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ABSTRACT 

The prevalence of Candida species has increased in the last two decades, becoming the 

third to fourth most common cause of infections in hospitals. In general, Candida spp. are 

opportunistic pathogens found as commensals in the Gastrointestinal Tract (GI), the oral 

cavity, oral mucosa, vagina, or skin, without causing any symptoms or pathology. When the 

immune system is altered (e.g. T-cell deficiencies in immunocompromised patients), a 

preliminary colonization process of the skin or mucosa (superficial candidiasis) may 

progress to life-threatening invasive candidiasis, sepsis, and eventually to death. Invasive 

Candidiasis (IC) has become a serious problem in the last years, affecting young and elderly 

population. Candida albicans is the most frequent cause of invasive candidiasis globally, 

but over the last decades non-Candida albicans Candida (NCAC) species have become more 

medically relevant. Candida spp. are able to exist inside the human host displaying 

different pathogenicity and antifungal drug resistance strategies. Most microbes, including 

NCAC species, usually constitute microbial communities encased in an extracellular 

polymeric substance forming biofilms on abiotic and biotic surfaces. Candida glabrata and 

Candida parapsilosis are the two most common causes of NCAC infections. Their relevance 

have been attributed to the ability to form biofilms on abiotic surfaces and the increased 

multidrug resistance capacity, together leading to different levels of pathogenicity. Both 

species display superficial, mucosal and systemic infections associated with abiotic devices, 

presenting clear morphologic and phenotypic differences between them. C. glabrata and 

C. parapsilosis belong to two different Candida clades, presenting differences at genomic 

and pathogenic level. The fungal cell wall is the outermost layer involved in host-pathogen 

recognition, cell structure, permeability, protection and virulence and the phylogenetic 

distance between both species is reflected by variations in cell wall composition including 

its proteome. 

In this study, we performed phenotypic and morphological analyses of two C. glabrata and 

C. parapsilosis clinical strain collections, to decipher how phenotypic and morphological 

differences will predetermine genome and cell wall proteome as a pathogenic strategy 

during host infection. Based on previous studies (de Groot et al., 2008 and Gabaldón et al. 

2016), MS/MS analyses and Illumina genome sequence analyses of selected C. glabrata and 
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C. parapsilosis clinical isolates will provide more information regarding cell wall 

constituents and genomic differences within NCAC clinical isolates. 

A high variability in phenotypic properties between isolates were found. In this study, we 

observed that C. glabrata showed a positive correlation between biofilm formation 

capacity, cell aggregation and cell sedimentation. In case of C. parapsilosis, biofilm 

formation capacity on abiotic surfaces was influenced by the colony morphotype. 

C. glabrata and C. parapsilosis proteome is highly variable and it has been divided in a core 

proteome and a unique variable proteome. Differences in the number of adhesins 

identified in the cell wall positively correlate with adhesion. Here, we observed that 

C. glabrata cell wall adhesins enable the co-interaction with C. albicans hyphae facilitating 

epithelia invasion. Differences in the variable proteome may also elucidate a high 

immunogenic heterogeneity as a possible host-defense mechanism. In C. parapsilosis, an 

increased number of adhesins identified in the cell wall correlates with “rough” and high 

biofilm-forming morphotypes. C. parapsilosis rough morphotypes presented azoles’ and 

caspofungin reduced-susceptibility, nevertheless, EUCAST-based antifungal susceptibility 

testing in the collection was not able to predict these variations. Rough morphologies in 

patient´s culture would be an indicator of biofilm´s presence to start echinocandins 

therapeutic treatment. 

Our studies proposed that phenotypic variations in C. glabrata and C. parapsilosis clinical 

isolates will predetermine differences at genomic and proteomic level. A reduced number 

of adhesins in the wall correlates with low biofilm-forming (LBF) isolates and high virulence 

capacity indicating that these morphologies will easily disseminate trough the bloodstream. 

Genome sequence analyses of selected C. glabrata isolates confirm the presence of 

deletions and duplications of cell wall adhesin-encoding genes as an important adaptive 

mechanism moving on from colonization to infection and dissemination. 

 



INTRODUCTION 

1 

1. INTRODUCTION 

1.1 Epidemiology of Candida spp. 
 

The prevalence of Candida species has increased in the last two decades becoming the 

third to fourth most common cause of infection in hospitals (reviewed by Pappas et al., 

2018). In general, Candida spp. are opportunistic pathogens found as commensals in the 

gastrointestinal tract (GI), the oral cavity, oral mucosa, vagina, or skin, without causing any 

symptoms or pathology. Several factors such as abdominal surgeries, malignant neoplasms, 

corticoid steroid use, and chemotherapeutic treatment can lead to higher risks of infection 

(Quindós, 2014). Patients with diabetes mellitus (Lamster et al., 2008), or the use of non-

sterile medical devices together with preceding bacterial infections, are potential 

candidates to suffer from Candida pathologies (Percival et al., 2014). When the immune 

system is altered (e.g. T-cell deficiencies in immunocompromised patients), a preliminary 

colonization process of the skin or mucosa (superficial candidiasis) may progress to life-

threatening invasive candidiasis, sepsis, and eventually to death (reviewed by Nobile and 

Johnson, 2015). Invasive candidiasis (IC) has become a serious problem in the last years 

affecting young population and adults. As an example, Candida albicans is the main species 

involved in Vulvovaginitis Candidiasis (VVC) or Oral-Pharangeal Candidiasis (OPC), affecting 

a high percentage of healthy women (~ 80%) and immunosuppressed or terminally ill 

patients, respectively (reviewed by Kim and Sudbery, 2011). 

Recent epidemiological studies have confirmed a high percentage (~ 50%) of a thirty-day 

mortality (~8-30 days) remarking the importance of the host´s health conditions. 

Nevertheless, fast diagnosis has been crucial to reduce early-phase mortality (0-7 days) in 

IC (Puig-Asensio et al., 2014). Since the last decade, there are several studies on Candida 

infections in hospitals and Intensive Care Units (ICU) that analyse the frequency of patients 

with candidemia and the use of antifungals therapies. Studies conducted in the United 

States on candidemia episodes between 1992 and 2011 have indicated that it is still 

associated with high mortality rates especially in elderly population ≥ 65 years old 

(Cleveland et al., 2012). A complementary study in the U.S has reported an increase of 

~6.000 patients diagnosed with Candida infections between 2000 and 2005. Also the 
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incidence of hospitalization was higher in adults (45-85 years old) than in young patients 

(18-44 years old) in the year 2000 (Zilberberg et al., 2008). 

Other studies have outlined C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and 

C. krusei as the most frequent causes of candidemia in the United States: epidemiological 

data from the 1980s marked a high frequency of IC due to C. albicans. According to several 

antifungal surveillance studies (e.g. the ARTEMIS study) performed between 1997 and 

2007, C. albicans was still the most frequent cause of fungemia (62%) all over the world 

(reviewed by (Pfaller and Diekema, 2007; Pfaller et al., 2006) this proportion has fluctuated 

over time, decreasing in the last decade in favour of non-Candida albicans Candida species 

(NCAC). The percentage of patients infected by C. albicans was clearly reduced in 2011 

(11% reduction) and has been surpassed by C. glabrata (~15% increase in 2011) and 

C. parapsilosis (~5 % increase in 2010) (Lockhart et al., 2012; Lyon et al., 2010; Pfaller et al., 

2010). 

In Europe, the distribution has supported that C. albicans (56%) is the most prevalent cause 

of candidemia followed by C. glabrata, C. parapsilosis, and C. tropicalis. In agreement with 

this, the most prevalent single Candida spp. reported overall was also C. albicans, albeit the 

distribution of NCAC species varies between countries (Tortorano et al., 2004). For 

instance, C. glabrata infections are more frequent in Northern Europe and the U.S. (13.2% 

and 29% respectively), while C. parapsilosis is more prevalent in South America or Spain. 

There are several hypotheses regarding these divergences such as climate differences, 

hospital hygiene, and improper use of antimycotic treatments (reviewed by Guinea, 2014).  

A review by (Ruhnke, 2014) has indicated that approximately around 4 thousand cases of 

Candidemia in Intensive Care Units of German hospitals (ICU) were described in 2008. The 

prevalence was ~ 5 patients per 100 000 inhabitants, this frequency was quite similar to 

the values for invasive candidiasis (IC). Several studies performed along the country in ICU´s 

corroborated that the percentage of C. albicans compared with non-Candida albicans 

Candida species was approximately 30 % higher (Meyer et al., 2013; Tragiannidis et al., 

2012). 

Divergences in Candida spp. patient´s distribution have been remarked; while 

Candida tropicalis, Candida krusei and C. glabrata frequently colonized and infect elderly 

patients, C. parapsilosis is frequently found in children (reviewed by Quindós, 2014; Trofa 

et al., 2008). In C. parapsilosis, the presence of candidemia in infants is approximately 15 % 
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more frequent than in adults (reviewed by Yapar, 2014). C. parapsilosis is considered an 

extended moderately non-pathogenic fungus frequently find as associated nosocomial 

infection due to the use of medical devices (reviewed by Jahagirdar et al., 2018). In 2004, 

Pfaller and Diekema published an epidemiological study along ten years focused on the 

prevalence of Bloodstream Infections (BSI) ranking C. parapsilosis as the third most 

common cause of septicemia appearing, in some situations, as a secondary infection (Patel 

et al., 2000). 

Conversely, C. glabrata is known to be commonly present in elderly and neutropenic 

patients (Bodey et al., 2002; Malani et al., 2011). The incidence of C. glabrata has been 

increased in the last years, becoming the second most prevalent Candida pathogen in 

nosocomial infections affected by the dose of antibiotic administered, the immune system 

of the patient, as well as the period of hospitalization (reviewed by Rodrigues et al., 2014). 

C. glabrata infections frequently increment with the age of the patient (Krcmery and 

Barnes, 2002), and has raised the frequency in the oral cavity due to a remarkable ability to 

adhere to denture-surfaces (Li et al., 2007; Rodrigues et al., 2017). Compared with another 

NCAC species is quite usual to find it coupled with C. albicans in oral candidiasis (reviewed 

by Rodrigues et al., 2017). 

Studies performed by Pappas and McCarty have shown that the antifungals 

administered, the age of the patient and the ability to recover from bloodstream infections 

varies between adults and young population in the different Candida spp. (McCarty and 

Pappas, 2016; Pappas et al., 2003). The uncontrolled administration of antibacterials 

decreases bacterial communities and promoting fungal pathologies. Broad spectrum 

antibiotics have usually altered the gut microbiota disrupting the colonization resistance 

facilitating Candida spp. be part in a long term colonization process (Erb Downward et al., 

2013; Hill et al., 2015). Although resistance to more than one antifungal drug of different 

substance classes is still infrequent, multidrug resistance have increased in the last years 

including some novel species such as Candida auris (Arendrup and Patterson, 2017). The 

lacking development of new antifungal agents in the last decades, the extensive use of 

antibiotics, and increasing long-term hospitalization have constrained the use of antifungal 

drugs, as well as lead to an alteration in the susceptibility rates. Knowing the limitation of 

antifungals therapies, azoles are still the most frequent antimycotic drugs used. The high 

availability, the oral administration and a broad knowledge of the therapy effect on 
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patients makes FLU the most administered antifungal currently. FLU inhibits lanosterol 14-

α-demethylase (ERG11) essential for the Candida membrane biosynthesis (Pfaller et al., 

2010). The level of azole resistance in Candida species have varied depending on the type 

of infection and the species of study (reviewed by Whaley et al., 2016). The clinical 

resilience against FLU has also increased through the appearance of other Candida spp. 

Principally, Candida isolates are still susceptible to liposomal amphotericin B (AMB) and 

mostly to echinocandins (CAS and MICA), although recent data suggest that therapies 

against C. glabrata and C. krusei may require high doses of echinocandins (Kuhn et al., 

2002). In particular, C. glabrata is quite special showing a Minimal Inhibitory Concentration 

(MIC) of 64 µg/ml towards FLU. The decreased susceptibility of C. glabrata to antifungal 

drugs seems to be attributable to the long-period treatments and some specific properties 

as haploidy. The absence of reaction against azoles has promoted the use of novel 

antifungal agents as echinocandins inhibiting the synthesis of β-1, 3-glucan (Cleveland et 

al., 2012; Lockhart et al., 2011; Pfaller et al., 2012). In the last fifteen years has been 

reported C. glabrata susceptibility against the semisynthetic echinocandin ANI (Pfaller et 

al., 2005), as well as, C. glabrata susceptibility against VOR which has risen in certain 

European and Latin American countries (Pfaller et al., 2004).  

In contrast, susceptibility against echinocandins (ANI, MICA and CAS) and azoles (especially 

FLU) has decreased in the last decade in the C. parapsilosis complex, although it is clearly 

strain dependent (reviewed by Neji et al., 2017; Pfaller et al., 2004). This is in particular the 

case for CAS and ANI in C. parapsilosis sensu stricto (van Asbeck et al., 2008). The depletion 

of FLU susceptibility in C. parapsilosis clinical isolates has been related with a point 

mutation in the ERG11 and an upregulation of the MRR1 transcription factor. The 

procedure of reduced azole´s susceptibility in C. parapsilosis is similar to the one described 

for C. albicans (Silva et al., 2011). 

A shift in Candida spp. frequency is also evident, and invasive candidiasis due to C. albicans 

has been surpassed by C. glabrata, C. parapsilosis including the emergence of the recent 

multidrug-resistant C. auris (Lamoth et al., 2018). Therefore, a reliable characterization 

using novel techniques as PCR-RFLP, Sanger-sequencing (Cornet et al., 2011), T2 magnetic 

resonance (Zervou et al., 2017) and MALDI-TOF MS systems for species-determination 

(Bader et al., 2011) are crucial prerequisites for an early and adequate Candida-infection 

treatment. Additionally, the identification of yeast-specific virulence factors as adherence 
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capacity, biofilm formation and production of hydrolytic enzymes will facilitate the 

development of antifungal therapies against particular Candida spp. (Schaller et al., 2005). 

 

1.2 Features and phylogeny of the genus Candida 
 

Yeasts of the Candida genus were first described as Oidium albicans by Robin in 1853. 

Originally, they were included in a different group encompassing most Ascomycetes in the 

imperfect stage causing fruit infections (“powdery mold”) far related to the “thrush” or 

pathogenic fungi (Ainsworth and Austwick, 1955). In 1923, they were grouped into the 

genus Candida (Berkhout, 1923) still used today. Former reviews from the end of the 19th 

to the beginning of the 20th century have included the first studies regarding Candida in-

situ isolated from patients (Martin and Jones, 1940). In 1954, Candida spp. were admitted 

as generic name in the classification system (Roger et al., 1953) and incorporated into the 

kingdom Fungi, division Ascomycota, order Saccharomycetales, and family 

Saccharomycetaceae (reviewed by Barnett, 2004). 

Today, the name Candida is known to be quite broad and heterogeneous, comprising more 

than 150 species of which only around 12% have clinical relevance (Odds, 1988; Schauer 

and Hanschke, 1999). The most representative one is C. albicans (Robin (Berkhout), 1923) 

described as the primary opportunistic fungal pathogen causing bloodstream infections in 

population with a permanently weakened immune system. The Candida clade has been 

described as extremely diverse including several species close to the basidiomycetes as 

well as imperfect yeasts able to develop pseudohyphae or only yeast morphologies. They 

are characterized attending to their capability to use carbon sources, the ability to ferment 

(Shepherd et al., 1985), their clinical relevance, reproduction, colony-morphology shape, 

and level of pathogenicity (reviewed by Fitzpatrick et al., 2010; Hull et al., 2000; 

McCullough et al., 1996). 

Fitzpatrick et al. (2006) performed a fungal phylogenetic analysis based on genome 

sequences reorganizing the Saccharomycotina subdivision. In 2012, Kurtzman and 

collaborators studied the characterization of Candida in the subphylum Saccharomycotina 

including Saccharomyces and Arxula. This subphylum was then classified as monophyletic, 

which was confirmed based on differences in ribosomal DNA (rDNA) (Kurtzman and 

Robnett, 2013). 



INTRODUCTION 
 

6 
 

This subphylum is divided into the monophyletic CTG clade and the whole genome 

duplication (WDG) subclade (Figure 1A). The majority of pathogenic Candida species were 

classified in the CTG clade underlying as main characteristic the translation of the CUG 

codon into serine rather than leucine in the standard genetic code. C. parapsilosis is 

phylogenetically more closely related to C. albicans, C. tropicalis, and C. dubliniensis coming 

from the same branch of the CTG clade with no apparent sexual cycle and differing from 

C. guilliermondii, (sexual cycle described), Candida lusitaniae and Debaryomyces hansenii 

on the number of alleles per chromosome (reviewed by Santos et al., 2011). 

Contrary, a unique WGD subclade is constituted by the Nakaseomyces genus (Kurtzman 

and Robnett, 2003) including the glabrata group. Inside the group, it has been 

distinguished the pathogenic C. glabrata as a close relative of Baker´s yeast together with 

Candida bracarensis (Correia et al., 2006), Candida nivariensis (Alcoba-Flórez et al., 2005) 

and Nakaseomyces (Kluyveromyces) delphensis (Dujon et al., 2004; Gabaldón et al., 2013a), 

(Figure 1B). 

 

 
Figure 1. Candida spp. phylogenetic tree (modified from Butler et al., 2009; Gabaldón and Carreté, 2016). (A) 
Phylogenetic representation of the Candida and Saccharomyces clades into the Saccharomycotina 
subdivision. Red boldfaced squares represent the location and phylogenetic distance of the three species of 
interest in our study (C. albicans, C. glabrata and C. parapsilosis). (B) Diagram of the Saccharomyces clade 
including the WGD subclade that contains the glabrata group. In red are indicated the three Candida species 
with identified Epithelia Adhesin Proteins (EPA). 
 
In this study, we refer to C. glabrata and C. parapsilosis as the main NCAC species of 

interest. Initially, C. glabrata was described as Torulopsis glabrata (Anderson) by Lodder 

and de Vries in 1938 and lately, in the 1980s, was classified in the genus Candida as 

A B
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C. glabrata (Yarrow and Meyer, 1978). This change in the phylogenetic classification 

pointed at the pathogenicity of C. glabrata rather than the absence of pseudohyphae and 

hyphae formation (reviewed by Rodrigues et al., 2017). The above mentioned WGD clade 

encompassed species with duplication in the genome, placing C. glabrata close to 

Saccharomyces castellii in the basal part of the tree (Fitzpatrick et al., 2006; Butler et al., 

2009). 

Similarly, C. parapsilosis was originally described by Ashford in 1928 as Monilia parapsilosis 

and the type strain (ATCC 22019) was reassigned four years later as C. parapsilosis by 

Langeron and Talice, 1932. In the first descriptions, C. parapsilosis was considered as a 

minor pathogen with no remarkable clinical pathogenicity (reviewed by van Asbeck et al., 

2009). 

Butler et al. (2009) has remarked a high diversity in genome size, GC content 

and levels of ploidy between Candida-clade species. Species from the same subclade have 

no clear variation in the number of protein-encoding genes; and pathogenicity correlates 

with specie-modifications of certain cell-wall protein families and enrichment of virulence-

 encoding genes. 

In contrast, the Saccharomyces clade does not present and elevated number of virulence-

factors, highlighting some specific glycophosphatidiylinositol-linked aspartyl proteases or 

phospholipases implied in C. glabrata pathogenicity (Kaur et al., 2007). 

Nevertheless, Gabaldón and colleagues have reported that C. nivariensis, C. bracarensis 

and C. glabrata are considered pathogenic species which present between 9 to 18 EPA-

encoding genes respectively (reviewed by Gabaldón and Carreté, 2016) and only one EPA 

gene was shown up in the non-pathogenic N. delphensis.  

Therefore, phylogenetic analyses comparing C. albicans, C. glabrata and C. parapsilosis 

have shown diversity between them, pointing that new virulence factors have emerged 

along the evolution process (reviewed by Gabaldón et al., 2016). 

 

1.3 C. albicans infections and host-pathogen interactions 
 

Together with Saccharomyces cerevisiae, C. albicans is the best investigated yeast that has 

been used as a classic study model for pathogenicity over the last decades. It is considered 

as diploid, imperfect, unicellular fungus able to form germ tubes and true hyphae when 
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cells are incubated at 37 °C. It is commensal yeast without symptomatology becoming 

harmless when the yeast-host balance is affected by different situations triggering a broad 

spectrum of human diseases (Figure 2). 

 
 

Figure 2. Schematic overview of C. albicans tissue invasion. (A) Commensalism and alteration of the host 
immune system. (B, left) Candida colonization and dissemination in the gastrointestinal tract. (B, middle) 
Biofilm formation on epithelia surfaces and indwelling devices with the extracellular polymeric matrix (ECM). 
(B, right) yeast and hyphae penetration through the epithelia leading to bloodstream infections, Invasive 
Candidiasis (IC). (C) Frequent host-sources affected by Candida spp. and their respective diseases (adapted 
from (Pappas et al., 2018).  

A

B

gastrointestinal 
tract bones brain eyes

heart kidney liver and spleen

abscess
pancreatitis
peritonitis

osteomyelitis
spondylodiscitis

abscess
meningoencephalitis

choroiditis
retinitis

endophtalmitis

endocarditis
candiduria

pyelonephritis
renal abscess

chronic fungemia
focal abscess

invasive candidiasis

ECM

commensalism in host mucosa

commensalism

infection

lung

focal abscess

alteration of host immune system 

skin, superficial mucosa, gut, 
oral cavity

intestine colonization and 
disemination

single and mixed biofilms in  gut 
mucosa

epithelia penetration and 
bloodstream infection

C

host status



INTRODUCTION 
 

9 
 

Cell morphogenesis has been described as a crucial step during the colonization and 

invasion process (Whiteway and Bachewich, 2007). As a polymorphic fungus, C. albicans 

can be present as round yeast cells, pseudohyphae form linked to the mother cell, true 

hyphae with real septum and chlamydospores (reviewed by Sudbery et al., 2004; Kim and 

Sudbery, 2011). Originally, C. albicans yeast cells were considered to constitute a non-

invasive stage only involved in commensalism, whereas true hyphae were known as key 

structures during epithelia penetration (invasion). Recently, functional plasticity in 

C. albicans has increased its relevance, attending to a variety of new cell types that reports 

different in vitro and in vivo properties The “white-opaque” switch (Slutsky et al., 1985; 

Slutsky et al., 1987) is triggered by several factors that facilitate the transition between 

morphologies such as change in temperature (30°C to 37°C), pH (pH 4 to 7), or media. 

Other ellipsoid cell types (opaque, grey and GUT), in addition to the standard “white-yeast” 

form, show morphological differences as well as infective variability during yeast-host 

interaction (reviewed by Noble et al., 2017). 

An abundant number of cell wall proteins (Als1, Als3, Hwp1), transcription factors (Efg1), 

secreted enzymes (Sap family) and the only recently discovered cytolytic peptide toxin 

Candidalysin (Moyes et al., 2016) are crucial virulence attributes for C. albicans infection 

(reviewed by Jacobsen and Hube, 2017). Concisely, C. parapsilosis, extracellular lipases 

have been pointed as one of the most determinant factors in the host-infection process 

(reviewed by Toth et al., 2017). 

The expression of essential CWP encoding-genes in case of C. albicans (HWP1, HYR1, ALS3) 

are clearly up-regulated during yeast-hyphae switch. To corroborate the importance of 

morphogenesis in the infection process, mutants of hyphae-induced proteins have shown 

an alteration in hyphae formation which consequently affects the cell wall constituents and 

the pathogenicity (Lo et al., 1997; Zheng et al., 2007). Several genetic and environmental 

factors are involved in morphology-switching affecting hyphae development and in vivo 

biofilm formation (reviewed by Kim and Sudbery, 2011) Candida morphotype has also 

affected the host immune system recognition, for example, yeast cells and hyphae form, 

present different recognition receptors which (IL12 and IL4 respectively) will activate 

alternative inflammatory pathways during host response (reviewed by Gow et al., 2012). 
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1.4 Candida biofilms 
 

Biofilms are microbial communities encased in a matrix of extracellular polymeric 

substances distinguishing themselves from the free floating cells (reviewed by Costerton et 

al., 1999; Harriott and Noverr, 2011). Approximately, 80 % of the microorganisms live as 

biofilms, (reviewed by d’Enfert and Janbon, 2016) mostly in endothelial cells and mucosa 

(e.g. host tissues, tooth surfaces, respiratory tract, urinary tract and eyes) (reviewed by 

(Mukherjee et al., 2005). The ability of Candida cells to adhere to host surfaces (Figure 3A) 

and abiotic medical devices (such as indwelling catheters, pacemakers, dental prosthesis, 

contact lenses, or artificial joints) is defined, among others, by their cell wall composition 

(Hawser and Douglas, 1995; Hawser, 1996a; Hawser, 1996b; Baillie and Douglas, 1999). A 

combination of cell wall proteins and transcriptional factors regulate the attachment of 

Candida cells to different surfaces such as polymethylmethacrylate, elastomers, as well as 

host surfaces (Nobile et al., 2006; Chandra et al., 2008; Finkel et al., 2012). Candida biofilms 

are a combination of different cell stages or morphologies such as round blastospores, 

pseudohyphae, and hyphae depending on the number and species involved. As defined by 

(Baillie and Douglas, 1999; Nobile et al., 2009), biofilm formation on host tissues is 

generally divided into three main stages (Figure 3B), remarking the importance of the cell 

morphology and the composition of the matrix on the establishment of the biofilm. The 

initial phase (early) occurs during the first 11 hours, including the attachment and 

aggregation of spherical cells along the surface. Afterwards, the secondary stage 

(intermediate) during the following 12-30 hours, remark the primary development of the 

Extracellular Matrix (ECM/EPS) containing glycoproteins, carbohydrates, lipids and nucleic 

acids. The largest proportion of polysaccharides is mainly constituted by glucose and 

mannose, this polymeric substance is secreted by Candida and host cells previously 

incorporated into the microbial community. The ECM covers the whole surface of the 

biofilm as a superficial and complex layer embracing the total number of cells conferring a 

defence mechanism (Nett et al., 2015). The final phase (mature) comprises a 

heterogeneous and stratified distribution of microcolony aggregates embedded in the 

matrix where the hyphae of filamentous species create a stable architecture (Chandra et 

al., 2001; Zarnowski et al., 2014). The maturation stage can be extended for 38-72 h. After 
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this, the non-adherent daughter cells disperse and invade the tissues and bloodstream 

(reviewed by Cavalheiro and Teixeira, 2018). 

In fungal biofilms, usually C. albicans is present as one of the most frequent Candida 

species. Many clinical studies about interactions between C. albicans with other 

microorganisms have been reported in the last years. C. albicans could be easily found in 

dental prosthesis and oral mucosa in combination with different Streptococcus species 

(Nobbs et al., 2010). Moreover, it can be a dual colonizer of epidermis, skin injuries and 

medical devices together with Pseudomonas aeruginosa and Staphylococcus epidermidis 

(Jack et al., 2015; Lindsay et al., 2014). Dual biofilms generally increase (excluding 

Lactobacillus spp.) the capacity to adhere and colonize host surfaces just like the defence 

against antifungals drugs and host immune response (reviewed by Peleg et al., 2010). 

Remarkably, fungal biofilms offer less susceptibility against the four major antifungals 

currently used such as azoles, polyenes, echinocandins or/and nucleosides (Fox et al., 

2015). 

Ramage et al. (2002) reviewed that the consistency of the biofilm microbial community 

(mainly sessile cells) and the polymeric matrix are not the only factors involved in 

antifungal resistance. They underlined that, at least, two transmembrane efflux pumps 

(ABC and MSF transporters) located in the plasma membrane, seem to be involved in the 

process. 

A recent study from Uppuluri et al. (2018) in C. albicans has introduced a new concept 

based on biofilm propagation from independent “free-floating”” cells differing from 

planktonic in their composition and functionality . They are “dispersed” from the outer-

hyphal layer of the biofilms and constitute novel targets for the development of antifungal 

drugs. 
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Figure 3. Biofilm formation on biotic and abiotic surfaces in C. albicans (modified from Chandra et al., 
2008). (A) General schematic model of mixed biofilms in human surfaces. Yellow big spheres represented 
C. albicans yeast cells in early and intermediate stages, grey and orange big spheres represented other 
possible Candida spp. cells together with C. albicans. Small green, red and purple spheres indicated different 
bacteria species together with C. albicans (mixed biofilms) included in the EPS/ECM. * cytolytic Candidalysin 
(Moyes et al., 2016). (B) In vitro model of putative biofilm formation process on catheters and prosthesis. 
Biofilms are divided in three main stages: early (11h.) represented by yeast cells (yellow), intermediate (12-30 
h.) represented by yeast and incipient hyphae forms and mature phase (38-72 h.), yeast and developed 
hyphae (yellow) covered by the ECM. 
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1.5 The fungal cell wall 
 

The cell wall is the outermost part of Candida spp. that confers stability and rigidity as well 

as protection. It is defined as a fungal exoskeleton and a matrix in contact with host 

surfaces. The constituents of the cell wall are essential during the colonization process and 

invasion. The cell wall plays an important role in terms of pathogenicity and is a therefore 

also a target for the development of antifungals treatments (Klis et al., 2001). Both, the 

external cell surface structures and the components of the inner layers are part of the cell 

wall pathogen-associated molecular patterns (PAMPs) which are recognized by the host 

innate immune system (reviewed by Jouault et al., 2009). 

C. albicans cell wall has been studied for long time together with S. cerevisiae, differing on 

baker yeast´s cell wall in the amount of glucans (20 % higher in yeast form) and the 

reduction of mannoproteins content (10 % less than S. cerevisiae). Approximately, the 90 % 

of the total mass is made up of carbohydrates followed by proteins and lipids. It is generally 

divided in two fractions, the unified inner part in contact with the plasma membrane that 

especially contains chitin and glucans (50-60%), and a thicker heterogeneous layer with 

covalently bound mannoproteins (Figure 4) with direct contact to the host surface 

(reviewed by Klis et al., 2009). 

The internal cell wall layer presents mainly β-1, 3-glucans linked to β-1, 6 glucans and chitin 

(Klis et al., 2001). Approximately a 35-40 % of the total dry mass of yeast cell wall is 

comprised by cell wall proteins (CWPs) which are also classified into two different 

categories based on location and structure. It can be distinguished a first group of GPI-

CWPs connected to the network of polysaccharides in the inner cell wall and a second 

groups including unbound proteins (reviewed by Chaffin, 2008). 
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Figure 4. Schematic Candida spp. cell 
wall model. Top, outer part of the cell 
wall composed by chains of mannans 
linked to the proteins by an 
asparagine residue (Asn). Middle, cell 
wall proteins (GPI-CWP (adhesins), 
Ecm33 and Pir proteins) linked to β-1, 
3-glucans, β-1, 6 glucans and chitin 
(light grey). Bottom, plasma 
membrane  
 

 

1.6 Candida spp. cell wall proteins (CWP)  
 

In the last years the development of bioinformatics programs and the improvement of 

sequencing techniques has promoted that several laboratories design different strategies 

to calculate algorithms which analyse the whole Candida genome to find expected adhesin-

like encoding genes. These implements are essential to predict CWPs including GPI-

anchored CWPs (De Groot et al., 2003; Eisenhaber et al., 2004). As an example, the 

program FungalRV has been used to predict putative adhesins-encoding genes in 

C. albicans (Chaudhuri et al., 2011). 

The cell wall proteins are involved in protein-protein attachment, yeast-microbe linkage 

and host-pathogen interaction. As it has been mentioned before, the proteins are classified 

depending on their structure and location. Within the covalently CWP proteins, two 

different types have been characterized. The glycophosphatidylinositol (GPI)-anchored 

proteins are mainly located in the outer part of the cell wall (Verstrepen and Klis, 2006; 

(Hoyer et al., 2008; Zupancic et al., 2008) linked with the β-1, 3 glucans by β-1, 6 glucans 

(reviewed by Chaffin, 2008). In case of proteins with internal repeats (Pir proteins), it has 

been found covalently attached to the plasma membrane via alkali-sensitive connectors 

(reviewed by Ruiz‐Herrera et al., 2006). According to studies performed by de Groot and 



INTRODUCTION 
 

15 
 

colleagues, proteomic analyses of C. albicans cell wall have exhibited new surface proteins 

classified in four different groups including carbohydrate-active enzymes, adhesins, 

putative flocculins (Pga24p) and superoxide dismutases (de Groot et al., 2004). 

In contrast, the Candida cell surface presents several unbound proteins that can be found 

either in the cell wall or in the supernatant (Bgl2p) as well as secreted proteins like the 

Cht3p and Pra1p. Proteins like the Ecm33 and the aspartyl proteases Sap9 and Sap10 that 

has been found as a transit protein which can be present, at the same time, in the 

membrane and the cell wall (reviewed by Chaffin, 2008). 

 

1.7 GPI-anchored Cell Wall proteins (adhesins) 
 

As it has been mentioned before, the GPI-anchored CWP proteins are defined as adhesins 

which are mainly situated in the outer layer of the cell wall. These adhesins are secreted via 

Golgi apparatus and their elementary structure consists on a C-terminal part defined as a 

low complexity domain containing tandem repeat regions (TRRs) rich in serine and 

threonine (Ser/Thr) residues linked to the endoplasmic reticulum (ER) membrane by 

glycophosphatidylinositol linkage (GPI-anchor). The N-terminus part or high complexity 

domain presents a signal peptide involved in the secretion process and confers the 

adhesion-binding specificity to different host surfaces (Figure 5). The glycosylation of the 

proteins increase the molecular mass of them which contains a signal peptide that is going 

to be removed in the mature structure (Nather and Munro, 2008; de Groot et al., 2013). 

 

 
Figure 5. Cell wall GPI-anchored proteins (adhesins) general structure, adapted from ten Cate et al., 2009; 
de Groot et al., 2013. Mature adhesins are divided in two main parts, N-terminal domain (green) and C-
terminal domain (yellow) linked to the cell-wall Candida glucans by a GPI-anchor site containing a large 
number or TRRs. 
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The mature structure of the adhesins is characterized by the absence of the signal peptide 

and the high N- and O-protein glycosylation during the transfer to the cell wall (Figure 6). 

The highly glycosylated mannan-network is located in the outer part of the cell wall direct 

contact with the host-recognition structures (PRRs). Novel techniques have been 

developed to extensively analyse adhesin structures, these new strategies include binding-

domain crystallization, mutagenesis, atomic force microscopy (AFM) and nuclear magnetic 

resonance (NMR) (Ielasi et al., 2012; Beaussart et al., 2012). 

 

 
Figure 6. Adhesin-like cell wall proteins secretion and cell wall attachment process. (A) Structure of adhesin-
protein secreted via endoplasmic reticulum and Golgi apparatus containing GPI anchor (orange). Signal 
peptides removal and protein’s glycosylation take place along the secretory pathway. In the membrane the 
GPI anchor is cleaved from the mature protein. Protein is stabilized with Ca2+ via O-glycosylated chains and 
integrated into the cell wall via glucans (reviewed by Verstrepen and Klis, 2006). (B) Mature adhesin scheme 
constituted by N-terminal binding domain (green), C-terminal anchoring domain (light pink), TRRs (Tandem 
Repeats Regions) in colours, and protein “branches” constituted by N-mannans and O-mannans. Adhesins 
presented different sizes depending on the length of the TRRs. 
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C. albicans adhesins has been investigated for long time. They have been distributed into 

three families including the deeply analysed Als family, the Hwp family and the Iff/hyr that 

has been described in CTG-clade Candida species, in contrast, these adhesins has not been 

detected in C. glabrata (Jackson et al., 2009; Butler et al., 2009; Boisramé et al., 2011). 

Als family: The agglutinin-like-sequence (Als) CWP family was the earliest CWP described in 

C. albicans divided in three subfamilies attending to the low complexity C-domain (tandem 

repeats domain) and they are implicated in adhesion to host surfaces. Differences between 

the subfamilies depend on the repeat region (reviewed by Hoyer, 2001). The majority of 

the adhesins genes are located in telomeric regions of the chromosomes 3, 6 and R (Hoyer 

et al., 1995; Hoyer et al., 1998a; Hoyer and Hecht, 2001).  

There is a broad variation between ALS genes among isolates and there are influenced by 

media composition (Als1), morphogenesis process (Als3 and Als8) and growth parameters 

(Als4) (Hoyer et al., 1995;Hoyer et al., 1998a; Hoyer et al., 1998b; Hoyer and Hecht, 2000). 

They are homogeneously distributed along the cell wall (Kapteyn et al., 2000) connected 

with the β-1, 6-glucan. The ALS genes are also presented in C. dubliniensis (reviewed by 

Hoyer et al., 2001). Complementary studies have asserted the presence of ALS encoding-

genes in several NCAC species as C. dubliniensis, C. tropicalis and C. parapsilosis. It has been 

detected a strong variability between ALS genes along isolates, for example, the size of the 

adhesins fluctuate between strains, which mean that the divergence in the number of 

repeats is a key point in the attachment to the host (Hoyer and Hecht, 2001). The Als-

adhesins have been also differentiated attending to their functionality in the pathogenic 

process, for example, Als1, Als2, Als3, Als4 and Als9 are involved in the adherence to 

epithelia and endothelial cells as well as laminin, fibronectin, and collagen (Als3). The 

members of Als family take part in the attachment of Candida cells to abiotic devices (glass, 

silicone-elastomers and acrylic methacrylate). In contrast, deletion mutants of Als5, Als6 

and Als7 (Hoyer and Hecht, 2000) have increased their capacity to adhere to host tissues 

and have usually been identified in biofilms due to their aggregation capacity. Als1, Als3 

(hyphae specific) and Als5 cell wall proteins present amyloid structures able to aggregate 

between them increasing the adherence in Candida-Candida interaction or Candida-

bacteria (Otoo et al., 2008; Nobbs et al., 2010). 
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Hwp1 family: the adhesins included in this family are expressed under hyphae morphology 

such as Hwp1, Hwp2/Pga8 (hyphal wall protein) and Rbt1 (repressed by Tup1). They are 

involved in abiotic biofilm formation to polystyrol (Hwp1 and Eap1/Pga47) and silicone 

(Hwp2/Pga8), in biotic attachment to oral mucosa and epithelia, and they are also 

implicated in mating process (Nobile et al., 2008; Ene and Bennett, 2009). 

Iff/Hyr family: to date, it is constituted by adhesins mostly express in the hyphae form as 

the other two families (hyphally upregulated proteins) highlighting Hyr1, that controls host-

immune cell destruction, and the iff subfamily needed for adherence to epithelia and cell 

surface maintenance (reviewed by de Groot et al., 2013). 

 

1.8 Candida glabrata 
 

C. glabrata was described as imperfect non-dimorphic yeast (2.5 to 4.5 X 4.6 µm) that 

usually grows as blastoconidia (37°C) producing small, round and glossy-creamy colonies 

without mycelia development (Sinnot et al., 1987 and Kwon-Chung and Bennett, 1992). It 

can be identify in selective CHROMagar as round creamy green colonies but is nearly 

impossible to differentiate from other Candida species on Sabouraud-Dextrose-Agar (SDA) 

plates, unless for the small size (Figure 7). C. glabrata ovoid cells forms small chains 

connected to each other by multilateral buds (Saballs et al., 2000). It is haploid yeast that 

does not have the ability to produce capsules and no sexual spores have been described. 

 

 

 

 
 
 
 
Figure 7. C.  glabrata morphology. Left, colony 
phenotype on Sabouraud´s agar. Right, round 
yeast cells in YPD liquid culture. 
 

 

Unless is still under investigation, some virulence factors are decisive for C. glabrata 

pathogenicity. Among them, we can underline the adherence to surfaces, the formation of 

biofilms and a remarkable number of cell wall proteins (reviewed by López-Fuentes et al., 

Candida glabrata CBS-138
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2018). It has been also highlighted the importance of surface glycoproteins controlled by 

SIR and RAP1 subtelomeric silencing (De Las Peñas et al., 2003). Furthermore, it has been 

remarked the resistance to oxidative stress (reviewed by Vale-Silva and Sanglard, 2015) and 

the recently described CgDtr1 which has been involved in Galleria mellonella virulence 

(Romão et al., 2017). 

Contrary to C. albicans, the ability to only form budding cells, allows C. glabrata to create a 

compact microbial community constituted by yeast and ECM (Kucharíková et al., 2015) that 

behaves as a perfect deposit for consecutive infections. 

 

 
Figure 8. C. glabrata biofilm in vitro schematic model. Top row: C. glabrata biofilm formation in catheters 
(elastomers). Bottom row: biofilm formation capacity to acrylic dental prosthesis. Both procedures are 
divided in three major steps (early, intermediate and mature). In blue, extracellular matrix (ECM). 
 

Little is known about C.  glabrata biofilm composition excluding the ability to form dense 

communities divided into defined multilayers constituted by proteins, β-1, 3-glucans as 

well as ergosterol in the matrix (Nett et al., 2007; Silva et al., 2009). C. glabrata is able to 

form compact biofilms (Figure 8) in different biotic and/or abiotic materials used in 

nosocomial environments like silicone elastomers, polyvinyl, polystyrol (reviewed by 

Tournu and Van Dijck, 2012) or dental acrylic resins (Pathak et al., 2012). Currently, the 

majority of the biofilm formation tests have been performed in vitro using this medical 

devices (catheters, dentures) or standard materials (polystyrol) with hydrophobic surfaces. 
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As it has been addressed by (El-Kirat-Chatel et al., 2015), the adherence capacity of 

C. glabrata cells to negatively charged surfaces is higher compared to hydrophilic areas 

(Hazen et al., 1986; Luo and Samaranayake, 2002). C. glabrata biofilms display certain 

resistance against azoles and polyenes but are still susceptible to echinocandins (Seidler et 

al., 2006; Kucharíková et al., 2015). 

 

1.8.1 Candida glabrata cell wall proteins 
 

(Desai et al., 2011) indicated that C. glabrata genome contains more than 300 specific 

genes that are still not totally characterized but may influence in its virulence capacity. 

This assumption was subsequently investigated by Weig et al. (2004) and de Groot et al. 

(2008) showing that C. glabrata presents 67 sequences adhesion-specific in the cell wall of 

the type strain CBS-138. These are grouped in seven subfamilies attending to the binding 

domain, nevertheless, the function and role during fungal infections is still not well 

characterized for all. As it is shown in Figure 9, the adhesin-encoding genes are, in large 

part, present in the telomeric regions and controlled by subtelomeric silencing (Reviewed 

by De Las Peñas et al., 2015) .These genes have high tendency to present homologous 

recombination as well as gene rearrangements. The first two families differentiated in 

C. glabrata are the Epa family (epithelial adhesins) and the Pwp family (protective antigen 

wall proteins). Both families present the lectin binding domain PA14 (anthrax protective 

antigen). 

The Epa family (17 members) is a really well characterized adhesin group involved in host-

epithelia attachment (Cormack et al., 1999; Zupancic et al., 2008). According to the review 

of Timmermans et al. (2018), C. glabrata adhesins are classified in three different 

categories depending on their functionality: adhesins present in planktonic cells, adhesins 

involved in adherence and colonization and adhesins identified in biofilms. 

Together with the two previous groups, five different subfamilies were determined 

including the relevant Awp family (adhesin wall proteins). These adhesins are far related in 

terms of N-ligand-binding specificity and they are still not deeply characterized (Kraneveld 

et al., 2011). 
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Figure 9. Chromosomal distribution of putative C. glabrata adhesins-encoding genes (de Groot et al., 2013). 
Adhesins encoding genes are located in subtelomeric regions of 13 chromosomes (EL, ER; IL, IM, IR, LL, LR). 
Colours represent seven subfamilies of adhesins depending on the N-terminal binding domain. 
 

1.9 Candida parapsilosis 
 

C. parapsilosis presented round yeast cells and pseudohyphae at 37 °C. (Figure 10) This 

nosocomial pathogen has gained importance in the last years and as it has been described 

for C. albicans, the capacity of C. parapsilosis to switch between morphologies implicates a 

variation in the infection-relevant cell properties which help C. parapsilosis to adapt to 

different host-niches (Laffey and Butler, 2005). 

 

 

 

 

Figure 10. C. parapsilosis CDC 317 morphology. Left, smooth 
colony morphotype on Sabouraud´s agar. Right, round yeast 
cells from smooth morphotype in YPD liquid culture. 
 

Candida parapsilosis CDC 317
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The biofilm formation process in C. parapsilosis isolates is still not well understood. 

Nevertheless, variations in biofilm formation capacity between bloodstream isolates (59%) 

and samples isolated from skin (39%) have been remarked (Růzicka et al., 2007; Shin et al., 

2002). Laffey and collaborators have remarked the importance or morphotypic switch and 

presence of farnesol mediating quorum-sensing process are, as well implicated in biofilm 

formation (Laffey and Butler, 2005). Lattif et al. (2010) have asserted that C.  parapsilosis 

biofilms are composed by clusters or yeast cells attached to the surface with a minimal 

ECM production (Figure 11). 

 

 
 
Figure 11. C. parapsilosis in vitro schematic model. C. parapsilosis biofilm formation divided in three major 
steps (early, intermediate and mature) on catheters and medical implants with pseudohyphae development. 
 

1.9.1 Candida parapsilosis cell wall proteins 
 

Currently, less is known about C. parapsilosis cell wall, the phylogenetic relation with 

C. albicans (CTG clade), has indicated a similar distribution of the cell wall components. As 

it has been described before for C. albicans and C. glabrata, the cell wall is also composed 

with sugars located in the inner layer and highly glycosylated proteins in the outer part of 

the cell surface (Díaz-Jiménez et al., 2012). Studies based on N-and O-linked mannans have 

confirmed their importance in IL-1 β (O-linked mannans) and IL-6 and TNF-α (N- and O-

linked mannans) stimulation in the host-immune response (Pérez-García et al., 2016). 
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Bioinformatic approaches performed by Butler et al. (2009) have remarked the presence of 

five ALS family encoding-genes and six predicted GPI-anchored protein encoding-genes 

(Pga 30). 

Genome analyses have remarked small variations in lysophospholipases and peptidases 

between clinical isolates, thus, broad distribution of adhesion-encoding genes have been 

analyzed (Hoyer, 2001). A detectable variation in the presence of adhesins encoding genes 

has been found between C. parapsilosis isolates, indicating an unequal presence of ALS 

genes, involving deletion and recombination of genes (e.g. CPAR2_404800 and 

CPAR2_404780) or divergence events (CPAR2_404790) among C. parapsilosis strains 

(Pryszcz et al., 2013). 
 

1.10 Candida species interaction in host invasion  
 

Cell surface Candida proteins are important for colonization and invasion of human 

epithelia, adherence to epithelia human cells have been studied in the last years in Caco-2 

cells and also in fibroblast pointing the importance of the large cell surface proteins 

function for this purpose (Gabaldón et al., 2013b; Hoyer and Cota, 2016) focusing on the 

interaction between human epithelia and the N-terminal binding domain of the adhesins 

like proteins (lectin domain). In case of C. albicans the presence of the Als3 is known to be 

crucial for the penetration through the epithelia host barrier. According to the review by 

(Kühbacher et al., 2017), there two possible mechanism, remarking a passive endocytosis 

or an active penetration in which C. albicans ALS3 and HWP1 genes are clearly involved 

(Dieterich, et al., 2002). In agreement with this, more recently it has been shown the 

functionality of the secreted aspartyl protease and well as the gen ECE1 secreted a peptide 

toxin (Candidalysin) able to produce pores and damage the tissue under hyphal condition 

during the epithelia invasion (Moyes et al., 2016; Richardson et al., 2018). In case of 

C. glabrata, several studies pointed the possibility of a co interaction between C. glabrata 

and C. albicans (Alves et al., 2014). In case of NCAC species, the invasion process is still 

under investigation. Tati et al. (2016) has interestingly proposed that C. albicans may 

interact with C. glabrata during epithelia invasion. According to the authors, C. glabrata 

CWP will be responsible for the adhesion of yeast to C. albicans hyphae, allowing 

C. glabrata cells to reach the bloodstream. These changes in Candida morphology will be 
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beneficial during the colonization and host-invasion. Regarding C. parapsilosis, differential 

functionality of chitinases, dehydrogenases or phosphatases, have been described in yeast 

form. Contrary, the pseudohyphal stage mainly presents proteins similar to a cell surface 

mannoprotein Mp65, chitinase and GPI-anchored or the Rbt1 cell wall protein. 

Nevertheless, cell wall proteins identification and cell-surface protein encoding genes are 

still under studied (Karkowska-Kuleta et al., 2015). 
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1.11 Aims of the study 
 

C. glabrata and C. parapsilosis are the two most common causes of non-Candida albicans 

Candida (NCAC) infections in the human host. The capacity to form biofilms on abiotic and 

biotic surfaces encased in extracellular polymeric matrix is thought to be a prerequisite for 

successful host colonization. Previous works have focussed on few laboratory strains. 

Therefore, with a focus on C. glabrata and C. parapsilosis clinical isolates, the major aim of 

this study was to further elucidate if and how phenotypic and morphological differences 

between and within clinical isolates are reflected on genome and proteome levels and how 

these differences correlate with the host infection process. 

Specifically, we sought to build and phenotypically classify C. glabrata and C. parapsilosis 

strain collections, attending to the cell surface-related properties and the capacity to form 

biofilms on abiotic surfaces. It is known that biofilm formation capacity can reduce 

antimycotic susceptibility, therefore, antifungal drugs susceptibility tests of a 

morphologically and phenotypically characterized clinical isolates were to be performed to 

confirm if phenotypic variations would predetermine MIC towards azoles, echinocandins, 

or polyenes. 

Furthermore, in this study, we sought to characterize variations between biofilm-forming 

clinical isolates and their virulence in the G. mellonella animal model as part of the still 

understudied mechanism of pathogenicity in C. glabrata and C. parapsilosis clinical isolates. 

It is known that genomic variability in genes encoding cell wall proteins in pathogenic 

Candida species is present. Therefore, in order to deeply investigate the importance of 

gene variation and cell wall proteins incorporation in both species as strategy associated 

with virulence, genome sequencing analyses and MS/MS spectrometry analyses of selected 

C. glabrata and C. parapsilosis clinical isolates were to be conducted to better understand 

variations as future diagnostic tools. 
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2. Materials and Methods  

2.1 Materials 
 

General materials, chemicals and disposables, unless specified in Table 1, were purchased 

from Carl Roth GmbH (Karlsruhe, Germany), Eppendorf AG (Hamburg, Germany), Sigma-

Aldrich Chemie (Steinheim, Germany), Sarstedt AG & Co. KG (Nümbrecht, Germany), Merck 

KGaA (Darmstadt, Germany), Sartorius AG (Göttingen, Germany), and Thermo Fisher Scientific, 

GmbH (Darmstadt, Germany). 

 

Table 1. Chemicals and disposables used in this study 

materials  company 
5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid Sigma-Aldrich Chemie, Steinheim, Germany 
12-well microtiter plates Greiner Bio-One, Frickenhauser, Germany 
96-well microtiter plates Greiner Bio-One, Frickenhauser, Germany 
α-cyano-4-Hydroxycinnamic acid (C10H7NO3) Sigma-Aldrich GmbH, Steinheim, Germany 
Acetonitrile LC –MS Chromasolv ®  Fluka Analytical, Sigma-Aldrich GmbH, Steinheim, 

Germany 
AdvanDX C. albicans/C. glabrata DNA FISH® 
identification Kit  

AdvanDX A/S, Hvidovre, Denmark 

Ampicilin Sigma Aldrich Chemie GmbH, Steinheim, 
Germany 

Amphotericin B (C47H73NO17) SERVA-Feine Biochemica, Heidelberg, Germany 
Bacto TM Peptone BD, Becton Dickinson and Company, Le-Pont de-

Claix, France 
Bacto TM Yeast Extract BD, Becton Dickinson and Company, Le-Pont de-

Claix, France 
BBL™ CHROMagar™ Candida BD, Becton Dickinson and Company, Le-Pont de-

Claix, France 
BBL ™ Corn Meal Agar BD, Becton Dickinson and Company, Le-Pont de-

Claix, France 
Blankophor P Prechel GmbH, Schwetzingen, Germany 
Caspofungin (C52H88N10O15) Merck KGaA, Darmstadt, Germany 
 

Continued from previous page 

Columbia agar + 5 % sheep blood plates  BioMèrieux Germany GmbH, Nürtingen, 
Germany 
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Commercial Sabouraud agar plates + glucose 
with gentamicin and chloramphenicol 

Oxoid ™ Germany GmbH, Wesel, Germany 

Crystal Violet Sigma-Aldrich GmbH, Steinheim, Germany 
D + Glucose Monohydrate Carl Roth GmbH, Karlsruhe, Germany 
DifcoTM Antibiotic Medium 3 BD, Becton Dickinson and Company, Le-Pont de-

Claix, France 
Dimethyl sulfoxide (C2H6OS) Sigma-Aldrich GmbH, Steinheim, Germany 
DNA Gel Loading Dye 6X Thermo Fisher Scientific, GmbH, Darmstadt, 

Germany 
Ethylenediaminetetraacetic acid (C10H16N2O8) Sigma-Aldrich GmbH, Steinheim, Germany 
Fluconazole (C13H12F2N6O) Discovery Fine chemicals, Wimborne, UK 
Flucytosine (C4H4FN3O) Sigma Aldrich Chemie GmbH, Steinheim, 

Germany 
Formic acid Rotipuran ® 98 % (CH2O2) Carl Roth GmbH, Karlsruhe, Germany 
GelRed ®, 10000X Genaxxon Bioscience, Ulm, Germany 
Glass beads, 0.5 mm BioSpec Products, Carl Roth GmbH, Karlsruhe, 

Germany  
HotStar Taq® DNA polymerase Kit Qiagen GmbH, Hilden, Germany 
Isavuconazole Discovery Fine Chemicals, Wimborne, UK 
Mast Cryobanks TM Mast Diagnostica GmbH, Reinfeld, Germany 
Micafungin (C56H71N9O23S) Astellas Pharma GmbH, München, Germany 

MidoriGreen Advance  Nippon Genetics Europe GmbH, Düren, Germany 

MSP 96 polished steel BC targets Bruker Daltonics, Bremen, Germany 

N-lauroylsarcosine sodium salt (C15H29NO3) Sigma-Aldrich GmbH, Steinheim, Germany 

Nucleospin® Gel and Clean-up Kit Macherey-Nagel, Düren, Germany 

PCR grade nucleotide Mix (dATP, dCTP, dGTP, 
dTTP) 

Roche Pharma AG, Grenzach-Wyhlen, Germany 

PCR reaction buffer + Mg (10X) Roche Pharma AG, Grenzach-Wyhlen, Germany 

Phloxine B Sigma-Aldrich GmbH, Steinheim, Germany 
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Continued from previous page 

Posaconazole (C37H42F2N8O4) Discovery Fine chemicals, Wimborne, UK  

Potassium dihydrogen phosphate 99.8% 
(KH2PO4) 

Calbiochem, Merck KGaA, Darmstadt, Germany 

Proteinase K PanReac AppliChem GmbH, Darmstadt, Germany 

RNase (10 U/L).  Thermo Fischer Scientific GmbH, Darmstadt, 
Germany 

RPMI-1640 w L-glutamine w/o NaHCO3 Biochrom GmbH, Berlin, Germany 
Sabouraud´s agar plates + gentamicin and 
chloramphenicol 

Oxoid ™ GmbH, Wesel, Germany 

Silicone non-reinforced sheets  AMT Aromando Medizintechnik GmbH, 
Düsseldorf, Germany 

Taq DNA polymerase, 0.5 U  Hoffmann-La Roche, Basel, Switzerland 
Voriconazole (C16H14F3N5O) Discovery Fine chemicals, Wimborne, UK 
Zymolyase® 20T 20 U/mg Carl Roth GmbH, Karlsruhe, Germany 
 

Table 2. Media used in this study 

media components 
AM3 2X AM3 commercial medium + 2% (w/v) glucose 

D + monohydrate in dH2O 
CAC 1.5% (w/v) Chromagar™Agar, 1.02% (w/v) 

peptone, 2.2% (w/v) chromogenic mix, 0.05% 
(v/v) chloramphenicol (pH = 6.1± 0.2) 

CMA 1.7% (w/v) commercial Corn Meal agar in dH2O 
(pH = 6 ± 0.2) 

LB 0.5% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% 
(w/v) NaCl 

modified 2X RPMI 2.08% (w/v) RPMI-1640 w glutamine w/o 
bicarbonate, 6.90% (w/v) MOPS, 3.6% (w/v) 
glucose in dH2O (pH = 7. with NaOH) 

RPMI RPMI-1640 
SAB/SDA 6.5% (w/v) Sabouraud´s agar in dH2O (pH = 5.6 ± 

0.2) 
YPD agar 1% (w/v) bacto yeast extract, 2% (w/v) bacto 

peptone, 2% (w/v) glucose and 2% (w/v) agar 
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Continued from previous page 

YPD medium 1% (w/v) bacto yeast extract, 2% (w/v) bacto 
peptone, 2% (w/v) glucose in dH2O 

YPD + Phloxine B 1% (w/v) bacto yeast extract, 2% (w/v) bacto 
peptone, 2% (w/v) glucose, 2% (w/v) agar and 
0.5% (w/v) Phloxine B (filter sterilized) in dH2O 

 

Table 3. Solutions used in this study 

general solutions components 
PBS 10X 0.8% (w/v) NaCl, 0.02% (w/v) KCl, 0.14% (w/v) 

Na2HPO4, 0.24% (w/v) KHPO4 in a final volume of 
1 liter (pH = 7.4) 

SDS/EtOH 1 % SDS (w/v), 50 % (v/v) ethanol in 500 ml dH2O 
TAE 50X 0.024% Tris base, 5.71% (v/v) glacial acetic acid, 

500 mM EDTA (pH 8.0) in a final volume of 1 liter. 
Working solution: TAE 1X (49:1) (filter sterilized) 

 

Table 4. Solutions used in this study 

specific solutions components 
lysis buffer (genomic DNA isolation)  100 mM Tris-HCl (pH = 8), 50 mM EDTA, 1% (w/v) 

sodium dodecyl sulfate (SDS) 
matrix (MALDI-TOF) () HCCA in 50% (v/v) acetonitrile and 0.125% (v/v) 

TFA acid 
PFGE washing buffer  20 mM Tris-Hcl (pH = 8.0) and 50 mM EDTA in a 

final volume of 1 liter. 
proteinase K reaction solution  100 mM EDTA (pH  = 8.0), 0.2% Na deoxycholate 

97%, 1% N-lauroylsarcosine sodium salt and 1 
mg/ml proteinase K 

zymolyase solution  10 mM Tris-HCl (pH = 7.2), 50 mM EDTA, 0.1 
mg/ml zymolyase 20T 

 

All media and general solutions used in this study were sterilized for 15 min. at 121°C. The 

RPMI and AM3 used in the antifungal susceptibility as well as specific solutions with 

thermolabile additives (e.g. enzymes) tests were filter sterilized. 

2.1.1 Synthetic oligonucleotides  
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Synthetic oligonucleotides used for Polymerase Chain Reaction (PCR) amplification and 

gene sequencing were purchased from Sigma-Aldrich (Steinheim, Germany) and detailed in 

Table 5. 

 

Table 5. oligonucleotides used for PCR amplification 

2.1.2 Candida spp. clinical isolates 
 

The C. glabrata, C. parapsilosis and C. albicans clinical strains isolated during the course of 

this study are detailed in the appendix (Appendix). 

 

2.1.3 Candida spp. reference strains 
 

Table 6. List of C.  parapsilosis reference strains used in this study  

name amplifies primer sequence (5´-3´) 

CPAR2_404800-ALS7-F central region 5’-CCAACCACCACAGTCACAACATCT-3’ 

CPAR2_404800-ALS7-R  central region 5’-GGAGACAGTAGATGATAATTGC-3’ 

CPAR2_403520-HWP1-F1 central region 5’-CTTGCTCGAATGGTGGATGC-3’ 

CPAR2_403520-HWP1-R1 central region 5’-ACCGTTGTTGTCTTGATCGA-3’ 

CPAR2_404790-F1 5’ region 5’-CACCACCGCATTTTGGACTG-3’ 

CPAR2_404790-R1 5’ region 5’-CACCTTCCCCAGTCCAGAAC -3’ 

CPAR2_303740-ERG11-F1 5’ region 5’-TAGTGGGATCGGTGGATCTT -3’ 

CPAR2_303740-R-ERG11-R1 5’ region 5’-CTTTATCTAAATCAGCATACAATTGAG-3’ 

CPAR2_303740-ERG11-F2 3’ region 5’-TCTAGATCCTTATTAGGAGAAGCAATG-3’ 

CPAR2_303740-ERG11-R2 3’ region 5’-ACTGACTCCTGCCCTCAGATT-3’ 

CPAR2_807270-MRR1-F1 5’ region 5’-CTGTATGGAGAGAGTGAGATTTTAGGTT -3’ 

CPAR2_807270-R-MRR1- R1 5’ region 5’-TCCTTGGTTACCTCATTGCTC -3’ 

CPAR2_807270-F-MRR1-F2 central region 5’-GGTGATGGGGCTGACTCAAA -3’ 

CPAR2_807270-R-MRR1-R2 central region 5’-GCTCCACCTTGCCAATTTGG-3’ 

CPAR2_807270-F-MRR1-F3 3’ region 5’-ATGGAGACCATTAATTTTTTTGACA-3’ 

CPAR2_807270-R-MRR1-R3 3’ region 5’-GAATGACTTCATTGAAATGTAATGCT-3’ 
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clinical isolate genotype, source of 
isolation and origin 

collection reference provider 

CDC 317 ATCC® MYA-4646™, 
CDC 317, health care 
worker´s hand, 
unknown 

(1) American Type 
Culture Collection, 
ATCC®, Manassas, USA 

(Kuhn et al., 2004) (1) 

ATCC 22019 ATCC® 22019™, CBS 
604, DSMZ-5784, case 
of sprue, Puerto Rico 

(2) German Collection of 
Microorganisms and Cell 
Cultures, DSMZ, Leibniz 
Institute, Braunschweig, 
Germany 

Ashford, 1928 (2) 

CBS 1954 ATCC® 28474™ 
environmental, olive 
fruit, Italy 

American Type Culture 
Collection, ATCC®, 
Manassas, USA 

 CRG, 
Barcelona, 
Spain 

CBS 6318 ATCC® 7330™, man 
healthy skin, USA 

American Type Culture 
Collection, ATCC®, 
Manassas, USA 

Meyer, 1994 CRG, 
Barcelona, 
Spain 

GA-1 SZMC 8110, clinical 
isolate, human blood, 
Hamburg, Germany 

University Clinic 
Hamburg-Eppendorf, 
Hamburg, Germany 

(Gácser et al., 
2005, 2007) 

CRG, 
Barcelona, 
Spain 

 

Table 7. List of C.  glabrata reference strains used in this study  

CBS-138 ATCC® 2001™, CBS 138, 
JCM 3761, NBRC 0622, 
NRRL Y-65, man feces, 
unknown 

(3) Westerdijk Fungal 
Biodiversity Institute, 
CBS-KNAW, Utrecht, The 
Netherlands 

Anderson, 1917 (3) 

ATCC90876-CRIB ATCC® 90876™ , human 
blood, Essen, Germany* 

Regional Centre for 
Biomedical Research, 
Albacete, Spain 

Dermoumi, 1994 (4) 

 

Table 8. List of C.  albicans reference strains used in this study  

SC5314  ATCC® MYA-2876™, 
clinical human 
specimen, unknown 

American Type Culture 
Collection, ATCC®, 
Manassas, USA 

(Gillum et al., 
1984; Fonzi and 
Irwin, 1993) 

(1) 

WT (SC5314)-GFP Peno1-EGFP_NATR*  (Wheeler et al., 
2008) 

VBC, Vienna, 
Austria 
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2.2 Methods 

2.2.1 Routine diagnostic procedures 
 

In order to routinely analyze clinical specimen for fungal growth, samples were provided 

from the diagnostic laboratory, where they were plated onto Sabouraud’s GC agar in 

addition to other agars and these incubated at 35°C overnight. Yeast species were 

restricted in order to ensure single pure cultures and identified using MALDI-TOF (MALDI 

Biotyper, Bruker Daltonics, Bremen, Germany) using the YOTL database (Bernhard et al., 

2014). Routinely susceptibility testing was performed on a VITEK2 system (BioMérieux, 

Nürtingen, Germany). 

 

2.2.2 Candida spp. strain maintenance and growth 
conditions 

 

Once transferred to the research laboratory, mixed cultures were further differentiated on 

YPD agar, C. parapsilosis clinical isolates (n = 220) plus the C. parapsilosis reference strains 

(n = 5) (Table 6) were replated onto Sabouraud’s GC, YPD agar (1% yeast extract, 2% 

peptone, 2% glucose, 2% agar) and YPD agar plus 5 mg/ml Phloxine B and subsequently 

incubated at 30°C and 37°C for pseudohyphae induction (Appendix). 

In contrast, all C. glabrata clinical isolates (n = 488) plus C. glabrata (n = 2), (Table 7) and 

C. albicans (n = 2), (Table 8) reference strains were plated onto SAB´s GC agar and 

Columbia (COS) blood agar and incubated at 37°C (mimicking human body temperature), 

(Appendix 1). 

Individual lineages obtained were long-term preserved at -70°C in cryovials. Independent 

Candida colonies from both species were routinely grown in 3 ml of liquid YPD (1% yeast 

extract, 2% peptone and 2% glucose) at 37°C and 220 rpm. Before each experiment, cells 

were replated at least twice to confirm proper growth and pure cultures. 
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2.2.3 MALDI-TOF analyses species-identification 
 

Patient isolates were classified and plated in selected media, after a previous susceptibility 

test (VITEK®2, BioMérieux, Nürtingen, Germany), clinical samples were quickly 

characterized using species identification YOTL (Yeast On-Target-Lysis) preparation was 

conducted. Briefly, single colonies were streaked onto a steel MALDI target and one µl of 

70% formic acid Rotipuran® was added to lyse the cells. After drying, 1 µl matrix solution 

(α-cyano-4-hydroxycinnamic acid in 50% acetonitrile, 0.125% trifluoroacetic acid) was 

added and left to crystalize at room temperature. When no accurate identifications were 

obtained, full extractions of proteins were performed following the protocol provided by 

the manufacturer (Bruker Daltonics, Bremen, Germany). Several colonies from pure 

cultures were dissolved in 200 µl of milli-Q water. Nine hundred µl of absolute 100% 

ethanol were added to the cell suspension. Cells were mixed and 200 µl of the solution 

were centrifuged at 12000 rpm for 2 min. The supernatant was discarded and the pellet 

was dried out for 10-15 minutes. Between 25-50 µl of formic acid Rotipuran® ≥ 98% were 

added to the suspension. Cell solution was incubated for 10 min. at RT. Equal amount of 

MS-grade acetonitrile as formic acid was added and centrifuged for 2 min. at 12000 rpm. 

One µl of the proteins presented in the supernatant were dispensed on the target before 

adding the MATRIX solution. All sample preparations were done in duplicate and the 

spectra automatically analyzed by MALDI Biotyper 3.1 software on an Autoflex III mass 

spectrometer (both from Bruker Daltonics, Bremen, Germany). C. parapsilosis and 

C. glabrata reference strains spectra were already incorporated in the system and 

established as baseline for new specie-identification. Standard settings defined by the 

automated acquisition mode were used during the measurements. A recommended cut-off 

of log score value of ≥ 2.000 was used to discriminate false positives and valid 

identifications. 

 

2.2.4 C. glabrata biofilm formation capacity to polystyrol 
 

To analyze the capacity of C. glabrata clinical isolates to form biofilms in abiotic surfaces 

used in nosocomial environments, a modified quantitative CV-biofilm formation assay was 
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performed (Figure 12) (Gómez-Molero et al., 2015; Kuhn et al., 2002; Ramage et al., 2001). 

C. glabrata clinical isolates (Appendix) plus the C. glabrata reference stains (Table 7) were 

cultured as detailed in 2.2.2. The optical density was measured (A600), (Smart Spec 3000; 

Bio-Rad) and adjusted to an OD = 2. Cell suspensions were diluted 1+3 to a total volume of 

200 µl YPD into the 96-well plates (Greiner Bio-One, Frickenhausen, Germany) and 

incubated at 37°C for 24h. Medium was removed putting the plates upside down. 

Planktonic cells were discarded tapping the plate gently and washing once with 200 μl of 

milli-Q water. Attached biofilms were stained for 30 min with 100 μl 0.1% (w/v) CV 

solution. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 12. Schematic C. glabrata biofilm formation to polystyrol. (A) C. glabrata incubation and species-
determination using MALDI-TOF Biotyper. (B) Cells adjustment to OD 600nm = 2. (C). Biofilm quantification by 
CV staining method. Total biofilm formation capacity to polystyrol was measured at (A490) and (A630). 
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Excess dye was washed away once with 200 μl milli-Q water. Biofilms were disrupted by 

carefully mixing in 200 μl 1% (w/v) SDS in 50% (v/v) ethanol. Crystal violet staining intensity 

was measured at OD 490nm and OD 630nm (MRX-TC Revelation, Dynex Technologies GmbH, 

Denkendorf, Germany). All data shown is the average of two independent experiments 

with four biological replicates, classified in three different categories as LBF, IBF and HBF. 

Statistical unpaired t-test (Welch´s t-test) analyses compared with the CBS-138 were 

performed for all the clinical isolates of the study. 

 

2.2.5 C. glabrata biofilm formation capacity to silicone 
elastomers 

 

To analyze biofilm formation capacity to silicone elastomers (Gómez-Molero et al., 2015), 

C. glabrata clinical isolates (detailed in the Appendix) were incubated in SAB´GC agar and 

YPD agar section 2.2.2. Liquid cultures were grown overnight at 37 °C. The isolates were 

adjusted to and OD of 0.8 McFarland in 4 ml of NaClphysiol. One hundred µl of the solution 

were added to 15 ml glass tubes containing 1 piece of a 1cm X 1cm silicone squares cut 

from larger non-reinforced sheets (AMT Aromando Medizintechnik GmbH, Düsseldorf, 

Germany). The cells plus the piece of silicone were incubated in 4 ml of YPD medium in an 

orbital shaker at 37 °C overnight. The silicone pieces were deposited in a 12-well plate 

(Greiner Bio-One, Frickenhausen, Germany) and unbound cells were washed out with 1 ml 

of PBS 1X, the pieces of silicone were transferred to a new plate containing 1 ml of fresh 

PBS. The silicone was scratched to remove the Candida biofilms bound to the entire 

surface. Biofilm production was quantified by measuring optical density of a cells/PBS 

solution (1:100) on the MRX-TC Revelation microplate reader (Dynex Technologies GmbH, 

Denkendorf, Germany) at OD 600nm. The data shown were performed in duplicate and the 

average and standard deviation of each biological replicate calculated (Figure 13).  
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Figure 13. Schematic C. glabrata 
biofilm formation to silicone. (A) 
C. glabrata incubation and 
species-determination using 
MALDI-TOF Biotyper. (B) Cells 
adjustment to and OD of 0.8 
McFarland. (C) Silicone pieces 
were scratched and cells 
suspension quantified at (A600). 

 
 

2.2.6 C. parapsilosis biofilm formation capacity to polystyrol 
 

To assess C. parapsilosis biofilm quantification, stable morphotypes and phenotypic switch 

have to be determined (Anderson and Soll, 1987 ; Laffey and Butler, 2005). Colonies were 

plated and incubated on selective media (2.2.2) at 30 °C for 96 h. After four days of 

incubation, independent colonies presented defined morphotypes (e.g. “smooth”, “crater”, 

“concentric” or “crepe”). Biofilm production of C. parapsilosis clinical isolates to plastic 

materials (polystyrol) was quantified by CV staining as described before for C. glabrata 

(2.2.4).The clinical isolates used in this study are detailed in the (Appendix). Statistical 

analyses using unpaired t-test (Welch´s t-test) were conducted and all data shown is the 

average of at least two independent biological experiments with four technical replicates 
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each (Figure 14). A modified biofilm quantification assay was performed to increase 

accuracy in colony-morphotype biofilm quantification. The optical density of single colonies 

was determined using a McFarland standard n° 4 (A600 nm = 0.431 with a Compact 

Benchtop Densitometer, DEN 1A, SIA BioSan, Riga, Latvia) dissolved in 4 ml of NaClphysiol. 

The cell suspension was measured again at (A600) (Ultrospec 1000) and adjusted to a value 

of 2 using sterile NaClphysiol. The cells were diluted 1+3 to a final volume of 200 µl YPD in 96-

well microtiter plates. Biofilms were incubated ON at 37°C (pseudohyphae induction 

temperature) and biofilms were measured as detailed before for C. glabrata. The data 

shown is the average of at least two independent biological experiments with four 

technical repeats each. 

 

 

Figure 14. Schematic C.  parapsilosis biofilm formation capacity to polystyrol. Top row: MALDI-TOF 
identification of C. parapsilosis colony morphotypes. Middle row, cell adjustment to an initial OD = 0.5 in non-
treated 96-well microtiter plates. Bottom row: cell Incubation for 24 h. at 37°C and biofilm quantification by 
CV staining. Colorimetric determination on MRX-TC Revelation microplate reader at 490 nm and 600 nm. 
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2.2.7 Antifungal susceptibility test 
 

To determine the minimal inhibitory concentration towards FLU, ISA, VOR, POS, MICA, CAS, 

5FC, AMB for C. glabrata and C. parapsilosis in our clinical strain collection (Appendix), 

antifungal susceptibility tests were performed based on the protocols previously described 

by (Arendrup et al., 2012) and determined according to EUCAST EDef 9.0 method. Prior to 

analysis, the clinical isolates were replated overnight onto SAB´s GC agar plates (Oxoid ™ 

GmbH, Wesel, Germany). Cells were adjusted to a target value of 0.5 McFarland with 

NaClphysiol. A 10 fold dilution was prepared and 100 μl of the suspension were added to 96-

well microtiter plates that already contained serial antifungal dilutions as defined by 

EUCAST standardized broth microdilution (Table 9) method v 9.0 The antifungal stocks 

solutions of 5FC, CAS, and MICA were dissolved in mQ water, the FLU was dissolved in 75 % 

methanol and the DMSO was the solvent selected to dilute VOR, ISA, and AMB. Antifungal 

dilutions were resuspended in 2X RPMI-1640 medium (FLU, ISA, VOR, POS, MICA, CAS, 5FC) 

and AM3 (AMB). Plates were incubated 24 and 48h. at 37°C and cell density was read at 

A530 (MRX-TC Revelation microplate reader). The MIC values were calculated according to 

EUCAST guidelines (*). Clinical isolates were classified as susceptible isolates, when the 

minimal inhibitory concentration (MIC) was equal or lower than the clinical breakpoints 

and non-susceptible or resistant isolates, when the minimal inhibitory concentration values 

were higher than the EUCAST breakpoints (Orasch et al., 2014). Cross-resistance is defined 

by non-susceptibility for at least two drugs in the same classification group (azoles or 

echinocandins) and multi-resistance species presented values higher than the clinical 

breakpoints for, at least, two kinds of antifungals at the same time. 

Table 9. Description of antimycotic dilutions used in antifungal susceptibility test 

antimycotic serial inhibitory concentrations (µg/µl) 

AMB polyene 4 3 2 1.5 1 0.750 0.500 0.375 0.250 0.188 0.125 

5FC nucleoside 32 16 8 4 2 1 0.500 0.250 0.125 0.063 0.031 

FLU triazole 256 128 64 32 16 8 4 2 1 0.500 0.250 

POS triazole 4 2 1 0.5 0.250 0.125 0.063 0.031 0.016 0.008 0.004 

VOR triazole 32 16 8 4 2 1 0.500 0.250 0.125 0.063 0.031 

CAS echinocandin 4 2 1 0.500 0.250 0.125 0.063 0.031 0.016 0.008 0.004 

MICA echinocandin 4 2 1 0.500 0.250 0.125 0.063 0.031 0.016 0.008 0.004 
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2.2.8 Agar invasion capacity 
 

Agar invasion capacity of C. parapsilosis colony morphotypes was tested based on the 

protocols described by (Laffey and Butler, 2005). Cells taken from colonies with distinct 

morphotypes were plated on commercial SAB´s GC agar plates (control) and YPD agar 

plates supplemented with 5 mg/ml of Phloxine B (2.2.2). Plates were incubated for 10 days 

at 30°C, recording the morphotype once per day, starting from day 4, recording the state 

photographically for selected plates. Plates were finally scored before and after wash cells 

out the agar plate under running water on day 10. Morphotypically mixed plates were also 

checked determining different gradients of invasion on agar depending on the morphotype 

observed. Ranked classification of agar invasion used was defined as: low invasion (1), low-

medium (2), medium (3), medium-high (4), high (5) and very high (6, cells could not be 

removed after the plate were rinsed). 

 

2.2.9 Optical and phase-contrast microscopy 
 

To visualize variations in cell morphology between different clinical morphotypes, 

independent colony-phenotypes were routinely prepared as detailed in 2.2.2. Cells were 

adjusted to an OD = 2 (A600) and washed two times with PBS. For aggregation analyses, cells 

from defined colony-types were grown ON in 3 ml YPD and YPD medium plus 2.5 mg/ml 

Phloxine B in an orbital shaker. Cell density was adjusted to an OD600 = 2 and washed twice 

with PBS. Aggregation was observed at 10X magnification (Axiovert 200M, Carl Zeiss AG, 

Oberkochen, Germany). For an accurate determination of cell morphologies, ON cultures 

were adjusted to the exponential phase in fresh YPD and stained with 200 µl of 0.1% 

Blankophor P solution for 20 min. at RT. Cells were washed with PBS and fixed with 200 µl 

100% methanol for 5 min. After washing the cells twice with PBS, cells were embedded in 

Mowiol® 4-88 and observed at 100X magnification with immersion oil. Cell-morphology 

variability between morphotypes was analyzed by the imaging software Axiovision 2.05 

(Carl Zeiss, Oberkochen, Germany). 
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2.2.10 Sedimentation assay of clinical morphotypes 
 

To analyze the sedimentation speed of C. parapsilosis strains with different morphotypes, 

the protocol previously published for C. glabrata (Gómez-Molero et al., 2015) was used. 

Strains selected were grown as described in section 2.2.2. Colonies were inoculated into 3 

ml YPD medium and grown ON at 37 °C. The cultures were pelleted and washed with PBS 

and the optical density was measured (A600), the experiment was performed in duplicate 

and the samples were adjusted to the lowest OD per replicate. The initial optical density 

was measured and calculated as T=0, and the cell suspensions were regularly measured 

(Smart Spec 3000; Bio-Rad) (A600) with an interval of 15 minutes until the final time point 

T=120 was achieved. The capacity (%) of sedimentation of each colony morphotype was 

calculated using (OD600t=1/OD600t=0)*100. The sedimentation percentage of each isolate 

at each time point is the average of two biological replicates and two technical repetitions. 

 

2.2.11 Electrophoretic karyotyping of colony morphotypes 
 

Intact chromosomes were separated by pulsed-field gel electrophoresis (PFGE) as 

described before by (Bader et al., 2012; Carreté et al., 2018). C. parapsilosis and 

C. glabrata cells were prepared as detailed in 2.2.2 Equal amount of cell suspension and 

2% agarose (1:1) both preheated to 60°C were mixed and cast in a 1 x 0.5 x 0.1 casing cell. 

The blocks were left to solidify at 4°C for approximately 30 minutes and then transferred 

into 5 ml of a zymolyase solution (10 mM Tris-HCl (pH = 7.2), 50 mM EDTA and 0.1 mg/ml 

zymolyase 20T). The samples were incubated ON at room temperature (RT) with gentle 

shaking. Plugs were washed four times with 5 ml washing buffer (20 mM Tris-HCl (pH = 

8.0) and 50 mM EDTA) and transferred to fresh tubes. Five ml of proteinase K reaction 

solution (100 mM EDTA (pH = 8.0), 0.2% Na deoxycholate 97%, 1% N-lauroylsarcosine 

sodium salt and 1 mg/ml proteinase K were incubated with gentle shaking for 24 hours. 

The blocks were washed four times with washing buffer solution (20 mM Tris-HCl, pH = 

8.0 and 50 mM EDTA) and stored at 4°C. Agarose blocks containing C. parapsilosis and 

C. glabrata DNA were cut in pieces of approximately 0.25 cm (“plugs”) and cast in a 1% 

agarose gel. The gels were placed in a PFGE running chamber (CHEF-DR II Electrophoresis, 



MATERIALS AND METHODS 
 

41 
 

Bio-Rad laboratories, München, Germany) containing 1X TAE buffer (40 mM Tris (pH = 

7.6), 20 mM acetic acid and 1 mM EDTA). Running conditions for C. glabrata were 

adapted to using 1.2% agarose at 17°C and pulse times from 40-100 sec. for short 

chromosomes and 60-140 sec. for large chromosomes. In case of C. parapsilosis, running 

time was increased in 4 h. (initial pulse time 70 sec., final pulse time 140 sec., 26h run 

time in 1X TAE at 200V and 17°C) for better resolution. The gels were stained ON with 3 µl 

10000X GelRed ® in 30 ml of dH2O. Chromosome distributions were analyzed by Gel Doc 

XR imaging software (Bio-Rad Laboratories GmbH, München, Germany). 

 

2.2.12 Genomic DNA isolation 
 

To analyze the variability of adhesin-encoding genes between C. parapsilosis clinical 

isolates, stable morphotypes were cultured overnight in YPD medium at 30ºC. (2.2.2). Cells 

were harvested by centrifugation at 7168 g for 5 min in screw cap tubes. After washing the 

cells with 200 µl Tris-HCl, 200 µl of genomic DNA lysis buffer 100 mM Tris-HCl (pH = 8), 50 

mM EDTA, 1% (w/v) SDS and 0.5 mm glass beads were added (two times the amount of 

pellet used). Two hundred µl of 25:24:1 phenol/chloroform/isoamyl alcohol were 

incorporated to the samples, and the cells were lysed by 2X fastprepping (Thermo Savant 

FastPrep® FP 120 cell homogenizer, Qbiogene, Cedex, France) at 4.5 m/s for 30 sec. After 

fastprepping, phases were separated by centrifugation for 5 min at 16128 g, and 

supernatant was collected. One ml of 100% cold ethanol was gently added in 200 µl 

supernatant and stored for 30 min. at -20 °C for DNA precipitation. The solution was 

centrifuged at 4ºC for 5 min. at 16128 g and the supernatant discarded. Excess of EtOH was 

dried out and DNA was resuspended in 25 -30 µl TE-buffer containing RNase A. DNA quality 

was checked by running a 1% agarose gel, and DNA concentration was determined (Nano 

Drop 2000TM
, Thermo Fisher Scientific, Darmstadt, Germany). 
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2.2.13 Polymerase chain reaction analyses of adhesin-
encoding genes in clinical morphotypes 

 

To analyze the gene variability of adhesin repeat regions within clinical morphotypes (bsc-

1700, nsc-170, tsc-1702, ncc-1701, tcc-1702), PCR analyses of selected C. parapsilosis 

adhesin-encoding genes were tested including CDC 317, ATCC 22019, CBS 1954, CBS 6318 

and GA-1 as reference strains. PCR reactions contained 80-100 ng of genomic DNA plus 0.2 

µM of CPAR2_404790-F1, CPAR2_404790-R1; CPAR2-404800-ALS7-F, CPAR2-404800-ALS7-

R and CPAR2_403520-HWP1-F, CPAR2_403520-HWP1-R, (Table 5), 200 µM PCR grade 

nucleotides (dNTPs), 1X PCR reaction buffer + Mg (5 µl/50 µl PCR) and 2 units/50 µl PCR of 

Taq DNA polymerase in a final volume of 50 µl. The reaction was run in a T100™ 

Thermocycler (Bio-Rad laboratories, München, Germany). PCR reaction conditions consist 

on a denaturation step for 1 min at 95°C, followed by 30 cycles of 30 sec. at 95°C, 4 min. at 

a corresponding annealing temperature of 68.2°C and an elongation step of 5 min. at 72°C 

with a final 5 min. extension step at 72°C. 

To analyze azole-resistant genes in selected C. parapsilosis clinical isolates (PEU651, 

PEU768, PEU941, PEU950), PCR reactions were performed as the reactions specified before 

and amplified with CPAR2_303740-ERG11-F1, CPAR2_303740-ERG11-R1, CPAR2_303740-ERG11-

F2; CPAR2_303740-ERG11-R2; CPAR2-807270-MRR1-F1, CPAR2-807270-MRR1-R1; CPAR2_807270-

MRR1-F2, CPAR2_807270-MRR1-R2 and CPAR2_807270-MRR1-F3, CPAR2_807270-MRR1-R3, 

(Figure 5). General PCR reaction conditions for adhesin-encoding genes amplification 

started with a denaturation step for 1 min at 95ºC, followed by 30 cycles of 30 sec. at 95°, 1 

min. at a corresponding annealing temperature of 60°C and 65°C (depending on the length 

of the fragment), an elongation step of 3 min. at 72°C with a 5 min. final elongation at 72°C 

after which, the samples were cool down to 4°C. 

DNA fragments were analyzed using a 1% agarose gel at 130 volts for 45 minutes. All gels 

were prepared in a final volume of 100 µl and 140 µl of TAE 1X and developed using Bio-

Rad Chemidoc software (Bio-Rad Laboratories GmbH, München, Germany). 
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2.2.14 DNA Sanger sequencing 
 

PCR products were purified using Nucleospin® Gel and Clean-up DNA purification Kit 

(Macherey-Nagel, Düren, Germany). PCR products of C. parapsilosis adhesin-encoding and 

azole´s-resistant genes were sequenced applying Sanger technology by Microsynth Seqlab 

(Göttingen, Germany), the same set of oligonucleotides employed in Polymerase Chain 

Reaction were used for standard sanger sequence analyses and detailed in Table 5. 

For a proper Sanger sequence, 18 ng per 100 bp of purified PCR product and 30 pmol of 

specific F or R CPAR2-oligonucleotides (Table 5) in a final volume of 12 µl were processed 

by Microsynth Seqlab, Göttingen, Germany. 

 

2.2.15 Candida cell wall isolation 
 

Prior to performing mass spectrometry analyses to identify specific cell wall proteins, 

C. parapsilosis and C. glabrata cell walls were isolated in collaboration with Dr. Piet de 

Groot (Department of Medical Mycology, Centre for Biomedical Research (CRIB), Albacete, 

Spain). Cell walls were prepared following the protocol previously described (Gómez-

Molero et al., 2015; de Groot et al., 2004, 2008). Clinical isolates (Appendix) were cultured 

overnight in YPD medium at 37ºC (2.2.2), after which the cells were harvested. The cells 

were washed and resuspended in 10 mM Tris-HCl at pH 7.5 in 2 ml). Glass beads, Tris 

buffer and protease inhibitor were added to the screw cap tubes. Six rounds of disruption 

for 30 seconds at 6.5 m/s in a Fastprep machine (Fast-Prep®-24, MP Biomedicals GmbH, 

Thüringer, Germany) were enough for cell full breakage, and this was verified under the 

microscope. After cell breakage, cell wall material was once washed with 1 M NaCl, and 

boiled twice for 5 min with SDS extraction buffer (50 mM Tris HCl, 2% SDS, 100 mM Na-

EDTA, 150 mM NaCl, and 0.8% (114 mM) β-mercaptoethanol, pH 7.8). After the SDS/β-Me 

extraction step, the cells were washed extensively with mQ water. Finally, the cell wall 

material was frozen in liquid nitrogen, lyophilized and stored at -20ºC. 
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2.2.16 Candida spp. genome sequencing analyses 
 

C. parapsilosis and C. glabrata genome sequences were determined in collaboration with 

the group of Dr. Toni Gabaldón (Centre for Genomic Regulation (CRG) Barcelona, Spain). 

Strains were sequenced following the protocol already described by (Carreté et al., 2018; 

Pryszcz et al., 2013; Carreté et al., 2019) using either Illumina Genome Analyzer IIx (GA) or 

HiSeq 2000 (HS) sequencing platforms. All sequence data were deposited after publication 

in Sequence Read Archive (SRA, NCBI) (Carreté et al., 2018). 

2.2.17 In vivo infection analyses using the Galleria mellonella 
animal model 

 

For analysis of the virulence potential of different C. parapsilosis and C. glabrata clinical 

isolates, the animal model Galleria mellonella were used (Ames et al., 2017; Gácser et al., 

2007; Németh et al., 2013). These analyses were performed in collaboration with Dr. Attila 

Gácser, Department of Microbiology, University of Szeged, Hungary. G. mellonella 

caterpillars (R.J. Mous Live Bait, Balk, The Netherlands) were selected with the same body 

size and previously incubated at 30°C ON. C. parapsilosis and C. glabrata clinical isolates 

used in this study were listed in the Appendix 1 plus the CDC 317, ATCC 22019 (both 

C. parapsilosis) and CBS-138 (C. glabrata), respectively. Strains were grown as described in 

section 2.2.2. G. mellonella caterpillars were inoculated with 10 μL of the Candida spp. 

suspensions diluted in PBS 1X containing 6.10^6 yeast cells injected in the last left proleg of 

the caterpillar using a 26 gauge needle with Hamilton® syringe. The infected caterpillars 

were placed in an incubator at 37 ºC, and survival scored for a period of seven days. Time-

dependent survival was calculated using Graphpad PRISM 7 software. Data shown is always 

the average of two independent biological replicates. Ten non-manipulated caterpillars 

were used as untreated control and another 10 caterpillars were injected with 10 μL of PBS 

1X as negative control. 

 

 



MATERIALS AND METHODS 
 

45 
 

2.2.18 C. albicans and C. glabrata identification from patient 
blood cultures 

 

Candida spp. infected blood cultures were selected from patients with a previous 

diagnostic of C. glabrata infection (Appendix). To easily determine the presence of single 

specie or mixed cultures (C. albicans and C. glabrata), The AdvanDX (Woburn, MA, EE.UU.) 

PNA FISH Kit was used. Candida spp.-identification in blood cultures was performed as 

described before by (Rigby et al., 2002) according to the manufacturer guidelines. The 

method consists on fluorescence in-situ hybridization (FISH) labels with peptide nucleic 

acid (PNA) probes. The technique is based on the hybridization selected peptide nucleic 

acid to the specific C. albicans or C. glabrata specific ribosomal RNA (rRNA), which directly 

discriminate between C. albicans and C. glabrata from positive-blood-culture bottles The 

C. glabrata blood bottles were stored at -20°C until used. Ten µl of the culture were 

transferred to a microscope slide that previously contained one drop of the fixation 

solution (phosphate-buffered saline with detergent). One drop of PNA probes (1.5 ml of 

PNA probes contains 30% of formamide) was added to the microscope slide that already 

contains the smear. The coverslip was placed on the drop avoiding bubbles in the probe 

and the slides were incubated for 30 minutes at 55°C in a water bath. The solution was 

mixed and let it dry. The smears were fixed by flame-fixation. The test (the C. albicans PNA 

FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S 

rRNA. The PNA probe is added to smears made directly from the contents of the blood 

culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by 

washing of the mixture (30 min), and the smears are examined by fluorescence microscopy  

 

2.2.19 C. albicans and C. glabrata interaction under phase-
contrast microscopy 

 

To analyze C. albicans/C. glabrata in vitro cell interaction,, we adapted the protocols 

already described by Tati et al. (2016). Selected C. glabrata clinical isolates plus two 

reference strains (ATCC90876, CBS-138, PEU52, PEU45, PEU382, PEU427) were grown as 

detailed in section 2.2.2. C. albicans reference strain (SC5314) and the genetically modified 
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green fluorescence C. albicans WT (SC5314-GFP) (Table 8) were culture in 3 ml of liquid 

YPD at 30°C, ON. C. albicans cells were adjusted to an OD 600nm = 0.5 and let them grow for 

5 h. at 37°C to induce hyphae. Both, C. glabrata and C. albicans were adjusted to an OD 

600nm = 1, and co-incubated at 1:1 ratio in fresh YPD for 2 h. Suspensions were filtered and 

washed with PBS 1X to remove unbound C. glabrata. Cells were stained with 200 µl of 0.1% 

Blankophor P solution for 20 min. at RT, washed with PBS 1X, fixed with 200 µl 100% 

methanol (Carl Roth Chemie GmbH, Karlsruhe, Germany) for 10 min. and finally embedded 

in Mowiol® 4-88 (Polyscience Europe GmbH, Hirschberg an der Bergstraße, Germany). 

Samples were observed at 100X magnification with immersion oil and fluorescent Cy2 filter 

(534 nm) and DAPI filter (409 nm) to differentiate C. albicans cells and hyphae using the 

imaging software Axiovision 2.05 (Carl Zeiss, Oberkochen, Germany). To discriminate GFP 

fluorescence intensities for individual yeast cells and hyphal form (C. albicans) from non-

fluorescent cells (C. glabrata), experiments were performed in duplicate. 
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3. RESULTS 
 

3.1 Genomic plasticity enhances phenotypic diversity in 
Candida glabrata clinical isolates from different clades 

 

3.1.1 Changes in the genome of hyper-biofilm-forming 
C. glabrata isolates 

 

To assess genomic plasticity and phenotypic variability between clinical isolates with 

respect to biofilm formation, thirty-three genome sequenced Candida glabrata clinical 

isolates from different body sites and global sources were analysed in collaboration with 

Dr. Toni Gabaldón (CRG, Barcelona, Spain). The study performed by the partner group 

(Carreté et al., 2018) included genome sequence analyses to stratify differences among 

clinical isolates with a focus on gene copy number and single nucleotide polymorphisms. In 

addition, we performed phenotypic and karyotypic analyses. 

The collection was composed of isolates from three different body sites. Two hyper 

biofilm-forming clinical isolates PEU382 (urinary tract) and PEU427 (respiratory tract) 

(Gómez-Molero et al., 2015), and the reference strain CBS-138 were used as controls. 

Gastrointestinal tract isolates conformed 18% of the collection, 70% were defined as 

derived from invasive candidiasis, and 12%, were isolated from oral cavity. SNP-based 

analyses (Carreté et al., 2018) classified the thirty-three isolates into seven genetic clades, 

again falling into two larger group sets (Figure 16). Group 1, included clusters I, II, III, and 

group 2 was constituted by the clusters IV, V, VI, and VII. 

First, we examined if genomic and phenotypic variations corresponded with karyotypic 

changes. Indeed, electrophoretic karyotyping showed chromosome variability between 

isolates. Only short chromosomes (A-J) of isolates from the same clade follow a similar 

distribution pattern (Figure 15). This could be observed in certain isolates of clades VI and 

VII (P35-2, P35-3 = EG01004, F15021, F03013, BG2); I and II (CST34= CST35) and four 

isolates from clade II (EB101M=BO101S=B1012S= B1012M). Differences in the patterns of 
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the long chromosomes (ChrL, M, and K in CBS138) were observed in the HBF isolates. A 

correlate to ChrL was not detectable in isolate F15021, possibly due to a rearrangement. 

Together with coverage analyses (Toni Gabaldón, CRG, Barcelona), aneuploidies in 

chromosome E (clade differences) and G, as well as a duplication of chromosome J in F2229 

were observed (Carreté et al., 2018). 

 

Figure 15. Electrophoretic karyotyping of C. glabrata clinical isolates divided in 7 different clades. PFGE of 
isolates including the control strains used. Top panels show large chromosomes (2240 kb – 1302 Kb). Bottom 
panels show small chromosomes (1302 Kb -485 Kb). Color code: red, hyper biofilm-forming isolates; green, 
azole resistant isolates; blue, EB101M/BO101S, B1012S/B1012M and P35_2/P35_3 represent pairs of isolates 
from the same patient.  

CB
S 

13
8

M
17

F1
01

9
F1

82
2

M
12

CS
T7

8
F2

22
9

I1
71

8
EB

09
11

CB
S 

13
8

CS
T3

5
CS

T3
4

CS
T1

09
CS

T8
0

M
7

EB
10

1M
BO

10
1S

B1
01

2S

CB
S 

13
8

CB
S 

13
8

A (485 kb) + B (502 kb)
C (558 kb)

D (651 kb)
E (687 kb)

I (1089 kb)

H (1050 kb)

G (992 kb)
F (927kb)

J (1192kb)

K (1302 kb)

K (1302 kb)

L (2201 kb)
M (2240 kb)

A (485 kb) + B (502 kb)
C (558 kb)

D (651 kb)
E (687 kb)

I (1089 kb)

H (1050 kb)

G (992 kb)
F (927kb)

J (1192kb)

K (1302 kb)

K (1302 kb)

L (2201 kb)
M (2240 kb)

B1
01

2M
EF

12
37

EI
18

15
EF

16
20

EF
06

16
F1

5
F1

1
E1

11
4

M
6

CB
S 

13
8

CB
S 

13
8

CB
S 

13
8

CB
S 

13
8

CS
T1

10
EG

01
00

4

F1
50

21
F0

30
13

BG
2

P3
5_

2
P3

5_
3



Candida glabrata 
 

49 
 

To determine if karyotypic and phenotypic variations between isolates correlated with 

changes in MIC, susceptibility towards eight different antifungal compounds was 

measured. All isolates were susceptible to AMB and thirty-one isolates (31/33), including 

CBS-138, only showed a low to intermediate range of growth inhibition by azoles (Table 

10). 

However, M7, M6, and M17 showed reduced susceptibility to one (M17) and four (M7, 

M6) compounds out of the eight tested: They were 8-16, 32, and up to 2-fold, respectively, 

times less susceptible to FLU than the control CBS-138. Differential distribution of MICs 

among the two groups (Figure 16 and Table 10) was observed for POS, but not for the 

other seven antifungal drugs (AMB, 5FC, ISA, FLU, VOR, CAS, and MICA). Genome analyses 

indicated no mutation for the resistant-related genes ERG6, FKS1 and FKS2, but an amino 

acid exchange (I390K in M6, I378T in M7, and N306S in M17) in the azole transcriptional 

regulator PDR1 was identified. No global correlation between susceptibility data and 

source of isolation were found in this collective. 

Interestingly, M7, M6, and M17 were also all isolated from blood but only classified as LBF 

(M7, M6) or IBF (M17) (Table 10). Isolates M7 and M6 were highly resistant to azoles (FLU, 

VOR, POSA, ISA), but had echinocandin MIC values similar to CBS-138. Isolate M17 was 

partially resistant to FLU (8 µg /µl), but no differences for CAS and MICA were observed. 

Despite low MIC values, HBF isolates F15021 and F03013 were on the borderline of clinical 

resistance to MICA (0.032-0.064 µg/µl). Both LBF and IBF isolates varied with respect to 

susceptibility towards VOR, ISA, and MICA and no azole-susceptibility differences between 

IBF isolates and HBF were found. (Table 10). 

Next, we determined biofilm formation capacity in this isolate set (Figure 16). Only 3 

isolates other than controls, showed high (F03013, 0.6205 ± 0.054) or intermediate-high 

ability to form biofilms on polystyrol (F15021, 0.33 ± 0.066 and CST35, 0.2841 ± 0.045). All 

these three were obtained from blood cultures. The biofilms formed by three HBF/IBF 

isolates were 3- to 6.7-fold larger than those formed by CBS-138. Still, this was between 

1.3- to 3-fold smaller than those of the two positive controls. However, 22 isolates (22/35) 

were still significantly different (Figure 16) from the reference strain, but not at levels that 

were considered HBF. 
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Table 10. Distribution of MIC values of the eight antifungal drugs in the total number of isolates and selected multi resistant clinical isolates. 

µg/ml 
AMB 5FC c FLU VORC POS c ISA c MICAd CAS c 

aMIC 90 S/I/R aMIC 50 MIC 50 S/I/R MIC 50 MIC 50 MIC 50 MIC 50 S/I/R MIC 50 

M17b-IBF* 0.004 S >64 4 – 8 I 0.125 0.500-1 0.032-0.064 0.032-0.064 I-R 0.064-0.125 

F1019-LBF** 0.004 S 0.032-0.064 2 – 4 I 0.125 0.500-1 0.032-0.064 0.032 S 0.032-0.125 

F1822-LBF 0.004-0.008 S 0.032-0.064 8 I 0.125-0.500 0.500-1 0.064-0.250 0.008-0.032 S 0.064-0.125 

M12-LBF 0.004 S 0.032-0.064 8 I 0.064-0.250 0.500-2 0.125 0.016-0.032 S 0.064-0.125 

CST78-LBF 0.004 S 0.032 4 – 8 I 0.125 0.500-1 0.064 0.008-0.032 S 0.064-0.125 

F2229-LBF 0.004 S 0.032-0.064 4 I 0.125 1 0.064-0.250 0.032-0.064 I-R 0.064-0.125 

I1718-LBF 0.004 S 0.032 1 I 0.125-0.250 0.500-1 0.032-0.064 0.004-0.032 S 0.064-0.125 

EB0911-IBF** 0.004 S 0.032-0.064 4 – 8 I 0.032-0.125 0.500-1 0.032-0.125 0.016-0.032 S 0.125 

CST35e-HBF*** 0.004 S 0.064 8 – 16 I 0.32-1 0.500-2 0.064-0.125 0.032 S 0.032-0.125 

CST34-LBF 0.004 S 0.032-0.064 4 – 16 I 0.250-0.500 1 0.064-0.250 0.032 S 0.064-0.125 

CST109-LBF 0.004-0.032 S 0.032-0.125 4 I 0.064-0.125 0.250-0.500 0.032 0.032-0.064 I-R 0.064-0.125 

CST80-LBF 0.004 S 0.032-0.064 1 – 8 I 0.125 0.500-1 0.032-0.064 0.008-0.032 S 0.064-0.125 

M7 b-LBF 0.004 S 0.032-0.064 32-64 R 2 >8 0.250-1 0.032 S 0.064-0.125 

EB101M-LBF 0.004-0.008 S 0.032-0.125 1 – 8 I 0.125-0.250 1 0.125 0.032-0.064 I-R 0.064-0.125 

BO101S-LBF 0.004-0.008 S 0.032-0.064 4 – 8 I 0.064-0.125 0.500-1 0.032-0.064 0.008-0.064 S 0.064-0.125 

B1012S-LBF 0.004 S 0.032-0.064 1 – 4 I 0.064-0.250 0.500-1 0.032 0.032-0.064 I-R 0.032-0.125 

B1012M-LBF 0.004 S 0.032-0.064 2 – 4 I 0.125 0.500-1 0.032 0.032-0.064 I-R 0.064-0.250 

EF1237-LBF 0.004 S 0.032-0.064 1 – 8 I 0.064-0.125 0.500-1 0.032-0.064 0.0032 S 0.064-0.125 

EI1815-LBF 0.004-0.008 S 0.064-0.125 2 – 4 I 0.032-0.064 0.250-0.500 0.032-0.250 0.032-0.064 I-R 0.064-0.125 

EF1620-LBF 0.004 S 0.032-0.064 4 – 8 I 0.064-0.250 0.500-1 0.032-0.064 0.032 S 0.064-0.125 

EF0616-LBF 0.004-0.008 S 0.032-0.064 8 I 0.125-0.500 0.500-1 0.032-0.064 0.032-0.064 I-R 0.064-0.125 
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Continued from previous page 

µg/ml 
AMB 5FC c FLU VORc POS c ISA c MICAd CAS c 

aMIC 90 S/I/R MIC 50a MIC 50 S/I/R MIC 50 MIC 50 MIC 50 MIC 50 S/I/R MIC 50 

F15-LBF 0.004-0.008 S 0.032-0.064 4 – 8 I 0.125-0.250 1 0.064 0.008-0.032 S 0.064-0.125 

F11-IBF 0.004-0.008 S 0.032-0.064 1 – 4 I 0.064-0.125 0.500-1 0.032-0.064 0.032-0.064 I-R 0.064 

E1114-LBF 0.004 S 0.032-0.125 4 – 8 I 0.032-0.250 0.250-2 0.032-0.125 0.032 S 0.064-0.125 

M6 b-LBF 0.004 S 0.032-0.064 128 R 4 >8 2 – 4 0.032-0.064 I-R 0.032-0.125 

CST110-LBF 0.004 S 0.032-0.064 4 – 8 I 0.125 0.500-1 0.032-0.064 0.008-0.032 S 0.064-0.125 

EG01004-LBF 0.004 S 0.032-0.064 4 – 16 I 0.25 1-2 0.064-0.250 0.032 S 0.064-0.125 

F15021 e-HBF 0.004 S 0.032-0.064 4 – 8 I 0.125 0.500-1 0.032 0.032-0.064 I-R 0.064-0.250 

F03013 e-HBF 0.004 S 0.032 4 – 8 I 0.125 0.500-1 0.032 0.032-0.064 I-R 0.064-0.125 

BG2-LBF 0.004-0.008 S 0.032-0.064 16 I 0.125-0.250 1 0.064-0.250 0.032 S 0.064-0.125 

P35_2-LBF 0.004 S 0.032-0.064 4 – 16 I 0.25 1-2 0.064-0.250 0.032 S 0.064-0.125 

P35_3-LBF 0.004 S 0.064 4 – 16 I 0.5 1-2 0.125-0.250 0.032 S 0.064-0.125 

CBS138-LBF/IBF 0.004 S 0.032 4 I 0.064 0.5 0.032 0.016-0.032 S 0.064 
a broth microdilutions MIC 50 and MIC 90 of corresponding antifungal drugs compared with EUCAST values. b boldfaced: names and values of isolates with MIC values 
deviating from the wild type distribution breakpoint interpretations according to EUCAST breakpoints, Table v. 9.0, valid from February 2018. c no species-specific clinical 
breakpoints for 5FC, VOR, POS, ISA and CAS. d measured MIC range in most isolates (three technical repeats) encompasses both “susceptible” and “resistant” 
interpretations according EUCAST clinical breakpoint definition: S≤0.032, R>0.032 for MICA. e isolates in italics are the three HBF isolates to polystyrol. * Low biofilm-
forming isolates to polystyrol, ** IBF and HBF ***. 
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Figure 16. Biofilm formation capacity to polystyrol of thirty-three clinical isolates. Displayed are average 
biofilm formation values representing three biological with four technical replicates each. Source of isolation: 
red, blood (invasive); yellow, oral cavity; dark green, urine; bright green, respiratory tract. Colored panels 
represent the seven C. glabrata clades, described in Carreté et al., 2018 The seven clades were subsequently 
divided in group 1: I, II, III and group 2: IV, V, VI, VII. CBS-138, PEU382 (urinary), and PEU427 (respiratory 
tract) were used as controls. Asterisks represent isolates significantly different compared to CBS-138. Biofilm 
formation capacity was classified as: low biofilm formers, 0 ≤ X ≥ 0.1392; intermediate, 0.1392 ≤ X ≥ 0.2785 
and high, X ≥ 0.2785. Red and blue lines, cut-off: 0.2785 and 0.1392. 

 

When these biofilm formation data were eventually correlated with cell wall-protein 

encoding gene copy numbers from the above genome analyses, all three hyper-adherent 

isolates F03013, F15021, and CST35 showed independent duplications of the PWP4 gene, 

and deletions of the gene encoding adhesin wall protein AWP13. This puts Pwp4 into focus 

when attempting to explain the capability of these isolates to create biofilms in the 

colonization process. 
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3.1.2 Genomic changes between time-resolved C. glabrata 
isolates 

 

Next, we analyzed how genomic properties varied between isolates obtained from the 

same patient with respect to biofilm formation. Three independent genome sequenced 

isolates from a patient with acute myeloblastic leukaemia and subsequent candidiasis 

obtained from bronchiolo-alveolar secrete (SAT01, EF54001Bal), peritoneal liquid (SAT02, 

EF54001Per), and blood culture (SAT03, EF54001Blo) were again provided by the group of 

Toni Gabaldón (CRG, Barcelona). The three isolates were from in the same clade and 

separated only by a low number of SNPs. Mutations were accumulative, remarking a 

significant degree of genetic variation in the host (Carreté et al., 2019). Using this 

information as a starting point, we analyzed phenotypic properties. 

Biofilm quantification classified all three isolates as LBF (CBS-138 = 0.060 ± 0.03), however 

significant quantitative differences between the source of isolation were seen (P < 0. 05 

and P ≤ 0. 0001): EF54001Blo displayed the lowest adherence capacity compared to the 

CBS-138 (P ≤ 0.01) and both other matched isolates (Figure 17A). Indeed, EF54001Blo 

carried a non-synonymous mutation in SIR4 that may correspond with differences in 

adherence capacity and subtelomeric silencing (Iraqui et al., 2005). No differences 

regarding azoles susceptibility were found (Table 12B). Three additional pairs of isolates 

already discussed in section I1 (BO101S/EB101M, B1012S/B1012M and the P35-2/P35-3), 

did not show notable phenotypic variation (Figure 16) (Carreté et al., 2018, 2019). 
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Figure 17. C. glabrata phenotypic analyses of three clonal clinical isolates. (A) Biofilm formation capacity to 
polystyrol. Light grey bars: reference strains. Red line: CBS-138 biofilm formation capacity (A490 ~0.060), 
EF54001Bal (SAT01), EF54001Per (SAT02) and EF54001Blo (SAT03). (B) Minimal Inhibitory Concentration 
(MIC) towards seven antifungal drugs. 
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3.2 Phenotypic variability in C. glabrata clinical isolates 
correlates with variations in cell wall proteome and 
infection-relevant parameters 

 

 

Figure 18. Cell aggregation capacity of selected biofilm-forming C. glabrata clinical isolates under 
planktonic and biofilm conditions. Isolates were categorized depending on their biofilm formation capacity 
(LBF, IBF, HBF). 

 

Next, we sought to confirm the above findings in larger isolate cohorts. In a first approach 

we further characterized a set of strains which were previously selected for such purposes 

randomly, with a focus on the cell aggregation capacity (Figure 18) and biofilm formation 

capacity to polystyrol (Figure 19). Qualitative cell aggregation analyses indicated that 

isolates with LBF and IBF tended to flocculate less compared with HBF isolates, except for 

the clinical isolate PEU52 which presents an aggregation capacity comparable with the HBF 

PEU382 and PEU427. Then, the facility of the cells to form clumps apparently contribute to 

sediment faster and it was better detectable under biofilm conditions than the planktonic 

stage, (Figure 18), therefore, we proposed a possible correlation between biofilm 

formation capacity and cell aggregation observed in A. 

In order to use these strains as controls for further downstream experiments, these eight 

clinical isolates were qualitatively (Figure 19A) and quantitatively (Figure 19B) 

characterized towards biofilm formation capacity to polystyrol. These isolates were 

classified in three different categories as LBF (PEU52, PEU30), IBF-HBF (PEU235, PEU259, 
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PEU123) and HBF (PEU45, PEU382, PEU427). Based on these results, isolates PEU45, 

PEU382 and PEU427 quantitatively presented strong capacity to produce biofilms on 

polystyrol (Figure 19B) being approximately 7-fold more adherent than the CBS-138 (P ≤ 

0.0001). No statistical differences regarding polystyrol biofilm formation intra-categories 

were remarked (P ≥ 0.05). 

 

Figure 19. Biofilm formation analyses of eight selected clinical isolates + CBS-138. (A) Qualitative biofilm 
formation capacity of selected LBF (PEU30, PEU52), IBF (PEU123, PEU235, PEU259) and HBF (PEU45, PEU382, 
PEU427). Arrows indicate cell aggregates formed by the LBF PEU52 isolate removed after washing unbound 
cells out. (B) Quantitative biofilm formation analyses to polystyrol. Results shown are the average of two 
independent biological tests with four technical replicates. Red line, two-fold mean cut-off: 0.222. Red 
square, selected two HBF isolates for subsequent analyses of cell surface-related properties. 

 

CBS-138, PEU382, and PEU427 were then used to assess variations in cell sedimentation, 

antifungal susceptibility against seven major antifungal drugs and virulence properties 

between hyper-adherent isolates in vivo, in G. mellonella caterpillars. Cell surfaces 

properties analyses of these clinical isolates were detailed in Figure 19 and Figure 20.  
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Susceptibility testing against seven major antifungals drugs indicated differences between 

the two HBF and the CBS-138 for FLU, VOR, and POS (P < 0.05), but no MIC differences for 

echinocandins, ISA and 5FC were observed (Figure 19C).  

Sedimentation capacity partially correlated with cell aggregation in the PEU382 (Figure 

20A) showing that HBF isolate PEU382 (64.2%) was different compared to PEU427 (43.5%) 

and CBS-138 (36%) (P ≤ 0.01). The PEU382 settled approximately 1.80 and 1.47-fold faster 

than CBS-138 or PEU427, respectively (Figure 19B). 

With respect to virulence capacity of these selected isolates, statistically significant (P < 

0.0001) differences between the three isolates tested were indeed observed (Figure 6D). 

Nevertheless, Only the HBF PEU382 showed significant variations in virulence capacity 

compared to the reference strain CBS-138 (80%). The isolate PEU382 (100%) were more 

virulent than the PEU427 (90%) showing no G. mellonella survival at day 3 post-infection. 

 

Figure 20. Cell surface analyses of reference isolates. (A) Qualitative cell aggregation of selected PEU382 and 
PEU427 under confocal microscopy. Cell walls are detectable with CFW staining remarking chitin distribution 
along the cell wall and budding yeast cells (Gómez-Molero et al., 2015). (B) Cell sedimentation after 120 
minutes (C) MIC values of PEU382 and PEU427 against seven major antifungal drugs. Table sums up the 
average of two independent experiments. (D) Kaplan-Meier survival curve of G. mellonella infected with the 
HBF isolates PEU382 and PEU427. 

 

0

20

40

60

80

100

120

0 15 30 45 60 75 90 105 120
T (min)

CBS-138 PEU382 HBF PEU427 HBF

se
di

m
en

ta
tio

n
ca

pa
ci

ty
(%

 )  

**

pe
rc

en
ts

ur
vi

va
l(

%
)

days p.i.

PBS 1X
CBS-138
PEU382
PEU427

0 2 4 6 8
0

50

100

* 

Mantel-Cox and Breslow-Wilcoxon test **** P < 0.0001

CBS-138 PEU382 PEU427 

C D

A
B

strain acronym CBS-138 PEU382 PEU427

FLU (µg/µl) 2-4 4-8 8-16

POS (µg/µl) 0.125 0.250 0.250-0.500
VOR (µg/µl) 0.125 0.250-0.500 0.500-1

ISA (µg/µl) 0.032 0.032 0.032

CAS (µg/µl) 0.032-0.064 0.016-0.125 0.032

MICA (µg/µl) 0.016 0.016-0.032 0.016-0.125

5FC (µg/µl) 0.032-0.064 0.032 0.032-0.064

5 µm

* P ≤ 0.05



Candida glabrata 
 

58 
 

3.2.1 Biofilm formation capacity to polystyrol of a large 
C. glabrata clinical strain collection 

 

We next systematically collected C. glabrata isolates from routine diagnostic procedures, a 

process that was previously initiated and established in our laboratory (Ichsan et al., 2014). 

Isolates were grouped into nine different classes depending on the source of isolation 

(Figure 21A, B). 

 

Figure 21. C. glabrata clinical isolates stratified according to body sites of isolation and quantitative biofilm 
formation capacity to polystyrol. (A) Percentage of C. glabrata isolates per source of isolation. Isolates were 
divided into nine different specimen groups. Dark grey bars represent infrequent source of isolation and black 
and white bars correspond with frequently-collected isolates. Red line indicates the minimal number of 
clinical isolates collected per source of site. (B) Biofilm formation distribution per source of site among the 
collection of 453 clinical isolates. (C) Biofilm formation capacity to polystyrol of the entire collection (n=453). 
Isolates above the cut-off represent IBF and HBF isolates, and isolates below the cut-off correspond with LBF 
isolates. (D) Biofilm formation capacity of 115 clinical isolates selected for downstream experiments with 
respect to their ability (IBF, HBF) or incapacity (LBF) to form biofilms on polystyrol surfaces. Red line in (B-D): 
cut-off at 2-fold median adhesion values (A 490nm = 0.222) and blue line (A 490nm = 0.324). 
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In total, 453 isolates were included in the collection with the goal to accumulate at least 40 

isolates per group. Once 40 isolates were achieved, systematic inclusion of further isolates 

into that particular group was reduced, but not stopped. With the exception of category 9 

(blood culture), this was achieved after a collection time frame of ~4 years (Figure 21A, B). 

Isolates from primary sterile sites (invasive), gastrointestinal tract, respiratory tract, urine 

catheters, and urinary tract were collected more frequently compared with samples 

isolated from general devices, skin, or epithelia and blood cultures. 

3.2.2 Virulence of C. glabrata isolates in the 
Galleria mellonella model 

 

We next investigated the existence of virulence differences between isolates as a function 

of their adherence capacity. Therefore, 47 LBF and 30 HBF isolates from 8 different site 

groups were selected (Figure 21A, except from blood isolates, which were not available at 

the time) and the virulence potential assessed using G. mellonella caterpillars as a systemic 

animal infection model (Ames et al., 2017; Borghi et al., 2014; Junqueira et al., 2011). 

Within both the LBF and HBF groups, differences between individual isolates were 

observed. Out of the 47 LBF-group clinical isolates tested, only twelve (24%) had a killing 

rate less than 100% at day seven. Isolates PEU531 (50%), PEU294 (60%) and PEU523 (60%) 

had the lowest killing rate on day 7. Eight out of these twelve (Figure 22A) were isolated 

from urine catheters (PEU531, PEU523, PEU364, PEU494, PEU541, PEU29, PEU519, 

PEU527), the other four were isolated from oral cavity (PEU52), respiratory tract (PEU322), 

GI tract (PEU1274) and only one was invasive, being isolated from a punctate (PEU294). 
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Figure 22. Kaplan-Meier G. mellonella survival curves infected with 77 C. glabrata clinical isolates + CBS-138 
classified attending to their biofilm formation capacity. (A) LBF C. glabrata clinical isolates to polystyrol. (B) 
HBF clinical isolates to polystyrol. Colored lines represent isolates with survival rate equal or higher than 10% 
on day 7. Reference strain CBS-138/ATCC 2001 is highlighted in purple. Colored boldfaced u.c and o.c 
represent urine catheter and oral cavity respectively. 

 

In case of HBF isolates, seven of thirty isolates analyzed presented a killing rate lower than 

100% after a seven-days experiment. Out of these, isolates PEU386 (50%), PEU1360 (60%), 

PEU1270 (70%), and PEU542 (70%) had the lowest killing rate at day 7. Three isolates out of 

seven were isolated from oral cavity (PEU1360, PEU1270 and PEU542) and the other four 

were, respectively, isolated from urine catheter (PEU386), urinary tract (PEU400) and 

respiratory tract (PEU427 and PEU1330) (Figure 22B). Comparing both groups depending 

on their capacity to adhere to polystyrol, both categories approximately presented a 

similar percentage of isolates with a killing rate lower than 100%, (23%-25%) (Figure 22). 
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Table 11. Virulence capacity of C. glabrata isolates stratified by adherence capacity and site of isolation 

 

To conclude, intra-groups differences towards virulence capacity in C. glabrata clinical 

isolates were described. High variations in virulence capacity were found in isolates with 

LBF and HBF capacity to polystyrol. Samples isolated from urine catheters and oral cavity 

presented the highest level of survival rate in both groups independently to their capacity 

to form biofilms (Figure 22), In contrast, samples isolated from invasive candidiasis, medical 

devices, urinary tract and GI were, on average, more virulent. A partial correlation between 

non-adherence capacity and high survival rate was only remarkably observed in strains 

isolated from urine catheters (Table 11).  

Although statistical differences within the two adherence categories were observed, no 

differences were detected inter-groups (P > 0.05). No global correlation between hyper-

adherent clinical isolates and virulence capacity was significantly remarkable but a partial 

correlation was detected in strains isolated from skin, but these parameter has to be 

deeply analyzed increasing the study population. We proposed that virulence capacity is 

strain specific and partially correlated with the site of isolation. However, no apparent 

correlation between the ability to form biofilms on polystyrol and virulence capacity were 

seen amongst the 77 clinical isolates tested (P > 0.05) (Figure 23). 

 total isolates % survival LBF HBF 

origin % from 
n = 77 n % per group % n % n 

urine 
catheter 16% 12 75 75 9 25 3 

device 10% 8 0 63 5 38 3 
GI 16% 12 9 67 8 33 4 

invasive 18% 14 7 79 11 21 3 
oral cavity 9% 7 57 57 4 43 3 
respiratory 12% 9 33 44 4 56 5 

skin 4% 3 0 33 1 67 2 
urine 15% 12 8 42 5 58 7 
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Figure 23. C. glabrata correlation analyses between virulence capacity and adherence to polystyrol. Isolates 
were tested in the in vivo G. mellonella infection model. 

 

3.2.3 Variations in C. glabrata biofilm formation capacity to 
silicone elastomers 

 

On the reference material polystyrol, a total of 83% isolates had quantitative biofilm 

formation values lower than what was considered as elevated (2-fold median of the whole 

cohort 0.222), leaving only 17% of the isolates to produce strong biofilms on this material 

(Figure 21C), and this independently of the body site of isolation. Isolates from the three 

categories previously detailed were subsequently analyzed using silicone elastomers as a 

model substrate to reflect biofilm development on urine catheters, prostheses, parenteral 

nutrition or such (Trofa et al., 2008). From the collection of 453 isolates, a total of 115 were 

selected based on their high ability or disability to form biofilms on polystyrol (Figure 21D). 

Out of these, 22% formed biofilms only on silicone elastomers, 44% only on polystyrol, 19% 

on both materials, and 15% of the isolates did not adhere to either material (Figure 24). 
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Again, no correlation between body site of isolation and biofilm formation on either 

material tested was observed. The widest distribution of biofilm sizes was seen among 

isolates from urinary tract and urine catheters as compared to the other seven categories 

(Figure 21B). From this we concluded, that the formation of biofilms was independent for 

each material and only strain-dependent factors determine either phenotype. 

 

Figure 24. Correlation between biofilm formation capacity to silicone and polystyrol from 115 selected 
C. glabrata clinical isolates. (I) Isolates adherent only to silicone. (II) Isolates adherent to both materials. (III) 
Isolates that do not adhere to any material and (IV) Isolates that only formed biofilms on polystyrol. 

 

In order to further investigate biofilm formation capacity to medical devices on the genome 

level, thirty-two clinical isolates were, once more, selected to reflect these subgroups, and 

sent for subsequent genome sequencing (ongoing collaboration with Dr. Toni Gabaldón). 

The isolates were selected according to the degree of adherence to silicone and polystyrol 

as well the site of isolation. Statistical differences between biofilm formation capacity to 

both materials were confirmed (P ≤ 0.01). Within the group, nineteen of them, presented 

LBF capacity to polystyrol (abs. ≤ 0.222) and fourteen were HBF isolates to polystyrol (abs. 

≥ 0.222). Twenty-eight isolates displayed intermediate- to high adhesion capacity to 

silicone (Figure 25). 
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Figure 25. Biofilm formation capacity to abiotic surfaces of selected thirty-two C. glabrata clinical isolates + 
CBS-138. Red boldfaced line represents the cut-off mean for polystyrol (0.222) and blue line represents cut-
off mean for silicone (0.054 nm). Isolates above lines a (polystyrol) and b (silicone) were considered strong 
biofilm-forming isolates for each material. Red square, selected C. glabrata clinical isolates for MS/MS 
analyses. 

 

3.2.4 Different adhesins are present in hyper biofilm-forming 
clinical isolates  

 

It is generally accepted that at the basis of linkages needed to form biofilms cell wall 

proteins are found. We therefore characterized the cell wall proteome in selected isolates 

from our study, namely of the eight phenotypically best characterized HBF isolates PEU382 

and PEU427, PEU30, PEU45, PEU52, PEU123, PEU235, and PEU259. MS/MS analyses of 

isolated cell walls (in collaboration with Dr. Piet de Groot, Regional Center for Biomedical 

Research, CRIB, Albacete, Spain) identified a total of 35 authentic GPI-CWPs. Ninety-nine 

percent of these peptides belonged to covalently linked cell wall proteins, indicating 
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proteins (Table 13) were consistently identified in the nine isolates tested. This core 

proteome was mainly composed of proteins from the Gas/Phr (Gas 1, Gas2, Gas4 and 

Gas5) family with β-1, 3-glucanosytansferase activity. Putative structural glucan-

crosslinking proteins were Pir proteins (Pir1, Pir2, Pir3 and Pir4), the GPI-linked cell wall 

proteins Cwp 1.1, Cwp 1.2, and the mannoprotein Tir1. Pir proteins are lacking a GPI-

anchor and were observed in HBF PEU382, PEU427 and PEU45; however, Pir1 was detected 

in six isolates, excluding the hyper-adherent PEU382 and the CBS-138 (Gómez-Molero et 

al., 2015). Proteins with phospholipase activity were represented by Plb1 (not present in 

CBS-138 and PEU-52) and Plb2. Four other proteins with unknown function were also 

detected, namely proteins belonging to Ecm33 family (Ecm33 and Pst1), the GPI-CWP Ssr1 

and the Srp/Tir family protein Tir2. 

In contrast, a total of twenty GPI-CWPs proteins were not unanimously identified among 

the isolates. This variable proteome differed between the nine isolates, ranging between 

three (PEU30) and eleven (PEU45) adhesins in the cell wall (Table 12). The adhesin proteins 

expressed under biofilm conditions to abiotic materials (polystyrol), were mainly 

represented by the Epa family (Epa3, Epa6, Epa7 and Epa22) and the Awp family. Inside this 

family, twelve adhesins including Awp1, Awp2, Awp3, Awp4, Awp6 (de Groot et al., 2008; 

Kraneveld et al., 2011; Weig et al., 2004), and six newly identified proteins Awp8, Awp9, 

Awp10, Awp11, Awp12 and Awp13 (Gómez-Molero et al., 2015) were detected. From the 

ten CWPs identified here for the first time by proteomic analyses, the four proteins 

CAGL0L00227g (PEU52, PEU45), CAGL0F09273g (PEU123), CAGL0A04873g (PEU45), and 

CAGL0H00132g (PEU45) are still not classified into a protein family group. 

On a global scale, increased numbers of different adhesins wall proteins were found in IBF 

and HBF isolates as compared to the reference strains CBS-138 (six) and ATCC90876 (one) 

and the LBF PEU30 (five proteins) (Table 13), with the one exception of LBF PEU52 (five 

proteins). In the LBF PEU30, PEU52, and the controls mainly adhesins belonging to the Epa 

family (Epa3, Epa6, Epa7 and Epa22), Awp1, and the newly described CAGL0L00227g were 

observed. Among these, CAGL0L00227g, a putative GPI-protein with glycine and serine rich 

tandem repeats of unknown function was found only in the two most flocculent isolates 

PEU52 and PEU45 indicating a possible involvement in this process. In contrast, Awp family 

proteins were mostly contained in IBF and HBF isolates’ walls. Isolates with intermediate 
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and high biofilm formation capacity to polystyrol contained between six and eleven 

adhesins in the cell wall, with PEU235 and PEU382 (eight), PEU123 (nine), PEU427 (eleven), 

and PEU45 (eleven proteins) being the isolates with highest number of GPI-CWPs. 

Looking only at results from analyses under biofilm-formation conditions, isolates with low 

degree of adherence to polystyrol (isolates highly flocculent or adherent to silicone), and 

thus remaining mainly in their planktonic state, presented both lower number of adhesins 

and core proteins (e.g. Plb1, Tir1, Gas5, Tir2). In contrast, hyper-adherent C. glabrata 

isolates contained a high number of different adhesins as well as core proteins in the cell 

wall. The newly described adhesins (Awp8, Awp9, Awp10, Awp12, Awp13, CAGL0F09273g, 

CAGL0A04873g, and CAGL0H00132g) were mainly present in isolates with high adherence 

capacity. 

These results underlined that the core proteome (Table 13) is quite consistent and stable 

among C. glabrata clinical isolates, including GPI-phospholipases, putative glucan-

crosslinkers and GPI-carbohydrate-active enzymes. In contrast, the adhesin set is highly 

diverse and strain-specific, conferring a unique and exclusive cell-surface proteome, which 

positively increases the number of proteins with increasing biofilm formation capacity.  
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Table 12. Variable proteome of selected hyper biofilm-forming isolates under biofilm conditions in this study 

 

 
clinical isolates ATCC90876a CBS-138a CBS-138 b PEU52 c PEU30 c PEU123 c PEU235 c PEU259 c PEU382 b PEU427 b PEU45 c 

biofilm formation capacity polystyrol LBF LBF LBF LBF LBF IBF IBF IBF HBF HBF HBF 
biofilm formation capacity silicone LBF LBF LBF LBF HBF LBF HBF LBF IBF LBF IBF 

source of site RS RS RS oral 
cavity 

invasive urine 
catheter 

urine 
catheter 

respiratory urine respirato
ry 

device 

protein cluster and  
protein type  

Epa3/ CAGL0E06688g cluster I; GPId - + + + + + - + + + + 
Epa6/ CAGL0C00110g cluster I; GPI - + + + + + + + + + + 
Epa7/ CAGL0C05643g cluster I; GPI - - - + - + + + + + + 

Epa22/ CAGL0K00170g cluster I; GPI - - - + - - - - - - - 
Awp13/ CAGL0H10626g cluster III; GPI - - - - - - - - - + - 

Aed1 (Awp5)/ 
CAGL0K13024g cluster III; GPI - +e - - - - - - - - - 

Awp6/ CAGL0G10175g cluster IV; GPI - + + f - - - - + + + - 
Awp2/ CAGL0K00110g cluster V; GPI - + + - - - - + + + - 
Awp4/ CAGL0J11990g cluster V; GPI - + + - - + + + + + + 
Awp8/ CAGL0B00110g cluster V; GPI - - - - - + + + + + + 
Awp9/ CAGL0B05093g cluster V; GPI - - - - - + - - - + + 
Awp10/ CAGL0F00110g cluster V; GPI - - - - - + + - - + + 
Awp11/ CAGL0M00110g cluster V; GPI - - - - - - - + + - + 

Awp1/ CAGL0J02508g cluster VI; GPI + - - - + - - - - - - 
Awp3/ CAGL0J11891g cluster VI; GPI - +e - - - - - - - - - 

Awp12/ CAGL0G10219g cluster VII; GPI - - + - - + + - - + - 
CAGL0A04873g cluster III; GPI - - - - - - - - - - + 
CAGL0L00227g cluster V; GPI - - - + - - - - - - + 
CAGL0F09273g cluster V; GPI - - - - - + - - - - - 
CAGL0H00132g unclassified - - - - - - - - - - + 
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Table 13. Core proteome of selected hyper biofilm-forming isolates under biofilm conditions in this study 

clinical isolates ATCC90876 CBS-138 CBS-138 PEU52 (HF) PEU30 (S) PEU123 PEU235 PEU259 PEU382 PEU427 PEU45 
biofilm formation capacity polystyrol LBF LBF LBF LBF LBF IBF IBF IBF HBF HBF HBF 

biofilm formation capacity silicone LBF LBF LBF LBF HBF LBF HBF LBF IBF LBF IBF 
 

protein protein type                                              carbohydrate-active enzymes 
Crh1/ CAGL0G09449g GH16; GPI + + + + + + + + + + + 
Utr2/ CAGL0C02211g GH16; GPI + + + + - + - - + + + 
Gas1/ CAGL0G00286g GH72; GPI + + -f + + + + + + + + 
Gas2/ CAGL0M13849g GH72; GPI + + -f + + + + + + + + 
Gas4/ CAGL0F03883g GH72; GPI + + + + + + + + + + + 
Gas5/ CAGL0F01287g GH72; GPI + + + + - - + + + + + 
Scw4/ CAGL0G00308g GH17 + + + + + + + + + + + 

putative glucan crosslinkers 
Cwp1.1/ CAGL0F07601g Pir repeat; GPI + + + + + + + + +g +g + 
Cwp1.2/ CAGL0F07579g Pir repeat; GPI + + + + + + + + + + + 

Pir1/ CAGL0F07579g 8 Pir repeats + - - + + + + + - + + 
Pir2/ CAGL0I06182g 9 Pir repeats + + + + + + + + + + + 

Pir3/ CAGL0M08492g 9 Pir repeats + + + + + + + + + + + 
Pir4/ CAGL0I06160g 2 Pir repeats + + + + + + + + + + + 

Tir1/ CAGL0F01463g Srp1/Tip1 family; Pir 
repeat; GPI + + + - - - - - + + + 

phospholipase 
Plb1/ CAGL0J11770g GPI - - - - + + + + + + + 
Plb2/ CAGL0J11748g GPI + + + - + + + + + + + 

unknown function 
Ecm33/ CAGL0M01826g Ecm33 family; GPI + + + + + + + + + + + 

Pst1/ CAGL0E04620g Ecm33 family; GPI + + + + + + + + + + + 
Ssr1/ CAGL0H06413g GPI + + + + + + + + + + + 
Tir2/ CAGL0F01485g Srp1/Tip1 family; GPI - + + - + - - - + + + 

a data from de Groot et al., 2008 and Kraneveld et al., 2011. b data of CBS-138 and hyper-adherent PEU382 and PEU427 are published in (Gómez-Molero et al., 2015). c proteomic data from HBF and LBF 
clinical isolates identified in this study were performed in ongoing collaboration with Dr. Piet de Groot (CRIB, Albacete, Spain) (unpublished data); these isolates were initially selected and partially 
phenotypically characterized by Mr. Ichsan (UMG, Göttingen, Germany). d adhesin cluster classification was detailed by de Groot et al., 2008 and 2013. e data compiled from Groot et al., 2008 and Kraneveld 
et al., 2011, Awp3 were only identified in cell walls harvested under log. phase at 30 °C, and Aed1 was identified in stationary phase cells. f non-unique peptides identified. g positive Mascot determination of 
unique peptides presented in CWP 1.1 and CWP 1.2.  Red boldfaced, novel adhesins identified in hyper-adherent clinical isolates not described before in previous studies (Gómez-Molero et al., 2015). Blue 
boldfaced, novel adhesins not previously identified in CBS-138 were detected in LBF, IBF and HBF isolates. ND, not determined. 
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3.2.5 Hyper biofilm-forming C. glabrata clinical isolates’ 
adherence to C. albicans. 

 

Based on interaction studies performed by (Tati et al., 2016) between C. albicans and 

C. glabrata, we hypothesized a correlation between biofilm formation capacity/presence of 

cell wall adhesins and capacity to adhere to C. albicans hyphae would be present among 

our isolates. To determine the relation between the abundance of identified cell wall 

adhesins in HBF isolates and interaction with C. albicans hyphae, isolates PEU52, PEU45, 

PEU382 and PEU427 were co-incubated with GFP-tagged C. albicans SC5314 and examined 

by fluorescence microscopy.  

The attachment of C. glabrata yeast cells to C. albicans hyphae was quantified showing an 

increased number of C. glabrata yeast cells adhered to C.a-GFP-SC5314 hyphae (expressed 

as C. glabrata cells/ µm C. albicans hyphae) in the HBF clinical isolates and the highly 

flocculent strains PEU52, as compared to the two LBF reference strains (CBS-138 and 

ATCC90876) (Figure 26). C. glabrata cell aggregation capacity was significantly higher in 

PEU382 (P < 0.012, 0.068 ± 0.038), PEU427 (P ≤ 0.038, 0.068 ± 0.047) and the HF PEU52 

(P < 0.0091, 0.116 ± 0.078). A qualitative intermediate degree of interaction was described 

in the lower biofilm-forming HF-PEU52. The control PEU52 was extremely flocculent and 

tended to adhere to the edges of C. albicans hyphae and surrounding C. albicans freshly 

germinated cells as big aggregates, leaving the longer C. albicans hyphae free of C. glabrata 

cells (Figure 26, intermediate row, left panel). 

Among the selected C. glabrata clinical isolates, the HBF PEU382 (P ≤ 0.001) and PEU427 

(P ≤ 0.05) presented significantly higher adherence to C. albicans hyphae compared to the 

CBS-138 and the ATCC90876 (Figure 26). The range of C. glabrata adherence capacity to 

C. albicans hyphae was ATCC90876 > CBS-138 > PEU52 > PEU45 > PEU382 and PEU427) 

(Table 14). 
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Figure 26. C. glabrata: C. albicans-GFP-SC5314 interaction in vitro model. Left panels, fluorescence microscopy quantification of C. glabrata cells adhesion to C. albicans hyphae. DAPI (blue) and 
CY2 (green) fluorescence was used for a better differentiation of C. albicans germinated structures (bright green), hyphae forms (light cyan) and C. glabrata yeast cells (dark grey). * indicates the 
hyphae length: ATCC90876, 68.07 µm; CBS-138, 40.34 µm; PEU52, 70.21 µm; PEU45, 75.3 µm; PEU382, 48.17 µm and PEU427 55.52 µm. Right panels, cell wall adhesins identification in LBF, IBF 
and HBF clinical isolates. The variable proteome was represented based on genomic distribution previously described for the C. glabrata reference strain CBS-138 (de Groot et al., 2013). Red 
boldfaced, adhesins newly identified in this study that belongs to the Awp family (Gómez-Molero et al., 2015). Blue boldfaced, adhesins newly described not yet categorized (CAGL0L00227g, 
CAGL0A04873g and CAGL0H00132g). Adhesin proteins distribution is mainly located in subtelomeric regions. Cell wall protein genes color code corresponds with family clusters distribution 
according to the cluster classification published by de Groot et al., 2008 and 2013. Blue, cluster I; yellow, cluster III; pink, cluster IV; red, cluster V; purple, cluster VI and orange, cluster VII.  
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Table 14. Percentage of Candida spp. interaction between selected C. glabrata clinical isolates and GFP-
SC5314 C. albicans reference strain 

 

% of interaction C. g: C. a-GFP-SC5314, (n° C. glabrata yeast cells/C. albicans hyphae length /10 µm).  

 

3.2.6 C. albicans and C. glabrata mixed culture analysis  
 

Following the hypothesis, that attachment of C. glabrata to C. albicans aids C. glabrata in 

penetration into tissues and subsequently into the bloodstream (Tati et al., 2016), we 

searched medical records for further evidence. Between 2010 and 2016 we found n = 

biofilm formation silicone 

biofilm formation polystyrol 

cell aggregation - ++ +++- +

- ++++-
- +/--

CBS-138ATCC90876 PEU52 PEU382PEU427PEU45

number of adhesin CWPs 6/7 5 8111 11

- ++

- +/-+/-

1.9% 3.98% 3.94% 3.7% 6.52% 9.25%
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*** *

*P ≤ 0.05
***P ≤ 0.01
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15532 specimen processed in the microbiology lab of the University Medical Hospital in 

Göttingen from which either C. glabrata, C. albicans or both were cultured (Table 15). 

Table 15. Frequency of C. glabrata and C. albicans infections (n = 15532) per source of isolation.  

* Mixed cultures diagnosed as C. glabrata infection were represented as total % (right column). Isolates 
were categorized nine different categories. a absolute value of C. glabrata identified in mixed cultures per 
source of site. Cut-off value: 0.110 ± 0.04. C. glabrata. Bolfaced percentages represent the most frequent 
source of isolation identified as C. glabrata in mixed cultures. 

 

Out of these, 78.5% had only C. albicans, 19.0% C. glabrata, and 2.5% contained both. The 

highest number of mixed cultures was obtained from the respiratory tract (33.0%), while 

the lowest number was obtained from blood cultures (Figure 27). Next, we wanted to 

corroborate if the frequency of mixed cultures was increased relative to the total number 

of C. glabrata findings in those specimen groups, where C. glabrata was expected not to 

penetrate without the help of C. albicans (blood cultures and invasive isolates). However, 

this was not the case. No statistical differences between the source of isolation and the 

presence of C. glabrata infections in mixed cultures were found (P >0.05) (Table 15). 

source C. albicans C. glabrata mixed ratioa % C. glabrata in mixed 
culturesb 

invasive 1805 415 53 0.139 11% 
GI 500 245 55 0.144 18% 

device 884 213 33 0.086 13% 
skin 1720 227 19 0.049 8% 

respiratory 3597 818 128 0.335 14% 
oral 1339 182 37 0.097 17% 

urine catheter 840 318 26 0.068 8% 
urine 1084 398 21 0.055 5% 

blood culture 423 143 9 0.023 6% 
total 12192 2959 381  11% 
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Table 16. C.  glabrata blood cultures identification in CHROMagar 

a CBS-138 and SC5314 were used as C. glabrata and C. albicans reference strains, respectively. Bc-395 and 
bc-494 were used as positive control with mixed infections previously identified. 

 

  

Figure 27. General distribution of single and mixed Candida spp. infections caused by C. albicans and 
C. glabrata. Red squares, mixed infections identified in cultures isolated from invasive infections (e.g. sterile 
primary sites) and blood cultures. 
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There is the possibility that C. albicans was simply not detected in plates inoculated from 

blood cultures due to overgrowth of C. glabrata in the liquid culture. For example, when 

we spiked C. glabrata into blood culture bottles (CBS-138) were detected after 

approximately 20h. Meanwhile, C. albicans (SC5314) was positively determined around 17 

h. after incubation. We therefore took 36 blood cultures plus two reference strains and 

two mixed cultures (controls) which had been stored for quality control purposes and 

plated these on selective chromogenic agar (CHROMagar, Oxoid) for quick determination 

of C. albicans (green) and C. glabrata (red). All thirty-six blood cultures tested were 

identified as C. glabrata (Table 16) with no apparent identification of C. albicans green 

colonies in the samples (Figure 28A). To increase the accuracy of mixed cultures 

determination, selected bottles were investigated using direct PNA-FISH (Figure 28B). 

Indeed, the specimen C. g-bc-PEU1038, previously diagnosed as C. glabrata infection 

(Figure 28B) was the only blood cultures identified as a mixed culture. However, blood 

culture bottles from isolates C. g-bc-PEU1035, C. g-bc-PEU1036, C. g-bc-PEU1037 and C. g-

bc-PEU1039 were only found to contain as C. glabrata infections. In summary, no 

evidence of remarkably increased identification of C. albicans in mixed cultures was 

observed and remarkable differences between the origin of the culture and the presence 

of C. glabrata is evident, but nevertheless the percentage of finding C. glabrata in cultures 

is slightly more frequent in samples isolated primary sources, gastrointestinal tract, 

medical devices, respiratory tract and oral cavity than variations between (Table 15). 

 

 



Candida glabrata 
 

75 
 

  

Figure 28. C. albicans and C. glabrata identification from infected-patient´s blood cultures. (A) CHROMagar 
species determination. Green colonies C. albicans, dark red colonies, C. glabrata. (B) Fluorescence in-situ 
hybridization (PNA-FISH). Fluoresceine stains C. albicans yeast cells and rodamine detects C. glabrata.  
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3.3 Pheno- and genotypic analyses of Candida parapsilosis 
clinical isolates 

3.3.1 Establishing a classification reference 
 

Candida parapsilosis’ morphology-switching is proposed to be involved in this organism 

adherence and pathogenicity processes. In order to analyze C. parapsilosis phenotypic and 

genotypic divergences within a large clinical strain collection, we initially classified 

different colony morphotypes according to the existing nomenclature proposed in the 

literature (Enger et al., 2001; Laffey and Butler, 2005; Lott et al., 1993). 

 

 

Figure 29. Morphogenic switching in a C. parapsilosis non-biofilm forming clinical isolate (PEU582). Left, 
colony morphology on SAB agar. Right, morphotypic switch on SAB´s agar and exponential phase liquid 
cultures showing frequency changes between smooth and crepe I morphotypes. The phenotypic switch from 
“smooth-glossy” to “crepe I” was 4 times faster (2X10-1) than the switch observed from “crepe I “to 
“smooth-glossy”, (5X10-2). 

 

In the example from our collection shown here (Figure 29A), the phenotype smooth was 

comparable with those described by (Lott et al., 1993) and (Nosek et al., 2009), presenting 

initially as round glossy colonies with delimited border. The final crepe colony morphology 

(clearly defined from day 4 of incubation on) presented an irregular colony border and 

smooth

mixed
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matte surface with “crepe” wrinkles, but no concentric distribution. Smooth colony 

morphotypes correlate with round yeast cells in liquid YPD media; in contrast, crepe 

colony morphologies develop long pseudohyphae (Figure 29B).  

While working with increasing numbers clinical C. parapsilosis isolates and prolonged 

incubation times, numerous intermediate and novel colony forms were observed. 

Therefore, a new classification key chart was developed, incorporating colony border, 

surface color, as well as microcolony shape on agar- and cell shape in liquid cultures. 

Microcolony morphology on Corn meal agar (Figure 30B) varied between defined round 

structures (regular) and filamentous microcolonies (spider). Biofilm formation capacity 

and cell aggregation were classified as “low”, “intermediate” and “high”, (Figure 30B). Cell 

shape morphology under exponential phase growth conditions were grouped into three 

different categories prevailing yeast cells (0), elongated pseudohyphae (2) or mixed 

cultures (1) including a combination of yeast and/or pseudohyphae development (Figure 

30C). 

Additionally, agar invasion capacity of each colony type (A) was ranked between “low” (1 

and 2) with no clear agar imprint detectable after flushing the plates with water, 

“medium” (3 and 4) with slightly colony border imprints on agar, and “high” with 

detectable concentric rings on the agar (5) as well as occasional resistance of the colony to 

removal with flushing water(6), a feature used to further discriminate “crepe I” and “crepe 

II” colonies (Figure 30D).  

In total this resulted in definition of eleven different observed colony types of varying 

frequency during this work (Figure 31). 
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Figure 30. General characterization of C. parapsilosis cell-related properties. (A) Microcolony morphology 
on Corn meal agar: (R) regular, (S) spider. (B) Biofilm formation capacity to polystyrol: low (0), intermediate 
(1), high (2). (C) Cell shape morphologies associated with colony types: yeast (0), mixed (1), pseudohyphae 
(2). (D) Agar invasion capacity on SAB´s and Phloxine B agar ranked as: low (1), low-medium (2), medium (3), 
medium-high (4), high (5), very high (6). 
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Figure 31. Classification references of C. parapsilosis colony morphologies on SAB´s and Phloxine B agar 
produced in this work. (A) Major morphotypes: smooth-glossy (s-g), smooth-matte (s-m), smooth-
concentric (s-cn), wrinkled (wr), crepe I and II (cr). (B) Infrequent colony phenotypes: concentric (cn), 
concentric-crepe (cn-cr), concentric-crater (cn-crt), crater (crt), derby (d) and snowball (sn). Left row: colony 
morphology after 96 h. incubation. Right row: agar imprinting on SAB´s and YPD + Phloxine B agar after 
washing colonies with running water. 
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Table 17. C. parapsilosis colonies morphology identification key chart. 

morphotype colony 
border 

colony color on agar microcolony 
cell shape 

YPD Phloxine B Corn meal 

smooth-glossy (s-g) regular cream, bright bright pink regular yeast 

smooth-matte (s-m) regular cream, matte matte pink regular yeast 

smooth-concentric (s-cn) regular cream, matte magenta regular yeast 

derby (d) regular cream, matte magenta regular yeast 

snowball (sn) regular cream, matte pink velvet regular mixed 

wrinkled (wr) partially 
irregular cream, matte magenta spider mixed 

crater (crt) irregular cream /brown, matte magenta spider mixed 

concentric-crater (cn-crt) irregular cream, matte magenta spider mixed 

concentric-crepe (cn-cr) irregular cream, matte magenta spider mixed 

concentric (cn) irregular cream, matte magenta spider pseudohyphae 

crepe (I and II) irregular cream/brown, matte magenta spider mixed 

 

3.4 Candida parapsilosis polymorphism drives differences 
at morphological and genotypic level in isolates from a 
single patient 

 

After being confronted with diagnostic agar plates presenting C. parapsilosis with two 

different colony morphologies cultured from a single specimen, we investigated to what 

degree these phenotypic differences correlated with clinically relevant features. Several 

specimens from the same patient were cultured in the diagnostic laboratory, and yeast 

growth was obtained (in chronological order) from bronchial secrete, blood culture (BC), 

nose-oral swab, stool and central venous catheter (CVC). Samples from BC and swabs 

were collected for following studies and identified as C. parapsilosis sensu stricto. Early 

undifferentiated fungal growth from the bronchial secrete and the isolate from the CVC 

sample was not available for subsequent analyses; these values were taken from 

diagnostic facilities. Independent morphotypes were isolated from the specimen (Figure 

32). 
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Figure 32. Colony morphology in routine culture. (A) Mixed C. parapsilosis growth from original routine 
plates from (left) nose swab (specimen 1701), (middle) throat swab (specimen 1702) and (right) blood 
culture (specimen 1700). (B) Isolated morphotypes from nose swab (B, left): nsc-1701 (nose swab, smooth 
colony) and ncc-1701 (nose swab, crepe colony), from throat swab.(B, middle): tsc-1702 (throat swab, 
smooth colony) and tcc-1702 (throat swab, crepe colony) and bsc-1700 (blood smooth colony). All cultures 
were isolated on Sabouraud´s agar and Columbia blood agar plates (bsc-1700). 

 

One nasal and one oropharyngeal swab each grew colonies of two different morphotypes: 

cream, matte, round colonies (“smooth-matte” type) and irregular, asymmetrical, cream 

matte colonies (“crepe I” type); the BC isolate presented single colony morphology 

(smooth-glossy). As species-identification routine diagnosis, all stable morphotypes from 

BC and swabs were re-identified as C. parapsilosis by MALDI-TOF (see legend to Figure 32 

for isolate naming). 

After 96 h. incubation, three stable colony-types (smooth, crepe, and concentric) were 

produced from the five clinical isolates. Isolates from nasal and tracheal swabs appeared 

as both smooth and crepe I (s, cr-I) morphotype on Phloxine B agar (Figure 33, top row). 

Meanwhile, the isolate from blood culture (bsc-1700) only produced a smooth colony 
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type. The isolated swab samples reproducibly had two independent morphotypes (s-m 

and cr I) per source of isolation.  

The five reference strains used at this point were CDC 317 (s-g), CBS 6318 (s-g), GA-1 (s-

m), ATCC 22019 (cn-cr) and CBS 1954 (cr I). Three of the five reference strains produced 

only one representative phenotype per isolate, while CBS 1954 and ATCC 22019 regularly 

switched between morphotypes. The major colony-types in those were crepe (cr I) and 

concentric-crepe (cn-cr), respectively. Strain ATCC 22019 also switched to rough colony 

morphotype (~90%) and several infrequent smooth morphotypes (~10%, not shown). In 

case of the reference strain CBS 1954, the percentage of rough (cr I) morphotype was 

~80% and smooth colonies ~20%, (Figure 33, top row). Microscopically, cells from smooth 

(s) colonies appeared round and regular shaped. In contrast, concentric (cn) and crepe (cr-

I, cr-II) colony morphotypes correlated with clearly elongated pseudohyphal cells in 

isolates ATCC 22019-cn-cr and CBS 1954-cr-I, respectively. CBS 1954 also produced the 

strongest and most evident crepe colony morphotype, fully devoid of yeast-form cells. In 

contrast, the clinical isolates ncc-1701 and tcc-1702 produced a combination of round-

shaped regular cells and incipient pseudohyphae (Figure 33, bottom row). 
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Figure 33. Morphological variations between clinical morphotypes. Top row: colony morphology on 
Phloxine B agar. Bottom row: cell shape and cell aggregation at 100X magnification in phase-contrast. 

 

To analyze variations on adhesion-related properties, we tested the biofilm formation 

capacity to polystyrol, the cellular aggregation and agar invasion capacity of each 

morphotype. There was no strict correlation between biofilm formation capacity to 

polystyrol and colony morphotype in the five reference strains. However, among the 

patient isolates, only the two crepe clinical isolates (ncc-1701 and tcc-1702) showed a 

significantly higher capacity to form biofilms on non-charged polystyrol (P < 0.001), on 

average 50-fold higher than the control. The ranking of biofilm formation capacity to 

polystyrol (from least to highest capacity) was: nsc-1701 < CDC 317 < tsc-1702 < bsc-1700 

< GA-1 < CBS 6318 < CBS 1954 < ATCC 22019 < ncc-1701 and tcc-1702 (Figure 34A). In 

addition, cell aggregation correlated with morphology, and thereby with biofilm formation 

capacity. Only the two isolates with hyperbiofilm-forming ability (ncc-1701 and tcc-1702) 
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also developed aggregates in YPD growth cultures. The isolate ncc-1701 produced 

intermediate aggregates; meanwhile the tcc-1702 developed better-defined clumps in 

liquid cultures. The two reference strains with concentric and crepe I morphotypes (ATCC 

22019, CBS 1954) did not form aggregates in liquid media, which also correlated with an 

absence of biofilm formation capacity to plastic materials (Figure 34B). 

 

 

Figure 34. Biofilm formation-related phenotypes. Top row: representative colony morphologies used below 
(A-C). (A) Biofilm-formation capacity on polystyrol. The values are the means ± standard deviations (error 
bars) of each isolate. Each experiment is the average of the absorbance of four technical measurements. 
Isolates were statistically compared with the CDC 317 using independent two-tail paired student T–test. The 
asterisks represent the 95% (α = 0.05) confidence interval of the analyses. (B) Cell aggregation tests. Arrows 
indicate clumps in hyperbiofilm-forming isolates ncc-1701 and tcc-1702. (C) Agar invasion. Top row: colony 
growth on Phloxine B agar. Bottom row: agar invasion after washing the plates with running water. Arrows 
indicate partial agar imprinting corresponding with low to medium agar invasiveness. (L), low; (L-M), low-
medium; (M-H), medium-high, (V-H), very-high. 
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Finally, isolates with crepe and concentric morphotypes invaded the agar better than 

smooth colony type. Our results showed a moderately increased agar invasion in crepe 

and concentric morphotypes as compared to smooth morphologies (Figure 34C). The 

strongest invasiveness was detected in CBS 1954, ncc-1701, and tcc-1702. A positive 

correlation between the three phenotypic properties (biofilm formation, aggregate 

formation, and invasiveness) was only evident in the two crepe clinical isolates.  

Antifungal susceptibility testing showed that the reference strain CDC 317 (smooth) was 

intermediate against FLU (4 µg/ml), as previously reported (Grossman et al., 2015). There 

were only slight differences between patient isolates: MIC values towards azoles in the 

ranged between 0.016 and 0.125 µg/ml, in case of Echinocandins the MIC values varied 

between 0.250 µg/ml for CAS and 2 µg/ml for MICA (Table 18). Variations in 5FC 

susceptibility were apparently influenced by morphotype variability and source of 

isolation (bsc-1700: 0.032 µg/µl and ncc-1701 and tcc-1702: 0.064-0.125 µg/µl, Table 18). 

All patient isolates were susceptible to the antifungal drugs tested. Only CAS MIC values 

for concentric (cn) morphotype in the control strain ATCC 22019 was slightly lower than 

values for smooth (s) and crepe (cr) colony phenotypes of the other isolates. 

 



Candida parapsilosis 
 

86 
 

Table 18. Summary of clinically relevant properties in C. parapsilosis colony morphotypes  

a morphology according to (Laffey and Butler, 2005); b obtained with YOTL-database (Bernhard et al., 2014) by on-target-lysis; c biofilm formation capacity to 
polystyrol. CV absorbance measured at 490 nm. Cut-off value = 0.0771; d all EUCAST broth microdilution against FLU (Fluconazole), POS (Posaconazole), VOR 
(Voriconazole), CAS (Caspofungin), MICA (Micafungin) and 5FC (5-Fluorocytosine).  

strain acronym CDC 317 CBS 6318
e
 GA-1 ATCC 22019 CBS 1954 bsc-1700 nsc-1701 tsc-1702 ncc-1701 tcc-1702 CVC 

specimen number ATCC®-MYA-
4646™ ATCC®-7330™ SZMC 8110 

CBS 604, 
ATCC®-
28474™ 

PEU-1700 PEU-1701 PEU-1702 PEU-1701 PEU-1702 not applicable 
c
 

DSMZ-5784 day 16 day 20 day 20 day 20 day 20 day 31 

specimen health care 
worker´s hand skin human blood case of sprue environmental blood culture nose swab throat swab nose swab throat swab central venous 

catheter 
colony 

morphology on 
SAB-GC agar

 a
 

smooth smooth smooth concentric crepe smooth smooth smooth crepe crepe not recorded 

MALDI Biotyper 
identification C. p C. p C. p C. p C. p C. p C. p C. p C. p C. p C. p 

log score
 b
 2.09 2.19 2.09 2.05 2.03 2.07 2.02 2.07 2.05 2.10 2.20 

biofilm formation 
capacity

c
 

0.00798 ± 
0.00622 

0.04450 ± 
0.01300 

0.03265 ± 
0.0055 

0.06715 ± 
0.0134 

0.05765 ± 
0.01285 

0.02275 ± 
0.00673 

0.00285 ± 
0.00535 

0.00890 ± 
0.00540 

0.26925 ± 
0.0181 

0.29830 ± 
0.0139 n.d

e
 

drug susceptibility
d
 

FLU (µg/µl) 4 1 0.500 1 1 0.500 0.500 0.500 0.500 0.250-1 S 

POS (µg/µl) 0.032 0.032 0.032 0.032-0.064 0.032 0.032 0.032-0.064 0.032 0.016-0.032 0.032 n.d. 

VOR (µg/µl) 0.125 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 S 

CAS (µg/µl) 1 0.500 1 0.500 0.500 0.500 0.250-0.500 0.250-0.500 0.500 0.25-1 n.d. 

MICA (µg/µl) 2 2 2 1-2 2 2 1-2 1-2 1-2 1-2 S 

5FC (µg/µl) 0.032 0.032 0.125 0.250 0.125 0.032 0.032-0.064 0.032-0.064  0.064-0.125 0.064-0.125 n.d. 
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3.4.1 The five clinical isolates are distributed into three 
different genetic categories 

 

Morphologically, the three smooth isolates were highly similar, differing only in bsc-1700’s 

slightly increased biofilm formation capacity to polystyrol. Among the non-smooth types, 

aggregation of tcc-1702 was stronger than in ncc-1701. Despite the notable variation in 

their adhesion phenotypes, our hypothesis was that they represented stable forms of the 

same clonal population, and sought to confirm this by determining the karyotypic profile 

and genetic patterns. 

Electrophoretic karyotyping differentiates eight somatic and the mitochondrial 

chromosome in the reference strain CDC 317 (Figure 35A). All were also detectable in the 

ten samples analyzed. However, differences in chromosome sizes were observed among 

patient isolates, mainly among the intermediate-sized (1-2 mbp) chromosomes with high 

diversity, potentially conferring to Chr. 3, 4, and 8. Low biofilm-forming isolates, nsc-1701 

and tsc-1702 presented similar karyotypic pattern, visually close to tcc-1702. Conversely, 

the crepe isolate ncc-1701 resembled the smooth isolate bsc-1700, although they were 

not identical. Therefore, unexpectedly, variation between patient isolates was evident, 

resembling the variation range also seen between independent reference strains. 

Since karyotyping results above were inconclusive, we next conducted whole genome 

analyses in collaboration with Dr. Toni Gabaldón Estevan (CRG, Barcelona, Spain) to clarify 

the genomic diversity. Whole genome sequencing indicated 3846 single nucleotide 

polymorphisms (SNPs) between the five strains compared to the CDC 317 (Figure 35B). 

The blood culture isolate bsc-1700 and nsc-1701 shared > 98.1 % SNPs (Table 19), 

indicating high similarity between both isolates. Meanwhile, the strain tsc-1702 was a 

genetic outsider (45-68% shared SNPs with the other groups). Similarly, the two hyper 

biofilm-forming crepe isolates ncc-1701 and tcc-1702 shared 99.2% of SNPs. In contrast, 

the number of shared SNPs between the bsc-1700 and the two crepe clinical isolates were 

less than 14%-15%. The two smooth strains isolated from swabs (nsc-1701 and tsc-1702) 
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shared close to 65% of SNPs. A PCA-based population analysis (Carreté et al., 2018) 

including previously genome sequenced control strains (Pryszcz et al., 2013) suggested a 

genetic distance between the three clusters similar to the independent reference strains. 

Table 19. Percentage of Single Nucleotides Polymorphisms (SNPs) similarity between five clinical isolates  

(%) SNPs shared between clinical isolates 

  bsc-1700 nsc-1701 tsc-1702 ncc-1701 tcc-1702 

 bsc-1700 NA 98.1 68.2 14.6 14.8 

 nsc-1701 98.1 NA 69.2 15.2 15.1 

 tsc-1702 68.2 69.2 NA 45.4 45.4 

 ncc-1701 14.6 15.2 45.4 NA 99.2 

 tcc-1702 14.8 15.1 45.4 99.2 NA 

 

The percentage of shared SNPs between the bsc-1700 and nsc-1701 (99.2%) pointed to a 

close distance between both isolates. This was also indicated by a principal component 

analysis (Figure 35C) which placed bsc-1700 and nsc-1701 near clonality, as well as ncc-

1701 and tcc-1702. Finally, tsc-1702 was found to be an independent genetic outlier. 

 

 

Figure 35. Genome sequencing analyses. Strain typing and genome sequencing. (A) Pulse-field gel 
electrophoresis suggests the isolates are not clonal. (B) Numbers of unique and shared SNPs between the 5 
patient isolates and subsequent (C) PCA cluster analysis of the SNPome placing the 5 patient isolates (blue) 
into the context of other genome-sequenced strains (red), relative to CDC 317, indicates the presence of 3 
independent clonal groups in the patient simultaneously. 
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3.4.2 Isolates strongly vary in their adhesion genes 
 

To further explain the phenotypic properties, C. parapsilosis adhesin-encoding genes were 

analyzed to see if modification in gene-size and gene-presence varied between clinical 

morphotypes. Based on the previous analyses (3.4.1) C. parapsilosis clinical isolates 

differed in the number of SNPs shared and the morphotype they presented (Figure 35). 

Divergences on gene-size indicated possible deletions, duplications and recombination 

events involving seven adhesins. Isolates bsc-1700, nsc-1701 and tsc-1702 presented a 

similar tandem repeats pattern distribution compared with the two crepe reference 

strains (ncc-1701 and tcc-1702). Based on SNPs shared between clinical morphotypes, we 

remarked variations in the low complexity domain for CPAR2_500600, CPAR2_404780, 

CPAR2_404790, CPAR2_404800, CPAR2_403510 and CPAR2_403520. In contrast, no clear 

divergences in the agglutinin-like sequence ALS3 were observed (Figure 36A). Deletions 

events involved CPAR2_500660 (2.2-2.7 Kb), CPAR2_404790 (2.5-4 Kb) and CPAR2_404780 

(2.25-2.75 Kb) in the ncc-1701 and tcc-1702. Another possible deletion (reduced read 

numbers) event in the ALS7 was observed in bsc-1700, nsc-1701 and tsc-1702. Nucleotide 

duplications (increase read numbers) in five adhesin-encoding genes were identified and 

detailed in Figure 36A. Increased number of SNPs (green pannel, Figure 36A) were 

identified in the two crepe morphotypes in the gene encoding Hwp1 CWP protein. 

Genomic DNA amplification of selected CPAR2_404790, CPAR2_404800 (ALS7) and 

CPAR2_403520 (HWP1) confirms gene-size variations between smooth and crepe 

morphotypes (Figure 36C) and most strikingly in the HWP1. 

To sum up, we associated morphotypic switch differences and variations in the degree of 

biofilm formation capacity to polysytyrol, with modifications in the tandem repeats copy 

number of seven adhesin-encoding genes (Figure 36). Correlation between the number of 

SNPs shared within smooth and crepe isolates positively correlates with deletion, 

duplication events in these adhesin genes. Variations in adhesin encoding-genes 

CPAR2_500660, CPAR2_404780, CPAR2_404790, CPAR2_404800, CPAR2_403510 and 
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CPAR2_403520 were observed between smooth (bsc-1700, nsc-1701 and tsc-1702) and 

crepe morphotypes (ncc-1701 and tcc-1702), (Figure 36A). This large plasticity in gene 

sequence may induced variations in adhesin´s tandem repeats region length (Figure 36B). 

No remarkable genomic variations were observed in isolates displaying the same 

morphotypic switch, independently of the site of isolation. 

 

Figure 36. C. parapsilosis adhesin-encoding genes analyses. (A) Genome sequences of seven main adhesin-
encoding genes of five different C. parapsilosis isolates. Raw Illumina reads mapped onto the CDC 317 
reference sequence and counted (grey). SNPs are indicated by read, green, blue, or orange vertical dashes. 
Yellow boxes: increased read numbers, indicating repeat number extension; pink boxes: reduced read 
numbers indicating repeat number reduction. Colored arrows below sequence alignments, tandem repeat 
region (TRRs). (B) Selected PCR amplicons of repetitive regions in CPAR2_404790, CAPR2_ 404800, and 
HWP1 confirm the different lengths of the repeat regions. 
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3.5 Candida parapsilosis phenotypic cell surface variations 
correlate with differences at a proteomic level among 
isolates from a clinical strain collection 

 

Based on the observations described above for a small set of isolates, we next created and 

characterized a collection of clinical C. parapsilosis isolates arising from the routine 

diagnostic laboratory. Examples of cultures with multiple phenotypes isolated on SAB´s 

agar (s-cn-cr) are shown in Figure 37. 

 

 

Figure 37. Colony morphology on SAB agar. Mixed cultures present (cr) crepe morphotype; (cn) concentric 
morphotype and (s) smooth colonies after 96 h. incubation time. 

 

In total, 215 isolates were collected and characterized over the study period (2015-2017). 

Biofilm formation capacity on polystyrol surfaces were quantified and the isolates 

stratified into nine different groups according on the isolates’ body site of isolation. The 

distribution of the clinical samples depending on the origin of isolation is detailed in Figure 

38A. The majority of the isolates received from the diagnostic laboratory were obtained 

from ear-nose swabs (30%) and isolates from gastrointestinal tract or oral cavity were the 

least frequent (~ 2.5-3 %). 



Candida parapsilosis 
 

92 
 

 

Figure 38. C. parapsilosis clinical isolates distribution. (A) Isolates classified according to the body site of 
isolation (n= 215). Green and red lines indicate the two-fold median cut-off. (B) Isolates stratified according 
to biofilm formation capacity to polystyrol. Three groups selected for subsequent experiments (red boxes): 
LBF (0.054-0.080), IBF (0.153-0.370) and HBF (0.445-1.360). Intersection of black lines: approximated cut-off. 

 

Based on the degree of biofilm formation capacity to polystyrol, three isolate groups were 

selected for subsequent analyses: 39 LBF, 39 IBF and 39 HBF (Figure 38B), including two 

reference strains (CDC 317, ATCC 22019) to a total of 119 isolates. Predominant 

morphotypes in the collection were determined to estimate the correlation between 

adherence capacity to polystyrol, colony morphology and agar invasiveness along ten days 

(Figure 39). 
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Figure 39. Clinical isolates biofilm formation capacity. (A) Colony morphology and (B) agar invasion on YPD 
+ Phloxine B agar, tested by scraping with inoculation loop; both stratified by adhesion capacity. Distribution 
of colony morphotypes in a ten days experiment: isolates with low biofilm formation capacity (LBF, left), 
intermediate biofilm formation capacity (IBF, middle) and high biofilm formation capacity (HBF, right). 
Colony morphotype classification in (A): smooth-glossy (dark blue), smooth-matte (blue), smooth-concentric 
(purple), wrinkled (yellow), crepe I/II (orange), mixed snowball/wrinkled/crepe (yellow-orange) and mixed 
morphotypes (other). Color code (grayscale) in (B) represents invasiveness classification in six defined 
categories: low, low-medium, medium, medium-high, high and very high. 

 

In the LBF group, all 39 isolates produced smooth (s-g, s-m and s-cn) phenotype after 96 h 
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increasing frequency up to day 10 (7.5% and 2.5%, respectively on day 10). The smooth-

glossy phenotype (s-g) was the most prevalent morphotype among LBF isolates, 

decreasing in frequency by 30% along five days in favour of non-smooth (10%) and mixed 

morphotypes (20%) until day 10. 

In the IBF group, smooth-matte was the most frequent (68.2%) colony morphology at day 

4 (96 h), decreasing to 37.5% on day 10, surpassed by wrinkled or crepe (up to 40%). 

In contrast, HBF isolates mainly produced wrinkled and crepe morphotypes (25% and 

47.5%, respectively) with a decreased number of smooth strains (17.5%) right from the 

beginning on day 4. The majority of the isolates which display more than one morphotype 

presented a final crepe morphology at day 10. 

Using two different strategies to test agar invasion capacity on Phloxine B we found that 

the LBF isolates tended to be less agar invasive than the IBF and HBF isolates. Scoring agar 

invasiveness along ten days with scraping a small part of the growth off the agar (strategy 

1) indicated that approximately a 95% of the LBF isolates presented only low-medium 

invasion capacity. Almost 40% of the IBF isolates developed medium agar invasion 

capacity, and the HBF group isolates displayed a wider range of invasion intensity, 

predominantly the medium-high agar invasion category (~85%) (Figure 39B). 

In accordance with the values described above (Figure 39B); the low and low-medium (cat. 

1 and 2) invasion intensity in the LBF isolates was evident (37/39) when plates were 

washed on the final day under running water (strategy 2). In case of IBF isolates, 67.5% of 

the isolates previously classified as medium (cat. 3) were reclassified as medium-high (cat. 

4) agar invaders, as imprints were observable here. Among HBF isolates close to ~45% of 

the strains were placed in subgroup 4 and another 45%, were ranked as high (cat. 5) or 

super high (cat. 6) as colonies remained intact after washing (Figure 40). In summary, 

there was a clear correlation between the capacity to form biofilms on abiotic surfaces, 

colony morphology, and the ability to invade into agar. 
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Figure 40. Correlation between agar invasion and biofilm formation capacity. Final scoring on day 10 in an 
agar invasion experiment (see Figure 39), removing the cells off the agar with running water instead of 
scraping with inoculation loop. Left, LBF (low biofilm-forming isolates); middle, IBF (intermediate biofilm-
forming isolates); right, HBF (high biofilm-forming isolates). Color code (grayscale) represents invasiveness 
classification in six defined categories (see Figure 30D). 

 

3.5.1 C. parapsilosis isolates present variations in antifungal 
susceptibility based on the biofilm formation capacity 
to abiotic surfaces 

 

The 117 selected and 2 reference strains of the clinical collection were tested for 
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317. Gene sequencing analyses of ERG11 and MRR1 for the selected FLU resistant isolates 

(4-16 µg/µl) with intermediate biofilm formation capacity were performed and no point 

mutation was remarked. Only in PEU651 MRR1 contained non-synonymous SNPs (leading 

to amino acid exchanges. Since we could not exclude a potential influence of such 

mutations, PEU651 data was excluded from further analyses. 

To assess the impact of morphology on drug susceptibility, the inoculum was prepared 

once after 24h and once after 8 days of maturation on agar, excluding the four resistant 

isolates mentioned above. IBF isolates showed a wider morphotypic variability; in HBF 

isolates the crepe I and II morphotypes (~75%) prevailed. The range of biofilm formation 

capacity to polystyrol of these isolates varied between 0.183 (LBF) to 0.348 (HBF), where 

the latter is 14-fold more adherent than the reference strain CDC 317. 

After 24 h. pre-culture, LBF and HBF isolate groups differed slightly, but with statistically 

significance for FLU and POS susceptibility (2-3 log2-fold differences). Also in case of 

echinocandins, differences between LBF-HBF against CAS were found. No apparent 

differences for either VOR or AMB were seen (Figure 41A). The analysis after eight days of 

colony development indicated significant variations only between IBF-HBF and LBF-HBF 

towards FLU and POS but not for VOR. No differences for CAS within the three groups 

were observed. 

In summary, this showed that susceptibility rates of C. parapsilosis clinical isolates for two 

azoles (FLU and POS) and two type of echinocandin (CAS and MICA) were slightly 

influenced by morphotype and biofilm-forming capacity (Figure 41). However, in none of 

the cases, the observed MIC differences resulted in a major change in clinical classification 

(e.g. from “S” to “R”)  
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Figure 41. Drug susceptibility test of one hundred seventeen clinical isolates + two reference strains (CDC 317, ATCC 22019). Biofilm formation-phenotype 
dependent susceptibility testing where inoculum was prepared from cells after 1 d growth (young colonies) on SDA (grey boxes) and after 8 d growth (mature 
colonies), (white boxes) of the identical plates, when colonies had fully developed morphologies. Red lines: EUCAST clinical breakpoint (R>); green lines, 
susceptible cut-off (S ≤). MIC values were calculated after 24 h. The results are the average of two independent experiments. *, Welch T-test with unequal 
variances, α = 0.05/2. 
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3.5.2 Morphotype generally predetermines other 
phenotypic properties in C. parapsilosis clinical isolates  

 

To investigate C. parapsilosis agar invasion capacity and its correlation with morphotype 

switching capacity as well as cell-morphology two controls and seven isolates from the 

collection were selected to reflect a range of morphotypic variations (Figure 42). Three of 

the strains (CDC 317, PEU501, and PEU651) produced only the smooth morphotype. Two 

isolates (PEU495 and PEU582) produced both smooth and crepe morphotypes. Isolates 

PEU486 and PEU586 showed one major morphotype (crepe), but with low frequency also 

smooth or concentric colony types. Finally, isolates PEU496 and the ATCC 22019 reference 

strain frequently switched between four colony morphologies each, the crepe morphology 

being most frequent. When linages derived from each isolates’ morphology were tested 

for their ability to form biofilms on polystyrol (Figure 42B), large differences were still 

observed between isolates, but only less so between linages derived from a single isolate. 

For example, variation in biofilm formation capacity based on the morphotypic switch 

significantly differ in three HBF isolates (P < 0.01), meanwhile the IBF isolate PEU582 did 

not present differences between smooth and crepe morphologies. The largest differences 

in biofilm formation capacity intra-strains were displayed by the isolates PEU495 (smooth 

<> crepe) and PEU586 (crepe <> concentric). 

In summary, hyper biofilm-forming isolates were statistically different (P < 0.01) to the 

CDC 317 (s) and ATCC 22019 (s, crt, cn and cr) at all times, independently of the 

morphotype observed. Intra-strains differences were significantly high in HBF isolates, 

mostly, concentric and crepe morphotypes displayed strong biofilms compared with 

smooth morphologies. Nevertheless, adherence capacity is mainly influenced by strain 

specific properties. 
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Figure 42. Morphologic variation of nine C. parapsilosis isolates on SAB agar plates. (Aa) Major colony 
morphotypes of clinical isolates selected for downstream analyses. (Ab) Less frequent morphotypic 
variation. (B) Biofilm formation capacity quantification assay of morphologically different linages derived 
from individual isolates. Stars, “most representative” morphotype in each clinical isolate. 
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Next, we determined if the different colony morphologies in this set led to changes in drug 

susceptibility. No general variations on the MIC between different colony morphotypes 

were observed (Table 20) with the exception of the PEU486-cn which showed eight and 

fifteen times reduced susceptibility to VOR and POS, respectively, compared to smooth 

and crepe morphologies. In case of the PEU486-cr, PEU496-cr and PEU586-cr, the 

susceptibility against CAS was reduced between two-four times compared to smooth and 

concentric morphotypes (Table 20). Clinical isolates were classified sensitive to all drugs 

tested, with the exception of CDC 317 and PEU651, which were FLU resistant. 

Table 20. Antifungal susceptibility test of the morphtypic switchs (smooth<>crepe<>concentric) of nine 
selected C. parapsilosis isolates 

clinical isolates FLU (µg/ml) VOR (µg/ml) POS (µg/ml) CAS (µg/ml) MICA (µg/ml) 
CDC 317s 4-16 0.125-0.250 0.125-0.250 1 1-2 

ATCC 22019s 0.500-1 0.032-0.064 0.064-0.125 0.500-1 0.500-1 
ATCC 22019cn 1 0.032 0.064 1 0.500 
ATCC 22019cr 1 0.032 0.064 1-2 1-2 
PEU501s 0.250-0.500 0.032-0.064 0.064-0.125 0.250-0.500 1-2 

PEU651s 4 0.032-0.064 0.064-0.125 0.5-1 0.125-0.250 

PEU582s 0.500-1 0.032 0.064-0.125 0.500-1 2 

PEU582cr 2 0.064 0.064 1-2 1 

PEU495s 0.500-1 0.032 0.064-0.125 1-2 2 

PEU495cr 0.500-1 0.125-0.250 0.032-0.064 1-2 1-2 

PEU586cr 1 0.032 0.125 2 2 

PEU586cn 1 0.125 0.064-0.125 0.250-0.500 0.500-1 

PEU486s 0.500-1 0.032 0.032-0.064 0.250 1-2 

PEU486cr 1 0.032-0.064 0.032-0.064 1 1-2 

PEU486cn 0.5 0.250 0.500 0.500 1 

PEU496s 0.5 0.032 0.016 0.5 2 

PEU496cr 0.5 0.032 0.064 2 2 

PEU496cn 1 0.125-0.251 0.064-0.125 0.250-0.500 0.500 

*Boldfaced values, isolates and morphotypes with reduced susceptibility towards specific antifungal 
drugs. 
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To verify if morphotypic variations within isolates could carry chromosomal alterations, 

karyotypic analyses (Shin et al., 2001) of one HBF clinical isolate with three different 

morphotypes were performed. No apparent differences between rough morphotypes 

were observed, in contrast, slightly differences between “smooth” and “rough” 

(concentric and crepe) morphotypes were identified in the intermediate chromosomes 

(chr. 3, 4 and 8), (Figure 43), but the data is still inconclusive, further experiment will be 

needed to corroborate these observations. 

 

 

 

Figure 43. Electrophoretic karyotyping of C. parapsilosis PEU468 morphotypes. C. parapsilosis 
morphotypes produced by linages of PEU486 were analyzed and compared with C. parapsilosis reference 
strains CDC 317. 
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PEU501, PEU651, and PEU582 showed a major smooth morphology on Phloxine B agar 

plates, PEU486, PEU495, PEU496 and PEU586 had crepe morphotype and ATCC 22019 was 

frequently identified as concentric-crepe. Regular colony border was observed in the 

smooth morphotypes, weavy colony border was found in three crepe morphotypes, and 

two of the nine isolates (PEU495-cr and ATCC 22019-cn-cr) presented a rough colony 

border with pseudohyphae development after 24h. Microcolonies on Cornmeal agar 

showed the distinctive “spider” phenotype typically produced due to pseudohyphae 

development with crepe and concentric-crepe colony morphology. Isolate PEU582 also 

showed preliminary spider structures, probably explained by the dual morphotypic switch 

(smooth <> crepe). A qualitative biofilm formation analyses between the colony 

morphotype and the capacity to establish a biofilm asserted a positive relation between 

smooth type and absence of adherence (e.g. PEU501), and non-smooth phenotype with 

adhesiveness (e.g. PEU495), (Figure 44F and G). These parameters also matched with agar 

invasiveness, (Figure 44H and I). Cell shape morphology were classified into three groups 

as round yeast cells, mixed yeast and pseudohyphae in cr strains and single elongated 

pseudohyphae form in cn-cr morphotypes (Figure 44E). 

Crepe isolates PEU486cr, PEU495cr, PEU496cr and PEU586cr showed strong capacity to 

establish biofilms on polystyrol after 24 h from initial YPD liquid cultures. In contrast, 

smooth phenotype-cells were not able to produce biofilms (Figure 44A). Smooth colonies 

made around 20-60 % less biofilm than the HBF crepe morphotypes, generating 70-95% 

less biofilm compared to the PEU-586-cr, which had the highest biofilm formation capacity 

in this strain subset. Isolates were ranked according to their capacity to adhere to 

polystyrol as PEU586-cr > PEU486-cr > PEU496-cr > PEU495-cr > PEU651-s > PEU582-s > 

ATCC 22019 > CDC 317 > PEU501-s (Figure 44A). Similarly, differences between adhesion 

(90 min.) and biofilm formation capacity to polystyrol (24 h) from independent colonies 

were detected (P < 0.01), (data not shown). 
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Figure 44. Phenotypic and morphological differences in nine C. parapsilosis clinical isolates. (A) Major 
colony morphotypes on YPD + Phloxine B. A1-4, smooth morphotype (s). A5-8, crepe (cr). A9, concentric-
crepe. (B) Colony border under optical microscope 10X. B1-4, regular colony border. B5, B7 and B8, wavy 
colony border (emerging pseudohypahe formation). B6 and B9, rough colony border (pseudohyphae 
formation). (C) Microcolonies in corn meal after 48 h. incubation time.C1-3, regular microcolony. C4-9, 
spider microcolony. (D) Microcolonies in corn meal agar after 96 h. incubation time. D1, spider microcolony 
(incipient pseudohyphae). D2-3, regular microcolony. D4-9, spider microcolony (pseudohypohae 
development). (E) Cell shape under contrast-phase microscope 100X (immersion oil). E-1:E-4, round yeast 
cells. E-5:E-8, mixed yeast and pseudohyphae form. E9, pseudohypal cells. (F) Biofilm formation to 
polystyrol. F1-2 and F9, low biofilm. F3-4, intermediate biofilm formation. F5-8, high biofilm formation. (G) 
Biofilm formation using crystal violet quantification assay. (H) Colony morphology on Phloxine B agar plates. 
(I) Invasiveness after ten days incubation on Phloxine B agar. I1-2, low agar invasion. I3-4 and I9, medium 
and medium-high agar invasiveness. I5-8, high agar invasion (5). Arrows indicated colony imprints on agar 
after removing the colonies with water at day ten. 
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3.5.3 Biofilm formation capacity on silicone 
 

The importance of abiotic materials as polystyrol and silicone in terms of nosocomial 

infections let us to analyze variations in biofilm formation within our selected HBF isolates 

also on silicone. The seven clinical isolates, plus the reference strain CDC 317, were 

classified in four different groups (Figure 45A) depending on their adhesion capacity to 

these materials. Two of the eight isolates had no capacity to adhere to any material 

(PEU501s, CDC 317), two adhered only to polystyrol (PEU582s and PEU651s), and the 

other four were able to establish biofilms on both, polystyrol and silicone (PEU486-cr, 

PEU495-cr, PEU496-cr and PEU586-cr). The ability to form biofilms on silicone apparently 

correlated with the crepe morphotype but more strains should be analyzed to confirm 

these preliminary data. There were no isolates that adhered to silicone only. All HBF 

isolates attached to both materials (Figure 45B) and differences between the CDC 317 and 

the clinical isolates, were evident using polystyrol materials (IBF and HBF), but no 

differences for silicone were found within isolates with smooth morphotype (P > 0.05), 

(Figure 45B). Again, the capacity to adhere to abiotic devices varies significantly between 

different clinical isolates and “rough” morphotypes usually present strong capacity to 

form biofilms compared with “smooth” morphotypes. 
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Figure 45. C. parapsilosis biofilm formation to polystyrol and silicone from a strain collection of clinical 
isolates. (A) Correlation between biofilm formation capacity to polystyrol and silicone of seven clinical 
isolates + CDC 317 (*). Four groups were classified as: I adherent to silicone; II, adherent to both materials; 
III (adherent to any material; IV, isolates adherent to polystyrol). Red diamonds, LBF; green diamonds, IBF 
and blue diamonds, HBF. (B) Biofilm formation to polystyrol and silicone of seven selected isolates. Results 
were the average of two independent biological replicates and each replicate represented the average of 
four technical repetitions. Red and blue lines correspond with polystyrol and silicone cut-offs (X ~ 0.290 and 
X ~ 0.045, respectively). 
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significantly faster (P < 0.05) and sedimentation capacity of clinical isolates was most 

strongly associated with pseudohyphae development and cell aggregation (Figure 46), 

which was higher both in concentric colony types and absent in smooth colony 

morphologies. 

 

Figure 46. C. parapsilosis sedimentation capacity between different clinical morphotypes. Clinical 
morphotypes were classified in three groups, as low, intermediate and high-sedimentation capacity. Student 
t-test analyses were performed indicating statistically significant differences between PEU582 and PEU586 
and all remaining isolates tested except PEU486-cr. 
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from isolates PEU501s, PEU582s and PEU651s had a killing rate of 95%, 95% and 75%, 

respectively, on day 9 p.i. The isolates with predominant crepe morphotype had a killing 

rate of 100%, and no caterpillar’s survival after nine days of incubation at 37°C was 

observed (PEU486-cr, PEU495-cr and PEU496-cr). Surprisingly, also a single hyperbiofilm-

forming isolate (PEU-586cr) was less virulent than the other three with crepe 

morphotypes (1.25x). Hyperbiofilm forming isolates had a killing rate of 100% (n = 20) at 

day 4 (PEU486), 6 (PEU495) and 7 (PEU496) respectively, correlating with a high biofilm 

forming capacity (HBF =2), a high agar invasiveness (5 and 6), and pseudohyphae 

development. 

 

 

Figure 47. Galleria mellonella infection animal model. Survival curves. (A) first virulence assay using n = 10 
G. mellonella caterpillars injected with 2X10 ^6/10 µl cells of three HBF and one LBF C. parapsilosis clinical 
isolates. Caterpillar survival at 37° was scored for six days. (B) low inoculum of selected LBF, IBF and HBF 
isolates, 1X10 ^6/10 µl cells were injected into n = 20 caterpillars per isolate, survival at 37°C scored along 
nine days. 
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well as the presence of pseudohyphae development on liquid cultures at human body 

temperature. 

 

3.5.6 Differences in the cell wall proteome among clinical 
isolates 

 

Finally, we addressed the cell wall proteome of the selected isolates, to investigate 

possible links between cell surface composition, cell and colony morphology, as well as 

biofilm formation. 

The clinical isolates varied in several morphological features. Mass spectrometric analyses 

of the selected nine C. parapsilois isolates were conducted in collaboration with Dr. Piet 

de Groot (CRIB, Albacete, Spain). Briefly, cells were grown into biofilms on polystyrol 

dishes or in planktonic culture for those that did not form biofilms, the cells harvested and 

the cell wall fraction extracted using hot SDS. This procedure was previously established 

for other Candida species. Cell surface proteins were classified in as previously described 

before for C. albicans and C. glabrata (Gómez-Molero et al., 2015; de Groot et al., 2013)  

Principally, a core proteome (e.g. aspartyl proteases, phospholipases, and carbohydrate-

active enzymes) and a variable proteome (mainly adhesin-like proteins) were found. 

The core proteome, defined by its presence in nearly all samples (Table 21), was 

consistently present under biofilm conditions and plaktonic growth. It constituted twelve 

different protein classes. These included the CFEM family (common in fungal extracellular 

matrix) involved in iron acquisition (Ding et al., 2011), the Gas/Phr family, Blg2 family, and 

the Crh family. The chitinases belonging to the Crh family, were mainly represented by an 

ortholog of the CaCht2 enzyme of C. albicans (CPAR2_502140), which was identified in all 

isolates. In contrast, the CPAR2_502120 chitinase could be only identified when cells were 

harvested from biofilms on polystyrol or silicone, but not from the planktonic phase. At 
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least one family member each of the Sun Family, Tos Family, Pir Family (Protein with 

internal repeats), and the Pga 30 family were presented in all strains analyzed.  

Some core proteins, were not identified in all strains or conditions, but still frequently 

observed. This included Sod4/Pga2 (CPAR2_213080) which was not identified in PEU582 

and the hyperbiofilm-forming isolate PEU586; the aspartic protease CPAR2_702730 which 

was expressed in all isolates but the CPAR2_702720 was only identified in the HBF 

PEU486. The CPAR2_500920 ortholog of the CaSap10 was not identified in the CDC 317, 

the PEU-501s and three of the four hyperbiofilm forming isolates. The proteins of the 

Pga30 family CPAR2_200370, CPAR2_107500 and CPAR2_400900 were not identified in 

the LBF isolates, except in PEU501-s. The cell wall protein CPAR2_402010/RHD3 ortholog 

of the Pga29 of C. albicans was present in the hyperbiofilm-forming isolates and the LBF 

smooth PEU501. 

Subsequently, we focused on the variable proteome, constituted by adhesins which 

clearly differed among strains and conditions. The most frequent cell wall GPI-linked 

adhesin identified in the HBF isolates only was CPAR2_806670; this ortholog of the 

CaYwp1 of C. albicans was present in all the HBF isolates including CDC 317-s. 

The ortholog of the CaAls3 (orf 19.5741/ALS1) was identified in the PEU501-s and the four 

HBF isolates but not detected in either CDC 317-s, PEU582-s, or PEU651-s. In contrast, the 

ortholog of the cell wall protein CaAls6 (CPAR2_404790, orf 19.7414), was found in CDC 

317-s, PEU582-s, PEU486-cr, PEU495-cr, and PEU496-cr, but was not identified in the LBF 

PEU501-s and PEU651-s and the HBF PEU586-cr.  
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Table 21. Summary of proteomic analyses using seven + CDC 317 of the selected C. parapsilosis clinical isolates 

variable proteome CDC 317 ATCC 22019 PEU501 PEU651 PEU582 PEU486 PEU495 PEU496 PEU586 

origin isolate RS RS ear-nose device urine skin urine ear-nose ear-nose 

morphotypes s s,crt,cn,cr s s s,cr s,cn,cr s,cr s,crt,cn,cr s,cn,cr 

frequent morphotype s cn-cr s s s cr cr cr cr 

adhesiveness to polystyrol LBF LBF LBF IBF IBF HBF HBF HBF HBF 
adhesiveness to silicone LBF ND LBF LBF LBF HBF HBF HBF HBF 
virulence (10 ^6cells/10 µ) (% killing rate) 100% 100% 95% 75% 95% 100% 100% 100% 80% 

Als family 

CPAR2_404790 / CaAls6_ortholog + (log.)a NDb - - + + + + - 

CPAR2_404780 / CaAls3_like or 
CPAR2_404800 / CaAls7_ortholog 

- ND + - - + + + + 

CPAR2_404800 / CaALS7_ortholog - ND - - - + + + + 

CPAR2_404780 / CaAls3_like - ND (pep.)c + (pep.) +d + + + 

Hwp1 family 

CPAR2_403510 / Rbt1 / CaRbt1_ortholog - ND - (pep.) (pep.) + + + + 

CPAR2_806670 / CaYwp1_ortholog + ND + + + + + + + 

CPAR2_603340 / CaPga59_ortholog + ND + - - - + + - 

Iff/Hyr family 

CPAR2_600430 / CaIff3_like_nr2 - ND - - (pep.) + + + + 

CPAR2_301320 / CaIff3_like_nr1 - ND - - + + + + + 
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core proteome I CDC 317 ATCC 22019 PEU501 PEU651 PEU582 PEU486 PEU495 PEU496 PEU586 

 CFEM family (common in fungal extracellular membrane) 

CPAR2_402910 / CFEM2/CaRbt5_like + ND + + + + + + + 

CPAR2_300120 / CFEM6/CaCsa1_ortholog - ND - - - + + - + 

Gas/Phr family CaZye GH72 

CPAR2_302140 / CaPhr1_ortholog  + ND + + + + + + + 

CPAR2_109660 / CaPhr2_ortholog + ND + + + + + + + 

CPAR2_100110 / CaPga4_ortholog + ND + + + + + + + 

Bgl2 family CaZy GH17 

CPAR2_407410 / CaMP65/Scw1_ortholog + ND + + + + + + + 

CPAR2_401600 / CaBgl2_ortholog + ND + + + + + + + 

CPAR2_502160 / CaScw11_ortholog + ND - - - - - - - 

Crh family CaZy GH16 

CPAR2_400860 / CaCrh11_ortholog + ND + + + + + + + 

CPAR2_503190 / CaUtr2_ortholog + ND + + + + + + + 

CaZy GH18 Chitinases 

CPAR2_502140 / CaCht2_ortholog + ND + + + + + + + 

CPAR2_502130 / CaCht2_like_nr2 + ND + + + + + + + 

CPAR2_502120 / CaCht2_like_nr3 - ND - - - + (PS)f + (PS) - + (S) g 

Sun Family 

CPAR2_603090 / CaSun41_ortholog + ND - - + + - - - 
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core proteome II CDC 317 ATCC 22019 PEU501 PEU651 PEU582 PEU486 PEU495 PEU496 PEU586 

Tos family 

CPAR2_503650 / CaTos1_ortholog + ND + +(stat) +(stat.) + + + +(stat.) 

superoxide dismutase 

CPAR2_213080 / CaSod4/Pga2_ortholog + ND + + 
 

+ + + - 

aspartic proteases 

CPAR2_702730 / CaSap9_like_nr4 (pep.) ND (pep.) + + + + + + 

CPAR2_702720 / CaSap9_like_nr5 - ND - - - + - - - 

CPAR2_102610 / CaSap9_ortholog - ND - - - (pep.) (pep.) (pep.) (pep.) 

CPAR2_500920 / CaSap10_ortholog - ND - + (PS) + (PS) + (PS) - - - 

CPAR2_702810 7 CaYps7_ortholog - ND - + - - - - - 

phospholipases 

CPAR2_804680 / CaPlb5_ortholog + ND + + + + + + + 

CPAR2_808920 / CaPlb5_like_nr2 + ND + + + + + + + 

CPAR2_701130 / CaPlb3_like_nr2 - ND - - - - - + (PS) - 

Pir family putative β-1,3-glucan crosslinker 

CPAR2_806490 / CaPir1_ortholog + ND + + + + + + + 
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core proteome III CDC 317 ATCC 22019 PEU501 PEU651 PEU582 PEU486 PEU495 PEU496 PEU586 

Pga30 family 

CPAR2_402000/PGA30 / 
CaPga30_ortholog 

+ ND + + + + + + + 

CPAR2_402010/RHD3 / 
CaPga29_ortholog 

(stat.)h ND - + + - - - - 

CPAR2_301540 / CaSsr1_ortholog + ND + + + + + + + 

CPAR2_200370 / CaPga1_ortholog + (37°C)i ND - - - + (stat.) + (stat.) + (stat.) - 

CPAR2_107500 / CaPga26_ortholog + (37°C) ND + - - + - + (stat.) - 

CPAR2_400900 / CaPga53_ortholog - ND + - 
 

+ (PS) 
 

+ + 

GPI-CWPs with unknown function 

Ecm33 family 

CPAR2_108560 / CaEcm33_ortholog + ND + + + + + + + 

CPAR2_100710/ECM331 / 
CaEcm331_ortholog 

+ (37°C) ND + + + + + + + 

Proteomic data evaluation was performed by Dr. Piet de Groot (CRIB, Albacete, Spain), (unpublished data). MS proteomic analyses was performed using 
ESI-Q-TOF MS/MS. MS raw data was batched using data analysis software (Bruker, Bremen, Germany), results were processed with Mascot software (v. 
2.5.1) and peptides compared with CDC 317 protein sequences provided by NCBI database as well as ORF of putative proteins. a(log.), adhesins were 
identified in cell walls isolated from cultures harvested at logaritmic phase. bND, not determined, c(pep.), only one peptide of the specific adhesins were 
determined. d “+” Peptides were identified in biofilms (polystyrol and silicone) and stationary phase growing conditions. eCaZy, carbohydrate active 
enzymes. fPS, adhesins were identified under biofilm conditions in abiotic surface (polystyrol). g S, adhesins were identified under biofilm conditions using 
silicone elastomers. h(stat.) adhesins were identified in cultures at stationary phase.i proteins were only detected in samples incubated 37°C. 
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4. DISCUSSION 
 

The pathogenic capacity of Candida spp. is determined by the host immune response as 

well as pathogen cell-surface structures (reviewed by Richardson and Moyes, 2015). 

Candida spp. can invade the bloodstream leading into sepsis and the death of the patient 

(Pappas et al., 2018). Candida albicans is the most frequent cause of invasive candidiasis 

globally, but over the last decades, non-Candida albicans Candida (NCAC) species have 

become more medically relevant. Candida spp. are able to exist inside the human host, 

having developed different pathogenicity and antifungal drug resistance strategies 

(reviewed by Cavalheiro and Teixeira, 2018). Most microbes live as microbial communities 

encased in an extracellular polymeric substance, including NCAC species, which form 

biofilms on abiotic and biotic surfaces, composed of only single but also mixed species. 

Candida glabrata and Candida parapsilosis are the two most common causes of NCAC 

infections. Their relevance has been attributed to the ability to form biofilms on non-living 

surfaces and the increased multidrug resistance capacity, together leading to different 

levels of pathogenicity. 

Both species display superficial, mucosal and systemic infections associated with medical 

devices (reviewed by van Asbeck et al., 2009; Rodrigues et al., 2017) presenting clear 

morphologic and phenotypic differences between them (reviewed by Rodrigues et al., 

2017; Trofa et al., 2008). C. glabrata and C. parapsilosis each belong to two different 

Candida clades with strong differences on genomic and pathogenic levels (Butler et al., 

2009). This phylogenetic distance is also reflected by variations in cell wall organization 

including its proteome (reviewed by Gabaldón et al., 2016). The fungal cell wall is the 

outermost layer involved in host-pathogen recognition, cell structure, permeability, 

protection, and virulence. Particular differences in cell wall proteins composition between 

both NCAC species will be one of the focus of the study.  
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Thus, we here investigate cell wall molecules to be used as putative targets in NCAC 

infections (Rodrigues et al., 2017; Silva et al., 2017) or diagnostic markers. Based on this, 

we investigated how phenotypic and morphological differences within intra- and inter- 

NCAC species (C. glabrata and C. parapsilosis) are reflected in genomes and proteomes, 

and how these variations may reflect different pathogenic strategies during the infection 

process. 

In addition to smaller strain sets also analyzed here, we created prospective strain 

collections for each as starting points to classify clinical isolates with different cell surface 

properties to subsequently analyze in depth the cell wall proteomes and genomes of 

selected isolates.  

C. parapsilosis has the capacity to switch between yeast and pseudohyphal cellular 

morphologies as also described for C. albicans (Slutsky et al., 1985), where this ability to 

switch between these and other morphologies is an important virulence factor. In 

C. albicans, the frequency of change is approximately 1.4x10-4 when using the absence of 

amino acid supplement or UV light as stimulus. This is less compared with the frequency 

rate described by Laffey and Butler (2005) and Lott et al. (1993) for C. parapsilosis (ranging 

from 10-1 to 10-3). In C. parapsilosis, the change of cellular morphology is visible also as a 

colony phenotype. In our study, we calculated the morphotypic switch rate for one clinical 

isolate (PEU582), which was in the range described earlier from smooth (2x10-1) colonies 

to crepe colonies (5x10-2) with two morphotype varieties (Figure 29). 

To more deeply analyze the morphotypic switch, we initially characterized five clinical 

C. parapsilosis sensu stricto isolates with different stable morphotypes (e.g. the absence 

of further switching on culture plates after replating) from one single patient including 

one from a positive blood culture. The five isolates (bsc-1700, nsc-1701, tsc-1702, ncc-

1701 and tcc-1702) were isolated from nose (n=2), throat (n=2), and blood culture (Figure 

32), respectively, and phenotypically represented biofilm formation capacities ranging 

from LBF (low biofilm-forming isolates) HBF (high biofilm-forming isolates). Based on the 

information of previous studies (Enger et al., 2001; Laffey and Butler, 2005; Lott et al., 
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1993) we hypothesized that lineages isolated from the same source of site were different 

morphotypic forms of the same strains after switching (Figure 32). To confirm the genetic 

relations between the five isolates, karyotypic analyses were performed; however, this 

remained inconclusive as variations between the isolates (Figure 35A) were in accordance 

with both, switched forms of the same isolate (Nosek et al., 2009) (Figure 43), as well as 

unrelated isolates (Figure 35A). 

Subsequent analyses on the genome level, surprisingly, concluded that the five isolates 

did not originate from a single clonal origin, but rather belonged to three independent, 

mostly clonal groups (Figure 35C): Within this defined set of isolates, those with “smooth” 

vs. “crepe” morphotypes were only distantly related. Smooth isolates were further divided 

into two clonal groups, one constituted by tsc-1702 and the other by bsc-1700 and tsc-

1701 (Table 19, Figure 35B). These data show that the colonies originally classified as 

different morphotypes of a single clonal origin were indeed not representative for a 

morphotypic switch (Figure 33). 

However, we could also show that the control ATCC 22019 produces, at least, four 

different morphotypes, showing a reduced-frequency of smooth morphotypes (~20%) 

compared with concentric-crepe (cn-cr) morphologies (≥ 80%) (Figure 42A). Our data is an 

addition to previous analyses (Laffey and Butler, 2005) of the reference strain (ATCC 

22019, there called “CLIB 214”) where a switch to a smooth morphotype was not shown. 

These observations reveal two biological possibilities: the three clonal groups could have 

colonized and invaded the patient independently, or have diverged into different clonal 

subsets within the host. Our analyses show that smooth and crepe morphotypes (ncc-

1701 and tcc-1702) were located at a distance of >3800 SNPs (Figure 35B), which was 

comparable with unrelated clinical isolates (Pryszcz et al., 2013). Together, this renders 

the possibility of adaptive evolution within this patient unlikely, and underlines the need 

to consider both, switching, as well as co-occurrence of different strains within a single 

clinical specimen. 
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Stability of the observed morphotypes, e.g. the absence of switching upon replating, is 

important as it strongly influences the outcome of phenotypic experiments. When we 

followed this up in individual clinical isolates, several observations, which were in 

contradiction to the existing literature, were made. In our collection, we observed that 

around a 34% of the isolates tested along ten days present more than one morphotype 

and we proposed that a morphotypic switch mechanism has occurred. Most importantly, 

we observed that biofilm formation was a strain-specific attribute, and was less influenced 

by the morphotype: For example, stable linages with different morphotypes (smooth and 

crepe) derived of isolate PEU582 displayed intermediate biofilm formation capacity to 

polystyrol. The reference strain ATCC 22019 displayed four colony morphotypes with no 

significant differences in the capacity to form biofilms, and HBF isolates PEU586, PEU496 

and PEU486 show, at least, three (smooth and rough) colony types (Figure 42), though the 

capacity to form biofilms was relatively strong in all of them. To complicate matters, rare 

switched smooth forms of the - originally crepe - HBF isolate PEU495 displayed a LBF 

phenotype (Figure 42B). 

The capacity to form cell aggregates has also been described to correlate with rough 

morphotypes and complex “spider-like” structures, which are able to produce robust 

biofilms (Pannanusorn et al., 2013). This was also apparent among our isolates and 

colonies mainly constituted by mixed (yeast/pseudohyphae) or single pseudohyphae cells 

displayed thicker biofilms and stronger agar invasion. Isolates with round yeast cells 

usually correlate with smooth morphotypes and low biofilm forming capacity (Figure 44B, 

C, D, and E). Nevertheless, some exceptions (i.e. less than 1% of smooth colony 

morphotype in the present collection with high biofilm-forming capacity to polystyrene 

and strong agar invasion ability) were scored along ten days (Figure 39A, right, blue bars) 

(Pannanusorn et al., 2013). These isolates would be interesting candidates for further 

epithelia invasion assays. 

Many virulence factors are involved in C. parapsilosis pathogenesis, among which also 

biofilm formation to biotic and abiotic surfaces is a key player (Kuhn et al., 2002a). One of 

the major complications with C. parapsilosis infections is the strong capacity to form 
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biofilms on abiotic surfaces of implants, catheters, prosthesis, or wiring for parenteral 

nutrition in neonates (reviewed by Trofa et al., 2008). When we scored biofilm formation 

capacity among 215 clinical C. parapsilosis isolates and categorized these into LBF (0.054-

0.080), IBF (0.153-0.370), and HBF (0.445-1.360) (Figure 38B), the collection represented a 

wide range of biofilm development, from negligible amounts of biofilm intensities to 

massive amounts of biomass (Figure 39A). However, the biofilm formation phenotype was 

independent of the isolates’ source of isolation (Figure 38A) (Silva-Dias et al., 2015; de 

Toro et al., 2011). 

On a phenotypic level, variation in the colony morphology as well as the capacity to invade 

agar (Figure 39B) was positively correlated with the biofilm formation capacity: more than 

87% of the isolates with LBF capacity present smooth morphotypes, and around 45-50% of 

the HBF display crepe morphologies (Figure 39A). We also observed that rough colonies 

with HBF capacity were the best agar invaders on Phloxine B agar plates (Figure 39B and 

40). A possible explanation of the morphotypic switch’ link to biofilm formation capacity 

(Pannanusorn et al., 2013) is the development of pseudohyphal growth from the basal 

part of the colony conferring the capacity to form thicker biofilms (Figure 31). 

In addition to the colony morphologies “smooth”, “snowball”, “rough”, “crater”, “crepe”, 

and “concentric” already described (Enger et al., 2001; Laffey and Butler, 2005; Lott et al., 

1993), we extended this panel to twelve different morphotypes. For colony morphotype 

identification, our analyses followed the same procedure performed by Laffey et al., 2005. 

These studies used YPD medium containing Phloxine B, as it is routinely used to detect 

white–opaque switching in C. albicans (Anderson and Soll, 1987). We also used 

Sabouraud´s agar plates, rich in dextrose, which facilitate the growth and morphotypic 

development of C. parapsilosis colonies (Branchini et al., 1994; Shin et al., 2002) including 

those six already described (Enger et al., 2001; Lott et al., 1993; Nosek et al., 2009). These 

fall into only two categories when stratified by observation frequency in our study: major 

colony morphologies (smooth-glossy, smooth–matte, smooth-concentric, wrinkled, and 

crepe (I, II) represented > 60% of the isolates tested and infrequent colony morphologies 

(concentric, concentric-crepe, concentric-crater, crater, derby and snowball) only 
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represented 6% of the total (Figure 31B). The remaining 34% was constituted by mixed 

morphotypes, e.g. frequently switching strains producing more than one colony type per 

plate. 

Even though, while we confirmed that morphotypic switching is present in C. parapsilosis 

clinical isolates, the high frequency described in previous studies (Laffey and Butler, 2005) 

was not observed. In contrast, our data suggests that biofilm formation capacity is rather 

predetermined within the clinical isolate and the specific morphotype will only in- or 

decrease the biofilm formation capacity within a certain range, possibly as a survival 

strategy in the host. 

Biofilm formation is known to reduce the effect of antifungal drugs (Katragkou et al., 

2008) and it was proposed as one of the major virulence factors in C. parapsilosis (Silva et 

al., 2012). Despite C. parapsilosis producing less structured biofilms than C. albicans, both 

species easily develop reduced susceptibility especially towards azoles during the first 

stage of biofilm formation (Kuhn et al., 2002). This type of antifungal resistance is still 

understudied, and only little is known about the underlying mechanism. This is especially 

true for C. parapsilosis, where biofilms are usually constituted by cells aggregates (Kuhn et 

al., 2002) of less complexity than in C. albicans. They strongly vary depending on the cell 

density, the presence of “persister” cells, the morphotypic switch, and the strain-specific 

morphotype reviewed by Silva et al. (2017). 

Together with the group of G. Quindós, we confirmed for six selected biofilm-forming 

isolates (two smooth IBF isolates and four crepe HBF isolates) that fungal cells embedded 

in preformed biofilms were reduced in susceptibility to azoles but not for echinocandins 

and a polyene also in our strain set (Gómez-Molero, unpublished data). Additionally, we 

also observed the previously reported dependency on glucose levels in echinocandin and 

polyene activity (Pereira et al., 2015). In contrast, we confirmed that MICA and AMB 

inhibit their growth by antifungal concentration increment (Guillermo Quindós, personal 

communication). Nevertheless, azoles are the most frequent antifungals administered 

(van Asbeck et al., 2008; Pfaller et al., 2008). 
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Using the standard EUCAST edef 8.1 procedure we tested the three LBF, IBF and HBF sets, 

how this would be reflected with drug susceptibility towards commonly used azoles, 

echinocandins, and polyenes. Values observed for the six antifungal drugs tested were 

similar to the ranges previously described (Espinel-Ingroff et al., 2013; Melo et al., 2011; 

Sóczó et al., 2007). With the exception of minute quantitative deviations in FLU, POS and 

CAS (Figure 41), no substantial qualitative differences between LBF, IBF and HBF against 

drug susceptibility were observed. These observations are remarkably important, because 

while the degree of biofilm formation will not antifungal drug susceptibility for azoles, it is 

not predictable from EUCAST data. 

For C. albicans is was previously shown that the visually apparent change from white to 

opaque phenotype can alter epithelial invasion and susceptibility against antifungal drugs 

(Solis et al., 2018; Vargas et al., 2000). We analyzed if colony morphology “maturation” of 

C. parapsilosis (Figure 39B) would affect antifungal drugs susceptibility testing using 

matured colonies (96h) instead of young (~16h) (Figure 41), (Pfaller et al., 2005). Globally, 

we did not find significant differences between such young and mature colonies for any 

antifungal drug except for CAS, and few single isolates increasing their MIC by one log2-

fold change. These observations could indicate that antifungal drugs could be 

administered during the first 96 h. because no general differences between “young” and 

“mature” colony susceptibility rate were observed. Particularly, a positive correlation 

between high morphotypic switch and increased of azoles resistance was described by 

Vargas and colleagues for C. albicans supporting the idea that resistant-gene-regulation is 

controlled by phenotypic switch as it has been also observed in C. tropicalis (Moralez et 

al., 2014). 

Although we did not observe global qualitative variations between susceptibility data for 

young and mature colonies, we did identify small but significant MIC differences towards 

caspofungin for three individual HBF clinical isolates displaying rough (“crepe”) 

morphotypes (Table 20). These morphotypic variations correlate with the idea that 

biofilms are less susceptible to antifungal drugs. Nevertheless, it is striking for CAS, 

because as it was already shown, Candida spp. biofilms are usually susceptible to 
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echinocandins (Ferreira et al., 2009). According to our observations (Figure 42A), the 

mean susceptibility to antifungals partially shifted with the capacity to form biofilms in 

three of the six compounds tested, and this is indirectly reflected in the colony 

morphology. 

Therefore, we conclude C. parapsilosis clinical isolates present a high phenotypic 

variability with a wide range of biofilm formation intensities compared with other 

NCAC spp. (Silva-Dias et al., 2015). This heterogeneity was already described for “slime” 

production by Branchini et al. (1994) and Pfaller et al. (1995). We observe a general 

correlation between colony morphotype and adhesion properties and biofilm formation 

capacity would usually reduce azole’s susceptibility independently on the biomass 

produced. 

Cell surface phenotypic properties are strongly strain-specific in C. parapsilosis clinical 

isolates. Following the same hypothesis, we wanted to analyze phenotypic variants in 

C. glabrata and how such properties are reflected at genome and proteome level. 

C. glabrata belongs to the only distantly related Nakaseomyces group and is one of the 

few pathogens present in this clade (Kurtzman and Robnett, 2003). It has been described 

as close relative to Saccharomyces cerevisiae for the incapacity to develop hyphae, and 

having evolved from a common origin with a whole genome duplication event along the 

time (Kurtzman and Robnett, 1998). Initially, the first C. glabrata genome sequencing was 

published by Dujon et al. (2004) and was more deeply described by Gabaldón et al. (2013). 

To get a general overview over C. glabrata variability, karyotypic analyses of 33 selected 

clinical isolates indicated a high between. We observed large differences in both copy 

number and chromosome distribution between isolates (Figure 15). Karyotypic differences 

were particularly evident between the seven clades suggesting possible microevolutions 

or chromosome replacement as base of genetic variations (Carreté et al., 2018). A large 

genomic and phenotypic plasticity is also observed in other collections (Müller et al, 2009) 

and even between different stocks of the same laboratory strain (Bader et al., 2012). 
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To investigate if genomic plasticity correlated with variations at phenotypic level, we 

characterized a large clinical strain collection towards the capacity of C. glabrata to form 

biofilms on polystyrol plastic and silicone. The ability of a C. glabrata biofilm to adhere to 

host surfaces is conferred yeast cells at the basal part, embedded in an extracellular 

matrix with high amounts of carbohydrates (Seneviratne et al., 2009; Silva et al., 2009). 

Over the course of two years a 453 clinical isolates belonging to nine different categories 

of source of isolation were screened for their capacity to adhere to abiotic surfaces. When 

the isolates were classified according to their capacity to form biofilms on polystyrene, a 

clear correlation of biofilm formation capacity to cell aggregation (Figure 18) was evident. 

In this study, we differentiated LBF, IBF and HBF (Figure 19) clinical isolates depending on 

the degree of biofilm produced (Fonseca et al., 2014; Rodrigues et al., 2014; Silva et al., 

2009). No correlation between the site of isolation and the capacity to adhere to silicone 

elastomers and polystyrol (Figure 24) was observed, and a high variability on biofilm 

formation intensities was identified as it has been already described by Estivill et al., 2011. 

Only a 17% percent of the 453 clinical isolates tested presented strong capacity to form 

biofilms on abiotic surfaces (Figure 21) producing typical structures (Davey and O’toole, 

2000; Kucharíková et al., 2015) constituted by round yeast cells in the lower layer of the 

biofilm embedded in the EPS (Figure 19). 

We used these screening analyses to mimicking the putative host-colonization capacity of 

a large C. glabrata strain collection. As in C. parapsilosis, these analyses again suggested 

strong strain-specificity and a large inter-strain variation regarding biofilm formation 

capacity and antifungal drugs susceptibility (Figure 16 and Figure 20). This has also been 

described for other isolate collections (Parahitiyawa et al., 2006). A relation between 

biofilm formation capacity and reduced susceptibility was shown in two different HBF 

isolates (Figure 22) displaying MICs towards FLU; VOR and POS between 2 and 8 fold 

higher than the reference strain. Contrary, three LBF-IBF isolates (M6, M7 and M17, Figure 

16) from blood cultures with a strongly reduced susceptibility against all the azoles (M6 

and M7) and the nucleoside 5FC (M17) (Table 10), present individual point mutations in 

the pleiotropic drug resistant transcriptional factor PDR1 (Carreté et al., 2018; Tsai et al., 
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2006) which gains of function (Vale-Silva et al., 2013) predetermine a positive increase in 

host adherence and virulence. 

We also observed that serial isolates from clonal populations (SAT01, SAT02 and SAT03, 

Figure 17B) which are susceptible to major antifungal drugs tested are lacking of non-

synonymous mutations in specific genes involved in antimycotic regulation (Carreté et al., 

2019). 

In fungi, the cell wall proteome composition is a strong influencer of biofilm formation as 

well as a main virulence (Cormarck et al., 1999, Cabral et al., 2014; Verstrepen et al., 2006; 

Martínez-Gomariz et al., 2009; reviewed by Klis et al., 2009). In this study, we investigated 

the differences and constituents of C. parapsilosis and C. glabrata cell wall proteomes 

under biofilm conditions stratified by phenotypic and genomic variations. The main factors 

involved are GPI-anchored adhesin proteins covalently bound in the cell wall (de Groot et 

al., 2008; Kraneveld et al., 2011; Gómez-Molero et al., 2015). Cell wall composition 

differences between C. glabrata and C. parapsilosis are evident: C. glabrata encodes at 

least 67 adhesins (Weig et al., 2004; De Groot et al., 2008) mainly located in subtelomeric 

regions. In contrast, the C. parapsilosis reference genome only encodes five different 

adhesins of the ALS family, one RBT1-like gene, and the BCR1 effector (Hoyer et al., 2001; 

Butler et al., 2009; Pryszcz et al., 2013; reviewed by de Groot et al., 2013, Rossignol, 

2009). 

Therefore, using a workflow already established for biofilms of C. glabrata (Gómez-Molero 

et al., 2015; de Groot et al., 2008; Weig et al., 2004), we identified several known and 

novel adhesins being incorporated into the cell wall of biofilm forming C. parapsilosis and 

C. glabrata clinical isolates (Table 13 and Table 21). The total number of different adhesins 

incorporated correlate with the capacity to form biofilms either under logarithmic or 

stationary phase (Figure 21D and Figure 38B) on abiotic materials. 

As described for S. cerevisiae (Groot et al., 2008), a standard core- and a variable 

proteome can be stratified in both species (Table 13 and Table 21). A strong similarity is 

seen between C. parapsilosis and C. albicans core proteomes (reviewed by de Groot et al., 
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2013) although there are important differences between both species (Butler et al., 2009): 

The C. parapsilosis core proteome was observed in all the isolates tested independently 

on their adhesion capacity, except for CPAR2_502160, the ortholog of Scw11 of 

C. albicans. This protein is a glucanase only described in the reference strain CDC 317 that 

responds to different iron levels (Lan et al., 2004) The core proteome of C. parapsilosis is 

mainly constituted by chitinases, aspartic proteases, superoxide dismutases, putative β-

1,3-glucan crosslinkers, other carbohydrate active enzymes, and phospholipases (Table 

21). 

The C. glabrata core proteome followed the same pattern as seen for C. parapsilosis and 

phospholipases, putative glucan crosslinkers and carbohydrate-active enzymes (Table 13) 

mainly constitute it. Other proteins identified in C. glabrata core proteome were the GPI-

cell wall protein Ssr1, which is also involved in iron homeostasis (Srivastava et al., 2014) 

the phospholipase Plb1 (not identified in CBS-138 and PEU52), and Plb2, which was not 

present in the LBF PEU52 and the two reference strains. 

Interestingly, the absence of Plb1 and Plb2 in the LBF and the highly flocculent PEU52 is 

associated with a low killing rate (70%) in the G. mellonella in vivo infection model (Figure 

22A). The function of Plb1 and Plb2 is still not well investigated in C. glabrata. However, it 

is known that differential expression of phospholipase B genes are important in C. albicans 

oral and vaginal infections (Naglik et al., 2003) as well as invasive candidiasis in C. glabrata 

(reviewed by Ghannoum, 2000). 

As proposed by the Groot et al. (2008), the Cwp1.1, Cwp1.2 and tir1, identified in the 

C. glabrata core proteome, were described as possible β-1, 3-glucan- β-1, 6-glucan 

crosslinkers via GPI-anchors. The protein CAGL0M01826g, previously detected in 

C. glabrata reference strains and all C. parapsilosis clinical isolates belongs to the Ecm33 

family proteins which function is not still identified but seems to be involved in cell wall 

integrity and biogenesis (Pardo et al., 2004; Martínez-López et al., 2006).  

In addition to the core proteome, we observed a variable proteome whose constitution 

largely correlated with biofilm formation phenotypes. Remarkable differences within the 
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variable proteomes of C. glabrata and C. parapsilosis are detectable and can be related to 

their phylogenetic differences. Thus, our data suggests that the capacity of C. glabrata and 

C. parapsilosis clinical isolates to colonize host surfaces is mainly conferred by this variable 

proteome. 

We observe that strong biofilm formation capacity, cell aggregation, cell sedimentation 

and agar invasion will usually reflect crepe or concentric (PEU486, PEU496 and PEU586) 

morphotypes with a high number or adhesins in the wall (Table 21). Klotz and 

collaborators (Klotz et al., 2007) already suggested this assumption describing that 

aggregation capacity affects the establishment of biofilms in C. albicans with a 

modification in the expression of adhesin-encoding genes. There, the expression of Als 

family proteins, like Als3, is involved in cell aggregation as the first step of the colonization 

process in single and mixed biofilms, and the ALS7 adhesin-encoding gene (ortholog: 

CPAR2_404800) has been proved to be part in epithelial adhesion in C. albicans (Neale et 

al., 2018, Richardson et al., 2018; Bertini et al., 2016). Our proteomic studies showed that 

isolates with rough morphologies and HBF, usually present Als6 or Als7 in the cell wall 

(isolates PEU486, PEU495, and PEU496). Surprisingly, the strong biofilm-forming isolate 

with crepe morphotype (PEU586) was lacking of the CPAR2_404790 (ortholog of Als6 in 

C. albicans); this absence correspond with a reduction in G. mellonella killing rate (80%). 

Therefore, we propose that the Als6 would be involved, together with the extracellular 

lipases (Toth et al., 2014), in C. parapsilosis virulence. Interestingly, all hyper biofilm-

forming clinical isolates analyzed in this study, presented, both, Hwp1 and Iff/hyr family 

proteins in their cell wall, determining their relevance in the colonization process. 

Our proteomic analyses for nine selected C glabrata clinical isolates identified eighteen 

GPI-CWPs proteins differentially expressed under biofilm conditions (Table 12). Ten out of 

these were previously undetected adhesin-wall proteins (de Groot, unpublished data). 

The largest group of adhesins of C. glabrata in the variable proteome is the Epa family, 

known to be involved in epithelia cell adhesion. For example, Epa3 takes part in osmotic 

stress counter action (Roetzer et al., 2008), and Epa6 and Epa7 are present in all the 
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isolates analyzed excluding the Epa7 in the reference strain CBS-138. Epa6 and Epa7 are 

highly homologous and the N-binding site adhere to β-glucans (Epa7) and α- and β-glucans 

(Epa6) (Castaño et al., 2005). The proteomic identification of Epa adhesins in our clinical 

isolates’ cell walls correlates well with gene transcriptional regulation data under biofilm 

conditions and subtelomeric silencing (Iraqui et al., 2005). Contrary, the main adhesin-

encoding genes did not show a general increase in the transcription profile in the two HBF 

isolates PEU427 and PEU382 (Gómez-Molero et al., 2015). It has previously been claimed 

that that Epa22 (Kraneveld et al., 2011) is highly expressed in biofilms, however here it 

was only identified in the LBF and highly flocculent strain PEU52, suggesting a possible 

function in flocculation and thereby cell sedimentation. 

Six C. glabrata proteins identified in HBF isolates belonging to clusters III (Awp13), V 

(Awp8, Awp9, Awp10 and Awp11) and VII (Awp12) (Gómez-Molero et al., 2015) and four 

remaining to be categorized (de Groot, unpublished data) were previously undetected. 

Solely, the newly described: Awp8, Awp9, Awp10, Awp11, CAGL0L00227g and 

CAGL0F09273g are included in the cluster V as the Awp2-4 (de Groot et al., 2008 and 

2013) sharing a remarkable number of peptides with Epa family proteins. We observed 

that these novel adhesins were frequently present in HBF isolates and less in IBF or LBF 

groups. Although the molecular function of these proteins are still undetermined, they 

seem to have a role in cell adhesion. Awp12 is similar to the S. cerevisiae flocculins 

homologs to the Epa family (Gómez-Molero et al., 2015, Weig et al., 2004; de Groot et al., 

2008, Thierry et al., 2010, Desai et al., 2011; de las Peñas et al., 2003) and it is only 

presented in the CBS-138 and IBF isolates. In contrast, Awp13 (cluster III) and Aed1 were 

only identified in the HBF PEU427 (Gómez-Molero et al., 2015). Molecular studies on Aed1 

confirmed its function in adherence to epithelia (Desai et al, 2011). While the molecular 

role of Awp13 is unknown, genome sequence analyses corroborated by phenotypical 

analyses in this study (Carreté et al, 2018), remarked independent deletions of AWP13 in 

three IBF-HBF blood isolates CST35, F15021 and F03013. A possible outcome of the 

AWP13 deletion is a reduction of the adherence capacity inside the host to facilitate the 

dissemination in the bloodstream. The novel adhesins and most prominently are most 
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frequently identified in the IBF and HBF clinical isolates with large variations between 

them. In contrast, Epa family proteins are quite constantly detectable in all the isolates 

studied. Therefore, we suggest that the Awp family is the one that will confer remarkable 

proteome variability. 

Along our proteome subset, we identified several remarkable exceptions. Isolate PEU30 is 

hyper-adherent to silicone elastomers, but not able to form biofilms on polystyrol 

material. It only presents three adhesins in the cell wall, two of them belonging to the Epa 

family (Epa3 and Epa6). In addition, it is, together with the LBF reference strain 

ATCC90876, one of the only isolates presenting Awp1 in the cell wall. PEU30 was isolated 

from tissue of a catheterized patient; this allows hypothesizing that, while the capacity to 

adhere to catheters may be mediated by Epa3 and Epa6 (Kuchariková et al., 2015), once 

the pathogen has colonized the host surface, a low number of adhesins in the cell wall 

could facilitate the invasion and dissemination inside the host. 

Surprisingly, isolates with high capacity to form aggregates PEU45 (HBF) and PEU52 (LBF) 

present a unique adhesin not identified before in the reference strain CBS-138. The 

CAGL0L00227g is still understudied but we propose a possible function related to 

aggregation and flocculation in pre-existing biofilms or cell-cell interactions. Further 

studies based on adhesins mutation and overexpression should be performed to firmly 

confirm these observations.  

The HBF isolates PEU427 and PEU45 showed the highest number of different adhesins and 

the strongest capacity to form biofilms on polystyrol. PEU45 also had an intermediate-high 

capacity to adhere to silicone, potentially conferred by the Epa family proteins (reviewed 

by Timmermans et al., 2018). The highly hydrophobic isolate PEU427 (Gómez-Molero et 

al., 2015) was isolated from tracheal secrete which is rich in mucin and hydrophobic 

constituents with serine and threonine residues which are thought to mimick the residues 

present in the tandem repeat regions of the CWPs (Bustamante-Marín et al., 2017). In 

summary, we observed a clear increase in the number of different adhesins in the cell wall 

in hyper biofilm-forming isolates of both species.  
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Next to the functional N-terminal lectin domain, another structural feature of cell wall 

adhesins is the more C-terminal repeat region (reviewed by Hoyer et al., 2008). Looking in 

genome sequences obtained for the five C. parapsilosis isolates of the single patient, we 

observed that a large C. parapsilosis genome plasticity is mainly observed in the high 

amplification of the repeat-encoding NH2-terminal domain of HWP1 (Figure 36), a gene 

involved in biofilm formation and epithelia adherence (Nobile et al., 2006). This cell wall 

protein is not frequently identified in LBF clinical isolates (Table 21) and the homolog in 

C. albicans presents high similarities to small mammalians proteins used as substrate for 

mammalian transglutaminases (Staab et al., 1999). 

For C. glabrata it has been shown that, despite its highly clonal population structure, a 

remarkable amount of recombination along the evolutionary process is still ongoing 

(Dodgson et al., 2003 and 2005; Lin et al., 2007). Studies of Carreté et al. (2018) show that 

isolates from different clades seems to be more diverse than isolates that belonging to the 

same clade; this in line with the observation that C. glabrata presents a higher genomic 

plasticity compared with C. albicans populations (Hirakawa et al., 2015). Approximately, 

nearly half of the deleted or the duplicated genes from the collection of 33 genome-

sequenced C. glabrata clinical isolates investigated here code for CW-adhesin proteins. 

This suggests that variations on the adhesin repertoire together with differences in cell-

adherence capacity are a main selection mechanism within the C. glabrata population 

(Carreté et al., 2018). 

Since both species belong to two different subclades in the Candida spp. phylogenetic 

tree, also the cell wall proteome organization varies. Our data supports the idea that 

C. glabrata and C. parapsilosis have developed different adaptive strategies for survival in 

a human host: 

Looking at C. glabrata, the second most frequent fungal species isolated from blood 

cultures, and which is generally incapable to form hyphae, it is interesting to evaluate how 

it can cross from a colonized surface into the blood stream. One theory is that C. glabrata 

can use the hyphae of C. albicans to penetrate into host tissues and disseminate (Alves et 
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al., 2014; Tati et al., 2016). Using our isolates, we could confirm that clinical isolates with 

high capacity to form biofilms and aggregates (Table 14) are also the ones that easily 

adhere to C. albicans hyphae. This correlates with the increased presence of adhesins 

identified in the cell wall (Figure 26). However, C. glabrata and C. albicans co-isolation 

from blood cultures was not frequently observed (Figure 28). A reduced presence of 

C. albicans cells in C. glabrata blood cultures were found could, however be explained if 

C. albicans will be only used by C. glabrata to invade the tissue and does not reach the 

bloodstream for subsequent dissemination (Table 16 and Figure 28). 

Tati et al. (2016) identified the EPA8, EPA19, AWP2, AWP7 and CAGL0F00181 adhesins to 

be important in the interaction between C. glabrata and C. albicans hyphae. In addition, 

we could identify novel adhesins that were expressed in the strains able to bind hyphae 

(Figure 26) and may facilitate this interaction. 

In contrast, cell aggregation capacity (Figure 20A), cell sedimentation (Figure 20 B), or 

biofilm formation capacity do not imperatively correlate with virulence in G. mellonella 

animal model for either species (Figure 20 D, 22, 47). Strikingly, for most isolates with high 

numbers of adhesins in the wall, a reduction in virulence, at least in the G. mellonella 

model, and not an increase is observed here. 

No variations between murine infection model and G. mellonella animal model have been 

described previously for C. glabrata clinical isolates. It usually presents an only low killing 

rate across infection models (Rossoni et al., 2013) and a high C. glabrata inoculum is 

needed to increase the virulence (Ames et al., 2017). Nevertheless, we were able to 

observe differences among both C. glabrata and C. parapsilosis clinical isolates in the 

G. mellonella infection model, but there was no distinctiveness with respect to LBF or HBF 

isolates (Figure 22 and Figure 47). In case of C. glabrata clinical isolates, approximately 

24% of the isolates had a killing rate lower than 100% and those were mainly isolated 

from urine catheters and oral cavity independently of the capacity to form biofilms. We 

propose as a possible port of entry into the host that strains from catheters or oral cavity 

formed biofilms there. Considering that C. glabrata secretes phospholipases orthologous 
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to those of C. albicans, and the enzymatic activity in C. glabrata invasive candidiasis 

(Ghannoum et al., 2000) is higher compared to oral cavity (Ibrahim et al., 1995), wounds 

or urine (Price et al., 1982), only a reduced expression of phospholipase B in the oral 

cavity or urine tract could explain the reduced killing rate. Interestingly, the postulated 

absences could be observed in the avirulent C. glabrata LBF clinical isolate PEU52 which 

cell wall proteome is absent of Plb1 and Plb2 (Figure 22, table 13). 

C. parapsilosis strain PEU586 was the exception to these findings: it had a high capacity to 

form biofilms and seven adhesins were identified in the wall, but the killing rate in 

G. mellonella was less than 100%. This seems to indicate that this isolate was a better 

colonizer than tissue invader. Within our C. parapsilosis subset, isolates with crepe 

morphotypes and a large number of adhesins in the cell wall generally displayed higher 

killing rates in G. mellonella animal model as compared to isolates with a reduced number 

of adhesins (Table 21 and Figure 47B). Strikingly, we found that two non-adherent smooth 

clinical isolates (CDC-317 and PEU501) each only containing three adhesins 

(CPAR2_404780/CPAR2_404800, CPAR2_806670 and CPAR2_603340) in their cell wall had 

a high killing rate (100% and 95%, respectively). Consequently, this suggests that isolates 

with smooth colony types and LBF capacity are more virulent while presenting fewer 

adhesins in the cell wall. This may represent a potential adaptive mechanism contributing 

towards the invasion process. 

In contrast to C. glabrata, C. parapsilosis is able to switch between cellular forms and thus 

different colony morphotypes (Laffey et al., 2005). In line with this, the capacity of 

C. parapsilosis to form strong biofilms on abiotic surfaces again suggests this as a possible 

entry route into the host (Reviewed by Trofa et al., 2008; Ruan et al., 2008), with a 

subsequent dissemination within the patient described above (Figure 32). Retrospectively 

looking at the treatment course, the patient received echinocandins (Caspofungin) once 

samples were positively identified as C. parapsilosis. Afterwards, fluconazole was 

administered in addition, and the treatment continued only with fluconazole after an 

improvement of the patient. C. parapsilosis biofilms are known to resist azole antifungal 

treatment, but are susceptible to echinocandins, a feature that we were able to confirm in 
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collaboration with Dr. Guillermo Quindós for several isolates of our collection. A reduction 

in biofilms´ growth was only observed after echinocandin and amphotericin B treatment. 

Therefore, these observations would explain the patient´s improvement. The recurrent 

exchanges in the catheter happened once the BAL positive culture was isolated. The first 

time blood culture was positive corresponded with another catheter exchange (Gómez-

Molero et al., unpublished data). 

The different morphologies of the C. parapsilosis isolates isolated from this patient were 

however not caused by morphotypic switch, but rather represented three independent 

linages. The fact that the blood culture isolate bsc-1700 was genetically closest to a throat 

isolate (tsc-1702) let us speculate the possible route of dissemination: 

From our data, we propose that the blood stream infection was initiated during surgery, 

by the smooth morphotype strains spreading more easily to different tissues due to the 

inability to adhere to biotic and abiotic surfaces (Uppuluri et al., 2010). This is in contrast 

to the crepe strains present in the same locations, which have strong ability to adhere and 

likely stay in a fixed location resulting in less likelihood to reach the bloodstream. 

Unfortunately, the sample isolated from central venous catheter (CVC) was not retained in 

the diagnostic laboratory; this would have let us known the phenotypic and genotypic 

properties to better analyze the whole pathogenic process. 

These observations are in similarity with the report that a C. albicans strain isolated from a 

blood stream infection was incapable to form biofilms due to the lack of EFG1 (Hirakawa 

et al., 2015). During disseminated candidiasis with C. albicans, hyphae, pseudohyphae, 

and yeast are presented (Noble et al., 2017). This is in accordance with our observations in 

C. parapsilosis that the yeast form, which is at least, partially characterized by the absence 

of adhesins in the C. parapsilosis cell wall, may facilitate the dissemination into and in the 

blood stream. The remaining C. parapsilosis smooth isolates with their low number of 

adhesins in the wall with high killing rates in G. mellonella, let us speculate about their 

ability to easily disseminate (Table 21) also in this model. 
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Consequently, this suggests that isolates with smooth colony types and LBF capacity may 

be more virulent while presenting fewer adhesins in the cell wall. This may represent a 

potential adaptive mechanism contributing towards the invasion process. In line with this, 

we propose that the adaptive strategy to adhere to host surfaces is mediated by the 

number of different adhesins present in the cell wall, along with their abundance as 

suggested previously for C. glabrata (reviewed by Timmermans et al., 2018). In addition, 

we emphasize that the main pathogenic and immunogenic differences within clinical 

isolates would be represented by the variable proteome. We suggest that both species 

use their specific phenotypes and cell surface properties with subsequent variation of the 

cell wall proteome as selective pathogenic strategy. 

A large genetic variability is presented in C. glabrata clinical isolates (reviewed by López-

Fuentes et al., 2018; Bader et al., 2012) compare with C. parapsilosis (Tavanti et al., 2010). 

However Pryszcz et al. (2013), revealed, as well, unexpected variations between distant 

C. parapsilosis clinical isolates. 

In this work, we have observed several instances of genomic variation. Within these 

analyses (Carreté et al., 2018), C. glabrata isolates with duplications of adherence wall 

proteins PWP4 (Desai et al., 2011) and deletions of AWP13 (Gómez-Molero et al., 2015) 

corresponded with three hyper biofilm-forming isolates (CST35, F15021 and F03013) 

(Figure 16) from blood cultures. We suggest that deletions of AWP13 could be a possible 

adaptive mechanism carried by the clinical isolates to easily reach the bloodstream.  

The majority of the adhesin encoding genes identified in C. glabrata are located in 

subtelomeric regions (de Groot et al., 2008) which are known to be controlled by 

subtelomeric silencing. This may be another indicator that the presence of adhesins on 

the cell surface may counter dissemination and therefore virulence during infections. A 

possible biological explanation may be that genetic modification of the adhesin-encoding 

genes facilitates the colonization and subsequent dissemination in the bloodstream. In 

different analyses (Biswas et al., 2017; Vale-Silva et al., 2017; Carreté et al., 2018), pairs of 

matched C. glabrata isolates belonged to the same clade and shared a large number of 
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SNPs as compared to other strains indicating a high degree of similarity within pairs. 

Despite their clonality, the number of variations between isolates from the same patient is 

still remarkable. In case of the trio of isolates analyzed here, the number of mutations 

shared between the first (SAT01) and the third isolate (SAT03) indicated that the 

mutations did not occur during the isolation process and they were pre-existing variations 

in the population. One hypothesis was that independent isolates from different infections 

must be taken into consideration but non-synonymous variations seem to accumulate 

during the course of the infection (Carreté et al., 2019). We observed a reduced biofilm 

formation capacity in the strain isolated from blood (Figure 17A) which correlates with a 

point mutation in SIR4, part of biofilm formation regulation and subtelomeric silencing 

pathways (Leiva-Peláez et al., 2018). 

The genetic variations observed in C. glabrata (Carreté et al., 2018) complement our 

phenotypic analyses indicating large variability between C. glabrata clades, which likely 

reflects geographical differences and dispersion mediated by humans. The degree of 

phenotypic intensities correlates with a large diversity towards CWP-encoding genes 

(López-Fuentes et al., 2018). A high genomic plasticity leads enrichment in non-

synonymous mutations of cell wall encoding genes (Gabaldón et al., 2013). Here, a 

recurrent infection from a unique external source and the low adherence capacity of 

SAT03 with a mutation in SIR4 may have facilitated the dissemination in the bloodstream 

as we also proposed for C. parapsilosis. 
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5. Conclusion and summary 
Analyzing phenotypic variations of large Candida glabrata and Candida parapsilosis strain 

collections, showed several differences in genome and proteome organization. The overall 

observation was as a very high variability between the isolate’s capacities to form biofilms 

on abiotic surfaces for both species. 

In C. glabrata, biofilm formation capacity positively correlates with cell aggregation and 

cell sedimentation. By MS/MS spectrometric analyses of selected high biofilm-forming 

clinical isolates, we were able to differentiate a core and a unique variable proteome. An 

increased number of adhesins in C. glabrata cell wall, including ten new adhesins for the 

first time detected in this study correlated with a strong capacity to colonize host surfaces 

as well and co-interact with C. albicans hyphae facilitating epithelia invasion. The inability 

of C. glabrata to form hyphae may therefore be balanced by a high number of adhesins 

and adhesin-encoding genes in the cell wall. Alternatively, differences in the variable 

proteome may also indicate a high immunogenic heterogeneity to facilitate host evasion. 

A positive correlation between intermediate or high capacities to form biofilms on abiotic 

surfaces and an increased incorporation of adhesins in the cell wall was found also for 

C. parapsilosis. Increased biofilm formation phenotypes became visible morphologically by 

the appearance of “rough” colony morphotypes. While such isolates’ biofilms are 

notoriously insusceptible to azoles, EUCAST-based antifungal susceptibility testing was not 

able to predict this. Therefore, non-smooth morphologies identified in patient cultures 

might serve as an interesting novel diagnostic indicator to initiate echinocandin-based 

treatment to eradicate the biofilms of C. parapsilosis. 

We also found a wide spectrum of C. parapsilosis killing rates in a G. mellonella animal 

model. The lack of Als6 in the cell wall was directly related with a reduced virulence and, 

surprisingly, C. parapsilosis isolates with low biofilm-formation capacity and therefore 

smooth morphotype presented a notably higher virulence. 
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Taken together, our phenotypical data point towards the unique role of non-adhesin 

presenting cells during dissemination in the patient, i.e. that “smooth” C. parapsilosis 

morphotypes will disseminate easier than “rough” morphologies, and therefore be more 

virulent in infection models. 

Genome sequence analyses of matched isolates in C. glabrata point to mechanisms other 

than the previously described subtelomeric silencing, namely deletions and duplications of 

cell wall adhesin-encoding genes, as an important adaptive mechanism moving on from 

colonization to infection and dissemination. 



BIBLIOGRAPHY 
 

136 
 

6. Bibliography 
Alcoba-Flórez, J., Méndez-Alvarez, S., Cano, J., Guarro, J., Pérez-Roth, E., and del Pilar Arévalo, 
M. (2005). Phenotypic and molecular characterization of Candida nivariensis sp. nov., a possible 
new opportunistic fungus. J. Clin. Microbiol. 43, 4107–4111. 

Alves, C.T., Wei, X.-Q., Silva, S., Azeredo, J., Henriques, M., and Williams, D.W. (2014b). Candida 
albicans promotes invasion and colonisation of Candida glabrata in a reconstituted human 
vaginal epithelium. J. Infect. 69, 396–407. 

Ames, L., Duxbury, S., Pawlowska, B., Ho, H., Haynes, K., and Bates, S. (2017a). Galleria 
mellonella as a host model to study Candida glabrata virulence and antifungal efficacy. 
Virulence 8, 00–00. 

Anderson, J.M., and Soll, D.R. (1987a). Unique phenotype of opaque cells in the white-opaque 
transition of Candida albicans. Journal of Bacteriology 169, 5579–5588. 

Arendrup, M.C., and Patterson, T.F. (2017). Multidrug-Resistant Candida: Epidemiology, 
molecular mechanisms, and treatment. J. Infect. Dis. 216, S445–S451. 

Arendrup, M.C., Cuenca-Estrella, M., Lass-Flörl, C., Hope, W., and EUCAST-AFST (2012). EUCAST 
technical note on the EUCAST definitive document EDef 7.2: method for the determination of 
broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 
(EUCAST-AFST). Clin. Microbiol. Infect. 18, E246-247. 

van Asbeck, E., Clemons, K.V., Martinez, M., Tong, A.-J., and Stevens, D.A. (2008). Significant 
differences in drug susceptibility among species in the Candida parapsilosis group. Diagn. 
Microbiol. Infect. Dis. 62, 106–109. 

van Asbeck, E.C., Clemons, K.V., and Stevens, D.A. (2009). Candida parapsilosis: a review of its 
epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility. Crit. Rev. 
Microbiol. 35, 283–309. 

Bader, O., Weig, M., Taverne-Ghadwal, L., Lugert, R., Gross, U., and Kuhns, M. (2011). Improved 
clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption 
ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 17, 1359–1365. 

Bader, O., Schwarz, A., Kraneveld, E.A., Tangwattanchuleeporn, M., Schmidt, P., Jacobsen, M.D., 
Gross, U., De Groot, P.W.J., and Weig, M. (2012). Gross karyotypic and phenotypic alterations 
among different progenies of the Candida glabrata CBS138/ATCC2001 reference strain. PLoS 
ONE 7, e52218. 

Baillie, G.S., and Douglas, L.J. (1999). Role of dimorphism in the development of Candida 
albicans biofilms. Journal of Medical Microbiology 48, 671–679. 



BIBLIOGRAPHY 
 

137 
 

Barnett, J.A. (2004). A history of research on yeasts 8: taxonomy. Yeast 21, 1141–1193. 

Beaussart, A., Alsteens, D., El-Kirat-Chatel, S., Lipke, P.N., Kucharíková, S., Van Dijck, P., and 
Dufrêne, Y.F. (2012). Single-Molecule imaging and functional analysis of Als adhesins and 
mannans during Candida albicans morphogenesis. ACS Nano 6, 10950–10964. 

Bernhard, M., Weig, M., Zautner, A.E., Groß, U., and Bader, O. (2014). Yeast On-Target Lysis 
(YOTL), a procedure for making auxiliary mass spectrum data sets for clinical routine 
identification of yeasts. J Clin Microbiol 52, 4163–4167. 

Biswas, C., Chen, S.C.-A., Halliday, C., Kennedy, K., Playford, E.G., Marriott, D.J., Slavin, M.A., 
Sorrell, T.C., and Sintchenko, V. (2017). Identification of genetic markers of resistance to 
echinocandins, azoles and 5-fluorocytosine in Candida glabrata by next-generation sequencing: 
a feasibility study. Clin. Microbiol. Infect. 23, 676.e7-676.e10. 

Bodey, G.P., Mardani, M., Hanna, H.A., Boktour, M., Abbas, J., Girgawy, E., Hachem, R.Y., 
Kontoyiannis, D.P., and Raad, I.I. (2002). The epidemiology of Candida glabrata and Candida 
albicans fungemia in immunocompromised patients with cancer. Am. J. Med. 112, 380–385. 

Boisramé, A., Cornu, A., Da Costa, G., and Richard, M.L. (2011). Unexpected role for a 
serine/threonine-rich domain in the Candida albicans Iff Protein Family. Eukaryot Cell 10, 1317–
1330. 

Borghi, E., Andreoni, S., Cirasola, D., Ricucci, V., Sciota, R., and Morace, G. (2014). Antifungal 
resistance does not necessarily affect Candida glabrata fitness. J Chemother 26, 32–36. 

Branchini, M.L., Pfaller, M.A., Rhine-Chalberg, J., Frempong, T., and Isenberg, H.D. (1994). 
Genotypic variation and slime production among blood and catheter isolates of Candida 
parapsilosis. J. Clin. Microbiol. 32, 452–456. 

Butler, G., Rasmussen, M.D., Lin, M.F., Santos, M.A.S., Sakthikumar, S., Munro, C.A., Rheinbay, 
E., Grabherr, M., Forche, A., Reedy, J.L., et al. (2009a). Evolution of pathogenicity and sexual 
reproduction in eight Candida genomes. Nature 459, 657–662. 

Carreté, L., Ksiezopolska, E., Pegueroles, C., Gómez-Molero, E., Saus, E., Iraola-Guzmán, S., 
Loska, D., Bader, O., Fairhead, C., and Gabaldón, T. (2018). Patterns of genomic variation in the 
opportunistic pathogen Candida glabrata Suggest the existence of mating and a secondary 
association with humans. Curr. Biol. 28, 15-27.e7. 

Carreté, L., Ksiezopolska, E., Gómez-Molero, E., Angoulvant, A., Bader, O., Fairhead, C., and 
Gabaldón, T. (2019). Genome comparisons of Candida glabrata serial clinical isolates reveal 
patterns of genetic variation in infecting clonal populations. Front. Microbiol. 10. 

 



BIBLIOGRAPHY 
 

138 
 

ten Cate, J.M., Klis, F.M., Pereira-Cenci, T., Crielaard, W., and de Groot, P.W.J. (2009). Molecular 
and cellular mechanisms that lead to Candida biofilm formation. J Dent Res 88, 105–115. 

Cavalheiro, M., and Teixeira, M.C. (2018). Candida Biofilms: Threats, challenges, and promising 
strategies. Front Med (Lausanne) 5. 

Chaffin, W.L. (2008). Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72, 495–544. 

Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T., and Ghannoum, M.A. 
(2001). Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, 
and drug resistance. J Bacteriol 183, 5385–5394. 

Chandra, J., Mukherjee, P.K., and Ghannoum, M.A. (2008). In vitro growth and analysis of 
Candida biofilms. Nature Protocols 3, 1909–1924. 

Chaudhuri, R., Ansari, F.A., Raghunandanan, M.V., and Ramachandran, S. (2011). FungalRV: 
adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 
12, 192. 

Cleveland, A.A., Farley, M.M., Harrison, L.H., Stein, B., Hollick, R., Lockhart, S.R., Magill, S.S., 
Derado, G., Park, B.J., and Chiller, T.M. (2012). Changes in incidence and antifungal drug 
resistance in candidemia: results from population-based laboratory surveillance in Atlanta and 
Baltimore, 2008-2011. Clin. Infect. Dis. 55, 1352–1361. 

Cormack, B.P., Ghori, N., and Falkow, S. (1999). An adhesin of the yeast pathogen Candida 
glabrata mediating adherence to human epithelial cells. Science 285, 578–582. 

Cornet, M., Sendid, B., Fradin, C., Gaillardin, C., Poulain, D., and Nguyen, H.-V. (2011). Molecular 
identification of closely related Candida species using two ribosomal intergenic spacer 
fingerprinting methods. J Mol Diagn 13, 12–22. 

Correia, A., Sampaio, P., James, S., and Pais, C. (2006). Candida bracarensis sp. nov., a novel 
anamorphic yeast species phenotypically similar to Candida glabrata. International Journal of 
Systematic and Evolutionary Microbiology 56, 313–317. 

Costerton, J.W., Stewart, P.S., and Greenberg, E.P. (1999). Bacterial biofilms: a common cause of 
persistent infections. Science 284, 1318–1322. 

Davey, M.E., and O’toole, G.A. (2000). Microbial biofilms: from ecology to molecular genetics. 
Microbiol. Mol. Biol. Rev. 64, 847–867. 

De Groot, P.W.J., Hellingwerf, K.J., and Klis, F.M. (2003). Genome-wide identification of fungal 
GPI proteins. Yeast 20, 781–796. 

De Las Peñas, A., Pan, S.-J., Castaño, I., Alder, J., Cregg, R., and Cormack, B.P. (2003). Virulence-
related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in 



BIBLIOGRAPHY 
 

139 
 

subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes 
Dev 17, 2245–2258. 

De Las Peñas, A., Juárez-Cepeda, J., López-Fuentes, E., Briones-Martín-del-Campo, M., Gutiérrez-
Escobedo, G., and Castaño, I. (2015). Local and regional chromatin silencing in Candida glabrata: 
consequences for adhesion and the response to stress. FEMS Yeast Res 15. 

Desai, C., Mavrianos, J., and Chauhan, N. (2011). Candida glabrata Pwp7p and Aed1p are 
required for adherence to human endothelial cells. FEMS Yeast Res. 11, 595–601. 

Díaz-Jiménez, D.F., Mora-Montes, H.M., Hernández-Cervantes, A., Luna-Arias, J.P., Gow, N.A.R., 
and Flores-Carreón, A. (2012). Biochemical characterization of recombinant Candida albicans 
mannosyltransferases Mnt1, Mnt2 and Mnt5 reveals new functions in O- and N-mannan 
biosynthesis. Biochem. Biophys. Res. Commun. 419, 77–82. 

Ding, C., Vidanes, G.M., Maguire, S.L., Guida, A., Synnott, J.M., Andes, D.R., and Butler, G. 
(2011). Conserved and divergent roles of Bcr1 and CFEM proteins in Candida parapsilosis and 
Candida albicans. PLoS ONE 6, e28151. 

Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny, J., 
Marck, C., Neuvéglise, C., Talla, E., et al. (2004). Genome evolution in yeasts. Nature 430, 35–44. 

Eisenhaber, B., Schneider, G., Wildpaner, M., and Eisenhaber, F. (2004). A Sensitive Predictor for 
Potential GPI Lipid Modification Sites in Fungal Protein Sequences and its Application to 
Genome-wide Studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, 
Saccharomyces cerevisiae and Schizosaccharomyces pombe. Journal of Molecular Biology 337, 
243–253. 

El-Kirat-Chatel, S., Beaussart, A., Derclaye, S., Alsteens, D., Kucharíková, S., Van Dijck, P., and 
Dufrêne, Y.F. (2015). Force nanoscopy of hydrophobic interactions in the fungal pathogen 
Candida glabrata. ACS Nano 9, 1648–1655. 

Ene, I.V., and Bennett, R.J. (2009). Hwp1 and related adhesins contribute to both mating and 
biofilm formation in Candida albicans. Eukaryotic Cell 8, 1909–1913. 

d’Enfert, C., and Janbon, G. (2016). Biofilm formation in Candida glabrata: What have we learnt 
from functional genomics approaches? FEMS Yeast Res. 16, fov111. 

Enger, L., Joly, S., Pujol, C., Simonson, P., Pfaller, M., and Soll, D.R. (2001). Cloning and 
characterization of a complex DNA fingerprinting probe for Candida parapsilosis. J. Clin. 
Microbiol. 39, 658–669. 

Erb Downward, J.R., Falkowski, N.R., Mason, K.L., Muraglia, R., and Huffnagle, G.B. (2013). 
Modulation of Post-Antibiotic Bacterial Community Reassembly and Host Response by Candida 
albicans. Sci Rep 3. 



BIBLIOGRAPHY 
 

140 
 

Espinel-Ingroff, A., Chowdhary, A., Gonzalez, G.M., Lass-Flörl, C., Martin-Mazuelos, E., Meis, J., 
Peláez, T., Pfaller, M.A., and Turnidge, J. (2013). Multicenter Study of Isavuconazole MIC 
Distributions and Epidemiological Cutoff Values for Aspergillus spp. for the CLSI M38-A2 broth 
microdilution Method. Antimicrob Agents Chemother 57, 3823–3828. 

Estivill, D., Arias, A., Torres-Lana, A., Carrillo-Muñoz, A.J., and Arévalo, M.P. (2011). Biofilm 
formation by five species of Candida on three clinical materials. J. Microbiol. Methods 86, 238–
242. 

Ferreira, J.A.G., Carr, J.H., Starling, C.E.F., de Resende, M.A., and Donlan, R.M. (2009). Biofilm 
Formation and Effect of Caspofungin on Biofilm Structure of Candida Species Bloodstream 
Isolates. Antimicrob Agents Chemother 53, 4377–4384. 

Finkel, J.S., Xu, W., Huang, D., Hill, E.M., Desai, J.V., Woolford, C.A., Nett, J.E., Taff, H., Norice, 
C.T., Andes, D.R., et al. (2012). Portrait of Candida albicans Adherence Regulators. PLoS 
Pathogens 8, e1002525. 

Fitzpatrick, D.A., Logue, M.E., Stajich, J.E., and Butler, G. (2006). A fungal phylogeny based on 42 
complete genomes derived from supertree and combined gene analysis. BMC Evolutionary 
Biology 6, 99. 

Fitzpatrick, D.A., O’Gaora, P., Byrne, K.P., and Butler, G. (2010). Analysis of gene evolution and 
metabolic pathways using the Candida gene order browser. BMC Genomics 11, 290. 

Fonseca, E., Silva, S., Rodrigues, C.F., Alves, C.T., Azeredo, J., and Henriques, M. (2014). Effects of 
fluconazole on Candida glabrata biofilms and its relationship with ABC transporter gene 
expression. Biofouling 30, 447–457. 

Fonzi, W.A., and Irwin, M.Y. (1993). Isogenic Strain Construction and Gene Mapping in Candida 
albicans. Genetics 134, 717–728. 

Fox, E.P., Bui, C.K., Nett, J.E., Hartooni, N., Mui, M.M., Andes, D.R., Nobile, C.J., and Johnson, 
A.D. (2015). An expanded regulatory network temporally controls Candida albicans biofilm 
formation. Mol Microbiol 96, 1226–1239. 

Gabaldón, T., and Carreté, L. (2016). The birth of a deadly yeast: tracing the evolutionary 
emergence of virulence traits in Candida glabrata. FEMS Yeast Res 16. 

Gabaldón, T., Martin, T., Marcet-Houben, M., Durrens, P., Bolotin-Fukuhara, M., Lespinet, O., 
Arnaise, S., Boisnard, S., Aguileta, G., Atanasova, R., et al. (2013a). Comparative genomics of 
emerging pathogens in the Candida glabrata clade. BMC Genomics 14, 623. 

Gabaldón, T., Naranjo-Ortíz, M.A., and Marcet-Houben, M. (2016a). Evolutionary genomics of 
yeast pathogens in the Saccharomycotina. FEMS Yeast Res 16. 



BIBLIOGRAPHY 
 

141 
 

Gácser, A., Salomon, S., and Schäfer, W. (2005). Direct transformation of a clinical isolate of 
Candida parapsilosis using a dominant selection marker. FEMS Microbiol. Lett. 245, 117–121. 

Gácser, A., Schäfer, W., Nosanchuk, J.S., Salomon, S., and Nosanchuk, J.D. (2007). Virulence of 
Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human 
tissue models. Fungal Genet. Biol. 44, 1336–1341. 

Ghannoum, M.A. (2000). Potential role of phospholipases in virulence and fungal pathogenesis. 
Clin. Microbiol. Rev. 13, 122–143, table of contents. 

Gillum, A.M., Tsay, E.Y., and Kirsch, D.R. (1984). Isolation of the Candida albicans gene for 
orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF 
mutations. Mol. Gen. Genet. 198, 179–182. 

Gómez-Molero, E., de Boer, A.D., Dekker, H.L., Moreno-Martínez, A., Kraneveld, E.A., Ichsan I, 
Chauhan, N., Weig, M., de Soet, J.J., de Koster, C.G., et al. (2015). Proteomic analysis of 
hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential 
incorporation of adhesins. FEMS Yeast Res. 15. 

Gow, N.A.R., van de Veerdonk, F.L., Brown, A.J.P., and Netea, M.G. (2012). Candida albicans 
morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. 
Microbiol. 10, 112–122. 

de Groot, P.W.J., de Boer, A.D., Cunningham, J., Dekker, H.L., de Jong, L., Hellingwerf, K.J., de 
Koster, C., and Klis, F.M. (2004). Proteomic analysis of Candida albicans cell walls reveals 
covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3, 955–965. 

de Groot, P.W.J., Kraneveld, E.A., Yin, Q.Y., Dekker, H.L., Groß, U., Crielaard, W., de Koster, C.G., 
Bader, O., Klis, F.M., and Weig, M. (2008). The cell wall of the human pathogen Candida 
glabrata: Differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7, 1951–
1964. 

de Groot, P.W.J., Bader, O., de Boer, A.D., Weig, M., and Chauhan, N. (2013). Adhesins in human 
fungal pathogens: Glue with plenty of stick. Eukaryot Cell 12, 470–481. 

Grossman, N.T., Pham, C.D., Cleveland, A.A., and Lockhart, S.R. (2015). Molecular mechanisms 
of fluconazole resistance in Candida parapsilosis isolates from a U.S. surveillance system. 
Antimicrob Agents Chemother 59, 1030–1037. 

Guinea, J. (2014). Global trends in the distribution of Candida species causing candidemia. 
Clinical Microbiology and Infection 20, 5–10. 

Harriott, M.M., and Noverr, M.C. (2011). Importance of Candida-bacterial polymicrobial biofilms 
in disease. Trends Microbiol 19, 557–563. 



BIBLIOGRAPHY 
 

142 
 

Hawser, S. (1996). Comparisons of the susceptibilities of planktonic and adherent Candida 
albicans to antifungal agents: a modified XTT tetrazolium assay using synchronised C. albicans 
cells. J. Med. Vet. Mycol. 34, 149–152. 

Hawser, S.P., and Douglas, L.J. (1995). Resistance of Candida albicans biofilms to antifungal 
agents in vitro. Antimicrob. Agents Chemother. 39, 2128–2131. 

Hazen, K.C., Plotkin, B.J., and Klimas, D.M. (1986). Influence of growth conditions on cell surface 
hydrophobicity of Candida albicans and Candida glabrata. Infect. Immun. 54, 269–271. 

Hill, J.A., O’Meara, T.R., and Cowen, L.E. (2015). Fitness Trade-Offs Associated with the Evolution 
of Resistance to antifungal drug Combinations. Cell Reports 10, 809–819. 

Hirakawa, M.P., Martinez, D.A., Sakthikumar, S., Anderson, M.Z., Berlin, A., Gujja, S., Zeng, Q., 
Zisson, E., Wang, J.M., Greenberg, J.M., et al. (2015). Genetic and phenotypic intra-species 
variation in Candida albicans. Genome Res 25, 413–425. 

Hoyer, L.L. (2001). The ALS gene family of Candida albicans. Trends Microbiol. 9, 176–180. 

Hoyer, L.L., and Cota, E. (2016). Candida albicans Agglutinin-like sequence (Als) family vignettes: 
a review of Als protein structure and function. Front Microbiol 7. 

Hoyer, L.L., and Hecht, J.E. (2000). The ALS6 and ALS7 genes of Candida albicans. Yeast 16, 847–
855. 

Hoyer, L.L., and Hecht, J.E. (2001). The ALS5 gene of Candida albicans and analysis of the Als5p 
N-terminal domain. Yeast 18, 49–60. 

Hoyer, L.L., Scherer, S., Shatzman, A.R., and Livi, G.P. (1995). Candida albicans ALS1: domains 
related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol. 
Microbiol. 15, 39–54. 

Hoyer, L.L., Payne, T.L., Bell, M., Myers, A.M., and Scherer, S. (1998a). Candida albicans ALS3 
and insights into the nature of the ALS gene family. Curr. Genet. 33, 451–459. 

Hoyer, L.L., Payne, T.L., and Hecht, J.E. (1998b). Identification of Candida albicans ALS2 and ALS4 
and localization of als proteins to the fungal cell surface. J. Bacteriol. 180, 5334–5343. 

Hoyer, L.L., Fundyga, R., Hecht, J.E., Kapteyn, J.C., Klis, F.M., and Arnold, J. (2001b). 
Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic 
analysis of the ALS family. Genetics 157, 1555–1567. 

Hoyer, L.L., Green, C.B., Oh, S.-H., and Zhao, X. (2008). Discovering the secrets of the 
Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med Mycol 46, 1–
15. 



BIBLIOGRAPHY 
 

143 
 

Hull, C.M., Raisner, R.M., and Johnson, E.D. Evidence for mating of the "asexual" yeast 
Candida albicans in a mammalian host. 

Ichsan Ichsan, Weig, M, Groß, U, Schwarz, A, Tangwattanachuleeporn, M, Ziebolz, D, Jacobsen, 
M, Odds, F, Chauchan, N, de Groot, P.W.J, Bader, O. (2014). Genotypic and Phenotypic 
variability in a collection of Candida glabrata clinical isolates. ASM conference on Candida and 
Candidasis. New Orleans, Louisiana, EE.UU. 

Ielasi, F.S., Decanniere, K., and Willaert, R.G. (2012). The epithelial adhesin 1 (Epa1p) from the 
human-pathogenic yeast Candida glabrata: structural and functional study of the carbohydrate-
binding domain. Acta Crystallogr. D Biol. Crystallogr. 68, 210–217. 

Iraqui, I., Garcia‐Sanchez, S., Aubert, S., Dromer, F., Ghigo, J.-M., D’Enfert, C., and Janbon, G. 
(2005). The Yak1p kinase controls expression of adhesins and biofilm formation in 
Candida glabrata in a Sir4p-dependent pathway. Molecular Microbiology 55, 1259–1271. 

Jack, A.A., Daniels, D.E., Jepson, M.A., Vickerman, M.M., Lamont, R.J., Jenkinson, H.F., and 
Nobbs, A.H. (2015). Streptococcus gordonii comCDE (competence) operon modulates biofilm 
formation with Candida albicans. Microbiology (Reading, Engl.) 161, 411–421. 

Jackson, A.P., Gamble, J.A., Yeomans, T., Moran, G.P., Saunders, D., Harris, D., Aslett, M., Barrell, 
J.F., Butler, G., Citiulo, F., et al. (2009). Comparative genomics of the fungal pathogens 
Candida dubliniensis and Candida albicans. Genome Res 19, 2231–2244. 

Jacobsen, I.D., and Hube, B. (2017). Candida albicans morphology: still in focus. Expert Review of 
Anti-Infective Therapy 15, 327–330. 

Jahagirdar, V.L., Davane, M.S., Aradye, S.C., and Nagoba, B.S. (2018). Candida species as 
potential nosocomial pathogens – A review. Electron J Gen Med 15. 

Jouault, T., Sarazin, A., Martinez‐Esparza, M., Fradin, C., Sendid, B., and Poulain, D. (2009). Host 
responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection 
by Candida albicans. Cellular Microbiology 11, 1007–1015. 

Junqueira, J.C., Fuchs, B.B., Muhammed, M., Coleman, J.J., Suleiman, J.M.A.H., Vilela, S.F.G., 
Costa, A.C.B.P., Rasteiro, V.M.C., Jorge, A.O.C., and Mylonakis, E. (2011). Oral Candida albicans 
isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and 
pathogenicity as invasive Candida isolates. BMC Microbiol. 11, 247. 

Kapteyn, J.C., Hoyer, L.L., Hecht, J.E., Müller, W.H., Andel, A., Verkleij, A.J., Makarow, M., Van 
Den Ende, H., and Klis, F.M. (2000). The cell wall architecture of Candida albicans wild-type cells 
and cell wall-defective mutants. Mol. Microbiol. 35, 601–611. 

Karkowska-Kuleta, J., Zajac, D., Bochenska, O., and Kozik, A. (2015). Surfaceome of pathogenic 
yeasts, Candida parapsilosis and Candida tropicalis, revealed with the use of cell surface shaving 
method and shotgun proteomic approach. Acta Biochimica Polonica 62, 807–819. 



BIBLIOGRAPHY 
 

144 
 

Katragkou, Α., Chatzimoschou, A., Simitsopoulou, M., Dalakiouridou, M., Diza-Mataftsi, E., 
Tsantali, C., and Roilides, E. (2008). Differential activities of newer antifungal agents against 
Candida albicans and Candida parapsilosis biofilms. Antimicrob Agents Chemother 52, 357–360. 

Kaur, R., Ma, B., and Cormack, B.P. (2007). A family of glycosylphosphatidylinositol-linked 
aspartyl proteases is required for virulence of Candida glabrata. Proc. Natl. Acad. Sci. U.S.A. 104, 
7628–7633. 

Kim, J., and Sudbery, P. (2011). Candida albicans, a major human fungal pathogen. J. Microbiol. 
49, 171–177. 

Klis, F.M., de Groot, P., and Hellingwerf, K. (2001). Molecular organization of the cell wall of 
Candida albicans. Med. Mycol. 39 Suppl 1, 1–8. 

Klis, F.M., Sosinska, G.J., de Groot, P.W.J., and Brul, S. (2009). Covalently linked cell wall proteins 
of Candida albicans and their role in fitness and virulence. FEMS Yeast Res. 9, 1013–1028. 

Kraneveld, E.A., de Soet, J.J., Deng, D.M., Dekker, H.L., de Koster, C.G., Klis, F.M., Crielaard, W., 
and de Groot, P.W.J. (2011). Identification and differential gene expression of adhesin-like wall 
proteins in Candida glabrata biofilms. Mycopathologia 172, 415–427. 

Krcmery, V., and Barnes, A.J. (2002). Non-albicans Candida spp. causing fungaemia: 
pathogenicity and antifungal resistance. J. Hosp. Infect. 50, 243–260. 

Kucharíková, S., Neirinck, B., Sharma, N., Vleugels, J., Lagrou, K., and Van Dijck, P. (2015). In vivo 
Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model. Journal 
of Antimicrobial Chemotherapy 70, 846–856. 

Kühbacher, A., Burger-Kentischer, A., and Rupp, S. (2017). Interaction of Candida Species with 
the skin. Microorganisms 5. 

Kuhn, D.M., George, T., Chandra, J., Mukherjee, P.K., and Ghannoum, M.A. (2002). Antifungal 
susceptibility of Candida biofilms: Unique efficacy of amphotericin B lipid formulations and 
echinocandins. Antimicrob Agents Chemother 46, 1773–1780. 

Kuhn, D.M., Mukherjee, P.K., Clark, T.A., Pujol, C., Chandra, J., Hajjeh, R.A., Warnock, D.W., Soll, 
D.R., and Ghannoum, M.A. (2004). Candida parapsilosis characterization in an outbreak setting. 
Emerg Infect Dis 10, 1074–1081. 

Kurtzman, C.P., and Robnett, C.J. (1998). Identification and phylogeny of ascomycetous yeasts 
from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van 
Leeuwenhoek 73, 331–371. 

Kurtzman, C.P., and Robnett, C.J. (2003). Phylogenetic relationships among yeasts of the 
“Saccharomyces complex” determined from multigene sequence analyses. FEMS Yeast Res. 3, 
417–432. 



BIBLIOGRAPHY 
 

145 
 

Kurtzman, C.P., and Robnett, C.J. (2013). Relationships among genera of the Saccharomycotina 
(Ascomycota) from multigene phylogenetic analysis of type species. FEMS Yeast Res. 13, 23–33. 

Laffey, S.F., and Butler, G. (2005). Phenotype switching affects biofilm formation by 
Candida parapsilosis. Microbiology (Reading, Engl.) 151, 1073–1081. 

Lamoth, F., Lockhart, S.R., Berkow, E.L., and Calandra, T. (2018). Changes in the epidemiological 
landscape of invasive candidiasis. J. Antimicrob. Chemother. 73, i4–i13. 

Lamster, I.B., Lalla, E., Borgnakke, W.S., and Taylor, G.W. (2008). The relationship between oral 
health and diabetes mellitus. J Am Dent Assoc 139 Suppl, 19S-24S. 

Lan, C.-Y., Rodarte, G., Murillo, L.A., Jones, T., Davis, R.W., Dungan, J., Newport, G., and Agabian, 
N. (2004). Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 
53, 1451–1469. 

Lattif, A.A., K. Mukherjee, P., Chandra, J., Swindell, K., Lockhart, S.R., Diekema, D.J., Pfaller, M.A., 
and Ghannoum, M.A. (2010). Characterization of biofilms formed by Candida parapsilosis, 
C. metapsilosis, and C. orthopsilosis. International Journal of Medical Microbiology 300, 265–
270. 

Leiva-Peláez, O., Gutiérrez-Escobedo, G., López-Fuentes, E., Cruz-Mora, J., De Las Peñas, A., and 
Castaño, I. (2018). Molecular characterization of the silencing complex SIR in Candida glabrata 
hyperadherent clinical isolates. Fungal Genet. Biol. 118, 21–31. 

Li, L., Redding, S., and Dongari-Bagtzoglou, A. (2007). Candida glabrata, an Emerging Oral 
Opportunistic Pathogen. J Dent Res 86, 204–215. 

Lindsay, A.K., Morales, D.K., Liu, Z., Grahl, N., Zhang, A., Willger, S.D., Myers, L.C., and Hogan, 
D.A. (2014). Analysis of Candida albicans Mutants Defective in the Cdk8 Module of Mediator 
Reveal Links between Metabolism and Biofilm Formation. PLOS Genetics 10, e1004567. 

Lo, H.J., Köhler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. (1997). 
Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949. 

Lockhart, S.R., Wagner, D., Iqbal, N., Pappas, P.G., Andes, D.R., Kauffman, C.A., Brumble, L.M., 
Hadley, S., Walker, R., Ito, J.I., et al. (2011). Comparison of in vitro susceptibility characteristics 
of Candida species from cases of invasive candidiasis in solid organ and stem cell transplant 
recipients: Transplant-Associated Infections Surveillance Network (TRANSNET), 2001 to 2006. J. 
Clin. Microbiol. 49, 2404–2410. 

Lockhart, S.R., Iqbal, N., Cleveland, A.A., Farley, M.M., Harrison, L.H., Bolden, C.B., Baughman, 
W., Stein, B., Hollick, R., Park, B.J., et al. (2012). Species identification and antifungal 
susceptibility testing of Candida bloodstream isolates from population-based surveillance 
studies in two U.S. cities from 2008 to 2011. J. Clin. Microbiol. 50, 3435–3442. 



BIBLIOGRAPHY 
 

146 
 

López-Fuentes, E., Gutiérrez-Escobedo, G., Timmermans, B., Van Dijck, P., De Las Peñas, A., and 
Castaño, I. (2018). Candida glabrata’s genome plasticity confers a unique pattern of expressed 
cell wall proteins. J Fungi (Basel) 4. 

Lott, T.J., Kuykendall, R.J., Welbel, S.F., Pramanik, A., and Lasker, B.A. (1993a). Genomic 
heterogeneity in the yeast Candida parapsilosis. Curr. Genet. 23, 463–467. 

Luo, G., and Samaranayake, L.P. (2002). Candida glabrata, an emerging fungal pathogen, exhibits 
superior relative cell surface hydrophobicity and adhesion to denture acrylic surfaces compared 
with Candida albicans. APMIS 110, 601–610. 

Lyon, G.M., Karatela, S., Sunay, S., and Adiri, Y. (2010). Antifungal susceptibility testing of 
Candida isolates from the Candida surveillance study. J Clin Microbiol 48, 1270–1275. 

Malani, A.N., Psarros, G., Malani, P.N., and Kauffman, C.A. (2011). Is age a risk factor for 
Candida glabrata colonisation? Mycoses 54, 531–537. 

Martin, D.S., and Jones, C.P. (1940). Further studies on the practical classification of the Monilias 
1. J Bacteriol 39, 609–630. 

McCarty, T.P., and Pappas, P.G. (2016). Invasive Candidiasis. Infect. Dis. Clin. North Am. 30, 103–
124. 

McCullough, M.J., Ross, B.C., and Reade, P.C. (1996). Candida albicans: a review of its history, 
taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int J Oral 
Maxillofac Surg 25, 136–144. 

Melo, A.S., Bizerra, F.C., Freymüller, E., Arthington-Skaggs, B.A., and Colombo, A.L. (2011). 
Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. 
isolates, including strains of the Candida parapsilosis complex. Med Mycol 49, 253–262. 

Meyer, E., Geffers, C., Gastmeier, P., and Schwab, F. (2013). No increase in primary nosocomial 
candidemia in 682 German intensive care units during 2006 to 2011. Euro Surveill. 18. 

Moralez, A.T.P., França, E.J.G., Furlaneto-Maia, L., Quesada, R.M.B., and Furlaneto, M.C. (2014). 
Phenotypic switching in Candida tropicalis: association with modification of putative virulence 
attributes and antifungal drug sensitivity. Med. Mycol. 52, 106–114. 

Moyes, D.L., Wilson, D., Richardson, J.P., Mogavero, S., Tang, S.X., Wernecke, J., Höfs, S., 
Gratacap, R.L., Robbins, J., Runglall, M., et al. (2016). Candidalysin is a fungal peptide toxin 
critical for mucosal infection. Nature 532, 64–68. 

Mukherjee, P.K., Zhou, G., Munyon, R., and Ghannoum, M.A. (2005). Candida biofilm: a well-
designed protected environment. Med. Mycol. 43, 191–208. 



BIBLIOGRAPHY 
 

147 
 

Müller, H., Thierry, A., Coppée, J.Y., Gouyette, C., Hennequin, C., Sismeiro, O., Talla, E., Dujon, 
B., Fairhead, C. (2009). Genomic polymorphism in the population of Candida glabrata: Gene 
copy-number variation and chromosomal translocations. Fungal Genet. and Biol. 46, 264-276. 

Naglik, J.R., Challacombe, S.J., and Hube, B. (2003). Candida albicans secreted aspartyl 
proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400–428, table of 
contents. 

Nather, K., and Munro, C.A. (2008). Generating cell surface diversity in Candida albicans and 
other fungal pathogens. FEMS Microbiology Letters 285, 137–145. 

Neji, S., Hadrich, I., Trabelsi, H., Abbes, S., Cheikhrouhou, F., Sellami, H., Makni, F., and Ayadi, A. 
(2017). Virulence factors, antifungal susceptibility and molecular mechanisms of azole 
resistance among Candida parapsilosis complex isolates recovered from clinical specimens. 
Journal of Biomedical Science 24, 67. 

Németh, T., Tóth, A., Szenzenstein, J., Horváth, P., Nosanchuk, J.D., Grózer, Z., Tóth, R., Papp, C., 
Hamari, Z., Vágvölgyi, C., et al. (2013). Characterization of virulence properties in the 
C. parapsilosis sensu lato species. PLOS ONE 8, e68704. 

Nett, J., Lincoln, L., Marchillo, K., Massey, R., Holoyda, K., Hoff, B., VanHandel, M., and Andes, D. 
(2007). Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. 
Agents Chemother. 51, 510–520. 

Nett, J.E., Zarnowski, R., Cabezas-Olcoz, J., Brooks, E.G., Bernhardt, J., Marchillo, K., Mosher, 
D.F., and Andes, D.R. (2015). Host contributions to construction of three device-associated 
Candida albicans biofilms. Infect. Immun. 83, 4630–4638. 

Nobbs, A.H., Vickerman, M.M., and Jenkinson, H.F. (2010). Heterologous expression of 
Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae reveals differential 
specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. 
Eukaryotic Cell 9, 1622–1634. 

Nobile, C.J., and Johnson, A.D. (2015). Candida albicans Biofilms and Human Disease. Annu. Rev. 
Microbiol. 69, 71–92. 

Nobile, C.J., Andes, D.R., Nett, J.E., Smith, F.J., Yue, F., Phan, Q.-T., Edwards, J.E., Filler, S.G., and 
Mitchell, A.P. (2006). Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in 
vitro and in vivo. PLoS Pathog 2. 

Nobile, C.J., Schneider, H.A., Nett, J.E., Sheppard, D.C., Filler, S.G., Andes, D.R., and Mitchell, A.P. 
(2008). Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18, 1017–
1024. 



BIBLIOGRAPHY 
 

148 
 

Nobile, C.J., Nett, J.E., Hernday, A.D., Homann, O.R., Deneault, J.-S., Nantel, A., Andes, D.R., 
Johnson, A.D., and Mitchell, A.P. (2009). Biofilm matrix regulation by Candida albicans Zap1. 
PLoS Biol. 7, e1000133. 

Noble, S.M., Gianetti, B.A., and Witchley, J.N. (2017). Candida albicans cell-type switching and 
functional plasticity in the mammalian host. Nat. Rev. Microbiol. 15, 96–108. 

Nosek, J., Holesova, Z., Kosa, P., Gacser, A., and Tomaska, L. (2009). Biology and genetics of the 
pathogenic yeast Candida parapsilosis. Curr. Genet. 55, 497–509. 

Odds, F.C. (1988). Candida and candidosis (London; Philadelphia: Baillière Tindall). 

Orasch, C., Marchetti, O., Garbino, J., Schrenzel, J., Zimmerli, S., Mühlethaler, K., Pfyffer, G., 
Ruef, C., Fehr, J., Zbinden, R., et al. (2014). Candida species distribution and antifungal 
susceptibility testing according to European Committee on Antimicrobial Susceptibility Testing 
and new vs. old clinical and laboratory standards institute clinical breakpoints: a 6-year 
prospective candidaemia survey from the fungal infection network of Switzerland. Clinical 
Microbiology and Infection 20, 698–705. 

Otoo, H.N., Lee, K.G., Qiu, W., and Lipke, P.N. (2008). Candida albicans Als adhesins have 
conserved amyloid-forming sequences. Eukaryotic Cell 7, 776–782. 

Pannanusorn, S., Fernandez, V., and Römling, U. (2013). Prevalence of biofilm formation in 
clinical isolates of Candida species causing bloodstream infection. Mycoses 56, 264–272. 

Pappas, P.G., Rex, J.H., Lee, J., Hamill, R.J., Larsen, R.A., Powderly, W., Kauffman, C.A., Hyslop, 
N., Mangino, J.E., Chapman, S., et al. (2003). A prospective observational study of candidemia: 
epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients. 
Clin. Infect. Dis. 37, 634–643. 

Pappas, P.G., Lionakis, M.S., Arendrup, M.C., Ostrosky-Zeichner, L., and Kullberg, B.J. (2018a). 
Invasive candidiasis. Nat Rev Dis Primers 4, 18026. 

Parahitiyawa, N.B., Samaranayake, Y.H., Samaranayake, L.P., Ye, J., Tsang, P.W.K., Cheung, 
B.P.K., Yau, J.Y.Y., and Yeung, S.K.W. (2006). Interspecies variation in Candida biofilm formation 
studied using the Calgary biofilm device. APMIS 114, 298–306. 

Patel, R., Grogg, K.L., Edwards, W.D., Wright, A.J., and Schwenk, N.M. (2000). Death from 
inappropriate therapy for lyme disease. Clin Infect Dis 31, 1107–1109. 

Pathak, A.K., Sharma, S., and Shrivastva, P. (2012). Multi-species biofilm of Candida albicans and 
non-Candida albicans Candida species on acrylic substrate. J Appl Oral Sci 20, 70–75. 

Peleg, A.Y., Hogan, D.A., and Mylonakis, E. (2010). Medically important bacterial–fungal 
interactions. Nature Reviews Microbiology 8, 340–349. 



BIBLIOGRAPHY 
 

149 
 

Percival, S.L., McCarty, S.M., and Lipsky, B. (2014). Biofilms and wounds: An overview of the 
evidence. Advances in Wound Care 4, 373–381. 

Pereira, L., Silva, S., Ribeiro, B., Henriques, M., and Azeredo, J. (2015). Influence of glucose 
concentration on the structure and quantity of biofilms formed by Candida parapsilosis. FEMS 
Yeast Res. 15, fov043. 

Pérez-García, L.A., Csonka, K., Flores-Carreón, A., Estrada-Mata, E., Mellado-Mojica, E., Németh, 
T., López-Ramírez, L.A., Toth, R., López, M.G., Vizler, C., et al. (2016). Role of protein 
glycosylation in Candida parapsilosis cell wall integrity and host interaction. Front Microbiol 7. 

Pfaller, M.A., and Diekema, D.J. (2007). Epidemiology of invasive candidiasis: a persistent public 
health problem. Clin. Microbiol. Rev. 20, 133–163. 

Pfaller, M.A., Messer, S.A., and Hollis, R.J. (1995). Variations in DNA subtype, antifungal 
susceptibility, and slime production among clinical isolates of Candida parapsilosis. Diagnostic 
Microbiology and Infectious Disease 21, 9–14. 

Pfaller, M.A., Messer, S.A., Boyken, L., Tendolkar, S., Hollis, R.J., and Diekema, D.J. (2004). 
Geographic Variation in the Susceptibilities of Invasive Isolates of Candida glabrata to seven 
systemically active antifungal agents: a global assessment from the ARTEMIS antifungal 
surveillance program conducted in 2001 and 2002. J Clin Microbiol 42, 3142–3146. 

Pfaller, M.A., Boyken, L., Hollis, R.J., Messer, S.A., Tendolkar, S., and Diekema, D.J. (2005a). In 
vitro activities of anidulafungin against more than 2,500 clinical isolates of Candida spp., 
including 315 isolates resistant to fluconazole. J. Clin. Microbiol. 43, 5425–5427. 

Pfaller, M.A., Boyken, L., Messer, S.A., Tendolkar, S., Hollis, R.J., and Diekema, D.J. (2005b). 
Comparison of results of voriconazole disk diffusion testing for Candida species with results 
from a central reference laboratory in the ARTEMIS global antifungal surveillance program. J. 
Clin. Microbiol. 43, 5208–5213. 

Pfaller, M.A., Diekema, D.J., and Sheehan, D.J. (2006). Interpretive breakpoints for fluconazole 
and Candida revisited: a blueprint for the future of antifungal susceptibility testing. Clinical 
Microbiology Reviews 19, 435–447. 

Pfaller, M.A., Boyken, L., Hollis, R.J., Kroeger, J., Messer, S.A., Tendolkar, S., and Diekema, D.J. 
(2008). In vitro susceptibility of invasive isolates of Candida spp. to anidulafungin, caspofungin, 
and micafungin: six years of global surveillance. J. Clin. Microbiol. 46, 150–156. 

Pfaller, M.A., Diekema, D.J., Gibbs, D.L., Newell, V.A., Ellis, D., Tullio, V., Rodloff, A., Fu, W., Ling, 
T.A., and Global Antifungal Surveillance Group (2010). Results from the ARTEMIS DISK global 
antifungal surveillance study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida 
species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J. 
Clin. Microbiol. 48, 1366–1377. 



BIBLIOGRAPHY 
 

150 
 

Pfaller, M.A., Castanheira, M., Lockhart, S.R., Ahlquist, A.M., Messer, S.A., and Jones, R.N. 
(2012). Frequency of decreased susceptibility and resistance to echinocandins among 
fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 50, 1199–1203. 

Pryszcz, L.P., Németh, T., Gácser, A., and Gabaldón, T. (2013). Unexpected genomic variability in 
clinical and environmental strains of the pathogenic yeast Candida parapsilosis. Genome Biol 
Evol 5, 2382–2392. 

Puig-Asensio, M., Padilla, B., Garnacho-Montero, J., Zaragoza, O., Aguado, J.M., Zaragoza, R., 
Montejo, M., Muñoz, P., Ruiz-Camps, I., Cuenca-Estrella, M., et al. (2014). Epidemiology and 
predictive factors for early and late mortality in Candida bloodstream infections: a population-
based surveillance in Spain. Clin. Microbiol. Infect. 20, O245-254. 

Quindós, G. (2014). Epidemiology of candidaemia and invasive candidiasis. a changing face. Rev 
Iberoam Micol 31, 42–48. 

Ramage, G., Vandewalle, K., Wickes, B.L., and López-Ribot, J.L. (2001). Characteristics of biofilm 
formation by Candida albicans. Rev Iberoam Micol 18, 163–170. 

Ramage, G., Bachmann, S., Patterson, T.F., Wickes, B.L., and López-Ribot, J.L. (2002). 
Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans 
biofilms. J. Antimicrob. Chemother. 49, 973–980. 

Richardson, J.P., and Moyes, D.L. (2015). Adaptive immune responses to Candida albicans 
infection. Virulence 6, 327–337. 

Rigby, S., Procop, G.W., Haase, G., Wilson, D., Hall, G., Kurtzman, C., Oliveira, K., Von Oy, S., 
Hyldig-Nielsen, J.J., Coull, J., et al. (2002). Fluorescence in situ hybridization with peptide nucleic 
acid probes for rapid identification of Candida albicans directly from blood culture bottles. J. 
Clin. Microbiol. 40, 2182–2186. 

Rodrigues, C.F., Silva, S., and Henriques, M. (2014). Candida glabrata: a review of its features 
and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 33, 673–688. 

Rodrigues, C.F., Rodrigues, M.E., Silva, S., and Henriques, M. (2017b). Candida glabrata Biofilms: 
How Far Have We Come? J Fungi (Basel) 3. 

Romão, D., Cavalheiro, M., Mil-Homens, D., Santos, R., Pais, P., Costa, C., Takahashi-Nakaguchi, 
A., Fialho, A.M., Chibana, H., and Teixeira, M.C. (2017). A new determinant of Candida glabrata 
virulence: The Acetate Exporter CgDtr1. Front Cell Infect Microbiol 7. 

Rossoni, R.D., Barbosa, J.O., Vilela, S.F.G., Jorge, A.O.C., and Junqueira, J.C. (2013). Comparison 
of the hemolytic activity between C. albicans and non-albicans Candida species. Braz. Oral Res. 
27, 484–489. 



BIBLIOGRAPHY 
 

151 
 

Ruhnke, M. (2014). Antifungal stewardship in invasive Candida infections. Clinical Microbiology 
and Infection 20, 11–18. 

Ruiz‐Herrera, J., Elorza, M.V., Valentín, E., and Sentandreu, R. (2006). Molecular organization of 
the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Research 6, 14–
29. 

Růzicka, F., Holá, V., Votava, M., and Tejkalová, R. (2007). Importance of biofilm in 
Candida parapsilosis and evaluation of its susceptibility to antifungal agents by colorimetric 
method. Folia Microbiol. (Praha) 52, 209–214. 

Saballs, P., Torres-Rodríguez, J.M., Salvadó, M., Sales, P., Gimeno-Bayón, J.L., Knobel, H., López 
Colomés, J.L., Serrano, C., and Drobnic, L. (2000). Candidemia in AIDS. A retrospective study of 
nine cases. Revista Iberoamericana de Micología 17, 2–5. 

Santos, M.A.S., Gomes, A.C., Santos, M.C., Carreto, L.C., and Moura, G.R. (2011). The genetic 
code of the fungal CTG clade. C. R. Biol. 334, 607–611. 

Schaller, M., Borelli, C., Korting, H.C., and Hube, B. (2005). Hydrolytic enzymes as virulence 
factors of Candida albicans. Mycoses 48, 365–377. 

Schauer, F., and Hanschke, R. (1999). [Taxonomy and ecology of the genus Candida]. Mycoses 
42 Suppl 1, 12–21. 

Seidler, M., Salvenmoser, S., and Müller, F.-M.C. (2006). In vitro effects of micafungin against 
Candida biofilms on polystyrene and central venous catheter sections. Int. J. Antimicrob. Agents 
28, 568–573. 

Seneviratne, C.J., Silva, W.J., Jin, L.J., Samaranayake, Y.H., and Samaranayake, L.P. (2009). 
Architectural analysis, viability assessment and growth kinetics of Candida albicans and 
Candida glabrata biofilms. Arch. Oral Biol. 54, 1052–1060. 

Shepherd, M.G., Poulter, R.T.M., and Sullivan, P.A. (1985). Candida albicans: Biology, Genetics, 
and Pathogenicity. Annual Review of Microbiology 39, 579–614. 

Shin, J.H., Shin, D.H., Song, J.W., Kee, S.J., Suh, S.P., and Ryang, D.W. (2001). Electrophoretic 
karyotype analysis of sequential Candida parapsilosis isolates from patients with persistent or 
pecurrent fungemia. J. Clin. Microbiol. 39, 1258–1263. 

Shin, J.H., Kee, S.J., Shin, M.G., Kim, S.H., Shin, D.H., Lee, S.K., Suh, S.P., and Ryang, D.W. 
(2002b). Biofilm production by isolates of Candida species recovered from nonneutropenic 
patients: Comparison of bloodstream isolates with isolates from other sources. Journal of 
Clinical Microbiology 40, 1244–1248. 



BIBLIOGRAPHY 
 

152 
 

Silva, A.P., Miranda, I.M., Guida, A., Synnott, J., Rocha, R., Silva, R., Amorim, A., Pina-Vaz, C., 
Butler, G., and Rodrigues, A.G. (2011). Transcriptional profiling of azole-resistant 
Candida parapsilosis strains. Antimicrob Agents Chemother 55, 3546–3556. 

Silva, S., Henriques, M., Oliveira, R., Azeredo, J., Malic, S., Hooper, S.J., and Williams, D.W. 
(2009a). Characterization of Candida parapsilosis infection of an in vitro reconstituted human 
oral epithelium. Eur. J. Oral Sci. 117, 669–675. 

Silva, S., Henriques, M., Martins, A., Oliveira, R., Williams, D., and Azeredo, J. (2009b). Biofilms 
of non-Candida albicans Candida species: quantification, structure and matrix composition. 
Med. Mycol. 47, 681–689. 

Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D.W., and Azeredo, J. (2012). 
Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, 
pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 36, 288–305. 

Silva, S., Rodrigues, C.F., Araújo, D., Rodrigues, M.E., and Henriques, M. (2017). Candida Species 
biofilms’ antifungal resistance. J Fungi (Basel) 3. 

Silva-Dias, A., Miranda, I.M., Branco, J., Monteiro-Soares, M., Pina-Vaz, C., and Rodrigues, A.G. 
(2015). Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic 
susceptibility: relationship among Candida spp. Front Microbiol 6. 

Slutsky, B., Buffo, J., and Soll, D.R. (1985). High-frequency switching of colony morphology in 
Candida albicans. Science 230, 666–669. 

Slutsky, B., Staebell, M., Anderson, J., Risen, L., Pfaller, M., and Soll, D.R. (1987). “White-opaque 
transition”: a second high-frequency switching system in Candida albicans. J Bacteriol 169, 189–
197. 

Sóczó, G., Kardos, G., McNicholas, P.M., Falusi, E., Gergely, L., and Majoros, L. (2007). 
Posaconazole susceptibility testing against Candida species: comparison of broth microdilution 
and E-test methods. Mycoses 50, 178–182. 

Solis, N.V., Park, Y.-N., Swidergall, M., Daniels, K.J., Filler, S.G., and Soll, D.R. (2018). 
Candida albicans white-opaque switching influences virulence but not mating during 
oropharyngeal candidiasis. Infect. Immun. 

Souza, A.C.R., Fuchs, B.B., Pinhati, H.M.S., Siqueira, R.A., Hagen, F., Meis, J.F., Mylonakis, E., and 
Colombo, A.L. (2015). Candida parapsilosis resistance to fluconazole: Molecular mechanisms 
and in vivo Impact in infected Galleria mellonella larvae. Antimicrob Agents Chemother 59, 
6581–6587. 

Srivastava, V.K., Suneetha, K.J., and Kaur, R. (2014). A systematic analysis reveals an essential 
role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in 
iron homoeostasis and virulence in Candida glabrata. Biochem. J. 463, 103–114. 



BIBLIOGRAPHY 
 

153 
 

Sudbery, P., Gow, N., and Berman, J. (2004). The distinct morphogenic states of 
Candida albicans. Trends in Microbiology 12, 317–324. 

Tati, S., Davidow, P., McCall, A., Hwang-Wong, E., Rojas, I.G., Cormack, B., and Edgerton, M. 
(2016). Candida glabrata binding to Candida albicans hyphae enables its development in 
oropharyngeal candidiasis. PLoS Pathog. 12, e1005522. 

Tavanti, A., Hensgens, L.A., Mogavero, S., Majoros, L., Senesi, S., and Campa, M. (2010). 
Genotypic and phenotypic properties of Candida parapsilosis sensu strictu strains isolated from 
different geographic regions and body sites. BMC Microbiol 10, 203. 

Timmermans, B., De Las Peñas, A., Castaño, I., and Van Dijck, P. (2018). Adhesins in 
Candida glabrata. J Fungi (Basel) 4. 

Tortorano, A.M., Peman, J., Bernhardt, H., Klingspor, L., Kibbler, C.C., Faure, O., Biraghi, E., 
Canton, E., Zimmermann, K., Seaton, S., et al. (2004). Epidemiology of candidaemia in Europe: 
results of 28-month European Confederation of Medical Mycology (ECMM) hospital-based 
surveillance study. Eur. J. Clin. Microbiol. Infect. Dis. 23, 317–322. 

Toth, R., Toth, A., Vagvolgyi, C., and Gacser, A. (2017). Candida parapsilosis secreted lipase as an 
important virulence factor. Curr. Protein Pept. Sci. 18, 1043–1049. 

Tournu, H., and Van Dijck, P. (2012). Candida Biofilms and the Host: Models and New Concepts 
for Eradication. 

Tragiannidis, A., Fegeler, W., Rellensmann, G., Debus, V., Müller, V., Hoernig-Franz, I., Siam, K., 
Pana, Z.-D., Jürgens, H., and Groll, A.H. (2012). Candidaemia in a european paediatric university 
hospital: a 10-year observational study. Clin. Microbiol. Infect. 18, E27-30. 

Trofa, D., Gácser, A., and Nosanchuk, J.D. (2008). Candida parapsilosis, an emerging fungal 
pathogen. Clin. Microbiol. Rev. 21, 606–625. 

Tsai, H.-F., Krol, A.A., Sarti, K.E., and Bennett, J.E. (2006). Candida glabrata PDR1, a 
transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in 
clinical isolates and petite mutants. Antimicrob. Agents Chemother. 50, 1384–1392. 

Uppuluri, P., Chaturvedi, A.K., Srinivasan, A., Banerjee, M., Ramasubramaniam, A.K., Köhler, J.R., 
Kadosh, D., and Lopez-Ribot, J.L. (2010). Dispersion as an important step in the Candida albicans 
biofilm developmental cycle. PLoS Pathog 6. 

Uppuluri, P., Zaldívar, M.A., Anderson, M.Z., Dunn, M.J., Berman, J., Ribot, J.L.L., and Köhler, J.R. 
(2018). Candida albicans dispersed cells are developmentally distinct from biofilm and 
planktonic Cells. MBio 9, e01338-18. 

Vale-Silva, L.A., and Sanglard, D. (2015). Tipping the balance both ways: drug resistance and 
virulence in Candida glabrata. FEMS Yeast Res. 15, fov025. 



BIBLIOGRAPHY 
 

154 
 

Vale-Silva, L., Ischer, F., Leibundgut-Landmann, S., and Sanglard, D. (2013). Gain-of-function 
mutations in PDR1, a regulator of antifungal drug resistance in Candida glabrata, control 
adherence to host cells. Infect. Immun. 81, 1709–1720. 

Vale-Silva, L., Beaudoing, E., Tran, V.D.T., and Sanglard, D. (2017). Comparative genomics of two 
sequential Candida glabrata Clinical Isolates. G3 (Bethesda) 7, 2413–2426. 

Vargas, K., Messer, S.A., Pfaller, M., Lockhart, S.R., Stapleton, J.T., Hellstein, J., and Soll, D.R. 
(2000). Elevated phenotypic switching and drug resistance of Candida albicans from human 
immunodeficiency virus-positive individuals prior to first thrush episode. J. Clin. Microbiol. 38, 
3595–3607. 

Verstrepen, K.J., and Klis, F.M. (2006). Flocculation, adhesion and biofilm formation in yeasts. 
Mol. Microbiol. 60, 5–15. 

Weig, M., Jänsch, L., Groß, U., De Koster, C.G., Klis, F.M., and De Groot, P.W.J. (2004). Systematic 
identification in silico of covalently bound cell wall proteins and analysis of protein–
polysaccharide linkages of the human pathogen Candida glabrata. Microbiology 150, 3129–
3144. 

Whaley, S.G., Berkow, E.L., Rybak, J.M., Nishimoto, A.T., Barker, K.S., and Rogers, P.D. (2016). 
Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. 
Front Microbiol 7, 2173. 

Wheeler, R.T., Kombe, D., Agarwala, S.D., and Fink, G.R. (2008). Dynamic, morphotype-specific 
Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 4, 
e1000227. 

Whiteway, M., and Bachewich, C. (2007). Morphogenesis in Candida albicans. Annu. Rev. 
Microbiol. 61, 529–553. 

Yapar, N. (2014). Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 10, 
95–105. 

Yarrow, D., and Meyer, S.A. (1978). Proposal for Amendment of the Diagnosis of the Genus 
Candida Berkhout nom. cons. International Journal of Systematic Bacteriology 28, 611–615. 

Zarnowski, R., Westler, W.M., Lacmbouh, G.A., Marita, J.M., Bothe, J.R., Bernhardt, J., Lounes-
Hadj Sahraoui, A., Fontaine, J., Sanchez, H., Hatfield, R.D., et al. (2014). Novel entries in a fungal 
biofilm matrix encyclopedia. MBio 5, e01333-01314. 

Zervou, F.N., Zacharioudakis, I.M., Kurpewski, J., and Mylonakis, E. (2017). T2 Magnetic 
resonance for fungal diagnosis. Methods Mol. Biol. 1508, 305–319. 



BIBLIOGRAPHY 
 

155 
 

Zheng, X.-D., Lee, R.T.H., Wang, Y.-M., Lin, Q.-S., and Wang, Y. (2007). Phosphorylation of Rga2, 
a Cdc42 GAP, by CDK/Hgc1 is crucial for Candida albicans hyphal growth. EMBO J. 26, 3760–
3769. 

Zilberberg, M.D., Shorr, A.F., and Kollef, M.H. (2008). Secular trends in candidemia-related 
hospitalization in the United States, 2000-2005. Infect Control Hosp Epidemiol 29, 978–980. 

Zupancic, M.L., Frieman, M., Smith, D., Alvarez, R.A., Cummings, R.D., and Cormack, B.P. (2008). 
Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol. Microbiol. 68, 
547–559. 



APPENDIX 
 

156 
 

7. Appendix 

Sets of strains used in this study 
 

Five C. parapsilosis isolates from the same patients used in this study case report 

clinical isolate source of isolation clinical isolate source of isolation 

bsc-1700 blood culture-smooth tsc-1702 throat swab-smooth 

nsc-1701 nose swab-smooth tcc-1702 throat swab-crepe 

ncc-1701 nose swab-crepe  

*Isolates used in this study were provided by University Medical Centre (UMG), Göttingen, Germany 

One hundred seventeen C. parapsilosis clinical isolates used in biofilm formation capacity to polystyrol, agar 
invasion and antifungal susceptibility analyses 

 

 

clinical isolate source of isolation clinical isolate source of isolation 

PEU307 nose swab 9 PEU876 oral 6 

PEU308 skin 4 PEU881 nose swab 9 

PEU317 respiratory 5 PEU882 invasive 1 

PEU320 nose swab 9 PEU883 invasive 1 

PEU336 nose swab 9 PEU884 respiratory 5 

PEU356 nose swab 9 PEU885 device 3 

PEU357 skin 4 PEU886 invasive 1 

PEU358 urine 8 PEU887 urine 8 

PEU385 nose swab 9 PEU890 invasive 1 

PEU391 invasive 1 PEU891 respiratory 5 

PEU506 device 3 PEU893 GI 2 

PEU525 respiratory 5 PEU894 invasive 1 

PEU555 invasive 1 PEU898 GI 2 
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Continued from previous page 

PEU583 nose swab 9 PEU811 nose swab 9 

PEU584 invasive 1 PEU899 nose swab 9 

PEU589 nose swab 9 PEU913 nose swab 9 

PEU596 respiratory 5 PEU915 urine catheter 7 

PEU617 urine catheter 7 PEU916 invasive 1 

PEU623 respiratory 5 PEU918 urine catheter 7 

PEU628 device 3 PEU924 device 3 

PEU630 invasive 1 PEU935 urine catheter 7 

PEU647 nose swab 9 PEU937 nose swab 9 

PEU648 nose swab 9 PEU940 nose swab 9 

PEU649 nose swab 9 PEU941 invasive 1 

PEU650 urine catheter 7 PEU944 urine catheter 7 

PEU660 device 3 PEU950 nose swab 9 

PEU663 device 3 PEU960 respiratory 5 

PEU674 nose swab 9 PEU961 urine catheter 7 

PEU681 nose swab 9 PEU-963 device 3 

PEU682 nose swab 9 PEU965 urine 8 

PEU688 nose swab 9 PEU968 nose swab 9 

PEU689 nose swab 9 PEU969 nose swab 9 

PEU707 respiratory 5 PEU971 urine catheter 7 

PEU709 nose swab 9 PEU972 nose swab 9 

PEU720 nose swab 9 PEU974 device 3 

PEU724 device 3 PEU975 device 3 

PEU732 urine catheter 7 PEU976 invasive 1 

PEU738 device 3 PEU981 nose swab 9 

PEU750 respiratory 5 PEU984 skin 4 

PEU751 device 3 PEU990 respiratory 5 

PEU752 urine catheter 7 PEU991 respiratory 5 
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Continued from previous page 

*Isolates used in this study were provided by University Medical Centre (UMG), Göttingen, Germany 

Seven C. parapsilosis isolates used in biofilm formation capacity assay to polystyrol, In vivo virulence test and 
biofilm formation analyses in presence of antifungal drugs 
 
clinical isolate source of isolation  clinical isolate source of isolation 

PEU486 skin 4 PEU582 urine 8 

PEU495 skin 4 PEU586 nose swab 9 

PEU496 nose swab 9 PEU651 device 3 

PEU501 nose swab 9  

*Isolates used in this study were provided by University Medical Centre (UMG), Göttingen, Germany 

PEU760 nose swab 9 PEU997 skin 4 

PEU761 invasive 1 PEU1001 urine catheter 7 

PEU762 invasive 1 PEU1010 urine catheter 7 

PEU763 respiratory 5 PEU1013 nose swab 9 

PEU768 nose swab 9 PEU1019 device 3 

PEU769 skin 4 PEU1020 device 3 

PEU772 device 3 PEU1021 device 3 

PEU776 nose swab 9 PEU1023 device 3 

PEU781 nose swab 9 PEU1024 nose swab 9 

PEU783 nose swab 9 PEU1026 urine 8 

PEU784 nose swab 9 PEU1028 nose swab 9 

PEU808 nose swab 9 PEU1031 nose swab 9 

PEU815 device 3 PEU1032 urine catheter 7 

PEU850 urine 8 PEU1072 nose swab 9 

PEU856 respiratory 5 PEU1077 nose swab 9 

PEU-859 nose swab 9 PEU1079 respiratory 5 

PEU860 nose swab 9 PEU1085 nose swab 9 

 
 

PEU1088 invasive 1 
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Thirty-two C. glabrata clinical isolates genetically sequenced + 2 positive controls 
clinical isolate * ID synonymous cluster source of isolation country 

M17 US02Bal017 3 blood USA 

F1019 EF1019Blo1 3 blood France 

F1822 EF1822Blo1 3 blood France 

M12 US01BG2Blo 3 blood USA 

CST78 US003NY078 3 blood USA 

F2229 EF2229Blo1 3 blood France 

I1718 EF1718Blo1 3 blood Italy 

EB0911Sto EB0911Sto 2 stool (GI) Belgium 

CST35 US003NY035 2 blood USA 

CST34 US000NY034 1 blood USA 

CST109 US003NY109 1 blood USA 

CST80 US003NY080 1 blood USA 

M7 US02Bal007 1 blood USA 

EB101M EB0101MouC 1 oral cavity Belgium 

BO101S EB0101StoC 1 stool (GI) Belgium 

B1012S EB01012StoC 1 stool (GI) Belgium 

B1012M EB01012MouC 1 oral cavity Belgium 

EF1237Blo1 EF1237Blo1 4 blood France 

EI1815Blo1 EI1815Blo1 4 blood Italy 

EF1620Sto EF1620Sto 4 stool (GI) France 

EF0616Blo1 EF0616Blo1 4 blood France 

F15 F15035, EF1535Blo1 5 blood France 

F11 F11017, EF1117Blo1 5 blood France 

E1114 EB1114Mou (O) 7 oral cavity Belgium 

M6 US02Bal006 7 blood USA 

CST110 US003NY110 7 blood USA 

EG01004Sto EG01004Sto 7 stool (GI) Germany 

F15021 EF1521Blo1 7 blood France 

F03013 EF0313Blo1 7 blood France 

BG2 US01BG2Blo 7 blood USA 

P35_2 P35_2 6 oral cavity Taiwan 

P35_3 P35_3 6 oral cavity Taiwan 

PEU382 positive control - urine Germany 

PEU427 positive control - respiratory Germany 

*Isolates used in this study were provided by Toni Gabaldón Estevan, Centre for Genomic Regulation (CRG) 
 Barcelona, Spain. Genome data published by (Carreté et al., 2018).
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Three C. glabrata isolates used for biofilm formation capacity to polystyrol and azoles susceptibility 
clinical isolate source of isolation 

SAT01BAL-EF54001Bal bronchiolo-alveolar lavage 
SAT02PL-EF54001Per peritoneal fluid 
SAT03BC-EF54001Blo blood culture 
*Isolates used in this study were genetically sequenced provided by Toni Gabaldón Estevan, Centre for Genomic  
Regulation (CRG) Barcelona, Spain. Genome data published by (Carreté et al., 2019). 
 
Thirty-two C. glabrata isolates phenotypically classified used for genome sequencing 
clinical isolate source of isolation clinical isolate source of isolation 

PEU30 invasive 1 PEU542 oral 6 

PEU45 device 3 PEU563 GI 2 

PEU52 oral 6 PEU597 oral 6 

PEU123 urine catheter 7 PEU598 skin 4 

PEU135 respiratory 5 PEU607 skin 4 

PEU235 urine catheter 7 PEU608 oral 6 

PEU259 respiratory 5 PEU611 urine catheter 7 

PEU329 respiratory 5 PEU619 GI 2 

PEU382 urine 8 PEU622 invasive 1 

PEU427 respiratory 5 PEU644 respiratory 5 

PEU471 skin 4 PEU652 device 3 

PEU474 skin 4 PEU656 urine 8 

PEU483 urine catheter 7 PEU670 respiratory 7 

PEU522 device 3 PEU671   

PEU531 urine catheter 7 PEU675 skin 4 

PEU537 device 3 PEU693 urine 8 

*Isolate CBS-138 was used as reference strain. 
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List of daily screening C. glabrata clinical isolates used in biofilm formation analyses to polystyrol and silicone 
isolate source of isolation isolate source of isolation 

PEU69 respiratory 5 PEU532 GI 2 

PEU96 urine 8 PEU537 device 3 

PEU113 urine catheter 7 PEU542 urine catheter 7 

PEU117 urine 8 PEU546 skin 4 

PEU119 skin 4 PEU552 GI 2 

PEU122 skin 4 PEU553 urine catheter 7 

PEU123 urine catheter 7 PEU554 oral 6 

PEU124 Invasive 1 PEU558 urine catheter 7 

PEU134 respiratory 5 PEU563 GI 2 

PEU135 respiratory 5 PEU587 GI 2 

PEU159 oral 6 PEU597 oral 6 

PEU162 urine 8 PEU598 skin 4 

PEU193 respiratory 5 PEU601 GI 2 

PEU209 invasive 1 PEU612 urine catheter 7 

PEU210 skin 4 PEU622 invasive 1 

PEU214 oral 6 PEU635 oral 6 

PEU297 urine 8 PEU636 GI 2 

PEU299 GI 2 PEU653 oral 6 

PEU302 urine 8 PEU656 urine 8 

PEU311 invasive 1 PEU668 skin 4 

PEU314 invasive 1 PEU671 urine catheter 7 

PEU324 respiratory 5 PEU675 skin 4 

PEU326 urine 8 PEU676 skin 4 

PEU328 respiratory 5 PEU686 GI 2 

PEU329 respiratory 5 PEU692 urine 8 

PEU330 GI 2 PEU698 device 3 

PEU342 device 3 PEU706 oral 6 

PEU349 urine catheter 7 PEU731 blood culture 9 

PEU352 skin 4 PEU746 device 3 

PEU353 respiratory 5 PEU749 device 3 

PEU368 skin 4 PEU764 device 3 

PEU373 urine 8 PEU777 device 3 

PEU379 GI 2 PEU782 urine catheter 7 

PEU386 urine 8 PEU793 urine 8 
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Continued from previous page 

PEU398 oral 6 PEU795 respiratory 5 

PEU400 urine 8 PEU802 device 3 

PEU401 urine 8 PEU814 urine catheter 7 

PEU471 skin 4 PEU953 skin 4 

PEU474 skin 4 PEU954 device 3 

PEU478 device 3 PEU956 invasive 1 

PEU483 urine catheter 7 PEU957 oral 6 

PEU508 device 3 PEU1011 skin 4 

PEU509 device 3 PEU1044 blood culture 9 

PEU511 skin 4 PEU1048 blood culture 9 

PEU513 GI 2 PEU1049 blood culture 9 

PEU522 device 3 PEU1050 blood culture 9 

PEU531 urine catheter 7 PEU1055 blood culture 9 

 PEU1056 blood culture 9 

*Isolates used in this study were provided by University Medical Centre (UMG), Göttingen, Germany. 

 

Seventy-seven C. glabrata clinical isolates used in Galleria mellonella infection animal model 
isolates BF isolates BF isolates BF isolates BF isolates BF 

PEU531 LBF PEU328 LBF PEU520 LBF PEU386 HBF PEU326 HBF 

PEU523 LBF PEU331 LBF PEU521 LBF PEU1360 HBF PEU329 HBF 

PEU294 LBF PEU317 LBF PEU529 LBF PEU1270 HBF PEU342 HBF 

PEU364 LBF PEU337 LBF PEU533 LBF PEU542 HBF PEU352 HBF 

PEU494 LBF PEU389 LBF PEU534 LBF PEU400 HBF PEU353 HBF 

PEU322 LBF PEU397 LBF PEU535 LBF PEU427 HBF PEU373 HBF 

PEU527 LBF PEU404 LBF PEU536 LBF PEU1330 HBF PEU382 HBF 

PEU541 LBF PEU458 LBF PEU538 LBF PEU123 HBF PEU401 HBF 

PEU29 LBF PEU464 LBF PEU543 LBF PEU183 HBF PEU403 HBF 

PEU1274 LBF PEU469 LBF PEU544 LBF PEU293 HBF PEU513 HBF 

PEU519 LBF PEU478 LBF PEU545 LBF PEU297 HBF PEU522 HBF 

PEU52 LBF PEU498 LBF PEU546 LBF PEU299 HBF PEU532 HBF 

PEU16 LBF PEU502 LBF PEU547 LBF PEU302 HBF PEU537 HBF 

PEU30 LBF PEU510 LBF PEU548 LBF PEU311 HBF PEU540 HBF 

PEU295 LBF PEU514 LBF PEU1273 LBF PEU324 HBF PEU1359 HBF 

PEU314 LBF PEU1332 LBF 

*Red boldfaced, isolates with killing rate lower than 100%. 
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