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Abstract

Ultralight axion is a scalar field with an extremely small mass ~ 10722V,
It is proposed as an alternative dark matter candidate to the standard cold
dark matter (CDM). If self-interactions between axions can be ignored,
it is also called fuzzy dark matter (FDM). On large scales, FDM behaves
like CDM producing large scale structure of the Universe consistent with
current observations. But on scales below the Jeans length, quantum pres-
sure arising from coherent oscillations of the scalar filed counters gravity,
leading to a large suppression in the structure formation and cored dark
matter halo profiles. In this dissertation, I mainly discuss the cosmic struc-
ture formation in the scenario of FDM. First, I show how we implement
FDM into the publicly available semi-analytic code for galaxy formation,
GALACTICUS. With the modified code, we compute the (sub)halo mass
function for FDM with different particle masses and density fractions.
Comparing to the standard CDM, the (sub)halo mass function is found
to be largely suppressed at lower masses. The suppression scale is in-
versely proportional to the square root of FDM mass. Then, based on the
core mass growth in each binary merger of FDM halos, a simple model
for the core-halo mass relation observed in simulations is proposed. The
model is verified using the modified GALACTICUS code. Finally, to study
tidal disruption of FDM subhalo cores, 1 perform idealized simulations
using a fourth-order pseudo-spectral method. The core mass loss rate
due to tidal stripping obtained numerically is compared with the previous
results from semi-analytic treatments. We find after some reinterpreta-
tions, two results are reasonably consistent. Implementing the numerical
results into GALACTICUS, I compute the subhalo mass function with and
without considering the core stripping. Fitting formula for the subhalo
mass function is given at the end, which will be useful in future studies

on constraining FDM from observations related to halo substructure.
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Chapter 1

Introduction

One of the fundamental questions in cosmology is how the Universe began and evolved
into a complex system containing a lot of structure on different scales, from galaxy
clusters, galaxies to stars. A variety of observations indicate that our Universe con-
tains a large amount of “invisible” matter, i.e. dark matter. Dark matter is “dark” in
the sense that it nearly does not interact with light, thus can not be seen directly by
eyes or through telescopes. However, we do know its existence by the gravity it acts
on other visible objects. Since it makes up about 26 percent of the current Universe,
which is five times as much as the ordinary baryonic matter [} it plays an important
role in the formation of cosmic structure. However, we have only inferred its existence
through gravitational effects so far and known little about its nature. Different kinds
of models for dark matter have been proposed motivated either by observations or by
some theoretical considerations, e.g. an extension of the Standard Model of particle
physics. In this dissertation, I will mainly concentrate on one of the many promising
candidates, ultralight axion dark matter or as is commonly called fuzzy dark matter

(FDM), and discuss the cosmic structure formation in this model.

1.1 Evidence of Dark Matter

1.1.1 Dynamics of (Galaxy and Galaxy Cluster

One way to determine the mass of a distant system is to observe the movement
of objects within this system. Then from Newton’s law of gravity, the mass that
is needed to reproduced such a movement can be calculated. If the system is in

equilibrium, we can further use the virial theorem to get the relation between the

L As is commonly used in cosmology, in this thesis the word “baryonic matter” or “baryons” refers
to everything that is made up of protons, neutrons and electrons.



velocity dispersion (or kinetic energy) and the total mass and size of the system
(or the potential energy). Adopting the virial theorem, in 1933 Fritz Zwicky first
computed the mass of the Coma Cluster from the observed velocity dispersion in the
movements of galaxies within the cluster. He found that the mass he obtained is 400
times larger than the mass expected from luminosity measurements [10]. It provided
the first evidence that there might be a large amount of invisible matter in the Coma
Cluster.

On the other hand, for spiral systems, the mass distribution can be inferred from
the rotation velocity of visible stars or gas around the galaxy center by applying
Kepler’s second law. In the 1970s, the improvement in observation techniques made
it possible to measure the rotation velocity of galaxies accurately to large radii with
both optical and radio telescopes. In 1978, Rubin, Ford and Thonnard published their
famous paper [11], in which they showed the rotation curves for ten spiral galaxies
and found they are flat even out to the outermost radii that are measured. These
results are inconsistent with the predictions from Newtonian dynamics: the rotation
velocity v = /GM(r)/r; if there are only luminous matter (stars and gas) in the
galaxy, as the density of luminous matter drops off at large radii the enclosed mass
M (r) approach to a constant, thus v will drop as 1/4/r. To resolve the inconsistency,
additional invisible matter, i.e. dark matter, needs to be added. To see a full history

I refer the interested readers to [12].

1.1.2 Expansion History of the Universe

Another evidence of dark matter is from measuring the expansion history of the
Universe. As is first discovered by Hubble in 1929 [13], the Universe is expanding.
The gravity force is attractive, so the expansion of the Universe will be slowed down
by matter components. The more the matters there are, the larger the deceleration
is. Therefore, by measuring the expansion of the Universe, we can derive the average
matter density in the Universe and check whether it is consistent with the ordinary
baryonic matter density we observe.

One way to measure the expansion history of the Universe is to look at type la
supernovae. Type Ia supernovae produce consistent peak luminosity during their
explosions, thus can be used as standard candles | Comparing the brightness of a
supernova with its intrinsic luminosity, its distance to us can be derived using Gauss’s

law, i.e. the brightness decreases inversely proportional to the square of distance. On

2A standard candle is an object whose luminosity is well known.



the other hand, the redshift of the supernova can be obtained from its spectrum.
The redshift tells us how much the Universe has expanded since the explosion of a
supernova. Comparing this expansion factor with distances to different supernovae
gives the information about the expansion history, which then tells us about the
average matter density. In 1998, two groups, the High-Z Supernova Search Team
[14] and the Supernova Cosmology Project [15], discovered independently that the
expansion of the Universe is actually accelerating and the Universe is made up of
about 1/4 of matter and 3/4 of dark energy (vacuum energy). As a comparison, the
fraction of baryonic matter estimated from cosmic nucleosynthesis is less than 5%. It
indicates that there must be a dark matter component.

Another way to measure the expansion history is to search for the signature of
Baryon Acoustic Oscillations (BAOs), i.e. density peaks and valleys caused by sound
waves propagating in the primordial plasma. Before recombination, baryons coupled
with photons giving rise to an effective pressure. The sound wave generated during
the collapse of overdensities traveled at a speed of ¢/v/3 with ¢ the speed of light.
After recombination, the universe became neutral. Baryons decoupled with photons
and became nearly pressureless. So the sound wave was frozen leaving behind an
overdense shell at a fixed radius, i.e. the sound horizon. Thus it is expected to see
a peak in the correlation function of the density field at the scale of sound horizon.
At later times (lower redshifts), overdense regions collapse and form galaxies. The
peak should still be seen in the correlation function of the number density field of
galaxies, but the position of the peak has been moved to a larger scale due to the
expansion of the Universe. Comparing it with the sound horizon at recombination,
information about the expansion history can be obtained. Again the measurement of

BAOs supports the existence of dark matter [16].

1.1.3 Cosmic Microwave Background

In the early Universe, it was so hot that electrons can not be bound to nuclei. Photons
frequently interacted with free electrons making them in thermal equilibrium. The
photons presented a black-body spectrum. As the universe expanded, the temperature
decreased. Finally, at recombination free electrons are bound to nuclei again, making
the Universe neutral and transparent to photons. Thus photons began to expand
freely. They kept the black-body spectrum but with a decreasing temperature. At
the present time, they become the cosmic microwave background (CMB) that fills in

the Universe.



The temperature of CMB is found to be nearly isotropic with only a very small
variation across the sky. But it is these small anisotropies that contain a lot of im-
portant information about the Universe. They are not only relevant to studying the
expansion of the Universe, but also relevant to studying the evolution of small fluctu-
ations in different matter components. Unlike baryonic matter, dark matter has no
interactions with photons except for the gravitational force. Its density perturbations
evolved very differently from baryonic matter in the early Universe. Therefore, it is
possible to distinguish dark matter from ordinary baryonic matter by measuring the
angular power spectrum of CMB anisotropy. Since the first discovery of CMB by
Arno Penzias and Robert Woodrow Wilson in 1964 [17], great improvements have
been made [I8, 19]. With the Planck satellite, 5 of the 6 parameters in the standard
cosmological model can be measured better than 1 percent [20]. The latest results
from Planck satellite indicate that dark matter makes up about 26 percent of the

current Universe while the baryonic matter only makes up 5 percent.

1.2 Dark Matter Models

As is shown in the last section, dark matter is necessary to explain the discrepancy
between the matter density estimated from gravitational effects and the density of
normal baryonic matter. But so far we have not specified what particle it is.

From the observation point of view, it would be sufficient for most cases to assume
that the dark matter is

(1) cold, which means its thermal velocity must be very small;

(2) dark, so it can at most only weakly interacts with photon, baryonic matter and
itself.

This is the so-called cold dark matter (CDM) model. CDM together with a non-zero
cosmological constant, i.e. the ACDM model, has been successful in explaining a lot
of current observations. From the particle physics point of view, however, such kind
of a model may seem a bit primitive because it does not tell too much about the
properties of the dark matter particle. We only know it is neutral and it is stable on
cosmological time scales. But we do not even know its mass. As is discussed in [21],
although there may be big differences when we see the dark matter problem from
these two different aspects, they are actually closely related. On the one hand, any
non-trivial property of dark matter particle could possibly predict a new phenomenon

that can be tested by observations. On the other hand, if we observe some deviations

4



from the CDM model, it would imply that the dark matter particle has some new
properties that may be detected in particle physics experiments.

Since CDM has been well tested on scales larger than 10 kpc and shows excellent
agreements with observations of large scale structure of the Universe. The deviations
from CDM are most likely to happen on small scales. It motivates various kinds
of alternative models such as warm dark matter [22, 23] with non-negligible ther-
mal motions and self-interacting dark matter [24] with measurable non-gravitational
interactions. They can be realized as variants of the weakly interacting massive
particles (WIMPs) dark matter paradigm. On the other hand, light (sub-eV), coher-
ently oscillating scalar fields also behave like CDM on large scales while showing new
phenomenology on small scales, starting roughly at their virial velocity de Broglie
wavelength [25] 26, 27]. For particle masses around 10722 eV, the length is of the or-
der of several kpc, making this mass range sensitive to constraints from observations
on galactic scales [28| 29] 30], BT, 32, 33| 34], 35, [1].

One of the most significant differences between these alternative dark matter mod-
els and the CDM model is the cosmic structure formation on small scales. N-body
cosmological simulations show that CDM halos have cuspy cores [36] and contain a
lot of small subhalos [37, 38]. On the contrary, the alternative models mentioned
above may produce flat cores in halo centers. The abundance of subhalos may also
be different on small scales. Thus searching for deviations from the predictions of
the CDM model on small scales, e.g. substructure of dark matter halos, provides a

promising way to constrain the properties of dark matter candidates.

1.2.1 QCD axion

Before going into more details about the main topic of this dissertation, the ultralight
axion dark matter, it is worthwhile having a very brief introduction to the QCD axion,
where the axion particle is first proposed.
In QCD Lagrangian, there exists a natural term that violates the combination of
charge conjugation symmetry (C) and parity symmetry (P)
2

Ly = 93;2 FM o, (1.1)

where F is the gluon field strength tensor and Fau,, = %EWQBFfﬁ with €,,43 the
Levi-Civita symbol. If the parameter § does not equal to 0, this term will contribute

to the neutron electric dipole moment d,,. The current measurement of d,, suggests



that d, < 2.9 x 107?e cm [39], which implies 6 is extremely small, § < 1071 [40]. So
we will need a fine tuning for #. This is the so-called strong CP problem.

In 1977, Peccei and Quinn proposed a solution to the strong CP problem by
introducing a global chiral U(1) symmetry, which is also known as the Peccei-Quinn
(PQ) symmetry [41]. The parameter 6 is effectively replaced by a dynamical field ¢

called axion, the Goldstone boson of spontaneously broken PQ symmetry:

2

14 g v
Log= (65 = 0) 505 FL" Fuyu, (1.2)

where £ is the colour anomaly, and f, is the axion decay constant. Note that we have
not shown the kinetic term for ¢ here. Non-perturbative topological fluctuations of
gluon fields induce an effective potential for ¢ via the above terms. At the minimum
of the effective potential, ¢ = ];—“6, setting the CP violating term to 0 [42]. So the
strong CP problem is naturally solved. The mass of QCD axion is given byE] [43, [44]

(1.3)

my ~ 6 x 105V (1012@8\/)

fa/§

Since QCD axion was first proposed, it has draw a lot of attentions, not only
because it provides an elegant solution to the strong CP problem, but also because it
can be a good candidate for dark matter [45] 46| 47, [48]. Typical QCD axion has a
mass of 4 x 1071%V ~ 4 x 1072eV.

1.2.2 Ultralight Axion Dark Matter

In the last subsection, I have briefly introduced the QCD axions whose masses are
very small. As dark matter candidates, these QCD axions will mostly behave like
collisionless CDM. In this subsection, I will continue with the ultralight axion(-like)
particles whose masses are even smaller. Their masses can be 10 ~ 20 orders of
magnitude smaller than QCD axions.

It has been shown that ultralight scalar fields can be a viable candidate for dark
matter if they are in a very cold state (e.g.,[49] 50, 51, 26, 25] 52 53], 54] ). If consisting
of particles of mass ~ 10722V [55, 29, 4, 32, 31}, 33, 40, 34, 56|, [57] these candidates
can potentially solve the well-known problems faced by the pure CDM model on small

scales [ (see [6] for a recent review):

3Note that the accurate form may depend on specific models.

4Nowadays, people also begin to think whether these may actually not be problems with the
CDM model, but rather problems with limitations in observations and our knowledge of baryonic
feedback.



(1) Missing Satellites Problem [37, 38|, number of satellite galaxies observed
in the Milky Way is much less than the prediction from N-body simulations of
CDM;

(2) Cusp-Core Problem [36], observations infers that low-mass dark matter halos

have cored profiles instead of cuspy profiles as seen in CDM simulations;

(3) Too-Big-To-Fail Problem [58], the most massive dark matter subhalos in
CDM simulations are too dense to host the brightest satellite galaxies observed
in the Milky Way; in other words, theses most massive dark matter subhalos

are so big that they should not fail to form bright galaxies that we can observe.

Possible constituents of such light scalar particles are ultralight axions (ULAs)
that are produced nonthermally via the misalignment mechanism [59, 60, 61]. Unlike
CDM which produces cuspy halo profiles, FDM produces flat halo cores [29, 62} [63]
on scales smaller than the so-called quantum Jeans length [25] 27]. Below this scale,
quantum effects suppress gravitational collapse.

By performing Jeans analysis, it is found in [29] that the cored halo profile cor-
responding to FDM with mass m, = 0.81 x 10722eV can well reproduce the radial
distribution of stars and their velocity dispersion in the Fornax dwarf spheroidal
(dSph) galaxy. Further analysis on multiple stellar subpopulations in the Fornax and
Sculptor dSph galaxies is done in [31] and an upper bond, m, < 1.1 x 10722V, on
the FDM mass is found by assuming that FDM alone can resolve the cusp-core prob-
lem. A similar constraint is found in [64] from Jeans analysis of eight classical dSph
galaxies. In [57], it is demonstrated that Jeans analysis may be biased due to uncer-
tainties in the assumed halo profile. Instead, a more stringent unbiased constraint,
mg < 0.4 x 10722V, is obtained in [57] by analyzing the averaged velocity dispersion
of dSph galaxies.

Coherent oscillations of FDM also lead to a sharp suppression in the matter power
spectrum [25] and halo formation [55] B3] [Il 65] below the Jeans scale. In turn, this
cutoff scale for FDM halos puts a lower bound on the FDM mass since deviations
from CDM cannot violate the constraints given by current observations. Using the
cosmic microwave background and galaxy clustering data, [66] find a lower bound
on the FDM mass, m, = 1072%eV. Constraints from UV luminosity functions and
reionization are much tighter, e.g. [65] find m, 2 1.6 x 1072%eV (see also [32] and
[33]). This lower bound is in tension with the upper bound obtained from dwarf

galaxies. Furthermore, the Lya forest can also put a tight constraint on the FDM



mass similar to the case of warm dark matter (WDM) [67, 55 68]. For example,
the latest observations of the Lyman-alpha forest have been interpreted as implying
mg > 2 x 1072'eV [69] [70], but systematic uncertainties are still disputed [71]. Thus,
FDM may also suffer from the Catch 22 problem [72] like WDM, i.e. either producing
too small halo cores or too few low-mass halos. However, as discussed in [57], to get
more consistent constraints we need to consider details of the interplay between FDM
and baryonic physics. The baryonic feedback may help reconcile the tension between

different observations [73].

This dissertation is organized as follows. Chapter [2 mainly shows our work on the
semi-analytic model of structure formation for FDM. In Section [2.1} I first introduce
some basic knowledge and tools that are widely used in cosmology. Then I discuss a
bit about the semi-analytic model for galaxy formation in Section [2.2] In Section [2.3]
I show how we implement the FDM model into the semi-analytic code for galaxy
formation, GALACTICUS. Results for FDM (sub)halo mass functions are presented
in Section 2.4 Finally, in Section I show our new model for the core mass-halo
mass relation, then conclude in Section 2.6, We note that Section 2.3 Section
and Section are based on our published paper [I] and [5], but also include some
of our new results.

Chapter |3 mainly shows our work on numerically simulating the tidal disruption
of subhalo cores. First, in Section I discuss the tidal radius in the classical and
“quantum tunnelling” scenarios, respectively. Then I show the numerical algorithm
we use to do the simulations and convergence tests in Section Sections [3.3
show our numerical results for the core mass loss rate. In Section I show how the
core stripping affects the subhalo mass function. Finally, conclusion and discussion
are present in Section . Chapter [3] is based on our published paper [7]. Again, I
have added some new results.

In Chapter [, T provide an outlook on how my current work can be extended to

some new projects in the future.



Chapter 2

Semi-analytic Model of Structure
Formation with FDM

2.1 Basics

2.1.1 Homogeneous and Isotropic Universe

The cosmological principle states that viewed on sufficiently large scales, the Universe
is homogeneous and isotropic. It may look unreasonable at first glimpse. We do live in
an inhomogeneous environment because we do see different stars, galaxies in different
directions. However, with the help of the latest data from large galaxy surveys such
as Wiggleﬂﬂ and SDSS—IH/BOSEEI, it has been shown that on scales larger than a few
hundred Mpc the galaxies are distributed homogeneously [74] [75]. Another evidence
is the measurement of Cosmic Microwave Background (CMB), which is the radiation
left by the early Universe. The temperature of CMB is found to be around 2.7K.
The variation across the whole sky is only about 107° [76], which means the matter
distribution in the early Universe is isotropic on large scales. Thus as the simplest
model, we first neglect all cosmic structure on small scales and treat the Universe as
homogeneous and isotropic.

A homogeneous and isotropic universe is described by the well-known Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric

gudatdr’ = —dt* + a(t)? ( dr® + r*df* + r? sin® ngbQ) : (2.1)

1 —Ekr?

where a(t) characterizes the expansion (or contraction) of the Universe and is usually

called the scale factor. (r,0,¢) are the radial distance, azimuthal angle, and polar

http://wigglez.swin.edu.au/site/
Zhttp://www.sdss3.org/surveys/boss.php
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angle. In this dissertation, the speed of light ¢ is set to 1 and the metric signature is
taken to be (—1,1,1, 1), unless stated otherwise. Depending on the geometry of the
Universe, the spatial curvature parameter k can take different values: —1 (for an open
universe), 0 (for a spatial flat universe), 1 (for a closed universe). Furthermore, we
assume the matter in the Universe can be treated as perfect fluid with homogeneous

density p and pressure p. The energy-momentum tensor can then be written as
T;w = (P + p)U,uUu + PIuv, (22>

where U, is the four-velocity of the fluid, which satisfies U#*U,, = —1. In the coordinate
system comoving with the fluid, U, = (—1,0,0,0). Substituting the FLRW metric
Eq. (2.1) and the energy-momentum tensor Eq. (2.2)) into Einstein equations

1
R,uu - §QWR + guuA = 87TGT;LV; (23)

we obtain the Friedmann equations that govern the evolution of a:

G A k
H?> = — R — 2.4
4d7G A
- = —— 3 —. 2.5
e T+ (25)

Here R,, and R are Ricci curvature tensor and scalar curvature, respectively. The dot
“"7 denotes derivatives with respect to cosmic time. H = g is the Hubble parameter,
which measures the expansion rate of the Universe. G is the gravitational constant.
We have also included a cosmological constant A. Since the spatial curvature of the
Universe is found to be very close to zero [18, [77,[19], we will set £ = 0 in the following
discussions. Another useful equation is the continuity equation, which can be derived

from the conservation law (V, 17" = 0),
p+3H(p+p) =0. (2.6)

Given the state parameter of the matter content, w = p/p, we can solve Eq. (2.4)
and Eq. (2.6]) [or Eq. (2.5)] to get the evolution of a.

(1) Radiation and relativistic matter (w = 3)

poca? a oc tY/2, (2.7)

(2) Non-relativistic matter (w ~ 0)

poca a oc t¥/3. (2.8)



(3) Cosmological constant (w = —1)

A
p=— a o eV, (2.9)

From Eq. , we can see that the expansion of the Universe will slow down if the
Universe is composed of only radiation and matter since they both have non-negative
state parameters. But as is well known, in 1998 the High-Z Supernova Search Team
and the Supernova Cosmology Project discovered, independently of each other, that
the expansion of the Universe is actually accelerating |14, [I5]. Therefore, a non-zero
cosmological constant which has w = —1 is a necessary component.

Now we consider the evolution of a classical scalar field ¢ which describes the
axion dark matter in a homogeneous and isotropic universe. The Lagrangian of ¢
takes the form of .

Ly =—50u00"¢ = V(p). (2.10)

For FDM, we can take V(p) = m2¢? ie. neglecting all the higher order self-
interactions. Note that O*p = ¢"'V,p = ¢"0,p with V, denoting the covariant
derivative. The equation of motion (EoM) of ¢ is then given by

(O-ml)e=0, (2.11)

where [0 = \/ngau(\/—gg“”a,,) is the d’Alembert operator. For homogeneous ¢,

Eq. (2.11) is simplified to
¢+ 3Hp+mip® = 0. (2.12)

It is exactly the same as the equation of motion for a harmonic oscillator with an
additional friction term (the Hubble friction). Thus the oscillation of ¢ will be damped
by the expansion of the Universe and depending on the damping ratio ¢ = %, %
will behave very differently.

Assume that at the Peccei-Quinn phase transition [41], the axion field gets an
initial displacement ;. Since at this time the Hubble rate is much larger than the
axion mass, the damping ratio ¢ > 1 and the oscillation of ¢ is over-damped. Thus ¢
will roll down the potential hill very slowly (similar to the slow-roll inflation scenario)
and act as one component of dark energy.

As the Universe expands, the Hubble rate decreases, so does the damping ratio
(. As ( drop below 1, the critical value, ¢ starts to oscillate but with a decreasing
amplitude (see the left plot of Fig. . In the oscillation phase, the scalar field with
a quadratic potential as we consider here has an effective state parameter of 0 [49],

i.e. it behaves as dark matter.
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Figure 2.1: Evolution of the scalar field in a homogeneous universe. Left: potential
of the scalar field. The solid curve shows the approximated axion potential up to the
quadratic term. The vertical dashed line marks the time when axion begins oscillating
and behaves as dark matter. Right: state parameter of the scalar field.

The transition from dark energy to dark matter can happen in different epochs
of the Universe depending on the axion mass. For m, = 1072"eV, the scalar field
start oscillating before matter-radiation equality thus could be a possible dark matter
candidate, while for m, < 10733V, it behaves always as dark energy till the present
time (see e.g. [66]). In the thesis, I will concentrate on FDM with m, in the range
10722 —1072%eV, for which the oscillation starts well before matter-radiation equality,
so we can safely treat the expansion of the Universe the same as in the ACDM model.

More precisely, if we take a(t) o 7, Eq. can be solved analytically and the
solution of ¢ is given by [78]

o= a(t)*3/2(mat)1/2(AJn(mat) + BY, (m,t)), (2.13)

where J, and Y,, are Bessel functions of the first kind and second kind, respectively,
and n = (37 — 1)/2. The integration constants A and B are set by initial conditions:
o(t;)) = @i, ¢(t;) = 0. In the radiation-dominated era, v = 1/2. In the matter-
dominated era, v = 2/3.
From the Lagrangian Eq. , we can obtain the energy-momentum tensor of
the scalar field
Ty = 0up0up + gLy (2.14)

Comparing it with the energy-momentum tensor of perfect fluid Eq. (2.2]) and apply-

ing the normalization condition U*U, = —1, we can change to the fluid description

12



of the scalar field
1 1

pp = —58“¢8M¢+§m2902, (2.15)
1 1

Po = —58"@3#@—57%3902, (2.16)
0

U, = ——2% (2.17)

Vv —ao‘(paacp'
For a homogeneous and isotropic scalar field, the energy density p, and pressure p,

are simplified to

1 1

-2 2 2
- = - 2.18
Py 5 T 5Ma¢s (2.18)
1. 1
Dp = 5902—57”3902- (2.19)

Substituting the solution of ¢, Eq. (2.13)), into Eqs. (2.18)) and (2.19)), we can compute
the state parameter w, = p,/p,. The right plot of Fig. shows w, with respect

to cosmic time. As can be seen, at early times w, ~ —1, thus ¢ behaves as dark
energy. With the expansion of the Universe, w,, increases gradually and finally starts

oscillating when ¢t ~ H=! > m_!. The period of the oscillation At,. = m,!. For

a
me > 1072eV as we consider in this dissertation, the period is extremely small
compared to the Hubble time: Aty < 107" H; . Therefore, when considering the
background evolution, we can take the average of quantities related to ¢, such as p,,
and p,, over the oscillation time scale and neglect the effects on time scales shorter
than Atgg.

When H/m, < 1 (m,t > 1), the solution Eq. (2.13) can be approximated by [79)]
© = a(t)?[py sin (mat) + p_ cos (mqt)] (2.20)

where ¢, and ¢_ are constants. Substituting the approximated solution into the

expressions of energy density and pressure, and taking averages over the time scale

1

m, -, we have

(p.) = %mia?’ (2 + %), (2.21)
(py) = 0. (2.22)

Here (.) denotes averaging over At,s.. The effective average state parameter (w,) = 0,

so the scalar field behaves as dark matter.
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2.1.2 Linear Perturbations

In the last subsection, the Universe is treated as homogeneous and isotropic. Now let
us consider small perturbations on this homogeneous background. In the Newtonian
gauge and assuming vanishing anisotropic stress, the perturbed FRW metric can be
written as

ds? = —(1 4 2®)dt* + a(t)*(1 — 2®)d;;dx'da (2.23)
where @ is the gravitational potential and 9;; is the Kronecker delta function. Here
we are only interested in the scalar perturbations since they are most relevant to cos-

mic structure formation. Accordingly, the perturbed perfect fluid energy-momentum

tensor is
Too = p(1+29)+ dp, (2.24)
T;; = a®6; [p(1—2®)+ dp]. (2.26)

Here the quantities with overlines refer to the background values. du is defined in
such a way that the longitudinal part of the spatial velocity perturbation Ul =
0;0u. Substituting the perturbed metric and energy-momentum tensor into Einstein
equations, Eq. , and the continuity equation, Eq. , and keeping only the first-
order terms, we get the equations that govern the evolution of linear perturbations.
The derivation can be found in many textbooks on cosmology, e.g. [80]. T will not
repeat the details here, but just list some of the most important equations that will
be useful for later discussions. For simplicity, we can write the equations in Fourier
space. In the linear regime, there are no couplings between different Fourier modes.

For example, performing a Fourier transform of the density perturbation, we have

dp(x,t) = /dgképk(k,t)eik’x, (2.27)

where k is the comoving wavenumber.
In the matter-dominated era, we can take p = 0. But in general, the pressure
perturbation dp is not necessarily 0. In the sub-horizon regime (k/a > H), the linear

density perturbation satisfies

.. . 2
§+2H0 — (47er — k—z(;?) §=0, (2.28)
a
where 6 = dp/p is the overdensity and
e =4 2L (2.29)
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is the sound speed.

For pressureless CDM, ¢, = 0. Recalling that in the matter-dominated era, p o
a=® and a o t¥? [see Eq. ], Eq. can be solved analytically. ¢ has the
following solution

dcpm = Chra + Coa™3/2, (2.30)

where C; and (5 are constants fixed by initial conditions. As can be seen, the
solution of § contains one growing mode (o< a) and one decaying mode (ox a=%/?).
Both modes are expected to be very small in the early Universe. As the Universe
expands the decaying mode will becomes negligible, thus we will only be concerned
with the growing mode. The growth of dcpy is independent of wavenumber EL so the
formation of large scale structure will start on all scales. As will be shown later, it
leads to the formation of a large amount of small dark matter halos.

For FDM, it is a bit more complicated. The perturbation dy oscillates rapidly
just as the background field which makes it difficult to solve even numerically. There
are several ways to deal with this problem [8I]. One way is to use a similar ansatz for
the oscillation of linear perturbations as for the background % (see Eq. (2.20))) and
compute the perturbations in the fluid description by taking average over the time
scale m~1. This is the common strategy used in previous literature, e.g. 78] 82, R3]
60, 84). In [81], a different approach based on field transformation is proposed. Here

I will follow the former approach and take the ansatz
0 = iy sin (mgt) + dp_ cos (Mmgt). (2.31)

Taking ¢ = P + dp, we can compute the linear perturbations of the density,
pressure in the fluid description from Egs. (2.15)—(2.17)):

Spy = Pop+m2iPop— @ (P)? (2.32)
Sp, = Pop—mipip—P(P)%. (2.33)

Furthermore, the perturbed EoM of ¢, Eq. (2.11)), can be written as

do+3Hop + (—2 + m2a2> Sp=4p0 - 2m2pd (2.34)
a

Substituting the ansatz Eq. (2.20) and Eq. (2.31)) into Eq. (2.34) and keeping only

leading-order terms with respect to H/m,, we obtain

2
o (2.35)

=
2m2a® @

3 Actually, if we look at the perturbations on scales k/a — H, the growth will behave differently.
But on scales of galaxies and galaxy clusters (several hundred kpc to several Mpc), it is reasonably
accurate to treat the growth of dcpy as scale-independent.
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The density and pressure perturbations averaged over the time scale m~! are then
given by
k® 3/2, 2
(Opp) = = <1+ 4m3a2) a”""mg (p10p4 + p_dp_), (2.36)
k® 3/2, 2
(0pe) = 550 ¥ 2m} (01001 + 0_0p-). (2.37)

2,2
dmza

With the average density and pressure perturbations, we can calculate the effective

sound speed
2 (0p) K’ 1

Ci o = = :
st (0py)  AmZa® 1+ %

(2.38)

As mentioned in [40], ¢; o is not gauge invariant. But the difference between different
gauges, e.g. the Newtonian gauge and the synchronous gauge, becomes negligible in
the sub-horizon regime. Particularly, in the gauge comoving with the time-averaged
FDM fluid, Eq. is valid on all scales [82 [83].

Substituting the expression of effective sound speed into Eq. , we have

a2 4m2a2 k2
az dmga 1 + 4m2a?

.. . 2 2 1
0o +2HO, — (47era - WK > 0, =0, (2.39)

where 0, = dp,/pe.

In the limit k/a < 2m,, i.e. on scales larger than the Compton wavelength of
FDM particles, the effective sound speed ¢, e ~ %. If k/a < 1, cse8 ~ 0, 0, will
grow just as in the CDM model. But if ¢, ¢q is noninegligible, the pressure of FDM
fluid will counteract the gravity, thus lead to a suppression in the growth of 4,. More

specifically, §, will not grow below the comoving Jeans scale [85] 25]

mZa. (2.40)

=

kJ = (167TGEP)

Here we have assumed a universe dominated by FDM. Accordingly, we can define the

Jeans mass X
4 T _
MJ = gﬂ' (ak—J) p¢. (241)

Unlike in the CDM model which predicts the formation of a lot of small dark matter
halos, in FDM model the number of halos with mass smaller than M is largely

suppressed.
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2.1.3 Nonlinear Evolution in the Nonrelativistic Limit

In the last subsection, we considered the evolution of linear perturbations. To study
nonlinear clustering, e.g. halo formation, we need a nonlinear treatment of the EoM
for FDM. In most cases relevant to cosmic structure formation considered in this
dissertation, FDM can be treated in the nonrelativistic limit E| In this limit, the
Newtonian potential ® is small, so the perturbed FRW metric, Eq. , is still
valid. But instead of directly solving the Klein—-Gordon equation, Eq. , it is

usually useful to write the scalar field ¢ as

3

© = o (@D@_imat/h + 77D*eimat/h) ’ (242)

where 1) is a complex scalar field. Substituting Eqgs. (2.42)) and (2.23]) into Eq. (2.11)
and assuming || < m|i|/h, ie. the amplitude of ¢ varies relatively slowly with

time compared to the fast oscillation of ¢, we get a Schrodinger-like equation

(. 3 o,
ih (1/1 + §H¢> - (— \Y —|—ma<I>> b, (2.43)

2m,a?
Here we have neglected higher-order terms such as ®¢, V2, and ®¢ (see [40] for
more details). The Newtonian potential ® satisfies the Poisson equation

1
?v%b = dnGmg )%, (2.44)

where we have used the approximation that the energy density of p ~ [¢|* in the
nonrelativistic limit.
As is done for linear perturbations, we can also write Eq. (2.43) in the fluid

description. Defining

b o= o Let (2.45)
m

v = h Ve, (2.46)
mea

Eq. (2.43) can be transformed to the Madelung equations [80]

1
p+3Hp+ EV “(pv) = 0, (2.47)

1 1 h? Vv?
v+ Hv+—-(v-V)v = —-Vo+ \% VP : (2.48)
a a 2m2a? VP

a
4Note that the virial velocity of a typical dark matter halo is ~ 100 km/s which is much smaller
than the speed of light. Black hole formation from FDM is beyond the scope of this dissertation.
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Comparing the second equation with the classical Euler equations, we can find that

there appears an extra pressure term

I G AR/,
Fo= C2m2a® ( VP ) ’ (249

which is often called quantum pressure.

2.1.4 Spherical Collapse Model

In Section [2.1.2], we considered the evolution of linear perturbations analytically. But
when perturbations of the density field become highly nonlinear, numerical simu-
lations are usually needed. For FDM, we will need to solve either the Schrédinger-
Poisson equations or the Madelung-Poisson equations as shown in Section How-
ever, we will first consider an idealized case, i.e. spherical collapse, which can be solved
analytically for CDM. This example is commonly used in the standard textbooks, e.g.
[87, B8], to demonstrate the halo formation. Although it may be oversimplified to
some extent, it has some very important results that are widely used in semi-analytic
models of structure formation.

The Universe is assumed to be matter-dominated (a oc t*/?). The background

matter density is

P (0) 1
m(t) = = . 2.50
pm(t) a(t)?  6nGe (2.50)
Now consider a uniform sphere with an initial overdensity of
0; = M (2. 51)

Pm(ti> ’
and a initial radius of ;. Here we require that J; < 1 so that at the initial time the

overdensity is still in the linear regime. We will first consider the CDM model, i.e.

the pressure is negligible. The total mass contained in the sphere
4
M = g?‘(‘?‘?(l + i) pm(ts)- (2.52)

The change of the sphere’s radius is described by Newtonian dynamics

d*r GM
Z . 2.
dt? r? (2:53)
A parametric solution to Eq. (2.53)) can be found:
r(@) = A(1l—cosb), (2.54)
t(#) = B(f—sinb), (2.55)
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Figure 2.2: Spherical collapse. Left: evolution of the radius of the overdense sphere
(solid line) compared to the background expansion (dashed line). In the realistic case,
the sphere will not collapse to a singularity but virialize via phase mixing and violent
relaxation (indicated by the shaded region). Right: evolution of the overdensity &
(solid line) compared to the prediction from the linear perturbation theory dy,. At
the beginning, d is small and grows just like dy;,. As J increases, it enters the nonlinear
regime and grows faster than dy,. At the time ¢,, when the radius of the overdense
sphere reaches its maximum, § ~ 4.28 dj;,.

where B—z = GM. The parameters A and B are fixed by initial conditions. At the
initial time, # < 1, so we can expand Eq. as r; = $A0? + O(6}). Similarly,

substituting Eq. (2.54) and Eq. (2.55) into Eq. (2.52) and expanding to O(6), we
can get §; = —60? + O(#}). Thus, the parameters A and B can be expressed as

207t
31, 3 (9 , NP
A= 0= GM) - 2.56

104, 10 ( ) 5’ (2:56)

A3 3
B o=\ 20\/;53/2 (2.57)

Noting that ¢ ~ #° when § < 1, we have 6 oc t¥/3 o a(t) at early times, which is

exactly the same as the prediction from the linear perturbation theory (see the right
panel of Fig. .

From Eq. and Eq. (2.55), we can see that the radius of the spherical
overdensity has a maximum of 2A when # = 7. The corresponding time is t,, = B.
After t,,, the sphere will stop expanding and start to collapse (see the left panel of
Fig. . In the ideal case, the sphere will collapse to a singularity at ¢ = 2¢,,. It
indicates that the spherical collapse model failed at this time. In the realistic case,
the collapsing sphere will relax to a virialized halo. In practice, it is usually assumed

that at t. = 2t,,,, i.e. when the sphere collapse to a singularity in the idealized model,
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the halo is virialized. We will call t. the collapse time which can be computed as

9 /3

From Eq. (2.58)), we can see that the larger the initial overdensity, the earlier it will

collapse to a virialized halo. There exists a critical value

3 /370\2/3 ¢, 2/3 ¢, 2/3
55:5(§> (t—) ~ 1.686 (t—) , (2.59)

so that if 9; > d¢, the halo will collapse before t..

An important implication of Eq. is that it tells us we can identify a halo far
before nonlinear structure formation begins by investigating the linear overdensity.
It enables us to predict the halo abundance from the linear density perturbations,
which is the basis of the Press—Schechter theory [89] that will be discussed in the
next subsection.

As mentioned before, in the realistic case, the sphere will collapse and finally form
a virialized halo. Now let us estimate the average density of a virialized halo. Assume
that all shells in the sphere reach the maximum radius and turn around at the same
time t = t,,. At t,,, the kinetic energy of the system Fj = 0 and the total energy
E = U(rmax). Here rya = 2A is the maximum radius of the sphere. According to the
virial theorem, when the halo is virialized, E, = —%U (rvir). Thus the total energy

1

E = 5U(7vir) = U(rmax). Since the potential energy is proportional to 1/r, we have

Toir = %rmax = A. The density contrast at virialization is then given by

M

Avir = A1 a2 .~
§T AP (te)

= 187% =~ 178. (2.60)

Here we have used Eq. 1) and the relation g—z =GM. Eq. 1} is usually used
to define a virialized halo in cosmological simulations.

For FDM, there are two main differences:

(1) as shown in Section [2.1.2] linear overdensities with a comoving wavenumber k

/4 becomes larger than k. Thus

do not grow until the Jeans wavenumber k; o< a
collapsing starts later in FDM model, which is most significant for small halos.
In the extreme case, on scales below the current Jeans scale collapsing does not

happen at all.

(2) the FDM fluid is not pressureless. The quantum pressure will stop the sphere

from further collapsing when it balances the gravity force. Thus we would
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expect a smoother density profile in the central region of a collapsed halo. The
virial theorem still holds for virialized halos, i.e. Fj = —%U , but the kinetic
energy becomes Ej, = EJ*° + F, where E{#¢ is the classic kinetic energy
and Eg corresponds to the quantum pressure and is usually called “gradient

energy” or “quantum kinetic energy”.

To show the possible differences between CDM and FDM, we simulate spherical
collapse in FDM model with a one-dimensional pseudo-spectral code. The mass of
FDM particle is taken to be 10722eV. The techniques will be discussed in detail later.
Although such a simulation is limited by the assumption of spherical symmetry com-
pared to a full three-dimensional cosmological simulation, it can be useful for finding
the critical overdensity for collapse in dark matter models other than CDM. For ex-
ample, [90] simulate the spherical collapse of warm dark matter (WDM) halos using
a one-dimensional hydrodynamics code. With the critical overdensity for collapse
found in [90], [91] compute the halo mass function in the WDM model and show that
it is consistent with the result from N-body cosmological simulation.

We assume a matter-dominated universe and the initial overdensity is taken to be
a single spherical Fourier mode

sin(ksz)

N — 2.61
Sla t) = 6,205 (261)

Here x = r/a is the comoving distance to the origin and ks characterizes the scale
of the overdense region. The initial peculiar velocity field is created by solving the

linear perturbed continuity equation

V-v(rt;) = —=(rt;). (2.62)

We start the simulation at z = 1000 so that the overdensity is still in the linear regime
at the beginning. As shown in Section for CDM the linear overdensity ¢ grows
as a. For FDM, the growth will depend on the wavenumber. For simplicity we have

1/3 to different k,. But since we start the

adopted the same condition doxa ot
simulation at very high redshift, we expect that the artificial growth will be largely
damped at later time.

Fig. shows the results from two typical simulations with ks = 0.5k;1000
and ks = kji000, respectively. Here kji000 is the comoving Jeans wavenumber (see
Eq. ) at z = 1000. The initial amplitude of the overdensity ¢; is set to 0.02.
The left panel shows the density profiles at the time when the halos form. Prominent

cores can be seen in both cases and their profiles can be well fitted by the solitonic
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Figure 2.3: Simulations of spherical collapse with FDM. Left: density profile at the
collapse time for different initial overdensities. p,,o is the background matter density
at current time. The initial overdensity is taken to be a single spherical Fourier
mode, i.e. §(z,t;) = 0; sin(ksx)/(ksx). Two simulations have the same §; = 0.02 but
different k. Right: evolution of the central density p.. The collapse time is marked
by the vertical lines.

profiles (solid lines) [29, 4, 131] (see also Eq. (2.104)). In the outer region, the density
profile drops approximately as r—¢ with @ ~ 2 — 3 E| The right panel shows the
evolution of the central density p.. At early times, p. decreases as a3 (black dashed
line) due to the expansion of the Universe. As the overdensity grows, the expansion
of the overdense region slows down compared to the background. Finally, the sphere
starts to collapse and p. increases rapidly as in the simple spherical collapse model
(black solid line). At late times, the overdense sphere virializes and a core forms in
the center (indicated by the dashed vertical lines). After the formation of the core,
pe increases only mildly, which has also been shown in 3-D cosmological simulation
[92]. We define the collapse time as the time the core appears to have a soliton pro-
file. Under this definition, the initial overdensity with ks = 0.5k 1000 and 9; = 0.02

collapse at z = 3.98. With a larger initial wavenumber ks = k1000, the overdensity

collapses later, at z 1.16. Although more careful analysis is needed to get the
critical overdensity for collapse for different k, our simulations have demonstrated the
two main differences between FDM and CDM as we discussed before: (1) FDM halos

collapse later; (2) FDM halos have smoother density profiles in the central region.

5We have assumed spherical symmetry, so the outer region does not necessarily have a NFW-like
profile as found in 3-D simulations of FDM, e.g. [29] 4 62 [63], 92].
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2.1.5 Press—Schechter Formalism

As is shown in the previous subsection, for CDM if the overdensity is larger than
0f at t;, it will collapse before ¢.. The critical overdensity df is give by Eq. .
If we extrapolate the overdensity to the current time by the linear growth factor
D(t) = 0(t)/d(ty), even though § may have already become much larger than 1, we
can obtain the current value of the overdensity that has a critical value at t; predicted
by the linear perturbation theory

of 1.686
D(t) ~ Dlt.)

Oc(te) (2.63)

Here we have used the fact that in the matter-dominated universe, the linear overden-
sity grows as ¢ o< t2/3. Thus if the linear extrapolated overdensity at the current time
is larger than 0.(f.), it implies that the corresponding mass should have collapsed
before ..

In the Press—Schechter theory [89], to connect the overdense regions to collapsed
halos with certain masses, a filter is adopted which smooths out the overdensities
on scales smaller than the filter scale. Given a smoothing function, or as it is usu-
ally called a window function, W(x, R), the smoothed overdensity is obtained by

performing a convolution:
dr(x) = /(5(X’)W(X —x', R)d*x’. (2.64)

The smoothed overdensity field is a Gaussian random filed with a variance of

k? —~
S(R) = o0*(R) = /ﬁP(K)W(k, R)*dk, (2.65)
where P(k) = (|6(k)[?) is the matter power spectrum and W (k, R) is Fourier trans-
form of the window function. A commonly used window function is the top-hat filter

in the real space. Its Fourier transform is

Wik R) % sin (kR) — kR cos (kR)] (2.66)

The mass corresponding to the filter scale R is defined as (see also Eq. (2.52)) for a

comparison )

4
M(R) = §7TR3pm, (2.67)
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where p,, is the background matter density. Then the fraction of mass contained in
halos with mass larger than M (R) at t. can be computed by
+oo 1 52
F(M > M(R)) = P(5 > 6.(t.) — / ~ {——} ds
5

(1) /2 S (M) 25(M)

Oc(te

Oelle) | (2.68)
25(M)

Here we have used Eq. (2.67) to write S as a function of M. For CDM, S becomes

infinity when M approaches to 0. Thus from Eq. (2.68)), we will conclude that at most

half of the total mass is locked in halos. This can be understood as the underdense

1
—erfc
2

regions will not end up in halos. But in fact the underdense regions may be enclosed
within a larger overdense region so that they will collapse together. Considering this
Press and Schechter add a fudge factor of 2 to Eq. . By changing the filter scale,
we can obtain the fraction of mass that is contained in halos with mass between M
and M + dM. The number density of halos per logarithmic bin of mass, i.e. the halo
mass function, is given by

dn(M,t.) pm OF 1 pm Oo(te) 0e(te)? ] dIn S(M)

T~ CMan v son P [‘zsmﬂ T 0
Note that here we have added the fudge factor 2 into the formula. Despite its relative
simplicity, the halo mass function computed from Eq. has been found to be in

reasonable agreement with N-body cosmological simulations of CDM (see [93] for a

(2.69)

review).

2.1.6 Extended Press—Schechter Formalism

As is been shown previously, with the Press—Schechter formalism we can compute
the halo mass function from the linear matter power spectrum. But a fudge factor of
2 needs to added by hand in the formalism based on the argument that it does not
account for the underdense regions that may be enclosed within a larger overdense
region, i.e. the cloud-in-cloud problem [94 05 96| 07, 08, 99]. A consistent derivation
of the halo mass function goes back to [99], who found that by solving the so-called
excursion set problem the fudge factor 2 is automatically accounted for in the solution.
This approach is also known as the extended Press—Schechter (EPS) formalism.

As in Section [2.1.5] we smooth the overdensity field with a filter. However, here
we will use a different window function which is easier for later calculations, i.e. the

sharp-k filter (a top-hat function in Fourier space):

Wk, ky(R)) = O(ky(R) — k). (2.70)
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Here O is the Heaviside step function. Unlike the top-hat filter in real space, it is a
bit ambiguous to define a mass scale corresponding to k,. One “natural” treatment
is to compute the integration of W (r, ks(R))? in real space and identify it with the

volume enclosed within the smoothing scale R [100]:

o 4
/ 47r® W (r, ks(R))dr = gﬂ'RS. (2.71)
0
Here W(r, ks(R)) is the inverse Fourier transform of W(k:, ks(R)). The relation be-
tween ks and R is then given by

k= — . 2.72
. (2.72)

where ¢ = (97/2)'/3. However, as pointed out by [I00, 91, this treatment still lacks
strong physical motivations. In practice, ¢ can be chosen as a free parameter that
needs to be fitted to simulations. For example, [91] find ¢ = 2.5 (see also [101], 102 [68])
by comparing the semi-analytic halo mass function for warm dark matter with the
results from N-body simulations.
The variance of the smoothed field is
oo .2 . ks k2
S(R) = / — P (k)W (k, ks(R))*dk = / — P(k)dk, (2.73)
0 0

T 27

where P(k) is the matter power spectrum. When the filter scale R — +oo, we
have S(R) — 0 and 0g — 0. As we decrease the filter scale R, S(R increases and
perturbations on smaller and smaller scales are included. The change of the smoothed
overdensity filed Adg is also a Gaussian random field with a mean value of 0 and a

variance of

(M52 = /m gp(k) [W(/@ ko(R) + Ak,)? — W (k, ks(R))Q] dk

_ / e gpug)dk
— S(R+AR) - S(R). (2.74)

One of the advantages of using sharp-k filter is that the distribution of Adg is in-
dependent of the previous value of dg. Thus if we treat S(R) as the time variable,
the trajectory of dr can be analogous to a random walk process, or more precisely a
Wiener process.

Fig. 2.4 shows one realization of the trajectory of dr. As can be seen, dp starts
at S =0 and dg = 0. As S increases, g changes in a random way. At .S = Sy, 0
is as large as the critical overdensity for collapse d.. In the language of the Press—

Schechter theory, the mass element is considered to be contained in a collapsed halo
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Figure 2.4: A realization of the trajectory of dpy.

with mass M > M. Here M is related to the filter scale by Eq. . Note that,
the change of dg is not necessarily positive when S increases. So at S, > 51, g
may become smaller than J.. Then we would conclude that the mass element should
not be contained in a collapsed halo with M > M, which is in contradiction to the
previous conclusion that this element is contained in a halo with M > M; > M.
Thus the Press—Schechter theory is not self-consistent.

To resolve the inconsistency, the mass element is assigned to a halo when dp first
exceeding the critical overdensity in EPS formalism. In the following analysis, we will
call the probability that dz first upcrossing the critical overdensity the first-crossing
probability and denote is as f(S). Then with the relation between the halo mass M
and S(R), f(S) can be converted to the halo mass function:

dn(M)  pm dln S
dinM ~ M <S>Sd1nM‘

(2.75)

Since the change of 0Sg is independent of the starting value of dg, the conditional

probability that the trajectory first upcrosses d. at S; and has a value of i at Sy > Sy

(5 - 56)2
2705 5 exp [——2(52 — 51)} ) (2.76)

Here we have omitted the subscript “g” in dg. At a specified S, the mass element
should either contained in a halo with M > M (S) or not, so we have

is given by

P12(Sla SQ) =

S 5¢(S)
/ £(8)dS' + / P(6,5)ds = 1. (2.77)
0

—00
Here the second term on the left-hand side gives the probability that the trajectory

has never upcrossed 6. at smaller S. To be more general, a possible dependence in ¢,
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on the halo mass (or equivalently on S), e.g. in the case of FDM, has been added.

From previous discussions, we know that

2 S
P(4,S) = \/;T_Sexp (—5—5) —/0 f(S")Pa(S',5)dS". (2.78)

Substituting Eq. (2.78)) into Eq. (2.77)), and integrating over §, we obtain

erte | 28 =080 o _ e [3:05)
/fS [ S S,)]ds— f[m] (2.79)

where erfc is the complementary error function.
For CDM, 6. is independent of S, Eq. (2.79)) can be solved analytically and the

solution is given by

de 627 1
f(S) = \/mexp [_ﬁ] 5 (2.80)

Substituting Eq. into Eq. , the exactly same formula for the halo mass
function as Eq. is obtained. But here we do not need to add any fudge factor,
i.e. the cloud-in-cloud problem is solved.

Another important application of the EPS formalism is to calculate the probability
of finding the progenitors of a halo at an earlier time. Consider that a smoothed
overdensity dg first upcrossed the critical value d.(tg) at S = Sy and t = t;. Within
the EPS formalism, it is considered to be contained in a halo with mass M,. Now
we can ask what is the probability that we find this mass element contained in a
halo with mass M; < M, at an earlier time ¢t; = tg — At. As discussed before, the
critical overdensity for collapse is larger at earlier time. So the problem to be solved
is similar to the excursion set problem solved above except that the trajectory of dg
now originates from S = Sy and dp = d.(ty). Define new variables S = S — S, and
0r = 0r — 0c(ty). The probability finding the mass element in M; at ¢, i.e. fo1,
is equal to the probability d5 first upcrossing 6. = 8.(t;) — 6.(to) at S = S; — Sp.
The function fy_,; satisfies the same integral equation as Eq. . We just need to
replace 0 with 6 —d.(to), S with S — Sy and 6. with d.(t1) — d.(to). The mean number
of the halo’s progenitors with a mass between M; and M; 4+ dM; at an earlier time

t; can then be computed as

My dS
AN = fo_1(So, SI)M? M (2.81)
Specially, for CDM the solution of fy_,; takes the form of
56(t1) — 5C(t0) (6C(t1> — 56(t0)>2 1
51(50,51) = exp |— . 2.82
fo=1(S0, S1) 27(5h — S) p 2(S1 — So) S — S, ( )
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Figure 2.5: A schematic merger tree.

2.1.7 Merger Tree

In models of hierarchical structure formation, the cosmic structure forms bottom-
up, i.e. small halos form first, and then merge into larger and larger halos. The
merger history is usually described by the merger tree, which links halos with their
progenitors. Fig.[2.5[shows a schematic merger tree. The radius of the circle represents
the mass of a halo. For simplicity, we consider only binary mergers. It gives a good
description of the merger history as long as we look on sufficient small time scales so
that within one time step only binary merger happens.

Merger trees can either be extracted from cosmological simulations, e.g. N-body
simulations, or be constructed stochastically based on the mean progenitor distri-
bution discussed in the previous subsection. Merger trees obtained in the first way
have the advantage that cosmological simulations more reliably capture the physics
of structure formation without simplifications used to derive the EPS formalism. But
the cost is that merger trees are limited by the dynamical range resolved by the simula-
tions. Additionally, there are uncertainties in identifying halos and their progenitors.
Besides, cosmological simulations usually need very high computational costs. On
the contrary, constructing merger trees using Monte-Carlo algorithms is much less
expensive so that it is possible to generate a large sample of trees with high mass
resolution. It has been shown that Monte-Carlo merger trees can well reproduce the
statistics of cosmic structure as seen in direct simulations (see e.g. [103, 104} [T05]).
Furthermore, as shown in [106], Monte-Carlo algorithms can be used to augment the
resolution of merger trees from cosmological simulations. The statistics of augmented
merger trees are found to be well consistent with direct higher resolution simulations.
In the following discussions, I will focus on constructing Monte-Carlo merger trees.

The EPS formalism gives the probability of finding one halo’s progenitor with a
specific mass (see Eq. ), but it does not tell us how many progenitors the halo
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(descendant halo) has and the conditional probability of one progenitor on the others.
For instance, if we draw one progenitor M; for the halo M, from the distribution
Eq. , the remained mass My — M; in the descendant halo will limit the mass
that the second progenitor can have. The EPS formalism provides no information
about the conditional probability of the second progenitor on the first one, thus
additional assumptions are needed [88]. Based on different assumptions, different
kinds of algorithms have been developed.

The simplest way is to consider only binary merger, e.g. the algorithm proposed
in [I00] and the improved version in [105] (hereafter Cole2000). In such kind of
algorithm, the second progenitor is assigned a mass of My, = My — M;. To account
for the progenitors below the mass resolution, a small fraction of mass is assumed to
be smoothly accreted so that My = My — My — M,... Such algorithms are easy to
implement but have the limitations that one halo can have at most two progenitors
and the progenitor distribution is by-hand symmetrized, i.e. the mean number of
progenitors with mass M is the same as that of progenitors with mass My — M; (or
Mo — My — Myee).

Without the assumption of binary mergers, [I07] proposed anther way to build
merger trees. They keep drawing progenitors from the distribution Eq. . A
new progenitor is rejected if the total mass of the progenitors exceeds My. When the
mass remained is less than the mass resolution, the process above is stopped and the
remained mass is assumed to be smoothly accreted. However, due to the rejection
procedure, the progenitors drawn later will not have the same probability distribution
as previous ones. Thus the mean distribution of progenitors is not exactly the same
as Eq. . Better algorithms can be achieved if the smooth accretion by each
progenitor during one time step is taken into account [T107].

In the above algorithms, progenitors are drawn for one halo based on the EPS
formalism and some extra assumptions. But since the EPS formalism only gives the
average properties of the progenitors, the extra assumptions need to be chosen care-
fully so that the merger trees constructed are consistent with the EPS formalism on
average. A different approach is proposed by [108]. Instead of drawing progenitors
one by one for one descendant halo, it generates a bunch of progenitors for hundreds
of descendant halos based on the mean progenitor distribution and the mean number
of progenitors. Then the progenitors are distributed among the descendant halos as-
suming mass conservation. Finally, a single realization is randomly drawn from the

hundreds of realizations. As shown in [109], compared to the algorithms discussed
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previously this algorithm is the only one that is fully consistent with the EPS formal-
ism. However, in each time step a large table of progenitor distribution needs to be
stored.

More algorithms have been developed to solve different problems in the algorithms
mentioned above (see e.g. [I10} [109) 1T1]). I will follow the Cole2000 algorithm since
it is relatively simple compared to the others and as mentioned before, if we chose
a sufficiently small time step size considering only binary mergers can be a good
approximation.

Given a halo with mass M, at ty, the mean distribution of its progenitors is given
by Eq. . Assume that the minimum mass we would like to resolve in the merger
tree, i.e. the mass resolution, is M. Then the mean number of progenitors with
mass Mes < My < My/2 is given by

hk M, dS

Np: Moo, f0—>1(507SI)MdM1

M. (2.83)

Besides, there is some fraction of mass in M, that is from progenitors below the mass

resolution. The fraction can be computed as

F/Mmsf (S0, S22 anr (2.84)
- 0 0—1 0y, ~1 dMl 1- .

In the Cole2000 algorithm, a small time step size At is chosen so that at the earlier
time ty — At, N, is much smaller than 1. This ensures that during each time step
only binary mergers are likely to happen. Then a random number Ny is drawn from
the uniform distribution over (0,1). If Ny > N, no merger above the mass resolution
is assumed to happen. The halo mass is reduced to (1 — F')M,, which accounts for
the smooth accretion of halos with mass below M,,,es. If Ny < N,, a progenitor
with mass Mes < My < My/2 is drawn randomly following the distribution function
Eq. (2.81)). The second progenitor is assigned a mass of M, = (1 — F)M, — M;. Here
the smooth accretion has also been accounted for. Such procedure is repeated for
each progenitor backward at successive time steps until the progenitor mass reaches
M,es (see Fig. .

Note that as mentioned before, here we have explicitly assumed that the proba-
bility finding a progenitor M is the same as a progenitor My = (1 — F)My — M.
In general, this symmetry is not present in the EPS formalism Eq. . However,
[T05] found that by restricting the first progenitor’s mass to be smaller than M,/2
and accounting for the smooth accretion below the mass resolution, the merger trees
generated can reproduce progenitor distributions that agrees reasonably well with the

EPS formalism on average.
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2.2 Semi-analytic Model of Galaxy Formation

In the previous section, I have introduced some of the basic knowledge and methods
that are widely used in the study of cosmic structure formation. Most of those
discussions have been concentrated on analytic and approximate treatments, i.e. semi-
analytic models (SAMs). The models are semi-analytic in the sense that they try
to describe the physical processes in structure formation with a series of analytic
formulas. These analytic formulas may come from analytic solutions to the simplified
problems, or from some empirical formulas when the process is too complicated to
solve analytically. Usually there is a set of parameters in SAMs that are needed to be
calibrated to N-body/hydrodynamical simulations and observations. But compared
to direct simulations, SAMs provide us a much less expensive way to explore a lot of
different cosmological and astrophysical models.

Applying and extending SAMs to the case of FDM models will be the main task
of this dissertation. But before going into the details, it will be helpful to have a
general picture of how SAMs work. Although I have only considered dark matter
so far, SAMs have also been widely used for investigating galaxy formation which
involves complex baryonic physics.

The earlier work on SAMs of galaxy formation dates back to [112], who have used
the Press—Schechter theory to describe the hierarchical structure of dark matter halos
and combined it with a model of gas cooling to study galaxy formation. This ideal
was further developed into a self-consistent model by [113] 114, [IT5]. In the past three
decades, a lot of improvements have been made to SAMs (see e.g. [116] 117, 11§]
for reviews). Based on different treatments of the baryonic processes such as gas
cooling, star burst, feedback from supernovae and Active Galactic Nucleus (AGN),
and different ways of calibrations, a lot of models have been developed. Several
popular models are from Cole et al. [105], Croton et al. [I19] [120] and Somerville et
al. [121].

Fig. shows the main recipes of SAMs. First, a cosmological model is chosen.
Then merger trees are constructed either from N-body simulations or from the EPS
formalism. Baryons are assumed to trace the distribution of dark matter. Thus each
dark matter halo is adjoined to several baryonic components, e.g. hot gas, cold gas,
and stars. Each component, including the dark matter, is evolved according to a
submodel. When a dark matter halo encounters another halo in the merger tree, the
smaller one will be treated as a subhalo (substructure) and the galaxy associated with

it becomes a satellite galaxy. The subhalo and satellite galaxy are then evolved in
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Figure 2.6: A schematic diagram of semi-analytic model of galaxy formation.

the gravitational potential of the host halo until it is considered to be fully merged
with the host. The (sub)halos provide the environment for galaxy formation. On the
other hand, the feedback in the baryonic components can also affect the distribution
of dark matter. Combining all these submodels, one solves a large number of coupled
differential equations, representing a lot of submodels for different components. The
star formation rate and metallicity can then be obtained and converted using some
models for dust extinction into observables such as the luminosity and color. Besides,
the population and spatial distribution of the subhalos can be directly compared to
observations from gravitational lensing.

In this dissertation, I will concentrate on the evolution of dark matter substructure
and possible comparison with observations (marked by solid boxes in Fig. 2.6]). The
physical processes related to baryons (dashed boxes in Fig. will be the next stage
of this work.

2.3 Implementation of FDM in SAMs

With the knowledge of the linear perturbation theory and the spherical collapse model
as described in Section [2.1], it is possible to build a SAM for FDM just as for CDM. In
this dissertation, I make use of the publicly available semi-analytic code GALACTICUS
[122] and modify it to include several aspects of FDM physics. GALACTICUS is a
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highly modular semi-analytic code for galaxy formation, thus it is capable to be
extended to include alternative models. For instance, [91] apply it to the case of
warm dark matter (WDM) and investigate the halo mass function and progenitor
mass function in this model. Excellent agreement with N-body simulations of WDM
has been found. [123] further extend it to include nonlinear evolution of subhalos in
the host halo for both CDM and WDM. Our modifications for FDM follow a similar

approach, but also include some unique features in FDM models.

2.3.1 A New Determination of the HMF for FDM

The most direct way to obtain the HMF is to perform cosmological simulations. In
the nonrelativistic limit, the evolution of FDM can be described by a complex wave
function ¢ which satisfies the Schrédinger-Poisson (SP) equations [51], 25]. Thus one
could investigate the nonlinear structure formation in FDM models by solving the SP
equations with cosmological initial conditions [27], 29, 4]. However, due to the rapid
oscillations of the wave function, extremely high resolution both in space and time
is necessary to correctly resolve high-velocity flows [29, B33]. Even the state-of-the-
art simulations in [29] can only fully resolve a box of 2 Mpc on each side, which is
too small for determining the HMF. One alternative way is to do standard N-body
simulations but with FDM initial conditions [33, 34, [65]. With such simulations,
fitting formulas for the FDM HMF has been obtained in [33] 65]. It is argued that
the quantum pressure arising in FDM models does not have a significant impact on
the nonlinear formation of moderate and large halos at lower redshifts | However,
to resolve accurately the abundance of the smallest halos, simulations solving the full
dynamics as in [29] 62, [124] are still essential. Other approaches accounting for the
quantum pressure in N-body or hydrodynamic simulations have also been making
progress (see e.g. [125, 126, 63, 127, 02]).

On the other hand, we can make use of the EPS formalism as discussed in Sec-
tion[2.1.6]to compute the HMF for FDM. Compared to CDM, there are two important

things we needs to account for:

(1) a suppression in the linear power spectrum (transfer function) on scales smaller

than the quantum Jeans length;

(2) the growth of FDM overdensity is not scale-independent, thus leads to a scale-

dependent critical overdensity for collapse.

6The quantum pressure still plays an important role in suppressing the linear power spectrum
which is used to generate the initial conditions.
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Then the HMF for FDM can be obtained by solving the excursion set problem (see

Section [2.1.6)):

dn(M)  pm dIn S
VA VEAC TN v
where f(5) is the first-crossing distribution and satisfies

(8) =) o e [5:05)
/f ef[ e S/)]ds_ f[m] (2.86)

(2.85)

The FDM density power spectrum can be written as

Prpyn = Tepy Pepu, (2.87)

where Popy denotes the power spectrum in the CDM model, and Typy characterizes
the suppression of FDM power spectrum relative to CDM. A fitting formula for Trpy
is found in [25]:

cos 3

Trpm = T8 (2.88)
where )
x=1.61my"——. (2.89)
kJeq
Here may = m,/(1072%eV) and kjo, ~ 9m1/2Mpc is the quantum Jeans wave

number at matter-radiation equality which can be computed from Eq. . More
accurate power spectra for FDM or a mixture of FDM and CDM can be obtained
using AxionCAMHﬂ [55], [66] which includes FDM as one component in the publicly
available Boltzmann code CAMB [12§].

Fig. shows Tgpum(k) for different FDM masses computed using AxionCAMB.
As can be seen, T'(k) drops steeply at large k. A sharp cutoff is shown at roughly the
Jeans wave number at matter-radiation equality (see the vertical dashed lines). It
means the small-scale perturbations, as the seeds for nonlinear structure formation,
will be largely suppressed below the Jeans scale. As the FDM mass increases, the
suppression happens at smaller and smaller scales, thus FDM will behave more like
CDM. For comparison, we also consider one model in which FDM and CDM each
make up half of the total dark matter (thick dashed curve). We can see that the
suppression of matter power spectrum happens roughly at the same scales as in the
pure FDM case with the same FDM mass, but the suppression is weaker.

For CDM, in the matter-dominated era different modes of linear overdensity all

grow as a, independent of the corresponding wave number k (see Section [2.1.2)).

"https://github.com/dgrinl/axionCAMB

34


https://github.com/dgrin1/axionCAMB

1.0

, ]
1 —
L 1 i
I . | ]
i : : ]
0.8 1 | |
| |
i . . ]
i : : ]
@ L | | i
~— 0.6} : : |
= | : ]
a - 1 1 -
1 1
&1 i 1 | ]
0.4 — m,=10"%eV, Q,/Q;=1 B X . .
- 1 1 1 E
[ =102V, Q,/Qu =1 BN ]
1 I\ 1
0o T mmIOTN/=1 || i
L == m,=10"%eV, Q,/Q;=0.5 knku X ]
1 1 k
' A e
- I Dl
O 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 Ll I 1 1 I_LIII 1 Ll

.0
103 1072 10t 10° 10! 102

k[hMpc 1]

Figure 2.7: Transfer function Tgpym(k), as defined in Eq. , for FDM with dif-
ferent masses and fractions. The results is derived using the publicly available code
AxionCAMB. Here we have also considered a model in which FDM only makes up
half of the dark matter, i.e. Q,/Q; = 0.5 (thick dashed curve). The vertical dashed
lines mark the Jeans wave numbers at matter-radiation equality for different FDM
masses.
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Furthermore, if we assume spherical collapse as discussed in Section [2.1.4] overdense
regions will collapse to halos once the overdensities reach the critical value . ~ 1.686,
which does not depend on the size of the overdense region.

However, for FDM as shown in Section [2.1.4] modes with small wave numbers
collapse later compared to CDM. Thus a higher critical overdensity is required for
an overdense region to collapse at the same redshift as CDM. As mentioned in Sec-
tion[2.1.4] detailed simulations of spherical collapse are needed to find the dependence
of the critical overdensity on k. As an alternative way, [55] proposed that we can es-
timate the critical overdensity for FDM from the scale-dependent growth of linear
overdensities, i.e. D(k,z). The basic idea is as follows. Compared to CDM, the
growth of FDM linear overdensity is suppressed by a factor of

Gk, ) = Dcpym(2)

S vt (2.90)

Here we have assumed a matter-dominated universe so that Dcpy only depends on
z. Now suppose that we have an initial overdensity ; at z;. In the CDM case, this
overdensity reaches the critical value ¢, at z.. With the same initial value, in the FDM
case, at z. the overdensity will be dppp(2.) = 0./G(k, z) < d.. To reach the critical
value d. at z., the initial overdensity in the FDM case needs to be 67 ), = G(k, 2)05.
In other words, to collapse at the same redshift, the critical overdensity in FDM
model needs to be larger than CDM by a factor of G(k, 2):

1.686
) —.
Decpm(2)

Here we have used the formula of critical overdensity for CDM, Eq. (2.63)).
The relative amount of growth between CDM and FDM, G, can be obtained by

solving the evolution of linear density perturbations:

_ 5CDM(k7 Z)(SCDM(km Zh) §FDM(k7 Zh)5FDM(k’0> Z)
5CDM(ka Zh)(SCDM(kO: Z) 5FDM(ka Z)5FDM(]€0, Zh) ’

SFPM (k. 2) = G(k, 2)6SPM(2) =~ G(k (2.91)

G(k,2)

(2.92)

where ky = 0.002hMpc™' is a pivot scale, and 2, is chosen to be large enough so
that at the relevant redshift the shape of CDM power spectrum has frozen in (in the
matter-dominated era). We set z, = 300 as in [55].

Ignoring the possible time dependence in G, a fitting function for G is given in [2]

based on numerical results from AxionCAMB:

G(M) = hp(z) exp (azz™") + [1 — hp(z)] exp (asz ™) , (2.93)
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where

x = M/M;, (2.94)
1
hp(z) = 5{1—tanh[MJ(x—a2)]}, (2.95)
_ 1/4
T S GRS R T
My = 10 ‘“(10—%\/) (0‘14 hM,. (2.96)

Here the k dependence has been converted to the dependence on the halo mass via
M= %ﬂ'(ﬂ/l{)3 . The best-fitting parameters are found to be {a, as, as, as, as, ag} =
{3.4,1.0,1.8,0.5,1.7,0.9}. Note that ignoring the time dependence has little effect on
the HMF for FDM masses (m, = 107%*eV) and redshifts (z < 15) that are concerned
in this dissertation, because the critical overdensity increases rapidly at small scales
and leads to a sharp cutoff of the HMF before the time dependence of G becomes
important (see also [2]).

Figs and show the critical overdensity for collapse 6. at z = 0 for different
FDM fractions and different FDM masses, respectively. On large scales (large M),
J. stays constant just as CDM. But on small scales (small M), 6. for FDM becomes
larger than that for CDM, indicating that smaller FDM halos are more difficult to
form. For the same FDM mass, the critical overdensity for collapse start to increase
at almost the same scale but the increase is larger for larger fraction of FDM. For
pure FDM models, the scale at which the ¢, start to deviate from CDM increases
with decreasing FDM mass.

Knowing the matter power spectrum and critical overdensity for collapse, the
only task remaining is to solve the excursion set problems Egs. and .
But before doing that, let us look at a more accurate model for the HMF that affects
both CDM and FDM. In the original Press-Schechter (PS) formalism, the collapse
of halos is assumed to be spherically symmetric. But in the real case, the overdense
region may be not ideally spherical. It has been found that the original PS formalism
does not agree perfectly with N-body simulations of CDM. It tends to underestimate
the abundance of massive halos and overestimate the abundance of low-mass ones.
A improved formula is proposed by Sheth and Tormen (hereafter “ST”) [129], which
fits accurately to N-body simulations of CDM:

f(S) = A\/;\/au [1+ (V/qv) ] exp <—q7”2) % (2.97)

8Here we have assumed a top-hat filter when doing the conversion. Another choice is using the
sharp-filter so that M = 37 (a/k)® with a ~ 2.5 [91]. But we have not explored the latter choice so
far and will leave it to future work.
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where v = 5%), A =0.3222, p = 0.3, and ¢ = 0.707. Later, [130] show that Eq. (2.97

can be derived by considering ellipsoidal collapse. According to the Zel’dovich ap-

proximation (see [I31] for a review), an ellipsoid overdensity collapses most rapidly
along the shortest axis. If we define the collapse of a halo as the time when the
longest axis collapses, the time of collapse in general will be later than that in the
spherical collapse model. The delay of collapse is more significant for less massive
halos because they are more influenced by the external tidal forces. In the ellipsoidal
collapse model, the critical overdensity for collapse is found to be well approximated
by [130]

5P(S) = 5\ /q {1 +b (;7)} : (2.98)

where b = 0.5 and ¢ = 0.6. This formula remaps the critical overdensity in the
spherical collapse model 7 to the one in the ellipsoid collapse model 6. With
this remapping, [132] solve the excursion problem and find that the obtained HMF
is very close to fitting function Eq. (2.97). Note that the remapping, Eq. (2.98), is
derived and calibrated for CDM. For FDM halos with mass M much larger than the
Jeans mass at matter-radiation equality Mjeq, this remapping is expected to work
also for FDM since on these scales FDM behaves like CDM. But for FDM halos
with M < Mj ., FDM behaves very differently from CDM due to quantum pressure
before the mass scale exceeds the Jeans mass at the corresponding time. Thus this
remapping may be inaccurate and needs to be recalibrated to simulations of FDM.
As an approximation, in this dissertation we use the remapping for all FDM halos.

One of the important results of the remapping Eq. is that d. is not constant
any more even for CDM. Thus the integral equation Eq. can not be solved
analytically.

In previous works [55, 32], the HMF for FDM was computed using directly the ST
formula, Eq. , but with a redefined critical overdensity for collapse as defined in
Eq. . However, the ST formula was obtained for CDM whereas for a different
critical overdensity the solution for the first crossing distribution f(.S) should be dif-
ferent. Strictly speaking, it is not self-consistent to substitute the critical overdensity
for FDM directly into the solution of f(S) for CDM. For this reason, we solve f(5)
from the integral equation Eq. using a similar method as in [91]. However,
instead of a trapezoid rule for the integration, we implemented a mid-point rule that

is more stable for our case (see Appendix [A]) [1].
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2.3.2 Modification of the Tree Building Algorithm

In this dissertation, the merger trees are built using the Cole2000 algorithm [105]
implemented in GALACTICUS. The details can be found in Section 2.1.7} First, a set
of root halos {M;} are drawn at redshift z = 0. Given a root halo mass, the algorithm
proceeds to construct a merger history by successively drawing branching events as-
suming binary mergers. The backwards evolution of a branch of the generated tree is
considered complete if the relevant halo has a mass below the mass resolution limit
which is a free parameter.

The branching probability is estimated from the conditional mass function com-
puted with the EPS formalism at two redshifts very close to each other assuming
spherical collapse (see . Since the collapse of halos is not perfectly spherical as
mentioned before, the branching probability calculated in this way does not accurately
match the simulations. Therefore, we use the [I33] modifications to the branching
probability ] Given a halo My at t5. The mean number of its progenitors with mass

M,es < My < My/2 at an earlier time ty = tqg — At is given by

mod M/2 M() dS
Np = ﬁfO—ﬂ(So,Sl)G[(sC,S(MO),S(MI)]dM dM,. (2.99)
Mmin 1 1

Here, My, is the lowest mass of resolved halos and G[d., S(My), S(M;)] is an empirical
modification to Eq. (2.83)) obtained by [133]:

G0, S(My), S(My)] = Go @%;DW (%@w)wm, (2.100)

with Gy = 0.57, 1 = 0.38 and 75 = —0.01. Note that this modification is calibrated to
CDM N-body simulations, thus a recalibration may be needed for other dark matter
models. Nevertheless, we use the same form and parameters and leave the calibration
for FDM to future work when sufficiently large FDM simulations are available. As we
show later, the HMF for FDM obtained from the merger trees fits the HMF derived
above reasonably well even without a recalibration.

Additionally to binary mergers, the algorithm also accounts for smooth accretion.
In the case of CDM, this corresponds to merging events in which the main halo
accretes a small halo whose mass is below the mass resolution (see Eq. (2.84))). For

FDM, however, there is another source of smoothly accreted material, namely matter

9A remapping of the barrier is used when calculating the HMF. But here as in [91], we use the
[133] modifications to the branching probability instead of solving the excursion set problem with a
remapped critical overdensity.
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that is not locked up in a halo. The smooth accretion rate from this effect can be
estimated by [91]

dF df,
- = n My), Siax)- 2.101
dt smooth dt G((SC’ S( 0)’ o ) ( ! )
Here,
Smax
fo—1— / £(S)ds. (2.102)
0

[91] find that if this effect is not included, the mass of halos at higher redshifts will
be overestimated for non-CDM models.

In addition to smooth accretion, we note that for FDM the probability to find
any progenitors of a small halo with masses close to the HMF low-mass cutoff is very
small. Therefore, we add an additional criterion for the termination of a tree branch:
if the mass of a halo is small and the probability of finding any of its progenitors is
less than P,;,, the algorithm will terminate the tree branch even if the node’s mass is
larger than the mass resolution. Physically, such halos correspond to those forming
by collapsing density perturbations at that time as opposed to merging of smaller
halos or smooth accretion.

Note that the branching criteria P,;, must be chosen carefully. Like the HMF,
the branching probability fy_,; should drop off at small masses. Owing to numerical
artifacts, the derived branching probability becomes inaccurate when the progenitor
mass approaches the cutoff, thus P,;, must be chosen sufficiently large to avoid these
artefacts. On the other hand, if P,;, is too large, the number of progenitors will
be underestimated. Based on these two considerations, we choose different P,,;, for

different FDM density fractions and masses.

2.3.3 FDM Halo Profile

In a cosmological simulation based on the comoving SP equations, [29] found that
FDM halos contain distinct solitonic cores embedded in an NFW-like profile. We can
approximate the density profile of FDM halos by

prom(r) = O(re = )pe(r) + O(r — o) prpw (1), (2.103)

where O is the Heaviside step function, r. is the transition radius where the density
profile changes from cored profile to NFW-like behaviour, and the soliton density can
be well described by [29] 4]

1947 (m,/107%2eV) 2 (a1 /kpe)
B [14+9.1 x 10-2(r/r.)?]®

pe(r) Mapc ™. (2.104)
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Defining the core mass M, as the mass enclosed within r., [4] found a relation between

the core mass and the halo mass,

1 - A (Z) 1/6 Mh 1/3
M, = —q V2% | 222 My 2.1
¢ 4 ¢ |:Avir (O> :| Mmin,(] w0 ( 05)

where Myino = 37571/4 x 327rAvir(0)1/4pmo(H'mna/ﬁ)_:"’/QQ;;Z')/4 is the minimum mass
of FDM halos at the current time and Ay;.(2) is the density contrast of a virialized
halo. It should be noted that by definition, M, is at most 1/4 of the halo mass. For

a universe with a non-zero cosmological constant, Ay (z) is given by [134]

Avir(z) =

e [187% + 82((2) — 1) — 39(Q(2) — 1)7] . (2.106)
Here Q,,(z) is the matter fraction at the redshift z. For a matter dominated universe,
Ay = 1872 just as we have derived before (see Eq. )

In actual computations, we do not implement the full density profile as in Eq. ,
because 7. is still unknown (see the discussion in [31]) [7] Instead, we model FDM
halos with NFW density profiles with a modified concentration parameter and ac-
count for the presence of the core as part of the satellite model that will be described
in Section Section [2.3.4. For models with mixed FDM and CDM, the halo density
profiles are treated in the same way as for CDM and no cores are assumed.

The shape of the NFW profile is determined by the concentration parameter.
halos collapsing earlier when the average density of the Universe was larger are more
concentrated. As shown in Section Section [2.3.1, FDM halos collapse at a higher
critical overdensity than their CDM counterparts. They form later than CDM halos
with the same mass, thus they are less concentrated. This is analogous to a similar
effect seen in WDM; to account for it, we estimate the concentration parameter for
FDM using a fitting formula derived for WDM [135]:

CFDM M1/2 s
=1 2.107
(1) (2.107)

where v, = 15, 72 = 0.3, and M, is the half-mode mass defined according to the
wavenumber at which the transfer function of FDM falls to one half of the transfer
function for pure CDM. The concentration parameter for CDM in Eq. is
calculated according to [I36]. In the absence of large FDM simulations for calibrating
the parameters 7; and 7,, we set them to the same value as for WDM [I35]. Tt is,

however, a plausible assumption that FDM behaves more like collisional matter than

0Tn a recent paper, [124] simulated multiple mergers of solitons and found r, ~ 3.57..
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CDM as a consequence of quantum pressure, so that stripping may be more effective.
In order to account for these uncertainties, we increased (decreased) the value of o
by a factor of 2 (1/2) and adjusted 7; to match the concentration parameter at the
half-mode mass. This variation gives rise to only an insignificantly small difference in
the subhalo mass function (SHMF'). We also experimented with an alternative model
for the concentration parameter based on [137, [138], again finding only a small effect.
The apparent insensitivity of the SHMF to changes of the concentration parameter
justifies our use of Eq. with WDM parameters until more detailed FDM

simulations become available.

2.3.4 Satellite Model

When constructing merger trees, we actually look backward in time to determine the
merger history of the halos at lower redshifts. These merger trees yield information
about hierarchical structure formation due to mergers, but does not contain any de-
tailed information about the merger process. The next task of SAMs is to look at
how galaxies populate and evolve with dark matter halos. The evolution of differ-
ent components in the halos, baryons and dark matter, are traced forward in time,
yielding the properties of galaxies that we can compare with observations. During
this process, additional models are needed. When two halos encounter in the merger
tree, they are not simply assumed to be merged immediately. Instead, the larger one
is treated as the host and the smaller one will be its subhalo. Subhalos together with
the satellite galaxies in their center are then evolved in the gravitational potential of
the host until they dissolve. In this dissertation, I will concentrate on the evolution of
dark matter (sub)halos. Hereafter, “satellite”, unless specified otherwise, will refer to
the subhalo rather than the satellite galaxy although they are closely related. At the
end, we get additional information about a dark matter halo, i.e. its substructure.
Searching for deviations in the halo substructure from the predictions of the CDM
model provides a promising way to constrain dark matter models.

GALACTICUS contains several different implementations of models for the evolu-
tion of satellites. The “simple” implementation only assumes that the satellite orbits
the host and its mass stays constant for some time fpereer. After that the satellite
is considered to be fully dissolved. The merger time scale needs to be modeled and
calibrated to match simulations. By default, GALACTICUS uses the fitting formula
from [139] which is calibrated to CDM N-body simulations:

0.94 0.60 0.60 M, oS 1 vir
erger = o host Tr (2.108)
0.86 Msat In (1 + Mhost/Msat) ‘/vir
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where € is a parameter that characterize the eccentricity of the orbit. M, and Mg,y
are the masses of the host and satellite, respectively. r is the virial radius of the
host and V., is the circular velocity at r;,. However, GALACTICUS also allows us to
use several other formulas for the calculation of the merger time scale, e.g. the ones
from 100, (105, 140, 141, [142).

The “orbiting” implementation presented in [123] is a more sophisticated model.
It follows the mass loss of the satellites due to tidal stripping and tidal heating, and
integrates the satellites’ orbits including a submodel for dynamical friction to derive
the actual merger time. Here, we briefly summarize the model ingredients (see [123]
for more details).

If an object becomes a satellite, it is assigned an orbit, drawing the orbital pa-
rameters from PDFs that have been derived from N-body simulations. We use
GALACTICUS’ default choice for these PDFs (see [143, [144]). The dynamics of the
satellite in its host’s gravitational potential are then evaluated, adding an additional

acceleration ag¢ from the dynamical friction [145]:

Vea 2X
aqr = —47G? In AMyyt prost (Tsat) ¢ erf(X) — == exp(—X?)|, (2.109)

Vs VT
where M, is the mass of the satellite, phost(7sas) is the density of the host halo at
the distance of the satellite, Vi, is the velocity of the satellite, X = V,/ V20, with
the velocity dispersion of the host o, and In A is the Coulomb logarithm.
To account for tidal stripping, a tidal radius is defined so that all the mass outside

the tidal radius is stripped from the satellite in one orbital period [140]:

3 o GMsat(< .:Ct)

R LV 2.11
T e ar (2:10)

with M. (< ) being the enclosed mass within the tidal radius, w the angular veloc-
ity, and ® the gravitational potential from the host. The mass loss rate due to tidal

stripping is given by
Msat(< xt)

M=a«a
Torbit

, (2.111)

where « is a free parameter needed to be calibrate to simulations and T}, is the
orbital time of the satellite. In practice, the angular period and the radial period of

the satellite are computed and T, is taken to be the larger one, i.e.

Tsat Tsat
Tonit = 27Tsn : 2.112
bit ™ tHlax{’rsat xV Tsat * V} ( )
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Finally, when the satellite has a close encounter with the host, the tidal force
changes on time scales much less than the characteristic dynamical time of the satel-
lite, leading to a shock on the satellite. The satellite obtains extra dynamic energy
after the encounter (shock), i.e. is heated up. This effect is called tidal heating. It ex-
pands the satellite and makes it more susceptible to tidal stripping. In GALACTICUS,
this effect is modelled using the results by [147] [14§].

In summary, as the satellite orbits the host, its orbital radius shrinks over time due
to dynamical friction and its bound mass decreases gradually due to tidal stripping.
Eventually it is fully dissolved in the host. Several criteria are used for terminating

the evolution:

(1) the distance to the host is lower than the sum of the half-mass radius of both

satellite and host;
(2) the distance to the host becomes less than 1 percent of the host’s virial radius;

(3) the bound mass of the satellite is less than some fraction (1 percent by default)

of its initial mass when becoming a satellite.

If either one of the above criteria is satisfied, the satellite will be assumed to be fully

merged with the host.

2.3.5 Modifications for FDM

The existence of a core in the halo is a generic property of FDM models, changing the
dark matter halo profile. While we expect these changes not to be significant at large
radii, the close interaction of satellites and hosts with each other may potentially
depend on the profile. In order to estimate the range of potentially observable effects,
we use the satellite model to test several model assumptions, motivated in part by
[62] who ran detailed simulations of merging solitonic cores.

As a first assumption, we set the tidal stripping rate to zero once the bound mass of
the satellite approaches 4. (the total mass of an FDM halo when it is dominated by
the solitonic core), representing the idea that the compact core of the satellite is stable
against tidal disruption. We will revisit this assumption in Chapter [3| Secondly, we
change the merging criteria. Host and satellite merge if the distance between them
is smaller than the sum of their core radii, or if the satellite has less than 1 percent
of its initial bound mass left. The criterion for the core radius is motivated by the
observation that merging events happen rapidly once the cores touch [62]. Physically,

this is expected only to be relevant for small halos that have relatively dominant cores
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while in more massive objects, one would expect the dynamics to be governed by the
extended halo rather than the core. However, for these massive halos the bound mass
criterion will apply before the cores interact, yielding only mild changes in the SHMF
at high masses (see Section [2.4.3).

Additionally, the core mass is assigned along the merger history. First, we assign
a core mass to all the halos in a tree that have no progenitors according to the core
mass—halo mass relation found in [4], i.e. Eq. (2.105). Then the core mass may be
changed by merger events. Minor mergers, defined as mergers with core mass ratios
higher than 7/3, do not affect the core mass of a halo. This is again motivated by
[62] who showed that at high core mass ratios, the core of the smaller halo is simply
disrupted and does not add mass to the solitonic core. For major mergers (mergers
with mass ratios smaller than 7/3), we set the core mass of the descendant halo M,

given the core masses of the progenitors, M., to
M,=B>" M., (2.113)

where [ parametrizes the mass loss of the cores in a merging event. A value of 5 =1
corresponds to the case where the core masses are simply summed up. We use a value
of 8 = 0.7 as found by [62].

As a last modification, we disable the tidal heating in the model. It is unclear
how tidal heating would affect an FDM profile that has a core. In particular, the core
itself should not expand at all. Therefore, we simply ignore tidal heating.

We note that we do not modify other parts of the satellite model. For instance,
we use distributions of the orbital parameters of satellites calibrated from CDM sim-
ulations. Obtaining these distributions for FDM will require large cosmological sim-
ulations that are not available to date. In this work, we broadly explore the possible
effects of FDM cores on these scales. A complete, self-consistent model is beyond the

scope of this thesis.

2.4 Results for (Sub)halo Mass Function from SAMs

The GALACTICUS code v0.9.4 (revision c49f04858120) is used with the modifications
explained above (Section . We compare the results for different FDM density
fractions €,/ and different FDM masses m, with the standard CDM model. The
cosmological parameters are taken from Planck 2015 [77]: ©Q,, = 0.306, 2, = 0.694,
h = 0.6781, ng = 0.9677, and og = 0.8149.
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Figure 2.10: HMF for FDM fraction f = 1.0 (solid lines) compared to standard CDM
(dashed lines). Redshifts range from z = 14 to 0, obtained using our new calculation
detailed above (left panel) and the Sheth-Tormen formalism (right panel). The FDM
mass is set to m, = 10722eV. Reproduced from [1], Fig. 3.

2.4.1 Halo Mass Function

As discussed in Section [2.3.1] we solve the excursion set problems numerically for
FDM with a redefined critical overdensity for collapse for FDM. The HMF we obtain
for pure FDM with m, = 107%%¢V is shown in Fig. (left panel), with each line
showing the HMF at a different redshift (see legend). We also show in the right panel
the FDM HMF as derived in previous investigations [32] by simply replacing the
critical overdensity in Eq. with the one for FDM. Here the critical overdensity
for collapse before remapping is computed using numerical results from AxionCAMB.

As we can see from Fig. 2.10] left panel, the HMF of FDM we obtain numerically
shows the characteristic cutoff below a redshift-dependent minimum mass owing to
quantum pressure. Compared with the ST formalism (right panel), we obtain a higher
cutoff. At z = 0, the cutoff mass is about 6 x 108h~1 M, roughly four times the value
obtained from the ST formalism. Additionally, the cutoff mass of the HMF changes
less strongly with redshift. At z = 14, the cutoff mass is 2 x 1041 M, only two
times of the value obtained from the ST formalism.

Next, we consider the case that DM is composed of a mixture of CDM and FDM
(where the CDM component may simply be another ULA species with higher mass).
We fix the total matter density of DM and change the fraction of FDM, €/,
from 0 (pure CDM) to 1 (pure FDM). The HMFs at z = 0 for different fractions is
shown in Fig. 2.1, We find that on large scales, the HMFs for MDM models are

consistent with CDM as expected. However, on small scales the HMF is suppressed.
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Figure 2.11: HMF at z = 0 with different FDM fractions f. The fractions range from
0 to 1 with a step size of 0.1. The FDM mass is set to m, = 10722eV. Reproduced
from [I], Fig. 4.

With increasing €2, /€2, the suppression becomes more and more significant. Around
equipartition between CDM and FDM (€2,/€Q; ~ 0.5), we recover a sharp cutoff as
in the pure FDM case, albeit at lower cutoff masses (~ 10°h~'Mg). For higher
2./, the cutoff mass increases. All of these results are, mostly by construction,
qualitatively consistent with [55].

Finally, we also consider different particle masses for FDM, using fitting functions
for the transfer function, Eq. in [25], and G, Eq. [2]. The results are
shown in Fig. 2.12] We find the cutoff in the HMF changing with FDM mass as
expected. The smaller the FDM mass, the larger the cutoff; e.g. for m, = 10724V,
the cutoff mass is about 1020, a possibility clearly ruled out by the existence of
Milky Way-sized halos.

Note that [99] use a sharp-k filter to derive the EPS HMF. In this case, there
is no clear definition of mass corresponding to the filter scale (see the discussion in
Section . Thus, as is usually done in the CDM case, we solve the excursion set
problem assuming the sharp-k ﬁlteIEL but use the top-hap filter when converting the

1Tf g different filter, e.g. a top-hap filter in the space or a Gaussian filter is used, when we change
the filter scale, unlike in the case of a sharp-k filter [see Eq. (2.74)], the change of the smoothed
overdensity will not be a Markov processes. Thus the equation Eq. (2.86)) will be very different from
what we have used (see e.g.[149]).
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Figure 2.12: HMF at z = 0 with different FDM masses compared to standard CDM.
Reproduced from [1], Fig. 5.

variable S (variance of the smoothed oversensity field) to halo mass (see Eq. (2.67))).
Further discussions on different choices of window function for DM models with a
suppressed power spectrum on small scales can be found in [101] and [102].

To test how accurate the HMF we derive is, we compare our result to the fitting

formula found by [33]:

—2.2

14 <%>_l1 , (2.114)

where My = 1.6 X 1010m;24/ M. In order to get this formula, [33] perform N-

body simulations with FDM initial conditions, i.e. the quantum pressure during the

dn
dln M

B dn
FDM dln M

CDM

nonlinear collapse is neglected.

Fig. shows the HMF at z = 0 for pure FDM with m, = 10722eV we obtained
(solid black line) by solving the excursion set problems numerically compared to the
prediction of the fitting function Eq. (thick dashed line). For comparison, we
also show the ST HMF for both CDM (thin dashed line) and FDM (dotted line). The
orange line presents the HMF for FDM computed from another model proposed in
[T02], i.e. using a sharp-k filter in the ST formula Eq. with the parameter ¢ = 1
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Figure 2.13: Halo mass function for FDM computed from different approaches com-
pared to CDM.

(the critical overdensity for collapse is taken to be the same as in the CDM model).
As can be seen, the ST HMF for FDM predicts too many small halos compared to
the fitting formula. The sharp-k model can roughly capture the suppression scale of
the HMF but underestimates the number of small halos. The HMF we obtained is
close to the ST HMF at large and medium masses but drops off at a higher mass,
thus is slightly more consistent with the fitting formulg? None of the models can
reproduce perfectly the behavior of HMF seen in the simulations by [33]. However,
we should note that in their simulations, the quantum pressure during the nonlinear
collapse is not accounted thus the abundance of the smallest halos which are most
affected by this effect is not accurate.

In [3], the fitting function Eq. is used to compute the cumulative HMF for
FDM and to compare with the observed abundance of ultra-faint lensed galaxies in
the Hubble Frontier Fields. Since the HMF for FDM drops off at lower masses, the

cumulative number density of halos above M,

dn
din M

(M > M) = / M dM (2.115)
Mmin

12This may change at very high redshifts when the HMF we obtain is always below the prediction

of the fitting formula Eq. (2.114).
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Figure 2.14: Cumulative number density of halos with M > 10°M, at z = 6 calcu-
lated from different HMFs compared to observation [3]. maos = m,/(107*2eV).

saturates at a maximum value when M,,;, approaches 0. Thus the number of galaxies
observed puts a lower limit on n(M > My,) with My, — 0. In Fig. 2.14] we show
the cumulative number density of halos with M > 10°M, at z = 6 for different FDM
masses computed from the HMF we obtained numerically (solid curve) compared to
the 1 — o, 2 — 0 and 3 — o regions of the observed cumulative number density from
[3]. We also show the cumulative number density computed from the fitting HMF
by [33] and the ST HMF for FDM. Similar to previous conclusions, the ST HMF
overestimates the number of halos thus gives a less strong constraint on the FDM
mass. For smaller FDM masses, the cumulative number density we obtain has a
larger deviation from the one obtained by considering the fitting HMF Eq. (2.114).
But for FDM with m, > 5 x 10722eV, our results are very close to the one computed
from Eq. (2.114). Thus we get a similar lower constraint of 7 ~ 8 x 10722V on the
FDM mass as in [3].

2.4.2 Validating Merger Trees

To check the consistency of the merger tree algorithm, we run merger trees with 1000
trees per decade in mass for halos with masses in the range [4 x 10%,4 x 10'3] M, at

z = 0. The mass resolution is set to 2 x 103M,.
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We compare the HMF obtained by counting the halos in our merger trees with
the one derived from solving the excursion set problems at different redshifts. The
left panel of Fig. shows the HMF at z = 0 for pure FDM, Q,/Q,; = 0.5, and pure
CDM, with the symbols showing the data while the lines show the expected HMF
from directly solving the excursion set problem as discussed in the previous sections.
In order to show the points and error bars more clearly and avoid overlapping, the
centers of bins are chosen slightly differently when counting the halos in merger trees.
We can see that the HMF's obtained from merger trees can reproduce the excursion
set problem solutions. The large errors at higher masses are due to relatively few
massive halos.

Similarly, the right panel of Fig. [2.15 shows the HMF obtained from the merger
trees compared to the direct solution for pure CDM and two different FDM masses.
The agreement with the expectations is good.

The left (right) panel of Fig. again shows the HMF from the merger trees
for different FDM fractions €,/Q4 ( FDM masses), but for a different redshift of
z = 3. We find an acceptable agreement, despite small deviations at intermediate
halo masses. At even larger redshifts, the HMFs derived from the merger trees de-
viate more from the excursion set solutions. This is caused by small deviations in
the branching modelling that accumulate with redshift, since the tree generation al-
gorithm works “top to bottom”, i.e. it starts at z = 0 and generates progenitors.
This deviation suggests that we may need to recalibrate the [I33] modifications to
the merger rate for FDM to get more accurate merger histories. Since there exist no
sufficiently large cosmological simulations for FDM at present, we leave this to future
work. We will show that this deviation at higher redshifts does not have a significant

effect on the substructures of halos at lower redshifts.

2.4.3 Subhalo Mass Function

In Section [2.4.1] we have shown HMF's for FDM with different density fractions and
masses from our new approach. In this section, we will use the satellite models
described in Section and the modifications presented in Section to explore
the subhalo mass function (SHMF).

We ran merger trees with 1000 trees per decade in mass for Milky Way-sized
parent halos, 1 x 1012 < Mj.e < 3 X 1012M,. We chose a mass resolution of M, =
5 x 10" M, and compared the results from two different satellite models, the “simple”
implementation and the “orbiting” implementation. For the pure FDM case, we
use the orbiting model with the modifications outlined above (see Section [2.3.5)); for
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Figure 2.17: Cumulative distribution of the redshifts at which z = 0 subhalos became
subhalos for pure FDM (f = 1) with m, = 10~*¢V. Reproduced from [I], Fig. 10.

CDM and MDM, we use the unmodified version. In the orbiting implementation,
we use the same parameters as in [123]: the Coulomb logarithm In A = 2.0 and the
tidal stripping mass loss rate parameter o = 2.5. The model for tidal heating in the
orbiting implementation is switched off since it is physically unclear how this is to be
treated given that FDM halos are expected to have compact cores.

As discussed in last section, the HMF obtained from merger trees may deviate
from the one obtained by solving the excursion set problems at redshift z > 3. This
indicates that the merger tree structure at high redshifts suffers from the uncertainty
caused by an inaccurate calculation of merging rate. In order to check how signifi-
cantly this affects the SHMF', we use the redshift at which subhalos were last isolated
as a diagnostic. As long as most of the subhalos with z, > 3 have been completely
merged in their host at z = 0 (and therefore are not present in the substructure
of their hosts), the high-redshift HMF does not affect the SHMF at low redshift.
In Fig. 2.17, we show the cumulative fraction of subhalos with last isolated redshift
Ziso > 2 for the case with f = 1 and m, = 10722eV. As can be seen, less than 10
per cent of subhalos originate from isolated halos at redshifts larger than 3. Thus,
the uncertainty at higher redshifts can only have a very small effect on the SHMF at
z=0.

To show the effects of dynamical friction and tidal stripping in the orbiting model
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Figure 2.18: SHMF from merger trees for standard CDM. ‘Fric’ refers to dynamic
friction and ‘Strip’ refers to tidal stripping. Reproduced from [I], Fig. 11.

separately, we show the SMHF with each effect switched on and compare them with
the simple model. For the simple model, we use the merger time computed from
[139], i.e. Eq. (2.108). We note that in the following, we use the concentration
parameter as defined for CDM (see Section [2.3.3). We will analyze the influence of
the concentration parameter on the stripping efficiency and therefore on the SMHF
later. Fig. shows the results for CDM, similar to Figs 2 and 3 in [123]. Due to
changes between version v0.9.3 and v0.9.4 in GALACTICUS, there exist some small
differences but the results are still comparable. We can see that if only dynamical
friction is active, the SHMF is broadly consistent with the simple model. The tidal
stripping effect reduces the amplitude of the SHMF'. This is because the mass bound to
the subhalos is gradually stripped by tidal forces, shifting the SHMF to the left which
in turn makes the subhalos more vulnerable to further stripping. This is consistent
with the results of [123].

Fig.[2.19 shows the SHMF for MDM with €,/ = 0.5 (left panel) and pure FDM
(right panel). The FDM mass is taken to be 107*¢V. For the MDM case, we use
the original orbiting implementation, i.e. we do not include the effects arising from

solitonic cores. As can be seen, if some fraction of dark matter is FDM, the SHMF
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Figure 2.19: SHMF from merger trees for MDM with Q,/Q4 = 0.5 (left) and pure
FDM. The FDM mass is set to m, = 10722¢V. Modified from [1], Figs. 12 and 13.

is suppressed at lower masses.

In the simple satellite model and the orbiting model with only dynamical friction,
subhalos do not lose mass until they dissolve within the host halo. In these models,
we therefore observe a sharp cutoff in the SHMF at the HMF mass cutoff. In the
more realistic orbiting model including tidal stripping, the subhalos will gradually
lose their mass due to tidal stripping. This effect can be identified in Fig. the
SMHEF' obtained from the orbiting model including tidal stripping is shifted to the
lower mass end. In particular, for the pure FDM case, we can see a bump that peaks
at 3 —4 x 103M,, if we include tidal stripping in the orbiting model. This is expected
as a consequence of our modification to stop tidal stripping at the solitonic core
(cf. Section . These naked cores orbit their hosts until they satisfy one of the
merging criteria, yielding a bump in the SMHF around 4 M. (the factor 4 follows from
the definition of the core mass). At present, this feature is a direct consequence of
our model assumptions. Large simulations resolving subhalo structure and dynamics
are required to determine whether the feature in the SMHF is physical. In Chapter [3]
we will further discuss the evolution of solitonic cores in the host by doing idealized
simulations.

The left panel of Fig. shows a comparison of the SHMF's for FDM, MDM
(Q,/4 = 0.5), and CDM using the orbiting implementation with dynamical fraction
and tidal stripping switched on. It can be seen that the SHMFs for FDM and MDM
are suppressed at smaller masses compared to CDM, while at larger masses the three

models are coincident.
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tion with dynamical friction and tidal stripping compared with the standard CDM.
The FDM mass is set to m, = 10~*?e¢V. Modified from [I], Figs. 14 and 15.

We also compare the SHMF for FDM with different masses in the right panel of
Fig. 2.20f For the case of m, = 1072%¢V, we ran the merger trees with 4000 trees
per decade in mass in order to reduce the statistical errors close to the cutoff. With
decreasing FDM mass, there are fewer lower mass subhalos as expected from the
increased mass cutoff in the HMF for lower axion masses.

In Fig. 2.21] we show the results for SMHF for two different choices of the con-
centration parameter as described in Section [2.3.3] The differences are marginal.
However, for the modified concentration parameter, the lower concentration param-
eter make halos more susceptible to tidal stripping. Consequently, the SMHF in the

mass range 2 x 10° ~ 10 My, is slightly lower.
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2.5 Core Mass-Halo Mass Relation

As mentioned before, simulations of cosmic structure formation [29] and merging soli-

tonic solutions [4, 62, 124] based on the Schrédinger-Poisson (SP) equations indicate

that FDM halos contain distinct cores surrounded by NFW-like profiles. [4] find that

the mass of these cores, M., is related to the halo mass, M}, by a power law relation,
1/3 : :

M. o< M, (see Eq. (2.105)). They propose an explanation based on the relation

M, = o (|E|/M)"?, (2.116)

where FE is the total energy, M is the total mass, and « is a constant of order
unity, which they motivate heuristically with nonlocal consequences of the Heisenberg
uncertainty relation. More specifically, the left-hand side M, is inverse to the core
radius r., which can be easily checked by integrating the density profile of the solitonic
core Eq. (2.104). The right-hand side represents the halo velocity dispersion o,,. Thus
Eq. just indicates that r.o, ~ 1, where we have ignored possible constants
such as A and m,. This looks very similar to the uncertainty relation. Identifying M
and F with the virial mass M;, and its energy Ej oc M2 /ry, o ]\/[;?/3 in Eq. ,
the numerically measured core-halo mass relation, M, oc M. 2/ 3, can be recovered.

Note that the SP equations remain unchanged under the transformation (r, M, E) —
(r/X\, AM, A\?E) [150]. While Eq. is consistent with this intrinsic scaling prop-
erty, it is not unique (i.e., it can be multiplied by any scale invariant combination
of |[E| and M, e.g. (|E|/M?)7). Removing any residual effects of the scaling sym-
metry by constructing and analyzing scale invariant quantities, [62] were unable to
reproduce this relation in simulations of solitonic core mergers (see also [124]). Fur-
thermore, the model of [4] does not account for the combined evolution of M, and
M, by halo mergers after the initial collapse of density perturbations which is known
to be an important ingredient in hierarchical structure formation.

Comparing the initial and final masses of merging cores, [62] find a universal be-
havior of the core mass loss in mergers that depends nearly entirely on the mass ra-
tio. As described in Section [2.3.5] we have implemented this feature in GALACTICUS,
which enable us to track the core mass along the merger history.

In this section, we will further present a model for the core mass as a function
of halo mass which is entirely based on the fractional core mass loss during major
mergers. No further assumptions about the quantum nature of FDM halos and cores
are necessary [5]. In particular, our model is independent of the dynamics of halo
formation by gravitational collapse and hence insensitive to the initial core-halo mass

relation of newly formed halos.
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2.5.1 Simplified Model

Given the mass loss fraction of cores during each merger, we can calculate the evo-
lution of core mass along the merger history. Since cores merge and relax to their
final state on a dynamical time scale once they begin to overlap [62], we only need to
consider isolated binary mergers.

To calculate the evolution of core masses, we first need to know the initial core
masses for halos without progenitors, i.e., those that form from direct collapse. Their
mass is determined by the cutoff mass in the halo mass function (HMF), because
the halos form hierarchically. As shown in [I], the cutoff mass depends only mildly
on redshift, so the directly collapsed halos have approximately equal masses, M, min,
independent of their collapse redshift. The initial core masses are therefore also
expected to have roughly equal values, M. pin.

Halo mergers change both core and halo masses. [62] find that only mergers with
mass ratio p < 7/3 yield an increased core mass M, = (M. + My). Here, M., and
M5 are the masses of the initial cores and (1— f3) is the core mass loss fraction, where
B ~ 0.7 independent of the initial core masses. We refer to mergers with u < 7/3
as major mergers. Larger mass ratios (minor mergers) leave the core mass of the
more massive halo unchanged and result in the total disruption of the smaller halo.
Smooth accretion corresponds to accretion with very high mass ratios and is treated
in the same way.

In summary, in our model three types of physical interactions can change the core
and halo masses: smooth accretion (see [I] for more details), minor mergers, and
major mergers. The first two increase the mass of the halo but leave the core mass
unchanged. Major mergers increase both halo and core masses.

Our model is based on a simplified description of the merging process. Suppose
that N halos with halo mass My i, and core mass M, i, merge to form one halo
with mass M}, whose contribution from mergers is N My, 1in. Assuming that the mass
contributed by smooth accretion is also proportional to N Mj iy, i.€. more massive

halos accrete more mass from their surroundings, we have
Mh = aNMh,min- (2117)
If the final halo encounters Nyajor major mergers and Npinor minor mergers, then

N = Nmajor + Numinor + 1. (2.118)
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The more major mergers the final halo encounters, the more minor mergers it also

tends to have. Hence, we can assume
Nminor - b(ﬁ)Nmajor- (2119)

Here we have added the dependence on 3 to the parameter b since the definition

of major (minor) merger is closely related to 5. We will show below that the as-
sumptions Eqgs. (2.117]) and (2.119]) are reasonable. Given the mass of the final halo,

Egs. (2.117), (2.118)) and (2.119) allow us to estimate the number of major mergers
it has encountered:

N B 1 M, ]
maer 1 + b(ﬁ) CV*]\4h,min
1 M,

1 + b(ﬁ) aMh,min ‘

Q

(2.120)

Since minor mergers do not change the core mass, we only need to consider major
mergers when estimating the final core mass M,.. Suppose that during every major

merger, both progenitors have the same core mass, i.e. the (Npajor + 1) first-formed
N

or 1 i
%ﬁr halos with core mass

2M¢ min. This process continues until the formation of the final halo with mass Mj,.

halos with core mass M, ,,;, merge pairwise and form

The other (N — Npajor — 1) first-formed halos are assumed to be accreted by minor
mergers, thus they do not affect the core mass.

Fig. shows a schematic diagram of the merger history of cores with the solid
(dashed) line representing major (minor) merger and the dotted line representing
smooth accretion.

As explained above, the first-formed halos have nearly identical core masses, hence
the assumption that all major mergers have core mass ratio u = 1 is reasonable for
the first generation of merging events. As halos continue to merge, we overestimate
the core mass because there will be major mergers with ¢ > 1 and correspondingly
smaller core mass growth.

Finally, after logy(Nmajor +1) generations of major merger events and Nyinor minor

merger events, the final halo has a core mass of

MC = (2/6)10g2(Nmajor+1) Mc,min
= (Nmajor + 1)10g2(26) Mc,min
~ (Nmajor)logz(Q/B)Mc,min- (2121)
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Figure 2.22: An example of a merger tree with 7 major mergers (solid lines) and
2 minor mergers (dashed lines). The dotted lines represent the smooth accretion.
Note that the size of the circle represents the mass of the core (not necessarily in a
consistent scale).
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Substituting Eq. (2.120)) into Eq. (2.121]), we have

1 Mh log,(28)

M, =
1 + b(ﬁ) O-/]\4h,min

Mq pnin = AME2C0). (2.122)

Note that although the relation Eq. does not explicitly depend on redshift,
the prefactor A does since o and b may change with redshift. On the contrary, the
exponent of M}, only depends on the core mass loss fraction. In a binary merger, the
core mass of the descendant will not be larger than the sum of core masses of its two

progenitors, so 5 < 1 (e.g. [62] found g ~ 0.7). Treating (25 — 1) as a small number,

Eq. (2.122)) yields

Mc x Mfllogz(w) ~ M}(LQB*U/]HZ ~ Mi-44(25*1) (2123)

to leading order. As discussed above, this relation overestimates the core mass when
binary mergers with 1 > 1 are involved. We will account for this effect below when

comparing this prediction to our results from SAMs.

2.5.2 Testing with Monte-Carlo Merger Trees

In order to test the core-halo mass relation given in Eq. , we use the modifica-
tions to the SAM code GALACTICUS for FDM described in Section 2.3 and build 2000
merger trees for root halos with 4 x 10 < M), < 4 x 1013M. The mass resolution is
set to 2 x 108M,. Without loss of generality, we set m, = 10722e¢V. The parameter
B is set to 0.7 as found by [62] unless specified otherwise.

Fig.|2.23|shows an example of 15 trajectories of the core-halo mass relation chosen
from the merger trees, i.e. each line shows the evolution of the core mass and halo
mass along the main branch of one merger tree. The effects of smooth accretion, minor
mergers, and major mergers can clearly be seen in this figure. Smooth accretion and
minor mergers increase the halo mass while the core mass remains constant. Major
mergers increase both the core mass and the halo mass.

Eq. predicts that while the proportionality factor A may depend on the
initial core mass M, ., the exponent is independent of it.

To test the dependence of the core-halo mass relation on initial conditions, we

implemented a power-law initial relation Mc i, o< My, for halos that have no pro-

genitors in the modified GALACTICUS code. Figure shows the results for n = 1/3,
n = 1, and n = 2. Clearly, the core-halo mass relation at z = 0 depends only very

weakly on the initial mass distribution.
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Figure 2.23: Evolution of core mass and halo mass for several merger trees. Only
the main branch is shown. The straight line up-left shows the Schive et al. core-halo
mass relation with arbitrary normalization as a reference.

In [4], the 1/3 power-law relation between the core and halo mass is explained via
the uncertainty principle. Although this approach may not be valid for halos which
have encountered many mergers, it is applicable for halos that have just collapsed.
Since there is no other preferred choice, we will use n = 1/3 to set the initial core
mass below. As is shown above, this specific choice does not have a significant effect
on our results.

Next, we verify the two assumptions made in deriving Eq. and Eq. .
The left panel of Fig. [2.25 shows the halo mass M, with respect to the number
of first-formed halos N obtained from merger trees. Despite large scatter at small
N representing halos that have only encountered few mergers and are thus more
strongly affected by the uncertainty of individual events, the assumed linear depen-
dence Eq. fits well.

The center panel of Fig. shows the number of minor mergers Nyinor With
respect to the number of major mergers Npajor. Again, at small Nyajor the data
points have large scatter, but in general the assumption Eq. gives a reasonable
fit. Finally, the right panel of Fig. 2.25 shows the halo mass M, with respect to the
number of major mergers Nyajor. This plot is a combination of the first two and is
just meant to give a more relevant comparison between Eq. inferred from the
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Figure 2.24: The core mass with respect to the halo mass at z = 0 for different initial
core-halo mass relation: n = 1/3 (left), n = 1 (center), and n = 2 (right). The dashed
line shows the core-halo mass relation from [4], n = 1/3, at z = 0. The solid lines
show the linear and square relations for comparison. Reproduced from [5], Fig. 1.
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Figure 2.25: Left: the halo mass with respect to the number of first-formed halos.
The solid line corresponds to Eq. . Center: the number of minor mergers
with respect to the number of major mergers [solid line given by Eq. ] Right:
the halo mass with respect to the number of major mergers [solid line given by

Eq. (2.120)]. Reproduced from [5], Fig. 2.

two assumptions and the results from merger trees.

To study the impact of the core mass loss fraction, we varied the value of parameter
[ between 0.5 and 1. Correspondingly, we must also modify the definitions of minor
and major merger: if the core mass ratio is larger (smaller) than 5/(1— ), the merger
is defined as minor (major) merger. For 8 = 0.7, we obtain the former definition.

Before showing the results from merger trees, we consider two extreme cases. In
the case of § = 0.5, the core mass does not change during any of the three possible
interactions. The final core mass is solely determined by the initial core mass and
independent of the final halo mass. On the contrary, for § = 1, all mergers will be
major mergers and the final core mass is given by M, = NM_ i,. Since the halo
mass is also proportional to N [Eq. ], in this case the core-halo mass relation
is linear. Expressed in the form M, MZ(B), we thus have v(0.5) = 0 and (1) = 1.

A simple linear parametrization for v(3) is 28 — 1 which yields the core-halo mass
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Figure 2.26: The core-halo mass relation at z = 0 for different 5 compared with
predictions of different models. The three lines are matched at M, = 10?M,. Re-

produced from [5], Fig. 3.

relation

M, o< M1 (2.124)

Note that it is very similar to Eq. obtained from the merger history.

Figure shows the core-halo mass relation at present time for different 5 and
compares them with the predictions from [4], Eq. , and the linear parame-
terization Eq. . Despite the simplifications in deriving Eq. , we find
reasonable agreement for the core-halo mass relation for different core mass loss frac-
tions (1 — /). At larger halo masses (implying more major mergers), the prediction of
our model Eq. tends to overestimate the core masses. Equation gives
a slightly better fit, implying that we can use it as a correction to Eq. . For
B =10.7 [62], Eq. yields M, oc M. Tt is close to the relation M, oc M, and
fits the cosmological simulations [29] equally well.

In order to compare the core mass predicted for FDM halos with observations, the
prefactor A in Eq. is also important. According to our results, we can replace
log,(25) in Eq. with 28 — 1 to give a better estimate of the core-halo mass
relation. If we further assume that at the beginning, i.e. prior to any mergers, there
were only pure solitons (instead of virialized halos produced by mergers of solitons),

the initial core mass is M ymin = %Mhmin by definition [29, 4]. Then we have

1 M,
Mc =-B ( h ) Mh min; (2125>



where B = 1/{a[l + b(B3)]}?’~1. The redshift dependence is implicitly contained in
the function B. If § = 2/3, Eq. (2.125) coincides exactly with the core-halo mass

relation in [4], i.e. Eq. (2.105)).

2.6 Conclusions and Discussions

In this chapter, I introduced some basic knowledge and tools that are widely used
in cosmology. The linear perturbation theory within the standard cold dark matter
(CDM) model and the fuzzy dark matter (FDM) model is compared in detail. Unlike
in the CDM model, where linear overdensities grow on all scales due to the gravita-
tional instability, in FDM model the coherently oscillating scalar fields give rise to
a scale-dependent sound speed that suppresses the growth of overdensity below the
Jeans length. Thus the linear matter power spectrum of FDM is largely suppressed
on small scales.

I then discussed the spherical collapse model. For CDM, analytic solutions can
be obtained. Overdense regions will collapse to a halo once they exceed the critical
value 0. &~ 1.686 which is independent of the size of the region. For FDM, due to the
non-vanishing scale-dependent sound speed, or equivalently non-vanishing pressure
(the so-called “quantum pressure”), the collapse happens later for the same initial
overdensity. If the scale of the initial overdensity is smaller than the Jeans length, the
gravity will be balanced by the quantum pressure, thus no collapse happens. There-
fore, the critical overdensity for collapse is scale-dependent. With one-dimensional
simulations, I confirm several features of FDM that have been discussed a lot in pre-
vious literature: (1) FDM halos collapse later; (2) FDM halos have flat cores. With
more detailed analysis, the simulation can be extended to obtain the scale-dependent
critical overdensity for collapse, which so far has only been estimated from the linear
perturbation theory.

The results from the linear perturbation theory and the simplified spherical col-
lapse model can be used as an input for the Press-Schechter (PS) formalism [89] to
compute the abundance of collapsed objects. I introduced the original PS formal-
ism and a more self-consistent deducing method, i.e. the extended Press-Schechter
(EPS) formalism [99]. In the EPS formalism, the collapse of a halo is analogous to a
random walk first upcrossing the critical density. The halos mass function can then
be obtained by solving the excursion set problems. This concept can be extended to
computing the conditional mass function, i.e. the probability finding one halo’s pro-

genitor in a certain mass interval (see Section [2.1.6)). Having this conditional mass
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function, one can successively draw branching events backward to find the merger
history of one halo, i.e. constructing a merger tree (Section .

I introduce some basic concepts of the semi-analytic model for galaxy formation.
In this dissertation, I only concentrate on the dark matter part and leave the part
related to baryonic physic to future work. I show how we can implement FDM into
the publicly available semi-analytic code GALACTICUS. Corresponding work has been
described in our published paper [I].

Using the FDM transfer function with a sharp small-scale cutoff caused by quan-
tum pressure and a modified barrier function accounting for the mass dependent
growth of FDM [55], we apply the EPS formalism to calculate the HMF for FDM.

Our HMFs show minor differences compared to those derived from the Sheth—
Tormen (ST) formalism with a redefined critical overdensity for collapse [55] by having
a larger cutoff mass that changes less strongly with redshift (cf. Fig. . We also
compare our HMFs to the fitting HMFs from simulations by [33]. Our HMFs are
slightly more consistent with the one by [33] at z = 0 compared to the ST HMF for
FDM. Comparing the cumulative density of halos with the observed abundance of
ultra-faint lensed galaxies in the Hubble Frontier Fields [3], we found a similar lower
constraint on FDM mass as in [3] (see Fig. 2.14)).

Using the Cole2000 algorithm [I05] implemented in GALACTICUS, we build syn-
thetic merger trees for FDM and validate them by comparing the HMF with the
solution of the excursion set approach at different redshifts. We find that the HMF's
match reasonably well at redshift z < 3 (see Fig.[2.15|), while deviations exist at higher
redshifts. We demonstrate, however, that the vast majority of subhalos accreted by
the host at redshift z > 3 is already completely merged with the host at 2 = 0 and
thus does not have a significant effect on the SHMF at the present time.

To study the nonlinear evolution of FDM subhalos, we modify an existing model
for satellite halos (the ‘orbiting’ implementation) in GALACTICUS [123] which includes
the nonlinear effects of dynamical friction and tidal stripping (we ignore tidal heating
in the absence of calibrations for FDM simulations). In order to account for possible
effects from compact solitonic cores in FDM halos, we disable the tidal stripping
when a satellite has only its core left and change the merging criteria of subhalos.
We find that if FDM composes a significant fraction of the total DM density, the
SHMF is suppressed on small scales. The larger the fraction or the smaller the mass,
the stronger is the suppression (see Fig. [2.20). For pure FDM, the SHMF exhibits
a maximum around 4M, (see the right panel of Fig. [2.20), where M, is the mass of

the solitonic core for subhalos close to the mass cutoff, reflecting the fact that pure
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cores are assumed to be stable against tidal stripping. We also consider the impact
of modifying the concentration parameter for FDM halos on to the SMHF and find
only weak differences.

The parameters for dynamical friction and tidal stripping used in our work were
obtained from CDM N-body simulations. A recalibration of these parameters will
be possible as soon as sufficiently large FDM simulations become available. In ad-
dition, we only considered gravitational interactions between the subhalos and their
host. Simulations of FDM [29, 4] show that FDM halos have a granular structure
caused by wave interference that might make the dynamics of FDM subhalos behave
differently from the collisionless case. In particular, stripping may be more efficient
than expected from purely gravitational tidal effects.

Besides, by considering the merger history of dark matter halos in scenarios with
FDM, we offer an alternative explanation for the core-halo mass relation observed
in cosmological simulations |29, 4]. This model is described in our published paper
[5]. As above, we provide evidence for our model using stochastic merger trees and
show that the core-halo mass relation depends only on the mass loss fraction of cores
during binary mergers, M, o Miﬁ_l. We find that for § = 0.7 [62], this relation fits
numerical data from cosmological simulations very well [4].

In addition to providing a simple explanation for the core-halo mass relation, we
have shown that the core mass is determined by the individual accretion history.
It can be modeled more realistically using individual mass accretion histories that

recover not only the mean core-halo mass relation but also its scatter.
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Chapter 3
Tidal Disruption of FDM Cores

In the last chapter, using the semi-analytic code GALACTICUS modified for FDM,
we have obtained the subhalo mass function (SHMF) for Milky Way-like FDM halos.
One of the modification is to set the mass loss caused by tidal stripping to 0 once
the halo has only its core left. It is motivated by the simple assumption that the
compact solitonic core is stable against tidal perturbing. This assumption has led to
a pronounced peak in the SHMF (see the right panel of Fig. which may be a
unique signature of FDM. However, the assumption itself has not been tested. This
motivates us to do a detailed study of FDM cores under tidal stress.

In [6], tidal mass loss of a solitonic core orbiting inside a host halo is computed
in a “tunneling approximation” by adding a spherical tidal potential to the time-
independent Schrodinger-Poisson (SP) equations. The mass loss rate is obtained
from the imaginary part of the (complex) energy eigenvalue E. Since both tidal
and gravitational potentials are taken to be time independent, so is the tidal radius.
Consequently, the mass loss is fully characterized by the decreasing amplitude of the
wave function.

As shown below, the actual dynamics are more complicated and can only be
studied with numerical simulations. Once mass outside the tidal radius is removed,
the core relaxes to a new ground state with smaller mass and accordingly larger core
radius. In the process, mass is transferred through the tidal radius and subsequently
stripped away resulting in a continuous loss.

This process has a classical analog. After the outer parts of the satellite are
stripped away, the remnant is no longer in virial equilibrium and needs to convert
kinetic to potential energy in order to re-equilibrate [I51, [152]. The resulting con-
figuration has a larger characteristic radius and decreased density, achieved by an

outwards directed mass transfer through the tidal radius which, in turn, shrinks as
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a result of the lowered enclosed mass. However, for CDM, as shown in [152], this

process is usually not sufficient to disrupt the subhalo.

3.1 Classical and Tunneling Tidal Radius

A satellite halo orbiting the host halo loses its mass due to the tidal force of the host
halo, i.e. the tidal stripping effect (see also Section [2.3.4]). Considering a satellite
orbiting its host with synchronous rotation, i.e. the angular velocity of self-rotation
equals the orbital angular velocity, the tidal radius can be calculated from classical

Newtonian dynamics [146]:

o GMa(< ) N1 (3.1)
! w? — d?® /dz? ’ '

where Mg, is the satellite mass enclosed within the tidal radius, w is the angular
velocity of the satellite, ® is the gravitational potential of the host halo, and x is the
distance to the host’s center. Assuming a circular orbit of the satellite and most of

the host mass to be within the orbital radius, we have

qu) . _QGMhost(< xsat)

= = 2. 2
dz? xd, v (3:2)
Then the tidal radius can be written as
GMsat(< Tt) 1/3
= — ) 3.3
= (St 3.3)

In [6], tidal stripping of FDM halos is treated quantum-mechanically by adding a
spherical tidal potential to the Schrodinger equation. The authors propose that mass
inside the tidal radius can be stripped in sufficiently long time due to tunneling.

Following this approach, we first consider a simple system in which the solitonic
core is subject to a spherically symmetric tidal potential ®; = —yw?r? (here, r is the
distance to the center of the satellite). Note that [6] use v = % which includes the
effect of the centrifugal force owing to synchronous rotation of the satellite, assuming
it to be a rigid body. However, a solitonic core forms an irrotational Riemann-S
ellipsoid when subject to the tidal force as discussed in Section [3.4, Therefore, for
a solitonic core, v in the tidal potential should be between 1 (without self-rotation)
and % (with uniform self-rotation that equals the orbital angular velocity). To be

comparable with [6] we fix v to % unless specified otherwise.
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Working in a coordinate system centered on the satellite, the SP equations become

Lov R,
zha = _Zmav Y4+ mg (P — D), (3.4)
V20 = 47Gmg|yY|?, (3.5)

where ®,, as defined previously, is an external potential accounting for the tidal force

_3
2

In [6], the authors decompose the wave function 1 (r,t) = ¢(r) exp(—iEt) to get

from the host. Assuming a spherical tidal force, ®, = —3w?r?.
the time-independent SP equations. Assuming the energy eigenvalue E to be complex,

they obtain the mass loss rate from the imaginary part of E,
M_ P otmp) (3.6)
M p ’

which onl