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Cover figure: Model of the planet and moon transits for the three transits of Kepler-
1625-b. This figure is adapted from Fig. 4 in Rodenbeck et al. (2018) (Fig. 2.4 in this
thesis).
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Summary

One of the next big steps forwards for exoplanet science is the detection of moons around
extrasolar planets. In this thesis I develop methods to detect and characterize these moons
around extrasolar planets, with a focus on the moon candidate around the exoplanet
Kepler-1625 b. The main part of this thesis is formed by two papers about the exomoon
candidate around Kepler-1625 b and a short chapter about a new exomoon indicator we
developed. The three topics and the main results are described shortly below.

In Chapter 2, we study the extrasolar planet Kepler-1625 b, for which the discovery
of a moon candidate has been announced recently. We assess the reliability of this claim
by performing an injection-retrieval experiment, where we inject model light curves with
and without a moon signal into parts of the original Kepler-1625 light curve. We �nd that
we can recover around 40 percent of the injected moons. However, we also �nd that we
recover moons in around 10 percent of the light curves where no moon was injected. This
is a high false-positive rate, considering that the survey that found the moon candidate
looked at hundreds of stars. We also analyze the original light curve ourself, and �nd
marginal evidence in favor of the existence of the moon.

In Chapter 3, we return to the moon candidate around Kepler-1625 b after an addi-
tional transit has been observed by theHubblespace telescope, and the moon parameters
have been re�ned by the original discoverers. We perform an analysis of both the light
curve detrended by the original discoverers of the moon candidate as well as our own
detrending of the light curve. The analysis is improved compared to the �rst paper: The
detrending of the light curve is done simultaneously to the model �t and the planet-moon
model light curve model is re�ned. We �nd signi�cant evidence in favor of the moon
hypothesis. However, we notice that the resulting best �t to the light curve di� ers from
the best �t in the paper of the original discoverers. We also �nd a di� erent parameter
distribution. This leads us to advising caution, since we would assume that a physical
moon signature in the data would lead to roughly the same results independently of the
exact detrending method used.

In Chapter 4, we �nd that the transit timing and duration shift is not as good an in-
dicator for detecting exomoons as previously thought. We �nd however a possible other
exomoon indicator: When planet and moon transit overlap, the observed transit depth in-
creases. This increase follows a periodic pattern, determined by the length of the moon
and planet period. We test this indicator on synthetic light curves and determine that this
indicator can detect moon of Earth size for bright stars using Kepler-like telescopes.

The results of the previous chapters are discussed in Chapter 5. We also test machine
learning using a simple test system, showing that machine learning might be able to detect
Earth-sized exomoons.

7





Zusammenfassung

Eines der nächsten großen Ziele für die Exoplanetenwissenschaft ist die Entdeckung eines
eines Mondes um einen extrasolaren Planeten. In dieser Dissertation entwickele ich Meth-
oden, um diese Monde zu entdecken und zu charakterisieren. Dabei liegt ein besonderer
Fokus auf dem Mondkandidaten um den Exoplaneten Kepler-1625 b. Den Hauptteil
dieser Dissertation bilden zwei Paper zu diesem Exomondkandidaten sowie ein kurzes
Kapitel zu einem neuen Exomondindikator, den wir entwickelt haben. Diese Themen und
die Ergebnisse sind im folgenden kurz zusammengefasst.

Kapitel 2 widmet sich dem postulierten Mondkandiaten um den extrasolaren Plan-
eten Kepler-1625 b. Wir testen die Verlässlichkeit dieses Fundes, indem wir Transitsig-
nale von Planeten mit und ohne Mond in Teile der Lichtkurve injizieren, die zuvor keine
Transitsignale aufwiesen. Wir �nden in ca. 40% der Lichtkurven, in die ein zusätzliches
Mondsignal injiziert wurde, einen Mond. Allerdings �nden wir auch in ca. 10% der Fälle,
in denen kein Mondsignal injiziert wurde, einen Mond. Dies ist eine hohe Falsch-Positiv-
Rate, wenn wir uns vor Augen führen, dass bei hunderten von extrasolaren Planeten nach
Monden gesucht wurde. Wir analysieren auch die ursprüngliche Lichtkurve von Kepler-
1625 und �nden, dass die Mondhypothese leicht bevorzugt wird.

In Kapitel 3 kehren wir zum Mondkandidaten um Kepler-1625 b zurück, nachdem
ein weiterer Transit vomHubble-Teleskop beobachtet wurde. Wir suchen sowohl in der
Lichtkurve, die von den Entdeckern des Mondkandidaten bereitgestellt wurde, als auch
in der Lichtkurve, die wir selber bereinigt haben, nach der Existenz eines Mondes. Im
Gegensatz zum ersten Paper wird nun gleichzeitig der Langzeittrend und die Transitpa-
rameter ge�ttet. Die Analysen beider Lichtkurven zeigen sehr starke statistische Anzei-
chen für die Existenz eines Mondes. Allerdings �nden wir andere am besten passende
Modellichtkurven und eine andere Parameterverteilung als in dem Paper der Entdecker.
Aus diesem Grund raten wir zur Vorsicht, da wir erwarten würden, dass ähnliche Analy-
sen der Beobachtung eines echen Mondes zu ähnlichen Ergebnissen kommen sollten.

In Kapitel 4 untersuchen wir den E� ekt, den der Mondtransit auf den kombinierten
Planeten- und Mondtransit hat. Es stellt sich heraus, dass die vorhergesagte Verschiebung
des Zeitpunktes des Transits und die Veränderung der Transitdauer durch die Bewegung
des Planten um den Planet-Mond-Schwerpunkt kein guter Indikator für die Existenz eines
Exomondes ist, da der E� ekt teilweise durch einen gegenläu�gen E� ekt des Mondtransits
auf den gemessenen Transitzeitpunkt und -dauer ausgeglichen wird. Wir stellen einen
neuen Exomondindikator vor: Je nach Planet-Mond-Geometrie ändert sich die Tran-
sittiefe über eine Reihe von Transits. Diese Veränderung könnte für erdgroße Monde
beobachtet werden.

In Kapitel 5 werden die Ergebnisse der vorangehenden Kapitel diskutiert. Außerdem
erfolgt ein Ausblick, mit einem Schwerpunkt auf der Benutzung von maschinellem Ler-
nen, um Exomondkandidaten e� zient zu �nden.
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Preamble

Parts of this thesis has the form of a cumulative thesis (“Kumulative Dissertation”) as
speci�ed in the GAUSS Promotionsordnung, § 10 (3). Chapters 2 and 3 are reproductions
of the following papers:

Paper I: Revisiting the exomoon candidate signal around Kepler-1625 b: Rodenbeck, K.,
Heller, R, Hippke, M., Gizon, L. 2018,Astronomy& Astrophysics, 617, A49

Paper II: An alternative interpretation of the exomoon candidate signal in the combined Ke-
pler and Hubble data of Kepler-1625: Heller, R., Rodenbeck, K., Bruno, G. 2019,
Astronomy& Astrophysics, 624, A95
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1 Introduction

Up to this date, thousands of extrasolar planets (planets around stars other than our sun,
commonly calledexoplanets) have been discovered, with some of these planets being as
small as our Earth. At the same time, we know of over 170 moons in our Solar System,
with the largest moon, Ganymede, having a radius almost half that of Earth. It is not un-
reasonable to assume that at least some exoplanets have moons of their own (commonly
calledexomoons), even if we do not know anything about the possible size of these exo-
moons. One might conclude that the exomoon community is tantalizingly close to the �rst
undisputed discovery of an exomoon. Indeed, recently an exomoon candidate has been
announced by Teachey et al. (2018) around the exoplanet Kepler-1625 b. This candidate
is not yet con�rmed and its existence is an ongoing topic of debate (Teachey and Kipping
2018, Rodenbeck et al. 2018, Heller et al. 2019) as well as the main topic of this thesis.
In this chapter I give a short introduction into exoplanets, exomoons, their properties, and
the main methods used to detect them.

1.1 Exoplanets

1.1.1 Overview

Exoplanetary science, the study of exoplanets, is one of the youngest sub�elds of astro-
physics, with the �rst discovery of an exoplanet less than 30 years ago. The �rst exo-
planet orbiting a main-sequence star was discovered in 1995 around 51 Pegasi (Mayor
and Queloz 1995). It has a mass of at least1 half that of Jupiter and orbits its star every
4 days. Since then almost 4 000 exoplanets have been found and con�rmed, with another
2 500 candidates waiting to be con�rmed or rejected as exoplanets.

Mayor et al. (2011) estimate that around 50% of all stars have at least one planet,
rising to about 70% for G and F stars (i.e. sun-like or a bit more massive). Petigura
et al. (2013) determined that around a quarter of sun-like stars have a planet with a radius
between 1 and 2 Earth radii (R� ) orbiting with a period between 5 and 100 days.

Most of the planets discovered so far have periods between 1 and 100 days, with a
radius between 1 and 4 Earth radii (see Fig. 1.1). This means that most of the discov-
ered exoplanets have a size smaller than Neptune, which, without accurate mass measure-
ments, makes it di� cult to determine if those planets are upscaled Earth analogues (super-
Earths) or downscaled Neptune analogues (mini-Neptune). Many of the giant planets
con�rmed as exoplanets so far are roughly Jupiter-sized planets, close to their host star,
with orbital period of only a few days. These objects, namedHot Jupiters, form a distinct

1The radial velocity method used to detect it can only yield a lower bound on the mass, see Sec. 1.1.2.2.
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1 Introduction

Figure 1.1: Radius over orbital period of the con�rmed exoplanets for which both values
are know, and whose period is smaller than 1000 d. The Hot Jupiters (planets with large
radii at very short periods) form a distinct sub-group separated from the other exoplan-
ets. The other exoplanets mostly have radii between 1 and 4R� , making them so-called
super-Earths or mini-Neptunes. Data taken fromhttp://exoplanetarchive.ipac.
caltech.edu .

sub-group in the period-radius diagram (and indeed in all other diagrams relating size and
distance to the star) and have no equivalent in our Solar System, presenting a new class
of planets that we did not know existed before the discovery of the �rst exoplanet.

1.1.2 Detection Methods

There are two main methods how exoplanets are detected and characterized: The so-called
transit method and the so-calledradial velocity(RV) method.

1.1.2.1 The Transit Method

The transit method works by detecting the dimming of a star when an exoplanet belonging
to that star passes in front of the star. By �tting a transit model to the observed dimming,
we can determine some of the planet's parameters. The pro�le of this dimming depends
on the distance of the exoplanet to the star's center, projected along our line-of-sight over
time, the ratio of the planet's and star's radiusrp and the limb-darkening pro�le (stars
appear less bright towards the edge of the observed disk) of the star (Mandel and Agol
2002). The planet's projected distancezb to the star's center is determined by the planet's
orbit around its host star. The parameterzb is often expressed in units of stellar radiiR?

and for circular orbits is given by

14



1.1 Exoplanets

Figure 1.2: Schematic diagram showing a planetary transit. In the top part the orbital
con�guration of the star and planet is shown. On the left from the top (face-on) and on
the right from the observers point of view (edge-on). The bottom part shows the resulting
transit, as well as the orbital con�gurations corresponding to certain points during the
transit. For clarity, limb-darkening is neglected in this �gure.

zb

 
t;

ab

R?
; b; Pb; t0;b

!
=

s  
ab

R?
sin

2� (t � t0;b)
Pb

!2

+
 
bcos

2� (t � t0;b)
Pb

!2

; (1.1)

wherePb is the orbital period of the planet,ab the semi-major axis of the planet,t0;b the
midpoint of one of the transits andb the so-called impact factor, the smallest distance of
the planet to the star's center in units of the stellar radiusR? . Planets only cause a transit
if they are in front of the star, not behind (although the secondary transits caused by the
blocking of star light re�ected on the planet can yield information about the exoplanets
atmosphere), which has to be taken into account when calculating the transit light curve
from zb. Fig. 1.2 shows the relation between an exoplanet's orbit and the resulting transit
light curve.
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1 Introduction

Figure 1.3: Diagram of the geometry determining from which angles observers can see a
transit of the planet (grey body) in front of the star (yellow body).

If a dimming of a star is caused by a transit it will happen again and again always after
one orbital periodPb. The periodicity of this dimming is one of the major indicators that
the dimming is in fact caused by an orbiting planet and not some other astrophysical or
instrumental e� ect.

Using the transit method we can only detect transits for which the orbital con�guration
is such that the planet is in front of the star during at least one point of the orbit, i.e.zb(t) <
1 + rp at some timet, whererp is the ratio between the star's radiusR? and the planet's
radiusRp. Fig. 1.3 shows from which angle� above and below the planet's orbital plane
a transit can be observed. The angle� can be calculated as� = sin� 1

h�
1 + rp

�
R? =ab

i
.

Assuming the direction from which a potential observer looks at the star is distributed
uniformily, the probability of being able to observe a transit is given by

PTr =
1
2

Z �

� �
cos� d� =

(1 + rp)R?

ab
:

For a Jupiter-sized planet in a 3.7 d orbit around a Sun-sized star this would mean a 10 %
probability of observing a transit of this planet. For an Earth-sized planet in a 1 year orbit
this probability drops to 0.5 %. For a derivation of this probability taking into account the
eccentricity of the planet's orbit see Barnes (2007).

The discrepancy between the expected transit time and the observed transit time (tran-
sit timing variation, TTV) can be used to detect non-transiting planets (see e.g. Ballard
et al. 2011) and determine the mass of the other planets in the same planetary system (see
e.g. Gillon et al. 2017).

TheKepler space telescope (Borucki et al. 2010), using the transit method, has con-
ducted the largest search for exoplanets to this date: It observed brightness variations of
200 000 stars for 4 years from 2009 to 2013 (Twicken et al. 2016).
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1.1 Exoplanets

Figure 1.4: Schematic overview on how planets are detected using the radial velocity
(RV) variations of the host star. The star orbits the star-planet barycenter, changing its
velocity towards the observer. This causes a red- or blue-shift of the emitted light.

1.1.2.2 The Radial Velocity Method

The radial velocity (RV) method works by measuring a star's velocity along our line-
of-sight. Just as the planet is gravitationally attracted to the star, the star is attracted
to the planet with the same force. Due to the star's much higher mass, the resulting
acceleration and velocity is much smaller than that acting on the planet. This velocity
variation of the star can be detected by measuring the red- and blue-shift of the star's light
(see Fig. 1.4). This red- and blue-shift, known as Doppler shift, is detected by measuring
the shift of the absorption lines in the stellar spectrum. The RV method is sensitive only
to movement of the target star towards and away from the observer. This means that
the RV method becomes less and less sensitive to the movement of the star due to the
planet as the inclinationi, the angle between an observer's line-of-sight and the planet's
orbital plane, grows. If the orbital plane of the planet is perpendicular to the line-of-sight,
the RV method can not detect any movement of the star due to the planet's gravitational
attraction at all. Since the inclination of the planet is not known and only one part of the

17



1 Introduction

stellar velocity can be measured by the RV method, it can only provide a minimum mass
of a planet, often denotedMp sini.

The amplitudeK of a RV signal caused by a planet in a circular orbit is given by (e.g.
Cumming et al. 1999)

K =
 
2� G
Pb

!1=3 Mp sini
�
M? + Mp

�2=3
; (1.2)

wherePb is the orbital period of the planet,G is the gravitational constant andM? the
star's mass. For Jupiter in its orbit around the Sun the expected amplitude, assuming
i = 0, is 12.5 m/s and for the Earth it is 0.09 m/s.

While the �rst exoplanet has been found through RV measurements, the largest part
of exoplanets detected so far were found by the transit method. This is due to the fact that
the transit method uses photometry, which means that we can observe many stars at once
using cameras, like theKeplerspace telescope did.

1.2 Exomoons

Moons are natural satellites around planets and dwarf-planets. Exomoons are moons
around extrasolar planets.

Despite there being 20 times as many moons as planets in our Solar System, there
has not been one con�rmed exomoon yet. Exomoons might play an important part in the
search for habitable bodies around stars other than the Sun (Williams et al. 1997, Zollinger
et al. 2017), since the habitable zone around a host star is expanded outwards if the moon
is heated by tidal interactions with its planet (Reynolds et al. 1987, Dobos et al. 2017).

1.2.1 Moons in our Solar System

Our Solar System has 175 moons2 distributed around six of its eight planets. Most of
these moons orbit around the two biggest gas giants Jupiter (79) and Saturn (53), with
the two smaller gas planets having 27 (Uranus) and 13 (Neptune) moons. Earth has one
moon,theMoon, and Mars has two small moons. Additionally, many of the dwarf planets
have moons.

The �rst moons discovered aside from our own Moon were the four largest moons
of Jupiter. They were observed in 1610 by Galileo Galilei, and are called, ordered by
distance to Jupiter, Io, Europa, Ganymede and Callisto. These so-calledGalilean moons
have radii between 1560 and 2630 km and orbit Jupiter with periods between 1.7 and 17 d.
The largest moon of our Solar System is Ganymede, the third of the Galilean moons, with
a radius of about 2630 km, followed closely by Titan, the largest moon of Saturn, with
around 2570 km.

The moons in the Solar System have formed through di� erent processes. Some were
formed in the tidal debris disks of the gas planets (e.g. the Galilean moons, see Crida and
Charnoz (2012)), some were captured (e.g. Triton, a moon of Neptune, see Agnor and
Hamilton (2006)). Earth's Moon may have been formed by an impact of a Mars-sized
body early in Earth's history (Cameron and Ward 1976).

2https://solarsystem.nasa.gov/moons/in-depth/
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1.2 Exomoons

1.2.2 Moons as Tracers of Formation History

With the discovery of the Hot Jupiters and the planet distribution thatKepler revealed,
as well as the discovery and characterization of multi-planet systems, it has become clear
that extrasolar planetary systems can have completely di� erent structures compared to our
Solar System. The moon distribution outside the Solar System might also be completely
di� erent from the one in the Solar System, especially around planets for which we do
not have equivalents in the Solar System (Hot Jupiters, Warm Neptunes). The existence
or non-existence of moons around certain planet types can give valuable insight into the
formation history of their host systems.

A detailed history of the formation and evolution of the moons in the Solar System can
help constrain planetary formation and evolution models. Canup and Ward (2002), Heller
et al. (2015) use the composition of the Galilean moons to constrain the temperature
distribution in the disk formed around the early Jupiter due to accretion. Similar studies
would be possible for extrasolar systems once exomoons are detected. Namouni (2010)
conclude that moons around gas giants might not survive the migration inwards, which is
one of the main scenarios for the formation of Hot Jupiters. A detection of moons around
Hot Jupiters could help to exclude the migration model as a formation model.

1.2.3 Habitability of Moons

Exomoons present a possible place where life might develop, given the right conditions
(for a review on habitability of exomoons see Heller et al. (2014)). Extrapolating from the
bodies in the Solar System where life might develop, there might even be more habitable
exomoons than exoplanets.

The most important condition for life is the presence of liquid water. This requires
an energy source to keep the water liquid over long periods of time. For planets the most
important source of energy is their star's radiation. The region around a star where the
star's radiation keeps water liquid is called theHabitable Zone(HZ). In the Solar System,
Earth is the only planet with large quantities of liquid water, with 70 % of its surface
covered in water. Moons can be tidally heated by interaction with their parent planet,
which can extend the region around the star where liquid water is possible (Reynolds
et al. 1987, Dobos et al. 2017). Four moons in the Solar System might harbor large
bodies of liquid water: Europa, Enceladus, Ganymede and Callisto. Europa, under a
10 km layer of ice, has a layer of liquid water between 10 and 100 km deep. The energy
to maintain this ocean comes from the tidal interaction with Jupiter. Enceladus might
contain localized pockets of a subsurface liquid water. Ganymede and Callisto might
also posses oceans with a depth of around 300 km (Spohn and Schubert 2003). The
evidence for subsurface water on Europa and Enceladus are plumes of water ice they
eject. Measurements of Ganymede's and Callisto's density and moment of inertia are in
agreement with subsurface oceans.

Another important requirement for life is a source of energy usable by organisms. The
most commonly used source for energy for organisms on Earth is photosynthesis. This
would require moons in the habitable zone around its star to have an atmosphere to enable
exposure to sun light. Williams et al. (1997) �nd that for a moon in the HZ this requires
a moon mass larger than 0.1M� (which is roughly the mass of Mars) and the presence of
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a magnetic �eld to protect the moon from particles in the planet's magnetosphere. Titan
is unique among the moons in the Solar System in that it has a dense atmosphere, which
has even a stronger pressure than Earth at ground level. Its atmosphere is dominated by
nitrogen with 98%, with most of the rest made up of methane and hydrogen (Coustenis
et al. 2007); it is also so dense that very little light reaches the ground. Titan does not lay
in the HZ. At a temperature of around 100 K, life on Titan can not be based on water, but
instead would have to be on the basis of hydrocarbons. Life on moons with subsurface
oceans like Europa could extract energy from volcanic vents, similar to some organisms
on Earth's ocean �oor.

The occurrence rate of moons massive enough to hold an atmosphere enabling photo-
synthesis is unknown (and in fact zero in the Solar System). It might be possible that more
massive moons form around super-Jovian exoplanets (planets more massive than Jupiter)
and brown dwarfs (although it would be a matter of de�nition if those bodies would be
counted as moons or planets). Even though there are models how such massive moons
might be formed (Heller et al. 2014, Williams 2013), in the end only detections of such
bodies can give us an estimate on the occurrence rate of massive moons.

Moons might also play a role in the habitability of their planets, since they can help
stabilizing the obliquity of the planet, as is the case for Earth (Laskar et al. 1993).

1.2.4 Detection and Characterization Methods

There are various ways how an exomoon could be detected (for a review see Heller
2018b).

Using transit photometry, there are two e� ects caused by the existence of a moon:
Firstly, the e� ect of the moon on the planetary transit, and secondly, the transit of the
moon itself in front of the star.

The planet and moon orbit their combined center of mass, thebarycenter, both with
the same periodPs, but with very di� erent semi-major axes. The ratio between these two
semi-major axes is determined by the mass ratio of planet and moon.

This movement of the planet around the barycenter a� ects the transit shape and posi-
tion (see Fig. 1.5): The planet can be ahead or behind in its orbit around the star, compared
to the barycenter, causing a shift in the transit midpoint (Sartoretti and Schneider 1999),
called the transit timing variation (TTV), and the planet can be faster or slower compared
to the barycenter's movement around the star, causing a longer or shorter transit duration
(Kipping 2009), called the transit duration variation (TDV). Due to the geometry of the
planet's orbit around the barycenter, the TTV and TDV curves caused by a moon are si-
nusoidal for a moon with a circular orbit, and are o� set relative to each other by a phase
di� erence of 90� .

Heller et al. (2016b) propose to search for exomoons signatures in the TTV-TDV
parameter space: The TTVs and TDVs for a series of transits, plotted against each other,
form an ellipse in the TTV-TDV space if they are caused by the presence of an exomoon.
This is due to the 90� phase shift mentioned above. In Chapter 4 we re-evaluate this
detection method.

The moon can also have its own transit in front of the star (but does not have to,
depending on the orbital con�guration, see Martin et al. (2019)). Just like for a planetary
transit, the depth of the transit is determined by the size of the moon. Due to the moon's
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Figure 1.5: Schematic overview how the movement of planet and moon a� ect the shape
and timing of the planet and moon transit. The left half shows a con�guration that causes
maximal TTV: The planet is left of the planet-moon barycenter, meaning its transit (blue)
is shifted backwards compared to a undisturbed transit (dashed line). The moon's transit
(red) happens earlier compared to the barycenter. The right half shows a con�guration
causing maximal TDV: The planet and moon transit happen simultaneously, but due to
the planet's slower velocity, its transit is prolonged, compared to the undisturbed one.
The moon's transit is shorter than the undisturbed one, due to its higher velocity.

movement around the planet-moon barycenter, the transit shape is distorted compared to
the shape one would expect from the barycenter's orbital speed. The same rules as for the
planet's shift apply, but more exaggerated: Depending on the orbital phase of the moon
around the barycenter, a TTV or TDV is caused, but at a much higher amplitude than for
the planet. For moons with shorter periods comparable to the transit duration, the transit
shape of the moon can drastically alter. It is for example possible that the moon causes
two transits per barycenter orbit, if the moon's total velocity becomes negative compared
to the orbital movement of the planet-moon system.

Heller (2014), Heller et al. (2016b) suggest to search for exomoon signatures in the
phase-folded transit light curves (where the �ux level is not plotted against time, but
against the orbital phase of the planet). In the presence of a moon, the average light curve
on each side of the planet transit shows a small drop in brightness which is related to the
moon's size and semi-major axis (which the authors call Orbital Sampling E� ect, OSE).
In a similar approach, Simon et al. (2012) suggest that the scatter of the phase folded light
curve on the sides of the transit increases in the presence of a moon.

Both of these e� ects can be combined into a complete dynamical photometric model,
comprising of both the planetary and the moon transit (Kipping 2011, Rodenbeck et al.
2018). The same general idea as for a single planet transit applies: The projected dis-
tances of the planet (zp) and moon (zs) to the stars center at a given time are calculated,
and together with the radius ratiosrp andrs and a limb-darkening pro�le the relative dim-
ming is calculated. The projected distance to the star's center is composed of the projected
distance of the planet-moon barycenter (zb, the same as for an undisturbed planet) and the
projected distance due to the orbital con�guration of planet and moon. Finally, the possi-
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bility of an occultation (the planet being in front of the moon as seen from the observer,
or vice-versa) needs to be taken into account.

The radial velocity method can not be used directly to detect exomoons: If the distance
between the planet and moon is much smaller than the distance between the planet-moon
system and the star, the combined gravitational force of a planet and moon on their star
is very close to the gravitational force of a planet with the combined mass of the previous
planet and moon. However, the passing of the moon in front of the star can cause a
variation in the measured radial velocity (the so-called Rossiter-McLaughlin e� ect), just
like the passing of the planet can (Zhuang et al. 2012). If a planet can be directly imaged,
it might be possible to detect the motion of the planet around the planet-moon barycenter
with Doppler measurements (Vanderburg et al. 2018a).

While there are many di� culties trying to detect an exomoon, there is one big advan-
tage compared to the search for exoplanets: We know that exomoons orbit their planets.
This massively reduces the amount of light curves that have to be searched (only those
with a detected planet), and also reduces the regions in a light curve where a moon signal
may be found. The maximum distance a moon can be separated from its planet is propor-
tional to the distance from the planet at which the force of the star on the moon and the
centripetal force due to the planets orbit around the star equal the force of the planet on
the moon. This distance is called the Hill radiusRHill .

The Hill radius depends on the distance between a star and its planetab and their mass
ratio Mp=M? :

RHill = ab

 
Mp

3M?

!1=3

: (1.3)

A moon's orbit is stable up to a certain fraction� of the Hill radius from 0:5 for
prograde moons and up to 1 for retrograde moons (Domingos et al. 2006). This means
that the maximum timetHill that a moon transit can be separated from the planet transit is
given by
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For a hypothetical Earth transit in front of the sun as seen from an outside observer
and with� = 0:5, this results in a 0.3 d window each side of the transit where a possible
moon signal might occur. This time window grows to 23.5 d for a Jupiter transit.

1.2.5 Surveys and Searches so far

The �rst search for planetary satellites was performed by Brown et al. (2001) usingHub-
ble photometry of four planetary transits of HD 209458. They exclude the existence of
moons larger than 1:2 R� around that planet at a 3� level.

The Hunt for Exomoons with Kepler(HEK, Kipping et al. (2012)) survey searches
for the most promising candidates for the detection of exomoons among the exoplanet
candidates observed with theKeplerspace telescope. Due to the limitations of theKepler
data (cadence, photometric precision), HEK focuses on very large moons (compared to
the moons in the Solar System) of more than 0:1 M� . The HEK survey also tries to
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Figure 1.6: The four transits that have been observed of Kepler-1625 b, the host planet of
the most recent exomoon candidate. The �rst three transits (a, b, andc) were observed
by theKepler space telescope. The last transit (d) was observed by theHubblespace
telescope. For details see Chapter 3 and Fig. 3.2. The used light curves are taken from the
published data of Teachey and Kipping (2018)

estimated the frequency of moons around exoplanets: In Teachey et al. (2018) the authors
constrain the occurrence rate of a Galilean moon system around planets between 0.1 and
1 au from the star to under 39% (at a 95% con�dence).

1.2.6 The Exomoon Candidate around Kepler-1625 b

In Teachey et al. (2018) the authors claimed to have found evidence of a Neptune-sized
exomoon around the Jupiter-sized exoplanet Kepler-1625 b. TheKepler space telescope
captured three transits in the light curve, with the resulting orbital period of 287 d, which
equates to a quite large Hill-stable region around the planet. The authors later presented
a detailed analysis of the system (Teachey and Kipping 2018), with an additional transit,
observed by theHubblespace telescope (see Fig. 1.6). The moon has a period of 22+17

� 9 d
and a semi-major axis of 0:98+0:14

� 0:13 au. They �nd a mass ratio of moon and planet of
0:0141+0:0048

� 0:0039, constraining it only weakly. One of the key �ndings is that theHubble
transit was 78 min to early, if the orbital period of the planet is only �tted using the
Kepler transits. This may have been caused by the planet being disturbed by the moon
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(TTV) during one of the transits, although also other causes for this shift are possible, like
the existence of another planet in the system.

1.3 Data Sources for Exoplanet and Exomoon Studies

The detection of exoplanets requires long-term observations of many stars, especially
when using photometric data. This is due to the low probability of a single star to show
signs of a planetary companion (see Sec. 1.1.2.1). Most of the exoplanet science con-
ducted nowadays is based on data taken by theKepler Space Telescope.Kepler was
launched in 2009 and searched for transiting planets in front of 200 000 stars during its
main observation campaign from 2009 to 2013 (Borucki et al. 2010, Twicken et al. 2016).
It has discovered about 4 700 exoplanet candidates.

Both NASA and ESA have lined up several future space missions to study and detect
exoplanets. Already launched, with the �rst scienti�c results published as of the writing of
this theses, is NASA'sTransiting Exoplanet Survey Satellite(TESS, Ricker et al. (2015)).
TESSis an so-called all-sky survey, planned to cover 85% of the sky in its survey. The
drawback of this plan is thatTESSwill observe parts of the sky for only a few weeks each.
ESA's CHEOPSspace mission (CHaracterising ExOPlanet Satellite, Broeg et al. (2013))
is scheduled to launch in fall 2019. It will observe transits of known exoplanet around
bright stars with a high sampling rate of 1 minute. Simon et al. (2015) �nd thatCHEOPS
might be able to detect Earth-sized moons around Neptune sized planets with a 85%
success rate.PLATO(PLAnetary Transits and Oscillations of stars, Rauer et al. (2014))
is another ESA space mission to search for exoplanets and will be launched around 2026.
One of PLATO's main goals is to accurately characterize a huge number of planetary
systems, including the interior composition of the planets. PLATO might also be able to
detect large moons around the brightest observed stars3.

Once a exoplanet is detected, follow-up observations can be conducted by more pow-
erful telescopes like theHubbleSpace Telescope.

1.4 Content of this Thesis

The main part of this thesis is formed by two papers, which have been reproduced in
Chapters 2 and 3, as well as a short chapter on a new exomoon indicator (Chapter 4).

In Rodenbeck et al. (2018) (Chapter 2), we perform an independent analysis of the
available Kepler light curve of Kepler-1625 b, around which a exomoon candidate was
discovered (Teachey et al. 2018). We also test the signi�cance of this result by injecting
model transits of a Kepler-1626 b-like planet system with and without moon into the
out-of-transit light curve of Kepler-1625 b and rerun our analysis.

In Heller et al. (2019) (Chapter 3), we perform further analysis of Kepler-1625 b after
another transit has been observed by theHubbleSpace Telescope, using both theHubble
light curve published by Teachey and Kipping (2018) and our own version of it, which
we independently extract and detrend.

3see the PLATO De�nitions Study Report,http://sci.esa.int/jump.cfm?oid=59252
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1.4 Content of this Thesis

In Chapter 4, we investigate the variations in the transit parameters caused by the ex-
istence of a moon. We propose the apparent planetary radius variation as a new exomoon
indicator.

In Chapter 5 I discuss a few additional points relating to the two papers that form the
main part of the thesis. I also present �rst results of using machine learning to detect
exomoons.
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Abstract

Context: Transit photometry of the Jupiter-sized exoplanet candidate Kepler-1625 b has
recently been interpreted as showing hints of a moon. This exomoon, the �rst of its kind,
would be as large as Neptune and unlike any moon we know from the solar system.
Aims: We aim to clarify whether the exomoon-like signal is indeed caused by a large ob-
ject in orbit around Kepler-1625 b, or whether it is caused by stellar or instrumental noise
or by the data detrending procedure.
Methods:To prepare the transit data for model �tting, we explore several detrending pro-
cedures using second-, third-, and fourth-order polynomials and an implementation of the
Cosine Filtering with Autocorrelation Minimization (CoFiAM). We then supply a light
curve simulator with the co-planar orbital dynamics of the system and �t the resulting
planet-moon transit light curves to the Kepler data. We employ the Bayesian information
criterion (BIC) to assess whether a single planet or a planet-moon system is a more likely
interpretation of the light curve variations. We carry out a blind hare-and-hounds exercise
using many noise realizations by injecting simulated transits into di� erent out-of-transit
parts of the original Kepler-1625 light curve: (1) 100 sequences with three synthetic tran-
sits of a Kepler-1625 b-like Jupiter-size planet and (2) 100 sequences with three synthetic
transits of a Kepler-1625 b-like planet with a Neptune-sized moon.
Results:The statistical signi�cance and characteristics of the exomoon-like signal strongly
depend on the detrending method (polynomials versus cosines), the data chosen for de-

� This chapter reproduces the articleRevisiting the exomoon candidate signal around Kepler-1625 bby
K. Rodenbeck, R. Heller, L. Gizon and M. Hippke, published in Astronomy and Astrophysics 617, A49
(2018), reproduced with permissionc ESO. Contributions: KR contributed to the analysis of the simulated
light curves, to the interpretation of the results, and to the writing of the article.
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trending, and the treatment of gaps in the light curve. Our injection-retrieval experiment
shows evidence of moons in about 10 % of those light curves that do not contain an in-
jected moon. Strikingly, many of these false-positive moons resemble the exomoon can-
didate, that is, a Neptune-sized moon at about 20 Jupiter radii from the planet. We recover
between about one third and one half of the injected moons, depending on the detrending
method, with radii and orbital distances broadly corresponding to the injected values.
Conclusion:A � BIC of � 4:9 for the CoFiAM-based detrending is indicative of an ex-
omoon in the three transits of Kepler-1625 b. This solution, however, is only one out
of many and we �nd very di� erent solutions depending on the details of the detrend-
ing method. We �nd it concerning that the detrending is so clearly key to the exomoon
interpretation of the available data of Kepler-1625 b. Further high-accuracy transit obser-
vations may overcome the e� ects of red noise but the required amount of additional data
might be large.

2.1 Introduction

Where are they? – With about 180 moons discovered around the eight solar system plan-
ets and over 3;500 planets con�rmed beyond the solar system, an exomoon detection
could be imminent. While many methods have indeed been proposed to search for moons
around extrasolar planets (Sartoretti and Schneider 1999, Han and Han 2002, Cabrera, J.
and Schneider, J. 2007, Moskovitz et al. 2009, Kipping 2009, Simon et al. 2010, Peters
and Turner 2013, Heller 2014, Ben-Ja� el and Ballester 2014, Agol et al. 2015, Forgan
2017, Vanderburg et al. 2018b)1, only a few dedicated surveys have actually been carried
out (Szabó et al. 2013, Kipping et al. 2013b,a, 2014, Hippke 2015, Kipping et al. 2015,
Lecavelier des Etangs et al. 2017, Teachey et al. 2018), one of which is the “Hunt for
Exomoons with Kepler” (HEK for short; Kipping et al. 2012).

In the latest report of the HEK team, Teachey et al. (2018) �nd evidence for an ex-
omoon candidate around the roughly Jupiter-sized exoplanet candidate Kepler-1625 b,
which they provisionally refer to as Kepler-1625 b-i. Kepler-1625 is a slightly evolved
G-type star with a mass ofM? = 1:079+0:100

� 0:138 M� (M� being the solar mass), a radius
of R? = 1:793+0:263

� 0:488R� (with R� as the solar radius), and an e� ective temperature of
Te� ;? = 5548+83

� 72 K (Mathur et al. 2017). Its Kepler magnitude of 15.756 makes it a
relatively dim Kepler target.2 The challenge of this tentative detection is in the noise
properties of the data, which are a� ected by the systematic noise of the Kepler space
telescope and by the astrophysical variability of the star. Although the exomoon signal
did show up both around the ingress/egress regions of the phase-folded transits (known
as the orbital sampling e� ect; Heller 2014, Heller et al. 2016a) generated by Teachey
et al. (2018) and in the sequence of the three individual transits, it could easily have been
produced by systematic errors or stellar variability, as pointed out in the discovery paper.

The noise properties also dictate a minimum size for an exomoon detected around
a given star and with a given instrument. In the case of Kepler-1625, we calculate the
root-mean-square of the noise level to be roughly 700 ppm. As a consequence, any moon
would have to be at least about

p
700 ppm� 1:793R� � 5:2R� (R� being the Earth's

1For reviews see Heller et al. (2014) and Heller (2017).
2NASA Exoplanet Archive: https://exoplanetarchive.ipac.caltech.edu
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Figure 2.1: Kepler light curve of Kepler-1625.Left: Simple Aperture Photometry (SAP)
�ux. Right: Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) �ux.
The top panels show the entire light curves, respectively. The second, third, and fourth
rows illustrate zooms into transits 2, 4, and 5 of Kepler-1625 b, respectively. These transits
were shifted to the panel center and� 10 d of data are shown around the transit mid-
points. Some examples of jumps and gaps in the light curve are shown. Time is given as
a Barycentric Kepler Julian Date.
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radius) in size, about 30% larger than Neptune, in order to signi�cantly overcome the
noise �oor in a single transit. The three observed transits lower this threshold by a factor ofp

3, suggesting a minimum moon radius of� 3R� . In fact, the proposed moon candidate
is as large as Neptune, making this system distinct from any planet-moon system known
in the solar system (Heller 2018a).

Here we present a detailed study of the three publicly available transits of Kepler-
1625 b. Our aim is to test whether the planet-with-moon hypothesis is favored over the
planet-only hypothesis.

First we develop a model to simulate photometric transits of a planet with a moon
(see Sect. 2.2.2.2). Then we implement a detrending method following Teachey et al.
(2018) and explore alternative detrending functions. Subsequently, we detrend the origi-
nal Kepler-1625 light curve, determine the most likely moon parameters, and assess if the
planet-with-moon hypothesis is favored over the planet-only hypothesis. Finally, we per-
form a blind injection-retrieval test. To preserve the noise properties of the Kepler-1625
light curve, we inject planet-with-moon and planet-only transits into out-of-transit parts
of the Kepler-1625 light curve.

2.2 Methods

The main challenge in �tting a parameterized, noiseless model to observed data is the
removal of noise on timescales similar or larger than the timescales of the e� ect to be
searched for; at the same time, the structure of the e� ect must be untouched, an approach
sometimes referred to as “pre-whitening” of the data (Aigrain and Irwin 2004). The aim
of this approach is to remove unwanted variations in the data caused by, for example,
stellar activity, systematic errors, or instrumental e� ects. This approach bears the risk of
both removing actual signal from the data and of introducing new systematic variability.
The discovery and refutal of the exoplanet interpretation of variability in the stellar radial
velocities of� Centauri B serves as a warning example (Dumusque et al. 2012, Rajpaul
et al. 2016). Recently developed Gaussian process frameworks, in which the systematics
are modeled simultaneously with stellar variability, could be an alternative method (Gib-
son et al. 2012). This has become particularly important for the extended Kepler mission
(K2) that is now working with degraded pointing accuracy (Aigrain et al. 2015).

That being said, Teachey et al. (2018) applied a pre-whitening technique to both the
Simple Aperture Photometry (SAP) �ux and the Pre-search Data Conditioning (PDCSAP)
�ux of Kepler-1625 to determine whether a planet-only or a planet-moon model is more
likely to have caused the observed Kepler data. In the following, we develop a detrending
and model �tting procedure that is based on the method applied by Teachey et al. (2018),
and then we test alternative detrending methods.

During Kepler's primary mission, the star Kepler-1625 has been monitored for 3.5
years in total, and �ve transits could have been observed. This sequence of transits can
be labeled as transits 1, 2, 3, 4, and 5. Due to gaps in the data, however, only three
transits have been covered, which correspond to transits 2, 4, and 5 in this sequence.
Figure 2.1 shows the actual data discussed here. The entire SAP (left) and PDCSAP
(right) light curves are shown in the top panels, and close-up inspections of the observed
transit 2, 4, and 5 are shown in the remaining panels. The time system used throughout
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the article is the Barycentric Kepler Julian Date (BKJD), unless marked as relative to a
transit midpoint.

A key pitfall of any pre-whitening or detrending method is the unwanted removal of
signal or injection of systematic noise, the latter potentially mimicking signal. In our
case of an exomoon search, we know that the putative signal would be restricted to a
time-window around the planetary mid-transit, which is compatible with the orbital Hill
stability of the moon. This criterion de�nes a possible window length that we should
exclude from our detrending procedures. For a planet of ten Jupiter masses in a 287 d
orbit around a 1:1 M� star (as per Teachey et al. 2018), this window is about 3.25 days
either side of the transit midpoint (see Appendix 2.A).

Although this window length is astrophysically plausible to protect possible exomoon
signals, many other choices are similarly plausible, but they result in signi�cantly dif-
ferent detrendings. Figure 2.2 illustrates the e� ect on the detrended light curve if two
di� erent windows around the midpoint of the planetary transit (here transit 5) are ex-
cluded from the �tting. We chose a fourth-order polynomial detrending function and a
7:5 d (blue symbols) or a 4 d (orange symbols) region around the midpoint to be excluded
from the detrending, mainly for illustrative purposes. In particular, with the latter choice,
we produce a moon-like signal around the planetary transit similar to the moon signal that
appears in transit 5 in Teachey et al. (2018). For the former choice, however, this signal
does not appear in the detrended light curve.

Teachey et al. (2018) use the Cosine Filtering with Autocorrelation Minimization
(CoFiAM) detrending algorithm to detrend both the SAP and PDCSAP �ux around the
three transits of Kepler-1625 b. CoFiAM �ts a series of cosines to the light curve, exclud-
ing a speci�c region around the transit. CoFiAM preserves the signal of interest by using
only cosines with a period longer than a given threshold and therefore avoids the injection
of arti�cial signals with periods shorter than this threshold. Teachey et al. (2018) also test
polynomial detrending functions but report that this removes the possible exomoon signal.
We choose to reimplement the CoFiAM algorithm as our primary detrending algorithm
so as to remain as close as possible in our analysis to the work in Teachey et al. (2018).
In our injection-retrieval test, we also use polynomials of second, third, and fourth-order
for detrending. While low-order polynomials cannot generally �t the light curve as well
as the series of cosines, the risk of injecting arti�cial signals may be reduced.

2.2.1 Trigonometric detrending

We implement the CoFiAM detrending algorithm as per the descriptions given by Kipping
et al. (2013b) and Teachey et al. (2018). In the following, we refer to this reimplementa-
tion as trigonometric detrending as opposed to polynomial functions that we test as well
(see Sect. 2.2.4.4).

The light curves around each transit are detrended independently. For each transit,
we start by using the entire SAP �ux of the corresponding quarter. We use the SAP
�ux instead of the PDCSAP �ux to reproduce the methodology of Teachey et al. (2018)
as closely as possible. The authors argue that the use of SAP �ux avoids the injection of
additional signals into the light curve that might have the shape of a moon signal. First, we
remove outliers using a running median with a window length of 20 h and a threshold of
three times the local standard deviation with the same window length. In order to achieve
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Figure 2.2: Example of how the detrending procedure alone can produce an exomoon-like
transit signal around a planetary transit. We use `transit 5' of Kepler-1625 b as an exam-
ple. Top: Gray dots indicate the Kepler PDCSAP �ux. The lines show a fourth-order
polynomial �t for which we exclude 7:5 d (blue) or 4 d (orange) of data around the mid-
point (dashed parts), respectively.Center: Dots show the detrended light curve derived
from the blue polynomial �t in the top panel. The blue line illustrates a planet-only transit
model.Bottom:Dots visualize the detrended light curve using the orange polynomial �t
from the top panel. We note the additional moon-like transit feature caused by the over-
shooting of the orange polynomial in the top panel. The orange line shows a planet-moon
transit model with moon parameters as in Table 2.1 (see Fig. 2.4 for transit dynamics). As
an alternative interpretation, the blue detrending function �lters out an actually existing
moon signature while the orange detrending �t preserves the moon signal.
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Figure 2.3:Left: Kepler SAP �ux around the transits used for the trigonometric detrend-
ing, our reimplementation of the CoFiAM algorithm. The data points denoted by open
circles around the transits are excluded from the detrending �t. The black line shows the
resulting light curve trend without the transit.Right: Detrended transit light curves as
calculated by the trigonometric detrending.

a fast convergence of our detrending and transit �tting procedures, we initially estimate
the transit midpoints and durations by eye and identify data anomalies: for example, gaps
and jumps (e.g. the jump 2 d prior to transit 2 and the gap 4 d after transit 4, see Fig. 2.1).

Jumps in the light curve can have di� erent origins. The jumps highlighted around
transit 2 in Fig. 2.1 are caused by a reaction wheel zero crossing event; the jump 5 d after
transit 4 is caused by a change in temperature after a break in the data collection. Follow-
ing Teachey et al. (2018), who ignore data points beyond gaps and other anomalous events
for detrending, we cut the light curve around any of the transits as soon as it encounters
the �rst anomaly, leaving us with a light curve of a total durationD around each transit
(see top left panel in Fig. 2.3). In Sect. 2.2.4.4, we investigate the e� ect of including data
beyond gaps. The detrending is then applied in two passes, using the �rst pass to get ac-
curate transit parameters. In particular, we determine the duration (tT) between the start of
the planetary transit ingress and the end of the transit egress (Seager and Mallén-Ornelas
2003) and the second pass to generate the detrended light curve.

First pass:Using the estimated transit midpoints and durations, we calculate the time
window (tc, see top left panel in Fig. 2.3) around a given transit midpoint to be cut from
the detrending �t astc = ftctT, where the factorftc, relating the time cut around the transit
to the transit duration, is an input parameter for the detrending algorithm. Speci�cally,tc
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denotes the total length of time around the transit excluded from the detrending. We �t
the detrending function,

Gk(t; #�a ;
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b) = a0 +
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to the light curve (excluding the regiontc around the transit) by minimizing the� 2 between
the light curve andGk(t; #�a ;

#�
b), where #�a = (a0; a1; :::;ak) and

#�
b = (b1; b2; :::;bk)

are the free model parameters to be �tted. The parameterk is a number between 1 and
kmax = round(2D=tp), wheretp = ftptT is the timescale below which we want to preserve
possible signals.ftp is an input parameter to the detrending algorithm. For eachk; we
divide the light curve byGk, giving us the detrended light curvesFk. We calculate the
�rst-order autocorrelation according to the Durbin and Watson (1950) test statistic for
eachFk (excluding again the region around the transit). For each transit, we select theFk

with the lowest autocorrelationFk
min and combine theseFk

min around each transit into our
detrended light curveF. We �t the planet-only transit model to the detrended light curve
F and compute the updated transit midpoints and durationtT.

Second pass:The second pass repeats the steps of the �rst pass, but using the updated
transit midpoints and durations as input. The resulting detrended light curveF is then
used for our model �ts with the ultimate goal being to assess whether or not an exomoon
is a likely interpretation of the light curve signatures. We estimate the noise around each
transit by taking the variance ofF, excluding the transit region.

Figure 2.3 shows the detrending function as well as the detrended light curve for
ftc = 2:2 andftp = 4:4, corresponding totc = 1:6 d andtp = 3:1 d.

2.2.2 Transit model

We construct two transit models, one of which contains a planet only and one of which
contains a planet with one moon. We denote the planet-only model asM 0 (the index
referring to the number of moons) and the planet-moon model asM 1. We do not consider
models with more than one moon.

2.2.2.1 Planet-only model

M 0 assumes a circular orbit of the planet around its star. Given the period of that orbit
(P) and the ratio between stellar radius and the orbital semi-major axis (R? =a), the sky-
projected apparent distance to the star center relative to the stellar radius can be calculated
as
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whereb is the transit impact parameter andt0 is the time of the transit midpoint. We
use thepython implementation of the Mandel and Agol (2002) analytic transit model by
Ian Cross�eld3 to calculate the transit light curve based on the planet-to-star radius ratio

3Available at http://www.astro.ucla.edu/~ianc/�les as python.py.
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Figure 2.4: Left: Example of a simulated planet-moon transit light curve for transits
2, 4, and 5 using the nominal parameterization given in Table 2.1. The relative �ux is
the di� erence to the out-of-transit model �ux and is given in parts per thousand (ppt).
Right: Visualization of the orbital con�gurations during transits 2 (left column), 4 (center
column), and 5 (right column). Labels 1-5 in the light curves refer to con�gurations 1-5
(see labels along the vertical axis). An animated version of this �gure is available online.

(rp = Rp=R? ) and based on a quadratic limb-darkening law parametrized by the limb-
darkening parametersq1 and q2 as given in Kipping (2013). We call this model light
curve with zero moonsF0.

2.2.2.2 Planet-moon model

In our planet-moon model, we assume a circular orbit of the local planet-moon barycenter
around the star with an orbital periodPB, a semimajor axisaB, and a barycentric transit
midpoint timet0;B. The projected distance of the barycenter to the star center relative to
the stellar radius is calculated in the same way as in Eq. 2.2. The planet and moon are
assumed to be on circular orbits around their common center of mass with their relative
distances to the barycenter determined by the ratio of their massesMp andMs to the total
massMp + Ms. The individual orbits of both the planet and the moon are de�ned by the
total distance between the two objectsaps, the planet massMp, the moon massMs and by
the time of the planet-moon conjunctiont0;s, that is, the time at which the moon is directly
in front of the planet as seen from an observer on Earth.

This model is degenerate in terms of the sense of orbital motion of the moon. In
other words, a given planet-moon transit light curve can be produced by both a prograde
and a retrograde moon (Lewis and Fujii 2014, Heller and Albrecht 2014). We restrict
ourselves to prograde moons. The planet mass is set to a nominal ten Jupiter masses, as
suggested by Teachey et al. (2018) and in agreement with the estimates of Heller (2018a).
This constraint simpli�es the interpretation of the results substantially since the moon
parameters are then una� ected by the planetary parameters. The moon mass is assumed
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Table 2.1: Nominal parameterization of the planet-moon model to reproduce the transit
shape suggested by Teachey et al. (2018). The no-moon model uses the same parameter
set (excluding the moon parameters), except thatR? andaB are combined into a single
parameterR? =aB.

Parameter Nominal Value Description

rp 0.06 planet-to-star radius ratio

aB 0.9 au circumstellar semimajor axis of the
planet-moon barycenter

b 0.1 planetary transit impact parameter

t0;B 61.51 d transit midpoint of the planet-moon
barycenter

PB 287.35 d circumstellar orbital period of the
planet-moon barycenter

R? 1.8R� stellar radius

q1 0.6 �rst limb darkening coe� cient

q2 0.2 second limb darkening coe� cient

rs 0.02 moon-to-star radius ratio

as 1871RJ orbital semimajor axis of the planet-
moon binary

t0;s 1.86 d time of planet-moon conjunction

to be much smaller than that of the planet. In fact, for a roughly Neptune-mass moon
around a planet of ten Jupiter masses, we expect a TTV amplitude of 3 to 4 minutes and
a TDV amplitude of 6 to 7 minutes, roughly speaking. Therefore, we simplify our model
and setMs = 0, which means thataps is equal to the distance between the moon and the
planet-moon barycenter,as. The moon is assumed to have a coplanar orbit around the
planet and, thus, to have the same transit impact parameter as the planet.

With these assumptions, the projected distance of the planet center to the star center
relative to the stellar radiuszp is equal to that of the barycenterzB. The projected distance
of the moon center to the star center relative to the stellar radiuszs is given by
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wherePs is the orbital period of the moon calculated from the �xed masses andaps.
We calculate the transit light curves of both bodies and combine them into the total

model light curve, which we callF1. We use the limb-darkening parameter transforma-
tion from Kipping (2013). For computational e� ciency, we do not consider planet-moon
occultations. For the planet-moon system of interest, occultations would only occur dur-
ing about half of the transits (assuming a random moon phase) even if the moon orbital
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plane were perfectly parallel to the line of sight. Such an occultation would take about
1.5 h and would only a� ect 5-10 % of the total moon signal duration.

In Table 2.1 we give an overview of our nominal parameterization of the planet-moon
model. In Fig. 2.4 we show the orbital dynamics of the planet and moon during transits
2, 4, and 5 using the nominal parameters in Table 2.1. This nominal parameterization
was chosen to generate a model light curve that is reasonably close to the preferred model
light curve found in Teachey et al. (2018), but it does not represent our most likely model
�t to the data.

2.2.2.3 Finding the posterior probability distribution

We use the Markov Chain Monte Carlo (MCMC) implementationEmcee(Foreman-Mackey
et al. 2013) to estimate the posterior probability distribution of the parameters for model
M (i) (M 0 or M 1). For this purpose, we need to formulate the probability density of a light
curve as well as the prior of the parameters.

All three transits taken together, we have a total ofN detrended �ux measurements
(see Sect. 2.2.1). Given a set of parameters

#�
� , modelM i produces a model light curve

F i(t;
#�
� ). We assume that the noise is uncorrelated (see Appendix 2.B) and Gaussian with

a standard deviation� j at timet j. This simpli�es the joint probability density to a product
of the individual probabilities. The joint probability density function of the detrended �ux
F(t) is given by
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The noise dispersion� j has a �xed value for each transit.
Table 2.2 shows the parameter ranges that we explore. A prior is placed on the stellar

mass according to the mass of 1:079+0:100
� 0:138 M� determined by Mathur et al. (2017). The

stellar mass for a given parameter set is determined from the system's total mass usingPB

andaB and subtracting the �xed planet mass of ten Jupiter masses.
A total of 100 walkers are initiated with randomly chosen parameters close to the

estimated transit parameters. For the sake of fast computational performance, the walkers
are initially separated into groups of 16 for the planet-only model and 24 for the planet-
moon model (twice the number of parameters plus 2, respectively), temporarily adding
walkers to �ll the last group. To transform the initially �at distribution of walkers into
a distribution according to the likelihood function, the walkers have to go through a so-
called burn-in phase, the resulting model �ts of which are discarded. We chose a burn-in
phase for the walkers of 500 steps in both groups. Afterwards, we discard the temporarily
added walkers, merge the walkers back together, and perform a second burn-in phase of
2 200 steps with a length determined by visual inspection. Finally, we initiate the main
MCMC run with a total of 8 000 steps.

We run the MCMC code on the detrended light curve using both the planet-only and
the planet-moon models.
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Table 2.2: Parameter ranges explored with our planet-moon model. The ranges of the
no-moon model parameters are the same for the shared parameter and are propagated to
the derived parameterR? =a.

Min. Value Parameter Max. Value

0 � rp � 0.1

0.2 au � aB � 2 au

0 � b � 1

� PB=2 � t0;B � PB=2

270 d � PB � 300 d

0 � R? � 4:3R�

0 � q1 � 1

0 � q1 � 1

0 � rs � rp

0 � as � RHill =2

� Ps=2 � t0;s � Ps=2

2.2.3 Model selection

We use the Bayesian information criterion (BIC) to evaluate how well a model describes
the observations in relation to the number of model parameters and data points. The BIC
of a given modelM i with mi parameters is de�ned by Schwarz (1978) as

BIC(M i jF) = mi ln N � 2 ln p(Fj
#�
� max;M i); (2.5)

where
#�
� max is the set of parameters that maximizes the probability density function

p(Fj
#�
� ; M i) for a given the light curveF and modelM i.

The di� erence of the BICs between two models gives an indication as to which model
is more likely. In particular,� BIC(M 1;M 0) � BIC(M 1) � BIC(M 0) < 0 if model
M 1 is more likely. We consider� BIC < 6 (or � BIC > 6) as strong evidence in favor
of (or against) modelM 1 (see, e.g., Kass and Raftery 1995).

The best-�tting set of parameters derived from our MCMC runs (
#�
� max) is then used to

calculate� BIC(M 1;M 0). For our calculations, we only use those parts of the light curve
around the transits that could potentially be a� ected by a moon (3:25 d on each side of
the transits, determined by the Hill radiusRHill and the orbital velocity of the planet-moon
barycenter; see Appendix 2.A).

2.2.4 Injection-retrieval test

In order to estimate the likelihood of an exomoon feature to be due to either a real moon or
due to noise, we perform several injection-retrieval experiments. One of us (MH) injected
two cases of transits into the out-of-transit parts of the original PDCSAP Kepler �ux. In
one case, a sequence of three planet-only transits (similar to the sequence of real transits
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2, 4, and 5) was injected, where the planet was chosen to have a radius of 11R� . In
another case, a sequence of three transits of a planet-with-moon system, with properties
similar to the proposed Jupiter-Neptune system, was injected. Author KR then applied
the Baysian framework described above in order to evaluate the planet-only versus the
planet-with-moon hypotheses, and in order to characterize the planet and (if present) its
moon. As an important trait of our experiment, the author KR did not know which of the
light curves contained only a planet and which contained also a moon.

2.2.4.1 Transit injections into light curves

For the injection part, we usePyOSE(Heller et al. 2016a,b) to create synthetic planet and
moon ensemble transits. This code numerically integrates the non-occulted areas of the
stellar disk to calculate the instantaneous �ux of the star, which makes it a computationally
slow procedure. We therefore use the analytical model described Sect. 2.2.2 for the
retrieval part. In our model, the moon's orbit is de�ned by its eccentricity (es, �xed at
0), as, its orbital inclination with respect to the circumstellar orbit (is, �xed at 90� ), the
longitude of the ascending node, the argument of the periapsis, and the planetary impact
parameter (b, �xed at zero). Due to the small TTV and TDV amplitudes compared to the
29.4 min exposure of the Kepler long cadence data, we neglect the planet's motion around
the planet/moon barycenter (althoughPyOSEcan model this dynamical e� ect as well) and
assume that the moon orbits the center of the planet.

Our numerical code creates a spherical limb-darkened star on a two-dimensional grid
of �oating-point values. The sky-projected shapes of both the planet and the moon are
modeled as black circles. The spatial resolution of the simulation is chosen to be a few
million pixels so that the resulting light curve has a numerical error of< 1 ppm, which is
negligible compared to the� 700 ppm noise level of the Kepler light curve. The initial
temporal resolution of our model is equivalent to 1 000 steps per planetary transit duration,
which we then downsample to the observed 29.4 min cadence. The creation of one such
light curve of a planet with a moon takes about one minute on a modern desktop computer.

We create a set of 100 such transit simulations of the planet-moon ensemble, where
the two bodies move consistently during and between transits. All orbits are modeled
to be co-planar and mutual planet-moon occultations are also included. For each transit
sequence, the initial orbital phase of the planet-moon system is chosen randomly.

With PB = 287:378949 d andPs = 2:20833 d, the moon advances by� 0:13 in phase
between each subsequent planetary transit (PB=Ps � 130:13). During a planetary transit,
the moon advances by� 0:36 rad in phase (the planetary transit duration is 0:7869�
0:0084 d).

We also create a set of 100 such transits that only have a transiting planet without a
moon. In these cases, the planetary radius was increased slightly to match the average
transit depth of planet and moon.

2.2.4.2 Testing the model-selection algorithm on synthetic light curves with white
noise only

As a �rst validation of our injection-retrieval experiment and our implementation of the
Bayesian statistical framework, we generate a new set of white noise light curves to test
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Figure 2.5: Di� erence between the BIC of the planet-moon model and the no-moon model
for 2 000 arti�cial white noise light curves at di� erent noise levels, injected with simulated
transits. On the left (100� 10 light curves), a planet and moon transit was injected, on the
right (100� 10 light curves), only the planet. Each light curve consists of three consecutive
transits. Each column is sorted by the� BIC. The� BIC threshold, over which a planet-
moon or planet-only system is clearly preferred is� 6 with the state of systems with a
� BIC between those values considered to be ambiguous.

only the model comparison part of our pipeline without any e� ects that could possibly
arise from imperfect detrending. Any e� ects that we would see in our experiments with
the real Kepler-1625 light curve but not in the synthetic light curves with noise only could
then be attributed to the imperfect detrending of the time-correlated (red) noise.

The author MH generated 200 synthetic light curves with ten di� erent levels of white
noise, respectively, ranging from root mean squares of 250 ppm to 700 ppm in steps of
50 ppm. This results in a total of 2 000 synthetic light curves. The method described in
Sect. 2.2.4.1 was used to inject three transits of a planet only into 100 light curves per
noise level and three transits of a planet with a moon into the remaining 100 light curves
per noise level. The initial orbital phases were randomly chosen and are di� erent from
the ones used to generate the light curves in Sect. 2.2.4.3. The author MH delivered these
light curves to the author KR without revealing their speci�c contents. The author KR
then ran our model selection algorithm to �nd the� BIC for each of the 2 000 systems.
After the � BICs were found, MH revealed the planet-only or the planet-moon nature of
each light curve.

Figure 2.5 shows the resulting� BICs for each of the 2 000 light curves, separated into
the planet-only (left panel) and planet-moon injected systems (right panel) and sorted by
the respective white noise level (along the abscissa). Each vertical column contains 100
light curves, respectively. For a noise level of 250 ppm, for example, our algorithm �nds
no false positive moons in the planet-only data, that is, no system with a� BIC < � 6,
while 1 case remains ambiguous (� 6 < � BIC < 6) and the other 99 cases are correctly
identi�ed as containing no moons. In the case of an injected planet-moon system instead,
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Figure 2.6: Distribution of the median likelihoodRs andas for all the runs for the di� erent
noise levels, with the runs injecting planet and moon on the top and runs injecting only
a planet in the bottom. The� BIC of the planet-moon model compared to the no-moon
model for all runs is indicated by the color. Generally, runs with a low� BIC (indicating
the presence of a moon) also are in the vicinity of the injected parameter.

the algorithm correctly retrieves the moon in 100 % of the synthetic light curves, that is,
� BIC < � 6 for all systems.

More generally, for the simulated planet-only systems, the false positive rate is 0 %
throughout all noise levels. Occasionally a system is �agged as ambiguous, but overall
the algorithm consistently classi�es planet-only systems correctly as having no moon.
Referring to the injected planet-moon system (right panel), our false negative rate rises
steadily with increasing noise level. In fact, it reaches parity with the true positive rate
between about 650 ppm and 700 ppm.

In Fig. 2.6, we presentas andRs for each of the maximum-likelihood �ts shown in
Fig. 2.5. Each panel in Fig. 2.6 refers to one white noise level, that is, to one column
in Fig. 2.5 of either the planet-only or the planet-moon injected system. In the case of
an injected planet only (upper panels), the most likely values ofas are distributed almost
randomly over the range of values that we explore. On the other hand,Rs is constrained to
a small range from about 1:5R� at 250 ppm to roughly 3R� at 700 ppm with the standard
variation naturally increasing with the noise level.

The lower part of Fig. 2.6 shows the outcome of our planet-moon injection-retrievals
from the synthetic light curves with white noise only. The correct parameters are generally
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recovered at all noise levels. In fact, we either recover the moon with a similar radius and
orbital separation as the injection values (symbolized by blue points) or we �nd the moon
to have very di� erent radius and orbit while also rejecting the hypothesis of its presence
in the �rst place (symbolized by red points). The distribution of these false negatives
in the as-Rs plane resembles the distribution of the true negatives in the corresponding
no-moon cases. The ambiguous runs with a� BIC around zero still mostly recover the
injected moon parameters. This is especially clear for the 700 ppm level, with 50 %
more ambiguous runs than true positives, where most of the runs still recover the injected
parameters.

2.2.4.3 Transit injection into real out-of-transit data

We inject synthetic transits into the Kepler-1625 PDCSAP data prior to our own detrend-
ing (see Sect. 2.2.4.1). We use the PDCSAP �ux instead of SAP �ux because (1) it was
easier for us to automate the anomaly detection and (2) PDCSAP �ux has been cleaned
of common systematics. Since the PDC pipeline removes many of the jumps in the data,
we can focus on a single type of anomaly, that is, gaps. Gaps are relatively easy to detect
in an automated way, removing the requirement of visual inspection of each light curve.
For the injection, we select out-of-transit parts of the Kepler-1625 light curve that have at
least 50 d of mostly uninterrupted data (25 d to both sides of the designated time of transit
injection), but accept the presence of occasional gaps with durations of up to several days
during the injection process.

The set of 200 synthetic light curves was provided by MH to KR for blind retrieval
without any disclosure as to which of the sequences have a moon. The time of mid-transit
was communicated with a precision of 0.1 days to avoid the requirement of a pre-stage
transit search. This is justi�ed because the original transits of Kepler-1625 b have already
been detected, and the transits are visible by eye and do not necessarily need computer-
based searches. We provide the 200 datasets to the community for reproducibility4 and
encourage further blind retrievals.

2.2.4.4 Detrending of the transit-injected light curves

The detrending procedure for our injection-retrieval experiment di� ers from the one used
to detrend the original light curve around the Kepler-1625 b transits (see Sect. 2.2.1) in
two respects.

First, we test the e� ect of the detrending function. In addition to the trigonometric
function, we detrend the light curve by polynomials of second, third, and fourth order.

In addition, we test if the inclusion or exclusion of data beyond any gaps in the light
curve a� ects the detrending. In one variation of our detrending procedure, we use the
entire� 25 d of data (excluding any data withintc) around a transit midpoint. In another
variation, we restrict the detrending to the data up to the nearest gap (if present) on both
sides of the transit.

To avoid the requirement of time-consuming visual inspections of each light curve,
we construct an automatic rule to determine the presence of gaps, which are the most
disruptive kind of artifact to our detrending procedure. We de�ne a gap as an interruption

4Available on Zenodo, [10.5281/zenodo.1202034], Hippke (2018)
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Table 2.3: De�nition of the detrending identi�ers in relation to the respective detrending
functions that we explored in our transit injection-retrieval experiment of the Kepler-1625
data. We de�ne a gap as any empty parts in the light curve that show more than 12 h be-
tween consecutive data points. The trigonometric function refers to our reimplementation
of the CoFiAM algorithm. P2 to P4 refer to polynomials of second to fourth order.T
refers to our trigonometric detrending.Gstands for the inclusion of data beyond gaps,N
stands for the exclusion of data beyond gaps.

Identi�er Detrending Function Reject Data Beyond Gap?

P2/G 2nd order polynomial yes

P2/N 2nd order polynomial no

P3/G 3rd order polynomial yes

P3/N 3rd order polynomial no

P4/G 4th order polynomial yes

P4/N 4th order polynomial no

T/G trigonometric yes

T/N trigonometric no

of the data of more than half a day. Whenever we do detect a gap, we cut another 12 h at
both the beginning and the end of the gap, since our visual inspection of the data showed
that many gaps are preceded or followed by anomalous trends (see e.g. the gap 4 d after
transit 4 in Fig. 2.1).

We ignore any data points withintc around the transit midpoint (see Sect. 2.2.1). If
a gap starts within an interval [tc=2; tc=2 + 12 h] around the transit midpoint, then we
lift our constraint of dismissing a 12 h interval around gaps and use all the data within
[tc=2; tc=2 + 12 h] plus any data up to 12 h around the next gap.

If all these cuts result in no data points for the detrending procedure to one side of one
of the three transits in a sequence, then we ignore the entire sequence for our injection-
retrieval experiment. This is the case for 40 out of the 200 arti�cially injected light curves.
This high loss rate of our experimental data is a natural outcome of the gap distribution in
the original Kepler-1625 light curve. We exclude these 40 light curves for all variations of
the detrending procedure that we investigate. All things combined, these constraints pro-
duce synthetic light curves with gap characteristics similar to the original Kepler-1625 b
transits (see Fig. 2.3), that is, we allow the simulation of light curves with gaps close
to but not ranging into the transits. The four detrending functions and our two ways of
treating gaps yield a total of eight di� erent detrending methods that we investigate (see
Table 2.3).
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Figure 2.7: The observed second, fourth, and �fth transits of Kepler 1625 b. Black dots
refer to our detrended light curve from the trigonometric detrending procedure, and or-
ange curves are the model light curves generated using the 100 best �tting parameter sets
of the MCMC run. The� BIC, calculated from the most likely parameters, is� 4:954.
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Figure 2.8: Posterior probability distribution of the moon parameters generated by the
MCMC algorithm for the light curve detrended by the trigonometric detrending. The
black vertical lines show the median of the posterior distribution, the black horizontal
lines indicate the 1� range around the median. The red vertical lines show the point of
maximum likelihood. The locations of the Galilean moons are included in the lower-left
panel for comparison.

45



2 Paper I: Revisiting the exomoon candidate signal around Kepler-1625 b

2.3 Results

2.3.1 Analysis of the original Kepler-1625 b transits

Our �rst result is a reproduction of a detrended transit light curve of Kepler-1625 b that
has the same morphology and moon characterization as the one proposed by Teachey
et al. (2018) and that has a negative� BIC. We explore the variation of the free parameters
of our trigonometric detrending procedure,ftp and ftc, and identify such a detrended light
curve for ftp = 4:4 andftc = 2:2. Figure 2.7 shows the resulting light curve.

In Fig. 2.8, we show the results of our MCMC analysis of this particular light curve,
which yields a moon withas = 16:3+5:0

� 1:9 RJ andRs = 2:87+0:61
� 0:94 R� . While both the moon

radius and semimajor axis are well constrained, the distribution of the initial planet-moon
orbital conjunction (t0;s) �lls out almost the entire allowed parameter range from� 1=2 Ps

to +1=2 Ps. The planetary radius is 0:863+0:072
� 0:051 RJ, the stellar radius isR? = 1:57+0:11

� 0:09 R� ,
and the density is� ? = 0:26+0:04

� 0:05 � � .
The point of maximum likelihood in the resulting MCMC distribution is atas =

14:7 RJ, Rs = 3:4 R� , R? = 1:57 R� , � ? = 0:23 � � andRp = 8:63 RJ. The� BIC(M 1;M 0)
we found is -4.954, indicating moderate evidence in favor of an exomoon being in the
light curve.

2.3.2 Injection-retrieval experiment

Figure 2.9: Di� erence between the BIC of the planet-moon model and the no-moon model
using di� erent detrending methods for 160 light curves, generated using the PDCSAP
�ux of Kepler 1625, injected with three simulated transits. On the left (80 light curves), a
planet and moon transit was injected, on the right (80 light curves), only the planet. Each
light curve consists of three consecutive transits. Each row of eight detrending methods
uses the same light curve. The rows are sorted by their mean� BIC, with black lines
indicating the� BIC = f� 6; 0;6gpositions for the mean� BIC per row.

In Fig. 2.9, we show the� BIC for the 160 simulated Kepler light curves that were not
rejected by our detrending method due to gaps very close to a transit. The left panel shows
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Figure 2.10: Distribution of the median likelihoodRs andas for the transits injected into
di� erent parts of the Kepler-1625 light curve, using di� erent detrending methods. The
� BIC of the planet-only model compared to the planet-moon model is indicated by the
symbol color. The values of the moon semimajor axis (abscissa) and radius (ordinate)
suggested by Teachey et al. (2018) are indicated with thin, gray lines in each sub-panel.

our results for the analysis of planet-only injections and the right panel refers to planet-
moon injections. The tables in the panel headers list the true negative, false positive, true
positive, and false positive rates as well as the rates of ambiguous cases. With “positive”
(“negative”), we here refer to the detection (non-detection) of a moon.

In particular, we �nd the true negative rate (left panel,� BIC � 6) to be between 65 %
and 87.5 % and the true positive rate (right panel,� BIC � � 6) to be between 31.25 %
and 46.25 % depending on the detrending method, respectively.

The rates of false classi�cations is between 8.75 % and 17.5 % for the injected planet-
only systems with a falsely detected moon (false positives) and between 30 % and 41.25 %
for the injected planet-moon systems with a failed moon recovery (false negatives).

The rates of classi�cation as a planet-moon system depend signi�cantly on the treat-
ment of gaps during the detrending procedure. Whenever the light curve is cut at a gap, the
detection rates for a moon increase – both for the false positives and for the true positives.
Among all the detrending methods, this e� ect is especially strong for the trigonometric
detrending. The false positive rate increases by almost a factor of two from 8.75 % (T/N)
to 16.25 % (T/G) and the true positive rate increases by 15 % to 46.25 %. The e� ect
on the true negative rate is strongest for the trigonometric detrending, decreasing from

47



2 Paper I: Revisiting the exomoon candidate signal around Kepler-1625 b

87.5 % when the light curve is not cut at gaps (T/N) to 72.5 % if the light curve is cut
(T/G). The false negative rate for the second-order polynomial detrending decreases from
41.25 % (P2/N) to 30 % (P2/G) when gaps are cut, while the false negative rates of the
other detrending methods remain almost una� ected.

Of all the light curves with an injected planet only, 21.25 % have an ambiguous clas-
si�cation with at least one of the detrending methods showing a negative� BIC and a
di� erent method showing a positive� BIC above the threshold. For the light curves with
an injected planet-moon system, there are 18.75 % with ambiguous classi�cation and an-
other 18.75 % of the injected planet-moon systems are classi�ed unanimously as true
positives by all detrending methods.

Figure 2.10 shows the distribution of the retrieved moon parametersas andRs as well
as the corresponding� BIC (see color scale) for each of the detrending methods.

For the light curves with an injected planet-moon system (lower set of panels), the
maximum likelihood values ofas and Rs of the true positives (blue) generally cluster
around the injected parameters. In particular, we �nd that the moon turns out to be more
likely (deeper-blue dots) when it is �tted to have a larger radius. The parameters of the
false positives (blue dots in the upper set of panels) are more widely spread out, with
moon radii ranging between 2 and 5R� and the moon semimajor axes spread out through
essentially the entire parameter range that we explored. The clustering of medianas at
around 100RJ is an artifact of taking the median over a very unlocalized distribution along
as. For the polynomial detrending methods, there are a certain number of what one could
refer to as mischaracterized true positives. In these cases, the� BIC-based planet-only
versus planet-moon classi�cation is correct but the maximum likelihood values are very
di� erent from the injected ones.

The correctly identi�ed planet-only systems show a similar distribution ofas andRs

as in our experiment with white noise only and a 700 ppm amplitude (Fig. 2.5).
Most surprisingly, and potentially most worryingly, the false positives (blue dots in

the upper set of panels in Fig. 2.10) cluster around the values of the moon parameters
found by Teachey et al. (2018), in particular if the light curve is cut at the �rst gap.

2.4 Discussion

In this article, we compare several detrending methods of the light curve of Kepler-1625,
some of which were used by Teachey et al. (2018) in their characterization of the exomoon
candidate around Kepler-1625 b. However, we do not perform an exhaustive survey of
all available detrending methods; for example we leave out Gaussian processes (Aigrain
et al. 2016).

We show that the sequential detrending and �tting procedure of transit light curves
is prone to introducing features that can be misinterpreted as signal, in our case as an
exomoon. This “pre-whitening” method of the data must therefore be used with caution.
Our investigations of a polynomial-based �tting and of a trigonometric detrending pro-
cedure show that the resulting best-�t model depends strongly on the speci�c detrending
function; for example, on the order of the polynomial or on the minimum timescale (or
wavelength) of a cosine. This is crucial for any search of secondary e� ects in the transit
light curves – caused by moons, rings, evaporating atmospheres and so on – and is in
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stark contrast to a claim by Aizawa et al. (2017), who stated that neither the choice of
the detrending function nor the choice of the detrending window of the light curve would
have a signi�cant e� ect on the result. We �nd that this might be true at the level of visual
inspection by eye but not at the level of 100 ppm or below. Part of the di� erence between
our �ndings and those of Aizawa et al. (2017) could be in the di� erent timescales we in-
vestigate. While they considered the e� ect of stellar �airs on timescales of less than a day,
much less than the two-day transit duration of their speci�c target, our procedure operates
on various timescales of up to several weeks. Moreover, we develop a dynamical moon
model to �t multiple transits, whereas Aizawa et al. (2017) study only a single transit.

Since the actual presence and the putative orbital position of a hypothetical exomoon
around Kepler-1625 b is unknown a priori, it is unclear how much of the light curve would
need to be protected from (or neglected for) the pre-�t detrending process in order to avoid
a detrending of a possible moon signal itself. In turn, we show that in the case of Kepler-
1625, di� erent choices for this protected timescale around the transit yield di� erent con-
�dences and di� erent solutions for a planet-moon system. We �nd that the previously
announced solution by Teachey et al. (2018) is only one of many possibilities with similar
likelihoods (speci�cally: BIC). This suggests, but by no means proves, that all of these
solutions could, in fact, be due to red noise artifacts (e.g. stellar or instrumental) rather
than indicative of a moon signal.

Our �nding of higher true positive rate compared to a false positive rate from injection-
retrieval experiments could be interpreted as moderate evidence in favor of a genuine
exomoon. This interpretation, however, depends on the number of transiting planets and
planet candidates around stars with similar noise characteristics that were included in the
Teachey et al. (2018) search. Broadly speaking, if more than a handful of similar targets
are studied, the probability of at least one false positive detection becomes quite likely.

2.5 Conclusions

We investigated the detrending of the transit light curve of Kepler-1625 b with a method
very similar to the one used by Teachey et al. (2018) and then applied a Bayesian frame-
work with MCMC modeling to search for a moon. Our �nding of a� BIC of � 4:954
favors the planet-moon over the planet-only hypothesis. Although signi�cant, this tenta-
tive detection fails to cross the threshold of� 6, which we would consider strong evidence
of a moon. Our� BIC value would certainly change if we were to include the additional
data from the high-precision transit observations executed in October 2017 with the Hub-
ble Space Telescope (Teachey et al. 2018) in our analysis. Moreover, by varying the free
parameters of our detrending procedure, we also �nd completely di� erent solutions for a
planet-moon system, that is, di� erent planet-moon orbital con�gurations during transits
and di� erent moon radii or planet-moon orbital semimajor axes.

As an extension to this validation of the previously published work, we performed 200
injection-retrieval experiments into the original out-of-transit parts of the Kepler light
curve. We also extended the previous work by exploring di� erent detrending methods,
such as second-, third-, and fourth-order polynomials as well as trigonometric methods,
and �nd false-positive rates between 8.75 % and 16.25 %, depending on the method. Sur-
prisingly, we �nd that the moon radius and planet-moon distances of these false positives
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are very similar to the ones measured by Teachey et al. (2018). In other words, in 8.75 %
to 16.25 % of the light curves that contained an arti�cially injected planet only, we �nd a
moon that is about as large as Neptune and orbits Kepler-1625 b at about 20RJ.

To summarize, we �nd tentative statistical evidence for a moon in this particular Ke-
pler light curve of Kepler-1625, but we also show that a signi�cant fraction of similar
light curves, which contained a planet only, would nevertheless indicate a moon with
properties similar to the candidate Kepler-1625 b-i. Clearly, stellar and systematic red
noise components are the ultimate barrier to an unambiguous exomoon detection around
Kepler-1625 b and follow-up observations have the potential of solving this riddle based
on the framework that we present.

Of all the detrending methods we investigated, the trigonometric method, which is
very similar to the CoFiAM method of Teachey et al. (2018), can produce the highest true
positive rate. At the same time, however, this method also ranks among those producing
the highest false positive rates as well. To conclude, we recommend that any future ex-
omoon candidate be detrended with as many di� erent detrending methods as possible to
evaluate the robustness of the classi�cation.
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