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“Um homem precisa viajar. Por sua conta, não por meio de histórias, imagens, livros 
ou TV. Precisa viajar por si, com seus olhos e pés, para entender o que é seu. Para um 
dia plantar as suas próprias árvores e dar-lhes valor. Conhecer o frio para desfrutar o 
calor. E o oposto. Sentir a distância e o desabrigo para estar bem sob o próprio teto. 
Um homem precisa viajar para lugares que não conhece para quebrar essa arrogância 
que nos faz ver o mundo como o imaginamos, e não simplesmente como é ou pode ser. 
Que nos faz professores e doutores do que não vimos, quando deveríamos ser alunos, e 
simplesmente ir ver”  

Amyr Klink 
 
 
"A man needs to travel. On your own, not through stories, pictures, books or TV. You 
need to travel by yourself, with your eyes and feet, to understand what is yours. To 
one day plant your own trees and give them value. Knowing the cold to enjoy the heat. 
And the opposite. To feel the distance and the unsettled, to be well under the own 
home. A man must travel to places he does not know to break this arrogance that 
makes us see the world as we imagine it, not simply as it is or can be. That makes us 
teachers and doctors of what we did not see, when we should be students, and simply 
go and see" 
 

Amyr Klink 
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ABSTRACT 

In the past decades Campylobacter has raised as the main cause of bacterial 

gastrointestinal infection worldwide. Campylobacter causes gastrointestinal infection 

that can vary from asymptomatic, mild to a severe diarrhea. Annually, approximately 

246,000 confirmed cases of Campylobacter enteritis are reported in Europe, and 74,000 

just in Germany (EFSA 2017). C. jejuni and C. coli are the main species related to 

human infections (Dasti et al. 2010). Consequently, C. jejuni is recognized as an 

important public health issue which pronounces the importance of pathogenesis studies 

of this organism. In this study, novel pathogenicity factors involved in the ability of C. 

jejuni to adapt to the bile acid rich environment of the human gut are aimed to be 

identified by the generation of knockout mutants. Candidate genes were mainly chosen 

from proteomics data generated in our lab that resulted in the identification of 

differentially expressed proteins after exposure to sublethal concentrations of seven bile 

acids (Masanta et al. 2018). Ten knockout mutants were generated by the insertion of 

a kanamycin resistance cassette into the target gene via homologous recombination. 

Various phenotypic parameters were assessed such as adhesion and invasion into two 

different host cell types, soft agar motility, autoagglutination, biofilm formation and 

stress resistance. Surprisingly, from our ten knockout mutants six of them showed a 

strong coupled phenotype with an unstable motility behavior, an increased adhesion 

and invasion to Caco2 cell and increased biofilm formation. These phenotypic changes 

can be interpreted as adaptation processes that prepare the bacteria to better survive 

stress situations by hiding inside host cells or by biofilm formation. Although the six 

genes are involved in completely different cellular processes, their deletion seems to 

mimic at least in parts the effects seen after bile acid exposure, which might be 

explained by the activation of a common genetic program that prepares the organism 

to stress situations. 
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1. Introduction 

1.1 Overview 

Foodborne diseases are infections of the gastrointestinal (GI) tract usually caused by 

food or beverages containing pathogenic microorganisms or chemicals (Elgamoudi 

2016). It is considered an important health issue and its economic and social impact 

remains unknown. Jones et al. (2008) estimate that in the last 60 years 30% of all 

infections were foodborne. The World Health Organization (WHO 2018) estimates 

annually an incidence of 4.5 billion cases of human diarrheal disease, of which 1.8 

million are fatal. 

Campylobacter has emerged in latest years as the principal cause of foodborne diarrheal 

disease in humans worldwide (Nguyen et al. 2012). Annually, 20 to 150 cases of 

Campylobacteriosis per 100.000 individuals have been reported in developed countries, 

which is above the reported levels for other foodborne pathogens such as E. coli and 

Salmonella sp. (Olson et al. 2008).  

In the past years, the incidence of cases of Campylobacter infections have increased in 

industrialized countries. In developing countries (considered as endemic regions) 

epidemiological data are still incomplete.  

The transmission route of Campylobacter is assumed to be foodborne via undercooked 

meat (mainly poultry and turkey), raw or unpasteurized milk and its products, but 

also through contaminated water and ice (EFSA 2017; WHO 2018).  

Symptoms of Campylobacteriosis are watery to bloody diarrhea, with fever, nausea, 

vomiting and abdominal pain. It can be fatal to vulnerable individuals (Trigui et al. 

2017). Of the 26 species of Campylobacter described, C. jejuni and C. coli cause more 

than 90% of all human Campylobacteriosis cases (Dasti et al. 2010).  
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1.2 Campylobacter characteristics 

Campylobacter is a Gram-negative bacterium with spiral, curved or rod-shaped format. 

Campylobacter is capnophilic and an obligate microaerophilic (microaerobic) organism, 

surviving and growing best in an environment characterized by a low oxygen 

concentration of 5% O2, 10% CO2 and 85% N2. However, there are four species (C. 

gracilis, C. hyointestinalis, C. showae, and C. sputorum bv. faecalis) that grow under 

anaerobic conditions (Lastovica, On, and Zhang 2014). The tolerance for oxygen (3 – 

5%) can differ between species. Most Campylobacter strains do not grow in presence of 

normal atmospheric conditions, however there are a few strains that may grow under 

oxygen rich conditions. Campylobacter jejuni, for instance, has the ability to adapt to 

aerobic environments due to its capacity to form biofilms. 

A typical Campylobacter is non-fermentative, catalase-negative and oxidase-positive 

(Lawson et al. 2001). Numerous studies have demonstrated that C. jejuni is sensitive 

to acids such as formic, acetic, ascorbic and lactic acids (Chaveerach et al. 2002).  

 

 
Table 1. Phenotypic characteristics of C. jejuni. Adapted from Levin (2007). 

Gram negative  Nitrate reduced to nitrite (+)  
Growth at 42°C  Nitrite reduced (-)  
Microaerophilic  DNAse production +  
Catalase production (+)  Cephalothin resistant  
Urease production (-)  Nalidixic acid sensitive  
Hippurate utilization (+)  Cytochrome oxidase positive  
Sensitive to nalidixic acid  No growth below 30°C  
Carbohydrates not utilized  No growth with 3.5% NaCl  
Alk. phosphatase production (+)  Reduction of triphenyltetrazolium chloride  
Citrate utilization (+)  H2S production (-)  
Succinate utilization (+)  Indoxyl acetate utilization (+) 
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Campylobacter belongs to the Family Campylobacteraceae, in the Order 

Campylobacterales, Class Epsilonproteobacteria and Phylum Proteobacteria. There are 

currently 26 recognized species, with 9 subspecies (Fitzgerald 2015; Table 2).  

 

Table 2. Currently described Campylobacter species (Fitzgerald 2015). 

Campylobacter Species Known Sources Human Disease 
Associated 

C. jejuni subsp. jejuni Poultry, cattle, sheep, wild 
birds, pigs 

Gastroenteritis, meningitis, 
septicemia, Guillain-Barre 
syndrome 

C. jejuni subsp. doylei Humans  Gastroenteritis, septicemia 
C. coli Pigs, poultry, sheep, wild 

birds, cattle  
Gastroenteritis, septicemia, 
meningitis 

C. lari subsp. lari Wild birds, poultry, dogs, 
cats  

Gastroenteritis, septicemia 

C. lari subsp. concheus Shellfish  Gastroenteritis 
C. fetus subsp. fetus Cattle, sheep, reptiles  Gastroenteritis, septicemia 
C. fetus subsp. venerealis Cattle, sheep  Septicemia 
C. fetus subsp. testudium Reptiles  Gastroenteritis, cellulitis 
C. upsaliensis Dogs, cats  Gastroenteritis, septicemia 
C. helveticus Cats, dogs  Gastroenteritis 
C. insulaenigrae Marine mammals Gastroenteritis 
C. peloridis Shellfish Gastroenteritis 
C. hyointestinalis subsp. 
hyointestinalis 

Pigs, cattle Gastroenteritis 

C. hyointestinalis subsp. 
lawsonii 

Pigs None at present 

C. lanienae Cattle, pigs Gastroenteritis 
C. sputorum bv sputorum Cattle, pigs Abscesses, gastroenteritis 
C. sputorum bv faecalis Sheep, bulls None at present 
C. sputorum bv 
paraureolyticus 

Cattle Gastroenteritis 

C. concisus Humans, domestic pets Gastroenteritis, periodontal 
disease, abscesses 

C. curvus Humans Periodontal disease, 
gastroenteritis 

C. rectus Humans Periodontal disease, abscesses 
C. showae Humans Periodontal disease, abscesses 
C. ureolyticus Humans Gastroenteritis, septicemia, 

soft tissue abscesses 
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C. gracilis Humans Periodontal disease, abscesses 
C. hominis Humans None at present 
C. mucosalis Pigs None at present 
C. avium Poultry None at present 
C. canadensis Whooping cranes None at present 
C. cuniculorum Rabbits None at present 
C. subantarticus Gray-headed albatrosses, 

black-browed albatrosses, 
gentoo penguins 

None at present 

C. volucris Black-headed gulls None at present 
C. corcagiensis Lion-tailed macaques None at present 
C. iguaniorum Reptiles None at present 

 

 

Campylobacter species are approximately 0.2 to 0.8 by 0.5 to 5 µm in size, non-spore-

forming and usually motile. Depending on the species, a single polar flagellum, a bipolar 

flagella (Figure 1) or no flagellum is present (Kaakoush et al. 2015). Campylobacter 

gracilis, for instance, is non-motile, while Campylobacter showae possesses multiple 

flagella (Facciolà et al. 2017).  

Its spiral shape morphology seems to be an important adaptation that allows 

Campylobacter species to swim through viscous environments such as the mucus in the 

intestinal epithelia of the host (Ferrero and Lee 1988). Under unfavorable conditions 

such as normal oxygen conditions (~20% O2), low nutrient availability, temperature or 

stationary phase, Campylobacter jejuni is observed to change its morphology to a 

coccoid form. This coccoid shape has been suggested to be a viable non-culturable form 

of Campylobacter jejuni. (Levin 2007; Oh, McMullen, and Jeon 2015). 

The growth and survival of Campylobacter depends on different factors such as oxygen 

concentration, temperature, pH and availability of water. Campylobacter is able to 

grow at pH 6.5 to 7.5 and its optimal growth temperature is between 30°C to 42°C. 

Campylobacter does not multiply at temperatures under 30°C, but can survive for more 

than 80 days at 4°C in water (Trigui et al. 2015) or up to 7 months in food stored at 

4°C (Lázaro et al. 1999). 
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Figure 1. Scanning electron micrograph of Campylobacter jejuni with the flagella in both ends. 
Bar = 500nm. Figure reproduced from Shigematsu et al. (1998).  

 

The size of the C. jejuni genome is ~1.6 megabases with hypervariable regions. C. 

jejuni is naturally competent, leading to recombination among strains, which permits 

the generation of even more diversity (Young, Davis, and DiRita 2007). Also, the lack 

of DNA-repair genes can partially explain the presence of hypervariable sequences in 

C. jejuni. Simple sequence repeats (SSR) in the Campylobacter genome offer rapid 

adaptation to different environments and provide advantage during colonization of 

intestinal cells by avoiding the host immune system (Parkhill et al. 2000; Bayliss et al. 

2012).  

 

1.3 Campylobacter in a historical view 

In 1886, Theodore Escherich described for the first time a motile spiral organism 

isolated from infants’ stool. At the time, he called it “cholera infantum”. He published 

articles in the Weekly Munich Medical Review describing the spiral-shaped bacteria 
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found in 35 children suffering from intestinal disease. From 1906 to 1949, 

Campylobacter was isolated from fetal tissues, cattle, pigs and human blood and 

remained classified as a Vibrio-like bacterium (Butzler 2004; Skirrow 2006). However, 

in 1963 based on the microaerophilic growth requirements and the nonfermentative 

metabolism, and in order to distinguish it from Vibrio spp, the name Vibrio fetus was 

changed to “Campylobacter fetus” by Sebald and Véron, forming the type species of 

this genus (Olson et al. 2008; Kaakoush et al. 2015; S.L.W. On 2001). The name 

Campylobacter originates from the Greek words for curved (Campylo) rods (bacter).  

Since Campylobacter fetus was already recognized with a pathogenic role in abortion 

and infectious infertility in animals, in the 70’s a study by Butzler (1973) increased the 

attention on Campylobacter of both clinicians and veterinarians. Butzler demonstrated 

their high prevalence in human diarrhea using a filtration technique to isolate C. jejuni 

from human diarrheal stool (Butzler 2004). In 1977, Skirrow proposed a simpler method 

of culturing Campylobacter by adding the faeces directly onto blood agar containing 

polymyxin, trimethoprim and vancomycin (Skirrow 1977). Further studies improved 

the understanding in growth characteristics and isolation methods, and as a 

consequence, 12 new species or subspecies were described in a variety of different 

diseases and reservoirs from 1974 to 1988 (Vandamme and Goossens 1992).  

Later, in 2000, Parkhill et al. published the first genome sequence of Campylobacter 

jejuni (NCTC11168) and described its circular chromosome of 1,641,481 base pairs with 

a low G+C of 30%. It was predicted to encode 1,654 proteins and 54 stable RNA 

species. An important finding was the hypervariable regions that might be essential for 

survival of the organism in the host and environment (Parkhill et al. 2000). 

Intragenomic mechanisms as well as genetic exchange between strains account for this 

large genetic variation (Boer et al. 2002).  
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1.4 Campylobacter infection 

Campylobacteriosis is considered the most frequent reported bacterial infectious disease 

in the European Union (EU) since 2005 (Kaakoush et al. 2015; EFSA 2017) and 

represents almost 70% of all reported cases of zoonoses (Figure 2). 

 

Figure 2. Reported numbers and notification rates of human zoonoses in Europe, 2016. 
Adapted from EFSA, 2017. 

 
In humans, mainly two species are known to cause disease. C. jejuni and C. coli account 

for around 90% of all human infections (Dasti et al. 2010). Campylobacteriosis is 

characterized by the colonization of the small intestine and the infection can variate 

from asymptomatic to severe enteritis (Trigui et al. 2015). 
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1.4.1 Clinical manifestations of Campylobacteriosis and 

complications 

Campylobacter infection usually is accompanied by acute abdominal pain (which can 

be so intense that it mimics acute appendicitis), nausea, high fever and general malaise 

(Blaser and Engberg 2008). Acute infection with Campylobacter manifests as a severe 

inflammatory diarrheal disease. The first symptoms start to appear within 2 to 3 days 

after the exposure and are gradually followed by mild or severe diarrhea. Symptoms 

can last up to 2 weeks (Young, Davis, and DiRita 2007). The disease is self-limiting, 

and the illness resolves gradually over a week without specific treatment (Blaser and 

Engberg 2008). However, in very serious cases, treatment with erythromycin and 

ciprofloxacin is recommended for adults and treatment with only erythromycin for 

children (Eiland and Jenkins 2008). Death in association with Campylobacteriosis is 

very rare, but cases in immunocompromised patients and very young children can be 

fatal (WHO 2018). 

Campylobacter can also cause post-infection complications such as (i) Guillain-Barré 

Syndrome (GBS) and Miller Fish Syndrome (MFS), (ii) Reactive arthritis and (iii) 

Inflammatory bowel disease.  

Guillain Barré syndrome is an autoimmune disease in which the immune system attacks 

the nervous system and it can lead to nerve inflammation causing muscle weakness and 

paralysis. Campylobacter jejuni is considered the most common pathogenic factor that 

triggers GBS (Ang et al. 2001). Some C. jejuni strains produce different surface 

lipopolysaccharides (LPS) that mimic the gangliosides that are present in human 

peripheral nerves and may act as an antigenic factor that induces GBS (Aspinall et al. 

1994; Islam, Abraham, and Moran 2012). Miller Fisher syndrome (MFS) is considered 

a rare variant of GBS, differing in the nerve groups that are firstly affected by paralysis. 

In MFS, the patients are first affected in the head, while paralysis in the other forms 

of GBS typically start in the legs (Kozminski 2008).  
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Reactive arthritis is characterized by painful joints as a result from immune associated 

inflammation after C. jejuni infection (Colosimo et al. 2015). Inflammatory bowel 

disease (IBD) is characterized by gut inflammation that is also triggered by previous 

infection of C. jejuni or other bacteria species and viruses (Kalischuk and Buret 2010). 

Campylobacter is also found with a high prevalence in patients with Crohn’s disease, a 

type of IBD (Mann and Saeed 2012). 

 

1.4.2 Epidemiology 

The genus Campylobacter includes 26 species (Table 2). Among them, the most 

prevalent in human infections are C. jejuni and C. coli. Other species are considered 

“emerging” such as C. concisus, C. upsaliensis, C. ureolyticus, C. hyointestinalis and 

C. sputorum, which have been associated with human (gastroenteritis and 

periodontitis) and animal infections (Liu et al. 2018).  

In the past decade the incidence of Campylobacteriosis was rising worldwide. The 

number of cases increased in USA, Europe and Australia. Campylobacter is considered 

the most common cause of bacterial gastroenteritis worldwide. In USA, it is estimated 

to cause 1.3 million illnesses, 13,240 hospitalizations and 119 deaths each year (Scallan 

et al. 2011).  

In developing countries, Campylobacteriosis is considered endemic, and asymptomatic 

infections are more common than in industrialized countries (Havelaar et al. 2009).  

According to the European Food Safety Authority (EFSA 2017), since 2005 

Campylobacter was the most reported gastrointestinal pathogen in the EU. In 2016, 

the European countries with highest notification rates were Czech Republic (228.2 cases 

per 100,000), Slovakia (140.5) and Sweden (111.9) (EFSA 2017). The lowest rates were 

reported by Bulgaria, Cyprus and Latvia (≤ 4.6 per 100,000). In Germany the annual 

incidences of Campylobacteriosis between 2005 and 2011 ranged from 53.4 to 81.4 cases 

per 100,000 persons (Figure 3) (Kaakoush et al. 2015).  
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Figure 3. Incidence and prevalence of Campylobacteriosis (C. jejuni and C. coli). Data of 
epidemiological information from United Kingdom, Denmark, Germany, Norway, Poland, The 
Netherlands, Israel, China, Japan, India, Australia, New Zealand, Madagascar, Malawi, Kenya, 
Guatemala, Peru, Mexico, USA and Canada. Image reproduced from Kaakoush et al. (2015).  

 
 
In 2013, Nielsen et al. indicated that infections with C. jejuni and C. coli usually occur 

in all ages, however, they are more prevalent in young children (1 to 4 years old) and 

in young adults (15 to 24 years old) than in other age groups (Kaakoush et al. 2015). 

Nevertheless, the frequency of cases among people of 60 years and older seems to be 

increasing (Fitzgerald 2015).  

In general, Campylobacter infections are domestically acquired, although 

Campylobacter is also a main cause of travel-related diarrhea. According to EFSA 

(2017), in most European countries, more than 90% of cases were considered to be of 

domestic origin. Despite of that, the Nordic countries presented the highest travel-

related cases – Finland (65.4%), Iceland (51.4%) and Norway (53.5%) (EFSA 2017).  
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In Europe and northern countries, the Campylobacteriosis cases are increased during 

the summer months. A sharp peak of infection with C. jejuni and C. coli is present in 

the summer months, and since 2011 a small annual peak during winter (January) is 

also observed (EFSA 2017). Epidemiology of Campylobacter infections in tropical and 

temperate countries is very different (Lastovica, On, and Zhang 2014). In tropical 

countries outbreaks are uncommon, although in temperate countries they are more 

frequent. Infections occur during the year (no seasonality) and affect mainly very young 

children in tropical countries. In those countries, repetitive infections may result in 

acquired immunity, what explains the asymptomatic infections observed in adults in 

developing countries (Glass et al. 1983). Nonetheless, in temperate countries such as 

USA and European countries, infection is observed in both adults and children, mostly 

during the summer months and is usually symptomatic (Glass et al. 1983; Lastovica, 

On, and Zhang 2014). 

The actual number of cases is believed to be 9 million every year in Europe. The costs 

of the disease to the public health systems and the lost productivity in the EU is 

estimated to be around €2.4 billion a year (EFSA 2019) and in USA $1.3 billion. Several 

countries are investing in developing strategies to control Campylobacter dissemination. 

 

1.4.3 Reservoirs and transmission of Campylobacter 

Campylobacter species can be found in many different environmental niches such as 

soil, water sources, manure and are mainly found as commensals, colonizing many 

warm-blooded animals. In those animals, Campylobacter does not cause any symptoms 

and is disseminated via their feces (Labbé and García 2013). 

Campylobacter is prevalent in animals such as poultry, turkey, cattle, sheep, pigs and 

is also found in their food products (e.g. dairy products and meat). Moreover, it is also 

present in pets such as dogs and cats (Acke 2018), wild birds and it was also found in 

shellfish and reptiles (Fitzgerald 2015; WHO 2018).  
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Figure 4. Environmental reservoirs, routes of transmission and clinical manifestation of 
Campylobacter species. Mainly, Campylobacteriosis can be transmitted by the consumption of 
untreated water, contaminated animal food and by person-to-person. Abbreviations: IBD, 
inflammatory bowel diseases; IBS, irritable bowel syndrome. Question marks indicate 
conditions for which a role for Campylobacter is implicated but not certain. Image reproduced 
from Kaakoush et al. (2015). 

 
 
The warm-blooded farm animals are considered the major reservoir of Campylobacter, 

and chickens are the main source of infection in humans (Figure 4). C. jejuni is the 

most predominant infectious agent in poultry and about 108 colony forming units 

(CFU) of C. jejuni can be found per gram of the cecum content of chickens (Rosenquist 

et al. 2006). 

In humans, the transmission of Campylobacter occurs by consumption of contaminated 

meat and unpasteurized milk, handling of raw meat, consumption of non-treated water 

and direct contact with contaminated animals (Kaakoush et al. 2015; EFSA 2017). 

Even though direct infection from person-to-person may occur, this transmission route 

has no epidemiological relevance.   
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To avoid Campylobacter dissemination, preventive measures should be taken, such as 

improvement of strategies to reduce cross-contamination during the food processing 

and slaughter, and treatment of processed food by pasteurization or high hydrostatic 

pressure. Another important strategy is by public education of food handling and 

cooking, and awareness of possible contamination and persistence of Campylobacter in 

the kitchen surfaces (Humphrey et al. 2001).  

 

1.4.4 Treatment and antibiotic resistance 

Campylobacter infections are normally self-limited, and the treatment involves 

rehydration to replace the electrolytes and fluids lost as a result of the diarrhea and/or 

vomiting (Mackenzie and Barnes 1988). Usually an antibiotic treatment is not required, 

but in severe cases or when the patient is immunocompromised or pregnant, drugs of 

choice include macrolides (e.g. erythromycin) and fluoroquinolones (e.g. ciprofloxacin) 

(Mamelli et al. 2003).  

Antimicrobial resistance among pathogens is a global threat and Campylobacter are 

not an exception. In the past decades, a rising number of resistant Campylobacter 

isolates have developed resistance to macrolides and fluoroquinolones, but also to 

aminoglycosides and beta-lactams (Wieczorek and Osek 2013). The over use of 

antibiotics in the human population and use of antimicrobials in veterinary medicine 

and animal production can be correlated to the increasing number of resistant isolates 

of Campylobacter (Iovine 2013). As an alternative treatment, gentamicin and third-

generation cephalosporins can be used (Aarestrup and Engberg 2001). However, C. 

jejuni and C. coli are nearly all resistant to penicillin, cephalosporins, rifampicin, 

vancomycin, sulfamethoxazole and trimethoprim (Silva et al. 2011). 
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1.5 Pathogenesis and virulence factors associated with C. jejuni 

To initiate an infection, C. jejuni must first circumvent the host barriers in the GI 

tract (mechanical or immunological), besides the bile acid action. The curved 

morphology and high motility allow C. jejuni to pass across the mucus layer of the GI 

tract, which is the first line of defense (Jowiya 2013). The minimum infective dose of 

C. jejuni is considered low, approximately 500 CFU (Black et al. 1988), when compared 

to another Gram-negative enteric pathogen, Vibrio cholerae which requires between 

103 to 108 cells for effective infection in humans. Once this first barrier has been 

penetrated, Campylobacter is able to interact with epithelial cells using adherence 

mechanisms and can proceed with the infection (Jowiya 2013).  

The molecular pathogenesis and virulence of Campylobacter infections are still not well 

understood (Elgamoudi 2016). Virulence mechanisms of C. jejuni are up-regulated 

during the colonization in the intestine of the host (Tu, McGuckin, and Mendz 2008; 

Hermans et al. 2011). Sodium deoxycholate (DCA) stimulates the production of 

Campylobacter invasion antigens, the Cia proteins (Malik-Kale, Parker, and Konkel 

2008). Campylobacter infection seems to vary depending on several factors such as 

genetics of the bacteria, infection dose and the gut microbiome composition (Dicksved 

et al. 2014; Kampmann et al. 2016).  

The mice model can be a suitable colonization model; however, the colonization is 

atypical.  It is believed that the sporadic colonization in mice is due to the resistance 

provided by the commensal microbiome of the mice (Bereswill et al. 2011). To overcome 

this problem, Bereswill et al. (2011) proposed a novel C. jejuni infection model with 

gnotobiotic mice previously treated with antibiotics to eradicate the original intestinal 

flora and replacing it with human gut flora. This model can be used to have a better 

idea of the pathogenesis of Campylobacter and the impact of gut flora and the host 

immune status. 

The main factors associated with the pathogenicity of Campylobacter are motility and 

flagella-mediated protein secretion, adhesion to and invasion of host cells, chemotaxis, 
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capsule formation, secretion of toxin, and biofilm formation (Bolton 2015; Stephen L. 

W. On 2013). The role of the most considerably studied pathogenicity factors of 

Campylobacter jejuni will be considered below. 

 

1.5.1 Flagellum 

Campylobacter is a motile bacterium whose motility is enabled by its polar or bipolar 

unsheathed flagella. Flagella are long filaments that can be up to 20 μm long and can 

rotate at speeds in excess of 15,000 rpm (Rossez et al. 2015). C. jejuni’s motility enables 

the bacteria to penetrate the mucus layer in the intestinal epithelium and colonize the 

host. The flagellum allows the bacteria to move quickly (up to 75 µm/s) in a viscous 

environment and it is estimated to have a torque of 3600pN/nm, which is more than 

twice compared to Salmonella cells (Szymanski et al. 1995; Lertsethtakarn, Ottemann, 

and Hendrixson 2011; Beeby et al. 2016). 

The flagella are required not only for the motility, but also play an important role in 

chemotaxis, invasion, autoagglutination, colonization and biofilm formation (Guerry 

2007). Flagella are also essential in the secretion of flagellar proteins and Campylobacter 

invasion antigens (Cia) through its type III secretion system-like in the base of the 

flagellar structure (Michael E. Konkel et al. 2004).  

The C. jejuni flagella are composed of proteins encoded by two genes flaA and flaB, 

that possess similar sequences (Alm, Guerry, and Trust 1993). Mutations in the 

flagellin flaA gene result in a very short non-functional flagellum and leads to loss in 

colonization capacity (Wassenaar, Bleumink-Pluym, and van der Zeijst 1991). FlaB is 

involved in the flagella export apparatus and flagella assembly. FlaB deficient C. jejuni 

are non-motile (Matz et al. 2002) 

To create a functional flagellum, C. jejuni needs to regulate the transcription of flaA 

and flaB genes using two alternative sigma factors, s28 (FliA) and s54 (RpoN), 

respectively. In C. jejuni, these two alternative sigma factors regulate the expression 

of the flagellar genes that encode components of the flagellar organelle (Hendrixson, 
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Akerley, and DiRita 2001a). The s28 is required in the transcription of a small subset 

of genes, including the expression of flaA, which encode the major flagellin and other 

filament genes (Hendrixson and DiRita 2003; Carrillo et al. 2004; Wösten, Wagenaar, 

and Putten 2004). s54 is required for transcription of genes encoding the flagellar rod, 

basal body and hook components, and also a minor flagellin (flaB) (Jagannathan, 

Constantinidou, and Penn 2001; Hendrixson, Akerley, and DiRita 2001).  

A functional flagellum enables the organism to swim in direction of a favorable 

environment, a process known as chemotaxis.  

 

1.5.2 Chemotaxis 

Chemotaxis is a mechanism by which motile bacteria either swim towards to a preferred 

environment (attractants) or and away from unfavorable environments (repellents). It 

plays an important role in commensal and pathogenic organisms (Young, Davis, and 

DiRita 2007). Chemotaxis has been involved in colonization and invasion of the host 

and is implicated in the virulence of pathogenic bacteria (Aihara et al. 2014; Bolton 

2015). This process is important to the ability of C. jejuni to adapt to different 

environments and respond to them.  

The typical chemotaxis requirements in C. jejuni are the chemoreceptors, chemosensory 

signal-transduction system and the flagellar apparatus (Zautner et al. 2012; Z. Li et al. 

2014). C. jejuni is able to change directions depending on the presence of extracellular 

signals, such as sugars, amino acids or bile acids, by clockwise and counter-clockwise 

flagellar rotation. These extracellular signals are sensed by chemoreceptors named 

methyl-accepting chemotaxis proteins (MCP) or also termed transducer-like protein – 

Tlps (Z. Li et al. 2014). Mutations in Tlps such as docB and docC reduced the capacity 

of colonization in the chicken gut (Hermans et al. 2011). Chemotaxis in C. jejuni is 

controlled by a complex interplay of 13, or more, different chemoreceptors (Tlps) and 

two aerotaxis genes - Aer (Lübke et al. 2018). The chemoreceptors are divided into 

three subtypes: A, B and C (Table 3).  
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Table 3. Classification of C. jejuni Tlp-chemoreceptor (Zautner et al. 2012; Mund et al. 
2016; Korolik 2019).  

Group types Tlp name Name Encoded gene 

Group A 

Tlp1 CcaA cj1506 

Tlp2  cj0144 

Tlp3 CcmL cj1564 

Tlp4 docC cj0262 

Tlp7 mc*  cjj81176-0975 

Tlp7 m*  cj0952c 

Tlp10 docB cj0019 

Group B Tlp9 CetA cj1190 
  CetB/Aer2  cj1189 
  Aer1 cj1191 

Group C 

Tlp5  cj0246 

Tlp6  cj0448 

Tlp7 c*  cj0951c 

Tlp8  cj1110 
* Tlp7 mc: Membrane-associated and cytoplasmic domains (C. jejuni 81-176 and 81116) 
Tlp7 m: Membrane-associated partial receptor (C. jejuni NCTC 11168 and B2) 
Tlp7 c: cytoplasmic partial receptor (C. jejuni NCTC 11168 and B2). 
 
 
 
The group A Tlps are integral membrane proteins and include Tlp1, Tlp2, Tlp3, Tlp4, 

Tlp7, Tlp10 and Tlp11. Tlp7 is also classified into group C. The signal domains of 

Tlp2, Tlp3 and Tlp4 are identical (Parkhill et al. 2000). The Tlp group B is only 

represented by Tlp9 (CetA) that mediates energy taxis which leads C. jejuni to high 

redox potentials and favorable conditions for energy production (Mund et al. 2016). 

Two cytoplasmic ligand-binding proteins, CetB (or Aer2) and CetC (or Aer1) are also 

classified in group B (Figure 5) (Zautner et al. 2012; Mund et al. 2016).  
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Figure 5. Domain organization of C. jejuni Tlp-chemoreceptor groups. Group A: receptors 
are anchored by membrane-spanning regions in the inner and also in the outer membrane, have 
a periplasmic sensory and a cytoplasmic signalling domain. Group B: represented by Tlp9 
(CetA), anchored in the inner membrane, interacts with CetB triggering fumarate and 
pyruvate signals (Hendrixson, Akerley, and DiRita 2001). Group C: consist of a single 
cytoplasmic signaling domain. Figure reproduced from Zautner et al. (2012) 
 

 

The group C includes Tlp5, Tlp6, Tlp7 and Tlp8, that are cytoplasmic proteins 

involved in detection of cytosolic signals (Lübke et al. 2018; Zautner et al. 2012). In a 

recent study from Lübke et al. (2018), a novel chemoreceptor gene, tlp12 was described 

to encode Tlp12 chemoreceptor for glutamate and pyruvate recognition; and was 

present in 29.5% of the investigated C. jejuni strains.  

 

1.5.3 Adhesion and Invasion 

Once Campylobacter is ingested by the host, the organism passes through the GI tract, 

penetrates the mucus layer and finally colonizes its specific niche, the small intestine, 

by attaching or adhering to the epithelial cells. The interaction of C. jejuni and the 

host cells is a complex process involving bacterial cell surface structures and the host 

cell receptors (Rubinchik, Seddon, and Karlyshev 2012). Adhesion and subsequent 

invasion protect the organism from humoral immunity (Monteville, Yoon, and Konkel 

2003).  

Basically, bacteria such as Salmonella and Escherichia coli have two types of adherence 

structures: fimbriae or pili, and afimbrial adhesins. Unlike these organisms, 
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Campylobacter adhesion is not mediated by fimbriae or pili (Parkhill et al. 2000; 

Nougayrède, Fernandes, and Donnenberg 2003). 

Tissue culture studies recognized proteins involved in C. jejuni adhesion to host cells 

such as periplasmic binding proteins Peb1 and Peb4 (Pei and Blaser 1993; Rathbun 

and Thompson 2009), Campylobacter adhesion to fibronectin, CadF (Michael E. Konkel 

et al. 2005), a second fibronectin-like binding protein, FlpA (Flanagan et al. 2009), a 

surface lipoprotein, JlpA (Jin et al. 2001), another lipoprotein, CapA (Ashgar et al. 

2007), a major outer membrane protein, MOMP (Moser, Schroeder, and Salnikow 1997; 

Flanagan et al. 2009) and also LOS has been shown to have an important role in C. 

jejuni adhesion (Richards et al. 2013). 

Once Campylobacter is able to adhere to the intestinal epithelial cells, its next step is 

invasion. Invasion is an important process in the internalization and translocation of 

the organism through the epithelial cell barrier of the small intestine and the main 

cause of enteritis (van Spreeuwel et al. 1985). In vitro studies of Campylobacter invasion 

into host cells have shown very low invasion rates compared to those found in clinical 

cases in humans (Friis et al. 2005). This might be because the high levels of oxygen, 

lacking mucus or other components in in vitro experiments influence the invasion 

process.   

For a successful invasion in the host, Campylobacter secretes Cia proteins into the 

target cell by the type III secretion system-like present in the flagella. The Cia proteins 

were proven to be synthetized and secreted by C. jejuni upon co-culture with epithelial 

cells and are required for maximal cell invasion (Christensen, Pacheco, and Konkel 

2009).  
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Figure 6. Hypothetical models of invasion mechanism in C. jejuni. Figure reproduced from 
(Backert and Hofreuter 2013) 

 

Normally, healthy intestinal cells have apical basal polarity, junctional complexes and 

apical microvilli. C. jejuni can invade both polarized cells, such Caco-2 cells, and non-

polarized cells, such INT407 cells (Russell and Blake 1994; Monteville, Yoon, and 

Konkel 2003). In order to gain access to submucosal tissues and to trigger tissue damage 

and finally cause intestinal diseases, bacteria have to cross the epithelial barrier of the 

intestine. Two main transmigration routes are described for C. jejuni: i) transcellular 

route and ii) paracellular route (Figure 6). In the transcellular route, the bacteria enter 

through the apical part of the epithelial cell and egress through the basal side. Bacteria 

that utilize the paracellular route cross the epithelial barrier over the tight and 

adherence junctions between the epithelial cells (M. E. Konkel et al. 1992; Bouwman, 

Niewold, and van Putten 2013). Once in the lamina propria, Campylobacter can reach 

different organs such as mesenteric lymph nodes, liver, spleen and vessels (Backert et 

al. 2013).  

Other proposed invasion mechanisms for entry into host cells could be initiated by two 

classical signaling pathways: i) “zipper” and ii) “trigger” mechanisms (Ó Cróinín and 

Backert 2012). In the “zipper” mechanism, bacterial surface proteins (adhesins and 

invasins) bind to one or more specific host cell receptor and induce cytoskeleton and 
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membrane rearrangement followed by internalization, as reported for Yersinia or 

Listeria species (Ó Cróinín and Backert 2012). In the “trigger” mechanism the type III 

and type IV secretion systems of the bacterium inject effectors which mimic or hijack 

specific host cell factors to trigger bacterial internalization, as described in Salmonella 

and Shigella species (Ó Cróinín and Backert 2012). 

In a recent review, Ó Cróinín and Backert (2012) present C. jejuni invasion by 

fibronectin/integrin interaction and also with the help of caveolae structures as the 

main invasion mechanisms. However, they do not disregard the possibility that C. 

jejuni may possess a novel entry mechanism that shares features of both “zipper” and 

“trigger” mechanisms, as already observed in a high resolution EM investigation 

(Boehm et al. 2011). 

 

1.6 Biofilm formation 

A biofilm is usually defined by a consortium of microorganisms (monospecies or 

multispecies) in which the cells stick to each other and often live on inert surfaces or 

interfaces (Kaakoush et al. 2015). These adhered cells become surrounded within a 

slimy and self-produced extracellular matrix that is composed of extracellular polymeric 

substances (EPS). The cells inside the biofilm generate the EPS constituents, that are 

usually a polymeric accumulation of polysaccharides (exopolysaccharides), proteins, 

glycoproteins, glycolipids, extracellular DNA (e-DNA) and humic substances 

(Flemming, Neu, and Wozniak 2007) as shown in Table 4. The biofilm plays a crucial 

role in bacterial survival in adverse environmental conditions, increase their 

antimicrobial resistance, offer protection against host defense mechanisms and serve as 

reservoirs for microbial contamination.  
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Table 4. Biofilm composition 

Components Percentage of matrix 

Microbial cells 2 – 5% 

DNA and RNA < 1 – 2%  

Polysaccharides 1 – 2% 

Proteins < 1 – 2% (includes enzymes) 

Water Up to 97% 

 

Biofilms have been associated in a wide variety of microbial infections and are 

considered a significant problem for public health due to their resistance to antibiotics 

and their disease association with medical devices or other devices used in the health-

care environment that are contaminated by biofilms (Jamal et al. 2015; Donlan 2001). 

Some characteristics of biofilms can be critical in the infection process such as: i) 

detachment of cells or aggregates may result in bloodstream or urinary tract infections, 

ii) cells may exchange resistance plasmids inside biofilms, iii) cells in biofilms present 

reduced susceptibility to antimicrobial agents, iv) biofilm-associated Gram-negative 

bacteria may produce endotoxins, and v) biofilms are resistant to host immune system 

clearance (Donlan 2002).  

Biofilm formation is a complex process, in which the cells transform from planktonic 

to a sessile mode of growth in a dynamic process involving four stages: i) initial 

attachment to surface, ii) microcolony formation, iii) three dimensional structure 

formation and maturation and iv) detachment (Figure 7) (Jamal et al. 2015; Rendueles 

and Ghigo 2012).  
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Figure 7. Representation of Biofilm formation. The biofilm formation starts with a reversible 
attachment of planktonic cells to the surface (1). In (2) the bacteria form a monolayer with an 
irreversible attachment by producing extracellular matrix. Then, multilayers are produced 
forming the microcolony (3), followed by later stages, when the biofilm is mature (4). This 
mature form is characteristic by its “mushroom” structures due to polysaccharides. Finally, in 
the mature biofilm can have some cells detached and dispersed in the environment (5). Figure 
adapted from (Vasudevan 2014).  

 
 

1.6.1 Biofilm regulation 

Biofilm formation is regulated by genetic and chemical signals from the environment. 

Current knowledge about biofilm regulation points to quorum sensing (QS), bis-(3′-5′)-

cyclic dimeric guanosine monophosphate (c-di-GMP) and small RNA (sRNA) as the 

leading mechanisms of bacterial biofilm regulation, especially in Gram-negative species 

(Boyd and O’Toole 2012; Fazli et al. 2014).  

Quorum sensing is a commonly conserved and important bacterial communication 

mechanism that regulates gene expression in response to fluctuations of self-generated 

signal molecules called autoinducers (Wolska et al. 2016). When the threshold 

stimulatory concentration of autoinducer is reached, a sharp alteration of gene 

expression occurs. Quorum sensing can regulate more than 10% of the total bacterial 

genome in Pseudomonas aeruginosa (Wagner et al. 2003). Functions such as biofilm 
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formation can be regulated by QS in the middle to late stages of the biofilm multilayer 

formation or dispersion, when the number of cells within the structure is high enough 

to sense the autoinducer.  

Cyclic di-GMP is the second messenger of a signal transduction systems found in a 

variety of bacteria species. C-di-GMP binds to different cellular receptors and controls 

bacterial transcription, activity of enzymes and large structures (Hengge 2009). This 

second messenger plays an important role for the bacterial switch between been motile 

planktonic or in sedentary biofilm state (Hengge 2009).  

C-di-GMP holds an important function in the three dimensional biofilm structure such 

as in the synthesis of exopolysaccharides, adhesins and adhesive pili, secretion of eDNA, 

and also controls the motility and cell death (Wolska et al. 2016). In general, c-di-GMP 

in high levels can reduce the expression and/or activity of flagella and stimulate the 

production of many adhesins and biofilm associated exopolysaccharides (EPS) (Hengge 

2009).  

In a recent review, Srivastava and Waters (2012) presented a direct correlation between 

QS and c-di-GMP. QS is important in sensing changes in bacterial population density 

and c-di-GMP is important in sensing environmental conditions. Both integrate 

external inputs to allow the bacteria to adapt and respond to different conditions. 

Srivastava and Waters (2012) proposed the integration of QS into a broader c-di-GMP 

signaling pathway. 

Finally, the third biofilm regulation process makes use of small non-coding RNA. These 

have been proposed to participate in post-transcriptional regulation in bacteria, been 

involved in metabolic processes, pathogenesis and stress adaptation (Wolska et al. 

2016). The sRNAs have their activity on various targets directly or indirectly linked 

to the biofilm formation. The sRNA can act as a core regulatory pathway, regulating 

the motility and the matrix production, and also influencing the biofilm formation and 

the outer membrane constitution (Van Puyvelde, Steenackers, and Vanderleyden 

2013). Regulation through sRNA can occur by two mechanisms, (i) protein binding 
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and (ii) acting by base-pairing with other RNA (Chambers and Sauer 2013). In the 

protein-binding mechanism, the sRNA antagonize and sequester their related 

regulatory protein by mimicking several mRNA protein binding sequences (Chambers 

and Sauer 2013). The base-pairing mechanism occurs in cis or trans based on the base-

pairing interactions and their location in the bacterial genome relative to their mRNA 

target (Chambers and Sauer 2013). sRNA shares extensive complementarity to their 

target (cis) and trans-encoded RNA shares limited complementarity in the base-pairing 

interaction (Chambers and Sauer 2013). The interaction between sRNA and their 

targets leads to changes in mRNA translation and stability, influencing the target gene 

expression (Chambers and Sauer 2013). 

 

1.6.2 Campylobacter biofilms 

Campylobacter is characterized by its low requirement of oxygen to survive. In general, 

Campylobacter does not grow in normal aerobic environment, but is still widespread in 

different environments. It has been proposed that Campylobacter survives and 

maintains itself in the environment with oxygen tension by forming biofilms (Joshua 

2006). The biofilm allows Campylobacter to survive up to twice as long under normal 

atmospheric conditions (Asakura et al. 2007). In this mode of growth, the bacteria is 

protected from stressful environmental conditions such high level of oxygen, but also 

UV radiation, predation and desiccation (Reuter et al. 2010).  

Campylobacter jejuni have been proposed to form different types of biofilm. Biofilm 

can form in aggregates attached to a surface, aggregates of bacteria floating in a liquid 

are commonly termed as flocs, and pellicles are aggregates of bacterial cells formed at 

the air-liquid interface (Joshua 2006). These three forms of biofilm formation resemble 

each other when observed by scanning electron microscopy (Joshua 2006). 

The molecular regulation of C. jejuni biofilm formation is incompletely understood. 

Some genes are known to be implicated in the biofilm formation and includes genes 

that are responsible for motility (flaA) (Reuter et al. 2010), quorum sensing (luxS) 
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(Plummer 2012), cell adhesion (cadF), and genes involved in stress response (cbrA, 

dnaJ, htrA and sodB) (Oh and Jeon 2014). There is evidence that biofilm formation is 

flagella-mediated. Motile and flagellated strains present a higher level of biofilm 

formation compared to non-motile and non-flagellate Campylobacter. Indeed, flaAB 

mutation presented reduced biofilm formation in C. jejuni (Reeser et al. 2007). 

Similarly, strains defective in flagellar modification (cj1337) and assembly (fliS) adhere 

to glass surfaces poorly (Joshua 2006). A proteomic study revealed the role of the 

motility-associated proteins in biofilm formation, including FlaA, FlaB, FliD, FlgG, 

and FlgG2 (Kalmokoff et al. 2006).  

C. jejuni possesses a quorum sensing related gene, luxS, that is involved in the 

interaction of cells, development and detachment of biofilms, but also in motility, 

flagellar expression, autoagglutination, oxidative stress and animal colonization 

(Plummer 2012). The markers involved in the stress response play a crucial role to 

increase the ability to form sessile cells (Oh and Jeon 2014).  

Campylobacter biofilm ability improves the survival in stressful environments and 

promotes bacterial dispersion mainly in food processing environments (Reuter et al. 

2010). A potential environmental stress for C. jejuni is the bile found in the GI tract 

during infection.   

 

1.7 Bile acids 

Once C. jejuni colonizes the small intestine of humans and animals, the bacteria 

ingested into the host will enter the small intestine where C. jejuni inevitably will 

encounter high concentration of bile acids.  

Bile acids are steroid acids normally found in the bile of mammals, but also in other 

vertebrates. In humans, the bile acids consist of primary bile acids (cholic acid – CA, 

and Chenodeoxycholic acid – CDCA) and secondary bile acids (deoxycholic acid – 

DCA, lithocholic acid – LCA, taurocheneoxycholic acid – TCA, and glycocholic acid - 

GCA). The primary bile acids are synthetized from the cholesterol in the liver, and the 
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secondary bile acids are derived from the primary bile acids as a result of bacterial 

action in the colon (Hofmann 1999).  

 

 Function 

Bile acids comprises about 80% of the organic content found in the bile. Bile acids are 

the final products of cholesterol metabolism in animals. Their main function is to act 

as emulsifying agents in the intestines to help in the digestion and absorption of fatty 

acids, monoacylglycerols and other fatty products (T. Li and Chiang 2009). Bile acids 

are produced and secreted continuously by liver cells, and further metabolism in the 

liver results in the formation of a conjugated form. They are conjugated via a bond 

between the carboxyl group of the bile acid and an amino group of glycine or taurine, 

resulting in the bile salt. These bile salts are then stored in the gallbladder, where they 

remain until they are needed in the duodenum during the intake of food (Hundt and 

John 2018).  

It has been demonstrated that conjugated bile acids also have a second function, to 

inhibit the bacterial overgrowth in the small intestine as a result of its cytotoxic and 

bacteriostatic properties (Sung, Shaffer, and Costerton 1993). The conjugated bile acids 

regulate expression of host genes whose products promote innate defense against 

luminal bacteria (Hofmann and Eckmann 2006). 

 

 Bile acids and enterobacteria 

The human gut carries a very densely populated and complex microbiome. The colon 

contains 2 to 5 x1011 bacteria per gram of wet weight feces (Ridlon et al. 2014). To 

maintain the balance between an acceptable number of the intestinal flora and a 

healthy gut, it is believed that bile salts have a potent antibacterial activity. This 

antibacterial activity, for instance, is what keeps the biliary tract sterile (Sung, Shaffer, 

and Costerton 1993). 
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In the gut environment, enteropathogenic microorganisms must overcome many 

challenges in order to effectively establish infection in the small intestine. These 

challenges comprise the conditions found in the host GI tract, such as low pH in the 

stomach, low iron accessibility, high concentration of bile salts in the small intestine, 

host immune response and an already established commensal microbiome consisting of 

a large number of different species (Sistrunk et al. 2016). Despite the many defense 

mechanisms of the GI tract, enteric pathogens have evolved to survive in those 

conditions and to effectively colonize and start infection in the host (Sistrunk et al. 

2016). Some pathogenic species have developed resistance mechanisms against the bile 

acids for long-term survival in the host. In fact, some bacteria use bile acids as signal 

to regulate virulence gene expression to either start colonization of the host or maintain 

the infection (Sistrunk et al. 2016). Studies have demonstrated that gut pathogens 

react to bile by adapting their protein synthesis, while mutations in genes encoding 

lipopolysaccharide, efflux pumps, regulatory networks and porins were found to 

affect bile resistance in enteric pathogens (Negretti et al. 2017). 

 

 Mode of action of bile acids in C. jejuni 

Similar to other enteric pathogens, C. jejuni responds to the presence of bile acids by 

expressing virulence factors that allow the bacteria to survive and colonize the host. 

The relationship between C. jejuni and bile is complex. Campylobacter induce many 

physiological changes to adapt to the stress provoked by bile acids. 

The CmeABC multidrug efflux pump in C. jejuni is known to increase the ability of 

the bacteria to survive in presence of antimicrobials, but also bile salts. This system is 

encoded by the cmeABC operon, that encodes a periplasmic protein, CmeA, an inner 

membrane transporter, CmeB and an outer membrane protein, CmeC (Sistrunk et al. 

2016). This operon is also controlled by a TetR family repressor, CmeR. The presence 

of bile salts appear to inhibit the CmeR-cmeABC interaction, which results in increased 

expression of the efflux pump (Sistrunk et al. 2016). 
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Another mechanism involved in the C. jejuni bile response are the two-component 

regulatory systems (TCRSs) that sense and respond to bile salts (Sistrunk et al. 2016). 

In a study from 2005, Raphael et al. identified an orphan response regulator protein 

(Campylobacter bile resistance regulator, CbrR) that is involved in the bile salt 

response altering gene expression to cope with changing conditions. However, the CbrR-

binding partners and the exact mechanism of bile resistance are still unknown.   

Campylobacter jejuni also increases the expression of virulence factors after bile 

exposure, such as Cia proteins, biofilm formation and motility (Malik-Kale, Parker, 

and Konkel 2008; Sistrunk et al. 2016).  

During the infection process, C. jejuni secrets a set of proteins directly into the 

epithelial cell cytoplasm through a flagellar apparatus. These proteins are known as 

Campylobacter invasive antigens (Cia). The presence of Cia in the host results in 

membrane modifications in signaling and intracellular trafficking, and consequently in 

increased bacterial uptake (Malik-Kale, Parker, and Konkel 2008; Sistrunk et al. 2016). 

C. jejuni have been found to secrete Cia proteins in response to several stimulatory 

substances, including the bile acids: deoxycholate, cholate and chenodeoxycholate 

(Michael E. Konkel et al. 1999; Rivera-Amill et al. 2001). In 2008, Malik-Kale et al. 

demonstrated that DCA alters the invasion kinetics, changing the required time for C. 

jejuni to be internalized from 3 hours to 15 minutes. The secretion of the Cia proteins 

is dependent on a functional flagellum, demonstrating that the flagella has a dual 

function in motility and as a type III secretion system (Malik-Kale, Parker, and Konkel 

2008).  

Two other virulence mechanisms in Campylobacter jejuni that might be regulated by 

bile acid exposure are the motility and biofilm formation. One study from Svensson 

(2014), recognized that flagella are essential to improve C. jejuni biofilm formation, 

and that bile salts exposure enhances this process. It was also observed that the 

expression of flagellin A is increased when C. jejuni is exposed to bile components, 

suggesting that they may induce motility and act as chemotactic attractants (Sistrunk 
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et al. 2016). In contrast, a study from Malik-Kale (2008) observed that DCA exposure 

did not alter the motility of C. jejuni in vitro, and that DCA did not affect adherence 

to epithelial cells. The divergent findings are observed for bile salt-dependent adherence 

to epithelial cells and motility. It is known that C. jejuni reacts to bile by adapting 

their protein synthesis to be able to survive in and colonize the host, however, future 

research is needed to elucidate the inevitable relationship between C. jejuni and bile 

exposure. 

 

 Proteomic response of C. jejuni to bile acid exposure 

Masanta et al. (2018) compared the individual response towards seven different bile 

acids on a proteomic level. In the study C. jejuni 81-176 was exposed to a sublethal 

concentration of cholic acid (CA), chenodeoxycholic acid (CDCA), taurocholic acid 

(TCA), glycocholic acid (GCA), deoxycholic acid (DCA), lithocholic acid (LCA) and 

ursodeoxycholic acid (UDCA). It was determined that DCA, CDCA and CA presented 

the lowest IC50, which corresponds to a toxic effect in C. jejuni. DCA, CDCA and CA 

are known to be the main representative proportions of bile acid in the intestine of 

humans (Baars et al. 2015) and presented the  strongest effect in Masanta study. 

The analysis by proteome profiling by label-free mass spectrometry (SWATH-MS) 

revealed a strong effect for DCA and CDCA in the expression level of proteins involved 

in multidrug efflux transporter CmeABC, by downregulating the upstream regulatory 

(repressor) system CmR and CbrR. Consequently, the correlation of low IC50 to 

increased CmeABC expression matches to a direct measure of susceptibility of C. jejuni 

to bile acid stress (Masanta et al. 2018).  

The flagella are involved in other functions besides motility, such as adherence, Cia 

proteins secretion or chemotaxis. The bile acid also leads to differentially expressed 

proteins involved in the flagellar structures. FlaA/B/C, FliE and MotA were up-

regulated, while motor proteins FliF, FliM, FilY, and FliL were down-regulated. This 
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could have a potential influence on the expression of other virulence factors and on C. 

jejuni adaptation processes.  

Masanta et al. (2018) also demonstrated a substantial downregulation of basic 

biosynthetic pathways, such as nucleotide-, protein-, lipid-, and carbohydrate-

biosynthesis, additionally to a general reduction of the machinery associated in 

translation. To summarize, bile acids induce a complex physiological response that 

involve different functional mechanisms to adapt the organism to the environment.  

 

1.8 Aims of the project 

Campylobacter has merged as the main bacterial cause of gastroenteritis in the world. 

Its prevalence is considered high among the population and its possible complications 

make it very important in a socio-economic perspective. Campylobacter is present in 

different environments and is easily transmitted to humans through contaminated food 

and water. Campylobacter can persist in the environment and inside the host. The 

molecular mechanisms of pathogenicity and the organism adaptation to unfavorable 

environments such as bile exposure is incompletely understood. Previous pathogenic 

studies revealed that bile exposure acts as a stimulus for the regulation of many 

virulence mechanisms in C. jejuni. 

Novel pathogenicity factors involved in the ability of C. jejuni to adapt to the bile acid 

rich environment of the human gut are aimed to be identified by the generation of 

knockout mutants. Candidate genes were mainly chosen from proteomics data 

generated on the previous study from Masanta (2018) that resulted in the identification 

of differentially expressed proteins after exposure to sublethal concentrations of bile 

acids.  

The aim of the present study therefore was to further elucidate if these genes might be 

involved in either adaptation processes that result in increased stress resistance and/or 

play a role for the virulence of the pathogen, e.g. in motility, adhesion to, invasion and 

biofilm formation. 
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2.  Material and Methods 

2.1. Bacterial culture conditions, supplements and storage  

2.1.1  Bacterial culture conditions 

The strains of E. coli were grown on Luria-Bertani agar (LB) (Table 5) at 37°C. When 

needed, the LB plates were supplemented with ampicillin (Table 6).  

The strains of C. jejuni were routinely grown on Columbia blood agar (Biomerieux) 

plates and incubated at 42°C for 48 hours, or at 37°C for 17 hours. The C. jejuni plates 

were grown under microaerophilic conditions generated by Gas-pack CampyGen 2.5L 

(Thermo Scientific) with 85 % N2, 10 % CO2, 5% O2 in an anaerobic jar (Anaerocult). 

When needed, the plates were supplemented with kanamycin or chloramphenicol 

(Table 6). 

 

Table 5. List of media used in this study 

Media Constituents Manufacturer 

Luria-Bertani 
(LB) 

10g/L Tryptone 
5g/L Yeast extract 

5g/L NaCl 
up to 1L H2O 
15g/L Agar 

BD 
BD 

Roth 
 

Carl Roth GmbH 

Mueller Hinton 
(MH) broth 

22g/L MH Sigma-Aldrich 

MH soft agar 
(0.25% and 0.4%) 

22g/L MH 
4g/L agar 

Sigma-Aldrich 
Carl Roth GmbH 

SOC medium 2% vegetable peptone, 0.5% yeast 
extract, 10mM NaCl, 2.5mM KCl, 

10mM MgCl2, 10mM MgSO4, 
20mM Glucose. 

New England BioLabs 

Brucella soft agar 
(0.4%) 

28g/L Brucella 
4g/L agar 

BD 
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All media were prepared according to manufacturer’s recommendations and 

sterilization was performed at standard conditions, 121°C for 20 min unless stated 

otherwise. Media was dispensed into sterile petri dishes in a laminar flow cabinet till 

get solidified and were stored at 5°C for up to one month.  

 

2.1.2  Supplements 

When needed, the medium was supplemented with antibiotic at the concentration 

shown in the Table 6. The sterile LB medium was cooled to approximately 50°C before 

adding antibiotics. The media was mixed thoroughly and dispensed into petri dishes 

under sterile conditions. 

The selective Columbia blood agar (COS) plates were prepared adding 1 mL of diluted 

antibiotic (chloramphenicol or kanamycin, Table 6) and dried under sterile conditions 

in laminar flow for 30 - 45 minutes to get the entire antibiotic absorbed by the media.  

 

Table 6. Antibiotics used for selective media 

 
Antibiotic 

 
Solvent 

Stock 
concentration 

(mg/mL) 

Final 
concentration 

(μg/mL) 
Ampicillin ddH2O 50 50 
Chloramphenicol 96% EtOH 12.5 12.5 
Kanamycin ddH2O 50 50 

 

 

 Storage 

The antibiotic stock solution was prepared with ddH2O and filtered through a 0.45 μm 

filter. All aliquots were stored at -20°C.  

The bacterial strains were stored in glycerol stock solution at -80°C. The E. coli strains 

were grown in 5 mL LB Broth, overnight at 37°C. Afterwards, the E. coli was  

transferred to cryo-tubes with final concentration of 30% (v/v) glycerol and stored at 

-80°C. C. jejuni colonies were removed directly from plates using a loop of 10 μl and 
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resuspended in a cryogenic storage beads (Viabank, Abtek Biological Ltd, England) 

and stored at -80°C. 

 

2.2. Cultivation of eukaryotic cells 

2.2.1 Eukaryotic cell line 

 
Table 7. Eukaryotic cell line used in this study 

Cell line Reference 
Human colon carcinoma Caco2-cell (Fogh, Wright, and Loveless 1977) 
COS-7 (Gluzman 1981) 

 
 
 

2.2.2 Cultivation 

The Caco2 (Cancer coli-2) and COS-7 cell lines were maintained in 75 cm2 cell culture 

flasks in a total volume of 30 ml of Dulbecco Minimal Essential Medium (DMEM) 

supplemented with 1x Non Essential Amino acids (NEA), 10% (v/v) heat inactivated 

Fetal Calf Serum (FCS) and 100 U/ml penicillin and 100 μg/ml streptomycin (Table 

8).  

The cells were maintained in a cell culture incubator with humidified atmosphere with 

5% CO2 at 37°C. The cells were split regularly when reaching 80% confluence by 

removing the old medium, washing the monolayer with 5 ml EDTA, removing the cells 

with a short incubation with 1 ml of Trypsin at 37°C, and finally resuspending the cells 

in 10 ml DMEM (Lea 2015). The resuspension then can be diluted in a new flask (with 

30 ml DMEM supplemented) for maintaining the cells culture and/or counted to start 

an experiment.  
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Table 8. Eukaryotic cell line media 

Media Constituents Manufacturer 
Dulbecco's Modified 

Eagle's medium 
(DMEM) 

+10% Fetal Calf Serum (FCS) 
+1x Non-essential amino acid 

(100x) 
+ 1% Penicillin/Streptomycin 
(10.000U/ml/10.000 μg/ml) 

Biochrom 
Merck 
Merck 

 

Hank's Balanced 
Salt Solution 

(HBSS) 

With sodium bicarbonate, liquid, 
sterile-filtered, suitable for cell 

culture 

Sigma-Aldrich 

 

 

2.2.3 Storage 

The cells were grown in 175 cm2 flasks until 80% confluence, harvested as usual and 

resuspended in 10 ml. The resuspended cells were mixed with freezing solution that 

consists of 20% of DMSO and 80% DMEM. The mixture with cells were then split into 

1.5 ml cryovials and frozen at -80°C.  

 

2.3. Bacterial strains and vectors 

2.3.1 Bacterial strains 

The knockout mutants generated in this study were generated in the reference strain 

Campylobacter jejuni subsp. jejuni 81-176. 

 

Table 9. Bacterial strains used in this study 
Bacterial strain Ref Seq/Genotype Reference 

C. jejuni 81-176 NC_008787.1 (Korlath et al. 1985) 

C. jejuni 81-176 Δinv Δinv::kanR This study 

C. jejuni 81-176 Δinv-complement Δinv::kanRΩinv This study 

C. jejuni 81-176 Δsas Δsas::kanR This study 

C. jejuni 81-176 Δhad2 Δhad2::kanR This study 
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C. jejuni 81-176 Δhad2-complement Δhad2::kanRΩhad2 This study 

C. jejuni 81-176 Δmaf Δmaf::kanR This study 

C. jejuni 81-176 Δtgt Δtgt::kanR This study 

C. jejuni 81-176 Δtgt-complement Δtgt::kanRΩtgt This study 

C. jejuni 81-176 ΔtyrA ΔtyrA::kanR This study 

C. jejuni 81-176 ΔtyrA-complement ΔtyrA::kanRΩtyrA This study 

C. jejuni 81-176 ΔyajQ ΔyajQ::kanR This study 

C. jejuni 81-176 ΔyajQ-complement ΔyajQ::kanRΩyajQ This study 

C. jejuni 81-176 Δhip82 Δhip82::kanR This study 

C. jejuni 81-176 Δhip82-complement Δhip82::kanRΩhip82 This study 

C. jejuni 81-176 Δhip12 Δhip12::kanR This study 

C. jejuni 81-176 Δhip12-complement Δhip12::kanRΩhip12 This study 

C. jejuni 81-176 ΔrrF2 ΔrrF2::kanR This study 

C. jejuni 81-176 ΔrrF2-complement ΔrrF2::kanRΩrrF2 This study 

C. jejuni 81-176 ΔflgP ΔflgP::kanR This study 

C. jejuni 81-176 ΔflgP-complement ΔflgP::kanRΩflgP This study 

 

 

2.3.2 Vectors 

Table 10. Vectors used in this study 

Plasmid Reference/Manufacturer 
pBluescript  
SKII vector 

Stratagene  

pRRC (Karlyshev and Wren 2005) 
 

 

2.4. Instruments 

Table 11. Instruments 

Instruments Model and Manufacturer 
Agarose gel running system Keutz 
Anaerobic jar Anaerocult 

Bacteria incubator Function Line, Heraeus 
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Bacteria incubator (with 
shaker) 

Edmund Bühler 

Cell culture incubator Hera cell 240, Heraeus 
Centrifuge bacteria (flask) Megafuge 16R, Heraeus, Thermoscientific 
Centrifuge cell culture (flask) Megafuge 2.0RS, Heraeus 
Centrifuge (Eppendorf) 5424, Eppendorf 
Deep freezer (-80C) GFL 

Electro Cell Manipulator Electro cell manipulator 600, BTX 
Electrophoresis Power Pack Standard Power Pack P25, Biometra 
Electrophoresis power supply 
EPS 500/400 

Pharmacia fine chemicals 

Electrophoresis power supply 
standard power Pac P25 

Thermo Fisher 

Gel Imaging System Gel Doc XR+, Biorad 
Fume hood Weidner 
Heat Block ThermoMixer C – 1.5mL, Eppendorf 
Inverted contrasting microscope 
DM IL 

Leica 

Laminar flow BDK 

MagNA Pure LC 2.0 Roche 
Microplate Reader Victor3V MRX TC Revelation, Dynex Technologies 
Microscope Leica DMIL 
Multichannel pipet Eppendorf 
Multistep dispenser pipet Eppendorf 

NanoDrop 2000c, 
Spectrophotometer 

PeqLab, Thermoscientific 

Neubauer Chamber BRAND 
pH Meter 766, Knick 
Pipettes (P1000, P100, P10) Eppendorf 
Scale (0.1g) Sartorius ENTRIS 2201-1S Balance 

Scale (0.0001g) Sartorius ENTRIS 64-1S Analytical balance 
Spectrophotometer Nanocolor VIS II, Macherey-Nagel 
Thermocycler Biometra 
UV-crosslinker NTAS 
Universal shaker SM 30 Edmund Buhler 
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Vortex Heidolph 
Water bath GFL 

 

 

2.5. Materials 

Table 12. Disposable materials 

Disposable Materials Manufacturer 
Cell Culture Flask (25, 75 and 175 
cm2) 

Cellstar Standard Cell culture Flask, 
Greiner Bio-one 

Cryogenic vials Nunc 

Electroporation cuvette Pulser/MicroPulser Cuvette, Biorad 
Eppendorf tubes 1.5 ml and 2 ml Sarstedt 
Falcon 15 and 50 ml Greiner 
Filter system 0.22um and 0.45um 
pore 

Corning 

Gas-pack CampyGen 2.5L CampyGen 2.5L, Oxoid 

Glass cover slip Menzel 
Glass microscopic slide 76x26 mm Menzel 
Inoculation loop 1 and 10μl Sarstedt 
Parafilm Bemis 
Pasteur capillary pipets, 230 mm WU Mainz 

Petri dishes Sarstedt 
Pipette filter Tip (1000 ul, 100ul, 
10ul) 

Sarstedt 

pH test strpe, pH 0 - 14 Omnilabs 
Syringe (1 ml, 10 ml, 30 ml, 50 ml) Terumo 
6-well plate culture plate Greiner Bio-one 

24-well plate  Cellstar, Greiner bio-one 
96-well plate Greiner Bio-one 
0.2 μm Filter 500 ml Bottle Top filter, Corning 
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2.6. Kits, buffers, enzymes and chemicals 

Table 13. List of kits, enzymes and chemicals 

Kits, buffers, enzymes and chemicals Manufacturer 

Kits 
PCRBio HiFi kit PCR Biosystems 
NEBuilder HiFi DNA Assembly Cloning 
kit 

NEB 

QIAquick Gel Extraction kit Qiagen 
QIAquick PCR Purification kit Qiagen 
GenElute Plasmid Miniprep kit Sigma-Aldrich 

Buffers 
Cut Smart Buffer NEB 
Antarctic Phosphatase Buffer NEB 
50x TAE (Running Buffer)  
- 57.1 ml Acetic Acid 
- 242 g Tris 
- 100 ml 0.5M EDTA 

 
Merck 
Roth 
Merck 

Washing Buffer (electrocompetent cell) 
- 272 mM sucrose 
- 15% Glycerol 

 
Merck 
Merck 

Phosphate Buffered Saline (PBS)  
(w/o Ca2+ w/o Mg2+) 

Merck 

Enzymes 
Antarctic Phosphatase NEB 
BamHI NEB 

EcoRI NEB 
EcoRV NEB 
XBaI NEB 

Chemicals 
Agar-agar Carl Roth GmbH 
Agarose for DNA/RNA electrophoresis Carl Roth GmbH 
Crystal Violet Merck 

ddH2O (0.1 μm filtered water) Sigma-Aldrich 
DMSO (diethyl sulphoxide) Sigma-Aldrich 
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dNTP Carl Roth GmbH 
EDTA in PBS 
(1% (w/v) in PBS w/o Ca2+ w/o Mg2+) 

Merck 

Ethanol Carl Roth GmbH 
FCS (fetal calf serum) Biochrom 

Glycerol Sigma-Aldrich 
Lithocholic acid (LCA) Sigma 
Loading Dye (6x orange LD) Thermo Fisher 
Midori green Nippon Genetics 
Non-essential amino acid (NEA) Merck 

Sodium chenodeoxycholate (CDCA) Sigma 
Sodium cholate hydrate (CA) Sigma 
Sodium deoxycholate (DCA) Sigma 
Sodium glycocholate hydrate (GCA) Sigma 
Taurocholic acid sodium salt hydrate 
(TCA) 

Sigma 

Triton X-100 Merck 
Trypsin 
(0.25% (w/v) in PBS w/o Ca2+ w/o Mg2+) 

Merck 

 

 

2.7. Oligonucleotides 

Table 14. List of Oligonucleotides 

Oligonucleotide Sequence Reference 
pSK-5-flgP-F AGGTCGACGGTATCGATAAGCTTGATATCGTAGAAAAGCA

GGGCGTAATACAA 
This study 

Kana-5-flgP-R TCTCGTTTTCATACCTCGGTATAATCTTACAGAAACTGTA
TTCATCGGAGCAA 

This study 

Kana-3- flgP -F TACTGGATGAATTGTTTTAGTACCTAGATTTTAGCAAAAA
GAGCAGCGATTAC 

This study 

pSK-3- flgP -R GCGGTGGCGGCCGCTCTAGAACTAGTGGATTCAATGCTAA
AGAAGTTCGAGGT 

This study 

CP-flgP-F GATGTTATCGTGCAAAAAGTCGA This study 
CP-flgP-R AACAATTCTTTCCACTTGTCTGC This study 
CO-flgP-F AGAGGTGGTAAGGGTGTAATTTG This study 
CO-flgP-R TTTGACATAAGTTTCGCTTTGGG This study 
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Compl_pRRC_flgP
_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGAAAAAAATTTATTTTATGCTA 

This study 

Compl_pRRC_flgP
_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATTAAT
AAGCAAACAATTCTTTCCACTTG 

This study 

pSK-5-Inv-F AGGTCGACGGTATCGATAAGCTTGATATCGAACAATTTGC
ACTTGGCTCAATT 

This study 

Kana-5-Inv-R TCTCGTTTTCATACCTCGGTATAATCTTACAGTTGATGTA
ATAACGCCAATCA 

This study 

Kana-3-Inv-F TACTGGATGAATTGTTTTAGTACCTAGATTAAGGCCTTCG
ATACCATGAATTT 

This study 

pSK-3-Inv-R GCGGTGGCGGCCGCTCTAGAACTAGTGGATTGAGGATGT
GTTTGTTTTAAATGA 

This study 

CP-Inv-F TTTTAAAGCATAGCTGGGGAAGA This study 
CP-Inv-R AGTGTAATAGGAAAAAGATAGCGA This study 
CO-Inv-F TCCAACCCTAGCTCAAATTCTTT This study 
CO-Inv-R GGAATTTGTGGAGTTGAAATGCT This study 
Compl_pRRC_Inv
_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGCAAAATCTTTTACTCTATAT 

This study 

Compl_pRRC_Inv
_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATTATT
TATCTTTATATATTTTTTCA 

This study 

pSK-5-SAS-F AGGTCGACGGTATCGATAAGCTTGATATCGAACACTAGTA
GGTCAAAGTGGTG 

This study 

Kana-5-SAS-R TCTCGTTTTCATACCTCGGTATAATCTTACGCAAGTCCTA
AAGCTTCAAGAAC 

This study 

Kana-3-SAS-F TACTGGATGAATTGTTTTAGTACCTAGATTCTGCTAGTCT
GCCTGATAAAACT 

This study 

pSK-3-SAS-R GCGGTGGCGGCCGCTCTAGAACTAGTGGATAGCCAAAGG
GGAAATAAATCTCA 

This study 

CP-SAS-F GCGGTTAAATTTCTTTTTGTGCC This study 
CP-SAS-R AAGGCTCTATCATTGAAACAGCT This study 
CO-SAS-F ATAGGTTTCATTTTAGCGGTAGC This study 
CO-SAS-R CGCTTAAAGTTGGGAATTTCCAA This study 
Compl_pRRC_SAS
_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAATTGAGTTCTAAATTTTCAAAAAT 

This study 

Compl_pRRC_SAS
_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATCACT
TTAAAAAAGCGGCTATCATAACTATAA 

This study 

pSK-5-HAD2-F AGGTCGACGGTATCGATAAGCTTGATATCGAAATCCCGCG
GTAAATCTTAACT 

This study 

Kana-5-HAD2-R TCTCGTTTTCATACCTCGGTATAATCTTACCGCTTTGTTC
ATAGTGTTTGACA 

This study 

pSK-3-HAD2-F TACTGGATGAATTGTTTTAGTACCTAGATTTGAAGGAGTG
AAAGAACTTTTAGA 

This study 

pSK-3-HAD2-R GCGGTGGCGGCCGCTCTAGAACTAGTGGATTGCCAATTTC
TATTAATAATTCACTCA 

This study 

CP-HAD2-F ATCGATAGTGCAAATGCCATTTC This study 
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CP-HAD2-R TGGGTTCTATGCCTAAACTTACG This study 
CO-HAD2-F TTTTTCAATGGCGCTATATCTGC This study 
CO-HAD2-R AACTAAACGACGCGGAGTATAAT This study 
Compl_pRRC_HA
D2_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGATTAATGTATTTTTTGATAT 

This study 

Compl_pRRC_HA
D2_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATTATA
AATACTTTTGCAAAAAGCCTTTAAGC 

This study 

pSK-5-Maf-F AGGTCGACGGTATCGATAAGCTTGATATCGTTGCTAAAGC
GGTGATTTTACTT 

This study 

Kana-5-Maf-R TCTCGTTTTCATACCTCGGTATAATCTTACTTTGGTTTTG
AAAATCTTTGCCT 

This study 

Kana-3-Maf-F TACTGGATGAATTGTTTTAGTACCTAGATTGAAGCTTATG
AAATGCTTGCCTT 

This study 

pSK-3-Maf-R GCGGTGGCGGCCGCTCTAGAACTAGTGGATACAAGCTTGC
CATTTCTATCGTA 

This study 

CP-Maf-F CCGCAAAGATTGATTTTAGGCAA This study 
CP-Maf-R CGCCTTGCCTTTATAAAGATCAT This study 
CO-Maf-F TATCCAAGGTGTTGAAATTTGCG This study 
CO-Maf-R TACGCGTAATAGTTCTTTCAGGG This study 
pSK-5-tgt-F AGGTCGACGGTATCGATAAGCTTGATATCGTGCTAAAATA

CCGTCTATTATAATT 
This study 

Kana-5- tgt -R TCTCGTTTTCATACCTCGGTATAATCTTACTCTAAAATCA
TCATAATATCAGAGTT 

This study 

Kana-3- tgt -F TACTGGATGAATTGTTTTAGTACCTAGATTATACTTTGGG
CAAAAGAGGCTAT 

This study 

pSK-3- tgt -R GCGGTGGCGGCCGCTCTAGAACTAGTGGATAGTTCTTTAG
CTTTGAAAAGATGGT 

This study 

CO- tgt -F TAATATTTTCAAGACGCGCTGTG This study 
CO- tgt -R CGCATCTTTCTTGCAAGTTCAA This study 
CO-tgt-F (complem.) ATACTTTGGGCAAAAGAGGCTAT This study 
CO-tgt-F (complem) AAAGTCACATTGATGGGAGTCAT This study 
Compl_pRRC_tgt_
Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGGAATTTAAATTAAA 

This study 

Compl_pRRC_tgt_
Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATTATT
TGCCTCTTAAGTGATAAAAATTTC 

This study 

pSK-5-tyrA-F AGGTCGACGGTATCGATAAGCTTGATATCGTAAGCCCCGT
GATATTTATAGCG 

This study 

Kana-5- tyrA -R TCTCGTTTTCATACCTCGGTATAATCTTACTTCTTTTTGT
ACTTCCAAGCTCT 

This study 

Kana-3- tyrA -F TACTGGATGAATTGTTTTAGTACCTAGATTCTTTTTGCTC
ATCCTATGACAGG 

This study 

pSK-3- tyrA -R GCGGTGGCGGCCGCTCTAGAACTAGTGGATAGCCTGTTTC
ATCCATTCTCTTA 

This study 

CO- tyrA -F ACTTCCTTCATCAAGTAGTGTGC This study 
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CO- tyrA -R CTGGCATTAAAATTTGAGGAGGA This study 
CO-tyrA-F 
(complem.) 

CCCTGCGATTAGGTCTTATTCAT This study 

CO-tyrA-R 
(complem.) 

AGATCCTCCAGCTAAATGAACAA This study 

Compl_pRRC_tyrA
_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGAAAATAGCAATTATA 

This study 

Compl_pRRC_tyrA
_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATTATA
AAATTTCTCTTAGAGTATTAGCCTGT 

This study 

pSK-5-YajQ-F   
AGGTCGACGGTATCGATAAGCTTGATATCGTGTAGGAAG
AGGTGGGATTATCA 

This study 

Kana-5-YajQ-R TCTCGTTTTCATACCTCGGTATAATCTTACACATCAAGTT
TTCCTTCACTAGA 

This study 

Kana-3-YajQ-F TACTGGATGAATTGTTTTAGTACCTAGATTGAAAGTGGAG
CAATGTTTCGTTT 

This study 

pSK-3-YajQ-R GCGGTGGCGGCCGCTCTAGAACTAGTGGATAGCTTGCCCT
AGTTTATAAACTTCT 

This study 

CP-YajQ-F TCAGCAGCTTTAGATAAGCAAGA This study 
CP-YajQ-R TTCACCACGAATCGAAGAGTTAA This study 
CO-YajQ-F AGTATCCACGCACCTTTAAATGA This study 
CO-YajQ-R TGTTCAAAACCACAATCAGTTTT This study 
Compl_pRRC_Yaj
Q_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGGCAAGTGAA 

This study 

Fwd2_Compl_pRR
C_YajQ 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGGCAAGTGAACATAGTTTTG 

This study 

Compl_pRRC_Yaj
Q_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATTATT
TGAGATTTTTAAAACTGACATTTAACTC 

This study 

pSK-5-Hip82-F AGGTCGACGGTATCGATAAGCTTGATATCGAGAACTTGAT
AGAAAAAGCGGAGA 

This study 

Kana-5- Hip82-R TCTCGTTTTCATACCTCGGTATAATCTTACAAGAAATTCC
CGTTTTCAAGTCG 

This study 

Kana-3- Hip82-F TACTGGATGAATTGTTTTAGTACCTAGATTCCATGGTAAT
AGCTTTGGGAGAT 

This study 

pSK-3- Hip82-R GCGGTGGCGGCCGCTCTAGAACTAGTGGATTCTCTTTTAC
TTCTTTTAAGCCT 

This study 

CO- Hip82-F TAAAAGACGCACATAAATACGGC This study 
CO- Hip82-R TGGTTATACATTTGAAGCAAGCG This study 
CO-Hip82-Compl-F GTTTAATTCTTGCCTGTTCAGCA This study 
CO-Hip82-Compl-R AGCGGATTTTTCAAAAGCAGATT This study 
Compl_pRRC_Hip8
2_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGAAAAAATTAAGTTTAATT 

This study 

Compl_pRRC_Hip8
2_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATTATT
TAATAATAGTTGGAGTAGCG 

This study 
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pSK-5-Hip12-F AGGTCGACGGTATCGATAAGCTTGATATCGGGAATTTGGA
CTTGCATTATAGCT 

This study 

Kana-5-Hip12-R TCTCGTTTTCATACCTCGGTATAATCTTACATAGTCATGA
CTCATCATACCCG 

This study 

Kana-3- Hip12-F TACTGGATGAATTGTTTTAGTACCTAGATTAGTGATAGAA
CTTTCACAATACC 

This study 

pSK-3- Hip12-R GCGGTGGCGGCCGCTCTAGAACTAGTGGATTGCATGGCA
GTCATTAAATTTTCT 

This study 

CO- Hip12-F TTGGCCTTGGGTGTAGATTTAAT This study 
CO- Hip12-R GACCCCACTAAGTCCAAGTTTTA This study 
CO-Hip12-F 
(complem) 

ATGCAACAAAGCGTTTTAAATGC This study 

CO-Hip12-R 
(complem) 

CACTGATGAGATATTTTGCACCG This study 

Compl_pRRC_Hip1
2_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAATGAAAAAAGTGTATTTTTA 

This study 

Compl_pRRC_Hip1
2_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATCATA
GTCTCTCTCCTTCTAA 

This study 

pSK-5-RrF2-F AGGTCGACGGTATCGATAAGCTTGATATCGTCTGTAAGTT
CTGCAATTCTTGC 

This study 

Kana-5-RrF2-R TCTCGTTTTCATACCTCGGTATAATCTTACAAACCACCTT
TTGCCCCTTTAAA 

This study 

Kana-3-RrF2-F TACTGGATGAATTGTTTTAGTACCTAGATTTGGTGGCACT
TGTCCAAATAATA 

This study 

pSK-3-RrF2-R GCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCTTCGCTT
AAAATCATCCTTG 

This study 

CO-RrF2-F CCCCGTAAAAAGGGCTTAAAAAT  This study 
CO-RrF2-R CAATCACGCCAATGACCATATTT This study 
CO-RrF2-F 
(complem.) 

TGCTATTTACCAAAGCTAGCGAA This study 

CO-RrF2-R 
(complem.) 

ACTAACATAGGCATTAAGGTGCA This study 

Compl_pRRC_RrF
2_Fwd 

GAATTCTGCAGGTACCCGGGATCCACTAGTTCTAGAAGGA
GATTTAAGTGCTATTTACCAAA 

This study 

Compl_pRRC_RrF
2_Rev 

AGACTTATTACTTTGTACTCTAGGGCCGCTCTAGATTATT
TTTTGCCATTATTTTTCATAATATCTTC 

This study 

CO-Kan-R TGGTAGCTTTTTAAATATGGCGC This study 
CO-Kan-F TCAAGCCTGATTGGGAGAAAATA This study 
pRRC rev CAAGAATCAATTGAGTTTATATATTGAA This study 
ak231 CTGGAACTCAACTGACGCTAAG (Karlyshev and 

Wren 2005) 
ak232 CTCTTGCACATTGCAGTCCTAC (Karlyshev and 

Wren 2005) 
ak233_81176 GCAAGAGTTTTACTTATGTTAGCGC (Lübke et al. 2018) 
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ak234 GAAATGGGCAGAGTGTATTCTCCG  (Karlyshev and 
Wren 2005) 

ak235 GTGCGGATAATGTTGTTTCTG  (Karlyshev and 
Wren 2005) 

ak237 TCCTGAACTCTTCATGTCGATTG  (Karlyshev and 
Wren 2005) 

M13 TGTAAAACGACGGCCAG Sequencing primer 
(SeqLab, 

Göttingen) 
M13r CAGGAAACAGCTATGAC Sequencing primer 

(SeqLab, 
Göttingen) 

 

 

2.8 Software and web services 

Table 15. List of software and web services 
Software and Web services Website 

BLAST  https://blast.ncbi.nlm.nih.gov/Blast.cgi 

Fiji - ImageJ https://fiji.sc/ 
Geneious 2019.1.3 https://www.geneious.com/ 
Gretl http://gretl.sourceforge.net/ 
LateX https://www.latex-project.org/ 
R studio https://www.rstudio.com/ 
Microsoft Office 2011 https://www.office.com/ 

PubMed NCBI https://www.ncbi.nlm.nih.gov/pubmed/ 
Statistica 13.3 http://www.statsoft.com/Products/STATISTICA-Features 

 
 
 
2.9 Molecular biology methods 

2.9.1 Genomic DNA Extraction 

The genomic DNA extraction was performed by automated isolation and purification 

in the MagNA Pure instrument (Roche). 
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2.9.2 PCR 

For the Polymerase chain reaction (PCR) a High Fidelity (HiFi) DNA polymerase 

(PCR Biosystems) was used following the manufacturer’s instructions, in order to avoid 

errors in cloning genes from E. coli and C. jejuni. Taq DNA polymerase (Roche) was 

used for testing primers and clone confirmations.  

The HiFi PCR reaction was performed in 50 μl total volume with 10 μl of 5x PCRBIO 

reaction buffer, 5 μl of 5 μM of forward and reverse primers, 0.5 μl HiFi polymerase, 

<100 ng DNA template (Table 16) and ddH2O. The Taq PCR reaction was also 

performed in 50 μl total volume with 5 μl of 10x PCR reaction buffer, 1 μl dNTP (PCR 

Grade Nucleotide Mix, Roche), 1 μl Taq polymerase (Roche), <100 ng DNA template 

and ddH2O. Pure ddH2O (0.1 μm filtered water, Sigma) was used for the PCR reaction 

and also for DNA and primers dilutions. 

 

Table 16. Standard PCR reaction mix for Hifi and Taq polymerase 

PCR Hifi – Components PCR reaction 
Buffer 5x 10 μl 
Forward Primer (5 μM) 5 μl 
Reverse Primer (5 μM) 5 μl 

HiFi Polymerase 0.5 μl 
H2O up to 50 μl 
Template DNA < 100 ng 

PCR Taq – Components PCR reaction 
Buffer 10x 5 μl 

Forward Primer (5 μM) 5 μl 
Reverse Primer (5 μM) 5 μl 
Taq polymerase 1 μl 
H2O up to 50 μl 
Template DNA < 100 ng 

 

The amplification was carried out in Thermocycler (Biometra) following the general 

conditions shown in Table 17. 
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Table 17. General conditions for PCR 

Step Temperature 
(HiFi/Taq) 

Time Cycle Description 

1 95 - 98°C 3 – 5 min 1x First template denaturation 
2 95 - 98°C 30 sec  

29x 
Template denaturation 

3 50 – 70°C  15 sec Primer annealing 
4 72°C 60 sec/kb (Taq) 

or 30 sec/kb (Hifi) 
Primer extension time 

5 72°C 5 min 1x Final extension 

6 4°C … 1x Cooling  
 
 
 

2.9.3 Quantification of DNA 

The DNA concentration was determined by NanoDrop ND 1000 spectrophotometer 

according to the manufacturer’s instructions.  

 

2.9.4 Plasmid DNA extraction 

Plasmid DNA was isolated from E. coli by a Plasmid Purification kit (Sigma-Aldrich) 

following the manufacturer’s instructions. The plasmid was resuspended in 50 μl elution 

buffer and the concentration was measured by NanoDrop. 

  

2.9.5 Sequencing 

The fragments and the plasmids were sequenced directly by the Company SeqLab 

(Göttingen, Germany). The primers used for the knockout construct sequencing were 

M13 and M13r or gene specific primers “CP” (confirmation primer) and “CO” 

(confirmation primer) shown in the Table 14. The same primers were used for 

confirmation of the complementation mutants. 
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2.9.6 Enzymatic modification of DNA 

BamHI and EcoRI were used to digest the pSKII vector, and XbaI to digest the pRRC 

vector (used for complementation). The digestion was performed following the 

manufacturer’s instructions. 5 μg of cloning vector was incubated with 1x Cut Smart 

buffer (NEB), ddH2O (up to 50 μl), 1 μl EcoRI – HF (NEB) and 2 μl BamHI (NEB), 

where the enzyme is up to 10% of total volume in the reaction. The mixture was 

incubated for 3 hours at 37°C. 

Afterwards the vector was dephosphorylated with Antarctic Phosphatase (NEB) 

following the manufacturer’s instructions.  

 

2.9.7 DNA and PCR products purification 

The DNA extraction from agarose gel was performed using the QIAgen PCR 

Purification kit. After gel running, the DNA fragment was excised with a sharp blade 

from the agarose gel. The piece of gel was weighted and 3 volume of QG buffer to one 

volume of gel was added and incubated at 50°C for 10 min. Then the dissolved agarose 

was transferred to a QIAquick spin column and centrifuged at 13.000 rpm for 1 min, 

washed with 750ul of PE buffer and dried. Then the DNA was eluted by adding 30 - 

50 ul of elution buffer.  

The DNA concentration was measured by NanoDrop and when needed, a small volume 

was used to run a confirmation gel.  

 

2.10 Knockout mutant construct generation 

2.10.1 Primer design 

The primers were designed using Geneious software with the genome sequence of 

Campylobacter jejuni 81-176. Eleven genes were selected to generate the knockout 

mutant as shown in Table 18. 
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Table 18. Chosen genes to knockout 

 Gene Uniprot Gene ID 
1 Inv A0A0H3P9Z9 CJJ81176_0708 
2 Sas A0A0H3PA18 CJJ81176_0942 
3 HAD2 A0A0H3PI47 CJJ81176_1247 
4 Maf A1VYL9 CJJ81176_0535 
5 tgt A1VZZ8 CJJ81176_1028 

6 tyrA A0A0H3PAH1 CJJ81176_0165 
7 YajQ A1VY95 CJJ81176_0398 
8 Hip82 A0A0H3PBG0 CJJ81176_1382 
9 Hip12 A0A0H3P9A5 CJJ81176_0112 
10 RrF2 A0A0H3PDG2 CJJ81176_0891 

11 FlgP A0A0H3PCP8 CJJ81176_1045 
 

 

The primers were designed using 30 bp overlapping regions for the cloning vector and 

the kanamycin cassette (Figure 8). For one knockout mutant generation, 4 different 

primers were needed to amplify the fragments. The first pair of primers with 5’-forward 

specific sequence of the gene plus 30 bp of pSKII vector and a 5’-reverse primer (in the 

middle of the gene) plus 30 bp of the kanamycin cassette. The other primer pair consists 

of a 3’-forward primer in the middle of the gene, but with 5 - 100 bp distance to the 

5’-reverse primer (to delete part of the original gene), plus 30 bp overlapping for 

kanamycin cassette, and 3’-reverse primer at the end plus 30 bp specific sequence of 

the pSKII vector. 

 

 

Figure 8 Amplification scheme of the target genes with flanking regions. Target gene in light 
blue, primers in pink and overlapping region in orange. 
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2.10.2 Plasmid assembly 

The DNA fragments with approximately 500 bp were amplified following the Table 16 

and Table 17 settings for Hifi polymerase. After amplification the PCR product was 

run in a 1% agarose gel electrophoresis with 100V for 1 hour. The bands with the 

correct size were cut out using a blade and purified using the PCR purification kit 

(QIAquick) as described previously (2.9.7).  

The backbone for the knockout construct was provided by the pBluescript SK(+) 

vector containing Ampicillin resistance for selection. The vector was digested with 

BamHI and EcoRI.  

The two fragments of the target gene, the kanamycin cassette and the digested vector 

were assembled using the NEBuilder Hifi DNA Assembly Cloning kit following the 

manufacturer’s instructions (Figure 9) in a single tube reaction.  

The assembled product was transformed by heat shock into E. coli following the 

manufacturer’s protocol. After the transformation the E. coli strain was plated in 

selective media containing Ampicillin and incubated overnight at 37°C. Single colonies 

were picked, re-plated and inoculated into selective LB broth for further plasmid 

isolation. The plasmid construct was sent to Microsynth SeqLab – Göttingen for 

confirmation by sequencing using the primers M13 and M13r (Table 14).  

 

 

Figure 9 Assembly of gene-specific fragments, kanamycin cassette and backbone plasmid for 
construction of the knockout targeting vector. 
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2.11 Transformation by electroporation 

2.11.1 Preparation of electrocompetent cells 

In order to prepare competent C. jejuni, bacteria were grown in Columbia blood agar 

for 16 – 18 hours at 42°C under microaerophilic conditions. The cells obtained were 

resuspended in ice-cold washing buffer composed of 272 mM sucrose and 15% glycerol. 

Bacteria were washed 3 times with washing buffer and centrifuged at 5.000 g at 4°C 

for 10 min. The pellet was resuspended in 400 μl washing buffer, separated in aliquots 

of 100 μl and stored at -80°C.  

 

2.11.2 Electroporation 

Electroporation was performed using 2 – 3 μg (maximum volume of 10μl) of the plasmid 

vector mixed to 100 μl electrocompetent cells and transferred to a pre-cooled cuvette 

(Gene Pulser/Micropulser Electroporation Cuvette 0.1 cm gap, Bio-Rad). The 

electroporation was performed with a resistance of 2.5 kV, capacitance timing of 25 μF 

and resistance timing of 186 Ω in the BTX electro Cell Manipulator. After pulse, 100 

μl of SOC medium was added to the electroporated bacteria, plated on non-selective 

COS plates and grown under microaerophilic conditions overnight at 37°C. On the 

following day, the cells were resuspended and transferred onto a selective Columbia 

blood agar supplemented with kanamycin. The plates were incubated at 42°C for 48 

hours under microaerophilic conditions. 

 

2.11.3    Screening for mutants 

Colonies that were observed on the plate, were re-plated into selective media for 

genomic DNA extraction and further analysis.  

The bacteria were resuspended in 300 μl buffer (MagNA Pure LC Total Nucleic Acid 

Isolation kit, Roche) for genomic DNA extraction and genomic DNA was isolated by 

MagnaPure (Roche). Then a PCR was performed using specific primers flanking the 
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outer gene region for confirmation of correct integration of the targeting construct 

(Table 14).  

 

2.12 Growth curve 

To perform the growth curve, the bacterial cultures were firstly grown on COS plates 

for 17 hours at 37°C under microaerophilic condition. Bacteria were resuspended in 

MH liquid media and inoculated in 20 ml of a 100 ml Erlenmeyer flask as a pre-culture 

and grown overnight at 37°C under microaerophilic conditions with 150 rpm shaking. 

The optical density of the pre-culture was then adjusted to OD600 0.05 as a start point 

for the growth curve. The measurements were done every 4 hours in a total of 48 hours. 

Growth curves were performed in 2 biological triplicates, respectively. 

 

2.13 Motility assays 

The motility capacity of the bacteria was established by (i) inoculation in soft agar 

medium (Tareen et al. 2010), by (ii) 2,3,5-Triphenyltetrazolium chloride (TTC) soft 

agar assay, and (iii) by microscopic observation of living bacteria.  

 
2.13.1 Soft agar motility 

The strains were grown on COS plates for 17 hours at 37°C under microaerophilic 

conditions. Afterwards bacteria on plates were resuspended in MH liquid and the OD600 

adjusted to 0.025. The bacterial suspension was stabbed into a 0.25% and 0.4% Mueller-

Hinton agar plate using a 1 μl inoculation loop, then incubated at 37°C under 

microaerophilic conditions. The diameter of swarming zones was measured after 48 

hours of incubation. 
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2.13.2 TTC assay 

The compound 2,3,5-Triphenyltetrazolium chloride (TTC) is a water-soluble dye that 

changes color from white into red after reduction. 15 ml falcon tubes were filled up 

with Brucella broth with 0.25% agar and supplemented with 100 μg/ml TTC.  

C. jejuni strains were grown on COS plates for 17 hours at 37°C under microaerophilic 

conditions. Bacteria on plates were resuspended in PBS and the OD600 adjusted to 1. 

The resuspended bacteria were inoculated by dropping 50 μl on the top of the medium 

and placed in the microaerophilic container with the lid of the falcon tube open. The 

measurement and pictures were taken after 24 hours incubation under microaerophilic 

conditions at 42°C. 

 
2.13.3 Motility after invasion 

Motility was also assessed after invasion performed by gentamycin protection assay. 

The GPA was carried as described in section 2.16, the bacteria recovered after 48 hours 

incubation was counted and then resuspended in MH liquid and the OD600 adjusted to 

0.025. The bacterial suspension was stabbed into 0.4% MH agar plate using a 1 μl 

inoculation loop, then incubated at 37°C under microaerophilic conditions. The 

diameter of swarming area was measured after 48 hours of incubation. 

 
2.13.4 Microscopic observation of motility 

The bacterial strains were grown on COS plates for 17 hours at 37°C under 

microaerophilic conditions, then resuspended and inoculated in Muller Hinton broth 

and incubated overnight at 37°C. The bacteria were adjusted to OD600 of 0.05. An 

aliquot was added on a glass slide and covered with a cover slide. For the observation 

of the living bacteria, an inverted microscope (Leica) and camera Nikon D7100 was 

used. The classification for bacterial movement were:  

- motile, when the bacterium could move freely (swim/run);  
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- tumbling, when the bacterium moves in a single direction for a given time 

before randomly changing direction; and  

- nonmotile, when the bacterium doesn’t move.  

 
 
2.14 Biofilm formation assay 

2.14.1 Crystal violet biofilm assay 

The strains were grown for 17 hours on COS plates, resuspended in Mueller Hinton 

broth and adjusted to OD600 of 0.05. 100 µl of the bacterial suspension per well was 

added in a 96 well plate (Microplate, F-bottom, Greiner Bio-one) and incubated at 

37°C and/or 42°C for 48 hours without shacking under microaerophilic conditions. 

After the incubation time, the plates were rinsed with sterile water once (gently) and 

dried at 60°C for 30 min. 100 µl of 0.1% crystal violet solution in water was added to 

each well for 15 min. Then the plates were rinsed with sterile water two times and 

dried at 60°C for 30 min. To quantify the Biofilm formation, 100 µl of dissolving 

solution (20% acetone and 80% ethanol) was added to the wells and incubated for 15 

min at RT. After incubation, 80 µl of the dissolved crystal violet was transferred to a 

new 96 well plate for absorbance measuring (540 nm) using the Microplate Reader 

(Victor3V, Wallac 1420).  

The Biofilm formation was performed in five biological replicates and for each strain 

in four technical replicates. Mueller Hinton broth was used as a negative control for 

biofilm formation (Reeser et al. 2007).  

Biofilm formation in the presence of DCA was performed as described above, however, 

the strains were diluted in the MH broth supplemented with 1.5 mM DCA. The assay 

to analyze the effect of oxygen on biofilm formation was performed in two plates, one 

incubated at microaerophilic conditions and the other in normal atmosphere, both at 

37°C for 48 hours.  
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2.14.2    Microscopic analysis of biofilm formation 

The observation of biofilms by microscopy was performed in two ways: (i) observation 

of the first 96 well plate after the 80 µl removal, and (ii) a new biofilm assay as described 

in the previous section (2.14.1) except the dissolving treatment.  

The biofilms were observed in inverted microscope under 63x and 100x magnification.  

 

2.15 Autoagglutination assay 

Bacteria, grown for 17 h, were inoculated into PBS to an OD600 of 1 and incubated at 

37°C without shaking. The optical density of the supernatant was measured after 24 

hours and compared to the starting OD. 

 

2.16 Invasion and adhesion 

Invasion and adhesion were investigated by the gentamycin protection assay (GPA). 

In both techniques the Caco2 cell line was used. COS-7 cells were used in invasion 

assays only. The assays were performed in at least three biological triplicates. 

 
2.16.1    Invasion - Gentamycin protection assay (GPA) 

2x105 of Caco2 cells were seeded in a volume of 1 ml into a 24 well plate and incubated 

overnight (DMEM + 10% FCS + 1x NEA). The C. jejuni strains were grown on COS 

plates for 17 hours at 37°C, resuspended in DMEM (without supplements) and the 

OD600 was adjusted to 0.0007 (corresponding to ~2x106 CFU/ml for the WT 81-176) 

for a multiplicity of infection (MOI) of 10. 1 ml of the bacterial suspension was added 

to the Caco2 cells, centrifuged at 600 g for 5 minutes and incubated for 2 hours at 

37°C. A small volume of the bacterial suspension was kept to be plated in serial 

dilutions for the determination of the real number of viable bacteria added to each well 

(input). After the 2 hours incubation, the bacterial suspension was removed and the 

Caco2 monolayer was washed three times with DMEM (without supplements). 1 ml of 

100 µg/ml gentamycin was added, and the plate was incubated for further 2 hours to 
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eliminate the extracellular bacteria. Subsequently, the wells were washed three times 

with DMEM (without supplements) and the cells lysed with 100 µl of 0.1% Triton X-

100 in DMEM for 10 minutes to release the intracellular bacteria. After 10 minutes 

incubation in Triton X-100, the lysate was diluted (1:10) with DMEM and afterwards 

each well was plated in serial dilutions for determination of viable bacteria. The serial 

dilution plates were incubated at 42°C for 48 hours under microaerophilic conditions 

and CFU counting performed afterwards. The percentage of invasion was calculated 

by determination of the ratio between the number of invaded bacteria and the number 

of viable bacteria that were added to the wells.  

 
2.16.2 Adhesion - Gentamycin protection assay (GPA) 

The adhesion was performed in the same way as described for invasion, but without 

the gentamycin treatment. Adhesion determination was performed by subtracting the 

number of intracellular bacteria from the number of adhered cells.  

 

2.17 Stress assay 

The stress assay was performed by exposing the strains to adverse conditions such as 

high temperature, to bile acids and in sterile water.   

 

2.17.1 Temperature 

The strains were grown on COS plates for 17 hours and bacteria were resuspended in 

Mueller Hinton broth and adjusted OD600 of 0.05. The adjusted bacterial suspension 

was diluted in 10-fold serial dilutions (up to 10-6) in single Eppendorf tubes. All 

dilutions were incubated for 1 hour at 52°C in a ThermoMixer block (Eppendorf). One 

serial dilution control was not treated. After heat treatment the bacterial suspension 

was plated on COS plates by adding 3 µl drops of each dilution. The plates were 

incubated for 24 hours at 42°C under microaerophilic condition. The experiment was 

performed in two biological duplicates. 
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2.17.2 Bile acids 

C. jejuni strains grown for 17 h were resuspended in Mueller Hinton broth, the optical 

density was adjusted to 0.05 and the culture was incubated overnight at 37°C by 

shacking under microaerophilic condition. After incubation, the strains were diluted to 

an OD600 of 0.1.  The same volume of a solution of 3 mM DCA diluted in MH was 

added, the final concentration was OD600 0.05 and 1.5 mM DCA. The 10 ml mixture 

was placed in 25 ml Erlenmeyer and incubated for 24 hours at 37°C by shacking under 

microaerophilic condition. The final OD was measured and the difference between the 

non-treated and DCA-treated sample was calculated. The experiment was performed 

in two biological triplicates. 

 
2.17.3 Water survival 

The strains were grown on COS plates for 17 hours under microaerophilic conditions 

at 37°C. The strains were resuspended in double distilled sterile water and washed once 

by centrifuging at 3.000 g for 5 min and adjusted to OD600 of 0.0007 in double distilled 

sterile water. The tubes containing the strains diluted in water were kept at 5°C 

without shaking for up to 14 days and plated every 24 hours. The water survival assay 

was performed in three biological triplicates.  

 

2.18 Complementation 

In order to reestablish the original phenotype observed in the WT, the mutants were 

complemented as described by Karlyshev and Wren (2005). PCR was carried out to 

amplify the genes that are going to be reinserted into the electrocompetent mutants. 

The PCR products were purified with the QIAquick PCR purification Kit (QIAGEN). 

The complement vector, pRRC, was opened with XbaI (New England Biolabs) and the 

open ends dephosphorylated with Antartic Phosphatase (New England Biolabs), 

following the manufacturer instructions. The PCR fragments were ligated into the 

digested vector pRRC using the NEBuilder® HiFi DNA Assembly Cloning Kit (New 
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England BioLabs), according to the manufacturer instructions. After the assembly, the 

correct complementation construct was confirmed by sequencing. With the confirmed 

constructs, the transformations were carried out by electroporation and afterwards, 

selection on Columbia blood agar plates supplemented with chloramphenicol (12.5 

μg/ml) was performed. Successful complementation of the knockout mutants was 

verified by PCR with gene specific primers (Table 14). 

 

2.19 Statistical analysis 

The statistical analysis was performed by two-sided, unpaired Student T-tests (unless 

stated otherwise) using the Excel Software, Statistica 13.3 and R (boxplot). 
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3. Results 

3.1. Selection of C. jejuni genes for targeted gene disruption 

3.1.1 Background 

Based on the previous study from Masanta (2018) and de Vries (2017) we selected 

potential genes to generate knockout mutants. Our main focus was on genes that 

presented corresponding proteins differentially regulated after sublethal concentrations 

of bile acid exposure. The premise of our work is that these genes might be involved in 

either adaptation processes that result in increased stress resistance and/or play a role 

for the virulence of the pathogen, e.g. in motility, adhesion and invasion. 

 
3.1.2 Selection of genes 

We used three criteria to select the target genes: (i) the corresponding protein is 

regulated by bile acid exposure with a focus on downregulated proteins (Masanta et al. 

2018), (ii) the regulation occurs preferentially in response to Deoxycholic acid (DCA) 

and/or Chenodeoxycholic acid (CDCA), and (iii) target genes should belong to multiple 

functional groups, e.g. transporter, surface proteins, signaling factors, enzymes, etc. 

Since there is a lack of information about the function of proteins from bacterial 

pathogens that are down-regulated after bile acid exposure, we selected eight genes, 

whose corresponding proteins displayed significantly lower expression levels after 

exposure to at least one of the bile acids CA, CDCA, DCA, GCA, TCA and UDCA 

(Table 19). However, we also selected a protein (RrF2) that was up-regulated by an 

extraordinary high number of bile acids (CA, DCA, LCA, CDCA and UDCA) as shown 

in Table 19. Additionally, we selected a gene without bile acid regulation (tgt), that 

was associated to different physiological processes in a Transposon (Tn) gene 

inactivation study (de Vries et al. 2017). The gene tgt showed a high attenuation in 

the water survival assays at 4°C and in invasion assays. 
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Seven of the ten selected genes were regulated by DCA and/or CDCA, which are the 

bile acids with the highest concentration in the human intestine (20 and 35%, 

respectively; Baars et al. 2015).  

The chosen target genes belong to various functional groups and two of them are 

annotated as hypothetical proteins (named in this study as Hip82 and Hip12).  

 

Table 19. List of genes to knockout 

N° Name Gene - ID BA up: > 1.7x BA down:> 1.7x Function 

1 
Inv 

CJJ81176_0708  DCA, GCA Invasion phenotype protein 

2 
Sas 

CJJ81176_0942  GCA Sodium symporter 

3 

HAD2 

CJJ81176_1247  TCA, UDCA 
HAD-superfamily hydrolase, subfamily 

IA, variant 1 family protein 

4 
Maf 

CJJ81176_0535  
CA, DCA, 

CDCA, GCA Maf-like protein CJJ81176_0535 

5 
tgt 

CJJ81176_1028   Queuine tRNA-ribosyltransferase 

6 
tyrA 

CJJ81176_0165  CDCA Prephenate dehydrogenase 

7 

 
YajQ 

CJJ81176_0398  DCA, CDCA 

UPF0234 protein 
CJJ81176_0398/YajQ family cyclic di-

GMP-binding protein 

8 
Hip82 

CJJ81176_1382  DCA, CDCA Hypothetical protein CJJ81176_1382 

9 
Hip12 

CJJ81176_0112 
LCA, TCA, 

UDCA DCA, CDCA Hypothetical protein CJJ81176_0112 

10 

RrF2 

CJJ81176_0891 

CA, DCA, 
LCA, CDCA, 

UDCA  RrF2 family protein, putative 

C 
FlgP 

CJJ81176_1045 DCA CA, TCA 
Multicomponent flagellar 

system/Lipoprotein 

 

The gene flgP was chosen for deletion in order to generate a knockout mutant that can 

serve as control for motility and invasion experiments. FlgP is a component of the 

flagellar motor and known to be required for motility although is not involved in the 

flagellar biosynthesis (Sommerlad and Hendrixson 2007). A flgP knockout mutant is 

thus expected to be non-motile and non-invasive.  
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3.2. Generation of knockout and complementation mutants 

3.2.1 Generation and confirmation of knockout in C. jejuni 

The knockout mutants were generated by double homologous recombination in C. 

jejuni 81-176 by disrupting the target gene through the insertion of a kanamycin 

resistance cassette. 

The kanamycin resistance cassette flanked with 5’ and 3’ fragments of the target gene 

was inserted into the digested (BamHI and EcoRI) pBluescript SKII vector by 

NEBuilder HiFi DNA Assembly Cloning kit (NEB). The knockout constructs were 

confirmed by sequencing (SeqLab, Göttingen) using M13 and M13r primers. The 

confirmed constructs were electroporated into the wild type C. jejuni 81-176 and the 

homologous recombination resulted in the insertion of the kanamycin cassette into the 

target gene and consequently the disruption of the gene function. 

The generated knockout mutants were confirmed by Polymerase chain reaction (PCR) 

using three different primer combinations, i) forward and reverse primers outside the 

target gene (Figure 10, A and D), ii) forward primer outside of the target gene and 

reverse primer inside the kanamycin cassette (Figure 10, A and C) and iii) forward 

primer inside the kanamycin cassette and reverse primer outside of the target gene 

(Figure 10, B and D).  

 

 
Figure 10. Scheme of primers used for knockout mutant confirmation by PCR. Forward 
primers A and B, reverse primers C and D. Three combination of primers were used: AD, AC 
and BD. 

 
 
The confirmation by PCR was performed using the genomic DNA of the wild type C. 

jejuni 81-176 (Figure 11, lanes 1, 5 and 6) in comparison with the knockout mutants 

(lanes 2, 3 and 4). The knockout mutants presented a band of increased size using 
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primer pair AD, due to the insertion of the kanamycin cassette (lane 2). Primer pairs 

AC and BD produced bands of the expected size.   

 

 

Figure 11. PCR confirmation of knockout mutation. In the sequence from the left to the right, 
∆inv, ∆sas, ∆had22, ∆tgt, ∆tyrA, ∆yajQ, ∆hip82, ∆hip12, ∆rrF2 and the control mutant ∆flgP. 
DNA ladder of 1 kb (M, left side) and of 100 bp (M, right side) were used as size controls. 
Lanes 1: fragments amplified from genomic wildtype DNA with gene specific primers 
“CO_gene-name-F” and “CO_gene-name-R” (outside the target gene, see table 12). Lanes 2: 
fragments from knockout mutant genomic DNA, amplified with gene specific primers 
“CO_gene-name-F” and “CO_gene-name-R” (outside the target gene). Lane 3: knockout 
mutant genomic DNA amplified with primers “CO_gene-name-F” and “CO-Kan-R”. Lane 4: 
knockout mutant genomic DNA amplified with primers “CO-Kan-F” and “CO_gene-name-R”. 
Lanes 5 and 6: wildtype genomic DNA amplified with primers “CO-F” and “CO-Kan-R”, and 
“CO-Kan-F” and “CO-R”, respectively. The primers are listed in Table 14. 

 
 

3.2.2 Complementation 

The complementation of the knockout mutants was performed using the pRRC vector, 

by a double recombinational insertion of an exogenous coding sequence (target gene) 

linked to a chloramphenicol resistance cassette into one of the three conserved rRNA 

loci in the knockout mutant.  
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The complementation confirmation in C. jejuni was performed by several PCRs. In the 

first instance, the primers “CP_gene-name-F” and “CP_gene-name-R” were used, 

which generated a double band, one is the disrupted allele with kanamycin cassette 

(larger band), and the second is the novel, intact allele, inserted into the rRNA loci 

(smaller band with the original gene size). The near identical sequences at the three 

rRNA loci in Campylobacter permit the pRRC-construct plasmid to recombine with 

any of the three rRNA sites. Since the genes upstream the 16S rRNA are different, the 

confirmation of the exact location is made by the three forward primers ak233, ak234 

and ak235, with the reverse primer ak237. The target gene can be inserted in one or 

two rRNA loci, as shown in the example in Figure 12.  

 

 

Figure 12. Confirmation PCR for complementation. A) flgP complementation confirmation. 
B) tyrA complementation confirmation. M - ladder markers of 100 bp and 1 kb; Lane 1 primers 
"CP-flgP-F" and "CP-flgP-R" (for ∆flgP) and “CP-tyrA-F”and “CP-tyrA-R” (for ∆tyrA); Lane 
2 primers ak233 and ak237, Lane 3 primers ak234 and ak237 and Lane 4 primers ak235 and 
ak237.  

 
 
From the 10 knockout mutants, eight were successfully complemented, however it was 

not possible to complement two mutants ∆sas and ∆maf.  
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3.3. Characterization of knockout mutants 

The strains C. jejuni 81-176 (reference strain) and the 10 knockout mutants were 

phenotypically characterized and compared to each other.  

 
3.3.1 Growth curve 

The growth curve of all 10 knockout mutants were analyzed in comparison with the 

parental wild type strain by performing growth kinetics in Mueller Hinton broth 

(Figure 13). Other parameters such as hours to peak and maximum OD are shown in  

Table 20.  

 

 
Figure 13. Growth curve. The growth kinetics were performed in MH broth at 37°C, 
under microaerophilic conditions and 150 rpm shaking. The time points were measured 
every four hours. The data points represent the means and the standard deviations of 
two biological triplicates. 
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The peak of the maximum OD600 ranged between 0.39 (Dinv) and 0.64 (DrrF2) in 32 

and 46 hours, respectively.  

 

Table 20. Growth curve: hours to peak and maximum OD  

Strain Hours Max OD 
WT 32 0.61±0.06 
∆inv 32 0.39±0.008 
∆sas 32 0.63±0.03 

∆had2 46 0.58±0.006 
∆maf 32 0.55±0.04 
∆tyrA 32 0.49±0.02 
∆yajQ 46 0.51±0.008 
∆hip82 32 0.54±0.007 
∆hip12 32 0.54±0.01 
∆rrF2 46 0.64±0.003 

 
 
 

3.3.2 Virulence related phenotypic assay 

3.3.2.1 Motility 

3.3.2.1.1 Soft agar assay 

The motility in C. jejuni is considered essential in the colonization and establishment 

of disease in humans. This organism is characterized by its fast movements mediated 

by bipolar flagella. To analyze the mutant’s motility phenotype, we performed the 

motility soft agar assay to assess the capacity of movement of the knockout mutants 

compared to the parental strain C. jejuni 81-176. The motility assays were performed 

in Mueller Hinton 0.25% and 0.4% agar, Brucella 0.25% agar (with TTC) and 0.4% 

agar. Motility was quantified by measuring the diameter of the grown area after 48 

hours under microaerophilic conditions (as represented by Figure 14 B).  

Functional flagella and motor machinery are required for swarming under every 

condition tested. First, we analyzed the motility of the control mutant DflgP, that 

showed, as expected, a complete loss of motility compared to the wild type 81-176 
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(Figure 14). Complementation of the knockout mutant DflgP showed restoration of 

64% of the original phenotype (p=0.00013) as shown in Figure 14 A. 

 

 

 

 
Figure 14. Motility of the C. jejuni 81-176 wild type strain and its DflgP knockout mutant 
and the DflgP complementation mutant (A and B). Motility assay performed in Mueller Hinton 
0.4% agar plates with the strains grown for 17 hours. In A, the bars represent the diameter 
(cm) mean ± standard deviation of three technical replicates. In B, representative pictures of 
the motility grown zones for WT, DflgP and DflgP::compl.  

 
 
The motility assay performed with the knockout mutants were done in two different 

agar concentration, 0.25% and 0.4% (Figure 15). Moreover, motility in two different 

media, Mueller Hinton and Brucella was compared (Figure 16). Mutants were 

considered non-motile when displaying less than 1 cm of grown area. The different agar 

concentrations and also the different media did not have a major influence on the 

motility. Almost all the mutants did not show statistically significant differences 

between agar concentration (WT, p=0.06258) and media (WT, p=0.23666), however, 
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some mutants were close to the threshold of 1 cm and were considered non-motile. Six 

knockout mutants, ∆inv, ∆had2, ∆tgt, ∆tyrA, ∆yajQ and ∆rrF2, presented low (below 1 

cm) or none motility in the standard motility assay with 0.4% agar (Figure 15 in blue). 

However, the six non-motile mutants in MH 0.4% agar presented slight motility (above 

1 cm) in other agar concentration and media.  

 

 
Figure 15. Motility assay with two different agar concentrations (0.25% and 0.4%) in Mueller 
Hinton grown under microaerophilic conditions for 48 hours. The bars represent the diameter 
(cm) mean ± standard deviation of three technical replicates. 

 
 

In Mueller Hinton 0.4% agar (Figure 15), the six mutants that showed pronounced 

motility phenotype were Dinv with 93.1% motility reduction (p= 7.258E-05), Dhad2 

with 96.3% reduction (p= 2.211E-05), Dtgt with reduction of 89.9% in motility (p= 

4.740E-05), DtyrA with reduction of 99.7% (p= 1.532E-05), DyajQ with 89.4% motility 

reduction (p= 0.00020) and DrrF2 with motility reduction of 97.9% (p= 2.072E-05) 

compared to the wild type C. jejuni 81-176. The other four mutants, three of them 

presented a slight motility reduction of 21.7% in Dsas (p=0.00686), 23.8% reduction in 

Dmaf (p=0.01176) and 24.9% reduction in DHip82 (p=0.0350). The only knockout 

0

1

2

3

4

5

6

7

8

WT ∆Inv ∆SAS ∆HAD2 ∆Maf ∆tgt ∆tyrA ∆YajQ ∆Hip82 ∆Hip12 ∆RrF2

Di
am

et
er

 (c
m

)

Motility - Mueller Hinton

0,25% agar

0,4% agar



 

 68 

mutant that did not present statistically significant motility reduction was DHip12 

(p=0.352).  

Five knockout mutants, ∆inv, ∆had2, ∆tgt, ∆tyrA and ∆yajQ that were considered non-

motile in MH 0.4% (Figure 15) showed a discrete motility in Brucella 0.4% (Figure 

16), indicating a possible phenotype related to the media.  

 
 

 
Figure 16. Motility assay performed with two different media (Mueller Hinton and Brucella) 
with 0.4% agar concentration. The strains were grown for 17 hours under microaerophilic 
condition and were diluted to OD600=0.025 and stabbed into the plates and incubated for 48 
hours under microaerophilic conditions. The bars represent the diameter (cm) mean ± standard 
deviation of three technical replicates. 
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Two mutants regained motility, namely DtyrA and DrrF2.  The motility zone for the 

DtyrA mutant was increased from 0.3 cm to 2.6 cm increment of 8.7-fold; p=3.757E-

06) and the DrrF2 mutant from 0.4 cm to 4.3 cm (increment of 10.75-fold, p=4.78E-

05). Two mutants presented a reduction of motility after invasion. The motility zone 

for the Dhip82 mutant was reduced in average from 3 cm to 0.57 cm (reduction of 81%, 

p= 5.3E-05) and that of the Dhip12 was reduced from 4.53 cm to 1.2 cm in average 

(reduction of 73.5%, p=0.00032).  

 

 
Figure 17. Motility assay performed with strains recovered after Invasion assay. Motility 
performed in Mueller Hinton 0.4% agar concentration. The strains grown after invasion, were 
resuspended and diluted to OD600=0.025 and stabbed into the plates and incubated for 48 hours 
under microaerophilic conditions. The bars represent the diameter (cm) mean ± standard 
deviation of two biological triplicates. Two-sided unpaired Student t-test, ns: not significant; 
*p≤0.05; **≤0.01 and ***≤0.001. 

 
 
From the six knockout mutants that presented pronounced reduced motility 
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in Figure 18. Except for Dinv-compl (p=2.303E-05), the other complemented mutants 

did not present significantly increased motility when compared to the respective 

knockout mutants. When both, mutant and complementation difference, are compared 

to the WT, Dinv showed an increase of 16.9%, Dhad2 with an increase of 3% (p=0.0723), 

Dtgt and DtyrA with 6.5% increased (p=0.103 and p=0.183, respectively), and DrrF2 

with an increase of 3.5% (p=0.142).  

 

 
Figure 18. Motility assay for six knockout mutant complementation. In green the wild type 
and in blue the knockout mutant and its complementation. Assay performed in Mueller Hinton 
0.4% agar concentration. The bacteria were grown for 17 hours under microaerophilic condition 
and were diluted to OD600=0.025 and stabbed into the plates and incubated for 48 hours under 
microaerophilic conditions. The bars represent the diameter (cm) mean ± standard deviation 
of three technical replicates. Two-sided unpaired Student t-test, **≤0.01. 

 
 
3.3.2.1.2 TTC motility assay 

A tube-based motility assay that uses TTC as a staining technique to visualize the 

metabolic activity of bacteria was also applied to monitor the motility phenotype of 
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filled with Brucella 0.25% agar, supplemented with TTC. 
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The TTC motility assay showed increased motility for two knockout mutants that 

previously presented lower motility in soft agar, Dtgt and DrrF2 (Figure 19). The Dtgt 

mutant represents 37.5% of the wild type motility and the DrrF2 mutant represents 

70.5% of wild type motility level. In the previous motility assay, the Dtgt displayed 

only 10% and DrrF2 2.1% of wild type motility level (Figure 15, 0.4% agar). 

 

 

 
Figure 19. TTC motility performed in 15 ml tubes with Brucella 0.25% agar supplemented 
with 100 μg/ml TTC. The strains were grown for 17 hours under microaerophilic condition 
and were resuspended, and optical density adjusted to OD600=1. 50µL of the bacterial 
suspension was added to the top of the medium and incubated for 48 hours under 
microaerophilic conditions with lid open. The bars represent the diameter (cm) mean ± 
standard deviation of three technical replicates. Two-sided unpaired Student t-test, ns: not 
significant; *p≤0.05; **≤0.01 and ***≤0.001.	 

 
 
3.3.2.1.3 Microscopy based motility assessment 
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were classified in non-motile (“N”, such DflgP), intermediate (represented with M- or 

M, in Table 21) and motile (M+, such WT).  

 

Table 21. Microscopic motility assessment of knockout mutants in MH broth. 
 

Microscopy 
WT M + 
∆inv M + 
∆sas M - 
∆had2 M 
∆maf M 
∆tgt M + 
∆tyrA M + 
∆yajQ M + 
∆hip82 M + 
∆hip12 M - 
∆rrF2 M 
∆flgP N 

 

All the six knockout mutants that presented a pronounced reduction in the motility 

showed low or normal motility under microscopic assessment. The mutants Dinv, Dtgt, 

DtyrA and DyajQ presented similar motility and speed as the wild type. However, the 

mutants Dsas and Dhip12 that presented normal or a minor motility reduction in soft 

agar, showed reduced motility in the microscopic assay.  

  A                                   B                                 C 

   

Figure 20. Phase contrast microscopy of the knockout mutants. Magnification of 63x. A) wild 
type; B) Dhip12 mutant and C) DrrF2. 
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During the microscopic motility assessment an increased size of the mutant Dhip12 and 

DrrF2 was detected. These two knockout mutants showed a double or triple size bigger 

when compared to the WT (Figure 20). 

All the motility phenotype observed in the applied motility assays are summarized in 

Table 22.  

 

Table 22. List of mutants with motility phenotype. 

Strains 
0.4% agar 

(M.H.) 
0.4% agar 
(Brucella) 

0.25% agar 
(M.H.) 

0.25% agar 
(Brucella) Microscopy 

∆Inv N M- M- N M + 
∆HAD2 N M- M- N M 

∆tgt N M- M- M- M + 
∆tyrA N M- N N M + 
∆YajQ N M- M- M- M + 
∆RrF2 N N N M M 
∆flgP N N N N N 

 

 

3.3.2.2 Gentamycin Protection assay 

3.3.2.2.1 Invasion 

To establish the invasion protocol, we tested different mediums, DMEM and HBSS, 

with and without centrifugation step, using multiplicity of infection (MOI) of 10, 20 

and 30. The media, centrifugation and MOI did not show any significant influence on 

the wild type invasion level, not exceeding more than 2% difference (data not shown).  

The invasion was performed by gentamycin protection assay (GPA) in DMEM, with 

centrifugation after the bacterial inoculation into the eukaryotic cell line and with a 

MOI of 10.  

The control mutant DflgP showed as expected very low invasion into Caco2 cell of 

0.005% compared to the WT with 0.56% (p=3.716E-06) (Figure 21). The 

complementation of DflgP restored the invasion phenotype to 1.3% (p=0.00012). 
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Figure 21. Invasion assay for control mutant DflgP and its complementation. The invasion 
assay was performed on Caco2 cells at 37°C and with a multiplicity of infection (MOI) of 10. 
The invasion values were calculated as a percentage of the CFU of recovery bacteria that were 
added to the experiment. The bars represent the means ± standard deviation of two biological 
triplicates. Two-sided unpaired Student t-test, ***≤0.001.  

 
 
Interestingly, the previous six mutants that showed a strong motility phenotype and 

in addition Dhip82, also presented a highly increased invasion phenotype (Figure 22, 

red arrows). Dinv showed a mean of 14.1% (p=0.0001), Dhad2 showed a mean of 15.8% 

(p=0.0033), Dtgt had a mean of 11.2% (p=0.0011), DtyrA presented a mean of 11.1% 

(p=0.0016), DyajQ presented a mean of 12.8% (p=0.000283), Dhip82 presented a mean 

of 9.6% (p=0.0245) and DrrF2 presented a mean of 11.7% (p=5.951E-05).  

Dmaf and Dhip12 did not present statistically significantly increased invasion rates, 

with the mean of 1.02% (p=0.789) and 1.07% (p=0.976), respectively. The only mutant 

that presented lower invasion rate was Dsas with a mean of 0.3% invasion 

(p=0.000144).  
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Figure 22. Invasion assay by Gentamycin protection assay. The invasion assay was performed 
on Caco2 cells at 37°C and with a multiplicity of infection (MOI) of 10. The invasion values 
were calculated as a percentage of the CFU of recovery bacteria that were added to the 
experiment. The bars represent the means ± standard deviation of nine biological triplicates. 
Two-sided unpaired Student t-test, ns: not significant; *p≤0.05; **≤0.01 and ***≤0.001. Red 
arrows indicate the knockout mutants with high invasion phenotype. 

 
 
3.3.2.2.2 COS-7 cell line 

The invasion assay was also performed with a second eukaryotic cell line, COS-7, to 

exclude phenotypes related to the cell line used (Caco2). The COS-7 line is a fibroblast-

like cell line, derived from monkey kidney tissue.  

The wild type presented higher invasion rates in COS-7 (2.9%) compared to Caco2 

cells (1.1%). The same is observed for Dinv and DyajQ with 32.6% and 25.3% invasion 

rates, respectively in COS-7, instead of 14.1% and 12.8% in Caco2 cells. However, 

Dhad2 and DrrF2 presented similar invasion levels in COS-7 (13.7% and 13.8%, 

respectively) compared to Caco2 cells, with 15.8% and 11.7%. Once the differences 

between COS-7 and Caco2 were not significant for the WT, we decided to perform the 

adherence and invasion assays with Caco2 cell line further on.   
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Figure 23. Invasion assay by Gentamycin protection assay performed with COS-7 cell line. 
The invasion values were calculated as a percentage of the CFU of recovery bacteria that were 
added to the experiment. The bars represent the means ± standard deviation of three technical 
replicates. 

 

3.3.2.2.3 Adhesion 

The adhesion capacity to Caco2 cell was performed in parallel to the invasion assay, 

since the adhesion needs the invasion percentage to be calculated.  

The adhesion presented similar behavior compared to the invasion (Figure 24). The 

same seven high invasion phenotype mutants also presented high adhesion rates in 

Caco2 cell. The knockout mutants Dinv and Dtgt revealed higher adhesion rates 

compared to the invasion rate. The Dinv mutant showed 34% adhesion and 16.3% 

invasion (p=0.0092), and although statistically not significant, Dtgt showed 34.4% for 

adhesion and 24.9% for invasion (p=0.058). 

Comparing the adhesion of the knockout mutants to the reference strain, all except 

Dmaf, presented statistical significance. The seven mutants that presented high 

adhesion rates were Dinv with 34% adhesion (p=0.0002), Dhad2 with 16.1% (p=0.0014), 

Dtgt with 34.3% (p=0.005), DtyrA with 8.5% (p=0.0003), DyajQ with 19.6% 

(p=0.0046), Dhip82 with 3.9% (p=0.023) and DrrF2 with 11.9% of adhesion 

(p=0.0019). The mutants Dsas and Dhip12 presented reduced adhesion of 0.6% 

(p=0.003) and 0.7% (p=0.027), respectively compared to the WT with 1.8%.  
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Figure 24. Adhesion and invasion by Gentamycin protection assay. The adhesion and invasion 
assays were performed on Caco2 cells at 37°C with a multiplicity of infection (MOI) of 10. The 
adhesion values were calculated as a percentage of the recovered bacteria that were added to 
the experiment subtracted by the invasion percentage. The bars represent the means ± standard 
deviation of two biological triplicates. Two-sided unpaired Student t-test, ns: not significant; 
*p≤0.05; **≤0.01 and ***≤0.001, statistical information for adhesion compared to the WT. 

 
 

3.3.3 Autoagglutination 

The autoagglutination assay was performed for all knockout mutants and it was 

measured by the difference between the input OD600=1 to the OD600 after 24 hours in 

PBS. The wild type presented an autoagglutination of 85% and only DrrF2 presented 

a statistically significant reduction of 59% autoagglutination (p=0.00168) ( 

Figure 25).  
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Figure 25. Autoagglutination assay, represented by the autoagglutination percentage of input 
OD and supernatant OD after 24 hours. The bars represent the means ± standard deviation of 
three biological quadruplicates. Two-sided unpaired Student t-test, **≤0.01. 
 
 
Additionally, the autoagglutination of the complementation mutant for the knockout 

mutant DrrF2 was tested. The complementation could restore the original phenotype 

from 65% to 76% (p=8.771E-08). 

 

 
Figure 26. Autoagglutination of DRrF2 and its complementation. The bars represent the 
means ± standard deviation of two biological quadruplicates. Two-sided unpaired Student t-
test, ***≤0.001.  
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3.3.4 Biofilm formation 

3.3.4.1 Crystal violet 

To analyze variations on biofilm formation, we tested the biofilm formation capacity 

to polystyrene (96 well plates) by crystal violet staining. The quantitative analysis of 

biofilm formation of the knockout mutants showed that the control mutant DflgP 

presented a low biofilm formation with a crystal violet absorbance from 0.016 (WT) to 

0.0014 (p=0.049), corresponding to a reduction of 91.25% (Figure 27). The 

complementation restored the original phenotype with a 19.3-fold increase compared 

to the DflgP mutant (p=0.0385).  

 

 
Figure 27. Biofilm formation for the control mutant DflgP and its complementation. The 
bacteria were incubated for 48 hours in 96 well plates under microaerophilic conditions. The 
biofilms were stained with crystal violet and the absorbance at 540nm was measured. Bars 
represent the means ± standard deviation of three biological triplicates. Two-sided unpaired 
Student t-test, *p≤0.05. 

 
 
The quantitative measurement of biofilm formation revealed eight knockout mutants 

with an increased biofilm formation (Dinv, Dhad2, Dmaf, Dtgt, DtyrA, DyajQ, Dhip82 

and DrrF2). Two mutants showed low levels of biofilm formation (Dsas and Dhip12).  

When compared to the reference strain, DInv showed 5.2-fold higher levels of biofilm 

formation (p=5.095E-09), Dhad2 showed 4.2-fold levels (p=4.435E-20), Dmaf 1.7-fold 
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(p=0.0019), Dtgt 4-fold (p=6.749E-14), DtyrA 5.7-fold (p=4.498E-22), DyajQ 4.1-fold 

(p=2.438E-07), Dhip82 7.4-fold (p=1.686E-24) and DrrF2 3.6-fold (p=2.345E-11).  

In contrast, Dsas and Dhip12 were not able to consistently form biofilms and were easily 

removed during the washing step. Compared to the WT, Dsas showed a reduction of 

12% (p=0.204) and Dhip12 showed 1.8-fold increment, however values were statistically 

not significant (p=0.079) (Figure 28). 

 

 
Figure 28. Biofilm formation for knockout mutants. The strains were incubated for 48 hours 
in 96 well plates under microaerophilic conditions. The biofilms were stained with crystal violet 
and the absorbance was measured at 540nm Bars represent the means ± standard deviation of 
four biological quadruplicates. Two-sided unpaired Student t-test, ns: not significant; *p≤0.05; 
**≤0.01 and ***≤0.001. 

 

A qualitative microscopic analysis of biofilm formation after 15 minutes incubation in 

crystal violet confirmed the robust capacity of the eight mutants to strongly attach to 

the polystyrene (Figure 29). Corroborating to the quantitative measurements, the 

Figure 29 shows the reference strain, the control mutant DflgP, the Dsas and Dhip12 

with low biofilm attachment to the polystyrene surface and subsequently low crystal 

violet staining.  
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Figure 29. Imaging of biofilm attached to the polystyrene surface. At 10x magnification. The 
pictures were taken after the 15 minutes incubation in crystal violet and two washing steps. 

 

3.3.4.2 Bile acid effect on biofilm formation 

To investigate the effect of bile acids on the biofilm formation in the knockout mutants, 

the assay was performed with an addition of 1 mM DCA in the incubation media.  

Except for the wild type, all mutants presented a reduced biofilm forming capacity 

when exposed to DCA during the incubation of 48 hours. Any strain tested presented 

statistical significance, however, Dinv, Dsas and Dmaf presented p<0.07. When exposed 

to DCA the reference strain presented an increment of 4.5-fold (p=0.13). In contrast, 

we observed a reduction for Dinv (95%, p=0.068), Dsas (88%, p=0.057), Dhad2 (94%, 

p=0.182), Dmaf (88.7%, p=0.063), Dtgt (93.7%, p=0.168), DtyrA (29.9%, p=0.53), 

DyajQ (72.6%, p=0.2), Dhip82 (66.5%, p=0.153), Dhip12 (87.5%, p=0.12) and DrrF2 

(32.3%, p=0.56).  
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Figure 30. Biofilm formation with effect of the bile acid DCA. The strains were incubated for 
48 hours with 1 mM DCA in 96 well plates under microaerophilic conditions. The biofilms were 
stained with crystal violet and the absorbance was measured at 540nm. Bars represent the 
means ± standard deviation of two biological quadruplicates. Two-sided unpaired Student t-
test. 

 

3.3.4.3 Effect of oxygen on biofilm formation 

A biofilm is considered to be a persistent state that forms in challenging environments. 

Normal levels of oxygen can affect Campylobacter behavior and the biofilm might be a 

mechanism of survival under these conditions. To assess the effect of oxygen on the 

biofilm formation, we incubated the bacterial suspension on 96 well plates under normal 

atmosphere.  

The biofilm formation in presence of regular oxygen levels was higher in the wild type 

with an increase of 1.4-fold (p=0.0328). The same increment was observed, but without 

significance in Dtgt (1.1-fold, p=0.758), Dhip82 (1.4-fold, p=0.129), DrrF2 (1.2-fold, 

p=0.301) and with significance in Dhip12 with 2.6-fold (p=0.0183). In contrast, we 

observed a decrease in biofilm formation without significance in the mutants Dinv (0.8-

fold, p=0.260), DtyrA (0.8-fold, p=0.388), DyajQ (0.9-fold, p=0.869), and with 

significance in the mutants Dsas (0.7-fold, p=0.015), Dhad2 (0.6-fold, p=0.026) and 

Dmaf (0.5-fold, p=0.0013).  
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Figure 31. Effect of normal atmospheric conditions on Biofilm formation. The strains were 
incubated for 48 hours in 96 well plates under normal and microaerophilic conditions. The 
biofilms were stained with crystal violet the absorbance was measured at 540nm. Bars represent 
the means ± standard deviation of two biological quadruplicates. Two-sided unpaired Student 
t-test, ns: not significant; *p≤0.05. 

 
 

3.3.5 Stress assays 

3.3.5.1 Temperature 

To analyze the effect of increased temperature in the knockout mutants, we exposed 

the strains at 52°C for 1 hour.  

This temperature let to a moderate CFU decrease in the wild type. Mutants that 

displayed a larger effect than the WT were DyajQ and DrrF2 (Figure 32).  
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Figure 32. Temperature stress. The strains were incubated for 1 hour at 52°C and then plated 
by spot dilutions in log10 dilutions. The spots with the treated strains are assigned in the first 
and second rows as duplicates. The third row contains the control incubated for 1 hour at RT. 

 

 

3.3.5.2 Water survival 

To analyze the survival rate in sterile water at 4°C, we performed a water survival 

assay, a quantitative measurement by counting the colony forming units (CFU) plated 

daily for 2 weeks. The knockout mutants chosen for water survival consist in mutants 

significantly attenuated in de Vries et al. (2017) in sterile water at 4°C.  

The reference strain presented a survival period up to 11 days (in the 7th day counting 

47.3 CFU), and the same period of survival was observed for DtyrA (with an average 

of 128.1 CFU in the 7th day). Dhip12 showed a longer survival period of up to 13 days 

(with an average of 5.8 CFU in the 11th day). Moreover, the knockout mutant Dtgt 

showed the highest survival with an average of 41.7 CFU in the 14th day.   
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Figure 33. Water survival in sterile water kept at 4°C for up to 14 days. The number of CFU 
was calculated by serial dilutions made daily. The bars represent the means ± standard 
deviation of two biological triplicates.  

 

 

3.3.5.3 Bile acid 

During colonization in the human gut, C. jejuni will encounter different concentrations 

and composition of bile acids. The main bile acids found in the human small intestine 

consists of primary bile acids (cholic acid – CA, and chenodeoxycholic acid – CDCA) 

and secondary bile acids (deoxycholic acid – DCA, lithocholic acid – LCA, 

taurocheneoxycholic acid – TCA, glycocholic acid – GCA and ursodeoxycholic acid - 

UDCA).  

Previously, Masanta et al. (2018) showed that three of those seven bile acids presented 

low IC50, which confers them the most toxic effect to C. jejuni. DCA, CDCA and CA 

had IC50 values of 1.45, 2.41 and 3.48mM, respectively. Since DCA represents 20% of 

the bile in humans with the lowest IC50 and also with strong effect in protein regulation, 

we used DCA to test the knockout mutant’s survival.  
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To analyze the survival after DCA exposure, the mutants were added to MH with a 

final concentration of 1.5mM DCA and incubated for 24 hours under microaerophilic 

conditions.   

 
 

 
Figure 34. Survival after DCA exposure. The bars represent the means ± standard deviation 
of two biological triplicates. Two-sided unpaired Student t-test, ns: not significant; *p≤0.05 
and ***≤0.001. 

 
 
The percentage represents the ratio between the non-treated and DCA-treated samples. 

In Masanta et al. (2018), the WT 81-176 showed 50% of survival when cultured with 

DCA 1.45mM. In our experiment the same strain showed a similar survival rate of 

63.1% in 1.5mM DCA. Three knockout mutants Dsas (p=0.0002), DtyrA (p=0.012) 

and DyajQ (p=0.0003) showed a statistically significant reduction in survival after 24 

hours with 1.5mM DCA. Four mutants presented increased survival, namely Dtgt 

(p=6.8E-05), Dhip82 (p=9.1E-06), Dhip12 (p=0.03) and DrrF2 (p=0.0002).  
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4. Discussion 

Campylobacter jejuni as a foodborne bacterium, faces a variety of stress in the 

environment and needs to respond accordingly to persist. The environmental stress 

such as the exposure to bile in the intestine has been found to provoke adaptive 

responses in this bacteria, which need to adjust their protein synthesis to survive 

(Negretti et al. 2017). The ability of C. jejuni to respond to bile is considered complex 

and is still poorly understood. With the purpose to better understand the bile acid 

influence in the physiological adaptation processes of C. jejuni, we generated knockout 

mutants in genes encoding proteins differentially regulated after bile acid exposure, 

with a focus on proteins, which are down-expressed after bile acid exposure.  

Unexpectedly, phenotypical analysis with our ten knockout mutants revealed a strong 

coupled phenotype in six of them. The mutants ∆inv, ∆had2, ∆tgt, ∆tyrA, ∆yajQ and 

∆rrF2, showed similar patterns of phenotypic changes in motility, adhesion to, invasion 

and biofilm formation.  

 
 
4.1 A motility phenotype was environmental condition-dependent in six 

mutants 

In order to infect and cause disease in the host, Campylobacter must reach a suitable 

environment for growth and colonization by using its filamentous tail known as 

flagellum. C. jejuni motility is considered a key factor during colonization, as well as 

in pathogenesis, playing an important role in the development of the disease (Vliet and 

Ketley 2001). Interestingly, in our study, we observed an unusual motility phenotype 

that was not expected. All genes selected for knockout generation were not, in the first 

instance, associated with flagella, chemotaxis nor any motility related functions. Six 

knockout mutants, ∆inv, ∆had2, ∆tgt, ∆tyrA, ∆yajQ and ∆rrF2, presented low (below 1 

cm of swarming area) or none motility in the standard motility assay with MH 0.4% 

agar. However, the same six mutants, which will be termed as “unstable motility 
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phenotype”, showed a discrete motility above 1 cm in different agar concentration 

(0.25%), media (Brucella) and in liquid medium (microscopy) (Table 22). The other 

four mutants showed normal motility phenotype compared to the WT in all conditions. 

The knockout mutant ∆flgP which does not produce a functional flagellum was 

generated to serve as a negative control for motility assay (Figure 14). This mutant 

was completely motility defective under all conditions (agar concentration and media) 

tested.  

Normally, Campylobacter display straight swimming periods and eventual tumbling 

behavior. This behavior can be altered when the viscosity of the media is increased to 

simulate the intestinal mucus. In this viscous environment, Campylobacter enhances 

its motility velocity and shows longer straight swimming periods followed by pauses 

instead of tumbles (Szymanski et al. 1995). The increased viscosity obtained by the 

agar concentration in our motility assays presented the opposite effect, almost all 

mutants were more motile in the lowest agar concentration (MH 0.25%) and in Mueller 

Hinton broth (microscopy). However, the knockout mutants ∆inv, ∆had2, and ∆tyrA 

showed lower motility in Brucella 0.25%. In addition, the type of medium also 

influences the motility phenotype of the “unstable motility phenotype” mutants. 

Brucella medium showed diverse phenotypes, mostly with reduced motility (however 

more than 1 cm of swarming area) in both agar concentrations (Table 22). Differences 

in media composition might explain the phenotype observed. Mueller Hinton consists 

in less components than Brucella. Mueller Hinton contains beef extract, acid 

hydrolysate of casein (peptone) and starch (its hydrolysis yields dextrose), while 

Brucella contains tryptone, peptic digest of animal tissue (peptone), sodium chloride, 

yeast extract, dextrose and sodium bisulfite. The richer components of Brucella might 

be recognized as a chemoattractant by C. jejuni mutants and/or provide more energy 

for motility. However, MH 0.25% and MH broth without agar (for microscopy) also 

presented modest or normal motility. The motility performed in test tubes with TTC 

(Figure 19) had a different setup comparing to the normal soft agar assay. In TTC 
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assays performed in 0.25% agar, the motility was measured by the colored zone of 

growth along the tube, while in the plate soft agar, the grown zone was horizontally 

measured. In the TTC test, the bacteria need to swim heading down through the media 

reaching more nutrients and this direction is supported by the gravity, what might be 

an additional explanation to the small increased motility observed in the mutants ∆tgt 

and ∆rrF2. 

The “unstable motility phenotype” mutants change their behavior in lower viscosity 

and richer media, presenting a modest increment in motility when compared to the 

standard soft agar assay (MH 0.4% agar). Interestingly, some bacteria species present 

diverse swimming abilities such to cross through viscous environments (e.g. GI mucus) 

in which others are incapable to move. Campylobacter species are known to generate 

one of the highest flagellar motor torque and with a fast swimming speed in high 

viscosity environment (Beeby et al. 2016). Chaban et al. (2018) studied the torque 

evolution in C. jejuni and other three different organisms from the same class 

Epsilonproteobacteria, that are also present in similar environments where C. jejuni is 

found. The authors state that the higher torque motor is associated to the bacterial 

cell shape, since the helical shape of C. jejuni facilitate the movement in viscous 

environment. The flagellar motor is a periplasm-spanning rotary motor and its torque 

is generated by proton flux through inner membrane stator complexes (MotA/B) and 

is constituted of a conserved core of ~20 structural proteins (Beeby et al. 2016). To 

maintain a functional high torque structure as flagella in C. jejuni, the organism has a 

high energy consumption. The six “unstable motility phenotype” mutants might have 

an energy generation in a sub-optimal level or are associated to some metabolic 

disfunction that would result in the lower motility observed in different viscosity and 

nutrient availability. C. jejuni can only afford this high energy cost given that it is 

consistent to the habitat in the gut, which provides a good nutrient availability. Other 

organisms that inhabit in lower viscosity and lower nutrients are more efficient with a 

simpler motor (Chaban, Coleman, and Beeby 2018). This high cost energy of having a 
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potent flagellum motor and a sub-optimal energy generation might be correlated to the 

singularities observed in the “unstable motility phenotype” mutants in different media.  

Composition and availability of nutrients can affect the chemotaxis behavior in C. 

jejuni. Sensing certain substrates might modulate motility, induce biofilm formation, 

and increase resistance to stress and minimize energy expenditure in different niches 

(Chandrashekhar, Kassem, and Rajashekara 2017). C. jejuni regulates its motility by 

chemotactic signaling systems, which allow the bacteria to follow favorable 

environment/nutrient or scape from a harmful condition (Lertsethtakarn, Ottemann, 

and Hendrixson 2011). Two-component regulator systems (TCS) mediates the 

chemotaxis, and includes a membrane associated histidine auto-kinase/sensor and a 

cytoplasmic response-regulator protein (Chandrashekhar, Kassem, and Rajashekara 

2017). TCS facilitate sensing of nutrients in the environment and responding to a 

stimulus and consequently play an important role in the pathogenesis of 

enteropathogens. 

Additionally, the nutritional environment can also influence the motility by quorum 

sensing. Quorum sensing mediated by autoinducer-2 (AI-2) is widely conserved among 

Gram-negative and Gram-positive bacteria and has been associated to environmental 

adaptation of pathogens such as E. coli and Salmonella spp. It has been demonstrated 

that C. jejuni possess in its genome the luxS gene and is able to produce AI-2, the only 

AI described in C. jejuni. After its discovery, consequently, many studies have 

confirmed that motility on soft agar is decreased in luxS mutant strains (Jeon et al. 

2003; Holmes et al. 2009; Quiñones et al. 2009; Plummer et al. 2011). Cloak et al. 

(2002) demonstrated measurable levels of AI-2 in milk and chicken broth, suggesting 

that nutrients present in this common food source are required for AI-2 production. 

The swarming motility of other organisms such as Serratia liquefaciens is nutritionally 

controlled (Eberl et al. 1996). Also, in Pseudomonas aeruginosa the QS was shown to 

employ its nutritionally conditional control of biofilm formation through regulation of 

motility (Shrout et al. 2006). It would thus be interesting to investigate in future 
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whether QS and AI-2 levels are altered in the “unstable motility phenotype” mutants, 

which might explain the motility phenotype observed. 

The only “unstable motility phenotype” mutant whose target gene product was up-

regulated by bile acids in the proteomic study from Masanta et al. (2018) (Table 19) 

was ∆rrF2. RrF2 was up-regulated by five different bile acids (CA, DCA, LCA, CDCA 

and UDCA) and also presented the unstable motility phenotype. The reduced motility 

observed in MH 0.4% agar for the ∆rrF2 mutant might be associated to transcriptional 

malfunction since RrF2 is a transcriptional regulator (CJJ81176_0891, Uniprot). The 

same knockout mutant showed reduced autoagglutination (Figure 25 and Figure 26). 

The role of autoagglutination in pathogenesis of C. jejuni has not been determined, but 

is strongly implicated in virulence of other species such enteropathogenic E. coli and 

V. cholerae (Golden 2002; Knutton et al. 1999). A recent study assessed 

autoagglutination in C. jejuni strain 81–176 and strongly associated this property with 

flagellar expression (Misawa and Blaser 2000), however, the genes responsible for 

autoagglutination in C. jejuni have not been identified.  

Compared to Bacillus subtilis or E. coli with fourteen and seven sigma factors, 

respectively; Campylobacter jejuni was identified with only three (σ28, σ54, and σ70). 

This lower number of sigma factors suggests that certain pathways may be coordinately 

regulated (Carrillo et al. 2004). While rpoD encodes σ70 that is involved in the 

expression of housekeeping genes, rpoN (σ54) and fliA (σ28) are associated to a number 

of flagellar genes (Jagannathan, Constantinidou, and Penn 2001). The flagellar 

production requires significant energy expenditure, consequently, an adequate 

regulation of flagellar genes is important to avoid unnecessary energy outflow. A 

misbalanced or interference in this complex coordination could result in an unstable 

phenotype in C. jejuni.  
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4.2 The mutants with “unstable motility phenotype” display high 

invasion and adhesion to Caco2 cells 

Campylobacter pathogenesis includes some important stages: i) motility to reach its 

specific niche, ii) adhesion to the intestinal epithelium and iii) invasion of the target 

cells and development of the disease. The symptoms associated to Campylobacteriosis 

include bloody and inflammatory diarrhea, caused by bacterial disruption and invasion 

into the intestinal epithelium (Mills et al. 2012).  

The strain C. jejuni 81-176 was first isolated from an outbreak in 1985 associated to 

raw-milk consumption and is proven to be highly invasive compared to other strains 

(Korlath et al. 1985). The invasive properties provide the possibility to study the 

molecular basis of this virulence mechanism used by Campylobacter. In the absence of 

an appropriate animal model that mimics human disease (Newell 2001), invasion has 

been largely studied using in vitro cell culture. Coote et al. (2007) demonstrated that 

different C. jejuni isolates adhered and invaded more efficiently to human colonic 

Caco2 cells than other cellular types. Considering that, we used Caco2 cells in our 

experiments to investigate Campylobacter invasion. However, due to the unexpected 

phenotypes observed in the same six “unstable motility phenotype” mutants, we also 

used a second cell line, COS-7, to confirm the high invasion phenotype observed. The 

invasion rate determined by GPA with COS-7 cell line also confirmed the increased 

invasion phenotype in ∆inv, ∆had2, ∆yajQ and ∆rrF2, when compared to the WT strain.  

As expected, the control mutant ∆flgP (with paralyzed flagella) showed reduced 

adhesion (data not shown) and invasion rates, both phenotypes were successfully 

restored to WT level after complementation (Figure 21).  

Surprisingly, our gentamycin protection assay results (3.3.2.2) revealed an increased 

invasion phenotype in the six “unstable motility phenotype” mutants and in ∆hip82. 

Previous studies already proved the close relationship between motility and events such 

adhesion and invasion (Szymanski et al. 1995) and this association might play a role 
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between the unstable motility phenotype and adhesion and invasion phenotype 

observed in those six mutants.  

The complex flagellar structure plays a role in motility but is also closely associated to 

secretion factors involved in the invasion of epithelial cells. Numerous studies have 

demonstrated that the C. jejuni flagellum functions as a secretory organelle by a type 

III secretion system-like transport mechanism and is needed for Cia protein export 

(Konkel et al. 2004; Barrero-Tobon and Hendrixson 2014). The secretion of Cia proteins 

demands a functional flagella basal body and hook, and at least one filament protein. 

The expression of flaA gene is necessary for maximal invasion in eukaryotic cells and 

for translocation of C. jejuni across polarized cells (Grant et al. 1993; Wassenaar, 

Bleumink-Pluym, and van der Zeijst 1991). The correct flagella formation is important 

for the extracellular delivery and for translocation to the intracellular environment for 

some proteins, such as Cia (CiaB, CiaC, CiaD, CiaI), FlaC and FspA. Masanta et al. 

(2018) showed an up-expression of the external structures of the flagellar apparatus 

flaA (by DCA, CDCA and GCA), flaB, flaC, fliE and motA (DCA and CDCA), and 

proposes that those structures also have other functions besides motility, such as cell 

adherence. Masanta et al. (2018) suggest that chemotaxis mediated flagellar motility 

by DCA, CDCA and GCA are also involved in adherence to epithelial cells. From our 

increased adherence phenotype mutants (in the six “unstable motility phenotype” 

mutants), three of them: Inv, tyrA and YajQ, were proteins down-expressed in the 

WT, while RrF2 was up-expressed; by DCA and/or CDCA and/or GCA. 

It has been demonstrated that motility is switched with changes in gene expression 

during stationary growth phase, reducing motility in mid-stationary phase (Wright et 

al. 2009); however, the expression of flagellar genes is up-regulated during this phase 

and in presence of bile acids (Wright et al. 2009). The up-regulation includes genes 

that putatively encode proteins responsible for the hook, rod and P-ring, and those 

structures are maintained during the late-stationary phase, even with reduced motility 

(Carrillo et al. 2004; Parkhill et al. 2000). Konkel et al. (2004) described that mutants 
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in different components of the flagellar apparatus failed to secret the Cia proteins. It 

is tempting to speculate that even with lower motility phenotype, the flagellar 

structures might be maintained during the stationary phase to fulfill a secretory 

function needed during invasion. The “unstable motility phenotype” mutants showed 

a condition-dependent motility and an increased invasion phenotype, that fits to the 

above stationary phase behavior and consequently to an expected Cia protein excretion. 

Chloramphenicol is a selective inhibitor of bacterial protein synthesis and can be used 

in sublethal concentration to selectively inhibit protein synthesis without killing the 

organism (Konkel and Cieplak 1992). In future analysis for the increased invasion 

phenotype observed in our study, a potential experiment adding a sublethal 

concentration of chloramphenicol previously and during contact to the Caco2 cells to 

the GPA would inhibit the Cia protein synthesis. And consequently, reveal a possible 

association of increased invasion and Cia production.  

Intriguingly, the observed increased adhesion and invasion phenotypes associated to 

instability in the motility is a new phenomenon not described in the literature so far. 

Particularly lower or absence of motility is associated to lower invasion rates 

(Szymanski et al. 1995; Michael E. Konkel et al. 2004) as observed in our control 

mutant DflgP. Additionally, the high adhesion and invasion rates are also not common 

phenotype observed in knockout mutants. Du et al. (2016) described a virulence-

associated gene by knocking out the cj0371 gene. The invasion and colonization 

investigations showed an increased invasion phenotype in the knockout mutant, and 

suggested that the gene might play a negative role in pathogenicity, which is expected 

to be suppressed during the infection (Du et al. 2016). Similar increased invasion 

phenotype was also observed by Lübke et al. (2018) in knockout mutant in the 

transducer-like protein - Tlp12 generated in C. jejuni A17. 

During the invasion assays of this work, the Caco2 cells and also the C. jejuni added 

to the experiment were incubated for 2 hours in the cell incubator in a humidified 

atmosphere with 5% CO2. The higher concentration of O2 during the incubation time 
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could trigger adaptation genes and consequently modulate the invasion phenotype. As 

WT, ∆maf, ∆hip12 and control mutant ∆flgP did not present such effect, the oxygen 

regulation might be potentialized in the mutants ∆inv, ∆had2, ∆tgt, ∆tyrA, ∆yajQ and 

∆rrF2. Once the bacteria are internalized, the effect of oxygen in vitro and bile acids 

in vivo are greatly diminished.  

The fact that the target genes that were disrupted in our knockout mutants showed an 

increased adhesion and invasion phenotypes possess diverse cellular and metabolic 

functions, highlights that adhesion and invasion are a multifaceted phenotype, 

implicating different pathways in these complex mechanisms.  

 

4.3 Cyclic-di-GMP might be involved in the unstable motility phenotype 

To survive and be successful in diverse and continuously changing environments, 

bacteria engage many strategies to sense and adapt to their surroundings. One such 

system is the bis-(3'-5') cyclic dimeric GMP (c-di-GMP) signaling network. C-di-GMP 

controls several behaviors and processes including motility, biofilm formation, 

virulence, differentiation and cell cycle progression (Hengge 2009). C-di-GMP is 

produced by diguanylate cyclase (DGC) from two GTP, and is hydrolyzed into a linear 

5’-pGpG or two GMP molecules by a c-di-GMP specific phosphodiesterase (PDE) (Sisti 

et al. 2013). The DGC activity is conferred by the conserved GGDEF functional 

domain, while PDE activity is performed by conserved EAL or HD-GYP domains (Sisti 

et al. 2013). Remarkably, individual bacterial genomes commonly encode numerous 

GGDEF and EAL/HD-GYP proteins (Galperin 2005), indicating that the c-di-GMP 

network is a very complex and tightly regulated system.  

Bacteria normally use c-di-GMP to transmit environmental signals to downstream 

receptors that modulate many important cellular processes for survival.  An essential 

feature of c-di-GMP regulation is the capacity of this second messenger to control the 

lifestyle transition between motile to sessile (planktonic to biofilm form). It has been 

described that elevated levels of intracellular c-di-GMP promote sessile lifestyle and 
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stimulate the production of extracellular polymeric substance (EPS) matrix and 

subsequent biofilm formation (Römling, Galperin, and Gomelsky 2013). In contrast, 

low levels of c-di-GMP are associated with active motility. Increased levels of c-di-

GMP promote biofilm formation and reduced motility in Pseudomonas aeruginosa 

(Kuchma et al. 2015), Salmonella spp. (Zorraquino et al. 2013), Bacillus subtilis (Chen 

et al. 2012), Bordetella bronchiseptica (Sisti et al. 2013), Shewanella oneidensis (Gao, 

Meng, and Gao 2017), Vibrio cholerae (Kovacikova, Lin, and Skorupski 2005), and 

others.  

Interestingly, our six “unstable motility phenotype” mutants showed non-motile 

phenotype (in MH 0.4% agar) and variable motility phenotypes in other conditions, 

and also presented increased biofilm formation (Figure 28 and Figure 29). These 

phenotypes correlate with high c-di-GMP levels observed in other species. It would 

thus be interesting to determine whether c-di-GMP concentrations are also elevated in 

the “unstable motility phenotype” mutants.  

High intracellular levels of c-di-GMP could be due to an increased production or to an 

accumulation by low hydrolysis of the second messenger. It has been shown that 

environmental cues such oxygen, bile acid and QS autoinducers can directly regulate 

DGCs or PDEs in various bacteria (Koestler and Waters 2014). 

C-di-GMP represses the expression of virulence factors in Vibrio cholerae and its 

intracellular concentration is low during infection, however Koestler and Waters (2014) 

found that bile acids increase the intracellular second messenger concentration. V. 

cholerae in response to bile acids shows significantly enhanced biofilm formation and 

is more resistant to the toxicity of bile acids within the biofilm (Hung et al. 2006). 

Indeed, in our biofilm assay performed in presence of 1 mM DCA, the wild-type strain 

showed a 4.5-fold increased biofilm formation, however with no statistical significance.  

Little is known about c-di-GMP in C. jejuni and its effect in the bacterial physiology 

and gene expression. Raphael et al. (2005) described a mutant of C. jejuni sensitive to 

DCA, the gene Cj0643 or cbrR (Campylobacter bile resistance regulator). The cbrR 
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analysis demonstrated that it contains two tandem response regulator (RR) receiver 

domains and a C-terminal GGDEF domain, indicating a possible link between bile 

resistance and second messenger production. The mechanism of bile acid resistance of 

cbrR in C. jejuni remains to be determined, as well as the c-di-GMP involvement in 

bile acid resistance and lifestyle transition in C. jejuni.  

In 2014, An et al. published a study that identified a c-di-GMP binding protein in the 

plant pathogen Xanthomonas campestris pv. campestris (Xcc). They identified a 

protein of the YajQ family as a probable c-di-GMP receptor. With the aid of 

recombinant YajQ-like proteins from different bacterial human pathogens it was also 

possible to show the role of YajQ in virulence and its specific association to c-di-GMP. 

The findings from An et al. (2014) identified a new class of cyclic di-GMP effectors 

that regulate bacterial virulence that can also be related to our knockout mutant DyajQ 

from the same family. 

 

4.4 The mutants with “unstable motility phenotype” are assigned to 

different functions/pathways 

The target genes selected for knockout generation are annotated to different functions 

and pathways as listed in Table 19. In the first instance, the six mutants with the 

“unstable motility phenotype” were not associated to the flagellar apparatus nor any 

motility related function. The functions and pathways include a protein associated with 

invasion (Inv), a hydrolase from the HAD-family (HAD2), an enzyme involved in tRNA 

modification (tgt), a prephenate dehydrogenase found in the Shikimate pathway 

(tyrA), a putative c-di-GMP effector/binding protein (YajQ) and a transcription factor 

(RrF2). All those functions are not associated by any similar function that link them 

and the genes were located far from each other in the C. jejuni 81-176 genome. 

However, the genes Inv and RrF2 were situated closely to other genes associated to the 

flagellar apparatus. A gene encoding a flagellar L-ring (CJJ81176_0710) was situated 

upstream of Inv, both encoding in the antisense direction. Regarding the RrF2 gene, a 
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flagellar hook (FlgL, CJJ81176_0894) was situated upstream and flhA (flagellar 

biosynthesis protein, CJJ81176_0890) was situated downstream, all three in antisense 

direction. The knockout mutation in these two genes could present a polar effect on 

the upstream and downstream localized genes and alter their expression to a level that 

shows a detectable phenotype.  

For our surprise, the same six “unstable motility phenotype” mutants presented other 

strong phenotypes associated with an increased adhesion, invasion and biofilm 

formation (Table 23). This coupled phenotype might be influenced by a general genetic 

program that link all these features together. The knockout mutants ∆inv, ∆had2, ∆tyrA 

and ∆yajQ are knockout mutants generated from the target genes that were down-

regulated after bile acid exposure in Masanta et al. (2018) study. The bile acids 

regulation is the common link between the five knockout mutants (except for the gene 

tgt that was not differentially regulated by any bile acid) and may have influence in 

the adaptation in C. jejuni that were observed in our assays.  

 

Table 23. Summary of phenotypes obtained in the study.  

Strains “UMP” Adhesion Invasion Biofilm 

∆inv Yes + + + 

∆sas  - -  

∆had2 Yes + + + 

∆maf     

∆tgt Yes + + + 

∆tyrA Yes + + + 

∆yajQ Yes + + + 

∆hip82  + + + 

∆hip12     

∆rrF2 Yes + + + 
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The only mutant that showed similar phenotype observed with increased invasion and 

biofilm formation, except for the normal motility, is the ∆hip82 mutant (Table 23). 

The Hip82 was a gene down-regulated by DCA and CDCA in Masanta et al. (2018) 

study. It showed the highest biofilm formation among the ten mutants, however 

presented normal motility phenotype comparable to the WT in most assays, except in 

the motility after invasion (Figure 17) that showed reduction in motility after invasion. 

The Hip82 is annotated as a hypothetical protein and is situated between elongation 

factors and other hypothetical proteins.  

The increased invasion and also the increased biofilm formation provide protection for 

the bacteria against the stress found in the GI tract environment. Once within the 

epithelial cell or inside the biofilm structure, Campylobacter has no bile acid pressure 

and can proceed with the colonization processes.  

Until the date, there is no literature available that describes such phenomenon in 

Campylobacter or other organism, since knockouts from target genes that were down-

regulated by any specific condition is uncommon in the literature.  

The fact that our genes were classified as part of diverse metabolic pathways 

emphasizes that the unstable motility phenotype, as well as adhesion, invasion and 

biofilm formation are somehow connected and responding in a similar manner.  

 

4.5 The transcriptional regulator RrF2 may be involved in biofilm 

formation, invasion and autoagglutination in C. jejuni. 

RrF2 is annotated as “RrF2 family protein” and shows the same sequence as cymR in 

C. jejuni (Uniprot A0A1E7NYK4). CymR is a repressor that belongs to the widespread 

and poorly characterized RrF2 family of transcriptional regulators (Shepard et al. 

2011). The RrF2 presents 30.57% sequence identity with the cymR gene in B. subtilis 

(strain 168) and 29.71% identity with S. aureus. CymR is the master regulator of 

cysteine metabolism and is described to play an important role in biofilm formation, 

stress response and virulence in S. aureus (Soutourina et al. 2010, 2009), sulfur 



 

 100 

utilization and is a cysteine biosynthesis repressor in B. subtilis and S. aureus 

(Commichau and Stülke 2015).  

Interestingly, the RrF2 gene was up-regulated by five bile acids (CA, DCA, LCA, 

CDCA and UDCA) and might regulate by repressing genes involved in the phenotypes 

observed for invasion, biofilm formation and autoagglutination.  

In general, the RrF2 family is Incompletely characterized. In particular, for C. jejuni 

no literature is available for this gene till the date. RrF2 has been described for the 

first time in C. jejuni in this work and might be associated to virulence in this organism. 

Further studies are needed to better understand and characterize its contribution in 

the regulation of the phenotypes observed in our study.  

 

4.6 A transporter mutant is associated to adhesion and invasion of Caco2 

cell  

For some bacteria, a sodium circuit is an important link between endergonic and 

exergonic membrane reactions, been a common method of substrate uptake in living 

cells (Wilson and Ding 2001). The knockout mutant ∆sas was the only mutant that 

showed a direct reduction phenotype associated to invasion, adhesion and biofilm 

formation (Figure 22, Figure 24 and Figure 28). This gene is annotated with a Sodium 

symporter function and was downregulated by GCA in the Masanta et al. (2018) study.  

The Sas gene may therefore be an important player in 81-176 adhesion, invasion and 

biofilm formation. Most likely to be an integral component of the membrane, the Sas 

may enable adhesion and invasion by actively facilitating the attachment of the 

bacterium to its host.  

The growth kinetics was similar to the WT, showing no growth deficiency that could 

explain the low invasion, adhesion and biofilm formation observed. The growth kinetics 

was performed with normal MH without any difference in sodium or any other 

component. We were unsuccessful to generate complementation for ∆sas, and for now 
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is not possible to confirm the phenotypes observed, however other complementation 

techniques could be applied for a future confirmation of this finding.  

 

4.7 Stress adaptation of C. jejuni 

C. jejuni adaptation to different environments and/or conditions is an important 

feature enabling the bacteria to save resources by expressing only the appropriate group 

of genes in specific conditions. Usually enteropathogens adapt to different environments 

and are able live in a free living form and also colonizing a host (Rivera-Amill et al. 

2001). Environmental conditions such as temperature, nutrient starvation, oxygen 

levels, pH and bile acids serve as environmental signals that can lead to differentiated 

protein synthesis.  

An evident external stress for Campylobacter is the bile acids. Previously, Masanta et 

al. (2018) showed that DCA was the bile acid with strong effect in the C. jejuni protein 

regulation and also with the lowest IC50. We tested the survival rate of our 10 knockout 

mutants growing with 1.5mM DCA for 24 hours under microaerophilic conditions 

(Figure 34). Three knockout mutants showed reduced survival in DCA, Dsas, DtyrA 

and DyajQ. Those three target proteins, Sas, tyrA and YajQ, were down-regulated by 

GCA, CDCA and DCA/CDCA, respectively, and are probably involved in bile acid 

adaptation in C. jejuni. In contrast, three mutants showed increased survival in DCA, 

Dtgt, Dhip82 and DrrF2. In Masanta et al. (2018) the tgt protein did not show any 

significant regulation by bile acid, Hip82 protein was down-regulated by DCA and 

CDCA, and RrF2 protein was up-regulated by CA, DCA, LCA, CDCA and UDCA.  

Besides the DCA exposure, we challenged our knockout mutants to other stresses to 

assess their survival at increased temperature (Figure 32) and survival in sterile water 

at low temperature (4°C) (Figure 33). 

The high temperature treatment only showed reduction of one log in the Unstable 

Motility Phenotype mutants DyajQ and DrrF2 (10-4) compared to the WT (10-5). In 

the water survival, only the Dtgt and Dhip12 mutants showed a longer survival 
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compared to the WT. The mutant Dtgt showed the longest survival rate with an 

average of 41.7 CFU at day 14. The tgt and tyrA transposon mutants were significantly 

attenuated in the Tn mutagenesis study (de Vries et al. 2017), however, in our water 

survival assay, the Dtgt mutant showed longer survival. Therefore, tgt could be 

implicated in the adaptation to lower temperatures and/or longer survival in 

starvation.  

 

4.8 Proposed model 

Campylobacter jejuni is normally found in the human and animal intestine, in 

untreated surface water and in contaminated food (raw meat, milk or dairy products). 

Those environments provide highly different conditions and require adaptive responses 

for C. jejuni survival. Campylobacter developed physiological strategies to adapt and 

survive inside the host for a successful colonization. 

After internalization via ingestion into a human host, C. jejuni enters the small 

intestine, where it finds a low pH from the stomach and a high concentration of bile 

acids in the lumen. The bile concentration in human GI tract is present in a gradient 

from high concentration in the proximal small intestine (duodenum) to very low levels 

in the large intestine. In the first part of the small intestine, predominantly the primary 

bile acids, CA and CDCA are found. The microbiome present in the intestine express 

bile salt hydrolases which deconjugate the host bile acids what leads to the formation 

of secondary bile acids and thus creates a significant change in the host bile acid pool 

(Ridlon, Kang, and Hylemon 2006). About 5% of primary bile acids remains in the 

colon, the rest (primary and secondary) are reabsorbed participating in a negative 

feedback inhibiting bile synthesis. In a healthy person, approximately 5% of DCA and 

LCA is excreted in the feces, consequently these bile acids are present along the 

intestine, while the others are mostly reabsorbed (Camilleri 2014).  

The presence of bile acids might serve as an indicator for the presence inside the gut 

lumen and trigger the expression of virulence genes. Some genes such as the multidrug 
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efflux pump CmeABC are up-regulated, while repressor genes such as cmeR and cbrR 

are down-regulated by bile acids (Masanta et al. 2018).  

Bile acids are toxic substances for enteropathogens like C. jejuni. Bile acids can cause 

disruption of cellular membranes, protein misfolding, oxidative damage to DNA and 

cause a differentiated bacterial gene expression (Jia and Xie 2018; Sistrunk et al. 2016; 

Joyce and Gahan 2016). In order to survive, the organism reduces bile acid exposure 

by protecting itself inside a biofilm structure or hiding inside a host cell.  

In our six “unstable motility phenotype” mutants we observed an environmental 

condition dependent reduction of motility, as well as an expressive increment in 

invasion and biofilm formation. From the six “unstable motility phenotype” mutants, 

four target genes (Inv, Had2, tyrA and YajQ) were down-regulated by bile acids 

(Masanta et al. 2018). It is possible that knocking out genes that were predominantly 

down-regulated after bile acid exposure (Table 19) can artificially mimic parts of the 

response observed in C. jejuni when challenged with bile acids, at least for the specific 

cellular process in which they are involved in.  

Organisms such as Campylobacter react to short term external changes by reversibly 

adjusting their physiology to maximize resource consumption while preserving 

structural and genetic integrity to maintain its robustness. By disrupting a target gene, 

we caused a disturbance that might lead to the observed phenotypes such as the 

unstable motility and increased invasion and biofilm formation.  

Some disturbances of metabolic flow or general healthiness of the organism might lead 

to the activation of a common genetic program that all in once leads to these 

phenotypes that we generated with the deletion of genes that are naturally down-

regulated in presence of bile acids stress. This disturbance was not sufficient to show a 

growth alteration in our mutants, but it was clearly affecting a more complex regulation 

involving motility, invasion and biofilm formation that prepares the organism to better 

deal with stress situations. Bile acid offer kind of stress to the organism, and deletion 
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of that genes is also a kind of stress situation and independently of specific stress that 

is encountered by Campylobacter the outcome seems to be very similar.  

 
 

5. Conclusion 

5.1 Conclusions 

Understanding how Campylobacter jejuni can adapt in the hostile environment within 

the host may help to create strategies to limit the bacterial impact. C. jejuni might 

serve as a model for understanding how pathogens with limited regulatory repertoires 

adapt to different environments. 

In summary, our findings suggest a tight and complex regulation of bile acid in the 

adaptation inside the host.  The high concentration of bile acid DCA promotes biofilm 

formation and consequently protection against the harmful condition. Along the small 

intestine, the bacteria get in contact with different bile acids that indicates the 

environmental changes (and its position within the host). By knocking out genes that 

were down-regulated by bile acids we potentially mimicked the proteomic regulation 

effect of bile acids. The outcome in the coupled phenotypes observed in six knockout 

mutants were very similar for the individual deleted genes although they participate in 

very different activities/functions. The phenotypic variations can be interpreted as 

adaptation processes that prepare the bacteria to better survive stress situations. 

 
 
5.2 Suggestions for future research  

Several experiments can be tested in order to validate and prove the adaptive 

mechanisms of C. jejuni over to the bile acid exposure. And we propose some of the 

possible specific assays that could be performed in a future research.  

In order to check if the knockout mutants showed a polar effect of the deletion in the 

adjacent genes, it is proposed the comparison of the transcription of genes downstream 

and upstream of the deletion in the mutant and in the parental strain by RT-PCR. 
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Originally the present project did not take into account the c-di-GMP regulation during 

the adaptation process in C. jejuni. The phenotypes observed in the “unstable motility 

phenotype” mutants suggest a potential association of cyclic-di-GMP in the motility 

reduction and increased biofilm formation. Accordingly, experiments involving the 

second messenger detection would be beneficial for the unstable motility and increased 

biofilm formation confirmation. To the date, there is a lack of literature regarding 

Campylobacter second messenger regulation as well as the identification of genes 

involved in such signaling system. 

As mentioned previously, the use of sub-lethal concentration of chloramphenicol as a 

selective inhibitor of bacterial protein synthesis could be used in future analysis of the 

association of Cia production and the increased invasion phenotype observed in our 

study. The addition of sub-lethal concentration of chloramphenicol to the GPA assay 

would inhibit Cia proteins synthesis when the mutants are in contact to the Caco2 

cells. And subsequently, reveal a possible association of increased invasion and Cia 

production during invasion process.  
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