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DMF N,N-dimethylformamide MeCN Acetonitrile 

DMP Dess–Martin periodinane MOF Metal−organic framework 
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EBX EthynylBenziodoXolone NEt3 Triethylamine 
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NMR Nuclear Magnetic Resonance 
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T Temperature   

t Time   
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1 General Part 

1.1 Introduction  

Alkynylation is an important reaction class to incorporate a C2-unit into organic molecules. Similarly, 

the majority of the utilized building blocks in nature such as acetyl-CoA, shikimic acid or mevalonic 

acid are C2-units or a multiples of it.1 As a result, many natural and bioactive compounds are 

constructed by a repetitive introduction of these units. Furthermore, alkynes are very versatile groups 

for further functionalization (compare Chapter 1.2.3). Therefore, it is not surprising that in the years 

that in the years 1997–2009 methods for the introduction of carbon units to molecules, such as 

alkylation, acylation or C-C-bond formation, including alkynylation were some of the most frequently 

used reactions in innovative chemistry, such as library synthesis, lead optimization, process chemistry 

and bioactive compounds synthesis (Figure 1).2  

 

Figure 1 Reaction types used in library synthesis (GlaxoSmithKline (GSK): 2005–2009), lead optimization (AstraZeneca, GSK and 

Pfizer: 2005–2009) and process chemistry for the synthesis of candidate drugs (AstraZeneca, GSK and Pfizer: 1997–2005).2 

However, the introduction of alkyne moieties into organic molecules is clearly limited by the 

structural features of this functional group, e.g. the strong tendency to react as a nucleophile due to 

easy deprotonation. Therefore, new methodologies, which open new reaction pathways, are required 

for these purposes. These processes could in turn facilitate the synthesis of new drug candidates and 

allow the preparation of new compounds and materials. The aim of this work is to consider alternative 

possibilities for the incorporation of this versatile building block, to avoid harsh reaction conditions 

and to enable the functionalization of complex highly functionalized molecules, thus, offering a new 

instrument for the chemist’s toolbox of introducing alkynes. 
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1.2 The alkyne group 

1.2.1 General properties of alkynes 

Alkynes are highly energetic, linear compounds. The characteristic structural element of this 

functional group is the triple bond. From a formal viewpoint, it consists of a σ-bond formed by the 

overlap of two axial sp-hybridized orbitals of two carbon atoms, and two orthogonal -bonds, formed 

by unhybridized p-orbitals (Figure 2).3  

 

Figure 2 Schematic representation of the triple bond in alkynes. 

A variety of different reactions can be applied towards the synthesis of alkynes on laboratory scale 

(compare Chapter 1.2.2).4a In contrast, on an industrial level alkynes are mainly synthesized by 

homologation of short terminal alkynes like acetylene or propyne. The latter can be accessed by 

common procedures like the calcium carbide process or cracking methods from oil, coal or gas.3,4b,c 

With a pKa of around 25, terminal alkynes are considerably easier to deprotonate, when compared 

with alkenes or alkanes. Consequently, the resulting acetylides react normally as nucleophiles and can 

be used for a variety of substitution or addition reactions (compare Chapter 1.2.3). Nowadays, many 

natural products are known to contain alkyne moieties.5 Often these compounds show interesting 

biological activities like the antibiotic (-)-marasin (1)6 or the natural antifeedant tonghaosu (2) (Figure 

3).7  

 

Figure 3 Alkyne containing natural products (–)-marasin (1) and tonghaosu (2). 

Furthermore, alkynes are applied in many different research fields, such as in the synthesis of organic 

electronics,8 in medicinal chemistry9 or in the functionalization of metal organic frameworks 

(MOFS).10 Additionally, alkynes are known to be biorthogonal and can be introduced to complex 

biological molecules and systems.11  
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1.2.2 Synthesis of alkynes in a laboratory scale 

1.2.2.1 Synthesis of alkynes by elimination 

Elimination is a classical, widely used method for the formation of an alkyne moiety in the laboratory. 

Commonly used methods are the dehydrohalogenation of haloalkenes, the twofold 

dehydrohalogenation of dihaloalkanes or the elimination reactions of alkenes with heteroatom-

containing substituents.12 An early example for the dehydrohalogenation of haloalkenes was given by 

the synthesis of phenylacetylene (4) from (2-bromovinyl)benzene (3) using a strong base like nBuLi 

(Scheme 1).13  

 

Scheme 1 Synthesis of alkynes by dehydrohalogenation of haloalkenes.
13

 

Dihaloalkanes can easily be synthesized by the addition of bromine to alkenes. In a publication by 

Wong et al., the tetrabromide 6 was obtained by the reaction of cyclooctatetraene 5 with elemental 

bromine. Afterwards, the cyclic dialkyne 7 was synthesized by a four-fold dehydrobromination with 

the base potassium tert-butoxide (Scheme 2).14  

 

Scheme 2 Synthesis of alkynes by fourfold dehydrohalogenation.
14

 

Another example for the synthesis of alkynes via elimination reactions was given by Tsuji and 

coworkers. Enoles of the type 10 were synthesized from ketones 8 and 2-chloro-3-ethylbenzoxazolium 

tetrafluoroborate (9) in the presence of NEt3 (Scheme 3). Subsequently, a set of different alkynes was 

obtained from the intermediate 10 by the elimination of 3-ethylbenzoxazol-2(3H)-one (12).15  

 

Scheme 3 Synthesis of alkynes employing 2-chloro-3-ethylbenzoxazolium salt (9).
15
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1.2.2.2 The Corey-Fuchs reaction 

The Corey-Fuchs reaction is a two-step reaction sequence, which can be used to furnish alkynes. In 

their publication, Corey and Fuchs16 reported a method consisting initially preparing 1,1-

dibromoolefins from aldehydes as reported by Ramirez17 with a consequent Fritsch-Buttenberg-

Wiechell (FBW) rearrangement18 to synthesize alkynes. For example, this methodology was utilized 

by Corey and Fuchs to afford phenylacetylene (4) from benzaldehyde (13) (Scheme 4).16 The latter 

was treated with a mixture of triphenylphosphine, tetrabromomethane and zinc to synthesize the 

dibromide 14. Afterwards, the dibromide 14 was transformed to phenylacetylene (4) upon reaction 

with nBuLi.  

 

Scheme 4 Synthesis of phenylacetylene (4) by Corey and Fuchs.
16

 

The dibromoolefination also proceeds in the absence of Zn. For the mechanism of the latter reaction, 

an initial attack of triphenylphosphine to tetrabromomethane is proposed (Figure 4).19 This results in 

the formation of the carbanion 15 and the phosphonium salt 16, which are in equilibrium with the 

phosphonium salt 17. Subsequently, a second triphenylphophine molecule debrominates the 

phosphonium salt 17 to form the ylide 18. Therefore, a minimum of two equivalents of 

triphenylphosphine is necessary to conduct the reaction.19c The ylide 18 undergoes a Wittig-type 

reaction and attacks the aldehyde 14 to offer the zwitterionic structure 19. The latter undergo a ring 

closure to form the oxaphosphetane 20 and in the next step the desired dibromide 21 is formed by 

cycloreversion, eliminating triphenylphosphine oxide. A strong base such as nBuLi or LDA is applied 

in the subsequent Fritsch-Buttenberg-Wiechel rearrangement, which furnishes alkyne 23.20 In the 

peculiar case of R = H, the resulting acetylene 23 is attacked by a second equivalent of the base 

affording the corresponding lithiated alkyne 23. Afterwards, phenylacetylene (4) is obtained after 

protonation. 
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Figure 4 Proposed mechanism of the Corey-Fuchs reaction.
19,20

  

This methodology was utilized by Clément et al. to afford (±)-4-ethynyl[2.2]paracyclophane (26) in 

86% overall yield (Scheme 5).21 Compound 26 is an interesting target in coordination chemistry.22 The 

aldehyde 24 was treated with a mixture of triphenylphosphine, tetrabromomethane and zinc to 

synthesize the dibromide 25. Afterwards, the dibromide 25 was converted to (±)-4-

ethynyl[2.2]paracyclophane (26) with nBuLi. 

 

Scheme 5 Synthesis of (±)-4-ethynyl[2.2]paracyclophane (26) by Clément et al.21
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Another example of a Corey-Fuchs reaction, which illustrates the relevance of this transformation in 

the synthesis of intermediates for the preparation of complex molecules such as Amphidinolides, was 

presented by Roush and coworkers.23 Amphidinolides are a group of macrolides isolated from the 

dinoflagellate Amphidinium. Many representatives of this family demonstrate a potent antitumor 

activity and are therefore interesting targets for total synthesis.24 In their synthesis of the macrolide 

Amphidinolide E (30), the authors used a three-step sequence to build up the alkyne 29. Initially, the 

alcohol 27 was oxidized under Parikh-Doering conditions. The resulting aldehyde 28 was treated with 

the ylide 18, formed from a reaction of tetrabromomethane with triphenylphosphine. Finally, the 

desired alkyne 29 was obtained by workup with nBuLi in a total yield of 88% over three steps. After 

this, Amphidinolide E (30) was synthesized from the intermediate 29 (Scheme 6).  

 

Scheme 6 Synthesis of Amphidinolide E by Roush and coworkers utilizing the Corey-Fuchs reaction.
23
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Wong and coworkers used a Fritsch-Buttenberg-Wiechell rearrangement in their synthesis of alkaloide 

Himbacine (34) (Scheme 7).25 The latter is a muscarinic receptor antagonist and, consequently, 

possesses a large potential to find application in the treatment of Alzheimer’s disease or other 

neurodegenerative disorders.26 Accordingly, the Boc-protected piperidine 31 was treated with the ylide 

formed from deprotonation of the phosphonium salt 35 with potassium tert-butoxide, before addition 

of nBuLi to obtain the alkyne 32 in a high yield of 78% over two steps. The alkyne 32 with a 

piperidine moiety was then converted though a radical hydrostannylation to the corresponding 

stannane 33, which was incorporated via Stille coupling into the lactone core of the Himbacine 

framework. 

 

Scheme 7 Synthesis of Himbacine (34) by Wong and coworkers.
25
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1.2.2.3 The Seyferth-Gilbert homologation 

The Seyferth-Gilbert homologation27 and the corresponding Ohira-Bestmann modification28 are 

common methods to introduce alkynes into organic molecules. Similarly to the Corey-Fuchs reaction, 

aldehydes and ketones are used as starting materials. These are treated with dimethyl 

(diazomethyl)phosphonate (37) or dimethyl 1-diazo-2-oxopropylphosphonate (38) and a base to obtain 

terminal and internal alkynes (Scheme 8). 

 

Scheme 8 General reaction scheme of the Seyferth-Gilbert homologation and the Ohira-Bestmann modification. 

A mechanism was proposed by Gilbert et al.29. First, the deprotonated Seyferth-Gilbert reagent 39 is 

formed by deprotonation of dimethyl (diazomethyl)phosphonate (37) with a strong base in the 

unmodified Seyferth-Gilbert homologation or by retro-Claisen-type cleavage of the acetyl group in 

dimethyl 1-diazo-2-oxopropylphosphonate (38) (the Ohira-Bestmann variation). In the latter case a 

base is required although milder bases can be used than in the unmodified Seyferth-Gilbert 

homologation. As a consequence, a number of base-sensitive compounds can be applied in the Ohira-

Bestmann-variation. Afterwards, the deprotonated Seyferth-Gilbert reagent 39 attacks the aldehyde or 

ketone 36 to form the alkoxide 40. Subsequently, the alkoxide 40 cyclizes to the oxaphosphetane 41. 

A dimethyl phosphate anion is then eliminated to form the diazoalkene 42, which is followed by 

elimination of nitrogen from the latter. As a result, the carbene 43 is formed. Finally, the desired 

alkyne 39 can be obtained by an 1,2-migration of one of the substituents in 43 (Scheme 9). 
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Scheme 9 Proposed mechanism of the Seyferth-Gilbert homologation and the Ohira-Bestmann modification.
29
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Recently, Neumaier and coworkers reported an application of an Ohira-Bestmann homologation in the 

synthesis of 18F-labeled building blocks for positron emission tomography (PET).30 PET is a 

methodology to visualize processes on molecular level of 18F-labeled compounds in clinical 

diagnostics, utilizing the positron emission of radioactive decay of 18F. Because of the low half-time of 

18F (110 min), it is necessary to use reliable and fast reactions. In their synthesis, the authors utilized 

the labeled benzaldehydes 44 and the Ohira-Bestmann-reagent 38 for the synthesis of the labeled 

alkynes 45 in high radiochemical yields of up to 60% in only 15 min. Finally, these labeled alkynes 

were transformed applying common synthetic methods to biologically interesting compounds. Thus, 

the triazol 47 was synthesized by a "click reaction" (see below in Chapter 1.2.3.1), the protected amino 

acid 49 was obtained using Sonogashira coupling, the β-lactam 51 – via the Kinugasa reaction and the 

phthalan 53 through a rhodium catalyzed [2+2+2]-cyclization (Scheme 10). 

 

Scheme 10 Synthesis of 18F-labeled alkynes 45 and their further derivatization to different biologically interesting 

compounds by Neumaier and coworkers.
30
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An interesting modification of the Seyferth-Gilbert homologation was presented by Harusawa and 

coworkers.31 First, the authors synthesized cyanohydrin-O-phosphates 55 from the reaction of 

aldehydes and ketones with diethyl phosphorocyanidate (54). Alkynes of the type 39 were then 

obtained under very mild conditions through reaction of 55 with TMSN3 or NaN3 in high yields of up 

to 88% (Scheme 11). No additional base was necessary. Thus, challenging functionalized compounds, 

which could not be accessed in high yields or in high selectivity by other variations, could be 

prepared. In line with their mechanistic studies, the authors suggest the initial formation of either 

tetrazolylphosphate 56 or azidotetrazole 57. Afterwards, fragmentation by the elimination of either 

diethyl phosphoric or hydrazoic acid derivatives leads to the tetraazafulvene 58. Subsequently, an 

elimination of two nitrogen molecules from 58 affords the carbene 43, which then undergoes a 1,2-

migration to form the desired product 39. 

 

Scheme 11 Modification of Seyferth-Gilbert homologation as reported by Harusawa and coworkers. A. General reaction 

scheme. B. Proposed mechanism of the reaction.
31
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1.2.3 Reactivity of alkynes 

The versatility of alkynes is based on the low oxidation state of the carbon atoms and the resulting 

possibility for further functionalization to a multiplicity of other functional groups. 

Hydrofunctionalisations are one of the most famous reactions (Figure 5). Typical examples are 

hydrogenations and the addition of halogens or hydrogen halides.32 Furthermore, reactions such as 

hydroborations,33 hydrosilylations,34 hydrostannylations35a as well as additions of alcohols, thiols, 

amines, etc.35b are commonly used. In general, it possible to obtain the cis or trans products from 

addition reactions. Therefore, a catalyst is normally applied in an addition to obtain a defined 

stereoselectivity and to prevent overreaction. An illustrative example is the well-known Lindlar 

catalyst, which can be utilized for the hydrogenation of alkynes to alkenes. In case of this catalyst 

system, lead acetate is applied to poison the catalyst partially, preventing over reaction.36 Besides, with 

double addition reactions alkanes can be accessed from alkynes.3 The hydration of alkynes affords 

aldehydes or ketones37 and 1,2-diketones are accessible via the Wacker-Oxidation.38 In contrast, the 

oxidation with strong oxidants like potassium permanganate leads to the formation of acids.39 Another 

reaction commonly applied towards alkynes is the synthesis of aromatic systems by [2+2+2]-

cyclization.40 Furthermore, alkynes can be used in a variety of other cycloadditions such as the Diels-

Alder-reaction.41 Lastly, substituted 1,2,3-triazoles can be obtained from 1,3-dipolar cycloaddition of 

azides and alkynes ("click reaction", see Chapter1.2.3.1).  

 

Figure 5 Selected products of alkynes common derivatization. 



 

13 

 

Furthermore, it should be mentioned that there are several methods for the modification of alkynes that 

can be applied in the synthesis of complex structures. Such famous reactions as the alkyne zipper 

reaction42 that is used for the transformation of internal to terminal alkynes or alkyne metathesis43 for 

the synthesis of polymeric, cyclic or terminal alkynes (Figure 6).  

 

Figure 6 Common methods to modify alkynes. 
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1.2.3.1 Azide-alkyne cycloaddition ("click chemistry") 

The term "click chemistry" was introduced by Sharpless and coworkers in 2001.44 Accordingly, a 

click-reaction should fulfill several requirements such as a high functional-group tolerance, mild and 

simple reaction conditions, an easy reaction work-up and the usage of environmental friendly or no 

solvents. Furthermore a high reaction yield, stereoselectivity, a broad substrate scope and a minimum 

of byproducts should be achieved. 

Nowadays, the metal catalyzed 1,3-dipolar Huisgen cycloaddition for the formation triazoles from 

alkynes and azides is strongly related to the term click chemistry.45 The utilization of a metal catalyst 

in this reaction allows a significant reduction in temperature and affords the products with higher 

regioselectivity, when compared to the uncatalyzed Huisgen cycloaddition. Therefore, it fulfills nearly 

all the requirements of a click reaction. Particularly, the use of either copper of ruthenium catalysts for 

this reaction have emerged as powerful synthetic tools. These two systems elegantly either afford 1,4- 

(73) or 1,5- disubstituted triazoles (70) with high selectivity. (Scheme 12). 

 

Scheme 12 Schematic reaction scheme of the copper- and the ruthenium-catalyzed click reactions. 

In the proposed mechanism of the copper-catalyzed azide-alkyne cycloaddition (CuAAC, Figure 7A), 

the alkyne 71 and the copper catalyst initially form a -complex 74.46 Subsequent reaction with an 

additional molecule of copper catalyst affords the -copper complex 75 of the copper acetylide. This 

complex coordinates the azide resulting in the formation of the intermediate 76. Subsequently, an 

internal rearrangement leads to the 6-membered metallacycle 77. The latter undergoes a ring 

contraction to afford the intermediate 78. Finally, the product 73 and the initial copper catalyst are 

obtained after protonolysis. 

In the mechanism of ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC, Figure 7B), an initial 

ligand exchange of the spectator ligands of the catalyst with the alkyne 71 and the azide 72 affords the 

complex 80.47 Subsequent regioselective oxidative coupling leads to the formation of the 

ruthenabicycle 81, which undergoes a reductive elimination to furnish the complex 82. Finally, the 

product 70 is obtained and the catalyst is regenerated through ligand replacement. 
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Figure 7 Proposed mechanisms for (A) the copper-catalyzed (CuAAC)46 and (B) the ruthenium-catalyzed (RuAAC)47 click 

reactions.  
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In their publication from 2011, Nesterov and coworkers gave an illustrative example for the utilization 

of alkynes in organic electronics.48 They synthesized surface-bound semiconducting polymers with 

interesting spectroscopic and electronic properties. In the functionalization process, the polymer-

bonded alkyne 83 was treated successively with the diazide 84 and the dialkyne 86 in a copper-

mediated 1,3-dipolar cycloaddition (Scheme 14). After 34 steps, the solutions of compounds 84 and 86 

were re-used without any significant loss of reactivity, thus illustrating the economic use of materials 

for the reported transformation. 

 

Scheme 13 Synthesis of surface-immobilized semiconducting polymers by Nesterov and coworkers.
48
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Recently, Mirkin and coworkers used DNA functionalized with dibenzylcyclooctyne (DBCO) to cover 

the surface of nanoparticles of a zirconium-based metal organic framework (MOF) (Figure 8A).49 The 

MOF-DNA conjugates 90 were obtained from the copper-free click reaction of the DBCO-labeled 

DNA 89 and azide group-containing metal organic-frameworks 88 (Figure 8B). Driving force of the 

reaction is the release of ring strain of the DNA-bounded alkynes. Later, the influence of the variation 

of the DNA length and the utilization of fluorescent DNA-residues was investigated in order to gain 

insight into the cell uptake of these compounds and to give important information towards drug 

delivery processes in cells. 

 

 

Figure 8 Schematic surface attachment of DBCO-DNA to the Nano-MOF-surface (A) and reaction of DBCO-functionalized 

DNA 89 and azide-containing Nano-MOF 88. (B).
49
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1.2.3.2 [2+2+2] Cyclization 

The [2+2+2]-cyclization was first described by Reppe and coworkers in 1948 and over the years has 

become a versatile tool in the synthesis of complex molecules.50 Nowadays, polysubstituted cyclic 

molecules, such as pyridines or benzenes, can be easily accessed from this condensation reaction. A 

variety of unsaturated molecules, such as alkynes, alkenes, nitriles or isonitriles, can be applied as 

starting materials and the reaction tolerates other functional groups, including alcohols, amines, esters 

and halogens (Figure 9A).51 The cobalt complex [CpCo(CO)2] (92, Figure 9B) is a commonly used 

precatalyst in the [2+2+2]-cyclization, but also other cobalt, iridium, nickel or ruthenium catalysts can 

be applied.52  

 

 

Figure 9 (A) General reaction scheme of the [2+2+2]-cycloaddition of alkynes and (B) the commonly used catalyst 

[CpCo(CO)2] (92). 

Two general mechanisms have been proposed for the cobalt-catalyzed [2+2+2] synthesis of benzene 

from acetylene (Figure 10).51 In both, the metal catalyst is coordinated by two alkynes and the 5-

membered intermediate 94 is subsequently formed through an oxidative addition. This intermediate 94 

is then coordinated by another alkyne molecule, forming the intermediate 95. Two reaction pathways 

have been proposed from this intermediate to yield benzene. In the first case, the alkyne inserts into 

the carbon-metal bond of 95 to form the intermediate 96, and reductive elimination follows to form 

complex 98. Alternatively, it has been proposed that the intermediate 97 is initially formed by a [4+2]-

cycloaddition, which after isomerization affords the intermediate 98. Finally, release of benzene 

regenerates the catalyst.  



 

19 

 

 

Figure 10 Proposed mechanism for the [2+2+2]-cyclization.51 

Stará, Starý and coworkers have used a cobalt catalyzed [2+2+2]-cycloaddition in their synthesis of 

pyridohelicenes 101 (Scheme 14).53 These helically chiral structures can be potentially applied in 

variety of fields of chemistry including coordination chemistry54 and material science.55 Initially, the 

partially saturated helicene 100 was synthesized by a [CpCo(CO)2]-catalyzed [2+2+2]-cyclization of 

the triyne 99. In a second step, the compound 100 was completely aromatized to the pyridohelicene 

101 in a microwave-assisted oxidation with manganese dioxide. This class of compounds was 

relatively unexplored before due to synthesis limitations regarding the basic pyridine group.  

 

Scheme 14 Pyridohelicene synthesis by Stará, Starý and coworkers.53 
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Another recent example of a [2+2+2] cyclization was presented by Wang and coworkers in the 

synthesis of 2,3,6-trisubstituted pyridines of the type 103 (Scheme 15).56a Pyridines 103 were 

synthesized in the reaction of alkylsubstituted cyanides and terminal arylalkynes under mild 

conditions. The chlorinated pyrylium salt 102 [T(p-Cl)PPT] was utilized as a photocatalyst under 

visible light irradiation, and variously substituted pyridines were accessed in yields of up to 79%. The 

authors proposed a single-electron-transfer process56b as a key mechanistic step of the reaction. 

 

Scheme 15 Synthesis of 2,3,6- trisubstituted pyridines 103 by Wang and coworkers.
56
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1.2.3.3 Alkyne metathesis  

In the year 1968 Penella and coworkers observed that under high temperatures and in the presence of a 

tungsten catalyst, pent-2-yne (104) disproportionates affording a mixture of but-2-yne (105) and hex-

3-yne (Scheme 16).57 This observed reactivity was the foundation of the alkyne metathesis reaction, 

which is nowadays a powerful and versatile tool in the synthesis of complex molecules. 

 

Scheme 16 Observations by Penella and coworkers towards the metal-catalyzed disproportionation of pent-2-yne (104).57 

The alkyne metathesis is defined as a reaction where the alkylidyne constituents of two acetylene 

molecules are statistically redistributed in the presence of a metal catalyst (Scheme 17).  

 

Scheme 17 Schematic reaction scheme for the alkyne metathesis. 

Modern catalysts for the metathesis of alkynes comprise the systems based on molybdenum, such as 

the catalyst 107 or the bench stable precursor 108 (Figure 11). These catalysts distinguish themselves 

through a high stability, activity and selectivity in combination with a high functional group tolerance 

with respect to many common functional groups.58  

 

Figure 11 Common catalysts utilized in the alkyne metathesis. 
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A mechanism for the alkyne metathesis was proposed by Katz and coworkers.59 Initially, the metalla-

cyclobutane 111 is formed by a [2+2]-addition of the catalyst and the alkyne. A subsequent 

isomerization leads to the formation of the metallacyclobutane 112. Finally, the catalyst 114 and the 

new alkyne 113 are obtained through a cycloelimination (Figure 12). 

 

Figure 12 Proposed mechanism for the alkyne metathesis.59 

Nowadays, other reaction formats of the alkyne metathesis rather than alkyne cross metathesis (ACM) 

are the focus of investigations. Ring closing metathesis (RCAM), which can be applied in the 

synthesis of cyclic alkynes or cyclic oligomers of dialkynes, is extensively investigated. Furthermore, 

polymerization techniques such as acyclic diyne metathesis polymerization (ADIMET) and ring 

opening polymerization are of high interest in the field of material science (Figure 13).58a,60  

 

Figure 13 Typical reaction formats of alkyne metathesis: alkyne cross metathesis (ACM), ring closing metathesis (RCAM), 

ring opening metathesis (ROM), acyclic diyne metathesis polymerization (ADIMET) and the ring opening polymerization.60  



 

23 

 

Fürstner et al. presented a descriptive example for alkyne metathesis in the first total synthesis of 

Lactimidomycin (118) (Scheme 18).61 The latter exhibits anti-cancer activity in combination with a 

low cytotoxicity towards mammals and inhibits cell migration. Therefore, this macrolide is an 

attractive synthesis target. A high yielding ring closing alkyne metathesis (RCAM) was used as key 

step in the synthesis of the cyclic enyne 117 from the dialkyne 115. For this reaction, the molybdenum 

(VI) catalyst 116 was selected due to its strong Lewis acidity and resulting high reactivity. Afterwards, 

the cyclic alkyne 117 was transferred to Lactimidomycin (118). This methodology was also applied in 

the synthesis of a variety of biologically interesting derivatives.62  

 

Scheme 18 First synthesis of Lactimidomycin 118 by Fürstner and Micoine utilizing ring closing alkyne metathesis 

(RCAM).59  
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An example of the formation of oligomers employing RCAM towards the synthesis of precursors of 

cycloparaphenyleneacetylene (CPPA) was published by Moore and coworkers (Scheme 19).63 CPPA's 

are completely conjugated molecular belts with interesting photophysical and electronic properties and 

capable of forming host-guest complexes. Therefore, they are intriguing targets in the field of 

supramolecular chemistry and material science. The compound 120 was synthesized through a high 

yielding macro-cyclization utilizing a molybdenum (VI) pre-catalyst. Molecular sieves were used to 

remove the byproduct but-2-yne, providing a driving force for the reaction. Afterwards, the desired 

compound [3]CPP3A 121 was obtained by a sodium naphthalenide-mediated reductive aromatization. 

Additionally, the potential application of CPPA 121 as a polymer linker applying the copper-free 

click-reaction with methyl azide as well as the physical properties of its host-guest complexes with C70 

fullerene were examined  

 

Scheme 19 Synthesis of [3]CPP3A 121 by Moore and coworkers.63 
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1.2.3.4 Alkyne zipper reaction 

The alkyne zipper reaction is a prototropic migration of an internal triple bond under the action of 

superbases producing metallated derivatives of terminal acetylenes (Scheme 20).42  

 

Scheme 20 Schematic scheme of the zipper reaction.42
 

This general reactivity was already described in the end of the 19th century, but the full synthetic 

potential of the transformation was revealed in 1975 with the discovery of potassium 3-

aminopropylamide (KAPA, 123) as an efficient base/acid system.64 KAPA allows the reaction to 

proceed at ambient temperature and in short reaction times. It fulfills a dual role as a base and an acid 

in the reaction mechanistic pathway. Initially, a KAPA mediated isomerization of the alkyne 122 leads 

to the formation of the allene 124 (Scheme 21). Afterwards, a second isomerization by KAPA affords 

the regioisomer 125. This prototropic migration continues further until the terminal acetylide 126 is 

formed. The final deprotonation is rather easy and represents the thermodynamic driving force of the 

reaction. A subsequent protonation leads to the formation of the final product 127. 64a  

  

Scheme 21 Proposed mechanism for the KAPA-catalyzed zipper reaction64a
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An example of a zipper reaction was given by Trost et al. for the synthesis of (-)-Aspergillide B 

(Scheme 22).65 The class of the Aspergillide macrolactones shows biological activity against leukemia 

and human breast cancer. Representatives share the characteristic tetrahydropyran motif. Trost and 

coworkers used 1,3-diaminopropane to convert the internal alkyne 128 to its terminal isomer 129 by a 

zipper reaction in a yield of 81%. The latter was used to synthesize the desired (–)-Aspergillide (130). 

 

Scheme 22 Utilization of an alkyne zipper reaction in the synthesis of (–)-Aspergillide B 130 by Trost and coworkers.
65
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1.2.4 Incorporation of alkyne moieties into organic molecules 

1.2.4.1 Nucleophilic substitution with acetylides 

Acetylides, one of the oldest known family of organometallic compounds, are salts of metals and 

deprotonated alkynes.66 The first synthesis of silver acetylides was already reported in 1865.67 

Deprotonated alkynes are isoelectronic to cyanide and carbon monoxide and can be described as 

pseudohalogenides. The metal salts show similar stoichiometry and magnetic properties compared to 

related cyanide compounds.68 Today a variety of metal acetylides is known in literature and include 

lithium,69 sodium,70 zinc,71 silver66 or copper acetylides.72 Acetylides act as nucleophiles and, 

therefore, can be utilized in nucleophilic substitution or addition reactions. Transition metal analogs, 

like silver or copper acetylides, tend to be explosive and should be only handled in solution of a 

limited concentration and with special precautions. Nevertheless, when handled accordingly these salts 

are quite stable.66,73 In solution acetylides tend to form dimers, oligomers or polymers.73,74 In general, 

acetylides react with electrophiles. Among others, nucleophilic substitution or addition reactions with 

different carbon-based electrophiles such as ketones or aldehydes, alkyl halides, imines, activated 

acids or the Michael-addition to ,β-unsaturated carbonyl compounds are common examples (Figure 

14).3  

 

 

Figure 14 Typical reactions of acetylides with different electrophiles.3 
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An example of a nucleophilic substitution with acetylides was given by Williams et al.75 The 

adamantyl bromide (136) was refluxed in N-methylmorpholine with silver(I) acetylide (137) to offer 

the alkyne 138 (Scheme 23). This illustrates the enhanced stability of silver acetylides in contrast to 

other organosilver(I) compounds.  

 

Scheme 23 Synthesis of adamantyl-alkynes with silver (I) acetylides by Williams et al.75
 

Another example of a typical addition reaction with acetylides was reported by Corey and coworkers 

as a step in the total synthesis of Antheliolide A (143).76 This naturally occurring compound was first 

isolated from the marine coral Anthelia glauca.77 Furthermore, it is a synthetically challenging 

molecule with multiple stereo centers and a complex arrangement of functional groups. In the 

synthesis by Corey and coworkers, the lactone 139 was transferred to hemiacetal 142 in a three step 

reaction sequence. First, the intermediate enolate 140 was generated by addition of potassium 

bis(trimethylsilyl)amide as a base. Subsequently, the Davis oxaziridine was added, generating the 

intermediate lactone 141. Finally, nucleophilic attack of the lactone 141 with lithium acetylide 

afforded the hemiacetal 142, which was later utilized to synthesize Antheliolide A (143) (Scheme 24). 

 

Scheme 24 Synthesis of Antheliolide A (143) by Corey and coworkers.
76 
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1.2.4.2 The Sonogashira reaction  

In their groundbreaking publication of 1975, Sonogashira and coworkers described their own 

modification of the Stephans-Castro coupling of an aryl iodide with terminal alkynes.78 They reported 

a cross-coupling reaction utilizing a palladium catalyst in combination with a copper co-catalyst and 

an amine base (Scheme 25). Particularly important was that this protocol could overcome the use of 

shock-sensitive copper acetylides, which were necessary in previous protocols. 

 

Scheme 25 Coupling of aryliodides with acetylene described by Sonogashira and coworkers.
78

 

In general, the Sonogashira coupling can be performed under mild conditions, tolerating moisture and 

commonly used functional groups. Thus, the Sonogashira-reaction is an established and versatile tool 

for the introduction of alkyne moieties.19a 

A typical cross-coupling mechanism has been proposed for this transformation (Figure 15).79 Initial 

oxidative addition of the aryl halide to the palladium(0) catalyst A affords the intermediate B. In a 

second catalyst cycle, the terminal alkyne is activated through the coordination of the copper co-

catalyst G to the triple bond. The resulting alkyne π-complex F is deprotonated by the base to form the 

copper acetylide E, which substitutes the counterion of the intermediate B through a transmetalation 

step. A subsequent cis/trans-isomerization results in the formation of the complex D, which can 

undergo a reductive elimination to furnish the product and the initial palladium(0) complex.  

 

Figure 15 Proposed mechanism for the copper co-catalyzed Sonogashira coupling.
79
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Paterson et al. applied a late stage Sonogashira coupling in the first synthesis of the Callipeltoside 

Aglycon.80 Callipeltosides are an interesting class of natural macrolide polyketides isolated from the 

marine sponge Callipelte sp., which show activity in the proliferation of KB and P388 cells. The key 

structural feature of these polyketides is the trans-chlorocyclopropane ring adjacent to a dienyne 

moiety. Exactly this functionality of the molecule was addressed by Paterson and coworkers. Aglycon 

(146) was obtained through a high yielding Sonogashira coupling of the iodide 144 and the 

chlorocyclopropane-substituted alkyne 145, which was followed by deprotection of the TBS protective 

group (Scheme 26). 

 

Scheme 26 Synthesis of Aglycon (146) by Paterson et al.
80
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Recently, a copper-free Sonogashira coupling was used in the functionalization of unprotected 

halotryptophans and halotryptophan containing peptides in water as a solvent. In their publication 

from 2017, Corr and coworkers presented this elegant methodology utilizing the water soluble 

Buchwald catalyst sXphos (149) (Scheme 27).81 Among others, the 6-bromocystargamide (147) 

smoothly underwent alkynylation to afford the corresponding product 148 in a microwave-assisted 

reaction. This methodology made these compounds accessible for labeling experiments and illustrates 

the potential of the Sonogashira coupling in the alkynylation of complex biological molecules. 

 

Scheme 27 Functionalization of bromocystargamide (147) employing a copper-free Sonogashira reaction.
81
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1.2.4.3 Electrophilic umpolung 

The term "umpolung" is used to describe a process in which the polarity and reactivity of a structural 

unit (synthon) used for synthetic transformations is changed.82 Similarly, in the case of electrophilic 

group transfer, a compound is transformed into an electron acceptor, which contains a structural unit 

that acts naturally as an electron donor. Consequently, where conventionally the positively polarized 

residue X would possess affinity to a nucleophile and Z to an electrophile, in the case of an umpolung 

the now positively polarized structural group Z is attacked by a nucleophile (Figure 16). Common 

methods to access this reactivity are the introduction of neighboring electron withdrawing or 

delocalizing groups like halides, hypervalent iodine moieties or chalcogen salts. Groups which can be 

transferred as electrophiles in this way include the trifluoromethyl,83 azide,84 cyanide85 or acetylide 

functionality.66 In the several following representative examples of electrophilic group transfer, 

reactivities of different functional groups are given. Due to the large amount of publications in this 

field, these examples will mainly focus on reactions where no additional catalyst is needed. 

 

Figure 16 The principle of electrophilic group transfer by umpolung. 

1.2.4.3.1 Halogen compounds  

Halides are the simplest reagents imaginable to design an electrophilic group transfer. The utilization 

of these compounds would produce a minimum of waste. Nevertheless, to the best of our knowledge, 

no significant reactivity towards umpolung with nucleophiles is known for halogen azides, 

trifluoromethyl halides and halogen cyanides. Bromotrifluoromethane is usually transferred as 

corresponding zinc, aluminum or phosphorous nucleophiles or can be applied in metal-catalyzed 

radical transformations.86 Furthermore, cyanogen halogenides are extremely toxic reagents that should 

only be handled under special precautions and the showed just a low applicability in the electrophilic-

functionalization of complex molecules.87,88 Only a few examples for the utilization of haloalkynes in 

pure electrophilic transformations are known,89 yet they are commonly used in transition metal-

catalyzed reactions.90  
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1.2.4.3.2 Hypervalent iodine λ3 compounds 

Hypervalent iodine compounds are a class of reagents that can be utilized for electrophilic group 

transfer. The first representation of these compounds was reported already in 1886 by C. J. 

Willgerodt.91 Later, in 1951, the hypervalent structure of these compounds was proposed by G. C. 

Pimentel and R. E. Rundel (Figure 17).92 

 

Figure 17 Characteristic structure of λ3-iodine compounds and frontier orbitals of the hypervalent bond. 

Polyvalent λ3 iodine reagents exhibit pseudotrigonal bipyramidal geometry, where three substituents 

are arranged in a nearly T-shaped geometry around the central iodine-atom. Two lone pairs and one 

heteroatomic substituent are located in the equatorial positions. Likewise, a (3C-4e)-bond is present in 

the apical position and is formed by the non-hybridized 5p-orbital of the iodine and two adjacent 

substituents. As a result, the bonds of these substituents to the iodine are much longer and weaker 

compared to those in the equatorial position. The unique ability of hypervalent iodine reagents for 

electrophilic group transfer is directly related to this property. In many regards hypervalent I(III) 

reagents behave more like transition metal complexes than atoms of other lighter main group 

equivalents. As such, they are able to undergo characteristic reactions of transition metals such as 

oxidative addition, reductive elimination or ligand exchange.93 Most of these compounds can be 

synthesized from rather simple starting materials and thus, are easy accessible. However, it should be 

noted that these compounds should be handled with reasonable precautions, since several examples 

demonstrate an explosive nature at elevated temperatures or are shock sensitive.94  

In the last two decades, a variety of different benziodoxolones and benziodoxoles were introduced and 

utilized for electrophilic group transfer in ground-breaking works by the groups of Togni, Waser or 

Zhdankin. In this regard, compounds 150–154 must be highlighted (Figure 18). They were utilized in 

the trifluoromethylation,94 alkynylation,95 azidation96 and cyanation97 of various nucleophiles  

 

Figure 18 Modern polyvalent λ3 iodine reagents. 
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Alkynylation with Iodine(III) Reagents 

Alkyne-substituted benziodioxolones (EBX reagents, Figure 19) are a group of electrophilic transfer 

reagents that deserve to be highlighted.95 These compounds were initially synthesized by Ochiai, 

Shira98 and Zhdankin99 and later introduced as electrophilic transfer reagent by Waser and 

coworkers.100 

 

Figure 19 EBX-based electrophilic alkynylation reagents. 

In their synthesis, Zhdankin and coworkers oxidized iodobenzoic acid (155) with sodium periodate. 

Afterwards the resulting compound 156 was activated by TMSOTf and subsequently treated with a 

TMS-protected alkyne. After basic work up with pyridine, the desired compound 152 was obtained 

(Scheme 28).99 Later, this procedure was scaled up by Waser and Brand.95a,101  

 

Scheme 28 Synthesis of the EBX-reagents by Zhdankin and coworkers.99,101 

In their seminal paper of 2012, Olofsson and Bouma showed that these alkynylation reagents are also 

easily accessible in a one-pot synthesis.102 In their protocol, iodobenzoic acid 155 was oxidized by 

mCPBA and activated by pTsOH. After substitution with either boronic esters 158 or 159 and 

cyclization with sodium bicarbonate, the desired compound 152 was obtained in yields of up to 90% 

(Scheme 29). 

 

Scheme 29 Synthesis of the EBX-reagents by Olofsson and Bouma.
102
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Recent calculations carried out by Waser and coworkers indicated that the mechanism of alkynylation 

with hypervalent iodine reagents is nearly independent from the character of the iodine backbone and 

instead depends highly on the nature of the employed nucleophiles and the substituent on the alkyne-

moiety.103 If an iodine reagent with electron donating substituent is applied in the reaction with a 

sulfide, the authors propose that the reaction proceeds via the concerted transition state 160a, from 

which internal -addition results in the formation of intermediate 161a. Elimination offers the desired 

product. On the other hand, the application of reagents with an electron withdrawing substituents 

proceeds through concerted transition state 160b and leads to the formation of 161b through internal 

β-addition. Afterwards, -elimination gives the carbene 162, which can undergo a 1,2-shift to afford 

the desired product (Figure 20). Based on labeling experiments, Waser and coworkers concluded that 

in the case of the Ph-EBX and TIPS-EBX reagent both mechanisms are competing.103 

 

Figure 20 Proposed mechanism for the electrophilic transfer of alkynes by EBX-reagents.103
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Several studies have been carried out towards the functionalization of different nucleophiles with the 

reagent 152 and the structurally similar alkynyl(phenyl)iodonium salts. Alkynes were transferred 

successfully to sulfides and carbothioic S-acids.104 Furthermore, it was possible to alkynylate 

sulfonamides,105 azlactones106 and β-ketoesters.107 Moreover, the alkynylation of H-phosphi(na)tes and 

secondary phosphine oxides was conducted (Figure 21).108 In summary, all reactions were conducted 

without additional metal catalyst in good to excellent yields, illustrating these reagents as useful tools 

for the functionalization of pharmaceutical products and other complex molecules. 

 

Figure 21 Typical reaction products of the direct, uncatalyzed alkynylations of nucleophiles by EBX-reagents. 
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In 2015, Adibekian, Waser et al. showed the great potential for the utilization of alkyne-substituted 

benziodoxoles in proteomic profiling of cysteine residues for drug discovery.109 The authors 

investigated the applicability of the reagent 152a towards proteomes and living cells in aqueous 

phosphate buffered saline (PBS). Terminal cysteines of protein structures were functionalized 

selectively with the azide-substituted reagent 152a. Afterwards, these activated cysteine residues were 

utilized in the copper (I)-catalyzed "click"azide-alkyne cycloaddition (CuAAC) with alkyne-

substituted TAMRA or biotin derivatives (Scheme 30). Moreover, this methodology was successfully 

applied for the investigation of the proteomic targets of the potential anticancer agent curcumin.110 

 

Scheme 30 Labeling of cysteine moieties of proteomes or living cells by alkynylation with hypervalent iodine compounds 

followed by CuAAC.
109
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Furthermore, EBX reagents have been employed as useful tools in the synthesis of complex 

molecules. Luo, Yang and coworkers utilized TMS-EBX in their investigations towards the synthesis 

of Azadirachtin derivatives.111 Azadirachtines are triterpenoids, which show anti-insect properties in 

combination with a low toxicity towards mammals.112 The authors conducted the alkynylation of 

compound 167 in a two-step procedure. Firstly, the β-ketoester 167 underwent Michael addition by 

addition of the in situ formed dimethyl(phenyl)silyl zincate, before alkynylation by the reagent 152b 

Finally, deprotection by TBAF afforded the desired building block 168 (Scheme 31). 

 

Scheme 31 Synthetic study towards Azadirachtin A (169) ultilizing an alkynylation with the reagent 152b, as reported by 

Luo, Yang and coworkers.
111
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1.3 Chalcogen salts as transfer reagents 

In nature, SAM [S-(adenosylmethionine)] is a common methylation reagent in the biosynthesis of 

several important compounds.113 For example, 23S ribosomal RNA (rRNA) 171 originates from 

methylation by SAM 170 (Figure 23).
114

 Accordingly, the possibility of using chalcogen salts as 

transfer reagents for the synthesis has been known for a long time. However, these reactions are 

normally catalyzed by enzymes and proceed through radical pathways. 

 

Figure 22 The electrophilic methylation reagent S-(adenosylmethionine) (SAM) 170 and methylated 23S ribosomal RNA 

171.
114
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1.3.1 Umemoto reagent 

(Trifluoromethyl)dibenzosulfonium salts are a well-known class of electrophilic transfer reagents, 

which were introduced by Umemoto and coworkers.115 These reagents show a high potential for 

electrophilic group transfer and better thermal stability in comparison to their hypervalent iodine 

equivalents.116 They can be accessed in a straightforward reaction sequence from the corresponding 

biaryl sulfide 172 with mCPBA as oxidant under activation by triflic anhydride,117 or in the reaction of 

biphenyl (174) with potassium trifluoromethanesulfinate and triflic anhydride (Scheme 32).118  

 

Scheme 32 Common synthetic methods for the Umemoto reagent 173.
117,118

 

Investigations towards the mechanism of trifluoromethylation with dibenzothiophenium salts are still 

ongoing; however, presumably the mechanism strongly depends on the nature of the utilized 

nucleophile.119 There is no evidence for the participation of CF3-cation. Moreover, when certain 

nucleophiles, such as enolates, are used, radical trapping experiments indicate a SET-process.120  
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In 2003, Cahard and Ma reported the ability of the Umemoto reagent to trifluoromethylate different 

nucleophiles.121 β-Ketoesters were functionalized under mild reaction conditions utilizing TBAI as a 

phase transfer catalyst. Additionally, in a fluoride-mediated trifluoromethylation trimethylsilyl 

enolates were converted to α-trifluoromethyl ketones in good yields (up to 88%) employing the 

dibenzothiophenium salt 173a (Scheme 33). 

 

Scheme 33 Trifluoromethylation of β-ketoesters and silyl enol ethers with the Umemoto reagent 173a, as reported by Cahard 

and Ma.
121

 

In addition, Umemoto and coworkers synthesized the thermally unstable dibenzofuranium salt 176 and 

employed it in the trifluoromethylation of different nucleophiles.122 The dibenzofuranium salt 176 was 

synthesized in situ from the diazonium salt 175 at –100 °C in a light-induced Sandmeyer reaction 

(Scheme 34). Although it was not possible to isolate this highly reactive reagent, the presence of the 

desired compound 176 was confirmed by NMR experiments at low temperature, and a half-time of 

around 4.5 h at -60 °C for the hexafluoroantimonate(V)-salt 176 was determined.  

The unique reactivity of this reagent was demonstrated through trifluoromethylation of more 

challenging substrates. Among others, the aliphatic ether 178 and phenol ether 179 were 

functionalized in high yields. Furthermore, it was possible to functionalize different anilines and 

amines (Scheme 34). Pyridine derivatives were transformed to the corresponding pyridinium salts in 

good yields, as was showcased by the synthesis of the nicotine derivative 183. For comparison, only 

low yields could be achieved for the trifluoromethylation of phenols with hypervalent iodine 

compounds, probably due to radical reaction pathways.123 Therefore, the authors suggest that a CF3-

cation must be transferred in the reaction. The wide substrate scope of the reagent 176 illustrates its 

huge potential. Nevertheless, its challenging synthesis and difficult handling are clearly limiting 

factors in its applications. 
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Scheme 34 Synthesis of the dibenzofuranium salt 176 and the utilization in the trifluoromethylation of N- and O-based 

nucleophiles by Umemoto and coworkers.
122
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1.3.2 Thioimidazolium salts 

A thioimidazolium-based transfer reagent was presented recently by Alcarazo et al.124 In a 

straightforward procedure the thiourea 184 was transformed to the dibromide 185 via bromination 

with elemental bromine. Afterwards, a bromide atom was substituted by a cyanide group derived from 

TMSCN. Subsequent counterion exchange applying silver hexafluoroantimonate afforded the 

thioimidazolium salt 186 in an excellent yield of 95% (Scheme 35).  

 

Scheme 35 Synthesis of the thioimidazolium salt 186.
124

 

The thioimidazolium salt 186 was used in the electrophilic cyanation of different nucleophiles. Two 

different methods were developed for the transfer reaction. Cyanamides, thiocyanates and β-amido- or 

ketonitriles were obtained in good to excellent yields using DIPEA as a base. The indole 191 and the 

dimethoxybenzonitrile 192 were prepared in a microwave-assisted reaction with a catalytic amount of 

boron trifluoride etherate as a Lewis acid. This method was also applied in the synthesis of the furan 

derivative 193 and the ketone 194 from the corresponding TMS-enolate and enamine, respectively 

(Scheme 36). These results highlight the broad applicability of the new reagent 186 towards 

electrophilic cyanation.  

 

Scheme 36 Cyanation of N-, C- and S-based nucleophiles by the thioimidazolium salt 186.
124
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2 Design of the project 

2.1 State of research 

2.1.1 Alkyne-transferring reagents formerly developed in the Alcarazo group 

In their seminal publication of 2015, Alcarazo and coworkers presented the imidazolium-based alkyne 

transfer reagent 196a in line with the methodology applied for the formerly described cyanation 

reagent 186.124 196a was easily accessible in a high yield of 92% employing the reaction of dibromide 

185 with silver acetylide 195 (Scheme 37A). Moreover, it was shown that compound 195 is capable of 

alkynylateing different nucleophiles such as thiols, ketoesters or amides in high yields of up to 98% 

(Scheme 37B).  

 

Scheme 37 (A) Synthesis of new thioimidazolium salts for alkynylation by Alcarazo and coworkers. (B) Substrate scope of 

the alkynylation.125
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This desired reactivity was only observed for reagents with an electron withdrawing substituent on the 

alkyne moiety. The phenyl-substituted thioimidazolium salt 196b could be synthesized from 

dibromide 185 and a corresponding alkynyl zincate in a high yield (95%). Interestingly, in attempted 

reactions with the β-ketoester 202 this alkynylating reagent exclusively formed the thioalkynylated 

derivative 203 as the main product instead of the targeted compound (Scheme 38). Undoubtedly, this 

unexpected reactivity demands further investigation.  

 

Scheme 38 Synthesis of a new phenyl-substituted thioimidazolium salt 196b and observed thioalkynylation of cyclic β-

ketoester 202.
124
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2.1.2 Alkyne-based cationic polymerization initiators developed by Liska et al. 

In 2009, Liska et al. reported the synthesis and utilization of diphenylsulfonium- and -iodonium salts 

as initiators for cationic polymerization reactions of 4-epoxycyclohexenyl-methyl-3,4-

epoxycyclohexenyl carboxylate (ECHC).125 In a straightforward procedure, diphenyl sulfoxide 204 

was treated successively with triflic anhydride and 1-phenyl-2-trimethylsilylacetylene to afford the 

compound 205. After counterion exchange with potassium hexafluorophosphate, the targeted 

diphenylsulfonium salt 206 was obtained (Scheme 39A). Subsequent steady state photolysis 

experiments revealed that the main decomposition pathway of these complexes is a heterolytic 

cleavage of the ethynyl carbon-sulfur bond (Scheme 39B). It was assumed that this is a direct 

consequence of the lower strength of the sulfur-alkyne bond. Thus, we considered the utilization of the 

salts 205 and 206 as potential transfer reagents that could possibly offer different reactivity to 

imidazolium-based system described above.  

 

Scheme 39 (A) Synthesis of a new dibenzothiophenium-based initiator for cationic polymerization. (B) The mechanism for 

decomposition of the dibenzothiophenium salts, as proposed by Liska et al.125 
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2.2 Project aims 

The very recently discovered thioalkynylation with thioimidazolium-based reagents will be further 

investigated in collaboration with Dr. J. Peña and Dr. G. Talavera. The main focus of this study will be 

the introduction of differently substituted alkynes. Furthermore, suitable conditions will be examined 

to enhance the efficiency of the thioalkynylation protocol. The products obtained from these 

transformations will also be employed in further derivatization reactions (Figure 23). 

 

Figure 23 Proposed application of thioimidazolium reagents in the thioalkynylation of different nucleophiles with a 

perspective of further derivatization. 

Additionally, based on the results of Liska and coworkers,125 the potential of diphenylsulfonium salts 

will be investigated as a platform for the transfer of alkynes or other functional groups. This approach 

will be evaluated in addition to the modification of derivatives with a dibenzothiophenium backbone. 

Although the dibenzothiophene backbone is already present in the commercially available Umemoto 

reagent (compare Chapter 1.3.1), to the best of our knowledge, no derivatives have been employed for 

the transfer of alkyne groups. One reason for this could be the complex synthesis of this reagent. The 

transfer of electron-rich or neutral alkyne groups could not be achieved with the previously developed 

thioimidazolium system. Therefore, these sulfur-based reagents could be considered as an alternative 

or complementary to the commercially available hypervalent iodine (EBX) reagents and/or other 

common methods to introduce alkynes to organic molecules (Figure 24). 

 

Figure 24 Proposed application of diphenylsulfonium- and dibenzothiophenium-reagents in the alkynylation of different 

nucleophiles.  
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Electrophilic transfer reagents are valuable tools for the insertion not only of alkyne moieties into 

complex molecules, but of other functional groups as well. Particularly the thioimidazolium-based 

transfer reagents have a high potential to serve as a general platform for the umpolung of functional 

groups, as demonstrated by the recent results of Alcarazo and coworkers discussed above. 124 Based on 

the success in establishing the thioimidazolium framework as a basis for very potent cyanating 

reagents, investigations on the ability of these reagents to facilitate the transfer of various functional 

groups will be conducted. In this connection, the most interesting targets are perfluoroalkylated 

molecules, as many pharmaceutically active or agrochemically useful compounds include fluorine-

containing groups.126 Accordingly, one part of the project will be the synthesis of reagents containing 

trifluoromethyl- or trifluoroethylene groups followed by investigation of their reactivity as group 

transfer reagents (Figure 25). These compounds are considered as a potential alternative or 

complement to commercially available systems developed by groups of Togni and Umemoto.122,123 

 

Figure 25 Proposed application of new thioimidazolium-based fluorine-containing transfer reagents.  
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3 Results and discussion 

3.1 Further development of the newly discovered thioalkynylation reaction 

3.1.1 Synthesis of new thioimidazolium-based alkynylation reagents 

The great interest in discovering new ways to introduce alkynes is spurred by the versatility of 

application and further derivatization possibilities of this functional group (compare Chapter 1.2.3). To 

begin with, the reactivity of harder and stronger nucleophiles, such as Grignard reagents, should 

thoroughly be studied in the reaction of either potential thioalkynylation or alkynylation with 

imidazolium salts (compare Scheme 37 and Scheme 38 in Chapter 2.1.1). For this purpose, a new 

series of prospective alkyne transfer reagents with electron donating or neutral substituents on the 

alkyne moiety was synthesized in collaboration with Dr. G. Talavera and Dr. J. Peña. Beginning with 

terminal alkynes, the corresponding zincates were prepared by deprotonation with nBuLi followed by 

transmetalation with zinc bromide. Subsequent addition of the dibromide 185 furnishes the desired 

alkyne reagents 196b–196o in good to very good yields, tolerating a variety of different functional 

groups. Thus, compounds 196d and 196e with substituted aromatic residues were synthesized in yields 

of up to 96%, TBS- and PMB-protected reagents 196g and 196h were prepared in excellent yields of 

up to 92% as well, and challenging structures like the chloride 196i, enyne 196j or azide 196k were 

obtained in yields of 81%, 82% and 85%, respectively. Additionally, complex reagents 196i–196n 

with a set of various protecting groups like TES, PMB, Bz, etc. were successfully prepared. Besides 

this, it was possible to synthesize the reagent 196o in good yield of 89% from the corresponding amide 

(Scheme 40). 
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Scheme 40 Different imidazolium reagents prepared in cooperation with Dr. G. Talavera and Dr. J. Peña. 

3.1.2 Scope and limitations of the transfer reaction 

It was shown that organomagnesium reagents react with compounds 196 in an electrophilic 

thioalkynylation fashion as indicated above in Chapter 2.1.1 (Scheme 38B), smoothly affording the 

corresponding alkynyl sulfides 210–225, however, with better efficiency (Scheme 41). This reaction 

was utilized to synthesize a set of alkynyl sulfides in excellent yields. These results correspond to the 

formerly observed reactivity with weaker nucleophiles like β-ketoesters. With the established 

methodology, it was possible to perform reactions with alkyl, vinyl, aryl and alkynyl Grignards to 

generate a variety of different products.  

The alkylsulfide 210 was obtained in a virtually quantitative yield (98%). Furthermore, more 

challenging alkylsulfides, such as Boc-protected propargylpyrrolidine 211, compounds 214 and 215 

were synthesized in 79, 88 and 98% yield, respectively. The enyne 212 was obtained in a yield of 

93%, thus demonstrating that azide groups are tolerated by the reaction procedure. The 

isopropenylalkyne 213 was prepared in a yield of 92%. Moreover, it was proven that this methodology 

is efficient in the presence of commonly used alcohol protecting groups with the synthesis of the 

enynes 216 and 217 in 75 and 91% yield, respectively.  



 

51 

 

Furthermore, it was possible to obtain the TES-substituted arylsulfide 218 in an excellent yield of 

96%, thus illustrating the compatibility with silicon-based alkyne protective groups. The arylsulfides 

219 and 222 were prepared in 98 and 86% yield, respectively. Heteroaromatic Grignard reagents could 

be used as well, which was demonstrated by the synthesis of the alkyne 223 in a yield of 89%. 

Additionally, a series of structurally interesting dialkynyl derivatives was synthesized. In a reaction of 

the compound 196b with a TES-protected Grignard reagent, the sulfide 220 was obtained in virtually 

quantitative yield (99%). The sulfide 221 was synthesized in an excellent yield (97%), whereas the 

sulfide 224 in a good yield (77%). Besides, trifluoromethyl groups are tolerated in this reaction, as was 

demonstrated by the successful preparation of diyne 225 (97% yield). 

 

Scheme 41 Different disulfides prepared in cooperation with Dr. G. Talavera and Dr. J. Peña. 
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3.1.3 Further derivatization of the synthesized sulfides 

A set of illustrative examples of transformed products was prepared starting from the vinylsulfide 213 

in order to emphasize the applicability of this alkynsulfides for further modification (Scheme 42). 

Accordingly, the sulfide 213 was converted to the sulfoxide 226 and to the sulfone 227 upon reaction 

with one or two equivalents of mCPBA, in good yields of 70 and 86%, respectively. The sulfone 227 

was further functionalized under mild conditions to the cyclic enamine 228 in a Michael-type reaction 

in a yield of 26%. Apart of these functionalizations, the cyclization of the sulfone 227 with Na2S at 

elevated temperature gave access to the cyclic sulfide 230 (84% yield). Finally, the sulfide 213 was 

cyclized with Na2S at ambient temperature into the thiophene 229 in a yield of 71%.  

 

Scheme 42 Further derivatization of the synthesized sulfides. 
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3.2 The diphenylsulfonium-based reagent 

3.2.1 Synthesis of the diphenylsulfonium reagent 

The inability of thioimidazolium salts to transfer electron-rich alkyne groups to nucleophiles was 

discussed above. To overcome this limitation, the possibility to utilize diphenylsulfonium salts as 

reagents for the alkynylation of nucleophiles based on the research of Liska and coworkers125 should 

be investigated. According to our optimized protocol, the intermediate sulfonium salt 231 was 

obtained by treatment of commercially available phenyl sulfoxide 204 with triflic anhydride. 

Subsequently, the final sulfonium salt 205 was synthesized from the intermediate 231 in a reaction 

with 1-phenyl-2-trimethylsilylacetylene in a yield of 60% (Scheme 43).  

 

Scheme 43 Synthesis of the diphenylsulfonium salt 205. 

3.2.2 Scope and limitations of the transfer reaction 

After the optimization of synthesis of the salt 205, reactions with the β-ketoester 202 were performed 

in order to study the activity of this reagent towards nucleophiles (Table 1 and Scheme 44). With 

common bases for transfer reactions like DIPEA, K2CO3 or K3PO4 in dichloromethane as a solvent, 

the product 232 was obtained in low yields lying in the range of 7–14% (entries 1 and 2). Neither 

changing the solvent to the more polar acetonitrile nor applying the reagent 205 in excess did 

significantly increase the efficiency of the reaction. Reducing the reaction time or adding the base and 

reagent at –78 °C did not improve the product yield as well.  

 

Scheme 44 Reaction of β-ketoester 202 with the diphenylsulfonium salt 205. 
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Table 1 Alkynylation of the β-ketoester 202 with the diphenylsulfonium salt 205: screening for the conditions at ambient 

temperature. 

Entry Equiv. 205 Base Equiv. Solvent Time (h) Yield (%)  Comment 

1 1.20 DIPEA 1.10 DCM 12  7   

2 1.20 K
2
CO

3
 1.05 DCM  2  9   

3 1.50 K
2
CO

3
 1.05 MeCN 12  9   

4 1.50 K
2
CO

3
 1.10 DCM 50 13   

5 1.50 K
3
PO

4
 1.05 DCM 12 14   

6 1.50 DIPEA 1.05 DCM  2 11   

7 1.20 DIPEA 1.00 DCM  2  8 –78 °C to rt 

 

Furthermore, the reaction with other nucleophiles like thiols did not lead to essential improvements. 

Nonetheless, for the reaction of the thiophenol 234 with the reagent 205 and DIPEA as a base, the 

desired product 235 was obtained in 3% yield (Scheme 45). 

 

Scheme 45 Reaction of the thiol 234 with the diphenylsulfonium salt 205. 

An explanation could be the direct decomposition of the reagent 205 because of its low stability under 

basic conditions. Moreover, other decomposition pathways are possible, as already discussed in the 

publication of Liska and coworkers.125 Thus reported on the formation of an unstable phenyl cation 

under the reaction conditions. As such, this illustrates that the nucleophile can also attack the phenyl 

cation, and indeed, the phenyl-substituted by-product was detected in GC-MS. 
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3.3 Searching for new dibenzothiophene-based reagents 

3.3.1 Synthesis of the dibenzothiophene-based reagents 

As a consequence, we decided to address the problem of undesired side reactions through an 

additional modification of the backbone of the reagent. Thus, the well-known trifluoromethylation 

reagent – Umemoto reagent 173 – has a dibenzothiophene backbone (compare Chapter 1.3.1). Very 

probably, a dibenzothiophene-based alkynilating reagent should enhance the reactivity by enabling the 

charges to be localized in a larger conjugated system. On one hand, it should lower the frontier orbitals 

energies of the reagent and make the compound easier accessible for the nucleophilic attack. On the 

other hand, it should make the compound more stable due to the rigid backbone and the inclusion of 

the sulfur atom in the bigger aromatic system. Therefore, the methodology from Liska and 

coworkers125 was employed to synthesize a new kind of dibenzothiophene-based reagent. In the 

straightforward synthesis, commercially available dibenzothiophene (236) was oxidized by hydrogen 

peroxide to the corresponding sulfoxide 237 in a yield of up to 76%.127 Afterwards, the latter was 

activated by triflic anhydride and subsequently converted to the desired compound 238a with 1-

phenyl-2-trimethylsilylacetylene in 87% yield (Scheme 46). 

 

Scheme 46 Synthesis of a new dibenzothiophenium-based reagent 238a. 
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3.3.2 Expanding the scope towards different dibenzothiophenium salts 

A set of differently substituted dibenzothiophenium salts 238 was synthesized from the corresponding 

trimethylsilyl-protected alkynes and other TMS-bearing compounds to investigate the scope and 

limitations of this methodology (Scheme 47).  

 

Scheme 47 Attempted syntheses towards different dibenzothiophene-based reagents using various TMS-protected alkynes 

and other TMS-decorated molecules. 

The reaction was working with different arylsubstituted alkynes. Thus, the reagents 238b–238f were 

smoothly obtained in the reaction with the alkynes 239, 242, 240, 241 and 247, respectively, in 81, 99, 

82, 73 and 85% isolated yield, respectively (
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Table 2 and Scheme 48). The same reactivity was observed for the reaction with the alkyne 244 as 

well, yet it appeared to be impossible to isolate the product 238h of an acceptable purity after several 

attempts. On the other hand, the reactions of the alkyne 243, TMS-protected acetylenes 245, 246, 248, 

250 decorated with stronger coordinating functional groups and the trimethylsilylacetylene (249) led 

to the complete decomposition of the material. Presumably, the intermediately formed product 

underwent further reaction with rather active electron rich alkynes. Alternatively, activated 

dibenzothiophene 238 may be attacked by electron rich TMS sources to another reaction center, 

followed by direct decomposition of the resulting intermediates. 
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Table 2 Attempted syntheses of differently substituted alkynylating reagents of type 238. 

Entry Product  R Yield (%). Comments 

1 238a phenyl 87  

2 238b 3-chlorophenyl 81  

3 238c 4-trifluoromethylphenyl 99  

4 238d 4-fluorophenyl 82  

5 238e 2-bromophenyl 73  

6 238f TIPS 85  

7 238g 1-naphthyl 0 decomposition 

8 238h 4-methylphenyl 77 purity ~ 80–90%  

9 238i 2-thienyl 0 decomposition 

10 238j 4-methoxyphenyl 0 decomposition 

11 238k ethoxycarbonyl 0 decomposition 

12 238l H 0 decomposition 

13 238m methyl 0 decomposition 

 

 

Scheme 48 Substrate scope for the synthesis of novel dibenzothiophenium reagents 238. 
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The structures of the selected salts 238 were unambiguously established by X-ray diffraction analysis 

(Figure 29). Crystals suitable for X-ray diffractometry of the reagent 238f were obtained by slowly 

cooling down of a boiling, saturated toluene solution to rt. Furthermore, crystals of the reagent 238a 

were grown by slow evaporation of a saturated DCM solution. As expected, both compounds show a 

pyramidal geometry of the central sulfur atom (the sum of angles around S1 is 302.3° for reagent 238f 

and 294.6° for the salt 238a). The bonds between S1 and the neighboring carbons of the 

dibenzothiophene backbone [S1–C3 = 1.7897(1) Å in compound 238a and S1–C3 = 1.7933(8) Å in 

238f] are lengthened due to the partial loss of the aromaticity, as compared to the parent 

dibenzothiophene (1.740 Å).128a This is a direct consequence of the reduction of the bonding order of 

the corresponding bond between sulfur and carbon in a dibenzothiophene backbone in 238. Besides, a 

strong coordination of the oxygen of the triflate counterion towards the sulfur-atom was observed. 

This can be interpreted as a consequence of the enhanced Lewis acidity of sulfur atom, resulting in a 

significant shortening of interatomic distances [O1–S1 = 3.157(1) Å in the salt 238a and O1–S1 

2.972(2) Å in compound 238f] in comparison to the corresponding sum of the Van-der-Waals-radii 

(3.32 Å).129b 

 

 

 

Figure 26 Molecular structures of compound 238a (left side) and 238f (right side) in the crystal. Thermal ellipsoids at 

50% probability, the numbering does not correspond to the IUPAC rules. Selected bond lengths, distances (Å) and angles 

(°): Compound 238a: O1–S1 = 3.157(1), S1–C3 = 1.7878(1), S1–C14 = 1.7897(1), S1–C1 = 1.6871(1), C3-S1-O1 = 

179.0(1); Compound 238f: S1–O1 = 2.972(1), S1–C3 = 1.7933(8), S1–C14 = 1.7935(8), S1–C1 = 1.6980(9), C6-S1-O1 = 

177.3(1). 
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Apart from TMS-protected alkynes, several other TMS-decorated molecules 251–254 (Scheme 47) 

were tested toward the synthesis of further dibenzothiophene-derived potential transfer reagents (Table 

3). Whereas only decomposition products of the dibenzothiophene were obtained in the reaction with 

the TMS-sulfonamide 251, with TMS-cyanide (252) the corresponding reagent 238o was successfully 

synthesized in 83% yield. Also the β-trimethylsilylstyrene (253) was transferred to the 

dibenzothiophenium backbone. The reagent 238p was isolated with minor impurities in a yield around 

87%. In contrast, the use of 2-(trimethylsilyl)benzofurane (254) led to a complete decomposition of 

the reaction partners. 

Table 3 Attempted syntheses of further dibenzothiophene-derived potential transfer reagents. 

Entry Product  TMS-R Yield (%) Comment 

1 238n TMS-N(Tf)2    0 decomposition 

2 238o TMS-cyanide   83 – 

3 238p (E)-trimethyl(styryl)silane ~87 contain impurities 

4 238q TMS-benzofuran-2-yl     0 decomposition 

 

Furthermore, the structure of compound 238p was confirmed by X-ray crystal structure analysis 

(Figure 27). Single crystals suitable for X-ray diffraction were grown from over-layering a solution of 

the salt 238q in DCM with Et2O. As in the previously discussed above structures, the bond length C9–

S1 with 1.780(2) Å is longer than in dibenzothiophene (1.740 Å)128a This is attributed to the partial 

loss of aromaticity in the dibenzothiophene backbone as well. The distance between the carbon atoms 

C1–C2 of the alkene moiety with 1.333(3) Å is comparable to the length of a C=C double bond in 

unsubstituted styrene in the solid phase [1.3245(2) Å].128c A significant shortening of interatomic 

distance C1–O1 [3.069(3) Å vs. the sum of the Van-der-Waals-radii of 3.22 Å]128b may be occurs due 

to the support of a strong hydrogen bonding C1–H∙∙∙∙ O1. 

  

Figure 27 Molecular structure of compound 238q. Thermal ellipsoids at 50% probability. Selected bond lengths and 

distances (Å): C1–C2 = 1.333(3), C1–O1 = 3.069(3), C9–S1 = 1.780(2), C1H–O1 = 3.069(3). 



 

61 

 

3.3.3 Optimization of the reaction conditions 

The reactivity of the reagents 238 was investigated by example of ethynylation of the β-ketoester 202 

with the reagent 238a (Scheme 49 and Table 4). As believed, higher yields of compound 232 were 

observed for the reaction with the salt 238a as compared to the diphenylsulfonium salt 205 (cf. 

Scheme 44 and Table 1). Compound 232 was isolated in up to 61% yield when applying Cs2CO3 or 

DIPEA as base and 1.20 equivalents of the reagent 238a in DCM (entries 1, 2). However, thus 

obtained product was contaminated with 10% of starting material as inseparable impurity. No 

unreacted β-ketoester 202 was observed, when the amount of the reagent 238a was increased to 1.50 

equivalents while employing DIPEA as a base (entry 3). The same results were observed with Cs2CO3 

(entries 4 and 5). Furthermore, no significant influence of the solvent was found, as the reaction 

exhibited similar efficiency utilizing MeCN, toluene and THF (entries 6–9). Surprisingly, no reaction 

was observed when silver carbonate was used as a base (entry 10). Solely starting material was 

isolated, when the reaction was run without a base in MeCN (entry 11). The yield increased up to 69% 

by lowering the reactants concentration by factor 2 (entries 12 and 13). The dropwise addition of the 

reagent solution utilizing DIPEA as a base afforded the desired product 232 in 62% yield (entry 14). 

Finally, a screening of the temperature in the range from 40 to 70 °C (entries 15–20) revealed that 

60 °C was the optimal one giving 232 in the best yield of 79% (entry 18).  

 

Scheme 49 Alkynylation of the β-ketoester 202 with the reagent 238a as a test reaction. 
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Table 4 Alkynylation of the β-ketoester 202 with the dibenzothiophenium salt 238a: screening for the better conditions. 

Entry Equiv. Base Solvent T (°C) Concentration. Yield (%)  Comment 

1 1.20 Cs
2
CO

3
 DCM rt 0.14 M 57 +10% SM* 

2 1.20 DIPEA DCM rt 0.14 M 61 +10% SM 

3 1.50 DIPEA DCM rt 0.14 M 58 – 

4 1.50 Cs
2
CO

3
 DCM rt 0.14 M 58 – 

5 1.50 Cs
2
CO

3
 DCM rt 0.07 M 67 – 

6 1.20 Cs
2
CO

3
 MeCN rt 0.14 M 67 +10%SM 

7 1.20 Cs
2
CO

3
 THF rt 0.14 M 58 – 

8 1.20 Cs
2
CO

3
 Toluene rt 0.14 M 52 Isolated 40% SM 

9 1.50 Cs
2
CO

3
 MeCN rt 0.14 M 66 – 

10 1.20 Ag
2
CO

3
 DCM rt 0.14 M 0 Isolated only SM 

11 1.20 – MeCN rt 0.14 M 0 Isolated only SM 

12 1.50 Cs
2
CO

3
 MeCN  rt 0.07 M 69 – 

13 1.50 Cs
2
CO

3
 DCM rt 0.07 M 67 – 

14 1.50 DIPEA DCM rt 0.07 M 62 Reagent solution 

added dropwise 

15 1.50 Cs
2
CO

3
 DCE 40 0.07 M 71 – 

16 1.50 Cs
2
CO

3
 DCE 50 0.07 M 73 – 

17 1.50 Cs
2
CO

3
 DCE 55 0.07 M 66 – 

18 1.50 Cs
2
CO

3
 DCE 60 0.07 M 79 – 

19 1.50 Cs
2
CO

3
 DCE 65 0.07 M 74 – 

20 1.50 Cs
2
CO

3
 DCE 70 0.07 M 69 – 

*SM = starting material 202. 
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3.3.4 Scope and limitations of the transfer reaction 

Reactions with N-, S,- C- and P-benchmark nucleophiles were performed to demonstrate the scope of 

this transfer reaction (Scheme 50). The reactions with the reagents 238a–238e were performed under 

the optimized conditions described above (A), but the excess of used reagent 238f could be reduced to 

1.20 equivalents, whereas all reactions with this salt were conducted at room temperature (B).  

 

Scheme 50 Applied reaction conditions for the investigations towards the alkynylation of nucleophiles with newly developed 

reagents 238. 

Additionally, all reactions with thiols were accomplished at room temperature because of the 

possibility of disulfide formation. Different aliphatic and aromatic, electron rich and electron poor 

thiols were functionalized (Figure 28). For example, the products 255 and 256 were obtained in a yield 

of 70 and 67%, respectively, by reacting (4-methoxyphenyl)methanethiol with reagents 238f or 238a. 

respectively. In addition, upon treatment with the salts 238f or 238a, ethyl 2-mercaptoacetate was 

converted into sulfides 257 or 258 in 87 or 91% yield, respectively. The reaction of 4-

nitrobenzenethiol with the reagent 238f resulted in the formation of product 259 with a yield of 76%. 

With 4-methoxybenzenethiol, compound 260 was received from the reaction with the reagent 238f in 

73% yield, whereas the transfer of a phenylacetylene moiety from reagent 238a appeared to be slightly 

less efficient, as the product 261 in a yield of 64%. The examined conversions of naphthalene-1-thiol 

into the corresponding thioether 262 using the reagent 238a (49% yield), of benzo[d]thiazole-2-thiol 

into compound 263 employing the salt 238f (99% yield), of thiobenzoic acid into the corresponding 

ester 264 (66% yield) and of protected cysteine into its derivative 266 using the same reagent (80%) 

appeared to be successful as well. On the other hand, no product formation was observed in the 

attempted alkynylations of the latter two starting materials with the reagent 238a. Unfortunately, all 

attempts to synthesize the bromide 267 or the selenoether 268 failed. Presumably, both products 

possess a low stability and decompose under the reaction conditions. 
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Figure 28 Reaction scope of the transfer reaction with different sulfur-based nucleophiles. 

Also twofold-activated methyne compounds were examined as nucleophiles in the alkynylation 

reaction (Figure 29). The β-ketoester 202 was functionalized under the optimizing reaction conditions 

with the reagents 238a–238f. This reaction tolerates a wide range of substituents on the aromatic ring 

upon transferring arylacetylene moieties. Thus, the products 232 (79% yield) 269 (79% yield), 270 

(74% yield), 271 (65% yield) and 272 (81% yield) were obtained in the reactions of compound 202 

with reagents 238a, 238e, 238c, 238d and 238b, respectively. The TIPS-substituted reagent 238f 

appeared to be synthetically useful in alkynylation of several twofold-activated methyne compounds 

such as cyclic β-ketoester 202, its analogue 2-phenyl-1H-indene-1,3(2H)-dione or ring-opened 2-

cyano-3-phenylpropanoate. Reactions with 238f afforded acetylenes 273–275 in 88, 95 and 79% 

isolated yield. Surprisingly, the attempted preparation of the closest analogue of the latter – ring 

opened β-ketoester 277 from methyl 2-methyl-3-oxo-3-phenylpropanoate – failed because of unknown 

reasons. Likewise, only solely starting material was isolated in the reaction of the reagent 238f with 

methylated Meldrum's acid. Most probably, this is a result of enhanced acidity of Meldrum's acid: the 

two carbonyl groups in the six-membered ring are better conjugated and exert stronger electron-

withdrawing effect. As result, this compound is 8 orders of magnitude more C–H acidic than the 

closely related dimethyl malonate. On the other hand, products like compounds 278, 279 or 280 could 

not be synthesized from single activated starting materials with low C–H acidity applying elaborated 

methodology as well. Following the HSAB-concept, the generated nucleophiles are presumably too 

hard, what led to a decomposition of the reagent instead.  
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Figure 29 Reaction scope of the alkyne transfer reaction with different carbon-based nucleophiles. 

Among nitrogen-based nucleophiles, sulfonamides were working in the alkyne transfer reaction as 

well (Figure 30). Thus, N,4-dimethylbenzenesulfonamide was functionalized with the salts 238a and 

238f affording products 282 and 281 in 55 and 67% yield, respectively. Derivatives of differently 

substituted anilines were also alkynylated in good yields. Proceeding from the tosylated anilines, the 

compound 283 (77% (bsrm, 55%) yield), 284 (50% yield), 285 in a of (61% yield) and 286 (53% 

yield) were successfully synthesized, thus demonstrating the reaction tolerance towards 

ethoxycarbonyl, methoxy and iodine substituents on an aniline aromatic moiety.  

Sulfonamides with other structural motifs were probed as well. Accordingly, compound 287 was 

obtained in a yield of 60%, and the derivatives of camphorsulfonic acid 288 and 289 – in a yield of 

60% and 58%, respectively. Furthermore, the pharmacologically active compounds and veterinary 

antibiotic Sulfadimidine129 was selectively converted to the alkyne 290 in a yield of 60%. A 

completely new reactivity, which, as far as we know, has not yet been described in the literature, was 

found upon the functionalization of diamides with alkyne transfer reagents. Naphthalimide and 

phthalimide were transformed into their N-alkynylated derivatives 291 and 292 in 60 and 33% yield, 

respectively. In contrast, maleimide or succinimide could not be functionalized with the reagent 238f. 

This looks surprising, as structural differences between compounds 292 and 293 seem to be negligible. 

On the other hand, the general degree of conjugation in a molecule drops in the sequence 

291→292→293→294. This could result in dropping in stability of the products and lead to 

decomposition under the reaction conditions. A number of other cyclic and open-chained 

functionalized amides, such as the compounds 295–296, could not be synthesized as well. Most likely, 

only compounds with a Lewis basicity that lie within a certain range can be alkynylated with the 

dibenzothiophenium reagents. This is in line with HSAB-concept and the reported results on the 

reactivity of amides with the hypervalent iodine equivalent TIPX-EBX.105 As well, the tert-amine 298 

was not obtained due to the expected low stability of the product. 
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Figure 30 Reaction scope of the alkyne transfer reaction with different nitrogen-based nucleophiles. 

In contrast to amines, alcoholates did not react with these reagents 238 in the desired manner. Neither 

benzylic (299 and 300) nor phenolic ethers 301 and 302 could be synthesized with the newly 

developed transfer reagents (Figure 31). Presumably, salts 238 only react properly with soft 

nucleophiles, while alcoholates can act on the reagent in an undesirable position, forming unstable 

products. 

 

Figure 31 Attempted alkynylation of different alcoholates with reagents 238. 
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The posphonium salt 303 was synthesized by the direct ethynylation of triphenylphosphine with the 

reagent 238f in a yield of 88% without additional base (Figure 32). Also the diyne 304 could be 

obtained from the reaction of the salt 238f with 1-ethynyl-4-methoxybenzene after deprotonation with 

and nBuLi in a yield of 19%. In contrast, the reaction of the enol ether 306 and the Grignard reagent 

308 with reagents 238f or 238a, respectively, did not afford the desired product 305 and 307, 

respectively. The alkynylated indole derivatives 309 and 310 and the dimethoxybezene derivative 311 

were not accessed under base-free conditions as well, even in microwave-assisted reactions. 

Furthermore, in the attempted alkynylations with the salt 238a, the products 312 and 314 could not be 

obtained from enamine 313 or from Grignard reagent 315, respectively. As indicated above, only 

specific nucleophiles appeared to be functionalized with the elaborated system. 

 

Figure 32 Reaction scope of the transfer reaction with selected various nucleophiles.  

To verify structural identity of the selected representative products, their single crystals suitable for X-

ray diffraction were grown by slow evaporation of a saturated solution in DCM or hexane. The results 

of X-ray crystal structure analysis are presented in Figure 33. 
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Figure 33 Molecular structure of the alkynylated compounds 273  (top left), 274  (top right), 281 (middle left), 287 (middle 

right) and 288 (bottom). Thermal ellipsoids at 50% probability. 
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3.3.5 Comparison of the new reagents with TIPS-EBX 

It is known that hypervalent iodine compounds can undergo a strong exothermic decomposition; some 

of them even show explosive nature.130 Hence, estimation of decomposition energy of the compound 

238a and 238f by differential scanning calorimetry (DSC) was performed to compare with the values 

for corresponding hypervalent iodine reagents. With 449 J∙g–1, the decomposition energy of the phenyl 

reagent was around 100 J∙g–1 lower than that of Ph-EBX 152c. Moreover, the decomposition of 

dibenzothiophenium salts 238 appeared to be a non-explosive slow process. 131 

Furthermore, competition experiments with NMR monitoring were performed applying equimolar 

mixtures of aromatic thiol 316 and the aliphatic thiol 317 with either the reagent 238f or the 

commercially available TIPX-EBX 152d. When the reagent 238f was used under basic conditions, the 

thioether 259 was formed selectively (Scheme 51 and Figure 34). 

 

Scheme 51 Competition reaction of a 1:1 mixture of the thiol 316 and 317 with the dibenzothiophenium salt 238f. 

 

Figure 34 1H NMR spectrum of the reaction mixture obtained from dibenzothiophenium salt 238f and equimolar mixture of 

thiols 316 and 317. 
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Under the same conditions, a 40:60 mixture of both products was obtained with the commercially 

available TIPS-EBX 152d instead, favoring the formation of the thioether 252 (Scheme 52 and Figure 

35). This result could be explained by the enhanced reactivity of the iodine reagent 152d in 

comparison to 238f and, as result, unselectively in the alkynylation. Therefore, this proves that the 

new dibenzothiophenium reagents can be a valuable alternative to iodine-based reagents, especially in 

research fields were high selectivity is required, i.e. the late stage functionalization of challenging and 

complex substrates. Besides, the products can easy be purified due to the stability of the formed 

byproduct dibenzothiophene 318 and its high solubility in most organic solvents.  

 

Scheme 52 Competition reaction of a 1:1 mixture of the thiol 316 and 317 with TIPX-EBX 152d. 

 

Figure 35 
1H NMR spectrum of the reaction mixture obtained from dibenzothiophenium-salt 152d and equimolar mixture of 

thiols 316 and 317. 
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In several cases, the new reagents 238 demonstrate a reactivity which differs from those of the 

hypervalent iodine compounds. For example, the reagent 238f allows functionalization of 

naphthalimide 319, which, to the best of our knowledge, was not achieved applying the commercially 

available TIPS-EBX 152d. In our hands, when the reaction of reagent 152d with the naphthalimide 

319 was performed under the developed reaction conditions, only the unreacted naphthalimide 319 

was re-isolated from the reaction mixture, whereas 60% of the desired product 291 was isolated upon 

employment of the reagent 238f (Scheme 53). 

 

Scheme 53 Reaction of naphthalimide 319 with the newly developed dibenzothiophene reagent 238f, as compared to the 

commercially available TIPS-EBX reagent 152d. 
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3.3.6 Investigations towards mechanistic rationalization of the transfer reaction 

Experiments with 13C-labeled substrates were performed addressing further investigations on the 

mechanism of the transfer reaction. Basing on the results of former investigations by Waser et al,.104 

we suggest that the reagent 238a and 238f could react in different ways, as compared to the 

corresponding hypervalent iodine reagents. Therefore, labeled equivalents of reagent 238a (Scheme 

54) and reagent 238f were synthesized. Initially, the 13C-labeled alkyne 322 was prepared over two 

steps using a Corey-Fuchs reaction according to a protocol by Yoshikai et al..132 In the first step, 13C-

labeled benzaldehyde 320 was treated with tetrabromomethane and triphenylphosphine to synthesize 

the dibromide 321 in a yield of 91%. Subsequently, the alkyne 322 was obtained by treatment of the 

dibromide 321 with nBuLi followed by the addition of trimethylsilyl chloride in 93% yield. Finally, 

the desired labeled compound 238a* was received by the activation of the sulfoxide 237 with triflic 

anhydride and subsequent nucleophilic substitution with the alkyne 322 (63% overall yield).  

 

 

 

Scheme 54 Synthesis of the labeled reagent 238a*. 

In addition, the labeled reagent 238f* was synthesized according to a protocol by Waser et al. 

(Scheme 55).160 First, ethylene glycol was protected with a p-methoxybenzyl group in a yield of 85%. 

The resulting alcohol 324 was oxidized by Dess-Martin periodinane to the corresponding aldehyde 

325 in 97% yield. The latter was converted to the alkyne 327 by a Corey-Fuchs reaction: the 

dibromide 326 was synthesized in a yield of 55% with labeled tetrabromomethane and 

triphenylphosphine. Afterwards, alkyne 327 was obtained in a yield of 87% by treatment of 326 with 

nBuLi and subsequent quenching the reaction with TIPS chloride. The p-methoxybenzyl group in 327 

was first oxidatively deprotected with DDQ, and the resulting propagylic alcohol was cleaved using 

manganese dioxide to obtain the unprotected alkyne 328 in a total yield of 77% over two steps. The 

terminal alkyne 328 was protected with TMS chloride (66% yield). Finally, the sulfoxide 237 was 

activated by triflic anhydride, and the desired labeled transfer reagent 238f* was synthesized in the 

reaction with the labeled alkyne 329 in a yield of 85%. 
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Scheme 55 Synthesis of the labeled TIPS-substituted dibenzothiophenium reagent 238f*. 

Unexpectedly, an isotopic scrambling was observed in the final step of the synthesis of the reagent 

238f*. An enrichment of 75% was obtained for the desired position instead of the expected ratio of 

20:1. To our delight, after completion of the reaction, the isotopic ratio did not changed anymore, as 

was proven in NMR experiments over 3 days (Experimental part 5.7). Furthermore, the consistency of 

this result was proven by a second synthesis attempt. Consequently, this observation must have a 

mechanistic reason. Our suggestion is that it could be a direct result of the direction in which the 

alkyne attacks the reactive intermediate 330 (Scheme 56).Accordingly to this, both  and β carbon 

atoms of the alkyne 329 (in respect to the TIPS moiety) possess similar reactivity and can attack the 

sulfonium salt 330. After initial attack with the carbon atom in β-position, the carbenium ion 331a 

would be formed, which would undergo an elimination to form the product 238f*β. Alternatively, if 

sulfonium intermediate is attacked by the carbon atom in -position, the resulting carbenium ion 331b 

would undergo an elimination to form the terminal carbene 332. Afterwards, the isomer 238f* would 

be obtained by a 1,2-migration. However, an attack of  carbon atom should be less favored because 

of the bigger steric bulk of the TIPS group, what explains the observed isotopic distribution.  
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Scheme 56 Proposed mechanism of the formation of unexpected label distribution in TIPS-substituted dibenzothiophenium 

reagent 238f*. 

Reactions of the labeled reagents 238a* and 238f* with different nucleophiles were performed (Figure 

36 and Scheme 57). The product 256* was obtained from the reaction of (4-

methoxyphenyl)methanethiol with 238a*. This could be a result of a direct attack of the alkyne to the 

-position of the reagent, followed by an elimination of dibenzothiophene moiety (pathway A). 

Another possibility would be a β-attack of the thiol with a subsequent 1,2-migration of the thiogroup 

(cf. Scheme 57, pathway B). The compound 286* with alternative label distribution was exclusively 

obtained for the reaction with N-tosylanilide and reagent 238a*. A plausible explanation would be a β-

attack of the amide to the transfer reagent and concomitant 1,2-migration of a phenyl group. In case of 

the product 232*, the - and β-position in the corresponding product were equally labeled. An 

explanation could be a β-attack on the transfer-reagent with subsequent 1,2-migration. Both 

substituents should be able to undergo the following 1,2-migration with a similar probability because 

of the very similar migratory aptitudes for tert-butyl and phenyl groups. Nevertheless, the possibility 

of an -attack of the nucleophile towards the reagent cannot be completely excluded.  
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Figure 36 Results of the alkynylations experiments with labeled compound 238a*. 

 

Scheme 57 Proposed mechanism for the transfer reaction. 

However, no 13C scrambling was observed for the reactions with the reagent 238f*: solely the 

compounds 255*, 273* and 281* were selectively obtained (Figure 37). Most likely, the steric bulk of 

the TIPS group favors a direct -attack of the nucleophiles, thus resulting in the formation of the 

observed products. 

 

Figure 37 Results of the experiments with labeled compound 238f*. 

Calculations regarding the mechanism are conducted in collaboration with Dr. R. Mata, which are 

currently ongoing. These will give a better understanding and a deeper insight towards the mechanism 

of the transfer reaction. 
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3.3.7 Investigation towards metal-catalyzed reactions 

3.3.7.1 Investigations towards reactions with metal-based Lewis acids 

As reported by Waser et al.,133 indoles can be functionalized with alkynes applying gold- and silver- 

based metal catalysts. Normally, these catalysts enhance the reactivity of the alkyne reagent towards 

the attack of nucleophiles by coordination of the reagents as Lewis acids. Hence, newly prepared 

transfer reagents 238 were tested in the alkynylation of indoles in the presence of metal-based Lewis 

acids. Unexpectedly, no reactivity was observed for the functionalization of the 3-position in indoles. 

Instead, the indole 337 was selectively obtained (Scheme 58). 

 

Scheme 58 Attempted metal-catalyzed functionalization of indoles with the salt 238f. 

First, chloro(triphenylphosphine)gold(I) and silver hexafluoroantimonate(V) were tested as catalysts in 

presence of different bases. N-Functionalized indole 337 was obtained from indole (333) in 38% yield 

with cesium carbonate as base and DCM as solvent (Table 5, entry 1). On the contrary, only the 

unreacted indole 333 was obtained using stronger bases such as potassium phosphate, 

tetrabutylammonium acetate or potassium acetate (entries 2–4). This result could originate from the 

fast decomposition of the reagent in the presence of these bases. The yield of product 337 decreased to 

23% at an elevated temperature of 60 °C (entry 5), probably because of limited thermal stability of the 

reagent. Furthermore, only the unreacted starting material was re-isolated, if N-methylindole 334 was 

used instead of indole (333) (entry 6). A slightly reduced yield (23–25%) of the N-alkynylated product 

337 was observed via the addition of silver chloride (entries 7–9), whereas varying of the solvent had 

no significant influence on the isolated yield, unlike the absence of a base (entry 10). If platinum(II) 

chloride was used as a catalyst, neither utilizing bases like N,N-diisopropylethylamine or cesium 

carbonate (entries 11 and 12), nor running the reaction at higher temperatures without addition of base 

(entry 13) led to any product formation. No product formation was observed with gold(III) chloride as 

well (entry 14). A final control experiment showed that the reaction proceeds even without additional 

Lewis acid in a yield of 30% (entry 16). The low yields of indole 333 can be attributed to its reduced 

stability as well as partial decomposition during the purification process.  
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Table 5 Screening of conditions for the alkynylation of indoles 333, 334 with the dibenzothiophenium salt 238f. 

Entry Catalyst Additive Base Solvent Yield (%) Comments 

1 AuClPPh
3
 AgSbF

6
 Cs

2
CO

3
 DCM 38 N-alkynylated product 337 

2 AuClPPh
3
 AgSbF

6
 K

3
PO

4
 DCM  0 Isolated starting material 333 

3 AuClPPh
3
 AgSbF

6
 TBAOAC DCM  0 Isolated starting material 333  

4 AuClPPh
3
 AgSbF

6
 KOAC DCM  0 Isolated starting material 333  

5 AuClPPh
3
 AgSbF

6
 Cs

2
CO

3
 DCE 23 Reaction at 60 °C 

6 AuClPPh
3
 AgSbF

6
 Cs

2
CO

3
 DCM  0  N-Methylindole 334 as a 

substrate; re-isolated 

7 AgCl – Cs
2
CO

3
 DCM 23 N-alkynylated product 337 

8 AgCl – Cs
2
CO

3
 Et

2
O 25 N-alkynylated product 337 

9 AgCl – K
2
CO

3
 THF 23 N-alkynylated product 337 

10 AgCl – – DCM  0 Isolated starting material 333 

11 PtCl
2
 – Cs

2
CO

3
 DCM  0 No reaction 

12 PtCl
2
 – DIPEA DCM  0 Reaction at 60°C, Isolated 

starting material 333 

13 PtCl
2
 – – DCE  0 Reaction at 80 °C, Isolated 

starting material 333 

14 AuCl
3
 – Cs

2
CO

3
 DCM  0 No reaction 

15 AuCl
3
 – – DCM  0 N-Methylindole as a substrate 

16 – – Cs
2
CO

3
 DCM 30 + Isolated starting material 333 

 

Summarizing the results discussed above, it can be concluded that the utilization of a Lewis acid only 

slightly influences the formation of N-alkynylated product 337 in this reaction, whereas the C–H bond 

alkynylation of indoles with the reagent 238f was not detected. 
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3.3.7.2 Investigations towards directing group based C–H-alkynylation with metal catalysts 

The TIPS-EBX reagent 152d is reported to be applied in rhodium- or iridium-catalyzed C–H-

alkynylation of 2-phenylpyridine (338).134 In this regard, commercially available catalysts and 

additives were examined in the reaction with the reagent 238f (Scheme 59). 

 

Scheme 59 Attempted metal-catalyzed C–H alkynylations of 2-phenylpyridine (338). 

Only traces of the desired product 339 were detected in alkynylations utilizing [RhCp*Cl2]2, silver 

hexafluoroantimonate(V) or zinc triflate as a catalyst (Table 6, entries 1 and 2). An increase in 

temperature (entries 3 and 4) to 80 °C resulted in formation of the desired product in up to 34% yield. 

No formation of the product was observed with [IrCp*Cl2]2 and silver hexafluoroantimonate(V) (entry 

5). With acetonitrile as a solvent (entry 6), 4% of the product was isolated. Traces of the product were 

obtained when MnBr(CO)5 and dicyclohexylamine (entry 7) were used as a catalytic system.
135

 

Variation of the dilution or equivalents of the catalyst components (entries 8–12) did not lead to an 

increase of the product yield. From the results of the mass spectrometric analysis it can be concluded 

that a large amount of the starting material 338 in the reaction under investigation was acting as a base. 

Therefore, an external base would be necessary to achieve complete conversion. 
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Table 6 Screening of the conditions for C–H alkynylation of 2-phenylpyridine (338) with the reagent 238f. 

Entry  Catalyst Additive Solvent T (°C) Yield (%) 

1 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) DCM rt Traces of the product 339 

2 [RhCp*Cl2]2 

(2%) 

Zn(OTf)2 (10%) DCE rt SM* + traces of the product 

339 

3 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) DCE 80 34 

4 [RhCp*Cl2]2 

(2%) 

Zn(OTf)2 (10%) DCE 80 32 

5 [IrCp*Cl2]2 

(4%) 

AgSbF6 (10%) DCM rt 0 (SM) 

6 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) MeCN 80 4 

7 MnBr(CO)5 HNCy2 (20%) DCE 80 Traces of the product 339 

8 [RhCp*Cl2]2 

(4%) 

AgSbF6 (10%) DCE 80 Mixture of SM and product 

9 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) DCE (twice 

diluted) 

80 24 

10 [RhCp*Cl2]2 

(2%) 

AgSbF6 (20%) DCE 80 Mixture of SM and product 

11 [RhCp*Cl2]2 

(8%) 

AgSbF6 (10%) DCE 80 Mixture of SM and product 

12 [RhCp*Cl2]2 

(4%) 

AgSbF6 (5%) DCE 80 Mixture of SM and product  

*SM = Starting material 338. 

Consequently, the effect of different bases on the reaction was investigated (Table 7). The reaction 

was performed in DCM at ambient temperature or in DCE at 80 °C. By using rhodium and iridium 

catalysts in combination with cesium carbonate, only starting material 338 or traces of the product 339 

were observed (entries 1–3). The same result was obtained when tetrabutylammonium acetate was 

used (entry 4). Furthermore, a complete decomposition of the starting material was observed with 

cesium pivalate as a base (entry 5). Similarly, only starting material 338 was isolated when potassium 

phosphate or water were used (entries 6 and 7). No conversion was observed by utilizing potassium 

pyrophosphate (entry 8). The same result was obtained from the reaction with pyridine or 2,6-lutidine 

(entries 9 and 10), whereas employment of 2,6-di-tert-butylpyridine led to formation of the desired 

product in 4% yield (entry 11). Variation of the temperature or the equivalents of the base resulted in 

solely traces of product (entries 12 and 13). The same holds true for the reaction catalyzed by 

bromopentacarbonylmanganese(I) in the presence of stoichiometric quantity of dicyclohexylamine 

(entry 14). Strong bases like DMAP or DIPEA (entries 15 and 16) led to traces of the desired product 

339 as well. Starting material was re-isolated for the utilization of 1,8-bis(N,N-

dimethylamino)naphthaline (proton sponge, entry 17). At last, DBU (entry 18) completely 

decomposed the alkynylating agent 238f.  
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Table 7 Screening of conditions for the C–H alkynylation of 2-phenylpyridine (338) with the reagent 238f in the presence of 

an additional base. 

Entry  Catalyst Additive Base Solvent T (°C) Yield(%)/ 

Comment 

1 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) Cs2CO3 DCM rt 0 (SM*) 

2 [IrCp*Cl2]2 

(4%) 

AgSbF6 (10%) Cs2CO3 DCM rt 0 (SM) 

3 [RhCp*Cl2]2 

(4%) 

AgSbF6 (5%) Cs2CO3  (2.00 

equiv.) 

DCE 80 Traces of the  

product 339  

4 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) TBAOAc DCM rt 0 (SM) 

5 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) Cesium pivalate DCE 80 Decomposition  

of 238f 

6 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) K3PO4 DCE rt Traces of the  

product 339 

7 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) H2O DCE 80 Traces of the  

product 339 

8 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) K4P2O7 DCE rt SM 

9 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) Pyridine DCE 80 SM 

10 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) Lutidine DCE 80 SM 

11 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) 2,6-Di-tert-

butylpyridine 

DCE 80 Product 339 (4%) 

12 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) 2,6-Di-tert-

butylpyridine 

DCE rt Traces of the  

product 339 

13 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) 2,6-Di-tert-

butylpyridine 

(0.50 eq) 

DCE rt Traces of the  

product 339 

14 MnBr(CO)5   HNCy2  DCE 80 Traces of the  

product 339 

15 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) DMAP DCE 80 Traces of the  

product 339 

16 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) DIPEA DCE 80 Traces of the  

product 339 

17 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) Proton sponge DCE rt 0 (SM) 

18 [RhCp*Cl2]2 

(2%) 

AgSbF6 (10%) DBU DCE 80 Decomposition  

of 238f 

*SM = Starting material 338. 

In summary, the application of an additionally base did not improve the product yield. The problem 

seems to be the low stability of the reagent 238f in the presence of different bases. Correspondingly, 

the decomposition caused by a base is faster than the desired transfer towards the phenylpyridine 

(338). Presumably, an internal base such as in EBX-systems might help to improve the efficiency. 
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3.3.8 Synthesis attempts towards a system with internal base 

In analogy to EBX-reagents 152, a synthesis of a compound with an internal basic amine moiety was 

attempted in order to increase the stability of the reagents 238 by a chelating effect. Also it is possible 

that this amine acts as base in transfer reactions. An additional advantage of such a reagent would be a 

reduction of waste by avoiding any external base, if the compound is reusable like the 

dibenzothiophene system. Thus, an equivalent of the diphenylsulfide with a coordinating group in the 

backbone was synthesized utilizing a modified literature procedure (Scheme 60).136 Starting from the 

acid 340, esterification with methanol led to the corresponding ester 341 in 83% yield. Subsequently, 

the ester 341 was transformed into the unsymmetrical diary sulfide 343 by an Ullmann-type reaction 

with copper(I) oxide as catalyst (56% yield). Then, compound 343 was converted to the corresponding 

amide 344 in a two-step procedure in a yield of 84%. Afterwards, the amide 344 was activated by 

phosphorus pentachloride and reduced to the aminoalcohol 345 with lithium aluminum hydride in a 

yield of 58% over two steps. Finally, compound 345 was chlorinated using thionyl chloride to enable 

the cyclization towards the cyclic thioether 346.  

 

Scheme 60 Synthesis of the cyclic aminosulfide 346.  
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It is known that oxidation of the thioether 346 with H2O2 affords the respective sulfone, whereas 

reaction with NaIO4 furnishes the corresponding N-Oxide.136 Within our synthetic goal, the 

bromination of the compound 346 was investigated. Surprisingly, in the attempted reaction with 

bromine a complete decomposition of the starting material 346 was observed. The same results were 

obtained upon oxidation of 346 with mCPBA or with sodium hypochlorite (Scheme 61).  

 

Scheme 61 Investigations towards the activation of the cyclic aminosulfide 346. 

After such a daunting result, no further synthetic investigations were conducted on this potential 

transfer reagent backbone.  
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3.4 Investigations towards potential trifluoromethylation reagents based on the 

thioimidazolium backbone. 

3.4.1 Synthesis of the new potentially trifluoromethylating reagent 355 

To further expand the observed reactivity of the thioimidazolium based reagents different fluorine 

bearing compounds were synthesized. A new family of potentially useful trifluoromethylation reagent 

was synthesized in a straightforward reaction sequence. At first, the silver thiolate 350 was prepared in 

a good yield of 54% following the published protocol.137 Then, the iodinated imidazole 352 was 

obtained in a high yield (84%) by treating methylimidazol 351 with nBuLi and subsequent reaction 

with iodine. Afterwards, compound 352 was methylated to afford the imidazolium salt 354 in a yield 

of 73%.138 Finally, nucleophilic substitution in the imidazolium salt 354 via treatment with the silver 

thiolate 350 in a microwave-assisted reaction offered the desired product 355 in a yield of 76% 

(Scheme 62). 

 

Scheme 62 Synthesis of a new potential trifluoromethylation reagent 355. 

The structural identity of the compound 355 was confirmed by X-ray crystallography (Figure 38). 

Single crystals suitable for X-ray diffraction were grown by overlayering a saturated solution of the 

reagent 355 in MeCN with diethyl ether. As expected, the structure of the compound shows an angular 

geometry of C–S–CF3 with an angle of 97.3(9)°. With 2.913(2) Å, the S3–O1 bond is significantly 

shortened as compared to the corresponding sum of Van-der-Waals radii (3.32 Å128b), thus illustrates a 

strong coordinative bonding between the Lewis-acidic sulfur atom and the oxygen atom of the triflate 

counterion. Furthermore, with a bond length of 1.747(3) Å the S1-C2 bond shows clearly the 

characteristics of a single bond.139 
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Figure 38 Molecular structure of reagent 355. Thermal ellipsoids at 50% probability. Selected bond lengths and distances 

(Å): S1–O1 = 2.913(2), C2–S1 = 1.747(3); angle of the sulfide moiety (°): C1–S1–C2 = 97.29(2).  

3.4.2 Investigations towards reactions with different nucleophiles 

The reactivity of newly prepared compound 355 with respect to various nucleophiles has been 

investigated to understand its synthetic utility. Unfortunately, in contrast to hypervalent iodine 

compounds94 or Umemoto reagent,119 no nucleophiles were reacting with the salt 355 in the desired 

way (Scheme 63). Only the starting material could be isolated from the reactions with β-ketoester 202, 

2,4,6-trimethylphenol (356), electron-rich aromatics like 1-methylindole (357), 1,3-dimethoxybenzene 

(359) or sec-amine 360, all of which were successively cyanated with the previously developed 

reagent 186 (cf. Scheme 36).124 The modification of the reaction conditions such as temperature, 

solvent and reaction time did not lead to any observable reactivity as well. When stronger nucleophiles 

like Grignard reagent 365 or zincate 366 were utilized, a complete decomposition of the salt 355 was 

observed. The reaction with enol ether 364 also did not lead to the formation of the expected product. 

Another possibility would be the transfer of a trifluoromethyl radical. But only starting material was 

obtained employing theophylline 367 as a nucleophile in combination with a radical initiator.140  
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Scheme 63 Investigations towards the reaction of the thioimidazolium-based reagent 355 with different nucleophiles. 

Only with thiols 361, 362 any reactivity was observed. However, instead of the desired product, an 

inseparable mixture of trithiocarbonates 369 and the corresponding disulfides 370 was obtained 

(Scheme 64A). An explanation of this undesired reaction pathway could consist in the initial attack of 

the imidazolium moiety in α-position to the sulfur atom with a sulfur nucleophilic center of thiol 362 

(Scheme 64B). The released carbonothioic difluoride could undergo a subsequent attack of additional 

thiols to form the observed product. The side product of this reaction, the thioimidazolium salt 368, 

was crystallized, and the structural identity was confirmed by X-ray crystallography (Figure 39). 
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Scheme 64 (A) Reaction of thiol 362 with the new thioimidazolium reagent 355 and (B) proposed mechanistic rationalization 

of the results. 

 

Figure 39 Molecular structure of side product 368. Thermal ellipsoids at 50% probability. 
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3.4.3 Investigations towards metal-catalyzed reactions 

Several examples of metal-catalyzed trifluoromethylation reactions have been reported in literature 

using group transfer reagents.141 Regarding this, copper salts seem to be an excellent choice for 

stabilizing trifluoromethyl radicals.142 Test reactions with different copper catalysts and starting 

materials were examined (Scheme 65). In no case any reactivity towards trifluoromethylation was 

observed. Following a publication by Huang, Weng et al.,143 the reaction of benzo[h]quinoline (371) 

with the reagent 355 was probed applying copper trifluoroacetate and palladium acetate as catalyst; 

unfortunately, the unreacted quinoline 371 was re-isolated. The same result was obtained by 

employing trifluroborate 373 as a substrate: neither copper iodide nor Cu(TFA)2
143 appeared to be a 

suitable catalyst for the desired reaction. Furthermore, only starting material was obtained using 

boronic acid 375 and copper iodide/bipy as a catalyst.144 Summarizing these experimental results, this 

indicates that reagent 355 exhibit no expected reactivity with copper catalysts under the investigated 

conditions. 

 

Scheme 65 Investigations towards metal-catalyzed reactions with reagent 355. 
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3.4.4 Application of thioimidazolium salts as phase transfer catalyst by Mizuta and 

coworkers 

During our investigations, a thioimidazolium-based reagent similar to 355 was published by Mizuta et 

al.,
145

 who trifluoromethylated the thiourea 184 using the commercially available Umemoto reagent 

173 to obtain the corresponding imidazolium salts 377 in good yields (Scheme 66). The authors 

utilized the resulting imidazolium salts as phase transfer catalysts in the alkylation of different 

compounds possessing an active methylene moiety, whereas applying of the compounds 377 for the 

trifluoromethylation of nucleophiles was not examined.  

 

Scheme 66 Synthesis of a new thioimidazolium-based reagent 377 by Mizuta and coworkers and its application as phase 

transfer catalyst. 

Based on preliminary NMR studies, the authors suggest that in the beginning of the reaction carbanion 

380 is formed by deprotonation of the β-ketoester 378 with potassium hydroxide. The low solubility of 

this carbanion would normally lead to a low reaction rate. They assumed that the reactive imidazolium 

intermediate 377d is formed via counterion exchange. This complex is more soluble and allows 

achieving higher reaction rate of the alkylation reaction. A subsequent attack of benzyl bromide with 

the imidazolium salt-stabilized carbanion 377d would release the product 379 and the imidazolium 

salt 377e, which undergoes the cycle again (Figure 40).  
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Figure 40 Mechanism for the phase transfer catalysis as proposed by Mizuta and coworkers. 

Considering the chosen substrates and reaction conditions, it can be assumed that Mizuta and 

coworkers were also interested in the trifluoromethylation instead of the presented phase-transfer 

catalysis. As a result of the high similarity to the presented results, no further resources were spent on 

this project part. 



90 

 

3.5 Investigations towards a new trifluoroethylenating reagent 

3.5.1 Synthesis of the new reagent 385 

An imidazolium-based fluorinated alkene derivative would be another desirable synthesis target. To 

the best of our knowledge, no metal-free alkenylation method for the functionalization of nucleophiles 

with transfer reagents by umpolung was reported. However, fluorinated alkenes could be useful tools 

in the synthesis of partly fluorinated heteroaromatics or other perfluoroalkylated molecules.  

In fact, it was possible to synthesize the corresponding alkene reagent 385 (Scheme 63). First, the 

imidazothione 184 was synthesized by the condensation of acetoin (381) and 1,3-diisopropylthiourea 

(382) in a yield of 61%. Subsequent bromination of the reagent 184 led to the corresponding 

dibromide 185 in a yield of 98%. The formation of the zincate 384 was accessed by 

dehydrofluorination of tetrafluoroethane 383, deprotonation initiated by LDA and subsequent 

transmetalation with zinc chloride.146 The concentration of the zincate 384 was determined by a 

method of Knochel and coworkers.147 After reaction of zincate 384 with the dibromide 185, a 

counterion exchange with sodium hexafluoroantimonate(V) was performed to obtain the desired 

product 385 in a yield of 97%. 

 

Scheme 67 Synthesis of a new potential trilfluoroethylating reagent 385. 

Single crystals of the compound 385 suitable for X-Ray diffraction were obtained by slow evaporation 

of a saturated solution of the compound in DCM. The expected structural connectivity was confirmed 

(Figure 41). Similarly to the compound 355, the structure of the compound 385 shows an angular 

geometry C1–S1–C3 with an angle value of 99.50(1)°. Similarly as in chase for compound 355, the 

S1-C3 bond is with 1.749(3) Å in the range of a single bond. 
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Figure 41 Molecular structure of compound 385. Thermal ellipsoids at 50% probability. Selected bond lengths and distances 

(Å): C1-C2 1.316(4), S1-C1 1.721(9), S1-C3 1.749(3); angle of the sulfide moiety (°): C1–S1–C3 = 99.50(1). 

3.5.2 Investigations towards reactions with different nucleophiles 

No electrophilic transfer of the trifluoroethylene group was observed in the course of investigations of 

the reactivity of the reagent 385 under various conditions (Scheme 68). In fact, only unreacted starting 

material was isolated in the reactions with the beta-keto ester 202, indole derivatives 357 and 358, and 

the dimethoxyphenol 386. The reaction with the thiol 362 led to a complete decomposition of the 

reagent 385. Furthermore, reactivities of 1,3-dimethoxybenzene (359) and the enamine 313 were 

tested in a microwave-assisted reaction with reagent 385 without any additional base. Likewise, only 

the starting materials were isolated.  

 

Scheme 68 Investigations towards the reactivity of the reagent 385 with different nucleophiles. 
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The further study of the chemistry of the salt 385 remains a matter of the nearest future. In this 

regards, most interesting would be reactions with metal-catalysts or/and the possible radical transfer of 

the ethylene-group. 
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4 Summary 

In collaboration with the colleagues Dr. G. Talavera and Dr. J. Peña, the recently discovered 

thioalkynylation reaction was further investigated. A set of different alkyne reagents was prepared, and 

their reactivity towards thioalkynylation with Grignard reagents and zincates was examined. The 

products of these reactions were used for further derivatization, thus enabling easy access to different 

kind of compounds such as sulfones or sulfoxides (Scheme 69).  

 

Scheme 69 Results of the investigations towards the thioalkynylation with thioimidazolium-based alkyne transfer reagents. 

Additionally, a set of new dibenzothiophenium-based alkynylation reagents was prepared and their 

structural identity was confirmed by X-ray crystallography. The versatile reactivity of the new 

reagents was demonstrated in their reactions with benchmark C-, S-, N- and P-nucleophiles (Scheme 

70). Straightforward experiments applying 13C-labeled reagents were proceeded to give a first insight 

in the reaction mechanism. Finally, the reagents were directly compared with their commercially 

available EBX analogues highlighting them as powerful and safe alternative to hypervalent iodine 

reagents. 

 

Scheme 70 Results of the investigations towards the synthesis of a new set of dibenzothiophenium-based alkyne transfer 

reagents. 
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The thioimidazolium salt 355 and the salt 385 were synthesized in a straightforward reaction 

sequence. Their structural identity was confirmed by spectral methods as well as by X-ray 

crystallography. Moreover, the reactivity of these compounds in the reaction with benchmark 

nucleophiles was investigated as well (Scheme 71), albeit with negative results. For reagent 355, an 

unexpected decomposition process was observed affording the product 368, which structure was 

confirmed by crystallographic study. 

 

Scheme 71 Results of the investigations towards synthesis and application of thioimidazolium-based fluorine-containing 

transfer reagents. 
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5 Experimental 

5.1 General remarks 

Unless otherwise stated, all reactions were carried out in flame-dried glassware under nitrogen 

atmosphere. Solvents were dried by an MBraun MB-SPS-800 solvent purification system 

(tetrahydrofuran, diethyl ether, toluene, pentane, dichloromethane, acetonitrile) or by distillation with 

appropriate drying agents. The water content of the solvent was determined by Karl Fischer titrator 

TitroLine R 7500 KF trace from SI Analytics. Reactions were monitored by thin layer 

chromatography (TLC) polygram SIL G/UV254 from Macherey Nagel, UV irradiation (λ = 254 nm) 

and/or phosphomolybdic acid or KMnO4 dip. Flash chromatography was performed on Macherey 

Nagel 60 (40–63 μm) silica gel. 

Chemicals: Unless otherwise stated, all reagents were used as received from commercial suppliers 

(ABCR, Acros Organics, Alfa Aesar, Chempur GmbH, J and K Scientific, Sigma Aldrich, Thermo 

Fisher Scientific, Tokyo Chemical Industry). 1-(trifluoromethyl)-4-[2-(trimethylsilyl)ethynyl]-

benzene,148 1-chloro-3-[2-(trimethylsilyl)ethynyl]-benzene,149 1-bromo-2-[2-(trimethylsilyl)ethynyl]-

benzene,150 1-fluoro-4-[2-(trimethylsilyl)ethynyl]-benzene,151 trimethyl[2-[tris(1-methylethyl)silyl]-

ethynyl]-silane,152 N-(4-methoxyphenyl)-4-methyl-benzenesulfonamide and N-(4-Iodophenyl)-4-

methyl-Benzenesulfonamide,153 α-cyano-benzenepropanoic acid ethyl ester,154 2,3-dihydro-1-oxo-1H-

Indene-2-carboxylic acid methyl ester,155 1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazole-2-

thione124 were prepared according to the literature reports. Compounds 196d-196n, 210-212, 214-221, 

223-225 were prepared and analyst by Dr. G. Talavera and Dr. J. Peña. 

NMR: NMR spectra were recorded on a Bruker AV600, AV500, AV400, DPX300, Varian Mercury 

300 or Varian Inova 500. The ppms of 1H- and 13C-NMR-spectras were measured relative to TMS. 

Coupling constants (J) were given in Hz. All NMR solvents were used as received from commercial 

suppliers. 

Mass analysis: Mass spectrometry analysis was performed by the department of mass spectrometry of 

the chemistry department of the Georg-August University utilizing a Finnigan MAT 95 (70 eV, EI), 

Finnigan LCQ (ESI) and APEX IV 7T FTICR, Bruker Daltonic (HRMS). 



96 

 

Single crystal X-ray diffraction analysis: Data collection was done on a Bruker D8 Venture four-

circle-diffractometer from Bruker AXS GmbH; used detector: Photon II from Bruker AXS GmbH; used 

X-ray sources: microfocus IµS Cu/Mo from Incoatec GmbH with mirror optics HELIOS and single-

hole collimator from Bruker AXS GmbH.  

Used programs: APEX3 Suite (v2017.3-0) and therein integrated programs SAINT (Integration) und 

SADABS (Absorption correction) from Bruker AXS GmbH; structure solution was done with SHELXT, 

refinement with SHELXS156 ; OLEX2 was used for data finalization.157 

Special Utilities: SMZ1270 stereomicroscope from Nikon Metrology GmbH was used for sample 

preparation; crystals were mounted on MicroMounts or MicroLoops from MiTeGen; for sensitive 

samples the X-TEMP 2 System was used for picking of crystals;158 crystals were cooled to given 

temperature with Cryostream 800 from Oxford Cryosystems. 

IR: FT-IR spectra were measured by the utilization of a FT/IR-4100 (Jasco). The wavenumbers (ṽ) 

were recorded in cm-3. 

Differential scanning calorimetry (DSC): The DSC measurements were performed in a Mettler-

Toledo TGA/DSC 3+ , using the method 25_650_20K/min_N2 –b. 
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5.2 Reactions towards the newly discovered thioalkynylation reaction 

5.2.1 Synthesis of new thioimidazolium-based alkynylation reagents 

General procedure A (GPA) 

To a solution of a terminal alkyne (0.50 mmol, 1.00 equiv.) in THF (2 mL) was added nBuLi (1.6 M 

in hexanes, 1.05 equiv.) at -78 ºC. After stirring for 1 hour, a solution of ZnBr2 (1.05 equiv.) in THF (1 

M) was added at -78 ºC and the whole mixture stirred for another hour. Then the dibromide 185 (1.00 

equiv.) was added in one portion to the reaction mixture at -78ºC and after 30 minutes the reaction was 

let to warm up to room temperature. The solvents were removed in vacuo to afford a crude mixture 

which was washed with dry diethyl ether (3x) and pentane (2x). The obtained solid was dissolved in 

DCM (0.1M) and treated with an aqueous solution of NaSbF6 (3.00 equiv.). Extraction of the aqueous 

layer with DCM (3x) and subsequent removal of all solvents in vacuo afforded the desired products as 

white to pale yellow-orange solids.  

Synthesis of the compound 2-(bromothio)-1,3-diisopropyl-4,5-dimethyl-1H-imidazol-3-ium bromide 

(185) 

To a solution of 1,3-diisopropyl-4,5-dimethyl-1,3-dihydro-2H-imidazole-2-

thione (4.00 g, 18.8 mmol, 1.00 equiv.) in DCM (20 mL) was added bromine 

(0.97 mL, 18.8 mmol, 1.00 equiv.) at 0 °C and the solution was stirred for 1 h 

at 0°°C and 2 h at rt. The solvent was removed under reduced pressure and the 

residue was washed with ether (2 x 20 mL) to afford the desired compound 

185 as orange solid (6.90 g, 18.5 mmol, 98%). 1
H NMR (300 MHz, CDCl3) δ 

= 3.81 (6 H, s), 2.27 ppm (6 H, s). 13
C NMR (75 MHz, CDCl3) δ = 127.8, 33.8, 9.7 ppm. IR 

(ATR):    (cm-1) = 783, 855, 1032, 1230, 1372, 1429, 1490, 1624, 2944. HRMS: calcd. for 

C7H12N2BrS [M]+ = 234.9898; found = 234.9899. Analytical data corresponded to those described in 

the literature.124  
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Synthesis of 1,3-diisopropyl-4,5-dimethyl-2-((phenylethynyl)thio)-1H-imidazol-3-ium hexafluoro-

antimonate(V) (196b) 

Using the general procedure GPA, compound (196b) was prepared from 

phenyl acetylene (1.70 mL, 15.3 mmol), nBuLi (10 mL, 16.0 mmol), ZnBr2 

(3.62 g, 16.0 mmol) and dibromide 185 (5.70 g, 15.3 mmol). The desired 

compound was obtained as pale white solid (7.7 g, 92%). 1
H NMR (500 

MHz, CDCl3,) δ = 7.28 – 7.47 (5 H, m), 5.31 (2 H, hept., J = 7.0 Hz),. 2.43 

(6 H, s), 1.73 ppm (12 H, d, J = 7.0 Hz). 13
C NMR (126 MHz, CDCl3,) δ = 

132.0, 131.0, 130.0, 129.8, 128.5, 120.4, 95.3, 69.2, 53.7, 20.7, 10.0 ppm. 

IR (ATR):    (cm-1) = 653, 691, 754, 906, 1114, 1219, 1378, 1459, 1618, 2943, 2996. HR-MS: calcd. 

for C19H25N2S [M]+ =313.1732; found = 313.1732. 

Synthesis of 1,3-diisopropyl-4,5-dimethyl-2-(prop-1-yn-1-ylthio)-1H-imidazol-3-ium hexafluoro-

antimonate(V) (196c) 

Using the general procedure GPA, compound 196c was prepared from propynyl 

lithium (29.6 mg, 0.64 mmol), ZnBr2 (151.3 mg, 0.67 mmol) and dibromide 185 

(238.8 mg, 0.64 mmol). The desired compound was obtained as pale yellow 

solid (307.9 mg, 99%); 1
H NMR (300 MHz, CDCl3,) δ = 5.15 (2 H, hept, J = 

7.1 Hz), 2.35 (6 H, s), 1.90 (3 H, s), 1.63 ppm (12 H, d, J = 7.1 Hz). 
13

C NMR 

(75 MHz, CDCl3) δ = 131.1, 130.8, 94.4, 58.5, 53.7, 20.9, 10.1, 4.6 ppm. IR 

(ATR):    (cm-1) = 652, 754, 844, 1065, 1136, 1164, 1219, 1321, 1371, 1458, 1615, 2943, 2994. HR-

MS: calcd. for C14H23N2S [M]+ = 251.1577; found = 251.1576. 
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5.2.2 Synthesis of sulfides 

General procedure B (GPB) 

The thioalkynyl imidazolium salt (0.05 – 0.25 mmol) was dissolved in THF (0.2M) at the indicated 

temperature and the Grignard reagent solution (1.00 equiv.) was added dropwise. After 2 h a saturated 

aqueous NH4Cl solution was added and reaction mixture was extracted with EtOAc (3x15mL). The 

combined organic layers were dried over anhydrous Na2SO4, filtered, and the volatiles were removed 

under vacuum. Purification of the crude product by flash chromatography on silica gel 

(hexane/EtOAc) afforded the desired substances. 

Synthesis of (phenylethynyl)(prop-1-en-2-yl)sulfane (213) 

Using the general procedure GPB, compound 213 was prepared from 

isopropenylmagnesium bromide (0.5 M in THF, 1.80 mL, 0.85 mmol) and 

compound 196b (496 mg, 0.90 mmol). The Grignard reagent was added at -

78ºC. Flash chromatography purification (hexane/EtOAc 9/1) afforded 213 as 

a pale yellow oil (155 mg, 99%).1H NMR (300 MHz, CDCl3,) δ = 7.41–7.54 

(2 H, m), 7.28–7.38 (3 H, m), 5.30–5.42 (1 H, m), 5.23 (1 H, q, J = 1.5 Hz), 2.09 ppm (3 H, dd, J = 

1.5, 0.8 Hz). 13
C NMR (75 MHz, CDCl,) δ = 136.9, 131.7, 128.6, 128.5, 123.2, 111.3, 98.7, 75.9, 22.0 

ppm. IR (ATR):    (cm-1) = 693, 736, 751, 801, 917, 1028, 1072, 1175, 1263, 1357, 1444, 1490, 1596, 

1687, 2186, 2922, 3027, 3057. HRMS: calcd. for C11H10S [M]+  = 174.0501; found = 174.0503. 

Synthesis of (phenylethynyl)(prop-1-yn-1-yl)sulfane (221) 

Using the general procedure GPA, compound 221 was prepared from 

propynylmagnesium bromide (0.5 M in THF, 1.08 mL, 0.51 mmol) and the 

compound 196b (297 mg, 0.54 mmol). The Grignard reagent was added at 

-78ºC. Flash chromatography purification (hexane/EtOAc 9/1) afforded 

221 as a pale yellow oil (85.4 mg, 97%). 1
H NMR (300 MHz, CDCl3) δ = 7.43–7.52 (2 H, m), 7.28–

7.36 (3 H, m), 2.00 ppm (3 H, s,). 13
C NMR (75 MHz, CDCl3) δ = 132.0, 129.0, 128.5, 122.5, 94.5, 

92.5, 73.1, 60.8, 5.2 ppm. IR (ATR):    (cm-1) = 729, 803, 905, 1014, 1260, 1443, 1487, 2252, 2853, 

2924, 2959. HRMS: calcd. for C11H8S [M]+ = 172.0345; found = 172.0346. 
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5.2.3 Synthesis of derivatization products of the synthesized sulfides 

Synthesis of ((prop-1-en-2-ylsulfinyl)ethynyl)benzene (226) 

To a solution of the compound 213 (110 mg, 0.63 mmol, 1.00 equiv.) in DCM (6.5 mL) was slowly 

added mCPBA (141 mg, 0.63 mmol, 1.00 equiv.) over 1 h. The solution was stirred for another 12 h at 

0 °C. Then the white solid was removed by filtration and the solution was washed with a saturated 

aqueous solution of NaS2O3, a saturated aqueous solution of NaHCO3 and water. Afterwards the 

solution was dried over MgSO4, the solvent was removed by evaporation and the residue was purified 

by flash-chromatography (hexane/ether : 3/2) to afford the product as yellow oil (81 mg, 68 %).1
H 

NMR (600 MHz, CDCl3) δ = 7.50-7.52 (1 H, m); 7.41-7.44 (1 H, m), 7.34-7.37 (2 H, m), 5.92 (1 H, 

mC), 5.67 (1 H, mC), 2.22 ppm (3 H, dd J = 1.1 ). 13
C NMR (125 MHz, CDCl3) δ = 148.5, 132.2, 

130.5, 128.5, 120.0, 118.3, 101.0, 84.6, 14.7 ppm. IR (ATR):    (cm-1) = 527, 534, 629, 688, 756, 921, 

1066, 1442, 1487, 1636, 2159, 2956, 3082. HRMS: calcd. for C11H10SO [M+H]+ = 191.0525; found = 

191.0528.  

Synthesis of ((prop-1-en-2-ylsulfonyl)ethynyl)benzene (227) 

To a solution of the compound 213 (305 mg, 1.75 mmol, 1.00 equiv.) in DCM 

(6.5 mL) was slowly added mCPBA (141 mg, 3.68 mmol, 2.00 equiv.) over 1 h. 

The solution was stirred for another 12 h at 0 °C and 1 h at rt. Then the white 

solid was removed by filtration and the solution was washed with a saturated 

aqueous solution of NaS2O3, a saturated aqueous solution of NaHCO3 and water. 

Afterwards the solution was dried over MgSO4, the solvent was removed by evaporation and the 

residue was purified by flash-chromatography (hexane/ether : 3/2) to afford the product as colorless oil 

(309 mg, 86 %). 1
H NMR (500 MHz, CDCl3) δ = 

 , 6.30 (1 5.81 (1 H, mC), 2.26 ppm (3 H, dd, J = 0.5, 

0.8 Hz)13
C NMR (125 MHz, CDCl3) δ = 146.3, 132.9, 131.7, 128.8, 124.9, 117.8, 93.0, 83.1, 16.1 

ppm. IR (ATR):    (cm-1) = 531, 633, 684, 726, 756, 846, 923, 952, 1127, 1220, 1319, 1444, 1488, 

1636, 2177, 3061. HRMS: calcd. for C11H10O2S [M+H]+ = 207.0474; found = 207.0472. 
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Synthesis of 4-butyl-2-methyl-5-phenyl-3,4-dihydro-2H-1,4-thiazine 1,1-dioxide (228) 

To a solution of butan-1-amine (48.9 mg, 0.67 mmol, 2.00 eq,) in methanol (7 

mL) was added a solution of the compound 227 (69.0 mg, 0.33 mmol, 1.00 

equiv.) in one drop at RT. The solution was stirred for 20 h at rt and added then 

to a saturated aqueous solution of NaHCO3. The aqueous solution was extracted 

three times with DCM, the combined organic phases were dried over MgSO4 

and the solvent was removed by evaporation. Flash chromatography 

(hexane/EE+ 1% NEt3: 3/1 to 1/1) afford the desired product as white solid (22 mg, 26%). 1
H NMR 

(300 MHz, CDCl3,) δ = 7.29-7.38 (3 H, m), 7.20-7.26 (2 H, m), 4.93 (1 H, s), 3.57-3.74 (2 H, m), 

3.09-3.20 (1 H, m), 2.90-2.95 (2 H, m), 1.37 (5 H, mC), 1.03 (2 H, hex, J = 7.6 Hz), 0.68 ppm (3 H, t, J 

= 7.2 Hz). 13
C NMR (125 MHz, CDCl3) δ = 155.3, 135.7, 129.4, 128.5, 127.7, 95.1, 52.4, 52,3, 50.8, 

30.7, 13.6, 9.8 ppm. IR (ATR):    (cm-1) =  510, 536, 563, 666, 693, 728, 769, 1042, 1079, 1110, 1162, 

1216, 1260, 1315, 1364, 1376, 1442, 1465, 1551, 1579, 2859, 2918, 2983, 3071; HRMS: calcd. for 

C15H21NO2S [M+H]+ = 280.1366; found = 280.1367. 

Synthesis of 2-methyl-5-phenylthiophene (229) 

To a solution of compound 213 (60.1 mg, 0.34 mmol, 1.00 equiv.) in EtOH 

(10 mL) was added Na2S·9H2O (82.0 mg, 0.34 mmol, 1.00 equiv.). The 

reaction mixture was stirred under microwave irradiation for 20h at 120 °C. 

Water was added to the reaction mixture and the reaction mixture was extracted 

by EtOAc. The combined org. phases were washed with brine and the solvent was removed in vacuo. 

Column chromatography (hexane) afforded the desired product as white solid (41.4 mg, 70%). 1
H 

NMR (300 MHz, CDCl3, ppm) δ = 7.50–7.62 (2 H, m), 7.30–7.43 (2 H, m), 7.20–7.29 (1 H, m), 7.11 

(1 H, d, J = 3.5 Hz), 6.73 (1 H, dq, J = 3.4, 1.1 Hz), 2.51 ppm (3 H, d, J = 1.1 Hz). 13
C NMR (126 

MHz, CDCl3) δ = 141.8, 139.4, 134.6, 128.7, 126.9, 126.0, 125.4, 122.8, 15.5 ppm. IR (ATR):    (cm-

1) = 682, 747, 798, 900, 944, 1026, 1072, 1210, 1259, 1440, 1468, 1496, 1596, 2851, 2913, 3020, 

3056. HRMS: calcd. for C11H10S [M+] = 174.0530; found = 174.0494. Analytical data corresponded to 

that described in the literature.159
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Synthesis of 2-methyl-5-phenyl-2,3-dihydro-1,4-dithiine 1,1-dioxide (230) 

To a solution of sodium sulfide nonahydrate (316 mg, 1.32 mmol, 2.00 equiv.) 

in methanol (10 mL) was added a solution of the compound 227 (135 mg, 

0.66 mmol, 2.00 equiv.) in one drop at rt. The solution was stirred for another 

15 min at rt and then was added to a water/ice-mixture. Afterwards the 

suspension was extracted three times with DCM. The combined organic phases 

were dried over MgSO4 and the solvent was removed by evaporation. After 

purification by flash chromatography (hexane/ether : 1/1) the product was isolated as white solid (132 

mg, 84%).1H NMR (300 MHz, CDCl3) δ = 7.35-7.50 (5 H, m), 6.54 (1 H, s), 3.52 (1 H, s), 3.50 (1 H, 

d, J = 1.4 Hz), 3.30-3.40 (1 H, m), 1.55 ppm (3 H, d, J = 3.4 Hz). 13
C NMR (75 MHz, CDCl3) δ = 

150.2, 130.8, 128.9, 126.7, 119.0, 51.0, 32.5, 11.2 ppm. IR (ATR):    (cm-1) = 513, 540, 573, 642, 

691,.702, 746, 774, 821, 915, 943, 1026, 1072, 1098, 1118, 1220, 1267, 1293, 1445, 1489, 1556, 

3018. HRMS: calcd. for C11H12O2S2 [M+H]+ = 241.0351; found = 241.0343. 
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5.3 Synthesis of new diphenylsulfane and dibenzothiophene based reagents 

5.3.1 Synthesis of starting materials 

Synthesis of dibenzo[b,d]thiophene 5-oxide (237) 

Compound 237 was synthesized according to a modified literature procedure.127 To 

a suspension of dibenzothiophene (2.00 g, 10.9 mmol, 1.00 equiv.) in TFA (8 mL) 

was added dropwise H2O2 (1.24 mL, 30 %, 1.20 equiv.) at 0 °C. Afterwards the 

reaction was allowed to warm up to r.t. Upon complete consumption of the starting 

material (monitored by TLC), the reaction was stirred for additional 20 mininutes 

and then neutralized with H2O (ca. 100 mL) to precipitate a white solid. The solid was washed with 

H2O (ca. 30 mL) and dried in vacuo. The crude product was then purified by column chromatography 

using DCM/MeOH (50:1; RF = 0.5) as the eluent. Removal of the solvents in vacuo afforded 237 as a 

white solid (1.66 g, 8.26 mmol, 76 %). Analytical data corresponded to that described in the 

literature.127 1
H NMR (300 MHz, CDCl3) δ = 7.95 (ddd, J = 7.6, 1.2, 0.6 Hz, 2 H), 7.76 (ddd, J = 7.7, 

1.2, 0.6 Hz, 2 H), 7.56 (td, J = 7.6, 1.2 Hz, 2 H), 7.46 ppm (td, J = 7.5, 1.2 Hz, 2 H). 13
C NMR (126 

MHz, CDCl3) δ 145.11, 137.02, 132.50, 129.49, 127.46, 121.91 ppm. IR (ATR):    (cm-1) = 3055, 

1591, 1578, 1477, 1443, 1220, 1124, 1066, 1042, 1020, 987, 947, 871, 762, 750, 712, 691, 650, 613, 

579, 569, 554, 506. HR-MS for C12H8OS: calc.: 200.03, found: 200.0293 [M]+ (EI-HRMS). 

5.3.2 Synthesis of transfer reagents 

General procedure C (GPC) 

These compounds were synthesized by the modification of a literature procedure.125 Triflic anhydride 

(1.00 equiv.) was slowly added at -50 °C to a solution of the sulfoxide (1.00 equiv.) in dry DCM (8 

mL/mmol). The reaction was stirred for 1 h at that temperature and then a solution of the desired 

TMS-alkyne (1.00 equiv.) in DCM (1 mL/mmol) was added dropwise. After this, the reaction was 

slowly warmed to -15 °C and stirred for another 6 h at this temperature. Removal of the solvents in 

vacuo afforded crude salts, which were washed with dry Et2O (5 x 3 mL/mmol) and dry pentane 

(2 x 3 mL/mmol) to obtain the desired products as a powder. 
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Synthesis of diphenyl(phenylethynyl)sulfonium trifluoromethanesulfonate (205) 

Using the general procedure GPC, compound 205 was prepared from 

diphenylsulfoxid (0.77 g, 3.83 mmol, 1.00 equiv.), trifluoromethanesulfonic 

anhydride (0.65 ml, 3.83 mmol, 1.00 equiv.) and 1-phenyl-2-

trimethylsilylacetylene (0.44 g, 2.50 mmol, 1.25 equiv.). The product was 

obtained as an orange resin (1.03 g, 2.30 mmol, 60%). 1
H-NMR (500 MHz, 

CDCl3): δ [ppm] = 8.21 8.18 (m, 4 H), 7.80-7.79 (m, 2 H); 7.74 7.68 (m, 6 H), 

7.61 (tt, J = 7.5, 1.2 Hz, 1 H), 7.48 (tt, J = 7.9, 1.4 Hz, 2 H) ppm.13
C-NMR (126 

MHz, CDCl3): δ [ppm] = 135.1, 133.9, 133.4, 132.0, 129.8, 129.2, 128.0, 117.0, 111.6 ppm. 19
F-NMR 

(282 MHz, CDCl3): δ [ppm] = -78.1. IR (ATR):    (cm-1) = 3088, 3063, 2182, 2102, 1474, 1446, 1305, 

1259, 1222, 1028, 1012, 997, 932, 872, 842, 744, 681, 660, 634, 587, 572, 535, 514, 501. HR-MS for 

C20H15S
+: calc.: 287.0889; found: 287.0894 [M]+ (ESI-HRMS). 

Synthesis of 5-(phenylethynyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (238a) 

Using the general procedure GPC, compound 238a was prepared from 237 (0.77 g, 

3.83 mmol, 1.00 equiv.), Tf2O (0.65 mL, 3.83 mmol, 1.00 equiv.) and trimethyl-

(phenylethynyl)silane (0.75 ml, 3.83 mmol, 1.00 equiv.), obtaining after washing a 

white powder (1.52 g, 3.59 mmol, 94%). 1
H NMR (300 MHz, CD2Cl2) δ = 8.43 

(ddd, J = 8.1, 1.1, 0.5 Hz, 2 H), 8.20 (ddd, J = 7.8, 1.3, 0.5 Hz, 2 H), 7.95 (ddd, J = 

7.5, 1.1 Hz, 2 H), 7.80 (ddd, J = 8.1, 7.5, 1.3 Hz, 2 H), 7.72 – 7.62 (m, 2 H), 7.63 – 

7.51 (m, 1 H), 7.50 – 7.35 ppm (m, 2 H). 13
C NMR (101 MHz, CD2Cl2) δ = 139.6, 

135.6, 134.2, 133.5, 132.7, 130.5, 129.5, 128.9, 125.0, 117.8, 108.2, 64.4 ppm. 

19
F NMR (376 MHz, CD2Cl2) δ =  -78.74 ppm. IR (ATR):    (cm-1) = 3104, 3088, 3065, 3011, 2174, 

2121, 2090, 1593, 1574, 1484, 1462, 1449, 1441, 1427, 1257, 1221, 1156, 1151, 1073, 1059, 1026, 

998, 952, 936, 884, 867, 785, 760, 702, 689, 658, 635, 612. HR-MS calc. for C20H13S: 285.0732; 

found: 285.0740 [M]+ (ESI-HRMS). 

 



 

105 

 

Synthesis of 5-((3-chlorophenyl)ethynyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate 

(238b) 

Using the general procedure GPC, compound 238b was prepared from 237 

(1.15 g, 5.75 mmol, 1.00 equiv.), Tf2O (0.96 mL, 5.75 mmol, 1.00 equiv.) and 

, 1-chloro-3-[2-(trimethylsilyl)ethynyl]-benzene (1.26 g, 5.75 mmol, 

1.00 equiv.), obtaining after washing a white powder (2.18 g, 4.65 mmol, 

81%). 1
H NMR (300 MHz, CD2Cl2) δ = 8.46 (ddd, J = 8.1, 1.1, 0.5 Hz, 2 H), 

8.20 (ddd, J = 7.9, 1.3, 0.5 Hz, 2 H), 7.95 (ddd, J = 7.5, 1.1 Hz, 2 H), 7.81 

(ddd, J = 8.1, 7.5, 1.3 Hz, 2 H), 7.63 – 7.51 (m, 3 H), 7.38 ppm (t, J = 8.2 Hz, 

1 H). 13
C NMR (75 MHz, CD2Cl2) δ = 139.7, 135.6, 135.3, 133.7, 133.6, 132.8, 132.5, 130.9, 130.4, 

129.2, 125.0, 119.7, 105.6, 66.0 ppm. 19
F NMR (282 MHz, CD2Cl2) δ  = -78.78 ppm. IR 

(ATR):    (cm-1) = 1587, 1447, 1247, 1218, 1146, 1025, 905, 791, 753, 633. HR-MS calc. for 

C20H12ClS: 319.0348; found: 319.0345 [M]+ (ESI-HRMS). 

Synthesis of 5-((4-(trifluoromethyl)phenyl)ethynyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethane-

sulfonate (238c) 

Using the general procedure GPC, compound 238c was prepared from 237 (0.50 

g, 2.50 mmol, 1.00 equiv.), Tf2O (0.42 mL, 2.50 mmol, 1.00 equiv.) and 1-

(trifluoromethyl)-4-[2-(trimethylsilyl)ethynyl]-benzene (0.60 g, 2.50 mmol, 1.00 

equiv.), obtaining after washing a pale yellow powder (0.89 g, 2.50 mmol, 

quant.).1H NMR (300 MHz, CD2Cl2) δ = 8.49 (ddd, J = 8.1, 1.1, 0.5 Hz, 2 H), 

8.20 (ddd, J = 7.8, 1.3, 0.5 Hz, 2 H), 7.96 (ddd, J = 7.5, 1.1 Hz, 2 H), 7.87 – 7.77 

(m, 4 H), 7.67 ppm (dt, J = 8.2, 0.7 Hz, 2 H). 13
C NMR (75 MHz, CD2Cl2) δ = 

139.8, 139.7, 135.7, 134.6, 134.1, 132.8, 130.2, 129.3, 126.4 (q, J = 3.8 Hz), 

125.0, 121.8, 119.2, 105.1 ppm. 19
F NMR (282 MHz, CD2Cl2) δ = -63.80, 

-78.82 ppm. IR (ATR):    (cm-1) = 3094, 2185, 1450, 1405, 1319, 1247, 1153, 1066, 1025, 849, 755, 

703, 635, 612. HR-MS calc. for C21H12F3S: 353.0606; found: 353.0607 [M]+ (ESI-HRMS). 
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Synthesis of 5-((4-fluorophenyl)ethynyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate 

(238d) 

Using the general procedure GPC, compound 238d was prepared from 237 (0.37 g, 

1.87 mmol, 1.00 equiv.), Tf2O (0.32 mL, 3.90 mmol, 1.00 equiv.) and 1-fluoro-4-

[2-(trimethylsilyl)ethynyl]-benzene (0.36 g, 1.87 mmol, 1.00 equiv.), obtaining 

after washing a pale yellow powder (0.65 g, 1.44 mmol, 77%). 1
H NMR (300 

MHz, CD2Cl2) δ = 8.42 (d, J = 8.2 Hz, 2 H), 8.20 (ddd, J = 7.7, 1.1Hz, 2 H), 7.94 

(dt, J = 7.7, 0.9 Hz, 2 H), 7.79 (dt, J = 8.0, 1.1, 2 H), 7.72 – 7.67 (m, 2 H), 7.14 – 

7.08 (m, 2 H). 13
C NMR (75 MHz, CD2Cl2) δ = 166.1 (d, J = 287.8 Hz), 139.6, 

137.9 (d, J = 10.0 Hz), 135.6, 132.7, 130.4, 129.0, 125.0, 117.5 (d, J = 20.7 Hz), 

114.1 (d, J = 3.5 Hz), 107.1, 64.5 (d, J = 2.3 Hz) ppm. 19
F NMR (282 MHz, CD2Cl2) δ = -78.87, -

102.44 ppm. IR (ATR):    (cm-1) = 3087, 3066, 2972, 2868, 2180, 2133, 2112, 1598, 1506, 1482, 

1465, 1449, 1427, 1282, 1255, 1242, 1221, 1151, 1114, 1077, 1062, 1026, 999, 875, 842, 822, 798, 

842, 822, 797, 765, 706, 669, 634, 612. HR-MS calc. for C20H12FS: 303.0638; found: 303.0630 [M]+ 

(ESI-HRMS). 

Synthesis of 5-((2-bromophenyl)ethynyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate 

(238e) 

Using the general procedure GPC, compound 238e was prepared from 237 (0.78 

g, 3.90 mmol, 1.00 equiv.), Tf2O (0.66 mL, 3.90 mmol, 1.00 equiv.) and 1-

bromo-2-[2-(trimethylsilyl)ethynyl]-benzene (0.60 g, 3.90 mmol, 1.00 equiv.), 

obtaining after washing a pale yellow powder (1.45 g, 2.83 mmol, 73%). 

1
H NMR (300 MHz, CD2Cl2) δ = 8.46 (ddd, J = 8.1, 1.1, 0.5 Hz, 2 H), 8.20 

(ddd, J = 7.9, 1.3, 0.5 Hz, 2 H), 7.96 (ddd, J = 7.5, 1.1 Hz, 2 H), 7.82 (ddd, J = 

8.1, 7.5, 1.3 Hz, 2 H), 7.77 – 7.72 (m, 1 H), 7.65 - 7.59 (m, 1 H), 7.44 – 

7.37 ppm (m, 2 H).13
C NMR (126 MHz, CD2Cl2) δ =

 139.7, 135.7, 135.3, 133.7, 133.6, 132.8, 132.5, 

130.9, 130.4, 129.2, 125.0, 119.6, 105.6, 66.0 ppm. 19
F NMR (282 MHz, CD2Cl2) δ = -78.77 ppm. IR 

(ATR):    (cm-1) = 3091, 1576, 1447, 1270, 1248, 1222, 1149, 1025, 868, 754, 702, 634, 612, 571, 515, 

420. HR-MS calc. for C20H12BrS: 362.9843; found: 362.9838 [M]+ (ESI-HRMS). 
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Synthesis of 5-((triisopropylsilyl)ethynyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate 

(238f) 

Using the general procedure GPC, compound 238f was prepared from 237 (2.00 g, 

10.0 mmol, 1.00 equiv.), Tf2O (1.68 mL, 10.0 mmol, 1.00 equiv.) and trimethyl[2-

[tris(1-methylethyl)silyl]ethynyl]-silane (3.14 mL, 10.0 mmol, 1.00 equiv.), 

obtaining after washing a white powder (4.36 g, 8.47 mmol, 85%). 1
H NMR (300 

MHz, CD2Cl2) δ = 8.33 (ddd, J = 8.1, 1.0, 0.5 Hz, 2 H), 8.20 (ddd, J = 7.8, 1.3, 0.5 

Hz, 2H), 7.94 (dt, J = 7.7, 1.1 Hz, 2 H), 7.82 (ddd, J = 8.6, 8.1, 1.3 Hz, 2 H). 

13
C NMR (75 MHz, CD2Cl2) δ = 139.6, 135.5, 132.7, 131.1, 128.4, 125.1, 118.6, 78.9, 18.6, 11.5 

ppm. 19
F NMR (282 MHz, CD2Cl2) δ = -78.77 ppm. IR (ATR):    (cm-1)  =2945, 2924, 2865, 1461, 

1448, 1273, 1249, 1226, 1154, 1130, 1072, 1062, 1029, 997, 966, 921, 880, 822, 767, 757, 704, 685, 

657, 636, 614, 605,. HR-MS calc. for C23H29SiS: 365.1754; found: 365.1754 [M]+ (ESI-HRMS). 

Synthesis of (E)-5-styryl-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate (238p) 

Using the general procedure GPC, compound 238p was prepared from 

dibenzothiophene sulfoxide 237 (0.40 g, 2.00 mmol, 1.00 equiv.), 

trifluoromethanesulfonic anhydride (0.34 ml, 2.00 mmol, 1.00 equiv.) and 

trimethyl-(styryl)-silane (0.44 g, 2.50 mmol, 1.25 equiv.). The product was 

obtained as a green powder (0.76 g, 1.74 mmol, 87%). 1
H-NMR (300 MHz, 

CD2Cl2): δ [ppm] = 8.49 (d, J = 15.0 Hz, 1H), 8.25 (dd, J = 18.3, 7.9 Hz, 4H), 7.98 

– 7.91 (m, 2H), 7.82 – 7.74 (m, 2H), 7.66 – 7.59 (m, 2H), 7.50 (dt, J = 14.3, 7.0 Hz, 3H), 

6.33 (d, J = 15.0 Hz, 1H) ppm. 13
C-NMR (125 MHz, CD2Cl2): δ [ppm] = 155.0, 139.2, 134.44, 132.6, 

132.4, 131.6, 130.0, 129.3, 129.0, 128.5, 124.0, 111.5 ppm. 19
F-NMR (282 MHz, CD2Cl2): δ [ppm] = 

-78.8 ppm. IR (ATR):    (cm-1) = 3487. 3084, 3054, 1598, 1569, 1484, 1448, 1430, 1251, 1221, 1150, 

1075, 1025, 1000, 967, 856, 748, 704, 688, 633, 586, 571, 514. HR-MS for C20H15S
+: calc.: 287.0889; 

found: 287.0886 [M]+ (ESI-HRMS). 



108 

 

5.3.3 Synthesis of labeled reagents 

Synthesis of (2,2-dibromovinyl-1-13C)benzene (321) 

For the synthesis of (2,2-dibromovinyl-1-13C)benzene a slightly modified literature 

procedure was used.132 To a solution of CBr4 (3.33 g, 10.0 mmol, 2.00 equiv.) and 

PPh3 (5.25 g, 20.0 mmol, 4.00 equiv.) in DCM (20 mL) was added dropwise a 

solution of labeled benzaldehyde (0.50 mL, 5 mmol, 1.00 eq, 20% enriched) in 

DCM (6 mL) at 0 °C. The reaction mixture was stirred for 3 h at rt and 

subsequently the reaction mixture was filtered through a short pad of silica. The solvent was removed 

under reduced pressure and after column chromatography (pure hexane) the labeled product could be 

obtained as colorless oil (1.14 g, 4.35 mmol, 87%). Analytical data corresponded to those described in 

the literature.132  

Synthesis of compound trimethyl(phenylethynyl-2-13C)silane (322) 

For the synthesis of labeled trimethyl(phenylethynyl-2-13C)silane a slightly 

modified literature procedure was used.132 To a solution of the dibromide 321 

(1.14 g, 4.35 mmol, 1.00 equiv.) in THF (30 mL) was added nBuLi (2.5 M in 

hexane, 4.35 mL, 10.9 mmol, 2.50 equiv.) at -78 °C. The solution was stirred for 

1 h at -78 °C and subsequently TMSCl (1.18 g, 10.9 mmol, 2.50 equiv.) was 

added to the reaction mixture. The reaction mixture was warmed up to rt and stirred for another hour at 

this temperature. A saturated aqueous solution of NH4Cl was added and the reaction mixture was 

extracted with diethylether (2 x 20 mL). The combined org. phases were dried over Na2SO4 and after 

purification by flash chromatography the desired product could be obtained as colorless oil (550 mg, 

3.16 mmol, 73%). Analytical data corresponded to those described in the literature.132  
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Synthesis of labeled 5-(phenylethynyl)-5H-dibenzo[b,d]thiophen-5-ium trifluoromethanesulfonate 

(238a*) 

Using the general procedure GPC, compound 238a* was prepared from 237 

(674 mg, 3.34 mmol, 1.00 equiv.), Tf2O (0.56 mL, 3.34 mmol, 1.00 equiv.) and 

trimethyl(phenylethynyl-2-13C)silane (582 mg, 3.34 mmol, 1.00 equiv.), obtaining 

a white powder (1.26 g, 2.99 mmol, 90%) after washing. 1
H NMR (300 MHz, 

CD2Cl2) δ = 8.60 (d, J = 8.6 Hz, 2 H), 8.21 (d, J = 8.2 Hz, 2 H), 7.94 (dd, J = 8.2, 

7.8 Hz, 2 H), 7.78 (dd, J = 8.5, 7.8 Hz, 2 H), 7.63 (d, J = 7.9 Hz, 2 H), 7.55 (tt, J = 

7.9, 1.7 Hz, 1 H), 7.40 (d, J = 7.9 Hz, 2 H). 13
C NMR (101 MHz, CD2Cl2) δ = 

139.6, 135.6, 134.2, 133.5, 132.7, 130.5, 129.5, 129.1, 125.0, 117.9, 108.2 (13C-

enriched), 64.4, ppm. 19
F NMR (287 MHz, CD2Cl2) δ = -78.79 ppm. IR (ATR):    (cm-1)  = 3106, 

3086, 2175, 2143, 1484, 1449, 1442, 1427, 1258, 1221, 1157, 1072, 1059, 1028, 998, 952, 936, 

905884, 867, 785, 861, 734, 702, 761, 734, 702, 689, 659, 635,612. HR-MS calc. for C20H13S: 

285.0732; found: 285.0730 [M]+ (ESI-HRMS) 

Synthesis of the compound 2-((4-methoxybenzyl)oxy)ethan-1-ol (324) 

For the synthesis of compound 324 a slightly modified literature 

procedure was used.160 To a solution of glycol (11.4 mL, 228 mmol, 

6.00 equiv.) in THF (65 mL) was added dropwise NaH (60%, 1.35 g, 

33.8 mmol, 1.00 equiv.) at 0 °C. After stirring for 15 min at 0  °C 

TBAI (1.25 g, 3.38 mmol, 0.10 equiv.) was added, followed by the dropwise addition of the chloride 

(4.60 ml, 33.8 mmol, 1.00 equiv.). The mixture was stirred at 65 °C for 12 h and subsequently s 

saturated aqueous solution of NH4Cl (150 mL) was added to the reaction mixture. The organic phase 

was extracted with diethylether and the combined organic phases were dried over Na2SO4. After flash 

chromatography (hexane: EtOAc = 1:1) the desired product could be obtained as yellow oil (5.24 g, 

28.7 mmol, 85%). Analytical data corresponded to those described in the literature.160 
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Synthesis of 2-((4-methoxybenzyl)oxy)acetaldehyde (325) 

For the synthesis of 325 a slightly modified literature procedure was 

used.100 To a solution of the alcohol 324 (630 mg, 3.60 mmol, 

1.00 equiv.) in DCM (27 mL) was added DMP (1.59 mmol, 

3.90 mmol, 1.00 equiv.) and the suspension was stirred for 2.5 h at rt. 

A saturated aqueous solution of NaHCO3 (30 mL) and a saturated aqueous solution of Na2S2O3 (30 ml) 

was added to the reaction mixture and the resulting biphasic mixture was stirred for 10 min until a 

clear mixture occurred. The layers were separated and the organic phase was washed with water 

(30 mL) and brine (30 mL). The organic phases were dried over Na2SO4. After removal of the solvent 

under reduced pressure the desired product could be obtained as yellow oil (630 mg, 3.49 mmol, 

97%). Analytical data corresponded to those described in the literature.100  

Synthesis of 1-(((3,3-dibromoallyl-3-13C)oxy)methyl)-4-methoxybenzene (326) 

For the synthesis of labeled 326 a slightly modified literature procedure was 

used.100 To a solution of labeled CBr4 (950 mg, 2.86 mmol, 1.00 equiv.) in 

DCM (12 mL) was added a solution of PPh3 (1.55 g, 5.83 mmol, 2.00 equiv.) in 

DCM (9 mL) with a syringe pump over 30 min at 0 °C. The solution was stirred 

for another 15 min at 0 °C and then cooled to -78 °C. Subsequently a solution of the aldehyde 325 

(630 mg, 3.49 mmol, 1.20 equiv.) was added with a syringe pump to the reaction mixture at -78 °C. 

The solution was stirred for another 12 h, slowly warming up to rt. A saturated aqueous solution of 

NaHCO3 (30 ml) was added to the reaction mixture. Phases were separated and the aqueous phase was 

extracted by DCM (3 x 20 mL). The combined org. phases were washed water (30 mL), brine (30 mL) 

and dried over Na2SO4. After column chromatography (pure hexane) the product could be obtained as 

colorless oil (530 mg, 1.58 mmol, 55%). Analytical data corresponded to those described in the 

literature.100  
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Synthesis of labeled labeled triisopropyl(3-((4-methoxybenzyl)oxy)prop-1-yn-1-yl)silane (327) 

For the synthesis of labeled 327 a slightly modified literature procedure was 

used.100 To a solution of the dibromide 326 (530 mg, 1.58 mmol, 

1.00 equiv.) in THF (10.5 mL) was added nBuLi (2.5 M in hexane, 1.40 mL, 

3.48 mmol, 2.20 equiv.) at -78 °C and the solution was stirred for 1 h at -

78 °C. The solution was warmed up to rt and stirred for another hour at this temperature. Then the 

solution was cooled back to -78 °C and TIPSCl (0.44 mL, 2.05 mmol, 1.30 equiv.) was added. The 

reaction mixture was stirred for 12 h, slowly was warming up to rt. A saturated aqueous solution of 

NaHCO3 (30 mL) was added and the mixture was extracted with Et2O (3 x 20 mL). The combined 

organic phases were washed with brine and dried over Na2SO4. After flash chromatography the 

desired product could be isolated as colorless oil (456 mg, 1.37 mmol, 87%). Analytical data 

corresponded to those described in the literature.100  

Synthesis of (ethynyl-13C)triisopropylsilane (328) 

For the synthesis of labeled compound 328 a slightly modified literature procedure was 

used.100 To a suspension of the ether 327 (472 mg, 1.42 mmol, 1.00 equiv.) in DCM 

(10 mL) and water (1 mL) was added DDQ (484 mg, 2.13 mmol, 1.50 equiv.) at 0 °C 

and the reaction was stirred for 15 in at 0 °C and 3 h at rt. Then a saturated aqueous solution of 

NaHCO3 (30 mL) was adding to the reaction mixture and the reaction mixture was extracted by DCM 

(3 x 15 mL). The combined org. phases were washed with brine (2 x 30 mL) and dried over Na2SO4. 

The solvent was removed under reduced pressure and the resulting residue was dissolved in 

diethylether (25 mL). Manganese dioxide (1.85 g, 21.3 mmol, 15.00 equiv.) and potassium hydroxide 

(599 mg, 10.7 mmol, 7.50 equiv.) were added to reaction in four portions over 3 h. Afterwards the 

reaction mixture was stirred for another 4 h at rt. The excess of manganese dioxide was removed by 

filtration over a short pad of silica. Column chromatography (pentane) afforded the product as 

colorless oil (200 mg, 1.10 mmol, 77%). Analytical data corresponded to those described in the 

literature.100  
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Synthesis of triisopropyl((trimethylsilyl)ethynyl-1-13C)silane (329) 

For the synthesis of 329 a slightly modified literature procedure was used.100 To a 

solution of the alkyne 328 (390 mg, 2.14 mmol, 1.00 equiv.) in THF (5 ml) was 

added slowly at -78 °C nBuLi (2.5 M in hexane, 2.57 mmol, 1.20 equiv.) The 

reaction was stirred for 15 min at -78 °C and then warmed up to 0 °C. After stirring 

for another 5 min at 0 °C the solution was cooled back to -78 °C and TMSCl (0.35 mL, 2.78 mmol, 

1.30 equiv.) was added to the reaction mixture. The reaction mixture was stirred for another 12 h, 

slowly warming up to rt. A saturated aqueous solution of NH4Cl was added to the reaction mixture. 

The reaction mixture was extracted with diethylether (3 x 20 mL) and the combined organic phases 

were washed with brine and subsequently dried over Na2SO4. Column chromatography (pure pentane) 

offered the product as colorless oil (361 mg, 1.42 mmol, 66%). Analytical data corresponded to those 

described in the literature.100  

Synthesis of compound labeled 5-((triisopropylsilyl)ethynyl)-5H-dibenzo[b,d]thiophen-5-ium 

trifluoromethanesulfonate (238f*) 

Using the general procedure GPC, compound 238f* was prepared from 329 

(280 mg, 1.42 mmol, 1.00 equiv.), Tf2O (0.24 mL, 1.42 mmol, 1.00 equiv.) and 

labeled trimethyl[2-[tris(1-methylethyl)silyl]ethynyl]silane (361 mg, 1.42 mmol, 

1.00 equiv.), obtaining after washing a white powder (607 mg, 1.21 mmol, 85%). 

1
H NMR (300 MHz, CD2Cl2) δ = 8.32 (d, J = 8.5 Hz, 2 H), 8.19 (dd, J = 7.7, 

1.3 Hz, 2 H), 7.94 (dt, J = 7.7, 1.0 Hz, 2 H), 7.79 (dt, J =  7.7, 1.2 HZ, 2 H), 

1.21-1.07 (m, 3 H), 1.02-1.00 (m, 18 H). 13
C NMR (126 MHz, CD2Cl2) δ = 139.5, 135.4, 132.6, 131.0, 

128.3, 125.0, 118.6 (enriched, major), 78.8 (enriched, minor), 18.6, 11.5. ppm. 
19

F NMR (282 MHz, 

CD2Cl2) δ = -78.87 ppm. IR (ATR):    (cm-1)  = 2945, 2866, 1462, 1448, 1271, 1249, 1226, 1153, 

1072, 1062, 1028, 997, 966, 921, 880, 821, 766, 757, 704. HR-MS calc. for C20H12BrS: 365.1754; 

found: 365.1747 [M]+ (ESI-HRMS). 
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5.4 Electrophilic group transfer to nucleophiles 

5.4.1 Reactions with benchmark nucleophiles 

General procedure D (GPD) 

To a suspension of a the desired nucleophile (1.00 equiv.) and Cs2CO3 (1.10 equiv.) in dry DCM/DCE 

(14 mL/mmol), was added the corresponding dibenzothiophenium salt (1.20-1.50 equiv.). The reaction 

was stirred for 12 h. at the specified temperature. After quenching with water (8 mL), the mixture was 

extracted using DCM (3 x 10 mL), the organic layers were combined, dried over MgSO4 and the 

solvents were removed in vacuo. The crude products were purified by column chromatography.  

Synthesis of triisopropyl(((4-methoxybenzyl)thio)ethynyl)silane (255) 

Using the general procedure GPD, compound 255 was prepared 

from (4-methoxyphenyl)methanethiol (30.9 mg, 0.22 mmol, 

1.00 equiv.), Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) and 238f 

(136 mg, 0.26 mmol, 1.20 equiv.) in dry DCM (3 mL). The 

reaction was carried out at RT for 12 h. After flash 

chromatography using (hexane/EtOAc : 20/1) compound 255 was obtained as a yellow oil (66.8 mg, 

72%). 1
H NMR (300 MHz, CDCl3) δ = 7.26 (td, J = 8.7, 3.1 Hz, 2 H), 6.84 (td, J = 8.7, 3.1 Hz, 2 H), 

3.92 (s, 2 H), 3.80 (s, 3 H), 1.04 ppm (m, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 159.2, 130.3, 128.9, 

114.1, 98.7, 95.7, 55.5, 40.4, 18.8, 11.6 ppm. IR (ATR):    (cm-1) = 2992, 2941, 2863, 2836, 2721, 

2557, 2087, 1881, 1610, 1584, 1510, 1462, 1441, 1423, 1383, 1365, 1317, 1302, 1250, 1236, 1205, 

1174, 1123, 1105, 1072, 1036, 1016, 995, 919, 881, 855, 828, 807, 745, 727, 674, 654. HR-MS calc. 

for C19H30OSSi: 334.1787; found: 334.1781 [M]+ (EI-HRMS). Analytical data corresponded to those 

previously reported.161  

Synthesis of (4-methoxybenzyl)(phenylethynyl)sulfane (256) 

Using the general procedure GPD, compound 256 was prepared from 

(4-methoxyphenyl)methanethiol (34.0 mg, 0.22 mmol, 1.00 equiv.), 

Cs2CO3 (78 mg, 0.24 mmol, 1.10 equiv.) and 238a (115 mg, 0.55 

mmol, 1.50 equiv.) in dry DCM (3 mL). The reaction was carried out 

at RT for 12 h. After flash chromatography using (hexane/EtOAc 

5/1) compound 256 was obtained as a yellow oil (76.1 mg, 70 %). 1
H NMR (300 MHz, CDCl3) δ = 

7.34  7.23 (m, 7 H), 6.85 (td, J = 8.6, 2.0 Hz, 2 H, 3.97 (s, 2 H), 3.78 ppm (s, 3 H). 13
C NMR (75 

MHz, CDCl3) δ = 159.4, 131.4, 130.4, 128.7, 128.9, 128.1, 123.6, 114.1, 94.6, 79.6, 55.4, 40.2 ppm. 

IR (ATR):    (cm-1)  = 3061, 2953,2931, 2906, 2834, 2359, 2332, 2164, 1885, 1734, 1608, 1595, 1583, 

1509, 1486, 1462, 1440, 1421, 1317, 1302, 1248, 1236, 1205, 1174, 1236, 1205, 1174, 1105, 1068, 
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1031, 913, 883, 829, 752, 689, 653, 544, 530, 514. HR-MS for C16H14OS: calc.: 255.0838; found: 

255.0834 [M+H]+ (ESI-HRMS). 

Synthesis of methyl 2-(((triisopropylsilyl)ethynyl)thio)acetate (257) 

Using the general procedure GPD, compound 257 was prepared from the 

methyl 2-mercaptoacetate (71.6 mg, 0.29 mmol, 1.00 equiv.), Cs2CO3 

(103 mg, 0.32 mmol, 1.10 equiv.) and 238f (162 mg, 0.65 mmol, 

1.20 equiv.) in dry DCM (4 mL). The reaction was carried out at RT for 12 

h. After flash chromatography (hexane/EtOAc : 25/1) compound 257 was 

obtained as a yellow oil (71.6 mg, 87 %). 1H NMR (300 MHz, CDCl3) δ = 3.77 (s, 3 H), 3.51 (s, 2 H), 

1.06 ppm (s, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 168.7, 99.5, 93.5, 52.9, 38.0, 18.8, 11.5. ppm. 

IR (ATR):    (cm-1)  = 2943, 2865, 2093, 1742, 1462, 1435, 1406, 1384, 1273, 1193, 1130, 1072, 

1012, 996, 919, 881, 854, 675, 659. HR-MS calc. for C14H26O2SSi: 287.1496; found: 287.1497 

[M+H]+ (ESI-HRMS). 

Synthesis of methyl 2-((phenylethynyl)thio)acetate (258) 

Using the general procedure GPD, compound 258 was prepared from methyl 

2-mercaptoacetate (45.6 mg, 0.43 mmol, 1.00 equiv.), Cs2CO3 (151.1 mg, 

0.47 mmol, 1.10 equiv.) and 238a (283 mg, 0.65 mmol, 1.50 equiv.) in dry 

DCM. The reaction was carried out at RT for 12 h. After flash 

chromatography (hexane/EtOAc : 20/1) compound 258 was obtained as a 

yellow oil (45.6 mg, 91 %). 1
H NMR (300 MHz, CDCl3) δ = 7.43-7.39 (m, 2 ppm 13

C NMR (126 

MHz, CDCl3) δ = 168.9, 131.8, 128.6, 128.4, 123.0, 100.2, 94.7, 53.0, 37.7 ppm. IR (ATR):    (cm-1)  

= 3078, 3058, 3031, 3001, 2951, 2843, 2168, 1571, 1486, 1435, 1404, 1271, 1194, 1155, 1128, 1007, 

900, 880, 842, 753, 689, 645, 622, 604. HR-MS calc. for C11H10O2S: 207.0474; found: 207.0689 

[M+H]+ (ESI-HRMS). 
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Synthesis of triisopropyl(((4-nitrophenyl)thio)ethynyl)silane (259) 

Using the general procedure GPD, compound 259 was prepared from 4-

nitrobenzenethiol (34.1 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 

0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26 mmol, 1.20 equiv.) in dry DCM 

(3 mL). The reaction was carried out at RT for 12 h. After flash chromatography 

using (pure hexane) compound 259 was obtained as a yellow oil (56.6 mg, 76%). 

1
H NMR (300 MHz, CDCl3) δ = 8.20 (td, J = 8.6, 2.8 Hz, 2 H) , 7.57 (td, J = 8.6, 

2.8 Hz, 2 H), 1.15 ppm (m, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 146.3, 142.9, 125.8, 124.3, 106.8, 

88.2, 18.9, 11.6 ppm. IR (ATR):    (cm-1) = 2943, 2863, 2096, 1597, 1581, 1515, 1467, 1461, 1383, 

1353, 1336, 1315,1254, 1233, 1107, 1081, 1016, 992, 917, 880, 851, 837, 738, 721, 676, 652, 627. 

HR-MS calc. for C17H25NO2SSiNa: 358.1269; found: 358.1269 [M+Na]+ (ESI-HRMS). 

Synthesis of triisopropyl(((4-methoxyphenyl)thio)ethynyl)silane (260) 

Using the general procedure GPD, compound 260 was prepared from the 4-

methoxy-benzenethiol (30.8 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 

0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26 mmol, 1.20 equiv.) in dry DCM 

(3 mL). The reaction was carried out at RT for 12 h. After flash chromatography 

using (pure hexane) compound 260 was obtained as a yellow oil (52.0 mg, 73%). 

1
H NMR (300 MHz, CDCl3) δ = 7.37 (td, J = 8.9, 2.2 Hz, 2 H),6.89 (td, J = 9.0, 

2.2 Hz, 2 H), 3.80 (s, 3 H), 1.11 ppm (s, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 158.7, 128.2, 122.9, 

114.9, 101.4, 92.7, 55. 4, 18.7, 11.5 ppm. IR (ATR):    (cm-1) =2940, 2803, 2090, 1592, 1576, 1488, 

1461, 1383, 1290, 1244, 1174, 1104, 1086, 1071, 1033, 1017, 995, 881, 857, 821, 802, 675, 658, 636, 

622, 591, 573, 515. HR-MS for C18H28OSSi: calc.: 320.1630; found: 320.1632 [M]+ (EI-HRMS). 

Synthesis of (4-methoxyphenyl)(phenylethynyl)sulfane (261) 

Using the general procedure GPD, compound 261 was prepared from 4-methoxy-

benzenethiol (60.0 mg, 0.43 mmol, 1.00 equiv.), Cs2CO3 (151 mg, 0.47 mmol, 

1.10 equiv.) and 238a (283 mg, 0.65 mmol, 1.50 equiv.) in dry DCM. The reaction 

was carried out at RT for 12 h. After flash chromatography using (hexane/EtOAc : 

20/1) compound 261 was obtained as a yellow oil (66.5 mg, 64 %). 1
H NMR (300 

MHz, CDCl3) δ = 7.52-7.44 (m, 4 H), 7.34 (m, 3 H), 6.92 (td, J = 9.0, 2.3 Hz, 2 ), 

3.81 ppm (s, 3 H). 13
C NMR (126 MHz, CDCl3) δ = 159, 132, 128, 123, 115, 96, 55 ppm. IR 

(ATR):    (cm
-1

) = 3061, 3030, 3002, 2955, 2938, 2904, 2834, 2167, 1590, 1574, 1490, 1459, 1440, 

1289, 1243, 1173, 1027, 1005, 914, 821, 797, 752, 718, 689, 655, 635, 621. HR-MS calc. for 

C15H12OS: 241.0682; found: 241.0689 [M+H]+ (ESI-HRMS). Analytical data corresponded to those 

previously reported.162  
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Synthesis of naphthalen-1-yl(phenylethynyl)sulfane (262) 

Using the general procedure GPD, compound 262 was prepared from 

naphthalene-1-thiol (68.8 mg, 0.43 mmol, 1.00 equiv.), Cs2CO3 (151 mg, 

0.47 mmol, 1.10 equiv.) and 238a (283 mg, 0.65 mmol, 1.50 equiv.) in dry 

DCM. The reaction was carried out at RT for 12 h. After flash 

chromatography using (hexane/EtOAc 50/1) compound 262 was obtained 

as a yellow oil (54.5 mg, 49 %). 1
H NMR (300 MHz, CDCl3) δ = 8.18 (qd, 

J = 7.7, 1.0 Hz, 1 H), 7.97 (dd, J = 7.42, 1.3 Hz, 1 H), 7.91 (mC, 1 H), 7.79 (d, J = 8.5 Hz, 1 H), 

7.64-7.49 (m, 5 H), 7.39-7.36 ppm (m, 3 H). 13
C NMR (126 MHz, CDCl3) δ = 133.9, 131.8, 130.8, 

129.8, 128.7, 128.7, 128.4, 127.6, 126.7, 126.6, 126.0, 125.66, 123.6, 123.1, 97.9, 75.8 ppm. IR 

(ATR):    (cm-1)  = 3852, 3054, 3031, 2987, 2954, 2941, 2888, 2863, 2163, 1738, 1697, 1684, 1591, 

1563, 1503, 1487, 1456, 1442, 1414, 1369, 1336, 1166, 766. MS calc. for C18H12S: 260.1; found: 

260.1 [M]+ (EI-MS). 

Synthesis of 2-(((triisopropylsilyl)ethynyl)thio)benzo[d]thiazole (263) 

Using the general procedure GPD, compound 263 was prepared from 

benzo[d]thiazole-2-thiol (36.8 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 

(78.0 mg, 0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26 mmol, 

1.20 equiv.) in dry DCM (3 mL). The reaction was carried out at RT for 

12 h. After flash chromatography using (hexane/EtOAc 15/1 to 10:1) 

compound 263 was obtained as a yellow oil (78.9 mg, 98%). 1
H NMR (300 MHz, CDCl3) δ = 7.87 

(ddd, J = 8.2, 1.4, 0.6 Hz, 1 H), 7.83 (ddd, J = 8.2, 1.4, 0.6 Hz, 1 H), 7.44 (ddd, J = 8.2, 7.8, 1.4, 1 H), 

7.34 (ddd, J = 8.2, 7.8, 1.4 Hz, 1 H), 1.20-1.15 (m, 21 ) ppm. 13
C NMR (126 MHz, CDCl3) δ = 165.5, 

154.4, 135.8, 126.4, 124.7, 122.1, 121.1, 108.8, 87.6, 18.84, 11.6.ppm. IR (ATR):    (cm-1) = 2941, 

2889, 2863, 2097, 1464, 1425, 1284, 1365, 1309, 1275, 1258, 1237, 1124, 1073, 1020, 1009, 996, 

933, 919, 881, 853, 846, 805, 753, 725, 704, 753, 725, 704, 676, 659. HR-MS calc. for C18H25NS2Si: 

348.1270; found: 348.1270 [M+H]+ (ESI-HRMS). Analytical data corresponded to those previously 

reported.161 
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Synthesis of S-((triisopropylsilyl)ethynyl) benzothioate (264) 

Using the general procedure GPD, compound 264 was prepared from the 

benzothioic S-acid (30.4 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 

0.24 mmol, 1.10 equiv.) and 238a (136 mg, 0.26 mmol, 1.20 equiv.) in 

dry DCM (3 mL). The reaction was carried out at RT for 12 h. After flash 

chromatography using (hexane/EtOAc : 20/1) compound 264 was obtained as a yellow oil (46.0 mg, 

66%). 1
H NMR (300 MHz, CDCl3) δ = 7.87 (mC, 2 H), 7.63 (tt, J = 7.5, 1.3 HZ, 1 H), , 7.48 (t, J = 

7.7 Hz, 2 H), 1.15 ppm (mC, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 187.5, 135.5, 134.3, 129.2, 

127.5, 109.6, 86.0, 18.8, 11.6 ppm. IR (ATR):    (cm-1) = 2942, 2864, 2104, 1703, 1462, 1448, 1201, 

1176, 1072, 1017, 997, 919, 880, 856, 804, 767, 742, 673, 637. HR-MS calc. for C18H26OSSiNa: 

341.1360; found: 341.1366 [M+Na]+ (ESI-HRMS). Analytical data corresponded to those previously 

reported.104  

Synthesis of methyl N-(tert-butoxycarbonyl)-S-((triisopropylsilyl)ethynyl)-L-cysteinate (266) 

Using the general procedure GPD, compound 266 was prepared 

from methyl-(tert-butoxycarbonyl)-L-cysteinate (51.8 mg, 

0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) 

and 238f (136 mg, 0.26 mmol, 1.20 equiv.) in dry DCM (3 mL). 

The reaction was carried out at RT for 12 h. After flash chromatography using (hexane/EtOAc : 10/1) 

compound 266 was obtained as a yellow oil (731 mg, 80%). 1
H NMR (300 MHz, CDCl3) δ = 5.49 (d, 

J = 7.9 Hz, 1 H), 4.70 (s, 1 H), 3.26 (dd, J = 13.1, 4.4 Hz, 1 H), 3.13 (dd, J = 14.3, 5.1 Hz, 1 H), 

1.46 (s, 9 H), 1.08 (s, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 170.7, 155.2, 98.2, 94.5, 80.3, 53.9, 

52.7, 38.4, 28.2, 18.6, 11.3 ppm. IR (ATR):    (cm-1) = 3370, 2943, 2981, 2865, 2091, 1749, 1717, 

1499, 1461, 1437, 1415, 1391, 1365, 1349, 1309, 1249, 1214, 1161, 1056, 1016, 995, 918, 881, 854, 

800, 777, 759, 734, 676, 659. HR-MS calc. for C20H37NOSSi: 433.2551; found: 433.2549 [M+NH4]
+ 

(ESI-HRMS). Analytical data corresponded to those previously reported.161  



118 

 

Synthesis of methyl 1-oxo-2-(phenylethynyl)-2,3-dihydro-1H-indene-2-carboxylate (232) 

Using the general procedure GPD, compound 232 was prepared from 2,3-

dihydro-1-oxo-1H-Indene-2-carboxylic acid methyl ester (81 mg, 0.43 mmol, 

1.00 equiv.), Cs2CO3 (151 mg, 0.47 mmol, 1.10 equiv.) and 238a (284 mg, 

0.65 mmol, 1.50 equiv.) in dry DCE (6 mL). The reaction was carried out at 

60 °C for 12 h. After flash chromatography using (hexane/EtOAc : 15/1) 

compound 232 was obtained as a yellow oil (98.5 mg, 79 %). 1
H NMR (300 

MHz, CDCl3) δ = 7.82 (dd, J = 7.7, 0.5 Hz, 1H), 7.64 (ddd, J = 7.7, 7.2, 1.2 Hz, 1 H), 7.49 (dt, J = 7.7, 

0.9 Hz, 1 H), 7.47 – 7.35 (m, 3 H), 7.31 – 7.19 (m, 4H), 4.00 (d, J = 17.1 Hz, 1 H), 3.80 (s, 3 H), 

3.59 ppm (d, J = 17.2 Hz, 1 H). 13
C NMR (126 MHz, CDCl3) δ = 196.0, 168.5, 152.0, 135.8, 133.2, 

131.8, 128.3, 128.0, 128.0, 126.3, 125.6, 122.2, 85.2, 83.7, 55.9, 53.7, 41.0 ppm. IR (ATR):    (cm-1)  

= 3054, 3034, 2953, 2842, 2150, 2059, 1997, 1956, 1718, 1605, 1589, 1573, 1490, 1476, 1463, 1432, 

1326,1300, 1229, 1211, 1173, 1155, 1094, 1063, 990, 954, 917, 884, 807, 791, 753, 732, 689, 650. 

HR-MS calc. for C19H14O3: 291.1016; found: 291.1018 [M]+ (ESI-HRMS). 

Synthesis of methyl 2-((2-bromophenyl)ethynyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (269) 

Using the general procedure GPD, compound 269 was prepared from 2,3-

dihydro-1-oxo-1H-Indene-2-carboxylic acid methyl ester (81 mg, 

0.43 mmol, 1.00 equiv.), Cs2CO3 (151 mg, 0.47 mmol, 1.10 equiv.) and 

238e (330 mg, 0.65 mmol, 1.50 equiv.) in dry DCE (6 mL). The reaction 

was carried out at 60 °C for 12 h. After flash chromatography using 

(hexane/EtOAc : 15/1) compound 269 was obtained as a yellow oil 

(125.0 mg, 79 %). 1
H NMR (300 MHz, CDCl3) δ = 7.87 – 7.79 (m, 1 H), 7.66 (td, J = 7.5, 1.2 Hz, 

1 H), 7.56 – 7.36 (m, 4 H), 7.27 – 7.06 (m, 2 H), 4.03 (d, J = 17.1 Hz, 1 H), 3.82 (s, 3 H), 3.67 ppm (d, 

J = 17.1 Hz, 1 H). 13
C NMR (126 MHz, CDCl3) δ = 195.7, 168.3, 152.2, 136.0, 133.6, 133.2, 132.3, 

129.7, 128.2, 126.9, 126.5, 125.9, 125.8, 124.5, 90.0, 82.5, 56.3, 53.9, 40.9 ppm. IR (ATR):    (cm-1) = 

3648, 3439, 3061, 2952, 2930, 2841, 1719, 1605, 1588, 1557, 1467, 1429, 1326, 1300, 1254, 1230, 

1211, 1174, 1154, 1121, 1108, 1095, 1062, 1042, 1026, 987, 953, 920, 883, 863, 831, 811, 792, 752, 

706, 689, 664, 652, 605. HR-MS calc. for C19H13BrO3: 369.0121; found: 369.0118 [M+H]+ (ESI-

HRMS). 
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Synthesis of methyl 1-oxo-2-((4-(trifluoromethyl)phenyl)ethynyl)-2,3-dihydro-1H-indene-2-

carboxylate (270) 

Using the general procedure GPD, compound 270 was prepared from 2,3-

dihydro-1-oxo-1H-Indene-2-carboxylic acid methyl ester (81 mg, 

0.43 mmol, 1.00 equiv.), Cs2CO3 (151 mg, 0.47 mmol, 1.10 equiv.) and 

238c (323 mg, 0.65 mmol, 1.50 equiv.) in dry DCE (6 mL). The reaction 

was carried out at 60 °C for 12 h. After flash chromatography using 

(hexane/EtOAc : 15/1) compound 270 was obtained as a yellow oil 

(109 mg, 74 %). 1
H NMR (300 MHz, CDCl3) δ = 7.88 – 7.82 (m, 1 H), 

7.68 (ddd, J = 7.7, 7.2, 1.2 Hz, 1 H), 7.54 (s, 4 H), 7.52 – 7.50 (m, 1 H), 7.45 (ddd, J = 7.9, 7.2, 0.9 

Hz, 1 H), 4.03 (d, J = 17.1 Hz, 1 H), 3.82 (s, 3 H), 3.62 ppm (d, J = 17.2 Hz, 1 H). 13
C NMR (126 

MHz, CDCl3) δ = 195.8, 168.3, 152.2, 136.1, 133.2, 132.3, 130.3 (q, J = 32.5 Hz), 128.4, 126.5, 126.3, 

125.9, 125.1 (q, J = 3.8 Hz), 122.8, 88.0, 82.6, 56.1, 54.0, 41.0 ppm. 19
F NMR (282 MHz, CDCl3) δ = 

-62.87 ppm. IR (ATR):    (cm-1)  = 2953, 2143, 1721, 1607, 1437, 1320, 1263, 1235, 1212, 1165, 

1121, 1104, 1063, 1014, 919, 842, 751, 702, 689. HR-MS calc. for C20H13O238f3: 358.0817; found: 

358.0822 [M]+ (EI-HRMS). 

Synthesis of methyl 2-((4-fluorophenyl)ethynyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (271) 

Using the general procedure GPD, compound 271 was prepared from 2,3-

dihydro-1-oxo-1H-Indene-2-carboxylic acid methyl ester (81 mg, 

0.43 mmol, 1.00 equiv.), Cs2CO3 (151 mg, 0.47 mmol, 1.10 equiv.) and 

238d (291 mg, 0.65 mmol, 1.50 equiv.) in dry DCE (6 mL). The reaction 

was carried out at 60 °C for 12 h. After flash chromatography using 

(hexane/EtOAc : 15/1) compound 271 was obtained as a yellow oil 

(87.0 mg, 65 %). 1
H NMR (300 MHz, CDCl3) δ = 7.81 (qd, J = 7.7, 0.7 Hz, 

1 H) , 7.66 (dt, J = 7.6, 1.2 Hz, 1 H), 7.50 (dt, J = 7.6, 0.9 Hz, 1 H), 7.46-7.39 (m, 3 H), 6.95 (tt, J = 

8.7, 2.3, 2 H), 4.00 (d, J = 17.1 Hz, 1 H), 3.81 (s, 3 H), 3.60 ppm (d, J = 17.1 Hz, 1 H). 13
C NMR (75 

MHz, CDCl3) δ = 196.2, 168.7, 164.3, 161.0, 152.3, 136.1, 134.0 (d, J = 8.3 Hz), 133.4, 128.3, 126.5, 

125.9, 118.5 (d, J = 3.6 Hz), 115.5 (d, J = 22.5 Hz, 85.1 (d, J = 2.0 Hz), 82.9, 60.4, 56.0, 53.8, 41.1, 

21.1, 14.3. ppm. IR (ATR):    (cm-1)  = 3073, 2953, 1718, 1655, 1600, 1589, 1505, 1476, 1464, 1433, 

1405, 1327, 1299, 1212, 1174, 1154, 1093, 1060, 1013, 990, 954, 919, 884, 863, 836, 818, 800, 790, 

818, 800, 790, 750, 688, 636, 750, 688, 636. HR-MS calc. for C19H1238fO3: 326.1187; found: 326.1183 

[M+NH4]
+ (ESI-HRMS). 
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Synthesis of methyl 2-((3-chlorophenyl)ethynyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (272) 

Using the general procedure GPD, compound 23 was prepared from 2,3-

dihydro-1-oxo-1H-Indene-2-carboxylic acid methyl ester (81 mg, 

0.43 mmol, 1.00 equiv.), Cs2CO3 (151 mg, 0.47 mmol, 1.10 equiv.) and 

238b (302 mg, 0.65 mmol, 1.50 equiv.) in dry DCE. The reaction was 

carried out at 60 °C for 12 h. After flash chromatography using 

(hexane/EtOAc : 15/1) compound 272 was obtained as a yellow oil 

(113 mg, 81 %). 1
H NMR (300 MHz, CDCl3) δ = 7.88 – 7.83 (m, 1 H), 7.75 – 7.63 (m, 1 H), 7.53 (dt, 

J = 7.8, 0.9 Hz, 1 H), 7.48 – 7.42 (m, 2 H), 7.33 (dt, J = 7.4, 1.5 Hz, 1 H), 7.21 (ddd, J = 8.0, 7.4, 0.5 

Hz, 1 H), 4.03 (d, J = 17.2 Hz, 1 H), 3.83 (s, 3 H), 3.61 ppm (d, J = 17.6 Hz, 1 H). 13
C NMR (75 

MHz, CDCl3) δ = 195.9, 168.4, 152.1, 136.1, 134.0, 133.2, 131.9, 130.1, 129.4, 128.8, 128.3, 126.5, 

125.8, 124.1, 86.7, 82.5, 56.0, 53.9, 41.0 ppm. IR (ATR):    (cm-1)  = 3646, 3562, 3439, 3066, 3035, 

2953, 2927, 2847, 1719, 1605, 1590, 1560, 1474, 1463, 1431, 1409, 1328, 1294, 1262, 1231, 1211, 

1174, 1155, 1095, 1074, 1062, 1018, 996, 954, 926, 883, 852, 820, 786, 767, 751, 717, 680, 602. HR-

MS calc. for C19H13ClO3: 325.0630; found: 325.0626 [M]+ (ESI-HRMS). 

Synthesis of methyl 1-oxo-2-((triisopropylsilyl)ethynyl)-2,3-dihydro-1H-indene-2-carboxylate (273) 

Using the general procedure GPD, compound 273 was prepared from 2,3-

dihydro-1-oxo-1H-Indene-2-carboxylic acid methyl ester (81.8 mg, 

0.43 mmol, 1.00 equiv.), Cs2CO3 (151 mg, 0.47 mmol, 1.10 equiv.) and 238f 

(267 mg, 0.52 mmol, 1.20 equiv.) in dry DCM (6 mL). The reaction was 

carried out at RT for 12 h. After flash chromatography using (hexane/EtOAc : 

15/1) compound 273 was obtained as a yellow oil (86.0 mg, 93%). 1
H NMR (300 MHz, CDCl3) δ = δ 

7.80 (qd, J = 7.6, 0.7 Hz, 1 H), 7.64 (dt, J = 7.6, 1.3 Hz, 1 H), , 7.47 (qd, J = 7.8, 0.9 Hz, 1 H), 7.40 

(qt, J = 7.5, 9.0 Hz, 1 H), 3.91 (d, J = 17.4 Hz, 1 H), 3.75 (s, 3 H), 3.47 (d, J = 17.4 Hz, 1 H), 1.03 

ppm (s, 21 H).13
C NMR (126 MHz, CDCl3) δ = 195.8, 168.7, 152.1, 135.8, 133.5, 128.2, 126.4, 125.8, 

103.2, 85.7, 56.5, 53.7, 18.8, 11.4. ppm. IR (ATR):    (cm-1)  = 2942, 2809, 2168, 1754, 1725, 1607, 

1590, 1463, 1433, 1249, 1210, 1176, 1134, 1093, 1070, 1017, 995, 966, 955, 921, 881, 827, 811, 774, 

751, 713, 675, 661, 635. HR-MS calc. for C22H30O3Si: 371.2037; found: 371.2034 [M+H]+ (ESI-

HRMS). 
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Synthesis of 2-phenyl-2-((triisopropylsilyl)ethynyl)-1H-indene-1,3(2H)-dione (274) 

Using the general procedure GPD, compound 274 was prepared from 2-

phenyl-1H-indene-1,3(2H)-dione (48.9 mg, 0.22 mmol, 1.00 equiv.), 

Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26  mmol, 

1.20 equiv.) in dry DCM (3 mL). The reaction was carried out at 60 °C for 

12 h. After flash chromatography using (hexane/EtOAc : 15/1) compound 

274 was obtained as a yellow oil (84.0 mg, 95%). 1
H NMR (300 MHz, CDCl3) δ = 78.13 (dd, J = 5.9, 

3.1 Hz, 2 H), 7.94 (dd, J = 5.9, 3.1 Hz, 2 H), 7.39-7.3 (m, 5 H), 1.06 ppm (m, 21 H). 13
C NMR (126 

MHz, CDCl3) δ = 194.9, 141.5, 136.4, 135.3, 128.9, 128.3, 127.4, 124.9, 101.0, 89.5, 59.9, 18.8, 

11.5 ppm. IR (ATR):    (cm-1) = 2931, 2881, 2360, 2348, 2170, 1755, 1735, 1709, 1585, 1498, 1460, 

1337, 1249, 1160, 1037, 1019, 997, 919, 880, 855, 759, 727, 695, 678, 581. HR-MS calc. for 

C26H30O2SiNa: 425.1902; found: 425.1632 [M+Na]+ (EI-HRMS). 

Synthesis of ethyl 2-benzyl-2-cyano-4-(triisopropylsilyl)but-3-ynoate (275) 

Using the general procedure GPD, compound 275 was prepared from α-

cyano-benzenepropanoic acid ethyl ester (29.0 mg, 0.22 mmol, 1.00 equiv.), 

Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26 mmol, 

1.20 equiv.) in dry DCM (3 mL). The reaction was carried out at RT for 

12 h. After flash chromatography using (n-Hexane/EtOAc 20/1) compound 275 was obtained as a 

yellow oil (38.0 mg, 70%). 1
H NMR (300 MHz, CDCl3) δ = 7.38-7.30 (m, 5 H), 4.27 (dd, J = 14.3, 

7.5 Hz, 2 H), 4.27 (dd, J = 17.8, 13.7 Hz, 2 H) , 3.40 ppm (m, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 

164.7, 133.2, 128.4, 115.8, 97.3, 90.3, 64.0, 44.3, 18.6, 13.96, 11.2 ppm. IR (ATR):    (cm-1) =2945, 

2890, 2863, 1742, 1703, 1495, 1463, 1453, 1389, 1381, 1366, 1276, 1236, 1162, 1098, 1070, 1059, 

1030, 1009, 997, 919, 906, 883, 853, 806, 772, 742, 706, 699, 678, 660, 627, 607. HR-MS calc. for 

C23H33NOSiNa: 406.2173; found: 406.2165 [M+Na]+ (ESI-HRMS). 
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Synthesis of N,4-dimethyl-N-((triisopropylsilyl)ethynyl)benzenesulfonamide (281) 

Using the general procedure GPD, compound 281 was prepared from N-

methyl-4-(methylbenzene)sulfonamide (40.8 mg, 0.22 mmol, 1.00 equiv.), 

Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26 mmol, 

1.20 equiv.) in dry DCM. The reaction was carried out at RT for 12 h. After 

flash chromatography using (hexane/EtOAc  : 8/1) compound 281 was 

obtained as a yellow oil (53.8 mg, 67 %). 1
H NMR (300 MHz, CDCl3) δ = 

7.80 (td, J = 8.3, 1.7 Hz, 2 H), 7.33 (d, J = 7.3 Hz, 2 H), 3.07 (s, 3 H), 2.45 (s, 3 H), 1.04 ppm (s, 21 

H). 13
C NMR (75 MHz, CDCl3) δ = 144.8, 133.5, 129.8, 128.0, 98.2, 67.6, 39.5, 21.8, 18.7, 11.0 ppm. 

HR-MS calc. for C24H33NO2SSiNa: 450.1893; found: 450.1444 [M+Na]+ (ESI-HRMS). Analytical 

data corresponded to those previously reported.163  

Synthesis of N,4-dimethyl-N-(phenylethynyl)benzenesulfonamide (282) 

Using the general procedure GPD, compound 282 was prepared from N-

methyl-4-(methylbenzene)sulfonamide (79.7 mg, 0.43 mmol, 1.00 equiv.), 

Cs2CO3 (151 mg, 0.47 mmol, 1.10 equiv.) and 238a (283 mg, 0.65 mmol, 

1.50 equiv.) in dry DCM. The reaction was carried out at RT for 12 h. After 

flash chromatography using (hexane/EtOAc : 8/1) compound 282 was 

obtained as a yellow oil (67.7 mg, 55 %). 1
H NMR (300 MHz, CDCl3) δ = 

7.76 (td, J = 8.3, 1.5 Hz, 2 H), 7.30-7.17 (m, 7 H), 3.06 (s, 3 H), 2.37 ppm (s, 3 H). 13
C NMR 

(75 MHz, CDCl3) δ = 144.9, 133.4, 131.5, 129.9, 128.4, 127.9, 122.8, 84.1, 77.2, 69.2, 39.4, 21.7 ppm. 

IR (ATR):    (cm-1) =2940, 2890, 2964, 2172, 1747, 1710, 1695, 1589, 1456, 1383, 1362, 1348, 1332, 

1310, 1277, 1255, 1245, 1232, 1224, 1200, 1189, 1142, 1126, 1105, 1061, 1051, 1020, 995, 937, 882, 

840, 805, 784, 768, 747, 692, 676, 662, 640. HR-MS calc. for C16H15NO2S: 286.0898; found: 

286.0896 [M+H]+ (ESI-HRMS). Analytical data corresponded to those previously reported.164 
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Synthesis of Ethyl 4-((4-methyl-N-((triisopropylsilyl)ethynyl)phenyl)sulfonamido)benzoate (283) 

Using the general procedure GPD, compound 283 was 

prepared from ethyl 4-((4-methylphenyl)sulfonamido)benzoate 

(67.7 mg, 0.22 mmol, 1.00 eq.), Cs2CO3 (78.0 mg, 0.24 mmol, 

1.10 eq.) and the dibenzothiophenium salt 238f (136 mg, 0.26 

mmol, 1.20 eq.) in dry DCM (3 mL). The reaction was carried 

out at RT for 12 h. After flash chromatography using 

(hexane/EtOAc 15/1) compound 283 was obtained as a 

colorless oil (63.7 mg, 55%). 1H NMR (300 MHz,CDCl3) δ = 8.00 (td, J = 8.7, 2.2 H, 2 H), 7.56 (td, J 

= 8.4, 2.1 Hz, 2 H), 7.41 (td, J = 8.7, 2.6 Hz, 2 H), 7.24 (d, J = 8.4 Hz, 2 H), 4.37 (q, J = 7.0 Hz, 2 H), 

2.42 (s, 3 H), 1.38 (t, J = 7.1 Hz 3 H), 1.06  ppm (s, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 165.7, 

145.3, 142.8, 139.9 130.4, 129.6, 128.2, 125.0, 95.6, 71.4, 61.4, 21.9, 18.8, 17.9, 14.5, 12.5, 11.6 

 ppm. IR (ATR):    (cm-1) = 2941, 2923, 2863, 2160, 2154, 1504, 1464, 1370, 1253, 1186, 1169, 1088, 

1029, 1017, 995, 905, 881, 836, 807, 791, 733, 703, 791, 733, 703, 676, 664, 649, 574, 550, 524. HR-

MS for C27H37NO4SSi: calc.: 500.2285; found: 500.2281 [M+H]+ (ESI-HRMS). 

Synthesis of N-(4-methoxyphenyl)-4-methyl-N-((triisopropylsilyl)ethynyl)benzenesulfonamide (284) 

Using the general procedure GPD, compound 284 was prepared 

from the N-(4-methoxyphenyl)-4-methylbenzenesulfonamide 

(64.0 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 0.24 mmol, 

1.10 equiv.) and 238f (136 mg, 0.26 mmol, 1.20 equiv.) in dry 

DCM (3 mL). The reaction was carried out at RT for 12 h. After 

flash chromatography using (hexane/EtOAc 15/1 to 10:1) 

compound 284 was obtained as a colorless oil (50.0 mg, 50%). 

1
H NMR (300 MHz, CDCl3) δ = 7.56 (td, J = 8.2, 2.1 Hz, 2 H), 7.25 (qd, J = 8.0, 0.7 Hz, 2 H), 7.14 

(td, J = 9.2, 2.3 Hz, 2 H), 6.82 3.80 (s, 3 H), 2.44 (s, 3 H), 1.05 ppm (s, 21 H). 13
C NMR (75 MHz, 

CDCl3) δ = 145.2, 138.8, 138.1, 132.6, 129.5, 128.3, 127.6, 95.9, 93.3, 70.4, 21.7, 18.6, 11.4 ppm. IR 

(ATR):    (cm-1) = 2958, 2941, 2922, 2890, 2863, 2157, 1597, 1585, 1505, 1464, 1444, 1420, 1399, 

1370, 1356, 1302, 1254, 1209, 1186, 1169, 1138, 1118, 1106, 1087, 1072, 1029, 1018, 995, 970, 944, 

905, 881, 836, 808, 790, 733, 703, 675, 665, 648, 603. HR-MS calc. for C25H35NO3SSiNa: 458.2180; 

found: 458.2174 [M+Na]+ (ESI-HRMS). 
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Synthesis of N-(4-iodophenyl)-4-methyl-N-((triisopropylsilyl)ethynyl)benzenesulfonamide (285) 

Using the general procedure GPD, compound 285 was prepared from 

the N-(4-iodophenyl)-4-methylbenzenesulfonamide (122.0 mg, 

0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) 

and 238f (136 mg, 0.26 mmol, 1.20 equiv.) in dry DCM (3 mL). The 

reaction was carried out at 60 °C for 12 h. After flash chromatography 

using (hexane/EtOAc : 15/1) compound 285 was obtained as a white 

solid (73.0 mg, 62%). 1
H NMR (300 MHz, CDCl3) δ = 7.64 (td, J = 8.5, 2.6 Hz, 2 H), 7.56 (td, J = 

8.3, 2.3 Hz, 2 H), 7.26 (d, J = 8.0 Hz, 2 H), 7.03 (td, J = 8.5, 2.6 Hz, 2 H), 2.43 (s, 3 H), 1.05 ppm (m, 

21 H). 13
C NMR (75 MHz, CDCl3) δ = 145.3, 138.9, 138.3, 132.7, 129.6, 128.4, 127.7, 96.0, 93.4, 

70.5, 21.8, 18.7, 11.5 ppm. IR (ATR):    (cm-1) =2958, 2941, 2921, 2889, 2863, 2157, 1597, 1585, 

1505, 1464, 1444, 1370, 1356, 1302, 1254, 118, 1106, 1088, 1072, 1029, 1018, 995, 905, 881, 836, 

808, 7890, 733, 703, 675, 665, 648, 603. HR-MS calc. for C24H32NO2SSiINa: 576.0860; found: 

576.0848 [M+Na]+ (ESI-HRMS). 

Synthesis of 4-methyl-N-phenyl-N-((triisopropylsilyl)ethynyl)benzenesulfonamide (286) 

Using the general procedure GPD, compound 286 was prepared from N-

phenyl- tolylsulfonamide (54.4 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 

(78.0 mg, 0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26 mmol, 

1.20 equiv.) in dry DCM (3 mL). The reaction was carried out at RT for 12 

h. After flash chromatography using (hexane/EtOAc : 15/1) compound 286 

was obtained as a yellow oil (63.3 mg, 67 %). 1
H NMR (300 MHz, CDCl3) 

δ = 7.56 (td, J = 8.3, 2.0 Hz), 7.35-7.27 (m, 5 H), 7.26-7.22 (m, 2 H), 2.43 (s, 3 H), 1.05 ppm (s, 21 H). 

13
C NMR (126 MHz, CDCl3) δ = 144.9, 138.9, 133.1, 129.4, 129.0, 128.4, 128.0, 126.0, 96.7, 69.8, 

21.9, 18.9, 11.7 ppm. IR (ATR):    (cm-1) = 2942, 2867, 2361, 2163, 1709, 1591, 1486, 1461, 1368, 

1291, 1250, 1171, 1133, 1090, 1073, 1039, 1017, 996, 923, 896, 881, 812, 773, 713, 661, 643. HR-

MS calc. for C24H33O2SSiNa: 450.1893; found: 450.1883 [M+Na]+ (ESI-HRMS). Analytical data 

corresponded to those previously reported.165  
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Synthesis of N-phenyl-N-((triisopropylsilyl)ethynyl)-2,3-dihydrobenzo[b][1,4]dioxine-6-sulfonamide 

(287) 

Using the general procedure GPD, compound 287 was prepared from 

N-phenyl-2,3-dihydrobenzo[b][1,4]dioxine-6-sulfonamide (64.0 mg, 

0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) 

and 238f (136 mg, 0.26 mmol, 1.20 equiv.) in dry DCM (3 mL). The 

reaction was carried out at RT for 12 h. After flash chromatography 

using (hexane/EtOAc 15/1 to 10:1) compound 287 was obtained as a 

white solid (64.0 mg, 62%). 1
H NMR (300 MHz, CDCl3) δ = 7.36-7.26 (m, 6 H), 7.11 (dd, J = 8.9, 

2.1 HZ), 6.87 (d, J = 8.9 Hz, 1 H), 4.33- 4.30 (m, 2 H), 4.27-4.25 (m, 2 H), 1.06 (s, 21 H). 13
C NMR 

(126 MHz, CDCl3) = 148.5, 143.3, 139.0, 129.0, 128.2, 128.0, 126.0, 122.1, 118.3, 117.5, 96.8, 69.9, 

64.8, 64.2, 18.9, 11.6 ppm. IR (ATR):    (cm-1) = 2941, 2889, 2863, 2161, 1591, 1581, 1489, 1460, 

1420, 1373, 1319, 1285, 1253, 1204, 1168, 1126, 1105, 1075, 1063, 1047, 1027, 1017, 995, 920, 900, 

878, 814, 768, 711, 697, 687, 677, 662, 645, 627, 611. HR-MS calc. for C25H33NO4SSiNa: 494.1780; 

found: 494.1792 [M+Na]+ (ESI-HRMS). 

Synthesis of 1-((1R,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-N-phenyl-N-((triisopropyl-

silyl)ethynyl)methanesulfonamide (288) 

Using the general procedure GPD, compound 288 was prepared from 1-

((1R,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-N-phenylmethane-

sulfon-amide (68.0 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 

0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26 mmol, 1.20 equiv.) in dry 

DCM (3 mL). The reaction was carried out at 60 °C for 12 h. After flash 

chromatography using (hexane/EtOAc 15/1 to 10:1) compound 288 was 

obtained as a white solid (64.0 mg, 60%). 1H NMR (300 MHz, CDCl3) δ = 

7.58-7.55 (m, 2 H), 7.45-7.39 (m, 2 H), 7.32 (tt, J = 7.7, 1.3 Hz, 1 H), 3.79 (d, J = 13.6 Hz, 1 H) , 3.27 

(d, J = 13.6 Hz, 1 H), 2.52 (dt, J = 13.6, 3.3 Hz, 1 H), 2.38 (td, J = 19.5, 4.4 Hz, 1 H), 2.11-1.95 (m, 

2 H), 1.92 (d, J = 19.5 H, 1 H), 1.64-1.55 (m, 1 H), 1.44-1.36  (dt, J = 8.7, 3.9 Hz, 1 H),  1.18-1.05 (m, 

24 H, 21 H), 0.87 (s,.3 H) ppm. 13
C NMR (75 MHz, CDCl3) δ =  214.3, 138.8, 129.4, 128.0, 125.2, 

96.2, 71.0, 58.5, 47.9, 46.6, 43.1, 42.5, 27.0, 25.5, 20.2, 20.0, 18.8, 11.5 ppm. IR (ATR):    (cm-1) = 

2954, 2941, 2888, 2823, 2162, 1739, 1591, 1489, 1456, 1414, 1397, 1369, 1296, 1281, 1260, 1245, 

1208, 1167, 1130, 1106, 1070, 1051, 1028, 1011, 997, 972, 920, 893, 881, 855, 819, 772, 743, 704, 

687, 678, 662, 688, 678, 662, 640, 625, 614. HR-MS calc. for C27H41NO3SSiNa: 486.2504; found: 

486.2486 [M+Na]+ (ESI-HRMS).  
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Synthesis of 1-((1R,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-N-phenyl-N-(phenylethynyl)-

methanesulfonamide (289) 

Using the general procedure, compound 289 was prepared from 1-((1R,4R)-

7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)-N-phenylmethanesulfonami-

de (79.7 mg, 0.22 mmol, 1.00 eq.), Cs2CO3 (151 mg, 0.24 mmol, 1.10 eq.) 

and the dibenzothiophenium salt 3a (115 mg, 0.26 mmol, 1.20 eq.) in dry 

DCM (3 mL). The reaction was carried out at RT for 12 h. After flash 

chromatography using (hexane/EtOAc 12/1 to 10/1) compound 289 was 

obtained as a yellow oil (50.1 mg, 56 %). 1
H NMR (500 MHz, CDCl3) δ = 

7.64-7.62 (m, 2 H), 7.47-7.43 (m, 4 H), 7.36 (tt, J = 7.34, 1.8 Hz, 1 H), 7.34-7.30 (m, 3 H), 3.85 (d, J = 

15.3 Hz, 1 H), 3.38 (d, J = 15.3 Hz, 1 H), 2.52 (dt, J = 12.7, 4.2 Hz, 1 H), 2.40 (td, J = 18.4, 4.2 Hz, 

1 H), 2.12-2.03 (m, 2 H), 1.94 (d, J = 17.4 Hz, 1 H), 1.66 (q, J = 4.4 Hz, 1 H), 1.42 (ddd, J = 9.8, 3.3, 

3.3 Hz, 1 H), 1.16 (s, 3 H), 0.89 ppm (s, 3 H). 13
C NMR (126 MHz, CDCl3) δ =214.4, 138.9, 131.6, 

129.6, 128.4, 128.2, 125.5, 122.6, 82.4, 71.5, 58.6, 47.3, 43.2, 42.6, 27.0, 25.5, 20.3, 19.9 ppm. IR 

(ATR):    (cm-1)  = 2957, 2888, 2864, 2238, 2161, 1742, 1684, 1591, 1489, 1471, 1455, 1443, 1415, 

1392, 1369, 1338, 1300, 1281, 1262, 1201, 1165, 1130, 1106, 1081, 1066, 1052, 1025, 998, 966, 920, 

894, 854, 817, 784, 774, 754, 689, 641, 598, 571, 554, 533, 524, 518. HR-MS for C24H25 NO3S: calc.: 

406.1482; found: 406.1482 [M-H]- (ESI-HRMS).  

Synthesis of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)-N-((triisopropylsilyl)ethynyl)benzenesulfon-

amide (290) 

Using the general procedure, compound 290 was prepared from Sulfadimidine 

(55.1 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) 

and the dibenzothiophenium salt 238f (136 mg, 0.26 mmol, 1.20 equiv.) in dry 

DCM (3 mL). The reaction was carried out at rt for 12 h. A saturated aqueous 

solution of NH4Cl was added. After flash chromatography using 

(DCM/methanol 25:1) compound 290 was obtained as a white solid (59.0 mg, 

58%). 1
H NMR (300 MHz, CDCl3) δ = 7.96 (td, J = 8.7, 2.7 Hz, 2 H), 6.67 (s, 

1 H), 6.63 (td, J = 8.7, 2.7 Hz, 2 H), 4.20 (s, 2 H), 2.36 (s, 6 H), 1.12 (s, 21 H) 

ppm. 13
C NMR (126 MHz, CDCl3) δ =  168.1, 158.0, 151.7, 132.0, 126.7, 116.1, 113.2, 92.7, 74.7, 

23.8, 18.9, 11.7 ppm. IR (ATR):    (cm-1) = 2954, 2941, 2888, 2823, 2162, 1739, 1591, 1489, 1456, 

1414, 1397, 1369, 1296, 1281, 1260, 1245, 1208, 1167, 1130, 1106, 1070, 1051, 1028, 1011, 997, 

972, 920, 893, 881, 855, 819, 772, 743, 704, 687, 678, 662, 688, 678, 662, 640, 625, 614, 597, 625, 

614, 597, 530, 521. HR-MS for C23H34N4Si1: calc.: 395.2626; found: 395.2626 [M+H]+ (ESI-HRMS).  
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Synthesis of 2-((triisopropylsilyl)ethynyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (291) 

Using the general procedure GPD, compound 291 was prepared from 1H-

benzoisoquinoline-1,3(2H)-dione (43.4 mg, 0.22 mmol, 1.00 equiv.), 

Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) and 238f (136 mg, 0.26 mmol, 

1.20 equiv.) in dry DCM (3 mL). The reaction was carried out at 60 °C 

for 12 h. After flash chromatography using (n-Hexane/EtOAc : 10/1) 

compound 291 was obtained as a white solid (50.0 mg, 60%). 1
H NMR 

(300 MHz, CDCl3) δ = 8.66 (dd, J = 7.4, 1.1 Hz, 2 H), 8.26 (dd, J = 8.3, 1.1 Hz, 2 H), 7.79 (dd, J = 

8.3, 7.4 HZ, 2 H), 1.20 ppm (m, 21 H). 13
C NMR (126 MHz, CDCl3) δ = 162.8, 134.9, 132.0, 131.8, 

127.1, 127.2, 121.6, 89.0, 80.5, 77.2, 18.9, 11.6 ppm. IR (ATR):    (cm-1) = 2955, 2940, 2924, 28889, 

2862, 2722, 2364, 2353, 2333, 2209, 2192, 2170, 2162, 2148, 1726, 1692, 1635, 1625, 1583, 1559, 

1540, 1512, 1489, 1459, 1512, 1489, 1459, 1434, 1409, 1370, 1351, 1335, 1254, 1231, 1223, 1173, 

1142, 1104, 1081, 1047, 1015, 993, 940, 908, 892, 880, 839, 798, 767, 729, 697, 677, 646, 623, 614. 

HR-MS calc. for C23H27NO2Si: 378.1884; found: 378.1893 [M+H]+ (ESI-HRMS). 

Synthesis of 2-((triisopropylsilyl)ethynyl)isoindoline-1,3-dione (292) 

Using the general procedure GPD, compound 292 was prepared from the 

compound 238f (33.0 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 (78.0 mg, 

0.24 mmol, 1.10 equiv.) and the dibenzothiophenium salt 292 (136 mg, 

0.26 mmol, 1.20 equiv.) in dry DCM (3 mL). The reaction was carried 

out at RT for 12 h. After flash chromatography using (hexane/EtOAc 

15/1) compound 292 was obtained as a white solid (24.0 mg, 33%). 1
H NMR (300 MHz, Chloroform-

d) δ = 7.93 (dd, J = 6.9, 2.9 Hz, 2 H), 7.82 (dd, J = 6.9, 2.9 Hz, 2 H), 1.16 (sbr, 21 H) ppm.13C NMR 

(126 MHz, Chloroform-d) δ = 165.1, 135.1, 131.2, 124.2, 86.2, 76.6, 18.6, 11.2 ppm. IR 

(ATR):    (cm-1) = 2940, 2890, 2864, 2172, 1747, 1710, 1695, 1589, 1456, 1332, 1309, 1277, 1255, 

1245, 1232, 1224, 1200, 1189, 1132, 1126, 1105, 1061, 1051, 1020, 995, 937, 882, 840, 805, 784, 

768, 747, 693, 676, 662, 640, 676, 662, 640, 597, 573, 528. 
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Synthesis of triphenyl((triisopropylsilyl)ethynyl)phosphonium trifluoromethanesulfonate (303) 

To a solution of triphenylphospine (116 mg, 0.44 mmol, 1.00 equiv.) in DCM 

(6 ml) was added compound 238f (237 mg, 0.46 mmol, 1.00 equiv.) and the 

resulting reaction mixture was stirred for 12 h at RT. Then the solvent was 

removed in vacuo and the residue washed with ether (3 x 10 mL) and pentane (2 

x 10 ml). The remaining solid was dried in vacuo to afford the compound 303 as white solid (231 mg, 

88%).1H NMR (300 MHz, CD2Cl2) δ = 7.96-7.89 (mC 3 H), 7.80-7.74 (m, 9 H), 7.71-7.68 (m, 3 H) 

ppm. 13
C NMR (101 MHz, CD2Cl2) δ = 136.3 (d, J = 3.1 Hz), 133.2 (d, J = 12.6 Hz), 130.9 (d, J = 

14.2  Hz), 118.0 (J = 100.2 Hz), 86.0 (J = 159.9 Hz), 18.5, 11.3 ppm. 19
F NMR (282 MHz, CD2Cl2) δ 

= –76.97 ppm. IR (ATR):    (cm-1) = 2953, 2868, 2125, 1460, 1439, 1264, 1223, 1179, 1146, 1109, 

1067, 1030, 995, 882, 824, 764, 750, 726, 705, 689, 665, 635. HR-MS calc. for C29H36PSi: 443.2318; 

found: 443.2315 [M+H]+ (ESI-HRMS). 

Synthesis of triisopropyl((4-methoxyphenyl)buta-1,3-diyn-1-yl)silane (304) 

To a solution of the alkyne (29.0 mg, 0.22 mmol, 1.00 equiv.) in THF 

(3 mL) was added nBuLi (2.5 M, 0.1 mL, 0.23 mmol, 1.05 equiv.) at –

78 °C. The solution was warmed up to 0 °C and stirred at this 

temperature for 5 min. Then the solution was cooled back to –78 °C 

and dibenzothiophenium salt 238f (136 mg, 0.26 mmol, 1.20 equiv.) 

was added to the reaction mixture. The reaction mixture was warmed up slowly to rt and stirred for 

another 12 h at this temperature. The reaction mixture was extracted with ethyl acetate (3 x 20 mL) 

and the combined organic phases were dried over MgSO4. Column chromatography (pure hexane) 

afford the desired product 304 as yellow oil. (13.0 mg, 4.25 µmol, 19%).1H NMR (300 MHz, 

Chloroform-d) δ = 7.46 (td, J = 8.9, 2.1 Hz, 2 H), 6.84 (td, J = 8.9 Hz, 2 H), 3.81 (s, 3 H), 1.11 (s, 

21 H) ppm. 13
C NMR (126 MHz, Chloroform-d) δ = 160.4, 134.4, 114.2, 113.5, 89.9, 87.2, 75.9, 73.7, 

55.5, 18.8, 11.6 ppm. IR (ATR):    (cm-1) = 3003, 2942, 2891, 2865, 2363, 2200, 2097, 1716, 1603, 

1567, 1508, 1462, 1442, 1416, 1384, 1365, 1295, 1250, 1172, 1105, 1097, 1071, 1028, 1017, 997, 

919, 881, 829, 802, 673, 641, 590, 578, 533. HR-MS for C20H28OSi: calc.: 312.1909; found: 312.1908 

[M]+ (ESI-HRMS). Analytical data corresponded to those previously reported.166  
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Synthesis of Labeled Compounds 

Synthesis of labeled (4-methoxybenzyl)(phenylethynyl)sulfane (256*) 

Using the general procedure GPD, compound 256* was prepared 

from (4-methoxyphenyl)methanethiol (34.0 mg, 0.22 mmol, 

1.00 equiv.), Cs2CO3 (78 mg, 0.24 mmol, 1.10 equiv.) and 238a* 

(115 mg, 0.65 mmol, 1.20 equiv.) in dry DCM (3 mL). The reaction 

was carried out at RT for 12 h. After flash chromatography using (hexane/EtOAc 5/1) compound 256* 

was obtained as a yellow oil (31.2 mg, 56 %). 1
H NMR (500 MHz, CDCl3) δ = 7.36 7.28 (m, 7 H), 

6.89 (td, J = 8.6, 3.3 Hz, 2 H) , 4.00 (s, 2 H), 3.81 ppm (s, 3 H). 13C NMR (126 MHz, CDCl3) δ = 

159.4, 131.5, 130.4, 128.7, 128.4, 128.1, 123.6, 114.1 (enriched, 100%), 94.6, 79.6, 55.4, 40.2 ppm. 

IR (ATR):    (cm-1) = 3059, 3030, 2997, 2954, 2930, 2906, 2833, 2164, 1608, 1595, 1583, 1572, 1509, 

1486, 1462, 1440, 1421, 1317, 1201, 1248, 1236, 1205, 1174, 1126, 1105, 1068, 1030, 1000, 912, 

882, 863, 828, 752, 727, 689, 653, 635. HR-MS calc. for C16H14OS: 255.0838; found: 255.0838 

[M+H]+ (ESI-HRMS). 

Synthesis of labeled methyl 1-oxo-2-(phenylethynyl)-2,3-dihydro-1H-indene-2-carboxylate (232*) 

Using the general procedure GPD, compound 232* was prepared from methyl 

1-oxo-2,3-dihydro-1H-indene-2-carboxylate (38.0 mg, 0.20 mmol, 

1.00 equiv.), Cs2CO3 (71.7 mg, 0.47 mmol, 1.10 equiv.) and the 

dibenzothiophenium salt 238a* (130.5 mg, 0.65 mmol, 1.50 equiv.) in dry 

DCE (3 mL). The reaction was carried out at 60 °C for 12 h. After flash 

chromatography using (hexane/EtOAc 15/1) compound 232* was obtained as 

a yellow oil (36.0 mg, 62 %). 1
H NMR (300 MHz, CDCl3) δ = 7.84 (d, J = 7.9 Hz, 1 H), 7.67 (dd, J = 

8.0, 7.5 Hz, 1 H), 7.51 (d, J = 7.5 Hz, 1 H), 7.46-7.41 (m, 3 H), 7.29-7.22 (m, 3 H).13
C NMR (75 

MHz, CDCl3) = 196.5, 168.8, 152.4, 136.1, 133.4, 132.1, 128.6, 128.35, 126.6, 126.0, 122.5, 85.4 

(enriched, 57%), 84.0 (enriched, 43%), 56.1, 54.0, 41.2. ppm. IR (ATR):    (cm-1)  = 3439, 3054, 3034, 

3021, 2952, 2846, 1718, 1605, 1589, 1574, 1536, 1514, 1490. 1476, 1463, 1432, 1340, 1326, 1300, 

1230, 1211, 1172, 1154, 1094, 1066, 1027, 1019, 990, 954, 918, 883, 863, 829, 809, 793, 752, 689, 

623, 601; HR-MS calc. for C19H14O3: 291.1016; found: 291.1012 [M]+ (ESI-HRMS). 
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Synthesis of labeled 4-methyl-N-phenyl-N-(phenylethynyl)benzenesulfonamide (286*) 

Using the general procedure GPD, compound 286* was prepared from 4-

methyl-N-phenylbenzenesulfonamide (54.4 mg, 0.22 mmol, 1.00 equiv.), 

Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) and 238a* (114 mg, 0.26 mmol, 

1.20 equiv.) in dry DCM (3 mL). The reaction was carried out at RT for 12 

h. After flash chromatography using (hexane/EtOAc 15/1) compound 286* 

was obtained as a yellow solid (45.0 mg, 58 %). 1
H NMR (300 MHz, 

CDCl3) δ = 7.55 (td, J = 8.3, 2.1 Hz, 2 H), 7.33-7.18 (m, 12 H), 2.37 ppm (s, 3 H). 13
C NMR (75 

MHz, CDCl3) δ = 145.1, 142.2, 139.1, 133.1, 131.6, 129.6, 129.2, 128.4, 128.4, 128.1, 126.4, 122.8, 

83.1 (enriched, 100%), 77.2, 70.6, 21.9 ppm. IR (ATR):    (cm-1)  =3062, 3033, 2953, 2922, 2868, 

2238, 2197, 1705, 1665, 1593, 1489, 1454, 1593, 1489, 1454, 1443, 1402, 1369, 1307, 1293, 1257, 

1168, 1120, 1087, 1068, 1024, 1004, 972, 917, 886, 836, 812, 781, 754, 702, 689, 681, 652, 611. HR-

MS calc. for C21H17NOS: 348.1053; found: 348.1056 [M+H]+ (ESI-HRMS). 

Synthesis of labeled triisopropyl(((4-methoxybenzyl)thio)ethynyl)silane (255*) 

Using the general procedure, compound 255* was prepared from 

(4-methoxyphenyl)methanethiol (30.9 mg, 0.22 mmol, 

1.00 equiv.), Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) and the 

238f* (136 mg, 0.26 mmol, 1.20 equiv.) in dry DCM (3 mL). The 

reaction was carried out at RT for 12 h. After flash 

chromatography using (hexane/EtOAc : 20/1) compound 255* was obtained as a yellow oil (51.0 mg, 

70%). 1
H NMR (300 MHz, CDCl3) δ = 7.29 (td, J = 8.6, 2.9 Hz, 2 H), 6.87 (td, J = 8.6, 2.9 Hz, 2 H), 

3.94 (s, 2 H), 3.82 (s, 3 H), 1.07 (s, 21 H) ppm. 13
C NMR (126 MHz, CDCl3) δ = 159.0, 130.1, 128.6, 

113.9, 98.5 (enriched, 76%), 95.5 (enriched, 24%), 55.3, 40.2, 18.6, 11.6 ppm. IR (ATR):    (cm-1) = 

2942, 2891, 2864, 2087, 1610, 1512, 1463, 1441, 1302, 1251, 1237, 1175, 1037, 1017, 996, 882, 856, 

830, 675, 657. HR-MS calc. for C19H30OSSi: 335.1852; found: 335.1859 [M+H]+ (EI-HRMS).  



 

131 

 

Synthesis of labeled methyl 1-oxo-2-((triisopropylsilyl)ethynyl)-2,3-dihydro-1H-indene-2-carboxylate 

(273*) 

Using the general procedure GPD, compound 273* was prepared from methyl 

1-oxo-2,3-dihydro-1H-indene-2-carboxylate (41.8 mg, 0.22 mmol, 

1.00 equiv.), Cs2CO3 (78 mg, 0.24 mmol, 1.10 equiv.) and 238f* (136 mg, 

0.24 mmol, 1.20 equiv.) in dry DCM (6 mL). The reaction was carried out at 

RT for 12 h. After flash chromatography using (hexane/EtOAc : 15/1) 

compound 273* was obtained as a yellow oil (53.0 mg, 78 %). 1
H NMR (300 MHz, CDCl3) δ = 7.81 

(d, J = 7.5 Hz, 1 H), 7.65 (dt, J = 8.3, 1.2 Hz, 1 H), 7.48 (d, J = 7.3 Hz, 1 H), 7.42 (t, J = 7.5 Hz, 1 H), 

3.94 (d, J = 17.3 Hz, 1 H), 3.77 (s, 3 H), 3.50 (d, J = 17.3 Hz, 1 H), 1.04 (s, 21 H). 13
C NMR (126 

MHz, CDCl3) δ = 195.9, 168.7, 152.1, 135.8, 133.4, 128.1, 126.4, 125.7, 103.2 (enriched, minor), 85.7 

(enriched, major), 56.5, 53.7, 41.4, 18.8, 11.4 ppm. IR (ATR):    (cm-1)  = 2942, 2891, 2864, 2169, 

1754, 1724, 1607, 1590, 1463, 1433, 1384, 1366, 1325, 1201, 1250, 1210, 1196, 1176, 1154, 1096, 

1064, 1016, 995, 955, 920, 881, 826, 807, 792, 750, 676, 661, 637. HR-MS calc. for C22H30O3Si: 

335.1852; found: 335.1859 [M+H]+ (ESI-HRMS). 

Synthesis of labeled 4-methyl-N-phenyl-N-((triisopropylsilyl)ethynyl)benzenesulfonamide (281*) 

Using the general procedure, compound 281* was prepared from 4-methyl-

N-phenylbenzenesulfonamide (54.4 mg, 0.22 mmol, 1.00 equiv.), Cs2CO3 

(78.0 mg, 0.24 mmol, 1.10 equiv.) and 238f* (136 mg, 0.26 mmol, 

1.20 equiv.) in dry DCM (3 mL). The reaction was carried out at RT for 12 

h. After flash chromatography using (hexane/EtOAc 15/1) compound 

281*was obtained as a yellow oil (30.0 mg, 32 %). 1
H NMR (300 MHz, 

CDCl3) δ = 7.55 (td, J = 8.1, 1.5 Hz, 2 H), 7.34-7.24 (m, 5 H), 7.23 (d, J = 9.4 Hz, 2 H), 2.41 (s, 3 H), 

1.04 (s, 21 H). 13
C NMR (126 MHz, CDCl3) δ =  144.9, 138.9, 133.0, 129.4, 129.0, 128.4, 128.0, 

126.0, 96.7 (enriched, minor), 69.8 (enriched, major), 21.9, 18.8, 11.7. IR (ATR):    (cm-1)  = 2958, 

2939, 2923, 2888, 2862, 2165, 2129, 1591, 1488, 1455, 1367, 1304, 1291, 1261, 1176, 1167, 1132, 

1120, 1088, 1073, 1018, 996, 926, 891, 882, 812, 801. 771, 712, 702, 688, 680, 670, 654, 628, 583,. 

HR-MS calc. for C24H33O2SSi: 428.2074; found: 428.2077 [M+H]+ (ESI-HRMS). 
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5.4.2 Attempts towards metal catalyzed reactions 

Lewis acid catalysis 

General procedure E (GPE):  

To a solution of the indole (0.22 mmol, 1.00 equiv.) in the desired solvent (0.07 M) was added the 

catalyst system, the base (0.24 mmol, 1.10 equiv.) and the reagent (136 mg, 0.26 mmol, 1.20 equiv.). 

The reaction mixture was stirred at specified temperature for 12 h. Then the reaction mixture was 

filtered through a short pad of silica with ethyl acetate (around 100 mL) as eluent and subsequently the 

solvent was removed under reduced pressure. The residue was purified by flash chromatography and 

the resulting products were examined by NMR and mass spectroscopy.  

Synthesis of 1-((triisopropylsilyl)ethynyl)-1H-indole (337) 

Following the general procedure GPE: Indole (25.0 mg, 0.22 mmol, 1.00 equiv.), 

the catalyst system chloro(triphenylphosphine)gold(I) (10.0 mg, 0.02 mmol, 0.10 

equiv.) and silver hexafluoroantimonate(V) (7.0 mg, 0.02 mmol, 1.00 equiv.), the 

reagent, Cs2CO3 (78.0 mg, 0.24 mmol, 1.10 equiv.) and DCM (3 mL) were used. 

The reaction was stirred at rt and after flash chromatography the product 337 

could be isolated as yellow oil (25.0 mg, 0.08 mmol, 38%). 1
H NMR (300 MHz, CDCl3) δ = 7.65 (d, J 

= 7.9 Hz, 1 H), 7.60 (d, J = 7.9 Hz, 1 H), 7.38 (dt, J = 7.4, 0.9 Hz, 1 H), 7.30-7.23(m, 2 H), 6.59 (dd, J 

= 3.5, 0.9 Hz, 1 H), 1.22 (s, 21 H) ppm. 13
C NMR (126 MHz, CDCl3) δ = 138.4, 129.1, 127.8, 123.7, 

122.1, 121.3, 111.5, 105.3, 94.7, 68.9, 18.9, 11.5 ppm. IR (ATR):    (cm-1) =2941, 2890, 2863, 2179, 

1612, 1524, 1457, 1383, 1352, 1340, 1324, 1295, 1221, 1201, 1122, 1088, 1072, 1041, 1011, 995, 

919, 881, 777, 760, 740, 713, 674, 658, 623, 589, 562, 517, 503. HR-MS calc. for C19H27NSi: 

298.1986; found: 298.1982 [M+H]+ (EI-HRMS). Analytical data corresponded to those previously 

reported.167 
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Entry Catalyst Additive Base Solvent Yield 

(%) 

Comments 

1 AuClPPh
3
 AgSbF

6
 Cs

2
CO

3
 DCM 38 N-alkynylated 

product 337 

2 AuClPPh
3
 AgSbF

6
 K

3
PO

4
 DCM  0 Isolated starting 

material 333 

3 AuClPPh
3
 AgSbF

6
 TBAOAC DCM  0 Isolated starting 

material 333  

4 AuClPPh
3
 AgSbF

6
 KOAC DCM  0 Isolated starting 

material 333  

5 AuClPPh
3
 AgSbF

6
 Cs

2
CO

3
 DCE 23 Reaction at 60 °C 

6 AuClPPh
3
 AgSbF

6
 Cs

2
CO

3
 DCM  0  N-Methylindole 

334 as a substrate; 

re-isolated 

7 AgCl – Cs
2
CO

3
 DCM 23 N-alkynylated 

product 337 

8 AgCl – Cs
2
CO

3
 Et

2
O 25 N-alkynylated 

product 337 

9 AgCl – K
2
CO

3
 THF 23 N-alkynylated 

product 337 

10 AgCl – – DCM  0 Isolated starting 

material 333 

11 PtCl
2
 – Cs

2
CO

3
 DCM  0 No reaction 

12 PtCl
2
 – DIPEA DCM  0 Reaction at 60°C, 

Isolated starting 

material 333 

13 PtCl
2
 – – DCE  0 Reaction at 80 °C, 

Isolated starting 

material 333 

14 AuCl
3
 – Cs

2
CO

3
 DCM  0 No reaction 

15 AuCl
3
 – – DCM  0 N-Methylindole as 

a substrate 
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C-H alkynylation experiments 

Synthesis of 2-(2-((triisopropylsilyl)ethynyl)phenyl)pyridine (339) 

General procedure: To a solution of the 2-phenylpyridine (34.1 mg, 0.22 mmol, 

1.00 equiv.) in DCE/DCM (0.1 M) was added the catalyst and the corresponding 

base. The reagent (136 mg, 0.26 mmol, 1.20 equiv.) was added and the reaction 

mixture was stirred for 12 h at the elaborated temperature. The reaction mixture 

was filtrated over a short pad of silica and the solvent was removed by 

evaporation. The residue was purified by column chromatography (hexane: EtOAc = 95:5) to afford 

the product 339 as colorless oil. Analytical data corresponded to those described in the literature. 

 

Entry  Catalyst Additive Base Solvent T (°C) Yield (%) 

1 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

– DCM rt Traces of the 

product 339 

2 [RhCp*Cl2]2 

(2%) 

Zn(OTf)2 

(10%) 

– DCE rt SM* + traces 

of the product 

339 

3 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

– DCE 80 34 

4 [RhCp*Cl2]2 

(2%) 

Zn(OTf)2 

(10%) 

– DCE 80 32 

5 [IrCp*Cl2]2 

(4%) 

AgSbF6 

(10%) 

– DCM rt 0 (SM) 

6 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

– MeCN 80 4 

7 MnBr(CO)5 HNCy2 (20%) – DCE 80 Traces of the 

product 339 

8 [RhCp*Cl2]2 

(4%) 

AgSbF6 

(10%) 

– DCE 80 Mixture of SM 

and product 

9 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

– DCE (twice 

diluted) 

80 24 

10 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(20%) 

– DCE 80 Mixture of SM 

and product 

11 [RhCp*Cl2]2 

(8%) 

AgSbF6 

(10%) 

– DCE 80 Mixture of SM 

and product 

12 [RhCp*Cl2]2 

(4%) 

AgSbF6 (5%) – DCE 80 Mixture of SM 

and product  

13 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

Cs2CO3 DCM rt 0 (SM*) 

14 [IrCp*Cl2]2 

(4%) 

AgSbF6 

(10%) 

Cs2CO3 DCM rt 0 (SM) 

15 [RhCp*Cl2]2 

(4%) 

AgSbF6 (5%) Cs2CO3  

(2.00 equiv.) 

DCE 80 Traces of the  

product 339  

16 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

TBAOAc DCM rt 0 (SM) 

17 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

Cesium 

pivalate 

DCE 80 Decomposition  

of 238f 
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18 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

K3PO4 DCE rt Traces of the  

product 339 

19 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

H2O DCE 80 Traces of the  

product 339 

20 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

K4P2O7 DCE rt SM 

21 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

Pyridine DCE 80 SM 

22 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

Lutidine DCE 80 SM 

23 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

2,6-Di-tert-

butylpyridine 

DCE 80 Product 339 

(4%) 

24 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

2,6-Di-tert-

butylpyridine 

DCE rt Traces of the  

product 339 

25 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

2,6-Di-tert-

butylpyridine 

(0.50 eq) 

DCE rt Traces of the  

product 339 

26 MnBr(CO)5 – HNCy2  DCE 80 Traces of the  

product 339 

27 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

DMAP DCE 80 Traces of the  

product 339 

28 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

DIPEA DCE 80 Traces of the  

product 339 

29 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

Proton 

sponge 

DCE rt 0 (SM) 

30 [RhCp*Cl2]2 

(2%) 

AgSbF6 

(10%) 

DBU DCE 80 Decomposition  

of 238f 

*SM = Starting material 338. 
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5.5 Synthesis attemps towards a system with internal base 

Synthesis of methyl 2-mercaptobenzoate (341) 

To a solution of thiosalicylic acid (340, 2.50 g, 16.2 mmol, 1.00 equiv.) in methanol (13 mL) was 

added sulfuric acid (0.43 mL, 8.10 mmol, 0.50 equiv.) at 0 °C and the reaction mixture was stirred 

under reflux for 18 h. The solvent was removed under reduced pressure and sat NaHCO3-solution was 

added to the residue. The aqueous phase was extracted with DCM (3 x 15 mL). The combined organic 

phases were washed by brine. After removal of the solvent under reduced pressure the product 341 

could be isolated as yellow oil (2.55 g, 15.2 mmol, 94%). . 1
H-NMR (300 MHz, CDCl3): δ [ppm] = 

7.95-8.00 (m, 1H), 7.26-7.29 (m, 2 H), 7.08-7.15 (m, 1 H), 4.67 (s, 1 H), 3.89 (s, 3 H). 13
C NMR (126 

MHz, CDCl3) δ = 166.9, 138.0, 132.2, 131.5, 130.7, 125.6, 124.3, 52.0 ppm. HR-MS calc. for 

C8H8O2S: 167.0172; found: 167.0172 [M+H]+ (ESI-HRMS). Analytical data corresponded to those 

previously reported.168  

Synthesis of 2-((2-(methoxycarbonyl)phenyl)thio)benzoic acid (343) 

To a solution of the ester 341 (1.00 g, 5.94 mmol, 1.00 equiv.) and 2-

iodobenzoic acid (342, 1.47 g, 5.94 mmol, 1.00 equiv.) in pyridine (7 mL) 

was added copper(I) oxide (0.43 g, 2.97 mmol, 0.05 equiv.) and the reaction 

mixture was stirred for 22 h at 114 °C. Afterwards the reaction mixture 

poured to a solution of hydrochloric acid (1 M, 100 mL). The aqueous 

solution was extracted by ethyl acetate (3 x 50 mL). The combined organic phases were washed by 

diluted hydrochloric acid (1 M, 3x 100 mL), dried over Na2SO4 and the solvent removed under 

reduced pressure. The residue was washed with hexane and chloroform to afford the desired 

compound 343 (1.16 g, 4.02 mmol, 68%) as yellow solid. 1
H-NMR (300 MHz, CD3CN): δ [ppm] = 

7.94-7.90 (m, 1 H), 7.86-7.84 (m, 1 H), 7.49-7.31 (m, 5 H), 7.26-7.26 (m, 1H), 7.14-7.10 (m, 1 H), 

3.78 (s, 3 H) ppm. 13
C-NMR (126 MHz, CD3CN): δ [ppm] = 168.0, 167.9, 134.2, 133.7, 133.6, 133.3, 

133.2, 133.0, 132.3, 131.6, 131.3, 128.4, 128.0, 127.7, 52.9 ppm. IR (ATR):    [cm-1] = 557, 694, 720, 

743, 932, 1039, 1057, 1111, 1253, 1270, 1666, 1728, 2643, 2817, 2951. HR-MS calc. for C15H12O4S: 

287.0384; found: 287.0385 [M+H]+ (ESI-HRMS). ). Analytical data corresponded to those previously 

reported.136b  
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Synthesis of methyl 2-((2-(methylcarbamoyl)phenyl)thio)benzoate (344) 

For the synthesis of 344 a slightly modified literature procedure was used.136b 

To a solution of the acid 343 (798 mg, 2.77 mmol, 1.00 equiv.) was added 

thionyl chloride (6.30 mL, 87.0 mmol, 31.4 equiv.) and the resulting solution 

was stirred for 3 h at 70 °C. The excess of thionyl chloride was removed 

under reduced pressure and residue was dissolved in THF (40 mL). The 

solution was cooled to 0 °C, methylamine was added dropwise to the reaction mixture and the solution 

was stirred for 12 h at rt. The reaction mixture was poured to water and extracted by DCM (3 x 

100 mL). The combined organic phases were dried over Na2SO4 and the solvent was removed under 

reduced pressure. The residue was purified by column chromatography (hexane/EtOAc + 1 % Net3 , 

1:5) to afford the desired compound 344 as white solid (586 mg, 1.94 mmol, 70%). 1
H-NMR 

(500 MHz, CDCl3): δ [ppm] = 7.98-7.95 (m, 1H), 7.89-7.86 (m, 1 H), 7.39- 7.55 (m, 3 H), 7.30 (ddd, 

J = 8.1 Hz, 7.3 Hz, 1.7 Hz, 1 H), 7.19 (dd, J = 7.4 Hz, 1.3 Hz, 1 H), 6.89 (dd, J = 7.9 Hz, 1.7 Hz, 1 H), 

), 3.92 (s, 3 H), 2.83 (d, J = 4.9 Hz, 3 H) ppm. 13
C-NMR (126 MHz, CDCl3): δ [ppm] = 168.2, 167.9, 

140.7, 139.9, 136.5, 132.8, 131.2, 130.7, 130.2, 130.1, 129.6, 128.9, 125.5, 52.5, 26.9 ppm. IR (ATR): 

   [cm-1] = 526, 688, 705, 740, 1252, 1434, 1561, 1634, 1709, 2955, 3099, 3261. HR-MS calc. for 

C16H15NO3S: 300.0700; found: 300.0695 [M+H]+ (ESI-HRMS). ). Analytical data corresponded to 

those previously reported.136b 

Synthesis of (2-((2-((methylamino)methyl)phenyl)thio)phenyl)methanol (345) 

For the synthesis of 345 a slightly modified literature procedure was 

used.136b To a solution of the amide 344 (1.20 g, 3.99 mmol, 1.00 equiv.) in 

benzene was added phosphorus pentachloride (0.83 g, 3.99 mmol, 

1.00 equiv.) and the reaction mixture was heated under reflux for 2 and 

subsequently the solvent was removed by reduced pressure. The residue was 

taken up by THF (15 mL) and a suspension of lithium aluminium hydride was added to the reaction 

mixture at 0 °C. The reaction mixture was stirred for 1 h at 0 °C and afterwards for another 30 h at rt. 

Iso-propanol was added at -78 °C to the reaction mixture. The suspension was filtrated over celite and 

the solvent removed under reduced pressure. The water (50 mL) was added to the reaction mixture and 

aqueous phase was extracted by DCM (3 x 15 mL). The combined organic phases were dried over 

Na2SO4 and the solvent removed under reduced pressure to afford the desired product 345 as colorless 

oil (698 mg, 2.70 mmol, 68%). 1
H-NMR (500 MHz, CDCl3): δ [ppm] = 7.44 (ddt, J = 7.5 Hz, 1.3 Hz, 

0.7 Hz, 1 H), 7.35-7.18 (m, 5 H), 7.12 (mC, 2 H) 7.07 (td, J = 8.0 Hz, 7.5 Hz, 1.7 Hz, 1 H), 4.64 (s, 

2 H), 3.84 (s, 2 H), 2.43 (s, 5 H) ppm. 13
C-NMR (126 MHz, CDCl3): δ [ppm] = 142.1, 139.4, 135.0, 

133.4, 133.3, 131.6, 130.0, 129.2, 128.5, 128.3, 128.2, 127.1, 63.3, 54.0, 35.9 ppm. HR-MS calc. for 

C8H8O2S: 282.0923; found: 282.0922 [M+Na]+ (ESI-HRMS). Analytical data corresponded to those 

previously reported.136b  
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Synthesis of 6-methyl-6,7-dihydro-5H-dibenzo[b,g][1,5]thiazocine (346) 

For the synthesis of 345 a slightly modified literature procedure was used.136b To 

a solution of the alcohol 345 (673 mg, 2.59 mmol, 1.00 equiv.) in benzene 

(11 mL) was added thionyl chloride (6.70 mL, 92.2 mmol, 35.5 equiv.) and the 

solution was stirred for 3 h at 70 °C. Afterwards the solvent was removed under 

reduced pressure and the residue was taken up by ethanol (5.6 mL). A solution of 

sodium hydroxide (1.45 g, 25.8 mmol, 9.95 equiv.) in ethanol (5.6 mL) was added to the residue and 

the reaction mixture was stirred at 70 °C overnight. Afterwards the solvent was removed under 

reduced pressure and water (50 mL) was added. The aqueous phase was extracted by ethyl acetate 

(50 mL) and the solvent was removed under reduced pressure. After purification by column 

chromatography (hexane/EtOAc + 1 % NEt3 , 2:1) the desired compound 346 could be isolated as 

white solid (452 mg, 1.87 mmol, 72%). 1
H-NMR (300 MHz, CD3CN): δ [ppm] = 2.09 (s, 3 H), 3.79 

(d, J = 1.4 Hz, 2 H), 7.01-7.07 (m, 3 H), 7.12-7.18 (m, 2 H), 7.19-7.24 (m, 1 H), 7.30-7.35 (m, 1 H), 

7.42-7.46 (m, 1 H). IR (ATR):    [cm-1] = 2876, 2360, 1467, 1435, 1427, 1416, 1357, 1326, 1276, 

1261, 1185, 1174, 1152, 1117, 1056, 1032, 985, 954, 926, 824, 767, 756, 726, 678, 607, 547, 517. 

HR-MS calc. for C15H15NS: 242.0996; found: 242.0998 [M+H]+ (ESI-HRMS). Analytical data 

corresponded to those previously reported.136b 
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5.6 Synthesis of potential fluorine containing transfer-reagents 

5.6.1 Synthesis of a trifluoromethyl-reagent 

Synthesis of silver(I) trifluoromethanethiolate (350) 

Following a slightly modified literature procedure,137 to a solution of silver fluoride 

(2.15 g, 17.0 mmol, 1.00 equiv.) in MeCN (15 mL) was added carbon disulfide (2.04 mL, 

33.9 mmol. 2.00 equiv.). The reaction mixture was stirred for 18 °C under reflux. Then the solvent 

was removed in vacuo and the residue was dissolved in Et2O (300 mL).The mixture led rest at 0 °C. 

After approximately 7 d the product could be isolated as white crystals (1.90 g, 9.08 mmol, 54%). 

Analytical data corresponded to those described in the literature.137  

Synthesis of 2-iodo-1-methyl-1H-imidazole (352) 

Following a slightly modified literature procedure,138 nBuLi (1.6 M, 13.7 mL, 

21.9 mmol, 1.20 equiv.) was added slowly to a solution of N-methyl imidazol (1.50 g, 

18.3 mmol, 1.00 equiv.) in THF (250 mL) at -78 °C. The reaction mixture was stirred for 

1 h at this temperature before a solution of iodine (5.80 g, 22.8 mmol, 1.25 equiv.) in 

THF (50 mL) was added at -78 °C. The solution was warmed up to rt and stirred at this 

temperature for 3 d. Then the solvent was removed by evaporation. The residue was taken up by 

DCM, washed with water, sat. Na2S2O4 solution, brine and dried over Na2SO4. After removal of the 

solvent the product 352 could be isolated as white solid (3.20 g, 15.4 mmol, 84%). Analytical data 

corresponded to those described in the literature.138  
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Synthesis of 2-iodo-1,3-dimethyl-1H-imidazol-3-ium trifluoromethanesulfonate (354) 

Following a slightly modified literature procedure,138 to a solution of compound 

352 (4.08 g, 19.6 mmol, 1.00 equiv.) in DCM (100 mL) was added MeOTf 

(6.44 g, 39.2 mmol, 2.00 equiv.) at rt. The Solution was stirred for 16 h at rt. After 

removal of the solvent by filtration the product 354 could be obtained as white 

solid (5.35 g, 14.4 mmol, 73%). Analytical data corresponded to those described 

in the literature.138 

Synthesis of 1,3-dimethyl-2-((trifluoromethyl)thio)-1H-imidazol-3-ium trifluoromethanesulfonate 

(355) 

A solution of the imidazolium salt 354 (1.00 g, 2.69 mmol, 1.00 equiv.) and the silver 

thiolate 350 (561 mg, 2.69 mmol, 1.00 equiv.) in dry MeCN (10 mL) was stirred at 

100 °C for 12 h in the microwave. The solution was separated from the AgI via 

filtration and the solvent was evaporated in vacuo. The remaining solid was washed 

with DCM (2 x 4 ml) to afford the product 355 as white solid (651 mg, 1.88 mmol, 

76%). 1
H-NMR (300 MHz, CD3CN): δ [ppm] = 7.76 (s, 2 H), 3.98 (s, 6 H). 13

C NMR (126 MHz, 

CD2Cl2) δ = 130.8, 128.5 127.9 (q, J = 315.3 Hz), 122.0 (q, J = 317.9 Hz), 38.0 ppm. 19
F NMR (282 

MHz, CD3CN) = -39.97, -79.32 ppm. IR (ATR):    (cm-1) = 3121, 2360, 2342, 1509, 1280, 1242, 

1226, 1182, 1147, 1109, 1095, 1026, 800, 759, 739, 637, 630, 571, 541, 516. HR-MS calc. for 

C6H8F3N2S: 197.0355; found: 197.0358 [M]
+
 (ESI-HRMS). 

Synthesis of 1,3-dimethyl-2-((4-nitrophenyl)thio)-1H-imidazol-3-ium trifluoromethanesulfonate (368) 

To a solution of the imidazolium salt 355 (50.0 mg, and the thiol in MeCN 

(1.5 mL) was added DIPEA (55.9 mg, 0.43 mmol, 3.00 equiv.). The solution was 

stirred for 12 h at rt. Afterwards the solvent was removed under reduced pressure 

and the residue was washed with mixture of THF/ether (3:7, 8 x 15 mL) to afford 

the product 368 as yellow solid  1
H-NMR (300 MHz, CD2Cl2): δ [ppm] = 8.24 

(td, J = 9.0, 2.6 Hz, 2 H), 7.81 (s, 2 H), 7.33 (td, J = 9.0, 2.6 Hz, 2 H), 3.98 (s, 6 

 H). 19
F NMR (282 MHz, CD2Cl2) = -79.32 ppm. IR (ATR):    (cm-1)  = 3158, 3130, 3114, 3090, 3068, 

1598, 1571, 1513, 1478, 1340, 1258, 1227, 1185, 1169, 1151, 1010, 853, 825, 785, 757, 739, 724, 

687, 678, 636, 574, 528, 517. HR-MS calc. for C11H12N3O2S: 250.064474; found: 250.064390 [M]+ 

(ESI-HRMS). 
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General procedure for the “transfer”-reaction of compound 355 

To a solution of the nucleophile (1.00 equiv.) was added the compound 355 (1.20 equiv.) and the base 

(1.10 equiv.) and the reaction was stirred for 12 h at the elaborated temperature in the chosen solvent 

(0.14 M). Afterwards a saturated, aqueous solution of NH4Cl was added to the reaction mixture and 

the aqueous solution was extracted with DCM (3 x 15 mL). The combined organic phases were dried 

over Na2SO4 and the solvent was removed by evaporation. The residues were analyzed by NMR, GC-

MS and TLC.  
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Entry Nucleophile Base Solvent temperature  comment 

1 naphthalene-1-thiol DIPEA MeCN rt dimer formation 

2 beta-keto ester K2CO3 MeCN rt Starting material 

3 thiolate - MeCN rt Protonated starting material 

4 beta-keto ester DIPEA MeCN rt Starting material 

5 1,3-

dimethoxybenzene 

- DCE 80 °C mw, starting material 

6 1,3-

dimethoxybenzene 

- MeCN 80 °C mw, starting material 

7 Nitro-thiol DIPEA MeCN rt Dimer + trithiocarbonate 

8 Nitro-thiol DIPEA DMF -78 °C to rt Dimer + trithiocarbonate 

9 Nitro-thiol DIPEA DMF -50 °C to rt Dimer + trithiocarbonate 

10 2,4,6-

trimethylphenol 

DIPEA MeCN rt decomposition 

11 mesitylmagnesium 

bromide 

- THF 0°C to rt decomposition 

12 1-methyl-2-phenyl-

1H-indole 

/ DCE 80 °C mw, starting material 

13 1-methyl-2-phenyl-

1H-indole 

/ DCE 80 °C AgSbF6, mw, starting material 

14 6,7-dimethoxy-

1,2,3,4-

tetrahydroisoquinoli

ne 

DIPEA toluene  rt starting material 

15 Nitro-thiol - MeCN rt + Bortrifluorid-etherat, starting 

material 

16 1-Methoxy-2-

methyl-1- 

trimethylsiloxy-

propen 

- MeCN rt Starting material 

17 theophylline - DCM/ 

water 

rt + 1.00 equiv. of H2O2, starting 

material 

18 ZnCuIC8H17 - THF rt decomposition 
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5.6.2 Preparation of the trifluoroethylene-compound 

Synthesis of 1,3-diisopropyl-4,5-dimethyl-2-((1,2,2-trifluorovinyl)thio)-1H-imidazol-3-ium hexa-

fluorostibate(V) (385) 

Step 1: The zinc solution was prepared by a slightly modified literature 

procedure.146 A solution of ZnCl2 (1.72 g, 12.5 mmol, 1.00 equiv.) in THF 

(7.5 mL) in a flame dried three-neck flask equipped with a dry ice reflux 

condenser was cooled to 15 °C. Condensed 1,1,1,2-tetrafluoroethane (1.50 mL, 

18.0 mmol, 1.50 mmol) was added to the reaction mixture. Then freshly 

prepared LDA (in hexane, 13.5 mL, 25 mmol, 2.00 equiv.), was added to the reaction mixture. The 

reaction mixture was stirred for 1 h at 15 °C and subsequently warmed up to rt. The concentration of 

the zinc solution (22.5 mL, 0.3 M/L) was determined by the Knochel-titration method.147  

Step 2: To a solution of the dibromide 185 (2.42 g, 6.5 mmol, 1.00 equiv.) in THF (15 mL) was added 

at -78 °C the formerly prepared zincate solution. The solution was stirred for 1 h at -78°C and then 

slowly warmed up to rt. The solvent was removed and the residue was washed twice with diethylether 

(2 x 50 mL). The resulting grey solid was solved in DCM and filtrate over a short pad of celite. Then 

the solution was washed three times with a saturated solution of NaSbF6 and the combined organic 

phases were dried over Na2SO4. After removing the solvent under reduced pressure the product could 

be obtained as yellow solid. 1
H NMR (300 MHz, CD2Cl2) δ = 5.43 (hept, J = 7.3 Hz, 2 H), 2.45 (s, 

6 H), 1.63 (d, 7.3 Hz, 12 H) ppm. 13
C NMR (101 MHz, CD2Cl2) δ = 157.3 (ddd, J = 302.3, 283.2, 

47.1 Hz), 132.6, 130.0, 121.4 (ddd, J = 302.1, 26.0, 26.0 Hz), 54.8, 21.2, 11.0 ppm. 19
F NMR (282 

MHz, CD2Cl2) δ =  -82.2 2 (dd, 41.7, 35.2 Hz), -102.24 (dd, J = 121.3, 35.2 Hz), -116.55 (s), -153.36 

(dd, J = 121.3, 41.3 Hz) ppm. IR (ATR):    (cm-1)  = 3647, 2999, 1747, 1614, 1459, 1334, 1220, 1131, 

1051, 937, 663, 628, 592. HR-MS calc. for C13H20F3N2S: 293.1294; found: 293.1293 [M]+ (ESI-

HRMS). 
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General procedure for the “transfer”-reaction of compound 385 

 

Method A: To a solution of the nucleophile (0.13 mmol, 1.00 equiv.) was added the transfer reagent 

(0.15 mmol, 1.20 equiv.) and the reaction was stirred for the elaborated time in the DCE (0.14 M) at 

80 °C. Afterwards a saturated, aqueous solution of NH4Cl was added to the reaction mixture and the 

aqueous solution was extracted with DCM (3 x 15 mL). The combined organic phases were dried over 

Na2SO4 and the solvent was removed by evaporation. The residues were analyzed by NMR, GC-MS 

and TLC.  

Method B: To a solution of the nucleophile (0.13 mmol, 1.00 equiv.) was added the transfer reagent 

(0.15 mmol, 1.20 equiv.) and the reaction was stirred for the elaborated time in DCM (0.14 M). 

Afterwards a saturated, aqueous solution of NH4Cl was added to the reaction mixture and the aqueous 

solution was extracted with DCM (3 x 15 mL). The combined organic phases were dried over Na2SO4 

and the solvent was removed by evaporation. The residues were analyzed by NMR, GC-MS and TLC.  

Method A 

Entry Nucleophile  comment 

1 Nitro-thiol starting material (nucleophile) 

2 β-keto ester decomposition 

3 2,6-dimethoxyphenol starting material (nucleophile) 

4 1,3-dimethoxybenzene starting material (nucleophile) 

5 1-(cyclohex-1-en-1-yl)pyrrolidine starting material (nucleophile) 

6 1-methyl-2-phenyl-1H-indole starting material (nucleophile) 

7 1-methyl-2-phenyl-1H-indole starting material (nucleophile) 
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Method B 

Entry Nucleophile  comment 

1 Nitro-thiol starting material(nucleophile) 

2 β-keto ester decomposition 
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5.7 Investigations towards the Isomerisation of compound 238f* 

A NMR solution of the reagent 238f* in Methylene chloride-d2 was measured directly after synthesis 

(20 min in solution), after 2 d in solution and after 7 d, showing no further Isomerisation of the 

compound 238f*. 
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5.8 Differential scanning calorimetry (DSC) 
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