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Abstract  

 Boreal forests and peatlands are the major types of vegetation in northern Eurasia. 

These ecosystems store large amount of carbon in their vegetation and soil, thus are essential 

ecosystems to understand the global carbon cycle. Compared to the other boreal regions, 

tower-based CO2 measurements in the Eurasian boreal ecosystems of central Siberia are very 

sparse. The objective of my thesis is to investigate temporal variability of CO2 fluxes at a 

boreal coniferous forest and a bog in Zotino, Russia. In Chapters 3 and 4, I present data on 

site-level CO2 flux measurements using the eddy covariance (EC) method. In Chapter 5, the 

site-level CO2 flux measurements were utilized to evaluate the reliability of regional CO2 flux 

estimates obtained from the modified Bowen Ratio (MBR) method.  

 Chapter 3 investigates the diffuse radiation fertilization effect during the Siberian 

wildfire period from 2012-2013 using a data-driven model trained with CO2 fluxes and 

meteorological measurements. Key findings are: 1) Approximately 54-58% of variability in 

forest net ecosystem productivity (NEP) was controlled by photosynthetically active radiation 

(PAR), vapour pressure deficit (VPD), and diffuse fraction (fdif) of PAR during the growing 

season, 2) Incoming PAR decreased significantly at very high levels of fdif and high aerosol 

loading, 3) The diffuse radiation fertilization effect induced by clouds and aerosols increased 

NEP but this effect was less than a 10% increase, mainly due to sparse canopy structure and 

low leaf area index.  

 Chapter 4 investigates the similarity and differences in abiotic controls of CO2 fluxes 

during the winter-spring transition period at a coniferous forest and bog. Key findings are: 1) 

Air temperature regulated CO2 flux variability in the forest, whereas surface peat temperature 

was the primary driver of CO2 flux variability in the bog, 2) Rapid net CO2 uptakes occurred 

when both air and soil temperatures exceed 5 oC, 3) Sporadic warm spells can lead to an 

earlier start of CO2 uptake, 4) Spring frost reduced the net ecosystem productivity in both 

ecosystems, however vegetation productivity increased again after frost.  

 Chapter 5 presents the variability of regional CO2 fluxes from the profile 

measurements, combined using the MBR method. This study shows that diurnal cycles of 

profile measurements were useful for understanding the surface boundary layer structure. 

Since night-time mixing mostly did not extend beyond the top of the tall tower (304 m), 

night-time CO2 flux estimates can be reliably used without direct EC flux measurement. 
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Despite the uncertainties in both daytime and night-time CO2 fluxes, magnitudes and patterns 

of diurnal cycles of regional CO2 flux estimates generally followed the EC CO2 flux 

measurements.  

 Overall, this thesis shows that boreal ecosystems respond to changing environmental 

conditions in non-linear and complex ways. The results would be useful to evaluate CO2 

fluxes from both processed-based biosphere models and inverse models. In order to 

characterize an annual carbon budget in Zotino, further efforts such as methane flux 

measurement at bog, flux footprint analysis, evaluation of the snow season CO2 flux, and 

uncertainty estimation in flux partitioning of the long-term net ecosystem exchange of CO2, 

would be necessary.	  
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Zusammenfassung 

 Boreale Wälder und Moore sind die dominanten Vegetationstypen im nördlichen 

Eurasien. Der Boden und die Vegetation in diesen Ökosystemen speichern große Mengen 

Kohlenstoff, weshalb diese Ökosysteme eine große Rolle für das Verständnis des globalen 

Kohlenstoffkreislaufs spielen. Im Vergleich zu anderen borealen Regionen werden in den 

eurasischen borealen Ökosystemen in Zentralsibirien sehr wenige turmgestützte Messungen 

von Kohlendioxid (CO2) durchgeführt. Ziel meiner Dissertation ist die Untersuchung der 

zeitlichen Variabilität von CO2-Flüssen in einem borealen Nadelwald und einem Moor in 

Zentralsibirien. 

 In Kapitel 3 und 4 werden Daten präsentiert, die an beiden Standorten mit Hilfe der 

Eddy-Kovarianz(EC)-Methode gewonnen wurden. In Kapitel 5 werden die mittels EC 

ermittelten CO2-Flüsse verwendet, um die Zuverlässigkeit regionaler CO2-Flüsse zu 

evaluieren, welche durch die modifizierte Bowen-Ratio-Methode bestimmt wurden. 

 Kapitel 3 behandelt den Fertilisationseffekt diffuser Strahlung während der 

sibirischen Waldbrandperiode zwischen 2012 und 2013, welcher mittels eines 

datengetriebenen Modells anhand von CO2-Flüssen und meteorologischen Messungen 

untersucht wurde. Dabei stellt sich heraus, dass 1) etwa 54-58% der Variabilität des 

Nettoökosystemaustauschs (NEP) während der Wachstumsperiode durch die vorhandene 

photosynthetisch aktive Strahlung (PAR), das Dampfdruckdefizit (VPD) und den diffusen 

Strahlungsanteil (fdif) gesteuert wird, 2) die PAR bei sehr hohem fdif und hohem 

Aerosolgehalt der Luft signifikant abnimmt und dass 3) der Fertilisationseffekt diffuser 

Strahlung durch Wolken und Aerosole zu einem erhöhtem NEP führt, diese Erhöhung aber 

kleiner als 10% ist, was hauptsächlich der offenen Kronenstruktur und einem geringen 

Blattflächenindex geschuldet ist. 

 Kapitel 4 behandelt die Gemeinsamkeiten und Unterschiede zwischen den CO2-

Flüssen im Nadelwald und im Moor hinsichtlich der abiotischen Einflüsse während der 

Übergangszeit zwischen Winter und Frühjahr. Dabei stellt sich heraus, dass 1) im Wald die 

Albedo einen statistisch signifikanten Einfluss auf die CO2-Flüsse hat, während im Moor die 

Temperatur der obersten Torfschicht der wichtigste Einflussfaktor  ist und dass 2) beide 

Ökosysteme sich während der Schneeschmelze bereits dann in eine Nettosenke für  CO2 

verwandeln, wenn der Boden noch gefroren ist. Darüber hinaus können 3) sporadische 

warme Perioden zu einem früheren Beginn der  CO2-Aufnahme führen. Außerdem zeigt sich, 
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dass 4) Frühjahrsfrost den NEP in beiden Ökosystemen verringert, die Produktivität der 

Vegetation nach dem Frost aber wieder ansteigt. 

 In Kapitel 5 wird die Variabilität regionaler CO2-Flüsse präsentiert, welche aus einem 

in sechs Höhen gemessenen Vertikalprofil ermittelt wurden. Diese Untersuchung zeigt, dass 

der Tagesgang von Profilmessungen dabei helfen kann, die Struktur der oberflächennahen 

Grenzschicht zu verstehen. Da eine vertikale Durchmischung in der Nacht in den meisten 

Fällen nicht über die Höhe des Messturmes (304 m) hinaus erfolgte, können die nächtlichen 

CO2-Flüsse auch ohne direkte EC-Messungen zuverlässig verwendet werden. Trotz der 

Unsicherheiten, mit denen die CO2-Flüsse am Tag und in der Nacht behaftet sind, folgen die 

Größenordnung und der Tagesgang der regionalen  CO2-Flüsse im Allgemeinen den mittels 

EC ermittelten CO2-Flüssen. 

 Insgesamt zeigt diese Dissertation, dass boreale Ökosysteme auf veränderliche 

Umgebungsbedingungen in nichtlinearer und komplexer Weise reagieren. Diese Ergebnisse 

können dabei helfen, von prozessbasierten Biosphärenmodellen und von inversen Modellen 

bestimmte  CO2-Flüsse zu evaluieren. Um ein jährliches Kohlenstoffbudget für Zotino 

aufzustellen, wären zusätzliche Untersuchungen (Messung der Methanflüsse im Moor, 

Identifikation der die Flussmessungen beinflussenden Gebiete, d.h. Analyse des Footprints, 

sowie Unsicherheitbetrachtung zur Partitionierung des langfristigen 

Nettoökosystemaustauschs von CO2) erforderlich. 
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Chapter 1 Introduction 

1.1 The Carbon Cycle 

	 Carbon (C) is one of the most abundant chemical elements on Earth. The C cycle 

is the biogeochemical pathway of C through the atmosphere, land and ocean of the earth 

system (Ciais et al., 2013; Heimann and Reichstein, 2008). The majority of C is stored in 

the land and ocean, while a minority moves through these pools, being released into and 

taken up from the atmosphere through different processes on different timescales (Fig. 

1.1). Important driving factors, such as solar radiation, temperature, and precipitation, 

regulate C exchange and their interaction with other biogeochemical cycles are not fully 

understood. In addition, the non-linear and complex nature of the climate system makes 

global C cycling more difficult to understand (Heimann and Reichstein, 2008; Huntzinger 

et al., 2017; Raupach et al., 2014).  

 Carbon dioxide (CO2) is one of the most important inorganic C compounds. 

Despite constituting only 0.04% (equivalent to 400 ppm) of the atmosphere, CO2 is the 

most important anthropogenic greenhouse gas (GHG) along with other trace gases, such 

as methane (CH4) and nitrous oxide (N2O). GHGs absorb and release radiation, 

maintaining the surface mean temperature at approximately 15 oC, which is suitable for 

the life on the Earth (Liou, 2002). 

 However, excessive CO2 emissions by human activities alter the natural C cycle. 

Human activities (e.g. fossil fuel burning, land-use and land cover changes, and 

deforestation) are the main source of CO2 emissions (Fig. 1.1, Fig 1.3). Approximately 

40% of anthropogenic CO2 emissions remain in the atmosphere, while the remainder is 

taken up by land and ocean (Prentice et al. 2011). Excessive CO2 emissions remain in the 

atmosphere for 5-200 years, intensifying the greenhouse effect (IPCC, 2014). 

Atmospheric CO2 level was approximately 280 ppm before the industrial revolution in 

the 19th century (circa 1750), however it has exceeded 400 ppm in recent years (IPCC, 

2014). In fact, the average global atmospheric CO2 concentration was 402.8 ± 0.1 ppm in 

2016 (Le Quéré et al., 2018). In the northern hemisphere, atmospheric CO2 concentration 

reached 409.65 ppm on June 2018 (Fig. 1.2).  
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Figure 1.1 The global carbon cycle components. Yellow numbers are natural fluxes, reds 
are human activities, and white numbers indicate stored carbon in Gt C/year (1 Gt = 1 
billion tonnes = 1 Petagram = 1 x 1015 g) (Courtesy: US DOE.  Climate Placemat: 
Energy-Climate Nexus, US Department of Energy Office of Science. (p. 1)). 

 

 Climate scientists agree that anthropogenic GHG emissions, especially CO2, 

cause a substantial increasing trend in global temperature over the past 60 years (IPCC, 

2014). Based on the up-to-date carbon budget over the last decade (2007-2016), 88% of 

the increased rate of global CO2 emissions (9.4 ± 0.5 Gt C yr-1, 34.4 ± 1.8 Gt CO2) are 

caused by fossil fuel and industrial process, and 12% resulted from deforestation and 

land-use changes (1.3 ± 0.7 Gt C yr-1, 4.8 ± 2.6 Gt CO2, Fig. 3). These CO2 emissions 

were partitioned into the following C sinks: 46% of the total CO2 emissions accumulated 

in the atmosphere (4.7 ± 0.1 Gt C yr-1, 17.2 ± 0.4 Gt CO2), 30% in the land (3.0 ± 0.8 Gt 

C yr-1, 11.0 ± 2.9 Gt CO2) and 24% in the ocean (2.4 ± 0.5 Gt C yr-1, 8.8 ± 1.8 Gt CO2) 

with an imbalance of 5 % (0.6 Gt C yr-1, 2.2 ± 4.3 Gt CO2) (Le Quéré et al., 2018). The 

mismatch between the total sources and sinks (grey line) in Fig. 1.3 implies the 

knowledge gaps in our understanding of the C cycle. Main causes of C budget imbalance 
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are mostly likely related to missing processes (e.g., vegetation responses to diffuse 

radiation and unknown internal variability) and imperfect spatio and temporal data 

coverage in land and ocean CO2 sinks. In addition, understanding the behaviour of the 

terrestrial C cycle under increasing atmospheric CO2 and changing environmental 

conditions (e.g. climate change and human activities) is crucial in order to understand the 

climate system (Matthews et al., 2005). 

 

 
Figure 1.2 Atmospheric CO2 concentration measured at the Mauna Loa Atmospheric 
Baseline Observatory (19.5 ºN 155.6 ºW, 3397 m.a.s.l.) in Hawaii from 1958-2018. 
Retrieved July 2, 2018, from https://scripps.ucsd.edu/programs/keelingcurve/wp-
content/plugins/sio-bluemoon/graphs/mlo_full_record.png. 
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Figure 1.3 The global carbon budget averaged over the period of 1959-2017. The carbon 
emissions from fossil fuels, industry, and land use change are balanced by the atmosphere 
and carbon uptakes by land and ocean. Grey line denotes the mean global budget 
imbalance between the total emissions and the total sinks (atmosphere+land+ocean) 
(Courtesy: Global Carbon Project. (2017). Supplemental data of Global Carbon Budget 
2017 (Version 1.0) [Data set]. Global Carbon Project. https://doi.org/10.18160/gcp-2017).  

 

1.2 Terrestrial carbon cycle 

 The terrestrial biosphere is a crucial component of the C cycle (Fig. 1.1, Fig. 1.3). 

Gross primary productivity (GPP) is a measure of the amount of CO2 removed from the 

atmosphere every year to fuel photosynthesis (Chapin III and Eviner, 2014). Most C 

taken up by GPP is returned to the atmosphere almost immediately through ecosystem 

respiration. Ecosystem respiration (Reco) is all C released from the terrestrial ecosystem. 

Soil respiration (Rs), an important component of ecosystem respiration (Reco), is 

controlled by plants, microbes, and fauna in the soil (Chapin III and Eviner, 2014). Rs is 

the sum of below-ground autotrophic respiration (RA) and heterotrophic respiration (RH). 

RA represents root respiration and rhizosphere activities that mineralize relatively recent 

photosynthetic assimilates. RH is the activity of heterotrophic microorganisms that 

decompose soil organic matter (Trumbore, 2006). Plant respiration is the cellular 
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respiration of both above and belowground plant biomass. The net primary production 

(NPP) is the difference between GPP and the plant respiration (McNaughton et al., 1989; 

Kirschbaum et al. 2001). Other terms often used include the ecosystem productivity 

(NEP) or net ecosystem exchange (NEE), which are two different terms for the difference 

between GPP and Reco (Lovvet et al. 2006). 

1.3 Boreal ecosystems in central Siberia 

 Northern Eurasia is located in the subarctic climate zone and is one of the most 

sensitive areas to rapid climate change. In the past three decades, northern Eurasia has 

experienced a drastic warming of 1-2 °C, which is higher than the global average of 0.85 
°C (IPCC, 2014). This region shows one of the most pronounced surface temperature 

warming trends over the period of 1881-2008: more than 2 °C for the winter and 1.35 °C 

for the summer, respectively (Groisman et al. 2009). Substantial air temperature warming 

over the last three decades for this region has resulted in a longer growing season length 

and enhanced vegetation productivity (Forkel et al., 2016; Hayes et al., 2011; Myneni et 

al., 1997; Piao et al., 2008). 

 Boreal ecosystems are the dominant terrestrial biosphere in northern Eurasia, 

located approximately between latitudes 50-67 oN (Kasischke, 2000). Globally, forest 

ecosystems occupy about 27% of the total land surface area (FAO, 1995). Boreal forests 

make up 33% of the world’s forest cover (Ruckstuhl et al., 2008). More than 50% of 

Russia’s land area is covered by boreal forests (Dolman et al., 2012), and these Russian 

forests (the so-called “taiga”) comprise ca. 21% of the world’s forested area (Tishkov, 

2002; Ruckstuhl et al. 2008). Approximately 32% (272 ± 32 Pg C) of C carbon stored in 

forests globally can be found in boreal forests (Pan et al. 2011). Boreal forests store 

approximately 85% of the plant’s soil C and 60-70% of the total soil C (Ceulemans et al., 

1999; Dioxon et al. 1994). Another report puts the total C storage in boreal forests even 

higher, estimating that these ecosystems store 471 Pg of C (Prentice et al. 2001). Thus, 

investigating the role of boreal forests as a net C sink and their interaction with the 

changing climate is important to understand the current and future terrestrial C cycles 

(Bonan, 2008; Gauthier et al., 2015).  
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 Wetlands are ecosystems that consist of excessively waterlogged land. They are 

characterized by distinct water levels, soil moisture conditions, soil carbon 

characteristics, and vegetation structure (Schot 1999, Charman, 2002). For instance, 

Mitsch and Gosselink (1993) classified nine types of wetlands depending on the 

seasonality of water table and dominant vegetation types: bog, fen, mire, marsh, playa, 

slough, swamp, wet meadow, and open water. Bogs and fens are classified as organic soil 

wetlands, whereas marsh and swamp are classified as mineral soil wetlands (Apostolov et 

al. 2004). Especially, bogs dominated by Sphagnum moss can accumulate more than 40 

cm of dead plant biomass and organic matter (Bold, 1967). Raised or blanket bogs 

receive water and nutrients from precipitation, making them ombrotrophic, thus they 

have acidic water, and low nutrient contents.  

 Peatlands are wetlands that accumulate partially decomposed organic vegetation. 

Although peatlands occupy ca. 3% of the land surface, they store roughly 16-33% of the 

global soil carbon pool (600 Gt C) (Gorham 1991; Bridgham et al. 2006). Approximately 

25-30% of peatlands are found in the boreal forests of the northern hemisphere (Gorham, 

1991; Wieder et al., 2006) and these boreal peatlands store 270-379 Pg (Turunen et al. 

2002). Northern peatlands have low vegetative productivity due to low nutrient 

concentrations but 5-50 times larger soil carbon pools than other ecosystems due to 

anaerobic and cold soil conditions (Frolking et al. 1998). The peat area in the boreal 

region is smaller than in the Arctic permafrost region. However the depths of peat are the 

deepest in the permafrost-free boreal zone (Kauppi et al. 1997; Beilman et al. 2009). 

Although peatlands along the Yenisei River in West Siberian Plain in Russia occupy ca. 

40-50% of the land surface in Russia, their ecological characteristics and behaviour under 

changing environments are yet poorly understood (Schulze et al., 2015). Northern peats 

have accumulated during the Holocene, acting as an atmospheric CO2 sink throughout 

that time (Lund et al. 2010; Yu, 2012; Smith et al. 2004). Moreover, peatlands are also 

the major natural methane source (Moore and Knowles, 1990). The role of peatlands as a 

net carbon sink under a warming climate is highly uncertain (Abdalla et al., 2016; 

Limpens et al., 2008). Therefore, measuring C fluxes and investigating their 

environmental drivers in northern peatlands is crucial for understanding the Eurasian C 

cycle. 
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1.4 Wildfires and snowmelt 

 Wildfires and snowmelt are critical environmental changes in northern Eurasia. 

These disturbances are directly or indirectly influenced by human induced climate 

change. Changes in frequency or intensity of wildfires and snowmelt will alter emissions 

of GHGs in northern Eurasia in the future (Monier et al. 2013). 

 Wildfire is an important disturbance factor for ecosystem change in boreal 

ecosystems. The intensity and frequency of wildfires have amplified in Russian and 

Canadian boreal forests due to fast temperature increases and extension of dry periods 

(Stocks et al. 1998; Young et al. 2017; Groisman et al. 2009; Tchebakova et al. 2009; 

Conard and Ivanova, 1997). In 2010, ‘mega-heat waves’ burned large parts of Russian 

forests and agricultural lands (Barriopedro et al. 2011). Wildfires become more frequent 

and stronger due to the warmer and drier climate, thus it is a critical disturbance factors in 

the taiga (Achard et al., 2008; Vasileva et al., 2011). Fires increase atmospheric 

concentrations of carbon monoxide (CO), CH4, and aerosols (Vasileva et al. 2011). 

Radiation is the vital controlling factor on vegetation growth and productivity. Aerosol 

particles or smoke plumes induced by fires that remain in the atmosphere for excessive 

periods of time will change radiation components, influencing vegetation productivity 

and net CO2 uptake.  

 The snow period in northern Eurasia, typically lasts from October to May. In 

spring (April-May), thick snow cover (> 1 m) in Siberia melts within few weeks. These 

dramatic changes influence carbon, water, and energy fluxes in terrestrial ecosystems 

(Groisman et al. 2009). During 1982-2011, snow cover in Eurasia decreased significantly 

and was strongly correlated with surface air temperature warming trends (Brwon and 

Derksen, 2013). In addition, changes in timing of snowmelt influence the length of the 

vegetative growing season and annual carbon budget (McGuire et al, 2002; Lafelur and 

Humphereys, 2007). For instance, a recent study by Pulliainen et al. (2017) showed that 

decreasing snow cover and earlier retreat of snow cover consistently resulted in enhanced 

forest ecosystem productivity. However, during 1997-2006, another boreal Eurasian 

region showed that vegetation growth decreased compared to 1982-1997 (Piao et al. 

2011). Those two studies suggested that the trends of vegetation growth and productivity 

vary temporally and spatially. Therefore, it is important to keep monitoring the 
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ecosystem’s response to environmental changes to investigate whether or not these 

ecosystems will continue to play a role as a sink and a potential mitigator of 

anthropogenic CO2 emissions (Hayes et al., 2011; Matthews et al., 2005).  

1.5 Objectives and research questions 

 Net vegetation CO2 uptake rates in central Siberia are influenced by 

environmental changes, such as spring snowmelt and summer wildfires. The objective of 

my thesis is to characterize the variability of CO2 fluxes and its abiotic drivers during the 

most dynamical seasonal changing periods, spring and summertime. To achieve this 

objective, CO2 fluxes were measured by the EC method at a coniferous forest and a bog. 

Furthermore, EC flux measurements were utilized to evaluate the reliability of regional 

CO2 flux estimates from tall tower profile measurements. An overview of research 

questions is addressed graphically as in Fig. 1.4. 

Smoke produced from fires typically increases diffuse radiation resulting in an 

enhancement of vegetation productivity, particularly in broadleaf deciduous forests and 

croplands because diffuse radiation makes for favourable sky conditions for 

photosynthesis. Compared to other regions (e.g. Amazon or temperate ecosystems), the 

effects of clouds and fire smokes on vegetation productivity in Siberian coniferous forest 

are not well studied. Chapter 3 characterizes the potential diffuse radiation fertilization 

effect on forest net ecosystem productivity during wildfires that occurred from 2012-

2013. 

 The research questions for Chapter 3 are:  

1) What are the major environmental factors controlling the variability of forest net 

ecosystem productivity (NEP)? 

2) How does forest net ecosystem productivity (NEP) respond to diffuse radiation 

caused by smoke particles during wildfires? 

3) How strong is the diffuse radiation fertilization effect on NEP? 
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Figure 1.4 Overview of the questions addressed in this thesis. Art work courtesy of 

Silvana Shott and Iris Möbius. 

 

 Chapter 4 focuses on the spring interannual variability of CO2 fluxes and its 

abiotic drivers measured at a coniferous forest and bog from 2013-2017. During the 

spring snowmelt period, solar radiation, air and soil temperatures substantially increase. 

In addition, air temperature fluctuates grately with accompanying warm and cold spells. 

Therefore, the timing of vegetation transition from being a net CO2 source to being a net 

CO2 sink would be influenced by local weather condition and associated environmental 

changes. 

 Specific research questions for Chapter 4 are:  

4) What are the factors controlling the variability of CO2 at a coniferous forest and 

bog in spring?  

5) How do the coniferous forest and bog ecosystems differ in their responses to 

environmental variables during spring? 

6) What influence does the very warm spring in 2015 have on the timing of 

snowmelt, frequency of frost days, and the strengths of net CO2 sinks? 
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 Chapter 5 investigates the spatial variability of summertime regional CO2 flux 

estimates from profile measurements from 2012-2015. Regional CO2 fluxes were 

estimated by an alternative EC method using tall tower CO2 concentration profile 

measurements, following the identical procedure addressed by Winderlich et al. (2014). 

To evaluate the reliability of regional CO2 flux estimations, CO2 flux measurements at 

the neighbouring flux towers were used as a reference data.  

 Research question is: 

7) How reliable are regional CO2 flux estimates from profile measurements? 

 

This PhD dissertation consists of the three independent result chapters (Chapter 3 

to 5). The contents of Chapter 3 were published in Agricultural and Forest Meteorology 

(Park et al., 2018). The contents of Chapter 4 were submitted to Boreal Environmental 

Research. Chapter 5 is an unpublished manuscript. Details of research background and 

methodology are demonstrated in each result chapter. Chapter 6 summarizes the key 

findings and outlook for future research. 
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Chapter 2 Materials and methods  

2.1 Study site 

  The research station is located in Zotino village (60.48 oN, 89.21 oE) 

approximately 20 km west of the Yenisei River in the Krasnoyarsk region of Russia. The 

station is influenced by a strong continental climate with a large temperature amplitude 

and intermediate precipitation. Based on the long-term weather station measurements 

from 1937-1989, the average air temperature in January was -26 oC and 22 oC in July. 

During the wintertime, air temperature can drop below -40 oC, and during summertime 

air temperature can exceed 35 oC. Annual precipitation is approximately 600 mm. During 

winter, snow accumulates to approximately 2 m depth  (Schulze et al. 2002).  

 The dominant land cover types at the Zotino site are boreal coniferous forest and 

peat bog. Flux measurement towers were installed at a Scots pine forest and a sphagnum 

peat bog. Details of site characteristics are described in Chapter 3.2 and Chapter 4.2.  

 In the past, many investigations have been conducted to quantify and characterize 

the seasonal variability in C, water, and energy fluxes at the forest and bog in Zotino. 

Flux measurements in Zotino were initiated as a part of the EUROSIBERIAN 

CARBONFLUX project from 1998-2000 and the Terrestrial Carbon Observing 

Programme-Siberia (TCOS-Siberia) from 2002-2005 (Heimann, 2002; Schulze et al. 

2002). This project was a pioneering international research initiative for monitoring the 

biogeochemical cycle over the European-Russian and western Siberian boreal 

ecosystems. The project included short-term aircraft measurement campaigns to monitor 

atmospheric CO2 and its isotopic composition profile, atmospheric oxygen and nitrogen 

ratio (O2/N2), CH4 and CO concentrations (Lloyd et al. 2001). In addition, year-round 

flux measurements were performed to investigate CO2 and energy fluxes in boreal forests 

(Kelliher et al. 1998; Valentini et al. 2000; Tchebakova et al. 2002; Lloyd et al., 2001) 

and in bogs (Arneth et al., 2002; Kurbatova et al. 2002; Arneth et al. 2006). Soil 

respiration measurements using the chamber technique were also conducted (Shibistova 

et al. 2002) and the results were published in the journal Tellus 54B special issue 

(Heimann, 2002). However, long-term EC flux measurements were not continued after 

2001 in Zotino. In 2012, new EC flux measurement systems were installed to measure 
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CO2, water vapour, and energy exchanges at a coniferous forest and bog in the 

surrounding the Zotino tall tower (Winderlich et al. 2014; Park et al. 2018). 

 The Zotino Tall Tower Observatory (ZOTTO) is a biogeochemical monitoring 

station established in 2006 as a German-Russian cooperation project (Heimann et al. 

2014). The goal of ZOTTO is to quantify spatio-temporal variations in the long-term 

regional GHG budget with a robust approach (Kozlova et al. 2008; Heimann et al. 2014).  

2.2 Ground-based CO2 measurements 

 This section presents a brief overview of the tower-based CO2 measurements 

currently being conducted at the Zotino site.  

 Ground-based CO2 monitoring systems are vital to quantify C budgets and 

understand the processes of the C cycle between the terrestrial ecosystems and the 

atmosphere. These systems provide the spatial and temporal distributions of sources and 

sinks of GHG by combining various measurement platforms (e.g. space-based and 

aircraft etc.) and the atmospheric inverse modelling technique (Ciais et al. 2014; Dolman 

et al. 2008; Haszpra et al. 2005; Barcza et al. 2009; Desai et al. 2015). Synthesizing 

different approaches reduces the uncertainty in quantifying C budgets at regional to 

global scales (Lauvaux et al. 2012; Peters et al. 2007; Thomson et al. 2016; Winderlich, 

2012; Saeki et al. 2013).  

 Atmospheric mixing ratio measurements provide the concentrations of 

atmospheric GHG compositions. The atmospheric GHG observation networks provide 

reliable and continuous background gas concentrations from daily to multi-decadal scales 

for a wide temporal range (Lucas et al., 2015). Tall tower platforms (> 200 m) are 

particularly useful where observation networks are sparse and in vulnerable regions 

affected by climate change, such as Siberia and the Amazon basin (Winderlich et al. 

2010; Sasakawa et al. 2012; Andrea et al. 2016; Kim et al. 2017). Mixing ratio 

measurement systems at the tall tower can sample the air above the surface layer or at a 

mixed layer height, minimizing the local source and sink influences from the ground 

surface (Gloor et al. 2001). Therefore, since early 1990s scientists have used a similar 

concept to the tall television towers to measure atmospheric GHGs (Tans, 1991; Bakwin 

et al. 1998; Haszpra et al. 2001; Popa et al. 2010). For instance, tall tower GHG 
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measurements were used to estimate the source-sink distributions of surface CO2 flux and 

carbon budget in northern Eurasia (Winderlich, 2012; Saeki et al. 2013; Kim et al. 2017).  

 Traditionally, atmospheric GHG observatories measure mole fractions of CO2 by 

non-dispersive infrared (NDIR) spectroscopy and CH4 by Gas Chromatography (GC) 

(Rella et al. 2013). These techniques were also applied to measure CO2, CH4, CO, and 

N2O in ZOTTO (Kozlova et al. 2008; Kozlova and Manning, 2009). However, it requires 

expensive laboratory work and frequent maintenance to handle dry air sample. Therefore, 

continuous in-situ atmospheric GHG measurements at remote observatory would be 

challenging. Over the past 10 years, the cavity ring-down spectroscopy (CRDS) 

technique has been developed to improve temporal resolution, precision and accuracy of 

GHG measurements, and reduce maintenance efforts (Rella et al. 2013; Chen et al. 2010). 

Since 2009, the same technique has applied at ZOTTO and produce continuous and high 

quality measurements of dry mole fractions of CO2 and CH4 (Winderlich et al. 2010; 

Timokhina et al. 2018).  

 A global flux tower network (FLUXNET) has also grown over the past 25 years 

(Baldocchi et al. 2001). Flux measurements provide information about the local source 

and sink distributions of different carbon reservoirs on various vegetation types and 

climate regions (Burba and Anderson, 2010; Baldocchi et al. 2001; Chu et al. 2017). 

Depending on the measurement height, the EC flux measurements cover on an ecosystem 

scale of 1-3 km2 (spatial scale of 100-2000 m) from daily to annual time scales 

(Baldocchi, 1997; Schmid, 1994). At present, approximately 900 flux stations are 

operating all over the world (Chu et al. 2017). However, very few stations exist in Russia 

despite the fact that this region contains the largest forested area worldwide.	

 Micrometoeological methods are widely used as a non-destructive, reliable, and 

quasi-continuous approach to obtain vertical turbulent fluxes on agricultural and forestry 

applications (Meyers and Baldocchi, 2005). In this thesis, CO2 fluxes were obtained by 

two micrometeorological methods. Direct flux measurements at a coniferous forest and 

bog were obtained by the eddy covariance (EC) method, representing an ecosystem scale 

(~1 km2) (Chapter 3 and 4). To obtain CO2 fluxes at a larger scale, a combination of 

changes in the CO2 concentration profile at the tall tower with the modified Bowen ratio 
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(MBR) method were used (Chapter 5). This subsection presents a brief overview of 

theoretical background of the EC and the MBR methods. 

 On flux towers, micrometeorological methods are used to measure trace gases, 

energy, and momentum exchanges between the surface and the atmosphere (Fig. 2.1). 

One of the most widely used micrometeorological methods is the EC. This method 

directly measures turbulent fluxes using a fast-responsive sonic anemometer and gas 

analyzer (measurement frequency of 10-20 Hz) (Baldocchi et al., 2001; Aubinet et al. 

2012). Eddy or turbulent flux in the atmospheric surface boundary layer is calculated by 

the covariance of the vertical wind velocity and the scalar density of atmospheric 

constituent (Swinbank, 1951; Aubinet et al. 2012): 

𝐹 ≈ 𝜌! 𝑤!𝑠! 

where 𝜌!  is mean density of atmospheric constituent [mg m-3],  𝑠! is perturbation of 

mixing ratio, and 𝑤!is a perturbation of vertical wind velocity [m s-1]. Generally, this 

equation is expressed simply as 𝑤!𝜌!! for CO2 flux when density fluctuations (𝑠!) are 

assumed negligible. 

 The EC method requires specific assumptions. First, turbulence in surface layer is 

measured under statistically stationary condition. Under this condition, fluctuations do 

not change during the averaging time (e.g. 5-60 min but typically 30 min). Second, the 

terrain surrounding of flux tower is relatively flat, topographically and horizontally 

homogenous. Third, no strong divergence and convergence flows should dominate during 

the transport processes, therefore density change is negligible (Aubinet et al. 2012; 

Meyers and Baldocchi, 2005). In practice, setting measurement stations in heterogeneous 

landscapes and complex terrains are unavoidable. Therefore, accurate estimates of carbon 

exchange and carbon budget can be challenging due to horizontal and vertical advections 

(Finnigan et al. 2003; Kang et al. 2017). However, as the Zotino site is relatively 

homogeneous and the terrain is flat, advection terms are not considered in my research. 

Systematic or unknown random errors from the EC method can be minimized through 

instrumental configurations and flux correction methods (Aubinet et al. 2012; Lee et al. 

2004).   

 The EC method also requires specifications in both hardware and software 

systems: (1) the capability to measure small sizes of eddies continuously, (2) minimize 
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flow distortion, (3) low power consumption, (4) large data storage to save raw data, (5) 

the standardization of post-processing, quality check and quality assurance procedures 

(Moncrieff et al., 1997). Currently, there are seven software packages for raw data 

processing and data acquisition (e.g., EddyUH, EddyPro, TK3 and etc.) provide various 

options for flux calculation, flux corrections, and footprint analysis (Fratini et al. 2014; 

Mammarella et al. 2015). As each software has strengths and weakness, researchers need 

to consider the proper flux correction or raw-data processing schemes for their site 

characteristics and research purposes. In addition, post-processing of half-hourly flux and 

meteorological data with gap-filling and flux partitioning procedures (e.g., REddyProc) 

can be used (Wuzler et al. 2018). A brief overview of raw-data and post-processing tools 

is listed in https://fluxnet.fluxdata.org/2017/10/10/toolbox-a-rolling-list-of-

softwarepackages-for-flux-related-data-processing/. 

 

 
Figure 2.1 The eddy covariance technique directly measures the exchanges of gases, 
energy, and momentum exchanges between the surface and the atmosphere. In surface 
layer, the air flow (big arrows) consists of numerous and various sizes of individual 
eddies and vortices (small arrows). Eddies move in both horizontal and vertical directions. 
Adopted from Burba and Anderson (2010), [Online image]. Retrieved on December 18, 
2017, from https://upload.wikimedia.org/wikipedia/commons/6/65/Pyörrekovarianssi-
tekniikan_kaaviokuva.jpg 

 

 

 Fluxes of CO2, water vapour, and CH4 are measured by the EC method. However, 

gas analyzers for some chemical species (e.g. from volatilization fluxes) or particle 
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depositions (e.g. organic micro pollutants) have a low frequency or require a long 

sampling time from several hours to several weeks, which do not fulfil the requirements 

for the EC method (Bolinius et al. 2016; Meyers and Baldocchi, 2005). In this case, 

alternative micrometeorological methods are used to overcome the specific assumptions 

of the EC method (e.g. gas species, low response gas analysers etc.) (Pattery et al. 1993; 

Meyers and Baldocchi, 2005). On such approach is the MBR method for estimating 

fluxes (Hicks and Wesely, 1978). Originally, the MBR method was used to estimate heat 

flux (Bowen, 1926; Hicks and Wesely, 1978). Later, this method was applied to lake and 

forest floor to determine CO2 and H2O fluxes (Meyers et al. 1996) as well as other trace 

gas fluxes (e.g. nitric acid vapour, ammonia, and mercury) and particle composition (e.g., 

persistent organic pollutants) (Mayer et al. 2011; Meyers and Baldocchi, 2005; Bolinius 

et al. 2016). 

 This method is based on Monion-Obukov similarity theory (MOST), assuming 

the eddy diffusivity (K) of each trace gas is identical to the eddy diffusivity of measured 

heat flux (Meyers and Baldocchi, 2005; Mayers et al. 1996). The K-theory is a 

generalized MOST in which turbulent fluxes can be parameterized with the local mean 

gradient of the transported quantity and a positive eddy-transfer coefficient or eddy 

diffusivity K (Stull, 1988). This coefficient K is not constant and differs depending on the 

scalar quantity. It varies with the size of eddies and increases with height. But, K in the 

similarity theory is assumed to be replaceable for all scalar quantities; therefore the 

coefficient for calculating one flux can be equal to another flux (Meyers et al., 1996): 

𝐹! =  𝐾 !"
!"

  

 The flux of the target gas species (Fx) can be determined by a measure of the 

concentration gradient (dc) over the same height interval (dz). 

 For ZOTTO, the measurements system are not suitable for flux measuring fluxes 

because of flow distortion due to the very long tubing (302 m), the low measurement 

frequency of CO2 concentration (0.2 Hz), and the long mixing time inside of the buffers 

(~40 min) (Winderlich et al., 2014). Therefore, the MBR method can be applied. By 

combining it with changes in the CO2 concentrations from surface to the top of the tall 

tower, the MBR method is only needed to account for fluxes across the top level, when 
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mixing reaches beyond the observed profile. Detailed procedure to obtain tall-tower 

based CO2 fluxes are described in Winderlich et al. (2014) and Chapter 5 in this thesis.  
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3.1 Introduction  

The high northern latitudes (> 55 °N) are one of the largest carbon sink regions 

and have become warmer and drier due in recent decades to rising temperatures (Forkel 

et al., 2016). Moreover, boreal forests in Russia, so-called “taiga”, comprise about 21 % 

of the world’s forest area (Tishkov, 2002). Despite its importance to the terrestrial carbon 

cycle, this area is one of the most data-deficient regions because of its remoteness. One of 

the critical disturbance factors in the taiga are large wildfires induced by a combination of 

human activity and climate change (Achard et al., 2008; Vasileva et al., 2011). Since 

1996 a significant increase in the number and frequency of wildfires, as well as burned 

areas, has been observed (Ponomarev et al., 2016; Antamoshkina and Korets, 2015). For 

instance, heavy smoke from wildfires covered central Siberia in the summers of 2012 and 

2013 (Ponomarev, 2013). This heavy smoke resulted in reduced incoming solar radiation 

and caused changes in the surface radiation balance (Schafer et al. 2002a; Schafer et al. 

2002b).  

Solar radiation, in particular photosynthetically active radiation (PAR: 400-700 

nm), controls canopy processes related to photosynthesis such as gross primary 

productivity (GPP), net ecosystem exchange of CO2 (NEE), and light use efficiency 

(LUE). Determining the biophysical and physiological mechanisms influencing canopy 

photosynthesis under cloudy and smoky conditions has been difficult due to the 

interaction among multiple environmental factors such as incoming radiation, diffuse 

radiation or diffuse fraction, leaf temperature, air humidity, and/or surface wetness 

(Dengel and Grace, 2010; Doughty et al., 2010; Gu et al., 2002, 1999; Hollinger et al., 

1994; Knohl and Baldocchi, 2008; Misson et al., 2005; Rocha et al., 2004). Under 

cloudy, overcast or high fire-related aerosol load conditions, the total radiation reaching 

the canopy is reduced, typically resulting in a reduction in photosynthesis (Cirino et al., 

2014; Yamasoe et al., 2006).  

The diffuse radiation fertilization (DRF) effect is an increase in photosynthesis 

that results from a trade-off between decreased solar radiation and increased light 

scattering, both caused by clouds or smoke (Mercado et al., 2009; Rap et al., 2015; 

Roderick et al., 2001). Diffuse radiation enhances photosynthesis because diffuse light 

can more effectively penetrate the canopy (Dengel et al., 2015; Doughty et al., 2010; 
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Knohl and Baldocchi, 2008; Urban et al, 2007; Yamasoe et al., 2006). This effect, 

however, depends on properties of vegetation structure properties, such as canopy 

architecture, and leaf area index (LAI), and plant functional type (Alton et al., 2007; 

Kanniah et al., 2012; Knohl and Baldocchi, 2008; Niyogi et al., 2004). Under diffuse 

light conditions, the efficiency of canopy photosynthesis increased over 50 % for both 

crops and temperate forests (Choudhury, 2001; Gu et al., 2002; Hollinger et al., 1994), 

but not in wetlands due to their low canopy height and low LAI (Letts et al., 2005). 

Synthetic and data-based modelling studies have also shown that results differ 

significantly for the same plant functional type, which may be explained by differing 

model assumptions, treatment of radiation, and the complexity level of each model 

(Alton, 2008; Alton et al., 2007; Knohl and Baldocchi, 2008; Matsui et al., 2008; 

Mercado et al., 2009; Rap et al., 2015; Still et al., 2009). Therefore, it is still an open 

question how forest ecosystems respond to various light regimes (Cheng et al., 2015; 

Dengel and Grace, 2010; Kanniah et al., 2012; Min, 2005; Misson et al., 2005; Oliphant 

et al., 2011; Strada et al., 2015).  

Aerosol particles have a significant influence on photosynthesis by increasing 

diffuse radiation, exhibiting favorable conditions for photosynthesis similar to those 

created by cloudy conditions (Gu et al., 2003; Niyogi et al., 2004; Rap et al., 2015). The 

aerosol scattering effect may increase the amount of diffuse light, enhancing the CO2 

uptake of forests at midday by up to 8 %, without reducing incoming solar radiation 

(Misson et al., 2005). This effect is more pronounced in forests and croplands than in 

grasslands (Jing et al., 2010; Niyogi et al., 2004). Another grassland study did not find 

significant increases of CO2 uptake due to aerosol loading (Kanniah et al., 2010). In 

tropical forests, an increase of aerosol optical depth (AOD) results in an increase of CO2 

uptake, particularly in the sub-canopy (Doughty et al., 2010; Yamasoe et al., 2006). 

However, if AOD is very high (> 2) or cloud cover is thick, CO2 uptake decreases due to 

the reduction of incoming radiation (Cirino et al., 2014; Oliveira et al., 2007a; Yamasoe 

et al., 2006). This suggests that moderate aerosol concentrations increase CO2 uptake at 

ecosystem scales because of the diffuse radiation fertilization effect, whereas high levels 

of aerosols reduce CO2 uptake by blocking solar radiation (Kanniah et al., 2012; Strada 

and Unger, 2016). 
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In this study, we use flux measurements obtained by the eddy covariance (EC) 

technique at the ZOtino Tall Tower Observatory (ZOTTO) site in central Siberia 

(Heimann et al., 2014; Kozlova et al., 2008; Winderlich et al., 2010) to understand the 

underlying processes of the DRF effect in a boreal forest during wildfire events. To our 

knowledge, no other study has investigated the effect of smoke and clouds on NEP at an 

ecosystem scale in central Siberia.  

The objectives of this study are: (1) to characterise the environmental controls of 

Net Ecosystem Productivity (NEP) and (2) to examine the impact of clouds and smoke on 

radiation partitioning and its influence on NEP. To address these objectives we first 

identified the environmental drivers of NEP using an Artificial Neural Networks (ANNs) 

model (Moffat et al., 2010). We then tested the hypothesis that different levels of smoke 

particles influence NEP, enhancing it at intermediate levels and decreasing it at higher 

smoke levels. 

3.2 Materials and methods  

3.2.1 Study site  
The research area is situated on the western side of the Yenisei river basin in the 

middle taiga subzone (Heimann et al., 2014; Kozlova et al., 2008; Winderlich et al., 

2010; Fig. 3.1 bottom). Long-term energy and mass exchange measurements based on the 

EC technique in this region were performed quasi-continuously from 1998-2000 and 

2002-2005 (Arneth et al., 2006; Kelliher et al., 1999; Lloyd et al., 2002a; E.-D. Schulze 

et al., 2002; Tchebakova et al., 2015). A new flux tower (60o48’25’’N, 89o21’27’’E, 180 

m a.s.l.) was erected at a distance of 900 m from the tall tower site in mid-June 2012 

(Winderlich et al., 2014; Fig. 3.1 top). This station is located in a homogeneous Scots 

pine (Pinus sylvestrisis L.) forest, with an average canopy height of 20 m, similar to the 

former site. However, the average tree age is estimated to be more than 100 years 

younger compared to the old site (82-107 and 230 years, respectively). The forest around 

Zotino is an open stand with sparse understory and a lichen-dominated ground cover 

(Wirth et al., 1999). The LAI value may be lower than the values reported at the old 

station (1.3 m-2 m-2 for minimum and 3.5 m-2 m-2 for maximum) due to the more sparse 

canopy structure (Alton et al., 2005; Los et al., 2000; Shibistova, 2002; Wirth et al., 
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1999). The forest is located on alluvial sandy mineral soil with no underlying permafrost 

(Kelliher et al., 1999; Lloyd et al., 2002a). 

3.2.2 Measurement systems 

3.2.2.1 Eddy covariance flux measurements 

The EC system consists of a three-axis ultrasonic anemometer USA-1 (METEK 

GmbH, Elmshorn, Germany) to measure three wind components as well as sonic 

temperature, and a closed-path infrared gas analyzer LI-7200 (LI-COR Biosciences, 

Lincoln, NE, USA) to measure CO2 and H2O concentrations. The sampling intake line 

consists of a 1 m stainless steel tube with an inner diameter of 7.7 mm (a 3/8’’ tube). The 

flow rate inside the sampling line was 15 L min-1, which should provide turbulent airflow 

inside the tubing to minimize frequency losses. The horizontal and vertical sensor 

separations were 25 cm and 5 cm, respectively. The voltage signals for CO2 and H2O 

concentrations (dry mole fractions) of the gas analyzer were connected to the analog 

input channels of the sonic anemometer. After the analog-to-digital conversion by the 

converter inside the anemometer, these signals were added to the digital data stream sent 

from the sonic anemometer to the computer via serial data transmission at a sampling rate 

of 20 Hz. Storage of the raw data was managed by the program EddyMeas as part of the 

EddySoft package (Kolle and Rebmann, 2007). Additionally the LI-7200 was directly 

connected to the computer via RS-232 and the program LI7200Log collected all status 

information and measured data from the gas analyzer at a rate of 1 Hz and stored them as 

30 min averages.  
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Figure 3.1 Land cover (top) and geographical location (bottom) of the ZOTTO site. Land 
cover map derived from 30-meter Landsat-8 imagery. Round circle and triangle shapes 
indicate the forest eddy covariance flux tower and the tall tower sites. 

 
In order to determine the CO2 storage flux below the EC measurement height, 

ambient CO2 concentrations were measured at nine heights (0.1, 0.3, 1, 2, 5, 9, 15, 22, 

29.2 m) with a GMP343 probe (Vaisala, Helsinki, Finland). A CR10X data logger 

(Campbell Scientific, Logan, UT, USA) was used to control the gas-switching unit and to 

collect the data from the probe. Air was drawn through equal length tubes at a rate of 7 L 

min-1, with each height being sampled for 1 min (the lowest level was sampled for 2 

min). Readings were taken at a rate of 1 Hz over the last 50 sec (110 sec for lowest level) 

of sampling at each height and then averaged for each 10 min cycle before being stored. 

Storage fluxes of CO2 below the flux measurement level were determined as the time 

change of an integrated spline function through the CO2 profile measurements. Manual 

calibration of the LI-7200 and replacement of new filters were performed periodically 

(April, June, and September) in each measurement year.  

3.2.2.2 Auxiliary measurements  

Along with the flux measurements, meteorological data were collected. Air 

temperature (Ta) and relative humidity (RH) were measured at a height of 29.7 m a.g.l. 

with a KPK1/6-ME-H38 sensor (MELA Sensortechnik GmbH, Galltec, Germany). 

Atmospheric pressure was measured with a barometric pressure sensor (61302V – RM 

Young Co., Traverse City, MI, USA) both above the canopy and inside of the 

measurement cabin. The atmospheric vapor pressure deficit (VPD) was calculated as the 

difference between the saturation and actual vapor pressure. Average wind velocity and 

wind direction were recorded using the sonic anemometer of the EC system mounted at 

the top of the tower. The short- and longwave radiation components were measured with 

a CNR1 net radiometer (Kipp & Zonen, Kipp & Zonen, Delft, The Netherlands) above 

the canopy. Up- and downward PAR were measured using a quantum sensor PQS1 (Kipp 

& Zonen, Delft, Netherlands). Diffuse and total PAR at 2 m height was measured using a 

BF-3 (Delta-T Devices Ltd., Cambridge, UK) at the tall tower station (Fig. 3.1 top) since 

2009 (Winderlich et al., 2010). 
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Soil temperature was measured with PT100 probes (Jumo GmbH, Germany) at 

six depths (0.02, 0.04, 0.08, 0.16, 0.32, and 0.64 m). Soil moisture probes (ML-2x, 

DeltaT Devices, Cambridge, UK) were installed at depths of 0.08 (two replicates), 0.16, 

0.32, and 0.64 m. Soil heat fluxes were measured using 5 soil heat flux plates, (HF3/CN3, 

McVan Instruments, Australia) installed at a depth of 0.03 m. Precipitation was collected 

by a heated tipping-bucket rain gauge (5.4032.35.009, Adolf Thies GmbH, Germany) at a 

height of 1.5 m above the ground. All ancillary measurements were collected every 10 

sec and then averaged every 10 min using a CR3000 data logger (Campbell Scientific, 

Logan, UT, USA). 

For the daily AOD at 550 nm, we used the MODIS Level 3 (MOD08_D3.051) 

data containing the ZOTTO site from 2007 to 2013, which has a spatial resolution of 1o 

by 1o (http://giovanni.gsfc.nasa.gov/).  

3.2.3 Data processing and quality control 
EC data were post-processed with the EddyUH software (Mammarella et al., 

2016). Data processing and flux calculations were performed in a similar manner to 

Mammarella et al. (2015). The high frequency CO2 and H2O concentration data were de-

spiked by comparing two adjacent data points: if their differences were larger than 5 ppm 

and 10 mmol mol-1, the following point was replaced with the same value as in the 

previous point. A double rotation method was performed during the half-hourly 

averaging period. A cross-wind correction was applied point by point to the sonic 

temperature data (Liu et al., 2001). A primary value for the time lag between the vertical 

wind velocity and scalar measurements was estimated for each 30 min averaging period 

by maximizing the covariance. The obtained values were later fine-tuned using the time 

lag optimizer (Mammarella et al., 2016). Fluxes were corrected for high- and low- 

frequency losses due to the limited frequency responses of the EC system. The response 

times used in correcting fluxes for low-pass filtering with a transfer function are 

described by Horst (1997). The transfer function of the high-pass filtering was performed 

as described in Rannik and Vesala (1999). The transfer function for H2O was calculated 

from different classes of relative humidity (Mammarella et al., 2009).  
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The flux data were screened to remove erroneous values, which did not fulfil the 

theoretical requirements of the EC method. Half-hourly flux data were flagged as low 

quality if the absolute values of the skewness of the related concentration or vertical wind 

velocity were outside of the range (-2, 2), or if the kurtosis was outside of the range (1, 8) 

(Vickers and Mahrt, 1997). Furthermore, the non-steady state and the integral turbulent 

characteristics tests were applied following Foken and Wichura (1996). A 2-D coordinate 

rotation method was applied to data from the sonic anemometer coordinate system. To 

avoid erroneous data due to malfunction of the gas analyzer, mole fractions of CO2 and 

H2O were taken in the range of [370, 450 ppmv] and [0, 30 mmol mol-1], respectively. In 

addition to these criteria, the LI-7200 data were screened based on the diagnostic values 

provided by the instrument. Periods were excluded if 1) the half-hourly mean values for 

the diagnosis of the chopper and the detector of the gas analyzer were not zero, 2) the 

signal strength was detected for less than 50 % of the time, 3) the signal strength 

deteriorated with time, or 4) the signal strength was unstable. A threshold of 0.2 m s-1 for 

friction velocity (u*) was determined based on the summer period of the first year using 

the algorithm described in (Papale et al., 2006) and implemented in REddyProc package 

in R (ver. 3.2.3: R Core Team, 2016), then applied to the entire dataset. In this study we 

did not apply gap-filling and only used good quality measured data. The dataset 

contained on average 55 % high quality CO2 flux measurements. 

Net ecosystem productivity (NEP) was used to describe the negative sign of 

measured NEE (Kirschbaum et al., 2001; Lovett et al., 2006). Positive values indicate 

CO2 uptake by forests whereas negative values indicate CO2 released to the atmosphere. 

In order to avoid additional uncertainty introduced by flux partitioning based on night-

time ecosystem respiration, we used direct measurements of NEP instead of GPP. 

3.2.4 Data selection 
Data analysis was focused on daylight hours (potential global radiation, Rpot > 20 

W m-2) during the summer of 2012 and 2013. The data covered a measurement period 

from June 19 to September 30, 2012 and from June 1 to September 4, 2013. PARt 

measurements at EC tower and tall tower sites are very similar (R2 of 0.97) during 

daylight hours, however we used the EC site PAR measurements which has less scattered 
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data. Diffuse fraction (fdif) is the fractional ratio of the diffuse PAR to the total PAR 

(Dengel and Grace, 2010; Niyogi et al., 2004; Roderick et al., 2001). The diffuse PAR 

sensor at the tall tower had offsets of about 3 µmol photon m-2 s-1; however, we used the 

original data without calibration. We replaced fdif with 1 if it exceeded 1. Data points with 

missing Ta and VPD were discarded. A clearness index (CI) was computed as the ratio 

between actual global radiation (Rg) and Rpot. In this study, CI is the same concept as 

atmospheric transmittance (Knohl and Baldocchi, 2008) and relative irradiance (Cirino et 

al., 2014; Oliveira et al., 2007a). CI was used to determine the reduction of total incident 

PAR due to clouds and/or smoke particles and associated with changes in NEP, 

temperature, and humidity (Cirino et al. 2014). 

3.2.5 Artificial Neural Networks 
To characterize the environmental drivers of NEP, we used a methodology based 

on artificial neural networks (ANNs) developed for ecological datasets (Moffat et al., 

2010). ANNs are a data-driven approach just like machine-learning techniques. The 

hierarchy of environmental controls and functional relationships are identified directly 

from the half-hourly measurements. During the training process, the correlations and 

relationships of environmental drivers with the ecosystem response are mapped onto the 

ANNs. 

Fourteen environmental drivers were used as input variables (Table 3.1) to model 

the NEP response. The ANN requires a complete set of input and output drivers. In total, 

2542 half-hourly data points were used for ANN training (1089 for 2012, 1453 for 2013).  

ANNs training scenarios consisted of different sets of input variables. First, the 

ANNs were trained with all fourteen drivers and the potential model performance with all 

available input drivers was used as a benchmark. Then, the ANNs were trained with one 

input driver at a time to determine the primary drivers. Finally, the ANNs were trained 

with the dominant primary driver plus each of other input variables as secondary drivers. 

Tertiary drivers were identified by fixing both the primary and the secondary drivers. A 

detailed example of this procedure can be found in Moffat (2012). 

In the next step, the functional relationships of the three most important drivers 

(PARt, VPD, fdif) were extracted from the ANNs. The ANNs trained on the summer data 
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represent a model of the dependence of mean ecosystem behaviour on these three drivers. 

The sensitivity of the ecosystem to changes in these environmental drivers under different 

AOD values was investigated using this the ANNs. 

 

Table 3.1 List of environmental variables used for ANN trainings. 

NEP Net ecosystem productivity (µmol CO2 m-2s-1) 

PARt Downward total photosynthetically active radiation 

(µmol photon m-2s-1)  

PARdir Direct PAR (µmol photon m-2s-1)  

PARdif Diffuse PAR (µmol photon m-2s-1)  

Rg Global radiation (W m-2) 

VPD Vapor pressure deficit (hPa) 

RH Relative humidity (%) 

SWC Soil water content at 0.32 m depth (%) 

Ta Air temperature (oC) 

Ts1, Ts2 Soil temperature at 0.04 m and 0.32 m depth (oC) 

G Ground heat flux (W m-2) 

WD Wind direction (o) 

WS Horizontal wind speed (m s-1) 

u* Friction velocity (m s-1) 

fdif Diffuse fraction 
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3.3 Results  

3.3.1 Meteorological conditions and NEP  
Mean daily Ta ranged between 8.1 and 27.1 oC in 2012, and between 4.4 and 26.9 

oC in 2013 (Fig. 3.2a). For the periods between June 19 and June 23, the mean daily Ta 

was about 17.5 oC in both years. During this period, the maximum temperature in 2012 

was reached 4 days later than in 2013. Ta for June 2012 (18.1 oC) was warmer and drier 

than the same period in 2013. Ta reached its peak towards the end of July. Maximum 

values of VPD (25.3 hPa on 22 July, 2012; 22.7 hPa on 17 July, 2013) were observed at 

the same time as the maxima of Ta  (Fig. 3.2a). In both years, both Ta and VPD started to 

decrease in the middle of August.  

From mid-July to the end of August the total rainfall was 28.1 mm in 2012 and 

about five times higher in 2013 (139.3 mm; Fig. 3.2b). In the time before the installation 

of the EC tower in 2012, precipitation was very low as recorded at the neighboring tall 

tower site with similar soil characteristics resulting in very dry soil conditions compared 

to 2013. The precipitation average of 5 mm in July 2012 was not enough to increase the 

low soil moisture contents. Maximum soil water content (SWC) at a depth of 0.32 m was 

two times higher in 2013 (15.5 %) than in 2012 (8.6 %).  

 Mean daily PARt in 2012 (350.0 µmol m-2s-1) was about 50 µmol m-2s-1 lower 

than in 2013 (400.3 µmol m-2s-1), whereas the maximum value of about 625 µmol m-2s-1 

in 2013 was 25.4 µmol m-2s-1 higher than in 2012 (600 µmol m-2s-1). The averaged 

maximum daily PARt in both years was similar at about 700 µmol m-2s-1. A daily 

averaged CI of 0.42 during daylight hours indicates that the conditions at the study site 

were mostly cloudy or overcast in both years. 

 Daily NEP varied between -7.00 and 3.38 µmol CO2 m-2s-1 in 2012, whereas it 

fell between -3.68 and 8.38 µmol CO2 m-2s-1 in 2013. The daily averaged NEP reached a 

minimum of 3.54 µmol CO2 m-2s-1 on the 25th of June 2012. Monthly averaged NEP was 

-0.55 µmol CO2 m-2s-1 in July of 2012 and 1.88 µmol CO2 m-2s-1 in July of 2013. The 

situation for August was the opposite, with NEP of 0.66 µmol CO2 m-2s-1 in 2012 and 

0.44 µmol CO2 m-2s-1 in 2013. 
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Figure 3.2 Time series of daily observation at ZOTTO. (a) Air temperature (Ta, black), 
vapor pressure deficit (VPD, blue), (b) total precipitation (Prcp, black), soil moisture at 
0.32 m (SWC, blue), (c) total incident photosynthetic active radiation (PARt), (d) diffuse 
fraction (fdif, black), clearness index (CI, blue), (e) net ecosystem productivity (NEP, red), 
and (f) AOD from June 19 to September 4, 2012 (left) and June 1 to September 4, 2013 
(right). Only fdif and CI are averaged in daylight hours (Rpot > 20 Wm-2). The horizontal 
grey dashed line of (f) is the mean background AOD value of 0.18 during June - August 
in Siberia (Remer et al., 2008).   
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3.3.2 Wildfire 
 

 In general, fires in central Siberia occur between July and late August (Valendik 

et al., 2014). However, in 2012 they started already in late June and lasted until the first 

week of August. Summer of 2012 was recorded as a mega-fire in Siberia due to a stable 

anticyclone that result in high temperatures and low precipitation (Zhuravleva et al., 

2017). In 2012, about 83 % of the surface area (7111 km2) in a 100 km radius around 

ZOTTO burned (Antamoshkina and Korets, 2015). During the 2000-2014 period, the 

highest fire occurrences (33 fire events) were in lichen forests within a 100 km radius 

around the ZOTTO site. Conversely, in 2013, the burnt area was the 5th largest (237 km2) 

fire in this period, and the fire season was less active (8 fire events) than in 2012.  

We used AOD as a smoke aerosol proxy, which revealed that the aerosol particle 

number concentrations increased along with the atmospheric carbon monoxide (CO) 

concentration, in agreement with previous observations (Chi et al., 2013). We observed 

overall phasing and similar amplitudes of AOD and CO mixing ratio (not shown) similar 

to those observed by Konovalov et al. (2014), suggesting that our use of AOD is an 

appropriate indicator of fire emissions during these periods. Hence, we assumed that 

AOD is mainly driven by smoke from fire. At ZOTTO, for the period from June to 

August in 2012 and 2013, the daily MODIS AOD was available in total for 85 days. The 

maximum baseline AOD (2007-2011) was 0.95 and the present AOD in 2012-2013 was 

3.5.  

 

3.3.3 Drivers of NEP  
  

 The benchmark ANN trained with all 14 drivers indicated that modelled NEP 

generally agrees well with observation, but with lower variability (Fig. 3.3a). The 

coefficient of determination (R2) was 0.64 with a standard deviation of the model 

residuals of ± 2.58 µmol CO2 m-2s-1 (Fig. 3.3b). 
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Figure 3.3 Results of the ANN benchmarked with all fourteen environmental drivers: (a) 
Measured (black) and modelled (red) daytime NEP response projected onto PAR. (b) 
Scatterplot of measured versus modelled daytime NEP. The linear regression fit (blue 
solid line) is close to the 1:1 line (grey dashed line). Positive NEP values indicate CO2 
uptake by forests whereas negative values indicate CO2 released to the atmosphere. See 
Table 1 for details on the environmental drivers. 

 

 

 The analysis of the hierarchy of the environmental drivers identified PAR as the 

dominant primary driver, VPD as the main secondary driver, and soil temperatures at 

0.08 and 0.32 m depth (Ts1 and Ts2) or fdif as tertiary drivers (Fig. 3.4). For ANNs 

trained with single drivers (Fig. 3.4a), PARt had a higher model performance (R2 of 0.54) 

than any of the other radiative drivers (e.g., R2 of 0.53 for Rg, 0.32 for PARdir, and 0.49 

for PARdif). Adding VPD explained an additional ~ 4 % of the variability (R2 of 0.59, Fig. 

3.4b). VPD is calculated from RH and Ta, which have similar relevance as secondary 

drivers. Including fdif  as a tertiary driver explains about 2 % of the additional variability 

of NEP (R2 of 0.60), and allows us to approach the benchmark of 0.64 (Fig. 3.4c). The 

importance of Ts1 and Ts2 is similar to that of fdif . All other environmental variables 

showed smaller improvements as tertiary drivers. The influence of the 

micrometeorological variables (WS, WD, and u*) was only marginal, which is expected 

for a cleaned dataset. 
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Figure 3.4 Performance (R2) of the ANNs trained with 14 input drivers: (a) with a single 
(primary) driver at a time, (b) with PAR plus a secondary driver, and (c) with PAR and 
VPD plus a tertiary driver. The performance improvement (red) indicates the relevance of 
the secondary and tertiary drivers. The horizontal dotted line is the benchmark 
performance with all 14 drivers.  

 

 The ANNs trained with the three main drivers (PARt, VPD and fdif) can be used to 

analyze the functional relationships between these drivers and NEP. Light response 

shows the expected behaviour (Fig. 3.5a): for low light, the partial derivative of NEP 

with PARt (i.e., LUE), is constantly around 0.015 µmol CO2 / µmol photons, translating 

to an almost linear slope in the beginning at low values of PARt. NEP values are negative 

(indicating respiration) around -3 µmol CO2 m-2s-1. At higher levels of PARt, the NEP 

response levels off, saturating with the derivative approaching zero and optimum NEP 

values around + 6 µmol CO2 m-2s-1.  

 The NEP response exhibits a decrease (negative derivative) with increasing air 

dryness over the entire range of VPD (Fig. 3.5b). The partial derivative of NEP with fdif  
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is positive over the full range of fdif values, indicating a positive effect of diffuse light on 

NEP (Fig. 3.5c). 
 

 

Figure 3.5 Daytime NEP response (upper panel) and partial derivatives (lower panel) 
modelled with three drivers PARt (a), VPD (b), and fdif (c). The modelled (red circles) 
and measured (black circles) NEP values are shown in gradient colours from light to dark 
denoting low to high PARt. 

 

3.3.4 How do clouds and smoke affect the partitioning of PAR?  
 

Both fdif and CI describe the behavior of the light intensity due to clouds and 

smoke particles (Fig. 3.6a). Overall, 75.4 % of half-hourly data where fdif > 0.3 are 

influenced by clouds and smoke particles. A linear negative relationship between CI and 

fdif exists for fdif values lower than 0.95. If CI is lower than 0.5, fdif saturates to 1, 

indicating a reduction of incoming PAR due to thick clouds (overcast conditions) or very 

thick smoke. Incoming PAR shows a strong and significant (p <0.001) negative 

correlation with fdif, indicating an increase PARt with clearer skies (Fig. 3.6b). The 

relationship between PARdif and fdif is nonlinear; PARdif increases with fdif, reaching its 

maximum at around fdif = 0.9, then decreases at higher values of fdif.  
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 We observed a significant reduction of incoming PAR due to AOD, whereas 

PARdif first increases up to a critical value due to the aerosol scattering effect, then 

decreases at high levels of smoke intensity due to reduced PARt (Fig. 3.7a). The 

relationships between PARt and fdif and between PARt and AOD are strong and 

significant. In general, fdif increase with AOD, but it saturates to 1 at values of AOD 

greater than 2 (Fig. 3.7b). Overall, AOD explains about 76 % of variability in fdif, but 

with large scatter at low AOD, indicating an additional influence of clouds. Values of fdif 

> 0.3 are seen on cloudy or overcast days, showing the influence of clouds at low smoke 

conditions. 
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Figure 3.6 (a) Relationship between proportion of diffuse to total PAR (fdif) and clearness 
index (CI) at midday (11:00-15:00) in summer (Linear fit [red dashed line] of fdif < 0.95; 
CI = 0.823363 - 0.458292*fdif, R2 = 0.70, p < 0.001, n = 539), and (b) between fdif and 
total (black circles) and diffuse (blue triangles) PAR. Linear fit (red dashed line) of total 
PAR (PARt = 1652.11- 1154.17 *fdif, R2 = 0.75, p-value < 0.001) and 3rd polynomial fit 
(black dashed line) of PARdif (PARdif = 172.99 + 44.74 *fdif + 2637.56 *(fdif)2 - 
2502.92*(fdif)3, R2 = 0.56, p < 0.001, n = 730). 
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Figure 3.7 (a) Relationship between daily AOD and PAR components and (b) between a 
fraction of diffuse PAR at midday (11:00-15:00) in summer. Black circles and blue 
triangles denote PARt and PARdif, respectively. The linear fit of PARt (red dashed line) of 
(a) is PARt = 1345.92 - 209.89*AOD, R2 = 0.64, p-value < 0.001, the 2nd polynomial fit 
of PARdif = 275.53 + 433.05*AOD - 112.74*(AOD)2, R2 = 0.71, p-value < 0.001. The 2nd 
polynomial fit of fdif and AOD is fdif = 0.22924 + 0.42387*(AOD) - 0.06593*(AOD)2, R2 
= 0.76, p-value < 0.001). The total sample size is 72. The grey dashed line at fdif = 0.3 
indicates a threshold of clear sky conditions. 
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3.3.5 How relevant is the effect of smoke on NEP?  
 

We performed a sensitivity analysis to predict the normalized midday mean NEP 

during summer using data on changes in meteorological drivers (Table 3.2). Overall, 

reductions in PARt have a much greater impact on NEP than increases in fdif. Reductions 

of 10 to 30 % in PARt decreased normalized midday mean NEP compared with the 

measured NEP. Increases in NEP are also caused by fdif but only if PARt reduction is not 

more than 20 %. 

An increase in fdif of 150 % increases NEP ~ 20 %, whereas a reduction in PARt 

of 60 % decreases NEP ~ 24 %. No scenarios that we tested (increases in fdif up to 150 %) 

increased NEP when PARt was reduced by 30 % or more. 

Theoretically, without reduction in PARt, NEP increases from 4 to 37 % due to 

the fdif enhancement (up to 400 %). Conversely, NEP would decrease from 6 to 83 % due 

to reductions in PARt ~ 60 %. However, actual NEP responds differently due to the 

compensation of PARt for fdif and vice versa For instance, a forest experiencing a 10 % 

reduction in PARt and a 50 % increase in fdif is predicted to be 2 % less productive 

compared with the measured NEP. However a forest experiencing the same reduction in 

PARt and 100-400 % increase in fdif is predicted to be 2 to 33 % more productive 

compared with the measured NEP. When PARt is reduced by 15 %, NEP enhancement 

requires an increase in fdif greater than 150 %. When PARt is reduced by 40 %, NEP 

enhancement requires an increase in fdif greater than 350 % (corresponding to PARt = 

959.6 µmol photon m-2s-1 and fdif of 0.9). When PARt is reduced by 50 %, no increase in 

fdif is sufficient to sustain forest productivity. 

 Overall, the decrease in PARt overwhelms the increase in fdif caused by high AOD 

during fires (Fig. 3.7). At low to moderate levels of AOD (0.3-1), forests experiencing a 

7-11 % reduction in PARt and a 41-67 % increase in fdif resulting in a 1.45 % increase in 

NEP. However, at higher levels of AOD (2-3.5), NEP decreases about 7 % due to a 28 % 

reduction in PARt and despite a 132 % increase in fdif. This is most pronounced at the 

maximum AOD of 3.5 during fires, which results in a ~ 42 % reduction in NEP due to a 

52 % reduction in PARt and despite an increase in fdif up to 158 %. 
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Table 3.2 Midday (11:00-15:00) normalized mean NEP during summer was estimated by 
considering the percentage decreases and increases in PARt and fdif. VPD variation is 
fixed. All values are percentage changes in NEP relative to our measured midday mean 
NEP during summer. Zero is the measured NEP with no change in meteorology. We 
simulated 10 - 60 % decreases in PARt by increasing fdif from 50 to 400 %. 
Corresponding PARt values for the relative changes decrease 10 – 60 % from 1400 to 600 
µmol photon m-2s-1 at a rate of 100 µmol photon m-2s-1 (Fig. 3.6b). In the same manner, 
relative increases from 0.2 to 1 in fdif range from 50 to 400 % in increments of 0.1. The 
first column indicates NEP considering the reduction of PARt, while the first row 
indicates NEP only considering the fdif increase. Increasing AOD from 0.3 to 0.7, 1, 1.5, 
2, and 3.5, the relative changes in PARt decrease by about 7, 11.5, 19.6, 27.8, and 52.4 %, 
respectively (Fig. 3.7a). Similarly, the relative increases in fdif from 50 to 200 % with 
AOD are 41, 67.5, 104.5, 132, 158.3 %, respectively (Fig. 3.7b). The thick bold line 
indicates the line between negative and positive effects due to PARt and fdif changes.  

NEP 

change 

[%] 

 

fdif changes 

  0% +50% +100% +150% +200% +250% +300% +350% +400% 

 

 

 

PARt 

changes 

0% 0 3.6 7.5 11.8 16.4 21.2 26.3 31.6 37.0 

-10% -5.7 -1.81) 2.32) 6.8 11.6 16.7 21.8 27.2 32.7 

-15% -9.4 -5.5 -1.2 3.4 8.3 13.4 18.6 24.1 29.6 

-20% -13.9 -9.8 -5.43) -0.7 4.2 9.4 14.7 20.1 25.6 

-35% -32.0 -27.6 -23.0 -18.14) -13.0 -7.8 -2.4 2.0 8.3 

-40% -40.0 -35.5 -30.8 -25.9 -20.8 -15.5 -10.2 -4.9 0.4 

-50% -60.0 -54.7 -49.9 -44.95) -39.8 -34.6 -29.4 -24.2 -19.2 

-60% -83.3 -78.7 -73.8 -68.8 -63.7 -58.7 -53.6 -48.7 -44.0 

Values are obtained from Fig. 3.7 

1): NEP where AOD increases from 0.3 to 0.7, decreasing PARt 7 % (1198.0 µmol photon m-2s-1) and increasing fdif 41 % (0.49) 
2): NEP where AOD increases from 0.3 to 1, decreasing PARt 11.5 % (1136.03 µmol photon m-2s-1) and increasing fdif  67.5 % (0.59) 
3): NEP where AOD increases from 0.3 to 1.5, decreasing PARt 19.6 % (1031.09 µmol photon m-2s-1) and increasing fdif  104.5 % 
(0.72) 
4): NEP where AOD increases from 0.3 to 2, decreasing PARt  27.8 % (926.14 µmol photon m-2s-1) and increasing fdif  132 % (0.81) 
5): NEP where AOD increases from 0.3 to 3.5, decreasing PARt  52.40 % (611.31 µmol photon m-2s-1) and increasing fdif  158.37 % 
(0.91)  
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3.4. Discussion 

3.4.1 Environmental drivers of NEP identified by the ANNs  
  

 We can explain 60 % of the benchmark of 64 % variation in NEP using data on 

PARt, VPD, and fdif or soil temperatures. Light intensity, VPD, and Ta are known to be 

key controls of photosynthesis (Goulden et al. 1997; Jarvis et al. 1997; Chen et al. 1999). 

A wide range of VPD implies that water vapour quickly evaporates due to the strong 

influence of air dryness (Fig. 3.2 and Fig. 3.5b). With the optimum temperature range for 

evergreen coniferous trees of 10-25 oC (Larcher, 2003), an increase in VPD at water-

limited sites causes a reduction in productivity because of the closing of stomata to 

prevent water loss (Fig. 3.5b, (Dengel and Grace, 2010; Kelliher et al., 1997; Lloyd et al., 

2002a; Shibistova et al., 2002). At VPD above 10 hPa, the stomata begin to close, thus 

reducing photosynthesis and transpiration rates in boreal trees (Dang et al. 1997; Hogg et 

al. 1997). 

 In general, temperature controls the distinct seasonality of photosynthesis and 

respiration rates (Lloyd et al., 2002a). Due to the tight coupling between temperature and 

humidity, temperature sensitivity may have similar down-regulating effects as VPD. 

Similar to Alton et al. (2007), we suggest that stomata might not be fully open at high 

humidity conditions (low VPD) if the light intensity is too low for photosynthesis. 

 When light is saturated, NEP can be interpreted as a proxy for, but not equal to, 

the ecosystem photosynthetic capacity (Musavi et al., 2016; Reichstein et al., 2014). 

Light responses (Fig. 3.3b) show that an ecosystem at high northern latitudes quickly 

reaches the light saturation point. For instance, NEP in tropical forests reaches its 

maximum saturation when PARt is around 1550-1870 µmol m-2s-1 (Cirino et al., 2014), 

whereas in the ZOTTO forest, the maximum NEP is reached when PARt is around 700-

900 µmol m-2s-1.  
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3.4.2 Effects of clouds and smoke on radiation  
 
 Incoming PAR decreases significantly at very high levels of fdif and AOD (Fig. 

3.6 and Fig. 3.7).  A similar correlation between fdif and CI (Fig. 3.6a) is also found at 

other sites (Knohl and Baldocchi, 2008; Roderick et al., 2001), although the ZOTTO site 

has a higher CI regime (~ 0.45) compared to other sites (~ 0.2). Diffuse PAR and fdif are 

values defined at wavelengths relevant for photosynthesis, whereas the definition of CI 

includes a wider range of wavelengths. Using CI may have more confounding effects or 

overestimate the influence of clouds and aerosols on ecosystem responses (Cohan et al., 

2002; Kanniah et al., 2010; Letts et al., 2005).  

 Clouds play a more significant role in determining PARt than AOD (Fig. 3.6b, 

Fig. 3.7a), as found in modeling studies (Min, 2005; Schafer et al., 2002b). However, the 

separation of a reduction in PARt caused by aerosol effect and that caused by clouds is 

not possible (Cirino et al., 2014).  

 An increase of PARdif  and fdif with increase in AOD up to ~ 2, and a decrease of 

both parameters at higher AOD values (Fig. 3.7) are consistent with previous studies 

(Cirino et al., 2014; Jing et al., 2010; Kanniah et al., 2010; Min, 2005; Moon et al., 2009; 

Oliphant et al., 2011; Oliveira et al., 2007; Schafer et al., 2002b; Steiner et al., 2013; 

Strada et al., 2015). The peak of PARdif at values of fdif around 0.9 (Fig. 3.7b) may be due 

to the fact that on overcast days more light is scattered than on days with more patchy 

cloud cover (Cohan et al., 2002; Min, 2005). Large scatter of fdif during low smoke (AOD 

< 0.3) conditions implies that cloud effects on fdif may play a role in the DRF effect (Fig. 

3.7b). Previous studies have shown that a moderate level of fdif is predominately caused 

by aerosols or thin clouds, although the effects of the two are confounded (Min, 2005; 

Oliphant et al. 2011). 

 The size distribution and concentration of water vapor droplets in clouds depends 

on the types of aerosols present, changing cloud microphysics and radiative fluxes. For 

instance, clouds induced by smoke particles embrace more and smaller size water 

droplets compared to smoke-free clouds under the same conditions, leading to an increase 

in cloud cover of up to 5 % (Kaufman and Koren, 2006). Also, MODIS AOD is known to 

be overestimated at 550 nm (Levy et al., 2010). Several studies have shown that fine 
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resolution ground-based aerosol measurements (e.g., size distribution, light scattering 

coefficients, AOD) help to understand the role of smoke particles on clouds and the 

radiation budget (Oliphant et al., 2011; Yamasoe et al., 2006). However, the influence of 

AOD on incoming radiation may not be as pronounced as that of clouds because it 

responds indirectly to photosynthesis (Fig. 3.6 and Fig. 3.7). An insignificant relationship 

between NEP and AOD supports this hypothesis (not shown). In other words: as shown 

by ANNs analysis, the environmental drivers PARt, VPD, and fdif play a more important 

role than AOD in explaining NEP (Fig. 3.4). Therefore, the predicting NEP without AOD 

as a training driver of ANNs is appropriate. 

Maximum NEP enhancement occurs when PARdif reaches its maximum (638.2 

µmol photon m-2s-1) at fdif of 0.7. However, at this light level, total PAR is 844.2 µmol 

photon m-2s-1 lower than the maximum value with no cloud cover (Fig. 3.7b and Fig. 

3.4a). The forest ecosystem is still productive under low light conditions, because of the 

NEP increase caused by increasing fdif (Fig. 9c); however, the relative change in NEP is 

less than ~ 10 % (Table 3.2). Moreover, at very large AOD values (> 2), we found that 

NEP is reduced by 50 % due to the strong reduction of PARt although separating the 

effect of clouds and smoke on this reduction is not possible (Cirino et al., 2014). 
 

3.4.3 Requirements of the diffuse radiation fertilization (DRF) effect  
 

Our sensitivity analysis showed that a DRF effect in the ZOTTO forest is 

theoretically possible, but that it is not often observed due to the overall strong reduction 

in PARt by clouds and smoke (Table 3.2). One possible explanation of why the DRF 

effect at our site is not as pronounced as in other forests (Doughty et al., 2010; Knohl and 

Baldocchi, 2008; Mercado et al., 2009; Niyogi et al., 2004; Oliveira et al., 2007; Rap et 

al., 2015; Still et al., 2009; Yamasoe et al., 2006) might be the sparse canopy and the low 

LAI. Our results also provide evidence that within the same plant functional type, the 

DRF effect is not as pronounced in forests with lower LAI (Gu et al. , 2002).  

Kanniah et al. (2012) concluded that ecosystems with low LAI may not 

experience positive effects of diffuse light on vegetation productivity. This is particularly 

true in open canopy ecosystems, such as grasslands (Niyogi et al., 2004; Wohlfahrt et al., 
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2008) and wetlands (Letts et al., 2005). A simulation using a multi-layer canopy model 

showed that the DRF effect decreases with decreasing LAI and it also depends on leaf 

clumping and leaf angle (Knohl and Baldocchi, 2008). However, substantial increase of 

CO2 uptake due to thick clouds were found in a grassland with very low LAI (~ 0.37; 

Jing et al., 2010) as well as in  some forests with low LAI (~ 2; Migliavacca et al., 2009; 

Misson et al., 2005). Observations in multi-layered arctic shrub ecosystems with low LAI 

(~1.5) support our argument that the importance of canopy structure on DRF effects is 

independent from of LAI (Williams et al., 2014). Therefore, we argue that canopy 

structure may be a more crucial factor than LAI in determining DRF effects. 

 In our Siberian forest at very high levels of AOD (> 3), both PARt and PARdif are 

~ 700 µmol photon m-2s-1 and fdif  is high (> 0.6; Fig. 3.7). High fdif  can be caused by both 

overcast conditions (thick clouds) or by the presence of smoke (Fig. 3.6b,  Fig. 3.7b). 

Although it is not possible to separate smoke from cloud effects, higher aerosol loading 

and thick cloud cover have a large impact on forest NEP by changing the amount of 

incoming PAR reaching the surface (Oliveria et al. 2007; Cirino et al. 2014). A possible 

explanation for a strong reduction of PARt may be to the fact that smoke absorbs solar 

radiation and suppresses the formation of clouds (Andreae et al., 2004; Koren et al., 

2004). Our results support those of Alton et al. (2008), namely that increases ecosystem 

productivity due to diffuse radiation are less than 10 %. 

 

3.5. Conclusion  

 Due to increased drying and warming, the Siberian taiga is increasingly exposed 

to fires. However, the ecosystem NEP response may be non-linear depending on the 

complex interaction among clouds and aerosol types, canopy structure, the magnitude of 

fires, and associated meteorological conditions. Here, we combine eddy covariance flux 

measurements and data-driven modelling in order to understand the environmental 

drivers of forest NEP and investigate the impact of smoke and clouds on diffuse and 

direct components of radiation partitioning.  

 The ANNs analysis suggest that the fdif did increase NEP, however, it was more 

sensitive to a strong reduction of PARt than to diffuse light enrichment due to clouds or 
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high smoke. The overall effect of a potential increase in NEP due to thick clouds or high 

aerosol loading minimized by the low light intensity, sparse canopy structure and low 

LAI. The ANNs have the benefit of quantifying the impact of diffuse radiation on NEP 

without additional canopy structure parameters. This represents an important advance in 

understanding ecosystem functional properties and their effects on photosynthesis. 

Moving forward, our results suggest that, in the particular case of sparse canopies with 

low LAI (e.g., grasslands and wetlands), the DRF effect should be included in 

biogeochemical models and coupled Earth System models in order to better describe net 

ecosystem productivity. 
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4.1 Introduction 

 Boreal forests and peatlands are the major terrestrial biomes in northern 

Eurasia. More than 50% of Russia’s land area is covered by forests, and a further 25% 

by peatlands and tundra (Dolman et al. 2012; Schulze et al. 2015). Boreal forests 

store 395 -559 Pg of C (Malhi et al. 1999; Prentice et al. 2001). Boreal and subarctic 

peatlands store 220-460 Pg of C (Gorham 1991; Turunen et al. 2001; Prentice et al. 

2001). Both ecosystems are considered to be important sinks of atmospheric carbon 

dioxide (CO2) (Lafleur et al. 2003; Smith 2004).  

 In spring, plant physiological processes are controlled by rapidly increasing 

radiation, temperature, and water availability. As incoming solar radiation increases, 

air temperature starts to increase and snow begins to melt. These changes in abiotic 

environmental conditions trigger plant activity as boreal evergreen trees require 

positive air temperature and available soil water for photosynthesis (Arneth et al. 

2006). As a result, CO2 uptake rates gradually increase due to the increase in 

photochemical efficiency from April to May (Ottander et al. 1995; Ensminger et al. 

2004). The photosynthetic apparatus of boreal forests is adapted to quickly respond to 

above zero temperatures and spring snowmelt, resulting in fast recovery of 

physiological activity (Arneth et al. 2006). Similarly, a reactivation of photosynthesis 

for peat mosses occurs immediately after the mosses are exposed from the snow cover 

(Stoop, 2011). At the beginning of snowmelt surface soil temperature exceeds 0 oC, 

but remains close to 0 oC until snowmelt completion (Arneth et al. 2006; Moore et al. 

2006). Once the snow melts, soil temperature rapidly increases and a diurnal cycle 

becomes pronounced. Overall, photosynthetic capacity of both boreal forests and 

peatlands may be strongly influenced by interannual variability of environmental 

conditions (Bergh and Linder 1999; Flanagan, 2014). 

 Based on the regional to global scale studies, the effect of spring warming on 

vegetation productivity in high-northern latitudes is likely to be different before and 

after the 2000s. Warming accelerated after 1998 in high-northern latitudes, resulting 

in earlier start of phenology (Post et al. 2018). Several studies found that the spring 

warming before 2000s accelerated due to warming, resulting in early snow thawing 

and increase vegetation productivity (Dye and Tucker 2003; Smith et al. 2004). In 

contrast, the trend in spring warming after 2000s slowed down, resulting in smaller 

increase in vegetation productivity compared to the period of 1980-1990s, especially 
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in Siberia (Piao et al. 2011; Park et al. 2018a). A study by Pulliainen et al. (2017) 

based on remote sensing data collected from 1979-2014 showed that earlier snowmelt 

increased spring ecosystem productivity in boreal forests. This implies that the effect 

of temperature warming on vegetation productivity is non-linear and region-

dependent. Therefore, monitoring spring vegetation carbon uptake on local scale 

during the present days is essensital to understand what causes enviornmental changes 

on vegetation productivity. 

 However, an extension of the growing season length induced by temperature 

warming may leave plants more exposed to frost conditions in both spring and fall 

(Liu et al. 2018). Similarly, previous studies have shown that frost damages the 

photosynthetic apparatus of boreal forests, results in inhibition of plant growth and 

reduction in photosynthesis (Ottander et al. 1995; Thum et al. 2009; Wallin et al. 

2013). Wallin et al. (2013) proposed that the effects of spring frost and start of soil 

thawing on boreal forest on spring CO2 uptake in boreal forests can be nonlinear 

under the warming future climate. On the contrary, another study found that the effect 

of warming of growing season temperature on freeze-thaw cycle was not substantial 

in boreal forests (Ögren 2001). Overall, previous studies suggest that the boreal 

ecosystem’s response to changing climate may be largely dependent on ecosystem 

types and local climate conditions. 

 Long-term and continuous flux measurements using the eddy covariance (EC) 

technique can provide direct information about vegetation responses to changes in 

abiotic conditions (Lindroth et al. 1998; Bowling et al. 1998; Pulliainen et al. 2017). 

However, EC flux data are still sparse in central Siberia (Alekseychik et al. 2017). 

Seasonal and annual variability of photosynthesis in Siberian boreal forests (Tanja et 

al. 2003; Ensminger et al. 2004; Bartsch et al. 2007) as well as Siberian bogs (Arneth 

et al., 2002; Schulze et al., 2002) have been highlighted in the past. Particularly, 

peatlands show a wide range of intensity and magnitude of CO2 exchange, depending 

on the type of peatlands and their hydrological conditions (Bubier et al. 1998; Lafleur 

et al. 2003; Lund et al. 2010; Korrensalo et al. 2016, 2017). Local flux observations 

during springtime are essential to evaluate biophysical and biogeochemical processes 

in carbon cycle models (Arneth et al. 2006). 

 Since mid-June of 2012, EC flux measurements have been taken in the two 

major ecosystem types in central Siberia, i.e. a coniferous forest and a bog. The sites 

are adjacent to the Zotino Tall Tower Observatory (ZOTTO) (Heimann et al. 2014; 
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Winderlich et al. 2014), which is located about 100 km south of the Yenisei river. The 

five years of data (2013-2017) provide an opportunity to investigate the role of 

changes in abiotic conditions during springtime for CO2 exchange of these two 

important ecosystem types. 

 The key questions of this study are the following:  

1) What are the factors controlling the net CO2 uptake of coniferous forest and bog in 

spring?  

2) How do the coniferous forest and bog ecosystems differ in their responses to 

environmental variables during spring? 

3) What influence does the very warm spring in 2015 have on the timing of snowmelt, 

frequency of frost days, and the strengths of net CO2 sinks? 

 There was no significant linear increasing or decreasing trend in air 

temperature during the study period. However, season-average (April-May) air 

temperature in 2015 was the highest during the study period. Thus, we hypothesize 

that both ecosystems would show the largest net CO2 uptakes in the very warm spring 

because of the earlier termination of snowmelt, earlier start of the net CO2 uptake and 

a reduced frequency of frost days.  
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4.2 Materials and methods  

4.2.1 Study site 
 
 The Zotino forest flux tower (hereafter ZF, 60°48'25'' N, 89°21'27'' E, 

elevation 110 m a.s.l.) is situated 900 m to the north-northeast of the Zotino Tall 

Tower Observatory (ZOTTO). The average canopy height of the forest is about 20 m, 

the measurement height is 30.3 m (Table 4.1, Fig. 4.1). The dominant tree species is 

Scots pine (Pinus sylvestris) ranging in age from 80 to 180 years old. Understory 

vegetation (vegetation height of less than 5 m) consists mostly of regrowth of Scots 

pine. The main ground vegetation within the footprint area is lichen (Cladina stellaris 

and Cladina rangiferina) with patches of dwarf shrub (Vaccinium vitis-idaea).   

 The Zotino bog flux tower (hereafter ZB, 60°49' 03'' N, 89°23' 20'' E, 66m 

a.s.l.) is located about 2 km to the northeast of the ZOTTO. The average canopy 

height at the site is about 2.5 m, and the measurement height is 9.9 m (Table 4.1, Fig. 

4.1). The ZB is defined as an ombrotrophic bog (Limpens et al. 2008) and also called 

a raised bog. The landscape is covered by a pine-dwarf shrub-sphagnum (in Siberia 

called ‘ryam’) hollow-ridge complex. The ridges make up 70% of the bog area. They 

are the height of 0.4-0.6 m and covered by plant communities consisting of dwarf 

pine (Pinus sylvestris f. litwinowii), which dominates the trees, and dwarf shrubs 

(Chamaedaphne caluculata). The calibrated absolute age of the peat at the bottom of 

the bog ranges from 9397 ± 134 y BP at the edges to 13617 ± 190 y BP in the bog 

center. The peat depth varies from 1.60 m to 5.10 m, increasing toward the center of 

the bog.  
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Figure 4.1 Land cover maps and geographical location of forest (ZF; red circle), bog 
flux towers (ZB; red rectangle), and tall tower (red triangle) at Zotino (black circle). 
14 initial land cover types have been reclassified into 3 types. Forests include 
reforestation, regrowth, lichen with pines, bogs containing shrubs, flooded and wet 
body. Other classes include clear-cut/barren, burned, sand, and sparse vegetation.
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4.2.2 Measurement system 
 

 Identical micrometeorological measurement systems were installed at the 

forest and bog sites (Table 4.2). The EC system consisted of a three-dimensional 

ultra-sonic anemometer (Metek USA-1, METEK GmbH, Elmshorn, Germany) with 

integrated 55 W heating and closed-path infrared gas analyzer (LI-7200, LI-COR, 

Lincoln, USA) to measure CO2 and H2O fluxes at 20 Hz frequency. An external 

diaphragm vacuum pump (N940, KNF Neuberger GmbH, Freiburg, Germany) 

transported air to the gas analyzer with a flow rate of 13 L min-1 at ambient 

atmospheric pressure. At the top of the towers, sensors measure the four radiation 

components and photosynthetically active radiation (PAR), air temperature, relative 

humidity, and atmospheric pressure. Soil temperature was measured by PT100 soil 

temperature probes at six depths (0.02, 0.04, 0.08, 0.16, 0.32, and 0.64 m for forest 

and 0.04, 0.08, 0.16, 0.32, 0.64, and 1.28 m for bog, respectively). Soil moisture was 

measured at six depths: two sensors at 0.08 m, and one sensor at a depth of 0.16, 0.32, 

0.64, 1.28 m for forest, six sensors at a depth of 0.08 m for bog. Data collected from 

the EC system and meteorological measurements were stored on a data logger 

(CR3000, Campbell Sci. Inc., Logan, UT, USA). Details of the EC system and data 

processing are described in Park et al. (2018b). Snow depths at both sites were 

measured manually at locations nearby the towers; however, the measurement 

intervals were irregular.
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     (a)               (b) 

  
(c)                                             (d)  

  
Figure 4.2 Eddy covariance flux towers (a) at the Zotino Forest (ZF) site in growing 
season and (b) snow season and (c) Zotino Bog (ZB) site in growing season and (d) 
snow season. The measurement heights are 30.3 m and 9.9 m, respectively. Details of 
the instrumentation are shown in Table 4.2. 
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Table 4.1 Site characteristics of the flux measurement sites at Zotino. 

 ZF ZB 

Geographical location 60.48’25’’N, 

89.21’27’’E 

60.49’03’’N, 89.23’20’’E 

Elevation altitude (m a.s.l) 110 66 

Vegetation type Pine forest Ombrotrophic bog 

LAI (m-2 m-2) 1-3.51) not available 

Soil type Podzol Histosol 

Vegetation height (m) 20 2.5 for pine trees 

0.5 for dwarf shrubs 

Measurement heigh2) (m) 29.7  10.1 

Tower height3) (m) 29.4 9.8 

Zero plan displacement 

(m) 

13.4 1.675 

Roughness length (m) 2 0.25 

1) Values from previous ground-based and remote-sensing measurements (Los et al. 

2000; Wirth et al. 1999) 

2) Measurement heights are the height to the centre of the sonic anemometers 

3) Tower heights are the distance between the ground fundament panels to the top of 

the tower plate 
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Table 4.2 Instrument setup and sensor types of the flux towers at the Zotino flux sites. 

 Zotino Forest (ZF) Zotino Bog (ZB) 

Sonic anemometer USA-1, METEK GmbH, Elmshorn, Germany 

CO2/H2O gas analyzer LI-7200, LiCor Biosciences, Lincoln NE, USA 

Time lag 0.8 (CO2), 1.2 (H2O)  0.9 (CO2), 1.3 (H2O) 

Flow rate (L/min) 15 

Sampling frequency (Hz) 20 

Long/short wave 

up/downwelling radiation 
CNR1, Kipp & Zonen, Deft, The Netherlands 

Up/downward 

photosynthetically active 

radiation 

PQS1, Kipp & Zonen, Deft, The Netherlands 

Air temperature and 

relative humidity 
KPK 1/6-ME-H38, Mela, Bondorf, Germany 

Barometric pressure 
Pressure Transmitter, 61302 V, R.M. Young 

Company, Traverse City, USA 

Soil temperature RTD temperature probe,  Pt100, JUMO  

Soil moisture 
ThetaProbe ML2x, Delta-T devices, Cambridge, 

England  

Ground heat flux 
Heat flux plates RIMCO HP3/CN3, McVan 

Instruments, Mulgrave, Victoria, Australia 

Precipitation 
Tipping bucket rain gauge,  

Adolf Thies GmbH & Co. KG, Göttingen, Germany 
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4.2.3 Post-processing and data quality control 
 

 Post-processing of the high-frequency data and calculation of half-hourly 

turbulent fluxes were performed using the EddyUH software (Mammarella et al. 

2016). The thresholds of friction velocity (u*) for ZF and ZB were 0.2 m s-1 and 0.1 m 

s-1, respectively. Details of the data post-processing and quality control procedure are 

described in Park et al. (2018b). High quality data were available about 40-60% of the 

year before the gap-filling procedure (Table 4.3). Only days with 70% of coverage 

after gap-filling (flag 0-1 from the quality flag criterion in the REddyProc, see also 

Wutzler et al. 2018) were used to calculate cumulative and daily CO2 flux. The entire 

5 years of data were used for ZF, whereas 3 years (2014-2016) of data were used for 

ZB, because of a long-term data gap during November 2012 to April 2013. In 

addition, in 2017, data availability was less than 20% for ZB due to a malfunction of 

the gas analyser. Thus, for this site, we used flux data from 2013-2016 only (i.e., 

Table 4.4 and Fig. 4.4). Although half-hourly CO2 fluxes during early April in 2013 

were missing the period of source-sink transition at ZB was detectable. Therefore we 

include the data in 2013 for Table 4.5 and Fig. 4.5. 

 

Table 4.3 The percentages (%) of high quality flux data during spring season (April-
June) at the Zotino forest (ZB) and Zotino bog (ZB) sites. 

 

Year Zotino Forest 

(ZF) 

Zotino Bog 

(ZB) 

2013 44 41 

2014 42 51 

2015 59 38 

2016 60 46 

2017 61 19 
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4.2.3.1 Definition of metrics and analysis  

 For both sites, the analyses were based on the daily mean CO2 flux and 

meteorology data. Daily CO2 fluxes were summed for each 24-hour period with gap-

filled data. The start of CO2 uptake was identified as the point when a 3-day moving 

average of daily CO2 flux fell below zero for the first time. As for EC convention, 

negative NEE means net CO2 uptake by the forest and bog, while positive NEE 

indicates CO2 release from the ecosystems to the atmosphere. 

 The four metrics were used to determine the start of CO2 uptake (SCU, 

expressed in DOY): 1) air temperature (SCUT5(5 °C)), 2) surface soil temperature 

(SCUTs04(0 °C)), 3) the beginning of the snowmelt (SCUBsnow), and 4) the final day of 

the snowmelt (SCUFsnow). For instance, air temperature warming index (SCUT5(5°C)) is 

the day on which the 5-day moving average of Ta exceeds 5 °C for a consecutive 3-

day period. In previous study, SCUT5(5°C) was reported as the most relevant known 

triggers of spring photosynthetic recovery in boreal forests (Tanja et al. 2003; Thum 

et al. 2009), thus we used the same definition. The start day of surface soil or peat 

warming index (SCUTs04(0°C)) is the first day when the 3-day moving average of soil 

or peat temperatures (Ts04) at a depth of 0.04 m rose above 0 °C. Because of irregular 

measurement intervals of snow depth, surface albedo data was used as a proxy for the 

status of snowmelt. SCUBsnow refers to the beginning of snowmelt as defined by Thum 

et al. (2009). By visual inspection, the threshold values of albedo were set to the point 

on which the 3-day moving average of albedo fell below 0.2 (20%) for ZF and 0.5 

(50%) for ZB, respectively. SCUFsnow is the final day of snowmelt and the day when 

the three-day moving average of surface albedo fell below 0.15 for the first time. In 

another previous study, SCUFsnow was determined by the surface soil or peat 

temperature measurements (Ts04 or Ts04(0°C)) started showing a distinct diurnal pattern 

(Shibistova et al. 2002). SCUFsnow using albedo threshold or soil temperature 

threshold were almost same. Thus we presented the SCUFsnow using surface soil 

temperature (Appendix Table S4.3). 

 The total number of frost days is the number of days on which the daily 

minimum air temperature fell below 0 oC (Liu et al. 2018). Late frost is defined as 

frost days after the beginning of snowmelt. 
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4.2.3.2 Statistical analysis  

 In order to investigate the impacts of frost on CO2 fluxes and ecosystem 

recovery from frost, the maximum photosynthetic capacity (Amax) and the net 

ecosystem productivity at PAR of 1500 𝜇mol photon m-2 s-1 (NEP1500) were compared 

among three periods (i.e., pre-frost days, frost days, and post-frost days). The 

functional relationship between radiation and CO2 flux was examined with a 

rectangular hyperbolic light-response function with daytime data (Rpot > 20 W m-2) 

(Michalelis and Menten, 1913; Ruimy et al. 1995; Falge et al. 2001): 

 

𝑁𝐸𝑃 =
𝑎 ∙ 𝐴!"# ∙ 𝑃𝐴𝑅
𝐴!"# + 𝑎 ∙ 𝑃𝐴𝑅

+ 𝑅! 

 

where PAR (𝜇mol photon m-2 s-1) is the incident photosynthetically active radiation, 

Amax (𝜇mol CO2 m-2 s-1) is the light-saturation point of CO2 uptake, and α is the initial 

slope of the photosynthetic light response curve. This is also known as light use 

efficiency or quantum yield. Rd is the ecosystem respiration during the day. For the 

light response analysis, we used the net ecosystem productivity (NEP), which is the 

same as –NEE. Light response model parameters were estimated for selected periods 

(i.e., pre-frost days, frost days, and post-frost days) using measured NEP data. 

Parameters were estimated using the Levenberg-Marquardt method, implemented in 

the minpack.lm routine in R (version 3.5.1). NEP1500 was calculated with obtained 

three parameters and fixing PAR of 1500 𝜇mol photon m-2 s-1. The definition of 

NEP1500 was identical to that used by Falge et al. (2001) and Musavi et al. (2016). 

The standard deviations of NEP1500 were calculated from the value of the 

combinations of minimum and maximum for each parameter.  

 To identify which abiotic variables are important to explain the variability in 

daily CO2 flux, we used the Multivariate Adaptive Regression Splines (MARS) 

regression model (Friedman and Roosen, 1995) in the “earth” package in R 3.3.0 

software (https://cran.r-project.org/web/packages/earth/index.html). Daily CO2 fluxes 

with corresponding abiotic variables were used as training data for both sites from 

DOY 99-155 in 2013-2017 for ZF and the same days in 2014-2016 for ZB, 

respectively. For ZF, nine abiotic measurements were used as training data: 

photosynthetically active radiation (PAR), surface albedo (Alb), air temperature (Ta), 

midday vapour pressure deficit (VPD), soil temperatures at the depths of 0.04m (Ts04), 
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0.08m (Ts08), 0.16m (Ts16), 0.32m (Ts32), and 0.64m (Ts64). For ZB, a total of six 

abiotic variables were used as a training data, excluding Ts08 and Ts16 due to the long-

term gaps (> 3 months). Only VPD was represented by midday (11:00-15:00) 

averages; and the rest of values were daily mean values. 

 The MARS is a non-parametric regression method, dealing with both linear 

and nonlinear relationships and interactions between variables in the data using hinge 

functions (Park et al. 2017). Variable selection algorithms search the variables using 

both forward and backward stepwise selections. Variable importance is determined by 

a selection algorithm and is based on the number of model subsets (nsubsets), 

generalized-cross validation (GCV) score, and residual sum of squares (RSS). 

𝑅𝑆𝑆 =  (𝑦! − 𝑦!)!
!

!!!

 

, where 𝑦! is a measured CO2 flux and 𝑦! is a modelled CO2 flux.  

GCV =   
𝑅𝑆𝑆

𝑁 ∗ (1− 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒/𝑁)! 

, where effective number of parameters is the sum of the number of input features and 

patently * (number of input features -1)/2, N is the number of observations. GCV is 

the method for choosing the smoothing parameter (Green and Silverman, 1993) and 

the best model is selected based on GCV. GCV and RSS range from 0-100. Higher 

GCV scores indicate variables with more explanatory power. Adding a variable can 

sometimes increase the GCV. The largest summed decrease of the RSS is scaled to 

100, therefore a larger net decrease in the RSS is more important. Higher nsubsets 

means that variables are included in more subsets because they are important. Further 

statistical theory and application are described in detail at 

http://www.milbo.org/doc/earth-notes.pdf.  

 For both sites, a total of 9 variables (i.e. air temperature (Ta), soil temperatures 

at 0.04 m (Ts04), 0.08 m (Ts08), 0.16 m (Ts16), 0.32 m (Ts32), 0.64 m (Ts64), surface 

albedo (Alb), photosynthetic active radiation (PAR), and vapour pressure deficit 

(VPD)) were used as predictors. Only VPD was represented by midday (11:00-15:00) 

averages; and the rest of values were daily mean values. 

 To quantify the relative contributions and importance of each variable in 

determining CO2 fluxes in spring, we used the well-known “lmg” relative importance 

method developed by Lindemann, Merenda and Gold (1980) and implemented in 

“relaimpo” R package (Groemping, 2016, https://cran.r-
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project.org/web/packages/relaimpo/index.html). This method was applied only to the 

variables selected with the MARS model explained before. Additionally, 95% 

confidence intervals for relative importance were calculated using a bootstrapping 

procedure. 

4.3. Results  

4.1 The abiotic controls of spring CO2 fluxes  

 This subsection shows both the overall and relative importance of variables 

that influence CO2 fluxes in spring. Examples for forest and bog are shown, followed 

by analysis and discussion of the site differences.  

 

ZF: The MARS model identified the following six variables: Alb, PAR, Ts04, Ts16, 

Ts64, and Ta among the nine variables analysed as the important influences on CO2 

fluxes (Fig. 4.3, Appendix Table S4.1). The relative importance of the six variables 

evaluated by “lmg” method explained 71.78% of the variability in springtime CO2 

flux in forest (Fig. 4.3). Alb and PAR were equal as the most important controlling 

factors of springtime CO2 fluxes (both 14.8%). PAR contained a larger uncertainty 

([12.14, 18.20]) than Alb ([10.68, 19.70]) with a significance level at 95%. The other 

explanatory variables (i.e. Ts04, Ts16, Ts64, and Ta) explained 7-12% of CO2 fluxes. The 

three soil temperatures (Ts04, Ts16, Ts64) explained 10-12% of the variability in CO2 

fluxes. The least important driver was Ta.  

 

ZB: The MARS model identified the following five drivers: Ts04, Alb, Ts64, PAR, and 

Ts32 among the nine variables analysed as the important influences on CO2 fluxes 

(Appendix Table S4.2). Both Ta and VPD were not important drivers of CO2 fluxes. 

This indicates that the peat temperatures regulate CO2 fluxes stronger than air 

temperature. The selected five variables explained 80.64% of the variability in 

springtime CO2 fluxes in bog (Fig. 4.4). The relative contributions of Ts04, Ts32, Ts64, 

Alb, and PAR to CO2 fluxes were 21.84%, 18.16%, 16.30%, 15.01%, and 9.33%, 

respectively. In contrast to ZF, peat temperatures were more important drivers than 

radiative drivers (i.e. Alb and PAR). 
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Figure 4.3 Relative importance of six abiotic variables for CO2 fluxes for the Zotino 
forest (ZF) with bootstrapped 95% confidence intervals. Bootstrap replicates (n) were 
set to 1000 and overall R2 was 71.78%, which is the sum of the percentage of 
response variance. The variables are denoted in the importance: surface albedo (Alb), 
photosynthetically active radiation (PAR), surface soil temperature (Ts04), soil 
temperature at the depth of 0.16m (Ts16) and 0.64m (Ts64), and air temperature (Ta). 
Total 285 daily mean values from DOY 99-155 during 2013-2017 were used. 
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Figure 4.4 Relative importance of five abiotic variables for CO2 flux for the Zotino 
bog (ZB) with the bootstrapped 95% confidence intervals. Bootstrap replicates (n) 
were set to 1000 and R2 was 80.64%, which is the sum of the percentage of response 
variance. The variables are denoted in the order of importance: peat temperature in 
the depths of 0.04m (Ts04), 0.32m (Ts32), 0.64m (Ts64), surface albedo (Alb), 
photosynthetically active radiation (PAR), respectively. Total 216 daily mean values 
from DOY 111-155 in 2013 and DOY 99-155 during 2014-2016 were used. Peat 
temperatures at the depth of 0.08m and 0.16m were excluded from the analysis due to 
the long-term gaps (>3 months) during springtime in 2014-2015.  
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4.2 CO2 fluxes and abiotic drivers during the transition period 

 This subsection describes the variability of time series of meteorological 

drivers (i.e Alb, Ts, and Ta) and CO2 fluxes focusing on start of CO2 uptake (SCU) 

and its proxies. Only the two contrasting years with the earliest and the latest start of 

CO2 uptake are shown. 

 At ZF, change in Alb (together with PAR) was the major driver of CO2 fluxes 

(Fig. 4.3). As Alb decreased close to 15%, CO2 uptake started (Fig. 4.5). During the 

snowmelt period (10-20 days), the forest transitioned from a net CO2 source to a net 

CO2 sink. However CO2 fluxes were still highly variable during this time, fluctuating 

between being a net CO2 source and a net CO2 sink. This pattern was apparent across 

the entire study period, resulting in a positive correlation between the start of CO2 

uptake (SCU) and the beginning of snowmelt (SCUBsnow) (SCU = 

0.88*SCUBsnow+13.44, R2=0.99, p < 0.05, see also Appendix Table S 4.3).  

 The start of CO2 uptake occurred during periods with cold or frozen soil (Fig. 

4.5). However, the magnitude of daily CO2 uptake was lower than -1 g C m-2 d-1 until 

thawing of the surface soil (Ts04 < 0 °C) or snowmelt was complete. 

 Variability of Ta and CO2 flux coincided during the transition periods (Fig. 

4.5a, b, Table 4.4). Once CO2 uptake began, CO2 uptake rates fluctuated in response 

to Ta (Pearson correlation coefficient, r =-0.48, p < 0.05 for 2016 and r =-0.35, p < 

0.05 for 2017). 

 Ta in April triggers SCU through the timing of snowmelt (Appendix Table S 

4.3, Fig. 4.5). For instance, Wilcoxon rank sum test confirmed that both SCU and 

SCUBsnow were significantly correlated with Ta in April (Z=2.0226, p = 0.04311). This 

means that the beginning of snowmelt determined the start of CO2 uptake. For 

instance, the warmest spring was observed in 2015 (Table 4.4), however the earliest 

SCU occurred in 2016, when snowmelt began earlier than in the other years (Fig. 

4.5d, Appendix Table S 4.3). 

 Surface albedo at ZB showed the remarkable difference to the one at the forest 

because of the higher radiation absorption by forest (Fig. 4.5a, b, Fig. 4.6a, b). The 

CO2 fluxes at ZB had a lower magnitude and fluctuated less compared to ZF (Fig. 

4.6c, d). Similar to ZF, ZB also remained a weak net CO2 sink (-0.5 g C m-2 d-1) 

before the snowmelt completed and the surface unfrozen. The transition from source 

to sink in NEE generally coincided with the SCUTs04(0 °C) (Fig. 4.6).  
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Figure 4.5 Time series of 3-day moving averaged meteorological variables and net 
ecosystem exchange of CO2 (NEE) from DOY 91 to DOY 165 for the forest site (ZF) 
in 2016 and 2017. In (a) and (b), blue lines denote air temperature (Ta), red lines 
denote soil temperature at the depth of 0.04m (Ts04), and black lines denote surface 
albedo (Alb). In (c) and (d), black dots and red lines indicate daily sum of NEE (NEEd) 
and moving averaged value (NEE3d). The earliest and the latest start of CO2 uptake 
were in 2016 and in 2017 during the study period. Vertical dotted lines in (a) and (b) 
indicate SCUBsnow (grey), SCUT5(5 °C) (blue), and SCUTs04(0 °C) (red). Horizontal red 
dotted lines in (c) and (d) denote the start of CO2 uptake (SCU). SCUT5(5 °C) were 
DOY 115 in 2016 and DOY 132 in 2017. SCUTs04(0 °C) were DOY 140 in 2016 and 
DOY 134 in 2017. SCUBsnow were DOY 114 in 2016 and DOY 132 in 2017. 
SCUFsnow were DOY 139 in 2016 and DOY 134 in 2017. SCU were DOY 114 in 2016 
and DOY 130 in 2017. Vertical dashed line in (c) and (d) corresponding to the start of 
CO2 uptake (red). Negative NEE is a net CO2 uptake, positive NEE is a net CO2 
release. 
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Figure 4.6 Same as Fig. 4.5 but for ZB. Horizontal red dotted lines in (c) and (d) 
denote the start of CO2 uptake (SCU). SCUT5(5 °C) were DOY 142 in 2013 and DOY 
116 in 2016. SCUTs4(0 °C) were both DOY 126 in 2013 and 2016. SCUBsnow were DOY 
117 in 2013 and DOY 112 in 2016. SCUFsnow were DOY 126 in 2013 and DOY 127 
in 2016. SCU were DOY 132 in 2013 and DOY 120 in 2016. 

 

4.3 Interannual variability in spring cumulative net ecosystem exchange of CO2  

 The variability in spring NEEcum was highly dependent on year and differed 

between the two sites (Fig. 4.7). Spring NEEcum of ZF had larger magnitude and 

higher maximum values than ZB. The averages of spring NEEcum were -22.5 g C m-2 

for ZF and -9.8 g C m-2 for ZB. 

 To compare the interannual variability of NEEcum and its rate of change, the 

mean slopes of the curve (!!""!"#
!"#$

) were calculated within two sub-periods at pre- and 

post peak of NEEcum (Table 4.4). For both ecosystems, the declines of NEEcum from 

its peak were the steepest (-1.62 for ZF and -0.92 for ZB, respectively) in the warmest 

year (2015). Both ecosystems were the strongest net CO2 sinks in 2015 (Fig. 4.7 and 

Table 4.4). The range of NEEcum varied from -8.13 (2013) to -37.15 (2015) g C m-2 
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consistent with the largest ecosystem productivities in 2015 (Table 4.4). The net 

source of NEEcum varied between 3.90 and 11.38 g C m-2 at ZF, whereas it varied 

between 3.40 and 8.33 g C m-2 at ZB. Particularly at ZF in 2017 between DOY 99-

110, daily NEE was higher than among other years.  

 

 
Figure 4.7 Cumulative net ecosystem exchange of CO2 (NEEcum) at the Zotino forest 
(ZF) and Zotino bog (ZB) from DOY 99-151 during 2013-2017. The grey dashed 
zero-line denotes the transition from a cumulative CO2 source (positive) to cumulative 
CO2 sink (negative). Positive values indicate a cumulative ecosystem carbon loss, and 
negative values indicate a cumulative ecosystem carbon uptake.  

 

 The features of the transition day from NEEcum source to NEEcum sink were 

different between the two sites (Fig. 4.7, Table 4.4). The transition day for ZF was 

highly variable from year-to-year during the study period, whereas it was similar 

among years for ZB. At least for ZF, the earliest source-sink transition in NEEcum is 

likely caused by the highest Ta in April, 2016 and the earliest start of CO2 uptake 

(Fig.4.5, Table 4.4). 
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Table 4.4. The day of year (DOY) of transition from NEEcum source to NEEcum sink, 
maximum NEEcum ((NEEcum)peak) with corresponding DOY, mean slopes (!!""!"#

!!"#
) 

before and after reaching peak of the NEEcum for ZF and ZB during 2013-2017. The 
same data were used in Fig.4.3. Values in bold indicate the maximum, whereas values 
in bold and italic indicate the minimum.  

 

Year 

Source-sink 

transitions  

(DOY) 

(NEEcum)peak 

(g C m-2 d-1) 

DOY of 

(NEEcum)peak 

mean slope 

before 

(NEEcum)peak 

(g C m-2 d-2) 

mean slope 

after 

(NEEcum)peak 

(g C m-2 d-2) 

ZF ZB ZF ZB ZF ZB ZF ZB ZF ZB 

2013 132 - 3.90 - 119 - 0.20  -0.37 - 

2014 127 137 4.37 5.32 120 119 0.19 0.25 -1.05 -0.41 

2015 133 140 6.67 8.33 123 125 0.25 0.31 -1.62 -0.92 

2016 126 142 4.90 3.40 113 118 0.33 0.18 -0.86 -0.31 

2017 141 - 11.38 - 128 - 0.37  -1.03 - 

 
  

4.4 Spring air temperature and cumulative net ecosystem exchange of CO2    

 The highest ecosystem productivity for both ecosystems occurred in 2015, 

probably because of the very warm Ta in May 2015 (Table 4.5, Fig. 4.7). The highest 

Ta anomalies in May were +4.35 °C for ZF and +3.85 °C for ZB compared to the 

2013-2017 mean, respectively (hereafter, anomaly values are compared with the 

2013-2017 mean). Consequently, the warmest spring Ta exceeded 2 °C in 2015 

(anomalies of +2.35 °C for ZF and +2.38 °C for ZB). The spring NEEcum in 2015 was 

-37.15 g C m-2 for ZF and -14.94 g C m-2 for ZB. Both ecosystems showed a linear 

negative relationship between overall springtime NEEcum and season-average Ta. 

While the correlation was statistically significant for the ZF site (NEEcum = - 5.645*Ta 

+ 1.558, R² = 0.5162, p = 0. 01715), it was not significant at the ZB site, likely due to 

the small sample size (NEEcum = -4.64*Ta+ 15.021, R² = 0.6634, p = 0.1855). 

However, when just May data were used, we found a positive relationship between 

these variables at ZF: NEEcum = 0.90*Ta+0.73, R² = 0.99, p < 0.005, but insignificant 

at the ZB site: NEEcum = -2.27 Ta+0.15, R² = 0.95, p = 0.1398. 

 The very warm April was the trigger of the earliest SCUBsnow in 2016, 

resulting in the earliest SCU (Fig. 4.5). Therefore, the forest ecosystem had more days 
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for carbon uptake because of a longer spring days in 2016 (NEEcum: -32.8 g C m-2) 

than in 2017 (NEEcum: -22.0 g C m-2). Similarly, at ZB longer spring days resulted in 

more carbon uptake in 2016 (NEEcum: -9.91 g C m-2) than in 2017 (NEEcum: -3.94 g C 

m-2). 

 

Table 4.5. Mean air temperature (Ta) and cumulative net ecosystem exchange of CO2 
(NEEcum) for April, May, and season-average values for the ZF and ZB flux sites, as 
well as year-average values during the study period (2013-2017). Both Ta and 
NEEcum were calculated on DOY 99 (9 April) except the NEEcum in 2013 for ZB, 
which starts on DOY 110 (20 April). Therefore, the mean value of the NEEcum for ZB 
only presents a three-years average over the period of 2014-2016. Bold values 
indicate the maximum, whereas bold and italic values indicate the minimum. 

 

 Ta (°C) NEEcum (g C m-2) 

Year Month ZF ZB ZF ZB 

2013 

April 2.57 1.93 3.57 5.93 

May 3.76 3.91 -11.70 1.38 

Spring 3.27 3.09 -8.13 7.31 

2014 

April 0.94 1.40 4.37 5.06 

May 4.84 5.08 -31.93 -12.72 

Spring 3.22 3.56 -27.56 -7.66 

2015 

April 2.47 2.42 6.33 7.22 

May 10.16 9.84 -43.48 -22.16 

Spring 6.97 6.76 -37.15 -14.94 

2016 

April 3.28 3.15 0.46 3.31 

May 4.89 5.15 -28.77 -10.12 

Spring 4.21 4.30 -28.31 -6.80 

2017 

April 1.03 1.63 9.98 - 

May 5.42 5.98 -21.34 - 

Spring 3.64 4.21 -11.36 - 

Mean April 2.06 2.11 4.94 5.20 

May 5.81 5.99 -27.44 -15.00 

Spring 4.62 4.38 -22.50 -9.80 
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4.5 Impact of spring frost on photosynthetic related process 

 Frost in April did influence the magnitude of forest CO2 flux, changing it from 

a net CO2 sink to a net CO2 source until Ts04 exceeded 0 °C (Fig. 4.5a, c). For 

example, at the ZF site, after the warm spell on DOY 150 in 2017, Ta decreased by 10 

°C, resulting in a change of the CO2 flux from negative to positive. The forest then 

recovered to a net CO2 sink after Ts04 exceeded 0 °C (Fig. 4.5b, d). Similar features 

were found at the ZB site as well (Fig. 4.6, Table 4.6). 

 Warm spring temperature reduced both the overall frequency of frost days as 

well as the frequency of late frost days. The very warm May and spring in 2015 had 

the lowest number of frost days and the lowest number of late frost days for both sites 

(Fig. 4.8, Appendix Table S4.4). 

 Frost reduced net ecosystem productivity (NEP) for both ecosystems (Fig. 9, 

Table 6). For example, ecosystem light response curves show that NEP1500 for both 

ecosystems decreased during the frost days and recovered after frost days. At ZF, 

NEP1500 decreased from 5.27 to 3.06 due to frost, but increased again after frost. 

Similar features were found at ZB. 
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Figure 4.8 The relationships (a) between the frequency of frost days and air 
temperature in May and (b) between the frequency of late frost days and air 
temperature in May from 2013-2017 for the ZF and ZB sites. Black colours denote 
the ZF and the grey colours denote the ZB. Linear regressions for (a), frequency of 
frost days = -1.8505*Ta in May + 24.3589, R2=0. 8652, p=0. 02191 for ZF and -
1.0405*Ta in May + 22.2346, R2=0.5598, p=0.1458 for ZB. Linear regressions for (b), 
Frequency of frost days = 1.635* Ta in May + 16.109, R2=0.4617, p =0.207 for ZF 
and -2.0312* Ta in May + 22.1708, R2=0.805, p=0.03894 for ZB.  
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Figure 4.9 Ecosystem light response curves on pre-frost days (black dot and line), 
frost days (blue dot and line), and post-frost days (red dot and line) for (a) the Zotinio 
forest (ZF) and Zotino bog (ZB). Half-hourly days in 2014 were chosen after the 
snowmelt (DOY 134 for ZF and DOY 133 for ZB, respective): DOY 133-136 for the 
pre-frost days, DOY 137-140 for the frost days, DOY 141-144 for the post-frost days, 
respectively. Model parameters are listed in Table 4.6. 

 

Table 4.6. Model parameters of the rectangular light response function for pre-frost, 
and post-frost days for the Zotino forest (ZF) and Zotino bog (ZB). Numbers in 
parentheses denote the standard errors of the mean parameters. R2 is coefficient of 
determination and n is the number of half-hourly data. NEP1500 was computed with 
three parameters as saturating PAR of 1500 µmol photon m-2 s-1. The standard 
deviations of NEP1500 were computed from the mean of the maximum and minimum 
of each parameter. 

Site Period Amax  
[𝜇mol m-2s-1] 

NEP1500 
[𝜇mol m-2s-1] 𝛼 Rd 

[𝜇mol m-2s-1] R2 n 

ZF 

Pre-
frost 

9.02  
(0.77) 

5.27 
(0.85) 

0.025 
(0.007) 

-	1.93 
(0.44) 0.68 117 

Frost 13.18 
(10.74) 

3.06 
(2.43) 

0.005 
(0.002) 

-	0.59 
(0.40) 0.45 105 

Post-
frost 

4.57 
(0.87) 

2.05 
(1.53) 

0.027 
(0.0235) 

- 1.43 
(1.01) 0.20 118 

ZB 

Pre-
frost 

4.98  
(0.41) 

2.96 
(0.39) 

0.0111 
(0.0023) 

-	0.78  
(0.16) 0.78 108 

Frost 2.15 
(0.47) 

1.20 
(0.66) 

0.0067 
(0.0072) 

-	0.65 
(0.50) 0.20 83 

Post-
frost 

4.63 
(0.58) 

2.62 
(0.46) 

0.0065 
(0.0016) 

-	0.47 
(0.18) 0.66 123 

0 500 1000 1500

(a) ZF, 2014
N

EP
 (µ

m
ol

 m
2 s−

1 )

PAR (µmol m2s−1)

−5

0

5

10

15 Pre−frost
Frost
Post−frost

0 500 1000 1500

(b) ZB, 2014

PAR (µmol m2s−1)



	 91	

4.4 Discussion 

4.4.1 Abiotic variables regulating springtime CO2 flux 

 ZF: Although the rankings of variables from the MARS model and the relative 

importance evaluated by the lmg method were different, the top three abiotic drivers 

were identical: PAR, Alb, and Ts04 (Appendix Table S4.1 and Fig. 4.3). In a previous 

study we found that PAR was the most important driver of CO2 fluxes (Park et al. 

2018b). Despite the fact that the study used a different temporal scale (e.g. entire 

growing season) and different model assumptions, both models identified that PAR 

was one of the important drivers of CO2 fluxes. This is strong evidence that PAR is a 

key driver of spring CO2 flux in boreal forests. 

 The second top driver, Alb, is a function of incoming and reflected solar 

radiation and indicates snowmelt. In spring, snow cover decreases as temperature 

rises as shown in reverse patterns of Alb and Ta (Fig. 4.5). The contribution of Ta to 

Alb may not be as strong as Alb itself (Fig. 4.3).  

 Both the MARS model and “relaimp” metrics in the linear model confirmed 

that Ts04 played a more important role than Ta in explaining springtime CO2 fluxes 

(Fig. 4.3, Appendix Table S4.2). This may be related to the fact that CO2 uptake rates 

remarkably increased after Ts04 exceeded 1 °C. Mäkelä et al. (2004) addressed the 

importance of the idea that a delayed effect of rising air temperature was a good 

predictor for spring photosynthesis recovery in Finnish Scots pine forests. The 

importance of soil temperatures in our study may imply that soil temperature is a 

more integrative measure of temperature evolution than just Ta in spring.  

 VPD is a function of Ta, thus the absolute value of VPD became very low 

when Ta dropped to subfreezing temperatures. In the MARS model variable selection 

procedure, the model drops one variable if two variables co-vary and are of similar 

importance. This may be a reason that VPD was not selected as an important driver. 

  ZB: In contrast to ZF, PAR was not the primary control of CO2 flux in bog. A 

relatively low contribution of PAR was possible in northern peatland because 

Sphagnum mosses are well adapted to low-light conditions and low light saturation 

levels (Moore et al. 2006). In previous northern peatland studies, PAR values ranged 

from 55 to 900 𝜇umol m-2 s-1 and the light saturation points were between 600 - 900 

𝜇umol m-2 s-1 (Small 1972; Titus and Wagner 1984; Frolking et al. 1998). This 
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supports our finding that PAR makes only a small contribution to explaining 

springtime CO2 fluxes at the bog site. 

 Our study focused on abiotic drivers of spring CO2 fluxes; however, a recent 

study found that biotic controls (e.g. vegetation composition and phenology) in boreal 

peatlands were more important for determining the variability of maximum vegetation 

productivity (e.g. GPPmax) than abiotic drivers (e.g. air temperature, water table depth, 

radiation) (Peichl et al. 2018). Therefore, further investigation of the role of biotic 

drivers inn regulating peatland CO2 fluxes may be needed to explain the unknown 

underlying processes of spring vegetation productivity.  

4.4.2 Triggers of the start of CO2 uptake 

 At ZF, earlier start of snowmelt can be a cause of earlier SCU (Fig. 4.5, 

Appendix Table S4.3). In addition, Ta triggers the SCU through snowmelt. Our data 

supports the previous finding that the early start of snowmelt induced by warm air 

temperature resulted in early SCU and spring net ecosystem productivity (Dye and 

Tucker, 2003; Pullainen et al., 2017).  

 Ta was not identified as an important driver for explaining springtime CO2 

flux in bog (Fig. 4.4). However, warm Ta (> 6 °C) may influence the timing of SCU. 

For instance, SCU in 2013 began after surface peat became unfrozen (SCUTs04(0 °C)) at 

which Ta was approximately 5 °C. SCU in 2016 began before SCUTs04(0 °C) at which 

Ta was approximately 8 °C (Fig. 4.6). Similar features were found in 2014-2015 as 

well as ZF (data not shown). Therefore, when an intermittent warm spell (Ta > 6 °C) 

remained for several days in spring, it contributed to an earlier start of CO2 uptake for 

both ecosystems. 

 Coniferous forest was already a net CO2 sink before the end of snowmelt and 

while part of the soil surface was still frozen (Fig. 4.5). This supports the previous 

finding of Thum et al. (2009) that the beginning of snowmelt was more strongly 

correlated with the start of spring photosynthesis than the end of snowmelt in boreal 

coniferous forests. In a broad context, our result agrees with Parazoo et al. (2018), 

who showed that spring thaw was the crucial trigger for the start of spring 

photosynthesis and net CO2 uptake in boreal forests in Arctic ecosystems. 

 The period when Ts04 remained near 0 °C had a ‘zero-curtain effect’ (Fig. 5a, 

b), which is a typical feature in high-northern latitude ecosystems in spring (Outcalt et 

al. 1990; Shibistova et al. 2002; Tanja et al. 2003; Arneth et al. 2006; Moore et al. 
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2006). While subfreezing soil temperatures can inhibit spring photosynthesis recovery 

or slow CO2 uptake rates in boreal forests (Bergh and Linder 1999; Ensminger et al. 

2008), studies have shown that neither cold nor frozen soils supress the spring 

photosynthesis recovery process completely (Ensminger et al. 2008). We also found 

that the start of CO2 uptake can in fact occur during the zero-curtain period (Fig. 4.5, 

Appendix Table S4.3). Our finding supports the finding of Ensminger et al. (2008) 

that soil temperature is an important driver of spring CO2 fluxes but it does not totally 

hinder the start of CO2 uptake. 

 In our study, the start of CO2 uptake occurred during periods with cold or 

frozen soil (Fig. 4.5). Consistent with the finding of Suni et al. (2003), we found that 

photosynthesis could begin even when the surface soil temperature was still 

fluctuating around 0 °C, although it remained at a very low rate until the air 

temperature remained above 0 °C. This may be evidence that Scots pine growing in 

high latitudes have adapted to water-limited environments during the long winters. 

Boreal coniferous trees use stem-stored water during the winter-to-spring transition 

period regardless of snowmelt termination or available soil water (Sevanto et al. 

2006; Thum et al. 2009). The onset of spring photosynthetic recovery under frozen 

soil conditions suggests that coniferous trees are able to maintain their metabolism 

through efficient use of this stored water, rather than taking up water from deeper soil 

layers during this period. 

 Both ecosystems were weak in terms of net CO2 uptake while snow is still 

melting (Fig. 4.5-4.6). Similar to forest, bog was a weak net CO2 sink before the 

snowmelt completed and surface peat temperature remained of 0 °C (Fig. 4.6, 

Appendix Table S4.3). Such behaviour was also observed in other bogs located in 

Russia and in Canada (Arneth et al. 2002; Arneth et al. 2006; Moore et al. 2006). The 

start of CO2 uptake occurred during the last phase of snowmelt, therefore Sphagnum 

mosses can absorb the surface water from the snowmelt to use for plant growth and 

photosynthesis. Although Sphagnum mosses have no roots they can photosynthesize 

and grow quickly when snow melts and light is available in early spring (Moore et al. 

2002). This feature was also found in our study that rapid increases in that CO2 uptake 

occurred after Ts04 exceeded 5 °C (Fig. 4.6). The main cause of this feature is likely 

that peat temperatures between 0.10-0.20 m depth and leaf nitrogen and chlorophyll a 

concentrations contributed to the rapid increases in photosynthesis (Moore et al. 

2006). 
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 A longer springtime in 2016 may be caused by earlier snowmelt, at least for 

ZF (Fig. 5, Appendix Table S4.3). At a regional scale, Pulliainen et al. (2017) found 

that about an 8-day earlier start of CO2 uptake over the last 35 years (1979-2014) was 

caused by an earlier snowmelt, resulting in increased spring cumulative gross primary 

productivity by 6.8% (15.5 g C m-2 per decade) for Eurasian boreal forests. An earlier 

snowmelt was observed until the latest year in 2017 (personal communication with 

Jouni Pulliainen). Our study supports Pulliainen et al. (2017) in a broad context in 

that spring net CO2 uptake in 2016 was greater than in 2017 because of a longer 

spring day length caused by an earlier SCU in 2016. Similar features are anticipated at 

ZB. Further long-term observation would improve the reliability of the result. 

4.4.3 Variability of spring CO2 fluxes after the start of CO2 uptake 

 Time evolutions of CO2 fluxes and abiotic drivers for both ecosystems show 

their dynamical changes during the winter-to-spring transition (Fig. 4.5-4.6). Distinct 

differences in surface albedo between the two ecosystems (Fig. 4.5a, b, Fig. 4.6a, b) 

were mentioned by previous studies. Arneth et al. (2006) found that albedo at Zotino 

forests had a small variation from pre- to post-snow melt periods and showed a 

relatively gradual decline compared to bogs. 

 At ZF, variability of Ta coincided with CO2 fluxes during the transition 

periods (Fig. 4.5a, b, Table 4.4). Similar observations have been found in other boreal 

coniferous forests located in the Fenno-Scandinavian region and in the past at the 

Zotino site (Suni 2003; Tanja et al. 2003; Thum et al. 2009). This suggests that air 

temperature is a key driver of spring photosynthetic activity. After the start of CO2 

uptake, increases in CO2 uptake rate and Ta and were also accompanied by rapidly 

rising PAR (data not shown). This implies that once CO2 uptake begins, boreal forests 

respond quickly to rising air temperature to maximize vegetation productivity over the 

short growing season (Arneth et al. 2006). 

 The magnitude of daily CO2 uptake was lower than -1 g C m-2 d-1 until 

thawing of the surface soil (Ts04 < 0 °C) or snowmelt was complete (Fig. 4.5). Similar 

findings were reported by Lloyd et al. (2002) and Arneth et al. (2006), who also 

showed that CO2 uptake of the Scots pine forests at Zotino remained at a low level of 

~ -1 g C m-2 d-1 until the surface soil temperature exceeded 0 °C. A manipulation 

experiment conducted in boreal spruce forests showed that a continuous 

photosynthetic increase always occurred after the surface soil temperature exceeded 0 
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°C (Wallin et al. 2013). In line with these findings, we found that net CO2 uptake 

increased to over -2 g C m-2 d-1 after Ts04 exceeded 0 °C at our sites (Fig. 4.5c, d). 

 

4.4 Variability of spring cumulative net ecosystem exchange of CO2  
 

 The overall pattern and magnitude of spring NEEcum in this study (Fig. 4.7) 

show a reasonable range compared with past measurements. Specifically, during 

DOY 100-150 1999-2001, spring NEEcum at the Zotino forest was approximately -25 

g C m-2, whereas it was approximately -10 g C m-2 at the Zotino bog (Dolman et al. 

2012). We found -22.5 g C m-2 for ZF and -9.8 g C m-2 for ZB in our study. 

 Surface albedo representing snow cover was the strongest explanatory variable 

of the variability in forest CO2 flux, whereas Ts04 was the strongest explanatory 

variable in the bog CO2 flux variability (Fig. 4.3, Fig.4.4). For both sites, Ta increased 

rapidly after the end of snowmelt, accompanied by NEEd (Fig. 4.6). The beginning of 

snowmelt was the most likely factor to explain NEEcum based on the time series of 

CO2 flux during the transitional period (Fig. 4.5, 4.6). Therefore, changes in abiotic 

drivers likely regulate the variability in spring NEEcum (Fig. 4.7). For example, Bartch 

et al. (2007) found that freeze-thaw cycles (detected via remote sensing data) were 

strongly correlated with the beginning of the growing season in Zotino forests.   

4.4.4 Effect of spring frost on the photosynthesis-related processes 

 Warm spring temperatures reduced the overall frequency of frost days as well 

as the frequency of late frost days (Fig. 4.8). However, frost may not influence the 

start of CO2 uptake at our site. Although frost days were more frequent in April than 

in May, there was no statistically significant relationship between the frequency of 

frost days and the onset of CO2 uptake. For instance, the start of CO2 uptake at ZF 

was the earliest in 2016, yet the frequency of frost days in April was not particularly 

lower than other years (Appendix Table S4.4).  

 We confirmed that warm spells influence the start of CO2 uptake for both 

ecosystems (Fig. 4.5, Fig. 4.6). Highly fluctuating CO2 fluxes during the spring frost 

may broadly align with previous findings that the start of CO2 uptake was postponed 

by spring frost (Ensminger et al. 2004; Wallin et al. 2013). Nevertheless, our data 

clearly showed that spring frost reverses the magnitude of CO2 uptake in boreal 

forests (Ensminger et al. 2004, 2008; Wallin et al. 2013). 
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 We found that both ecosystems reduced NEP1500 on frost-days (Fig. 4.9). 

However, NEP1500 for ZF showed different behaviours than Amax. CO2 fluxes at ZF 

are generally more highly variable than at ZB, probably containing a large uncertainty 

in Amax. NEP1500 is a saturated NEP at which PAR reaches at 1500 µmol m-2s-1 where 

this value is realistic PAR in Zotino site, NEP1500 gives more realistic estimates than 

Amax. 

 Effects of frost on net ecosystem productivity were discernable for both 

ecosystems (Fig. 4.9, Table 4.8). Based on previous studies, the effect of spring frost 

on photosynthesis recovery seems relatively better understood in forest than in bog. 

For example, a seedling experiment study showed that spring photosynthetic recovery 

processes in coniferous forests were halted and postponed due to frost (Ensminger et 

al. 2004). Another controlled experiment showed that spring frost slowed the 

photosynthetic recovery process down by up to 60 days in boreal coniferous forests 

(Wallin et al. 2013). The relationship between temperature and photosynthetic uptake 

in boreal and alpine forests could be complex because frost can reverse spring 

photosynthetic recovery (Tanja et al. 2003; Monson et al. 2005). 

 In peatlands, the environmental conditions in the previous year and adaptation 

of microbial activities may play important roles in explaining the effects of frost on 

carbon uptake processes due to the complexity of soil microorganisms in response to 

frost (Sorensen et al. 2018). Another study suggests that the frequency and severity of 

soil frost may affect vegetation, phenology, and microbial structure in boreal 

peatlands (Küttim et al. 2017). They addressed that the status of soil frost changed the 

microbial activities and resulted in reduction of the Sphagnum photosynthesis and 

ecosystem respiration, although the long-term effects on growing season vegetation 

production remain uncertain. 
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4.5 Conclusion 

 Our observation confirmed that the differences in spring CO2 fluxes between a 

boreal coniferous forest and a bog were distinct. The beginning of snowmelt and 

surface peat thaw triggered by increasing air temperature regulate springtime CO2 

flux in boreal ecosystems. We found that both ecosystems started net CO2 uptake as 

snow was melted. In addition, although snowmelt is incomplete intermittent warm 

spells can lead to an earlier start of CO2 uptake. Especially in the coniferous forest, 

this intermittent warm may stimulate the beginning of snowmelt. Continuous 

increases in CO2 uptake rates occurred when snowmelt completely melted or surface 

soil temperatures unfrozen. Late frost influenced the maximum photosynthetic 

capacity for both ecosystems, but they recovered to similar levels after frost. 

 The very warm spring in 2015 likely resulted in the highest vegetation 

productivity, at least for forest. In addition, both ecosystems may not always start 

early net CO2 uptake during the very warm spring. The effect of spring frost on the 

start of CO2 uptake remains unclear. Probably previous winter climate conditions may 

also influence the net ecosystem productivity in the following year. We anticipate that 

further analysis including entire annual CO2 fluxes with both abiotic and biotic 

drivers will improve our understanding of the effect of spring environmental changes 

on the seasonal to annual CO2 uptake in boreal ecosystems.
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4.6 Supplimentary material 
 

Table S 4.1 The ranking of variable importance of CO2 flux estimated by the MARS 
model during spring (9 April-15 June) from 2013-2017 at the Zotino forest (ZF) site. 
Daily mean values of the nine variables were used as an initial data: Ta, Ts04, Ts08, Ts16, 
Ts32, Ts64, Alb, PAR, and vapour pressure deficit (VPD). Proportion of variance in 
daily CO2 fluxes explained by model (R2) was 84%. 

 
Variables nsubsets GCV RSS 

Ts4 11 100.0 100.0 

PAR 19 59.0 60.5 

Alb 9 44.8 46.9 

Ta 7 30.9 33.5 

Ts16 6 25.8 28.4 

Ts64 5 17.2 21.0 

 
 

Table S 4.2 Same as Table S4.1 but for ZB. Data is used from 2013-2016. Proportion 
of variance in daily CO2 fluxes explained by model (R2) was 89%. 

 

 

 
	

Variables nsubsets GCV RSS 

Ts4 12 100.0 100.0 

Alb 11 46.1 48.7 

Ts64 9 29.5 33.0 

PAR 9 29.5 33.0 

Ts32 8 26.3 29.7 
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Table S 4.3 The metrics for the start of CO2 uptake using 5-day mean air temperature 
threshold (SCUT5(5°C)), the start of surface soil or peat warming (SCUTs4(0°C)), the 
beginning of snowmelt (SCUBsnow), the final day of snowmelt (SCUFsnow), and the 
start of CO2 uptake (SCU) at forest (ZF) and bog (ZB) during 2013-2017. Bold values 
indicate the maximum, whereas bold and italic values indicate the minimum.  

 

Year SCUT5(5°C) SCUTs4(0°C) SCUBsnow SCUFsnow SCU 
ZF ZB ZF ZB ZF ZB ZF ZB ZF ZB 

2013 142 142 132 
 

126 
 

123 117 130 126 122 132 
 

2014 124 124 129 125 
 

121 110 128 125 121 
 

120 
 

2015 128 128 134 
 

132 126 124 134 133 125 
 

127 
 

 2016 115 116 140 
 

126 
 

114 112 139 127 114 
 

120 
 

2017 132 132 134 134 
 

132 115 134 135 130 
 

- 

mean 128 119 132 
 

129 
 

123 115 133 129 122 
 

125 
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Table S 4.4 The frequency of frosts (Tmin < 0 oC) and late frosts (after snowmelt) in 
April and May and spring (April and May) for the ZF and ZB flux sites from 2013-
2017. Bold values indicate the maximum in spring, whereas bold and italic values 
indicate the minimum in spring. DOY in parentheses is the last day of frost. DOY in 
bracket indicates the end of frost days. 

 

 Frequency of frosts days Frequency of late frosts days 

Year Month ZF ZB ZF ZB 

2013 
April 20 23   
May 15 (149) 15 (149) 12 12 

Spring  35 38   

2014 
April 19 23   
May 18 (148) 18 (148) 13 15 

Spring 37 41   

2015 
April 21 27   
May 5 (126) 11 (147) 0 2 

Spring 26 38   

2016 
April 19 23   
May 15 (145) 19 (151) 1 13 

Spring 34 42   

2017 
April 24 24   
May 15 (147) 17 (147) 7 8 

Spring 39 41   
Mean April 21 24   

May 14 16 7 10 
Spring 35 40   
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Chapter 5 Reliability of regional CO2 flux estimates 
from tall tower profile measurements  

5.1. Introduction 

    

 Sunrise and sunset generate diurnal cycles of temperature and humidity in the 

lower troposphere of the atmospheric boundary layer (ABL). Particularly, the lowest 

10% of the ABL is a turbulent layer at the ground surface that can extend 200 m to 4 

km above the ground surface. This layer is also called the surface boundary layer 

(SBL) or surface layer (SL) (Stull, 1988). Carbon, water, energy, and momentum 

exchanges occur between the atmosphere and these land surface layers.  

 These fluxes can be directly measured by the eddy covariance (EC) method, a 

widely used micrometeorological approach. The typical spatial scale for flux 

measurements represent a few square kilometres where measurement height is less 

than 60 m (Baldocchi et al., 2001; Rannik et al. 2012), while flux measurements by 

the EC method at taller towers can quantify larger scale source-sink and flux 

distributions (Davis et al., 2003; Desai et al., 2015; Haszpra et al., 2005). The typical 

spatial scale for these flux estimates is representative for an order of 100 km x 100 

km. 

 However, if a measurement station is established for monitoring atmospheric 

GHG concentrations, fast-response sensors for flux measurements (e.g. infrared gas 

analysers and ultrasonic anemometers) are not always necessary. In such cases, 

alternative micrometeorological methods to estimate turbulent flux of trace gases can 

be used. For instance, the modified Bowen Ratio method (MBR) can estimate 

turbulent flux or eddy flux using gradients of concentration and temperature 

measurements based on the similarity theory (Businger, 1986). The MBR was used to 

estimate ecosystem CO2 fluxes (net ecosystem exchange or NEE) using profile 

temperature and mixing ratios measurements at regional scale (Winderlich et al., 

2014).  

 This research is an extension of the study of Winderlich et al. (2014) with the 

most available recent measurements at the Zotino Tall Tower Observatory (ZOTTO). 

The purpose of this study is to obtain regional CO2 flux estimates during the growing 
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season (June-September) from years 2012-2015. The main focus of this study is to 

evaluate the performance of tall-tower based CO2 fluxes by utilizing EC flux 

measurements. Throughout this paper, we refer to this tall-tower based CO2 flux 

estimate as “regional NEE”.  

 

5.2 Material and methods  

5.2.1 Measurements system 
 

 The ZOTTO was established to monitor long-term biogeochemical cycles in 

central Siberia over the last 10 years (Heimann et al., 2014). The station is located in a 

relatively horizontally homogeneous landscape near the western Yenisei River. The 

tall tower measurement system consists of two parts: a GHG measurement system 

(i.e., CO2, CH4, and CO) and a meteorological measurement system (Chi et al., 2013; 

Winderlich et al., 2010). The GHG measurement system consists of quasi-continuous 

high accuracy atmospheric CO2 and CH4 mixing ratio measurements at six heights 

(302 m, 227 m, 157 m, 92 m, 52 m, and 4 m above the ground surface) using a 

EnviroSense 3000i analyser (CFDS-17, Picarro Inc., Santa Clara, USA). The 

measurement sensor is based on the cavity-ring down spectroscopy (CRDS) technique 

widely used by GHG observatories which provides fast, highly precise, and accurate 

measurements of mixing ratios of atmospheric gases (Rella et al., 2013). The 

meteorological measurement system includes instruments for measuring wind speed, 

air temperature, relative humidity, and atmospheric pressure at a height 1 m higher 

than the inlets of the GHG measurement system (Table 5.1). Atmospheric pressure 

transmitters were installed at three heights (4 m, 92 m, and 301 m), thus observations 

at 52 m and 158 m were interpolated between 4 m and 92 m & 92 and 301 m heights, 

respectively. Detailed descriptions of the data logging system and calibration 

procedure are described in Winderlich et al. (2010). The CO2 fluxes measured from 

the two EC flux towers were used to calculate the up-scaled CO2 flux (described in 

Ch. 3.3 and Ch. 4.2).
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Table 5.1 Set up for meteorological measurements at the Zotino tall tower. 

Variable Instrument type  

(manufacture) 

Measurement 

heights (m) 

Wind velocities (u, v, and w) 

and wind direction  

R3 (Gill Instruments Ltd., 

Lymington, UK) 

5, 52, 93, 

159, 228, 

302 m  

Air temperature and relative 

humidity 

KPK 1/6-ME-H38 (MELA 

Sensortechnik GmbH, 

Bondorf, Germany) 

5, 52, 93, 

159, 228, 

302 m 

Atmospheric pressure 61302 V (R.M. Young 

company, Traverse city, 

USA) 

5, 93, 302 m 

 

5.2.2 Data processing 
 

 All the summertime data (June to September) from 2012-2015 were averaged 

to a half-hourly time scale. The data processing scheme, including water correction of 

CO2 mixing ratio (to derive a dry air mole fraction from wet air measurements) was 

adopted from Winderlich et al. (2010).  

 Ambient air temperature (Ta) is a critical parameter for calculating both 

storage and eddy fluxes as shown in Eq. (5.2) and Eq. (5.3). However, at the ZOTTO 

site the air temperature and humidity sensor at located at 228 m frequently 

malfunctioned during the summertime: thus long-term gaps were inevitable. 

Therefore, the gradient of potential temperature between 302 m and 228 m could not 

be calculated. To overcome the loss of Ta data, sonic anemometer temperature (Ts) 

was used as a surrogate of Ta. The measurement frequency of Ts is higher and the 

accuracy lower than that of Ta, and the absolute measurement values are instrument 

dependent. However, the gradient of two temperatures is more important than the 

absolute temperature to calculate fluxes in the MBR method. Therefore, Ts 

measurements are potentially still potentially useful for computing flux terms. Prior to 

using Ts directly, Ts at heights of 301 m and 227 m were corrected using Ta measured 

at the same heights when Ts was available. Correction factors were obtained using 



	 109	

linear relationship between the two temperature observations measured in August 

2012 (slope= 0.87, intercept = -0.21 for 301 m and slope= 0.97, intercept = +0.04 for 

227 m, respectively, and R2 > 0.95 for both). Overall patterns and variability of Ta and 

corrected Ts were in agreement. Therefore, the same correction factors were applied 

to the entire study period. 

 Analysis of potential temperature (Tpot) is useful to assess atmospheric 

stability within the part of the ABL observed by the tall tower. Tpot is the temperature 

of an air parcel that is lifted adiabatically to the pressure p0 of 1013 hPa at sea level: 

𝑇!"# =  𝑇 ∙ !!
!

!!
!!           Eq. (5.1) 

 

where T [K] is the temperature at pressure p [hPa], Rd is the specific gas constant of 

dry air (Rd = R/Md) as 287.058 J kg-1K-1. We used an !!
!!

 value of 0.286 for dry air. 

The gradient of Tpot is larger than 0 under stable conditions, whereas lower Tpot with 

height indicates unstable conditions. Vertical wind velocity, direction, and potential 

temperature provide a measure of the atmospheric stability. A change in potential 

temperature with height is typically accompanied by a change in wind speed and wind 

direction. Thus, Tpot is a measure of both the atmospheric stability condition and of 

the vertical distribution of emissions from the surface.  

 Note that the procedures for post-processing and quality control of EC CO2 

fluxes are described in Chapter 3.2 and Chapter 4.2. 

 

5.2.3 Flux calculation 
 

 The net ecosystem exchange of CO2 (NEE) is the sum of storage flux (Fstor), 

eddy flux (FEddy), and advection (FAdv) terms.  

𝑁𝐸𝐸 =  𝐹!"#$ + 𝐹!""# + 𝐹!"# Eq. (5.1) 

The storage term (Fstor) is the amount of carbon accumulated over time below the 

highest measurement height. It is calculated by the change in half-hourly 

concentration measurements and air density for every time step, following Eq. (5.2). 

To derive contributions to Fstor below the lowermost measurement height (4 m), it is 

assumed that the CO2 concentration below this height is constant (Fig. 5.1). In cases 

where Ta data were missing for more than one levels, Fstr could be not calculated. 
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However, when Ta was missing for a single level between the two neighbouring 

heights, it was interpolated from temperatures measured at neighbouring levels.  

 

𝐹!"#$ 𝑡! , 𝑧! =  
1
𝑉!

!!

!!!!

∙
𝜕𝑐 𝑡!
𝜕𝑡 𝑑𝑧 

=
𝜌!"# 𝑧
𝑀!"#

!!

!!!!

∙
𝜕𝑐 𝑡!
𝜕𝑡 𝑑𝑧 

≅
!
! !!!!!!!

!".!"## !!"#!!
!
!!! ∙

!
! !! !!!! !!! !! ! !!!! !!!! !!!!! !!

!!!!!!!
∙ (𝑧! − 𝑧!!!)  

         Eq. (5.2)  

 To estimate FEddy, we can use the MBR method. Ths method requires the 

gradients of concentration and temperature between two adjacent tower heights at five 

intermediate levels (28, 72, 125, 193 and 264 m) following the equation: 

𝐹!"!" =  !
!!!!"#

!"
!"

!!!"#
!"

     Eq. (5.3) 

where H is the measured sensible heat flux (W m-2), Cp is the specific heat of air 

(1.006 kJ kg K)-1), Mair is the molecular weight of air mass of dry air, 𝜕𝑐 𝜕𝑧 is the 

gradient of the CO2 mixing ratio, and !!!"#
!"

 is the vertical potential temperature 

gradient (K). 𝜌!"# (kg m-3) is the air density of dry air as a function of pressure and 

temperature, and KT is the eddy diffusivity (m2 s-1) as a parameter for defining an 

effective diffusion coefficient of turbulence. In this study, advection term (FAdv) is 

ignored. Details in theoretical background and procedure for calculating NEE terms 

are described in Winderlich et al. (2014). 
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Figure 5.1 Diagram of flux calculations using profile measurements. The six 
measurement heights are shown in Table 5.1. Regional net ecosystem exchange (NEE) 
of CO2 is the sum of storage flux (Fstor), turbulent flux (FEddy), and advection flux 
(FAdv) terms. Note that FAdv term is ignored in this study. 

 

5.3. Results and discussion 

5.3.1 The PBL structure from the tall tower profile data 
 

 The diurnal cycle of CO2 concentration show four distinct stages of the 

atmospheric boundary layer structure (Fig. 5.2). The potential temperatures mirror the 

vertical patterns of CO2 concentrations (Fig. 5.4). The four development stages of the 

ABL were classified by Reid and Steyn (1997): 

(1) Stage 1: The CO2 concentrations showed a distinct early morning peak between 

05:00 and 07:00 LST due to the night-time inversion and the existence of a stable 

boundary layer. In this stage, weak wind velocities allowed for the development of a 

shallow mixed layer. The data showed higher variability closer to the ground surface: 

CO2 concentration at a height of 4 m varied in the range of 385 - 415 ppm with a high 

301m (h1) 

227m (h2) 

157m (h3) 

92m (h4) 

52m (h5) 

4m (h6) 

Fstor (h1-h2) 

Fstor (h2-h3)  

Fstor (h3-h4)  

Fstor (h4-h5)  

Fstor (h5-h6)  

Eq. (4.3) 

Eq. (4.2) 

Eq. (4.1) 

Fstor (h6)  
 = constant 

0 

zh 

(zh) 

zh+1 
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amplitude, whereas the observation at the top (301 m) varied only from 390 - 395 

ppm with a low amplitude.  

 

 
Figure 5.2 Diurnal cycle of half-hourly averaged CO2 concentrations [ppm] measured 
at six levels (301 m, 227 m, 157 m, 92 m, 52 m, and 4 m) for individual months and 
years (2012-2015). 

 

(2) Stage 2: The high CO2 concentration peak in the shallow mixed layer decreased 

after sunrise as incoming solar radiation and wind speed increase. Overall, the 
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features showed the drawdown of CO2 concentrations from morning peak to 

afternoon minima. This suggests that vertical mixing enhanced the decrease in CO2 

concentrations. 

(3) Stage 3: During daytime, a strong turbulent mixing resulted in the afternoon 

minima of CO2 concentrations, potential temperature, and humidity. Therefore, 

daytime measurements were observed to have the lowest variability with height. 

(4) Stage 4: After sunset (18:30-21:30 LST between June to September), radiative 

cooling of the surface began and low wind velocity generated a shallow nocturnal 

boundary layer (NBL). Weak vertical mixing combined with efflux of CO2 from the 

terrestrial biosphere (due to the lack of photosynthesis) resulted in an increase of CO2 

concentrations starting at the lowermost levels.  

 Mixing ratios of CO2 at 301 m showed a smaller variability than at 4 m, but 

shows an increase during the early morning (Fig. 5.2). If the measurement tower is 

high enough to capture any upward flux beyond the NBL height, Fstor alone can be 

representative of night-time CO2 fluxes (Winderlich et al., 2014). If there are many 

days of stable nights (or stable NBL), CO2 fluxes are less likely to reach beyond the 

top of the tower, such that FEddy is not needed, meaning that night-time CO2 fluxes 

have small uncertainties. For instance, during unstable nights CO2 gases were well-

mixed, indicated by weak gradients of concentration ( ∆ CO2) and potential 

temperature (∆Tpot) of 0.07 K and 0.05 ppm between at 302 m and 247 m, 

respectively (Fig. 5.3, black). In contrast, gradients were larger (∆Tpot of 1.37 K and 

∆CO2 of 0.29 ppm) (Fig. 5.3, grey) during stable nights. Results showed that about 

95% of night-time CO2 flux estimates were captured under the stable NBL that does 

not exceed 301 m. The percentage of night-time data where the top of the stable layer 

exceeds the 302 m level or an unstable layer was present, was only 5%. This suggests 

that night-time CO2 flux estimates are generally reliable without measuring direct 

turbulent flux as in the EC method. 

   

 The concentration at the height of 301 m showed a smaller variability than one 

at 4m, however it shows an increment during the early morning (Fig. 5.2). If the 

measurement tower is high enough to capture any upward flux beyond the nocturnal 

boundary layer height, estimated CO2 storage fluxes can be representative for night-

time CO2 fluxes, and the more uncertain FEddy component can be neglected during 
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night-time (Winderlich et al., 2014). If there are many stable nights, CO2 fluxes are 

less likely reach beyond the top of the tower, and we can assume that the CO2 storage 

flux estimates are representative for NEE values. For instance, during unstable nights, 

CO2 gases were well-mixed, indicated by weak gradients between at 302 m and 247 

m of the concentration (∆CO2) and potential temperature (∆Tpot) of 0.07 K and 0.05 

ppm, respectively (Fig. 5.3, black). In contrast, at stable night the gradients were 

larger than the unstable condition: 1.37 K for ∆Tpot and 0.29 ppm for ∆CO2 (Fig. 5.3, 

grey). Results showed that about 95 % of nighttime CO2 fluxes during the 

summertime occur under the stable nocturnal boundary layer. The fraction of unstable 

night-time data was only 5 %. Therefore, the regional CO2 fluxes estimated by tall 

tower measurements can be assumed representative for regional night-time NEE. 

 

 
Figure 5.3 Two contrasting nights, showing unstable or well-mixed (black) and stable 
(dark grey) boundary layers. Profiles of half-hourly CO2 mixing ratios and potential 
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temperatures on 2014-09-20 at 02:30:00 were chosen for the unstable night and on 
2014-09-25 at 23:00:00 for the stable night, respectively. The time is given for the 
Krasnoyarsk time zone (KRAT=UTC+7h). 

 

 

(a)      (b) 

 
Figure 5.4 Diurnal cycle of the half-hourly averaged potential temperature for all 
height levels (301 m, 227 m, 157 m, 92 m, 52 m, and 4 m) for individual months from 
2012-2015. (a) potential temperature using ambient air temperature (Ta), (b) corrected 
sonic air temperature (Ts). 
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Table 5.2 Availability of half-hourly net ecosystem exchange (NEE) of CO2 and 
storage flux (Fstor) using the best temperature measurements during summertime 
(June-September) 2012-2015. The last row of each month indicates the temperature 
data used for flux calculations. Ta denotes the ambient air temperature measurement 
and Ts denotes the sonic air temperature measurements. “–“ denotes that none of 
temperature measurements were available to calculate NEE. 

 6/2012 7/2012 8/2012 9/2012 

Flux term NEE Fstor NEE Fstor NEE Fstor NEE Fstor 
Data 

availability (%) 
38.3 85.2 78.2 78.8 81.3 83.9 94.8 95.8 

Best 

temperature 
Ta Ta Ts Ts 

 6/2013 7/2013 8/2013 9/2013 

Flux term NEE Fstor NEE Fstor NEE Fstor FNEE Fstor 
Data 

availability (%) 
33.9 35.0 0 0 0 0 0 0 

Best 

temperature 
Ts - - - 

 6/2014 7/2014 8/2014 9/2014 

Flux term NEE Fstor NEE Fstor NEE Fstor NEE Fstor 
Data 

availability (%) 
15.8 15.8 71.0 71.0 0 0 45.2 56.9 

Best 

temperature 
Ts Ts - Ta 

 6/2015 7/2015 8/2015 9/2015 

Flux term NEE Fstor NEE Fstor NEE Fstor NEE Fstor 
Data 

availability (%) 
94.9 97.6 5.0 5.0 0 0 0 0 

Best 

temperature 
Ta Ta - - 
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5.3.2 Evaluation of regional NEE estimates 
  

 Regional NEE using the best temperature products captured generally 

reasonable patterns of diurnal cycle of NEE comparable with NEE measured at the 

two flux sites (Fig. 5.5). In addition to flux measurements made at the Zotino Forest 

(ZF) and the Zotino Bog (ZB), up-scaled NEE utilizing respective land cover fraction 

for forest and bog are shown in this figure. Good agreements between regional NEE 

and EC NEE were for night-time and daytime CO2 fluxes during August 2012, July 

2014, and September 2014. During those months, errors in regional NEE were 

relatively small. Average diurnal cycles of Fstr and NEE showed strong fluctuations in 

June and July of 2012 (Fig. 5.5). During this time, strong wildfires occurred in the tall 

tower footprint region, contributing to weaker daytime net CO2 uptake or strong 

night-time net CO2 release. In addition, carbon monoxide (CO) concentrations at the 

tower showed significant plume events with enhancement of several hundred part per 

billion (ppb) (not shown). Strong fluctuations in the average diurnal cycles of NEE 

result from sporadic events, where wind advected air masses containing smoke 

plumes from the area of wildfires.  

 During the months not affected by fires or low data coverage, regional NEE 

during the daytime, specifically during late afternoon, was substantially lower as 

compared to EC NEE (Fig. 5.5). A reason for this underestimation in regional NEE 

may be related to shortcomings in the MBR method used to calculate turbulent flux 

(Winderlich et al., 2014). Strong turbulent mixing during daytime results in marginal 

potential temperature gradients in Eq. (5.3), producing large uncertainties in flux 

terms. In addition, uncertainties in sensible heat flux measurements also influence 

Feddy. Under strong wind speed conditions, temperature responses of each sonic 

anemometer can substantially differ, and errors in temperature fluctuations and 

sensible heat fluxes can be as high as 20-40% (Burns et al., 2012; Richiardone et al., 

2012).  

 Large fluctuations in regional NEE can also be due to low data coverage, such 

as during June 2014 and July 2015 (Fig. 5.5, Table 5.2). Generally, night-time CO2 

fluxes at ZOTTO were more reliable than daytime CO2 fluxes, as also found by 

Winderlich et al. (2014). Nights with midnight sun in northern Eurasia between June 

and July may influence some of night-time net CO2 uptake, however it is unclear to 

which degree this can be seen in the regional NEE estimates.  



	 118	

 For data in June 2012, the meteorological measurement system malfunctioned 

during more than 50% of months from the beginning of June, therefore only 

approximately 40% regional NEE was available (Table 5.2). Data coverage of 

regional NEE was over 70% for August 2012 and July 2014, whereas for September 

2014 it was less than 45%. 

 Different temperature data sources (Ta or Ts) were used for regional NEE 

resulted in different estimates (Fig. 5.6). For instance, net CO2 uptake on August 2012 

based on Ts was larger than when using Ta. During some hours, the differences 

between Ta and Ts during daytime became large, contributing to uncertainties in 

turbulent flux calculations. In general, differences between the flux estimates using 

different temperatures are rather small, with the exception of in daytime at around 

noon, where small gradients in temperatures dominate the uncertainty.  
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Figure 5.5 Diurnal cycles of regional NEE (black dots with error bar and grey shaded 
area) using the best temperature data during summertime from 2012-2015. Error bar 
denotes errors of mean of half-hourly data. Overlaying dark green and orange line 
denote CO2 fluxes measured at the Zotino Forest (ZF) and the Zotino Bog (ZB) flux 
towers, respectively. Red dashed line is up-scaled CO2 fluxes using the weighted 
average of fractions of forests (60%) and bogs (40%) in the ZOTTO footprint 
(Timokhina et al. 2016).  
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Figure 5.6 Diurnal cycle of differences in half-hourly regional NEE using sonic air 
temperature (Ts) and ambient air temperature (Ta) with standard error of the mean for 
individual months and years from 2012-2015. Shaded area indicates the storage flux 
(Fstor). Error bar denotes errors of mean of half-hourly data. 
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5.4 Conclusion 

 

 Tall tower profiles of CO2 mixing ratios and meteorological measurements at 

ZOTTO help to understand the structure of the surface boundary layer. Since the top 

of the nocturnal stable boundary layer was usually below 304 m, night-time CO2 flux 

estimates are based mostly on storage fluxes and thus have small uncertainties. 

Regional NEE using the best temperature dataset showed generally reasonable 

patterns and magnitudes of diurnal cycles in comparison to the flux tower 

measurements. In addition, up-scaled NEE estimated using fractional of forest and 

bog area surrounding ZOTTO provide a reference for regional NEE. 

 Ultimately, regional NEE estimates obtained from this study can be compared 

with CO2 flux estimates from inverse modeling, in which fluxes are estimated based 

on CO2 mixing ratio measurements and other observation sites in combination with 

transport models. However, this is currently only possible for timescales of a day or 

longer, as inversions do not yet provide reliable information on the diurnal cycle of 

fluxes. Therefore, careful interpretation of local- to regional- scale CO2 fluxes is 

required because local flux measurements, regional flux estimates, and inverse 

modelling products all represent information on different spatial and temporal scales. 
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Chapter 6 Synopsis 

 

 Boreal forests and peatlands are the major types of vegetation in northern 

Eurasia. These ecosystems store large amount of C in their vegetation and soil, thus 

are essential ecosystems to understand the global C cycle. Compared to the North 

America and Scandinavian regions, tower-based CO2 measurements in the Eurasian 

boreal ecosystems of central Siberia are very sparse. The objective of my thesis is to 

investigate temporal variability of CO2 fluxes and their driving factors using tower-

based measurements located at a coniferous forest and a bog in Zotino, near the 

ZOTTO in Krasnoyarsk, Russia. 

 Wildfires and snowmelt influence the dynamics of CO2 fluxes in central 

Siberia. Therefore, understanding the variability in CO2 fluxes in response to abiotic 

drivers during these periods is essential. To do so, I present CO2 fluxes measured 

during wildfire periods from 2012 to 2013 and during spring snowmelt from 2013 to 

2017. CO2 fluxes were measured using the EC method. Statistical analyses were 

performed to identify and quantify the importance of environmental drivers. In 

addition, summertime regional CO2 fluxes were inferred from the MBR method using 

mixing ratios of CO2 and meteorological measurements at the tall tower. The site-

level CO2 fluxes measured at the two EC flux sites were used as reference data for 

investigating the reliability of regional CO2 flux estimates. The summary of my main 

findings, overall discussion, outlook for future research, and conclusions is as 

follows: 

  

6.1 Net ecosystem productivity reduction by clouds and fire 
aerosols at a sparse boreal coniferous forest 

	
 Solar radiation is the main energy source for vegetation photosynthesis. 

Clouds and aerosols change the amount and the proportion of diffuse and direct solar 

radiation on the Earth’s surface. In turn, plant photosynthesis related processes are 

influenced by these changes in radiation and associated meteorological conditions.  
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Generally, the impact of diffuse light, or DRF effect, induced by clouds and aerosols 

increase photosynthesis and net CO2 uptake. However, these effects on vegetation can 

differ due to ecosystem properties such as canopy structure and plant functional types. 

 Chapter 3 investigates the potential DRF effect based on tower-based 

measurements during the Siberian wildfire period from 2012-2013. In order to 

identify abiotic environmental drivers of forest NEP, the data-driven model (ANNs) 

was trained by CO2 fluxes and meteorological measurements. Approximately 54-58% 

of variability in forest NEP during the growing season was controlled by PAR, VPD, 

and fdif. Forest NEP showed a strong negative sensitivity to VPD, and a small positive 

response to fdif. In addition, the impacts of clouds and smoke aerosols on radiation 

components and forest NEP were investigated. Incoming PAR decreased significantly 

at very high levels of fdif and high aerosol loading. Substantial reduction in NEP 

occurred under high aerosol loadings (i.e. AOD > 2) and high level of fdif values due 

to the strong reduction of incoming radiation. Results showed that forest NEP 

increased by diffuse radiation enhancements from clouds and smoke aerosols. 

However, the overall potential DRF effect at Zotino forest was weak (<10%) mainly 

due to sparse canopy structure. These findings support the previous study of Alton 

(2008) that an increase in forest productivity due to diffuse radiation was smaller for 

sparse forests compared to that in denser forests. Diffuse radiation enhancement 

caused by clouds and smoke plumes or smoke aerosols increased forest productivity, 

but the effect was less substantial than what has been observed in tropical forests due 

to the different canopy structure, LAI, and maximum radiation regime (Cirino et al., 

2014; Park et al., 2018). The findings of Chapter 3 suggests that careful 

implementation and interpretation is required to quantify the DRF effect at regional 

scales or to model aerosol-climate feedbacks in boreal forests. 

 Boreal forests contain various types of trees. Deciduous, coniferous, and 

mixed forests have different canopy structures and LAIs. Generally, mixed forests 

have a more complex canopy structure and higher LAI than other types of forest. The 

recent study of Ezhova et al. (2018) supports this idea that the relationship between 

forest productivity (i.e. GPP) and diffuse fraction have different features depending 

on canopy structure based on the measurements from Eurasian boreal and hemi-boreal 

forests (Ezhova et al., 2018). A parabolic feature of the relationship between GPP and 

diffuse fraction was more pronounced in mixed forests than coniferous forests 

because of the dense canopy structure. Mixed forests are widely distributed on the 



	 127	

eastern side of Yenisey River, where presumably the DRF effect would be greater 

than Zotino. 

 In this study, the effect of aerosols from clouds on radiation was not clearly 

separated. However, Ezhova et al. (2018) present the direct effect of aerosols on solar 

radiation and forest photosynthesis using a radiative transfer model and ground-based 

measurements in Eurasian boreal and hemi-boreal forests. The direct effect of aerosol 

loading can increase GPP by 6-14%; both mixed forests and dense coniferous forests 

showed the largest increase in GPP when compared to sparse coniferous forests. In 

addition, GPP increases due to clouds were greater in mixed forests than coniferous 

forests, particularly with an open canopy: 32-33% enhancement for mixed forests and 

21-26% for sparse coniferous forests. Although Park et al. (2018) and Ezhova et al. 

(2018) used different approaches to quantify aerosol effect on vegetation productivity, 

results suggest that the diffuse radiation enhancement by intermittent cloud cover and 

low aerosol loading increased forest productivity.  

 Wildfires produce not only CO2 and CH4 but also emit tropospheric ozone 

(O3), carbon monoxide (CO), and massive amount of biogenic volatile organic 

compounds (BVOC) (Wentworth et al., 2018). These atmospheric chemical 

compounds and aerosols have a contrasting effect on photosynthesis. For instance, 

high O3 concentrations from fire emissions damage the stomata of plants and decrease 

GPP, whereas aerosols increase GPP because of an increase in diffuse fraction (Yue 

and Unger, 2018). The net effect of fire emissions on GPP was negative because GPP 

reduction by O3 was greater than an increase of GPP by aerosols. Pollutant aerosols 

can also influence precipitation process by changing aerosol and cloud properties 

(Lohmann and Feichter, 2005). Quantifying the amount of aerosols and other trace 

gases emitted from fires and fire-induced biogeochemical process are essential for 

understanding biosphere-atmosphere interactions under both present and future 

climatic changes (Kulmala et al., 2012; Yue and Unger, 2018). Hence, the Zotino 

measurement system would best provide in-depth knowledge in aerosol-radiation-

vegetation-climate feedbacks when ecosystem flux measurements, aerosols and other 

chemical composition measurements are utilized altogether. 
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6.2 The impact of spring snowmelt on variability in CO2 
fluxes in boreal forest and bog  

 

 Chapter 4 presents the inter-annual variability of CO2 fluxes at coniferous 

forest and bog sites in Zotino. Temperature warming in high-northern latitude zones 

significantly shift the timing of spring photosynthesis recovery. Still, the number of 

published studies investigating this are limited, mainly due to unavailability of long-

term CO2 flux measurements in central Siberia. The aims of this study are to report 

net ecosystem exchange of CO2 and investigate the role of abiotic drivers (e.g. light, 

temperature, and snowmelt) on this exchange. The two ecosystems showed clear 

differences in the variability of CO2 flux and the timing of CO2 uptake due to 

different surface reflectance and snowmelt. Major findings are: 1) Surface albedo and 

radiation were the key drivers of CO2 fluxes in coniferous forest. Surface peat 

temperature was the primary driver of bog CO2 fluxes. 2) Both ecosystems became 

net CO2 sinks before snowmelt concluded and while surface soils were still frozen. 3) 

Intermittent warm spells may play a role in determining the start of CO2 uptake for 

both ecosystems. 4) Spring frost reduced the net ecosystem productivity in both 

ecosystems; however, vegetation productivity increased again after frost. This study 

suggests that transitions from net CO2 sources to net CO2 sinks and net ecosystem 

productivity during springtime are regulated by the mixed effects of air temperature, 

snowmelt, and frost. 

 Total snow period at the Zotino site is about 7 months. However, flux stations 

are often inaccessible during the wintertime when air temperature is very low (< -30 
oC) and early springtime (e.g., May) when floods occur. The closest weather station is 

30 km from ZOTTO; therefore, the absolute amount of snow and timing of start and 

end of snow are likely not similar as those which are directly measured at the station. 

For instance, the Zotino station likely has more snowfall (> 100 cm) than the weather 

station (< 100 cm). Therefore, the exact date of the completion of snowmelt and the 

amount of snow depth are different depending on the location. To improve the current 

knowledge of when ground vegetation emerges from snow cover and when snowmelt 

concludes, continuous site-level snow measurements are required. Ultimately, these 

data will provide useful information for determining season and characterizing 

dynamics of carbon and energy fluxes. 
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 In addition, installing automated cameras (i.e., “PhenoCam”) at the flux tower 

would improve the understanding of an annual carbon budget in combination with 

other remote sensing data (e.g., Landsat, MODIS, VIIRS) (Liu et al., 2017; 

Richardson et al., 2010; Westergaard-Nielsen et al., 2017). Timing of the start and 

end of snowmelt influence the phenological development stage that regulates the 

seasonal dynamics of carbon and water fluxes. Measurements of these variables at a 

site-level should be taken into account for future research. 

6.3 Understanding of the reliability of regional CO2 flux 
estimates 

 

 Chapter 5 presents the variability of summertime CO2 fluxes below the surface 

boundary layer at the Zotino tall tower. Generally, the representative area of site-level 

CO2 flux measurements is approximately 1-3 km2. Flux estimates from a tall tower 

directly provide CO2 fluxes at a larger scale. However, the measurement system at 

Zotino tall tower does not fulfil the specific requirements for the EC method due to 

the low measurement frequency of the gas analyser, the flow distortion from the long 

tubing length, and long air sample mixing time inside of buffers. In this case, the 

MBR method is a practical approach to estimate turbulent flux (Winderlich et al. 

2014). 

 Analysis of diurnal cycles of CO2 mixing ratios and meteorological variables 

measured at the six heights showed that profile measurements are useful to 

understand the structure of the boundary layer near the surface. In addition, night-time 

mixing mostly did not extend beyond the top of the tall tower (304 m), and so CO2 

fluxes can be derived directly from changes in the CO2 concentrations along the 

profile. This suggests that night-time CO2 flux estimates can be reliable without direct 

EC flux measurement. The tower-based EC CO2 fluxes at the forest and bog sites 

were used as reference CO2 fluxes for characterizing regional CO2 flux estimates. 

Despite underestimates in daytime regional CO2 fluxes, diurnal cycles of regional 

CO2 fluxes were comparable with the flux tower measurements.  

 Analysis in this study was restricted to comparing the patterns of mean diurnal 

cycles. In order to provide compatible CO2 fluxes from the three towers, measurement 

data should cover the same time period. In addition, flux footprint analysis is required 
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to understand source-sink distributions at the forest and bog sites. Then, CO2 fluxes 

from the three different towers can be utilized as a complementary dataset. 

 Overall, this thesis investigates seasonal variability of CO2 fluxes. However, 

CH4 is the second most critical greenhouse gas, with a greenhouse warming potential 

(GWP) 28-36 times stronger than CO2 over 100 years (IPCC, 2013). Wetlands are 

generally considered sinks of atmospheric CO2 and natural sources of methane (CH4) 

emissions. Unlike Arctic permafrost or other boreal regions, methane flux 

measurements in Eurasian wetlands are rare, especially in central Siberia (Peltola et 

al., 2019). In Russia, especially in western Siberian lowlands, methane flux 

measurements using a static chamber method are popular (Glagolev et al., 2011). This 

suggests that central Siberia, including Zotino, is a critical zone in which to measure 

methane flux.  

 Operating year-round CH4 flux measurements using the EC technique in 

remote high-northern latitudes station is challenging. At Zotino bog, more than three 

years of effort beginning in June 2012, to measure CH4 flux using a Picarro G2301-f 

were unsuccessful due to structural defects of the device and communication and 

logistical problems transporting the instrument for repairs from the remote site. 

Unlike the other version of Picarro CH4 flux gas analyzers (Peltola et al. 2013, 2014), 

G2301-f may not a suitable device at a remote station like ZOTTO. However, long-

term monitoring of CH4 fluxes with the same device have been successfully operated 

in temperate and tropical rice paddy fields in Japan and Thailand (Komiya, 2016). In 

more harsh Arctic tundra ecosystems, successful examples of methane flux 

measurements by using EC technique are reported in recent years (Goodrich et al., 

2016; Kittler et al., 2017). Frequent maintenance is critical to uphold stable operation 

of such instruments at remote stations. Therefore, DLT-100 (Los Gatos Res.) or LI-

7700 (LI-COR) devices are likely suitable for remote sites such as Zotino bog because 

these devices are generally known as being robust and relatively easy to maintain 

(Peltola et al., 2014, 2013). Methane flux measurements will be valuable to 

understand the spatiotemporal patterns, variability, and their driving factors, such as 

water table depth (Rinne et al., 2018). Furthermore, CH4 flux measurements at bog 

sites like Zotino can be used as reference data to evaluate regional CH4 flux estimates 

from tall tower profile measurements (Winderlich et al., 2014). 
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6.4 Conclusion 

 

 This thesis investigates the temporal variability of CO2 fluxes from local to 

regional scale based on tower-based measurements in central Siberian from 2012-

2017. An overview of findings in this study is addressed graphically as in Fig. 6.1. 

 Chapter 3 highlights the abiotic controlling factors of forest net ecosystem 

productivity and the potential diffuse radiation fertilization effect due to clouds and 

aerosols measured at a sparse coniferous forest during wildfire periods.  

 The following questions were answered;   

1) What are the major environmental factors controlling the variability of forest 

NEP? During the growing season, approximately 54-58% of variability in 

forest NEP was controlled by PAR, VPD, and fdif. 

2) How does forest NEP respond to diffuse radiation caused by smoke particles 

during wildfires? Diffuse radiation increases from smoke particles only were 

not able to be separated from the contributions of clouds. However, the partial 

derivative of forest NEP with fdif, including both clouds and smoke particle 

effects, increased over the full range of fdif values. 

3) How strong is the diffuse radiation fertilization effect on NEP? The diffuse 

radiation fertilization effect has a weakly positive effect on NEP mainly due to 

the sparse canopy structure and low leaf area index. 

 

 Chapter 4 investigates the abiotic controls of CO2 fluxes during winter-spring 

transition period at a coniferous forest and bog.  

 The following questions were answered;  

4) What are the factors controlling the variability of CO2 at a coniferous forest 

and bog in spring? Surface albedo was a statistically significant driver for 

CO2 flux variability in the forest, whereas surface peat temperature was the 

primary driver of CO2 flux variability in the bog.  

5) How do coniferous forest and bog ecosystems differ in their responses to 

environmental variables during spring? Coniferous forest became net CO2 

uptake approximately a weak earlier than bog. Both ecosystems start net CO2 

uptake during snowmelt while surface soil was still frozen. The net CO2 uptake 

rates continuously increased after the start of snow melt once surface soil 
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temperature exceeded 1oC. Spring frost reduced the net ecosystem 

productivity in both ecosystems, however ecosystem productivity recovered to 

similar levels after frost. 

6) What influence does the very warm spring in 2015 have on the timing of 

snowmelt, frequency of frost days, and the strengths of net CO2 sinks? The 

earliest snowmelt across all years studied did not occur during the 2015 

spring. During the very warm spring, both ecosystems had the least frequent 

frost and showed the highest cumulative NEE, however results were 

statistically insignificant. 

 

 Chapter 5 investigates the summertime CO2 fluxes on a regional scale.  

 The following questions were answered;   

7) How reliable are regional CO2 flux estimates from profile measurements? 

Night-time CO2 fluxes showed smaller uncertainties than daytime CO2 fluxes. 

Despite underestimation of daytime CO2 fluxes, magnitudes and patterns of 

diurnal cycle of CO2 fluxes generally followed the EC CO2 fluxes. 

 

 
Figure 6.1 A graphical abstract, presenting main findings in this thesis. 
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 This thesis mainly focuses on abiotic parameters influencing seasonal 

vegetation CO2 uptakes. Results were based on CO2 measurements in central Siberia 

where tower-based CO2 measurements are very sparse. Overall, results show that 

boreal ecosystems’ responses to changing environmental conditions are non-linear 

and complex. The results would be useful to evaluate CO2 fluxes from both 

processed-based biosphere models and inverse models. However, there are unknown 

or unmeasured abiotic or biotic parameters not covered in this study. Therefore, 

further efforts, such as CH4 flux, water table, and phenology measurements at bog, 

flux footprint analysis, and uncertainty estimation in flux partitioning of NEE would 

be necessary to characterize long-term annual carbon budget or seasonal CO2 fluxes 

at Zotino.
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