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1 General Introduction 

1.1. Phosphorus “the essential element”  

“We may be able to substitute nuclear power for coal, and plastics for wood, and yeast for 

meat, and friendliness for isolation—but for phosphorus, there is neither substitute nor 

replacement” (Isaac Asimov 1974) (1). 

Life has different levels of dependency on some key elements such as carbon (C) nitrogen 

(N) or phosphorus (P). The dependence level varies with the element in terms of quality, 

quantity or bioavailability. P is particularly interesting because it is considered the 

element that most strongly limits the biological productivity of the entire planet (2). 

Compared with other key chemical elements P is a rare resource in the biosphere. With 

respect to mass terms, P does not rank among the first 10 most abundant elements neither 

on land nor in water. The P mass value on earth ranks between that of aluminum and 

chloride. Furthermore, it has been estimated that the earth’s crust contains 1,200 mg P 

kg−1. In plants, associated P concentration varies from approximately 0.1 mg P L−1 in soil 

solution to near 4,000 mg P kg−1 in seeds. Remarkably, despite its scarcity in the 

biosphere, P is relatively abundant in vertebrate bodies. Mammals contain around 25 g P 

kg−1 making phosphorus the second most abundant essential mineral after calcium in this 

type of organisms (3, 4).  

P is present in numerous substances essential for biological and biogeochemical 

processes. Nevertheless, P involvement in life processes does not occur in its elemental 

form. P is highly reactive and quickly converts to phosphate or other oxidized forms. P 

plays a role in numerous biological processes, including energy production, metabolism 

and bone mineralization. Additionally, it provides the structural framework for DNA, RNA 

and phospholipids. (3, 5, 6). All living organisms require regular P intake and so far 

synthetic substitutes are not known. Thus, without phosphorus, no life is possible (2). The 

high level of biological relevance of P, has created an increasing interest in its cycling, 

origin, sources and processing.  

 

1.2. Factors Disturbing the Phosphorus Cycle  

Different biotic factors play a role in P cycling. For instance, microorganisms decompose 

dead biomass and solubilize otherwise unavailable soil phosphates such as some types of 
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inositol phosphates  (7). Unlike other cycles  such as C and N cycle, the P cycle is not driven 

by biotic factors. Physical transfers are limited, as P does not form long-lived gaseous 

compounds. Therefore, the amount of P that can be stored in the atmosphere is rather 

low. Without relevant atmospheric connection, P is then mainly restricted to solid and 

liquid phases. The moderate solubility, makes P mobility very limited compared to other 

elements such as N or C (2, 3).  

Phosphate rocks represent the majority of the usable P on earth’s crust. Most of the other 

forms in which P exists are unavailable for direct biological uptake. P transfer into 

terrestrial systems from phosphate rocks is performed through processes such as 

weathering or leaching. These processes are slow and a major constraint with respect to 

terrestrial primary productivity. (8, 9). 

By using the civilization time (103 years) as timescale, the general natural global P cycle 

seems slow and unidirectional. First, phosphate rocks are transferred into the ocean in 

form of soluble and particulate P. Next, the transferred P sinks into the sediments where 

it is slowly recycled and re-exposed as phosphate rocks by the reshaping of the Earth's 

surface. All of that occurs in about 107 to 108 years. The cycle shows only minor 

interruptions, mostly due to temporary absorption of a reduced fraction of the transferred 

P by biotic factors. However, the fraction of the cycle corresponding to organic P cycling 

(land- and water-based) has significantly shorter times scales (10−2 to 100 years). Other 

land-based cycles in smaller scales transport phosphates from soils to plants with a 

subsequent return of a large portion of P to soils due to the mineralization of plant litter, 

dead microorganisms and other biomass sources (Fig.1) (2) .  

Substantial input of P from atmospheric deposition does not occur in P cycle compared 

with other key elements, e.g. N. The loss of P in the fast soil-plant sub-cycling is replaced 

exclusively by weathering of P-bearing rocks, which is a slow process (2, 3, 10). 
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Fig. 1.  Flux of phosphorus according to Smil 2000. Modified from (2) 

 

The main disturbance arises from the anthropogenic impact on every major 

biogeochemical cycle (11). In the case of P, within the past century mankind has 



G.A Castillo Villamizar Dissertation Introduction 
  

4 

quadrupled the environmental flow of phosphorus inputs to the biosphere. The main 

reason for this increase is the mining of phosphorus compounds for use as fertilizers (11). 

This has disturbed the P cycle and caused serious problem. We have too much and too 

little phosphorus at the same time (12). There is an excess of P contaminating the 

environment. This triggers a series of ecological problems, i.e. the eutrophication of 

freshwater bodies and oceans. At the same time, the shortage of mineable resources of P 

is a major challenge for the future of the global food demand (12-14). 

Phosphate rock is a non-renewable natural resource and the minable deposits are limited 

to a few countries controlling 85% of the world’s reserves. Thus, different groups around 

the world have warned about an upcoming P depletion.  

 

Fig. 2. Global phosphate depletion time scenarios by different studies. Modified from (10) . 

 

Cordell and White, 2014 analyzed different published models of P production, usage and 

depletion. In their analysis the most optimistic models predict that in approximately 50 

years the peak of the P production will be reached and the production reduction will begin 

(Fig. 2). Other less optimistic models consider that the peak of P production will be 

reached in the next 6-10 years. Despite the differences in the predicted times, it is 

accepted that P production is a highly relevant matter for mankind and measures need to 

be implemented in order to fulfill the future alimentary needs of the growing global 

population (10, 12, 15, 16).  

The second part of the problem is related to the excess of P in some environments such as 

soils and water bodies. This excess of P originates also from human activities. Therefore, 

strategies directed to recapturing and recycling P as well as its redistribution from zones 
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with excessive concentration to zones with scarcity are being designed and implemented  

(12, 17).  

In the early 2000s, more than 7 million tons/year of P were released into the environment. 

Most of this phosphorus derives from animal manure and excreta related to mass food 

production (18). An important portion of the excreted P is present in the form of 

unprocessed myo-inositol hexakisphosphate (InsP6) also known as  phytate in its salt 

form (Fig. 3) (14, 19). Phytate is considered an alternative source of P for the upcoming 

global needs. 

 

Fig. 3. 2D structure of phytic acid drawn with PubChem Sketcher (20). 

 

1.3. Phytate as Alternative Source of Phosphorus 

Myo-Inositol phosphates can contain between one and eight phosphoryl groups. This type 

of molecules is ubiquitous in eukaryotic species and has diverse biological functions. 

Phytate is the most abundant myo-Inositol phosphate and has multiple important roles in 

eukaryotic cellular processes such as DNA repair, RNA processing, mRNA export, plant 

development, apoptosis and pathogenicity (21-27).  

Phytate is quantitatively the most important inositol phosphate found in soils and 

represents the main P storage molecule in cereals and grains (28, 29). Furthermore, 

phytate is considered a large and unexploited reservoir of phosphorus. More than 50 

million tons of phytate are present yearly in commercial fruits and seeds (30-32). This 

amount is the equivalent to circa 70% of the annual worldwide phosphate (P) use  with 

respect to mineral fertilizers (33). In animal diets containing oilseeds, legumes and 

cereals 60 to 80% of P is represented by phytate (29). Unfortunately, P in phytate form 

has a low bioavailability for monogastric species including several mass production 
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animals such as swine, poultry or fish (34). This low bioavailability makes phytate a 

contaminating P waste and results, i.e., in eutrophication of rivers and lakes. The 

processing of phytate is dependent on the presence of phytate degrading enzymes 

(phytases) that hydrolyze phytate. Phytases are considered valuable tools for the 

recovery and recycling of P. These enzymes improve cell ability to scavenge phosphorus 

from phytate present in different habitats including soils, water, manure, as well as 

excretions, and are industrially relevant biocatalysts (35-37). 

1.4. Phytases are Key Biocatalysts with Still Unknown Potential 

Life on earth is largely dependent on processes such as phosphorylation and 

dephosphorylation, which are actively regulating other processes including energy 

production, general metabolism and signal transduction (38).  

The dephosphorylation process is achieved by phosphatases, which possess a high 

diversity and complexity. Different from kinases, phosphatases evolutionary history is not 

based on common ancestors. This led to a lower number of different phosphatase genes 

compared to that of kinase genes (38-40). Nevertheless, phosphatases hydrolyze a variety 

of substrates including phytate. Phytases degrade phytate to inositol phosphates and 

inorganic monophosphates. The term phytase is related specifically to the class of 

phosphatases with the in vitro capability to release at least one phosphate from phytate. 

Phytate-degrading enzymes have a wide distribution in plants, microorganisms and some 

animal tissues (41, 42). 

In higher plants, e.g. legumes, oilseeds and nuts, phytases are present in grains, seeds and 

pollen. Phytase activity has been found in maize, tomato, wheat, barley, rye, spelt, canola, 

beans and Arabidopsis (43-45). Low levels of phytase activity have been reported in liver 

and blood of calves and the brush border vesicles of poultry. Interestingly, phytase 

activity can be also found in the mucosa extracts of the small intestine of rats, rabbits, 

guinea pigs, chicken, and humans. However, the level of activity of the enzymes in these 

tissues is extremely low and does not play a significant role in phytate-processing (46-

49).  

Microbial phytases have been detected in bacteria and fungi (33, 50). In bacteria, some of 

the best-studied phytases are derived from Pseudomonas sp., Bacillus sp., and Klebsiella 

sp. Bacteria isolates with phytase activity have been identified in very diverse 
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environments ranging from the extreme cold conditions of the Himalayan soils to 

hydrothermal aquatic environments (41, 51, 52).  

Phytases from fungi are mostly associated to the histidine acid phosphatase family and 

exhibit high levels of glycosylated residues probably associated to protein stability. 

Moreover, differences in the catalytic mechanism between phytases from Ascomycetes 

and Basidiomycetes have been reported. The analysis of the phylogenetic relationships of 

fungal phytases have evidenced that phytases from Ascomycetes and their 

Basidiomycetes counterparts are separated into two different clades (41). Different 

species of Aspergillus such as A. niger, A. fumigatus, A. terreus, and A. oryzae, have been 

reported as belonging to the most efficient producers of extracellular phytases (53). 

In the last three decades, phytases have been in the focus because of their potential for 

solving several of the previously mentioned problems. Phytases are considered as tools 

for reducing the impact of animal agriculture on the environment (36, 54). Phytases are 

used as animal feed supplements, enhancing the utilization of phytate-derived 

phosphorus and the phytate-bound minerals by monogastric animals, and reducing 

phosphorus excretion up to 50% (55). Probably one of the most important applications 

of phytases is related to their usage with respect to crops. Under the scenarios of P 

depletion and the subsequent limitations for crop production, phytases are powerful tools 

for P recovering. Expression of extracellular phytase from Medicago truncatula in 

transgenic Arabidopsis have revealed a significant improvement in organic phosphorus 

utilization and subsequent plant growth (56). Other potential applications for phytases 

include the myo-inositol phosphate synthesis for pharmaceutical purposes and their 

usage for human nutrition and disease prevention. The presence of phytate in food affects 

the bioavailability of many divalent and trivalent mineral ions such as Ca2+, Mg2+, Mn2+, 

Zn2+, Fe2+/3+ and Cu2+ (37, 57). Therefore, phytases might help improving the 

bioavailability of these ions and thereby increasing the nutritional value of different foods. 

Yeasts with high phytase activity are already candidates for use in the manufacture of 

whole meal bread with high mineral bioavailability (58) 

In addition to the direct application of phytase technologies, several phytases have been 

recently associated with processes of pathogenesis in different organisms. For instance, 

some phytases of plant pathogens manipulate signaling pathways in plants. Others 

stimulate intracellular head kidney leukocyte activities in fish. Additionally, phytases are 



G.A Castillo Villamizar Dissertation Introduction 
  

8 

enhancers of the virulence potency of Candida albicans, and act as a counteracting force 

of intracellular growth restriction of Legionella pneumophila by phytic acid (59-61).  

The study of and the search for novel and improved phytases resulted in identification of 

several types of phytases with distinct characteristics and phylogenetic relationships 

(62). 

Depending on the position within the inositol ring, where the dephosphorylation is 

initiated, phytases can be grouped in 3 classes: The 3-phytases, 5-phytases and 6-

phytases, which produce 1,2,4,5,6-pentakisphosphate, 1,2,3,4,6-pentakisphosphate and 

1,2,3,4,5- pentakisphosphate, respectively (41).  Phosphatases with phytase activity have 

different catalytic signatures and structures (Fig. 4). Based on the active site geometry, 

specific sequence patterns and catalytic mechanisms, phytases have been grouped into 

four classes: Histidine acid phytases (HAPhys), β-propeller phytases (BPPhys), protein 

tyrosine phytases (PTPhys), and purple acid phytases (PAPhys)(62, 63). 
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Fig. 4. Crystal structures (secondary structure) of representatives of each of the four structural classes of phosphatase 
with phytase activity. Images are not shown to scale. A) HAPhy, Escherichia coli (1DKQ) AppA in complex with phytate. 
B) BPPhy, Bacillus amyloliquefaciens (3AMR) phytase in complex with phosphate. C) PTPphy, Selenomonas ruminantium 
(3MMJ) in complex with phytate. D) PAPphy, Phaseolus vulgaris (4KBP) in complex with phosphate. Images created 
with Jalview 2.0 (64) using Protein Data Bank accessions as indicated. 

 

1.5. Histidine Acid Phytases 

HAPhy is a large class of phytases present in animals, plants and microorganisms. Fig. 5 

depicts the general reaction of the HAPhys. Members of this class share a highly conserved 
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active site, an N terminal motif (RHGXRXP) and a C-terminal motif (HD) (65). Both motifs 

are required to form a single catalytic center enabling a two-step mechanism for 

dephosphorylation of phytic acid. Firstly, the guanidinium group of arginine in the RHG 

peptide of the active site interacts with the phosphate group of the substrate, making the 

guanidinium group more susceptible for nucleophilic attack (66, 67). The aspartate 

residue of the C terminal motif is used as proton donor for the oxygen of the 

phosphomonoester bond. Although all enzymes of this class share this catalytic 

mechanism, the efficiency for phytate processing is highly variable among the enzymes 

(34).  

 

Fig. 5. Schematic illustration of substrate hydrolysis by histidine acid phytases. HAPhys can hydrolyze phytate at acidic 
pH, when phytate exists as metal-free phytate. Adapted from (67). 

 

Since not all histidine acid phosphatases are phytases, it is clear that the ability to use 

phytate as substrate does not rely on a single catalytic feature. Only HAPhys can process 

phytate as substrate. Homology analysis between prokaryotic and eukaryotic HAphys has 

shown low sequence similarity apart from their shared specific catalytic signatures. 

HAPhys can be divided into two groups, based on their substrate specificity (67): One 

group with narrow substrate specificity and high specific activity for phytate, and another 

group with a broad substrate specificity but low specific activity towards phytate. 
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Analysis of the catalytic sites of the HAPhys derived from A. niger and A. fumigatus 

indicated the importance of other amino acid residues with respect to the specificity 

towards phytate. In this sense position 300 was reported as highly variable, while position 

301 was very conserved comprising a lysine. Variations in the amino acid residues 

present in position 300 of the HAPhy resulted in drastic changes of the specificity levels. 

In this regard, the change of a neutral amino acid for an acidic or basic one changed the 

specificity of the enzyme towards phytate from low to high (34, 68). 

The HAPhy are the most extensively studied and commercialized phytases. Some 

applications of HAPhys include food-related applications such as production of phytate-

free soybean milk, low-phytin bread. A different type of commercial utilization of HAPhys 

is connected to the production of genetically modified pigs also called Enviropig™. This 

type of animals possess  salivary glands capable of produce phytase which improves 

phytate processing reducing phosphorus manure, and requirements of  food additives 

(63).  

1.6. β-propeller Phytases 

BPPhys are also called alkaline phytases as their optimal activities are above pH 8.0. This 

type of phytases represent a class of enzymes that exhibits little or no significant 

homology or phylogenetic relationship to any other known phosphatase (69). The first 

representatives of BPPhy (PhyC and TS-Phy) were cloned from Bacillus subtilis and B. 

amyloliquefaciens, respectively (70, 71). The name was derived from their molecular 

structure, which is composed mainly of β-propeller sheets with a six bladed propeller (72) 

(Fig. 4B)  

The catalytic model proposed by Shin et al. 2001 suggests the existence of cleavage and 

affinity sites. Two adjacent phosphate groups occupy both sites. Phosphate-binding to the 

affinity site enables the cleavage of the flanking phosphate by the cleavage site. The 

catalytic product of BPPhys is myo-inositol trisphosphate preferring  hydrolysis of every 

second phosphate. One of the few similarities between BPPhys and other phosphatases 

was described by using a multidimensional index tree method for side-chain patterns. 

This analysis revealed that BPPhys and pyrophosphatases share some common structural 

features, including the cleavage and affinity sites (69). BPPhys are Ca2+-dependent 

phytases. This cation Ca2+ serves as an essential activator of the enzyme and increases its 

thermostability (73). 
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BPPhy is the phytase family with most representatives in prokaryotes. BPPhys harbor 

specific domain structures and conserved cysteine residues. This features are used to 

classify BBPhys into several subgroups (I-VII).(74). BPPhys possess several 

characteristics of interest for biotechnological applications. Thermostability of the 

BPPhys is one desired characteristic for animal food processing. Other representatives 

improving body weight and phosphorus utilization efficiency of birds. (75). Moreover, the 

BPPhy from Bacillus amyloliquefaciens DS11 enhances the availability of minerals at 

neutral pH in phytate rich foods, like soymilk, wheat bread and others (76, 77). In addition 

to the biotechnological interest, some members of this phytase class have been related to 

pathogenic processes. Xanthomonas oryzae is a pathogen of rice and possesses the six-

bladed β-propeller protein PhyA, which act as  virulence factor (78). 

1.7. Protein Tyrosin Phytases 

PTPhy are protein tyrosine phosphatases (PTPs) with phytase activity. This type of 

enzymes was first reported during the late 1990s and is responsible for phytase activity 

of anaerobic ruminal bacteria (79). Chu et al. 2004 were the first who established the 

association of phytase activity with the classic PTPs (80). PTPhy possess the same 

catalytic mechanism and signature as PTPs. The characteristic PTP CX5R(S/T) sequence 

pattern forms a loop for coordinating the scissile phosphate for nucleophilic attack (81-

83). PTPhy activity is accomplished by two steps. A conserved cysteine residue required 

for activity acts as a thiolate and forms a phospho-cysteine intermediate (84). The 

conserved arginine residue stabilizes the scissile phosphate through the action of 

guanidinium group, which together with other nitrogens of the main chain stabilizes the 

highly negative charge of the phosphate group and coordinates the oxygen atoms into an 

optimal orientation (85). The catalytic function is dependent on the formation of a 

substrate-binding pocket. At the same time, the substrate specificity seems to be 

determined by the depth of the pocket (80, 86). The PTPhy model (Fig. 6) was established 

by analyzing the crystal structure of a phytase of Selenomonas ruminantium (80). The 

protein folds in two domains. One of the domains is larger than the other one and consists 

of four β‐sheet strands flanked by α‐helices on both sides. The smaller domain consists of 

a 5‐stranded β‐sheet. The phytate‐binding pocket is formed at the interface of the two 

domains with the P loop at the bottom of the pocket. (80, 81) 
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Fig. 6. Structure of PTPhy  from Selenomonas ruminantium (PDB code: 1U26). The large and small domains of the 
enzyme are colored in gray and cyan, respectively. The side chains of the catalytic residues are presented as line and 
stick models. The loops that accommodate catalytic residues are indicated and colored in magenta. Modified from (87). 

 

PTPs are involved in multiple regulatory functions and play a role in the cellular 

equilibrium of protein tyrosine phosphorylation by dephosphorylating tyrosine residues 

of proteins. PTPs also participate in cell signaling by dephosphorylating proteins at other 

amino acid residues (serine and threonine) or lipid substrates. Several members of this 

class have been associated with pathogenesis (88-91). In the specific case of the PTPphy 

the physiological function is not fully clear but similar to the classic PTPs some members 

of the PTPphy are also related to pathogenesis (33, 92).  

1.8. Purple Acid Phytases 

The purple acid phosphatases (PAPs) are part of the metallophosphoesterase 

superfamily. These proteins are present in animals, plants, bacteria and fungi (93). PAPs 

have diverse biological roles. For instance, in mammals the most important function of 

PAPs is related to increased bone resorption. Other functions involve iron transport, the 

generation of reactive oxygen species (ROS) and participation in the immune response 

(94, 95). In several plant species, PAPs expression is up-regulated during phosphate-

scarcity, indicating that this type of enzymes helps the plant to overcome the P limitation 

(96-98). PAPs are recognized for hydrolyzing several phosphorylated compounds and 

some of the isoforms are also capable to hydrolyze phytic acid (PAPhy) (93). The first 

reported PAPhy (GmPhy) was identified in the cotyledons of a germinating soybean (99). 

More recently, other PAPhy have been identified in wheat, barley, maize and rice (45). In 

prokaryotes, homologous genes of PAPhys have been detected, but only one putative 

bacterial gene from metagenomic origin has been characterized and is described in the 
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chapter 3 of this study (100, 101). The structural analysis of the PAPhy is limited to 

extrapolation by comparing them with the structures of general PAPs.  

Since low availability of P in soils hampers plant growth, the evolution of mechanisms to 

improve soil P availability is a key factor for many plant species. The genes HvPAPhy_a, 

HvPAPhy_b1, HvPAPhy_b2, PHY_US417, PHYA, AVPIDOX, MtPHY1, MtPT1, and SK-57 are 

main genes evaluated in transgenic plants and microorganisms with reported phytase 

activity, and presumably are involved at least partially in P recovering for plants (102). 

Dionisio et. al. 2011 performed a phylogenetic analysis comprising 43 PAPs. All PAPhy 

members from wheat, barley, maize and rice grouped together with a collection of plant 

PAPs. The exception was the PAPhy from Arabidopsis, which grouped separately 

demonstrating the variability of the sequence (45). No PAPhys is currently 

commercialized, although genes HvPAPhy and GmPAP14 have shown to increase phytase 

activity in barley and soybean, respectively. Improved phytate processing in different 

tissues of t transgenic plants, indicates the potential of the PAPhys for plant production 

improvement (103, 104) . 

More than 110 years after the discovery of the first phytase (105), there are still many 

aspects associated with these enzymes that remain elusive to us. For instance, the in vivo 

function of most phytate degrading enzymes remain unknown. Only few PAPhy involved 

in seed germination are considered to have a real phytase activity proved in vivo, 

meanwhile for the vast majority of enzymes with phytate degrading capabilities the in 

vivo functionalities are highly speculative .(106).  

1.9. Soil Metagenomes as Source of Novel Phytases 

An important aspect in the field of phytase research concerns the exploration of a wider 

range of phytate-degrading enzymes by using culture-independent techniques, e.g. 

screening of metagenomes or metagenomic libraries. Until now, with very few exceptions, 

the reported phytases and all commercial phytases were derived exclusively from 

cultured individual microorganisms or plants (33, 41, 106, 107).  

From the industrial and environmental perspectives, the access to phytases associated to 

the non-cultivable fraction of microorganisms bears a high potential with respect to the 

search for novel phytases with improved characteristics (108). Similarly, from the 

ecological, evolutive and physiological perspectives, accessing the phytases of the non-

culturable fraction increases our understanding of key aspects in the phosphatase field, 



G.A Castillo Villamizar Dissertation Introduction 
  

15 

including the diversity, functionality, phylogenetic relationships or the pathogenic 

potential of environmentally-derived phosphatases/phytases (100, 109, 110).  

Although prospection soil metagenomes resulted in retrieval and characterization of 

many types of biocatalysts such as cellulases (111), lipases (112), esterases (113), 

amylases (114) or proteases (115) among many others (116, 117), this is not the case for 

enzymes with phosphatase/phytase activity. Thus, the application of metagenome 

surveys, for the identification and characterization of functional phytases has become a 

cutting-edge topic in the phytase research field.  

Although phosphatases/phytases are very important biocatalyst, function-based 

metagenomics has not produced as much success retrieving new types of enzymes from 

environmental samples as for other types of biocatalysts e.g. lipases or cellulases. In the 

particular case of the phytases, in the best of my knowledge before this study only two 

reports using functional metagenomics have been published. Nevertheless, only three 

genes were identified and one was expressed and its product characterized (110, 118).  
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1.10. Aim of the Thesis 

Function-based metagenomics is a powerful tool, which has contributed to the study of 

gene function and to the discovery of novel biocatalysts with scientific and 

biotechnological relevance. Although numerous types of biocatalysts have been 

discovered and analyzed by function-based metagenomics, many others remain locked in 

environmental samples and attached to their non-culturable biological hosts. The latter is 

also the case for phosphatases and within this type for phytate-degrading enzymes. 

Phosphatases/phytases are key biocatalysts, which are involved in phosphorus 

processing at different levels. From cellular metabolism to soil decontamination 

phosphatases/phytases impact largely our way of life. Almost all existing information 

about phosphatases and particularly for phytases is based on enzymes derived from the 

culturable fraction of microorganisms. One of the main reasons for that is the scanty 

number of effective culture-independent methods for the retrieval of this type of 

biocatalysts. This signifies a critical knowledge gap in comparison with other important 

biocatalysts. The general aim of this study was to contribute to close that knowledge gap. 

In order to do so, three different concatenated goals were established and accomplished 

(Fig. 7).  

 

 Fig. 7. General scheme of the study. 

 

The first goal was the development and application of a simple and reliable function-

based screening method for the identification of active clones with phosphatase/phytase 
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activity. The function-based screening was based on the evaluation of small-insert 

metagenomic libraries, derived from soil samples, and the use of phytate as source of 

phosphorous and inductor of the phytase activity. 

After the effective recovery of multiple positive clones, the next objective was to identify 

putative phosphatase/phytase genes responsible for the phenotype of the recovered 

clones. This part of the strategy involved sequence identity comparisons against public 

databases and a subsequent search of specific phosphatase/phytase catalytic signatures 

in the products encoded by all candidate genes. 

The last objective was the retrieval and characterization of selected gene products, in 

order to determinate their functionality in vitro. This strategy included sub-cloning of 

candidate genes, followed by the biochemical profiling of the products. The selection of 

the candidates for protein characterization was made following criteria such as novelty of 

the sequences and the presence/absence of specific catalytic signatures in the encoded 

products.  
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    Chapter 16   

 Function-Based Metagenomic Library Screening 
and Heterologous Expression Strategy for Genes 
Encoding Phosphatase Activity                     

     Genis     A.     Castillo     Villamizar    ,     Heiko     Nacke    , and     Rolf     Daniel      

  Abstract 

   The release of phosphate from inorganic and organic phosphorus compounds can be mediated enzymatically. 
Phosphate-releasing enzymes, comprising acid and alkaline phosphatases, are recognized as useful biocata-
lysts in applications such as plant and animal nutrition, bioremediation and diagnostic analysis. Metagenomic 
approaches provide access to novel phosphatase-encoding genes. Here, we describe a function- based 
screening approach for rapid identifi cation of genes conferring phosphatase activity from small-insert and 
large-insert metagenomic libraries derived from various environments. This approach bears the potential 
for discovery of entirely novel phosphatase families or subfamilies and members of known enzyme classes 
hydrolyzing phosphomonoester bonds such as phytases. In addition, we provide a strategy for effi cient 
heterologous phosphatase gene expression.  

  Key words     Phosphatases  ,   Phytases  ,   Metagenomic libraries  ,   Phosphorus  ,   Function-based screening  

1      Introduction 

  Phosphorus   is essential for  growth  , metabolism, and reproduction 
[ 1 ]. Due to enhanced demand and fertilization of agricultural 
land for food and biofuel production the consumption of  phos-
phorus   increased signifi cantly during the last century. However, 
phosphate rock reservoirs renew in time scales of thousands to 
millions of years. Thus, mineral phosphorus resources are limited 
or will be even exhausted within the next 50–100 years [ 2 ]. 
Phosphorus is abundant in  soil   but present in its insoluble form or 
bound to organic compounds [ 3 ]. Consequently, this has led to 
the exploration of alternatives for obtaining phosphorus. The 
release of phosphorus in the form of phosphate can be mediated 
by a diverse group of enzymes. These enzymes, designated phos-
phatases, are considered as important  biocatalysts   for effi cient 
phosphorus solubilization and release [ 4 ,  5 ].  Phosphatases   show-
ing phytase activity (phytases) are used to release phosphate from 
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phytate, the most abundant organic phosphorus compound in soil 
[ 6 ]. The released phosphate can then be utilized by for example 
agricultural crops as natural phosphorus fertilizer. Phosphatases 
catalyzing the hydrolysis of phytic acid also play an important role 
as supplement in animal nutrition, as they release phosphate from 
phytate present in cereal grains and oilseeds. Furthermore, phos-
phatases have broad applications in pharmaceutical industry and 
clinical diagnostics [ 7 ]. 

 The almost exclusive use of  cultivable   microorganisms was a 
limiting factor with respect to the discovery of new enzymes exhib-
iting  phosphatase   activity. Within many recent culture-based 
approaches, degenerated primers were used to identify phospha-
tase genes carried by single microorganisms [ 8 – 10 ]. Taking into 
account that currently less than 1 % of microbial taxa can be cul-
tured under laboratory conditions, only a tiny fraction of the exist-
ing phosphatase gene pool has been mined by culture-based 
methods [ 8 ,  11 – 14 ]. In principle, culture-independent metage-
nomic approaches provide access to the entire phosphatase gene 
pool. In this way, novel phosphatases with valuable characteristics 
such as high stability and catalytic activity under harsh conditions 
can be identifi ed. The different phosphatase types exhibit a high 
level of sequence divergence, and different substrate preferences 
and spectra [ 15 ]. These differences point to the employment of 
 function-based screening   strategies for the discovery of novel 
phosphatase-encoding genes from complex metagenomic libraries 
[ 11 ,  13 ,  16 ]. In contrast to sequence-based identifi cation of target 
genes based on conserved DNA regions, the function-based strat-
egy allows identifi cation of enzymes that represent entirely novel 
phosphatase families. 

 Here, we describe a rapid function-based metagenomic library 
screening approach for  phosphatase   genes, which is based on chro-
mogenic substrate-containing medium. Sarikhani and colleagues 
[ 11 ] used a similar medium for the discovery of phosphatase- 
encoding genes derived from   Pseudomonas putida   . We successfully 
tested phytic acid as well as other  phosphorus   sources such as 
β-glycerol phosphate in  function-based screens   of small- and large- 
insert metagenomic libraries. The number of retrieved phosphatase 
genes can vary depending on the source of  environmental DNA   
used for the construction of metagenomic libraries. In addition, we 
present a strategy for effi cient heterologous expression of genes 
conferring phosphatase activity. This strategy allows a moderate 
instead of a high level  heterologous gene expression   and the peri-
plasmic localization of the heterologous phosphatase gene prod-
ucts. In this way the risk of detrimental interactions of the produced 
proteins with host proteins or cell metabolites in the cytoplasm is 
reduced.  
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2    Materials 

     The  function-based screening   approach presented here has been 
tested using small- insert   and large-insert metagenomic libraries 
derived from  soil  , compost, volcano sediments, glacial samples, 
and microbial mats. Metagenomic library construction was per-
formed according to protocols described by Simon and Daniel 
[ 17 ]. Small-insert metagenomic libraries were constructed using 
the plasmid pCR-XL-TOPO (Thermo Fisher Scientifi c, Waltham, 
MA, USA) as vector. Large-insert metagenomic libraries were gen-
erated using the  fosmid   vector pCC1FOS™ (Epicentre 
 Biotechnology  , Madison, WI, USA).  

       1.    Modifi ed Sperber medium (SpM): 16 g/L agar, 10 g/L glu-
cose or 2 % glycerol, 500 mg/L yeast extract, 100 mg/L 
CaCl 2 , and 250 mg/L MgSO 4 , supplemented with a  phospho-
rus   source such as 2.5 g/L phytic acid, β-glycerol phosphate 
disodium salt pentahydrate, or  D -fructose 6-phosphate diso-
dium salt hydrate, 5-bromo-4-chloro-3-indolyl phosphate 
(BCIP) stock solution: 25 mg/mL in dimethylformamide.   

   2.    Kanamycin stock solution: 50 mg/mL in H 2 O.   
   3.    NaOH solutions for pH adjustment.      

   The materials listed for small- insert      metagenomic library screening 
medium can be used by considering the following modifi cations 
and extensions:

    1.    Chloramphenicol instead of kanamycin stock solution: 
12.5 mg/mL in ethanol.   

   2.     L -arabinose stock solution: 1 % (w/v) in H 2 O.    

         1.     E. coli  DH5 alpha electrocompetent cells [ 18 ].   
   2.    Super Optimal Broth with Catabolic repressor (SOC).   
   3.    Bio-Rad GenePulser II (Bio-Rad, Munich, Germany) and 

1 mm  electroporation   cuvettes.   
   4.    Heat block with mixing function.      

       1.    Lysogeny broth (LB) (autoclaved).   
   2.    Stock solution of antibiotic (kanamycin: 50 mg/mL, when 

pCR-XL-TOPO is used as vector or chloramphenicol: 
12.5 mg/mL, when pCC1FOS is used as vector).   

   3.     L -arabinose stock: 1 % (w/v) or CopyControl™ Induction 
Solution (1000×, Epicentre  Biotechnology  ) (required when 
pCC1FOS is used as vector).   

2.1  Identifi cation 
of  Phosphatase   Genes 
by  Function- Based 
Screening   
of Metagenomic 
Libraries

2.1.1  Metagenomic 
Libraries

2.1.2  Medium for Small- 
 Insert   Metagenomic 
Library Screening

2.1.3  Medium for 
Large- Insert Metagenomic 
Library Screening

2.1.4  Function-Based 
Metagenomic Library 
Screening

2.1.5  Analysis 
of  Metagenomic DNA   
Fragments Carried 
by Positive Clones
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 4.     Plasmid     mini prep kit (Macherey-Nagel GmbH & Co. KG,
Düren, Germany).

 5.    Hin dIII restriction enzyme.
 6.   Sequencing primers: pCR-XL-TOPO vector: Forward

5′-GTAAAACGACGGCCAG- 3′, Reverse 5′-CAGGAAA
CAGCTATGAC- 3′, pCC1FOS: Forward 5′-GGATGTGCTG
CAAGGCGATTAAGTTGG-3′, Reverse 5′-CTCGTATGT
TGTGTGGAATTGTGAGC-3′ (other appropriate primers can
also be used).

 1.   Phusion High-Fidelity DNA Polymerase PCR kit (Thermo
Fisher Scientifi c GmbH, Schwerte, Germany) (other polymer-
ases with proofreading activity can also be used).

 2.   pET-20b(+) Novagen vector (Merck KGaA, Darmstadt,
Germany).

 3.   Gel extraction kit (Qiagen, Hilden, Germany).
 4.   Antarctic  phosphatase   (New  England   Biolabs GmbH,

Frankfurt am Main, Germany).
 5.   DNA ligation kit (Thermo Fisher Scientifi c GmbH, Schwerte,

Germany).
 6.    E. coli  DH5 alpha electrocompetent cells.
 7.   Bio-Rad GenePulser II (Bio-Rad) and 1 mm  electroporation

cuvettes.
 8.   LB agar plates supplemented with 100 mg/L ampicillin.
 9.   LB broth (autoclaved).

 10.   Ampicillin stock solution: 100 mg/mL H 2 O.

 1.    E. coli  BL21 one shot cells (Thermo Fisher Scientifi c GmbH,
Schwerte, Germany).

 2.   LB agar plates supplemented with 100 mg/L ampicillin.
 3.   Minimal medium is prepared from stock solution of 5× salts

solution (50 g Na 2 HPO 4  · 7H 2 O, 30 g KH 2 PO 4 , 5 g NaCl,
5 g NH 4 Cl) in 1 L water. For 1 L media, add 200 mL of the
10× salt solution to 500 mL of water supplemented with
0.20 % glycerol, adjust the volume and sterilize by autoclav-
ing. Supplement the media by adding 1 mL of MgSO 4
(1 M), 1 mL CaCl 2  (1 M), and 1 mL FeSO 4  · 7H 2 O
(0.01 mM). The solutions should be sterilized separately by
fi ltration.

 4.   50 mM Hepes buffer pH 8.
 5.   Shaker with temperature control.
 6.   French press or any other effective cell disruption device.

2.2  Heterologous 
Expression 
of  Phosphatase   Genes

2.2.1  Cloning of Putative 
 Phosphatase  - Encoding 
Genes into  Expression 
Vector  

2.2.2  Heterologous 
Expression of Genes 
Encoding  Phosphatase   
Activity
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       1.    50 mM sodium acetate buffer (pH 6.0).   
   2.    Acetone.   
   3.    5 N H 2 SO 4 .   
   4.    10 mM ammonium molybdate.   
   5.    1 M citric acid.        

3    Methods 

   The screening approach presented here is based on a chromogenic 
substrate (BCIP)-containing medium. This screening medium 
allows rapid identifi cation of  phosphatase   activity encoded by 
small- insert   and large-insert metagenomic libraries. We employed 
metagenomic libraries, which were constructed using plasmids or 
 fosmids   as vectors. In general, the described screening can also be 
performed using  cosmid  -based or  bacterial artifi cial chromosome  - 
based metagenomic libraries with modifi cations (e.g., use of appro-
priate antibiotics). Positive clones carrying potential phosphatase 
genes and exhibiting phosphatase activity show intense blue color 
after incubation on solidifi ed screening medium. Sequencing and 
analysis of the metagenomic inserts derived from the isolated 
recombinant vectors of the positive clones allow prediction and 
identifi cation of candidate genes responsible for the detected phos-
phatase activity. 

       1.    To prepare screening medium, 500 mg/L yeast extract, 
100 mg/L CaCl 2 , 250 mg/L MgSO 4 , and 2.5 g/L selected 
 phosphorus   source ( see   Note    1  ) are solubilized in water. 
Subsequently, pH is adjusted to 7.2 using NaOH solutions. 
To solidify the medium 16 g/L agar is added.   

   2.    Autoclave the prepared mixture. After removing from the 
autoclave, allow cooling to approximately 55 °C and add fi lter- 
sterilized (0.22 μm fi lter) glucose (fi nal concentration: 10 g/L) 
or autoclaved glycerol solution (fi nal concentration: 2 %). With 
respect to large-insert metagenomic library screening medium, 
fi lter-sterilized  L -arabinose (0.22 μm fi lter) in a fi nal concentra-
tion of 0.001 % or copy control induction solution is also added 
( see   Note    2  ).   

   3.    Add 1 mL/L of 25 mg/mL BCIP solution and appropriate anti-
biotic (kanamycin, fi nal concentration: 50 mg/L or chloram-
phenicol, fi nal concentration: 12.5 mg/L) to select for clones 
bearing small- insert   or large-insert metagenomic libraries.   

   4.    Pour the media into petri dishes. After solidifi cation store at 
4 °C and dark until use. Plates can be stored for up to 1 month 
under these conditions.      

2.2.3  Verifi cation 
of  Heterologous   Target 
Gene Expression Based 
on Phosphatase Activity 
Test

3.1  Identifi cation 
of  Phosphatase   Genes 
by  Function- Based 
Screening   
of Metagenomic 
Libraries

3.1.1  Preparation 
of  Screening   Medium
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 1.   Prechill the  electroporation   cuvette on ice.
 2.   Thaw  E. coli  DH5 alpha electrocompetent cells on ice and

transfer 40 μL to the 1 mm  electroporation   cuvette.
 3.   Add 1 μL prepared metagenomic library DNA (DNA concen-

tration approximately 350 ng/μL) and mix gently. Do not mix
by pipetting the cells up and down.

 4.   Wipe electrodes on the outside of cuvette with a paper towel to
remove condensate and carefully eliminate air bubbles.

 5.   Electroporate the cells. We use a Bio-Rad Gene Pulser II with
the following settings: 25 μF, 200 Ω and 1.25 kV.

 6.   Immediately add 500 μL of room temperature SOC medium.
 7.   Transfer the mix into a sterile 2 mL microcentrifuge tube and

shake for 60 min at 37 °C and 150 rpm.
 8.   Spread 100 μL undiluted as well as diluted (tenfold, 100-fold,

and 1000-fold) transformed cell suspension on separate screen-
ing medium plates containing the appropriate antibiotic. Store
the remaining suspension of transformed cells at 4 °C.

 9.   Incubate the plates at 37 °C overnight.  Analyze   number of
colonies formed on screening medium plates ( see   Note    3  ).

 10.   Spread the appropriate remaining undiluted or diluted suspension
of transformed cells onto screening medium plates containing
an appropriate antibiotic to obtain a suffi cient number of
colonies for detection of target clones.

 11.   Positive clones will appear after 24–72 h of incubation and
show intense blue colony color resulting from reaction of
 phosphatase   with the indicator BCIP ( see   Note    4  ).

 1.   Pick single positive colonies and grow them individually in
5 mL LB broth ( see   Note    2  ) supplemented with the appropri-
ate antibiotic (kanamycin, fi nal concentration: 50 mg/L or
chloramphenicol, fi nal concentration: 12.5 mg/L).

 2.   Shake overnight at 37 °C and 150 rpm.
 3.   Extract, digest with restriction endonucleases, e.g.,  Hin dIII or

any other enzyme present in the used vector and analyze insert
DNA by using standard techniques.

 4.   Determine the insert sequences of vector  DNA extracted   from
positive clones.

 5.   After the insert  DNA sequences   have been determined, identify
open reading frames (ORFs). An initial prediction of ORFs can
be performed using the ORF fi nder tool provided by the
National Center for  Biotechnology   Information [ 19 ,  20 ].

 6.   To identify ORFs potentially conferring  phosphatase   activity,
examine coding sequences for similarities to protein families

3.1.2  Function-Based 
Metagenomic Library 
Screening

3.1.3  Analysis 
of  Metagenomic DNA   
Fragments Carried 
by Positive Clones
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and domains, e.g., by performing searches against the CDD 
databases [ 21 ]. Consider that the described  function-based 
screening   approach allows identifi cation of members of previ-
ously unknown phosphatase families. In some cases, the simi-
larity of identifi ed  ORFs   to known phosphatase sequences 
might be very low.       

   Enzymes hydrolyzing phosphomonoester bonds play an important 
role in regulation of cell metabolism. The heterologous expression 
strategy described here has been developed to minimize interac-
tions of recombinant phosphatases with host cell molecular activi-
ties and putative toxic effects. Metagenomic library-derived target 
genes are cloned into an  expression vector   encoding a signal 
sequence for periplasmic localization to reduce reactions of recom-
binant phosphatases with biomolecules in the cytoplasm of the host 
cell. To further reduce potential detrimental effects of  phosphatase   
activity, we recommend conditions that lead to a moderate instead 
of a high level  heterologous gene expression  . These conditions 
include e.g., the use of an appropriate minimal medium rather than 
complex medium during heterologous phosphatase gene expres-
sion and protein production. To verify heterologous production of 
the enzyme, a phosphatase activity assay should be performed. 

       1.    Design primers for amplifi cation of a putative  phosphatase   
gene. In order to clone the gene into  expression vector   pET-
20b(+), add restriction sites occurring in the multiple cloning 
site (MCS) of this vector to the  primers   (one restriction site per 
primer). To allow directional cloning, each primer should con-
tain a different restriction site. Within the MCS, the different 
selected restriction sites should be separated by at least 10 bp. 
Ensure that the selected restriction sites are not present in the 
gene region encoding the putative phosphatase.   

   2.    Check if the designed primers allow cloning of the PCR prod-
uct in frame with the His 6  tag and the signal sequence for peri-
plasmic localization encoded by plasmid pET-20b(+).   

   3.    Perform a PCR to amplify the putative  phosphatase   gene using 
the primers containing the added restriction sites. We use 
Phusion High Fidelity Hot Start DNA polymerase to obtain 
PCR products. The PCR reaction mixture (50 μL) contains 
10 μL of fi vefold Phusion GC buffer, 200 μM of each dNTP, 
1.5 mM MgCl 2 , 2 μM of each of the primers, 2.5 % DMSO, 
0.5 U Phusion High Fidelity Hot Start DNA polymerase 
( see   Note    5  ), and approximately 25 ng recombinant plasmid 
or  fosmid    DNA extracted   from a positive clone.   

   4.    The thermal cycling scheme should be adjusted by considering 
the size of potential  phosphatase   genes and annealing tempera-
ture of selected primers. A gradient PCR is recommended to 

3.2  Effi cient 
Heterologous 
Expression 
of  Phosphatase   Genes

3.2.1  Cloning of Putative 
 Phosphatase  - Encoding 
Genes into  Expression 
Vector  
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quickly identify an appropriate annealing temperature. The fol-
lowing thermal cycling scheme can be used to test different 
annealing temperatures: initial denaturation at 98 °C for 2 min, 
29 cycles of denaturation at 98 °C for 45 s, annealing gradient 
ranging from 58 to 68 °C for 45 s, and extension at 72 °C for 
30 s per kb, followed by a fi nal extension at 72 °C for 5 min. 
Check the PCR products by agarose gel electrophoresis. 
Further PCR  reactions   using the selected annealing tempera-
ture can be performed to obtain a higher amount of the PCR 
product.   

   5.    Subject the PCR product to agarose gel electrophoresis (0.8 %) 
and purify it using a gel extraction kit, e.g., QIAquick (Qiagen, 
Hilden, Germany).   

   6.      Digest     the PCR product and pET-20b(+) vector separately 
using the restriction enzymes selected for directional cloning. 
Due to the loss of DNA during the following gel purifi cation 
step, it is important to digest at least 1 μg PCR product and 
3 μg pET-20b(+) vector.   

   7.    Dephosphorylation of pET-20b(+) vector. In order to prevent 
re-circularization of the vector pET-20b(+), the digested plas-
mid should be treated with a  phosphatase   prior to the follow-
ing gel purifi cation step. Add a maximum of 2 U Antarctic 
phosphatase (1 U/μL) to the pET-20b(+) vector restriction 
digest. The Antarctic phosphatase is stable and active in most 
restriction digestion buffers. Incubate for 15 min at 37 °C.   

   8.    Load the digested PCR product and  plasmid DNA   separately on 
a 0.8 % agarose gel and purify both using a gel extraction kit.   

   9.    Ligation: the ligation mix (20 μL) contains 2 μL 100 mM 
DTT, 1 μL 10 mM ATP, 2 μL 10× T4 Ligase buffer, approxi-
mately 200 ng pET-20b(+) (digested, dephosphorylated and 
purifi ed), PCR product (digested and purifi ed), and 1 μL T4 
ligase (1 U/μL). A molar ratio 1:3 of vector to PCR product 
is recommended. Incubate at 16 °C overnight. In order to 
improve the ligation  effi ciency   the T4 ligase is subsequently 
inactivated by incubation at 65 °C for 10 min.   

   10.    Transform  E. coli  DH5 alpha electrocompetent cells with 5 μL 
ligation reaction via  electroporation  . Spread diluted (tenfold 
and 100-fold) suspension of the transformed cells on LB 
plates containing ampicillin and incubate overnight at 37 °C. 
Pick six single colonies and grow them in 5 mL LB broth with 
ampicillin (fi nal concentration: 100 mg/L) overnight at 37 °C 
and 150 rpm. Extract the  plasmid DNA   using standard 
techniques.   

   11.    Digest extracted plasmids, using the restriction enzymes 
selected for directional cloning, and check for the presence of 
the insert by agarose gel electrophoresis.   
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 12.   Sequence  plasmid DNA   carrying the desired insert to verify
that the putative  phosphatase   gene has been cloned in the
correct orientation and the sequence is error-free.

 1.   Transform  E. coli  BL21 one shot cells. Thaw one tube of  E. coli
BL21 one shot cells on ice and subsequently add 1 μL of the
constructed expression plasmid harboring the target gene
(maximum of 30 ng). Incubate on ice for 30 min. Perform
 transformation   of the recombinant plasmids into the cells by
heat shock treatment at 42 °C for 30 s in a temperature- 
controlled water bath. Immediately transfer the tube to ice and
subsequently add 250 μL SOC medium. Incubate the  tube   at
37 °C for 45 min. Spread 100 as well as 150 μL suspension of
transformed cells on LB plates containing ampicillin ( see   Note    6  ).
Incubate plates overnight at 37 °C.

 2.   Pick 3–4 colonies and grow each in 30 mL minimal medium
containing ampicillin (fi nal concentration: 100 mg/L) over-
night at 30 °C and 150 rpm.

 3.   Use the overnight culture to inoculate 250 mL of minimal
medium (resulting OD 600  should be approximately 0.1).
Incubate the culture with shaking (150 rpm) at 30 °C until it
reaches log phase (OD 600  0.4–0.8). Induce the production of
the recombinant protein by adding IPTG to a fi nal concentra-
tion of 0.25 mM and incubate with shaking (150 rpm) at
30 °C until OD 600  of approximately 3.2 ( see   Note    7  ).

 4.   Harvest the cells by centrifugation at 10,000 ×  g  and 4 °C for
20 min. Suspend the resulting cell pellet in chilled lysis buffer
50 mM HEPES pH 7.5. Use a ratio of 1:2 w/v of pellet to
buffer ( see   Note    8  ). Disrupt the cells using a prechilled French
Press cell (1.38 × 10 8  Pa).

 5.   Clarify the cell lysate by centrifugation for 20 min at 9000 ×  g
and 4 °C. The supernatant (crude extract) should be cleared by
fi ltration using a 0.2 μm syringe fi lter.  Note : Subsequent puri-
fi cation methods of the crude extract can be applied to purify
the target protein but a check for  phosphatase   activity should
be performed using the crude extract.

 1.   To identify activity of target proteins, released inorganic phos-
phate can be measured according to the ammonium molybdate
method [ 22 ] with modifi cations. Add 10 μL of diluted crude
extract or purifi ed enzyme to 350 μL of 50 mM sodium acetate
buffer (pH 5.0) and incubate for 3 min at 40 °C. Add 10 μL of
100 mM  phosphorus   source used for  function-based screening
(some commercial substrates contain traces of free phosphorus
causing background coloring). For blanks, use 10 μL lysis buffer
(for purifi ed potential  phosphatase  ) or crude extract derived
from  E. coli  BL21 carrying empty pET-20b(+) vector (for non-
purifi ed samples).

3.2.2  Heterologous 
Expression of Genes 
Encoding  Phosphatase   
Activity

3.2.3  Verifi cation 
of Heterologous Target 
Gene Expression Based 
on  Phosphatase   Activity 
Test
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   2.    After 30 min of incubation at 40 °C, add 1.5 mL of a freshly 
prepared solution of acetone/5 N H 2 SO 4 /10 mM  ammonium   
molybdate (2:1:1 v/v) and 100 μL of 1 M citric acid. All 
assays should be performed in triplicate. When  phosphorus   
has been released in presence of molybdate, a bright yellow 
phosphomolybdate complex is formed and extracted by ace-
tone. It is possible that the yellow color is directly visible. 
However, a spectrophotometer measurement at 355 nm is 
recommended [ 22 ].        

4             Notes 

     1.    We successfully tested all three  phosphorus   sources phytic acid, 
β-glycerol phosphate disodium salt pentahydrate, and  D - 
fructose 6-phosphate disodium salt hydrate with respect to 
function- based identifi cation of  phosphatase   genes from small-
 insert   and large-insert metagenomic libraries. However, phos-
phorus source selection will depend on the research approach 
and target group of phosphatases. For example, to increase 
probability of identifying  phytases   during  function-driven 
screens   the phosphorus source phytic acid should be selected 
as screening substrate. In the case of metagenomic library 
screens this substrate might also act as inducer for expression 
of genes encoding  phytases   via endogenous promoters [ 23 ].   

   2.    The number of  fosmids   carried by  E. coli  clones can be increased 
by adding  L -arabinose (fi nal concentration: 0.001 %) or 
CopyControl™ Induction Solution (1000×). This might be 
advantageous during screening of large-insert metagenomic 
libraries as increased  copy numbers   of fosmids  containing   tar-
get genes might result in an increase of total  phosphatase   activ-
ity. Furthermore, higher DNA amounts can be extracted from 
clones carrying multiple copies of fosmids compared to those 
harboring a single  fosmid  .   

   3.    To facilitate identifi cation and selection of individual positive 
clones, we recommend growing a maximum number of 
 approximately 10,000 colonies on screening medium plates 
(petri dishes 150 × 20 mm).   

   4.    Due to endogenous  phosphatase   activity of host cells, all colo-
nies grown on screening medium plates will change color after 
prolonged incubation times (more than 48 h). Positive clones 
show intense blue colony color, whereas false-positive colonies 
exhibit light blue or greenish color. Thus, it is possible that in 
some cases the presence of weakly expressed metagenome- 
derived phosphatases showing low catalytic activity is masked 
by the background reaction of the screening host. Nevertheless, 
we were able to identify a high number of clones carrying 
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recombinant phosphatase genes based on intense blue color 
developed by individual  E. coli  colonies.   

 5.   It is highly recommended to use a proofreading polymerase
to minimize mutations during amplifi cation of putative  phos-
phatase   genes.

 6.   It is possible to spread some of the transformed cells directly on
Sperber medium plates containing BCIP and ampicillin. Intense
blue colonies growing on these plates indicate the presence of
the targeted  phosphatase   gene.

 7.   The described conditions for heterologous expression were
successfully tested for a number of  phosphatase   genes derived
from function-based metagenomic library screening.
Nevertheless, it might be necessary to vary different parameters
such as temperature, IPTG concentration, and incubation time
for improving heterologous expression of individual phospha-
tase genes.

 8.   The lysis buffer should be modifi ed depending on intended
further analysis. For instance, for affi nity  chromatography
using a Ni-column 300 mM NaCl can be added.
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ABSTRACT Phosphatases, including phytases, play a major role in cell metabolism,
phosphorus cycle, biotechnology, and pathogenic processes. Nevertheless, their dis-
covery by functional metagenomics is challenging. Here, soil metagenomic libraries
were successfully screened for genes encoding phosphatase activity. In this context,
we report the largest number and diversity of phosphatase genes derived from
functional metagenome analysis. Two of the detected gene products carry domains
which have never been associated with phosphatase activity before. One of these
domains, the SNARE-associated domain DedA, harbors a so-far-overlooked motif
present in numerous bacterial SNARE-associated proteins. Our analysis revealed a
previously unreported phytase activity of the alkaline phosphatase and sulfatase su-
perfamily (cl23718) and of purple acid phosphatases from nonvegetal origin. This
suggests that the classical concept comprising four classes of phytases should be
modified and indicates high performance of our screening method for retrieving
novel types of phosphatases/phytases hidden in metagenomes of complex environ-
ments.

IMPORTANCE Phosphorus (P) is a key element involved in numerous cellular pro-
cesses and essential to meet global food demand. Phosphatases play a major role in
cell metabolism and contribute to control the release of P from phosphorylated or-
ganic compounds, including phytate. Apart from the relationship with pathogenesis
and the enormous economic relevance, phosphatases/phytases are also important
for reduction of phosphorus pollution. Almost all known functional phosphatases/
phytases are derived from cultured individual microorganisms. We demonstrate here
for the first time the potential of functional metagenomics to exploit the phospha-
tase/phytase pools hidden in environmental soil samples. The recovered diversity of
phosphatases/phytases comprises new types and proteins exhibiting largely un-
known characteristics, demonstrating the potential of the screening method for re-
trieving novel target enzymes. The insights gained into the unknown diversity of
genes involved in the P cycle highlight the power of function-based metagenomic
screening strategies to study Earth’s phosphatase pools.

KEYWORDS SNARE-associated domain, functional metagenomics, phosphatases,
phytases, soil metagenome

Within the last decades, advances in next-generation sequencing and metag-
enomic techniques have led to the discovery of new enzymes from metag-

enomes (1, 2). Novel lipases, esterases, proteases, and hydrogenases, among many
others, have been identified (3, 4). Nevertheless, the majority of enzymes with high
biological relevance are still almost exclusively recovered from cultured organisms (2).
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This is especially the case for phosphatases. Phosphatases have evolved across all living
organisms and contribute to the regulation of diverse cellular functions (5, 6). A specific
group of phosphatases named phytases can release phosphorus from phytic acid,
which is one of the most important phosphorus reserves in plants and soils (7, 8).

Phosphorus (P) reserves are globally important, due to the enormous growth of the
world population, and the ensuing demand for this macroelement. Large amounts of
P are and will be required in order to fulfill the increasing world agroalimentary needs
(9). However, global rock phosphorus reservoirs are currently being rapidly depleted,
and the supplementation of P to animal feed and plant fertilizers has become more
expensive during the last decades (10). Plant-based animal feeds often contain large
amounts of phytate, which cannot be utilized by monogastric animals due to the lack
of phytases (7, 11). As a consequence, P levels in soils and water bodies increase. This
eutrophication causes for instance algal blooms in aquatic ecosystems, leading to
deoxygenated areas disturbing the life of many species (12). To meet future require-
ments, minimize losses of P, and reduce the environmental impact, it is necessary to use
P compounds more efficiently and develop economical recycling technologies. In this
context, phosphatases/phytases have proved to be remarkably useful (13). These
enzymes are currently used in agroindustry to minimize P losses and to improve the
levels of bioavailable P (14). A more recently described role of the phytases is their
involvement in pathogenicity causing tissue damage in humans, coordination of the
virulence program in Dickeya dadantii, and mediation of plant infection by Candida
albicans and Xanthomonas, respectively (5, 15, 16).

The diversity and potential of environmental phytases remain largely unexplored as
so far almost all reported functionally characterized phytases were derived from
cultured organisms, including plants, fungi, and bacteria. Based on their catalytic
characteristics, four classes of phytases have been described: histidine acid phytase
(HAPhy), �-propeller phytase (BPPhy), purple acid phytase (PAPhy), and protein tyrosine
phytase (PTPhy). These enzymes are structurally and catalytically dissimilar (14, 17).

In this study, we use a function-based screening approach (18) to identify environ-
mental phosphatases/phytases. By using soil metagenomes as a source, we were able
to recover novel genes encoding phosphatases with phytase activity. Some of the
recovered genes encode protein domains that were not associated with phosphatase
activity before, and others represent new types or subtypes of phytases.

RESULTS
Phosphatase detection strategy. The metagenomic libraries contained approxi-

mately 38,122 to 166,040 clones and were screened for candidates exhibiting phos-
phatase activity using plates with phytate as phosphorus source and BCIP as indicator
(see Fig. S1 in the supplemental material). The quality of the libraries was controlled by
determining the average insert sizes and the percentage of insert-bearing Escherichia
coli clones. The average insert sizes of metagenomic DNA-containing plasmids ranged
from 2.8 to 6.7 kb, and the frequency of clones carrying plasmid inserts was at least 89%
(Table 1).

We recovered 21 positive E. coli clones from functional screens carrying plasmids
harboring one or more ORFs associated with known phosphatase genes and domains
(designation of plasmids is given in Table 1). The entire inserts of the positive clones
were sequenced and taxonomically classified, showing that in all cases the cloned
environmental DNA is of bacterial origin. Most inserts of the positive clones were
affiliated with Terrabacteria, Proteobacteria, and the PVC superphylum with seven, six,
and four representatives, respectively. Within the Terrabacteria group, most of the
inserts (4) were affiliated with Actinobacteria (Table S1).

Thirty-one ORFs encoding putative gene products with similarity to known phos-
phatase enzymes were identified. Signal peptides were detected for 12 of them. The
deduced gene products comprised 214 to 819 amino acids with calculated molecular
masses ranging from 12 to 65.5 kDa and amino acid sequence identities to the closest
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known phosphatases ranging from 25% (Pho14B) to 83% (Pho13) over the full-length
protein (Table 2).

From the 21 positive clones, seven harbored more than one putative phosphatase-
related gene (Table 2). Thus, if two or more potential phosphatase activity-related
genes were present in a positive clone, individual heterologous expression and sub-
sequent phosphatase activity verification were performed. The analysis of colonies
showed that the individual heterologous expression of 24 out of 31 genes led to
phosphatase activity and the corresponding positive phenotype of the respective
recombinant E. coli strains (Table 2).

High phosphatase diversity recovered from soil metagenomes. Phosphatases
can be classified according to the structural fold of the catalytic domains and subclas-
sified into families and subfamilies based on sequence similarities of the phosphatase
domains, as well as by conserved amino acid motifs not belonging to the catalytic
domain (6, 19). However, some are still classified based on their biochemical properties
and biological functions (20).

Among the putative gene products encoded by the 31 candidate genes, alkaline
phosphatases were identified as the most abundant group (five representatives),
followed by histidine phosphatases and phospholipases with four representatives each.
Phosphoserine-phosphatases and protein-tyrosine phosphatases were represented by
three putative genes each. Acid phosphatases were encoded by two genes, while the
plasmid pLP10 harbored an ORF with a deduced gene product showing similarity to a
mismatch repair ATPase (Table 2).

The amino acid sequence analysis revealed the presence of 10 different domains in
the 31 deduced proteins. We detected the alkaline phosphatase and sulfatase super-
family domain (ALP-like cl23718) as the most frequent domain, represented in eight
sequences. The second highest abundance showed the haloacid dehydrogenase do-
main (HAD cl21460), which was identified in six protein sequences. Three out of four
classical phosphatase/phytase domains were detected in this study: the histidine
phosphatase domain (HP with five protein sequences), the tyrosine phosphatase
domain (PTPc with two protein sequences), and the acid phosphatase domain (PAP
with two protein sequences) (Fig. 1). The phylogenetic analyses of the enzyme se-
quences and those harboring the above-mentioned domains revealed different clus-
tering patterns in relation to reference phosphatase sequences for the different groups.
Within the analyzed groups, the clustering of the metagenome-derived enzymes
ranged from clear separation to integrated clustering (Fig. S2).

The HP superfamily (cl11399) is represented by a diverse group of proteins divided
into two branches exhibiting numerous functions (21). Classical members of the HAPhy
share a conserved motif, RHGXRXP, characteristic for this enzyme class. The HAPhy
catalytic reactions are based on the conserved histidine residue in the RHGXRXP motif
(21, 22). In this study, all five phosphatases belonging to the HP superfamily harbored
this histidine residue (Fig. 2A). Three out of five HPs in this survey were encoded by

TABLE 1 Characteristics of the soil metagenomic libraries and designation of plasmids harbored by positive clones

Librarya

No. of
clones

Avg insert
size (kb)

Insert
frequency
(%)

Estimated
library
size (Gb)

No. of positive
clones/Gb

Plasmid(s) of positive
clones (accession no.)

AEW1* 129,748 6.7 91 0.79 1.2 pLP01 (KY931670)
AEW5* 90,300 5.2 89 0.42 2.3 pLP02 (KY931671)
SEW2* 135,240 5.7 95 0.73 9.6 pLP10 (KY931677), pLP14 to

pLP19 (KY931679 to KY931684)
SEW5* 166,040 4.0 95 0.63 1.6 pLP07 (KY931674)
SEW46 38,122 2.8 93 0.17 23.5 pLP03 (KY931672), pLP04 (KY931673),

pLP08 (KY931675), pLP09 (KY931676)
HEW30 53,460 6.1 96 0.31 22.6 pLP13 (KY931678), pLP20 (KY931685),

pLP24 to pLP28 (KY931686 to KY931690)
aAEW, metagenomic libraries derived from the Biodiversity Exploratory Schwäbische Alb; SEW, metagenomic libraries derived from the Biodiversity Exploratory
Schorfheide-Chorin; HEW, metagenomic libraries derived from the Biodiversity Exploratory Hainich-Dün. *, previously generated libraries (39).
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plasmid pLP08. The analysis of the plasmid sequence revealed a tandem organization
of these genes with slight individual sequence variations (Fig. 2A; Fig. S3).

PTPs are well-studied proteins with a characteristic motif (HCX5R) (23, 24). In this
study, two new PTPs (Pho14A and Pho16B) harboring the typical catalytic signature of
the group (Fig. 2B) were detected. Interestingly, Pho16B showed the specific signature

TABLE 2 Gene products encoded by genes associated with phosphatase activity and their observed sequence identities

Gene (accession no.
of protein)

No. of
encoded
amino
acids

Closest similar phosphatase protein,
accession no. (no. of encoded amino acids), organism, E value

Identity to
closest similar
phosphatase
protein (Blast),
no. of amino
acids similar/
total no. (%)

% identity
to closest
similar
phosphatase
protein
(Clustal
alignment)

pho01 (AWN00218) 229 Phosphatidylglycerophosphatase, PIF15492.1 (224), Rhodanobacter sp. strain
TND4EH1, 3E�99

161/213 (76) 72

pho02 (AWN00219)a 339 Phosphoserine phosphatase, AFM25187 (342), Desulfomonile tiedjei DSM 6799, 0.0 251/337 (74) 74
pho03A (AWN00220)a 493 Phosphoesterase, WP_009239878.1 (404), Ralstonia, 2E�9 183/425 (49) 47
pho03B (AWN00221)b 222 Phospholipase/carboxylesterase, ADV48687.1 (334), Cellulophaga algicola DSM

14237, 2E�14
84/181 (46) 27

pho04 (AWN00222) 214 Putative membrane-associated alkaline phosphatase, KGB26473 (203),
Acetobacter tropicalis, 9E�50

92/193 (48) 46

pho07 (AWN00223)a 392 Phosphoesterase family protein, PZS03611.1 (379), Pseudonocardiales bacterium,
1E�111

184/349 (53) 51

pho08A (AWN00224)a 235 Histidine phosphatase family protein, WP_074262886.1 (229),
Paraburkholderia phenazinium, 2E�56

97/191 (51) 49

pho08B (AWN00225)a 236 Histidine phosphatase family protein, WP_090546752.1 (196),
Paraburkholderia caballeronis, 1E�59

97/182 (53) 50

pho08C (AWN00226)a 238 Histidine phosphatase family protein, WP_090546752.1 (196),
Paraburkholderia caballeronis, 2E�57

98/182 (54) 51

pho09C (AWN00227)a 455 Alkaline phosphatase family protein, WP_007415052.1 (407),
Pedosphaera parvula, 0.0

330/413 (66) 63

pho10 (AWN00228) 554 Mismatch repair ATPase, WP_014786775 (599), Terriglobus roseus, 6E�142 246/558 (44) 44
pho13 (AWN00229) 411 Broad-specificity phosphatase PhoEn, WP_071949433.1 (401), Mycobacterium sp.

strain PYR15, 0.0
349/400 (87) 83

pho14A (AWN00230)a,b 229 Protein tyrosine phosphatase (partial), CCZ50566.1 (64), Acidobacteria bacterium,
9E�13

43/111 (50) 48

pho14B (AWN00231)b 305 Phosphoserine phosphatase, PKM89459.1 (276), Firmicutes bacterium, 2E�4 58/215 (27) 25
pho14C (AWN00232)b 356 Phosphatidylserine/phosphatidyl glycerophosphate, AEQ20292 (371), uncultured

bacterium CSLG7, 2E�109
175/357 (49) 48

pho14D (AWN00233)b 602 Protein tyrosine phosphatase, PYO70860.1 (581), Gemmatimonadetes bacterium,
1E�137

244/579 (42) 41

pho15 (AWN00234) 223 Alkaline phosphatase, OFV86354.1 (209), Acidobacteria bacterium, 8E�34 71/167 (43) 41
pho16A (AWN00235) 819 Diguanylate cyclase/phosphodiesterase, WP_067501625.1 (816), Actinoplanes sp.

strain TFC3, 1E�46
105/247 (43) 39

pho16B (AWN00236)a 376 Protein tyrosine phosphatase, WP_042381880.1 (372),
Streptacidiphilus melanogenes, 0.0

257/324 (89) 76

pho17A (AWN00237)a 353 Phosphoserine phosphatase, AFM25187 (342), Desulfomonile tiedjei DSM 6799, 0.0 252/329 (77) 74
pho18 (AWN00238)a 248 Phosphatase PAP2 family protein, WP_093286091.1 (257), Verrucomicrobiaceae

bacterium GAS474, 4E�55
99/200 (50) 46

pho19A (AWN00239) 612 Alkaline phosphatase precursor, AMY11511 (577), Acidobacteria bacterium DSM
100886, 8E�126

230/529 (43) 42

pho20B (AWN00240) 392 Phosphoglycolate phosphatase, RDI59778.1 (337), Microvirga subterranea, 3E�152 248/339 (76) 73
pho24 (AWN00241) 428 PAP2 superfamily protein, SHK15444 (414), Bradyrhizobium lablabi, 3E�141 215/405 (53) 54
pho25B (AWN00242)a,b 526 Phospholipase, WP_052891151 (505), Thermogemmatispora carboxidivorans, 0.0 303/527 (57) 60
pho25C (AWN00243) 252 Phospholipase, WP_006679394.1 (222), Paenibacillus dendritiformis, 0.0 41/101 (41) 28
pho26 (AWN00244)a 559 Alkaline phosphatase family protein, WP_020714678.1 (564),

Acidobacteriaceae bacterium KBS 89, 0.0
434/551 (79) 78

pho27A (AWN00245)a 347 Multispecies: phosphatase, WP_PYV87257.1 (338), Acidobacteria bacterium, 9E�64 249/323 (77) 74
pho27B (AWN00246) 263 Acid sugar phosphatase, GBD30013.1 (265), bacterium HR32, 2E�57 106/254 (42) 39
pho28A (AWN00247)b 490 Nonhemolytic phospholipase C, APW61637.1 (486), Paludisphaera borealis, 0.0 328/454 (72) 69
pho28C (AWN00248)a 232 Histidine phosphatase family protein, WP_106819986.1 (214), Syntrophobacter sp.

strain SbD1, 2E�61
93/170 (53) 46

aSignal peptide detected.
bNo phosphatase activity was detected on indicator plates after cloning ORF into expression vector.
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of the MptpB-like phosphatases characterized by the presence of the unique active site
P-loop submotif HCXXXKDRT. This type of protein has been predicted in several
microorganisms, including pathogens, but never in environmental samples. For the
remaining group of classic phytases detected in this study (PAP), the literature de-
scribes two branches, the PAP1 enzymes, which are Mg2�-dependent enzymes, and the
PAP2 enzymes, which are Mg2� independent, but in all cases the active forms of PAP
phytases were derived from plants (25). We detected the PAPs Pho18 and Pho24, which
are affiliated with bacteria and belong to the Mg2�-independent branch (PAP2 cl00474)
(Fig. 1 and 2C).

Alpha/beta hydrolases (abhydrolases) represent a group of proteins with a high
number of substrates and catalytic functions (26). Two gene products (Pho03B and
Pho25C) contained an abhydrolase domain (Fig. 1). However, only Pho25C showed
phosphatase/phytase activity after individual heterologous expression of the corre-
sponding gene. Abhydrolases exhibit broad substrate specificity, and some members
have been reported with phospholipase activity (27).

Other ORFs such as Pho16A carry the EAL domain, which is present in diverse
bacterial signaling proteins and encodes a phosphodiesterase function (28). Analysis of
Pho10 and Pho14D amino acid sequences indicates the presence of the P-loop_NTPase
superfamily domain (Fig. 1). Enzymes harboring this domain hydrolyze the beta-gamma
phosphate bond of, e.g., ATP and GTP (29). In this study, Pho10 showed phosphatase
activity, while Pho14D as part of the clone harboring plasmid pLP14 showed none.
Pho14C showed no phosphatase activity after individual heterologous expression of
the corresponding gene. The pho14C gene product harbors the phospholipase D
catalytic domain (PLDC_SF domain) (30).

SNARE-associated proteins with phosphatase activity harbor a new motif. In 19
out of 21 positive clones, we identified at least one gene encoding a protein domain

FIG 1 General architecture and domains of the retrieved phosphatases: ALP, alkaline phosphatases and sulfatases (cl23718); HAD, haloacid dehalogenase
(cl21460); HP, histidine phosphatase (cl11399); PAP2, phosphatidic acid phosphatase (cl00474); PTPs, protein tyrosine phosphatases (cl21483); Y phosphatase
3C superfamily (cl6249); P-loop NTPase superfamily (cl21455); abhydrolase superfamily (cl21494); PLDc, phospholipase D (cl15239); EAL superfamily (cl00290);
SNARE-associated superfamily (cl00429).
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associated with catalytic activity of phosphatases. In contrast, the phosphatase-related
genes of plasmids pLP04 and pLP15 did not encode known catalytic domains or
signatures directly or indirectly associated with phosphatases. Clones carrying these
plasmids showed significant phosphatase activity, and the products Pho04 and Pho15
showed sequence similarity to other previously reported proteins carrying the SNARE
domain. However, both proteins shared overall sequence identity to previously re-
ported phosphatases (Table 2). After individual heterologous expression of pho04 and
pho15, phosphatase activity was confirmed for both gene products. Pho04 and Pho15
hold the SNARE-associated domain DedA. SNARE-associated proteins are classified as
structural proteins that function as a protein-protein interaction module (31). To our
knowledge, no proteins with SNARE domains have been previously discovered to
possess phosphatase activity.

We performed an alignment based on the pho04 and pho15 gene products, which
revealed a shared conserved region (Fig. 3). Next, we analyzed all 56,539 sequences
associated with the SNARE-associated Golgi proteins InterPro entry (IPR032816) with
respect to motifs that were similar to those found in Pho04 and Pho15. A total of 905
sequences showed the conserved sequence pattern or a similar form. The sequence
analysis revealed that Pho04 and Pho15 and the other 905 SNARE-associated
(IPR032816) sequences share the particular amino acid arrangement ESSF(F/L/I/V)P.
Notably, with respect to all analyzed proteins the identified motif was mostly from
bacteria and detected outside the SNARE domain (cl00429) (examples are depicted in
Fig. 3). Pho04 harbors the SNARE domain but shows 48% sequence identity to a
putative membrane-associated alkaline phosphatase from Acetobacter tropicalis, while
the closest phosphatase-related hit for Pho15 was an alkaline phosphatase from an
Acidobacteria representative (43% identity) (Table 2).

ALP-like superfamily and non-plant-derived PAP representatives showing phy-
tase activity. We selected the gene products of pho07 and pho18 for comprehensive

FIG 2 Multiple sequence alignments of conserved regions of phosphatases belonging to the HP, PTP,
and PAP2 superfamily. (A) Blue line, typical conserved HP phytase motif (RHGXRXP) in AEI69378 (phytase
from Yersinia mollaretii) and AHA61669 (histidine acid phosphatase phytase from Thermothelomyces
thermophila). Black line, the variations of the motif found in this study. (B) Typical PTP motif (HCX5R) in
Pho14A, Pho16B, AAQ13669 (myoinositol hexaphosphate phosphohydrolase from Selenomonas rumi-
nantium), CAE79111 (protein tyrosine phosphatase 2 from Bdellovibrio bacteriovorus HD100), and
CDI64125 (protein tyrosine phosphatase from Xylophilus ampelinus). (C) Catalytic sites of the PAP2
superfamily (cl00474), in Pho18, Pho24, CAI37740 (putative phosphatase from Corynebacterium jeikeium),
NP_639570 (phosphatase from Xanthomonas campestris), and BAC52270 (phosphatase from Bradyrhizo-
bium diazoefficiens).
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biochemical characterization. The gene product of pho07 does not contain any of the
currently known catalytic domains associated with phytase activity. The only detected
match of Pho07 was a nonspecific hit for the ALP-like superfamily (cl23718). In the case
of pho18, the corresponding gene product comprises a domain of the purple acid
phosphatases (PAP-like), which represents a type of phytase reported to be present in
many organisms but is significantly expressed only in a very limited number of plant
species (17, 32).

We successfully detected phytase activity of both purified enzymes, Pho07 and
Pho18. Thus, to our knowledge Pho07 represents a new type of phytase and Pho18
represents the first PAP2 bacterial phytase. Furthermore, these two enzymes represent
two out of the three reported environmental phytases derived from functional metag-
enomics. Both enzymes are putatively secreted by the natural bacterial host (Table S1)
as the protein sequences harbor potential signal peptides of 30 (Pho07) and 22 (Pho18)
amino acids at the N terminus. Pho07 shows the presence of an ALP-like superfamily
domain (cl23718) (Fig. 1) and highest similarity to a phosphoesterase from a Pseudono-
cardiales representative (51% identity) (Table 2). Pho18 was most similar (50% identity)
to an acid phosphatase from the Verrucomicrobiaceae member GAS474 (Table 2).

Pho07 and Pho18 exhibited optimal activity at 30 and 50°C, respectively (Fig. 4).
After incubation of Pho07 for 4 h at 30°C, the enzyme retained more than 80% activity
(Fig. S4). Incubation for 3 h at 45 and 60°C resulted in a substantial reduction (approx-
imately 50%) and complete loss of enzyme activity, respectively. Pho18 retained

FIG 3 Partial multiple sequence alignment of Pho04, Pho15, and UniProt entries of SNARE-associated
Golgi proteins. A detected conserved motif and its position in relation to the SNARE family are shown.
The calculated consensus is depicted at the bottom. I9AQQ3, Bacteroides fragilis; W6I1B9, Granulibacter
bethesdensis; R6XSV9, Prevotella sp.; N6XI35, Thauera sp.; and A0A0Q4IYW5, Sphingomonas sp.

FIG 4 Effect of temperature on the relative activity of Pho07 and Pho18. All measurements were
performed following the phytase standard assay at temperatures between 10 and 70°C. A 100% relative
activity represented 2.9 and 1.04 U/mg for Pho07 and Pho18, respectively.
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approximately 80% activity after incubation for 6 h at 40°C but lost more than 50% of
its activity at temperatures �50°C (Fig. S4).

We evaluated the optimal pH range using different buffer systems at 30°C for Pho07
and at 50°C for Pho18. Pho07 exhibited the highest activity at pH 4.0 (Fig. 5) and
retained more than 80% of its activity between pH 5.0 and 7.0. Low or no enzymatic
activity was detected at pH values lower than 2.0 and higher than 8.0. Pho18 showed
the highest activity at pH 6.0 and retained more than 70% of its activity at pH 5.0 and
7.0 (Fig. 5). To determine the substrate specificity of Pho07 and Pho18, we tested
several phosphorylated compounds as the substrates (Fig. 6). Pho07 released phos-
phate from all tested compounds with the highest activity toward phytate and lowest
activity toward pyrophosphate. Pho18 showed the highest relative activity with pyro-

FIG 5 Effect of pH on the relative activity of Pho07 and Pho18. The measurements were performed with
different buffer systems according to the phytase standard assay at the optimal temperature of each
protein. The average from triplicate experiments is presented. Glycine-HCl buffer, squares; sodium
acetate buffer, triangles; Tris-maleate buffer, circles; glycine-NaOH buffer, diamonds. 100% relative
phytase activity represented 4.84 and 1.39 U/mg for Pho07 and Pho18, respectively.

FIG 6 Substrate specificity of Pho07 and Pho18. Specific activities corresponding to 100% relative
phytase and pyrophosphatase activities of Pho07 and Pho18 were 2.98 and 13.3 U/mg, respectively. All
measurements were performed in triplicate and under optimal pH and temperature conditions for each
enzyme.
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phosphate as the substrate and no significant activity with pyridoxal phosphate and
NADP. As Pho07 and Pho18 exhibited the highest activity with phytate and pyrophos-
phate, respectively, we used these substrates for calculation of kinetic constants
(Table 3).

Finally, we measured the effect of various metal ions and potential enzyme inhib-
itors on the activity of Pho07 and Pho18 with phytate as the substrate (Fig. 7). The
metal ions showed different effects on the activity of the analyzed proteins. Al3�, Mn2�,
and Zn2� increased the activity of Pho07, while the activity of Pho18 decreased in the
presence of Zn2�. Fe2� had a strong inhibitory effect on the activity of both enzymes.
With respect to potential inhibitors, the strongest inhibitory effects were observed at
concentrations of 1 mM. Pho07 and Pho18 activities were reduced by most of the

TABLE 3 Kinetic values of Pho07 and Pho18 under optimal pH and temperature conditions

Enzyme

Mean (3 expts) � SD

Km (mM) Vmax (�mol min�1 mg�1) kcat (min�1) kcat/Km (min�1 M�1)

Sodium
phytate Pyrophosphate

Sodium
phytate Pyrophosphate

Sodium
phytate Pyrophosphate

Sodium
phytate Pyrophosphate

Pho07 0.49 �
0.18

1.09 � 0.03 6.50E�03 �
1.01E�06

1.30E�04 �
8.05E�06

694 �
12.43

516 � 22.98 3,410 �
122

4,991 � 155

Pho18 0.96 �
0.09

0.22 � 0.04 2.82E�03 �
2.01E�04

4.03E�04 �
4.42E�07

152 �
9.83

1,088 � 34.09 1,550 �
18

49,200 � 274

FIG 7 Effect of (A) metal ions and (B) potential inhibitors at 1 mM on the relative activity of Pho07 and
Pho18. Specific activity values expressed as percentages of the control reactions are 3.8 and 1.3 U/mg for
Pho07 and Pho18, respectively (A), and 3.5 and 1.22 U/mg for Pho07 and Pho18 (B), respectively.
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tested inhibitors. Oxalate was the strongest inhibitor for Pho07, while the activity of
Pho18 was completely depleted in the presence of SDS (Fig. 7).

DISCUSSION

Apart from the relationship with pathogenesis and the economic relevance, phos-
phatases/phytases are also important for reduction of phosphorus pollution and its
impact on diverse environments (8, 11, 13). However, only a few phosphatases, most of
them from cultivable organisms, have been comprehensively analyzed. The discovery
of new phosphatases from environmental samples as well as engineering of available
representatives of this enzyme group is considered a major research challenge (33). So
far, few studies have attempted to discover phosphatases/phytases encoded by met-
agenomes using a function-based approach. Within these studies, only three genes and
one of the corresponding proteins which exhibited phytase activity were recovered and
described (34–36). We found 31 candidate genes, and 24 of them encoded phospha-
tase activity after individual heterologous expression (Table 2). For the remaining seven
genes, activity was not detected at individual gene level. The corresponding gene
products might be part of larger phosphatase units or require other components
encoded by the insert to show phosphatase activity.

Approximately 55% of the gene products described in this study showed low
protein sequence identity to known phosphatases (50% or less) (Table 2), which
demonstrates the capacity of our screening method to identify novel enzymes with
phosphatase activity from environmental samples. It has been previously discovered
that the absence of free phosphate and the addition of phytate to medium induce the
expression of phytases (37). Therefore, it is indicated that many of the detected genes
encode new enzymes with phytase activity as observed for Pho07 and Pho18.

ALP phosphomonoesterases widely occur in nature. They preferably hydrolyze
phosphate esters at pH levels higher than 7.0 (38). The ALP-like superfamily (cl23718)
was the most abundant domain we detected in the recovered hits derived from our soil
metagenomic libraries. The pH of the soil samples used ranged from 3.1 to 4.5 (39).
Nevertheless, acid phosphatase genes are considered to be more abundant than
alkaline phosphatase genes in low-pH soils. This might be due to the fact that most
studies on the prevalence of alkaline and acid phosphatase genes are based on
PCR-based gene amplification using specific known genes from cultured individual
species as starting point for primer design (40). This approach covers only a small
fraction of the existent functional phosphatase genes. Here, we revealed the existence
of so-far-unknown functional ALPs with low identity toward known phosphatases,
evidencing the potential of our functional metagenomic approach for the discovery of
new ALP-phosphatases from environmental samples.

To our knowledge, enzymes from the ALP-like superfamily entry (cl23718) exhibiting
phytase activity have not been described or comprehensively characterized yet. Nev-
ertheless, numerous proteins are mentioned in literature or annotated in databases as
alkaline phosphatases with phytase activity, but their molecular signatures and do-
mains are associated mostly with the classic phytases (14). The analysis by Lim et al. (41)
focusing on the distribution and diversity of phytate-mineralizing bacteria considers
alkaline phosphatases to be ubiquitous in living organisms and shows that they
dephosphorylate a wide range of P compounds, but not phytate. Thus, the functional
proteins carrying the ALP-like superfamily domain reported in this study (7) represent
a new group of phytase enzymes. The phylogenetic analysis of the ALP-like members
revealed that most of our metagenome-derived enzymes cluster separately from
previously reported alkaline phosphatases/phytases (see Fig. S2 in the supplemental
material).

The biochemical analysis of a selected ALP-like member, Pho07, showed that its
temperature optimum is similar to the metagenome-derived alkaline phosphatase
(mAP). This enzyme is one of the few reported phosphatases derived from environ-
mental samples and not associated with cultures (42). Furthermore, the optimal pH
range of Pho07 (4.0 to 5.0) is similar to that of other soil bacterial phytases (43). Among
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the tested substrates, Pho07 showed the highest activity toward phytate, indicating
that its primary activity is related to the degradation of this compound. Several studies
report an enhancing effect of Ca2� and Mn2� on phytase activity (43). Nevertheless, the
activity of Pho07 increased in the presence of Mn2�, but it was not affected by Ca2�.
Among the potential inhibitors, wolframate and oxalate did not show significant effects
on the activity of a phytate-degrading enzyme from Pantoea agglomerans (44) but
reduced the relative activity of Pho07 to values lower than 20%. Since Pho07 is the first
reported phytase carrying an ALP-like domain, it is not possible to compare its kinetic
parameters (Table 3) with those from phytases of the same type.

The enzyme Pho18 belongs to the known PAPphy group of phytases. Only a few
examples of characterized PAP proteins with phytase activity have been previously
reported, and all of them were derived from plants (25). However, the presence of
PAP-related genes in mammals, fungi, and bacteria has been indicated based on
annotated genome sequences. The taxonomic analysis of pho18 and the complete
insert harboring it revealed a bacterial origin and a phylogenetic association with the
genus Terrimicrobium of the Verrucomicrobia phylum (Table S1). In addition, biochem-
ical analysis confirmed phytase activity of Pho18. Therefore, we report here for the first
time a PAP2 phosphatase with phytase activity, which is of nonplant origin and
metagenome derived. Moreover, the phylogenetic analysis showed that Pho18 clusters
separately from other previously reported PAPs with phytase activity. The reason for
this is most likely the vegetal origin of the previously reported PAP phytases (Fig. S2).
To our knowledge, the study of Ghorbani Nasrabadi et al. (45) is the only attempt to
identify PAP phytases derived from bacteria. In their study, an indirect association
between phytase activity and the amplification of a putative PAP gene in the bacterial
host was established (45).

The optimal temperature of Pho18 (50°C) is similar to optimal temperatures of other
PAPs derived from wheat (45°C) and soybeans (58°C) (14). Furthermore, the behavior of
Pho18 at temperatures higher than 55°C (Fig. 4) is similar to that reported for soybean
phytases (46). An increase of phytase activity mediated by the addition of Mn2� was
reported for PAP phytases (32, 43). We did not register significant increases in the
activity of Pho18 in the presence of any cation. However, the enzyme was strongly
inhibited by Zn2�, which is in contrast to other PAP phytases showing higher activity
in the presence of this ion. Although Pho18 exhibits higher affinity to pyrophosphate,
the kinetic parameters using phytate as the substrate are similar to PAP phytases from
Arabidopsis (Table 3) (47).

We found the HAD (cl21460) domain as the second most abundant domain in our
survey. The HAD domain is present in proteins of diverse organisms, including bacteria,
archaea, and eukaryotes (48). This domain is carried by proteins able to catalyze a
variety of biological functions and act on a wide range of substrates (19). Numerous
members of the HAD superfamily can transfer phosphoryl groups or act as phospho-
anhydride hydrolase P-type ATPases (49). Since proteins harboring this domain are
involved in a variety of cellular processes, it is not surprising that they can be isolated
through functional metagenomic screening for phosphatases.

One of the most remarkable findings in this study was the detection of the
SNARE-associated domain (DedA, InterPro entry IPR032816) of Pho04 and Pho15. So far,
the role of the SNARE-associated domain (DedA) has not been deeply studied. Bacterial
DedA family mutants display phenotypes evidencing cell division defects, temperature
sensitivity, and altered membrane phospholipid composition among others (50). DedA-
SNAREs have been reported to promote or block membrane fusion, particularly during
bacterial pathogenic processes (51). To our knowledge no phosphatase activity has
been reported for proteins harboring SNARE-associated domains. Moreover, the par-
ticular signature ESSF(F/L/I/V)P has been overlooked until now.

In conclusion, we demonstrate here for the first time the potential of functional
metagenomics to exploit the phosphatase pools hidden in environmental samples. Our
study revealed new phosphatases/phytases with diverse and, so far, largely unknown
characteristics. Furthermore, we discovered the existence of a new type of phytases
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(ALP-like-phy) and found that the classical PAPphy are also functional in microorgan-
isms and not only in plants.

MATERIALS AND METHODS
Soil sampling, DNA extraction, and construction of metagenomic libraries. Genes encoding

phosphatases were recovered from metagenomic libraries derived from A horizons of soil samples, which
had been taken from forest sites of the German Biodiversity Exploratories Schwäbische Alb (samples
AEW1 and AEW5), Hainich-Dün (sample HEW30), and Schorfheide-Chorin (samples SEW2, SEW5, and
SEW46). Collection of samples was performed previously as described by Kaiser et al. (52) and Nacke et
al. (39), respectively. Soil characteristics are available in Nacke et al. (39). Names of constructed
metagenomic libraries refer to the designation of the samples from which the libraries were derived.
Metagenomic libraries were generated using the method described by Nacke et al. (39). The plasmid
libraries AEW1, AEW5, SEW2, and SEW5 have been previously generated by employing the same
approach (39).

Function-based screening and identification of ORFs encoding phosphatase activity. For
function-based screening of metagenomic libraries, we used our recently described method (18).
Small�insert libraries were constructed using the plasmid pCR-XL-TOPO as vector (Invitrogen GmbH,
Karlsruhe, Germany) and Escherichia coli DH5� [F– �80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1
hsdR17(rK

– mK
�) phoA supE44 �– thi-1 gyrA96 relA1] as screening host. Modified Sperber medium

(16 g/liter agar, 10 g/liter glucose, 500 mg/liter yeast extract, 100 mg/liter CaCl2, and 250 mg/liter MgSO4)
was used a screening medium supplemented with 2.5 g/liter phytic acid as sole P source and 25 �g/ml
of 5-bromo-4-chloro-3-indolyl phosphate (BCIP) (53). The modified Sperber minimal medium used in this
study was used for detection of phosphatase/phytase activity of the library-bearing E. coli clones due to
the presence of phytate and the absence of other inorganic P sources (37). The slight background activity
observed after more than 48 h of incubation of the host strain is probably caused by the alkaline
phosphatase-encoding gene (phoA) of the host. Positive clones show an intense dark blue colony color,
whereas negative colonies exhibit first a white and subsequently a light blue or green color after
prolonged incubation.

The plasmids derived from positive clones were sequenced by the Göttingen Genomics Laboratory
(Göttingen, Germany), and ORF prediction was performed as described by Nacke et al. (39). Next, the
obtained sequences were analyzed by using the Basic Local Alignment Search Tool (BLAST) (54). Only
plasmids harboring at least one ORF potentially associated with phosphatase activity were considered
candidates for further analysis and designated pLP01 to pLP04, pLP07 to pLP10, pLP13 to pLP20, and
pLP24 to pLP28. Full-length sequence alignment was performed between the candidates and their
closest related sequence by using Clustal Omega (55). All coding sequences were examined for
similarities to known protein families and domains by performing searches against the InterPro collection
of protein signature databases and conserved domain databases (CDD) (56, 57). The prediction of signal
peptides of the proteins was performed by using SignalP 4.0 (58). Additionally, all inserts were taxo-
nomically classified by using the software Kaiju 1.5.0 (59). Alignments of the deduced protein sequences
and phylogenetic trees of the proteins were performed by using MEGA 7 (60). The maximum likelihood
method based on the equal input model was applied. The bootstrap values were calculated from 500
replicates, and branches corresponding to partitions reproduced in fewer than 50% of bootstrap
replicates were collapsed. Alignments were visualized by using Jalview version 2 (61).

Candidate genes encoding domains that have not been previously associated with phosphatase
activity (pLP04 and pLP15) and inserts comprising more than one potential phosphatase-encoding gene
were amplified and subsequently cloned. Specific primers for each target gene were designed, and the
pET101/D directional TOPO cloning kit was used for cloning as recommended by the manufacturer
(Thermo Fisher Scientific GmbH, Schwerte, Germany). PCR was carried out in a 50-�l volume containing
10 �l of 5-fold Phusion GC buffer, 200 �M (each) dNTP, 1.5 mM MgCl2, 2 �M (each) primers, 2.5% DMSO,
0.5 U Phusion High Fidelity Hot Start DNA polymerase (Thermo Fisher Scientific GmbH, Schwerte,
Germany), and 25 ng recombinant plasmid. PCR conditions were as follows: initial denaturation at 98°C
for 2 min followed by 30 cycles of denaturation at 98°C for 1.5 min, annealing at 58°C for 1 min, and
extension at 72°C for 1 min, followed by a final extension at 72°C for 5 min. Subsequently, the amplified
genes were individually cloned into the expression vector pET 101/D and transformed into E. coli BL21
[F– ompT hsdSB(rB

– mB
–) gal dcm (DE3)] as recommended by the manufacturer (Thermo Fisher Scientific

GmbH). The resulting recombinant plasmid-bearing E. coli BL21 strains were subsequently plated on
Sperber minimal medium agar supplemented with phytic acid (2.5 g/liter), BCIP (25 mg/ml), and IPTG
(0.25 mM) for phosphatase activity detection.

Heterologous expression of pho07 and pho18 and purification of gene products. The genes
pho07 and pho18 carried by plasmids pLP07 and pLP18, respectively, were selected for heterologous
expression with the pET-20b (�) (V5-epitope/His tag) vector (Merck KGaA, Darmstadt, Germany) as
recommended by Villamizar et al. for metagenome-derived phosphatases (18). Crude extracts containing
the target proteins were derived from the expression strain E. coli BL21 and filtered as described by
Villamizar et al. (18). For purification of the proteins, the filtered crude extracts were then transferred to
nickel columns (Protino2000 Ni-Ted columns; Macherey and Nagel, Düren, Germany). The equilibration
of the columns and the washing steps were performed with 50 mM HEPES buffer (pH 8.0) containing
200 mM NaCl, followed by three elution steps with 50 mM HEPES, 200 mM NaCl, and 250 mM imidazole.
Pho07 was further purified by using the Äkta FPLC system (GE Healthcare, Little Chalfont, United
Kingdom) via hydrophobic interaction chromatography. A 15PHE 4.6/100PE Tricorn high-performance
column (GE Healthcare, Little Chalfont, United Kingdom) in a total bed volume of 1.7 ml with a 2-ml/min
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flow rate at room temperature was utilized. Pho18 was purified through ion-exchange chromatography,
by using a cation exchanger (SOURCE15S) in a prepacked Tricorn column (4.6/100 PE) (GE Healthcare,
Little Chalfont, United Kingdom) with a gel bed volume of 1.7 ml at a 1-ml/min flow rate and room
temperature. The purity of the resulting protein preparations was analyzed by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), and the detection of V5 epitope-carrying proteins was
achieved by Western blot hybridization, as described by Waschkowitz et al. (62).

Enzyme assays. Phosphatase activity was determined at 355 nm by detecting the release of
inorganic phosphorus according to the ammonium molybdate method developed by Heinonen and
Lahti with modifications (44, 63) as follows: the enzyme solutions (10 �l) were preincubated for 3 min at
40°C in 380 �l of 50 mM sodium acetate buffer (pH 5). Subsequently, 10 �l of 100 mM phytic acid
dipotassium salt (Sigma-Aldrich, Munich, Germany) was added, and the mixture was incubated for 30 min
at 40°C. To stop the reaction, 1.5 ml of freshly prepared AAM solution (acetone–5 N H2SO4–10 mM
ammonium molybdate) and 100 �l of 1 M citric acid were added. Blanks were prepared by adding AAM
solution prior to the addition of enzyme. The absorbance (355 nm) was measured using the Ultrospec
3300 Pro (Amersham plc, Little Chalfont, United Kingdom).

To assess the influence of pH on purified enzymes, the activity was measured at 40°C in a pH range
from 1 to 9. The following overlapping buffer systems were used: 50 mM glycine-HCl (pH 1.0 to 3.5),
50 mM sodium acetate (pH 3.5 to 6.0), 50 mM Tris-maleate acid (pH 6.0 to 8.0), and 50 mM glycine-NaOH
(pH 7.0 to 9.0). After the optimal pH was determined for Pho07 and Pho18, the influence of temperature
on enzymatic activity was analyzed. The thermal stability was checked after incubation of the purified
enzymes at different temperatures.

The substrate specificity of the phosphatases was determined using the standard assay described
above under the optimal temperature and pH for each enzyme (substrate concentration, 10 mM).
Furthermore, the effects of cations (Al3�, Ca2�, Co2�, Fe2�, Fe3�, Mn2�, Ni2�, and Zn2�) and the potential
inhibitors (EDTA, citrate, tartrate, wolframate, oxalate, sodium dodecyl sulfate (SDS), and dithiothreitol
(DTT) at concentrations of 0.1 and 1 mM were analyzed.

For the kinetic constants, all measurements were performed in triplicate under optimal pH and
temperature conditions using phytic acid and pyrophosphate as the substrates. The data were analyzed
by the Sigma Plot Enzyme Kinetic Module version SigmaPlot 12.0 (Systat Software, Inc., San Jose, CA).

Sequence accession numbers. The nucleotide sequences of plasmids listed in Table 1 have been
submitted to the National Center for Biotechnology Information (NCBI) GenBank database under the
accession numbers indicated: pLP01 (Pho01), KY931670; pLP02 (Pho02), KY931671; pLP03 (Pho03A and
-B), KY931672; pLP04 (Pho04), KY931673; pLP07 (Pho07), KY931674; pLP08 (Pho08A to -C), KY931675;
pLP09 (Pho09C), KY931676; pLP10 (Pho10), KY931677; pLP13 (Pho13), KY931678; pLP14 (Pho14A to -D),
KY931679; pLP15 (Pho15), KY931680; pLP16 (Pho16A and -B), KY931681; pLP17 (Pho17A), KY931682;
pLP18 (Pho18), KY931683; pLP19 (Pho19A), KY931684; pLP20 (Pho20B), KY931685; pLP24 (Pho24),
KY931686; pLP25 (Pho25B and -C), KY931687; pLP26 (Pho26), KY931688; pLP27 (Pho27A and -B),
KY931689; and pLP28 (Pho28A and Pho28C), KY931690.
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Fig. S1. Sperber medium indicator plate containing the negative control (E. coli DH5α carrying pCR-XL-TOPO) and a 
typical positive E. coli clone (E. coli DH5α carrying plasmid pLP03). 
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Fig. S2. Phylogenetic trees of the retrieved phosphatases. Colors of each phylogenetic tree are consistent with the 
designated colors to the domains in Fig. 1. 
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ALP-like (Alkaline phosphatases and sulfatases cl23718): AGR55863.1 alkaline phytase 

Bacillus subtilis, ADZ99372.1 beta-propellar phytase Bacillus sp, ABP02074.1 3-phytase 

Bacillus licheniformis, WP_046163127.1 alkaline phosphatase Pseudomonas, 

WP_062274650.1 alkaline phosphatase Rhizobium; HAD: (Haloacid dehalogenase 

superfamily cl21460): KZV11788.1 enzyme PHM8 Saccharomyces cerevisiae, 

WP_008764352.1 Cof-type HAD-IIB hydrolase Bacteroides, GAX71936 glycerol-1-

phosphatase Saccharomyces cerevisiae, AAC43183.1 E-1 enzyme from Klebsiella oxytoca, 

ENZ46626 phosphatase Clostridium bolteae; HP (Histidine phosphatase cl11399): 

AEQ29498.1 histidine acid phytase, partial Serratia sp, AEI69378.1 phytase Yersinia 

mollaretii, XP_025481761.1 3-phytase  Aspergillus neoniger; PAP2 (Phosphatidic acid 

phosphatase cl00474): XP_015631975.1 purple acid phosphatase Oryza sativa, 

ACR23331.1 purple acid phosphatase Hordeum vulgare, ACR23326.1 purple acid 

phosphatase Triticum aestivum; PTPs (Protein tyrosine phosphatases cl21483): Q0SFJ4 

Possible tyrosine protein phosphatase Rhodococcus jostii, WP_011797517.1 PTP 

Acidovorax citrulli, P96830 PTP Mycobacterium tuberculosis, ABC69367 protein tyrosine 

phosphatase-like inositol polyphosphate phosphatase Selenomonas lacticifex, 

AAQ13669.1 myo-inositol hexaphosphate phosphohydrolase Selenomonas ruminantium, 

ABC69359.4 PTP-like phytase Selenomonas ruminantium; P-loop_NTPase superfamily 

cl21455: AEP88384.1 protein YvcJ Bacillus subtilis, Mrp protein Dictyoglomus turgidum, 

CAA64779.1 Nbp35p protein Saccharomyces cerevisiae; Abhydrolase superfamily 

cl21494: LIP1_DIURU Diutina rugosa, 1QE3_A  para-nitrobenzyl esterase Bacillus subtillis, 

WP_014115247.1 carboxylesterase/lipase family protein Bacillus; PLDc: Phospholipase 

D cl15239: WP_109485171.1 phosphatidylserine synthase Occallatibacter savannae, 

WP_011681875.1 phosphatidylserine/phosphatidylglycerophosphate/cardiolipin 

synthase-like Candidatus Solibacter usitatus, WP_085199562.1 phospholipase 

Mycobacterium fragae, WP_108063934.1 cardiolipin synthase Spartobacteria; EAL 

superfamily cl00290: ACY88111.1 protein STM14_1632 Salmonella enterica, ABR76592.1 

hypothetical protein KPN_01159 Klebsiella pneumoniae, AAP17004.1 hypothetical 

protein S1641 Shigella flexneri, AAK25358.1 GGDEF family protein Caulobacter vibrioides. 

SNARE-associated superfamily cl00429: WP_005788593.1 DedA protein Bacteroides, 

WP_025286307.1 DedA protein Granulibacter bethesdensis, WP_118191286.1 DedA 

protein Prevotella copri. 
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Fig. S3. Insert of the plasmid pLP08 showing the tandem organization and relative position of the candidate genes 
pho08 A, B and C. 
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Fig. S4. Thermal stability of Pho07 (a) and Pho18 (b). All measurements were performed following the phytase standard 
assay. Specific activities corresponding to 100% relative phytase activity are 3.14 (a) and 1.61 (b) U/mg. The average 
of triplicate experiments is presented. 
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Table S1. Taxonomic classification of inserts from the positive clones harboring phosphatase-related genes by using 
KAIJU 1.5.0. 
 

Plasmid Taxonomic classification of insert 
pLP01 Cellular organisms; Bacteria; Proteobacteria; Gammaproteobacteria; 

Xanthomonadales; Rhodanobacteraceae; Rhodanobacter; Rhodanobacter sp. C03  
pLP02 Cellular organisms; Bacteria; environmental samples; uncultured bacterium  
pLP03 Cellular organisms; Bacteria; Terrabacteria group; Actinobacteria; Actinobacteria; 

Streptomycetales; Streptomycetaceae; Streptacidiphilus; Streptacidiphilus 
jiangxiensis  

pLP04 Cellular organisms; Bacteria; Proteobacteria; Alphaproteobacteria; Caulobacterales; 
unclassified Caulobacterales; Caulobacterales bacterium RIFOXYB1_FULL_67_16  

pLP07 Cellular organisms; Bacteria; Terrabacteria group  
pLP08 Cellular organisms; Bacteria; Proteobacteria; Oligoflexia; Bdellovibrionales  
pLP09 Cellular organisms; Bacteria; PVC group; Verrucomicrobia; unclassified 

Verrucomicrobia; unclassified Verrucomicrobia (miscellaneous); Verrucomicrobia 
bacterium RIFCSPLOWO2_12_FULL_64_8  

pLP10 Cellular organisms; Bacteria  
pLP13 Cellular organisms; Bacteria; Terrabacteria group; Actinobacteria; Actinobacteria; 

Corynebacteriales; Mycobacteriaceae; Mycobacterium; environmental samples; 
uncultured Mycobacterium sp.  

pLP14 Cellular organisms; Bacteria; Terrabacteria group; Chloroflexi; unclassified 
Chloroflexi; unclassified Chloroflexi (miscellaneous); Chloroflexi bacterium 
13_1_40CM_55_7  

pLP15 Cellular organisms; Bacteria; PVC group; Verrucomicrobia; Opitutae; unclassified 
Opitutae; Opitutae bacterium TMED102  

pLP16 Cellular organisms; Bacteria; Terrabacteria group; Actinobacteria; Actinobacteria; 
Streptomycetales; Streptomycetaceae; Streptacidiphilus; Streptacidiphilus 
melanogenes  

pLP17 Cellular organisms; Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; 
Bradyrhizobiaceae; Bradyrhizobium  

pLP18 Cellular organisms; Bacteria; PVC group; Verrucomicrobia; Spartobacteria; 
Terrimicrobium; Terrimicrobium sacchariphilum;  

pLP19 Cellular organisms; Bacteria  
pLP20 Cellular organisms; Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; 

Bradyrhizobiaceae; Bradyrhizobium; Bradyrhizobium paxllaeri  
pLP24 Cellular organisms; Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales; 

Bradyrhizobiaceae; Bradyrhizobium; Bradyrhizobium sp. AS23.2  
pLP25 Cellular organisms; Bacteria; PVC group; Verrucomicrobia; unclassified 

Verrucomicrobia; unclassified Verrucomicrobia (miscellaneous)  
pLP26 Cellular organisms; Bacteria; Acidobacteria; Acidobacteriia; Acidobacteriales; 

Acidobacteriaceae; unclassified Acidobacteriaceae; Acidobacteriaceae bacterium 
KBS 89  

pLP27 Cellular organisms; Bacteria; Terrabacteria group; Chloroflexi; Ktedonobacteria; 
Ktedonobacterales; Ktedonobacteraceae; Ktedonobacter  

pLP28 Cellular organisms; Bacteria; Terrabacteria group; Actinobacteria; Actinobacteria; 
Streptomycetales; Streptomycetaceae; Streptomyces; Streptomyces griseoplanus  
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Abstract: Protein tyrosine phosphatases (PTPs) fulfil multiple key regulatory functions. Within the 

group of PTPs, the atypical lipid phosphatases (ALPs) are known for their role as virulence factors 

associated with human pathogens. Another group of PTPs, which is capable of using inositol-

hexakisphosphate (InsP6) as substrate, are known as phytases. Phytases play major roles in the 

environmental phosphorus cycle, biotechnology, and pathogenesis. So far, all functionally 

characterized PTPs, including ALPs and PTP-phytases, have been derived exclusively from isolated 

microorganisms. In this study, screening of a soil-derived metagenomic library resulted in 

identification of a gene (pho16B), encoding a PTP, which shares structural characteristics with the 

ALPs. In addition, the characterization of the gene product (Pho16B) revealed the capability of the 

protein to use InsP6 as substrate, and the potential of soil as a source of phytases with so far 

unknown characteristics. Thus, Pho16B represents the first functional environmentally derived 

PTP-phytase. The enzyme has a molecular mass of 38 kDa. The enzyme is promiscuous, showing 

highest activity and affinity toward naphthyl phosphate (Km 0.966 mM). Pho16B contains the 

HCXXGKDR[TA]G submotif of PTP-ALPs, and it is structurally related to PtpB of Mycobacterium 

tuberculosis. This study demonstrates the presence and functionality of an environmental gene 

codifying a PTP-phytase homologous to enzymes closely associated to bacterial pathogenicity. 

Keywords: metagenomics; phosphatases; phytases; promiscuous enzymes; metagenomic library 

1. Introduction

Since the emergence of next generation sequencing and omics approaches, the genetic material 

of numerous organisms, including bacterial, plant, and animal pathogens, has been analyzed. 

Genome analysis of single organisms, together with metagenomic and metaproteomic surveys 

comprising diverse environmental samples, provided an improved understanding of microbial 

biodiversity and the relationship of diversity with ecological, biotechnological, evolutionary or 

pathogenic processes [1–3]. 
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Protein tyrosine phosphatases (PTPs) are an example of enzymes associated with virulence 

whose environmental homologues have not fully been studied. PTPs have multiple roles in cell 

metabolism. For many PTPs, their physiological substrate has not been identified [4]. A major role of 

the PTPs includes regulating, together with the protein kinases, the cellular equilibrium of protein 

tyrosine phosphorylation by dephosphorylating tyrosine residues of protein substrates. PTPs also 

participate in cell signaling by dephosphorylating proteins on other amino acidic residues (serine and 

threonine), as well as lipid substrates [4,5]. Another group of PTP proteins, known as atypical lipid 

phosphatases (ALPs), are associated with different levels of metabolic control of phosphoinositides 

(PIs) [6]. ALPs possess a characteristic catalytic profile, sequence, and domain organization. They 

harbor a distinct active site P-loop signature (HCXXGKDR[TA]G), containing the acid/base catalyst 

(D) and an extra basic residue (K) important in substrate binding [6,7]. PTP-ALPs with this P-loop

are found in bacteria, including human pathogens [6], but only very few have been characterized.

Other members of the PTPs can hydrolyze myo-inositol phosphates (InsPs), which are ubiquitous 

products of inositol metabolism and bear a high level of structural resemblance to PIs [8]. The phytic 

acids (myo-inositol hexakisphosphate, InsP6) have several roles within eukaryotic cells, including 

second messengers and cofactors that facilitate the regulation of diverse biochemical processes, such 

as transcription and hormone receptor activity [9,10]. A variety of other important biological 

functions have been directly or indirectly related to the presence of InsP6. It has been reported that 

InsP6 acts as a signal in the maintenance of basal resistance to viruses and phytopathogens [11]. Other 

reported functions of InsP6 include antioxidative functions or involvement in DNA repair in prostate 

cancer prevention [12,13]. InsPs are typically absent in prokaryotes, but several genes encoding 

phosphatases (phytases) capable of using InsP6 as substrate have been detected in bacteria [14–16]. 

InsP6 also represents the main phosphorus (P) storage in many types of plants. It is considered 

a significant part of organic soil phosphate (Po) and relevant for the P cycle in soils [17]. Phytases 

decompose InsP6 to less phosphorylated myo-inositol derivatives and inorganic phosphate [18]. 

Phytases are used as an effective feed additive that increases the digestion/absorption rates of 

phosphorus in cereal-based feed. In this way, livestock growth increases and phosphorus pollution 

caused by the non-assimilated InsP6 are reduced [19]. The annual phytase market value is roughly 

$700 million. Therefore, the search for new phytases has become a major research challenge [20]. 

However, few of the phytases—all derived from cultured microorganisms—have been commercially 

exploited. 

Currently, four classes of phytases have been described: histidine acid phytase (HAPs-phy), β-

propeller phytase (BPPs-phy), purple acid phytase (PAPs-phy), and protein tyrosine phytase (PTPs-

phy). These enzymes are not structurally similar and use different mechanisms to cleave phosphate 

groups from InsP6 [18,21,22]. PTPs have been relatively well studied, but not many enzymes of this 

type with phytase activity have been reported. Moreover, most of these phytases are derived from 

culturable anaerobic bacteria [21,23]. 

Several functional gene homologs of physiologically relevant kinases/phosphatases have been 

found as ubiquitous in non-human environments, demonstrating the relevant ecological roles of 

these genes for the activity and survival of environmental bacteria [3]. Although homologous 

sequences of PTPs, including ALPs, are present in the genome sequences of numerous 

microorganisms (cultured and uncultured), to our knowledge, characterized PTPs from 

environmental samples have not been reported. In addition, PTPs carrying the specific P-loop of the 

ALPs with phytase activity are also unknown. Here, we report, for the first time, a functional 

metagenome-derived PTP protein carrying the specific P-loop of ALPs and exhibiting phytase 

activity. 
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2. Results and Discussion 

2.1. Identification and In Silico Characterization of the Novel ALP Member Pho16B 

Most of the research on environmental phytases is represented by a few studies performing 

sequence-based identification of putative phytase genes in metagenomes. A limited number of the 

corresponding phytase proteins have been characterized. In addition, only three phytase-encoding 

genes derived from functional metagenomic approaches have been reported [24–27]. We have 

previously reported, to date, the highest number of environmentally derived phosphatases [28]. 

Function-based screening of a forest soil metagenomic library for genes coding for phosphatases and 

phytases yielded a positive Escherichia coli clone carrying the recombinant plasmid pLP16. The insert 

of this plasmid (7806 bp) harbors 40 open reading frames (ORFs). For 20 of the detected ORFs, it was 

possible to assign a putative function by similarity searches (Figure 1, Table S1). 

The taxonomic classification of the complete pLP16 insert sequence is affiliated to the Gram-

positive soil bacterium Streptacidiphilus melanogenes, originally isolated from Pinus-associated soils 

[29], and other Actinobacteria. Therefore, an actinobacterial relative of S. melanogenes might represent 

the original source of the cloned fragment. Consistently, the deduced protein sequence-based 

analysis showed that the gene product of pho16B, encoding a putative phytase, is closely related to 

the PTP WP_042381880 from S. melanogenes (79% of sequence identity). In addition to protein 

sequences stored in the National Center for Biotechnology Information (NCBI) nr database, the 

Pho16B sequence was compared with protein sequences of specialized metagenome databases. The 

closest related match to Pho16B in the latter databases was entry MGYP000356208135 of the European 

Bioinformatics Institute (EMBL-EBI) metagenomics platform. MGYP000356208135 shows 42% 

sequence identity to Pho16B. The corresponding gene sequence was derived from a sludge 

metagenome associated to an oil refinery and is similar to a gene encoding a PTP from Sphingomonas 

sp. (UniProt entry A0A1M2ZKN6). 

The sequence analysis of pho16B revealed that it encodes a PTP, which contains the characteristic 

ALP signature (HCXXGKDR[TA]G). The presence of the conserved Lys and Asp residues indicates 

similarity of the ALPs and Pho16B with respect to the predicted catalytic mechanism [6,7] (Figure 2). 

Pho16B contains a signal peptide with a predicted cleavage site between amino acid positions 

36 and 37, indicating secretion of the protein and extracellular localization in the original host. Pho16B 

carries the PTPc domain and the specific Y_phosphatase3 domain (Figure 2A). The pho16B gene was 

subcloned in the expression vector pBAD202/D-TOPO and expressed in the E. coli host strain 

LMG194. Subsequently, the pho16B gene product was purified by a combination of affinity and 

hydrophobic interaction chromatography, yielding 155 μg pure enzyme from 500 mL culture, with a 

specific activity of 8.09 U/mg. The protein has a calculated molecular mass of approx. 38 kDa, which 

is similar to the molecular masses of other PTP-ALPs, such as lmo1800 and lmo1935 from Listeria 

monocytogenes, and phytases like Bd1204 of Bdellovibrio bacteriovorus [30]. 

We analyzed the phylogenetic position of Pho16B (Figure 3) by considering the phosphatase 

groups (G1–G9) established by Beresford et al. 2010 [6]. Bacterial sequences are clustered in the 

groups G1 to G6, while the eukaryotic sequences are clustered in the groups G7 to G9. The P96830 

(MptpB protein of Mycobacterium tuberculosis) belongs to G1 together with other mycobacterial ALPs, 

whereas Pho16B belongs to G4, which comprises phosphatases of Gram-positive and Gram-negative 

bacteria. The closest related protein of Pho16B was included in our phylogenetic analysis. This 

protein, belonging also to G4, was annotated during genome analysis of S. melanogenes (accession 

WP_042381880). To our knowledge, the expression or characterization of the gene product have not 

been reported. 
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Figure 1. Strand, location, and BLAST results for all identified open reading frames (ORFs) of the pLP16 insert. * Partial ORFs. 
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Figure 2. Domain organization and alignment of the subloop in Pho16B (A). Architecture of Pho16B 

showing the positions of the protein tyrosine phosphatase (PTP) domain and the signal peptide. (B) 

Alignment and position of the P-loop motif (HCXXGKDRTG) in Pho16B and other related atypical 

lipid phosphatase (ALP) proteins. Pho16B (this study), UniProtKB codes: P96830 (Mycobacterium 

tuberculosis), A0PWE5 (Mycobacterium ulcerans), A1TVR0 (Acidovorax citrulli), Q5FI40 (Lactobacillus 

acidophilus), A1SQF4 (Nocardioides sp.), A3WD47 (Erythrobacter sp.), A1JIE8 (Yersinia enterocolitica), and 

Q2UMD6 (Aspergillus oryzae). 

Figure 3. Neighbor-joining phylogenetic tree showing the position of Pho16B. The numbers at the nodes 

indicate levels of bootstrap support (range from 0 to 100) and were based on 500 replicates. Names 
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correspond to the groups (G) described by Beresford et al. (2010) and their corresponding UniProtKB codes. 

Pho16B, this study; WP_042381880 (closest related PTP phosphatase from Streptacidiphilus melanogenes); 

P96839 (MptpB Mycobacterium tuberculosis); G1: A0QNM9 (Mycobacterium smegmatis), A0PWE5 

(Mycobacterium ulcerans), A0A0H2ZU00 (Mycobacterium avium); G2: A1TVR0 (Acidovorax avenae), A1WCM2 

(Acidovorax sp.), A5EJL6 (Bradyrhizobium sp.); G3: A5VME4 (Lactobacillus reuteri), A8YWZ0 (Lactobacillus 

helveticus), Q03Q47 (Lactobacillus brevis); G4: A8LX04 (Salinispora arenicola), Q0SFJ4 (Rhodococcus jostii), 

Q2G3Q6 (Novosphingobium aromaticivorans); G5: Q1GTR8 (Sphingopyxis alaskensis), Q2NBB0 (Erythrobacter 

litoralis); G6: A1JIE8 (Yersinia enterocolitica), A6T6R5 (Klebsiella pneumoniae), A8G8B5 (Serratia 

proteamaculans); G7: A7EL60 (Sclerotinia sclerotiorum), Q0UXK4 (Phaeosphaeria nodorum), Q4WNE5 

(Neosartorya fumigata); G8: A5E2J1 (Lodderomyces elongisporus), A7TQ59 (Vanderwaltozyma polyspora), 

Q6BSM6 (Debaryomyces hansenii); G9: A6R6W3 (Ajellomyces capsulatus), Q2UG77 (Aspergillus oryzae), 

A1DAV8 (Neosartorya fischeri). 

2.2. Tertiary Structure Prediction of Pho16B 

In addition to the sequence comparisons, we further predicted the theoretical 3D model of 

Pho16B, to determine its closest structural relative. This analysis was performed by using the I-

TASSER tools [31]. For the modeling, I-TASSER initially uses different threading programs 

generating tens of thousands of template alignments. Only the templates of the highest significance 

in the threading alignments were used. The significance of the alignments was measured by a 

normalized Z-score. Z-scores > 1 mean a good alignment and vice versa (Table S2). 

Employment of I -TASSER suite resulted in the prediction of five models for Pho16B. Two of the 

predicted models (M1 and M2) showed C-score values higher than −1.5 (−1.22 and −1.36, 

respectively). Therefore, the model M1 was selected as the most plausible model for Pho16B (Figure 

S1). The model M1 was related to the Protein Data Bank (PDB) entry 1YWF, that corresponds to the 

crystal structure of M. tuberculosis PTP (PtpB). It is assumed that a C-score higher than −1.5 confirms 

a correct global topology [31]. As the native structure of Pho16B is not known, the quality of the 

modeling prediction is determined by calculating the distance between the predicted model and 

published native structures. In our case, I-TASSER predicted the quality of the model by calculating 

the TM-score. A TM-score with a value of 0.56 was calculated, indicating a very similar fold of the 

Pho16B and the reference protein PtpB [32]. The analysis of the occurrence and distribution of 

clinically relevant bacterial virulence genes across natural (non-human) environments has 

demonstrated the presence of transcribing homologs of several virulence genes in those habitats. 

Consequently, a common ancestral origin between the environmental genes and their virulence-

associated counterparts has been established [3]. Pho16B is the first reported environmental PTP with 

phytase activity, carrying a homologous molecular signature of virulence gene-related products 

(ALPs). Therefore, this study provides insights into the structural similarities of environmental PTPs 

to other known phosphatases related to virulence factors of human pathogens. 

2.3. Optimum Temperature and pH of Pho16B 

The characterization of the biochemical properties of Pho16B revealed its optimal activity to 

occur at a temperature of 45 °C. More than 50% of its activity was lost at temperatures ≥ 50 °C (Figure 

4A). In general, phytases show activity within a wide range of temperatures, and some previously 

reported bacterial representatives are affected by temperature in a similar way as Pho16B. The 

phytase of B. bacteriovorus Bd1204 exhibits optimal activity at a slightly higher temperature than 

Pho16B, but also loses most of its activity (40%) at temperatures higher than 50 °C [30]. 
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Figure 4. Effect of temperature and pH on Pho16B activity. (A) Temperature profile of Pho16B 

enzymatic activity. (B) pH profile of Pho16B enzymatic activity. All measurements were performed 

in triplicate. Specific activity values are expressed as percentages of the highest relative activity: 8.78 

and 4.3 U/mg, for A and B, respectively. 

The optimal pH of Pho16B enzymatic activity (5.6) was detected by measurements across a set 

of overlapping buffer systems ranging from pH 2 to 9. At pH 4.0 and neutral pH, Pho16B retained 

80% and 70% of the activity, respectively. At slightly alkaline pH value of 7.5, activity was reduced 

to 50% (Figure 4B). The activities of other reported PTP phytases show a strong reduction at this pH 

level, i.e., the enzyme phyAme from Megasphaera elsdenii loses its activity almost completely at pH 

7.0 [33]. The optimal activity and higher capacity of enzymatic activity retention of Pho16B at low pH 

match with the predicted extracellular localization of the enzyme at its natural acidic forest soil 

habitat, which has a soil pH of 3.5 [34,35]. This is also consistent with the cysteine-based catalytic 

mechanism of MptpB and other PTPs, whose optimal catalytic activities are at acidic pH values [36]. 

2.4. Pho16B Converts a Broad Range of Substrates 

The substrate specificity of Pho16B was tested using ten different substrates (Figure 5). Pho16B 

showed activity in the presence of all tested compounds. The highest relative activity was detected 

with naphthyl phosphate, and the lowest with NADP as substrate. The relative activity with InsP6 

was approximately 30% of that with naphthyl phosphate (Figure 5). This indicated that InsP6 is not 

the primary substrate of Pho16B under the tested conditions. Nevertheless, to our knowledge, this is 

the first reported example of an environmental PTP with activity towards InsP6. We previously 

demonstrated the phytase activity of environmental phosphatases such as alkaline phosphatases and 

acid phosphatases [28]. Many phosphatases are recognized as promiscuous types of enzymes [37]. 

The broad substrate spectrum indicated that Pho16B belongs also to this type. 
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Figure 5. Substrate specificity of Pho16B. Relative activity of Pho16B was measured at 10 mM 

substrate concentration. All measurements were performed in triplicate and under optimal pH and 

temperature conditions for enzyme activity. Specific activity values are expressed as percentages of 

the highest relative activity (13.89 U/mg). 

The kinetic parameters of Pho16B were determined using the purified protein and InsP6, 

naphthyl phosphate, and p-nitrophenylphosphate as substrates under optimal pH and temperature 

conditions (pH 5.6 and 45 °C; Table 1). Pho16B shows a higher affinity and catalytic efficiency for 

naphthyl phosphate than for InsP6. The protein tyrosine phosphatase (PhyAsr) from Selenomonas 

ruminantium, which is one of the few characterized and reported (PTP)-like phytases, possesses 

similar affinity (Km) and catalytic efficiency (Kcat/Km) towards InsP6 under high ionic strength 

conditions (1 mM and 163 mM−1.s−1, respectively) [38]. The protein tyrosine phosphatase of Yersinia 

Yop51, which is involved in pathogenesis, displays affinity values almost three times lower than 

Pho16B with p-nitrophenylphosphate as substrate (Km 2.90 mM). However, the turnover number of 

Yop51 (1235 ± 36 s−1) is significantly higher than the one of Pho16B [39]. Protein phosphatases, 

including phytases, possess a wide range of catalytic traits. In this sense, the analyzed kinetic 

characteristics of Pho16B are in the normal range compared with the currently reported phytases 

[14,18,39]. However, since Pho16B is the first reported environmental PTP, it is not possible to 

compare its kinetic parameters with those from phytases of the same type. 

Table 1. Kinetic values of Pho16B under optimal pH and temperature conditions. All measurements 

were performed in triplicate. 

Substrate Km (mM) kcat (min−1) Kcat/Km (s−1mM−1) 

InsP6 1.290 ± 0.38 5,48 ± 0.7 70.43 ± 4.4 

Naphthyl phosphate 0.966 ± 0.18 14.64 ± 1.52 238.73 ± 14.52 

p-Nitrophenylphosphate 1.026 ± 0.14 19.73 ± 2.8 316.89 ± 32.1 
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2.5. Effect of Additives on Pho16B Activity 

The effects of various additives on Pho16B enzyme activity are summarized in Figure 6. Co2+, 

Cu2+, and Fe2+ inhibit enzyme activity by more than 50%. In the presence of Al3+, no activity was 

detected. It has been previously demonstrated that the phosphatase activity of soil-derived enzymes 

might be inhibited in the presence of aluminum hydroxides [40]. Moreover, Cu2+ and Fe2+ have been 

reported as strong inhibitors of several phosphatases and phytases from different organisms, such as 

S. ruminantium or Klebsiella terrigena [41,42]. These proteins were also strongly inhibited in the

presence of Zn2+, which only has a minor effect on the activity of Pho16B. The presence of Co2+

reduced the relative activity of Pho16B by 80%. By contrast, other phosphatases, i.e., the enzymes

derived from bovine rumen bacterium Mitsuokella jalaludinii, are not affected by the presence of Co2+

[42]. The glucose-1-phosphatase with phytase activity (AgpP) from Pantoea. agglomerans possesses an

unusual metal ion activation. Ca2+, Mg2+, and Mn2+ enhance the activity of this enzyme up to 200%

[43]. The activity of Pho16B was not affected by the addition of Ca2+ or Mg2+, but the presence of Mn2+

slightly increased the enzymatic activity of Pho16B.

The addition of dithiothreitol (DTT) had a very strong inhibitory effect, depleting 80% of Pho16B 

activity. Other previously reported phosphatases did not show significant losses of activity in the 

presence of this reagent [44,45]. It has been shown that DTT can reduce protein function by disrupting 

disulfide bonds of the proteins or acting as a metal ion chelator [46]. Another possibility is that DTT 

could inhibit Pho16B activity by competing with its substrates. It has been proposed that DTT can 

interact with the catalytic domain of the enzymes by steric hindrance via hydrogen interactions with 

amino acid residues [47]. Wolframate and oxalate also reduce the activity of Pho16B to less than 60%. 

Oxalate is known as an inhibitor of acid phosphatase activity [48], and wolframate as inhibitor of 

phosphatase activity of PTPs from plants [49]. 

Figure 6. Effect of different concentrations of metal ions and inhibitors on the activity of Pho16B. All 

measurements were performed in triplicate and under optimal pH and temperature conditions for 

the enzyme. Specific activity values expressed as percentages of the control reactions (no additions) 

8.2 U/mg for both concentrations. 

3. Materials and Methods

3.1. Sampling, Metagenomic Library Construction, and Function-Based Screening 

The enzyme Pho16B originated from an Arenosol soil A horizon sample (SEW2) with a pH of 3.46, 

which was collected from a beech forest site within the Schorfheide-Chorin biosphere reserve in Germany. 

Collection of the sample was performed as previously described by Kaiser et al. (2016) [50]. The 

metagenomic library (SEW2) comprised 135,240 E. coli clones and was constructed using the plasmid 

pCR-XL-TOPO as vector (Invitrogen GmbH, Karlsruhe, Germany) and the method described by Nacke 

et al. [35]. The previous screening of the metagenomic library was performed by following the method of 

Villamizar et al.. Phosphatase/phytase positive library-bearing E. coli clones growing on modified Sperber 
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minimal medium, using InsP6 as phosphorous source and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) 

as indicator, turn from white to dark blue within 48 h [51]. 

3.2. Molecular Analysis 

The insert sequence of plasmid pLP16 (7972 bp), which was isolated from a metagenomic library 

clone showing phosphatase activity [28], was subjected to sequence analysis. Open reading frame 

(ORF) prediction was performed using the ORF finder tool provided by the NCBI and the ARTEMIS 

program [52,53]. Since the metagenomic library was constructed from metagenomic DNA fragments 

and cloned into the pCR-XL-TOPO vector, all genes predicted for both strands were analyzed, in 

order to identify the putative gene or genes responsible for the activity on the indicator plate. The 

results were verified and improved manually by using criteria such as the presence of a ribosome-

binding site, GC frame plot analysis, and similarity to known genes. Amino acid sequences deduced 

from the ORFs were examined for similarities with known protein families and domains by 

performing searches against the InterPro collection of protein signature database and the Conserved 

Domain Database (CDD). Next, a search of phosphatase signatures was performed by using a local 

version of PhosphaBase [54–56]. Signal peptide prediction was performed using SIGNALP 4.0 [57]. 

Additionally, the taxonomic classification of the complete DNA insert was performed by using the 

software KAIJU [58]. Similarity searches of candidate gene product of pho16B, were performed by 

using the NCBI databases non-redundant sequences (nr) and metagenomic proteins (env_nr), and a 

Basic Local Alignment Search for proteins (BLASTP). A second search against metagenomic data was 

performed by using the metagenomics platform of the European Bioinformatics Institute [59,60]. 

Multiple sequence alignments of Pho16B encoded by gene pho16B and related phosphatases, 

representing the phosphatase groups previously defined by Beresford et al. [6], were performed 

using MUSCLE [61]. A phylogenetic consensus tree was calculated using the neighbor-joining 

method with MEGA X and 500 bootstrap replicates [62]. The tree was visualized using iTOL v3 [63]. 

The evolutionary distances were calculated using the number of differences method [3]. 

A prediction of the tertiary structure of protein Pho16B was performed by employing the I-

TASSER software suite [64,65]. The quality of models generated using I-TASSER is based on two 

major criteria: the confidence score (C-score) and the template modeling score (TM-score). I-TASSER 

generated five models. The models were ranked based on the C-score (confidence score). The C-

scores are calculated on the basis of the statistical significance of the threading profile–profile 

alignment, as well as structure convergence of the assembly simulations. The C-score ranged from −5 

to 2. A high C-score value indicates a model with greater confidence [32]. 

The TM-score (the template modeling score) addresses the structural similarity of two protein 

models. This score can solve some difficulties of the commonly used metrics, such as the root-mean-

square deviation (RMSD). The TM-score measures the global fold similarity. Moreover, TM-score is 

less sensitive to local structural variations. Another advantage of this measurement is that the 

magnitude of the TM-score for random structure pairs is length-independent. The TM-score has a 

value range of 0 to 1, whereby the value 1 indicates a perfect match between two structures [32]. By 

calculating the TM-score, we obtained an estimation about the structural similarity between the 

predicted model of Pho16B and published native or experimentally determined structures. Values 

close to 0.5 indicate a model of correct topology. In this study, the model with the highest confidence 

score (C-score) was selected as the best predicted optimized 3D modeling structure. 

3.3. Biochemical Characterization of Pho16B 

The ORF pho16B was cloned into plasmid pBAD202/D-TOPO (Thermo Fisher Scientific GmbH, 

Schwerte, Germany). In this way, sequences encoding the His6 and thioredoxin tags were added to 

the N terminus of Pho16B. Plasmid DNA containing the insert cloned in the correct orientation was 

used for transforming E. coli LMG194 cells. Transformants were grown on Luria-Bertani (LB) agar 

plates [66] supplemented with kanamycin (50 μg/μL) and incubated at 37 °C. A colony of E. coli 

LMG194 harboring the pho16B-pBAD202 construct was used to inoculate 500 mL M9 minimal salts 

medium [67] supplemented with 50 μg/μL kanamycin and 2% glycerol. The culture was incubated 

70



Genes 2019, 10, 101 11 of 16 

 

under shaking at 90 rpm by using a New Brunswick Innova 44 incubator-shaker (Eppendorf AG, 

Hamburg, Germany) at 30 °C. Protein expression was induced at an OD600 of 0.8 using L-arabinose 

(end concentration 0.02%) and incubated for 16 h. 

The cells were harvested by centrifugation for 30 min at 4 °C and 8000 rpm (Sorvall® RC6 

centrifuge, rotor SLA 3000, Thermo Fisher Scientific). The resulting cell pellets were suspended in 10 

mL 50 mM Tris, 250 mM NaCl buffer. Mechanical cell disruption was performed using a French press 

(1.38 × 108 Pa; Thermo Fisher Scientific). Subsequently, the extract was cleared by centrifugation for 

0.5 h at 4 °C and 15,000 rpm (Sorvall® RC6 centrifuge with rotor SS 35, Thermo Fisher Scientific). The 

crude extract was filtered twice using 0.45 μm and 0.2 μm filters (Sarstedt, Nümbrecht, Germany). In 

order to purify the His6-tagged protein, the Protino® Ni-TED 2000 purification kit was used as 

recommended by the manufacturer (Macherey and Nagel, Düren, Germany) with modifications. The 

equilibration of the columns and the washing steps were performed with 50 mM Tris buffer (pH 8.0) 

containing 250 mM NaCl, followed by three elution steps with 50 mM Tris, 250 mM NaCl, and 250 

mM imidazole. 

To concentrate the protein, eliminate free P traces, remove imidazole, and reduce NaCl 

concentration, four subsequent rounds of ultrafiltration using 50 mM Tris buffer (pH 8.0) were 

conducted by using Vivaspin concentrators, as recommended by the manufacturer (exclusion limit 

10 kDa; Sartorius AG, Göttingen, Germany). To remove the thioredoxin tag, fusion proteins were 

digested by a light chain enterokinase (NEB, Ipswich, MA, USA) (1.5 U/mg fusion protein) at 37 °C 

for 16 h in buffer (20 mM Tris-HCl, 2 mM CaCl2, 50 mM NaCl, pH 8.0). Further purification was 

performed via hydrophobic interaction chromatography by using a 15PHE 4.6/100PE Tricorn high 

performance column (bed volume 1.7 mL, flowrate 2 mL/min) and an ÄKTA FPLC system (GE 

Healthcare, Uppsala, Sweden). Elution was achieved by a linear decreasing NaCl gradient from 1 M 

to 0 M in 50 mM Tris-HCl (pH 8). 

Phosphatase activity was determined at 355 nm by detecting the release of inorganic 

phosphorous according to the ammonium molybdate method developed by Heinonen and Lahti 

with modifications [68,69]. The purified enzyme solution (10 μL) was pre-incubated for 3 min at 40 

°C in 380 μL of 50 mM sodium acetate buffer (pH 5). Subsequently, 10 μL of 100 mM phytic acid 

dipotassium salt (Sigma-Aldrich, Munich, Germany) was added, and the mixture incubated for 30 

min at 40 °C. To stop the reaction, 1.5 mL of freshly prepared AAM solution (acetone–5 N H2SO4–10 

mM ammonium molybdate) and 100 μL of 1 M citric acid were added. Samples were measured 

against blanks prepared by adding AAM solution prior to the addition of enzyme. The absorbance 

(355 nm) was measured using the Ultrosprec® 3300 pro (Amersham plc, Little Chalfont, United 

Kingdom). All measurements were performed in triplicate. To calculate the enzyme activity, a 

calibration curve was generated in the range of 5 to 600 nmol phosphate. One activity unit (U) 

represented the release of 1 nmol phosphate release per min. 

The influence of temperature on enzymatic activity was determined via the above-described 

standard phytase assay. The enzymatic activity was evaluated in a temperature range between 5 and 

70 °C by using a temperature-adjusted buffer (50 mM sodium acetate, pH 6). In order to analyze the 

pH dependence of enzyme activity, the following overlapping buffers were prepared as described by 

Gomori 1955 [70] : 50 mM glycine-HCl (pH 2.0, 3.0, and 3.6), sodium acetate (pH 3.6, 4.0, 5.0, 5.6, and 

6.0), MOPS (pH 6.0, 7.0, and 7.6), Tris-HCl (pH 7.6, 8.0, and 9.0), and glycine-NaOH (pH 9.0). 

The substrate specificity was determined using the standard phytase assay under optimal 

temperature and pH. Ten different substrates (ADP, ATP, NADP, glucose-6-phosphate, 

glycerophosphate, pyridoxal phosphate, pyrophosphate, naphthyl phosphate, p-

nitrophenylphosphate, and InsP6) were tested at 10 mM. Furthermore, the effect of cations (Al3+, Ca2+, 

Cu2+, Co2+, Fe2+, Mg2+, Mn2+, and Zn2+) and the potential inhibitors ethylenediaminetetraacetic acid 

(EDTA), phenylmethylsulfonyl fluoride (PSMF), wolframate, oxalate, sodium dodecyl sulfate (SDS), 

and dithiothreitol (DTT), at concentrations of 0.1 and 1 mM, were analyzed. 

Kinetic parameters Km and Vmax for Pho16B were calculated from the Michaelis–Menten equation 

fitted to a non-linear, least-squares regression by using the kinetics module of the program SigmaPlot 

12.0 (Systat Software, Inc., San Jose, CA, USA). All measurements were performed under optimal pH 
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and temperature conditions using InsP6, p-nitrophenylphosphate and naphthyl phosphate as 

substrates. 

3.4. Accession Number 

The nucleotide sequence of the pLP16 insert sequence has been submitted to the National Center 

for Biotechnology Information (NCBI) GenBank under accession number KY931681. 

4. Conclusions

Although PTPs have been relatively well studied, the diversity, role, and characteristics of 

environmental PTPs remain unknown. All previously described and characterized PTPs were 

derived from individual microorganisms. Here, for the first time, we characterized an 

environmentally and metagenome-derived PTP (Pho16B). Pho16B exhibits the characteristic motif of 

ALPs, which are associated with microbial pathogenesis. At the same time, Pho16B is the first 

environmentally derived PTP capable of using InsP6 as substrate and, thus, the first PTP-phy which 

does not originate from an isolated microorganism. PTP-phys were described one decade ago, but 

very little is known about their biological role [21]. The capability of Pho16B to use InsP6 as substrate 

under acidic conditions exposes the relevance of soil as a source of interesting new phytases. 

Environmental phytases have the potential to be used to solve problems such as eutrophication, 

associated with the presence of phytic acid in subterranean waters and other bodies of water. New 

phytases derived from natural environments can be used in agriculture for the rational design of pest 

inhibitors for crop protection. Similar approaches have been successfully used by analyzing PTPs 

associated with human diseases, such as diabetes and cancer [71]. Moreover, the high degree of 

sequence conservation between functional environmental PTPs like Pho16B, and enzymes associated 

to pathogenicity processes, provides support to the idea of environmental homologous genes as 

precursors of virulence genes found in clinically relevant bacteria [3]. Therefore, the information 

obtained from new environmental PTPs provides new valuable insights into the origin of this type 

of molecule. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1. Protein 

sequence similarities of deduced gene products encoded by the insert of pLP16. Table S2. Rank of templates 

representing the top ten threading PDB templates used by I-TASSER. Figure S1 (A) 3D structure of M1 for the 

Pho16B protein, predicted by I-TASSER, calculated C score −1.22. (B) Amino acids involved in the P-loop in 

Pho16B. 
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Table S1. Protein sequence similarities of deduced gene products encoded by the insert of pLP16 

 

ORF 
number 

No. of 
encoded  

amino 
acids 

Accession no, closest similar protein, organism, (no. of encoded amino acids), 

Percent 
identity to the 
closest similar 

protein 
(BlastP) 

pho16B  376 WP_042381880.1,protein-tyrosine phosphatase Streptacidiphilus melanogenes, (372) (79%) 
Orf 02 325 WP_042417920.1, LacI family transcriptioN/Al regulator Streptacidiphilus anmyonensis, (325) (82%) 
Orf03 117 WP_018557579.1, hypothetical protein Streptomyces sp. BoleA5 (883) (53%) 
Orf04 119 RJW72075, vacuolar protein sorting-associated protein 53 -like protein Clonorchis sinensis ,(1358) (29%) 
Orf05 37 PZN39371.1, sulfoN/Ate ABC transporter ATP-binding protein, Proteobacteria bacterium, (246) (63%) 
Orf06 96 WP_099477000.1, TerC family protein Paenibacillus ihbetae, (221) (34%) 
Orf07 38 AAW27310.1, SJCHGC02811 protein Schistosoma japonicum, (133) (45%) 
Orf08 102 No BLAST hits found N/A 
Orf09 130 XP_016657880.1, uncharacterized protein LOC100159331 isoform X3 Acyrthosiphon pisum, (6853) (42%) 
Orf10 50 No BLAST hits found N/A 
Orf11 818 AWN00235.1, hypothetical protein, uncultured organism, (819) (99%) 
Orf12 35 WP_109505691.1, class I SAM-dependent methyltransferase Nocardioides sp. YIM ART13, (270) (65%) 
Orf13 200 No BLAST hits found N/A 
Orf14 41 No BLAST hits found N/A 
Orf15 109 No BLAST hits found N/A 
Orf16 102 No BLAST hits found N/A 
Orf17 63 OHB94183.1, transcription termination factor NusA Planctomycetes bacterium, (358) (28%) 
Orf18 191 XP_001794145.1, hypothetical protein SNOG_03588 Parastagonospora nodorum SN15 (641) (36%) 
Orf19 118 PQE15591.1, Heavy metal tolerance protein Rutstroemia sp. NJR-2017a BBW, (1031) (47%) 
Orf20 25 KMP12518.1, hypothetical protein UZ36_00105 Nitrospina sp. SCGC, (342) (100%) 
Orf21 40 No BLAST hits found N/A 
Orf22 45 No BLAST hits found N/A 
Orf 23 410 WP_090595989.1, methyltransferase domain-containing protein Auraticoccus monumenti, (274) (54%) 
Orf24 140 No BLAST hits found N/A 
Orf25 82 No BLAST hits found N/A 
Orf26 133 No BLAST hits found N/A 
Orf27 48 No BLAST hits found N/A 
Orf 28 239 ONH24413.1, hypothetical protein BL253_30125 Frankia asymbiotica, (395)  (80%) 
Orf29 64 WP_098051725.1, LacI family transcription regulator Pantoea agglomerans, (341) (39%) 
Orf30 105 No BLAST hits found N/A 
Orf31 117 No BLAST hits found N/A 
Orf32 74 No BLAST hits found N/A 
Orf33 49 No BLAST hits found N/A 
Orf34 69 No BLAST hits found N/A 
Orf35 63 No BLAST hits found N/A 
Orf36 110 KQB60501.1, hypothetical protein AE621_04680 Acidovorax sp, SD340 (145) (42%) 
Orf37 186 No BLAST hits found N/A 
Orf38 74 WP_125089351.1, hypothetical protein Saccharopolyspora sp H219, (134) (52%) 
Orf39 26 PYO22201.1, DNA-3-methyladenine glycosylase I , Candidatus Rokubacteria, 194 (100%) 
Orf40 186 No BLAST hits found N/A 

N/A: not applicable 
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Table S2. Supplementary Table S2. Rank of templates representing the top ten threading PDB templates used by I-
TASSER.* 

 

Rank PDB 

Hit 

Iden1 Iden2 Coverage Norm. 

Z-score 

1 2oz5 0.33 0.25 0.62 1.43 

2 1ywf 0.32 0.23 0.60 3.46 

3 5vgr 0.09 0.18 0.93 1.36 

4 2oz5 0.33 0.25 0.62 1.87 

5 4rkk 0.17 0.16 0.64 1.89 

6 1ywf 0.33 0.23 0.60 4.96 

7 1ywf 0.33 0.23 0.61 4.15 

8 5gnr 0.10 0.17 0.87 1.34 

9 2oz5 0.32 0.25 0.62 2.06 

10 4rkk 0.14 0.16 0.83 1.12 
 

Iden1 is the percentage sequence identity of the templates in the threading aligned region with the query sequence. 

Iden2 is the percentage sequence identity of the whole template chains with query sequence. Coverage of the threading 

alignment is equal to the number of aligned residues divided by the length of query protein. Norm. Z-score is the 

normalized Z-score of the threading alignments. The top 10 alignments reported above (in order of their ranking) are 

from the following threading programs: 1: MUSTER, 2: FFAS-3D, 3: PROSPECT2, 4: SPARKS-X, 5: HHSEARCH, 6: 

HHSEARCH2, 7: HHSEARCH I, 8: PROSPECT2, 9: Neff-PPAS, 10: SP3. 
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Fig. S1. A) Best 3D structure model of the Pho16B protein, predicted by I-TASSER and edited with Pymol 2.2, 
calculated C score -1.22. B) Amino acids involved in the MptpB-loop in Pho16B. 
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5.1. Abstract  

Phytic acid is an alternative phosphorus source that plays several important roles in the 

phosphorus cycle and in cell metabolism. The known characterized enzymes responsible 

for its processing, the phytases, are mostly derived from cultured individual 

microorganisms. The catalytic signatures of phytases are restricted to the molecular 

domains of four protein superfamilies: histidine phosphatases, protein tyrosine 

phosphatases, the purple acid phosphatases and the β-propeller phosphatases. During 

function-based screening of previously generated soil metagenomic libraries for E. coli 

clones conferring phytase activity two library-bearing clones harbouring the plasmids 

pLP05 and pLP12 were detected. Analysis of the insert sequences revealed the absence of 

classic phosphatase/phytase signatures of the proteins deduced from the putative genes 

but the genes mblp01 (pLP05) and mblp02 (pLP12) encoded putative metallo-β-

lactamases (MBLs). Several MBL representatives are promiscuous proteins with 

phosphodiesterase activity but phytase activity was previously not reported. Both mblp01 

and mblp02 were subcloned and expressed and the gene products were analysed. Mblp01 

and Mblp02 are members of the lactamase B2 family. The closest structural homologue of 

both proteins was the ZipD protein of Escherichia coli. Mblp01 and Mblp02 showed 

activity towards almost all analysed substrates including phytate. The maximal enzyme 

activities were recorded for Mblp01 at 50°C under acidic conditions, and for Mblp02 at 

35°C and a neutral pH value. In the presence of Cu2+ or SDS the enzymatic activities of 

Mblp01 and Mblp02 were strongly inhibited. Analyses of the minimal inhibitory 

concentration of several β-lactam antibiotics revealed that recombinant E. coli cells 

carrying mblp01 or mblp02 showed reduced sensitivity towards β-lactam antibiotics.   

 

5.2. Importance 

Phytic acid is a main phosphorus storage molecule in many plant tissues, an alternative 

source of phosphorus and a problematic anti-nutrient. In addition, it influences functions 

of secondary messengers and acts as antioxidant in tumor growth prevention. The 

enzymatic capability to process phytate has been reported for a limited number of protein 

families. This might be due to the almost exclusive use of proteins derived from individual 

microorganisms for the analysis of phytase activity. With such a restriction, the study of 

the complexity and diversity of the phytases remains incomplete. By using metagenome-
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derived samples, this study demonstrates the existence of phytase activity in one of the 

most promiscuous superfamilies, the metallo-β-lactamases. Our results increase the 

general knowledge on phytase diversity in environmental samples and could provide new 

avenues for the study and engineering of new biocatalysts.  

KEYWORDS phytate, ß-lactamase, phosphatase, phytase, metallo-β-lactamases, soil 

metagenome 

 

5.3. Introduction 

Over the last two centuries, anthropogenic activities have altered the global 

biogeochemical cycles of elements such as carbon (C), nitrogen (N) and phosphorus (P) 

significantly. With the accelerated global population growing rates, the P flow to the 

biosphere has been quadrupled. This cycle disruption is mainly due to the mining of P 

compounds for fertilizers. P sources such as phosphorus-rocks are not renewable and the 

current resources are being rapidly depleted (1, 2). Consequently, a better understanding 

of the P cycle, and development of strategies and alternatives for P acquisition are of 

increasing importance.  

Phytic acid, also known as inositol-6-phosphate or phytate in its salt form represents an 

immense and almost unexploited reservoir of P that could be potentially utilized by 

plants, microorganisms and animals (3). In humans, phytate and some of its degradation 

products have been related to metabolic effects such as the prevention of kidney stone 

formation and a possible protection against diseases such as diabetes mellitus, 

atherosclerosis, coronary heart disease and some types of cancer (4, 5). Phytate is the 

most abundant source of P in several types of cereals and grains that are commonly used 

to feed animals employed for large-scale production. However, monogastric animals such 

as swine, poultry, and fish cannot digest phytate efficiently due to the lack of phytases. 

This limited capacity of phytate processing has led to severe environmental problems, i.e. 

P eutrophication of water bodies (3, 6). 

Since the cleavage of the phosphate residues from phytate requires phytases, the search 

for new phytases with novel and improved characteristics has been one focus of 

phosphatase research. Several phytases have been reported and characterized, revealing 

the existence of different catalytic mechanisms to cleave phosphate groups from phytate. 

Some phytases are used commercially to reduce the impact of phytate accumulation. 
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Nevertheless, the in vivo functions of phytate and several phytate hydrolysis mechanisms 

are not fully known (7). 

Phytase activity has been reported to be restricted to only four classes of protein 

phosphatases with different catalytic mechanisms. The histidine acid phosphatases (HAP-

phy) represent the most extensively studied class of phosphatases to which all 

commercially used phytases belong (8). Another group of phytases comprises β-propeller 

phosphatases (BPP-phy), which are considered as a relatively new class of enzymes and 

exhibit no significant homology to any known phosphatases. Furthermore, 

representatives of purple acid phosphatases (PAP-phy) that are mostly found in plants, 

and the protein tyrosine phosphatases (PTPs-phy or cysteine phytases) that are the main 

phytate-degrading enzymes of ruminant animals (9), are known to exhibit phytase 

activity. In addition, several phytases have been associated to microbial pathogenicity in 

different species (10-13). The vast majority of reported phytases are derived from a small 

culturable fraction of microorganisms. Recent reports implementing functional 

metagenomic approaches have evidenced the potential of environmental samples as 

source of novel phosphatases/phytases (14, 15).  

In this study, two environmentally derived promiscuous enzymes (Mblp01 and Mblp02) 

exhibiting phytate-degrading activity and carrying the catalytic domain of metallo-β-

lactamases (MBLs) were characterized. To our knowledge, this superfamily domain has 

never been associated with this type of activity before. MBLs catalyze the hydrolysis of a 

wide range of substrates such as β-lactam antibiotics including penicillin and also the 

latest generation of cephalosporins. Members of this family also comprise glycosylase, 

lactonase, arylsulfatase, 5'-exonuclease or ribonuclease activities. In addition, 

phosphoesterase activity has been reported (16).  

 

5.4. Results 

Identification and sequence analysis of the novel phytase-encoding genes 

Two phosphatase/phytase active E. coli clones harbouring the recombinant plasmids 

pLP05 (2,496 bp) and pLP12 (5,578 bp) were recovered by functional screening of soil 

metagenomic libraries using phytic acid as sole P source (14). Sequence analysis of the 

inserts did not reveal putative genes similar to known ones encoding 

phosphatase/phytase activity, which could be responsible for the activity of the 
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recombinant E. coli strains on indicator agar with phytic acid as P source (Fig. S1; Fig. S2). 

However, the putative genes mblp01 (pLP05) and mblp02 (pLP12) encode proteins 

carrying the MBL fold. Considering the high promiscuity level of MBLs and the 

phosphoesterase activity, previously reported for some members of this superfamily (16, 

17), both genes were individually subcloned and the thereby generated recombinant E. 

coli strains screened for activity on indicator agar. E coli clones carrying the plasmid with 

the subcloned mblp01 or mblp02 gene showed activity on indicator agar with phytic acid 

as sole P source, demonstrating that mblp01 and mblp02 encode proteins with 

phosphatase/phytase activity.  

The taxonomic classification of the complete inserts indicated that both inserts are of 

bacterial origin. The insert sequence of pLP05 is affiliated to the phylum Proteobacteria 

and that of pLP12 to Acidobacteria (Fig. S3). The genes encoding the predicted MBL fold 

mblp01 (pLP05) and mblp02 (pLP12) encode polypeptides of 312 and 355 amino acids 

with estimated molecular masses of 33 and 38 kDa, respectively. The protein sequence 

analysis against the InterPro database showed that gene products carry the metallo-β-

lactamase domain (IPR001279). Neither of the two proteins could be assigned to any 

specific family during this analysis, but the signature of the homologous superfamily 

ribonuclease Z/hydroxyacylglutathione hydrolase-like (IPR036866) was present in both 

sequences. The search against the Pfam database assigned both proteins to the lactamase 

B2 family (PF12706). The domain organization for both proteins derived from the Pfam 

analysis is shown in Fig. 1. The sequence similarity searches showed that Mblp01 and 

Mblp02 exhibited 61% amino acid sequence identity to a hypothetical protein associated 

to the phylum Verrucomicrobia (PYI90218.1) and 51% to a metallo-hydrolase from 

Blastomonas sp. (WP_054133775.1), respectively. In addition, we performed a search 

against metagenome databases in order to find the closest homologous of Mblp01 and 

Mblp02 in environmental samples. Screening of the metagenome-derived protein 

database from the NCBI (env_nr) yielded sequence identities of 39% (Mblp01) and 49% 

(Mblp02) to hypothetical proteins derived from marine metagenomes (data not shown). 

The search against the metagenomic EMBL-EBI database showed a hit (MGYS00000776) 

with 71.6% sequence identity to Mblp01. MGYS00000776 is derived from a soil 

metagenome associated to a Brazilian soil forest. In the case of Mblp02, the best hit (49% 

sequence identity) was to the sequence MGYP000565410107, which originated from a 

geothermal spring water metagenome from India.  
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Fig. 1. Domain organization of A) Mblp01 and B) Mblp02. 

 

Phylogenetic positioning of the new MBL representatives Mblp01 and Mblp02 

To elucidate the relationship between Mblp01 and Mblp02 and other lactamases of the 

B2 family and classic phytase representatives, we performed a phylogenetic analysis. 

Sequences of the Pfam seed group that belong to the B2 sub-class (PF21706), sequences 

of the B2 cphA metallo β-lactamase of Aeromonas sp. (18) and representatives of the 

classical phytases were included in the analysis. Mblp01 and Mblp02 grouped separately 

in the generated phylogenetic tree (Fig. 2) (Supplementary Extended Data Table 1). 

Mblp01 formed a small cluster with a B2 family MBL of Granulicella mallensis (G8NYQ4). 

Mblp02 does not group closely with any of the analysed proteins, but it is part of a well-

supported large cluster that includes phosphatases/phytases and the cphA β-lactamases.  
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Fig. 2. Neighbor-joining phylogenetic tree showing the position of Mblp01 and Mblp02. The numbers at the nodes 
indicate levels of bootstrap support (range from 0 to 1) and were based on 500 replicates. Names refer to the 
corresponding UniProtKB codes of the supplementary extended data Table 1. 

 

Mblp01 and Mblp02 share the same structural analogue: a ZipD protein. To determine the 

closest structural relatives, we predicted 3D models of Mblp01 and Mblp02. This analysis 

was performed by using the I-TASSER software suite (19, 20). The best predicted models 

of the candidates Mblp01 and Mblp02 showed C-score values of -0.75 and -1.70, 

respectively (Fig. S4). For both proteins the predicted models were linked to the same 

Protein Data Bank (PDB) entry (2CBN) (21). This entry corresponds to the crystal 

structure of a zinc phosphodiesterase (ZipD) from E coli, which is involved in the tRNA 

maturation process. As the native structures of Mblp01and Mblp02 are not known, the 

quality of the modelling prediction was determined by calculating the distance between 
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the predicted models and published native structures. In our case, I-TASSER predicted the 

quality of the model by calculating the TM-score. TM-scores of 0.783 and 0.697 were 

calculated for Mblp01 and Mblp02, respectively, indicating a similar structure of the 

candidate proteins and the reference protein 2CBN. 

Enzymatic properties of the first reported MBL representatives showing phytase 

activity 

Mblp01 and Mblp02 were purified by using a combination of affinity chromatography and 

size exclusion ultrafiltration. The maximum activity of purified Mblp01 and Mblp02 

purified with phytic acid under standard reaction conditions was 50 and 35 °C, 

respectively (Fig. 3). Mblp01 did not show activity at temperatures below 10 and above 

60 °C. The activity of Mblp02 increased continually from 10 to 35 °C. At higher 

temperatures, the activity of the enzyme decreased rapidly and was not detectable at 65 

°C. Dependence of phytase activity on pH was determined in the pH range from 2 to 9 at 

the optimal temperature of each enzyme activity (Fig. 4). Mblp01 showed activity from 

pH 2 to 7and Mblp02 from 3.6 to 8. In the case of Mblp01, more than 70% activity was 

retained between pH 4 and 6 with a maximum activity at pH 5. Mblp02 showed a single 

narrow activity peak at pH 7.0. Enzymatic activity at pH lower or higher than 7.0 dropped 

under 60 and 40%, respectively. The ability of Mblp01 and Mblp02 to hydrolyse different 

phosphorylated compounds was determined under the respective optimal pH and 

temperature of enzyme activity. Mblp01 showed activity with all tested substrates 

whereas Mblp02 with all substrates, except pyridoxal phosphate. For both enzymes, the 

substrates ATP and glucose 6-phosphate yielded the highest activities (Fig. 5). With 

phytate as substrate, Mblp01 and Mblp02 showed 18 ± 3.1 and 11 ± 1.2 % relative activity, 

respectively (Fig. 5). The kinetic parameters of both proteins were determined using the 

purified protein and phytic acid as substrate. Km values of Mblp01 and Mblp02 were 1.63 

± 0.031 and 0.4 ± 0.03 mM, respectively. The catalytic efficiencies kcat/Km (min-1 M-1) were 

159 ± 12 and 367 ± 19 mM-1.min-1, respectively.  
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Fig. 3. Effect of temperature on the activity of Mblp01 and Mblp02. All measurements were performed in triplicate using 
the phytase standard assay at temperatures between 10 and 65°C. 100% relative activity represented 1.92 ± 0.034 and 
1.51 ± 0.069 U/mg for Mblp01 and Mblp02, respectively. 
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Fig. 4. Effect of pH on activity of (A) Mblp01 and (B) Mblp02. The measurements were performed with different buffer 
systems according to the phytase standard assay at the optimal temperature of each protein. The average from triplicate 
experiments with the mean deviation is presented.  100% relative phytase activity represented 1.78 ± 0.016 and 2.1 ± 
0.031 U/mg for Mblp01 and Mblp02, respectively. 
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Fig. 5. Substrate specificity of Mblp01 and Mblp02. Specific activities corresponding to 100% of activity with ATP as 
substrate were 1.77 ± 0.019 and 2.32 ± 0.021 U/mg, respectively. All measurements were performed in triplicate and 
under optimal pH and temperature conditions for each enzyme. 

The effects of various additives on Mblp01 and Mblp02 enzyme activities are summarized 

in Fig. S5 and Table S1. None of the tested additives enhanced the activity of Mblp01 and 

Mblp02. Of the evaluated cations, only concentrations higher than 0.5 mM of Cu2+ and Fe2+ 

showed a significant inhibitory effect on the activity of both enzymes. The presence of SDS 

and DTT reduced the enzyme activity of both enzymes below 15%. 

Resistance towards β-lactam antibiotics 

Taking into account the promiscuous characteristics of MBLs, the phylogenetic 

positioning of Mblp01 and Mblp02 and the evolutionary relationship between 

phosphatases and enzymes that can degrade β-lactam antibiotics (22, 23), the ability of 

mblp01 and mblp02 to confer resistance towards β-lactam antibiotics was tested. For this 

purpose, minimal inhibitory concentrations (MIC) and inhibition zones (halos) in the 

presence of different β-lactam antibiotics were determined. To obtain an indication 

whether mblp01 and mblp02 confer any level of antibiotic resistance or not, the host 

strains E. coli and Shimwellia blattae (formerly E. blattae) (24) harbouring the above-

generated recombinant plasmids pBAD202-mblp01 and pBAD202-mblp01 were 

evaluated. Strains carrying the cloning vector without insert were used as controls (Table 
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1). E. coli and S. blattae strains harbouring mblp01 or mblp02 were less sensitive towards 

most of the evaluated antibiotics such as ampicillin and amoxicillin than the control (Table 

1). Thus, a β-lactamase activity was indicated under the tested conditions and suggested 

that MblP01 and MblP02 are promiscuous enzymes.  

Table 1. Sensitivity of E. coli and S. blattae strains harbouring the mblp01- and mblp02-containing plasmids (pBAD202-
mblp01 or pBAD202-mblp02) and as control the cloning vector without insert (pBAD202) against ß-lactam antibiotics. 

Strain/construct MIC (µg/ml)a HIZ (mm)b 

Ampicillin Imipenem Ceftazidime Amoxycillin Doripenem* Fosfomycin** 
E. coli/  
pBAD202 

≥1 
 

≥1 ≥0.2 ≥8 15 12 

E. coli/  
pBAD202-mblp01 

≥8 ≥1 ≥1 ≤16 9 9 

E. coli/  
pBAD202-mblp02 

≥8 ≤4 ≥8 ≤16 9 7 

S. blattae/ 
pBAD202 

≥2 ≥0.5 ≥0.2 ≥4 13 10 

S. blattae/ 
pBAD202-mblp01 

≥4 ≥0.5 ≥1 ≥8 9 8 

S. blattae/ 
pBAD202-mblp02 

≥4 ≥2 ≥1 ≥4 6 5 

aMIC, Minimal inhibitory concentration of selected beta-lactam antibiotics; bHIZ, diameter of 
inhibition zones (halos) in relation to each utilized antibiotic. Antibiotic concentration on test 
disc, *10 and **50 µg. Values are the average of two experiments. 

 

5.5. Discussion 

Certain types of phytases are responsible for phytate breakdown during seed germination 

to make phosphate and myo-inositol available for plant nutrition and development (25). 

The microbial production of extracellular phytase improves phosphate availability in 

plant roots and overcome phosphate starvation for example in Phaseolus vulgaris (26, 27). 

In addition, phytases have been reported to be involved in signal transduction, cell 

division and microbial pathogenesis (11, 12, 28). Despite their broad relevance, phytase 

research has been mainly focused on improvement of enzymes for use as animal feed 

additives. Very little is known about the phytase diversity or their role in vivo (29). 

Phosphatases are in general enzymes that hydrolyse a broad spectrum of phosphorylated 

compounds including phytate. However, reported  phytase activity is limited as above-

mentioned to a few protein types (7). One limiting factor for finding new types of proteins 

or catalytic domains associated with phytase activity is the almost exclusive usage of  

individual microorganisms for the isolation and characterization of this type of enzyme 

(14, 30).  
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Our analysis showed that the metagenome-derived enzymes Mblp01 and Mblp02 carry 

the MBL catalytic domain and originate from bacteria. Both corresponding genes were 

derived from forest soil metagenomes. Searches of metagenomes revealed that Mblp01 is 

similar to a protein deduced from a forest soil metagenome in Brazil, indicating that 

enzymes with similar characteristics might be present in other forest soils. 

The sequences of Mblp01 and Mblp02 clustered differently in the constructed 

phylogenetic tree. Mblp01 is part of a small monophyletic cluster together with an 

uncharacterized MBL protein (G8NYQ4) derived from a genome sequence of Granulicella 

mallensis, which was originally isolated from tundra soil of northwestern Finland (31). 

Mblp02 was grouped within a larger cluster that contains β-lactam-degrading enzymes 

from Aeromonas salmonicida (e.g. AY261376). Several representatives of protein 

phytases such us a β-propeller phytase from Bacillus subtilis (Q6NG0), or the acid 

phosphatase from Scheffersomyces stipitis (XP_ 001385026) clustered in the same group 

(Fig 3). The evolutionary link between MLBs and phosphatases has been reported, but is 

not fully clear (23). Chakraborty et al. 2012 described the likelihood of the presence of a 

Class B2 MBL-like scaffold in a cold active alkaline phosphatase from Vibrio. The 

prediction was verified by the inhibition of the phosphatase activity by imipenem. The 

results suggested a natural evolution of the alkaline phosphatases to acquire true metallo-

β-lactamase activity (22). 

The predicted models of Mblp01 and Mblp02 provided first insights into the structure of 

these proteins (Fig S4). The models are supported by the calculated C and TM-scores and 

show a remarkable relationship of both enzymes with a zinc phosphodiesterase encoded 

by the gene elaC from E. coli. ElaC harbours the MBL domain and possesses 

phosphodiesterase activity. Additionally, it is affiliated to the tRNase Z-Family and acts as 

a clamp in tRNA binding (21).  

Characterization of phytases has shown that these enzymes exhibit a wide range of 

features. It has been reported that phytases are usually most active within temperature 

ranges of 45 to 60 °C (30). However, these reported range might be due to that most 

searches focussed on thermophilic phytases from individual microorganisms, which can 

be used in industrial applications. With the identification of metagenome-derived 

phytases, the temperature range of the optimal phytase activity changed. PhyRC001, a 

metagenome-derived phytase from red rice, showed optimal activity at 30°C (15). The 

Mblp02 activity optimum was 35 °C. Similarly, another recently described soil 
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metagenome-originated phytase (Pho07) showed highest activities at lower 

temperatures (25 to 30 °C) (14). The reported pH range of phytase activity also varies (2.2 

to 8.0) whereby phytases of bacterial origin revealed optimal activities between pH 6.5 

and 7.5. A similar pH range was recorded for the optimal activities of Mblp01 and Mblp02, 

which are according to our analysis of bacterial origin. Nevertheless, other soil 

metagenome-derived bacterial phytases, i.e. Pho07, exhibited a pH optimum at pH 4.0 

(14).  

MBLs and phosphatases are both considered as promiscuous enzymes with respect to 

substrate spectrum or in some cases catalytic mechanism (32, 33). It has been estimated 

that MBLs can catalyze on average 1.5 reactions. Moreover, directed evolution 

experiments have shown that with a few mutations, the β-lactamases NDM1 and VIM2 are 

converted to enzymes with a promiscuous phosphonate monoester hydrolase activity 

(34). Similar might be the case for the promiscuous Mblp01 and Mblp02 with respect to 

the additional indicated β-lactamase activity of both enzymes. The tested host strains E. 

coli and S. blattae carrying and expressing mblp01 and mblp02 show less susceptibility 

against the tested β-lactam antibiotics than the control strains. It has been previously 

suggested that the MBL superfamily could have evolved from a common ancestor via 

promiscuous enzymes with a connected catalytic landscape (16, 34). Some zones of 

sequence space may overlap between multiple catalytic landscapes, including sequences 

of enzymes that can catalyze more than one activity (catalytic promiscuity). The 

connections between different catalytic landscapes amend enzymes to evolve and 

develop new functions (35). Some of the new enzymatic functions in the MBL superfamily 

such as phosphodiesterase activity evolved rapidly from the current diversity of enzymes 

with promiscuous activities. Other MBLs have evolved recently on the basis of the 

appearance of substrates that were not available a few years ago. A good example are 

phosphotriesterases, which hydrolyze organophosphate pesticides. This type of enzymes 

evolved and developed activity toward a substrate that did not exist 60 to 80 years ago 

(34). The β-lactamase activity was invented several times during evolution in 

independent ways. It has been hypothesized that promiscuous activities provide an 

immediate evolutionary advantage against β-lactam antibiotics in an environment in 

which antibiotics are present (34) 

Relatively few organisms use phytate as sole P source. Most reported phosphatases with 

phytase activity are non-specific phosphatases (29). The Km values of Mblp01 and Mblp02 



G.A Castillo Villamizar Dissertation Publications 
 

95 

are in the same range of other reported environmental phosphatases with phytase 

activity, e.g. Pho07 and Pho16B (14, 36). The catalytic efficiencies towards phytate of 

Mblp01 and Mblp02 are significantly lower than catalytic efficiencies of other reported 

phytases derived from cultured single microorganisms (37-39). The studies with the 

additives revealed that SDS and DTT exhibited deleterious effects on activity of Mblp01 

and Mblp02. In presence of SDS, the activity of both enzymes was strongly reduced or not 

detectable. SDS has been reported to be a strong inhibitor of phytases (40). Anionic 

detergents bind to proteins and induce structural changes that affect the protein stability 

and functionality (41). DTT had also a strong inhibitory effect on the phytase activity of 

Mblp01 and Mblp02. The same effect was observed for the environmental phytase 

Pho16B (36). DTT acts as chelator of metal ions essential for enzyme activity (42). The 

cation Cu2+ exhibited an inhibitory effect on both enzymes (Fig S5). It has been reported 

that copper ions directly inactivate other proteins of the metallo-β-lactamase superfamily 

and also phytases. However, the mechanism leading to this inactivation remains unknown 

(43). 

In conclusion, the applied function-driven metagenomic approach resulted in 

identification of two representatives of a new type of phytate-degrading enzymes 

exhibiting a MBL domain structure. To our knowledge, enzymes merging these two 

characteristics have not been reported. This study shows that MBLs are potentially 

involved in a previously not reported process, recovering valuable P from phytate. Our 

data improve the knowledge on the diversity of phytate-degrading enzymes, which is 

required to gain insights into the relationships among these enzymes. This knowledge 

could help in the future to design and engineer superior biocatalysts as well as improve 

our capabilities to solve problems such as the P scarcity and the proliferation of antibiotic-

resistant bacteria. 

 

Materials and Methods  

Sampling, metagenomic library construction and clone selection 

The genes encoding Mblp01 and Mblp02 originate from two soil samples (SEW46 and 

HEW30) with pH values of 3.29 and 3.86, respectively (44). Both samples were collected 

from A horizons of beech forest sites in Germany. SEW46 was collected within the 

Schorfheide-Chorin biosphere reserve, while the HEW30 sample was collected within 
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Hainich national park. Collection of the samples was performed as previously described 

by Kaiser et al (2016) (45). Approximately 2.5 g of soil were used for total DNA extraction 

by employing the PowerSoil DNA isolation kit (MoBio Laboratories, Carlsbad, CA). The 

metagenomic libraries were generated using the method described by Nacke et al. 

(2011)(44), and constructed and screened by Castillo Villamizar et al. (2019) (14). The 

metagenomic libraries SEW46 and HEW 30 were composed of 38,122 and 53,460 clones, 

respectively. Libraries were constructed by using the plasmid pCR-XL-TOPO as vector 

(Invitrogen GmbH, Karlsruhe, Germany). The library-bearing E. coli clones were screened 

by using modified minimal Sperber minimal medium (16 g/liter agar, 10 g/liter glucose, 

500 mg/liter yeast extract, 100 mg/liter CaCl2, and 250 mg/liter MgSO4). In order to 

induce phytase activity, phytate (2.5 g/liter) was used as phosphorus source and 25 µg/ml 

of 5-bromo-4-chloro-3-indolyl phosphate (BCIP) as indicator. Clones with 

phosphatase/phytase activity turned from white to dark blue within 48 hours (46, 47). 

Sequence data analysis 

The insert sequences of plasmids pLP05 and pLP12 derived from the libraries SEW46 and 

HEW30, respectively, were sequenced and analysed. Initially, the taxonomic classification 

of the complete DNA inserts of pLP05 and pLP12 was performed by using the software 

KAIJU (48). Next, open reading frame (ORF) prediction was performed using the ORF 

finder tool provided by the National Center for Biotechnology Information (NCBI) and the 

ARTEMIS program (49, 50). The results were verified manually by using criteria such as 

the presence of a ribosome-binding site, GC frame plot analysis and similarity to known 

genes.  

Amino acid sequences deduced from the mblp01 and mblp02 gene products were 

examined for similarities to known protein families and domains by performing searches 

against the Pfam, InterPro and NCBI collections. Signal peptide prediction was performed 

using SIGNALP 4.0 (51-53). Mblp01 and Mblp02 were also analysed by using the Basic 

Local Alignment Search for proteins (BLASTP). Two NCBI databases; non-redundant 

sequences (nr) and metagenomic proteins (env_nr) were employed. An additional search 

was performed against the metagenomic platform of the European Institute of 

Biotechnology (EMBL-EBI) (52, 54). Multiple sequence alignments of Mblp01 and Mblp02 

and related MBLs were performed using MUSCLE (55). Evolutionary analyses were 

conducted in MEGA 7 using the neighbor-joining method (56, 57). The bootstrap 

consensus tree was inferred from 500 replicates. The evolutionary distances were 
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computed using the number of differences method. The analysis involved 137 amino acid 

sequences and a total of 670 positions in the final dataset. Branches with bootstrap values 

below 50 % were collapsed. The tree was visualized using iTOL v3 (58). A prediction of 

the tertiary structure of the proteins Mblp01 and Mblp02 was performed by employing 

the I-TASSER platform (20). The quality of models generated using I-TASSER is based on 

two major criteria: the confidence score (C-score) and the template modelling score (TM-

score) (19). I-TASSER generated five models for each protein. The models were ranked 

based on the C-score. The C-scores are calculated on the basis of the statistical significance 

of the threading profile–profile alignment, as well as structure convergence of the 

assembly simulations. The C-score ranged from-5 to 2. A high C-score value indicates a 

model with higher confidence (19). The TM-score addresses the structural similarity of 

two protein models by measuring the global fold similarity. TM-score is less sensitive to 

local structural variations and its magnitude for random structure pairs is length-

independent. The TM-score has a value range of 0 to 1, whereby 1 indicates a perfect 

match between two structures (19, 59). By calculating the TM-score the structural 

similarity between the predicted models of Mblp01 and Mblp02 and other published 

determined structures is estimated. Values close to 0.5 indicate a model of correct 

topology. In this study, the models with the highest C-score were selected as the best 

predicted optimized 3D modelling structure.  

Protein expression and purification 

To facilitate expression and purification, mblp01 and mblp02 were cloned into plasmid 

pBAD202/D-TOPO according to the instructions of the manufacturer (Thermo Fisher 

Scientific GmbH, Schwerte, Germany). In this way, sequences encoding the His6 and 

thioredoxin tags were added to the N terminus of the produced proteins during cloning. 

As control, a non-coding DNA region was also cloned in pBAD202/D-TOPO. The fidelity of 

the constructs was confirmed by Sanger Sequencing. The generated constructs were used 

to transform Escherichia coli LMG194. Transformants were grown on Sperber screening 

media supplemented with 0,2% arabinose. Only the clones carrying a recombinant 

plasmid harbouring mblp01 or mblp02 showed phosphatase/phytase activity on indicator 

agar after transformation.  

The expression plasmids containing mblp01 or mblp02 (pBAD202-mblp01 or pBAD202-

mblp02, respectively) were transformed into Escherichia coli LMG194. Subsequently, the 

recombinant E. coli strains were grown on Luria-Bertani (LB) agar plates supplemented 
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with kanamycin (50 µg/µl) and incubated at 37°C. One single colony of each construct was 

used to inoculate 1 L of M9 minimal salts medium (60) containing 50 µg/µl kanamycin 

and 2% glycerol. The culture was incubated using a New Brunswick Innova 44 incubator-

shaker (Eppendorf AG, Hamburg, Germany) with shaking (90 rpm) at 37°C. Protein 

expression was induced at an OD600of 0.6 using L-arabinose (final concentration, 0.2%). 

Cells were harvested after 5 h of incubation by centrifugation for 30 min at 4 °C and 8,000 

rpm (Sorvall® RC6 centrifuge, rotor SLA 3000, Thermo Fisher Scientific). The resulting 

cell pellets were suspended in 10 ml of 50 mM HEPES buffer containing 250 mM NaCl and 

0.5 mM ZnSO4. Mechanical cell disruption was performed using a French press (1.38 x 108 

Pa; Thermo Fisher Scientific). Subsequently, the extract was cleared by centrifugation for 

0.5 h at 4 °C and 15,000 rpm (Sorvall® RC6 centrifuge with rotor SS 35, Thermo Fisher 

Scientific). The crude extract was filtered using filters with a pore size of 0.45 µm and then 

0.2 µm filters (Sarstedt, Nümbrecht, Germany). In order to purify the His6-tagged protein, 

the Protino® Ni-TED 2000 purification kit was used as recommended by the 

manufacturer (Macherey and Nagel, Düren, Germany) with modifications. The 

equilibration of the columns and the washing steps were performed with 50 mM HEPES 

(pH 8.0) containing 250 mM NaCl and 0.5 mM ZnSO4. Elution was performed with 50 mM 

HEPES containing 250 mM NaCl, 250 mM imidazole and 0.5 mM ZnSO4. Buffer exchange 

and imidazole removal was performed by ultrafiltration using Vivaspin® 20 

concentrators with exclusion limit of 30 kDa combined with diafiltration cups VS20 as 

recommended by the manufacturer (Sartorius AG, Göttingen, Germany). The thioredoxin 

tag of the proteins was removed by employing the enterokinase cleavage capture kit as 

recommended by the manufacturer (Merck KGaA, Darmstadt, Germany) with a modified 

cleavage buffer consisting of 50 mM Tris-HCl (pH 7.4), 50 mM NaCl, 2mM CaCl2 and 0.5 

mM ZnSO4. Subsequently, ultrafiltration of the protein extract using a Vivaspin® 

concentrator with exclusion limit of 10 kDa was performed.  

Biochemical characterization of Mblp01 and Mblp02 

Phosphatase activity was determined at 355 nm by detecting the release of inorganic 

phosphorus according to the ammonium molybdate method developed by Heinonen and 

Lahti with modifications (61) The purified enzyme solution (10 μl) was pre-incubated for 

3 min at 40 °C in 380 μl of 50 mM sodium acetate buffer (pH 5). Subsequently, 10 μl of 100 

mM phytic acid dipotassium salt (Sigma-Aldrich, Munich, Germany) was added and the 

mixture incubated for 30 min at 40 °C. To stop the reaction, 1.5 ml of freshly prepared 
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AAM solution (acetone–5N H2SO4–10 mM ammonium molybdate) and 100 μl 1 M citric 

acid were added. Samples were measured against blanks prepared by adding AAM 

solution prior to the addition of enzyme. The absorbance (355 nm) was measured using 

the Ultrosprec® 3300 pro (Amersham plc, Little Chalfont, United Kingdom). All 

measurements were performed in triplicate. To calculate the enzyme activity, a 

calibration curve was generated in the range of 5 to 600 nmol phosphate. One activity unit 

(U) represented the release of 1 nmol phosphate per min. 

The influence of temperature on enzymatic activity was determined via the above-

described standard phytase assay. The enzymatic activity was evaluated in a temperature 

range of 10 to 65 °C by using a temperature-adjusted buffer (50 mM sodium acetate, pH 

6). In order to analyse the pH dependence of enzyme activity, the following overlapping 

buffers were prepared as described by Gomori 1955 (62): 50 mM glycine-HCl (pH 2.0, 3.0, 

and 3.6), sodium acetate (pH 3.6, 4.0, 5.0 and 6.0), Tris-malate (pH 6.0, 7.0, and 8.0), Tris-

HCl (pH 8.0, and 9.0), and glycine-NaOH (pH 9.0).  

The substrate specificity was determined using the standard phytase assay under the 

optimal temperature and pH conditions. Nine different substrates comprising ADP, ATP, 

NADP, glucose-6-phosphate, glycerophosphate, pyridoxal phosphate, pyrophosphate, 

naphthyl phosphate, and phytic acid were tested using 10 mM concentration. 

Furthermore, the effect of cations (Al2+, Ca2+, Cu2+, Co2+, Fe2+ and Mg2+) and the potential 

inhibitors ethylenediaminetetraacetic acid (EDTA), tungstate, oxalate, sodium dodecyl 

sulfate (SDS), and dithiothreitol (DTT) (1 mM) were analysed. Kinetic parameters Km and 

kcat/Km for both enzymes were calculated from the Michaelis–Menten equation by using 

the kinetics module of the program SigmaPlot 12.0 (Systat Software, Inc., San Jose, CA, 

USA). All measurements were performed under optimal pH and temperature conditions 

using phytate as substrate. 

In addition to the biochemical characterization of the enzymes Mblp01 and Mblp02, an 

analysis of the antimicrobial activity of the gene products encoded by mblp01 and mblp02 

were performed. The minimal inhibitory concentration (MIC) for β-lactam antibiotics was 

performed. Ampicillin, imipenem, ceftazidime and amoxycillin strips (M.I.C.E ™) (Oxoid, 

Wade Road, Basingstoke, U.K) were used. Two additional antibiotics doripenem and 

fosfomycin (Oxoid, Wade Road, Basingstoke, U.K) were evaluated by measuring the 

inhibition zone (halos) around discs containing of 10 doripenem or 50 µg fosfomycin. E. 

coli Top 10 and Shimwellia blattae DSM 4881 were transformed with the pBAD202-
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mblp01 and pBAD202-mblp02 plasmids. Strains harbouring the cloning vector pBAD202 

without insert served as control. All recombinant strains were analysed in duplicate using 

the M.I.C.Evaluator™ system according to the instructions of the manufacturer (Oxoid, 

Wade Road, Basingstoke, U.K) with Luria-Bertani (LB) Agar containing 50 μg/ml 

kanamycin and 0,2% arabinose (pH: 7.0).  

Data availability 

The sequences of the inserts have been submitted to the National Center for 

Biotechnology Information (NCBI) under the GenBank accession numbers MH367836 

(pLP05) and MH367837 (pLP12). 
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5.7. Supplemental Information for Chapter 5 

Contents 

Fig. S1. Protein sequence similarities of deduced gene products encoded by the insert of 

pLP05. 

Fig. S2. Protein sequence similarities of deduced gene products encoded by the insert of 

pLP12. 

Fig. S3. Krona chart showing the taxonomic affiliation of pLP05 and pLP12 inserts 

determined by Kaiju 1.6.3.  

Fig. S4. Predicted structure of A) Mblp01 and B) Mblp02 by I-TASSER. The figure shows 

the best model of each enzyme (C-scores: -0.75 and -1.70, respectively) 

Fig. S5. Effect of metal ions on the phytase activity of Mblp01 and Mblp02. The 100 % 

relative activities at concentrations of 1, 0.5 and 0.1 mM are 2.38, 2,61 and 2.77 for Mblp01, 

and 1.91, 2.03 and 1.94 U/mg for Mblp02, respectively. 

 Table S1: Effect of additives (1 mM) on Mblp01 and Mblp02 activity. The enzyme activities 

with phytate as substrate and without any added inhibitor of 2.31 (Mblp01) and 1.79 (Mblp02) 

U/mg were taken as 100% activity. Values are given as the mean of three experiments ± 

standard deviations. 

Supplementary Extended Data Table 1. UniProt codes, related proteins, genes and 

organisms of the sequences used for the construction of the phylogentic tree depicted in Fig. 

2. 
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Fig. S1. Protein sequence similarities of deduced gene products encoded by the insert of pLP05. 
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Fig. S2. Protein sequence similarities of deduced gene products encoded by the insert of pLP12. 



G.A Castillo Villamizar Dissertation Publications 
 

108 

 

Fig. S3. Krona chart showing the taxonomic affiliation of pLP05 and pLP12 inserts determined by Kaiju 1.6.3.  
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Fig. S4. Predicted structure of A) Mblp01 and B) Mblp02 by I-TASSER. The figure shows the best model of each 
enzyme (C-scores: -0.75 and -1.70, respectively)
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Fig. S5. Effect of metal ions on the phytase activity of Mblp01 and Mblp02. The 100 % relative activities at concentrations of 1, 0.5 and 0.1 mM are 2.38, 2,61 and 2.77 for Mblp01, and 
1.91, 2.03 and 1.94 U/mg for Mblp02, respectively. 
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Table S1: Effect of additives (1 mM) on Mblp01 and Mblp02 activity. The enzyme activities with phytate as substrate 
and without any added inhibitor of 2.31 (Mblp01) and 1.79 (Mblp02) U/mg were taken as 100% activity. Values are 
given as the mean of three experiments ± standard deviations. 

 

Inhibitors 
Phytase relative activity (%) 

Mblp01 Mblp02 
Control* 100 ± 0.83 100 ± 0.69 
EDTA 50.38 ± 1.12 62.85 ± 1.46 
Tungstate 45.52 ± 2.53 22.05 ± 2.33 
Oxalate 69.19 ± 1.98 35.56 ± 3.02 
SDS N.D 2.92 ± 1.61 
DTT 7.21 ± 0.92 14.02 ± 2.51 

 

*The enzyme activity toward phytate without any added inhibitor was taken as 100% activity, 2. 

31 and 1.79 U/mg for Mblp01 and Mblp02, respectively. Values are given as the mean of three 

experiments ± standard deviations. N.D: Not detected. 
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Supplementary Extended Data Table 1. UniProt codes, related proteins, genes and organisms of the sequences used for the construction of the phylogentic tree depicted in Fig. 2. 
 
Fasta-Name Protein Gene Organism 

A1WQ33 Coenzyme PQQ synthesis protein B pqqB Verminephrobacter eiseniae (strain EF01-2) 

A2SJ00 Coenzyme PQQ synthesis protein B pqqB Methylibium petroleiphilum (strain ATCC BAA-1232 / LMG 22953 / PM1) 

A3DK71 Beta-lactamase superfamily hydrolase Cthe_3155 Clostridium thermocellum (strain ATCC 27405 / DSM 1237 / NBRC 103400 / 
NCIMB 10682 / NRRL B-4536 / VPI 7372) (Ruminiclostridium thermocellum) 

A4AUL5 Putative hydrolase FB2170_12641 Maribacter sp. (strain HTCC2170 / KCCM 42371) 

A0JVX8  Zn-dependent hydrolases of the beta-lactamase fold-like protein Arth_1808 Arthrobacter sp. (strain FB24) 

A4X5M1 Zn-dependent hydrolase of the beta-lactamase fold-like protein Strop_1707 Salinispora tropica (strain ATCC BAA-916 / DSM 44818 / CNB-440) 

A4YZY4 Coenzyme PQQ synthesis protein B pqqB Bradyrhizobium sp. (strain ORS 278) 

A7H951 Uncharacterized protein Anae109_1038 Anaeromyxobacter sp. (strain Fw109-5) 

A9GAR8 Uncharacterized protein sce2742 Sorangium cellulosum (strain So ce56) (Polyangium cellulosum (strain So ce56)) 

A9GHH6 Uncharacterized protein sce9325 Sorangium cellulosum (strain So ce56) (Polyangium cellulosum (strain So ce56)) 

B0UGZ8 Beta-lactamase domain protein M446_2411 Methylobacterium sp. (strain 4-46) 

B0VI78 UPF0173 metal-dependent hydrolase CLOAM1192 CLOAM1192 Cloacimonas acidaminovorans (strain Evry) 

B1LUZ1 Beta-lactamase domain protein Mrad2831_3601 Methylobacterium radiotolerans (strain ATCC 27329 / DSM 1819 / JCM 2831 / 
NBRC 15690 / NCIMB 10815 / 0-1) 

B2IDU9 Coenzyme PQQ synthesis protein B pqqB Beijerinckia indica subsp. indica (strain ATCC 9039 / DSM 1715 / NCIB 8712) 

B3DX71 Zn-dependent hydrolase of the beta-lactamase fold Minf_1726 Methylacidiphilum infernorum (isolate V4) (Methylokorus infernorum (strain V4)) 

B6IP37 Uncharacterized protein RC1_2067 Rhodospirillum centenum (strain ATCC 51521 / SW) 

B6YQL0 Uncharacterized protein CFPG_219 Azobacteroides pseudotrichonymphae genomovar. CFP2 

B9JKU6 Uncharacterized protein Arad_9513 Agrobacterium radiobacter (strain K84 / ATCC BAA-868) 

C1F564 UPF0173 metal-dependent hydrolase ACP_3152 ACP_3152 Acidobacterium capsulatum (strain ATCC 51196 / DSM 11244 / JCM 7670 / NBRC 
15755 / NCIMB 13165 / 161) 

C1F6C1 Metallo-beta-lactamase family protein ACP_3353 Acidobacterium capsulatum (strain ATCC 51196 / DSM 11244 / JCM 7670 / NBRC 
15755 / NCIMB 13165 / 161) 

C6WVF4 Coenzyme PQQ synthesis protein B pqqB Methylotenera mobilis (strain JLW8 / ATCC BAA-1282 / DSM 17540) 

C6XDZ8 Coenzyme PQQ synthesis protein B pqqB Methylovorus glucosetrophus (strain SIP3-4) 

C7JE57 Coenzyme PQQ synthesis protein B pqqB Acetobacter pasteurianus (strain NBRC 3283 / LMG 1513 / CCTM 1153) 

D0LX98 Beta-lactamase domain protein Hoch_3638 Haliangium ochraceum (strain DSM 14365 / JCM 11303 / SMP-2) 

D2AUV7 Uncharacterized protein Sros_3902 Streptosporangium roseum (strain ATCC 12428 / DSM 43021 / JCM 3005 / NI 
9100) 
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D2S3Z3 Beta-lactamase domain protein Gobs_0215 Geodermatophilus obscurus (strain ATCC 25078 / DSM 43160 / JCM 3152 / G-
20) 

D5QAQ5 Coenzyme PQQ synthesis protein B pqqB Komagataeibacter hansenii ATCC 23769 

D5V712 Coenzyme PQQ synthesis protein B pqqB Arcobacter nitrofigilis (strain ATCC 33309 / DSM 7299 / LMG 7604 / NCTC 12251 
/ CI) (Campylobacter nitrofigilis) 

D5XBH6 Metal-dependent hydrolase TherJR_2568 Thermincola potens (strain JR) 

D6YB30 Beta-lactamase domain protein Tbis_1677 Thermobispora bispora (strain ATCC 19993 / DSM 43833 / CBS 139.67 / JCM 
10125 / NBRC 14880 / R51) 

D6ZD67 Metallo-beta-lactamase family protein Srot_2823 Segniliparus rotundus (strain ATCC BAA-972 / CDC 1076 / CIP 108378 / DSM 
44985 / JCM 13578) 

D7BYX6 Uncharacterized protein SBI_02564 Streptomyces bingchenggensis (strain BCW-1) 

D7DHP1 Coenzyme PQQ synthesis protein B pqqB Methylotenera versatilis (strain 301) 

E0SIG9 Outer membrane protein RomA Dda3937_02835 Dickeya dadantii (strain 3937) (Erwinia chrysanthemi (strain 3937)) 

E2PX85 Zn-dependent hydrolase SCLAV_5089 Streptomyces clavuligerus (strain ATCC 27064 / DSM 738 / JCM 4710 / NBRC 
13307 / NCIMB 12785 / NRRL 3585 / VKM Ac-602) 

E3FNR1 Conserved uncharacterized protein STAUR_0331 Stigmatella aurantiaca (strain DW4/3-1) 

E4RTV2 Beta-lactamase domain protein Lbys_2998 Leadbetterella byssophila (strain DSM 17132 / KACC 11308 / 4M15) 

E6SEG1 Uncharacterized protein Intca_3356 Intrasporangium calvum (strain ATCC 23552 / DSM 43043 / JCM 3097 / NBRC 
12989 / 7 KIP) 

E8V4I3 Uncharacterized protein AciPR4_4058 Terriglobus saanensis (strain ATCC BAA-1853 / DSM 23119 / SP1PR4) 

E9T554 Metallo-beta-lactamase domain protein HMPREF0724_13682 Rhodococcus hoagii ATCC 33707 

F0S2Z7 Metallo-beta-lactamase family protein Dester_0568 Desulfurobacterium thermolithotrophum (strain DSM 11699 / BSA) 

F2I749 Metallo-beta-lactamase domain protein HMPREF9243_1704 Aerococcus urinae (strain ACS-120-V-Col10a) 

F2KPP9 UPF0173 metal-dependent hydrolase Arcve_1577 Arcve_1577 Archaeoglobus veneficus (strain DSM 11195 / SNP6) 

F4B347 Beta-lactamase domain-containing protein Krodi_2683 Dokdonia sp. (strain 4H-3-7-5) (Krokinobacter sp. (strain 4H-3-7-5)) 

F4CM85 Coenzyme PQQ synthesis protein B pqqB Pseudonocardia dioxanivorans (strain ATCC 55486 / DSM 44775 / JCM 13855 / 
CB1190) 

F4CPX3 Beta-lactamase domain protein Psed_3990 Pseudonocardia dioxanivorans (strain ATCC 55486 / DSM 44775 / JCM 13855 / 
CB1190) 

F4F180 Zn-dependent hydrolase of the beta-lactamase fold-like 
protein VAB18032_14020 Verrucosispora maris (strain AB-18-032) 

F4GHG2 Beta-lactamase domain protein Spico_1345 Sphaerochaeta coccoides (strain ATCC BAA-1237 / DSM 17374 / SPN1) 
(Spirochaeta coccoides) 

F4PAY0 Uncharacterized protein BATDEDRAFT_13909 Batrachochytrium dendrobatidis (strain JAM81 / FGSC 10211) (Frog chytrid 
fungus) 

F6EMB1 Uncharacterized protein AS9A_0865 Hoyosella subflava (strain DSM 45089 / JCM 17490 / NBRC 109087 / DQS3-9A1) 
(Amycolicicoccus subflavus) 

F7QLQ9 Coenzyme PQQ synthesis protein B pqqB Bradyrhizobiaceae bacterium SG-6C 
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F8JZN7 Uncharacterized protein SCATT_49660 Streptomyces cattleya (strain ATCC 35852 / DSM 46488 / JCM 4925 / NBRC 
14057 / NRRL 8057) 

G0L7Q9 Metallo-beta-lactamase superfamily protein zobellia_4075 Zobellia galactanivorans (strain DSM 12802 / CCUG 47099 / CIP 106680 / NCIMB 
13871 / Dsij) 

G2ITI4 Putative hydrolase SLG_20190 Sphingobium sp. (strain NBRC 103272 / SYK-6) 

G2IZA3 Coenzyme PQQ synthesis protein B pqqB Pseudogulbenkiania sp. (strain NH8B) 

G2PKK9 Beta-lactamase domain protein Murru_3034 Muricauda ruestringensis (strain DSM 13258 / CIP 107369 / LMG 19739 / B1) 

G4R899 Coenzyme PQQ synthesis protein B pqqB Pelagibacterium halotolerans (strain DSM 22347 / JCM 15775 / CGMCC 1.7692 / 
B2) 

G4RKZ5 Ribonuclease Z rnz Thermoproteus tenax (strain ATCC 35583 / DSM 2078 / JCM 9277 / NBRC 
100435 / Kra 1) 

G7DVV2 Uncharacterized protein Mo01365 Mixia osmundae (strain CBS 9802 / IAM 14324 / JCM 22182 / KY 12970) 

G7ZEV0 Coenzyme PQQ synthesis protein B pqqB Azospirillum lipoferum (strain 4B) 

G8NUJ1 Beta-lactamase domain protein AciX8_2113 Granulicella mallensis (strain ATCC BAA-1857 / DSM 23137 / MP5ACTX8) 

G8NYQ4 Beta-lactamase AciX8_0109 Granulicella mallensis (strain ATCC BAA-1857 / DSM 23137 / MP5ACTX8) 

G8P0A8 Coenzyme PQQ synthesis protein B pqqB Granulicella mallensis (strain ATCC BAA-1857 / DSM 23137 / MP5ACTX8) 

G8PVE1 Zn-dependent hydrolase of the beta-lactamase fold-like 
protein PSE_p0147 Pseudovibrio sp. (strain FO-BEG1) 

H0Q3B3 Coenzyme PQQ synthesis protein B pqqB Azoarcus sp. KH32C 

H2JS06 Uncharacterized protein SHJG_7667 Streptomyces hygroscopicus subsp. jinggangensis (strain 5008) 

H6QY58 Putative Zn-dependent hydrolase of the beta-lactamase 
fold NOCYR_0692 Nocardia cyriacigeorgica (strain GUH-2) 

H8MFU1 Uncharacterized protein COCOR_07021 Corallococcus coralloides (strain ATCC 25202 / DSM 2259 / NBRC 100086 / M2) 
(Myxococcus coralloides) 

I2EZN2 Uncharacterized protein Emtol_4010 Emticicia oligotrophica (strain DSM 17448 / GPTSA100-15) 

I3TIV4 Beta-lactamase superfamily hydrolase TMO_0853 Tistrella mobilis (strain KA081020-065) 

I3TL82 Metallo-beta-lactamase superfamily lipB Tistrella mobilis (strain KA081020-065) 

I3ZD26 Putative Zn-dependent hydrolase of beta-lactamase fold 
protein Terro_0812 Terriglobus roseus (strain DSM 18391 / NRRL B-41598 / KBS 63) 

I4D0N2 Putative Zn-dependent hydrolase of beta-lactamase fold 
protein Desaci_0284 Desulfosporosinus acidiphilus (strain DSM 22704 / JCM 16185 / SJ4) 

K7SBP4 Coenzyme PQQ synthesis protein B pqqB Gluconobacter oxydans H24 

M1FI32 Coenzyme PQQ synthesis protein B pqqB Marinobacter sp. BSs20148 

PQQB_AZOVD Coenzyme PQQ synthesis protein B pqqB Azotobacter vinelandii (strain DJ / ATCC BAA-1303) 

PQQB_GLUDA Coenzyme PQQ synthesis protein B pqqB Gluconacetobacter diazotrophicus (strain ATCC 49037 / DSM 5601 / PAl5) 

PQQB_GLUOX Coenzyme PQQ synthesis protein B pqqB Gluconobacter oxydans (strain 621H) (Gluconobacter suboxydans) 
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PQQB_METCA Coenzyme PQQ synthesis protein B pqqB Methylococcus capsulatus (strain ATCC 33009 / NCIMB 11132 / Bath) 

PQQB_METEA Coenzyme PQQ synthesis protein B pqqB Methylobacterium extorquens (strain ATCC 14718 / DSM 1338 / JCM 2805 / 
NCIMB 9133 / AM1) (Methylorubrum extorquens) 

PQQB_METFK Coenzyme PQQ synthesis protein B pqqB Methylobacillus flagellatus (strain KT / ATCC 51484 / DSM 6875) 

PQQB_METS4 Coenzyme PQQ synthesis protein B pqqB Methylobacterium sp. (strain 4-46) 

PQQB_PSEAE Coenzyme PQQ synthesis protein B pqqB Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 
14847 / LMG 12228 / 1C / PRS 101 / PAO1) 

PQQB_PSEPK Coenzyme PQQ synthesis protein B pqqB Pseudomonas putida (strain ATCC 47054 / DSM 6125 / NCIMB 11950 / KT2440) 

PQQB_RHOPA Coenzyme PQQ synthesis protein B pqqB Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) 

PQQB_XANCP Coenzyme PQQ synthesis protein B pqqB Xanthomonas campestris pv. campestris (strain ATCC 33913 / DSM 3586 / 
NCPPB 528 / LMG 568 / P 25) 

Q027I3 Beta-lactamase domain protein Acid_1840 Solibacter usitatus (strain Ellin6076) 

Q0BT75 Metal-dependent hydrolase GbCGDNIH1_1079 Granulibacter bethesdensis (strain ATCC BAA-1260 / CGDNIH1) 

Q21AY6 Coenzyme PQQ synthesis protein B pqqB Rhodopseudomonas palustris (strain BisB18) 

Q2K048 Hypothetical conserved protein RHE_PE00054 Rhizobium etli (strain CFN 42 / ATCC 51251) 

Q2RTP6 Beta-lactamase-like Rru_A1699 Rhodospirillum rubrum (strain ATCC 11170 / ATH 1.1.1 / DSM 467 / LMG 4362 / 
NCIB 8255 / S1) 

Q2W4H5 Metal-dependent hydrolase of the beta-lactamase 
superfamily I amb2446 Magnetospirillum magneticum (strain AMB-1 / ATCC 700264) 

Q3A832 Metal-dependent hydrolase, beta-lactamase superfamily Pcar_0199 Pelobacter carbinolicus (strain DSM 2380 / NBRC 103641 / GraBd1) 

Q5JJ51 Predicted hydrolase, metallo-beta-lactamase superfamily TK1778 Thermococcus kodakarensis (strain ATCC BAA-918 / JCM 12380 / KOD1) 
(Pyrococcus kodakaraensis (strain KOD1)) 

Q6LL65 Uncharacterized protein RSP1122 Photobacterium profundum (strain SS9) 

Q82LZ2 Uncharacterized protein SAVERM_1868 Streptomyces avermitilis (strain ATCC 31267 / DSM 46492 / JCM 5070 / NBRC 
14893 / NCIMB 12804 / NRRL 8165 / MA-4680) 

R4LT43 Zn-dependent hydrolase L083_6641 Actinoplanes sp. N902-109 

R5AH50 Beta-lactamase-like protein BN454_01422 Clostridium sp. CAG:1024 

R5CAE1 Metallo-beta-lactamase domain protein BN727_01472 Bacteroides sp. CAG:598 

R5CC61 Metallo-beta-lactamase domain protein BN458_01277 Prevotella sp. CAG:1058 

R5KJV9 Metallo-beta-lactamase domain protein BN467_02063 Prevotella sp. CAG:1124 

R5NLD0 Metallo-beta-lactamase domain protein BN471_01507 Paraprevotella clara CAG:116 

R6PKU0 Lipoate-protein ligase B BN637_01418 Prevotella sp. CAG:386 

R6VV32 Lipoate-protein ligase B BN673_02141 Prevotella sp. CAG:474 

R6W9B0 Putative phnP protein BN725_00349 Prevotella sp. CAG:592 
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R6ZJZ2 Uncharacterized protein BN815_01976 Firmicutes bacterium CAG:94 

U6B578 PhnP protein phnP Candidatus Liberibacter americanus str. Sao Paulo 

V6KSG9 Membrane protein M878_07850 Streptomyces roseochromogenus subsp. oscitans DS 12.976 

W0AF05 Uncharacterized protein NX02_12760 Sphingomonas sanxanigenens DSM 19645 = NX02 

W0RD40 Uncharacterized protein J421_0825 Gemmatirosa kalamazoonesis 

W5WH03 Uncharacterized protein KALB_4085 Kutzneria albida DSM 43870 

W8F1I4 Uncharacterized protein Hsw_2292 Hymenobacter swuensis DY53 

Y1100_PSELT UPF0173 metal-dependent hydrolase Tlet_1100 Tlet_1100 Pseudothermotoga lettingae (strain ATCC BAA-301 / DSM 14385 / NBRC 107922 
/ TMO) (Thermotoga lettingae) 

Y1493_THEPD UPF0173 metal-dependent hydrolase Tpen_1493 Tpen_1493 Thermofilum pendens (strain DSM 2475 / Hrk 5) 

Y2542_CHLAA UPF0173 metal-dependent hydrolase Caur_2542 Caur_2542 Chloroflexus aurantiacus (strain ATCC 29366 / DSM 635 / J-10-fl) 

Y3308_DESVH UPF0173 metal-dependent hydrolase DVU_3308 DVU_3308 Desulfovibrio vulgaris (strain Hildenborough / ATCC 29579 / DSM 644 / NCIMB 
8303) 

P0A8V0 Ribonuclease BN rbn Escherichia coli (strain K12) 

P0AC84 Hydroxyacylglutathione hydrolase GloB gloB Escherichia coli (strain K12) 

P16692 Phosphoribosyl 1,2-cyclic phosphate phosphodiesterase phnP Escherichia coli (strain K12) 

P22434 3',5'-cyclic-nucleotide phosphodiesterase 1 PDE1 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) 

Q05584 Hydroxyacylglutathione hydrolase, cytoplasmic isozyme GLO2 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) 

Q12320 Hydroxyacylglutathione hydrolase, mitochondrial GLO4 ccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast) 

S5MMG8 Alkaline phytase phy Bacillus subtilis 

A4UU76 3-phytase phyL Bacillus licheniformis 

AAQ13669.1 Myo-inositol hexaphosphate phosphohydrolase phyA Selenomonas ruminantium 

ABC69367.2 Protein tyrosine phosphatase-like inositol polyphosphate 
phosphatase phyAsl Selenomonas lacticifex 

AHA61669.1 Histidine acid phosphatase phyt phyA Thielavia heterothallica (Myceliophthora thermophila) 

ABI95370.1 Phytase  Yersinia intermedia 

ABP96799.1 Purple acid phosphatase PAP Nicotiana tabacum (Common tobacco) 
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6 General Discussion 

6.1. Soil as Source of Metagenome-Derived Biocatalysts 

Soils are heterogeneous environments that contain large numbers of different ecological 

niches and correspondingly diverse soil microbial communities. The structure and 

diversity of these communities vary with soil type, soil depth, intrinsic physicochemical 

soil characteristics, climate and biotic factors such as soil-associated tree species (1) 

(Appendix 8.2.1). Soil represents an important source of biomolecules with significant 

biotechnological and scientific value. As ecosystem soil hosts a large number of complex 

processes and interactions among eukaryotes and prokaryotes (1, 2). Plenty of those 

processes and interactions are mediated by enzymes participating in diverse pathways, 

which in many cases are restricted to the vast majority of so far uncultured 

microorganisms. In this study, soil samples from the German Biodiversity Exploratories 

Schorfheide-Chorin (northeastern Germany), Hainich-Dün (central Germany), and 

Schwäbische Alb (southwestern Germany) (3) were used as starting material for the 

development of a new function-based metagenomic method for the retrieval of new 

phosphatases. The soil matrixes of the German Biodiversity Exploratories represented the 

perfect starting point for our studies as the microbial communities associated to the soil 

habitats has been well studied and based on functional predictions derived from 

community composition the presence of putative genes encoding alkaline and acid 

phosphatases associated to phosphorus cycling was indicated (1, 4, 5).  

Metagenomics contributed to identification of new functional enzymes related to 

important cycles and pathways. Mining of soil metagenomes has enabled the exploration 

and exploitation of different enzyme types. The global metagenomic search for enzymes 

has focused on enzymes mainly with application potential, e.g. esterases, lipases, glycosyl 

hydrolases and lactonases followed by oxidoreductases, including monooxygenases and 

dioxygenases (6). Recent reviews and meta-analysis consider few enzyme types as 

preferred targets of metagenomic surveys with industrial interest i.e. acylases, nitrilases, 

phosphatases, proteases, oxidoreductases, glycosyl hydrolases and lipases/esterases (7, 

8). Nevertheless, the effectivity and frequency of retrieving active clones and subsequent 

enzymatic characterization differs largely among the different targets, depending among 

other things of the abundance of the enzymatic activities across the organisms (9). 
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6.2. Phosphatases in Metagenome Surveys  

With the rise of next generation sequencing methods, thousands of microorganisms from 

very diverse environments have been sequenced and their genomes analyzed (10, 11) 

(Appendix 8.2.2, 8.2.3). Similarity searches revealed the presence of genes homologous to 

known phosphatases in the genomes and metagenomes from very diverse habitats (9, 12, 

13). 

Despite, the frequent metagenomic surveys and their key roles in many cellular and 

biotechnological processes the amount of functionally characterized phosphatases 

derived from metagenome approaches is still low (8). Ferrer et al. 2016 analyzed the last 

20 years of enzyme-related metagenomic data represented by 2,192 different sites 

distributed across the planet (7). Extensive multi-environment meta-analysis covered 

6,100 clones exhibiting enzymes activities, which were isolated and characterized (fully 

or partially). In the specific case of phosphatases that survey did not show a large 

proportion of characterized enzymes. (Fig. 1).  

This study adds 23 new clones and 33 new genes associated to phosphatase activity. 

Phosphatases can be classified by their structural folds and in some cases for their 

biochemical properties and biological functions (14). Among the gene products encoded 

by the 33 candidate genes, alkaline phosphatases were identified as the most abundant 

group with five representatives. Histidine phosphatases and phospholipases were 

represented with four proteins each. Phosphoserine-phosphatases and protein-tyrosine 

phosphatases were represented by three genes each while the acid phosphatases and 

metallo-β-lactamases with phosphatase activity were encoded by two genes in each case. 

Finally, one encoded protein was associated to a mismatch repair ATPase. 
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Fig. 1. Survey of the total number of targets (clones and/or single enzymes and/or sequences encoding enzymes) 
identified by metagenomic studies. The distribution of selected targets by type of enzyme activity is shown for both 
screening methods used: function-based and sequence-based screening. The figure is based on studies that were 
published over the last two decades using native (left) and sequence‐based (right) screening protocols. The databases 
used to provide such estimations were SCOPUS, PubMed, WOK and the IMG/M of the US Department of Energy Joint 
Genome Institute (http://www.jgi.doe.gov/) and UniProtKB/Swiss‐Prot. Modified from (7). 

 

6.3. Metagenomics for the Recovery of New Phytases  

Within the phosphatases, phytases are of special interest because in addition to their 

relatively poorly studied in vivo functions, commercialized phytases have a growing 

international market and are one of the most important type of biocatalyst for the global 

enzyme industry (15). With very few exceptions, which includes the five enzymes 

described in the chapters 3, 4 and 5 of this study most characterized phytate degrading 

enzymes are derived exclusively from cultured individual microorganisms. Consequently, 

the real diversity of phytate-degrading enzymes remains underestimated. This partially 

limits our understanding of the biological functions of phytate degrading enzymes and 

also keeps concealed interesting enzymes with putative biotechnological relevance. In 
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contrast to other biocatalyst such as lipases or cellulases, metagenome-derived phytases 

have not been commercialized so far (16).  

Several groups around the world have made efforts aiming to retrieve phytase 

homologous genes from the unculturable fraction of microorganisms. The initial attempts 

in this direction were performed based on sequence similarity, mostly by using PCR 

amplification with degenerated primers. The designed primers were based on sequences 

of previously reported phytases from culturable microorganisms. This method has two 

major disadvantages. First, it limits largely the recovered genes to close relatives of the 

preceding genes (17-19). Moreover, it is uncertain if the identified and subsequently 

cloned gene will encode a functional enzyme capable of using phytate as substrate. This 

is due to the fact that almost all types of phytases are part of larger phosphatases 

superfamilies, which are capable of processing phosphorylated substrates but not 

necessarily phytate (20). 

The subsequent improvement was the combination of PCR-based methods with large-

scale sequencing experiments. The sequence information is used to design primers and 

other probes which are suitable to recover full-length versions of specific target genes 

(21). This type of procedure is called gene-targeted-metagenomics and was first used for 

the recovery of genes encoding aromatic dioxygenases from contaminated soil samples. 

Originally, gene-targeted-metagenomics utilized pyrosequencing and required that the 

targeted gene contained enough conserved regions of suitable distance for PCR. Without 

those conditions, the designed sets of primers did not had the essential coverage for the 

amplification of the genes of interest (22). Nowadays, by combining shotgun sequencing 

methods and bioinformatics, these limitations are ovoid. Under the existent 

methodologies, all DNA is extracted and subsequently sheared into smaller fragments for 

library preparation which allows independent sequencing of the fragments. The resulting 

DNA sequences (i.e., reads) can be mined for genes with specific biological functions (23). 

In the specific case of phytases, few sequence-based metagenomic surveys have been 

employed. Most of them focused on mining metagenome-derived gene sequences from 

sources such as subsurface groundwater, acidic peat-soil microbiomes, rumen and insect-

cultivated fungus-gardens. The resulting phytases were characterized and exhibited 

habitat-related characteristics such as thermostability and acid resilience(24-26). The 

major limitation of those approaches is the low performance identifying novel phytase-

encoding genes with no or low similarity to known ones. Mootapally et al. (26) identified 
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a HAPhy by mining the metagenomic data obtained from the rumen of buffalos. However, 

the identified phytase showed more than 95% sequence identity to a previously reported 

phytase encoded by species belonging to genus Prevotella (26). Although, other sequence-

based attempts reported lower sequence identity with known phytases (≈50 %) the 

recovered phytases were again strictly limited to a typical type of known phytases i.e. 

HAPhys (25). Thus, the scavenge of phytases by sequence-driven approaches can provide 

results but remains limited to recover only enzymes harboring known molecular 

signatures.   

Consequently, function-based approaches are preferred over the sequence-based 

methods to analyze the diversity of protein families with specific functions and for the 

discovering genes with novel functions (21). In the case of the phytases, function-driven 

screenings are also required to encounter “real” novel genes encoding phytases. 

Different function driven approaches are broadly used to recover novel biocatalysts e.g. 

heterologous complementation, induced gene expression and phenotypical detection of 

the activities (21, 27). Heterologous complementation of host strains or mutants is a 

simple fast and highly selective method in which host strains or their mutants require the 

expression of the targeted genes for growth under selective conditions. Different types of 

genes and biocatalysts have been recovered by this method (e.g. DNA polymerases and 

RNAses) (28, 29). Conversely, induced gene expression does not limit the growth of the 

clones carrying the library, but instead this method involves the use of different strategies 

for the detection of genes of interest. The strategies are based on the coupled expression 

of those genes with reporter genes e.g. gfp. Compared with the screening by heterologous 

complementation, the induced gene expression might lead to a higher rate of false 

positives, because the transcriptional activation of the reporter genes could be 

occasionally induced by cellular effectors and not necessarily by specific substrates (21). 

Finally, one of the most broadly used function-based screenings is the phenotypical 

detection of the target activities. This method utilizes chemical dyes or chromophores 

derivated of enzyme substrates for the activity detection (27). These substances are 

incorporated into the growth medium, allowing the recognition of individual clones 

bearing the specific targeted metabolic capabilities (21). Plenty of successful examples of 

the application of this approach are reported in the literature e.g. proteases, esterases, 

lipases, cellulases among many others (30-33).  
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The register of the positive clones/activities derived from function-based screening 

strategies is achieved by different methods. Those methods have variable levels of 

technological requirements from common Petri dishes to coupled droplet-laser devices. 

Fig. 2 shows a simplified overview of the library construction steps and different methods 

for the detection of the target activities in function-based metagenomics (27).  

 

Fig. 2. Simplified overview of function-based metagenomic screening procedures. A. Steps involved in the construction 
of a small DNA fragment library from environmental metagenome or from culturable bacteria. B. Agar plate activity 
screening. C. Microtiter plate screening. D. Microfluidics coupled with fluorescence-activated cell sorting. Modified from 
(27). 

 

Different from other relevant biocatalysts such as lipases or glycosidases, phytases 

derived from function-based screenings are barely reported. Although, some progress has 

been made in order to get phytases from metagenomes, a large gap of information still 

exists. One of the main hindrances is the lack of reliable screening strategies. To my 

knowledge besides this study only two other published reports have pursuit the obtention 

of phytate-degrading enzymes by using function-based approaches (34, 35).  
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6.4. A Simple and Effective Function-Based Method for the Retrieval of 

Novel Phosphatases/Phytases 

One of the first function-based strategies for the search of phytases was performed by Tan 

et al. 2014 (34). A metagenomic library cloned in a fosmid vector, (pCC1FOS) was 

function-driven screened. The metagenomic library was derived from cultivated farm soil 

samples. That study identified initially 28 candidate clones capable to grow on a selective 

medium, containing phytate as the sole carbon and phosphorus source. Afterwards, only 

two candidate clones were selected for subsequent analysis (34) and two enzymes were 

identified. The analysis of their predicted catalytic signatures showed that one of them 

(PhyX) shares a similar motif with the HAPhys. The other product was indicated as a 

totally new type of phytase (SFPhy) which is encoded by multiple open reading frames 

but no further analysis or characterization of the enzyme was performed (34).  

Few years later, Farias et al.  (35) published their findings regarding a β-propeller phytase 

derived from the functional screening of a metagenomic library cloned in the pWEB-TNC™ 

cosmid. The metagenomic DNA was originally obtained from red rice crop plants and 

castor bean cake. In contrast to Tan and colleagues., Farias et al. did not report multiple 

positive clones. Only one positive clone was described and its product (PhyRC) purified 

and comprehensively characterized (35).  

Similar to Tan et al. (34), we also confirmed the existence of new types of phytate 

degrading enzymes not related to the currently accepted groups of phytate degrading 

enzymes (chapters 3 and 5). The products Pho07, Mblp01 and Mblp02 are remarkable 

examples of non-classical phytases. The proteins harboring the ALP_like domain like 

Pho07 are known as promiscuous enzymes that catalyze phosphoryl transfer reactions 

involved in key processes including energy storage, biosynthesis, or replication of genetic 

material. This type of enzymes include phosphomono and diesterases, phosphoglycerate 

mutases, phosphopentomutases, and sulfatases (36) but phytate was not part of the 

degradable substrates reported for this enzyme types previously. Although, the β-

propeller phytases have been reported as alkaline phytate-degrading enzymes, they are 

not phylogenetically or biochemically related with the enzymes harboring the ALP_like 

domain(37, 38).  

Mlbp01 and Mlp02 belong to Metallo-β-lactamases (MBLs) which have never been 

reported comprising phytate-degrading representatives. MBLs are considered to be one 
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of the most promiscuous groups of enzymes. Representatives of the MBLs are capable of 

catalyzing a variety of  different reactions by acting on numerous dissimilar substrates 

(39). In addition, the two different recombinant host strains carrying constructs with the 

genes mblp01 and mblp02 were less susceptible to the action of β-lactam antibiotics. This 

result suggested catalytic promiscuity in Mblp01 and Mblp02, as in addition to phytate 

both enzymes are presumably acting on β-lactam antibiotics.  

With the discovery of Pho07, Mblp01 and Mblp02, and the previous findings of Tan et al. 

(34), the potential of function-based metagenomics approaches to retrieve “real new” 

phytate-degrading enzymes with novel characteristics has been demonstrated. Taking 

into account the phytate degrading capabilities of Mblp01, Mblp02 and Pho07, this study 

suggests the existence of two new types of phytate degrading enzymes. The ALP_likePhys 

represented by Pho07 and tightly related to ALP_like phosphatses and sulfatases and the 

MBLPhys associated to MBLs (Fig. 3). 

As expected, the application of function-based screenings enables the retrieval of new 

types of phytate degrading enzymes. However, the published studies (Tan et al., Farias et 

al, and this study in the chapters 3 and 5) show differences in the amount and types of 

recovered enzymes (34, 35). The differences are most likely due to variations in the 

screening methods. One of the differences is the selected vector for library construction. 

In this study the library was constructed by using a plasmid vector while Tan et al (34) 

and Farias et al. (35) used fosmids and cosmids respectively. Although we found high 

variation in the number of positive clones among the screened libraries, we recovered in 

every case at least one positive clone from the six different soil samples. 

The strategy for the selection of positive clones also varied among the studies. The 

previous studies based their clone selection on the differential size of the growing 

colonies, assuming that clones carrying phytate-degrading enzymes will grow faster than 

those with only background enzymatic activities. (34). As described in chapter 2 this 

study used a simple modified Sperber minimal media supplemented with BCIP to develop 

a colorimetric screening strategy. 
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Fig. 3. Different types of phytate degrading enzymes according to their experimental origin. A). Currently accepted 
types of phytate degrading enzymes derived from culturable microorganisms and sequence-based metagenomics. B). 
Currently accepted and new types of phytate degrading enzymes derived from this study and previous function-based 
approaches.  

 

Probably the most significant difference between the previous reports and this study, is 

the selection of the screening media. Tan et al. (34) and Farias et al. (35) used identical 

media for screening and selection. Both studies rely on the use of the media described by 

Unno et al. 2005 (40). That study used two variations of media (solid and semi-solid) 

supplemented with mineral solutions using phytate as only source of phosphorus and 

carbon (40). In the present study, the carbon source was not a limiting factor as glucose 

was included in the indicator medium. Thus, we screened solely for the ability of the 

library-bearing clones to use phytate as P source. Our method is based on the results of 

Kerovuo et al. 1998, who demonstrated, that regardless of the presence of phytate, that 

complex media and commonly used media containing inorganic phosphates do not induce 

the expression of phytase-activity in Bacillus subtillis (41). In contrast, phytase activity is 

induced when inorganic phosphate is a limiting factor and phytate is present. This type of 

phytate/phosphate-mediated regulation is still not fully understood. It is very likely that 

the previously reported screening approaches are also subject to P availability-dependent 
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regulation of phytase production but the role of carbon source limitation on expression 

has not been studied. The use of phytate as sole source of phosphorus and carbon might 

have an impact on the number of positive clones. Under phosphorus and carbon limitation 

the enzymes should be able to not only release phosphate, but also to process the myo-

inositol ring in order to fulfill the carbon demands. This strategy could increase the 

probabilities of detecting enzymes highly specific for phytate degradation, but limits the 

screening potential to detect a broader range of phosphatases removing mainly 

phosphate from phytate. In the present study more phosphatases with proven and 

indicated phytate-degrading activity than in any other function-based metagenomic 

survey were recovered. The new phosphatases are broad range substrate enzymes. 

Interestingly, this study recovered representatives of several protein families which are 

known for their broad substrate spectrum e.g. ALP_like, MBLs and the HADs. Enzymes 

with substrate ambiguity have been gaining importance, because they can provide 

benefits to cells by different mechanisms. Some of these enzymes are involved in 

processes such as proofreading, nutrients scavenging, removal of antimetabolites, 

balancing of metabolite pools or establishing system redundancy (42). Such 

characteristics might be interesting for industrial applications. Furthermore, the study of 

substrate ambiguity provides novel information regarding the evolution of different 

enzymatic clusters as well as the role of the enzymatic promiscuity in element cycles.  

 

6.5. The Metagenome Input to Phytase Research 

Phytases most known application is the utilization as feed additive for monogastric 

animals used for large scale production. Multiple alternatives to improve certain 

enzymatic characteristics in the existent phytases have been implemented with the aim 

of obtaining an “ideal phytase”. Notwithstanding, with the current state of the art, it is a 

challenging task to fulfill all the requirements for such an endeavor. The requirements 

include fast degradability in the intestines and high efficiency to process phytate under 

the conditions of the digestive tract of the animals. Moreover, it must show resilience to 

the high temperatures during pelleting process of food manufacture. All accompanied by 

low production costs (43, 44). In some countries i.e. U.S the production of “ideal” phytases 

is researched by using genetically engineered enzymes and strains (16, 45). Currently, 

phytase research does not receive much input from metagenomics in order to improve 
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and engineer phytases with better characteristics compared to other types of 

commercially relevant biocatalyst, e.g. lipases (46, 47). The number of lipases and families 

reported during the last years has increased due to the implementation of large-scale 

metagenome-based surveys (32, 48, 49). Our results revealed an overlooked diversity of 

phytate-degrading enzymes combined with broad range of different features of the 

recovered enzymes. Optimal pH values varied from acid to alkaline, and a broad range of 

responses to additives such as inhibitors and cations was also observed.  

 

6.6. Function-Based Metagenomics Reveals Classic Phytases with 

Special Characteristics and New Phosphatases 

Phytases importance is not exclusively based on their involvement in animal production 

or phytate recycling for environmental decontamination. Microorganisms also need to 

fulfill their own phosphate needs accessing phytate in the environment through 

extracellular phytases. Microorganisms without extracellular phytases can incorporate 

phytic acid into cells via inositol phosphate transporters, for further P processing (37, 41). 

The biological functions of phytate-degrading enzymes are not limited to the retrieval of 

phosphorus from phytate for nutritional purposes. This type of enzymes is also involved 

in cell signaling activities, germination in plants and directly or indirectly related with 

bacterial pathogenicity (37, 50). Several studies showed that the expression of phytases 

seem to be involved in the modulation of pathways related to the immune response or 

increase the virulence of certain pathogens (50, 51). Table 1 shows several examples of 

phytate-degrading activities related to bacterial pathogenicity. In the present study, we 

found representatives of the classic phytases. One of those representatives Pho16B 

chapter 4, belongs to the PTPhys, but it possesses an uncommon catalytic sub-loop 

(HCXXGKDR[TA]G). This catalytic signature is homologous to the sub-loop present in the 

atypical lipid phosphatases (ALPs). ALPs are a type of PTPs considered as important 

virulence factors of human pathogens i.e. Mycobacterium tuberculosis (52, 53). Pho16B is 

the first tyrosine phytase derived from a soil metagenome, and provides a hint on the 

occurrence and functionality of pathogen-related catalytic signatures in environmental 

samples. But the nature of our study did not allow to directly show the link between 

phytases and virulent PTPs/ALPs. Most of the information on the occurrence and 

evolution of environmentally derived genes involved in pathogenicity is limited to 
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sequence homology studies, and very little is published on functional genes carrying this 

type of molecular signatures. 

 

Table 1. Examples of phytase activity and its relationship with diseases in different species. N.D: Not described 

 

Strain/Enzyme/ 

ORF 

Phytase 

type 

Putative 

affected 

organism 

Source Effect Ref 

XopH PTPhy Plants Xanthomonas 
Manipulate signaling 
pathways to the 
pathogen’s benefit 

(50) 

PhyA BPPhy Plants Xanthomonas Improve virulence  (54) 

LppA PTPhy Mammals Legionella 
pneumophila 

Counteracts phytate 
action which normally 
restrict intracellular 
bacterial growth  

(55) 

SopB N.D Humans Salmonella 
typhimurium 

Effector for bacterial 
entry 

(56) 

orf19.3727 N.D Humans Candida albicans 
Increase virulence 
potency 

(57) 

Candida strains N.D Humans Candida glabrata 
Pathogen survival and 
persistence in the host 

(58) 

Pseudomonas sp., 

Psychrobacter sp 

Strains  

N.D Fish Pseudomonas sp, 
Psychrobacter sp 

Stimulates 
intracellular head 
kidney leukocyte 
activities 

(59) 

 

One more representative of the classic phytases obtained during the metagenomic 

screening was the enzyme Pho18 (chapter 3). Pho18 as part of the insert pLP18 was 

taxonomically associated to Verrucomicrobia. This enzyme is part of the PAPhys, which 

before this study were assumed as restricted to plants. Several homologous genes of 

PAPhys in bacteria and fungi have been reported. However, the expression, purification 

and characterization of an environmental PAPhy putatively originated from bacteria has 

not been described. Recently, Nasrabadi et al. 2018 claimed the report of the first bacterial 

purple acid phytase (60). However, what Nasrabadi et al. (60) did in their study, was to 

obtain and characterize the phytase activity from bacterial isolates and link that 
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information with the amplification of a homologous gene from another species with 

reported acid phosphatases. No gene or protein sequence was reported. Nevertheless, 

their work together with our study represent the final evidence of PAPhy activity 

expressed by bacterial strains. This represents also an important change in phytase 

research, as all types of currently recognized phytases are now also reported to be 

expressed in bacteria.  

Finally, the implementation of the function-based approach also allowed the 

identification of two proteins with very particular characteristics. The ORFs pho04 and 

pho15 encode two enzymes, which show low levels of sequence identity with alkaline 

phosphatases. Deeper analysis of the sequences evidenced the lack of domains related to 

phosphatase activity. The only domain of the products Pho04 and Pho15 is the SNARE-

associated domain also known as DedA (61). This type of domain has not been related to 

any type of catalytic activity. DedA is a highly conserved protein family with 

representatives in most known genome sequences encoding membrane proteins. 

Although, in most cases the functionality of this type of protein remains unknown, some 

references connect this family with roles in cellular processes such as homeostasis, cell 

division, envelope-related stress responses and loss of proton motive force. Interestingly, 

in E coli the mutations of the DedA family genes yghB and yqjA produce altered membrane 

phospholipid levels (62). Our results indicate phosphatase activity in the proteins 

carrying the SNARe domain, which open an entirely new avenue to study this type of 

proteins. 

With the development and implementation of our method we have expanded the 

knowledge about phosphatase and phytate-degrading activity in environmental soil 

samples and communities. By applying the function-based methods now it is possible to 

explore and unlock phosphatases/phytases in the most complex environments.  
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7 Summary 

Phosphatases, including phytases, play a major role in phosphorous cycle, cell 

metabolism, biotechnology, and pathogenic processes. Despite their relevance as 

biocatalysts, the study of phosphatases/phytases has been almost exclusively based on 

genes and enzymes derived from individual organisms, leaving out the ones associated to 

microbial communities and so far, uncultured microorganisms. One of the main 

limitations for the application of function-based metagenomic analysis on phosphatases 

and particularly phytases, is the lack of reliable and efficient screening methods. 

In this study we developed and standardized a function-based method to retrieve novel 

phosphatases/phytases from soil samples. The developed method is based on the 

induction of phosphatase/phytase activity in metagenomic library-bearing E. coli strains 

by the absence of inorganic phosphorus sources and the presence of phytate as sole 

phosphorus source in minimal media. A total of 612,910 clones from five different 

metagenomic soil libraries were analyzed. Twenty-three positive E. coli clones were 

recovered and their respective inserts sequenced and analyzed. The phylogenetic analysis 

of the inserts indicated that all cloned environmental DNA fragments were of bacterial 

origin. Sequence similarity searches of the of the 23 inserts resulted in the identification 

of 33 candidate genes. The deduced gene products of 31 of these genes showed at least 

some similarity to known phosphatases whereas the remaining two were similar to 

metallo-beta-lactamases. The protein sequence analysis revealed the presence of 11 

different domains in the 33 deduced proteins. We detected the alkaline phosphatase and 

sulfatase superfamily domain (ALP-like cl23718) as the most frequent domain with eight 

representatives. In addition, two phosphatase-related genes of plasmids pLP04 and 

pLP15 did not encode known catalytic domains or signatures directly or indirectly 

associated with phosphatases. The produced proteins Pho4 and Pho15, respectively, 

showed phosphatase activity and low sequence identity to alkaline phosphatases, but the 

only catalytic domain detected in both proteins was the SNARE-associated superfamily 

domain (cl00429).  

In total, five genes out of the 33 candidates were selected on the basis of their biological 

significance for the individual subcloning, expression and characterization of the 

respective products. Pho07 was selected as representative of the most abundant 

superfamily detected in our survey from which to our knowledge no enzyme has been 



G.A Castillo Villamizar Dissertation Summary 
 

135 

reported or comprehensively characterized regarding phytase activity. Pho18 was 

selected as a member of the classic purple acid phytases, which before this study were 

almost exclusively represented by plant-derived phytases. Pho16B was analyzed in more 

detail due to its affiliation to the protein tyrosine phytases.  In addition, Pho16B possesses 

a molecular signature similar to members of a tyrosine phosphatases subtype, which are 

closely related to microbial pathogenesis. Finally, Mblp01 and Mblp02 were selected, as 

they are representatives of the metallo-β-lactamases. This superfamily is one of the most 

promiscuous types of enzymes. Moreover, the metallo-β-lactamases share an 

evolutionary relationship with phosphatases but did not comprise representatives with 

reported phytase activity prior to this study.  

The characterization of the selected proteins revealed different features among all 

analyzed enzymes. The lowest optimal pH of enzyme activity was 4.0 (Pho07) and the 

highest 7.0 (Mblp02). The highest optimal temperature was recorded at 50 °C (Pho18 and 

Mblp02) and the lowest at 30 °C (Pho07). The substrate specificity, was also variable 

among the analyzed enzymes. All 5 purified enzymes were able to degrade phytate but 

phytate was the preferred substrate only for Pho07. The metallo-β-lactamases (Mblp01 

and Mblp02) showed their highest activity with ATP. Naphthyl phosphate and 

pyrophosphate were the preferred substrates for Pho16B and Pho18, respectively. 

Interestingly, both metallo-β-lactamases show potential mechanistic promiscuity as the 

ability to act on β-lactam antibiotics is indicated by reduced sensitivity of recombinant 

strains harboring mblp01 or mblp02 towards β-lactam antibiotics. 

This study provided a reliable function-based screening method to recover novel 

phosphatases/phytases and insights into the diversity of enzymes capable of phytate 

degradation. This study also demonstrates the potential of functional metagenomics to 

exploit phosphatase/phytase pools hidden in environmental samples by recovering novel 

phytate-degrading enzymes unrelated to previously known types of phytases.  
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The complex interactions between trees and soil microbes in forests as well as their

inherent seasonal and spatial variations are poorly understood. In this study, we analyzed

the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.)

Karst) on soil bacterial and fungal communities. Mineral soil samples were collected

from different depths (0–10, 10–20 cm) and at different horizontal distances from beech

or spruce trunks (0.5, 1.5, 2.5, 3.5m) in early summer and autumn. We assessed

the composition of soil bacterial and fungal communities based on 16S rRNA gene

and ITS DNA sequences. Community composition of bacteria and fungi was most

strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g.,

Tylospora) known to establish mutualistic associations with plant roots showed a tree

species preference. Moreover, bacterial and fungal community composition showed

spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance

of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was

presumably a result of changes in nutrient availability, as litter input and organic carbon

content decreased with soil depth. Overall bacterial community composition showed

strong variations under spruce with increasing distance from the tree trunks, which might

be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall

bacterial community composition was strongly affected by season under deciduous

trees.

Keywords: tree species, soil depth, horizontal distance from tree trunk, seasons, soil properties, soil microbial

community structure, bacterial 16S rRNA gene, fungal ITS DNA

INTRODUCTION

Earth currently harbors approximately three trillion trees and only one gram of soil can contain
billions of microbial cells (Rosselló-Mora and Amann, 2001; Crowther et al., 2015). The effect of
trees on bacteria and fungi in forest soils, comprising many taxa involved in decomposition of
plant litter as well as deadwood, is however poorly understood (Wubet et al., 2012; Pfeiffer et al.,
2013; Purahong et al., 2014). Forest trees substantially impact soil physical, chemical and biological
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properties by species-specific stemflow, root architecture, leaf
and root litter inputs, root exudates, nutrient uptake, shade, and
microclimate (Augusto et al., 2002; Ayres et al., 2009; Raz-Yaseef
et al., 2010; Cesarz et al., 2013). As a consequence of direct
or indirect tree impacts, changes in the spatial distribution of
microbes, vertically through the soil profile as well as horizontally
with increasing distance from tree trunks, can occur (Saetre and
Bååth, 2000; Ettema and Wardle, 2002). Although numerous
studies on the effects of plants on soil microorganisms are
available, they rarely focus onmicrobial communities under trees
(Thoms et al., 2010; Urbanová et al., 2015; Uroz et al., 2016).
Surveys on effects of pure tree species in a forest stand as well
as those focusing on vegetation gradients or chronosequences
contributed to the current overall picture concerning tree
influences on soil microbial communities (e.g., Cong et al., 2015;
Zeng et al., 2016).

European beech (Fagus sylvatica L.) and Norway spruce (Picea
abies (L.) Karst) represent dominant forest trees in Central
Europe (Cesarz et al., 2013; Hanewinkel et al., 2013). Since
the 19th century, reforestation of devastated forest sites using
Norway spruce has been very common in Central Europe
(Berger and Berger, 2012). Beech forests show a high seasonal
variation in aboveground litter input, which is predominately
autumnal. In contrast, the aboveground litter input in spruce
forest remains relatively constant over the year. Components of
needle litter from Norway spruce such as waxes and phenolic
compounds are highly recalcitrant to biological degradation,
whereas beech leaf litter contains higher amounts of more
readily decomposed water-soluble substances (Nykvist, 1963;
Priha and Smolander, 1997). Replacement of beech by spruce
species is therefore accompanied by changes in humus form,
acidity and soil structure (Berger and Berger, 2012). Upper soil
horizons are dominated by leaf litter input, and roots; their
residues and exudation patterns shape the subsoil (Moll et al.,
2015). Spruce is typically shallow-rooted, whereas beech has
a deep rooting system (so called “base-pump”). Consequently,
variation in nutrient availability affects microbial communities
along soil depths (Huang et al., 2013; Moll et al., 2015). Between
Fagus sylvatica L. and Picea abies (L.) Karst, the quantity and
composition of exudates varies with season (Geßler et al., 1998;
Fender et al., 2013) and potentially affects microbial processes
such as respiration (Cesarz et al., 2013).

European beech and Norway spruce forest stands differ in
the magnitude of stemflow. In beech stands, stemflow water
contributes 5–20% to the annual soil water input (Koch and
Matzner, 1993; Johnson and Lehmann, 2006). Stemflow in
conifer forests is often below 1% due to differences in branch
angle, specific surface roughness of branches and bark (Johnson
and Lehmann, 2006). The high stemflow in beech forests is
associated by a decrease of soil pH next to the stem base versus
the surrounding soil (Koch and Matzner, 1993). A similar effect
has not been demonstrated in Norway spruce forest.

Previous studies have largely used methods providing coarse
phylogenetic information to identify effects of forests on soil
microbial communities. Using automated ribosomal intergenic
spacer analysis (ARISA), ester linked fatty acid methyl ester (EL-
FAME) analyses, and denaturing gradient gel electrophoresis

(DGGE), differences in soil bacterial and fungal community
structure in temperate broad-leaved and coniferous forests have
been reported (Lejon et al., 2005; Zechmeister-Boltenstern et al.,
2011; Jiang et al., 2012). Recently, Tedersoo et al. (2016) analyzed
pyrosequencing-derived ITS sequences to assess the effects of tree
diversity on fungi, protists and meiofauna inhabiting forest soil.
Results indicated that compared to the effects of individual tree
species and soil parameters, tree diversity per se had a minor
influence on the taxonomic richness of soil biota (Tedersoo
et al., 2016). In addition, based on amplicon pyrosequencing
data, significant effects of tree species on soil bacterial and
fungal community composition were reported by Urbanová et al.
(2015).

While several recent marker gene sequencing-based studies
focused either on bacteria or fungi in forest soils, they have
rarely been considered together (Yarwood et al., 2010; Baldrian
et al., 2012; Urbanová et al., 2015). Fungi are typically larger
in size than bacteria and exhibit a higher biomass. Therefore,
they interact with their environment, e.g., by moving water and
nutrients, on a larger spatial scale compared to bacteria (Coleman
and Crossley, 1996; van der Heijden et al., 2008; Trevors, 2010),
whichmight result in a more homogeneous distribution of fungal
communities in soil. The life cycle of both bacteria and fungi
inhabiting forest soils can be strongly affected by seasons through
changes in abiotic and biotic factors (Thoms and Gleixner, 2013).

In this study, we applied pyrosequencing of the V3–V5
region of the 16S rRNA gene and the ITS DNA region to
assess composition of soil bacterial and fungal communities in
a European beech and a Norway spruce forest. We considered
potential seasonal variation in microbial communities by
collecting samples in early summer and autumn. Furthermore, to
determine spatial tree effects, soil collected from different depths
and horizontal distances toward tree trunks was considered
within this survey. We examined the following hypotheses:
(1) bacterial and fungal community composition are affected
by tree species, (2) the relative abundance of saprotrophic
microorganisms decreases with soil depth, (3) bacteria respond
stronger to growing distance from trees than fungi, and (4)
seasonal variation of soil bacterial and fungal community
composition is stronger under deciduous versus coniferous
forests.

MATERIALS AND METHODS

Sites and Soil Sampling
All soil samples were derived from a beech (Fagus sylvatica L.)
and a spruce (Picea abies L. (Karst)) forest site (distance between
the two forest sites: approximately 5 km) located in the Hainich-
Dün region in Germany (Fischer et al., 2010). The beech and
spruce forest stands were originally established as plantations and
are managed (management type, age class forest) since 1760 and
approximately 1930, respectively (Wäldchen et al., 2011). Due to
the very fertile soils (the original parent material was limestone
covered by loess) at both sites, beech-dominated forest would
be the natural forest type. The age of the trees at both sites
ranged between 50 and 65 y. Beech and spruce trees exhibited
average crown radii of 387 ± 29 and 209 ± 12 cm, respectively.
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The mineral soil was sampled at 0–10 cm and 10–20 cm depth
using a split tube sampler with a diameter of 4.8 cm (Eijkelkamp
Agrisearch Equipment, Giesbeck, Netherlands). Mineral soil
samples were taken from different horizontal distances (0.5, 1.5,
2.5, and 3.5m) from the trunks of four randomly-selected trees
per site (“tree distance”; see Figure 1). Sampling was performed
in two seasons, early summer and autumn 2012. Five year
averages (2008–2012) of soil temperature, measured at a depth

FIGURE 1 | Sampling design: In early summer and autumn 2012

samples were taken at a distance of 0.5, 1.5, 2.5, and 3.5m from the

tree trunks of four European beech and four Norway spruce trees. At all

sampling points soil samples from 0–10 cm and 10–20 cm were taken.

of 10 cm, showed similar seasonal variations in the beech (May:
12.1◦C, November: 4.1◦C) and spruce forest stand (May: 12.7◦C,
November: 4.2◦C). We applied a paired sampling. The sampling
positions in autumn were <30 cm away from the sampling
points in early summer (Table S1). All sampling points showed a
distance >3.5m to tree trunks (except trunks of the four selected
beech and spruce trees, respectively). In total 128 soil samples
(2 sites × 2 seasons × 4 replicate trees × 4 horizontal distances
× 2 soil depths) were immediately sieved to <4 mm in the field
and individually homogenized. One subsample (>200 g) of each
sample was air-dried and sieved to <2mm for soil chemical
analyses and another subsample (50 g) was frozen (−20◦C) for
extraction of nucleic acids.

Soil Physical and Chemical Properties
Soil pH was measured in duplicate in the supernatant of 1:2.5
mixtures of soil and aqueous 0.01 M CaCl2 with a glass electrode.
Additionally, the gravimetric water content of the air-dried soil
was determined. The empirical equation of Wäldchen et al.
(2012) was used to estimate clay content in the samples. The
remaining soil was ground to <100µm. Ground samples were
analyzed for total carbon (TC) and nitrogen (TN) by dry
combustion with the CN analyzer “Vario Max”TM (Elementar
Analysensysteme GmbH, Hanau, Germany). Inorganic carbon
(IC) concentrations were determinedwith the same analyzer after
the ignition of samples for 16 h at 450◦C. The organic carbon
(OC) concentrations equaled the differences between TC and IC.

DNA Extraction, Amplification and
Pyrosequencing
Total microbial community DNA was extracted from
approximately 2 g of frozen soil per sample using the
PowerSoilTM total RNA isolation kit, the PowerSoilTM DNA
elution accessory kit, and the PowerCleanTM DNA Clean-Up
kit (MoBio Laboratories, Carlsbad, CA, USA) according to
the instruction. DNA concentrations were quantified using a
NanoDrop UV-Vis spectrophotometer (Peqlab Biotechnologie
GmbH, Erlangen, Germany).

The V3–V5 region of bacterial 16S rRNA genes was amplified
by PCR. The following set of primers containing Roche 454
pyrosequencing adaptors (underlined) and a sample-specific
MID (Extended Multiplex Identifier) was used: V3for 5′-
CCATCTCATCCCTGCGTGTCTCCGACTCAG-MID-TA
CGGRAGGCAGCAG-3′ (Liu et al., 2007) and V5rev 5′-
CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCCGTCAATT
CMTTTGAGT-3′ (Wang and Qian, 2009). The PCR reaction
mixture (50µl) contained 10µl 5-fold reaction buffer (Phusion
HF buffer, Thermo Fisher Scientific Inc., Germany), 200µM of
each of the four deoxynucleoside triphosphates, 5% DMSO, 1 U
Phusion high fidelity DNA polymerase (Thermo Fisher Scientific
Inc.), approximately 25 ng DNA as template, and 4 µM of each
of the primers. The PCR reactions were initiated at 98◦C (2 min),
followed by 25 cycles of 98◦C (45 s), 58◦C (45 s), and 72◦C (40
s), and ended with incubation at 72◦C for 5min.

Fungal ITS DNA was amplified using primer ITS1F (Gardes
and Bruns, 1993) containing a sample-specific MID and Roche
454 pyrosequencing adaptor B and primer ITS4 (White et al.,
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1990) containing Roche 454 pyrosequencing adaptor A. The PCR
reactions were performed in a total volume of 50µl reaction
mix containing 1µl DNA template (7–15 ng), 25µl Go Taq
Green Master mix (Promega, Mannheim, Germany) and 1µl
25 pmol of each of the ITS region-specific primers. Touchdown
PCR conditions as described by Wubet et al. (2012) were used to
amplify fungal ITS DNA.

All samples were amplified in triplicate, purified using the
peqGold gel extraction kit (Peqlab Biotechnologie GmbH)
and the Qiagen gel extraction kit (Qiagen, Hilden, Germany)
as recommended by the manufacturer, and pooled in equal
amounts. Quantification of PCR products was performed using
the Quant-iT dsDNA BR assay kit and a Qubit fluorometer
(Life Technologies GmbH, Karlsruhe, Germany). Sequences of
partial 16S rRNA genes and fungal ITS DNA were decoded
at the Göttingen Genomics Laboratory and the Department
of Soil Ecology (UFZ-Helmholtz Centre for Environmental
Research, Halle, Germany), respectively, using a Roche GS-FLX
454 pyrosequencer (Roche, Mannheim, Germany) and Titanium
chemistry as recommended by the manufacturer.

The 16S rRNA gene and ITS DNA sequences were deposited
in the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) under study accession numbers
SRP040766 and SRP044665, respectively.

Sequence Analysis
Bacterial 16S rRNA gene sequence datasets were preprocessed
as described by Broszat et al. (2014). Briefly, bacterial sequences
shorter than 200 bp, as well as those exhibiting low quality
values (<25), more than two primer mismatches, or long
homopolymers (>8 bp), were removed using QIIME (Caporaso
et al., 2010). In addition, the bioinformatics tools cutadapt
(Martin, 2011), Uchime (Edgar et al., 2011), and Acacia (Bragg
et al., 2012) were used for truncation of remaining primer
sequences, removal of potential chimeric sequences, and removal
of noise introduced by amplicon pyrosequencing. Uclust (Edgar,
2010), implemented in QIIME (Caporaso et al., 2010), was used
to determine bacterial OTUs at a genetic distance of 3%. To
taxonomically classify OTUs, partial 16S rRNA gene sequences
were compared with the SILVA SSU database release 119 (Pruesse
et al., 2007). OTUs classified as chloroplast or mitochondrion
and unclassified OTUs (proportion of unclassified OTUs was
approximately 0.2%), which were not affiliated to bacteria, were
removed from 16S rRNA gene sequence datasets.

Fungal ITS DNA sequence datasets were preprocessed with
Mothur (Schloss et al., 2009) as described by Goldmann et al.
(2015). In brief, sequences with ambiguous bases, homopolymers
and primer differences (>8 bp) as well as MIDs were removed
in a first filtering step. Simultanously, short reads (<300 bp),
sequences with a low quality score (<20) and noisy sequence ends
were removed. Samples were checked for chimeric sequences
using the UCHIME algorithm (Edgar et al., 2011). Cd-hit (Li
and Godzik, 2006) was applied to determine fungal OTUs
at 3% genetic distance. To identify fungi and taxonomically
classify OTUs, ITS DNA sequences were queried against the
UNITE database (Kõljalg et al., 2013) by using the classify.seq
command as implemented in MOTHUR (Schloss et al., 2009).
All produced OTUs belonged to the kingdom fungi. To improve

the taxonomical resolution, OTUs that had been assigned only
down to the family level were subjected to a BLASTn search
(e.g., Johnson et al., 2008) against the NCBI GenBank database
(Benson et al., 2015). The searches excluded uncultured and
environmental sample sequences and only assignments with a
query cover >95%, E <0.0001 and sequence identity >97%
were considered. Finally, all fungal OTUs identified at the genus
level were grouped into ectomycorrhizal, saprotrophic, and other
fungi based on literature.

Bacterial and fungal OTUs comprising only one or two
sequences (singleton and doubleton OTUs) were removed from
the datasets. The number of analyzed sequences per sample
can have an effect on the predicted number of OTUs (Morales
et al., 2009). Therefore, OTU-based comparisons were performed
at the same level of surveying effort (bacteria: 2540 sequences
per sample; fungi: 1996 sequences per sample). In this study,
we focused on microbial community composition. Data on
microbial diversity is provided in the Supplementary Material
(see Figures S1, S2). OTUs identified at a genetic distance of 3%
were used to calculate rarefaction curves and the Shannon index.

Statistical Analyses
The response of main soil characteristics (e.g., C:N ratio, clay
content) to soil depth (0–10 and 10–20 cm depth), season
(early summer and autumn) and tree distance (0.5, 1.5, 2.5,
and 3.5m) was assessed for both study sites separately by
analysis of covariance (ANCOVA) using the “aov” command of
the “Stats” R-package (R Development Core Team, 2015). The
random effects of the four sampling transects per study site were
considered in the analysis by including them as a factor in our
linear models (tree replicate).

The effect of tree species on soil bacterial and fungal
community composition, respectively, was visualized using
principal coordinates analysis plots generated with the emperor
software package (Vázquez-Baeza et al., 2013) and the “ordiplot”
function incorporating environmental vectors calculated with
the “envfit” function of the “Vegan” R-package (Oksanen et al.,
2016). In order to test the effects of tree replicate, soil pH,
OC, soil depth, sampling season, and tree distance on bacterial
and fungal community composition, we performed multivariate
analysis of variance (MANOVA) using the “adonis" command of
the “Vegan” R-package (Oksanen et al., 2016) based on weighted
UniFrac (Lozupone et al., 2011) distance matrices. The adonis
function in R implements a sequential sum of squares (type 1).
A priori we decided to include first the random variance of the
tree replicates and important abiotic drivers (soil pH and organic
C) into the model. In a second step the factors depth, season and
distance were added. This means that the significance of depth,
season and distance was examined after removal of variance
explained by soil pH and organic C concentration. Changing the
order of soil pH and organic C or the order of depth, season
and distance in the model would not change the significance
of the individual factors. This can be explained by the missing
collinearity among these factors. These analyses were conducted
for whole microbial communities and microbial communities
under each tree species individually. Adjusted R2-values of total
models increased with the addition of every single considered
parameter (Tables S2, S3).
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To further identify individual taxa strongly associated with
a specific tree species, season or spatial position in soil,
the multipatt algorithm and the “IndVal” function in the
“Indicspecies” R-package (De Cáceres and Legendre, 2009)
was used based on bacterial and fungal OTUs. The PAST
statistical package (Hammer et al., 2001) was used for the
performance of Mann-Whitney U test and Spearman’s rank
correlations. We applied Mann-Whitney U test to identify
dominant genera showing significant differences between sets
of samples. Spearman’s rank correlations were used to correlate
relative abundances of dominant genera with soil parameters.

RESULTS

General Characteristics of Soil Samples
Both forest stands grow on limestone, which is covered with a
loess layer of variable thickness. The loess layer is thinner at the
spruce than at the beech forest site. Therefore, in 0–10 cm depth
pH values ranged between 3.1 and 5.9 at the spruce site and
between 3.7 and 4.4 at the beech site (Table 1, Table S4). The pH
values determined for our samples are typical for the two forest
sites. At 5 out of 32 sampling locations within the spruce forest
the pH at a depth of 0–10 cm was >5.5 indicating that the loess
layer was less pronounced or absent and that the parent material
mainly originated from limestone. We did not detect a decrease
of the soil pH next to the stem basis of beech trees (0.5m tree
distance) compared to the other considered sampling distances
(Table S4). At a depth of 10–20 cm the average pH increased by
0.9 units in the spruce stand, whereas it decreased by 0.2 units in
the beech stand, which is again a result of the lower loess layer
thickness in the spruce compared to the beech stand. This was
confirmed by the clay content (0–10 cm), which was with 388
± 15.2 g kg−1 (mean ± standard error) on average higher at the
spruce than at the beech site with 276 ± 4.4 g kg−1. At the 0–10
cm depth, the soils contained on average 32.6 ± 2.3 g kg−1 and
26.2 ± 0.8 g kg−1 OC in the spruce and beech stand. The OC
concentrations decreased with depth. Organic C concentrations
at the 0- to 10-cm depth were strongly related to estimated clay
contents (r = 0.79, P < 0.001). Due to collinearity between OC
concentration, clay content, and C:N ratio, we only included OC
concentration in subsequent statistical analyses.

Soil Bacterial and Fungal Community
Profiles
Pyrotag processing yielded a total of 864,096 bacterial and
255,488 fungal high-quality sequences with an average length

of 464 and 300 bp, respectively. At a genetic distance of
3%, 23,727 bacterial and 1336 fungal OTUs were identified
across all analyzed soil samples. In the final microbial dataset,
the number of OTUs per individual soil sample ranged from
505 to 1440 (bacteria) and 45 to 191 (fungi). Taxonomic
classification was based on closest matches of OTUs to particular
phylogenetic groups. Each of the dominant phyla and genera
identified in this study (see Figures 2, 3) is represented by more
than one OTU determined at a genetic distance of 3%. The
bacterial phyla and proteobacterial classes detected in each of
the individual soil samples comprised Acidobacteria (average
relative abundance: 40.7 ± 0.8%), Alphaproteobacteria (20.5 ±

0.4%), Actinobacteria (9.4 ± 0.3%), Gammaproteobacteria (5.8
± 0.2%), Chloroflexi, (4.8 ± 0.2%), Gemmatimonadetes (4.4 ±

0.2%), Deltaproteobacteria (3.8 ± 0.2%), Betaproteobacteria (3.3
± 0.1%), Bacteroidetes (2.1± 0.1%) and candidate divisionWPS-
2 (1.5 ± 0.1%) (Figure 2). Genus level analysis of the bacterial
community showed high relative abundances (average relative
abundance of each genus >1%) of Bradyrhizobium followed by
Acidothermus, Gemmatimonas, Rhizomicrobium, and Reyranella
(Figure 3). Acidobacteria represent the most abundant phylum
in our study. Subgroup 2 (average relative abundance: 14.1 ±

0.6%), subgroup 1 (11.1 ± 0.5%), subgroup 3 (10.1 ± 0.3%), and
subgroup 6 (2.8% ± 0.3%) showed the highest average relative
abundance among acidobacterial representatives.

The fungal community was dominated by Basidiomycota
(average relative abundance: 87.7 ± 0.7%), followed by
Ascomycota (8.9 ± 0.6%), and Zygomycota (2.5 ± 0.2%)
(Figure 2). In total, 89% of all dominant fungal OTUs were
assigned to more than 200 fungal genera. The most abundant
fungal genera were Russula (average relative abundance: 33.3
± 2.7%), followed by Inocybe (16.8 ± 1.8%), Hygrophorus
(6.2 ± 1.0%), Sebacina (5.7 ± 1.0%), and Thelephora (5.6 ±

1.0%) (Figure 3). Functional group assignment of the fungal
communities revealed that among the 20 most abundant fungal
genera (Figure 3), 16 are known to be ectomycorrhizal (ECM)
fungi, whereas the remaining four have a saprotrophic lifestyle
(Cryptococcus,Mortierella, Leotia, andMycena).

Tree Species Effects on Microbial
Community Composition
Samples collected under beech and spruce tend to cluster
separately in principal coordinates analysis plots (Figure 4).
The axes of these plots explain less of the variability in fungal
community composition (axis 1 = 14%) compared to bacterial

TABLE 1 | Basic properties of soil samples derived from the beech and spruce stands.

Origin Soil depth pH Clay content [g kg −1] Organic C [g kg −1] C:N ratio

Beech stand 0–10 cm 4.0 ± 0.0 276 ± 4.4 26.2 ± 0.77 12.0 ± 0.10

Beech stand 10–20 cm 3.8 ± 0.0 249 ± 4.2 14.5 ± 0.55 11.0 ± 0.11

Spruce stand 0–10 cm 4.0 ± 0.2 388 ± 15.2 32.6 ± 2.30 14.8 ± 0.27

Spruce stand 10–20 cm 4.9 ± 0.2 380 ± 14.0 15.1 ± 0.65 11.0 ± 0.20

Mean values and standard errors are provided for pH, clay content, organic C, and C:N ratio.
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FIGURE 2 | Box-and-whiskers plot showing relative abundances of bacterial and fungal phyla as well as proteobacterial classes detected in each of

the analyzed 128 soil samples. Relative abundances of taxa across all samples (gray color) as well as separately with respect to soil surrounding beech (brown

color) and spruce (green color) are depicted. The dashed line separates relative abundances of bacterial and fungal taxa.

FIGURE 3 | Relative abundance of dominant bacterial and fungal genera detected in the analyzed soil samples. The data represent mean values and

standard errors of relative abundance for the 20 most abundant bacterial and fungal genera, respectively. Acidobacteria were analyzed at the subgroup level and

therefore not considered within this figure. Relative abundances of taxa across all samples (gray color) as well as separately with respect to soil surrounding beech

(brown color) and spruce (green color) are depicted. Asterisks indicate taxa showing an at least five-fold difference in mean relative abundance between spruce and

beech (P < 0.001 for the Mann-Whitney U test). Underlined taxa: saprotrophic fungi (all other depicted fungal genera represent ectomycorrhizal fungi).
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FIGURE 4 | Principal coordinates analysis plots based on weighted UniFrac distances calculated at 3% genetic distance. Brown circles represent

samples derived from beech surrounding soil and samples derived from spruce surrounding soil are depicted as green circles. Vectors represent response variables

pH, estimated clay content, C:N ratio, organic carbon (OC), and inorganic carbon (IC). Significant values (P < 0.05) according to “envfit” calculations are indicated by

asterisks.

community composition (axis 1= 41%). The variation explained
by tree species was 13.8% (P < 0.001) in bacterial and 14.9%
(P < 0.001) in fungal communities (Table S2). Furthermore,
tree species (European beech or Norway spruce) had a stronger
impact on soil bacterial and fungal community composition than
soil depth, distance from tree trunk or season (Table S2). We
identified specific indicator OTUs for soils surrounding beech or
spruce stands (Table S5). Each bacterial indicator OTU showed
an average relative abundance<1%, whereas few fungal indicator
OTUs showed relative abundances >1%. Detailed information
on relative abundances for all indicator OTUs is provided in
Table S5.

For bacteria, 13 indicator OTUs were determined at
the beech site and 10 indicator OTUs at the spruce site.
The majority of bacterial OTUs representing indicators
at the beech site were affiliated to Acidobacteria (mainly
subgroup 2) (Table S5). Indicators at the spruce site comprised
Chloroflexi, WD272 and several Acidobacteria subgroup
1 OTUs.

For both tree species, eight fungal OTUs were identified
as potential indicators (Table S5). Under beech, a saprotrophic
Mortierella elongata OTU and a Trichoderma OTU and ECM
fungi OTUs (a Russula cyanoxantha OTU and a Xerocomus
chrysenteronOTU) were identified as indicator OTUs. Indicators
for spruce were three OTUs classified as saprotrophic fungi
(Exophiala and two Penicillium OTUs). The two indicator ECM
fungi under spruce were Hygrophorus and Amphinema.

Microbial community composition under both tree species
was significantly affected by tree replicate, soil pH and OC
(Table 2). Among the analyzed factors soil pH and tree species
explained most of the variation in microbial community
composition (Table S2).

Spatial and Seasonal Variability of Soil
Microbial Community Composition
Bacterial community composition varied significantly with depth
under spruce (Table 2). We found that relative abundance of
OTUs of the dominant genus Gaiella was negatively correlated
with OC concentration (P < 0.001) and higher at the 10-
to 20-cm depth than the 0- to 10-cm depth. The relative
abundance of the bacterial genus Mucilaginibacter also showed
variations with soil depth. It was higher at the 0- to 10-
cm depth vs. the 10- to 20-cm depth (P < 0.001). The
fungal community composition showed no correlation with soil
depth under both tree species (Table 2). However, the detected
saprotrophic fungi were associated with the upper (0–10 cm
depth) mineral soil layers, which were rich in OC (Figure 5).
Additionally, the indicator species analysis identified mainly
saprotrophic OTUs in the upper 10 cm of the studied soils
(Table S5).

Spatial horizontal variation of overall bacterial community
composition was significant in soil under beech (P < 0.05) and
under spruce (P < 0.001) (Table 2). We found that relative
abundance of the dominant bacterial genus Nitrospira was
significantly higher at 3.5m vs. 0.5m distance from spruce
trees. Furthermore, a Nitrospirales OTU was identified as an
indicator for tree distances of 2.5 and 3.5m (Table S5). Under
beech trees, the relative abundance of Pseudolabrys differed
significantly between 0.5m and 3.5m horizontal tree distance.
Higher relative abundance was detected in soil located close
to tree trunks. This effect was recorded with respect to both
analyzed soil depths (P < 0.05). Overall fungal community
composition differed significantly at different horizontal tree
distances only in soil of the spruce stand (P < 0.01) (Table 2).
However, fungal indicator species for certain combinations of
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TABLE 2 | Multivariate analysis of variance based on weighted UniFrac distances with tree replicate, pH, OC, soil depth, season and distance as

response variable.

df Beech stand Spruce stand

Bacterial community Fungal community Bacterial community Fungal community

MS R2 MS R2 MS R2 MS R2

Tree replicate 3 0.027 0.063** 1.637 0.233*** 0.201 0.171*** 2.227 0.323***

pH 1 0.221 0.171*** 0.679 0.032** 0.385 0.109*** 0.987 0.048***

OC 1 0.124 0.097*** 0.843 0.04*** 0.069 0.020 0.485 0.023**

Depth 1 0.016 0.013 0.277 0.013 0.100 0.028* 0.260 0.013

Season 1 0.078 0.06*** 0.445 0.021 0.077 0.022 0.422 0.02*

Distance 1 0.026 0.021* 0.427 0.020 0.261 0.074*** 0.672 0.032***

Residuals 55 0.014 0.576 0.245 0.640 0.037 0.575 0.204 0.541

Explanatory variables are given in rows in the order of entering the analysis. This table presents degrees of freedom (df), mean squares (MS), and R2-values. Significant results are

indicated by *P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 5 | Box-and-whiskers plots showing relative abundance of ectomycorrhizal and saprotrophic fungi under beech and spruce in relation to soil

depths. The asterisks indicate significant differences between soil depths for each ecological group determined by ANOVA; *significant (P < 0.05), ***highly significant

(P < 0.001).

tree distances were found in beech (Table S5) and spruce stands
(Table S5).

A significant seasonal effect on bacterial community
composition was detected in soil under beech (P < 0.001)
(Table 2). Sequences corresponding to the Rhizobiales
(Bradyrhizobium and Rhodobium) showed significantly higher
relative abundance in autumn versus early summer (P < 0.001).
Consistently, the analysis of indicator species identified an
OTU affiliated to Bradyrhizobium in soil under beech in autumn
(Table S5). A seasonal impact on fungal community composition
was found in soil of the spruce stand (P < 0.05) (Table 2). Two
fungal indicator species were identified in early summer in
the spruce stand (Table S5). Fungal indicator species for both
seasons (autumn and early summer) occurred under beech
(Table S5).

DISCUSSION

Selective Association of Tree Species,
Bacteria, and Fungi
Differences in distribution of microbial taxa were identified
between soil under beech and spruce. This was expected, as even
tree genotype within a species can have significant impacts on
microbial communities (Schweitzer et al., 2008). A Chloroflexi
OTU was identified as indicator for soil surrounding spruce.
As several potential genes involved in phytochemical breakdown
have been identified in Chloroflexi (Hug et al., 2013; Houghton
et al., 2015), it is possible that this indicator microorganism
plays a role in decomposition of spruce litter. Furthermore, the
occurrence of several members of Acidobacteria was significantly
affected by tree species. It can be assumed that acidobacterial
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taxa contribute to decomposition in forest soils, as genomic and
culture characteristics of subgroup 1 and 3 strains have been
shown to utilize plant-derived biopolymers (Ward et al., 2009;
García-Fraile et al., 2015). Shifts in occurrence of acidobacterial
representatives between soil under European beech and Norway
spruce might imply preferences for leaf or needle litter. A
study on composition of bacterial communities under different
deciduous and coniferous trees (e.g., Picea and Fagales species)
in Czech forest stands also indicated litter preferences of
Acidobacteria (Urbanová et al., 2015).

Forest vegetation (in particular dominant tree species) is
important for distribution of mutualistic and saprotrophic fungi
(Lauber et al., 2008; Goldmann et al., 2015). ECM fungi (e.g.,
Russula, Inocybe, Piloderma) establish mutualistic associations
with plant roots (Smith and Read, 2008) and show preferences
for particular tree species (Ishida et al., 2007; Thoms et al.,
2010). In accordance with our study, Goldmann et al. (2015)
and Miyamoto et al. (2015) reported a preference of Tylospora
for coniferous trees. Some identified fungal indicators under
beech (Mortierella elongata, Trichoderma, Russula cyanoxantha)
are known to be widespread not just under a certain tree
species (Wuczkowski et al., 2003; Grebenc and Kraigher, 2007;
Nagy et al., 2011). In contrast, the ECM fungus Xerocomus
chrysenteron is known to have a preference for beech (Shi et al.,
2002). Indicator species for spruce included three OTUs classified
as saprotrophic fungi. Exophiala has already been described
as a fungal genus decaying leafs in rainforests (Polishook
et al., 1996) or existing as rhizospheric associates in temperate
sites (Summerbell, 2005). Another two Penicillium OTUs were
identified as saprotrophic indicators for spruce. Previous research
(Johansson and Marklund, 1980) reported Penicillium to be
antagonistic to Fomes, a well-known fungus infecting spruce
trees (Schmidt, 2013). The indicative ECM fungi under spruce,
Hygrophorus and Amphinema, were abundant and previously
described for spruce ecosystems (Scattolin et al., 2008; Velmala
et al., 2013).

Under both tree species, microbial community composition
was significantly affected by pH and OC concentration.
Noteworthy, among the analyzed factors soil pH and tree
species explained most of the variation in overall community
composition of bacteria and fungi. Several previous studies have
identified soil pH as a major driver of soil bacterial community
composition across different regions and land use types (e.g.,
Lauber et al., 2009; Nacke et al., 2011). In accordance with our
results, pH also explained a substantial fraction of variance in
microbial community composition within other deciduous and
coniferous forest soils (Lauber et al., 2009; Thoms et al., 2010;
Goldmann et al., 2015). Furthermore, experiments including
addition of substrates such as cellulose, lignin, and glucose to
soil showed that the quantity of OC can have a significant impact
on soil microbial community composition (Nakatsu et al., 2005;
Goldfarb et al., 2011).

Relative Abundance of Saprotrophic Fungi
Decreases with Soil Depth
Previous surveys based on DGGE analysis as well as Sanger
sequencing and pyrosequencing of 16S rRNA genes have revealed
differences in bacterial community composition between topsoil

and subsoil (Hansel et al., 2008; Eilers et al., 2012; Huang et al.,
2013). This is a result of changes in soil characteristics such as
organic C or N concentrations along soil profiles (Hansel et al.,
2008; Will et al., 2010). Consistently, relative abundances of the
bacterial genus Gaiella, which were higher in 10–20 cm depth
than in 0–10 cm depth, were negatively correlated with organic
C concentration. Different Mucilaginibacter representatives are
capable of pectin, xylan, and laminarin degradation (Pankratov
et al., 2007).Mucilaginibacter was more abundant in topsoils (0–
10 cm). The genus has been previously associated with cellulose
decomposition based on stable isotope probing (Štursová et al.,
2012). Leaf and needle litter contains high amounts of the plant
cell wall components xylan, pectin, and cellulose, and enters the
upper mineral soil first, perhaps explaining the distribution of
Mucilaginibacter OTUs.

Recently, McGuire et al. (2013) found discrete fungal
communities in different soil horizons in boreal and tropical
forest. This can be explained by changing carbon and nutrient
contents in soil combined with fungal enzymatic decay abilities
(McGuire et al., 2010; Prescott, 2010). Our results (Table 2)
showed that fungal taxa in temperate forests do not underlay
similar mechanisms as found previously. However, we identified
different saprotrophic fungi showing preferences for the upper
(0–10 cm depth) mineral soil layer, which was rich in OC.
Influenced by the litter layer, the upper 10 cm show high habitat
heterogeneity, competition amongst fungi for space, carbon
and other soil nutrients (Kadowaki et al., 2014). ECM fungal
taxa receive carbon through mycelium connected to plant roots
(Smith and Read, 2008). In this study, ECM fungi were abundant
irrespective of soil depth since these fungi are not C-limited and
may colonize deeper soil layers (McGuire et al., 2013).

Bacteria Are Affected by horizontal Tree
Distance under Beech and Spruce
Soil microbial community composition showed higher variability
with respect to tree distance under spruce trees versus beech. It is
known that spatial distribution of soil microbes can reflect the
zone of influence and positioning of individual trees in forests
(Saetre and Bååth, 2000; Ettema and Wardle, 2002). As stemflow
was shown to significantly decrease soil pH, specifically close to
beech trees (Koch andMatzner, 1993), we expected a clear change
inmicrobial community composition next to beech trunks (0.5m
tree distance). However, we could neither detect a decrease in
pH at 0.5m distance to beech trunks, nor a strong change
in microbial community composition next to the beech trees.
Spatial horizontal variations in bacterial community composition
under beech and spruce, recorded in this study, might have
been partly evoked by changes in root activities with respect to
varying tree distances. N demand of spruce trees in summer and
autumn is mainly met by uptake of N compounds from soil and
subsequent transport of reduced N from the roots to the shoot via
the transpiration stream (Weber et al., 1998). Due to a negative
relationship between fine root biomass and tree distance (steep
decrease of fine root biomass at tree distances >2 m) (Petritan
et al., 2011), uptake of N compounds via roots might be more
pronounced in soil located close to the analyzed coniferous tree
trunks. This potentially explains the spatial horizontal variations
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in occurrence of nitrifying bacteria belonging to Nitrospirales
under spruce.

Under beech, relative abundance of Pseudolabrys was
significantly affected by horizontal tree distance. Only one
Pseudolabrys species, isolated from Taiwanese soil, has been
described (Kämpfer et al., 2006). In our study, more than one
OTU determined at a genetic distance of 3% was affiliated to
Pseudolabrys. The taxon Pseudolabrys, representing one of the
most abundant genera detected in this study, belongs to the
Rhizobiales, which are known to interact with plants (Erlacher
et al., 2015). Changes in root densities or activities may be amajor
reason for high relative abundance of Pseudolabrys in soil located
close to beech trunks.

Branco et al. (2013) found that an increase in soil pH with
pine tree distance was related to changing occurrence of fungal
species. Variation in pH at different tree distances (Table S4) also
account for changes in fungal community composition under the
conifer trees analyzed in our study (P < 0.05) (Table 2).

More Seasonal Soil Community Variation in
Beech than in Spruce Forests
Soil bacterial community composition under beech was strongly
affected by season (P < 0.001). Recently, López-Mondéjar et al.
(2015) reported that bacterial communities undergo seasonal
changes in mineral soil of a Quercus petraea (Matt.) Liebl
forest. They assume that seasonal differences in the activity
of tree roots are a major driver of soil bacterial community
composition in deciduous forest. Here, we found that different
members of the Rhizobiales were more abundant under beech
in autumn than in early summer. As Rhizobiales are known
to interact with plants, seasonal root impacts might affect their
abundance in temperate deciduous forest. Understory vegetation
varies between European beech and Norway spruce age class
forests in the study region (Boch et al., 2013). It is possible
that the Rhizobiales community is affected by seasonal changes
in understory vegetation. Furthermore, seasonal shifts in soil
moisture and temperature may also affect bacterial community
composition in the analyzed soil (Kaiser et al., 2010; Shay et al.,
2015).

Seasonal impacts on fungi were reported previously (e.g.,
Stevenson et al., 2014; Moll et al., 2015). In this study,
soil fungal community composition was affected by season
under spruce (P < 0.05) but not as expected under beech.
Recently, Voříšková et al. (2014) also detected no significant
seasonal effect on fungal community composition in soil of
a deciduous forest (oak forest near Prague, Czech Republic).
Nevertheless, in the litter horizon, which was not analyzed in
our study, seasonal changes in fungal community composition
were identified by Voříšková et al. (2014). These changes
are associated with nutrient input from fresh litter, which
occurs in temperate deciduous forests each autumn (Voříšková
et al., 2014). In accordance with our study, Lin et al. (2016)
reported seasonal shifts of fungi in coniferous forests. The air
and soil temperatures at both forest stands were higher in
early summer, whereas the soil water content was increased
in autumn (Table S6). Hence, comparable weather conditions

would suggest similar fungal reactions toward changing season
at the beech and spruce stand. However, a relatively thick needle
litter layer (∼8 cm) was removed before soil sampling under
spruce. Breakdown of needles, which are highly recalcitrant
to biological degradation, is mainly performed by fungi. It is
possible that the distinct fungi colonizing needles (Korkama-
Rajala et al., 2008) and consequently soil fungal communities
under coniferous trees are susceptible to climatic changes in
autumn. In addition, unmeasured factors might account for
the shifts of fungal communities under spruce. Future studies
can evaluate if these findings are artificial or ecologically
reasonable.

CONCLUSION

In accordance with our first hypothesis, beech and spruce trees
strongly shaped the community composition of soil bacteria
and fungi in temperate forests. Tree species-specific preferences
with respect to bacterial and fungal microorganisms, such as a
Chloroflexi representative, members of Acidobacteria subgroup
2 or Hygrophorus and Clavulina, were identified. Trees also
have manifold impacts on the seasonal and spatial distribution
of soil microorganisms. Indicator species analyses showed a
vertical variation with a higher importance of saprotrophic taxa
in the upper soil layer (0–10 cm) compared to the soil at a
depth of 10–20 cm, supporting our second hypothesis. In line
with our third hypothesis, bacterial community composition was
strongly affected by tree distance, which might be due to higher
fine root biomass near spruce trunks. Furthermore, bacterial
community composition showed stronger seasonal variation
under deciduous trees versus evergreen trees. This pattern was
not found when analyzing fungal community composition,
which is in contrast to our forth hypothesis. Noteworthy, soil
fungal communities under spruce seem to be susceptible to
seasonal changes. Overall, our results indicate that trees influence
the spatial variation of bacteria and fungi, but their diverse
patterns in stem flow, measured by pH change, seem to have
a minor impact. Furthermore, the study indicates that soil
pH and tree species (European beech or Norway spruce) have
a stronger impact on soil bacterial and fungal community
composition than soil depth, season or distance from tree
trunk.

Additional studies considering root architecture and
exudation patterns as well as the influence of tree canopy on
the spatial distribution of leaf litter fall are necessary to further
elucidate interactions between trees and soil microbes. Besides
studies allowing analysis of the proportional importance of
factors such as tree species, tree distance, or season, and their
mechanisms for interaction, experimental designs focusing on
effects of single factors are required to gain more comprehensive
understanding on microbial community variation in forest
soil. Furthermore, more direct proof is needed to ascertain
functional roles of microbes such as Acidobacteria in soil
surrounding beech and spruce. For instance, stable isotope
probing could be used to identify bacteria or fungi involved in
litter degradation.
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Table S1. Information on selected trees including tree position, tree age, tree trunk circumference, and sampling 
direction away from the tree trunk in May and November 2012. 

 

Tree 
species  

Replicate Easting Northing Direction Direction Tree 
age 

Trunk 
circumference 

  [m] [m] 1st 
sampling 

2nd 
sampling 

[a] (h=1.50m) 

    Early 
summer 

Autumn  [m] 

    [°] [°]   

Fagus 
sylvatica  

1 3586543±5 5682178±5 135 118 55-65 1.56 

Fagus 
sylvatica  

2 3586530±5 5682187±5 182 165 55-65 1.2 

Fagus 
sylvatica  

3 3585534±5 5682178±5 293 285 55-65 1.34 

Fagus 
sylvatica  

4 3586530±5 5682162±5 35 20 55-65 1.4 

Picea abies  1 3591581±7 5682660±7 195 213 50-60 1.38 

Picea abies  2 3591567±7 5682668±7 350 5 50-60 1.09 

Picea abies  3 3591595±7 5682693±7 5 0 50-60 1.22 

Picea abies  4 3591594±7 5682652±7 210 195 50-60 1.26 
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Table S2. Multivariate analysis of variance based on weighted UniFrac distances of whole bacterial and fungal 
community composition. (a) Stepwise model testing for multivariate analysis of variance based on weighted UniFrac 
distances of whole bacterial and fungal community composition (128 samples) with seven considered response 
factors in the order of entering the analysis. Increasing R²-values, and adjusted R²-values represent chosen model 
suitability. (b) Analysis of final model with seven response variables. R² and adjusted R² for each variable within the 
model. Explanatory variables are given in rows in the order of entering the analysis. Significant results are indicated 
by *P < 0.05, **P < 0.01, ***P < 0.001. Abbreviation: Adj., Adjusted. 

(a) 

No. of factors Factor Bacterial community Fungal community 
  R² Adj. R² R² Adj. R² 
1 Replicate 0.064 0.056 0.107 0.100 
2 pH 0.206 0.193 0.166 0.153 
3 OC 0.247 0.229 0.185 0.165 
4 Depth 0.265 0.241 0.200 0.174 
5 Season 0.282 0.253 0.225 0.193 
6 Distance 0.311 0.276 0.239 0.201 
7 Tree species 0.449 0.417 0.388 0.352 

 

(b) 

  Bacterial community Fungal community  
df MS R² Adj. R² MS R² Adj. R² 

Replicate 3 0.126 0.064*** 0.009 1.808 0.107*** 0.055 
pH 1 0.844 0.142*** 0.092 3.016 0.059*** 0.004 
OC 1 0.245 0.041*** 0.000 0.940 0.019*** 0.000 
Depth 1 0.103 0.017** 0.000 0.740 0.015** 0.000 
Season 1 0.103 0.017** 0.000 1.271 0.025*** 0.000 
Distance 1 0.170 0.029*** 0.000 0.706 0.014** 0.000 
Tree species 1 0.821 0.138*** 0.088 7.555 0.149*** 0.099 

 

 



G.A Castillo Villamizar Dissertation Publications 
 

155 

Table S3. Multivariate analysis of variance based on weighted UniFrac distances of bacterial and fungal community composition under beech or spruce. (a) Stepwise model testing for 
multivariate analysis of variance based on weighted UniFrac distances of bacterial and fungal community composition under beech or spruce (64 samples per tree species) with six 
considered response factors in the order of entering the analysis. Increasing R²-values, and adjusted R²-values represent chosen model suitability. (b) Analysis of final model with six 
response variables. R² and adjusted R² for each variable within the model. Explanatory variables are given in rows in the order of entering the analysis (b). Significant results are indicated 
by *P < 0.05, **P < 0.01, ***P < 0.001. Abbreviation: Adj., Adjusted. 

(a) 

No. of factors Factor Beech stand   Spruce stand  
  Bacterial community Fungal community  Bacterial community Fungal community 
  R² Adj. R² R² Adj. R²  R² Adj. R² R² Adj. R² 
1 Replicate 0.063 0.047 0.233 0.221  0.171 0.158 0.323 0.312 
2 pH 0.234 0.209 0.265 0.241  0.281 0.257 0.370 0.350 
3 OC 0.330 0.297 0.305 0.271  0.300 0.265 0.394 0.363 
4 Depth 0.343 0.298 0.319 0.272  0.329 0.283 0.406 0.366 
5 Season 0.403 0.352 0.340 0.283  0.351 0.295 0.426 0.377 
6 Distance 0.424 0.363 0.360 0.293  0.425 0.364 0.459 0.402 

(b) 

 Beech stand  Spruce stand 
 Bacterial community Fungal community  Bacterial community Fungal community 
 R² Adj. R² R² Adj. R²  R² Adj. R² R² Adj. R² 
Tree replicate 0.063** 0.000 0.233*** 0.152  0.171*** 0.084 0.323*** 0.252 
pH 0.171*** 0.084 0.032** 0.000  0.109*** 0.015 0.048*** 0.000 
OC 0.097*** 0.002 0.04*** 0.000  0.020 0.000 0.023** 0.000 
Depth 0.013 0.000 0.013 0.000  0.028* 0.000 0.013 0.000 
Season 0.06*** 0.000 0.021 0.000  0.022 0.000 0.02* 0.000 
Distance 0.021* 0.000 0.020 0.000  0.074*** 0.000 0.032*** 0.000 
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Table S4. Analysis of covariance to test the impact of tree replicate, depth, season and distance from the tree trunk on 
soil chemical parameters under trees. Samples collected under beech (a) and spruce (b) were analyzed. Significant 
results are indicated by *P < 0.05, **P < 0.01, ***P < 0.001. In this table degrees of freedom (df), mean squares (MS), and 
F-values are presented. 
 
(a) 

  df  pH   OC   N   C:N   Clay   

    MS F MS F MS F MS F MS F 

Tree 
replicate 

3 0.03 2.8* 0.01 0.1 0.00 0.1 0.12 0.4 3351 13.7*** 

Depth 1 0.68 55.7*** 22.15 230.7*** 0.12 233.2*** 17.67 63.2*** 12324 50.5*** 

Season 1 0.01 0.5 0.46 4.8* 0.00 2.9 1.35 4.8* 2680 11.0** 

Distance 1 0.02 1.2 3.11 32.4*** 0.02 30.8*** 3.48 12.5*** 10226 41.9*** 

Residuals 57 0.01   0.10   0.00   0.28   244   

 
(b) 

  df pH   OC   N   C:N   Clay   

    MS F MS F MS F MS F MS F 

Tree 
replicate 

3 18.96 93.0*** 5.02 7.4*** 0.02 10.7*** 3.67 2.9* 84533 30.2*** 

Depth 1 12.87 63.1*** 49.23 72.6*** 0.11 56.3*** 226.48 181.1*** 1133 0.4 

Season 1 1.65 8.1** 0.53 0.8 0.00 0.1 15.47 12.4*** 308 0.1 

Distance 1 1.61 7.9** 2.59 3.8 0.00 0.6 16.63 13.3*** 11888 4.2* 

Residuals 57 0.20   0.68   0.00   1.25    2800   
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Table S5. Results of indicator species analysis showing potential indicative OTUs for tree species, sampling depths, 
sampling distances and sampling season under trees. Bacterial communities under beech (a) and spruce (b) as well as 
fungal communities under beech (c) and spruce (d) were analyzed. Statistical values: A - species only occurs in sites of 
this group, B - all sites of this group harbor this species, cutoff (A+B) = 0.7, P - significance value. Relative abundances 
of OTUs across all 128 samples are depicted. Abbreviations: Rel. abundance, Relative abundance; Acidob., Acidobacteria. 
 
(a) 

Indicator group Bacterial OTU A B P Rel. abundance (%) 

Tree species 

Beech 

Xanthomonadales 0.99431 1 0.005 0.216 

Rhodospirillales 0.99403 1 0.005 0.257 

Acidob. subgroup 1 0.99449 0.98438 0.005 0.112 

Acidob. subgroup 2 0.98855 0.98438 0.005 0.081 

Xanthomonadales 0.9919 0.96875 0.005 0.076 

Acidob. subgroup 3 (Bryobacter) 0.95113 1 0.005 0.422 

Gemmatimonadaceae 0.96051 0.98438 0.005 0.241 

Acidob. subgroup 2 0.97674 0.95312 0.005 0.132 

Acidob. subgroup 3 (Bryobacter) 0.93072 1 0.005 0.480 

Acidob. subgroup 2 0.98697 0.9375 0.005 0.094 

Acidob. subgroup 2 0.98664 0.9375 0.005 0.322 

Acidob. subgroup 2 0.90485 1 0.005 0.818 

Gemmatimonas 0.93322 0.96875 0.005 0.184 
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Table S5a (continued) 

Indicator group Bacterial OTU A B P Rel. abundance (%) 

Depths 

10-20 cm 

Chloroflexi 0.8966 0.8125 0.005 0.027 

Acidob. subgroup 1 0.8226 0.7812 0.005 0.019 

Nitrospirales 0.7877 0.8125 0.005 0.045 

Distances  

0.5 + 1.5 + 2.5 m Gemmatimonas 0.8125 0.7083 0.005 0.044 

1.5 + 2.5 + 3.5 m 

Bryobacter 0.8841 0.8542 0.005 0.042 

Betaproteobacterium 0.86 0.875 0.005 0.062 

Season  

Early summer 

Bryobacter 0.8686 0.75 0.005 0.042 

Bryobacter 0.8323 0.7188 0.005 0.048 

Autumn 

Mycobacterium 0.8065 0.9375 0.005 0.048 

Bradyrhizobium 1 0.75 0.005 0.038 

Xanthobacteraceae 0.9478 0.75 0.005 0.035 
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(b) 

Indicator group Bacterial OTU A B P Rel. abundance (%) 

Tree species 

Spruce 

Rhodospirillales 0.9918 0.85938 0.005 0.188 

Acidob. subgroup 1 0.9519 0.82812 0.005 0.332 

Xanthomonadales 0.98683 0.79688 0.005 0.537 

Rhodospirillales 0.93238 0.78125 0.005 0.086 

Acidob. subgroup 1 0.9065 0.79688 0.005 0.151 

Acidob. subgroup 1 0.88484 0.8125 0.005 0.160 

Acidob. subgroup 1 0.95414 0.75 0.005 0.174 

Chloroflexi 0.97448 0.71875 0.005 0.313 

WD272 0.94089 0.73438 0.005 0.062 

Acidob. subgroup 3 (Bryobacter) 0.94694 0.71875 0.005 0.075 

Depths  

0-10 cm 

Xanthomonadales 0.8868 0.7812 0.005 0.114 

Acetobacteraceae 0.7201 0.8438 0.005 0.082 

Xanthomonadales 0.8293 0.7188 0.005 0.025 

Derxia 0.8219 0.7188 0.005 0.067 
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Table S5b (continued) 

Indicator group Bacterial OTU A B P Rel. abundance (%) 

Depths  

10-20 cm 

Gaiellales 0.7901 0.8438 0.005 0.100 

Gaiellales 0.8485 0.7812 0.005 0.112 

Caldilinea 0.7536 0.8125 0.005 0.086 

Acidimicrobiales 0.715 0.7812 0.005 0.064 

Distances  

2.5 + 3.5 m Nitrospirales 0.8109 0.7188 0.005 0.192 

0.5 + 1.5 + 2.5 m WD272 0.9549 0.7708 0.005 0.198 
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(c) 
Indicator group  Fungal OTU  A B P Rel. abundance (%) 

Tree species  

Beech  

Mortierella elongata  0.9987  1  0.005  0.598 

Mortierellomycetes  0.9968  0.9688  0.005  0.253 

Coniochaetaceae  0.9657  0.9219  0.005  0.175 

fungal OTU  0.8301  0.875  0.005  0.160 

Trichoderma  0.9271  0.8594  0.005  0.125 

Xerocomus chrysenteron  1  0.8125  0.005  0.324 

Russula cyanoxantha  0.9987  0.8125  0.005  9.558 

Helotiales  0.9818  0.7656  0.005  0.065 

Depths   

0-10 cm  

Varicosporium  0.8513  0.7813  0.005  0.053 

Leptodontidium  0.6958  0.75  0.005  0.045 

Volutella  0.8587  0.6875  0.005  0.036 

Didymellaceae  0.8181  0.6875  0.005  0.026 

fungal OTU  0.7895  0.6875  0.005  0.028 

Distance   

0.5 m + 1.5 m  Leptodontidium elatius  0.7635  0.6562  0.005  0.025 

2.5 m + 3.5 m  Russula cyanoxantha  0.9749  0.5312  0.005  2.140 

0.5 m + 1.5 m + 2.5  Piloderma  0.9398  0.5208  0.005  0.091 

1.5 m + 2.5 m + 3.5 
m  

Leotia  0.9179  0.6667  0.005  0.641 

Inocybe  0.9474  0.5208  0.005  1.504 
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Table S5c (continued) 

Indicator group  Fungal OTU  A B P Rel. abundance (%) 

Distance 

0.5 m + 1.5 m + 2.5 
m + 3.5 m  

Mortierella elongata  0.9987  1 0.005  0.598 

Mortierellomycetes  0.9968  0.9688  0.005  0.253 

Coniochaetaceae  0.9657  0.9219  0.005  0.175 

Xerocomus chrysenteron  0.8301  0.875  0.005  0.324 

Russula cyanoxantha  0.9271  0.8594  0.005  9.558 

Trichoderma  1 0.8125  0.005  0.125 

Helotiales  0.9987  0.8125  0.005  0.065 

fungal OTU  0.9818  0.7656  0.005  0.160 

Season   

Early summer   Russula cyanoxantha  0.9979  0.5  0.005  0.186 

Autumn  

Helotiales  0.9936  1  0.005 0.368 

Mortierellaceae  0.7546  0.9688  0.005 0.094 

Mycospaerella  1  0.7188  0.005 0.027 
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(d) 
Indicator group Fungal OTU A B P Rel. abundance (%) 

Tree species 

Spruce 

Exophiala  0.989  0.9688  0.005 0.178 

Penicillium inflatum  0.9091  0.9688  0.005 0.095 

Hygrophorus discoideus  0.9995  0.7969  0.005 3.169 

Mortierellales  1  0.7813  0.005 0.087 

Hygrophorus pustulatus  0.9997  0.7656  0.005 2.338 

Helotiales  0.9981  0.7656  0.005 0.203 

Penicillium  1  0.75  0.005 0.131 

Amphinema  0.9986  0.7188  0.005 1.387 

Depths  

0-10 cm 
Helotiales  0.8581  0.9375  0.005 0.203 

Mortierella  0.7384  0.7813  0.005 0.066 

10-20 cm 
Cryptococcus fuscescens  0.7656  0.7813  0.005 0.102 

Mortierella  0.8424  0.75  0.005 0.068 

Leohumicola  0.9557  0.5313  0.005 0.018 

Distance  

0.5 m + 1.5 m + 2.5 Russula  0.9866  0.7292  0.005 4.941 

0.5 m + 1.5 m + 2.5 m + 
3.5 m 

Exophiala  0.989  0.9688  0.005 0.178 

Penicillium inflatum  0.9091  0.8125  0.005 0.095 

Hygrophorus discoideus  0.9995  0.7969  0.005 3.169 

Mortierellales  1  0.7812 0.005 0.087 

Helotiales  0.7812  0.7812  0.005 0.203 

Penicillium  1 0.75  0.005 0.131 

Amphinema  0.9986  0.7188  0.005 1.387 

Season  

Early summer 
Mortierellales  0.9837  0.625  0.005 0.024 

Amphinema  1  0.5625  0.005 0.168 
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Table S6. Air temperature, soil temperature, and soil water content data. Five year averages (2008-2012) are 

presented. 

 
 

Time Air temperature (2 m 
height)  Soil temperature                    

(10 cm depth)  Volumetric water content  
(10 cm depth) 

 Beech 
forest 

Spruce 
forest  Beech 

forest 
Spruce 
forest  Beech 

forest 
Spruce 
forest 

 (°C)  (°C)  (%) 

May 12.1 12.7  10.1 10.6  28.0 23.5 

November 4.1 4.2  6.5 7.0  31.5 25.2 

January-
December 7.3 7.7  8.0 8.4  29.3 25.4 
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Figure S1. Rarefaction curves indicating the observed numbers of OTUs at a genetic distance of 3%. Samples derived 

from soil surrounding beech and samples collected under spruce are represented by brown and green color, 

respectively. 
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Figure S2. Line plots showing soil bacterial and fungal diversity as assessed by Shannon index at 3% genetic distance 

under beech in (A) early summer and (C) autumn, and under spruce in (B) early summer and (D) autumn. 
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Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able
to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome
(2.99 Mb).
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The reduction of CO2 mediated by acetogenic microorganisms
is gaining more interest as a valuable tool for the generation of

renewable energy and value-added chemicals (1–3). Thus, ho-
moacetogenic bacteria that use the Wood-Ljungdahl pathway for
the CO2 fixation process have proven to be a main component in
this research field (3–8). Among the numerous species of ho-
moacetogens, three organisms have been relatively well studied
(Moorella thermoacetica, Acetobacterium woodii, and Clostridium
ljungdahlii) (9–13). However, several relevant species remain
poorly studied, and the genetic information of many of them re-
mains almost nonexistent or is very limited. Therefore, in this
study, we report the draft genome sequence of Moorella mulderi
DSM 14980T a thermophilic homoacetogenic anaerobic bacte-
rium originally isolated from a bioreactor with methanol as the
energy source (14). Similar to M. thermoacetica, M. mulderi DSM
14980T is able to grow on several substrates, including methanol,
H2-CO2, pyruvate, and glucose. However, several differences have
been reported. The optimal temperature of M. mulderi DSM
14980T (65°C) is higher than the optimal temperature reported for
M. thermoacetica (55 to 60°C). Moreover, in contrast to M. ther-
moacetica, M. mulderi DSM 14980T is able to grow on lactate but
cannot use nitrate as an electron acceptor (14).

The MasterPure complete DNA purification kit (Epicentre,
Madison, WI, USA) was used to isolate the chromosomal DNA of
M. mulderi DSM 14980T. Isolated DNA was used to generate Illu-
mina shotgun sequencing libraries. Sequencing was performed by
employing a MiSeq system using MiSeq reagent kit version 3 (600
cycles), as recommended by the manufacturer (Illumina, San Di-
ego, CA, USA), resulting in 2,785,408 paired-end reads (300 bp)
that were trimmed using Trimmomatic 0.32 (15). De novo assem-
bly performed with the SPAdes genome assembler software ver-
sion 3.6.2 (16) resulted in 72 contigs (�500 bp) and an average
coverage of 188.5-fold.

The genome of M. mulderi DSM 14980T probably consists of a
circular chromosome of (2.99 Mb) with an overall G�C content
of 53.32%. Gene prediction and annotation were performed using
Rapid Prokaryotic Genome Annotation (Prokka) (17). The ge-
nome harbored 3 rRNA genes, 52 tRNA genes, 2,240 protein-

coding genes with predicted functions, and 859 genes coding for
hypothetical proteins. The cluster of genes encoding enzymes of
the methyl and carbonyl branches of the Wood-Ljungdahl path-
way is conserved within acetogenic bacteria (18). Therefore,
M. mulderi DSM 14980T shows an arrangement identical to the
pattern previously identified in M. thermoacetica strains ATCC
39073 and DSM 521T (10, 18). The cluster is composed of eight
genes (acsFABCV, cooC, and acsDE) encoding the subunits of the
CO dehydrogenase–acetyl-coenzyme A (CoA) synthase complex.
The genes encoding the two subunits of the methylene-THF re-
ductase (metVF) are located four genes downstream of this
cluster.

The genome analysis revealed that M. mulderi DSM 14980T has
a bigger genome size than M. thermoacetica DSM 521T (2.52 Mb)
and M. thermoacetica DSM 2955T (2.62 Mb) (10, 19).

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/ENA/GenBank un-
der the accession no. LTBC00000000. The version described in
this paper is version LTBC01000000.
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First Insights into the Genome Sequence
of the Strictly Anaerobic Homoacetogenic
Sporomusa sphaeroides Strain E (DSM
2875)

Genis Andrés Castillo Villamizar, Rolf Daniel, Anja Poehlein
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Göttingen, Germany

ABSTRACT Here, we report the draft genome sequence of Sporomusa sphaeroides
strain E (DSM 2875), a strict anaerobic homoacetogenic bacterium. It is able to grow
autotrophically on different one-carbon compounds. The strain possesses several
genes of the Wood-Ljungdahl pathway. The genome consists of a single chromo-
some (4.98 Mb).

The autotrophic metabolism of diverse acetogenic bacteria is used for the develop-
ment of economically relevant chemicals such as acetate, ethanol, butyrate, and

butanol. Likewise, the quest for alternative, renewable, and sustainable energy sources
resulted in an increased interest for processes involving anaerobic digestion. Among
the most studied organisms involved in anaerobic digestion processes are Gram-
positive acetogens like Clostridium ljungdahlii, C. aceticum, and the thermophile
Moorella thermoacetica. Gram-negative acetogens comprise several species of the
Sporomusa genus (1–3).

The publication of genome sequences of many acetogens involved in biotechno-
logical processes improves knowledge and drives the development of new and more
efficient production platforms (4–8). In this study, we report the draft genome se-
quence of Sporomusa sphaeroides E (DSM 2875). This organism has been isolated from
mud samples of the German Leine River (9).

A MasterPure complete DNA purification kit (Epicentre, Madison, WI, USA) was used
to isolate chromosomal DNA of S. sphaeroides E (DSM 2875). The extracted DNA was
used to generate 454 shotgun, 454 paired-end, and Illumina shotgun libraries (paired-
end) according to the manufacturers’ protocols (Roche Life Sciences, Mannheim, Ger-
many, and Illumina, Inc., San Diego, CA, USA). The libraries were sequenced using a 454
GS-FLX system (Titanium GS70 chemistry; Roche Life Sciences, Mannheim, Germany)
and a Genome Analyzer II (Illumina, Inc.). Sequencing resulted in 251,686 454 shotgun
reads, 100,698 454 paired-end reads (1.6-kb and 2.8-kb insert sizes), and 7,621,534
Illumina paired-end reads (112 bp). Assembly of the reads using Roche Newbler
assembly software 2.6 for scaffolding and MIRA software (10) resulted in 35 scaffolds
with 108 contigs. The average coverage was 26.8-fold for 454 and 171.44-fold for
Illumina. Some gaps were closed using PCR and Sanger sequencing of the products.
Analysis of the obtained sequences was completed using Gap4 (version 4.11) software
of the Staden package (11, 12). The final draft genome of S. sphaeroides (16 contigs)
consists of a single chromosome of 4.98 Mb with an overall G�C content of 47.21%.
Gene prediction and annotation were performed using Prokka (13). The draft genome
harbored 17 rRNA genes, 88 tRNA genes, 3,564 protein-coding genes with predicted
functions, and 1,150 genes coding for hypothetical proteins.
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The cluster of genes encoding enzymes of the methyl and carbonyl branches of the
Wood-Ljungdahl pathway is present in the genome and showed the same organization
as described for S. ovata DSM 2662 (6). The genome contains genes encoding for
enzymes involved in the metabolism of one-carbon compounds, including cooS for the
putative synthesis of the carbon monoxide dehydrogenase (CODH) required for grow-
ing on CO. Five genes of the formate dehydrogenase (fdhs) complex involved in the
oxidation of formate were also detected. Finally, the methyltransferase genes mtaB and
mtaD, required for methanol-specific methyl transfer (14), were also present.

Accession number(s). This whole-genome shotgun project has been deposited at

DDBJ/ENA/GenBank under the accession number LSLJ00000000. The version described
in this paper is the first version, LSLJ01000000.
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