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Chapter 1: General Introduction 

1.1. Epigenetic modifications in cell biological processes 

Epigenetic modifications are defined as mechanisms that regulate gene 

expression without changes in the underlying DNA sequence (Bernstein et al., 2007; 

Bird, 2007). In the mammalian cells, epigenetic modifiers can alter chromatin 

architecture and genomic function through different processes, including DNA, RNA or 

histone modifications, and activity of non-coding RNAs (Strahl & Allis, 2000; 

Goldberg et al., 2007; Kouzarides, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Chromatin remodeling BAF (mSWI/SNF) complex in neural development. 

The BAF complex, epigenetic factors and transcription factors (TF) control gene expression. 

TFs and ncRNAs bind to specific DNA sequences. The recruitment of BAF complexes and 

other epigenetic factors on the genome leads to altered epigenetic marks (e.g., histone 

acetylation, Ac; histone methylation, Me) and chromatin structure in order to activate or repress 

a specific gene expression program in cell lineages. This figure taken from Sokpor et al. (2017). 

Normally, epigenetic modifiers that target chromatin work as a complex 

machinery to modulate higher-level chromatin configuration to impact many biological 

processes, including cell renewal, differentiation, motility, maturation, survival and 
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reprogramming (Figure 1.1) (Reik, 2007; Boland et al., 2014; Sokpor et al., 2017; 

Hanna et al., 2018). The outcome of various epigenetic modifications broadly 

converges on either gene repression or activation. Generally, epigenetic regulators 

that promote gene expression activation remodel compact chromatin structure to an 

open or relaxed chromatin. The relaxed chromatin is known to be transcriptionally 

active because of related increase accessibility by transcription factors (Hirabayashi & 

Gotoh, 2010; Juliandi et al., 2010; Coskun et al., 2012; Ronan et al., 2013; 

Yao et al., 2016; Watson & Tsai, 2017). The converse is true for transcription 

repression being caused by chromatin modifiers that render the chromatin compact. 

The epigenetic regulators of chromatin structure can be categorized into: covalent 

and non-covalent chromatin modifiers. Covalent modifiers regulate chromatin via 

processes including methylation, acetylation, phosphorylation and ubiquitination, 

whereas non-covalent chromatin modification includes ATP-dependent chromatin 

remodelers which have been implicated in regulating many developmental 

processes, including neurodevelopment (Strahl & Allis, 2000; Neilson et al., 2006; 

Goldberg et al., 2007; Tran et al., 2013; Narayanan et al., 2015a; 

Bachmann et al., 2016b; Nguyen et al., 2016; Nguyen et al., 2018). 

1.2. ATP-dependent chromatin modifiers 

The ATP-dependent chromatin remodeling factors are multi-subunits complexes 

that depend on energy obtained from ATP breakdown to orchestrate detectable 

alterations in DNA-histone interactions that frequently translate in transcriptional 

changes to influence cellular developmental processes (Hirabayashi et al., 2009; 

Yoo & Crabtree, 2009; Hirabayashi & Gotoh, 2010; Ho & Crabtree, 2010; 

Yao et al., 2016; Albert et al., 2017; Sokpor et al., 2017). Mechanistically, chromatin 

remodeling involves nucleosomal mobilization that enhances the accessibility of DNA 

sequences to regulatory proteins that target genomic loci (Reinke & Hörz, 2003; 

Bailey et al., 2011).  

ATP-dependent chromatin remodeling complexes typically have ATPase 

subunits that allow them to hydrolyze ATP and to use the generated energy in order to 

remodel the chromatin structure. The mobilization of chromatin domains to alter DNA 

access is considered as a general mechanism that defines all ATP-dependent 
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chromatin remodelers (Clapier et al., 2017). Based on similarities and differences in 

their ATPase domains and related subunits, the chromatin remodelers can be further 

classified into four categories of complexes: INO80/SWR, imitation switch (ISWI), 

chromodomain helicase DNA-binding (CHD)/Nucleosome Remodeling Deacetylase 

(NuRD), and switch/sucrose non-fermentable (SWI/SNF) (Flaus et al., 2006). 

My study focused on the SWI/SNF complex that have been shown to play 

indispensable role in embryonic development including neurodevelopment and 

neuropsychiatric disorders (Sokpor et al., 2017). 

1.3. Biochemical features of the SWI/SNF (BAF) Complex 

The SWI/SNF complex was first identified in yeast to be composed of few 

subunits (Neigeborn & Carlson, 1984; Wang et al., 1996a). However, the mammalian 

orthologs, mSWI/SNF, or the Brg1/Brm associated factor (BAF) complex is made up 

of about 15 subunits totaling about 2 Megadalton (MDa) in size (Lessard et al., 2007; 

Wu et al., 2007).  

The BAF complex is typically found around gene promoters and enhancers, 

thus making them participate in gene expression programs that orchestrate cell 

biological processes including cell renewal, specification, differentiation and migration. 

Like other ATP-dependent chromatin remodelers, the BAF complex is composed of 

exchangeable ATPase catalytic core(s): either BRM/SWI2 related gene 1 (BRG1) or 

Brahma (BRM) depending on cell lineage (Neigeborn & Carlson, 1984; 

Wang et al., 1996a; Lessard et al., 2007; Wu et al., 2007; Kadoch et al., 2013). 

The BAF complex also contains other core subunits, including BAF155, BAF170 and 

BAF47 and variant subunits such as BAF60, BAF100, and BAF 250 that are 

ubiquitously expressed in the mammalian cell (Phelan et al., 1999; Sokpor et al., 2018). 

Some of variant subunits are expressed specifically in certain cell lineages such as 

BAF45A, BAF53A in neural stem cells and BAF45B, BAF53B in neurons 

(Bachmann, 2016; Lessard, 2007). 
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Mechanistically, BAF complex is able to convert condensed chromatin 

(heterochromatin) to transcriptionally active euchromatin via histone dimer exchanges 

or nucleosomal mobilization, ejection, and unwrapping (Phelan et al., 1999; 

Whitehouse et al., 1999; Saha et al., 2002; Gutiérrez et al., 2007; Tang et al., 2010).  

Many BAF subunits contain binding domains that allow the BAF complex to 

interact with DNA and/or histone and regulate gene expression in cell lineage restricted 

manner. The BAF complex displays variability and specificity in vivo due to 

combinatorial assembly and switch of its subunits to form complexes with specific 

remodeling outcomes and gene expression effects on cell fate (Lessard et al., 2007; 

Wu et al., 2007; Kadoch et al., 2013; Tran et al., 2013; Bachmann et al., 2016a).  

1.4. Regulation of cortical development by the mammalian 

SWI/SNF (BAF) complex 

During early development of the cerebral cortex, neuroepithelial (NE) cells which 

initially predominate the germinative zone of the presumptive cortex undergo 

proliferative (symmetric) division to increase their pool and subsequently switch to 

differentiative (asymmetric) division to produce the more specialized apical progenitors 

(radial glial [RG] cells) and pioneer neurons (Martínez-Cerdeño et al., 2006; 

Kriegstein & Alvarez-Buylla 2009). The downregulation of tight junctional 

complexes and the adoption of astroglial fate are characteristic changes that 

occur during such transformation of NE into RG cells (Mollgøard & Saunders, 1975; 

Aaku-Saraste et al., 1997; Hartfuss et al., 2001; Malatesta et al., 2003). Majority of 

NE cells differentiate to RG cells around embryonic day 12.5 (E12.5) of mouse 

cortical development (Kriegstein & Alvarez-Buylla, 2009; Sahara & O'Leary, 2009). 

The parent RG cells also known referred to as apical RG cells actively proliferate to 

increase their population and later exit the cell cycle as other subtypes of apical RG 

cells or basal progenitors, or as neurons that migrate to make the nascent cortical 

plate (Florio & Huttner, 2014). By mid-corticogenesis the developing cortex 

is populated by diverse neural precursor cells that produce majority of the neurons 
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that form the laminae of the cortical plate. The RG cells in the ventricular zone of 

the developing cortex switch from neurogenic fate to astrocytic progenitor fate to 

produce astrocytes and in the mouse cortex it starts from E17.5 (Morest, 1970; 

Schmechel & Rakic, 1979; Misson et al., 1991). 

Many transcriptional and epigenetic factors have been identified to regulate 

various discrete cortical developmental process including neural progenitor 

cell specification, proliferation, differentiation, migration and maturation 

(Sokpor et al., 2017; Elsen et al., 2018). The BAF complex plays critical role in many 

aspects brain development and function. Specific subunits of the BAF complex have 

been associate to neurodevelopmental processes, including progenitor proliferation 

and differentiation, and neuronal migration, maturation and synaptogenesis. 

As a result, malfunction of the BAF complex have been linked to several 

neurodevelopmental and neuropsychiatric disorders (Sokpor et al., 2017).  

 

 

 

 

 

 

Figure 1.2. Model about the degradation of BAF complexes. Deletion of BAF complex lead 

to dissociation of the other subunits and their degradation by the protein destruction system. This 

figure taken from (Narayanan et al. 2015). 

 

In the studies presented here, we developed mouse models to inactivate 

BAF complex globally in the developing embryo and conditionally in the dorsal 

telencephalon. The ablation of BAF complex was achieved by deletion of BAF155 and 

BAF170, leading to dissociation of the other subunits and their degradation by 

the protein destruction system (Figure 1.2) (Narayanan et al., 2015a). That way, 

the chromatin remodeling function of the BAF complex is lost in cells with constitutional 
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deletion of BAF155 and BAF170. Upon analyzing the BAF complex-deficient mouse 

embryo, we identified that the Brg1/Brm associated factor plays critical roles in 

embryogenesis and organ development (Nguyen et al., 2016). Furthermore, we found 

evidence implicating the regulatory influence of BAF complex on cortical, hippocampal 

and olfactory epithelium morphogenesis through regulation of neural progenitor 

proliferation and differentiation (Tran et al., 2013; Bachmann et al., 2016b; 

Nguyen et al., 2016; Tran et al., 2017; Nguyen et al., 2018).  

Aims and general results of the studies 

The studies aimed to clarify the role of BAF complexes in late cortical 

development and beyond. The studies addressed two major questions: (i) the in vivo 

validity and reproducibility of the mouse model of inactive BAF complex, and 

(ii) the implication of loss of BAF complex on cortical organogenesis. To answer these 

questions we first investigated the role of BAF155 and BAF170 in maintaining 

the stability of the BAF complex in the entire mouse embryo and specifically in 

the developing mouse forebrain. Second, we dived into how the BAF complex regulate 

neurogenesis during late cortical development. Our generated BAF complex mutant 

model provided a novel and investigative tool to probe into the above mention question 

in order to confirm our understanding of how the epigenetic regulation by the BAF 

complex influence cortical development.  

The published findings presented in chapter 2, we identified an indispensable 

BAF complex function in directing general development of the mouse embryo and 

profoundly in the early development of the forebrain. Globally, the BAF complex 

controls the installing of the transcription repressing heterochromatin marks 

H3K27me2 and H3K27me3 via modulation of the H3K27 demethylases (UTX and 

JMJD3) enzymatic activity know to control the dynamics of such transcription 

repression marks (Nguyen et al. 2018; Nguyen et al. 2016; Narayanan et al. 2015). As 

a result, deletion of the BAF complex resulted in marked upregulation of H3K27me2 
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and H3K27me3 in many organs in the mouse embryo, including the brain leading to 

developmental disturbance. 

In chapter 3, we showed the mechanistic details of how the BAF complex regulate 

cortical development. We found that the BAF complex functions as both repressors 

and activators to control the epigenetic landscape and related corticogenic gene 

expression programs in late cortical development. Specifically, BAF complexes 

ablation led to H3K27me3-linked repression of neuronal differentiation-associated 

genes, with simultaneous H3K4me2-mediated enhancement of proliferation-related 

genes through Wnt signaling de-repression. Interestingly, loss of BAF complex 

encourage proliferation of NE-like neural stem cells and apparently prolonged their 

transformation into RC cells. Altogether, loss of BAF complex functionality resulted in 

impaired neural progenitor proliferation and differentiation, and had a Wnt-dependent 

impact on proper cerebral cortex (neocortex and hippocampus) development.
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2.1. Abstract  

The multi-subunit chromatin-remodeling SWI/SNF (known as BAF for 

Brg/Brm-associated factor) complexes play essential roles in development. 

Studies have shown that the loss of individual BAF subunits often affects local 

chromatin structure and specific transcriptional programs. However, we do not fully 

understand how BAF complexes function in development because no animal mutant 

had been engineered to lack entire multi-subunit BAF complexes. Importantly, we 

recently reported that double conditional knock-out (dcKO) of the BAF155 and BAF170 

core subunits in mice abolished the presence of the other BAF subunits in 

the developing cortex. The generated dcKO mutant provides a novel and powerful tool 

for investigating how entire BAF complexes affect cortical development. 

Using this model, we found that BAF complexes globally control the key 

heterochromatin marks, H3K27me2 and -3, by directly modulating the enzymatic 

activity of the H3K27 demethylases, Utx and Jmjd3. Here, we present further insights 

into how the scaffolding ability of the BAF155 and BAF170 core subunits maintains 

the stability of BAF complexes in the forebrain and throughout the embryo 

during development. Furthermore, we show that the loss of BAF complexes in the 

above-described model up-regulates H3K27me3 and impairs forebrain development 

and embryogenesis. These findings improve our understanding of epigenetic 
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mechanisms and their modulation by the chromatin-remodeling SWI/SNF complexes 

that control embryonic development. 

2.2. Introduction 

Embryogenesis and organogenesis are determined by the combined effects of 

myriad developmental events. In recent years, we have made substantial advances in 

understanding how embryonic development is regulated (Ho & Crabtree, 2011; 

Kojima et al., 2014). The early development are coordinated by different molecular 

programs, in which epigenetic and chromatin-related controls are known to play crucial 

roles (Ho & Crabtree, 2011). Epigenetic regulation, which modulates 

the chromatin structure without altering the DNA sequence, has profoundly heritable 

influences on transcriptional programs (Heard & Martienssen, 2014). These changes 

in chromatin organization activate or repress gene expression programs either globally 

or locally, and may thus shape specific developmental events. Epigenetic mechanisms 

and chromatin regulation influence the ability of transcription factors (TFs) to access 

regulatory elements in their target genes. This occurs primarily via histone modification 

(Goldberg et al., 2007) or the action of ATP-dependent chromatin remodeling 

complexes, such as SWI/SNF (BAF) complexes (Wen et al., 2009; MuhChyi et al., 2013; 

Narlikar et al., 2013; Ronan et al., 2013). In addition, recent studies have shown that 

DNA methylation (Wu & Zhang, 2014) and long non-coding RNA (lncRNA)-based 

mechanisms (Bohmdorfer & Wierzbicki, 2015) also contribute to the complexity of 

epigenetic regulation during development.  

The types of covalent histone modification include histone acetylation, 

methylation, ubiquitination and phosphorylation (Strahl & Allis, 2000; 

Goldberg et al., 2007). Histone modification (epigenetic marks) is catalyzed by two 

enzyme classes: histone writers (e.g., histone acetyltransferases, methyltransferases, 

kinases, and ubiquitin ligases) and histone erasers (e.g., histone deacetylases, 

demethylases, phosphatases, and deubiquitinases). The mis-regulation of histone 

writers and erasers will typically alter the epigenetic program and have profound effects 

on development (Strahl & Allis, 2000; Goldberg et al., 2007).  
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A number of non-covalent, energy-dependent chromatin remodeling complexes 

modulate the dynamicity of chromatin structures. Among them, 

the SWI/SNF complexes are the best characterized in both development and disease. 

Mammalian SWI/SNF (BAF) complexes are made up of two switchable ATPase 

subunits (Brg1 or Brm), core subunits (BAF47, BAF155, and BAF170) and a variety of 

lineage-specific subunits (Lessard et al., 2007; Ho et al., 2009b; Kadoch et al., 2013; 

Ronan et al., 2013). The Brg1 and Brm ATPases hydrolyze adenosine triphosphate 

(ATP) and utilize the obtained energy to alter chromatin (nucleosome) structures, 

thereby modulating cellular processes such as gene expression 

(Hirschhorn et al., 1992; Laurent et al., 1993; Phelan et al., 1999). The various subunits 

(at least 15 have been identified) are capable of undergoing combinatorial assembly 

(Wang et al., 1996b; Ronan et al., 2013), yielding hundreds of distinct BAF complexes 

that can direct specific transcriptional events during development in vivo. 

The exceptional diversity of BAF complexes allows them to have functional specificity 

in biological processes. To investigate the roles of BAF complexes in development, 

researchers have focused on phenotypic analyses of model animals harboring 

mutations in single BAF subunits (Ko et al., 2008; Ho & Crabtree, 2011; 

Narayanan & Tran, 2014). However, although BAF complexes are known to play 

essential roles in development, studies using knock-out mouse models for individual 

BAF subunits have yielded incomplete information regarding the functions of 

these complexes.  

 While the epigenetic machinery and chromatin-remodeling complexes are 

known to play essential roles in development, we know little about how they interact to 

coordinate developmental processes during embryogenesis and organogenesis. 

Recently, our group developed cortex-specific BAF155/BAF170cKO mouse mutant 

and showed that BAF complexes did not form in the cortices of these mice. We further 

showed that the known BAF subunits undergo proteasome-mediated degradation in 

the developing cortices of these mutants. Finally, we found that, during corticogenesis, 

BAF complexes globally control key heterochromatin marks (H3K27me2/3) by directly 

interacting with and modulating the enzymatic activity of the H3K27 demethylases. 

Here, we discuss these recent discoveries (Narayanan et al., 2015) and present 
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additional evidence suggesting that the BAF155 and BAF170 core subunits cooperate 

to stabilize the BAF complex and maintain the global level of H3K27me3 both in 

the developing forebrain and throughout the embryo. Our new findings indicate that 

BAF complexes act as key regulators of embryogenesis.  

2.3. Results and Discussion 

2.3.1. BAF155 and BAF170 are indispensable for brain development and 

embryogenesis 

By employing cortex-specific conditional mouse mutagenesis, we showed that 

the dual loss of the BAF155 and BAF170 subunits in double conditional knock-out 

(dcKO) mutants severely perturbed the growth of cortical structures, blocked 

the proliferation, differentiation and cell-cycle progression of cortical progenitors, and 

triggered a massive increase in the number of apoptotic cells (Narayanan et al., 2015). 

To further investigate how the loss of both BAF155 and BAF170 affects 

forebrain development, we generated forebrain-specific BAF155 and 

BAF170 dcKO mice by crossing mice floxed for BAF155 (Choi et al., 2012) and 

BAF170 (Tran et al., 2013) (BAF155fl/fl, BAF170fl/fl) with a FoxG1-Cre line 

(Hebert & McConnell, 2000). In FoxG1-Cre mice, the Cre-recombinase is driven in all 

telencephalic cells [including those of the cortex (Cx) and basal ganglia (BG)], but not 

in other parts of the brain [e.g., in the diencephalon (Di)] (Hebert & McConnell, 2000). 

Remarkably, we found that the dcKO_FoxG1-Cre mutants completely lacked all 

telencephalic structures at E16.5 (Narayanan et al., 2015). This indicated that 

the expressions of BAF155 and BAF170 are required for brain development. 
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Figure 2.1. The expressions of BAF155 and BAF170 are indispensable for embryonic 

development: dcKO_CAG-Cre embryos treated with TAM at E9.5 remained alive and showed 

roughly preserved morphology at E13.5, but thereafter died between E14.5 and E15.5. 

Scale bars = 1000 m.  

To address whether BAF155 and BAF170 are essential for embryogenesis, 

we generated and analyzed a line harboring a full dcKO_CAG-Cre mutant with 

the tamoxifen (TAM)-inducible ubiquitous deleter, CAG-Cre line (Hayashi & McMahon, 

2002) (Figure 2.1). The dcKO_CAG-Cre mutants were injected with either TAM or 

corn oil (vehicle solution, control) at E9.5. Following TAM induction, we observed 

Cre-recombinase activation in all cells of the body (Hayashi & McMahon, 2002). 
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The mutants died between E14.5-E15.5, and exhibited a severe developmental 

retardation (Figure 2.1). Together, these results show that the expressions of BAF155 

and BAF170 are critical for determining overall embryogenesis, including 

the formations of the forebrain and cortex. 

2.3.2. BAF155 and BAF170 control the stability of BAF complexes in both 

cultured cells and embryos 

Hundreds of distinct BAF complexes are predicted to form in vivo by 

the combinatorial assembly of at least 15 identified BAF subunits 

(Ho & Crabtree, 2011). The functional specificity of a BAF complex is believed to reflect 

the composite surfaces of its integrated subunits, which are essential for the ability of 

these complexes to target the genome and interact with transcriptional factors (TFs), 

co-activators, co-repressors, and signaling pathways (Ho & Crabtree, 2011). 

We recently reported that BAF155 and BAF170 act as scaffolding subunits and are 

required to ensure the stability of the entire BAF complex in the developing cortex 

(Narayanan et al., 2015). The loss of BAF155 and BAF170 in cortex-specific dcKO 

mutants leads to the dissociation of all other BAF subunits from the complex. 

The free BAF subunits are subsequently ubiquitinated and degraded by 

the proteasome system.  

In an effort to extend our analysis to other parts of the brain, we examined 

the expression levels of various BAF subunits (e.g., Brg1, Brm, BAF47, BAF60, and 

BAF250) following the loss of BAF155/BAF170 in telencephalon of dcKO_FoxG1-Cre 

embryos (Figure 2.2). Consistent with the Cre-recombinase activity in the Cx and BG 

of dcKO_FoxG1-Cre mice, there was no detectable expression of BAF155 or BAF170 

in these structures. In contrast, their expression levels were preserved in the Di, 

where Cre is inactive (Figure 2.2 A, B). Similar to the reported effects in cortical tissues 

(Narayanan et al., 2015), the loss of BAF155 and BAF170 in the telencephalon 

abrogated the expression of all BAF subunits throughout this structure, including in the 

BG (Figure 2.2C-G). To investigate whether both BAF155 and BAF170 are required to 

stabilize BAF complexes throughout the embryo, the expression of BAF subunits was 

examined in ubiquitously inducible dcKO_CAG-Cre embryos with global loss of 

BAF155/BAF170 (Figure 2.3). These dcKO_CAG-Cre mutants were injected with 

either TAM or corn oil (vehicle solution, as control) at E9.5 and analyzed at E13.5, 

when the mutants were still viable. Following treatment with TAM, the expression levels 

of BAF155 and BAF170 were considerably ablated (Figure 2.3A-D). 
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Moreover, the expression levels of the tested BAF subunits (Brg1, Brm, BAF47, and 

BAF250) were severely diminished throughout the dcKO_CAG-Cre embryos, 

as compared to controls (Figure 2.3E-L). These findings suggest that BAF155 and 

BAF170 are required to maintain the expression levels of BAF subunits in 

living animals.  

 

Figure 2.2. Expression of BAF subunits in telencephalon-specific dcKO_FoxG1-Cre 

mutants. (A-G) Images show immunohistochemical (IHC) analyses for various core subunits 

of BAF complexes, including BAF155 (A), BAF170 (B), Brg1 (C), Brm (D), BAF47 (E), 

BAF60 (F), and BAF250 (G), in the forebrains of dcKO_FoxG1-Cre mutants at E11.5. 

The indicated BAF subunits are not detected in the BAF155/BAF170-knockout telencephalon. 

Scale bars = 500 m. Abbreviations: Cx, cortex; BG, basal ganglia; and Di, diencephalon. 



Chapter 2 

15 

 

 

Figure 2.3. Expression of BAF subunits in embryos of TAM-inducible full dcKO_CAG-

Cre mutants. (A/C/E/G/I/K) E13.5 dcKO_CAG-Cre mutant embryos were treated with TAM 

at E9.5, and whole-embryo sections were immunostained with antibodies against BAF155 (A), 

BAF170 (C), Brg1 (E), Brm (G), BAF47 (I), and BAF250a (K).(B/D/F/H/J/L) Quantifications of 

fluorescent signal intensities obtained from the sections described (A/C/E/G/I/G) (see also 

Table S1 for statistical analysis). The results revealed that the protein expression levels of 

BAF155 and BAF170 were reduced throughout the TAM-treated dcKO_CAG-Cre mutant 

embryos, confirming the double knockdown of BAF155/BAF170. The expression levels of 

the other tested BAF subunits were also diminished in mutant embryos compared to controls. 

Scale bars = 500 m.  
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In different tissues and cell lineages, BAF155 is highly expressed in proliferating 

stem/progenitor cells but generally down-regulated upon differentiation 

(Yan et al., 2008; Ho et al., 2009a; Tran et al., 2013). Conversely, little BAF170 

is expressed in stem/progenitor cells (e.g., embryonic stem cells, or ESCs) and 

at higher levels in differentiated cells (e.g., neurons) (Yan et al., 2008; Ho et al., 2009a; 

Tran et al., 2013). We hypothesized that although only low expression levels are 

detected for BAF170 in proliferating ESCs and for BAF155 in post-mitotic neurons, 

this expression is necessary and sufficient to stabilize the embryonic stem cell (es)BAF 

and neuronal (n)BAF complexes. Indeed, when we derived ESC lines from blastocysts 

and primary neurons from forebrains (both representing the dcKO_CAG-Cre 

genotype), we found that the depletion of BAF155 and BAF170 in these cultured cells 

led to the loss of BAF subunit expression at the protein level (Narayanan et al., 2015).  

These results collectively indicate that the knockout of BAF155/BAF170 in dcKO 

mutants eliminates the presence of known BAF complex subunits both in vitro and in 

vivo. Thus, the dcKO mutants provide a potent tool for investigating the roles of entire 

BAF complexes during development.  

2.3.3. The loss of BAF complexes induces the accumulation of H3K27me2/3-

marked heterochromatin  

Previous studies suggested that the loss of individual BAF subunits has a local 

(not global) influence on chromatin marks (Ho et al., 2011; Tran et al., 2013). 

However, when we examined epigenetic marks in cortex-specific dcKO_Emx1-Cre 

mice, which lacked entire BAF complexes, we observed a global reduction in 

euchromatin along with increased H3K27me2/3 and decreased H3K9Ac in 

the developing cortex during both embryonic and perinatal stages, as assessed by 

assays such as ChIP-Seq, immunohistochemistry, and western blotting 

(Narayanan et al., 2015). Thus, our data showed for the first time that the presence of 

BAF complexes is needed to maintain the balance between global repression and local 

activation of epigenetic programs during cortical development (Narayanan et al., 2015).  
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The intriguing observation that BAF complexes are lost from the telencephalon-

specific dcKO_FoxG1-Cre and inducible full dcKO_CAG-Cre mutants prompted us to 

study how this BAF155/BAF170 loss-of-function affects the H3K27me3 repressive 

mark. We performed western blotting (WB) on telencephalic tissue lysates from E11.5 

dcKO_FoxG1-Cre mutants using an antibody against H3K27me3. Similar to our 

observation in cortical tissues, we found that the loss of BAF155 and BAF170 

increased the level of H3K27me3 in telencephalon (Figure 2.4A/C). 

Likewise compared to control (non-injected) embryos, the H3K27me3 level was 

augmented in E13.5 dcKO_CAG-Cre embryos that had been injected with TAM at E9.5 

(Figure 2.4B/C).  

H3K27me2 and -3 are chromatin modifications that have been linked to the 

down-regulation of gene expression (Cao et al., 2002; Pereira et al., 2010). 

Thus, the massive enhancement of H3K27me3 in the dcKO mutants would be 

expected to trigger obvious repression of gene expression. Indeed, gene expression 

profiling of developing cortices from dcKO mutants revealed that most of the transcripts 

were down-regulated, with only a few showing up-regulation (Narayanan et al., 2015). 

Remarkably, BAF complexes were found to positively regulate most of the genes that 

are repressed by the H3K27 methyltransferase, Ezh2 (Pereira et al., 2010; 

Narayanan et al., 2015).  
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Figure 2.4. BAF complexes control the level of H3K27me3 in the brain and whole embryo 

during development. (A) WB analysis of E11.5 telencephalons from telencephalon-specific 

dcKO_FoxG1-Cre mutants revealed that the lost expressions of BAF155 and BAF170 

elevated the level of H3K27me3. (B) dcKO_CAG-Cre embryos treated with TAM at E9.5 

showed up-regulation of H3K27me3 at E13.5, compared to untreated control embryos. 

(C) Densitometric quantification of the WB bands shown in (A and B; see also Table S2 for 

statistical analysis). (D) Schematic indicating how altered levels of H3K27me2/3 demethylases 

(UTX/Kdm6a and JMJD3/Kdm6b), BAF complexes, and the H3K27 methyltransferase 

Ezh2 subunit of the PRC2 complex collectively modulate histone methylation, developmental 

defects and diseases (e.g., tumorgenesis).  
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To directly examine the apparent opposing activity of BAF complexes and 

the Ezh2 subunit of the PRC2 complex, we treated dcKO mutants with an 

Ezh2 inhibitor and examined gene expression in developing cortex. We found that 

inhibition of the H3K27 methyltransferase partially rescued the expression of certain 

BAF-complex target genes (Narayanan et al., 2015). In mechanistic terms, our results 

suggested that this process involves binding of the BAF155 and BAF170 core subunits 

of the BAF complex to the JmjC domains of UTX/Kdm6a and JMJD3/Kdm6b, which 

are required for the H3K27me2/3 demethylase activities of these proteins 

(Narayanan et al., 2015).  

Ezh2 (or PRC2) (Cao et al., 2002; Shen et al., 2008; Pereira et al., 2010) and 

UTX/Kdm6a/JMJD3/Kdm6b (Agger et al., 2007; De Santa et al., 2007; 

Hong et al., 2007; Jepsen et al., 2007; Lan et al., 2007; Lee et al., 2007; Xiang et al., 2007) 

are the only enzymes known to methylate and demethylate H3K27, respectively. 

These enzymes play essential roles in development and diseases by modulating gene 

expression programs through changes in the methylation of H3K27. Studies have 

shown that homozygous-null Ezh2 mutants die prior to completing gastrulation, 

conditional loss of maternal Ezh2 results in severe growth retardation among neonates 

(Erhardt et al., 2003; Puschendorf et al., 2008), and EZH2 overexpression causes 

tumorigenesis (Varambally et al., 2008; Takawa et al., 2011). Phenotypic analysis 

revealed that mouse embryos dcKO for Utx and Jmjd3 (which encode the 

H3K27 demethylases) exhibit lethality at mid-gestation. Moreover, the expression 

levels of Jmjd3 and Utx are significantly decreased in several types of primary tumors 

(Agger et al., 2009). The BAF complexes, which we identified as important cofactors 

of the H3K27 demethylases, are known to be key players in development 

(Ko et al., 2008; Ho & Crabtree, 2011; Narayanan & Tran, 2014; Narayanan et al., 2015) 

and tumor suppression (Ko et al., 2008; Wu, 2012; Helming et al., 2014; Masliah-

Planchon et al., 2015). Thus, any alteration in the balance among the BAF complexes, 

H3K27 demethylases, and methyltransferase will result in severe developmental 

defects and/or diseases such as cancer (Figure 2.4C) (Shi, 2007; Pedersen & Helin, 2010; 

Ho & Crabtree, 2011; Kadoch et al., 2016). 
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2.4. Conclusion 

We herein present evidence suggesting that BAF155 and BAF170 act as 

scaffolding subunits to maintain the stability of BAF complexes. The loss of 

BAF complexes in BAF155/BAF170 double mutants is associated with severe defects 

in global epigenetic and gene expression programs during cortical development 

(Narayanan et al., 2015) and embryogenesis (this study). Our results further suggest 

that manipulation of the endogenous expression and activity levels of the chromatin-

remodeling BAF complexes, the H3K27me2/3 demethylases (UTX/Kdm6a and 

JMJD3/Kdm6b), and the H3K27me2/3 methyltransferase (polycomb repressive 

complex 2) might enable to alter global gene expression programs. The crosstalk 

between BAF complexes and epigenetic factors revealed herein may shed light on how 

cells acquire their fates. This work could thus contribute to the establishment of 

protocols aimed at differentiating specific lineages from pluripotent cells and/or treating 

diseases. 

2.5. Materials and Methods 

2.5.1. Transgenic mice 

Floxed BAF155 (Choi et al., 2012), floxed BAF170 (Tran et al., 2013), FoxG1-Cre 

(Hebert & McConnell, 2000) and CAG-Cre (Hayashi & McMahon, 2002) mouse lines 

were kept in a C57BL6/J background. All animal research was conducted in 

accordance with the local regulations for animal protection. 

2.5.2. Immunohistochemistry (IHC) and Western blotting (WB) 

IHC and WB were performed as previously described (Tran & Stoykova, 2008; 

Tran et al., 2009). The following polyclonal (pAb) and monoclonal (mAb) primary 

antibodies used in this study were obtained from the indicated commercial sources: 

Brg1 rabbit pAb (Santa Cruz), Brg1 mouse mAb (Santa Cruz), Brm mouse mAb 
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(BD Biosciences), Brm rabbit pAb (Abcam), BAF250 mouse mAb (Sigma), 

BAF170 rabbit pAb (Bethyl), BAF170 rabbit pAb (Sigma), BAF155 rabbit pAb 

(Santa Cruz), BAF155 mouse mAb (Santa Cruz), BAF60a mouse mAb 

(BD Biosciences), GAPDH rabbit pAb (Santa Cruz), ß-actin rabbit pAb (Sigma), 

and H3K27me3 rabbit pAb (Upstate). The utilized secondary antibodies 

included peroxidase-conjugated goat anti-rabbit IgG (1:10,000; Covance), 

peroxidase-conjugated goat anti-mouse IgG (1:5000; Covance), and Alexa 488- or 

Alexa 568-conjugated IgG (various species,1: 400; Molecular Probes).  

2.5.3. Imaging and quantitative and statistical analyses 

Imaging was performed with an Axio Imager M2 (Zeiss) with a Neurolucida 

system (Version 11; MBF Bioscience) and confocal fluorescence microscopes 

(TCS SP5; Leica). Pictures were analyzed further with Adobe Photoshop. 

Densitometric quantification of WB bands and quantitative analysis of IHC signal 

intensities were performed using the ImageJ software. Statistical analyses were 

carried out using the Student’s t-test. The results are presented as the mean ± SEM.  

 

  



Chapter 3 

22 

 

Chapter 3: Epigenetic Regulation by BAF Complexes Limits 

Neural Stem Cell Proliferation by Suppressing Wnt 

Signaling in Late Embryonic Development 

Huong Nguyen
1, #

, Cemil Kerimoglu
2,6 #

, Mehdi Pirouz
3,7

 Linh Pham
1
, 

Kamila A. Kiszka
1,4

, Godwin Sokpor
1

, M. Sadman Sakib
2,6

, Joachim Rosenbusch
1

, 

Ulrike Teichmann
3

, Rho H. Seong
5

, Anastassia Stoykova
3, 4

, Andre Fischer
2,6

, 

Jochen F. Staiger
1, 4

, and Tuoc Tran
1, 4

 * 

Personal contributions: I was involved in performance of most histological analyses of 

dcKO phenotypes, data analysis and preparation of the manuscript. 

C.K. and A.F. generated RNA-Seq and ChIP-Seq data; M.P. performed 

the protein-protein interaction study; L.P., G.S. and J.R. contributed to histological 

analyses; K.A.K. characterized hGFAP-Cre_ROSA-dtTOM mouse line; C.K. 

performed ChIP-qPCR; M.S.S. performed qPCR; J.F.S. R.H.S, U.T and A.S. provided 

research tools, transgenic lines, and contributed to discussions; T.T. conceived, 

supervised, and wrote the manuscript; J.F.S., A.S., and A.F. offered suggestions for 

the study.  

# 
Equally contributed authors 

3.1. Summary 

During early cortical development, neural stem cells (NSCs) divide symmetrically 

to expand the progenitor pool, whereas in later stages, NSCs divide asymmetrically to 

self-renew and produce other cell types. The timely switch from such proliferative to 

differentiative division critically determines progenitor and neuron numbers. 

However, the mechanisms that limit proliferative division in late cortical development 

are not fully understood. Here, we show that the BAF (mSWI/SNF) complexes restrict 
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proliferative competence and promote neuronal differentiation in late corticogenesis. 

Inactivation of BAF complexes leads to H3K27me3-linked silencing of neuronal 

differentiation-related genes, with concurrent H3K4me2-mediated activation of 

proliferation-associated genes via de-repression of Wnt signaling. Notably, the deletion 

of BAF complexes increased proliferation of neuroepithelial cell-like NSCs, impaired 

neuronal differentiation and exerted a Wnt-dependent effect on neocortical and 

hippocampal development. Thus, these results demonstrate that BAF complexes act 

as both activators and repressors to control global epigenetic and gene expression 

programs in late corticogenesis.  

3.2. Introduction  

During vertebrate cerebral cortex development, neural stem cells (NSCs) 

undergo two types of temporally regulated cell division modes to generate distinct 

neural cell types. During early corticogenesis in mice (embryonic day 8.5 to 12.5 

[E8.5-E12.5]), NSCs, also called neuroepithelial cells (NEs), mainly divide 

symmetrically to proliferate and expand their population (Gotz & Huttner, 2005; 

Dehay & Kennedy, 2007; Kriegstein & Alvarez-Buylla, 2009; Martynoga et al., 2012; 

Tran et al., 2014). At the onset of neurogenesis (E10.5), NEs differentiate into mature 

NSCs, also termed radial glial progenitors (RGs), which start to express astroglial 

markers (Hartfuss et al., 2001). This process coincides with the loss and appearance 

of tight and adherens junctional complexes respectively in the ventricular zone (VZ) 

(Aaku-Saraste et al., 1996; Sahara & O'Leary, 2009). Later, RGs primarily divide 

asymmetrically to produce an RG to maintain the proliferative pool, and either 

an excitatory neuron or a basal progenitor. Delayed RG differentiation from NEs 

causes aberrant neurogenesis (Sahara & O'Leary, 2009), yet factors that are required 

to suppress NE fate in late corticogenesis to ensure a balance between 

NSC proliferation and neuronal differentiation are unknown. 

The temporal relationship and intricate balance between proliferative symmetric 

and neurogenic asymmetric divisions in the VZ of the cortex is controlled by diverse 
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signaling pathways. Among these, Wnt/β-catenin signaling has been extensively 

investigated for its role in proliferative symmetric division (Chenn & Walsh, 2002). 

For example, elevation of Wnt signaling through overexpression of β-catenin massively 

enhanced cortical NSC proliferation (Chenn & Walsh, 2002). Interestingly, a recent 

study revealed irreversibility of the progression from proliferative to neurogenic division 

modes, thus implicating a default program in NSCs for division-mode transition during 

corticogenesis (Gao et al., 2014). As regulators of the spatiotemporal expression of 

developmental genes, epigenetic and chromatin regulatory mechanisms have been 

proposed to contribute to establishing the proliferative and differentiation competence 

of NSCs (Hirabayashi & Gotoh, 2010; Yao et al., 2016).  

To investigate the possible involvement of the chromatin remodeling 

BAF (mSWI/SNF) complexes in this process, we applied a conditional deletion 

approach through double-knockout (dcKO) of the BAF155 and BAF170 subunits, 

which eliminate the entire BAF complex during the late cortical neurogenesis in 

transgenic mice. In the absence of BAF complexes, transcriptional profiling and 

epigenetic analyses revealed an enrichment of down-regulated RG 

(astroglial, adherens junctions)-, and neuronal differentiation-related genes, with both 

gene groups showing increased H3K27me3 repressive marks. In contrast, upregulated 

genes with increased H3K4me2 active marks were predominantly involved in the 

regulation of NE cell fate (e.g. tight junction feature), proliferation, cell cycle, and Wnt 

signaling-related pathways. The results of this study suggest that BAF complexes exert 

genome-wide control on both active H3K4me2 and repressive H3K27me3 marks 

during late cortical development by directly interacting with the corresponding 

H3 demethylases and regulating their activity. Phenotypically, we found that deletion 

of BAF complexes during late cortical neurogenesis leads to dysgenesis of the upper 

cortical layers and the hippocampal formation. These perturbations were rescued by 

inhibition of Wnt/β-catenin signaling. Together, these observations provide new 

insights into distinct epigenetic regulatory mechanisms mediated by 

chromatin-remodeling BAF complexes as a key factor that suppresses the proliferative 

competence of NSCs during late cortical development. 
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3.3. Results  

3.3.1. Loss of BAF complexes causes a genome-wide increase in the level of 

both active and repressive epigenetic marks at distinct loci in the developing 

pallium during late neurogenesis.  

We previously reported that BAF complexes potentiate the activity of two main 

H3K27 demethylases, JMJD3 and UTX. Accordingly, elimination of BAF complexes 

during early corticogenesis leads to a global increase in repressive marks 

(H3K27Me2/3) and downregulation of gene expression at E13.5 

(Narayanan et al., 2015b; Nguyen et al., 2016). In further analysis, we performed co-

immunoprecipitation (CoIP) experiments on tissue lysates from the pallium of 

E17.5 wild-type (WT) embryos followed by mass spectrometry (MS) to identify 

BAF155/BAF170-interacting proteins. At E17.5, we found that BAF155 and BAF170 

bind to the H3K27me2/3 demethylases, UTX/Kdm6a and JMJD3/Kdm6b, as shown in 

our previous study at E13.5 (Narayanan et al., 2015b). BAF155/BAF170 was also 

observed to interact with H3K4me1/2 demethylase LSD1/Kdm1a in the E17.5 pallium 

(Figure 3.1A, B and Figure S3.1A).  

  To investigate if BAF complexes regulate epigenetic programs in late cortical 

development, we crossed BAF155-floxed (BAF155fl/fl) mice and BAF170-floxed 

(BAF170fl/fl) mice with the hGFAP-Cre line to generate dcKO mutants. In contrast to 

the Emx1-Cre line used in our previous studies (Tran et al., 2009; Tran et al., 2013; 

Narayanan et al., 2015b) with Cre recombination in the developing cortex as early as 

E10.5, the hGFAP promoter is not active in the pallium prior to E12.5. 

At E13.5, hGFAP-Cre activity is restricted to the medial pallium (MP), containing 

the hippocampal anlage and medial cortex (Figure S1B). From E15.5 onward, hGFAP-

Cre activity extends to the dorsal pallium (DP; dorsal cortex) and lateral pallium 

(LP; lateral cortex) during development (Figure S3.1C). BAF155 and BAF170 proteins 

were not detected in the MP of dcKO mutants from E14.5, or in the entire VZ of the 

pallium from E15.5 onward (Figure S1D) (Narayanan et al., 2015b), hence validating 

our BAF155/BAF170 knock-out system in late pallial progenitors.  

Given the identified interaction of BAF complexes with the H3K27me2/3 

demethylases Kdm6a/b and H3K4me1/2 demethylase Kdm1a in the E17.5 pallium, 

we next compared H3K27me3 repressive and H3K4me2 activatory marks 

in the E17.5 dcKO and control pallia. As reported previously, loss of BAF complexes 

in the E13.5 murine pallium in dcKO_Emx1-Cre mutants results in an increase 

in H3K27me3 levels (Narayanan et al., 2015b).  
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Figure 3.1. BAF complexes globally control epigenetic and gene expression programs 

in late development pallium. (A) Table showing the peptide number for Kdm6a, Kdm6b and 

Kdm1a proteins purified from BAF155, BAF170 immunoprecipitates of protein extracts from 

NS5 cells, E13.5 or E17.5 forebrain. (B) Interactions of BAF155 and BAF170 with Kdm6a, 

Kdm6b, and Kdm1a were confirmed by CoIP/WB analyses of E17.5 pallium tissue. 

(C, D) Distribution of H3K27me3 (C) and H3K4me2 (D) marks along gene bodies in the dcKO 

and control pallium at E17.5. H3K27me3 levels are increased in dcKOs. dcKO (E) Genes with 

increased H3K4me2 or H3K27me3 marks in the dcKO pallium at E17.5 are largely 

non-overlapping. (F) Volcano plot representing differentially regulated genes in the dcKO 

pallium at E17.5.  

Similarly, ChIP-seq analysis performed using chromatin isolated from the E17.5 dcKO 

pallium also revealed an increase in H3K27me3 upon BAF155/170 knock-out 

(Figure 1C). Specifically, 181 genes showed a significant increase in these marks 

around their transcription start site (TSS) regions (±2000 bp) compared to 13 genes 

that showed a decrease, a difference that likely reflects secondary effects and/or 

compensatory mechanisms. H3K27me3 is a broad chromatin mark localized not only 

at TSS but also spread over gene bodies. We also looked at the number of genes with 

altered H3K27me3 at their coding regions (including TSS). There were 484 genes with 

increased and 156 genes with decreased H3K27me3 (Figure 3.1E). Strikingly, loss of 

BAF complexes in late corticogenesis resulted in a concurrent increase in activatory 

H3K4me2 marks in the E17.5 pallium (Figure 3.1D), with 1265 genes showing 

a significant increase in this mark around their TSS (Figure 3.1E). Only 112 genes 

showed decreased H3K4me2, which again may represent some secondary effects. 

Importantly, genes affected by increased H3K27me3 and H3K4me2 were largely 

distinct (Figure 3.1E).  

We also performed gene expression profiling of the dcKO pallium at E17.5 

(Figure 1F). In contrast to the globally reduced gene expression in 

the dcKO_Emx1-Cre pallium at E12.5 (Narayanan et al., 2015b), at E17.5, we found 

nearly equal number of downregulated and upregulated genes in the dcKO 

pallium (Figure 3.1F).  
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Collectively, these data indicate that loss of BAF complexes during late 

corticogenesis induces an increase in activatory H3K4me2 and repressive 

H3K27me3 marks at distinct sets of genes, thereby pointing to possible dual functions 

of BAF complexes as both activators and repressors in late cortical neurogenesis. 

3.3.2. Conditional inactivation of BAF complexes during late cortical 

development impairs neurogenesis of upper cortical layer neurons and the 

hippocampus. 

We selected the downregulated genes in the E17.5 dcKO pallium in RNA-Seq 

and subjected them to functional category analysis. They are enriched in neuronal 

differentiation-related categories (Figure 3.2A), and showed an overall increase 

in H3K27me3 mark (Figure 2B). Most of the differentiation-related genes that were 

significantly downregulated in dcKO mice (Table S3) showed an increase in 

H3K27me3. For some selected candidates, we also confirmed their downregulation 

and increased H3K27me3 by qPCR and ChIP-qPCR respectively (Figure S3.2A, B).  

Next, we asked if these genes with decreased expression and increased 

H3K27me3 are directly bound by the BAF complexes. We made use of a previously 

published ChIP-Seq dataset (GSE37151) for Brg1 in the developing mouse forebrain 

(Attanasio et al., 2014). Strikingly, the majority of genes that showed increased 

H3K27me3 in dcKO cortices were also bound by Brg1 (Figure S3.2C), with sites of 

increased H3K27me3 co-localizing with Brg1 binding sites (Figure 3.2D). 
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Figure 3.2. H3K27me3-linked silencing of neuronal differentiation-related genes in BAF 

complex-deleted pallium in late stages.  

(A) Neuronal differentiation-related genes are downregulated in the dcKO pallium at E17.5. 

(B) General H3K27me3 profile plot of neuronal differentiation-related genes that are 

downregulated in dcKO pallium. (C) Upper panel: Heatmap depicting the changes in 

H3K27me3 levels at neural differentiation-related genes that are downregulated in dcKO 

pallium at E17.5 individually. Lower panel: Average relative H3K27me3 binding levels on those 

genes combined. (D) Integrated genome browser views of H3K27me3 and Brg1 

(GSE37151 (Attanasio et al., 2014)) binding along representative neural differentiation-related 

genes downregulated in dcKO pallium. (E–G) IF (E) and quantitative (F, G) analyses indicate 

that the loss of BAF155 and BAF170 leads to a diminished thickness of the HuCD+ cortical 

plate (CP) and intermediate zone (IZ) (F), and expanded thickness of the HuCD- VZ (G) in 

the entire pallium at E15.5-E18.5. Values are presented as means ± SEMs (n>3, *P < 0.05, 

**P < 0.01, ***P < 0.005). Abbreviations: VZ, ventricular zone; CP, cortical plate; 

IZ, intermediate zone; MP, medial pallium; DP, dorsal pallium; LP, lateral pallium. 

Scale bar = 100 m (E) 

We further confirmed these observations in a reverse approach, in which we first 

selected the genes with increased H3K27me3 in E17.5 dcKO (Figure S2D) and 

subjected them to functional category analysis. Again, they also mostly fell under 

neuronal differentiation-related categories (Figure S3.2E). We then examined their 

expression in our RNA-Seq analysis. As expected, most of them were downregulated 

in dcKO embryos. 

Because the hGFAP promoter is active early in the MP (from E13.5) and later in 

the DP and LP (from E14.5) (Figure S3.1B, C), we compared neuronal differentiation 

between controls and dcKO mutants, in both the MP and at the area between the DP 

and LP (D/LP). Neurogenesis in late (E15.5–E17.5) development of the pallium in 

dcKO mutants was decreased, as evidenced by a decrease in the thickness of the 

cortical plate (CP) and intermediate zone (IZ), marked by the expression of the pan-

neuronal markers HuCD, TUBB3 and NeuN in both the cortex (D/LP) and hippocampus 

(MP) (Figure 3.2E, F). Consistent with this, immunofluorescence (IF) analyses of 

neuronal subtype markers indicated that loss of BAF155 and BAF170 led to a 

significant decrease in the number of late-born Satb2+ or Brn2+ neurons, but not 

early-born Tbr1+ neurons, in the DP and LP (Figure S3.3A-D). 
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To study neurogenesis specifically in the MP, we performed IF on sections from 

E15.5–E17.5 control and dcKO embryonic brains using the antibody Zbtb20 

(Figure S3.3E), which outlines the hippocampal anlage as early as E14.5 and is 

confined postnatally to hippocampal cornu ammonis (CA1–CA3) regions. Zbtb20 

staining revealed remnants of the hippocampus proper (Figure 3.3C) in mutants 

compared to controls at all examined stages, E14.5–E17.5 (Figure S3.3E, G). 

Indeed, three-dimensional (3D) reconstruction of Zbtb20 expression also revealed 

a substantial reduction in the volume of the developing hippocampus in dcKO embryos 

at E15.5 (Figure S3.3H). Consistently, immunostaining of the dentate gyrus (DG) with 

its specific marker Prox1, indicated agenesis of this hippocampal domain 

(Figure S3.3F, I). In the DP/LP of mutants, whereas the generation of lower layer 

(Tbr1+/L6, and CTIP2+/L5) neurons was only mildly decreased, the number of late-born 

Satb2+, and Brn2+ L4–L2 neurons was strongly diminished (Figure 3.3A, B). 

In further support, we found that BAF complexes control expression of sets of gene 

exerting important roles in generation of cortical layers and hippocampal development.  
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Figure 3.3. BAF complexes are required for the formation of cortical upper layers and 

the hippocampus.  

(A–B) IF (A) and statistical (B) analyses of cortical phenotypes at P1 in a comparable 

dorsal/lateral area, immunostained for the indicated neuronal layer markers. (C) IF analysis of 

Ztbt20 revealed that the hippocampus is underdeveloped in mutants (denoted by arrow). 

Values are presented as means ± SEMs (n>3, **P < 0.01, ***P < 0.005). Abbreviations: 

MP, medial pallium; DP, dorsal pallium; LP, lateral pallium: L: layer. Scale bars = 100 m (A), 

50 m (B), and 100 m (C). 

To gain additional evidence about how the defect in neuronal differentiation 

is caused by increased level of H3K27me3, we used GSK-J4, a potent selective 

H3K27 demethylase (JMJD3 and UTX) inhibitor (Kruidenier et al., 2012). The elevated 

level of H3K27me3 by GSK-J4 administration significantly decreased the number of 

late-born Satb2+ and Cux1+ neurons (Figure S3.4A-D), as observed in dcKO pallium 

with enhanced level of H3K27me3.  

Together, these findings suggest that deletion of BAF complexes in late NSCs 

leads to H3K27me3-linked silencing of neuronal-differentiation genes and results in 

diminished late cortical and hippocampal neurogenesis.  

3.3.3. The NSC pool is increased at late development stages in the dcKO pallium.  

Our previous data indicated that the loss of BAF complexes leads to large-scale 

downregulation of gene expression in early cortical development 

(Narayanan et al., 2015b; Nguyen et al., 2016). Intriguingly, the late elimination of 

BAF complex function also led to upregulation of a substantial number of genes. 

In order to assess the role of the genes upregulated in dcKO embryos, we applied 

the aforementioned strategy. Functionally, they mainly converged into cell 

proliferation-related categories (Figure 3.4A). Moreover, these genes also showed 

an overall increase in H3K4me2 in the dcKO pallium (Figure 3.4B).  
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Next, we assessed the changes in H3K4me2 levels at their individual 

TSS regions. As expected, most of them had an increase in this activatory mark with 

the overall trend being highly significant (Figure 3.4C) and they mostly converged into 

cell cycle-related groups (Figure S3.2D, S2E). The sites of increased H3K4me2 also 

substantially overlapped with BAF complex (Brg1) binding (Figure 3.4D, Figure S3.2C). 

Selected candidates were confirmed by qPCR and ChIP-qPCR (Figure S2A, S2B). 

Because the expression of genes encoding H3 demethylases LSD1/kdm1a, 

UTX/Kdm6a, JMJD3/Kdm6b was unaltered in dcKO cortex in our RNA-seq 

experiment, it is possible that BAF complexes control the methylation of H3K4 and 

H3K27 through mechanisms other than activating or inhibiting the expression of genes 

coding for these H3 demethylases. Our earlier study indicated that BAF complexes 

potentiate the H3K27 demethylase activity of UTX/Kdm6a and JMJD3/Kdm6b 

(Narayanan et al., 2015b), which encouraged us to investigate whether endogenous 

BAF155 and BAF170 are required for full H3K4 demethylase activity of LSD1/kdm1a. 

We therefore performed the histone demethylase KDM1/LSD1 activity quantification 

assay (see Material and Methods). The results revealed that significantly less H3K4 is 

demethylated in BAF155/BAF170-ablated NSCs compared to control counterparts 

(Figure S3.2G).  
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Figure 3.4. Loss of BAF155 and BAF170 causes H3K4me2-linked upregulation of genes 

involved in the mitotic cell cycle and proliferation in late cortical development. 

(A) Proliferation-, cell-cycle–related genes are upregulated in the dcKO pallium at E17.5. 

(B) General H3K4me2 profile plot at proliferation-related genes that are upregulated in 

dcKO pallium. (C) Upper panel: Heatmap depicting the changes in H3K4me2 levels 

at proliferation-related genes that are upregulated in dcKO pallium at E17.5. Lower panel: 

Average relative H3K4me2 binding levels on those genes combined. (D) Integrated genome 

browser views of H3K4me2 and Brg1 binding (GSE37151) (Attanasio et al., 2014) along 

representative proliferation-related genes upregulated in dcKO pallium. (E-H) Representative 

images showing IF analyses of coronal sections of control and dcKO pallium at E16.5 using 

antibodies that specifically label the indicated NSC markers. Lower panels: 

Higher-magnification images of areas indicated by white boxes. (I–L) Quantitative analyses 

indicated increased numbers of NSCs in the MP of dcKO mutants at the indicated stages. 

Values are presented as means ± SEMs (n>3, *P < 0.05, ***P < 0.01, ***P < 0.005). 

Abbreviations: TSS, transcription start site; TES, transcription end site; MP, medial pallium; 

DP, dorsal pallium; LP, lateral pallium. Scale bars: 100 m (G) and 50 m (H).  

IF analysis of the expression of HuCD, TUBB3, NeuN indicated an enlargement 

of the VZ in the dcKO pallium, more strongly in MP than in D/LP (Figure 3.2E, G). 

Reconstruction analyses showed that the volume of the hippocampal neuroepithelium, 

as revealed by Pax6 expression, is larger in the mutant MP (Figure S3.5A, B). 

These data suggest increased pools of progenitors in proliferative zones of the dcKO 

pallium. Indeed, more Ki67+ mitotically active cells were found in mutants than in 

controls (Figure 3.4E, I; and Figure S3.5C). We then examined pools of RGs and 

intermediate progenitors (IPs) (Figure 3.4F-H, 3.4J-L and Figure S3.5D-G). 

Similar to the increased number of Ki67+ mitotic cells, the number of Pax6+, Sox2+, and 

AP2+ NSCs in the VZ gradually increased from E14.5 in the mutant MP 

(Figure 3.4F-H). Notably, the effect was more profound in the NSC pool in the MP than 

in the D/LP (Figure S3.5C-F). This possibly relates to the spatiotemporal hGFAP-Cre 

activity, exerting early activity in the MP (Figure S3.1B, C). In contrast to the increased 

number of RGs, the number of Tbr2+ IPs was decreased (Figure S3.5D, G), indicating 

a failure of neuronal differentiation in the mutant pallium. 
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To substantiate the effect of the H3K4me2 level on the cortical NSC pool, 

we examined an increased H3K4me2 by using (±)-trans-2-Phenylcyclopropylamine 

hydrochloride (2-PCPA), a specific inhibitor of LSD1 histone demethylase. 

2-PCPA has been shown to increase H3K4me2 in mouse brain (Sun et al., 2010). 

The treatment of 2-PCPA also led to an increased pool of Pax6+, Sox2+ NSCs in 

developing cortex (Figure S3.4E-G). 

Together, these findings suggest that, in the absence of BAF155/BAF170, at late 

corticogenesis (E14.5–E17.5), NSCs in the VZ are kept in the proliferative phase rather 

than differentiating into IPs and/or neurons. 

3.3.4. RGs acquire a NE-like identity in the BAF155/BAF170-deficient pallium.  

The appearance of RGs in the pallium is marked by initiation of the expression of 

the astrocytic differentiation markers, GLAST and BLBP at E12.5 (Hartfuss et al., 2001; 

Sahara & O'Leary, 2009). At E13.5 and E14.5, expression level of GLAST and BLBP 

is comparable between control and mutants (Figure S3.5H-L). Following IF analysis 

at later stages (E15.5-E16.5) we observed that despite the increased number of 

Pax6+/Sox2+/AP2+ NSCs (Figure 4F, G), immunopositive signals for GLAST and 

BLBP were diminished in the DP/LP and largely undetectable in the MP in 

dcKO mutants (Figure 3.5A, D). 

Another hallmark for NE-RG cells transition is the replacement of tight junctional 

complexes (NE trait) with adherens junctions (RGs trait) (Aaku-Saraste et al., 1996; 

Sahara & O'Leary, 2009). Notably, we found that during late corticogenesis, many 

genes encoding for tight junction proteins (such as AMOT, MPP5, Occludin, INADL, 

PKD2, DLG1, CFTR, TGFB3) were significantly upregulated and also those involved 

in adherens-junction proteins (e.g. TNS3, PLEC, PTK2B, ZO1, α-Catenin, 

KIAA1462/Jcad, filamin, CAMSAP3, APC, MYH9, MYO1E, SPTAN1, ITGA1, RND1) 

were downregulated in the dcKO pallium. Additionally, we examined VZ expression of 

Occludin (a tight junction marker) and ZO1, α-Catenin (adherens-junction markers) 

localized at the apical surface. Occludin is normally downregulated in NEs as they 
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differentiate into RGs (Aaku-Saraste et al., 1996; Sahara & O'Leary, 2009). 

At E13.5-E16.5, expression of occludin at the apical surface of the VZ in the control 

pallium was undetectable, whereas its expression was strongly upregulated in 

the dcKO pallium at E15.5–E16.5 (Figure 3.5C, D; Figure S3.5I). The expression of 

adherens junction markers ZO1, and α-Catenin at the apical surface of RGs was not 

affected at E13.5-E14.5 (Figure S3.5J-L), but largely absent at E16.5–E17.5 in 

dcKO cortex (Figure 3.5B, D).  

BAF complexes seem not only to block NE fate in late pallium development, 

but also control the differentiation from NEs to RGs, as evidenced by downregulated 

expression of the RG markers BLBP and GLAST together with upregulated 

expression of the NE marker Occludin in the dcKO_Emx1-Cre cortex at E13.5 

(Figure S3.5M-O). Thus, our data revealed that the downregulation of the expression 

of astroglial and adherens-junction markers is correlated with upregulation of 

tight-junction markers in late cortical development of dcKO mutants. 

These complementary datasets indicate that deletion of BAF complexes during late 

development of the pallium dedifferentiates RGs to NE-like cells.  
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Figure 3.5. NE-like cells in the BAF-complex–deleted pallium in late development retain 

their highly proliferative competence.  

(A–C) Immunostaining of the control and dcKO pallium sections at E15.5 for indicated markers 

revealed an altered cell identity from GLASThigh+/BLBPhigh+/ZOhigh+/α-Cateninhigh+/occludin- RGs 

in controls to GLASTlow+/BLBPlow+/ZOlow+/α-Cateninlow+/occludinhigh+ NEs in dcKO MP. 

(D) Quantification and statistical analysis of panels A-C are shown. (E–F) Quantitative 

analyses showing that the loss of BAF155 and BAF170 leads to an increase in mitotic pHH3+ 

RGs in the pallium at E14.5–E16.5 (E). Note that quantification of pHH3+ cells (F) was done in 

the entire developing hippocampus (Pax6+/Ztbt20+) at E15.5 using 3D reconstruction 

(see also Figure S5A-B, Movie S1). (G) Images showing double IF at E16.5 for CIdU, and Ki67 

in control and dcKO mutants. (H) Quantitative analyses showing a significantly lower exit index 

(number of CidU+/Ki67- cells per total number of CidU+ cells) in mutants in D/LP and MP areas 

than in controls. (I) Schema illustrating that a higher proportion of RG progenitors in 

the late-stage (from E13.5) dcKO pallium acquire NE-like identity (i.e. downregulated 

expression of astroglial, adherens-junction, differetiation genes and upregulated expression of 

tight-junction, proliferation genes). Values are presented as means ± SEMs (n>3, *P < 0.05, 

***P < 0.01, ***P < 0.005). Abbreviations: NE, neuroepithelial cell; RG, ventricular radial glial 

progenitors, Hi, hippocampus; Cx, cortex; MP, medial pallium; DP, dorsal pallium; LP, lateral 

pallium. Scale bars = 100 m (A, G). 

3.3.5. Change in spindle orientation, and increased proliferative capacity of 

NSCs in the BAF155/BAF170-deficient pallium.  

To assess the implications of the retention of a NE-like identity in the mutant 

cortex, we first found out if the dedifferentiation from RGs to NE-like cells was 

consequent to/caused altered spindles orientation. We stained E15.5–E16.5 sections 

from control and dcKO pallium using antibodies against pVim and pHH3 to mark mitotic 

cells and chromatin, respectively (Figure S3.5A). The division angles of apical RGs 

were quantified and categorized based on cleavage angle: vertical (60–90°), oblique 

(30–60°), and horizontal (0–30°). Notably, more progenitors with vertical cleavage 

were detected in the mutant pallium than controls (Figure S3.5A, B), suggesting that 

the loss of BAF complexes in late pallial development induces proliferative symmetric 

divisions, which mainly generate NEs and RGs. 
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The increased number of Pax6+/Sox2+ NSCs suggested that RGs were kept in 

the cell cycle to promote their proliferation, instead of exiting to become neurons. 

To ascertain whether loss of functional BAF155 and BAF170 leads to altered cell 

proliferation, we labeled M-phase cells by immunostaining with an anti-pHH3 antibody. 

Quantitative comparisons of immunostained medial brain sections of the E14.5–E17.5 

pallium (Figure 3.4A, 3.5D) and 3D reconstruction analyses of the entire hippocampus 

at E15.5 (Figure 3.5E), indicated that the loss of BAF155 and BAF170 resulted in 

an increased number of pHH3+ cells in the pallium (Figure 3.5D, E).  

To better characterize BAF155/BAF170 loss-of-function effects on neuronal 

differentiation, we next used a thymidine analog (CIdU) injection paradigm (24-h CIdU 

pulse-labeling) to establish a quantitative in vivo cell cycle exit index in the developing 

MP and D/LP (Figure 3.5G, H). We also performed double-labeling IF using antibodies 

against CIdU to label both cycling progenitors and those that recently exited the cell 

cycle, and Ki67 for proliferating progenitors in all cell cycle phases. Statistical analyses 

revealed a significantly lower cell cycle exit index in dcKO mutants compared to 

controls (Figure 3.5G, H). To examine whether BAF155/BAF170-deficient NSCs 

undergo several proliferative rounds, we again detected the sequential incorporation 

of different thymidine analogues (CldU, IdU) into cortical NSCs (Figure S3.6C). 

Given that cell cycle length of cortical progenitors between E14.5–E16.5 is about 

15h-18h per cycle (Takahashi et al., 1995), pregnant mice were injected with CldU 

(at E14.5) and IdU (at E15.5). Tissue was collected at E16.5 and processed for 

IHC analysis with antibodies against CldU, IdU and Ki67 (Figure S3.6D). The cortical 

cells between 1-3 successive rounds of cell division were labeled as following: 

(1) Cells from the first and the second cell divisions as well as their progenies are 

marked with CldU (in green) and with IdU (in violet) respectively; (2) cells in third mitotic 

cell cycle will be labeled by Ki67 (red). Our statistical analysis (Figure S3.6E) indicated 

that between E14.5–E16.5, many cortical progenitors exit from the first 

(CIdU+/IdU-/Ki67- : 6±0.83% in control and 0.7±0.38% in dcKO, green part of chart) and 

second (CIdU+/IdU+/Ki67- : 73±2.52% in control and 31.82±3.30% in dcKO, violet part 

of chart) cell cycles in control cortex, whereas a large fraction of NSCs further enters 

third (CIdU+/IdU+/Ki67+ : 20.16±1.94% in control and 67.47±9.70% in dcKO, red part of 

chart) cell cycle in dcKO cortex. 
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We also examined apoptosis at different stages from E14.5 to E18.5 in the MP 

by performing IF for Casp3 (Figure S3.6F-K). Compared to controls, significantly higher 

numbers of dying cells were found in the MP of dcKO pallium (Figure S6F-J). 

Particularly, most apoptotic cells in mutants were Pax6+ RGs, while apoptotic Tbr2+ IPs 

were detected at a lesser extent. Apoptotic HuCD+ neurons were rarely detected 

(Figure S3.6F-I, K), and this paralleled our previously observed apoptotic effect of 

selective loss of BAF complex in post-mitotic neurons The latter effect is further 

supported by the observation that selective elimination of BAF155 and BAF170 in 

post-mitotic neurons in dcKO_Nex-Cre had no effect on the populations of 

Ctip2+/Ztb20+ neurons, Pax6+/Sox2+ NSCs (Figure S3.6L-N) or Casp3+ apoptotic cells 

(Narayanan et al., 2015b).  

Collectively, these findings indicate that the deletion of BAF complexes results in 

H3K4me2-linked activation of proliferation– and cell-cycle–associated genes. 

This resulted in three main morphogenetic defects of the dcKO pallium: 

(1) an expanded pool of NSCs, (2) diminished neurogenesis in late corticogenesis, and 

(3) malformed late-formed structures such as upper cortical layers and 

the hippocampus. 

3.3.6. Elimination of BAF155 and BAF170 de-represses Wnt signaling in late 

corticogenesis. 

Previous work has suggested that enhanced Wnt signaling promotes cortical 

NSCs proliferation (Chenn & Walsh, 2002; Machon et al., 2007). We found that, during 

late corticogenesis, a considerable number of genes involved in Wnt signaling, 

including many Wnt target genes, were significantly upregulated in the dcKO pallium 

(Figure 3.6A, B; Figure S3.7A). These genes showed an overall (Figure 3.6C, D) 

increase in H3K4me2 levels. Moreover, their TSS regions, where increased H3K4me2 

is observed in dcKO embryos, also coincide with Brg1 binding sites (Figure 3.6E). 
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Figure 3.6. BAF complexes suppress Wnt signaling activity.  

(A) Wnt-related genes are upregulated in the dcKO pallium at E17.5. (B) Wnt target genes 

upregulated in the dcKO pallium are shown. (C) General H3K4me2 profile plot of Wnt-related 

genes that are upregulated in dcKO pallium. (D) Upper panel: Heatmap depicting the changes 

in H3K4me2 levels of Wnt-related genes that are upregulated in dcKO pallium at E17.5. 

Lower panel: Average relative H3K4me2 binding levels on those genes combined. 

(E) Integrated genome browser views of H3K4me2 and Brg1 binding (GSE37151) 

(Attanasio et al., 2014) along representative Wnt-related genes upregulated in dcKO 

pallium. (F–G) ISH (F) and quantitative (G) analyses comparing the expression of the Wnt 

target Axin2 in the control and dcKO pallium at E15.5–E17.5. (H-J) In vivo (H, I) and in 

vitro (J) luciferase assay indicating higher Wnt signaling activity in 

BAF155/BAF170-depleted pallial cells (I) and in Neuro2A cells (J) compared to control 

cells. Values are presented as means ± SEMs (n>3, *P < 0.05, ***P < 0.01, ***P < 0.005). 

Abbreviations: TSS, transcription start site; TES, transcription end site; MP, medial pallium; 

DP, dorsal pallium; LP, lateral pallium. Scale bars = 100 m (F).  

To provide additional support, we also performed in situ hybridization (ISH) 

analysis of the expression of Axin2, a direct target of Wnt/β-catenin activity. 

This analysis showed that, unlike controls, in which Axin2 mRNA staining was faint 

and confined mostly to the MP at E15.5–E17.5, the BAF complex-deficient pallium 

exhibited diffused Axin2 staining in the MP VZ at E15.5 and throughout the pallium 

VZ at E16.5–E17.5 (Figure 3.6F, G). 

To further address the capacity of BAF complexes to regulate Wnt-signaling, 

we performed in vivo reporter assays by electroporating a luciferase promoter 

construct TOP, containing β-catenin/TCF binding sites and a mutated form, FOP, 

as negative control into the embryonic brain. To eliminate BAF function, 

we electroporated TOP-/FOP-FLASH reporter plasmids plus a Cre-expressing 

plasmid into the E14.5 MP of BAF155fl/fl:BAF170fl/fl embryos. We then examined 

isolated tissue samples from the MP using the TOP/FOP luciferase assay. 

These analyses indicated that BAF complex knockout in the pallium significantly 

enhanced TOP-, but not FOP-reporter activity (Figure 6H, I). Similarly, dual silencing 

of BAF155 and BAF170 markedly increased Wnt signaling activity in Neuro2A cells 

in vitro (Figure 6J), suggesting that BAF complex deficiency indeed increased 

the transcriptional activity of Wnt target genes that control NSC proliferation. 

Such candidate genes (e.g. Pax6, AP2 and cyclin D1) are critical for the timely 

progression of the cell cycle (Figure 3.7A).  
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Next, we directly determined whether BAF complex in the MP 

regulates hippocampal development via suppression of Wnt signaling. To this end, 

we used ICG-001, a Wnt signaling inhibitor, to perform rescue experiments 

(Figure 3.7A, B). Starting from E11.5, pregnant mice were intraperitoneally injected 

daily with an ICG-001 solution, and brain samples were collected at E15.5, E17.5, and 

P0 (Figure 3.7B). ICG-001 treatment of dcKO mutants resulted in the reversal of 

NE-like cell characteristics (BLBPlow/GLASTlow/occludinhigh) to RG features 

(BLBPhigh/GLASThigh/occludinlow) that typifies the WT pallium (Figure S3.7B-E). 

Furthermore, IF analyses at E15.5 with Pax6 and Casp3 antibodies revealed that 

the Wnt inhibition decreased the number of Pax6+ NSCs and Casp3+ apoptotic cells 

(Figure 3.7C, E) in dcKO mutants. Concurrently, ICG-001 administration in dcKO 

mutants caused a near-WT increase in the number of Prox1+ DGs and Ztbt20+ 

hippocampal neurons in MP (Figure 3.7D, E) and also in the number of Ctip2+, Satb2+, 

and Cux1+ cortical neurons in L/DP (Figure S3.7F-H). Strikingly, treatment with 

the Wnt-inhibitor almost completely rescued the aberrant hippocampal morphology in 

mutants (Figure 3.7D, E). To consolidate this claim, pregnant mice were treated with 

XAV-939, a substance with similar effect as ICG-001(Mutch et al., 2010). As expected, 

XAV-939 treatment reproduced the Wnt inhibition-dependent rescue of cortical 

anomalies in dcKO mutants (Figure S3.7I-O).  
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Figure 3.7. BAF complexes control hippocampal development by suppressing Wnt 

signaling activity.  

(A) Schematic model of the molecular cascades underlying late stages of pallium 

development in WT and dcKO pallium. (B) Rescue experimental paradigm with the Wnt 

inhibitor (WNTi, ICG-001). IF (C,D) and quantitative (E) analyses of dcKO mutants at 

the indicated stages, showing the effects of treatment with ICG-001 on pools of Pax6+ NSCs 

(C,E), Casp3+ apoptotic cells (C,E), and Ztbt20+ (D,E) and Prox1+ neurons (E) in 

the developing hippocampus. (F, G) Expression of Wnt (F) and Proliferation (G) -related genes 

in control, Vehicle (Veh), WNTi-treated pallium. (H) A proposed model showing how loss of 

BAF155 and BAF170 in dcKO mutants controls epigenetic and neural gene expression 

programs in proliferation and neuronal differentiation of the pallium in late developmental 

stages. Values are presented as means ± SEMs (n>3, *p-value < 0.05, ***p-value < 0.01, 

***p-value < 0.005). Scale bars = 100 m (C,F) and 50 m (C). 

Finally, we compared the transcriptome of cortices from control and dcKO 

embryos, which were treated with either Veh or Wnt inhibitor (Figure 3.7F, G). 

Treatment with Wnt inhibitor decreases the expression of proliferation- and Wnt-related 

genes that are upregulated in dcKO embryos (Figure 3.7F, G).  

Taken together, these results demonstrate that loss of BAF complexes during 

late cortical neurogenesis leads to aberrant enhancement of Wnt signaling activity and 

causes increased NSC proliferation-related defects similar to those observed after 

Wnt/β-catenin overexpression (Chenn & Walsh, 2002; Machon et al., 2007). 

These findings demonstrate that BAF complexes are required for proper hippocampal 

development through appropriate suppression of Wnt signaling in late developmental 

stages of the pallium. 

3.4. Discussion 

In this study, we present evidence for the involvement of chromatin remodeling 

BAF complexes in the regulation of global gene expression and epigenetic programs 

during late cortical neurogenesis. We showed that specific interactions of 

BAF155/BAF170 subunits with H3K27 and H3K4 demethylases possibly potentiate 

their activity during corticogenesis. During late development, loss of H3K27me3 and 

H3K4me2 marks on regulatory regions of distinct sets of genes potentiates disinhibition 

of transcription of RG- and neuronal differentiation-related genes, and suppresses NE-, 
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Wnt signaling-, cell cycle-, and proliferation-related genes, respectively (Figure 3.5I). 

Thus, BAF complexes act both as activators and as repressors to regulate global 

epigenetic and gene expression programs during late corticogenesis and hippocampus 

development.  

3.4.1. BAF155/BAF170-dependent maintenance of RG cell fate during late 

cortical neurogenesis. 

Cortical neurogenesis comprises three main phases: (1) an expansion phase, 

characterized by symmetric division of NEs and expansion of the proliferative cell 

population, (2) a transition period during which NEs differentiate into RGs via 

asymmetric divisions to generate neurons as well as basal progenitors, and 

(3) a terminal phase during which progenitors undergo a terminal symmetric division 

to generate neurons and become quiescent (Gotz & Huttner, 2005; 

Dehay & Kennedy, 2007; Kriegstein & Alvarez-Buylla, 2009; Martynoga et al., 2012).  

 A few molecular factors are known to regulate NEs to RGs transition and RGs 

differentiation (Gotz & Huttner, 2005; Dehay & Kennedy, 2007; Kriegstein & 

Alvarez-Buylla, 2009; Martynoga et al., 2012). For example, ablation of Fgf10 delayed 

RG differentiation during early corticogenesis, whereas NE fate seemed unaffected 

(Sahara & O'Leary, 2009). It is thus conceivable that at later stages, other mechanisms 

may be required in limiting NSC fate to allow neuronal differentiation.  

We showed that elimination of the BAF complex, by deleting the two scaffolding 

subunits BAF155 and BAF170 in cortex from E14.5 onward, results in a loss of RG 

fate hallmarks (diminished expression of astroglial and adherens junction markers), 

accompanied by gain of NE features (activation of tight junction and proliferation 

genes) (Figure 3.5H). Phenotypically, in the dcKO pallium, we found an overactive 

progenitor proliferation through symmetric divisions (a feature of NEs), instead of the 

typical predominant late stage asymmetric division to produce one RG and a neuron 

or an IP. This leads to overproduction of NSCs at the expense of their derivatives 

(IPs and UL neurons), and instigating the decreased radial cortical thickness and 

hypoplasia of the hippocampus in the dcKO mutants (Figure 3.5H).  

Altogether, our results demonstrate that the chromatin remodeling BAF complex 

is a crucial factor for ensuring the suppression of NE fate in the late neurogenic phase 

of corticogenesis. 
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3.4.2. BAF complexes control NSC proliferation and differentiation in early and 

late embryonic stages via distinct epigenetic mechanisms.  

Discrete histone marks activate or inhibit gene expression programs that regulate 

neural development. Modifications such as H3K4me2/3 and H3K27Me2/3, regulated 

by their corresponding histone lysine methyltransferases (KMTs) and demethylases 

(KDMs), are associated with transcriptional activation and repression respectively.  

H3K4 is commonly targeted by numerous KMTs and KDMs. In pluripotent ESCs, 

H3K4me2 marks signaling pathway genes that are required for the transition of neural 

progenitors to mature neurons (Zhang et al., 2012). H3K4me2 marks are established 

mainly by KMT2C/D methyltransferases and are removed by the KDM1 (LSD1) 

demethylase (Shi et al., 2004), which we found to be highly expressed in late cortical 

progenitors (Figure S3.1). Interestingly, LSD1 is also highly expressed in late 

progenitors in the developing mouse retina, and its inhibition blocks the differentiation 

of rod photoreceptors during late developmental stages (Popova et al., 2016).  

Our earlier work indicated that BAF complexes interact with the H3K27 

demethylases Kdm6a/b to promote cell proliferation and neuronal differentiation in 

early cortical development (Narayanan et al., 2015b). Accordingly, loss of 

BAF complexes in early corticogenesis results in a global increase in repressive 

H3K27me3 marks, and downregulation of genes important for progenitor proliferation 

and differentiation. These two outcomes following ablation of BAF complexes during 

late development suggest a dual function of BAF complexes in activating neuronal 

differentiation genes and suppressing proliferation-related pathways that may reflect 

independent processes mediated by distinct BAF complex cofactors. Like in early 

stages, BAF complexes possibly induce neuronal differentiation by interacting with 

Kdm6a/b to remove inactivating H3K27me3 marks on loci of neuronal differentiation 

genes (Figure 3.7H). In parallel, however, BAF complexes inhibit cell amplification, 

probably by interacting with Kdm1a and potentiate its demethylase activity in H3K4me2 

removal at genomic loci of genes involved in Wnt signaling, mitotic cell cycling, and 

proliferation (Figure 3.7H).  

Based on these data, we propose that during late pallium development, 

endogenous BAF complexes associate with the coactivators Kdm6a/b to promote 

neuronal differentiation, while inhibiting cell proliferation via Kdm1a recruitment.  
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3.4.3. BAF complexes suppress Wnt signaling activity 

During cortical neurogenesis, temporal differentiation of NSCs leads to 

generation of cohorts of neurons with distinct layer identities, a process that depends 

on multiple regulatory pathways. Wnt signalling regulates the switch between 

proliferation and differentiation of cortical progenitors. Accodingly, ablation of 

β-catenin or Lrp6 (Wnt co-receptor) causes early cell cycle exit and premature 

differentiation of RGs into IPs and neurons. (Woodhead et al., 2006; Zhou et al., 2006; 

Machon et al., 2007; Draganova et al., 2015). Conversely, persistent expression of 

β-catenin suppresses progenitor exit from mitosis, causing hyper-proliferation of NSCs 

through excessive symmetric division that consequently delays generation of 

Tbr2+ IPs and neuronal differentiation in the pallium (Chenn & Walsh, 2002; 

Machon et al., 2007; Wrobel et al., 2007; Mutch et al., 2010). 

Interestingly, these phenotypes are reminiscent of the observed abnormalities in the 

dcKO cortex. 

Previous studies demonstrated that in mammalian non-neural cells, the core 

BAF subunit Brg1 positively regulates Wnt signaling at distinct levels (e.g. exerting 

a control of genes encoding for Wnt receptors and also modulating 

β-catenin-dependent transcriptional activity) (Barker et al., 2001b; Griffin et al., 2011). 

Surprisingly, upon loss of BAF155 and BAF170 in late cortical progenitors, multiple 

components and targets of the canonical Wnt/β-catenin signaling were upregulated, 

suggesting that the SWI/SNF complex can act to control the Wnt/β-cateninn signaling 

pathway in a tissue- and context-dependent manner. Pharmacological inhibition of 

Wnt/β-catenin signaling rescued the observed defects in cell proliferation, cell survival, 

and restored hippocampal morphology in the dcKO mutants, hence making us posit 

that BAF (SWI/SNF) complexes negatively regulate Wnt signaling during late cortical 

neurogenesis. 

Altogether, our results indicate that the chromatin remodeler BAF plays a crucial 

role in late-stage development of mammalian cortex in two distinct ways. On one hand, 

BAF complexes induce heterochromatin formation at loci of cell cycle, proliferation and 

Wnt-related genes, thereby suppressing their expression; and the other, they facilitate 

the expression of neural differentiation-related genes by establishing euchromatin 

at related genomic regions. Together, these activities ensure the generation of 

appropriate numbers of NSCs and neurons in late cortical development. 
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3.5. Materials and Methods 

3.5.1. Materials 

Transgenic mice 

BAF155f/f (Choi et al., 2012), BAF170f/f (Tran et al., 2013), Emx1-Cre 

(Gorski et al., 2002), hGFAP-Cre (Zhuo et al., 2001), Nex-Cre (Goebbels et al., 2006) 

and Rosa-tdTomato (Ai9) (Madisen et al., 2010) mice were maintained in a C57BL6/J 

background. Animals were handled in accordance with the German Animal 

Protection Law. 

Plasmids 

Plasmids used in this study: pCIG2-ires-eGFP, pCIG2-Cre-ires-eGFP (gift from 

Dr Francois Guillemot, NIMR London); 8XTOPFLASH (TOP) (Veeman et al., 2003) 

and Super8XFOPFLASH (FOP) (Veeman et al., 2003) were gifts from Randall Moon 

(Addgene plasmid # 12456, 12457). 

Antibodies  

The following polyclonal (pAb) and monoclonal (mAb) primary antibodies used in 

this study were obtained from the indicated commercial sources: AP2 mouse mAb 

(1:100; Abcam), BAF170 rabbit pAb (Bethyl), BAF170 rabbit pAb (Sigma), BAF155 

rabbit pAb (1:20; Santa Cruz), BAF155 mouse mAb (1:100; Santa Cruz), Brn2 goat 

pAb (1:100; Santa Cruz), BLBP rabbit pAb (1:200; Chemicon), Casp3 rabbit pAb 

(1:100; Cell Signaling), Ctip2 rat pAb (1:200; Abcam), GLAST pig pAb (1:500; Frontier), 

CidU rat pAb (1:100; Accurate), H3K27me3 rabbit pAb (Upstate), Kdm6a/Utx rabbit 

pAb (Santa Cruz), Kdm6b/jmjd3 rabbit pAb (De Santa et al., 2007), Ki67 rabbit pAb 

(1:50; Vector), HuCD mouse mAb (1:20; Invitrogen), LSD1 rabbit pAb 

(1:100; Cell Signaling), Satb2 mouse mAb (1:200; Abcam), Sox2 mouse mAb 

(1:100; R&D Systems), Prox1 rabbit pAb (1:1000; Covance), Pax6 mouse mAb 

(1:100; Developmental Studies Hybridoma Bank), Pax6 rabbit pAb (1:200; Covance), 

Flag mouse mAb (1:1000; Sigma), phospho-H3 rabbit mAb (1:200; Millipore), 

phospho-H3 rat pAb (1:300; Abcam), pVim mouse mAb (1:500; MBL), occludin rabbit 

pAb (1:50; Thermo Fisher), TUBB3 mouse mAb (Tuj1, 1:500; Chemicon), Tbr2 rabbit 

pAb (1:200; Abcam), Tbr1 rabbit pAb (1:300; Chemicon), Zbtb20 rabbit pAb 

(1:50; Sigma), and RFP rabbit pAb (1:10000; Biomol/Rockland).  
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Secondary antibodies used were horseradish peroxidase (HRP)-conjugated goat 

anti-rabbit IgG (1:10000; Covance), HRP-conjugated goat anti-mouse IgG 

(1:5000; Covance), HRP-conjugated goat anti-rat IgG (1:10000; Covance), and Alexa 

488-, Alexa 568-, Alexa 594- and Alexa 647-conjugated IgG (various species, 

1:400; Molecular Probes).  

3.5.2. Methods 

3.5.2.1. Generation of dcKO mutants 

To eliminate BAF155 and BAF170 in early cortical progenitors, late cortical 

progenitors, or projection neurons, we used the early progenitor-active Emx1-Cre 

(Gorski et al., 2002), late progenitor-active hGFAP-Cre (Zhuo et al., 2001) and 

neuron-specific Nex-Cre (Goebbels et al., 2006) mouse lines, respectively. 

Heterozygous animals (BAF155fl/+, BAF170fl/+, Cre) were used as controls. 

Mutants crossed with Emx1-Cre or hGFAP-Cre died soon after birth. 

3.5.2.2. Mass spectrometry, CoIP, ChIP-Seq, and RNA-Seq 

Chromatin immunoprecipitation (ChIP) 

ChIP assays performed on the pallium from control (n = 4) and dcKO_hGFAP-Cre 

E17.5 (n = 4) littermate embryos. Briefly, tissues were homogenized in sucrose solution 

(0.32 M sucrose, 5 mM Cacl2, 5 mM Mg(Ac)2, 0.1 mM EDTA, 50 mM HEPES pH 8, 

1 mM DTT, 0.1% Triton X-100), and then fixed in 37% formaldehyde. After stopping 

fixation by adding 1.25 M glycine, samples were washed with Nelson buffer 

(140 mM NaCl, 20 mM EDTA pH 8, 50 mM Tris pH 8, 0.5% NP-40, 1% Triton X-100) 

and sonicated in RIPA buffer (140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% 

sodium deoxycholate, 10 mM Tris pH 8, 1% SDS).  

For ChIP against histone marks 500 ng of chromatin with either 4 μg of 

anti-H3K4me2 antibody (Millipore) or 2 μg of anti-H3K27me3 antibody (Millipore) were 

used for each experiment, with input DNA of 50 ng. For ChIP against histone 

demethylases 10 μg of chromatin with either 10 μg of anti-LSD1 antibody (Abcam) or 

10 μg of anti-JMJD3 antibody (Abcam) were used for each experiment with input DNA 
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of 100 ng. After incubating overnight, samples were incubated with 15 μl of 

protein A-coated beads (Diagenode) that had been blocked by incubating with 

0.5% bovine serum albumen (BSA). Beads were washed with IP buffer (140 mM NaCl, 

1% NP-40, 0.5% sodium deoxycholate, 50 mM Tris pH 8, 20 mM EDTA, 0.1% SDS) 

and wash buffer (100 mM Tris pH 8, 500 mM LiCl, 1% NP-40, 1% sodium 

deoxycholate, 20 mM EDTA), and chromatin was eluted with 0.1 μg/μl of RNase A 

diluted in 10 mM Tris (pH 8). De-crosslinking was carried out in Wiemann buffer 

(100 mM Tris pH 8, 20 mM EDTA, 2% SDS) with Proteinase K (1 μg/μl). DNA was 

eluted in 10 mM Tris (pH 8).  

ChIP-Sequencing 

Libraries were prepared with a NEBNext Ultra DNA Library Prep Kit for Illumina 

(NEB) and analyzed using QuBit and an Agilent 2100 Bioanalyzer. Input DNA (50 ng) 

was isolated from each sample and then pooled separately for each group.  

Base calling and FASTQ conversions were performed using standard Illumina 

scripts, as described previously (Halder et al., 2016; Narayanan et al., 2015). 

Quality control was also performed for each sample using FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc). Reads were mapped to 

the mm10 mouse reference genome using STAR aligner v2.3.0 (Djebali et al., 2012). 

BAM files were filtered leaving only high-quality reads [MAPQ !=(0,2,3,4)] as described 

previously (Halder et al., 2016). 

BAM files of replicates from the same group were combined using the merge 

function of SAMTools (Li et al., 2009). Genomic profile plots were created from 

combined BAM files using NGSPlot (Shen et al., 2014). Wiggle (WIG) files were 

created from these BAM files using the script available in the MEDIPS package of 

Bioconductor (Lienhard et al., 2014). Visualization of individual gene loci was 

performed with Integrated Genome Browser (Nicol et al., 2009) using these WIG files. 

Peaks were called using MACS2, with q < 0.1 (Feng et al., 2012). 

Differential binding analyses were performed using the DiffBind package of 

Bioconductor (Ross-Innes et al., 2012) with the DESEQ2 option for differential 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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analysis. Peak annotation was performed using HOMER (Heinz et al., 2010) and 

homemade scripts. 

RNA-Sequencing 

RNA was extracted (RNeasy kit; Qiagen) from the pallium of control (n = 4) and 

dcKO_hGFAP-Cre (n = 3) E17.5 littermate embryos. cDNA libraries were prepared 

using the TruSeq RNA Sample Preparation v2 Kit. DNA was quantified using 

a Nanodrop spectrophotometer, and its quality was assessed using an Agilent 2100 

Bioanalyzer. 

Base calling, fastq conversion, quality control, and read alignments were all 

performed as outlined for ChIP-Seq. Reads were aligned to mouse genome mm10 and 

counted using FeaturesCount (http://bioinf.wehi.edu.au/featureCounts/). Differential 

expression was assessed using DESeq2 from Bioconductor (Love et al., 2014). 

Functional GO enrichment analyses were performed using ToppGene 

(Chen et al., 2009). 

The high-throughput RNA-seq and ChIP-Seq data will be deposited in the NCBI 

Gene Expression Omnibus and made accessible through GEO Series accession 

numbers upon acceptance of the manuscript. 

3.5.2.3. qPCR, ChIP-qPCR  

Briefly, qPCR for confirmation of gene expression changes cDNA was 

synthesized using Transcriptor High Fidelity cDNA Synthesis Kit (Roche) and 

the results were normalized to housekeeping gene hypoxanthine 

phosphoribosyltransferase (Hprt1). For ChIP-qPCR the results were normalized 

against input DNA. All qPCR reactions were performed in Roche 480 Light Cycler using 

SYBR Green. To validate the upregulated expression of Wnt-related genes in our 

RNA-Seq dataset, we performed qPCR using the mouse WNT Signaling Pathway RT2 

Profiler PCR Array (PAMM-043Z; Qiagen) and mouse WNT Signaling Targets RT2 

Profiler PCR Array (PAMM-243Z; Qiagen).  

3.5.2.4. Co-immunoprecipitation and mass spectrometry (CoIP/MS)  

http://bioinf.wehi.edu.au/featureCounts/
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BAF155 and BAF170 interaction analyses were performed using the neural stem 

cell line, NS5 (Conti et al., 2005), and E13.5 and E17.5 embryonic telencephalic tissue. 

Tissues were dissected and minced in cold phosphate-buffered saline (PBS) and then 

washed twice with PBS. Equivalent amounts of cells from one embryo were lysed for 

30 min in 1 ml RIPA buffer containing a proteinase inhibitor cocktail (Roche) and 

DNase. All steps were performed at 4°C. Lysates were centrifuged for 10 min at 

13,000 rpm to sediment out non-lysed tissues. The supernatant was pre-cleared by 

incubating with normal mouse IgG together with protein A/G-agarose beads, as 

described by the manufacturer (sc-2003; Santa Cruz). Interacting proteins were 

immunoprecipitated by incubating pre-cleared supernatant with rabbit anti-BAF155 

and anti-BAF170 antibodies and A/G-agarose beads. The beads were then washed 

first with 500 µl cold RIPA buffer (three times for 5 min each) and then with 40 µl of 

elution buffer (2.5 µl 20% SDS, 5 µl 1 M NaHCO3, 42.5 µl double-distilled H2O) for 

15 min at room temperature. 

For MS analyses (performed in the department of Prof. Dr. Henning Urlaub), 

samples were suspended in NuPage loading buffer and resolved on commercial SDS 

polyacrylamide gels (Novex NuPage Bis-Tris gel, 4–12% gradient; Invitrogen). 

Individual lanes were then cut into six squares for MS analysis. The parameters for 

the identification of proteins were set to the following values: limit, 95% probability of 

detection; limit of unique peptides detected, 1; and threshold detection probability of 

peptides, 80%. 

The list of BAF155- and BAF170-interacting proteins revealed by MS analysis 

was obtained by subtracting nonspecific interactions with IgG in IPs and in 

telencephalic tissues from BAF155-null (BAF155cKO_FoxG1-Cre) and BAF170-null 

(BAF170cKO_FoxG1-Cre) mutants. The first set of controls excludes nonspecific 

binding to the antibody, and the second excludes nonspecific interactions that possibly 

could be precipitated by either the anti-BAF155 or anti-BAF170 antibody.  

3.5.2.5. Injection of Wnt inhibitor (WNTi, ICG 001, XAV-939) and Wnt activator 

(WNTa, SB-216763), H3K27 demethylase inhibitor (GSK-J4), LSD1 histone 

demethylase (2-PCPA). 
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ICG001 (Tocris Bioscience, Cat. No. 4505), XAV-939 (Tocris Bioscience, 

Cat. No. 3748), SB-216763 (Tocris Bioscience, Cat. No. 1616), GSK-J4 

(SIGMA, Cat. No. SML0701) and 2-PCPA (Tocris Bioscience, Cat. No. 3852) were 

dissolved in vehicle (DMSO). 11.5 d.p.c. pregnant mice received daily injections of 

vehicle (150 µl), or ICG001 (150 µl of a 1-mg/ml solution), XAV-939, (150 µl of 

a 0.2 mg/ml solution), SB-216763 (100 µl of a 1-mg/ml solution plus 100 µl of saline), 

GSK-J4 (150µl of 2.5mg/ml solution)) and 2-PCPA (150µl of 5 mg/ml solution). 

Treated mice were sacrificed at different developmental stages as indicated in the text. 

3.5.2.6. In vivo β-catenin transcriptional activity assay 

In vivo and in vitro β-catenin transcriptional activity assay were performed as 

previously described (Mao et al., 2009; Durak et al., 2016). Briefly, Wnt/β-catenin 

transcriptional activity in vivo was monitored by electroporating brains of E13.5 

BAF155fl/fl;BAF170fl/fl embryos with a Cre plasmid (or empty plasmid as a control) and 

the reporter constructs Super8XTOPFLASH (TOP) or Super8XFOPFLASH (FOP) 

together with pRL-TK constructs at a 5:1:0.3 ratio. Wnt/β-catenin transcriptional activity 

was measured at E15.5. For in vitro assay, Neuro2A cells at 1 × 105 per well density 

were plated into 24-well plates. Cells were transfected with 0.8 μg of shRNA plasmids 

(shBAF155, shBAF170) along with 50 ng of Super8XTOPFLASH and 10 ng of pRL-TK. 

2 days post-transfection, cells were collected for Wnt/β-catenin transcriptional activity 

measurement. In all cases, firefly luciferase activity was normalized to that of 

Renilla luciferase. 

3.5.2.7. Spindle angle analysis 

Brain sections were stained with PVIM to outline the cell shape and PHH3 to identify 

anaphase and early telophase dividing cells. Images of z-stack sections were obtained 

by SP5 confocal microscopy, and 3D reconstruction of the confocal stacks was done 

as described previously (Postiglione et al., 2011; Tran et al., 2013).  

3.5.2.8. Imaging, quantification, Statistical Analysis and Data availability 

Images were captured by confocal fluorescence microscopy (TCS SP5, Leica) 

and analyzed using an Axio Imager M2 (Zeiss) with a Neurolucida system. 
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Images were further processed with Adobe Photoshop. IF signal intensities were 

quantified using ImageJ software. The statistic quantification was carried out as 

average from at least three biological replicates. All RNA-Seq and ChIP-Seq data have 

been deposited in GEO under accession number GSE106711. 

Cell counts and quantitative analysis of IF signal intensity 

Immunostaining in IF images was quantified using anatomically matched 

forebrain sections. Nucleus-marker–positive cells within the pallium of confocal images 

were counted for comparison. In most cases, cell counts of six matched sections were 

averaged from three biological replicates (control/dcKO pallium). In many cases, 

the number of lineage marker cells was quantified using total marker-positive cells 

alone, or by normalizing to the total number of DAPI+ (nucleus-stained) cells using 

the following equation: Normalized number = marker-positive cell number/DAPI+ cell 

number. Statistical analyses of histological data were performed using Student’s t-test. 

All bar graphs are plotted as means ± SEM. All statistical tests are two-tailed, 

and P-values are considered to be significant for α = 0.05.  

Statistical Analysis 

Statistical analyses were designed using the assumption of normal distribution and 

similar variance among groups, as previously tested. The sample size was determined 

based on preliminary results or similar experiments carried-out in the past. Power analysis 

was performed using G-power in order to estimate the number of animals required, 

for a signal-to-noise ratio of 1.4 and 80% to 90% power assuming a 5% significance level. 

For histological analysis, qPCR, ChIP-qPCR and comparison of genome-wide histone 

marks, statistics were assessed with Student’s t-test. The significance of overlaps was 

assessed using hypergeometric test. RNA-Seq and ChIP-Seq analyses were carried out 

using DESeq2 and DiffBind packages of Bioconductor respectively, with their own in-built 

statistical calculation tools. The results are presented as means ± SEM. P values of < 0.05 

were considered to be statistically significant unless otherwise indicated. All the relevant 
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information pertaining to statistical analysis is also specified in each figure legend 

separately. The statistic quantification was carried out as average from at least three 

biological replicates.   
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Figure S3.1 (related to figure 1). Co-expression of BAF155/BAF170 with H3K4 and H3K27 

demethylases in the developing pallium; hGFAP-Cre activity in the developing pallium; 

and expression of BAF155/BAF170 in the dcKO_hGFAP-Cre pallium. (A) Double-label 

IF analysis with anti-BAF155/BAF170 (green) and anti-LSD1/Kdm1a (red) antibodies, 

showing co-expression of BAF155/BAF170 with LSD1/Kdm1a in pallium cells.  

Co-expression of BAF155/BAF170 with UTX/Kdm6a or JMJD3/ Kdm6b in the developing 

forebrain was analyzed previously (Narayanan et al.). (B, C) Immunostaining for dtTomato on 

cortical sections from hGFAP-Cre; Rosa-tdTomato (Ai9) embryos at E13.5 (B) and 

E15.5 (C). (B) The right panels are higher-magnification images from the fields in the MP 

indicated by white frames. By E13.5, recombination is restricted in MP but absent from 

D/LP and cortical hem (CH) (B). From E15.5 onward, Cre recombination was detected in 

entire pallium (C). (D) Compared with controls, expression of BAF155 and BAF170 was 

largely lost in the dcKO pallium, as shown by IF analysis with anti-BAF155/BAF170 antibodies. 

Abbreviations: VZ, ventricular zone; MP, medial pallium; DP, dorsal pallium; LP, lateral pallium; 

CH, cortical hem. Scale bars = 100 m. 
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Figure S3.2 (related to figures 1, 2, 4). Characterization of H3K27me3 and H3K4me2 

marks in dcKO_hGFAP-Cre cortex. (A) qPCR confirmation of selected neuronal 

differentiation-related genes downregulated, proliferation- and Wnt-related genes upregulated 

in dcKO_hGFAP-Cre embryos at E17.5 (Control: n = 4, dcKO: n = 4). Student’s t-test: 

*** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05. (B) ChIP-qPCR confirmation of 

H3K27me3 levels at selected neuronal differentiation-related genes downregulated and 

H3K4me2 levels at selected proliferation and Wnt-related genes upregulated in 

dcKO_hGFAP-Cre embryos at E17.5 (Control: n = 4, dcKO: n = 4). Student’s t-test: 

*** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05, # p-value < 0.1. (C) Overlap between 

genes bound by Brg1 (GSE37151; Attanasio et al., 2014) and those with increased H3K27me3 

and those with increased H3K4me2 in dcKO embryos (hypergeometric test: p-value < 0.0001). 

(D) General profile plots of H3K27me3 at neuronal differentiation-related genes with increased 

H3K27me3 and H3K4me2 at cell cycle-related genes with increased H3K4me2 in 

dcKO_hGFAP-Cre embryos (p-value < 0.0001, Student’s t-test). (E) Neuronal 

differentiation-related genes have increased H3K27me3 and Cell cycle-related genes have 

increased H3K4me2 (p-value < 0.01) in dcKO_hGFAP-Cre embryos at E17.5. (F) Heatmaps 

depicting the expression changes in neural differentiation-related genes that have increased 

H3K27me3 and in cell cycle-related genes that have increased H3K4me2 in 

dcKO_hGFAP-Cre embryos at E17.5. (G) In the LSD1 demethylase activity quantification 

assay, cultured dcKO_CAG-Cre NSCs were nucleofected with a mammalian expression vector 

for LSD1/Kdm1a. The Cre-mediated deletion of BAF155 and BAF170 alleles was induced by 

adding TAM. Compared to control (LSD1-, TAM-, white bar), overexpression of LSD1 

(LSD1+, TAM-, grey bar) decreased the methylated H3K4. In absence of BAF complexes 

(LSD1+, TAM, black bar) LSD1 displayed its low H3K4 demethylase activity. 
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Figure S3.3 (related to figures 2, 3). BAF155 and BAF170 are essential for neurogenesis 

in the developing cortex and hippocampus. (A–B) IF (A, C) and quantitative (B, D) 

analyses of the neurogenesis phenotype using the late-born neuronal marker Satb2 (A, B) 

and early-born neuronal marker Tbr1 (C, D). (E - I) IF (E, F) and quantitative (G-I) analyses for 

the neuronal markers Ztbt20 in the hippocampus (E, G, H) and Prox1 in the dentate gyrus (F, I) 

revealed that hippocampal sections of the MP of mutants have a reduced number of Ztbt20+ 

neurons and Prox1+ neurons at E15.5–E17.5 compared with controls. (H) Quantification of 

the Ztbt20+ hippocampal volume performed across the entire hippocampus using 

3D reconstruction (see also Figure S5A). Values are expressed as means ± SEMs (*P < 0.05; 

**P < 0.01; ***P < 0.005). Abbreviations: MP, medial pallium; DP, dorsal pallium; 

LP, lateral pallium. Scale bars = 100 m (10x; A, E), 50 m (25x; A,C), and 50 m (40x; E,F).  
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Figure S3.4 (related to figures 2, 4). Elevated level of H3K27me3 and H3K4me2 by 

inhibition of H3K27 and H3K4me2 demethylases caused the defect in neuronal 

differentiation in developing pallium. (A) Experimental paradigms in which WT embryos 

were treated with H3K27 demethylase inhibitor GSK-J4 and H3K4 demethylase inhibitor 

2-PCPA. (B–G) IF (B, E) and quantitative (C, D, F, G) analyses are to compare cortical 

phenotype of Veh-treated WT, Veh-dcKO and WT which is treated with GSK-J4 (a-d) or with 

2-PCPA (e-g). (C, D) Statistical comparisons indicate that the increased level of H3K27me3 in 

cortices of dcKO embryos or GSK-J4 treated embryos decreased the number of late-born 

Satb2+ (C) and Cux1+ neurons (D) compared to Veh-treated WT. Likewise, the increased level 

of H3K4me2 in cortices of dcKO embryos or 2-PCPA treated embryos increased the number 

of Sox2+ (F) and Pax6+ NSCs (G) compared to Veh-treated WT. Values are expressed as 

means ± SEMs (*P < 0.05; **P < 0.01; ***P < 0.005). Abbreviations: MP, medial pallium; 

DP, dorsal pallium; LP, lateral pallium. Scale bars = 100 m (10x, B) and 50 m (40x, B).  
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Figure S3.5 (related to figures 4, 5). Loss of BAF155 and BAF170 in dcKO mutants has 

a profound effect on the pool of NSCs, expression of adherens junction molecules. 

(A) Representative images of triple IF analysis of Pax6 to visualize hippocampal VZ, Ztbt20 to 

mark hippocampal plate (HP) and pHH3 to label mitotic M-phase cells in our 3D reconstruction 

analysis. Total hippocampal volume was surrounded by white line. (B) Quantitative analyses 

of the volume of the hippocampal VZ (Pax6+/Ztbt20-) in the dcKO_hGFAP-Cre mutant and 

control at E15.5 (see also Movie S1 for 3D reconstruction analysis). (C–G) IF (D) and 

quantitative (C, E, F and G) analyses of the mitotic marker Ki67 (C), RG markers Pax6 and 

Sox2 (D, E and F), and IP marker Tbr2 in the MP and D/LP of dcKO_hGFAP-Cre mutants and 

control (G). Generally, the loss of BAF155 and BAF170 in dcKO_hGFAP-Cre mutants had 

a more profound effect on the pool of NSCs in the MP (see also Fig. 4E–L) than in the D/LP. 

It should be noted that the loss of BAF155 and BAF170 in the E15.5–E16.5 D/LP did not affect 

the pool of Pax6+/Sox2+ RGs; however, the number of Ki67+ active mitotic progenitors was 

already increased. Counting was done in selected frames, denoted by white boxes. 

(H-L) IF (H-J) and quantitative (K, L) analyses revealed that in constract to later stages 

(E15.5, E16.5), there is no obvious difference in expression level of GLAST, BLBP, ZO1, 

α-Catenin and Occludin between the control and dcKO_hGFAP-Cre pallium at E13.5 and 

E14.5. (M–O) Immunostaining of coronal sections from the control and dcKO_Emx1-Cre 

pallium at E13.5 for GLAST (M) and occludin (N) revealed an altered cell identity from 

GLASThigh+/Occludin- RGs in controls to GLASTlow+/occludinhigh+ NEs in the dcKO_Emx1-Cre 

mutant. (O) Quantitative analyses of panels M–N are shown. Values are expressed as means 

± SEMs (*P < 0.05; **P < 0.01; ***P < 0.005). Abbreviations: MP, medial pallium; 

DP, dorsal pallium; LP, lateral pallium; HP, hippocampal plate; VZ, ventricular zone; 

CH, cortical hem; Th, thalamus. Scale bar = 100 m. 
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Figure S3.6 (related to figures 2-5). The spindle orientation, selective apoptosis of RGs 

in dcKO_hGFAP-Cre mutants and phenotypes of cortical neuron-specific 

dcKO_Nex-Cre mutants. 

(A, B) IF analyses in control and dcKO mutants using antibodies against pHH3 and pVIM 

to visualize the orientation of spindles (vertical, oblique, horizontal) (A), and quantitative 

analyses (B) indicate that loss of BAF155 and BAF170 induces proliferative, symmetric 

division. (C) Experimental paradigm for determining cell-cycle parameters and color scheme 

for immunolabeling of micrographs (in D). (D) Images show triple-label IHC of cortical sections 

with antibodies for CidU (48-h labeling), IdU (24-h labeling) to mark both exited and cycling 

progenitors, Ki67 to label proliferating progenitors at E16.5. (E) Statistical comparisons 

indicated a decreased number of cells, which exit from 1st and 2nd cell cycles and an increased 

number of progenitors, which enter the 3rd cycle in the medial pallium of dcKO embryos 

compared with control. (F-K) Triple IF for Pax6/Tbr2/Casp3 and HuCD/TUBB3/Casp3 (F–I) 

and quantitative analyses (J, K) show that the developing hippocampus of 

the dcKO-hGFAP-Cre embryo has a high number of Casp3+ apoptotic cells at E14.5–E18.5 

(F–J). Notably, most Casp3+ cells are immunoreactive for Pax6 (white filled arrows) or exhibit 

punctate forms (late phase of apoptosis, empty arrows), whereas less extended cells are 

Tbr2+ IPs and HuCD+/TUBB3+ neurons (F, H, K; arrowhead). Lower panels are 

higher-magnification images from the fields indicated by white rectangles. (L–N) Phenotype 

analysis of the pallium from neuron-specific dcKO_Nex-Cre mutants. Immunostaining of 

coronal sections of E18.5 brains with antibodies specific for RGs (Pax6; L), layer 5 neurons 

(Ctip2; L) and hippocampal neurons (Ztbt20; M), and quantification of results in (L) showed no 

evident differences in the number of immunopositive cells between the dcKO_Nex-Cre and 

control pallium. Values are presented as means ± SEMs (*P < 0.05, ***P < 0.01, ***P < 0.005). 

Scale bars = 100 m (10x; F, H, L, M), 50 m (40x; F, G, H and I), 100 m (L) and 50 m (D). 
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Figure S3.7 (related to figures 6, 7). Suppression of Wnt signaling in the developing 

pallium by BAF complexes in the developing forebrain.  

(A) Expression of upregulated Wnt genes identified by RNA-Seq analysis (see Fig. 6A, B) was 

further verified by qRT-PCR. (B–E) IF (B–D) and quantitative (E) analyses of 

dcKO_hGFAP-Cre mutants at E15.5 showing the effects of treatment with the Wnt inhibitor 

ICG-001 on expression of the RG markers GLAST (B) and BLBP (C), and the NE marker 

occludin (D). IF (F-G) and quantitative (H) analyses of dcKO_hGFAP-Cre mutants at E17.5, 

showing the effects of treatment with WNTi on pools of Satb2+ (F), Cux1+ (G) cortical 

neurons in L/DP. Quantitative analyses indicated that inhibition of Wnt signaling largely 

rescues defects in L/DP in dcKO_hGFAP-Cre mutants (H). (I – O) Rescued cortical defects 

in dcKO_hGFAP-Cre mutant by Wnt inhibitor XAV-939. (I) Experimental paradigm in which 

WT (control), dcKO embryos were treated with Wnt inhibitor XAV-939 or Vehicle (Veh). 

(J-O) IF (J, L, N) and quantitative (K, M, O) analyses are to compare population of cortical 

neuron: Ztbt20+ hippocampal neurons (J, K), Satb2+ late-born neurons (L, M), Ctip2+ early-born 

neurons (N, O) in Veh-treated WT, Veh-treated dcKO and WNTi-treated WT. 

Quantitative analyses indicated that inhibition of Wnt signaling by XAV-939 largely rescues 

the neurogenesis defects in dcKO_hGFAP-Cre mutants. Values are expressed as 

means ± SEMs (*P < 0.05; **P < 0.01; ***P < 0.005; n = 4). Abbreviations: MP, medial pallium; 

DP, dorsal pallium; LP, lateral pallium. Scale bars = 100 m (10x; B, F), 50m (40x; G), 100 m 

(10x; J), and 50 m (40x; N). 
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Chapter 4: General discussion 

Previous studies have reported the requirement of the BAF complex in neural 

development and maintenance of normal nervous system function. The BAF complex 

was identified in such studies to play critical roles in altering chromatin conformation to 

regulate gene expression programs that underline neurodevelopmental processes, 

including specification of brain structures, and neurogenesis (Ho et al., 2011; 

Narayanan et al., 2015a; Bachmann et al., 2016b; Nguyen et al., 2016; 

Kadoch et al., 2017; Nguyen et al., 2018). 

The findings presented in this thesis show that the chromatin remodeler BAF 

regulate embryonic and forebrain development. The BAF complex controls 

proliferation and differentiation of neural stem/progenitor cells during early and late 

embryonic development through modulation of discrete epigenetic mechanisms. 

We previously showed that during corticogenesis, BAF complex modulates activity of 

H3K27 demethylases to influence global distribution of the heterochromatin marks 

H3K27me2/3 (Narayanan et al., 2015a).  

In the current study, increased levels of H3K27me2/3 repressive marks due to 

loss of BAF complex were observed in the entire mouse embryo or specifically in 

the early and late developing forebrain (Tran et al., 2013; Bachmann et al., 2016b; 

Nguyen et al., 2016; Tran 2017; Nguyen et al., 2018). Normally, the BAF complex is 

known to antagonize the polycomb repressor complex known to deposit H3K27me2/3 

repressive marks on target histones leading to chromatin condensation and 

inactivation (Ho et al., 2011; Kadoch et al., 2017). Indeed, in the absence of the 

H3K27 methyltransferase EZH2, H3K27me3 repressive marks are diminished, causing 

cortical neural progenitors in the developing forebrain to adopt neurogenic 

differentiative division mode (Pereira et al., 2010). By inhibiting histone tagging by 
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H3K27me2/3, the chromatin remodeling BAF complex is able to cause cell cycle exit 

of progenitor cells and their further differentiation during early cortical development. 

The phenotype of the malformed dcKO_Foxg1-Cre forebrain and dcKO_CAG-Cre 

embryo is thus reflective of perturbation of the epigenetic balance in the installation 

and removal of the heterochromatin marks H3K27me2/3 that is necessary for proper 

embryonic development, including early cortical development. 

By probing the mechanistic details of how BAF complex regulates late cortical 

development, we were able to determine in the second study that BAF complex targets 

neural proliferation and differentiation genes and remodels their epigenetic 

environment to drive proper corticogenesis. The dcKO_hGFAP-Cre model used in 

the study (Nguyen et al., 2016) allowed investigation of late cortical developmental 

events to complement the findings obtained in the early developing dcKO_Foxg1-Cre 

forebrain (Nguyen et al., 2016). Apart from regulating dynamics of the repressive mark 

H3K27me2/3, it was determined that the BAF complex concurrently dictates 

establishment of the transcription activation mark H3K4me2 to influence 

the progression of late cortical development. Of note, inactivation of BAF complex due 

to genetic ablation of its scaffolding subunit BAF155 and BAF170 caused 

H3K27me3-mediated silencing of genes involved in neuronal differentiation and 

concurrently promoted unrestricted proliferation of neural stem cells via enhancement 

of H3K4me2 mark at related gene loci. In the entire process of neural (brain) 

development, relevant genes are enriched with H3K4me2 at the expense of 

H3K27me2/3 to favor transcriptional activity and instruct various neural cell 

developmental processes. As an indication of it importance, H3K4me2 appear early in 

neural stem cells and progressively gains prominence in the course brain development 

(Zhang et al., 2012). However, Hahn and colleagues found that the H3K27me3 marks 

at intergenic regions decrease during differentiation of neural progenitors 
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(Hahn et al., 2013). In part, this explains why the increase in H3K27me3 following loss 

of BAF complex negatively impacted neural cell cycle kinetics leading to disturbance 

of cortical development.  

The upregulated Wnt signaling in the dcKO_hGFAP-Cre cortex and subsequent 

restoration of normal cortical and hippocampal phenotypes through Wnt inhibition 

indicate that the BAF complex is a potential suppressor of the Wnt signaling pathway 

during development of the cerebral cortex. This finding is partly in agreement with 

previous studies that found that the BAF complex can either activate or repress 

Wnt signaling activity (Barker et al., 2001a; Ronan et al., 2013; Vasileiou et al., 2015). 

Put together, BAF155 and BAF170 are essential in maintaining the stability and 

function of the BAF complex during organogenesis. In the event of the ablation of 

BAF155 and BAF170, there is loss of function of the BAF complex which leads to 

impairment of brain development via abnormal transcriptional and epigenetic 

modalities, including H3K27me3 and H3K4me2 imbalance and Wnt signaling 

dysregulation. 
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Summary 

The multi-subunit BAF (SWI/SNF) complex is capable of using energy generated 

from ATP hydrolysis to reorder chromatin structure. Such chromatin changes are 

known to affect cell biological processes through gene expression regulation. 

Thus, BAF complex plays pivotal roles in many developmental events. As a focus of 

the studies present, we identified the BAF complex as a powerful regulator of 

coticogenesis and embryogenesis. In this study, we employed a novel mouse model 

system in which deletion of the BAF complex subunits BAF155 and BAF170 results in 

proteomic degradations of the entire BAF complex and resultant loss of its epigenetic 

function. The first part of the thesis, highlights how the BAF complex stability is 

dependent on the dual presence of the scaffolding subunits BAF155 and BAF170, and 

the disturbance in the H3K27me2/3 epigenetic landscape when they are ablated 

specifically in the forebrain under the control Foxg1-Cre activity or in the entire embryo 

using the ubiquitous-inducible CAG-Cre. Preliminary evidence of the involvement of 

BAF complex in cortical development was thus obtained in the first part of the studies. 

In the second part, we gathered conclusive evidence on how the BAF complex 

regulates cortical and hippocampal development. Our investigation in 

the dcKO_hGFAP_Cre developing cortex revealed the BAF complexes induces 

heterochromatin state at gene loci involved in neural progenitor proliferation and 

Wnt-signaling; leading to their suppression. On the other hand, the BAF complex 

enhances the transcription of neuronal differentiation-related genes by promoting 

euchromatin formation at associated genomic regions. Together, we reported that 

the activity of the BAF complex ensures the appropriate proliferative capacity of neural 

progenitors and their neuronal output in late cortical development. 
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