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Abstract

Transcription factors (TFs) are a special class of proteins that usually bind regulatory DNA
regions such as promoters and enhancers in order to control the expression of their target
genes. Today, it is well known that in higher organisms, the combinatorial interplay between
TFs is crucial for a flexible and precise gene regulation. Thereby, the cooperation between
TFs is highly diverse and can take place between TFs that are bound to the same DNA
region, referring to intra-regional TF cooperations as well as between TFs that are bound
to different DNA regions (i.e. enhancer and promoter regions), referring to inter-regional
TF cooperations. The computational identification of these TF cooperations is still a chal-
lenging problem in bioinformatics and can be addressed by using predicted transcription
factor binding sites (TFBSs) as basis of the analysis. In this thesis, I present two informa-
tion theoretical approaches for the identification of cooperating TFs based on their TFBS
distributions in regulatory DNA regions.

My first approach identifies potentially intra-regional cooperating TFs based on the co-
occurrence of their binding sites. Thereby, I adapted the pointwise mutual information from
the field of linguistics to the field of bioinformatics by using it for the identification of co-
occurring TFBSs. For this, I consider the genome as a document, the sequences under study
as sentences and the predicted TFBSs as words in these sentences. I successfully applied
this approach to a simulation data set, biological data sets and performed a comparison
study with existing methods. Although the results reveal that my approach properly iden-
tifies known and novel TF cooperations, the differentiation between sequence-set specific
pairs and common/general important ones is missing. Addressing this point, I extended my
method and created background sequence-sets to estimate the background co-occurrence
of each TFBS pair, incorporated it in the calculation and classified the significant pairs as
sequence-set specific or common ones. Applying this extended version to several gene sets,
the overlap between the sequence-set specific pairs is considerably decreased in comparison
to the original version.

In order to complement my first method, I established a second approach for the determi-
nation of inter-regional TF associations that might be involved in the interaction process
between promoter and enhancer regions. This approach is based on the sequences of known
promoter-enhancer interactions and estimates the association between TFBS distributions
of different DNA regions based on multivariate mutual information (MMI). Thereby, I
created background sequence sets by preserving the (olig-) nucleotide composition and di-
rectly incorporated them in the MIMII computation as a third random variable. Considering
this approach, I compared the performance of four different mutual information quantities.
Finally, I demonstrated the performance of this approach by successfully applying it to
simulation and biological data sets and by comparing it with an existing method.






Zusammenfassung

Transkriptionsfaktoren (TFs) sind eine spezielle Gruppe von Proteinen, die an regulatori-
sche DNA Regionen wie Promotoren oder Enhancer binden, um die Expression ihrer Ziel-
gene zu kontrollieren. Heutzutage ist hinldnglich bekannt, dass in hoher entwickelten Or-
ganismen das kombinatorische Zusammenspiel von TFs unerlésslich fiir eine flexible und
prazise Genregulation ist. Dabei ist die Kooperation von TFs sehr divers und kann zwischen
TFs stattfinden, die an die gleiche DNA-Region gebunden sind, im Folgenden intraregiona-
le TF Kooperationen genannt, sowie zwischen TFs, die an unterschiedliche DNA-Regionen
gebunden sind (z.B. Enhancer- und Promotorregionen), im Folgenden interregionale TF-
Kooperationen genannt. Die computergestiitzte Identifizierung dieser TF-Kooperationen ist
nach wie vor ein herausforderndes Problem in der Bioinformatik und kann dadurch adres-
siert werden, dass vorhergesagte Transkriptionsfaktorbindestellen (TFBSs) im Hinblick auf
ihr gemeinsames Auftreten analysiert. In dieser Arbeit présentiere ich zwei informations-
theoretische Verfahren fiir die Identifikation von kooperierenden TFs basierend auf deren
TFBSs-Verteilungen in regulatorischen DNA-Regionen.

Mein erstes Verfahren identifiziert potenzielle intraregionale TF-Kooperationen basierend
auf dem gemeinsamen Vorkommen ihrer Bindestellen. Dabei habe ich die pointwise mutual
information aus der Linguistik fiir die Bioinformatik angepasst, um gemeinsam vorkom-
mende TFBSs vorherzusagen. Hierfiir betrachte ich das Genom als ein Dokument, die zu
analysierenden Sequenzen als Sétze und die vorhergesagten TFBSs als Worter in diesen
Sétzen. Ich habe das Verfahren erfolgreich auf einen simulierten Datensatz und auf bio-
logische Datensitze angewendet und eine Vergleichsstudie mit bereits existierenden Me-
thoden durchgefiihrt. Obwohl die Ergebnisse zeigen, dass meine Methode bereits bekann-
te und neue TF-Kooperationen erfolgreich identifiziert, fehlt die Unterscheidung zwischen
solchen Paarungen, die fiir den jeweils untersuchten Sequenz-Set spezifisch sind, und sol-
chen, die allgemein wichtig sind und daher stets in Erscheinung treten. Um diesen Punkt zu
beriicksichtigen, erweiterte ich die Methode und erzeugte Hintergrundsequenzsets um die
Hintergrundcolokalisation fiir jede TFBS-Paarung abzuschitzen und dieses in meine Be-
rechnung zu integrieren, um somit die signifikanten Paarungen als Sequenz-Set-spezifisch
oder allgemein wichtig zu klassifizieren. Die Anwendung dieser erweiterten Methode auf
unterschiedlichen Gensets zeigt, dass die Uberlappung zwischen Sequenz-Set spezifischen
Paarungen wesentlich geringer ist im Vergleich zu der originalen Methode.

Mit dem Ziel, die erste Methode zu komplementieren wurde ein zweites Verfahren entwi-
ckelt, dass interregionale TF Beziehungen ermitteln soll, welche moglicherweise in den
Interaktionsprozess zwischen Enhancer— und Promotorregionen involviert sind. Dieses
Verfahren basiert auf den Sequenzen von bekannten Promoter—Enhancerinteraktionen und
schitzt die Assoziation zwischen TFBS Verteilungen unterschiedlicher DNA-Regionen



vi

mittels der multivariate mutual information (MIMI) ab. Dabei werden Hintergrundsequen-
zen erzeugt, bei denen die (Oligo-)Nukleotidzusammensetzung erhalten bleibt und die
direkt als dritte Zufallsvariable in die MIMI-Berechnung mit eingefiigt werden. Fiir dieses
Verfahren habe ich die Performance von vier unterschiedlichen MIMI-Metriken miteinander
verglichen. Abschliefend demonstrierte ich die Leistung dieses Verfahrens, indem ich es
erfolgreich auf simulierte sowie auf biologische Datensitze angewendet habe und mit einer
bereits existierenden Methode verglichen habe.
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1. Introduction

A flexible and specific gene regulation enabling the control of different genetic programs
such as organogenesis, immune response and adaptation to environmental conditions is
crucial for the survival, development and general fitness of an organism. The major control
level of gene expression is transcription regulation which underlies the interplay between
a multitude of regulatory DNA regions such as promoters and enhancers. While promot-
ers are mostly directly upstream of the transcription start site (T'SS) of a gene, enhancers
can be millions of base pairs away from their target genes but come in close proximity
to the promoter by the formation of chromatin loops, which are stabilized by interactions
between proteins positioned at the one and the other of these regions. Thereby, the pair-
ing between an enhancer and a promoter has been detected as highly tissue specific and
is therefore of major importance for tissue development [1l]. The regulatory DNA regions
are occupied by transcription factors, a special class of proteins that specifically bind to
defined DNA motifs that are referred to as transcription factor binding sites (TFBSs). Since
in higher organisms, the number of genes strongly exceeds the number of transcription fac-
tors, their combinatorial binding and physical as well as functional interactions are of major
importance for a proper gene regulation. Therefore, TFs tend to form dimers (as homo-
or heteromers) or higher order complexes in order to synergistically or antagonistically in-
fluence the transcription of their target gene. Further, the combination of bound TFs and
the interplay between the underlying factors is essential to establish the pairing between
enhancer and promoter regions. Thereby, intra-regional cooperating TFs are referred to TFs
that are bound to the same DNA region whereas inter-regional cooperating TFs are linked
to associated TFs between enhancer and their related promoter regions.

The knowledge about interacting TFs is crucial in the general understanding of the molec-
ular mechanisms underlying gene regulation and can further be used for the identification
of important key players in these regulatory mechanisms. The computational identification
of interacting TFs is still a challenging problem in bioinformatics. Several existing ap-
proaches identify cooperating TFs based on their binding site distribution in the regulatory
sequences under study. Thereby, most of these methods [2, 13,14, 516, 7,8}, 19,10} [11]] focus on
intra-regional cooperations of transcription factors and require user provided negative and
positive control sets as well as previous knowledge about transcription factor interactions.
Some other methods are restricted to simple organisms or small input sequence sets and are
thereby limited in their general usage [3| 16} [8, [12]]. For example, Girgis et al. developed a
tool for the identification of enriched motif pairs using a Bayesian classifier in a given set
of sequences in comparison to a user provided control set [13]]. Another approach has been
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developed by Sun et al. [7] for the detection of unstructured cis-regulatory modules based
on constrained programming for itemset mining framework that uses the whole genome as
background sequence set. In 2013 Deyneko et al. [4] developed a method for the identifica-
tion of composite elements that are stored in the TRANSCornpel® [14] database. Thereby,
the algorithm scans the input sequences and outputs the predicted locations of composite
elements. However, the algorithm is not able to identify new composite elements that have
not been experimentally verified yet.

To overcome the obstacles of the existing methods (e.g. user provided or arbitrary back-
ground set, restriction to known cooperations of TFs or data size in general), I propose a new
method for the identification of cooperating transcription factors based on the co-occurrence
of their underlying TFBSs. Inspired by the field of linguistics, where the pointwise mutual
information (PMI) is a powerful tool for the identification of word associations, I adopted
the PMI to the field of bioinformatics. Thereby, I consider the genome as a book, the reg-
ulatory sequences under study as sentences and TFBSs as words in these sentences. The
results show that the application of pointwise mutual information in bioinformatics suc-
cessfully determines the inserted pair in a simulation dataset. In application to biological
sequences, it is able to identify known TF cooperations as well as new potential TF cooper-
ations which could provide new targets for future laboratory work. Although the predicted
pairs appear to be important for the regulation of the underlying gene set, the overlap of
significant pairs between different input sets is comparatively huge. This indicates that the
predicted pairs can be divided into two groups: sequence-set specific pairs and common im-
portant ones that stem from generally used regulatory programs in many cells and tissues. In
order to separate the predictions into sequence-set specific and common ones, I extended my
approach by creating background sequence sets that maintain the (oligo-) nucleotide com-
position of the input sequences, estimating the background co-occurrence for each TFBS
pair and subtracting this background from the original pointwise mutual information value.
A closer look at the predictions reveals that the overlap of sequence-set specific TFBS pairs
among different input sets decreases in comparison to the original approach, pointing out
the success of the extended approach.

Up to date, only a few computational methods exist for the identification of coupled tran-
scription factors that are involved in the pairing process between enhancer and promoter
sequences. A recent approach in this field is MotifHyades [[15]], proposed by Wong in 2017,
for the identification of coupled DNA motif pairs in enhancer and promoter sequences based
on expectation maximization methodology. This probabilistic method performs well for the
identification of over-represented pairs, however, the algorithm is not able to identify asso-
ciated motif pairs that only occur in a minority of the promoter-enhancer pairings.

In this thesis, I present a new approach for the identification of associated transcription fac-
tors in enhancer and promoter sequences based on multivariate mutual information. For
this, a background sequence set was created by maintaining the general sequence (oligo-)
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nucleotide composition and afterwards, the distribution of TFBSs in both, input and back-
ground enhancer and promoter sequences was calculated, respectively. Later, the pairwise
association between a TFBS of promoter sequences and a TFBS of enhancer sequences was
calculated by mutual information where further, the background information was incorpo-
rated as third random variable in the analysis. In order to find the best mutual information
metric for my purposes, I compared and evaluated several quantities (i.e. dual total correla-
tion, conditional mutual information, multivariate mutual information and pairwise mutual
information of joint distributions) that consider three random variables and conclude that the
multivariate mutual information is the best choice for the identification of associated tran-
scription factors, since it identifies strong and weak associated TFBS pairs in the underlying
promoter-enhancer interactions.

1.1. Structure of the thesis

The organization of the thesis is as follows. In Chapter 2] I introduce the most relevant
biological facts about gene regulation by focusing of transcriptional regulation and tran-
scription factors. I further introduce some experimental and bioinformatical methods that
are related to the data in the thesis and give an overview about the bioinformatical resources
and data bases used in this thesis. In Chapter [3] I give a brief overview about informa-
tion theory and entropy and focus afterwards on different mutual information quantities.
Followed by this foundation chapters, I introduce the information theoretical approaches
established in this thesis in Chapter 4] Thereby, I first present the method for the identifi-
cation of potentially intra-regional cooperating TFs based on pointwise mutual information
in Section {4.1|in combination with the extended version of this approach for the identifi-
cation of sequence-set specific TF cooperations. In the following Section .2} T describe
the multivariate mutual information based method for the identification of associated TF-
BSs between promoter and their related enhancer regions based on their underlying TFBS
distributions. Afterwards, I applied both methods to simulation and real biological data
sets and present the results in combination with comparative studies to existing methods, in
Chapter[5] These results as well as the application of the information theoretic methodology
is discussed in Chapter[6]and finally, I complete the thesis in Chapter[7]by summarizing the
thesis and give an outlook for future work.

1.2. Impact

Journal articles:

We have published the pointwise mutual information based method for the identification of
intra-regional TF cooperations as well as its extension for sequence-set specific TF cooper-
ations in the following articles:
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[1] Meckbach, C, Tacke, R, Hua, X, Waack, S, Wingender, E, Giiltas, M (2015). PC-
TraFF: identification of potentially collaborating transcription factors using point-
wise mutual information. BMC Bioinformatics, 16:400.

[2] Meckbach, C, Wingender, E, Giiltas, M (2018). Removing Background Co-
occurrences of Transcription Factor Binding Sites Greatly Improves the Prediction
of Specific Transcription Factor Cooperations. Front Genet, 9:189.

[3] Steuernagel, L*, Meckbach, C*, Heinrich, F, Zeidler, S, Schmitt, A, Giiltas, M
(2019). Computational identification of tissue-specific transcription factor coopera-
tion in ten cattle tissues. PLoS ONE, accepted 29.4.2019 and currently print (*These
authors contributed equally to this work.).

Further, the author contributed to the following publications that are related to the topic of
the thesis:

[4] Zeidler, S, Meckbach, C, Tacke, R, Raad, FS, Roa, A, Uchida, S, Zimmermann,
WH, Wingender, E, Giiltas, M (2016). Computational Detection of Stage-Specific
Transcription Factor Clusters during Heart Development. Front Genet, 7:33.

[5] Dang, T.K.L., Meckbach, C., Tacke, R., Waack, S. and Giiltas, M (2016).: A novel
sequence-based feature for the identification of DNA-binding sites in proteins using
Jensen—Shannon Divergence. Entropy 18:379.

Conferences, Workshops, Meetings and Student’s thesis
The author represents topics of this thesis on the following workshops and conferences:

e European Conference on Computational Biology (ECCB 2016, September The
Hague): Poster presentation

e German Conference on Bioinformatics (GCB 2016, Berlin): Poster presentation
e Bioinformatic poster day (Gottingen 2017): Poster presentation

e Workshop on Bioinformatics of Gene Regulation (Gottingen 2018): Poster presenta-
tion and talk

In collaboration with Mehmet Giiltas and Edgar Wingender the author supervised the fol-
lowing student works:

e Felix Heinrich: PC-TraFF Matchscores: Miteinbeziehung von TF-Bindestellen-
qualitdt bei der Bestimmung von interagierenden TFs sowie die ldentifizierung ihrer
bevorzugten Bindestellendistanzen. Bachelor Thesis, 2016

e Lena Steins: Analyzing transcription factor interactions in the embryonic develop-
ment of human cardiomyocytes using PC-TraFF. Master Thesis, 2016-2017

e Selina Klees: Analysis of Promoter-Enhancer Interactions by comparing the Tran-
scription Factor Binding Site Composition. Project Work, 2017
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e Lukas Steuernagel: Modellierung des Informationsgehalts von eukaryotischen
und prokaryotischen Promotoren anhand von vorhergesagten Transkriptionsfak-
torbindestellen und den dahinter stehenden Datenbankinformationen. Project Work,

2017

In collaboration with Mehmet Giiltas and Felix Heinrich, we further provide a web server
for the identification of intra-regional cooperating TFs based on the approach of Section 41|
that is available viahttp://pctraffpro.bioinf.med.uni-goettingen.de/.


http://pctraffpro.bioinf.med.uni-goettingen.de/




2. Biological background

In this chapter, I give an overview about the molecular processes and components in the cell
that are required to fully understand the motivation and concepts of this thesis. Thereby, I
will first give an overview about gene expression and regulation in general and more insights
into transcription itself and the regulation of transcription governed by transcription factors.
For a more detailed presentation of the biological parts I kindly refer to text books like
[[L6l [17] and especially for transcription factors to [[18]]. In the last part of the chapter, I give
an overview about the experimental methods, bioinformatic databases and tools that are
required in this thesis for evaluation as well as the for the data generation as pre-processing
work.

2.1. The molecular mechanisms of gene expression

2.1.1. DNA stores the genetic information

Since 1940 [17] it is known that the deoxyribonucleic acid (DNA) is the cellular component
that captures the genetic information of an organism. In 1953 the three dimensional struc-
ture of DNA was discovered under the direction of James Watson and Francis Crick. They
found out that the DNA in general consists of two anti-parallel nucleotide chains that are
twisted around each other forming a double helical structure. A DNA nucleotide consists
of a sugar molecule (deoxyribose), a phosphate group and one of the four bases: adenine
(A), guanine (G), cytosine (C) and thymine (T). Building up the linear polymer, the sugar
molecules are linked by the phosphate groups and form the uniform backbone of the helical
structure, while the bases point inside the helix and are paired to the facing base. These
base pairings (bp) are structurally determined by hydrogen bonds in a way that adenine
pairs with thymine and guanine pairs with cytosine as illustrated in Figure The phos-
phodiester bond between the nucleotides results in a defined orientation of the nucleotide
chain defined by the phosphate end (linked to the 5’ carbon of the deoxyribose) and the
sugar end (defined by the free OH-group of the 3’ carbon of deoxyribose). In literature,
a DNA sequence is in general oriented from the 5’ end to the 3’ end leading to the terms
upstream (towards the 5’ end) and downstream (towards the 3 end).
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Figure 2.1.: Structure of DNA. The DNA consists of two nucleotide strands that are anti-
parallel orientated. Each nucleotide consists of a sugar molecule (blue), one of the four
bases (cytosine, guanine, adenine and thymine) and a phosphat group that enables the linear
polymerization of the nucleotides. The two nucleotide strands in turn are connected by hy-
drogen bonds formed by the parings between guanine and cytosine (three hydrogen bonds)
or adenine and thymine (two hydrogen bonds).

In the cell, a DNA molecule is associated with a multitude of proteins forming a molecular
complex that is termed chromatin, while the chromatin of one long DNA molecule, in par-
ticular in its compact form during metaphase, is a chromosome. This complex formation
of DNA and proteins compacts the DNA that it fits inside the cell. In addition, packing
the DNA in chromosomes increases the stability of the DNA molecule and the associated
proteins can influence the accessibility of the DNA molecule and thereby influence gene
expression [16, Page 135].
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2.1.2. Gene expression: decoding of genetic information

A DNA region that codes for a functional molecule is termed gene and is a major constituent
of holding the genetic information of an organism. The process leading to the decoding of
the information, in order to form functional molecules, is termed gene expression and can be
separated into two parts: transcription and translation [[17]. During transcription, the gene
sequence is transcribed into a ribonucleic acid (RNA) sequence and afterwards, translated
into an amino acid sequence. RNA differs from DNA in some major ways: the sugar
molecule of RNA is ribose and the base thymine is replaced by uracil. However, the major
difference between the double stranded DNA and RNA is that in the cell, RNA occurs as
a single stranded molecule that forms coiled and helical structures with itself [16]. RNA
can fulfill regulatory and catalytic functions (miRNA, snRNA, rRNA, tRNA) or serve as a
template for the synthesis of proteins (mRNA). In eukaryotes the product of transcription
is a precursor of the final RNA, which in turn is generated by further processing in RNA
during which the ends of the RNA are modified and intron parts are spliced out of the RNA
sequence. The final RNA product is transported from the nucleus into the cytoplasm where
the mRNA is translated into a polypeptide, a linear sequences of amino acids that form the
main constituents of proteins [17].

2.1.3. Regulation of gene expression

The expression of some genes is continuously required while the products of some other
genes are only needed under certain conditions (e.g. tissue development, environmental
changes,etc.). In order to produce the right amount of gene products, the expression of a
gene needs to be regulated. As shown in Figure this regulation can take part on each
step of gene expression.

The first major control level is the DNA structure that can be modified by methylation and
the alteration of chromatin structure in a way that the accessibility of DNA for proteins is
changed, which can result in the complete silencing of DNA regions. Further, the process
of gene transcription is regulated by proteins termed transcription factors (TFs) that activate
or repress the transcription of their target genes by usually binding to regulatory DNA se-
quences (see Section [2.1.4). The next control level of gene expression comprises the gene
product itself where the speed of degradation of the transcribed precursor RNA determines
the amount of the final gene product. In turn, the speed of degradation can be influenced by
the length of the poly-A tail of RNA and the 5° RNA end capping process [16] and RNA
splicing can lead to a multitude of different protein products of one RNA molecule. Finally,
by post-translational modifications (e.g. phosphorylation) and, thus, the activity of the final
protein as well as protein degradation can be regulated [[18]].
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2.1.4. Transcription and its regulation

Transcription process The transcriptional process in general is separated in three phases:
initiation, elongation and termination. In the initiation phase, the RNA polymerase binds
the DNA close to the transcription start side (TSS) in combination with general transcrip-
tion factors (GTFs) supporting the formation of the pre-initiation complex that is depicted
in Figure 2.3] This complex opens the DNA double helix and short RNA transcripts are
synthesized by the RNA polymerase at the TSS [16]. After the first RNA transcript exceeds
a length of about ten ribonucleotides the elongation phase starts that is simply the polymeri-
sation of further ribonucleotides according to the DNA template by moving along the DNA
strand[16]. The termination phase starts after the RNA polymerase passes the poly A signal
sequence, the RNA strand is released, the RNA polymerase dissociated from the DNA and
the transcription bubble is closed [16].

Regulatory DNA regions The transcription efficiency of a gene is influenced in cis by a
couple of DNA regions such as promoters, enhancers, upstream activator sequences (UASs),
insulators and boundary elements. In cis means that the regulatory element is on the same
DNA molecule as the gene. A promoter is located immediately upstream of the transcrip-
tion start side and can even reach within the coding region of the gene [18]]. In eukaryotes,
the totality of functional elements of the promoter (cis elements) that are sufficient to acti-
vate the transcription are referred to as core promoter and consists of 40-60 nucleotides in
length [[16]. The composition of these cis elements is specific and varies from gene to gene
[19]]. Common elements of eukaryotic RNA polymerase II core promoters are the TFIIB
recognition elements (BRE), the TATA box, the initiator (Inr) as well as some downstream
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Figure 2.3.: Preinitiation complex of RNA polymerase II. The binding of RNA
polymerase II to the promoter is supported by general transcription factors de-
noted as TFII (transcription factors for RNA polymerase II) with classifications:
TFIA,TFIIB, TFIID, TFIE, TFIIF,TFIIH. The TATA box is recognized by the TATA-
binding protein (TBP), a subunit of TFIID. (Modified from [16} Fig. 12-15])

promoter elements like the downstream promoter element (DPE), downstream core ele-
ment (DCE) and the motif ten element (MTE) [16} Page 397] (see Figure @ In general, a
subset of these elements is sufficient to enable the binding of polymerase, general transcrip-
tion factors and co-activators and thus, to enable the formation of the preinitiation complex
[L16, [19]. Besides the promoter, another important regulatory element is the enhancer, a
cluster of regulatory sequences that is located hundreds or even millions of base pairs up-
stream or downstream from its target gene [16} 19, [20]]. Enhancers form looping structures
to physically interact with the promoter of their target gene irrespective of orientation [21],
leading to transcription activation or the increase of the transcriptional level. The target
genes of an enhancer can either be neighbouring genes but even the skipping of some genes
is possible to reach their target genes [21]. Rarely, enhancer and target gene are located on
different chromosomes [22]]. The activity of enhancers is cell type specific or is affected by
developmental or environmental constraints [[19] indicating that the alterations of enhancer
activities results in the change of gene expression patterns and consequently, incorrect al-
teration of enhancer activity are linked to many human diseases [23]]. The enhancer activity
itself can be identified by eRNAs, short non-coding RNAs that are bidirectionally tran-
scribed from enhancer sequences if the enhancer elements are in close proximity to RNA
polymerase II [19]. In addition, active enhancers can be identified by the proteins bound to
them, i.e. they are often bound by the factor EP300 [21]]. In the mammalian genome, there
are around 23000 genes and about 1 million enhancers, indicating that several enhancers
can act on the same target gene depending on the cell type or condition [[19]. In turn, an
enhancer can regulate several genes. The underlying mechanism of how an enhancer finds
its target promoter is not fully understood yet. Following von Arensbergen et al. [21]] mech-
anisms that might be involved in this selection process are: i) biochemical compatibility, ii)
spatial architecture, iii) insulation and iv) chromatin environment. These mechanisms are
illustrated in Figure [2.5] In detail, two regulatory sequences are biochemically compatible
if both of them have the ability to be occupied by protein combinations that are able to
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interact with each other. Obviously, the physical interactions between two sequences can
only take place if the overall folding of the chromatin renders it possible. As mentioned
above, another kind of cis regulatory DNA regions are insulator elements that can promote
or block the interaction between an enhancer or a promoter by altering the 3D conformation
of chromatin. These DNA regions are bound by specific DNA binding proteins where the
most popular binding partner is the CTCCC-binding factor (CTCF) [21]].

TSS

[ [BRE] TATA | //"/" It | DCEIl _[DCEN DPE]" ]

Figure 2.4.: Polymerase II core promoter with transcription start site (TSS) common reg-
ulatory elements: BRE (TFIIB recognition element), TATA (TATA Box), Inr (initiator ele-
ment), DCE (downstream core element) and DPE (downstream promoter element). (Based
on [16, Fig. 12-14])

Transcription factors In order to carry out their regulatory functions, the instructions
encoded in the sequences of the cis regulatory elements are recognized by the selective
binding of proteins to theses regulatory sequence elements. These proteins belong to the
overall class of transcription factors (TFs), regulatory proteins that are directly involved in
the regulation process of a gene by usually binding to specific regulatory DNA sequences
termed transcription factor binding sites (TFBSs) [25]]. Fulfilling their regulatory functions,
TFs can completely activate or repress transcription of a certain gene, or increase/decrease
the level of its transcription. Thereby, TFs directly interact with the basal transcriptional
machinery or alter chromatin structure by histone or DNA modifications. Regarding their
molecular structure, TFs in general exhibit a modular composition (see Figure and
contain at least one of the following protein domains: i) a DNA binding domain, ii) an
oligomerization domain, iii) a regulatory domain and iv) a trans-activation domain [26]. The
DNA-binding domain recognizes specific DNA sequence patterns and enables the protein-
DNA binding. DNA-binding domains of proteins can be computationally predicted based
on their amino acid sequences using for example Jensen-Shannon divergence as we did in
our recent approach [27] (see Appendix [A.4). The regulatory domain in turn controls the
activity of a TF by e.g. ligand binding or phosphorylation and the trans-activation domain
is usually characterized by a specific amino acid composition [26].

The human genome consists of around 20000 protein coding genes of which roughly 1500
code for TFs. Considering isoforms that are generated by alternative splicing, the human
body contains more than 2900 TFs [25]. However, the number of TFs is much smaller
than the number of all genes and consequently the composition of TFs bound to regulatory
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Figure 2.5.: Mechanisms determining promoter-enhancer interactions. The pairing of
an enhancer to a certain promoter is enabled if a) the bound transcription factors are com-
patible to each other, b) the spacial constraints allow the contact between the two DNA
regions, c¢) insulator elements do not hinder the pairing and d) the chromatin landscape of
the enhancer is accessible. (Based on [21] 24])

elements as well as TF interplay is important in order to provide a proper gene regulation in
eukaryotic cells.

Further, TFs in general have an oligomerization domain that allows the direct physical in-
teraction (synergistic or antagonistic) with other TFs. Thereby, TFs form homo-and het-
erodimers with other TFs, depending on whether the interaction partner is of the same type
or not and extending this dimerization process, TFs use to form high order complexes in
combination with co-factor proteins. The binding sites of the underlying TFs in turn form
clusters on DNA that are known as cis regulatory modules. Direct physically cooperations
between transcription factors are depicted in Figure[2.6] Regarding a regulatory region, TFs
that bind to the cis regulatory modules inside that region are interacting with each other.
In addition, the TFs that are bound to different regulatory regions can directly physically
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Figure 2.6.: Physical cooperation strategies of transcription factors. In order to provide
proper gene regulation, transcription factors (TFs) have to cooperate with other TFs or co-
factors (CoF) in a synergistic or antagonistic manner. These cooperations can for example
take place between TFs that bind next to each other on DNA (intra-sequence cooperations)
and TFs that belong to different regulatory sequences (inter-sequence cooperations). The
cooperations between TFs of different regulatory regions can be based on direct physical
interactions or can be established by cofactors.

Trans-activation
domain

Figure 2.7.: Modular composition of transcription factors. In general transcription fac-
tors consists of all or some of the following domains: DNA binding domain, oligomerization
domain, regulatory domain and trans-activation domain.

interact with each other or indirectly via co-factor. These physical cooperations can be
synergistic or antagonistic in a way that the effect of activating transcription factors can be
strengthened or reduced. For the antagonistic way, transcription factors termed repressors
hinder the activity of activating TFs as depicted in Figure 2.8] Regarding one regulatory
sequence, repressors can functionally cooperate with the activator by blocking its binding
site or physically cooperate by masking its activation domain. In contrast, repressors bound
to a distal regulatory region (like enhancer region) can directly or indirectly interact with
activating TFs on the promoter [16].



15 2.2. Experimental methods

a) Competitive binding with activator

D=

Binding
site for
activator

Binding
site for
repressor

b) Inhibition of activator

—

Binding
site for
activator

Binding
site for
repressor

c) Direct repression of general transcription factors

Binding Binding
site for site for
repressor activator

Q )
Promoter %

Figure 2.8.: Strategies of repressing transcription factors. A transcription factor can full
fill its repressing function by a) blocking the binding site of the transcriptional activator,
b) interacting with the activator and thereby covering it’s activation domain and c) directly
repress transcription initiation by interacting with general transcription factors. (Modified
from [16, Fig. 17-20])

2.2. Experimental methods

The data and methods used in this thesis are based on laboratory experiments. I can not cap-
ture all important principles and list a few basic experimental methods for the identification



Biological background 16

of transcription factor binding sites as well as for the determination of long range chromatin
interactions like promoter-enhancer interactions (PEIs). For more details please have a look
at a textbook like [16].

2.2.1. Determination of TFBSs

The determination of transcription factor binding sites (TFBSs) is important for the identi-
fication of the preferred binding site profiles of a certain factor and in turn for the compu-
tational prediction of binding sites in the sequences of interest. In the following, I present
exemplary the nuclease protection footprinting as a method for the determination of protein
binding DNA sequences.

Nuclease protection footprinting Nucleases are enzymes that cut nucleic acids. A com-
monly used nuclease in the context of biotechnology is DNase I that cuts one strand of
double stranded DNA. If the DNA is bound by proteins the bound regions are protected
from a nuclease cleavage. This property is used in the nuclear protection footprinting. One
end of the DNA strand is marked (e.g. radioactively labelled) and afterwards the DNA is
exposed to a nuclease (e.g. DNase I). The DNA strands are randomly cut by the nuclease
and the labeled strands are separated by size in an electrophoresis (see Figure 2.9). The
regions bound by the protein cannot be accessed by the nuclease resulting in a lack of DNA
strands of particular size (footprint) in the electrophoresis ([[16]], page 777) .

2.2.2. Determination of promoter-enhancer interactions

In the following I give a brief overview of the idea for the determination of long range chro-
matin interactions like promoter-enhancer interactions (PEIs). According to the present
state of the art, such long-range interactions are determined by the chromosome conforma-
tion capture.

Chromosome conformation capture One of the most popular techniques to determine
the topological structure of chromatin is the chromosome conformation capture (3C)
method. The method identifies long distance DNA regions that are close to each other in
the interphase chromatin enhancer-promoter interactions. The general idea of the method
is rather simple: In the first step, the chromatin is fixed using e.g. formaldehyde. This
chemical introduces covalent bonds (crosslinks) between DNA and the bound proteins. In
the next step, the DNA is digested, either by endonucleases like HindIII or BamHI or in
a chemical way, followed by the ligation of the free DNA ends. Afterwards, the number
of newly created junctions is quantified and statistically evaluated in order to differentiate
noise from real signal. Based on the original 3C method, several further methods have
been developed which differ in their coverage and general detection aim. In the original
3C method, one can only determine whether two DNA regions of interest are interacting
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Figure 2.9.: Nuclease protection footprinting. Two sets of the same DNA fragments are
which radioactive labels are cut with DNase I. One of the set contains the transcription
factor of interest while the other set is not bound by proteins. After DNase cleavage, the
DNA fragments are separated according to their length by a gel electrophoresis and the
lack of bands (footprint) of the protein containing DNA set indicates the transcription factor
binding site. (Figure based on ([16], page 777))
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with each other. In 4C, the contacts between the region of interest and genome-wide
DNA fragments were determined (one vs all), where in 5C genome wide interactions were
predicted (all-vs-all) [28]]. Two newer extensions (all vs all) of 3C method are Hi-C and
ChIA-Pet and are explained in the following.

Hi-C Hi-C is one of the latest extended 3C method. The first steps are (as in the original
3C) the fixation of DNA and DNA cleavage using restriction enzymes. However, before
the religation takes place, the ends are filled with biotin-labeled nucleotides and the DNA
is purified and sheared and a pull down is performed by using a biotin-antibody. Thereby,
only the ligated DNA fragments are considered in the following analysis steps. The pull-
down is required, because in contrast to the original 3C method, no primers that could be
used for PCR are specified. Afterwards, the reads are mapped back to genomic regions, the
number of ligations of long-distance DNA regions are counted and a matrix of fragments
is created where an entry refers to the number of counts of the links between the respective
fragments. Applying a statistical analysis to this matrix results in the determination of
significant genome-wide long distance interacting DNA regions [28]].

ChlA-Pet A new generation of 3C experiments combines the Hi-C methodology with
chromatin immunoprecipitation sequencing (ChIP-Seq). In this method, all potential con-
nections between DNA fragments are predicted in a genome-wide manner (all-vs-all) that
are bound by a given DNA interacting protein. The overall workflow follows the 3C
methodology, fixation of DNA, cleavage and religation. Afterwards, the ligated DNA frag-
ments were pulled down using an antibody against the protein of interest. However, it
cannot be determined whether the protein of interest is responsible for the chromatin inter-
action or just linked to one of the corresponding sequences. The method is restricted in a
way that only those DNA fragment connections are determined that are associated with the
used protein [28]].

2.3. Bioinformatic resources

In this section, I will give an overview about the bioinformatic resources used in this thesis. I
will start with the databases: TRANSFAC®, UCSC Genome Browser, BioGRID, STRING
and TRANSCompel. Afterwards, I will shortly present the bioinformatic tools Match?™
and uShuffle.

2.3.1. Bioinformatic data bases

2.3.1.1. TRANSFAC®

TRANSFAC® has been published by Edgar Wingender for the first time in 1988 [29] and
is hosted by the geneXplain company (http://genexplain.com/). TRANSFAC® is a
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database for storing information about eukaryotic transcription factors, their genomic bind-
ing sites and DNA-binding profiles. Additionally, for each transcription factor, structural
and functional properties are listed and the transcription factors are grouped according to
their DNA binding domains in genus, subfamily, family, class and superclass. The DNA
binding sites are experimentally identified and listed with exact genomic position, experi-
mental method and DNA sequence. The DNA sequences are aligned and form the basis for
the creation of DNA binding site profiles that are represented as position weight matrices
(PWMs) that in turn can be used for the computational prediction of potential transcription
factor binding sites (TFBSs) in given regulatory sequences [30]].

CLASS “-"""°- > MATRIX

Figure 2.10.: The basic structure of TRANSFAC database. The center of the database is
the relation between transcription factor (FACTOR) and it’s DNA binding site (SITE). On
the basis of the binding site sequences, profiles were created (MATRIX) for the prediction of
potential binding sites. TFs were grouped according to their binding site domains (CLASS).

The original structure of the database is depicted in Figure 2.10} The center of the database
is the relation between a transcription factor and its binding site, stored in the Tables FAC-
TOR and SITE, respectively. The grouping of the factors is placed in Table CLASS and
the binding site profiles in Table MATRIX. The number of entries of the main tables in
September 2018 is shown in Table Up to date, the original TRANSFAC® database has
been extended by a multitude of additional tables and links to other databases [30].
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Excursus: Position weight matrices

A position weight matrix (PWM) or position specific scoring matrix (PSSM) is a widely ac-
cepted model for the representation of biological sequence profiles. It is generally based on
sequence alignments and depicts for each motif position the frequency or weight of each letter
(i.e. nucleotide or amino acid).

Pos A C G T
1 3 1 1 1
Sequence 1: CTAATAACC 2 0 0 0 5
Sequence 2: CTATAACTC D SO
Sequence 3: CTATAACTC |:> 5 4 0 0 1
Sequence 4: TTATAACTT 6 5 0 0 0
Sequence 5: GTATAACCC 7 1 4 0 O
8 0O 2 0 3
9 0O 4 0 1

Creation of a position weight matrix (PWM) on the basis of aligned nucleotide sequences.

The picture above shows the creation of a position weight matrix (PWM). On the left side, five
nucleotide sequences of length nine that belong to a certain sequence profile are aligned to each
other. On the right side, the corresponding PMW is shown that stores the frequency of each
nucleotide on each alignment position. A generally used way to present PWMs is a logoplot

representation.
PO A C G T
01 8 0 1 5 W
02 0 3 11 0 G
03 9 2 3 0 a
04 2 0 12 0 G
05 0 0 14 0 G
06 14 0 0 0 a % A
07 14 0 0 0 a
6 1 3 10 0 G C — .~ -_

TRANSFAC® binding site profile VS$PUI_Q6, as PWM in TRANSFAC format on the left side,
including the consensus binding site in the last column and in logoplot representation on the
right site.

2.3.1.2. ENCODE

The ENCODE (ENCyclopedia of DNA Elements) project was established by the US Na-
tional Human Genome Research Institute (NHGRI) in 2003 and was intended to analyze
the whole human genome by identifying all functional elements in the underlying DNA
regions. Thereby, computational and laboratory scientists work together in the application
and analysis of high-throughput experiments for the identification of new structural and
functional components encoded in genome sequences. These components include protein-
coding genes, non-protein coding genes, transcriptional regulatory elements and regulatory
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Table 2.1.: Latest public statistics of TRANSFAC® database in January 2019. (Source:
http://genexplain.com/wp-content/uploads/2019/01/TRANSFAC_statistics_2019.1.pdf)

Category TRANSFAC® entries
Factors 47,509
miRNAs1 279

DNA Sites 49,934
mRNA Sites 21,543
Factor-DNA Site Links 67,606
miRNA-mRNA Site Links 57,765
Genes 88,248
ChIP TFBS 83,469,984
Dnase Hypersensitivity Sites 15,376,241
Histone Modification Fragments | 1,071,162
DNA Methylation Fragments 51,926
Matrices 8,161
References 37,447

sequence elements monitoring chromosome structure and dynamics [31]. Data provided
by ENCODE are freely available (see Figure 2.11)) and can also be downloaded in a more
structured version by using the UCSC Genome Browser (see Section [2.3.1.3).

2.3.1.3. The UCSC Genome Browser

The UCSC Genome Browser (http://genome.ucsc.edu) is a public database hosted
by the University of California Santa Cruz for genomes and genome annotations of se-
lected species. These annotated data include for example: mRNA, expressed sequence tag
(EST) alignments, gene predictions, cross-species homologies and single nucleotide poly-
morphism [32]. The species range includes vertebrate and non-vertebrate species and some
selected model organisms (see Figure [2.12).

The Genome Browser consists of a collection of organism specific databases whereas the
tables of each data base are differentiated by positional tables and non-positional tables.
Positional tables contain information directly linked to genomic localisations such as gene
predictions while non-positional tables store information like ID mapping (e.g. which gene
ID is linked to which RefSeq ID). These data or a subset of these data can be accessed in
text-format using the UCSC Table Browser. A screenshot of the selection interface of the
UCSC Table Browser is given in Figure [2.13]


http://genexplain.com/wp-content/uploads/2019/01/TRANSFAC_statistics_2019.1.pdf
http://genome.ucsc.edu
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Figure 2.11.: Screenshot of the ENCODE search interface. (Source: https://www.
encodeproject.org/, 17.02.2019)

2.3.1.4. BioGRID

BioGRID (Biological General Repository for Interaction Datasets) has first been published
in 2003 (at that time as "The GRID") by Breitkreutz at al. [33] and is hosted by the Uni-
versity of Edinburgh (https://thebiogrid.org/). The open source database contains
information about protein and genetic interactions, chemical associations and post transla-
tional modifications, reported in literature, for the major model organism species, including
human. Each interaction is linked to the organism, the experimental method as well as the
reference to the original publications. An exemplary search in BioGRID for transcription
factor SP1 is shown in Figure 2.14]

Table 2.2.: BioGRID statistics of January 2019 for genetical and physical interactions.

Experiment Raw Interac- | Non- Unique Unique Pub-

Type tions Redundant Genes lications
Interactions

PHYSICAL 481,059 356,717 22,987 28,528

GENETIC 5,295 5,214 2,192 325

COMBINED | 486,354 361,468 23,291 28,654



https://www.encodeproject.org/
https://www.encodeproject.org/
https://thebiogrid.org/
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POPULAR SPECIES POPULAR SPECIES
|Eﬂtef spemes or common name |Enter SDECIES or common name

REPRESENTED SPECIES REPRESENTED SPECIES

D. majavensis
Chimp D, virilis

Bonobo D. grimshawi

Human
Gorilla

A. gambiae
Orangutan — 1

Gibbon A. mellifera

Green monkey C. elegans
Crab-eating macaque
Rhesus

C. brenneri -
C. briggsae -+
Baboon (anubis) C.japonica -
Baboon (hamadryas) €. remanei
Proboscis monkey P. pacificus
Golden snub-nosed monkey
Sea hare
Marmoset

squirrel monkey

Tarsier
5. cerevisiae

Mouse lemur
Bushbaby

Mouse
Rat
Chinese hamster Ehala virus

Kangaroo rat

MNaked mole-rat

Figure 2.12.: Screenshot of the organism selection menu of the UCSC Genome
Browser. The organisms are ordered according to their degree of relationship to human (left
side). Scrolling down, more organisms that are less closely related to human are available
(right side). (Source: https://genome.ucsc.edu/cgi-bin/hgGateway, 14.01.2019)

2.3.1.5. STRING

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) published in 2000
by Snebel et al. [34] is a database for protein-protein interactions based on experimen-
tal validation and computational predictions. These interactions are either direct physical
or indirect functional interactions and stem from i) genomic context predictions, ii) high-
throughput lab experiments, iii) (conserved) co-expression, vi) automated textmining and
v) previous knowledge in databases. In January 2019, the database covers in total 2031
organisms (1678 Bacteria, 238 Eukaryotes, 115 Archaea) and 9,643,763 proteins that share
1,380,838,440 interactions which are in turn grouped by confidence level. The database
is freely available at https://string-db.org/. Exemplarily, the STRING output for
protein SP1 is shown in Figure 2.13]


https://genome.ucsc.edu/cgi-bin/hgGateway
https://string-db.org/
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Table Browser

Use this program to retrieve the data associated with a track in text format, to calculate intersections between tracks, and to retrieve DNA sequence
this form, and the User's Guide for general information and sample queries. For more complex queries, you may want to use Galaxy or our public M
Send data to GenomeSpace for use with diverse computational tools. Refer to the Credits page for the list of contributors and usage restrictions ass
page.

clade: | Mammal ~ | genome: | Human v | assembly: | Dec. 2013 (GRCh38/hg38) v
group: | Genes and Gene Predictions v | track: GEMCODE v29 v add custom tracks track hubs
table: | knownGene ~ describe table schema

region: '® genome pﬂSiﬂl}n‘chM:IHDZBB?—IIZE?M? lookup define regions

identifiers (namesl/accessions): | paste list upload list

filter:| create
intersection: | create
correlation: | create

output format: | all fields from selected table ~ | Send output to Galaxy GREAT GenomeSpace
output file: (leave blank to keep output in browser)

file type returned: ‘® plain text gzip compressed

get output summaryistatistics

Figure 2.13.: Screenshot of the interface of the UCSC Table Browser. The user
can paste identifiers (e.g. gene names) in order to only access the records of inter-
est. (Source: https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=706768895_
h7nSGXKTqUHOtkwaSq3EULRRZ4Kt, 14.01.2019)

2.3.1.6. TRANSCompel

TRANSCompel® is a complement of the TRANSFAC® database published in 2002 by Kel-
Margoulis et al. [14] and is hosted by the geneXplain company (http://genexplain.
com/). TRANSCompel® contains experimentally verified data about eukaryotic compos-
ite regulatory elements (CE), closely linked transcription factor binding sites representing
small combinatorial regulatory units, with experimental evidence. The CEs are classi-
fied according to their two constituents (factorl/factor2) in i) inducible/inducible, ii) in-
ducible/constitutive, iii) tissue-restricted/ubiquitous, iv) inducible/tissue-restricted and v)
tissue-restricted/tissue-restricted. The latest statistics for the actual TRANSCompel® ver-
sion (January 2019) is shown in Table [2.3]

Table 2.3.: Statistics of TRANSCompel® database of January 2019.

Composite elements | Genes | Evidence codes | References
593 402 2,181 661



https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=706768895_h7nSGXKTqUHOtkwaSq3EULRRZ4Kt
https://genome.ucsc.edu/cgi-bin/hgTables?hgsid=706768895_h7nSGXKTqUHOtkwaSq3EULRRZ4Kt
http://genexplain.com/
http://genexplain.com/
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Figure 2.14.: Screenshot of the result page for SP1 protein interactions in human.
Listed are interaction partners of SP1 with the experimental methods and the number of ev-

idences/publications for the respective interaction. (Source: https://thebiogrid.org/,
14.01.2019)


https://thebiogrid.org/
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Figure 2.15.: Screenshot of STRING result page of SP1 protein in human. Depicted is
the interaction network of SP1 and its interaction partners in combination with the network

legend and the detailed list of interaction partners below. (Source: https://string-db.
org/, 14.01.2019)


https://string-db.org/
https://string-db.org/
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2.3.2. Bioinformatic tools
2.3.2.1. Match™

Match”™ [35] is a tool for the prediction of potential transcription factor binding sites in
regulatory DNA sequences on the basis of position weight matrices (PWMs). The algorithm
scans for each PWM the input sequences and determines the quality of potential PWM-
sequence matches with two scores: i) matrix similarity score (MSS) and ii) core similarity
score (CSS). While the MSS considers the entire PWM length L, the CSS only uses the core
of a PWM where the core of a PWM is defined as the five most conserved positions. Both
scores are in the range between 0.0 and 1.0 (where 1.0 indicates a perfect PWM-sequence
match) and are calculated as follows
Current — Min

85 = Max —Min ’ @3

where SS is short for MSS or CSS. The value Current is calculated as follows

L
Current = Zl(i)fi,bn (2.3.2)
i=1

where f;;, is the frequency of nucleotide b; at position i of the PWM for b; € {A,C,G,T}.
Further Min is defined as

L
Min =Y 1(i) f"", (2.3.3)
i=1

where f" is the frequency of the rarest nucleotide at position i of the PWM.
In the same way, Max is defined as:

L
Max =Y 1(i) f"™, (2.3.4)
i=1

where f/"*" is the frequency of the dominating nucleotide at position i of the PWM.
For the calculation of Current, Min and Max an information vector is defined in the follow-
ing way:

(i)=Y finn(4fis), (2.3.5)
bi€A,G,C,T
fori=1,2,...,L.
In order to evaluate the significance of a match, the algorithm uses pre-specified cut-off
values for each PWM of TRANSFAC database like: i) minimizing the number of false
positive matches (minF'P), ii) minimizing the number of false negative matches (minFN) and
ii1) minimizing the sum of false negative and false positive matches (minSUM). All matches
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that exceed the specified threshold are listed in the Match”™ result file as exemplarily shown

in Figure 2.16

1Search for sites by WeightMatrix library: data/matrix.dat

2Sequence file: sequences.fasta

3Site selection profile: prfs/vertebrate non_redundant minFP.prf Matrices of vertebrate non-redundant (VNR) with cut offs
4to minimize false positive rates.

5

6

7 Inspecting sequence ID  sequence 1

8

9 V$CREBP1_01 140 (+) 0.766 0.849 | ATACGtaa
10 V$CREBP1 01 1478 (+) 0.743 0.714 | TGACAtac
11 V$CREBP1 01 1755 (=) 0.766 0.723 ataCTTAA
12 V$CREBP1 01 20158 (t) 0.613 0.750 TTCCAtaa
13 V$CREBP1 01 2892 (-) 0.766 0.849 | ttaCCTAA
14 V$CREBP1_01 3081 (+) 0.597 0.740 | TTATTtaa
15 V$CREBP1 01 3081 (-) 0.613 0.750 | ttaTTTAA
16 V$CREBP1 01 4372 (-) 0.717 0.817 ttaTGTTA
17 V$CREBP1 01 4432 (-) 0.831 0.740 | tttAGTAA
18 V$CREBP1 01 4733 (-) 0.597 0.740 | ttaGGAAA
19 VS$DELTAEF1 01 1166 (-) 1.000 0.980 ccaAGGTGggc
20 V$DELTAEF1 01 1860 (+) 1.000 0.978 | atgCACCTaga
21 VS$DELTAEF1_01 3769 (+) 1.000 0.983 attCACCTgtg
22 V$CDPCR1_01 2 (-) 0.865 0.801 aataTTGATa

Figure 2.16.: Example of a MATCH’Y output. The first column gives the identifier of
the TRANSFAC PWM, followed by the first sequence position and strand where the match
has been detected. Column three gives the core similarity score (CSS) while the matrix
similarity score (MSS) is in column four. The last column contains the matching sequence.

2.3.2.2. uShuffle

The uShuffle [36] algorithm has been developed in 2008 by Jiang et al. and is a power-
ful tool for randomly shuffling biological sequences by preserving the exact k-mers counts
where k-mers are letter combinations of length k. Implementing the shuffling process, the
uShuffle algorithm uses the Euler algorithm in combination with Wilson’s algorithm for the
generation of the arborescence. The Euler algorithm is designed for the random genera-
tion of uniform shuffled sequences preserving the k-mers counts and is based on a graph
theoretical approach. For details see [36].
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Example: Shuffling of sequences by preserving the k-mers counts

The uShuffle algorithm shuffies sequences by preserving the k-let counts. Considering
a sequence of nucleotides of length 15. Setting k = 1, the algorithm permutates all nu-
cleotides in the sequence where the frequency of the single nucleotides is maintained.
Setting k = 2, the number of dinucleotides as well as the number of single nucleotides
is preserved. Setting k = 3, the frequency of trinucleotides and again the number of
single nucleotides is maintained in input and shuffled sequence.

C A CTGTTTTGGC A |A |A
k=1

ATGC|A|A[TGT|C A TT|GC|

ATTCAAT| GC |ATGT GC|

=3

ATTGCAA TGT [CATGC
Input (left) and output (right) sequences of the uShuffle algorithm for different k-mers.

Exemplarily, some k-mers are marked in color. Considering k = 1 the number of single
nucleotides is remaining, e.g. four “A” in both sequences. Setting k = 2, the number of
dinucleotides is preserved as indicated by two "GC"s in the input and shuffled sequence
and for k = 3 the number of single and trinucleotides is maintained e.g. one “TGT” in
both sequences.







3. Theoretical background

In this chapter I will focus on the concept of information theory. I will start with the Shan-
non Entropy and general information theoretic measures. Further, I will show mutual in-
formation measures for two and three random variables like pointwise mutual information,
multivariate mutual information, conditional mutual information as well as dual total corre-
lation.

3.1. Information theory

Information theory is the mathematical approach to quantify the amount of information of
an outcome, a system or a process. In 1940s, the first attempt of this quantification was
done in the context of channel capacity by Shannon, who discovered that random processes
have an irreducible complexity which he termed entropy [37]. Later, a multitude of different
measures and quantities arises for the determination of a certain information content consid-
ering different numbers of variables in different contexts (such as pairwise and multivariate
mutual information, conditional mutual information or dual total correlation).

This section gives a general overview about entropy, mutual information and related mea-
sures. The content as well as the notation of this chapter is based on [37].

3.1.1. Entropy

The entropy of a discrete random variable X of alphabet X = {x;,x2,...,n,} (Where |X| = n)
is a quantitative measure of it’s uncertainty depending on the probability mass function

plx=X) ={plx),p(x2), ... p(x) } where Y.y p(x;) = 1.

Definition 3.1 (Entropy) Let X be a discrete random variable of alphabet X with proba-
bility mass function p(x). The entropy H of X is defined by

H(X) =—Y p(x) logp(x). (3.1.1)

xeX

Since liIr(l)x logx = 0, the general convention is to set 0 log0 = 0. The base of the logarithm
x—

b can be used to scale the entropy. In case of b = 2, the unit of the entropy is one bit. In
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this thesis, I take the logarithm to base 2 and, thus, log stands for log,. H(X) = 0 if there
is no uncertainty in the occurrence of X, indicating that X always shows the same value or
the same letter x and p(x) = 1. The maximal entropy is reached if X is uniform distributed
over all letters of X .

Example: Calculation of entropy

Consider the following sequence of outcomes of random variable X:

attacgaa

The aim is to determine the entropy H(X) for X of alphabet X = {a,c,g,t}. First of
all, the marginal probabilities for each letter in X have to be determined:

The entropy is then calculated as follows:

H(X)  =-XL plx)log(p(x:)
= —(p(a)logy(p(a)) + p(c)logy(p(c)) + p(g)logy (p(g)) + p()logy (p(1))
= —(§ loga(§) + § loga(§) + § “logy () + § - logy(§))
— —(0.540.375+0.375+0.5)

=—-1.75
Finally, the entropy H(X) = 1.75 bits.

The formula of entropy can be extended for two random variables resulting in the joint en-
tropy. The joint entropy of two random variables X and Y of alphabet X and 2), respectively,
is defined in a similar way as the single entropy by using the joint probability distribution
p(x,y) and using X x Q) as a kind of extended alphabet.
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Definition 3.2 (Joint entropy) Let X and Y be two discrete random variables with joint
probability mass function p(x,y). The joint entropy is then defined as

==Y Y p(x,y) log p(x.y). (3.12)
xeXye?

The conditional entropy H(Y|X) describes the uncertainty of a discrete random variable ¥
given the knowledge of random variable X.

Definition 3.3 (Conditional Entropy) The conditional entropy of two discrete random
variables X and Y is given as

H(Y|X) ==Y Y p(x,y) log p(ylx). (3.1.3)
xeXye

The relation of the conditional entropy, joint entropy as well as the marginal entropies of
two random variables X and Y is expressed by the theorem of chain rule (for proof see [37])
as

H(X,Y) =H(X)+H((Y|X) (3.1.4)
Having a closer look to Figure [3.1] the following properties of entropy can be deduced:
e H(X)>0
e H(X,Y)=H(Y,X)
e H(X|Y) # H(Y|X) with equality if and only if, H(X) = H(Y)
e H(X,Y) <H(X)+H(Y)
o H(X,Y) > max{H(X),H(Y)} with equality if one is enclosed in the other.

3.1.2. Mutual Information

The mutual information of two random variables X and Y is a measure of the information
that one random variable contains about the other. It can also be described as the reduction
of uncertainty of a random variable due to the knowledge of the other.

Definition 3.4 (Mutual information) Let X and Y be two discrete random variables with
marginal probability mass functions p(x) and p(y), respectively. Considering the joint
distribution p(x,y) the mutual information 1(X,Y) of X and Y is defined as

p(x,y)
x;g);mpxy log ———— PP0Y) (3.1.5)
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The mutual information is strongly related to the entropies of the random variables (see
Figure [3.T)) and due to symmetry, it can be expressed as

I(X;Y) = H(X) — H(X|Y) (3.1.6)

and
I(X;Y) =H(Y)-H((Y|X) (3.1.7)

It can easily be seen that 0 < I(X;Y) < min{H(X),H(Y)}.

H(X,Y)

Figure 3.1.: Relation between entropy and mutual information.
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Example: Calculation of mutual information

Consider the following example:

The aim is to determine the mutual information I(X,Y’) for random variables X and Y
of alphabets X = {a,c} and Q) = {g,}, respectively. First of all, the marginal proba-
bilities as well as the pairwise probabilities have to be determined :

Marginal probabilities of X: Joint probabilities:
pla)=1¢ pla,g) =0 ple,g) =3
ple)=3 plat)=¢ ple,) =0

The mutual information I(X,Y) between X and Y is then calculated as follows:
]I(X’Y) 721 IZJ lp(-xlay])log2<(x)17)&)])
= p(a,g)logy L4E_ 4 p(a,1)logy, L1t p(c, g)logy L8 4 p(c,t)log, L)
2 palp(e) 2 Balp() 2 p(e)p(e) 2 5]
2/6
=0+3- 10g2(4/6/4/6) T4 10g2(2/6/2/6) +0

=0.389975 +0.5283208

=0.9182958
Finally, the mutual information I(X,Y) = 0.918.
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3.1.3. Multivariate mutual information

The classical information theoretical approaches can be extended for systems with more
than two random variables. Thereby, several different multivariate mutual information the-
oretic measures have been established that try to analyze the dependency and relationship of
a multitude of random variables. In this work, I will only focus on three random variables.
It has to be noted, that naming of the different measures is not consistent throughout the
literature. In order to avoid confusion, I listed for each measure the mathematical notation
and formula.

Given three discrete random variables X, ¥ and Z of alphabets X = {x1,x2,...,x,}, 9 =
{y1,¥2,--,ym} and 3 = {z1,22, ...,z } with length n, m and [, respectively.

H(XL‘

H(Y)

H(Z)

Figure 3.2.: Relation between entropy, mutual information and multivariate mutual
information for three random variables X,Y and Z.

The easiest way to calculate the interaction strength of three random variables X, Y and Z is
to use the pairwise mutual information I(X,S) of one variable X and the grouping S =Y,Z
of Y and Z (see Figure a)). This can also be expressed as JMI(X;Y,Z) and is termed
Jjoint mutual information in the following chapters. However, by grouping the variables in S
and considering S as one random variable, the impact of the individual variables cannot be
differentiated from those of the others [38]]. The properties are the same as for the pairwise
mutual information by considering two single random variables.
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Definition 3.5 (Joint mutual information) The mutual information JMI of a pair of ran-
dom variables X and Y with a third random variable Z is defined as

IMI(X,Y;Z) = H(X,Y) + H(Z) - H(X,Y,Z2) (3.1.8)

and can also be expressed by probability mass functions as

Mi(x,v;2) = ¥ ¥ ¥ plx,y,2)log L0l px,%:2)

(3.1.9)
xeX yeY zeZ p(x,y)p(2)

The conditional mutual information CMI(X;Y|Z) describes the reduction of uncertainty of
X having the knowledge of ¥ when Z is given. It is depicted in Figure [3.3]b).

Definition 3.6 (Conditional mutual information) The conditional mutual information
CMI of discrete random variables X and Y given Z is defined by the probability mass
functions as

p(x,yl2)
CMI(X;Y|Z) p(x,y|z)log ——=—— (3.1.10)
xg)'();’zezz p(xlz2)p(ylz)

and can also be expressed by the entropies as.

CMI(X;Y|Z) = H(X|Z) — H(X|Y,Z) (3.1.11)

An important property of conditional mutual information is:

e CMI(X;Y|Z) > 0 with equality if and only if X and Y are conditional independent
given Z.

The multivariate mutual information MIMI of three random variables X, Y and Z is defined
as the intersection of all pairwise mutual information as shown in Figure[3.3]c).

Definition 3.7 (Multivariate mutual information) The multivariate mutual information
MMI of three random variables X, Y and Z can be expressed by pairwise mutual infor-
mation and conditional mutual information as

MMI(X;Y;Z) I(X;Y) — CMI(X;Y|Z)
I(X;Z) — CMI(X;Z|Y) (3.1.12)
I(Y

(Y;Z) — CMI(Y;Z|X)
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Properties of multivariate mutual information

e Symmetry with regard to X, Y and Z
e Bounds:
—min{CMI(X;Y|Z),CMI(X;Z|Y),CMI(Z;Y|X)} <
MMI(X;Y;Z) < min{l(X;Y),1(Y;Z),[(X;Z)}
e If X, Y and Z form a Markov chain X — Y — Z then MMI(X;Y;Z) > 0. This follows
from the property of a Markov chain that CMI(X;Y|Z) <I(X,Y) (for proof see [37]])

In contrast to the pairwise mutual information, the multivariate mutual information can
become negative, for example, if X and Y are independent of each other (I(X,Y) = 0), but
become dependent by the knowledge of Z (I(X;Y|Z) > 0).

The dual total correlation has first been described in 1978 by Han [39] and considering three
random variables X,Y and Z it is the union of their pairwise mutual information (see Figure

B.31d)).

Definition 3.8 (Dual total correlation) The dual total correlation DTC of three random
variables X, Y and Z is defined as

DTC(X,Y,Z) = [(X;Z|Y) + I(¥; Z|X) + [(X; Y) (3.1.13)

Properties of dual total correlation:

e DTC(X,Y,Z) > 0 followed by definition
e DTC(X,Y,Z) <H(X,Y,Z)
e Symmetric with regard to X, Y and Z

3.1.4. Pointwise mutual information

The pointwise mutual information (PMI) is a measure for the association strength of two
outcomes X = x and Y = y where X and Y are two discrete random variables. In 1990
Church and Hanks [40] used it for the first time in the field of linguistics as psycholinguistic
association score. Since then, the PMI has become more and more popular in linguistics
for the determination of word collocations [41]] as well as document summarizing processes
[42]]. Word collocations are sequences of words (i.e. pairs of words) that co-occur more
often then expected by chance in a document.

An example for a word collocation is “major problem”. The words “major” and “problem”
can often be found together in a text or a conversation and are therefore in a statistical
dependence of each other. In contrast, the word combination “blue problem” is not common
and rather untypical. The probability to find this combination is at most equal or less than
expected by pure chance and thus, these two words do not form a collocation.
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a) JMI b) CMI
KOO HO H(Y)

H(Z) H(Z)

Figure 3.3.: Information theory measures for three random variables. a) joint mutual
information (JMI), b) conditional mutual information (CMI), ¢) multivariate mutual infor-
mation (MIMI) and d) dual total correlation (DTC).

Definition 3.9 (Pointwise mutual information) The pointwise mutual information PMI
of two discrete random variables x € X and y € Y is given by

PMI(x,y) = loglm (3.1.14)

where p(x,y) is the joint distribution of x and y and p(x) and p(y) are the marginal proba-
bilities, respectively.
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Properties of PMI:

o PMI(x,y) =0+ p(x,y) = p(x)p(y)
e PMI(x,y) > 0if x and y are dependant in case X =xand ¥ =y
e PMI(x,y) < 0if X and Y are independent in case X =xand Y =y

o —co < PMI(x,y) < min[—log(p(x)), —log(p(y))]

Having a closer look to Formula it becomes clear that PMI(x,y) is equal to zero if x
and y are independent of each other. PMI(x, y) is in a positive range, if they co-occur more
often than expected by pure chance and it is maximized if x and y are perfectly associated.
The differences between PMI and I are depicted in Table

Table 3.1.: Difference between pointwise mutual information PMI and mutual infor-
mation I

Mutual information Pointwise mutual information
I(X,Y) Lyex Lyer p(x,y) log 252 | PMI(x,y) = log 250
Refers to the average of all events Refers to a single event

Measure for the amount of information | Measure of association of how much
one random variable tells about another | one outcome tells about another out-
random variable come

A specificity of PMI is it’s susceptibility to low number counts which is also illustrated
in the Example below but can also be seen easily in the formula: if two outcomes x and y
occur only once in the system and this time, they occur together than p(x) = p(y) = p(x,y)
following that PMI(x,y) = —log(p(x)) indicating a perfect association [41]. A closer look
to Figure indicates that the function of —log(p(x)) is decreasing by increasing p(x).
Thus, by considering two perfectly associated outcomes, the one with less occurrences has
a higher PMI value.
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Maximized PMI

—log(p(x))

0.0 0.2 0.4 0.6 0.8 1.0

p(x)

Figure 3.4.: Maximized PMI in dependence of occurrence probability p(x) of x. A low
occurrence probability results in a high PM-value while outcomes with a high occurrence
probability in the system gets comparative small PMI-values.
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Example: Calculation of pointwise mutual information

Considering the following example:

aa ab bc ab ba bb ba

The aim is to determine the pointwise mutual information PMI for each pair of letters. First
of all, the marginal probabilities of each letter as well as the pairwise probabilities of all letter
pairs have to be determined :

Marginal probabilities: Joint probabilities:
_ 6 =1 b.o)=1L
pla) =5 pla,a) =3 p(b;c) =3
_ 1 _ 4 —
p(b) = 14 pla,b) = 7 plc,c)=0
ple) =1 p(b,b) =7

The pointwise mutual information of ab is then calculated as follows:

b
PMI(a,b) = log, AL, = log, o7+ = log, 2.67 = 1.415

In the same way the PMI for all other letter pairs is calculated leading to the following
results:

PMl(a,a) = —0.36  PMI(b,b) = —0.807

PMI(b,c) =2 PMl(c,c) =0

In consideration of entropy calculation, I define log, = 0. This example also shows the overesti-
mation of low number counts by PMI since ¢ occurs only one time and PMI(b, ¢) > PMlI(a,b),
although a and b are much more co-occurring.




4. Information theoretical approaches for the
analysis of cooperating TFs

In this chapter I will present two information theoretic approaches developed in this thesis
for the identification of cooperating TFs based on their binding site distributions. In the first
part, I present a method based on pointwise mutual information (PMI) for the identifica-
tion of co-occurring TFBSs in a regulatory sequence (intra- sequence TFBS collaborations).
In the second part of the chapter, I use different multivariate information theoretical mea-
sures for the identification of associated TFBSs in promoters and their associated enhancer
regions (inter-sequence TFBS cooperations).

Terminology For the sake of simplicity and to avoid misunderstandings, I adopt the ter-
minology of our papers [43] and [44]]. Thereby, a match of a position weight matrix (PWM)
with a segment of genomic DNA is termed (potential) transcription factor binding site
(TFBS). TFBSs are represented by names of their corresponding PWM. A TFBS pair in the
context of intra-sequence cooperating TFs refers to co-occurring TFBSs while a TFBS pair
in the context of inter sequence cooperating TFs refers to associated TFBS distributions. In
both cases, I can not make any statement about the kind of interaction (cooperativity, syn-
ergistic or antagonistic interaction etc.) of the underlying TFs. The term cooperation refers
to any kind of functional cooperation and/or physical interactions between the constituents
of the predicted TFBS pairs.

4.1. ldentification of intra-regional cooperating TFs using
pointwise mutual information

In higher organisms, the interplay between transcription factors is much more important
than the single factor itself. Cooperating TFs tend to bind close to each other on DNA
in order to fulfill their regulatory functions. Therefore, the TFBS distribution on DNA
provides information about the preferred cooperation partners of single factors. Following
this, I developed a method and present it in the following chapter that identifies pairs of
TFBSs that significantly co-occur in a set of given sequences. The method is twofold in a
way that I first present the general method and afterwards, I extend it in order to identify
only sequence set specific TF cooperations. This section is mainly based on our recently
published papers [43] 44] (see Appendix [A.Tand Appendix[A.2).
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4.1.1. Cooperating TFs

In this section, I introduce the idea for using pointwise mutual information for the identifi-
cation of cooperating transcription factors based on the co-occurrence in a set of sequences.

Pre-processing work In the first step, I obtain all promoter regions for the set of RefSeq
genes under study based on their annotated transcription start site (TSS) using UCSC Table
Browser [45]. Thereby, I use the hgl9 release of the human genome and consider only
chromosome annotations of chromosome chrl-chr22, chrX and chrY. Due to the fact that
alternative promoter regions for the same gene tend to overlap resulting from the underlying
RefSeq annotations, I filter redundant promoters based on their TSS by randomly picking
one of the redundant promoter sequences and, consequently, regard only sequences in the
analysis which have no overlap.

Afterwards, I predict all potential transcription factor binding sites (TFBSs) in the obtained
sequences and their reverse complement using the Match”™ program by setting the pro-
file parameters as specified by [4]]. I further use the PWM library proposed by [4] of
TRANSFAC® release 2014.1.

Workflow The algorithm for the determination of co-occurring TFBSs comprises six
phases that are explained in detail in the following.

Phase 1: Construction and filtering of TFBS-sequence matrix Based on the number
of predicted TFBSs in each sequence under study a TFBS-sequence matrix M is generated
where rows correspond to the sequence IDs and columns to the names of PWMs. Thereby,
an entry in M is defined as follows: Let TFBS ¢; be a TFBS predicted by PWM j (j €
1,...,n, where m is the number of PWMs in the library) and s; (i € 1,...,m, where n is the
number of sequences under study) be a promoter sequence, an entry f;; in M corresponds
to the frequency of ¢; in s; (see Figure @ It turned out that some TFBSs are highly over-
represented, while some other TFBSs occur rarely in a minority of the sequences. In order
to reduce the bias of highly represented TFBSs or noisy effects arising from insufficient data
the corresponding columns are filtered by removing all columns that i) contain more zero
entries that average and ii) having a column sum < 3 x ¢, where o is the standard deviation
of all column sums in M.

Phase 2: Identification of important TFBSs in each sequence Following the idea
of linguistics for document summarizing processes, I characterize the important TFBSs for
each sequence based on the filtered M by calculating the pointwise mutual information
(PMI;) between a sequence s; and a TFBS ¢; as

PMI(s;, ;) = log, 4.1.1)
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Figure 4.1.: Construction of TFBS-sequence matrix. a) In a first step, for all sequences
under study, all potential transcription factor binding sites are predicted using Match™
program [35]. b) In the next step, the TFBS-sequence matrix is generated where rows
correspond to the promoter sequences and columns to PWMs used for TFBS prediction.
An entry in the matrix refers to the frequency of predicted TFBSs in the corresponding
sequence. For example, for PWM, one corresponding TFBS in sequence s; and two TFBSs
in s, are identified.

where p(s;,t;) is the joint probability for TFBS #; occurring in sequence s; with respect to
the entire sequence set. It is defined as follows:

fij
i) = =t 4.1.2
pls J) i:le:lfij ( )

p(s;) and p(t;) are the marginal probabilities of s; and ¢;, respectively. They are defined as:

=1 fij

)= o 4.13
pls) i=1 Zj:l fij ( .
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and ”
Zizl fij

L 4.14
fa Z?:] fij ( )

plt)) =

Finally, a TFBS ¢ is considered to be important for sequence s; if PMI(s;,7;) > 0 indicating
that 7; occurs more often than expected by pure chance in s;. In the following analysis steps,
only those TFBSs are considered that have been identified as important by this criterion.

Phase 3: Filter to avoid overlaps The Match’? algorithm predicts all potential TFBSs
based on a PWM library, which can result in multiple predictions for the same sequence
region and, thus, overlapping TFBSs. These overlaps can be explained by i) the similarity
of some PWMs, ii) the palindromicity of TFBSs (the referse complement is the same as the
original sequence) and iii) some PWMs are larger than the real binding sites of TFs. The
overlap of two TFBSs can be partially or a TFBS can totally be included in another binding
site (see Figure 4.2) . In analogy to [46], I define two TFBSs to be overlapping if their
overlapping region exceeds a length of 4 bp.

Partially
Partially overlapping Totally )
overlapping TFBSs of the overlapping
TFBSs same type TFBSs

Figure 4.2.: Different scenarios for overlapping TFBSs. On the left side, the binding sites
of the blue and the gray transcription factors share a few overlapping nucleotides, while the
two gray TFBSs have a large overlapping region. On the right, the binding site of the green
TF is totally included in the binding site of the yellow one, indicating that the binding of the
two TFs is mutually exclusive.

The overlap of TFBSs of the same type can result in their over-representation in the follow-
ing analysis steps. Thus, overlapping TFBSs of the same type are filtered in a way that the
TFBS survives that has a closer distance to transcription start site (T'SS), since the functional
important TFBSs are closer to TSS [47]]. This filtering process is depicted in Figure [d.3]
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Figure 4.3.: Filter to avoid overlaps. Overlapping TFBSs of the same type (marked by
dashed circles) are filtered in a way that the TFBS survives that has a closer distance to the
transcription start site (T'SS) in order to avoid the overestimation of a certain TFBS.

Phase 4: Construction of TFBS pairs The distance d;, ;, between two TFBSs #4 and 73
is defined as the distance of their centers C;, and Cy:

dIAJB = ’C[A _CIB’ (4.1.5)

Thereby, the center C;, of a TFBS #4 is defined as L%J where length, indicates the
length of 4 (see Figure [.4).

Two TFBSs form a pair if dynin < dy, 1, < dpax, Wwhere dyy,i, and dyy,q, are pre-defined minimal
and maximal distance thresholds, thereby a slight overlap of the TFBSs of at most 4 bps
is allowed as suggested in [46]. In this thesis, I set d,,; = 5 bp which is about half of the
length of an average TFBS and tested several different d,,,, constraints. In the analysis,
I have to deal with homotypic clusters, an accumulation of TFBSs of the same type in a
certain DNA region that are not necessarily overlapping. This accumulation of a certain
TFBS results in a multitude of false positive pairs containing this TFBS. In order to avoid
such over-estimations, a TFBS instance can only participate in one pairing of a specified
TFBS pair (see the example above for details).
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Example: Homotypic cluster problem

The green TFBSS tgreen form a homotypic cluster and the gray TFBS tgr,y is included in the
cluster. By simply counting all possible pairs of tgreen-tgray result in four pair instances.

A homotypic cluster is the accumulation of TFBSs of the same type in a certain DNA region.
In the example above, the green TFBSs #;c., build an homotypic cluster and the gray TFBS
Igrqy 18 incorporated in this cluster which leads to four pair instances of Zgreen-tgray- However,
the number of these pairings is an overestimation of the considered pair, since: i) the green
binding sites are not all occupied by TFs at the same time and ii) the gray TF can not interact
with all green TFs at the same time. In order to avoid this overestimation of TFBS pairs, the
pair instances were identified in a way that I consider a certain pair of TFBSs #4 and 73 and
scan the DNA in 5’- 3’ direction to detect instances of this pair. After a certain TFBS #4 or 1
is incorporated in a pair instance, it is blocked for additional pairings and cannot participate
in another pair instance. Applying this strategy on the example above for the pair tgreen-teray
results in one pair instance instead of four.

Considered pair: tgreen-tgray

Considered pair: tgreen-tgreen

Scanning the sequence from left to right for in-
stances of the pair Zgreen-tgray » the first green
TFBS is paired to the gray one (depicted by red
lines). Afterwards, the gray TFBS is blocked
for additional pairings resulting in just one pair
instance of Zgreen-tgray instead of four (depicted
by gray lines).

Scanning the sequence from left to right for in-
stances of the pair fgreen-tgreen, the first and the
second green TFBSs are paired and afterwards
blocked for additional pairs. However, the third
and the fourth green TFBSs are not blocked yet
and can form an additional pair which results in
two pair instances of fgreen-tgreen-

Phase 5: Weighted cumulative pointwise mutual information For the identification

of potentially collaborating TF pairs, the PMI between all TFBSs #4 and ¢p is calculated as
follows

p(tAvtB>

PMI(14:15) = log, —A2'B)_
(tai15) 2 p(ta)p(t)

(4.1.6)
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Figure 4.4.: TFBS pair construction. The TFBS pairs were identified based on the dis-
tance of their centers and are marked by red lines.

where p(t4;tp) is the joint probability for TFBSs #4 and 75 and p(t4) and p(zg) are the
marginal probabilities, respectively. The PMI in general is rather susceptible to low number
counts [41]. In order to overcome this property to some extent, the PMI(z4;75) is scaled by
the joint probability p(t4,75) and the weight wy of the corresponding sequence s, resulting
in the weighted pointwise mutual information IP’I\\/JUI‘;, (tastp).

PMH;([A;IB) :Ws'p(l‘A,tB) -PMH(IA;Z‘B) “4.1.7)

The weight wy of a sequence s is defined as all TFBS pairs Ny in s divided by the total
number of TFBS pairs in the sequence set S.

N
Wy = - (4.1.8)
* ZS,‘ESNYI

Finally, in order to determine the important pairs in S, the IP’M]I;7 (t4;1p) for each TFBS pair
ta and tg is summed up over all sequences resulting in the cumulative pointwise mutual
information PMI . (t4;1p).

PMI . (ta:8) = Y, PMI, (43 13) (4.1.9)

seS

Phase 6: Background noise reduction of TFBSs using average product correction
To reduce the effect of false positive TFBS pairs I apply the average product correction
(APC) procedure [48] on the IPM]IPC(tA;tB) values. I estimate for each TFBS pair ¢4 and 75
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the background noise APC(t4,15) as follows:

PMI . (ta;51y) - PMI, (255 )

APC(IA,Z‘B) = PMI
pec

, (4.1.10)

where PMI pc(tA;ﬂ) is the average PMI,. value of 74 with all other binding sites and PMI,.
is the overall mean of all calculated PMI,. values. PMI,,. (ta3ty) is calculated as:

_ 1 &
PMI,.(t43) = — Y PMILc (4:1x), (4.1.11)
x=1

where x = 1,...,n and x # a. This estimated background noise APC(t4,15) is then subtracted

from the original PMI,.(t4,5)-value, resulting in the final IP’M]I?,f C(tas1)-value.
PMIAC (ta3 1) = PMLc (ta:t5) — APC(ta, 1) (4.1.12)

Based on the final ]P’M]Iﬁf C(t4:1y)-values, the z-score for each TFBS pair t4 and fp is calcu-
lated and a pair is considered as significant, if it’s z-score(ta,15) > 3.
The z-score is calculated as:

PMIAPC (2,:1,) — PMIAPC
z-score(ta,tg) = pe_(taits) P (4.1.13)
GPMHAPC

pc

where IPMH?ICD C is the overall mean of ]P’M]I‘;f C_values and Oppr/Fe is the corresponding
standard deviation.

4.1.2. Sequence-set specific cooperating TFs

In the previous section, I presented a method for the identification of cooperating TFs based
on the co-occurrence of their TFBSs using pointwise mutual information (PMI). There, I
applied the average product corrections (APC) [48]] in order to eliminate the background co-
occurrences resulting from false putative TFBS predictions with respect to the entire set of
sequences under study. Although the APC appears to be rather successful for its purpose it
cannot handle background co-occurrences that stem from common regulatory programs be-
tween cell types and common environmental components like GC-content or general (oligo-
) nucleotide composition. In order to address this point, I extended the method and estimated
the level of background co-occurrences for each TFBS pair by creating a background se-
quence set that preserves the (oligo-) nucleotide composition of the sequences under study.
Thereby, TF cooperations that are sensitive regarding the distance of their TFBSs as well
as the specific nucleotide structure have small background values while ubiquitously oc-
curring TF pairs will have larger values, since they are less susceptible to changes in their
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binding site distribution. Finally, I will remove the estimated background co-occurrences
and thereby separate sequence set specific pairs from common (general important) ones.

Separation of sequence set specific TF cooperations from the common ones The
overall workflow of the extension approach is depicted in Figure 4.5] In the first step,
a sufficiently large number of background sequence sets (e.g. 1000) is created in order
to determine the background association of TFBS pairs, where the background sequence
sets are constructed in a way that the general nucleotide composition of the sequences and
the general assembly of the sequence set (number of sequences and sequence length) is
maintained. In this respect, I create a background set by shuffling each sequence of the set
under study using the uShuffle algorithm [36] and preserving the number of tri-nucleotides
and,thus, the core of TFBSs by setting £ = 3.

Afterwards, all potential TFBSs in the background sequences are predicted using the
Match” algorithm and conduct phase one to six of the original approach (see Section

for details):

e Phase 1: Construction and filtering of TFBS-sequence matrix

o Phase 2: Identification of important TFBSs in each sequence

e Phase 3: Filter to avoid overlaps

e Phase 4: Construction of TFBS pairs

e Phase 5: Weighted cumulative pointwise mutual information

e Phase 6: Background noise reduction of TFBSs using average product correction

This results in a PMI,,.(t4;15)-value for each TFBS pair #4 and tp for each background
sequence set. In the next step, the average AV G(PMI,(t4;15)) values for two TFBSs ¢, and
tp are calculated over all background sequence sets:

~

AVG(PMI(t4:1,)) Z MIS (tas 1) (4.1.14)

where / is the number of background sequence sets. After that the AV G(PMI,(t,;1)) value
of a TFBS pair ¢, and ¢, is subtractec_l from the original PMI,,.(¢,;1,) value of the sequence
set under study, resulting in PMI*P¢“/i (1,:1,).

PMIP* (1,:1,) = PMIAC (14315) — [(1+ 0t) - AV G(PML(t3 1) )] (4.1.15)

The scaling parameter o € [—1,+1] is preassigned and used to enlarge or reduce the influ-
ence of the subtracted background level. Thereby, an a value of -1 results in the orig-
inal predictions of the original approach while setting & = 1 is the subtraction of the
AV G(PMI,(tq;1p))-values from the original ones. Setting & > 0 increases the effect of the
subtracted background level and leads to a more strict selection process of specific TFBS
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pairs. However, in order to avoid the overestimation of the calculated background, the de-
termination of an upper bound for « is essential. By carefully analyzing the influence of «,
I conclude to set &¢ = 1 as an appropriate upper bound.

Finally, a TFBS pair ¢, and ¢, is defined to be specific for a set of sequences if it is signif-
icant according to the original approach (z-score > 3) and if PMI*P/%(z,:1,) > 0. Sig-
nificant pairs that have a PMI*P¢“/i(z,:1,) < 0 are considered as general important TFBS
co-occurrences.
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Figure 4.5.: Workflow of the extension approach for the determination of sequence set
specific TFBS pairs. In the first step, a sufficiently large number of background sets is
created by shuffling the input set. Afterwards, the original method for the determination
of significant co-occurring TFBSs is applied and the PMI between all TFBSs is calculated
for input and background sets. In the next step, the average PMI for the TFBS pairs of
the background sets are determined and afterwards, the background is subtracted from the
original PMI-values of the input set. Finally, all significant TFBS pairs that have a positive
PMI-difference are defined to be sequence set specific.
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4.2. Identification of inter-regional associated TFs using
multivariate mutual information

Since the cooperation of transcription factors plays a fundamental role in the establishment
of enhancer-promoter interactions (PEIs), the identification of the pairwise association of
factors between enhancer and promoter regions is essential for the understanding of gene
regulation. To this aim, I utilize the property that the underlying binding site distributions
of these factor pairs show a certain degree of association to each other, which can in turn
be used for the identification of these associated transcription factors. In this section, I
present a method for the identification of associated transcription factors between enhancer
and their related promoter regions using an extended form of pairwise mutual information
based on predicted transcription factor binding sites (TFBSs) in the sequences of known
PEIs (e.g. ChIA-PET data) (see Figure @

The overall workflow comprises five phases that are explained in detail below. In short:
first of all a background set is generated by shuffling the input sequences and all potential
TFBSs are predicted in input and background sequences using Match””-algorithm. Based
on these predictions, a TFBS-sequence count matrix is generated for enhancer and promoter
sequences, respectively, where the count values are normalized and assigned to intervals in
the next step. Based on these intervals, different mutual information quantities are used in
order to determine associated TFBS pairs between enhancer and promoter regions.

Phase 1: Creation of background sequences Given a set of known PEIs, each sequence
(of promoter and enhancer region) is shuffled using the uShuffle [36] algorithm and set
k = 3. Thereby, the number of tri-nucleotides and, thus, the core of TFBSs as well as
the sequence length is maintained. The resulting pairs of shuffled enhancer and promoter
sequences are used as background pairings in the following steps. In order to differentiate
between input and background sequences, I further define a vector V/®¢! that contains the
origin of the underlying PEI (/ for an input PEI and B for background sequences).

Phase 2: Determination of TFBS-sequence count matrices In order to identify poten-
tial transcription factor binding sites (TFBSs) in the sequences under study as well as in the
shuffled sequences, the Match”™ algorithm [35]] is applied using the minimizing the number
of false positive predictions (minFP) profile.

In analogy to Chapter I created TFBS-sequence matrices M and M for enhancer
and promoter sequences, respectively. In both matrices the columns correspond to the posi-
tion weight matrices (PWMs) and rows to sequences of enhancer and promoter, respectively.
An entry f;; in M is the frequency of TFBS ¢; predicted by PWM j (j € 1,...,m, where m
is the number of PWMs under study) in sequence s; (i € 1,...,n, where n is the number of
sequences under study). The rows of the matrices corresponding to enhancer and promoter
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Figure 4.6.: Identification of associated TFs between enhancer and promoter se-
quences using mutual informaiton I. On the basis of a set of paired enhancer promoter
sequences (left), all potential TFBSs were predicted and the mutual information between
a certain pair of TFBSs between enhancer and promoter region (i.e. tgf,f’en and 1777") is
calculated (right) based on the frequency of occurrences in the underlying sequences.

sequences are ordered as follows: row i of both, Me and MProm, corresponds to the index
of the corresponding PEI i (see Figure 4.7)).

Phase 3: Normalization and interval building The overall aim is to calculate informa-
tion theoretic quantities between two TFBS distributions and consequently, probability mass
distributions are required based on an alphabet that reflects the count values for the TFBSs
in the sequences. However, it is not possible to use the count values itself as letters in the
alphabet, since there are too many count values and the separation between count values
that differ by one is not appropriate. Therefore, I decided to assign each count value to an
interval and use the interval identifiers z* (fork=1,...,g+1andz€ 3,3 ={—-1,1,2,....q})
as letters in the alphabet. In the first step of this process, I construct g + 1 intervals where
g intervals are in [0,1] as ((0, é], (é, %], vens (q%ql, 1]) and one is used for zero count values.
In the next step, the count values f;; are normalized by min-max normalization in order to
scale them in the range between zero. As generally known, the min-max normalization is
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Figure 4.7.: Determination of TFBS-sequence count matrices. All potential TFBSs were
predicted in each sequence (input sequences E1-3 and P1-3 as well as shuffled sequences
E1-3,;, and P1-3;,) using Match”M-algorithm. Afterwards, for enhancer and promoter se-
quences, TFBS-sequence count matrices M¢" and MP™" are created, respectively, where
a matrix entry refers to the frequency of predicted binding sites in the corresponding se-
quence. The vector V* is important to differentiate between input and background se-
quences.

defined as

norm __ ﬁ] _fmin

norm _ : 4.2.1
Y fmax_fmin ( )
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where f,i, and f,,, are the minimum and maximal values of M, respectively.
Finally, I assign each normalized count value f7°"" into the appropriate interval z;;, follow-
ing:

norm

o q)if fIO™ >0

_1’

Zij = ) 4.2.2)
otherwise,

To this end, I define the interval-sequence matrices M¢"* and M'™" where an entry z;;

in M, is the interval identifier of which the count value ﬂ}”’ " of TFBS t; in sequence

s; is assigned to. The transformation process from TFBS-sequence matrix M to interval-

sequence matrix My, is depicted in Figure [4.8]

Example: Influence of normalization strategies on count value distribution

Count Values

Normalized values (column)

V$CDPCR1_01 V$HDX_01
o
n o
N n
—
> >
15 o [5) o
o o
1 o o
T o L o
n
o o
r T T T 1 r T T T 1
0 10 20 30 40 0 10 20 30 40
Count Values

Distribution of count values (frequency of TFBSs per sequence) for VSCDPCRI_01 and
V8HDX_01.

In this example, I show the influence of the global and column-wise min-max normalization
strategies on the count value distributions of TFBSs V$CDPCR1_01 and V$HDX_01. Re-
garding the original count values, both distributions resemble a poissan distribution that differ
in mean and variance. Normalizing the count values of each TFBS on its own (column wise)
results for both TFBSs in poisson distributions in the range between 0 and 1 that have a similar
mean and variance. Consequently, the information of variance and value range of the original
count value distributions disappears and a differentiation between the two distributions is hard.

V$CDPCR1_01 V$HDX_01
o
g 3
-
> > o
g 3 s S
= =
o L o
° n” ” oo .- °
I T T T T 1 I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Normalized values (column)
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Distribution of column wise normalized count values for VSCDPCRI_01 and VSHDX_01.

In the global min-max normalization strategy, the global minimum and maximum value of the
entire count matrix is used resulting in normalized values in the range between 0 and 1 where
the proportions between mean and variance inside a distribution as well as between different
distributions are maintained.

V$CDPCR1_01 V$HDX_01

150 250
Frequency
100 150

Frequency
50

50

I T T T T 1 I T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Normalized values (global) Normalized values (global)

Distribution of global normalized count values for VSCDPCRI1_01 and VSHDX_01.

To this end, the global normalization strategy enables a differentiation of the normalized count
value distributions of different TFBSs regarding the spread of the data as well as their general
count value proportions in comparison to other TFBSs.

In order to normalize the count values by maintaining the information of value range and disper-
sion from the mean, I decided to use the global min-max normalization strategy in the analysis.

Example: Influence of interval size on normalized count value distribution

V$CDPCR1_01 V$HDX_01
z Iy
g 3 § 8
: © |—| H s -
£ _Jom = g
0 2 4 6 8 10 12 14 16 18 13 16 19 22 25 28 31 34 37 40 43

Count values Count values

Distribution of count values (freq. of TFBSs/sequence) for VSCDPCRI1_01 and V$HDX_01.

In the interval building process, the range between 0 and 1 is divided into g intervals of the
same size where the normalized values f;;”"" are assigned into. The interval identifiers 7 (for
k=1,...,q+ 1) form then the letters of the alphabet 3 = {—1,1,2,...,q}. Choosing an alphabet
size of g = 10, the range between 0 and 1 is divided into ten intervals of the same size (e.g.
0.1). By increasing the number of intervals, the size of the intervals itself is decreasing. A
small number of intervals implicates an accumulation of normalized values in a few intervals.
In example, by choosing g = 10, for VSCDPCR1_01 four intervals are occupied by normalized
values while the remaining six intervals are empty. Further, the majority of values is assigned
to two intervals, while there are only a few values assigned to the two other intervals. Con-
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sequently, by grouping the values using only a few intervals, the differentiation between the
individual f7""" values as well as their frequency distribution gets blurred. By increasing the
number of intervals, the differentiation between the values becomes more clear. However, a
huge number of intervals leads to an overestimation of small differences in the count values.
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Normalized values (10 intervals)
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Normalized values (30 intervals)
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Frequency
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0 200
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V$HDX_01
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0.0 0.2 0.4 0.6 0.8 1.0
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i | AP‘_I’-H-‘_HII-H_‘_’I_EV |
0.0 0.2 0.4 0.6 0.8 1.0

Normalized values (30 intervals)

Distribution of normalized count values assigned to 10, 20 and 30 intervals (depicted as bars)
that are equally distributed in the range between 0 and 1 for VSCDPCRI1_01 and VSHDX_01.

The overall aim of the normalization and interval building process was to drop down the alpha-
bet size of each TFBS to a more discrete level and at the same time to maintain the differen-
tiation between count value distributions. The binding site VSCDPCR1_01 takes 18 different
count values, for binding site VSHDX_01 there are 33 different count values. After normaliz-
ing the values and assigning each of them to ten intervals equally distributed in [0, 1] the values
of VSCDPCR1_01 take four intervals, while those of VEHDX_01 are assigned to 7 intervals.
Increasing the number of intervals to 20 and 30, the values of VSCDPCR1_01 took 8 and 11
intervals, respectively, while those of VSHDX_01 took 14 and 21 intervals. Thus, choosing an
interval size of 30 leads to a reduction of the alphabet size of about 2/3 of the original size.
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s; is assigned to.

Figure 4.8.: Conversion of TFBS-sequence matrix to interval-sequence matrix. The
TFBS-sequence matrix M captures the count values f;j of a TFBS ¢; in a sequence s;.
In Phase 3, each count value is normalized and afterwards assigned into the appropriate
interval resulting in an interval-sequence matrix M, that captures for each TFBS ¢; in
sequence s; the interval identifier z;; of the assigned interval.

Phase 4: Construction of interval matrix and probability mass functions The empiri-
cal distribution Pr; (zk) of interval z* based on M, for a TFBS ¢ ; 1s defined as

k
Py () = #) (4.2.3)

n

where #(zX) is the frequency of interval z* observed for TFBS ¢ ; and n is the number of

sequences. The joint probability of intervals z* and z/ (for k,l = 1,...,q + 1) of TFBSs t]?l"h
and 17", respectively, is defined to be:

k Ay =220t/ 4.2.4

Prenn grron (2°,27) = : (4.2.4)

where #(z*,7') is the frequency of joint occurrences of interval z¥ and 7z’ in the paired en-
hancer and promoter sequences.

Additionally, the probabilities of the label vector V/“?¢! are p(I) = 0.5 for [ € L and L =
{B.1}.

Phase 5: Calculation of mutual information In order to identify associated TFs I calcu-
late the mutual information between their underlying binding site distributions based on the

interval matrices Mfg’th and MP'"
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The pairwise mutual information T(s5",77""") between a TFBSs 1" predicted in an en-

hancer and a TFBS ¢/ in a promoter sequence is defined as

k 1
Dt t; (Z ,Z)
]I(tjglrlh;tzrom) _ Z Zptflsz (Zk,ZZ)IOg i1ti

— 4.2.5)
k€313 Drj, (Zk)Pt,-z (2)

where the joint probability p;; ¢, (zF,7') of two intervals z¥ and 7' and the marginal probabil-
ities py;, (z*) and P, (z') are computed like explained above. In the analysis, I have to deal
with three random variables, since the differentiation between input and background set is
necessary. Thus, I incorporate the label of the origin of the paired sequences (stored in V'
as a third variable).

As presented in Chapter 3] there are several different multivariate mutual information quan-
tities that deal with three random variables and I consider all of them in the analysis in order
to find the best quantity for the approach. For two TFBSs t]e-l"h and 77" in enhancer and
promoter sequences, respectively and with regard of the label L that contains the origin of
the underlying sequences, the quantities are defined as follows:

e Multivariate mutual information

- MMI(r5"; 25", L)

e Joint mutual information
/1 prom.
- JMH(I}?? N ;L)
e Conditional mutual information

— CMI(r57;e7 " L)

e Dual total correlation

_ D’JI‘C(tj;’h,tj.’Z’"m,L)

Afterwards, I normalize the resulting values using the logarithm of the maximal alphabet
site (log,(max|X|,|2)|) in order to provide a better comparison between the results and to
eliminate side effects like alphabet size.
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Normalization strategies of mutual information quantities

Case 1 Case 2 Case 3
et " | L s " | L i ™" | L
1 2 I 1 0 | 1 4 I
1 2 I 1 0 | 1 4 I
1 2 I 2 1 I 1 4 I
1 2 I 2 1 | 2 4 I
3 0 B 3 2 B 3 5 B
3 0 B 3 2 B 3 1 B
3 0 B 4 3 B 3 1 B
3 0 B 4 3 B 3 1 B

Example for the alphabet size effect. Case I and Case 2 show a perfect correlation, although
in Case 2 there are more different entities than in Case 1. Case 3 does not show such a perfect
association between the columns at all.

All mutual information quantities depend to some extend on the alphabet size and the entropy
of the distributions under study, here, the columns of a matrix. If two columns show a per-
fect association (as shown in Case 1 and Case 2) the column pair with larger alphabet size has
the larger mutual information. This, in turn, can lead to wrong interpretations of the results
and can be avoided by normalizing the mutual information values. There are several possi-
bilities to normalize mutual information that are all related to upper thresholds of the mea-
sures. The most common normalization strategies are: i) the maximal alphabet normalization
(logy (max{|X|,|2}), ii) the joint entropy (H(¢?" 7" L)) and iii) the sum of the marginal

J1otj2
entropies (HI(¢§7") + H(r},"") + H(L)).
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Quantity Normalization strategy | Case1 | Case2 | Case 3
- 0 1 0
H(tfgllzh.tpzmm) logz(max{\.’ﬂ, |Q\j‘}) 0 0.5 0
7 H(zj{”l,t}’{”m) 0 0.5 0
H(r6") +H (™) 0 0.2 0
- 1 1 1
rom log, (max{|X|, Y|, | £ 1 0.5 0.63
MMH([;?h;lfz( ;L) 2( eny p‘ro|m | | |})
H(tjl i ,L) 1 0.5 0.55
H(e") + H(rl,™) +H(L) | 033 0.2 0.22
- 1 1 1
1 x £ 1 0.5 0.63
JMH(tjlllh’tfzmm;L) 0g> (ma::g [J;{Jﬂ%ﬂa | |})
H(r", 1,7, L) 1 0.5 0.55
H(r3") + H(e5™™) +H(L) | 033 0.2 0.22
- 0 1 0
o log, (max{|%X|, ||, | £ 0 0.5 0
(CMH([;?h;tj?z(m|L) g2( fm{h| p‘ro|r%)| | |})
H(e5", 1, L) 0 0.5 0
H (™) + H(eh™") + H(L) 0 0.2 0
- 1 2 1
DTC(t;fh,tf;0m7L) logz (mazz{h|xp‘;o|;?|’ |’S|}) 1 0.63
H(r3", 13,7, L) 1 1 0.55
H (") + H(rj,™) +H(L) | 033 0.4 0.2

Influence of normalization strategies on the mutual information quantities for the three cases.
Shown are the results for the different quantities without normalization (-) and with
normalization strategies: maximal alphabet size (log, (max{|X|,|D|,|£|}), joint entropy
(H(t5", 15" L)) and the sum of marginal entropies (H(t${") +H (") +H(L)).

The table shows the results of the different normalization strategies for the different quantities
based on the given example. Regarding I(:¢";15,”") as well as CMI(¢%7"; 157" |L), the different
normalization strategies do not alter the order of the three cases. However, the ratio between
the values has been decreased. The MMI(¢¢1*;¢7;""; L) and the JMI(zz,1,""; L) metric results
without normalization in the same value for all three cases. Normalizing these values leads to
the highest value for Case 1, and the lowest value for Case 3 for all strategies. Thereby, the
ratio between the values is high using alphabet normalization strategy and low for using the
sum of entropies. For the DTC(r}",1/,"", L) the normalization effects the order of the cases
regarding their DTC-value. Without normalization, Case 2 has the highest DTC-value. Using
the alphabet size or the joint entropy for normalization, Case 1 and Case 2 are on the same rank.

In contrast, using the sum of marginal entropies, again, Case 2 appears to be best associated.
In the following, I use the alphabet size log, (max{|%|,|2)|,|£|})) for the normalization of all
quantities, since all normalization strategies deliver comparable results.
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5. Resulis

In this chapter I present the results of the application of my two approaches by first focus-
ing on the identification of potentially intra-sequence cooperating transcription factors and
second, on inter-sequence associated transcription factor pairs. For each approach, I demon-
strate the performance of the methodology on a simulated dataset and show a comparison
to existing methods. Further, I applied the method to real biological data in order to get
new insights regarding the gene regulating mechanisms of biological systems and present
the results of these biological analyses.

5.1. Identification of intra-regional cooperating TFs using
pointwise mutual information

In this section, I present the results for the identification of collaborating transcription fac-
tors based on the co-occurrence of their binding sites using pointwise mutual information
(PMI). In the first part, I present the results of the general approach and in the second part, I
demonstrate the performance of the extension approach for the separation sequence-set spe-
cific TFBS pairs from the general important ones in a comparative manner to the original
(general) approach. This section is mainly based on our recently published papers [43],144]

(see Appendix [A.T|and Appendix [A.2).

5.1.1. Cooperating TFs

Data In order to apply the method to biological data, I analyzed two datasets, a genome
wide and a breast cancer gene set. Performing a genome wide analysis, I took all annotated
transcription start sites (TSS) of human RefSeq genes and selected the promoter regions
1000bp upstream of TSS and 100bp downstream.

The second dataset is a breast cancer associated gene set that was taken from Joshi et al.
[49]]. Following [49]] I performed the analysis on the promoter regions 500bp upstream and
100bp downstream from the TSS of the corresponding RefSeq genes. For both promoter
sets, I made sure that there are no overlapping sequences to avoid their overestimation in
the analysis.

Comparison with existing methods For a comprehensive evaluation of the method I
performed a pairwise comparison with the existing methods: CPModule [7], CrmMiner
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[13]] and MatrixCatch[4]]. I will shortly introduce the methods in the following. For details,
please have a look at the original publications.

CPModule was developed by Sun et al. in 2012 and is a method for the detection of un-
structured cis-regulatory modules based on constrained programming for itemset mining
framework. The method requires a set of sequences and a PWM library as input and selects
afterwards motifs that i) occur frequently in the input sequences (frequently constraint) ii)
are localized within a certain distance on DNA (proximity constraint), iii) are non-redundant
(redundancy constraint) and as an optional constraint iv) the module contains a query motif
(query-based constraint). All modules that fulfill these constraints are validated by p-values
that expresses their specificity for the input set in consideration of the whole genome as
background sequence set [7]].

CrmMiner has been published by Girgis et al. in 2012 for the determination of enriched
motif pairs specific for a given set of sequences. The algorithm requires a mixed and a
control set as input where the mixed set contains the regulatory sequences under study and
the control set is a set of randomly selected genomic sequences. The input sequences are
distributed in a training, a validation and a test set. In the training phase of the algorithm,
enriched motifs pairs are identified and the sequences containing these pairs are selected
in both, mixed and control set. Afterwards, the sequences are scored according to their
enriched motif pairs and based on these scores a Bayesian classifier is trained in order
to differentiate between sequences in the mixed and in the control set. In the validation
phase parameters are optimized using the validation set. Training and validation phase are
repeated until the parameter setting is optimized and the results are later evaluated by using
the test set [[13]].

MatrixCatch was developed in 2013 by Deyneko et al. for the recognition of composite
elements provided by TRANSCompel® [14] data base in a given set of sequences. In or-
der to identify these transcription factor pairs in the sequences, the composite elements are
modeled by two PWMs, their minimal matching scores, relative orientations and distance
constraints [14]. The input sequences are scanned for the identification of composite el-
ements in the sequences and for each composite element match a p-value is calculated in
order to determine it’s recognition quality [4]]. Interested readers are kindly referred to our
recent study [50] (see Appendix [A.4) about the identification of stage-specific transcrip-
tion factor clusters in human heart development using MatrixCatch in combination with the
Markov clustering algorithm.

I compared the performance of my approach with that of the existing tools in two different
ways. First of all I generated a simulation dataset by artificially inserting a TFBSs pair,
second, I applied all methods to the genome wide and the breast cancer gene set and per-
formed a statistical analysis and a comparison study between the predictions of the different
methods. In both cases, I applied all methods using the same position weight matrix (PWM)
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Table 5.1.: Total number of predicted TFBS pairs for the genome wide and the
breast cancer analysis of my approach with maximal distances 20bp, 50bp and 100pb
(PC-TraF F»,PC-TraF Fsy and PC-TraF Fyyy), MatrixCatch (MC), CPModule (CPM) and
CrmMiner (CrmM).

Total number of predicted TFBS pairs
PC-TraFF,y | PC-TraFFsy | PC-TraFFypg | MC | CPM | CrmM
Genome-wide analysis 54 86 91 19 17 21
Breast cancer analysis 64 82 88 13 6 25

library as suggested in [4], in order to make the results comparable to each other. I ran the
comparison tools using their default settings.

For the creation of the simulation dataset, I randomly picked 200 promoter sequences of
RefSeq genes of chromosome 21 and inserted the TFBS pair (VSUSF_01 - VSIRF1_01)
two to twelve times into these sequences. Thereby, I used the consensus sequences of both
motifs and defined the distance between the inserted motifs to be at least 5 bps and at most
20 bps. I applied my approach and the other three methods to this simulation dataset where
the inserted pair was successfully predicted by CPModule and my approach, but was not
identified by any of the other methods.

Second, I performed a pairwise comparison study of the different approaches by analyzing
the breast cancer gene set as well as the genome wide gene set with my approach and the
existing methods. In my approach, two TFBSs form a pair if the distance of their centers
is between a predefined minimal and maximal distance. In the course of this comparison
study, I applied my approach using different maximal distances between the TFBSs (20bp,
50bp and 100 bp) that are indicated as PC-TraF F>y, PC-TraF Fsy and PC-TraF Figo in the
following, in order to further evaluate the influence of the maximal distance constraints.
Applying the methods to the breast cancer and the genome wide gene set, it is remarkable
that all methods show different numbers of predicted pairs. While my approach identifies
a comparably large number of pairs (see Table [5.1)) the number of pairs identified by the
other approaches is between six and 25 pairs. This phenomenon can be explained by the
underlying methodologies. The number of detected pairs by MatrixCatch is restricted to the
collection of pairs in the TRANSCompel® [[14]] database. CPModule in turn uses a very
strict TFBSs prediction threshold and applies some additional filtering steps afterwards and
the results of CrmMiner are restricted to enriched TFBSs. Although the breast cancer gene
set is much more specific in contrast to the genome-wide gene set, the number of predicted
pairs appears not to be smaller throughout all methods.

I performed a pairwise overlapping analysis of the identified pairs between all approaches
(see Table [5.2)). As expected, the largest overlap was found between the different distance
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constraints of my approach. This is self-explaining since all pairs of maximal distance
20bp are included in the pairs of maximal distance 50bp and 100bp. All other pairwise
combinations show a rather small overlap. This in turn results from the different information
the methods focus on indicating that the approaches can perfectly complement each other.

Table 5.2.: Pairwise comparison of the different approaches. Number of predicted over-
lapping pairs of my approach (PC-TraFF) with three different maximal distances (20bp,
50bp and 100 bp), MatrixCatch (MC), CrmMiner (CrmM) and CPModule (CPM) for the
breast cancer as well as for the genome wide dataset.

Genome-wide analysis | Breast cancer analysis
|PC-TraF Fyy(\PC-TraF Fsl 43 54
|PC-TraF Fyy(PC-TraF Fiyl 41 43
IPC-TraF FyyMCI 3 1
IPC-TraF F>y(\CPMI 0
IPC-TraF F>(CrmM)| 0 0
IPC-TraF Fso(\PC — TraF Fyyl 82 80
|PC-TraF Fso(MCI 4 1
IPC-TraF F50(\CPMI 8 1
IPC-TraF F5o(CrmM)| 2 0
IPC-TraF Fioo(\MCI 4 1
|PC—T}’aFF1()0ﬂCPM| 9 0
|PC-TraF Fioo(CrmM)| 2 0
IMCCPMI 1 0
IMC N CrmM)| 0 1
ICPM N CrmM| 3 1

In order to statistically evaluate the performance of my approach and the three existing
methods, I constructed all possible pairwise combinations of the PWMs in the library. I
defined a pair to be part of the positive control set, if the interaction of the underlying TFs is
experimentally validated and presented in TRANSCompel®, STRING [51]] and BioGRID
[52]] interaction databases. All of the remaining pairs are defined to form the negative con-
trols. Using both, negative and positive control sets, I calculated the sensitivity, specificity
and Matthews correlation coefficient (MCC) for each method (see Table [5.3). It points out
that all methods have a high specificity and a low sensitivity, indicating that the general
performance of the methods is similar. The low sensitivity of all metrics can be explained
by the negative control set that is overestimated in its size due to its definition, since some
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of its TFs may in fact form functional yet undiscovered TF pairs. In general, my method
has the highest sensitivity compared to the existing methods. Further, using larger maximal
distance values seems to improve the sensitivity of my approach. The sensitivity of Matrix-
Catch, CPModule and CrmMiner appears to be similar with values between 0.5% and 0.6%.
Regarding the specificity, CPModule reaches 100%, all other methods perform similar with
specificity values between 99.3% and 99.9%. The Matthews correlation coefficient (MCC)
is a measure for the general method performance and varies between -1 and +1. MCC-value
is equal to 1 if the underlying model correctly classifies all test data, it is equal to O for a
random prediction and in turn, equal to -1 if it classifies contradictory to the input data. All
methods have a low MCC that can (similar to the sensitivity) be explained by the definition
of the negative control set. While there should not be put to much weight on the absolute
numbers of the MCC (as for sensitivity), comparison of the different methods clearly shows
that my approach exhibits the highest MCC-values.

Table 5.3.: Performance comparison of the different approaches. Comparison of
my approach with different maximal distance constraints (PC-TraFF,y, PC-TraF Fsg
PC-TraF Fiyy), MatrixCatch (MC), CPModuel (CPM) and CrmMiner (CrmM).

Sensitivity | Specificity | MCC
PC-TraF Fyg 2.3% 99.5% 0.088
PC-TraF Fsg 3.1% 99.3% 0.1
PC-TraF Fyy 32 % 99.3% 0.102
MC 0.5 % 99.9 % 0.053
CPM 0.5% 100% 0.06
CrmM 0.6 % 99.6% 0.025

As mentioned before the pairwise comparison study reveals that the methods perfectly com-
plement each other in their predictions. Therefore, I further analyzed the union of the
predicted pairs to make a recommendation which method combination performs best. As
shown in Table [5.4] the best sensitivity was reached using my approach with a maximal
distance of 100bp in combination with the three other methods. The highest MCC-value
(MCC=0.12) is reached by the union of the predicted pairs of PC-TraF Fiog, MatrixCatch
and CrmMiner. Following these results, I recommend the joint usage of all approaches in
order to receive a large variation of cooperating TFs in the sequences under study.

Genome-wide analysis For the biological evaluation of my approach, I applied it to the
genome-wide human RefSeq gene set that is linked to 23015 unique promoter sequences.
I decided to use a maximal distance threshold of 20bps since the number of pairs is of
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Table 5.4.: Combination of the different approaches. The general performance of the
different methods can be improved by complementing the results of the different methods:
my approach with maximal distances 20bp, 50bp and 100pb (PC-TraF F,y, PC-TraF Fsg
PC-TraF Fiyo), MatrixCatch (MC), CPModuel (CPM) and CrmMiner (CrmM).

Sensitivity | Specificity | MCC
PC-TraF Fy|JMC 2.8% 99.5% 0.101
PC-TraF Fso|JMC 3.6% 99.3% 0.112
PC-TraF Fipo\UMC 3.8% 99.3% 0.114
PC-TraF F>0|JCPM 2.6% 99.5% 0.099
PC-TraF Fso| JCPM 3.4% 99.3% 0.107
PC-TraF Fipo|JCPM 3.5% 99.3% 0.109
PC-TraF F>y|UCrmM 3.0% 99.2% 0.087
PC-TraF Fso|JCrmM 3.8% 99% 0.10
PC-TraF Fipo|JCrmM 3.9% 99% 0.102
MCUUCPM 1.0% 99.9% 0.079
MCUCrmM 1.2% 99.6% 0.05
CPMUCrmM 1.2% 99.6% 0.051
PC-TraFFJMC\JCPM 3.1% 99.5% 0.11
PC-TraF Fsp|JMC\JCPM 3.8% 99.3% 0.118
PC-TraF Fiopo|UMC\JCPM 4% 99.3% 0.12
PC-TraF F,o\JMCJCPMJCrmM 3.8% 99.2% 0.10
PC-TraF Fso | UMC\JCPMJCrmM 4.5% 99% 0.116
PC-TraF Fiopo\UMCJCPM|JCrmM 4.7% 99% 0.119
MCUCPM\JCrmM 1.7% 99.6% 0.07

manageable size for a manual evaluation and the performance difference to the other tested
maximal distances is negligible. Using a maximal distance threshold of 20bp I predicted
54 significant TFBS pairs. Considering the underlying TF pairs, seven pairs refer to ho-
motypic interactions while the remaining 47 pairs form heterotypic interactions. In to-
tal, 44 pairs are experimentally validated and described in TRANSCompel®, BioGRID or
STRING database. The remaining ten pairs are not described in literature yet and are ei-
ther false positive predictions or present new targets for experimental validation. The top
ten TFBS pairs according to z-score ranking are given in Table [5.5]in combination with
literature reference if available.
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Table 5.5.: Significant TFBS pairs found by the method in genome-wide promoter
analysis of human RefSeq genes. The table shows the top 10 significant TFBS pairs,
which are sorted in descending order based on their z-scores in combination with their
literature evidence in BioGRID, STRING and TRANSCompel®

Significant Pair z-score | Reference
V$PU1_Q6 - VSETS_Q6 9.84 | TRANSC, BioGRID, STRING
V$CETS1P54_01 - VSETS_Q6 5.76 | TRANSC, BioGRID, STRING
VS$ETS_Q4 - VS$ETS_Q6 5.49 | TRANSC, BioGRID, STRING
VSEGR_Q6 - V$SP1_Q2_01 5.09 | BioGRID, STRING

V$CETS1P54_01 V$SP1_Q2_01 4.94 | TRANSC, STRING

V$AP1_Q2_01 - V$AP1_Q4_01 4.69 | TRANSC, BioGRID
V$STAT6_01 - V$OCT_Q6 4.66 | -

V$CEBPB_02 - V$STAT6_01 4.58 | TRANSC, STRING
VEMYCMAX_B - VS$SP1_Q2_01 4.36 | BioGRID, STRING
V$APIFI_Q2 - VS$API_Q2 4.09 | TRANSC, BioGRID, STRING

*TRANSC:TRANSCompel®

For a visual analysis of the results, I constructed cooperation networks based on the pre-
dicted TFBS pairs, where the nodes correspond to TFBSs and edges to predicted cooper-
ations between them. The cooperation network of the whole genome analysis is shown in
Figure and consists of 35 nodes and 54 edges. The network is separated into two large
unconnected subgraphs of similar size regarding the number of nodes and the binding sites
VSNFAT_Q6 and VSNFAT_Q4_01 that form an isolated TFBS pair. It can be seen that the
majority of the TFBS motifs of the left cluster consists of GC-rich sequences while those
of the right cluster tend to contain more AT-rich patterns (see Table [5.6), which is in ac-
cordance with the findings that Hu et al. made in their study in 2007 [8]. For the entire
network four hub nodes can be identified: V$SP1_Q2_01, V$STAT6_01, VSCETS1P54_-
01 and VSAP1_Q4_01, that are presented in Table in combination with their top three
interaction partners according to z-core ranking and a literature evidence if available.

The first hub is V§SP1_Q2_01 that is part of twelve significant pairs. Of these pairs, ten
can be confirmed by experimental studies and two of them (V$SP1_Q2_01 - V$CP2_01 and
V$SP1_Q2_01 - V$CP2_01) are new pairs. This hub is placed in the left subgraph of the
network and represents a cytosine-rich motif. The binding site V$SP1_Q2_01 is bound by
factor SP1 which is a member of the three zinc finger Kriippel-related transcription factor
family [25] that is known to bind to GC-rich promoter regions [[53]] and promoters that lack
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Figure 5.1.: Cooperation network of PC-TraFF significant TFBS pairs of whole
genome analysis. The nodes of the network refer to transcription factor binding sites and
the edges between them to a predicted pairing. Blue edges indicate an experimentally vali-
dated interaction while the red ones are newly predicted interactions. (Figure from [43]])

a TATA box [54]]. On the functional side of view, the transcriptional activity of SP1 is
important for the activation of a multitude of housekeeping genes [54] and regulates genes
involved in cell proliferation, apoptosis, differentiation and neoplastic transformation [53]].
For the latter case, SP1 is responsible for the transcriptional initiation step by recruiting
the transcriptional machinery [54]]. In general, SP1 can act as a transcriptional activator or
repressor dependent on the target promoter and the co-factors or TFs it interacts with [53]].

Table 5.6.: Exemplary comparison between the TFBSs contained in the left and the
right cluster of the cooperation network of the whole genome analysis. While the TFBSs
of the left cluster are more GC-rich, those of the right cluster are AT-rich.

Left cluster Right cluster
V$SP1_Q2_01 —<Cc_CCc__ | vsrox Q2 e ToTTTAazTx-
VSCETSIP54 01 _C= A~_= | VSIRE Q6 ~AAAA_= AAA--
v$MYCMAX B - <Cas <« _ | vs$APl C ToA_TcA_
V$EGR_Q6 cxll_eaa— | VSCEBPB_01 - -Tx~. " _AA.
V$CP2_02 _CT. v _ _C.__ | V$SOX9 Bl __~aCAAT___

The second hub is VSSTAT6_01 that is paired to ten other TFBSs. Considering the un-
derlying TFs, three pairs are novel while the remaining pairs are experimentally validated
and described in literature. V$STAT6_01 is bound by factor STAT6, a member of the sig-
nal transducer and activator of transcription (STAT) familiy. STAT6 is known to act in
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response on cytokines IL.-4 and IL-13 and thus, it is involved in the immune system [55]].
Besides its function in T-cells and B-cells, STAT6 is linked to cellular processes in the
mammary gland, lung and skin [55]].

The next hub is VSCETS1P54_01 which is paired to nine other TFBSs, three of which ap-
pear to be novel pairs and six have already been described in literature. VSCETS1P54_01
represents the GC-rich binding site of factor ETS1 and is located in the left GC-rich sub-
graph of the cooperation network. ETS1 is a member of the ETS transcription factor family

that is known to be crucial for the regulation of normal cell proliferation and differentiation
[56].

The last hub is VSAP1_Q4_01 and is located in the right subgraph of the network, even
though the amount of A, T,G and C appears to be balanced in that motif. V$AP1_Q4_-
01 is involved in seven pairings that are all experimentally confirmed. The binding site is
bound by factor AP1, a dimerized protein of members of the basic leucine zipper factor fam-
ily [25]. This dimerization is either a homotypic or heterotypic linking between members
of JUN-related factors, FOS-related factors and/or activating transcription factors (ATFs)
[57,158]. Thus, a lot of different dimerization combinations are possible that are all referred
to AP1 molecule and in dependence of the protein combinations the functions of AP1 dif-
fer. In general, AP1 is involved in cellular processes such as proliferation, differentiation,
apoptosis and transformation [57].

The hub nodes V$SP1_Q2_01 and VSCETS1P54_01 form a significant TFBS pair. The
interaction between the corresponding TFs SP1 and ETS1 is known for some promoters
lacking a TATA box where SP1 can replace the functionality of the TATA box, since the
binding site for SP1 is of low affinity but is strengthened by the adjacent binding of ETS1
[59].

Further, the hubs VSSTAT6_01 and VSAP1_Q4_01 are predicted to form a significant pair.
The underlying TF interaction of STAT6 and JUN plays an important role in the activa-
tion process of the IL-24 promoter. IL-24 in turn is crucial for B cell differentiation and
anticancer processes in a variety of diverse cancer cells [60].

Breast cancer gene set analysis In order to test the methodology to a more specific gene
set, I applied it to 218 promoter sequences determined for the breast cancer associated Ref-
Seq gene set. Following the proceeding of the whole genome analysis, I chose a maximal
distance threshold of 20bp between the TFBSs.

For these breast cancer related promoter regions, I identified 64 significant TFBS pairs
of which 5 pairs can be linked to homotypic TF interactions and the remaining ones to
heterotypic TF interactions. Comparing the pairs with known TF interactions, 44 pairs are
published in protein interaction databases like STRING, BioGRID and TRANSCompel®,
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Table 5.7.: The hubs and their top three collaboration partners in the predicted col-
laboration network of significant TFBS pairs for human RefSeq genes and their literature
evidence in BioGRID, STRING and TRANSCompel®.

Hub Top three collabo- | z-score | Reference
rating partners
V$SP1_Q2_01 V$EGR_Q6 5.09 BioGRID, STRING
VSCETS1P54_01 | 4.94 TRANSC, STRING
VEMYCMAX_B 4.36 BioGRID, STRING
V$STAT6_01 V$OCT_Q6 4.66 -
V$CEBPB_02 4.58 TRANSC, STRING
V$CEBP_Q2_01 3.74 TRANSC, BioGRID, STRING
VS$CETS1P54_01 | VSETS_Q6 5.76 TRANSC, BioGRID, STRING
V$SP1_Q2_01 4.94 TRANSC, STRING
VSNFKB_Q6 3.96 TRANSC, STRING
V$AP1_Q4_01 V$AP1_Q2_01 4.69 TRANSC, BioGRID, STRING
V$STAT6_01 3.35 TRANSC, BioGRID, STRING
V$AP1_Q6 3.35 TRANSC, BioGRID, STRING

*TRANSC:TRANSCompel®

whereas 20 pairs are novel predictions and provide new targets for experimental approaches.

The breast cancer cooperation network (see Figure consists of 40 nodes, representing
TFBSs and 64 edges that refer to predicted cooperations between the related TFBSs. The
network is composed of two large unconnected subgraphs and two separate node pairs,
where the subgraphs consist of 10 and 16 nodes, respectively. Having a closer look at
the TFBS representing logoplots of the two major clusters, it can be seen that the upper
cluster in Figure[5.2]contains more GC-rich motifs while the lower cluster has more AT-rich
clusters. However, this trend is not as distinctive as for the whole genome analysis.

For the breast cancer cooperation network, three hubs can be identified: VSNFKB_Q6,
VS$CETS1P54_01 and VEMYCMAX_B.

The hub node VSCETS1P54_01 is involved in thirteen TFBS pairings where eight of them
are confirmed by literature and the remaining five pairs appear to be new targets for valida-
tion experiments. VSCETS1P54_01 is bound by ETS1 that regulates genes involved in the
regulation of tumor progression and metastasis in breast cancer cells [61].
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Table 5.8.: The hubs and their top three collaboration partners in the predicted collabo-
ration network of breast cancer-associated significant TFBS pairs for human RefSeq genes
and their literature evidence in BioGRID, STRING and TRANSCompel®.

Hub Top three collabo- | z-score | Reference
rating partners

V$NFKB_Q6 VS$CETS1P54_01 5.42 | TRANSC, STRING

VS$ETS_Q6 4.80 | BioGRID, TRANSC, STRING

V$SP1_Q4_01 3.43 | BioGRID, TRANSC, STRING
V$CETS1P54_01 | VSETS_Q6 8.01 BioGRID, TRANSC, STRING

V$NFKB_Q6 5.42 | TRANSC, STRING

VSMYCMAX_B 5.21 -
VSMYCMAX_B | VSCETS1P54_01 516 | -

VS$E2F_Q3_01 5.21 TRANSC
V$SAHRHIF_Q6 4.39 BioGRID, STRING
*TRANSC:TRANSCompel®

VSNFKB_Q6 is paired with ten other TFBSs, all of which are related to experimentally val-
idated TF interactions. The binding site is bound by the NF-kB transcription factor family.
These factors are known to be involved in cell proliferation, survival, immunity, inflam-
mation regulation and angiogenesis [62]]. Moreover, it has been detected to be involved in
breast cancer [63]]. In this study, I found NF-xB to cooperate with the factors ETS1, ELF1,
SP1 and E2F1, each of which is linked to breast cancer. In detail, ETS1 is under suspicion
to be a breast cancer oncogene by regulating tumor progression and metastasis [61]. ELF1
is also a member of the ETS transcription factor family and is in general linked to the reg-
ulation of cellular growth and differentiation [64], however, the up-regulation of the ELF1
gene has been detected in prostate and breast cancer cells [64].

The third hub is VEMYCMAX_B that is paired to nine other TFBSs. Three pairings are
novel targets for laboratory experiments while the others have already been described in
literature. VEMYCMAX_B is bound by the heterodimer of factors MYC and MAX where
the dimerization process is important for the activation of the MYC protein [65)]. MYC is
in general important for the regulation of cell growth, proliferation, metabolism, differen-
tiation and apoptosis [66]. Further, it is known to be involved in breast cancer [66) 67].

A closer look at the cooperation network shows that two TFBSs (V$E2F_Q3_01 and
V$E2F_Q4_01) are related to the E2F transcription factor family. This family is involved
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in cell cycle regulation, apoptosis as well as DNA damage response [68]]. E2F family mem-
bers are known to be involved in breast cancer, more specifically, in the down-regulation
of BRCA1 gene expression in response to hypoxia. This in turn is mediated by two E2F
factors binding close to each other to the BRCA1 promoter [68].

Three TFBSs (VSCEBPB_02, VSCEBP_Q2 and V$CEBP_Q2_01) in the network of sig-
nificant pairs can be linked to C/EBPf. Members of the C/EBPS family are known to
be involved in cellular functions tied to tumor progression like proliferation, survival and
apoptosis and are further linked to malignant transformation of human breast [69]]. Accord-
ing to my analysis, the factor is among others interacting with HMGA1 and c-Myb. The
high mobility group A1 (HMGAI1) factor is found to be enriched in embryonic tissues and
differentiated tumors [[/0], whereas the factor c-Myb plays a critical role in the regulation
of cell cycle and has been identified to be involved in carcinoma, breast cancer and colon
cancer [71]].

5.1.2. Sequence-set specific cooperating TFs

In this section I present the results of the application of the extended version (see Section
M.1.2) in a comparative manner to the original approach (see Section[4.1.T)) in order to evalu-
ate it’s performance in the separation of sequence-set specific intra-regional TF cooperations
from the generally important ones.

Datasets In order to extensively evaluate the performance of the approach, I tested it
in two different ways. First, I used the simulation dataset (see Section [5.1.1)) where I ar-
tificially inserted the TFBS pair (VSUSF_01-V$IRF1_01). Second, I analyzed gene sets
obtained from Joshi et al. [49] of five breast cancer associated subtypes: Luminal A, Lu-
minal B, Basal-like, Normal-like and ErbB2 over-expressing. For these gene sets I selected
the associated promoter sequences in the range -500bp to +100bp relative to transcription
start site (TSS). The results show that the numbers of genes and consequently the numbers
of promoter sequences under analysis strongly differ between the individual subtypes (see
Table [5.9), which enables us to further assess the performance of the approach regarding
the size of different input sets.

Analysis of simulation dataset In order to evaluate the performance of the extended ap-
proach (see Section[d.1.2), I tested it on a simulation dataset of 200 sequences where I ran-
domly inserted the binding site pair of VSUSF_01-V$IRF1_01. The analysis of this dataset
with the original approach results in 58 significant TFBS pairs where the inserted pair is on
position 18 in the z-score ranking. Applying the extended approach in the simplest version,
I subtracted the calculated background cooperation level from the initial PMI-values. This
results in 55 specific TFBS pairs and three TFBS pairs were identified as common (gener-
ally important) ones, thereby the inserted pair is raised onto position 16 in z-score ranking.
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Figure 5.2.: Cooperation network of PC-TraFF significant TFBS pairs of breast cancer
gene set analysis. The nodes of the network refer to transcription factor binding site types
and the edges between them to a predicted pairing. Blue edges indicate an experimentally
validated interaction while the red ones are newly predicted interactions. (Figure from [43]])

Table 5.9.: Number of promoter sequences of breast cancer subtype-associated RefSeq
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genes and corresponding significant pairs found by my approach.

Subtype Number of genes | Number of pro-
moter sequences

Luminal A 78 86

Luminal B 55 57

Basal-like 28 31

Normal-like 23 27

ErbB2 over-expressing | 13 15
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The low number of common pairs indicates that the quantification of a background level
can be difficult for unspecific sequence-sets and consequently, the separation of sequence-
set specific cooperations from common ones might not be possible. In order to overcome
this problem to some extent, I further introduced the parameter ¢ in order to scale the sub-
tracted background and at the same time to increase the specificity of the predicted TFBS
pairs.

In the following, the pairs identified with the original approach are still referred to as sig-
nificant pairs, whereas those pairs among them identified as sequence-set specific pairs by
the extended version are referred to as specific pairs.

Table 5.10.: Total number of specific TFBS pairs for the simulation dataset for differ-
ent o-values. The rank of the inserted pair gives the position of the inserted pair according
to z-score ranking. a=-1 indicates the significant pairs identified by the original method.

a-value | Rank of inserted pair | Total number of pairs

-1 18 58

0 16 55
0.1 15 47
0.15 14 43
0.2 12 40
0.25 11 37
0.5 6 28
0.75 6 25

1 5 21

The influence of the scaling factor & on the number of predicted specific pairs is shown in
Figure[5.3] Setting a@ = —1 refers to the predictions of the original approach, whereas setting
a = 0 results in subtracting the estimated background level from the initially calculated
PMl-values and in turn & = 1 results in the subtraction of the doubled PMI mean value. It
can be seen that the number of specific pairs decreases with an increasing a-value form 55
pairs (ot = 0) to 21 pairs for o = 1. A closer look at Figure [5.3]indicates that the influence
of o on the number of significant pairs is not linear, although o has a linear influence on
the subtracted background level. It has to be noted that the inserted pair was identified for
all a-values as sequence-set specific pair.

The position of the inserted pair in the z-score ranking is rising in accordance to an increas-
ing o-value. Starting on position 18 in the original analysis, it ends up on position five
for ov = 1, indicating that the specificity of the predicted pairs is increased. However, the
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Figure 5.3.: Number of specific TFBS pairs in dependence on different a-values for the
simulation dataset.

inserted pair is not on the first position in the z-score ranking as it might be expected. This
can be explained by a closer look at the logoplots of the underlying TFBSs of the top four
ranked TFBS pairs (V$PU1_Q6-VSETS_Q6, V$IRF1_01-VSTAXCREV_01, V$HNF4_-
Q6-VSGR_Q6_01 and VSIRF1_01-VSATF3_Q6) setting o = 1 that either contain one of
the inserted TFBSs or are very similar to them (see Figure[5.4). Thus, these TFBSs tend to
match the inserted sequences as well, due to their sequence similarity and therefore I unin-
tentionally incorporated these TFBS pairs in the sequences which in turn classifies them as
true positive pairs. The TFBS pair V§PU1_Q6-VSETS_Q6 is top ranking for all t-values.
Although both TFBSs only match the consensus sequence of VSIRF1_01 they are in general
very short and unspecific which results in many sequence matches. This number of matches
is increased by the insertion of VSIRF_01 consensus sequence leading to a huge overesti-
mation of the VSPU1_Q6-VSETS_Q6 pair that can not be dropped down by background



Identification of intra-regional cooperating TFs

subtraction.
VS$PUL_Q6 ~c~GGAA= LLTGAcGTCA 2= VS$ATF3_Q6
V$ETS_Q6 o Aa__ cGG.TGACG_o _ V$TAXCREB_01
vsirr1_ 01 —AAAA_=_AAA<=- -—CACGTG___ V$USF_01
V$HNF4_Q6 —anITCC - TOT.Cx V$GR_Q6_01

Figure 5.4.: Logoplot alignment for the TFBSs involved in the four top ranking
pairs (V$PUI1_Q6-VSETS_Q6, VS$SIRF1_01-VSTAXCREV_01, V$SHNF4_Q6-VS$GR_-
Q6_01 and VS$IRF1_01-V$ATF3_Q6) setting o = 1 of the simulation dataset where I arti-
ficially inserted the TFBS pair VSUSF_01-VS$IRF1_01.

Breast cancer subtypes In order to proof the gained specificity of the extended ap-
proach in comparison to the original method, I performed a comparison study of the original
approach and its extended version for five breast cancer subtypes: Luminal A, Luminal B,
Normal-like, Basal-like and ErbB2 over-expressing.

Applying the original approach to the promoter sequences of the five breast cancer gene
sets I detected 62 significant TFBS pairs for Luminal A, 63 pairs for Luminal B, 68 pairs
for Basal-like, 49 pairs for Normal-like and 62 significant TFBS pairs for ErbB2 over-
expressing. Comparing the significant pairs of the different subtypes with each other shows
that there is a large overlap among these pairs and six pairs are identified as significant in all
subtypes (see Figure [5.5h)) although the underlying gene sets are unique for each subtype.
The reason for this large overlap of significant pairs might stem from the common regulatory
programs present in all cells in general or in cells sharing a common origin. However, the
differentiation of these generally important pairs from the sequence set specific ones is not
possible for the original approach.

In order to determine the sequence set-specific TFBS pairs for each breast cancer subtype,
I applied the extended approach to the promoter sequences of the underlying gene sets. |
varied « in order to estimate its influence on the results (see Figure [5.6). By subtracting
the mean PM-value (setting a=0) the extension approach categorizes on average 90% of
the significant TFBS pairs to be specific for the respective sets. Increasing o leads to a
reduction of the specific pairs. However, the strength of this reduction differs between
the individual subtypes (see Figure [5.6). For Luminal A subtype, the number of specific
pairs drops dramatically by increasing ¢ and finally, by setting o« = 1 about 1% of the
significant pairs is predicted to be sequence set specific for Luminal A breast cancer subtype.
In contrast, the number of ErbB1 sequence-set specific pairs is only slightly decreasing in
dependence of « and 47% of the significant pairs are identified as sequence-set specific for
o=1.
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Figure 5.5.: Number of unique and overlapping significant TFBS pairs for the differ-
ent breast cancer subtypes represented in Venn diagrams and matrix layouts using UpSet
technique [72]]. In the matrix layout, dark circles indicate the subtypes that take part on the
intersection while the intersection between all subtypes is highlighted in orange. a) Pairs
identified by the original approach (i.e. =-1) and b) sequence-set specific pairs determined
by the extended approach using a scaling factor a=0.2. (Figure from [44])

In Figure [5.5p I exemplarily present the numbers of unique and overlapping specific TFBS
pairs of the breast cancer subtypes using @ = 0.2. Regarding theses results, in the orig-
inal approach, Luminal A shows the smallest number of unique pairs. Interestingly, the
number of unique pairs of Luminal B subtype as well as of Normal-like subtype is raised
in comparison to the original analysis. For Normal-like subtype, there are eleven signifi-
cant unique pairs (Figure [5.5h) and 17 specific unique pairs (Figure [5.5p). Thus, there are
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Table 5.11.: Six significant TFBS pairs determined as significant by the original ap-
proach for all breast cancer subtypes.

Significant pairs Reference
VSMYCMAX_B - VS$E2F_Q3_01 | TRANSCompel®
V$CETS1P54_01 VS$PEBP_Q6 TRANSCompel®, BioGRID, STRING
V$CETS1P54_01 V$NFKB_Q6 | TRANSCompel®, STRING

V$CEBP_Q2 - VS$STAT6_01 TRANSCompel®, BioGRID, STRING
V$AP1_Q2_01 - VS$API_Q4_01 | TRANSCompel®, BioGRID, STRING
V$CEBPB_02 - V$STAT6_01 TRANSCompel®, STRING

six pairs solely sequence-set specific for Normal-like subtype that have also been predicted
as significant by the original approach in other subtypes (see Table[5.12)). For example, the
pairs VSCEBPB_02-VSHMGIY_Q6 and VSELK1_02-VSCETS1P54_01 are significant for
four subtypes, respectively, but specific only for Normal-like. In addition, the TFBS pair
VSEGR_Q6-VSAHRHIF_QG6 is significant for Basal-like and Normal-like but only spe-
cific for Normal-like subtype. For Luminal B subtype, 13 pairs are identified as significant
unique according to the original methodology and 17 pairs are unique specific for this sub-
type. Of this, six pairs have been predicted to be significant for several subtypes (see Table
[5.12). In addition, three of the 13 pairs that are significant unique for Luminal B (VMYB_-
Q5_01-VSMAF_Q6_01, VSNFKB_Q6-V$CP2_02 and VSHMGIY_Q6-VSMAF_Q6_01)
have not been identified as specific for this subtype.

Regarding the overlap of sequence-set specific pairs using & = 0.2 the number of over-
lapping pairs has been decreased dramatically in comparison to the original approach. In
particular, six pairs have been identified as significant for all BRC subtypes in the origi-
nal analysis (see Figure [5.5p), but there is no pair predicted as specific in all subtypes (see
Figure [5.5b). These six overlapping pairs of the original approach are listed in Table [5.11]
and are predicted to be specific for some of the breast cancer subtypes but not for all of
them. For example the pair VSCETS1P54_01 - VSNFKB_Q6 is predicted to be specific
for Luminal A, Normal-like and Basal-like subtype whereas the pairs VEMYCMAX_B -
V$E2F_Q3_01 and VSSTAT6_01 - VEHMGIY_QG6 are uniquely identified as specific for
Basal-like and Normal-like, respectively.

As for the original method, I built cooperation networks based on the significant pairs where
nodes refer to TFBSs and edges to predicted pairings between them. Figure shows the
cooperation network of Luminal A subtype that consists of 33 nodes and 62 edges and
is based on the significant TFBS pairs of the original approach. By only considering the
specific pairs (using o¢ = 0.2) seven nodes and 35 edges are eliminated from the original
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Table 5.12.: Pairs that were identified as significant by the original method (&« = —1) for
different BRC-subtypes but are specific solely for a certain subtype using &« = 0.2 for the
background correction.

Specific for TFBS pairs Significant in subtypes
subtype
V$CEBPB_02 VSHMGIY_Q6 Basal-1., Luminal A, Luminal B, Normal-1.
V$ELK1_02 V$CETS1P54_01 | Basal-l., Luminal A, Luminal B, Normal-I.
. V$CEBPB_02 V$CEBP_Q2 ErbB2 over-expr., Luminal B, Normal-I.
Normal-like
VSNFKB_Q6 V$SP1_Q4_01 Luminal A, Normal.
V$EGR_Q6 V$AHRHIF_Q6 Basal-l., Normal-I.
V$GR_Q6_01 VS$PR_Q2 ErbB2 over-expr., Normal.
V$CETS1P54_01 V$SAHRHIF_Q6 Luminal A, Luminal B, Normal-I.
V$E2F_Q3_01 VS$SPEBP_Q6 Luminal A, Luminal B
VEMYCMAX_B V$SAHRHIF_Q6 Basal-1., Luminal A, Luminal B
Luminal B VSNFKB_Q6 V$E2F_Q3_01 Luminal A, Luminal B
VSNFKB_Q6 V$SAHRHIF_Q6 Luminal A, Luminal B
V$CETS1P54_01 V$CP2_02 Luminal A, Luminal B
V$CETS1P54_01 VSMYCMAX_B Basal-l., Luminal A, Luminal B, Normal-1.

network resulting in a network of 26 nodes and 27 edges. It is remarkable that the hubs
of the original network of significant pairs developed totally different in comparison to
the specific network by either maintaining a hub node, lost the property of being a hub,
or totally vanished from the network. For example, the binding sites VSCETS1P54_01,
VSMYB_Q5_01 and VSHMGIY_Q6 are still highly connected nodes in the specific coop-
eration network, although they lost some cooperation partners (neighbouring nodes). The
nodes VENFKB_Q6 and VSAHRHIF_Q6 are hub nodes in the significant pair network but
become low connected nodes in the specific network. In turn, hub node V§SP1_Q4_01 is
totally missing in the specific cooperation network. In contrast to this, VESMAD_Q6_01
lost one of it’s neighbours and appears to be one of the highly connected nodes of the new
network.
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Figure 5.6.: Number of sequence-set specific TFBS pairs for the five breast cancer
subtypes in dependence of scaling factor ¢.. (Figure from [44]])

In Figure[5.8] I show the dynamic change of the cooperation network for Basal-like subtype
in dependence of different a-values. The network of significant pairs, resulting from the
original approach, consists of 36 nodes and 68 edges. Transforming the network in a way
that it is only build up by the specific pairs (setting & = 0.2) results in the elimination of 43
edges, while the number of nodes remains the same. A further increase in & leads to a clear
reduction of network size. In example, the network of specific pairs using & = 0.5 consists
of only 25 nodes and 26 edges.

Comparing the network of Luminal A and Basal-like subtypes reveals that o has a stronger
influence on the Luminal A subtype network than on that of Basal-like subtype. A reason
for this observation might stem from a more specific transcriptional regulation in Basal-like
cells in comparison to Luminal A leading to a higher background cooperativity of TFs in
Luminal A related promoter regions.
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Figure 5.8.: Cooperation network of Basal-like significant TFBS pairs according to
the original method. The nodes represent TFBS motifs and the edges indicate a predicted
pairing between them. a) Significant pairs that are not predicted to be specific are marked
by dashed lines. The light yellow nodes represent TFBSs not present in the specific pairs.
The blue lines indicate sequence-set specific TFBS pairs using & = 0.2. b) Dashed lines
indicate specific pairs using &« = 0.5, while blue lines represent pairs predicted as specific
by setting @ = 1. (Figure from [44])
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5.2. ldentification of inter-regional associated TFs using
multivariate mutual information

In this section I present the results for the identification of associated transcription factors
between enhancer and their related promoter regions based on multivariate mutual informa-
tion measures. To achieve this, I first constructed two simulation sets in order to evaluate
and compare the performance of the different multivariate mutual information measures.
Afterwards, I compared my approach with an existing method and analyzed the sequences
of promoter-enhancer interactions (PEISs) of six different human cell lines for their underly-
ing associated transcription factor pairs.

5.2.1. Example dataset

In order to illustrate my basic idea to the reader and to get a first impression about the general
performance of the different multivariate mutual information metrics, I constructed two
small TFBS count matrices, one for enhancer and one for promoter sequences (see Figure
[5.9). One row in each matrix corresponds to an enhancer/promoter sequence, respectively,
where both sequences correspond to a certain PEI. Columns represent the TFBS names and
an entry in the matrix refers to the number of predicted PWM matches. The first four PEIs
(E1/P1,..,E4/P4) are defined as real/input PEIs, while the others are treated as background
(Elg,/Plg,...E4g/Pdg). The type of the pairing L € {I,B} is given in the vector V',
Three TFBS types are predicted in the enhancer regions (71,72 and Tg3) and three in
the promoters (7p1,7p2 and 7p3). Having three predictable binding site motifs in each,
enhancer and promoter sequence, there are in total nine pairwise enhancer-promoter TFBS
combinations.

A closer look at the count value distributions of the individual TFBSs provides hints about
their general binding behaviour in the sequence set under study and provides a first insight
about the pairwise association between two TFBSs of enhancer and promoter sequences.
In this synthetic example, the binding behaviour of Tz 1 and Tp1 appears to be associated
in the real PEIls as well as in the background set. This pair is perfectly associated in my
point of view, but it has to be pointed out that the modeled association in the background
sequences is not likely to generate with my background set. The motif pair of 72 and 7p2
is associated in the real PEIs, but not in the background set and therefore, it appears to be
the second best associated TFBS pair in this example. In contrast, 7z3 and 7p3 show an
associated behaviour that is not related to the label (input or background) of PEI and refers
to be the non-associated pair.

By assuming that the count matrices already contain the interval identifiers assigned in
Phase 5, I applied the information theoretic measures to this example. Afterwards, I nor-
malized the outcomes of the different quantities using the logarithm of the maximal alpha-
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Menh Mprom Vl ab

Tel | T2 | Tg3 Tpl | Tp2 | Tp3 L
El 1| 10] 1 Pl 2 |1 1 I
E2 1 | 10| 2 P2 2 1 | 2 I
E3 1 | 10| 3 P3 2 [ 1 | 3 I
E4 1 | 10| 4 P4 2 | 1 | 4 I
Elg, | 4 | 9 1 Ply | 9 | 2 | 1 B
B2, | 4 1 2 P2, | 9 | 3 | 2 B
B3, | 4 | 0 | 3 P3,| 9 | 4 | 3 B
B4y, | 4 | 2 | 4 Pd, | 9 | 5 | 4 B

Figure 5.9.: Example dataset: Synthetic generated TFBS-count matrices M and MP™"
and label vector V/“*. The rows of M correspond to PEIs and the columns to TFBS names
and an entry in the matrix is the frequency of predicted TFBSs in the respective sequence.
V'@ indicates the label of the interaction type (I refers to real/input PEIs, B indicates the
background).

bet size in order to reduce the influence of alphabet size and to enable a proper comparison
between the different quantities (see Table[5.13).

Using MM, the best associated pair 7p1-Tg 1 has the highest value with MMI(7x1;Tg2;L) =
1. The non-associated pair results in MIMI(7g3;7p3;L) = 0, indicating that the three vari-
ables Tg3, Tp3 and L do not contain any information about another. The second best
associated pair gets a value of MMI(7x2;Tp2;L) = 0.43 and thus, it is in the intermediate
position.

Using the JMI, I successfully identified the best associated pair as top ranking. The non-
associated pair gets a value of 0, indicating that the joint distribution of 7p3 — T3 and
the label L do not share any commonality. The second best associated pair results in
JMI(7g2,Tp2;L)=0.43 and is therefore on intermediate position of the three considered
pairs. Having a look at the other potential pairings between the TFBSs of enhancer and pro-
moter, respectively, it is remarkable that the pairs 7p3 — Tg1 and Tp1 — Tg3 show a higher
JMI(Tg, Tp; L)-value than the second best associated pair, although, the two columns do not
show any dependence of each other at all. However, both distributions highly depend on
the label vector, resulting in the high value calculated by this quantity. This in turn implies
that a dependence between the two TFBSs is not required for a high value of this quantity
as long as one or both distributions show any commonality to the label vector.

Using the CMI results in CMI(7g1; Tp1|L) = 0 for the best associated pair, indicating that
Te1 and Tp1 do not share any additional information about each other, if the label is known.
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Table 5.13.: Results of the synthetic generated count matrices. Shown are the result
values for all TFBS pairs for the joint mutual information (JMI), multivariate mutual infor-
mation (MIMI), conditional mutual information (CMI), dual total correlation (DTC) and
pairwise mutual information (I). While the first four metrics consider the TFBS distribu-
tions of Tx and 7p as well as the label L of the PEIs (input or background PEI), the pairwise
mutual information just focuses on the TFBS distributions in the input sequences, neglect-
ing the generated background. All values are normalized by the alphabet size.

TFBS TFBS JMH(TE,TP;L) MMH(TE;TP;L) CMH(TE;TP|L) DTC(TE,TP,L) ]I(TE;TP)
enhancer| promoter

Tpl Tr1 1.0 1.0 0.0 1.0 0.0
Tp2 Tr1 0.43 0.43 0.0 0.43 0.0
Tp3 Tr1 0.5 0.0 0.0 0.5 0.0
Tpl Tg2 0.43 0.43 0.0 0.43 0.0
Tp2 Tg2 0.43 0.43 0.43 0.86 0.0
Tp3 TE2 0.43 0.0 0.43 0.86 0.0
Tpl TE3 0.5 0.0 0.0 0.5 0.0
Tp2 T3 0.43 0.0 0.43 0.86 0.0
Tp3 Tr3 0.0 0.0 1.0 1.0 1.0

The non-associated pair gets the highest value by this quantity with CMI(7g3;7p3|L) = 1.
The second best associated pair results in a value of CMI(7z2;Tp2|L) = 0.43 and thus, it is
on position two in the ranking of the CMI-values. Therefore, the CMI predicts the pairs in
the reverse order.

Using the DTC results in DTC-value of one for the best as well as for the non-associated
pair. The second best associated pair gets a value of DTC(7g2,7p2,L) = 0.86 which implies
that the DTC does not reflect the order of the associated pairs.

Finally, I applied the pairwise mutual information (I) to the example dataset in order to
demonstrate the importance of the background set and consequently, the requirement of
the third variable L. For the calculation of the pairwise mutual information I(7g;7p), I
considered only the input PEIs, since this quantity offers no differentiation between the
input and the background. The I results in I(7z3;7p3) = 1.0 for the non-associated pair
and all other pairs have a value of 0, indicating that both binding sites do not offer any
information about each other. This implies that the association between two TFBSs can in
some cases only be captured by the consideration of the background set.

Summarizing my findings, the MIMI and JMI arrange the pairs in the correct order accord-
ing to their association strength.
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Table 5.14.: Inserted associated TFBSs in enhancer and promoter sequences with the
representing logoplots.

Pair TFBS enhancer TFBS promoter
1 V$NFATS5_Q5_02 ~ TCCAAA- _=_c_ V$ROAZ_01 CACCCaa TG=
2 | VSE2_01 _CAcC 0 =GaeT V$GZF1_01 TCCCEC_T<TATA
3 V$ZNF143_03 =2aCCCA=aAT_ Ca-=_ | V$IRF1_01 ~AAAA_=_AAA=-

5.2.2. Simulation datasets

For a more conscientious evaluation of the different mutual information quantities, I con-
structed a collection of simulated sequence sets in which I artificially inserted associated
TFBS pairs. In the first step, I trained two Markov chain models for the generation of syn-
thetic enhancer and promoter sequences that show a nucleotide distribution close to natural
sequences. For the generation of enhancer sequences, I trained the Markov chain model
on p300 ChIP-Seq peaks provided by ENCODE (https://www.encodeproject.org/)
of cell lines MCF7, IMR90 and K562 that do not have any overlap with known promoter
regions. The model-generated enhancer sequences have an average length of 600bp and can
vary in their length by +/-100bp. The Markov chain model for the generation of promoter
sequences has been trained on a non-overlapping set of promoter sequences of genome wide
RefSeq genes using the promoter region of -1000bp to +100bp relative to the transcription
start site (TSS). The Markov model generated promoter sequences are of length 1100 bp.
Using these models, I generated sequence sets each of which consisted of 1000 synthetic
enhancer and 1000 promoter sequences and defined the i’ promoter sequence in the set to
be paired to the i enhancer sequence.

In the next step, I inserted associated TFBSs in the sequences. In total, I chose three TFBS
pairs (see Table [5.14)) that are indicated by the names of the corresponding PWMs with
an additional index for enhancer or promoter: VSROAZ_01,,,, - VSNFAT5_Q5_02,,,
VS$GZF1_01,,,-VSE2_01,,, and VSIRF1_01,,,,-V$ZNF143_03,,,.

For each pair, I constructed a synthetic set of 1000 PEIs and only inserted one specified
TFBS pair inside the sequences of a PEI set to avoid cross effects of different pairs.

In order to bring the synthetic example in line with realistic scenarios, I incorporated the
“association strength” as an additional parameter. For this, [ defined the association strength
as the proportion of PEIs the inserted pair is important for, meaning, the fraction of promoter
and enhancer sequences in which the two TFBS motifs show a dependence in their binding
behaviour. Considering this, I assume that, in a set of PEIs, there is a certain kind of vari-
ability in the association strength of TFs on enhancer and promoter sequences. That means,
some TF pairs are important for a huge number of PEIs of the entire set and therefore, the
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TFBSs of enhancer and promoter sequences are strongly associated. However, some other
TF pairs appear to be incorporated in a minority of PEIs and thus, the association strength
of their binding site distributions is on a lower level. Addressing this point, I incorporated
the association strength as a discrete variable with three states (low, medium and high) in
my analysis where for a low association strength the pair is associated in 20% of all PEIs
and for medium and high it is important for 50% and 90% of all input PEIs, respectively (see
Table [5.15). To this end, I analyzed each of the three TFBS pairs for all three association
strength resulting in total, in nine synthetic generated input sequence sets.

Motivated by the idea that the interplay between a certain TF in enhancer and a TF in pro-
moter regions can be important for the PEI, although one or both considered TFs occur with
a low frequency, I added the parameter “TFBS frequency” in the creation of the synthetic
sets. Following this, I determined for each TFBS pair the number of single TFBS instances
per sequence for the TFBS frequency states low, medium and high. Due to the fact that a
fixed number of TFBS instances per sequence is unrealistic, I further incorporated a certain
term of variability. Thus, the number of TFBS instances per sequence is determined by the
TFBS frequency +/- the variability term whereas the TFBSs show a low variability in their
binding site behaviour in the PEIs they are associated in and a larger variability in the PEIs,
they are not associated (see Table[5.16).

To summarize, I have three different TFBS pairs each of which occurs with three different
association strength and three different TFBS frequency levels resulting in 27 synthetic
generated sequence sets under study each of which consists of 1000 PEIs.

Table 5.15.: Visualization of the different states of the ‘“‘association strength’ variable.
The yellow and the blue TFs are important for the establishment of the underlying PEIs
( ) or are not involved in the PEIs («+—). Regarding the different association strength:
for low the TF pair is important for/associated in 20% of all input PEIs, for medium in 50%
and for high in 90% of all PEIs under study.

High Medium Low
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Comparison of the different multivariate mutual information metrics For the analysis
of the 27 generated synthetic datasets, I set the parameters for the overall workflow as
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Table 5.16.: Numbers of inserted TFBS instances for each artificially inserted associ-
ated TFBS pairing. The numbers of insertions (# Motifs) varies according to the column
“Variablity” and further, the numbers differ among the PEIs the pair is important for/asso-
ciated in ( ) or not (<—).

TFBS —
fre-
quency
V$ROAZ 01 V$NFAT_Q5_01 V$ROAZ 01 V$NFAT_Q5_01
# Motifs  Variability # Motifs  Variability|| #Motifs  Variability # Motifs  Variability
Low 1 1 0 0 2 0 2 1
Medium | 3 2 1 0 5 1 4 1
High 5 3 2 2 7 1 6 1
V$GZF1_01 V$E2 01 V$GZF1_01 VS$E2_01
# Motifs  Variability # Motifs  Variability]| #Motifs  Variability # Motifs  Variability
Low 1 1 0 0 1 0 2 0
Medium | 2 1 1 1 3 0 3 0
High 3 2 2 1 7 2 6 1
VS$IRF1_01 V$ZNF143_03 VS$IRF1_01 V$ZNF143_03
# Motifs  Variability # Motifs  Variability|| #Motifs  Variability # Motifs  Variability|
Low 3 2 2 1 4 0 3 0
Medium | 3 2 2 1 7 2 6 1
High 3 3 2 1 9 3 8 2

follows: I filtered all columns in the matrix that had more than 50% of zero entries by
setting ¢t = 0.5 and I set the number of intervals, the count values were assigned into, to
g = 30. I further used a PWM-library of 166 matrices and ran the Match’¥-algorithm by
setting the parameter to minimize the number of false positive (minFP) predictions. After
applying our approach to these datasets, I determined a TFBS pair to be significant if its
mutual information value is > 0.

I applied all four different information theoretic quantities to these simulated sets and show
the number of significant pairs of the MIMI in Table It can be seen that the number
of significant pairs strongly depends on the association strength as well as on the TFBS
frequency. Considering my findings of the determination of specific intra-regional cooper-
ating TFs in the simulation dataset (see Section [5.1.2)), the different numbers of significant
pairs can be explained by the unintentional insertion of additional TFBS pairs that match
to the inserted consensus sequences as well and their frequency of occurrence depends on
the TFBS frequency and association strength constraints. The differences among the three
pairs in turn can be attributed to the number of PWMs that match to the individual consensus
sequences.
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Table 5.17.: Number of significant pairs identified by MMI for the simulation dataset
of each condition.

TFBS frequency | Association strength
Low | Medium | High
Low 3 5 12
Pair 1 Medium 6 25 70
High 34 56 106
Low 0 3 0
Pair 2 Medium 5 6 9
High 3 8 22
Low 3 5 12
Pair 3 Medium 33 55 90
High 46 65 124

Using a library of 166 PWMs, there are 27556 possible TFBS pairs between enhancer and
promoters. Table[5.18]depicts the position of the inserted pair in the ranking of the different
mutual information measures. For example, considering Pair I with a low TFBS frequency
and a low association strength, the MIMII votes Pair I on rank one indicating that it shows
the highest MIMII-value among all other potential TFBS pairs.

Application of DTC Considering the performance of DTC for Pair 1, it is high ranked
in six cases. For a low or medium TFBS frequency with a low association strength, it was not
identified at all. For a high association strength in combination with a high TFBS frequency,
it is on ranking position 13. In the analysis of Pair 2, the DTC correctly high ranks it in all
cases except for a low TFBS frequency and a low association strength, for which the pair
was not identified. For Pair 3, it is on top position in all cases.

Application of CMIl For the CMI, the performance regarding the dataset of Pair I is
quite diverse and successful for low and medium TFBS frequency combined with medium
and high association strength as well as high TFBS frequency and low and medium associ-
ation strength. Pair 2 has successfully been identified as important in all cases except for a
low association strength combined with a low and medium TFBS frequency and for a high
association strength and a medium TFBS frequency. Regarding Pair 3, it is on top in the
pair ranking for all combinations regarding a medium and high TFBS frequency.
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Table 5.18.: Results for the simulation dataset. The table gives the position of the inserted
pair in the ranking of the underlying metrics for all condition combinations. In total, there
are 27556 TFBS pairings participating in each ranking. Further, the number of intervals

was set to ¢ = 30 and the threshold for zero entries filtering was set to t = 0.5.

TFBS fre- | Association| Rank Rank Rank Rank
quency strength DTC(tg,tp,1r)| CMI(tg;tpltr) | IMI(tg,tpstr) | MMI(ig;1p;tr)
Low Low - - - -
Low Medium 1 1 1 2
Low High 1 1 1
Medium Low - - - -
Pair 1 | Medium Medium 1 1 1 1
Medium High 1 11 4 1
High Low 1 14 17 1
High Medium 1 1 14 1
High High 13 222 24 1
Low Low - - - -
Low Medium 1 1 1 6840
Low High 1 1 1 6745
Medium Low 1 324 1 1
Pair 2 | Medium Medium 1 1 1 1
Medium High 1 423 1 1
High Low 1 1 2 1
High Medium 1 1 9 1
High High 2 2 80 1
Low Low 1 767 1 1
Low Medium 1 533 1 1
Low High 1 1588 1 1
Medium Low 1 1 1 1
Pair 3 | Medium Medium 1 1 1 1
Medium High 1 3 47 1
High Low 1 1 1 1
High Medium 1 1 1 1
High High 1 1 56 1
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Application of JMI The JMI in general shows a mixed performance. Pair I was suc-
cessfully identified as most important in three cases: low TFBS frequency with medium and
high association strength and medium TFBS frequency with medium association strength.
Pair 2 was high ranked for all combinations regarding a low and medium TFBS frequency
except low TFBS frequency with low association strength. The JMI shows its best perfor-
mance in the analysis of Pair 3, where it identifies it correctly on the first position for all
combinations except medium TFBS frequency and high association strength and high TFBS
frequency with high association strength.

Application of MMI The MMI identifies Pair I as top candidate pair for all combi-
nations of TFBS frequency and association strength except low TFBS frequency with low
association strength as well as medium TFBS frequency combined with low association
strength. Considering Pair 2 for the condition of low TFBS frequency my approach was
not able to identify it as the most important one but identified it correctly in all other cases.
Regarding Pair 3, my approach successfully high-ranked the inserted pair throughout all
conditions.

To summarize, the DTC and the MMI show the best performance in the analysis of the
simulation datasets. However, regarding the first small example the performance of the
DTC was inscrutable to some degree, since it is a combination of CMI and JMI. Therefore,
I decided to use the MIMI as the preferred metric for the determination of associated TFBSs
between enhancer and promoter regions.

5.2.3. Comparision with MotifHyades

In order to compare the performance of my approach with an existing method, I applied
MotitHyades([[15]]) to the simulation datasets. MotifHyades is a probabilistic approach pub-
lished by Wong et al. in 2017, for the identification of de novo DNA motif pairs of paired
sequences that is based on expectation maximization. In its first step the algorithm identifies
DNA motifs using MEME and quantifies the discovery accuracy of motif pairs afterwards
with two performance metrics [15]]. For details please have a look at [15]. As input parame-
ter, MotifHyades requests the number of pairs to detect and thus, the user needs to know be-
forehand how many pairs are likely representative in the paired sequence set under study. In
order to increase the prediction probability for the inserted pair, I set the parameter number
of predicted pairs =2. Regarding the results of MotifHyades (see Table [5.19), it performed
in general well in most cases for a high TFBS frequency and a high association strength.
In detail, MotifHyades predicted Pair I in all cases (except low TFBS frequency and low
association strength). However, the performance of MotifHyades dramatically dropped for
the prediction of Pair 2, which has only been predicted for a medium TFBS frequency and
a high association strength as well as for a high TFBS frequency in combination with a
medium or high association strength. Pair 3 was identified for all cases of medium TFBS
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frequency as well as for low TFBS frequency with high association strength and high TFBS
frequency in combination with medium or high association strength.

Summarizing my findings, MotifHyades performs well in the prediction of motif pairs of
enhancer and promoter sequences, if the motifs occur with a high TFBS frequency and
usually if they have a high association strength.

A comparing view of MotifHyades to the MIMI results reveals that both methods are not
able to predict Pair 2 with a low TFBS frequency but perfectly predict the inserted pairs for
high TFBS frequencies and in general high association strength. In contrast to MotifHyades,
the predictions made by MMI are more reliable regarding associated TFBS pairs that have
a low or medium association strength and/or low or medium TFBS frequency.

Table 5.19.: Results of MotifHyades [15] in comparison to my approach using the MMI
for the simulation dataset of all combinations regarding the association strength and TFBS
frequency. An v’ indicates a positive prediction of the inserted pair by MotifHyades (v')
or the MIMI approach (v'), while a X represents the fail of MotifHyades (X) or the MMII-
approach (X).

Association strength | TFBS frequency | Pair 1 | Pair 2 | Pair 3
Low Low XX XX XV
Low Med a4 XX v
Low High v 7 XX XV
Med Low &4 XV XV
Med Med vV Xv vV
Med High vV vV vV
High Low a4 Xv vV
High Med s vV vV
High High a4 vV vV

5.2.4. Comparative analysis of six human cell lines

Dataset I applied my method to six different human ENCODE cell lines: IMR90 (fe-
tal lung fibroblasts), K562 (leukemia mesoderm-lineage cells), GM12878 (lymphoblas-
toid cells), HUVEC (umbilical vein endothelial cells), NHEK (epidermal keratinocytes)
and HelaS3 (cervical cancer ectoderm-lineage cells ). Enhancer and promoter regions
as well as their related PEIs for each cell line were taken from Whalen et al. [73]. In
their study, Whalen et al. identified active enhancers and promoters using segmentation-
based annotations, Roadmap Epigenomics and expression data from ENCODE (https:
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//www.encodeproject.org/). The interactions between enhancers and promoters have
been detected by Hi-C experiments [73, (74} 73]

Table 5.20.: Number of enhancers, promoters and PEIs for the different cell lines. The
numbers reveal that enhancer as well as promoters can participate in more than one PEI
(n:m relation).

GM12878 | HeLaS3 | HUVEC | IMRY90 | K562 | NHEK
Enhancer 1932 1607 1390 1212 1742 1217
Promoter 736 474 562 422 619 304
PEIs 2113 1740 1524 1254 1977 1291

The numbers of enhancers, promoters and their interactions for each cell line are given
in Table where the number of enhancer sequences is about three times larger than
that of the corresponding promoter sequences. In turn, the number of PEIs in a tissue is
slightly larger than the number of enhancers, indicating that one promoter is paired with
several enhancers and one enhancer is usually paired with one promoter but can also be
paired to several promoter regions. The complexity of this n:m relation between enhancer
and promoter regarding their pairing behaviour is exemplarily illustrated in Figure [5.10] as
a network where red nodes correspond to promoters and green nodes to enhancer regions.
The network consists of several unlinked sub-networks of different sizes some of them
representing exclusive pairs of one enhancer and one promoter while some others form
clusters of several enhancers and one promoter as centering node. Further, there are some
larger sub-networks where additionally some enhancers are linked to several promoters.
Independent of the tissue, the enhancer sequences are on average several hundreds base
pairs in length. In turn the promoter sequences have on average a length of one to three
thousand base pairs. Only IMR90 and NHEK have promoter sequences with an average
length around 500 bps (see Table[5.21).

Table 5.21.: Average length of promoter and enhancer sequences for each cell line.

Average sequence length (in bp)
GM12878 | HeLaS3 | HUVEC | IMR90 | K562 | NHEK
Enhancer 551 473 883 414 369 432
Promoter 2961 1411 2110 451 2380 511

The sequence length distribution of enhancer and promoter sequences is exemplarily shown
in Figure [5.11] for cell line K562. Most of the enhancer sequences are of short length and


https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.encodeproject.org/

Identification of inter-regional associated TFs 98

I:I 4 Promoter sequence

WA Enhancer sequence

-_—-

wes | — Interaction between
—— W= enhancer and
-—a— = promoter

I< -~
= i I

S

Figure 5.10.: PEI sub-network, exemplarily taken from the K562 PEI-network. This
extraction consists of 160 nodes (116 enhancer and 44 promoter nodes) and 183 edges
referring to PEIs and visualizes the n : m relation relation between enhancer and promoter
regions.

only a few outliers exhibit a similar length as most of the promoters. The length distribution
of promoter sequences in contrast resembles a poissan distribution with maximum at about
2000 bps in length.

MMI results I applied my method for the detection of associated TFBS pairs in enhancer
and their related promoter sequences based on multivariate mutual information (MMI) to
the six cell lines and determined a TFBS pair to be significant if its MIMI-value is positive.

Table 5.22.: Summary of the identified inter-regional TFBS pairs using MMI for the
different cell lines. Shown are the number of TFBS pairs as well as the numbers of unique
TFBSs of enhancer and promoter regions that are involved in the predicted TFBS pairs.

GM12878 | HeLaS3 | HUVEC | IMR90 | K562 | NHEK
TFBSs promoter 21 19 59 1 38 2
TFBSs enhancer 19 16 40 1 19 2
TFBS pairs 53 39 217 1 95 2

The number of significant TFBS pairs ranges from one (IMR90) to 217 (HUVEC) signifi-
cant TFBS pairs (see Table[5.22).
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Figure 5.11.: Length distribution of enhancer and promoter sequences for K562 cell
line.

Figure [5.12] shows the number of unique and overlapping TFBSs participating in pairs for
enhancer as well as promoter sequences.

Regarding the TFBSs of promoter sequences: 17 unique TFBSs were predicted for cell
line HUVEC, six for the cell line K562 and three unique TFBSs for GM12878. There are
seven TFBSs that appear to be important in the promoter sequences of cell lines HeL.aS3,
GM12878, K562 and HUVEC. However, there is no pair identified as important in all cell

lines (see Figure[5.12)).

Regarding the TFBSs of enhancer sequences, there are 20 unique TFBSs for cell line HU-
VEC and four unique TFBSs for cell line K562, whereas the other cell lines do not show
any unique TFBSs. Five TFBSs overlap between HeLaS3, GM12878, K562 and HUVEC,
but there are no overlapping TFBSs between all cell lines (see Figure[5.12).

In contrast to the single TFBSs that build up the pairs, the distribution of overlapping and
unique TFBS pairs looks rather different (see Figure [5.13). Most of the pairs are unique
for a specific cell line, i.e. 199 pairs are unique for cell line HUVEC and all the pairs
determined as significant in IMR90 and NHEK are unique for that cell line. The largest
number of overlapping pairs is between GM 12878 and HeL.aS2 with six joint TFBS pairs.
However, there is no pair that has been predicted as significant in all cell lines (see Figure

B.13).
For each cell line, the number of single TFBSs participating in pairs is smaller than the
number of pairs itself. A closer look at the TFBS pairs itself reveals that some TFBSs are
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Figure 5.12.: Number of unique and overlapping single TFBSs participating in sig-
nificant pairs of the different cell lines for a) promoter and b) enhancer sequences, rep-
resented in matrix layouts using UpSet technique [72]. In the matrix layout, dark circles
indicate the tissues that are part of the intersection.
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involved in a multitude of different pairs while some others are involved in one or a few
TFBS pairings, indicating that the resulting cooperation network is scale-free (see Figure
[5.14). Table[5.23]|shows for each cell line the highly associated TFBSs participating in many
pairs. It can be seen that most of these TFBSs are specific for the corresponding cell line
and there is only a small overlap among the highly associated TFBSs in promoter regions.

Degree

Figure 5.14.: Degree distribution of nodes of the K562 cooperation network presented
in linear and logarithmic (small plot) scale. The degree distribution can be fit to a power
law distribution (red line) indicating that the network is scale-free.

These findings indicate that the differentiation between the lines is more difficult on the
level of single TFBSs but quite obvious on the pair level.

Table 5.23.: Highly associated TFBSs of the identified inter-regional TFBS pairs for
the different cell lines. Repeated occurring TFBSs are highlighted by background color.
(For cell lines IMR90 and NHEC the determination of hub nodes is not possible due to its
negligible small number of pairs.)

GM12878 HeLaS3 HUVEC IMR90 K562 NHEK
VSIPFI_QS5 | V$TTF1_Q5_01 V$MAF_Q6_01 V$YY1_Q6_03
V$RFX1_01 VSMAFA_Q4 V$EBOX_Q6_01 V$CREBPI1_01
Enhancer V$P53DECAMER_Q2
VS$SF1_Q5
VS$LUNI1_01 VSMEF2A_Q6 VSMRF2_01 VS$LUNI1_01
VSMEF2A_Q6 VS$ING4_01 V$BBX_03 V$ERALPHA_01
Promoter V$MEF2_03 V$HNF1_Q6_01
V$SREBP_Q6 VSMEF2_03

Having a more detailed look at the highly associated TFBSs reveals that VSLUNI1_0l,




103

bound by topoisomerase I binding arginine-serine-rich SUMO ligase (TOPORS), is highly
important for promoter binding in cell line GM12878 (lymphoblastoid cells) and cell line
K562 (leukemia mesoderm-lineage cells). TOPORS mediates protein ubiquitination, is in-
volved in cell cycle regulation, inhibits cell proliferation [76} [77, [78) (79, [80] and is as-
sociated with promyelocytic leukemia [76]. Further, VSMEF2_03 bound by the myocyte
enhancer factor 2A (MEF2A), appears to play an important role for GM12878 and K562
and is known to be involved in mitochondrial organization, cardiac myofibril assembly as
well as synaptic plasticity [81} 182} [83| 184, [85] 186, |87]] and skeletal muscle differentiation
[88]. The factor belongs to the MEF2-family that is in general known to be important for
differentiation and morphogenesis [88]]. Target genes of MEF2A are enriched in cell lines
GM12878 and K562 [88l,89].

Biological evaluation of K562 significant TFBS pairs I chose cell line K562 to conduct
a more detailed biological evaluation of my results. The cell line has been derived in the
1970s from a female patient with chronic myelogenous leukemia (CML) [90]. For this
cell line I depict the TFBS association network in Figure by enabling a differentiation
between enhancer and promoter related TFBSs by color.

Regarding the enhancer TFBSs of K562 significant pairs, the most frequently TFBS was
V$YY1_Q6_03 that is bound by factor Yin Yang 1 (YY1). This factor is known to be in-
volved in the regulation of Notch-singnaling as well as in the transition of G2-M phase in the
cell cycle. It is further linked to adipogeness, B-cell differentiation and neutrophil apoptosis
[911 192,193, 194]. YY1 has been identified as an oncogene in a multitude of cancers and is
over-expressed in acute and CML [95,196,97]]. YY1 has been detected to contribute to struc-
tural interactions between promoter and enhancer regions in a similar way to CTCF protein
[98] and in order to fulfill its regulatory functionality, it is known to bind to enhancer regions
[951198]] as well as to super enhancers [99]]. Another conspicuous enhancer binding site mo-
tif is VSCREBP1_01 that is bound by the activation factor 2 (ATF2). ATF2 is an histone
acetyltransferase which is acting in calcium-mediated signaling, DNA repair and immune
response [100} 101 102, 103} (104 [105]. ATF2 has been detected to upregulate Fas/FasL
in CML and in turn, the over-expression of Fas/FasL has been identified as a molecular
commonality of these tumor cells [106]. The binding of ATF2 to enhancer elements has
for example been detected at the interferon-f3 enhancer [107]. VSFAC1_01 bound by bro-
modomain PHD finger transcription factor (BPTF or FAC1) participates in total in seven
significant pairs of cell line K562, among which three pairs belong to the top ten pairs (see
Table [5.24). FAC1 acts as an nucleosome dependent ATPase that stimulates cell prolifera-
tion and acts as an chromatin remodeling enzyme [108} 109, [110, 111,112, [113/[114]]. The
most prominent function of BPTF is that it loosens the chromatine structure and thus, en-
ables the DNA accessibility for other proteins. In this way, it is involved in the maintenance
and differentiation of mammary gland stem cells, melanocytes and T-cells. Mutations of
BPTF are associated with less accessibility of enhancer and promoter regions of genes that
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are involved in the maintenance of adult hematopoietic stem/progenitor cells and in the acti-
vation of gene regulatory programs for hematopoietic stem cell functions [115]]. In general,
the chromatin structure plays an essential role in gene regulation and mutations in proteins
involved in the remodeling of chromatin structure are often associated with different cancer

types.

Regarding the promoter TFBSs, VSHNF1_Q6_01 bound by HNF1A is highly represented.
The factor is an transcriptional activator that functions in insulin secretion and fatty acid
transport [[116} 117, (118} 119} 120} [121]].
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Figure 5.15.: TFBS association network between enhancer and promoter regions for
cell line K562. The nodes represent TFBSs predicted in enhancer (green) and promoter
(red) regions. An edge represents the identified association between the binding site distri-
butions of the underlying factors. For a further differentiation, the PWM names are extended
with “_e” for predicted in enhancer and “_p” for predicted in promoter region.

V$P53_DECAMER_Q2 bound by tumor protein p53 (TP53) appears to be a highly associ-
ated TFBS in promoter sequences, since it is associated to four different enhancer TFBSs.
TP53 is involved in regulatory processes of cell cycle arrest, apoptosis, senescence, DNA
repair and keratinocyte differentiation [94, (122 [123] [1241 [125] 126/ (127} [128]] and is incor-
porated in acute myeloid leukemia [129,[130]] as well as adult acute lymphoblastic leukemia
[131]. A mutation in TP53 gene was identified for cell line K562 [[132, [133]].
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Table 5.24.: Top ten associated TFBS pairs for cell line K562. The first column gives the
TFBS pair and the second column the number of PEIs the two TFBSs are simultaneously

present.

TFBS promoter - TFBS enhancer | Number of PEIs
VSLUNI1_01 - VS$FAC1_01 788
VSMEF2A_Q6 - VS$FAC1_01 812
VSMEF2A_Q6 - V8YY1_Q6_03 720
VSLUNI1_01 - VS$IK_Q5 1390
VS$HNF1_Q6_01 - VSCREBPI1_01 947
V$HNF1_Q6_01 - VS$FAC1_01 924
VSMAZ_Q6_01 - VSIK_Q5 839
VSLUNI1_01 - VS$TTF1_Q5_01 772
VSLUNI1_01 - V$YY1_Q6_03 683
V$ERALPHA 01 - VS$FAC1_01 910

Finally, my findings indicate that many of the TFBSs in enhancer and promoter regions
are related to transcription factors that are in some way involved in cancer in general or in
leukemia whereas some have already been described to be involved in CML.
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5.3. ldentification of inter- and intra-regional cooperating TFs in
the context of inflammatory response in lung tissue

In this section, I applied the pointwise mutual information approach for the identification
of intra-cooperating TFs as well as the multivariate mutual information based approach for
the identification of intra-regional TF-cooperations to the same dataset, in order to demon-
strate the mutual complementarity of the two methods. For this aim I chose a data set
provided by the ExITox project. The ExITox project (FKZ 031L0120C) investigates the
molecular changes in lung tissue in response to the inhalation of toxic substances (see
http://genexplain.com/exitox-1ii/|for details). The underlying data set comprises
36 differentially expressed genes (DEGs) in response to butanol exposure.

For each gene, I took the promoter region -1000bp to +100bp relative to the TSS as promoter
sequence under study. Further, I determined the potentially regulating enhancer regions for
each gene by taking all enhancer regions provided by ENCODE that have a distance of at
most 2 Mbp up- or downstream from the TSS of the gene and which have a length of at least
300bps. In total, I identified 1036 enhancer regions that take part in 2212 promoter-enhancer
interactions (PEIs).

I applied my approach for the identification of intra-regional sequence-set specific TF coop-
erations to the enhancer sequences and to the set of promoter sequences, respectively. Fur-
ther, I determined all potential inter-regional TFBS associations in the entire PEI sequence-
set using the second approach. Finally, I end up with three TF cooperation networks, each
for one analysis and summarized the networks in Table [5.25]

Table 5.25.: Summary of the cooperation networks based on the intra- and inter-
regional analyses. The edges refer to identified cooperations and the nodes to the TFBSs.
For the inter-regional cooperation network, I further distinguished between TFBSs in en-
hancer (enh.) and promoter (prom.) sequences.

Intra-regional Inter-regional
Promoters | Enhancers PEIs
Edges 36 44 170
Nodes 30 25 126 (51 enh. and 75 prom.)
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In order to evaluate the performance of the approaches in the biological perspective, I deter-
mined the hub nodes for each TF cooperation network (see Table [5.26) and analyzed them
according to their biological function by paying special attention to inflammatory processes
in the lung.

Table 5.26.: Hub nodes for the inter-and intra regional cooperating TFBS network.
The identified inter-regional hub nodes stem from the same network but are classified in
enhancer and promoter TFBSs. The intra-regional hubs are taken from the network of
enhancer and promoter sequence analysis, respectively.

Intra-regional Inter-regional
TFBS promoter | TFBS enhancer TFBS promoter TFBS enhancer
V$BRCA_01 V$CTF_01 V$NF1_Q6 V$AP1_Q6_02
VS$PAX_Q6 V$GKLF_Q4 VS$MEF2A_Q6 V$MAF_Q6_01
V$CTF_01 V$BEN_01 V$P53DECAMER_Q2 | VSMUSCLEINI_B
V$SRY_Q6 V$DMRT4_01 VS$ETS_Q6
V$CHCH_01 VSMAFA_Q4

In the analysis for the identification of intra-regional TF cooperations specific for the pro-
moter sequences, the most frequently represented TFBSs are VSBRCA_01, VSPAX_Q6
and VSCTF_01. V$BRCA_O01 is bound by transcription factor BRCA1 that is involved in
apoptosis and heat shock response [134,[135]]. VSPAX_Q6 is bound by paired box transcrip-
tion factors such as PAX1 and PAXS that are both involved in the immune system [[136}[137]]
and PAX2 which acts in cell proliferation and antiapoptosis [138} 139, 140, 141} [142].
V$CTF_01 is bound by factors of the SMAD-family whose members act in response to
TGF-p, a cytokine, involved in fibrotic processes [143]].

Regarding the identified intra-regional enhancer sequence-set specific TF cooperation net-
work, one highly connected node is VSGKLF_Q4, which is bound by Kriippel-like factor
4 (KLF4), a factor that induces inflammation and apoptosis [[144} 145,146, 147, [148, 149,
150] and has been identified to attenuate lung fibrosis [151]].

For the network of inter-regional TF cooperations, I differentiated between hub nodes that
are related to TFBSs in enhancer and those in promoter sequences. Regarding the TFBSs
in the promoter regions, VSNF1_Q6 is highly connected. VSNF1_Q6 is bound by factors
such as NFIA and NFIB. NFIA acts in Notch signalling [152] and is linked to asthma
plus rhinitis phenotype [153]], whereas NFIB is involved in small cell lung cancer [[154].
Another important binding site is VSMEF2A_Q6 bound by MEF2A, a factor upregulated
in small-cell lung carcinoma [155]]. The related factor MEF2D, which has a nearly identical
DNA-binding domain and therefore an identical or very similar DNA-binding specificity,
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has been identified to be upregulated in lung inflammation and the resulting development of
lung cancer [155]].

Regarding the highly connected TFBSs in the enhancer sequences, VSAP1_Q6_02 is a
highly connected node. V$AP1_Q6_02 is bound by AP1 which might be activated by the
development of oxidant/antioxidant imbalance in lung inflammation [[156]] and the inhibi-
tion of AP1 leads to the attenuation of lung inflammation [157]. Another highly connected
binding site is VSMAF_QG6_01 that is bound by MAF, a factor involved in toll-like receptor
signaling and is also involved in immunity [[158 159, 160, 161 [162]. Further, the binding
site VSETS_Q6 is bound by ETS1 or ETS2. While ETS1 acts in apoptosis and cytokine
secretion, ETS2 has been identified as a putative biomarker for progression of chronic ob-
structive pulmonary disease [163]].

Table 5.27.: TFBSs identified in the analysis for inter-regional and intra-regional TF
cooperations.

TFBSs promoter | TFBSs enhancer
V$CHCH_01 V$BRCA_01
V$SOX10_Q6_01 | VSSMAD4_Q6_01
V$HOXC13_01 VS$LEF1_Q5_01
V$CPBP_Q6 V$PAX_Q6
V$BRCA_01 VS$IK_Q5
V$CMYB_Q5 V$SRY_Q6

VS$IK_Q5
V$PAX_Q6
V$CEBPA_Q6
V$HDX 01
V$AP1_Q6_02
VS$ING4_01
V$CTF_01
V$CDPCR1_01

There are several TFBSs involved in identified pairs of the inter- and intra-regional TF co-
operation analysis. These TFBSs act as linking nodes between the inter-and intra-regional
cooperation networks (see Figure and Table [5.27). One of these linking TFBSs is
V$CPBP_Q6 that is bound by KLF6, a factor involved in the activation of TGF-f in the
cellular response to the human respiratory syncytial virus [164]. Another linking TFBS is
V$CMYB_Q5 bound by v-MYB which is among others involved in idiopathic pulmonary
fibrosis [163]]. Further, binding site VSING4_01 is bound by ING4 which is involved in cell
proliferation and apoptosis and in lung carcinomas [166} [167]. Finally, VSCDPCR1_01
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bound by CUX1 appears to be a linking node between inter-and intra-regional TF coopera-
tion networks. CUX1 acts in lung development, immune response and is downregulated in
interstitial fibrosis [[168), (169, 170, (171} (172} [173]].

The complementary usage of the two approaches provides a more extensive insight in the
underlying regulatory mechanisms in the cell, in contrast to the single analyses by joining
the underlying TF cooperation networks. Thereby, TFs not conspicuous in the single anal-
ysis excel as linking nodes between the corresponding networks and, thus, can be identified
as important factors in the regulatory processes of inflammatory response in the cell.






6. Discussion

In this chapter, I will discuss the methods established in this thesis as well as the corre-
sponding results. First of all I will discuss the determination of intra-regional cooperating
transcription factors based on the co-occurrence of their binding sites by using pointwise
mutual information. Second, I will consider the identification of associated TFBSs between
enhancers and their related promoters, referred to as inter-regional cooperations, by using
and comparing different multivariate mutual information measures. In the last section of
the chapter, I will discuss the complementary usage of these two applications based on the
analyzed inflammation linked gene set.

6.1. Pointwise mutual information in the context of intra-regional
cooperating TF identification

The pointwise mutual information (PMI) is an important measure in linguistics for the iden-
tification of word associations [41]] as well as for document summarizing processes [42]. In
their study, Bouma et al. [41] used the PMI for the identification of word collocations in
documents that share a certain kind of idiosyncrasy in their linguistic distribution. In turn,
Aji S et al. [42] used PMI for document summarizing processes. Thereby, they constructed
a term-sentence matrix and identified important words for each sentence using PMI un-
der the consideration of the entire distributions of words and sentences in the document.
Inspired by these two studies, I adopted the PMI from the field of linguistics to the field
of bioinformatics in order to identify collaborating TFs based on the co-occurrence of their
binding sites as well as important single binding sites for a certain sequence in consideration
of the entire sequence set. Thereby, I considered a sequence set as a document, sequences
of this set as sentences and transcription factor binding sites (TFBSs) as words in these
sentences.

In higher organisms, the interplay between TFs is usually more important for a proper gene
regulation than the single factor itself. In order to collaborate with each other, the fac-
tors form non-random combinations of dimers or high order complexes and the underlying
binding sites of the factors appear to be located next to each other on DNA. Thus, as con-
firmed in a multitude of studies [2, 3], 4, |5, 16, [7, |9}, [10, [174], the distribution of TFBSs in
a set of regulatory sequences offers information about which factors are cooperating with
each other. Therefore, the aim of this study was to identify cooperating TFs based on their
binding sites. However, the computational prediction of TFBSs suffers from false positive
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predictions. Further, there are some TFBSs that are highly over-represented and can be con-
sidered as a kind of punctuation marks or stop words like "a", "the", "of". These words are
important for the grammatical structure of the sentence but do not provide any information
about the general meaning of the sentence. Some other TFBSs are highly underrepresented
like nouns that occur just one or a few times in the whole text. The filtering of these highly
over- or underrepresented TFBSs was a challenging task of this study and was carried out
in phase 1 and phase 2 of the algorithm (see Section . 1.T].

Further, some predicted binding sites of the same type tend to overlap with each other and
can be interpreted as redundant words in the context of linguistics that do not provide any
further information to a sentence under study. However, by considering all these binding
sites despite their overlap would result in an overestimation of these sites. Therefore, the fil-
tering of these overlapping factors is crucial to avoid this overestimation and was conducted
in phase 3 of the algorithm (see Section 4. 1.1)).

Since my approach deals with the recognition of significant co-occurring TFBSs, I have to
define TFBS pairs according to their localization on DNA. A well accepted approach is the
definition of pairs according to the distance of the binding sites. For this aim, two distance
constraints are well accepted: i) the determination of the preferred distances [2, 16]]; ii) pre-
defined minimal and maximal distance thresholds [8, (13} [175]]. In this study, I constructed
pairs by using predefined minimal and maximal distances as suggested by Hu et al. [8].
However, Hu et al. determined the distance between two TEFBSs as the difference between
the last nucleotide of the first TFBS and the first nucleotide of the second TFBS [8]]. I did
not follow this distance definition, since I allowed a certain kind of overlap between bind-
ing sites that would result in negative distances. Further, the borders of TFBSs predicted
by PWMs are fuzzy and a distance definition based on the borders is not convincing. Ad-
dressing these points, I defined the distance of two TFBSs as the distance of their centers.

I used the average product correction (APC) theorem for a further elimination of noise
arising from false positive TFBS predictions. The APC-theorem was proposed by Dunn et
al. [48] for the estimation of noise of residue positions in multiple sequence alignments
based on information theory. Since the approach is universally applicable for similar data
structures, I applied it to estimate the background PMI,.(#4,#5)-values for a pair of TFBSs
t, and 1, in consideration of the sequence set under study. Afterwards, I subtracted the
background PMI, (t4,1p)-values from the observed PMI.-values in order to separate noise
from signal arising from functional collaborations. The resulting signal PMI,.-values were
later used for the following determination of significant pairs.

In order to demonstrate the performance of the method, I constructed a synthetic sequence
set where I inserted a TFBS pair that has been successfully identified by my method. I fur-
ther performed a comparison study of my approach with existing methods. It turned out that
all methods identified different sets of TFBS pairs as important and showed only a small
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number of overlapping pairs. This indicates the different biological and computational con-
siderations and assumptions made, regarding the interaction of TFBSs in the development
of the different methods. However, all methods showed a similar performance in the sta-
tistical evaluation. These findings are supported by Klepper et al. [176] in his comparison
study of several TFBS pair detecting methods in which no method performed remarkably
better than the other. In order to depict a broad spectrum of important TFBS pairings, 1
recommend to use all methods together.

For a biological evaluation of the new method, I applied it to a genome wide set as well
as on a breast cancer gene set. In both analyses, the underlying transcription factor inter-
actions of 44 significant TFBSs pairs out of all significant pairs were confirmed by exper-
imental findings reported in literature. There are 10 and 20 pairs determined as significant
in the whole genome as well as in the breast cancer gene set analysis that have not yet
been experimentally validated. Three of these pairs (VSCETS1P54_01-VSMYCMAX_B,
V$CP2_01-V$SF1_Q6 and V$SOX9_B1-VS$STAT6_01) are significant in both analyses.
As described in [[177] a general reason for the significant co-occurrence of the unconfirmed
pairs can be that they do not interact directly and physically, but indirectly through an addi-
tional co-factor. A further reason is the lack of experiments for these specific protein-protein
interactions.

As suggested by Hu et al. [8]], I performed the analysis using different distance constraints
for the TFBS pair construction. The results revealed that there is still a certain kind of
overlap between the significant pairs of different distance constraints, indicating the robust-
ness and consistence of the results obtained by the method. Based on the significant pairs,
I constructed collaboration networks for each input sequence set under study (see Figures
[5.1]and [5.2)) in order to explain the potential biological functions of the TFBS pairs and to
explain the preferred binding behaviour of these factors. In agreement to Hu et al. [8] the
collaboration networks split into two unconnected subgraphs, where one subgraph shares
more AT-rich binding sites as GC-rich binding sites and vice versa. These findings indicate
that the general collaboration network of TFs is split into two major groups based on their
binding behaviour.

In order to overcome the influence of false positive predictions to some extent, I applied the
average product correction (APC) theorem in my study for the determination of background
co-occurrences resulting from false positive predictions. However, the results revealed that
there is a strong overlap between the significant pairs of the individual sequence sets, in-
dicating that the power and functionality of the APC theorem is insufficient to handle the
remaining obstacles for the identification of sequence-set specific TF cooperations. Thus,
I extended the original method in order to separate the significant pairs into sequence set
specific and common/general important ones by creating background sequence sets based
on shuffling the original sequences using uShuffle-algorithm(36]. Thereby, the general nu-
cleotide composition as well as the core of TFBSs is maintained by setting the k-mers size
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to k=3. The influence of parameter k is as follows: the level of subtracted background co-
occurrences decreases/increases with k. Thus, enlarging & leads to an increased background
level while the reduction of & is followed by a reduced background level.

The parameter ¢ is used for linear scaling of the subtracted background level and thus, to
reduce or enlarge its effect on the original PM,-values. Setting o¢ = O results in the subtrac-
tion of the AV G(PMI(z,;1,))-value itself, while for oc = 1 the doubled AV G(PMI(z,;1))-
value is used for the identification of sequence set specific pairs. An o = —1 results in
the original significant pair analysis without the determination of specific pairs. Although
the parameter « linearly influences the level of subtracted background co-occurrences, its
effect on the number of significant pairs appeared not to be linear. However, the effect of
a strongly differed between the individual sequence sets and seemed to be sequence set
specific.

For a biological evaluation, I performed a comparison study of the original significant pairs
and the specific pairs identified in the extension approach for five breast cancer subtype
related gene sets. Eight pairs have been determined to be significant throughout all breast
cancer subtypes, whereas, in turn no specific pairs have been identified in the extended ap-
proach indicating that the extension successfully separates specific TFBS pairs from com-
mon ones. Further, the resulting collaboration networks changed their structure according
to a. Thereby, some hub nodes in the original collaboration networks kept their property of
being a hub, some others lose a majority of their interacting partners and were afterwards
only of low degree in the collaboration network of specific pairs whereas some other nodes
became hubs in the new network.
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6.2. Multivariate mutual information in the context of
inter-regional cooperating TFs

The ability for the interaction of two gene regulatory regions, like enhancer and promoter
regions, is formed by the transcription factors binding to these regions. Thereby, some tran-
scription factors are more important for this interaction than others and stay in association
with other factors on the pairing DNA region. Thereby, the binding behaviour and thus,
the binding site distributions are associated with each other. I tried to measure the level
of dependence using different mutual information metrics that consider three random vari-
ables. The third random variable provides information about the origin of the underlying
data since I created a background sequence set. This background sequence set is required
to decrease the effect of false positive TFBS predictions that can lead to false positive asso-
ciations between two TFBSs. Thereby, noise is separated from the signal arising from real
TFBS associations. The background sequences are created using uShuffle [36] algorithm

that keeps the general nucleotide composition as well as the frequency of k-mers in the input
sequences. I evaluated the performance of the MMI for different k. It turned out that the
performance for k € {1,2} appeared to be continuously of high quality. However, this can
be explained by the fact that some binding sites did not occur in the background sequences
and the pairs are thus high ranked due to the lack of their corresponding binding sites in
the background sequences. In turn, k € {4,5} kept the sequences too similar to the original
ones and no differences in the binding sites counts could be determined. Following these
findings, I kept k = 3 (as I did in the extended version of my fist approach) enabling that
TFBSs still occur in the background sequences but the count value distributions differ from
those of the original input sequences if their binding sites have any biological importance.

In order to avoid the correlation of TFBSs due to zero count values on both sides, I filtered
all TFBSs that have more than 50% zero entries in the input sequence set.

For the purpose of a proper comparison between the count value distributions of the TF-
BSs, I first normalized all count values and, second, assigned them to predefined intervals.
As normalization strategy, I chose the min-max normalization using global minimum and
global maximum count values. Using the column minimum/maximum led to a poisson
distribution of the normalized count values in the range between zero and one, and thereby,
complicating the differentiation between the individual distributions. Using the global mini-
mum/maximum relocated the original count value distribution to the range between zero and
one and kept the original distribution properties. After the normalization of count values,
the count values were assigned to ¢+ 1 intervals where ¢ intervals are equally distributed in
[0,1] and one additional interval. All values of zero are assigned to this additional interval
in order to differentiate between a low number count and the non existence of this binding
site in a sequence.



Multivariate mutual information to identify inter-regional cooperating TFs 118

I performed a comparative study between four different mutual information measures re-
garding three random variables: dual total correlation (DTC), conditional mutual infor-
mation (CMI), joint mutual information (JMI) and the multivariate mutual information
(MIMI). The definitions of the different measures are given in Chapter |3} For this, I gen-
erated synthetic paired sequence sets and inserted three TFBS pairs in these sets by con-
structing different conditions regarding the TFBS frequency and the association strength of
each pair. Although the CMI performed well in most cases for the synthetic sequence set, it
performed poorly in the small starting example. It turned out that CMI is not able to predict
perfect associated pairs, if the information of the label does not offer additional information.
The JMI performed well in most cases for both sets. However, it high-ranks some pairs that
do not show any association with each other, but one binding site distribution is somehow
in dependence on the label distribution (see TFBS pair Tg| — Tp3 in Table . The MIMI
and DTC clearly outperformed the other two measures. Although the DTC consistently
identified the inserted pair, a closer look to its predictions revealed that its results strongly
depend on the distribution of just one TFBS binding site. Since the DTC is build of the
CMI and the JMI its prediction performance is not reliable and binding sites ranked high
that do not show any association linked to the origin of the data (input and background set).
Therefore, I stayed with the MIMI for further analysis of real biological data.

In order to evaluate my method, I compared its performance with MotifHyades [15], a
tool published by Wong in 2017. It turned out that MotifHyades performed quite well
on the synthetic sequence sets. However, for low numbers of TFBSs or low association
strength of the TFBS pairs, MotifHyades performed poorly and the MIMI-approach clearly
outperformed it. As explained by Hu, the algorithm has been developed for predicting
statistically significant over-represented TFBS pairs of enhancer and promoter sequences.
Thus, low associated pairs are not targeted.

I decided to go without a statistical analysis which would be based on data bases like Bi-
oGRID, TransCOMPEL or STRING, since this approach is not targeting the direct physical
interaction between two transcription factors. It is much more likely that the cooperation is
mediated by other factors such as co-factors. Exceeding the definition of true interactions in
a way that direct as well as third-party interactions are included would lead to the fact that
every factor can interact with every other factor throughout some highly connected factors
such as EP300. Consequently, such a statistical analysis would not be meaningful.

I analyzed known promoter enhancer interactions based on ChIA-PET data of six human
cell lines in order to determine the transcription factors that play important roles for the
formation of these interactions. It turned out that the single TFBSs forming the identified
pairs show a huge overlap between the different cell lines. In contrast, the overlap of the
determined TFBS pairs themselves appears to be rather small suggesting that the differences
in gene regulation are more on the level of paired transcription factor interactions than on
the single factors. This finding is in consideration with that of my first approach where the
overlap between the intra-regional TF cooperations was much higher than that of the single
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binding sites themselves. Thus, both results support the hyopthesis that single TFs and their
binding sites are re-used for different purposes, e.g. cellular contexts and, consequently, a
flexible and specific gene regulation is mainly based on the combinatorial binding of TFs.

As exemplarily shown for cell line K562, the degree distribution of the nodes follows a
power-law distribution, and thus, the network is scale-free. This, in turn, reveals that some
TFs participating in many pairings and are represented as hub nodes in the network while
the majority of TFs is only involved in a few pairings. Consequently, some TFs are of
major importance for the regulation of the underlying gene set but have to cooperate with
other factors in order to fulfill their regulatory functions. These highly interacting TFs are
presented as hubs in the underlying cooperation networks. The biological evaluation of
theses factors showed that some of them have already been linked to the analyzed cell lines
or their corresponding phenotypes (i.e. leukemia).

Comparing the hub nodes of the different cell lines reveals that there are no overlapping
hubs representing enhancer TFs. In turn, there are two transcription factors identified in
promoter sequences the binding sites of which represent hub nodes in at least two cell lines:
TOPORS and MEF2A. Members of the MEF2A family are known to be involved in the
upregulation of genes in cell lines K562 and GM 12878 [88,189]. TOPORS in turn is known
to be involved in promyelocytic leukemia [76].

A biological evaluation of the identified associated TFBS pairs for cell line K562 (a chronic
myeloid leukemia (CML) cell line) points out that i.e. the identified transcription factors
YY1 and ATF2 are both known to be involved in CML and are enhancer binding factors
[95, 196 97,198, [106].
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6.3. Complementarity of PMI and MMI in a biological
application

I demonstrated the complementarity of the two approaches based on a differentially ex-
pressed gene set that is linked to the inflammatory response in lung tissue. For this data
set, I applied the first approach in order to determine sequence-set specific intra-regional TF
cooperations of enhancer and promoter sequences, respectively. I further identified inter-
regional TF cooperations for the underlying promoter-enhancer interactions using the sec-
ond approach.

The majority of TFs representing hub nodes of both, enhancer and promoter sequence-set
specific intra-regional TF cooperation networks, are linked to inflammatory or fibrotic reac-
tions in general. Some of them have already been described to be involved in inflammatory
reactions in lung tissue such as KLF4 which is known to be involved in attenuate lung
fibrosis [[151]].

Regarding the inter-regional TF cooperations, a lot of the TFs representing hub nodes in the
underlying networks are linked to inflammation or fibrotic processes such as ETS2 which
is a putative biomarker for progression of chronic obstructive pulmonary disease [163]].

Combining the cooperation networks of both analyses provides new insights in the underly-
ing regulatory mechanisms by uncovering the linking nodes of the networks that participate
in inter- and intra-regional TF cooperations. These linking TFs are not identifiable by one
of the single analysis and cannot be determined by single binding site enrichment analyses
since they are not necessarily enriched in the sequence-set under study. Thus, the identifi-
cation of these factors can only be achieved by the combination of both approaches and the
biological evaluation of these factors confirmed their impact in inflammatory processes, i.e.
v-MYB is involved in idiopathic pulmonary fibrosis [[163]].
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6.4. Impact of combinatorics in transcription regulation

A transcriptional regulation network in general consists of nodes representing TF genes and
edges that represent a regulatory relation ship between them. In contrast to signal transduc-
tion, metabolic and protein-protein interaction networks, the topology of the transcriptional
regulation network is not scale-free. This general finding reveals that the network display-
ing the relation of single TFs and their target genes resembles a random generated network
(i.e. Erdos-Renyi network) and, thus, the binding of a single TF to a certain gene appears to
be of low importance in general.

In my work, I generated intra- and inter-regional TF cooperation networks as well as joint
networks consisting of both, intra-and inter-regional TF cooperations. In these networks
nodes correspond to TFs and edges to predicted cooperations between them. It turned out
that all these networks own the scale-free property as it is expected for protein-protein inter-
action networks and implies that the topological structure of my networks is not randomly
constructed and some TFs are strongly linked to other TFs while the majority of TFs is
sparsely interconnected.

For both approaches, I performed a comparison study between the analyzed cell lines re-
garding the overlap of single TFs participating in pairs and the pairs themselves. It turned
out that the overlap between single TFs is much higher than that of TF pairs, which un-
derpins the general assumption that the specificity of gene regulation is based on the com-
binatorial acting of TFs rather than on the single factor itself. Comparing the hub nodes
of the individual TF cooperation network reveals TFs that are highly interconnected in the
TF cooperation networks and seem to be key players in the regulation of the analyzed cell
lines. The overlap of hub nodes among the different cell lines is rather small, supporting the
hypothesis that the specificity of gene regulation of each tissue is based on some striking
factors which cooperate with a multitude of other factors in order to fulfill their regulatory
functions.

Although the overlap of the single TFBS involved in predicted pairs is huge, there are only
a few TFBSs representing hub nodes in several constructed TF cooperation networks. This,
in turn, supports the generally accepted assumption that the specificity of gene regulation
is based on the pairing of TFs. This is well known for composite elements which form
the smallest function unit within which protein-protein as well as protein-DNA interactions
contribute to a highly specific transcriptional regulation [178]. These composite modules
present a crosstalk between different regulatory pathways [178] which further underpins
their specificity. Considering my findings that tissue specificity is reflected by TF pairs
and not by single TFs, it is very likely that most of my predicted inter- and intra-regional
pairs also present a crosstalk between different regulatory pathways, although they are not
necessarily composite elements.

Eukaryotic TFBSs are in general relatively short and unspecific and, thus, can be bound by
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a multitude of TFs. However, under a specific condition or in a certain cellular context, the
binding site has to be bound by a defined factor in order to fulfill its regulatory function. The
specific binding of this factor under the right condition is thereby not only in dependence
on the binding site sequence but also on the protein neighbourhood of the factor formed
by the already bound TFs. Thus, the complementarity of TFs in the 3D structure of neigh-
boured proteins is of high importance and again, although the TFBSs themselves are rather
unspecific, the combination of TFs in its surroundings enables a specific gene regulation.

It is widely accepted that the binding of a certain TF on DNA can enable the binding of other
factors by bending the DNA helix or altering DNA structure in general. These aspects can be
extended by my findings regarding the TFs that participate in inter- as well as intra-regional
TF cooperations. The existence of these overlapping factors might lead to the suggestion
that the factor of the enhancer is required to form the pairing between the two factors bound
to the promoter. This can be based on the direct physical interaction in which the TF bound
to the enhancer simply stabilizes the binding of one or two factors on the promoter e.g.
by direct interaction or by a co-factor. It might also be possible that the factor bound to
the enhancer leads to the modification or bending of the DNA structure of the promoter in
a way that establishes the interaction between the two promoter bound factors through an
indirect way without directly interacting with them. Another conceivable scenario is the
formation of intra-regional TF cooperations which recruits co-factors that, in turn, interact
with factors of enhancer regions and, thus, the inter-regional TF cooperation can only be
established by the previous intra-regional TF pair formation.

All these findings are in line with the general knowledge that eukaryotic transcriptional
regulation is based on the combinatorial binding and interacting of different TFs. However,
I cannot capture the way the TFs cooperate with each other with my approaches and can
only make assumptions, whether two TFs act in an agonistic or antagonistic manner or in a
direct physical interaction or indirectly via co-factors or just in a functional manner.



7. Conclusion

In this last chapter, I first summarize the methods established in this thesis as well as their
results and contributions. Afterwards, I give an outlook in which I provide some ideas for
method extensions and list some potential fields of applications for future research interests.

7.1. Summary

In this thesis, I developed two different information theoretical approaches for the identi-
fication of potential cooperating transcription factors based on their predicted binding site
distributions in a sequence set under study. In the first approach, I used the pointwise mutual
information for the identification of potentially cooperating TFs inside a regulatory DNA
region (intra-regional cooperations) based on the co-occurrence of their TFBSs (see Sec-
tion 4. T)). Since the pointwise mutual information is a powerful tool in linguistics for the
determination of word collocations and document summarizing processes, I consider TF-
BSs as words and DNA sequences as sentences in a document. This method appeared to be
very successful in comparison to existing methods and in the application to a synthetic gene
set. However, the predicted TFBS pairs between different tissues are highly overlapping
and targeting this point, I extended the original method in order to separate common (ubi-
quitously) occurring TF cooperations from sequence-set specific ones (see Section {.1.2).
Therefore, I created background sequence-sets that preserved the general nucleotide com-
position as well as the number of tri-nucleotides and thus, the core of TFBSs and used these
sets to estimate for each TFBS pair the level of background co-occurrences. I applied the
extended approach to gene sets of five breast cancer subtypes and successfully separated
common TFBS pairs from sequence-set specific ones.

In my second approach, I developed a method based on mutual information for the iden-
tification of associated TFBSs between promoter and their related enhancer regions (see
Section[4.2). In analogy to the extension of the first method, I created background sequence-
sets by preserving the general nucleotide composition and the core of TFBSs, and directly
integrate it in the calculation of mutual information by using a third random variable that
indicates the origin of the data (i.e. input or background). I applied my approach with
four different mutual information metrics to simulated data sets and compared their perfor-
mance. I concluded that the multivariate mutual information (MMI) is most propitiate for
my purposes and conducted an analysis of six human cell lines using MIMI and performed
a biological evaluation of these findings.
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Further, the cooperation networks reveal TFs that participate in a multitude of pairings
and are presented as hub nodes in the network. These TFs seem to play an important
role in the transcriptional regulation of the underlying gene sets and might not have been
identified in an enrichment analysis for single TFBSs since they are not necessarily enriched
in the sequence-set under study. The combinatorial usage of both approaches resulted in
a joint network of inter- and intra-regional TF cooperations which, in turn, offered TFs
that act as linking nodes between the inter-regional and the intra-regional TF cooperation
network. The biological evaluation of these factors pointed out their importance for the
underlying molecular mechanisms. The identification of these nodes is only possible by
the combination of the two approaches and cannot be achieved by e.g. a single TFBS
enrichment analysis.

Finally, both methods are able to identify functional or physical cooperations between TFs
that appear to play a critical role in the regulation of the gene set under study. These pairs
provide new insights in the general understanding of transcriptional gene regulation and are
new targets for laboratory experiments.

7.2. Outlook

Regarding the detection of intra-regional TF cooperations based on the co-occurrence of
their binding sites it might be worthwhile to extend the approach for three or more co-
occurring TFBSs in order to overcome the limits of pairwise identifications. Therefore,
the pointwise mutual information measure needs to be extended to three or more random
variables and a significance threshold needs to be established that is able to compare the
resulting pointwise mutual information values of TFBS pairs to those of TFBS triplets or
higher order complexes.

Although the identification of associated TFBS pairs of promoters and their related enhancer
regions appears to be successful in the first place, the separation of the promoter-enhancer
interactions (PEISs) into the identified pair is directly involved in the PEI and the identified
pair is not directly involved in the PEI is not possible yet and needs to be established. In
this context, it might also be worse to incorporate the locations of the binding sites in the
analysis and consider only pairings that underlie certain distance or position constraints.

Both methods still suffer from the redundancy of the underlying PWMs that lead to a multi-
tude of identified significant TFBS pairs that are based on the same sequences parts. There-
fore, a method needs to be incorporated in the analysis for clustering all predicted pairs that
stem from the same sequence regions. As a result, some other pairs will move up of which
the TFBSs are not multiple times presented in the sequences but are still important for the
gene regulation.

The identified TFs belonging to inter-and intra-regional cooperating TF pairs of both meth-
ods provide new insides in the complex process of gene regulation and can help to properly
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identify the underlying cellular pathways and master regulators in combination with single
TFBS enrichment analyses. As a whole, single TFs, TF cooperations, regulatory pathways
and master regulators can further help to understand the underlying mechanisms that differ
between the individual regulatory programs in different cell lines.
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Abstract

Background: Transcription factors (TFs) are important regulatory proteins that govern transcriptional regulation.
Today, it is known that in higher organisms different TFs have to cooperate rather than acting individually in order to
control complex genetic programs. The identification of these interactions is an important challenge for
understanding the molecular mechanisms of regulating biological processes. In this study, we present a new method
based on pointwise mutual information, PC-TraFF, which considers the genome as a document, the sequences as
sentences, and TF binding sites (TFBSs) as words to identify interacting TFs in a set of sequences.

Results: To demonstrate the effectiveness of PC-TraFF, we performed a genome-wide analysis and a breast cancer-
associated sequence set analysis for protein coding and miRNA genes. Our results show that in any of these sequence
sets, PC-TraFF is able to identify important interacting TF pairs, for most of which we found support by previously
published experimental results. Further, we made a pairwise comparison between PC-TraFF and three conventional
methods. The outcome of this comparison study strongly suggests that all these methods focus on different
important aspects of interaction between TFs and thus the pairwise overlap between any of them is only marginal.

Conclusions: In this study, adopting the idea from the field of linguistics in the field of bioinformatics, we develop a
new information theoretic method, PC-TraFF, for the identification of potentially collaborating transcription factors
based on the idiosyncrasy of their binding site distributions on the genome. The results of our study show that
PC-TraFF can succesfully identify known interacting TF pairs and thus its currently biologically uncorfirmed predictions
could provide new hypotheses for further experimental validation. Additionally, the comparison of the results of
PC-TraFF with the results of previous methods demonstrates that different methods with their specific scopes can
perfectly supplement each other. Overall, our analyses indicate that PC-TraFF is a time-efficient method where its
algorithm has a tractable computational time and memory consumption.

The PC-TraFF server is freely accessible at http://pctraff.bioinf.med.uni-goettingen.de/

Background

Transcription factors (TFs) are a special class of gene reg-
ulatory proteins binding to short DNA motifs, known as
transcription factor binding sites (TFBS). These TFBSs
are located in promoters, which are found around the
transcription start site (TSS). The binding of TFs fre-
quently occurs in a cooperative manner due to their func-
tional collaboration which leads to cis-regulatory modules
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(CRMs). These modules are important for an effective
regulation of the transcriptional machinery, even if they
are not enriched in the corresponding promoter regions.
The collaboration of TFs might stem from synergistic or
antagonistic interactions between homotypic as well as
heterotypic TFs. Such collaborations are likely to have
effect on gene specificity and flexibility of the controlling
of gene transcription during, for instance, tissue devel-
opment and differentiation [1-3]. Thus, identification of
collaborating TFs is as crucial as the determination of
enriched TFs in genomic sequences for understanding the
molecular mechanisms of cellular regulation [1].

© 2015 Meckbach et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Until now, several groups have published different stud-
ies for the identification of cis-regulatory modules, and
based on those studies, a variety of computational algo-
rithms have been developed to determine potential inter-
actions between TFs according to their binding sites
[4-15]. However, many of these studies require negative
and/or positive control sets and demand prior knowl-
edge about TF pairs [3, 5, 8, 11]. Further, most of these
studies often use simple organisms or restricted genes or
focus only on statistically overrepresented TFBSs in DNA
sequences. As a result, they usually have limited success,
and thus only detect a small number of all interacting
TFs (see the review [16] for the success rates of different
CRM-methods).

Large efforts have been made in the last few years
to overcome the limited success of existing methods. In
these cases, different methods have been utilized such
as searching the DNA for clusters of binding sites, com-
paring function conservation between related species,
and applying association rules as well as statistical meth-
ods like the hypergeometric or the permutation test
[4, 7, 8, 17]. Navarro et al. [4] have presented the Fuzzy
Clustering approach, which has been already applied by
Pickert et al. [18], in association with the Top-Down
Fuzzy Frequent-Pattern Tree algorithm to detect signif-
icantly co-occurring TFBSs based on their locations on
the DNA. Na et al. [8], have published in their study
a co-occurring pattern search (COPS) combining asso-
ciation rules with a Markov model and only focusing
on a predefined TF in simple organisms. However the
scope of applicability of both methods is strongly lim-
ited due to their very high running time and memory
consumption. As an example, the examination of the
human genome is problematic with these methods due
to its considerably large size, its huge repetitive content
and its complicated as well as complex transcriptional
network [2]. On the other hand, Nandi et al. [7] have
introduced the randomized occurrence frequency (OF,)
as the average number of positive predictions in the ran-
dom shuffled promoter sequences and determined muscle
specific TFs which occur together with the transcrip-
tion factor MyoD within a certain distance of 100bp. Hu
et al. [17] have used in their work the hypergeometric
test to identify synergistic TF interactions in tissue spe-
cific genes. While the approach of Nandi et al. mainly
takes into account tissue specific properties of interact-
ing TFs, the approach of Hu et al. principally considers
the enriched TFBS combinations in overlapping ortholo-
gous genes of human and mouse which leads to ignoring
the detection of non-enriched but interacting TF-pairs.
Further, these methods require user specified parameters
such as the level of significance of the test performed or
a background random set which is likely to affect their
performance.
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Recently, a novel method called MatrixCatch has been
introduced by Deyneko et al. [6] to identify CRMs in
promoter sequences. Mainly focusing on the experimen-
tally verified CRMs, MatrixCatch recognizes in individual
sequences the known TF pairs from the TRANSCompel®
[19] database. Although this method significantly outper-
forms several statistical methods, it clearly disregards the
pairs which are not included in TRANSCompel®. As a
result of this, MatrixCatch reaches an improved perfor-
mance in identifying CRMs with a significantly higher
nucleotide-level correlation coefficient (nCC) value in
comparison to other methods, but it is not able to detect
novel TF pairs which can be also crucial for understanding
gene regulation.

In this study, we propose a method called Potentially
Collaborating Transcription Factor Finder (PC-TraFF) to
detect interactions between homotypic and heterotypic
transcription factor pairs using pointwise mutual infor-
mation (PMI). PMI is a very useful association measure
in the field of linguistics for document summarization
processes as well as for the detection of combinations of
words in a corpus indicating that those words have some
idiosyncrasy in their linguistic distribution [20-23]. We
adopt the PMI in the field of bioinformatics replacing
words in a document with TFBSs in a set of sequences to
develop our new method, which includes following main
steps. First, we replace the Term-Sentence-Matrix, sug-
gested by Aji S et al. [20] for document summarization,
with a TFBS-Sequence-Matrix (TSM) to characterize the
importance of each TFBSs in a sequence with respect
to the entire set of sequences. Thereafter, according to a
predefined distance between TFBSs, PC-TraFF builds all
possible TEBS-pairs and calculates their weighted point-
wise mutual information scores. Unlike previous methods
[6-8, 17], PC-TraFF estimates for each TFBS pair the
expected levels of background PMI arising from the ran-
dom noise of false positive TFBSs using the average
product correction (APC) suggested by Dunn et al. [24].
Finally, the weighted PMI values of each TEFBS pair are
corrected by the APC theorem.

The aim of this study is to identify collaborating TFs
that frequently bind in a cooperative manner in a set of
genomic sequences. Our results show that a large major-
ity of significant pairs found by PC-TraFF in promoter
sequences of different RefSeq genes and miRNA genes
are in agreement with previous experimental studies. In
addition to finding biologically characterized TF pairs,
PC-TraFF is able to identify additional potentially collab-
orating TFs which could provide new targets for future
works.

Results
In this study, we introduce PC-TraFF, a computational
method that aims to identify potential collaborating
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transcription factors based on their binding sites. Our
method comprises the following steps. For a given set
of sequences, we first determine the transcription factor
binding sites (TFBSs) applying the Match™ program [25]
with vertebrate position weight matrices (PWMs) from
TRANSFAC [26]. Second, we construct a TFBS-sequence
matrix to display the occurrence of unique TFBSs in each
sequence and then filter this matrix in order to elimi-
nate highly over- and/or underrepresented TFBSs in all
sequences. Third, by calculating the pointwise mutual
information (PMI) between each sequence and each TFBS
in the filtered TFBS-sequence matrix , we identify the
important TFBSs indicating that they occur in the cor-
responding sequences more than by chance. Afterwards,
considering these important TFBSs in our further anal-
ysis, we build TFBS pairs based on predefined minimal
and maximal distances between their coordinates on the
DNA. Next, the weighted cumulative pointwise mutual
information PMI,, between TFBSs of a pair is calcu-
lated to define their collaboration level in the entire set
of sequences. Employing the average product correction
(APC) theorem [24] to reduce the background noise due
to false positive TFBSs, we correct the PMI,,.-values of
TFBS pairs. Finally, transforming the corrected PMI,,-
values into z-scores, we define a pair to be significant if it
has a z-score > 3.

The Results section of this work comprises three parts.
First, to investigate the performance of PC-TraFF we made
a pairwise comparison with the previous methods Matrix-
Catch [6], CPModule [9], and CrmMiner [27]. Second,
to further test the functionality of PC-TraFF significant
TEBS pairs we performed for human promoters of Ref-
Seq genes and miRNA genes: i) a genome-wide gene set
analysis where each promoter region is represented by the
1000 bp upstream of the TSS of all annotated genes; ii) a
breast cancer subtype-associated gene set analysis whose
promoter regions are defined by Joshi et al. [28] as 500
bp upstream to 100 bp downstream relative to the corre-
sponding TSSs. Third, we present the computational time
and memory consumption of PC-TraFF in comparison to
MatrixCatch [6], CPModule [9], and CrmMiner [27].

As a prerequisite for our approach, we had to define
for the TFBSs in a pair minimal distance and maximal
distance constrains. However, we only demonstrate in
this section results for minimal distance> 5, maximal
distance< 20. The remaining results can be found in
Additional file 1.

After predicting PC-TraFF significant TEBS pairs in the
corresponding set of sequences, we validate those pairs
mainly focusing on the TRANSCompel® (release 2014.2)
[19], BioGRID interaction database (version 3.2.119) [29]
and STRING database [30] since all of them contain
experimentally proven pairs. Further literature search is
done if we cannot validate a pair in those databases.
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Comparisons with existing methods

To investigate the state-of-the-art prediction quality of
pointwise mutual information measure proposed in this
work, we were interested to determine the overlap
between the TFBS pairs predicted by different meth-
ods. Thus we made pairwise comparisons between our
new PC-TraFF, MatrixCatch [6], CPModule [9], and Crm-
Miner [27]. For this comparison study, we applied PC-
TraFF using different distance measures. It is impor-
tant to note that we only selected the methods which
are applicable to the human genome and the software
implementation of which is ready-to-use. All four meth-
ods take as input a sequence set and a PWM library
satisfying certain admissibility criteria. As a result, PC-
TraFF, CPModule, and CrmMiner output a set of signif-
icant TFBS pairs, but MatrixCatch outputs all predicted
pairs without any significance threshold for a sequence
set. To make MatrixCatch results comparable with the
results of these three methods, we determined the fre-
quency of each pair in MatrixCatch outcomes and then
took the top ranking pairs whose frequencies are equal
or bigger than average. Further, there is a fundamen-
tal difference between these methods: while PC-TraFF
and MatrixCatch do not require any background set,
to apply CPModule and CrmMiner a background set is
needed.

The results of this comparison are threefold. First, we
applied these methods to the promoter sequences of Ref-
Seq genes in the genome-wide analysis as well as the
breast cancer analysis to determine the overlap of their
predictions. Second, we randomly selected 200 promoter
sequences (-1000 bp relative to the TSSs) from chromo-
some 21, hence it has in average similar GC content to
human genome. In these 200 sequences, we inserted the
TFBS pair (V$IRF1_01 - VSUSF_01) which represents the
interaction between transcription factors IRF1 and USF1.
The minimal and maximal distances between these TFBSs
are defined as at least 5 bp and at most 20 bp, respectively.
Further, the TFBS pair was sampled in each sequence
between two to twelve times, randomly (see Additional
file 2). Third, we computed the sensitivity, specificity, and
Matthews correlation coefficient (MCC) values to assess
the performance of PC-TraFF and the three previous
methods.

Let Npc-trarF := (VpC-TrabF> EpC-Trare) denote the pre-
dicted collaboration network of TEBS pairs where any
two elements of Npc.trarr are connected by an undi-
rected edge belonging to Epc.trarr if and only if the
corresponding TFBS pair is PC-TraFF significant. By
extending this concept in full analogy, we observed for
each of these methods the predicted collaboration net-
works Npc-TraFFa0s Npetttsys NPC-TraFE100» Natc, Nepu, and
NCrma, where NPC—TraFon,so,mo indicate the application
of PC-TraFF with different distance measures and MC,
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CPM, CrmM stand for the abbreviation of MatrixCatch,
CPModule, and CrmMiner, respectively.

First, we performed the overlap comparison between
methods edge-oriented using the number of over-
lapping edges as measure. Applying these methods
to the sequences of RefSeq genes in the genome-
wide analysis and breast cancer analysis, the number
of predicted TFBS pairs as well as the number
of overlapping pairs is calculated as ’ng,TraFFZO
EpC-TraFEso | » |EPC-TraFEL0 | - [EMC| 5 1ECPMI» 1ECrmM],
EpC-TraFFyy N EPC-TrabFs | » | EPC-TraFEoy N EPC-TraFE 00

’

’

’

|EPC-TrakFsy N EPC-TraFF100 | » |EPC-TrakEs N EMC| > |EPC-TrabEy »

NEceml» |Epc-Trakryy N Ecrmm|» |Epc-Traresy N Enic|s
|Epc-TrarEsy N Ecem| |Epc-traresy N Ecrmm| » |Epc-TrarE100N,
Enmcls |Epc-Trarrie N Ecem| s |EpC-TraFE100 N Ecrmm ] » 1EpcN
Ecpmls 1Emc N Ecrmml, and |Ecpp N Ecrmal, which are
displayed in Tables 1 and 2.

Although all methods perform a combinatorial search
of frequently occuring TFBS pairs and aim to identify
their significance in the given set of sequences, Table 1
shows that each of these methods detects in the same
set of sequences using the same PWM library consid-
erably different numbers of important TFBS pairs. The
reason for that can be explained due to the differences in
their underlying algorithms. While MatrixCatch mainly
scans the sequences to recognize the known pairs from
TransCompel database, CPModule applies a very strin-
gent TFBS screening threshold with an additional filter-
ing step based on nucleosome occupancy, which results
in a dramatic reduction of significant pairs found by
CPModule. On the other hand, CrmMiner uses a super-
vised classification approach for the identification of sig-
nificantly enriched TFBS pairs in the sequences under
study.

Table 2 suggests that regardless of the distance mea-
sure used, a large amount of TFBS pairs are regularly
detected by PC-TraFF as significant. Further, Table 2
clearly demonstrates that all of these methods carry
distinct information and thus the overlap between any
two of them is quite low. Thus the pairwise compar-
ison highly indicates that under the assumption that
each of these methods focuses on different important
aspects of interaction between TFs, they can comple-
ment each other perfectly. Especially, this assumption
is true for PC-TraFF as an information theory-based
method compared with the other three conventional
methods.

Page 4 of 21

Table 2 Total number of edges in two predicted collaboration
networks of different methods

Total number of common edges in collaboration networks

Genome-wide analysis Breast cancer analysis

|EpcTrarfs N Epcrarrsy| 43 54
|Epcriarrs N EpCriarFigo| 41 43
|Epctrarroo N Emc| 3 1
|Erctrarrs N Ecru] 6 0
|Epc-rrarfae N Ecrmm| 0 0
|Epcriarrs, N EpcrrarFi| 82 80
|EpcTraresy N Enc| 4 1
|Epcrrarrs, N Eceu] 8 1
|Epc-trarfso N Ecrmu] 2 0
|Epc-rarF 0o N Enc| 4 1
|Epcrrartigo N Ecom] 9 0
‘EPC—TraFFmo N 50mM| 2 0
|Epc N Ecpuml 1 0
[Emc N Ecrmml 0 1
|Ecpim N Ecrmm] 3 1

Second, we applied all of these methods to the randomly
selected sequence set, explained above. While PC-TraFF
and CPModule successfully detected the inserted TFBS
pair as significant, MatrixCatch and CrmMiner have not
detected this pair.

To assess the performance of PC-TraFF, we further
made a statistical comparison between our method and
the three previous methods. For this comparison study,
we followed a similar procedure suggested by Yu et.
al [31]. As positive controls we obtained in total 3158
TEBS pairs according to experimentally validated interac-
tions between TFs from TRANSCompel®, BioGRID and
STRING interaction databases. As negative controls, we
used all possible remaining pairs which have not been
experimentally validated yet but could be predicted based
on the PWM library applied in this study. Having applied
all methods to the above mentioned promoter sequences,
we observed that each of these methods reaches consid-
erably high specificity and quite low sensitivity indicating
that all methods show comparable performances. The
details are presented in Table 3. As expected, all meth-
ods suffer from low sensitivity because the way how we
assess this parameter is a very tough one, leading to a

Table 1 Total number of edges in method-dependent significant collaboration networks

Total number of edges in predicted collaboration network

Sequence sets of RefSeq genes in |Ercorrarao | |Epcmrares, |Epc-rraff oo [Emcl |Ecpml |Ecrmm
Genome-wide analysis 54 86 91 19 17 21
Breast cancer analysis 64 82 88 13 6 25
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Table 3 Performance comparison between PC-TraFF»g,
PC-TraFFsq, PC-TraFF; g9, MatrixCatch (MC), CPModule (CPM), and
CrmMiner (CrmM)

Sensitivity Specificity MCC
PC-TraFFzo 23% 99.5 % 0.088
PC-TraFFso 3.1% 99.3 % 0.10
PC-TraFF100 32% 99.3 % 0.102
mC 0.5% 99.9% 0.053
CcPM 0.5% 100 % 0.06
CrmM 0.6% 99.6 % 0.025

large overestimation of false negatives. Thus, the consid-
eration of sensitivity alone is of limited value and should
be taken for comparison of the different methods only.
Further, our results indicate that the usage of PC-TraFF
with different distance constrains gives rise to predic-
tion of different numbers of TFBS pairs (see Table 1)
which slightly changes its performance (see Table 3). Con-
sidering MCC-values, our PC-TraFF reaches moderately
increased performance compared to the three other meth-
ods. Thus, we propose mutual usage of previous methods
with PC-TraFF together so that they can complement each
other (for details see Table 4).

Table 4 The complementary usage of different methods can
lead to an improved performance in identifying important pairs
in sequences

Sensitivity Specificity MCC
PC-TraFFy0 U MC 2.8% 99.5% 0.101
PC-TraFFs0 U MC 3.6% 99.3% 0.112
PC-TraFF100 U MC 3.8% 99.3% 0.114
PC-TraFFyo U CPM 26% 99.5% 0.099
PC-TraFFso U CPM 34% 99.3% 0.107
PC-TraFFi00 U CPM 35% 99.3% 0.109
PC-TraFFy0 U CrmM 3.0% 99.2% 0.087
PC-TraFFso U CrmM 3.8% 99 % 0.10
PC-TraFF 9o U CrmM 39% 99 % 0.102
MC U CPM 1.0% 99.9% 0.079
MC U CrmM 12% 99.6 % 0.050
CPM U CrmM 12% 99.6 % 0.051
PC-TraFFy0 UMC U CPM 3.1% 99.5% 0.11
PC-TraFFso UMC U CPM 3.8% 99.3% 0.118
PC-TraFF100 U MC U CPM 4% 99.3% 0.12
PC-TraFFy U MC U CPM U CrmM 3.8% 99.2% 0.10
PC-TraFFso U MC U CPM U CrmM 45% 99% 0.116
PC-TraFF100 UMCUCPMU CrmM 4.7 % 99 % 0.119
MCUCPM U CrmM 1.7% 99.6 % 0.07
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Additionally, we compared the predictions of PC-TraFF,
MatrixCatch, CPModule, and CrmMiner, which have not
been experimentally validated yet. It turned out that there
is only one TFBS pair (VSMYCMAX_B - VSEGR_Q6) that
is experimentally unconfirmed, but even so, detected by
PC-TraFF and CrmMiner as significant.

A genome-wide analysis of promoters in the context of
RefSeq genes and miRNA genes

Applying our method to 23015 promoter sequences of
human RefSeq genes, we observed 54 PC-TraFF signifi-
cant collaborating TFBS pairs which are comprised of 7
homotypic and 47 heterotypic pairs. According to their
z-scores, the top 10 PC-TraFF significant pairs deter-
mined in promoter sequences of human RefSeq genes are
given in Table 5 (for the whole list of significant pairs see
Additional file 3). The importance of 44 pairs out of all sig-
nificant pairs has been experimentally verified by previous
studies regarding their interactions which are summarized
in TRANSCompel® [19], BioGRID [29] and STRING [30]
interaction databases. The remaining 10 TFBS pairs found
by PC-TraFF have not been experimentally validated yet
and the reason for their significance is still unclear.

As shown in Fig. 1, the predicted collaboration net-
work of PC-TraF significant TFBS pairs is comprised of
three unconnected subgraphs and consists of 35 nodes
and 54 edges where each edge refers to a collabo-
ration and each node corresponds to a TFBS. More-
over, the network contains the four hubs V$SP1_Q2_01,

Table 5 Significant TFBS pairs found by PC-TraF in genome-wide
promoter analysis of human RefSeq genes. The table shows the
top 10 significant TFBS pairs, which are sorted in descending
order based on their z-scores

Significant pair Z-score Reference
V$PUT_Q6 - VSETS_Q6 9.84 TRANSCompel®,
BioGRID, STRING
VSCETS1P54_01 - VSETS_Q6 5.76 TRANSCompel®,
BioGRID, STRING
VSETS_Q4 - VSETS_Q6 5.49 TRANSCompel®,
BioGRID, STRING
VSEGR_Q6 - VSSP1_Q2.01 5.9 BioGRID, STRING
VSCETSIP54_01 - VSSP1_Q2. 01 494 TRANSCompel®,
STRING
V$APT_Q2_01 - VSAP1_Q4_01 469 TRANSCompel®,
BioGRID
VSSTAT6_01 - VS0CT_Q6 466 -
V$CEBPB_02 - VSSTAT6_01 458 TRANSCompel®,
STRING
VSMYCMAX_B - VSSP1_Q2.01 436 BioGRID, STRING
VSAPIFI_Q2 - VSAP1_Q2 409 TRANSCompel®,

BioGRID, STRING
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V$SP1 Q6 T “~___V$SP1 Q4 01 V$CEBPB_01
7 WSS . V$CEBP_Q2_01
VSMYCMAX_B V$PU1 6 , ,
. V$IRF_Q6_01
V$ETS_Q6 V$CEBPB_02
S V$AP1 01
VS$ETS_Q4 V§Fox 02 y
V$SP1_Q2 01 V$CETS1P54 01 YSSTATS 0L T TVS$IRF Q6
V$AHRHIF_Q6 piu L
V$KROX_Q6 VSCREB Q3 — V$AP1.Q4 01 —— v$aP1 Q2 01 V$50X9_B1
V$CP2 01 \  V$PEBP_Q6 o
V$CP2 02 ] aaml V$AP1_C
TR V$AP1F)_Q2 —V$AP1 Q2 :
T V$NFAT Q6 ~— V$NFAT Q4 01 V$AP1 Q6
Fig. 1 PC-TraFF significant collaborating TFBS pairs based on promoter sequences of human RefSeq genes. Blue lines denote interactions between
TFs whose importance is experimentally verified whereas red lines indicate potential interactions between transcription factors that have not been
experimentally validated yet

V$STAT6_01, VSCETS1P54_01, and V$AP1_Q4_01 each
of which provides critical knowledge to understand
mechanisms of the gene regulatory network. The hubs
and their top three collaboration partners are given in
Table 6.

The binding site V$SP1_Q2_01 is a GC-rich motif on
the DNA bound by Sp1 which is a member of the three-
zinc finger Kriippel-related transcription factors family
[32]. Initially, Spl was detected as a general TF needed
for the activation of a large number of housekeeping
genes. In addition, Sp1 is important for the recruitment of
the transcriptional machinery in the absence of a TATA
box [33, 34]. Sp1 interacts with corepressors or coactiva-
tors to regulate transcription in cell-signaling events and

to modulate DNA-binding specificity [35, 36]. The sec-
ond hub in the network is the binding site V$STAT6_01
bound by the factor STAT6 belonging to the family of
STAT factors which seldomly activate transcription alone
but act together with other factors to active transcription
[37-39]. STAT6 is known to be involved in the immune
system. Here, it acts in response to the cytokines IL-4
and IL-13 and thus it is required for T-cell proliferation
as well as responses in T-cells [40]. In addition, STAT6
was recently identified to function in non-immune tis-
sues like mammary gland, lung and skin [40]. Another
hub is VSCETS1P54_01 representing the binding site of
ETS1 which is a member of the evolutionarily conserved
ETS family of transcription factors [41, 42]. The factor

Table 6 The hubs and their top three collaboration partners in the predicted collaboration network of significant TFBS pairs for human

RefSeq genes

Hub Top three collaborating pairs Z-score Reference

V$SP1_Q2_01 VSEGR_Q6 5.09 BioGRID, STRING
VSCETS1P54_01 494 TRANSCompe\®, STRING
VSMYCMAX_B 436 BioGRID, STRING

VSSTAT6_01 VSOCT_Q6 4.66 -
VSCEBPB_02 4.58 TRANSCompe\®, STRING
VSCEBP_Q2_01 3.74 TRANSCompel®, BioGRID, STRING

VSCETS1P54_01 VSETS_Q6 5.76 TRANSCompel®, BioGRID, STRING
VSSP1_Q2_01 494 TRANSCompe|®, STRING
VSNFKB_Q6 3.96 TRANSCompel®, STRING

VSAP1_Q4_01 VSAP1_Q2_01 4.69 TRANSCompel®, BioGRID, STRING
VSSTAT6_01 3.35 TRANSCompe\®, BioGRID, STRING
VSAP1_Q6 335 TRANSCompel®, BioGRID, STRING
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ETS1 plays a critical role in T-cell and B-cell prolifera-
tion and differentiation [41, 43]. Moreover, ETS1 is one
of the well investigated transcription factors whose tran-
scriptional activity is regulated by other factors by physical
and functional interactions [41, 44, 45]. The next hub in
the network is V$AP1_Q4_01 which is bound by AP-1
transcription factor. Simplified, AP-1 is a heterodimer of
JUN and FOS proteins or a homodimer of JUN proteins.
All AP-1 constituents belong to the leucine zipper family,
known as the one of the largest family of dimerizing TFs
in humans that share as a common feature a bZIP domain
[1, 32, 46, 47]. There is a huge number of different AP-1
proteins which are all differentially expressed and reg-
ulated indicating that the dimers differ in their cellular
function [48]. In general, AP-1 is involved in cell prolifer-
ation and differentiation as well as cell cycle progression.
Its combinatorial interactions with other transcription
factors are required for the specification of (regulatory)
transcriptional activities of FOS-JUN family proteins in
the human genome [48-50].

A closer look at the predicted collaboration network
of significant TFBS pairs (see Fig. 1) and Table 6 reveals
that the hub TFBS pairs V$SP1_Q2_01 - V$CETS1P54_01
bound by Sp1 - ETS1 and V$STAT6_01 - V$AP1_Q4 01
bound by STAT6 - AP-1 (JUN) exhibit significant coop-
erativity in their binding. The interaction between Spl
and ETS1 appears among others in TATA-less promoters
where the TATA-box can be replaced by a non-consensus
binding site for Sp1. The binding of Sp1 to this site is of
low affinity, but can be strengthened by the interaction
to ETS1 bound adjacent to it on DNA [51]. The physical
interaction between STAT6 and JUN was observed to play
a critical role in the upregulation of the IL-24 promoter.
IL-24 is a multifunctional cytokine that is important for B
cell differentiation as well as anticancer effects in diverse
cancer cells [52].

Above, we concentrated our research on interactions of
TFs with RefSeq genes. To extend our knowledge about
the gene regulatory network, we will in the following
also address the question of TF-miRNA gene interactions.
However, it is important to note that promoters of miRNA
genes used in this study are based on the predicted TSSs.
Consequently, they should not be treated as reliable as
the TSSs of RefSeq genes and the results may somewhat
vary when working with the results of different predic-
tion algorithms. It has been demonstrated that TFs can
regulate miRNAs as well as miRNAs can regulate TFs.
Additionally, both are involved in gene regulation, TFs
on a transcriptional level, miRNAs on a translational one.
It might therefore be interesting to compare the tran-
scriptional networks for genes and miRNAs regarding
interacting TFs to find similarities or dissimilarities. For
this purpose, we further performed a genome-wide anal-
ysis with PC-TraFF of the promoters of human miRNAs
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using computationally predicted promoter sequences of
miRNAs over ca. 50 tissues and cell lines (see Additional
file 4). Applying PC-TraFF to these human miRNA pro-
moters, we observed 42 significant TFBS pairs, among
which 35 heterotypic and 7 homotypic pairs could be
identified. The top 10 PC-TraFF significant pairs deter-
mined in promoter sequences of human miRNA genes are
given in Table 7 (for the whole list of significant pairs see
Additional file 5).

In addition, 14 of 42 significant TFBS pairs overlap with
the result of promoter sequence analysis of human RefSeq
genes. The importance and functionality of these signif-
icant pairs was checked with the TRANSCompel® [19].
BioGRID [29] and STRING interaction databases [30].
Here, biological importance of 21 TFBS pairs could be
confirmed through interaction databases. The remaining
21 PC-TraFF significant TFBS pairs have not been experi-
mentally validated yet and the reason for their significance
is still unclear.

Like the TFBS pair analysis of human RefSeq genes, we
constructed based on the significant TEFBS pairs found by
PC-TraFF of human miRNA promoters a predicted col-
laboration network. It consists of 30 nodes and 42 edges
where each edge refers to a collaboration and each node
corresponds to a TFBS (see Fig. 2). The most remarkable
result of this analysis is that the network contains the three
hubs V$AP1_Q4_01, VSCETS1P54_01, and V$STAT6_01
which have been also identified as hubs in the significant
TEBS pairs collaboration network of human RefSeq genes
(see Fig. 1). The hubs and their top three collaboration
partners are given in Table 8.

Previous studies described that AP-1, which binds to the
V$AP1_Q4_01 motif, is involved in the expression of sev-
eral miRNAs. For example, AP-1 activates miR-155 in the

Table 7 Significant TFBS pairs found by PC-TraFF in
genome-wide promoter analysis of human miRNA genes. The
table shows the top 10 significant TFBS pairs, which are sorted in
descending order based on their z-scores

Significant pair Z-score Reference

VSSTAT6_01 VSHMGIY_Q6 1373

VSHMGIY_Q6 VSLEF_Q2 5.89

VSHMGIY_Q6 VSGATA_Q6 5.18

VSCREB_Q3 VSAP1_Q4_01 5.16 BioGRID, STRING

VSMYCMAX_B VSAHRIF_Q6 5.03 BioGRID, STRING

V$STAT6_01 VSAPT_Q4_01 498 TRANSCompel®,
BioGRID, STRING

VSHMGIY_Q6 VSAP1_Q4_01 497 BioGRID, STRING

VSSTAT6_01 VSLEF_Q2 483 -

VSSF1_Q6 VSHNF4_Q6 4.79 -

VSHMGIY_Q6 VSCREB_Q3 4.79 BioGRID, STRING
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Fig. 2 PC-TraFF significant collaborating TFBS pairs based on promoter sequences of human miRNA genes. Blue lines denote interactions between

TFs whose importance is experimentally verified whereas red lines indicate potential interactions between transcription factors that have not been

experimentally validated yet

processes of B-cell activation and maturation [53]. ETS1
binds to the V$CETS1P54_01 motif and regulates among
others the expression of miR-126, which is responsible for
the regulation of angiogenesis and vascular inflammation
[54]. STAT6 binds to VSSTAT6_01 and is involved in the
cholesterol biosynthesis pathway through targeting miR-
197 [55]. Besides this, it has been described to be regulated
by miRNAs which act among others as tumor suppressors
[56].

Furthermore, it is important to note that the hub TFBSs
V$STAT6_01 and V$AP1_Q4_01 were detected by PC-
TraFF as a significant pair indicating that their bindings
frequently occur in a cooperative manner in the promoter

sequences of human miRNA like in the promoters of
human RefSeq genes.

Analysis of breast cancer subtype-associated promoter
regions

Today, it is widely known that breast cancer is the most
common cancer in women. Breast cancer can be sepa-
rated into five subgroups termed Luminal A, Luminal B,
Normal-like, ErbB2 over-expressing and Basal-like [28]. In
order to expand our analysis to more specific, clinically
relevant situations, we applied our new method to pro-
moter regions of breast cancer-associated RefSeq genes
and their regulating miRNA genes.

Table 8 The hubs and their top three cooperation pairs in the predicted collaboration network of significant TFBS pairs for human

miRNA genes

Hub Top three collaborating pairs Z-score Reference

VSAPT_Q4_01 VSCREB_Q3 5.16 BioGRID, STRING
VSSTAT6_01 498 TRANSCompel®, BioGRID, STRING
VSHMGIY_Q6 497 BioGRID, STRING

VSCETS1P54_01 VSMYCMAX_B 433
VSPUT_Q6 3.67 TRANSCompeI®, BioGRID, STRING
VSEGR_Q6 3.64 -

VSSTAT6_01 VSHMGIY_Q6 1373 -
VSAPT_Q4_01 498 TRANSCompel®, BioGRID
VSLEF_Q2 4.82
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Similar to the genome-wide analysis, we started with
analyzing the 218 promoter regions of target RefSeq
genes. As a result of this analysis, we observed 64
PC-TraFF significant collaborating TFBS pairs that
are comprised of five homotypic and 59 heterotypic
pairs (see Additional file 6). The biological impor-
tance of 44 pairs has been experimentally verified by
previous studies whereas the remaining 20 PC-TraFF
significant pairs have not been experimentally vali-
dated yet and the reason for their significance is still
unclear.

Interestingly, we found that two TFBSs in the PC-TraFF
significant pairs are representing the E2F transcription
factor family (see Fig. 3). In general, this family is known
to be involved in cell cycle regulation as well as apoptosis
and DNA damage response. Our results reveal that mem-
bers of the E2F family are collaborating with each other
which has been proven by experimental studies in the con-
text of breast cancer [57]. Briefly, activating and repressive
E2Fs bind to adjacent sites on the BRCA1 promoter and
regulate its activity. In response to hypoxia, they cause
the downregulation of unmutated BRCA1 which in turn is
associated with sporadic cancers of the breast [57]. In our
study, we further detected the established collaboration of
E2F family members with Spl, c-Myc and NF-«B1, each
of which plays a critical role in breast cancer [34, 58, 59].
The interaction of E2F and Sp1l has been experimentally
verified to play a fundamental role in the activation of S-
phase specific promoters at the G1/S boundary of the cell
cycle [60].

The binding site V$NFKB_Q6 that is bound by mem-
bers of the NF-«B related factors family forms a hub in
the network of potential collaborating pairs of the breast
cancer gene set (see Fig. 3 and Table 9). In general, NF-«B
related factors are involved in the regulation of cell pro-
cesses like proliferation, survival and immunity. In addi-
tion, they are critical for the regulation of inflammation
as well as angiogenesis [61] and are known to be involved
in breast cancer [59]. In our study, we found that NF-«B1,
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a member of the family NF-« B related factors [32], inter-
acts with ETS1, ELF1, Sp1, and E2F1. ETS1 is involved in
breast cancer where it regulates genes that are important
for metastasis and tumor progression [62]. ELF1 belongs
to the Ets-related factors family and regulates genes that
are involved in cell growth and differentiation. Its overex-
pression is linked with breast cancer [63]. Another mem-
ber of the NF-«B related factors family is RelA which is
found to collaborate with SMAD3, AHR and c-Myc each
of which is known to be involved in breast cancer [64, 65].
AHR is aligand activated transcription factor whose activ-
ity is linked with alterations in cell proliferation, apoptosis,
adipose differentiation, tumor promotion, immune func-
tion, vitamin A status, development and reproductive
functions [66]. The physical interaction of RelA and AHR
is important for the activation of the c-Myc oncogene in
breast cancer cells [65].

Three TFBSs in our significant pairs (V$CEBP_Q2,
V$CEBPB_02 and V$CEBP_Q2_01) can be bound by
transcription factor C/EBPS. This TF is known to regulate
genes that are involved in invasion, cellular proliferation,
survival and apoptosis [67]. Further, the level of C/EBPS is
often increased in metastatic breast cancer and is known
to correlate with a high tumor grade [67]. We found
this factor interacting with HMGA1, c-Myb and STAT6.
HMGAL is regulating gene expression by altering the
chromatin structure and orchestrating transcription fac-
tor complexes to enhanceosomes within promoter regions
[68]. Additionally, it is known to be overexpressed in
aggressive cancers and to be involved in metastatic pro-
gression in triple negative breast cancers [68]. The inter-
action of HMGA1 and C/EBP§ is in particular crucial for
the regulation of the human insulin receptor [69]. c-Myb
functions in cell differentiation as well as cell proliferation
and is involved in different types of tumors [70].

To gain more insight into the role of TF interactions in
gene regulatory networks, we further applied PC-TraFF to
the promoters of breast cancer-associated miRNAs. In our
analysis, we found 43 PC-TraFF significant collaborating

Table 9 The hubs and their top three collaboration partners in the predicted collaboration network of breast cancer-associated

significant TFBS pairs for human RefSeq genes

Hub Top three collaborating pairs Z-score Reference

VSNFKB_Q6 VSCETS1P54_01 542 TRANSCompel®, STRING
VSETS_Q6 4.80 BioGRID, TRANSCompel®, STRING
VS$SP1_Q4_01 343 BioGRID, TRANSCompel®, STRING

VSCETS1P54_01 VSETS_Q6 8.01 BioGRID, TRANSCompeI®, STRING
VSNFKB_Q6 542 TRANSCompeI®, STRING
VSMYCMAX_B 521

VSMYCMAX_B VSCETS1P54_01 5.16
VSE2F_Q3_01 5.21 TRANSCompel®
VSAHRHIF_Q6 4.39 BioGRID, STRING
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Fig. 3 PC-TraFF significant collaborating TFBS pairs based on breast cancer-associated promoter sequences of human RefSeq genes. Blue lines
denote interactions between TFs whose importance is experimentally verified whereas red lines indicate potential interactions between
transcription factors that have not been experimentally validated yet. The binding sites VSNFKB_Q6, VSCETS1P54_01, and VSMYCMAX_B constitute
three hubs in the predicted collaboration network of significant TFBS pairs. The hubs and their top three collaboration partners are given in Table 9

TFBS pairs that are comprised of 8 homotypic and 35
heterotypic pairs (see Fig. 4). 14 out of 43 significant
pairs have been also detected by PC-TraFF in the breast
cancer-associated promoters of RefSeq genes. Of all sig-
nificant pairs 22 could be verified based on annotation
databases TransCompel, BioGRID and/or STRING. The
significance of the remaining pairs is still unclear. In
addition to interactions between TFs in the promoters
of miRNA genes, we further investigated the interplay
between TFs and miRNAs. Consequently, we found for
TFs in 37 pairs at least a reference to their interaction with
miRNAs in literature (see Additional file 7).

Figure 4 shows that the collaboration network contains
the five hubs V$STAT6_01, VSETS_Q6, V$SAP1_Q4 01,
V$HMGIY_Q6, and V$PU1_Q6 each of which plays a
critical role in the breast cancer-associated gene regula-
tory network [62, 68, 71-74]. The hubs and their top three
collaboration partners are given in Table 10. VSETS_Q6
is bound by ETS1 which also binds to V$CETS1P54_01
and V$CETS168_Q6. Both are found to collaborate with
V$ETS_Q6 and show quite high significance levels in the
PC-TraFF analysis. ETS1 has been described in literature
to be involved in regulation of and by miRNAs which
are involved in cancer [54, 75]. As an example, ETS1 has
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Fig. 4 PC-TraFF significant collaborating TFBS pairs based on breast cancer-associated promoter sequences of human miRNA genes. Blue lines
denote interactions between TFs whose importance is experimentally verified whereas red lines indicate potential interactions between
transcription factors, that have not been experimentally validated yet

been found to regulate and is in turn also regulated by regulation, more specifically, it has been observed to act as
miR-222 [75]. It was found that a phosphorylated part a metastasis suppressor miRNA in human breast cancer
of the ETS1 protein induced miR-222 transcription in  [76]. The transcription factor PU.1 binds to sites pre-
metastatic melanoma [75]. As previously described, ETS1  dicted with V$PU1 Q6. It has been shown to be important
is additionally involved in regulation of miR-126 [54]. This  for differentiation and development of several cell types
miRNA is also known to be involved in breast cancer and tissues, as for example in B cell development and

Table 10 The hubs and their top three collaboration partners in the predicted collaboration network of significant TFBS pairs for
breast cancer-associated human miRNA genes

Hub Top three collaborating pairs Z-score Reference
VSSTATE_O1 VSHMGIY_Q6 13.28 -
VSMYB_Q5_01 5.77 -
VSGATA_Q6 498 -
VSETS_Q6 VSPUT_Q6 1349 TRANSCompel®, BioGRID, STRING
VSSF1_Q6 6.16 -
VSCETSTP54_01 5.00 TRANSCompel®, BioGRID, STRING
VSAPT_Q4_01 VSHMGIY_Q6 4.85 BioGRID, STRING
VSLEF1_Q2 427 BioGRID
VSSTAT6_01 4.17 TRANSCompel, BioGRID, STRING
VSHMGIY_Q6 VSSTAT6_01 1328 -
VSMYB_Q5_01 6.17 -
VSLEF1_Q2 6.00 -
VSPUT_Q6 VSETS_Q6 1349 TRANSCompel®, STRING
VSSF1_Q6 5.88 -

VSCETS168_Q6 3.29 TRANSCompel®, BioGRID, STRING
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terminal myeloid differentiation [77]. Additionally, it has
been described to be associated with cancer, as it inter-
acts with the p53 family of tumor suppressors and acts as
a tumor suppressor itself in B cell malignancies [77, 78].
Like ETS1, PU.1 is involved in miRNA regulation and has
been reported to regulate the transcription of miR-142 in
hematopoietic cell specific expression as well as miR-424
expression in human monocyte and macrophage differen-
tiation [79, 80]. Another hub is VSAP1_Q4_01, which is
bound by AP-1. This TF has been shown to be involved in
regulation of miR-21, a miRNA which has been observed
to be significantly deregulated in breast cancer [81, 82].

Comparative analysis of breast cancer subtypes

Breast cancer tumors can be separated into five differ-
ent subgroups with unique RefSeq genes based on their
mRNA expression patterns. As has been noted in [28],
the promoters of the individual subtypes can be distin-
guished by their composition of TFBS. The number of
promoter sequences of RefSeq genes as well as the cor-
responding number of PC-TraFF significant pairs found
for each subtype is shown in Table 11. The results show
that there is a certain pairwise overlap between the sig-
nificant pairs found in all subtypes (see Table 12) indi-
cating that some TF collaborations are not restricted
to the individual subtypes. The largest pairwise over-
lap with 36 significant pairs is between Luminal A and
Luminal B indicating that this subtypes match in a large
part of their regulatory features. There is further a huge
significant TFBS pair overlap found in Luminal A and
Basal-like as well as Luminal B and Basal-like associated
sequences.

Six significant pairs (see Table 13) are detected by PC-
TraFF in all subtypes, each of them has been detected as
significant previously (see Fig. 3). One of these pairs repre-
sents the synergistic collaboration between transcription
factors PEBP2wwA and ETS1 whose direct interaction is
crucial for the activation of the osteopontin (Opn) pro-
moter [83]. Opn is in general important for ossification
[83] but its splicing variants have been shown to be
expressed in breast cancer cells [84]. Another TFBS pair
out of these six pairs represents the collaboration between

Table 11 Number of promoter sequences of breast cancer
subtype-associated RefSeq genes and corresponding significant
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Table 12 Number of pairwise overlapping significant pairs of the
RefSeq genes of breast cancer subtypes Luminal A, Luminal B,
Basal-like, Normal-like, and ErbB2 over-expressing

Subtype Luminal A Luminal B Basal-like Normal-like ErbB2
over-exp.

Luminal A - 36 28 26 23

Luminal B - 30 20 19

Basal-like - 25 19

Normal-like - 16

ErbB2 over-exp. -

C/EBPB and STAT6 which often bind directly adjacent
on DNA and activate transcription in a synergistic
manner [85].

In analogy to our previous analysis, we investigated
in the next step the interactions between TFs in the
promoter sequences of breast cancer subtype-associated
miRNA genes. The number of promoter sequences of
miRNA genes as well as the number of PC-TraFF signifi-
cant pairs identified for each subtype is shown in Table 14.
As for the breast cancer subtype-associated Refseq genes,
we made a pairwise overlap comparison between the
significant pairs identified in the promoters of subtype-
associated miRNA genes (see Table 15). Similar to the
previous findings, the results of this comparison show that
the largest pairwise overlap is found between Luminal
A and Luminal B with 38 overlapping pairs whereas the
smallest significant TFBS pair overlap is found between
the Basal-like and the ErbB2 over-expressing subtype. Fur-
ther the results suggest that the significant TFBS pairs
found in each subtypes do not vary clearly. In contrast
to the Refseq gene analysis, in the miRNA promoters
20 PC-TraFF significant TFBS pairs have been detected
in all five subtypes (see Table 16). Surprisingly, one of
these pairs, namely V$SF1_Q6 and V$E2A_Q6 does not
occur in the predicted TFBS pair collaboration network of
miRNA genes of the breast cancer analysis (see Fig. 4). The
binding sites V$SF1_Q6 and V$E2A_Q6 are bound by the
factors NR5A2 and TCEF3, respectively. NR5A2 has been
described to be associated with invasive breast cancer and

Table 13 Six PC-TraFF significant TFBS pairs found in promoter
sequences of RefSeq genes of all five breast cancer subtypes

pairs found by PC-TraFF Significant pairs Reference

Subtype Number of sequences Number of Pairs VSMYCMAX_B - VSE2F_Q3_01 TRANSCompel®

Luminal A 86 61 VSCETS1P54_01 - VSPEBP_Q6 TRANSCompe@, BioGRID, STRING
Luminal B 57 62 VSCETS1P54_01 - VSNFKB_Q6 TRANSCompel®, STRING
Basal-like 31 72 VSCEBP_Q2 - VSSTAT6_01 TRANSCompel®, BioGRID, STRING
Normal-like 27 49 VSAP1_Q2_01 - VSAP1_Q4_01 TRANSCompel®, BioGRID, STRING
ErbB2 over-expressing 16 62 VSCEBPB_02 - VSSTAT6_01 TRANSCompe@, STRING
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Table 14 Number of breast cancer subtype-associated miRNA
genes and corresponding significant pairs found by PC-TraFF
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Table 16 20 PC-TraFF significant TFBS pairs found in promoter
sequences of miRNA genes of all five breast cancer subtypes

Subtype Number of miRNAs Number of Pairs Significant pairs Reference
Luminal A 186 46 VSSTAT6_01 - VSHMGIY_Q6 -
Luminal B 53 61 VSHMGIY_Q6 - VSLEF1_Q2 -
Basal-like 76 45 VSHMGIY_Q6 - VSMYB_Q5_01 -
Normal-like 23 52 VSSTAT6_01 - VSMYB_Q5_01 -
ErbB2 over-expressing 70 45 VS$SF1_Q6 - VSCETS168_Q6
VSHMGIY_Q6 - VSAP1_Q4_01 BioGRID, STRING
VSSTAT6_01 - VSAP1_Q4_01 TRANSCompel®,
is additionally thought to be involved in promotion of BioGRID, STRING
migration of breast cancer [86]. TCF3 upregulates miR-  VSSTAT6_O1 - VSGATA_Q6
495 in breast cancer stem cells [87]. Additionally, TCF3  v$HMGIY_Q6 - VSGATA_Q6
is supposed to be involved in breast cancer growth and  \sca7A 0 B VSLEFT_Q2 B
1n1t1at10n‘ and is preferent}ally highly expressed in breast VSMYCMAX_B i VSAHRHIE_ Q6 BiOGRID, STRING
cancer with poor prognosis of the basal-like subtype [88].
Although both transcription factors are involved in breast  ""'-* i VSAP1_Q4.01 TRANSCompel®,
8 P BIOGRID, STRING
cancer, we could not confirm their direct interaction
through annotation databases or literature survey. VSSF1_Q6 i VSE2A_Q6 i
VSSF1_Q6 - VSHNF4_Q6 -
Computational time and memory usage of PC-TraFF VSGATA_Q6 - VSAP1_Q4_01 TRANSCompel®,
The identification of significant TFBS pairs in human BioGRID, STRING
genome is computationally intensive because of its con-  VSLEF1_Q2 - VSAP1_Q4_01 BioGRID
siderably large size and its complicated as well as com-  V$MYCMAX_B - VS$E2F_Q3_01 TRANSCompel®
plex transcriptional network. When analysing a set of  \<nrrappABSS 01 _ VSCREL_01 BioGRID, STRING
sequences of the human genome, the computational time VSSTAT 01 i VSHMGIY_06
and memory usage can rise very quickly due to the huge
number of potential TFBS pairs. Thus, one of our main VSE2F_Q3_01 . VSAHRHIF_Q6
targets while developing PC-TraFF algorithm was to keep
its computational time and memory usage tractable. PC-
TraFF is implemented in Java and performed on Intel
Core™i7-4770K Processor operating at 3.50 GHz, with 32 Applying PC-TraFF algorithm to the promoter

GB DDR3 RAM using Ubuntu 12.04.5 operating system
(64 - bit version). Further, we compared the performance
of PC-TraFF with MatrixCatch [6], CPModule [9], Crm-
Miner [27], CisMiner [4], and COPS [8]. However, our
attempt to apply CisMiner and COPS to human genomic
sequences failed because the scope of applicability of
both methods is strongly limited due to their very high
execution time and memory consumption.

Table 15 Number of pairwise overlapping significant pairs of the
miRNA analysis of breast cancer subtypes Luminal A, Luminal B,
Basal-like, Normal-like, and ErbB2 over-expressing

sequences of RefSeq genes, the average computational
time of a sequence was 0.1806 s in genome-wide pomoter
analysis and 0.0203 s in breast cancer analysis, respec-
tively. Consequently, the algorithm took ~ 69 minutes
with a memory requirement of 3229 Mb for genome-wide
analysis and less than one minute (~ 0.07 minute) with
a memory requirement of 581 Mb for breast cancer
analysis. The computational time and memory usage of
PC-TraFF in comparison to other tools is presented in
Table 17.

Subtype Luminal A Luminal B Basal-like Normal like ErbB2 Table 17 Computational time (in seconds) / memory usage (in
over-exp.  megabyte) of the individual tools

Luminal A - 38 28 31 30 Genome-wide analysis Breast cancer analysis

Luminal B - 31 32 33 PC-TraFF 41584 s/3229 Mb 445s/581 Mb

Basal-like - 27 24 CPModule 2213.0s/721.6 Mb 59s/7.8Mb

Normal-like - 27 CrmMiner 34409.6 5 /526 Mb 857.45/90 Mb

ErbB2 over-exp. - MatrixCatch 627.2s/70.7 Mb 1695/ 46.2 Mb
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Discussion

Previous studies showed that Pointwise Mutual Informa-
tion (PMI) is a powerful association measure in the field
of linguistics. Aji S et al. [20] used PMI in their study
for document summarization processes based on a Term-
Sentence-Matrix where they measured weights of words
to describe their importance in sentences. On the other
hand, Gerlof Bouma [21] applied PMI in his work for
extracting collocations from a text where he aimed to
identify essential word combinations in sentences which
display some idiosyncrasy in their linguistic distributions.
These two articles encouraged us to utilize PMI for the
identification of potentially collaborating transcription
factors based on the idiosyncrasy of their binding site
distributions on the genome. Thus adopting the idea of
Aji S et al. [20] and Gerlof Bouma [21] in the field of
bioinformatics, we treat in this study the genome as a doc-
ument, the sequences under investigation as sentences,
and TFBSs as words in these sentences.

Today, it is known that in higher organisms TFs often
form non-random combinations of functional dimers or
higher order complexes instead of acting alone. Until now,
different studies have confirmed that the binding sites of
TFs provide a useful clue in the prediction of collaborating
TFs in a set of sequences (see e.g. [4—14]). As a result, we
use the TEBSs as the key components of PC-TraFE. How-
ever in our method the challenge was to filter these TFBSs
with the objective of eliminating the bias as well as noise
effects of both highly over- and underrepresented TFBSs
in a consistent way. These highly over- and underrepre-
sented TFBSs could be assumed to be punctuation marks
or stop words like “a’} “the’, “of” etc. which are required
in sentences due to the grammatical structures of natu-
ral languages. However they do not provide meaningful
information in statistical analysis for the identification of
important words in sentences [20]. Moreover, we apply an
additional filtering step in order to avoid the overestima-
tion of such TEBS pairs which directly overlap with TFBSs
of their same type (see the “Methods” section, Phase 3).
These overlaps result from the palindromic TFBSs and the
PWMs used by Match® program [25]. The filtering can
be seen as removal of redundant words in sentences indi-
cating that these words do not contribute any additional
information about the content of a sentence.

Another fundamental step of our new method is the
construction of TFBS pairs for which a distance mea-
sure between TFBSs according to their localization is
required. Today, different approaches are utilized to define
the distance constraints between TFBSs like the calcu-
lation of the preferred distances between TFBSs based
on their coordinates on the sequences (see e.g [4, 8])
or the usage of certain predefined maximum and mini-
mum distances between TFBSs (see e.g [11, 17, 27]). As
suggested by Hu et al. [11], in this study we preferred
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the latter approach and tested our method using differ-
ent predefined distance constraints. However our distance
definition between TFBSs clearly differs from the previ-
ous definitions used in [8, 11], hence in these studies the
distance between TFBSs has been calculated based on the
last nucleotide of the first TFBS and first nucleotide of the
second TFBS. We find the usage of this definition doubtful
in our study since: i) it can result in negative distances if
we consider slightly overlapping TFBSs which satisfy our
predefined maximum and minimum distance constraints;
ii) we believe that the first or last nucleotide of a TFBS
is not convincing since the borders of TFBSs as they are
represented by PWMs are somewhat fuzzy.

In order to almost completely eliminate the noise of
false positive TFBSs, we additionally applied the average
product correction (APC) theorem. The APC theorem is a
promising method which has been developed by Dunn et
al. [24] as an explicit noise measure based on information
theory to estimate the background mutual information of
residue positions in multiple sequence alignments. This
theorem seems to be of universal applicability and thus
we utilized it in our approach to calculate for each TFBS
pair the background PMIL,(t,; ¢) shared by TEBSs ¢, and
tp in the set of sequences under study. By removal of the
background from the observed PMI,.-values, the point-
wise mutual information is decreased which results in the
correction of the observed values. As a consequence, a
separation of the signal caused by functional collabora-
tion of TFs from the background occurs. We use these
corrected values for ranking the candidate pairs without
influence of noise contained in the sequences under study.

The results we present in this study for different sets
of sequences of human RefSeq genes show that the vast
majority of TEBS pairs found by PC-TraFF are in agree-
ment with previous experimental studies. 44 significant
TFBS pairs in the genome-wide analysis of promoters
as well as in the breast cancer-associated sequence set
analysis, respectively, have been confirmed by literature
regarding to the interactions of corresponding TFs. Such
interactions contribute crucial information for our under-
standing of combinatorial aspects of gene regulatory net-
works in the human cell cycle [2]. To gain more insights
into the regulatory network we further analyzed the pro-
moter regions of miRNA genes whose interactions with
TFs play an important role in several biological pro-
cesses [89]. Unlike recent studies [89-92], which mainly
focus on the interplay between miRNAs and single TFs,
in our analysis we systematically studied the interactions
between TFs in the promoters of miRNA genes. It turned
out that there are several overlapping significant pairs
which are detected in the sequences of both miRNA genes
and RefSeq genes indicating that the collaboration of
corresponding TFs are essential for transcription in gen-
eral. However, we found one binding site VEHMGIY_Q6
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which was found more frequently in the significant TFBS
pairs in the promoters of miRNA genes than RefSeq
genes. VSHMGIY_Q6 is bound by the transcription fac-
tors HMGA1 and HMGA2. Mammalian HMGA proteins
have been shown to play key roles in chromatin archi-
tecture and gene control and are known to have onco-
genic activity [93]. Furthermore, it has been shown that
HMGA proteins regulate miRNAs. For example, the miR-
NAs miR-196a-2, miR-101b, miR-331 and miR-29a have
been found be downregulated in cells lacking the HMGA1
protein [93]. Additionally, the miRNA miR-181b has been
shown to be up-regulated by HMGA1 and both are sup-
posed to be involved in breast cancer progression [94].
This, in correlation with our results, might hint to the fact
that the HMGA proteins could be important regulators of
miRNAs.

Of particular interest, we created based on the PC-
TraFF significant TFBS pairs for each analysis a collabo-
ration network (see Figs. 1, 2, 3 and 4). These networks
support us on the one hand for explaining the potential
biological functions of TF pairs in the corresponding set
of sequences. On the other hand, they help us to gener-
ate new hypotheses for extending our knowledge of why
these transcription factors tend to bind in a preferential
manner. All collaboration networks of significant pairs
contain two large unconnected subgraphs. These findings
are consistent with those of Hu et al. [11] and indicate
that the collaboration networks of transcription factors
are split in two major groups according to their binding
behaviour. Interestingly, we explore that the predicted col-
laboration networks for RefSeq genes as well as miRNA
genes in the genome-wide analysis contain the binding
sites VSSTAT6_01, VSCETS1P54_01, and V$AP1_Q4_01
with a higher degree of connectivity and thus they are
defined as hubs in both networks. However, the binding
site V$SP1_Q2_01 shows a sole exception in the genome-
wide analysis in comparison to other hubs because we can
only find it in the collaboration network for RefSeq genes.
The reason why this binding site can not form a signifi-
cant pair in the genome-wide analysis of miRNA genes, is
still unclear. For the breast cancer-associated sequence set
analysis, the predicted collaboration networks for miRNA
genes and their target RefSeq genes contain completely
different binding sites as hubs. This finding indicates that
the functional interactions between TFs for the regula-
tion of the miRNA transcription could also differ from
the interactions between TFs for the gene regulation of
RefSeq genes. We further analyzed breast cancer subtype
specific sets of sequences by separating the breast cancer-
associated sequences into five subgroups as has been
noted in [28]. A comparison between the significant pairs
found in all subtypes reveals that PC-TraFF detected six
experimentally verified TFBS pairs (see Table 13) which
are found and are likely to play a critical role in each
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subtype. The results further suggest that our method is
not dependend on the number of sequences under study,
since the PC-TraFF can detect for a small number of
sequences a high number of significant TFBS pairs or vice
versa.

Additionally, we applied the PC-TraFF using differ-
ent distance constraints as suggested by Hu et al. [11].
The results denote that a considerable number of true
significant TFBS pairs are consistently detected by PC-
TraFF under different distance constraints which indicates
the consistency of PC-TraFF predictions (see Additional
file 1).

Although we can verify the importance of most TFBS
pair predictions in the promoter regions of human Ref-
Seq genes, there are still 10 and 20 unconfirmed TFBS
pairs found for the genome-wide analysis and breast
cancer-associated sequence set analysis, respectively. It is
interesting to note that three of the unconfirmed TFBS
pairs (V$CETS1P54_01 - VSMYCMAX_B, V$CP2 01 —
V$SF1_Q6, and V$SOX9_B1 — V$STAT6_01) are referred
as significant in both analyses. As discussed in [31], one
reason for the significant co-occurrence of all uncon-
firmed binding sites could be that their TFs do not
have direct physical interaction but rather collaborate
with each other through another co-factor indirectly.
However, we hypothesize that most of the unconfirmed
pairs identified by our present method in the promoter
regions of both RefSeq genes as well as miRNA genes
may play a critical role for an effective regulation of
the transcriptional machinery in both analysis notwith-
standing the absence of previous experimental data.
Therefore, further progress from the biochemistry and
molecular biology end is required not only to evalu-
ate the significance of these pairs, but also for a future
perspective on a deeper understanding of regulatory
networks.

Finally, we made a pairwise comparison between the
results of PC-TraFF and conventional methods Matrix-
Catch [6], CPModule [9], and CrmMiner [27]. This
comparison study reveals that all these methods detect
remarkably different sets of TFBS pairs as important
which results in considerably low overlaps between the
results of all these methods. The reason for that can
be explained that all methods model different aspects of
interactions between transcription factors and thus carry
distinct information. However, the comparison results
additionally indicate that all these methods reach com-
parable perfomances. These findings are consistent with
those of Klepper et al. [95] where they applied several
methods to identify TFBS pairs using different datasets
and then showed that no single method is better than
other. Thus, we suggest to use these methods together
to improve the perfomance in identifying important
pairs.
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Conclusions

In this study, we develop PC-TraFF for the identifi-
cation of potentially collaborations between TFs using
their binding site distributions on the sequences under
study. PC-TraFF is a new information theoretic method
that applies the pointwise mutual information by con-
sidering TFBSs like words and sequences like sentences.
PC-TraFF also utilizes the average product correction
theorem which reduces the effect of false positive TFBSs
and thus enhances the signal caused by functional interac-
tions between TFs. Results show that PC-TraFF algorithm
has a tractable computational time and memory con-
sumption. Our results further indicate that PC-TraFF is on
the one hand able to identify known collaborating pairs in
the sequences, on the other hand able to predict additional
pairs which are likely to play critical role in the gene regu-
latory network but have not been experimentally validated
yet. Thus we suggest that the web server of PC-TraFF
could be used as a novel automated tool for the prediction
of potential collaborating transcription factors which are
required to better understand the molecular mechanism
of cellular regulation.

Methods

Set of sequences for RefSeq genes and miRNA genes

Using UCSC genome browser [96], we obtain for human
RefSeq genes and miRNA genes the corresponding pro-
moter sequences based on their annotated transcription
start sites (TSS). It is important to note that while the
TSSs of RefSeq genes have been obtained from the UCSC
genome browser, the TSSs of miRNA genes have been
determined during an internal project, the publication
of which is under preparation. The method utilized for
obtaining the TSS of the miRNAs depends on the posi-
tions of modified histones, more precisely the positions
of H3K4me3. This modified histone has been described
to be localized mainly at the promoters and TSS of tran-
scriptionally active genes in the genome [97]. Therefore,
these positions in collaboration with some computational
TSS identifying tools were used to define the TSS and pro-
moter regions of miRNAs. Moreover, it is important to
note that we have also analysed the promoter sequences
of miRNAs from PROmiRNA database [98] to compare
its results to those of our data. It turned out that there are
several overlapping significant pairs found by PC-TraFF
(data not shown).

In this study, the assembly of the hgl9 release of the
human genome was used and only UCSC track refGene
annotations were considered whose chromosome annota-
tions correspond to the chromosomes chrl-chr22, chrX
and chrY.

Regarding TSS annotations, RefSeq genes and miRNA
genes can have highly correlated multiple promoters
which results in overestimation of some transcription
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factor binding sites (TFBSs). Thus, to avoid the redun-
dancy between sequences we filter them based on their
TSSs and use in our analysis only those sequences which
have no overlap.

TFBS detection

We scan each sequence and its reverse complement
employing the Match™ program [25] setting its profile
parameter as specified by Deyneko et al. in [6] to detect
transcription factor binding sites (TFBSs). To apply the
Match™ program, we used a vertebrate position weight
matrix (PWM) library suggested in [6]. The PWMs were
obtained from the latest version of TRANSFAC (release
2014.1) [26].

The PC-TraFF algorithm

The PC-TraFF algorithm consists of six phases to detect
potentially collaborating transcription factors in a set of
sequences.

Phase 1: construction and filtering of the TFBS-sequence
matrix

Based on the frequency of predicted TFBSs in each
sequence, we create a TFBS-sequence matrix M,
where rows correspond to IDs of the sequences
and columns refer to names of PWMs. The
entries of M are calculated as follows. Let s; (i =
1,...,m,where m isthe number of sequences) denote
a promoter sequence and let ¢ (j = 1,...,n, where n is
the number of PWMs under study) be a potential TFBS
predicted by PWM j. The entry of M at position (i,j),
fij» is calculated as the observed frequency of ¢ in the
sequence s;.

Afterwards, we filter M in order to reduce: i) the bias
of the highly represented TFBSs in all sequences; ii) the
noisy effect of false signals arising from insufficient data.
Hence, we define for a matrix M its filtering parameters as
follows. First, we calculate the standard deviation o of the
entire matrix M based on its column sums. After that, we
eliminate a column k in M if the column sum of k is greater
than 3 x o. Second, we identify average zero percentile
in M based on its column entries and remove all columns
in M if such columns consist of more zero entries than
average, as we formally recieved the best results with this
approach.

Phase 2: identification of important TFBSs in each sequence
Using the filtered matrix M, the importance of each TFBS
in each sequence is characterized by calculating the point-
wise mutual information between sequence s; and TFBS ¢;
(PM,;) as

p(sir t])

PMI(s;; £) = log, ———27"__
9= 08 sy p()

1)
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where p(s;, t;) indicates the probability that TFBS #; occurs
in the sequence s; with respect to entire set of sequences.
It is calculated as

fij
PG t) = S~
v i 7:1fi1’

where fj; is the frequency of the TEBS #; in the correspond-
ing sequence s;.

p(si) and p(%) are the marginal probabilities for s; and
t; in the entire set of sequences, respectively, which are
calculated as

2)

Z;;lfii
)= S~ 3
P D im1 Zj:lfij ®
i:lﬁj (4)

P = mim~~r 7
! Dt j=1fi1'

A positive PMI(s;; £)-score for a specific TFBS ¢ in the
sequence s;, resulting from the fact that the pair distribu-
tion p(s;,t;) is greater than the product of the marginal
distributions, shows that £; occurs in s; more often than by
chance. Conclusively, we regard such TFBSs in sequences
as important for transcription and consider only those
TFBSs in our further analysis for each sequence.

Phase 3: filter to avoid overlaps

The Match™ program predicts all potential TFBSs based
on the given PWM library. Thereby, it is possible that
some binding sites overlap or one binding site is included
in another. The overlap between binding sites can occur
due to: i) the palindromicity of TFBSs (the reverse comple-
ment is the same as the original sequence); ii) some PWMs
being larger than real binding sites of TFs.

Overlapping of TFBSs of the same type can result in
their overestimation in our analysis. Thus, to avoid the
overestimation of such TFBSs, we filter them based on
their distance to the corresponding TSS. After the filtering
process, the TFBS is taken into account that has a closer
distance to TSS compared to its overlapping partner (illus-
trated in Fig. 5) since functional TFBSs often have a closer
localization to TSSs [37].
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Phase 4: construction of TFBS pairs
We define the distance, d;, ;; between two TFBSs t4 and
tp based on their midpoints C;, and Cy,:

th,tB = |CtA - Ct3| (5)

The midpoint, Cy, of a TFBS t4 is defined as | €74 |
where lengthy is the length of £4.

In this work, two TFBSs form a pair, if dy, < di, i <
dax Where di, and d,;,., are minimal and maximal dis-
tance constrains, respectively, which are specified by user.
In this study, we set d,,,;;, at least 5 bp which approximately
corresponds to one-half of an average TFBS’ length. In
analogy to study of Hu et al. [11], we used different d;,;x
constrains in our analysis. Moreover, following [99] a
slight overlap (of at most 4 bp) between TFBSs of different
types is allowed if the user-defined distance constrains are
satisfied.

Applying our approach to construct TFBS pairs, we have
to deal with their false overestimation due to repeated
number of similar binding sites within a certain interval
on DNA, also known as homotypic clustering. To avoid
this problem in our analysis, we allow that one TFBS can
only participate in a pair of two specified TFBSs within a
certain interval (predefined distance). This is illustrated in
Fig. 6.

Phase 5: weighted cumulative pointwise mutual information
Potential collaborating transcription factors are deter-
mined by calculating weighted cumulative pointwise
mutual information (PMI,.) based on the co-occurrences
of their corresponding TFBSs. The PMI(%,; t;) between
TFBSs t, and t;, is defined as

p(tﬂ’ tb)
pta) - p(ty)’

where p(t,, tp) is the joint probability, p(¢;) and p(tp) are
marginal probabilities for ¢, and ¢, respectively. In gen-
eral, the PMI-metric is very susceptible to low number
counts [21]. To eliminate this property of the PMI-metric
to some extent, we first multiply the PMI(z,; ¢,)-value of
each TFBS pair with their joint probability p(¢,, t,). After

PMI(t,; t) = logs (6)

TSS

Fig. 5 Filtering procedure of the overlap filter. Overlapping TFBSs of the same type (marked in red cycles) are filtered in a way that the TFBS survives

which is closer to TSS
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Certain interval

__,TSS

Fig. 6 The problem of homotypic clusters: The TFBSs (tye) form an homotypic cluster within a certain interval on the sequence. The TFBS teq is also
included in this interval. According to our definition to construct TFBS pairs and by following the DNA strand in 5-3” direction: i) we consider one
thive — treg PaIr in this interval indicating that an individual TFBS can only participate in one count of a specified pair (shown with black line); ii) if we
consider tpue — tpie Pairs, there are two pairs within this interval (shown with blue lines). The red (dashed) lines demonstrate that the remaining
thiue — tblue aNd tpiue — treq PAIrs are not taken into account in the calculation of pointwise mutual information of this pairs

that, we incorporate the weight of each sequence (w;) with
respect to the entire set of sequences in the calculation
of PMI. Doing this, the weighted pointwise mutual infor-
mation of each TFBS pair in a sequence s IP’M]IIS, (ta; tp) is
obtained as

PMI, (ta; tp) = ws - p(ta, tp) - PMI(ta; ). (7)

The sequence weight w; for a sequence s is given by the
number of TFBS pairs N in s divided by the total number
of TFBS pairs in the entire set of sequences S.

ZSL'GS NSi

To define the collaboration level of ¢, and £, in S, we cal-
culate weighted cumulative pointwise mutual information
value PMl,.(t4;t,) by summing up their ]P’MH;(ta s Ep)-
values over all sequences as

(8)

Ws

PMlpe(ta; tp) = ) M, (643 15). (9)

seS

Phase 6: background noise reduction of TFBSs using average
product correction

We apply the average product correction (APC) pro-
cedure, developed by Dunn et al. [24], to reduce the
background noise of TFBS pairs that might occur as a
result of false positive TFBSs in the entire sequence set S.
Thus, we estimate the expected level of the background
PMIlyc (245 tp) shared by TFBSs ¢, and ¢, as

IP)Mmpc(ta? E) : IEI)Mmpc (tps E)

APC(ta ty) = T
pC

(10)

where PMHpc(ta;E) is the mean pointwise mutual infor-
mation of TFBS ¢, that is defined by

_ 1 <
]PMHpc(ta; ty) = m Z PMﬂpc(ta; Lx). (11)

x=1

Further, the PMI,. refers to overall mean pointwise
mutual information for all TFBS pairs.

Afterwards, the APC(t,, t;)-value of a pair under study
is subtracted from its PMl,(Z,; t,)-value, and thus we

(t4; tp)-values as

observe the corrected IP’M]I?CP C

PMIOPC (t3 1) = PMle(ta tp) — APC(ty 1) (12)

Finally, by transforming the corrected IP’MH;CP C(tas ty)-
values into z-scores, we consider a TFBS pair to be sig-
nificant in the entire set of sequences, if the pair has a
z-score > 3.
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Appendix 166

A.2. Removing background Co-occurrences of TFBSs greatly
improves the prediction of specific TF cooperations
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Today, it is well-known that in eukaryotic cells the complex interplay of transcription
factors (TFs) bound to the DNA of promoters and enhancers is the basis for precise
and specific control of transcription. Computational methods have been developed
for the identification of potentially cooperating TFs through the co-occurrence of their
binding sites (TFBSs). One challenge of these methods is the differentiation of TFBS pairs
that are specific for a given sequence set from those that are ubiquitously appearing,
rendering the results highly dependent on the choice of a proper background set.
Here, we present an extension of our previous PC-TraFF approach that estimates
the background co-occurrence of any TF pair by preserving the (oligo-) nucleotide
composition and, thus, the core of TFBSs in the sequences of interest. Applying our
approach to a simulated data set with implanted TFBS pairs, we could successfully
identify them as sequence-set specific under a variety of conditions. When we analyzed
the gene expression data sets of five breast cancer associated subtypes, the number of
overlapping pairs could be dramatically reduced in comparison to our previous approach.
As a result, we could identify potentially cooperating transcriptional regulators that
are characteristic for each of the five breast cancer subtypes. This indicates that our
approach is able to discriminate specific potential TF cooperations against ubiquitously
occurring combinations. The results obtained with our method may help to understand
the genetic programs governing specific biological processes such as the development
of different tumor types.

Keywords: transcription factor (TF), TF cooperations, sequence-set specific TF cooperations, background
correction, TF co-occurrences

1. INTRODUCTION

Transcription factors (TFs) are a special class of cellular proteins that are essential for controlling
different genetic programs such as adaption to the environment, immune response, organogenesis
or embryonic development by regulating gene expression. The human genome encodes roughly
1500-2000 different TFs which bind to short degenerate DNA motifs, known as transcription factor
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binding sites (TFBSs). In higher organisms, the binding of TFs
occurs in a specific combination within DNA regulatory regions
(promoters as well as distal elements, such as enhancers) to
form purposive dimers or higher order complexes to activate
or repress their target genes. Due to the fact that eukaryotic
DNA is packed in chromatin, TFs show additionally competing
or cooperative DNA binding with chromatin associated proteins
(Teif and Rippe, 2010). Besides this, based on the co-occurence
of their TFBSs TFs exert functional cooperations which play an
important role in the regulation of the different genetic programs
in mammals (Boyer et al., 2005; Hu and Gallo, 2010; Neph et al,,
2012). Today, it is well-known that the selection of cooperation
partners for TFs depends on their biological functions, e.g.,
cell cycle control, cell homeostasis, or cell differentiation in
different cell types. As a result of these properties, TFs change
their partners to specify their functions according to the cellular
context.

In the last decade, a various number of computational
methods for the identification of cooperating TFs has been
proposed (Hu et al.,, 2007; Van Loo and Marynen, 2009; Girgis
and Ovcharenko, 2012; Ha et al., 2012; Sun et al., 2012; Deyneko
et al., 2013; Nandi et al., 2013; Jankowski et al., 2014; Navarro
et al., 2014; Meckbach et al., 2015; Wu and Lai, 2016; Spadafore
et al., 2017). Among these methods, predicting the putative
TFBSs in the sequences under study and building a meaningful
quantification measure of the cooperation between two TFs
are two essential steps to make the predictions successful.
Based on these steps, different strategies/ideas have been used
for the identification of cooperating TF pairs such as the
TFBS co-occurrences of cooperative pairs are more often than
expected by chance and have significantly closer distances.
In this context, several methods such as statistical methods
like the hypergeometric test, clustering approaches, randomized
occurrence frequency model (OF,) or Markov models have been
developed (Hu et al, 2007; Chuang et al., 2009; Girgis and
Ovcharenko, 2012; Ha et al., 2012; Mysickova and Vingron, 2012;
Sun et al., 2012; Nandi et al., 2013; Jankowski et al., 2014; Lai et al.,
2014; Navarro et al., 2014; Spadafore et al., 2017).

Employing a comprehensive performance evaluation study on
the prediction results of those methods, Lai et al. (2014) have
shown that the success rates of different approaches strongly
depend on the corresponding evaluation criteria. This finding
is also supported by our results, which we have presented in
Meckbach et al. (2015). However, the predictions of almost
all of these methods suffer from many types of obstacles that
might occur as a result of high background like common
regulatory programs between cell types and the environmental
components in their regulatory sequences like GC content or
nucleotide composition - indicating the ratio of the constituent
monomer units/bases- as well as the noise effect of false positive
putative TFBSs. Hence, such obstacles lead into background co-
occurrence of TFBSs and consequently the results of a certain
method are often highly overlapping for different sequence sets.
Zeidler et al. (2016) have clearly demonstrated this problem in
their study for detection of stage-specific TF pairs in a time
series data set during heart development. To overcome this
problem, they have further applied Markov clustering algorithm

(MCL) (Dongen, 2000) to the pairs predicted by MatrixCatch
methodology (Deyneko et al., 2013). Although several negligible
TF cooperations could be eliminated, the application of MCL
algorithm in this context is only based on the observed
frequencies of TFBSs and does not consider the sequence specific
environmental components. Consequently, the results of this
approach seem to be conservative and not sequence set specific,
yet.

To deal with this problem to some extent, we applied in our
previous study the average product correction (APC) theorem
(Dunn et al., 2008) in order to determine for each TFBS pair their
background co-occurrence resulting from their possibly false
positive TFBS predictions in the entire sequence set under study.
Although, with respect to APC theorem, the background noise
effect of false positive TFBSs could be successfully eliminated in
the detection of significant TF pairs, the power and functionality
of APC theorem appears to be insufficient to handle the
remaining obstacles for the identification of sequence-set specific
TF cooperations. In order to overcome the missing point of
PC-TraFF workflow (Meckbach et al., 2015), we propose in this
study an efficient approach that accurately quantifies the level of
background co-occurrence of two TFBSs considering different
types of obstacles (mentioned above) in the sequences under
study. For this purpose, by preserving the (oligo-) nucleotide
composition of the sequences of interest, we create a sufficient
number of new shuffled sequence sets and based on these sets
the background co-occurrence of a TFBS pair is measured.
This process ensures that TF cooperations, which are very
sensitive regarding the context of nucleotides and the distance of
their binding sites, will become remarkable small background-
values in comparison to common (ubiquitously occurring) TF
pairs. These ubiquitously occurring TF pairs are often found as
significant for different sequence sets and are less susceptible
to the behavior of their binding sites in the set of sequences.
Consequently, removal of this background leads to the separation
of sequence set-specific TF pairs from the common ones.

To demonstrate the performance and functionality of our
proposed approach, we analyzed a simulation data set as well as
five breast cancer subtype-associated gene sets, and present the
results step by step by providing comparative analysis. These data
sets have been chosen because the importance of cooperating TF
pairs have been well-studied in Meckbach et al. (2015).

Terminology

For the sake of simplicity, we adapt the terminology of our
previous paper (Meckbach et al., 2015). In doing so, each match
of a position weight matrix (PWM) with a segment of genomic
DNA is called a (potential) transcription factor binding site
(TFBS). TFBSs are represented by names of their corresponding
PWMs. The PWMs of TRANSFAC (Wingender, 2008) used
in this report are denoted with their TRANSFAC identifiers,
the structure of which is: V$factorname_version, where “V§“
indicates that the PWM is representing a TFBS of a vertebrate TF.
factorname refers to the TF name, while there are more than one
PWM representing the binding motif of a certain factor, version is
required for the unambiguous identification of the PWM. TFBS
pairs refer to co-occurring TFBSs. It is important to note that we
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cannot make any statement about the kind of interaction such
co-occurrence may be associated with (cooperativity, synergistic
or antagonistic interaction etc.). The term cooperation refers to
any kind of functional cooperation and/or physical interaction
between the constituents of the predicted TFBS pairs.

2. RESULTS AND DISCUSSION

In this study, we introduce an extension of our previous
methodological approach PC-TraFF for the separation of
sequence-set specific cooperating transcription factors based
on the co-occurrence of their binding sites from common
ones. The overall workflow of our approach comprises two
parts. First, the original PC-TraFF algorithm is used in order
to predict significant TFBS pairs in a set of sequence where
PC-TraFF provides for each significant TFBS pair t, and t;, a
pointwise mutual information score IP’MH?CP Clta; 1p). Thereby,
the minimal and maximal distance threshold for two TFBSs
to form a pair is set to 5 and 20 bp, respectively, in order
to provide a proper comparison to the original PC-TraFF-
results.

Second, in order to separate PC-TraFF significant TFBS
pairs into the two groups of sequence-set specific and common
(generally important) combinations, we apply our extension
approach. For this purpose, out of the sequences of interest,
a sufficiently large number of background sets is created by
shuffling the original sequences, whereby the general nucleotide
composition of the sequences as well as the core of the putative
TFBSs are maintained. For all these background sets, the
original PC-TraFF algorithm is applied to calculate PMH?E c.
values between all TFBS pairs. Afterwards, using these values
the level of average background cooperation, which is defined
as AVG (PMH(ta; tb))—value, between two TFs based on their
binding sites over all sets of background sequences is calculated.
The subtraction of AVG (PMI)-values from their initial PM}Iﬁf c.
values results in the separation of sequence-set specific pairs
from the common co-occurrences. To this end, we additionally
introduced a factor « € [—1,1] to enlarge/reduce the effect
of the subtracted background level by linearly influencing the
subtracted average value AVG (IPM]I(tu; th)). If « = 1, the 2x
AVG (PM(tg; t3))-value is subtracted from the initiate IP’M]I?CP C.
value, o = 0 results simply in the subtraction of the observed
AVG (PMH(ta; tb)) value, while an «a-value of —1 results in the
original PC-TraFF predictions. Thus, « enlarges/reduces the level
of the subtracted background and is thereby influencing the
number of identified specific pairs. However, our results suggest
that the impact of o on the number of specific pairs strongly
depends on the individual sequence sets and appears not to be
linear (e.g., see Figure 1) although the factor itself has a linear
influence on the subtracted background level.

It is important to note that the Results section of this
study mainly considers the influence of our proposed extension
approach on the cooperating TFs identified by the PC-TraFF
algorithm. Researchers, who are interested in the biological
functions of individual TF cooperations, are kindly referred to
the original PC-TraFF paper (Meckbach et al., 2015).

Number of pairs
30 40 50
| 1 |
/
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20
|
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FIGURE 1 | Number of specific TFBS pairs for the synthetic sequence set in
dependence on different «-values. The synthetic sequence set consists of 200
sequences of length 1000 bps, each of these sequences contains artificially
inserted binding site pairs (V$IRF1_01 - VSUSF_01) for the cooperation
between transcription factors IRF1 and USF1 with a minimal distance of 5 bp
and a maximal distance of 20 bp. The a-value linearly influences the
subtracted background level (e.g., @ = O results in the subtraction of the

AVG (PMl(ta; tp)) value, o = 1 indicates the subtraction of the 2x

AVG (PMl(ta; tp))-value) .

TABLE 1 | Total number of specific TFBS pairs for the simulation data set using
different a-values.

a-value Rank of artificially inserted pair  Total number of pairs found
a=-1 18 58
a=0 16 55
a=0.1 15 47
a=0.15 14 43
a=02 12 40
a =025 11 37
a=05 6 28
a =075 6 25
a=1 5 21

The rank according to z-score indicates the position of the inserted pair. The scaling factor
o = —1 indicates the significant TFBS pairs identified by the original P C-TraFF algorithm.

2.1. Analysis of Simulation Data

Analyzing the sequences in the simulation data set, the original
PC-TraFF algorithm identified 58 TFBS pairs as significant
(o = —1), where the artificially inserted binding site pair
of the cooperating transcription factors IRF1 and USF1 is on
position 18 according to z-score ranking. However, applying our
extension approach to the results of PC-TraFF, only three of
the 58 significant pairs were determined as common ones (see
Table 1) based on the calculated background co-occurence of
TFBSs (@ = 0). This rather low number of common pairs
indicates that in a unspecific sequence set, the quantification
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of correct background could be difficult which, in the worst
case, may cause that sequence-set specific cooperations cannot
be separated from common ones. To overcome this problem,
the consideration of the scaling factor « is important. Figure 1
shows the influence of « on the results. Although a variety of pairs
are eliminated by means of different scaling factors, the inserted
pair has been identified as sequence-set specific for each a-value.
Considering the z-score ranking of TFBS pairs, the position of the
inserted pair is rising with an increasing «-value (see Table 1). It
has to be noted that the inserted binding sites are also matched by
other PWMs, resulting in a variety of additional artificially arising
TFBS pairs that consequently appear to be specific for the given
sequence set.

2.2. Analysis of Breast Cancer Subtype

Associated Promoter Sequences

Applying the original PC-TraFF algorithm to each BRC-subtype
associated promoter sequences, we observed: (i) 62 TFBS pairs
for Luminal A; (ii) 63 pairs for Luminal B; (iii) 68 pairs for Basal-
like; (iv) 49 pairs for Normal-like; and (v) 62 pairs for ErbB2
over-expressing data set as significant. A comparison between
these pairs shows that there are several pairs found as significant

for more than one BRC-subtype (see Figure 2A), although the
promoter sequences in all subtypes are unique (not overlapping).
The reason of these overlapping pairs could be due to the same
origin of the data and common regulatory programs which
interfere with the identification of BRC-subtype specific TF
cooperations.

To reveal the BRC-subtype specific TF cooperations, we
additionally applied our extension approach using different a-
values to these significant pairs. The results of this analysis
indicate that the scaling factor o dramatically influences the
number of sequence-set specific TFBS pairs. For example, on
average 90% of the significant pairs have been determined as
sequence-set specific by setting @« = 0, and 66% or 35% of
significant pairs are assigned as sequence-set specific by setting
a = 0.2 or o = 0.5, respectively (Figure 3). Further, Figure 3
shows that, the influence of the scaling factor « is not consistent
between the different sequence sets. While the number of specific
TFBS pairs detected for Luminal A promoter sequences is
dramatically decreasing and finally, 1% of all significant pairs
have been determined as specific, the number of specific pairs
for ErbB2 over-expressing promoter sequences has only slightly
decreased in accordance with the increment of «-value and in
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FIGURE 3 | Number of sequence-set specific pairs found in the promoter
sequences of differentially expressed genes of five BRC-subtypes depending
on the «-value. The a-value linearly influences the subtracted background level
(e.g., @ = O results in the subtraction of the mean, « = 1 indicates the
subtraction of the 2x AVG (PMl(ta; tp,))-value).

an extreme case (¢ = 1) 47% of significant pairs in this subtype
are assigned as specific. In addition, Figure 2 depicts in detail for
a = 0.2 the differences between significant and specific pairs
for any BRC-subtype. By considering the sequence-set specific
pairs, it is remarkable that like in the original PC-TraFF analysis,
the Luminal A promoter sequence set has the lowest number
of unique pairs (eight), and ErbB2 over-expressing promoter
sequences have the largest number of unique TFBS pairs. The
intersection of all BRC-subtypes specific pairs is zero.

Interestingly, after applying our extension approach, there
are more sequence-set specific unique pairs for Normal-like and
Luminal B subtypes (Figure 2B) than significant unique pairs
(Figure 2A). For Normal-like data set, there are 11 significant
and 17 specific unique pairs. In particular, six pairs that were
identified in the original PC-TraFF analysis for several subtypes
are determined to be solely sequence-set specific for Normal-like
subtype. For example, the pairs (V$CEBP_02 - VSHMGIY_Q6)
and (V$ELK1_02 - V$CETS1P54_01) are significant for four
different breast cancer subtypes or the pair (VS$CEBPB_02 -
V$CEBP_Q2) is significant in the originial PC-TraFF version for
three BRC-subtypes, but they are sequence-set specific only for
Normal-like subtype (for details see Table 2).

For Luminal B subtype, 13 pairs were uniquely identified
as significant by the original PC-TraFF algorithm and 17
pairs were uniquely assigned as specific. In this case, seven
pairs that were common in the original PC-TraFF analysis
have been determined to be sequence-set specific only for
Luminal B subtype. Further, three of the unique significant pairs
(VSMYB_Q5_01 - VSMAF_Q6_01, VSNFKB_Q6 - V$CP2_02,
V$SHMGIY_Q6 - V$MAF_Q6_01) were assigned as common
co-occurences according their negative PMI*¢/ values.

TABLE 2 | Pairs that were identified as significant by PC-TraFF algorithm
(« = —1) for different BRC-subtypes but are specific solely for a certain subtype
using an «-value of 0.2 for the background correction.

Specific for TFBS pairs Significant in subtypes
subtype
Normal-ike ~ VSCEBPB_02 - V$HMGIY_Q6 Basal-like, Luminal A,
Luminal B, Normal-like
V$ELK1_02 - VSCETS1P54_01 Basal-like, Luminal A,
Luminal B, Normal-like
V$CEBPB_02 - V$CEBP_Q2 ErbB2 over-expressing,
Luminal B, Normal-like
VSNFKB_Q6 - V$SP1_Q4_01 Luminal A, Normal-like
VSEGR_Q6 - VSAHRHIF_Q6 Basal-like, Normal-like
V$GR_Q6_01 - VSPR_Q2 ErbB2 over-expressing,
Normal-like
Luminal B VSCETS1P54_01 - VSAHRHIF_Q6  Luminal A, Luminal B,

Normal-like
V$E2F_Q3_01 - VSPEBP_Q6
VEMYCMAX_B - VSAHRHIF_Q6

Luminal A, Luminal B

Basal-like, Luminal A,
Luminal B

V$NFKB_Q6 -V$E2F_Q3_01
VSNFKB_Q6 -V$AHRHIF_Q6
V$CETS1P54_01- V$CP2_02
V$CETS1P54_01 -VSMYCMAX_B

Luminal A, Luminal B
Luminal A, Luminal B
Luminal A, Luminal B

Basal-like, Luminal A,
Luminal B, Normal-like

Besides this, there are further six pairs identified by the
original PC-TraFF algorithm as significant for all five BRC-
subtypes, but they are assigned to be specific only for some
of these subtypes (for details see Figure 2 and Table 3). For
example the TFBS pair (V$CEBPB_02 - V$STAT6_01) indicating
the cooperation between the transcription factors CEBPB and
STAT6 can still be found in the sequence-set specific pairs of
Luminal A, Luminal B and Basal-like subtypes. In contrast, the
pairs (VSMYCMAX_B - V$E2F_Q3_01) and (V$STAT6_01 -
V$HMGIY_Q6) have been determined as specific only for Basal-
like and Normal-like promoter sequence sets, respectively.

Finally, we built up cooperation networks based on the
significant TFBS pairs, where the nodes refer to TFBSs and
edges to predicted co-occurrences and thus, to cooperations
between them, in order to demonstrate in an exemplary way
the comparative analysis between the results of our extension
approach and those of the original PC-TraFF algorithm. The
cooperation network based on PC-TraFF significant TFBS pairs
for Luminal A subtype (see Figure 4) consists of 33 nodes and
62 edges. Reducing the network by only considering sequence-
set TFBS pairs results in the elimination of 7 nodes and 35 edges.
Consequently, the remaining part of the network is built up of 26
nodes with their 27 sequence-set specific cooperations (edges). It
is remarkable that some TFBSs that serve as hubs in the original
network are still hub nodes in the reduced network but show
a lower number of neighboring nodes (e.g., VSCETS1P54_01,
V$MYB_Q5_01, and VSHMGIY_Q6). On the other side, there
are some highly connected nodes of the original network that
are missing in the specific pair network. For example the degree
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TABLE 3 | TFBS pairs, which were identified as significant by original PC-TraFF algorithm for all five BRC-subtypes but were determined as specific only in certain

subtypes.

TFBS pair

Specific for subtype(s)

Pairs documentation

V$CETS1P54_01 - VSETS_Q4
VSMYCMAX_B - V$E2F_Q3_01
V$CEBPB_02 - V$STAT6_01
V$STAT6_01 - VEHMGIY_Q6
V$CETS1P54_01 - VNFKB_Q6
V$AP1_Q2_01 - VSAP1_Q4_01

Basal-like

Normal-like

ErbB2 over-expressing, Luminal A

Luminal A, Luminal B, Basal-like

Luminal A, Normal-like, Basal-like
Luminal A, Luminal B, ErbB2 over-expressing

BioGRID, TransCompel®
TransCompel®
TransCompel®

TransCompel®
BioGRID, TransCompel®

The last column indiicates the databases that document the evidence for these pairs. For this purpose, we used TRANSCompel® (Kel-Margoulis et al., 2002) and BioGRID interaction

database (Chatr-aryamontri et al., 2014), which contain experimentally proven pairs.

of VSNFKB_Q6 or VSAHRIF_Q6 decreases from six neighbors
to one neighbor and V$SP1_Q4_01 is totally missing in the
network of specific pairs. The node representing the binding site
V$SMAD_Q6_01 lost just one of its neighbors in this network
and thereby, it is among the 25% nodes of highest degree.

A closer look at the cooperation network of significant TFBS
pairs identified for the Basal-like data set discloses that 43
out of 68 significant pairs have been assigned to be sequence-
set specific based on our extension approach with a scaling
factor « = 0.2 (see Figure5A). Setting « = 0.5 for this
analysis leads to elimination of the vast majority of the pairs
and consequently 16 pairs have been determined to be specific
in the promoter sequences of Basal-like subtype (see Figure 5B).
A comparison between cooperation networks of Luminal A
and Basal-like subtypes suggests that by considering the same
scaling factor our extension approach has more influence on
significant pairs found for Luminal A data set than those found
for Basal-like data set. The reason for this finding might be
that Basal-like data set is more specific than Luminal A data
set regarding to transcriptional regulation. Thus, the level of
background co-occurrence of TFBSs resulting from common
regulatory programs seems to be remarkable higher in Luminal
A data set than those of Basal-like data set.

3. METHODS
3.1. Data Sets

In order to assess the effectiveness of our approach and to
present a detailed comparison with the results of original
PC-TraFF algorithm, we analyzed in this study the data
sets that have already been reported in Meckbach et al.
(2015). The first data set is a simulation data set consisting
of 200 sequences with the length of 1000 bps. Each of
these sequences contains artificially inserted binding site
pairs (V$IRF1_01 - VSUSF_01) for the cooperation between
transcription factors IRF1 and USF1 with a minimal distance
of 5 bp and a maximal distance of 20 bp. For the two
inserted binding sites we used the consensus sequences given
by the position weight matrices V$IRF1_01 and V$USF_01,
respectively.

The second data set is a breast cancer (BRC) gene set
determined by Sorlie et al. (2003) and taken from Joshi
et al. (2012). The genes have been identified based on their

differential mRNA expression behavior in cancer cells and
are grouped according to their expression pattern into the
five molecular breast cancer-associated subtypes: Luminal A,
Luminal B, Normal-like, ErbB2 over-expressing and Basal-like
using hierarchical clustering (Sorlie et al., 2003). Our analysis
is based on the promoter sequences of the associated genes.
The number of genes as well as their corresponding promoter
sequences (—500 bp to +100 bp relative to the transcription
start site defined by Joshi et al. (2012) in each subtype are
given in Table4. It can be seen that the BRC-subtype data
sets differ in the number of genes and consequently in the
number of promoter sequences. For example, Luminal A gene
set appears to be the largest set by consisting of 86 promoter
sequences and in turn, the set ErbB2 over-expressing is the
smallest sequence set by owning 15 promoter sequences (see
Table 4). Such differences are important and make it possible
to demonstrate the functionality of our extension approach for
different sequence-set sizes.

The Methods section of this study comprises two main parts.
First, we review our previous work PC-TraFF (Meckbach et al.,
2015) so that the readers have sufficient background information
to understand the proposed extension in the PC-TraFF workflow.
After that, we present our proposed extension approach for
the separation of sequence-set specific TF cooperations from
common (generally important) ones.

Previous Work: Introduction to PC-TraFF
PC-TraFF is an information theory based method that uses the
pointwise mutual information (PMI) for the identification of
potentially cooperating transcription factors according to their
binding site pattern in a set of sequences. The algorithm of
PC-TraFF comprises six phases and provides for each TFBS-
pair t; and t;, a PMIl,c(t,, t,)-value based on their distances and
frequencies in the sequences, under study.

The overall workflow of PC-TraFF can be briefly given as:

3.1.1. Phase 1: Construction and Filtering of the
TFBS-Sequence Matrix

In the first step we predict all transcription factor binding sites
(TEBSs) in a set of sequences by applying Match™ program (Kel
et al., 2003) using the profile parameters and the position weight
matrix (PWM) library specified in Deyneko et al. (2013). The
PWMs are taken from TRANSFAC database (Wingender, 2008).
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involved in common TF cooperations, but not in the specific pairs.
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FIGURE 4 | Cooperation network according to PC-TraFF significant TFBS pairs for Luminal A gene set. The nodes represent TFBSs identified by the indicated
PWMs. Edges represent their potential cooperation based on observed co-occurrences. After applying our extension approach: while blue edges correspond to the
sequence-set specific cooperations (@ = 0.2), the common cooperations are shown by dashed lines. The nodes with light yellow color indicate TFBSs that are
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FIGURE 5 | Cooperation network according to PC-TraFF significant TFBS pairs for Basal-like gene set. The nodes represent TFBSs identified by the indicated
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PWMs. Edges represent their potential cooperation based on observed co-occurrences. After applying our extension approach: while blue edges correspond to the
sequence-set specific cooperations for (A) « = 0.2 and (B) « = 0.5, the common (generally important) cooperations are shown by dashed lines. The nodes with light
yellow color indicate TFBSs that are involved in common TF cooperations, but not in the specific pairs.

Based on the observed frequencies of TFBSs in the sequences
under study a TFBS-sequence matrix M is constructed (see
Figure 6). In M, the row-names are presented by the IDs of
the sequences and columns refer to the names of PWMs used
in Match™ algorithm for the prediction of putative TFBSs. An

entry x;; in M is the frequency of a putative TFBS ¢ (j
1,.., n, where n is the number of PWMs) identified by PWM j
in sequence s; (i = 1,..., m, where m is the number of sequences
under study). After that, columns of M are filtered in order to
reduce the effect of highly over- or underrepresented TFBSs.
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TABLE 4 | The number of genes and promoter sequences for the
BRC-associated subtypes.

BRC subtypes Number of genes Number of promoter sequences
Luminal A 78 86
Luminal B 55 57
Normal-like 23 27
Basal-like 28 31
ErbB2 over-expressing 13 15
TSS
o o O - VS, V$, --- V$§,
Sy fxa X122 - Xip
— e we[" S2 [ x20 x22 X2m
— M= i
7_ - Sm \Xm1 Xm2 0 Xmn
@) e W owi~

FIGURE 6 | TFBSs are identified for each sequence in the set (left).
Afterwards, the TFBS frequencies are stored in a TFBS-sequence matrix M
where an entry x;; is the number of occurrences of TFBS ¢ in sequence ;.
(TSS stands for “transcription start site”).

3.1.2. Phase 2: Identification of Important TFBSs in
Each Sequence

In order to identify important TFBSs for each sequence, we
calculate the pointwise mutual information PMI(s;; ¢;) for each
sequence s; and TEBS ¢ pair based on the frequencies of observed
TFBSs in each sequence.

p(sist)
PM(s;; t;) = logy———,
(sis tj) ogzp 6)p(6)

where p(s;, t;) is the probability of a TFBS ¢; to occur in sequence
s;. It is calculated as

Jij

SR U 1
Zi:l j=1fij

pGsinty) =

where f;; is the frequency of TFBS ¢ in sequence s;. p(s;) and p(%))
are the marginal probabilities and are calculated as

Zf: 1Ji

~~F L (2)
it j:1fij

plsi) =

A TFBS ¢ is regarded to be important for sequence s; if the
corresponding PM(s;, ;) > 0. In the following analysis steps,
for each sequence only the important TFBSs are considered.

3.1.3. Phase 3: Filter to Avoid Overlaps

Overlapping TFBSs of the same type are filtered in a way that
the TFBS survives which is closer to TSS in order to avoid the
overestimation of these repetitive binding sites (see Figure 7A)
and thereby to consider only these TFBSs that appear to be more
functional (Whitfield et al., 2012).

3.1.4. Phase 4: Construction of TFBS Pairs

TFBS pairs are identified according to the distance of their centers
(see Figure 7B). Two TFBSs can form a pair if their distance
satisfies the pre-defined minimal and maximal thresholds.

3.1.5. Phase 5: Weighted Cumulative Pointwise
Mutual Information

The weighted cumulative pointwise mutual information
PMp(tq; tp) of two putative TFBSs ¢, and ¢, is calculated as
follows:

P(ta, tb)

PMIyc(te; ) = S we - plta ty) - I ,
pellas 1) = D s pliar ) 82 p(t0) - plty)

seS

3)

where p(t,, 1), p(t;) and p(t,) are the joint and marginal
probabilities of TFBSs ¢, and ty,, respectively. Further, w; refers to
the weight of a sequence s and is calculated based on the number
of TFBS pairs N in s divided by the total number of TFBS pairs
in the entire set of sequences S.

N;
ZS,‘ES Nsi

3.1.6. Phase 6: Background Noise Reduction of
TFBSs Using Average Product Correction

To this end, using the average product correction (APC) theorem
proposed by Dunn et al. (2008), the PMI(t,; tp) scores have
been adjusted:

(4)

wWs =

PMpc(ta; £) - PMIe(p; 1)
PMI,,

PMI, (ta: ) = PMIpe(ta; ty) —
(5)

where PMl,c(t,: ty) is the mean PMI, of t, to all other TEBSs in
the sequences, and PMI,, is the mean PMII,. value over all TFBS
pairs.

The resulting IP’M]I?CP © values are transformed into z-scores
and only those pairs are considered to be significant that have
a z-score > 3.

Separation of Sequence Set Specific TF

Cooperations From the Common Ones
According to their TFBS motifs, some TF cooperations are
noticeable sensitive to the context of nucleotides - regarding the
order and positions of nucleotides in sequences - in comparison
to common TF cooperations, which are often found as significant
for different sequence sets.

In order to separate such sequence-set specific significant
TFBS pairs from the common (general important) significant
pairs, we propose the following approach: The uShuffle algorithm
(Jiang et al., 2008) is used to shuffle the nucleotides within each
sequence by setting k-mers’ size = 3. Thereby, not only the single
nucleotide counts of each sequence are maintained but also the
triplet counts and thus, the core of TFBSs. By repeating this
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FIGURE 7 | In Phase 3 overlapping TFBSs of the same type are filtered by removing that TFBS having a larger distance to TSS (A). In Phase 4 TFBS pairs are formed

according to the distance of their centers (B).
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shuffling process several times, a sufficient number of randomly
generated sequence sets (e.g., 1000) is created.

Second, employing the Match™ algorithm for each set of
shuffled sequences, the putative binding sites of TFs in these
sequences are predicted. Third, applying PC-TraFF algorithm,
new PMI -values for every TFBS pair in each randomly
generated sequence set are calculated. Fourth, based on these
IPMIl[,c-values of each pair f, and t,, we define the average
PMI-value, AVG (PMI(ty; 5)) as

)
1
AVG (PMI(t: t)) = 7 > PMI(ta: 1) (6)
i=1

where [ is the number of randomly generated sequence sets.

After that, the AVG (IP’M]I(ta; t;,))—value of binding sites f,
and f;, is subtracted from their initial significant IF’M]I?CP Clty: tp)
-value as

PP ¥<(t,: 1) = PMIAFC (13 )~ [ (1) x AVG (PMI(t5; 1)) |

™)
where o € [—1,+1] is a preassigned real number for monitoring
the influcene of this process on the significant TFBS pairs. It can
easily be seen that « = —1 results in the original PC-TraFF
analysis. By setting o =0 the average AVG (PMI(ty; 1)) is
subtracted from the original PMH‘?CP Ct,: tp) value whereas an
a > 0 leads to a stronger effect of the subtraction and
thus, a more strict selection process. However, for the proper
application of this process the determination of an upper bound

for « is crucial in order to avoid the overestimation of the
efficacy of AVG (]P’M]I(ta; tb))—values (background level) on the
separation of sequence-set specific pairs from common ones. By
systematically analyzing different values, we established that +1
is the most convenient upper bound for «.

A positive PMIPecific s, tp)-value of binding sites ¢, and f,
identified in the promoter sequences of a certain sequence set
suggests that the binding of the related TF pair is strongly
sequence context dependent. In contrast, a PMIPe¥<(z,; t,)-
value < 0 indicates that the cooperations of corresponding TFs
could have a general importance for the controlling of genetic
programs.

4. CONCLUSIONS

Depending on their biological functions as well as cellular
context, TFs specify the selection of cooperation partners in
many ways for different cell types. However, the existing
algorithms often focus on the identification of all predictable
TF cooperations without distinguishing between sequence-
set specific and common, ie., ubiquitously occurring TF
cooperations. To address this limitation, we propose in this
study an approach that extends our previous method PC-TraFF
in order to assign its predictions into two main categories:
sequence-set specific and common (generally important) ones.
For this aim, we estimated the background co-occurrence of
any TF pair by preserving the nucleotide composition and the
core of TFBS motifs in the sequences of interest. To maintain
the core of TFBS motifs, we set the k-merssize = 3 in the
randomly shuftled new sets of sequences. It can be seen that,
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while an increase in k-merssize could lead to increment of
background co-occurrence of TFBSs, a decrease in k-mers’size
could in turn result in the reduction of background level of
TF pairs. In order to assess the effectiveness of our extension
approach, we analyzed promoter sequences of five different
breast cancer-associated subtypes. The results show that the
cooperating pairs identified by original PC-TraFF algorithm were
considerably overlapping between the subtypes. Applying our
extension approach, we could successfully separate sequence-
set specific pairs from common ones and thereby reducing the
number of overlapping pairs. Further, when we applied our
extension approach of the original PC-TraFF algorithm to a
simulation data set with varying «-values and, thus, different
background levels, we could demonstrate that the cooperating
TF pair was consistently identified as a sequence-set specific pair.
The scaling parameter « is useful to extend or reduce the level
of the subtracted background. Thereby, the influence of « itself
is not linear but highly depending on the sequence set and thus
on the respective background. Starting with an «-value of 0.2 we
recommend to slightly increase « in order to assess the effect of
a on the given data set and in doing so, to get the desired ratio
between sensitivity and specificity. In summary, the proposed
extension approach can successfully be applied for the distinction
of sequence-set specific TF cooperations from common ones
which are identified as generally important for different data sets.
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Transcription factors (TFs) regulate gene expression in living organisms. In higher
organisms, TFs often interact in non-random combinations with each other to control
gene transcription. Understanding the interactions is key to decipher mechanisms
underlying tissue development. The aim of this study was to analyze co-occurring
transcription factor binding sites (TFBSs) in a time series dataset from a new cell-culture
model of human heart muscle development in order to identify common as well as
specific co-occurring TFBS pairs in the promoter regions of regulated genes which
can be essential to enhance cardiac tissue developmental processes. To this end, we
separated available RNAseq dataset into five temporally defined groups: (i) mesoderm
induction stage; (i) early cardiac specification stage; (iii) late cardiac specification stage;
(iv) early cardiac maturation stage; (v) late cardiac maturation stage, where each of
these stages is characterized by unique differentially expressed genes (DEGs). To identify
TFBS pairs for each stage, we applied the MatrixCatch algorithm, which is a successful
method to deduce experimentally described TFBS pairs in the promoters of the DEGs.
Although DEGs in each stage are distinct, our results show that the TFBS pair networks
predicted by MatrixCatch for all stages are quite similar. Thus, we extend the results of
MatrixCatch utilizing a Markov clustering algorithm (MCL) to perform network analysis.
Using our extended approach, we are able to separate the TFBS pair networks in several
clusters to highlight stage-specific co-occurences between TFBSs. Our approach has
revealed clusters that are either common (NFAT or HMGIY clusters) or specific (SMAD
or AP-1 clusters) for the individual stages. Several of these clusters are likely to play an
important role during the cardiomyogenesis. Further, we have shown that the related
TFs of TFBSs in the clusters indicate potential synergistic or antagonistic interactions to
switch between different stages. Additionally, our results suggest that cardiomyogenesis
follows the hourglass model which was already proven for Arabidopsis and some
vertebrates. This investigation helps us to get a better understanding of how each stage
of cardiomyogenesis is affected by different combination of TFs. Such knowledge may
help to understand basic principles of stem cell differentiation into cardiomyocytes.

Keywords: cardiomyogenesis, engineered heart muscle, MatrixCatch, Markov clustering, transcription factor
collaboration
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1. INTRODUCTION

Transcription factors (TFs) regulate the expression of genes
and genetic programs to maintain survival and adaption to
the environment in adult organisms as well as in embryo-
and organogenesis. Most of them bind to recognized specific
sequences in the DNA regulatory regions of genes and
modify transcription, such as the assembly of the gene
expression machinery. In mammalian tissues TFs often work
in combinatorial interactions for precise regulation of specific
programs (Boyer et al, 2005, Odom et al., 2006; Hu and
Gallo, 2010; Neph et al, 2012). Such interactions can be
positive, resulting in an enhanced expression of a gene or
negative, resulting in reduced expression of a target gene.
Thus, the identification of co-occurring transcription factor
binding sites (TFBSs) in the promoter regions of regulated genes
indicate potential combinatorial interactions between TFs that
are important for understanding the molecular mechanisms, e.g.,
of tissue development during embryogenesis.

The human heart is the first organ formed during
embryogenesis (Kirby, 2002; Brand, 2003; Buckingham et al,
2005; Brewer and Pizzey, 2006; Schleich et al., 2013), and it
consists of different cell types, which develop simultaneously and
are regulated by TFs as well as their combinatorial interactions.
Until now, several groups analyzed TFs and their influence
on cardiac development (Ryan and Chin, 2003; Pikkarainen
et al, 2004; Peterkin et al., 2005; Brewer and Pizzey, 2006;
Martin et al., 2010; Shi and Jin, 2010; Turbendian et al., 2013;
Chaudhry et al., 2014; Takeuchi, 2014; Wang and Jauch, 2014).
These studies mainly focus on individual TFs or their related
families e.g., GATA family, TBX family, or NKX2 family (Ryan
and Chin, 2003; Pikkarainen et al., 2004; Miura and Yelon,
2013; Turbendian et al., 2013). However, a detailed analysis of
interactions between TFs and their role in cardiac development is
limited to interactions between known cardiac TFs like NKX2-5
or MEF2 which are essential for the generation of cardiac
tissues from stem cells (Martin et al., 2010; Sylva et al.,, 2014;
Takeuchi, 2014). A complete survey of potential TF interactions
by co-occurring TFBSs in the promoter regions of genes which
regulate cardiac development is still missing, but needed to
understand embryonic cardiac development, in particular of
cardiomyocytes (CMs).

CMs comprise the most important functional cells in the
human heart (Ye et al, 2013; Sylva et al., 2014). CMs show
a limited potential to regenerate after myocardial infarction or
other cardiovascular diseases (CVDs), which is at maximum 50%
CM renewal per lifetime and less than 1% per year (Bergmann
et al., 2009; Sylva et al, 2014; Takeuchi, 2014). Replacing
CMs in elderly by for example enhanced cardiomyocyte
proliferation may improve the quality of their life, but requires
an understanding of how CMs develop and of how they can be
replaced (Akhurst, 2012; Ye et al., 2013; Euler, 2015).

One approach is to apply tissue engineered myocardium
to restore muscle mass and thus reintroduce contractility
(Zimmermann et al., 2006). Such tissues can be generated from
embryonic stem cells (ESCs), induced pluripotent stem cells
(iPSCs), or parthenogenetic stem cells (Soong et al., 2012; Didié

et al., 2013; Ye et al, 2013; Tiburcy and Zimmermann, 2014).
Controlling cardiomyogenesis in vitro requires insight into
biological processes governing embryonic heart development.
To understand cardiac development from a systems biology
perspective, identification of the mechanisms controlling the
expression of fate determining TFs and their regulation of
transcription are of fundamental importance. Co-occurring
TFBSs in the regulatory regions of genes which are specific for
a particular developmental stage reveal potential TF interactions
that are likely to regulate these stages. There are in fact plenty
of TE-TF interactions known as implicated in organogenesis, but
the specific time points when particular interactions occur, are
difficult to obtain and mostly not annotated in public databases.
Only intense literature surveys provide such information.

Recent studies identifying the co-occurrence of TF pairs focus
either on combinatorial approaches where e.g., specific DNA-
sequences bound by different TFs simultaneously were selected
from a library of random sequences (Jolma et al, 2015) or
approaches that focus on data integration e.g., ChIP-seq, SELEX
together with Hi-C to reveal long-range chromatin interactions
(Jolma et al., 2013; Wong et al,, 2016). Although the selection
of interacting TF pairs from a library of random sequences
underpins potential interactions of TFs, it does not give any hints
on the actual interactions in particular cell types or tissues. Data
integration and especially Hi-C technology is very promising for
the future, but currently there is a lack in publicly available data
sets that cover the time dependent organogenesis of the human
heart.

In this study we analyze a time series dataset obtained from
RNAseq at different time points of in vitro cardiomyogenesis
(Hudson et al; in revision) to identify co-occurring TFBSs
which indicate potential interacting TFs that are crucial for
understanding the gene regulatory mechanisms during the heart
development. The dataset consists of six different time points
(day: 0, 3, 8, 13, 29, and 60) where the gene expression in the
tissue culture was measured by RNAseq. The data comprises
early heart development in general and can be differentiated
in the following major developmental stages: (i) mesoderm
induction stage (day 0-day 3); (ii) cardiac specification stage
(day 3-day 13; early 3-8, late 8-13); (iii) cardiac maturation
stage (day 13-day 60; early 13-29, late 29-60). For each stage
we determined the set of unique differentially expressed genes
(DEGs) utilizing limma on the FPKM-values in the dataset
(Smyth, 2004). To identify specific TF interactions in individual
stages, we analyzed the promoter sequences of corresponding
DEGs employing the MatrixCatch approach (Deyneko et al,
2013). As a result, we observed a set of co-occurring TFBSs
for each stage whose corresponding TFs are likely to represent
potential core regulators of a particular developmental stage.
Although the analyzed DEGs are unique in each stage, the
identified TFBS pairs are highly overlapping between stages. To
overcome this problem in MatrixCatch results, we further applied
Markov clustering algorithm (MCL; Dongen, 2000) for the
detection of clusters which contain stage specific co-occurrences
between TFBSs. In recent years, MCL has gained great attention
in the bioinformatics community for the detection of high-
quality clusters in biological networks due to its highly effective
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and successful algorithm. Especially, for the clustering of protein-
protein interaction networks, several studies have shown that
MCL is superior to conventional clustering approaches in terms
of detection of high-quality and more accurate functional clusters
(Brohée and van Helden, 2006; Vlasblom and Wodak, 2009; Shih
and Parthasarathy, 2012). These articles encouraged us to utilize
MCL for the elimination of negligible pairs at each stage and thus
for the determination of remaining TFBS pairs, which may play
crucial roles during cardiomyogenesis. To this end, we focused
on clusters whose central binding site is present at almost all
stages, but its partners differ stage-specifically. These clusters may
regulate DEGs in each stage and are likely to be fundamentally
implicated in cardiac muscle development.

2. MATERIALS AND METHODS

In this section we describe the differentially expressed genes
analyzed and the methods applied and partly developed. Our
analysis follows the structure of Figure 1.

2.1. Selection of Differentially Expressed

Genes

The data, available as a FPKM normalized RNAseq time
series, was mapped to corresponding gene symbols (hgnc-
symbols) and further analyzed using limma package from the
Bioconductor project for R with standard procedures (Smyth,
2004; R Core Team, 2015). The time series data describe human

cardiomyogenesis in vitro at time points day 0, 3, 8, 13, 29, and 60,
whereas day 0 resembles blastocyst stage development and day 60
early fetal stages (Hudson et al.; in revision). We calculated DEGs
between two time points which define a particular developmental
stage where: (i) day 0-3 defines the mesoderm induction stage;
(ii) day 3-8 early cardiac specification; (iii) day 8-13 late cardiac
specification; (iv) day 13-29 early cardiac maturation and; (v)
day 29-60 the late cardiac maturation stage (this stage describes
the transition from an embryonic to a fetal cardiac maturation
stage). We filtered the set of all DEGs for protein coding genes
(excluding TFs) and their uniqueness in a stage by comparison
to all other stages with p-value < 0.05 and FDR < 0.01 (see
Supplementary File 1). A heatmap of stage-specific DEGs is
given in Supplementary File 2.

2.2. Promoter Sequences
Using UCSC genome browser (Karolchik et al., 2004), we
extracted for each protein coding gene (RefSeq gene) based on
its annotated transcription start site (TSS) the -1 kb putative
regulatory promoter region.

It is important to note that, according to TSS annotations,
a RefSeq gene can have multiple overlapping promoter regions
which results in overestimation of the importance of some
transcription factor binding sites (TFBSs). Thus, following the
line of PC-TraFF to remove the redundancy between sequences,
we filtered them regarding their TSSs (Meckbach et al., 2015).
Consequently, we used in our analysis only those sequences
which have no overlap.
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FIGURE 1 | Flowchart of the analysis applied in this study.
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In this study, the assembly of the hgl9 release of the human
genome was used and only UCSC track refGene annotations were
considered which correspond to the chromosomes chrl-chr22,
chrX, and chrY.

2.3. MatrixCatch Analysis

MatrixCatch is a novel method introduced by Deyneko et al.
(2013) to recognize experimentally verified TF pairs based on the
co-localization of their TFBSs, known as composite regulatory
modulues (CRMs), in single promoters. To detect CRMs in
the individual sequences under study, MatrixCatch scans each
sequence and its reverse complement using a special library of
position weight matrices (PWMs). This library has been specified
by considering the TF binding scores, relative orientations and
distances between TFs that are experimentally known to interact,
as documented in the TRANSCompel database (Kel-Margoulis
et al, 2002). Consequently, the usage of MatrixCatch yields
an important practical advantage since this method provides a
high number of known CRMs in sequences with their biological
interpretation (for details, see Deyneko et al., 2013).

In our study, we applied MatrixCatch to the promoter
sequences of the filtered DEGs of the different heart
developmental stages. As we have recently suggested in
PC-TraFF (Meckbach et al., 2015), we prefer in this study the
usage of TFBS pairs instead of CRMs, since those pairs were
detected in a set of sequences. This indicates the importance of
potential collaborations between corresponding TFs in the gene
set of interest.

2.4. Clustering of Co-Occurring TFBSs

Since MatrixCatch provides all detected TFBS pairs of
experimentally verified TF interactions in promoters, the
detected pairs are highly overlapping between developmental
stages. To differentiate stage specific roles of TFBS pairs, we
first determined the frequency of each pair in MatrixCatch
results. After that, we applied the Markov clustering algorithm
(MCL; Dongen, 2000) which is able to eliminate negligible TFBS
pairs based on their frequencies at each stage. To this end, we
constructed an interaction network based on the TFBS pairs for
each heart developmental stage, where nodes are TFBSs and
edges display the co-occurrences between them.

Let N: = (V, 5) be an undirected interaction network of
TEBS pairs where any two elements (v;,v; € V) of N are
connected by an edge e, ,,) belonging to &, if and only if
the corresponding TFBS pair was identified by MatrixCatch.
Further, w(v;, v;) denotes the weight of an edge €(v;,))> which
represents the observed frequency of the TEBS pair (v;, v;) found
by MatrixCatch in the promoter sequences of genes under study.

Based on the weights of edges, an adjacency matrix A, x, of
each network was constructed as

W(Vi, Vj) ife(v,~,1/j) eé

Aij=

0 else.

A« was then converted into a row stochastic "Markov" matrix
M xn, where m;y; represents the transition probability between
nodes v; and v; in the network under study. The most common

way to construct a row stochastic transition matrix M is the
normalization of rows in A to sum to 1. This process can be
simply given as: M = A~!. A, where A is a n x n diagonal
degree matrix and defined as:

d 0 -0 Z?:l aij 0 0

0dy--- 0 0 27:1“21‘"' 0
A: . . = .

oo 0 0 0 . 0

00 ---d, 0 0 'Z?:M*nj

Based on matrix M, we employed MCL (Dongen, 2000) to
detect densely connected TFBSs in each network. Briefly, the
basic intuition of MCL was based on a simulation of stochastic
flows on the underlying interaction network to separate high-
flow regions from low-flow regions. To this end, Expand and
Inflate operations were applied on M until M reaches its
steady state. While the Expand operation corresponds to matrix
multiplication (M = M x M), the Inflate operation is used
to increase the contrast between higher and lower probability
transitions by taking each entry m;.; in M to the power of
inflation parameter r > 1. Finally, M was re-normalized into
a row stochastic matrix. The pseudo-code for MCL is given in
Algorithm 1.

Algorithm 1 : Markov Clustering Algorithm

Input: M andr > 1
Output: C: A list of clusters

Methode:
1: t=0
2: M[ =M
3: repeat
4: t=t+1
5: M = Expand(/\/it_1) = M1 Xx My
_ _ [y "
6: M; = Inflate(M;, r) = [Zi’zl(mik)' ]i.jzl
7. until M; converges
8: C: clusters(M;)
3. RESULTS

We analyzed a time course data set which covers heart muscle
development in human embryonic stem cell derived tissue
cultures at days 0, 3, 8, 13, 29, and 60 (Hudson et al, in
revision). These time points cover the mesoderm induction stage
(day 0-day 3), the cardiac specification stage (day 3-day 13),
and the cardiac maturation stage (day 13-day 29). We further
defined cardiac specification and cardiac maturation into two
more stages, i.e.,;: (i) early cardiac specification and maturation
stage from days 3-8 and days 13-29, respectively; (ii) late cardiac
specification and maturation with transition from embryonic
to fetal stages defined by culture days 8-13 and days 29-60,
respectively. By comparison of neighboring time points, for each
stage, we determined the set of DEGs and filtered them according
to their uniqueness in a particular stage. Afterwards, we utilized
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MatrixCatch to identify co-occurring pairs of TFBSs in the
promoter regions of these DEGs. Consequently, we identified: (i)
63 TFBS pairs based on 429 DEGs for the mesoderm induction
stage; (ii) 82 TFBS pairs based on 1233 DEGs for the early cardiac
specification stage; (iii) 24 TFBS pairs based on 36 DEGs for the
late cardiac specification stage; (iv) 52 TFBS pairs based on 205
DEGs for the early cardiac maturation stage; (v) 76 TFBS pairs
based on 964 DEGs for the late cardiac maturation stage (see
Supplementary File 3).

Due to underlying methodology of MatrixCatch, the detected
TFBS pairs show a large overlap between different stages
although they may play different roles in these stages. To
reduce this drawback of MatrixCatch, we further applied Markov
clustering algorithm that seeks to remove negligible TFBS pairs
by emphasizing the roles of remaining pairs at each stage.
Consequently, we obtained (i) 19 clusters for the mesoderm
induction stage; (ii) 25 clusters for the early cardiac specification
stage; (iii) 11 clusters for the late cardiac specification stage;
(iv) 21 clusters for the early cardiac maturation stage, and
(v) 24 clusters for the late cardiac maturation stage (see
Supplementary File 4).

We focused only on clusters with V$AP1_01, VSHMGIY_Q6,
V$SMAD_Q6_01, and VSNFAT_Q6 binding sites in their center
(see Figure2), because these clusters contain at least three
interactions and the changes in their constitution provide crucial
information about different cardiac developmental stages. We
analyzed the TFBS pairs in these clusters according to their
potential role in cardiac development. We omitted clusters, when
the expression values of TF genes are below a certain threshold
or their importance in heart development is currently unknown.
For our analysis, we applied a FPKM threshold value of 10, which
discriminates robustly between expressed TF genes and low or
not expressed TF genes.

3.1. AP-1-Cluster

The AP-1-cluster is an assembly of different TFBSs with the
V$API1_01 binding site in its center (see Figure 2A). As described
in Table 1 and in Figure 3, V$AP1_01 binding site co-occurs
with V$OCT_C binding site during mesoderm induction (< day
3) and early cardiac specification stage (day 3-day 8) and at
late cardiac maturation stage (> day 29). Further, V$AP1_01
co-occurs with VSGATA_Q6 binding site at all stages except days

8-13. Interestingly, a co-occurring pair between V$AP1_01 and
V$HNF4_Q6 binding site was detected only between day 3 and
day 8. Additionally, Figure 3 shows for these TFBSs the related
TF genes which are expressed in at least one time point.

AP-1 is a family of leucine zipper transcription factors (bZIP)
which forms homo- or heterodimers composed of proteins
belonging to JUN or FOS protein families (Shaulian and Karin,
2002; Hess et al., 2004; Shaulian, 2010). AP-1 plays a role in the
regulation of general functions like proliferation, differentiation,
and apoptosis. We identified that V§AP1_01 co-occurs with
V$OCT_C binding sites which are bound by AP-1 and POU-
domain factors like POUS5F]I, respectively. POU5F1 is also known
as OCT-4, which is an important pluripotency maintenance
factor (Scholer et al., 1990; Nichols et al., 1998; Pesce and Schéler,
2001; Guo et al., 2002). Regarding the expression values, POU5F1
shows higher expression in early stages (< day 8) and is absent
after day 13 (see Figure 4B). This is in contrast to AP-1, where
AP-1 components (FOS as well as JUN) are not present or only
present at reduced levels during early stages, but they show
increased expression values after day 13 (see Figure 4A). This
suggests that AP-1 may not be formed during early stages, where
POUSF1 controls the associated genes, and that during the late
cardiac maturation stage (> day 29) the analyzed genes are under
control of AP-1.

Our analysis identified a co-occurrence of V$AP1_01 with
V$GATA_Q6 binding sites. GATA factors form a protein family
of six zinc finger transcription factors that share a highly
conserved DNA-binding sequence (Orkin, 1992; Ohneda and
Yamamoto, 2002; Pikkarainen et al., 2004; Brewer and Pizzey,
2006). As suggested in Brewer and Pizzey (2006), the family can
be dissected into two subfamilies (GATA-1,2,3 and GATA-4,5,6),
based on their expression levels in different tissues, where only
GATA -4, -5 and -6 are associated with cardio- and organogenesis
(Pikkarainen et al., 2004; Peterkin et al., 2005; Brewer and Pizzey,
2006; Whitfield et al., 2012; Turbendian et al., 2013). We found
only GATA4 and GATAG6 to be expressed. Interactions between
GATA-factors and AP-1 are well known, especially co-occurrence
of AP-1 together with GATA-4 in several heart cell types and in
Leydig cells (Herzig et al., 1997; Suzuki et al., 1999; Schroder
et al.,, 2006; Linnemann et al., 2011; Martin et al., 2012). In
our system, GATA6 was expressed in high amounts during the
mesoderm induction (< day 3) and early cardiac specification
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FIGURE 2 | Clusters we focus on in our analysis in the order in which they are analyzed in this study. The clusters comprise all interactions during the
complete time course, identified by employing MatrixCatch and MCL. The constitution of each cluster for a particular stage is shown in the corresponding tables. (A)
shows the AP-1-cluster, Table 1; (B) HMGIY-cluster, Table 2; (C) SMAD-cluster, Table 4; (D) NFAT-cluster, Table 5.
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TABLE 1 | TFBS pairs within the AP-1-cluster.

Day0-Day3 Day3-Day8 Day8-Day13 Day13-Day29 Day29-Day60
V$AP1_01 — V$OCT_C + + _ 3 N
V$AP1_01 — V$GATA_Q6 + + _ : .
V$AP1_01 — VSHNF4_Q6 - + _ B 3

Constitution of co-occurring pairs in the AP-1-cluster, a “+” indicates the presence of a pair; a “—" its absence. During the late stage of cardiac specification (Day8-Day13), the cluster

is completely absent.
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FIGURE 3 | Stage specific representation of TFBSs and the expression of associated TF genes, referring to Figure 2A. The encircled nodes represent the
found TFBSs which are connected by color-coded round-edged rectangles which highlight stages where a TFBS pair was found. TF genes which are associated to
TFBSs are linked by dashed lines. The TF genes are represented by color-coded rectangles representing the presence at a partiular time point. The absence of a TF
gene during a particular time point or the absence of a pair during a particular stage is encoded in white. Both, the color-code for the stage specificity as well as for
the gene expression of a TF gene is shown on the bottom right side. TF genes which are associated to a TFBS but are in all time points below the set threshold are

stage (day 3-day 8) but was not expressed or only at minor
extent during cardiac maturation (> day 13, see Figure 4C). In
contrast, GATA4 was expressed in high amounts during the late
cardiac specification stage as well as during cardiac maturation
(> day 8). The missing of AP-1 during mesoderm induction
(< day 3) suggests that genes specific for mesoderm induction
might be under control of GATA-6, whereas GATA-4 and AP-
1 may regulate genes during cardiac maturation (> day 13),
synergistically (see Pikkarainen et al., 2004 for the role of GATA-4
and GATA-6).

The role of the co-occurrence between V$AP1 01 and
VS$HNF4_Q6, which represents a binding site for HNF4A or
HNF4G TFs, during cardiomyogenesis is uncertain. This TFBS
pair was detected during early cardiac specification stage (days
3-8), but no expression of the related genes could be found.
As mentioned before, the formation of AP-1 during this stage
at relevant levels is uncertain (see Figure 4A), due to the low

expression of the AP-1 components. Furthermore, the role of
HNF4-genes, which where frequently reported to be associated
with lipid metabolism in the liver (Watt et al., 2003; Chandra
etal., 2013), during cardiac development is still unclear, but may
point to changes in the metabolism at this stage.

3.2. HMGIY-Cluster

The HMGIY-cluster is assembled in a total of five TFBS
pairs (see Figures 2B, 5) with the VSHMGIY_Q6 binding site
in its center. Table 2 shows the co-occurring TFBS pairs of
this cluster and Figure 5 shows for these TFBSs the related
TF genes which are expressed in at least one time point.
The TFBS pair VSHMGIY_Q6 - V$OCT_Q6 was found
during all stages and the co-occurrence between VSHMGIY_Q6
and V$ATF3_Q6 binding sites was found at days 3-8, and
after day 29. Interestingly, we found in this cluster three
binding sites, namely V§NFKAPPAB_01, VSNFKB_Q6_01, and
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FIGURE 4 | (A) Expression of AP-1 factor genes. In orange FOS TF genes are shown, and in blue JUN TF genes. At early stages the expression levels of FOS and
JUN genes which are AP-1 components is rather limited. It is likely that AP-1 cannot be formed due to the low expression of FOS genes. In later stages (> day 13),
AP-1 and especially FOS increases its expression. (B) Expression of TF genes which contain a POU-domain, in blue (POU5F1) and orange (POU2F1) are the two
genes which are above the threshold. POU5F1 which is more abundant than POU2F1 decreases during the time course and was absent after day 13. (C) Expression
of GATA genes, in blue (GATAB) and orange (GATA4) are above the threshold. GATAG is expressed during the mesoderm induction stage and decreases afterwards,
while GATA4 becomes supreme in subsequent stages. The red lines show a FPKM value of 10 that we consider as threshold for sufficiently expressed genes which

TABLE 2 | TFBS pairs within the HMGIY-cluster.

Day0-Day3 Day3-Day8 Day8-Day13 Day13-Day29 Day29-Day60
VEHMGIY_Q6 — V$OCT_Q6 + + + + +
VSHMGIY_Q6 — VENFKAPPAB_01 + + _ + +
VSHMGIY_Q6 — VSNFKB_Q6_01 + + + + +
VSHMGIY_Q6 — VSNFKB_Q6 + — _ _ _
VSHMGIY_Q6 — V$ATF3_Q6 + + _ _ +
Constitution of co-occurring pairs within the HMGIY-cluster, a “+” indicates the presence of a matrix pair; a “—" its absence.

VS$NFKB_Q6 which can be bound by the family of NF-
kB-related factors. While the VSHMGIY_Q6 - V$NFKB_Q6
TFBS pair was detected only during the mesoderm induction
stage (<day 3), the co-occurrence between VSHMGIY_Q6 and
VS$NFKB_Q6_01 binding sites was found at all stages. The TFBS
pair VS HMGIY_Q6 - VSNFKAPPAB_01 was found at all stages
except the late cardiac specification stage (day 8-day 13). To
ensure the quality of these three NF-« B binding sites, we further
investigated their position weight matrices (PWMs) as well as
their binding motifs. Considering the PWMs, we observed that
all PWMs have relatively high value of information content (see
Table 3) which assess their quality. In addition, a comparison
between motifs shows different binding behavior of NF-«xB-
related factors which could be linked to specific members of this
family.

HMGA1 is a TF which is represented by the PWM
V$HMGIY_Q6 and was recently described as a positive regulator
of pluripotency in cellular reprogramming (Shah et al., 2012).
The expression levels of HMGALI in our system are in agreement
with previous studies, which describe HMGA1 as highly
abundant during embryogenesis, especially in embryonic stem
cells; with intermediate expression levels in undifferentiated
cancers and at low or at not detectable levels in adult

differentiated cells and fibroblasts (Fusco and Fedele, 2007;
Hillion et al, 2008, 2009; Resar, 2010; Chou et al., 2011;
Schuldenfrei et al., 2011; Shah et al., 2012; Williams et al.,
2015). The detected co-occurrence between V$SHMGIY_Q6
and V$OCT_Q6 binding sites was found at all stages. The
corresponding TF genes (HMGA1, HMGA?2, and POU5F1) of
this TFBS pair did not show such behavior (see Figures 4B, 6A).
HMGAL1 as well as POU5F1 are expressed at high levels during
early cardiac development with their maximum expression levels
at day 3 and declined afterwards. However, this pair was found
at later stages indicating that the detected DEGs at these stages
could be potentially regulated by this pair. POUS5FI is below
the threshold after day 13, whereas HMGA1 is always above
the threshold but stablized at low levels. After day 13, HMGAL,
which is in its expression values always more abundant than
HMGAZ2, could regulate the detected pairs alone.

The co-occurrence of VSHMGIY_Q6 and different NF-xB
binding sites was detected at all time points (see Table 2).
Interestingly, our findings show that this interaction could occur
based on different NF-«B binding sites which are bound by the
same TFs. It is known that the interaction between HMGA1
and NF-«B plays a pivotal role in formation of an enhancer
complex which is essential to regulate interferon- signaling on
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genomic level (Thanos and Maniatis, 1992; Lewis et al., 1994;
Wood et al., 1995; Himes et al., 1996; Thanos and Maniatis, 1996;
Mantovani et al., 1998; Perrella et al., 1999; Zhang and Verdine,
1999). Within this complex, NF-«B acts on the one hand as
a key regulator in hypertrophy and, on the other hand it acts
as cardioprotective factor during embryogenesis (Dewey et al.,
2011; Gordon et al., 2011; Liu et al., 2012; Zhou et al., 2013).
The expression levels of NF-« B genes may indicate an increasing
importance of NFKB1 and especially of RELA during cardiac
maturation (> day 13), where it is expressed at considerable levels
(see Figure 6B).

The co-occurrence of VSHMGIY_Q6 with the VSATF3_Q6
binding site, which is bound by ATF3, was detected during early
cardiac development until day 8 and at the latest stage after day
29. ATF-3 is a FOS-related TFE, which contains a basic leucine
zipper as structural motif (Chen et al., 1994). ATF-3 acts as
homo- or heterodimer to activate or to repress the expression
of target genes, depending on its environment. Further, it is also
involved in TGF-p signaling in several cell types and in cardiac
development (Ishiguro et al., 2000; Mayr and Montminy, 2001;
Yan et al., 2005; Gilchrist et al., 2006; Yin et al., 2010; Lin et al.,
2014). While HMGAL is expressed at high levels during early
stages (days 0-3) and is declined afterwards, the ATF3 gene is
close to the threshold before day 13 and increases its expression
levels during subsequent stages (see Figure 6C). Our results
suggest that the genes regulated by this pair are under control of
HMGALI in the early stages and ATF-3 afterwards. Gilchrist et al.

TABLE 3 | Binding sites for different NF-«xB PWMs found in the
HMGIY-cluster.

PWM Information Motif

content
VSNFKAPPAB_O1 118 LA xT=CC
V$NFKB_Q6_01(0) 13.3 <GGa TxzCC_
VSNFKB_Q6 14.4 - G0CA==T=CC

The family of NF-kB-related factors can be represented by different PWMs each of
which have relatively high information content and different binding motifs. ©): reverse
complement

demonstrate the co-occurrence of ATF-3 and NF-«B binding
sites in regulated target genes (Gilchrist et al., 2006). According to
their binding sites, our analysis suggests that together with ATF-
3 and NF-«B factor, HMGA1 may play an important role in the
regulation of target genes in cardiac development.

3.3. SMAD-Cluster

The SMAD-cluster is assembled in a total of three TFBS
pairs with the V$SMAD_Q6_01 binding site in its center
(see Figures2C, 7) . Table4 shows the co-occurrence of
V$SMAD_Q6_01 and V$FOX_Q2 binding sites in the promoters
of the regulated genes and was observed during all stages. The
TFBS pair V$SMAD_Q6_01 - VSAPIF]_Q2 was detected in our
system at early stages until day 8 and at late stages after day
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FIGURE 6 | Expression of corresponding TF genes which can be represented by the PWM V$OCT_Q6 have been shown in Figure 4B. (A) Expression of
corresponding TF genes which can be represented by the PWM VEHMGIY_Q6. HMGA1 is dominant over HMGA2 but decreases during the time course. (B)
Expression of corresponding TF genes which can be represented by the PWMs (VENFKAPPAB_01, VSNFKB_Q6_01, VENFKB_Q6) related to NF-«B binding sites.
While NFKB2 never reaches the threshold, RELA and NFKB1 increase their expression levels in later stages (> day 13). (C) Expression of the corresponding ATF3
gene to its TF which can be represented by the PWM VSATF3_Q6. ATF3 is present in the first stage, but in subsequent stages until day 13 it is quite close to the
threshold. It changes its expression levels drastically during the cardiac maturation stage (> day 13). The red lines show a FPKM value of 10 that we consider as
threshold for sufficiently expressed genes which contribute to regulatory effects.

13, but not during late cardiac specification stage (days 8-13).
In contrast, the co-occurrence between VSSMAD_Q6_01 and
VSLEF1TCF1_Q4 was detected only during cardiac specification
(days 3-13). In addition, Figure 7 shows for these TFBSs the
related TF genes which are expressed in at least one time point.

SMADs are members of a family of transcription factors
that form a beta-hairpin structure which interacts with the
major groove of the DNA (Burke et al., 1976; Macias et al,
2015). SMAD1-4 which can be represented by the PWM
V$SMAD_Q6_01 act as TFs in the nucleus and as signaling
molecules, where they are involved in numerous pathways like
canonical and non-canonical SMAD-signaling pathways, TGF-
p- as well as BMP- and WNT-signaling (Heldin et al., 1997;
Leask and Abraham, 2004; Euler-Taimor and Heger, 2006; Pal
and Khanna, 2006; Schroder et al., 2006; Leask, 2007; Ruiz-Ortega
et al., 2007; Calvieri et al., 2012; Massagué, 2012; Dyer et al,
2014; Euler, 2015). Figure 8A shows that SMAD1, SMAD?2,
and SMAD4 genes are continuously expressed at all stages. The
detected SMAD3 expression after day 3 exceeds the set threshold
only slightly. SMAD2 and SMAD4 show the highest expression
levels in our system, but the differences in their expression levels
are rather small.

The co-occurrence of V$SMAD_Q6_01 and V$FOX_Q2
binding sites was detected at all stages (see Table 4). Recently,
the cooperative regulatory interaction of FOX factors, which play
an important role in cardiovascular development and in other
organs (Yamagishi et al., 2003; Maeda et al., 2006; Seo and Kume,
2006; Fortin et al., 2015), with SMAD3 and SMAD4 has been
shown by (Fortin et al,, 2015). Although the SMAD-FOX pair
can be detected during the whole time course, the expression of
FOX-genes is limited to FOXH]1, which seems to play a role in
early heart development only (< day 13, see Figure 8C).

The co-occurrence between V$SMAD_Q6_01 and
V$APIF]_Q2 binding sites were found in almost all stages

except for the late cardiac specification stage (between day 8
and day 13). In adult CMs, AP-1 together with SMAD proteins
modulates hypertrophic, apoptotic and fibrotic pathways.
Additionally, AP-1 together with SMAD forces the shift toward
apoptosis after stimulation of TGF--signaling (Schneiders et al.,
2005; Schroder et al., 2006; Euler, 2015). In the embryonic hearts,
the activation of TGF-fB-pathways results in an induction of
cardioprotective functions (Leask and Abraham, 2004; Pal and
Khanna, 2006; Leask, 2007; Ruiz-Ortega et al., 2007; Calvieri
et al,, 2012; Euler, 2015). Although there is no known AP-1
SMAD interaction during cardiogenesis, Yuan et al., shows the
interaction of these TFs by usage of AP-1 and SMAD decoy
oligodeoxynucleotides, which reduces fibrosis in their study
(Yuan et al., 2013).

The detected TFBS pair V$SMAD_Q6_01 - VSLEFITCF1_Q4
is limited to the cardiac specification stage (day 3-day 13).
TCF-7 and LEF-1 transcription factors, which are represented
by VSLEFITCF1_Q4, can be activated by pB-catenin and are
involved in canonical WNT-signaling (Brade et al., 2006; Chen
et al., 2006; Pal and Khanna, 2006; Kwon et al., 2007; Naito
et al., 2010). The measured gene expression of TCF as well as
LEF genes shows that during cardiac specification both groups
are quite close to or below the set threshold (see Figure 8B).
This indicates that no TCF or LEF binding occurs, which may
result in the absence of canonical WNT-signaling during cardiac
specification.

3.4. NFAT-Cluster

The NFAT-cluster consists in a total of six TFBS pairs with
V$NFAT_Q6 binding site in its center (see Figures 2D, 9). As
described in Table 5 and Figure 9, VSNFAT_Q6 co-occurs with
VS$PEBP6_Q6 and VS$ETS1_B binding sites only during the
mesoderm induction stage (days 0-3). Three TFBS pairs, namely
V$NFAT_Q6 - V$AP1_C, VSNFAT_Q6 - VSCREBPICJUN_01,
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found TFBSs which are connected by color-coded round-edged rectangles which highlight stages where a TFBS pair was found. TF genes which are associated to
TFBSs are linked by dashed lines. The TF genes are represented by color-coded rectangles representing the presence at a partiular time point. The absence of a TF
gene during a particular time point or the absence of a pair during a particular stage is encoded in white. Both, the color-code for the stage specificity as well as for
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TABLE 4 | TFBS pairs within the SMAD-cluster.

Day0-Day3 Day3-Day8 Day8-Day13 Day13-Day29 Day29-Day60
V$SMAD_Q6_01— V$FOX_Q2 + + + i +
VSSMAD_Q6_01 — VSAP1FJ_Q2 + + _ n +
V$SMAD_Q6_01 — VSLEF1TCF1_Q4 — + +

Constitution of co-occurring pairs within the SMAD-cluster, a “+” indicates the presence of a pair; a “—" its absence.

and V$NFAT_Q6 - V$MAF_Q6_01, were found during the
complete time course. The co-occurrence of VSNFAT_Q6 with
VS$CEBPB_01 binding sites in the promoter regions of the
analyzed set of genes was found as present until day 8 and during
the cardiac maturation stage after day 13. This TFBS pair was not
present during the late cardiac specification stage (days 8-13). In
addition, Figure 9 shows for these TFBSs the related TF genes
which are expressed in at least one time point.

Regulatory roles for NFAT factors, which can be represented
by the PWM V$NFAT_Q6, have been discovered in diverse
organs and cells, including the central nervous system, blood

vessels, heart, skeletal muscle and haematopoietic stem cells
(Macidn, 2005). In general, an activation of factors of the NFAT
family is calcium dependent and has been described to be of
specific importance in development of the atrial myocardium and
the morphogenesis of heart valves (Graef et al., 2001; Crabtree
and Olson, 2002; Schubert et al., 2003; Schulz and Yutzey, 2004).
In our system, only NFATC3 and NFATC4 showed expression
levels above the threshold. Comparing the expression levels,
NFATC4 is more abundant than NFATC3 at all time points,
except for day 3, but both genes increase their expression levels
at later stages and especially after day 29 (see Figure 10A).
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TABLE 5 | TFBS pairs within the NFAT-cluster.

Day0-Day3 Day3-Day8 Day8-Day13 Day13-Day29 Day29-Day60

VSNFAT_Q6 — VSPEBP_Q6 + — _ _ _
VSNFAT_Q6 — VSAP1_C + + + + +
VSNFAT_Q6 — VSCEBPB_01 + + _ + +
VSNFAT_Q6 — VSCREBP1CJUN_01 + + + + +
VSNFAT_Q6 — VSMAF_Q6_01 + + + + +
VSNFAT_Q6 — VSETS1_B + — — _ _
Constitution of the NFAT-cluster, a “+” indicates the presence of a matrix pair; a “—" its absence.

The detected co-occurrence of TFBS pairs VSNFAT_Q6 -
V$AP1_C and V$NFAT_Q6 - VSPEBP_Q6 refers either to
NFAT-AP-1 or to NFAT-RUNX interactions which have been
mainly observed in the immune system (Macian, 2005). Macidn
et al. have demonstrated that the interaction between NFAT
and AP-1 can be linked to calcineurin dependent pathways as
well as to regulation of MAP kinase pathways (Macian et al.,
2001). Additionally, NFAT and AP-1 cooperate in naive T-cells
with RUNX TFs as well as with NF-kB in the promoter of IL-
2 during T-cell activation (see Figures 10C,E) (Hermann-Kleiter
and Baier, 2010). In our system, the low or absent expression
of RUNX indicates no relevance for these factors. However,
the corresponding binding site can be also occupied by CBFB,
which is associated to congenital heart anomalies and is expressed
during all time points (Khan et al., 2006).

We found the co-occurring TFBS pair VSNFAT Q6 -
V$SMAF_Q6_01 at all stages. For the corresponding factors it has
been shown by Hogan et al. that NFAT factors and MAF were
able to activate IL-4 promoters (Hogan et al., 2003). Of all TFs
linked to VSMAF_Q6_01, BACH1 is expressed at all stages and is
always more abundant than the other genes shown in Figure 10B.
This suggests a synergistic interaction in gene regulation between
these factors during the complete time course. Furthermore,
the interaction between NFAT and MAF factors was observed
simultaneously at classical NFAT-AP-1 interaction sites (Hogan
et al., 2003).

The co-occurrence between V$NFAT_Q6 and V$CEBPB_01
binding sites has been described in liver cell lines by Yang
and Chow (2003). The corresponding factors to this pair seem
to interact in a formation of a composite enhancer complex
(Yang and Chow, 2003). In our system, genes that are linked to
VS$CEBPB_01 binding sites are not expressed (see Figure 10F).
The observation of this pair and its potential role in heart
development remains unclear.

The role of the TFBS pair VSNFAT_Q6 - V$ETS1_B, which
was detected during the mesoderm induction stage, remains
unclear. ETS1, a TF gene which can be linked to the PWM
VS$ETS1_B, is required for the differentiation of cardiac neural
crest (Gao et al., 2010). Although ETS1 was expressed during the
mesoderm induction stage (days 0-3), its expression is markedly
reduced afterwards. DAXX is another gene that is linked to the
PWM VS$ETS1_B and is at all time points more abundant than
ETS1 (see Figure 10D). The DAXX factor inhibits apoptosis in
cardiac myocytes (Zobalova et al., 2008). An interaction between
NFAT and DAXX was not found in literature, and thus the role
of this pair remains unclear.

4. DISCUSSION

Today, it is known that in higher organisms transcription factors
have to interact with each other to regulate gene expression
which leads to a proper development of tissues and organs.
So far, several studies have shown that the co-occurence of TF
binding sites (TFBSs) on sequences is an essential indication
for the identification of interactions between TFs. In this study,
we identified co-occurring TFBS pairs by applying MatrixCatch
algorithm to the promoter regions of five differentially expressed
gene sets, which are based on a time course dataset of developing
human myocardium, modeled in a tissue engineering approach
(Hudson et al., in revision). MatrixCatch is a statistically affirmed
computational method for the recognition of experimentally
verified interactions between TFs according to their TFBS
localizations in promoters. However, MatrixCatch recognizes
based on its underlying algorithm all detectable TFBS pairs
of known interacting TFs in promoter regions. This results in
a huge overlap between recognized pairs at different stages,
although these pairs can play different roles for each stage.
To eliminate this drawback of MatrixCatch to some extent,
we created an interaction network based on the TFBS pairs
for each stage and then applied the MCL algorithm. MCL
differentiates negligible TFBS pairs from densely connected TFBS
pairs within these interaction networks and thus determines
clusters of TFBSs. Such clusters are important to highlight stage
specific co-occurrences of TFBS pairs which provide essential
knowledge in the understanding of molecular mechanism of
cardiac development.

Additionally, we applied our approach to different lengths of
putative promoter regions ([from —500 bp to 0], [from —500 bp
to 100 bp], [from —1000 bp to 0]) to determine the influence of
promoter lengths on the composition of stage-specific clusters.
The results denote that there is a considerably high overlap
between stage-specific clusters derived from different putative
promoter regions (data not shown). Thus, we considered the -
1 kb putative regulatory promoter region for our analysis, which
is consistent with our experience and provides the most reliable
results.

Although, we filtered MatrixCatch outputs using MCL
algorithm to reduce weak co-occurrence of TFBSs in each
stage, we detected in our analysis several clusters as well as
TFBS pairs whose potential role during cardiac development
are unclear. One possible reason for the detection of such pairs
could depend on the underlying methodology of MatrixCatch. It
uses a computational prediction approach which scans promoter
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FIGURE 10 | Expression of TF genes corresponding to their factors and represented by the PWM V$AP1_C have been shown in Figure 4A. (A)
Expression of TF genes which corresponds to NFAT factors represented by PWM VENFAT_Q6. NFATC3 and NFATC4 are above the set threshold, whereas NFATC3 is
more abundant than NFATC4. (B) Expression of TF genes which can be represented by the PWM VEMAF_Q6_01. MAFB shows expression levels slightly above the
threshold set by us as a limit for robust transcription during the mesoderm induction stage while MAFF is expressed during cardiac maturation (> day 13). BACH1 is
found to be expressed during the complete time course at considerable levels and is always more abundant than all other TF genes, which corresponds to
VSMAF_Q6_01. Additionally, BACH1 increases its expression value after the mesoderm induction stage (> day 3). (C) Expression of TF genes which can be
represented by the PWM VSCREBP1CJUN_01. ATF2 is expressed during the complete time course and increases its expression value in the latest stage. JUN is
expressed at day 0 and after day 13 where it exceeds the expression levels of ATF2. (D) Expression of TF genes which can be represented by the PWM VSETS1_B.
DAXX is expressed during all time points, but its expression diminishes continuously. Nevertheless, it shows expression levels which are always above ETS1. (E)
Expression of TF genes which can be represented by the PWM V$PEBP_Q6. Only CBFB shows expression above the threshold and was found as continuously
expressed. (F) Expression of CEBPB which can be represented by the PWM VSCEBPB_01. CEBPB is during the complete time course below the set threshold and is
considered to be low or not expressed. The red lines show a FPKM value of 10 that we consider as threshold for sufficiently expressed genes which contribute to
regulatory effects.

sequences and their reverse complements to identify TFBSs  absent in at least one of the subsequent stages; (ii) TFBS pairs
using PWMs. However, computational identifications of TFBSs ~ which are present during all stages. In our clusters presented in
generally suffer from high rates of false positive predictions.  the Result section, there are different co-occurring TFBS pairs,
Another reason for the detection of those clusters or pairs  like V§AP1_01 - VSOCT_C and VSHMGIY_Q6 - VSATF3_Q6,
could be due to genes which are expressed at high levels but ~ which fall into the first category. Considering the expression
play different roles in different tissues. As a result, we could  values of TF genes for those pairs, we observed that one TF gene
identify such clusters or pairs that might play important roles  was highly expressed in the beginning stages while its partner is
in the regulation of those genes in other tissues but not in  expressed at low levels. After the re-occurrence of such a pair
heart. For example, we identified the TFBS pair (VSNFAT_Q6 -  in later stages, the measured expression values of TF genes are
VS$CEBPB_01) in the NFAT-cluster whose importance has  exactly the opposite. Consequently, the related TFs cannot act in
been shown by Yang and Chow in liver (Yang and Chow, a synergistic manner but rather in an antagonistic manner. Very
2003), but the potential role of this pair during the cardiac  drastically, we observed this situation in the expression of AP-
development is unclear. In this context, we also observed the 1 components and POUS5F1, which can be linked to V$AP1_01
ETS cluster with the VSETS_Q6 binding site in its center (see - VSOCT_C TEFBS pair (see Figures 4A,B). Due to this finding
Supplementary File 4). Only some individual components, like ~ we hypothesize that further TFBS pairs, which fall into the
ETS factors, in this cluster are associated with potential cardiac  first category, could be helpful to enhance our knowledge on
functionalities. However, considering TFBS pairs in the ETS  the combinatorial code underlying transcriptional regulation of
cluster, we cannot verify their potential role during the cardiac ~ cardiomyogenesis.
development. This findings could be discussed in the perspective of the
Our results suggest that different types of co-occurring TFBS ~ “embryonic hourglass® which describes high divergence in the
pairs can be assigned into two main categories: (i) TFBS pairs ~ embryonic shape of vertebrates, insects, like Drosophila, and
which are present in the beginning and in later stages but  plants, in early and late developmental stages, but minor
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divergence in mid-stages (Duboule, 1994; Raft and Wolpert,
1996; Kalinka et al., 2010; Quint et al., 2012). In our study, the
number of DEGs as well as the number of identified clusters
is high in early stages, converge to a minimum during the late
cardiac specification stage (day 8—day 13) and increase afterwards
again, which is consistent with the general structure of the
hourglass model. Furthermore, the identified TFBS pairs, which
fall into the first category, could be separated into two different
subsets of genes, the one subset is up-regulated before the late
cardiac specification stage, while the other subset is up-regulated
afterwards and is supposed to regulated cardiac maturation
processes. Our findings support the hourglass model derived
by previous findings in Arabidopsis as well as several animals
(Domazet-Los$o and Tautz, 2010; Kalinka et al., 2010; Quint et al.,
2012).

In contrast to the TFBSs pairs in the first category, the
co-occurrence of TFBS pairs that fall into the second category
seems to indicate a synergistic cooperation between related TFs.
In our presented clusters, we obtained several TFBS pairs like
V$HMGIY_Q6 - V$OCT_Q6, VSSMAD_Q6_01 - VSFOX_Q2,
and VS$NFAT_Q6 - V$CREBPICJUN_01 (for detail see
Tables 2-4). Considering the expression values of corresponding
TF genes for those pairs, we determined that these genes are
regulated similarly. For instance, the TF genes HMGA1 and
POUS5F1, which are linked to VSHMGIY_Q6 and V$SOCT_Q6,
respectively, are highly expressed during first developmental
stages and diminish their levels after day 3. This condition is also
observed for the TFBS pair V§NFAT_Q6 - VSCREBP1CJUN_01
where the associated TF genes are expressed at low levels in the
beginning and increase their expression levels in later stages.

Altogether, in our study we performed a systematic analysis of
TFBS pairs to address the question of cooperation between TFs
linked to TFBS pairs, which could play a crucial role through five
different cardiac developmental stages. Addressing this question,
our results show that some TFBS pairs can be detected at all
developmental stages. Furthermore, we obtained the same TFBS
pairs at very early and very late stages of the differentiation,
although these stages are completely different in their functions.
Especially considering expression values of related TF genes of
these pairs, we determined that co-occurrence between TFBSs
does not always indicate a synergistic regulation of target genes.
This finding suggests that corresponding TFs of these pairs can be
bound in a mutual exclusive manner, which is important during
cardiac development to differentiate between stem cell programs
and later embryogenic programs.

5. CONCLUSION

We identify transcription factor pairs that drive cardiac
development from stem cells to mature cells in a 60 day time
course dataset. Our approach is motivated by the importance of
potentially interacting transcription factors represented by the
co-occurrence of their TFBSs in the regulated stages specific
genes and their mediated effects. We identified the relevant
pairs employing MatrixCatch method with Markov clustering
algorithm together to highlight stage specific clusters of co-
occurring TFBS pairs. Furthermore, we analyzed the changes

within these clusters to show the specificity of the gene
regulation in cardiac development. Our results demonstrate that
similar pairs potentially regulate different developmental stages
depending on the expression values of the corresponding genes.
This may define switches between embryonic and maturation
programs and could contribute to a better understanding of
embryonic cardiac development.
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Abstract: The knowledge of protein-DNA interactions is essential to fully understand the molecular
activities of life. Many research groups have developed various tools which are either structure- or
sequence-based approaches to predict the DNA-binding residues in proteins. The structure-based
methods usually achieve good results, but require the knowledge of the 3D structure of protein;
while sequence-based methods can be applied to high-throughput of proteins, but require good
features. In this study, we present a new information theoretic feature derived from Jensen-Shannon
Divergence (JSD) between amino acid distribution of a site and the background distribution of
non-binding sites. Our new feature indicates the difference of a certain site from a non-binding site,
thus it is informative for detecting binding sites in proteins. We conduct the study with a five-fold
cross validation of 263 proteins utilizing the Random Forest classifier. We evaluate the functionality
of our new features by combining them with other popular existing features such as position-specific
scoring matrix (PSSM), orthogonal binary vector (OBV), and secondary structure (SS). We notice that
by adding our features, we can significantly boost the performance of Random Forest classifier, with
a clear increment of sensitivity and Matthews correlation coefficient (MCC).

Keywords: entropy; Jensen-Shannon divergence; Random Forest; DNA-binding sites

1. Introduction

Interactions between proteins and DNA play essential roles for controlling of several biological
processes such as transcription, translation, DNA replication, and gene regulation [1-3]. An important
step to understand the underlying molecular mechanisms of these interactions is the identification of
DNA-binding residues in proteins. These residues can provide a great insight into the protein function
which leads to gene expression and could also facilitate the generation of new drugs [4,5].

Until now, several groups have published different studies based on either experimental
or computational identification of DNA-binding proteins [1,6-11] as well as residues in these
proteins [12-23]. However, the usage of experimental approaches for the determination of binding
sites is still challenging since they are often demanding, relatively expensive, and time-consuming.
To overcome the difficulty of experimental approaches, it is highly desired to develop fast and
reliable computational methods for the prediction of DNA-binding residues. For this purpose, several
state-of-the-art prediction methods have been developed for the automated identification of those
residues. Such methods can be assigned into two main categories: (i) based on the information
observed from structure and sequence in a collective manner; (ii) based on the features derived directly
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from the amino acid sequence alone (for more detail see reviews [24] and [25]). Although the first
type of approaches provides promising information about DNA-binding residues in proteins, their
application is difficult due to the limited number of experimentally determined protein structures.
In contrast to structure-based approaches, sequence-based methods have been developed by extracting
different sequence information features, like amino acid frequency, position-specific scoring matrix
(PSSM), BLOSUMS62 matrix, sequence conservation, etc. [3,4,18,19,26,27]. Using these features, several
machine learning techniques have been applied to construct the classifiers for the prediction of
binding residues in proteins. To this end, a variety of support vector machine (SVM) classifiers have
been developed in recent studies [2,17-19,23,26,28]. For example, Westhof et al. have recently used
an SVM classifier approach in their study, named RBscore (http://ahsoka.u-strasbg.fr/rbscore/),
by using the physicochemical and evolutionary features that are linearly combined with a residue
neighboring network [2]. Further, SVM algorithms were also applied for the models proposed in
BindN [18], DISIS [19], BindN+ [23], DP-Bind [27] using different sequence information features
including the biochemical property of amino acids, sequence conservation, evolutionary information
in terms of PSSM, the side chain pKa value, hydrophobicity index, molecular mass and BLOSUM62
matrix. In addition, other machine learning classifiers such as neural network models [13,15], naive
Bayes classifier [26], Random Forest classifiers (RF) [4,29,30] have been developed based on the
features derived from protein sequences. For example, Wong et al. [29] have recently developed a
successful method using RF classifier with both DNA and protein derived features to predict the
specific residue-nucleotide interactions for different DNA-binding domain families.

Despite the rich literature on the sequence-based methods as mentioned above, to date there
is still a need to find suitable feature extraction approaches that can enhance the characteristics of
DNA-binding residues and thus help to improve the performance of existing methods for identification
of DNA-binding residues in proteins. For this aim, we introduce and evaluate a new information
theory-based method for the prediction of these residues using Jensen—-Shannon divergence (JSD).
As a divergence measure based on the Shannon entropy, JSD is a symmetrized and smoothed
version of the Kullback-Leibler divergence and is often used for different problems in the field
of bioinformatics [31-35]. In this study, following the line of Capra et al. [34] we first quantify the
divergence between the observed amino acid distribution of a site in a protein and the background
distribution of non-binding sites by using JSID. After that, in analogy to our previous studies
QCMF [32] and CMF [36], we incorporate biochemical signals of binding residues in the calculation of
JSD that results in the intensification of the DNA-binding residue signals from the non-binding signals.

To demonstrate the performance and functionality of our proposed approach, we apply Random
Forest (RF) classifier using our new JSID based features together with three widely used machine
learning features, namely position-specific scoring matrix (PSSM), secondary structure (SS) information,
and orthogonal binary vector (OBV) information (see review [24]). Our results show that using
JSID based features, RF classifier reaches an improved performance in identifying DNA-binding
residues with a significantly higher Matthews correlation coefficient (MCC) value in comparison
to using previous features alone. Although we only applied RF classifier in this study, both of
our sequence-based features could be used in other classifiers such as SVM, neural networks,
or decision trees.

2. Results

In this study, we introduce new sequence-based features using JSID to improve the performance of
previous machine learning approaches in identification of DNA-binding residues in proteins. For this
purpose, we propose new sequence-based features (fysp and fysp.) using JSD in two different ways.
First, using JSD, we calculate the divergences between observed amino acid distributions in multiple
sequence alignments (MSAs) of proteins under study and the background distribution which is
calculated according to amino acid counts at non-binding residue positions in MSAs. In the second
step, we transform the observed amino acid distributions with a doubly stochastic matrix (DSM) to
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enhance the weak signal of binding sites in proteins which could not be predicted in the first step.
Finally, we calculate for each residue in proteins JSID-based scores and use them for the improvement
of the performance of machine learning approaches.

To evaluate our new features, we use two frequently considered cut-off distances of 3.5 A and
5 A and thus define a residue in a protein as DNA-binding if the distance between at least one atom on
its backbone or side chain and the DNA molecule is smaller than the considered cut-off.

The Results section of this study comprises of two parts. First, we investigate the functionality of
our new features combining them in Random Forest (RF) classifier with three previous features. The RF
classifier is constructed from 4298 positive and 44,805 negative instances extracted from 263 proteins.
The performance of the classifier is evaluated using a five-fold cross validation procedure in which we
randomly divided the samples into five parts. The assessment is performed by choosing each of these
parts as a test set and the remaining four parts as a training set for model selection. Second, to illustrate
the usefulness of our new approach for the prediction of DNA-binding residues, we analyzed the
proto-oncogenic transcription factor MYC-MAX (PDB-ID: 1INKP) which is a heterodimer protein
complex of two proteins. It is important to note that this protein complex is not included in the
training dataset.

2.1. Random Forest Classifier

To apply the Random Forest (RF) classifier, we combine our new features (fjsp and fygp.¢) with
the features fpssv, fopy, and fsg which are widely used for the prediction of DNA-binding residues.
Our results show that using our features RF classifier reaches an improved performance in identifying
DNA-binding sites with clearly higher statistical values (see Tables 1 and 2). Moreover, we individually
evaluated the combination of our features with existing features. The results suggest that the classifier
with fysp.¢ feature has provided better sensitivity and comparable Matthews correlation coefficient
(MCC) values in comparison to fgp feature. However, its specificity is moderately decreased. A further
comparison reveals that the usage of our both features together with other features does not affect the
performance of the classifier. The details are presented for 3.5 A in Table 1 and for 5 A in Table 2 and in
Appendix A with the standard error of each of the performance measures over the values obtained in
the five iterations (see Tables A1 and A2).

Table 1. Prediction performance of Random Forest (RF) classifier on different features using a cut-off
of 3.5 A. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity = Specificity MCC AUC-ROC AUC-PR
fpssm 0.292 0.963 0.307 0.777 0.313
fpsam + fsp 0.385 0.949 0.349 0.795 0.369
fpssm + FIsD-t 0.41 0.939 0.35 0.802 0.377
fpssm + fsp + FIsD-t 0.414 0.94 0.348 0.800 0.376
fpssm + fss 0.339 0.958 0.334 0.794 0.338
fpssm + fss + fysp 0.416 0.95 0.378 0.808 0.390
fPSSM + fss + fJSD—t 0.441 0.94 0.372 0.817 0.401
fossm + fas + Fisp + FIsDet 0.439 0.94 0.37 0.814 0.399
fPSSM + fOBV + fss 0.367 0.968 0.398 0.838 0.413
fPSSM + fOBV + fss + fJ]S]D) 0.422 0.958 0.409 0.837 0.425
fpssm + fopv + fss + fsp-t 0.447 0.95 0.403 0.841 0.431
fPSSM + fOBV + fss + f,J]S]D) + fJS]D)—t 0.444 0.947 0.393 0.835 0.423

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.
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Table 2. Prediction performance of Random Forest (RF) classifier on different features using a cut-off
of 5.0 A. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.286 0.966 0.350 0.778 0.425
fpssm + FIsp 0.395 0.95 0.407 0.801 0.487
fpssm + fIsD-t 0.418 0.943 0.411 0.807 0.494
fpssm + fysp + fsD-t 0.426 0.942 0414 0.807 0.497
fposm + fss 0.334 0.963 0.386 0.796 0.455
fPSSM + fss + fJS]D 0.424 0.951 0.436 0.814 0.513
fpssm + fss + Fspt 0.448 0.944 0.438 0.820 0.520
fPSSM + fss + fJg]D) + fJS]D-t 0.445 0.944 0.434 0.819 0.521
fPSSM + fOBV + fss 0.337 0.975 0.431 0.830 0.517
fosem + fomv + fss + fsp 0.419 0.958 0.450 0.832 0.535
fPSSM + fOBV + fss + fJ]S]D)—t 0.439 0.952 0.453 0.836 0.539
fPSSM + fOBV + fss + f,]]S]D) + f,HS]D)—t 0.442 0.949 0.445 0.832 0.535

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.

To further investigate the performance of JSID-based features proposed in this study, we analyzed
two additional datasets, namely RBscore [2] and PreDNA datasets [37]. Although the RBscore
and PreDNA datasets initially contain 381 and 224 DNA-binding proteins, respectively, we have
eliminated a few proteins since they are either included in our training dataset or ineligible due to
their MSAs. Consequently, we constructed RF classifier using 263 proteins (which were also used
for cross-validation) and randomly selecting 60 proteins from each dataset for testing, respectively.
The results of these analyses consistently suggest that our new features show great complementary
effect to the previous features which often leads to clear improvement of the classification performance
(see Tables 3 and 4). The detailed performance of classifier on different features using different cut-offs
for each dataset can be found in Appendix A (see Tables A3-A6).

Considering the AUC-ROC and AUC-PR as the only evaluation factor, results indicate that the
RF classifier often achieved its best performance based on both cut-off distances if we combine our
new fysp.¢ feature together with the existing three features (see Tables 1-3). Interestingly, by analyzing
the PreDNA dataset we observed that RF classifier with fjgp or fjsp. features for the cut-off of 3.5 A
showed similar performance. However, regarding to the distance cut-off of 5 A, the classifier with fjsp
feature reached slightly better performance than those with fygp.. feature (see Table 4). After looking at
the overall performances, it is inferred that adding our new features can boost the performance of the
RF classifier in terms of AUC-ROC and AUC-PR.

Table 3. Prediction performance of Random Forest (RF) classifier on RBscore dataset using different
distance cut-offs.

Cut-Off Feature Sensitivity  Specificity MCC AUC-ROC AUC-PR

fPSSM + fOBV + fss 0.517 0.976 0.534 0.896 0.528

3.5 A fPSSM + fOBV + fss + fJ]S]DJ 0.58 0.967 0.54 0.907 0.543

: fpssm + fopy + fos + fismet 0.612 0.963 0.546 0.910 0.551
fPSSM + fOBV + fss + fJ]S]D) + fJSD—t 0.601 0.962 0.531 0.909 0.546

fPSSM + fOBV + fss 0.499 0.98 0.584 0.895 0.641

5.0 A fPSSM + fOBV + fss + f.]]S]D) 0.57 0.968 0.595 0.908 0.661

: fPSSM + fOBV + fSS + f.]]S]D)-t 0.592 0.965 0.60 0.908 0.665
fPSSM + fOBV + fss + f.]]S]D) + f,]]SID)—t 0.594 0.964 0.597 0.907 0.663

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.



Entropy 2016, 18, 379 50f 13

Table 4. Prediction performance of RF classifier on PreDNA dataset using different distance cut-offs.

Cut-Off Feature Sensitivity Specificity MCC AUC-ROC AUC-PR

fpssm + fosv + fss 0.428 0.977 0.458 0.867 0.451

35A fpssm + fopv + fss + frsp 0.511 0.97 0.488 0.885 0.488

) fpssm + fopv + fss + frsp-t 0.539 0.962 0.475 0.888 0.488
fPSSM + fOBV + fss + f_]]S]D) + f.]]S]D)—t 0.539 0.961 0.47 0.886 0.488

fpssm + fov + fss 0.395 0.98 0.488 0.858 0.530

50 A fpssm + fopy + fss + fsp 0.48 0.968 0.511 0.874 0.563

’ fpssm + fopy + fss + fsp-t 0.506 0.962 0.51 0.873 0.560
fPSSM + fOBV + fgs + f‘]]g]n) + f,]]S]D)—t 0.499 0.96 0.498 0.871 0.555

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)
curve; AUC-PR: area under the precision-recall curve.

2.2. Position Analysis of the MYC-MAX Protein

The proto-oncobenic transcription factor MYC-MAX (PDB-Entry 1NKP) is a heterodimer protein
complex that is active in cell proliferation and is over-expressed in many different cancer types [38].
MYC-MAX transcription factors bind to Enhancer boxes (a core element of the promoter that consists
of six nucleotides) and activate transcription of the underlying genes [39].

The amino acid chain of MYC protein consists of 88 residues, ten of which are known
DNA-binding sites indicating that their distances to DNA are less than 3.5 A. Applying RF classifier,
which takes a majority vote among the random tree classifiers, with our first feature (fysp) combined
with existing features, we predicted in total 17 residue positions to be DNA-binding in MYC protein.
Seven out of these positions (H906, N907, E910, R913, R914, P938, K939) correspond to the true
DNA-binding sites of this protein. While the sites R913, R914, P938, and K939 could also be identified
by RF classifier without using our new JSD-based features, the remaining three binding sites could
only be detected using our features (for details see Table 5 and Figure 1). Interestingly, using fysp.¢
together with fpssy, fopy, and fsg, the RF classifier correctly predicted these seven positions again as
binding sites.

The second protein in the proto-oncobenic transcription factor complex is the MAX protein which
consists of 83 residues including nine DNA-binding sites. Using fjsp or fsp.; together with existing
features individually, we observed 14 and 13 residue positions to be DNA-binding in MAX protein,
respectively. Eight of the predicted positions (H207, N208, E211, R212, R214, R215, 5238, R239) found by
using either of our both features are true DNA-binding sites in MAX protein. However, without using
our new features the RF classifier could only identify two (S238, R239) out of nine true DNA-binding
sites in MAX protein (for details see Table 5 and Figure 1). Further, we observed that, the usage of fysp.¢
leads to the reduction of false positive predictions in identifying DNA-binding sites in MAX protein.

Table 5. Prediction performance of RF classifier on different features using a cut-off of 3.5 A for
MYC-MAX protein complex (Protein Data Bank (PDB)-Entry 1INKP).

Protein  Feature Sensitivity = Specificity MCC
fpssm + fopy + fss 0.30 0.941 0.282

Myc  fpssm +fopy + fss + fsp 0.70 0.853 0.448
fPSSM + fOBV + fSS + fJSD_t 0.70 0.853 0.448

fPSSM + fOBV + fss + fJ]S]D) + fJSIDJ—t 0.70 0.868 0.470

fpssm + fopv + fss 0.222 1.0 0.447

MAX fpssm + foBv + fss + fysp 0.888 0.906 0.664
fpssm + fopv + fss + f1spt 0.888 0.922 0.697

fPSSM + fOBV + fss + fJSD + ij]D-t 0.889 0.922 0.697

MCC: Matthews correlation coefficient.
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MAX protein ,‘ ’ MYC protein

[weo? | (303 ]

Figure 1. DNA-binding sites in proto-oncobenic transcription factor MYC-MAX protein complex
(PDB-Entry INKP). Green spheres denote positions of the DNA-binding sites in both proteins which are
detected by RF classifier either using the existing features (fpsgy, fopy, and fsg) alone or combining our
new features with these existing features together. Purple spheres show the localization of additional
binding sites which were only found by RF classifier using our new features with existing features.
Moreover, there are further three binding sites in MYC protein and one binding site in MAX protein,
shown with yellow spheres, that could not be identified by the classifier.

Moreover, when statistically evaluating both of our features, we observed that using our
sequence-based features RF classifier reaches a significantly improved performance in identifying
DNA-binding sites of both proteins with significantly higher sensitivity and MCC values whereas
the specificity is moderately decreased. The simultaneous usage of both of our features together
with fpsgm, fopy, and fsg could result in the decrement of specificity or MCC values. The details are
presented in Table 5.

3. Materials and Methods

In this section, we describe in particular the data we have used and our new residue-wise features
designed to predict DNA-binding sites in proteins.

3.1. Materials

To compile our data needed for training and test, we started with the DBP-374 data set
of representative protein-DNA complexes from the Protein Data Bank (PDB) [40] published by
Wu et al. [5]. Having performed a comparison with the new PDB version, we calculate for every
remaining protein a multiple sequence alignment (MSA) using HHblits and the UniProt20 database
(version from June 2015) [41]. We eliminated all proteins, the MSA of which has less than 125 rows,
so that we finally ended up with a dataset of 263 protein-DNA complexes and associated MSAs.
To obtain our results we perform a five-fold cross validation.
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As in [5], an amino acid residue is regarded as a binding site, if it contains at least one atom at
distance of less than or equal to 3.5 A or 5 A from any atom of DNA molecule in the DNA-protein
complex. Otherwise it is treated as non-binding site. For the distance cut-off of 3.5 A, our set contains
4298 binding sites and 44, 805 non-binding sites. For the distance cut-off of 5 A, however, our data set
contains 7211 binding sites and 41, 892 non-binding sites.

3.2. Methods

Let M be a multiple sequence alignment, where its first row represents the protein under study.
Every residue of that protein is then uniquely determined by its column. In what follows, we identify
the residues of the protein with their columns of the MSA.

Grosse et al. [35] pointed out that the Jensen-Shannon divergence (JSD) is extremely useful when
it comes to discriminate between two (or more) sources. Capra and Singh [34] carefully discussed
several information theoretic measures like Shannon entropy, von Neumann entropy, relative entropy,
and sum-of-pair measures to assess sequence conservation. They were the first using JSD in this
context and stated its superiority. Giiltas et al. [32] showed that the Jensen-Shannon divergence in the
context of quantum information theory is of remarkable power. These three articles encouraged us to
use JSD in this study. Our first idea is to design a new feature for the prediction of DNA-binding sites
in proteins which leverages the Jensen—Shannon divergence

ISD (pk |pna) == H ((px + Pua) /2) — (H (p) + H (ppa)) /2. (1)

Therein, py is the empirical amino acid distribution of the k-th column of the query MSA M,
and p,,4 is the null distribution taken over all non-binding sites of our training data.

More precisely, we represent every column k of every MSA M considered by a 20 x 20 counting
matrix C (Mk) . The matrix C is symmetric and its rows as well as columns are indexed by the 20 amino
acids. For every ordered pair of amino acids (4,a’), the matrix coefficient C(My) ., is equal to the
number of ordered pairs (i, ) (i # j) of row indices of M such that Mz = a and My = a.

To compute the null distribution p,;, we first set up the 20 x 20 counting matrix C,; using
our training data. C,4 is the sum over all matrices C (M, ), where M ranges over all training MSAs
and k ranges over all non-binding site columns of M. Next, the rows of C,; are added up. Finally,
the resulting row vector is normalized to obtain p,,,.

There is nothing wrong with the idea that a large value JSD (py ||p,g) indicates that k is a
DNA-binding residue. However, no information on binding sites is integrated. Only the non-binding
sites of our training data are used to compute p,;. As we have seen in [32] and [36], transforming
empirical amino acid distributions of MSA columns by a carefully designed doubly stochastic matrix
is an effective way to integrate the binding site signals. To this end, we first set up a counting matrix
Cping in a way similar to that of calculating the matrix C,;. The difference is that the variable column
index k now ranges over all binding site columns of the training MSAs. Taking the counting matrix
Cping as input, the doubly stochastic matrix D is computed by means of the canonical row-column
normalization procedure [42].

Let M be the query MSA having ¢ columns. Compared with [32] and [36], we enhance the effect
of transforming M’s empirical column distributions by means of the doubly stochastic matrix D just
defined. Let k be a column index of M. First, we compute the matrix product C¥) (M) := C(My) - D.
Second, we add up all of C(*) (M)’s rows. Finally, we normalize the resulting row to obtain the
transformed empirical row distribution p,(ct).

We define two window scores scoreysp s (k) and scoregsp.t pr (k) of residue k w.r.t. query MSA
M, where the window w (k) surrounding k formally equals {k — 3,k —2,k— 1,k k+1,k+2,k+3} N
{1,2,...,4}. Clearly, if k € {4,5,...,¢ — 3}, |ro(k)| = 7. Otherwise | (k)| € {4,5,6}. Recapitulate that
for any real x the binomial coefficient (3) equals x(x — 1) /2. We define the scores as follows.



Entropy 2016, 18, 379 8of 13

_ Liew() (4~ [k — 1)) ISD (pry. [[Pra )

scoregsp,um (k) : )
16— (50
2
Lrew( (4 — [k — 1) ISD (p”) ||p,
SCOTEJSD-t, M (k) = Sl g _ |m(k)<| s d) (3)
16— ( )
2

The preceding two score definitions are motivated as follows. Bartlett et al. [43] and
Panchenko et al. [44] pointed out that exploiting conservation properties of spatial neighbors is
useful to predict a residue as functionally important. Since the 3D structures are often unavailable,
Capra and Singh [34] developed a window score for such predictions. The concrete shape of our scores
takes pattern form Janda et al. [45], who in turn refer to Fischer et al. [33]. Our scores are convex
combinations of the Jensen-Shannon terms associated with the residues belonging to the surrounding
window w (k). The weights fall linearly in the distance from k.

In a last step, we transform two window scores according to Equations (2) and (3) with respect to
the query MSA M into final scores using the Equations (4) and (5), respectively. To this end, for every
column index k € {1,2,...,¢} of M we define:

K'|1<k <, scoreg k) > scorejs K
fys,m (k) = <] - DQM( ) ssp.m (k)3 4)

K'|1<k <¥, scoregsp. pm (k) > scoregsp pm (K
b () 1= | e () 2 scoregan ()}, ®

The Equations (4) and (5) are basically the determination of the percentage of scores below the
current one at index k. This transformation procedure is essential because it converts MSA-dependent
window scores to MSA-independent scores.

To demonstrate the benefit of our new features, we adopt the features fpsgy, fopy and fss devised
in [5]. Together with our two new features fjsp and fjsp.t, we plugged them into the Random Forest
(RF) classifier [46] (see Tables 1 and 2 for the combinations we used). For the RF implementation we
used the WEKA data mining software [47].

To deal with the imbalanced data problem, we applied bagging techniques suggested in [48].
Since we make use of five-fold cross validation, we randomly split the dataset into 5 roughly equal-sized
parts. Every training phase performed on 4 parts consists of 11 sub-phases. In each such sub-phase
we randomly draw twice as many non-binding sites as there are binding sites. We then construct a
Random Forest (RF) taking those non-binding sites and all binding sites of the 4 parts as input. Finally,
for each instance of the validation part the majority vote of above 11 RF classifiers was taken.

4. Discussion

Our results show that combining either feature fygp.; or feature fysp with the three features fpggyy,
fopy and fsg we have adopted from [5] clearly boosts the performance of the RF-based classifier in
identifying the DNA-binding sites in proteins, where feature fjsp.; generally reaches a slightly better
performance than feature fygp.

Although our two new features and PSSMs are derived from MSAs, Tables 1 and 2 clearly
demonstrate that these approaches carry distinct information. Thus they capture different kinds of
evolutionary information. The reason for this essential difference can be explained based on the
underlying algorithms. While the PSSM approach consists of statistic which indicates how likely a
certain amino acids occurs at a certain position, our JSID-based approach measures the divergence of a
certain distribution to a known non-binding site distribution.
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The superiority of feature fysp. ¢ to feature fygp deserves an explanation attempt. Feature fysp
does not integrate any information on DNA-binding sites. Only training non-binding sites are used.
In contrast, feature fygp.¢ additionally uses a doubly stochastic matrix gained from the training binding
sites. The effect on empirical amino acid column distributions of the transformation we have devised
using that matrix is the following. The empirical column probabilities of amino acids are merged, if it
is very likely to co-observe them in a binding site column. Since the amino acid content of binding
site columns and non-binding site columns differ, the distance between fysp.; ps (k) and fygp. a1 (k') is
larger and more significant than the distance between fygp a1 (k) and fysp as (k'), where k is a binding
site column of MSA M, and k’ is a non-binding site column.

At first glance it is surprising that adding both feature fjgp.; and feature fjgp to the feature
triplet (fPSSM, fosv, fss) is worse than adding feature fjgp ¢ alone. Taking into account what we have
mentioned in the preceding paragraph, it turns out that if feature fysp., is already there, feature fygp
may increase the noise.

5. Conclusions

In this work, we report a new sequence-based feature extraction method for the identification of
DNA binding sites in proteins. For this purpose, we adopt the ideas from Capra et al. [34] and our
previous studies CMF [36] and QCMEF [32]. Our approach is an information theoretic method that
applies the Jensen—Shannon divergence (JSD) for amino acid distributions of each site in a protein in
two different ways. First, the JSD is applied to quantify the differences between observed amino acid
distributions of sites and the background distribution of non-binding sites. Second, we transform the
observed distributions of sites through a doubly stochastic matrix to incorporate biochemical signals of
binding residues in the calculation of JSID that results in the intensification of the DNA-binding residue
signals from the non-binding signals. The results of our study show that the additional usage of our
new features (fjgp. or feature fjgp) in combination with existing features is significantly boosts the
performance of RF classifier in identifying DNA binding sites in proteins. Our results further indicate
the importance of our second feature (fjsp.;) since taking into account the binding site signals in the
calculation of JSI metric, the characteristics of DNA binding residues are enhanced. As a consequence,
an intensification of the signal caused by DNA binding sites from non-binding sites occurs and thus
the classifier achieves its improved performance.
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Appendix A

The detailed performance of the RF classifier on different features using different cut-offs for
RBscore and PreDNA datasets.
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Appendix A.1. Performance Measures with Standard Error

10 of 13

Table Al. Prediction performance of Random Forest (RF) classifier on different features using a cut-off

of 3.5 A. The prediction system was evaluated by five-fold cross validation.

Feature Sensitivity = SE(%) Specificity & SE(%) MCC =+ SE(%)
fpsam 29.2 +2.20 96.3 &+ 0.46 30.7 + 0.95
fpssm + Fisp 38.5 + 3.04 94.9 4 0.57 349 +1.7
fpoom + fsp-t 41.0 +£3.23 93.9 + 0.57 35.0 + 1.85
fpssm + £ysp + FisDet 414 + 342 94.0 + 0.51 34.8 +2.07
fpsam + fss 33.9 +£2.32 95.8 & 0.37 334+ 1.36
fPSSM + fSS + fj]S]D) 41.6 + 3.05 95.0 + 0.46 37.8 £2.19
fpssm + fss + Frsmet 441 +3.12 94.0 4+ 0.43 37.2 4237
fpsm + fos + f1sp + fIsDot 43.9 + 3.14 94.0 4 0.40 37.0 +2.25
fPSSM + fOBV + fss 36.7 + 2.07 96.8 4+ 0.27 39.8 +1.58
fPSSM + fOBV + fss + fJSD 422 4+2.70 95.8 +0.42 409 +1.95
fpssm + foBv + fss + fsp-t 447 £+ 3.05 95.0 £ 0.38 40.3 +1.98
fpoom + foBY + fos + fisp + fIspot 444 +3.12 94.7 + 0.39 39.3 +2.02

Table A2. Prediction performance of Random Forest (RF) classifier on different features using a cut-off

of 5.0 A. The prediction system was evaluated by five-folds cross validation.

Feature Sensitivity 4= SE(%) Specificity = SE(%) MCC =+ SE(%)
fpssm 28.6 4+ 2.56 96.6 + 0.47 350+ 1435
fpssm + fsp 39.5+2.89 95.0 £ 0.55 40.7 = 1.99
fpssm + fFISD-t 41.8 +3.02 94.3 4 0.62 41.1 +2.05
fpssm + f1sp + FIspet 426 +3.25 94.2 + 0.54 414 +237
fpssm + fss 334 +2.34 96.3 = 0.38 38.6 =+ 1.90
fPSSM + fss + fJ]S]D) 42.4 +2.97 95.1 £ 0.61 43.6 +2.43
fpssm + fss + Fjspt 44.8 +2.99 94.4 + 0.56 43.8 +2.45
fpssm + fss + Fisp + FIsD-t 445 +3.04 94.4 4 0.50 434 +235
fPSSM + fOBV + fss 33.7 £ 248 97.5 + 0.35 43.1 +2.05
fPSSM + fOBV + fss + fJIS]D) 41.9 +2.89 95.8 + 0.55 45.0 + 2.39
fPSSM + fOBV + fss + fJSH])-t 43.9 + 2.89 95.2 +0.48 453 +£2.32
fPSSM + fOBV + fss + fJS]D) + fJS[D)_f 442 +£291 949 + 0.54 445 +2.24

Appendix A.2. RBscore Dataset Analysis

Table A3. The detailed prediction performance of Random Forest (RF) classifier on different features

using a cut-off of 3.5 A.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.458 0.974 0.476 0.866 0.460
fpssm + f1sp 0.56 0.965 0.514 0.894 0.518
fpssm + frsp-t 0.597 0957 0511 0.899 0.523
fPSSM + fﬂg]]) + fJS]DJ—t 0.591 0.958 0.511 0.90 0.526
fpssm + fss 0.512 0.97 0.501 0.878 0.476
fPSSM + fss + fJSD 0.581 0.96 0.511 0.899 0.520
fpssm + fss + f1sp-t 0.611 0.953 0.508 0.903 0.526
fpssm + fss + fysp + fsD-t 0.613 0.953 0.509 0.902 0.528
fpssm + fopv + fss 0.517 0.976 0.534 0.896 0.528
fPSSM + fOBV + fss + f,HS]D) 0.58 0.967 0.54 0.907 0.543
fPSSM + fOBV + fSS + fjgﬂ])-t 0.612 0.963 0.546 0.910 0.551
fPSSM + fOBV + fss + fJSD + fJISD—t 0.601 0.962 0.531 0.909 0.546

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)

curve; AUC-PR: area under the precision-recall curve.
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Table A4. The detailed prediction performance of Random Forest (RF) classifier on different features

using a cut-off of 5.0 A.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssu 0.445 0.977 0.528 0.873 0.589
fpssm + fsp 0.553 0.968 0.579 0.899 0.643
fpssm + fIsp-t 0.57 0.962 0.572 0.900 0.642
fPSSM + f,]]SID) + fJS]DJ—t 0.569 0.963 0.574 0.895 0.642
fpssm + fas 0.49 0.973 0.547 0.880 0.602
fPSSM + fss + fJS]D) 0.578 0.963 0.583 0.902 0.648
fpssm + fss + Frsmot 0.605 0.958 0.587 0.904 0.652
fPSSM + fss + fJ]S]D) + fJSD—t 0.603 0.959 0.587 0.902 0.653
fPSSM + fOBV + fss 0.499 0.98 0.584 0.895 0.641
fpssm + fopv + fss + fisp 0.57 0.968 0.595 0.908 0.661
fPSSM + fOBV + fSS + f.US]D)-t 0.592 0.965 0.60 0.908 0.665
fPSSM + fOBV + fss + f,]]S]D) + fJS]D)—t 0.594 0.964 0.597 0.907 0.663

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)

curve; AUC-PR: area under the precision-recall curve.

Appendix A.3. PreDNA Dataset Analysis

Table A5. The detailed prediction performance of Random Forest (RF) classifier on different features

using a cut-off of 3.5 A.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.378 0.977 0.41 0.840 0.391
fpssm + Fism 0.498 0.963 0.448 0.865 0.453
fpoam + frsm-t 0.543 0.953 0.445 0.869 0.451
fpssm + fisp + Fisnt 0.538 0.956 0.453 0.869 0.455
fpssm + fss 0.393 0.975 0.417 0.847 0.402
fPSSM + fss + fJIS]D) 0.501 0.966 0.461 0.872 0.463
fpsam + fss + frsmee 0.545 0.959 0.465 0.876 0.468
fpssm + fss + frsp + Fspot 0.523 0.958 0.449 0.875 0.465
fPSSM + fOBV + fSS 0.428 0.977 0.458 0.867 0.451
fpssm + fopy + fss + fisn 0.511 0.97 0.488 0.885 0.488
fpssm + foy + fss + frspet 0.539 0.962 0.475 0.888 0.488
fPSSM + fOBV + fSS + fJS]DJ + fJS]DJ-t 0.539 0.961 0.47 0.886 0.488

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)

curve; AUC-PR: area under the precision-recall curve.

Table A6. The detailed prediction performance of Random Forest (RF) classifier on different features

using a cut-off of 5.0 A.

Feature Sensitivity Specificity MCC AUC-ROC AUC-PR
fpssm 0.373 0.979 0.463 0.833 0.496
fpssm + fIsD 0.485 0.962 0.495 0.858 0.540
fpsam + frsm-t 0.496 0.953 0.475 0.858 0.534
fpssm + f1sp + frsD-t 0.495 0.955 0.479 0.857 0.535
fpssm + fss 0.389 0.977 0.47 0.839 0.501
fPSSM + fss + fJ]S]D) 0.49 0.963 0.501 0.863 0.550
fPSSM + fss + fJS]D)—t 0.503 0.957 0.492 0.865 0.547
fpssm + fss + f1sp + fsDt 0.504 0.958 0.497 0.865 0.550
fPSSM + fOBV + fSS 0.395 0.98 0.488 0.858 0.530
fPSSM + fOBV + fss + f,]]S]D) 0.48 0.968 0.511 0.874 0.563
fpssm + fopv + fss + fsp-t 0.506 0.962 0.51 0.873 0.560
fpssm + fopv + fss + fysp + fysp-t 0.499 0.96 0.498 0.871 0.555

MCC: Matthews correlation coefficient; AUC-ROC: area under the receiver operating characteristics (ROC)

curve; AUC-PR: area under the precision-recall curve.
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