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Abstract 
 

Reactive oxygen species (ROS) are highly reactive molecules produced in any biological 

system. When ROS are produced in higher amounts, they are lethal to cells. Therefore cells 

possess a tight redox regulation through action of various antioxidant defense systems. An 

imbalance between the ROS produced versus the action of the antioxidants can give rise to a 

state called oxidative stress. In order to study the consequences of high ROS production in a 

system, it is essential to develop tools that can measure quantitatively the precise levels of 

specific ROS or the status of a specific redox couple. Until recently, synthetic probes were 

used widely to measure ROS in a qualitative manner. However, taking into consideration the 

limitations of these probes, genetically encoded biosensors have gradually started to replace 

the relatively non-specific probes. These genetically encoded biosensors can not only visualize 

the redox nature quantitatively and in real time but also can be targeted to any subcellular 

compartment of a cell. In line to these necessities, mouse models in which the glutathione 

redox biosensor Grx1-roGFP2 is expressed in cardiomyocytes and located in two different 

compartments were applied in the presented thesis. These mouse models allow to study the 

glutathione redox potential (EGSH) in the cytoplasm versus mitochondrial matrix. The mouse 

models were used to study the effect of aging on the EGSH of the cytoplasm and mitochondrial 

matrix in cardiomyocytes. The redox compartmentalization between the two compartments 

which was observed in young mice seems to disappear in aging animals. Besides applying the 

mouse models to study the effects of aging on redox regulation, the mito Grx1-roGFP2 mouse 

model was utilized to study the importance of maintaining the physiological oxygen 

concentration in order to preserve the reduced EGSH of the mitochondrial matrix as well as the 

overall mitochondrial functionality. In this part of the thesis, it was observed that upon isolation 

of mitochondria from cardiac tissue at room air conditions (20% O2), mitochondria seem to 

almost fully get oxidized However, when the mitochondria are isolated in hypoxia (0.1% O2), 

the EGSH is preserved demonstrating that the EGSH of the mitochondrial matrix is indeed affected 

by the change in the pO2 experienced by the mitochondria when isolated from the tissue. 

Together with the EGSH, other parameters of the mitochondrial electron transport chain like 

ROS, ATP as well as complex III activity are affected when mitochondria are isolated in 20% 

O2. In the final part of my thesis, I generated a novel redox biosensor mouse model. In these 

mice the biosensor consists of the endogenous H2O2 producer D-amino acid oxidase (DAAO) 

fused with the H2O2 HyPer biosensor. A positive founder line of the DAAO-HyPer, wherein the 

biosensor is targeted to the nucleus of the cardiomyocytes, was successfully created and 

characterized. This mouse model is useful to study the development of cardiac dysfunctions 
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in consequence to the generation of the endogenous ROS in the nucleus of the 

cardiomyocytes.
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1. Introduction 
 

Aerobic organisms use molecular oxygen (O2) to generate chemical energy in the form of 

adenine triphosphate (ATP). The thermodynamic properties of O2 are the basis for serving as 

the terminal electron acceptor in the reduction of carbon-based fuels to generate ATP by 

oxidative phosphorylation. As a by-product of O2 consumption, reactive oxygen species (ROS) 

are produced. In line, ROS appeared about 2.4–3.8 billion years ago together with the evolution 

of aerobic life. Ever since, highly sophisticated cellular ROS producer and scavenging systems 

have developed. Therefore ROS are regarded on the one hand as toxic by-products of aerobic 

life. On the other hand, it is quite obvious that they also evolved to regulate cellular processes 

such as differentiation, stress signaling, systemic responses, and cell death among others in 

plants, animals, and most eukaryotic organisms. To this end, the fine-tuning of ROS production 

and scavenging is essential for proper cellular function.  

1.1. Reactive oxygen species and their sources 
 

ROS are the derivatives of O2 produced in any biological system. These derivatives can be 

categorized into two different groups, i.e. free radicals or non-radical derivatives of oxygen 

(Halliwell, 2015; Phaniendra, Jestadi, & Periyasamy, 2015). A free radical is defined as an 

atom or molecule containing one or more unpaired electrons in the valency shell or outer orbit. 

The uneven number of electrons makes it unstable, short lived and highly reactive. The free 

oxygen-centered radicals include superoxide anions (•O2
−), hydroxyl radicals (•OH), alkoxyl 

radicals (RO•) and peroxyl radicals (ROO•). Non-radical derivatives are either oxidizing agents 

or are easily converted into radicals, such as hypochlorous acid (HOCl), singlet oxygen (1O2), 

and hydrogen peroxide (H2O2). H2O2 is a very important cellular oxidant since it can cross 

biological membranes and form the highly reactive •OH by interaction with transition metal ions 

such as Fe2+ or Cu+.  

ROS can be produced from either endogenous or exogenous sources. Endogenous cellular 

sources are associated to organelles with high oxygen turnover including mitochondria, 

peroxisomes and the endoplasmic reticulum. There are various ROS producing enzymes 

present in the peroxisomes such as Acyl CoA-oxidase, D-amino acid oxidase, L-α-hydroxy-

oxidase, xanthine oxidase (De Duve and Baudhuin, 2017). The enzymes present in the 

endoplasmic reticulum responsible for ROS production include cytochrome P450, b5 enzymes 

and diamine oxidase. Other endogenous ROS producing events include for example 

prostaglandin synthesis, auto-oxidation of adrenaline and immune cell activation. The major 

cellular producers of endogenous ROS are the NADPH oxidases (NOX) and components of 

the electron transport chain (ETC) in the mitochondria (Fig. 1).  
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Figure 1: Major sources of Reactive oxygen species (ROS). Molecular oxygen accepts the 
electron from various sources like the electron transport chain in the mitochondria, NADPH 
oxidase, xanthine oxidase, monooxygenase, lipoxygenase, cyclooxygenase and gets 
converted to superoxide anion (•O2

−). 

1.1.1. Mitochondrial ROS 
 

The majority of oxygen used in a cell is expended in the mitochondria. Generation of 

mitochondrial ROS mainly takes place at the ETC located on the inner mitochondrial 

membrane during oxidative phosphorylation (Gambardella et al., 2017). Along with the 

production of ATP, the ETC produces •O2
−. Initially, it was thought that mitochondria produce 

ROS in the form of H2O2 (Loschen et al., 1971). However, with time it was discovered that 

mitochondrial ROS is primarily produced in the form of •O2
−, which subsequently undergoes 

dismutation by the superoxide dismutase (SOD) to form H2O2. There are several reports about 

the production of H2O2 in isolated mitochondria which in turn would give more information on 

the production of •O2
− from the mitochondria. There are two main modes because of which 

there is huge efflux of H2O2 from isolated mitochondria (Murphy, 2008). The first mode directs 

towards the high NADH/NAD+ ratio in the mitochondrial matrix leading to a high flow of 

electrons, which eventually can generate a high H2O2 efflux (Kudin et al., 2004). Highly reduced 

coenzyme Q (CoQ) along with a combination of high proton motive force and no ATP 

production, contributes to the second mode of H2O2 efflux (Korshunov et al., 1997).  

In the ETC, complex I and complex III are major sites of •O2
− production (Murphy, 2008). In 

complex I, the electron flow is initiated when the NADH is reduced to NAD+. Electrons are 

transferred from NADH to the Flavin mononucleotide (FMN) cofactor and further to CoQ via 7 
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iron-sulfur clusters (Fe-S) (Fearnley et al., 2003). There is a high tendency of electron leakage 

while the electrons are passing from FMN to CoQ via Fe-S (Kudin et al., 2004). In case of 

lower ATP demands, the respiration rate also decreases giving rise to higher NADH/ NAD+ 

ratio. The higher the NADH, the higher is the proportion of the reduced FMN. As a 

consequence of a highly reduced FMN and a lower ATP demand, there is the possibility of 

oxygen accepting the leaky electron and getting converted to •O2
−. The other known 

mechanism for the production of •O2
− from complex I is the reverse electron transport (RET) 

(Esterházy et al., 2008). RET takes place when CoQ is extremely reduced by the electrons, 

however, there is a high proton motive force which drives the electrons back to FMN. Reduced 

FMN is an active site for the production of •O2
− from complex I to the elevated NADH/NAD+ 

ratio.  

Complex III passes the electrons from CoQ to cytochrome c through the Q-cycle (Kudin et al., 

2004; leier and Dröse, 2013). Experimentally, in presence of CoQH2 when the Qi site was 

inhibited by antimycin, a large amount of •O2
− was produced from the oxygen reacting with 

ubisemiquinone in the Qo site. On the other hand, it is also observed that when the `distal` Qo 

site is inhibited by an inhibitor like stigmatellin, there is a complete blockage of •O2
− production 

from complex III (Muller et al., 2003). However, when the `proximal` Qo site is inhibited by 

inhibitors like myxothiazol, there is still a small amount of •O2
− from complex III. Rottenberg and 

colleagues also showed the importance of applied membrane potential on the formation of •O2
− 

(Rottenberg et al., 2009). As higher the membrane potential is as higher is the •O2
− production. 

The membrane potential slows down the electron transfer from heme bL to heme bH, which is 

the only one transmembrane electrogenic step in the Q-cycle. This makes the heme bL more 

reduced, resulting into more •O2
− production. 

1.1.2. NADPH oxidase 
 

NOX are transmembrane proteins that can transport electrons across the membrane to reduce 

oxygen to •O2
− (Bedard and Krause, 2007). The family of NOX enzymes consists of 7 catalytic 

subunits namely Nox1-5, Duox 1-2 and their regulatory subunits such as p22phox, p47phox or 

Noxo1, p67phox or Noxa1 and p40phox (Altenhöfer et al., 2012). NOX function was first 

analyzed mainly in neutrophils and macrophages in the context of the respiratory burst 

(Nauseef, 2017). This led to the discovery of Nox2. Upon activation in innate immune cells, 

Nox2 converts molecular oxygen to •O2
− at the expense of NADPH. These •O2

− are then used 

to combat the invading micro-organisms that initiated the respiratory burst. Other than being a 

catalyst in respiratory burst, NOXs are also involved in specific signaling pathways. Nox 2 and 

4  are highly expressed in cardiovascular tissues (Lassègue et al., 2012; Lambeth, 2004). 



Introduction 
 

13 
 

1.2. Antioxidant defense systems 
 

Antioxidants are compounds that help to compensate and balance the effects of ROS 

produced inside a cell. Antioxidant defense systems comprise enzymatic and non-enzymatic 

antioxidants (Table 1).  

Enzymatic Non-enzymatic 

Catalase Ascorbic acid (Vitamin C) 

Glutathione Peroxidase Glutathione (GSH) 

Thioredoxin (Trx) Uric acid 

Peroxiredoxin (Prx) α-Tocopherol (Vitamin E) 

Superoxide dismutase (SOD) β-Carotene 
Table 1: Examples of enzymatic and non-enzymatic antioxidants (adapted from Hafstad 
et al., 2013). 

 
The two major redox systems that play a vital role as an antioxidant defense system in a cell 

are the glutaredoxin and the thioredoxin system (Fig. 2). 

Glutathione (GSH) is one of the major mediators and regulators of cellular redox processes. It 

is one of the most abundant (0.1-10 mM) low molecular weight peptides found in mammalian 

cells (Meister, 1988). GSH is synthesized in the cytoplasm of a cell by sequential reactions at 

an expense of ATP (White et al., 2003; Forman et al., 2009). It is a tripeptide containing 

glutamic acid, cysteine and glycine. The first rate-limiting enzyme for the synthesis of GSH is 

the γ-glutamylcysteine synthetase. The second rate-limiting step includes the conversion of γ-

glutamylcysteine (γ-GS) to GSH by glutathione synthetase (GS). 

GSH is present in a cell as a reduced form (GSH) and an oxidized form (GSSG) or an oxidized 

thiol protein with glutathione (GS-R). Especially the cysteine residue of the GSH is known to 

be an important player in ROS scavenging (Espinosa-Diez et al., 2015; Ray et al., 2012). GSH 

works as an antioxidant buffer where GSH by itself gets converted to its oxidized form (Aoyama 

and Nakaki, 2015). The enzyme GSH peroxidase (GPx) oxidizes the GSH, reducing the H2O2. 

The GSSG can revert back to its reduced form at the expense of an electron from NADPH with 

the help of the enzyme Glutathione reductase (GR). Other than buffering H2O2, GSH also has 

the capacity to rescue oxidized proteins. The cysteine residue of any surrounding oxidized 

protein can form a disulfide bond with GSH in a mechanism called S-glutathionylation, leaving 

the protein in its reduced form. This mechanism is reversible through the enzyme glutaredoxin 

(Grx). Taken together, GSH serves as an important redox buffer for maintaining the redox 

status. 
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Thioredoxin (Trx) is a small protein oxidoreductase enzyme containing a dithiol-disulfide active 

site (Snoep et al., 2008). The primary function of Trx is the reduction of oxidized cysteine 

residues and the cleavage of disulfide bonds. The reduced Trx (Trx(SH)2) gets itself oxidized, 

by reducing the oxidized target protein. Thioredoxin reductase (TR) catalyzes the reversal of 

the oxidized Trx (Trx(SS)) to reduced Trx (Trx(SH)2) with NADPH as a source of an electron. 

 

Figure 2: The glutaredoxin and the thioredoxin antioxidant defense system. Oxidized 
glutaredoxin (Grx) is reduced by 2 GSH. GSSG is reduced back to GSH by the enzyme 
glutathione reductase (GR) at an expense of electron from NADPH. Oxidized thioredoxin (Trx) 
is reduced back by thioredoxin reductase (TR) with NADPH as an electron donor. 

1.3. Oxidative stress  
 

Oxidative stress occurs when the production of ROS exceeds the defense provided by the 

antioxidants (Dröge, 2015). Balanced levels of ROS are essential for proper cell function and 

homeostasis. However, a larger amount of ROS produced than required can prove to be fatal 

to a cell (Liguori et al., 2018). In line, oxidative stress is associated to various diseases like 

aging, diabetes, cancer, chronic kidney diseases, neurodegenerative diseases and 

cardiovascular diseases.  

 

Ageing is a process where the functions of all organs gradually begin to slow down leading to 

the occurrence of diseases and finally death (Birch-Machin and Bowman, 2016). Ageing is a 

naturally occurring process in any living organism. However, this process can be accelerated 

by occasions like oxidative stress. One of the original theories of ageing suggests that ROS 

are a part of the ageing process due to their reactive nature to cellular molecules, especially 

in mitochondria. There are various studies demonstrating different theories about the relation 

between antioxidants and ageing. Early studies proposed that antioxidants like SOD or 

catalase in the cytosol can increase the life span in Drosophila (Orr and Sohal, 1994). On the 

other hand in mice, overexpression of SOD with catalase in the cytosol and only SOD in 
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mitochondrial matrix does not indicate any longevity (Pérez et al., 2009). However, 

overexpression of catalase in the mitochondrial matrix but not the cytoplasm or nucleus does 

show longevity in mice (Schriner et al., 2009). Altogether, this indicates that compartment and 

ROS-specific effects need to be analyzed in more detail.   

1.4.  Detection of ROS 
 

Because of the importance of ROS for cellular physiology and pathophysiology, there is plenty 

of research on how to detect ROS. Various methods on measuring ROS in vitro from any 

biological sample have been developed. These methods can be broadly classified into two 

categories, i.e. dye-based detection with synthetic probes and detection by the use of 

genetically engineered biosensors.  

1.4.1. Synthetic probes 
 

Synthetic probes are widely employed for the detection of ROS making use of intensity-based 

fluorescence measurements. These fluorescence probes are very sensitive and easy to use, 

but lack in part specificity and can produce artifacts. The most frequently used synthetic probes 

are nitroblue tetrazolium, dihydroethidium, MitoSOX, amplex red, cytochrome c and 

dichlorodihydrofluorescein diacetate (Griendling et al., 2016). Table 2 summarizes the ROS 

detected along with the advantages and disadvantages of using these probes. 

Nitroblue tetrazolium 

Nitroblue tetrazolium is used to detect •O2
− (Hyung et al., 2006). The interaction of •O2

− with the 

water-soluble yellow nitroblue tetrazolium results in the conversion to a blue formazan. This 

assay can give a qualitative insight on the basis of absorbance of the blue color measured at 

620 nm.  

 

Dihydroethidium  

Dihydroethidium based assays work on the principle of the extent of oxidation of DHE by •O2
− 

to 2-hydoxyethidium (2-OH-E+) (Zielonka and Kalyanaraman, 2010). However, this fluorescent 

probe is not very specific since it can also be oxidized by other factors like ONOO−, •OH, H2O2 

along with •O2
−. In addition, DHE can also be oxidized just because of a change in the 

atmospheric oxygen or even by light. This makes DHE non-specific as a ROS marker. 

 

MitoSOX 

MitoSOX, also known as hydroethidium (HE) is a mitochondrial •O2
− detection dye (Murphy et 

al., 2006). It comprises a triphenylphosphonium (TPP+) group which allows the entry of 
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lipophylic phenyl groups attached to it to go across the phospholipid bilayer of mitochondria. 

In this way, the MitoSOX dye can get gathered in the mitochondrial matrix. •O2
− convert HE into 

a hydroxylated product (HO-Etd+) which can be detected at an excitation wavelength of 396 

nm. 

 

Amplex red  

Amplex red is a non-florescent dye, which can get oxidized to the fluorescent product resorufin 

by H2O2 in the presence of horseradish peroxidase (HRP) (Zhou et al., 1997). The fluorescent 

product can be detected at an excitation wavelength of 535 nm and an emission wavelength 

of 590 nm. In order to rule out nonspecific oxidation by some other radicals than H2O2, 

superoxide dismutase (SOD) is usually used during the assay (Summers et al., 2013).  

 

Cytochrome c reduction  

Cytochrome c reduction assay works on the principle of ferricytochrome c getting oxidized to 

ferrocytochrome c on accepting an electron from •O2
− (Vandewalle and Petersen, 1987). This 

oxidation can be detected at an absorbance of 550 nm. However, the cytochrome c can also 

get oxidized by H2O2. This can affect the absorbance intensities measured at 550 nm.  

 

Dichlorodihydrofluorescein  

Dichlorodihydrofluorescein Diacetate (DCFDA/H2DCFDA) once diffused into a cell is 

deacetylated by cellular esterases to H2DCF (Tetz et al., 2013). Further on H2DCF is oxidized 

by ROS to form dichlorofluorescein (DCF). This fluorescent compound can be measured 

spectroscopically at 495 nm with an emission of light at 529 nm.  

Probe Species detected Advantages Disadvantages 

Nitroblue tetrazolium •O2− Simple and most 
widely used test Low sensitivity 

Dihydroethidium •O2− 

Simple plate reader 
assay widely used 
for mitochondrial 
ROS detection 

Non-specific, 
oxidation by other 
radicals 

MitoSoX •O2− Easy, quick and 
inexpensive 

Sensitive dye, need 
to handle with care 
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Amplex Red H2O2 
Low background, 
High sensitivity,  
Robustness 

Peroxidase-
dependent  
fluorescence 
interference by 
NADPH in cell-free 
assays 

Cytochrome c •O2− Simple plate reader 
assay Low sensitivity 

Dichlorodihydrofluor-
escein derivatives General ROS probe Cell-permeable and 

highly fluorescent 
Nonselective, Auto 
oxidation 

Table 2: Examples of chemical sensors to detect ROS (adapted from Griendling et al., 
2016). 

1.4.2. Genetically engineered redox biosensors 
 

As seen in the earlier section, ROS can be detected by various chemical sensors. However, 

chemical sensors possess several disadvantages with regards to specificity and sensitivity. 

Through recent progress, there are genetically engineered redox biosensors established. The 

use of these biosensors has directed a novel path to detect ROS in a quantitative, specific and 

highly sensitive manner. Following are few examples of the most commonly used redox 

biosensors given: 

 

GSH based redox biosensors 
GSH is an important mediator in redox processes. It is very crucial for a cell to maintain a fine 

balance between 2GSH/GSSG. It is equally interesting to detect the 2GSH/GSSG ratio present 

inside a cell during a particular stage of cellular processes and metabolism, where the role of 

GSH based redox biosensors materializes. GSH based biosensors consist of a pair of cysteine 

residues attached to the chromophore. The redox state of the pair of cysteine residues 

depends on the GSH pool in the surrounding of the biosensor. Due to the changes in the redox 

state of the cysteine residues of the chromophore a conformational change occurs in the 

protein. This conformational change will alter the chromophore’s excitation spectra which can 

be recorded and quantitatively analyzed. Based on this theory, there are several derivatives of 

GSH based biosensors developed that can detect the 2GSH/GSSG ratio. Few of the examples 

are stated as follows: 
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rxYFP 

The first biosensor generated in the past to detect the 2GSH/GSSG ratio is a mutated yellow 

fluorescent protein containing the mutations Asn149Cys and Ser202Cys (Østergaard et al., 

2001). This biosensor was named redox sensitive YFP (rxYFP). During oxidation, there is a 

formation of a disulfide bond between the Cys149 and Cys202 which results in a 2-fold 

decrease of the excited intensity measured at 512 nm. This change can be recorded in order 

to quantify the extent of oxidation. YFP has 2 excitation wavelengths, one at the neutral A-

band (392 nm) and the other at the anionic B-band (514 nm) (Wachter et al., 2000). However, 

the neutral band is non-fluorescent due to fluorescence quenching. Due to this reason, there 

is only one excitation peak functional for rxYFP at 512 nm. On the contrary, the use of rxYFP 

sensor is also shown to be ratiometric at two excitation wavelengths of 458 and 488 nm 

(Winther et al., 2008). Since the excitation wavelength of 458 nm is very close to the isosbestic 

point of YFP, the fluorescence changes at this wavelength however are very weak. This can 

have a huge impact on background noise correction which already makes this sensor a difficult 

probe to handle. Not only this but also the reactivity of rxYFP with GSH is slow. This makes it 

time wise critical to plan an experiment using this sensor taking into account air oxidation of 

GSH which can possibly lead to non-specific readings. 

 

Reduction-oxidation sensitive Green fluorescent protein (roGFP) 
roGFP is one of the derivatives of the green fluorescent protein (GFP) which is engineered to 

be sensitive to redox changes. It can be utilized for real time visualization of the changes in 

the excitation spectra during oxidation at 400 and 490 nm. roGFP1 was one of the first 

biosensors developed after rxYFP (Hanson et al., 2004; Dooley et al., 2004). roGFP1 harbors 

a replacement at Ser147Cys and Gln204Cys along with a mutation at Cys48Ser compared to 

the wtGFP. There is another derivative generated called roGFP2 which contains a mutation at 

Ser65Thr of the roGFP1 in addition (Dooley et al., 2004). Upon oxidation of roGFP2, there is 

an increase in the fluorescence intensity at excitation wavelength of 405 nm and a decrease 

at excitation wavelength of 488 nm whereas an opposite change is observed upon reduction. 

In the case of roGFP1, a decrease is observed in the 400 nm wavelength upon oxidation 

(Lukyanov and Belousov, 2014; Hanson et al., 2004). This decrease results into the weakening 

of a weak signal together with an increase observed in the brighter signal at 490 nm. This 

combination of detecting a weaker signal from an already weak signal and a much brighter 

signal from an initially bright signal is inconvenient for imaging. In contrast, an opposite 

scenario is observed in the case of roGFP2 which makes it easier for detection. For these 

reasons, roGFP2 proved to be more dynamic and useful. 
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Grx1-roGFP2 
roGFP2 proved to be a useful biosensor but, it also has some drawbacks. The disulfide bridge 

formation between the two cysteine residues is a slow reaction. The reaction can be catalyzed 

by the enzyme Grx (Meyer et al., 2007). To this end Grx1 was fused to roGFP2, which makes 

the sensor more sensitive and faster. In line, this upgraded roGFP2 biosensor was named 

Grx1-roGFP2. It can detect the specific GSH redox potential (EGSH) in the range of -240 to -

320 mV, making it very sensitive even at very low concentrations of GSH/GSSG (Bilan et al., 

2015).  

 

The presence of an oxidized environment eventually leads to the presence of a high GSSG 

concentration in the surroundings. The nucleophilic cysteine moiety (Cys23) of the Grx1 

enzyme of the biosensor interacts with the disulfide bond of GSSG forming an intermediate 

between Grx1 and GSSG (Meyer and Dick, 2010). This intermediate reacts with the cysteine 

residues of the roGFP2 making it to form S-glutathionylated roGFP2. It rearranges itself to 

finally form a disulfide bond between Cys147 and Cys204. Due to this disulfide bond formation 

in the roGFP2, conformational changes are observed. These changes subsequently lead to 

changes in the roGFP fluorescence excitation wavelengths at 405 and 488 nm respectively. 

This 3 step reaction (Fig. 3) is rapid and the sensor re-equilibrates as soon as the oxidation 

environment fades away.   

 

 

Figure 3: Working mechanism of the Grx1-roGFP2 biosensor. Shown is a graphical 
representation of the working mechanism of the Grx1-roGFP2 biosensor. 

 
OxyR based biosensor  
HyPer is a redox biosensor which can be used to detect specifically intracellular H2O2 

(Belousov et al., 2006). The sensor includes the transcription factor OxyR (derived from E.coli) 

which is very sensitive to H2O2. The regulatory domain of the OxyR is linked with a circularly 

permutated yellow fluorescent protein (cpYFP) to form the HyPer biosensor (Fig. 4). In the 

presence of H2O2, there is a formation of a disulfide bond on the cysteine residues of OxyR 

Cys199 and Cys208. These redox changes occurring in the OxyR regulatory domain are 

transferred to the cpYFP. Due to the disulfide bond transfer to cpYFP, conformational changes 

are observed in the HyPer excitation wavelengths at 420 and 500 nm of the cpYFP. An 
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increase in the 500 nm wavelengths and a decrease in 420 nm wavelength is observed upon 

oxidation. These changes can be recorded and can be used for analyzing the extent of H2O2 

being present. 

 

 

Figure 4: Schematic representation of the HyPer biosensor. The regulatory domain of 
OxyR (OxyR-RD) is linked to cpYFP. There is disulfide bond formation on OxyR-RD in 
presence of H2O2. 

 
Compared to the dye based ROS detection, the above described genetically encoded 

biosensors allow real time visualization of the redox status of a cell along with a specific and 

quantitative ratiometric analysis of the redox potential of a cell. However, along with such 

advantages, the genetically encoded biosensors also possess some disadvantages. As 

described above, the synthetic probes are easy to use for measuring ROS in cultured cells 

with a simple plate reader assay. The genetically encoded biosensors are not that conveniently 

useful when it comes to using them with cultured cells. This is still quite possible with any kind 

of secondary cell line. The cells can be transfected with the desired redox biosensor and the 

transfected cell line can be further used for recording the redox status of the cell in any given 

experimental condition and treatment. However, this task becomes technically difficult when it 

has to be done on primary cells. Transduction of primary cells with the desired biosensor is a 

tedious process with respect to factors like time required for successful transduction can be 

longer which can affect the primary isolated cell’s viability. Not only time, but also the 

transduction process itself can have harmful effects on the cell’s overall health. Thus, in 

conclusion synthetic probes and redox biosensors indeed have their own associated 

advantages and disadvantages. However, the combination of in vivo study models with recent 

advances in the genetically encoded biosensors has made an attempt to direct the path of 

redox related studies closer to physiology. 

1.4.3. Glutathione redox potential measurements  
 

roGFP based sensors are in close equilibrium with the 2GSH/GSSG ratio in the given 

environment. This makes it possible to mathematically correlate electron flow between the 

roGFP and the GSH antioxidant system and calculate the EGSH by using the Nernst equation 

as follows: 
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Where R is the gas constant (8.315 J K-1 mol-1), T the absolute temperature (298.15 K), and F 

the Faraday constant (96,485C mol-1). E°´GSH is -240mV and E°´roGFP2 is -280 mV (Dooley et 

al., 2004).  

 

Here, it is essential to understand the term Oxidation difference (OxD). The total concentration 

of GSH (GSHtotal) is the overall GSH present (GSHtotal= [GSH] + [2GSSG]). OxDGSH refers to a 

fraction of GSHtotal that exists in the form of oxidized GSH [GSSG] (Meyer and Dick, 2010). For 

example, if the OxDGSH is 0.7, it means the [GSSG] is 70% of all GSH are in the form of GSSG. 

In a biological system, it is useful to mathematically calculate the Nernst equilibrium 

relationship as a function of OxDGSH, GSHtotal and OxDroGFP2: 
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In order to calibrate the roGFP2 sensor, oxidizing and reducing agents like H2O2 and DTT are 

added externally to a particular cell. After addition of the respective reagents, a change in the 

excitation wavelengths of 405 and 488 nm is obtained. The ratio (Rred and Roxd) between the 

excitation wavelengths is determined from the changes in the fluorescence intensities which 

define the total range of the sensor.  

 

To understand the calculations for determining OxDroGFP2, it is important to know some 

quantities. i405red, i405ox, i488red, and i488ox stands for the fluorescence intensities at the 

indicated wavelength and redox state for the roGFP2 molecules. Ntotal is the total number of 

roGFP2 molecules, Nred is the number of reduced roGFP2 molecules, and Nox is the number 

of oxidized roGFP2 molecules. OxDroGFP2 can then be calculated from the following equation: 
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 𝑶𝑶𝑶𝑶𝑶𝑶𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =   𝑵𝑵𝒐𝒐𝒐𝒐
𝑵𝑵𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕

  

𝑶𝑶𝑶𝑶𝑶𝑶𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
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𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 − 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒+ 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒 − 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒
 

 

1.5. Genetically encoded producer of reactive oxygen species 
 

Exogenous application of H2O2 is commonly used to study ROS signaling, which is not 

comparable to endogenous ROS effects. In addition, it might lack the possibility of mimicking 

the concentration of ROS produced in a physiological acceptable range. In order to go closer 

to physiology, there is recently a very basic but unique approach used to mimic the normal 

physiological concentration of ROS in the cells. In this approach, there is an involvement of an 

enzyme that can produce H2O2 endogenously when stimulated by its substrate (Pollegioni et 

al., 1993; Matlashov et al., 2014). The enzyme chosen is D-amino acid oxidase (DAAO), which 

can be activated by its substrate D-alanine without disturbing major other pathways. This 

enzyme is fused to the H2O2 biosensor HyPer which can in turn detect the extent of H2O2 

produced by the enzyme DAAO. DAAO is derived from yeast Rhodotorula gracilis and can 

catalyze the reaction which results in the production of H2O2 (Fig. 5). 

 
Figure 5: Chemical reaction catalyzed by D-amino acid oxidase (DAAO). DAAO converts 
its substrate D-amino acid to α-keto acid at the expense of an electron from FAD. FAD is red-
oxidized back to FADH2 by molecular oxygen along with the generation of H2O2. (Adapted from 
(Chen et al., 2013)) 

 
In mammalian cells, the enzyme DAAO is hardly present. This makes it possible to use DAAO 

as a genetically engineered ROS producer in mammalian cells. H2O2 gives an effect locally. 

The fusion protein DAAO-Hyper can also be localized into different compartments of the cell 

using relevant targeting signals (Bogdanova et al., 2017). For instance, the fusion protein can 

be targeted to the nucleus of a cell by using a nuclear localization signal (NLS). Short signal 
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peptides added on to the C-terminus of the protein can guide the nuclear transport systems in 

or out of the nucleus. With this concept, the fusion protein can be targeted to the nucleus by 

NLS or outside the nucleus by the nuclear export signal (NES). Depending on the localization 

of the sensor, the concentration of H2O2 produced can vary from nanomolar range to 

submicromolar range. For example, when D-alanine as low as 0.25 mM is added to HeLa-

Kyoto cells expressing DAAO in the nucleus (DAAO-NLS), lower amounts to H2O2 levels are 

recorded by the HyPerRed-NLS. However, such low amounts cannot exit the nucleus and thus 

cannot be detected by HyPer2-NES present in the same set of cells. On the other hand, when 

D-alanine of 0.6 mM is added to HeLa-Kyoto cells expressing DAAO outside the nucleus 

(DAAO-NES), it produces H2O2 sufficiently high to get detected by HyPerRed-NLS as well as 

HyPer2-NES. At the same time, the H2O2 produced by DAAO is lower than 50-100 nM and this 

is close to a physiologically acceptable range (Matlashov et al., 2014). 

1.6. In vivo models for Grx1-roGFP2 and HyPer based redox biosensors 
 

In recent years, several in vivo roGFP based models were generated (Swain et al., 2018). 

Transgenic drosophila flies were genetically modified by inserting a Grx1-roGFP2 biosensor 

which either localized in the cytoplasm or got targeted to the mitochondria (Albrecht et al., 

2011). The expression of the sensor was controlled under the Tubulin promoter. This allowed 

a real time visualization of compartment specific EGSH. A transgenic C. elegans was developed 

having the redox biosensor Grx1-roGFP2 which was controlled by rx1‐ 

the large ribosomal subunit L17 promoter (Back et al., 2012). This was the first in vivo 

transgenic redox biosensor nematode to be developed.  

 

With regards to redox sensor based transgenic mouse models, there were several transgenic 

mouse models developed ranging from neuronal specific, erythrocyte specific, cardiomyocyte 

specific roGFP sensors. A Grx1-roGFP2 biosensor targeted to the mitochondrial matrix which 

expresses under the thymocyte differentiation antigen/CD90 (Thy‐1.2) promoter was 

developed (Breckwoldt et al., 2014). This mouse model proved to be of great use for studying 

the redox changes in mitochondrial matrix linked to neuronal diseases.  

 

Most notably, a cardiomyocyte-specific Grx1-roGFP2 mouse model was developed wherein 

the sensor is in the cytoplasm and also targeted to the mitochondrial matrix (by an ATP 

synthase 9 mitochondrial signal) of the cardiomyocytes (Swain et al., 2016). The sensor is 

expressed under the control of α-MHC promoter making it cardiomyocyte specific. This sensor 

was utilized to analyze the physiological EGSH of the two compartments: cytoplasm and 

mitochondrial matrix in the cardiomyocytes isolated by Langendorff’s perfusion system. 
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Interestingly, it was observed that the mitochondrial matrix is more reduced (EGSH=-278.9 mV) 

compared to the cytoplasm (EGSH=-254.8 mV). This showed that there is an existence of redox 

compartmentalization in cardiomyocytes. 

 

Very recently, an in vivo rat model was developed wherein the HyPer based redox biosensor 

was transduced into the rats with the help of an adeno-associated virus serotype 9 vector 

(Steinhorn et al., 2018). The sensor was driven under the cardiac troponinT (cTnT) promoter 

making it specific to cardiomyocytes. It comprises a fusion protein of the enzyme DAAO along 

with the HyPer biosensor. When DAAO is activated by external addition of D-alanine as a 

substrate to the enzyme in the cardiomyocytes, there is an internal production of H2O2 which 

can be in turn detected by the HyPer probe (Fig.6). This in vivo model proved to be of very 

high importance in studying the effect of production of ROS in the heart. It could show a 

direction towards how ROS can induce a dilated cardiomyopathy with significant systolic 

dysfunction.  

 

 
Figure 6: Schematic representation of the DAAO-HyPer biosensor. 

1.7. Mitochondrial redox players and their significance 
 

There is a very strong and influential network within several players having an equally important 

role and leading to a great impact on maintaining the physiological redox status in the 

mitochondrial matrix (Fig. 7). These players can be listed as follows: GSH, NADPH, 

NADH/NAD+, ETC substrates, ROS, molecular O2.  
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Figure 7: Schematic representation of a mitochondrial electron transport chain. 
Glutathione (GSH), NADPH, NADH/NAD+, ETC substrates, ROS, molecular oxygen are the 
players taking part in the entire mitochondrial ETC which finally have a huge impact of the EGSH 
of the mitochondrial matrix.  

 
As introduced above, mitochondria are indeed one of the major ROS generators in a cell. Grx 

is one of the important antioxidant system mediating the redox process in the mitochondria. 

NADPH is the central player in maintaining the redox buffer working in co-operation with the 

GSH antioxidant system. The major source of NADPH is nicotinamide nucleotide 

transhydrogenase (NNT), which uses NADH for the generation of NADPH from NADP+. There 

are also some other sources of NADPH like malic enzymes and NADP+-isocitrate 

dehydrogenase (Rydström, 2006). Thus, the generation of NADPH is indirectly dependent on 

the generation of NADH in the ETC as well. Substrates like succinate, glutamate, and malate 

stimulate the generation of NADH and in turn NADPH. NADH/NAD+ ratio influences the ROS 

produced especially in complex I and III of the ETC. Complex II, commonly known as succinate 

dehydrogenase is an enzyme which is a part of both citric acid cycle and oxidative 

phosphorylation. When isolated mitochondria are stimulated with succinate as a substrate, 

succinate gets oxidized to fumarate and eventually leads to the production of a high amount 

of NADH and NADPH as reducing equivalents. This results in high GSH content in the 

mitochondrial matrix restoring the mitochondria to maintain its reduced redox status. Thus, one 

of the ways to restore the redox status due to oxidative stress created by the ROS produced 

in the complex I and III can be by stimulating the mitochondria with substrates like succinate 
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(Garcia et al., 2010). ROS produced in the form of •O2
− is also dependent on the availability of 

the molecular O2. Thus, it can be understood that all these players are internally strongly linked 

to each other and disturbance of even a single player can lead to alteration in the redox status 

of the mitochondria. 

1.8. Molecular oxygen and mitochondria: an ancient relation 
 

Over three billions years ago a primitive cellular life originated on earth. Gradually, prokaryotic 

cellular life evolved in the Earth’s ocean in the form of cyanobacteria which utilized sunlight for 

metabolism and photosynthesis (Semenza, 2007). This gave rise to molecular O2 which not 

only proved to be highly reactive but also could produce a huge number of toxic by-products. 

O2 being a reactive species got incorporated into the inorganic minerals present on the earth’s 

crust by oxidation (Dole, 2004). The oxidation of these inorganic minerals reached a point 

where no more oxidation could occur. Thereafter, molecular O2 started accumulating in the 

atmosphere. The O2 which initially proved to be toxic to lower organisms due to oxidation, later 

proved to be the most essential moiety of life in complex organisms like eukaryotes. As a result 

of the eventual endosymbiosis, mitochondria are now one of the organelles present in a 

eukaryotic cell. Mitochondria being responsible for the production of ATP by using the 

molecular oxygen proved to be essential for the development of multicellular organisms and 

aerobic metabolism (Morrison, 2009).  

 

Molecular oxygen is an essential player in cell metabolism. Mitochondria consume O2 to 

produce ATP by the process called oxidative phosphorylation in aerobic cellular respiration. A 

human body takes up O2 through the inhaled air in the lungs. Further, it makes an entry into 

the heart with the blood stream bound to hemoglobin and then finally reaches all other tissues. 

Till the time O2 diffuses into different tissues the partial oxygen pressure (pO2) eventually 

decreases as compared to the atmospheric pO2 at sea level. The overall pO2 within various 

organs is in the range of 25-65 mm Hg (Vaupel et al., 1989). Hypoxia is the phenomenon that 

occurs when the oxygen level in the organs drops down below the respective pO2. 

Alternatively, it arises when the O2 consumption rate of a cell is higher than the available O2. 

 

From the organ level to the cellular level and subsequently to the organelle level, the pO2 within 

the organelles becomes absolutely low. Therefore, mitochondria are exposed to lower oxygen 

concentrations with a steep drop of the pO2 around each mitochondria in a normal 

physiological environment (Sinaasappel et al., 2006). Mitochondria function mostly as oxygen 

sinks (Wenger, 2006). The pO2 experienced by the mitochondria is <1–3 mm Hg in cells under 

atmospheric normoxic conditions. 
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Mitochondria are naturally under lower oxygen conditions and they function efficiently in 

physiological in situ conditions with this low pO2. As seen in earlier sections, molecular O2 and 

mitochondria have a very close relationship in regards to ROS production. Still, most of the 

studies on mitochondrial functions are done in isolated mitochondria, where the isolated 

mitochondria are exposed to higher pO2 than the naturally occurring pO2 (Kurtcuoglu et al., 

2015). Therein, altering the physiological pO2 experienced for the mitochondria is being grossly 

neglected.   

1.9. Mitochondrial calcium uniporter (MCU) 
 

Calcium (Ca2+) is one of the significant signaling molecules occurring in the mitochondrial 

intermembrane space (IMS). A concrete relation is observed between the Ca2+ homeostasis 

and the mitochondrial redox status by relaying H2O2 signals and Ca2+ signaling in the 

mitochondria (Petrungaro et al., 2015). Here comes the role of an IMS Ca2+ sensitive ion 

channel called mitochondrial calcium uniporter (MCU) into play (Kirichok et al., 2004). MCU 

takes up the Ca2+ from the outer mitochondrial membrane. In consequence of the increased 

Ca2+ levels, Ca2+-sensitive dehydrogenases are activated to initiate ATP synthesis (Glancy and 

Balaban, 2012).  

 

The MCU complex consists of a protein structure containing 3 core components namely MCU, 

MCUb and EMRE (Girgis et al., 2010). MCU consists of two coiled-coil domains and two 

transmembrane domains separated by a short acidic rich loop. MCUb is a similar protein and 

shares 50% homology to MCU. Essential regulatory subunit of mitochondrial calcium uniporter 

(EMRE) is the third member of the MCU complex. The Ca2+ channel is highly regulated by the 

MICU family. As shown in Fig. 8, the members of this protein family have a gatekeeper role, 

i.e. keeping the channel closed at resting conditions and upon activation at high Ca2+ 

concentrations allowing the Ca2+ entry through the MCU complex. MICU1 was the first family 

member to be discovered. It acts as a gatekeeper for the Ca2+ entry inside the channel. MICU1 

has two relatives namely MICU2 and MICU3. MICU2 also faces the IMS forming a heterodimer 

with MICU1. MICU2 is known to have inhibitory effects whereas MICU1 activates the channels 

which guarantees rapid Ca2+ accumulation at the same time preventing Ca2+ overload 

(Mantoan et al., 2014). MICU3 has a minor role and is significantly only expressed in CNS.  
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Figure 8: Schematic representation of the working mechanism of MCU complex. 

 

The oxidoreductase Mia40 is a mediator in the formation of a disulfide bond between MICU1-

MICU2 and further fine tunes the Ca2+ uptake by the MCU (Petrungaro et al., 2015). The 

interaction partner for Mia40 is MICU1 where it introduces a disulfide bond which links MICU1 

and MICU2. This dimer formation makes the binding of MICU1-MICU2 to MCU possible. At 

resting Ca2+ concentrations, the dimer associates with MCU whereas at high Ca2+ 

concentrations the dimer dissociates from MCU allowing Ca2+entry.  

 

There seems to be an indirect correlation between the mitochondrial redox status and Ca2+ 

homeostasis via Mia40 as an interaction partner to MICU1. Eventually, this will have a huge 

impact on the regulation of ATP synthesis in mitochondria by MCU.  
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1.10. Redox signaling in cardiomyocytes 
 

Redox signaling plays a major role in physiological cardiac function, however also in the 

development of heart failure. The cellular sources of ROS in cardiomyocytes are similar to 

other cell types, i.e. mitochondrial and NOX-dependent ROS production is observed. Among 

the different NOX isoforms, Nox2 and Nox4 are mainly expressed in cardiomyocytes (Looi et 

al., 2008). Although similar in structure, Nox2 and Nox4 mediate distinct redox signaling 

pathways in cardiomyocytes, which are in part even contrasting in the context of heart failure. 

This may relate to major differences between the two isoforms regarding cellular localization, 

activation and target molecules. Activated Nox2 is predominantly expressed at the plasma 

membrane (Heymes et al., 2003), whereas Nox4 is found intracellularly in the sarcoplasmic 

reticulum although the precise location still remains controversial. Nox2 requires activation by 

agonists to form the fully active enzyme complex (El Benna et al., 1996), whereas Nox4 is 

constitutively active producing low levels of ROS under basal conditions (Wang et al., 2010). 

Nox2 produces •O2
−; Nox4 has the ability to generate predominantly H2O2 instead (Wang et 

al., 2010). This has major implications for the half-life of the Nox2/4-induced effects as well as 

for the interaction with nitric oxide (NO) signaling. Whereas Nox2 produced •O2
− can limit NO 

signaling by generating peroxnitrite, the Nox4 produced H2O2 might even enhance NO 

signaling by stimulating the activity of nitric oxide synthetase. In the context of cardiac diseases 

like chronic pressure overload, Nox4 promotes adaptive cardiac remodelling through effects 

that include a preservation of myocardial capillary density (Zhang et al., 2010; Zhang et al., 

2018) and reprogramming of cardiac substrate metabolism (Nabeebaccus et al, 2017). Nox2, 

on the other hand seems to augment cardiac hypertrophy and adverse cardiac remodeling.  

 

There are several redox-sensitive molecular targets described in cardiomyocytes. These 

include proteins of the excitation-contraction coupling as well as well as the G-protein coupled 

receptor signaling machineries. Excitation-contraction coupling (ECC) involves a fine-tuned 

interaction of several channels that regulate calcium (Ca2+) homeostasis and thus 

cardiomyocyte contraction (Köhler et al., 2014). Among those the ryanodine receptor and 

phospholamban are known to be targeted by ROS, which alters their functionality. ECC is 

under the control of β-adrenergic signaling. Protein kinase A (PKA), Protein kinase G (PKG) 

and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) are stimulated by β-receptor 

activation. All three kinases have been described to be redox-sensitive, which in addition 

affects Ca2+ homeostasis and cardiomyocyte contraction. 

 

Aside from ECC, redox signaling seems to affect directly gene expression in the nucleus 

(Backs et al., 2006). Gene expression is controlled by the acetylation and deacetylation of 
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histones. Acetylation removes the positive charge on histones, thereby decreasing their 

interaction with the negatively charged phosphate groups of DNA. The resulting condensed 

chromatin is transformed into a more relaxed structure that allows greater levels of gene 

transcription. In line, transcriptional activity can be fostered either by increased acetylation 

activity or by blocking histone deacetylases (HDAC). HDAC are expressed literally in all human 

cells. In cardiomyocytes HDAC4 is the most prevalent isoform. Its deacetylation activity is 

regulated by nucleocytoplasmic shuttling that is stimulated by phosphorylation. The 

phosphorylation of HDAC4 leads to its nuclear export, which is mediated via the interaction 

with the signaling molecule 14-3-3 and the exportin CRM1. HDAC4 has been directly 

associated with the gene expression of nuclear factor of activated T cell (NFAT) and the 

myocyte enhancer factor 2 (MEF2). Both are major regulators of cardiac hypertrophy. Upon 

redox-modification of critical cysteine residues in HDAC4 its localization is affected, which 

results in an important link between redox signaling and cardiac hypertrophy development.  

 

Although redox signaling is important for cardiac function, the lack of suitable chemical ROS 

sensitive dyes or genetically encoded biosensor models, did not allow describing specific redox 

pathways in cardiomyocytes in more detail. Especially compartment-specific alterations of 

ROS or determining the EGSH in cardiomyocytes was technically not possible. Dr. Lija Swain 

(Institute of Cardiovascular Physiology, Göttingen) has established cardiomyocyte-specific 

transgenic mice expressing Grx1-roGFP2 either in the mitochondrial matrix or the cytoplasm 

in the past. These mice proved to be useful to analyze the compartment-specific EGSH in 

isolated whole hearts as well as isolated adult cardiomyocytes. Most importantly this animal 

model allowed demonstrating that the cytosol and the mitochondrial matrix indeed have distinct 

EGSH. Having a EGSH biosensor mouse model established was the basis to apply it to open 

questions regarding patho-mechanisms in the heart in this thesis.  

1.11. Aims of the thesis 
 

Redox signaling in cardiomyocytes is important for their physiological function, however is also 

associated with the development of heart failure. GSH is an important buffer to counteract 

increased production of ROS. Therefore the EGSH is a good marker for alterations in redox 

signaling. Since recently a cardiomyocyte-specific transgenic mouse model is available using 

the genetically encoded Grx1-roGFP2 biosensor for analyzing the EGSH. This essential in vivo 

tool was applied in the thesis to analyze the EGSH during cardiac ageing. In line the first 

objective of the thesis was: 
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i. Characterization of the in vivo transgenic mouse model αMHC-Grx1-roGFP2, in which 

the biosensor is either localized in the cytoplasm or targeted to the mitochondrial matrix. 

To gain insight into cardiac ageing processes young versus ageing mice were included 

in the analysis. 
 

An initial hint was observed over the course of investigating the first objective, that the normal 

physiological environment of the mitochondria does play an important role in maintaining the 

EGSH of that organelle. Corresponding to this interpretation, the second objective of the thesis 

was: 

 

ii. To study the role of molecular O2 as one of the major key players in helping to preserve 

the mitochondrial EGSH as well as mitochondrial functionality ex vivo 

Endogenous redox manipulation was done in the Grx1-roGFP2 mouse model by adding H2O2 

exogenously. This does not mimic ROS production from endogenous sources. Therefore I 

aimed to upgrade the in vivo redox biosensor tool box by applying an endogenous ROS 

generator in combination with a biosensor for transgenesis in mice. Accordingly the third aim 

of the thesis was: 

iii. To generate and characterize transgenic cardiomyocyte-specific DAAO-HyPer mice.  
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2. Materials and methods 

2.1. Materials 

2.1.1.  Chemicals and reagents 
Following were the chemicals and reagents used for this work: 

Table 3: Chemical and reagents used. 

Chemicals Manufacturer Article number 

e-Amino n-caproic 
acid Sigma A2504 

2.5 % Trypsin Gibco 15090 

Acetic acid Carl Roth GmbH 3738.5 

Acrylamide Carl Roth GmbH 7871.2 

ADP Sigma A2754 

Agarose Broad Range Carl Roth GmbH T846.3 

Antimycin A Sigma A8674 

APS Carl Roth GmbH 9592.1 

BDM Sigma B0753 

Bis-Tris/HCl, pH 7.0 Carl Roth GmbH 9140.3 

Bis-acrylamide Serva 29195.03 

Boric acid Carl Roth GmbH 6943.1 

BSA Sigma A8806 

CaCl2 Carl Roth GmbH CN93.1 

Coomassie G Carl Roth GmbH 9598.2 

Cytochrome c Calbiochem 250600 

D-Alanine Sigma A7377 

Decylubichinone Sigma D7911 

Diamide Sigma D3648 

Digitonin Merck 300410 

DL-Malic acid 
disodium salt Sigma M6773 

DTT Carl Roth GmbH 6908.1 

ECL Thermo Scientific 32106 

EDTA Carl Roth GmbH 8043.2 

Ethanol Carl Roth GmbH 3738.5 
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Gene Ruler DNA 
Ladder 1kb Thermo Scientific SM0311 

Glucose Carl Roth GmbH X997.2 

Glycerol Sigma G7757 

H2O2 Carl Roth GmbH 8070.2 

HCl Carl Roth GmbH K025.1 

HEPES Carl Roth GmbH 9105.2 

KCL Carl Roth GmbH 6781.1 

KH2PO4 Carl Roth GmbH 6875.1 

KHCO3 Sigma 237205 

L-Alanine Sigma A7627 

Laminin Sigma L2020 
L-Glutamic acid 
monosodium salt 
hydrate 

Sigma G1626 

Liberase solution Roche 5401054001 

Mannitol Carl Roth GmbH 4175.1 

Methanol Carl Roth GmbH 4627 

MgSO4, 7H2O Carl Roth GmbH P027.2 

MOPS Carl Roth GmbH 6979.2 

Na2HPO4, 2H2O Carl Roth GmbH 49841 

NaCl Carl Roth GmbH 9265.2 

NaHCO3 Carl Roth GmbH HN01.1 

NaOH Carl Roth GmbH 6771.1 

n-Dodecyl-beta-
Maltoside Calbiochem 324355 

NEM Sigma E3876 

Orange G dye Carl Roth GmbH O318 

Paraformaldehyde Carl Roth GmbH O335.1 

Phenol red sodium 
salt Sigma P5530 

PMSF Carl Roth GmbH 6367 

Potassium cyanide Fluka 60178 

Potassium phosphate Sigma P5629 

Roti Safe Gel Stain Carl Roth GmbH 3865..1 
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Sodium succinate 
dibasic hexahydrate Sigma S2378 

Succrose Carl Roth GmbH 4621.1 

Taurine Sigma T8691 

TEMED Carl Roth GmbH 2367.2 

To-Pro-3 Iodide 
nuclear stains Molecular probes T3605 

Tricine, pH 7.0 Carl Roth GmbH 6977.3 

Tris Carl Roth GmbH 5429.3 

Tris/HCl, pH 7.4 Carl Roth GmbH 9090 

Tris/HCl, pH 5.0 Carl Roth GmbH 9090.1 

Tween 20 Carl Roth GmbH 9127 
 

2.1.2.  Assay kits 
Table 4: PCR master mix for genotyping. 

Chemicals Manufacturer 

PCR master mix (2x) 

roGFP mouse 
line PCR 

DAAO-HyPer 
mouse line PCR 

Bioline (2x MyFi 
mix) 

Thermo scientific 
(dream Taq 
master mix 2x) 

 

Table 5: ATP measurement assay kit. 

Chemicals Manufacturer Article number 
Celltiter-Glo 
luminescent cell 
viability assay kit 

Promega  G7571 

 

Table 6: Protein estimation assay kit. 

Chemicals Manufacturer Article number 

Bradford Protein 
Reagent Bio-Rad  5000006 
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Table 7: MitoSox Red dye. 

Chemicals Manufacturer Article number 
MitoSOX Red 
Mitochondrial 
Superoxide Indicator 

Invitrogen  M36008 

 

Table 8: Amplex UltraRed dye. 

Chemicals Manufacturer Article number 

Amplex UltraRed 
reagent Invitrogen  A36006 

Superoxide dismutase 
(SOD) Sigma S9637-30KU 

Horse radish 
peroxidase (HRP) Sigma P6782-5MG 

 

2.1.3.  Primer list 
Table 9: Primers used for genotyping. 

Gene of interest Sequence Annealing 
temperature (°C) 

roGFP 
fw 5´-CCCTCTCTTTCTCTGCCCAG-3´ 

58 
rev 5´-ATAAAGACTCGAGGCACCGT-3´ 

PHD2 
fw 5´-CTCACTGACCTACGCCGTGT-3´ 

58 
rev 5´-CGCATCTTCCATCTCCATTT-3´ 

DAAO-NES 
fw 5´-CCTGAGACCCGCCAGGAGAG-3´ 

61 
rev 5´-TACAGGGTCAGCCGCTCCAG-3´ 

DAAO-NLS 
fw 5´-CCTGAGACCCGCCAGGAGAG-3´ 

61 
rev 5´-GGATCGCTCTCCCTAGCTGC-3´ 

 

2.1.4.  Antibody list 
Table 10: Antibodies used for BN-PAGE. 

Antibody Raised in Manufacturer Article number 

anti-ATP5B Rabbit Gramsch  4826/4 

anti-COXI Rabbit Gramsch  2035/5 

anti-MCU Rabbit Sigma HPA016480 

anti-NDUFB8 Rabbit Gramsch 3765/1 
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anti-Rieske Rabbit Gramsch 1512/6 

anti-VDAC3 Rabbit Gramsch 151/7 
 

2.1.5.  Plasmid list 
Table 11: Plasmids used for generating transgenic mouse models. 

Transgenic mouse model Name of the plasmid 

DAAO-HyPer (NLS) m-αMHC-Hyper-DAAO-NLS-hGHpolyA 

DAAO-HyPer (NES) m-αMHC-Hyper-DAAO-NES-hGHpolyA 

 

2.1.6. Consumables 
Table 12: Consumables used in this work. 

Consumables Manufacturer Article number 

6-well plates Sarstedt 83.392 

Black (transparent 
bottom) 96-well plates Falcon 3538219 

Black 96-well plates Greiner bio-one 655083 

Coverslips Th.Geyer  41001124 

Cryomolds Tissue-Tek  4566 

Disposable scalpels Feather safety 
razor Co., LTD 02.001.30.021 

Filter cloth Klein & Wieler 
oHG.            - 

Glass potters Sartorius BBI-8542708 

Glass slides Thermo scientific 803711 

Needle Self-made (In 
workshop)             - 

O.C.T compound Tissue-Tek 4583 

Petri dishes Sarstedt 833902500 

PVDF membrane Immobilon (0.45 
µm) PVH00010 

Single Edge Blades GEM T586 

Syringe Braun, Omnifix 40 
solo 9161309V 
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Thin filter paper 
(Ø=110 mm)  

Carl Roth GmbH 
GmbH 431011 

Threads FST  4-S 

White 96-well plates Greiner bio-one 655083 
 

2.1.7.  Devices 
Table 13: List of devices used in this work. 

Devices Manufacturer Specifications 
Blue native gel 
electrophoresis 
chamber 

Amersham 
biosciences 

Hoefer SE600 
Ruby 

Bright field microscope  Motic AE30 

Bright field microscope  Nikon Type 104 

Centrifuge Eppendorf 5415 R 

Confocal laser 
scanning microscope 

Carl Zeiss 
Microscopy 
GmbH 

LSM 510 

Cryostat Microm HM 560  Thermo Fisher 
Scientific  

Hypoxia Chamber Invivo400 Baker Ruskinn 
Inverted 
epifluorescence 
microscope 

Olympus-life 
sciences IX83 

Langendorff Perfusion 
system Ismatec 

Connected to 
Julaba hot water 
bath 

PCR cycler Thermo scientific Arktik thermos 
cycler 

Plate reader 1 BMG labtech CLARIOstar 

Plate reader 2 Biorad - 

Plate reader 3 Berthold Centro LB960 

Western blot transfer 
system 

PeqLab 
biotechnologie 
GmbH  

- 
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2.1.8. Buffers 
Table 14: Components of buffers used and their concentrations. 

Phosphate buffered saline (PBS) 

Components Concentration 

KCl          2.7 mM  

KH2HPO4 1.8 mM 

Na2HPO4  10 mM  

NaCl  137 mM 
Above components were dissolved in distilled H2O and pH was adjust to 7.4. 

 

Genotyping buffers 

Lysis buffer 

Components Concentration 

NaOH 25 mM 

EDTA, pH 8.0 0.2 mM 
Above components were dissolved in distilled H2O. 

Neutralization buffer 

Components Concentration 

Tris/HCl, pH 5.0 40 mM 
Above components were dissolved in distilled H2O. 

TBE buffer (0.5x) 

Components Concentration 

Tris                  45 mM               

Boric acid                      45 mM               

EDTA, pH 8.0                        1 mM                 
Above components were dissolved in distilled H2O. 

 

Cardiomyocytes isolation buffers 

10x Stock perfusion buffer (500 mL) 

Components Concentration 

NaCl                   1.13 M               

KCl                        47 mM               

KH2PO4                           6 mM                 

Na2HPO4, 2H2O    6 mM                 
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MgSO4, 7H2O        12 mM               

Phenol red            0.32 mM           

NaHCO3                  120 mM            

KHCO3                     100 mM            

HEPES                                     100 mM            

Taurine 300 mM            
Above components were dissolved in final volume of 500 mL distilled H2O, sterile filtrated and 
stored at 4ºC. 

BDM solution (50 mL) 

Components Concentration 

BDM                  500 mM              
BDM powder was dissolved in final volume of 50 mL distilled H2O, sterile filtrated and stored 
at -20ºC. The solution was warmed up before use. 

BSA solution (50 mL) 

Components Concentration 

BSA                 1.5 M                   
BSA powder was dissolved in final volume of 50 mL distilled H2O and the solution was sterile 
filtrated. 800 µL aliquots were prepared and aliquots were stored at -20ºC. 

Calcium chloride solution 

Components Concentration 

CaCl2, 2H2O         100 mM     

CaCl2, 2H2O         10 mM     
The Calcium chloride solutions were sterile filtrated and stored at 4ºC. 

Trypsin solution 

Components Concentration 

Trypsin 2.50% 
Trypsin solution was aliquot under sterile conditions to 200 µL per aliquot and stored at -20ºC. 

Liberase solution 

Components Concentration 

Liberase DH - 
Liberase enzyme powder was dissolved in 12 mL distilled H2O and reconstituted on ice for 20 
min. The solution was aliquoted under sterile conditions to 150 µL per aliquot and freezed it 
immediately in liquid nitrogen. The aliquots were stored at -20ºC. 
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1x Perfusion buffer (500 mL) 

Components Concentration 

10x Perfusion buffer                                    50 mL 

Glucose                                            5.5 mM    

BDM solution  10 mM                              
The above components were dissolved in final volume of 500 mL distilled H2O. The buffer was 
aliquoted under sterile conditions to 35 mL per aliquot falcon tubes and stored at -20ºC. 

Digestion buffer (30 mL) 

Components Concentration 

1x Perfusion buffer  29.6 mL 

CaCl2 solution  12.5 mM 

Trypsin solution                    200 µL 

Liberase solution                  300 µL 
 

Stopping buffer 1  

Components Concentration 

1x Perfusion buffer                                    2.25 mL 

BSA solution  150 mM 

CaCl2 solution  55.55 µM 
 

Stopping buffer 2 

Components Concentration 

1x Perfusion buffer                                    9.5 mL 

BSA solution  300 mM 

CaCl2 solution  166 µM 
 

Imaging buffer, pH 7.4 

Components Concentration 

NaCl 144 mM     

KCl 5.4 mM      

MgCl2, 6H2O              1 mM          

CaCl2 1 mM          

HEPES                         10 mM 
 



Materials and methods 
 

41 
 

Diamide  

Components Concentration 

Diamide 100 µM  
Diamide powder is dissolved in imaging buffer and used at a final concentration of 100 µM   

H2O2  

Components Concentration 

H2O2 100 µM  
H2O2 is dissolved in imaging buffer and used at a final concentration of 100 µM   

DTT  

Components Concentration 

DTT 2 mM  
DTT powder is dissolved in imaging buffer and used at a final concentration of 2 mM   

 
Mitochondria isolation buffer, pH-7.4 

Components Concentration 

HEPES                   20 mM 

Mannitol                   220 mM 

Sucrose                            70 mM 

EDTA 1 mM 

PMSF (freshly added) 0.5 mM 
 

High sucrose buffer, pH 7.4 

Components Concentration 

MOPS 10 mM 

Sucrose 250 mM 

EDTA 1 mM 
 

Complex III activity assay buffer 

Assay buffer 

Components Concentration 

Potassium phosphate 50 mM 

n-Decylubichinone-
beta-maltoside 1 mM 

Potassium cyanide 1 mM 
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Rotenone 2.5 µM 

BSA 0.10% 
Above components were dissolved in H2O and equilibrated at 30°C. 

Reduced decylubichinone 

Components Concentration 

Decylubichinone in 
ethanol 10 mM 

KBH4 5 mg 

HCl in ethanol 0.1 M 
Above components were mixed and the solution was vortex for 1-3 minutes until it becomes 
clear. 12 µl 3 M HCl in EtOH was added to the solution and centrifuged for 30 sec. Supernatant 
was transferred into fresh tube. This is the reduced decylubichinone. 

 

Blue native gel electrophoresis buffers 

Mitochondria solubilization buffer  

Components Concentration 

Digitonin 1% 

Tris/HCl, pH 7.4 20 mM 

EDTA, pH 8.0 0.1 mM 

NaCl 50 mM 

Glycerol 10% 

PMSF 1 mM 
Above components were dissolved in distilled H2O. 

3x gel buffer 

Components Concentration 

e-Amino n-caproic acid 200 mM 

Bis-Tris/HCl, pH 7.0 150 mM 
 

Acrylamide (200 ml) 

Components Concentration 

Acrylamide 96 g 

Bis-acrylamide 3 g 
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Loading dye (10x, 10 ml) 

Components Concentration 

Coomassie blue G 5% 

e-amino n-caproic acid 500 mM 

Bis-Tris, pH 7.0 100 mM 
 

Mix for 1 gel for BN-PAGE 

%  4 5 6 8 10 13 16.5 20 
Stack
-ing 
gel 

3x gel 
buffer (mL) 3 3 3 3 3 3 3 3 2.5 

Acrylamide 
(mL)  0.73 0.91 1.07 1.46 1.82 2.35 3.05 3.75 0.6 

Glycerol 
(mL) - - - - 1.8 1.8 1.8 1.8 - 

10% APS 
(µl) 45 45 45 45 45 45 45 45 60 

TEMED 
(µl) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 10 

Water (mL) 5.228 5.014 4.888 4.507 2.347 1.817 1.117 0.417 4.367 
 

10x anode buffer 

Components Concentration 

Bis-Tris/HCl, pH-7.0 500 mM 
 

10x cathode buffer 

Components Concentration 

Tricine, pH 7.0 500 mM 

Bis-Tris/HCl, pH 7.0 150 mM 

Coomassie blue G  0.20% 
 

Western blot transfer buffer 

Components Concentration 

Tris 20 mM   

Glycine 150 mM 

SDS  0.02% 

Methanol 20% 
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10x TBS 

Components Concentration 

Tris/HCl, pH 7.5 200 mM   

NaCl 1.25 M 
 

1x TBST (100 ml, dissolved in H2O) 

Components Concentration 

10x TBS 10 ml 

Tween 20 2 ml 
 

Gel staining buffer 

Components Concentration 

Ethanol 40% 

Acetic acid 10% 

Coomassie blue G 0.15% 
 

Gel destaining buffer 

Components Concentration 

Ethanol 30% 

Acetic acid 10% 

2.2.  Methods 

2.2.1.  Mouse models 
 

Grx1-roGFP2 mouse model 

A cardiomyocyte specific transgenic mouse model expressing the glutathione redox biosensor 

Grx1-roGFP2 was previously generated and characterized in the group of Cardiovascular 

Physiology, Göttingen by Dr. Lija Swain (Swain et al., 2016). Two independent mouse lines 

were created, expressing the biosensor in two different compartments namely in the cytoplasm 

and in the mitochondrial matrix of cardiomyocyte respectively. The biosensor consisted of a α-

myosin heavy chain promoter driven cyto Grx1-roGFP2 or mito Grx1-roGFP2 construct with or 

without the mitochondrial targeting sequence of Neurospora crassa ATP synthase protein 9. 

The mammalian expression vector pLPCXGrx1-roGFP2, which contains the sequence for cyto 

Grx1-roGFP2 or mito Grx1-roGFP2 was cut with HindIII and XhoI enzymes. The mammalian 

expression vector α-myosin heavy chain pmEpac1, which contains the α-myosin heavy chain 



Materials and methods 
 

45 
 

promoter, was digested with HindIII and XhoI. DH10B Escherichia coli were transformed with 

the digested cyto Grx1-roGFP2 or mito Grx1-roGFP2. Endotoxin-free plasmid kit was used for 

preparation of DNA. Linearized DNA was recovered from gels and purified. Transgenic mice 

were created by pronuclear injection of C57BL/6N mice (Jackson Laboratories).  

Presence of the respective transgene in the offspring was confirmed through genotyping of 

mice biopsies by a standard polymerase chain reaction using the primers for roGFP resulting 

in a 500-bp fragment for cyto Grx1-roGFP2 and 710-bp for mito Grx1-roGFP2. Primers for the 

Phd2 gene were used as a control. Adult transgenic mice of age 8-12 weeks were used in the 

experiments 

DAAO-HyPer mouse model 

DAAO-HyPer is a fusion protein consisting of the enzyme D-amino acid oxidase (DAAO) and 

the H2O2 biosensor HyPer. The fusion protein serves the purpose of intracellular local 

production of H2O2 upon activation of the enzyme DAAO, followed by recording the amount of 

H2O2 produced by the fused probe HyPer. In this thesis, two DAAO-HyPer transgenic mouse 

models wherein the construct is localized to two different compartments in two independent 

mouse lines namely, by DAAO-HyPer nuclear export signal (NES) and by the DAAO-HyPer 

nuclear localization signal (NLS) were generated. m-αMHC-Hyper-DAAO-NES-hGHpolyA and 

m-αMHC-Hyper-DAAO-NLS-hGHpolyA were the plasmids used the generation of the mouse 

models. XL1- Blue bacterial cells were transformed with the plasmids by giving a heat shock 

followed by overnight incubation. The plasmids were further isolated and subsequently 

linearized with the restriction enzyme EcoRV. The linearized plasmid was purified by a PCR 

purification kit (NEB Monarch). The purified DNA was diluted in TE buffer to reach a final 

concentration of 395 and 402 ng/µl each of the DAAO-HyPer NES and NLS respectively. 

Transgenic mice were further generated by pronuclear blastocyst injection of C57BL/6N mice 

(Jackson Laboratories) with the respective plasmids. The injection was performed by the Core 

Facility of the Max-Planck Institute for Experimental Medicine, Göttingen. We obtained 4 

founder lines for the DAAO-HyPer NES and 5 for the DAAO-HyPer NLS. The transgenic mice 

of all the founder lines were further characterized for the presence of the transgene. 8-12 

weeks old adult males and females were used for the characterization.  

Echocardiography 

Echocardiography is a method used to examine the heart function and geometry. It is a non-

invasive method which works on the principle of ultrasound. Echocardiography was performed 

by Dr. Aline Jatho (Institute of Cardiovascular Physiology, Göttingen). Echocardiography was 

done on the Grx1-roGFP2 young and old mice in order to perform aging studies as well on the 

NLS DAAO HyPer mice. Each mouse was anesthetized by 1% isoflurane. At the beginning, 
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the machine was set to B-mode to record at least 10 cardiac cycles to observe the long and 

the short axis of the heart. The device was then turned to M-mode in order to measure the 

heart beat with a better resolution. At this step again 10 cardiac cycles were measured in the 

short axis.  

Different parameters were recorded such as fractional area shortening (FAS), ejection fraction 

(EF), area of lumen during systole (Area (s)) and diastole (Area (d)), thickness of posterior and 

anterior walls, length of long and short axis of the heart (L(s) and L (d)).  

The EF is defined as the volume of blood distributed with one heartbeat. The following formula 

was used to calculate EF (%): 

EF (%) =    Vol (d)−Vol(s)
Vol (d)

∗ 100 , 

Where Vol (d) and Vol (s) stands for volume of left ventricles during diastole and systole 

respectively. These parameters were calculated using the formula, 

Vol (d) = �
5
6
� ∗ (Area (d) ∗ L (d)) 

Vol (s) = �
5
6
� ∗ (Area (s) ∗ L (s)) 

Fractional area shortening (FAS %) is the fraction of the area of diastole which is lost in the 
systole. The formula to calculate the FAS (%) is: 

FAS (%) =�
Area (d)− Area (s)

Area (d) � ∗ 100 

 

Genotyping 

Tail biopsies were collected from 3-4 weeks old mice offsprings. In order to isolate genomic 

DNA, at first the biopsies were incubated at 95°C in 75 µl lysis buffer for 60 minutes. 75 µl of 

neutralization buffer was added to stop the lysis and incubated at 4°C for 10 minutes. Presence 

of the respective transgene in the corresponding mouse model was confirmed by a standard 

PCR reaction. PCR mix was prepared by adding 12.5 µl PCR master mix (2x) to 5 µl of the 

DNA containing lysate. 0.1 pmol/µl of forward and reverse primer for the respective mouse line 

were added to the above mix. The final volume of the PCR mix was made up to 25 µl by adding 

remaining volume of H2O. Following were the temperature settings for the respective PCR 

reactions: 
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Reaction 
Temperature (°C) t(sec)/cycle 

roGFP2 PHD2 DAAO-
NES 

DAAO-
NLS   

Separation 1 95 95 94 94 180 

Separation 2 95 95 94 94      30 
  35x 

Annealing 58 58 61 61   30 

Elongation 72 72 72 72 90 

Final elongation 72 72 72 72 600 
Table 15: PCR conditions for genotyping. 

A 2% agarose gel was used to run the above prepared PCR reaction mix. The PCR product 

was mixed with 5 µl Orange G dye and allowed to run on a gel in 0.5x TBE buffer along with 

Roti safe gel stain and 1 kb base pair ladder. The expected PCR product in the case of cyto 

Grx1-roGFP2 mouse biopsy was at 500 bp, whereas in the case of mito Grx1-roGFP2 the 

expected PCR product was at 710 bp. The PCR product for both DAO-NES and DAO-NLS 

was around 280 bp.  

Extraction of Mouse heart 

The mouse was anesthetized with isoflurane and was sacrificed by cervical dislocation. The 

area over the chest was disinfected by 70% ethanol and the fur was removed from this part. 

Further, the thoracic cavity was opened up and the pericardial sac was distorted to expose the 

heart. The heart was gently extracted keeping intact the aortic valve along with the heart.  

2.2.2. Isolated cardiomyocytes and associated redox analysis 
 
Isolation of cardiomyocytes 

As soon as the heart was extracted from a transgenic or a wild type mouse, it was immediately 

transferred to ice cold PBS. Under a pre-set Nikon Type104 inverted microscope with a needle 

fasted into the syringe, the aorta of the heart was identified by gently pushing the heart. The 

walls of the aorta were grabbed with two fine forceps and the aorta was slipped on to the 

needle until some resistance was felt, without penetrating the heart. The tread loops were used 

to fasten the aorta tightly around the needle. The whole procedure from extracting the heart to 

hanging the aorta of the heart was done as quickly as possible. The hanged heart along with 

the needle was then fixed onto the perfusion system which was connected to the pre warmed 

(37°C) water bath. The heart was initially perfused with a pre warmed 1x perfusion buffer for 3 

min with a speed of 3.5 mL/min. The first few drops of blood dropping from the heart, ventricles 

turning pale and heart blowing a bit, confirmed that the heart was hung up with the correct 

blood vessel which in this case should be aorta. During the first perfusion time, 2.5% trypsin 
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and liberase enzymes were thawed and the digestion buffer was prepared for the next 

perfusion step. The heart was then perfused with the freshly prepared digestion buffer saving 

a portion of 2.5 mL digestion buffer for further use. The perfusion was allowed to run 

approximately for 8 minutes until the whole digestion buffer was used up. Throughout the 

perfusion time, it was taken care that there were no air bubbles going through the heart while 

perfusing. The heart was then pulled out from the needle and put into the earlier saved 2.5 mL 

digestion buffer. The heart was minced with fine scissors for 30 sec, followed by adding the 

stopping buffer 1 into the minced heart solution. Now the mixture was digested with the help 

of up and down action of a syringe for 2.5 minutes. The minced solution was allowed to filter 

out through a filter cloth. In this step, some drops of the solution were used to check for the 

presence of viable cardiomyocytes under a bright field microscope. The cardiomyocytes were 

allowed to settle down in the falcon tube for 10 minutes and then carefully the supernatant was 

discarded. The pelleted cardiomyocytes were resuspended in stopping buffer 2 followed by 

beginning of the recalcification steps. Table 16 indicates the amounts of calcium chloride 

solution added followed by gentle shaking and allowing the cells to adapt for 4 min in between 

the recalcification steps. 

CaCl2 stock 
concentration 

Volume added to 
cardiomyocytes 
from the stock 

Final 
concentration 

10 mM 50 µl 62 µM 

10 mM 50 µl 112 µM 

10 mM 100 µl 212 µM 

100 mM 30 µl 500 µM 

100 mM 50 µl 1000 µM 
Table 16: Amounts of calcium chloride added during the recalcification step. 

The cardiomyocytes were then seeded on to the coverslips that were pre-coated with laminin. 

The cardiomyocytes were then incubated in an incubator (37°C, 5% CO2 and 20.9% O2). The 

cells were allowed to settle down and get attached onto the laminin before using them for any 

further experiments. 

Glutathione redox potential measurements of isolated cardiomyocytes 

EGSH of isolated cardiomyocytes were performed using an inverted fluorescence microscope 

IX83 (Olympus) and Cell sense software. Coverslips that were pre-coated with laminin 

containing the isolated cardiomyocytes were incubated for at least 45 minutes in the incubator 

before use. It was made sure that the microscope was pre-set to 37°C, 5% CO2 and 20.9% O2 

before starting the experiment. Perfusion buffer used for incubating cardiomyocytes was first 

replaced by 900 µl imaging buffer. Coverslip having the cardiomyocytes with imaging buffer 
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was adjusted onto the microscope chamber and the cells were visualized under 20x 

magnification. The roGFP sensor was excited at 405 and 488 nm wavelengths and the emitted 

light was detected at 510 nm. The exposure time was set to 10 ms and the images were 

acquired every 5 s. Once a stable baseline of fluorescence intensities was observed, at 

approximately 50 s, 100 µl of the desired oxidizing agent (100 µM H2O2 or 100 µM Diamide) 

or reducing agent (2 mM DTT) was added to the cells. The measurements were allowed to run 

for roughly 300 sec, until a plateau of the fluorescence intensities was obtained. The changes 

in the fluorescence intensities were recorded after addition of each of the oxidizing and the 

reducing agent at the respective excitation wavelengths. The following Nernst equation was 

used in order to calculate the EGSH of the corresponding cardiomyocytes: 

      𝑬𝑬𝑮𝑮𝑮𝑮𝑮𝑮 =  𝑬𝑬𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓°´ −  
𝑹𝑹𝑹𝑹
𝟐𝟐𝟐𝟐

 𝒍𝒍𝒍𝒍 �
𝟏𝟏 − 𝑶𝑶𝑶𝑶𝑶𝑶𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓

𝑶𝑶𝑶𝑶𝑶𝑶𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓
� 

Where, 

E°´roGFP2 = -280 mV, 

R is the gas constant (8.315 J K-1 mol-1),  

T is the absolute temperature (298.15 K),  

F the Faraday constant (96,485C mol-1), and 

𝑶𝑶𝑶𝑶𝑶𝑶𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 =
𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 −  𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒

𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 − 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒+ 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒 − 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 𝐱𝐱 𝐈𝐈 𝟒𝟒𝟒𝟒𝟒𝟒
 

 

Where, i405red, i405ox, i488red, and i488ox stands for the fluorescence intensities at the indicated 

wavelength and redox state for the roGFP2 molecules. 

Redox measurements of DAAO-HyPer cardiomyocytes 

NLS and NES DAAO-HyPer mouse models consist of a DAAO-HyPer biosensor which is a 

fusion protein present in the respective organelle of the cardiomyocytes. The enzyme DAAO 

can be first activated by its substrates like D-alanine. Upon activation, DAAO can produce 

H2O2 endogenously in the cardiomyocytes. The produced H2O2 can be measured by the fused 

HyPer probe. 

Cardiomyocytes from transgenic NLS or NES DAAO-HyPer mice were isolated by 

Langendorff’s perfusion system. The cardiomyocytes were plated on the coverslips pre-coated 

with laminin and allowed to settle down for at least 45 minutes in a cell culture incubator. Once 

the cells were ready for imaging, the live imaging was performed on an inverted fluorescence 

microscope IX83 (Olympus) using the Cell sense software. The perfusion buffer in which the 

cardiomyocytes were initially incubated was first replaced by 900 µl imaging buffer. A 10x 
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magnification was used for the visualization of the cells. Cardiomyocytes were excited with the 

excitation wavelengths of HyPer probe at 420 and 500 nm and the emitted light was recorded 

at 510 nm. The light intensity was set to 11% and the exposure time was set to 1000 ms. Each 

image was recorded at an interval of 30 s. Approximately after 4 minutes, 100 µl of of D-alanine 

of various concentrations was added to the medium covering the cells. Once the DAAO was 

activated by D-alanine, there were some changes in the fluorescence intensities observed at 

420 and 500 nm HyPer probe excitation wavelengths. Upon oxidation, the fluorescence 

intensities at 420 nm wavelength increased overtime and the fluorescence intensities at 500 

nm decreased overtime. These changes were recorded until a plateau phase was achieved. 

At the end of the plateau phase 100 µM of H2O2 was added in order to achieve full oxidation of 

the sensor. The entire measurement procedure was repeated with various concentrations of 

D-alanine starting form 10 mM, 8 mM, 6 mM, 4 mM to 3 mM of D-alanine. L-alanine was also 

used as a control for the enzyme DAAO activation. Same concentrations of L-alanine were 

also used to record the measurements over time with the isolated cardiomyocytes. 

2.2.3.  Preparation of cardiac tissue sections and associated analysis 
 

The heart was harvested from a transgenic mito Grx1-roGFP2 mouse, and was immediately 

transferred to ice cold PBS. The heart was gently pushed to remove excess blood and the atria 

were discarded leaving behind the intact ventricular part of the heart. Now, the bottom half of 

the heart was placed into the cryomold where the apex was facing upwards. The entire tissue 

in the cryomold was covered by O.C.T. compound and was immediately frozen on a pre-cooled 

aluminium block immersed in liquid nitrogen. This cryomolds were then stored at -80° C. In 

order to prepare cryosections from this, the cryostat was pre-cooled to -20° C and the 

dissecting blade to -25° C. Cryomolds were allowed to thaw in the cryostat for 45 minutes 

followed by carefully slicing the tissue with a thickness of 14 µm. Subsequently, each slice for 

different conditions was placed on a glass slide respectively. Hence forth, all the steps were 

done on an ice cold aluminium block. Each slice was treated with either 50 µl of 1 mM Diamide, 

20 mM DTT, 50 mM NEM, 1x PBS followed by incubation of 10 minutes on ice. The reagents 

were then wiped off with a fresh filter paper. Now each slice was treated with 50 mM NEM and 

incubated for 10 minutes. NEM was wiped gently from all slices and further the slices were 

fixed with ice cold 4% PFA prepared in PBS containing To-Pro-3 Iodide (1:1000) nuclear stain 

for 15 minutes. The slices were then gently wiped and washed with PBS, mounted on the 

coverslip with Mowiol. Once dried, the slides were then imaged with a LSM 510 laser scanning 

microscope (Carl Zeiss). The Grx-roGFP2 sensor was excited at 405 and 488 nm and the 

emission filter was set as 510 nm. The images were then analysed by the ImageJ software. 
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2.2.4. Isolated mitochondria and associated analysis 
 

Isolation of mitochondria from mouse heart in normoxia and hypoxia 

The heart was extracted from the mouse and was immediately transferred to ice cold PBS. It 

was gently rinsed to get rid of the excess blood. Atria were discarded and further the ventricles 

of the heart were used for isolating the mitochondria. All the steps of isolation were performed 

on ice. Ventricles were cut into small pieces and homogenized 25 times in a glass potter with 

the isolation buffer. The homogenate was centrifuged at 800 g for 10 minutes. Supernatant 

was transferred into a fresh tube, saved for further steps and the pellet was again homogenized 

15 times with 1 ml of isolation buffer. The homogenate was centrifuged at 800 g for 10 minutes. 

The supernatant was pooled along with the earlier saved supernatant and was further 

centrifuged at 10,000 g for 30 minutes. Now, the supernatant was discarded and the pellet was 

washed in 1.5 ml of the isolation buffer at 10,000 g for 10 minutes. The final pellet was 

resuspended into 50-60 µl of the buffer depending on quantity of the pellet. This pellet was 

used for protein estimation by Bradford protein estimation assay (Bio-Rad, protein assay dye 

reagent concentrate). The final protein concentration of the isolated mitochondria was set to 5 

µg/µl.  

The entire process of isolation was done simultaneously in normoxic conditions (20.9% O2,) 

and in hypoxic conditions (0.1%, 3%, 5% or 10% O2, in invivo2 400 hypoxia workstation). 

Special care was taken during isolation of the mitochondria in hypoxia in order to maintain the 

hypoxic conditions throughout including equilibrating all the equipment used for isolation 

(pipettes, tips, Eppendorf tubes, glass potter, buffers etc.) to the hypoxic environment by 

incubating them overnight in the required hypoxic concentration, usage of airtight Eppendorf 

tubes while transferring samples for centrifugation steps and quick transfer of the centrifuged 

product into the hypoxia box. Once the isolation was finished both in normoxia and hypoxia, 

the isolated mitochondria were allowed to settle down on ice for at least one hour before using 

them for any further experiment. 

Bradford protein estimation assay 

The protein concentration of the isolated mitochondria was measured by Bradford protein 

estimation reagent. The reagent, when bound by a protein, has a shift in absorbance from 470 

nm to 595 nm. This shift in absorbance was recorded with a micro plate reader. A standard 

curve was generated through an increasing concentration of BSA from 0.5 µg/µl to 4 µg/µl. 

Samples of unknown concentration were diluted to 1:10 out of which 1 µl from each sample 

was used for the assay. 200 µl of the 1:5 diluted reagent was added to each standard and the 
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samples. The shift in the absorbance of the BSA standards and the samples was recorded for 

estimating the unknown concentration of the samples of isolated mitochondria. 

Redox measurements of isolated mitochondria  

Mitochondria were isolated simultaneously in normoxic and hypoxic conditions from 

cardiomyocyte specific Grx1-roGFP2 transgenic biosensor mice. The heart was divided into 

two parts so as to isolate in presence or in absence of 50 mM N-Ethylmaleimide (NEM) during 

the entire isolation process with each of the part respectively. Isolated mitochondria with and 

without NEM were diluted in high sucrose buffer ± NEM respectively to get the final 

concentration of mitochondria to 0.0317 µg/µl. The change in the fluorescence intensities of 

mitochondria upon treatment with 100 µM diamide, 2 mM DTT and a control condition without 

any treatment respectively was measured in the CLARIOstar microplate reader. The readings 

were recorded at an excitation of 405 and 488 nm wavelengths. It was made sure that the plate 

reader was set to the required oxygen concentration before starting the measurements. The 

mitochondria isolated in hypoxia were transported to the plate reader in an airtight container.  

Measurement of superoxide anion (O2-) levels 

Mitochondria isolated in normoxia and hypoxia were diluted to the final concentration of 25 µg 

in high sucrose buffer with or without 2.5 mM succinate/0.5 mM ADP respectively. MitoSOX 

Red Mitochondrial Superoxide Indicator (Invitrogen, M36008) was added at a concentration of 

5 µM to each of the conditions and superoxide anions levels were recorded in the CLARIOstar 

microplate reader at the required oxygen concentration. The MitoSOX dye was excited at 510 

nm and emission filter was set to 580 nm. The measurement was allowed to run for 20 minutes 

and the average of the plateau phase of last 10 minutes was considered for analysis. All 

samples were pipetted in triplicates. 

Amplex Red assay 

Hydrogen peroxide concentration in the isolated mitochondria was measured by the Amplex 

Ultrared dye. Assay components consisted of 50 μM of Amplex Red dye, 0.5 U/ml of HRP and 

100 U/ml of superoxide dismutase (SOD) dissolved in high sucrose buffer. Mitochondria 

isolated in normoxia and hypoxia were diluted to the final concentration of 25 µg per condition 

in a high sucrose buffer with or without 2.5 mM succinate/0.5 mM ADP. A solution containing 

mitochondria solution and assay buffer in a 1:1 ratio was prepared in a black 96-well plate (with 

transparent bottom) for each sample. The Amplex Red dye reacts with H2O2 to form the 

fluorescent product Resorufin which can be measured at excitation wavelength of 535 nm and 

emission of 590 nm. The measurements were recorded for 20 minutes in a CLARIOstar plate 
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reader at the required oxygen concentrations. Average reading of last 10 minutes plateau 

phase was used for actual analysis. All samples were pipetted in triplicates. 

Complex III activity assay 

Complex III activity assay was done by Dr. Jan Dudek from the Institute of Cellular 

Biochemistry, Göttingen. The assay involves the capacity of the ubiquinol cytochrome c 

reductase (complex III) to reduce cytochrome c by a reduced Decylubichinone as an electron 

donor. The activity can be measured spectrophotometrically at 550 nm. 1 ml complex III buffer 

was taken into a plastic disposable cuvette. 10 µl of 10 mM reduced Decylubichinone was 

added to the buffer and mixed well. 7.5 µl of 2 mM Cytochrome c (25 mg/ml in H2O) was added 

to the above mixture. The measurement was started and after 30 seconds 10-50 µg 

mitochondria, isolated in 20% O2 and 0.1% O2 respectively, were added to the cuvette. The 

measurement was continued for an average of 5 minutes. A blank measurement as a control 

was also included which contains only complex III buffer and no other components like 

cytochrome c, reduced Decylubichinone and mitochondria. Another control included was 

Antimycin A (10 mM) treated isolated mitochondria to exclude that the measurements involves 

a non-enzymatic reduction of cytochrome c. All samples were pipetted in triplicates. 

ATP production 

Mitochondria isolated in normoxia and hypoxia were diluted to the final concentration of 25 µg 

in high sucrose buffer with or without 2.5 mM succinate/0.5 mM ADP respectively and a 

condition with 2.5 mM succinate/0.5 mM ADP + 10 µM CaCl2. Mitochondria were incubated in 

the respective buffers for 20 minutes. These mitochondria were then centrifuged at 10,000 rpm 

for 10 minutes. Supernatant was used for the ATP measurements. ATP standards (0, 0.001, 

0.01, 0.1, 1, 10 µM) were used for calorimetric detection of the concentration of the samples. 

To each of the conditions including the standards, Celltiter-Glo luminescent cell viability 

reagent was added in a 1:1 dilution to the standard or the sample respectively. The reaction 

was incubated with gentle shaking of the plate for 30 minutes. The measurements were done 

in a calorimetric plate reader. All samples were pipetted in triplicates. 

Blue native gel electrophoresis 

Cardiac mitochondria were isolated in normoxia and hypoxia simultaneously. The mitochondria 

(50 µg per condition) were solubilized in the corresponding oxygen concentrations by re-

suspending them in 50 µl of solubilisation buffer and were subsequently incubated on ice for 20 

minutes. The solubilized mitochondria were centrifuged at 14,000 rpm, 4°C for 5 minutes. The 

supernatant was transferred to a new precooled Eppendorf tube and mixed with 5 µl of loading 
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dye. The sample was shortly centrifuged at 14,000 rpm, 4°C for 2 minutes to get rid of cellular 

debris. The blue native gels were prepared well in advance and were kept ready for the 

mitochondrial extracts to be loaded. The ingredients for the separating and the stacking gel are 

given in Table 14. In this case, a 6-13% separating gel was prepared. Once the mitochondrial 

extracts were ready and loaded onto the gel, cathode buffer was overlaid on top of the samples. 

The gel chamber containing the anode buffer was precooled to 4°C and the temperature was 

maintained throughout the run. The gel was initially set to run at 100 V. Later the voltage was 

increased to 600 V. Once the Coomassie blue dye was entering almost half way through the 

gel, the cathode buffer was replaced by fresh cathode buffer containing no coomassie. For 

overnight run from this stage, the voltage can be set at 60-70 V. Once the blue front of 

coomassie dye ran out of the gel, the run was stopped. The gel was incubated in SDS PAGE 

running buffer for 10 minutes prior to the western blot transfer.  

 

The gel was then further used for the western blotting. PVDF membrane was used for blotting 

the gel. The membrane was briefly rinsed in methanol. Whatman filter papers were completely 

soaked in the transfer buffer. On the surface of the semidry blotting system, a transfer sandwich 

was prepared including a first layer of 3 whatman papers, the second layer containing the pre-

activated PVDF membrane followed by the gel and the last layer of 3 whatman filter papers. At 

each stage, it was made sure that there are no bubbles formed during the process. The transfer 

system was set and the run was started at 220 mA for 1 hour. Once the transfer was over, the 

membrane was stained and distained in order to confirm that the proteins were transferred. 

Later, the membrane was prepared for confirming the presence of the protein of interest. Table 

17 summarizes the conditions used for the respective protein of interests. The membranes were 

incubated in blocking buffer for 60 minutes following overnight incubation with the primary 

antibody. To get rid of unbound primary antibody, the membranes were washed 3 times, 10 

minutes each with TBST before and after addition of the respective HRP coupled secondary 

antibody. Subsequently the membranes were incubated in the enhanced chemiluminescence 

(ECL) solution which consists of the substrate for the HRP. The membranes were further 

developed on an X-ray film with varied exposure times depending on the protein of interest. 
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Protein of interest Blocking solution Primary antibody Secondary 
antibody 

ATP5B 10% skimmed milk 
in TBST 1:10000 in TBST 

1:10000, 10% 
skimmed milk in 
TBST (Anti-rabbit) 

COXI 10% skimmed milk 
in TBST 1:1000 in TBST 

1:10000, 10% 
skimmed milk in 
TBST (Anti-rabbit) 

MCU 10% skimmed milk 
in TBST 1:750 in TBST 

1:5000, 10% 
skimmed milk in 
TBST (Anti-rabbit) 

NDUFB8 10% skimmed milk 
in TBST 1:1000 in TBST 

1:10000, 10% 
skimmed milk in 
TBST (Anti-rabbit) 

Rieske 10% skimmed milk 
in TBST 1:1000 in TBST 

1:10000, 10% 
skimmed milk in 
TBST (Anti-rabbit) 

VDAC3 10% skimmed milk 
in TBST 1:1000 in TBST 

1:10000, 10% 
skimmed milk in 
TBST (Anti-rabbit) 

Table 17: Conditions of each antibody used for detecting the protein of interest. 
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3. Results 
 

The overall goal of the thesis was to characterize redox-dependent processes in 

cardiomyocytes by making use of genetically encoded biosensors. Genetically encoded 

biosensors in combination with transgenic mouse technology allow to precisely determining 

redox processes in defined primary cell types and subcellular compartments. To this end I 

included in my studies the already established cardiomyocyte-specific Grx1-roGFP2 

transgenic mice. These mice were used in the past to unravel that the EGSH differ in the cytosol 

versus mitochondrial matrix in cardiomyocytes.  

 

As a follow up, I analyzed in the first part of the thesis, if ageing affects the 

compartmentalization of the EGSH in cardiomyocytes. In these studies I analyzed the EGSH in 

the mitochondrial matrix in intact cardiomyocytes, in cryosections, and isolated mitochondria. 

Since I observed a significant difference in the mitochondrial EGSH if analyzed in situ or in 

isolated mitochondria, I studied the underlying mechanism in the second part of the thesis. 

 

Grx1-roGFP2 allows determining the EGSH and thus the output of endogenous changes in 

redox signaling. Manipulation of endogenous redox signaling in cardiomyocytes was done in 

the past mostly by adding H2O2 to cells. This method, however, precludes precise analysis of 

dose-dependent effects as well as consequences for specific subcellular compartments. 

Therefore I aimed in the third part of my thesis to generate cardiomyocyte-specific transgenic 

mice, in which the DAAO-HyPer fusion protein is expressed in different subcellular 

compartments.  

3.1. Ageing affects the compartmentalization of EGSH in cardiomyocytes 

3.1.1. Generation of Grx1-roGFP2 biosensor mouse models 
 

The main objective of the first part of my thesis was to address the phenomenon of EGSH 

compartmentalization observed in cardiomyocytes. For this purpose, I utilized the Grx1-

roGFP2 mouse models which were previously generated and characterized in the Institute of 

Cardiovascular Physiology by Dr. Lija Swain (Swain et al., 2016). The established mouse 

models enable to perform real time visualization of EGSH in the cytoplasm (cyto) and the 

mitochondrial matrix (mito) of the cardiomyocytes. A scheme of the plasmids used for 

generating the transgenic mice is shown in Fig. 9. Cardiomyocyte-specific expression of the 

biosensor is achieved by fusing the α-MHC promoter to the Grx1-roGFP2 coding region in the 

cyto as well as the mito mouse model. In the cyto mouse model the biosensor is non-targeted 

to a specific compartment and thus localized mostly to the cytosol (Fig. 9a). In case of the mito 
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mouse model, the compartment specific expression is permitted via the Neurospora crassa 

ATP synthase protein 9 (atp9) signal sequence (Fig. 9b). 

 
 

Figure 9: Schematic of the plasmids used for the generation of cyto Grx1-roGFP2 and 
mito Grx1-roGFP2 transgenic mouse models. (a) α-MHC promoter driven Grx1-roGFP2 
biosensor is located in the cytoplasm of the cardiomyocytes and (b) is targeted to the 
mitochondrial matrix with the help of the Neurospora crassa ATP synthase protein 9 (atp9) 
signal sequence.  

3.1.2. Confirmation of the Grx1-roGFP transgene by genotyping 
 

To confirm the presence of the transgene in the respective mouse lines, genotyping was 

performed with the gDNA obtained from tail biopsies of offsprings by standard PCR. In the 

case of the cyto Grx1-roGFP2 transgene, the primers were designed in such a way that the 

forward primer binds to a sequence in the α-MHC promoter and the reverse primer binds in 

the coding region of Grx1-roGFP. In case of the mito Grx-roGFP2 transgene, the forward 

primer binds to a sequence of the α-MHC promoter and the reverse primer binds in the coding 

region of the Grx1.  

Since the transgenesis was non-directed, the exact insertion of the transgenic DNA sequence 

in the genome of the mouse models is not known. This lack of information precluded designing 

primers which would cover for example the plasmid insertion start or end. Therefore the 

genotyping PCR primers used in this study could only cover the transgenic DNA. In line, the 

genotyping PCR will result in a band in PCRs performed with tail biopsies from transgenic mice 

and no band in the wild type mice. PCR reactions performed with tail biopsies are prone to 

failure based on the relatively non-purity of the isolated gDNA. Therefore a lack of a band in 

the PCR could either mean that the biopsy was taken from a real wild type animal as discussed 

above or that the PCR reaction failed. To distinguish these two possibilities, I included a PCR 

quality control in the genotyping PCR. The quality control was performed by including a second 

primer pair in the same PCR reaction. The second primer pair was designed to bind to the wild 

type background, not affected by the transgenic insertion. I selected for this the Phd2 gene, 
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which indeed proved to be free of transgenic insertion. Having two primer sets in the 

genotyping PCR allows to distinguish wild type and transgenic littermates by the appearance 

of either one band (200 bp band) or two bands (200 bp and 500 bp for cyto or 700 bp for mito), 

respectively. A PCR failure would result in no bands on the agarose gel. From a pool of 

offsprings genotyped, 5 different mice’s genotyping data sets as an example from each cyto 

Grx1-roGFP2 and mito Grx1-roGFP2 mouse lines are shown in Fig.10a and Fig. 10b.  

 
 

Figure 10: Genotyping results confirming the presence of the transgene in the mito 
Grx1-roGFP2 and cyto Grx1-roGFP2 mice. (a) A 2% agarose gel containing the PCR 
products showing the presence of the wild type control gene Phd2 (200 bp) and the transgene 
roGFP (700 bp) in 5 different mice from the mito Grx1-roGFP2 breeding. (b) A 2% agarose gel 
containing the PCR products showing the presence of the wild type control gene Phd2 (200 
bp) and the transgene roGFP (500 bp) in 5 different mice from the cyto Grx1-roGFP2 breeding. 
Each agarose gel includes a molecular size marker and a PCR water (H2O) control reaction. 
+/T (heterozygous transgenic genotype), +/+ (wild type genotype). 

3.1.3. Typical response of isolated Grx1-roGFP2 cardiomyocytes to H2O2 and 
DTT 

 

For confirming the functionality of the Grx1-roGFP2 biosensor in the transgenic mouse models, 

control experiments with isolated cardiomyocytes were performed. Cardiomyocytes were 

isolated from the transgenic mito and cyto Grx1-roGFP2 mouse lines by Langendorff’s 

perfusion system. Live time imaging was performed on isolated cardiomyocytes using inverted 

epifluorescence microscopy. The roGFP probe was excited at 405 and 488 nm and the emitted 

light was detected by a CCD camera at 510 nm. Prior to addition of any oxidizing or reducing 

agent for each coverslip containing cardiomyocytes, a baseline was recorded for 

approximately 50 s. Subsequently, H2O2 as an oxidizing agent and DTT as a reducing agent 

were added on independent coverslips. The changes in the fluorescence intensity were 

recorded until a plateau phase was reached. The normalized ratio of 405/488 nm excitation 

wavelengths was plotted in correspondence to changes in the absolute fluorescence 

intensities of 405 and 488 nm after addition of the oxidizing or reducing agent. Fig. 11 indicates 
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the normalized ratio of 405/488 nm obtained from a combined set of data on addition of 100 

µM H2O2 or 2 mM DTT to the cardiomyocytes isolated from a transgenic mito and a cyto Grx1-

roGFP2 mouse. There is an increase observed in the fluorescence intensity at 405 nm and a 

decrease at 488 nm on addition of H2O2, whereas an opposite change is observed in the 

fluorescence intensities after addition of DTT. 

 

 
Figure 11: Typical response of Grx1-roGFP cardiomyocytes to H2O2 and DTT. 
Cardiomyocytes isolated from (a) a mito Grx1-roGFP2 mouse and (b) a cyto Grx1-roGFP2 
were measured on an inverted epifluorescence microscope for the changes in fluorescence 
intensities after addition of an oxidizing (H2O2) and a reducing (DTT) compound. Normalized 
ratio of fluorescence excitations at 405/488 nm was calculated after addition of 100 µM H2O2 
and 2 mM DTT respectively to the isolated cardiomyocytes. 

3.1.4. EGSH of isolated cardiomyocytes from Grx1-roGFP2 mice 
 
Offsprings from in total two independent mouse lines for transgenic mice expressing the Grx1-

roGFP2 in the cytosol (cyto1 and cyto2) and the mitochondrial matrix (mito1 and mito2) were 

included in the following experiments. The inclusion of two independent mouse lines is thought 

to prevent analyzing founder-dependent rather than general effects. Cardiomyocytes were 

isolated from each of the two independent founder lines of cyto Grx1-roGFP2 (cyto1 and cyto 

2) and mito Grx1-roGFP2 (mito1 and mito2) by Langendorff’s perfusion system. These 
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cardiomyocytes were used for measuring EGSH with the help of a set of two different oxidizing-

reducing agents namely 100 µM diamide-2 mM DTT and 100 µM H2O2-2 mM DTT. H2O2 

oxidizes the roGFP2 via the enzyme Grx1 whereas, diamide oxides the roGFP2 directly 

bypassing the enzyme Grx1. This makes it possible to use diamide as a control to confirm that 

the roGFP2 is fully oxidized. EGSH were calculated by Nernst equation utilizing the changes in 

the fluorescence intensities of 405 and 488 nm roGFP excitation wavelengths obtained after 

addition of the oxidizing-reducing agent (Table 18). Interestingly, the Grx1-roGFP2 biosensor 

gave a lower response to DTT when placed in the mitochondrial matrix compared to being 

placed in the cytosol. This indicates a lower capacity of the mitochondrial matrix to reduce any 

further suggesting that the mitochondrial matrix of the cardiomyocytes is already highly 

reduced to as low as -278.9 ± 0.4 mV (mito1) and -277 ± 0.4 mV (mito2). The opposite 

phenomenon is observed in case of the cyto mice giving a higher response to DTT, suggesting 

it to be in an oxidized form at baseline. In line, the cytoplasm of the cardiomyocyte was found 

to have an EGSH as high as -257.2 ± 0.7 mV (cyto1) and -255.8 ± 0.6 mV (cyto2). Taken 

together, the data suggest that cardiomyocytes exhibit a specific redox compartmentalization 

in the cytoplasm versus the mitochondrial matrix.  

 
Table 18 : Cardiomyocytes exhibit a specific redox compartmentalization in EGSH of the 
mitochondrial matrix versus the cytoplasm. Isolated cardiomyocytes from the indicated 
mouse lines (cyto1, cyto2, mito1 and mito2) were measured for glutathione redox potential 
(EGSH) with 100 µM diamide-2 mM DTT and 100 µM H2O2-2 mM DTT as an oxidizing and 
reducing agent. The numbers in the brackets represent the numbers of cardiomyocytes 
measured from each line. EGSH were calculated as described in Materials and Methods and are 
shown as mean +/- SEM. 

 

3.1.5. Echocardiography of ageing mito Grx1-roGFP2 and cyto Grx1-roGFP2 
mice as compared to young mito Grx1-roGFP2 and cyto Grx1-roGFP2 
mice 

 
Having established that the EGSH is compartmentalized in cardiomyocytes, I was interested to 

exploit the Grx1-roGFP2 mouse models to study the effects of ageing on the EGSH. For this 

purpose, 5 and 3 mice from the cyto Grx1-roGFP2 and mito Grx1-roGFP2 mouse lines 
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respectively were included in the analysis. Echocardiography was done on these mice from 

the age of 23 weeks on to as old as 70 and 80 weeks. EF and FAS were recorded as markers 

for cardiac function. It was observed that the FAS and the EF of mice from both the mouse 

lines, i.e. cyto and mito, were significantly decreased at the age of 80 weeks (Fig. 12 a and b). 

These data demonstrate an age-dependent drop of heart function indicating that the time 

points chosen are suitable to analyze age-dependent effects.  

 
Figure 12: Grx1-roGFP2 aged mice show significantly poorer heart function than Grx1-
roGFP2 young mice. Fractional Area Shortening (FAS) and Ejection Fraction (EF) were 
recorded by echocardiography from the mice of age 23 weeks to 80 weeks in the (a) transgenic 
cyto Grx1-roGFP2 mouse line (n=5 mice) and the (b) transgenic mito Grx1-roGFP2 mouse line 
(n=3 mice). * p<0.05. 

3.1.6. EGSH in isolated cardiomyocytes from mito Grx1-roGFP2 and cyto Grx1-
roGFP2 aged mice 

 
Once it was verified that the heart function in the cyto Grx1-roGFP2 and mito Grx1-roGFP2 

mice drops with ageing, the subsequent step was to measure EGSH from these mice. To this 

end, EGSH of the cyto Grx1-roGFP2 and mito Grx1-roGFP2 mice from two age groups, i.e. 20 

and 80 weeks old, were analyzed. 100 µM H2O2-2 mM DTT was used as an oxidizing and 

reducing agent for the analysis. It was noticed that there was no difference in the EGSH of 

cardiomyocytes isolated from both age groups of mito Grx1-roGFP2 mice being as reduced as 

-276.1 ± 1.0 mV and -276.5 ± 0.8 mV in case of 20 weeks and 80 weeks old mice, respectively. 

In case of cardiomyocytes isolated from 80 weeks old cyto Grx1-roGFP2 the EGSH (-278.1 ± 

0.6 mV), however, was significantly more reduced than in cardiomyocytes from 20 weeks old 

mice (-262.3 ± 1.0 mV) (Table 19). These data indicate that ageing affects the EGSH in the 

cytosol and mitochondrial matrix differentially.  



Results 
 

62 
 

 

Table 19: Redox compartmentalization between mitochondrial matrix and cytoplasm of 
the cardiomyocyte tends to disappear with ageing. Both the age groups of 20 weeks and 
>80 weeks old mice from the cyto Grx1-roGFP2 mouse line (cyto) and the mito Grx1-roGFP2 
mouse line (mito) were used for measuring EGSH from isolated cardiomyocytes. The numbers 
in the brackets represent the numbers of cardiomyocytes measured from each line. EGSH was 
calculated as mean +/- SEM from all measured cardiomyocytes.  

3.2. Oxygen affects the EGSH in isolated mitochondria 

3.2.1. Redox histology performed with heart sections from mito Grx1roGFP2 
mice 

 

Determining the EGSH in isolated cells is the most common method described in the literature 

when genetically biosensors are used. This method, however, precludes analyzing the cells 

when placed in their natural tissue context. Fujikawa et al., 2016 have recently published a 

redox histology method that allows determining the EGSH in cryosections. I applied this method 

to cardiac cryosections obtained from the mito Grx1-roGFP2 mice. The cardiac tissue was 

cryosectioned into 14 µm thin sections inside a cryostat machine which was precooled to -20 

°C. Henceforth, all the steps were done on ice. Four independent sections were taken onto the 

respective glass slides, which were incubated with 1 mM diamide, 20 mM DTT, 50 mM NEM 

and PBS respectively for 10 minutes. NEM is a chemical which blocks thiol groups and hence 

freezes the redox status of molecules. Following the mounting of the sections, the cryosections 

were visualized using a confocal microscope. Fig. 13 shows a typical confocal image of the 

cryosections. The roGFP2 probe was excited at 405 and 488 nm and the emitted light was 

obtained at 510 nm. The fluorescence intensities at the wavelengths of 405 nm and 488 nm 

were recorded in the diamide, DTT, NEM and non-treated (PBS) sections respectively. The 

upper panel in Fig. 13 shows the fluorescence intensities at 405 nm and 488 nm wavelengths 

of each reagent treatment in a transgenic versus wild type cardiac sections. It also represents 

the nuclear stain obtained from To-Pro-3 dye in a transgenic versus wild type tissue sections. 

The lower panel of Fig.13 represents a merged image of the fluorescence intensity ratio of 405 

nm/488 nm in all the respective reagent treatments. A dotted intracellular pattern was observed 

in both the excitation wavelengths. Since the biosensor is expressed in the mitochondrial 
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matrix of cardiomyocytes the dots are representing the cardiac mitochondria. This was also 

supported by the observation that there was no signal obtained from the cryosections of the 

wild type control mouse. Red stained nuclei were visible in the cryosections obtained from the 

mito Grx1-roGFP2 as well as the wild type control mice.  

 

 
Figure 13: Redox histology performed with cryosections obtained from a wild type and 
a mito Grx1-roGFP2 mouse. Upper panel: Cryosections of the left ventricle obtained from a 
wild type (WT) and a mito Grx1-roGFP2 mouse were analyzed at the indicated wavelengths 
and for the nucleus staining To-Pro-3. Lower panel: Cryosections of the left ventricles were 
analyzed. Spots indicated as examples by the arrows represent the Grx1-roGFP expressed in 
the mitochondrial matrix. DTT and diamide were used to achieve full reduction or oxidation of 
the Grx1-roGFP, respectively. The values obtained from the fully reduced and oxidized 
sections were used for analyzing the cryosections, in which the redox status was either fixed 
with NEM or left untreated (-NEM). The heat map was calculated based on the ratio (excitations 
at 405/488 nm) of the fully oxidized state after treatment with diamide (= 1) and the fully 
reduced state after treatment with DTT (= 0).  

3.2.2. Comparison of the mtOxD in cardiac sections, isolated cardiomyocytes 
and isolated cardiac mitochondria 

 
Having established the redox histology protocol, I compared the OxD obtained from analyzing 

isolated cardiomyocytes, heart cryosections and isolated cardiac mitochondria. The OxD 
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reflects the % oxidation of the total GSH pool, whereas the EGSH is a defined value. For the 

comparison of the isolated cardiomyocytes, cryosections and isolated mitochondria, the OxD 

rather than the EGSH was determined since it is unclear, if the absolute values obtained from 

the different methods applied are indeed comparable. Determining the OxD at tissue level 

relies on procedures to prevent oxidation of the redox biosensor during specimen dissection 

and fixation as described above. I likewise confirmed this when analyzing the mitochondrial 

mtOxD in cryosections of mtGrx1-roGFP2 transgenic mice (Fig. 14).  

 

Incubation of the heart sections with NEM is protecting thiol groups preventing oxidation of the 

biosensor. Interestingly, incubation of isolated cardiomyocytes from mito Grx1-roGFP 

transgenic hearts with or without NEM did not alter the mtOxD indicating that the physiological 

intracellular milieu is sufficient for preserving the more reduced state of the mitochondrial 

matrix. Next I analyzed the mtOxD in isolated cardiac mitochondria from the mito Grx1-roGFP2 

mice. The mtOxD of isolated mitochondria revealed a higher degree of oxidation compared to 

the isolated cardiomyocytes and was similar to the mtOxD of non NEM-treated cryosections 

(around 90%). Similar to the histology sections, the shift of the mtOxD could be prevented by 

addition of NEM to all steps of the mitochondria isolation procedure. This finding suggests that 

when mitochondria are isolated from its normal physiological environment, the procedure per 

se has an impact on the OxD.  

 
Figure 14: The glutathione pool of the cardiac mitochondrial matrix is oxidized during 
isolation of mitochondria. Mitochondrial oxidation differences (mtOxD (%)) of cardiac 
cryosections (n=3 mice), isolated cardiomyocytes (n=4 mice) and isolated mitochondria (n=9 
mice) from the transgenic mito Grx1-roGFP2 mouse line were measured by using 100 µM 
diamide-2 mM DTT as oxidizing-reducing agents. Cryosectioning, isolation of cardiomyocytes 
and isolation of mitochondria were done in presence or absence of N-ethylamide (NEM). 
mtOxD (%) was calculated as mean +/- SEM.  * p<0.05. 
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3.2.3. EGSH and the mtOxD of cardiac mitochondria isolated from mito Grx1-
roGFP2 mice in normoxia versus hypoxia 

 
The data acquired so far, strongly suggest that the physiological environment of 

cardiomyocytes is important to maintain the mitochondrial EGSH. To this end I was further 

interested in revealing that limiting factor which is able to maintain the redox status in the 

physiological environment of cardiomyocytes. Physiological oxygen concentration was 

speculated to be one of the players in serving to maintain the reduced mitochondrial EGSH. 

Whereas the pO2 that mitochondria are exposed to within the tissue and cellular context is 

thought to be <1 mmHg, isolated mitochondria are exposed to a pO2 of 158 mmHg at sea level. 

To mimic the low in situ oxygen conditions, cardiac mitochondria from transgenic mito Grx1-

roGFP2 mice were isolated in different oxygen concentrations ranging for 20.9% O2 to 10%, 

3% and as low as 0.1% O2. As indicated in Fig. 15, normoxic (20.9% O2) isolation of 

mitochondria was done at room air whereas the hypoxic (10%, 3% and 0.1% O2) isolation was 

done in an invivo2 400 hypoxia workstation. Hypoxic isolated mitochondria were measured for 

mtOxD and EGSH in the Clariostar microplate reader maintaining the corresponding oxygen 

concentrations or including an acute hypoxia or reoxygenation step. 100 µM diamide-2 mM 

DTT was used as an oxidizing and reducing agent respectively. mtOxD and EGSH were 

calculated by Nernst equation from the changes in the fluorescence intensities after addition 

of the oxidizing and reducing agent.  

 

 

Figure 15: Schematic of the experimental setup for isolation of cardiac mitochondria 
from the mito Grx1-roGFP2 mouse line in normoxia versus hypoxia. Step-wise procedure 
to measure OxD and EGSH of mitochondria isolated from the transgenic mito Grx1-roGFP2 
mouse hearts.  
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Mitochondria isolated in 20.9% O2 showed a significant response to DTT and almost no 

response to diamide, indicating a highly oxidized EGSH (Fig. 16a and b). When the oxygen 

concentration during isolating the mitochondria was maintained as low as 0.1% O2 and 3% O2, 

the mitochondria showed a higher response to diamide suggesting its higher capacity to get 

oxidized as compared to mitochondria isolated in 20.9% O2. Mitochondria isolated in 10% O2 

displayed an OxD and EGSH very similar to normoxic-isolated mitochondria, indicating 10% O2 

concentration as a threshold oxygen concentration which is enough to almost completely 

oxidize the mitochondrial glutathione pool. Altogether these experiments indicate that the 

ambient oxygen significantly affects the EGSH of isolated mitochondria, which is of interest since 

isolation of mitochondria at room air conditions is a common routine in cell and molecular 

biology protocols.  

 
Figure 16: Isolation of mitochondria in hypoxia preserves the reduced EGSH and mtOxD 
(%) of the mitochondrial matrix. Mitochondria were isolated from cardiac tissue of transgenic 
mito Grx1-roGFP2 mice in 20.9% O2 (n=11 mice) versus 10% (n=6 mice), 3% (n=6 mice) and 
0.1% O2 (n=11 mice). (a) Mitochondrial Oxidation Difference (mtOxD (%)) and (b) glutathione 
redox potential (EGSH) of these mitochondria were further measured at the respective oxygen 
concentration. mtOxD (%) and EGSH were calculated as mean +/- SEM of individual 
experiments. * p<0.05.  

3.2.4. EGSH and the mtOxD of cardiac mitochondria isolated from mito Grx1-
roGFP2 mice during reoxygenation and acute hypoxia 

 
The data so far suggest that mitochondria can maintain their redox status when isolated in 

hypoxia. To test, if this effect is reversible I performed acute reoxygenation and acute hypoxia 

experiments. In detail I analyzed the mtOxD and EGSH in hypoxic isolated mitochondria when 

incubated in a normoxic environment (reoxygenation) as well as the mtOxD and EGSH in 

normoxic isolated mitochondria when incubated in a hypoxic environment (acute hypoxia). 

Mitochondria were isolated in 20.9% O2 and 0.1% O2 from transgenic mito Grx1-roGFP2 mouse 

hearts. Mitochondria isolated in 0.1% O2 were allowed to reoxygenate by incubating them in 

20.9% O2 (0.1% O2  20.9% O2) for 30 min. EGSH of reoxygenated mitochondria were 

measured at the corresponding oxygen concentration by using 100 mM diamide-2 mM DTT as 
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an oxidizing and reducing agent, respectively. Similarly, mitochondria isolated in normoxia 

were exposed to acute hypoxia and therefore incubated in 0.1% O2 (20.9% O2  0.1% O2) 

for 30 min. EGSH of the mitochondria were measured at the corresponding oxygen concentration 

by using 100 mM diamide-2 mM DTT as an oxidizing and reducing agent, respectively. 

Interestingly, it was observed that reoxygenated mitochondria get fully oxidized and have an 

EGSH similar to mitochondria isolated at 20.9% O2 (Fig. 17a). On the other hand, acute hypoxic 

incubation of mitochondria did not show any effect on EGSH (Fig. 17b). Mitochondria were 

completely oxidized like normoxic isolated mitochondria. This indicates that the changes 

induced at the atmospheric oxygen levels are the result of an irreversible process. 

 

 
Figure 17: Exposing isolated mitochondria to normoxia results in an irreversible 
oxidation of mitochondrial OxD and EGSH. Mitochondria isolated from cardiac tissue of mito 
Grx1-roGFP2 mice in 20.9% O2 and 0.1% O2 were incubated and analyzed for mitochondrial 
Oxidation Difference (mtOxD (%)) (a) and glutathione redox potential (EGSH)  (b) at the 
respective oxygen concentrations (20.9% O2 and 0.1% O2, n=11 mice), reoxygenation (0.1% 
O2  20.9% O2, n=6 mice) and acute hypoxia (20.9% O2  0.1% O2, n=4 mice). mtOxD (%) 
and EGSH were calculated as mean +/- SEM of individual experiments. * p<0.05.  

3.2.5. Metabolically active mitochondria exhibit a reduction of the mtOxD and 
EGSH 

 
Succinate serves as a substrate to complex II in the mitochondrial electron transport chain. 

Stimulating mitochondria with succinate enhances the production of reducing equivalents like 

NADPH and thereby affecting the mitochondrial redox environment. In order to analyze the 

effect of succinate on the mtOxD and EGSH, the following experiment was performed: 

Mitochondria were isolated in 20.9% and 0.1% O2 from mito Grx1-roGFP2 hearts. A portion of 

0.1% O2 isolated mitochondria was kept in 20.9% O2 for 30 min as a reoxygenation sample. 

Subsequently, mitochondria isolated in 0.1% O2, 20.9% O2 and in the reoxygenation sample 

were incubated in presence or absence of 2.5 mM succinate and 0.5 mM ADP. These 

mitochondria were then measured for fluorescence intensities at 405 and 488 nm roGFP 

excitation wavelengths for 20 min at the corresponding oxygen concentrations. Following the 
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baseline fluorescence intensities measurements, mtOxD (%) (Fig. 18a) and EGSH (Fig. 18b) 

were determined by adding 100 µM diamide-2 mM DTT as oxidizing and reducing agent. In 

these experiments, mitochondria isolated in 20.9% O2 and energized with succinate/ADP got 

reduced to roughly 80% mtOxD as compared to mitochondria not stimulated with 

succinate/ADP. On the other hand, in case of mitochondria isolated and stimulated with 

succinate/ADP in 0.1% O2, the mtOxD was significantly more reduced close to 40% as 

compared to mitochondria not stimulated with succinate/ADP. When the reoxygenated 

mitochondria were stimulated with succinate/ADP the mtOxD was oxidized back close to 70% 

as compared to hypoxic isolated mitochondria stimulated with succinate/ADP.  

 

 
 

Figure 18: The mtOxD (%) of mitochondria isolated and stimulated with succinate in 
hypoxia is significantly lower as compared to mitochondria isolated in normoxia. 
Mitochondria were isolated from hearts of transgenic mito Grx1-roGFP2 mice in 20.9% O2 (n=4 
mice) and 0.1% O2 (n=4 mice). A part of the 0.1% O2 was incubated at 20.9% O2 for 30 minutes 
(0.1% O2  20.9%). Subsequently, the mitochondria were stimulated without and with 2.5 
mM succinate and 0.5 mM ADP and measured for (a) mitochondrial Oxidation Difference 
(mtOxD (%)) and (b) EGSH at the respective oxygen concentration. OxD was calculated as 
mean +/- SEM of individual experiments. * p<0.05.  

3.2.6. Superoxide anions levels in mitochondria isolated at 20.9% versus 0.1% 
O2 

 
In order to unravel the effect of low oxygen concentrations on the mitochondrial EGSH in isolated 

mitochondria we analyzed ROS produced in the mitochondrial matrix. In line, mitochondrial 

O2
.- levels were analyzed in mitochondria isolated and incubated with or without 2.5 mM 

succinate and 0.5 mM ADP at 20.9% O2 versus 0.1% O2 from wild type mouse hearts. The O2
.- 

levels were determined with the help of the MitoSOX fluorescence dye at the indicated oxygen 

concentrations. It was observed than mitochondria isolated in 0.1% O2 produce significantly 

lower O2
.- levels than mitochondria isolated in 20.9% O2 in both conditions, i.e. with or without 

succinate/ADP stimulation (Fig. 19a). As a control experiment, the MitoSox measurement was 
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also performed at 0.1% O2 with mitochondria, which were originally isolated in 20.9% O2. This 

experiment was designed to rule out the possibility that the reduced O2
.- levels in hypoxia are 

due to a technical artifact of the fluorescent dye measurement in hypoxia per se. The O2
.- 

superoxide anion levels measured in 20.9% O2 isolated mitochondria in both oxygen 

concentrations, i.e. 20.9% and 0.1% O2, however were similar excluding a technical artifact 

(Fig. 19b). 

 

Figure 19: Superoxide anions levels are significantly lower in mitochondria isolated in 
hypoxia as compared to mitochondria isolated in normoxia. (a) Mitochondria isolated from 
wild type mouse hearts (n=3 mice) in 20.9% O2 and 0.1% O2 and incubated without or with 2.5 
mM succinate and 0.5 mM ADP as indicated, were measured at respective oxygen 
concentrations for O2

.- levels with the help of the MitoSOX fluorescence dye. (b) Mitochondria 
isolated in 20.9% O2 incubated without or with 2.5 mM succinate and 0.5 mM ADP were 
measured at 0.1% O2 (20.9% O2  0.1% O2) for O2

.- levels as a control experiment. 
Fluorescence intensity was calculated as mean +/- SEM of individual experiments.  * p<0.05.  

3.2.7. Hydrogen peroxide levels in mitochondria isolated at 20.9% versus 
0.1% O2 

 
O2

.- are immediately converted into H2O2 by superoxide dismutase in any biological system. 

Therefore, H2O2 levels were checked in mitochondria isolated and stimulated with 2.5 mM 

succinate and 0.5 mM ADP at 20.9% and 0.1% O2 from wild type mouse hearts. H2O2 levels 

were analyzed with the help of the Amplex Ultra red fluorescence dye. As shown in Fig. 20, 

there is a significantly higher amount of H2O2 produced by mitochondria isolated and stimulated 

with succinate/ADP in 20.9% O2 as compared to mitochondria without succinate and ADP 

stimulation. In hypoxic isolated mitochondria, there was no increase observed in H2O2 

production even after stimulation with succinate/ADP. These measurements hint towards a 

very tight electron flow going on in the mitochondria isolated in hypoxia compared to the 

mitochondria isolated in normoxia.  



Results 
 

70 
 

 
Figure 20: Hydrogen peroxide production in mitochondria isolated at 20.9% O2 
compared to 0.1% O2. Mitochondria isolated from wild type mouse hearts (n= 3 mice) in 20.9% 
O2 and 0.1% O2 were incubated without or with 2.5 mM succinate and 0.5 mM ADP for 30 min 
in the respective oxygen concentration. Subsequently, mitochondria were analyzed for 
hydrogen peroxide levels with the help of the Amplex Red dye. Fluorescence intensity was 
calculated as mean +/- SEM of individual experiments. * p<0.05.  

3.2.8. Complex III activity of mitochondria isolated in hypoxia versus 
normoxia 

 
Complex III in the mitochondrial ETC is one of the main producers of ROS. Since the data 

indicated less O2
.- and H2O2 levels in mitochondria isolated in 0.1% O2, complex III activity was 

determined next. Mitochondria from wild type mouse hearts were isolated in 20.9% and 0.1% 

O2 and were subsequently tested for complex III activity. It was observed that complex III 

activity is significantly lower in mitochondria isolated in hypoxia as compared to normoxia (Fig. 

21).  

 

 
Figure 21: Activity of Complex III is less in mitochondria isolated in hypoxia. 
Mitochondria isolated from wild type mouse hearts (n= 3 mice) in 20.9% O2 and 0.1% O2 were 
measured for complex III activity. Activity (%) was calculated as mean +/- SEM of individual 
experiments. * p<0.05.  
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3.2.9. ATP produced by mitochondria isolated in hypoxia versus normoxia  
 

Hypoxic isolated mitochondria possess a more reduced EGSH, less ROS production as well as 

lower complex III activity than normoxic isolated mitochondria. Therefore, I was analyzing the 

overall effects on ATP production of mitochondria isolated in 20.9% O2 versus 0.1% O2. 

Mitochondrial Ca2+ can stimulate higher ATP production. Mitochondria were isolated in 20.9% 

O2 and 0.1% O2 from wild type mouse hearts. These mitochondria were incubated in buffer 

without or with 2.5 mM succinate and 0.5 mM ADP as well as without or with 10 µM CaCl2 as 

indicted in Fig. 22 for 30 min at the respective oxygen concentrations. Following incubation, 

mitochondria were centrifuged and the supernatants were used for the ATP assay. Strikingly, 

mitochondria isolated in 0.1% O2 could produce higher ATP levels even without presence of 

any substrate like in this case succinate/ADP. In presence of succinate/ADP as well as CaCl2 

the amount of ATP produced by the mitochondria isolated in hypoxia was significantly higher 

than by mitochondria isolated in normoxia. This data set indicates that mitochondria isolated 

in hypoxia not only have reduced EGSH, produce less ROS with lower complex III activity but 

also work more efficiently with regards to ATP production than the mitochondria isolated in 

normoxia.  

 

 

Figure 22: Higher amount of ATP is produced by the mitochondria isolated in hypoxia 
as compared to mitochondria isolated in normoxia. Mitochondria were isolated from wild 
type mouse hearts (n=3 mice) in 20.9% O2 and 0.1% O2 and incubated in buffer without or with 
2.5 mM succinate and 0.5 mM ADP as well as without or with 10 µM CaCl2 as indicated for 30 
min at the respective oxygen concentrations. The supernatants from the centrifuged 
mitochondria were used for measuring the ATP levels in each condition. ATP (nM) was 
calculated as mean +/- SEM of individual experiments. * p<0.05.  
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3.2.10. Electron transport chain protein complexes are preserved in mouse 
cardiac mitochondria isolated in normoxia and hypoxia  

 
The data acquired so far indicated that mitochondria isolated in hypoxia behave differently than 

the mitochondria isolated in normoxia regarding ROS and ATP production. Therefore, I 

subsequently investigated the structural integrity with regards to ETC complexes in 

mitochondria isolated in normoxia versus hypoxia. Mitochondria from wild type mouse hearts 

were isolated in 20.9% and 0.1% O2 and lysed in solubilization buffer. Solubilized mitochondria 

from each condition were loaded on to a Blue Native PAGE gel. ETC protein complex 

structures and levels were visualized in a subsequently performed Western blot by using 

antibodies against NDUFB8, Rieske and Cox1 for complex I, III and IV, respectively. VDAC3 

was used as a protein loading control (Fig. 23a). As shown in Fig. 23b, there were no obvious 

differences detectable in the super complex formation within the different respiratory chain 

complexes as well as no difference in the ETC protein levels of the mitochondria isolated in 

normoxia versus hypoxia. These data suggest that there is nothing uncommon observed with 

respect to mitochondrial ETC complex structures in the mitochondria isolated in hypoxia. 

 
Figure 23: Mitochondria isolated in hypoxia and normoxia have similar ETC complex 
structures detected on Blue Native PAGE. Mitochondria isolated in 20.9% O2 and 0.1% O2 
from a wild type mouse hearts were solubilized in the indicated oxygen concentrations and 
loaded on to a Blue Native gel. Subsequently, Western blots were performed and (a) VDAC3 
was analyzed as protein loading control and (b) protein levels of complex I, III and IV by using 
the indicated antibodies were examined. 
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3.2.11. MCU of mouse cardiac mitochondria isolated in normoxia and hypoxia 
on a Blue Native PAGE 

 
As analyzed above, Ca2+ can trigger the mitochondria isolated in hypoxia to produce 

significantly higher ATP levels as compared to mitochondria isolated in normoxia. Based on 

this data set, I analyzed possible structural changes in the MCU complex in mitochondria 

isolated in hypoxia versus normoxia. Along the line of testing the mitochondrial ETC complexes 

isolated in normoxia and hypoxia, I tested MCU at protein level on a BN PAGE (Fig. 24). 

Mitochondria were isolated in normoxia and hypoxia from wild type mouse hearts, successively 

solubilized in the respective oxygen concentration and loaded on to the BN PAGE gel. VDAC3 

was used as a protein loading control. The MCU complex appeared in three major bands 

(around 400 kDa, around 800 kDa and >800 kDa). The higher molecular weight MCU complex 

(>880 KDa) appeared more intense in mitochondria isolated in hypoxia indicating that aside 

from the functional changes analyzed above, oxygen likewise affects the structural 

arrangement of MCU.  

 

Figure 24: Mitochondria isolated in hypoxia arrange the MCU in a high molecular weight 
supercomplex. Mitochondria isolated in 20.9% O2 and 0.1% O2 from a wild type mouse were 
solubilized in the respective oxygen concentrations and loaded on to a Blue Native gel. 
Subsequently Western blots for (a) VDAC as protein loading control and (b) MCU as the 
protein of interest were performed. 

3.3. Generation of a DAAO-HyPer mouse model 

3.3.1. DAAO-HyPer transgenic mice 
 

The third main goal of my thesis was to develop and characterize a mouse model, which would 

allow manipulating endogenous ROS levels. The main purpose behind developing this mouse 

model was to have an in vivo model which produces ROS internally in a physiologically 
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acceptable concentration. To this end, I developed a mouse model having the fusion protein 

DAAO-HyPer in the cytoplasm and nucleus respectively, expressed under the activity of the α-

MHC promoter. This transgenic mouse model comprises a fusion protein containing the 

enzyme DAAO as a H2O2 producer and HyPer as a biosensor to detect the produced H2O2. 

The DAAO-HyPer transgenic mice were generated by pronuclear blastocyst injections of the 

purified DNA into the C57BL/6N mice using standard procedures by the core facility of the 

Max-Planck Institute of Experimental Medicine, Göttingen. As shown in Fig. 25, we generated 

two independent transgenic mouse models consisting of the fusion protein located in the 

cytoplasm of the cardiomyocytes by using a nuclear export signal (NES) and in the nucleus by 

using a nuclear export signal (NLS).  

 
 

Figure 25: Schematic representation of the plasmids used for generation of cyto DAAO-
HyPer and nucleus DAAO-HyPer transgenic mouse models. (a) α-MHC promoter driven 
DAAO-HyPer biosensor was located in the cytoplasm of the cardiomyocytes by nuclear export 
signal (NES) and (b) targeted to the nucleus with the help of nuclear localization signal (NLS). 

3.3.2. Confirmation of the DAAO-HyPer transgene by genotyping 
 

In order to confirm the presence of the expected transgene in the respective mouse line, 

genotyping was performed on tail biopsies by standard PCR. The forward and the reverse 

primers were designed in such a way that the forward primer binds to the region of the NLS 

and reverse primer binds in the coding region of DAAO. This set of primers helped to detect 

the nucleus DAAO-Hyper transgene. Similarly, in the case of cyto DAAO-HyPer transgene the 

forward primer binds to the NES region and the reverse primer binds to the coding region of 

DAAO. This makes it possible to detect each transgene independently. As shown in Fig. 26, 

tail biopsies from the cytoplasm DAAO-HyPer and nucleus DAAO-Hyper mouse line showed 

a PCR product at 280 bp whereas no band at 280 bp was observed in case of a wild type 

mouse. This was also confirmed by using the original plasmid DNA as positive control. 
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Figure 26: Genotyping results confirming the presence of the transgene in DAAO-HyPer 
NES and DAAO-Hyper NLS mice. (a) A 2% agarose gel containing the PCR products 
showing the presence of nuclear export signal (NES) transgene (280 bp) in 6 different mice 
from the cyto DAAO-HyPer breeding and a positive control as a reference. (b) A 2% agarose 
gel containing the PCR products showing the presence a transgene nuclear localization signal 
(NLS) transgene (280 bp) in 5 different mice from the nucleus DAAO-HyPer breeding and a 
positive control as a reference. 

3.3.3. Selecting functionally positive founder lines for DAAO-HyPer NES and 
DAAO-HyPer NLS mice 

 
There were independent founder lines generated with the DAAO-HyPer NES and DAAO-

HyPer NLS plasmids namely DAAO-NES#1, 4, 10, 11 and DAAO-NLS#1, 3, 4, 9, 10. The first 

check point of confirming the presence of the transgene in these particular mice was performed 

by genotyping as shown above. Subsequently, from a minimum of two mice from each of the 

founder lines, cardiomyocytes were isolated by Langendorff’s perfusion system. These 

cardiomyocytes were screened for two characteristics, namely presence of a HyPer 

fluorescence signal in the respective cellular compartment and response of the DAAO enzyme 

to its substrate D-alanine. During this phase of characterization, I observed that especially in 

the cardiomyocytes isolated from the DAAO-NES mice, the HyPer was expressed; however 

the expression was so low that it could not give any visual response to D-alanine. In case of 

the DAAO-NLS mouse lines, there was only one positive founder line among all the lines 

tested, which fulfilled the above described criteria (Fig. 27). This founder line was the DAO-

NLS#9 line, which not only showed a clear presence of the HyPer signal in the nucleus but 

also DAAO enzyme responded to the substrate D-alanine.  
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Figure 27: DAO-NLS#9 was found to be the only positive founder line from all the DAAO-
NES and the DAAO-NLS mice generated. In order to characterize all the founder lines 
generated in the DAAO-HyPer NES and mito DAAO-HyPer NLS mouse lines, cardiomyocytes 
isolated from each of the lines were imaged and measured using an inverted epifluorescence 
microscope IX83 (Olympus).  

3.4. Epifluorescence microscopic image of the cardiomyocytes isolated 
from DAAO-HyPer NLS#9 

 
Cardiomyocytes were isolated from nucleus DAAO-HyPer NLS#9 mice by Langendorff’s 

perfusion system. The cardiomyocytes were imaged using an inverted epifluorescence 

microscope. HyPer probe was excited at 420 and 500 nm and the emitted light was detected 

by a CCD camera at 510 nm. As shown in Fig. 28, the cardiomyocytes possess in their nuclei 

a strong DAAO-HyPer signal both at 420 and 500 nm confirming the presence of the biosensor 

in the nucleus.  

 

 
Figure 28: Epifluorescence microscopic image of cardiomyocytes expressing DAAO-
HyPer fusion protein in the nucleus. Cardiomyocytes isolated from a nucleus DAAO-HyPer 
transgenic mouse by Langendorff´ s perfusion system were observed for the presence of the 
expected HyPer based fluorescence signal in the nucleus. Imaging was performed using the 
inverted epifluorescence microscope IX83 (Olympus). HyPer probe was excited at 420 and 
500 nm and the emitted light was detected by a CCD camera at 510 nm.                                                                      
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3.5. Echocardiography of wild type versus transgenic nucleus DAAO-HyPer 
biosensor mice 

 
The nucleus DAAO-HyPer mice are also monitored over time for their heart function by 

echocardiography. Fig. 29 indicates the FAS and the EF in transgenic mice versus wild type 

mice after every 4 weeks respectively. It can be seen that there is no reduction in the heart 

function parameters of the transgenic mice as compared to wild types. This suggests that the 

DAAO-HyPer biosensor itself is not compromising cardiac function. 

 

 

 
Figure 29: Nucleus DAAO-HyPer transgenic mice have normal heart function. Cardiac 
function of transgenic (n=3 mice, +/T) and wild type (n=5 mice, +/+) Nucleus DAAO-HyPer 
mice were recorded for heart functioning by echocardiography for every 4 weeks from 9 weeks 
of age on. Fractional Area Shortening (FAS) and Ejection Fraction (EF) of these mice were 
recorded till the age of 25 weeks. 

3.6. In vitro stimulation of cardiomyocytes isolated from nucleus DAAO-
HyPer mouse by D-alanine 

 
The presence of HyPer in the nucleus of DAAO-HyPer cardiomyocytes was confirmed through 

microscopy. However, to confirm the presence of the enzyme DAAO, cardiomyocytes were 

treated with its substrate D-alanine to activate the enzyme. Upon activation of DAAO, there 

should be a particular amount of H2O2 produced which in turn should be detectable by the 

fused HyPer probe. In order to confirm this, the following experiment was performed. 

Cardiomyocytes were isolated from transgenic nucleus DAAO-Hyper mice by Langendorff’s 

perfusion system. The cardiomyocytes were used for live time imaging using an inverted 

epifluorescence microscope. During live time imaging, the cardiomyocytes were stimulated 

with various concentrations of D-alanine ranging from 3 mM, to 10 mM. Subsequently, before 

and after addition of the respective D-alanine concentrations, the changes in the fluorescence 

intensities of the HyPer probe at 420 and 500 nm excitation wavelengths were recorded. The 

changes in the fluorescence intensities from each excitation wavelengths over the entire 
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measurement time was plotted in order to observe the effect of addition of D-alanine on the 

enzyme DAAO recorded by the HyPer probe. As shown in Fig. 30, there is a stable base line 

obtained before addition of any D-alanine, without any changes in the 420 and 500 nm 

wavelengths. Once the D-alanine is added, DAAO gets activated and produces H2O2. HyPer 

in turn measures the extent of H2O2 produced by the DAAO. A typical response after addition 

of D-alanine shows an increase in 500 nm wavelength and a decrease in 420 nm wavelength. 

The changes in the fluorescence intensities recorded by HyPer for each concentration of D-

alanine are observed to be a dose-dependent. The extent of the change in fluorescence 

intensities increases with increasing D-alanine concentrations. At the end of the stimulation 

with D-alanine, 100 µM H2O2 are added to achieve full oxidation. At this stage, the changes in 

the fluorescence intensities are observed to reach their highest extent which indicates that the 

cardiomyocytes are then fully oxidized. 

 

 
 

Figure 30: Cardiomyocytes isolated from nucleus DAAO-HyPer mice respond in a dose 
dependent manner when titrated with various D-alanine concentrations. Cardiomyocytes 
isolated from transgenic nucleus DAAO-HyPer mice hearts (n=3 mice) were treated with 10, 
8, 6, 4 and 3 mM of D-alanine respectively. The changes in fluorescence intensities of 420 and 
500 nm wavelengths were recorded using an epifluorescence microscope. After reaching a 
plateau upon treatment with D-alanine, 100 µM H2O2 was added to the cardiomyocytes to 
achieve a complete oxidation response.  

3.7. In vitro stimulation of cardiomyocytes isolated from nucleus DAAO-
HyPer mouse by D-alanine versus L-alanine 

 
As a control for activation of the DAAO enzyme, cardiomyocytes were also stimulated with 10 

mM L-alanine. Unlike D-alanine, L-alanine should not activate cardiomyocytes and there 
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should be no changes observed in the fluorescence intensities of the excitation wavelengths 

of 420 and 500 nm after addition of L-alanine. Fig. 31 shows a titration curve representing the 

normalized ratio of 420/500 nm on stimulation of cardiomyocytes with different concentration 

of D-alanine and the highest concentration of L-alanine. It’s seen that the titration curve 

obtained from the increasing concentration of D-alanine gives a dose-dependent response 

whereas, with the highest concentration of L-alanine does not induce any response. This 

confirms (i) the functionality and (ii) the specificity of the DAAO enzyme in the transgenic mice. 

 

 
 

Figure 31: Cardiomyocytes isolated from nucleus DAAO-HyPer mice respond in a dose 
dependent manner when titrated with various D-alanine concentrations but not to L-
alanine. Normalized ratio of fluorescence excitations at 500/420 nm after stimulation of 
cardiomyocytes isolated from DAAO-HyPer mice hearts with 10, 8, 6, 4 and 3 mM of D-alanine 
and 10 mM of L-alanine. 
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4. Discussion 
 

ROS when produced at low amounts in any biological system serve as regulators of various 

signaling pathways. However, if produced in high amounts they can be lethal to cells (Patel et 

al., 2018). To maintain a fine balance in the cellular redox status, cells possess an antioxidant 

defense system to buffer ROS. The Glutaredoxin (Grx) antioxidant defense system is one of 

the major system playing a role in this regard (Fernandes and Holmgren, 2004). While Grx is 

working as an antioxidant, the process shapes the EGSH inside the cell (Millis et al., 1993). In 

order to study redox signaling pathways and associated cellular functions, it is essential to 

have basic tools to precisely measure the EGSH in cells. 

A wide range of synthetic probes are commonly used for measuring several ROS produced in 

any kind of biological system. However, the use of these chemical sensors is associated with 

their own advantages and disadvantages (Kalyanaraman et al., 2012). As an attempt to 

precisely measure the EGSH, the first main objective of my thesis was to characterize a 

genetically encoded Grx1-roGFP2 redox biosensor mouse model which then was further 

utilized to study redox-dependent processes especially in cardiomyocytes.  

4.1. Ageing affects the redox compartmentalization in cardiomyocytes 

4.1.1. Redox compartmentalization in isolated cardiomyocytes from Grx1-
roGFP2 mice 
 
In the Institute of Cardiovascular Physiology, University Medical Center Göttingen, 

cardiomyocyte specific transgenic mouse models expressing the Grx1-roGFP2 redox 

biosensor were previously developed by Dr. Lija Swain (Swain et al., 2016). In these mouse 

models, the redox biosensor is located in two different compartments of the cardiomyocytes 

namely in the cytoplasm and the mitochondrial matrix. Taking advantage of these mouse 

models, I chose to characterize both mouse models with respect to their EGSH in the respective 

compartment. The biosensor comprises the fusion protein Grx1 coupled to roGFP2. This 

combination allows a real time visualization of the EGSH in the specific compartment. The probe 

has two excitation wavelengths at 405 and 488 nm (Dooley et al., 2004). Obtaining ratiometric 

values instead of a single value makes the measurements more reliable and specific. 

 

While investigating the differences of the redox status between cytoplasm and mitochondrial 

matrix of cardiomyocytes, H2O2 or diamide and DTT were used as oxidizing and reducing 

agents. Cardiomyocytes were isolated from each of the transgenic mice by Langendorff’s 

perfusion system. The isolated cardiomyocytes were imaged using epifluorescence 

microscopy. The roGFP2 probe was excited at 405 and 488 nm. It was observed that when 
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the oxidizing agent was added to the cardiomyocytes containing the biosensor in the 

cytoplasm, the cytoplasm had a very low capacity to oxidize further. Therefore, there were no 

major changes observed in the fluorescence intensities at 405 and 488 nm upon addition of 

H2O2 or diamide. However, when H2O2 or diamide were added to the cardiomyocytes 

containing the biosensor in the mitochondrial matrix, there was a significant change observed 

in the fluorescence intensities of the roGFP2 excitation wavelengths. Notably, this shows that 

the mitochondrial matrix has a higher capacity to get oxidized, which implies the original redox 

status is indeed highly reduced. On the other hand, the cytoplasm has lower capacity to oxidize 

which in turn depicts its already highly oxidized redox nature. 

 

These data signify the difference between the EGSH of the cytoplasm and the mitochondrial 

matrix in cardiomyocytes. That implies that there is a redox compartmentalization present in 

cardiomyocytes. This might justify that the two compartments have independent redox 

regulations, which are reflected by their specific cellular functions. For instance, the 

mitochondrial matrix serves as a site for the respiratory chain activity. ETC involves a fine 

tuned network between different players like NADH and NADPH as reducing equivalents, 

complex I and III as main ROS generators and GSH as a redox buffer. In contrast, the 

cytoplasm has a completely different role in the cell. 

 

The concept of cellular redox compartmentalization was also discussed earlier in other studies. 

In one of the studies which were done in yeast with the help of a peroxi-redoxin based sensor, 

it was observed that the cytosol and the mitochondrial matrix possess varied capacities to hold 

H2O2 in that compartment (Morgan et al., 2016). The authors demonstrated that the respiratory 

chain activity does not exert any effect on the cytoplasmic H2O2. In contrast, the cytoplasmic 

H2O2 does affect the respiratory chain activity in the mitochondrial matrix. A similar 

phenomenon was observed in a Drosophila study, which included the use of Grx1-roGFP2 and 

Orp1 based EGSH and H2O2 probes in the cytosol and mitochondrial matrix (Albrecht et al., 

2011). In this study, it was reported that the cytosol and the mitochondrial matrix possess EGSH 

which are independent from each other. This observation also pointed out that there was no 

notable correlation between the EGSH of the individual compartments with the corresponding 

H2O2 levels. Altogether, this signifies that the thioredoxin-coupled peroxidases metabolizing 

H2O2 and the glutaredoxin based antioxidant defense system buffering GSSG are independent. 

4.1.2. EGSH of isolated cardiomyocytes from cyto and mito Grx1-roGFP2 aged 
mice 
 
While characterizing the cyto and mito Grx1-roGFP2 mice, it was tempting to also use these 

mouse models to study the effect of aging on the EGSH of cardiomyocytes. There are many 
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studies reported regarding the correlation between redox regulation and aging (Liguori et al., 

2018). However in the past, different studies approached the question in a different manner 

and ended up in at least in part conflicting results. Some studies demonstrated that 

mitochondrial oxidative stress is beneficial and can increase the life span in mice (Hekimi, 

2013). On the contrary, some reports showcase that mitochondrial damage and dysfunction 

are observed in aged cells (Picard et al., 2010). This damage includes gradual decrease in the 

respiration capacity of the mitochondria, decreased activity of ETC complexes, oxidative 

damage and fragility of aged mitochondria. 

 

In the presented study, the Grx1-roGFP2 mouse models were used to quantitate the EGSH in 

isolated cardiomyocytes in young versus old mice. Since the biosensor is present in the 

cytoplasm and the mitochondrial matrix of the cardiomyocytes, it was possible to analyze the 

changes in the EGSH of subcellular compartments in aging mice. Cardiac function of the mice 

was recorded over time by echocardiography in order to observe a possible decrease in the 

heart function upon aging. At the age of 80 weeks the heart function was recorded to be 

declined compared to younger mice. Therefore, the 80 weeks old mice were chosen to isolate 

cardiomyocytes and measure the EGSH in each compartment. It was observed that the EGSH of 

the mitochondrial matrix does not change during aging and stays to be naturally reduced, 

similar to that of young mice. However, the EGSH of the cytoplasm gets further reduced 

compared to the cytoplasm of the cardiomyocytes of younger mice which was seen to be 

oxidized. Thus, the EGSH recorded in young mice showed a redox compartmentalization within 

the cardiomyocytes. However, with aging this seems to disappear. The impact of this loss in 

compartmentalization still needs to be analyzed in further depth, especially if this is the 

consequence or cause of aging.  

4.2. Oxygen affects the mitochondrial functionality ex vivo 
4.2.1. Redox histology of the cardiac sections using mito Grx1-roGFP2 mice  
 
As described above, the OxD and in line the EGSH of the mitochondrial matrix in isolated 

cardiomyocytes were seen to be more reduced compared to the cytoplasm. During the 

isolation process, cardiomyocytes are taken out of the tissue. In consequence cells are losing 

contact to their neighboring cells and are exposed to a different microenvironment. In order to 

mimic the physiological conditions better, the OxD of the mitochondrial matrix was therefore 

also analyzed using cardiac sections from the mito Grx1-roGFP2 mice. The OxD of the cardiac 

sections when treated with NEM was comparable to the EGSH of the mitochondrial matrix of the 

isolated cardiomyocytes. However, there was an increased oxidation observed when the 

sections were not incubated in NEM. This gives a hint that it is important for the mitochondrial 

matrix to be in its physiological environment for maintaining its reduced status. This can also 
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be related to the fact that cardiac sections cannot stay intact after the freezing process and 

this might affect cellular antioxidant mechanisms. The obtained oxidized values in the 

untreated cardiac sections might be also the result from the oxidation of the sensor itself and 

due to the fixation steps. Most interestingly, the OxD of the mitochondrial matrix in isolated 

cardiomyocytes with or without NEM treatment did not show any difference demonstrating that 

unlike cardiac sections, the intact cardiomyocytes are able to maintain their EGSH.  

4.2.2. EGSH of isolated mitochondria in normoxia versus hypoxia 
 
As discussed in the earlier section, each organelle has its own independent EGSH probably due 

to the differences in their role for cellular functions. What happens to the EGSH of the 

mitochondrial matrix when mitochondria are isolated from cardiomyocytes is not well 

understood. NEM has the ability to block thiol groups and thus can freeze their redox status. 

Using this feature of NEM, it was used to freeze the redox status of the mitochondria during 

the entire mitochondrial isolation procedure. When the EGSH of the mitochondria isolated from 

the mitoGrx1-roGFP2 mouse model were analyzed, it was observed that the EGSH of the 

mitochondria isolated without NEM was completely oxidized almost up to 100% compared to 

a roughly 45% oxidation in the intact cardiomyocytes. To find out the reason behind the change 

in the EGSH of mitochondria during isolation, in the subsequent experiments the hypothesis that 

the oxygenation plays a role, was tested. The pO2 reaching the mitochondrial matrix when 

placed inside a cell versus when being isolated in the atmospheric environment is significantly 

different (Keeley and Mann, 2018; Kurtcuoglu et al., 2015). With this thought in mind, I 

proceeded isolating mitochondria in low oxygen concentrations starting from 10% O2 and went 

to as low as 0.1% O2. Subsequently, the EGSH of mitochondria isolated in 20.9 % O2 and 0.1-

10% O2 were compared. Strikingly, the idea of molecular oxygen being involved as one of the 

factors to maintain the redox status of the mitochondrial matrix held some hidden truth with it. 

The mitochondria isolated in hypoxia had maintained the mitochondrial reduced EGSH, which 

was very close to the EGSH of the mitochondrial matrix inside the isolated cardiomyocytes. The 

mitochondrial matrix was successful in maintaining the reduced EGSH when exposed to 10% O2 

or less during the isolation process. More than 10% O2 seems to be the threshold oxygen 

concentration wherein the mitochondria cannot preserve their mitochondrial EGSH.  

 

The pO2 at ambient air (at sea level), organ and cellular levels is highly different under 

physiological conditions. Fig. 32 shows a schematic representation of the pO2 gradient from 

the atmospheric air to mitochondria inside the cell.  

 



Discussion 
 

84 
 

 
 

Figure 32: Schematic representation of the partial oxygen pressure (pO2) gradient 
experienced at sea level to mitochondria present inside a cell.  

  

The pO2 at sea level is as high as 160 mm Hg. However, when the air is inhaled and absorbed 

into the arterial blood passing via the trachea, the pO2 drops to roughly 100 mm Hg. As we go 

deep into tissue level and further to the mitochondria level, the pO2 drops as low as 1-3 mm 

Hg (Keeley and Mann, 2018; Kurtcuoglu et al., 2015). Therefore mitochondria, that are isolated 

at ambient air conditions, are exposed to a sudden rise in the oxygenation. This huge 

difference between the pO2 experienced by mitochondria isolated in normoxic conditions 

versus the mitochondria isolated in lower pO2 might explain at least in part the distinct EGSH 

measurements between mitochondria isolated in normoxia versus hypoxia. When the 

mitochondria isolated in the hypoxic conditions were allowed to reoxygenate at normoxic 

conditions, the EGSH of the mitochondria seemed to completely get oxidized. This shows that 

the EGSH of mitochondria completely switches from a reduced to an oxidized status when they 

are incubated in a higher oxygen concentration. However when the normoxic isolated 

mitochondria were incubated in hypoxic conditions for 30 minutes, the EGSH of mitochondria 

didn’t get reduced. This shows that the oxidation reaction that occurs is irreversible and once 

the GSH pool has got already oxidized cannot revert back to its reduced form.  
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4.2.3. EGSH of isolated and energized mitochondria in normoxia versus hypoxia 
 

The EGSH of isolated mitochondria where the mitochondria were stimulated with substrates 

which help them to produce more ATP was analyzed. The addition of citric acid cycle 

substrates like succinate/ADP energizes mitochondria. In a recent study, done on isolated 

mitochondria from brain and liver it was shown that when isolated mitochondria were 

stimulated with substrates like glutamate and malate along with ADP, the GSH pool was more 

reduced compared to non-energized conditions (Garcia et al., 2010). The authors could 

additionally show an increase in the NADPH/NADP ratio upon stimulation of isolated 

mitochondria with these substrates. These data suggest that addition of substrates to 

mitochondria stimulates the regulation of the mitochondrial redox status which involves 

generation of more NADPH as reducing equivalents (Blacker and Duchen, 2016). These 

reducing equivalents can be further utilized by the GSSG reductase to convert GSSG to GSH 

as well as the recovery of S-glutathionylated proteins back to their reduced form by the 

glutaredoxin system (Holmgren et al., 2005). 

 

In my experimental set up, I stimulated the mitochondria with succinate/ADP and utilized the 

mitochondria isolated from the mito Grx1-roGFP2 mouse model to visualize the changes in the 

EGSH of the energized mitochondria. It was clearly observed that the mitochondria isolated in 

normoxia when stimulated with succinate have a reduced EGSH as compared to non-energized 

mitochondria. Moreover, the stimulated mitochondria isolated in lower oxygen concentrations 

had a significantly higher reduction in the EGSH of the mitochondrial matrix than the stimulated 

mitochondria isolated in normoxia. This observation signifies the relation of a reduced EGSH to 

a higher concentration of GSH present in the environment. This high concentration could have 

most probably derived from the increase in the concentration of reducing equivalents like 

NADPH. Succinate gives rise to a higher concentration of NADH which in turn can generate 

NADPH by the nicotinamide nucleotide transhydrogenase and malic enzymes (Yap et al., 

2009). Upon re-oxygenation of the mitochondria and then stimulating with the substrates, 

mitochondria reverted back to the EGSH similar to the mitochondria isolated and stimulated in 

normoxia. This shows that the mitochondria when brought to a normoxic environment got 

oxidized compared to the hypoxic isolated mitochondria. In this condition, it can be seen that 

stimulated mitochondria were able to enhance the production of the required reducing 

equivalents however, at the same time the higher oxygen concentration disturbed their EGSH 

status.  
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4.2.4. ROS levels and complex III enzyme activity in isolated mitochondria 
isolated in 20.9% O2 versus 0.1% O2 
 
After unraveling the fact that the oxygen levels affect the EGSH of the mitochondrial matrix, the 

next obvious question coming up was about the ROS levels in mitochondria isolated in 

normoxia versus hypoxia. MitoSOX dye was used to analyze the mitochondrial •O2
− produced 

in the mitochondria isolated in normoxia and hypoxia. The positively charged, lipophilic 

triphenylphosphonium group of mitoSOX having a •O2
− sensitive dihydroethidium can enter the 

mitochondrial matrix (Roelofs et al., 2015). 

In this assay, mitochondria were also stimulated with the substrate succinate/ADP to analyze 

the difference of •O2
− produced between the energized and non-energized mitochondria. It was 

observed that the •O2
− produced by the non-stimulated mitochondria isolated in hypoxia were 

significantly lower than the •O2
− produced by non-stimulated mitochondria isolated in normoxia. 

As described above, mitochondria isolated in hypoxia have a reduced EGSH. There is certainly 

a strong correlation between the EGSH, the reducing equivalents and the produced •O2
−. This is 

line with the fact that most of the •O2
− are converted to H2O2 by SOD (Fukai and Ushio-Fukai, 

2011). GSH is a redox buffer and can quickly scavenge a portion of •O2
− as well as the 

converted H2O2 (Ighodaro and Akinloye, 2017).  

 

Other than reduced redox nature which can explain the correlation to less ROS production, 

one of the next links in the tread of events was speculated to be the complex III activity.  

Complex III is known to produce leaky electrons which in turn combine with the molecular 

oxygen to generate •O2
− (Chen et al., 2003). Keeping this in mind, the activity of complex III in 

mitochondria isolated in normoxia versus hypoxia was checked. It was observed that the 

mitochondria isolated in hypoxia have significantly lower complex III activity than the 

mitochondria isolated normoxia. Complex III transfers the electrons from CoQ to cytochrome 

c through a Q-cycle (Murphy, 2008). As lower complex III activity, as lower are the leaky 

electrons produced. In line, along with the lower •O2
− levels, a lower complex III activity was 

observed.  

 

When the •O2
− levels with or without stimulating the mitochondria with succinate/ADP were 

analyzed, there were no major differences recorded comparing mitochondria which were 

energized or non-energized. When the mitochondria are stimulated, there are theoretically 

more electrons passing through the ETC. This would also mean high chances of leaky 

electrons. However, this was not observed in the performed experiments. •O2
− are highly 

unstable. These ROS are very rapidly converted to H2O2 by SOD. This could be one of the 

reasons the MitoSOX dye could not detect any differences in the non-energized versus 

energized mitochondria. For this reason, the H2O2 levels generated in the mitochondria 
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isolated in normoxia versus hypoxia were checked by using amplex Ultrared dye. Amplex red 

can detect H2O2 using HRP as a catalyst. In this reaction, the amplex red dye is oxidized to the 

fluorescent product resorufin by H2O2 and HRP. The extent of the fluorescence depicts the 

extent of the H2O2 present (Starkov et al., 2002). As expected, there was a higher amount of 

H2O2 detected in the energized mitochondria isolated in normoxia than in the non-stimulated 

ones. On the contrary, the H2O2 levels detected in the energized and non-energized 

mitochondria isolated in hypoxia were not demonstrating any major differences. This again 

correlates to the earlier observed link between reduced EGSH, higher reducing equivalents, less 

complex III activity and thus less ROS detection in the mitochondria isolated in hypoxia.  

4.2.5. ATP production by the mitochondria isolated in normoxia versus 
hypoxia. 
 

As discussed above I could observe a strong correlation between the oxygen levels the 

mitochondria are exposed to and their functionality. However, the next question was what 

happens to the ATP produced by mitochondria isolated in normoxia versus hypoxia? Ca2+ 

enters the mitochondrial matrix through the protein complex MCU (Patron et al., 2013). Ca2+ is 

known to activate various dehydrogenases like NADH in the ETC and in turn can enhance the 

production of ATP (Territo et al., 2001). With this theory in mind, the ATP levels of the 

mitochondria isolated in normoxia and hypoxia which were also stimulated with succinate/ADP 

as well as Ca2+ were tested.  It was seen that the mitochondria isolated in normoxia which were 

stimulated with both Ca2+ and succinate/ADP produced higher amounts of ATP compared to 

non-stimulated mitochondria. However, the mitochondria isolated in hypoxia, which were 

stimulated with Ca2+ and succinate/ADP, produced higher amounts of ATP than the 

mitochondria isolated in normoxia. These data together with earlier results indicate that the 

electron flow from the mitochondria isolated in hypoxia might be very tightly and efficiently 

regulated which not only results into lower ROS production but also higher ATP production. 

This is in line with the observed lower complex III activity. The lower oxygen availability in this 

case favors the tight flow of electrons from the ETC complexes to the direct conversion of 

oxygen to water rather than compensating more electrons leaking through the complex III in 

case of higher oxygen availability and oxidized environment. Here, it should also be noted that 

the enzyme cytochrome c has a very low Km value i.e. it has a very high affinity towards 

molecular oxygen (E Gnaiger, B Lassnig, A Kuznetsov, 1998). Cytochrome c is the enzyme 

which is responsible to accept the terminal electron and transfer it to the molecular oxygen 

from ferrocytochrome c, which in turn forms the proton gradient and governs the production of 

ATP. In line with the described high oxygen affinity and according to the ATP levels observed, 

in my experimental set up, 0.1% oxygen concentration is not compromising ATP synthesis. 



Discussion 
 

88 
 

The relation between Ca2+ and ATP points towards an altered functionality of MCU in normoxia 

and hypoxia. MCU is a protein supercomplex consisting of more than one protein subunit. 

MCU core protein, MCUb, EMRE, MICU1, MICU2 are part of the protein complex (De Stefani 

et al., 2014). As described in the results, differences in the ATP production of the mitochondria 

isolated in normoxia or hypoxia upon stimulating them with Ca2+ were observed. Therefore, 

MCU supercomplex formation in normoxia and hypoxia was studied using BN-PAGE. Unlike 

SDS-PAGE, BN-PAGE does not contain any detergent which would break apart protein 

supercomplexes. It works on a principle wherein the entire protein complex gets a negative 

charge from the Coomassie blue dye and thus can migrate through the gel towards the positive 

charge until it reaches its pore size limit according to its molecular weight (Wittig et al., 2006). 

Therefore, BN-PAGE is useful to study large protein supercomplexes like in this case MCU.  

In an earlier study, there was a direct effect if oxidative stress on the MCU complex 

demonstrated (Dong et al., 2017). In this study, the authors have observed that oxidative stress 

affects one of the cysteine residues (Cys97) of the human MCU. This reactive thiol group 

undergoes S-glutathionylation upon oxidation. Due to this oxidation, MCU forms higher order 

oligomers which promote more Ca2+ uptake from MCU to the mitochondrial matrix. In my study 

while investigating the complex formation of MCU in mitochondria isolated in normoxia and 

hypoxia, there were some observable differences in the MCU complex on a BN-PAGE. It was 

seen that the higher molecular weight MCU components appear to be more in quantity in the 

mitochondria isolated in hypoxia. This might be due to the fact that there are differences 

observed in the MCU complex formation strategy in the mitochondria isolated in hypoxia. If this 

finding relates to the redox changes in the MCU protein described in the literature still needs 

to be analyzed in more detail.   

In conclusion to the second main objective of my thesis, I could demonstrate that physiological 

oxygenation does have a great impact on the EGSH of the mitochondrial matrix. Not only the 

redox homeostasis but also other factors in the mitochondria like the components of ETC and 

the overall mitochondrial productivity are affected (Fig. 33). Therefore, while performing any 

kind of studies on isolated mitochondria, it should be taken into consideration that it is highly 

important to maintain the physiological oxygen environment for proper mitochondrial function. 
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Figure 33: Schematic representation of the observed differences in the components of 
mitochondria and the mitochondrial ETC when isolated in 20.9% O2 versus 0.1% O2.   

4.3. Genetically engineered endogenous H2O2 producer and biosensor: 
DAAO-HyPer  

4.3.1. Local production of H2O2 in a cell: a necessity 
 

H2O2 is one of the ROS primarily produced inside a cell and is in contrast to other species 

relatively stable. It also has the capacity to pass through biological membranes (Winterbourn, 

2008). Like other ROS, H2O2 is also buffered by the antioxidants in the cell. Therefore, H2O2  

when produced in cells mostly acts locally (Mishina et al., 2011). In most of the studies with 
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respect to effects of H2O2 in a cell, oxidants are provided externally when mimicking increased 

H2O2 production. When the H2O2 is added externally, there is no control over how much of the 

added concentration actually enters the cell. Not only that, but also the added concentration is 

most often not in the physiological range and is flooding different subcellular compartments. In 

summary, the scientific field is lacking a technical tool to stimulate endogenous H2O2 

production in a defined manner. To fill this gap, recently the DAAO-HyPer fusion protein was 

developed. Use of this ROS producer/biosensor is mostly reported in ex vivo models so far. 

For example, DAAO was expressed in the HeLa-Kyoto and NIH-3T3 cells (Matlashov et al., 

2014). In this study, the authors could very precisely show how much H2O2 can be produced 

locally upon stimulation with varied concentrations of the DAAO substrate D-alanine. Further, 

it was demonstrated that the construct can be localized to a desired organelle and the effects 

of H2O2 can be studied in subcellular domains (Bogdanova et al., 2017).  

 

In the 3rd main objective of my thesis, my goal was to generate a transgenic mouse model 

containing the DAAO-HyPer biosensor and to perform primary characterization of the same. I 

was successful to generate one mouse line, in which DAAO is located in the nucleus of 

cardiomyocytes. The attempt to produce a transgenic mouse line, in which DAAO is located in 

the cytoplasm failed. During screening of the transgenic founder lines, my first task was to 

confirm the presence of the transgene through genotyping. Once that was confirmed, the 

cardiomyocytes were isolated and visualized which revealed the presence of a fluorescence 

signal in the HyPer excitation spectra. Isolated cardiomyocytes were also tested for the 

presence of DAAO by activating the enzyme through addition of D-alanine. In the case of the 

NES DAAO-HyPer, there were mice harboring the biosensor confirmed by genotyping. 

However, the expression was probably so less that a useful positive founder line was not 

identified. This could be due to dilution of the DAAO-HyPer in the cytosol, which regarding 

volume is larger than the nucleus. Indeed, I could successfully find one positive founder line in 

the case of NLS DAAO-HyPer mice. The cardiomyocytes isolated from these mice not only 

had a strong HyPer expression in the nucleus but also responded dose-dependently to the 

substrate D-alanine. 

 

Undoubtedly, the DAAO-HyPer biosensor can prove to hold great potential to study the effects 

of ROS for the development of cardiac dysfunctions. However, some considerations should be 

taken into account. During the catalysis of the D-alanine, DAAO also produces NH3 in equal 

amounts as H2O2. NH3 is present in the human body in higher amounts than the amount 

produced by the DAAO. Thus, increase in ammonia to an extent of the small concentration 

produced by DAAO should not have any significant effect. Also any cellular effect that is 

supposed to be observed by ammonia depends on high ammonia concentrations, i.e. >0.5 mM 
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as compared to the effect given by the amount of H2O2 being produced by DAAO (Braissant, 

2015). It’s also known that D-amino acids are present in some mammalian systems in minor 

amounts (Sakaue et al., 2017). The role of these endogenous amino acids is still not fully clear. 

However, the amount of D-alanine required for the activation of DAAO is quite high as 

compared to the endogenous concentration and the experiments can be controlled by adding 

L-alanine, which is not stimulating the DAAO reaction.  

4.3.2. Role of H2O2 in development of cardiac dysfunctions 
 
As described earlier, there was a study performed on the role of H2O2 for the development of 

pathophysiological conditions in the rat heart where the authors used a DAAO-Hyper construct 

(Steinhorn et al., 2018). DAAO-HyPer was expressed in the heart by AAV mediated 

transduction. The fusion protein was not-targeted to a specific subcellular compartment in the 

cardiomyocytes. In this study, it was observed that the generation of H2O2 induces a dilated 

cardiomyopathy with high systolic dysfunction. Various oxidative stress markers like the targets 

of the transcription factors Nrf2 and NFκB were tested. Upon in vitro activation of DAAO in 

isolated cardiomyocytes, these genes were found to have a high expression level. When the 

DAAO was activated in vivo, the animals developed systolic dysfunction with a reduced EF 

within two weeks of D-alanine treatment. Thus, this biosensor proved to be a useful in vivo tool 

to study the effects of ROS on cardiac dysfunctions.  

 

In case of the mouse model generated during this thesis project, the DAAO is expressed in the 

nucleus of cardiomyocytes. The very obvious question to target with this mouse model is the 

source and nature of ROS for heart failure development. In this regard, it is important to note 

that in the newly generated cardiomyocyte-specific DAAO-HyPer mice the fusion protein is 

targeted to the nucleus. Histone deacytylases (HDACs) are enzymes which deacytylase 

histones around the DNA and in turn lead to transcriptional repression (Grozinger and 

Schreiber, 2002). Upon hypertrophic stimuli the deacetylases are phosphorylated to phospho-

HDACs in cardiomyocytes. This phosphorylation takes place by HDAC kinase on the 

conserved serine residues of HDAC (Vega et al., 2004). The phosphorylation induces the 

translocation of HDAC from the nucleus to the cytoplasm thus releasing the negative 

constraints on hypertrophy related transcription factors like MEF2 and NFAT, finally leading to 

hypertrophy. However, other than phosphorylating the serine residues, HDAC can also 

translocate from the nucleus by oxidation of specific cysteine residues. For example, it was 

shown that a ROS generating-hypertrophy stimulus like phenylephrine can oxidize HDAC4 at 

Cys274/Cys276 and in turn thioredoxin 1 (Trx1) facilitates the reduction of the cysteine 

residues attenuating cardiac hypertrophy (Ago et al., 2008). In another study, it was 
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demonstrated that phenylephrine induced ROS generation in the nucleus might be sourced by 

NOX4 localized in the nuclear membrane which finally leads to upregulation of hypertrophic 

stimuli (Matsushima et al., 2013). Thus there is some correlation shown with cardiac 

hypertrophy and nuclear derived ROS already. However, in this model external stimuli to 

activate NOX and generate ROS were used. The newly generated αMHC-nucleus DAAO-

HyPer transgenic mice allow a controlled endogenous H2O2 production. Therefore, it is 

definitely tempting in a follow up project to study the effects of H2O2 produced in the nucleus 

of cardiomyocytes and the consequences for the development of cardiac hypertrophy.  
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5. Conclusion and outlook 
 

In the first part of my thesis, I characterized the transgenic cardiomyocyte-specific mouse 

model Grx1-roGFP2. These biosensor mice were subsequently used to study the effects of 

aging on the EGSH. Since the biosensor was present in two different compartments in the cell, 

they were used to analyze the EGSH in both in two independent mouse lines. During this study, 

the first striking observation was that the cytoplasm and the mitochondrial matrix of the 

cardiomyocytes possess a completely independent EGSH from each other. The mitochondrial 

matrix is highly reduced whereas the cytoplasm of the cardiomyocytes is more oxidized. 

However, during aging it was observed that this compartmentalization disappears. The 

mitochondrial matrix stays reduced but the cytoplasm gets as reduced as the mitochondrial 

matrix.  

In the second main part of my thesis, I utilized the mito Grx1-roGFP2 transgenic mouse model 

to study the importance of maintaining the physiological oxygenation in order to preserve the 

redox status of the mitochondrial matrix. Besides the redox status, the functionality of the 

mitochondria when isolated in an oxygen variable environment was also characterized. The 

obtained data helped to unravel that the physiological oxygen concentration is highly essential 

for the mitochondria to maintain their reduced redox status. Not only the redox nature but also 

the other mitochondrial functionality parameters like the ETC, ROS and ATP levels are all 

interlinked. In this line it was found that the oxygen concentration plays an important role to 

maintain all these parameters intact and to play their functional roles as necessary. During the 

course of this investigation, a possible future interesting study component was detected which 

is the MCU. The preliminary set of experiments point out that there are differences in the MCU 

complex formation in normoxia versus hypoxia.  

In the third part of my thesis, a novel mouse model specific to cardiomyocytes called the 

DAAO-HyPer mouse model was generated. In this mouse model, two independent mouse 

lines: DAAO-HyPer (NES) and DAAO-Hyper (NLS) were generated. In the characterization 

process, I could find one positive founder line from the DAAO-HyPer NLS mouse line. The 

checkpoints to confirm this mouse line as a positive founder line included: presence of the 

transgene confirmed through genotyping, visualization of a HyPer based fluorescent signal in 

the nucleus by using epifluorescence microscopy, testing the response of the HyPer after 

activation of DAAO enzyme by the substrate D-alanine. Along with the characterization, the 

heart function of the transgenic mice were also recorded over time by echocardiography. This 

helped to verify that the heart function of the transgenic mice was not affected by the transgene 

itself. The DAAO-Hyper (NLS) mouse model holds a huge potential to study the direct link 

between ROS generated in the nucleus and cardiac dysfunctions.  
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