the OFC.

using a phase splitter, which produces two waveforms with 90° phase difference. These

are mixed with the beat note signal and filtered, generating the I and Q signals described

in Equations (3.13)-(3.14). A subsequent proportional-integral (PI) controller uses φ(t)

calculated from I(t) and Q(t) as an input error signal to generate a control signal. Finally,

the control signal is amplified before being applied to a PZT, that adjusts the cavity length.

The cavity control keeps ∆f1064 and the associated fr constant. A second control loop is

used to stabilize f0. Here the 532-nm beat note is used as the reference input of a second

phase splitter and compared to the 1064-nm beat note at ∆f1064 = 100 MHz. Instead of

an external reference, the beat note frequency ∆f532 is set to 200 MHz (Figure 3.5b left).

Since the phase splitter divides by two, the feedback loop will force the 532-nm beat note

frequency to ∆f532 = 200 MHz. According to Equation (3.10), this behavior of the phase

splitter results in I(t) and Q(t) having a frequency of f0/2

|1
2

∆f532 −∆f1064| = |
1

2
(f532 − (f0 + 2mfr)− f1064 + (f0 +mfr)| =

1

2
f0

!
= 0. (3.16)

Therefore, extracting the phase φ(t) and setting it to zero with a feedback loop forces f0

to zero. The control parameter used in this feedback loop is the laser pump power, which

most just changes the beat note frequency of ∆f532. It was determined experimentally that

the fixed point in the comb spectrum for changes of the pump power is around 900 nm, so

the beat note at ∆f1064 and its control loop experiences negligible disturbance from this

second control loop. The OFC is now fully constrained, the frequency of an additional

CW laser can be precisely determined by measuring the beat note between the OFC

and the CW. Additionally, it is possible to transfer the stability of the OFC onto this

laser, which is, for example, a 616-nm laser with a beat note frequency ∆f616 (Figure 3.5b

right). As an example, if we want to stabilize the beat note at ∆f616 = 100 MHz, we mix

it with a 400-MHz reference frequency fref, to have the sum at 500 MHz. The reference
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input for the phase splitter is fixed at 1 GHz, resulting in two 500-MHz waveforms with

a 90-degree phase difference, which are then mixed with the frequency-shifted beat note.

The constraining equation for the feedback loop based on the beat note with the new CW

laser is

|500 MHz− (∆f616 + fref)| = | 500 MHz− f0 −mfr︸ ︷︷ ︸
constant

− fref︸︷︷︸
adjustable

+f616| !
= 0, (3.17)

and the feedback loop sets φ(t) to zero by controlling the cavity length of the 616-nm

laser. In other words, the CW laser frequency changes, while the OFC parameters remain

constant. Since the locking condition is satisfied for each fref, the frequency of the CW

laser can be changed by changing fref. Details on the experimental setup of the OFC, as

well the electronic components involved in the stabilization are in Section (9.3).
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Chapter 4

Nonlinear Optics

The transmissive medium is one of the essential tools in the manipulation of light. A

prism, for example, changes the propagation direction of a single light ray. The direction

changes for light at different frequencies, but the frequency stays the same. In analogy,

some optical media keep the direction of propagation but change the frequency of the

light wave. The latter is the consequence of the light wave potentially altering the optical

properties of the medium. Essential for light conversion between two different frequencies

is the nonlinear dependence between an optical property of the medium and the power

of the electric field. One simple case of power dependent change of optical properties

is nonlinear absorption inside the medium. The spectroscopic setup described in this

thesis relies heavily on nonlinear processes. We use second-harmonic generation (SHG)

to convert a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm to

532 nm (Section 4.0.1). The wave at 532 nm is used to stabilize the frequency of the laser

to an absorption line in molecular iodine with modulation transfer spectroscopy, which

is based on a nonlinear four-wave mixing process (Section 4.0.4). Essentially, the same

process inside an optical fiber leads to the spectrum broadening of the femtosecond laser

(Section 4.0.2). The resulting optical frequency comb (OFC) serves as a reference between

the various laser systems of the setup. These are all relevant nonlinear processes allowing

the measurement of the electronic transitions of the hydroxyl radical (OH) in this thesis.

One requirement for prospective vibrational excitation of the OH is mid-infrared light.

For this, we have developed an optical parametric oscillator (OPO) (Section 4.0.3), that

makes use of second-order non-linearity to convert the amplified wave of the Nd:YAG

laser at 1064 nm into a light wave around 2.9 µm. This chapter gives an introduction of

nonlinear optics, based on Boyd [91], before going into more detail in explaining the OPO.

The polarizability of a medium is the most used optical property for nonlinear conver-

sion of light, in particular, the nonlinear dependence of the polarization of a material on
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the electric field strength [91]

P (t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

]
, (4.1)

≡ P (1)(t) + P (2)(t) + P (3)(t) + · · · . (4.2)

The polarization P (t) depends on the permittivity of free space ε0, the susceptibility χ(i)

of order i ∈ N and the strength of the electromagnetic field E(t). In the case of linear

optics only the first order of the susceptibility χ(1) is considered. Non-linear processes are

dependent on the second order susceptibility χ(2) or the third order susceptibility χ(3).

The corresponding nonlinear polarizations of order two or three are denoted P (2)(t) or

P (3)(t), respectively. The Maxwell equations describe the light propagation through a

nonlinear medium [91]

∇D = ρ, (4.3)

∇B = 0, (4.4)

∇× E = −∂B

∂t
, (4.5)

∇×H =
∂D

∂t
+ J, (4.6)

with the electric displacement field D = ε0E + P. Thus, the polarization vector P causes

a nonlinear relation between D and E. The Maxwell equations simplifies, considering no

free charges (ρ = 0) and no free current (J = 0) inside the nonlinear medium. Additionally,

the material is nonmagnetic (B = µ0H). The derived optical wave equation is [91]

∇2E− 1

ε0c2

∂2

∂t2
D = 0. (4.7)

The only included approximation refers to infinite plane waves with ∇E = 0. It is

convenient to separate the electric displacement field into a linear and a nonlinear part,

yielding to [91]

D = D(1) + PNL = ε0E + P(1) + PNL ≈ ε0ε
(1)E + PNL. (4.8)

The included approximation is valid for a lossless and dispersionless medium. In detail,

the frequency independent dielectric tensor ε(1) connects D(1) and E. Inside an isotropic

medium, it is replaced by the relative permittivity ε(1) = n2, with the linear index of

refraction n. Finally, the wave equation is [91]

∇2E− n2

c2

∂2E

∂t2
=

1

ε0c2

∂2PNL

∂t2
, (4.9)
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with the vacuum speed of light c = 1/
√
ε0µ0. The second time derivative of the nonlinear

polarization makes the wave equation inhomogeneous. This additional time-varying po-

larization creates new field components. The polarization change is a representation of

an acceleration process of charges inside the medium. This process is analogous to one of

the fundamental theorems of electromagnetism pointed out by Lamour, namely that an

accelerated charged particle generates electromagnetic radiation. The frequencies of this

radiation are calculated using the general description of polarization of Equation (4.2). For

simplicity, further calculations assume an instantaneous interaction between the electric

field and the medium.

4.0.1 Second Harmonic Generation

One of the most common nonlinear processes is the second harmonic generation (SHG).

A monochromatic electromagnetic field describes the initial laser beam

E(t) = Ee−iωt + c.c.. (4.10)

The nonlinear second order interaction with a medium demands a non-vanishing suscepti-

bility χ(2). Inserting Equation (4.10) into the second order polarization of Equation (4.2)

leads to [91]

P (2) = 2ε0χ
(2)EE∗ +

(
ε0χ

(2)E2e−2iωt + c.c.
)
. (4.11)

With respect to Equation (4.9), only terms with a second derivative are important. There-

fore, the constant prefactor does not create an electric field. However, the second part

generates an electric field of twice the initial frequency ω, the second harmonic frequency.

Dependent on the experimental setup, SHG can reach high efficiencies of nearly a full

conversion. Sometimes this process is visualized regarding photon creation and annihi-

lation (Figure 4.1a). In one quantum mechanical process, two photons of energy ω get

(a) (b)

Figure 4.1: (a) Schema of geometric beam propagation after SHG. (b) Schema of the SHG energy level diagram.
The virtual levels are represented by dashed lines (adapted from [91]).

destroyed in exchange for one photon at frequency 2ω. The dashed lines in Figure 4.1b

are not energy eigenstates, but instead, virtual levels induced by the electric field. The

cause of their existence are several real eigenstates, which are potentially far away from

the virtual level. However, for simplicity consider a single real level. Based on the energy
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difference δE between the real and the virtual state, Heisenberg’s uncertainty principle

grants the atom a time ~/δE to reside in this state. The incoming photon makes use of

multiple of these virtual levels without transferring population between two real levels.

The final and initial quantum mechanical state of the atom are identical. Such a process

is denoted as parametric.

4.0.2 Sum- and Difference-Frequency Generation

In analogy to SHG, the sum frequency generation (SFG) and the difference frequency gen-

eration (DFG) is driven by two photons, but of different frequencies ω1 and ω2. Therefore,

the electromagnetic field is

E(t) = E1e
−iω1t + E2e

−iω2t + c.c.. (4.12)

After inserting this field into the second order polarization of Equation (4.2) one obtains [91]

P (2)(t) ∝ ε0χ
(2)
[
E2

1e
−i2ω1t + E2

2e
−i2ω2t + 2E1E2e

−i(ω1+ω2)t + 2E1E
∗
2e
−i(ω1−ω2)t + c.c.

]
,

(4.13)

neglecting constant terms. The terms with 2ω1 and 2ω2 correspond to SHG, while the

two additional terms describe the components of the polarization at the sum ω1 + ω2 and

the difference ω1 − ω2. Dependent on the phase matching condition (Section 4.1), one of

the four electromagnetic fields dominates the others. The phase matching condition is

set by the polarization of the incident beam and the specifics of the nonlinear medium.

SFG is particularly useful in generating a tunable, narrow linewidth light source in the

ultraviolet (UV). As an example, the SFG of a violet and an infrared (IR) laser diode

supplies light at 309 nm for OH spectroscopy [92]. In contrast to sum-frequency generation,

difference frequency generation is better suited to produce a tunable laser source in the

IR. The energy level diagram is a good approach to clarify this process (Figure 4.2b). One

(a) (b)

Figure 4.2: (a) Schematic of beam propagation of the difference-frequency generation. (b) Energy level diagram
of difference frequency generation, with dashed virtual levels (adapted from [91]).

of the incident photons with frequency ω1 > ω2 is destroyed inside the nonlinear medium.

Afterwards, the atom is in the highest virtual state. Simultaneously, two new photons at

frequency ω2 and ω3 = ω1 − ω2 get created, stimulated by the incident electromagnetic

field at frequency ω2. Therefore, the input electromagnetic field at lower frequency ω2
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gets amplified. This effect is denoted as optical parametric amplification (OPA). However,

what is happening without an electromagnetic field at ω2?

4.0.3 Optical Parametric Oscillator

The process of spontaneous conversion of a photon into two lower energy photons is

denoted as parametric fluorescence [93,94]. On its own, it is a weak process compared to other

nonlinear effects, but this changes when it is combined with an optical cavity. Placing the

nonlinear medium into a cavity, resonant to a wave at frequency ω2, traps the fluorescence

light. This is the basic setup of the Optical Parametric Oscillator (OPO) (Figure 4.3). A

Figure 4.3: Schematic setup of an OPO cavity, which is resonant at a frequency ω2. The OPO converts the
initial pump wave at ω1 into the low frequency idler wave at ω3 (adapted from [91]).

detailed description, concerning the cavity design, follows later (Section 4.4). Consider for

now solely the conversion process. The electromagnetic field at ω2 builds up inside the

cavity. Simultaneously, the generated field at ω3 = ω1−ω2 increases. The trapped electric

field inside the cavity at ω2 < ω1 is selected by the phase matching condition, which is

part of a later discussion (Section 4.1).

4.0.4 Third Order Interaction

In this thesis, a third order interaction is a significant process for two different applications.

It supplies the generation of the OFC, which is essential to compare lasers at largely

different optical frequencies (Section 3.2.2). Additionally, it is the basis for the short term

laser stabilization by modulation transfer spectroscopy (MTS) (Section 6.3.3).

The OFC is based on a mode-locked lasers (Section 3.2). The spectrum of such a laser

consists of multiple closely spaced modes, separated by ωrep. The third order interaction

takes place inside a nonlinear crystal fiber behind the laser. Since it is a third order process,

three photons get destroyed in exchange for one new photon. For simplicity, consider two

photons at ω1 and a third at ω2 = ω1 + ωrep. The nonlinear medium converts the three

incoming photons into a photon at ω3 = 2ω1−ω2 = ω1−ωrep. The four involved electrical

fields give it also the name four-wave mixing. Subsequently, this process repeats itself with

all frequencies inside the spectrum, including the newly generated. Finally, the spectrum

behind the crystal fiber consists of many equally spaced modes over a large spectral range,

the supercontinuum.
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The MTS setup relies on the saturation of a transition line inside a gas cell. The

power dependent change of the absorption ensures a nonlinear interaction between the

electromagnetic field and the medium. In analogy to the third order interaction inside the

OFC crystal fiber, the two forward propagating photons at ω1 and ω2 < ω1 interact with

an additional counter propagating photon at ω1 (Figure 4.4a). Energy conservation of

(a) (b)

Figure 4.4: (a) Schematic of the four wave mixing process in the MTS setup. Three collinear photons get
destroyed in favor of a fourth photon at ω3 = ω2. (b) Energy level diagram of the four wave mixing process, with
dashed virtual levels (adapted from [91]).

this third order process requires the generation of a fourth photon at frequency ω3 = ω2

(Figure 4.4b). This new photon is also counter propagating towards the initial two photons,

which is the basis of an error signal for laser stabilization.

4.1 Phase Matching

The electromagnetic field generated by a nonlinear interaction is described by the wave

Equation (4.9). If multiple electromagnetic waves at different frequencies are involved,

then a variety of frequency combinations is imaginable for the newly generated field.

However, the involved electromagnetic waves at different frequencies have different phase

velocities. Additionally, the relative phases of the interacting waves potentially differ based

on the point in space. Only if the phase difference between the involved fields adds up

to zero, nonlinear conversion takes place. Thus, usually, one frequency is dominating the

generated field, which is defined by this phase matching condition. Consider the concrete

example of SFG using plane waves. The spatial dependence of each electromagnetic field

component is given by

Ej(z, t) = Eje
i(kjz−ωjt) + c.c., (4.14)

with the wave number kj = njωj/c and propagation along the z direction. The initial

waves are denoted with the indices j = 0, 1 and the generated wave with j = 3. The

resulting wave frequency is ω3 = ω1 + ω2 (Section 4.0.2), which leads with Equation 4.13

to the nonlinear polarization

P3(z, t) = P (2)(ω1 + ω2)[ei(k1+k2)z + e−i(k1+k2)z] = 4ε0deffE1E2e
i[(k1+k2)z−ω3t] + c.c.,

(4.15)
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Only the combination of the electric fields E1(z, t) and E2(z, t) responsible for SFG is

considered. Additionally, the susceptibility χ(2) has been replaced, for simplicity, with

the effective susceptibility 2deff, which assumes a fixed polarization, a fixed propagation

and the Kleinman symmetry condition [91,95]. Inserting E3(z, t) and P3(z, t) into the wave

Equation (4.9) and using the slowly varying amplitude approximation |∂2E3

∂z2
| � |k3

∂E3

∂z
|

leads to the differential equation [91]

∂E3

∂z
=

2ideffω
2
3

k3c2
E1E2e

i∆kz, (4.16)

where ∆k = k1 + k2− k3 is the wave vector mismatch. This equation describes the spacial

change of the generated wave amplitude E3 as a function of the wave amplitudes E1 and

E2. In general, these amplitudes also have a spatial variation. However, for now, they are

assumed to be constant. The intensity after passing a nonlinear medium is calculated by

integration of Equation (4.16) from z = 0 to z = L, with L denoting the length of the

medium. Squaring the expression of the amplitude yields the intensity [91]

I3 ∝ sinc2

(
∆kL

2

)
= sinc2

(
L

Lcoh

)
, (4.17)

with the coherent build up length Lcoh = 2/∆k. If the length of the nonlinear medium

exceeds Lcoh, then the phase mismatch between the driving waves and the generated wave

becomes significant. After this distance, the generated wave gets converted back into the

initial waves. Thus, maintaining the phase matching condition ∆k = 0 is crucial, with

∆k =
n1ω1

c
+
n2ω2

c
− n3ω3

c
= 0. (4.18)

However, normal dispersion makes it challenging. In this case, the refractive index increases

monotonically for waves at a higher frequency, so n1 > n2 > n3. The phase matching

condition of Equation (4.18) can be written as

(n3 − n2)ω3 = (n1 − n2)ω1. (4.19)

This obviously has no solution, because the left-hand side is negative and the right-hand

side is positive. In an isotropic medium, phase matching is only possible for anomalous

dispersion, like near an absorption feature. One way around this limitation is to make

use of the birefringence displayed by some crystals. The refractive index is now not only

dependent on the frequency of the wave, but also on the direction of the polarization.

According to Equation (4.19) the refractive index n1 at highest frequency is supposed

to be smaller than n2. The polarization providing this condition is dependent on the

orientation of the crystal.
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4.1.1 Angle Tuning

The following discussion is limited to a negative uniaxial crystal, which is characterized

by two equivalent optical axes, labeled â and b̂, and a third optical axis, ĉ. Light polarized

along the â and b̂ axes has a refractive index given by no, and light polarized along the

ĉ axis has a refractive index given by ne < no. The axis ĉ defines the orientation of the

crystal relative to the propagation vector of the light k. If the propagation k is along

ĉ, then no birefringence is displayed, and no phase matching is possible. For a non-zero

angle theta between k and ĉ, the polarization of the light determines the refractive index

experienced by it. If the polarization is perpendicular to the plane containing k and ĉ,

then the beam is denoted as ordinary, with a refractive index no. Conversely, a beam

with polarization parallel to this plane is extraordinary with the refraction index ne(θ),

dependent of the angle θ. For a negative uniaxial crystal, the refractive index ne(θ) is

smaller then no. In the case of SHG, with two incoming waves at frequency ω, the generated

wave at higher frequency 2ω must experience the refractive index ne(θ). This relation is

described by [91]

1

ne(θ)2
=

sin2(θ)

n̄2
e

+
cos2(θ)

n2
o

. (4.20)

The two limits of the refractive index are ne(0°) = no and ne(90°) = n̄e, with the principal

value n̄e. Therefore, the initial waves have ordinary polarizations and the generated wave

extraordinary polarization (Figure 4.5). In general, the polarizations of the two waves

Figure 4.5: Schematic of SHG for an uniaxial crytal, with an angle θ between the propagation vector k and the
optical axis ĉ (adapted from [91]).

at lower frequencies define the phase matching type. If both low-frequency waves have

the same polarization, it is denoted as type I phase matching [95]. The phase matching

condition is in this case

ne(2ω, θ) = no(ω), (4.21)

with Equation (4.20) leaving at most one solution for θ. For an angle between 0° and 90°,
the Poynting vector and the propagation vector are not parallel for waves experiencing the

extraordinary refractive index. Thus, the Poynting vectors of the ordinary beam and the

extraordinary beam are different. The angle θ controls the phase matching condition and

the walk-off between the two beams, which is always non-zero between 0° and 90°. Only

a finite range of angles supplies sufficient phase matching at an accepted walk-off angle;
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this is the critical phase matching condition. The exception of no walk-off is an angle of

θ = 90°, denoting the non-critical phase matching condition. Thus, it is popular to fix

the angle at θ = 90° and tune the temperature instead of the angle for phase matching

without the walk-off effect. Practically, this necessitates a strongly temperature dependent

birefringence of the crystal, like in lithium niobate.

4.2 Quasi-Phase-Matching

Consider the case of non-critical phase matching (Section 4.1.1), with the optical axis

ĉ perpendicular to the propagation direction of the wave (Figure 4.6a). Since the sign

(a) (b)

Figure 4.6: (a) Schematic of a homegeneous medium with one optical axis ĉ. (b) Schematic of a periodically
poled medium with an alternating optical axis and the period length Λ (adapted from [91]).

of the nonlinear coupling coefficient deff depends on the orientation of ĉ, it stays the

same for an uniaxial crystal. In general, it is not feasible to achieve the temperature

required for non-critical phase matching, which leads to a finite coherent buildup length.

The newly generated wave gets converted back before reaching the end of the nonlinear

medium. However, the walk-off effect can still be avoided, using a technique known as

quais phase matching (QPM). The basis of QPM is a nonlinear material, with an optical

axis ĉ, inverted multiple times along the propagation direction of the wave, with the period

length Λ (Figure 4.6b). The change of the ĉ orientation flips the sign of deff, which arrests

the back conversion of the nonlinear process. Thus, the sign of the coupling coefficient

becomes spatial dependent with a square-wave function and its Fourier representation

d(z) = deff sign (cos(2πz/Λ)) = deff

∞∑

m=−∞

Gm exp(ikmz). (4.22)

In order to maximize the coupling coefficient, the Fourier coefficient

Gm = sinc(mπ/2) with G0 = 0, (4.23)

needs to be as large as possible. The maximum is obtained at m = 1, with the fundamental

amplitude G1 = (2/π). Additionally, the periodic structure of the material allows defining

a grating vector km = 2πm/Λ, which adds to the phase matching condition. The grating

vector supplies QPM, where phase matching is not possible solely based on the involved

field vectors.
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4.2.1 SHG Inside a Periodically-Poled Medium

As an example, consider the case of SHG inside a periodically-poled crystal. The coupled

differential equations for SHG can be derives the same manner as Equation (4.16), yielding

dE1

dz
=

2ideffω
2
1

k1c2

∑

m

GmE2E
∗
1e
−i(∆kQ−2km)z, (4.24)

dE2

dz
=
ideffω

2
2

k2c2

∑

m

Gm|E1|2e−i∆kQz, (4.25)

with the quasi wave vector mismatch of the SHG

∆kQ = 2k1 − k2 + km. (4.26)

The grating vector km has to compensate the wave vector mismatch caused between 2k1

and k2. Since maximum conversion is achieved at m = 1, the poling-period is customized

to satisfy the condition ∆kQ = 0, resulting in a period length of Λ = 2π/(2k1−k2). In the

case of SHG inside a periodically-poled lithium niobate (PPLN) crystal with a pump wave

at 1064 nm, this results in Λ ≈ 7 µm. It took around 30 years from the first suggestion

of fabricating this structures 1962 [96] to an experimental breakthrough around 1993 [97],

by applying an external electrical field. Figure 4.7a shows a solution to Equations (4.24)

and (4.25) with the initial conditions E1(0) = 1 and E2(0) = 0. Characteristic for this
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Figure 4.7: (a) Calculated field intensities based on the different phase matching conditions. Perfect phase
matching (PPM) results in a linear increase of the intensity with growing propagation distance. Quasi phase
matching (QPM) increases monotonic with a periodic structure. Phase mismatching (PMM) results in no gain of
the intensity. (b) QPM case for a large number of poling periods shows a nonlinear decrease of the incoming field
amplitude |E1| and an increase of the generated amplitude |E2|.

process is a wavelike gain of the field strength. The period Λ is here twice the coherent

buildup length Lcoh. After the distance Lcoh, the relative phases of the involved waves

have shifted such that the E2 field would convert back to E1 if no change were made

to the medium, as shown in the phase mismatching (PMM) curve. Because the sign of
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the nonlinear coefficient d(z) changes at z = 0.5Λ, though, the relative phases are now

correct for additional conversion of E1 to E2. The gain is less than in the perfectly phase

matched (PPM) case, where 2k1 = k2 and km = 0, but the sign change of the nonlinear

coefficient ensures a monotonic growth of the amplitude. The periodic structure of the

SHG amplitude growth is negligible, considering several more periods (Figure 4.7b). The

more interesting effect is the nonlinear rise of the amplitude |E2|, due to a depletion of

the incoming field amplitude |E1|. This behavior is the same, independent of QPM in a

periodic poled crystal or PPM in a single uniaxial crystal. At the limit z →∞, the input

field amplitude |E1| gets completely converted into |E2|, following a tanh(z) function [96].

4.2.2 DFG and Parametric Amplification with QPM

The basis of an OPO is DFG and parametric amplification. Due to the benefits of zero

walk-off and high efficiency, the PPLN crystal is one of the most common nonlinear media

to generate light in the mid-IR. One of the differential equations for DFG has been derived

previously (Section 4.1). The following additional differential equations are derived analog

and expanded for a periodic crystal, with

dE1

dz
=

2ideffω
2
1

k1c2

∑

m

GmE3E
∗
2e
−i(∆kQ−2km)z, (4.27)

dE2

dz
=

2ideffω
2
2

k2c2

∑

m

GmE3E
∗
1e
−i(∆kQ−2km)z, (4.28)

dE3

dz
=

2ideffω
2
3

k3c2

∑

m

GmE1E
∗
2e
−i∆kQz, (4.29)

and the quasi wave vector mismatch of DFG

∆kQ = k3 − k1 − k2 + km. (4.30)

In contrast to SHG, the aim is to generate a field with a lower frequency. For simplicity,

consider an undepleted pump wave with the constant amplitude |E3| at highest frequency

ω3 > ω2 > ω1. Furthermore, spontaneous down-conversion yields a field amplitude |E1| >
0. The effect of parametric amplification is illustrated by setting the field amplitude

|E2| = 0. Solving the differential equations with this boundary conditions shows an

exponential growth for both field amplitudes |E1| and |E2| (Figure 4.8a). An energy level

diagram helps to understand this process (Figure 4.8b). The initial field with frequency

ω3 pumps the highest virtual state. Energy conservation is now possible by two path ways,

either through DFG between ω3 and ω1 to produce ω2 or between ω3 and ω2 to produce

ω1. Therefore, photons at ω1 stimulate the generation of photons at ω2 and vice versa.

This process is denoted as parametric amplification. In the case of an OPO, the wave

at the frequency ω1 is trapped inside the cavity, which is denoted as signal. Building up
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Figure 4.8: (a) Calculated exponential parametric amplification of both generated field amplitudes. The pump
field amplitude |E3| experiences for the sake of simplicity no depletion. (b) Energy level diagram of DFG, with
dashed virtual levels.

the signal wave after several round trips inside the cavity leads to an amplification of the

mid-IR at ω2, which is denoted as idler. It is convenient to couple the idler directly out

of the cavity (Section 4.0.3).

4.3 Focused Beams

The previous sections assumed an infinite plane wave interacting with the nonlinear

medium. This is a simplification. In reality, all beams have a finite transverse extent.

The situation is again described with the wave Equation (4.9). However, this time, the

transverse variation of the field E(r, t) and P(r, t) are also considered. The paraxial

approximation neglects the contribution ∂2E/∂z2, since the wave is propagating along

the z-axis, and yields the paraxial wave equation of a freely-propagating wave (P = 0) [91]

2ik
∂E

∂z
+∇2

TE = 0. (4.31)

Furthermore, it is convenient to express the field vector as a scalar E(r, φ, z), as well

the transverse Laplace operator in cylindrical coordinates ∇2
T = (1/r)(∂/∂r)(r∂/∂r) +

(1/r)2∂2/∂φ2. A solution for this differential equation is the scalar approximation [98]

E(r, z) ∝ w0

w(z)
exp

(
− r2

w2(z)

)
exp

(
− ikr2

2R(z)

)
exp (−i[kz + φ(z)]) , with (4.32)

w(z) = w0

√
1 +

(
z

zR

)2

(4.33)

A vector solution of Equation 4.31 can be found elsewhere [99]. The scalar solution of

the differential equation introduces the minimum waist w0, the Rayleigh length zR, the

radius of curvature of the wavefront R(z) = z(1 + (zR/z)
2) and the Gouy phase φ(z) =
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− arctan(z/zR). In general, the waist w(z) is associated with the radius of the beam, at

which the field amplitude decays to 1/e of its maximum value (Figure 4.9a). The transverse
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Figure 4.9: (a) Transverse Gaussian field amplitude with the waist w(z). (b) The minimum beam radius of a
Gaussian laser beam at z = 0 is described by the waist ω0. The associated longitidunal parameter is the confocal
parameter b.

intensity distribution of this wave is everywhere Gaussian. Considering the propagation of

the wave along the z-axis, z = 0 marks the focal point. The minimum waist w0 increases

by a factor of
√

2 after reaching the Rayleigh length zR = πw2
0/λ (Figure 4.9b). Twice

this distance denotes the confocal parameter b = 2zR.

The Gouy phase represents the phase difference between the Gaussian beam and an

infinite plane wave [100]. Along the propagation of a Gaussian beam from z = 0 to +∞
the phase difference increases to the limit φ = −π/2 → ∞. The wavefront curvature

reaches a minimum at this plane wave limit. However, in the limit of z → −∞, φ goes

to +π/2. The phase change of a Gaussian beam passing the focal point can influence

the conversion inside a nonlinear medium. The evolution of the Gouy phase through the

waist modifies the wavevector slightly. The wavevectors are all parallel for plane waves.

Thus, a positive wavevector mismatch reduces the efficiency of the nonlinear process

(Figure 4.10a). However, a Gaussian beam contains a spread of nonparallel wavevectors

(a) (b)

Figure 4.10: (a) Schematic of the SHG wavevector mismatch ∆k > 0, for plane waves. (b) Schematic of one
possible case of SHG wavevector mismatch ∆k > 0, for a Gaussian beam (adapted from [91]).

(Figure 4.10a). This spread allows an efficient nonlinear conversion at positive wavevector

mismatch. In contrast, a negative wavevector mismatch reduces the conversion efficiency.

Thus, it is convenient, if the evolution of a SHG wave is slower compared to the initial wave.

Analytical solutions are only possible for special cases, such as plane waves, which generally

means the Gouy phase gets neglected. A more detailed analysis can be done by separating

a nonlinear medium into a grid and solving Equation (4.31) at different grid points using

the finite element method (FEM). One parameter emerging from theoretical predictions

for maximum nonlinear conversion is ξ = Lc/b, with the length of the nonlinear medium

Lc
[101]. Studying this parameter for SHG or DFG is done elsewhere [101,102]. Justifiable
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values are typically in the range 1 < ξ < 7. The Gouy phase shift, pushes the optimum

ξ parameter at maximum nonlinear conversion to slightly larger values, compared to

simulations not involving the Gouy phase [103,104]. A series of optical elements along the

propagation of the Gaussian beam are defining the ξ paramter.

4.3.1 ABCD Matrix Formalism for Gaussian Beams

Focusing a Gaussian beam into a nonlinear medium requires an optical element like a

lens or a curved mirror. The most powerful tool calculating the beam properties after

passing these optics is the ABCD matrix formalism. It allows theoretical predictions of

the ξ parameter inside a nonlinear medium, as well as the determination of stable cavity

dimensions. The basis for this formalism is the paraxial ray theory [105]. In this idealized

picture, a light ray is described using the slope of its propagation relative to the optical

axis, dr/dz, and its transverse offset, r(z). The free space propagation of a ray preserves the

slope, but changes the transverse offset to r2 = r1+Ldr/dz after a distance L (Figure 4.11a).

In contrast, the propagation through a thin lens with focal length f preserves the transverse

(a) (b)

Figure 4.11: (a) Schematic of free ray propagation over a distance L, changing the transverse distance r to the
optical axis z. (b) Schematic of refraction of a ray at a lens, changing the slope dr/dz (adapted from [105]).

offset r2 = r1, but changes the slope to dr2/dz = −(1/f)r1+dr1/dz. The goal is to describe

these transformations in matrix form [105]

r2 =

[
r2

r′2

]
=

[
A B

C D

]
×
[
r1

r′1

]
= Mr1, (4.34)

with the reduced slope r′ ≡ ndr/dz, containing the local refractive index n at the ray

position. This definition leads to the free space propagation matrix F and the thin lens

matrix L given by

F (L, n) =

[
1 L/n

0 1

]
and L(f) =

[
1 0

− 1
f

1

]
, respectively. (4.35)

In general, one important property of all ray matrices is M = AD−BC = 1. The thin lens

matrix L is an approximation. A product of multiple matrices supplies a more-accurate

description. For example, a biconvex lens requires an incidence matrix at a curved interface

Ic and free space propagation F inside the medium until the next curved interface Ic. The

resulting matrix is M = Ic · F · Ic, with the curved interface matrix Ic listed in Table 4.1.

A flat interface is described at the limit R→∞. The incidence angle is denoted as θ. The
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Table 4.1: Ray matrices for curved interfaces with respect to incidence angle. If the ray stays in the plane of
incidence, it is denoted as tangential. If it is perpendicular to the plane of incidence, it is called sagittal [105].

tangential sagittal

Curved Mirror Mc

[
1 0

2
R(cos θ)−1 1

] [
1 0

2
R cos θ 1

]

Curved Interface Ic

[
cos θ2
cos θ1

0
n2 cos θ2−n1 cos θ1
R cos θ1 cos θ2

cos θ1
cos θ2

] [
1 0

n2 cos θ2−n1 cos θ1
R 1

]

angles θ1 and θ2 between two media with the refraction indices n1 and n2 are described by

Snell’s law. Thus, complicated optical systems including multiple lenses and mirrors are

easily modeled using the mentioned matrices. After evaluating the product, one obtains

a single ABCD matrix. The ABCD matrix formalism can also be used to describe the

effect of an optical system on a Gaussian beam with [105]

nf
qf

=
A qi
ni

+B

C qi
ni

+D
, with

1

q
=

1

R
− i λ0

πnω2
. (4.36)

The parameters qi and qf describe the properties of the Gaussian beam before and

after passing the optical system, respectively. The parameter qi can be estimated by

measuring the Gaussian waist at different positions along the optical axis. Frequently, the

optical system is designed to produce a specific qf parameter, corresponding to a specific

ξ parameter inside a nonlinear crystal. This adjustment is necessary to get maximum

conversion efficiency. A particular case is the design of an OPO cavity. The lasing mode

inside the cavity is defined by the cavity dimension independent of the pump beam.

4.4 Optical Parametric Oscillator

Spontaneous down conversion inside an OPO cavity is an extremely weak process on

its own, which requires a resonant cavity for parametric amplification (Section 4.2.2). In

general, the trapped signal wave inside the cavity drives the nonlinear conversion. The

highest frequency wave serves as a pump and passes the nonlinear medium only a single

time. However, both beams are focused inside at the center of the nonlinear medium.

The resulting ξ-parameter of the pump and the signal wave control the efficiency of the

nonlinear conversion (Section 4.3) In detail, maximum conversion is achieved for a slightly

smaller ξp parameter relative to the ξs parameter [102]. Thus, shaping the laser beam with

optics based on predictions of the ABCD matrix formalism is crucial.
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4.4.1 Bow Tie Resonator

One strength of this ABCD matrix formalism is the analysis of periodic focusing systems,

for example, a set of optics that direct a beam along a closed path [105]. This system can

be as simple as the two curved mirrors of an optical resonator. The periodic system of

an optical cavity is characterized by the eigenvalues of the ABCD matrix describing one

round trip. These are particularly helpful in analyzing the stability of the resonator. When

building an OPO, one must choose an appropriate cavity design. The preferred design

for maximum stability is a ring resonator in bow-tie configuration, which works without

an optical diode. In a ring resonator, the signal beam passes the nonlinear medium only

once by one round trip, while in a linear cavity, the beam passes the nonlinear medium

twice, which might cause potential thermally induced instabilities (Section 4.4.2).

The cavity design consists of two curved and two flat mirrors (Figure4.12). The gen-

Figure 4.12: (a) Schematic bow tie rig cavity design, with a periodic poled nonlinear medium of length Lc1 and
an etalon of thickness Lc2. The plane of reference is placed in the center of the nonlinear medium.

erated signal wave propagates collinear with the pump wave, except it stays inside the

cavity. One round trip is completed after the reflection at the first curved, the first flat,

the second flat and the second curved mirror. The two curved mirrors focus the signal

wave at two points inside the cavity, at d1/2 and d2/2. The cavity angle α defines the

incidence angle of the signal wave at the mirrors. It is large enough to let the laser beam

pass the nonlinear crystal but as shallow as possible to keep astigmatism small. Between

the two curved mirrors, at d1/2, is the nonlinear medium resting, for instance a PPLN

with refraction index nc1. An etalon with the refractive index nc2 is placed at d2/2, for

additional frequency selectivity of the OPO (Section 4.4.3).

The resonator matrix describes the propagation of a light ray, starting at a reference

plane and ending after one round trip on the same plane. The reference plane is placed
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in the center of the nonlinear medium by the matrix

M =F (Lc1
2
, nc1) · F (d1−d2

2
, 1) ·Mc(R) · F (d3, 1) ·Mc(∞) · F (d2−Lc2

2
, 1)· (4.37)

F (Lc2, nc2) · F (d1−d2
2
, 1) ·Mc(∞) · F (d3, 1) ·Mc(R) · F (d1−Lc1

2
, 1) · F (Lc1

2
, nc1),

(4.38)

with the path way d3 = (d1 + d2)/(2 cos(2α)) between the curved and the flat mirror. The

beam is characterized only at the reference plane. For analyzing the stability, the location

of the reference plane is unimportant. However, for later consideration, it is convenient

to know the beam waist at this position. The eingenvalues of a general ABCD matrix

are [105]

λ± = m±
√
m2 − 1, with m =

A+D

2
. (4.39)

Assuming −1 ≤ m ≤ 1 leads to the complex eigenvalues λ± = cos θ ± i sin θ = e±iθ of

magnitude one, with m ≡ cos θ. If a ray vector inside the cavity is expressed as a linear

combination of eigenvectors, for example, r0 = c+r+ + c−r−, the resulting ray vector after

n round trips can be computed using [105]

rn = Mnr0 = Mn(c+r+ + c−r−) = c+λ
n
+r+ + c−λ

n
−r−. (4.40)

Inserting the eigenvalues λ+ and λ− leads to rn = c+r+e
iθ + c−r−e

−iθ. Therefore, the

ray oscillates about the optical axis. It does not pass the same transversal point in the

reference plane after each round trip, but it stays confined. Thus, a cavity with |m| < 1 is

stable. A Gaussian beam is a cluster of multiple light rays. The dimensions of the cavity

determine the values of the Gaussian beam parameter q that are unchanged after one

round trip through the cavity. In general, the initial Gaussian beam at the reference plane

with qi is described after one round trip by qf on the same plane (Equation 4.36). If the

beam is self-consistent, then it returns after one round trip to its initial value qf = qi.

The two stable Gaussian modes in a resonator are determined from the eigenvectors of

the resonator matrix [105]

n

q±
=
D − A

2B
± 1

B

√
m2 − 1 =

D − A
2B

± i

B

√
1−m2 =

n

R
− i λ0

πnw2
. (4.41)

One of these solutions represents a confined Gaussian beam, in case of a stable resonator,

which means the waist w of the Gaussian beam has a real and positive value. In contrast,

the other eigenvalue represents a nonphysical solution. Thus, the two Gaussian beam

parameters of the real and geometrically stable resonator (|m| < 1) are [105]

R =
2Bn

D − A and w2 =
|B|λ0

π

√
1

1−m2
. (4.42)
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As an example, consider a cavity angle of α = 9°, a radius of curvature for the two

focusing mirrors of R = 100 mm, an yttrium aluminum garnet (YAG) etalon thickness of

3 mm and a PPLN of 50 mm length. The beam profile is only for a distinct combination

of d1 and d2 circular at the center of the nonlinear medium (Figure 4.13a). Thus, setting
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Figure 4.13: (a) Calculated example of possible bow tie cavity dimensions, for a radius of mirror curvature of
R = 100 mm and an etalon thickness of Lc2 = 3 mm (Equation (4.37)). The criterion is maximum stability m = 0
or a round beam profile at the center of the nonlinear medium. (b) Calculated tangential and sagittal beam waists
for a fixed cavity parameter d2 = 171.3 mm.

the dimension d2 = 171.3 mm allows only one value d1 = 136.8 mm. The beam waist is,

in this case, w = 57.5 µm. For any other value, the beam is elliptical. The tangential

and sagittal waist inside the reference plane is calculated separately (Figure 4.13b). The

stability parameter for this cavity dimension is ms = −0.1 and mt = −0.3 for the sagittal

and the tangential component, respectively. This is inside the allowed range of a stable

cavity of |m| < 1, but apparently with a tendency to negative m values. It is convenient,

for comparison, to take also a look at a cavity design closest to m = 0. Astigmatism

prevents m = 0 on both beam axis, thus further calculation considering an ideal cavity

with no astigmatism where α = 0° (Figure 4.13a). Keeping the dimension d2 = 171.3 mm

fixed leads to a cavity parameter d1 = 140 mm. The resulting stability parameters are now

ms = 0.17 and mt = −0.08 for α = 9°. The beam is no longer circular at the cavity design

point, but the astigmatism increases only to (wsag−wtan)/wsag ≈ 4%. The maximum level

of astigmatism is reached between the two flat mirrors with (wsag − wtan)/wsag ≈ 12%.

Small astigmatism also justifies the cavity design based on α = 0°, which is the design

choice for the OPO in this thesis.

4.4.2 Thermal Effects

The previous consideration of the OPO stability left out absorption inside the nonlinear

medium. This effect causes a rise in temperature along the propagation axis of the

Gaussian laser beam. Regions of the crystal exposed to a higher field intensity have a

higher temperature than those exposed to a lower intensity. This temperature gradient
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leads to a radially changing index of refraction. Instead of a free propagation inside

the nonlinear medium, the beam gets focused by the thermal lens. The ABCD matrix

associated with this duct is [105]

D(γ, z, n) =

[
cos(γz) (n0γ)−1

−(n0γ) sin(γz) cos(γz)

]
with

n(r) = n0 − 1
2
n2r

2,

γ =
√
n2/n0.

(4.43)

The ray propagating along the z axis experiences the refraction index n0, while a ray at

an off-axis transverse position r experiences a different index of refraction, which depends

on the second derivative n′′0 = n2. In general, it is challenging to determine the axial

temperature dependence of this matrix. Thus, some authors [106] prefer instead to use a

thin lens matrix (Equation (4.35)) in the middle of the crystal with the focal length [106,107]

fT =
πKc

αPc(dns/dT )

w2

Lc
. (4.44)

Crystal heating measurements give an estimation for the absorption coefficient α ≈ 0.08 %

of a PPLN crystal at λs = 1611 nm [106,108]. The thermal conductivity of a MgO-doped

(5 mol%) lithium niobate crystal is Kc = 4.02 W/mK [106] and the temperature dependence

of the crystal refractive index is dns/dT = 5 · 10−6/K [109]. Assuming a signal power of

Pc = 50 W and a crystal length of Lc = 50 mm results in a focal length about fT ≈ 4 mm.

In the case of linear cavities, this might cause bi-stability [106]. A precaution against the

thermal lens is a tightly focused beam (ξ ≈ 2) for higher pump depletion [106]. This method

is counter-intuitive since a large waist decreases the power density and increases the focal

length of the lens (Equation (4.44)). Additionally, the dimension d1 might be chosen

slightly larger relative to the cold cavity stability center, to consider the thermal lens

in advance [110]. However, a thermal lens is of less importance for ring cavities, due to a

lower temperature increase. This statement is valid as long as the absorption of the idler

beam is negligibly small. Consider a MgO-doped (5 mol%) PPLN for spectroscopy in the

mid infrared between 2.5 µm and 4 µm, with a discrete set of poling periods of different

length Λn. A typical set of seven poling periods for a mid-IR OPO goes, for example, from

Λ1 = 31.5 µm to Λ7 = 28.5 µm in steps of 0.5 µm (Figure 4.14a). Estimating the phase

matching condition for planes waves with Equation (4.30) yields

1

Λn

=
n(λp, T )

λp
− n(λs, T )

λs
− n(λi, T )

λi
, (4.45)

where n(λ, T ) is the wavelength and temperature dependent refraction index of a MgO-

doped (5 mol%) PPLN crystal [111]. The pump wavelengths λp = 1064 nm leads to a signal

wavelength of λs = (1/λp − 1/λI)
−1. For producing the 2.7 µm to 2.9 µm light needed to

excite the fundamental vibrational transitions of OH, only the two longest poling periods

with Λ1 = 31.5 µm and Λ2 = 31.0 µm satisfy the phase matching condition at reasonable
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Figure 4.14: (a) Theoretical temperature dependence of the phase matching condition of a MgO-doped (5 mol%)
PPLN crystal [111]. The congruent poling periods are Λn = 32 µm− n · 0.5 µm with n ∈ [1, 2, ··, 7]. (b) Only two
poling periods are suited for nonlinear conversion to target wavelengths around 2.7 µm and 2.9 µm driving a 1
photon and 2 photon transition in the OH, respectively. In the vicinity of the target wavelengths, there is also an
absorption feature in the crystal around 2.829 µm [106].

temperatures (Figure 4.14b). Concerning the idler absorption inside the PPLN crystal,

two wavelength regions are worth mentioning, the phonon absorption above 4 µm and

an absorption peak around 2.829 µm [106]. At the peak of the absorption feature, a 5 cm

long crystal absorbs more than 80 % [106]. Without the MgO-doping of the crystal the

absorption peak would overlap with the wavelength needed for two-photon vibrational

spectroscopy on OH [112] (Figure 4.14b). Fortunately, the MgO-doping shifts the absorption

line in between the two wavelengths of interest for OH spectroscopy.

4.4.2.1 Spectral Instabilities

The temperature distribution inside the crystal plays an important role in selecting the

phase matching bandwidth. Additionally, a temperature rise caused by absorption leads

to spectral instabilities. Above a critical pump level, the OPO signal line width might

experience a broadening [113]. Increasing the pump power further, the OPO starts to emit

multiple modes over a frequency range larger than the bandwidth of the gain profile.

One reason is spontaneous Raman scattering, caused by phonons inside the crystal [114,115].

At high powers, this leads to a stimulated Raman scattering of the signal wave, adding

satellite peaks to the spectrum [113]. The frequency shift of Raman lines relative to the

signal frequency is constant and independent of the poling period. However, some modes

change monotonically with the poling period of the PPLN crystal. These modes are

associated with cascade optical parametric oscillations [116]. The ideal OPO operation

describes the conversion of a pump wave λp into an idler λ
(1)
i and a signal wave λ

(1)
s

(Section 4.0.3). The wave vectors of the pump and the idler wave are both in the forward
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direction (Figure 4.15a). At high powers, however, the signal acts as pump wave itself,

(a) (b)

Figure 4.15: (a) Schema of the quasi wave vector mismatch for the ideal OPO operation. (b) Conversion to an

additional wave with k
(2)
s caused by backward oscillation of an idler wave with k

(2)
i (adapted from [116]).

which is converted into a second signal wave with λ
(2)
s (Figure 4.15b). The frequency

difference between the initial and the additional signal waves depends on the phase

matching condition. In contrast to the previous wave vector orientations, the idler can

also propagate in the direction opposite to the signal and pump, denoted as a parametric

backward oscillation (Figure 4.15b). As an example, for λ
(1)
s = 1.7 µm and a period length

of Λ2 = 31 µm, the secondary wavelengths of signal and idler are around λ
(2)
s = 2.8 µm and

λ
(2)
i = 4.3 µm. Those wavelengths are in general unwanted. A simple solution to this issue

along with the Raman scattering is the reduction of the intra-cavity signal power. It is

convenient to couple the signal power out with one partly transmissive mirror. Optimum

OPO operation of a bow tie cavity has been observed at a signal wave output of around

3 % [108]. The suggested signal output of a linear cavity is 4 % or larger, to ensure reliable

single mode operation [106]. The limit of the circulating power inside the cavity additionally

increases the idler power, as well enhances the beam quality factor M2, corresponding to

an ideal Gaussian beam [108].

4.4.3 Frequency Selection

Consider the OPO cavity is stable at single-mode emission. Now it is convenient for

spectroscopic measurements, to tune the lasing frequency. A coarse way to change the

emission frequency is increasing or lowering the temperature of the PPLN crystal. One

approximation of the phase matching gain profile is

I = sinc2

(
2πLc

Λ(λp, λs, T )
− 2πLc

Λ2

)
. (4.46)

The following calculations assume the bow tie cavity design of Section 4.4.1, a PPLN

crystal of length Lc = 5 cm and a period length Λ2 = 31 µm. The temperature and

wavelength dependent period length Λ(λp, T ) is calculated with Equation (4.45). Thus,

the resulting phase matching gain profile has a full width at half maximum (FWHM)

around 100 GHz (Figure 4.16a). A stable single-mode OPO lases at the cavity mode closest
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Figure 4.16: (a) Schema of the frequency selectivity inside an OPO cavity. The phase matching profile of the
PPLN crystal allows a coarse tuning of the lasing wavelength. (b) A more precise frequency selectivity is supplied
by a thin etalon. The material and the thickness of the etalon determines the final gain profile.

to the highest gain. The cavity modes are separated by the free spectral range

FSR =
c

ndtotal

= 428.46 MHz, (4.47)

with the refraction index in air n ≈ 1 and the total optical round trip path length

dtotal = 699.7 mm.

The phase matching condition of the PPLN supplies nearly no frequency selectivity

(Figure 4.16b). Without frequency selective elements inside the cavity, the lasing mode

is defined by parasitic etalon effects or absorption features caused by impurities of the

nonlinear medium. These spurious frequency selective losses modify the gain profile and

create local maxima and minima [106]. The lasing mode can stay at the absorption related

maximum of the gain medium and resist temperature fluctuations of the PPLN crystal

of as much as 100 mK [106]. Thus, thermal-locking cancels noise fluctuations induced by

temperature changes, but also prevents tuning of the OPO signal frequency. However,

frequency tuning can be achieved by adding an etalon into the OPO cavity [117]. The low

etalon thickness d allows a significant spacing between the transmitted interference fringes.

The second important parameter of a Fabry-Perot interferometer like the etalon or OPO

cavity is the coefficient of finesse F = 4R/(1 − R)2, which is a measure of the spectral

width of the modes inside the interferometer and increases with the reflectivity R. A higher

reflectivity of the cavity mirrors leads to a narrower mode profile. The reflectivity at the

etalon surfaces is dependent on the refraction index n of the material and the polarization

state of the light wave. In the case of p-polarized light, the reflection coefficient is given

by the Fresnel equation

Rp =

∣∣∣∣
cos θo − n cos θi
cos θo + n cos θi

∣∣∣∣
2

. (4.48)
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Snell’s law sin θo = n sin θi describes the relation between the angle outside the medium

θo and the angle inside the medium θi. Since the reflectivity of the etalon surfaces is much

lower than the reflectivity of the cavity mirrors, the finesse of the etalon is several orders

of magnitude smaller than that of the cavity. It is convenient to calculate the transmission

profile of an etalon to illustrate the influence of different etalon materials and thicknesses.

The transmission of an etalon is described in approximation by the Airy function [118]

I =
1

1 + F sin2(φ/2)
with φ =

4π

λ
nd cos(θi). (4.49)

However, to study the etalon in more detail, it is necessary to calculate the transmission for

a Gaussian electromagnetic field (Equation (4.32)). First, the incident beam gets refracted

at the etalon surface. The propagation direction inside the etalon changes according to

Snell’s law. Some fraction of the beam experiences a back and forth reflection inside the

etalon, which introduces the walk-off X = 2d sin(θt) relative to the initial beam. The

magnitude of the walk-off depends critically on the etalon thickness d and the internal

reflection angle θi of the etalon. Multiple m ∈ N of this steps lead to the total transmitted

electric field [118]

Et(x, y, z) =
∞∑

m=0

(1−R)RmEm(xm, y, zm), (4.50)

with xm = x−mX and zm = z + 2md cos(θi). As an example, the transmissions curves

have been calculated for a 800 µm thick silicon etalon and a 3 mm thick YAG etalon at

a zero incidence angle (Figure 4.16a). The higher refractive index nSi ≈ 3.4 [119] of silicon

relative to the refractive index nYAG ≈ 1.8 [120] of YAG leads to a higher finesse of the

silicon etalon. Thus, transmission fringes are more pronounced (Figure 4.16a). However,

the smaller FSRYAG = c/(2nd) = 27 GHz of the YAG etalon relative to the silicon etalon

FSRSi ≈ 54 GHz partly compensates for it. The resulting mode selection inside the cavity

improves with both etalons (Figure 4.16b). The silicon etalon is here superior to the YAG

etalon.

Assuming the lasing mode is successfully selected with the etalon, the next step is to

find a way to tune the frequency of the etalon’s transmission maximum. One possibility

is tiling the etalon, which changes the optical pathway inside. For example, the calculated

frequency tuning of the YAG etalon is around 8 GHz/degree2, and the frequency tuning

of the silicon etalon is around 2.2 GHz/degree2. Therefore, the silicon etalon is slightly

better suited for angle tuning. However, with increasing incidence angle the transmission

of the etalon decreases. The beam walk-off inside the etalon causes the lower transmission.

It becomes critical for thick etalons and small beam waists. A one percent reflection level

is reached at an incidence angle of 2.4° for the YAG etalon, while the thinner silicon etalon

reaches the same reflectivity at 6.8°. Considering a power of around 100 W is circulating
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inside the cavity, a one percent reflection at the etalon would result in an additional Watt of

power being coupled out of the cavity. Additionally, the etalon tilt distorts the beam profile

and slightly changes the alignment of the cavity. Thus, it is convenient to avoid potential

large reflections and alignment issues by changing the etalon temperature instead of the

tilt angle. This calculation requires consideration of the temperature dependent change

of thickness give by the refraction index dn/dT of YAG [121] and silicon [119], respectively.

Equally important is the change of the thermal expansion coefficient α(T ) for YAG [121]

and silicon [122], respectively. The approximate temperature tuning coefficient for the YAG

etalon is around 2 GHz/K and for the silicon etalon around 9.4 GHz/K. The frequency

selectivity of the OPO, in this thesis, relies on the 3 mm thick YAG etalon (Section 9.5).
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Chapter 5

Frequency Stability and Stabilization

The frequency stability of the laser system relies on the neodymium-doped yttrium alu-

minum garnet (Nd:YAG) reference laser (Chapter 3) and the various other frequency

references used to stabilize it further. In this chapter, I will first define stability and then

introduce the various frequency standards required for stabilizing and monitoring of the

laser frequency. Transferring the stability from a frequency standard onto the Nd:YAG

laser depends on the bandwidth of the used feedback loop. Although this bandwidth

limitation is no issue for the inherent stable reference laser, it is important for a further

stability transfer onto the optical frequency comb (OFC). Two techniques of measuring

the feedback bandwidth are presented at the end of this chapter.

5.1 Definition of Stability

Almost any oscillator suffers an irregular variation of the amplitude or frequency. Under-

standing the origin of potential noise sources is a cornerstone of building a high-resolution

measurement system. In general, the output signal of a modulated real oscillator is ex-

pressed as [123]

U(t) = U0(t) cosϕ(t) = [U0 + ∆U0(t)] cos (2πν0t+ φ(t)] , (5.1)

with the nominal amplitude U0 and its small perturbation ∆U0(t). For simplicity, the

perturbation of the amplitude ∆U0(t) is assumed to be zero. The derivative of the phase

ϕ(t) determines the instantaneous frequency [123]

ν(t) =
1

2π

dϕ(t)

dt
=

1

2π

1

dt
[2πν0t+ φ(t)] = ν0 +

1

2π

dφ(t)

dt
= ν0 + ∆ν(t). (5.2)

Thus, the instantaneous frequency deviation from the ideal oscillator at frequency ν0 is

∆ν(t). It is convenient to replace the small value of ∆ν(t) with the instantaneous fractional
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frequency deviation

y(t) =
ν(t)− ν0

ν0

=
∆ν(t)

ν0

. (5.3)

A perfect, instantaneous measurement of y(t) is generally not possible. A frequency counter,

for example, must measure multiple periods of the waveform, resulting in a sample time

τ . Therefore, the fractional frequency deviation becomes a discrete series of consecutive

measurements

yi(t) =
1

τ

∫ ti+τ

ti

y(t)dt. (5.4)

The individual measurements differ from each other and are, for simplicity, uncorrelated.

The mean value is

ȳ =
1

n

N∑

i=1

yi (5.5)

and the N-sample variance is given by [124]

σ2(N, τ) =
1

N − 1

N∑

i=1

(
yi −

1

N

N∑

j=1

yj

)2

(5.6)

with the ensemble size N of consecutive measurements yi, corresponding to an measure-

ment time τ of each sample. The dead time between individual measurements yi is zero.

However, if the measurement time τ is shorter than the correlation time between two

consecutive measurements yi, the calculation of the mean value and the variance leads to

difficulties. Concerning the description of a frequency standard, consecutive measurements

are potentially correlated due to a frequency drift, which increases the variance with the

sample size. In contrast, the correlation of two consecutive measurements reduces the

variances for short data sets. Thus, the sample size N is crucial in describing the stability

of the system.

5.1.1 Allan Variance

An important statistic in frequency analysis is the two sample variance, with N = 2

(Equation 5.6), proposed by Dave Allan [125]

σ2
y(τ) =

〈
2∑

i=1

(
yi −

1

2

2∑

j=1

yj

)2〉
=

1

2

〈
(yk+1 − yk)2

〉
, (5.7)
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It is based on the analysis of two averaged adjacent frequency samples yk+1, yk of length

τ . Thus, to define the variance for τ the total measurement time must be at least 2τ .

It is convenient, for analysis purposes, to rewrite the Allan variance (AVAR) as [126]

σ2
y(τ) =

〈(∫ ∞

−∞
y(t′)wA(t− t′)dt′

)2
〉

with wA(t) =





− 1√
2τ

0 < t < τ
1√
2τ

τ < t < 2τ

0 elsewhere

. (5.8)

The weighting function wA(t) is a rectangle function acting as a filter on the frequency

fluctuation y(t) (Figure 5.1a). The operation of the filter on the signal becomes more

(a) (b)

Figure 5.1: (a) Illustration of the rectangle filter function wA(t) of the AVAR. (b) The calculated squared
absolute value |WA(f)|2 of the associated Fourier transform of wA(t) in units τ−1 (adapted from [123]).

evident by changing into the frequency domain. The Fourier transform of the filter function

wA(t) is [123]

WA(f) = F{wA(t)} =

∫ 2τ

0

wA(t)ei2πftdt leading to |WA(f)|2 = 2
sin4(πτf)

(πτf)2
. (5.9)

In the frequency domain it acts as a bandpass filter with a center peak at f ≈ 1/(2τ)

and minor peaks at multiples (2n + 1)f with n ∈ N (Figure 5.1b). Thus, the frequency

dependent representation of the AVAR is [123]

σ2
y(τ) =

∫ ∞

0

|WA(f)|2Sy(f)df = 2

∫ ∞

0

sin4(πτf)

(πτf)2
Sy(f)df, where (5.10)

Sy(f) =

∫ ∞

−∞
〈y(t+ τ)y(t)〉ei2πftdt (5.11)

is the power spectral density, which is according to the Wiener-Khintchine theorem the

Fourier transform of the autocorrelation function of y(t). Inserting the power spectral

density for white phase noise Sy ∝ f 2 into Equation (5.10) leads to the power law σ2
y(τ) ∝

τ−2. The condition is an integral limit by the cutoff frequency fh, which corresponds to a

low-pass filter in an experiment. The precise values for different noise contributions are

summarized in Table 5.1. The relation between the power spectral density Sy(f) ∝ fα

and the AVAR is unambiguous for α = −2,−1, 0. However, the contributions of flicker

phase noise α = 1 and white phase noise α = 2 to the AVAR are indistinguishable. This
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Table 5.1: Comparison between the AVAR σ2
y(τ) and the MVAR mod σ2

y(τ) for different types of phase noise

(PM) and frequency noise (FM) expressed with the power spectral density Sy(f) (adapted from [126]).

Noise type Sy(f) σ2
y mod σ2

y

White PM h2f
2 3fhh2/(2π)2τ−2 3fhτ0h2/(2π)2τ−3

flicker PM h1f (1.038h1 + 3h1 ln(2πfhτ))/(2π)2τ−2 0.084h1τ
−2

White FM h0 (1/2)h0τ
−1 (1/4)h0τ

−1

Flicker FM h−1f
−1 2 ln(2)h−1 (27/20) ln(2)h−1

Random walk FM h−2f
−2 ((2π)2/6)h−2τ 0.824((2π)2/6)h−2τ

drift (1/2)ẏ2(t)τ2 (1/2)ẏ2(t)τ2

limitation of the AVAR can be solved by introducing a slight modification of it.

5.1.2 Modified Allan Variance

The modified Allan variance (MVAR) is defined as [127]

mod σ2
y(τ0n) =

1

2

〈(
1

n

n∑

i=1

(
1

n

n∑

k=1

yi+k+n −
1

n

n∑

k=1

yi+k

))〉
, (5.12)

where the samples yk are averaged over the interval τ0, while the two sums average the

samples over the interval nτ0 = τ . For clarification, consider MVAR at the limit of τ0 → 0

in the alternative notation [126]

mod σ2
y(τ) =

〈(∫ ∞

−∞
y(t)wM(t)dt

)2
〉

with wM(t) =





− 1√
2τ2
t 0 < t < τ

1√
2τ2

(2t− 3τ) τ < t < 2τ

− 1√
2τ2

(t− 3τ) 2τ < t < 3τ

0 elsewhere

.

(5.13)

The weighting of the frequency fluctuations is defined by a triangle function wM(t) (Fig-

ure 5.2a). This alternative notation keeps the basic definition of the Allan variance the

(a) (b)

Figure 5.2: (a) Schema of the triangle filter function wM (t) of the modified Allan variance mod σ2
y(τ) (adapted

from [126]). (b) The relation between the power spectral density Sy ∝ fα and mod σ2
y(τ) (adapted from [125]).

same, with only a change to wM(t). The squared absolute value of the Fourier transformed
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filter function is [127]

|WM(f)|2 = 2
sin6(πfτ)

(πfτ)4
, (5.14)

The MVAR is now calculated in analogy to Equation (5.10) for different power spectral

densities by replacing |WA(f)|2 with |WM(f)|2, which completes Table 5.1. The convolution

integral of the MVAR converges more rapidly for increasing frequencies and therefore

provides higher sensitivity for white phase noise Sy(f) ∝ f 2 compared to the AVAR. In

fact, the calculation of the MVAR for Sy(f) ∝ f 2 leads to the power law modσ2
y(τ) ∝ τ−3

while the standard AVAR only scales with τ−2 (Table 5.1). A power spectral density

Sy(f) ∝ fα with α = −3,−2,−1, ·· leads to a modified variance mod σ2
y(τ) ∝ −α − 1

(Figure 5.1b). Thus, the MVAR solves the previous ambiguity between white phase noise

(α = 2) and flicker phase noise (α = 1). The disadvantage of the MVAR is a poor

efficiency in detecting slow variations of y(t), since the filter function spans 3τ , while

filter function of the AVAR spans 2τ . Thus, a total measurement Time of T results in a

maximum of τ = T/3 instead of τ = T/2. The parabolic variance (PVAR) addresses this

disadvantage [128]. The filter function of the PVAR is based on a parabolic function with

length 2τ , but the PVAR still shows a scaling τ−3 for white phase noise. In this way, it

combines the benefits of both Allan variances. However, in this thesis, the MVAR deemed

sufficient for most long term stability measurements. Additionally, the most dominant

noise contribution at large time scales is the frequency drift of the oscillator, which is the

same for both Allan variances.

5.2 Frequency Standards

The precise measurement of time is probably one of the oldest ambitions of humanity.

Historically, the first laboratory device was the pendulum clock. The oscillation frequency

dependents solely on the length of the pendulum, disregarding environmental factors like

temperature and humidity, as well as, mechanics keeping the pendulum in motion. All

these components are worsening the clock’s stability. Additionally, the period of the clock

is an arbitrary value without proper calibration to an external standard. In the early

days, a reference clock would have been calibrated such that it records 86400 seconds in

a mean solar day, which could be determined by astronomical observations [129]. Later, in

1956, the SI definition of a second was revised to a fraction of the length of the year 1900.

Around this time, electrical circuits and quartz oscillators replaced the pendulum clock

in metrology laboratories. The frequency of these electrical oscillators is typically much

higher than in pendulum clock but can still be transferred into a clockwork device using

a suitable frequency divider. For example, a typical quartz crystal inside a wrist watch is

designed with a resonance frequency at 32 768 Hz = 215 Hz, making it possible to divide
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the frequency down to 1 Hz = 1 s−1 by dividing by two 15 times. The stability of the quartz

oscillator is several orders of magnitude higher than the pendulum clock, but it still suffers

due to temperature variations and aging of the crystal. Finally, the breakthrough for high-

precision time measurements came with atomic frequency standards. The year 1958 marks

the first publication on the atomic definition of the second. Since 1967, one SI-second

has been defined as the duration of 9 192 631 770 periods of the radiation corresponding

to the ground state hyperfine transition of the cesium atom (133Cs) [130]. The cesium

clock defines since 1967 until today the prevailing standard of the SI-second. However,

not every laboratory is equipped with a cesium clock. For those laboratories, the global

navigation satellite system (GNSS) allows a convenient means of comparison between the

local frequency standard and the frequency standards operated by metrology laboratories

around the planet. The local general purpose frequency standard used in our lab is the

rubidium oscillator.

5.2.1 Rubidium Standard

The rubidium standard is based on the hyperfine transition at 6.83 GHz inside the 87Rb

electronic ground state 5S1/2. The nuclear spin of I = 3/2 and the total angular momentum

J = 1/2 couple from two hyperfine states with F = 1 and F = 2 [123]. The degeneracy

of the mF quantum number is lifted inside a magnetic field, resulting in a splitting of

mF = −1, 0, 1 and mF = −2,−1,−, 1, 2 of the F = 1 and the F = 2 state, respectively.

Since the shift is, to first order, proportional to the mF quantum number, the mF = 0

states display the smallest dependency on magnetic field strength, which makes them ideal

candidates for the clock transition. The technical realization requires a glass cell containing
87Rb located inside a microwave cavity (Figure 5.3). Both ground states F = 1 and F = 2

Figure 5.3: Schematic of a rubidium oscillator. The optical pump is realized with an 87Rb lamp and 85Rb filter
combination, causing population inversion between the two hyperfine states F = 1 and F = 2. A microwave
source is probing the population and set on resonance with a feedback loop. (adapted from [123]).

are nearly equally populated at room temperature. Therefore, optical pumping is used to

create population imbalance between the two states. In general, a 87Rb discharge lamp

excites both 5S1/2 ground state hyperfine components to the higher electronic states 5P1/2

and 5P3/2. To create an asymmetry between the light exciting F = 1 and F = 2, a filter

cell containing 85Rb is placed after the discharge lamp. By coincidence, one of the 85Rb
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lines coincides with the transition from F = 2, so the filtered light preferentially excites

F = 1, depleting this state. Finally, the population of the F = 2 state in the final 87Rb cell

is interrogated with microwave radiation. The microwave radiation on resonance with the

ground state transition between F = 2 and F = 1 at 6.83 GHz leads to a repopulation of

the state F = 1. Consequently, the absorption inside the 87Rb gas cell increases transition

from F = 1. A photodetector measures the decrease of transmitted optical power, which is

less than 1 %. The signal becomes part of a feedback loop, which includes servo electronics,

a voltage-controlled crystal oscillator (VCXO), and a frequency synthesizer, keeping the

microwave radiation on resonance at 6.83 GHz. One possible design is to operate the

VCXO at 10 MHz, which clocks the frequency synthesizer and simultaneously supplies

the output signal. This 10-MHz radio frequency output is the primary reference used in

this thesis for measuring optical beat notes and the repetition rate of the OFC.

5.2.2 Iodine Standard

Similar to the rubidium, the hyperfine-resolved transition frequencies in molecules are

also suited as frequency standards. For example, the iodine molecule is a prominent

absorber used for calibration of optical frequencies. The bureau of weights and measures

(BIPM) recommends multiple molecular iodine transitions as the frequency standard for

the practical realization of the meter. Since the meter is defined through the speed of light

in vacuum c = 299 792 458 m/s, it is related by c = λf with the optical frequency of the

light wave. The BIPM recommends in total 28 different optical frequency standards, 8 of

which are transitions in molecular iodine. These iodine frequency standards mostly fall in

the tuning ranges of various common lasers, from the argon ion laser at 515 nm [131] to the

helium neon laser at 633 nm [132]. The laser system in this thesis is built around a Nd:YAG

laser at 1064 nm. After frequency doubling, the accessible 127I2 transitions are limited to

the region near 532 nm [133]. All visible transitions of molecular iodine refer to the system

B3Π0+u ← X1Σ+
g . The individual transitions are distinguished by their rovibrational

quantum numbers v′′, J ′′ and v′, J ′ of the electronic ground state X1Σ+
g and the second

electronic excited state B3Π0+u, respectively. The selection rule ∆J = J ′ − J ′′ = −1, 0, 1

defines whether the transition is part of the P branch (∆J = −1) or the R branch (∆J = 1).

Consequently, the ro-vibrational transitions are labeled as P(J ′′) v′ − v′′ or R(J ′′) v′ − v′′.
Additionally, the nuclear spin of the iodine molecule causes each rovibrational level to

split into multiple hyperfine states. The corresponding hyperfine transitions are labeled an

with n ∈ N. Thus, the BIPM recommends the a10 component of the R(56) 32-0 transition

cluster in 127I2
[134], at

f = 563 260 223 513 kHz or λ = 532 245 036.104 fm. (5.15)
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The standard uncertainty is 8.9× 10−12, which is at the 5 kHz level. The standard also

specifies the conditions under which this frequency was measured, such as the cold-finger

temperature and saturating beam intensity. Details on the optical stabilization of a laser

to a molecular absorption line follow later (Chapter 6). Already an early measurement

in 1995 of a frequency doubled Nd:YAG laser locked to the iodine standard by modula-

tion transfer spectroscopy (MTS) showed the promising result of an Allan deviation of

smaller than 1× 10−13 at the 1 s timescale [135]. The small pressure shift of 1.3 kHz/Pa

and power dependent frequency shift of 2.1 kHz/mW are crucial factors in choosing 127I2

as the frequency standard. One of the most promising prospective applications of the

iodine standard is in the Laser Interferometry Space Antenna (LISA) for the detection

of gravitational waves. Modern iodine standards reach Allan deviations of < 3× 10−14 at

the 1 s timescale [74,136,137], though the highest stability is reached at 200 s with an Allan

deviation of < 5× 10−15. At higher time scales the stability of the system decreases due

to long term drifts.

5.2.3 GNSS Standard

The primary objective of the GNSS is to find the position of a receiver on earth. This

goal is accomplished by one of the largest networks of different frequency standards.

The most prominent networks are the US NAVSTAR GPS, the Russian GLONASS, and

the European GALILEO system. The global positioning system (GPS), for example,

includes 24 satellites orbiting the earth at a height of 20 200 km [138]. Each satellite is

equipped with multiple frequency standards, including rubidium and cesium clocks. These

clocks are adjusted by ground stations, which use clocks of higher stability. The ground

stations supply the coordinated universal time (UTC) measured at the united states

naval observatory (USNO) agree with UTC measured at national institute of standards

and technology (NIST) to within < 100 ns. The time measurements at USNO and NIST

both contribute to the international atomic time (TAI). The TAI is a weighted average

of the measured time by approximately 50 metrology laboratories including 250 clocks

calculated at the BIPM [139]. The TAI is the most precise measurement of time, though no

clock can track it in real time. The closest estimates of the TAI are provided by the NIST

and USNO which agree within a few nanoseconds. The pulse per second (PPS) provided

by a GNSS receiver is also synchronized to the TAI second with an accuracy sufficient

for many laboratory applications, though long term high precision measurements often

require post-processing of the data recorded from the satellites to improve the uncertainty.

To understand the operation of the GNSS, it is convenient to consider first an individual

satellite. It tasks are limited to the continuous transmission of its precise time and position.

The assignment of the receiver is to process the incoming information from multiple

satellites, evaluate the time and estimate the distance to each satellite. For simplicity,

consider a two dimensional world, with a receiver at positions P = (X, Y ) and two
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satellites at Ri = (xi, yi), with i = 1, 2. The emitted signal of each satellite expands

homogeneously in all directions. The position P is at one of the two intersection points by

the two circles of radius di (Figure 5.4). Thus, the distances di = |Ri−P| of both satellites

Figure 5.4: Schema of the position determination based on two satellites. The time offset δt between the satellite
time and the receiver time leads to a wrong position P ′. (adapted from [123]).

defines the position of the receiver. Ideally, di correspond to the traveling time required

by the signal ∆t = di/c, with the speed of light c. However, the satellite time TGNSS is

in general not synchronized with the receivers time T . A unaccounted time difference of

δt = T − TGNSS = 1 µs corresponds to an error in the position of around 300 m [123]. Thus,

more information is required to determine δt, which is provided by an additional third

satellite at R3 = (x3, y3). The pseudo range Di = di+ cδt takes δt into accounts and leads

to the set of equations [123]

(xi −X)2 + (yi − Y )2 = (Di − cδt)2, where i = 1, 2, 3. (5.16)

The three equations allow to determine the unknowns X, Y and δt. A third spatial

dimension requires a minimum number of four satellites. Each further satellite is beneficial

for error correction. For use as a frequency standard, δt is the crucial parameter for

referencing a local laboratory oscillator. Because the GNSS receiver measures the offset

to GNSS time as part of its operation, a rubidium oscillator referenced with the GNSS

suffers no long term frequency drift. Referencing might be an active or a passive technique:

the GNSS receiver might correct the clock of the rubidium oscillator as part of a feedback

loop, or it could simply record the difference as a function of time for later post-correction.

Active stabilization can result in frequency jumps, though these are negligible in most

applications. Even if the rubidium oscillator is actively stabilized to GNSS time, the offset

between the two is always monitored during the experiment, enabling post-processing of

the rubidium frequency if necessary.

5.2.4 Comparison of Frequency Standards

The most convenient representation of frequency stability is the AVAR (Section 5.1.1),

though the MVAR is preferred at short integration times (Section 5.1.2). Stability of an

oscillator can only be measured relative to a reference oscillator, so any determinations

of the AVAR contain the instabilities of both involved clocks. Thus, it is convenient to

measure the AVAR of two identical clocks: since both clocks contribute the same instabil-
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ities, the AVAR of a single clock can be easily determined. The alternative technique is

to use a reference clock which is superior in stability to the oscillator under test, making

it possible to neglect the additional noise of the reference oscillator when determining the

AVAR. All following ADEV measurements (ADEV=
√

AVAR) follow this second approach.

Figure 5.5 shows the ADEVs for the frequency standards previously introduced in this sec-

tion, namely the rubidium, iodine, and the GNSS. In addition to the frequency standards,

the ADEV of the free-running reference Nd:YAG laser is depicted [140] (Section 3.1.2).
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Figure 5.5: ADEV comparison of different frequency standards. (Nd:YAG) Free-running NPRO laser at
1064 nm [140]. (Iodine) Frequency doubled Nd:YAG laser stabilized with MTS to molecular Iodine [137]. (Rb)
Free running rubidium oscillator. (GNSS) Stability of the PPS signal of the GNSS [141].

The stabilization of the Nd:YAG laser to the iodine is provided by means of saturated

absorption spectroscopy, which is the topic of Chapter 6. If the Nd:YAG laser is stabilized

to the iodine standard such that the iodine curve in Figure 5.5 corresponds to the sta-

bilized laser, then on time scales up to 3× 103 s, this laser provides the highest stability

compared to all other mentioned frequency standards. The stability of the reference laser

is transferred onto the OFC which provides it to the spectroscopy lasers (Section 3.2.5),

and by monitoring the repetition rate of the OFC, the frequency of the reference laser can

be compared relative to the rubidium standard. According to Figure 5.5, any potential

frequency drifts at the 3× 103 s timescales are more likely due to drifts of the rubidium

oscillator than the iodine. However, a rubidium oscillator stabilized with a PPS signal

from the GNSS surpasses the stability of the iodine standard at large time scales, such

as 1× 106 s, and makes each frequency measurement absolute.

This thesis relies on frequency standards comparable to the ones depicted in Figure 5.5

with ADEV curves that are to be expected at the same order of magnitude. The question of

whether the stabilization schema introduced here applies in our experiment is investigated
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in Section 9.2.

5.3 Feedback Bandwidth

Feedback loops provide a means to transfer of stability from a frequency standard onto a

laser. Their ability to compensate environmental noise, for example, acoustic vibrations,

depends on the frequency bandwidth of the feedback. If a loop attempts to cancel noise

past a certain frequency limit, then the feedback starts to amplify the noise inside the

loop instead of counteracting on it. The maximum bandwidth achievable in a feedback

loop determines how precisely a frequency can be stabilized and provides motivation in

measuring the bandwidth of the lasers used in the experiment.

5.3.1 Feedback Loop

A free running oscillator at frequency νi will experience changes of its oscillation frequency

caused by environmental changes or aging effects. Therefore, a feedback loop is required

which monitors potential changes of the oscillator frequency and takes counteractions.

Ideally, the frequency νs of the oscillator inside the loop is compared to a reference

oscillator at ν0. The challenge of the loop is to keep the difference δν = νs − ν0 as small

as possible [123].

The core component of a phase-locked loop (PLL) is a phase detector which provides

the difference in phase between the oscillator output and the reference. This is equivalent

to
∫
δνdt or δν/(2πif) in the frequency domain. Amplification and filtering of this error

signal results in a feedback signal g(f)δν/(2πif), with the frequency dependent gain

g(f). Applying the feedback signal on a suitable control element of the oscillator, for

instance, a mirror attached to a piezoelectric transducer (PZT) inside a laser cavity,

changes the oscillation frequency. The response curve D(f) of the PZT assembly also

is frequency dependent, resulting in a combined frequency dependent transfer function

D(f)g(f)/(2πif). Thus, the frequency of the oscillator inside the control loop is νs =

νi −D(f)g(f)δν/(2πif). Negative feedback from the control loop aims to shift the laser

from its free-running oscillation frequency νi to νs. The residual error is given by [123]

δν =
∆ν

1 +D(f)g(f)/(2πif)
with ∆ν = νi − ν0. (5.17)

The frequency deviation between the stabilized oscillator and the set frequency δν con-

verges to zero when the loop transfer function is large, but there are issues that can arise

due to the frequency dependence of g(f) and D(f). In particular, if (2πif)−1D(f)g(f)

approaches −1, δν can approach infinity. The transfer function generally decreases as a

function of frequency, and the phase shift increases. However, if the phase shift reaches

180 degrees before the magnitude drops below 1, the sign of the feedback changes and the

69



5.3. Feedback Bandwidth

feedback loop will start to oscillate.

5.3.2 Phase Shift Measurement

The transfer function of a laser cavity is mostly determined by the mounting block of the

PZT which controls one of the cavity mirrors. The lowest resonance frequency inside this

block determines the maximum feedback bandwidth. A direct measurement of the PZT

response curve D(d) is most easily accomplished outside the optical cavity of the laser.

The following self-referenced measurement setup relies on the splitting and recombination

of one single mode continuous wave (CW) laser beam (Figure 5.6). In particular, the

Figure 5.6: Self-referenced setup of the PZT phase response. The laser beam gets split into two parts: one
part experiences modulation of the phase while the other part stays undisturbed. The modulation signal probes
potential resonances inside the mounting block (MB) of the PZT assembly, which are analyzed after a homodyne
detection of both beams.

electric field is separated in two parts

E1(t) = Aei(ωcwt+φ1) + c.c., (5.18)

E2(t) = Aei((ωcw+ωA)t+φ2) + c.c., (5.19)

where E1(t) stays unchanged while E2(t) passes an acoustic-optical modulator (AOM)

that shifts the optical frequency by ωA = 2π × 40 MHz. Both electric fields have different

phases of φ1 and φ2, due to unequal path lengths. For simplicity, the amplitudes A of

both fields are assumed to be equal. Superimposing both fields and detecting the intensity

with a photodiode leads to

I(t) = (E1(t) + E2(t))2 = 2A2ei(ωAt+φ) + A2ei(2ωcwt+2φ1) + ..︸ ︷︷ ︸
LP−→0

+ 4A2

︸︷︷︸
DC−−→0

+c.c.. (5.20)

The direct current (DC) part of the signal is removed by differential detection, discussed

later in Section 9.3.1, and the high frequency components experience low-pass (LP) filtering.

These cancellations leave only the low frequency part of the signal at ωA, containing the

phase difference φ = φ2 − φ1. Recording the waveform on an oscilloscope allows digital

processing and extraction of the phase difference φ ∈ [0, 2π]. One way to do this is using
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digital multiplication with e−iωAt, which leads to

I(t) · eiωAt ≈ (2A2ei(ωAt+φ) + c.c.) · eiωAt = 2A2eiφ + 2A2e−i(2ωAt+φ)

︸ ︷︷ ︸
LP−→0

≈ 2A2eiφ. (5.21)

The low-pass filter is realized fully digitally using a fast Fourier transform (FFT), removing

the high frequency parts and finally calculating the inverse FFT. The argument of the

complex number is extracted with the arg(eiφ) = φ function. Modulating the PZT with

the voltage U(t) = ∆Uei(ωmodt+φ
′
1) + c.c. leads simultaneously to a modulation of φ2(t).

The modulation propagates on to the phase φ(t) = ∆φei(ωmodt+φ
′
2) +c.c.. Note, both signals

have potentially different phase shifts φ′1 and φ′2, respectively. The modulation frequency

is in both cases the same, allowing demodulation of φ′2 using φ(t) · eiωmodt in analogy to

the previously demodulation at ωA (Equation (5.21)). Since φ′2 does not change during

the measurement, averaging φ(t) · eiωmodt for all values in the measurement trace results

in ∆φe(iφ′2), and φ′2 can be extracted as before.

To obtain the phase difference φ′ = φ′2 − φ′1, a demodulation of U(t) is also necessary,

which yields φ′1. An ideal PZT system would show φ′ = 0 at every modulation frequency

ωmod, but the real PZT always has a delay in its response, making φ′ < 0. A full spectrum

of the PZT response curve is obtained after repeating the described procedure at different

modulation frequencies. An experimental application, measuring the bandwidth of the

optical parametric oscillator (OPO) cavity PZT mirror is provided later (Section 9.5.2).

5.3.3 Frequency Shift Measurement

The luxury of investigating the PZT mounting block outside the laser cavity is often not

provided. In such cases, the frequency response of the PZT mirror can be determined

without moving it out of the cavity by measuring changes induced in the laser’s frequency

instead. The setup described here is designed for use with a mode-locked oscillator, but

a similar measurement could be done with a CW laser. First, the pulses from the mode-

locked laser are measured with a photodiode and band-pass filtered around the repetition

rate frequency. For simplicity, assume the output is described by E1(t) = Aeiωrept + c.c.,

with the repetition rate ωrep ≈ 2π · 1 GHz. The signal E1(t) is split into two parts, with

roughly equal amplitudes (Figure 5.7). One signal is sent through a long cable, which

leads to a temporal delay ∆t in this path. Combining both signals again with an electronic

mixer gives

E2(t) = E1(t) · E1(t+ ∆t) = A2eiωrep∆t + c.c.+ A2ei(2ωrept+ωrep∆t) + c.c.︸ ︷︷ ︸
LP−→0

,

≈ A2 cos(φ) = Ẽ2(φ) with φ = ωrep∆t.

(5.22)
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Figure 5.7: The pulsed laser signal at ωrep gets split into two parts. After the temporal delay of one signal, an
electronic mixer superimposes both signals again. An Oscilloscope displays the modulation signal of the PZT
and the low-pass (LP) filtered signal after the mixer for further analysis..

An analog low-pass filter removes the high frequency component at 2ωrep, leaving only

the low frequency component of the signal. The cable length is chosen to correspond

approximately to a phase φn = (2n− 1)π
2

with n ∈ N, thus the Taylor expansion of Ẽ2(φ)

around φn yields

Ẽ2(φ) ≈ Ẽ2(φ)|φ=φn + ∂Ẽ2(φ)
∂φ
|φ=φn(φ− φn),

= A2(−1)n(ωrep∆t− (2n− 1)π
2
).

(5.23)

Changing the cavity length with the PZT affects the round trip time of the pulse and

consequently the repetition rate ωrep. Thus, a modulation of the PZT with the voltage

U(t) = ∆Uei(ωmodt+φ
′
1) + c.c. leads simultaneously to a modulation of ωrep. The frequency

modulation is approximately ωrep = ω′rep + ∆ωrepe
iωmodt + c.c. with the mean repetition

frequency ω′rep = (2n − 1)π
2
/∆t. Inserting the new repetition rate into Equation (5.22)

yields

E2(t) ≈ A2(−1)n∆ωrep∆tei(ωmodt+φ
′
2) + c.c.. (5.24)

The digital demodulation of the signal with eiωmodt is analog to the previous description

in Section 5.3.2, leading to the phase difference between the signal modulating the PZT

and the response of the repetition frequency of the mode-locked laser. The response curve

of the OFC used in this thesis is discussed later (Section 9.3.2).
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Saturated Absorption Spectroscopy

The short term stability of the precision laser system in this thesis is provided by the

iodine standard, previously discussed in Section 5.2.2. This chapter explains the transfer

of stability from a hyperfine-resolved iodine transition onto the reference laser by intro-

ducing first the concept of saturation as the basis for Doppler-free spectroscopy. Laser

modulation is the next step, to make use of the Doppler-free absorption signal and gener-

ate a control signal for a feedback loop resulting in the laser stabilization (Section 5.3.1).

The laser system is ultimately stabilized by modulation transfer spectroscopy (MTS),

which is gradually introduced in this chapter by explaining fundamental laser modulation

techniques.

6.1 Einstein’s Rate Equations

Einstein’s rate equations provide general introduction into absorption, stimulated emission

and spontaneous emission of discrete light photons of energy hν. Each interaction is

associated with an Einstein coefficient. Spontaneous emission has the coefficient±A12, and

stimulated processes are labeled with ±B12 where the indices correspond to the affected

states of the transition. The sign represents the loss or the gain of atoms populating a

particular state. A simple two-level atom is described by the rate equations [142]

dN2

dt
= −A21N2 −B21ρ(ω)N2 +B12ρ(ω)N1, (6.1)

dN1

dt
= A21N2 +B21ρ(ω)N2 −B12ρ(ω)N1, (6.2)

where ρ(ω) is the field energy density. The total density number N = N1 +N2 is constant,

with N1 associated with the ground state and N2 with the excited state. Not-degenerate

energy levels are simplified with B12 = B21, meaning the rates for emission and absorption

are equal. Setting the change of the populations to zero dN1/dt = 0 and dN2/dt = 0 leads
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to the steady state solution

N2

N1

=
1

A21/(B21ρ) + 1
. (6.3)

At the limit of a strong electromagnetic field ρ(ω)→∞ the populations are equal N1 = N2

and no population inversion is possible. Therefore, in a two-level system, no laser operation

takes place. In absorption spectroscopy, this is also the basis of saturation. The opposite

limit of a weak field leads to a proportional relation between N2/N1 and ρ(ω). A more

general description of saturation requires considering degenerate energy levels to derive

relations between the Einstein coefficients. The number of the degeneracy of a specific state

is described by the factors g1 and g2. Additionally, the atoms are non-interacting and are in

thermal equilibrium. Therefore, the average distribution is given by Maxwell-Boltzmann

statistics, which leads to the general steady-state solution of [142]

N2

N1

=
g2

g1

e−~ω/kBT =
B12ρ(ω)

A21 +B21ρ(ω)
. (6.4)

Solving this equation for ρ(ω) is essentially Planck’s distribution of black body radia-

tion [143]

ρ(ω) =
8π~
λ3

1

e~ω/kBT − 1
, (6.5)

after identifying the relations

g2B21 = g1B12 and A21/B21 = 8π~/λ3. (6.6)

These relations will be used soon in one of Einstein’s rate equations. First, it is convenient

to redefine the energy density ρ(ω) = s(ω)ρ = s(ω)I/c with the line shape function

s(ω). In case of spontaneous emission s(ω) is a Lorentzian function with the natural

linewidth ∆ω = A21 describing the probability of spontaneous emission around resonance

ω0. Inserting Equation (6.6) and the line shape function into Equation (6.1) yields [142]

dN2

dt
= −A21N2 −

σ(ω)I

~ω

[
N2 −

g2

g1

N1

]
, (6.7)

where σ(ω) = A21λ
2s(ω)/4 denotes the absorption cross section. The resonance condition

ω = ω0 leads to the cross section σ = λ2
0/(2π). Therefore, the dimension is an area

and Iσ(ω) describes the absorbed power by a single atom. Introducing the absorption

coefficient [68,144]

dI

dz
= −α(ω)I, leads to the identity α(ω) = σ(ω)

[
N2 −

g2

g1

N1

]
= σ(ω)∆N, (6.8)
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where ∆N denotes the population density difference, and this leads to Beer’s law

I(z) = I0e
−α(ω)z. (6.9)

This equation describes the exponential decay of the initial intensity of a light field after

propagating a distance z through an absorbative medium (Figure 6.1a). However, α(ω)

is not independent of the intensity, which can be seen by calculating the steady-state

solution of the rate equations again. For simplification, it is assumed the degeneracies are

g1 = g2, and the field is on resonance. Thus, the absorption coefficient is [142]

α(ω0) = σ(ω0)
N

1 + I
Isat

, with Isat =
~ω0A21

2σ(ω0)
. (6.10)

At small intensities the absorption coefficient is nearly constant with σ(ω0)N , while at

high intensities the absorption coefficient converges to zero. The saturation intensity Isat

corresponds to the intensity at which α(ω0) decreases by a factor of two. Saturation effects

are a double-edged sword in spectroscopy. Increasing the laser field intensity does not

increase the absorption and the associated signal strength linearly. At some intensity the

line profile gets distorted and the signal to noise ratio (SNR) decreases. On the other

hand, these effects open the field of Doppler-free saturation spectroscopy.

6.2 Doppler Free Saturation Spectroscopy

Two things have been mentioned in Section 6.1 without pointing out the consequences.

First, the line shape function σ(ω) of spontaneous emission is a Lorentzian function,

with a narrow linewidth of ∆ω = A21. Second, the atoms satisfy the Maxwell-Boltzmann

velocity distribution, meaning most molecules are at a velocity of v 6= 0. The resonance

condition is satisfied, if the absorption frequency is within the narrow line shape function

s(ω). However, due to the velocity spread of the molecules, the frequency inside the

moving frame of the molecule differs from the frequency outside in the laboratory frame.

According to the Doppler effect, a molecule moving with a velocity v towards the wave

vector of an electromagnetic field experiences a higher frequency

ω = ω0(1 +
v

c
). (6.11)

Conversely, a molecule moving away experiences a lower frequency. Each velocity class

inside the Maxwell-Boltzmann distribution satisfies the resonance condition for a specific

field frequency. Exciting molecules with an off-resonant frequency ω < ω0 ‘burns’ a

hole into the ground state velocity distribution at v > 0 [145]. The width of this hole is

associated with the natural linewidth in the velocity interval ∆v (Figure 6.1a). Based on

a single frequency it is impossible to tell if the actual resonance frequency is matched. A
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(a) (b)

Figure 6.1: (a) A single red detuned wave interacts with a single velocity group v > 0. (b) Two counter
propagating waves, with the same frequency excite two different velocity groups. Both waves interact with the
zero velocity group at resonance.

scan over the full Doppler broadened ground-state velocity distribution provides clarity.

The total width is a convolution of all Lorentzian lines with the Gaussian Maxwell-

Boltzmann distribution. The core of saturated absorption spectroscopy is to introduce

a second counterpropagating laser beam, which can be generated by reflecting the first

one. The frequencies of both waves are identical, but the amplitudes generally differ. The

counterpropagating beam with I1 > I0 is denoted as the pump. Its primary purpose is

to saturate the transition. The second beam is probing the level of saturation. Assuming

the case of ω 6= ω0, leads to an excitation of different velocity groups, due to the counter

propagation of both beams. Thus, two holes are burned into the velocity distribution of

the ground state (Figure 6.1b). Tuning the field frequency into the direction of resonance

leads to an approach of both holes. At resonance, both beams interact with the same

velocity group namely v = 0. The pump beam depletes the population of the ground state

so that the absorption coefficient reaches a minimum, and the probe beam experiences

less absorption through the medium to the detector. The final signal results in a narrow

intensity peak on top of the Doppler-broadened background.

6.3 Laser Modulation Techniques

Consider a saturated absorption experiment where the laser frequency is tuned to the

center of the Doppler-free saturation peak. If the laser frequency deviates from this center

position, the saturation signal will decrease, but the signal will contain no information

about the direction of the frequency change. Modulating the frequency of the laser provides

this information, which can be used for laser stabilization.

6.3.1 Wavelength Modulation Spectroscopy

Wavelength modulation (WM) spectroscopy is strongly coupled to tunable diode laser

absorption spectroscopy (TDLAS). This high-resolution spectroscopy is based on the ease

76



Chapter 6. Saturated Absorption Spectroscopy

of changing the emission frequency of a diode laser. A change of the injected current or the

ambient temperature changes the physical properties of the diode, which leads to a shift

in the frequency of the emitted electromagnetic field. Around 1970 [146], it opened a new

field of spectroscopy and was further improved by adding a fast sinusoidal modulation on

to the slow scan [147]. In these experiments, the frequency of the electric field is given by

ω = ω0 + δω cos(ωmt), (6.12)

with the modulation frequency ωm and the modulation amplitude, or depth δω. The

ratio between δω and the width of the absorption feature Γ is defined as the modulation

index M . The following consideration assumes a small modulation depth δω � Γ and a

small modulation frequency of ωm � Γ. This modulated electromagnetic field experiences

absorption inside a gas cell following Beer’s law. At the limit of low absorption NLσ � 1,

the intensity change is approximated by the first term of the Taylor series [148]

∆I(ω) = I0e
−NLσ(ω) ∝ σ(ω), (6.13)

leaving only the absorption cross section σ(ω). A second Taylor series around ω0 is now

applied on the cross section and Equation (6.12) is inserted, yielding [148]

∆I(ω) ∝ σ(ω0) + δω cos(ωmt)
dσ(ω0)

dω
+ δω2 cos2(ωmt)

1

2

d2σ(ω0)

dω2
+ ...,

= σ(ω0) + δω cos(ωmt)
dσ(ω0)

dω
+ δω2 cos(2ωmt)

1

4

d2σ(ω0)

dω2
+ ...,

(6.14)

using cos2(x) = (1 + cos(2x))/2 in the last line. One obtains a series of oscillating terms

at nωm, with n ∈ N. The term oscillating at ωm is associated with the first derivative

of the cross-section. Higher oscillating terms nωm contain the information of the cross

section derivative of order n (Figure 6.2). Essentially, the small frequency modulation δω

Figure 6.2: Schematic representation of wavelength modulation spectroscopy. The first derivative of the absorp-
tion line shows a zero crossing right at the center of the transition frequency, while higher orders increase the
slope at this frequency.

gets converted into an amplitude modulation, which is proportional to δσ. The derivative

signal of interest gets separated by using a lock-in amplifier; therefore, this technique

is denoted as derivative spectroscopy or harmonic detection. Choosing, for example, the
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second derivative filters out noise components outside the range around 2ωm. This filtering

leads to an improvement of the SNR compared to absorption spectroscopy without fast

modulation. Also, the baseline of the signal becomes flat, because all constant and linear

components of σ are removed. The second derivative scales with δω2. Increasing the

modulation depth to δω � 1 improves the SNR even further. However, the simple picture

of a Taylor-expansion is now no longer valid. Instead, the intensity after absorption is

described by a Fourier expansion

I(ω) ∝
∞∑

n=0

Hn(ω0) cos(nωmt), where (6.15)

Hn(ω0) =
2

π

∫ ∞

0

σ(ω0 + δω cos Θ) cos(nΘ)dΘ. (6.16)

The detection of the individual harmonic terms is analog to derivative spectroscopy and

the shape of the individual signals is qualitatively similar [149,150]. This is referred to as

WM spectroscopy, with an modulation depth δω > Γ. Further reduction of the SNR

requires higher modulation frequencies.

6.3.2 Frequency Modulation Spectroscopy

The heart of frequency modulation (FM) spectroscopy is a fast phase modulation realized

by an electro-optic modulator (EOM). This device consists of an electro-optic material

between two electrodes. Applying a voltage changes the refractive index of the material,

allowing fast frequency modulations ωm > Γ. The electric field of a single mode laser is

E1(t) = Ẽ0 sin(ωct) = E0e
iωct + c.c., (6.17)

where ωc describes the carrier frequency, which is in the frequency domain depicted as

a delta peak (Figure 6.3). Modulating the electric field sinusoidally at the frequency ωm

Figure 6.3: Schematic setup of FM spectroscopy. The modulated sidebands are depicted as delta peaks at ω±ωm.
The different phase is illustrated by flipping one of the sidebands upsides down. After the interaction with the
sample, the sum of both sidebands doesn’t cancel out. This results in optical beating, which is measured with a
PD (adapted from [151]).
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and propagating the laser beam through the EOM, leads to

E2(t) = E0 sin (ωct+M sin(ωmt)) , (6.18)

with the modulation index M . Expressing the amplitudes of the sidebands with Bessel-

functions Jn(M) of order n [152,153], in analogy to FM in audio spectra [154], leads to

E2(t) = E0

∞∑

n=−∞

Jn(M)ei(ωc+nωm)t + c.c.. (6.19)

The side bands are an infinite series of multiples of the modulation frequency ωm, though

for small modulation indices M � 1 only n = −1, 0, 1 are significant. This narrow band-

band FM yields J0(M) ≈ 1 and J±1(M) = ±M/2. Also, the signs of the sidebands are

opposite, leading to cancellation on a square law detector. After sending the laser beam

through an absorbative gas cell the amplitudes are attenuated, and the phase experiences

a shift. The different interactions of the side bands at ωc−ωm for n = −1 and at ωc +ωm

for n = +1 with the absorption profile is essential for FM spectroscopy. It is convenient to

describe a function Tn = e−δn−iφn which takes the individual attenuation of the amplitude

δn and the phase shift φn into account. The electric field after the sample is [153]

E3(t) = E0

(
T0e

iωct + T1
M

2
ei(ωc+ωm)t − T−1

M

2
ei(ωc−ωm)t

)
. (6.20)

The optical PD after the sample can only detect the field intensity I3 ∝ |E3(t)|2. The dif-

ference between FM and WM is the size of the modulation frequency ωm. Low-frequency

modulations of the EOM lead to the same observations one would obtain in WM spec-

troscopy. In the case of classical FM spectroscopy [152] the modulation frequency is usually

higher than the spectral range of the absorption profile, therefore only one sideband is

absorbed. The carrier and the other sideband experience no attenuation and no phase

shift, and are called background-amplitude and -phase. The interaction of only one of the

sidebands generates the intensity at the PD [151]

I3(t) ∝ E2
0e
−2δ0

(
1−∆δM cos(ωmt) + ∆2φM sin(ωmt)

)
, (6.21)

where ∆δ = δ1 − δ0 and ∆φ = φ1 − φ0 are the deviations from background phase and

amplitude, respectively. In this representation, the sideband higher in frequency ωc + ωm

is absorbed, and the intensity I3(t) oscillates with the modulation frequency ωm, while the

direct current (DC) offset contains the amplitude of the carrier signal. The information

about the change of the amplitude ∆δ and the change of the phase ∆φ is obtained by

demodulating the signal with an electronic mixer which means mathematically to multiply

the signal with cos(ωmt+ϕ), where ϕ is the variable phase. Afterwards, all the oscillating
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terms are filtered out by a low-pass filter so that the DC signal is only phase dependent

I3(t) cos(ωmt+ ϕ)
LP∝ ∆δ

M

2
cos(ϕ) + ∆φ

M

2
sin(ϕ). (6.22)

The component containing the amplitude is in case of ϕ = 0 the only surviving term. It is

denoted as the in-phase component, while the other component is called the quadrature.

By altering the phase ϕ, it is possible to obtain the change of the amplitude ∆δ or the

change of the phase ∆φ, separately. The high-frequency modulation causes a convergence

of the amplitude noise to the shot noise level. By combining this technique with saturated

absorption spectroscopy (Section 6.2), one approaches the domain of high-resolution spec-

troscopy [155,156]. Unfortunately, the signal requires an active subtraction of the background,

making it less than ideal for laser stabilization.

6.3.3 Modulation Transfer Spectroscopy

The previous sections aimed to give a basic understanding of fundamental modulation

techniques, carrying the message that high modulation frequencies reduce the amplitude

noise [157,158] which results in a higher SNR.

However, independent of the modulation frequency a complete cancellation of the

amplitude background noise is not possible by design. A laser is a very coherent light source,

thus placing optics inside the path of a laser beam always results in spurious interferometric

fringes. The linear absorption of these unwanted parts of the electromagnetic field adds

up to a noisy background. The solution for this issue is to make the detection schema

insensitive to linear absorption features. Modulation transfer spectroscopy (MTS) can

cancel the background and increases the sensitivity close to the shot-noise limit [158]. The

setup of MTS (Figure 6.4) looks at first sight very similar to FM spectroscopy (Figure 6.3)

with the obvious addition of a counter propagating beam. However, the mechanism behind

Figure 6.4: Schema of a MTS setup. The saturation beam coming from the left interacts nonlinearly with a
counterpropagating probe beam inside the absorbing sample. The modulation of the saturating beam is transferred
onto the probe beam for phase sensitive detection.

it is described by a nonlinear process of the third order, called four-wave mixing [157,159]

(Section 4.0.4). The modulated laser beam saturates the transition. It contains the carrier
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frequency and two sidebands like in the case of FM spectroscopy (Equation 6.19). The

counterpropagating probe beam is also at the carrier frequency but is unmodulated and

at lower power. The saturation of the transition causes the nonlinear power dependence

of both beams, which results in a nonlinear interaction and a transfer of the modulation

frequency of the pump beam onto the probe beam. Modulation transfer happens only

at resonance. Therefore, the background noise becomes independent of linear absorption

effects and leads to a zero baseline. The mathematical description makes use of third

order perturbation theory, which leads to the signal [160–163]

S(ωm) =
c√

Γ2 + ω2

∞∑

n=−∞

Jn(δ)Jn−1(δ)×
[(
L(n+1)/2 + L(n−2)/2

)
cos(ωmt+ φ) +

(
D(n+1)/2 +D(n−2)/2

)
sin(ωmt+ φ)

]
,

(6.23)

with the Bessel functions Jn of order n, the phase modulation index M and the Lorentzian

resonance functions

Ln =
Γ2

Γ2 + (∆− nM)2 and Dn =
Γ (∆− nM)

Γ2 + (∆− nM)2 . (6.24)

These functions describe the absorption for a detuning ∆ away from the resonance for

a natural linewidth δ and a modulation frequency ωm. The detection of the signal is

dependent on the phase of the demodulation signal φ which is one of the possible tuning

parameters to maximize the signal [163]. Demodulating the signal with cos(ωmt+ ϕ) leads

again to a in-phase and a quadrature part of the signal (Section 6.3.2). The maximum

signal is found at ϕ > 0, which requires a linear combination of both parts. However,

sometimes it is convenient to generate either the pure in-phase or quadrature signal.

Maximizing the signal is not necessarily the target. In case of laser locking, one might

prefer a signal with a large slope at zero crossing over a signal with a larger amplitude.

Considering a modulation index M < 1 simplifies the evaluation of the signal because

only the first order sidebands contribute [164]. For a small modulation ωm/Γ ≈ 0.5 the

quadrature and in-phase signals have the same line shape (Figure 6.5a and 6.5b). The

in-phase component consists of Lorenzian functions Ln describing the absorption and the

quadrature component describes the dispersion with Dn. This characteristic is analog

to the case of FM spectroscopy in Equation (6.22). Therefore, the in-phase component

is proportional to the first derivative of the absorption, and the quadrature component

is proportional to the second derivative of the dispersion [153]. The maximum gradient is

reached at ωm/Γ = 0.35 and at ωm/Γ = 0.67 for the in-phase and the quadrature compo-

nent, respectively. A further increase of the modulation frequency ωm raises only the peak

to peak amplitude, and the slope starts to decrease after passing a modulation frequency

of ω/Γ ≈ 1.4. Much larger MTS signals are achieved by increasing the modulation index
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(a) (b)

Figure 6.5: Calculation of the MTS (a) in phase and (b) quadrature signal after demodulating with cos(ωmt+ϕ).
The modulation index is set to M = 0.5.

M > 1. Essentially, the behavior of the in-phase and quadrature component are the same,

as in the case of M < 1. The difference is a faster decline of the signal amplitude with

respect to the modulation frequency ωm (Figure 6.6a-6.6b). Choosing an ideal signal based

(a) (b)

Figure 6.6: Calculation of the MTS (a) in phase and (b) quadrature signal after demodulating with cos(ωmt+ϕ).
The modulation index is set to M = 3.

on this theoretical curves, one should select the in-phase signal. The modulation index

should be M > 1 and the modulation frequency wm smaller than the natural linewidth

Γ.
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Chapter 7

Spectroscopy on a Molecular Beam

The molecules are prepared in a highly-collimated molecular beam of the hydroxyl radi-

cals (OH), which is crossed perpendicular by the spectroscopy laser. Afterwards, electron-

ically excited OH molecules emit fluorescence light on a microsecond timescale, which

is detected with a photomultiplier tube (PMT). Unfortunately, the excitation frequency

of the molecules is shifted, due to the Doppler-effect (Section 7.2). The same effect

dominates the line broadening of the transition frequencies. For instance, the natural

linewidths of the A2Σ+, v′ = 0← X2Π3/2, v′′ = 0 transitions in hydroxyl radical (OH) are

∆ν = 1/(2πτ) ≈ 231 kHz [165], based on a lifetime of τ ≈ 688 ns [166]. Saturation broadening

increases the linewidth to ∆ν ′ = ∆ν
√

1 + S0 ≈ 400 kHz for an overestimated saturation

parameter S0 = 2, which corresponds to twice the light intensity required for steady state

absorption and emission [123]. Now, in contrast, the full width at half maximum (FWHM)

due to the Doppler effect is approximately 8 MHz. Individual transitions start to blend

and make the determination of their center frequencies challenging. The Zeeman-effect

(Section 2.6.1), as well as laser field dependent effects (Chapter 8) are within the line

broadening. Therefore, this chapter explains the molecular beam and its relation to the

first order Doppler-effect.

7.1 Molecular Beam

Doppler broadening is a general problem when determining the center frequency of a

transition. Decreasing the velocity distribution along the propagation direction of the

laser beam reduces the Doppler width. The narrower velocity distribution is the most

substantial benefit of a collimated molecular beam, which propagates perpendicular to the

laser axis. All molecules are contained inside a reservoir and satisfy the Maxwell-Boltzmann

velocity distribution. The pressure inside the container is for example P0 ≈ 1 atm. A hole

at the container allows the molecules to exit into a space of lower pressure Pb. The

molecules escape collision-free if the hole diameter is smaller than the mean free path of

the gas. Outside the container, the velocity distribution and the rotational and vibrational

83



7.1. Molecular Beam

degrees of freedom stay the same as inside, which is characteristic for an effusive beam.

However, a hole diameter larger than the mean free path of the gas introduces collisions.

Escaping molecules frequently collide, which leads to adiabatic cooling of all degrees of

freedom in the expansion region [167]. Sometimes it is also referred to as an isentropic

expansion since it is adiabatic and reversible. The collisions contribute mainly to a cooling

of the rovibrational states of the molecules, while the expansion is cooling the translational

motion by narrowing the velocity distribution [168]. Clustering of the molecules at small

velocity distributions limits the cooling. Thus a noble carrier gas counteracts the clustering.

Good choices are heavy noble gases like krypton or xenon. Their main advantage is the

reduction of the velocity of the molecular beam. The translational temperature Ttr is

mostly determined by the carrier velocity distribution ∆vtr. Thus, the temperature of

the ideal gas is described by kBTtr = 1
2
m∆v2

tr
[169]. Typical translational temperatures

of diatomic molecules are below 1 K. The rotational and vibrational temperatures are

around 10 K and 100 K, respectively [45]. The velocity of the molecules is described by

the Mach number M = u/a, with the mass flow velocity u and the local speed of sound

a =
√
γkBTtr/m

[45]. The critical constant is the ratio of the heat capacities of constant

pressure and constant volume γ = CP/CV ≈ 5/3, as an example of a monatomic gas. In

terms of Mach numbers, the molecules start at M � 1 and reach M ≈ 1 at the source

exit (Figure 7.1a). This includes the assumption of a pressure ratio P0/Pb > 2.1 [170]. In

(a) (b)

Figure 7.1: (a) Supersonic expansion of a molecular beam, with an isentropic core independent of the boundary
condition of Pb. This zone of silence is surrounded by shock waves, depicted as black lines around the zone of
silence. The ideal position of a skimmer is before the Mach disk inside the isentropic expansion (adapted from [170]).

this range, the pressure at the exit becomes independent of Pb and is roughly P0/2 > Pb.

Due to the pressure difference at the exit, the beam starts to expand. The flow velocity

reaches values of M � 1. Thus, it is called a supersonic expansion. An exciting feature of

particles moving at this velocity is the lack of information transfer. Information travels

with the speed of sound, but the molecules move faster. Therefore, they are not affected by

the boundary condition of Pb, and the Mach number continues increasing. The molecular

beam even starts to overexpand, until it gets adjusted by shock waves. They are thin

non-isentropic regions, in which all beam parameters experience a large gradient. The

Mach number decrease in regions beyond the shock waves. The location of the Mach disk

brakes the expansion in the forward direction to M < 1 and is estimated at [170]

xm = 0.67d
√
P0/Pb. (7.1)
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A background pressure Pb ≈ 10−4 mbar and a hole diameter d = 1 mm lead, for example,

to a distance of xm ≈ 2 km. Thus, shock waves are negligible in the pulsed molecular beam

in this thesis. The molecules passing the skimmer into the second vacuum chamber have

a high Mach number, but a narrow velocity distribution in all dimensions. The maximum

flow velocity is [169]

v0(T0) =

√
2kBT0

m

γ

γ − 1
, (7.2)

with the stagnation temperature T0 = 293.15 K, correspondig to the start temperature of

the molecules. The resulting velocity of the perfect isentropic expansion for an ideal gas of

xenon is around v0 = 304 m/s. The actual value in an experiment will be slightly higher

at 340 m/s. A detailed calculation includes the pressure and temperature dependence of

γ [169]. As important as understanding the expansion of the molecular beam, is the creation

of sample molecules. This thesis focuses only on the generation of an OH molecular beam.

The most prominent techniques for producing OH are photolysis [171], chemical reactions [172]

and electrical discharge [173]. However, the chemical reaction of H + NO2 −−→ OH + NO

is limited to a continuous molecular beam. A modern electrical discharge source, which

creates cold and intense OH beams [174] seems to be the most straightforward approach,

though building such a device is a small project of its own.

7.1.1 Photodissociation of Nitric Acid

In this thesis, we used photodissociation of nitric acid to generate the OH. A mixture

of gaseous nitric acid (HNO3) and the carrier gas xenon at 1 atm fill the pulsed valve.

Opening the valve lets the gas mixture flow first into an evacuated fused silica tube, which

produces into the expansion chamber (Figure 7.1b). A perfectly timed laser pulse around

193 nm dissociates the nitric acid molecules inside the quartz tube

HNO3 −−→ NO2 + OH. (7.3)

The OH radicals then undergo supersonic expansion, along with the carrier gas and NO2.

In contrast to an ideal supersonic expansion, the quartz tube confines the molecules over

a distance of a few millimeters. By the time, the first molecules reach the exit of the

tube, the pressure difference to the vacuum chamber has already decreased. However, the

cooling of the supersonic expansion is not endangered as long the relation P0/Pb > 2.1 is

satisfied. Effects like a potential tail of the supersonic expansion, due to the quartz tube

are neglected. The most significant drawbacks of nitric acid dissociation are of technical

nature. The vacuum pumps can handle only a limited amount of acid before they start to

degrade, making a cold finger at liquid nitrogen temperature necessary. The cold finger

takes frequent maintenance. It is emptied by bringing it to room temperature, purging
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it with nitrogen and neutralizing the emerging acid with an alkaline solution inside a

bubbler, for instance, sodium bicarbonate (NaHCO3)

2 H+ + CO3
−

↽−−−⇀ H+ + HCO3
− −−→ H2O + CO2 ↑ . (7.4)

Both ions are in aqueous solution and experience an equilibrium reaction, which results

in water and CO2. The CO2 gas leaves the solution together with the purging nitrogen.

Due to an excess of NaHCO3 inside the solution, all HNO3 gets neutralized.

7.2 Doppler-Shift

The basis of the Doppler effect is the relative velocity mismatch between the observer and

the molecule. In the system of the molecule, the wavelength of an electromagnetic wave

appears shorter if the molecule is moving towards the origin of the wave. Therefore, the

molecule experiences a higher optical frequency. In contrast, a molecule moving alongside

the laser beam in the same direction observes a lower frequency. The actual laser induced

fluorescence (LIF) experiment takes place in the laboratory system. If a molecule which is

propagating towards the laser beam absorbs, it will absorb at a lower laser frequency than

if it were at rest. The absorbed light is, therefore, red detuned relative to the transition

frequency. The frequency observed inside the laboratory system is

ν = ν ′
(

1− v

c

)
, (7.5)

with the molecule velocity v, the speed of light c and the emitted frequency ν ′. Additionally,

the molecules satisfy in general the Maxwell-Boltzmann velocity distribution. Thus, each

velocity class absorbs light at a different optical frequency. The velocity distribution of the

molecules inside a gas cell is symmetric, which leads only to a broadening of the absorption

feature. However, the velocity distribution of a collimated molecular beam is different, with

a narrow velocity distribution but a large forward velocity in the propagation direction.

Thus, the velocity distribution perpendicular to the propagation direction depends on the

collimation. Assuming a perpendicular Gaussian velocity distribution of the molecules

with a FWHM of ∆v⊥ = 2.5 m/s which is parallel to the laser beam, yields a narrow

Doppler FWHM around ∆v/λ ≈ 8 MHz at λ = 308 nm. It is practically tricky, to align

the laser beam perfectly perpendicular to the propagation axis of the molecular beam,

and this results in a shift of the velocity distribution and hence a shift of the absorbed

laser frequency. A solution to this problem is to use two counter-propagating laser beams

of the same power and wavelength, created by retroreflection of the first beam. The two

laser beams cause essentially two shifts, which are equal in opposite directions. The center

of the ideal superimposed absorption frequency distribution is Doppler-free, and only the

Doppler-broadening remains.
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7.3 Geometric Back Reflection Quality

It remains a technical challenge to achieve a precise back reflection. A standard approach

is to use an aperture close to the laser, reflect the laser beam off a mirror and pass it a

second time from the opposite direction through the same aperture (Figure 7.2a). The

(a)
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Figure 7.2: (a) Schema of laser beam reflection at a mirror M passing a window W. This results in a intensity
difference between the outgoing and the reflected laser beam. The angles α and β define the back reflection
quality. (b) Frequency shift dependent of the mirror reflectivity, including losses from the window. At high mirror
reflectivity the back reflection mostly relies on α.

resulting frequency shift is defined by two angles. The angle α is between the outgoing

and incoming laser beam, while the deviation angle β of the molecular beam orientation

is defined relative to the tilt of the mirror. Setting both angles at zero degrees and the

mirror reflectivity at one results in a zero net shift. The net Doppler shift only remains

zero, if both laser beams are identical. Thus, introducing additional optics, like a vacuum

chamber window or a mirror reduces the intensity of the counterpropagating beam. This

is severe for a small tilt of the molecular beam β = 100 µrad, which yields a frequency

shift of 7 kHz at a mirror reflectivity around 90 % (Figure 7.2b). Thus, it is crucial to use

a mirror of high reflectivity and well transmissive windows. However, even a perfectly

aligned molecular beam or an identical counter-propagating laser beam do not prevent a

possible frequency shift caused by α > 0. Assuming, both beams are within a = 200 µm

at the aperture after a distance of 2.5 m, results in α = 40 µrad and the interaction with

slightly different velocity classes inside the molecular beam. The frequency shift is in

this example around 22 kHz. In an experiment, both uncertainties of the angles α and β

add up. The worst case net shift in this example is close to 30 kHz, with an unpredicted

direction in the experiment, which leads to an uncertainty of ±30 kHz.

The impact of the mode structure in geometric back reflection can also shift the laser

frequency. As previously mentioned, both laser beams need to be identical. The best suited

spatial mode is the fundamental transverse electromagnetic mode (TEM00), which is the

lowest order mode, coupled out of a confocal laser cavity. The measured light intensity is
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the basis for the geometric back reflection setup. The procedure is to maximize first the

intensity I0 of the initial beam through the aperture and afterwards the power I1 of the

reflected beam through the same hole (Figure 7.2a). This technique minimized the angle

α if both beams correspond to the TEM00 mode. However, additionally optics inside the

cavity or windows after the cavity potentially generate higher order Hermite-Gaussian

modes TEM0n. Aligning the laser beam now on maximum intensity is no guarantee of

superimposing both beam centers. The potential displacement of both beams introduces

a frequency shift of the observed transition.

7.4 Recoil Shift

The translational motion of the molecules is in general not independent of the interaction

with the electromagnetic wave, or more convenient in this case a photon. Assume that,

the energy of the photon matches the resonance condition. An absorbing molecule is not

putting all the energy of the incoming photon into the transition; some of this energy gets

transformed into motion. The derivation of the recoil shift only relies on the conservation

of energy and momentum [175].

hν0 +
1

2
mv′2 = hν +

1

2
mv2 (7.6)

mv′ = mv − hν

c
(7.7)

After squaring the second equation and inserting it into the first, one gets an expanded

Doppler-equation

ν = ν0

(
1 +

v

c
− hν0

2mc2

)
. (7.8)

The new additional part after the Doppler-shift is the recoil shift, which is usually in

the range of kHz. A recoil is associated with the loss of photon energy into momentum.

Therefore, the recoil shift has a negative sign, and the observed frequency is always

redshifted. For the sake of clarification let’s take a look at the following thought experiment

(Figure 7.3a). A resting molecule in the ground state absorbs a photon of energy hν, gets

exited with energy hν0 and gains a momentum p = hν/c. Writing this energy equation

out and repeating this for the case of a resting exited molecule emitting a photon leads to

hν = hν0 +
1

2m

(
hν

c

)2

, (7.9)

hν0 = hν ′ +
1

2m

(
hν ′

c

)2

. (7.10)
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(a) (b)

Figure 7.3: (a) The resting (p = 0) ground state OH molecule absorbs the photon hν and gets excited, which
results in the momentum p = hν/c. (b) The resting and excited OH molecule emits the photon hν′ and experiences
simultaneously the recoil p = hν′/c.

The gain of kinetic energy after absorbing a photon is in the same order of magnitude as

the recoil energy. Based on this assumption, the transition frequency is approximately

ν0 ≈
1

2
(ν + ν ′) . (7.11)

Therefore, neither the frequency absorbed nor the emitted is of interest, but instead, the

average sum of both frequencies. The recoil shift increases with decreasing mass of the

molecules and increases quadratically with frequency, making it an essential contribution to

the overall frequency shift of ultraviolet (UV) transitions in the rather light OH molecule.
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Chapter 8

Molecule Field Interaction

The most crucial question of spectroscopy is the interaction between the molecule and the

electric field. The coupling between the electric field and the molecule always influences

the observed transition frequency. For clarification of these effects, it is convenient to first

look at the atom-field interaction in a two-level system. In this simple picture, it makes no

qualitative difference whether the particle involved in the interaction is an atom instead

of a molecule. It is also a prominent canonical problem in quantum mechanics, which

is described in detail by Daniel Steck [142]. This chapter summarizes the introduction by

Steck before it proceeds to more complicated systems, involving momentum states of the

atom inside an optical lattice (Section 8.4) or complex simulations of a laser induced

fluorescence (LIF) spectra (Section 8.5).

8.1 Atom-Field Coupling strength

A two-level system consists of a ground state |g〉 and an exited state |e〉. The energy

difference between the two states is ω0 in frequency units. A laser with a frequency ω is

applied to the system, and the detuning from the resonance is described with ∆ = ω−ω0.

In the case of no electric field, one can describe the free evolution Hamiltonian as

HA = ~ω0 |e〉 〈e| = ~ω0σ
†σ. (8.1)

The operator σ = |g〉 〈e| on the right side is the atomic lowering operator. For the interac-

tion between the atom and the field, it is convenient to make the dipole approximation,

which assumes a constant electric field over the spatial extent of the particle. This leads

to the atom-field interaction Hamiltonian [142]

HAF = −dE = −〈g|d |e〉
(
σ† + σ

)
E (8.2)

with the dipole operator d and the electric field E. The decomposition of d is possible

by multiplying it with the identity (|e〉 〈e| + |g〉 〈g|) on both sides. Inserting the time
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dependent electric field E(t) = E0 cos(ωt) into Equation (8.2) yields

HAF = ~Ω
(
σ† + σ

)
with Ω = −〈g|d |e〉E0

~
. (8.3)

The new parameter Ω is defined as the Rabi-frequency, which describes the coupling

strength between the atom and the electric field.

8.2 Solving the Schrödinger Equation

The Schrödinger equation describes the time evolution of the system

i~∂t |ψ〉 = H |ψ〉 = (HA +HAF ) |ψ〉 . (8.4)

The ansatz of solving this equation is possible by using the general description of the state

|ψ〉 = cg |g〉+ ce |e〉, with the complex parameters ce and cg taking the time dependence

into account. Rewriting the Schrödinger equation in matrix notation yields

∂t

[
ce

cg

]
= −i

[
ω0 Ω cos(ωt)

Ω cos(ωt) 0

][
ce

cg

]
= − i

~
H

[
ce

cg

]
. (8.5)

This is essentially a set of coupled differential equations containing oscillating terms

at optical frequencies ω and ω0. Instead of solving them directly, it is convenient to

change the point of view into the frame of this fast oscillating field, which is the rotating-

frame transformation (RFT). The RFT simplifies the problem further, by making the

interaction of the atom with an alternating electric field to an interaction with a time-

independent constant field. Essential for this transformation is that both the transformed

state |ψ̃〉 = U |ψ〉 and the original state |ψ〉 satisfy the Schrödinger Equations (8.4)

i~∂t |ψ̃〉 = H̃ |ψ̃〉 , (8.6)

with H̃ describing the transformed Hamiltonian. Based on this, the time-dependent unitary

transformation of the Hamiltonian H is

H̃ = UHU † + i~ (∂tU)U †, (8.7)

In the case of a two level system the transformation operator looks like

U = exp (iωt |e〉 〈e|) =

[
eiωt 0

0 1

]
. (8.8)
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After performing this unitary transformation on the full system of Equation (8.5), the

Schrödinger equation simplifies to the time independent form

∂t

[
c̃e

cg

]
= −i

[
−ω + ω0

Ω
2
(1 + e2iωt)

Ω
2
(1 + e−2iωt) 0

][
c̃e

cg

]
RWA≈ −i

[
−∆ Ω

2
Ω
2

0

][
c̃e

cg

]
(8.9)

with the detuning ∆ = ω − ω0, which corresponds to the bare state energies Eg = 0 and

Ee = −~∆ in the uncoupled system (i.e. when Ω = 0). The fast oscillating terms e2iωt

and e−2iωt in Equation (8.9) are neglected using the rotating-wave approximation (RWA).

Calculating the eigenvalues of the coupled system leads to

E± = −~∆

2
± ~Ω̃

2
, (8.10)

with the generalized Rabi-frequency Ω̃ =
√

Ω2 + ∆2. These new energies don’t cross each

other at ∆ = 0 anymore since the optical field lifts the degeneracy. However, for a large

detuning ∆ the coupling to the electric field is weak and the eigenvalues converge to

Eg and Ee, respectively (Figure 8.1). The new eigenstates emerging from this two-level

E

∆

Ω
Ω̃

Eg
Ee
E1

E2

Figure 8.1: The coupling of the two states |g〉 and |e〉 with an AC electrical field lifts the degeneracy of the
energies Eg and Ee at zero detuning.

system are [176]

|1〉 = sin Θ |g〉+ cos Θ |e〉 , (8.11)

|2〉 = cos Θ |g〉 − sin Θ |e〉 , (8.12)

with tan(2Θ) = −Ω
∆

. These new dressed states |1〉 and |2〉 mix the uncoupled bare states

|e〉 and |g〉.

8.3 Dressed States

The bare states are no longer eigenstates of the coupled Hamiltonian, but expressing them

as a superposition of dressed states is possible. Especially at resonance ∆ = 0, when both
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dressed states are equally mixed, they simplify to

|g〉 = 1√
2
(|1〉+ |2〉), (8.13)

|e〉 = 1√
2
(|1〉 − |2〉). (8.14)

The time evolution of the wavefunction is calculated with the operator [142]

U(t) =
2∑

n=1

exp

(
− i
~
Ent

)
|n〉 〈n| . (8.15)

If the wavefunction at t = 0 consists only of the ground state |g〉, applying the time

evolution operator on |g〉 leads to [142]

|ψ(t)〉 = U(t) |g〉 = e−iE1t/~ |1〉+ e−iE2t/~ |2〉 (8.16)

= e−iΩt/2 |1〉+ eiΩt/2 |2〉 ≈ |1〉+ eiΩt |2〉 , (8.17)

neglecting the normalization, as well as the overall phase. At the time Ωt = π the

wavefunction changes to |φ〉 = |e〉, while at the time Ωt = 2π the wavefunction is again

|φ〉 = |g〉. Thus, the wavefunction is oscillating between the ground and the excited state

with the Rabi-frequency Ω. This effect is named Rabi-flopping.

The momentum of the atom changes after absorbing or emitting a photon (Section 7.4).

These momentum changes can correspond with frequency shifts, caused by the radiation

pressure or the dipole force. The radiation force is defined by

Frad = ~kRsc, (8.18)

with the photon scattering rate Rsc. It can be used to explain Doppler-cooling of atoms in

fields of counterpropagating laser beams. With low laser power, cooling is achieved by red

detuning the laser frequency relative to the resonant frequency. The dressed state model

can be used to explain this effect [177]. In this picture, the Hamiltonian associated with

the energy in the electric field is described by [142]

HR = ~ωa†a, with a =
∞∑

n=1

√
n |n− 1〉 〈n| (8.19)

where a is the field annihilation operator lowering the photon number n in the photon

state |n〉 by one. The photon number is the most significant quantity of a state. In case

of no atom-field coupling, the bare states in one manifold εn are |g, n+ 1〉 and |e, n〉
(Figure 8.2a). The manifolds are separated by the laser frequency ω, and the two states

inside one manifold are separated by the detuning ∆. If an atom moves into an electric
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(a) (b)

Figure 8.2: (a) Energy schema of dressed states bunched into to separate manifolds. (b) Geometric representation
of the dressed states energy level across a spatially-varying laser field. The atom experiences a force into the
direction of maximum field intensity, if the initial state is |g, n+ 1〉 and the detuning is ∆ < 0 (adapted from [177]).

field, the bare states start mixing. The dressed states are labeled |1, n〉 and |2, n〉. Since a

transition involves only one photon, only transitions between manifolds with n differing

by 1 are possible. Since both dressed states contain a ground and an excited state, four

possible transitions are allowed. Two of these transitions have nearly the same frequency,

which leads to a tripled structure in the fluorescence spectrum, denoted as a Mollow-

triplet [178]. The atom experiences forces proportional to ∇Ei inside an electric field which

average to [177]

Fdip = −Πst
1 ∇E1 − Πst

2 ∇E2, (8.20)

with the probabilities of occupation Πst
i of the states |i, n〉 for i ∈ [1, 2]. A reason for the

change in the electric field Ei can be as simple as the Gaussian intensity distribution

of a laser beam. For example, atoms passing perpendicular a laser beam experience a

rise and fall of the mean electric field amplitude. The probability of occupation Πst
i

depends on the detuning of the laser. If the frequency of the electric field is blue detuned

∆ = ω − ω0 > 0 and the atom starts in the ground state |g, n+ 1〉, than according to

Figure 8.2a, the state |g, n+ 1〉 is higher in energy than the state |e, n〉. Inside the electric

field, both dressed states |1, n〉 and |2, n〉 are a linear superposition of the bare states

(Figure 8.2b upper). The state |1, n〉 is more strongly populated than |2, n〉 because it

adiabatically transits to |g, n+ 1〉 outside of the field. The population Πst
1 of the state

|1, n〉 dominates the dipole force (Equation (8.20)) and the atoms get expelled from the

high-intensity region of the electric field. In the case of a field with a red-detuned frequency

∆ = ω − ω0 < 0, the energies of the bare states outside the electric field are reversed

(Figure 8.2b lower). Therefore, the population of the dressed state |2, n〉 is higher than

the state |1, n〉, and the atoms are attracted to the high-intensity region of the field. For

atoms passing perpendicular a laser beam, this region is usually in the center of the

beam. High-resolution spectroscopy often requires correction for potential Doppler-shifts.
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A standard technique to achieve this involves two counter-propagating laser beams created

by the reflection of the initial laser beam on a mirror. However, this creates a new spatial

intensity distribution which deviates from that of a single laser beam.

8.4 Momentum States in Optical Lattices

Deriving the spatial field distribution of two counterpropagating laser beams starts with

two electromagnetic waves with the same amplitude E0 moving in opposite directions

E(t) =E0(ei(ωt−kx) + ei(ωt+kx) + c.c.) = (eiωt + e−iωt)︸ ︷︷ ︸
=2 cos(ωt)

(eikx + e−ikx)︸ ︷︷ ︸
=2 cos(kx)

(8.21)

The periodic spatial structure of this standing wave is defined by the wavenumber k.

The periodicity leads to an intensity distribution of equally-spaced regions of high and

low field intensity, namely an optical lattice. The light force shift, the atoms experience

inside this structure, affects their momentum (Section 8.3). During the interaction time

inside a resonant electric field, the atom changes its internal state. Such transitions can

be accompanied by a change of the momentum. The abstract wave function of an atom

is described by the wavefunction Ψi,k = |Ψi〉 |k〉, with the internal state |Ψi〉 and the

external momentum state |k〉 = eikx. A transition between two different states requires a

non-vanishing transition dipole moment

〈Ψi1,k1| (−µE(t)) |Ψi2,k2〉 ∝ 〈Ψi1 | (µ cos(ωt)) |Ψi2〉 〈k1| cos(kx) |k2〉 . (8.22)

Here, the wave function of the atom has been separated into two parts. The first part

describes the internal transition of the atom. The second part takes the spatial variation

of the interaction potential and the momentum into account and leads to

〈k1| cos(kx) |k2〉√
〈k1|k1〉 〈k2|k2〉

= lim
a→∞

∑

q=±1

∫ a
−a e

i(k2−k1+qk)xdx

2
∫ a
−a dx

=





1/2 if k2 − k1 + k = 0

or k2 − k1 − k = 0

0 otherwise

(8.23)

The much lager spatial distribution of the atom beam compared to the node spacing

of the lattice is taken into account by the approximation a → ∞. According to this

equation, only momentum changes of ∆k = ±k are allowed. In the photon picture, this

is equivalent to noting that a change of internal state is always accompanied by the

emission or absorption of a recoil photon with momentum kr = k. The quantization of

the momentum allows the construction of the quantum mechanical operator

p̃ = ~
N∑

n=−N

|n〉 〈n| (nkr + k0) , (8.24)
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The initial momentum of the atom k0 can only change by an integer multipe of the recoil

momentum kr. N defines the size of the momentum space for the momentum states |n〉,
with the momentum number n. The corresponding Hamilton operator is

Hp =
p̃2

2m
=

~2k2
r

2m

N∑

n=−N

|n〉 〈n|
(
n+

k0

kr

)2

= ~δp2, (8.25)

where p = p̃/(~kr) is the new momentum operator and δ is the angular frequency of the

recoil energy. The free-space Hamiltonian HA in Equation (8.9) can be adapted to include

the RFT (Section 8.2) by substituting the detuning ∆ = ω − ω0 for ω0

HA = ∆~σ†σ. (8.26)

The atom-field interaction Hamiltonian from Equation (8.3) is adapted to include the

momentum states:

HAF = µE(σ + σ†)(b+ b†), (8.27)

with the ladder annihilation operator b. This operator reduces the momentum number

n of a state by one b |n〉 = |n− 1〉, while its adjoint, the creation operator b† increases

the momentum number by one b† |n〉 = |n+ 1〉. This description completely neglects any

interaction between atoms. A transition between momentum states of the atom is only

possible by interaction with the electric field. For example, an interaction caused by σ†b†

describes the absorption of one photon and the increase of the momentum number n by

one. Reducing or increasing the momentum number describes the direction of the recoil

momentum along one axis. Finally, putting all terms of the Hamiltonian together and

transforming all energies into angular frequencies leads to the full Hamiltonian

H = HA +Hp +HAF = ∆σ†σ + δp2 +
µE(t)

~
(σ + σ†)(b+ b†). (8.28)

The beauty of this representation is its complete independence from spacial coordinates.

The atom is delocalized inside the field of the standing wave (Figure 8.3a). To study the

(a) (b)

Figure 8.3: (a) Schematic of a laser retroreflected at a mirror M, with a atom beam moving perpendicular
through the light field. The individual atom is delocalized inside the standing wave. (b) The field distribution of
the standing wave has a Gaussian line shape along the propagation direction of the atoms.

influence of the electric field on the momentum distribution of the atom, one has to look
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at the time evolution of the system. The atom has a perpendicular velocity component

to the Gaussian beam, which limits the interaction time. The time dependence of the

electric field is approximated by a Gaussian function, with an interaction time defined by

the velocity of the atom beam and the diameter of the laser beam (Figure 8.3b).

8.4.1 Lindblad Master Equation

The Schrödinger equation describes, in general, the time evolution of a closed quantum

mechanical system and can be solved by transforming the system into a matrix representa-

tion and solving the coupled differential equations (Section 8.2). For the sake of clarity, the

previous discussion greatly simplified the problem by assuming a two-level system with

pure states. The Hamiltonian including momentum (Equation (8.28)) involves more than

just two states. Also, pure states are only valid for a closed system. As soon as dissipation

is involved, the system is open. One major dissipation process in the systems of interest

here is spontaneous emission. It is the basis of LIF and the associated light force shift.

Therefore, a more-complete theoretical description is necessary, which the density matrix

formalism provides. The general expression of the density operator is

ρ =
∑

i

Pi |ψi〉 〈ψi| , (8.29)

with the pure states |ψi〉 and the probability Pi assigned to this state. An operator with

multiple probabilities Pi describes a mixed state. The particular case of ρ = |ψ〉 〈ψ|
describes a pure state. The ability to describe both pure states and incoherent superposi-

tions of different states is the strength of the density matrix formalism. The evolution of

the density operator without dissipation follows out of the time-dependent Schrödinger

equation and is called the von Neumann equation

∂ρ

∂t
= − i

~
[H, ρ] . (8.30)

So far the system is still closed. The generalized form of the von Neumann equation is

the Lindblad master equation [179]

∂t

∂ρ
= − i

~
[H, ρ]− 1

2

∑

n

[
L†nLnρ(t) + ρ(t)L†nLn − 2Lnρ(t)L†n

]
, (8.31)

with the Lindblad operators Ln, which introduce dissipation [180,181]. In case of spontaneous

emission, one can describe a Lindblad operator as the product Ln =
√
γnQn of the decay

rate γn and the coupling operator Qn to an external reservoir.

The following discussion uses a three-level system with a dark state |d〉, an excited

state |e〉 and a ground state |g〉 as a model for the intrinsic atom state |ψi〉 (Section 8.4).

Additionally, the momentum states |n〉 are included in the wavefunction. The total wave-
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function is described by

ψtot = |ψi〉 ⊗ |n〉 . (8.32)

Therefore, all operators of the momentum Hamiltonian (Equation (8.28)) need to address

both factors in this tensor product. Mostly, one needs to differentiate between operators

affecting the internal state of the atom and operators changing the momentum. This leads

to using σ ⊗ I2N+1 instead of σ, I3 ⊗ b instead of b and I3 ⊗ p̃ instead of p̃. A new set of

dissipative coupling operators Qn describe decays from the excited internal state to the

dark state and are defined by Qn = |d〉 〈e| ⊗ |n〉 〈n|. Note that each momentum number

state |n〉 decays independently. Now everything is ready to calculate the time evolution of

the system. The starting point is the absolute ground state |ψ0〉 = |g〉⊗ |0〉. The state |0〉
for the momentum number n = 0 doesn’t mean the initial momentum of the molecule is

zero, but simply refers to the initial momentum state with momentum k0 (Equation (8.24)).

The term of interest is the amount of spontaneous emission after the interaction with the

electric field, which is proportional to the final population of the dark state |d〉. This can

be computed by summing the |d〉 〈d| ⊗ |n〉 〈n| elements of the density matrix after the

interaction with the electric field. A single solution of the Lindblad equation leads to a

population of the dark state for a specific set of initial parameters, which are designed to

approximate a molecular beam of hydroxyl radical (OH) (Section 8.4.2). The Lindblad

equation is solved multiple times, using the open-source Python QuTiP library [182,183], to

obtain a whole spectrum. After superimposing all solutions as a function of the detuning

∆ from resonance, one obtains a typical Doppler broadened spectrum (Figure 8.4a). The
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Figure 8.4: (a) Simulated fluorescence spectrum after the time evolution of the Lindblad equation using a
Gaussian velocity distribution of OH molecules. (b) Zooming in on the resonance frequency ∆ = 0 shows a shift
of the Lamb dip, which is displaced from the recoil frequency at the center of the profile.

center of this profile is always red shifted by the OH recoil frequency of 123 kHz. The

spectrum can be fit with the product of a Gaussian function and a pseudo-Voigt dip

on a uniform background (red curves in Figure 8.4b). The Gaussian function matches

the expected Doppler broadening distribution and recoil shift, while the pseudo-Voigt
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function approximates the saturation dip (Figure 8.4b). Zooming in on the Lamb dip

shows not only a discrepancy of the fit but also a shift away from the recoil frequency.

This observation is an essential conclusion when considering saturation spectroscopy in

molecular beams, and is part of a later discussion (Section 8.4.3).

8.4.2 Discussion of Simulation Parameters

The size of the individual simulation parameters is roughly oriented on the OH molecule

investigated in this thesis. Each value of the detuning ∆ and the initial momentum k0/kr

need a separate solution of the Lindblad equation. A whole spectrum is created by solving

the Lindblad equation multiple times and superimposing the individual results. The range

of the detuning depends on the momentum distribution of the molecules. In general,

most of the molecule’s momentum is along the propagation direction of the molecular

beam, and only a small fraction is along the electric field axis. Both the perpendicular p⊥

and the parallel component p‖ of the momentum are important. The interaction of the

standing wave with the momentum of the molecules is determined by p‖. Therefore, the

initial momentum k0/kr always refers to p‖. The momentum p‖ is assigned a Gaussian

probability distribution with a maximum at zero momentum and a full width at half

maximum (FWHM) corresponding to 2.5 m/s (k0/kr ≈ 13.9). To calculate the full spectral

range ∆, the initial momentum k0/kr should at least cover the range ∆/δ. A minimum

step size of ∆k0/kr = 0.1 is recommended. The second momentum component p⊥ defines

the interaction time inside the electric field. The calculations assume a constant velocity

around 340 m/s and a full width (1/e) of the laser beam diameter of 1 mm and determine

the time evolution of the electric field strength based on this (Figure 8.3b). With the

velocity and beam width given above the molecules spend around 3 µs inside the high-

intensity region of the field. This duration is more than four times the lifetime of the

excited state τ = 0.688 µs [184]. The coupling strength of the molecule field interaction is

defined by the electric field E and the transition dipole moment µ, which are fixed at

µE/h = 0.05 MHz. Finally, the number of momentum states needs a limitation to keep the

time evolution solvable. In general, multiple steps of absorption and emission of photons

are possible, and each step corresponds to a change of the momentum state. However, the

counter-propagating beams reduce the probability of gaining a net momentum change

greater than one recoil. This yields an exponential decay of finding a molecule in a

momentum state greater one. In all simulations, the momentum space is limited to N = 3.

This last definition completes the list of all parameters involved in simulating saturated

fluorescence spectra of OH inside a molecule beam, with emphasis on the light force shift

(Figure 8.4a-8.4b).
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8.4.3 Shift of the Saturation dip

The position of the Doppler-broadened fluorescence signal is always red-shifted by one

recoil, while the position of the saturation dip shows a somewhat different behavior. To

investigate this effect further, it is convenient to eliminate the Doppler-background. One

possibility for removing the background is by replacing the initial Gaussian momentum

spread with a rectangular function and weighting all momentum classes equally. Each

momentum class contributes to the background by emitting light described approximately

by a Lorentzian function, with a width corresponding to the natural linewidth. The

background is approximated with

Ib(f) = a
fc

π(f 2
c − (f − f0)2)

+ b, (8.33)

where a is a scaling parameter, b an offset parameter, f0 the center frequency and fc the

cutoff frequency of the background. Fitting only the points furthest away from the satu-

ration feature and subtracting the fit from the whole profile leads to a proper saturation

dip (Figure 8.5a). All attempts of fitting an analytical function to this dip failed. Neither
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Figure 8.5: (a) Background free saturation dip at µE/h = 50 kHz (b) Extracted saturation dip positions at
different coupling strengths µE/h. Dependent on the method extracting the dip position, one obtains different
answers.

an asymmetric pseudo-Voigt function [185] nor a multi Lorentzian function, consisting of 20

individual Lorentz functions can produce consistent results. Only non-fit-based techniques,

involving the extraction of the center of the Lamb dip, remain. Furthest away from the re-

coil frequency are the center of mass and the median of the Lamb dip. The minimum of the

saturation dip is closest to the recoil frequency. The profile is asymmetric and makes the

determination of a precise frequency within this range vague. Furthermore, increasing the

coupling strength between the field and the molecule shifts the dip position (Figure 8.5b).

For example, an increase of the coupling from µE/h = 50 kHz to µE/h = 100 kHz shifts

the dip by around 10 kHz closer to the recoil frequency. A general conclusion from this

analysis is that the Lamb dip is always located between the resonance frequency ∆ = 0 Hz
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8.4. Momentum States in Optical Lattices

and the recoil frequency δ/(2π) = −123 kHz, nearly independent of the field strength.

Considering only single momentum classes helps to understand this effect. Most

important is again the subtraction of the background. The fluorescence of a single

momentum class is represented by a Lorentzian function. In the case of two counter-

propagating beams, two Lorentzian functions are associated with one momentum class.

They are centered around the recoil frequency: one at (−1 + 2k0/kr)δ/(2π) and the other

at (−1 − 2k0/kr)δ/(2π). The periodicity of the standing wave gets averaged away for

high momentum classes. However, fluorescence peaks of low momentum classes move

closer together until they are indistinguishable. In this range, saturation occurs in con-

junction with a growing light force shift. Especially at low coupling strength, for instance,

µE/h = 10 kHz, the change of amplitude is small compared to the overall size of the

fluorescence peak. A proper subtraction of the individual fluorescence peaks excluding

interaction becomes crucial. The separation of the two counterpropagating beams is

possible, by removing the terms σb† + σ†b or the terms σb + σ†b† from the interaction

Hamiltonian (Equation (8.28)). Calculating the fluorescence from each of the individual

beams and adding the results describes the fluorescence background. The background

resolved saturation dip minimum is close to the recoil frequency for the zero momentum

class k0/kr = 0. At higher momentum classes k0/kr > 0 the minimum moves towards the

resonance frequency ∆ = 0 Hz and ultimately passes it (Figure 8.6a). Simultaneously, the
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Figure 8.6: (a) Frequency shift of one broad saturation dip for different momentum classes. (b) Two pronounced
saturation dips at defined momentum classes after reducing the natural linewidth by a factor of 10.

amplitude decreases until nearly zero at k0/kr = 3. The wave-like behavior around zero

is rooted in interference effects involving both interacting laser beams.

To investigate this effect further, the fluorescence peaks are artificially narrowed. The

rate of spontaneous emission used thus far corresponds to a natural linewidth of 231 kHz.

Increasing the lifetime of the excited state by a factor of 10 reduces the linewidth by the

same amount. Simultaneously, the interaction time of the molecule inside the electric field

is also increased by 10. The resulting saturation dips are now well separated at the recoil
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Chapter 8. Molecule Field Interaction

frequencies ±δ/(2π). The first dip only appears for the zero momentum class k0/kr = 0

and the second just for k0/kr = 1, with an amplitude half as strong. Thus, a system

with a broad natural linewidth would result in a single minimum in between those dips.

Simultaneously, it opens a question, why are two Lamb dips present?

In general, saturation only happens if both counterpropagating beams are interacting

with the same momentum class. This condition is satisfied under two sets of circumstances.

First, if the photon energy is at one recoil higher, then both laser beams interact with

the zero momentum ground state, which will be depleted. This depletion is the expected

case and would result in a Lamb dip precisely at the center of the Doppler-broadened

background. Second, if the photon energy is lower by one recoil, a certain velocity class

of molecules against the direction of the wave vector are excited and end up at rest

with zero momentum. This leads to a center peak in the momentum distribution of

excited molecules. The rate of spontaneous emission is equal for all momentum classes,

but stimulated emission driven by the other laser depletes the peak in the excited state

momentum distribution and leads to a saturation dip at the recoil frequency δ/(2π). A

quasi-classical prediction of this effect by Wigner functions is known since 1969 [186]. The

first measurements followed 1973 on methane [187,188] and later on iodine [189].

Going into more detail and analyzing the exact position of the Lamb dip at k0/kr = 1

shows a small deviation from the prediction. The actual saturation dip is asymmetric with

a center of mass shifted dependent on the size of the coupling parameter µE. This linear

shift is around 1 kHz for ∆µE/h = 10 kHz, which is associated with the light force. Going

back to the overall shift of the saturation peak with a natural linewidth of 231 kHz leads

to a shift more than twice as large (Figure 8.4a-8.4b). The light force shift contributes to

it, but the second and more dominant effect is the saturation of the k0/k1 = 1 momentum

class. The LIF spectra in this thesis are dominated by the Doppler-broadened background,

which stays unaffected by the investigated shifts. Thus, it is justified to avoid the treatment

of momentum state related shifts in subsequent analysis.

8.5 Quantum-Mechanical Simulation of LIF Spectra

The Lindblad master equation has proven to be a reliable tool in describing the time

evolution of multiple momentum states (Section 8.4.1). However, another important ap-

plication is calculating the evolution of a molecular wavefunction when multiple quantum-

mechanical states are involved. For all spectra measured in this thesis, an analysis has

been performed using the Lindblad master equation, which has been implemented in

the open-source Python framework QuTiP [182,183]. The following description assumes an

effective Hamiltonian that describes the A2Σ+, v′ = 0 and X2Π3/2, v′′ = 0, J ′′ = 3/2

states in OH and the deuterated hydroxyl radical (OD) as well as the transition dipole

moments between two electronic states. The spectroscopic parameters are either known
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from previous works or estimated from rudimentary fits of the spectra, and the effect of the

external magnetic field of 75 µT is also included in the Hamiltonian (Section 9.8.2). The

Hamiltonian matrix is calculated using the program PGOPHER and extended to include

the effect of the electric field from the two counter-propagating laser beams. The extended

Hamiltonian is then inserted into the Lindblad master equation and used to calculate the

evolution of the density matrix. The density matrix can be used to determine the LIF

spectrum that would result from a molecule with a specific trajectory, and combining

spectra from all possible trajectories can be used to construct a composite spectrum. The

fit of these simulated LIF spectra to the measured spectra is discussed in Section 10.1.

The Hamilton matrix is calculated with the program PGOPHER for an effective Hamil-

tonian parameter set in a 75 µT magnetic field and zero electrical field. The eigenstates

from this calculation are used as the basis states for further calculations, so the eigenen-

ergies correspond to the diagonal elements of the Hamilton matrix. PGOPHER can

compute the transition dipole moment between the space-fixed basis states but requires

the molecule-fixed transition dipole moment as a scaling factor. This factor is determined

using the lifetime of the first electronic excited state v′ = 0, N ′ = 0 of t21 = 688 ns, which

corresponds to the Einstein coefficient A21 = 1/t21
[184]. Thus, the normalization factor for

all A−X transitions is [190]

| 〈A, v′ = 0|T 1
q=±1(~µ) |X, v′′ = 0〉 | =

√
A21

g2

3ε0hc3

2ω3
21

= 0.26 D, (8.34)

with the angular transition frequency ω21 = 2πc/308 nm and the degeneracy factor g2 = 2.

The degeneracy is caused by two decay channels, namely from Λ = 0 (A2Σ+) to Λ = ±1

(X2Π). Another requirement of the Lindblad master equation are the radiative decay rates

of all M state resolved transitions. These rates are equal to the Einstein A coefficients

and can be calculated from the transition dipole moments [190]

γi =
2ω3

21µ
2
i

3ε0hc3
, (8.35)

In general, the relevant number of basis states for the simulation depends on the number

of transitions in the cluster being measured. In these calculations only transitions, which

are within 2 GHz of the measured transitions are included. Since the LIF measurement

depends on the reemitted fluorescence light, it is important to include all ground state levels

X, v′′ = 0 with allowed transitions to the A states already included. Since large matrices

result in long computation time, the number of basis states is reduced by considering only

transitions satisfying the selection rule J = ±1 and 0. All other transitions are extremely

weak, which justifies the procedure. After the reduction, there are a maximum of 84 left

for OH and 126 basis states for OD (Table 8.1), though some transitions clusters require
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fewer basis states. The bare Hamilton matrix H0 can now be defined as a diagonal matrix

Table 8.1: Maximum number of basis states involved in the calculation of the LIF spectra in this thesis. The
ground state X, v′′ = 0 is separated into initial states and final states after decay.

Number of basis states for
OH OD

X, v′′ = 0, Ω′′ = 3/2, J ′′ = 3/2 initial states 8 12

A, v′ = 0 excited levels 12 18

X, v′′ = 0 to which the A states potentially decay 64 96

which contains the eigenenergies of the basis states. In the next step, we consider the

interaction with the electric field of the laser.

Two counterpropagating Gaussian beams with equal intensity create a time and space

dependent electrical field

Ex(x, y, z, t) = 2

√
µ0cP0

πω2
0

exp

(
−x

2 + z2

ω2
0

)
cos

(
2πνy

c

)
× [exp(2πiνt) + exp(−2πiνt)] ,

(8.36)

with the impedance of free space µ0c ≈ 377 Ω, the laser power in one propagation direction

P0, the laser frequency ν and the waist w0 = 0.5 mm, which corresponds to the 1/e2 beam

radius. The propagation direction of both laser beams is along the y-axis, with a linear

polarization along the x-axis. The electric field and the off-diagonal transition dipole

moment matrix µx couple the hyperfine states with ∆MF = ±1, leading to the total

Hamilton matrix

H = H0 − Exµx. (8.37)

As in the previous calculations (Section 8.2), the large optical frequency in Equation (8.36)

results in a fast oscillation of the density matrix, which makes the numerical evaluation

challenging. Therefore, it is convenient to apply a time-dependent unitary transformation

again and invoke the RWA. The transformation ofH is identical to before (Equation (8.7)),

while the transformations of ρ and A are

ρ̃ = U †ρU and Ãi = U †AiU. (8.38)

The transformed matrices preserve the form of the Lindblad master Equation (8.28). The

transformation operator itself U = exp(2πiνt |A〉 〈A|) is identical to the transformation

operator of the two level system (Equation (8.8)), except the dimension is expanded. The

ground state |g〉 and the excited state |e〉 correspond now to the multiple X and A states,

respectively. Finally, the time-independent Hamiltonian after the unitary transformation
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and the RWA is given by

H̃ = H̃0 − 2µx

√
µ0cP0

πω2
0

exp

(
−x

2 + z2

ω2
0

)
cos

(
2πνy

c

)
. (8.39)

The difference between H̃0 and H0 is a frequency shift of all A levels by −hν.

The Lindblad master equation with the new Hamiltonian operator H̃ determines the

evolution of the density operator for a single molecule, passing the electric field Ex of the

two counter-propagating laser beams. At the beginning of the simulation, the molecule

resides in an incoherent mixture of the ground states X, v′′ = 0, Ω′′ = 3/2, J ′′ = 3/2, with

an equal population in each state. During the time evolution of the Lindblad equation, the

molecule passes the electric field and emits fluorescence light. Calculating the weighted

sum over the populations of all A states, with the weighting factor of the total fluorescence

decay rate of each A state, leads to an approximation of the fluorescence light. The total

decay rate of an individual A state is the sum over all decay rates to the multiple X, v′′ = 0

states. The motion of the molecules along the z-axis of the magnetic field corresponds

to the mean forward velocity of the molecular beam at vz = 340 ms. The velocity vz

limits the interaction time with the laser which propagates along the y-axis (Figure 8.7a).

Ignoring the polarization state of the field leaves the molecule motion along the x and

(a) (b)

Figure 8.7: (a) Schema of a single molecule passing perpendicular a standing wave, with a well defined position
of the molecule along the y-axis. (b) Schema of the Gaussian power distribution of the electric field along the
x-axis.

z-axis equivalent. Since both axes are equivalent and vz � vx, vx is fixed at 0. However,

the velocity of the molecule along the laser axis vy remains an adjustable parameter, along

with its coordinates x, y, the laser power P0 and laser frequency ν. In the following, the

y coordinate at closest approach to the center of the molecular beam (z = 0) is y0 and

the x parameter is merged with the laser power to P̃0(x) = P0 exp(−2x2/ω2
0). Thus, the

fluorescence light of a single molecule passing the laser beam corresponds to I(ν, P̃0, vy, y0).

Considering the spatial extent of the molecular beam requires an integral over all possible

positions y0, x and velocities vy of the individual molecule. Therefore, the total fluorescence
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intensity in the experiment is proportional to

S(ν, P0, σ) =

∫ ∞

0

∫ ∞

0

∫ c
4ν

0

exp
(
−∆2

ν

2σ2

)
I
(
ν, P̃0(x), c∆ν

ν
, y0

)
dy0d∆νdx, (8.40)

with the substitution ∆ν = νvy/c. The line-broadening σ accounts for the velocity distri-

bution along the y-axis. Finally, the whole spectrum can be determined by calculating

S(ν, P0, σ) at each frequency ν in a region around the transition frequency. However, it is

convenient to approximate the expensive calculation of S(ν, P0, σ).

For the numerical evaluation the inner integrals are separated into different ranges of

∆ν, which correspond to a molecule’s velocity along the laser beam. In the range of ∆ν

from 0 to 2 MHz the integral over ∆ν is replaced by a sum with a 50 kHz interval size. If ∆ν

reaches values > 400 kHz the velocity vy of the molecule dominates the integral over the

specific position y0. Therefore, a fast-moving molecule experiences a frequent alternation

of nodes and anti-nodes of the standing wave. The starting point of the molecule becomes

arbitrary, which justifies the evaluation of the integral at a single coordinate y0 = 0. In

contrast, if ∆ν ≤ 400 kHz, the integral over y0 is approximated by averaging the values

at y0 = 0 and y0 = c/(4ν). Finally, if ∆ν > 2 MHz, the molecule interacts with only one

of the two counterpropagating beams, and the fluorescence signal simplifies to

I
(
ν, P̃0(x), c∆νy

ν
, 0
)
≈ I

(
ν + ∆ν ,

1
2
P̃0(x), 0, 0

)
+ I

(
ν −∆ν ,

1
2
P̃0(x), 0, 0

)
. (8.41)

The last integral over x is calculated for fixed values of P̃0(x) corresponding to P̃0(xn) =

1 mW×10n/5, with the integer number n. Since the calculation of the fluorescence spectra

serves mainly a fitting routine, the particular laser powers correspond to the values mea-

sured during a frequency scan. The largest value of P̃0(nmax) corresponds to the largest

measured laser power of a transition in OH or a transition cluster in OD. The smallest

laser power P̃0(nmin) is chosen to get into the approximately linear regime of the single-

molecule fluorescence signal. These fixed power values are the basis for integrating over x

by using a linear interpolated function between two adjacent values in P̃0(x). Potentially

smaller power values < 1 mW × 10nmin/5 are linear extrapolated to zero.
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Chapter 9

Experiment

This chapter describes the experimental setup, in which all previously mentioned compo-

nents come together. It starts with a general overview of the laser system, before going

into more detail by describing the experimental setup of each involved laser and the molec-

ular beam. Finally, precision spectra of the A2Σ+, v′ = 0 ← X2Π3/2, v′′ = 0, J ′′ = 3/2

electronic transitions in the hydroxyl radical (OH) and the deuterated hydroxyl radical

(OD) are measured as a benchmark test of the system.

9.1 Complete Measurement Setup

The precision spectroscopy on OH requires a laser system which is referenced to multiple

frequency standards. The basis of this precision laser system is an inherently stable non-

planar ring oscillator (NPRO) based on a neodymium-doped yttrium aluminum garnet

(Nd:YAG) crystal operating at 1064 nm (Coherent Mephisto 1000 NE). Afterwards, second-

harmonic generation (SHG) inside a periodically-poled lithium niobate (PPLN) waveguide

(NTT Electronics) converts the wavelength to 532 nm (Figure 9.1). The green 532-nm beam

is coupled into an iodine modulation transfer spectroscopy (MTS) setup, which provides an

error signal for the stabilization of the Nd:YAG laser (Section 9.2). The Nd:YAG-laser is

now stable at short timescales, but its exact frequency is still unknown. The measurement

of the absolute emission frequency of the Nd:YAG-laser requires an optical frequency

comb (OFC). The OFC is based on a mode-locked Ti:sapphire femtosecond oscillator

(Laser Quantum Taccor-6) and a photonic crystal fiber module (NKT Femtowhite 800),

resulting in a one-octave wide spectrum (Section 9.3).

The superposition of the OFC laser beam and the Nd:YAG-laser at 1064 nm and at

532 nm results in two beat notes. The frequencies of the two beat notes depend on the

repetition rate fr and the carrier envelope offset frequency f0 of the OFC. Two phase-

locked loops (PLLs) stabilize the 1064-nm and 532-nm beat notes at exactly 100 MHz

and 200 MHz, respectively. Therefore, the OFC mode at 532 nm is exactly a factor of two

higher in frequency than the OFC mode at 1064 nm. The OFC is now fully constrained
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Figure 9.1: Schema of the precision laser system. The Nd:YAG laser supplies beams at 1064 nm and 532 nm,
allowing the stabilization of the laser to an iodine reference. The short-term stability of the Nd:YAG laser is then
distributed, through an OFC, to the spectroscopy lasers, a mid-IR OPO and a UV frequency doubled dye laser.
Additionally, OFC repetition rate is recorded relative to the local rubidium oscillator and a GNSS receiver. Thus,
the beat notes of the individual lasers provide a reading of their absolute optical frequencies.

with f0 = 0 and

fr(n) =
f532 − 200 MHz

2n
. (9.1)

The integer mode number n corresponds to the number of OFC modes between 1064 nm

and 532 nm. It is convenient to set the repetition rate as close as possible to 1 GHz. In

the experiment, the repetition rate used is either

fr(281630) = 1 000 000 006.1 Hz, or (9.2)

fr(281631) = 999 996 455.3 Hz. (9.3)

Due to potential drifts of the iodine reference, the exact value of fr can slightly change

over time. To account for this, the repetition rate of the OFC is recorded with a dead time

free counter which is referenced to the rubidium oscillator (Stanford Research Systems

PRS10).

A global navigation satellite system (GNSS) receiver (Septentrio PolaRx4TR PRO)

supplies a pulse per second (PPS) to stabilize the rubidium oscillator and counteract

potential long term drifts. Additionally, the GNSS receiver records data corresponding to
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the phase error of the rubidium oscillator relative to GNSS time. A number of services

are available that will process this data1, enabling post-correction of the frequency offset.

However, since the estimated relative root-mean-square (RMS) value of this correction

is less than 1.5× 10−12 for 1000 s (corresponding to a typical measurement time in this

thesis), the post-correction was neglected in the calculation of the laser frequencies.

The rubidium oscillator is also used as a reference for measuring and stabilizing the

optical beat note frequencies. The lasers are stabilized by PLLs, which rely on the phase

error between the optical beat note and a reference signal. These reference signals, such

as the 200 MHz signal required for the stabilization of the OFC or the tunable radio

frequency synthesizers used for stabilizing the spectroscopy lasers to the OFC, derive

their frequency from the rubidium oscillator. The spectral overlap between the OFC and

the spectroscopy lasers is the requirement for the optical beat notes between both laser

systems.

The electronic excitation of the OH requires an ultraviolet (UV) laser around 308 nm,

which is outside the OFC spectrum. Therefore, we use a continuous wave (CW) dye laser

at 616 nm (Sirah GmbH Matisse 2 DR) within the spectrum of the OFC and subsequently

double the frequency by nonlinear conversion. For this, the wave at 616 nm is coupled

into an enhancement cavity and converted by SHG inside a beta barium borate (BBO)

crystal to 308 nm (Sirah WaveTrain).

The vibrational excitation of OH requires a mid infrared (IR) laser around 2.9 µm,

which is also outside the OFC spectrum. This laser is produced using an optical para-

metric oscillator (OPO), which is pumped with the already stabilized and now amplified

(Nufern NUA-1064-PD-0015-C2) 1064-nm beam of the Nd:YAG laser with up to 15 W.

The nonlinear conversion inside the magnesium-doped PPLN crystal (Castech PPMCLN

5mol%) of the OPO generates a resonant signal wave at 1.7 µm and an idler wave at

2.9 µm, which is immediately coupled out. Approximately two percent of the signal wave

in the cavity is also coupled out, and frequency doubled in a single pass through another

magnesium-doped PPLN crystal (Covesion MSHG1650-0.5-10). The SHG inside the sec-

ond PPLN leads to a wave at 850 nm, which is also inside the OFC spectrum. Now that

optical beat notes between the spectroscopy lasers and the OFC are available, phase locked

loops adjust the cavity length of each laser to keep the beat note frequency stable at the

reference frequency. Frequency tuning is achieved by changing the reference frequency

provided by the computer controlled frequency synthesizer.

A frequency scan over a single electronic transition line of the OH is performed in

steps of 200 kHz with a typical span of 32 MHz. The richer hyperfine structure of OD

requires occasionally scans over 50 kHz. The available scan range is limited between

50 MHz and 450 MHz, even though the beat notes can fall anywhere between 0 MHz and

1For example: https://www.nrcan.gc.ca/earth-sciences/geomatics/geodetic-reference-systems/18766
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f2/2 = 500 MHz. The reason is the ambiguity in assigning the correct laser frequencies. If

the beat note frequency is close to 0 MHz, it is hard to determine whether the CW laser

frequency is higher or lower than the OFC mode frequency. Similarly, a beat note frequency

close to 500 MHz is right in between two OFC modes producing two beat notes with similar

frequencies. The PLL behaves unpredictably in the ambiguous frequency regions, and it

is generally better to avoid them. Fortunately, the OFC can be stabilized to a different

repetition rate defining mode (Equation 9.2) before the scan of the spectroscopy laser.

Choosing the right mode in advance makes it possible to avoid dead frequency zones

during the scan. For example, if the OFC is stabilized at the mode n = 281630, some

electronic transitions will fall into the dead frequency zone, but usually, these transitions

will have more favorable beat note frequencies when the OFC is stabilized to the mode

n = 281631.

9.2 Iodine Reference

Building on the introduction to MTS presented in Section 6.3.3 and the basics of the

iodine standard presented in Section 5.2.2, this section concentrates on the technical details

realizing the MTS setup. The core design of our MTS setup is inspired by previous work,

mostly from the group of A. Peters at the Humboldt University in Berlin [74,136,137,191].

Our iodine reference is built on a commercial optics honeycomb breadboard. A heat

mat under the breadboard opens the possibility of active temperature control, although

it is currently turned off. The core of the iodine reference is the gas cell. Our iodine

cell is 500 mm long with wedged fused silica windows that are coated for 532 nm on all

surfaces (ISI Brno). The cold finger at the center of the cell is 30 mm long and cooled to

−15 ◦C, which follows the recommendation of the bureau of weights and measures (BIPM)

This temperature corresponds to a vapor pressure of 0.76 Pa [137] or 0.83 Pa [192,193]. The

two counterpropagating pump and probe beams pass the cell four times (Figure 9.2a),

resulting in a total optical path length of 2000 mm. The superposition of the two beams is

achieved and maintained by using precision kinematic mirror mounts (Thorlabs Polaris).

Long term pointing stability is possible with a control loop, involving piezoelectric

transducer (PZT) on the mirrors and quadrature photodiodes. Each quadrature photo-

diode consists of four separated detector areas, and attached electronics produce three

output signals (Figure 9.2b). In detail, the sum output is proportional to the total laser

intensity on the photodiode, while the horizontal and vertical error outputs are propor-

tional to the intensity difference between one half of the photodiode and the other. The

ideal transverse electromagnetic mode (TEM) mode for alignment of the pointing and

also MTS is the TEM00 mode. To filter out potential higher order modes, two single-mode

optical fibers are used in the pump and probe beam paths. Pointing instabilities at the

entrances to these fibers can change the field strength after the fiber, so an acoustic-optical
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(a) (b)

Figure 9.2: (a) Schema of the MTS iodine reference setup, which involves an electro-optic modulator (EOM),
two acousto-optic modulators (AOM), two photodiodes (PD), four quadrature photodiodes (QPD), two piezo
transducer (PZT) at each relevant mirror (M), and finally a noise canceling detector (NC). (b) Schema of the
QPD outputs: i) sum, ii) vertical error, iii) horizontal error.

modulator (AOM) (IntraAction Corp. 402AF1) is used in front of each fiber, adjust the

beam intensities and cancel out potential residual amplitude modulation (RAM). A trav-

eling acoustic wave inside the AOM diffracts some part of the incoming light into the first

diffraction order, depleting it from the undiffracted beam. The amount of light transferred

is determined by the intensity of the radio-frequency signal applied to the PZT driving

the acoustic wave. Thus, amplitude control of either the diffracted or the undiffracted

light component into the optical fiber is possible. A photodiode behind the fiber detects

the light intensity after the fiber, and a control loop can be used to keep this intensity

constant.

Additionally, the fiber setup reduces RAM from the electro-optic modulator (EOM)

which drives the MTS [194]. The RAM leads to frequency fluctuations and shifts. It is

convenient to reduce it, though the RAM contribution compared to the broad OH UV

transitions in this thesis is negligibly small. One of the AOMs is used to shift the frequency

of the pump beam by a constant 40-MHz offset while the frequency of the probe is left

unchanged. Doing this ensures that any back-reflected beams will have a different frequency

from the beam that should be traveling in that direction and will not interact with the

same molecules.

9.2.1 Iodine Spectrum near 532 nm

The inherently stable NPRO laser based on a Nd:YAG crystal is the starting point for

the MTS (Coherent Mephisto). After frequency doubling the 1064-nm output using a

waveguide PPLN, some portion of the 532-nm light is coupled into a polarization main-

taining optical fiber. The 532 nm wave is collimated again on the breadboard containing

the iodine setup (Section 9.2). A combination of λ/2-waveplate and polarizing beam

splitter separates and sets the relative intensities of the pump and the probe wave. The
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optimal pump and probe intensities before entering the absorption cell are 24.4 mW and

12.7 mW, respectively. The frequency synthesizer that modulates the pump frequency has

two outputs supplying a cosine and a sine waveform (Figure 9.2a). The sine waveform

is amplified to ±8 V before being transformed up to ±320 V and applied to the EOM.

The EOM (Qioptic PM-C BB) requires 100 V to reach a modulation of λ/10 at 1064 nm,

which implies a modulation of λ/5 at 532 nm with the same voltage. Thus, the phase

modulation of the pump wave is

∆ϕ(t) ≈ 1

5
2π

320 V

100 V
sin(2πνmt) = 2π0.64 sin(2πνmt) at 532 nm. (9.4)

The definition of the instantanious frequency (Equation (5.2)) leads to the modulation

index

δ =
∆ν

νm
=

1

2π

1

νm

dϕ(t)

dt
=

1

2π

1

νm
lim

∆t→0

∆ϕ(t)

∆t
= 2π0.64 ≈ 4, (9.5)

which is independent of the modulation frequency νm = 161 kHz of the EOM. After

the saturation experiment, a noise-canceling detector measures variations of the probe

wave [195]. This signal gets amplified, filtered and sent to an electrical mixer. The sine phase

modulation applied using the EOM results in a cosine frequency shift, which becomes

the primary modulation in the probe signal. Thus, the cosine wave from the frequency

synthesizer is used as the local oscillator frequency of the mixer, resulting in a pure in-

phase MTS signal at the mixer output. The Nd:YAG laser emission frequency can be

tuned by changing the temperature or cavity length, enabling measurement of the region

around the a10 component of the R(56) 32-0 transition cluster (Figure 9.3a). The spectrum
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Figure 9.3: (a) Measurement of the a5 to a14 hyperfine lines of the R(56) 32-0 transition cluster in molecular
iodine around 532 nm. (b) Fit of the in-phase MTS signal to the hyperfine component a10, with the fixed parameters
δ = 4, fm = 161 kHz and φ = 0.

shown in Figure 9.3a was produced by ramping the voltage on the cavity PZT between

−35 V and 58 V. The frequencies of the individual hyperfine components are well known

relative to the a10 reference line. Based on the relative frequencies of the other hyperfine
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components provided by the BIPM [134], the transfer function of the PZT is determined

to be approximately linear with a slope of 4.67 MHz/V. The purely in-phase MTS signal

around the a10 component is shown in Figure 9.3b, with the frequency axis determined

using this scaling factor. The MTS signal is then fit using Equation (6.23). Fixing the

parameters δ = 4, fm = 161 kHz and φ = 0 results in a linewidth of γ ≈ 2 MHz. For

comparison, the expected linewidth of the a10 component is around Γ = 350 kHz at a vapor

pressure of 0.83 Pa [193]. Thus, the iodine gas cell is probably contaminated, resulting in

much higher vapor pressure, probably > 100 Pa. The larger linewidth decreases the slope

of the MTS signal at zero crossing, which decreases the short-term stability of the laser

stabilized to the iodine MTS setup. However, the MTS signal measured with the current

modulation parameters is still found to be sufficient (Section 6.3.3), and the potential

decrease of short-term stability is negligible at the measurement time scales and linewidths

in this thesis.

9.2.2 Frequency Stability of Iodine Reference

The stabilization of the Nd:YAG laser is the primary purpose of the MTS signal. The

laser is roughly tuned to the center of the a10 line by adjusting the temperature of the

Nd:YAG crystal, and afterward the MTS signal serves as an error signal for a proportional-

integral (PI) controller (New Focus LB1005 High-Speed Servo Controller), which is directly

connected to the PZT of the Nd:YAG laser. This stabilizes, the Nd:YAG laser to the MTS

of the iodine reference, but measuring the stability of this frequency reference still requires

an independent reference oscillator. The rubidium standard (Stanford Research Systems

PRS10) is a suitable oscillator, but because its output frequency is at 10 MHz and the

iodine-stabilized laser is at an optical frequency, an OFC is needed to bridge the two

different frequency domains. Therefore, the Nd:YAG laser is used to stabilize the OFC,

transferring its stability onto the OFC (Section 3.2.5). The repetition rate of the OFC is

measured on a frequency counter, which is referenced to the rubidium standard. Frequency

noise originating in the iodine MTS setup is mapped onto the repetition rate of the OFC.

In this way the iodine MTS setup is compared to the rubidium oscillator (I2-Rb). A ten-

hour measurement shows a maximum phase difference of approximately 13 ns if the initial

and the final phase differences are chosen to be zero (Figure 9.4a). Since the overall phase

offset is arbitrary and the phase difference between the start and end of the measurement

is related to the average frequency assumed, these points can be fixed without loss of

generality. Based on the data shown in Figure 5.5, the modified Allan deviation (MDEV)

of the iodine standard should be smaller than the MDEV of the rubidium standard

at all time scales. Therefore, calculating the MDEV of the OFC repetition rate phase

change contains mostly the instability of the rubidium standard (Figure 9.4b). The third

reference available in our laboratory is the GNSS receiver. Simultaneously to the previous

comparison of I2-Rb, the GNSS receiver was monitoring the phase difference between
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Figure 9.4: (a) Long term measurement of the phase difference between the iodine MTS setup and the rubidium
standard (I2-Rb), as well as the phase difference between rubidium oscillator and GNSS receiver (Rb-GNSS). (b)
Corresponding calculations of the MDEV.

the rubidium oscillator and its measurement of GNSS time (Rb-GNSS) (Figure 9.4a).

The maximum phase difference between I2-Rb and Rb-GNSS is less than 5 ns, indicating

that the I2 and the GNSS references are more stable than the Rb reference. Calculating

the MDEV of the phase difference (I2-Rb − Rb-GNSS) should be free of the frequency

instability of the rubidium oscillator (Figure 9.4b). It is indeed lower than the MDEV

of the rubidium oscillator, but higher than the expected MDEV based on comparable

setups [136]. Thus, either the stability of the iodine reference is poor, or an additional noise

source has not been considered yet. The truth is probably in between. For example, a

random error in each individual measurement of the I2-Rb and Rb-GNSS phase difference

will not cancel out when the two curves are subtracted. Performing a multiple power law

fit on the I2-Rb−Rb-GNSS MDEV curve makes it possible to distinguish between white

phase noise (τ−3/2), white frequency noise τ−1/2 and other noise contributions (≥ τ 0). The

white phase noise is largely caused by technical limitations of the frequency counter and

the GNSS receiver and, in particular, random, uncorrelated noise in their measurements

of the phase difference. The fit of the white phase noise corresponds to a total RMS

jitter of 27 ps on each measurement at one-second intervals. These noise contributions

are not present in the iodine stability measurement cited in Figure 5.5 which is based

on a comparison to an ultra-low expansion (ULE) cavity [136]. The white frequency noise

depends on the signal to noise ratio (SNR) of the MTS signal. The broader linewidth

caused by the high vapor pressure inside the reference cell likely contributes to this noise

by decreasing the quality of the error signal. Higher noise contributions lead to a minimum

MDEV of around 10−13 at 1000 s and finally an increase of the MDEV after an integration

time of 2000 s. The calculated MDEV gives an upper limit on the noise of the iodine

reference, although the true stability is probably at least somewhat better.
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9.3 OFC Setup

The general characterization of the OFC has been discussed previously (Section 3.2). In

this section, I will discuss the technical details related to the specific OFC in this thesis.

The basis of the OFC is a mode-locked femtosecond oscillator (Laser Quantum Taccor-6),

with a repetition rate of 1 GHz and an output power around 1.4 W. The central wavelength

is around 800 nm with a bandwidth of around 32 nm and a pulse duration around 22 fs.

The first optical element after the laser output is a periscope, which increases the

height of the propagating beam (Figure 9.5). The following λ/2-waveplate and a Glan-

Figure 9.5: Schema of the OFC setup with silver coated mirrors M1-M4. The λ/2-waveplate and the Glan-Laser
polarizer control the optical power, while the chirped mirrors compensate dispersion. An aspheric lens couples the
laser beam into a photonic crystal fiber, which broadens the spectrum. Finally, a microscope objective collimates
the beam.

Laser calcite polarizer (Thorlabs GL10-B) enable fine adjustment of the laser power. All

optical elements until this point introduce dispersion, meaning the red and blue frequency

components of the pulse experience different group delays. This temporally broadens the

individual pulses, resulting in less-efficient spectral broadening in the subsequent non-

linear fiber. Therefore, the individual pule experiences temporal broadening, which results

in a narrower overall spectrum. A pair of chirped mirrors (Layertec 106658) introduces

a group delay to the red component of the pulse, which allows the blue component to

catch up. In total, seven reflections at each chirped mirror are required to compensate for

dispersion. The laser is then focused using an aspheric lens (Thorlabs C230TMD-B) into

the photonic crystal module (NKT Femtowhite 800). A high precision flexure stage (Elliot

Scientific MDE122) provides the necessary stability and adjustment precision for the lens.

Afterwards, the χ(3) nonlinear process inside the crystal module broadens the spectrum

(Section 4.0.4). The spectrum spans behind the fiber over one octave, at least from 500 nm

to 1100 nm. An Olympus plan fluorite microscope objective (Thorlabs RMS40X-PF) with

40x magnification collimates the laser beam again, after which it continues to the beat

note detection unit.
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9.3.1 Beat Note Unit Setup

Superimposing the beam of the OFC with a CW laser beam within the OFC spectrum

leads to an optical beat note (Section 3.2.3). The beat note contains the radio frequency

difference between the CW laser and the nearest comb tooth. The nearest comb tooth

is always within frep/2 = 500 MHz. However, the intensity of the individual beat note

depends on the field strengths of both involved waves. The total output power of the OFC

behind the setup in Figure 9.5 is around 400 µW. Unfortunately, each frequency tooth is,

on average, much weaker. Over the span from 532 nm to 1064 nm, there are approximately

280000 modes, and dividing the total output power of the OFC beam over these modes

results in 1.4 µW average power per tooth. Thus, the available field strength from the

OFC is the limiting factor of the beat note signal strength.

The setup in Figure 9.6 introduces one possibility to increase the weak signal of

the optical beat note and simultaneously reduce the noise. In total, this thesis relies on

Figure 9.6: Schema of a beat note unit for differential detection. The incoming light waves are first superimposed
with the polarizing beam sampler (PBS1). A set of λ/2- and λ/4-waveplates optimizes the optical power. The
PBS2 separates the beam again into two equally intense components. Each component is focused through a lens
L and detected on a photodiode D.

four such setups at 532 nn, 616 nm, 850 nm and 1064 nm. It is convenient to design one

compact breadboard setup as a way of assembling a set of optics, that is copied four times.

The dielectric coating on the mirrors, the waveplate design and the anti-reflective (AR)

coatings on all transmissive optics match the individual target wavelength of each such

beat note unit. The core of this setup are polarizing beam splitters (PBSs), which separate

vertical and horizontal polarized components in the incoming beam. This process is used

in reverse at PBS1 where the two light waves of vertical and horizontal polarization are

superimposed. The polarization state of the incidence waves is controlled with a λ/4 and

a λ/2 waveplate and optimized for maximum intensity of the superimposed wave behind

PBS1. In detail, the PBS1 transmits horizontally polarized light to the incidence plane and

reflects vertically polarized light. The superimposed electromagnetic field behind PBS1 is

Ea(t) = TE1(t) +RE2(t) = A′1e
iω1t |H〉 − A′2eiω2t |V 〉+ c.c.. (9.6)

This field exhibits two different optical frequencies ω1, ω2 and amplitudes A′1, A′2 of the

initial fields. The horizontal and vertical polarization states are denoted with |H〉 and

|V 〉, respectively. The following differential detection technique uses two photodiodes for
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further refinement of the signal. Thus, a λ/2-waveplate is used to turn the electric field

vector by 45°, resulting in the field Eb(t), given by

Eb = A1e
iω1t (|H〉+ |V 〉) + A2e

iω2t (|H〉 − |V 〉) + c.c.. (9.7)

The separated fields behind the PBS2 are ED1(t) and ED2(t) corresponding to the hori-

zontal and the vertical polarized components, respectively. Two lenses (F = 50 mm) focus

each field on two separate photodiodes. The corresponding intensities are

ID1(t) ∝ (ED1(t))2 = 2A1A2e
i(ω1−ω2)t + 2A2

1 + 2A2
2︸ ︷︷ ︸

DC

+A2
1e

2iω1t + ..︸ ︷︷ ︸
LP−→0

+c.c., (9.8)

ID1(t) ∝ (ED1(t))2 = −2A1A2e
i(ω1−ω2)t + 2A2

1 + 2A2
2︸ ︷︷ ︸

DC

+A2
1e

2iω1t + ..︸ ︷︷ ︸
LP−→0

+c.c., (9.9)

where the high frequency components are filtered out by a low-pass (LP) filter. To improve

the SNR, both intensities are subtracted electronically

ID1(t)− ID2(t) = 4A1A2e
i(ω2−ω1)t + c.c.. (9.10)

The intensity of the beat note is proportional to the product of both amplitudes A1 and

A2. Thus, the larger amplitude of the CW laser compensates the weaker amplitude of the

OFC. The cancellation of the direct current (DC) components A2
1 and A2

2 reduces potential

amplitude noise. Simultaneously, the signal increases by a factor of two compared to the

single photodiode signal.

9.3.2 Bandwidth of the OFC

An optical beat note between the OFC and a CW laser is the basis for the phase stabi-

lization between both lasers. The success of the stabilization depends on the feedback

bandwidth of the OFC laser system since only noise contributions within this bandwidth

can be compensated. Section 5.3.3 described one possibility to measure the response of

the repetition rate to the modulation of the fast PZT as a function of frequency.

The repetition rate output of the OFC is filtered (BP 800 MHz-1050 MHz), amplified

(Mini-Circuits ZFL-1000LN) and coupled into a splitter. One output of the splitter is

connected directly to an electrical mixer, and the other part propagates through a 17 m

long coaxial cable (Ecoflex 15 Plus), before entering the second input of the same mixer.

Afterwards, the signal gets filtered (LP 1.9 MHz), amplified (x560) and connected to

the first channel of a digital oscilloscope. This signal contains the phase information

of the PZT response as a function of the modulation frequency, while the temporal

delay of ∆t ≈ 66.8 ns scales the signal strength (Equation 5.24). A frequency synthesizer

(AnalogDevices AD9854) directly modulates the fast PZT of the OFC with an amplitude
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of±2 V, and the modulation signal is also recorded on the second oscilloscope channel. The

modulation frequency is scanned in discrete steps between 10 kHz and 100 kHz, and the

phase and amplitude of the repetition rate response are determined at each frequency using

a fast Fourier transform (FFT). The frequency dependent amplitude and phase difference

relative to the reference signal are displayed in Figure 9.7a and 9.7b. As expected, the
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Figure 9.7: (a) Frequency shift measurement of the phase difference between the PZT response and a cosine
modulation signal. (b) Corresponding amplitude difference, with a resonance peak at 40 kHz.

phase difference is approximately zero at low frequencies. However, a strong mechanical

resonance of the PZT setup at a frequency of 40 kHz introduces a large phase delay and

rise of the amplitude response. The resonance peak limits the bandwidth of the feedback

loop using this PZT.

9.3.3 Stabilization of the OFC

The stabilization of the OFC requires two independent control loops, which stabilize

the repetition rate and the carrier envelope offset frequency, respectively. The control

of the repetition rate is based on the beat note at 1064 nm between the OFC and the

CW reference laser (Coherent Mephisto 1000 NE) (Section 3.2.4). The 200 MHz reference

signal for the I/Q-demodulation is derived from the rubidium oscillator (Stanford Research

PRS10) (Section 3.2.5). In detail, the 10 MHz output of the rubidium oscillator gets

multiplied in a chain (Wenzel Associates, Inc. ×4×5×5) up to 1 GHz. Each multiplication

adds noise, and the final 1 GHz output has residual sidebands at ±10 MHz offset. These

effects are minimized by using a PLL, based on a narrow bandwidth surface acoustic wave

(SAW) oscillator, which is stabilized to the output of the multiplier chain with a 1-kHz

feedback bandwidth. The clean 1 GHz reference signal is now divided down to 200 MHz.

The difference between the beat note and the new 200 MHz reference, divided by two,

results in the in-phase signal I(t) and the quadrature signal Q(t). Mathematically, the

phase difference between both lasers is φ(t) = atan2(Q(t), I(t)). The task of the control

loop is to keep φ(t) at all times at zero. To do this, the I(t) and Q(t) components need to
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be processed into a phase, which serves as an error signal for a PI controller, stabilizing

the PZTs of the OFC cavity.

The response time of the control loop adds a potential bandwidth limitation. Thus a

fast processing speed is of the essence. This thesis relies on a single device (Red Pitaya

STEMlab125-14), which contains two 14-bit 125 MSPS analog-digital converters, two

14-bit 125 MSPS digital-analog converters, and a field-programmable gate array (FPGA)

for implementing digital logic that interacts with these inputs and outputs. The largest

benefit of this device is the re-programmability: since the inputs and outputs are connected

to a FPGA, the board can be modified to suit a specific application. Some features are

already implemented, such as the two-channel oscilloscope for monitoring the I(t) and Q(t)

signals with a bandwidth of 40 MHz and the PI controller. However, the computation of the

phase requires a custom implementation based on the coordinate rotation digital computer

(CORDIC) algorithm for the efficient calculation of the atan2-function. Afterwards, the

PI output signal is delivered through the two outputs of the board, with a frequency range

of 0 MHz-50 MHz. Only the amplification of this servo signal requires an additional device.

The input and output signals can be monitored on a computer screen using a web-based

interface.

The stabilization schema of the OFC using the 532-nm and the 1064-nm beat notes

has been discussed in Section 3.2.4.

9.4 UV Spectroscopy Laser System

The high short-term stability of the iodine reference can be distributed to any CW laser

whose frequency is within the comb spectrum using the OFC as a transfer oscillator.

The PLL based on the beat notes between the CW laser and the OFC can be used to

narrow the optical linewidth of the CW laser. The required wavelength for electronic

excitation of the OH at 308 nm is outside the comb spectrum, so the spectroscopy laser

in this thesis is based on a dye laser at 616 nm (Sirah GmbH Matisse 2 DR) which is

frequency doubled by SHG to 308 nm. The nonlinear conversion takes place inside a BBO

crystal, which is placed within an optical enhancement cavity (Sirah GmbH WaveTrain

2). The enhancement cavity is stabilized with the Pound-Drever-Hall (PDH) technique in

order to track changes of the frequency of the input wave at 616 nm [196]. The beat note

at 616 nm is used in a PLL which controls the fast and the slow PZTs of the dye laser

cavity (Section 3.2.4).

Before purchasing this dye laser system, we tried to construct a 308-nm spectroscopy

laser based on a diode laser. The following sections detail the results of these efforts.
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9.4.1 Laser Diode 1st Setup

There are no commercially-available laser diodes that emit in the wavelength region

around 308 nm. Despite this, two laser diode based techniques for generating light around

308 nm for OH spectroscopy have been implemented. The first technique involves cooling

a laser diode specified for operation at 635 nm to a low temperature. The band gap of

the semiconductor increases at lower temperatures, resulting in emission at a shorter

wavelength [197]. The target wavelength is 616 nm, which is afterwards frequency doubled

to 308 nm. The second technique involves the sum frequency generation of a violet diode

laser at 404 nm and a distributed feedback (DFB) laser diode at 1320 nm inside a BBO

crystal [92]. The generated wave around 308 nm is tuned continuously by ramping the

current or the temperature of the DFB laser diode. However, both laser diodes require

sufficient stability for precision spectroscopy.

In preliminary tests, this thesis followed the approach of cooling a single mode laser

diode (Oclaro HL63163DG). The output wavelength at room temperature is 633 nm with a

maximum output power of 100 mW with a current of 230 mA. The recommended operating

temperature range is between −10 ◦C and +40 ◦C, but this is violated with the following

setup. The laser diode is mounted inside a copper block, which is attached through a

polytetrafluoroethylene (PTFE) insulator at the bottom of a liquid nitrogen container

(Figure 9.8a). An additional resistor at the copper mount is used for temperature control

of the laser diode. Evacuating the region around the laser diode thermally insulates the

liquid nitrogen container, which is resting on three glass spheres at the bottom, and

prevents condensation on the cooled components. The laser light is collimated with an

aspherical lens and coupled out through a Brewster window. The temperature dependent

wavelength shows approximately a linear trend (Figure 9.8b). However, the decreasing

(a) (b)

Figure 9.8: (a) Dewar vessel for liquid nitrogen with a laser diode placed inside the evacuated space. (b) The
laser diode emission wavelength decreases with temperature along with its ability to operate on a single mode.

temperature moves the laser diode operation further away from its design temperature.

The laser diode becomes less stable with decreasing temperature, and it operates on

multiple longitudinal modes at low temperatures. The wavelength meter (HighFinesse
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WS7) tends to misinterpret the wavelength during multimode operation, which results

in a large spread of the wavelength readings at low temperatures. The general trend is

highlighted with a 2nd-degree polynomial fit (Figure 9.8b). However, even without single

mode emission, this setup demonstrates the emission of 616 nm light with an intensity of

around 200 mW (200 mA) at a temperature of −130 ◦C. Encouraged by this measurement,

we constructed a second setup with the goal of increasing the stability of the laser diode.

9.4.2 Laser Diode 2nd Setup

The previous laser diode setup displayed poor wavelength stability along with insufficient

liquid nitrogen reservoir size requiring a refill approximately once each hour. Increasing

the size of the dewar vessel addresses both issues (Figure 9.9a). The larger volume of
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Figure 9.9: (a) Dewar vessel for liquid nitrogen with an ECDL placed inside the evacuated space. The vacuum is
maintained with the help of an ion pump. (b) Successful measurement of single mode emission behind a scanning
Fabry-Perot interferometer, although at most ECDL settings, the emitted light remains multi mode.

the nitrogen reservoir allows operation of the laser diode for approximately 7 h without

refill. Additionally, the area below the reservoir provides enough space to implement an

external cavity diode laser (ECDL) [198–201]. A grating is placed in front of the laser diode

in Littrow configuration, meaning the first order diffracted beam is coupled back into the

diode. The efficiency of the holographic grating (Throlabs GH13-24V) is approximately

17 % for parallel polarized light at 616 nm. The coarse alignment of the grating requires

two rotational feedthroughs into the vacuum for the vertical and the horizontal tilt of the

grating (Figure 9.9a). An additional stacked PZT (Throlabs PK4DMP2) allows fine-tuning

of the horizontal tilt with a travel range of 9.2 µm. All electrical components inside the

evacuated region of the dewar vessel are connected through vacuum-compatible Kapton-

insulated wires. The additional ion pump improves the vacuum inside the dewar vessel.

For the following measurements, the laser diode is operated at 200 mA and cooled down

to −137 ◦C. The laser beam is coupled into a scanning Fabry-Perot interferometer (FPI)

(FSR=1.5 GHZ). At single mode emission, two distinct interference peaks separated by the

free spectral range (FSR) are detected with a photodiode behind the FPI (Figure 9.9a).
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Thus, single mode emission around 616 nm is possible, although the grating decreases the

output power to approximately 130 mW. However, after a small change of the laser diode

current (≈ 1 mA), the signal after the FPI disappears, indicating multimode operation.

Active stabilization of the ECDL current relative to the grating position might permit

conditions which allow a large tuning range at hight laser diode output powers [202,203].

However, instead of pursuing this challenge, we instead replaced the diode laser with a

dye laser and used that for the spectroscopy presented in this thesis.

9.5 IR Spectroscopy Laser System

Based on previous considerations (Section 4.4), the parallel mirror distances of the OPO

bow-tie ring cavity design are set to d1 = 140 mm and d2 = 171.3 mm, targeting a

laser incidence angle at the mirrors of α = 9°. These cavity dimensions correspond

approximately to the stability center of the cold cavity around m = 0. The OPO cavity

consists of three different types of mirrors. The curved (r = 100 mm) incoupling mirrors

(Layertec 102102) are AR coated for the pump and idler wavelengths (< 2 %t reflection)

and high-reflective (HR) for the signal (> 99 %). The planar PZT mirror (5 mm× 5 mm)

reflects the full signal wave (> 99.9 %) (Layertec 102101), while the signal outcoupling

mirror transmits some small fraction (< 2 %) (Layertec 109761). Additionally, a 3 mm

thick YAG etalon (Layertec 107984) inside the cavity optimizes the frequency selectivity

of the OPO. The etalon is mounted into a copper block glued to a circular Peltier element,

which itself is glued to a 1 inch aluminum heat reservoir inside an ordinary mirror mount

(Figure 9.10a). The 50 mm long magnesium-doped PPLN crystal (Castech PPMCLN

(a) (b)

Figure 9.10: (a) Schema of the OPO cavity with highlighted etalon mount (red block). The combination of
adjusatble base plate (red) and four axis alignment stage (blue) allows the selection of the poling period and
alignment of the PPLN crystal. (b) The outside temperature of the water cooled aluminum box (green) is held
near room temperature, while the inside of the box reaches temperatures up to 200 ◦C.

5mol%) is placed between the two curved mirrors with the poling periods stacked vertically.

Therefore, the poling period can be switched by moving the PPLN crystal up or down. A

vertically adjustable baseplate enables coarse selection of the poling period. Afterwards,
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the baseplate is clamped onto the posts of the breadboard, and the fine adjustment is

carried out with a commercial four axis alignment stage (Newport 9071-M). The PPLN

sits on an aluminum block and is fixed with a PTFE clamp (Figure 9.10b). To benefit from

the full PPLN frequency tuning range, it can be necessary to increase the temperature of

the crystal as high as 200 ◦C. A Peltier element transports the heat between an aluminum

reservoir and the mounting block, which are both connected with polyether ether ketone

(PEEK) screws. However, the high temperature of the aluminum mounting block relative to

the surroundings requires thermal insulation. Thermal insulation in the support structure

is provided by three glass spheres, on which the whole PPLN assembly rests. The side

and top are insulated by glass wool between the hot mounting block and a larger black

anodized and water cooled aluminum box. This insulation and active cooling minimize

heat convection inside the cavity, by keeping the outside of the aluminum box at room

temperature. The entire OPO assembly is enclosed in a polyvinyl chloride (PVC) box,

which thermally insulates the inside of the box from the rest of the table and minimizes air

currents in the cavity. By taking these measures, the stability of the OPO is only limited

by the temperature fluctuations of the PPLN crystal, the baseplate, and the etalon.

9.5.1 Free Running OPO

In order to keep the OPO idler frequency stable, each individual frequency selective

element of the OPO requires temperature stabilization. The main requirement is to

keep potential frequency fluctuations within the tuning range permitted by the PZT

mirror. However, it is convenient to keep them as small as possible. For example, the

temperature of the PPLN crystal determines the center frequency of the gain profile,

while a temperature change of the etalon shifts the center of its transmission curve. The

last instance of frequency selection is the cavity length, which depends on the thermal

expansion of the breadboard. Each single component is carefully temperature stabilized by

a self-built proportional-integral-derivative (PID) temperature controller, which is based

on a microcontroller (Microchip dsPIC33EP256MU806). The microcontroller generates

a pulse-width modulation (PWM) output at 17 kHz with a 13-bit resolution, which is

transmitted through a fiber connection (Avago Versatile Link) to the corresponding

heater, driving a Peltier element. Additionally, the controller contains a 24-bit analog-

digital converter (Texas Instruments ADS1255) that is used to measure the resistance of

the resistance temperature detector (RTD). The long term precision of this reading is

increased by using relays to switch the direction of the current every 256 samples (10.24 s)

to compensate for the thermal electromotive force (EMF). The resistance of the negative

temperature coefficient (NTC) RTDs is selected based on the operating temperature

of the heated component. For example, it is convenient to use a high resistance NTC

RTD (1 MΩ at 25 ◦C, U.S. Sensor GP105V8J) for the high temperatures of the PPLN,

as this brings the resistance at operating temperatures down to the 10-100 kΩ range.
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9.5. IR Spectroscopy Laser System

In contrast, the choice of the 10 kΩ RTD (Thorlabs TH10K) for the etalon and 5 kΩ

RTD (TE Technology MP-3176) for the cavity breadboard is rather arbitrary but still

results in reasonable resistance values when operating near room temperature. Using

the temperature controllers, the RMS temperature fluctuations of the individual cavity

components were reduced to 170 µK (47 mΩ) for the PPLN, 67 µK (25 mΩ) for the etalon

and 26 µK (5 mΩ) for the cavity breadboard.

In the following, the OPO is operated with around 7.5 W pump power, with approx-

imately 1 % intensity fluctuations after the fiber amplifier. The Nd:YAG pump laser is

freely running without stabilization to the iodine reference. The PZT inside the OPO cav-

ity is also not controlled. Only the temperatures are stabilized, with the controllers keeping

the etalon and the base plate at a fixed temperature around 30 ◦C and the PPLN crystal

temperature around 155 ◦C. Two percent of the signal wave is coupled out of the cavity,

which is subsequently frequency doubled in a single pass through a 10 mm long PPLN

at T = 63.5 ◦C and Λ = 23 µm (Covesion MSHG1650-0.5-10). Afterwards, a wavemeter

monitors the frequency of the SHG component (Figure 9.11a) and a power meter samples

the intensity of the residual signal wave (Figure 9.11b). These measurements show that
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Figure 9.11: (a) Measured frequency of the second harmonic of the signal wave over several hours and (b) the
corresponding intensity of the signal output. The steps reflect the resolution of the measurement device.

the temperature equilibrates after two hours, after which the frequency of the second

harmonic of the OPO signal remained stable to within ±50 MHz. Similarly, the intensity

of the signal wave stabilized within 1 %. These measurements display a promising basis

for the further stabilization of the OPO cavity with a PLL which controls the cavity PZT.

9.5.2 OPO Bandwidth

Using an optical beat note between frequency-doubled signal output and the OFC, the

frequency of the signal can be measured and stabilized. The quality of the stabilization

depends on the frequency bandwidth of the PZT mirror inside the OPO cavity, since

only noise contributions within this bandwidth are compensated. Before assembling the

cavity, we made measurements of the frequency response of the PZT mirror assembly
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using the phase shift measurement setup described in Section 5.3.2. One of the frequency

synthesizer (based on the AnlalogDevices AD9854) outputs is amplified up to ±32 V with

an offset of 33 V (SVR 150-1), which is afterward connected to the PZT. A modulation of

the PZT results in an amplitude modulation in the frequency measurement setup, which

is monitored with an oscilloscope through a photodiode. The second frequency synthesizer

output supplies the reference signal for the second oscilloscope channel. In the following,

the modulation frequency is changed stepwise over the range from 30 kHz to 600 kHz. The

demodulation of the signal is performed digitally with an FFT for each frequency step

(Section 5.3.2). The frequency dependent phase differences relative to the reference signal

are displayed for different mounting blocks of the PZT actuator in Figure 9.12a and 9.12b.

The first PZT mounting block follows the basic design of a lead filled copper cone with a

(a) (b)

Figure 9.12: (a) Various iterations of the PZT actuator mount, which determines the frequency dependent phase
shift between the modulation applied to the PZT and its response. (b) The best design found is a 0.5 inch conical
mounting block made of tungsten.

short cylindrical section near the wide end. The length and the diameter of the mounting

block are 1 inch, while the diameter of the flat tip is 5 mm. These specifications correspond

roughly to a device described in the literature, which promises a resonance-free bandwidth

of 180 kHz [204].

However, we were unable to replicate the results presented in that work, despite

constructing multiple variants of their device. Our implementations of this design always

resulted in numerous resonances, starting from just above 30 kHz. We tried slightly varying

shapes of the design of the copper shell, used a mixture of tin and flux on the inside of the

copper shell to improve adhesion and even tried absorbing impurities from the molten lead

with a slice of potato. Soldering the PZT onto the mounting block instead of gluing it also
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had no effect on the measurement result. Replacing the copper lead union with a solid lead

block of the same shape improved the resonance structure somewhat by fewer resonance

peaks in the important low-frequency range up to 100 kHz. Encouraged by this result,

we replaced the lead mount with a cylindrical stainless steel mount of 1 inch diameter

and length. Using this block, the first resonance shows up around 90 kHz (Figure 9.12a).

Changing the shape of the cylinder into the conical shape used before, shifts the first

resonance peak further up to 100 kHz and simultaneously reduces the size of the following

resonance. Further, reducing the dimension of the block to 0.5 inch leads to the largest

improvement, with the first resonance peak up to 190 kHz. Finally, constructing the block

out of tungsten instead of stainless steel reduces the size of the first resonance, although

its location shifts again to a lower frequency around 175 kHz (Figure 9.12b).

After these measurements, we selected the tungsten mounting block for the OPO.

Thus, the OPO PZT actuator can compensate noise contributions up to a bandwidth

of 175 kHz. If the PLL is able to handle the phase shift of the first resonance without

inducing oscillations the bandwidth limit could be pushed up to 250 kHz, corresponding

to the second resonance peak.

9.6 Molecular Beam

Equally important as the precision laser system is a rotationally and vibrationally cold

source of OH or OD molecules. The basics of a molecular beam have been discussed

previously (Section 7.1), which allows us to focus now on the technical details. The stainless

steel bubbler containing the white fuming nitric acid (> 95 % HNO3) is electropolished

from the inside, with a maximum capacity of 160 ml (Wilhelm Schmidt GmbH JEX0.15). It

is filled with glass with approximately 10 ml of nitric acid soaked into it, which maximizes

the number of exposed molecules to the incoming xenon gas. If the bubbler is left at room

temperature, the pulsed solenoid valve (Parker Series 9 General Valve) was found to clog

after a few hours. Opening the valve reveals a black substance, which is probably identical

to the corrosion products found on the inside of the bubbler. Therefore, the bubbler is

cooled to −15 ◦C, which prevents condensation inside the valve and has little effect on

the OH density [205]. The valve is operated at 10 Hz with a pulse width of approximately

100 µs. A 6 mm long quartz capillary is attached to the 1 mm nozzle of the valve. A 8 mJ,

10 ns pulse from an argon fluoride (ArF) excimer laser at 193 nm (GAM EX5/250-180)

is weakly focused on to the tip of the capillary and dissociates nitric acid molecules into

OH and NO2 before the supersonic expansion (Figure 9.13). The expansion of the OH

molecules results in rotational cooling of the molecules. The translation energy experiences

no cooling. The translational degrees of freedom also experience cooling, resulting in a

narrow velocity distribution, but the enthalpy of the molecules before the expansion is

mostly converted into a large mean forward velocity of the molecules. A time of flight
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Figure 9.13: Schema of the molecular beam creation and detection setup. Nitric acid (HNO3) get seeded with
xenon (Xe) and propagates through a pulsed valve (PV) into a fused silica nozzle (N). An intense UV pulse of an
argon fluoride (ArF) excimer laser dissociates the molecule inside the nozzle, leading to a supersonic expansion
of the OH in the first vacuum chamber. Afterwards, a skimmer (S) selects a narrow velocity class of the OH for
detection inside a second vacuum chamber. The 308 nm laser beam passes first an attenuator (AT), a pinhole (PH),
a lens (L1), a Brewster window and a light baffle (LB1), before exciting the OH. Doppler reduced detection requires
excitation of the OH also from the opposite direction. Therefore, a retroreflection mirror (M) sends the beam
back. The reflected beam is aligned to maximize the signal on the photodiode (PD). Finally, a photomultiplier
(PMT) detects the OH fluorescence light, after it passes a lens (L2) and two color filters (F1, F2).

measurement estimates the molecular velocity to approximately 340 m/s, which is largely

determined by the heavier xenon atoms.

A skimmer with an aperture of 4 mm selects a small fraction of the OH molecules before

they enter the second differential pumped vacuum chamber. The OH molecules propagate

inside the second chamber through a 480 mm long traveling-wave Stark decelerator, with

a 4 mm circular profile [206]. For all experiments in this thesis, the decelerator electrodes

are grounded, resulting in a negligibly small electric field strength in the spectroscopy

region after the decelerator. Additionally, the electrodes act as a geometric aperture and

limit the transverse velocity spread to a full width at half maximum (FWHM) of around

2.5 m/s. After the Stark-decelerator the molecules are excited by the 308 nm beam of

the UV spectroscopy laser (Section 9.4). Some part of the reemitted fluorescence light

is collected with a fused silica lens (D = 50 mm) and filtered by two color filters before

reaching the on-axis photomultiplier tube (PMT) (ET Enterprises 9829QSB). In detail,

a UG5 color filter right behind the lens and a UG11 color filter in front of the PMT both

help reduce the intensity of the photodissociation pulse as well the intensity of visible

light. The transmission maximum (> 90 %) of both filters is around 330 nm.

However, the strong dissociation pulse still limits the SNR of the fluorescence signal.

This has been improved somewhat by suppressing the gain of the PMT for a 20 µs interval

during the time of the dissociation pulse. In detail, electrons emitted from the photo-
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cathode inside the PMT are hindered from reaching the first dynode by increasing the

potential on the photocathode to a more positive value than the first dynode.

The spectroscopy laser beam at 308 nm passes a neutral density filter and a 0.8 mm

circular aperture approximately 27 cm away from the center of the BBO. Afterwards, the

beam propagates approximately 2 m in the air from the laser table to the entrance of

the vacuum chamber. Here the beam is recollimated with a fused silica lens (F = 2 m)

before it enters the vacuum chamber through an ultrasil fused silica Brewster window.

The 5 mm thick window is directly glued on to the flange (Torr Seal). Inside the chamber,

it has to pass one light baffle tube, containing two skimmer like circular apertures of 5 mm

diameter. The internal surface of the tube is coated with graphite to shield the PMT

from potential stray light. Finally, the beam reaches the interaction region of the OH

with an estimated elliptical profile of 0.8 × 1.0 mm in size. Potential Doppler-shifts can

be compensated using a counterpropagating beam along the same axis. Therefore, after

the 308 nm beam passes the interaction region and propagates through a second light

baffle tube and a window, it is retroreflected on a UV enhanced aluminum coated mirror

(R = 93 %). The beam propagates back along the same path and passes the initial 0.8 mm

aperture a second time, but now from the opposite direction. The neutral density filter

behind the aperture serves this time as a reflector. The intensity of the reflected light on

the photodiode is maximized, which corresponds to an optimal superposition of the two

counterpropagating beams. The estimated maximum offset between the two beams at the

aperture is around 0.1 mm.

9.7 UV Spectroscopy Measurement

Using the precision laser and the molecular beam system, we can now measure the elec-

tronic spectra of OH and OD. The 616 nm CW dye laser frequency is monitored with

a wavelength meter (Toptica WS7), and a spectrum analyzer displays the optical beat

note relative to the nearest OFC mode. The UV wave at 308 nm follows any frequency

changes of the dye laser. Therefore, the coarse frequency selective elements inside the dye

laser cavity are aligned based on the wavemeter reading. The two cavity PZT mirrors are

controlled externally based on the frequency of the optical beat note. The reference signal

for the beat note is provided by a computer controlled frequency synthesizer. A change of

the reference frequency results in a change of the optical frequency. The dye laser is tuned

in steps of 100 kHz, corresponding to 200 kHz in the UV, over the electronic transitions

of OH or OD. A PMT detects the fluorescence light resulting from the excitation. The

analog signal of the PMT anode is connected to a digital oscilloscope, with a 100 kΩ load

to the ground. The signal on the PMT is recorded starting 1 ms after the excimer pulse for

a duration of 2.8 ms with a resolution of 2 µs. The SNR is improved by averaging around

44 shots at a repetition rate of 10 Hz. The measurement is repeated for each frequency
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step, so a complete scan over the transition results in a two dimensional (2D) matrix

of the PMT signal as a function of time delay and laser frequency (Figure 9.14a). The

(a) (b)

Figure 9.14: (a) Single scan over an electronic transition in the OH. The plot shows the fluorescence intensity
as a function of time delay after the excimer pulse and absolute optical frequency, respectively. The cut-though
at single laser frequency displays a single, unaveraged oscilloscope trace with poor SNR. (b) Averaging multiple
matrices increases the SNR significantly, allowing a fit to extract the signal amplitude at each frequency step.

frequency steps in each scan correspond to fixed beatnote frequencies

Since the repetition rate of the OFC varies slightly over time, the absolute frequency

can be slightly different in each measurement. To correct for this, we continuously record

the repetition rate of the OFC on a frequency counter. These measurements are time-

stamped and can later be correlated with the data from the oscilloscope. The beat note

frequencies in each scan are converted to absolute optical frequencies using

fabs = 2(nf r + fbn), (9.11)

with the averaged repetition rate f r over the time interval of the scan, and n determined

using the laser frequency measured by the wavemeter (Figure 9.15a). The prefactor of 2

accounts for SHG of the 616 nm wave into the UV.

Averaging multiple 2D matrices to improve the SNR requires consideration of the

changing repetition rate f r between the measurements. The frequency spacing of 200 kHz

between each step of the scan is conserved, while the absolute frequency offset in each

scan is expressed relative to the first scan (Figure 9.15b). All frequency steps after the

first scan are weighted depending on their relative value to the frequencies of the first scan,

resulting in a slight frequency shift of all following 2D matrices to match the frequency
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Figure 9.15: (a) Frequency counter measurement of the OFC repetition rate fr over the time interval of the
first scan (#1). The time scale used is unix time, which counts the number of UTC seconds since the 1st January
1970. (b) The averaged OFC repetition rates of each of the following scans (#2-#12), relative to the averaged fr
of the first scan.

axis of the first scan. For instance, Figure 9.14b results from a weighted average of 12

individual matrices, including the one shown in Figure 9.14a.

Extracting the signal amplitude out of the averaged 2D matrix is the next processing

step. The scattered light from the spectroscopy laser at the windows and the light baffles

contributes to a constant background. Much more severe at early times is the fluorescence

light of the quartz capillary induced by the dissociation pulse. The actual fluorescence

light of the molecules peaks at around 1.84 ms after the dissociation pulse, but still within

the tail of the quartz capillary fluorescence. Therefore, an independent seven parameter

fit at each frequency trace is used to separate the contributions of the background and

the signal. In detail, the fitted model consists of an exponential and linear function, which

address the background, while a Gaussian function approximates the signal

f(t) = exp[−a(t− t0)] +mt+ b︸ ︷︷ ︸
background

+A exp
[
−(t− t1)2/(2σ2)

]
︸ ︷︷ ︸

signal

. (9.12)

The fit parameters of the Gaussian function describe the amplitude A of the signal, the

arrival time of the molecules t1 and the standard deviation σ. The total fluorescence inten-

sity of the OH is estimated by subtracting the background contributions and integrating

the intensity within a fixed time window ±2σ around t1. This total fluorescence intensity

is determined independently for each laser frequency in the averaged matrix. Examples

of typical spectra of fluorescence intensity versus laser frequency for OH and OD are de-

picted in Figure 9.16a and Figure 9.16b, respectively. The laser induced fluorescence (LIF)

measurements start from the ground state X2Π3/2, J ′′ = 3/2 and go to the first electronic

excited state A2Σ+. While all hyperfine components are well resolved and separated for

OH, which allows a frequency scan over a single transition line. The smaller ground-state
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Figure 9.16: (a) Fluorescence intensity of the N ′ = 1, J ′ = 1/2, F ′ = 0← f , F ′′ = 1 transition in OH, with full
quantum mechanical fit. (b) Fluorescence intensity of the N ′ = 1, J ′ = 3/2, F ′ = 3/2← f , F ′′ = 1/2, 3/2 and
5/2 transition cluster in the OD with fit.

hyperfine splitting in OD results in transition clusters (Section 2.6.1). The spacing of the

transitions is similar to the linewidth which results in blending. Therefore, a scan that

covers transitions from all of the closely separated hyperfine ground state levels to the

excited hyperfine state becomes necessary. The scanning procedure is repeated for the

strongest transitions in the OH and the OD at least twice on different days, which ensures

reproducibility of the measurements.

9.8 Systematic Effects

9.8.1 Retroreflection Quality

The fundamentals of measuring the geometric retroreflection quality are discussed pre-

viously (Section 7.3), as well as in the experimental setup (Section 9.6). The following

discussion aims to put a number on the frequency uncertainties originating from imper-

fect retroreflection. The retroreflection quality is dependent on the angle between the

two counterpropagating beams, the amplitude of each beam and the transverse mode

structure.

The angle between the counterpropagating beams depends on the precision of the

pointing alignment through the 0.8 µm aperture (Figure 9.13). The alignment is carried

out based on the light intensity passing through the aperture. The transverse position of

the aperture is optimized for the forward propagating beam. Afterwards, the beam passes a

distance over 2 m to reach the vacuum chamber and is reflected off the surface of multiple

mirrors before propagating back through the same path and the same aperture. The

combined sensitivity of the aperture and mirror alignment makes it possible to estimate

that the displacement at the aperture between the two beams is within 0.1 mm. The

0.1 mm offset corresponds to an angle of α = 40 µrad between the two beams, taking the
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lens (F = 2 m) along the propagation path into account. Thus, the resulting maximum

frequency shift of the measured transition is around 23 kHz, assuming the offset is along

the propagation direction of the molecular beam. Since the laser system on a floating

optics table can shift slightly over the course of a few hours, frequent optimization of

the pointing is required. Realigning the laser between frequency scans randomizes the

sign and the magnitude of the frequency shift. Additionally, the pointing error is not

necessarily along the axis of the molecular beam, which represents the worst case. No

frequency shift occurs if the pointing error is perpendicular to the propagation direction

of the molecular beam. Considering these arguments, the estimated frequency uncertainty

of an averaged set of measurements is less than 10 kHz.

The amplitude difference between the counterpropagating wave and the initial wave

at the interaction point with the molecules also causes a frequency shift. After the in-

teraction with the OH, the forwards propagating beam passes a fused silica window, is

reflected and passes the same window a second time. The measured transmission of the

Brewster windows is 98.5 % and the reflectivity of the UV-enhanced aluminum coated

mirror is 93 % at 308 nm. Thus, the intensity of the reflected beam is approximately 90 %

of the intensity of its forward propagating counterpart. The frequency shift caused by

the different intensities is reduced by aligning both beams perpendicular to the molecular

beam. This alignment of the retroreflection mirror is carried out with an iterative pro-

cedure. First, the laser frequency is scanned through a strong absorption line of the OH

with and without retroreflection. Afterwards, all mirrors are optimized, so that the center

position of the transition line without retroreflection is the same as the center position

with retroreflection. When both measurements show no difference in the line shape, the

molecular velocity distribution along the laser propagation direction is interpreted as being

maximally symmetric. Therefore, our estimate of the additional error by the amplitude

mismatch is less then 5 kHz, so we assign an overall uncorrelated error of 10 kHz for each

transition.

The laser beam profile also causes a frequency shifts if it deviates from the Gaussian

TEM00 mode. The retroreflection quality depends on the intensity measurements behind

the aperture. Higher Hermite-Gaussian modes TEM0n shift the center of maximum in-

tensity, corrupting the alignment and decreasing the retroreflection quality. A knife edge

measurement predicts around 80 % of the beam intensity inside the TEM0n modes of

our UV spectroscopy laser. The remaining 20 % intensity is located in the TEM1n modes.

Additionally, around 50 % of the counterpropagating beam passes the 0.8 mm aperture a

second time. Combining both observations leads to a potential offset of 0.27 mm between

the center of the maximum and the true beam center at the position of the aperture. The

0.27 mm offset corresponds to a 60 kHz frequency shift of the measured transitions. This
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frequency offset is the same for all measurements, with the assumption of a constant mode

structure and the same alignment procedure of the optical beam path.

9.8.2 Zeeman Shift

The splitting of each hyperfine state inside a magnetic field has been discussed previously

(Section 2.2.3.1). All measurements of electronic transitions in OH or OD are carried out

in the ambient magnetic field of the laboratory. Thus, estimating the field strength is

essential in predicting the corresponding frequency shift. For this purpose, the vacuum

chamber was vented, and two Hall-effect probes (Lake Shore Cryotronics HMMT-6J04-VR

and HMNA-1904-VR) were placed through an open CF40 flange into the region where

the spectroscopy laser and molecules normally interact. To justify this measurement

technique, we measured the magnetic field with the turbomolecular pumps on and off.

Since we measured no change of the magnetic field strength, we conclude a negligible

contribution from the pumps and the associated electronics. The strongest magnetic field

strength in the spectroscopy region is along the vertical axis with 75 µT. A much weaker

field is along the propagation axis of the spectroscopy laser of 14 µT. A negligible field of

2 µT is along the third axis, perpendicular to the previous two axes. Thus the magnetic

field is, in good approximation, vertically oriented. Considering the horizontal polarization

of the spectroscopy laser, the transitions expected are those with ∆MF = ±1. For weak

magnetic shifts the ∆MF = −1 and the ∆MF = +1 transitions are equally shifted, but

with opposite signs, resulting in zero net shift. However, with an increasing magnetic field,

the corresponding states mix with other hyperfine components. The resulting transitions

are shifted by a different amount and have different transition strengths. This effect is

rather subtle and is not immediately visible in the blended lines. The previous calculation

of a transition cluster in OD highlights the splitting of the hyperfine lines inside an

ambient magnetic field of 75 µT (Figure 2.6a-2.6b). Thus, assigning an uncertainty caused

solely by the magnetic field has proven to be complicated. Nonetheless, a later theoretical

analysis provides an estimate of the contribution of the Zeeman effect on the uncertainty

of individual line positions (Section 10.2).

9.8.3 AC Stark Shift

The time-varying electric field of the spectroscopy laser causes an additional shift since

transitions between multiple hyperfine components can interact with a single laser fre-

quency. The individual lines experience a laser power dependent shift, called the alternating

current (AC) Stark shift (Section 8.2). The individual transitions also experience satura-

tion with increasing laser power. Both effects depend on laser power and are difficult to

analyze separately. As with the Zeeman effect, a later theoretical analysis estimate the

contribution of these effects to the uncertainty of each line position (Section 10.2).

135



9.8. Systematic Effects

136



Chapter 10

Analysis

A full quantum mechanical (QM) fit is used to determine the zero-field line positions

for measured electronic transitions in the hydroxyl radical (OH) and the deuterated

hydroxyl radical (OD) (Section 9). The analysis is based on an effective Hamiltonian

model, computed with the program PGOPHER [56]. Statistical uncertainties are assigned

to each transition based on the uncertainties determined in the individual fits and the

spread of fitted transition frequencies. Since the uncertainty is at the order of magnitude of

the Zeeman effect and the alternating current (AC) Stark shift, it is important to account

for these effects when determining the overall line position. To quantify the contributions

of these shifts to the extracted line positions a simplified second model was used to

determine the line positions ignoring Zeeman and/or AC Stark shifts (Section 10.2).

10.1 Full Quantum Mechanical Fit

A preliminary model is used to make a first estimate of the optical transition frequen-

cies. This model is based on a multi-Gaussian fit to the measured fluorescence spectra and

neglects the magnetic field (Figure 10.1). Afterwards, PGOPHER is used to fit an effective

Hamiltonian model to the estimated transition frequencies. The Zeeman terms due to

the ambient magnetic field of 75 µT, which is perpendicular to the laser polarization, are

then added to the effective Hamiltonian. The magnetic g factors used are gL = 1 for the

orbital angular momentum in the electronic ground state, gs = 2.002 for the electron spin

and gr = 0 for the rotational angular momentum. The preliminary model provided by

PGOPHER, including the magnetic field, is used to calculate eigenstates, eigenenergies

and electric transition dipole moments, which are used to expand the Hamiltonian with

the electric field of the two counter-propagating laser beams. With this, the evolution of

the systems density matrix with the Lindblad master equation is used to simulate the

fluorescence spectrum. The details on these calculations are elsewhere (Section 8.5).
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Figure 10.1: Schema of the full QM fitting procedure. A plain multi-Gaussian fit supplies a first estimate of the
line positions for the fluorescence data. The line positions are the input parameters for an effective Hamiltonian
fit. The model I1(ν) includes laser power and linewidth, after expanding the Hamiltonian and simulating the
spectrum. Finally, fitting the new model to the measured data supplies a correction parameter p2. The absolute
line positions are determined by subtracting p2 from the estimated line positions.

The full simulated spectrum is based on approximations that take into account the

line positions, the laser power, and the Doppler broadening. A fitting routine aims to

minimize the root-mean-squared (RMS) deviation between a measured spectrum and the

simulated one. The simulated spectrum is described with the function

I1(ν) = p0 + p1S(ν + p2, p3, p4), (10.1)

with five free parameters p0-p4. The first two parameters p0 and p1 are responsible for

the scaling and vertical adjustment of the raw simulated spectrum S. The parameters p3

and p4 describe the Gaussian linewidth due to Doppler broadening and the laser power,

respectively. Finally, the most interesting parameter p2 accounts the overall frequency

offset between the measured data and the preliminary model. Thus, subtracting the p2

parameter from the line positions of the preliminary model refines the first approximation

and supplies absolute zero field line positions (Figure 10.1).

The evaluation of all measured spectra with the full quantum mechanical fitting routine

displays some notable characteristics. In general, the order of magnitude of the fitted

parameters seems reasonable, but the values of a few parameters deviate slightly between

the two isotopes OH and OD. For example, the fitted Gaussian linewidth parameter p4

clusters around (3.30± 0.15) MHz for OH and (3.00± 0.15) MHz for OD. Despite this,

we observed no difference in the time of flight distribution of the molecular beam between

the two isotopes. The relative peak intensities inside the spectrum of the OD transitions

determine the size of the laser power parameter p3. In relation to the absolute measured

laser power, the parameter p3 clusters between 0.2 and 0.4 for most spectra. An exception

exists for heavily blended lines, which make the assignment of the relative peak heights

challenging for the fitting algorithm (Figure 10.2a). The model I1(ν) might not capture

some effects responsible for this deviation, but the poor signal to noise ratio (SNR) makes
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Figure 10.2: (a) Fluorescence spectrum of the N ′ = 1, J ′ = 3/2, F ′ = 1/2← f , F ′′ = 1/2, 3/2 transition cluster
in OD, with full quantum mechanical fit. The close spacing between the individual transitions complicates the
fit. (b) In contrast, the fluorescence intensity of the N ′ = 1, J ′ = 3/2, F ′ = 3/2 ← f , F ′′ = 1/2, 3/2 and 5/2
transition cluster of OD shows higher separation of the individual transitions.

a more detailed analysis impossible. In the OH measurements and measurements of OD

transitions with a single hyperfine component, the p3 parameter is constrained to fall

in the 0.2-0.4 range determined in the OD measurements. This is necessary, since these

spectra only offer a single peak, and the information needed to determine the laser power

is insufficient.

10.2 Uncertainty and Simple Voigt Fit

The fitting procedure of the full QM fit supplies absolute, zero-field positions of the OH

and the OD transitions. However, each fitted line position has an associated uncertainty.

The task of the simple Voigt model is to assign a line position excluding the AC Stark

shift and the Zeeman effect in order to determine the contribution of these effects to the

total measurement uncertainty.

The total uncertainty is determined in multiple steps. Each transition measurement is

repeated at least twice on different days, sometimes with different laser powers. Fitting

a single fluorescence spectrum results in an estimate of a transition frequency νi with a

statistical uncertainty σi. Including the uncorrelated uncertainty of 10 kHz, which comes

from the fluctuations of the retroreflected beam (Section 9.8.1), increases the uncertainty

to

σ′2i = σ2
i + (10 kHz)2. (10.2)
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Now each single transition measurement is associated with an uncertainty of σ′i, which

supplies a weighting factor for the calculation of the weighted mean

ν̄ =

∑N
i=1(νiσ

′−2
i )∑N

i=1 σ
′−2
i

with σν̄ =

√
1∑N

i=1 σ
′−2
i

. (10.3)

The uncertainty of the final transition frequency ν̄ is estimated with σν̄ . A particular

transition frequency is determined from N individual transition measurements, with the

sum computed over all of those. However, a few very small individual uncertainties σ′i leads

to an underestimate of the error σν̄ relative to the spread of the individual frequencies νi.

In contrast, calculating the standard deviation of the unweighted mean results in a larger

uncertainty of ν̄. In the end, we choose the larger of the two values as the total statistical

uncertainty

σtot = max


σν̄ ,

(∑N
i=1(νi −

∑N
i=1 νi/N)2

N(N − 1)

) 1
2


 , (10.4)

The estimated uncertainties are in general of the same order of magnitude as the Zee-

man effect or the AC Stark shift. Frequently, the effects of such shifts are estimated by

varying the magnetic field or laser intensity in the measurements, but the large relative

uncertainties make extracting their contributions in this manner unfeasible.

The simple Voigt spectrum aims to detect changes of the line positions, by fitting the

full QM model (Section 10.1). Since the full QM model supplies the zero-field line positions,

the simple model estimates the field dependent line positions. The fitting function is based

on a sum of Voigt profiles

I2(ν) = p̃0 + p̃1

∑

i

p̃2

[
1− exp

(−µ2
i

p̃2

)]
× V (ν − νi + p̃3, p̃4,Γ), (10.5)

with the Lorentzian width Γ, Gaussian width p̃4, transition frequencies νi and correspond-

ing transition dipole moments µi. The free parameters are p̃0-p̃4, where the first two

parameters p̃0 and p̃1 are a vertical scaling and offset that adjust the simple model rel-

ative to the simulated spectrum of the full QM model. Saturation effects that result in

peak strengths in the simulated OD spectra that do not match the expected µ2
i scaling

are accounted with the empirical saturation parameter p̃2. In spectra with a single peak

where there is insufficient information to determine p̃2, the prefactor p̃2

[
1− exp

(
−µ2i
p̃2

)]

is replaced with µ2
i . In analogy to the full QM model, the parameter p̃3 accounts for the

line positions. Based on p̃3, the contributions of the Zeeman effect and the AC Stark shift

are assigned.

The full QM model I1(ν) supplies a parameter set of its own p0-p4. After fitting

140



Chapter 10. Analysis

the model to the measured spectrum, those parameters are well defined. Additionally,

the effective Hamiltonian H0 used in this fit is based on the ambient magnetic field of

B = 75 µT. With these two constraints, the model I1(ν) describes a fluorescence spectrum

separated from noise (Figure 10.3). Changing the magnetic field input of the effective

Figure 10.3: Schema of the simple multi-Voigt fit procedure. Based on the previously fit of the full QM model
I1(ν) the parameters p0-p4 are fixed. However, changing the magnetic field strength inside the effective Hamiltonian
generates slightly different spectra. The simple multi-Voigt model I2(ν) assigns a net shift to these variations
after a fit to the simulated spectrum.

Hamiltonian results in slightly different fluorescence spectra I1(ν). The fit of the simple

multi-Voigt model I2(ν) to the simulated spectrum of I1(ν) allows an estimate of the

transition frequency net shift. The parameter p̃3 determines the new line positions, by

subtracting it from the zero-field transition frequencies computed with I1(ν). Based on

the magnetic field measurement uncertainty of ±5 µT, the magnetic field might well be

70 µT or 80 µT. Thus, the fit of the simple model I2(ν) to the full QM model I1(ν) supplies

new line positions at νVoigt,80 µT and νVoigt,70 µT, based on the two different magnetic fields.

We estimate the uncertainty of the transition frequency due to the Zeeman effect to be

∆νZeeman =
νVoigt,80 µT − νVoigt,70 µT

2
. (10.6)

In contrast to the magnetic field dependence of the Zeeman effect, the AC stark shift

depends on the laser power. However, the full QM model shows a discrepancy between the

measured powers and the fitted values, which are significantly less than half of the measured

values. Thus, we estimate the uncertainty due to the AC Stark shift and saturation effects

based on the difference

∆νStark = νQM,75 µT − νVoigt,75 µT, (10.7)

with the fitted transition frequency νQM,75 µT of the full QM model I1(ν) and the modified

line position νVoigt,75 µT of the simple Voigt model I2(ν). In the following, we assume the

laser power discrepancy and the ambient magnetic field are constant over the course of all

measurements, which means the corresponding uncertainties are correlated. Therefore, the

141



10.3. Zero-field Line Positions

individual shifts are determined for each measurement (Equation 10.6-10.7), but the overall

shift for a particular transition is computed with the weighted mean. This procedure is

consistent with the calculation of the transition frequency, with the same weighting factor

σ′−2
i (Equation 10.3).

10.3 Zero-field Line Positions

The line positions are the result of a full QM fit (Section 10.1), while the frequency

uncertainties corresponding to the Zeeman effect ∆Zeeman and the AC Stark shift ∆Stark

are estimated with the simple Voigt model (Section 10.2). Those uncertainties are not

included inside the statistical uncertainty σtot of the transitions frequency ν̄. In fact, they

are completely left out for the OH measurements, since these effects proved to be negligibly

small (< 2 kHz) for this isotope. Table 10.1 and Table 10.2 summarize the measured

OH transitions and OD transitions clusters, respectively. All transitions start from the

Table 10.1: Zero-field transition frequencies for OH, based on the fit of the full QM model. The difference between
the observed (O) and the computed (C) frequencies from the effective Hamiltonian model are listed in the last
column (O−C).

No. p′′ F ′′ N ′ J ′ F ′ Frequency ν̄ / MHz O−C / kHz

1 e 1 0 1/2 0 972 543 544.417(26) −3
2 e 2 0 1/2 1 972 544 263.293(20) 1
3 f 2 1 1/2 1 973 552 522.962(27) 10
4 f 1 1 1/2 0 973 552 777.917(27) 9
5 f 1 1 3/2 1 973 562 502.848(38) −15
6 f 2 1 3/2 2 973 562 933.668(41) −25
7 e 2 2 3/2 2 975 583 190.355(38) −21
8 e 1 2 3/2 1 975 583 518.439(21) −13
9 e 1 2 5/2 2 975 600 025.186(28) 17
10 e 2 2 5/2 3 975 600 407.540(27) 16
11 f 2 3 5/2 3 978 623 067.641(37) −8
12 f 1 3 5/2 2 978 623 423.479(78) 41

rovibronic ground state X2Π3/2, v′′ = 0, J ′′ = 3/2. The parity p′′ and the F ′′ quantum

number refer to the ground state, while the N ′, J ′ and F ′ quantum numbers correspond

to the first electronic excited state A2Σ+, v′ = 0. The OD Table 10.2 might suggest

that all transitions originate from the state F ′′ = 1/2, but the transitions frequencies are

just tabulated this way because the experiment measures an OD transition cluster, with

transitions from F ′′ = 1/2, F ′′ = 3/2 and F ′′ = 5/2 blended together. Since the spacing

between the ground state levels is well known, the transitions from F ′′ = 1/2 is always

given even if that particular transition would be forbidden by angular momentum selection

rules. The uncertainty σtot is in parentheses next to the frequency (Equation 10.4), which

is corrected for the recoil shift (Section 7.4). This corresponds to a frequency of 124 kHz for

OH and 118 kHz for OD and is subtracted of the observed frequency. Finally, the column
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Table 10.2: Zero-field transition frequencies for OD, based on the fit of the full QM model. The contributions
of the Zeeman effect ∆Zeeman and the AC Stark shift ∆Stark are based on studies of the full QM model with a
simple multi-Voigt profile. The difference between the observed (O) and the computed (C) frequencies from the
effective Hamiltonian model are listed in the last column (O−C).

No. p′′ F ′′ N ′ J ′ F ′ Frequency ν̄ ∆Zeeman ∆Stark O−C
/ MHz / kHz / kHz / kHz

1 e 1/2 0 1/2 1/2 975 191 151.074(33) 20 −42 −28
2 e 1/2 0 1/2 3/2 975 191 328.844(35) 3 1 44
3 f 1/2 1 1/2 3/2 975 729 510.621(13) 5 0 −5
4 f 1/2 1 1/2 1/2 975 729 554.271(68) 2 −23 63
5 f 1/2 1 3/2 1/2 975 734 850.974(54) −42 −34 −21
6 f 1/2 1 3/2 3/2 975 734 909.606(45) 5 11 −5
7 f 1/2 1 3/2 5/2 975 735 003.948(17) 3 5 0
8 e 1/2 2 3/2 5/2 976 811 945.177(42) 1 7 −30
9 e 1/2 2 3/2 3/2 976 811 996.579(40) 3 −2 23
10 e 1/2 2 3/2 1/2 976 812 027.711(96) 20 −22 103
11 e 1/2 2 5/2 3/2 976 820 926.936(96) 0 −7 33
12 e 1/2 2 5/2 5/2 976 820 984.166(27) 3 −7 −42
13 e 1/2 2 5/2 7/2 976 821 062.836(26) 2 1 40
14 f 1/2 3 5/2 7/2 978 434 703.880(28) 2 1 11
15 f 1/2 3 5/2 5/2 978 434 756.718(37) 1 −12 −13
16 f 1/2 3 5/2 3/2 978 434 794.681(86) −28 −34 −1

labeled “O−C” displays the difference between the observed and the calculated transitions

frequencies based on a parameter fit of the effective Hamiltonian model (Section 2.7). This

column serves as an additional measurement of the quality of the observed transitions. For

example, neglecting the magnetic field when determining the zero-field the OD transitions

frequencies results in deviations of up to 300 kHz (in the case of transition #5) between

the measured line positions and those from the effective Hamiltonian model.

10.4 Effective Hamiltonian

The “O−C” column of Table 10.1 and 10.2 contains the residuals from a minimized

root-mean-square (RMS) fit using the A-state effective Hamiltonian parameters. Details

on the definition of the Hamiltonian are discussed elsewhere (Section 2.7). This definition

is adopted by the program PGOPHER [56] which is the basis for the following parameter

fits.

The ground state X2Π3/2, v′′ = 0 of OH has been well characterized by Drouin [49]. In the

reference article, a comprehensive global fit has been carried out, based on microwave, pure

rotational and rovibrational spectroscopy for the OH and its various isotopologues. The fit

generates out of this large collection of data, a single set of Dunham parameters that can

describe multiple vibrational states and multiple isotopes. However, based on the definition
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of our effective Hamiltonian model, it is convenient to convert the Dunham parameters

into parameters that apply to a single vibrational state and isotope, specifically two sets

of parameters for the vibrational state v′′ = 0 in OH and v′′ = 0 in OD (Table 10.3a).

Inserting the effective Hamiltonian ground state parameters into PGOPHER allows the

calculation of the ground state energies for OH and OD, respectively (Table 10.3b-10.3c).

These ground-state levels are the origin for all transitions measured in this thesis.

The excited state A2Σ+, v′ = 0 of OH the OD is less well characterized. Ter Meulen et

al. (1986) [207] used microwave double-resonance spectroscopy to measure the OH A-state

spin rotational splitting with high precision. German (1976) [208], Carter et al. (2002) [209]

and Xin et al. (2003) [210] measured the OD A-state hyperfine splitting.

Stark et al. (2008) [211] and Coxon (1975, 1980) [25,26] supply the best previous values

for the A-X transition frequencies in OH and OD. These works contain a rich data set

that includes transitions between higher rotational levels.

Since our current measurement setup only allows detection of the lowest rotational

states, the previous works can be used to improve our effective Hamiltonian fit. In detail,

some fitting parameters of the effective Hamiltonian model are fixed to those previous

works. For the OH the parameters H, L, M and γH are fixed to the parameters given by

Coxon [26]. For OD, the same parameters are constrained to the parameters from Stark

et al. [211]. The program PGOPHER performs a fit of the effective Hamiltonian to our

12 measured OH transitions (Table 10.1) and eight additional A-state hyperfine-resolved

spin-rotational splittings measured by ter Meulen et al. [207]. A similar fit is performed using

the 16 measured OD transitions (Table 10.2) and additional 13 and 8 A-state hyperfine

splittings measured by Carten et al. [209] and Xin et al. [210], respectively.

The uncertainties of the fitted parameters depend on the quality of the input data.

For example, the residuals between the fit and the measured transitions frequencies are a

decent indicator for potential issues in one measurement. If a single frequency measurement

shows a deviation larger than 3σ, the reliability of this particular measurement should

be called into question. Fortunately, the effective Hamiltonian fit for OH shows no such

anomaly for all included measurements. However, the data set used for the OD fit contains

two outliers (> 3σ). In particular, we identify the A-state hyperfine splittings N = 3,

J = 7/2, F ′ = 9/2↔ F ′′ = 7/2 (Carter [209]) and N = 1, J = 3/2, F ′ = 3/2↔ F ′′ = 1/2

(Xin et al. [210]) as outliers. Therefore, these splittings are excluded from the global fit.

The resulting effective Hamiltonian parameters for the A2Σ+, v′ = 0 state are listed in

Table 10.4 for OH and Table 10.5 for OD. In general, the uncertainties of the fitted

parameters are separated in two categories: a statistical uncertainty and an uncertainty

due to systematic effects. PGOPHER computes the one sigma statistical uncertainty for

each parameter after fitting the effective Hamiltonian, which is given in the first set of

144



Chapter 10. Analysis

parentheses behind the parameter value. The contributions of the Zeeman effect ∆Zeeman,

the AC Stark shift ∆Stark (Table 10.1-10.2) and the retroreflection quality (Section 9.8.1)

are estimated in a second set of parentheses. This second uncertainty is estimated by

shifting the transitions frequencies by, for example, ∆Zeeman and repeating the fit of the

effective Hamiltonian. The difference between the initial parameters and the parameters

originating from shifted frequencies corresponds to the uncertainty due to the Zeeman

effect. The uncertainties of the AC Stark shift and retroreflection quality are estimated in

the same way using frequency shifts of ∆Stark and a constant 60 kHz, respectively. Finally,

all three uncertainties are combined with a Pythagorean sum to the total systematic

uncertainty. Since the contribution of the AC Stark shift and the Zeeman effect proved to

have a negligible effect on the OH parameters, the systematic uncertainty is only given

for the band origin parameter T .
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Table 10.3: (a) Effective Hamiltonian parameters of the ground state X2Π3/2, v′′ = 0 in MHz for OH and OD,

after a conversion of the Dunham parameters provided by Drouin [49]. (b) Ground state levels of OH, relative to
the absolute ground state at −589 594.229 MHz (p′′ = e, F ′′ = 1). (b) Ground state levels of OD, relative to the
absolute ground state at −1 250 744.792 MHz (p′′ = e, F ′′ = 1/2).

(a)

16OH 16OD

B 555 661.4693 296 158.6891
D 57.229 288 3 16.143 28
H × 103 4.281 065 6 0.6400
L× 109 −448.6944 −35
M × 1012 33.315 1.3
P × 1018 −838.20 −6.0
Q× 1021 −796.21 −9.4
A −4 168 708.0644 −4 167 841.97
AD −17.8685 −9.8676
AH × 103 18.631 5.23
γ −3488.3181 −1858.746
γD 0.610 15 0.1714
γH × 106 −73.14 −11
p 7053.354 621 3762.013 17
pD −1.551 093 8 −0.436 101
pH × 106 157.746 23.97
pL × 109 −28.57 −2.3
q −1160.120 299 9 −328.052 845
qD 0.442 118 25 0.066 052 1
qH × 106 −82.4266 −6.5218
qL × 109 15.1479 0.63
qM × 1012 −2.525 06 −0.056
qP × 1018 332.81 3.9
a 86.108 353 13.304 73
bF −73.155 434 −11.174 00
c 130.643 272 20.169 23
d 56.683 092 8.772 94
dD × 103 −23.007 −1.872
cI × 103 −98.9043 −8.047
c′I × 103 6.837 0.56
eQq0 0.285 69
eQq2 −0.1205

(b)

p′′ F ′′ Frequency / MHz

e 1 0
e 2 53.171
f 1 1 665.402
f 2 1 720.530

(c)

p′′ F ′′ Frequency / MHz

e 1/2 0
e 3/2 7.112
e 5/2 19.229
f 1/2 310.143
f 3/2 317.326
f 5/2 329.591
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Table 10.4: 16OH parameters in MHz of the first electronic excited state A2Σ+, v′ = 0.

This Thesis Stark et al. [211] Coxon [26]

T 971 954 529.223(11)(60) 971 954 376(3) 971 954 664(54)
971 954 520(60)

B 508 601.5809(53) 508 603.268(66) 508 599(2)
D 61.876 24(52) 61.8903(36) 61.853(15)
H × 103 3.69a 3.82(11) 3.687(44)
L× 106 −0.41a −0.60 −0.412(57)
M × 109 −0.11a −0.021 −0.109(27)
γ 6777.832(10) 6775.74(18) 6762(10)
γD −1.435 17(89) −1.379(11) −1.430(54)
γH × 103 0.23a 0.069 0.228(60)
bF 772.077(26)
c 161.732(68)
cI −0.0335(77)

a Parameters are fixed according to values provided by Coxon [26].

Table 10.5: 16OD parameters in MHz of the first electronic excited state A2Σ+, v′ = 0.

This Thesis Stark et al. [211] Coxon [25]

T 973 940 524.775(21)(62) 973 940 470(3) 973 940 860(60)
B 271 124.841(13)(7) 271 123.980(48) 271 117.4(36)
D 17.3464(14)(7) 17.3428(13) 17.2758(78)
H × 103 0.56a 0.561(36) 0.4932(84)
L× 109 −39a −39 −18.0(42)
M × 1012 −2.1a −2.1 −3.51(87)c

γ 3614.148(25)(10) 3616.72(14) 3600.6(63)
γD −0.4093(52)(22) −0.4011(66) −0.3580(72)
γH × 106 13a 13
bF 118.468(20)(18)
c 24.863(56)(45)
cI × 103 −2.7b

eQq0 0.277(26)(4)

a Parameters are fixed according to values provided by Stark et al. [211].
b Based on value from OH fit, but scaled with the reduced mass ratio and

proton-deuteron g-factor ratio.
c Represents difference between M in excited and ground state.
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10.5 Comparison to Other Works

It is useful to compare the fitted effective Hamiltonian parameters in this work to those

from previous works. Unfortunately, the slightly different definitions of the effective Hamil-

tonian make it necessary to first transform the parameters (Section 2.7). In some works,

the centrifugal distortion parameters of γ are defined in term of J2 instead of N2. Equa-

tions (2.44)-(2.47) account for the transformation of the A-state parameters affected by

this difference of definition. The next complication arises when comparing the band origin

of the A2Σ+, v′ = 0 state because it depends on the definition of the ground state Hamil-

tonian. In the best previous works of Stark et al. [211] and Coxon [25,26], the Hamiltonian is

defined in terms of the rotational quantum number R instead of N. Additionally, some

works rely on a van Vleck transformation of the Hamiltonian, which introduces an addi-

tional Λ-doubling parameter o [25,211]. If it is not already absorbed into the band origin T ′,

the transformation rules must account for it (Equation 2.47). Taking these details into

account, Tables 10.4 and 10.5 contain the fitted effective Hamiltonian parameters from

the previous best works [25,26,211], adapted to our definition of the effective Hamiltonian,

next to the fitted parameters determined in this work.

The band origin of the A-state is determined with approximately two orders of magni-

tude higher precision compared to the previous studies [25,26,211], and the rotational constant

B is determined by about one order of magnitude of higher precision. This observation is

solely based on the provided uncertainties of the previous works. Considering the differ-

ence values of the band origin T and the rotational constant B between those works and

ours, the true uncertainty of these parameters is likely much larger than the uncertainty

of the constants suggests. Compared to Stark et al. [211], the parameter T deviates by

more than 51σ for OH and 18 σ for OD, while B differs by 26σ for OH and 18 σ for OD.

The origin of this deviation is unknown since we can only judge our own measurement

setup. However, the previous work of Stark et al. [211] is based on an electrical discharge to

produce OH and OD by dissociating H2O and D2O, respectively. The iron hollow-cathode

discharge source also contains 2.2 Torr of helium, which potentially might cause a pressure

shift. Another potential source of the frequency shift is the calibration of the transition

lines, which is based on the absolute positions of the FeI lines [212].

The fine/hyperfine parameters of previous studies [207,209,210] generally show a much

better agreement with this thesis. For example, the OH parameters bF , c and γ fitted by

ter Meulen et al. [207] agree within 2.2σ with our parameters (Table 10.6a). The exception

is the parameter γD, which differs by 4σ. A potential source of the greater discrepancy

is the inclusion of the fixed parameter γH = 230 Hz [26] in our model, which is missing in

the previous model of ter Meulen et al. [207]. In OD, the deviation between the parameters

bF = b+ c/3, c and eQq0 provided by Carter et al. [209] and the parameters in this thesis is
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Table 10.6: (a) Comparison of fitted parameter for OH and (b) OD.

(a)

This Thesis ter Meulen [207]

et al.

bF 772.077(26) 771.74(22)
c 161.732(68) 161.01(55)
γ 6777.832(10) 6 777.749(36)
γD -1.435 17(89) -1.426 3(22)

(b)

This Thesis Carter [209] Xin [210]

et al. et al.

bF 118.468(20)(18) 118.422(42) 118.46(7)
c 24.863(56)(45) 24.72(11) 24.85(17)
eQq0 0.277(26)(4) 0.238(30) 0.29(5)

less than 2 sigma (Table 10.6b). The comparison with the parameters from Xin et al. [210]

shows even better agreement, within one standard deviation. Since the data from these

previous works is included in our global fit, the agreement of the fitting parameters is not

too surprising.

10.6 Conclusion

In this thesis, OH and OD electronic transition frequencies have been determined using

excitation with a narrow-linewidth continuous wave (CW) laser. Although, each measure-

ment is Doppler broadened with a linewidth on the order of 8 MHz, the uncertainty of

the fitted line positions is at the 10 kHz level. This is similar to the precision achieved on

Doppler broadened molecular transitions in molecular oxygen (O2) by Bielska et al. [213]. A

fit of an effective Hamiltonian model to the measured line positions supplies a set of refined

A-state spectroscopic constants and residuals to the applied model. Compared to previous

works, the uncertainty of the parameters has been reduced (Section 10.5). In particu-

lar, the band origin and the rotational constant are determined with significantly higher

precision. The residuals of the effective Hamiltonian fit are an indicator of the accuracy

of the individual measured transitions frequencies. The deviations between the observed

and the calculated transition frequencies are, in general, within 100 kHz (Section 10.3).

This rather small deviation confirms our trust in the measured transition frequencies and

the provided spectroscopic constants, even if previous measurements suggest different

parameter values.
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Chapter 11

Outlook and Summary

This thesis has presented a precision laser system for spectroscopy on small molecules, able

to measure and stabilize a narrow linewidth continuous wave (CW) laser in the ultraviolet

(UV) as well the infrared (IR). A measurement series of A2Σ+, v′ = 0← X2Π3/2, v′′ = 0,

J ′′ = 3/2 transitions in the hydroxyl radical (OH) and the deuterated hydroxyl radical

(OD) served as a benchmark system of this new apparatus. Potential line shifting effects

have been considered, for instance, the Zeeman effect, the saturation, the AC-Stark shift,

and the retroreflection quality. By accounting for these effects, we have been able to

determine the zero-field transition frequencies with an uncertainty of less than 100 kHz.

The zero-field transition frequencies, reported in this thesis, have been combined with

previous data [49,207,209,210], and used to refine the effective Hamiltonian parameters of the

A, v′ = 0 state in OH and OD. In particular, the band origin and the rotational constant

have been determined with several orders of magnitude higher precision.

11.1 Increasing the Performance of the Setup

The magnetic field and the corresponding Zeeman effect has a significant influence on

the measured line positions on the OD measurements. In retrospect, we underestimated

the effect the 75 µT ambient magnetic field in the laboratory would have on the measured

spectra. This oversight complicated the analysis of the spectra and probably reduced

the available precision of the measured transition frequencies. The relatively high laser

power needed to overcome the low signal to noise ratio (SNR) and counter-propagating

laser beams used to correct for Doppler shifts could have resulted in saturation dips and

improved the resolution of the measurements. Thus, the two counterpropagating laser

beams in the Doppler reduces measurement setup saturate the transition. Unfortunately,

the line splitting inside the magnetic field due to the Zeeman effect leads to multiple

saturation dips, which are not at the center of the transition, but instead distort the

measured spectrum. Since then, the experimental apparatus has been modified so that

future measurements can be performed at zero magnetic field. In particular, two Helmholtz

151



11.1. Increasing the Performance of the Setup

coils with a diameter of 800 mm along the axis of the laser beam (14 µT) and two additional

coils with a diameter of 400 mm along the molecular beam (75 µT) have already been

attached to the vacuum chamber. A translatable and rotatable Hall sensor makes it

possible to detect magnetic fields along both axes at the molecule interaction region with

the laser. Based on the measured field strength, the current inside the Helmholtz coils can

be tuned to null-out the ambient magnetic field. The magnetic field along the third axis

is neglected since it is at the order of magnitude of the measurement uncertainty (2 µT).

The laser power leads in some measurements to saturation effects, although the precise

location of the saturation dips often stays hidden inside the noise floor. An increase of

the SNR would open the possibility of Doppler-free saturation spectroscopy. After the

measurements, we identified multiple sources of avoidable noise. The major contribution

to the background noise is the dissociation pulse of the excimer laser. Although color filters

block the laser wavelength in front of the photomultiplier tube (PMT), the fluorescence

light generated inside the quartz tube at the nozzle of the molecular beam goes through

the filters. This fluorescence also persists for the few milliseconds the molecules require

to travel from the source to the laser interaction region. Thus, dissociating the molecules

without the quartz tube would get rid of this source of background. Another source of

fluorescence light was the fused silica windows of the vacuum chamber for the spectroscopy

laser, which have since been replaced by calcium fluoride (CaF2) windows, which have no

detectable fluorescence. The last potential noise source is scattered light from the light

baffles around the spectroscopy laser. Although the beam diameter at the center of the

interaction region is around 1 mm and the diameter of the light baffles is 5 mm, some

minor fraction of the beam scatters into the PMT. Thus, we increased the diameter of

light baffles to 10 mm and simultaneously cleaned the mode profile of the laser beam using

a single mode fiber. Additionally, the fiber connects the laser setup on the floating laser

table with the stationary vacuum chamber, which makes continuous adjustments of the

retroreflection obsolete. These changes will increase the SNR significantly.

The data processing is based on an analog signal from the PMT, recorded on a digital

oscilloscope. The experiment was performed with a repetition rate of 10 Hz, partly because

the oscilloscope could not be read out much faster than this and did not have an appropriate

averaging function built in. The pressure inside the vacuum chamber, which increases

with the repetition rate of the valve, could have also become a limiting factor, though later

tests proved a reliable valve operation up to 50 Hz, with additional cooling to protect the

valve from overheating. Higher repetition rates are only possible by producing narrower

molecular pulses, which is not feasible with the current valve. However, an in-house

developed, corrosive resistant piezoelectric transducer (PZT) based valve has been shown

to generate shorter pulses. The corresponding adapter for the vacuum chamber is ready
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to use, but the valve itself has not been tested yet with nitric acid (HNO3). This valve

potentially allows experimental repetition rates up to 250 Hz, which is the maximum

repetition rate. However, the faster repetition rate produces more data, and the oscilloscope

becomes insufficient. The measurement speed, as well as the sensitivity, can be improved

by counting the electrical pulses generated by individual photons reaching the PMT. These

pulses are small, short in duration, and highly variable but can be converted to transistor-

transistor logic (TTL) compatible pulses with constant width using a discriminator. Thus,

the data acquisition needs to change. In particular, the oscilloscope has been replaced

with a discriminator, which generates a sequence of identical pulses based on the signal

from the PMT. Afterwards, the pulse train is using a low-cost logic analyzer which can

continuously record a digital signal at 24 mega samples per second (MSPS). It is expected

that future measurements will be at least collected five times faster than the data in this

thesis. In case of a successful operation of the in-house valve, maybe even 25 times faster.

To conclude the improvements on the measurement setup, we expect an increase of the

transition line precision of at least one order of magnitude. But instead of measuring the

same transitions again with a higher precision, it is prudent to move on to a different

system.

11.2 Beyond the Electronic Excitation of OH

The measured electronic transitions on the OH proved the functionality of our precision

spectroscopy laser system and demonstrated the successful detection of the molecules

in the vibrational ground state v′′ = 0. This thesis contains the groundwork for future

measurements of vibrational transitions of the OH molecule. The required mid IR optical

parametric oscillator (OPO) has been built in this thesis. Improving its tunability and

implementing a phase-locked loop (PLL) to stabilize it to the optical frequency comb

(OFC) is the next step. Once this is accomplished, we plan to observe vibrational one-

photon or two-photon transition in OH at 2.7 µm or 2.9 µm, respectively.

Other molecular systems might also be worth considering. Both the OPO and the dye

laser have a wide tuning range, which makes them applicable for a variety of different

molecules. In general, the simplest molecules are of greatest interest for testing the standard

model of physics. Ab initio calculations are more likely to match experimental precision

if the system contains as few electrons as possible. Thus, the H2 molecule is the perfect

candidate for high-resolution spectroscopy of vibrational transitions.

The challenge of measuring vibrational transitions of the symmetric H2 molecules

is the zero dipole moment, since we require a non-zero dipole moment for a one-photon

electric dipole transition. One solution might be Raman spectroscopy, which is based on the
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difference frequency of two electric fields. This principle also applies for one static field with

zero frequency and a second field supplied by the IR OPO. In this case, the constant field

induces a dipole moment and allows excitation in the IR. An even more straightforward

approach might be a measurement of the HD molecule, which is asymmetric and has a small

but non-zero dipole moment without further manipulations. The main change that would

need to be made spectroscopy on H2 or HD is the implementation of a resonance-enhanced

multiphoton ionization (REMPI) setup including a mass spectrometer for detection.
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[204] T. C. Briles, D. C. Yost, A. Cingöz et al., Optics Express 18, 9739 (2010).

[205] L. Scharfenberg, Crossed beam scattering with a Stark-decelerated molecular beam, Ph.D. thesis, Technische

Universität Berlin (2012).

[206] S. A. Meek, M. F. Parsons, G. Heyne et al., Review of Scientific Instruments 82, 093108 (2011).

[207] J. J. Ter Meulen, W. Ubachs and A. Dymanus, Chemical Physics Letters 129, 533 (1986).

[208] K. R. German, The Journal of Chemical Physics 64, 4192 (1976).

[209] R. T. Carter, I. M. Povey, H. Bitto et al., The Journal of Chemical Physics 104, 5365 (1996).

[210] J. Xin, I. Ionescu, D. Kuffel et al., Chemical Physics 291, 61 (2003).

[211] G. Stark, J. W. Brault and M. C. Abrams, Journal of the Optical Society of America B 11, 3 (1994).

[212] R. C. M. Learner and A. P. Thorne, Journal of the Optical Society of America B 5, 2045 (1988).
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Abbreviations

AC alternating current

AlGaInP aluminium gallium indium phosphide

AOM acoustic-optical modulator

AR anti-reflective

AVAR Allan variance

BBO beta barium borate

BIPM bureau of weights and measures

CIPM international committee for weights and measures

CORDIC coordinate rotation digital computer

CW continuous wave

DC direct current

DFB distributed feedback

DFG difference frequency generation

ECDL external cavity diode laser

EDM electric dipole moment

EMF electromotive force

EOM electro-optic modulator

ERF error function

FEM finite element method

FFT fast Fourier transform

FM frequency modulation

FPGA field-programmable gate array

FPI Fabry-Perot interferometer

FSR free spectral range

FT Fourier transform

FWHM full width at half maximum

GMT greenwich mean time

GNSS global navigation satellite system

GPS global positioning system

HR high-reflective

HV high voltage
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IR infrared

IUPAC international union of pure and applied chemistry

LHC large hadron collider

LIF laser induced fluorescence

LISA laser interferometer space antenna

MBD maxwell-boltzmann distribution

MDEV modified Allan deviation

MPI multiphoton ionization

MTS modulation transfer spectroscopy

MVAR modified Allan variance

Nd:YAG neodymium-doped yttrium aluminum garnet

NIST national institute of standards and technology

NPRO non-planar ring oscillator

NTC negative temperature coefficient

OD deuterated hydroxyl radical

OFC optical frequency comb

OH hydroxyl radical

OPA optical parametric amplification

OPO optical parametric oscillator

PBS polarizing beam splitter

PCF photonic crystal fiber

PD photodiode

PDH Pound-Drever-Hall

PEEK polyether ether ketone

PI proportional-integral

PID proportional-integral-derivative

PLL phase-locked loop

PMM phase mismatching

PMT photomultiplier tube

PPLN periodically-poled lithium niobate

PPM perfectly phase matched

PPS pulse per second

PTFE polytetrafluoroethylene

PVAR parabolic variance

PVC polyvinyl chloride

PWM pulse-width modulation

PZT piezoelectric transducer

QM quantum mechanical

QPM quais phase matching
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Chapter 11. Abbrevations

RAM residual amplitude modulation

REMPI resonance-enhanced multiphoton ionization

RFT rotating-frame transformation

RMS root-mean-square

RTD resistance temperature detector

RWA rotating-wave approximation

SAW surface acoustic wave

SFG sum frequency generation

SHG second-harmonic generation

SM standard model

SNR signal to noise ratio

SSE sum of square errors

TAI international atomic time

TB thermal background

TDLAS tunable diode laser absorption spectroscopy

TEC temperature controller

TEM transverse electromagnetic mode

TOF time-of-flight

TTL transistor-transistor logic

UHV ultra-high vacuum

ULE ultra-low expansion

USNO united states naval observatory

UTC coordinated universal time

UV ultraviolet

VCXO voltage-controlled crystal oscillator

WM wavelength modulation

YAG yttrium aluminum garnet
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