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1. Nitrenes as Building Blocks for Synthesis 

Nitrogen based functional groups such as amines, amides and heterocycles are 

indispensable building blocks of modern pharmaceuticals. For instance, in 2013, the 

revenue in the US of the top 100 pharmaceutical products was more than 146 bn$, of 

which 62 (86 bn$) contain one or more nitrogen atoms and are not protein-based.1 With 

the incorporation of nitrogen based functional groups in organic molecules being of 

great economical interest, synthetically efficient ways of producing those high-value 

products therefore are developed ever since. 

Nitrogen is a more electronegative element than carbon, the oldest and still most 

common way of forming C-N bonds is therefore by nucleophilic substitution. This type 

of reaction requires an enhanced nucleophilicity of the nitrogen atom or a high 

electrophilicty of the carbon atom. The nucleophilicity of the nitrogen atom can be 

increased, for instance by deprotonation with a strong base, which limits the functional 

group tolerance significantly. More elaborate perhaps is the way to increase the 

electrophilicity of the carbon center that is to be functionalized. This can be done by 

introducing an electron withdrawing group, hydroxide or halides for example. Carbon-

halide groups can be substituted easily and are used in amination reactions such as the 

classical Buchwald-Hartwig reaction,2,3,4 but require incorporation of the halide into the 

precursor molecule, which can be synthetically challenging, expensive and in any case, 

produces halide containing waste. 

Nitrenes, however, as the nitrogen pendants of carbenes, exhibit electrophile 

behavior due to their electronic unsaturation. They possess an electronic sextet 

configuration, prone to two-electron reduction to reach the octet. The most common way 

to generate free nitrenes is by thermolysis or photolysis of azides,5,6 although generation 

of free nitrenes has also been shown by irradiation of tetrazoles.7 As an example for this 

class of compounds, the photolysis of pentafluoro phenylazide is exemplified here 

(Scheme 1).8 As for irradiated azides in general, a singlet nitrene is formed upon 

dinitrogen expulsion. The singlet nitrene can react intramolecularly upon ring expansion 

to a ketimine species via an aziridine intermediate and subsequent decomposition.9,10 
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Scheme 1: Case study of reactivity of free nitrene fragments generated by irradiation of 

pentafluoro phenylazide. 

A productive pathway is observed in toluene, in which case, insertion products in 

both phenyl CH groups and benzylic methyl group are found. As for most free nitrenes, 

the singlet state is the excited state and can reach the triplet state via an intersystem 

crossing (ISC), which is detected by transient UV-Vis spectroscopy.8 An exception to this 

are nitrenes with an electron donor nearby the nitrogen stabilizing the singlet state, for 

example sulfamoylnitrenes.11 The spin state has a significant effect on the reactivity. For 

instance, the triplet nitrene, unlike the singlet, undergoes dimerization reactions. Also 

HAT from hydrocarbons can take place, mostly leading to complicated product 

mixtures. Radical recombination pathways to (formal) insertion products can be 

observed as well. Nevertheless, from these findings, the singlet state of a nitrene is 

thought to be the productive state for nitrene transfer reactions to hydrocarbons and can 

be stabilized by addition of Lewis acids.12 

Since free nitrenes are way too reactive to induce site-selective functionalizations, 

(drug) synthesis heavily relies on catalysts to mediate the reactivity. In consideration of 

selectivity as the top priority in the synthesis of more complicated molecules, 

homogeneous catalysts are preferred over heterogeneous systems. A selection of 

catalytic applications of transition metal catalysts will be presented in section 2 in order 

to establish the state of the art.  



Introduction 

 

4 

2. Catalytic Nitrene Transfer Reactions 

In nitrene transfer catalysis, particularly late transition metal catalysts have proven 

to be effective and this overview shall be restricted to examples of group 8 and higher. 

Earlier work has been presented by Davies and Manning,13 a comprehensive review of 

transition metal catalyzed C-H amination reactions was recently published,14 just as 

reviews focussing on the analogies of C(sp3)-H bond functionalization with carbenes and 

nitrenes.15,16 

Scheme 2: Two pathways for C-H bond cleavage assuming an intermediate nitrenoid species. 

The general and widely accepted concept for C-H insertion amination reactions is 

shown in Scheme 2. The foundations for the postulation of an initial formation of a metal 

nitrene species is shown in chapter 2.3. This intermediate is thought to undergo nitrene 

transfer also to weak nucleophiles such as C-H bonds or C-C π-systems. Various 

mechanisms are discussed for the nitrene transfer, most fundamentally divided in two 

groups, a concerted insertion pathway (Scheme 2, top) and a stepwise mechanism 

(bottom). The concerted mechanism is thought to proceed via a singlet state, while the 

stepwise mechanism often is postulated as a hydrogen atom abstraction / radical 

recombination (HAA/RR) pathway. 
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  Nitrene Sources 

In comparison with other strategies for C-H amination, the concept of metal 

catalyzed nitrene insertion into C-H bonds is a relatively new approach. It has first been 

demonstrated in the early 1980s in analogy to oxo-transfer by cytochrome P-450 17 via 

the aziridination of phenyl-substituted olefins using an iron-porphyrin complex by 

Mansuy.18 As the nitrene source, [N-(p-Toluenesulfonyl)imino] phenyliodinane (PhINTs) 

was used. It conveniently decomposes to a neutral nitrenoid fragment “NTs” when 

coordinated to a metal center upon extrusion of phenyliodide (Scheme 3, top left), thus 

oxidizing the nitrogen by two electrons in a single step. This concept has been 

extensively used in the following decades. 

Scheme 3: Simplified illustration of activation of commonly used nitrene sources. 

Other nitrene sources have been developed over the years, such as 

tetraalkylammonium N-chloro-p-toluenesulfonamide, better known as haloamine-T 

salt.19,20 The synthesis is more convenient than that of phenyliodinanes, but also yields 

stoichiometric amounts of halogen containing by-products (Scheme 3, top right). The 

aforementioned nitrene sources have in common that they require electron withdrawing 

moieties at the nitrogen to be stable enough to be employed in synthesis. For this reason, 

the scope of amides transferred via this route is limited to para-substituted 

arylsulfonamides (e.g. Tosyl-, Nosyl-) and trichloroethane sulfonamides 

and -carbamates. A milestone was achieved by the groups of Che21 and DuBois22,23,24,25,26 

in the early 2000s when they discovered that in situ mixing of PhI(OAc)2 with a primary 

amine generates a reactive iminoiodinane species PhINR suitable for catalysis. The 

amines used in this process are still restricted to electron withdrawing substituents, but 

nevertheless expanded the substrate scope to all kinds of sulfonamides and carbamates. 

To avoid disadvantageous waste, azide precursors as nitrene fragment sources have 



Introduction 

 

6 

been established around the turn of the century,27,28 although proof of the viability of 

azides in C-H aminations already existed prior to that date.29,30 The obvious advantage 

of azides is their decomposition by-product N2 and their easy activation (Scheme 3, 

bottom left), usually triggered by Lewis acids, although also a nucleophilic activation of 

an azide by an electron-rich iron complex was also demonstrated.31 Similarly to 

iodinanes and chloramines, the rest R of the organic azide should be electron 

withdrawing. Besides sulfamoyl and carbamoyl azides also less activated aryl azides 

successfully have been used. 1,4,2-dioxazol-5-ones thermally decompose under 

formation of acyl nitrenes32 (Scheme 3, bottom right) and recently have been 

demonstrated to be a possible nitrene source,33,34 and are also viable in catalytic C-H 

insertions to produce 5-membered cyclic amides.35  
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  Catalysts 

The catalytically active systems can be divided in three goups: porphyrins, ligand-

bridged dinuclear systems, and other complexes with chelating ligands. 

In a biomimetic approach, iron-porphyrin systems were explored first36, and later 

on extended to other transition metals such as manganese,18,21 copper30, cobalt19 and 

ruthenium.37,38 The ruthenium porphyrins attracted special attention since the isolation 

and characterization of tosylimido complexes of ruthenium could be achieved.39,40 These 

species provend to be reactive in amination reactions of tertiary and allylic C-H bonds 

and therefore was subject to various mechanistic studies41,42,43 eventually leading to a 

sophisticated mechanistic proposal for such Ru-porphyrin catalyzed reactions (vide 

infra). Such metal nitrenoid species have been discussed and widely accepted as putative 

intermediates in many amination and aziridination reactions.30 Interestingly, for a 

related cobalt-porphyrin it has been shown that the key intermediate leading to 

amination is actually not an imido complex, but rather a coordinated azide.44 An 

iron(III)-phtalocyaninato catalyst unusually favors allylic C-H amination over 

aziridination of the adjacent double bond. The authors attributed this unexpected 

outcome to a fast HAA/RR mechanism despite retention of stereoinformation.45 Versatile 

catalytic reactivity of Co(II) porphyrins has been demonstrated by the Zhang group.46,47 

The groups of Zhang and de Bruin also investigated the nature of the active intermediate 

(vide infra). Commonly, aziridination of double bonds and amination of tertiary or 

otherwise activated, e.g. benzylic C-H bonds are observed under catalytic conditions. In 

recent years however, researchers are focussing on more challenging substrates as in a 

further example of the Zhang group where they were able to selectivively aminate 

aldehydic C(sp2)−H bonds with fluoroaryl azides48 using a chiral Co(II) porphyrin. The 

substituents include functional groups capable of preorganizing the substrate. 

Dirhodium tetracarboxylates were demonstrated as active C-H amination catalysts 

towards rather unreactive C(sp3)-H bonds.49,50 Dinuclear Ru- and preeminently Rh-

complexes (Figure 1) flourished with the independent development of generalized 

catalytic conditions by the groups of Du Bois and Che.22,21 They showed that the amine 

source and the oxidant can be employed separately, simplifying the synthetic procedure. 

PhI(OAc)2 yielded the best results of all tested iodine(III) reagents. A contribution on the 

synthesis of natural products using iodine(III) reagents was recently published.51  
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Figure 1: Evolution of the dirhodium catalysts: Rhodium acetate and derivatives (left), 

tetramethyl-1,3-benzenedipropionate ligand against ligand dissociation (center) and 

carboxamide derivative of esp-ligand for higher stability under oxidative conditions (right). 

MgO as scavenging base is necessary to deprotonate the generated equivalents of 

AcOH which hamper the catalytic activity. The Lebel group used N-alkoxycarbamates as 

the nitrene source in stereospecific intra-52 and intermolecular53 aziridinations. There is 

a large body of work especially from the du Bois group exploring the substrate scope. 

Examples are the synthesis of propargylic amine, 54 urea and guanidine derivatives.55 

The Rh tetracarboxylates like Rh2(OAc)4 and Rh2(O2CtBu)4 suffer from ligand 

dissociation processes in the course of catalysis, leading to catalyst decomposition. A 

new, tethered dicarboxylate ligand, Tetrametyl-1,3-benzenedipropionate (esp) was 

developed (Figure 1, center). Rh2(esp)2 exhibits a better stability, activity and scope than 

its precessors.56,57,58,59 Intermolecular amination with selectivity towards tertiary C-H 

bonds using Rh2(esp)2 is possible,60 as well as diastereoselective intermolecular 

amination.61 Notable chemo-and regio- selectivity in intermolecular amination towards 

aromatic C(sp2)-H bonds was demonstrated just recently.62 Replacing the carboxylate 

groups by carboxamides helps to improve the catalysts stability under catalytic 

conditions, thus increasing the turnover number (TON) by a factor of three compared to 

analogue reaction using Rh2(esp)2 as the catalyst.63 Not only Rh(II), but also mixed-valent 

Rh(II/III) complexes were shown to be active in catalysis.64 Similar to rhodium, dinuclear 

ruthenium(II/III) systems have been used by the Du Bois group.65 It should be mentioned 

that a dinuclear cobalt complex with redox active anilide ligands successfully was also 

used in the amination of benzylic C(sp3)-H bonds.66 Also the heavier homologue of 

rhodium, iridium can be used as a catalyst. The Driver group used a simple iridium(I) 

precursor for intramolecular C-H aminations of benzylic bonds.67 While the structure of 

the catalytically active species is not discussed, there is no indication for a bimetallic 

mechanism. A kinetic isotope effect (KIE) of 5 is interpreted as a hint for a triplet species 
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that follows a HAA/RR pathway. Interestingly, depending on the substrate, significant 

changes in the KIE values are reported, pointing towards a change in mechanism. 

A combination of salen ligands and copper salts have been used early for 

enantioselective olefin aziridinations with PhINTs.68 Cu(I) salts in combination with 

pyridine based ligands can be used for aziridinations using chloroamine-T.20 A more 

defined catalyst can be prepared using a homoscorpionate ligand TpBr coordinating to 

Cu(I) which enabled C-H amination of toluene, cyclohexane and benzene using PhINTs69 

or chloroamine-T70 as the nitrene source. Bridged Cu imido complexes could be 

structurally characterized by the group of Warren confirming that dissociation to a 

terminal, more reactive imido complex is necessary.71 Further investigations into this 

system disclosed Cu(II) amides as intermediates in C-H amination with a HAA/RR 

mechanism72,73 The potential applicability of redox active ligands in combination with 

3d metals has been shown recently by a Cu complex with 

iminosemiquinone/iminobenzoquinone ligands being active as a catalyst for 

aziridination of alkenes and arylsulfonylazides.74 1,3-dicarbonyl compounds were been 

aminated by Chan and coworkers using Cu(II) salt and 1,10-phenanthroline. The C-H 

bond is thought to possess some allylic character that arises from coordination to the 

metal stabilizing the enolate form. A low KIE (1.9) is seen as a sign for a concerted 

mechanism.75 

Complexes of 1,4,7-trimethyl-1,4,7-triazacyclononane (tacn) with ruthenium 

showed versatile reactivity in atom and group transfer reactions and inspired further 

development 76 Enantioselectivity is achieved with a chiral Ru(II) pybox complex in 

intramolecular benzylic amination.77 Enantioselective intermolecular aminations of 

C(sp3)-H bonds using Ru(II) salen complexes are shown by Katsuki and coworkers.78 

FeCl2 and simple terpyridine ligands (tpy) can be used for amide synthesis using 

PhINTs. The often postulated bis(tosylimido) species [Fe(tpy)(NTs)2]2+ is observed in 

ESI-MS,79 which is also observed in the case of 7-coordinated [Fe(qqpy)(NTs)2]2+.80 The 

arguably most attractive system with iron is Betleys Fe(II) dipyrromethane complex, 

which catalyzes amination of benzylic C-H bonds with alkyl azides.81 The system is used 

in various syntheses of N-heterocycles.82 
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  Mechanisms 

Metal nitrenoid species as the key intermediate in C-H insertion reactions have been 

postulated for a long time now supported by mass spectrometric detections.79,80,83 In case 

of ruthenium porphyrins, tosyl- and bis(tosyl)imido complexes could be isolated to 

complete the mechanistic picture (Scheme 4).84,40,42,43 

Scheme 4: Mechanism of C-H amination of cyclohexene (R’H) by an organic azide catalyzed by 

Ru(TPP) disclosed by Gallo and coworkers.43 

A combination of kinetics and DFT revealed that two modes can be operative. After 

formation of a monotosylimido species an intersystem crossing (ISC) can take place to 

the triplet state which is capable of nitrene insertion into a C-H bond by homolytic 

cleavage and radical recombination (Scheme 4, left). Alternatively, the CO bound trans 

to the imido ligand dissociates and another equivalent of azide forms a bis(tosylimido) 

complex (Scheme 5, right). Also the diimide undergoes an ISC to the triplet state and 

analogously forms the amine derivative. Similar to the ruthenium example, the groups 

of Zhang and de Bruin sought to investigate the active species of amination catalyzed by 

cobalt porphyrins. The envisioned Co-nitrene species turned out to be stable enough to 

be investigated in solution. By in situ spectroscopy they revealed the radical nature and 

HAA ability of both mono- (Scheme 5) and bisimido intermediates.85 In an extensive 

combination of spectroscopy and DFT, they localized the unpaired electron mainly on 

the nitrogen of the imido ligand (Scheme 5, bottom center) which, from the perspective 

of the authors, enables C-H amination activity by HAA/RR.86 
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Scheme 5: Corroborated mechanism of C-H amination and aziridination by a ‘cobalt(III)-

nitrene radical species’.86 

There is also a multitude of mechanistic work concerning the carboxylate-bridged 

dirhodium system.87 It has been widely accepted that a Rh-nitrenoid is the key 

intermediate in this catalytic system.83 Some information on how this species is 

generated is provided by the group of Berry.88 There is evidence for a 1-electron 

mechanistic regime in the formation of the nitrenoid operating that leads to 

intermolecular C−H amination, which is interesting in particular, since a 2-electron 

oxidant PhI(OAc)2 is used. Chemoselectivity is a big issue, when it comes to 

functionalization of similar bonds within one molecule. A statistical evaluation of 

parameters determining site selectivity in intermolecular amination of benzylic and 

tertiary C-H bonds is carried out by Sigman and Du Bois,89 establishing a relation between 

electronic parameters of the substrates and the relative rates of amination. The 

mechanism of C-H bond amination with these systems is still under discussion, more 

recent publications favor an asynchronous concerted insertion pathway over HAA/RR 

(see Scheme 2).90 Mechanistic exploration by DFT calculations suggest that the actual 

mechanism is highly dependent on the electronic influence of the substituents since 

singlet and triplet states are close in energy.91 
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Stavropoulous and coworkers performed a detailed mechanistic study on a tripodal 

Cu(I) catalyst with a guanidinato ligand (Scheme 6) including Hammett analysis, KIE in 

amination and aziridination reactions, radical trapping and radical clock experiments.92 

The Hammett analysis showed increased rates for electron rich substrates in the 

amination reaction, in accordance with the general assumption of an electrophilic nitrene 

intermediate. The opposite trend is observed for aziridination of styrene derivatives. 

This effect is attributed to the importance of spin delocalization by electron withdrawing 

substituents. Intramolecular isotopic competition experiments using selectively 

deuterated substrates showed modest KIE values between 3 and 5 with a tendency for 

lower KIE values using the more electrophilic PhINNs as the nitrene source. A stepwise 

HAA/RR mechanism is proposed. The authors point out that modest KIE values like 

these alone are not sufficient to distinguish between concerted and stepwise 

mechanisms, since similar values are obtained for dirhodium catalysts, where an 

asynchronous concerted mechanism is favored. The existence of a carboradical as an 

intermediate species is demonstrated by radical trapping with CBrCl3. A fast radical 

clock experiment established a lifetime of the proposed intermediate [LCu-N(H)Ts]+ of 

about 5 ns. 

Scheme 6: Amination and aziridination catalyzed by a tripodal Cu(I) catalyst designed for 

mechanistical study by Stavropoulous and coworkers. 
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Betley and coworkers isolated the terminal Fe aryl imido complex upon treatment 

of an Fe(II) dipyrromethane complex with an arylazide.81 Mößbauer and SQUID 

measurements revealed a high spin state with a total spin of 2, leading to the description 

of a antiferromagnetically coupled iron imido species. Amine formation upon addition 

of toluene supports the relevance of this coordination compound in C-H amination 

catalysis. Also a dinuclear Fe(II) high spin complex bridged through an imido ligand can 

be isolated when a sterically less demanding ligand is applied.93 The antiferromagnetic 

coupling between the two iron centers result in a ground state with a total spin of 0. The 

authors propose therfore that the C-H bond cleavage occurs through a monomeric 

species. 

Scheme 7: Isolated example of an iron imido complex capable of benzylic C-H amination. 
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3. Structural Models of the Proposed Key 

Intermediate 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018,94 used with permission from the Royal Society of Chemistry. 

As presented above, several mechanistic studies on the catalytic transfer of 

functional groups were conducted, almost exclusively proposing a metal nitrene species 

as the key intermediate. Direct evidence is scarce,84 however, and mostly based on mass 

spectrometry.79,80,83 Even less is known of the structural and electronic properties of such 

compounds. A requirement for efficient group transfer are comparatively weak M–NR 

bonds within the imido intermediates, since they have to be cleaved in the process. The 

same assumption is made for comparable oxo compounds. The reactivity of such species 

is therefore often associated with the occupation of M–O/N σ- and/or π-antibonding 

molecular orbitals (MOs), i.e. expressed by the prevalence of electron rich late transition 

metal catalysts (vide infra). These simple considerations are illustrated by the concept of 

the ‘oxo wall’, which was defined by Ballhausen and Gray (B+G) as the border for stable 

oxo complexes with tetragonal symmetry.95 

Scheme 8: Qualitative d-orbital splitting of complexes with twofold -donating ligands 

(oxo/imido/nitrido) in trigonal-planar (C2v) (a), pseudo-tetrahedral (C3v) (b), tetragonal (C4v) 

(c) and square-planar (C2v) (d) ligand fields. Orbitals below the dashed line are non-bonding, 

and above anti-bonding in character. 
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The B+G MO-model (Scheme 8) indicates that valence electron configurations 

beyond d2 grow increasingly unstable. Accordingly, well-characterized or even isolable 

low-valent group 8 oxo/nitride/imido complexes are rare,96 and group 9 metals are 

frequently utilized in oxo/nitrene transfer catalysis.15,22,97,98 

Despite great efforts, characterization of transient oxo/imido intermediates in 

catalysis remains challenging and mechanistic rationalization heavily relies on 

computational support.99 Furthermore, well-characterized examples of terminal 

oxo/imido/nitride complexes beyond group 8 that could be utilized for synthetic 

modeling and computational benchmarking are scarce.100,101,102 Stabilization of such 

species can arise from O/N-interaction with Lewis or Brønsted acids.103,104,105,106,107 

Otherwise, synthetic strategies generally rely on low metal coordination numbers 

(Scheme 8) to host both strongly π-donating ligands and high metal valence electron 

counts. These considerations are exemplified by pseudo-tetrahedral [IrV(O)(Mes)3],108 

distorted square-planar [PtIV(O)(LPCN)]+ (LPCN = C6H3[CH2P(t-Bu)2](CH2)2N(CH3)2),109 or 

linearly coordinated [NiII(NR)(IPr*)] (IPr* = 1,3-bis(2,6-bis(diphenylmethyl)-4-

methylphenyl) imidazol-2-ylidene),110 respectively. Isolable group 9 imido complexes 

are dominated by pseudo-tetrahedral examples.111,112,113,114,115,116 In contrast to the larger 

body of work for cobalt, Wilkinson’s [Ir(O)(Mes)3] and the imides reported by Bergman 

and Tejel (Figure 1), respectively, are the only known oxo/imido complexes for the 

higher homologues Rh and Ir. This is in particular noteworthy considering that the 

higher homologues are used more often for catalysis and therefore their electronic 

structure should draw attention. 
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Figure 2: Imido and oxo complexes reported in the literature of group 9 and 10. 

All isolable group 9 imides except Deng’s cobalt imide (Figure 2),117 exhibit 

electronic d6 low-spin ground states, however nitrene insertion reactivity via radical 

pathways is generally associated with accessible open shell states.118,119,120,121,122,123,124 For 

example, Theopold’s and Betley’s cobalt imides (Figure 2), which undergo 

intramolecular nitrene C–H insertion, exhibit thermally accessible open shell excited 

states.113,115 Furthermore, some cobalt imido catalyst species with open-shell ground 

states and considerable spin-delocalization onto the NR ligand could be 

spectroscopically detected.85,86,125 Heavier oxo/imido species relevant to catalysis with 

open-shell ground or low lying excited states, such as [Cp*IrV(=E)X(L)]+ (E = O, NR), were 

also proposed computationally.126127128129 However, spectroscopically characterized or 

even isolable examples remain elusive. 
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4. Previous Studies in the Group 

Parts of this chapter were published in the journal Inorganic Chemistry under the title 

“Homolytic N–H Activation of Ammonia: Hydrogen Transfer of Parent Iridium Ammine, 

Amide, Imide, and Nitride Species” in 2015 with permission to reuse from the American 

Chemical Society 102 and in the journal Chemical Science under the title “An iridium(III/IV/V) 

redox series featuring a terminal imido complex with triplet ground state” in 2018 94 with 

permission to reuse from the Royal Society of Chemistry. 

We recently reported the characterization of the terminal nitride complexes 

[IrV(N)(PNP)]+, [IrIV(N)(PNP)], [RhIV(N)(PNP)] and [(PNN)RhII(µ-N)RhIII(PNN)] (PNP = 

N(CHCHPtBu2)2; PNN = NC5H3-2-CHPtBu2-5-py), respectively.130131132 Attempts to 

prepare the parent imide [IrIII(NH)(PNP)] via deprotonation of the parent amide gave 

mixtures of amide [IrII(NH2)(PNP)] and dinitrogen bridged [(PNP)IrI(µ-N2)(IrI(PNP)], as 

a result of rapid imide disproportionation and nitride coupling (Scheme 9).102 DFT 

modeling of this proposed parent imide indicated several almost degenerate electronic 

states preventing a reliable description of the ground state. 

Scheme 9: Disproportionation of proposed parent imido complex [Ir(NH)(PNP)]. 
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Limits for the N-H bond dissociation energies (BDE) could be established by using 

the literature known PCET reagents 2,2,6,6-tetramethyl-1-hydroxylpiperidine 

(TEMPOH; BDEO-H (benzene) = 70 kcal mol-1) and 2,4,6-tri-tert-butylphenol (TBPH; 

BDEO-H (benzene) = 82 kcal mol-1) and the assumption that the parent imido complex is 

an intermediate in all transformations between amide and nitride. The amide complex 

does not react with the TEMPO radical (Scheme 10). The reaction of the nitride to the 

amide complex is accomplished using TEMPOH, but not with TBPH, which leads to the 

conclusion that the amide’s N-H bond is stronger than 70 kcal mol-1 and the sum of the 

N-H bonds of amide and imide is greater than 140 kcal mol-1. On the other hand, the 

amide is quantitatively transformed into the nitride and its dimer using two equivalents 

of TBP. The follow up reaction prohibits a statement about the BDE of the amide, but it 

is reasonable to assume that the imido’s N-H bond is weaker than that of TBP. 

Importantly, treatment of the amide complex with only one equivalent of TBP yields an 

approximately equimolar mixture of amide and nitride/dinitrogen complex, which 

implies that the imide N-H bond is weaker than the amide N-H bond. 

Scheme 10: Transformations of nitride [Ir(N)(PNP)] and amide [Ir(NH2)(PNP)] into each 

other using PCET reagents. 
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These HAT reactions are of particular interest since stepwise H-atom abstraction 

(HAA) and C–N bond formation via radical recombination is generally associated with 

accessible open-shell states, i.e. nitrene radical character of the imido intermediate.133 

This postulated, elusive imido intermediate is therefore of great importance. The relative 

weak N-H bonds in this system (70-82 kcal mol-1) are encouraging to seek isolation of 

such imido compounds since activation of strong C-H bonds via a radical pathway 

would be thermodynamically unfavored. Clearly, the relative ease of disproportionation 

by HAT leads to instability of the parent imido complex and the replacement of the 

second N-H bond by a N-C bond might lead to a greater kinetic stability.  
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5. Scope of This Work 

On the way to improve nitrene transfer catalytic processes, there are multiple 

aspects to care about. Most prominent metal precursors are the pioneering Rh2(OAc)4 

and variations thereof. The development of cheaper catalysts on basis of 3d metals is 

ongoing. Nitrene transfer catalysis relies on the stoichiometric use of non-beneficial 

oxidants (see chapter I:2.1 for information on nitrene sources). The selectivity of catalysis 

strongly depends on the key intermediate, which is widely assumed to be a transition 

metal imido complex. However, spectroscopic or even structural characterization of 

these proposed key intermediates or models of it is challenging110,134,93,135,136,137 and 

(electronic) structure assignments often originate from computational modeling. 

Keeping the above considerations in mind, the following guidelines can be formulated 

as scope of this work. 

1. The fully dehydrogenated PNP pincer ligand provides a platform suitable to 

stabilize a variety of metal-ligand multiple bonds in different oxidation states.144,167 

It has been used to synthesize a square planar amide complex that allowed for the 

study of N-H bond dissociation energies.102 The scope of amide complexes will be 

expanded in this work and the influence of different substituents other than 

hydrogen will be discussed. The synthetic availability of amide complexes from 

simple amines is a prerequisite for the employment of amines in nitrene transfer 

reactions. 

2. Amination of a C-H bond is an overall two electron oxidation of the carbon atom. 

Accordingly, a two electron oxidation of the original amine source is needed to 

produce an electronically and coordinatively unsaturated nitrogen capable of 

functionalizing a C-H bond. Synthetically this is for example done upon azide 

photolysis. An electrochemical approach has the potential to be more sustainable, 

but requires 1 e- / 1 H+ steps. Strategies for this removal of electrons and protons will 

be evaluated and a stepwise oxidation/deprotonation procedure will be developed 

for synthetic use. 
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3. Terminal imido complexes of late transition metal complexes are rare, for 

rhodium116 and iridium161 in particular there is only one structurally characterized 

example in literature for each. Thus the (electronic) structure needs systematic 

exploration. A redox series of stable terminal iridium imides ranging over 3 redox 

states will be provided and characterized in detail. Their properties will be 

discussed in context of their versatile reactivity. 

4. Selectivity is a big issue in any catalytic application. The origin of side reactions and 

how to prevent them is key to an efficient process. In this respect, the possible 

influence of radical character of the assumed key intermediate, a low valent metal 

imido complex, is subject of discussion. The reactivity of open shell iridium anilido 

complexes will be explored and discussed. 

5. Besides amination reaction, oxygenation of C-H bonds is a highly desired target 

reaction for catalyst design, however similar challenges in terms of wasteful by-

products and selectivity exist. Terminal oxo complexes of late transistion metal 

complexes, that could serve as models for the catalytically active intermediate, are 

even rarer than their nitrogen analoga. Oxo ligands are formally isoelectronic to 

imido ligands (NR2-/O2-), hence the synthetic approach towards oxo ligands derived 

from imide synthesis will be tested. 
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1. Square Planar Ir Amide Complexes 

1.1. Synthesis – Ab Origine to a Square-Planar 

Iridium Amide Complex 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018 94 with permission from the Royal Society of Chemistry. 

 

 

As precursor to all of the following chemistry, the complex [IrCl(PNP)] (1) was 

chosen. The synthesis has been published144 and, over the years, in the Schneider working 

group further improved (Scheme 11). 

                     1 

Scheme 11: Multi-step synthesis of 1 starting from IrCl3. 
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The synthesis of the platform to host the amide ligand starts from commercially 

available IrCl3·xH2O. Despite being one of earths’ least common elements with stable 

isotopes, iridium is obtained as a by-product of the electro-refining of nickel and copper 

in reasonable amounts. Prices are therefore volatile but in average comparable with 

other noble metals of the platinum group.138 

1 has been shown to undergo various salt metathesis reactions to bind mono-anionic 

nitrogen donor ligands as a substitute for the chloride ligand, such as azide130 or the NH2
−-

group.102 The latter exchange was done with an excess of sodium amide and crown ether 

to promote the solubility of NaNH2. Especially when using a nonpolar solvent like 

benzene or even THF, the precipitation of alkaline metal chloride should provide the 

necessary thermodynamic driving force (Scheme 12, bottom reaction). It turned out that 

unlike in the case of the parent amide, substitution of the chloride can be challenging. 

The substitution of chloride by phenyl-substituted lithium amide in the synthesis of 

[Ir(NHPh)(PNP)] (3) in benzene was only achieved over the course of 4 weeks at r.t. Also, 

over a wide range, the reaction progress appears to be almost zero-order (Figure 3). This 

likely is a consequence of almost negligible solubility of lithium anilide in benzene, so 

the consumption of lithium anilide becomes the bottleneck of the reaction. Furthermore, 

increased steric demand of the phenyl group compared to parent amide could slow the 

reaction speed down. The influence of sterics is backed up by the observation that the 

analogous reaction with mesityl amide could not be done at all, while complete turnover 

with methyl-substituted amide in THF is achieved in less than a day at r.t. 

Figure 3: Plot of the concentration of 1 over the course of the reaction from 1 to 3. 
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Aggregation to less reactive structures eventually also plays a role in these 

reactions. Lithium anilide for instance is believed to exist as a oligomeric or polymeric 

structure in solution of non-coordinating solvents.139 It breaks up to a dimer upon adding 

a stronger coordinating solvent like THF, as shown by the group of Stalke. 140 The salt 

metathesis therefore has been tested in THF, however, the reaction was slow and 

unselective, which indicates that aggregation is at least not the only critical issue in this 

reaction. 

Interestingly a mixture of 1 with lithium tert-butyl amide, thought to give 

[Ir(NHtBu](PNP)] (4), gave no reaction in benzene or THF, with or without crown-ether 

as an additive. While the higher steric demand of the tBu group might be a plausible 

explanation for that, it is contradicted by the observation that the reaction reaches 

completion in about 2 hours at r.t. simply by using tert-butyl amine as solvent. This 

suggests that the mechanism of the salt metathesis is not a straight forward substitution 

reaction. It resembles the findings of Bergman and coworkers141, who found that the 

substitution of hydroxide or chloride groups with ammonia to form the respective amide 

complexes at Ru and Ir centers benefits hugely from the addition of the conjugated base 

of ammonia, sodium amide. In their case, substitution of chloride by ammonia leads to 

formation of an amide complex and liberation of one equivalent of HCl. This reaction is 

in equilibrium with the reactants. Another equivalent of base, sodium amide, adds 

driving force by trapping the HCl to form ammonia and sodium chloride. 

Scheme 12: Formal salt metathesis reaction towards an Ir amide complex (bottom), plausible 

mechanism (top). 

  

1 R = Ph (3), tBu (4) 
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Loss of the chloride ligand from [(PNP)IrCl] would result in a three coordinate 

fragment which is thermodynamically unfavored. For the anionic derivative it has been 

stated that in substitutuion reactions an associative mechanism is more likely.167 The 

same is assumed for the Ir(II) stage. In this case, the new ligand has to bind in axial 

position of the complex interacting with the already filled dz2 orbital of the iridium. The 

amine as a much weaker π-donor is therefore favored over the corresponding amide to 

bind. In contrast to the work of Bergman, 1 does not react with the pure amine. This could 

be explained by including a thermodynamically uphill pre-equilibrium in the 

mechanistic proposal (Scheme 12, top). The coordination of the amine would then be 

followed by its deprotonation, resulting in a net reaction equal to a substitution of the 

chloride anion with an amide anion. If the use of the conjugated acid in addition to the 

lithiated amide can be generalized is an open question, but the observation that 

preparation of 3 is completed in only 2 hours at 40 °C in aniline as the solvent (instead 

of 4 weeks in benzene at r.t.) is a promising perspective.  
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1.2. Characterization of Amide Complexes 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018 94 with permission from the Royal Society of Chemistry. 

 

The properties of different square-planar iridium (II) amide complexes can now be 

compared. The brown iridium(II) anilide complex [Ir(NHPh)(PNP)] (3) is obtained in 

high yield by salt metathesis as discussed above (Scheme 13). 

        1        3 

Scheme 13: Synthesis of 3 from 1 with LiNHPh. 

Suitable crystals for X-ray structure determination could be obtained from a cooled 

saturated solution of 3 in HMDSO (hexamethyldisiloxane) (Figure 4). The square-planar 

coordination environment around the iridium center could therefore be confirmed (sum 

of angles = 359.4 °). The Ir-NHPh bond length of 1.987 Å is elongated compared to the 

parent amide [Ir(NH2)(PNP)] (Δd = 0.035 Å)102 whereas the Ir-NPNP bonds are identical 

within the error of measurement, which indicates a reduced bond order of Ir-NHPh. The 

residual electron density of the hydrogen bound to the nitrogen of the anilido ligand is 

found in the plane (sum of angles = 359.4 °), confirming sp2 hydridization of the nitrogen 

atom. sp2 hybridization is also favored compared to the parent amide since the nitrogen 

lone pair is part of the conjugated π-system. All the bond lengths and angles within the 

anilido moiety are virtually unaffected by the coordination to the metal. Notably the 

phenyl ring is not coplanar with the PNP plane, as for the parent amide, the Ir-N bond 

is tilt by almost 60 ° as a result of increased steric demand of the phenyl substituent. This 

greatly reduces the overlap of np(N) with dxz(Ir), effectively reducing the Ir-N bond order 

to a single bond. 
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Figure 4: Left: Molecular structure of complex 3 derived by single X-ray diffraction. ORTEP 

plots with anisotropic displacement parameters set at 50% probability level. Hydrogen atoms 

except for N-H are omitted for clarity. Selected bond lengths [Å] and angles [°]: Ir1-N1 2.013(3), 

Ir1-N2 1.987(4), Ir1-P1 2.350(1), Ir1-P2 2.310(1), N1-C1 1.378(5), N1-C11 1.381(5), N2-C21 

1.362(5), Ir1-N2-C21 137.4(3). Right: Simplified representation of frontier orbitals of 3. 

The complex exhibits broad, paramagnetically shifted peaks in the 1H NMR 

spectrum (Figure 5) and no signal in the 31P NMR spectrum. Its magnetic moment in 

solution (1.68 µB) is indicative for a S = ½ system. A rhombic EPR signal in frozen THF 

solution is in accordance with the picture of a metal-centered radical (Figure 6). The g 

anisotropy (g values: gx = 2.71, gy = 2.15, gz = 1.85) strongly resembles the related parent 

amide (gx = 2.72, gy = 2.12, gz = 1.93)102. This can be explained using a simple model of the 

frontier orbitals, where the SOMO in a d7 configuration of the metal is dominated by the 

dxz orbital of iridium leading to anisotropy (Figure 4). The lack of considerable spin 

density unfavors aminyl radical reactivity142. The even larger line broadening in the EPR 

spectrum of 3 as a consequence of unresolved hyperfine coupling and multiple possible 

configurations (rotation around the Ir-N bond) in frozen solution prohibits further 

interpretations. 

 

 

 

 

X-ray crystal structures were measured and solved by Dr. Christian Würtele and Dr. Christian 

Volkmann. 
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Figure 5: 1H NMR spectrum (d8-THF, r.t.) of 3. 

Figure 6: EPR spectrum of amide complex 3 in toluene at 200 K (black line: experimental 

spectrum, red line: simulated spectrum). g-values obtained: gx = 2.71, gy = 2.15, gz = 1.85. 

pentane 
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Figure 7: Cyclic voltammogram of complex 3 (1.6 10-3 mol L–1) in THF at different scan rates 

(0.1 mol L–1 (nBu4N)PF6, potentials vs. Fc+/Fc) and Randles-Ševćik plot demonstrating linear 

behavior. 

Electrochemical characterization of 3 by cyclic voltammetry in THF (Figure 7) 

reveals both reversible reduction (E1/2 = -1.9 V) and oxidation (E1/2 = -0.6 V) waves (vs. 

Fc+/0) on the electro-chemical time-scale (ν > 50 mV s–1). As expected, the redox potentials 

of 3 range between those of chloride 1 and parent amide [Ir(NH2)(PNP)],102,144,167 yet with 

irreversible reduction for the latter. 

   3      putative 

Scheme 14: Reduction of 3 with Na/Hg. 

In fact, the product from reduction of 3 with Na/Hg could not be isolated, due to its 

slow degradation in THF (Scheme 14). A singlet in the 31P{1H} NMR spectrum at 22 ppm 

is in accordance with a symmetric species like [Ir(NHPh)(N(CHCHPtBu2)2)]-, whichs 

decays unselectively within 10 min. at r.t. The disappearance of the signal in the 31P NMR 

spectrum might be an indication for the formation of a paramagnetic species, but further 

investigation is required. 
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Figure 8: In situ 31P NMR{1H} spectrum of reduction of 3 to putative anionic amide 

complex Na[(PNP)Ir(NHPh)]. 

In contrast, chemical oxidation of 3 with AgPF6 affords the isolation of iridium(III) 

anilide [Ir(NHPh)(PNP)]PF6 (6) in 68% isolated yield (Scheme 15). The coordination 

geometry could be confirmed by X-ray single crystal diffraction but the low data quality 

does not allow for discussion of bond metrics. 

     3         6 

Scheme 15: Synthesis of 6 by oxidation of 3 with AgPF6. 

As for [Ir(X)(PNP)]+ (X = Cl, NH2, NHtBu), the solution NMR data of 6 is in 

agreement with a diamagnetic ground state. The temperature dependent spectra of 6 

give no indication for TIP (chemical shifts barely change over a range 60 °C, Figure 9). 

Notably, for the related 4/5d6 complexes [MCl(PNP)] (M = Ru, Os), pronounced TIP (Os) 

and a triplet ground state (Ru), were found respectively.143,154 As for 4, C2V symmetry of 

6 on the NMR timescale down to -40 °C indicates low barriers for anilide rotation around 

the Ir–NHPh bond. The downfield shift of the broad signal corresponding to the N-H 

group (around 14 ppm) already indicates a greatly increased acidity compared to free 

anilide which plays an important role in the synthesis of imido complexes as described 

in chapter 2.1. 
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Figure 9: VT NMR spectrum of 6 over a temperature range of 60 °C in CD2Cl2. 

As discussed in the above section, different substitution patterns of [Ir(NHR)(PNP)] 

have been tried to access. The reaction of [IrCl(PNP)] (1)144 with an excess of lithium tert-

butylamide had to be done in H2NtBu as solvent. As discussed in chapter: 1.1, the amine 

is needed as solvent. It is not readily available deuterated, so information about the 

reaction progress is scarce. 

       1        4 

Scheme 16: Synthesis of 4 from 1 and LiNHtBu. 

No signal in a 31P NMR spectrum is detected in accordance with a paramagnetic d7 

configuration of the metal (IrII). Since educt and product have the same geometry and 

oxidation state of the metal, similar spectroscopic features were expected, including an 

intense turquoise-green color for both complexes. In a 1H NMR spectroscopy 

measurement with short delays, however, the decay of the starting material (broad 

signal at 10.3 ppm) and rise of a new broad signal at 5.3 ppm ([Ir(NHtBu)(PNP)] (4)) can 

be observed. 

-60 °C 

 

-40 °C 

 

-20 °C 

 

0 °C 
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Estimating the spectroscopic yield is though, since the aliphatic region is dominated 

by the signal of the amine, but the lack of significant amounts of diamagnetic complexes 

as indicated by the blank 31P NMR indicates a good yield. In many attempts, the signal 

set of [Ir(NtBu)(PNP)] (8) is also present in the crude spectrum (Figure 10, left) as a by-

product of up to 30%, most likely through oxidation by an unknown oxidant. 

Figure 10: left: 1H NMR spectrum of a mixture of 1 and LiNHtBu in tBuNH2 after 2 h; right: 1H 

NMR spectrum of crude 4 in C6D6. 

Attempts to isolate the product turned out to be unsuccessful due to high solubility 

of both product and aliphatic by-products (Figure 10, right). Column purification using 

basic aluminum oxide leads to partial decomposition of the sample, 1 can be identified 

as one decomposition product. The use of silanized silica, acidic or neutral aluminum 

oxide leads to complete decomposition, presumably via a protonation pathway. Thus, 

studies on the properties and reactivity of 4 as well as further synthesis had to be done 

with only partially pure material. NMR spectroscopy indicates a paramagnetic, highly 

symmetric species in accordance with depicted structure of 4 which is in analogy with 

fully characterized 3. Solubility behavior confirms a neutral complex. Given an IrII metal 

center and the anionic PNP ligand it can be expected that one more anionic ligand is 

bond. Since the precise constitution could not be completely confirmed and distinction 

of different symmetries by 1H NMR is speculative due to high peak broadening, 

characterization by derivatization was the method of choice. 
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Figure 11: Cyclic voltammogramm of crude 4 in THF (scan rate 50 mV/s; 0.1 mol·L-1 

tBu4NPF6). 

Cyclic voltammetry of complex 4 shows a reversible oxidation wave at a low 

potential (E1/2THF = 0.8 V vs. Fc+/0; Figure 11). The shoulder next to it is cathodic shifted 

by approximately 0.1 V and most likely belongs to the reversible oxidation of the 

detected by-product 8 in the 1H NMR spectrum. (for spectroscopy on 8, see chapter: 2.2). 

A reduction wave was not found within the solvent window. 

   4       5 

Scheme 17: Synthesis of 5 from oxidation of 4 with AgPF6. 

In situ chemical oxidation of 4 by one electron was tried in expectation of a 

diamagnetic (d6) and more stable complex to prove its constitution. Indeed treatment of 

4 with one equivalent of AgPF6 as oxidant affords the blue, diamagnetic, square-planar 

iridium(III) amide complex [Ir(NHtBu)(PNP)]PF6 (5) analytically pure (Scheme 17). 
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Figure 12: 1H NMR spectrum of 5 in d8-THF. 

The spectroscopic features of 5 are quite similar to cationic amide 6. Both exhibit a 

singlet in the 31P{1H} NMR spectrum (47 ppm for 5 and 50 ppm for 6, respectively) and 

C2v symmetry on the 1H NMR spectroscopic timescale with almost identical shifts of their 

N-H groups (Figure 12). Their reactivity however, will be very different when it comes 

to removing this hydrogen atom as will be discussed in the following chapters. 
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2. A Redox Series of Stable Terminal Ir Imido 

Complexes 

2.1. Synthesis of Ir Imides 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018 94 with permission from the Royal Society of Chemistry. 

 

Investigation of transition metal nitrene complexes as intermediates in functional 

group transfer reactions was the aim of this work. As model complexes, iridium imido 

complexes were chosen. With the synthesis of the amide complexes 4 and 3 an important 

first step has been done. There are multiple thinkable pathways from an amide complex 

to an imide complex (Scheme 18). They have in common that a compensation is needed 

to drive the thermodynamic equilibrium, because one N-H bond has to be broken in this 

process and the resulting imido complex is thought to be an energetically high lying 

molecule due to the occupation of antibonding orbitals of the Ir-N bond. Tested 

strategies were a) deprotonation of a cationic amide complex, b) hydrogen atom 

abstraction (HAA) on the neutral stage, c) HAA on the cationic stage, d) mixed 

oxidation-deprotonation, as shown in Scheme 18. 

The initial attempt (pathway a) was to obtain an iridium imide complex by 

deprotonation of 5 using bases like KOtBu or KHMDS. The driving force is provided by 

neutralization of the base and precipitation of the formed salt (KPF6 for example). These 

reactions resulted in intractable mixtures of several diamagnetic products. The 

nucleophilicity of the bases could have led to ligand exchange and/or redox chemistry. 
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         7     8 

Scheme 18: Reaction pathways towards Ir imido complexes. 

Next, treatment of 4 with the radical OAr(tBu)3 has been tested to remove a 

hydrogen atom (pathway b). The BDFE of the O-H bond of the radical is determined to 

be 76.7 kcal/mol in benzene145, well above the N-H BDFE of the parent amide for which 

this reaction proceeds in a stoichiometric fashion (to yield the disproportionation 

products of [Ir(NH)(PNP)]102. It is assumed that 4 and its parent amide complex have 

similar N-H bond strengths. An immediate reaction can indeed be observed indeed also 

for this reaction, although it yielded besides some minor species a paramagnetic 

compound which could be [Ir(OAr(tBu)3)(PNP)] according to the number of signals and 

their relative integrals. The higher tendency of 4 to lose the amide ligand is in accordance 

with the expected lower bond order compared to the parent amide (see chapter 1.2). 

Structural evidence, however, could not be provided. 

The cationic imide was targeted in the expectation that removal of an anti-bonding 

electron leads to a more stable Ir-N bond (see also chapters 2.2 and 2.4). As for the neutral 

amide, the stable radical OAr(tBu)3 has been applied, yet no reaction occured (pathway 

c). In a further experiment, an excess of DDQ has been added to a solution of the amide 

complex in a mixture of C6D6 and CD2Cl2. Upon heating to 40 °C complete consumption 

of the amide is observed along with formation of a new paramagnetic product and at 

least one diamagnetic species. The paramagnetic can be identified as the imide complex 

4 6 
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by comparison with an independently prepared sample (spectrum: Figure 17; synthesis: 

chapter 5.2.1), the diamagnetic compound remains unknown. The reaction is 

accompanied by the formation of brown precipitate due to decomposition of DDQ at 

elevated temperatures. Isolation of the imide via this route turned out to be unsuccessful 

thereof. 

The oxidation potential of the amide complex has been determined to be mild 

(-0.8 V) and the oxidation has been done chemically using a silver salt like AgPF6 

(Scheme 17). Direct HAA from 5 to the cationic imide [Ir(NtBu)(PNP)]+ (7) turned out to 

be synthetically not useful. It is self-evident that the oxidized amide 5 should have a 

much higher pka value than the neutral 4 and that the oxidation potential of a neutral 

imide is drastically lower than of a cationic amide. Instead of HAA, a stepwise or 

coupled deprotonation-oxidation (PCET) was considered. An oxidation-deprotonation-

oxidation sequence resulting in formal loss of a hydride from in situ generated 4 

(pathway d) should be possible choosing the right base and oxidant. The in situ 

preparation of 4 is already done with an excess of a strong base, LiNHtBu. The choice of 

oxidant was less straightforward, a variety of ferrocenium- and silver salts were tried. 

In most cases, a mixture of cationic amide 5 and cationic imide 7 is obtained when an 

excess of oxidant is applied to the mixture of crude 4 and LiNHtBu. An exception to this 

was the use of AgO2CCF3 (Scheme 19), where only the cationic imide 7 is detected in 1H 

and 31P NMR spectra. The isolated yield drops a bit to 57% due to an extensive workup 

procedure. 

      1       7 

Scheme 19: Stepwise, one-pot synthesis of 7 from 1 with an excess of AgO2CCF3 and LiNHtBu. 

The synthesis comes along with some equivalents of oxidized organic material, rests 

of the silver salt and reduced silver particles. The violet imide complex 

[Ir(NtBu)(PNP)]CF3CO2 (7) can be isolated using column chromatography. The charged 

complex sticks firmly to the packing material, basic alumina. The column can therefore 

be extensively rinsed with THF to remove most of the impurities, however the capacity 
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of the column is limited to approximately 50 to 80 mg per one filling. If overloaded, the 

complex will elute with THF together with the impurities. After some tests, DMF 

emerged as the best solvent to remove the complex from the column. Characterization 

of 7 by cyclic voltammetry (CV) in THF shows both reversible reduction (E1/2 = –0.9 V vs. 

Fc+/Fc) and oxidation (E1/2 = +0.4 V vs. Fc/Fc+) waves at remarkably mild potentials. 

Another irreversible reduction wave was found at low potential (Epc = –2.7 V vs. Fc+/Fc) 

Figure 13: Cyclic voltammogramm of 7 in THF (0.1 mol·L-1 tBu4NPF6). 

According to the CV, the neutral imido complex [Ir(NtBu)(PNP)] (8) is generated 

upon reduction of 7 with cobaltocene in THF at r.t. (Scheme 20). Formation of the amide 

4 is always observed in the process and might be due to traces of moisture that could not 

be removed despite rigorous drying of solvents. The molecular structures of 4 and 8 are 

very similar, since the loss of the hydrogen atom does not result in a big structural 

reorganization For comparison see the crystal structures of imide 8 (Figure 15) and of 

phenyl-substituted amide 3 (Figure 4). Co-crystallization could be favored therefor and 

indeed despite repeated recrystallization, 4 is always present in minor amounts (around 

4% detected by 1H NMR spectroscopy, Figure 22). However, quantification from NMR 

might be misleading due to the much broader lines of iridium(II). A detailed description 

of the (electronic) structure and reactivity of imido complex 8 follows in the next 

chapters.  

7 

8 

9 
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        7           8 

Scheme 20: Synthesis of 8 by reduction of 7 with cobaltocene. 

Figure 14: 19F NMR spectrum after oxidation of 7 with thianthrenium tetrafluoroborate in 

CD3CN at r.t. 

After establishing the neutral imide 8 by reduction of 7, the oxidation of 7 by one 

electron encouraged by its reversible oxidation wave in the cyclic voltammogramm was 

tackled. Based on the measured potential, a stronger oxidant than a silver salt was 

needed. The use of the powerful one-electron oxidant thianthrenium tetrafluoroborate 

(ThBF4) was explored in MeCN at 30 °C. In the 19F NMR spectra after oxidation of 7, 

new signals in the chemical shift range of trifluoromethyl groups are observed (Figure 

14). They could not be identified, nevertheless none of them is identical with the original 

signal of trifluoro acetate. Since the signal of the cationic imido complex is still present 

in the 1H NMR spectrum of the mixture, it is most likely that the trifluoro acetate anion 

is oxidized instead of the complex and the trifluoromethyl group is transferred via a 

radical mechanism without involving the complex.146 
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Scheme 21: One-electron oxidation of TFA leads to trifluromethylated products. 

Oxidation of trifluoro acetates (TFA) is known, but the potentials are very high (2.4 

V vs. SCE in MeCN for oxidation of NaTFA).147 ThBF4 has a potential of +0.86 V vs. Fc+/Fc 

in MeCN,148 roughly +1.3 V vs. SCE, respectively. Despite the assumed irreversibility of 

the oxidation through decomposition, the oxidation potential of ThBF4 should be about 

0.8 V too low, unless catalyzed. Oxidation using silver salts and TiO2 as photocatalyst 

has been demonstrated,149 and also XeF2150 and peroxides151 have proven to be effective 

in generatign CF3 radicals from TFA.152 

So the anion which is introduced by in situ oxidation of 4 had to be altered by 

replacing the oxidant in the synthesis of complex 7. Instead of AgO2CCF3, AgBF4 is used 

as an oxidant (Scheme 22). 

  1               7-BF4     9 

Scheme 22: Synthesis of 7-BF4 from 1 via using AgBF4 as an alternative oxidant to AgO2CCF3 

and thianthrenium tetrafluoroborate as the oxidant to 9. 

Since the synthesis does not proceed as clean as with AgO2CCF3, the purification 

process via column chromatography and recrystallization had to be repeated twice and 

lowered the yield of 7-BF4 to 19%. For further experiments it is recommended to look for 

a different route to 9. The oxidation of 7-BF4 gives the green dicationic iridium(V) imide 

[Ir(NtBu)(PNP)](BF4)2 (9) in satisfactory 70% isolated yield (Scheme 22). In contrast to 7 

and 8, the double cationic 9 is only soluble in very polar solvents, like acetonitrile or 

nitrobenzene and decomposes in solution at temperatures above -10 °C. 
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2.2. Structural and Electronic Characterization 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018 94 with permission from the Royal Society of Chemistry. 

 

 

The two imide complexes 7 and 8 were characterized crystallographically (Figure 

15).For 9, suitable crystals for X-ray crystallography could not be obtained. 7 has also 

been crystallized as 7-PF6 (containing one solvent molecule DCM). 

Figure 15: Molecular structures of 7 and 8, derived by single X-ray diffraction. ORTEP plots 

with anisotropic displacement parameters set at 50% probability. Hydrogen atoms are omitted 

for clarity. Selected bond lengths [Å] and angles [°] of 7: Ir1N1 1.979(3), Ir1N2 1.805(2), 

N2C21 1.444(2); Ir1N2C21 171.3(3) N1Ir1N2 175.55(5); and 8: Ir1N1 2.059(2), Ir1N2 

1.868(2), N2C21 1.438(3); Ir1N2C21 157.2(2), N1Ir1N2 178.61(9). 

X-ray crystal structures were measured and solved by Dr. Christian Würtele and Dr. Christian 

Volkmann. 
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The effect of the different anion is neglectable since they both do not coordinate to 

the complex. The same is assumed for the before mentioned 7-BF4. In both crystal 

structures of 7 and 8, the metal ions exhibit approximately square-planar coordination 

(sum of angles: 358.9 Å (7); 360.0 Å(8)). While the imido moiety in 7 is close to linearity 

(Ir–N–C: 171.3(3)°), it is more strongly bent in 8 (Ir–N–C: 157.2(2)°). This observation 

suggests weaker -bonding for 8 due to occupation of antibonding Ir-N orbitals, 

resulting in a shallower imide bending potential (see also Walsh-diagram in Figure 35). 

Accordingly, the Ir–NtBu distance of 8 (1.868(2) Å) is longer than in parent 7 (1.805(2) Å). 

The longer Ir–NtBu bond together with slightly shortened Ir–P bonds (by about 0.04 Å) 

in 8 indicates considerable covalent effects rather than merely changes in metal ionic 

radii. 

Both Ir–NtBu bonds are noticeable shorter than in the amides [Ir(NH2)(PNP)]+/0 (IrII: 

1.9521(17) Å; IrIII: 1.900(2) Å) supporting multiple bond character and significantly 

longer than in nitride 10 (1.678(4) Å),130 Burger’s nitride [Ir(N)(PDI)] (1.646(9) Å)153 and 

Bergman’s imide [Cp*Ir(NtBu)] (1.712(7) Å),111 which all exhibit IrN triple bonding 

character. These comparisons indicate  bonding character intermediate between a 

single and a triple bond for the Ir–NtBu moiety in 7 and 8, in line with a 

(yz)2(z2)2(π*1/π*2)x electronic configuration (x = 1 (7), 2 (8); PNP ligand in the xy-plane, 

imido ligand on x axis; Scheme 8). 

Figure 16: 1H NMR spectrum of 9 in d3-acetonitrile at -30 °C. inset: 31P{1H} NMR spectrum of 

9. 
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Further information about the electronic structures of 7-9 was obtained from 

spectroscopic characterization. The NMR spectra of dicationic imide 9 at -30 °C support 

a C2v-symmetric structure with a closed-shell, (yz)2(z2)2 ground state like the isoelectronic 

iridium(V) nitride 10 (Figure 16).130 The downfield shift of the phosphorous atoms 

surpasses that of all other square-planar [Ir(X)(PNP)] complexes, an indicator of low 

shielding caused by the high charge at the metal center. The sharp 11B and 19F NMR 

signals of the BF4-anions in solution give no indication for fluoride coordination to the 

metal. 

The signals in the 1H NMR spectrum of iridium(IV) imide 7 however, do not allow 

for further interpretation than broadening by fast relaxation typical for paramagnetic 

complexes (FWHM = 65 Hz, Figure 17). 7 exhibits a magnetic moment in solution close 

to the spin-only value for S = 1/2 derived by Evans’ method (μeff = 1.6±0.2 μB). The 

doublet ground state is confirmed by X-band EPR spectroscopy (Figure 18). A broad, 

rhombic EPR signal is observed with g values well below ge (g = [1.709 1.625 1.332]), 

resembling that of iridium(IV) nitride 2 (g = [1.862 1.582 1.321]).130 Measurements at 

different temperatures did not lead to better resolution of the spectrum in terms of 

extracting hyperfine interaction (HFI) values. 

Figure 17: 1H NMR spectrum of 7 in d8-THF at r.t. 
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In the case of nitride 2, the unusual g-anisotropy was rationalized in terms of heavy 

SOMO/LUMO-mixing due to near degeneracy of the perpendicular M–N *-MOs and 

the large spin-orbit coupling constant of iridium. The high IrN bond covalency of 2 

results in considerable spin delocalization to the nitride (‘non-innocent’ behavior) as 

substantiated by the rhombic 14N HFI derived from Davies-ENDOR (electron nuclear 

double resonance) spectroscopy (A(14N) = [-19 +49 -60] MHz). In the present case, 

ENDOR spectroscopy was unsuccessful, presumably due to anisotropic signal 

broadening. 

Figure 18: Experimental (black) and simulated (red) EPR spectra of 7. Experimental conditions: 

Spectrum recorded in MeTHF at 23 K, frequency 9.367669 GHz, microwave power 0.632 mW, 

modulation amplitude 4 G. Simulation was obtained using the parameters shown in Table 1. 

However, the imide nitrogen HFI tensor of 7 could be obtained from electron-

electron double resonance detected NMR (ELDOR-NMR) spectra at W-band (Figure 19 

and Figure 20) with the 15N-imide isotopologue of 7 (15N-7). ELDOR-NMR is a 

combination of both NMR and EPR techniques to detect symmetry-forbidden 

simultaneous EPR- and NMR transitions (ΔmS = ±1, ΔmI = ±1). A magnetic field, in this 

set of experiments ranging from 3.8 to 5 T, causes a difference in population of otherwise 

energetically degenerated spin states. The magnetic field has to match the frequency in 

order to hit the energy of the g-value. A higher field frequency directly leads to a higher 

population difference of states and a better signal-to-noise ratio therefore. 

ENDOR and ELDOR-NMR experiments were conducted and evaluated under supervision or by 

Dr. Edward J. Reijerse. DFT calculations on the electronic parameters of 7 were provided by 

Dr. Bas de Bruin.  
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The experiment consists of a classical Hahn-spin-echo experiment after a high 

turning angle pulse (tHTA) with high intensity “tHTA - T - tP – τ – 2tP – τ – echo”. The waiting 

and pulse times are experimentally determined parameters and are not varied during 

the experiment. The preparative HTA pulse saturates the EPR transition and its 

frequency (ν0) is also kept constant. The frequency of the echo pulse (ν1) is varied 

systematically around ν0. When the difference of the two frequencies Δν (ν1 - ν0) is 0, the 

signal diminishes eminently (‘central hole’). If it is exactly the energy of an EPR or 

– forbidden – ELDOR transition with both change in orbital- and spin- quantum 

number, there is a bleach in the spectrum due to the de-population caused by the echo 

pulse. Within a I = ½, S = ½ model, the allowed EPR transitions are at frequencies 

νEPR = (ge βe ΔB0 h-1) ± (να-νβ) and the ELDOR transitions at νELDOR = (ge βe ΔB0 h-1) ± (να-νβ) 

with να and νβ the two possible NMR transitions, which differ in energy due to their 

hyperfine coupling to the electron spin. This reveals another advantage of ELDOR 

spectroscopy: Comparison of spectra at different field strength allows for separation of 

peaks. Assignment of the signals to the coupling cores and thereby extraction of the 

hyperfine coupling constants can only be done using a simulation software since real 

spectra are too crowded for a straightforward interpretation. These elaborate 

measurements and their evaluation have been done by Dr. Edward Reijerse. 

In the present spectrum (Figure 19 and Figure 20), the features below 60 MHz in the 

spectrum at 5.0 T are dominated by contributions from 191Ir and 193Ir (I = 3/2), while the 

peaks up to 140 MHz can be assigned to the 31P HFI as supported by DFT computations. 

Signals attributable to a high frequency transition of a strongly coupled imido 15N 

nucleus could be simulated with the HFI tensor A(14N) = [+30 +102 –111] MHz. The 

experimental g- and A-tensors are sufficiently well reproduced by a computational 

model (Table 1). 

 

 

 

 

 

 

 

ENDOR and ELDOR-NMR experiments were conducted and evaluated under supervision or by 

Dr. Edward J. Reijerse. DFT calculations on the electronic parameters of 7 were provided by 

Dr. Bas de Bruin. 
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Figure 19: Raw Data of the ELDOR detected NMR spectra recorded on 15N-7. The microwave 

frequency of the two pulse echo observer sequence was adjusted to the resonance frequency of 

the Bruker TE011 W-band cavity by optimizing the symmetry of the ELDOR-NMR spectrum. 

The high turning angle pulse (HTA) was 5 µs. The full echo shape (tau = 600 ns) was integrated 

over 500 ns in order to optimize the spectral resolution. The ELDOR pattern was baseline 

corrected by fitting and subtracting a Lorentzian line shape corresponding to the cavity 

resonance. Subsequent polynomial base line corrections led to the processed spectra displayed 

in Figure 20. 

ENDOR and ELDOR-NMR experiments were conducted and evaluated under supervision or by 

Dr. Edward J. Reijerse. DFT calculations on the electronic parameters of 7 were provided by 

Dr. Bas de Bruin. 
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Figure 20: ELDOR detected NMR spectrum 15N-7 recorded at W-band (simulations for 15N and 
31P indicated by red line). The features below 60 MHz are dominated by contributions from 191Ir 

and 193Ir (I=3/2). The peaks up to 100 MHz (at 5.0 T) are assigned to the high frequency 

transition of the strongly coupled imido 15N nucleus (I=1/2). Assuming alignment with the g-

matrix principal axes the HFI tensor was simulated as A(15N) = [-156 143 42] MHz, which 

corresponds to the 14N HFI principal values A(14N) = [-111 102 30 ] MHz. The peaks up to 140 

MHz (at 5.0 T) are assigned to the 31P nuclei (I=1/2) and simulated with HFI tensor A(31P) = 

(94  94  134) MHz and Euler angles (47  99  not resolved(NR)) degrees which is in very good 

agreement with the DFT calculations for this interaction. 

ENDOR and ELDOR-NMR experiments were conducted and evaluated under supervision or by 

Dr. Edward J. Reijerse. DFT calculations on the electronic parameters of 7 were provided by 

Dr. Bas de Bruin. 
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The striking similarity of 7 and 2 is not only limited to the low g-values (gavg (7) = 

1.56; gavg (2) = 1.59) resulting from mixing of the SOMO with an unoccupied orbital, the 

hyperfine interaction is similarly rhombic for both complexes, too. The sum of the three 

a-values is close to zero for 7 (aiso (14NtBu) = +21 MHz) as it is in the case of 2 

(aiso (14NtBu) = -25 MHz). In addition, also the trends among the HFI values is similar, 

two rather large ones with opposite sign and one smaller. In analogy to iridium(IV) 

nitride 2,130 keeping the rhombicity of the A-tensor and the vanishing isotropic HFI in 

mind, the picture of an Ir–NtBu π-radical with cylindrical spin density delocalization 

around the Ir–N π-bond for 7, is supported. The hyperfine coupling tensors reflect the 

geometry of the environment of the electron that is coupling to the respective nucleus. If 

it would be mainly centered in a spherical s-orbital, its hyperfine tensors would be 

identical since the probability density of the electron is the same in every direction from 

the point of the nucleus. The same logic applies for other orbital types; p-orbitals are 

invariant with respect to two main axes, no proper rotation operation is possible for d-

orbitals. This results in rhombic hyperfine coupling if the electron is centered in a d-

orbital of a metal. Localization in one π-bond only would result in a rhombic hyperfine 

coupling as well with the difference that they would not cancel out on summation like 

in this case of a torus-shaped electron density distribution. 

At this point, it should be pointed out that sufficiently accurate results in DFT 

calculations of these Ir-complexes are only delivered if a correction for the spin-orbit 

coupling is included. This becomes evident for the entries in Table 1 regarding the HFI 

of 14NtBu. The calculated g-tensors are very low if restricted SPINORBIT ZORA 

calculations excluding spin polarization are used. Computational details are given in 

chapter IV:2. An even more extensive approach to account for the importance of SOC 

around 5d metals like iridium is shown in chapter 2.3. 

 

 

 

 

 

 

 

ENDOR and ELDOR-NMR experiments were conducted and evaluated under supervision or by 

Dr. Edward J. Reijerse. DFT calculations on the electronic parameters of 7 were provided by 

Dr. Bas de Bruin. 
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Table 1: Comparison of experimental and DFT calculated EPR parameters of 9. ([a] 

Experimental Euler angles: [47 99 NR] degrees (gamma value meaningless; [b] Averaged DFT 

Euler angles: [55 88 NR] degrees (gamma value meaningless).). 

[(LtBu)Ir(NtBu)]+ 

g-tensor 

 g11 g22 g33 g11 g22 g33 

Exp. (sim) X-band 1.332 1.625 1.709 1.332 1.625 1.709 

 BP86, TZP B3LYP, TZ2P 

DFT (restricted) 0.619 0.750 0.847 0.545 0.689 0.832 

DFT 

(unrestricted, collinear) 

1.330 1.765 1.867 1.357 1.708 1.881 

Hyperfine Interactions 

NtBu 14N-atom AN11 AN22 AN33 AN11 AN22 AN33 

Exp (ELDOR simulation) -111 102 30 -111 102 30 

 BP86, TZP B3LYP, TZ2P 

DFT (no SOC) 82 2 -10 100 20 1 

DFT (SOC) -67 87 -5 -51 108 10 

 

PNP 14N-atom AN11 AN22 AN33 AN11 AN22 AN33 

Exp (simulation) NR NR NR NR NR NR 

 BP86, TZP B3LYP, TZ2P 

DFT (no SOC) -9 -4 -4 -1 -12 -5 

DFT (SOC) -7 -5 -4 -9 -6 -5 

 

PNP 31P-atoms AN11 AN22 AN33 AN11 AN22 AN33 

Exp (ELDOR simulation)[a] 94 94 134 94 94 134 

 BP86, TZP B3LYP, TZ2P 

DFT (no SOC) [b] 91 91 130 89 89 128 

DFT (SOC) [b] 87 91 134 88 91 134 

 

193Ir AIr11 AIr22 AIr33 AN11 AN22 AN33 

Exp (simulation) NR NR NR NR NR NR 

 BP86, TZP B3LYP, TZ2P 

DFT (no SOC) -35 -62 -37 -46 -75 -51 

DFT (SOC) -80 -29 -84 -89 -51 -96 

ENDOR and ELDOR-NMR experiments were conducted and evaluated under supervision or by 

Dr. Edward J. Reijerse. DFT calculations on the electronic parameters of 7 were provided by 

Dr. Bas de Bruin. 
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The comparison of 14N and 15N isotopologue of 7 can be used to identify the 

stretching frequencies with involvement of the imido ligand, particularly Ir-Nimido and 

Nimido-CtBu stretching frequencies. They are expected at ~1000 cm-1 (comparison with 

other heavy element imido complexes) and ~1100 cm-1 (aliphatic amine), respectively. In 

this region, the isotopic shift derived from a harmonic oscillator model is 32 cm-1 for the 

Ir-N and 17 cm-1 for the N-C stretch. The two spectra are nearly identical (Figure 21) with 

the exception of two small peaks in the 15N-spectrum at 1047 cm-1 and 1064 cm-1 and one 

small peak in the 14N-spectrum at 1058 cm-1. Unfortunately, the corresponding signals in 

the respective other spectrum can not be found. This might be due to overlap in the 

region from 1100-1250 cm-1 which is dominated by transitions of the PNP ligand. The 

additional signal in the 15N spectrum could also origin from a solvent impurity. 

 

Figure 21: IR spectra of 7 and 15N-7 (KBr pellet). 
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Adding one more electron to 7 yields the fully reduced iridium(III) imide 8. 8 has 

an even electron count as diamagnetic iridium(V) imide 9. Nevertheless, no 31P signal 

was found for 8 and the four 1H NMR signals exhibit strongly paramagnetically shifted 

(+20 to –80 ppm at r.t.), yet relatively sharp (Δν½(CH3) = 29 Hz) signals as compared with 

7 (Δν½(CH3) = 65 Hz).  

Figure 22: 1H NMR spectrum of 8 in C6D6. 

A paramagnetic compound of Curie-type behavior has a temperature dependent 

magnetic susceptibility. This is typically tested monitoring the change of NMR shifts 

which are sensitive to changes in the local magnetic field. For better graphical 

understanding the shifts are plotted versus the inverse temperature (Curie-plot) which 

causes a linearization of the data point if the magnetic field is constant over temperature. 

The distinct temperature dependence of the 1H NMR chemical shifts of 8 (Δδ up to 

26 ppm at 173-293 K; Figure 23) rules out a purely temperature independent 

paramagnetism (TIP) from excited state admixture into a closed-shell ground state, as it 

is observed in some cases for sqare-planar 5d6 complexes, e.g. in case of square-planar 

osmium(II) complex [OsCl(PNP)].154 The non-linear Curie-plot of the 1H NMR 

temperature dependence of 8 (Figure 23) indicates thermal population of more than one 

accessible electronic state within this temperature range. 
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Figure 23: 1H NMR chemical shifts of 8 in d8-THF as a function of inverse temperature. 

The magnetic moment of 8 derived by Evans’ method in solution at r.t. is higher 

than the expected spin-only value for a spin doublet, but considerably lower than for a 

spin triplet (1.73 μB < μeff = 2.3 μB < 2.83 μB) indicating strong orbital contributions. 

SQUID magnetometry of a powdered sample (0.68 cm3mol–1K or 2.33 μB at 295 K, Figure 

24) confirms the magnetic moment derived by the Evans method, thus ruling out strong 

solvent effects. 
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Figure 24: Temperature dependence of the experimental T-product (circles) of 

microcrystalline 8 at 0.5 T. Solid lines represent the global fit using the Spin-Hamiltonian given 

in the experimental details (fit parameters: S = 1; g = 1.98; D = 466 cm–1; PI denotes the 

correction from a paramagnetic impurity (15.6%) with S = 0.5). 

On lowering the temperature, the MT product decreases and below ca. 150 K the 

MT curve becomes linear. This low temperature regime of the MT curve is reminiscent 

of the magnetic data found for [OsClPNP],154 which exhibits large temperature 

independent paramagnetism (TIP = 1.03 10–4 cm3 mol–1) in the range of 2-295 K. 

Supported by multireference NEVPT2/QDPT computations, these data were 

rationalized with a triplet electronic ground state that is strongly split due to large spin-

orbit coupling, which results in a thermally well separated ms = 0 ground level without 

magnetic moment. However, in case of 8 the intercept of the MT curve has a finite value 

of the magnetic moment. This non-zero magnetic susceptibility at low temperatures is 

only expected for any system with a Kramers doublet as a ground state. To further 

elucidate these results, electron absorption spectroscopy is used. First, the optical 

transitions of 8 are recorded (Figure 25). Upon comparison with the maxima in the UV-

Vis spectrum of 4, it becomes obvious that they overlap with the transitions of amide 

complex 4, which is always present in minor amounts in samples of 8 (see Figure 22, 

expansion). An exception to this is the weak and broad transition of 4 in the NIR region 

(λmax ≈ 1200 nm). Magnetic circular dichroism (MCD) measurements of frozen solution 

samples in 2-MeTHF were therefore carried out to separate the transitions of 8 and 4. 
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Figure 25: UV-Vis-NIR spectra of 4 (green, 0.81 mmol L-1) and 8 (red, 0.20 mmol L-1) in THF 

solution at r.t. 

MCD spectroscopy is a multidimensional technique to gain information about 

ground- and excited states of a molecule. The basic experiment setup consists of a 

spectrometer in the UV to NIR range equipped with a modulator to separate left and 

right circularly polarized (lcp and rcp) light. The sample is placed in a cooled cavity of a 

tunable magnet. Measurements at temperatures down to 1 K, where thermal population 

of higher energy levels is less likely, enables investigation of ground states. MCD 

spectrrosopy makes use of the different photon absorption probability of lcp and rcp 

light of a particular transition. The obtained spectral data are plotted as difference 

between absorbance of lcp- and rcp light (ΔA in mdeg) versus wavelength/wavenumber 

(in nm/cm-1). For historic reasons, the ellipticity Θ (closely connected to the MCD 

intensity ΔA) is derived from the difference of the absorption coefficients of lcp- and rcp 

light as a variation of Lambert-Beers law (eq. 1) with the molar concentration C and path 

length d. 

𝛩 =  
1

4
ln10

180°

𝜋
𝛥𝐴 =  

1

4
ln10

180°

𝜋
(𝜀𝐿−𝜀𝑅) 𝐶 𝑑 

 

(1) 

The selection rule for CD activity is that the electric dipole transition moment comes 

along with a change of the magnetic dipole transition moment. The ellipticity is 

proportional to the cross product. In a non-chiral molecule, the magnetic dipole 

transition moment is always perpendicular to the electric dipole transition moment and 
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their cross product thus zero. A parallel component to the electric dipole transition 

moment is needed, which is induced by a magnetic field in MCD spectroscopy. With an 

external magnetic field, splitting of degenerate states (e.g. mS = ±½) occurs. Pioneering 

work on the theory of MCD has been done by Stephens155, further developments by Piepho 

and Schatz156. A detailed discussion of various systems with S ≥ ½ is given in a review of 

Solomon and coworkers.157 The MCD intensity of a signal can be expressed in simple, 

parametrized form (eq. 2), 

ΔA

E
= (

2 N0 π
3 C d lg(e)

250 h c n
)𝜇BH [A1 (

-∂f(E)

∂E
) + (B0+

C0

kT
) f(E)] 

 

(2) 

where E = hν, N0 is the Avogadro constant, h the Planck constant, c the speed of light in 

vacuum, n the refraction index, μB the Bohr magneton, H the applied magnetic field, k 

the Boltzmann constant, T the temperature, f(E) the absorption band shape and f(E)/∂E 

its first derivative. Apart from some constants that originate from the optical transition, 

this term can be split into 3 terms, the so called A-, B- and C-terms. Equation 2 obviously 

only describes the spectrum properly when the MCD intensity increases linearly with 

the magnetic field H. The saturation behavior of the signals has to be taken into 

consideration for calculations of the ground- and excited states. 

The A-, B- and C-terms are summations over all components of the relevant ground- 

and excited states divided by the ground states degeneracy dA. A- and C- terms occur in 

systems with either degenerate ground (|A>)- or excited (|J>) states that are split by the 

applied magnetic field (Zeeman effect). The first part of the A-term is the subtraction of 

the Zeeman term of the excited and the ground state, whereas the second part is the 

difference of the electric dipole moments (eq. 3). 

A1=
1

|𝑑𝐴|
∑(〈𝐽|𝐿𝑍 + 2𝑆𝑍|𝐽〉 − 〈𝐴|𝐿𝑍 + 2𝑆𝑍|𝐴〉) × (|𝐴|𝑚−|𝐽|2 − |𝐴|𝑚+|𝐽|2) 

 

(3) 

C0=
−1

|𝑑𝐴|
∑〈𝐴|𝐿𝑍 + 2𝑆𝑍|𝐴〉 (|𝐴|𝑚−|𝐽|2 − |𝐴|𝑚+|𝐽|2) 

 

(4) 
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Since the external magnetic field is directed along the z-axis, xy-polarized electric dipole 

transitions dominate the A- and C-terms with 

𝑚±=
1

√2
(𝑚𝑥 ± 𝑚𝑦). 

 

(5) 

In most measurements, the molecules are not aligned parallel to the z-axis of the 

magnetic field but rather statistically distributed, when the sample is measured in a 

frozen solution (glass). The equations 3 to 5 have to be extended to sum up the whole 

manifold of directions in space. For an only qualitative approach to the origin of MCD 

signals however, it is sufficient to restrict the discussion to a perfect alignment of the 

molecules along the z-axis. When the applied magnetic field is turned from z-direction 

by 180°, the sign of both A- and C-terms turn as well. For A-terms, kT is high compared 

to the magnetic field, so the population of the split ground state is equal. The lcp and rcp 

absorption intensities are therefore equal, just as in the case without an applied field 

(Figure 26, left). The difference however, is that the maximum of the signal will shift by 

the magnitude of the Zeeman splitting of the ground state. These are usually only a few 

wavenumbers, little compared to the total energy of the transition, resulting in a 

derivative band shape of the subtracted spectrum with little ΔA (Figure 26, center). 

Therefore, the A-term is often neglectable when the transition is broad. When the 

magnetic field strength is raised, or, more effective, the temperature is lowered so kT is 

in the range of the energy of the Zeeman splitting term, the population of the lowest 

states becomes unequal. The result is an intense, temperature dependent signal with 

absorption shape (C-term) in the subtraction spectrum (Figure 26, right). The C-term is 

therefore actually very similar to the A-term, but requires kT to be comparable to gμBH 

and a degenerate ground state, whereas degenerate excited states will only cause A-

terms. If there is a degenerate ground state, at the low temperature limit there will be 

pure C-term intensity. Upon warming the sample, C- and A-term occur simultaneously 

until at the high temperature limit, only A-term intensity is observed. 

B-term intensity is observed when either the ground or excited state of the transition 

undergoes field-induced mixing with an intermediate state |K> (eq. 6). 
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B1=
2

|dA|
Re ∑[ ∑

〈J|LZ+2SZ|K〉

ΔEKJ

(〈A|m-|J〉〈K|m+|A〉-〈A|m+|J〉〈K|m-|A〉) +

K(K≠J)

 

 

(6) 

∑
〈𝐾|𝐿𝑍 + 2𝑆𝑍|𝐴〉

𝛥𝐸𝐾𝐴

(〈𝐴|𝑚−|𝐽〉〈𝐽|𝑚+|𝐾〉 − 〈𝐴|𝑚+|𝐽〉〈𝐽|𝑚−|𝐾〉)

𝐾(𝐾≠𝐴)

] 

When an excited state mixes with another state due to the external field, this mixing is 

temperature independent and so is the resulting B-term intensity. Often MCD intensity 

at a given wavelength is a mixture of B- and C-, respectively A-term, depending on the 

temperature of measurement. Presence of B-term intensity is easily detected by plotting 

the MCD intensity versus the reduced field (μB/2kBT). If the MCD intensity originates 

purely from C-term intensity, its temperature dependence is indirect proportional to the 

absolute temperature and therefore the isotherms of one peak should overlay perfectly. 

If this is not the case and the isotherms fan out, this is called ‘nesting’ behavior and sign 

for a temperature independent B-term portion. 

Figure 26:MCD A- and C-term mechanism. Left: Without applied magnetic field, degenerate 

ground state levels, no MCD signal. Center: The magnetic field splits the ground state, the rcp 

and lcp transitions to the identical excited state have different energies, the MCD signal has a 

derivative shape (A-term). Right: At low temperatures, rcp and lcp absorption intensities differ 

due to population difference of the split ground state resulting in an absorptive shaped signal 

(C-term). 
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Figure 27: MCD spectra of 8 in the Vis and NIR range at 5 T and various temperatures. 

The MCD spectrum of 8 (Figure 27) was recorded at low temperatures between 1.5 

and 15 K to elucidate the different possible terms The signals around 1700 cm-1 arise from 

the setup. It shows absorptive shaped signals at positions in the visible range that 

resemble the UV-Vis spectrum of 8. As discussed above, complexes 8 and 4 show strong 

spectral overlap in this range, while only compound 4 exhibits a broad NIR band at max 

= 1190 nm (Figure 25). Saturation of peaks occurs above roughly 3-5 T, when the signal 

intensity does not increase linearly with the field strength anymore (Figure 28). For the 

exact positions and magnitudes of the signals, which can overlap and have different 

signs, it is necessary to deconvolute the spectrum into Gaussian shaped signals. The 

results are shown in Figure 29 and summarized in Table 2. 

Figure 28: Variable field MCD spectra of 8 in the Vis Range at 1.5 K. 

MCD spectra were measured in collaboration with Heiko Bamberger under the supervision of 

Prof. Dr. Joris van Slageren. 
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Figure 29: Deconvolution of the MCD spectrum of 8 at 1.5 K and 5 T using 11 gaussians. 

Table 2: Peak positions of the gaussians used for deconvolution of 8. 

Peak / cm-1 (dev.) / nm Peak / cm-1 (dev.) / nm 

8602 (6) 1163 23100 (50) 433 

13388 (9) 747 24990 (50) 400 

16130 (20) 620 27962 (2) 358 

17752 (8) 563 30420 (10) 329 

19330 (80) 517 32051 (2) 312 

22160 (20) 451    

The saturation behavior of the sample has been tested at 4 different frequencies, 328 

nm, 432 nm, 562 nm and 1190 nm. Nesting behavior of the MCD intensity can be 

observed in Variable Temperature-Variable Field plots (VTVH plots) for all bands in the Vis 

region (Figure 30), but not for the broad NIR transition (Figure 31). Since the NIR band 

is characteristic of complex 4, it does not show nesting behavior (pure C-term intensity) 

as expected for an isolated Kramers doublet. In the Vis range, both C- and B-term 

intensity is monitored. It is tentative to assign the respective temperature dependent C-

term intensity to 4, while the major species in the sample (complex 8) does only show 

relative weak B-term intensity pointing to a system with an isolated ground state 

presumably via appreciable positive zero-field splitting. 

MCD spectra were measured in collaboration with Heiko Bamberger under the supervision of 

Prof. Dr. Joris van Slageren. 

wavelength / nm 
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Figure 30: Plot of the MCD intensity at 328 nm over the reduced magnetic field at 1.5 K and 5 

K (top), at 432 nm at 1.5 K, 5 K, and 15 K (center) and at 562 nm at 1.5 K, 5 K and 15 K. 

MCD spectra were measured in collaboration with Heiko Bamberger under the supervision of 

Prof. Dr. Joris van Slageren. 
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Figure 31: Plot of the MCD intensity at 1190 nm over the reduced magnetic field at 1.5 K and 

5 K. 

Hence, the MCD data are in agreement with an S = 1 electronic ground state of 

complex 8 and NMR and MCD data both support small levels of impurities of 4. In 

Figure 32, an overlay of the saturation behavior of the magnetization from MCD (frozen 

solution) and SQUID (micro-crystalline powder) demonstrates the consistency of the 

data. Accordingly, good fits are obtained for the SQUID data of 8 using a Zero-Field-

Splitting (ZFS) Spin-Hamiltonian (SH) for a spin triplet (S = 1) with g values of ca. 2.0 

when considering a paramagnetic impurity (PI) such as 4 (S = 1/2) of up to 15 % (Figure 

24). Importantly, D-values around +470 cm–1 were consistently obtained, which places 

the ms = 0 state well below (E = D) ms = 1. This axial ZFS splitting parameter is 

unusually high, yet in a similar range for the square-planar ruthenium(II) complex 

[RuCl(PNP)] (D = 209 cm–1) and related compounds.158 However, the simple SH-

formalism treats the spin-orbit interaction as a perturbation of the spin eigenstates |S,Ms 

and should thus be used with caution if ZFS in that range indicates strong mixing of the 

ground state with excited states through SOC.159 In such a case, multi-reference 

calculations are required to rationalize the electronic structure, which are presented in 

the next section. 

MCD spectra were measured in collaboration with Heiko Bamberger under the supervision of 

Prof. Dr. Joris van Slageren. 
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Figure 32: Comparison of normalized MCD intensities measured at 532 nm and magnetization 

curves acquired with SQUID magnetometry scaled to measurements at 5 K. 

 

 

 

 

 

 

 

 

 

 

MCD spectra were measured in collaboration with Heiko Bamberger under the supervision of 

Prof. Dr. Joris van Slageren. 
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2.3. Computational Analysis of [Ir(NtBu)(PNP)]n+ 

The content of this chapter was published in the journal Chemical Science under the title 

“An iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” 

in 2018 94 with permission from the Royal Society of Chemistry. 

Since the electronic structure of iridium nitrene fragments is matter of current 

discussion,35,121 and the redox series of 7-9 exhibits unusual spectroscopic properties, a 

theoretical assessment has been done by Dr. Bas de Bruin (DFT for 7 and 8) and by Dr. 

Martin Diefenbach and Prof. Dr. Max Holthausen (multi-reference calculations on 8). In 

the case of 7, the molecular structure obtained by DFT computations is in excellent 

agreement with the experimentally derived structure. The Ir–NtBu bond posseses 

multiple bonding character as expected from the nearly linear Ir-N-C angle. The Ir–N 

Wiberg/Mayer bond indices (WBI/MBI = 1.54/1.67) suggest a lower bond order than in 

the nitride 2 (WBI/MBI = 2.07/2.25). 

Figure 33: a: Schematic MO interaction diagram for the Ir(PNP)+ and nitrene fragments of 7. 

b: DFT calculated π-LUMO. c: π-SOMO. d: Spin density plot with Mulliken spin density 

distribution: Ir: +15 %, NtBu: +80 %, NPNP: 5 %, CPNP: 5 %. 

DFT calculations of 7 were provided by Dr. Bas de Bruin. 
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In both molecules the iridium atom has a formal oxidation state of +IV, the lower 

bond index values of 7 are attributed to weaker donation of the NR+ vs N ligand. The 

experimental g- and A-tensors of 7 (see Table 1) are sufficiently well reproduced by 

unrestricted (Zeeman corrected) relativistic (ZORA) calculations (gDFT = (1.881 1.708 

1.357); A(14N)DFT = [+10 +108 –51] MHz). A qualitative representation of the π-type MO-

interactions (Figure 33a) with (π1)2(π2)2(yz)2(z2)2(π*1)1 occupation resembles the 

isoelectronic ‘nitridyl’ radical complex 2.130 The computed SOMO (Figure 33c) exhibits 

predominantly Ir–NtBu π-antibonding character. Complex 7 has strong nitrogen 

centered radical character, with a calculated spin density (Figure 33d) of +80 % at the 

‘imidyl’ nitrogen atom (2: +51%). This picture suggests a stronger contribution from the 

{IrIII–N•tBu} than from the {IrIV=NtBu} Lewis representation, which is in agreement with 

the smaller Ir–N WBI/MBI and the Ir–N bond elongation compared with 2. Complex 7 

is therefore probably best described as an iridium(III) ‘nitrene radical’ complex, 

containing a one-electron reduced Fischer-type nitrene ligand (RN-).101 This assessment 

is done in analogy to the Fischer/Schrock terminology established for describing 

carbenes. Fischer-type carbenes possess electron withdrawing moieties. Therefore, the 

low spin state is stabilized upon π-donation from the metal into a vacant p-orbital of the 

carbene. A similar explanation can be used for the nitrogen-analoga, if the metal orbitals 

are sufficiently low in energy. Near linearity of the NtBu ligand implies a small energetic 

spacing of the two π*-MOs. Since one of them is the SOMO and the other one is 

unoccupied, strong SOMO/LUMO mixing due to the large SOC constant for this metal, 

which is expressed in the distinct rhombicities of the g- and A-tensors as discussed in 

chapter 2.2. 

The closed shell ground-state of dicationic imide 9 (and of cationic nitride 10) is in 

agreement with the picture that evolves from Figure 33a upon one-electron oxidation 

that removes the electron from the SOMO. The more intriguing question arises for the 

nature of reduction product 8. We previously used DFT to compute the electronic 

structure of the elusive, parent imide [Ir(NH)(PNP)]. Energies of the triplet (TR; 

(yz)2(z2)2(π*1)1(π*2)1) and closed-shell singlet (CSS; (yz)2(z2)2(π*1)2(π*2)0) states and for an 

open-shell singlet (OSS) with antiferromagnetically coupled electrons in the π*1/π*2 MOs 

were all identical within error precluding a definitive assignment of the ground state 

multiplicity.102  

DFT calculations of 7 were provided by Dr. Bas de Bruin. Multi-reference calculations of 8 were 

provided by Dr. Martin Diefenbach and Prof. Dr. Max Holthausen. 
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The DFT model of 8 favors the electronic triplet over the singlet state by 

E = -7.2 kcal mol-1, but correcting for electron correlation with benchmark coupled-

cluster ONIOM computations reduce the CSS/TR gap to below 2 kcal mol–1. In contrast 

to the parent imide, the comparison with the structure of 8 is possible. The different 

possible electronic states of 8 (and of the parent imide) feature distinctly different Ir–N–

R imide bending angles (CSS8: 136°, TR8: 160°, Figure 34). In fact, the T model closely 

resembles the experimental structure (157.2(2)°), while the singlet state computed at this 

geometry is about ΔE = 12 kcal mol-1 higher in energy.  

Complex 8      8 TR: 3A″ (Cs)    8 CSS: 1A′ (Cs) 

Figure 34: DFT-optimized molecular geometries for 8 and the singlet and triplet isomers of 8; 

tBu groups and hydrogen atoms are omitted for clarity. 

Figure 35: Relaxed potential energy scan (B3LYP-D3/def2-TZVP) along the Ir–N–tBu angle for 

the triplet (solid) and closed-shell singlet (dashed) spin states of 8. At the individually optimized 

geometries the triplet is 7.2 kcal mol-1 more stable than the singlet; with partially relaxed 

geometries fixed at an Ir–N–tBu angle of 160° the energy difference amounts to 14.4 kcal mol-1 

(red bars in graph). If both spin states are computed at the triplet geometry, ΔE(TR/CSS) = 18.6 

kcal mol-1. 

Multi-reference calculations of 8 were provided by Dr. Martin Diefenbach and Prof. Dr. Max 

Holthausen. 
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Within the simple MO picture (Figure 33a), stronger bending of this angle reduces 

the Ir–NtBu π-overlap in one direction thereby increasing the HOMO/LUMO gap, 

stabilizing a (π1)2(π2)2(yz)2(z2)2(π*1)2 singlet state (see also Figure 35). This picture was 

further refined with multi-reference computations. Based on the DFT-optimized triplet-

state geometry of 8, the energies of the non-relativistic singlet and triplet eigenstates 

were calculated with NEVPT2 (Figure 36) and corrected for spin-orbit effects employing 

quasi-degenerate perturbation theory (QDPT). According to these calculations the triplet 

lies about 4200 cm–1 below the singlet state (about 12 kcal/mol, fully consistent with the 

coupled-cluster results). The triplet root is further split by SOC into an isolated ground-

state that is placed about 450 cm–1 below two quasi-degenerate states. The magnetic 

properties of 8 have been calculated accordingly (Figure 37). They support the SH 

parametrization model for the experimental susceptibility data, which implies a triplet 

state that is split by strong axial ZFS with neglectable rhombicity (calculated: D = 

+454 cm–1, E/D = 0.009; measured/simulated: D = +466 cm–1, E/D = 0) into the |1,0⟩ ground 

and |1,±1⟩ excited states. 

A refined MO scheme in Figure 38 gives the geometry and shape of the frontier 

molecular orbitals and their relative energies. It confirms the qualitative model used 

throughout the discussion about the spectroscopic features of the imido complexes and 

will be used to explain the fascinating reactivity pattern of the redox series in the next 

chapter. 

Figure 36: Computed state-energy diagram of 8. Relative energies of the lowest non-relativistic 

(left) and spin-orbit states (right) in red (cm–1) and corresponding |S,MS⟩ labels in blue. 

Multi-reference calculations of 8 were provided by Dr. Martin Diefenbach and Prof. Dr. Max 

Holthausen. 
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Figure 37: Magnetic properties from NEVPT2/SA-CASSCF(16,10)/def2TZVP(ZORA) 

calculations for 8: Magnetization in Bohr magnetons per molecule vs. magnetic field strength 

in Gauss (left), and magnetic susceptibility at 50 000 Gauss (right). 

Figure 38: Active MO scheme computed at the DFT-optimized triplet geometry of 8 for a SA-

CASSCF(16,10) wavefunction, state-averaged over the 5 quintet, 45 triplet, and 50 singlet CSFs, 

which arise from the local 5d6 configuration of the formal IrIII center; average occupation 

numbers (red) and orbital labels (blue) with orbital plots at an isovalue of 0.05 a0
−3/2 are also 

given. 

Multi-reference calculations of 8 were provided by Dr. Martin Diefenbach and Prof. Dr. Max 

Holthausen. 
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The compounds 7and 8 have been extensively characterized using NMR-, EPR-, 

SQUID, MCD-, X-Ray- and computational techniques. The comparison of 14N and 15N 

isotopologues of 7 with ELDOR detected NMR in interplay with DFT calculations 

revealed the electronic structure of 7. The unpaired electron (S = ½) is delocalized 

cylindrical around the Ir=N bond in two almost degenerate π*-type orbitals via spin-

orbit coupling as a result of an almost linear imido ligand. A considerable amount of 

spin density is found at the nitrogen atom, concluding the description of an ‘imidyl’ 

radical. The product of reduction of 7, neutral imide 8 shows only slight bending of the 

imido ligand than in the cationic imide, speaking against a closed shell configuration. 

Also the NMR shifts show temperature dependent shifts with a bending in the Curie 

plot indicating thermal population of more than one open shell state. The magnetization 

recorded by SQUID magnetometry points towards a large positive axial ZFS 

(D > 400 cm-1) resulting in a non-magnetic ground state which was further proven by 

MCD measurements at He-temperatures. The electronic structure can be noted as 

(π*1/π*2)2 state with near degeneracy of these orbitals and is in agreement with DFT 

calculations. Since spin is not a good quantum number for 5d metals, the observations 

and DFT calculations are backed up by multi-reference calculations employing QDPT to 

correct for SOC effects. The calculations, which give a relative similar description of a 

separated |1,0⟩ ground and almost degenerate |1,±1⟩ excited states within a triplet 

ground state, are in excellent agreement with the SQUID experiment. Complex 8 can be 

therefore concluded as the first monomeric Ir complex with a non low-spin ground state 

in literature. 
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2.4.  Reactivity of Ir Imides 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018 94 with permission from the Royal Society of Chemistry. 

2.4.1. [IrNtBu(PNP)]2+ 

The reactivity study starts with the most straightforward specimen of the series, the 

dicationic imide 9. Clean decay to the cationic nitride 10 and equimolar amounts of 

isobutene is observed within a few minutes at r.t. in CD3CN (Figure 39 and Figure 40). 

The fate of the eliminated proton could not be clarified. Similar results with nitride 10 as 

the only identified complex product are obtained using alternative solvents like 

nitrobenzene or the ionic liquid ethyl-methyl-imidazolium tetrafluoroborate (EMIM-

BF4). Other, potentially less basic solvents failed to dissolve 9. 

      9           10 

Scheme 23: Thermal decomposition of 9 to 10. 

This decomposition route prevented the examination of nitrene group transfer 

reactivity at elevated temperatures. To check for electrophilic behavior, 1-hexene has 

been added at low temperatures and subsequently warmed to room temperature, yet 

only decomposition occurs. To reduce the steric demand of the substrate, ethene has 

been tested as well with the same result. The reaction of an olefin at the nitrogen atom 

would lead to a substantial bending at the nitrogen. The putative aziridine ligands plane 

would be perpendicular to the PNP ligand plane resulting in very weak bonding of the 
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ligand and fast detachment. The ‘in plane’ attack of the nucleophile is hindered by the 

bulky tBu groups of the PNP ligand. Likely, the necessary temperature to overcome the 

barrier cannot be reached due to the thermal instability of 9. Alternatively, a potential 

substrate could bind at the electronically unsaturated metal center. Despite the electronic 

deficiency however, low metal Lewis acidity at the vacant coordination sites presumably 

results from the filled dz2 orbital. 

Figure 39: VT 31P{1H} spectra of 9 in d3-acetonitrile from -30 °C to r.t. 

Figure 40: 1H NMR spectrum at r.t. of solution of 9 in d3-acetonitrile after 2 h showing 

formation of 1 eq of isobutene relative to complex 10.  
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2.4.2. [IrNtBu(PNP)]+ 

In contrast to 9, mono-cationic imide 7 is remarkably stable despite the fact that the 

additional electron is occupying a π*-antibonding orbital combination and 7 has 

considerable N-radical character (see 2.3). It does not react with selected nucleophiles 

(PMe3), electrophiles (CO2, olefins) or benzylic C–H bonds (toluene), respectively. 

Reaction with a carbon nucleophile like MeMgCl mainly results in reduction to 8. 

However, upon warming a suspension of 7 in C7D8 (or C6D6) for a few hours to 90 °C 

results in the formation of a green solution. In a 1H NMR spectrum there is a 

paramagnetic species observed along with free tBuNH2. Judging from color, solubility 

and chemical shift of the signal of the 4 tBu groups, the paramagnetic species is likely 

square planar iridium(II) complex [Ir(O2CCF3)(PNP)] (11). 

            7             11 

Scheme 24: Thermal decomposition of 7. 

The source of the two hydrogen atoms is unknown. Among residual moisture in 

the solvent or from the glassware there is also the possibility of an intramolecular 

activation similar to the reactivity of 8 (vide infra). This would be indicated by partial 

deuteration of the tBu groups of the PNP ligand, which, in this scenario, would activate 

benzene to stabilize itself. In a future experiment one would have to look for a signal at 

m/z = [M]+2 in a LIFDI mass spectrum. 
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2.4.3. [IrNtBu(PNP)]0 

Most linear imido ligands exhibit electrophilic behavior as a result of the M≡NR 

triple bonding character,160 although most precedence in literature stem from early to 

mid transition metals. Information about the reactivity of late transition metal imido 

complexes is scarce, the group 9 examples are almost exclusively limited to cobalt and 

the rhodium imide from the Tejel group is rather unreactive. In contrast, Bergman’s 

iridium imide [(Cp*)Ir(NtBu)] shows distinct N-centered nucleophilic reactivity, e.g. 

with MeI or CO2.161 Furthermore, the transient, photochemically generated imide 

complex [WII(NPh)(CO)5], which is formally isolobal with square-planar 8, undergoes 

nitrene transfer with both nucleophiles and electrophiles.162 This ambiphilic reactivity 

was rationalized with a small π*1/π*2 HOMO/LUMO gap. The cationic imide 7 is 

remarkably stable, but further occupation of the Ir-N π*-antibonding as in the case of 8 

orbitals should destabilize the Ir-N bond and make it easier to cleave it in order to 

establish new N-substrate bonds to achieve nitrene transfer. Depending on the substrate, 

either an electrophilic (for reaction with C-C multiple bonds) or a nucleophilic imide (for 

reaction with carbonyl compounds) would be advantageous (Scheme 25). The reactivity 

of 8 is hard to predict. It has two electrons in high lying orbitals suggesting a nucleophilic 

reactivity. On the other hand, the two are located in two almost degenerate MOs, the 

HOMO/LUMO gap is small (as an indirect consequence of the high lying HOMO), which 

could also induce electrophilic behavior. Another open question is the influence of the 

open shell character of 8 which is unique since heavy metals especially with strong π-

donors commonly form low spin systems. Radical character could play a beneficial role 

in a sequential HAT and radical recombination mechanism. 8 is therefore probed for 

different reactivity patterns like electrophilic and nucleophilic attacks, HAT and electron 

transfer (ET). 
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Scheme 25: Envisioned C-N coupling reactions via nitrene transfer from a metal imido complex. 

Top: potential substrates; Bottom: potential products. Broken or weakened bonds are 

highlighted in red, formed bonds highlighted in green. 

 

Reactions of 8 with nucleophiles are challenging. There is no reaction at r.t. with less 

activated substrates such as diphenyl acetylene or styrene. This can either be result of 

low electrophilicity or a matter of steric hindrance. To gain more insight, the temperature 

has been increased. Above roughly 60 °C a reaction takes place concluded upon 

monitoring by 1H and 31P NMR spectroscopy. The result is independent of the solvent 

(THF, toluene, benzene) and of used nucleophiles as above mentioned styrene. The color 

of the solution stays reddish-brown, thus not giving a hint about the oxidation state of 

iridium. 
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Figure 41: Top: 31P{1H} NMR spectrum of 8 after heating to 70 °C for 13 h with C6Me6 as 

internal standard. Bottom: 1H NMR spectrum without 31P decoupling. 

The doublet observed in the 31P{1H} NMR spectrum (Figure 41, top) has a coupling 

constant of 388 Hz, typical for a mutual trans position of the two phosphorous atoms. 

One 31P shift (56 ppm) is typical for an iridium(I/III) square planar complex, the other is 

surprisingly far downfield shifted to 139 ppm. In the 1H NMR spectrum (Figure 41, 

bottom) a C1 symmetric compound is observed besides C6Me6 as internal standard and 

minor amounts of 4 (The signal of 4 integrates to about 10% in the starting material and 

does not change over the course of the reaction). Also one equivalent of isobutene is 

observed. This observation suggests that this phosphorous atom has eliminated a tBu 

4 
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group which is now detected as isobutene (Scheme 26). The remaining tBu groups in the 

spectrum are one doublet with an integral that indicates 18 protons, one doublet with 

half the intensity and one singlet. The doublet (13.6 Hz) caused by two chemically 

equivalent tBu groups is assigned to the phosphorous atom with the normal shift, the 

singlet to the tBu group bound to nitrogen and the remaining doublet to the 

phosphorous atom with distinct downfield shift. Isobutene formation is the result of 

formal hydrogen atom loss and C-P bond cleavage. In addition to the unsymmetric 

backbone protons of the PNP ligand, an N-H group is found at 7.9 ppm in the spectrum. 

This leads to the conclusion that upon heating of 8, one hydrogen atom of a tBu group 

of the PNP ligand is transferred to the nitrogen of the imido ligand and the carbon-

radical stabilizes by liberation of isobutene to yield 12 (Scheme 26). The double bond in 

the PNP ligand is not easily assigned. Both a C-C double bond resulting in a negative 

charge at nitrogen and phosphorous (IrIII) and C-N/C-P double bonds resulting in an 

overall neutral PNP ligand (IrI) would be a possibility. 12 could not be isolated due to a 

low tendency to crystallize and rapid decomposition upon workup, although the 

complex is thermally stable. 

    8            12 

Scheme 26: Thermal decomposition of 8. 

This shows that 8 is capable of activating C-H bond that is generally considered 

inert. The tBu group of the PNP ligand, however might be activated in terms of 

resonance stabilization (Scheme 26). The question arises if the C-H activation reaction, 

although intramolecular, is an intrinsic feature of the electronic ground state of 8 with a 

solely thermal barrier to overcome or if this reactivity origins from an electronically 

excited state. Therefore, two experiments have been set up. 8 is heated in a NMR tube at 

70 °C either covered in tin foil or broad band irradiated (λ ≥ 410 nm). Approximately 

every 90 minutes the reaction progress is monitored by 1H NMR spectroscopy. The data 

are plotted as ln(c) versus time (Figure 42). It demonstrates under both conditions a clear 

first order decay of 8, ruling out a dimeric mechanism. 
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Figure 42: Logarithmic plot of the decay of the starting material 8 without irradiation (dots, 

red regression line) and with irradiation (triangles, violet regression line). 

It also shows that the reaction is proceeding without light, however its reaction rate is 

increased by a factor of 2 upon simultaneous irradiation and heating of the solution. This 

can not easily be discarded as an experimental error. Assuming Arrhenius behavior, 

doubling the reaction rate corresponds to a difference of 10 K throughout the whole 

experiment time. Involvement of an excited state is a reasonable explanation, if there is 

a reactive state, which is also thermally accessible. 

The reaction above shows a relative high reaction barrier for an intramolecular 

formal HAT. Reactions with sterically more demanding substrates seem unlikely 

therefore. Reactions with smaller model substrates were investigated in order to 

discover the nature of the metal-imido fragment. Since 8 has proven to be able to activate 

a relatively non-polarized C-H bond, the extension to H2 seems logical. Furthermore, 

hydrogenolysis is one option to cleave the metal-product bond if this is not already 

accomplished by the coupling of the imide with a substrate. Chirik and co-workers 

showed that catalytic hydrogenolysis can be done using a square planar iron dinitrogen 

complex. The dinitrogen complex forms an iron phenylimido complex with an S = 1 

ground-state upon treatment with arylazides. which forms aniline upon 

hydrogenolysis.163 The emphasis in their case is obviously not the hydrogenation of an 

azide, but to demonstrate one possibility to reintroduce the metal-product complex back 
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into a putative catalytic cycle. In analogy to Chiriks work, complex 8 reacts with H2 (1 

bar) in THF to give free tert-butylamine and iridium(III) dihydride [IrH2(PNP)] (13) 

(Scheme 27). 

       8          13 

Scheme 27: Hydrogenolysis of 8 yielding 13 and free tBuNH2. 

The molecular structure of complex 13 in the solid state exhibits square-pyramidal 

metal coordination with an apical hydride ligand (τ = 0.097; Figure 43). However, on the 

1H NMR timescale at room temperature C2v-symmetry with a distinct dihydride signal 

at -26 ppm is observed due to dynamic behavior. The mechanism of the H2 activation 

remains unknown and an intermediate is not observed. A homolytic splitting at the 

nitrogen or iridium (oxidative addition) is an option just as heterolytic activation across 

the Ir-N bond. 

Figure 43: Molecular structure of [Ir(H)2(PNP)] (13). ORTEP plots with anisotropic 

displacement parameters set at 50% probability. Hydrogen atoms except for Ir-H omitted for 

clarity. Selected bond lengths [Å] and angles [°]: Ir1-N1 2.156(4), Ir1-H111 1.52(5), Ir1-H112 

1.67(6). 

X-ray crystal structures were measured and solved by Dr. Christian Würtele and Dr. Christian 

Volkmann. 
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8, in contrast to cationic 7 reacts with CO2 (1 bar) already at -10 °C, expressing its 

increased nucleophilicity upon reduction. The reaction yields a green, diamagnetic 

solution of complex 14 (Scheme 28). 

   8       14 

Scheme 28: Synthesis of carbamate complex 14 from 8 and CO2. 

Structural confirmation was obtained by single crystal X-ray diffraction revealing 

square-pyramidal (τ = 0.182) metal coordination with an oxygen atom of the bidentate 

carbamyldiide ligand in apical position (Figure 45). NMR spectra of 14 indicate C2v 

symmetry in solution. The coordination in apical position is seemingly fluxional 

considering the high symmetry in solution. Packed in the crystal, the C-O bonds are 

according to a carbamate in the range of a C-O single (1.366 Å) and double bond 

(1.237 Å), respectively. 

Figure 44: 1H NMR spectrum of reaction product of 8 with CO2 in d8-THF. 
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Figure 45: Molecular structure of [Ir{μ-κOC(O)κN(tBu)}(PNP)] (14) derived by single X-ray 

diffraction. ORTEP plots with anisotropic displacement parameters set at 50% probability. 

Selected bond lengths [Å] and angles [°]: Ir1-N1 2.021(3), Ir1-N2 2.112(3), Ir1-O1 2.013(2), N2-

C11 1.327(4), C11-O2 1.237(4), C11-O1 1.366(4), P1-Ir1-P1# 162.60(3), N1-Ir1-N2 173.5(2), Ir1-N2-

C12 143.7(2). 

Both Ccarbamate and Ncarbamate are perfectly planar coordinated (sum of angles: 360.0 ° 

and 360.5 °), the Ir-N-CtBu angle is bent from 157 ° to 143 °. The Ir-Ncarbamate bond is 

significantly elongated by 0.24 Å compared to reactant 8 and even shorter than in amide 

3 (1.987 Å). The reason for that is, that the py (N) orbital is now perpendicular to dxz (Ir), 

overlap of the nitrogen lone pair is now only possible with already filled dxy (Ir) and the 

π-bonding therefore minimal. The Ir-N single bond is expected to be cleaved easier than 

the multiple bonds of the imides 7-9. 

 

 

 

X-ray crystal structures were measured and solved by Dr. Christian Würtele and Dr. Christian 

Volkmann. 
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As an expression of that, 14 is not thermodynamically stable. The decay of the signal 

of the carbamate at r.t. in solution can be followed by 31P{1H} NMR spectroscopy (Figure 

46). The resulting solution is yellow. Notably, the same reaction takes place in the solid 

state, so it is clear that it proceeds strictly intramolecularly as in the case of the thermal 

decomposition of 8. Along with the decay of 14 (singlet at 26.4 ppm) two similar sets of 

signals with coupling towards each other with a coupling constant confirming their 

mutual trans position (47.1 ppm/2.7 ppm (358 Hz) and 46.3 ppm/2.5 ppm (357 Hz)) are 

observed. In both sets, the phosphorous atoms are. They can be distinguished at low 

concentrations by their slightly different ratio (Figure 47). 

Figure 46: 31P{1H} NMR spectra of decay of 14 to 15 in C6D6 over 24h. 

Figure 47:Inset of second to lowest spectrum of Figure 46 showing the signals of the two 

isomers of 15. 

1
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The structural confirmation for the cyclometalated carbamate complex 15 comes 

from X-ray diffraction (Figure 48). The two sets of signals in the 31P NMR spectrum were 

assigned to diastereomers of crystallographically characterized 15 that arise from frozen 

rotation around the O2C–N(H)tBu bond. The symmetric by-product at 45.6 ppm could 

not be identified. 

   14      15 

Scheme 29: Thermal rearrangement from 14 to 15. 

The nature of this hydrogen transfer draws attention (Scheme 29), since this 

intramolecular C-H activation proceeds at much lower temperatures than in the case of 

8 (-10 °C vs. 70 °C) and also does not release isobutene. That could be either a result of 

increased electrophilicity of the nitrogen due to the bound electron withdrawing CO2, or 

the effect of the intrinsically lower barrier for proton (H+) transfer if the nitrogen reacts 

as a nucleophile (Brønstedt base). It comes down to the question if this is merely a 

deprotonation of the methyl group or a HAT involving a redox process. Both complexes 

14 and 15 are diamagnetic, the oxidation state of iridium is therefore most likely IrIII. For 

distorted octahedral 15, an oxidation state of +III is most likely, since IrI has a d8-

configuration and strongly favors square planar coordination. The carboxylate group 

and the methyl group have to be mono-anionic therefore. 
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Figure 48: Molecular structure of [Ir(O2CNHtBu)2{(CH2CMe2)P(tBu)CHCHNCHCHPtBu2}] 

(15). Solvent molecule (C6H6) and hydrogen atoms except for N-H omitted for clarity. Selected 

bond lengths [Å] and angles [°]: Ir1-N1 2.022(4), Ir1-C6 2.098(6), Ir1-O1 2.129(3), Ir1-O2 

2.262(3), C21-O1 1.290(5), C21-O2 1.275(5), C21-N2 1.334(6), P1-Ir1-P2 161.49(5), N1-Ir1-O1 

172.0(2), C6-Ir1-O2 155.2(2), C21-N2-C22 127.2(4). 

In the case of 14, the carbamate ligand is likely a dianionic ligand. Probably a 

deprotonation of the methyl group of the PNP ligand by the basic carbamyldiide ligand 

takes place (Scheme 29). To gain more insight, an investigation with external C-H acidic 

and basic substrates and a Hammett analysis would be required to determine if the 

carbamate 14 is more likely to react as an electrophile or nucleophile and the impact on 

the choice of possible substrates. 

Carbamate 14 and its reactivity is reminscent of the rhodium-catalyzed intramolecular 

C-H amination of alkanes (Scheme 30).22 In this work, carbamates are used that are 

tethered to alkanes. The nitrogen attacks selectively the β-position to form a five-

membered ring upon amination. Further experiements had proven that eventual 

stereoinformation is retained, therefore it is postulated that a concerted insertion of a 

singlet nitrene takes place. 

 

 
X-ray crystal structures were measured and solved by Dr. Christian Würtele and Dr. Christian 

Volkmann. 
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Scheme 30: Catalytic intramolecular C-H amination of carbamates by Du Bois and coworkers. 

In this respect it is interesting to observe a coordinated carbamate with an additional 

moiety bound to nitrogen. The reaction has some similar features, the attacked C-H 

group is in β-position to a phosphorous atom. The outcome is different, however. The 

tBu rest at nitrogen does not allow the nitrogen to form two additional bonds, as 

demanded for an amination reaction. Thus, after abstraction of the hydrogen, the 

compound stabilizes itself upon binding the methyl group to the metal. The 

rearrangement (binding of the ligand via the carboxylate rather than the amine) can then 

be rationalized by ligand field considerations. The situation would be different without 

the tBu moiety. An intramolecular C-H amination reaction could take place yielding a 

heteronuclear cycle. This could be effected by synthesis of iridium nitride complex 2 in 

presence of CO2 (Scheme 31). 

     2 

Scheme 31: Envisioned reaction of nitride 2 with CO2 and subsequent C-H amination. 

Notably the cyclometalation to 15 is reversible, upon treatment with H2, 

[Ir(H)2(PNP)] (13) is formed along with CO2 and tBuNH2, since free carbamic acid is very 

susceptible to hydrolysis (Scheme 32). An intermediate is detected by 31P{1H} 

spectroscopy at 55 ppm (Figure 49). 
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   15              13 

Scheme 32: Hydrogenolysis of 15 yielding dihydride complex 13. 

Figure 49: 31P{1H} NMR spectra of reaction progress of 15 with H2. 

From 1H NMR spectroscopy it can be assumed that this species at 55 ppm in the 31P 

NMR spectrum is Cs symmetric in solution indicating that rehydration of the PNP ligand 

has already taken place. A hydride signal at -34 ppm can be identified coupling to both 

phosphorous atoms. The chemical shift is indicative for a weak trans-donor in the 

complex. Further interpretation is hampered by the fact that at elevated temperatures, 

which are necessary to perform the reaction, another reaction takes place. Besides 

formation of the dihydride complex 13 as well as the vanishing of the starting material 

15, signals of by-products at 80 ppm and 63 ppm, only visible after heating to 70 °C, 
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appear in the 31P NMR spectrum. Sections of the 1H NMR spectra before and after heating 

are shown in Figure 50. One can see the the signals of the PNP ligand backbone of the 

above mentioned intermediate and product 13 as well as the vanishing of starting 

material 15 as expected. Furthermore, 3 new signal sets rise, at 4.47, 3.25 and 2.17 ppm, 

while the signal of H2 at 4.55 ppm vanishes. The consumption of H2 explains why the 

hydrogenation reaction of 15 is not completed and the intermediate complex is still 

present. 

Figure 50: 1H NMR spectra of reaction mixture of 15 (violet label) and H2 in d8-THF before 

(maroon trace) and after heating to 70 °C (turquoise trace) yielding 13 (blue label) and a new 

organic product (red label). 

The three new signals likely origin from an organic product and seem to be partially 

deuterated according to their complicated coupling pattern. From that and that the 

signal at 4.47 ppm is broadened like an OH group, it seems most likely that the THF is 

cleaved upon hydrogenation into the respective alchohol, 1-butanol. The signals of β-
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CH2 and γ-CH3 groups are not identified, because the aliphatic region in the 1H NMR 

spectrum is already crowded and deuteration degree might prohibit a significant signal 

in 1H NMR spectrum. Such ring opening hydrogenations are known, but usually require 

harsher reagents like LiAl(H)(OEt)3164 or Mg165 supported by Lewis acids such as AlCl3 

or BEt3. Hydrogenation of THF can be done with H2 as reagent using heterogeneous 

catalysts based on precious metals like Rh, Ir, Re, or Pd at high pressure and 

temperature.166 Here, we have a strong indication for a THF ring opening hydrogenation 

reaction at 70 °C using a molecular iridium catalyst and H2 as reagent. Such mild 

conditions for this reaction and with a homogeneous catalyst in particular are 

unprecedented to date in literature to the best knowledge of the author. Also, the 

reaction is apparently not affected by the traces of CO2 (from decomposition of 

carbamate complex) and H2O (from H2 gas source). Ether hydrogenation is an emerging 

topic in the context of biomass use in sustainable chemistry, this reaction should 

therefore be investigated in detail in the future. However, this reaction is rather 

catalyzed by 13 than 15 (or its derived product with the 31P NMR signal at 55 ppm). A 

facile synthesis of 13 as a potential catalyst is envisioned by reduction of 1 under H2 

atmosphere. 

Scheme 33: Proposed catalytic hydrogenation of d8-THF to partially deuterated 1-butanol 

catalyzed by complex 13. 

In addition to the proven nucleophilic character of 8 by its reaction with CO2 as 

discussed above, it interestingly also undergoes nitrene transfer to PMe3, typically seen 

to probe electrophilic character. This reaction occurs at r.t. in C6D6 over the course of 

several days (Scheme 34). Formation of the free phosphoraneimine tBuN=PMe3 is 

evidenced by NMR spectroscopy (Figure 51). The Ir(PNP) fragment is trapped by solvent 

oxidative addition to deuterium isotopologue of the previously reported phenyl hydride 

complex [Ir(D)(C6D5)(PNP)] (16).167 This result sheds new light on the lack of nitrene 

transfer with 7. Cationic 7 should have a higher electrophility than neutral 8. An 

electrophilic nitrene transfer step would be expected to be more rapid for the cationic 

analogue. Since their geometry is very similar to each other, the inertness of 7 is not only 

attributable to steric reasons. However, in the case of the reaction of PMe3 with 8 C-H 

oxidative addition might drive the reaction, which is not expected for a cationic IrII(PNP) 
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fragment. Furthermore, it was shown for nitride transfer that the potential ambiphilicity 

of phosphines can make the rationalization of phosphine imination ambiguous.168,169 On 

the one hand the phosphorous atom has a lone pair suitable for donating electrons into 

vacant orbitals of the nitrogen of the imido ligand. On the other hand, the antibonding 

orbital combination of phosphorous and its carbon substitutent (σ*C-P) is of suitable 

symmetry and energetically low enough to be populated by the electrons in the 

antibonding π*Ir-N orbitals. 

       8         16 

Scheme 34: Nitrene transfer from 8 to PMe3 accompanied by oxidative addition of benzene to 

form 16. 

Figure 51: 31P{1H} NMR spectrum of reaction of 8 with excess PMe3 in C6D6. 

Another tested model substrate was CO, which could form the coupling product 

isocyanate upon nitrene transfer. It is known that the resulting (PNP)IrI fragment would 

bind CO,167 so the overall consumption of two equivalents of CO would form 

[Ir(CO)(PNP)] (17) and isocyanate (Scheme 35).  

tBuNPMe3 

PMe3 
16 
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          8     17 

Scheme 35: Expected reaction of 8 with CO forming isocyanate. 

Indeed, upon applying an atmosphere of CO gas to a solution of 8 in C6D6 the color 

of the solution immediately turns from red to bright yellow. In 31P and 1H NMR spectra, 

previously published 17 is the only complex product. The fate of the imido ligand is less 

clear, however a solution of all volatiles after trap-to-trap transfer exhibits an IR 

stretching frequency of 2281 cm-1 matching a heterocumulene (Figure 52). The IR stretch 

of t-butyl isocyanate for comparison is observed at 2258 cm-1, clearly speaking against 

the formation of the desired nitrene transfer product to CO. 

Figure 52: IR spectrum of volatiles after reaction of 8 with CO (blue), solvent baseline (red) 

and isocyanate (green) for comparison. 
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The 1H NMR spectrum of the reaction mixture shows four major signals in the 

aliphatic region, indicating low selectivity of the transformation (Figure 53, inset, top). 

Furthermore, reaction with solvent molecules is unlikely, since the same products are 

observed in C6D6 and C7D8. To further elucidate this, the analogue reaction has been 

carried out using tBuNC instead of CO to generate [Ir(CNtBu)(PNP)] (Figure 53). In 

addition to the complex signal and free isocyanide the same four signals are observed in 

the 1H NMR. This rules out coupling of the imido ligand with the respective substrate as 

origin of these products. One additional signal in this latter reaction is found at 1.18 ppm, 

which can not be identified. The unselective and solvent independent decomposition of 

the imido ligand is in sharp contrast with the selective formation of the respective CO 

and CNtBu complexes. It suggests that the imido ligand is substituted by the strong 

ligands before it decomposes. A useful transformation is therefore hampered. 

Figure 53: 1H NMR spectrum of reaction mixture of 8 and isocyanide in C6D6. Inset: Bottom: 

Expansion showing decomposition products of the imido ligand. Top: Expansion of the 1H NMR 

spectrum of volatiles after reaction of 8 with CO in C7D8. 

  

tBuNC 

 Isocyanide reaction  

 CO reaction  
 Isocyanide    

Reaction    
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After establishing the nucleophilicity of 8 (coupling to CO2), we focussed on its 

coupling to an aldehyde, which would result in an organic amide. For this purpose, a 

solution of 8 in C6D6 and 1-butanal are mixed. The products of this reaction are not 

entirely characterized, but some information can be extracted from it nevertheless. 

Within a few hours, amide complex 4 is formed as an intermediate, at a later stage of the 

reaction, [Ir(CO)(PNP)] (17) () and [Ir(OH)(PNP)] (21, vide infra) are formed in at least 

80% combined yield besides traces of unknown hydride complexes. 

Scheme 36: Proposed partial mechanism of reaction of 8 with 1-butanal based on 

spectroscopy and literature known decomposition of the free organic radical. 

Figure 54: 31P{1H} NMR spectrum of reaction of 8 with 1-butanal after 3 d showing complex 17 

as the main diamagnetic product. 

17 

8 4 17 21 
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Figure 55: Reaction of 8 with 1-butanal over the course of 3 d at r.t. 

HAA is most likely to take place at the carbonyl group in any case, regardless of the 

implications of nucleophilicity.170 Decomposition of the butanoyl radical leads to 

formation of CO,171 explaining the formation of 17. The fate of the other organic 

compounds is unknown, the radical decomposition pathways in a multi-component 

system are not predictable. The origin of the hydroxide in 21 is unclear, no water is 

detected by 1H NMR, but traces may not be recognized, although it could also be a 

decomposition product of the aldehyde as well. In the end, only the first HAT step from 

1-butanal to 8 forming 4 is fairly certainly confirmed. This underlines the nucleophilicity 

of 8 also in a radical abstraction. For the BDFE of the carbonyl C-H bond of 1-butanal a 

lower limit can be estimated from the gas phase value (78.2 kcal mol-1).145,170 Notably, no 

reaction of 8 is observed with other hydrogen atom donors like 1,4-cyclohexadiene 

(BDFEsp3 C-H = 67.8 kcal mol-1 (gas)) or fluorene (BDFEsp3 C-H = 77.4 kcal mol-1 (DMSO)),145 

which have lower BDFEs, but non-polarized C-H bonds. 

  

decreasing 8 intermediate 4 

formed 

21 
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The nucleophilicity could be further enhanced by reduction of 8. presence of a 

second, irreversible reduction wave at E1/2 = –2.7 V in the cyclic voltammogram of 7 

(Figure 13) raises the expectation that an even more reduced imido species, namely 

putative anionic [Ir(NtBu)(PNP)]- could transfer its imido ligand on a very fast timescale. 

The reduction can be achieved chemically using the strongly reducting alkaline metals 

Li or K. Treatment of 8 with KC8 at r.t. yields a diamagnetic orange-red species as the 

main product separated from some minor by-products by its reduced solubility. This on 

the NMR timescale C2v symmetric product is not soluble in toluene 

(δ(31P{1H}) = 48.9 ppm), indicative for a charged species. No paramagnetic signal is 

observed, ruling out the anionic imido complex. The observed product might be the 

anionic amido complex [Ir(NHtBu)(PNP)]-, since it still exhibits the signal of the 5th tBu 

ligand and a square planar geometry is by far the most common motif for Ir(I) 

complexes. This implies that the reduced imido complex is stabilized via HAT rather 

than transferring the imido ligand. The reduction of 8 in presence of potential substrates, 

e.g. carbon electrophiles that are not been reduced by KC8, has not been tested yet. The 

complex at 48.9 ppm is not stable and suitable crystals for X-ray diffraction could not be 

obtained even at low temperatures, which is in analogy with the elusive parent 

[Ir(NH2)(PNP)]- and [Ir(NH3)(PNP)]-. 

The limited reactivity of the imido complexes is probably a result of multiple sterical 

and electronical factors. The effect of the moiety “R” in the M-NR fragment is subject to 

further investigations in chapter 3. The tBu ligand is electron-donating, redox inert due 

to its inability to form multiple bonds and sterically demanding and prevents 

disproportionation as in the case of the elusive parent imide102 and is therefore the perfect 

ligand to isolate such imido complexes. Use of a more electron-withdrawing ligand 

might improve its electrophilicity to enable C-H activations other than intramolecular 

ones. 
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3. A Transient Imide – [IrNPh(PNP)] 

The synthesis and characterization of the amide complexes [Ir(NHPh)(PNP)] (3) 

and its cationic congener 6 have been described in chapter II: 1. The general approaches 

to generate imido complexes from there is described in chapter II: 2.1. 

The synthesis and properties of a redox series of square-planra iridium imido 

complex with an inert tBu rest at the nitrogen have been investigated in detail in the 

previous chapters. Consequently, similar reactions have been tried for the phenyl-

substituted amido complexes. It turned out that HAT is easier for this system than in the 

case of the tBu system. While the reaction of 3 with OAr(tBu)3 leads to decomposition, 

the reaction with 1,4-benzoquinone (BQ; BDFEBQ/HQ = 65.2 kcal mol-1; BDFEavg = 72.6 kcal 

mol-1 (DMSO))145 in THF solution proceeds selectively.  

Figure 56: 1H NMR spectra of mixture of 3 and BQ in d8-THF towards product 19 via an 

intermediate (18) over the course of 16 h at r.t (bottom to top, intervals of approx. 2 h). 

19 3 3 19 18 18 18  
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The brown solution turns violet within a few minutes. It takes surprisingly long 

however for the reaction to reach full conversion and formation of product 19, so the 

course of the reaction is monitored over 16 hours by 1H NMR spectroscopy (Figure 56). 

An intermediate (18) is observed with sharp, yet paramagnetically shifted signals in the 

1H NMR spectrum that resemble imide 8. 

A more detailed view is given in Figure 57. It shows the slow decay of starting 

material 3 (broad signal at 5.9 ppm), as well as the decay of the signal at 16.9 ppm 

belonging to intermediate 18 and slow formation of the final product (signal at 5.0 ppm). 

There is also a rise of signals at 7.4 and 6.5 ppm, which are assigned to 1,4-hydroquinone 

(HQ). Another broad signal of an intermediate is observed at 6.8 ppm. For comparison, 

an equimolar mixture of BQ and TEMPO-H in situ has been prepared and showed a 

broad signal with identical shift and shape (Figure 58), ruling out an iridium compound. 

It might be caused by exchange beween HQ and BQ, since the initially formed 

semiquinone disproportionates with a rate constant near diffusion limit.172 

Figure 57: : 1H NMR spectra (d8-THF, r.t.;expansion) following the dehydrogenation of amide 

complex 3 to the intermediate imide complex 18 towards the further dehydrogenated dimeric 

complex 19. The signals arising from the phenylic protons of benzoquinone and hydroquinone 

(BQ/HQ) overlap. of Intermediate formation of semiquinone (SQ) is observed during the 

reaction and the formation of hydroquinone is confirmed by it’s phenolic protons (HQ-OH). 

18 
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Figure 58: 1H NMR spectrum (d8-THF, r.t.) of a stoichiometric mixture of BQ and TEMPO-H. 

The product of the dehydrogenation reaction, 19, can be isolated and shows 5 

paramagnetically broadened and shifted signals in the 1H NMR spectrum (Figure 59) 

with no signal in the 31P NMR spectrum. This corresponds to 5 signals of compound in 

a 36:2:2:2:2 ratio indicating C2v symmetry in solution. Also, compared to 3 and 5, one 

signal with a relative integral of 1 is missing. The signals are therefore attributed to the 

PNP ligand and only two signals corresponding to two proton signal sets remaining 

from signals of the phenyl group (ortho- meta- and para positions each one due to 

rotation). 

Figure 59: 1H NMR spectrum (d8-THF, r.t.) of [(PNP)Ir(NC12H8N)Ir(PNP)] (19). 

BQ/HQ 

HQ 
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By X-ray diffraction, the dimeric structure of [(PNP)Ir(μ-C12H8N2)Ir(PNP)] (19) was 

revealed (Figure 60) and confirmes the loss of the para-proton in a dehydrocoupling. 

       3        19 

Scheme 37: Synthesis of 19 by dehydrocoupling of 3 with BQ. 

The dinuclear complex is centrosymmetric with a square-planar coordination 

around each metal as in the case of the Ir(II) anilido complex. Also the bond lengths 

around the metal center are similar compared to 3, the Ir-P bonds are identical within 

error, indicating no change in the ionic radius and therefore change in oxidation state of 

iridium. The Ir-NPNP bond length is elongated slightly to account for the stronger twofold 

π-donation of the imido ligand in trans position, which is consistently shortened by 

0.13 Å. The imide nitrogen atom is almost linearly bound (171.4°) in accordance with sp-

hybridization. 

Figure 60: Molecular Structure of 19 THF in the crystal from X-ray diffraction with thermal 

ellipsoids at the 50% probability level. Hydrogen atoms and THF solvent molecule are omitted 

for clarity. Selected bond lengths [Å] and angles [°]: Ir1–N1 2.0272(19), Ir1–N2 1.8617(19), Ir1–

P1 2.3221(8), Ir1–P2 2.3276(8), N2–C21 1.292(3), C21–C22 1.451(3), C22–C23 1.358(3), C23–

C24 1.448(3), C24–C24’ 1.413(4), Ir1-N2-C21 171.42(18). 

X-ray crystal structures were measured and solved by Dr. Christian Würtele and Dr. Christian 

Volkmann. 
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The N-CAr bond is shortened by 0.1 Å compared to free benzidine, so developing 

towards a double bond.173 The following C-C bonds of the bridging ligand are alternating 

elongated (C21-C22, C23-C24) and shortened (C22-C23, C24-C24’). Especially the C-C 

bond bridging the two monomers in para position is extraordinarily short given the 

planarity (torsion angle = 176.4°) and resulting steric repulsion of the meta-protons (on 

C23) of the quinoidal system. Evans’ method is considered unreliable to measure the 

magnetic moment in solution due to low solubility of the complex in common organic 

solvents and therefore unprecise concentrations. The EPR spectrum in very diluted 

frozen solutions (Figure 61) show a rhombic, close to axial signal (g = [2.42 1.96 1.92]) as 

expected for iridium(II). The simulation (Figure 61, red line) has been carried out with 

the assumption that the coupling between the two Ir(II) centers is neglectable and the 

their coordination is identical. The little difference between the last two g-values can be 

attributed to the linearization of the imido ligand (g‖ ≠ g
⊥

 ≈ g
⊥

). The signal to noise ratio 

is – at least in the used setup – very poor. Another species is monitored at higher 

concentrations (Figure 61). The second species exhibits one, much sharper signal at a g-

value close to the value of the free electron (2.003). Comparison with a micro-crystalline 

sample shows that the appearance of this second species could be attributed to partial 

crystallization due to the low solubility of the dimeric complex. A high-resolution 

spectrum of the solid compound is shown in Figure 62. Spectra of the solid sample at 

204 K and 305 K are nearly identical besides a very small shift in g value (<0.01). Due to 

lack of further data the sharp signal could also arise from an organic impurity while the 

EPR signals of the complex are too broad in the solid state, which would result in 

seemingly increasing ratios of the impurity at higher concentrated samples.  
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Figure 61: EPR spectra of 19 in frozen solutions of THF at 200K with multiple concentrations 

and as microcrystalline powder (blue line: 2·10-4 mol·L-1; dark blue line: 1.2·10-3 mol·L-1; black 

line: 3.7·10-3 mol·L-1; red line: simulated spectrum of highest concentration; green line: 

spectrum of microcrystalline powder at 204K; minor species is marked with an asterisk; g 

values obtained for main species: gx = 2.42, gy = 1.96, gz = 1.92; containing about 1% of a second 

species with giso = 2.008). 

Figure 62: EPR spectrum of solid 19 at 204 K (black line: experimental spectrum, red line: 

simulated spectrum). Obtained g value: giso = 2.005. 

d 
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SQUID magnetometry of 19 can be modelled with two IrII centers with S= ½ coupling 

antiferromagnetically (J12 = -52 cm-1, Figure 63). At room temperature, the effective 

magnetic moment reaches 1.3 μB. The slope indicates that the expected value of 1.73 (s.o.) 

per metal center is indeed the high temperature limit, demonstrating the similar 

behavior in solution and in the solid state. The g-value obtained from the fitting process 

is lower than from the EPR experiment (≈2). This is the result of a low total magnetization 

per sample weight. A weighing error as well as diamagnetic impurities could be the 

cause of that and explain a deviation of around 10% from the expected value. In addition, 

the g-values from the EPR measurement might be influenced by their electronic 

interaction with each other, which is not taken into account in the simulation of the EPR 

spectrum (Figure 61). 

Figure 63: ΧMT product (circles: experimental data; solid red line: fitting curve; dashed blue 

line: paramagnetic impurity) and effective magnetic moment of 19 (calculated for two 

antiferromagnetically coupled S = 0.5 centers, g value fixed at 1.84, in Bohr magnetons). 

Two equivalents of ferrocenium hexafluorophosphate oxidize the neutral dimer to 

an intense violet diamagnetic species, soluble only in polar solvents like DCM. The 

signals in the 1H NMR are in accordance with the highly symmetric structure of the 

neutral dimeric starting material (Figure 64) thus confirming the dicationic dinuclear 

complexx [(PNP)Ir(μ-C12H8N2)Ir(PNP)](PF6)2 (20). 
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Figure 64: 1H{31P} NMR spectrum of 20 in CD2Cl2 (300 MHz, r.t.). 

The CV of 20 shows remarkably four reversible redox events (Figure 65) of identical 

peak intensities which therefore could tentatively be assigned as one-electron oxidations 

to the corresponding cationic congeners (E½(+/0) = -0.99 V; E½(2+/+) = -0.76 V; E½(3+/2+) = 

0.67 V; E½(4+/3+) = 0.90 V vs. [(C5H5)2Fe]+/0). Consistently, reduction of 20 with two 

equivalents of cobaltocene yields again the neutral dimer 19 and oxidation of 19 with 

two equivalents of ferrocenium hexafluorophosphate to 20. Interestingly, the protons of 

the bridging benzidine moiety in 20 resonate at 6.77 and 6.68 ppm, respectively. 

Comparing these data with the ortho and meta protons in aniline/free benzidine at 

7.12 ppm/7.34 ppm and 6.64 ppm/6.72 ppm,174 respectively, indicates that the electron 

density in 20 is distributed as in a quinoidal system of conjugated double bonds and not 

as two coupled phenyl groups as it was also suggested also for the neutral dimer 19. The 

quarternary carbons of the diketiminato bridging ligand of 20 are identified by a 

combination of HSQC and HMBC NMR spectra (Figure 66). They resonate at 134 ppm 

and 153 ppm, significantly highfield shifted compared to anilide. From the spectra it is 

not possible to distinguish between them (and so for the two sets of proton signals), but 

it seems reasonable to assume that the carbon bound to nitrogen will be shifted more 

downfield due to the higher electronegativity of nitrogen. Based on these findings both 

C6H6 CD2Cl2 
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oxidations can be assigned to be metal centered. The other accessible oxidation states of 

this dimeric system have not been assessed yet. The mixed valent mono (IrII/III)- and 

tricationic (IrIII/IV) species [(PNP)Ir(μ-C12H8N2)Ir(PNP)]+/3+ would make for a good 

studying object for investigations of intervalence charge transfer processes. 

Figure 65: Cyclic voltammogram of dimer 20 in DCM (first cycle, 0.15 M TBAPF, 100 mV/s). 

Figure 66: Overlay of 1H-13C HSQC- (red trace) and 1H-13C HMBC-NMR (green trace) spectra 

of 20 (sector) in CD2Cl2 at r.t. 
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This dehydrocoupling reaction raises the question about the nature of the observed 

intermediate (assigned as 18 in Figure 56). The tBu groups of the intermediate 18 

resonate as one paramagnetically shifted singlet at 16.9 ppm. The broadening due to 

relaxation processes is quite small (FWHM = 5 Hz) compared to the related S=½ system 

3 (FWHM = 130 Hz). Two signals, presumably the CH-groups of the ligand backbone, 

can be found at -58.7 ppm and -80.5 ppm, respectively, which is very similar to the 

characteristics of (tBu: 17.5 ppm (FWHM = 29 Hz), CH: -46.7 ppm, CH: -78.8 ppm). The 

preliminary data suggest that the reaction proceeds via an imido complex with similar 

structural and electronic properties as imido complex 8, which then couples in para-

position to yield ultimately dimer 20 (Scheme 38). 

  3    18          19 

Scheme 38: Proposed reaction pathway of dehydrocoupling of 3 via 18 to 19. 

Slow precipitation of the product can be observed over several hours, therefore, and 

to slow down the reaction progress, the concentration of 3 and BQ is lowered from 

12.5 mmol L-1 to 1.9 mmol L-1. The reaction is followed by integration of 1H NMR spectra 

(see Figure 57). Only the final product 19 and HQ accumulate in solution at the end of 

the reaction. The first recorded NMR spectrum already shows the highest concentration 

of the intermediate throughout the whole reaction. Accordingly, the rate determining 

step lies after the first reaction step towards the intermediate 18. The decay of the 

intermediate is therefore easily monitored by integration of the well separated signal at 

16.9 ppm. If the observed signal is indeed the postulated intermediate 18, the rate 

determining step afterwards is most likely the coupling of the monomeric imide 18, since 

further HAA steps seem unfavorable without prior C-C coupling. For a dimerization, 

determination of the reaction order in [Ir] is clearly an important step to gain insight into 

the mechanism. The decay of 18 is fast at the beginning of the reaction, producing 

considerable amounts of product, but slows down over time. The plot of the inverse 

concentration versus time (linearization for a second order decay) is shown in Figure 67. 

It becomes obvious that reaction order is higher than 2. Since in this scenario (Scheme 

38) BQ is both needed to generate the intermediate imide 18 and to react the coupled 

imide to the diketiminate product 19, its overall influence on the lifetime of the 
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intermediate is unclear. Thus the reaction is repeated with a tenfold excess of BQ. The 

plot of the decay is shown in Figure 67. Under pseudo-first order conditions in BQ, the 

decay of the intermediate follows a second order rate law over more than two half-lifes 

strongly suggesting the monomeric imide as the central intermediate. 

Figure 67: Plot of of concentration (inset: reciprocal value) of intermediate 18 versus time 

(experimental values monitored by integral of it’s tBu signal in 1H NMR);green dots: 

stoichiometric mixture of 3 and BQ; blue triangles: with 10 eq of BQ. 

In an equimolar mixture of 3 and BQ the reaction to intermediate 18 seems to be fast 

at the beginning until an equilibrium is reached. This suggests a low barrier for initial 

HAA and similar bond strengths of N-H (3) and O-H (SQ). The absence of signals of the 

coupled product before para-hydrogen loss is in line with a rate determining coupling 

step, which is driven by faster, subsequent rearomatization to the final product. The fact 

that the hydrogen atoms from the dehydrocoupling end up exclusively in HQ implies 

that dihydrogen loss from the coupled imides is not a competing pathway.  
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Since the coupling of two molecules of 18 appears to be the rate determining step, 

lowering the overall concentration slows down the reaction significantly. This allows to 

measure the UV-Vis signature of 18 without significant amounts of intensely colored 

dimer 19. Besides the decreasing peaks of 3, the relatively fast formation of a signal at 

486 nm (assigned to intermediate 18) can be observed within the first 20 min., after that 

the formation stagnates. Delayed build up of signal intensity around 600 nm (dimer 19) 

is observed. 

Figure 68: Series of UV-Vis spectra of reaction mixture of 3 and BQ every 150 s in THF. 

Notably, if only half an equivalent of benzoquinone is employed in the reaction, 

only 50% of the conversion is observed, giving rise to the assumption that the 

intermediate monomeric imide can serve as an H atom acceptor as well in a formal 

disproportionation reaction of the intermediate imide 18. This is backed up by the 

observation that the deprotonation of 6 with KHMDS leads to a mixture of dimer 19 and 

amide 3, presumably via 18 as the disproportionating intermediate This enables a second 

route to generate imide 18 in situ (Scheme 39). 

3 
3 

3 

18 

19 
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       3          18     6 

Scheme 39: In situ generation of imide 18 by either HAT with BQ or deprotonation of 6 by a 

non-coordinating base like KHMDS. 

For comparison, it would be useful to monitor the analogue reaction on the cationic 

stage. Upon dissolving cationic amide complex 6 and an equimolar amount of 

benzoquinone in CD2Cl2 no intermediate can be observed but the di-cationic dimer 20. 

The same effect is achieved by dissolving 3, an equimolar amount of ferrocenium salt 

and BQ in DCM (Scheme 40). Notably, this coupling reaction is already completed upon 

mixing at ambient temperatures with an isolated yield of 54%. 

      3              20 

Scheme 40: Synthesis of di-cationic dimer 20 by one-pot oxidation and dehydrogenation using 

[Fe(Cp)2]PF6 and BQ. 

Coupling of the cationic imide is therefore faster than coupling of two neutral 

imides by orders of magnitude. To test a possible redox catalytic mechanism for the 

coupling of the neutral imide 3 via a cationic intermediate, the coupling experiment 

(Scheme 38) is repeated, adding substoichiometric amounts of cationic 6 (0.5 mg, 

0.6 µmol, 10 mol%). Besides a small amount of di-cationic dimer 20, no influence on the 

coupling of 3 to 19 can be found, although the selectivity decreases. This is in accordance 

with the oxidation potentials of the involved species. Dimer 20 is reduced at more 

negative potential than the respective amide complex 6 (-1.0 V vs. -0.6 V) and in the case 

of the tBu substituted imide the redox potential of amide and respective imide were 

close. 
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This indicates that the phenyl-substituted imide is indeed capable of homo-

coupling in para-position as a consequence of spin delocalization into the phenyl ring. 

To prevent this coupling, the para-position would have to be blocked sterically as the 

meta-positions already are by the PNP ligand. Further insight can be provided by DFT 

calculations in the future. 

This coupling reaction is of particular interest, because in literature these kinds of 

intermediate imido complexes have been proposed, but never shown in action. The 

oxidation chemistry of anilides has been investigated for a long time.175,176 C–C coupling 

upon oxidation of platinum(II) anilide complexes was studied by Alcock and Espinet 

(Scheme 41 a).177,178,179,180 Sharp and co-workers reported the stepwise oxidation and 

deprotonation of a bridging phenylimido ligand to the benzidine derived quinoidal 

diketiminato complex (Scheme 41 b).181 Stephan and Hillhouse groups both reported 

para-coupling of nickel arylimido species (Scheme 41 c, d).182,110 Such reactivity is 

generally attributed to spin delocalization into the aromatic system, however, for these 

examples the key NHXPh-species that undergo C–C coupling were not directly 

observed. Interestingly, Betley and coworkers find a coupling between the imido 

nitrogen and the para-carbon in a related system instead of para-para coupling (Scheme 

41 e).81 The reason for that is not obvious, but one might speculate that this coupling is 

thermodynamically favoured but sterically hindered in the other cases. Both examples 

of Betley and Stephan do not feature the subsequent double hydrogen atom loss to form 

a diketimine species as it is observed for Pt (Alcock, Espinet), Ni (Hillhouse) and our Ir-

system. 
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Scheme 41: Bimolecular aryl-coupling of Pt- (Alcock, Espinet; a), Rh- (Sharp; b), Ni (Stephan; c; 

Hillhouse; d) and Fe (Betley; e) complexes, susceptibility to hydrogen loss in para position 

shown in examplex a,b and d. 

 

a) 

 

b) 

 
c) 

 
d) 

 
e) 
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4. Development from Imido to Oxo 

- Exploiting the Isolobal Principle 

Iridium imido complexes (M=NR) have been investigated to great extent in the 

previous chapters including variation of the R-rest. It became evident that changes are 

necessary to enable the system to transfer its functional group more efficiently. Lower 

reaction barriers in general are expected if steric bulk is decreased. Another factor are of 

course the electronic properties. C-H amination reactions formally are oxidations of the 

C-H bond, a more electron deficient system might be beneficial for performing this 

reaction. An oxo ligand in general is considered less electron donating than an imide183. 

The change from {NR}2- to the isoelectronic oxo-ligand O2- tackles both steric and 

electronic factors. Besides, the chemistry of late transition metal terminal oxo complexes 

is still underdeveloped with only one example of iridium by the group of Wilkinson.108 

In analogy to the imido synthesis, 1 is used as the entry point. The substitution of 

the chloride ligand by hydroxide is conveniently achieved using an excess of sodium 

hydroxide in a mixture of THF and water to mediate the solubility properties (Scheme 

42). Substitution in water-free THF is also observed, however much slower. (4 weeks vs. 

2 days). The resulting blue to green solution exhibits paramagnetically broadened and 

shifted signals in the 1H NMR spectrum in accordance with an expected C2v symmetry. 

         1        21 

Scheme 42: Synthesis of 21 from 1 by chloride-hydroxide substitution in a THF/H2O mixture. 

Structural confirmation is obtained by X-ray crystallography of a single crystal. It 

shows a square-planar metal coordination around Ir as expected (sum of angles around 

Ir: 360 °). 
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Due to co-crytallization of opposing directions of the complex, no differentiation 

between the Ir-NPNP and Ir-OH can be made and the value of 1.988 is rather an average 

of both almost identical bond lengths. It can be stated that the Ir-NPNP bond is shorter 

than in amide complex 3 (Figure 4, 2.013(3) Å) as a sign of a lower degree of π-donation 

of the hydroxo ligand. 

Figure 69: Molecular structure of 21. ORTEP plots with anisotropic displacement parameters 

set at 50% probability. Hydrogen atoms except for O-H are omitted for clarity. Selected bond 

lengths [Å] and angles [°]: Ir1-N1 1.988(3), Ir1-O1 1.988(3), Ir1-P1 2.3172(10), N1-Ir1-O1 180.0. 

By cyclic voltammetry (Figure 70), the oxidation potential of 21 is shifted anodically 

compared to the amide complexes (E½ = -0.4 V vs. -0.6 V (3), -0.8 V (5)), also reflecting the 

decreased electron density at Ir. Both oxidation and reduction (E½ = -2.2 V) seem 

reversible, however the data are preliminary since the measured sample was not entirely 

clean. The traces of the other compound can be assigned to starting material 1. The 

oxidation potential is higher than that of corresponding amide complexes, but still 

allows for use of a mild oxidation reagent. Accordingly, 21 is oxidized to diamagnetic 22 

with [Fe(Cp)2]PF6 (Scheme 43). 

             21      22 

Scheme 43: Synthesis of 22 by one electron oxidation of 21 using [Fe(Cp)2]PF6. 

X-ray crystal structures were measured and solved by Dr. Christian Würtele and Dr. Christian 

Volkmann. 
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Figure 70: Cyclic voltammogram of hydroxo complex 21 with traces of 1 in THF (0.15 mol L-1 

(nBu)4NPF6, scan rate 100 mV/s, referenced vs. [Fe(Cp)2]+/0) at r.t. 

22 is C2v symmetric in solution (Figure 71). The hydroxide proton is found at 

remarkably downfield shifted to almost 18 ppm and shows coupling to the 31P nuclei. 

Figure 71: 1H and 31P{1H} (inset, top) NMR spectra of 22 in d8-THF at r.t. 
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As indicated by the NMR shift of this signal, solutions of 22 in THF slowly 

polymerize at r.t., which is a known acid-catalyzed reaction of THF. Upon dissolving 22 

and the strong base KOtBu in chlorobenzene, an immediate color change takes place 

from violet to a pale red solution (Scheme 44), whose 1H NMR spectrum is shown in 

Figure 72. 

     22            23 

Scheme 44: Generation of terminal oxo-complex 23 by deprotonation of 22 with KOtBu. 

Figure 72: 1H NMR spectrum in C6D6 of reaction mixture of 22 with KOtBu, resulting mainly 

in 23. 

One main species is observed with paramagnetically shifted signals, although much 

sharper than that of 21 (FWHM = 3.5 Hz vs. 220 Hz). They integrate to 36:2:2 as expected 

for the C2v symmetric signals of the PNP ligand. These findings strongly suggest the 

formation of the terminal oxo complex 23. This is just the beginning of the investigations 

on the series of hydroxo/oxo complexes. Subject to isolation and characterization the 

differences and common grounds of imido- and isoelectronic oxo- complexes can be 

studied in the future. 
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The synthesis of open-shell IrII amide complexes [Ir(NHR)(PNP)] from an easily 

available starting material was achieved using IrII-chloro complex 1. A salt metathesis 

route using lithiated amines has the advantage of additional driving force by 

precipitation of LiCl. It involves no change in redox states allowing for variation of the 

R rest. The general applicability of this route is limited by sterics. It has been shown that 

the use of the corresponding amine as solvent is beneficial to the reaction speed, 

presumably due to increased solubility of the lithiated amide and also due to an easier 

coordination of the amine to the electron-rich metal center. The amide complexes are 

easiyl oxidized to their cationic, diamagnetic congeners without affecting the molecular 

constitution. 

Next, different strategies for hydrogen abstraction were tested in order to generate 

imido complexes. The tBu substituted system was prefered for this purpose because of 

the chemical inertness of the tBu rest. It turned out that both neutral and cationic amide 

complexes can serve as precursors to imide complexes. Synthetic access to the imido 

chemistry was discovered using in situ generated 4 and an excess of oxidant and base. 

The product of formal hydride loss is cationic imide 7. A HAT pathway to an imide is 

found upon treatment of 6 with DDQ, while no reaction of 4 to 8 with any hydrogen 

atom acceptor is observed.  

The PNP ligand system in combination with the tBu ligand shielding the nitrogen 

atom provides exceptionally high stability for a late transition metal imido complex. The 

characterization of 7 has been carried out in detail using NMR-, IR-, EPR-, and X-Ray 

techniques. The 15N isotopologue had to be prepared from the scratch since the reagent 

and solvent for the synthesis of 7, tBu15NH2 is not commercially available (see IV: 5.2.4). 

The comparison of 14N and 15N isotopologues with ELDOR detected NMR in interplay 

with DFT calculations revealed the electronic structure of 7. The unpaired electron (S = 

½) is delocalized cylindrical around the Ir=N bond in two almost degenerate π*-type 

orbitals via spin-orbit coupling as a result of an almost linear imido ligand. A 

considerable amount of spin density is found at the nitrogen atom, concluding the 

description of an ‘imidyl’ radical. However, this does not lead to reactivity, which is 

usually associated open-shell states. The delocalization of the high-lying unpaired 

electron seems to stabilize the system significantly, however high barriers due to sterics 

may obscure the picture. 
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7 is readily converted to either neutral 8 or dicationic 9 upon reduction or oxidation 

with an external one-electron reductant or oxidant. Synthesis and a simple MO-model 

are shown in Scheme 45. 

Scheme 45: Top: Synthesis of imido complexes [Ir(NtBu)(PNP)]n+ (n = 0,1,2); Bottom: Simple 

MO-model of the frontier orbitals at iridium of these complexes. 

The existence of a dicationic monomeric imide is surprising. Isolation and NMR 

spectroscopic characterization confirm a diamagnetic imide after removal of the 

1 4 6 

9 7 8 
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unpaired electron from the SOMO. Electrophilicty of the imide could be expected given 

the high charge of the molecule and the knowledge that occupation of the π*-

antibonding orbitals is possible. Due to thermal instability and limited choice of solvents, 

a detailed investigation of the reacitivity of 9 is hampered. Brønstedt acicity is noted. 

Above -10 °C, the C-N bond of the imido ligand is cleaved to yield the well known 

cationic nitride 10 and isobutene, while the abstracted proton is not observed. 

On the other hand, the product of reduction of 7, neutral imide 8 is thermally stable 

up to 60 °C. The imido ligand is only slightly more bent than the cationic imide and also 

the temperature dependent NMR shifts vote against a closed shell electronic 

configuration. The magnetization recorded by SQUID magnetometry points towards a 

large positive axial ZFS (D > 400 cm-1) resulting in a non-magnetic ground state which 

was further proven by MCD measurements at He-temperatures. The electronic structure 

can be noted as (π*1/π*2)2 state with near degeneracy of these orbitals, in other words a 

triplet ground state, which is unprecedented in literature. Since spin is not a good 

quantum number for 5d metals, the observations and DFT calculations are backed up by 

multi-reference calculations employing quasi-degenerate perturbation theory to correct 

for SOC effects. The calculations yield a relative similar description of a separated |1,0⟩ 

ground and almost degenerate |1,±1⟩ excited states. The calculated magnetization data 

is in excellent agreement with the experiment. 

The reactivity of 8 is much more versatile than that of the other imides. In 

accordance to its electronic structure it features both nucleophilic and electrophilic 

properties. It is capable of HAT reactions as demonstrated by the intramolecular HAT 

from a tBu group of the PNP ligand, although this reaction might be driven by 

irreversibility of isobutene loss. Hydrogenolysis yields free tBuNH2 and dihydride 13, a 

potentially important step towards a catalytic application, but more important it raises 

the question about the mode of dihydrogen activation, electrophilic attack of the 

nitrogen at the H-H bond or coordination and heterolytic bond cleavage. 

To elucidate this, various substrates have been tested. A clear confirmation for 

nucleophilicity is the reaction with CO2 to form a carbamate complex (14). Interestingly, 

the nitrogen of the carbamate undergoes a rearrangement upon activation of a C-H bond 

of the PNP ligand even below r.t. The hydrogen abstraction from a tBu group saturates 

the nitrogen coordinatively, the resulting methyl/methylene radical binds to the metal. 

This could be the missing link of an often discussed possible HAT-radical recombination 

mechanism in C-H aminations, where information about the reactive intermediate are 
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scarce. As proof of concept, nitride 2 should be reacted with CO2 to form a carbamoyl 

species capable of C-H amination. Additionally, the product of intramolecular 

rearrangement can also be hydrolized at elevated temperatures to tBuNH2, CO2 and 

dihydride 13. A side reaction occurs, which is most likeyl caused by the reaction product 

13. The 1H NMR spectra during the reaction point towards a catalytic ring opening 

hydration of THF, which is a challenging reaction and should be investigated in the 

future. 

Imide 8 undergoes nitrene transfer to PMe3, a reaction that is often considered 

electrophilic. The attribution of phosphines as nucleophiles is debatable since it has been 

shown that the σ*P-C molecular orbital combinations can act as electron acceptors169 and 

therefore phosphines have some ambiphilic properties themselves. The reaction time 

with this small phosphine was already one week. arylphosphines do not react with 8, 

presumably due to their higher steric demand, prohibiting further investigations to 

extract Hammett-parameters that would clearly establish the philicity of this reaction. 

Further reactions with strong ligands like CO and tBuNC lead to ligand substitution 

followed by unselective decay of the imido ligand rather than C-N coupling reactions at 

the metal center. The diverse reactivity of 8 is shown in Scheme 46. 

Scheme 46: Versatile reactivity of ambiphilic imide 8 demonstrated by reaction with H2, 

PMe3 and intramolecular HAT. 

13 8 16 

15 14 12 
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The imide analogue to imide 8 has been prepared to investigate the interaction of 

the radical character of the covalent Ir-N bond with an aryl system reacting 3 with BQ as 

an hydrogen atom acceptor. Indeed, aryl-aryl coupling of imides is observed. The imide 

18 is not isolable, but detected and assigned by NMR. The NMR shifts of the PNP ligand 

of 18 are very similar to those of 8 and also the linewidths as indicators of the relaxation 

time are similar. The N-H bond of 3 seems to be weaker than that of 8, which does not 

react with BQ. Under pseudo-first order conditions in BQ, the decay of 18 is of second 

order, suggesting that the following coupling step is rate determining. As product, 

diketiminato bridged 19 is isolated. After initial N-H cleavage and coupling of the 

imides, the C-H bond of the carbon in para position to nitrogen of the phenyl ring is also 

cleaved to rearomatize the system. Remarkably, the same reactivity is observed for 

analogue reaction of cationic 5 to dicationic dimer 20. This reaction is faster and no 

intermediate is observed. However, the reactivity of the imide with a total spin of 1 does 

not differ fundamentally from the imide with a doublet ground state (Scheme 47). 

In addition, the synthetic approach towards a square planar terminal oxo complex 

has been developed with the imide synthesis protocol as the role model. The oxygen 

stems from a basic aqueous solution ergo the most sustainable source imaginable. The 

hydroxo complex 21 is easily oxidized to 22, which is acidic enough to be deprotonated 

23. All these 3 steps, ligand exchange, oxidation and deprotonation could, in principle, 

take place in one pot. 

Scheme 47: Anilido complexes 3 and 5 and their dehydrogenative coupling to dinuclear 

diketimido complexes 19 and 20. 

3 19 
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In conclusion, it has been demonstrated that the proton coupled oxidation of metal-

bound amines and water provide access to a wide range of imido- and oxo-complexes, 

respectively. The synthetic approach of using strict 1 e- / 1 H+ abstraction reagents for an 

overall 2 e- / 2 H+ process paves the way for possible electrochemical synthesis of a 

nitrene/oxo building block. Because of the possibility of using a basic aqueous solution, 

the oxo complex is predestined for electrochemistry. The spectroscopic, magnetic, 

crystallographic and computational characterization of the iridium(III/IV/V) imido 

redox series 7-9 is in line with highly covalent Ir–NtBu bonding as expressed by the 

simple MO model shown in . Dicationic 9 is purely diamagnetic. The data supports an 

electronic doublet ground state for cationic imide 7 with cylindrical delocalization of the 

spin density perpendicular to the Ir–NtBu bond as a result of SOMO/LUMO mixing 

through SOC. The neutral imide 8 is best described as an electronic triplet with a 

separated non-magnetic ground state, which results in ambiphilic nitrene transfer 

reactivity with both CO2 and PMe3, amongst other reactions. In comparison, the chemical 

inertness of 7 is surprising and somewhat contradictive to the widely accepted 

assumption that radical character features enhanced reactivity. Besides steric shielding, 

this finding can be attributed to stabilizing relativistic contributions by SOC-induced 

spin delocalization, which moderates the reactivity of this class of electron-rich heavy 

metal imido complexes. The example of carbamate complex 14, which shows enhanced 

activity in C-H activation in comparison with imide 8, reminds of the work of Basolo. He 

states in his pioneering work about the postulated intermediate [Ir(NH3)5NH]3+ that “the 

coordinated nitrene behaves as an extremely powerful electrophile […] expected for singlet 

nitrenes, […] although some dπ --> pπ donation appears to be necessary for the formation of 

[Ir(NH3)5NH]3+ […], extensive electron transfer leads to loss of nitrene-like properties of the 

resulting ligand.“184 In other words, an acceptor substituent like CO2 might lower the 

energy of the LUMO just enough to be populated by less activated nucleophiles while it 

is still nitrogen centered. 
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1. Analytical Details 

1.1. In-House Analytical Methods 

Elemental Analysis 

Elemental analyses were obtained from the Analytical laboratories at the Georg-

August University Göttingen on an Elementar Vario EL 3.  

NMR measurement 

NMR spectra were recorded on Bruker Avance III 300 or 400 MHz spectrometers 

and were calibrated to the residual solvent proton resonance (d6-benzene: H = 7.16 ppm, 

C = 128.06 ppm; d8-THF: H = 3.58 ppm, C = 67.2 ppm; d8-toluene: H = 2.09 ppm, C = 20.4 

ppm; CD2Cl2: H = 5.32 ppm, C = 53.84 ppm; CD3CN: δC = 118.26 ppm). 31P chemical shifts 

are reported relative to external phosphoric acid (H3PO4 = 0 ppm). Signal multiplicities 

are abbreviated as: s (singlet), d (doublet), t (triplet), vt (virtual triplet), hept (heptet), m 

(multiplet) and br (broad). Spectra are recorded at r.t. unless otherwise noted.  

Magnetic measurement in solution 

Magnetic moments in solution were determined in d8-THF or C6D6 at r.t. by Evans’ 

method as modified by Sur185 and corrected for diamagnetic contribution. Therefore, the 

sample was weighed in a J-Young NMR tube and dissolved in a defined volume (ca. 0.5 

mL) of deuterated solvent and referenced against the signal of a sealed capillary of the 

same solvent. The difference in chemical shift of the residual proton resonance of the 

solvent and the sealed capillary was used for the calculation of the magnetic moment. 

EPR measurement 

EPR spectra were recorded on a Bruker X-band EPR spectrometer equipped with a 

liquid nitrogen cooling system. To extract reliable parameters from the spectra, they 

were simulated using the EasySpin package of Matlab scripts.186 Parameters of interest 

are g-values, hyperfine interaction constants and broadening effects which are varied 
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during an iterative process to achieve the best possible accordance of simulated and 

measured spectrum identified by a least squares algorithm. 

IR measurement 

IR spectra were recorded on a Thermo Scientific Nicolet iZ10 Transmission 

spectrometer as KBr pellets. Spectra in liquid phase were measured in a cuvette 

containing KBr windows and sealed with teflon plugs. All sample preparation was 

carried out in a glove box. Signal intensities are abbreviated as: w (weak), m (medium), 

s (strong). 

UV-Vis measurement 

UV-Vis absorption spectra were recorded on a Varian Cary 300 Scan 

spectrophotometer with sealed UV-Vis cuvettes under argon atmosphere or in a glove 

box under argon atmosphere using an AVALIGHT-DH-S-BAL light source, AvaSpec-

NIR256-2.5-HSC (for NIR region) and AvaSpec-2048X14 (for UV-Vis region) detectors. 

Cyclic Voltammetry 

Cyclic voltammograms were recorded on an Autolab PGSTAT101 from Metrohm in 

a glove box under argon atmosphere. Measurements were perfomed in a freshly 

prepared 0.1 M [nBu4N][PF6]-solution of either THF or DCM with glassy carbon disk 

working electrode (area = 0.020 cm2), Ag wire pseudo-reference electrode and Pt wire 

counter electrode. Original spectra were referenced against the [(C5H5)2Fe]+/0 couple. 

1.2.  Pulsed EPR Measurement Details 

Experimental X-band EPR spectra were recorded at 23 K on a Bruker EMX 

spectrometer equipped with a He temperature control cryostat system (Oxford 

Instruments), using a frozen solution (glass) of 7 in MeTHF. The spectra were simulated 

by iteration of the anisotropic g-values, (super)hyperfine coupling constants, and line 

widths using the EPR simulation program W95EPR developed by Prof. Dr. Frank 

Neese187. W-band ELDOR NMR experiments188 were conducted at 5.5 K on a Bruker 

Elexsys E680 W-band FT-EPR spectrometer equipped with a 6 Tesla split-pair cryogenic 
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superconducting Magnet, using a frozen solution (glass) of 7 in MeTHF. The sample was 

accommodated in an EN 680-1021H W-band TE011 pulse ENDOR resonator. Cryogenic 

temperatures were reached using a dedicated Oxford Helium flow cryostat. The spectra 

were simulated using the EasySpin package of Matlab scripts,189190 making use of the 

ENDOR (“salt”) routine. 

1.3. SQUID Measurement Details 

Temperature-dependent magnetic susceptibility measurements were carried out 

with a Quantum-Design MPMS-XL-5 SQUID magnetometer in the range from 295 to 2.0 

K at a magnetic field of 0.5 T. The powdered sample was contained in a gelatin capsule 

and fixed in a non-magnetic sample holder. Each raw data file for the measured magnetic 

moment was corrected for the diamagnetic contribution of the gelatin capsule according 

to Mdia(capsule) = g∙m∙H, with an experimentally obtained gram susceptibility of the 

gelatin capsule. The molar susceptibility data were corrected for the diamagnetic 

contribution according to Mdia(sample) = –0.5 M 10-6 cm3∙mol–1.191 Experimental data 

were modelled with the julX program192 using a fitting procedure to the spin 

Hamiltonian 𝐻̂ = 𝑔𝜇𝐵 𝐵⃑ 𝑆 + 𝐷 [𝑆̂𝑧
2 −

1

3
𝑆(𝑆 + 1)]. Paramagnetic impurities (PI) were 

included according to calc = (1  PI)· + PI·mono. 

1.4.  MCD Measurement Details 

MCD spectra of 8 were recorded as a frozen solution (glass) in 2-MeTHF at 

wavelengths between 300 and 2000 nm on a spectrometer built around an Aviv 42 CD 

spectrometer equipped with both photomultiplier and InGaAs detectors and an Oxford 

Instruments Spectromag SM4000 optical cryomagnet. A comparison with the baseline 

shows that signals above 1600 nm arise from the set-up. 
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2. Computational Details 

Geometry optimizations of 7 were carried out with the Turbomole program package193 

coupled to the PQS Baker optimizer194 via the BOpt package,195 at the b3-lyp196,197,198,199 

level. The def2-TZVP basis set200,201 (small-core pseudopotentials was used on Ir202,203) for 

the geometry optimizations together with a small grid (m4). Scalar relativistic effects 

were included implicitly through the use of the Ir ECPs. The optimized geometries were 

identified as minima through analysis of the eigenvalues of the Hessian matrix. EPR 

parameters204,205 were calculated with the ADF206,207,208,209 program system both at the 

BP86/TZP and at the b3-lyp/TZ2P level, using the coordinates from the structures 

optimized in Turbomole as input. ZORA basis sets as supplied with the ADF program 

were used. Three different sets of calculations were performed: Unrestricted SCALAR 

ZORA calculations for non-SOC corrected A-tensors; restricted SPINORBIT ZORA 

calculations for the g-tensors excluding spin polarization, and unrestricted SPINORBIT 

ZORA COLLINEAR calculations for the SOC corrected HFI-tensors and Zeeman 

corrected g-tensors. The molecular geometry of 8 was optimized also at the B3LYP/def2-

TZVP level of theory, using the Gaussian09 program210 (along with the D3 dispersion 

correction and the local correlation functional VWN5, as is also implemented in 

Turbomole).211 Wiberg212 and Mayer213,214,215,216,217 bond orders were calculated from the 

Turbomole output files using the AOMix program218,219 (compound 7) and from 

Gaussian checkpoint files using the NBO6 program (compound 8).220 

Further calculations were conducted on two smaller model systems, in which the 

five tBu groups of the pincer and the imido nitrogen were replaced by methyl groups 

(8Me) or hydrogen atoms (8H). To ensure a closest possible structural match in the 

ONIOM approach (see below) to the fully optimized geometry of the real system 8, the 

model systems 8Me and 8H were constructed in constrained geometries where only the C-

H or P-H / N-H bond lengths of the newly added hydrogen atoms (which replace the 

corresponding methyl or tBu fragments of the five tBu groups) were allowed to relax, 

i.e., all angles and dihedrals are kept fixed and all remaining coordinates are unaltered. 

Theoretical investigations on complexes 7 and 8 and the interpretation of the results were 

carried by Dr. Martin Diefenbach and Prof. Dr. Max C. Holthausen. 
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Total energies for these model systems 8Me and 8H were computed using the Molpro 

program.221 The coupled-cluster ansatz with single and double excitations and 

perturbative triples, CCSD(T),222 was employed in combination with the correlation-

consistent polarized triple-zeta basis set cc-pVTZ(PP), which includes the relativistic 

pseudopotential of Figgen et al. (ECP60MDF) for iridium.223,224,225 In order to reach a more 

reasonable estimate of the one-particle space, we also used the explicitly correlated 

variant, CCSD(T)-F12,226,227 with the cc-pVTZ-F12 orbital and auxiliary basis sets228,229,230 

on non-metal atoms and the aug-cc-pVTZ-PP basis set on Ir;225 in combination with the 

corresponding auxiliary JKfit and MP2fit basis sets of Weigend231 and Hill.232 The 

explicitly correlated methods are, by construction, close to convergence towards the 

complete basis set limit already with double-zeta quality basis sets. Final energies are 

based on an ONIOM(F12:DFT) approach233 according to, e.g., 

Etot(8) = ECCSD(T)-F12(8Me) – EB3LYP-D3(8Me) + EB3LYP-D3(8) 

Quasi-degenerate perturbation theory (QDPT) was used within the ORCA program234,235 

to calculate spin-orbit eigenstates for complex 8, based on the DFT-optimized geometry 

of the lowest-energy Cs-symmetric 3A″ state. CASSCF wavefunctions were optimized 

employing the ZORA approximation236 along with the ZORA-def2TZVP basis sets,237 

which include the segmented all-electron relativistically contracted SARC-ZORA-

TZVPP basis set for iridium. The active space comprises the five Ir-based 5d orbitals and 

five occupied ligand-metal based orbitals, giving rise to a CAS(16,10) expansion. In the 

CASSCF calculations the orbitals were optimized by the average of 5 quintet, 45 triplet 

and 50 singlet roots arising from the formal d6 configuration of the iridium(III) center. 

The RI and RIJCOSX238 approximations were used along with the corresponding def2/JK 

auxiliary basis sets231 and a fine grid (GridX6 in ORCA convention), respectively. The 

final energies are obtained from NEVPT2 calculations,239,240,241 and the energies that enter 

the infinite-order QDPT treatment via a full SOMF operator242 are thus corrected to 

second order (dynamic correlation). 

 

 

 

Theoretical investigations on complexes 7 and 8 and the interpretation of the results were 

carried by Dr. Martin Diefenbach and Prof. Dr. Max C. Holthausen. 
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3. Crystallographic Details 

CCDC-1546382 (7), CCDC-1546383 (8), CCDC-1546384 (14), CCDC-1546385 (15) 

contain supplementary crystallographic data for this thesis. This data can be obtained 

free of charge via http://www.ccdc.cam.ac.uk/products/csd/request/ (or from 

Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK. 

Fax: +44-1223- 336-033; e-mail: deposit@ccdc.cam.ac.uk). 

Suitable single crystals for X-ray structure determination were selected from the 

mother liquor under an inert gas atmosphere and transferred in protective perfluoro 

polyether oil on a microscope slide. The selected and mounted crystals were transferred 

to the cold gas stream on the diffractometer. The diffraction data except for 19 were 

obtained at 100 K on a Bruker D8 three-circle diffractometer, equipped with a PHOTON 

100 CMOS detector and an INCOATEC microfocus source with Quazar mirror optics 

(Mo-Kα radiation, λ= 0.71073 Å). The diffraction data of 19 were collected at 100 K with 

a Bruker D8 three-circle diffractometer equipped with a SMART APEX II CCD detector 

and an INCOATEC microfocus source243 with Quazar mirror optics (λ = 0.56086 Å). The 

data were integrated with SAINT244 and face-indexed absorption corrections were 

performed numerically with the program SADABS245. The structure was solved by direct 

methods (SHELXS-2013) and refined against all data by full-matrix least-squares 

methods on F2 (SHELXL-2013)251,246 within the SHELXLE GUI247. The obtained data were 

integrated with SAINT and a semi-empirical absorption correction from equivalents 

with SADABS was applied. The structure was solved and refined using the Bruker 

SHELX 2014 software package.248,249,250,251 All non-hydrogen atoms were refined with 

anisotropic displacement parameters. All C-H hydrogen atoms were refined 

isotropically on calculated positions by using a riding model with their Uiso values 

constrained to 1.5 Ueq of their pivot atoms for terminal sp3 carbon atoms and 1.2 times 

for all other carbon atoms. 

X-ray crystal structures were measured and solved by Dr. Christian Würtele and Dr. Christian 

Volkmann. 
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4. Synthetic Materials and Methods 

All reactions with reagents sensitive to air or moisture were performed using 

standard Schlenk techniques under an atmosphere of argon (purity: 5.0, Linde gas). All 

glassware was pretreated in a KOH/isopropanol bath, neutralized with diluted HCl, 

washed with deionized water and heated to 120°C. Before utilization, the glassware was 

heated under applied vacuum and flushed with argon in three cycles. Solvents were 

added via steel or PTFE cannulas and rubber septum or trap-to-trap transferred in the 

reaction vessel. Glass fiber filters (Whatman GF/B) attached to PTFE cannulas with PTFE 

band were used for standard filtrations. Dewar vessels cooled with liquid nitrogen or 

dry ice with iPrOH or acetone as refrigerant were used for low temperature synthesis. 

All small scale experiments (< 20 μmol) were performed in J-Young NMR tubes. Small 

scale reaction work up and weighing of sensitive materials was carried out in a glove 

box of MBraun under argon atmosphere. The atmosphere was circulated through 

columns filled with activated carbon, copper catalyst and molecluar sieves (4 Å) to 

remove traces of oxygen, moisture and solvents. 

Common solvents (DCM, ethyl ether, pentanes, toluene, benzene, THF) were dried 

by passing through columns packed with activated alumina unless otherwise mentioned 

and THF, benzene, pentanes and toluene were afterwards dried over Na/K alloy. 

Hexamethyldisiloxane and chlorobenzene were – after degassing by bubbling with an 

argon stream – directly transferred on Na/K alloy, DCM and acetonitrile were dried over 

CaH2. After a few days they were distilled by trap-to-trap transfer in vacuo and degassed 

by three freeze-pump-thaw cycles. DMF (Sigma Aldrich) was dried by storage over 

molecular sieves (4 Å). d6-benzene and d8-THF (Euriso-Top GmbH) and tBuNH2 (Sigma 

Aldrich), were dried over Na/K alloy, d3-MeCN and CD2Cl2 over CaH2. 
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Some commercially available reagents were used as purchased: 

AgPF6 (abcr), TBP–H (Acros), AgCF3CO2 (abcr), [Co(Cp)2] (abcr), AgBF4, 

15NH4Cl, pivaloyl chloride, NaOH, KOH, HCl (36% in H2O), Br2, nBuLi (1.6 M 

in hexane), KHMDS, PMe3, [Fe(Cp)2][PF6]. 

Others have been purified prior to use:  

- 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) stirred over CaH2, distilled by 

trap-to-trap transfer in vacuo and degassed by three freeze-pump-thaw cycles; 

- PhNH2 (abcr), freshly distilled; 

- Aluminum oxide (Brockmann I, basic) heated in vacuo for 3 d to 200 °C; 

- 1,4-benzoquinone sublimed under reduced pressure, 

- H2 passed through a steel coil cooled with liquid nitrogen; 

- CO2 passed through a steel coil cooled with a dry ice bath. 

- KOtBu sublimed at 120 °C under reduced pressure. 

Not commercially available compounds have been prepared according to literature 

procedures: 

- 2,2,6,6-tetramethyl-1-hydroxylpiperidine (TEMPOH)252, 

- [Ir(Cl)(PNP)] (1)144 

- thianthrenium tetrafluoroborate253  

- tBu15NH2 was prepared using a modified method of Bergman and coworkers 

(see chapter IV: 5.2.4).141 

- LiNHtBu (see IV: 5.2.5) 

- LiNHPh (analogously to IV: 5.2.5) 

- NaHg 254 



Experimental Details 

 

132 

5. Synthetic Procedures 

5.1. Synthesis of Amide Complexes 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018 94 with permission from the Royal Society of Chemistry. 

5.1.1. Synthesis of [Ir(NHtBu)(PNP)] (4) 

A mixture of LiNHtBu (5.0 mg; 63 mol; 7.3 eq) and [Ir(Cl)(N(CHCHPtBu2)2)] (1) 

(5.0 mg; 8.6 mol; 1 eq) is dissolved in tBuNH2 (0.5 mL) and stirred for 2 h. All volatiles 

are removed in vacuo. Extraction of the residue with pentanes (4 x 2 mL) followed by 

removal of the solvent yields crude 4 as a green solid Any attempt of further purification 

did not lead to the isolation of analytically pure material (see also II: 1.2). 

Spectroscopic Characterization 

1H NMR (300 MHz, C6D6, [ppm]): δ = 7.46 (br, 9 H, NHC(CH3)3), 5.34 (br, 36 H, 

PC(CH3)3), -49 (br, 2 H), -65 (br, 2 H). 

UV-Vis (THF, [nm] (L·mol-1·cm-1)): λ = 725 (2.6∙102), 627 (4.6·102), 564 (3.0·102), 

405 (1.8·103), 305 (5.0·103), 250 (8.5·103). 

Since the analyzed material was not 100% pure, the extinction coefficients are based on 

the assumption that the impurities do not contribute to the spectrum and therefore have 

to be read with care. The detected impurities are mostly aliphatic without strong 

absorptions in the visible range. 
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5.1.2. Synthesis of [Ir(NHtBu)(PNP)]PF6 (5) 

A solution of crude 4 (vide supra) in benzene is purified by chromatography (basic 

alumina) using THF as eluent after exhaustive washing with benzene. Immediate 

oxidation with a small excess of AgPF6 (3.8 mg, 15 mol; 1.7 eq based on starting material 

1) affords a blue solution, which is filtered. The residue is extracted with THF (2 x 1 mL) 

and the product is precipitated from the combined THF fractions upon addition of 

pentanes. The residue is then washed with benzene (3 x 2 mL). Diffusion of pentanes 

into a solution of crude 7 in THF at -30 °C yields 7 as dark blue crystals (yield: 40%). 

Spectroscopic Characterization 

1H NMR (300 MHz, d8-THF, [ppm]):  = 13.45 (br, 1 H, NH), 6.32 

(A18BCXX’A’18B’C’, N = |3JCX + 4JCX’| = 41.6 Hz, 3JBC = 6.1 Hz, 2 H, 

NCHCHP), 5.83 (A18BCXX’A’18B’C’, N = |2JBX + 4JBX’| = 6.0 Hz, 

3JBC = 6.1 Hz, 2 H, NCHCHP), 1.38 (A18BCXX’A’18B’C’, 3JAX = 14.6 Hz 36 

H, PC(CH3)3), 0.95 (s, 9 H, NHC(CH3)3). 

31P{1H} NMR (121 MHz, d8-THF, [ppm]):  = 41.7 (s, 2 P, P(C(CH3)3)2), -145.0 (hept, 

1JPF = 710 Hz). 

13C{1H} NMR (75 MHz, CD2Cl2, [ppm]): δ = 168.5 (vt, 2JC,P = 5.7 Hz, 2 C, NCHCHP), 

115.4 (vt, 1JC,P = 19.9 Hz, 2 C, NCHCHP), 72.0 (t, 3JCP = 2.8 Hz, 1 C, 

NHC(CH3)3), 36.8 (vt, 1JC,P = 10.1 Hz, 4 C, PC(CH3)3), 31.7 (vt, 2JC,P = 

2.6 Hz, 12 C, PC(CH3)3), 28.5 (s, 3 C, NHC(CH3)3). 

Mass Spectrometry 

ESI+ (THF, m/z+, [% rel. to max.]): 621.3 [100] (C24H50N2P2Ir+). 

Elemental Analysis 

C24H50N2F6P3Ir (765.80 g·mol-1, [%]) calcd.: C, 37.64; H, 6.58; N, 3.66 

found: C, 38.02; H, 6.76; N, 3.32 
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5.1.3. Synthesis of [Ir(NHPh)(PNP)] (3) 

LiNHPh (23.1 mg; 233 µmol; 4.5 eq) is added to a solution of 1 (30.0 mg; 51.4 µmol; 

1 eq) in benzene (5 mL) and stirred for 4 d. The solution is filtered and extracted with 

benzene (2 x 10 mL). All volatiles are removed in vacuo, the residue is extracted with 

pentanes (3 x 7 mL) and filtered over celite. The solvent is removed and the product is 

lyophilized overnight out of benzene (10 mL). 3 is obtained as a brown solid (yield: 80%). 

Spectroscopic Characterization 

1H NMR (300 MHz, C6D6, [ppm]): δ = 44.8 (br, 2 H), 5.9 (br, 36 H, PC(CH3)), -23.1 

(br, 2 H), -78.3 (br, 2 H), -95 (br, 1 H), -98 (br, 2 H). 

UV-Vis (THF, [nm] (L·mol-1·cm-1)): λ = 1050 (1.1·103), 719 (9.4·102), 509 (2.3·103), 

427 (≥4.5∙103), 250-350 (≥4.5∙103). 

Magnetic Properties 

Evans’ method (C6D6): µeff298K = 1.68 µB 

Elemental Analysis 

C25H46N2P2Ir (640.82 g·mol-1, [%]): calcd.: C, 48.73; H, 7.24; N, 4.37 

found: C, 48.95; H, 6.96; N, 4.01 

 

5.1.4. Synthesis of [Ir(NHPh)(PNP)]PF6 (6) 

A mixture of 3 (15.0 mg; 23.4 µmol; 1 eq) and AgPF6 (5.6 mg; 22.1 µmol; 0.94 eq) is 

dissolved in THF (2 mL) and stirred for 2 min. The crude product is precipitated by 

addition of pentanes (10 mL) and is washed with pentanes (3 x 2 mL). The residue is 

then extracted with dichloromethane followed by removal of all volatiles in vacuo. The 

residue is redissolved in dichloromethane (0.2 mL) and layered with pentanes (3 mL) to 



Synthetic Procedures

 

135 

crystallize at r.t. within 1 day. Deep purple 6 is filtered off, washed with pentanes (2 x 2 

mL) and dried in vacuo (yield: 68%). 

Spectroscopic Characterization 

1H NMR (400 MHz, CD2Cl2, [ppm]): 13.96 (br, 1 H, NH), 7.36 (t, 3JHH = 7.5 Hz, 1H, 

Ph-para-CH), 7.22 (dd, 3JHH = 7.9 Hz, 3JHH = 7.5 Hz, 2 H, Ph-meta-CH), 

7.08 (d, 2H, 3JHH = 7.9 Hz, Ph-ortho-CH), 6.23 (A18BCXX’A’18B’C’, N = 

|3JCX + 4JCX’| = 35.2 Hz, 3JBC = 6.3 Hz, 2 H, NCHCHP), 5.91 

(A18BCXX’A’18B’C’, N = |2JBX + 4JBX’| = 5.3 Hz, 3JBC = 6.3 Hz, 2 H, 

NCHCHP), 1.57 (A18BCXX’A’18B’C’, 3JAX = 14.9 Hz, 36 H, PC(CH3)3). 

31P{1H} NMR (162 MHz, d8-THF, [ppm]): δ = 50.1 (s, 2 P, P(C(CH3)3)2), -145.0 (hept, 1JPF 

= 710.5 Hz, PF6). 

Elemental Analysis 

C26H46F6N2P3Ir (785.79 g·mol-1, [%]): calcd.: C, 39.74; H, 5.90; N, 3.57 

found: C, 39.78; H, 5.92; N, 3.24 

 

 

5.1.5. Reduction of [Ir(NHPh)(PNP)] (3) 

To a solution of [Ir(NHPh)(N(CHCHPtBu2)2)] (3) (5.0 mg, 7.8 µmol; 1 eq) in THF 

(0.5 mL) in a NMR tube, sodium amalgam (10 µL; 1 mol/L; 10 µmol; 1.2 eq) is added. 

The NMR tube is shaken at r.t. for 2 min. before a 31P NMR spectrum is recorded. The 

signal in the 31P NMR spectrum vanishes within 10 min at r.t. 

31P{1H} NMR (162 MHz, THF, [ppm]): δ = 22.4 (s, 2 P, P(C(CH3)3)2). 
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5.2. Synthesis of Imido Complexes 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018 94 with permission from the Royal Society of Chemistry. 

5.2.1. Synthesis of [Ir(NtBu)(PNP)]CF3CO2 (7) 

A mixture of LiNHtBu (40.0 mg; 506 mol; 2.7 eq) and [Ir(Cl)(N(CHCHPtBu2)2)] (1) 

(110.6 mg; 189 mol; 1 eq) is dissolved in tBuNH2 (8 mL) and stirred for 2 h. All volatiles 

are removed in vacuo, AgCF3CO2 (175 mg; 792 mol; 4.2 eq) is added. The mixture is 

dissolved in THF (4 mL) and shaken for 1 min. The crude product is precipitated by 

addition of pentanes (40 mL). The residue is dissolved in THF (4 mL) and separated by 

chromatography (basic aluminum oxide). After rinsing the column with benzene 

(20 mL), the product is eluted with DMF and dried in vacuo overnight. Two successive 

crystallizations from dichloromethane layered with pentanes affords analytically pure 7 

as purple crystals which are washed with pentanes (2 x 1 mL) and dried in vacuo 

overnight (yield: 57%). 

Spectroscopic Characterization 

1H NMR (300 MHz, d8-THF, [ppm]):  = 32.1 (br, 2 H), 6.7 (br, 45 H), -10.8 (br, 2 

H). 

19F NMR (282 MHz, d8-THF, [ppm]):  = -77.05 (s). 

UV-Vis (THF, [nm] (L·mol-1·cm-1)): λ = 627 (1.1·103), 561 (1.3·103), 374 (1.1·103), 

314 (1.8·103), 247 (8.3·103). 

IR (KBr pellet, [cm-1] (intensity)): ν = 2850-3050 (m), 1690 (s), 1562 (m), 

1475 (w), 1394 (w), 1367 (w), 1197 (s), 1157 (m), 1112 (s), 817 (w), 781 

(w), 714 (w), 660 (w), 499 (w). 
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Magnetic Properties 

Evans’ method (CD2Cl2): µeff298K = 1.6(2) µB 

Mass spectrometry 

ESI+ (THF, m/z+, [% rel. to max.]): 620.3 [100] (C24H49N2P2Ir+). 

Elemental Analysis 

C26H49N2F3O2P2Ir (732.84 g·mol-1, [%]): calcd.: C, 42.61; H, 6.74; N, 3.82 

found: C, 42.39; H, 6.70; N, 3.81 

 

5.2.2. Synthesis of [Ir(NtBu)(PNP)]BF4 (7-BF4) 

The synthesis is analogous to the synthesis of 7 using AgBF4 instead of AgCF3CO2 

as the oxidant. The yield drops to 19%. The spectroscopic features in the 1H NMR remain 

unchanged. 

5.2.3. Synthesis of [Ir(15NtBu)(PNP)]CF3CO2  

 (15N-7) 

The synthesis is carried out analogously to the unlabeled complex using Li15NHtBu 

and tBu15NH2 as solvent. 
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5.2.4. Synthesis of tBu15NH2 

A solution of 15NH4Cl (5.0 g; 91.5 mmol; 1 eq) in water (19 mL) is cooled to 0 °C and 

layered with pivaloyl chloride (15.0 mL; 120 mmol; 1.3 eq) in Et2O (50 mL). The solution 

is warmed to r.t. while stirring slowly avoiding mixing of the phases. NaOH (21.4 g; 

535 mmol; 5.8 eq) is dissolved in water (25 mL) and added to the aqueous phase. After 

slow stirring for 15 min, the phases are mixed while releasing pressure and cooling with 

an ice bath. The ether is removed in vacuo and the remaining aqueous phase is extracted 

with DCM (5 x 20 mL). All volatiles are removed in vacuo to yield crude pivaloyl amide. 

KOH (40 g; 1 mol; 10.9 eq) is dissolved in water (200 mL) and cooled in an ice bath. After 

addition of bromine (5.5 mL; 17 g; 108 mmol; 1.2 eq), the pivaloyl amide is added. The 

solution is stirred for 90 min at 0 °C, warmed to r.t. and stirred for another 20 min before 

cooling again to 0 °C. After slow addition of hydrochloric acid (36% in water; 175 mL) 

the solution is stirred for 15 min at 50 °C and cooled again in an ice bath while n-heptane 

(20 mL) is added. KOH is added until a pH value of at least 12 is reached. The aqueous 

phase is extracted with n-heptane (5 x 20 mL). The combined organic phases are 

extracted with hydrochloric acid (1 mol·L-1; 5 x 20 mL). After removing all volatiles in 

vacuo, the flask is cooled to -50 °C and DBU (8 mL; 53.6 mmol; 0.6 eq) is added. After 

stirring for 16 h at r.t., all volatiles are trap-to-trap transferred to a flask with Na/K alloy. 

Upon thawing, gas evolution can be observed. The liquid is stirred for 4 d, degassed by 

three freeze-pump-thaw cycles and trap-to-trap transferred to yield analytically pure 

tBu15NH2 (2.0 mL; 1.4 g; 19.1 mmol; 21%). 
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1H NMR (300 MHz, C6D6, [ppm]): δ = 0.99 (d, 3JHN = 2.3 Hz, 9H, 15NC(CH3)3), 0.64 

(d, 1JHN = 62.3 Hz, 2H, 15NH2). 

5.2.5. Synthesis of Li15NHtBu 

To a mixture of tBu15NH2 (0.10 mL, 70 mg, 0.96 mmol, 1 eq) and pentanes (2 mL), 

nBuLi (0.60 mL, 1.6 M in hexane, 0.96 mmol, 1 eq) is added. The mixture is shaken for 

one minute, the white precipitate is filtered off and washed with pentanes (3x1 mL) to 

yield Li15NHtBu almost quantitatively (72 mg, 0.91 mmol, 95%). 

1H NMR (300 MHz, C6D6, [ppm]): δ = 1.37 (d, 3JHN = 2.0 Hz, 9 H, 15NC(CH3)3), -

1.53 (d, 1JHN = 50.7 Hz, 1 H, 15NH). 

5.2.6. Synthesis of [Ir(NtBu)(PNP)] (8) 

A mixture of 7 (70.7 mg; 96.5 µmol; 1 eq) and cobaltocene (17.8 mg; 94.1 µmol; 

0.98 eq) is dissolved in THF (10 mL) and stirred for 1 h. All volatiles are removed in 

vacuo, the residue is extracted with pentanes (4 x 2 mL) and filtered. The solution is then 

evaporated to a total volume of about 1 mL and cooled to -50 °C. The product crystallizes 

upon slow evaporation of the solvent over 10 h and collected as red-brown crystals 

(yield: 62%). 
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Spectroscopic Characterization 

1H NMR (300 MHz, C6D6, [ppm]):  = 17.52 (br, 36 H), 13.88 (s, 9 H), 

-46.73 (d, 2 H, NCHCHP), -78.80 (s, 2 H, PCHCHN). Comparison with 

related diamagnetic complexes (square-planar, IrIII; in this work 

complexes 5,6,9,20,22) shows that the NCH-group exhibits a much 

larger coupling to phosphorus which is visible in this case. 

31P{1H} NMR (121 MHz, C6D6, [ppm]): No signal. 

13C{1H} NMR (101 MHz, C6D6, [ppm]): δ = 105.6 (br, FWHM = 30 Hz). 

UV-Vis (THF, [nm] (L·mol-1·cm-1)): λ = 761 (2.7·102), 561 (6.7·102), 409 (2.9·103), 

302 (1.2·104), 251 (1.5·104). 

IR (KBr pellet, [cm-1] (intensity)): ν = 2850-3050 (m), 1540 (s), 1471 (m), 

1362 (m), 1236 (s), 1199 (m), 1179 (m), 1020 (w), 939 (w), 813 (w), 659 

(m), 484 (w). 

Magnetic Properties 

Evans’ method (d8-THF): µeff298K = 2.3(2) µB 

Elemental Analysis 

C24H49N2P2Ir (619.82 g·mol-1, [%]): calcd.: C, 46.51; H, 7.97; N, 4.52 

found: C, 46.85; H, 8.38; N, 4.33 
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5.2.7. Synthesis of [Ir(NtBu)(PNP)](BF4)2 (9) 

A mixture of [Ir(NtBu)(N(CHCHPtBu2)2)]BF4 (7-BF4) (13.4 mg; 19.0 µmol; 1.0 eq) 

and thianthrenium tetrafluoroborate (5.8 mg; 19.1 µmol; 1.0 eq) is dissolved in precooled 

MeCN (2 mL). The resulting green solution is layered with toluene (2 mL) and pentanes 

(2 mL) and stored at -35 °C until the crude product is completely precipitated. The 

solution is decanted and the residue washed with cooled (-35 °C) toluene (3 x 1 mL) and 

pentanes (3 x 1 mL). Drying in vacuo at -30 °C yields the analytically pure dark green 

product 9(yield: 70%). 

Spectroscopic Characterization 

1H NMR (400 MHz, CD3CN, -30 °C, [ppm]):  = 7.05 (A18BCXX’B’C’A’18, 

N = |3JCX + 4JCX’| = 38.9 Hz, 3JBC =6.1 Hz, 2 H, NCHCHP), 6.33 

(A18BCXX’B’C’A’18, N = |2JBX + 4JBX’| = 10.8 Hz, 3JBC =6.1 Hz, 2 H, 

NCHCHP), 1.81 (s, 9 H, NC(CH3)3), 1.69 (A18BCXX’B’C’A’18, 

3JAX = 17.8 Hz 36 H, PC(CH3)3)). 

31P{1H} NMR (162 MHz, CD3CN, -30 °C, [ppm]): = 142.1 (s, 2 P, P(C(CH3)3)2). 

13C{1H} NMR (101 MHz, CD3CN, -30 °C, [ppm]): δ = 162.9 (vt, 2JCP = 7.3 Hz, 2C, 

NCHCHP), 121.3 (vt, 1JCP = 46.9 Hz, 2C, NCHCHP), 88.3 (s, 1C, 

NC(CH3)3), 45.2 (vt, 1JCP = 15.9 Hz, 4C, PC(CH3)3), 30.0 (s, 12C, 

PC(CH3)3), 28.3 (s, 3C, NC(CH3)3).) 

19F NMR (376 MHz, CD3CN, -30 °C, [ppm]):  = -150.85 (s). 

Elemental Analysis 

C24H49N2B2F8P2Ir (793.43 g·mol-1, [%]): calcd.: C, 36.33; H, 6.22; N, 3.53 

found: C, 36.36; H, 5.98; N, 3.81 
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5.2.8. In Situ Generation of [Ir(NPh)(PNP)] (18) 

Via Deprotonation of 6: Cationic amide complex 6 (3.2 mg, 4.1 µmol, 1 eq) and 

potassium hexamethyldisiloxane (0.8 mg, 4 µmol, 1eq) are dissolved in d8-THF at r.t. in 

a NMR tube. The solution turns deep violet and a 1H NMR is recorded after a few 

minutes. 

1H NMR (300 MHz, d8-THF, [ppm]): 16.8 (s, 36 H, PC(CH3)3), -58.5 (s, 2 H, 

NCHCHP), -80.1 (s, 2 H, PCHCHN); roughly 20% of total complex 

amount, along with signals of 3(50%) and 19(30%) by coarse 

integration with partial overlap of signals. 

Via HAT from 3: [Ir(NHPh)(N(CHCHPtBu2)2)] (3) (0.6 mg, 0.9 mol; 1 eq) and 

benzoquinone (0.2 mg, 1.9 mol; 2 eq) are dissolved in d8-THF (0.4 mL). The brown 

solution turns violet within a few minutes. 

1H NMR (400 MHz, d8-THF, [ppm]): δ = 16.9 (s, 36 H, PC(CH3)3), -58.7 (s, 2 H, 

NCHCHP), -78.8 (s, 2 H, PCHCHN); up to 40% along with signals of 3 

and traces of 19 after a few minutes in solution. The assignment of the 

two proton signals of PNP ligand backbone is done in analogy to the 

similar set of signals of 8 in the 1H NMR spectrum. 

UV-Vis (THF, [nm] (L·mol-1·cm-1)): λ = 486 (not determined due to unknown 

concentration), no bands of significant absorption at longer 

wavelengths. 

5.2.9. Synthesis of [{Ir(PNP)}2-µ-(NC12H8N)] (19) 

[Ir(NHPh)(N(CHCHPtBu2)2)] (3) (5.0 mg, 7.8 µmol; 1 eq) is dissolved in THF (4 mL), 

1,4-benzoquinone (6.2 mg, 57.4 µmol; 1 eq) is added. The mixture is stirred overnight at 

r.t. and allowed to stand for 4 d. The solution is decanted and the residue washed with 

benzene (3x1 mL) and then dried overnight in vacuo to yield 19 as a deep purple 

crystalline solid (yield: 54%). 
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Spectroscopic Characterization 

1H NMR (300 MHz, d8-THF, [ppm]): δ = 87.01 (br, 2 H), 4.96 (br, 36 H, PC(CH3)), 

-44.28 (br, 2 H), -45.01 (br, 2 H), -46.07 (br, 2 H). 

UV-Vis (THF, [nm] (L·mol-1·cm-1)): λ = 909 (1.5∙102), 568 (1.6·104), 295 (6.1·103), 

233 (7.5·103). 

Elemental Analysis 

C52H88N4P4Ir2 (1277.61 g·mol-1, [%]): calcd.: C, 48.88; H, 6.94; N, 4.39 

found: C, 48.34; H, 7.11; N, 3.97 

 

Magnetic Properties 

SQUID (solid powder) µeff298K = 2.1(1) µB 

A measurement of its magnetic moment in solution by Evans’ method is hindered by its 

low solubility and high tendency to crystallize in the NMR tube preventing accurate 

determination of its concentration. 

5.2.10. Synthesis of 

 [{(Ir(PNP)}2-µ-(NC12H8N)](PF6)2 (20) 

[Ir(NHPh)(N(CHCHPtBu2)2)] (3) (32.0 mg, 49.9 µmol; 1 eq), [Fe(cp)2](PF6) (16.5 g; 

49.8 µmol; 1 eq) and 1,4-benzoquinone (21.2 mg, 196 µmol; 4 eq) are dissolved together 

in DCM (10 mL) and shaken for 1 minute. About ten times the volume of benzene is 

added to precipitate the intense violet product. The solution is filtered off and the residue 

is washed with benzene (5x2 mL). The residue is dried overnight in vacuo to yield 20 as 

a deep purple crystalline solid (yield: 54%). 
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Spectroscopic Characterization 

1H NMR (300 MHz, CD2Cl2, [ppm]): δ = 6.77 (d, 2JHH = 9.8 Hz, 4H, 

(CH)2CC(CH)2), 6.68 (d, 2JHH = 9.8 Hz, 4H, NC(CH)2), 6.63 

(A18BCXX’B’C’A’18, N = |3JBX + 4JBX’| = 30.8 Hz, 3JBC = 6.3 Hz, 4H, NCH), 

5.75 (A18BCXX’B’C’A’18, N = |2JCX+4JCX'| = 6.8 Hz, 3JBC = 6.3 Hz, 4H, PCH), 

1.54 (A18BCXX’B’C’A’18, 3JAX = 13.2 Hz, 72H, P(C(CH3)3)). 

31P{1H} NMR (121 MHz, CD2Cl2, [ppm]): δ = 62.9 (s, 4P, P(C(CH3)3)2), signal of PF6-

anion not observed due to limited solubility. 

13C{1H} NMR (126 MHz, CD2Cl2, [ppm]): δ = 167.7 (vt, 2JCP = 12.5 Hz, 4C, NCHCHP), 

153.0 (s, 2C, NC(CH)2), 134.1 (s, 2C, (CH)2CC(CH)2), 128.4 (s, 4C, 

NC(CH)2), 110.9 (vt, 1JCP = 39.4 Hz, 4C, PCHCHN), 105.8 (s, 4C, 

(CH)2CC(CH)2), 36.9 (vt, 1JCP = 23.4 Hz, 8C, PC(CH3)3), 30.5 (s, 24C, 

PC(CH3)3). 

Elemental Analysis 

C58H94N4P6F12Ir2 (1645.7 g·mol-1, [%]): calcd.: C, 42.33; H, 5.76; N, 3.40 

found: C, 42.87; H, 5.54; N, 3.21 

 

Repeated measurements of the elemental composition delivered results in 

accordance with the assumed molecule plus one to two solvent molecules (benzene or 

toluene, depending on solvent used in workup). Suitable crystals for X-ray 

determination of the sample could not be obtained, incorporation of one or more solvent 

molecules in the crystal are plausible given the size and geometry of the dimer.  
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5.3. Reactivity of Imido Complexes 

Parts of this chapter were published in the journal Chemical Science under the title “An 

iridium(III/IV/V) redox series featuring a terminal imido complex with triplet ground state” in 

2018 94 with permission from the Royal Society of Chemistry. 

5.3.1. Thermal Decomposition of 9 

A solution of 9 (3.0 mg, 3.8 µmol) in d3-MeCN (0.4 mL) is warmed stepwise from -

30 °C to r.t. The decay of the signal of 9 detected by 31P NMR begins at a temperature of 

-10 °C. Isobutene and nitride 10130 are the only products detected by 1H and 31P NMR 

spectroscopy. 

1H{31P} NMR (400 MHz, CD3CN, [ppm]): δ = 7.19 (d, 3JHH = 6.2 Hz, 2 H, NCHCHP), 

5.52 (d, 3JHH = 6.2 Hz, 2 H, NCHCHP), 4.66 (m, 2 H, H2CC(CH3)2), 1.72 

(t, 3JHH = 6.0 Hz, 6 H, H2CC(CH3)2), 1.56 (s, 36 H, P(C(CH3)3)2). 

31P{1H} NMR (162 MHz, CD3CN, [ppm]): δ = 109.0 (s, 2P, P(C(CH3)3)2) rising. 

5.3.2. Reaction of 8 with H2 

 (Synthesis of [Ir(H)2(PNP)] (13)) 

8 (4.3 mg; 6.9 mol; 1 eq) is dissolved in d8-THF (0.4 mL) and degassed by two 

freeze-pump-thaw cycles before H2 (1 bar) is added. The reaction is completed after 18 h. 

The only products according to the 1H-NMR spectrum are free tBuNH2 and 

[Ir(H)2(N(CHCHPtBu2)2)] (13). 13 can be isolated by removing all volatiles in vacuo (yield: 

81%). 
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Spectroscopic Characterization 

1H NMR (300 MHz, d8-THF, [ppm]):  = 7.16 (A18BCXX’C’B’A’18, N = |3JCX + 4JCX’| 

= 35.8 Hz, 3JBC = 5.5 Hz, 2H, NCHCHP), 4.49 (A18BCXX’C’B’A’18, N = 

|2JBX + 4JBX’| = 6.0 Hz, 3JBC = 5.5 Hz, 2H, PCHCHN), 1.33 

(A18BCXX’C’B’A’18, 3JAX = 13.5 Hz, 36H, PC(CH3)3), -25.61 (t, 

3JHP = 10.2 Hz, 2H, Ir(H)2). 

31P{1H} NMR (121 MHz, d8-THF, [ppm]):  = 81.3 (s, 2P, PC(CH3)3). 

Elemental Analysis 

C20H42NP2Ir (550.7 g·mol-1, [%]): calcd.: C, 43.62; H, 7.69; N, 2.54. 

found: C, 44.22; H, 8.20; N, 2.63. 

 

5.3.3. Reaction of 8 with PMe3 (Synthesis of 16) 

Precooled (-30 °C) PMe3 (0.7 L, 6.9 mol; 1.3 eq) is added to a solution of 16 

(3.3 mg; 5.3 mol; 1 eq) in C6D6 (0.4 mL). The reaction is completed after 7 d at r.t. as 

indicated by the disappearance of the starting material in the 1H-NMR spectrum. The 

three signals in the 31P-NMR spectrum are assigned to residual PMe3, 

[Ir(Phd5)(D){N(CHCHPtBu2)2}]167 (16) and tBuNPMe3255. 

1H NMR (300 MHz, C6D6, [ppm]): δ = 7.37 (A18BCXX’B’C’A’18, N = |3JCX + 4JCX’| = 

34.5 Hz, 3JBC =5.7 Hz, 2 H, NCHCHP), 4.28 (A18BCXX’B’C’A’18, N = 

|2JBX + 4JBX’| = 7.5 Hz, 3JBC =5.7 Hz, 2 H, NCHCHP), 1.45 (d, 4JHP = 1.1 Hz, 

9 H, (CH3)3CNP(CH3)3), 1.14 (A18BCXX’B’C’A’18, 3JAX = 13.8 Hz, 18 H, 

PC(CH3)3), 1.12 (A18BCXX’B’C’A’18, 3JAX = 13.8 Hz, 18 H, PC(CH3)3), 0.96 

(d, 2JHP = 12.0 Hz, 9 H, (CH3)3CNP(CH3)3), 0.80 (d, 2JHP = 2.1 Hz, 9 H, 

P(CH3)3). 

31P{1H} NMR (121 MHz, C6D6, [ppm]): δ = 61.3 (s, 2 P, P(C(CH3)3)2), -14.3 (s, 1 P, 

(CH3)3CNP(CH3)3), -62.6 (s, 1 P, P(CH3)3). 
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5.3.4. Reaction of 8 with CO2 (Synthesis of 14) 

8 (10.4 mg; 16.8 mol; 1 eq) is dissolved in THF (1 mL), degassed by two freeze-

pump-thaw cycles and cooled to -10 °C before carbon dioxide (1 bar) is added. The 

solution is then allowed to warm to r.t. while stirring. All volatiles are immediately 

removed in vacuo. The residue is extracted with THF (2 x 0.5 mL). Removal of volatiles 

at -10 °C in vacuo yields green [Ir(η2-N(tBu)C(O)O){N(CHCHPtBu2)2}] (14) (yield: 86%). 

Spectroscopic Characterization 

1H NMR (300 MHz, C6D6, [ppm]):  = 6.49 (A18BCXX’C’B’A’18, N = |3JCX + 4JCX’| = 

34.6 Hz, 3JBC =6.0 Hz, 2 H, NCHCHP), 4.68 (A18BCXX’C’B’A’18, N = 

|2JBX + 4JBX’| = 6.0 Hz, 3JBC =6.0 Hz, 2 H, NCHCHP), 2.00 (s, 9 H, 

NC(CH3)3), 1.28 (A18BCXX’C’B’A’18, 3JAX = 13.3 Hz 18 H, PC(CH3)3), 1.12 

(A18BCXX’C’B’A’18, 3JAX = 13.3 Hz 18 H, PC(CH3)3). 

31P{1H} NMR (121 MHz, d8-THF, [ppm]):  = 26.4 (s, 2 P, P(C(CH3)3)2). 

Elemental Analysis 

C25H49N2O2P2Ir (663.83 g·mol-1, [%]): calcd.: C, 45.23; H, 7.44; N, 4.22 

found: C, 44.60; H, 7.65; N, 3.90 
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5.3.5. Thermal Rearrangement of 14 

 (Synthesis of 15) 

14 is thermally labile in solution and in the solid state. Monitoring the decay of 14 

in C6D6 at r.t. over several hours shows the conversion into 3 products, two isomers of 

15 and one unidentified minor species (see also II: 2.4.3). 

Spectroscopic Characterization 

31P{1H} NMR (121 MHz, C6D6, [ppm]):  = 47.1 (15a, d, 2JPP = 358 Hz, 2 P, P(C(CH3)3)2), 

46.3 (15b, d, 2JPP = 357 Hz, 2 P, P(C(CH3)3)2), 45.6 (A), 2.7 (15a, d, 

2JPP = 358 Hz, PC(CH3)3), 2.5 (15b, d, 2JPP = 357 Hz, PC(CH3)3). 

5.3.6. Reaction of 15 with H2 to 13 

15 (4.8 mg, 7.2 µmol, 1 eq) is dissolved in C6D6 (0.5 mL) in a J-Young NMR tube and 

degassed by two freeze-pump-thaw cycles. H2 is applied. A slow reaction is observed at 

r.t., but complete consumption of starting material takes several days at 70 °C. The signal 

at 54.9 ppm is an intermediate in the reaction and discussed in the chapter II: 2.4.3. 

31P{1H} NMR (121 MHz, C6D6, [ppm]):  = 81.3 (13, s, 75%), 61.3 (16, s, 5%), 54.9 (s, 

20%). 

5.3.7. Thermal Decomposition of 8 to 12 

8 (5.0 mg, 8.1 µmol, 1 eq) and hexa-methylbenzene (1.3 mg, 8.0 µmol, 1 eq) as an 

internal standard are dissolved in C6D6 (0.5 mL) in a NMR tube. The NMR tube is 

covered with tin foil to exclude ambient light and is placed in a stirred oil bath where it 
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is heated to 70 °C. The temperature sensor used to control the temperature is also 

covered in tin foil to ensure the exact same conditions. Approximately every 90 minutes 

a NMR spectrum (1H and 31P) is recorded. A conversion of 90% is accomplished after 15 

h. In a second experiment, the same of amount of reagents is used, but instead of 

covering the NMR tube in tin foil it is placed in an oil bath within an irradiation set-up. 

A broad band filter is installed that lets pass light with a wavelength of 410 nm and 

longer. As in the other experiment, the temperature of the oil bath is maintained at 70 °C. 

90% conversion is achieved after 7 h. The products are isobutene and two isomers of a 

diamagnetic complex in a one to one ratio (12a/b). Except for the CH-group next to the 

stereogenic center, the three-coordinate phosphorous, the signals of both isomers 

overlap and are not given separately but as multiplets. 

1H NMR (400 MHz, C6D6, [ppm]): δ = 7.89 (s, 1 H, N(H)C(CH3)3), 7.65 (m, 1 H, 

NCHCHPtBu (a)), 7.56 (m, 1 H, NCHCHPtBu), 7.47 (m, 1 H, 

NCHCHPtBu (b)), 6.06 (m, 1 H, NCHCHPtBu2), 4.88 (m, 1 H, 

NCHCHPtBu2), 1.54 (s, 9 H, N(H)C(CH3)3), 1.51 (d, 3JHP = 13.2 Hz, 9 H, 

PC(CH3)3), 1.24 (d, 3JHP = 13.3 Hz, 18 H, P(C(CH3)3)2). 

31P{1H} NMR (162 MHz, C6D6, [ppm]): δ = 139.2 (d, 2JPP = 388 Hz, 1 P, PC(CH3)3), 55.5 

(d, 2JPP = 388 Hz, 1 P, P(C(CH3)3)2). 

5.3.8. Thermal Decomposition of 7 to 11 

7 (1.5 mg, 2.0 µmol, 1 eq) is suspended in C7D8 (0.4 mL) in a NMR tube and heated 

to 90 °C for 5 h until the starting material has disappeared. The origin of the two 

hydrogen atoms is under discussion in chapter II:2.4.3. 

31P{1H} NMR (121 MHz, C7D8, [ppm]): no signal. 

1H NMR (300 MHz, C7D8, [ppm]): δ = 13.2 (br, 36 H, P(C(CH3)3)2), 0.98 (s, 9 H, 

H2NC(CH3)3), 0.64 (s, 2 H, H2NC(CH3)3). 
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5.4. Synthesis of Hydroxo/Oxo Complexes 

5.4.1. Synthesis of [Ir(OH)(PNP)] (21) 

A degassed solution of NaOH in H2O (2.5 mol*L-1; 2 mL, 5 mmol, 29 eq) is added to 

a solution of 1 (100 mg; 171 mol; 1 eq) in THF (7 mL) and stirred for 2 d. All volatiles 

are removed in vacuo, the residue is extracted with pentanes (5 x 5 mL) and filtered over 

celite. The solvent is removed and the product is lyophilized overnight out of benzene 

(8 mL). 21 is obtained as a green solid (yield: 64%). 

Spectroscopic Characterization 

1H NMR (300 MHz, C6D6, [ppm]): δ = 7.2 (br, 36 H, P(C(CH3)3)2), -33 (br, 2 H), -

105 (br, 2 H). 

Elemental Analysis 

C20H41NOP2Ir (565.71 g·mol-1, [%]): calcd.: C, 42.46; H, 7.31; N, 2.48 

found: C, 42.93; H, 7.22; N, 2.41 

 

5.4.2. Synthesis of [Ir(OH)(PNP)]PF6 (22) 

21 (4.0 mg, 7.1 mmol, 1.0 eq) and [Fe(cp2)]PF6 (2.4 mg; 7.2 mol; 1.0 eq) are dissolved 

together in chlorobenzene (1 mL) and shaken for 2 min. Pentanes are added to a violet 

solution until the product precipitates. The residue is washed with benzene (2 x 1 mL) 

and extracted with chlorobenzene. All volatiles are removed in vacuo. to yield the 

product 22 as brown powder (yield: 70%). If further purification is required, crystals can 
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be obtained by diffusion of pentanes in a solution of the product in chlorobenzene at r.t 

over the course of 2 days. 

Spectroscopic Characterization 

1H NMR (300 MHz, d8-THF, [ppm]): δ = 17.70 (t, 3JHP = 4.7 Hz, 1 H, IrOH), 7.71 

(A18BCXX’C’B’A’18, N = |2JBX + 4JBX’| = 5.8 Hz, 3JBC = 6.4 Hz, 2 H, 

NCHCHP), 5.56 (A18BCXX’C’B’A’18, N = |3JCX + 4JCX’| = 34.3 Hz, 3JBC = 6.4 

Hz, 2 H, NCHCHP), 1.82 (A18BCXX’C’B’A’18, 3JAX = 15.1 Hz, 36 H, 

PC(CH3)3)2). 

31P{1H} NMR (121 MHz, d8-THF, [ppm]): δ = 41.5 (s, 2 P, PC(CH3)3)2), -145 (hept, 1JPF 

= 710 Hz, 1 P, PF6). 

13C{1H} NMR (101 MHz, CD2Cl2, [ppm]): δ = 169.8 (vt, 2JCP = 5.0 Hz, NCHCHP), 147.8 

(vt, 1JCP = 16.0 Hz, NCHCHP), 37.1 (vt, 1JCP = 11.2 Hz, P(C(CH3)3)2), 32.0 

(vt, 2JCP = 2.7 Hz, P(C(CH3)3)2). 

Elemental Analysis 

C20H41NF6OP3Ir (565.71 g·mol-1, [%]): calcd.: C, 33.80; H, 5.81; N, 1.97 

found: C, 33.72; H, 5.64; N, 1.88 

 

5.4.3. First Attempt to Synthesize [Ir(O)(PNP)] (23) 

22 (4.5 mg, 5.9 µmol, 1 eq) and KOtBu (0.6 mg, 5.3 µmol, 0.9 eq) are dissolved 

together in chlorobenzene and shaken for 2 min. All volatiles are removed in vacuo. The 

residue is dissolved in benzene and filtered to remove the salt. The solution is 

concentrated until precipitation is about to start, then HMDSO (few mL) is added. More 

brownish solid precipitates, the green solution is carefully decanted. This process is 

repeated if necessary to remove the green by-product 21. 

1H NMR (300 MHz, C6D6, [ppm]): 20.9 (s, 36 H, P(C(CH3)3)2), -62.0 (s, 2 H), -75.6 

(s, 2 H). 
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2. List of Abbreviations 

δ   chemical shift 

λ   wavelength 

μeff   effective magnetic moment 

μB   Bohr magneton 

ν   scan rate (in Volt per second) 

τ-value difference of the two greatest valence angles of a coordination 

center divided by 60° 

Ar   ambiguous: Aryl group or Argon 

avg   average 

B   magnetic flux density 

B3LYP Becke, 3-parameter, Lee-Yang-Parr (exchange-correlation energy 

functional) 

B+G   Ballhausen and Gray 

BD(F)E  bond dissociation (free) energy 

BQ   1-4-benzoquinone 

c   concentration 

COE   Cis-cyclooectene 

Cp   cyclopentadienyl group 

Cp*   hexamethyl-cyclopentadienyl group 

CSS   closed-shell singlet 

d   day 

DCM   Dichloromethane 

DDQ   2,3-Dichloro-5,6-dicyano-1,4-benzoquinone 

def2-TZVP  default-2-triple-zeta-valence-polarisation (basis set for DFT) 

DFT   density functional theory 

DMF   Dimethylformamide 

E½   half cell potential 

Epc   cathodic peak potential 

ELDOR  electron-electron double resonance 

ENDOR  electron-nuclear double resonance 
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EPR   electron paramagnetic resonance 

Fc   Ferrocen 

FWHM  Full Width at Half Maximum 

g‖   g-value parallel to main axis 

g
⊥
   g-value perpendicular to main axis 

H   magnetic field (equal to B in vacuum) 

h   hour 

HAT   hydrogen atom transfer; synonym to HAA 

HAA   hydrogen atom abstraction; sub-class of PCET 

HFI   hyperfine interaction 

HMDSO  Hexamethyldisiloxane 

HMBC   heteronuclear multiple bond correlation 

HOMO  highest occupied molecular orbital 

HQ   1,4-dihydroquinone 

HSQC   heternuclear single quantum correlation 

iPr   iso-propyl group 

J   (scalar) coupling constant 

KHMDS  potassium hexamethyldisilazide 

lcp   left circularly polarized 

LIFDI   liquid injection field desorpiton ionisation 

LUMO   lowest unoccupied molecular orbital 

MBI   Mayer bond index 

MCD   magnetic circular dichroism 

Me   methyl group 

Mes   short for mesityl group (2,6-iPr2-C6H3) 

MO   molecular orbital 

min   minute 

NEVPT2  n-electron valence state perturbation theory 

(N)IR   (near) infrared 

NMR   nuclear magnetic resonance 

OAc   acetyl group 

OSS   open-shell singlet 

(PC)ET)  (proton coupled) electron transfer 

PDI   Pyridine-2,6-bis(N-(2,6-diisopropylphenyl)ethan-1-imine 

PI   paramagnetic impurity 
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PNP   Bis(di-tert-butylphosphinoethylene)amide 

QDPT   quasi-degenerate perturbation theory 

r.t.   room temperature 

rcp   right circularly polarized 

S   spin 

SH   spin hamiltonian 

SOC   spin-orbit coupling 

SOMO   singly occupied molecular orbital 

SQ   1,4-semiquinone 

SQUID   superconducting quantum interference device 

T   temperature 

tBu   tert-butyl group 

TEMPO-H  (2,2,6,6-Tetramethylpiperidine-1-yl)alcohol 

THF   Tetrahydrofurane 

TIP   temperature independent paramagnetism 

TR   triplet 

Vis   visible 

WBI   Wiberg bond index 

ZFS   Zero-Field-Splitting 
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3. Additional Results from Theoretical 

Investigation of 8 

 

 

 

 

 

Table 3: Selected bond lengths, bond angles and computed bond orders (Wiberg/Mayer) of 

the DFT optimized geometries of 9 and 10. 

9      

Bond length (Å) Wiberg Mayer Bond angle (°) 

Ir-N(tBu) 1.810 1.540 1.671 NPNP-Ir-N(tBu) 175.6 

Ir-NPNP 2.001 0.770 0.776 NPNP-Ir-P1 80.9 

Ir-P1 2.450 0.788 0.796 NPNP-Ir-P2 80.8 

Ir-P2 2.450 0.789 0.796 P1-Ir-P2 161.7 

N-C(Me)3 1.433 0.774 0.785 P1-Ir-N(tBu) 99.2 

    P2-Ir-N(tBu) 99.2 

    Ir-N-C(Me)3 173.9 

10 (triplet)      

Bond length (Å) Wiberg Mayer Bond angle (°) 

Ir-N(tBu) 1.876 1.208 1.118 NPNP-Ir-N(tBu) 178.8 

Ir-NPNP 2.097 0.388 0.552 NPNP-Ir-P1 80.3 

Ir-P1 2.372 0.525 0.858 NPNP-Ir-P2 80.3 

Ir-P2 2.372 0.525 0.858 P1-Ir-P2 160.6 

N-C(Me)3 1.432 1.066 0.883 P1-Ir-N(tBu) 99.7 

    P2-Ir-N(tBu) 99.7 

    Ir-N-C(Me)3 159.8 
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10 (CSS)      

Bond length (Å) Wiberg Mayer Bond angle (°) 

Ir-N(tBu) 1.818 1.278 1.555 NPNP-Ir-N(tBu) 169.1 

Ir-NPNP 2.219 0.295 0.395 NPNP-Ir-P1 77.0 

Ir-P1 2.388 0.561 0.845 NPNP-Ir-P2 77.0 

Ir-P2 2.388 0.561 0.845 P1-Ir-P2 153.1 

N-C(Me)3 1.460 1.052 1.023 P1-Ir-N(tBu) 103.4 

    P2-Ir-N(tBu) 103.4 

    Ir-N-C(Me)3 136.2 

Table 4: Total energies Etot in Hartree and relative energies ΔEtot(T/CSS) in kcal mol-1 for the 

triplet (T) and closed-shell singlet (CSS) states of the model systems 8H, 8Me and the full complex 

8, computed at the B3LYP-D3/def2-TZVP, CCSD(T)/cc-pVTZ, CCSD(T)-F12/VTZ-F12 and 

ONIOM(F12:DFT) levels.[a]: B3LYP-D3/def2-TZVP) energy on the full system employing the 8H 

and 8Me high-level system, respectively. 

Etot/Hartree 

B3LYP-D3/def2-TZVP 8H 8Me 8 

T 3A″ (Cs) -1054.246 880 -1250.803 043 -1840.346 035 

CSS 1A′ (Cs) -1054.231 023 -1250.791 004 -1840.334 556 

CCSD(T)/cc-pVTZ 8H 8Me  

T 3A″ (Cs) -1052.671 694 -1248.918 372  

CSS 1A′ (Cs) -1052.664 222 -1248.914 419  

CCSD(T)-F12/VTZ-F12 8H 8Me  

T 3A″ (Cs) -1052.866 997 -1249.190 213  

CSS 1A′ (Cs) -1052.860 684 -1249.187 272  

ONIOM(F12:DFT)[a] 8H:8 8Me:8  

T 3A″ (Cs) -1838.966 151 -1838.733 205  

CSS 1A′ (Cs) -1838.964 217 -1838.730 824  

ΔEtot(T/CSS)/kcal mol-1 

 8H 8Me 8 

B3LYP-D3/def2-TZVP 10.0 7.6 7.2 

CCSD(T)/cc-pVTZ 4.7 2.5  

CCSD(T)-F12/VTZ-F12 4.0 1.8  

ONIOM(F12:DFT)[a]   1.2 (8H:8) 

   1.5 (8Me:8) 
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Table 5: Total energies Etot in Hartree and relative energies ΔEtot(T/CSS@T) in kcal mol-1 for the 

CSS states of the model system 8Me and of the full complex 8, both computed at the 

corresponding DFT-optimized T geometries (α(Ir-N-tBu) = 159.8). Energies are computed at the 

B3LYP-D3/def2-TZVP, CCSD(T)-F12/VTZ-F12 and ONIOM(F12:DFT) levels.[a] 

Etot/Hartree 

CSS state at T geometry 8Me 8 8Me:8 

B3LYP-D3/def2-TZVP -1250.770 741 -1840.316 340  

CCSD(T)-F12/VTZ-F12 -1249.167 785  

-1838.713 384 ONIOM(F12:DFT)   

ΔEtot(T/CSS@T)/kcal mol-1 

CSS state at T geometry 8Me 8 8Me:8 

B3LYP-D3/def2-TZVP 20.3 18.6  

CCSD(T)-F12/VTZ-F12 14.1   

ONIOM(F12:DFT)   12.4 

[a]ONIOM(CCSD(T)-F12/VTZ-F12 : B3LYP-D3/def2-TZVP) energy on the full system employing 

the 8H and 8Me high-level system, respectively. 
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Table 6: State energies sorted by spin multiplicity ΔEstate and spin-orbit eigenvalues ΔESOC in 

cm-1 from NEVPT2/SA-CASSCF(16,10)/def2TZVP(ZORA) calculations for 8. 

ΔEstate ΔEstate  ΔESOC  

CAS(16,10) NEVPT2 CAS(16,10) NEVPT2  CAS(16,10) NEVPT2  

2769.1 4180.5 0.0 0.0 0.0 0.0  

5086.7 5406.1 8327.9 12 678.2 497.7 450.7  

7612.1 8964.2 14 107.8 18 946.2 506.4 457.9  

9055.0 13 726.5 15 364.8 19 383.3 2875.7 4259.3  

15 784.4 20 623.7 18 998.7 24 771.6 5554.0 5823.3  

16 141.2 20 697.5 20 367.0 24 421.3 8261.9 9839.5  

21 384.0 25 976.2 22 209.4 25 732.0 8948.9 12 854.6  

22 450.8 26 114.1 24 087.9 25 162.1 9003.3 12 883.8  

29 699.6 28 857.5 24 358.0 28 714.6 9393.1 12 907.4  

30 268.2 29 097.3 26 664.6 26 414.5 9438.7 13 557.0  

36 253.7 38 461.1 30 267.1 34 564.8 13 955.0 17 654.6  

37 527.6 38 134.2 31 792.4 35 929.6 13 978.5 17 730.9  

39 724.2 41 368.9 34 704.4 36 922.1 14 834.9 17 851.7  

41 572.6 41 777.7 35 658.1 39 698.7 15 211.1 18 371.5  

44 183.8 46 237.5 36 685.4 37 116.4 17 014.6 18 497.2  

45 294.3 45 401.8 37 623.6 41 037.9 17 172.3 19 089.6  

48 138.5 49 662.4 37 659.4 40 262.5 17 222.7 19 587.5  

49 476.0 19 880.1 41 233.8 43 494.7 18 012.1 20 764.9  

50 416.6 49 660.1 42 002.5 46 991.0 18 841.9 21 012.1  

50 510.4 51 284.7 42 412.7 43 193.3 19 021.6 21 228.3  

51 243.0 51 165.1 44 760.1 44 418.9 19 031.7 21 369.3  

52 839.6 42 778.8 46 554.8 50 867.4 22 356.7 21 822.4  

53 611.1 52 762.8 47 074.7 47 983.0 23 793.5 23 136.6  

55 472.5 32 498.6 48 302.0 51 625.5 24 121.9 23 413.3  

55 835.5 60 238.2 49 593.6 16 365.8 24 257.1 23 634.1  

56 088.4 63 062.5 50 351.3 53 813.6 24 306.0 25 058.4  

57 536.7 52 873.5 51 108.1 57 015.7 24 463.2 25 284.9  

57 918.2 47 483.6 52 517.4 59 108.7 24 556.7 25 437.9  

58 352.2 62 614.6 52 614.8 53 263.9 24 800.7 25 753.3  

58 709.0 49 887.5 53 033.7 54 712.8 24 830.0 26 297.8  

58 905.7 63 219.8 53 677.9 58 750.8 24 905.6 27 285.6  

60 157.8 56 692.3 54 314.9 58 947.1 25 138.8 27 429.0  
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60 886.2 61 925.3 54 405.1 58 499.4 25 830.6 27 781.8  

61 525.4 47 179.3 54 767.1 27 879.7 26 156.1 27 905.7  

61 647.1 54 502.5 55 955.3 55 607.9 26 301.6 28 222.5  

61 814.8 66 083.6 56 121.6 60 164.1 26 415.2 28 301.5  

62 825.3 64 573.0 56 613.1 62 207.6 26 514.4 28 696.7  

63 506.0 63 266.1 56 967.3 62 064.9 26 561.3 28 899.4  

63 556.6 65 182.1 57 125.9 57 639.8 27 487.7 29 168.8  

64 199.7 66 560.0 57 818.9 46 169.2 27 735.3 29 472.2  

64 579.2 67 270.8 57 956.0 34 451.9 28 326.4 29 577.8  

65 630.0 70 770.2 58 139.6 57 728.8 28 634.4 29 634.4  

65 913.4 68 134.6 58 855.2 60 188.2 29 115.1 29 749.6  

66 311.9 41 998.3 59 516.6 63 385.3 29 609.5 29 988.1  

67 526.5 38 423.6 60 009.0 48 595.8 30 054.6 30 320.3  

68 230.2 66 325.8 26 945.9 30 164.4 30 311.7 30 341.7  

68 684.7 38 188.2 30 245.5 33 474.7 31 254.6 30 415.7  

69 799.5 58 624.6 39 042.9 41 375.0 31 280.5 30 419.9  

70 436.1 58 843.0 39 127.9 45 286.6 31 595.8 30 629.8  

70 549.4 49 705.8 45 692.7 55 761.4 . . . . . .  
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4.  Crystal Structures 

4.1.  [Ir(NtBu)(PNP)](CF3CO2) (7) 

 

Figure 73: Thermal ellipsoid plot of 9 with the anisotropic displacement parameters 

drawn at the 50% probability level. The asymmetric unit contains one cationic complex molecule 

and one disordered CF3COO anion with a population of 0.878(2) on the main domain. The 

disordered anion was refined using some restraints (SADI) and constraints (EADP). 

  



Crystal Structures 

 

165 

Table 7: Crystal data and structure refinement for 7. 

Identification code  mo_CV_MK_29012016_a   (MK402) 

CCDC-No 1546382 

Empirical formula  C26H49F3IrN2O2P2 

Formula weight  732.81 

Temperature  103(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbca 

Unit cell dimensions a = 14.6519(6) Å   = 90° 

 b = 15.5746(6) Å   = 90° 

 c = 27.2406(10) Å    = 90° 

Volume 6216.2(4) Å3 

Z 8 

Density (calculated) 1.566 Mg/m3 

Absorption coefficient 4.441 mm-1 

F(000) 2952 

Crystal size 0.268 x 0.198 x 0.144 mm3 

Crystal shape and color  Block, clear dark blue-violet 

Theta range for data collection 2.425 to 33.249° 

Index ranges -22<=h<=22, -23<=k<=23, -41<=l<=41 

Reflections collected 270012 

Independent reflections 11918 [R(int) = 0.0484] 

Completeness to theta  = 25.242° 99.9 %  

Max. and min. transmission 0.7465 and 0.5967 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11918 / 12 / 350 

Goodness-of-fit on F2 1.031 

Final R indices [I>2sigma(I)] R1 = 0.0193, wR2 = 0.0362 

R indices (all data) R1 = 0.0278, wR2 = 0.0386 

Largest diff. peak and hole 0.900 and -0.725 eÅ-3 
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Table 8: Bond lengths [Å] and angles [°] for 7. 

C(1)-C(2)  1.332(2) C(15)-C(13)-C(14) 109.10(14) 

C(1)-N(1)  1.4020(19) C(16)-C(13)-C(14) 108.63(13) 

C(2)-P(1)  1.7879(16) C(15)-C(13)-P(2) 112.28(10) 

C(3)-C(5)  1.528(2) C(16)-C(13)-P(2) 112.58(10) 

C(3)-C(4)  1.538(2) C(14)-C(13)-P(2) 105.46(11) 

C(3)-C(6)  1.540(2) C(20)-C(17)-C(19) 110.13(13) 

C(3)-P(1)  1.8748(16) C(20)-C(17)-C(18) 108.27(12) 

C(7)-C(10)  1.530(2) C(19)-C(17)-C(18) 108.77(13) 

C(7)-C(8)  1.535(2) C(20)-C(17)-P(2) 110.56(10) 

C(7)-C(9)  1.536(2) C(19)-C(17)-P(2) 113.74(10) 

C(7)-P(1)  1.8832(16) C(18)-C(17)-P(2) 105.10(10) 

C(11)-C(12)  1.335(2) N(2)-C(21)-C(24) 111.10(12) 

C(11)-N(1)  1.4048(18) N(2)-C(21)-C(23) 107.96(12) 

C(12)-P(2)  1.7907(15) C(24)-C(21)-C(23) 109.88(13) 

C(13)-C(15)  1.524(2) N(2)-C(21)-C(22) 111.36(12) 

C(13)-C(16)  1.532(2) C(24)-C(21)-C(22) 106.71(12) 

C(13)-C(14)  1.537(2) C(23)-C(21)-C(22) 109.84(13) 

C(13)-P(2)  1.8770(15) O(2)-C(25)-O(1) 131.68(16) 

C(17)-C(20)  1.527(2) O(2)-C(25)-C(26A) 115.49(16) 

C(17)-C(19)  1.529(2) O(1)-C(25)-C(26A) 112.82(15) 

C(17)-C(18)  1.535(2) O(2)-C(25)-C(26B) 110.9(4) 

C(17)-P(2)  1.8718(14) O(1)-C(25)-C(26B) 116.9(4) 

C(21)-N(2)  1.4437(18) C(1)-N(1)-C(11) 114.34(12) 

C(21)-C(24)  1.537(2) C(1)-N(1)-Ir(1) 122.76(10) 

C(21)-C(23)  1.539(2) C(11)-N(1)-Ir(1) 122.85(10) 

C(21)-C(22)  1.541(2) C(21)-N(2)-Ir(1) 171.31(11) 

F(3)-C(26B)  1.296(17) C(2)-P(1)-C(3) 103.77(8) 

F(3)-C(26A)  1.325(3) C(2)-P(1)-C(7) 103.10(8) 

C(25)-O(2)  1.229(2) C(3)-P(1)-C(7) 115.06(7) 

C(25)-O(1)  1.2412(19) C(2)-P(1)-Ir(1) 99.32(5) 

C(25)-C(26A)  1.552(4) C(3)-P(1)-Ir(1) 117.85(5) 

C(25)-C(26B)  1.63(4) C(7)-P(1)-Ir(1) 114.35(5) 

N(1)-Ir(1)  1.9792(12) C(12)-P(2)-C(17) 104.76(7) 

N(2)-Ir(1)  1.8053(12) C(12)-P(2)-C(13) 102.38(7) 

P(1)-Ir(1)  2.3890(4) C(17)-P(2)-C(13) 113.97(7) 
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P(2)-Ir(1)  2.3879(4) C(12)-P(2)-Ir(1) 100.04(5) 

C(26A)-F(1A)  1.349(3) C(17)-P(2)-Ir(1) 116.54(5) 

C(26A)-F(2A)  1.350(3) C(13)-P(2)-Ir(1) 116.08(5) 

C(26B)-F(1B)  1.218(16) N(2)-Ir(1)-N(1) 175.55(5) 

C(26B)-F(2B)  1.361(16) N(2)-Ir(1)-P(2) 99.54(4) 

C(2)-C(1)-N(1) 121.23(14) N(1)-Ir(1)-P(2) 80.86(4) 

C(1)-C(2)-P(1) 115.48(12) N(2)-Ir(1)-P(1) 98.19(4) 

C(5)-C(3)-C(4) 109.65(13) N(1)-Ir(1)-P(1) 81.18(4) 

C(5)-C(3)-C(6) 108.63(13) P(2)-Ir(1)-P(1) 161.909(13) 

C(4)-C(3)-C(6) 109.33(14) F(3)-C(26A)-F(1A) 105.0(2) 

C(5)-C(3)-P(1) 111.36(11) F(3)-C(26A)-F(2A) 106.9(2) 

C(4)-C(3)-P(1) 112.47(11) F(1A)-C(26A)-F(2A) 103.9(2) 

C(6)-C(3)-P(1) 105.23(11) F(3)-C(26A)-C(25) 115.1(2) 

C(10)-C(7)-C(8) 110.27(15) F(1A)-C(26A)-C(25) 114.3(2) 

C(10)-C(7)-C(9) 109.06(14) F(2A)-C(26A)-C(25) 110.8(2) 

C(8)-C(7)-C(9) 108.20(14) F(1B)-C(26B)-F(3) 118(2) 

C(10)-C(7)-P(1) 112.26(11) F(1B)-C(26B)-F(2B) 110.5(18) 

C(8)-C(7)-P(1) 105.00(11) F(3)-C(26B)-F(2B) 100.5(14) 

C(9)-C(7)-P(1) 111.93(12) F(1B)-C(26B)-C(25) 112.6(18) 

C(12)-C(11)-N(1) 121.78(13) F(3)-C(26B)-C(25) 112.1(16) 

C(11)-C(12)-P(2) 114.45(11) F(2B)-C(26B)-C(25) 101.0(15) 

C(15)-C(13)-C(16) 108.66(13)   
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Table 9: Torsion angles [°] for 7. 

N(1)-C(1)-C(2)-P(1) 1.9(2) C(20)-C(17)-P(2)-C(12) -170.66(11) 

N(1)-C(11)-C(12)-P(2) -1.81(19) C(19)-C(17)-P(2)-C(12) 64.83(13) 

C(2)-C(1)-N(1)-C(11) -179.17(15) C(18)-C(17)-P(2)-C(12) -54.03(11) 

C(2)-C(1)-N(1)-Ir(1) -1.5(2) C(20)-C(17)-P(2)-C(13) 78.25(12) 

C(12)-C(11)-N(1)-C(1) 178.76(14) C(19)-C(17)-P(2)-C(13) -46.26(14) 

C(12)-C(11)-N(1)-Ir(1) 1.1(2) C(18)-C(17)-P(2)-C(13) -165.13(10) 

C(1)-C(2)-P(1)-C(3) -123.23(14) C(20)-C(17)-P(2)-Ir(1) -61.20(11) 

C(1)-C(2)-P(1)-C(7) 116.46(14) C(19)-C(17)-P(2)-Ir(1) 174.29(10) 

C(1)-C(2)-P(1)-Ir(1) -1.39(15) C(18)-C(17)-P(2)-Ir(1) 55.42(11) 

C(5)-C(3)-P(1)-C(2) 173.71(11) C(15)-C(13)-P(2)-C(12) -170.42(12) 

C(4)-C(3)-P(1)-C(2) -62.75(13) C(16)-C(13)-P(2)-C(12) -47.41(12) 

C(6)-C(3)-P(1)-C(2) 56.19(12) C(14)-C(13)-P(2)-C(12) 70.88(12) 

C(5)-C(3)-P(1)-C(7) -74.44(13) C(15)-C(13)-P(2)-C(17) -57.89(13) 

C(4)-C(3)-P(1)-C(7) 49.09(14) C(16)-C(13)-P(2)-C(17) 65.12(12) 

C(6)-C(3)-P(1)-C(7) 168.04(11) C(14)-C(13)-P(2)-C(17) -176.59(11) 

C(5)-C(3)-P(1)-Ir(1) 65.17(12) C(15)-C(13)-P(2)-Ir(1) 81.75(12) 

C(4)-C(3)-P(1)-Ir(1) -171.30(10) C(16)-C(13)-P(2)-Ir(1) -155.23(9) 

C(6)-C(3)-P(1)-Ir(1) -52.35(12) C(14)-C(13)-P(2)-Ir(1) -36.94(12) 

C(10)-C(7)-P(1)-C(2) 162.54(12) O(2)-C(25)-C(26A)-F(3) -17.5(3) 

C(8)-C(7)-P(1)-C(2) -77.65(13) O(1)-C(25)-C(26A)-F(3) 161.88(16) 

C(9)-C(7)-P(1)-C(2) 39.51(14) O(2)-C(25)-C(26A)-F(1A) -139.05(19) 

C(10)-C(7)-P(1)-C(3) 50.29(14) O(1)-C(25)-C(26A)-F(1A) 40.3(2) 

C(8)-C(7)-P(1)-C(3) 170.11(11) O(2)-C(25)-C(26A)-F(2A) 104.0(2) 

C(9)-C(7)-P(1)-C(3) -72.73(14) O(1)-C(25)-C(26A)-F(2A) -76.7(2) 

C(10)-C(7)-P(1)-Ir(1) -90.74(12) O(2)-C(25)-C(26B)-F(1B) -174.6(9) 

C(8)-C(7)-P(1)-Ir(1) 29.08(13) O(1)-C(25)-C(26B)-F(1B) 12.6(12) 

C(9)-C(7)-P(1)-Ir(1) 146.23(11) O(2)-C(25)-C(26B)-F(3) -38.7(9) 

C(11)-C(12)-P(2)-C(17) 122.60(12) O(1)-C(25)-C(26B)-F(3) 148.6(6) 

C(11)-C(12)-P(2)-C(13) -118.20(12) O(2)-C(25)-C(26B)-F(2B) 67.5(9) 

C(11)-C(12)-P(2)-Ir(1) 1.54(12) O(1)-C(25)-C(26B)-F(2B) -105.2(7) 

 

Symmetry transformations used to generate equivalent atoms: - 

  



Crystal Structures 

 

169 

4.2.  [Ir(NtBu)(PNP)] (8) 

 

Figure 74: Thermal ellipsoid plot of 8 with the anisotropic displacement parameters drawn at 

the 50% probability level. 
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Table 10: Crystal data and structure refinement for 8. 

Identification code  mo_CV_MM_140915_0m_a   (MK352) 

CCDC-No 1546383 

Empirical formula  C24H49IrN2P2 

Formula weight  619.79 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 11.0958(6) Å   = 90° 

 b = 15.4511(8) Å   = 100.560(2)° 

 c = 16.0856(9) Å    = 90° 

Volume 2711.0(3) Å3 

Z 4 

Density (calculated) 1.519 Mg/m3 

Absorption coefficient 5.056 mm-1 

F(000) 1256 

Crystal size 0.194 x 0.167 x 0.090 mm3 

Crystal shape and color  Plate, clear light orange-brown 

Theta range for data collection 1.867 to 27.182° 

Index ranges -14<=h<=14, -19<=k<=19, -20<=l<=20 

Reflections collected 77516 

Independent reflections 6022 [R(int) = 0.0378] 

Completeness to theta  = 25.242°    100.0 % 

Max. and min. transmission 0.7455 and 0.5898 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6022 / 0 / 277 

Goodness-of-fit on F2 1.192 

Final R indices [I>2sigma(I)] R1 = 0.0175, wR2 = 0.0340 

R indices (all data) R1 = 0.0253, wR2 = 0.0374 

Largest diff. peak and hole 1.407 and -0.968 eÅ-3 
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Table 11: Bond lengths [Å] and angles [°] for 8. 

C(1)-C(2)  1.342(3) C(11)-N(1)  1.373(3) 

C(1)-N(1)  1.373(3) C(12)-P(2)  1.783(3) 

C(2)-P(1)  1.782(2) C(13)-C(16)  1.526(4) 

C(3)-C(5)  1.527(3) C(13)-C(15)  1.531(4) 

C(3)-C(4)  1.534(3) C(13)-C(14)  1.538(4) 

C(3)-C(6)  1.540(3) C(13)-P(2)  1.883(3) 

C(3)-P(1)  1.883(2) C(17)-C(19)  1.530(4) 

C(7)-C(10)  1.527(4) C(17)-C(18)  1.533(4) 

C(7)-C(9)  1.539(3) C(17)-C(20)  1.538(4) 

C(7)-C(8)  1.540(4) C(17)-P(2)  1.882(3) 

C(7)-P(1)  1.889(2) C(21)-N(2)  1.438(3) 

C(11)-C(12)  1.333(4) C(21)-C(24)  1.528(4) 

    

C(21)-C(23)  1.537(4) C(19)-C(17)-P(2) 110.35(19) 

C(21)-C(22)  1.542(4) C(18)-C(17)-P(2) 114.0(2) 

N(1)-Ir(1)  2.059(2) C(20)-C(17)-P(2) 105.12(19) 

N(2)-Ir(1)  1.868(2) N(2)-C(21)-C(24) 110.6(2) 

P(1)-Ir(1)  2.3411(6) N(2)-C(21)-C(23) 110.5(2) 

P(2)-Ir(1)  2.3471(6) C(24)-C(21)-C(23) 110.0(2) 

C(2)-C(1)-N(1) 122.0(2) N(2)-C(21)-C(22) 110.8(2) 

C(1)-C(2)-P(1) 114.97(18) C(24)-C(21)-C(22) 109.8(2) 

C(5)-C(3)-C(4) 109.4(2) C(23)-C(21)-C(22) 105.1(2) 

C(5)-C(3)-C(6) 108.3(2) C(11)-N(1)-C(1) 117.8(2) 

C(4)-C(3)-C(6) 108.8(2) C(11)-N(1)-Ir(1) 121.22(16) 

C(5)-C(3)-P(1) 110.75(17) C(1)-N(1)-Ir(1) 120.96(16) 

C(4)-C(3)-P(1) 114.20(17) C(21)-N(2)-Ir(1) 157.20(19) 

C(6)-C(3)-P(1) 105.21(17) C(2)-P(1)-C(3) 104.63(11) 

C(10)-C(7)-C(9) 109.5(2) C(2)-P(1)-C(7) 102.60(11) 

C(10)-C(7)-C(8) 109.1(2) C(3)-P(1)-C(7) 112.36(11) 

C(9)-C(7)-C(8) 107.8(2) C(2)-P(1)-Ir(1) 101.23(8) 

C(10)-C(7)-P(1) 112.55(17) C(3)-P(1)-Ir(1) 114.69(8) 

C(9)-C(7)-P(1) 113.10(18) C(7)-P(1)-Ir(1) 118.67(8) 

C(8)-C(7)-P(1) 104.40(16) C(12)-P(2)-C(17) 104.45(13) 

C(12)-C(11)-N(1) 121.7(2) C(12)-P(2)-C(13) 103.00(12) 

C(11)-C(12)-P(2) 115.7(2) C(17)-P(2)-C(13) 112.59(12) 
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C(16)-C(13)-C(15) 108.9(2) C(12)-P(2)-Ir(1) 100.76(9) 

C(16)-C(13)-C(14) 109.0(2) C(17)-P(2)-Ir(1) 114.16(9) 

C(15)-C(13)-C(14) 107.9(2) C(13)-P(2)-Ir(1) 119.15(9) 

C(16)-C(13)-P(2) 112.86(18) N(2)-Ir(1)-N(1) 178.61(9) 

C(15)-C(13)-P(2) 113.81(19) N(2)-Ir(1)-P(1) 99.20(8) 

C(14)-C(13)-P(2) 104.03(18) N(1)-Ir(1)-P(1) 80.78(6) 

C(19)-C(17)-C(18) 109.8(2) N(2)-Ir(1)-P(2) 99.32(8) 

C(19)-C(17)-C(20) 108.0(2) N(1)-Ir(1)-P(2) 80.67(6) 

C(18)-C(17)-C(20) 109.3(2) P(1)-Ir(1)-P(2) 161.39(2) 

____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: - 

Table 12: Torsion angles [°] for 8. 

C(1)-C(1)-C(2)-P(1) -1.0(3) C(5)-C(3)-P(1)-C(2) -167.34(17) 

N(1)-C(11)-C(12)-P(2) 0.7(4) C(4)-C(3)-P(1)-C(2) 68.7(2) 

C(12)-C(11)-N(1)-C(1) 177.5(2) C(6)-C(3)-P(1)-C(2) -50.49(19) 

C(12)-C(11)-N(1)-Ir(1) -1.5(3) C(5)-C(3)-P(1)-C(7) 82.10(19) 

C(2)-C(1)-N(1)-C(11) -179.1(2) C(4)-C(3)-P(1)-C(7) -41.9(2) 

C(2)-C(1)-N(1)-Ir(1) -0.1(3) C(6)-C(3)-P(1)-C(7) -161.05(16) 

C(24)-C(21)-N(2)-Ir(1) 1.2(6) C(5)-C(3)-P(1)-Ir(1) -57.37(18) 

C(23)-C(21)-N(2)-Ir(1) 123.2(5) C(4)-C(3)-P(1)-Ir(1) 178.67(16) 

C(22)-C(21)-N(2)-Ir(1) -120.8(5) C(6)-C(3)-P(1)-Ir(1) 59.48(17) 

C(1)-C(2)-P(1)-C(3) 120.9(2) C(10)-C(7)-P(1)-C(2) -165.16(19) 

C(1)-C(2)-P(1)-C(7) -121.7(2) C(9)-C(7)-P(1)-C(2) -40.4(2) 

C(1)-C(2)-P(1)-Ir(1) 1.4(2)   

C(8)-C(7)-P(1)-C(2) 76.61(19) C(20)-C(17)-P(2)-C(13) 164.87(18) 

C(10)-C(7)-P(1)-C(3) -53.3(2) C(19)-C(17)-P(2)-Ir(1) 60.9(2) 

C(9)-C(7)-P(1)-C(3) 71.5(2) C(18)-C(17)-P(2)-Ir(1) -174.90(19) 

C(8)-C(7)-P(1)-C(3) -171.56(17) C(20)-C(17)-P(2)-Ir(1) -55.2(2) 

C(10)-C(7)-P(1)-Ir(1) 84.37(19) C(16)-C(13)-P(2)-C(12) 166.6(2) 

C(9)-C(7)-P(1)-Ir(1) -150.83(15) C(15)-C(13)-P(2)-C(12) 41.8(2) 

C(8)-C(7)-P(1)-Ir(1) -33.9(2) C(14)-C(13)-P(2)-C(12) -75.4(2) 

C(11)-C(12)-P(2)-C(17) -118.5(2) C(16)-C(13)-P(2)-C(17) 54.7(2) 

C(11)-C(12)-P(2)-C(13) 123.7(2) C(15)-C(13)-P(2)-C(17) -70.2(2) 

C(11)-C(12)-P(2)-Ir(1) 0.2(2) C(14)-C(13)-P(2)-C(17) 172.67(18) 

C(19)-C(17)-P(2)-C(12) 170.02(19) C(16)-C(13)-P(2)-Ir(1) -83.0(2) 
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C(18)-C(17)-P(2)-C(12) -65.8(2) C(15)-C(13)-P(2)-Ir(1) 152.13(17) 

C(20)-C(17)-P(2)-C(12) 53.8(2) C(14)-C(13)-P(2)-Ir(1) 35.0(2) 

C(19)-C(17)-P(2)-C(13) -78.9(2) C(21)-N(2)-Ir(1)-P(1) 91.9(5) 

C(18)-C(17)-P(2)-C(13) 45.2(3)   

______________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: -  



Appendix 

 

174 

4.3.  [Ir(η2-N(tBu)C(O)O)(PNP)}] (14) 

 

 

Figure 75: Thermal ellipsoid plot of 14 with the anisotropic displacement parameters drawn 

at the 50% probability level. The asymmetric unit contains only a half complex molecule. 

  



Crystal Structures 

 

175 

Table 13: Crystal data and structure refinement for 14. 

Identification code  mo_CV_MK_200616_0m_a   (MK460) 

CCDC-No 1546384 

Empirical formula  C25H49IrN2O2P2 

Formula weight  663.80 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/m 

Unit cell dimensions a = 7.9728(3) Å   = 90° 

 b = 21.7175(9) Å   = 113.5590(10)° 

 c = 8.7383(3) Å    = 90° 

Volume 1386.92(9) Å3 

Z 2 

Density (calculated) 1.590 Mg/m3 

Absorption coefficient 4.952 mm-1 

F(000) 672 

Crystal size 0.083 x 0.055 x 0.038 mm3 

Crystal shape and color Block, clear light yellow 

Theta range for data collection 2.543 to 28.359° 

Index ranges -9<=h<=10, -29<=k<=29, -11<=l<=11 

Reflections collected 38483 

Independent reflections 3557 [R(int) = 0.0637] 

Completeness to theta  = 25.242°    100.0 % 

Max. and min. transmission 0.7457 and 0.6561 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3557 / 0 / 165 

Goodness-of-fit on F2 1.120 

Final R indices [I>2sigma(I)] R1 = 0.0212, wR2 = 0.0369 

R indices (all data) R1 = 0.0272, wR2 = 0.0380 

Largest diff. peak and hole 0.621 and -1.775 eÅ-3 
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Table 14: Bond lengths [Å] and angles [°] for 14. 

C(1)-C(2)  1.335(3) C(11)-O(1)  1.366(4) 

C(1)-N(1)  1.384(3) C(11)-Ir(1)  2.565(3) 

C(2)-P(1)  1.784(2) C(12)-N(2)  1.476(4) 

C(3)-C(5)  1.530(3) C(12)-C(13)  1.527(4) 

C(3)-C(6)  1.534(3) C(12)-C(14)#1  1.538(3) 

C(3)-C(4)  1.540(3) C(12)-C(14)  1.538(3) 

C(3)-P(1)  1.893(2) N(1)-C(1)#1  1.384(3) 

C(7)-C(8)  1.530(3) N(1)-Ir(1)  2.021(3) 

C(7)-C(10)  1.533(3) N(2)-Ir(1)  2.112(3) 

C(7)-C(9)  1.537(3) O(1)-Ir(1)  2.013(2) 

C(7)-P(1)  1.877(2) P(1)-Ir(1)  2.3698(6) 

C(11)-O(2)  1.237(4) Ir(1)-P(1)#1  2.3698(6) 

C(11)-N(2)  1.327(4) C(1)#1-N(1)-Ir(1) 120.86(14) 

C(2)-C(1)-N(1) 121.8(2) C(1)-N(1)-Ir(1) 120.86(14) 

C(1)-C(2)-P(1) 116.06(18) C(11)-N(2)-C(12) 122.7(3) 

C(5)-C(3)-C(6) 109.8(2) C(11)-N(2)-Ir(1) 93.65(19) 

C(5)-C(3)-C(4) 109.3(2) C(12)-N(2)-Ir(1) 143.7(2) 

C(6)-C(3)-C(4) 107.7(2) C(11)-O(1)-Ir(1) 96.88(18) 

C(5)-C(3)-P(1) 112.13(17) C(2)-P(1)-C(7) 104.37(11) 

C(6)-C(3)-P(1) 104.91(17) C(2)-P(1)-C(3) 103.36(11) 

C(4)-C(3)-P(1) 112.83(17) C(7)-P(1)-C(3) 112.48(11) 

C(8)-C(7)-C(10) 110.0(2) C(2)-P(1)-Ir(1) 99.12(8) 

C(8)-C(7)-C(9) 108.1(2) C(7)-P(1)-Ir(1) 122.21(8) 

C(10)-C(7)-C(9) 108.7(2) C(3)-P(1)-Ir(1) 112.08(8) 

C(8)-C(7)-P(1) 111.62(17) O(1)-Ir(1)-N(1) 110.51(10) 

C(10)-C(7)-P(1) 112.54(17) O(1)-Ir(1)-N(2) 63.01(10) 

C(9)-C(7)-P(1) 105.60(16) N(1)-Ir(1)-N(2) 173.52(11) 

O(2)-C(11)-N(2) 132.8(3) O(1)-Ir(1)-P(1) 94.781(17) 

O(2)-C(11)-O(1) 120.7(3) N(1)-Ir(1)-P(1) 81.524(15) 

N(2)-C(11)-O(1) 106.5(3) N(2)-Ir(1)-P(1) 98.643(14) 

O(2)-C(11)-Ir(1) 171.9(2) O(1)-Ir(1)-P(1)#1 94.780(17) 

N(2)-C(11)-Ir(1) 55.27(16) N(1)-Ir(1)-P(1)#1 81.524(15) 

O(1)-C(11)-Ir(1) 51.20(14) N(2)-Ir(1)-P(1)#1 98.643(14) 

N(2)-C(12)-C(13) 109.8(3) P(1)-Ir(1)-P(1)#1 162.60(3) 

N(2)-C(12)-C(14)#1 110.44(18) O(1)-Ir(1)-C(11) 31.92(9) 
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C(13)-C(12)-C(14)#1 108.69(18) N(1)-Ir(1)-C(11) 142.43(11) 

N(2)-C(12)-C(14) 110.44(18) N(2)-Ir(1)-C(11) 31.09(10) 

C(13)-C(12)-C(14) 108.69(18) P(1)-Ir(1)-C(11) 97.901(15) 

C(14)#1-C(12)-C(14) 108.7(3) P(1)#1-Ir(1)-C(11) 97.900(15) 

C(1)#1-N(1)-C(1) 117.4(3)   

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z 

Table 15: Torsion angles [°] for 14. 

N(1)-C(1)-C(2)-P(1) -1.2(3) C(8)-C(7)-P(1)-C(2) -171.35(17) 

C(2)-C(1)-N(1)-C(1)#1 -175.33(17) C(10)-C(7)-P(1)-C(2) 64.4(2) 

C(2)-C(1)-N(1)-Ir(1) -5.8(4) C(9)-C(7)-P(1)-C(2) -54.08(18) 

O(2)-C(11)-N(2)-C(12) 0.000(2) C(8)-C(7)-P(1)-C(3) 77.29(19) 

O(1)-C(11)-N(2)-C(12) 180.000(1) C(10)-C(7)-P(1)-C(3) -47.0(2) 

Ir(1)-C(11)-N(2)-C(12) 180.000(1) C(9)-C(7)-P(1)-C(3) -165.44(16) 

O(2)-C(11)-N(2)-Ir(1) 180.000(1) C(8)-C(7)-P(1)-Ir(1) -60.57(19) 

O(1)-C(11)-N(2)-Ir(1) 0.000(1) C(10)-C(7)-P(1)-Ir(1) 175.16(14) 

C(13)-C(12)-N(2)-C(11) 180.000(1) C(9)-C(7)-P(1)-Ir(1) 56.70(18) 

C(14)#1-C(12)-N(2)-C(11) 60.14(19) C(5)-C(3)-P(1)-C(2) -160.87(18) 

C(14)-C(12)-N(2)-C(11) -60.14(19) C(6)-C(3)-P(1)-C(2) 80.01(18) 

C(13)-C(12)-N(2)-Ir(1) 0.000(1) C(4)-C(3)-P(1)-C(2) -36.9(2) 

C(14)#1-C(12)-N(2)-Ir(1) -119.86(19) C(5)-C(3)-P(1)-C(7) -48.9(2) 

C(14)-C(12)-N(2)-Ir(1) 119.86(19) C(6)-C(3)-P(1)-C(7) -168.00(16) 

O(2)-C(11)-O(1)-Ir(1) 180.000(1) C(4)-C(3)-P(1)-C(7) 75.0(2) 

N(2)-C(11)-O(1)-Ir(1) 0.000(1) C(5)-C(3)-P(1)-Ir(1) 93.33(18) 

C(1)-C(2)-P(1)-C(7) 132.6(2) C(6)-C(3)-P(1)-Ir(1) -25.78(18) 

C(1)-C(2)-P(1)-C(3) -109.6(2) C(4)-C(3)-P(1)-Ir(1) -142.73(17) 

C(1)-C(2)-P(1)-Ir(1) 5.8(2)   

______________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: #1 x,-y+3/2,z 
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4.4.  [Ir{η2-(O)2CN(H)tBu}{((CH2)(CH3)2C)-PNP)}]

 (15) 

 

Figure 76: Thermal ellipsoid plot of 15 with the anisotropic displacement parameters drawn at 

the 50% probability level. The asymmetric unit contains one disordered complex molecule and 

one benzene solvent molecule. The benzene molecule was refined as regular hexagon using AFIX 

66 command and some restraints (RIGU). The disordered tertiary butyl groups were refined 

with population of 0.815(5) on the main domain using some restraints (SADI) and constraints 

(EADP). 
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Table 16: Crystal data and structure refinement for 15. 

Identification code  mo_CV_MK_290616_0m_a   (MK461) 

CCDC-No 1546385 

Empirical formula  C31H55IrN2O2P2 

Formula weight  741.91 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 11.2846(10) Å   = 90° 

 b = 14.9634(13) Å    = 92.013(3)° 

 c = 19.8058(17) Å    = 90° 

Volume 3342.3(5) Å3 

Z 4 

Density (calculated) 1.474 Mg/m3 

Absorption coefficient 4.119 mm-1 

F(000) 1512 

Crystal size 0.101 x 0.099 x 0.032 mm3 

Crystal shape and color Block, clear light yellow 

Theta range for data collection 2.058 to 28.391° 

Index ranges -15<=h<=14, -19<=k<=19, -26<=l<=26 

Reflections collected 88414 

Independent reflections 8344 [R(int) = 0.1228] 

Completeness to theta  = 25.242°    100.0 % 

Max. and min. transmission 0.7457 and 0.6559 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8344 / 54 / 371 

Goodness-of-fit on F2 1.073 

Final R indices [I>2sigma(I)] R1 = 0.0399, wR2 = 0.0642 

R indices (all data) R1 = 0.0696, wR2 = 0.0712 

Largest diff. peak and hole 1.247 and -1.731 eÅ-3 
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Table 17: Bond lengths [Å] and angles [°] for 15. 

C(1)-C(2)  1.347(7) C(7)-C(10)  1.534(7) 

C(1)-N(1)  1.372(6) C(7)-P(1)  1.849(5) 

C(2)-P(1)  1.771(5) C(11)-C(12)  1.333(7) 

C(3)-C(4)  1.492(9) C(11)-N(1)  1.360(6) 

C(3)-C(5)  1.517(9) C(12)-P(2)  1.776(5) 

C(3)-C(6)  1.565(9) C(17)-C(20)  1.527(7) 

C(3)-P(1)  1.821(7) C(17)-C(18) 1.533(7) 

C(6)-Ir(1)  2.098(6) C(17)-C(19)  1.536(7) 

C(13)-C(15)  1.509(7) C(17)-P(2)  1.893(5) 

C(13)-C(16)  1.526(7) C(21)-O(2)  1.275(5) 

C(13)-C(14)  1.559(7) C(21)-O(1)  1.290(5) 

C(13)-P(2)  1.938(6) C(21)-N(2)  1.334(6) 

C(6A)-C(3A)  1.566(15) C(21)-Ir(1)  2.565(5) 

C(5A)-C(3A)  1.548(15) C(22)-N(2)  1.468(6) 

C(3A)-C(4)  1.577(14) C(22)-C(23)  1.516(7) 

C(3A)-P(1)  2.010(17) C(22)-C(25)  1.518(6) 

C(15A)-C(13A)  1.35(5) C(22)-C(24)  1.521(7) 

C(14A)-C(13A)  1.60(2) N(1)-Ir(1)  2.022(4) 

C(14A)-Ir(1)  2.12(3) N(2)-H(1)  0.81(6) 

C(13A)-C(16)  1.56(3) O(1)-Ir(1)  2.129(3) 

C(13A)-P(2)  1.759(18) O(2)-Ir(1)  2.262(3) 

C(7)-C(9)  1.523(8) P(1)-Ir(1)  2.2902(13) 

C(7)-C(8)  1.530(8) P(2)-Ir(1)  2.3416(13) 

    

C(2)-C(1)-N(1) 122.9(5) C(11)-N(1)-C(1) 120.1(4) 

C(1)-C(2)-P(1) 114.7(4) C(11)-N(1)-Ir(1) 120.0(3) 

C(4)-C(3)-C(5) 109.3(6) C(1)-N(1)-Ir(1) 118.6(3) 

C(4)-C(3)-C(6) 109.8(5) C(21)-N(2)-C(22) 127.2(4) 

C(5)-C(3)-C(6) 113.3(6) C(21)-N(2)-H(1) 114(4) 

C(4)-C(3)-P(1) 116.2(4) C(22)-N(2)-H(1) 119(4) 

C(5)-C(3)-P(1) 116.4(5) C(21)-O(1)-Ir(1) 94.0(3) 

C(6)-C(3)-P(1) 90.7(4) C(21)-O(2)-Ir(1) 88.4(3) 

C(3)-C(6)-Ir(1) 104.8(4) C(2)-P(1)-C(3) 108.7(3) 

C(15)-C(13)-C(16) 110.1(5) C(2)-P(1)-C(7) 106.4(3) 

C(15)-C(13)-C(14) 107.4(5) C(3)-P(1)-C(7) 118.6(3) 
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C(16)-C(13)-C(14) 109.0(5) C(2)-P(1)-C(3A) 104.5(5) 

C(15)-C(13)-P(2) 116.4(4) C(7)-P(1)-C(3A) 104.8(6) 

C(16)-C(13)-P(2) 106.7(3) C(2)-P(1)-Ir(1) 100.43(18) 

C(14)-C(13)-P(2) 107.0(4) C(3)-P(1)-Ir(1) 89.7(2) 

C(5A)-C(3A)-C(6A) 103.0(17) C(7)-P(1)-Ir(1) 130.39(17) 

C(5A)-C(3A)-C(4) 110.2(15) C(3A)-P(1)-Ir(1) 107.8(5) 

C(6A)-C(3A)-C(4) 115.7(15) C(13A)-P(2)-C(12) 105.9(11) 

C(5A)-C(3A)-P(1) 113.3(14) C(13A)-P(2)-C(17) 126.4(9) 

C(6A)-C(3A)-P(1) 112.1(14) C(12)-P(2)-C(17) 103.5(2) 

C(4)-C(3A)-P(1) 102.9(8) C(12)-P(2)-C(13) 108.8(2) 

C(13A)-C(14A)-Ir(1) 113.1(15) C(17)-P(2)-C(13) 108.4(2) 

C(15A)-C(13A)-C(16) 122(2) C(13A)-P(2)-Ir(1) 97.7(9) 

C(15A)-C(13A)-C(14A) 110(3) C(12)-P(2)-Ir(1) 99.02(18) 

C(16)-C(13A)-C(14A) 107(2) C(17)-P(2)-Ir(1) 120.58(16) 

C(15A)-C(13A)-P(2) 115(3) C(13)-P(2)-Ir(1) 114.82(17) 

C(16)-C(13A)-P(2) 114.1(17) N(1)-Ir(1)-C(6) 86.1(2) 

C(14A)-C(13A)-P(2) 80.6(13) N(1)-Ir(1)-C(14A) 85.8(8) 

C(9)-C(7)-C(8) 108.0(5) N(1)-Ir(1)-O(1) 171.99(13) 

C(9)-C(7)-C(10) 109.6(5) C(6)-Ir(1)-O(1) 101.72(19) 

C(8)-C(7)-C(10) 109.3(5) C(14A)-Ir(1)-O(1) 101.1(8) 

C(9)-C(7)-P(1) 111.3(4) N(1)-Ir(1)-O(2) 112.08(13) 

C(8)-C(7)-P(1) 107.6(4) C(6)-Ir(1)-O(2) 155.18(19) 

C(10)-C(7)-P(1) 110.9(4) C(14A)-Ir(1)-O(2) 149.2(6) 

C(12)-C(11)-N(1) 122.6(5) O(1)-Ir(1)-O(2) 59.93(11) 

C(11)-C(12)-P(2) 116.0(4) N(1)-Ir(1)-P(1) 83.22(12) 

C(20)-C(17)-C(18) 107.6(4) C(6)-Ir(1)-P(1) 66.65(16) 

C(20)-C(17)-C(19) 111.0(4) C(14A)-Ir(1)-P(1) 109.5(7) 

C(18)-C(17)-C(19) 108.7(4) O(1)-Ir(1)-P(1) 98.11(9) 

C(20)-C(17)-P(2) 113.4(4) O(2)-Ir(1)-P(1) 97.75(9) 

C(18)-C(17)-P(2) 106.2(3) N(1)-Ir(1)-P(2) 82.22(12) 

C(19)-C(17)-P(2) 109.8(3) C(6)-Ir(1)-P(2) 100.93(17) 

O(2)-C(21)-O(1) 117.7(4) C(14A)-Ir(1)-P(2) 58.1(7) 

O(2)-C(21)-N(2) 120.1(4) O(1)-Ir(1)-P(2) 97.89(9) 

O(1)-C(21)-N(2) 122.1(4) O(2)-Ir(1)-P(2) 98.29(9) 

O(2)-C(21)-Ir(1) 61.8(2) P(1)-Ir(1)-P(2) 161.49(5) 

O(1)-C(21)-Ir(1) 55.9(2) N(1)-Ir(1)-C(21) 141.89(15) 

N(2)-C(21)-Ir(1) 178.0(3) C(6)-Ir(1)-C(21) 130.0(2) 
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N(2)-C(22)-C(23) 106.8(4) C(14A)-Ir(1)-C(21) 127.5(7) 

N(2)-C(22)-C(25) 109.6(4) O(1)-Ir(1)-C(21) 30.12(12) 

C(23)-C(22)-C(25) 109.6(4) O(2)-Ir(1)-C(21) 29.81(12) 

N(2)-C(22)-C(24) 110.2(4) P(1)-Ir(1)-C(21) 99.15(10) 

C(23)-C(22)-C(24) 110.0(4) P(2)-Ir(1)-C(21) 99.36(10) 

C(25)-C(22)-C(24) 110.6(4)   

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: - 

 

Table 18: Torsion angles [°] for 15. 

N(1)-C(1)-C(2)-P(1) 3.6(7) C(6)-C(3)-P(1)-Ir(1) 22.0(3) 

C(4)-C(3)-C(6)-Ir(1) 93.2(5) C(9)-C(7)-P(1)-C(2) 176.9(4) 

C(5)-C(3)-C(6)-Ir(1) -144.3(5) C(8)-C(7)-P(1)-C(2) 58.7(4) 

P(1)-C(3)-C(6)-Ir(1) -25.1(4) C(10)-C(7)-P(1)-C(2) -60.7(5) 

Ir(1)-C(14A)-C(13A)-C(15A) 142(2) C(9)-C(7)-P(1)-C(3) -60.2(5) 

Ir(1)-C(14A)-C(13A)-C(16) -83.2(18) C(8)-C(7)-P(1)-C(3) -178.4(4) 

Ir(1)-C(14A)-C(13A)-P(2) 29.2(19) C(10)-C(7)-P(1)-C(3) 62.1(6) 

N(1)-C(11)-C(12)-P(2) 2.2(7) C(9)-C(7)-P(1)-C(3A) -72.7(6) 

C(31)-C(26)-C(27)-C(28) 0 C(8)-C(7)-P(1)-C(3A) 169.1(5) 

C(26)-C(27)-C(28)-C(29) 0 C(10)-C(7)-P(1)-C(3A) 49.6(6) 

C(27)-C(28)-C(29)-C(30) 0 C(9)-C(7)-P(1)-Ir(1) 57.0(5) 

C(28)-C(29)-C(30)-C(31) 0 C(8)-C(7)-P(1)-Ir(1) -61.2(5) 

C(29)-C(30)-C(31)-C(26) 0 C(10)-C(7)-P(1)-Ir(1) 179.3(4) 

C(27)-C(26)-C(31)-C(30) 0 C(15A)-C(13A)-P(2)-C(12) -31(3) 

C(12)-C(11)-N(1)-C(1) 168.1(5) C(16)-C(13A)-P(2)-C(12) -178.3(12) 

C(12)-C(11)-N(1)-Ir(1) 1.5(7) C(14A)-C(13A)-P(2)-C(12) 77.5(16) 

C(2)-C(1)-N(1)-C(11) -167.7(5) C(15A)-C(13A)-P(2)-C(17) 90(3) 

C(2)-C(1)-N(1)-Ir(1) -1.0(7) C(16)-C(13A)-P(2)-C(17) -57(2) 

O(2)-C(21)-N(2)-C(22) -179.7(4) C(14A)-C(13A)-P(2)-C(17) -161.7(12) 

O(1)-C(21)-N(2)-C(22) 0.4(7) C(15A)-C(13A)-P(2)-Ir(1) -132(2) 

C(23)-C(22)-N(2)-C(21) -178.1(4) C(16)-C(13A)-P(2)-Ir(1) 80.0(14) 

C(25)-C(22)-N(2)-C(21) -59.4(6) C(14A)-C(13A)-P(2)-Ir(1) -24.2(16) 

C(24)-C(22)-N(2)-C(21) 62.5(6) C(11)-C(12)-P(2)-C(13A) -104.7(10) 

O(2)-C(21)-O(1)-Ir(1) 0.0(4) C(11)-C(12)-P(2)-C(17) 120.7(4) 

N(2)-C(21)-O(1)-Ir(1) 180.0(4) C(11)-C(12)-P(2)-C(13) -124.1(4) 
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O(1)-C(21)-O(2)-Ir(1) 0.0(4) C(11)-C(12)-P(2)-Ir(1) -3.9(4) 

N(2)-C(21)-O(2)-Ir(1) -179.9(4) C(20)-C(17)-P(2)-C(13A) -68.4(14) 

C(1)-C(2)-P(1)-C(3) 89.3(5) C(18)-C(17)-P(2)-C(13A) 173.7(14) 

C(1)-C(2)-P(1)-C(7) -141.8(4) C(19)-C(17)-P(2)-C(13A) 56.4(14) 

C(1)-C(2)-P(1)-C(3A) 107.7(7) C(20)-C(17)-P(2)-C(12) 53.4(4) 

C(1)-C(2)-P(1)-Ir(1) -4.0(5) C(18)-C(17)-P(2)-C(12) -64.5(4) 

C(4)-C(3)-P(1)-C(2) 168.6(5) C(19)-C(17)-P(2)-C(12) 178.2(3) 

C(5)-C(3)-P(1)-C(2) 37.7(6) C(20)-C(17)-P(2)-C(13) -62.1(4) 

C(6)-C(3)-P(1)-C(2) -78.9(4) C(18)-C(17)-P(2)-C(13) -180.0(3) 

C(4)-C(3)-P(1)-C(7) 46.9(6) C(19)-C(17)-P(2)-C(13) 62.7(4) 

C(5)-C(3)-P(1)-C(7) -84.0(6) C(20)-C(17)-P(2)-Ir(1) 162.6(3) 

C(6)-C(3)-P(1)-C(7) 159.4(3) C(18)-C(17)-P(2)-Ir(1) 44.7(4) 

C(4)-C(3)-P(1)-Ir(1) -90.5(5) C(19)-C(17)-P(2)-Ir(1) -72.6(4) 

C(5)-C(3)-P(1)-Ir(1) 138.6(5)   

______________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: - 
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4.5. [Ir(NHPh)(PNP)] (3) 

 

Figure 77: Thermal ellipsoid plot of 3 with the anisotropic displacement parameters drawn at 

the 50% probability level. The asymmetric unit contains one complex molecule. The N-H 

hydrogen atom was found from the residual density map and isotropically refined. 
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Table 19: Crystal data and structure refinement for 3. 

Identification code  mo_CV_MK_301116_0m   (MK507) 

Empirical formula  C26H46IrN2P2 

Formula weight  640.79 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 11.3220(6) Å   α= 90° 

 b = 8.4879(4) Å   β= 92.2020(17)° 

 c = 14.5456(7) Å   γ = 90° 

Volume 1396.80(12) Å3 

Z 2 

Density (calculated) 1.524 Mg/m3 

Absorption coefficient 4.909 mm-1 

F(000) 646 

Crystal size 0.117 x 0.070 x 0.044 mm3 

Crystal shape and color Block, dark purple 

Theta range for data collection 2.238 to 28.341° 

Index ranges -15<=h<=15, -11<=k<=11, -19<=l<=17 

Reflections collected 50447 

Independent reflections 6964 [R(int) = 0.0536] 

Completeness to theta = 25.242° 99.9 %  

Max. and min. transmission 0.7457 and 0.6712 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6964 / 1 / 296 

Goodness-of-fit on F2 0.965 

Final R indices [I>2sigma(I)] R1 = 0.0199, wR2 = 0.0322 

R indices (all data) R1 = 0.0262, wR2 = 0.0333 

Absolute structure parameter 0.005(3) 

Largest diff. peak and hole 0.602 and -0.970 eÅ
-3 
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Table 20: Bond lengths [Å] and angles [°] for 3. 

C(1)-C(2)  1.335(6) C(17)-P(2)  1.888(4) 

C(1)-N(1)  1.378(5) C(21)-N(2)  1.362(5) 

C(2)-P(1)  1.789(4) C(21)-C(22)  1.407(6) 

C(3)-C(6)  1.532(5) C(21)-C(26)  1.412(6) 

C(3)-C(4)  1.540(9) C(22)-C(23)  1.386(6) 

C(3)-C(5)  1.551(7) C(23)-C(24)  1.394(6) 

C(3)-P(1)  1.891(6) C(24)-C(25)  1.378(6) 

C(7)-C(9)  1.528(6) C(25)-C(26)  1.379(6) 

C(7)-C(10)  1.533(6) N(1)-Ir(1)  2.013(3) 

C(7)-C(8)  1.535(6) N(2)-Ir(1)  1.987(4) 

C(7)-P(1)  1.883(4) N(2)-H(111)  0.88(5) 

C(11)-C(12)  1.338(5) P(1)-Ir(1)  2.3500(10) 

C(11)-N(1)  1.381(5) P(2)-Ir(1)  2.3101(10) 

C(12)-P(2)  1.786(4) C(2)-C(1)-N(1) 121.4(4) 

C(13)-C(15)  1.529(6) C(1)-C(2)-P(1) 115.8(3) 

C(13)-C(14)  1.536(5) C(6)-C(3)-C(4) 109.7(6) 

C(13)-C(16)  1.541(5) C(6)-C(3)-C(5) 108.2(3) 

C(13)-P(2)  1.874(4) C(4)-C(3)-C(5) 107.5(4) 

C(17)-C(19)  1.534(6) C(6)-C(3)-P(1) 113.2(3) 

C(17)-C(20)  1.539(6) C(4)-C(3)-P(1) 105.3(3) 

C(17)-C(18)  1.540(7) C(5)-C(3)-P(1) 112.7(5) 

    

C(9)-C(7)-C(10) 110.5(4) C(24)-C(25)-C(26) 120.6(4) 

C(9)-C(7)-C(8) 108.6(4) C(25)-C(26)-C(21) 121.4(4) 

C(10)-C(7)-C(8) 108.0(4) C(1)-N(1)-C(11) 118.1(3) 

C(9)-C(7)-P(1) 113.7(3) C(1)-N(1)-Ir(1) 121.3(3) 

C(10)-C(7)-P(1) 111.0(3) C(11)-N(1)-Ir(1) 120.2(3) 

C(8)-C(7)-P(1) 104.7(3) C(21)-N(2)-Ir(1) 137.4(3) 

C(12)-C(11)-N(1) 122.0(4) C(21)-N(2)-H(111) 107(4) 

C(11)-C(12)-P(2) 114.9(3) Ir(1)-N(2)-H(111) 115(4) 

C(15)-C(13)-C(14) 109.1(3) C(2)-P(1)-C(7) 104.1(2) 

C(15)-C(13)-C(16) 107.5(3) C(2)-P(1)-C(3) 101.3(2) 

C(14)-C(13)-C(16) 110.7(3) C(7)-P(1)-C(3) 111.6(2) 

C(15)-C(13)-P(2) 105.4(3) C(2)-P(1)-Ir(1) 99.25(14) 

C(14)-C(13)-P(2) 113.3(3) C(7)-P(1)-Ir(1) 114.48(14) 
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C(16)-C(13)-P(2) 110.5(3) C(3)-P(1)-Ir(1) 122.3(2) 

C(19)-C(17)-C(20) 108.9(3) C(12)-P(2)-C(13) 105.55(18) 

C(19)-C(17)-C(18) 109.0(4) C(12)-P(2)-C(17) 104.18(19) 

C(20)-C(17)-C(18) 107.7(4) C(13)-P(2)-C(17) 111.5(2) 

C(19)-C(17)-P(2) 114.1(3) C(12)-P(2)-Ir(1) 100.23(13) 

C(20)-C(17)-P(2) 111.6(3) C(13)-P(2)-Ir(1) 116.18(13) 

C(18)-C(17)-P(2) 105.3(3) C(17)-P(2)-Ir(1) 116.94(14) 

N(2)-C(21)-C(22) 120.2(4) N(2)-Ir(1)-N(1) 170.74(15) 

N(2)-C(21)-C(26) 122.1(4) N(2)-Ir(1)-P(2) 92.21(11) 

C(22)-C(21)-C(26) 117.6(4) N(1)-Ir(1)-P(2) 82.48(10) 

C(23)-C(22)-C(21) 120.1(4) N(2)-Ir(1)-P(1) 103.01(10) 

C(22)-C(23)-C(24) 121.2(4) N(1)-Ir(1)-P(1) 81.72(10) 

C(25)-C(24)-C(23) 119.1(4) P(2)-Ir(1)-P(1) 163.90(3) 

Table 21: Torsion angles [°] for 3. 

N(1)-C(1)-C(2)-P(1) 3.2(6) C(4)-C(3)-P(1)-C(2) -81.5(4) 

N(1)-C(11)-C(12)-P(2) 3.6(5) C(5)-C(3)-P(1)-C(2) 35.4(4) 

N(2)-C(21)-C(22)-C(23) -177.6(4) C(6)-C(3)-P(1)-C(7) 48.4(5) 

C(26)-C(21)-C(22)-C(23) -0.1(6) C(4)-C(3)-P(1)-C(7) 168.2(3) 

C(21)-C(22)-C(23)-C(24) -0.2(7) C(5)-C(3)-P(1)-C(7) -74.9(3) 

C(22)-C(23)-C(24)-C(25) 0.1(7) C(6)-C(3)-P(1)-Ir(1) -92.6(5) 

C(23)-C(24)-C(25)-C(26) 0.2(6) C(4)-C(3)-P(1)-Ir(1) 27.2(3) 

C(24)-C(25)-C(26)-C(21) -0.4(6) C(5)-C(3)-P(1)-Ir(1) 144.1(3) 

N(2)-C(21)-C(26)-C(25) 177.9(4) C(11)-C(12)-P(2)-C(13) -124.9(3) 

C(22)-C(21)-C(26)-C(25) 0.3(6) C(11)-C(12)-P(2)-C(17) 117.5(3) 

C(2)-C(1)-N(1)-C(11) 175.7(4) C(11)-C(12)-P(2)-Ir(1) -3.9(3) 

C(2)-C(1)-N(1)-Ir(1) 3.3(6) C(15)-C(13)-P(2)-C(12) 57.8(3) 

C(12)-C(11)-N(1)-C(1) -173.5(4) C(14)-C(13)-P(2)-C(12) -61.4(3) 

C(12)-C(11)-N(1)-Ir(1) -1.0(5) C(16)-C(13)-P(2)-C(12) 173.6(3) 

C(22)-C(21)-N(2)-Ir(1) -33.1(6) C(15)-C(13)-P(2)-C(17) 170.3(3) 

C(26)-C(21)-N(2)-Ir(1) 149.4(3) C(14)-C(13)-P(2)-C(17) 51.1(3) 

C(1)-C(2)-P(1)-C(7) -124.8(4) C(16)-C(13)-P(2)-C(17) -73.9(3) 

C(1)-C(2)-P(1)-C(3) 119.2(4) C(15)-C(13)-P(2)-Ir(1) -52.2(3) 

C(1)-C(2)-P(1)-Ir(1) -6.5(4) C(14)-C(13)-P(2)-Ir(1) -171.5(2) 

C(9)-C(7)-P(1)-C(2) -61.6(3) C(16)-C(13)-P(2)-Ir(1) 63.6(3) 

C(10)-C(7)-P(1)-C(2) 173.0(3) C(19)-C(17)-P(2)-C(12) 158.1(3) 
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C(8)-C(7)-P(1)-C(2) 56.7(3) C(20)-C(17)-P(2)-C(12) 34.2(4) 

C(9)-C(7)-P(1)-C(3) 46.9(4) C(18)-C(17)-P(2)-C(12) -82.4(3) 

C(10)-C(7)-P(1)-C(3) -78.5(4) C(19)-C(17)-P(2)-C(13) 44.7(4) 

C(8)-C(7)-P(1)-C(3) 165.2(3) C(20)-C(17)-P(2)-C(13) -79.2(4) 

C(9)-C(7)-P(1)-Ir(1) -168.9(3) C(18)-C(17)-P(2)-C(13) 164.2(3) 

C(10)-C(7)-P(1)-Ir(1) 65.8(3) C(19)-C(17)-P(2)-Ir(1) -92.4(3) 

C(8)-C(7)-P(1)-Ir(1) -50.5(3) C(20)-C(17)-P(2)-Ir(1) 143.7(3) 

C(6)-C(3)-P(1)-C(2) 158.7(4)   
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4.6.  [{Ir(PNP)}2-µ-(NC12H8N)] (19) 

 

Figure 78: ORTEP plot with the anisotropic displacement parameters drawn at the 50% 

probability level. The C-H hydrogen atoms are omitted for clarity. 
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Table 22: Crystal data and structure refinement for 19. 

Identification code  cw47_0m_b 

Empirical formula  C60H104Ir2N4O2P4 

Formula weight  1421.75 

Temperature  100(2) K 

Wavelength  0.56086 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 10.317(2) Å   α= 90° 

 b = 14.739(3) Å   β= 112.80(3)° 

 c = 22.924(6) Å   γ = 90° 

Volume 3213.5(14) Å3 

Z 2 

Density (calculated) 1.469 Mg/m3 

Absorption coefficient 2.329 mm-1 

F(000) 1444 

Crystal shape and color: Block, black 

Crystal size 0.146 x 0.109 x 0.084 mm3 

Theta range for data collection 1.329 to 23.636°. 

Index ranges -14<=h<=14, -21<=k<=21, -32<=l<=32 

Reflections collected 146902 

Independent reflections 9812 [R(int) = 0.0759] 

Completeness to theta = 19.665° 100.0 %  

Absorption correction Numerical 

Max. and min. transmission 0.7706 and 0.6861 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9812 / 0 / 337 

Goodness-of-fit on F2 1.039 

Final R indices [I>2sigma(I)] R1 = 0.0234, wR2 = 0.0412 

R indices (all data) R1 = 0.0347, wR2 = 0.0444 

Largest diff. peak and hole 0.643 and -1.285 eÅ-3 
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Table 23: Bond lengths [Å] and angles [°] for 19. 

Ir(1)-N(2)  1.8617(19) C(13)-C(15)  1.537(4) 

Ir(1)-N(1)  2.0272(19) C(13)-C(14)  1.540(3) 

Ir(1)-P(1)  2.3221(8) C(13)-C(16)  1.542(3) 

Ir(1)-P(2)  2.3276(8) C(18)-C(17)  1.534(4) 

C(1)-C(2)  1.352(3) C(17)-C(19)  1.531(3) 

C(1)-N(1)  1.380(3) C(17)-C(20)  1.535(3) 

P(1)-C(2)  1.796(2) O(35)-C(30)  1.424(4) 

P(1)-C(7)  1.881(2) O(35)-C(27)  1.441(4) 

P(1)-C(3)  1.886(2) C(30)-C(29)  1.515(5) 

P(2)-C(12)  1.799(2) C(29)-C(28)  1.528(6) 

P(2)-C(13)  1.882(3) C(28)-C(27)  1.480(5) 

P(2)-C(17)  1.889(2) C(26)-C(25)  1.359(3) 

N(2)-C(21)  1.292(3) C(26)-C(21)  1.454(3) 

N(1)-C(11)  1.382(3) C(25)-C(24)  1.443(3) 

C(3)-C(6)  1.532(4) C(24)-C(24)#1  1.413(4) 

C(3)-C(5)  1.539(3) C(24)-C(23)  1.448(3) 

C(3)-C(4)  1.542(4) C(23)-C(22)  1.358(3) 

C(7)-C(9)  1.535(3) C(22)-C(21)  1.451(3) 

C(7)-C(10)  1.539(3) N(2)-Ir(1)-N(1) 179.63(8) 

C(7)-C(8)  1.539(3) N(2)-Ir(1)-P(1) 97.15(6) 

C(11)-C(12)  1.348(3) N(1)-Ir(1)-P(1) 82.48(6) 

    

N(2)-Ir(1)-P(2) 98.37(6) C(10)-C(7)-P(1) 105.89(16) 

N(1)-Ir(1)-P(2) 81.99(6) C(8)-C(7)-P(1) 112.41(17) 

P(1)-Ir(1)-P(2) 164.32(2) C(12)-C(11)-N(1) 122.2(2) 

C(2)-C(1)-N(1) 122.1(2) C(11)-C(12)-P(2) 114.34(18) 

C(2)-P(1)-C(7) 105.33(12) C(15)-C(13)-C(14) 108.5(2) 

C(2)-P(1)-C(3) 105.44(12) C(15)-C(13)-C(16) 110.0(2) 

C(7)-P(1)-C(3) 112.05(11) C(14)-C(13)-C(16) 107.8(2) 

C(2)-P(1)-Ir(1) 100.15(8) C(15)-C(13)-P(2) 110.60(17) 

C(7)-P(1)-Ir(1) 118.82(8) C(14)-C(13)-P(2) 105.50(17) 

C(3)-P(1)-Ir(1) 113.04(8) C(16)-C(13)-P(2) 114.20(18) 

C(12)-P(2)-C(13) 105.44(12) C(19)-C(17)-C(18) 108.8(2) 

C(12)-P(2)-C(17) 105.80(11) C(19)-C(17)-C(20) 109.8(2) 

C(13)-P(2)-C(17) 112.55(11) C(18)-C(17)-C(20) 107.9(2) 
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C(12)-P(2)-Ir(1) 100.66(8) C(19)-C(17)-P(2) 114.87(17) 

C(13)-P(2)-Ir(1) 114.90(8) C(18)-C(17)-P(2) 105.66(17) 

C(17)-P(2)-Ir(1) 115.70(8) C(20)-C(17)-P(2) 109.49(16) 

C(21)-N(2)-Ir(1) 171.42(18) C(30)-O(35)-C(27) 108.7(3) 

C(1)-C(2)-P(1) 114.72(18) O(35)-C(30)-C(29) 106.6(3) 

C(1)-N(1)-C(11) 119.2(2) C(30)-C(29)-C(28) 102.1(3) 

C(1)-N(1)-Ir(1) 120.15(16) C(27)-C(28)-C(29) 101.9(3) 

C(11)-N(1)-Ir(1) 120.70(16) O(35)-C(27)-C(28) 107.6(3) 

C(6)-C(3)-C(5) 110.4(2) C(25)-C(26)-C(21) 121.6(2) 

C(6)-C(3)-C(4) 108.0(2) C(26)-C(25)-C(24) 122.9(2) 

C(5)-C(3)-C(4) 108.5(2) C(24)#1-C(24)-C(25) 122.5(3) 

C(6)-C(3)-P(1) 110.91(17) C(24)#1-C(24)-C(23) 122.1(3) 

C(5)-C(3)-P(1) 113.94(18) C(25)-C(24)-C(23) 115.34(19) 

C(4)-C(3)-P(1) 104.82(17) C(22)-C(23)-C(24) 122.3(2) 

C(9)-C(7)-C(10) 108.5(2) C(23)-C(22)-C(21) 122.2(2) 

C(9)-C(7)-C(8) 109.8(2) N(2)-C(21)-C(22) 122.2(2) 

C(10)-C(7)-C(8) 108.5(2) N(2)-C(21)-C(26) 122.2(2) 

C(9)-C(7)-P(1) 111.52(17) C(22)-C(21)-C(26) 115.52(19) 

_______________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z 

 

Table 24: Torsion angles [°] for 19. 

N(1)-C(1)-C(2)-P(1) 3.1(4) Ir(1)-P(2)-C(13)-C(15) 72.57(18) 

C(7)-P(1)-C(2)-C(1) -129.4(2) C(12)-P(2)-C(13)-C(14) 65.28(19) 

C(3)-P(1)-C(2)-C(1) 112.0(2) C(17)-P(2)-C(13)-C(14) -179.85(17) 

Ir(1)-P(1)-C(2)-C(1) -5.5(2) Ir(1)-P(2)-C(13)-C(14) -44.58(19) 

C(2)-C(1)-N(1)-C(11) -178.0(2) C(12)-P(2)-C(13)-C(16) -52.9(2) 

C(2)-C(1)-N(1)-Ir(1) 2.0(3) C(17)-P(2)-C(13)-C(16) 62.0(2) 

C(2)-P(1)-C(3)-C(6) -170.13(19) Ir(1)-P(2)-C(13)-C(16) -162.76(16) 

C(7)-P(1)-C(3)-C(6) 75.8(2) C(12)-P(2)-C(17)-C(19) 71.4(2) 

Ir(1)-P(1)-C(3)-C(6) -61.7(2) C(13)-P(2)-C(17)-C(19) -43.2(2) 

C(2)-P(1)-C(3)-C(5) 64.6(2) Ir(1)-P(2)-C(17)-C(19) -178.13(18) 

C(7)-P(1)-C(3)-C(5) -49.4(2) C(12)-P(2)-C(17)-C(18) -48.53(19) 

Ir(1)-P(1)-C(3)-C(5) 173.05(17) C(13)-P(2)-C(17)-C(18) -163.19(16) 

C(2)-P(1)-C(3)-C(4) -53.8(2) Ir(1)-P(2)-C(17)-C(18) 61.92(17) 
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C(7)-P(1)-C(3)-C(4) -167.90(17) C(12)-P(2)-C(17)-C(20) -164.53(17) 

Ir(1)-P(1)-C(3)-C(4) 54.59(19) C(13)-P(2)-C(17)-C(20) 80.81(19) 

C(2)-P(1)-C(7)-C(9) -164.01(18) Ir(1)-P(2)-C(17)-C(20) -54.08(19) 

C(3)-P(1)-C(7)-C(9) -49.9(2) C(27)-O(35)-C(30)-C(29) 10.9(4) 

Ir(1)-P(1)-C(7)-C(9) 84.93(18) O(35)-C(30)-C(29)-C(28) -29.0(4) 

C(2)-P(1)-C(7)-C(10) 78.11(18) C(30)-C(29)-C(28)-C(27) 35.4(4) 

C(3)-P(1)-C(7)-C(10) -167.76(16) C(30)-O(35)-C(27)-C(28) 12.7(4) 

Ir(1)-P(1)-C(7)-C(10) -32.96(18) C(29)-C(28)-C(27)-O(35) -30.3(4) 

C(2)-P(1)-C(7)-C(8) -40.23(19) C(21)-C(26)-C(25)-C(24) -0.4(3) 

C(3)-P(1)-C(7)-C(8) 73.90(19) C(26)-C(25)-C(24)-C(24)#1 176.4(3) 

Ir(1)-P(1)-C(7)-C(8) -151.29(14) C(26)-C(25)-C(24)-C(23) -2.7(3) 

C(1)-N(1)-C(11)-C(12) -178.5(2) C(24)#1-C(24)-C(23)-C(22) -176.4(3) 

Ir(1)-N(1)-C(11)-C(12) 1.6(3) C(25)-C(24)-C(23)-C(22) 2.6(3) 

N(1)-C(11)-C(12)-P(2) 0.7(3) C(24)-C(23)-C(22)-C(21) 0.6(3) 

C(13)-P(2)-C(12)-C(11) -121.9(2) C(23)-C(22)-C(21)-N(2) 174.5(2) 

C(17)-P(2)-C(12)-C(11) 118.7(2) C(23)-C(22)-C(21)-C(26) -3.6(3) 

Ir(1)-P(2)-C(12)-C(11) -2.1(2) C(25)-C(26)-C(21)-N(2) -174.6(2) 

C(12)-P(2)-C(13)-C(15) -177.57(17) C(25)-C(26)-C(21)-C(22) 3.5(3) 

C(17)-P(2)-C(13)-C(15) -62.7(2)   

_______________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z 
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4.7.  [Ir(H)2(PNP)] (13) 

Figure 79: Thermal ellipsoid plot of 13 with the anisotropic displacement parameters drawn at 

the 50% probability level. The asymmetric unit contains a half disordered complex molecule. 

The disorder was refined with site occupation factors of 0.5 for both sites using PART commands 

and some restraints (SADI, RIGU). The Ir-H hydrogen atoms were found from the residual 

density map and isotropically refined. 
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Table 25: Crystal data and structure refinement for 13. 

Identification code mo_CV_MK_180716_0m_a (MK463) 

Empirical formula C20H42IrNP2 

Formula weight 550.68 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group C2/c 

Unit cell dimensions a = 22.1450(8) Å   = 90° 

 b = 7.4251(3) Å   = 104.201(2)° 

 c = 14.5329(6) Å    = 90° 

Volume 2316.60(16) Å3 

Z 4 

Density (calculated) 1.579 Mg/m3 

Absorption coefficient 5.904 mm-1 

F(000) 1104 

Crystal size 0.217 x 0.196 x 0.118 mm3 

Crystal shape and color Block, clear light orange-red 

Theta range for data collection 2.892 to 28.358° 

Index ranges -29<=h<=29, -9<=k<=9, -19<=l<=19 

Reflections collected 35461 

Independent reflections 2886 [R(int) = 0.0405] 

Completeness to theta = 25.242° 99.8 % 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2886 / 125 / 144 

Goodness-of-fit on F2 1.116 

Final R indices [I>2sigma(I)] R1 = 0.0182, wR2 = 0.0356 

R indices (all data) R1 = 0.0265, wR2 = 0.0377 

Largest diff. peak and hole 0.687 and -1.013 eÅ-3 
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Table 26: Bond lengths [Å] and angles [°] for 13. 

C(3)-C(6) 1.520(4) C(10)-C(7)-P(1) 115.56(18) 

C(3)-C(5) 1.522(3) C(2)-P(1)-C(3) 98.4(5) 

C(3)-C(4) 1.525(4) C(2A)-P(1)-C(3) 108.4(5) 

C(3)-P(1) 1.888(3) C(2)-P(1)-C(7) 108.2(5) 

C(7)-C(9) 1.516(4) C(2A)-P(1)-C(7) 98.2(5) 

C(7)-C(8) 1.528(4) C(3)-P(1)-C(7) 111.11(11) 

C(7)-C(10) 1.530(3) C(2)-P(1)-Ir(1) 102.4(6) 

C(7)-P(1) 1.891(3) C(2A)-P(1)-Ir(1) 102.3(6) 

P(1)-C(2) 1.846(17) C(3)-P(1)-Ir(1) 118.11(8) 

P(1)-C(2A) 1.855(17) C(7)-P(1)-Ir(1) 116.03(8) 

P(1)-Ir(1) 2.2801(6) N(1)#1-Ir(1)-N(1) 14.7(3) 

Ir(1)-N(1)#1 2.156(4) N(1)#1-Ir(1)-P(1) 83.0(3) 

Ir(1)-N(1) 2.156(4) N(1)-Ir(1)-P(1) 83.9(3) 

Ir(1)-P(1)#1 2.2801(6) N(1)#1-Ir(1)-P(1)#1 83.9(3) 

Ir(1)-H(112) 1.67(6) N(1)-Ir(1)-P(1)#1 83.0(3) 

Ir(1)-H(111) 1.52(5) P(1)-Ir(1)-P(1)#1 166.81(3) 

N(1)-N(1)#1 0.552(10) N(1)#1-Ir(1)-H(112) 99.4(18) 

N(1)-C(1) 1.37(2) N(1)-Ir(1)-H(112) 84.7(18) 

N(1)-C(1A)#1 1.38(2) P(1)-Ir(1)-H(112) 93(2) 

N(1)-C(1)#1 1.41(3) P(1)#1-Ir(1)-H(112) 88(2) 

C(1)-C(2) 1.410(10) N(1)#1-Ir(1)-H(111) 172.64(13) 

C(1A)-N(1)#1 1.38(2) N(1)-Ir(1)-H(111) 172.64(13) 

C(1A)-C(2A) 1.424(10) P(1)-Ir(1)-H(111) 96.597(16) 

C(6)-C(3)-C(5) 109.0(3) P(1)#1-Ir(1)-H(111) 96.597(19) 

C(6)-C(3)-C(4) 108.0(3) H(112)-Ir(1)-H(111) 87.9(17) 

C(5)-C(3)-C(4) 107.0(2) N(1)#1-N(1)-C(1) 83(2) 

C(6)-C(3)-P(1) 109.09(18) N(1)#1-N(1)-C(1A)#1 88(2) 

C(5)-C(3)-P(1) 116.06(18) N(1)#1-N(1)-C(1)#1 74.0(19) 

C(4)-C(3)-P(1) 107.4(2) C(1)-N(1)-C(1)#1 122.9(15) 

C(9)-C(7)-C(8) 108.7(3) N(1)#1-N(1)-Ir(1) 82.64(13) 

C(9)-C(7)-C(10) 109.0(2) C(1)-N(1)-Ir(1) 115.0(10) 

C(8)-C(7)-C(10) 107.0(2) C(1A)#1-N(1)-Ir(1) 118.8(9) 

C(9)-C(7)-P(1) 109.38(17) C(1)#1-N(1)-Ir(1) 112.9(9) 

C(8)-C(7)-P(1) 107.0(2) N(1)-C(1)-C(2) 125.8(18) 

C(1)-C(2)-P(1) 111.6(15) N(1)#1-C(1A)-C(2A) 120.3(17) 
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C(1)-C(2)-H(2A) 124.2 C(1A)-C(2A)-P(1) 114.3(14) 

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2 

Table 27: Torsion angles [°] for 13. 

C(6)-C(3)-P(1)-C(2) 175.0(6) C(9)-C(7)-P(1)-C(3) 77.1(2) 

C(5)-C(3)-P(1)-C(2) -61.5(6) C(8)-C(7)-P(1)-C(3) -165.3(2) 

C(4)-C(3)-P(1)-C(2) 58.2(6) C(10)-C(7)-P(1)-C(3) -46.4(2) 

C(6)-C(3)-P(1)-C(2A) -178.4(6) C(9)-C(7)-P(1)-Ir(1) -61.6(2) 

C(5)-C(3)-P(1)-C(2A) -54.9(6) C(8)-C(7)-P(1)-Ir(1) 56.0(2) 

C(4)-C(3)-P(1)-C(2A) 64.8(6) C(10)-C(7)-P(1)-Ir(1) 174.99(16) 

C(6)-C(3)-P(1)-C(7) -71.7(2) N(1)#1-N(1)-C(1)-C(2) -92.3(15) 

C(5)-C(3)-P(1)-C(7) 51.9(2) C(1)#1-N(1)-C(1)-C(2) -158.2(12) 

C(4)-C(3)-P(1)-C(7) 171.5(2) Ir(1)-N(1)-C(1)-C(2) -13.7(14) 

C(6)-C(3)-P(1)-Ir(1) 66.0(2) N(1)-C(1)-C(2)-P(1) 12.8(13) 

C(5)-C(3)-P(1)-Ir(1) -170.44(18) C(3)-P(1)-C(2)-C(1) -126.5(6) 

C(4)-C(3)-P(1)-Ir(1) -50.8(2) C(7)-P(1)-C(2)-C(1) 117.9(6) 

C(9)-C(7)-P(1)-C(2) -175.9(6) Ir(1)-P(1)-C(2)-C(1) -5.2(7) 

C(8)-C(7)-P(1)-C(2) -58.4(6) N(1)#1-C(1A)-C(2A)-P(1) -11.4(11) 

C(10)-C(7)-P(1)-C(2) 60.6(6) C(3)-P(1)-C(2A)-C(1A) -121.7(7) 

C(9)-C(7)-P(1)-C(2A) -169.5(6) C(7)-P(1)-C(2A)-C(1A) 122.8(7) 

C(8)-C(7)-P(1)-C(2A) -52.0(6) Ir(1)-P(1)-C(2A)-C(1A) 3.8(7) 

C(10)-C(7)-P(1)-C(2A) 67.0(6)   

_______________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2 
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4.8.  [Ir(OH)(PNP)] (21) 

Figure 80: Thermal ellipsoid plot of 21 with the anisotropic displacement parameters drawn at 

the 50% probability level. The asymmetric unit contains only a half disordered complex 

molecule. The oxygen/nitrogen disorder inside the complex molecule was refined with site 

occupation factors of 0.25 for both sites using some constraints (EXYZ, EADP). The O-H 

hydrogen atom was calculated using AFIX 83 command. 
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Table 28: Crystal data and structure refinement for 21. 

Identification code mo_CW_MK_150317_0m_a (MK528) 

Empirical formula C20H41IrNOP2 

Formula weight 565.68 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Monoclinic 

Space group C2/m 

Unit cell dimensions a = 13.6953(9) Å   α = 90° 

 b = 7.9784(5) Å   β = 112.438(3)° 

 c = 11.5228(7) Å   γ = 90° 

Volume 1163.74(13) Å3 

Z 2 

Density (calculated) 1.614 Mg/m3 

Absorption coefficient 5.882 mm-1 

F(000) 566 

Crystal size 0.207 x 0.091 x 0.075 mm3 

Crystal shape and color Block, clear intense blue 

Theta range for data collection 3.018 to 30.559° 

Index ranges 

Reflections collected 27196 

Independent reflections 1900 [R(int) = 0.0672] 

Completeness to theta = 25.242° 99.9 % 

Max. and min. transmission 0.7461 and 0.6003 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 1900 / 0 / 103 

Goodness-of-fit on F2 1.121 

Final R indices [I>2sigma(I)] R1 = 0.0242, wR2 = 0.0425 

R indices (all data) R1 = 0.0256, wR2 = 0.0430 

Largest diff. peak and hole 0.941 and -1.392 eÅ-3 
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Table 29: Bond lengths [Å] and angles [°] for 21. 

C(1)-C(2) 1.340(6) C(7)-C(8)#1 1.774(5) 

C(1)-N(1) 1.431(4) C(7)-P(1) 1.813(4) 

C(2)-P(1) 1.795(4) C(7)-P(1)#1 1.813(4) 

C(3)-C(5)#1 1.483(6) C(8)-P(1) 2.291(5) 

C(3)-C(5) 1.483(6) N(1)-C(1)#2 1.431(4) 

C(3)-C(6) 1.491(6) N(1)-Ir(1) 1.988(3) 

C(3)-C(6)#1 1.491(6) P(1)-P(1)#1 0.7395(19) 

C(3)-C(4) 1.636(6) P(1)-Ir(1) 2.3172(10) 

C(3)-C(4)#1 1.636(6) P(1)-C(4)#1 2.333(5) 

C(3)-P(1)#1 1.859(3) Ir(1)-O(1)#3 1.988(3) 

C(3)-P(1) 1.859(3) Ir(1)-N(1)#3 1.988(3) 

C(4)-C(6)#1 1.846(9) Ir(1)-P(1)#3 2.3173(10) 

C(4)-P(1)#1 2.332(5) Ir(1)-P(1)#1 2.3173(10) 

C(7)-C(9)#1 1.444(6) Ir(1)-P(1)#2 2.3173(10) 

C(7)-C(9) 1.444(6) C(2)-C(1)-N(1) 119.3(4) 

C(7)-C(10) 1.481(5) C(1)-C(2)-P(1) 114.1(3) 

C(7)-C(8) 1.774(5) C(5)#1-C(3)-C(5) 39.8(5) 

C(5)#1-C(3)-C(6) 126.9(3) C(4)-C(3)-P(1)#1 83.5(2) 

C(5)-C(3)-C(6) 113.3(4) C(4)#1-C(3)-P(1)#1 106.4(3) 

C(5)#1-C(3)-C(6)#1 113.3(4) C(5)#1-C(3)-P(1) 116.3(3) 

C(5)-C(3)-C(6)#1 126.9(3) C(5)-C(3)-P(1) 107.9(3) 

C(6)-C(3)-C(6)#1 35.0(5) C(6)-C(3)-P(1) 116.1(3) 

C(5)#1-C(3)-C(4) 65.7(3) C(6)#1-C(3)-P(1) 124.0(3) 

C(5)-C(3)-C(4) 105.4(4) C(4)-C(3)-P(1) 106.4(3) 

C(6)-C(3)-C(4) 107.1(4) C(4)#1-C(3)-P(1) 83.5(2) 

C(6)#1-C(3)-C(4) 72.2(3) P(1)#1-C(3)-P(1) 22.94(7) 

C(5)#1-C(3)-C(4)#1 105.4(4) C(3)-C(4)-C(6)#1 50.3(3) 

C(5)-C(3)-C(4)#1 65.7(3) C(3)-C(4)-P(1)#1 52.36(18) 

C(6)-C(3)-C(4)#1 72.2(3) C(6)#1-C(4)-P(1)#1 85.1(3) 

C(6)#1-C(3)-C(4)#1 107.1(4) C(9)#1-C(7)-C(9) 36.9(4) 

C(4)-C(3)-C(4)#1 168.8(5) C(9)#1-C(7)-C(10) 117.8(3) 

C(5)#1-C(3)-P(1)#1 107.9(3) C(9)-C(7)-C(10) 117.8(3) 

C(5)-C(3)-P(1)#1 116.3(3) C(9)#1-C(7)-C(8) 100.4(3) 

C(6)-C(3)-P(1)#1 124.0(3) C(9)-C(7)-C(8) 63.6(3) 

C(6)#1-C(3)-P(1)#1 116.1(3) C(10)-C(7)-C(8) 96.7(2) 
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C(9)#1-C(7)-C(8)#1 63.6(3) C(1)-N(1)-Ir(1) 123.43(19) 

C(9)-C(7)-C(8)#1 100.4(3) P(1)#1-P(1)-C(2) 176.67(13) 

C(10)-C(7)-C(8)#1 96.7(2) P(1)#1-P(1)-C(7) 78.23(4) 

C(8)-C(7)-C(8)#1 162.7(5) C(2)-P(1)-C(7) 99.13(14) 

C(9)#1-C(7)-P(1) 120.7(3) P(1)#1-P(1)-C(3) 78.53(4) 

C(9)-C(7)-P(1) 112.5(3) C(2)-P(1)-C(3) 101.10(14) 

C(10)-C(7)-P(1) 121.1(3) C(7)-P(1)-C(3) 117.64(15) 

C(8)-C(7)-P(1) 79.4(2) P(1)#1-P(1)-C(8) 127.16(15) 

C(8)#1-C(7)-P(1) 102.6(2) C(2)-P(1)-C(8) 50.6(2) 

C(9)#1-C(7)-P(1)#1 112.5(3) C(7)-P(1)-C(8) 49.55(15) 

C(9)-C(7)-P(1)#1 120.7(3) C(3)-P(1)-C(8) 128.52(17) 

C(10)-C(7)-P(1)#1 121.1(3) P(1)#1-P(1)-Ir(1) 80.82(2) 

C(8)-C(7)-P(1)#1 102.6(2) C(2)-P(1)-Ir(1) 102.29(14) 

C(8)#1-C(7)-P(1)#1 79.4(2) C(7)-P(1)-Ir(1) 118.05(12) 

P(1)-C(7)-P(1)#1 23.53(8) C(3)-P(1)-Ir(1) 113.98(11) 

C(7)-C(8)-P(1) 51.07(18) C(8)-P(1)-Ir(1) 113.83(15) 

C(1)#2-N(1)-C(1) 113.1(4) P(1)#1-P(1)-C(4)#1 122.64(18) 

C(1)#2-N(1)-Ir(1) 123.43(19) C(2)-P(1)-C(4)#1 57.2(2) 

C(7)-P(1)-C(4)#1 124.78(19) P(1)-Ir(1)-P(1)#3 180.00(5) 

C(3)-P(1)-C(4)#1 44.17(18) N(1)-Ir(1)-P(1)#1 99.18(2) 

C(8)-P(1)-C(4)#1 97.2(2) O(1)#3-Ir(1)-P(1)#1 80.82(2) 

Ir(1)-P(1)-C(4)#1 115.68(16) N(1)#3-Ir(1)-P(1)#1 80.82(2) 

N(1)-Ir(1)-O(1)#3 180.0 P(1)-Ir(1)-P(1)#1 18.36(5) 

N(1)-Ir(1)-N(1)#3 180.0 P(1)#3-Ir(1)-P(1)#1 161.64(5) 

O(1)#3-Ir(1)-N(1)#3 0.0 N(1)-Ir(1)-P(1)#2 80.82(2) 

N(1)-Ir(1)-P(1) 80.82(2) O(1)#3-Ir(1)-P(1)#2 99.18(2) 

O(1)#3-Ir(1)-P(1) 99.18(2) N(1)#3-Ir(1)-P(1)#2 99.18(2) 

N(1)#3-Ir(1)-P(1) 99.18(2) P(1)-Ir(1)-P(1)#2 161.64(5) 

N(1)-Ir(1)-P(1)#3 99.18(2) P(1)#3-Ir(1)-P(1)#2 18.36(5) 

O(1)#3-Ir(1)-P(1)#3 80.82(2) P(1)#1-Ir(1)-P(1)#2 180.0 

N(1)#3-Ir(1)-P(1)#3 80.82(2)   

_____________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: 

#1 x,-y+1,z #2 -x+1,y,-z+1 #3 -x+1,-y+1,-z+1 
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Table 30: Torsion angles [°] for 21. 

N(1)-C(1)-C(2)-P(1) 0.2(5) C(8)-C(7)-P(1)-Ir(1) -98.5(2) 

C(5)#1-C(3)-C(4)-C(6)#1 126.9(4) C(8)#1-C(7)-P(1)-Ir(1) 64.0(3) 

C(5)-C(3)-C(4)-C(6)#1 124.4(4) P(1)#1-C(7)-P(1)-Ir(1) 72.81(6) 

C(6)-C(3)-C(4)-C(6)#1 3.53(16) C(9)#1-C(7)-P(1)-C(4)#1 162.8(3) 

C(4)#1-C(3)-C(4)-C(6)#1 88(3) C(9)-C(7)-P(1)-C(4)#1 122.4(3) 

P(1)#1-C(3)-C(4)-C(6)#1 -120.1(3) C(10)-C(7)-P(1)-C(4)#1 -24.5(2) 

P(1)-C(3)-C(4)-C(6)#1 -121.2(3) C(8)-C(7)-P(1)-C(4)#1 67.0(3) 

C(5)#1-C(3)-C(4)-P(1)#1 -113.0(3) C(8)#1-C(7)-P(1)-C(4)#1 -130.5(3) 

C(5)-C(3)-C(4)-P(1)#1 -115.5(3) P(1)#1-C(7)-P(1)-C(4)#1 -121.7(2) 

C(6)-C(3)-C(4)-P(1)#1 123.6(3) C(5)#1-C(3)-P(1)-P(1)#1 73.3(3) 

C(6)#1-C(3)-C(4)-P(1)#1 120.1(3) C(5)-C(3)-P(1)-P(1)#1 115.5(3) 

C(4)#1-C(3)-C(4)-P(1)#1 -152(3) C(6)-C(3)-P(1)-P(1)#1 -116.2(3) 

P(1)-C(3)-C(4)-P(1)#1 -1.09(10) C(6)#1-C(3)-P(1)-P(1)#1 -76.5(3) 

C(9)#1-C(7)-C(8)-P(1) -119.6(3) C(4)-C(3)-P(1)-P(1)#1 2.8(3) 

C(9)-C(7)-C(8)-P(1) -121.8(3) C(4)#1-C(3)-P(1)-P(1)#1 177.3(3) 

C(10)-C(7)-C(8)-P(1) 120.4(3) C(5)#1-C(3)-P(1)-C(2) -110.1(3) 

C(8)#1-C(7)-C(8)-P(1) -98.4(15) C(5)-C(3)-P(1)-C(2) -67.9(3) 

P(1)#1-C(7)-C(8)-P(1) -3.56(9) C(6)-C(3)-P(1)-C(2) 60.4(3) 

C(2)-C(1)-N(1)-C(1)#2 -178.8(4) C(6)#1-C(3)-P(1)-C(2) 100.1(3) 

C(2)-C(1)-N(1)-Ir(1) 1.2(4) C(4)-C(3)-P(1)-C(2) 179.4(3) 

C(1)-C(2)-P(1)-C(7) -122.6(3) C(4)#1-C(3)-P(1)-C(2) -6.1(3) 

C(1)-C(2)-P(1)-C(3) 116.7(3) P(1)#1-C(3)-P(1)-C(2) 176.62(14) 

C(1)-C(2)-P(1)-C(8) -112.0(4) C(5)#1-C(3)-P(1)-C(7) 143.3(3) 

C(1)-C(2)-P(1)-Ir(1) -1.1(3) C(5)-C(3)-P(1)-C(7) -174.4(3) 

C(1)-C(2)-P(1)-C(4)#1 111.7(4) C(6)-C(3)-P(1)-C(7) -46.1(3) 

C(9)#1-C(7)-P(1)-P(1)#1 -75.4(3) C(6)#1-C(3)-P(1)-C(7) -6.4(3) 

C(9)-C(7)-P(1)-P(1)#1 -115.8(3) C(4)-C(3)-P(1)-C(7) 72.8(3) 

C(10)-C(7)-P(1)-P(1)#1 97.21(9) C(4)#1-C(3)-P(1)-C(7) -112.6(2) 

C(8)-C(7)-P(1)-P(1)#1 -171.3(2) P(1)#1-C(3)-P(1)-C(7) 70.05(8) 

C(8)#1-C(7)-P(1)-P(1)#1 -8.8(2) C(5)#1-C(3)-P(1)-C(8) -157.9(3) 

C(9)#1-C(7)-P(1)-C(2) 106.7(3) C(5)-C(3)-P(1)-C(8) -115.7(3) 

C(9)-C(7)-P(1)-C(2) 66.2(3) C(6)-C(3)-P(1)-C(8) 12.6(4) 

C(10)-C(7)-P(1)-C(2) -80.72(16) C(6)#1-C(3)-P(1)-C(8) 52.3(4) 

C(8)-C(7)-P(1)-C(2) 10.8(3) C(4)-C(3)-P(1)-C(8) 131.6(3) 

C(8)#1-C(7)-P(1)-C(2) 173.3(3) C(4)#1-C(3)-P(1)-C(8) -53.9(3) 
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P(1)#1-C(7)-P(1)-C(2) -177.93(14) P(1)#1-C(3)-P(1)-C(8) 128.8(2) 

C(9)#1-C(7)-P(1)-C(3) -145.6(3) C(5)#1-C(3)-P(1)-Ir(1) -1.1(3) 

C(9)-C(7)-P(1)-C(3) 173.9(2) C(5)-C(3)-P(1)-Ir(1) 41.1(3) 

C(10)-C(7)-P(1)-C(3) 26.99(11) C(6)-C(3)-P(1)-Ir(1) 169.4(3) 

C(8)-C(7)-P(1)-C(3) 118.5(2) C(6)#1-C(3)-P(1)-Ir(1) -150.9(3) 

C(8)#1-C(7)-P(1)-C(3) -79.0(3) C(4)-C(3)-P(1)-Ir(1) -71.6(3) 

P(1)#1-C(7)-P(1)-C(3) -70.22(8) C(4)#1-C(3)-P(1)-Ir(1) 102.9(2) 

C(9)#1-C(7)-P(1)-C(8) 95.9(4) P(1)#1-C(3)-P(1)-Ir(1) -74.43(5) 

C(9)-C(7)-P(1)-C(8) 55.4(3) C(5)#1-C(3)-P(1)-C(4)#1 -104.0(4) 

C(10)-C(7)-P(1)-C(8) -91.5(2) C(5)-C(3)-P(1)-C(4)#1 -61.8(3) 

C(8)#1-C(7)-P(1)-C(8) 162.5(5) C(6)-C(3)-P(1)-C(4)#1 66.5(4) 

P(1)#1-C(7)-P(1)-C(8) 171.3(2) C(6)#1-C(3)-P(1)-C(4)#1 106.2(4) 

C(9)#1-C(7)-P(1)-Ir(1) -2.6(3) C(4)-C(3)-P(1)-C(4)#1 -174.5(5) 

C(9)-C(7)-P(1)-Ir(1) -43.0(2) P(1)#1-C(3)-P(1)-C(4)#1 -177.3(3) 

C(10)-C(7)-P(1)-Ir(1) 170.01(6)   

________________________________________________________________ 

Symmetry transformations used to generate equivalent atoms: 

#1 x,-y+1,z #2 -x+1,y,-z+1 #3 -x+1,-y+1,-z+1 
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