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Abstract 

 

In eukaryotes, pre-mRNA splicing is catalysed by the spliceosome, a highly complex and dynamic molecular 

machine, which assembles stepwise by the sequential recruitment of five small nuclear ribonucleoproteins 

(snRNPs) and numerous non-snRNP proteins. In humans, formation of the pre-catalytic, spliceosomal B complex 

with a stably associated tri-snRNP requires the action of the helicase Prp28, which displaces the U1 snRNP from 

the 5' splice site to be replaced by the U6 snRNA. At the same time, the so-called, B-specific proteins are recruited. 

Transformation of the B complex into an activated (Bact) spliceosome is initially triggered by the action of the helicase 

Brr2 that unwinds the U4/U6 RNA duplex. This results in the crucial release of the U4 snRNP, which allows the U6 

snRNA to interact with the U2 snRNA forming essential components of the catalytic centre. Concomitantly, the B-

specific proteins dissociate in the course of the activation, while the Bact-specific proteins, the Prp19/CDC5L 

complex and the intron binding complex (IBC) are stably integrated.  

Smu1 and RED are two B-specific proteins that are conserved among higher eukaryotes but absent in S. cerevisiae. 

Currently, little is known about the precise function of these proteins. Their transient association with the B complex 

suggests that they may be involved in the B-to-Bact complex transition, but previous studies proposed that these 

proteins form a functional module that is involved in the regulation of alternative splicing. However, it is not clear 

how Smu1 and RED might contribute to this process. Furthermore, it has not been investigated whether these 

proteins participate in constitutive splicing and thus it remains possible that Smu1 and RED – like several other B-

specific proteins – are in general important for intron excision in higher eukaryotes. To provide clarity on this subject, 

I analysed the function of Smu1 and RED in pre-mRNA splicing both in vivo and in vitro.  

 

To address whether constitutive splicing is dependent on Smu1 and RED, an RNAseq analysis was performed with 

HeLa cells siRNA-depleted of Smu1 or RED. Knock-down of these two proteins resulted in profound changes in 

alternative splicing patterns and also led to the retention of constitutively spliced introns, suggesting that Smu1 and 

RED are important for splicing in general, and thus not only involved in the regulation of alternative splicing. A role 

for Smu1 and RED in constitutive splicing was also demonstrated in vitro, using HeLa nuclear extract that was 

immunodepleted of Smu1 and RED. By using a well-functioning Smu1-specific antibody, Smu1 was nearly 

quantitatively removed from the extract along with more than 90% of RED, suggesting that the majority of human 

Smu1 and RED exist as a dimer in HeLa cell extract. Splicing of MINX-120 was less efficient in the absence of 

Smu1/RED, with an apparent slow-down in the rate of mRNA production. Investigation of spliceosome assembly 

revealed a transient accumulation of spliceosomal B complexes in the Smu1/RED-depleted extract, while the 

subsequently formed Bact and C complexes were still formed but at a slower rate. These results indicate that defects 

in splicing triggered by the absence of Smu1 and RED were caused by impaired spliceosome activation.  

 

To investigate whether Smu1 and RED need to interact to fulfil their function, spliceosome assembly in the presence 

of the individually expressed proteins was investigated. As the addition of single proteins to the Smu1/RED-depleted 

extract did not restore the B-to-Bact transition and splicing product formation, Smu1 and RED do not appear to 

function on their own. This was attributable to poor or less stable binding to the spliceosome of the individual 
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proteins compared to the Smu1/RED dimer. Removal of the WD40 domain of Smu1 abolished binding of the dimer 

to the spliceosome, and spliceosome assembly remained blocked at B complex level, demonstrating that the WD40 

domain is essential for proper interaction of the dimer with the spliceosome. Truncation of RED’s N- and C-terminal 

regions, which contact U2 or tri-snRNP proteins, respectively, within the B complex, restored splicing and 

spliceosome activation partially or nearly fully, suggesting that the contacts RED establishes with U2 or U5 

individually are not essential for the function of Smu1/RED. To determine whether Smu1 and RED function as a 

binding platform for other spliceosomal factors, I purified B complexes that accumulate in their absence and 

investigated their composition. As no additional proteins were missing, Smu1 and RED appear to play a direct role 

in splicing, as opposed to aiding the binding of other factors required for spliceosome activation. Thus, these results 

indicate that Smu1 and RED themselves are important for efficient conversion of the B complex into Bact. 

 

To provide evidence that Smu1 and RED are also involved in spliceosome activation in vivo, I knocked-down these 

proteins in HeLa cells and investigated endogenous spliceosome assembly by immunoblotting, using antibodies 

that recognise phosphopeptides specifically associated with assembled B or Bact complexes. Knock-down of Smu1 

or RED led to an increased B complex signal and a decreased Bact complex signal, indicating that the activation of 

the spliceosome is also impaired in vivo in the absence of Smu1 and RED. 

 

While knock-down of Smu1 and RED affected introns of all sizes, the vast majority were shorter than 100 nt. Short 

introns constitute only a small fraction of introns in the human genome, and thus this result indicates that the splicing 

of very short introns in vivo is highly dependent on the presence of Smu1 and RED. In vitro splicing studies using 

truncated versions of the MINX-120 pre-mRNA and Smu1/RED-depleted extract, also demonstrated that splicing 

was more dependent on the presence of Smu1 and RED when intron length was shorter. Truncation of the intron 

to either 90 or 80 nt reduced the overall efficiency of splicing compared to MINX-120, but it also enhanced the 

inhibitory effect of Smu1/RED-depletion. While MINX-90 was spliced somewhat less efficiently than MINX-120, 

splicing of MINX-80 was nearly abolished in the absence of Smu1 and RED, and led to an apparent block at the B 

complex stage with little or no formation of Bact or catalytically-active C complexes. Thus, Smu1 and RED play a 

crucial role in the splicing of extremely short introns both in vitro and in vivo. To investigate whether the intron length 

per se or the distance between the 5’SS and the BS or between the BS and the 3’SS determines whether splicing 

is dependent on Smu1/RED or not, I compared spliceosome assembly on PM5 pre-mRNAs with a shortened 5’SS-

BS distance or a shortened polypyrimidine (PY) tract (BS-3’SS distance).  

While spliceosome activation was not affected by the truncation of the PY tract in the absence of Smu1 and RED, 

shortening of the 5’SS-BS distance to ~55nt (as found in MINX-80) blocked the assembly at the B complex level, 

indicating that the distance between the 5’SS and the BS is the decisive factor for a strong Smu1/RED-dependence.  

 

The dependence of spliceosome activation on a minimal 5’SS-BS distance is probably due to physical limitations 

exerted by the intron. In this case, resolving this steric hindrance should allow spliceosome activation even without 

the support of Smu1 and RED. Indeed, when the MINX-80 pre-mRNA was cleaved into two RNAs, spliceosome 

activation was restored in the absence of Smu1/RED. This supports the idea that a short 5’SS-BS distance exerts 

a structural constraint, which can be relieved by physically separating the 5' and 3' regions of an intron.  
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Based on my data and structural information obtained from the cryo-EM structure of the human B complex, a model 

for how 5’SS-BS distance might lead to the dependency of spliceosome activation on Smu1/RED was generated. 

In the human B complex, Smu1 and RED form a molecular bridge between the U2 snRNP protein SF3B3 and the 

RNA helicase Brr2. This interaction appears to be important for spliceosome activation, potentially either by 

tethering Brr2 in a position required to unwind the U4/U6 interaction during activation or by directly aiding in 

triggering Brr2 unwinding activity. In the B complex, the intron is base paired with the U6 ACAGAG box at the 5’SS 

and with the U2 snRNA at the BS region. In most cases the distance between the 5'SS and the BS of the intron is 

sufficiently long to grant the U2 domain enough flexibility to move towards Brr2 and to form a bridge directly, even 

when Smu1 and RED are absent, albeit it at a slower rate. However, when this distance is short, i.e. ~56 nt or less, 

the intron adopts a fully extended conformation that results in a structural constraint. This could potentially result in 

repositioning of the U2 domain away from Brr2 and/or hinder its ability to move towards Brr2, and in turn inhibit 

spliceosome activation. As Smu1 and RED extend the U2/Brr2 bridge, the negative effect of a short 5'SS to BS 

distance would be greatly enhanced in their absence. Taken together, my studies provide novel insights into the 

function of the B-specific proteins Smu1 and RED in splicing. They additionally elucidate how intron architecture 

impacts spliceosome assembly and splicing, and how spliceosomal proteins potentially help the splicing machinery 

to overcome the challenges created by short introns. 
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1. Introduction 

 

It has been more than 70 years since deoxyribonucleic acid (DNA), was identified as the molecule in which the 

genetic information of an organism is stored (Avery et al., 1944; Watson & Crick, 1953). The conversion of this 

information into a functional protein is a laborious process and increases in complexity with increasing complexity 

of the organism. In simple prokaryotic organisms, a gene consists of a continuous DNA sequence that is transcribed 

in its entirety and is directly translated into a protein (Jacob & Monod, 1961). In more complex eukaryotic organisms, 

a gene that is transcribed in the nucleus by the RNA polymerase II needs to undergo several processing/maturation 

events before it can be exported to the cytoplasm, where it is translated into a protein by the ribosomal machinery 

(Clawson et al., 1985). 

The processing of the primary transcript, also called precursor messenger RNA (pre-mRNA), already begins during 

its transcription. Right after the appearance of its 5’ end, a modified nucleotide, called N7-methylguanosine (m7G), 

is attached to the 5’ ribose by a rare 5’-to-5’ triphosphate linkage (Shatkin, 1976; Chiu et al., 2002). Towards the 

end of transcription, but before termination, the transcript is cleaved at the 3’ end, and this is followed by the 

synthesis of a poly(A) tail comprising up to 200 adenosine residues. Both modifications are important for the 

transcript's stability and further promote its export to the cytoplasm and its productive translation (Shatkin & Manley, 

2000; Rosonina et al., 2003; Nagaike et al., 2011). 

In eukaryotic genes, especially of higher eukaryotes, protein-coding sequences termed exons are often disrupted 

by non-coding sequences termed introns, which are still included in the primary transcript. This demands an 

additional maturation step called splicing; in this step, intronic sequences are excised and the remaining exons are 

ligated together (Berk, 2016). The spliceosome, a highly complex and dynamic molecular machine, catalyses the 

splicing reaction and ensures its accuracy.  

 

 

1.1 Basic structure of pre-mRNAs 

 

The first demanding task of the spliceosome is the definition of the intron-exon boundaries. Since defects in splicing 

can have dramatic consequences for the cell and can ultimately cause severe diseases such as cancer or neuro-

degenerative diseases in humans, the exact nucleotide identification of an intron’s ends is a crucial process (Cooper 

et al., 2009; Webb et al., 2013; Scotti & Swanson, 2016). In eukaryotes, including yeast and humans, introns are 

flanked by short conserved sequences called splice sites, which define the boundaries of the intron and are 

important motifs for intron/exon recognition by the spliceosome (Fig. 1.1).  

The 5’ splice site (5’SS) sequence marks the boundary between an intron and its upstream exon. While this 

sequence (AG|GUAUGU, where ‘|’ indicates the exon/intron boundary) is highly conserved in yeast (Lopez & 

Séraphin, 1999), it is much more variable in human cells (AG|GURAGU, where R = purine [G or A]) (M. Q. Zhang, 

1998). The boundary between an intron and its downstream exon is determined by the 3’ splice site (3’SS). In yeast 

and human, this consists of the characteristic sequence YAG (Y = pyrimidine [C or U]) (M. Q. Zhang, 1998; Lopez 

& Séraphin, 1999). Another essential element is the branch-point sequence (BPS) YURAY (human) (M. Q. Zhang, 
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1998) or UACUAAC (yeast) (Lopez & Séraphin, 1999; Spingola et al., 1999). This motif is localized 18–40 nt or 10–

40 nt respectively, upstream of the 3’SS. Most human introns further contain a polypyrimidine (PY) tract. This 

pyrimidine-rich region is located between the branch site (BS) and the 3’SS and helps to recruit and stabilize the 

interaction of spliceosomal factors with the pre-mRNA and is an important splicing motif in humans (Coolidge et al., 

1997). 

 

 
 
Figure 1.1. Conserved splicing sequences of pre-mRNA from H. sapiens and S. cerevisiae. Schematic representation of a pre-mRNA 

comprising one intron (black line) surrounded by two exons (purple and black boxes). The conserved intron defining consensus sequences 

are specified in black and white letters, while the branch-point adenosine is shown in orange. Y(n) indicates the polypyrimidine tract. (Y: 

pyrimidines (C or T), R: purines (A or G). (Will & Lührmann, 2011) 

 

 

1.2 Pre-mRNA splicing mechanism 

 

The excision of introns from a pre-mRNA includes two sequential SN2-type transesterification reactions (Fig. 1.2). 

During the first reaction, the 2' hydroxyl group of the branch-point adenosine attacks nucleophilically the 

phosphodiester bond of the 5’SS. This results in the liberation of the 5’ exon and formation of the 3’ exon-intron 

lariat intermediate, in which the branch-point adenosine and the guanosine at the intron's 5’ end are connected by 

a 2’–5’ phosphodiester bond. The second splicing reaction involves the free 3’ hydroxyl group of the 5’ exon, which 

performs a nucleophilic attack on the phosphodiester bond at the 3'SS, resulting in exon ligation and the release of 

the intron lariat (Moore & Sharp, 1993). 

 

 

 

Figure 1.2. Chemistry of the splicing reaction. Schematic illustration of the two sequential transesterification reactions. The first step 

comprises nucleophilic attack by the 2' OH group of the branch-point adenosine on the phoshodiester bond at the 5’ splice site, leading to 

the free 5’ exon and intron-3’ exon intermediates. During the second step the free 3' OH group of the 5’ exon targets the phosphodiester 

bond at the 3'SS, resulting in the ligation of the two exons and the release of the intron lariat.  Phosphate groups involved in the reactions 

are indicated by “p”. (Will & Lührmann, 2011) 
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The mechanism of pre-mRNA splicing resembles that of group II self-splicing introns. Both exhibit similar consensus 

sequences at the splice sites and branch point and form identical intermediate and end products in two 

transesterification reactions. Since pre-mRNA introns are unable to form catalytically active structures, as group II 

introns do, their removal depends on the spliceosomal machinery. Therefore, group II intron splicing is ATP-

independent, while the spliceosome-dependent intron excision consumes energy during spliceosome assembly 

and the catalytically relevant rearrangements (Seetharaman et al., 2006; Lambowitz & Zimmerly, 2011).  

 

1.3 Trans-splicing  

 

As described above, splicing commonly occurs within one RNA molecule and can thus be considered as cis-

splicing. However, in some organisms, including trypanosomes, nematodes and plants, a rather unusual form of 

RNA splicing exists, called trans-splicing, in which splicing can occur across two distinct pre-mRNA transcripts (Fig. 

1.3).  
  

 
 
Figure 1.3. Cis-splicing versus trans-splicing. Schematic of the cis-splicing and trans-splicing reactions, both of which comprise two 

transesterification reactions. While cis-splicing involves only splicing elements from a single transcript, trans-splicing engages splicing 

signals from two distinct pre-mRNAs, each of which contributes an exon to the mature mRNA. The figure is adapted from (Garcia-Blanco, 

2003). 
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During this process, the branch point adenosine of the first pre-mRNA (PI) attacks the 5’SS of another pre-mRNA 

(PII), which liberates the 5’ exon of PII and ligates its downstream intron to PI. By attacking the 3’SS of PI, the free 

5’ exon (PII) is ligated to the 3’ exon of PI, combining two exons derived from different transcripts.  

 

Although trans-splicing has recently been described in humans, it appears to be rather seldom. It is unclear why 

cis-splicing is favored over trans-splicing, but it has been proposed that coupling of splicing to transcription might 

spatially restrict contacts between different transcripts. However, the mechanism underlying trans-splicing in 

mammalian cells is poorly understood. (Konarska et al., 1985; Caudevilla et al., 1998; Garcia-Blanco, 2003). 

 

 

1.4 snRNPs – the major building blocks of the spliceosome  

 

The spliceosome is a highly complex molecular machine with a remarkably dynamic structure and composition. 

The main components of the spliceosome are the small nuclear ribonucleoproteins (snRNPs) U1, U2 and U5 and 

a U4/U6 di-snRNP (Will & Lührmann, 2011). 

 

1.4.1 The small nuclear RNAs 

 

Each snRNP of the major spliceosome consists of a uridine-rich small nuclear RNA, called snRNA (in the case of 

the U4/U6 di-snRNP, two snRNAs), that are associated with a defined set of proteins (Lerner & Steitz, 1979; 

Bringmann et al., 1984; Hashimoto & Steitz, 1984). Apart from the U6 snRNA, all snRNAs are transcribed by the 

RNA polymerase II and thus are equipped with a 5’ terminal m7G cap during transcription (Chandrasekharappa et 

al., 1983; Kunkel et al., 1986). The m7G cap not only stabilizes the snRNAs (Furuichi et al., 1977), but also acts as 

a nuclear export signal (Hamm & Mattaj, 1990). During maturation of the snRNA in the cytoplasm the survival of 

motor neuron protein (SMN) complex directs the assembly of the seven Sm proteins B/B’, D1, D2, D3, E, F and G 

in a ring structure around each snRNA’s highly conserved uridine-rich Sm-site, forming the so-called Sm-core 

(Raker et al., 1996; Fischer et al., 1997). This promotes processing of the 3’ end of the snRNA and hypermethylation 

of the m7G cap to a 2,2,7-trimethylguanosine (m3G) cap, and the premature snRNP is reimported into the nucleus, 

where additional particle-specific proteins are recruited to form a complete snRNP (Mattaj, 1986; Fischer & 

Lührmann, 1990; Nesic et al., 2004). 

 

The U6 snRNA is transcribed by the RNA polymerase III and possesses a rare 5’-terminal J-monomethylphosphate 

cap (Kunkel et al., 1986). This cap increases the stability of the U6 snRNA but does not function as a localization 

signal (Shumyatsky et al., 1993). As a result, the U6 snRNA remains in the nucleus during maturation (Spiller et al., 

2007). The U6-specific equivalent of Sm proteins are the LSm proteins (LSm2–8), which also form a heptameric 

ring around a uridine-rich sequence at the 3’ end of the snRNA (Achsel et al., 1999). After maturation, the U4 and 

U6 snRNAs form an extensive interaction network, which is followed by association of particle-specific proteins, 

forming the mature di-snRNP (Wersig et al., 1992).  
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The snRNAs form secondary structures, which are highly conserved among higher eukaryotes. Fig. 1.4 illustrates 

the anticipated structures of the human snRNAs within the respective snRNPs. In the di-snRNP U4 and U6 exhibit 

complementary regions, which are base-paired to one another (stems I and II) (Brow & Guthrie, 1988). During the 

dynamic assembly of the spliceosome some secondary structures, as well as interactions between snRNAs, are 

remodelled.  

 

 

 

 

Figure 1.4. Sequences and conserved secondary structures of the human spliceosomal snRNAs. Illustration of the snRNA’s 

structures as anticipated within the respective snRNPs. The basis for this figure was kindly provided by Berthold Kastner Department of 

Cellular Biochemistry, MPI-BPC.  

 

 

1.4.2 The snRNP-specific proteins 

 

In addition to the Sm or LSm proteins, the snRNAs further associate with a set of snRNP-specific proteins (Fig. 

1.5). The 12S U1 snRNP comprises the particle-specific proteins U1-C, U1-A and U1-70K. Although the U1 snRNA 

recognizes the 5’SS by base-pairing, U1-C and U1-70K have an important function in stabilizing the interaction of 

the snRNP with the pre-mRNA (Heinrichs et al., 1990; D. Zhang & Rosbash, 1999). 
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The 17S U2 snRNP comprises the U2-A’/U2-B’’ dimer and the two multi-protein sub-complexes SF3a and SF3b 

(Behrens et al., 1993; Brosi et al., 1993). The trimeric SF3a complex is composed of the proteins SF3a120, SF3a66 

and SF3a60 and the heptameric SF3b complex includes SF3b155, SF3b145, SF3b130, SF3b49, SF3b14a/p14, 

SF3b14b and SF3b10 (Will et al., 2002). The SF3a/SF3b proteins are important for A complex formation, as they 

support the interaction of the U2 snRNA with the BS region (Gozani et al., 1996). Additionally, a number of proteins, 

called U2-related proteins loosely associate with the U2 snRNP (Will et al., 2002). 

 

The 20S U5 snRNP comprises six particle-specific proteins (hPrp8, hBrr2, hSnu114, hPrp6, hPrp28, hLin1, 40K 

and hDib1), some of which are important for functional spliceosome assembly (Bach et al., 1989; Black & Pinto, 

1989; Behrens & Lührmann, 1991). The two helicases Prp28 and Brr2 are essential for the formation of B and Bact 

complexes, respectively (Laggerbauer et al., 1998; Staley & Guthrie, 1999; Boesler et al., 2015). The largest U5 

protein, Prp8, is located in the catalytic core of the spliceosome and has been shown to be in contact with the 5’SS, 

the 3’SS, the BPS as well as the U5 and U6 snRNAs (MacMillan et al., 1994; Umen & Guthrie, 1995; Reyes et al., 

1996). Furthermore, Prp8 interacts with Snu114; both of these have been shown to regulate Brr2 activity (Achsel 

et al., 1998; Bartels et al., 2002; Small et al., 2006; Maeder et al., 2008; Mozaffari-Jovin et al., 2012).  

 

 

 
Figure 1.5. Composition of the human snRNPs. Each snRNP consists of one (or two) snRNA(s) and a set of complex-specific proteins. 

The secondary structure of the human U snRNAs is illustrated schematically. Sm/LSm proteins are shown in grey boxes and the particle-

specific proteins of the respective snRNP are shown in the coloured boxes. (Will & Lührmann, 2011) 
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The 13S U4/U6 di-snRNP includes five particle-specific proteins: hPrp3, hPrp31, hPrp4, PPIH and Snu13. The di-

snRNP is further associated with U5, forming the 25S U4/U6.U5 tri-snRNP. This particle further contains four 

specific proteins hSnu66, hSad1, 27K and RBM42 (Behrens & Lührmann, 1991). 

While the U4 and U6 snRNAs interact extensively in the di-snRNP, the association of U5 appears to be based 

rather on protein-protein interactions. The interaction between the U5 protein Prp6 and the di-snRNP protein Prp31 

is a prerequisite for U4/U6.U5 tri-snRNP formation (Makarov et al., 2000; Makarova et al., 2002; Schaffert et al., 

2004). 

 

 

1.5 Spliceosome assembly 

 

A unique characteristic of the spliceosome is its sequential assembly de novo on each new pre-mRNA substrate 

(Fig.1.6). None of the snRNPs harbour a pre-formed active site; instead, this is created in a highly controlled manner 

during the assembly process. Its creation involves substantial remodelling of RNA/RNA and RNA-protein 

interactions. The driving forces behind these rearrangements are eight highly conserved DExD/H-box 

ATPases/helicases: UAP56, Prp5, Prp28, Brr2, Prp2, Prp16, Prp22 and Prp43 (Staley & Guthrie, 1998; Wahl et al., 

2009; Will & Lührmann, 2011).  

These helicases belong to the superfamily 2 (SF2) of helicases, which characteristically comprise two RecA-like 

domains and variable N- and/or C-terminal regions. The RecA-like domains comprise the highly conserved helicase 

motifs for binding and hydrolysis of ATP, for binding of RNA and for the coordination of ATP binding and RNA 

unwinding, respectively (Cordin & Beggs, 2013; Sloan & Bohnsack, 2018). During spliceosome assembly, 

spliceosome activation, splicing catalysis and spliceosome disassembly, these enzymes promote the specific 

removal of interaction partners (RNA or proteins) in an ATP-dependent manner, which leads to the formation of 

new base-pairing or protein-binding. 

Furthermore, DExD/H-box helicases play a central role in proofreading, i.e., the rejection and discarding of 

suboptimal substrates, thereby ensuring the high fidelity of splicing (Semlow & Staley, 2012). While the majority of 

these enzymes associate only transiently with the spliceosome, the Brr2 helicase is recruited as part of the tri-

snRNP and is released during spliceosome disassembly (Makarov et al., 2002). Consequently, the extact regulation 

of Brr2’s activity is a prerequisite for preventing premature unwinding of the U4/U6 interaction in the tri-snRNP or 

the B complex. This task appears to be mainly executed by several other spliceosomal components including the 

U5 protein Prp8 and probably several B-specific proteins. 

 

Spliceosome assembly is initiated by the binding of the U1 snRNA to the 5’SS of the intron, which is supported by 

the U1-specific proteins (Zhuang & Weiner, 1986; Heinrichs et al., 1990; D. Zhang & Rosbash, 1999). Additionally, 

SF1, U2AF65 and U2AF35 recognize the BPS, the PY tract and the 3’SS, respectively (Ruskin et al., 1988; Berglund 

et al., 1997; Merendino et al., 1999).  

Already during formation of this first assembly intermediate (the so-called E complex), all relevant splicing elements 

are recognized by the distinct splicing factors. 
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Although the U2 snRNP associates loosely with the E complex, its stable integration into the A complex requires 

the helicases UAP56 and Prp5 to perform ATP-dependent rearrangements that result in the removal of SF1 from 

the pre-mRNA and allow the U2 snRNP to interact with the branch-site region (Berglund et al., 1997; Das et al., 

2000; M. Zhang & Green, 2001; Schwer, 2001; Will et al., 2002), whereby the U2 snRNA base-pairs with the branch 

site (J. Wu & Manley, 1989; Zhuang & Weiner, 1989). In addition, numerous U2 SF3a/b proteins establish contacts 

to U2AF65 and to the branch-site adenosine itself, as well as to a region upstream of the branch site termed the 

“anchoring site” (Gozani et al., 1996, 1998; Will et al., 2001; Schellenberg et al., 2006).  

This comprehensive interaction network ensures that the splicing motif is identified with high precision. The binding 

of U2 further causes the branch-site adenosine to bulge out, which is important for the subsequent first step of 

splicing (Query et al., 1994). 

 

 
 
Figure 1.6. Spliceosomal splicing cycle. Schematic diagram of the sequential spliceosome assembly and disassembly during one 

splicing cycle. The assembly is initiated by the binding of U1 to the 5’SS (E complex). Stable binding of U2 to the BPS results in A complex 

formation. After loose association of the tri-snRNP (pre-B complex), its stable integration and the loss of U1 lead to the B complex. 

Structural rearrangements, including the release of U4 (Bact complex) as well as the subsequent action of Prp2 give rise to a catalytically 

active (B*) spliceosome. The first transesterification reaction results in the formation of complex C and the second splicing reaction in the 

mature mRNA and the intron lariat. The spliceosomal components dissociate and are regenerated for the next round of splicing (modified 

from Will and Lührmann, 2011 and Boesler et al., 2015). 
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Association of the pre-assembled U4/U6.U5 tri-snRNP with the A complex results in the relatively unstable 37S pre-

B complex, which comprises all five snRNAs. In this complex the tri-snRNP is loosely docked to the spliceosome 

by interacting with U2 forming the U2/U6 helix II. To integrate the tri-snRNP stably into the spliceosome, the binding 

of the U1 snRNP to the 5’SS is destabilized by the DEAD-box helicase Prp28 and replaced by the ACAGAG box of 

the U6 snRNA, resulting in the formation of the pre-catalytic B complex (Staley & Guthrie, 1999; Boesler et al., 

2015). At this stage the U5 snRNA establishes contacts to the 5’ exon close to the 5’SS, which are maintained 

throughout both steps of splicing (Sontheimer & Steitz, 1993; Newman, 2008).  

 

Also, the U5 protein Prp8 is in contact with the pre-mRNA close to the 5’SS, an interaction which is thought to 

stabilize the U5 snRNA at the 5’SS and appears to be essential for tri-snRNP integration (Teigelkamp et al., 1995; 

Boesler et al., 2015). Formation of the B complex is further accompanied by phosphorylation of Prp31 (di-snRNP) 

and Prp6 (U5) through the Prp4 kinase, which is either crucial for or is a result of stable integration of the tri-snRNP 

(Schneider, Hsiao et al., 2010; Boesler et al., 2015). 

To convert the B complex into an activated spliceosome (Bact complex), the B complex needs to undergo substantial 

conformational and compositional rearrangements. During activation, the base-pairing of the U4/U6 duplex is 

unwound by the Brr2 helicase, which results in the release of the U4 snRNA along with the U4/U6-associated 

proteins and factors that tether the U5 snRNP to the di-snRNP (Laggerbauer et al., 1998; Bessonov et al., 2010). 

The displacement of U4 allows the U6 snRNA to interact extensively with the U2 snRNA. The simultaneous 

interaction of U6 with the 5’SS and U2 brings the 5’SS and the BS into close proximity with one another, a 

conformation that allows the first splicing reaction to take place (Madhani & Guthrie, 1992; Sun & Manley, 1995).  

 

However, the Bact complex is still catalytically inactive. As recently shown by cryo-electron microscopy, both the 

5’SS and the U2/BS helix are shielded by proteins at this stage. Therefore, the action of the Prp2 helicase is required 

to promote the destabilization of the U2 SF3b proteins from the BS; it also appears to liberate the 5’SS for catalysis 

(Lardelli et al., 2010; Ohrt et al., 2012; Rauhut et al., 2016; Haselbach et al., 2018).  

 

The resulting B* complex is now capable of catalysing the first transesterification reaction, where the branch-point 

adenosine attacks the 5’SS nucleophilically, thereby liberating the 5’ exon and forming the 3’ exon-lariat 

intermediate. This gives rise to the C complex, which is remodelled by the helicase Prp16 to prepare the 

spliceosome for the second step of splicing. This includes the displacement of the branch-site region from the 

catalytic centre and juxtaposition of the 5’ exon’s 3’-OH and the 3’SS (Schwer & Guthrie, 1991; Ohrt et al., 2013; 

Fica et al., 2017). 

 

The resulting C* complex catalyses step two of splicing, during which the 3’ hydroxyl group of the 5’ exon attacks 

the 3’SS, resulting in exon ligation and the formation of the intron lariat. The Prp22 helicase then promotes the 

release of the mature mRNA from the post-catalytic spliceosome (Mayas et al., 2006; Schwer, 2008) in form of a 

mRNP and is subsequently exported to the cytoplasm (Le Hir et al., 2000). 
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The resulting intron lariat spliceosome (ILS) is then disassembled by the action of Prp43. As a result, the intron 

lariat is released, debranched and degraded, and the snRNPs are separated and recycled to enter another round 

of splicing (Arenas & Abelson, 1997; Gee et al., 1997). 

 

 

1.6 Gene architecture and pre-mRNA splicing 

 

The architecture of pre-mRNAs can vary widely between different organisms. In the yeast genome, only ~4% of all 

genes include introns, and usually not more than one intron is found per gene. Furthermore, the length of yeast 

introns is relatively consistent; the vast majority of introns range in length between 50 and 500 bp, with none 

exceeding 1000 bp (Lopez & Séraphin, 1999; Spingola et al., 1999). 

In contrast, the human genome is much more complex. Around 90% of all genes include at least one intron, and 

the average human gene comprises 8.8 exons and 7.8 introns. While exons display a relatively uniform length of 

~170 bp, the length of introns can vary immensely – from fewer than 100 up to more than one million bases. 

However, most introns appear to be in the range of 100–1000 bp, while introns with canonical ends are rarely 

shorter than 70 bases. This sophisticated human genome structure therefore requires many regulatory factors to 

ensure correct splice site selection and splicing. (Lander et al., 2001; Sakharkar et al., 2004; Abebrese et al., 2017).   

 

1.6.1 Alternative splicing 

 

The importance of splicing increases with the complexity of an organism. Whereas splicing is completely absent in 

prokaryotes, simple eukaryotes, such as yeasts, predominantly make use of basic constitutive splicing, which 

means that a gene is always spliced in the same way and the product does not show any sequence variation. 

Complex eukaryotic organisms, such as humans, rely on a more sophisticated form of splicing, called alternative 

splicing. More than 90% of human genes containing more than one intron undergo alternative splicing (E. T. Wang 

et al., 2008; Pan et al., 2008).  

 

Alternative splicing means that the exons of a pre-mRNA can be combined in different ways. In general, five kinds 

of alternative splicing events are known: (i) cassette exon skipping, (ii) alternative 5’SS or (iii) 3’ SS selection, (iv) 

intron retention and (v) mutually exclusive introns (E. T. Wang et al., 2008; Pan et al., 2008) (Fig. 1.7). This flexibility 

in intron/exon definition makes possible the generation of several protein isoforms from a single gene, and thus 

results in a considerable expansion of the cell’s protein diversity. By this means the relatively small human genome, 

which comprises 20,000–25,000 genes, yields an estimated 80,000–120,000 proteins (Liang et al., 2000; 

Consortium, 2004; Yura et al., 2006). As a result, constitutive and especially alternative splicing account for the 

greater part of the molecular and cellular complexity in higher eukaryotes (Blencowe, 2006; Y. Wang et al., 2015). 
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The regulation of alternative splicing appears to be quite complex and is significantly modulated by trans-acting 

factors, such as the SR proteins and the hnRNPs. The family of SR proteins is characterized by the so-called RS 

domain, which comprises long stretches that are rich in the amino acids serine (S) and arginine (R) and promotes 

the interaction with other protein components. SR proteins further include at least one RNA recognition motif (RRM), 

by which they bind to pre-mRNAs (Shepard & Hertel, 2009).  

 

 

 

Figure 1.7. Types of alternative splicing. Schematic representation of the different types of alternative splicing. (i) Alternative cassette 

exons are either included or skipped (omitted). During skipping, the exon and both surrounding introns are excised from the pre-mRNA. 

Skipping of alternative cassette exons represents the majority of alternative splicing events. (ii & iii) Selection of an alternative 5’ or 3’ 

splice site results in the exclusion of partial exon segments from, or their inclusion in, the mature mRNA. (iv) Intron retention describes the 

inclusion of an entire intron into the spliced product. (v) When two exons are mutually exclusive, only one of them will be included in the 

mature transcript. Constitutively spliced exons are indicated as purple and black boxes and introns are shown as solid lines. Alternatively 

spliced regions are represented by grey boxes and splicing choices are marked by dotted lines. The figure is adapted from Wang et al., 

2015.   
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The hnRNPs (heterogeneous nuclear RNPs) comprise a more heterogeneous set of nuclear proteins, which 

specifically associate with primary transcripts of the RNA polymerase II (Geuens et al., 2016). These proteins are 

structurally more diverse than the SR proteins; typically, they contain several structural domains, of which the RRM 

domain is the most common motif (Han et al., 2010). Additionally, hnRNPs tend to include auxiliary domains, such 

as the common RGG repeat, which functions as a protein-protein interaction module to allow interaction with other 

hnRNPs (Birney et al., 1993). 

 

These splicing factors interact with specific cis-elements that can be located within the intron or the exon. While SR 

proteins preferentially interact with exonic or intronic splicing enhancers (ESE & ISE), splicing silencers (ESS & 

ISS) are preferentially bound by hnRNPs. The interplay of these elements and splicing factors, which play opposing 

roles in splicing, are the decisive factors for splice-site choices under given conditions (Black, 2003; Bradley et al., 

2014).  

 

1.6.2 Co-transcriptional splicing  

 

Although splicing functions independently of transcription, most splicing events occur co-transcriptionally (Beyer & 

Osheim, 1988; Goldstrohm et al., 2001; Pandya-Jones & Black, 2009; Girard et al., 2012).  

 

Pandya-Jones and Black established a cell-fractionation procedure to separate chromatin-associated RNA from 

soluble nucleoplasmic RNA. Subsequent quantification by quantitative RT-PCR of the nascent RNA fraction and 

the RNA faction already released showed that the majority of constitutive introns of the c-Src and fibronectin pre-

mRNAs were excised while the pre-mRNA was still being transcribed by the RNA Polymerase II. Also introns 

abutting alternative exons were often removed co-transcriptionally, but with varying excision efficiency among 

distinct, differentially regulated, cell lines. 

 

This cell-fractionation approach was also applied by Girard et al. to detect co-transcriptional splicing in HeLa cells 

with an independent readout. They analysed the nucleoplasmic and chromatin fractions by western blotting using 

antibodies specific for the phosphorylated U2 protein SF3b155 (P-SF3b155). As phosphorylation of SF3b155 

occurs only in activated spliceosomes, this antibody thus allows one to detect active spliceosomes in HeLa cells. 

Quantification of the P-SF3b155 signal revealed that ~80% of activated spliceosomes were associated with the 

chromatin, suggesting that only 20% of pre-mRNA splicing occurs post-transcriptionally. 

Coupling of pre-mRNA splicing to transcription not only stimulates both processes (Hirose et al., 1999; Fong & 

Zhou, 2001; Millhouse & Manley, 2005; David et al., 2011), but also improves splicing fidelity and makes possible 

the coordinated regulation of the three processing events (Neugebauer, 2002; Bentley, 2014).  

 

Co-transcriptional splicing also appears to be an important factor for the regulation of alternative splicing. 

Two models have been proposed that may explain how the RNA polymerase II exerts influence on splice site 

selection; these models are not necessarily mutually exclusive. 
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The recruitment model suggests that the C-terminal domain (CTD) of the RNA polymerase II recruits specific 

splicing factors, including SR proteins and other early spliceosomal factors such as the U1 snRNP, to the nascent 

transcript, thereby influencing splice-site selection (Misteli & Spector, 1999; Morris & Greenleaf, 2000; de la Mata 

& Kornblihtt, 2006; David et al., 2011). The kinetic model concerns the elongation rate of the RNA polymerase II, 

which again is determined by certain histone marks. While rapid elongation favours strong splice sites, slow 

elongation can facilitate spliceosome assembly on introns with weak splice sites or allow binding of splicing 

enhancers/inhibitors (de la Mata et al., 2003; Dujardin et al., 2014). Since various further factors have been shown 

to influence alternative splicing it will be a major challenge to understand fully its complex regulation. 

 

1.6.3 Exon-definition pathway 

 

In the human genome, intron size can vary from less than 100 nt up to several hundred thousand nt. The 

spliceosome, however, can only assemble across an intron (intron definition) when the length of the intron does not 

exceed ~300 nt (Sterner et al., 1996). Therefore, the more frequent longer introns require an alternative to the 

traditional recognition pathway that allows splice-site identification across the exon (exon definition) (Robberson et 

al., 1990). In this case, the U1 snRNP interacts with the exon’s downstream 5’SS, while the U2 snRNP and 

U2AF65/35 bind to the BPS or the PY tract/ 3’SS upstream of the exon (Fig. 1.8). SR proteins that bind to ESE 

sequences support the assembly and stability of the exon-defined A-like complexes (Lam & Hertel, 2002). Through 

their RS domains SR proteins can interact with other splicing factors that also include a RS domain, as is the case 

for U2AF35 and U1-70K. Thus, SR proteins could form an important bridge between the U1 and U2 snRNPs in a 

cross-exon A-like complex (J. Y. Wu & Maniatis, 1993; Ram & Ast, 2006). 

 

 

 

Figure 1.8. Molecular interactions during spliceosome assembly across an exon. In the exon-defined, A-like complex, U2 snRNP is 

bound to an upstream BPS and U1 snRNP to the downstream 5’SS. The U2AF65/35 heterodimer interacts with the upstream PY tract/3’SS. 

SR proteins, which bind to exonic splicing enhancers (ESEs), bridge interactions with components of the general splicing machinery 

(indicated by red arrows). (Ram & Ast, 2006) 
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The splicing reaction, however, can only occur across the intron, and this necessitates the conversion of the exon-

defined complex to an intron-defined spliceosome. Little is known about the mechanism of this conversion, but, 

although the commitment to splice-site pairing has been attributed to the formation of the A complex (Lim & Hertel, 

2004), recent studies suggest that exon-defined A-like complexes do not need to undergo a transition to an intron-

defined A complex. As the U4/U6.U5 tri-snRNP can interact directly with the cross-exon A-like complex, the 

proximity of an adequate 5’SS allows the subsequent formation of a B-like complex (Fig. 1.9). This complex 

resembles the common intron-defined B complex and proceeds in the same manner with its catalytic activation and 

splicing catalysis (Schneider, Will et al., 2010; Boesler et al., 2016).  

 

Numerous studies indicate that the transition to an intron-defined spliceosome is an important checkpoint for 

determining whether an exon is included or skipped during alternative splice site selection. If an exon cannot be 

recognized, or the transition to an intron-defined organization is prevented, the exon will inevitably be skipped 

(Izquierdo et al., 2005; House & Lynch, 2006; Bonnal et al., 2008; Sharma et al., 2008). 

 

 
Figure 1.9. Intron- versus exon-definition pathway. Spliceosome assembly during intron and exon definition. In the intron-defined 

pathway, U1 and U2 snRNPs bind to the 5’SS and BPS of the same intron. Upon association and integration of the U4/U6.U5 tri-snRNP, 

the B complex is formed. During exon definition, U2 snRNP interacts with an upstream BPS and the U1 snRNP with the downstream 5’SS 

of the exon. The recruitment of the U4/U6.U5 tri-snRNP results in the cross-exon complex, which makes the transition to an intron-defined 

organization. Subsequently, spliceosome assembly proceeds along the canonical splicing pathway. The figure is adapted from Schneider, 

Will et al., 2010. 
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1.6.4 Spliceosome assembly requires a minimum intron length 

 

Intron length represents an important factor in pre-mRNA splicing. While the alternative exon-definition pathway 

enables the spliceosome to deal with introns that exceed the acceptable size for intron definition, a minimum intron 

length appears to be a prerequisite for the assembly of functional spliceosomes. Investigation of short introns in 

human cells showed that canonical introns, which are thought to be excised by the spliceosome, are rarely shorter 

than 70 nt (Abebrese et al., 2017). Consistently, in the 1980s several studies showed that a minimum of 60–80 nt 

must separate the 5’SS and the 3’SS to allow proper splicing (Wieringa et al., 1984; Ulfendahl et al., 1985). Soon 

after this discovery, other studies defined the decisive factor more precisely as the distance between the 5’SS and 

the branch site, as elongating the intron by PY-tract extension could not restore splicing (Fu et al., 1988; Köhrer & 

Domdey, 1988; Smith & Nadal-Ginard, 1989). A distance between the 5’SS and the BS of 45–52 nt was shown to 

result in the selection of an upstream cryptic 5’SS, which increases the distance to the branch site. In the absence 

of an alternative splice site, the intron was shown to be retained in the mature mRNA (Krainer et al., 1984; Köhrer 

& Domdey, 1988).  

 

Steric hindrance has been suggested as a possible reason for a minimum length requirement. The U1 and 

(especially) the U2 snRNP are large complexes, whose simultaneous binding to the 5’SS and to the BS may require 

a certain amount of space and flexibility (Wieringa et al., 1984; Fu et al., 1988). This idea has been supported by 

native gel and sedimentation analysis, which showed impaired spliceosome assembly on short non-functional 

introns (Köhrer & Domdey, 1988; Smith & Nadal-Ginard, 1989; Himmelspach et al., 1991). Thus, intron size seems 

to be a relevant determinant for spliceosome assembly and splicing. However, the exact mechanism of intron-

length-dependent spliceosome assembly is only poorly understood. 

 

 

1.7 Dynamic RNA/RNA interaction network 

 

The formation of a functional spliceosome is associated with extensive remodelling of the RNA/RNA interaction 

network (Fig. 1.10) (Wahl et al., 2009; Will & Lührmann, 2011). The initial recognition of the 5’SS occurs through 

base-pairing with the 5’ end of the U1 snRNA (Zhuang & Weiner, 1986). The second interaction with the pre-mRNA 

is formed by the U2 snRNA, resulting in a short U2/BPS-duplex, where the branch-point adenosine is bulged out 

(J. Wu & Manley, 1989; Zhuang & Weiner, 1989; Query et al., 1994). This exposes the adenosine’s 2’ hydroxyl 

group for nucleophilic attack at the 5’SS.  

 

Upon recruitment of the U4/U6.U5 tri-snRNP, the 5’ end of the U2 snRNA and the 3’ end of the U6 snRNA form a 

short helix (U2/U6 helix II). Stable integration of the tri-snRNP, however, involves the displacement of U1 from the 

5’SS and also base-pair formation between the 5’SS and the U6 ACAGAG box. In the B complex U6 is thus base-

paired to U2, to the pre-mRNA and extensively to U4. (Staley & Guthrie, 1999; Boesler et al., 2015). 
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The U6 snRNA includes important components of the catalytic centre, which are kept in an inactive state by 

hybridization with the U4 snRNA in the tri-snRNP and the B complex to prevent premature catalysis. Consequently, 

the catalytic activation of the spliceosome requires the disruption of the U4/U6 snRNA duplex (U4/U6 stem I and 

stem II), which is followed by release of the U4 snRNP (Laggerbauer et al., 1998; Raghunathan & Guthrie, 1998). 

This allows U6 to form interactions with the U2 snRNA (U2/U6 helix Ia and I), thereby juxtaposing the 5’SS and the 

BPS for the first splicing reaction. The release of U4 further allows U6 to form an internal stem-loop (U6 ISL) that 

structurally resembles domain V (D5) of group II self-splicing introns and, likewise, coordinates catalytically 

important metal ions (Madhani & Guthrie, 1992; Anokhina et al., 2013).  

 

Cryo-electron microscopy of the first S. pombe spliceosome illustrated the major structural similarities between the 

U6 ISL and D5 (Hang et al., 2015). In the spliceosome, three conserved motifs are involved in metal-binding. These 

include (i) the so-called catalytic triad AGC, which is located within the U2/U6 helix Ib at the stem of the U6 ISL, (ii) 

a bulged-out uridine located five nucleotides from this triad and (iii) the U6 ACAGAG box. These three structures 

formed by U2 and U6 are important for the RNA-metal-mediated catalysis of both pre-mRNA splicing steps (Keating 

et al., 2010; Fica et al., 2013). Thereby, the catalytic AGC triad forms a triple helix with the terminal GA of the 

ACAGAGA sequence and the bulged-out uridine of the U6 ISL. This so-called catalytic triplex coordinates two 

magnesium ions at a distance of about 4 Å; these mediate the catalysis of both steps of pre-mRNA splicing. In the 

same manner, magnesium ions are coordinated by group II self-splicing introns, suggesting that group II introns 

and the spliceosome share an evolutionary heritage. 

 

 
 
Figure 1.10. Dynamic RNA-RNA network in the spliceosome. Schematic illustration of the rearrangements of RNA-RNA interactions 

during formation of a catalytically activated spliceosome. In the pre-B complex, the U1 snRNA is base-paired with the 5’SS (aubergine), 

and the U2 snRNA is bound to BPS (turquoise). Initial association of the U4/U6.U5 tri-snRNP occurs between the U6 and U2 snRNAs 

(blue). Stable integration of the U4/U6.U5 tri-snRNP during B complex formation involves the disruption of base-pairing between the U1 

snRNA and the 5’SS, which allows the 5’SS to interact with the conserved ACAGAG motif of the U6 snRNA (purple). During activation, 

the base-pairing between U4 and U6 snRNAs is disrupted, resulting in extensive base-pairing between the U2 and U6 snRNAs via helix 

(yellow). The U6 snRNA further forms an essential internal-stem loop (ILS) (red), while the U2 snRNA remains base-paired with the BPS. 

U5 snRNA contacts nucleotides of the exon. Exons are represented as grey boxes, while introns are shown as a black line. Secondary 

structures of snRNAs are shown schematically in grey or black. Of the U5 snRNA, only loop I is shown. The regions involved in base-

pairing (short lines) are shown in different colours. This figure was kindly provided by Berthold Kastner, Department of Cellular 

Biochemistry, MPI-BPC. 
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The U5 snRNA comprises a stem loop (U5 stem loop I), which interacts with the 5’ exon before and after the first 

step of splicing and further contacts the 3’ exon after the first catalytic step has occurred. Thus, the U5 snRNA plays 

an important role in properly positioning the two exons for the second splicing reaction (Sontheimer & Steitz, 1993; 

Newman, 2008). 

 

 

1.8 Dynamic protein composition of the spliceosome  

 

The spliceosome is a particularly protein-rich molecular RNP machine. Around 170 proteins have been identified 

as spliceosomal components in humans, while individual spliceosomal complexes can contain ~110 proteins (Fig. 

1.11). The yeast spliceosome comprises fewer (~90) protein factors (Fabrizio et al., 2009), most of which have 

homologues in higher eukaryotes. This indicates that the yeast spliceosome represents the basic, evolutionarily 

conserved core spliceosome. Consistently with this idea, it appears that many proteins that are not conserved from 

yeast to human have regulatory roles, such as the regulation of alternative splicing. 

 

In addition to the ~45 snRNP-associated factors, a number of non-snRNP proteins accompany the spliceosome. 

Their attachment is often transient and limited to the stages when their presence or action is required. (Wahl et al., 

2009; Will & Lührmann, 2011). 

Mass-spectrometric analysis of spliceosomal complexes assembled in vitro have allowed the determination of the 

protein composition of the spliceosome's major assembly stages, thereby revealing the extent of protein exchange 

between one intermediate and the next. This in turn allowed the identification of groups of proteins that are 

exclusively present at each particular stage, thereby giving a unique proteomic signature to distinct intermediate 

spliceosomal complexes (Deckert et al., 2006; Behzadnia et al., 2007; Bessonov et al., 2010; Agafonov et al., 2011). 

 

During B complex formation a number of designated A complex proteins and U1 snRNP proteins are released, 

while about 25 proteins join the spliceosome as part of the U4/U6.U5 tri-snRNP together with a number of non-

snRNP protein factors. These include a group of proteins, previously identified as B-specific proteins, as well as the 

pre-assembled Prp19/CDC5L complex, a set of Prp19/CDC5L-related proteins and the RES complex. Owing to 

their sub-stoichiometric abundance in the B complex, the latter spliceosomal factors were thought be only loosely 

associated with the B complex, with their stable integration following during the activation. However, recent 

evidence suggests that these proteins are recruited only after Bact complex formation. 

This protein composition was based on the analysis of so-called kinetic B complexes, which were obtained by 

incubation of the pre-mRNA under splicing conditions for 5–8 minutes before the assembly was stopped. During 

this time no first-step products are formed, indicating that the majority of spliceosomes are in a pre-catalytic state. 

Nevertheless, when B complexes are kinetically stalled the possibility exists that a small fraction of the population 

undergoes activation, which can give a false impression of the actual situation. 
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Figure 1.11. Dynamic protein composition of the human spliceosome. The protein composition of the human B, Bact and C complexes 

as determined by 2D gel-electrophoresis and mass spectrometry. The C complex was stalled before the Prp16-driven rearrangements by 

using a dominant negative Prp16 mutant. The relative abundance of proteins is indicated by bold (stoichiometric amounts) or light 

(substoichiometric amounts) lettering. Proteins are grouped according to their snRNP association, function, presence in a stable 

heteromeric complex or association with a particular spliceosomal complex, as indicated. SR and hnRNP proteins, as well as those present 

in very low amounts, are not shown. This figure is adapted from results kindly obtained by Leyla El Ayoubi and Dmitry Agafonov, 

Department of Cellular Biochemistry, MPI-BPC. 
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Recently, two studies showed that when B complexes were stalled with the ATP analogue ATPγS (BATPγS) 

(Agafonov, Van Santen et al., 2016) or by lowering the concentration of MgCl2 (BDeltaMgCl2) (Bertram, Agafonov, 

Dybkov et al., 2017) the Prp19/ CDC5L complex, the Prp19-related proteins as well as the RES complex were 

essentially absent; only RBM22 and SKIP were present in sub-stoichiometric amounts. In contrast, the B-specific 

proteins were stoichiometrically present. This suggests that in the purified the kinetic B complexes the 

PRP19/CDC5L and Prp19-related proteins may be derived from contaminating Bact complexes, whereas the stalled 

B complexes represent a more homogeneous B complex population. 

The exclusive association of the B-specific proteins with the B complex led to the initial assumption of a role for 

them in B complex formation. However, recent studies by Boesler et al. have suggested that these proteins are not 

necessarily required for stable B complex formation in vitro (Boesler et al., 2015, 2016). 

 

The subsequent activation of the spliceosome is also highly dynamic at the level of protein composition. Proteins 

associated specifically with the U4/U6 di-snRNP and the U4/U6.U5 tri-snRNP, as well as the B-specific proteins, 

are released (~30 proteins), while ~10 proteins - including Bact-specific factors, the Prp19/CDC5L complex, the 

inron-binding complex (IBC) and the RES complex - are stably integrated and are present in stoichiometric amounts 

in the Bact complex. While the Prp19/CDC5L complex was proposed to be essential for spliceosome activation 

and/or the first step of splicing (Makarova et al., 2004), little is known about the function of the RES complex in 

splicing. A recent study suggests that in yeast this complex is involved in the B-to-Bact transition (Bao et al., 2017). 

However, while these proteins are already associated with the yeast B complex, they appear to be recruited to the 

human spliceosome after its activation.  

 

During C complex formation, only moderate structural changes take place, but ~10 proteins, the presence of which 

is no longer required, are released while the C complex-specific proteins, the first-step splicing factors and members 

of the exon junction complex (EJC) are recruited (~15 proteins). The EJC is placed onto the pre-mRNA upstream 

of the splice junction and remains associated with the mature mRNA to modulate its downstream metabolism in the 

cell (Le Hir & Séraphin, 2008). 

Finally, the second-step factors and a group of putative C*-specific proteins join the spliceosome after the first step 

of splicing, while some C complex proteins are released. 

 

 

1.9 Post-translational phosphorylation of proteins during splicing 

 

Besides the dramatic compositional and conformational changes that the spliceosome undergoes during splicing, 

alterations in the phosphorylation state of distinct spliceosomal proteins have also been recorded. 

Reversible protein phosphorylation is the most common post-translational modification, and the phosphorylation 

and dephosphorylation of certain proteins has been shown to be essential for spliceosome assembly and splicing 

catalysis. Interestingly, the majority of spliceosome-related phosphorylation events identified so far take place on 

serine/threonine residues. At the beginning of the splicing cycle, for example, SR proteins are intensively 
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phosphorylated (Xiao & Manley, 1997) and several snRNP-associated proteins undergo phosphorylation in early 

stages of the splicing cycle. This includes extensive phosphorylation of the U1 snRNP protein 70K during E complex 

formation; this phosphorylation step has been shown to be essential for spliceosome assembly (Woppmann et al., 

1993; Hernández et al., 2009).  

Additionally, B complex formation is accompanied by phosphorylation events, such as that of Prp28 (by SRPK2), 

Prp31 (by Prp4-kinase; Fig. 1.12) and Prp6 (also by Prp4-kinase). These proteins were shown to be phosphorylated 

during stable integration of the tri-snRNP (Schneider, Hsiao et al., 2010).  

Furthermore, the U2-associated protein SF3b155 is phosphorylated at specific serine/threonine residues in the Bact 

complex before the first catalytic step and is subsequently dephosphorylated in the C complex before the second 

step of splicing (Agafonov et al., 2011; Girard et al., 2012).  

The two redundant phosphatase families PP1 and PP2A were identified as mediating splicing catalysis by 

dephosphorylating their main substrates, phosphorylated U2-SF3b155 and U5-116K, respectively, which is relevant 

for initiating the second catalytic splicing step. Similarly, dephosphorylation of 70K, which already occurs during A 

complex formation, is a prerequisite for the first splicing step to occur (Shi et al., 2006; Wahl et al., 2009). 

 

In general, it can be said that phosphorylation occurs predominantly during spliceosome assembly and activation, 

whereas catalysis and disassembly are rather characterized by dephosphorylation events. At present it is unclear 

how the phosphorylation/dephosphorylation of specific proteins controls the progression of the splicing cycle. 

However, it is believed that phosphorylation events are likely to exert control over protein–protein interactions.  

 

 

1.10 The structure of the human B complex and the organization of the B-specific proteins 

 
While the composition of the spliceosome has been investigated extensively over many years, it is only recently 

that detailed structural information could be provided. The size of the spliceosome and its flexibility render 

comprehensive structural analysis challenging. In the past years, however, several high-resolution structures of 

distinct spliceosomal complexes derived from yeast and human have been resolved by cryo-electron microscopy 

(cryo-EM). These include the tri-snRNP (Nguyen et al., 2015, 2016; Agafonov, Kastner et al., 2016), the B complex 

(Bertram, Agafonov, Dybkov et al., 2017; Plaschka et al., 2017; Bai et al., 2018), the Bact complex (Rauhut et al., 

2016; Yan et al., 2016; Haselbach et al., 2018; X. Zhang et al., 2018), the C complex (Galej et al., 2016; Wan et al., 

2016; Zhan et al., 2018), the C* complex (Bertram, Agafonov, Liu et al., 2017; Fica et al., 2017; Yan et al., 2017), 

the P complex (Bai et al., 2017; Liu et al., 2017; Wilkinson et al., 2017) and the ILS (Wan et al., 2017). Together, 

these structures have provided a wealth of information about the location of RNAs and proteins in the various 

spliceosomal “snapshots” and their dynamics during the transition from one complex to the next.  
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Bertram, Agafonov, Dybkov, et al. (2017) were able to resolve the structure of the human B complex (Fig. 1.12A), 

which also revealed the locations of several domains of the B-specific proteins. In the human B complex the U2-

containing globular head domain is found on top of a triangular body; the latter comprises the tri-snRNP and the B-

specific proteins. The two domains are connected by three main bridges. Bridge B1 comprises the U2/U6 helix II, 

B2 includes spliceosomal proteins and B3 most likely contains the protein-bound intron, which interacts with both 

the U2 and U6 snRNAs.  

 

As observed for the human Bact (Haselbach et al., 2018; X. Zhang et al., 2018) and C* complexes (Bertram, 

Agafonov, Liu et al., 2017), the intron forms extended helices with the U6 ACAGAG box at the 5’SS and U2 at the 

BS. These helices extend beyond the short 5’SS or BS regions and are thought to stabilize the interaction of the 

snRNAs with the pre-mRNA in the spliceosome, which is further supported by the binding of protein factors. 
 
The U4 Sm core and helix I of the U4/U6 duplex are connected by a single-stranded region of U4, which serves as 

a docking site for the N-terminal helicase cassette of Brr2 and is essential for the helicase’s U4/U6 duplex-unwinding 

activity in vitro (Mozaffari-Jovin et al., 2012). In the B complex, the Brr2 helicase is loaded onto this single-stranded 

region of the U4 snRNA, but it is not yet in contact with the U4/U6 duplex region. As this isolated B complex remains 

stable in the presence of ATP, the helicase activity of Brr2 is likely to be negatively regulated in this complex. It 

appears that at least some of the B-specific proteins are involved in the regulation of Brr2 in the spliceosome when 

it is primed for activation, which makes their position in the B complex particularly interesting (see below). 

 

During formation of the B complex, the Prp28 helicase is destabilized, which allows the three B-specific proteins 

Prp38, MFAP1 and Snu23 to bind as a trimeric protein complex close to the extended U6 ACAGAG/5’ SS helix. 

Although it has been suggested that Prp38 and MFAP1 are important for a functional activation step, the underlying 

mechanism is poorly understood (Lybarger et al., 1999; Schütze et al., 2016; Ulrich & Wahl, 2017). The structure 

of the human B complex shows that the NTD of Prp38 as well as known D- helices of Snu23 and MFAP1 are in 

direct contact with the U6 ACAGAG/5’SS helix region (Fig. 1.12B). Therefore, involvement in repositioning the 5’SS 

during activation has been proposed for these proteins. 

 

FBP21 is another member of the set of B-specific proteins. It is conserved among the higher eukaryotes but does 

not have any known counterpart in yeast. In the human B complex FBP21 appears to bind through its zinc finger 

domain to the minor groove of the U6 ACAGAG/5’SS helix and also to contact Brr2 (Fig. 1.12B), suggesting that 

FBP21 might be important for maintaining Brr2 in an inactivate state in the B complex. Consistently with this, a 

recent study suggested that the helicase activity of Brr2 is inhibited in the presence of FBP21 (Henning et al., 2017). 

Interestingly, in spliceosomal complexes stalled with the small-molecule inhibitor cp028 (designated as the B028 

complex), FBP21 is the only B-specific protein that is absent (Sidarovich et al., 2017). This compound inhibits 

spliceosome maturation at an intermediate state after the release of the U4 snRNP, but before the release of the 

LSm and B-specific proteins and the recruitment of the Prp19/CDC5L complex, the Bact-specific proteins etc. It 

appears that with the release of FBP21 a physical barrier is removed, which makes possible the Brr2-driven 

activation of the spliceosome.  
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Taken together, these results suggest that FBP21 prevents premature unwinding of the U4/U6 interaction by 

inhibiting Brr2 activity in early B complexes. This essential role of FBP21 in the regulation of spliceosome assembly 

underlines both the importance of the precise control of Brr2 and the possibility that splicing factors specific for 

higher eukaryotes may be indispensable for basic splicing.  

 

 

 

Figure 1.12. Structure of the human B complex. (A) Cryo-eletron microscopy structure of the human B complex. Green proteins and 

snRNA belong to the U2 head domain. Proteins and snRNAs with other colours are part of the tri-snRNP or belong to the B-specifc 

proteins. The three bridges are indicated by black letters. The proteins are labelled in the corresponding colours. (B) Locations of the B-

specific proteins Prp38, Snu23, MFAP1 and FBP21 within the human B complex as determined by cryo-electron microscopy. This part of 

the figure was taken from Bertram, Agafonov, Dybkov et al., 2017  
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Like FBP21, Smu1 and RED are found in higher eukaryotes while being absent in yeast. These two proteins have 

been the targets of several studies, yet their function in splicing is poorly understood. Owing to their absence in 

simple organisms, it has been proposed that they may act as regulatory factors rather than having an essential core 

function. This is supported by a recent study that showed that siRNA-mediated depletion of Smu1 or RED changes 

the pattern of alternative splicing in human cells (Papasaikas et al., 2015). Interestingly, alternative splicing 

appeared to be affected in a very similar manner by siRNA-mediated knock-down of Smu1 or RED, suggesting that 

these two proteins function as a single unit. Consistently with this, several other studies have provided evidence for 

a physical and functional connection between Smu1 and RED. For instance, a Smu1-RED complex was shown to 

be recruited by the influenza virus RNA polymerase whose transcripts appeared to be spliced differently upon 

depletion of RED/Smu1 (Fournier et al., 2014). Furthermore, the siRNA-induced depletion of either Smu1 or RED 

in cells has been shown to result in co-depletion of the other, suggesting that the interaction between these two 

proteins improves the stability of both of them (Spartz et al., 2004).  

 

 
 

Figure 1.13. Structure of C. elegans Smu1 and RED. (A) Schematic illustration of Smu1 and RED from C. elegans. (B) The structures 

of the NTR of Smu1 and the short helices of RED that interact with Smu1 were determined by crystallography. The intrinsically disordered 

protein RED is illustrated schematically and a common folding of the Smu1-WD40 is shown. (Ulrich et al., 2016) 
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Yeast two hybrid and structural studies further proposed that Smu1 and RED form a functional module that recruits 

further spliceosomal factors to the spliceosome (Hegele et al., 2012). Apart of a LisH-CTLH homo-dimerization 

motif and a globular core domain, which is involved in hetero-dimer formation with RED, Smu1 further comprises a 

C-terminal WD40 domain. This domain is known to mediate protein-protein interactions and was thus suggested to 

serve as a binding platform for other proteins. RED, which is intrinsically disordered, was shown to form a short 

helical structure only upon interaction with Smu1 and was proposed to contact additional spliceosomal proteins in 

a similar manner (Fig. 1.13) (Ulrich et al., 2016). 

 
The cryo-EM structure of the human B complex has indicated a new possible role for Smu1 and RED - that is, in 

forming a bridge between U2 and the tri-snRNP in the B complex (Bertram, Agafonov, Dybkov et al., 2017). 

Specifically, Smu1 directly contacts the WD40 domain 2 of U2-SF3B3 and the C-terminal cassette of Brr2 through 

its WD40 domain (Fig. 1.12A). It is possible that this interaction stabilizes the position of Brr2 relative to its U4/U6 

substrate and might be important during the activation. The precise location of RED in the B complex could not be 

determined since this intrinsically disordered protein lacks clear structural domains. However, chemical crosslinking 

experiments suggest that RED makes contact with several U2 proteins and with Smu1 as well as with Prp8. This 

shows that RED and Smu1 engage in several contacts within the spliceosome and may thus jointly stabilize the 

interaction between the U2 snRNP and the tri-snRNP in the human B complex.  

 
 

1.11 Aims 

 

The B-specific proteins interact transiently with the spliceosome at the B complex level. While Prp38, MFAP1 and 

Snu23 are highly conserved and have been proposed to be essential for the activation of the spliceosome, FBP21, 

Smu1 and RED are only shared among higher eukaryotes and little is known about their function. Recently, two 

independent studies came to the conclusion that FBP21 might also help to keep the Brr2 helicase inactive at the 

critical stage of preparing the spliceosome for its activation (Bertram, Agafonov, Dybkov et al., 2017; Henning et 

al., 2017). All in all, it appears that the B-specific proteins, conserved or not, are important for supporting or 

regulating the Brr2-driven rearrangements.  

 

The role of Smu1 and RED, however, remains poorly understood. Although these two proteins have recently been 

the objects of several studies, each study led to different proposed functions in splicing, so that no clear picture has 

yet emerged. While Smu1 and RED were first thought to be regulators of alternative splicing (Papasaikas et al., 

2015) or mediators of protein–protein interactions (Hegele et al., 2012), more recent considerations rather attribute 

to them a role in spliceosome stability (Bertram, Agafonov, Dybkov et al., 2017). The one point on which structural 

and functional studies unanimously agree is that the two proteins undergo a mutual physical interaction that results 

in a combined, joint function.  
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Therefore, my thesis addresses the question of the role that Smu1 and RED actually play during splicing. Currently, 

it is widely accepted that Smu1 and RED are auxiliary factors that control alternative splicing. However, their 

transient association with the B complex might indicate an involvement in the formation or stabilization of this 

assembly intermediate. To reveal whether Smu1 and RED function as regulatory or general splicing factors, I set 

out to seek convincing evidence by investigating splicing and spliceosome assembly in vivo and in vitro. It has been 

proposed several times that Smu1 and RED act as a unit during splicing. To understand the importance and nature 

of this interaction, I further investigated the individual contribution of each protein to their joint function in splicing. 

A final elucidation of the role of Smu1 and RED within the spliceosome will help us to understand why higher 

eukaryotes need a more complex spliceosomal protein composition, and how these additional factors enable the 

spliceosome to fulfil its tasks in more complicated organisms.  
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2. Materials and methods 
 
2.1 Materials  
 
2.1.1 Chemicals 

 

Chemical Supplier 

Acetic acid Merck, Germany 

Agarose (low melting point) Thermo Fisher Scientific, USA 

Agarose Serva, Germany 

Ammonium peroxidisulphate (APS) Serva, Germany 

Ampicillin Roth, Germany 

Boric acid Merck, Germany 

Bromphenol blue Serva, Germany 

Calcium chloride dehydrate (CaCl2 • 2H2O) Merck, Germany 

Coomassie brilliant blue G-250  Serva, Germany 

Creatine phosphate Sigma-Aldrich, Germany  

Dimethyl pimelimidate (DMP) Thermo Fisher Scientific, USA 

Dimethylsulphoxide (DMSO) Roth, Germany 

Dithiobis succinimidyl propionate (DSP) Thermo Fisher Scientific, USA 

Dithiothreitol (DTT) Roth, Germany 

DNA molecular weight marker (2log, 1kb) Roth, Germany 

DNA molecular weight marker (5kb, 100bp) New England Biolabs, Germany 

EDTA (disodium salt dihydrate) Roth, Germany 

Ethanol Merck, Germany 

Ethidium bromide Serva, Germany 

Ficoll 400 Sigma-Aldrich, Germany 

Fish sperm DNA (10mg/mL) Roche, Germany 

Formamide Merck, Germany 

Gentamycin Roth, Germany 

Glycerol Merck, Germany 

Glycine Merck, Germany 

GlycoBlue™ Coprecipitant Thermo Fisher Scientific, USA 

Glycogen (20 mg/mL) Sigma-Aldrich, Germany 

Heparin (sodium salt) Roth, Germany 

HEPES (N-2-Hydroxyethylpiperazin-N-2-ethansulfonic 

acid) 

Sigma-Aldrich, Germany  

Hydrochloric acid fuming 37% Merck, Germany 

Imidazole Serva, Germany 
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IPTG Roth, Germany 

Isopropanol Merck, Germany 

Kanamycin Roth, Germany 

Maltose Merck, Germany 

Magnesium chloride hexahydrate (MgCl2 • 6H2O) Merck, Germany 

Methanol Merck, Germany 

β-Mercaptoethanol Roth, Germany 

Milk powder Roth, Germany 

MOPS Roth, Germany 

Nonidet P-40   

Penicillin/Streptomycin (10 mg/mL) Thermo Fisher Scientific, USA 

PMSF (Phenylmethylsulfonylfluoride) Roche, Germany 

Poly (ethylene glycol)-block-poly(propylene glycol)-

block- poly(ethylene glycol) (PEG-PPG) average Mn ~ 

14000 

Sigma-Aldrich, Germany 

Polyvinylpyrrolidone average Mn 10000 Sigma-Aldrich, Germany 

Ponceau S Serva, Germany 

Potassium chloride (KCl) Merck, Germany 

Potassium dihydrogen phosphate (KH2PO4) Merck, Germany 

Potassium hydroxide (KOH) Merck, Germany 

Pre-stained protein-molecular weight marker Bio-Rad, Germany 

Roti phenol-chloroform-isoamyl alcohol (PCI) Roth, Germany 

Rotiphorese Gel 30 (37.5:1) Polyacrylamide Roth, Germany 

Rotiphorese Gel 40 (19:1) Polyacrylamide Roth, Germany 

Sodium acetate Merck, Germany 

Sodium azide Merck, Germany 

Sodium chloride (NaCl) Merck, Germany 

Sodium dodecyl sulfate (SDS) Serva, Germany 

Sodium hydroxide (NaOH) Merck, Germany 

Spermidine Sigma-Aldrich, Germany 

SYBR® Gold Nucleic Acid Gel Stain Thermo Fisher Scientific, USA 

TEMED (N, N, N’, N’-Tetramethylethylendiamine) Sigma-Aldrich, Germany 

Tetracyclin Roth, Germany 

Triethanolamine Sigma-Aldrich, Germany 

Tris [Tris-(hydroxymethyl)aminomethane] VWR International, Germany 

Triton X-100 Sigma-Aldrich, Germany 

tRNA from E. coli Roche, Germany 

Tween-20 Roth, Germany 

Urea Merck, Germany 
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X-gal  

Xylene cyanol FF Sigma-Aldrich, Germany  

 

 

2.1.2 Consumables 

 

Consumable Supplier  

6-well plates Greiner-Bio-One, Germany 

Biodyne B Membrane Pall Corporation, Germany 

Cell scraper Sarstedt, Germany 

Centrifugal filters, Amicon Ultra Millipore, USA 

Centrifuge tubes (TH660) Seton scientific, USA 

Centrifuge tubes (TST41.14) Beranek Laborgeräte, Germany 

Dialysis membranes (MWCO 6000-8000 Da) SpektraPor, USA 

Electroporation cuvettes  Bio-Rad, Germany 

NuPAGETM gels (1.5 mm, 4–12%) Thermo Fisher Scientific, USA 

Nesco-/Parafilm Roth, Germany 

Petri dishes (for bacteria) Sarstedt, Germany 

Greiner CELLSTAR® dish (for adhesive cell lines) Greiner, Germany 

Greiner CELLSTAR® serological pipette Greiner, Germany 

Greiner culture tubes (14 mL) Greiner, Germany 

Protran BA 83 nitrocellulose GE Healthcare, UK 

ReadyLyzer 3, MWCO 6–8 kDa Serva, Germany 

Safe-lock tubes (0.5, 1.5 and 2 mL) Eppendorf, Germany 

Standard Polystyrene Semi-micro Cuvettes Sarstedt, Germany 

Sterile filters (0.2 μm or 0.45 μm) Sarstedt, Germany 

Surgical blades Martin, Germany 

Tips, disposable  StarLab, UK 

Tubes (15 mL and 50 mL) Sarstedt, Germany 

Whatman 3MM paper Whatman, UK 
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2.1.3 Chromatographic resins and columns 

 

Resin / column Supplier 

Amylose resin New England Biolabs, Germany 

Chromatography columns Bio-Rad, Germany 

Dynabeads™ Protein A Thermo Fisher Scientific, USA 

Roti®garose-His/Ni Beads Roth, Germany 

ProbeQuantTM G-50 micro columns GE Healthcare, UK 

 

 

2.1.4 Commerical kits and buffers  

 

Kit Supplier 

BCATM protein assay kit Thermo Fisher Scientific, USA 

ECL Western Blot Detection Kit GE Healthcare, USA 

High Pure Plasmid Isolation Kit Roche, Germany 

Lipofectamine RNAiMAX Transfection Reagent Thermo Fisher Scientific, USA 

NucleoSpin® Gel and PCR Clean-up Macherey-Nagel, Germany  

Prime It II random-primer labeling kit Agilent Technologies, USA 

PureLink™ HiPure Plasmid Filter Maxiprep Kit Thermo Fisher Scientific, USA 

X-tremeGENE™ 9 DNA Transfection Reagent Sigma-Aldrich, Germany 

 

Buffer Supplier 

Gel Loading Dye, Purple (6X), no SDS New England Biolabs, Germany 

Phusion® HF Buffer Pack (5x) New England Biolabs, Germany 

 

 

2.1.5 Machines 

 

Machine Supplier 

Autoclaves H+P Labortechnik, Germany 

Axiovert 25 Inverted Microscope Zeiss, Germany 

Biological safety Cabinets Hera Safe  Thermo Fisher Scientific, USA 

Biofuge fresco Heraeus, Germany 

Biofuge pico Heraeus, Germany 

Bioruptor Sonicator Diagenode, Belgium 

Casy Cell Counter + Analyzer System Model TT Innovatis, Germany 

Centrifuge 5424/5424 R Eppendorf, Germany 

CO2 incubator BBD 6220 Heraeus, Germany 
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EG&G, and radiation hand-foot monitor Berthold, Germany 

Electroporation system MicroPulser Bio-Rad, Germany 

Fiberlite™ F14-14 x 50cy Fixed-Angle Rotor Thermo Fisher Scientific, USA 

Gel documentation unit Bio-Rad, Germany 

Gel electrophoresis apparatus Bio-Rad, Germany 

Gel electrophoresis apparatus In-house 

Gel dryer model 583 Bio-Rad, Germany 

Glass cell culture flasks  Duran Group, Germany 

Glass-ware VWR International, Germany 

Gradient master model 106 BioComp Instruments, Canada 

Head-over-tail rotor Cole-Parmer, USA 

Heating blocks HB-130 Unitek, USA 

Hybridization oven Hybaid Biometra, UK 

Ice machine Ziegra, UK 

IKA-Vibrax-VXR table-top shaker IKA-Werke, Germany 

KB incubator  Binder, Germany 

LB122, contamination monitor Berthold, Germany 

MaxQ 3000 Benchtop Shaker Thermo Fisher Scientific, USA 

Megafuge 1.0R Kendro, USA 

Milli-Q-water supply apparatus Millipore, USA 

Mini-Monitor Series 900 Radiation Monitor Mini Instruments, UK 

Mini Protean 3 Electrophoresis Cell Bio-Rad, USA 

Mini Trans-Blot Electrophoretic Transfer Cell Bio-Rad, USA 

Multifuge 1S-R Heraeus, Germany 

Multitron incubator shaker INFORS HT, Swiss 

Orion 3 Star pH meter Thermo Fisher Scientific, USA 

Phosphorimager Typhoon 8600 Amersham Pharmacia, Germany 

Power supply EPS 2A200 Hoefer Pharmacia Biotech, USA 

Power supply EPS 3501/XL Amersham Pharmacia, Germany 

Q Exactive™ HF Hybrid Quadrupol-Orbitrap™ Mass 

Spectrometer  

Thermo Fisher Scientific, USA 

Rocking Platform WT15 Biometra, Germany 

Scintillation counter LS 1701 Packard, USA 

Sonifier W-250D Heinemann, Germany 

Sorvall™ LYNX™ Superspeed Centrifuge  Thermo Fisher Scientific, USA 

Sorvall TH660 rotor Kendro, USA 

Sorvall TST41.14 rotor Kendro, USA 

Sorvall Ultracentrifuge Discovery 90 SE Sorvall/Kendro, USA 

Sorvall WX Ultracentrifuge Sorvall/Kendro, USA 
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Speed Vac Konzentrator 5301 Eppendorf, Germany 

Spectrophotometer Nanodrop ND-1000 Thermo Fisher Scientific, USA 

Spectrophotometer Ultrospec 3000 pro GE Healthcare, USA 

Test tube rotator  Snijders, The Netherlands 

T3 Thermocycler Biometra, Germany 

Thermomixer comfort Eppendorf, Germany 

Trans-Blot Electrophoretic Transfer Cell Bio-Rad, Germany 

UV-Stratalinker 2400 Stratagene, USA 

Vortex Scientific industries, USA 

X-ray film developer X-Omat 2000 Kodak, USA 

 

 

2.1.6 Nucleotides 

 

Nucleotide Supplier 

Nucleoside-5’-triphosphate (100 mM):  

ATP, CTP, UTP, GTP 

Pharmacia, Germany 

Deoxynucleoside-5’-triphsophate (100 mM):  

dATP, dCTP, dTTP, dGTP 

Pharmacia, Germany 

7-monomethyl-diguanosine triphosphate 

(m7G(5’)ppp(5’)G-cap) 

Kedar, Poland 

 

 

2.1.7 Radiolabeled nucleotides 

 

Nucleotide Supplier 

α-32P-UTP [10 μCI/μl, 3000 Ci/mmol] Perkin-Elmer, Germany 

α-32P-dATP [10 μCI/μl, 3000 Ci/mmol]  Perkin-Elmer, Germany 

 

 

2.1.8 Oligonucleotides  

 

Name Sequence (5’ o 3’) 

Smu1-F CAATCACTCGACGAAGAC 

Smu1-R CTTCCGTGTTTCAGTTAGC 
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Strep-D-WD40-R ATTATGCATTCATTATTTTTCGAACTGAGGG 

TGGGACCACTGTCCGAACTTGATGTGCC 

Smu1-His-F ATACGAATTCCATATGTCTATCGAAATCGAGTCC 

Smu1-His-R ATACCTGCAGGATTTAAGGCTTCCACAGCTTCAGCA 

RED-F ATGCGAATTCAGCATGGGACCTGAAAGG 

RED-R ATGCCTGCAGGATGCTCATTAGTACTTAG 

D-N-RED #2-F ATACGAATTCCATATGAACTACAGGGCCGTCGGACCTACCG 

D-C-RED #1-R-Stop ATACCTGCAGGATCTAGGAGTAGTCCACTTCTTCGTCA 

Primer 550 (F) CCATCTCGCAAATAAATAAG 

Primer 551 (R) CATTTTATGTTTCAGGTTC 

Primer 552 (F) TCATAGCGCGGGTTCCTTCC 

Primer 553 (R) CTTTAATTCAACCCAACACA 

MINX-70 Primer A TCACACAGGAAACAGCTATGAC 

MINX-70 Primer B TCTTACCGTTCGGAGG 

MINX-70 Primer C CCTCCGAACGGTAAGAGGGCGCAGTAGTCCAG 

MINX-70 Primer D GTAAAACGACGGCCAGTG 

MINX-80 Primer A TCACACAGGAAACAGCTATGAC 

MINX-80 Primer B AGTTCTACATGCTAGGCTCTTACC 

MINX-80 Primer C GGTAAGAGCCTAGCATGTAGAACT GTAGTCCAGGGTTTCCTT 

MINX-80 Primer D GTAAAACGACGGCCAGTG 

MINX-90 Primer A TCACACAGGAAACAGCTATGAC 

MINX-90 Primer B AGTTCTACATGCTAGGCTCTTACC 

MINX-90 Primer C GGTAAGAGCCTAGCATGTAGAACT CTAGGGCGCAGTAGTCCAG 

MINX-90 Primer D GTAAAACGACGGCCAGTG 

MINX-150 Primer A TCACACAGGAAACAGCTATGAC 

MINX-150 Primer B AGACTGAGACTGAGACTGAGGGCTCTTACCGTTCGGAG 

MINX-150 Primer C CTCAGTCTCAGTCTCAGTCTCAGTCTGCCTgtagaactggttacctgcagcc 

MINX-150 Primer D GTAAAACGACGGCCAGTG 

MINX-80-cleaved Primer A TCACACAGGAAACAGCTATGAC 

MINX-80-cleaved Primer B TGAGACTGAGACTGAGGGCTC 

MINX-80-cleaved Primer C TAATACGACTCACTATAGGGTCTCAGGGTTTCCTTGATG 

MINX-80-cleaved Primer D GTAAAACGACGGCCAGTG 

PM556 and PM5-1056 Primer A TCACACAGGAAACAGCTATGAC 

PM556 and PM5-1056 Primer B GTAAGCTTGATACATACCTTGGC 

PM556 and PM5-1056 Primer C GCCAAGGTATGTATCAAGCTTACGTGACTGATAGAACACTACCTG 

PM556 and PM5-1056 Primer D GTAAAACGACGGCCAGTG 
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U1 snRNA forward K107 GATACTTACCTGGCAGGGGAG 

U1 snRNA reverse K50 CGCGGATCCAGGGGAAAGCGCGAACGCAGTC 

U2 snRNA forward K78 CCTAATACTCACTATAGATCGCTTCTCGGCCTTTTGCG 

U2 snRNA reverse K79 GGGTGCACCGTTCCTGGAGGTAC 

U4 snRNA forward K47 GGGAATTCCTAATACGACTCACTA 

U4 snRNA reverse K48 CGCGAATCCAGTCTCCGTAGAGAC 

U5 snRNA forward K115 GATACTCTGGTTTCTCTTCAG 

U5 snRNA reverse KJ7 CCCAAGCTTTAGCCTTGCCAAGGCAAGG 

U6 snRNA forward K54 CCTAATACGACTCACTATAGGTGCTCGCTTCGGCAGC 

U6 snRNA reverse K55 AAAAATATGGAACGCTTCACG 

 

 

2.1.9 siRNAs 

 

siRNA Target Sequence Supplier 

Prp38A-1 CTGCTGTTATTCAAAGATCAA Laboratory of R. Lührmann, MPI-bpc  

Prp38A-2 TCCACGGACATCGATAATCAA Laboratory of R. Lührmann, MPI-bpc 

MFAP1-1 AAGGACCGAGTGACAGTTCAA Laboratory of R. Lührmann, MPI-bpc  

MFAP1-2 TACGGCGTTTACAGAACCGTA Laboratory of R. Lührmann, MPI-bpc  

RED-1 AACCCGTAACAAGAAGCTTAA Laboratory of R. Lührmann, MPI-bpc  

RED-2 CAGCGAGTATATGAACAACAA Laboratory of R. Lührmann, MPI-bpc 

Smu1-1 CACAACTGAGCAGGCATATTA Laboratory of R. Lührmann, MPI-bpc 

Smu1-2 TACGGCTATGTCGATCGAAAT Laboratory of R. Lührmann, MPI-bpc 

Smu1-3 GTAAAGATCTGGAATATGA Laboratory of R. Lührmann, MPI-bpc 

AllStars Negative Control siRNA QIAGEN 

 

 

2.1.10 Plasmids 

 

Name  Description Reference 

hSmu1_pMK-RQ Synthetic gene of the full-length Smu1; KanR Geneart, Germany 

RED-IK_pMK-RQ Synthetic gene of the full-length RED; KanR Geneart, Germany 

pFL Multibac transfer vector (acceptor) for bacmid 

preparation; GenR and AmpR 

Dr. Imre Berger, EMBL, 

Grenoble 

pFL-RED-His10 N-His10, RED full-length gene inserted via 

EcoRI/PstI; GenR and AmpR 

This study  

pFL-'N-RED- His10 N-His10, N-terminally truncated RED gene inserted 

via EcoRI/PstI; GenR and AmpR 

This study 
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pFL-RED-'C- His10 N-His10, C-terminally truncated RED gene inserted 

via EcoRI/PstI; GenR and AmpR 

This study 

pFL-''-RED- His10 N-His10, N- and C- terminally truncated RED gene 

inserted via EcoRI/PstI; GenR and AmpR 

This study 

pFL-Smu1-StrepII C-StrepII, Smu1 full-length gene inserted via 

XhoI/NsiI; GenR and AmpR 

This study 

pFL-Smu1-'WD40-StrepII C-StrepII, Smu1 WD40 domain deletion mutant 

gene  inserted via XhoI/NsiI; GenR and AmpR 

This study  

pFL-Smu1- His10 N-His10, Smu1 full-length gene inserted via 

EcoRI/PstI; GenR and AmpR 

This study 

pMINX Plasmid encoding MINX pre-mRNA; AmpR  (Zillmann et al., 1988) 

pPM5 Plasmid encoding PM5 pre-mRNA; AmpR  (Bessonov et al., 2008) 

pPM5-10 Plasmid encoding PM5-10; AmpR  (Bessonov et al., 2010) 

 

2.1.11 Antibodies 

 

Antibody Supplier 

Anti-hSnu66 Laboratory of R. Lührmann, MPI-bpc (Makarova et al., 

2001)  

Anti-hPrp31, phospho-specific Laboratory of R. Lührmann, MPI-bpc (Schneider, Hsiao et 

al., 2010) 

Anti-P-SF3b155 (T313) Laboratory of R. Lührmann, MPI-bpc (Girard et al., 2012) 

Anti-Prp31 Laboratory of R. Lührmann, MPI-bpc (Makarova et al., 

2002) 

Anti-SF3b155 Laboratory of R. Lührmann, MPI-bpc (Will et al., 2001) 

Anti-RED Laboratory of R. Lührmann, MPI-bpc 

Anti-MFAP1 Laboratory of R. Lührmann, MPI-bpc 

Anti-FBP21 Santa Cruz Biotechnology, USA 

Anti-hSmu-1 Santa Cruz Biotechnology, USA 

Anti-hPrp38 Laboratory of R. Lührmann, MPI-bpc 

Anti-hSnu23 Laboratory of R. Lührmann, MPI-bpc 

Anti-H3 (Histone 3) Abcam, UK 

Anti-Snu114 Laboratory of R. Lührmann, MPI-bpc (Fabrizio et al.,1997, 

Sidarovich et al., 2017) 

Anti-SF3A2  Laboratory of R. Lührmann, MPI-bpc (Will et al., 2002) 

Goat-anti-rabbit (horseradish peroxidase coupled) Jackson Immunoresearch, USA 

Goat-anti-mouse (horseradish peroxidase coupled) Jackson Immunoresearch, USA 
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2.1.12 Proteins, enzyme inhibitors and enzymes and 

 

Protein Supplier 

Bovine serum albumin (BSA), acetylated Sigma-Aldrich, Germany  

MS2-MBP Laboratory of R. Lührmann, MPI-bpc 

 

Enzyme inhibitor Supplier 

Complete protease inhibitor, EDTA-free Roche, Germany 

PhosSTOP™ Roche, Germany 

RNase Inhibitor [40 U/μl] Molox, Germany 

 

Enzyme Supplier 

Accutase® solution Sigma-Aldrich, Germany 

Pfu Tripple DNA Polymerase Laboratory of D. Görlich, MPI-bpc 

Proteinase K (10 mg/mL) Bioron, Germany 

Restriction endonucleases New England Biolabs, Germany 

RQ1 DNase [1 U/μl] Promega, USA 

SP6 RNA Polymerase  New England Biolabs, Germany 

T4 DNA Ligase  Laboratory of D. Görlich, MPI-bpc 

T7 RNA Polymerase [20 U/μl] Laboratory of D. Görlich, MPI-bpc 

Yeast inorganic pyrophosphatase (YIPP) [0.1 U/μl] New England Biolabs, Germany 

 

 

2.1.13 Bacteria strains 

 

Strain Supplier 

Escherichia coli XL-10 Gold Agilent Technologies, USA 

Escherichia coli DH10MultiBacY Dr. Imre Berger, EMBL, Grenoble 

 

 

2.1.14 Cell lines 

 

HeLa S3 cells were used for the preparation of nuclear extract. HeLa SS6 cells were used for RNAi experiments. 

The Spodoptera frugiperda cell line Sf9 was used for recombinant baculovirus propagation and isolation.  

The Trichoplusia ni cell line High Five was used for recombinant protein expression.  
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Cell line Supplier 

HeLa S3 cells (human cervical cancer cells) GBF, Germany 

HeLa SS6 cells (human cervical cancer cells) ATCC, USA 

High FiveTM cells Invitrogen, Germany 

Sf9 cells  Invitrogen, Germany 

 

 

2.1.15 Commercial media 

 

Medium Supplier 

Dulbecco's Modified Eagle Medium (DMEM) Thermo Fisher Scientific, USA 

ESF 921 Insect Cell Culture Medium, Protein Free Expression Systems, USA 

Gibco™ Sf-900™ III SFM Fisher Scientific, USA 

LB Agar Medium (Powder) MP Biomedicals, USA 

LB Medium (Capsules) MP Biomedicals, USA 

Opti-MEM - Reduced Serum Media Thermo Fisher Scientific, USA 

 

 

2.1.16 Buffers, media and solutions 

 

Media, buffers and solutions were prepared with deionized water (Millipore) and autoclaved if necessary (121 °C, 

20 min/15 min 1 bar). Solutions with heat-labile components were filter-sterilized (0.22 μm). 

The pH was adjusted with 37% HCl, 5 M NaOH or 5–10 M KCl. 

 

Coomassie staining solution 

100 µM  Coomassie brilliant blue G-250 

40 mM  HCl 

 

Denhardt’s Solution (100x) 

2%  BSA 

2%  SDS 

2% Polyvinylpyrrolidone 

 

10x G-75 buffer 

200 mM  HEPES 

750 mM   KCl 

15 mM  MgCl2 

pH adjusted to 7.9 
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10x G-150 buffer 

200 mM  HEPES 

1.5 M   KCl 

15 mM  MgCl2 

pH adjusted to 7.9 

 

Gel fixing solution 

10% (v/v) Acetic acid 

40% Ethanol or Methanol 

 

HeLa Cell Lysis Buffer  

2 mM  EDTA, pH 8.0 

150 mM  NaCl 

30 mM Tris-HCl, pH 7.5  

1%  Triton X-100 

2x PhosSTOP™ 

2x  Complete protease inhibitor  

1 mM MgCl2 

 

HeLa IP Dilution Bufer  

235 mM  NaCl 

30 mM  Tris-HCl, pH 7.5 

2%  Triton X-100 

2x PhosSTOP™ 

2x  Complete protease inhibitor  

3 mM MgCl2 

0.2 U/µL RNasin 

 

HeLa IP Wash Bufer  

200 mM  NaCl 

30 mM  Tris-HCl, pH 7.5 

1%  Triton X-100 

1.5 mM MgCl2 
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HeLa Sonication Buffer  

2 mM  EDTA, pH 8.0 

60 mM  Tris-HCl, pH 7.5 

2%  PEG-PPG 

2x PhosSTOP™ 

2x  Complete protease inhibitor  

 

HeLa IP Dilution Bufer  

2 mM  EDTA, pH 8.0 

30 mM  Tris-HCl, pH 7.5 

1%  Triton X-100 

2x PhosSTOP™ 

2x  Complete protease inhibitor  

0.3 U/µL RNasin 

 

High Five Lysis Buffer  

50 mM  HEPES-KOH, pH 7.9 

500 mM  NaCl 

15 mM Imidazole, pH 8.0 

0.1%  NP-40 

15% Glycerol 

2 mM DTT 

 

High Five Dilution Buffer  

50 mM  HEPES-KOH, pH 7.9 

50 mM  NaCl 

15% Glycerol 

2 mM DTT 

 

High Five Wash Buffer  

50 mM  HEPES-KOH, pH 7.9 

750 mM  NaCl 

20 mM Imidazole  

15% Glycerol 

2 mM DTT 
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High Five Elution Buffer  

20 mM  HEPES-KOH, pH 7.9 

200 mM  NaCl 

300 mM Imidazole 

15% Glycerol 

2 mM DTT 

 

20x MOPS buffer 

1 M  Tris  

1 M   MOPS 

2% SDS 

20 mM EDTA 

 

5x Native gel loading dye 

90 mM  Tris 

90 mM   Boric acid 

2.5 mM  EDTA, pH 8.0 

30% (v/v) Glycerol 

0.05% (w/v) Bromphenol blue 

 

Northern blot transfer buffer  

176 mM  NaH2PO4 

90 mM  Na2HPO4 

 

Northern blot hybridization solution  

50% (v/v)  Formamide 

10x  SSC 

0.5%  SDS 

30 mM Tris-HCl, pH 7.5 

5x Denhardt’s Solution 

 

Northern blot wash buffer  

2x  SSC 

0.1%   SDS 
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10x PBS (-T)  

1.3 M  NaCl 

27 mM KCl 

80 mM Na2HPO4 

15 mM KH2PO4 

0.05%  Tween-20 (optional) 

 

PK Buffer 

50 mM  Tris-HCl, pH 7.5 

70 mM NaCl 

0.2 % SDS 

1 mM CaCl2 

0.1 U/µL RNase inhibitor 

 

2x RNA loading dye 

80%  Formamide 

1 mM EDTA, pH 8.0  

0.05% (w/v) Bromphenol blue 

0.05% (w/v) Xylene cyanol 

 

Roeder D buffer 

10% (v/v) Glycerol 

20 mM HEPES-KOH, pH 7.9 

100 mM KCl 

1.5 mM  MgCl2 

0.2 mM EDTA, pH 8.0 

0.25 mM DTT 

0.25 mM PMSF 

 

6x SDS Loading Dye 

244 mM   Tris-HCl, pH 7.5 

2.4% SDS 

250 mM DTT 

21.2% (w/v) Glycerol 

0.12% (w/v) Bromphenol blue 
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SDS-PAGE running buffer 

25 mM Tris-HCl, pH 6.8 

192 mM Glycine 

1% (w/v)  SDS 

21.2% (w/v) Glycerol 

0.12% (w/v) Bromphenol blue 

 

20x SSC buffer 

3 M NaCl 

300 mM Trisodium citrate 

pH adjusted to 7.9 

 

10x T4 DNA ligase buffer 

500 mM Tris-HCl, pH 7.5 

100 mM MgCl2 

100 mM  DTT 

10 mM ATP 

250 µg/mL BSA 

 

10x TBE  

0.89 M  Tris-HCl, pH 7.5 

0.89 M Boric acid 

25 mM EDTA, pH 8.0 

 

10x TBS-T  

200 mM  Tris-HCl, pH7.5 

1.5 M NaCl 

1% Tween-20 

 

Triethanolamine solution 

1x  PBS 

200 mM  Triethanolamine  

pH adjusted to 8.6 
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5x TRO buffer  

1 M  HEPES-KOH, pH 7.5 

200 mM  DTT 

160 mM MgCl2 

10 mM Spermidine 

 

Western blot blocking buffer 

1x TBS-T 

5% (w/v)  Milk powder  

 

Western blot stripping solution 

62.5 mM Tris-HCl, pH 6.7 

2% (w/v)  SDS 

85 mM E-Mercaptoethanol 

 

10x Western blot transfer buffer  

500 mM  Tris-HCl, pH7.5 

400 mM  Glycine 

0.1% (w/v) SDS 

 

 

2.2 Methods 

2.2.1 Molecular biology standard methods 

2.2.1.1 PCR amplification 

 

DNA fragments were amplified in a volume of 50 µL by PCR as illustrated in Tables 2.1 and 2.2. 

 

Table 2.1: Composition of a standard PCR  

Component Stock conc. Final conc. 

HF Buffer 5x 1x 

dNTP mix 10mM 200 µM 

Primer 1 (Fw) 10 µM 200 nM 

Primer 2 (Rev) 10 µM 200 nM 

Template (plasmid)  1 ng/µL 

Pfu Tripple DNA Pol. 100 ng/µL 1 ng/µL 
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Table 2.2: Program of a standard PCR  

Step Temperature Time 

Initial denaturation 95°C 3 min 

Denaturation 95°C 45 sec 

Annealing  Primer specific 40 sec 

Extension 72°C 1-2 min/kb 

Final extension 72°C 15 min 

 

2.2.1.2 Restriction digest of DNA 

 

Restriction digests of PCR products and plasmids were performed in a reaction volume of 50 µL at 37 °C overnight 

(Table 2.3). When possible, PCR products were digested directly in PCR reaction buffer. For digestions with 

enzymes incompatible with this buffer, PCR products were purified by using the NucleoSpin® Gel and PCR Clean-

up kit from Macherey-Nagel before digestion.  

 
Table 2.3: Composition of a standard restriction digest 

Component Stock conc. Final conc. 

Cut Smart Buffer 10x 1x 

Enzyme 1  10 U/µg DNA 

Enzyme 2  10 U/µg DNA  

DNA  1–5 µg 

 

Digested PCR products were purified directly by using the NucleoSpin® Gel and PCR Clean-up kit, while plasmids 

were resolved on a preparative agarose gel and the band of interest was used for gel extraction with the 

NucleoSpin® Gel and PCR Clean-up kit.  

 

2.2.1.3 Ligation of digested insert and vector 

 

The composition of a standard ligation reaction is illustrated in Table 2.4. The ligation was performed in 20 µL 

reaction volume at 16 °C overnight and immediately transformed into chemically competent E. coli cells. 

 

Table 2.4: Composition of a standard ligation reaction 

Component Stock conc. Final conc. 

T4 DNA ligase buffer 10x 1x 

T4 DNA ligase  1U/µL 0.1 U/µL 

Vector  50-100 ng 

Insert  300 ng -1.5 µg 

 

 

 

31 cycles 
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2.2.1.4 Nucleic acid quantification 

 

To determine the nucleic acid concentration of an aqueous solution, its absorption at wavelengths of 260 nm and 

280 nm was measured by using a NanoDrop spectrophotometer according to the manufacturer’s instructions. The 

respective buffer without any nucleic acids served as reference for the measurement. 

 

The ratio of OD260/OD280 indicates the purity of the solution. Thereby, a ratio of 2.0 is considered to correspond 

to pure RNA or oligonucleotides and 1.8 to pure DNA. Ratios below 1.8 indicate the presence of impurities like 

protein, phenol or other contaminants absorbing at 280 nm.  

 

 The following equations were used to determine the concentrations: 

 

1 OD260: 50 µg/ml double-stranded DNA  

1 OD260: 33 µg/ml single-stranded DNA  

1 OD260: 40 µg/ml single-stranded RNA 

 

 

2.2.1.5 PCI extraction 

 

To separate nucleic acids from proteins, a phenol-chloroform-isoamyl alcohol (PCI) extraction was performed. 

During this procedure, the proteins are denatured by the phenol/chloroform mixture and retained in the organic 

phase, whereas the nucleic acids remain in the aqueous phase. The reactions’ volume was adjusted to 200 µl and 

an isovolume of PCI was added; the samples were thoroughly mixed on a table-top shaker for 10 min. The 

suspension was centrifuged for 10 min at room temperature at 13000 rpm in a microfuge to separate the aqueous 

from the organic phase. The aqueous phase was collected and supplemented with 0.1 volumes 3 M NaOAC pH 5, 

3 volumes absolute ethanol and if required 1 µL of GlycoBlue™ Coprecipitant. Precipitation was performed at -20 

°C for at least an hour, usually overnight. The nucleic acids were pelleted by centrifugation at 13 000 rpm and 4 °C 

for 45 min in a microfuge and the pellet was washed once with 75% (v/v) ethanol. The pellet was then air-dried and 

resuspended in water or 1x RNA Loading dye. 

 

2.2.1.6 Proteinase K digestion 

 

To prune RNAs of associated proteins, a proteinase K digest was performed before the PCI extraction.  

PK buffer and 0.5 µg/µl proteinase K was added to the RNA sample and incubated at 37 °C for 30 min. 

The RNA was subsequently isolated by PCI extraction as described in (2.2.1.5). 
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2.2.1.7 Generation of truncated MINX, PM5 and PM5-10 constructs 

 

The truncated MINX constructs MINX-70, -80 and -90 were generated by fusion PCR. The MINX pre-mRNA, cloned 

in PUC18 plasmid, served as template. In brief, a set of four primers was designed. Two primers were placed 

upstream and downstream of the MINX construct (Fig. 2.1 primers A and D), while the two other primers flanked 

the sequence to be deleted (primers B and C). In the first step, the fragments upstream (fragment 1) and 

downstream (fragment 2) of the region to be deleted were amplified separately. The 5’ end of the forward primer 

(primer C), used to amplify the fragment 2 was equipped with a 20-nucleotide stretch complementary to the 3’ 

extremity of the fragment 1. The gel-purified fragments served as template in a second PCR reaction. Here, the two 

fragments were first annealed, and this was followed by synthesis of the sequences complementary to the 5’ 

overhangs by the Pfu DNA polymerase. The resulting constructs, containing the deletion, were subsequently 

amplified in a third PCR using the primers upstream and downstream of the MINX sequence (primers A and D). 

The final PCR product was gel-purified and used as template for in vitro transcription. PM556 and PM5-1056 were 

generated by following a similar strategy. 

 

 

 

Figure 2.1. Schematic illustration of a fusion PCR. A fusion PCR consists of three PCR reactions. In the first reaction, the two fragments 

of interest are individually amplified using primer A and B or C and D, respectively. Primer C includes an overhang complementary to the 

3’ sequence of Fragment 1, allowing the annealing of the two fragments in a second PCR. The hybridized region serves as a priming 

sequence for the DNA polymerase, which synthesizes the missing strands. In a third PCR the final product is amplified to obtain sufficient 

quantities. 
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The same principle has also been applied to generate the MINX-150 construct. Here, the primers B and C were 

positioned next to one another flanking the zone where the additional sequence was to be inserted. The primer B 

and primer C contained overhangs with the sequence to be inserted, which in part overlapped.    

 

Table 2.5: Composition of reaction mixtures for the first and third amplifications 

Component Stock conc. Final conc. 

HF Buffer 5x 1x 

dNTP mix 10mM 200 µM 

Primer 1 (Fw) 10 µM 200 nM 

Primer 2 (Rev) 10 µM 200 nM 

Template  

(plasmid)/ 

(PCR product) 

 0.4 ng/µL 

0.04 ng/µL 

Pfu Tripple DNA Pol. 100 ng/µL 1 ng/µL 

  

Table 2.6: Program of the first and third amplifications 

Step Temperature Time 

Initial denaturation 95 °C 3 min 

Denaturation 95 °C 30 sec 

Annealing  56–62 °C 30 sec 

Extension 72 °C 1min 

Final extension 72 °C 5 min 

 

Table 2.7: Composition of reaction mixtures for the second amplification (annealing) 

Component Stock conc. Final conc. 

HF Buffer 5x 1x 

dNTP mix 10mM 200 µM 

Primer 1 (Fw) 10 µM 200 nM 

Primer 2 (Rev) 10 µM 200 nM 

Templates  

(Fragment 1) + 

(Fragment 2) 

 0.4 ng/µL 

0.4 ng/µL 

Pfu Tripple DNA Pol. 100 ng/µL 1 ng/µL 

 

Table 2.8: Program of the second amplification (annealing) 

 

 

 

 

Step Temperature Time 

Initial denaturation 95 °C 3 min 

Denaturation 95 °C 30 sec 

Annealing  55 °C 45 sec 

Extension 72 °C 1 min 

Final extension 72 °C 5 min 

29 cycles 

10 cycles 



Materials and Methods 
 

 50 

2.2.1.8 Generation of MINX-80-cleaved 

 

The MINX-80-cleaved construct was generated by PCR as two separate fragments.  

Amplification of the 5’ fragment (MINX-80-cleaved Primer A and B) comprised exon 1 and 25 nucleotides 

downstream of the 5’SS. 

The 3’ fragment (MINX-80-cleaved Primer C and D) comprised the remaining intronic sequence including the 

branch site and polypyrimidine tract as well as the exon 2. 

To allow in vitro transcription Primer C contained the T7 promoter sequence at its 5’ extremity (underlined). 

Both fragments were gel purified and used as template in in vitro transcription reactions.  

 

 

2.2.1.9 In vitro transcription 

 

For in vitro transcription of radioactively labelled or non-labelled pre-mRNAs, linearized plasmids or PCR products 

were used as DNA templates (see Section 2.2.1.7 and 2.2.1.8). To improve the transcript’s stability and to allow 

affinity purification, all pre-mRNAs were equipped with a m7G(5’)ppp(5’)G-cap and a MS2-tag, respectively. Only 

part B of trans-MINX-80 was transcribed without cap. MINX pre-mRNA constructs were synthesized by the T7 RNA 

polymerase and PM5 or PM5-10 constructs by the SP6 RNA polymerase.  

Table 2.9 illustrates the composition of a standard in vitro transcription reaction. For transcriptions of trans-MINX-

80 part B, the m7G(5’)ppp(5’)G-cap was excluded and the final concentration of GTP was raised to 7.5 mM. For 

transcription of non-radioactive pre-mRNAs D-32P-UTP was omitted and the final concentration of UTP increased 

to 7.5 mM. 

 

Table 2.9: Composition of a standard in vitro transcription reaction 

Component Stock conc. Radioactive Without cap Non-radioactive 

TRO buffer 5x 1x 1x 1x 

ATP 100 mM 7.5 mM 7.5 mM 7.5 mM 

CTP 100 mM 7.5 mM 7.5 mM 7.5 mM 

UTP 100 mM 1.5 mM 1.5 mM 7.5 mM 

GTP 100 mM 1.5 mM 7.5 mM 1.5 mM 

m7Gcap 114 mM 5 mM - 5 mM 

Rnasin 40 U/µL 1.5 U/µL 1.5 U/µL 1.5 U/µL 

YIPP 100 U/µL 1.25 U/µL 1.25 U/µL 1.25 U/µL 

T7/SP6 RNA Pol. 20 U/µL 20 U/µL 20 U/µL 20 U/µL 

Template 
 

10 ng/µL PCR 

50 ng|µL plasmid 

10 ng/µL PCR 

50 ng|µL plasmid 

10 ng/µL PCR 

50 ng|µL plasmid 

α-32P-UTP 3000 Ci/mmol 

10 µCi/µL 

750 Ci/mmol 750 Ci/mmol - 

 

 



Materials and Methods 

 51 

The transcription was performed at 37 °C for 3 h. The DNA template was digested by addition of 0.5 µl RQ1 DNase 

(1U/µl, NEB) followed by incubation at 37 °C for 30 min. To eliminate unincorporated nucleotides and proteins, the 

transcription reaction was purified on a ProbeQuant G-50 column (GE Healthcare) according to the manufacturer’s 

protocol and subsequently subjected to PCI extraction (Section 2.2.1.5). 

 

 

2.2.1.10 Denaturing polyacrylamide gel electrophoresis 

 

Pre-mRNA splicing reactions or snRNA samples were resolved by denaturing polyacrylamide gel electrophoresis 

(PAGE) in the presence of 8 M urea. Denaturing gels were composed of 1x TBE, 8 M urea and 6–14% (v/v) 

polyacrylamide (40%, 19:1), depending on the size of the RNAs to be analysed. Polymerization was initiated by 

addition of 0.06% (w/w) APS and 0.06% TEMED. RNA samples were dissolved in RNA loading dye, denatured for 

10 min at 80 °C and subsequently chilled on ice. The electrophoresis was performed in 1x TBE buffer at 20–35 mA. 

The RNA was visualized by autoradiography, with the Phosphorimager Typhoon 8600 or with SYBR® Gold Nucleic 

Acid Gel Stain. 

 

 

2.2.1.11 SYBR® Gold Nucleic Acid Gel Staining 

 

To stain snRNA resolved by denaturing PAGE (Section 2.2.1.10), gels were fixed in RNA gel-fixing solution for 30 

min at room temperature. Next, the gels were soaked in water for 3 times 10 min each and equilibrated in 0.5x TBE 

buffer for 2 times 10 min. Staining was performed with 1x SYBR® Gold Nucleic Acid Gel Stain in 0.5x TBE for 15 

min. Since the stain is light-sensitive, the gels were protected from light. After a short rinse with 0.5x TBE buffer, 

RNAs were visualized using the Fluorescence function of the Phosphorimager Typhoon 8600. 

 

 

2.2.1.12 Agarose gel electrophoresis of nucleic acids 

 

Analysis or purification of DNA samples, such as PCR products or digested plasmids, was performed by agarose-

gel electrophoresis: Agarose gels contained 1x TBE and 0.8–2% agarose depending on the size of the DNA 

fragments. For DNA visualization gels were stained with ethidium bromide, an organic intercalating agent, at a 

concentration of 0.5 µg/ml. Samples were mixed with Purple Gel Loading Dye (6x, NEB) and the DNA content was 

separated by electrophoresis at 60–120 V in 1x TBE buffer. In order to evaluate the size of the DNA fragments a 

commercial DNA ladder (Roth, NEB) was loaded next to the samples. To recover specific DNA fragments from the 

gel, the DNA was visualized with UV light at a wavelength of 365 nm and the band of interest was excised with a 

sterile razor blade.  
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The DNA was extracted from the gel by using the NucleoSpin® Gel and PCR Clean-up (Macherey-Nagel) as 

described in the user’s manual. This includes melting of the gel piece, binding of the DNA to the provided matrix 

and the subsequent elution of the purified fragment. The concentration of the eluted DNA was determined by 

Nanodrop (as described in Section 2.2.1.4). 

 

 

2.2.2 Protein-biochemistry standard methods  

2.2.2.1 Protein quantification 

 

To measure the concentration of protein samples, the BCATM protein assay kit (Thermo Fisher Scientific) was used 

according to the manufacturer’s protocol. This assay is based on bicinchoninic acid (BCA) for the colorimetric 

detection. A BSA standard was prepared for calibration and the quantification of total protein was analysed at an 

absorption maximum of 562 nm. Since the assay only tolerates an imidazole concentration up to 50 mM, samples 

with higher concentrations (proteins purified from insect cells) could not be quantified by this method. These were 

estimated by quantification of gel bands, which were related to protein bands of similar size with known 

concentration.  

 

 

2.2.2.2 Denaturing SDS polyacrylamide gel-electrophoresis (SDS-PAGE) 

 

Proteins were separated by denaturing SDS-PAGE according to Laemmli (Laemmli, 1970) Protein samples were 

supplemented with 6x SDS loading dye and denatured for 5 min at 95 °C before loading. The separating gel 

included 10% polyacrylamide (30%, 37.5:1) and the stacking gel comprised 4% polyacrylamide. The gel was run in 

1x SDS running buffer at 60–120 V. Proteins were visualized by Coomassie staining or transferred to a membrane 

for immunoblotting.  

 
Table 2.10: Compositions of SDS gels 

Component Stock conc. Stacking gel Separating gel 

Acrylamide 30% 4% 10% 

Tris-HCl, pH 6.8 1M 125 mM - 

Tris-HCl, pH 8.8 1M - 375 mM 

SDS  10% (w/v) 0.1% 0.1% 

APS 20% (w/w) 0.1% 0.14% 

TEMED 100% 0.1% 0.07% 

 

In some cases, for instance for mass spectrometry, proteins were separated on 4–12% NuPAGETM gradient gels 

(Thermo Fisher Scientific) and run in 1x MOPS buffer at 200 V. 
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2.2.2.3 Coomassie staining 

 

Coomassie staining of proteins was performed according to Sambrook et al. (Sambrook et al., 1989). The protein 

gel was fixed with gel-fixing solution for 30 min, soaked in water for 3x 10 min and then stained with hot Coomassie 

staining solution for 30 min. The gel was then de-stained in water until clear bands were visible.  

 

 

2.2.2.4 Western blot 

 

For western blot analysis, the denaturing SDS gel was transferred to a nitrocellulose membrane (Protan BA83 

nitrocellulose, 0.2 µm) using the wet-tank transfer procedure. For the assembly of the transfer sandwich 6 Whatman 

papers and the membrane were saturated with 1x western blot transfer + 20% methanol and assembled as follows: 

3 Whatman papers, gel, membrane and again 3 Whatman papers. The electro transfer was conducted at 60 V (400 

mA max.) with the Bio-Rad Mini Trans-Blot Electrophoretic Transfer Cell system for 2 h at 4 °C. The membrane 

was subsequently blocked for 1 h with 5% milk in 1x TBS-T, which also served as antibody solution. Immunoblotting 

was performed for at least 1 h (or overnight) at room temperature at 4 °C by using the primary antibodies listed in 

Section 2.1.9. The blot was washed 3 times for 10 min each with 1x TBS-T and subsequently incubated with the 

secondary antibody for 1 h at room temperature. As secondary antibody horseradish-peroxidase-conjugated anti-

rabbit (1:50,000) or anti-mouse (1:10,000) antibodies were used. After 3 washes with 1x TBST the proteins were 

detected by enhanced chemiluminescence using the ECL detection kit (Amersham) as described in the user’s 

manual. 

 

In order to re-blot a membrane with other antibodies, previously blotted antibodies were stripped by incubation in 

western-blot stripping solution for 20–30 min at 50 °C. The membrane was then rinsed twice with water and washed 

3 times with 1x TBS-T for 10 min at room temperature. Afterwards, the membrane was blocked again and 

subsequently incubated with new antibodies.  

 

 

2.2.2.5 Northern blot  

 

Northern probe preparation 

 

The RNA was detected with [α32P]-dATP (3000 Ci/mmol) radioactively labelled probes. For probe generation the 

Prime It II Random Primer Labelling Kit (Stratagene) was used according to the manufacturers’ instructions. PCR 

synthesized DNA-oligonucleotides hybridizing with one of the five snRNAs served as templates. 
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Northern blotting 

 

For northern blot analysis, samples were separated by denaturing polyacrylamide-gel electrophoresis and 

transferred to a nylon membrane by wet transfer (Trans-Blot Electrophoretic Transfer Cell). The transfer sandwich 

was assembled from 2 sheets of Whatman paper, gel, membrane and again 2 sheets of Whatman paper. Whatman 

papers and membrane had previously been soaked in northern Transfer Buffer. The transfer was carried out 

overnight at 20 V in a cold room. Subsequently, RNAs were crosslinked to the membrane by UV irradiation in a UV-

Stratalinker 2400 (Auto Crosslink) with an energy of 1200 J/cm2. Pre-hybridization was performed for 4 h at 42 °C 

in 20 mL northern blot hybridization solution supplemented with 0.2 mg/mL denatured fish sperm DNA. The labelled 

probes were boiled at 95 °C for 5 min and together with fresh denatured fish-sperm DNA added to 20 mL northern 

blot hybridization solution. Hybridization was performed over night at 42 °C. After collection of the Northern blot 

hybridization solution the membrane was washed 3 times with 20–25 mL pre-warmed northern blot wash buffer for 

30 min. The membrane was subsequently sealed in plastic foil. Signal visualization was performed by 

autoradiography.  

 

 

2.2.3 Special methods  

2.2.3.1 Preparation of splicing active HeLa nuclear extract 

 

Nuclear extracts were prepared from HeLa cells essentially as described by Dignam et al. (Dignamr et al., 1983). 

The extracts (in Roeder C buffer) were subsequently frozen in liquid nitrogen and stored at –80 °C. For use in 

splicing reactions, the nuclear extracts were thawed and dialyzed against 50–100 volumes of Roeder D buffer for 

2x 2.5 h. To eliminate precipitate, the extracts were centrifuged at 8330 rpm at 4 °C for 10 min in F14-14x50cy rotor 

(centrifuge Sorvall® Evolution RC Lynx 6000) and aliquots of the supernatants were frozen in liquid nitrogen to be 

stored at –80 °C. 

 

 

2.2.3.2 Transient transfection with siRNA and cell fractionation 

 

HeLa SS6 cells were grown in 10 cm dishes containing Dulbecco's Modified Eagle's Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) and 100 µg/mL penicillin/streptomycin. Cell cultures were kept 

at at 37 °C in 5% CO2. For cell-culture maintainance, the cells were washed twice with 1x PBS and dissociated 

from the dish by addition of Accutase® solution. The cells were then resuspended in fresh DMEM. 

For transient transfection with siRNAs, DMEM supplemented with 10% FBS but without antibiotics was used. About 

3 x 105 cells were cultured in 6 wells one day before transfection. For transfection the Lipofectamine® RNAiMAX 

Transfection Reagent (Thermo Fisher Scientific) was used as described in the user’s manual. After a transfection 

time of 60 hours, cells were washed twice with ice-cold 1x PBS and then resuspended to ~10×106 cells/mL into 

HeLa Cells Lysis Buffer using a sterile cell scraper. After brief vortexing, the samples were incubated on ice for 15 

min. The nucleoplasmic fraction was separated from the chromatin faction by centrifugation at 4 °C and 1100 x g 
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for 10 min. The soluble nucleoplasmic fraction was collected and the chromatin faction resuspended in a volume of 

HeLa Cell Lysis Buffer equivalent to the nucleoplasmic fraction. In a 1.5 mL reaction tube, the chromatin was 

solubilized by sonication in a Bioruptor for 3 min (30 sec on, 30 sec off) at maximum intensity in a water bath at 

2° C. 

The protein concentration was determined using the BCA Protein Assay Kit (Thermo Fisher Scientific) according to 

the user’s manual. The protein composition was analysed by SDS-PAGE followed by western blotting. 

 

 

2.2.3.3 RNA seq and data-processing 

 

For RNA seq analysis, HeLa cells were transfected with siRNAs specific for Smu1, RED or MFAP1 as described in 

Section 2.2.3.2. As control, an siRNA without target in the human transcriptome was transfected. Cells were 

harvested 50 hours after transfection and their total RNA was extracted. The RNA was further processed by the 

laboratory of Juan Valcárcel; this comprised reverse transcription of the RNA, Illumina sequencing and data 

analysis. 

The reads obtained by Hiseq-Illumina Paired End sequencing (100bp reads post adapter/barcode removal) were 

mapped on the human hg19 genome and the UCSC transcriptome by using TopHat2 (v2.0.8). Differential transcript 

splicing was quantified by using the Cuffdiff program of the Cufflinks suite (v2.1.1) and alternative splicing events, 

including usage of alternatively spliced exons, alternative 5’SS, alternative 3’SS and retained introns were quantified 

by using the MISO package (v0.5.2).   

 

 

2.2.3.4 Insect-cell expression of recombinant proteins  

 

Smu1 and RED were expressed separately or jointly in SF-9 or High Five cells using synthetic genes optimized for 

expression (GeneArt, Life Technologies). For Baculovirus generation, the Smu1 and RED full-length (FL) or 

truncation (') constructs were amplified by PCR using a primer comprising the required restriction sites. It was 

subsequently inserted into the pFL vector. To co-purify the dimers, RED was tagged with an N-terminal poly-His10 

tag under control of the polyhedrin (polh) promoter (EcoRI/PstI) while Smu1 was cloned with a C-terminal Strep-II 

tag (from provider) under control of the p10 promoter (XhoI/NsiI). Standard digest and ligation reaction are illustrated 

in Tables 2.3 and 2.4. Since Strep-II tag purification proved to be inefficient, Smu1-FL was additionally cloned with 

an N-terminal His10 tag (EcoRI/PstI) for single purification. For amplification, obtained vectors were transfected into 

chemically competent E. coli XL-10 Gold cells. The entire ligation was incubated with 100 µL cells on ice for 30 min. 

Heat shock was performed at 42 °C for 1 min, followed by a 5 min incubation on ice.  For recovery 1 mL LB was 

added to the cells, which were subsequently incubated in a thermomixer at 37 °C and 300 rpm for 1h. Cells were 

then plated on LB plates containing 100 µg/mL ampicillin.  
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Plasmids were isolated using the High Pure Plasmid Isolation Kit from Roche or the PureLink™ HiPure Plasmid 

Filter Maxiprep Kit from Thermo Fisher Scientific as described in the manufacturers protocol. The sequence was 

verified by Sanger sequencing (Microsynth Seqlab). 

Errorless vectors were transformed into DH10MultiBacY cells for inclusion into baculoviral DNA. For that purpose, 

600 ng of vector was added to 100 µL of electro-competent DH10MultiBacY cells and incubated on ice for 30 min. 

The cells were transferred to an electroporation cuvette and a single 2000 V pulse was applied. Immediately, 1 mL 

of LB medium was added to the cells, which were transferred to a Greiner culture tube and incubated in a Multitron 

incubator shaker (Infors HT) at 37 °C and 180 rpm overnight. The transformation products were plated onto LB-

Agar containing 100 µg/mL ampicillin, 10 µg/mL gentamycin, 50 µg/mL kanamycin, 12 µg/mL tetracycline, 1 mM 

IPTG and 150 µg/mL X-gal. Overnight cultures in LB Medium, containing only antibiotics, were prepared from 

positive (white) colonies. Viral plasmids were isolated using the High Pure Plasmid Isolation Kit from Roche 

according to the user’s manual until step 4. This means that after removal of the precipitate the supernatant was 

not transferred to the High Pure Filter Tube, but supplemented with 700 µL isopropanol. The plasmid was 

precipitated at –20 °C for at least 30 min and the DNA was collected by centrifugation at 13,000 rpm and 4 °C for 

15 min in a microfuge. After one wash with 75% ethanol the pellet was dissolved in 20 µL deionized and autoclaved 

water. 6 well plates, each well containing 3 mL of 0.3 x 106 Sf9 cells/mL in Gibco® Sf-900™ III SFM medium, were 

prepared and transfected with the isolated plasmid using X-tremeGENE™ 9 DNA Transfection Reagent according 

to the manufacturers protocol. 60–72 h after transfection at 27 °C (KB incubator), the virus containing supernatant 

was collected (V0). Fresh Sf9 cells, maintained in suspension in Gibco® Sf-900™ III SFM medium at 0.7 x 106 

cells/mL were transfected to generate the V1 virus and incubated at 25 °C and 90–100 rpm on a MaxQ 3000 

Benchtop Shaker. For protein expression, the optimized High FiveTM cell line was used. The cells were maintained 

in suspension in ESF 921 Insect Cell Culture Medium at 0.7 x 106 cells/mL, 25 °C and 90–100 pm. The cells were 

harvested 60–72 h after transfection by centrifugation at 4 °C and 3000 rpm for 10 min using a Multifuge 1S-R and 

either immediately subjected to protein purification or frozen in liquid nitrogen and stored at –80 °C.  

 

 

2.2.3.5 Purification of recombinant proteins from insect cells 

 

The High FiveTM cell pellet was resuspended in 10 mL/g cells of pre-chilled High Five Lysis Buffer and disrupted by 

ultrasonic probe sonication at 30% amplitude for 15–30 min (30 msec on, 30 msec off) until the lysate was clear. 

After centrifugation for 1 h at 4 °C and 10,000 rpm in a F14–14 x 50cy rotor (Sorvall LYNX 6000 Superspeed 

Centrifuge) the soluble cell fraction was diluted 1:1 with High Five Dilution Buffer and incubated with previously 

equilibrated Roti®garose-His/Ni Beads (Roth) at 4 °C for 3 h with head-over-tail rotation. The beads were collected 

and washed three times with High Five Wash Buffer for 10 minutes at 4 °C with head-over-tail rotation. Elution was 

performed with 1.5–3 bead volumes High Five Elution Buffer on ice for 15 minutes. Eluates were frozen in liquid 

nitrogen and stored at –80 °C. Analysis of the purified proteins was performed by SDS polyacrylamide gel-

electrophoresis, followed by staining with Coomassie blue. 
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2.2.3.6 Crosslinking of antibodies to Dynabeads™ Protein A 

 

In order to obtain antibodies covalently associated with beads, antibodies were crosslinked to the beads by using 

dimethyl pimelimidate (DMP). The crosslinking procedure is based on the protocol provided by Abcam.  

600 µL beads were washed 3 times with 1x PBS head-over-tail at 4 °C for at least 15 min. 50 mg of anti-Smu1 

antibody in 800 µL PBS was added to the beads and incubated overnight with head-over-tail rotation at 4 °C. As a 

control (mock) another set of beads was incubated with buffer without any antibody. The following steps were 

performed with head-over-tail rotation at room temperature. The beads were washed 3 times with 1x PBS for 10 

min and subsequently equilibrated with triethanolamine solution for 2 times 10 min. The DMP was dissolved in a 

triethanolamine solution to a concentration of 25 mM. Crosslinking was performed with 1 mL 25 mM DMP for 1 h 

and another 30 min with fresh DMP. The crosslinker was quenched by incubation with 2x 50 mM Tris, pH 7.5 in 1x 

PBS for 10 min. 

After two washes with PBS, the excess of antibody was removed by incubation in 200 mM glycine, pH 2.5 for 2 

min. The beads were subsequently washed three times with 1x PBS-T for 10 min. The beads were stored in 1x 

PBS-T containing additionally 0.09% sodium azide. 

 

 

2.2.3.7 Immunodepletion of HeLa nuclear extract 

 

Immunodepletion of Smu1/RED from HeLa nuclear extract (Section 2.2.3.1) was performed using anti-peptide 

antibodies specific for Smu1. The crosslinked beads were washed 3 times with 1x PBS and then blocked overnight 

in 1x PBS supplemented with 0.5 mg/mL BSA, 0.05 mg/mL tRNAE.c.and 0.05 mg/mL Glycogen.  

To minimize unspecific binding to the beads, the salt concentration of the nuclear extract was increased to 750 mM 

KCl (SE-750). After three washes with Roeder D buffer containing an increased salt concentration of 750 mM KCl 

(RD-750 buffer), the beads were divided into two equal portions and the SE-750 was incubated successively with 

each portion for 2 hr at 4 °C with head-over-tail rotation. The extract was subsequently dialyzed against RD-100 

buffer for 5 h at 4 °C. Mock-depleted extract was treated in a similar manner while the antibody was omitted. 

 

 

2.2.3.8 In vitro splicing reaction 

 

A typical splicing reaction was carried out in the presence of 10 nM MINX, PM5 or PM5-10 pre-mRNA and 40 % 

(v/v) HeLa nuclear extract or 50% depleted extract. The composition of a standard splicing reaction is illustrated in 

Table 2.11. 

The splicing reaction mixtures were incubated at 30 °C for the times indicated in the respective figure (Section 3, 

Results).  
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Table 2.11: Composition of a standard in vitro splicing reaction 

Component Stock conc. Final conc. 

HEPES-KOH, pH 7.9 1 M 20 mM 

MgCl2 500 mM 3 mM 

KCl 3000 mM 60 mM 

ATP 100 mM 2 mM 

Creatine phosphate 500 mM 20 mM 

Nuclear extract  40–50% 

(32P-) pre-mRNA  5–10 nM 

 

For in vitro trans-splicing, 10 nM of the 5’ fragment and 50 nM of the 3’ fragment were assembled in a standard 

splicing reaction. 

 

To assemble spliceosomes in the presence of recombinant Smu1 and/or RED proteins, the nuclear extract was 

first supplemented with a 30-fold excess of recombinant protein and pre-incubated for 15 min at 30 °C before 

addition to the splicing reaction.  

 

For chase experiments, the splicing reaction was incubated for the time indicated and the recombinant protein was 

then added along with a 10-fold excess of unlabelled pre-mRNA. To exclude the risk that an effect might have been 

due to the increased salt concentration or the presence of imidazole, a control  was performed using buffer without 

protein.  

 

 

2.2.3.9 Analysis of in vitro splicing by Denaturing PAGE 

 

In order to analyse the products of in vitro pre-mRNA splicing, the splicing reaction was subjected to PK digestion 

followed by PCI extraction, and the RNA isolated was resolved on a denaturing polyacrylamide gel. To visualize 

pre-mRNA, splicing intermediates and products, the gel was dried at 70 °C for 2 h and visualised with a 

phosphorimager screen.  

 

 

2.2.3.10 Analysis of splicing complexes by native agarose gel-electrophoresis 

 

The assembly of the spliceosome in vitro can be analysed by using a mobility-retardation assay, since the A, B Bact 

and C complexes exhibit a decreased mobility on native agarose gels (Lamond et al., 1987; Kent & MacMillan, 

2002). To that end, splicing reaction mixtures were supplemented with 0.5 µg/µL heparin and 5x native gel-loading 

dye before loading the sample onto a native gel (2% w/v low-melting-point agarose in 1x TBE buffer). 

Electrophoresis was performed at 50–60 mA for 18 h at room temperature. The gels were subsequently dried at 60 

°C for 3–4 h and visualised with a phosphorimager screen. 
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2.2.3.11 MS2 affinity-selection of splicing complexes 

 

The isolation of spliceosomal complexes was performed by MS2 affinity-selection as described previously 

(Bessonov et al., 2010). To allow purification, the pre-mRNA was pre-incubated with a 20-fold molar excess of 

purified MS2-MBP fusion protein in the presence of 20 mM HEPES-KOH, pH 7.9  for 30 min at 4 °C.  

Subsequently, the pre-mRNA was added to a 1 mL standard splicing reaction. Kinetic and 'Smu1/RED B 

complexes were incubated for 8 min at 30 °C. Spliceosomes were assembled on MINX-70 for 15 minutes. 

The splicing reaction was loaded onto a 14 ml linear 10–30 % (v/v) glycerol gradient containing G-150 buffer. 

Ultracentrifugation of the gradients was performed at 22,000 rpm for 15 h 20 min at 4 °C in a Sorvall TST 41.14 

rotor, and the 500 µl gradient fractions were harvested manually from top to bottom. The distribution of 32P-labeled 

pre-mRNA was analysed by Cherenkov counting.  

For affinity selection, the peak fractions containing the respective spliceosomal complexes were pooled and loaded 

onto a pre-equilibrated column containing 200 µl of packed amylose beads (NEB) and incubated for 15 min. The 

matrix was then washed with 50 column volumes of G-75 buffer. Elution of the spliceosomal complexes was 

performed by addition of 400 µl of G-75 buffer containing 25 mM maltose. The snRNA composition was analysed 

by denaturing polyacrylamide-gel electrophoresis after PK digestion and PCI extraction or by submission to mass 

spectrometry. 

 

 

2.2.3.12 Mass spectrometry 

 

The protein composition of spliceosomal complexes was analysed by mass spectrometry. To this end, isolated 

spliceosomal complexes were concentrated by ethanol precipitation (addition of 0.1 volume 3 M NaOAC pH 5 and 

5 volumes absolute ethanol) at –80 °C for 48 h. The RNP pellet obtained was dissolved in 1x NuPAGE™ LDS 

Sample Buffer, supplemented with NuPAGE™ Sample Reducing Agent and denatured at 70 °C for 10 min. The 

proteins were separated on 4–12% NuPAGETM gradient gels (Invitrogen) and stained with Coomassie blue. 

 

Each lane was divided into 23 slices and the proteins of each slice were digested in-gel with trypsin and extracted 

as described by Shevchenko et al. (Shevchenko et al., 1996). The extracted peptides were subsequently analyzed 

in a Q Exactive™ HF Hybrid Quadrupol-Orbitrap™ Mass Spectrometer (Thermo Fisher Scientific) under standard 

conditions. Proteins were identified by searching fragment spectra against the UniProt data base. Sample 

preparation and mass spectrometric analysis was performed by the laboratory of Henning Urlaub.  
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2.2.3.13 Purification of endogenous spliceosomes from the chromatin fraction  

 

Crosslinking and sonication 

 

For the purification of spliceosomal complexes from the chromatin fraction, cells were lysed as described in Section 

2.2.3.2. The HeLa Cell Lysis Buffer, however, contained 30 mM HEPES-KOH pH 7.5 instead of Tris-HCl and the 

chromatin was pelleted by centrifugation at 700 x g at 4 °C for 10 min. The chromatin pellet was resuspended in a 

volume of HeLa W/O Salt Buffer equivalent to the lysis volume. The chromatin was then passed through a 26G 

needle until homogenized. For crosslinking dithiobis succinimidyl propionate (DSP) was dissolved in dimethyl 

sulfoxide (DMSO) and added to a final concentration of 1.5 mM. Crosslinking was performed on ice, at 4 °C for 1 

h. An equal volume of HeLa Sonication Buffer was added and 250 µL per 1.5 mL reaction tube was sonicated in a 

Bioruptor at maximum intensity (30 sec on, 30 sec off) in a 0.5 °C cold water bath. Sonication was performed for 2 

times 60 min with an incubation on ice for 30 min in between. 

 

Glycerol-gradient sedimentation 

 

The cross-linked and sonicated samples were layered on a 10–40% glycerol gradient containing 65 mM NaCl, 30 

mM Tris-HCl pH 7.5 and 1 M EDTA. Centrifugation was performed at 4 °C and 60,000 rpm in a Th660 (Thermo 

scientific) rotor for 1h (Sorvall WX Ultracentrifuge). The gradient was fractionated into 175 µL fractions, which were 

subsequently analyzed by western blotting. For crosslink reversal 3x loading dye containing 180 mM Tris, 6% SDS, 

300 mM DTT and bromophenol blue was mixed with the samples and the mixture was kept at 95 °C for 7 min. From 

the fractions of interest P-Prp31- and P-SF3b155-associated spliceosomes were purified by immunoprecipitation. 

 

Immunoprecipitation 

 

For immunoprecipitation the peak fractions were pooled and diluted 1:1 with HeLa IP Dilution Buffer. 

Unless otherwise stated, incubations were performed at 4 °C under rotation. ~5 µg of the purified antibodies were 

directly added to the diluted fractions, incubated at 4 °C for 2 h and then with ~30 µL protein A Sepharose beads. 

After precipitation the beads were sedimented by centrifugation at 3,000 rpm for 3 min in a Biofuge fresco (Heraeus) 

and the supernatant was collected for further investigation. The beads were washed 4x with HeLa IP Wash Buffer 

followed by incubation on ice for 2 min. The precipitate’s RNA content was analysed by northern blotting. 
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3. Results 

 

The spliceosome is characterised by its highly complex and dynamic structure and composition. While lower 

eukaryotes get by with the core components necessary for intron excision, higher eukaryotes require additional 

factors to cope with the increased challenges of a more complex gene architecture. Smu1 and RED are two non-

conserved spliceosomal factors whose function in splicing is currently poorly understood. In order to shed some 

light on this issue, this study targets the role of Smu1 and RED in splicing with the help of a combination of genome 

wide, in vivo and in vitro approaches.  

 

3.1 Alternative and constitutive splicing are affected by knockdown of Smu1 and RED 

 

Several studies targeting Smu1 and RED have revealed that their knock-down/gene mutation affects alternative 

splicing in plants, worms and humans (Spartz et al., 2004; Chung et al., 2009; Papasaikas et al., 2015). However, 

as these studies focused on known alternative splicing events, the question of whether constitutive splicing is altered 

in the absence of Smu1 and RED has not been investigated. To address this issue, I examined how their depletion 

generally effects splicing in HeLa cells by RNA-seq analysis. To be able to differentiate between Smu1/RED-specific 

effects on splicing and effects shared with other B-specific proteins, the knock-down of MFAP1 was additionally 

investigated. For that purpose, HeLa cells were transfected with siRNAs specific for Smu1, RED or MFAP1, 

respectively. As a control, an siRNA without target in the human transcriptome was transfected. 50 h after 

transfection the cells were harvested and the total RNA was extracted for Illumina sequencing. The RNAseq 

analysis was performed by Panagiotis Papasaikas in the laboratory from Juan Juan Valcárcel (CRG, Bercelona).   

 

Hiseq-Illumina Paired End sequencing (100bp reads post adapter/barcode removal) generated 2 x 135,376,977 

reads for the control, 2 x 144,695,392 reads in 'RED cells, 2 x 129,201,923 reads in 'Smu1 cells and 2 x 

131,781,731 reads in 'MFAP1 cells. About 89%, 88%, 86% and 85% of the total reads for the control, 'RED, 

'Smu1 and 'MFAP1 cells, respectively, were mapped on the human hg19 genome and the UCSC transcriptome 

by using TopHat2 (v2.0.8). Differential transcript splicing was quantified by using the Cuffdiff program of the 

Cufflinks suite (v2.1.1) and alternative splicing events, including usage of alternatively spliced exons, alternative 

5’SS (Alt5’SS), alternative 3’SS (Alt3’SS) and retained introns were quantified by using the MISO package (v0.5.2).   

As shown in Fig. 3.1A, the alternative splicing of cassette exons and intron retention represented the majority of 

changes in splicing events upon depletion of Smu1, RED and MFAP1. A substantial majority of cassette exons 

(Cex) were skipped (Fig. 3.1B). Usage of alternative 5’SS and 3’SS detected in Smu1 or RED depleted cells were 

largely overlapping (~56%) while the overlap level dropped to 35–40% between Smu1/RED and MFAP1 depleted 

cells (Fig. 3.1C and D).  
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Similarly, a high level of similarity (72% overlap) between Smu1- and RED-depleted cells was observed for the 

alternative splicing of cassette exons. This observation is consistent with the idea that the two factors function as a 

dimer. In comparison, the extent of overlap observed for cells depleted of Smu1 or RED with 'MFAP1 cells was 

reduced to 51% (Fig. 3.1E). Nevertheless, a similarity of 51% is not a small matter and is indicative of factors that 

associate concomitantly with the spliceosome. 

 

 

 

 
Figure 3.1. Splicing events effected by siRNA-mediated depletion of Smu1, RED or MFAP1. (A) Pie charts showing class distribution 

of all alternative splicing events detected: Usage of alternatively spliced cassette exons, alternative 5’SS (Alt5’SS), alternative 3’SS 

(Alt3’SS) and retained introns in siRNA-mediated knock-down cells for Smu1, RED and MFAP1. (B) Relative fraction of cassette exon 

(Cex) inclusion or skipping among the population of cassette exons whose alternative splicing is affected in 'Smu1, 'RED and 'MFAP1 

HeLa cells. (C-F) Venn diagrams showing the extent of the AS events overlap between each class of AS, i.e. alternative 3’ splice sites (C), 

alternative 5’ splice sites (D), cassette exon (E) and retained introns (F) in the three different cell types i.e. 'Smu1, 'RED and 'MFAP1 

HeLa cells. Numbers represented in the circles represent the absolute number of the corresponding AS events detected in each depletion 

experiment. The table shows the relative overlap in %. (G) Chart representing the fraction of constitutively spliced introns among the 

introns retained (unspliced) in 'Smu1, 'RED and 'MFAP1 cells.  
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As observed for cassette exons, introns retained upon Smu1 and RED depletion also showed a 75% overlap. 

Strikingly, the overlap of 'Smu1/RED cells with MFAP1-depleted cells was (at 25%) dramatically reduced, 

indicating that the majority of introns retained upon MFAP1 depletion were normally processed in Smu1/RED-

depleted cells and vice versa (Fig. 3.1F). Introns retained in 'RED, 'Smu1 and 'MFAP1 cells appeared to 

represent in their vast majority (>90%) introns that are normally constitutively spliced (Fig. 3.1G) by the 

spliceosome. This suggests that Smu1 and RED are important for splicing in general, and are not only involved in 

the regulation of alternative splicing. 

 

 

3.2 Short introns are predominantly retained upon knock-down of Smu1 and RED 
 

 

 
Figure 3.2. siRNA-mediated depletion of Smu1 or RED results in retention of short constitutively spliced introns. (A-C) Introns 

were sorted into 4 classes according to their length i.e. <200 bases, 200 to 1Kb, 1Kb to 5Kb and >5Kb. Chart showing the relative 

distribution among those 4 length classes of the introns retained in 'Smu1(A), 'RED (B) and 'MFAP1 (C) cells. (D) Chart showing the 

relative distribution of intron length (whole genome) among these 4 classes. (E & F) Heat maps showing the level of intron retention (x-

axis) relative to the intron length (y-axis) upon depletion of Smu1 (E) or RED (F). The colour code ranges from pale green for low abundance 

introns to deep red for highly abundant introns (referred to as “count”). 
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All attempts to identify common features of the introns retained after Smu1 and RED knock-down, failed to reveal 

any mutual motives or sequences. However, surprisingly, I found that introns shorter than 200 nt were preferentially 

retained. As shown in Fig. 3.2A and B, ~60% of the introns retained in 'Smu1 and 'RED cells exhibited a length 

under 200 nucleotides, even though such short introns only have a prevalence in the whole human genome of 

about 15% (Fig. 3.2D). In comparison, MFAP1-depletion did not show any preference for short introns, as they 

represented only 20% of the introns retained (Fig. 3.2 C). Thus, defects in constitutive splicing showed a strong 

bias toward short introns in Smu1- and RED-depleted cells. Closer examination indicated that introns presenting 

the highest level of retention in 'Smu1 and 'RED cells had a strikingly homogenous length of around 75–100 nt 

(Fig. 3.2E and F). This distribution supports the idea that intron length may be a co-determinant of the Smu1/RED 

requirement for efficient intron splicing. 

 

 

3.3 A Smu1-specific antibody effectively co-depletes Smu1 and RED from HeLa nuclear 

extract 

 

The RNAseq analysis of Smu1- or RED-depleted cells suggested that these two proteins are required for splicing 

of introns shorter than 100 nt. To recapitulate the effect seen in vivo and to dissect the roles of Smu1 and RED in 

pre-mRNA splicing, I set up a suitable in vitro system. As a first measure, I removed Smu1 from splicing-competent 

nuclear extract by immunodepletion with a Smu1-specific antibody. To exclude the possibility that an effect is due 

to the procedure (e.g. to the increase in salt concentration during the depletion, or to the exposure to beads) mock-

depleted extract was prepared in exactly the same manner, but with omission of the antibody. This extract served 

as a control extract in the later splicing experiments. To further assess unspecific binding to the beads, SE750 

(splicing extract with 750 mM KCl) was also investigated; in this control the extract had a higher salt concentration 

but was not exposed to beads.  

 

Analysis of the depleted extract by immunoblotting revealed that Smu1 was nearly completely depleted from the 

extract, along with around 90% of RED (Fig. 3.3A and B). Apparently, the physical interaction between these two 

proteins resulted in an efficient co-depletion of RED with Smu1, even at 1 M KCl, underlining the stability of the 

Smu1/RED dimer. In contrast, other B-specific proteins (Prp38, MFAP1 and FBP21) and also core spliceosomal 

factors (U5-Snu114K, tri-snRNP protein Snu66 and U2-SF3a66) were not affected by the depletion or by contact 

with the beads, indicating that the Smu1-specific antibody indeed selectively depleted the Smu1/RED dimer from 

the extract.  
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Figure 3.3. Smu1 and RED levels are efficiently and specifically decreased by immunodepletion. (A) Western blot analysis of 

immunodepleted extract. For immunodepletion, the salt concentration of splicing-competent nuclear extract was increased to 750 mM KCl 

and incubated with two sets of beads for 2 h each, followed by dialysis against RD100 buffer. A Smu1-specific antibody ('Smu1) or no 

antibody (Mock) was coupled to the beads beforehand. To monitor bead-specific effects, a parallel extract was analysed that was not 

exposed to beads, but only to an increased salt concentration (SE750).  Equal protein concentrations from each extract were loaded, as 

well as a ladder of the mock-depleted extract, to assess depletion efficiency. The extracts were separated by 4–12% SDS-PAGE, 

transferred to a nitrocellulose membrane and analysed by immunoblotting using antibodies against Smu1 and RED as well as core splicing 

factors (116K, 110K and SF3a66) or other B-specific proteins (MFAP1, FBP21 and hPrp38) as controls. (B) Quantification of protein levels 

in the depleted extract relative to the mock extract.  

 

 

3.4 Spliceosome activation is slowed down in 'Smu1/RED extracts 

 

In order to assess the role of Smu1/RED, I investigated the kinetics of in vitro splicing of the MINX-MS2 pre-mRNA 

in the absence or presence of Smu1/RED. This pre-mRNA comprises a 120-nt-long intron, flanked by two exons; it 

is therefore able to perform both splicing reactions. The co-transcribed MS2 tag of the pre-mRNA binds efficiently 

to an MS2-MBP fusion protein, which in turn binds to amylose beads. However, the affinity of the MBP (maltose 

binding protein) for amylose is lower than that for maltose. This makes possible the affinity purification of 

spliceosomes assembled in vitro for compositional analysis by gel electrophoresis or mass spectrometry. Analysis 

of MINX pre-mRNA splicing by denaturing gel electrophoresis revealed that both splicing steps occurred in the 

absence of Smu1/RED but less efficiently; this was manifested by the delayed appearance of both intermediates 

and products upon depletion (Fig. 3.4A). 

 

After 60 minutes of splicing ~85% of the MINX pre-mRNA had been converted into mature mRNA in mock depleted 

extract, while only ~40% had been spliced in 'Smu1/RED extract (Fig. 3.4C). Investigation of the spliceosome 

assembly on a native gel showed an increased B complex signal relative to the mock at all incubation times when 

Smu1/RED had been depleted (Fig. 3.4B). However, the signal decreased over time and the subsequently formed 

Bact and C complexes could be detected.  
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This suggests that the accumulation of B complexes was only transient and that the activation was impaired, but 

not blocked. In contrast no accumulation of A complexes was observed. Taken together, these results suggest that 

Smu1 and RED are not essential to form functional spliceosomes on the MINX pre-mRNA, but that their activation 

is delayed in the absence of the two proteins. Thus, Smu1 and RED appear to facilitate/accelerate the transition 

from the B to the Bact complex.  

 

 

 

 

Figure 3.4. The B-to-Bact transition is slowed down in 'Smu1/RED extract. Kinetics of in vitro splicing (A) and spliceosome assembly 

(B) of MINX-120 pre-mRNA in the presence or absence of Smu1/RED. 32P-labelled pre-mRNA was incubated under splicing conditions in 

the presence of depleted or mock-depleted HeLa nuclear extract for the times indicated. (A) RNA was analysed by denaturing PAGE and 

visualized by autoradiography. The pre-mRNA, splicing intermediates and producs are indicated on the left. (B) Spliceosomal complex 

formation was analysed on a native agarose gel and visualized by autoradiography. The positions of the H/E, A, B, C, and Bact complexes 

are indicated on the left. (C) Quantification of the kinetics of pre-mRNA to mRNA conversion over the reaction time. 
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3.5 Splicing efficiency is intron length dependent 

 

The RNAseq data indicated that the introns retained in cells upon Smu1/RED depletion had a pre-dominant length 

of 75 - 100 nt, while the splicing of longer introns was much less strongly affected. Therefore, I designed MINX-

MS2 constructs containing introns with 70, 80, 90 or 150 nucleotides (MINX-70, -80, -90 and -150) by removing or 

adding sequences between the 5’SS and the branch site (BS) (Fig. 3.5A). Thereby, the 5’SS - BS distance was 

extended/reduced from 96 nt to 126, 66, 56 and 46 nt, respectively, while the distance between the BS and the 

3’SS remained unchanged. Importantly, the essential splicing motifs - including both splice sites, BS and 

polypyrimidine tract (PY tract) - remained unaltered. 

 

In untreated nuclear extract, splicing of the MINX-150 pre-mRNA was as efficient as that of MINX-120. Both 

exhibited similar kinetics and most of both pre-mRNAs (~75%) had been spliced after 45 minutes (Fig. 3.5B and 

C). This indicates that elongation of the MINX intron by 30 nucleotides did not have a significant effect on splicing 

or spliceosome formation. When the intron was shortened to 90 nt, splicing-product formation occurred quite 

efficiently, although with somewhat altered kinetics. At each time point less of the splicing products had been 

formed, and 60 minutes were required to splice ~75% of the pre-mRNA. Further shortening of the intron to 80 nt 

revealed an even greater delay in splicing; after 60 minutes only ~55% had been spliced. When the intron was 

truncated to 70 nt barely any spliced product could be detected. The differences in splicing efficiency suggest that 

the productivity of the spliceosome depends on the intron length when this length falls below a certain critical value 

(<120 nt). 

 

Investigation of the spliceosome assembly on native gels showed that spliceosomal complexes were formed with 

similar efficiency on MINX-120 and MINX-150 (Fig. 3.5D). When spliceosomes were assembled on MINX-90 the 

Bact complex signal at later time points (30–60 min) appeared slightly stronger, while on MINX-80 the B complex 

was clearly increased after 10 minutes. This is consistent with the moderately reduced splicing efficiencies of the 

shortened pre-mRNAs which appears to be caused by an impaired spliceosome assembly.  

With MINX-70 a strong accumulation of A complexes was obtained at all time points. While moderate signals for 

the B complex could be observed, no Bact or C complexes were visible, indicating the B complex formation is 

challenging on such a short intron. Taken together, the sequential shortening of the MINX intron resulted in 

increasingly impaired spliceosome assembly and splicing, suggesting that both depend on the intron length and 

can be completely inhibited when it falls below a critical size of ~70 nt. 
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Figure 3.5. Splicing efficiency and spliceosome assembly are length-dependent. (A) Schematic of MINX-MS2 constructs with varying 

intron lengths. The MINX-120 intron (120 nt) was extended by 30 nt (MINX-150) or truncated by 30 nt (MINX-90), 40 nt (MINX-80) or 50 

nt (MINX-70). Reactive sites (5’SS, BP, 3’SS) and the polypyrimidine (PY) tract remained unchanged. Kinetics of in vitro splicing (B) and 

spliceosome assembly (D) of the distinct MINX pre-mRNA constructs. 32P-labelled pre-mRNAs were incubated under splicing conditions 

in the presence of regular HeLa extract for the indicated times. (B) RNA was analysed by denaturing PAGE and visualized by 

autoradiography. The pre-mRNA and splicing intermediates and products are indicated on the right. “½” and “x” mark the intron-3’exon 

intermediate or spliced-out intron of the distinct pre-mRNA constructs, which migrate differently owing to their different sizes. (C) 

Quantification of the kinetics of the conversion of pre-mRNA to mRNA over the reaction time. (D) Spliceosomal complex formation was 

analysed on a native agarose gel and visualized by autoradiography. The positions of the H/E, A, B, C, and Bact complexes are indicated 

on the left.  
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3.6 Smu1 and RED are essential for in vitro splicing and spliceosome assembly when 

introns are short 
 

 
 
Figure 3.6. Splicing and spliceosome assembly are slowed down/inhibited by the Smu1/RED depletion. Kinetics of splicing (A) and 

spliceosome assembly (B) in vitro of MINX pre-mRNA constructs in the presence or absence of Smu1/RED. 32P-labelled pre-mRNA was 

incubated under splicing conditions in the presence of depleted or mock-depleted HeLa nuclear extract for the times indicated. (A) RNA 

was analysed by denaturing PAGE and visualized by autoradiography. The pre-mRNA and splicing intermediates and products are 

indicated on the right. “½” and “x” mark respectively the intron-3’exon intermediate and the intron of the distinct pre-mRNA constructs, 

which migrate differently owing to their different sizes. (B) Spliceosomal complex formation was analysed on a native agarose gel and 

visualized by autoradiography. The positions of the H/E, A, B, C, and Bact complexes are indicated on the left. (C-F) Quantification of pre-

mRNA to mRNA conversion in 'Smu1/RED extract relative to the mock-depleted sample. 
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As a next step, I investigated the effect of the Smu1/RED depletion on the splicing of the four functional MINX 

constructs (MINX-80, -90, -120 and -150) in the Smu1/RED-depleted extract. To that end, each pre-mRNA was 

incubated with Smu1/RED-depleted or mock-depleted extract and spliceosome assembly or splicing-product 

formation was analysed on native or denaturating gels, respectively. In the absence of Smu1/RED, MINX-150 and 

MINX-120 were spliced ~30% less efficiently (Fig. 3.6A, C and D) than in the mock-depleted extract, and in contrast 

to the mock control there was a strong accumulation of B complexes at all time points with B complexes still 

detectable after 90 minutes (Fig. 3.6B). Splicing of MINX-90 in 'Smu1/RED extract was 50% less efficient than in 

the mock-depleted extract (Fig. 3.6E) and slightly more B complexes accumulated. Thus, MINX-90 appears to be 

moderately more affected by the depletion than MINX-150 and MINX-120. Splicing of MINX-80, however, was 

drastically reduced in the absence of Smu1/RED, with the pre-mRNA-to-mRNA conversion reduced by 90% (Fig. 

3.6F). Consistent with this, a significantly increased B complex signal relative to the mock extract could be detected 

on the native gel, while no signals corresponding to later Bact or C spliceosomal complexes were visible, suggesting 

a severe impairment of the B-to-Bact transition. Taken together, these results indicate that Smu1 and RED function 

to facilitate spliceosome assembly on longer introns and become essential factors for the activation of spliceosomes 

assembling on short introns with a length of ~80 nt. 

 
 
3.7 Splicing of MINX-80 can be restored by addition of Smu1/RED 

 
In vitro splicing experiments with Smu1/RED-depleted extract suggested that these two proteins are involved in the 

activation of spliceosomal B complexes. To exclude the possibility that the observed effect was caused by co-

depletion of additional splicing factors, I performed a complementation experiment with human Smu1 and RED 

proteins, obtained by co-expression in insect cells. For that purpose, RED was equipped with an N-terminal His tag 

and Smu1 with a Strep-II tag, and for both proteins baculoviral DNA was generated in E. coli DH10MultiBacY cells. 

The viral DNA was transfected into Sf9 insect cells for reconstitution of infectious virus particles. For protein 

expression, optimised High Five insect cells were transfected with the virus particles, and after 60–72 hours, the 

dimer could be purified from the cells by nickel-column chromatography (Fig 3.7A). The purified protein was 

incubated with HeLa nuclear extract before initiating the splicing reaction, to allow the formation of potentially 

important interactions. Since splicing of MINX-80 was most strongly affected by the Smu1/RED-depletion, it was 

used as substrate in the following experiments, except where stated otherwise.  

 
As shown in Fig. 3.7B, complementation of the Smu1/RED-depleted reaction with the purified dimer completely 

resolved the assembly blockade and allowed the formation of Bact and C complexes. Furthermore, splicing of MINX-

80 was restored to levels comparable to that observed with mock-depleted extract (Fig. 3.7C and D). This indicates 

that indeed no splicing factors other than Smu1/RED were responsible for stalling the spliceosome assembly. 
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Figure 3.7. Purified recombinant Smu1/RED is sufficient to restore spliceosome activation and splicing. (A) Human Smu1 and 

RED, expressed and purified from High Five insect cells were separated by SDS-PAGE and stained with Coomassie. Kinetics of 

spliceosome assembly (B) and in vitro splicing (C) after complementation with the Smu1/RED dimer obtained from co-expression in insect 

cells. The purified proteins, or only High Five Elution buffer, were pre-incubated with depleted or mock-depleted extract and then with the 

32P-labelled MINX-80 pre-mRNA under splicing conditions for the times indicated. (B) Spliceosomal complex formation was analysed on 

a native agarose gel and visualized by autoradiography. The positions of the H/E, A, B, C, and Bact complexes are indicated on the left. 

(C) RNA was analysed by denaturing PAGE and visualized by autoradiography. The pre-mRNA and splicing intermediates and products 

are indicated on the right. (D) Quantification of the kinetics of pre-mRNA-to-mRNA conversion over the reaction time. 

 

 

3.8 Smu1/RED immunodepletion does not affect the recruitment of additional 

spliceosomal factors to the B complex 

 

Complementation of depleted extract with the purified Smu1/RED dimer restored splicing of the MINX-80 pre-mRNA 

to mock-depletion levels, indicating that the observed defects in splicing and spliceosome assembly were not due 

to co-depletion of other spliceosomal factors required for the activation. Previously, it has been proposed that Smu1 

and RED might serve as a binding platform (Ulrich et al., 2016) for other spliceosomal proteins.  
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To investigate whether Smu1 and RED recruit spliceosomal factors that are required for a functional activation, or 

promote the activation themselves, I assembled mock (i.e wildtype) and 'Smu1/RED-stalled B complexes on MINX-

80, separated the particles by glycerol-gradient ultracentrifugation, performed MS2 affinity selection and compared 

the snRNA and protein composition of the affinity-purified complexes. The mass spectrometry analysis was 

performed by the laboratory of Henning Urlaub (MPI-bpc, Göttingen).  

 

The gradient profile is illustrated in Fig. 3.8A. It shows that the B complexes assembled in mock-depleted extract 

after 8 min of in vitro splicing, peaked in the fractions 14–15, while 'Smu1/RED B complexes (after incubation for 

8 min) peaked in fraction 12–14, and thus migrated one or two fractions slower. This distinct migration might suggest 

that the stalled complexes are smaller than the B complexes formed after 8 min in the mock extract, or that they 

may have adopted a more relaxed conformation, or possibly both. However, the snRNA composition of 'Smu1/RED 

B complexes (Fig. 3.8B) was identical to that of the mock B complexes, comprising the characteristic U2, U4, U5 

and U6 snRNAs. The absence of the U1 snRNA suggests that the Prp28-mediated destabilization of the U1 snRNP 

was not affected by the depletion of Smu1/RED, while the presence of the U4 snRNA indicates that the Brr2-

mediated unwinding of the U4/U6 helix had not yet occurred. Thus, depletion of Smu1/RED stalled spliceosome 

assembly after the U1 snRNP release and before the unwinding of the U4/U6 duplex by Brr2. 

 

 

 

Figure 3.8. Depletion of Smu1/RED stalls spliceosome assembly at the B complex level. (A) The glycerol-gradient sedimentation 

profile of B complexes assembled on MINX-80 in the presence or absence of Smu1/RED. B complexes were assembled for 8 min under 

splicing conditions in the presence of depleted or mock-depleted HeLa nuclear extract. The migration of the 32P-pre-mRNA was determined 

by Cherenkov counting. (B) snRNA composition of the spliceosomal complexes. The spliceosomal complexes in the peak fractions 

('Smu1/RED B complex, fractions 12–14; mock B complex, fractions 14–16) were subjected to MS2 affinity purification and the RNA 

extracted from the purified complexes was analysed by denaturing PAGE followed by staining with SYBR Gold. 
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Table 3.1: Protein compositions of the 'Smu1/RED and mock (kinetically stalled) B complexes. Proteins of the affinity-purified 

complexes indicated were identified by LC-MS/MS after separation by 4–12 % SDS-PAGE. The number shown is the total number of 

peptides sequenced for the indicated protein. Proteins are grouped according to function or association. Proteins considered as common 

contaminants, such as ribosomal proteins and non-reproducibly detected proteins are not shown. 
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Mass-spectrometric analysis (Table 3.1) further showed that the U2, U5 and U4/U6 di-snRNP proteins, as well as 

the tri-snRNP specific proteins were equally represented in 'Smu1/RED B complexes and kinetically-stalled B 

complexes. Only few peptides corresponding to Smu1 and RED were detected in 'Smu1/RED B complexes, which 

is consistent with efficient depletion from the extract. Concurrently, levels of the other B-specific proteins remained 

essentially unchanged, suggesting that the absence of RED and Smu1 did not affect the recruitment of the other 

B-specific factors. This indicates that the B-specific proteins do not form a pre-assembled complex as is the case 

for the Prp19/CDC5L complex or the IBC. Instead, they appear to bind the spliceosome as individual proteins or as 

small subunits like the Smu1/RED dimer. 

In contrast, factors known to associate with the spliceosome during and after the activation, such as proteins from 

the Prp19/CDC5L complex or the Bact-specific factors, were ~50% less abundant in 'Smu1/RED B complexes as 

compared with kinetically-stalled B spliceosomes. The presence of these proteins indicates that a small fraction of 

the kinetically-stalled spliceosomes have already undergone activation. Their clear reduction in the 'Smu1/RED B 

complexes is consistent with stalling of the spliceosome assembly process before the B-to-Bact transition. Taken 

together, these results show that B complexes assembled in the absence of Smu1 and RED have an snRNA and 

protein composition highly similar to that of B complexes assembled in mock-depleted extract, suggesting that 

Smu1 and RED do not exert their function in spliceosome activation indirectly by altering the recruitment of the 

other B-specific proteins required for activation. 

 

 

3.9 The distance between the 5’SS and the branch site, rather than total intron length per 

se, is the decisive factor for Smu1/RED dependence 

 

The results accrued so far suggested uniformly that Smu1 and RED are required spliceosome activation essentially 

when introns reach a critical length of ~80 nt. As an intron can be divided into two main segments - the sequence 

separating the 5’SS and BS and the region between the BS and 3’SS - the question arises whether the intron length 

per se or alternatively the length of one of these sections is the decisive factor for the strong dependence on Smu1 

and RED. To address this question, I truncated the introns of the PM5150 and PM5-10150 pre-mRNAs. PM5150 is a 

pre-mRNA that contains a 5’ exon and a 236 nt long intron, with an extended PY tract of 60 nt (Fig. 3.9A). PM5-

10150 is a derivative of PM5150, the PY tract of which has been truncated to 10 nt (Fig. 3.9B). Consequently, the PY 

tract and intron of PM5-10150 are shorter than those in PM5150 (where the intron length is 166 nt), while the distance 

between 5’SS and BS is 150 nt long in both. Comparison of the two pre-mRNAs allows one to determine effects 

that are based on the distance between BS and 5’SS. 

To be further able to assess the importance of the 5’SS-BS distance, the segment of this intron was additionally 

truncated from 150 to 56 nt in PM5-1056, resulting in an overall intron length of 73 nt. The short PY tract of PM5-10 

prevents the first splicing step from taking place and results in Bact complex stalling. As no splicing products or 

intermediates can be formed with the PM5-10 constructs, only spliceosome assembly was investigated. 
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Native gels showed that Smu1/RED depletion resulted in an increased B complex signal and somewhat diminished 

Bact complex signal with PM5-10150, indicating that the activation was impaired (Fig. 3.9C). Nevertheless, a strong 

signal corresponding to the Bact complex was still obtained, suggesting that the activation was less efficient but not 

abolished.  

 

 

 
Figure 3.9. PY tract extension does not compensate for a short 5’SS-BS distance. (A) Schematic of PM5-10 constructs. The 5’SS-

BS distance from PM5-10150 was shortened to 56 nt in PM5-1056. Reactive sites (5’SS, BP, 3’SS) and the PY tract remained unchanged. 

In PM5-10 constructs, truncation of the PY tract to 10 nt blocks spliceosome assembly at the Bact complex level.  (B) Schematic of PM5 

constructs. The 5’SS-BS distance from PM5150 was shortened to 56 nt in PM556. Reactive sites (5’SS, BP, 3’SS) and PY tract remained 

unchanged. Owing to a lack of a 3’ exon, stalls spliceosome assembly on PM5 constructs stalls at the C complex stage. (C) and (D) 

Kinetics of spliceosome assembly on PM5-10 or PM5 constructs in the presence or absence of Smu1/RED. 32P-labelled pre-mRNAs were 

incubated under splicing conditions in the presence of Smu1/RED-depleted or mock-depleted HeLa nuclear extract for the times indicated. 

Spliceosomal complex formation was analysed on a native agarose gel and visualized by autoradiography. The positions of the H/E, A, B, 

C, and Bact complexes are indicated on the left. (E) Kinetics of in vitro splicing. The 32P-labelled PM5 pre-mRNA was incubated with 

Smu1/RED-depleted or mock-depleted extract under splicing conditions for the times indicated, separated by denaturing PAGE and 

visualized by autoradiography. The pre-mRNA and splicing intermediates are indicated on the left and right. (F) Quantification of the 

kinetics of the formation of splicing intermediates over the reaction time. 
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Reduction of the distance between 5’SS and BS in PM5-10 from 150 to 56 nt appeared generally to slow down the 

transition from one complex to the next under conditions of mock-depletion. In 'Smu1/RED extract, however, only 

traces of activated spliceosomes were detected, while the B complex signal was stably increased even after 120 

min, indicating that the B-to-Bact transition was completely blocked.  

 

Truncation of the 5’SS-BS distance in PM5 from 150 to 56 nt resulted in an overall intron length of 142 nt, which is 

still above the determined threshold of 100 nt. While the extended PY tract of PM5 constructs allows the formation 

of activated spliceosomes, the assembly is blocked at the C complex level, owing to the lack of a 3’ exon. As the 

first splicing step can nonetheless occur, splicing was additionally investigated by denaturing PAGE. Spliceosome 

assembly on PM5150 appeared less responsive to the Smu1/RED depletion, as a strong increase in B complex 

signal was only observed after 10 minutes, and it subsequently quickly decreased (Fig. 3.9D). However, the C 

complex signal in 'Smu1/RED extract was significantly decreased compared with mock-depleted extract, 

suggesting that the assembly was still restricted by the Smu1/RED-depletion. Consistent with this, the first splicing 

step of PM5 was significantly less efficient without Smu1/RED (Fig. 3.9E); while 55% of PM5150 had undergone the 

first splicing step after 120 minutes in mock-depleted extract, this was only the case for 11% of PM5-10150 in extract 

depleted of Smu1/RED. (Fig. 3.9F). Interestingly, shortening of the PM5 intron between 5’SS and BS decreased 

the efficiency of spliceosome assembly in mock-depleted extract, with ~45% less of the splicing intermediates 

formed after 120 minutes (~31%). Remarkably, in the absence of Smu1/RED, spliceosome assembly on PM556 

was clearly stalled at the B complex level and only traces of C complexes were detected. At the same time, only a 

very small fraction of the pre-mRNA had been converted to splicing intermediates. 

 

As the PM5 and PM5-10 constructs were similarly affected by the depletion of Smu1 and RED, the distance between 

the BS and the 3’SS does not appear to be a relevant factor. In contrast, shortening of the 5’SS-BS distance blocked 

the activation of spliceosomes formed on both PM556 and PM5-1056 indicating that this distance is the decisive 

factor for the Smu1/RED-dependence of short-intron splicing. Consequently, it is not the intron length per se that 

determines whether Smu1 and RED are essential, but the distance between the 5’SS and the BS. 

 

 

3.10 Cleaving the MINX-80 substrate into two parts restores activation on short introns 

independently of Smu1/RED 

 

My results indicate that Smu1 and RED jointly support the activation of the spliceosome, and that this support 

becomes essential when the distance between 5’SS and BS reaches a critical length of ~56 nt or shorter. A 

reasonable explanation for this length-dependence is that short introns might exercise a physical constraint upon 

the spliceosome, thereby preventing movements required for the activation. Consequently, releasing the physical 

constraint exerted through the pre-mRNA on the stalled 'Smu1/RED spliceosome (by splitting the short MINX-80 

intron between the 5’SS and BS) should restore the flexibility that the spliceosome needs in order to adopt the 

conformation required for its activation and for splicing.   
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To test this, I physically separated the intron of the MINX-80 pre-mRNA by transcribing it in two independent parts 

(MINX-80-cleaved; Fig. 3.10A). The first part comprised Exon1 and 25 nt of the intron downstream of the 5’SS and 

the second part included the 31 remaining nucleotides upstream of the BS, the BS itself, the PY tract and Exon2.  
 

 
 
Figure 3.10. MINX-80-cleaved allows spliceosome activation and splicing in the absence of Smu1 and RED. (A) Schematic of MINX-

80 and MINX-80-cleaved. To obtain the MINX-80-cleaved construct, MINX-80 pre-mRNA was transcribed in two parts. The first contained 

Exon 1, the 5’SS and 25 nt of the intron. The second part comprised the rest of the intron, including the BP, the PY tract and the 3’SS, as 

well as Exon 2. The first part was radiolabelled for detection by autoradiography. The two constructs were identical regarding sequence 

and intron length. Kinetics of spliceosome assembly (B) and in vitro splicing (C) of the intact and cleaved MINX-80 constructs in the 

presence or absence of Smu1/RED. Pre-mRNAs were incubated under splicing conditions in depleted or mock-depleted extract for the 

times indicated. (B) Spliceosomal complex formation was analysed on a native agarose gel and visualized by autoradiography. The 

positions of the H/E, A, B, C, and Bact complexes are indicated. (C) RNA was analysed by denaturing PAGE and visualized by 

autoradiography. The pre-mRNA and splicing intermediates and products are indicated on the right or left. (D) Quantification of pre-mRNA 

to mRNA conversion in 'Smu1/RED extract after 120 min relative to the mock sample. 
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Thus, MINX-80 and MINX-80-cleaved have identical sequences but MINX-80-cleaved is split between its 5’SS and 

BS. The MINX-80 and MINX-80-cleaved pre-mRNAs were tested in in vitro splicing reactions performed with 

Smu1/RED-depleted or mock-depleted extract, and the splicing outcome and spliceosome assembly were 

investigated by denaturing and native gel analysis, respectively  

 

As shown in Fig. 3.10B, C and D, B, Bact and C complexes were assembled on both MINX-80 and MINX-80-cleaved 

in mock-depleted extract, and the spliced products could readily be detected, indicating that both constructs are 

splicing-competent. However, there appeared to be an accumulation of Bact/C complexes with the cleaved versus 

uncleaved MINX-80 pre-mRNA. Also, less A complexes were detected, likely because they do not withstand the 

native gel conditions when U1 and U2 bind to physically separated pieces of the pre-mRNA. As described above, 

spliceosome assembly on MINX-80 pre-mRNA in Smu1/RED-depleted extract was stalled at the B complex level, 

as indicated by a strong accumulation of B complexes at all times, while the Bact and C complex signals were 

reduced as compared with the mock-depleted sample (Fig. 3.10B). Consistent with this, splicing was ~80% less 

efficient in the absence of Smu1 and RED. However, spliceosomes assembled on MINX-80-cleaved could be 

activated, as strong signals corresponding to Bact and C complexes were detected. Also, the spliced product could 

readily be detected, although its formation was 20% less efficient than that observed under mock conditions (Fig. 

3.10D).  

Thus, the release of the physical constraint exerted by the pre-mRNA on the spliceosome in MINX-80-cleaved 

reactions restored the B-to-Bact transition on short introns in the absence of Smu1/RED, but also the formation of 

splicing product. This strongly supports the idea that the Smu1/RED complex is essential to promote the adoption 

of a conformation required for spliceosome activation when short introns exert a physical constraint. 

 

 

3.11 Stalled 'Smu1/RED B complexes can be activated by addition of the purified dimer 

 

To obtain a better understanding of why spliceosome assembly is stalled in the absence of Smu1/RED, I tested 

whether 'Smu1/RED B complexes are functional assembly intermediates or dead-end complexes whose splicing 

activity cannot be restored. Therefore, I assembled stalled B spliceosomes in 'Smu1/RED extract for 30 minutes 

and subsequently added the purified dimer. Concomitantly, a 10-fold excess of unlabelled MINX-80 pre-mRNA was 

added to sequester newly assembled spliceosomes, and thus ensure that any subsequently formed splicing 

complexes (i.e., the C complex) could only be derived from the B complexes formed before addition of Smu1/RED. 

Spliceosome assembly was analysed by native gel electrophoresis (Fig. 3.11A).  

 

The signal of the 'Smu1/RED-stalled B complexes decreased rather slowly upon addition of High Five Elution 

Buffer and no Bact/C complex formation was detected. In contrast 15 minutes after addition of Smu1/RED a signal 

corresponding to Bact and C complexes could be detected while the signal of the stalled B complexes was 

significantly reduced after 30 mins. Concomitantly, no clear formation of spliced mRNA or excised intron could be 

detected at any time after addition of elution buffer to the stalled B complexes (Fig. 3.11B and C). However, when 
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the purified dimer was added, both mRNA and spliced intron were detected. After 120 minutes ca. 40% of the pre-

mRNA had been spliced, which is approximately 50% of the mock control. This indicates that the stalled B 

complexes could be chased into active spliceosomes that catalyse splicing. Consequently, the B complexes that 

accumulate in the absence of Smu1/RED are functional assembly intermediates, which are merely stalled prior to 

activation.  

 

 

 

Figure 3.11. 'Smu1/RED B complexes can be chased into activated spliceosomes. Kinetics of spliceosome assembly (A) and in vitro 

splicing (B) after chase with the Smu1/RED dimer, co-expressed in insect cells. 'Smu1/RED B complexes were assembled on 32P-labelled 

MINX-80 pre-mRNA under splicing conditions for 30 minutes. Subsequently, purified Smu1/RED dimer or High Five Elution Buffer was 

added (black arrow) along with a 10-fold excess of cold pre-mRNA. (A) Spliceosomal complex formation was analysed on a native agarose 

gel and visualized by autoradiography. The positions of the H/E, A, B, C, and Bact complexes are indicated on the left. (B) RNA was 

analysed by denaturing PAGE and visualized by autoradiography. The pre-mRNA and splicing intermediates and products are indicated 

on the left. (C) Quantification of the kinetics of the conversion of pre-mRNA to mRNA. Measurements indicated in grey were taken before 

addition of the elution buffer or purified Smu1/RED dimer, and those indicated in black after this. 

 

 

3.12 The interaction between Smu1 and RED is essential for their function in splicing 

 

Smu1 and RED form a stable module, which was shown to improve the stability of both of these proteins (Spartz et 

al., 2004). It is likely that the interaction is also important for their function. To investigate how each protein 

contributes to the dimer’s function, I performed a series of complementation experiments using the MINX-80 pre-

mRNA and Smu1/RED depleted extract. The tight interaction of Smu1 and RED had made separate investigations 

in vivo and in vitro impossible.  
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Therefore, to examine to which extent each protein contributes to in splicing, I separately expressed and purified 

recombinant His-Smu1 and His-RED proteins from insect cells. For more detailed functional studies, I additionally 

generated truncated Smu1 and RED proteins and investigated the effect on spliceosome activation.  

 

3.12.1 Smu1 and RED can only support the activation co-operatively 

 

The cryo-EM structure of the human B complex revealed that the interaction of Smu1 and RED is maintained in the 

spliceosome, suggesting that this interaction is important for their function. Both Smu1 and RED contact U2 and tri-

snRNP proteins, suggesting that they stabilize the interaction of the U2 and the tri-snRNP within the B complex, 

which appears to be important during the spliceosome activation step (Bertram, Agafonov, Dybkov et al., 2017). 

However, it is unclear whether both proteins are required to provide sufficient stability or if one would be sufficient 

for this task. To that end, I investigated whether Smu1 or RED alone is able to restore splicing activity, by 

complementing 'Smu1/RED nuclear extract with the individually purified proteins (Fig. 3.12A) and analysing the 

formation of spliceosome assembly intermediates by native gel electrophoresis (Fig. 3.12B). A strong accumulation 

of B complexes was detected in Smu1/RED-depleted extract and addition of buffer alone did not relieve this 

accumulation. Interestingly, when Smu1 or RED were added separately little or no effect on B complex accumulation 

was observed and spliceosomes did not undergo activation. However, complementation with both single proteins 

together promoted the B-to-Bact transition as efficiently as the co-expressed dimer did. Concurrently, no splicing 

product was formed when the single proteins were added, while splicing was very efficient in the presence of both 

proteins (3.12C) This shows that the individually purified proteins are functional but cannot fulfil their function 

separately. Furthermore, it shows that Smu1 and RED do not need to be co-expressed to form a functional 

heterodimer. 

 

While the interaction of Smu1 and RED appears to be crucial for their functionality, it is unclear whether dimer 

formation is required for their association with the spliceosome. To answer this question, I purified the B complexes 

assembled in the presence of RED, Smu1 or both proteins and analysed their association with the spliceosome by 

immunoblotting. Interestingly, addition of each single protein resulted in spliceosomes that migrated more slowly in 

the glycerol gradient (fractions 14–15) than complexes containing both proteins (fractions 15–16); this resembles 

the sedimentation behaviour of 'Smu1/RED and kinetically-stalled B complexes, respectively (Fig. 3.13A).  

Western blot analysis of the purified B complexes showed that a strong signal for both proteins was seen when 

they were added together (Fig. 3.13B). However, when only one protein was added only low levels of RED were 

detected and Smu1 was nearly absent. This suggests that the single proteins - especially Smu1 - do not bind 

efficiently to the spliceosome on their own and, thus, that their interaction is important for efficient association of 

both proteins.  

 



Results 
 

 84 

 
 
Figure 3.12. The interaction between Smu1 and RED appears to be important for their function. (A) Smu1 and RED, individually 

expressed and purified from High Five insect cells were separated by SDS-PAGE and stained with Coomassie. (B) Single proteins were 

added separately or together to Smu1/RED-depleted splicing extract. After 15 minutes incubation under splicing conditions, 32P-labelled 

MINX-80 was added and incubated for the times indicated. Spliceosome assembly was monitored by native gel electrophoresis. As 

controls, High Five Elution Buffer without protein or the functional co-expressed (Smu1/RED) dimer was added. (C) Splicing of MINX-80 

after 60 minutes in the presence of the single proteins or both Smu1 and RED, as indicated in the table above. RNA was analysed by 

denaturing PAGE and visualized by autoradiography. The pre-mRNA and splicing intermediates and products are indicated on the right.  
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Figure 3.13. The interaction between Smu1 and RED enhances their association with the spliceosome. (A) Purified B complexes 

assembled in the presence of Smu1, RED or both proteins were seperated by glycerol-gradient ultracentrifugation and their migration was 

determined by Cherenkov counting. (B) The spliceosomal complexes in the peak fractions (+ Smu1 and + RED, fractions 14 & 15; + Smu1 

& RED, fractions 15 & 16) were subjected to MS2 affinity purification and analysed by SDS-PAGE followed by immunoblotting using 

antibodies against SF3b155, RED, Smu1, and Prp31. 

 

 

3.12.2 The WD40 domain of Smu1 is required for association of Smu1/RED with the spliceosome 

 

The structure of the human B complex showed that the WD40 domain of Smu1 is located directly at the interface 

of the U2 protein SF3B3 and the U5-associated helicase Brr2 (Bertram, Agafonov, Dybkov et al., 2017), which 

catalyses the unwinding of the U4/U6 duplex during activation. It is possible that the Smu1-WD40 domain stabilizes 

the positioning of Brr2 relative to its pre-mRNA substrate, thereby regulating the activity of the helicase. 

Consequently, the Smu1-WD40 domain might be crucial for the function of the Smu1/RED dimer.  

 

To assess the importance of this region for the B-to-Bact transition, I expressed a truncation mutant of Smu1, lacking 

the C-terminal WD40 domain (Fig. 3.14A). The short remaining fragment still included the RED interaction surface 

and could be co-purified with full-length (FL) RED (Fig. 3.14B), implying that hetero-dimerization was not inhibited. 

 

As shown in Fig. 3.14C, complementation with Smu1-'WD40/RED did not restore spliceosome activation, as the 

B complexes remained stable over the entire incubation time, comparable to the negative control (with elution 

buffer), while barely any later complexes could be detected. Consistently with this, barely any splicing product had 

been formed in the presence of the Smu1-'WD40/RED dimer (Fig. 3.14D). This suggests that the Smu1-WD40 

domain is indeed important for the function of the Smu1/RED dimer. Closer examination of the purified complexes 

by immunoblotting revealed that the Smu1-'WD40/RED dimer could not associate with the spliceosome (Fig. 

3.14E).  
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Whereas Smu1/RED was readily detectable in the control complexes, Smu1-'WD40/RED could barely be detected 

in the purified B complexes. As the association of the dimer appears to be highly dependent on the WD40 domain 

of Smu1, an investigation of its direct role during the activation of the spliceosome is not possible.  

 

 
 
Figure 3.14. The WD40 domain of Smu1 is important for interaction of the dimer with the spliceosome and for its function. (A) 

Schematic of Smu1. Structural domains are indicated by blue boxes. The amino acid that was crosslinked to RED in the human B complex 

(Bertram, Agafonov, Dybkov et al., 2017) is marked by a red  “x” and indicates the RED interaction region. The part of Smu1 that is included 

in the Smu1-'WD40 mutant is indicated above. To investigate the function of the WD40 domain of Smu1, a truncated version of the protein 

(Smu1-'WD40) was co-expressed with RED in insect cells. (B) Smu1-'WD40 and RED, co-expressed and purified from High Five insect 

cells were separated by SDS-PAGE and stained with Coomassie. (C) Kinetics of spliceosome assembly on MINX-80 in the absence/ 

presence of Smu1/RED or Smu1-'WD40/RED. The co-expressed Smu1-'WD40/RED dimer was incubated with Smu1/RED-depleted 

extract under splicing conditions and subsequently with 32P-labelled MINX-80 pre-mRNA for the indicated times. The complexes formed 

were analysed on a native gel. As controls, the buffer without protein or the functional co-expressed dimer was added. (D) Splicing of 

MINX-80 after 60 minutes in the presence of Smu1/RED or Smu1-'WD40/RED. RNA was analysed by denaturing PAGE and visualized 

by autoradiography. The pre-mRNA and splicing intermediates and products are indicated on the right. (E) The B complexes assembled 

in the presence of Smu1/RED or Smu1-'WD40/RED were resolved by glycerol-gradient ultracentrifugation and affinity-purified. Their 

protein composition was investigated by immunoblotting with the antibodies indicated at the left. Smu1/RED-depleted extract alone or 

complemented with Smu1/RED or Smu1-'WD40/RED, was loaded a reference for protein migration.  
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3.12.3 Structural requirements of RED for supporting Bact complex formation 

 

 

 
Figure 3.15. RED contributes to the function of the Smu1/RED dimer. (A) Schematic of RED. The amino acids that were crosslinked 

to other proteins in the human B complex (Bertram, Agafonov, Dybkov et al., 2017) are shown by a coloured “x” indicating the interaction 

areas. The parts included in the RED-'', 'N-RED or RED-'C mutants are shown above. (B) RED-'', 'N-RED or RED-'C mutants, 

expressed and purified from High Five insect cells were separated by SDS-PAGE and stained with Coomassie. (C) Kinetics of spliceosome 

assembly on MINX-80 in the absence/presence of Smu1/RED or the indicated Smu1/RED-mutant. Together with Smu1-FL, the mutants 

were added to Smu1/RED-depleted splicing reactions and the complexes formed were analysed on a native gel. As controls, the buffer 

without protein or RED-FL was added. (D) Splicing of MINX-80 after 60 minutes in the presence of Smu1 and the different RED mutants 

as indicated in the table above. RNA was analysed by denaturing PAGE and visualized by autoradiography. The pre-mRNA and splicing 

intermediates and products are indicated on the right.  
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To determine the role of RED in splicing, the protein was truncated N- and/or C-terminally (Fig. 3.15A) and added 

to the splicing reaction together with full-length Smu1. Investigation of the purified RED mutant proteins by SDS-

PAGE (Fig. 3.15B), revealed bands of the expected sizes for all of them. As could be observed for individually 

expressed and purified RED, some extra bands could be detected. Interestingly, co-expression with Smu1, did not 

improve the yield or purity of the protein. 

 

Investigation of spliceosome formation on native gels (Fig. 3.15C) revealed that when the double mutant RED-'' 

was added, B complexes remained stable for 60 minutes and minor amounts of C complexes were detectable. 

When 'N-RED or RED-'C were added, the B complex signal decreased over time, while a clear C complex signal 

appeared after 30 minutes. This indicates that truncation of RED either N- or C-terminally alone does not abolish 

the function of the dimer, but that a full-length RED protein leads to more efficient dimer function. Interestingly, 

investigation of the splicing of MINX-80 revealed that minor amounts of splicing product were formed when RED-

'' or 'N-RED was added to the splicing mixture, while splicing in the presence of RED-'C was similarly efficient 

as that observed with the full-length protein (Fig.3.15D). This suggests that the N-terminus of RED plays a more 

important role than its C-terminus. 

 

 

3.13 MINX-70 stalls spliceosome assembly after tri-snRNP association but before efficient 

U1 displacement 

 

Splicing with the MINX-70 pre-mRNA was completely abolished, consistent with previous studies, indicating that 

splicing requires a minimal distance between the 5’SS and the BS of 50 nt (Smith & Nadal-Ginard, 1989; 

Himmelspach et al., 1991). However, both B and A complexes appeared to form (Fig. 3.5), in contrast to previous 

results.  
 

 
 
Figure 3.16. Spliceosomes formed on MINX-70 contain higher amounts of U1. (A) Glycerol-gradient sedimentation profile of 

complexes assembled on MINX-70, MINX-80 and MINX-120. MINX-70 complexes were assembled for 12 min and kinetic B complexes 

were assembled on MINX-80 or MINX-120 for 8 min under splicing conditions. The migration of the 32P-pre-mRNA was determined by 

Cherenkov counting. (B) snRNA composition of the spliceosomal complexes. The spliceosomal complexes in the peak fractions (fractions 

14–16) were subjected to MS2 affinity purification and the RNA extracted from the purified complexes was analysed by denaturing PAGE 

followed by staining with SYBR Gold. 
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Table 3.2: Protein compositions of spliceosomal complexes assembled on MINX-70, -80 and -120. Proteins of the affinity-purified 

indicated complexes were identified by LC-MS/MS after separation by 4–12 % SDS-PAGE. The number shown is the total number of 

peptides sequenced for each protein indicated. Proteins are grouped according to function or association. Proteins considered as common 

contaminants, such as ribosomal proteins and non-reproducibly detected proteins, are not shown. 
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Interestingly, B complex formation on MINX-70 featured a migration behaviour similar to that of kinetic B complexes 

assembled on MINX-80 and MINX-120, with the main peak in fractions 14–16 (Fig. 3.16A). Complexes affinity-

purified from the peak fractions 14–16 contained stochiometric amounts of U2, U4, U5 and U6 for all of the pre-

mRNAs (Fig. 3.16B), while U1 was enriched in MINX-70 spliceosomes, as compared with complexes assembled 

on MINX-80 and -120. This suggests that MINX-70 indeed allows association of the tri-snRNP with the A complex, 

but the release of U1 is impaired. Interestingly, the protein composition of MINX-70-associated spliceosomes was 

barely distinguishable from kinetic B complexes assembled on MINX-80 (Table 3.2). Furthermore, the MINX-70 and 

MINX-80 complexes differed from B spliceosomes assembled on MINX-120 only in reduced levels of later splicing 

factors such as the Prp19/CDC5L and intron binding complex as well as Bact, first-step, C and second-step factors. 

 

The presence of U4, U5 and U6 as well as tri-snRNP proteins indicates that the tri-snRNP is able to associate with 

A complexes assembled on MINX-70. The enrichment of the U1 snRNA compared with kinetic B complexes is 

reminiscent of the pre-B complex. This recently identified intermediate complex includes a loosely associated tri-

snRNP before its stable integration by Prp28-driven removal of U1 from the 5’SS, resulting in the formation of a 

stable 5’SS/U6 ACAGAG helix. However, the B-specific proteins, which have been shown to be absent in pre-B 

complexes were highly abundant in spliceosomes assembled on MINX-70. It is possible that the short intron found 

in MINX-70 impairs the formation of a stable 5’SS/U6 ACAGAG helix, which might be formed only in equilibrium 

and still promote the binding of the B-specific proteins. Thus, MINX-70 might allow the formation of an intermediate 

spliceosome between the pre-B and B complexes. 

 

 

3.14 Smu1 and RED are required for spliceosome activation in vivo 

 

In vitro experiments pointed to a connection between Smu1/RED-induced defects in splicing and a delayed or 

stalled B-to Bact transition, which was characterized by an accumulation of the B complex. To determine whether 

the changes in splicing observed upon Smu1 and RED depletion were also caused by impaired activation of the 

spliceosome in vivo, I depleted each protein from HeLa cells by RNAi and investigated the effect on spliceosome 

assembly. For each protein, two siRNAs with different target sequences were tested, which gave comparable 

results in all cases. Thus, only one siRNA was used in the subsequent experiments. 

 

As the investigation of endogenous spliceosomes requires tools that allow their detection in their cellular 

environment, I took advantage of the fact that Prp31 and SF3b155 are specifically phosphorylated in assembled B 

complexes or activated Bact spliceosomal complexes, respectively (Fig. 3.17). The specificity of the P-SF3b155-

specific antibody for Bact complexes has already been verified in vitro and in vivo (Girard et al., 2012). 

In addition, in vitro studies showed that Prp31 is specifically phosphorylated in assembled B spliceosomes 

(Schneider et al., 2010) and dissociates from the spliceosome during activation (Agafonov et al., 2011). 
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Therefore, antibodies generated against these two phosphopeptides are excellent markers for assembled B and 

Bact spliceosomes in vivo.  

 

As a negative control (CTRL), an siRNA without a target in mammalian cells was transfected into HeLa cells. 

Furthermore, Prp38 and MFAP1 were depleted for comparison. Prp38 has been shown in yeast and human (Xie et 

al., 1998; Schütze et al., 2016) to be required for spliceosome activation, while Spp381, the yeast homologue of 

MFAP1 has been proposed to interact with Prp38 and to contribute to its function in splicing (Lybarger et al., 1999; 

Ulrich & Wahl, 2017). It is likely that MFAP1 also supports the function of Prp38 in humans. Thus, removal of these 

two proteins served as a positive control for defects in spliceosome activation. 

 

After lysis, the transfected cells were fractionated into a soluble nucleoplasmic and an insoluble chromatin fraction 

by centrifugation. As splicing occurs predominantly co-transcriptionally, the majority of spliceosomes are associated 

with the chromatin through the nascent transcript and the RNA polymerase II and are thus associated with the 

chromatin fraction (Pandya-Jones & Black, 2009; Girard et al., 2012). After solubilisation of the chromatin by 

sonication, both fractions were separated by SDS-PAGE and transferred to a nitrocellulose membrane for 

immunoblotting.  

 

 

 

 
Figure 3.17. Phosphorylation of Prp31 and SF3b155. B complex formation depends on phosphorylation of Prp31, which is subsequently 

released with U4 during spliceosome activation. Only assembled B complexes harbour the phosphoprotein. SF3b155 phosphorylation 

occurs during the activation and its dephosphorlyation is essential for the second splicing reaction. Thus, the phosphorylated protein is 

specifically associated with catalytically activated spliceosomes.    
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Figure 3.18. siRNA-mediated depletion of Prp38, MFAP1, Smu1 and RED results in altered phosphorylation of Prp31and SF3b155. 

Western blot analysis of MFAP1- or Prp38-depleted (A) or RED- or Smu1-depleted (B) cells. HeLa cells were lysed and fractionated into 

a soluble nulceoplasmic (Nu) fraction and an insoluble chromatin (Chr) fraction. Proteins were separated by SDS-PAGE (10–15% step 

gel) and blotted onto a nitrocellulose membrane. Immunodetection was performed with antibodies specific for the proteins indicated. (C) 

Quantification of the total protein level after depletion of the respective protein. The protein level was related to its level in CTRL cells. (D) 

Depletion of MFAP1/Prp38 or RED/Smu1 resulted in co-depletion of the respective partner. The total protein levels of the distinct proteins 

after depletion of their respective binding partner were quantified and related to their levels in CTRL cells. (E) Quantification of chromatin-

associated phosphorylation signals of SF3b155. (F) Quantification of chromatin-associated phosphorylation signals of Prp31. 
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As shown in Fig. 3.18A, Prp38 and MFAP1 are found in both the nucleoplasmic and chromatin factions under 

control conditions, with the majority being chromatin associated. siRNA treatment reduced significantly the total 

protein levels of Prp38 and MFAP1, by 70–80% (Fig. 3.18C) and appeared to result in recruitment of the remaining 

protein to the chromatin, consistent with involvement in co-transcriptional splicing. Interestingly, depletion of one of 

these proteins caused a ~55% co-depletion of the other (Fig. 3.18D). The two proteins were shown to interact within 

the B complex and probably also interact before association with the spliceosome (Bertram, Agafonov, Dybkov et 

al., 2017).  

Prp38 and MFAP1 depletion further resulted in a ~2-fold increase of P-Prp31 signal concomitant with a 50–75% 

decrease of P-SF3b155 signal (Fig. 3.18E and F). This indicates impaired formation of the Bact complex, resulting 

in accumulation of its precursor, the B complex. As a function in spliceosome activation has been suggested for the 

two proteins, this result is consistent with previous findings and provides supportive evidence that the 

phosphospecific antibodies monitor the correct spliceosomal intermediates in vivo.  

 

Depletion of Smu1 and RED gave similar results (Fig. 3.18B). Upon depletion total protein levels of Smu1 and RED 

were reduced by 80–85% (Fig. 3.18C), each concomitant with a 55–65% co-depletion of the other protein (Fig. 

3.18D). This is consistent with the previous observation that Smu1 and RED form a heterodimer. (Spartz et al., 

2004; Ulrich et al., 2016; Bertram, Agafonov, Dybkov et al., 2017). 

 

Importantly, Prp31 and SF3b155 phosphorylation patterns were similar to those in 'Prp38 and 'MFAP1 cells. 

While the chromatin-associated P-SF3b155 signal was decreased by ~80% in Smu1- and RED- depleted cells, the 

P-Prp31 signal was increased by 75–100% (Fig. 3.18E and F). However, Prp38 levels were not affected by knock-

down of Smu1 or RED. This suggests that Smu1 and RED, similar to several other B-specific proteins, are involved 

in spliceosome activation also in vivo.  

 

To make sure that the increased P-Prp31 signal corresponded to assembled B complexes, I immunopurified these 

spliceosomes from the chromatin fraction of the transfected cells. The used procedure was adapted from Girard et 

al., 2012, where endogenous Bact complexes were investigated. As shown in Fig. 3.19, this procedure is based on 

the principles used in chromatin immunoprecipitation (ChIP) and uses the DMS protein-protein crosslinking of the 

chromatin fraction to keep the spliceosomes intact during the subsequent sonication step. Sonication results in 

fragmentation of the chromatin, which singularizes the spliceosomal particles. The sheared chromatin fraction was 

subjected to glycerol-gradient centrifugation and the migration of P-Prp31 (or P-SF3b155) was monitored by 

western blotting (Data not shown). The RNA was extracted from the peak fractions and analysed by Northern 

blotting by using a mixture of the radioactively-labelled snRNAs as probes. 
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Figure 3.19. Procedure used for the purification of endogenous spliceosomes. The purification procedure included the isolation of 

the chromatin fraction from HeLa cells followed by rough pre-shearing via passing through a needle in order to disentangle the chromatin. 

Subsequent DSP crosslinking ensured the maintenance of the spliceosomes integrity during the sonication treatment, which served to 

separate the spliceosomes through chromatin fragmentation. The spectrum of different complexes was then resolved by glycerol gradient 

sedimentation. Via immunoprecipitation, the particles of interest were purified from the corresponding fractions and the precipitate’s RNA 

composition was analysed by northern blotting. 
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As shown in Fig. 3.20A, the P-Prp31-specific antibody purified complexes containing all snRNAs from untreated 

HeLa cells. In contrast, in spliceosomes purified with the P-SF3b155-specific antibody, U1 and U4 were 

underrepresented, which is consistent with the snRNA composition of activated spliceosomes. Although U1 is not 

found in in vitro assembled B spliceosomes, it is likely that the P-Prp31-associated complexes are indeed 

endogenous B complexes and that the presence of U1 is an artefact of the purification procedure.  

 

Investigation of the snRNA composition of P-Prp31-associated spliceosomal particles purified from cells depleted 

of Prp38, MFAP1, Smu1 or RED revealed the presence of all five snRNAs, as it was the case for the control cells 

(Fig. 3.20B). This supports the idea that the enriched P-Prp31 signal detected in the chromatin fraction of Prp38-, 

MFAP1-, Smu1- and RED-depleted cells derives from assembled B spliceosomal complexes and is consistent with 

my in vitro results indicating that Smu1 and RED promote the B-to-Bact-transition during spliceosome assembly.   

 

 

 
Figure 3.20. RNA composition of endogenous spliceosomes precipitated with anti-P-Prp31 antibodies. (A) Northern blot analysis 

of the snRNA composition of endogenous spliceosomes. Spliceosomal complexes were purified from HeLa cells by using antibodies 

specific for the phosphopeptides P-SF3b155 (Bact) or P-Prp31 (B). For the control IP (CTRL) the antibody was omitted during the 

purification. Northern blotting was performed by using probes against the snRNAs, which have been radioactively labelled at the 3’ end.  

(B) Northern blot analysis of the snRNA composition of endogenous spliceosomes stalled by siRNA-mediated depletion of Prp38, MFAP1, 

Smu1 or RED. 
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4. Discussion 

 

The spliceosome is a complex molecular machine that catalyses the removal of intronic sequences from a pre-

mRNA. While yeast spliceosomes are only comprised of the basic core spliceosomal proteins, spliceosomes in 

higher eukaryotes are equipped with numerous additional factors, likely to meet the requirements of a much more 

complex gene architecture and the resulting prevalence of alternative splicing. Two examples of proteins found in 

human but not yeast spliceosomes are Smu1 and RED. These so-called B-specific proteins transiently associate 

with the spliceosome at the B complex stage and are released/destabilized during spliceosome activation. While 

several other members of the B-specific proteins contribute to the activation of spliceosomal B complexes, the role 

of Smu1 and RED during pre-mRNA splicing is poorly understood. Previous studies have proposed roles for Smu1 

and RED as mediators of spliceosomal protein interactions (Hegele et al., 2012), as alternative splicing regulators 

(Papasaikas et al., 2015), as well as factors that support the stability of the B complex (Bertram, Agafonov, Dybkov 

et al., 2017).  

During my thesis I have investigated the function of Smu1 and RED in pre-mRNA splicing via a combination of 

genome wide, in vivo and in vitro approaches. My data revealed that Smu1 and RED are general splicing factors 

that enhance the B-to-Bact transition, and are essential for spliceosome activation when introns exhibit a critical 

distance between the 5’SS and the BS of ~56 nt. The involvement of these proteins in an essential spliceosome 

assembly step indicates that Smu1 and RED are not only important for alternative splicing, but also function as 

general splicing factors that are required for productive and efficient activation of the human spliceosome. 

 

 

4.1 Efficient splicing is dependent on Smu1 and RED in vivo and in vitro 

 

Previous studies showed that knock-down of Smu1 or RED in human cells significantly changes alternative splicing, 

resulting in their classification as alternative splicing regulators (Spartz et al., 2004; Chung et al., 2009; Papasaikas 

et al., 2015). However, these studies did not address whether also constitutive splicing is affected by depletion of 

Smu1 and RED. To address this question, HeLa cells were siRNA-depleted of Smu1 or RED and splicing was 

analysed via RNAseq analysis (Fig. 3.1). Consistent with previous results, depletion of Smu1 or RED changed 

alternative splicing patterns significantly. Thereby, half of the altered splicing events were alternatively spliced 

cassette exons - which were preferentially skipped, while 30% involved alternative splice site selection (5’SS or 

3’SS). Interestingly, more than 20% of the splicing events that were altered in Smu1 or RED-depleted cells 

represented retained introns. Importantly, these introns were predominantly constitutively spliced, suggesting that 

Smu1 and RED are important for splicing in general, and are not only involved in the regulation of alternative 

splicing. Importantly, cells depleted of Smu1 and RED showed striking overlaps in altered constitutive and 

alternative splicing events, but many of the altered splicing events were not affected by depletion of the B-specific 

protein MFAP1. This is consistent with the idea that Smu1 and RED form a functional module that acts 

independently of the other B-specific proteins. 
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A role for Smu1 and RED in constitutive splicing was also demonstrated in vitro for the MINX-120 pre-mRNA 

substrate, using HeLa nuclear extract that was immunodepleted of Smu1 and RED (Fig. 3.4). The efficiency of 

splicing was clearly less in the 'Smu1/RED extract compared to the mock-depleted extract but splicing was not 

completely inhibited. Instead there appeared to be a slow-down in the rate of mRNA production when Smu1 and 

RED were missing. Investigation of spliceosome assembly on native agarose gels revealed a transient 

accumulation of spliceosomal B, but not A complexes, in the Smu1/RED-depleted extract with MINX-120, while the 

subsequently assembled Bact and C complexes were still formed but at a slower rate. These results indicate that 

defects in splicing triggered by the absence of Smu1 and RED were specifically caused by impaired spliceosome 

activation, while the association and integration of the tri-snRNP were not affected. The slower/less efficient 

activation thus appears to be the basis for the slower pre-mRNA-to-mRNA conversion. The effect of the Smu1/RED-

depletion on in vitro splicing was not substrate-specific as other pre-mRNAs, with a very different architecture such 

as PM5, were also spliced less efficiently in the absence of Smu1/RED, while B complexes temporarily accumulated 

(Fig. 3.9).  

 

An effect on the kinetics of spliceosome activation could also explain how, at least in some cases, Smu1 and RED 

knock-down affect alternative splicing in vivo. Similar to the elongation rate of the RNA polymerase II, which is 

thought to be an important factor for the regulation of alternative splicing (de la Mata et al., 2003; Dujardin et al., 

2014), a delay in spliceosome activation might be rate determining during splicing and consequently favour the 

selection of weaker splice sites. Thus, the changes in alternative splicing observed by RNA-seq analyses in Smu1- 

and RED-depleted cells may be due to a generally slowed-down spliceosome assembly.  

 

 

4.2 Evidence that knock-down of Smu1 and RED also hinders spliceosome activation in 

vivo 

 

To provide evidence that Smu1 and RED are also involved in spliceosome activation in vivo, I utilised 

phosphopeptide-specific antibodies against SF3b155 and Prp31 (Fig. 3.17). B complex formation depends on 

phosphorylation of Prp31 (Schneider, Hsiao et al., 2010), which is subsequently released with U4 during 

spliceosome activation. Thus, only assembled B complexes harbour the Prp31 phosphoprotein. SF3b155 is 

hyperphosphorylated first during the activation step and its dephosphorlyation is essential for the second catalytic 

step of splicing (Shi et al., 2006; Girard et al., 2012). Thus, phosphorylated SF3b155 is specifically associated with 

catalytically activated spliceosomes. As a positive control to confirm that these antibodies can be used to detect 

changes in B and Bact complex formation in vivo, the B-specific proteins Prp38 and MFAP1 were knocked-down in 

HeLa cells (Fig. 3.18). The depleted cells were fractionated into a nucleoplasmic and a chromatin fraction and 

analysed by western blotting. Prp38 has been shown in yeast and human (Xie et al., 1998; Schütze et al., 2016) to 

be involved in spliceosome activation and Spp381, the yeast counterpart of MFAP1, appears to interact with yPrp38 

thereby contributing to its function during the activation (Lybarger et al., 1999; Ulrich & Wahl, 2017). Most likely, 

MFAP1 likewise supports Prp38 function in humans. 
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Indeed, Prp38- and MFAP1-depletion in HeLa cells led to an increased signal of P-Prp31 in the chromatin fraction. 

As splicing occurs predominantly co-transcriptionally in the cell, active spliceosomes are mainly associated with 

this fraction (Pandya-Jones & Black, 2009; Girard et al., 2012). Concomitant with the increased P-Prp31 signal, 

chromatin-associated P-SF3b155 appeared to be reduced. This indicates that knock-down of Prp38 or MFAP1, 

results in accumulation of B complexes on the chromatin at the expense of Bact complex formation. As these 

changes are consistent with impaired spliceosome activation, this result supports the idea that P-Prp31 and P-

SF3b155 are good markers for the formation of B and Bact spliceosomes in the cell. As the investigation of 

spliceosome assembly in vivo is challenging, the availability of tools like these phospho-specific antibodies is 

extremely helpful and can potentially be extended to additional assembly intermediates to allow a better overall 

picture of spliceosome assembly in vivo. 

 

To further demonstrate the specificity of P-Prp31 and P-SF3b155 for assembled B and Bact complexes, respectively, 

I purified the spliceosomal particles that contain the respective phoshopeptide using a method similar to chromatin-

immunoprecipitation (Fig. 3.19). This procedure includes protein-protein crosslinking to maintain the integrity of the 

complexes during the subsequent sonication step, which fragments the nucleic acids resulting in the separation of 

individual spliceosomal complexes. While the P-Prp31-specific antibody precipitated complexes containing all five 

snRNAs, U1 and U4 were significantly reduced in spliceosomes containing P-SF3b155 (Fig. 3.20A). Although the 

formation of a B complex essentially requires the destabilization/release of the U1 snRNP, P-Prp31 containing 

spliceosomes are nonetheless likely pre-catalytic B complexes and the strong abundance of U1 appears to be an 

artefact of the purification method. U1 snRNPs might remain loosely associated with the spliceosome after its 

removal from the 5’SS and be covalently attached due to the cross-linking step. Alternatively, as U1 is the most 

abundant snRNP in the nucleus of mammalian cells (Baserga & Steitz, 1993) and the first to be recruited to the 

pre-mRNA, it is possible that U1 is bound to 5’ splice sites upstream or downstream of the intron, thereby increasing 

the apparent abundance of the U1 snRNA in the P-Prp31 containing spliceosomes. Nevertheless, P-Prp31 and P-

SF3b155 are clearly associated with assembled spliceosomes, which exhibit snRNA profiles consistent with them 

being B and Bact complexes, respectively.  

 

To examine whether the changes in constitutive splicing in 'Smu1 and 'RED cells were likewise likely caused by 

defective spliceosome activation, I performed RNAi-mediated knockdowns of Smu1 and RED in Hela cells and 

followed the effects on spliceosome activation using the anti-P-Prp31 and P-SF3b155 antibodies. Interestingly, 

knockdown of Smu1 or RED led to a strong co-depletion of the respective other protein. This supports the idea that 

the stability of each protein is improved when they are able to interact with one another (Spartz et al., 2004). It 

further indicates that the effects observed in previous in vivo studies reflect the combined effect of the depletion of 

both proteins. Investigation of endogenous spliceosome assembly by western blotting revealed an increase in the 

P-Prp31 signal and a decrease in the P-SF3b155 signal in 'Smu1 and 'RED cells, similar to what was observed 

for Prp38- and MFAP1-depleted cells. This indicates that the activation of the spliceosome is also impaired in vivo 

in the absence of Smu1 and RED. 
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4.3 The majority of Smu1 and RED exist as a unit in HeLa cells 

 

Immunodepletion of Smu1 from splicing-competent nuclear extract, using a well-functioning Smu1-specific 

antibody, led to the near quantitative removal of Smu1 and additionally more than 90% of RED, indicating that the 

two proteins physically interact in extract. The Smu1-RED interaction appears to be highly stable, as it resisted salt 

concentrations up to 1M KCl (data not shown). Smu1 and RED have previously been anticipated to form a functional 

module based on functional similarities between these two proteins (Papasaikas et al., 2015; Ulrich et al., 2016). 

This conclusion was also supported by biochemical techniques to identify protein–protein interactions, such as the 

yeast two-hybrid system (Y2H), which suggested that Smu1 and RED are able to physically interact (Hegele et al., 

2012). Binding studies with Smu1 and RED from Chaenorhabditis elegans, which are highly homologous to the 

human Smu1 and RED proteins, also demonstrated that these proteins interact and regions of the proteins 

minimally required for stable interaction were defined (Ulrich et al., 2016). The highly stable and specific co-

depletion of the vast majority of RED with Smu1 provides additional convincing evidence that the vast majority of 

human Smu1 and RED naturally exist as a unit in HeLa cells (Fig. 3.3). Recent cryo-EM studies of the human B 

complex revealed that Smu1 and RED interact within the spliceosome (Bertram, Agafonov, Dybkov et al., 2017). 

The C-terminal WD40 domain and the N-terminal region (NTR) of Smu1 could be localized in the B complex 

together with a short alpha helix of RED (aa 209–222) that was shown previously to interact with the NTR of Smu1 

in C. elegans (Ulrich et al., 2016), indicating that Smu1 and RED retain their dimer status even after they are 

integrated into the spliceosome (Fig. 4.1).  

 

 

 

Figure 4.1. Location of Smu1 and RED within the human B complex. (A) Locations of the C-terminal WD40 domain and the N-terminal 

region (NTR) of Smu1 at the interface between the U5-assocated helicase Brr2 and U2 protein SF3B3. The short alpha helix of RED (aa 

209–222) that interacts with the NTR of Smu1 is shown in purple. (B) Overview of the likely location of RED based on cross-linking 

experiments. The anticipated path of RED is indicated as a red line, while the colored ovals with numbers indicate the intermolecular 

crosslinks between RED and other spliceosomal factors. The illustration was taken from Bertram, Agafonov, Dybkov et al., 2017. 
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4.4 The interaction between Smu1 and RED is essential for their spliceosomal association 

and function 

 

Depletion of Smu1 and RED in vitro suggested that nearly the entire populations of these proteins exist as a 

functional unit in the cell. According to the cryo-EM structure of the human B complex, this interaction is maintained 

after association of Smu1 and RED with the spliceosome, suggesting that it might be important for their mutual 

function (Bertram, Agafonov, Dybkov et al., 2017). To investigate whether Smu1 and RED need to interact to 

support the activation of the spliceosome or whether one of these proteins could fulfil this function on their own, 

Smu1 and RED were individually expressed in insect cells and added to the 'Smu1/RED extract (Fig. 3.12). 

Addition of the single proteins did not substantially restore the B-to-Bact transition or splicing product formation. 

However, when the two proteins were added together, B complexes no longer accumulated, and Bact and C 

complexes were formed. This shows that Smu1 and RED do not need to be co-expressed to form a functional 

module, and indicates that Smu1 and RED do not function on their own.  

 

As Smu1 and RED interact in HeLa nuclear extract before their association with the spliceosome, it is possible that 

their interaction not only directly affects their function, but may be required for their efficient incorporation into the 

spliceosome. Consistent with this idea, B complexes formed after addition of Smu1 or RED to 'Smu1/RED splicing 

extract contained only low levels of each protein, whereas the association of each protein was strongly enhanced 

when both proteins were added together (Fig. 3.13). This shows that Smu1 and RED bind poorly or less stably to 

the spliceosome as individual proteins. Their interaction might introduce important structural changes in Smu1 and 

RED that enable their proper/stable interaction with other B complex-associated spliceosomal components. 

Interestingly, the NTR domain of Smu1 and the short helix of RED that are required for dimerization are localized 

in close proximity to the Smu1-WD40 domain at the SF3B3-Brr2 interface (Fig.4.1A). It is possible that Smu1 

requires RED to adopt this conformation, which is a prerequisite for it to simultaneously contact SF3B3 and Brr2, 

and thus to be stably incorporated into the B complex. Indeed, crystallography studies of Smu1 and RED from C. 

elegans, showed that Smu1 undergoes global conformational changes upon RED binding (Ulrich et al., 2016). 

Taken together these results show that Smu1 and RED do not bind efficiently or productively to the spliceosome 

on their own nor function independently of one another.  

 

 

4.5 Dissection of regions of Smu1 and RED required for their function in splicing 

 

Smu1 contains a C-terminal WD40 domain, which is known to mediate protein-protein interactions. Its N-terminal 

alpha-helical domain interacts with RED, which is intrinsically disordered, but forms two short helices in the region 

where it interacts with Smu1. The position of the Smu1-WD40 domain at the U2/tri-snRNP interface in the B complex 

(Fig. 4.1A) suggests an important role for it in mediating the association of Smu1 and RED with the spliceosome. 

When full-length RED was co-expressed with a Smu1-WD40 truncation mutant, the dimer could be purified 

suggesting that the Smu1/RED interaction was not impaired by the absence of the WD40 domain.  
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Addition of the Smu1-'WD40/RED dimer to Smu1/RED-depleted extract was not able to restore spliceosome 

activation, suggesting that this domain is important for the function of the entire dimer (Fig. 3.14) However, analysis 

of B complexes assembled in the presence of the Smu1-'WD40/RED dimer revealed that the dimer was not 

associated with these complexes, indicating that the WD40 domain is essential for proper interaction of the dimer 

with the spliceosome. As spliceosome binding was impaired, the role of the WD40 domain in spliceosome activation 

and splicing catalysis could not be investigated. 

 

To assess the structural requirements of RED for the function of the Smu1/RED dimer, RED was N- or C-terminally 

truncated, but its region required for stable interaction with Smu1 was retained. Based on crosslinking experiments 

with purified human B complexes (Bertram, Agafonov, Dybkov et al., 2017), RED’s N-terminal region interacts with 

the U2 proteins SF3B1 (SF3b155) and SF3B3, while its C-terminus contacts Prp8 at several positions (Fig. 4.1B). 

Consequently, these truncations could potentially reduce the stability of the interaction of RED with the spliceosome. 

Addition of the 'N-RED or RED-'C mutants together with full-length Smu1 to 'Smu1/RED extract allowed 

spliceosome activation, but the latter was strongly reduced when both termini were removed (RED-'') (Fig. 3.15). 

Thus, RED is – to a certain extent – still able to fulfil its function as long as only one interaction surface was removed. 

This suggests that the contacts RED establishes with U2 or U5 individually are not essential for the function of 

Smu1/RED, at least not for the splicing of the MINX-80 substrate. 

 

 

4.6 Smu1 and RED do not indirectly affect activation by acting as a binding platform for 

other B complex proteins 

 

I could show that Smu1 and RED contribute to efficient activation of the spliceosome and thus the question arises 

whether these proteins affect the activation directly or indirectly and by what mechanism. Investigation of the 

protein-protein interaction network in the spliceosome by Y2H experiments suggested that Smu1 and RED directly 

or indirectly contact numerous spliceosomal proteins (Hegele et al., 2012). These interactions included MFAP1, as 

well as single components of the U5 snRNP, the U4/U6 di-snRNP, the RES complex, the IBC and the Prp19-related 

proteins. Protein-protein crosslinking with purified human B complexes also indicated that RED meanders through 

the spliceosome and contacts multiple spliceosomal proteins (Fig. 4.1B). Therefore, both proteins were proposed 

to act as binding platforms for additional spliceosomal proteins. Depletion of Smu1 and RED could thus potentially 

alter the binding of other B complex proteins and this could in turn compromise the efficiency of the activation 

process. Interestingly, B complexes assembled in Smu1/RED-depleted extract sedimented differently in glycerol-

gradients compared to B complexes assembled in wildtype extracts, peaking one or two fractions closer to the top 

of the gradient. This slower migration can be explained by a lower molecular weight (e.g. if the complex contains 

fewer proteins) or by a less compact conformation (Fig. 3.8A). 

 

 



Discussion 

 105 

With the exception of the absence of Smu1 and RED, the composition of the 'Smu1/RED B complexes was 

essentially identical to B complexes assembled in mock-depleted extract. Both contained stoichiometric amounts 

of U2, U4, U5 and U6, while U1 was nearly absent (Fig. 3.8B). This is consistent with the composition of stable B 

complexes formed after the action of Prp28, which leads to U1 displacement, but before Brr2-driven unwinding of 

the U4/U6 duplex.  

All known B complex proteins were present including U2 and tri-snRNP proteins, as well as the remaining set of B-

specific proteins (Table 3.1). Importantly, factors known to be required for the activation of B complexes, such as 

Prp38 or FBP21, were clearly present. This demonstrates that their recruitment is independent of Smu1/RED and 

that the stalling at the B complex level is not caused by the absence of these functionally important proteins.  

 

Some differences in the protein composition of the wildtype versus 'Smu1/RED B complexes could be observed 

for proteins known to be recruited during/after activation such as the Prp19/CDC5L complex, the IBC or Bact and C 

specific proteins, which were essentially absent in the 'Smu1/RED B complexes. These proteins are often found 

to a minor extent in kinetically stalled B complexes but are absent from B complexes stalled with ATPγS or by a low 

MgCl2 concentration (Agafonov, Van Santen et al., 2016; Bertram, Agafonov, Dybkov et al., 2017). This is likely 

due to the more homogenous composition of the latter B complex preparations, while kinetically stalled B complex 

preparations include low levels of activated spliceosomes. Taken together the snRNA and protein compositions of 

the B complexes stalled by the absence of Smu1/RED are consistent with assembly being stalled after Prp28-

promoted release of U1 but before Brr2-catalyzed unwinding of U4 and U6. As no factors known to be required for 

spliceosome activation were missing, it appears that Smu1 and RED play a direct role in the activation process.  

 

However, the aberrant sedimentation behaviour of the 'Smu1/RED B complexes suggests that the absence of 

these proteins leads to structural changes in the spliceosome, in particular a less compact conformation. Thus, it is 

still conceivable that the absence of Smu1 and RED may still indirectly affect activation by changing the interactions 

within the spliceosome involving other proteins such as Prp38 or FBP21. Smu1 and RED form a bridge between 

the U2 SF3B3 protein and Brr2 in the B complex (Fig. 4.1). First structural investigations of 'Smu1/RED B 

complexes by negative staining electron microscopy, revealed a structure highly similar to that of DeltaMgCl2 B 

complexes and no extended gap between U2 and Brr2 was visible in the absence of Smu1/RED. Cautiously 

speaking, U2 and especially Brr2 appeared slightly fuzzier in B complexes lacking Smu1 and RED, but the low 

resolution of this method prohibits drawing solid conclusions. Future cryo-EM of 'Smu1/RED B complexes may 

provide sufficient resolution to allow insight into any structural changes due to the absence of these proteins. 

 

 

 

 

 



Discussion 
 

 106 

4.7 Smu 1 and RED might directly affect Brr2 helicase activity during the earliest step of 

activation 

 

Spliceosome activation is a multi-step process, which is initiated by unwinding of the U4/U6 duplex by the RNA 

helicase Brr2, which is a stable U5 snRNP component. This allows U6 to rearrange and also to interact with U2, 

which forms the catalytically active U2/U6 RNA structures in the spliceosome. This also leads to loss of U4 and 

U4/U6 proteins and also the B-specific proteins. Further, the Prp19/CDC5L complex and related proteins, IBC and 

Bact-specific proteins are recruited or stably interact. Brr2 is present before activation and also afterwards and its 

activity thus must be tightly regulated to prevent premature activation. Several mechanisms repress Brr2 before 

and after activation and its RNA unwinding activity must be triggered in a currently unknown way to start the 

activation process (Absmeier et al., 2016). Smu1 and RED bridge the U2 SF3B3 protein and Brr2 in the B complex 

(Fig. 4.1), with Smu1 directly contacting the N-terminal and C-terminal helicase cassettes of Brr2. Thus, these 

proteins could contribute to positioning Brr2 relative to its substrate in a way that promotes U4/U6 unwinding. 

Consistent with this idea, Brr2 is very flexible and undergoes a large-scale movement from its position in the tri-

snRNP to its position close to U4/U6 in the B complex (Bertram, Agafonov, Dybkov et al., 2017), and Smu1 and 

RED could help to anchor Brr2 in this position. Alternatively or additionally, Smu1 could help in triggering Brr2 

helicase activity by its direct interaction with the helicase cassettes via a mechanism that is currently not clear.  

 

 

4.8 Smu1 and RED are essential for the activation of spliceosomes formed on very short 

introns 

 

Although the majority of introns found in human cells are much longer than 200 nt, introns retained after knock-

down of Smu1 or RED were predominantly shorter, with most between 75 and 100 nt long (Fig. 3.2). As this 

preference was not observed after knockdown of MFAP1, Smu1 and RED appear to be specifically required for the 

splicing of very short introns. Nevertheless, a substantial fraction (30-40%) of the retained introns were significantly 

longer, consistent with a general requirement for Smu1 and RED for efficient splicing also of longer introns. In vitro 

splicing studies using truncated versions of the MINX-120 pre-mRNA, also demonstrated that splicing is more 

dependent on the presence of Smu1 and RED when intron length was shorter (Fig. 3.6). That is, I performed splicing 

in mock-depleted or Smu1/RED immunodepleted HeLa nuclear extract and compared the splicing of the standard 

MINX pre-mRNA substrate - which contains a 120 nt long intron - with two truncated versions and one elongated 

variant. In these the intron was shortened or extended between the 5’SS and the BS, changing the overall intron 

length from 120 nt to 90 or 80 nt, or to 150 nt, respectively. Splicing of MINX-120 and MINX-150 was less efficient 

in the absence of Smu1/RED compared to the mock-depleted extract, but no increase in splicing efficiency was 

detected with MINX-150. As extending the intron did not have a significant effect on splicing, 120 nt appears to be 

above the critical length needed to observe enhanced dependency on Smu1/RED.  
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Importantly, spliceosome activation was not only delayed but completely blocked when introns were very short. 

Truncation of the intron to either 90 or 80 nt reduced the overall efficiency of splicing compared to MINX-120, but it 

also enhanced the inhibitory effect of Smu1/RED depletion. While MINX-90 was spliced somewhat less efficiently 

than MINX-120, splicing of MINX-80 was nearly abolished in the absence of Smu1 and RED. Analysis of splicing 

complex formation on MINX-80 showed a strong accumulation of B complexes with little or no Bact or catalytically-

active C complexes formed when Smu1 and RED were absent. Splicing and spliceosome activation of MINX-80 

could be restored to mock levels by addition of the purified dimer to the depleted extract, demonstrating that the 

observed inhibitory effect was solely due to the absence of Smu1 and RED and not due to the co-depletion of any 

other essential splicing factors. Thus, both in vitro and in vivo Smu1 and RED play a crucial role in the splicing of 

extremely short introns. 

 

 

4.9 The distance between the 5’SS and the BS is critical for splicing and determines 

whether Smu1 and RED are essential  

 

In MINX-90, -80 and -70, the distance from the BS-A to the 5'SS was shortened from 96 nt, to 66, 56 and 46 nts, 

respectively, and there was a progessive loss of splicing activity in the mock-depleted extract, with splicing 

completely blocked with MINX-70. This is consistent with previous studies showing that a minimum 5'SS-BS 

distance is critical for splicing (Ruskin et al., 1985; Fu et al., 1988; Köhrer & Domdey, 1988; Smith & Nadal-Ginard, 

1989; Himmelspach et al., 1991). With MINX-80, impaired spliceosome activation was seen under standard 

conditions, but the B-to-Bact transition was completely prevented in the absence of Smu1 and RED. Interestingly, 

spliceosome activation and splicing were also entirely blocked when the 5'SS-BS distance was truncated from 150 

to 56 nt in the PM556 and PM5-1056 pre-mRNAs (Fig. 3.9). While the intron of the PM5-1056 pre-mRNA was with 73 

nt shorter than the MINX-80 intron, the PM556 intron was with 142 nt considerably longer. As spliceosome assembly 

was similarly impaired with both pre-mRNAs, the 5’SS-BS distance rather than the overall intron length appears to 

be the decisive factor for the Smu1/RED-dependence. Additionally, spliceosome assembly on both PM556 and PM5-

1056 was equally blocked at B complex level. As they only differ in the length of their PY tracts, the distance between 

BS and 3’SS does not appear to have an impact on whether or not Smu1 and RED are essential. Taken together 

these results indicate that the distance between the 5’SS and the BS rather than the BS-3’SS distance or intron 

length per se is the decisive factor for the Smu1/RED-dependency during short intron splicing. 

In the human B complex, a 17 nt long extended helix is formed between U6 (i.e. the U6 ACAGAG box and adjacent 

nucleotides) and nucleotides within the intron near the 5’SS (Fig. 4.2A). Similarly, the BS forms a 14 nt long helical 

duplex with the U2 snRNA (Fig. 4.2B). (Bertram, Agafonov, Liu et al., 2017; Haselbach et al., 2018; X. Zhang et al., 

2018). In B complexes formed on MINX-120 pre-mRNA, these two extended helices are separated by 15 nm 

(Bertram, Agafonov, Dybkov et al., 2017), which corresponds to ~21 nt of RNA in an extended conformation (Fig. 

4.2C).  
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Consequently, to span the distance between the U6 ACAGAG/5’SS helix and the U2/BS helix, without the need for 

a substantial conformational change in the spliceosome, a minimum of ~52 nt would be necessary between the 

5’SS and the BS (Fig. 4.2C). This is approximately the distance found in MINX-80, PM556 and PM5-1056 suggesting 

that the intron nucleotides in this region are likely in a fully extended conformation in the B complex. This could 

potentially limit the flexibility of the spliceosome during its remodelling events, thereby impeding or – in the absence 

of Smu1/RED - completely preventing its activation. 

 

 
Figure 4.2. Location and interactions of the pre-mRNA within the human B complex. The intron forms extended helices with the U6 

ACAGAG box and adjacent U6 nucleotides at the 5’SS (A) and the U2 snRNA at the BS (B). The two helices are separated by 15 nm 

(~21) in the human B complex. This would accommodate an estimated minimum of 54 nt between the 5’SS and the BS, without altering 

the structure of the spliceosome. These structures were kindly provided my Berthold Kastner, Department of Cellular Biochemistry, MPI-

BPC. 
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4.10 A short 5’SS-BS distance represents a steric hindrance for the spliceosome 

 

Previously, the requirement for a minimal 5’SS-BS distance was explained by steric hindrances that prevent the 

binding of the large snRNPs. The dependence of spliceosome activation on a minimal 5’SS-BS distance is probably 

due to physical limitations exerted by the intron (Fig. 4.2). In this case, resolving this steric hindrance should allow 

spliceosome activation even without the support of Smu1 and RED. Indeed, when the MINX-80 pre-mRNA was 

cleaved into two RNAs, spliceosome activation was restored both in the presence or absence of Smu1/RED (Fig 

3.10). Specifically, while the intact MINX-80 resulted in a strong accumulation of B complexes, the cleaved substrate 

allowed the formation of activated spliceosomes and C complexes indicating that the activation was no longer 

inhibited. Thus, physically separating the 5’SS and the BS to release any length limitations restores the conversion 

of B to Bact complexes. 

 

 

4.11 Model for how the 5’SS-BS distance affects the dependency of spliceosome 

activation on Smu1/RED  

 

Taking into consideration my data and utilizing the structural information obtained from the cryo-EM structure of the 

human B complex, a model for how 5’SS-BS distance might lead to the dependency of spliceosome activation on 

Smu1/RED was generated (Fig. 4.3). In the human B complex Smu1 and RED form a molecular bridge between 

the U2 and tri-snRNPs (Bertram, Agafonov, Dybkov et al., 2017). In the yeast spliceosome where Smu1 and RED 

do not exist, this bridge is formed directly by the Brr2 and SF3B3 homologs (Plaschka et al., 2017). Here, a WD40 

domain of Rse1, the yeast counterpart of SF3B3, is positioned between the two cassettes of Brr2, which is replaced 

by the WD40 domain of Smu1 in the human B complex. This interaction likely stabilizes the position of Brr2 relative 

to its U4/U6 substrate or might even directly stimulate Brr2 activity thereby promoting activation (see above). 

Plaschka et al. described the Rse1-Brr2 interaction in yeast as transient and suggested that U2 and Brr2 might 

need to be able to move independently from each other during spliceosome activation. In contrast, my data suggest 

that the stability of this bridge is important. It is possible that the apparent transience of this bridge in the yeast 

spliceosome rather represents two distinct states; B complexes before and after establishment of the Rse1-Brr2 

interaction. Alternatively, this bridge could be less important in yeast. 

 

In the human spliceosome, Smu1 and RED could ensure that the contact between U2 and Brr2 is established faster 

and remains stable during activation. As longer introns allow spliceosome activation in the absence of Smu1 and 

RED, but with reduced efficiency, it appears that a sufficiently long intron grants the U2 head domain enough 

flexibility to move towards Brr2, coincidentally forming the apparently essential SF3B3-Brr2 bridge, only at a slower 

pace (Fig. 4.3A). In contrast, an intron with a critical 5’SS-BS distance of ~56 nt would be completely extended in 

between those nucleotides forming a duplex with U2 or U6, and therefore physically restrict the mobility of U2. This 

would prevent the movements necessary for U2-SF3B3 to contact Brr2 (Fig. 4.3B) and this would be most severe 

when Smu1 and RED are absent. In this case, physically separating the 5’SS from the BS would release this 
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physical constraint. Consequently, the flexibility of U2 that allows it to move towards Brr2 would be restored, allowing 

spliceosome activation even without the support of Smu1 and RED. 

 

 

 

Figure 4.3. Model for how the 5’SS-BS distance affects the dependency of spliceosome activation on Smu1/RED. (A) On long 

introns Smu1 supports/stabilizes the formation of the Brr2-U2 bridge, which is likely important for spliceosome activation. In the absence 

of Smu1/RED, this bridge can still be formed, albeit at a slower rate, as long as the intron’s distance between the 5'ss and BS is sufficiently 

long to allow movement of the U2 domain towards Brr2, resulting in a direct Brr2-U2 interaction. (B) On very short introns, with a short 

distance between the 5’SS and the BS, the U2 snRNP may be repositioned and/or its ability to move towards Brr2 may be inhibited due 

to the structural constraint of the intron. Therefore, no direct contact between U2 and Brr2 can be established, and Smu1 and RED become 

essential for activation. Splitting the MINX-80 pre-mRNA into two pieces may relieve this constraint, allowing the B-to-Bact transition even 

in the absence of Smu1 and RED. 
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4.12 The tri-snRNP still binds the MINX-70 pre-mRNA  

 

Previous studies indicated that the binding of snRNPs to the pre-mRNA was abolished when the 5'SS-BS distance 

was too short (Ruskin et al., 1985; Fu et al., 1988; Köhrer & Domdey, 1988; Smith & Nadal-Ginard, 1989; 

Himmelspach et al., 1991). For example, binding of U2 was prevented when the distance between the 5’SS and 

the BS was extremely short - e.g. less than 35 nt in the case of an adenovirus pre-mRNA - and stable tri-snRNP 

binding (i.e., B complex formation) was abolished when this distance was less than 50 nt (Himmelspach et al., 

1991). Recent cryo-EM studies of the human B complex provide a structural basis for this distance dependency. 

As mentioned above, the structure of a functional B complex formed on MINX-120 would likely not require 

substantial rearrangement/changes if the 5'SS/BS distance is above ca. 50 nt, but substantial changes, that are 

likely inhibitory, would occur if this distance is much shorter (Fig. 4.2C).  

 

In contrast to previous studies, my results show that tri-snRNP binding can still occur if this distance is less than 50 

nt, and further show that the subsequent remodelling of the spliceosme during activation is affected when the 

distance between the 5’SS and the BS is short. That is, investigation of the spliceosome assembly on MINX-70 by 

native gel electrophoresis indicated a strong accumulation of A complexes, but also indicated that B complexes 

were still substantially formed (Fig. 3.5). A more detailed characterization of the spliceosomes formed on MINX-70 

showed that their sedimentation behaviour on glycerol gradients was identical to that of B complexes formed on 

MINX-120 and MINX-80 pre-mRNA (Fig. 3.16). Their protein compositions were also highly similar, with the 

presence of B-specific proteins in all cases, consistent with B complexes being assembled on MINX-70 (Table 3.2).  

 

A notable difference was the presence of substantially more U1 snRNA in the MINX-70 B complexes, compared to 

MINX-120 or MINX-80 B complexes (Fig. 3.16). During spliceosome assembly the tri-snRNP first associates loosely 

with the A complex to form the pre-B complex (Boesler et al., 2016). In pre-B complexes U1 is stoichiometrically 

present and base pairs with the 5'SS. Stable tri-snRNP binding is then observed after U1 is displaced from the 5'SS 

and the U6 ACAGA box sequence base pairs with the 5'SS. This replacement of U1 by U6 is catalysed by the 

Prp28 (U5-100K) RNA helicase (Staley & Guthrie, 1999). Thus, stable B complexes normally contain very low levels 

of U1, which probably are not, base-paired with the 5'SS but instead are still associated via protein-protein contacts 

with the B complex. The enrichment of the U1 snRNA in MINX-70 B complexes is reminiscent of the situation with 

pre-B complexes. However, it has been shown that the B-specific proteins, which are present in the particles 

assembled on MINX-70, are not normally recruited before the action of Prp28. It is thus possible that MINX-70 

allows the formation of an intermediate spliceosome between the pre-B and B complexes, where an aberrant 

structure caused by the short 5'SS to BS distance impairs Prp28 action but still allows relatively stable binding of 

the tri-snRNP. Interestingly, Prp28 (U5-100K) was clearly enriched in the MINX-70 spliceosomes, which suggests 

that it may not have acted and removed U1 from the 5'SS.  
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Future RNA-RNA crosslinking studies should clarify if U1 still base pairs with the 5'SS in the MINX-70 B-like 

complexes or if the U6 ACAGAG box duplex is formed. An alternative explanation would be that a different structural 

organization of the MINX-70 complexes results in stabler U1 binding via protein-protein contacts alone. Future cyro-

EM of spliceosomes formed on MINX-70 might reveal changes in their structure due to the very short intron. 

 

 

4.13 Perspectives 

 

The aim of this thesis was to clarify the role of the non-conserved, B-specific proteins Smu1 and RED. I could show 

that Smu1 and RED are involved in the Brr2-driven activation of the spliceosome in vitro and in vivo. In the majority 

of cases these two proteins facilitate/accelerate the B-to-Bact transition, but when the distance between the 5’SS 

and the BS reaches a critical range of around 56 nt Smu1 and RED are essential. The cryo-EM structure of the 

human B complex revealed that Smu1, via its WD40 domain, bridges the U2-tri-snRNP interaction by 

simultaneously binding to SF3B3 and Brr2 (Bertram, Agafonov, Dybkov et al., 2017). Possibly, this interaction, 

which is formed directly in the yeast spliceosome (Plaschka et al., 2017), positions Brr2 properly relative to its U4/U6 

substrate, but it might also directly stimulate the helicase activity of Brr2. This could be tested in the future by using 

a helicase assay, where the unwinding efficiency of the U4/U6 duplex is monitored in the presence or absence of 

Smu1 and RED. Similar experiments conducted with Brr2 and fragments of FBP21 indicated that FBP21 decreases 

the unwinding efficiency of the helicase in vitro (Henning et al., 2017) and could thus help to prevent pre-mature 

activation in spliceosomes primed for activation. For Smu1 and RED this type of experiment would provide 

information about the mechanism whereby they promote spliceosome activation and clarify whether it is strictly 

structural/conformational or if the activity of Brr2 is directly affected by the presence of these proteins. 

 

At this moment it is not entirely clear how Smu1 and RED mediate the interaction between SF3B3 and Brr2, 

especially when the 5’SS-BS distance is short. One possibility is that Smu1 and RED hold SF3B3 and Brr2 close 

together, and that this interaction is disrupted when the intron or 5’SS-BS distance is short. Alternatively, if Smu1 

and RED do not actively counteract the physical hindrance that a short 5’SS-BS distance exerts, Smu1 might simply 

span the gap between U2 and the tri-snRNP, when U2 is not flexible enough to move towards Brr2. In that case, 

subtle differences in the structure of the spliceosome might not be observable by negative stain electron 

microscopy. Therefore, examination of these complexes by cryo-electron microscopy might provide more detailed 

structural information about the conformational state of B complexes lacking Smu1 and RED, resulting in a better 

understanding of the function of these proteins. Likewise, cryo-EM may in the future reveal structural differences 

between human B complexes formed on very short versus long introns. 
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6. Appendix 

 

6.1 Abbreviations 

 

2’O-me 2’O-ribose methylated 

3’SS 3‘ splice site  

5’SS 5‘ splice site 

∆ Depletion / mutant 

Å Ångström unit 

A Adenosine / ampere 

aa Amino acid 

Alt3’SS Alternative 3’SS 

Alt5’SS Alternative 5’SS 

Amp Ampicillin 

APS Ammonium peroxodisulfate 

ATP Adenosine triphosphate 

B1-3 Bridge 1-3 

BCA Bicinchoninic acid  

bp Base pair  

BP Branch point 

BPS Branch point sequence 

BS Branch site 

BSA Bovine serum albumin 

°C Degree celsius 

C Cytosine / Carboxy 

C. elegans Caenorhabditis elegans 

Cex Cassette exon 

Ci Curie 

cm Centimeter 

cpm Counts per minute 

CTD C-terminal domain 

CTP  Cytosine triphosphate 

CTRL Control 

d desoxy 

D5 Domain V of group II introns 

dd Double distilled/ didesoxy 

Da Dalton 
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DExD/H Consensus sequence of helicases 

DMP dimethyl pimelimidate 

DMSO Dimethyl sulfoxide 

DNA Desoxyribonucleic acid 

DSP dithiobis(succinimidyl propionate) 

DTT Dithiothreitol  

ECL Enhanced chemiluminescence 

E. coli Escherichia coli 

EDTA Ethylendiamintetraacetate 

EJC Exon junction complex 

EM Electron microscopy 

ESE Exonic splicing enhancer 

ESS  Exonic splicing silencer 

et al. Et alii 

f Femto 

FBS Fetal bovine serum 

FL Full length 

Fw forward 

G Guanosine 

g Gram / centrifugal force 

GTP Guanosine triphosphate 

h Hour  

h. sapiens Homo sapiens 

H2O Water  

HCl Hydrochloric acid 

HeLa Henrietta Lacks 

HEPES N-2-Hydroxyethylpiperazin-N-2-ethansulfonic acid 

hn Heterogenous nuclear 

IBC Intron binding complex 

ILS Intron lariat spliceosome 

IPTG Isopropyl-β-D-thiogalactopyranosid 

ISE Intronic splicing enhancer 

ISL Internal-stem loop 

ISS Intronic splicing silencer 

J Joule  

k Kilo 

kb  Kilo bases 

KCL Potassium chloride 
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kDa Kilodalton 

L  Liter 

LB Luria Bertani 

LC  Liquid chromatography 

Lsm Like-Sm 

m3G 2,2,7-trimethylguanosine 

m7G N7-methylguanosine 

M Molar 

m Milli / meter 

μ Micro 

MBP Maltose-binding protein 

min Minutes 

MgCl2 Magnesium chloride 

mM Millimolar 

mRNA Messenger RNA  

MS Mass spectrometry 

MW Molecular weight 

N Amino 

n Nano 

NTD N-terminal domain 

NTP Nucleoside triphosphate 

nt Nucleotides 

OD Optical density 

-OH Hydroxyl group 

PI Pre-mRNA I 

PII Pre-mRNA II 

P Phosphate 

p Pico 

PAGE Polyacrylamide gel-electrophoresis 

PCI Phenol-chloroform-isoamyl alcohol 

PCR Polymerase chain reaction 

pH Preponderance of hydrogen ions 

PMSF Phenylmethylsulfonylfluoride 

PY Polypyrimidine 

Pre-mRNA Precursor-mRNA 

% Percent 

R Purine base 

RES Retention and splicing 
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Rev reverse 

RGG Arginine glycine glycine repeats 

RNA Ribonucleic acid 

RNAi RNA interference 

RNase Ribonuclease 

RNP Ribonucleoprotein 

rpm Revolutions per minute 

RRM RNA recognition motif 

RT Room temperature/ Reverse transcription 

S Svedberg unit 

s Second 

S. cerevisiae Saccharomyces cerevisiae  

S. pombe Saccharomyces pombe 

SDS Sodium dodecylsulfate 

SE Splicing extract 

siRNA Small interfering RNA 

Sm ‘Smith’, patient in which Sm proteins were first discovered 

sn Small nuclear 

snRNA Small nuclear ribonucleic acid 

snRNP  Small nuclear ribonucleoparticles 

SR Serine arginine rich 

T Thymin 

TEMED N, N, N’, N’-Tetramethylethylendiamine  

Tris  Tris-(hydroxymethyl)-aminomethane 

tRNA Transfer RNA 

U Uridine / unit  

U snRNA Uridine rich small nuclear RNA 

U snRNP Uridine rich small nuclear ribonucleoparticles 

UTP Uridine triphosphate 

UV Ultraviolet  

V  Volt  

Vol  Volume 

v/v Volume per volume 

W Watts 

w/v Weight per volume 

y yeast 

Y Pyrimidine base 
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