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Abstract

Ultralight axion is a scalar field with an extremely small mass ∼ 10−22eV .

It is proposed as an alternative dark matter candidate to the standard cold

dark matter (CDM). If self-interactions between axions can be ignored,

it is also called fuzzy dark matter (FDM). On large scales, FDM behaves

like CDM producing large scale structure of the Universe consistent with

current observations. But on scales below the Jeans length, quantum pres-

sure arising from coherent oscillations of the scalar filed counters gravity,

leading to a large suppression in the structure formation and cored dark

matter halo profiles. In this dissertation, I mainly discuss the cosmic struc-

ture formation in the scenario of FDM. First, I show how we implement

FDM into the publicly available semi-analytic code for galaxy formation,

GALACTICUS. With the modified code, we compute the (sub)halo mass

function for FDM with different particle masses and density fractions.

Comparing to the standard CDM, the (sub)halo mass function is found

to be largely suppressed at lower masses. The suppression scale is in-

versely proportional to the square root of FDM mass. Then, based on the

core mass growth in each binary merger of FDM halos, a simple model

for the core-halo mass relation observed in simulations is proposed. The

model is verified using the modified GALACTICUS code. Finally, to study

tidal disruption of FDM subhalo cores, I perform idealized simulations

using a fourth-order pseudo-spectral method. The core mass loss rate

due to tidal stripping obtained numerically is compared with the previous

results from semi-analytic treatments. We find after some reinterpreta-

tions, two results are reasonably consistent. Implementing the numerical

results into GALACTICUS, I compute the subhalo mass function with and

without considering the core stripping. Fitting formula for the subhalo

mass function is given at the end, which will be useful in future studies

on constraining FDM from observations related to halo substructure.
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Chapter 1

Introduction

One of the fundamental questions in cosmology is how the Universe began and evolved

into a complex system containing a lot of structure on different scales, from galaxy

clusters, galaxies to stars. A variety of observations indicate that our Universe con-

tains a large amount of “invisible” matter, i.e. dark matter. Dark matter is “dark” in

the sense that it nearly does not interact with light, thus can not be seen directly by

eyes or through telescopes. However, we do know its existence by the gravity it acts

on other visible objects. Since it makes up about 26 percent of the current Universe,

which is five times as much as the ordinary baryonic matter 1, it plays an important

role in the formation of cosmic structure. However, we have only inferred its existence

through gravitational effects so far and known little about its nature. Different kinds

of models for dark matter have been proposed motivated either by observations or by

some theoretical considerations, e.g. an extension of the Standard Model of particle

physics. In this dissertation, I will mainly concentrate on one of the many promising

candidates, ultralight axion dark matter or as is commonly called fuzzy dark matter

(FDM), and discuss the cosmic structure formation in this model.

1.1 Evidence of Dark Matter

1.1.1 Dynamics of Galaxy and Galaxy Cluster

One way to determine the mass of a distant system is to observe the movement

of objects within this system. Then from Newton’s law of gravity, the mass that

is needed to reproduced such a movement can be calculated. If the system is in

equilibrium, we can further use the virial theorem to get the relation between the

1As is commonly used in cosmology, in this thesis the word “baryonic matter” or “baryons” refers
to everything that is made up of protons, neutrons and electrons.
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velocity dispersion (or kinetic energy) and the total mass and size of the system

(or the potential energy). Adopting the virial theorem, in 1933 Fritz Zwicky first

computed the mass of the Coma Cluster from the observed velocity dispersion in the

movements of galaxies within the cluster. He found that the mass he obtained is 400

times larger than the mass expected from luminosity measurements [10]. It provided

the first evidence that there might be a large amount of invisible matter in the Coma

Cluster.

On the other hand, for spiral systems, the mass distribution can be inferred from

the rotation velocity of visible stars or gas around the galaxy center by applying

Kepler’s second law. In the 1970s, the improvement in observation techniques made

it possible to measure the rotation velocity of galaxies accurately to large radii with

both optical and radio telescopes. In 1978, Rubin, Ford and Thonnard published their

famous paper [11], in which they showed the rotation curves for ten spiral galaxies

and found they are flat even out to the outermost radii that are measured. These

results are inconsistent with the predictions from Newtonian dynamics: the rotation

velocity v =
√
GM(r)/r; if there are only luminous matter (stars and gas) in the

galaxy, as the density of luminous matter drops off at large radii the enclosed mass

M(r) approach to a constant, thus v will drop as 1/
√
r. To resolve the inconsistency,

additional invisible matter, i.e. dark matter, needs to be added. To see a full history

I refer the interested readers to [12].

1.1.2 Expansion History of the Universe

Another evidence of dark matter is from measuring the expansion history of the

Universe. As is first discovered by Hubble in 1929 [13], the Universe is expanding.

The gravity force is attractive, so the expansion of the Universe will be slowed down

by matter components. The more the matters there are, the larger the deceleration

is. Therefore, by measuring the expansion of the Universe, we can derive the average

matter density in the Universe and check whether it is consistent with the ordinary

baryonic matter density we observe.

One way to measure the expansion history of the Universe is to look at type Ia

supernovae. Type Ia supernovae produce consistent peak luminosity during their

explosions, thus can be used as standard candles 2. Comparing the brightness of a

supernova with its intrinsic luminosity, its distance to us can be derived using Gauss’s

law, i.e. the brightness decreases inversely proportional to the square of distance. On

2A standard candle is an object whose luminosity is well known.
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the other hand, the redshift of the supernova can be obtained from its spectrum.

The redshift tells us how much the Universe has expanded since the explosion of a

supernova. Comparing this expansion factor with distances to different supernovae

gives the information about the expansion history, which then tells us about the

average matter density. In 1998, two groups, the High-Z Supernova Search Team

[14] and the Supernova Cosmology Project [15], discovered independently that the

expansion of the Universe is actually accelerating and the Universe is made up of

about 1/4 of matter and 3/4 of dark energy (vacuum energy). As a comparison, the

fraction of baryonic matter estimated from cosmic nucleosynthesis is less than 5%. It

indicates that there must be a dark matter component.

Another way to measure the expansion history is to search for the signature of

Baryon Acoustic Oscillations (BAOs), i.e. density peaks and valleys caused by sound

waves propagating in the primordial plasma. Before recombination, baryons coupled

with photons giving rise to an effective pressure. The sound wave generated during

the collapse of overdensities traveled at a speed of c/
√

3 with c the speed of light.

After recombination, the universe became neutral. Baryons decoupled with photons

and became nearly pressureless. So the sound wave was frozen leaving behind an

overdense shell at a fixed radius, i.e. the sound horizon. Thus it is expected to see

a peak in the correlation function of the density field at the scale of sound horizon.

At later times (lower redshifts), overdense regions collapse and form galaxies. The

peak should still be seen in the correlation function of the number density field of

galaxies, but the position of the peak has been moved to a larger scale due to the

expansion of the Universe. Comparing it with the sound horizon at recombination,

information about the expansion history can be obtained. Again the measurement of

BAOs supports the existence of dark matter [16].

1.1.3 Cosmic Microwave Background

In the early Universe, it was so hot that electrons can not be bound to nuclei. Photons

frequently interacted with free electrons making them in thermal equilibrium. The

photons presented a black-body spectrum. As the universe expanded, the temperature

decreased. Finally, at recombination free electrons are bound to nuclei again, making

the Universe neutral and transparent to photons. Thus photons began to expand

freely. They kept the black-body spectrum but with a decreasing temperature. At

the present time, they become the cosmic microwave background (CMB) that fills in

the Universe.
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The temperature of CMB is found to be nearly isotropic with only a very small

variation across the sky. But it is these small anisotropies that contain a lot of im-

portant information about the Universe. They are not only relevant to studying the

expansion of the Universe, but also relevant to studying the evolution of small fluctu-

ations in different matter components. Unlike baryonic matter, dark matter has no

interactions with photons except for the gravitational force. Its density perturbations

evolved very differently from baryonic matter in the early Universe. Therefore, it is

possible to distinguish dark matter from ordinary baryonic matter by measuring the

angular power spectrum of CMB anisotropy. Since the first discovery of CMB by

Arno Penzias and Robert Woodrow Wilson in 1964 [17], great improvements have

been made [18, 19]. With the Planck satellite, 5 of the 6 parameters in the standard

cosmological model can be measured better than 1 percent [20]. The latest results

from Planck satellite indicate that dark matter makes up about 26 percent of the

current Universe while the baryonic matter only makes up 5 percent.

1.2 Dark Matter Models

As is shown in the last section, dark matter is necessary to explain the discrepancy

between the matter density estimated from gravitational effects and the density of

normal baryonic matter. But so far we have not specified what particle it is.

From the observation point of view, it would be sufficient for most cases to assume

that the dark matter is

(1) cold, which means its thermal velocity must be very small;

(2) dark, so it can at most only weakly interacts with photon, baryonic matter and

itself.

This is the so-called cold dark matter (CDM) model. CDM together with a non-zero

cosmological constant, i.e. the ΛCDM model, has been successful in explaining a lot

of current observations. From the particle physics point of view, however, such kind

of a model may seem a bit primitive because it does not tell too much about the

properties of the dark matter particle. We only know it is neutral and it is stable on

cosmological time scales. But we do not even know its mass. As is discussed in [21],

although there may be big differences when we see the dark matter problem from

these two different aspects, they are actually closely related. On the one hand, any

non-trivial property of dark matter particle could possibly predict a new phenomenon

that can be tested by observations. On the other hand, if we observe some deviations
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from the CDM model, it would imply that the dark matter particle has some new

properties that may be detected in particle physics experiments.

Since CDM has been well tested on scales larger than 10 kpc and shows excellent

agreements with observations of large scale structure of the Universe. The deviations

from CDM are most likely to happen on small scales. It motivates various kinds

of alternative models such as warm dark matter [22, 23] with non-negligible ther-

mal motions and self-interacting dark matter [24] with measurable non-gravitational

interactions. They can be realized as variants of the weakly interacting massive

particles (WIMPs) dark matter paradigm. On the other hand, light (sub-eV), coher-

ently oscillating scalar fields also behave like CDM on large scales while showing new

phenomenology on small scales, starting roughly at their virial velocity de Broglie

wavelength [25, 26, 27]. For particle masses around 10−22 eV, the length is of the or-

der of several kpc, making this mass range sensitive to constraints from observations

on galactic scales [28, 29, 30, 31, 32, 33, 34, 35, 1].

One of the most significant differences between these alternative dark matter mod-

els and the CDM model is the cosmic structure formation on small scales. N-body

cosmological simulations show that CDM halos have cuspy cores [36] and contain a

lot of small subhalos [37, 38]. On the contrary, the alternative models mentioned

above may produce flat cores in halo centers. The abundance of subhalos may also

be different on small scales. Thus searching for deviations from the predictions of

the CDM model on small scales, e.g. substructure of dark matter halos, provides a

promising way to constrain the properties of dark matter candidates.

1.2.1 QCD axion

Before going into more details about the main topic of this dissertation, the ultralight

axion dark matter, it is worthwhile having a very brief introduction to the QCD axion,

where the axion particle is first proposed.

In QCD Lagrangian, there exists a natural term that violates the combination of

charge conjugation symmetry (C) and parity symmetry (P)

Lθ = θ
g2

32π2
F µν
a F̃aµν , (1.1)

where F µν
a is the gluon field strength tensor and F̃aµν = 1

2
εµναβF

αβ
a with εµναβ the

Levi-Civita symbol. If the parameter θ does not equal to 0, this term will contribute

to the neutron electric dipole moment dn. The current measurement of dn suggests
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that dn < 2.9× 10−26e cm [39], which implies θ is extremely small, θ . 10−10 [40]. So

we will need a fine tuning for θ. This is the so-called strong CP problem.

In 1977, Peccei and Quinn proposed a solution to the strong CP problem by

introducing a global chiral U(1) symmetry, which is also known as the Peccei-Quinn

(PQ) symmetry [41]. The parameter θ is effectively replaced by a dynamical field ϕ

called axion, the Goldstone boson of spontaneously broken PQ symmetry:

Lθ,ϕ = (ξ
ϕ

fa
− θ) g2

32π2
F µν
a F̃aµν , (1.2)

where ξ is the colour anomaly, and fa is the axion decay constant. Note that we have

not shown the kinetic term for ϕ here. Non-perturbative topological fluctuations of

gluon fields induce an effective potential for ϕ via the above terms. At the minimum

of the effective potential, ϕ = fa
ξ
θ, setting the CP violating term to 0 [42]. So the

strong CP problem is naturally solved. The mass of QCD axion is given by 3 [43, 44]

ma ≈ 6× 10−6eV

(
1012GeV

fa/ξ

)
. (1.3)

Since QCD axion was first proposed, it has draw a lot of attentions, not only

because it provides an elegant solution to the strong CP problem, but also because it

can be a good candidate for dark matter [45, 46, 47, 48]. Typical QCD axion has a

mass of 4× 10−10eV ∼ 4× 10−2eV.

1.2.2 Ultralight Axion Dark Matter

In the last subsection, I have briefly introduced the QCD axions whose masses are

very small. As dark matter candidates, these QCD axions will mostly behave like

collisionless CDM. In this subsection, I will continue with the ultralight axion(-like)

particles whose masses are even smaller. Their masses can be 10 ∼ 20 orders of

magnitude smaller than QCD axions.

It has been shown that ultralight scalar fields can be a viable candidate for dark

matter if they are in a very cold state (e.g.,[49, 50, 51, 26, 25, 52, 53, 54]). If consisting

of particles of mass ∼ 10−22eV [55, 29, 4, 32, 31, 33, 40, 34, 56, 57] these candidates

can potentially solve the well-known problems faced by the pure CDM model on small

scales 4 (see [6] for a recent review):

3Note that the accurate form may depend on specific models.
4Nowadays, people also begin to think whether these may actually not be problems with the

CDM model, but rather problems with limitations in observations and our knowledge of baryonic
feedback.
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(1) Missing Satellites Problem [37, 38], number of satellite galaxies observed

in the Milky Way is much less than the prediction from N-body simulations of

CDM;

(2) Cusp-Core Problem [36], observations infers that low-mass dark matter halos

have cored profiles instead of cuspy profiles as seen in CDM simulations;

(3) Too-Big-To-Fail Problem [58], the most massive dark matter subhalos in

CDM simulations are too dense to host the brightest satellite galaxies observed

in the Milky Way; in other words, theses most massive dark matter subhalos

are so big that they should not fail to form bright galaxies that we can observe.

Possible constituents of such light scalar particles are ultralight axions (ULAs)

that are produced nonthermally via the misalignment mechanism [59, 60, 61]. Unlike

CDM which produces cuspy halo profiles, FDM produces flat halo cores [29, 62, 63]

on scales smaller than the so-called quantum Jeans length [25, 27]. Below this scale,

quantum effects suppress gravitational collapse.

By performing Jeans analysis, it is found in [29] that the cored halo profile cor-

responding to FDM with mass ma = 0.81 × 10−22eV can well reproduce the radial

distribution of stars and their velocity dispersion in the Fornax dwarf spheroidal

(dSph) galaxy. Further analysis on multiple stellar subpopulations in the Fornax and

Sculptor dSph galaxies is done in [31] and an upper bond, ma < 1.1 × 10−22eV, on

the FDM mass is found by assuming that FDM alone can resolve the cusp-core prob-

lem. A similar constraint is found in [64] from Jeans analysis of eight classical dSph

galaxies. In [57], it is demonstrated that Jeans analysis may be biased due to uncer-

tainties in the assumed halo profile. Instead, a more stringent unbiased constraint,

ma < 0.4× 10−22eV, is obtained in [57] by analyzing the averaged velocity dispersion

of dSph galaxies.

Coherent oscillations of FDM also lead to a sharp suppression in the matter power

spectrum [25] and halo formation [55, 33, 1, 65] below the Jeans scale. In turn, this

cutoff scale for FDM halos puts a lower bound on the FDM mass since deviations

from CDM cannot violate the constraints given by current observations. Using the

cosmic microwave background and galaxy clustering data, [66] find a lower bound

on the FDM mass, ma & 10−24eV. Constraints from UV luminosity functions and

reionization are much tighter, e.g. [65] find ma & 1.6 × 10−22eV (see also [32] and

[33]). This lower bound is in tension with the upper bound obtained from dwarf

galaxies. Furthermore, the Lyα forest can also put a tight constraint on the FDM
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mass similar to the case of warm dark matter (WDM) [67, 55, 68]. For example,

the latest observations of the Lyman-alpha forest have been interpreted as implying

ma > 2× 10−21eV [69, 70], but systematic uncertainties are still disputed [71]. Thus,

FDM may also suffer from the Catch 22 problem [72] like WDM, i.e. either producing

too small halo cores or too few low-mass halos. However, as discussed in [57], to get

more consistent constraints we need to consider details of the interplay between FDM

and baryonic physics. The baryonic feedback may help reconcile the tension between

different observations [73].

This dissertation is organized as follows. Chapter 2 mainly shows our work on the

semi-analytic model of structure formation for FDM. In Section 2.1, I first introduce

some basic knowledge and tools that are widely used in cosmology. Then I discuss a

bit about the semi-analytic model for galaxy formation in Section 2.2. In Section 2.3,

I show how we implement the FDM model into the semi-analytic code for galaxy

formation, GALACTICUS. Results for FDM (sub)halo mass functions are presented

in Section 2.4. Finally, in Section 2.5, I show our new model for the core mass-halo

mass relation, then conclude in Section 2.6. We note that Section 2.3, Section 2.4

and Section 2.5 are based on our published paper [1] and [5], but also include some

of our new results.

Chapter 3 mainly shows our work on numerically simulating the tidal disruption

of subhalo cores. First, in Section 3.1, I discuss the tidal radius in the classical and

“quantum tunnelling” scenarios, respectively. Then I show the numerical algorithm

we use to do the simulations and convergence tests in Section 3.2. Sections 3.3-3.5

show our numerical results for the core mass loss rate. In Section 3.6, I show how the

core stripping affects the subhalo mass function. Finally, conclusion and discussion

are present in Section 3.7. Chapter 3 is based on our published paper [7]. Again, I

have added some new results.

In Chapter 4, I provide an outlook on how my current work can be extended to

some new projects in the future.
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Chapter 2

Semi-analytic Model of Structure
Formation with FDM

2.1 Basics

2.1.1 Homogeneous and Isotropic Universe

The cosmological principle states that viewed on sufficiently large scales, the Universe

is homogeneous and isotropic. It may look unreasonable at first glimpse. We do live in

an inhomogeneous environment because we do see different stars, galaxies in different

directions. However, with the help of the latest data from large galaxy surveys such

as WiggleZ1 and SDSS-III/BOSS2, it has been shown that on scales larger than a few

hundred Mpc the galaxies are distributed homogeneously [74, 75]. Another evidence

is the measurement of Cosmic Microwave Background (CMB), which is the radiation

left by the early Universe. The temperature of CMB is found to be around 2.7K.

The variation across the whole sky is only about 10−5 [76], which means the matter

distribution in the early Universe is isotropic on large scales. Thus as the simplest

model, we first neglect all cosmic structure on small scales and treat the Universe as

homogeneous and isotropic.

A homogeneous and isotropic universe is described by the well-known Friedmann-

Lemâıtre-Robertson-Walker (FLRW) metric

gµνdx
µdxν = −dt2 + a(t)2

(
1

1− kr2
dr2 + r2dθ2 + r2 sin2 θdφ2

)
, (2.1)

where a(t) characterizes the expansion (or contraction) of the Universe and is usually

called the scale factor. (r, θ, φ) are the radial distance, azimuthal angle, and polar

1http://wigglez.swin.edu.au/site/
2http://www.sdss3.org/surveys/boss.php
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angle. In this dissertation, the speed of light c is set to 1 and the metric signature is

taken to be (−1, 1, 1, 1), unless stated otherwise. Depending on the geometry of the

Universe, the spatial curvature parameter k can take different values: −1 (for an open

universe), 0 (for a spatial flat universe), 1 (for a closed universe). Furthermore, we

assume the matter in the Universe can be treated as perfect fluid with homogeneous

density ρ and pressure p. The energy-momentum tensor can then be written as

Tµν = (ρ+ p)UµUν + pgµν , (2.2)

where Uµ is the four-velocity of the fluid, which satisfies UµUµ = −1. In the coordinate

system comoving with the fluid, Uµ = (−1, 0, 0, 0). Substituting the FLRW metric

Eq. (2.1) and the energy-momentum tensor Eq. (2.2) into Einstein equations

Rµν −
1

2
gµνR + gµνΛ = 8πGTµν , (2.3)

we obtain the Friedmann equations that govern the evolution of a:

H2 =
8πG

3
ρ+

Λ

3
− k

a2
, (2.4)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (2.5)

Here Rµν and R are Ricci curvature tensor and scalar curvature, respectively. The dot

‘ ˙ ’ denotes derivatives with respect to cosmic time. H ≡ ȧ
a

is the Hubble parameter,

which measures the expansion rate of the Universe. G is the gravitational constant.

We have also included a cosmological constant Λ. Since the spatial curvature of the

Universe is found to be very close to zero [18, 77, 19], we will set k = 0 in the following

discussions. Another useful equation is the continuity equation, which can be derived

from the conservation law (∇µT
µν = 0),

ρ̇+ 3H(ρ+ p) = 0. (2.6)

Given the state parameter of the matter content, w = p/ρ, we can solve Eq. (2.4)

and Eq. (2.6) [or Eq. (2.5)] to get the evolution of a.

(1) Radiation and relativistic matter (w = 1
3
)

ρ ∝ a−4, a ∝ t1/2. (2.7)

(2) Non-relativistic matter (w ≈ 0)

ρ ∝ a−3, a ∝ t2/3. (2.8)
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(3) Cosmological constant (w = −1)

ρ =
Λ

8πG
, a ∝ e

√
Λ
3
t. (2.9)

From Eq. (2.5), we can see that the expansion of the Universe will slow down if the

Universe is composed of only radiation and matter since they both have non-negative

state parameters. But as is well known, in 1998 the High-Z Supernova Search Team

and the Supernova Cosmology Project discovered, independently of each other, that

the expansion of the Universe is actually accelerating [14, 15]. Therefore, a non-zero

cosmological constant which has w = −1 is a necessary component.

Now we consider the evolution of a classical scalar field ϕ which describes the

axion dark matter in a homogeneous and isotropic universe. The Lagrangian of ϕ

takes the form of

Lϕ = −1

2
∂µϕ∂

µϕ− V (ϕ). (2.10)

For FDM, we can take V (ϕ) = 1
2
m2
aϕ

2, i.e. neglecting all the higher order self-

interactions. Note that ∂µϕ ≡ gµν∇νϕ = gµν∂νϕ with ∇ν denoting the covariant

derivative. The equation of motion (EoM) of ϕ is then given by(
�−m2

a

)
ϕ = 0, (2.11)

where � = 1√
−g∂µ(

√
−ggµν∂ν) is the d’Alembert operator. For homogeneous ϕ,

Eq. (2.11) is simplified to

ϕ̈+ 3Hϕ̇+m2
aϕ

2 = 0. (2.12)

It is exactly the same as the equation of motion for a harmonic oscillator with an

additional friction term (the Hubble friction). Thus the oscillation of ϕ will be damped

by the expansion of the Universe and depending on the damping ratio ζ = 2H
3ma

, ϕ

will behave very differently.

Assume that at the Peccei-Quinn phase transition [41], the axion field gets an

initial displacement ϕi. Since at this time the Hubble rate is much larger than the

axion mass, the damping ratio ζ � 1 and the oscillation of ϕ is over-damped. Thus ϕ

will roll down the potential hill very slowly (similar to the slow-roll inflation scenario)

and act as one component of dark energy.

As the Universe expands, the Hubble rate decreases, so does the damping ratio

ζ. As ζ drop below 1, the critical value, ϕ starts to oscillate but with a decreasing

amplitude (see the left plot of Fig. 2.1). In the oscillation phase, the scalar field with

a quadratic potential as we consider here has an effective state parameter of 0 [49],

i.e. it behaves as dark matter.

11



ϕ

V (ϕ)

Dark Energy

Dark Matter

(ϕi, Vi)

10-2 10-1 100 101

−1.0

−0.5

0.0

0.5

1.0

mat

wϕ

Figure 2.1: Evolution of the scalar field in a homogeneous universe. Left: potential
of the scalar field. The solid curve shows the approximated axion potential up to the
quadratic term. The vertical dashed line marks the time when axion begins oscillating
and behaves as dark matter. Right: state parameter of the scalar field.

The transition from dark energy to dark matter can happen in different epochs

of the Universe depending on the axion mass. For ma & 10−27eV, the scalar field

start oscillating before matter-radiation equality thus could be a possible dark matter

candidate, while for ma . 10−33eV, it behaves always as dark energy till the present

time (see e.g. [66]). In the thesis, I will concentrate on FDM with ma in the range

10−22−10−20eV, for which the oscillation starts well before matter-radiation equality,

so we can safely treat the expansion of the Universe the same as in the ΛCDM model.

More precisely, if we take a(t) ∝ tγ, Eq. (2.12) can be solved analytically and the

solution of ϕ is given by [78]

ϕ = a(t)−3/2(mat)
1/2(AJn(mat) +BYn(mat)), (2.13)

where Jn and Yn are Bessel functions of the first kind and second kind, respectively,

and n = (3γ − 1)/2. The integration constants A and B are set by initial conditions:

ϕ(ti) = ϕi, ϕ̇(ti) = 0. In the radiation-dominated era, γ = 1/2. In the matter-

dominated era, γ = 2/3.

From the Lagrangian Eq. (2.10), we can obtain the energy-momentum tensor of

the scalar field

Tµν = ∂µϕ∂νϕ+ gµνLϕ. (2.14)

Comparing it with the energy-momentum tensor of perfect fluid Eq. (2.2) and apply-

ing the normalization condition UµUµ = −1, we can change to the fluid description
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of the scalar field

ρϕ = −1

2
∂µϕ∂µϕ+

1

2
m2
aϕ

2, (2.15)

pϕ = −1

2
∂µϕ∂µϕ−

1

2
m2
aϕ

2, (2.16)

Uµ =
∂µϕ√
−∂αϕ∂αϕ

. (2.17)

For a homogeneous and isotropic scalar field, the energy density ρϕ and pressure pϕ

are simplified to

ρϕ =
1

2
ϕ̇2 +

1

2
m2
aϕ

2, (2.18)

pϕ =
1

2
ϕ̇2 − 1

2
m2
aϕ

2. (2.19)

Substituting the solution of ϕ, Eq. (2.13), into Eqs. (2.18) and (2.19), we can compute

the state parameter wϕ = pϕ/ρϕ. The right plot of Fig. 2.1 shows wϕ with respect

to cosmic time. As can be seen, at early times wϕ ∼ −1, thus ϕ behaves as dark

energy. With the expansion of the Universe, wϕ increases gradually and finally starts

oscillating when t ∼ H−1 & m−1
a . The period of the oscillation ∆tosc = m−1

a . For

ma > 10−22eV as we consider in this dissertation, the period is extremely small

compared to the Hubble time: ∆tosc < 10−11H−1
0 . Therefore, when considering the

background evolution, we can take the average of quantities related to ϕ, such as ρϕ

and pϕ, over the oscillation time scale and neglect the effects on time scales shorter

than ∆tosc.

When H/ma � 1 (mat� 1), the solution Eq. (2.13) can be approximated by [79]

ϕ = a(t)−3/2 [ϕ+ sin (mat) + ϕ− cos (mat)] , (2.20)

where ϕ+ and ϕ− are constants. Substituting the approximated solution into the

expressions of energy density and pressure, and taking averages over the time scale

m−1
a , we have

〈ρϕ〉 =
1

2
m2
aa
−3
(
ϕ2

+ + ϕ2
−
)
, (2.21)

〈pϕ〉 = 0. (2.22)

Here 〈.〉 denotes averaging over ∆tosc. The effective average state parameter 〈wϕ〉 = 0,

so the scalar field behaves as dark matter.
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2.1.2 Linear Perturbations

In the last subsection, the Universe is treated as homogeneous and isotropic. Now let

us consider small perturbations on this homogeneous background. In the Newtonian

gauge and assuming vanishing anisotropic stress, the perturbed FRW metric can be

written as

ds2 = −(1 + 2Φ)dt2 + a(t)2(1− 2Φ)δijdx
idx, (2.23)

where Φ is the gravitational potential and δij is the Kronecker delta function. Here

we are only interested in the scalar perturbations since they are most relevant to cos-

mic structure formation. Accordingly, the perturbed perfect fluid energy-momentum

tensor is

T00 = ρ(1 + 2Φ) + δρ, (2.24)

T0i = −(ρ+ p)∂iδu, (2.25)

Tij = a2δij [p(1− 2Φ) + δp] . (2.26)

Here the quantities with overlines refer to the background values. δu is defined in

such a way that the longitudinal part of the spatial velocity perturbation δUL
i =

∂iδu. Substituting the perturbed metric and energy-momentum tensor into Einstein

equations, Eq. (2.3), and the continuity equation, Eq. (2.6), and keeping only the first-

order terms, we get the equations that govern the evolution of linear perturbations.

The derivation can be found in many textbooks on cosmology, e.g. [80]. I will not

repeat the details here, but just list some of the most important equations that will

be useful for later discussions. For simplicity, we can write the equations in Fourier

space. In the linear regime, there are no couplings between different Fourier modes.

For example, performing a Fourier transform of the density perturbation, we have

δρ(x, t) =

ˆ
d3kδρk(k, t)e

ik·x, (2.27)

where k is the comoving wavenumber.

In the matter-dominated era, we can take p = 0. But in general, the pressure

perturbation δp is not necessarily 0. In the sub-horizon regime (k/a� H), the linear

density perturbation satisfies

δ̈ + 2Hδ̇ −
(

4πGρ− k2

a2
c2
s

)
δ = 0, (2.28)

where δ = δρ/ρ is the overdensity and

cs ≡

√
δp

δρ
(2.29)
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is the sound speed.

For pressureless CDM, cs = 0. Recalling that in the matter-dominated era, ρ ∝
a−3 and a ∝ t2/3 [see Eq. (2.8)], Eq. (2.28) can be solved analytically. δ has the

following solution

δCDM = C1a+ C2a
−3/2, (2.30)

where C1 and C2 are constants fixed by initial conditions. As can be seen, the

solution of δ contains one growing mode (∝ a) and one decaying mode (∝ a−3/2).

Both modes are expected to be very small in the early Universe. As the Universe

expands the decaying mode will becomes negligible, thus we will only be concerned

with the growing mode. The growth of δCDM is independent of wavenumber 3, so the

formation of large scale structure will start on all scales. As will be shown later, it

leads to the formation of a large amount of small dark matter halos.

For FDM, it is a bit more complicated. The perturbation δϕ oscillates rapidly

just as the background field which makes it difficult to solve even numerically. There

are several ways to deal with this problem [81]. One way is to use a similar ansatz for

the oscillation of linear perturbations as for the background ϕ (see Eq. (2.20)) and

compute the perturbations in the fluid description by taking average over the time

scale m−1. This is the common strategy used in previous literature, e.g. [78, 82, 83,

66, 84]. In [81], a different approach based on field transformation is proposed. Here

I will follow the former approach and take the ansatz

δϕ = δϕ+ sin (mat) + δϕ− cos (mat). (2.31)

Taking ϕ = ϕ + δϕ, we can compute the linear perturbations of the density,

pressure in the fluid description from Eqs. (2.15)–(2.17):

δρϕ = ϕ̇ ˙δϕ+m2
a ϕ δϕ− Φ (ϕ̇)2, (2.32)

δpϕ = ϕ̇ ˙δϕ−m2
a ϕ δϕ− Φ (ϕ̇)2. (2.33)

Furthermore, the perturbed EoM of ϕ, Eq. (2.11), can be written as

δ̈ϕ+ 3H ˙δϕ+

(
k2

a2
+m2

aa
2

)
δϕ = 4 ϕ̇ Φ̇− 2m2

a ϕΦ (2.34)

Substituting the ansatz Eq. (2.20) and Eq. (2.31) into Eq. (2.34) and keeping only

leading-order terms with respect to H/ma, we obtain

Φ = − k2

2m2
aa

2

δϕ

ϕ
. (2.35)

3Actually, if we look at the perturbations on scales k/a→ H, the growth will behave differently.
But on scales of galaxies and galaxy clusters (several hundred kpc to several Mpc), it is reasonably
accurate to treat the growth of δCDM as scale-independent.
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The density and pressure perturbations averaged over the time scale m−1 are then

given by

〈δρϕ〉 = =

(
1 +

k2

4m2
aa

2

)
a−3/2m2

a (ϕ+δϕ+ + ϕ−δϕ−) , (2.36)

〈δpϕ〉 =
k2

4m2
aa

2
a−3/2m2

a (ϕ+δϕ+ + ϕ−δϕ−) . (2.37)

With the average density and pressure perturbations, we can calculate the effective

sound speed

c2
s,eff =

〈δpϕ〉
〈δρϕ〉

=
k2

4m2
aa

2

1

1 + k2

4m2
aa

2

. (2.38)

As mentioned in [40], cs,eff is not gauge invariant. But the difference between different

gauges, e.g. the Newtonian gauge and the synchronous gauge, becomes negligible in

the sub-horizon regime. Particularly, in the gauge comoving with the time-averaged

FDM fluid, Eq. (2.38) is valid on all scales [82, 83].

Substituting the expression of effective sound speed into Eq. (2.28), we have

δ̈a + 2Hδ̇a −

(
4πGρa −

k2

a2

k2

4m2
aa

2

1

1 + k2

4m2
aa

2

)
δa = 0, (2.39)

where δa = δρϕ/ρϕ.

In the limit k/a � 2ma, i.e. on scales larger than the Compton wavelength of

FDM particles, the effective sound speed cs,eff ∼ k2

4m2
aa

2 . If k/a� 1, cs,eff ∼ 0, δa will

grow just as in the CDM model. But if cs,eff is non-negligible, the pressure of FDM

fluid will counteract the gravity, thus lead to a suppression in the growth of δa. More

specifically, δa will not grow below the comoving Jeans scale [85, 25]

kJ = (16πGρϕ)
1
4m

1
2
a a. (2.40)

Here we have assumed a universe dominated by FDM. Accordingly, we can define the

Jeans mass

MJ =
4

3
π

(
a
π

kJ

)3

ρϕ. (2.41)

Unlike in the CDM model which predicts the formation of a lot of small dark matter

halos, in FDM model the number of halos with mass smaller than MJ is largely

suppressed.
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2.1.3 Nonlinear Evolution in the Nonrelativistic Limit

In the last subsection, we considered the evolution of linear perturbations. To study

nonlinear clustering, e.g. halo formation, we need a nonlinear treatment of the EoM

for FDM. In most cases relevant to cosmic structure formation considered in this

dissertation, FDM can be treated in the nonrelativistic limit 4. In this limit, the

Newtonian potential Φ is small, so the perturbed FRW metric, Eq. (2.23), is still

valid. But instead of directly solving the Klein–Gordon equation, Eq. (2.11), it is

usually useful to write the scalar field ϕ as

ϕ =

√
~3

2ma

(
ψe−imat/~ + ψ∗eimat/~

)
, (2.42)

where ψ is a complex scalar field. Substituting Eqs. (2.42) and (2.23) into Eq. (2.11)

and assuming |ψ̈| � m|ψ̇|/~, i.e. the amplitude of ϕ varies relatively slowly with

time compared to the fast oscillation of ϕ, we get a Schrödinger-like equation

i~
(
ψ̇ +

3

2
Hψ

)
=

(
− ~2

2maa2
∇2 +maΦ

)
ψ. (2.43)

Here we have neglected higher-order terms such as Φψ̇, Φ∇2ψ, and Φ̇ψ̇ (see [40] for

more details). The Newtonian potential Φ satisfies the Poisson equation

1

a2
∇2Φ = 4πGma|ψ|2, (2.44)

where we have used the approximation that the energy density of ρ ≈ |ψ|2 in the

nonrelativistic limit.

As is done for linear perturbations, we can also write Eq. (2.43) in the fluid

description. Defining

ψ ≡
√

ρ

m
eiθ, (2.45)

v ≡ ~
maa
∇θ, (2.46)

Eq. (2.43) can be transformed to the Madelung equations [86]

ρ̇+ 3Hρ+
1

a
∇ · (ρv) = 0, (2.47)

v̇ +Hv +
1

a
(v · ∇)v = −1

a
∇Φ +

~2

2m2
aa

3
∇
(
∇2√ρ
√
ρ

)
. (2.48)

4Note that the virial velocity of a typical dark matter halo is ∼ 100 km/s which is much smaller
than the speed of light. Black hole formation from FDM is beyond the scope of this dissertation.
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Comparing the second equation with the classical Euler equations, we can find that

there appears an extra pressure term

PQ ≡ −
~2

2m2
aa

3

(
∇2√ρ
√
ρ

)
, (2.49)

which is often called quantum pressure.

2.1.4 Spherical Collapse Model

In Section 2.1.2, we considered the evolution of linear perturbations analytically. But

when perturbations of the density field become highly nonlinear, numerical simu-

lations are usually needed. For FDM, we will need to solve either the Schrödinger-

Poisson equations or the Madelung-Poisson equations as shown in Section 2.1.3. How-

ever, we will first consider an idealized case, i.e. spherical collapse, which can be solved

analytically for CDM. This example is commonly used in the standard textbooks, e.g.

[87, 88], to demonstrate the halo formation. Although it may be oversimplified to

some extent, it has some very important results that are widely used in semi-analytic

models of structure formation.

The Universe is assumed to be matter-dominated (a ∝ t2/3). The background

matter density is

ρm(t) =
ρm(0)

a(t)3
=

1

6πGt2
. (2.50)

Now consider a uniform sphere with an initial overdensity of

δi =
ρ(ti)− ρm(ti)

ρm(ti)
, (2.51)

and a initial radius of ri. Here we require that δi � 1 so that at the initial time the

overdensity is still in the linear regime. We will first consider the CDM model, i.e.

the pressure is negligible. The total mass contained in the sphere

M =
4

3
πr3

i (1 + δi)ρm(ti). (2.52)

The change of the sphere’s radius is described by Newtonian dynamics

d2r

dt2
= −GM

r2
. (2.53)

A parametric solution to Eq. (2.53) can be found:

r(θ) = A(1− cos θ), (2.54)

t(θ) = B(θ − sin θ), (2.55)
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Figure 2.2: Spherical collapse. Left: evolution of the radius of the overdense sphere
(solid line) compared to the background expansion (dashed line). In the realistic case,
the sphere will not collapse to a singularity but virialize via phase mixing and violent
relaxation (indicated by the shaded region). Right: evolution of the overdensity δ
(solid line) compared to the prediction from the linear perturbation theory δlin. At
the beginning, δ is small and grows just like δlin. As δ increases, it enters the nonlinear
regime and grows faster than δlin. At the time tm when the radius of the overdense
sphere reaches its maximum, δ ≈ 4.28 δlin.

where A3

B2 = GM . The parameters A and B are fixed by initial conditions. At the

initial time, θ � 1, so we can expand Eq. (2.54) as ri = 1
2
Aθ2

i + O(θ4
i ). Similarly,

substituting Eq. (2.54) and Eq. (2.55) into Eq. (2.52) and expanding to O(θ4), we

can get δi = 3
20
θ2
i +O(θ4

i ). Thus, the parameters A and B can be expressed as

A =
3

10

ri
δi

=
3

10

(
9

2
GM

)1/3
t
2/3
i

δi
, (2.56)

B =

√
A3

GM
=

9

20

√
3

5

ti

δ
3/2
i

. (2.57)

Noting that t ≈ θ3 when θ � 1, we have δ ∝ t2/3 ∝ a(t) at early times, which is

exactly the same as the prediction from the linear perturbation theory (see the right

panel of Fig. 2.2).

From Eq. (2.54) and Eq. (2.55), we can see that the radius of the spherical

overdensity has a maximum of 2A when θ = π. The corresponding time is tm = Bπ.

After tm, the sphere will stop expanding and start to collapse (see the left panel of

Fig. 2.2). In the ideal case, the sphere will collapse to a singularity at t = 2tm. It

indicates that the spherical collapse model failed at this time. In the realistic case,

the collapsing sphere will relax to a virialized halo. In practice, it is usually assumed

that at tc = 2tm, i.e. when the sphere collapse to a singularity in the idealized model,
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the halo is virialized. We will call tc the collapse time which can be computed as

tc = 2Bπ =
9

10

√
3

5
π

ti

δ
3/2
i

. (2.58)

From Eq. (2.58), we can see that the larger the initial overdensity, the earlier it will

collapse to a virialized halo. There exists a critical value

δci =
3

5

(
3π

2

)2/3(
ti
tc

)2/3

≈ 1.686

(
ti
tc

)2/3

, (2.59)

so that if δi > δci , the halo will collapse before tc.

An important implication of Eq. (2.59) is that it tells us we can identify a halo far

before nonlinear structure formation begins by investigating the linear overdensity.

It enables us to predict the halo abundance from the linear density perturbations,

which is the basis of the Press–Schechter theory [89] that will be discussed in the

next subsection.

As mentioned before, in the realistic case, the sphere will collapse and finally form

a virialized halo. Now let us estimate the average density of a virialized halo. Assume

that all shells in the sphere reach the maximum radius and turn around at the same

time t = tm. At tm, the kinetic energy of the system Ek = 0 and the total energy

E = U(rmax). Here rmax = 2A is the maximum radius of the sphere. According to the

virial theorem, when the halo is virialized, Ek = −1
2
U(rvir). Thus the total energy

E = 1
2
U(rvir) = U(rmax). Since the potential energy is proportional to 1/r, we have

rvir = 1
2
rmax = A. The density contrast at virialization is then given by

∆vir =
M

4
3
πA3ρm(tc)

= 18π2 ≈ 178. (2.60)

Here we have used Eq. (2.50) and the relation A3

B2 = GM . Eq. (2.60) is usually used

to define a virialized halo in cosmological simulations.

For FDM, there are two main differences:

(1) as shown in Section 2.1.2, linear overdensities with a comoving wavenumber k

do not grow until the Jeans wavenumber kJ ∝ a1/4 becomes larger than k. Thus

collapsing starts later in FDM model, which is most significant for small halos.

In the extreme case, on scales below the current Jeans scale collapsing does not

happen at all.

(2) the FDM fluid is not pressureless. The quantum pressure will stop the sphere

from further collapsing when it balances the gravity force. Thus we would
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expect a smoother density profile in the central region of a collapsed halo. The

virial theorem still holds for virialized halos, i.e. Ek = −1
2
U , but the kinetic

energy becomes Ek = Eclassic
k + EQ where Eclassic

k is the classic kinetic energy

and EQ corresponds to the quantum pressure and is usually called “gradient

energy” or “quantum kinetic energy”.

To show the possible differences between CDM and FDM, we simulate spherical

collapse in FDM model with a one-dimensional pseudo-spectral code. The mass of

FDM particle is taken to be 10−22eV . The techniques will be discussed in detail later.

Although such a simulation is limited by the assumption of spherical symmetry com-

pared to a full three-dimensional cosmological simulation, it can be useful for finding

the critical overdensity for collapse in dark matter models other than CDM. For ex-

ample, [90] simulate the spherical collapse of warm dark matter (WDM) halos using

a one-dimensional hydrodynamics code. With the critical overdensity for collapse

found in [90], [91] compute the halo mass function in the WDM model and show that

it is consistent with the result from N-body cosmological simulation.

We assume a matter-dominated universe and the initial overdensity is taken to be

a single spherical Fourier mode

δ(x, ti) = δi
sin(ksx)

ksx
. (2.61)

Here x = r/a is the comoving distance to the origin and ks characterizes the scale

of the overdense region. The initial peculiar velocity field is created by solving the

linear perturbed continuity equation

∇ · v(r, ti) = −δ̇(r, ti). (2.62)

We start the simulation at z = 1000 so that the overdensity is still in the linear regime

at the beginning. As shown in Section 2.1.2, for CDM the linear overdensity δ grows

as a. For FDM, the growth will depend on the wavenumber. For simplicity we have

adopted the same condition δ̇ ∝ ȧ ∝ t−1/3 to different ks. But since we start the

simulation at very high redshift, we expect that the artificial growth will be largely

damped at later time.

Fig. 2.3 shows the results from two typical simulations with ks = 0.5kJ,1000

and ks = kJ,1000, respectively. Here kJ,1000 is the comoving Jeans wavenumber (see

Eq. (2.40)) at z = 1000. The initial amplitude of the overdensity δi is set to 0.02.

The left panel shows the density profiles at the time when the halos form. Prominent

cores can be seen in both cases and their profiles can be well fitted by the solitonic
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Figure 2.3: Simulations of spherical collapse with FDM. Left: density profile at the
collapse time for different initial overdensities. ρm0 is the background matter density
at current time. The initial overdensity is taken to be a single spherical Fourier
mode, i.e. δ(x, ti) = δi sin(ksx)/(ksx). Two simulations have the same δi = 0.02 but
different ks. Right: evolution of the central density ρc. The collapse time is marked
by the vertical lines.

profiles (solid lines) [29, 4, 31] (see also Eq. (2.104)). In the outer region, the density

profile drops approximately as r−α with α ∼ 2 − 3 5. The right panel shows the

evolution of the central density ρc. At early times, ρc decreases as a−3 (black dashed

line) due to the expansion of the Universe. As the overdensity grows, the expansion

of the overdense region slows down compared to the background. Finally, the sphere

starts to collapse and ρc increases rapidly as in the simple spherical collapse model

(black solid line). At late times, the overdense sphere virializes and a core forms in

the center (indicated by the dashed vertical lines). After the formation of the core,

ρc increases only mildly, which has also been shown in 3-D cosmological simulation

[92]. We define the collapse time as the time the core appears to have a soliton pro-

file. Under this definition, the initial overdensity with ks = 0.5kJ,1000 and δi = 0.02

collapse at z = 3.98. With a larger initial wavenumber ks = kJ,1000, the overdensity

collapses later, at z = 1.16. Although more careful analysis is needed to get the

critical overdensity for collapse for different k, our simulations have demonstrated the

two main differences between FDM and CDM as we discussed before: (1) FDM halos

collapse later; (2) FDM halos have smoother density profiles in the central region.

5We have assumed spherical symmetry, so the outer region does not necessarily have a NFW-like
profile as found in 3-D simulations of FDM, e.g. [29, 4, 62, 63, 92].
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2.1.5 Press–Schechter Formalism

As is shown in the previous subsection, for CDM if the overdensity is larger than

δci at ti, it will collapse before tc. The critical overdensity δci is give by Eq. (2.59).

If we extrapolate the overdensity to the current time by the linear growth factor

D(t) ≡ δ(t)/δ(t0), even though δ may have already become much larger than 1, we

can obtain the current value of the overdensity that has a critical value at ti predicted

by the linear perturbation theory

δc(tc) ≡
δci

D(ti)
=

1.686

D(tc)
. (2.63)

Here we have used the fact that in the matter-dominated universe, the linear overden-

sity grows as δ ∝ t2/3. Thus if the linear extrapolated overdensity at the current time

is larger than δc(tc), it implies that the corresponding mass should have collapsed

before tc.

In the Press–Schechter theory [89], to connect the overdense regions to collapsed

halos with certain masses, a filter is adopted which smooths out the overdensities

on scales smaller than the filter scale. Given a smoothing function, or as it is usu-

ally called a window function, W (x, R), the smoothed overdensity is obtained by

performing a convolution:

δR(x) =

ˆ
δ(x′)W (x− x′, R)d3x′. (2.64)

The smoothed overdensity field is a Gaussian random filed with a variance of

S(R) ≡ σ2(R) =

ˆ
k2

2π2
P (K)W̃ (k,R)2dk, (2.65)

where P (k) ≡ 〈|δ(k)|2〉 is the matter power spectrum and W̃ (k,R) is Fourier trans-

form of the window function. A commonly used window function is the top-hat filter

in the real space. Its Fourier transform is

W̃ (k,R) =
3

(kR)3
[sin (kR)− kR cos (kR)] . (2.66)

The mass corresponding to the filter scale R is defined as (see also Eq. (2.52) for a

comparison)

M(R) =
4

3
πR3ρm, (2.67)
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where ρm is the background matter density. Then the fraction of mass contained in

halos with mass larger than M(R) at tc can be computed by

F (M > M(R)) = P (δ > δc(tc)) =

ˆ +∞

δc(tc)

1√
2πS(M)

exp

[
− δ2

2S(M)

]
dδ

=
1

2
erfc

[
δc(tc)√
2S(M)

]
. (2.68)

Here we have used Eq. (2.67) to write S as a function of M . For CDM, S becomes

infinity when M approaches to 0. Thus from Eq. (2.68), we will conclude that at most

half of the total mass is locked in halos. This can be understood as the underdense

regions will not end up in halos. But in fact the underdense regions may be enclosed

within a larger overdense region so that they will collapse together. Considering this

Press and Schechter add a fudge factor of 2 to Eq. (2.68). By changing the filter scale,

we can obtain the fraction of mass that is contained in halos with mass between M

and M + dM . The number density of halos per logarithmic bin of mass, i.e. the halo

mass function, is given by

dn(M, tc)

d lnM
= −2

ρm
M

∂F

∂M
= − 1√

2π

ρm
M

δc(tc)√
S(M)

exp

[
− δc(tc)

2

2S(M)

]
d lnS(M)

d lnM
. (2.69)

Note that here we have added the fudge factor 2 into the formula. Despite its relative

simplicity, the halo mass function computed from Eq. (2.69) has been found to be in

reasonable agreement with N -body cosmological simulations of CDM (see [93] for a

review).

2.1.6 Extended Press–Schechter Formalism

As is been shown previously, with the Press–Schechter formalism we can compute

the halo mass function from the linear matter power spectrum. But a fudge factor of

2 needs to added by hand in the formalism based on the argument that it does not

account for the underdense regions that may be enclosed within a larger overdense

region, i.e. the cloud-in-cloud problem [94, 95, 96, 97, 98, 99]. A consistent derivation

of the halo mass function goes back to [99], who found that by solving the so-called

excursion set problem the fudge factor 2 is automatically accounted for in the solution.

This approach is also known as the extended Press–Schechter (EPS) formalism.

As in Section 2.1.5, we smooth the overdensity field with a filter. However, here

we will use a different window function which is easier for later calculations, i.e. the

sharp-k filter (a top-hat function in Fourier space):

W̃ (k, ks(R)) = Θ(ks(R)− k). (2.70)
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Here Θ is the Heaviside step function. Unlike the top-hat filter in real space, it is a

bit ambiguous to define a mass scale corresponding to ks. One “natural” treatment

is to compute the integration of W (r, ks(R))2 in real space and identify it with the

volume enclosed within the smoothing scale R [100]:
ˆ ∞

0

4πr2W (r, ks(R))2dr =
4

3
πR3. (2.71)

Here W (r, ks(R)) is the inverse Fourier transform of W̃ (k, ks(R)). The relation be-

tween ks and R is then given by

ks =
c

R
, (2.72)

where c = (9π/2)1/3. However, as pointed out by [100, 91], this treatment still lacks

strong physical motivations. In practice, c can be chosen as a free parameter that

needs to be fitted to simulations. For example, [91] find c = 2.5 (see also [101, 102, 68])

by comparing the semi-analytic halo mass function for warm dark matter with the

results from N-body simulations.

The variance of the smoothed field is

S(R) =

ˆ +∞

0

k2

2π
P (k)W̃ (k, ks(R))2dk =

ˆ ks

0

k2

2π
P (k)dk, (2.73)

where P (k) is the matter power spectrum. When the filter scale R → +∞, we

have S(R) → 0 and δR → 0. As we decrease the filter scale R, S(R increases and

perturbations on smaller and smaller scales are included. The change of the smoothed

overdensity filed ∆δR is also a Gaussian random field with a mean value of 0 and a

variance of

〈∆δ2
R〉 =

ˆ +∞

0

k2

2π
P (k)

[
W̃ (k, ks(R) + ∆ks)

2 − W̃ (k, ks(R))2
]
dk

=

ˆ ks+∆ks

ks

k2

2π
P (k)dk

= S(R + ∆R)− S(R). (2.74)

One of the advantages of using sharp-k filter is that the distribution of ∆δR is in-

dependent of the previous value of δR. Thus if we treat S(R) as the time variable,

the trajectory of δR can be analogous to a random walk process, or more precisely a

Wiener process.

Fig. 2.4 shows one realization of the trajectory of δR. As can be seen, δR starts

at S = 0 and δR = 0. As S increases, δR changes in a random way. At S = S1, δR

is as large as the critical overdensity for collapse δc. In the language of the Press–

Schechter theory, the mass element is considered to be contained in a collapsed halo
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Figure 2.4: A realization of the trajectory of δR.

with mass M ≥ M1. Here M1 is related to the filter scale by Eq. (2.67). Note that,

the change of δR is not necessarily positive when S increases. So at S2 > S1, δR

may become smaller than δc. Then we would conclude that the mass element should

not be contained in a collapsed halo with M ≥ M2, which is in contradiction to the

previous conclusion that this element is contained in a halo with M ≥ M1 > M2.

Thus the Press–Schechter theory is not self-consistent.

To resolve the inconsistency, the mass element is assigned to a halo when δR first

exceeding the critical overdensity in EPS formalism. In the following analysis, we will

call the probability that δR first upcrossing the critical overdensity the first-crossing

probability and denote is as f(S). Then with the relation between the halo mass M

and S(R), f(S) can be converted to the halo mass function:

dn(M)

d lnM
= −ρm

M
f(S)S

d lnS

d lnM
. (2.75)

Since the change of δSR is independent of the starting value of δR, the conditional

probability that the trajectory first upcrosses δc at S1 and has a value of δR at S2 > S1

is given by

P12(S1, S2) =
1√

2π(S2 − S1)
exp

[
− (δ − δc)2

2(S2 − S1)

]
. (2.76)

Here we have omitted the subscript “R” in δR. At a specified S, the mass element

should either contained in a halo with M ≥M(S) or not, so we have

ˆ S

0

f(S ′)dS ′ +

ˆ δc(S)

−∞
P (δ, S)dδ = 1. (2.77)

Here the second term on the left-hand side gives the probability that the trajectory

has never upcrossed δc at smaller S. To be more general, a possible dependence in δc
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on the halo mass (or equivalently on S), e.g. in the case of FDM, has been added.

From previous discussions, we know that

P (δ, S) =
1√
2πS

exp

(
− δ

2

2S

)
−
ˆ S

0

f(S ′)P12(S ′, S)dS ′. (2.78)

Substituting Eq. (2.78) into Eq. (2.77), and integrating over δ, we obtain

ˆ S

0

f(S ′)erfc

[
δc(S)− δc(S ′)√

2(S − S ′)

]
dS ′ = erfc

[
δc(S)√

2S

]
, (2.79)

where erfc is the complementary error function.

For CDM, δc is independent of S, Eq. (2.79) can be solved analytically and the

solution is given by

f(S) =
δc√
2πS

exp

[
− δ

2
c

2S

]
1

S
. (2.80)

Substituting Eq. (2.80) into Eq. (2.75), the exactly same formula for the halo mass

function as Eq. (2.69) is obtained. But here we do not need to add any fudge factor,

i.e. the cloud-in-cloud problem is solved.

Another important application of the EPS formalism is to calculate the probability

of finding the progenitors of a halo at an earlier time. Consider that a smoothed

overdensity δR first upcrossed the critical value δc(t0) at S = S0 and t = t0. Within

the EPS formalism, it is considered to be contained in a halo with mass M0. Now

we can ask what is the probability that we find this mass element contained in a

halo with mass M1 < M0 at an earlier time t1 = t0 − ∆t. As discussed before, the

critical overdensity for collapse is larger at earlier time. So the problem to be solved

is similar to the excursion set problem solved above except that the trajectory of δR

now originates from S = S0 and δR = δc(t0). Define new variables S = S − S0 and

δR = δR − δc(t0). The probability finding the mass element in M1 at t1, i.e. f0→1,

is equal to the probability δR first upcrossing δc = δc(t1) − δc(t0) at S = S1 − S0.

The function f0→1 satisfies the same integral equation as Eq. (2.79). We just need to

replace δ with δ− δc(t0), S with S−S0 and δc with δc(t1)− δc(t0). The mean number

of the halo’s progenitors with a mass between M1 and M1 + dM1 at an earlier time

t1 can then be computed as

dN = f0→1(S0, S1)
M0

M1

dS

dM1

dM1. (2.81)

Specially, for CDM the solution of f0→1 takes the form of

f0→1(S0, S1) =
δc(t1)− δc(t0)√

2π(S1 − S0)
exp

[
−(δc(t1)− δc(t0))2

2(S1 − S0)

]
1

S1 − S0

. (2.82)
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Figure 2.5: A schematic merger tree.

2.1.7 Merger Tree

In models of hierarchical structure formation, the cosmic structure forms bottom-

up, i.e. small halos form first, and then merge into larger and larger halos. The

merger history is usually described by the merger tree, which links halos with their

progenitors. Fig. 2.5 shows a schematic merger tree. The radius of the circle represents

the mass of a halo. For simplicity, we consider only binary mergers. It gives a good

description of the merger history as long as we look on sufficient small time scales so

that within one time step only binary merger happens.

Merger trees can either be extracted from cosmological simulations, e.g. N-body

simulations, or be constructed stochastically based on the mean progenitor distri-

bution discussed in the previous subsection. Merger trees obtained in the first way

have the advantage that cosmological simulations more reliably capture the physics

of structure formation without simplifications used to derive the EPS formalism. But

the cost is that merger trees are limited by the dynamical range resolved by the simula-

tions. Additionally, there are uncertainties in identifying halos and their progenitors.

Besides, cosmological simulations usually need very high computational costs. On

the contrary, constructing merger trees using Monte-Carlo algorithms is much less

expensive so that it is possible to generate a large sample of trees with high mass

resolution. It has been shown that Monte-Carlo merger trees can well reproduce the

statistics of cosmic structure as seen in direct simulations (see e.g. [103, 104, 105]).

Furthermore, as shown in [106], Monte-Carlo algorithms can be used to augment the

resolution of merger trees from cosmological simulations. The statistics of augmented

merger trees are found to be well consistent with direct higher resolution simulations.

In the following discussions, I will focus on constructing Monte-Carlo merger trees.

The EPS formalism gives the probability of finding one halo’s progenitor with a

specific mass (see Eq. (2.81)), but it does not tell us how many progenitors the halo
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(descendant halo) has and the conditional probability of one progenitor on the others.

For instance, if we draw one progenitor M1 for the halo M0 from the distribution

Eq. (2.81), the remained mass M0 −M1 in the descendant halo will limit the mass

that the second progenitor can have. The EPS formalism provides no information

about the conditional probability of the second progenitor on the first one, thus

additional assumptions are needed [88]. Based on different assumptions, different

kinds of algorithms have been developed.

The simplest way is to consider only binary merger, e.g. the algorithm proposed

in [100] and the improved version in [105] (hereafter Cole2000). In such kind of

algorithm, the second progenitor is assigned a mass of M2 = M0 −M1. To account

for the progenitors below the mass resolution, a small fraction of mass is assumed to

be smoothly accreted so that M2 = M0 −M1 −Macc. Such algorithms are easy to

implement but have the limitations that one halo can have at most two progenitors

and the progenitor distribution is by-hand symmetrized, i.e. the mean number of

progenitors with mass M1 is the same as that of progenitors with mass M0 −M1 (or

M0 −M1 −Macc).

Without the assumption of binary mergers, [107] proposed anther way to build

merger trees. They keep drawing progenitors from the distribution Eq. (2.81). A

new progenitor is rejected if the total mass of the progenitors exceeds M0. When the

mass remained is less than the mass resolution, the process above is stopped and the

remained mass is assumed to be smoothly accreted. However, due to the rejection

procedure, the progenitors drawn later will not have the same probability distribution

as previous ones. Thus the mean distribution of progenitors is not exactly the same

as Eq. (2.81). Better algorithms can be achieved if the smooth accretion by each

progenitor during one time step is taken into account [107].

In the above algorithms, progenitors are drawn for one halo based on the EPS

formalism and some extra assumptions. But since the EPS formalism only gives the

average properties of the progenitors, the extra assumptions need to be chosen care-

fully so that the merger trees constructed are consistent with the EPS formalism on

average. A different approach is proposed by [108]. Instead of drawing progenitors

one by one for one descendant halo, it generates a bunch of progenitors for hundreds

of descendant halos based on the mean progenitor distribution and the mean number

of progenitors. Then the progenitors are distributed among the descendant halos as-

suming mass conservation. Finally, a single realization is randomly drawn from the

hundreds of realizations. As shown in [109], compared to the algorithms discussed
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previously this algorithm is the only one that is fully consistent with the EPS formal-

ism. However, in each time step a large table of progenitor distribution needs to be

stored.

More algorithms have been developed to solve different problems in the algorithms

mentioned above (see e.g. [110, 109, 111]). I will follow the Cole2000 algorithm since

it is relatively simple compared to the others and as mentioned before, if we chose

a sufficiently small time step size considering only binary mergers can be a good

approximation.

Given a halo with mass M0 at t0, the mean distribution of its progenitors is given

by Eq. (2.81). Assume that the minimum mass we would like to resolve in the merger

tree, i.e. the mass resolution, is Mres. Then the mean number of progenitors with

mass Mres < M1 < M0/2 is given by

Np =

ˆ M0/2

Mres

f0→1(S0, S1)
M0

M1

dS

dM1

dM1. (2.83)

Besides, there is some fraction of mass in M0 that is from progenitors below the mass

resolution. The fraction can be computed as

F =

ˆ Mres

0

f0→1(S0, S1)
dS

dM1

dM1. (2.84)

In the Cole2000 algorithm, a small time step size ∆t is chosen so that at the earlier

time t0 − ∆t, Np is much smaller than 1. This ensures that during each time step

only binary mergers are likely to happen. Then a random number Nd is drawn from

the uniform distribution over (0, 1). If Nd > Np, no merger above the mass resolution

is assumed to happen. The halo mass is reduced to (1 − F )M0, which accounts for

the smooth accretion of halos with mass below Mrmres. If Nd ≤ Np, a progenitor

with mass Mres < M1 < M0/2 is drawn randomly following the distribution function

Eq. (2.81). The second progenitor is assigned a mass of M2 = (1−F )M0−M1. Here

the smooth accretion has also been accounted for. Such procedure is repeated for

each progenitor backward at successive time steps until the progenitor mass reaches

Mres (see Fig. 2.5).

Note that as mentioned before, here we have explicitly assumed that the proba-

bility finding a progenitor M1 is the same as a progenitor M2 = (1 − F )M0 −M1.

In general, this symmetry is not present in the EPS formalism Eq. (2.81). However,

[105] found that by restricting the first progenitor’s mass to be smaller than M0/2

and accounting for the smooth accretion below the mass resolution, the merger trees

generated can reproduce progenitor distributions that agrees reasonably well with the

EPS formalism on average.
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2.2 Semi-analytic Model of Galaxy Formation

In the previous section, I have introduced some of the basic knowledge and methods

that are widely used in the study of cosmic structure formation. Most of those

discussions have been concentrated on analytic and approximate treatments, i.e. semi-

analytic models (SAMs). The models are semi-analytic in the sense that they try

to describe the physical processes in structure formation with a series of analytic

formulas. These analytic formulas may come from analytic solutions to the simplified

problems, or from some empirical formulas when the process is too complicated to

solve analytically. Usually there is a set of parameters in SAMs that are needed to be

calibrated to N-body/hydrodynamical simulations and observations. But compared

to direct simulations, SAMs provide us a much less expensive way to explore a lot of

different cosmological and astrophysical models.

Applying and extending SAMs to the case of FDM models will be the main task

of this dissertation. But before going into the details, it will be helpful to have a

general picture of how SAMs work. Although I have only considered dark matter

so far, SAMs have also been widely used for investigating galaxy formation which

involves complex baryonic physics.

The earlier work on SAMs of galaxy formation dates back to [112], who have used

the Press–Schechter theory to describe the hierarchical structure of dark matter halos

and combined it with a model of gas cooling to study galaxy formation. This ideal

was further developed into a self-consistent model by [113, 114, 115]. In the past three

decades, a lot of improvements have been made to SAMs (see e.g. [116, 117, 118]

for reviews). Based on different treatments of the baryonic processes such as gas

cooling, star burst, feedback from supernovae and Active Galactic Nucleus (AGN),

and different ways of calibrations, a lot of models have been developed. Several

popular models are from Cole et al. [105], Croton et al. [119, 120] and Somerville et

al. [121].

Fig. 2.6 shows the main recipes of SAMs. First, a cosmological model is chosen.

Then merger trees are constructed either from N-body simulations or from the EPS

formalism. Baryons are assumed to trace the distribution of dark matter. Thus each

dark matter halo is adjoined to several baryonic components, e.g. hot gas, cold gas,

and stars. Each component, including the dark matter, is evolved according to a

submodel. When a dark matter halo encounters another halo in the merger tree, the

smaller one will be treated as a subhalo (substructure) and the galaxy associated with

it becomes a satellite galaxy. The subhalo and satellite galaxy are then evolved in
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Figure 2.6: A schematic diagram of semi-analytic model of galaxy formation.

the gravitational potential of the host halo until it is considered to be fully merged

with the host. The (sub)halos provide the environment for galaxy formation. On the

other hand, the feedback in the baryonic components can also affect the distribution

of dark matter. Combining all these submodels, one solves a large number of coupled

differential equations, representing a lot of submodels for different components. The

star formation rate and metallicity can then be obtained and converted using some

models for dust extinction into observables such as the luminosity and color. Besides,

the population and spatial distribution of the subhalos can be directly compared to

observations from gravitational lensing.

In this dissertation, I will concentrate on the evolution of dark matter substructure

and possible comparison with observations (marked by solid boxes in Fig. 2.6). The

physical processes related to baryons (dashed boxes in Fig. 2.6) will be the next stage

of this work.

2.3 Implementation of FDM in SAMs

With the knowledge of the linear perturbation theory and the spherical collapse model

as described in Section 2.1, it is possible to build a SAM for FDM just as for CDM. In

this dissertation, I make use of the publicly available semi-analytic code GALACTICUS

[122] and modify it to include several aspects of FDM physics. GALACTICUS is a
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highly modular semi-analytic code for galaxy formation, thus it is capable to be

extended to include alternative models. For instance, [91] apply it to the case of

warm dark matter (WDM) and investigate the halo mass function and progenitor

mass function in this model. Excellent agreement with N-body simulations of WDM

has been found. [123] further extend it to include nonlinear evolution of subhalos in

the host halo for both CDM and WDM. Our modifications for FDM follow a similar

approach, but also include some unique features in FDM models.

2.3.1 A New Determination of the HMF for FDM

The most direct way to obtain the HMF is to perform cosmological simulations. In

the nonrelativistic limit, the evolution of FDM can be described by a complex wave

function ψ which satisfies the Schrödinger-Poisson (SP) equations [51, 25]. Thus one

could investigate the nonlinear structure formation in FDM models by solving the SP

equations with cosmological initial conditions [27, 29, 4]. However, due to the rapid

oscillations of the wave function, extremely high resolution both in space and time

is necessary to correctly resolve high-velocity flows [29, 33]. Even the state-of-the-

art simulations in [29] can only fully resolve a box of 2 Mpc on each side, which is

too small for determining the HMF. One alternative way is to do standard N-body

simulations but with FDM initial conditions [33, 34, 65]. With such simulations,

fitting formulas for the FDM HMF has been obtained in [33, 65]. It is argued that

the quantum pressure arising in FDM models does not have a significant impact on

the nonlinear formation of moderate and large halos at lower redshifts 6. However,

to resolve accurately the abundance of the smallest halos, simulations solving the full

dynamics as in [29, 62, 124] are still essential. Other approaches accounting for the

quantum pressure in N-body or hydrodynamic simulations have also been making

progress (see e.g. [125, 126, 63, 127, 92]).

On the other hand, we can make use of the EPS formalism as discussed in Sec-

tion 2.1.6 to compute the HMF for FDM. Compared to CDM, there are two important

things we needs to account for:

(1) a suppression in the linear power spectrum (transfer function) on scales smaller

than the quantum Jeans length;

(2) the growth of FDM overdensity is not scale-independent, thus leads to a scale-

dependent critical overdensity for collapse.

6The quantum pressure still plays an important role in suppressing the linear power spectrum
which is used to generate the initial conditions.
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Then the HMF for FDM can be obtained by solving the excursion set problem (see

Section 2.1.6):
dn(M)

d lnM
= −ρm

M
f(S)S

d lnS

d lnM
, (2.85)

where f(S) is the first-crossing distribution and satisfies

ˆ S

0

f(S ′)erfc

[
δc(S)− δc(S ′)√

2(S − S ′)

]
dS ′ = erfc

[
δc(S)√

2S

]
. (2.86)

The FDM density power spectrum can be written as

PFDM = T 2
FDMPCDM, (2.87)

where PCDM denotes the power spectrum in the CDM model, and TFDM characterizes

the suppression of FDM power spectrum relative to CDM. A fitting formula for TFDM

is found in [25]:

TFDM =
cosx3

1 + x8
, (2.88)

where

x = 1.61m
1/18
22

k

kJ,eq

. (2.89)

Here m22 ≡ ma/(10−22eV) and kJ,eq ≈ 9m
1/2
22 Mpc−1 is the quantum Jeans wave

number at matter-radiation equality which can be computed from Eq. (2.40). More

accurate power spectra for FDM or a mixture of FDM and CDM can be obtained

using AxionCAMB7 [55, 66] which includes FDM as one component in the publicly

available Boltzmann code CAMB [128].

Fig. 2.7 shows TFDM(k) for different FDM masses computed using AxionCAMB.

As can be seen, T (k) drops steeply at large k. A sharp cutoff is shown at roughly the

Jeans wave number at matter-radiation equality (see the vertical dashed lines). It

means the small-scale perturbations, as the seeds for nonlinear structure formation,

will be largely suppressed below the Jeans scale. As the FDM mass increases, the

suppression happens at smaller and smaller scales, thus FDM will behave more like

CDM. For comparison, we also consider one model in which FDM and CDM each

make up half of the total dark matter (thick dashed curve). We can see that the

suppression of matter power spectrum happens roughly at the same scales as in the

pure FDM case with the same FDM mass, but the suppression is weaker.

For CDM, in the matter-dominated era different modes of linear overdensity all

grow as a, independent of the corresponding wave number k (see Section 2.1.2).

7https://github.com/dgrin1/axionCAMB
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Figure 2.7: Transfer function TFDM(k), as defined in Eq. (2.88), for FDM with dif-
ferent masses and fractions. The results is derived using the publicly available code
AxionCAMB. Here we have also considered a model in which FDM only makes up
half of the dark matter, i.e. Ωa/Ωd = 0.5 (thick dashed curve). The vertical dashed
lines mark the Jeans wave numbers at matter-radiation equality for different FDM
masses.
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Furthermore, if we assume spherical collapse as discussed in Section 2.1.4, overdense

regions will collapse to halos once the overdensities reach the critical value δc ≈ 1.686,

which does not depend on the size of the overdense region.

However, for FDM as shown in Section 2.1.4, modes with small wave numbers

collapse later compared to CDM. Thus a higher critical overdensity is required for

an overdense region to collapse at the same redshift as CDM. As mentioned in Sec-

tion 2.1.4, detailed simulations of spherical collapse are needed to find the dependence

of the critical overdensity on k. As an alternative way, [55] proposed that we can es-

timate the critical overdensity for FDM from the scale-dependent growth of linear

overdensities, i.e. D(k, z). The basic idea is as follows. Compared to CDM, the

growth of FDM linear overdensity is suppressed by a factor of

G(k, z) =
DCDM(z)

DFDM(k, z)
. (2.90)

Here we have assumed a matter-dominated universe so that DCDM only depends on

z. Now suppose that we have an initial overdensity δci at zi. In the CDM case, this

overdensity reaches the critical value δc at zc. With the same initial value, in the FDM

case, at zc the overdensity will be δFDM(zc) = δc/G(k, z) < δc. To reach the critical

value δc at zc, the initial overdensity in the FDM case needs to be δci,FDM = G(k, z)δci .

In other words, to collapse at the same redshift, the critical overdensity in FDM

model needs to be larger than CDM by a factor of G(k, z):

δFDM
c (k, z) = G(k, z)δCDM

c (z) ≈ G(k, z)
1.686

DCDM(z)
. (2.91)

Here we have used the formula of critical overdensity for CDM, Eq. (2.63).

The relative amount of growth between CDM and FDM, G, can be obtained by

solving the evolution of linear density perturbations:

G(k, z) =
δCDM(k, z)δCDM(k0, zh)

δCDM(k, zh)δCDM(k0, z)

δFDM(k, zh)δFDM(k0, z)

δFDM(k, z)δFDM(k0, zh)
, (2.92)

where k0 = 0.002hMpc−1 is a pivot scale, and zh is chosen to be large enough so

that at the relevant redshift the shape of CDM power spectrum has frozen in (in the

matter-dominated era). We set zh = 300 as in [55].

Ignoring the possible time dependence in G, a fitting function for G is given in [2]

based on numerical results from AxionCAMB:

G(M) = hF(x) exp
(
a3x

−a4
)

+ [1− hF(x)] exp
(
a5x

−a6
)
, (2.93)
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where

x = M/MJ, (2.94)

hF(x) =
1

2
{1− tanh [MJ(x− a2)]}, (2.95)

MJ = 108a1

( ma

10−22eV

)−3/2
(

Ωmh
2

0.14

)1/4

h−1M�. (2.96)

Here the k dependence has been converted to the dependence on the halo mass via

M ≡ 4
3
π(π/k)3 8. The best-fitting parameters are found to be {a1, a2, a3, a4, a5, a6} =

{3.4, 1.0, 1.8, 0.5, 1.7, 0.9}. Note that ignoring the time dependence has little effect on

the HMF for FDM masses (ma & 10−24eV) and redshifts (z . 15) that are concerned

in this dissertation, because the critical overdensity increases rapidly at small scales

and leads to a sharp cutoff of the HMF before the time dependence of G becomes

important (see also [2]).

Figs 2.8 and 2.9 show the critical overdensity for collapse δc at z = 0 for different

FDM fractions and different FDM masses, respectively. On large scales (large M),

δc stays constant just as CDM. But on small scales (small M), δc for FDM becomes

larger than that for CDM, indicating that smaller FDM halos are more difficult to

form. For the same FDM mass, the critical overdensity for collapse start to increase

at almost the same scale but the increase is larger for larger fraction of FDM. For

pure FDM models, the scale at which the δc start to deviate from CDM increases

with decreasing FDM mass.

Knowing the matter power spectrum and critical overdensity for collapse, the

only task remaining is to solve the excursion set problems Eqs. (2.85) and (2.86).

But before doing that, let us look at a more accurate model for the HMF that affects

both CDM and FDM. In the original Press–Schechter (PS) formalism, the collapse

of halos is assumed to be spherically symmetric. But in the real case, the overdense

region may be not ideally spherical. It has been found that the original PS formalism

does not agree perfectly with N -body simulations of CDM. It tends to underestimate

the abundance of massive halos and overestimate the abundance of low-mass ones.

A improved formula is proposed by Sheth and Tormen (hereafter “ST”) [129], which

fits accurately to N -body simulations of CDM:

f(S) = A

√
1

2π

√
qν
[
1 + (

√
qν)−2p

]
exp

(
−qν

2

2

)
1

S
, (2.97)

8Here we have assumed a top-hat filter when doing the conversion. Another choice is using the
sharp-filter so that M ≡ 4

3π(a/k)3 with a ∼ 2.5 [91]. But we have not explored the latter choice so
far and will leave it to future work.
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Figure 2.8: Critical overdensity for collapse at z = 0 with different FDM fractions
Ωa/Ωd. The fractions range from 0 to 1 with a step size of 0.1. The FDM mass is set
to 10−22eV. Reproduced from [1], Fig. 1.
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(based on the fitting formula from [2]) compared to standard CDM. Reproduced
from [1], Fig. 2.
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where ν ≡ δc(S)√
S

, A = 0.3222, p = 0.3, and q = 0.707. Later, [130] show that Eq. (2.97)

can be derived by considering ellipsoidal collapse. According to the Zel’dovich ap-

proximation (see [131] for a review), an ellipsoid overdensity collapses most rapidly

along the shortest axis. If we define the collapse of a halo as the time when the

longest axis collapses, the time of collapse in general will be later than that in the

spherical collapse model. The delay of collapse is more significant for less massive

halos because they are more influenced by the external tidal forces. In the ellipsoidal

collapse model, the critical overdensity for collapse is found to be well approximated

by [130]

δep
c (S) = δsp

c

√
q

[
1 + b

(
1

q ν2

)c]
, (2.98)

where b = 0.5 and c = 0.6. This formula remaps the critical overdensity in the

spherical collapse model δspc to the one in the ellipsoid collapse model δepc . With

this remapping, [132] solve the excursion problem and find that the obtained HMF

is very close to fitting function Eq. (2.97). Note that the remapping, Eq. (2.98), is

derived and calibrated for CDM. For FDM halos with mass M much larger than the

Jeans mass at matter-radiation equality MJ,eq, this remapping is expected to work

also for FDM since on these scales FDM behaves like CDM. But for FDM halos

with M < MJ,eq, FDM behaves very differently from CDM due to quantum pressure

before the mass scale exceeds the Jeans mass at the corresponding time. Thus this

remapping may be inaccurate and needs to be recalibrated to simulations of FDM.

As an approximation, in this dissertation we use the remapping for all FDM halos.

One of the important results of the remapping Eq. (2.98) is that δc is not constant

any more even for CDM. Thus the integral equation Eq. (2.86) can not be solved

analytically.

In previous works [55, 32], the HMF for FDM was computed using directly the ST

formula, Eq. (2.97), but with a redefined critical overdensity for collapse as defined in

Eq. (2.91). However, the ST formula was obtained for CDM whereas for a different

critical overdensity the solution for the first crossing distribution f(S) should be dif-

ferent. Strictly speaking, it is not self-consistent to substitute the critical overdensity

for FDM directly into the solution of f(S) for CDM. For this reason, we solve f(S)

from the integral equation Eq. (2.86) using a similar method as in [91]. However,

instead of a trapezoid rule for the integration, we implemented a mid-point rule that

is more stable for our case (see Appendix A) [1].
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2.3.2 Modification of the Tree Building Algorithm

In this dissertation, the merger trees are built using the Cole2000 algorithm [105]

implemented in GALACTICUS. The details can be found in Section 2.1.7. First, a set

of root halos {Mi} are drawn at redshift z = 0. Given a root halo mass, the algorithm

proceeds to construct a merger history by successively drawing branching events as-

suming binary mergers. The backwards evolution of a branch of the generated tree is

considered complete if the relevant halo has a mass below the mass resolution limit

which is a free parameter.

The branching probability is estimated from the conditional mass function com-

puted with the EPS formalism at two redshifts very close to each other assuming

spherical collapse (see 2.81). Since the collapse of halos is not perfectly spherical as

mentioned before, the branching probability calculated in this way does not accurately

match the simulations. Therefore, we use the [133] modifications to the branching

probability 9. Given a halo M0 at t0. The mean number of its progenitors with mass

Mres < M1 < M0/2 at an earlier time t2 = t0 −∆t is given by

Nmod
p =

ˆ M/2

Mmin

M0

M1

f0→1(S0, S1)G[δc, S(M0), S(M1)]
dS

dM1

dM1. (2.99)

Here, Mmin is the lowest mass of resolved halos andG[δc, S(M0), S(M1)] is an empirical

modification to Eq. (2.83) obtained by [133]:

G[δc, S(M0), S(M1)] = G0

(
S(M1)

S(M0)

)γ1/2( δ2
c

S(M0)

)γ2/2

, (2.100)

withG0 = 0.57, γ1 = 0.38 and γ2 = −0.01. Note that this modification is calibrated to

CDM N -body simulations, thus a recalibration may be needed for other dark matter

models. Nevertheless, we use the same form and parameters and leave the calibration

for FDM to future work when sufficiently large FDM simulations are available. As we

show later, the HMF for FDM obtained from the merger trees fits the HMF derived

above reasonably well even without a recalibration.

Additionally to binary mergers, the algorithm also accounts for smooth accretion.

In the case of CDM, this corresponds to merging events in which the main halo

accretes a small halo whose mass is below the mass resolution (see Eq. (2.84)). For

FDM, however, there is another source of smoothly accreted material, namely matter

9A remapping of the barrier is used when calculating the HMF. But here as in [91], we use the
[133] modifications to the branching probability instead of solving the excursion set problem with a
remapped critical overdensity.
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that is not locked up in a halo. The smooth accretion rate from this effect can be

estimated by [91]
dF

dt

∣∣∣∣
smooth

=
dfn
dt
G(δc, S(M0), Smax). (2.101)

Here,

fn = 1−
ˆ Smax

0

f(S)dS. (2.102)

[91] find that if this effect is not included, the mass of halos at higher redshifts will

be overestimated for non-CDM models.

In addition to smooth accretion, we note that for FDM the probability to find

any progenitors of a small halo with masses close to the HMF low-mass cutoff is very

small. Therefore, we add an additional criterion for the termination of a tree branch:

if the mass of a halo is small and the probability of finding any of its progenitors is

less than Pmin, the algorithm will terminate the tree branch even if the node’s mass is

larger than the mass resolution. Physically, such halos correspond to those forming

by collapsing density perturbations at that time as opposed to merging of smaller

halos or smooth accretion.

Note that the branching criteria Pmin must be chosen carefully. Like the HMF,

the branching probability f0→1 should drop off at small masses. Owing to numerical

artifacts, the derived branching probability becomes inaccurate when the progenitor

mass approaches the cutoff, thus Pmin must be chosen sufficiently large to avoid these

artefacts. On the other hand, if Pmin is too large, the number of progenitors will

be underestimated. Based on these two considerations, we choose different Pmin for

different FDM density fractions and masses.

2.3.3 FDM Halo Profile

In a cosmological simulation based on the comoving SP equations, [29] found that

FDM halos contain distinct solitonic cores embedded in an NFW-like profile. We can

approximate the density profile of FDM halos by

ρFDM(r) = Θ(rε − r)ρc(r) + Θ(r − rε)ρNFW(r), (2.103)

where Θ is the Heaviside step function, rε is the transition radius where the density

profile changes from cored profile to NFW-like behaviour, and the soliton density can

be well described by [29, 4]

ρc(r) =
1.9a−1(ma/10−23eV)−2(a−1rc/kpc)−4

[1 + 9.1× 10−2(r/rc)2]8
M�pc−3. (2.104)
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Defining the core mass Mc as the mass enclosed within rc, [4] found a relation between

the core mass and the halo mass,

Mc =
1

4
a−1/2

[
∆vir(z)

∆vir(0)

]1/6(
Mh

Mmin,0

)1/3

Mmin,0, (2.105)

where Mmin,0 = 375−1/4 × 32π∆vir(0)1/4ρm0(H0ma/~)−3/2Ω
−3/4
m0 is the minimum mass

of FDM halos at the current time and ∆vir(z) is the density contrast of a virialized

halo. It should be noted that by definition, Mc is at most 1/4 of the halo mass. For

a universe with a non-zero cosmological constant, ∆vir(z) is given by [134]

∆vir(z) =
1

Ωm(z)

[
18π2 + 82(Ωm(z)− 1)− 39(Ωm(z)− 1)2

]
. (2.106)

Here Ωm(z) is the matter fraction at the redshift z. For a matter dominated universe,

∆vir = 18π2 just as we have derived before (see Eq. (2.60)).

In actual computations, we do not implement the full density profile as in Eq. (2.103),

because rε is still unknown (see the discussion in [31]) 10. Instead, we model FDM

halos with NFW density profiles with a modified concentration parameter and ac-

count for the presence of the core as part of the satellite model that will be described

in Section Section 2.3.4. For models with mixed FDM and CDM, the halo density

profiles are treated in the same way as for CDM and no cores are assumed.

The shape of the NFW profile is determined by the concentration parameter.

halos collapsing earlier when the average density of the Universe was larger are more

concentrated. As shown in Section Section 2.3.1, FDM halos collapse at a higher

critical overdensity than their CDM counterparts. They form later than CDM halos

with the same mass, thus they are less concentrated. This is analogous to a similar

effect seen in WDM; to account for it, we estimate the concentration parameter for

FDM using a fitting formula derived for WDM [135]:

cFDM

cCDM

=

(
1 + γ1

M1/2

M

)−γ2

, (2.107)

where γ1 = 15, γ2 = 0.3, and M1/2 is the half-mode mass defined according to the

wavenumber at which the transfer function of FDM falls to one half of the transfer

function for pure CDM. The concentration parameter for CDM in Eq. (2.107) is

calculated according to [136]. In the absence of large FDM simulations for calibrating

the parameters γ1 and γ2, we set them to the same value as for WDM [135]. It is,

however, a plausible assumption that FDM behaves more like collisional matter than

10In a recent paper, [124] simulated multiple mergers of solitons and found rε ≈ 3.5rc.
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CDM as a consequence of quantum pressure, so that stripping may be more effective.

In order to account for these uncertainties, we increased (decreased) the value of γ2

by a factor of 2 (1/2) and adjusted γ1 to match the concentration parameter at the

half-mode mass. This variation gives rise to only an insignificantly small difference in

the subhalo mass function (SHMF). We also experimented with an alternative model

for the concentration parameter based on [137, 138], again finding only a small effect.

The apparent insensitivity of the SHMF to changes of the concentration parameter

justifies our use of Eq. (2.107) with WDM parameters until more detailed FDM

simulations become available.

2.3.4 Satellite Model

When constructing merger trees, we actually look backward in time to determine the

merger history of the halos at lower redshifts. These merger trees yield information

about hierarchical structure formation due to mergers, but does not contain any de-

tailed information about the merger process. The next task of SAMs is to look at

how galaxies populate and evolve with dark matter halos. The evolution of differ-

ent components in the halos, baryons and dark matter, are traced forward in time,

yielding the properties of galaxies that we can compare with observations. During

this process, additional models are needed. When two halos encounter in the merger

tree, they are not simply assumed to be merged immediately. Instead, the larger one

is treated as the host and the smaller one will be its subhalo. Subhalos together with

the satellite galaxies in their center are then evolved in the gravitational potential of

the host until they dissolve. In this dissertation, I will concentrate on the evolution of

dark matter (sub)halos. Hereafter, “satellite”, unless specified otherwise, will refer to

the subhalo rather than the satellite galaxy although they are closely related. At the

end, we get additional information about a dark matter halo, i.e. its substructure.

Searching for deviations in the halo substructure from the predictions of the CDM

model provides a promising way to constrain dark matter models.

GALACTICUS contains several different implementations of models for the evolu-

tion of satellites. The “simple” implementation only assumes that the satellite orbits

the host and its mass stays constant for some time tmerger. After that the satellite

is considered to be fully dissolved. The merger time scale needs to be modeled and

calibrated to match simulations. By default, GALACTICUS uses the fitting formula

from [139] which is calibrated to CDM N -body simulations:

tmerger =
0.94ε0.60 + 0.60

0.86

Mhost

Msat

1

ln (1 +Mhost/Msat)

rvir

Vvir

, (2.108)
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where ε is a parameter that characterize the eccentricity of the orbit. Mhost and Msat

are the masses of the host and satellite, respectively. rvir is the virial radius of the

host and Vvir is the circular velocity at rvir. However, GALACTICUS also allows us to

use several other formulas for the calculation of the merger time scale, e.g. the ones

from [100, 105, 140, 141, 142].

The “orbiting” implementation presented in [123] is a more sophisticated model.

It follows the mass loss of the satellites due to tidal stripping and tidal heating, and

integrates the satellites’ orbits including a submodel for dynamical friction to derive

the actual merger time. Here, we briefly summarize the model ingredients (see [123]

for more details).

If an object becomes a satellite, it is assigned an orbit, drawing the orbital pa-

rameters from PDFs that have been derived from N -body simulations. We use

GALACTICUS’ default choice for these PDFs (see [143, 144]). The dynamics of the

satellite in its host’s gravitational potential are then evaluated, adding an additional

acceleration adf from the dynamical friction [145]:

adf = −4πG2 ln ΛMsat ρhost(rsat)
Vsat

V 3
sat

[
erf(X)− 2X√

π
exp(−X2)

]
, (2.109)

where Msat is the mass of the satellite, ρhost(rsat) is the density of the host halo at

the distance of the satellite, Vsat is the velocity of the satellite, X = Vsat/
√

2σv with

the velocity dispersion of the host σv, and ln Λ is the Coulomb logarithm.

To account for tidal stripping, a tidal radius is defined so that all the mass outside

the tidal radius is stripped from the satellite in one orbital period [146]:

x3
t =

GMsat(< xt)

ω2 − d2Φ/dr2
, (2.110)

with Msat(< xt) being the enclosed mass within the tidal radius, ω the angular veloc-

ity, and Φ the gravitational potential from the host. The mass loss rate due to tidal

stripping is given by

Ṁ = α
Msat(< xt)

Torbit

, (2.111)

where α is a free parameter needed to be calibrate to simulations and Torbit is the

orbital time of the satellite. In practice, the angular period and the radial period of

the satellite are computed and Torbit is taken to be the larger one, i.e.

Torbit = 2πrsat max

{
rsat

rsat × V
,

rsat

rsat · V

}
(2.112)
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Finally, when the satellite has a close encounter with the host, the tidal force

changes on time scales much less than the characteristic dynamical time of the satel-

lite, leading to a shock on the satellite. The satellite obtains extra dynamic energy

after the encounter (shock), i.e. is heated up. This effect is called tidal heating. It ex-

pands the satellite and makes it more susceptible to tidal stripping. In GALACTICUS,

this effect is modelled using the results by [147, 148].

In summary, as the satellite orbits the host, its orbital radius shrinks over time due

to dynamical friction and its bound mass decreases gradually due to tidal stripping.

Eventually it is fully dissolved in the host. Several criteria are used for terminating

the evolution:

(1) the distance to the host is lower than the sum of the half-mass radius of both

satellite and host;

(2) the distance to the host becomes less than 1 percent of the host’s virial radius;

(3) the bound mass of the satellite is less than some fraction (1 percent by default)

of its initial mass when becoming a satellite.

If either one of the above criteria is satisfied, the satellite will be assumed to be fully

merged with the host.

2.3.5 Modifications for FDM

The existence of a core in the halo is a generic property of FDM models, changing the

dark matter halo profile. While we expect these changes not to be significant at large

radii, the close interaction of satellites and hosts with each other may potentially

depend on the profile. In order to estimate the range of potentially observable effects,

we use the satellite model to test several model assumptions, motivated in part by

[62] who ran detailed simulations of merging solitonic cores.

As a first assumption, we set the tidal stripping rate to zero once the bound mass of

the satellite approaches 4Mc (the total mass of an FDM halo when it is dominated by

the solitonic core), representing the idea that the compact core of the satellite is stable

against tidal disruption. We will revisit this assumption in Chapter 3. Secondly, we

change the merging criteria. Host and satellite merge if the distance between them

is smaller than the sum of their core radii, or if the satellite has less than 1 percent

of its initial bound mass left. The criterion for the core radius is motivated by the

observation that merging events happen rapidly once the cores touch [62]. Physically,

this is expected only to be relevant for small halos that have relatively dominant cores
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while in more massive objects, one would expect the dynamics to be governed by the

extended halo rather than the core. However, for these massive halos the bound mass

criterion will apply before the cores interact, yielding only mild changes in the SHMF

at high masses (see Section 2.4.3).

Additionally, the core mass is assigned along the merger history. First, we assign

a core mass to all the halos in a tree that have no progenitors according to the core

mass–halo mass relation found in [4], i.e. Eq. (2.105). Then the core mass may be

changed by merger events. Minor mergers, defined as mergers with core mass ratios

higher than 7/3, do not affect the core mass of a halo. This is again motivated by

[62] who showed that at high core mass ratios, the core of the smaller halo is simply

disrupted and does not add mass to the solitonic core. For major mergers (mergers

with mass ratios smaller than 7/3), we set the core mass of the descendant halo Mc

given the core masses of the progenitors, Mc,i, to

Mc = β
∑
i

Mc,i, (2.113)

where β parametrizes the mass loss of the cores in a merging event. A value of β = 1

corresponds to the case where the core masses are simply summed up. We use a value

of β = 0.7 as found by [62].

As a last modification, we disable the tidal heating in the model. It is unclear

how tidal heating would affect an FDM profile that has a core. In particular, the core

itself should not expand at all. Therefore, we simply ignore tidal heating.

We note that we do not modify other parts of the satellite model. For instance,

we use distributions of the orbital parameters of satellites calibrated from CDM sim-

ulations. Obtaining these distributions for FDM will require large cosmological sim-

ulations that are not available to date. In this work, we broadly explore the possible

effects of FDM cores on these scales. A complete, self-consistent model is beyond the

scope of this thesis.

2.4 Results for (Sub)halo Mass Function from SAMs

The GALACTICUS code v0.9.4 (revision c49f04858120) is used with the modifications

explained above (Section 2.3). We compare the results for different FDM density

fractions Ωa/Ωd and different FDM masses ma with the standard CDM model. The

cosmological parameters are taken from Planck 2015 [77]: Ωm = 0.306, ΩΛ = 0.694,

h = 0.6781, ns = 0.9677, and σ8 = 0.8149.
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Figure 2.10: HMF for FDM fraction f = 1.0 (solid lines) compared to standard CDM
(dashed lines). Redshifts range from z = 14 to 0, obtained using our new calculation
detailed above (left panel) and the Sheth–Tormen formalism (right panel). The FDM
mass is set to ma = 10−22eV. Reproduced from [1], Fig. 3.

2.4.1 Halo Mass Function

As discussed in Section 2.3.1, we solve the excursion set problems numerically for

FDM with a redefined critical overdensity for collapse for FDM. The HMF we obtain

for pure FDM with ma = 10−22eV is shown in Fig. 2.10 (left panel), with each line

showing the HMF at a different redshift (see legend). We also show in the right panel

the FDM HMF as derived in previous investigations [32] by simply replacing the

critical overdensity in Eq. (2.97) with the one for FDM. Here the critical overdensity

for collapse before remapping is computed using numerical results from AxionCAMB.

As we can see from Fig. 2.10, left panel, the HMF of FDM we obtain numerically

shows the characteristic cutoff below a redshift-dependent minimum mass owing to

quantum pressure. Compared with the ST formalism (right panel), we obtain a higher

cutoff. At z = 0, the cutoff mass is about 6×108h−1M�, roughly four times the value

obtained from the ST formalism. Additionally, the cutoff mass of the HMF changes

less strongly with redshift. At z = 14, the cutoff mass is 2 × 109h−1M�, only two

times of the value obtained from the ST formalism.

Next, we consider the case that DM is composed of a mixture of CDM and FDM

(where the CDM component may simply be another ULA species with higher mass).

We fix the total matter density of DM and change the fraction of FDM, Ωa/Ωd,

from 0 (pure CDM) to 1 (pure FDM). The HMFs at z = 0 for different fractions is

shown in Fig. 2.11. We find that on large scales, the HMFs for MDM models are

consistent with CDM as expected. However, on small scales the HMF is suppressed.
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Figure 2.11: HMF at z = 0 with different FDM fractions f . The fractions range from
0 to 1 with a step size of 0.1. The FDM mass is set to ma = 10−22eV. Reproduced
from [1], Fig. 4.

With increasing Ωa/Ωd, the suppression becomes more and more significant. Around

equipartition between CDM and FDM (Ωa/Ωd ∼ 0.5), we recover a sharp cutoff as

in the pure FDM case, albeit at lower cutoff masses (∼ 107h−1M�). For higher

Ωa/Ωd, the cutoff mass increases. All of these results are, mostly by construction,

qualitatively consistent with [55].

Finally, we also consider different particle masses for FDM, using fitting functions

for the transfer function, Eq. (2.88) in [25], and G, Eq. (2.93) [2]. The results are

shown in Fig. 2.12. We find the cutoff in the HMF changing with FDM mass as

expected. The smaller the FDM mass, the larger the cutoff; e.g. for ma = 10−24eV,

the cutoff mass is about 1012M�, a possibility clearly ruled out by the existence of

Milky Way-sized halos.

Note that [99] use a sharp-k filter to derive the EPS HMF. In this case, there

is no clear definition of mass corresponding to the filter scale (see the discussion in

Section 2.1.6). Thus, as is usually done in the CDM case, we solve the excursion set

problem assuming the sharp-k filter11, but use the top-hap filter when converting the

11If a different filter, e.g. a top-hap filter in the space or a Gaussian filter is used, when we change
the filter scale, unlike in the case of a sharp-k filter [see Eq. (2.74)], the change of the smoothed
overdensity will not be a Markov processes. Thus the equation Eq. (2.86) will be very different from
what we have used (see e.g.[149]).
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Figure 2.12: HMF at z = 0 with different FDM masses compared to standard CDM.
Reproduced from [1], Fig. 5.

variable S (variance of the smoothed oversensity field) to halo mass (see Eq. (2.67)).

Further discussions on different choices of window function for DM models with a

suppressed power spectrum on small scales can be found in [101] and [102].

To test how accurate the HMF we derive is, we compare our result to the fitting

formula found by [33]:

dn

d lnM

∣∣∣∣
FDM

=
dn

d lnM

∣∣∣∣
CDM

[
1 +

(
Mh

M0

)−1.1
]−2.2

, (2.114)

where M0 = 1.6 × 1010m
−4/3
22 M�. In order to get this formula, [33] perform N-

body simulations with FDM initial conditions, i.e. the quantum pressure during the

nonlinear collapse is neglected.

Fig. 2.13 shows the HMF at z = 0 for pure FDM with ma = 10−22eV we obtained

(solid black line) by solving the excursion set problems numerically compared to the

prediction of the fitting function Eq. (2.114) (thick dashed line). For comparison, we

also show the ST HMF for both CDM (thin dashed line) and FDM (dotted line). The

orange line presents the HMF for FDM computed from another model proposed in

[102], i.e. using a sharp-k filter in the ST formula Eq. (2.97) with the parameter q = 1
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Figure 2.13: Halo mass function for FDM computed from different approaches com-
pared to CDM.

(the critical overdensity for collapse is taken to be the same as in the CDM model).

As can be seen, the ST HMF for FDM predicts too many small halos compared to

the fitting formula. The sharp-k model can roughly capture the suppression scale of

the HMF but underestimates the number of small halos. The HMF we obtained is

close to the ST HMF at large and medium masses but drops off at a higher mass,

thus is slightly more consistent with the fitting formula12. None of the models can

reproduce perfectly the behavior of HMF seen in the simulations by [33]. However,

we should note that in their simulations, the quantum pressure during the nonlinear

collapse is not accounted thus the abundance of the smallest halos which are most

affected by this effect is not accurate.

In [3], the fitting function Eq. (2.114) is used to compute the cumulative HMF for

FDM and to compare with the observed abundance of ultra-faint lensed galaxies in

the Hubble Frontier Fields. Since the HMF for FDM drops off at lower masses, the

cumulative number density of halos above Mmin

n(M > Mmin) =

ˆ ∞
Mmin

M
dn

d lnM
dM (2.115)

12This may change at very high redshifts when the HMF we obtain is always below the prediction
of the fitting formula Eq. (2.114).
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Figure 2.14: Cumulative number density of halos with M > 106M� at z = 6 calcu-
lated from different HMFs compared to observation [3]. m22 ≡ ma/(10−22eV ).

saturates at a maximum value when Mmin approaches 0. Thus the number of galaxies

observed puts a lower limit on n(M > Mmin) with Mmin → 0. In Fig. 2.14, we show

the cumulative number density of halos with M > 106M� at z = 6 for different FDM

masses computed from the HMF we obtained numerically (solid curve) compared to

the 1 − σ, 2 − σ and 3 − σ regions of the observed cumulative number density from

[3]. We also show the cumulative number density computed from the fitting HMF

by [33] and the ST HMF for FDM. Similar to previous conclusions, the ST HMF

overestimates the number of halos thus gives a less strong constraint on the FDM

mass. For smaller FDM masses, the cumulative number density we obtain has a

larger deviation from the one obtained by considering the fitting HMF Eq. (2.114).

But for FDM with ma > 5× 10−22eV, our results are very close to the one computed

from Eq. (2.114). Thus we get a similar lower constraint of 7 ∼ 8 × 10−22eV on the

FDM mass as in [3].

2.4.2 Validating Merger Trees

To check the consistency of the merger tree algorithm, we run merger trees with 1000

trees per decade in mass for halos with masses in the range [4× 108, 4× 1013]M� at

z = 0. The mass resolution is set to 2× 108M�.
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We compare the HMF obtained by counting the halos in our merger trees with

the one derived from solving the excursion set problems at different redshifts. The

left panel of Fig. 2.15 shows the HMF at z = 0 for pure FDM, Ωa/Ωd = 0.5, and pure

CDM, with the symbols showing the data while the lines show the expected HMF

from directly solving the excursion set problem as discussed in the previous sections.

In order to show the points and error bars more clearly and avoid overlapping, the

centers of bins are chosen slightly differently when counting the halos in merger trees.

We can see that the HMFs obtained from merger trees can reproduce the excursion

set problem solutions. The large errors at higher masses are due to relatively few

massive halos.

Similarly, the right panel of Fig. 2.15 shows the HMF obtained from the merger

trees compared to the direct solution for pure CDM and two different FDM masses.

The agreement with the expectations is good.

The left (right) panel of Fig. 2.16 again shows the HMF from the merger trees

for different FDM fractions Ωa/Ωd ( FDM masses), but for a different redshift of

z = 3. We find an acceptable agreement, despite small deviations at intermediate

halo masses. At even larger redshifts, the HMFs derived from the merger trees de-

viate more from the excursion set solutions. This is caused by small deviations in

the branching modelling that accumulate with redshift, since the tree generation al-

gorithm works “top to bottom”, i.e. it starts at z = 0 and generates progenitors.

This deviation suggests that we may need to recalibrate the [133] modifications to

the merger rate for FDM to get more accurate merger histories. Since there exist no

sufficiently large cosmological simulations for FDM at present, we leave this to future

work. We will show that this deviation at higher redshifts does not have a significant

effect on the substructures of halos at lower redshifts.

2.4.3 Subhalo Mass Function

In Section 2.4.1, we have shown HMFs for FDM with different density fractions and

masses from our new approach. In this section, we will use the satellite models

described in Section 2.3.4 and the modifications presented in Section 2.3.5 to explore

the subhalo mass function (SHMF).

We ran merger trees with 1000 trees per decade in mass for Milky Way-sized

parent halos, 1× 1012 < Mhost < 3× 1012M�. We chose a mass resolution of Mres =

5×107M� and compared the results from two different satellite models, the “simple”

implementation and the “orbiting” implementation. For the pure FDM case, we

use the orbiting model with the modifications outlined above (see Section 2.3.5); for
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Figure 2.15: HMF from merger trees at z = 0 for different models. Symbols indicate
the data from the merger trees, the lines indicate the directly calculated HMF. Left:
HMF from merger trees for pure FDM and MDM compared to standard CDM. The
FDM mass is set to ma = 10−22eV. Right: HMF from merger trees for pure FDM
with different masses compared to standard CDM. Reproduced from [1], Figs. 6 and
7.
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Figure 2.16: HMF from merger trees at z = 3 for different models. Left: HMF from
merger trees for pure FDM and MDM compared to standard CDM. The FDM mass
is set to ma = 10−22eV. Right: HMF from merger trees for pure FDM with different
masses compared to standard CDM. Reproduced from [1], Figs. 8 and 9.
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Figure 2.17: Cumulative distribution of the redshifts at which z = 0 subhalos became
subhalos for pure FDM (f = 1) with ma = 10−22eV. Reproduced from [1], Fig. 10.

CDM and MDM, we use the unmodified version. In the orbiting implementation,

we use the same parameters as in [123]: the Coulomb logarithm ln Λ = 2.0 and the

tidal stripping mass loss rate parameter α = 2.5. The model for tidal heating in the

orbiting implementation is switched off since it is physically unclear how this is to be

treated given that FDM halos are expected to have compact cores.

As discussed in last section, the HMF obtained from merger trees may deviate

from the one obtained by solving the excursion set problems at redshift z > 3. This

indicates that the merger tree structure at high redshifts suffers from the uncertainty

caused by an inaccurate calculation of merging rate. In order to check how signifi-

cantly this affects the SHMF, we use the redshift at which subhalos were last isolated

as a diagnostic. As long as most of the subhalos with ziso > 3 have been completely

merged in their host at z = 0 (and therefore are not present in the substructure

of their hosts), the high-redshift HMF does not affect the SHMF at low redshift.

In Fig. 2.17, we show the cumulative fraction of subhalos with last isolated redshift

ziso ≥ z for the case with f = 1 and ma = 10−22eV. As can be seen, less than 10

per cent of subhalos originate from isolated halos at redshifts larger than 3. Thus,

the uncertainty at higher redshifts can only have a very small effect on the SHMF at

z = 0.

To show the effects of dynamical friction and tidal stripping in the orbiting model

54



108 109 1010 1011 1012

M [M⊙ ]

10-5

10-4

10-3

10-2

10-1

100

101

d
n
/d

ln
M

[M
p
c−

3
]

Simple

Fric

Strip

Fric+Strip

Figure 2.18: SHMF from merger trees for standard CDM. ‘Fric’ refers to dynamic
friction and ‘Strip’ refers to tidal stripping. Reproduced from [1], Fig. 11.

separately, we show the SMHF with each effect switched on and compare them with

the simple model. For the simple model, we use the merger time computed from

[139], i.e. Eq. (2.108). We note that in the following, we use the concentration

parameter as defined for CDM (see Section 2.3.3). We will analyze the influence of

the concentration parameter on the stripping efficiency and therefore on the SMHF

later. Fig. 2.18 shows the results for CDM, similar to Figs 2 and 3 in [123]. Due to

changes between version v0.9.3 and v0.9.4 in GALACTICUS, there exist some small

differences but the results are still comparable. We can see that if only dynamical

friction is active, the SHMF is broadly consistent with the simple model. The tidal

stripping effect reduces the amplitude of the SHMF. This is because the mass bound to

the subhalos is gradually stripped by tidal forces, shifting the SHMF to the left which

in turn makes the subhalos more vulnerable to further stripping. This is consistent

with the results of [123].

Fig. 2.19 shows the SHMF for MDM with Ωa/Ωd = 0.5 (left panel) and pure FDM

(right panel). The FDM mass is taken to be 10−22eV. For the MDM case, we use

the original orbiting implementation, i.e. we do not include the effects arising from

solitonic cores. As can be seen, if some fraction of dark matter is FDM, the SHMF
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Figure 2.19: SHMF from merger trees for MDM with Ωa/Ωd = 0.5 (left) and pure
FDM. The FDM mass is set to ma = 10−22eV. Modified from [1], Figs. 12 and 13.

is suppressed at lower masses.

In the simple satellite model and the orbiting model with only dynamical friction,

subhalos do not lose mass until they dissolve within the host halo. In these models,

we therefore observe a sharp cutoff in the SHMF at the HMF mass cutoff. In the

more realistic orbiting model including tidal stripping, the subhalos will gradually

lose their mass due to tidal stripping. This effect can be identified in Fig. 2.19; the

SMHF obtained from the orbiting model including tidal stripping is shifted to the

lower mass end. In particular, for the pure FDM case, we can see a bump that peaks

at 3− 4× 108M� if we include tidal stripping in the orbiting model. This is expected

as a consequence of our modification to stop tidal stripping at the solitonic core

(cf. Section 2.3.4). These naked cores orbit their hosts until they satisfy one of the

merging criteria, yielding a bump in the SMHF around 4Mc (the factor 4 follows from

the definition of the core mass). At present, this feature is a direct consequence of

our model assumptions. Large simulations resolving subhalo structure and dynamics

are required to determine whether the feature in the SMHF is physical. In Chapter 3,

we will further discuss the evolution of solitonic cores in the host by doing idealized

simulations.

The left panel of Fig. 2.20 shows a comparison of the SHMFs for FDM, MDM

(Ωa/Ωd = 0.5), and CDM using the orbiting implementation with dynamical fraction

and tidal stripping switched on. It can be seen that the SHMFs for FDM and MDM

are suppressed at smaller masses compared to CDM, while at larger masses the three

models are coincident.
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Figure 2.20: SHMF for FDM and MDM (f = 0.5) using the “orbiting” implementa-
tion with dynamical friction and tidal stripping compared with the standard CDM.
The FDM mass is set to ma = 10−22eV. Modified from [1], Figs. 14 and 15.

We also compare the SHMF for FDM with different masses in the right panel of

Fig. 2.20. For the case of ma = 10−23eV, we ran the merger trees with 4000 trees

per decade in mass in order to reduce the statistical errors close to the cutoff. With

decreasing FDM mass, there are fewer lower mass subhalos as expected from the

increased mass cutoff in the HMF for lower axion masses.

In Fig. 2.21, we show the results for SMHF for two different choices of the con-

centration parameter as described in Section 2.3.3. The differences are marginal.

However, for the modified concentration parameter, the lower concentration param-

eter make halos more susceptible to tidal stripping. Consequently, the SMHF in the

mass range 2× 109 ∼ 1011M� is slightly lower.
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Figure 2.21: SHMF for FDM with and without modification to concentration param-
eter. The FDM mass is set to ma = 10−22eV. Reproduced from [1], Fig. 16.
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2.5 Core Mass-Halo Mass Relation

As mentioned before, simulations of cosmic structure formation [29] and merging soli-

tonic solutions [4, 62, 124] based on the Schrödinger-Poisson (SP) equations indicate

that FDM halos contain distinct cores surrounded by NFW-like profiles. [4] find that

the mass of these cores, Mc, is related to the halo mass, Mh, by a power law relation,

Mc ∝M
1/3
h (see Eq. (2.105)). They propose an explanation based on the relation

Mc = α (|E|/M)1/2 , (2.116)

where E is the total energy, M is the total mass, and α is a constant of order

unity, which they motivate heuristically with nonlocal consequences of the Heisenberg

uncertainty relation. More specifically, the left-hand side Mc is inverse to the core

radius rc, which can be easily checked by integrating the density profile of the solitonic

core Eq. (2.104). The right-hand side represents the halo velocity dispersion σv. Thus

Eq. (2.116) just indicates that rcσv ∼ 1, where we have ignored possible constants

such as ~ and ma. This looks very similar to the uncertainty relation. Identifying M

and E with the virial mass Mh and its energy Eh ∝ M2
h/rvir ∝ M

5/3
h in Eq. (2.116),

the numerically measured core-halo mass relation, Mc ∝M
1/3
h , can be recovered.

Note that the SP equations remain unchanged under the transformation (r,M,E)→
(r/λ, λM, λ2E) [150]. While Eq. (2.116) is consistent with this intrinsic scaling prop-

erty, it is not unique (i.e., it can be multiplied by any scale invariant combination

of |E| and M , e.g. (|E|/M2)γ). Removing any residual effects of the scaling sym-

metry by constructing and analyzing scale invariant quantities, [62] were unable to

reproduce this relation in simulations of solitonic core mergers (see also [124]). Fur-

thermore, the model of [4] does not account for the combined evolution of Mc and

Mh by halo mergers after the initial collapse of density perturbations which is known

to be an important ingredient in hierarchical structure formation.

Comparing the initial and final masses of merging cores, [62] find a universal be-

havior of the core mass loss in mergers that depends nearly entirely on the mass ra-

tio. As described in Section 2.3.5, we have implemented this feature in GALACTICUS,

which enable us to track the core mass along the merger history.

In this section, we will further present a model for the core mass as a function

of halo mass which is entirely based on the fractional core mass loss during major

mergers. No further assumptions about the quantum nature of FDM halos and cores

are necessary [5]. In particular, our model is independent of the dynamics of halo

formation by gravitational collapse and hence insensitive to the initial core-halo mass

relation of newly formed halos.
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2.5.1 Simplified Model

Given the mass loss fraction of cores during each merger, we can calculate the evo-

lution of core mass along the merger history. Since cores merge and relax to their

final state on a dynamical time scale once they begin to overlap [62], we only need to

consider isolated binary mergers.

To calculate the evolution of core masses, we first need to know the initial core

masses for halos without progenitors, i.e., those that form from direct collapse. Their

mass is determined by the cutoff mass in the halo mass function (HMF), because

the halos form hierarchically. As shown in [1], the cutoff mass depends only mildly

on redshift, so the directly collapsed halos have approximately equal masses, Mh,min,

independent of their collapse redshift. The initial core masses are therefore also

expected to have roughly equal values, Mc,min.

Halo mergers change both core and halo masses. [62] find that only mergers with

mass ratio µ < 7/3 yield an increased core mass Mc = β(Mc1 +Mc2). Here, Mc1 and

Mc2 are the masses of the initial cores and (1−β) is the core mass loss fraction, where

β ∼ 0.7 independent of the initial core masses. We refer to mergers with µ < 7/3

as major mergers. Larger mass ratios (minor mergers) leave the core mass of the

more massive halo unchanged and result in the total disruption of the smaller halo.

Smooth accretion corresponds to accretion with very high mass ratios and is treated

in the same way.

In summary, in our model three types of physical interactions can change the core

and halo masses: smooth accretion (see [1] for more details), minor mergers, and

major mergers. The first two increase the mass of the halo but leave the core mass

unchanged. Major mergers increase both halo and core masses.

Our model is based on a simplified description of the merging process. Suppose

that N halos with halo mass Mh,min and core mass Mc,min merge to form one halo

with mass Mh whose contribution from mergers is NMh,min. Assuming that the mass

contributed by smooth accretion is also proportional to NMh,min, i.e. more massive

halos accrete more mass from their surroundings, we have

Mh = αNMh,min. (2.117)

If the final halo encounters Nmajor major mergers and Nminor minor mergers, then

N = Nmajor +Nminor + 1. (2.118)

60



The more major mergers the final halo encounters, the more minor mergers it also

tends to have. Hence, we can assume

Nminor = b(β)Nmajor. (2.119)

Here we have added the dependence on β to the parameter b since the definition

of major (minor) merger is closely related to β. We will show below that the as-

sumptions Eqs. (2.117) and (2.119) are reasonable. Given the mass of the final halo,

Eqs. (2.117), (2.118) and (2.119) allow us to estimate the number of major mergers

it has encountered:

Nmajor =
1

1 + b(β)

(
Mh

αMh,min

− 1

)
≈ 1

1 + b(β)

Mh

αMh,min

. (2.120)

Since minor mergers do not change the core mass, we only need to consider major

mergers when estimating the final core mass Mc. Suppose that during every major

merger, both progenitors have the same core mass, i.e. the (Nmajor + 1) first-formed

halos with core mass Mc,min merge pairwise and form
Nmajor+1

2
halos with core mass

2βMc,min. This process continues until the formation of the final halo with mass Mh.

The other (N − Nmajor − 1) first-formed halos are assumed to be accreted by minor

mergers, thus they do not affect the core mass.

Fig. 2.22 shows a schematic diagram of the merger history of cores with the solid

(dashed) line representing major (minor) merger and the dotted line representing

smooth accretion.

As explained above, the first-formed halos have nearly identical core masses, hence

the assumption that all major mergers have core mass ratio µ = 1 is reasonable for

the first generation of merging events. As halos continue to merge, we overestimate

the core mass because there will be major mergers with µ > 1 and correspondingly

smaller core mass growth.

Finally, after log2(Nmajor+1) generations of major merger events and Nminor minor

merger events, the final halo has a core mass of

Mc = (2β)log2(Nmajor+1)Mc,min

= (Nmajor + 1)log2(2β)Mc,min

≈ (Nmajor)
log2(2β)Mc,min. (2.121)

61



  t

Figure 2.22: An example of a merger tree with 7 major mergers (solid lines) and
2 minor mergers (dashed lines). The dotted lines represent the smooth accretion.
Note that the size of the circle represents the mass of the core (not necessarily in a
consistent scale).
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Substituting Eq. (2.120) into Eq. (2.121), we have

Mc =

[
1

1 + b(β)

Mh

αMh,min

]log2(2β)

Mc,min ≡ AM
log2(2β)
h . (2.122)

Note that although the relation Eq. (2.122) does not explicitly depend on redshift,

the prefactor A does since α and b may change with redshift. On the contrary, the

exponent of Mh only depends on the core mass loss fraction. In a binary merger, the

core mass of the descendant will not be larger than the sum of core masses of its two

progenitors, so β ≤ 1 (e.g. [62] found β ∼ 0.7). Treating (2β − 1) as a small number,

Eq. (2.122) yields

Mc ∝M
log2(2β)
h ≈M

(2β−1)/ ln 2
h ≈M

1.44(2β−1)
h (2.123)

to leading order. As discussed above, this relation overestimates the core mass when

binary mergers with µ > 1 are involved. We will account for this effect below when

comparing this prediction to our results from SAMs.

2.5.2 Testing with Monte-Carlo Merger Trees

In order to test the core-halo mass relation given in Eq. (2.122), we use the modifica-

tions to the SAM code GALACTICUS for FDM described in Section 2.3 and build 2000

merger trees for root halos with 4× 1011 < Mh < 4× 1013M�. The mass resolution is

set to 2 × 108M�. Without loss of generality, we set ma = 10−22eV. The parameter

β is set to 0.7 as found by [62] unless specified otherwise.

Fig. 2.23 shows an example of 15 trajectories of the core-halo mass relation chosen

from the merger trees, i.e. each line shows the evolution of the core mass and halo

mass along the main branch of one merger tree. The effects of smooth accretion, minor

mergers, and major mergers can clearly be seen in this figure. Smooth accretion and

minor mergers increase the halo mass while the core mass remains constant. Major

mergers increase both the core mass and the halo mass.

Eq. (2.122) predicts that while the proportionality factor A may depend on the

initial core mass Mc,min, the exponent is independent of it.

To test the dependence of the core-halo mass relation on initial conditions, we

implemented a power-law initial relation Mc,ini ∝ Mn
h,ini for halos that have no pro-

genitors in the modified GALACTICUS code. Figure 2.24 shows the results for n = 1/3,

n = 1, and n = 2. Clearly, the core-halo mass relation at z = 0 depends only very

weakly on the initial mass distribution.
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Figure 2.23: Evolution of core mass and halo mass for several merger trees. Only
the main branch is shown. The straight line up-left shows the Schive et al. core-halo
mass relation with arbitrary normalization as a reference.

In [4], the 1/3 power-law relation between the core and halo mass is explained via

the uncertainty principle. Although this approach may not be valid for halos which

have encountered many mergers, it is applicable for halos that have just collapsed.

Since there is no other preferred choice, we will use n = 1/3 to set the initial core

mass below. As is shown above, this specific choice does not have a significant effect

on our results.

Next, we verify the two assumptions made in deriving Eq. (2.117) and Eq. (2.119).

The left panel of Fig. 2.25 shows the halo mass Mh with respect to the number

of first-formed halos N obtained from merger trees. Despite large scatter at small

N representing halos that have only encountered few mergers and are thus more

strongly affected by the uncertainty of individual events, the assumed linear depen-

dence Eq. (2.117) fits well.

The center panel of Fig. 2.25 shows the number of minor mergers Nminor with

respect to the number of major mergers Nmajor. Again, at small Nmajor the data

points have large scatter, but in general the assumption Eq. (2.119) gives a reasonable

fit. Finally, the right panel of Fig. 2.25 shows the halo mass Mh with respect to the

number of major mergers Nmajor. This plot is a combination of the first two and is

just meant to give a more relevant comparison between Eq. (2.120) inferred from the
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Figure 2.24: The core mass with respect to the halo mass at z = 0 for different initial
core-halo mass relation: n = 1/3 (left), n = 1 (center), and n = 2 (right). The dashed
line shows the core-halo mass relation from [4], n = 1/3, at z = 0. The solid lines
show the linear and square relations for comparison. Reproduced from [5], Fig. 1.
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Figure 2.25: Left: the halo mass with respect to the number of first-formed halos.
The solid line corresponds to Eq. (2.117). Center: the number of minor mergers
with respect to the number of major mergers [solid line given by Eq. (2.119)]. Right:
the halo mass with respect to the number of major mergers [solid line given by
Eq. (2.120)]. Reproduced from [5], Fig. 2.

two assumptions and the results from merger trees.

To study the impact of the core mass loss fraction, we varied the value of parameter

β between 0.5 and 1. Correspondingly, we must also modify the definitions of minor

and major merger: if the core mass ratio is larger (smaller) than β/(1−β), the merger

is defined as minor (major) merger. For β = 0.7, we obtain the former definition.

Before showing the results from merger trees, we consider two extreme cases. In

the case of β = 0.5, the core mass does not change during any of the three possible

interactions. The final core mass is solely determined by the initial core mass and

independent of the final halo mass. On the contrary, for β = 1, all mergers will be

major mergers and the final core mass is given by Mc = NMc,min. Since the halo

mass is also proportional to N [Eq. (2.117)], in this case the core-halo mass relation

is linear. Expressed in the form Mc ∝ M
γ(β)
h , we thus have γ(0.5) = 0 and γ(1) = 1.

A simple linear parametrization for γ(β) is 2β − 1 which yields the core-halo mass
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Figure 2.26: The core-halo mass relation at z = 0 for different β compared with
predictions of different models. The three lines are matched at Mh = 1012M�. Re-
produced from [5], Fig. 3.

relation

Mc ∝M2β−1
h . (2.124)

Note that it is very similar to Eq. (2.123) obtained from the merger history.

Figure 2.26 shows the core-halo mass relation at present time for different β and

compares them with the predictions from [4], Eq. (2.122), and the linear parame-

terization Eq. (2.124). Despite the simplifications in deriving Eq. (2.122), we find

reasonable agreement for the core-halo mass relation for different core mass loss frac-

tions (1−β). At larger halo masses (implying more major mergers), the prediction of

our model Eq. (2.122) tends to overestimate the core masses. Equation (2.124) gives

a slightly better fit, implying that we can use it as a correction to Eq. (2.122). For

β = 0.7 [62], Eq. (2.124) yields Mc ∝M0.4
h . It is close to the relation Mc ∝M

1/3
h and

fits the cosmological simulations [29] equally well.

In order to compare the core mass predicted for FDM halos with observations, the

prefactor A in Eq. (2.122) is also important. According to our results, we can replace

log2(2β) in Eq. (2.122) with 2β − 1 to give a better estimate of the core-halo mass

relation. If we further assume that at the beginning, i.e. prior to any mergers, there

were only pure solitons (instead of virialized halos produced by mergers of solitons),

the initial core mass is Mc,min = 1
4
Mh,min by definition [29, 4]. Then we have

Mc =
1

4
B

(
Mh

Mh,min

)2β−1

Mh,min, (2.125)
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where B ≡ 1/{α[1 + b(β)]}2β−1. The redshift dependence is implicitly contained in

the function B. If β = 2/3, Eq. (2.125) coincides exactly with the core-halo mass

relation in [4], i.e. Eq. (2.105).

2.6 Conclusions and Discussions

In this chapter, I introduced some basic knowledge and tools that are widely used

in cosmology. The linear perturbation theory within the standard cold dark matter

(CDM) model and the fuzzy dark matter (FDM) model is compared in detail. Unlike

in the CDM model, where linear overdensities grow on all scales due to the gravita-

tional instability, in FDM model the coherently oscillating scalar fields give rise to

a scale-dependent sound speed that suppresses the growth of overdensity below the

Jeans length. Thus the linear matter power spectrum of FDM is largely suppressed

on small scales.

I then discussed the spherical collapse model. For CDM, analytic solutions can

be obtained. Overdense regions will collapse to a halo once they exceed the critical

value δc ≈ 1.686 which is independent of the size of the region. For FDM, due to the

non-vanishing scale-dependent sound speed, or equivalently non-vanishing pressure

(the so-called “quantum pressure”), the collapse happens later for the same initial

overdensity. If the scale of the initial overdensity is smaller than the Jeans length, the

gravity will be balanced by the quantum pressure, thus no collapse happens. There-

fore, the critical overdensity for collapse is scale-dependent. With one-dimensional

simulations, I confirm several features of FDM that have been discussed a lot in pre-

vious literature: (1) FDM halos collapse later; (2) FDM halos have flat cores. With

more detailed analysis, the simulation can be extended to obtain the scale-dependent

critical overdensity for collapse, which so far has only been estimated from the linear

perturbation theory.

The results from the linear perturbation theory and the simplified spherical col-

lapse model can be used as an input for the Press-Schechter (PS) formalism [89] to

compute the abundance of collapsed objects. I introduced the original PS formal-

ism and a more self-consistent deducing method, i.e. the extended Press-Schechter

(EPS) formalism [99]. In the EPS formalism, the collapse of a halo is analogous to a

random walk first upcrossing the critical density. The halos mass function can then

be obtained by solving the excursion set problems. This concept can be extended to

computing the conditional mass function, i.e. the probability finding one halo’s pro-

genitor in a certain mass interval (see Section 2.1.6). Having this conditional mass
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function, one can successively draw branching events backward to find the merger

history of one halo, i.e. constructing a merger tree (Section 2.1.7).

I introduce some basic concepts of the semi-analytic model for galaxy formation.

In this dissertation, I only concentrate on the dark matter part and leave the part

related to baryonic physic to future work. I show how we can implement FDM into

the publicly available semi-analytic code GALACTICUS. Corresponding work has been

described in our published paper [1].

Using the FDM transfer function with a sharp small-scale cutoff caused by quan-

tum pressure and a modified barrier function accounting for the mass dependent

growth of FDM [55], we apply the EPS formalism to calculate the HMF for FDM.

Our HMFs show minor differences compared to those derived from the Sheth–

Tormen (ST) formalism with a redefined critical overdensity for collapse [55] by having

a larger cutoff mass that changes less strongly with redshift (cf. Fig. 2.10). We also

compare our HMFs to the fitting HMFs from simulations by [33]. Our HMFs are

slightly more consistent with the one by [33] at z = 0 compared to the ST HMF for

FDM. Comparing the cumulative density of halos with the observed abundance of

ultra-faint lensed galaxies in the Hubble Frontier Fields [3], we found a similar lower

constraint on FDM mass as in [3] (see Fig. 2.14).

Using the Cole2000 algorithm [105] implemented in GALACTICUS, we build syn-

thetic merger trees for FDM and validate them by comparing the HMF with the

solution of the excursion set approach at different redshifts. We find that the HMFs

match reasonably well at redshift z < 3 (see Fig. 2.15), while deviations exist at higher

redshifts. We demonstrate, however, that the vast majority of subhalos accreted by

the host at redshift z > 3 is already completely merged with the host at z = 0 and

thus does not have a significant effect on the SHMF at the present time.

To study the nonlinear evolution of FDM subhalos, we modify an existing model

for satellite halos (the ‘orbiting’ implementation) in GALACTICUS [123] which includes

the nonlinear effects of dynamical friction and tidal stripping (we ignore tidal heating

in the absence of calibrations for FDM simulations). In order to account for possible

effects from compact solitonic cores in FDM halos, we disable the tidal stripping

when a satellite has only its core left and change the merging criteria of subhalos.

We find that if FDM composes a significant fraction of the total DM density, the

SHMF is suppressed on small scales. The larger the fraction or the smaller the mass,

the stronger is the suppression (see Fig. 2.20). For pure FDM, the SHMF exhibits

a maximum around 4Mc (see the right panel of Fig. 2.20), where Mc is the mass of

the solitonic core for subhalos close to the mass cutoff, reflecting the fact that pure
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cores are assumed to be stable against tidal stripping. We also consider the impact

of modifying the concentration parameter for FDM halos on to the SMHF and find

only weak differences.

The parameters for dynamical friction and tidal stripping used in our work were

obtained from CDM N -body simulations. A recalibration of these parameters will

be possible as soon as sufficiently large FDM simulations become available. In ad-

dition, we only considered gravitational interactions between the subhalos and their

host. Simulations of FDM [29, 4] show that FDM halos have a granular structure

caused by wave interference that might make the dynamics of FDM subhalos behave

differently from the collisionless case. In particular, stripping may be more efficient

than expected from purely gravitational tidal effects.

Besides, by considering the merger history of dark matter halos in scenarios with

FDM, we offer an alternative explanation for the core-halo mass relation observed

in cosmological simulations [29, 4]. This model is described in our published paper

[5]. As above, we provide evidence for our model using stochastic merger trees and

show that the core-halo mass relation depends only on the mass loss fraction of cores

during binary mergers, Mc ∝ M2β−1
h . We find that for β = 0.7 [62], this relation fits

numerical data from cosmological simulations very well [4].

In addition to providing a simple explanation for the core-halo mass relation, we

have shown that the core mass is determined by the individual accretion history.

It can be modeled more realistically using individual mass accretion histories that

recover not only the mean core-halo mass relation but also its scatter.
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Chapter 3

Tidal Disruption of FDM Cores

In the last chapter, using the semi-analytic code GALACTICUS modified for FDM,

we have obtained the subhalo mass function (SHMF) for Milky Way-like FDM halos.

One of the modification is to set the mass loss caused by tidal stripping to 0 once

the halo has only its core left. It is motivated by the simple assumption that the

compact solitonic core is stable against tidal perturbing. This assumption has led to

a pronounced peak in the SHMF (see the right panel of Fig. 2.20) which may be a

unique signature of FDM. However, the assumption itself has not been tested. This

motivates us to do a detailed study of FDM cores under tidal stress.

In [6], tidal mass loss of a solitonic core orbiting inside a host halo is computed

in a “tunneling approximation” by adding a spherical tidal potential to the time-

independent Schrödinger-Poisson (SP) equations. The mass loss rate is obtained

from the imaginary part of the (complex) energy eigenvalue E. Since both tidal

and gravitational potentials are taken to be time independent, so is the tidal radius.

Consequently, the mass loss is fully characterized by the decreasing amplitude of the

wave function.

As shown below, the actual dynamics are more complicated and can only be

studied with numerical simulations. Once mass outside the tidal radius is removed,

the core relaxes to a new ground state with smaller mass and accordingly larger core

radius. In the process, mass is transferred through the tidal radius and subsequently

stripped away resulting in a continuous loss.

This process has a classical analog. After the outer parts of the satellite are

stripped away, the remnant is no longer in virial equilibrium and needs to convert

kinetic to potential energy in order to re-equilibrate [151, 152]. The resulting con-

figuration has a larger characteristic radius and decreased density, achieved by an

outwards directed mass transfer through the tidal radius which, in turn, shrinks as
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a result of the lowered enclosed mass. However, for CDM, as shown in [152], this

process is usually not sufficient to disrupt the subhalo.

3.1 Classical and Tunneling Tidal Radius

A satellite halo orbiting the host halo loses its mass due to the tidal force of the host

halo, i.e. the tidal stripping effect (see also Section 2.3.4). Considering a satellite

orbiting its host with synchronous rotation, i.e. the angular velocity of self-rotation

equals the orbital angular velocity, the tidal radius can be calculated from classical

Newtonian dynamics [146]:

rt =

(
GMsat(< rt)

ω2 − d2Φ/dx2

)1/3

, (3.1)

where Msat is the satellite mass enclosed within the tidal radius, ω is the angular

velocity of the satellite, Φ is the gravitational potential of the host halo, and x is the

distance to the host’s center. Assuming a circular orbit of the satellite and most of

the host mass to be within the orbital radius, we have

d2Φ

dx2
= −2GMhost(< xsat)

x3
sat

= −2ω2 . (3.2)

Then the tidal radius can be written as

rt =

(
GMsat(< rt)

3ω2

)1/3

. (3.3)

In [6], tidal stripping of FDM halos is treated quantum-mechanically by adding a

spherical tidal potential to the Schrödinger equation. The authors propose that mass

inside the tidal radius can be stripped in sufficiently long time due to tunneling.

Following this approach, we first consider a simple system in which the solitonic

core is subject to a spherically symmetric tidal potential Φt = −γω2r2 (here, r is the

distance to the center of the satellite). Note that [6] use γ = 3
2

which includes the

effect of the centrifugal force owing to synchronous rotation of the satellite, assuming

it to be a rigid body. However, a solitonic core forms an irrotational Riemann-S

ellipsoid when subject to the tidal force as discussed in Section 3.4. Therefore, for

a solitonic core, γ in the tidal potential should be between 1 (without self-rotation)

and 3
2

(with uniform self-rotation that equals the orbital angular velocity). To be

comparable with [6] we fix γ to 3
2

unless specified otherwise.
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Working in a coordinate system centered on the satellite, the SP equations become

i~
∂ψ

∂t
= − ~2

2ma

∇2ψ +ma (Φ− Φt)ψ , (3.4)

∇2Φ = 4πGma|ψ|2 , (3.5)

where Φt, as defined previously, is an external potential accounting for the tidal force

from the host. Assuming a spherical tidal force, Φt = −3
2
ω2r2.

In [6], the authors decompose the wave function ψ(r, t) = φ(r) exp(−iEt) to get

the time-independent SP equations. Assuming the energy eigenvalue E to be complex,

they obtain the mass loss rate from the imaginary part of E,

Ṁ

M
=
ρ̇

ρ
= 2 Im(E) , (3.6)

which only depends on the density ratio between the central density of the soliton ρc

and the average density of the host within the orbital radius ρhost, i.e. µ ≡ ρc/ρhost.

By solving the eigenvalue problem as in [6], we find a fitting formula for the imaginary

part of E:

Im(E) = −T−1
orbit exp

[
a

(
3

2γ
µ

)2

+ b

(
3

2γ
µ

)
+ c

]
, (3.7)

with the best-fitting parameters {a, b, c} = {5.89794×10−5,−8.72733×10−2, 1.6774}.
Here, Torbit ≡ 2π/ω is the orbital period. Fig. 3.1 shows out fitting formula Eq. (3.7)

compared to the one obtained by solving eigenvalue problem as in [6].

However, as the gravitational potential depends on the amplitude of ψ(r, t), in

principle, we cannot separate ψ(r, t) into two parts which purely depend on time

and radius, respectively. Therefore, the treatment in [6] can only be seen as an

approximation for small enough time scales on which the gravitational potential can

be treated as time independent. As the solitonic core loses some of its mass and

becomes less dense, it is increasingly vulnerable to tidal forces.

To test these arguments, we set up two special simulations using a pseudospectral

solver (see the next section for details). First, we assume that the gravitational po-

tential Φ in Eqs. (3.4) and (3.5) does not change with time. By solving the eigenvalue

problem, we obtain the ground eigenstate with the parameter µ = 50 and use it as the

initial condition. Then we solve the time-dependent Schrödinger equation [Eq. (3.4)]

assuming that Φ does not change. Finally, for comparison we allow Φ to be time de-

pendent and solve the full SP equations with the same initial condition. The results

are shown in Fig. 3.2. As can be seen, if Φ does not change with time, the evolution

of the core’s central density exactly matches the prediction in [6]. But if we consider
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Figure 3.1: The imaginary part of the energy eigenvalue E. The solid line show the
fitting formula Eq. (3.7). The crosses show the results from solving the eigenvalue
problem as in [6].

the full nonlinear problem, the evolution of the central density is consistent with the

prediction only at the very beginning, afterwards the central density decreases more

quickly.

The density profile of solitonic cores can be approximated by

ρs(r) =
ρc

[1 + (αr/rc)2]8
, (3.8)

where ρc is the central density and rc is the radius where the density drops to

half of the central density [29, 4, 31]. We will call rc the core radius and set

α = 0.302 as in [29, 4] hereafter. As a result of the scaling relation (r, ψ,Φ, E, ω)→
(r/λ, λ2ψ, λ2Φ, λ2E, λ2ω), it follows that ρc ∼ r−4

c . Calculating the gravitational po-

tential of a solitonic core from Eq. (3.8), the tidal radius can be obtained via Eq. (3.3).

It is easy to check with the help of the scaling relation that the tidal radius in units

of the core radius, rt/rc, only depends on the density ratio µ.

Figure 3.3 shows regions inside (blank region) and outside (shaded region) the

tidal radius with respect to the density ratio. For µ & 30.4, more than 95% of the

total soliton mass is within the tidal radius.
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Figure 3.2: Evolution of the core’s central density with unevolved (dots) and evolved
(crosses) gravitational potential compared to the prediction in [6]. Reproduced from
[7], Fig. 1.
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Figure 3.3: Regions inside (blank region) and outside (shaded region) the tidal radius
with respect to the density ratio µ ≡ ρc/ρhost. The solid line shows the tidal radius
computed from Eq. (3.3). The horizontal lines mark the radii enclosing 95% (top),
50% (middle) and 25% (bottom) of the total soliton mass, respectively. When µ < 4.5,
the tidal radius is smaller than the core radius. Thus, the solitonic core becomes
unstable and is quickly disrupted. Reproduced from [7], Fig. 2.
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3.2 Numerical Method

3.2.1 Pseudospectral Method

To investigate fully time-dependent tidal stripping of solitonic subhalo cores with in-

creasingly relaxed symmetry assumptions, we conducted numerical simulations of the

spherically symmetric [Eqs. (3.4) and (3.5)] and the full three-dimensional problem.

In the spherically symmetric case, we use the ground state of Eqs. (3.4) and (3.5)

as initial conditions and work with dimensionless quantities as in [150]. All the

results presented here can be rescaled to restore the physical units. The boundary

is set at rmax = 280 (as a reference, the initial core radius is at about rc = 1.308).

We implement an absorbing boundary condition by adding a “sponge” (imaginary

potential) in the outer regions of the grid,

V (r) = − i
2
V0{2 + tanh [(r − rs)/δ]− tanh (rs/δ)}Θ(r − rp) , (3.9)

where Θ is the Heaviside function [150]. We set rp = 2/7 rmax, rs = (rmax + rp)/2,

δ = (rmax − rp), and V0 = 2.

In the full three-dimensional case, we work in coordinates centered on the host.

Instead of adding a tidal potential Φt to the Schrödinger-Poisson (SP) equations, we

add a static host gravitational potential and let the soliton orbit around the host. The

host is treated as a uniform sphere with mass Mhost and a radius of roughly 10 times

the cell size. Contrary to the spherically symmetric case, no eigenstate is available.

We therefore use soliton solutions as initial conditions and assume periodic boundary

conditions. The soliton is placed initially at a distance of D = 25 to the host and

is given an initial velocity v0 = (GMhost/D)1/2. The simulated box has a length of

160 on each side and totally 4803 cells so that the core radius is covered by at least

4 cells. We have verified that the artificial sponge is not necessary in this case over

the entire simulation time.

To solve the SP equations, we have developed a fourth-order pseudospectral solver.

It provides fourth-order convergence in time and spectral convergence in space. Com-

pared to previous second-order pseudospectral methods, e.g. [27, 124], our code is

about 6 times faster in getting comparable accuracy.

The wave function is advanced in time by a unitary transformation,

ψ(t+ ∆t) = exp(−iH∆t)ψ(t), (3.10)

where H is the Hamiltonian of the system which can be split into the kinetic part K

and the potential part W , i.e. H = K + W . In general, the operator exp(−iH∆t)
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can be expanded as

exp(−iH∆t) =
∏
i

exp(−itiK∆t) exp(−iviW∆t), (3.11)

where ti and vi are parameters to be determined by the requirements of the chosen

order. For example, to second order we obtain the well-known leapfrog method,

exp(−iH∆t) = e−
i
2
W∆te−iK∆te−

i
2
W∆t +O(∆t3), (3.12)

which is also referred to as the “kick-drift-kick” formulation. If we exchange the

operators K and W in Eq. (3.12), i.e. update the position first, we arrive at the

“drift-kick-drift” formulation which also has second-order accuracy.

In our simulations, we implement the fourth-order algorithm proposed by McLach-

lan [153],

e−iH∆t ≈ e−iv2W∆te−it2K∆te−iv1W∆te−it1K∆te−iv0W∆t

e−it1K∆te−iv1W∆te−it2K∆te−iv2W∆t , (3.13)

where

v1 =
121

3924
(12−

√
471), w =

√
3− 12v1 + 9v2

1,

t2 =
1

4

(
1−

√
9v1 − 4 + 2w

3v1

)
, t1 =

1

2
− t2,

v2 =
1

6
− 4v1t

2
1, v0 = 1− 2(v1 + v2). (3.14)

Compared to the leapfrog method, it is much more accurate. Note that the kinetic

operator is performed in Fourier space, while the potential operator is performed in

real space. In Fourier space the kinetic operator can be computed in a very simple

way: e−iKψ̂ = e−i~
2k2/2/maψ̂. The potential W is obtained by solving the Poisson

equation via a spectral method [27, 124].

3.2.2 Convergence Tests

To test the convergence of our code in time, we simulate mergers of multiple solitons,

which have been studied in detail in previous papers, e.g. [4, 62, 124]. The simulated

box has a length of 40 on each side and a resolution of 2403 cells. At the initial

time, 20 solitons with the same core radius rc = 1.308 are randomly put in the box.

We check the conservation of the total energy and compare it with the well-known

second-order algorithm, kick-drift-kick leapfrog method.
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Figure 3.4: Numerical error of the total energy with respect to time for different time
step sizes and different algorithms. The time is in units of the free-fall time scale
tff =

√
3π/(32Gρ) with ρ equal to the average density over the whole simulated box.

Here “O4” refers to the fourth-order algorithm we used in our simulations (Eq. 3.13).
“O2” refers to the second-order kick-drift-kick formulation Eq. (3.12), which is widely
used in previous simulations. Reproduced from [7], Fig. 11.

Figure 3.4 shows the relative error of the total energy with respect to time for

the fourth-order algorithm (O4, colored lines) and the second-order algorithm (O2,

black line). Results from simulations with different time step sizes are shown. As

can be seen, the fourth-order algorithm has comparable accuracy to the second-order

algorithm even if the time step size is 8π times larger.

Figure 3.5 shows the average relative error of the total energy with respect to the

time step size. As expected the algorithm we implemented (circles) has fourth-order

convergence. Compared to the second-order algorithm (squares), it converges faster

and the error is several orders of magnitude smaller if the same time step size is used.

3.3 Core Mass Loss Rate from Simulation

3.3.1 Spherically Symmetric Approximation

We simulate the evolution of cores with different initial density ratios µ. The mass

within the tidal radius Mt is computed at different times. The mass loss rate is then
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Figure 3.5: Average numerical error of the total energy with respect to the time step
size. Only data with t > 3 tff when the numerical error oscillates around roughly a
constant value is included in the analysis. Reproduced from [7], Fig. 12.

calculated by

Ṁt

Mt

=
1

Mt

d

dt

ˆ rt(t)

0

4πr2ρ(r, t)dr

=
1

Mt

ˆ rt(t)

0

4πr2∂tρ(r, t)dr +
1

Mt

4πr2
t ρ(rt, t)ṙt , (3.15)

where the first term can be interpreted as mass transfer through the tidal radius and

the second term corresponds to effects of a decreasing tidal radius. Using Gauss’

theorem we can rewrite the first term as

1

Mt

ˆ rt(t)

0

4πr2∂tρ(r, t)dr = − 1

Mt

‹
r=rt

ρ(r, t)v(r, t) · dS , (3.16)

where v is the velocity field.

Figure 3.6 shows both contributions to the mass loss rate. For larger density ratios

µ, the first term in Eq. (3.15) (dashed colored lines) dominates. With decreasing µ,

the second term (shaded region) becomes more important. The mass loss rate due

to mass transfer through the tidal radius is close to the prediction in [6] which they

attribute to tunneling effects, as long as we take the decreasing of the core’s central

density into account. It is only about 30% larger than the prediction. 1

1The results were confirmed by solving the Poisson equation using a Numerov Algorithm, while
the wave function was evolved with a fully implicit Crank-Nicholson scheme. The same imaginary
potential Eq. (3.9) was used.
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Figure 3.6: Mass loss rate for different initial density ratios. A spherical tidal field
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with different colors give the total mass loss rate. The dashed colored lines show
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[7], Fig. 3.
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3.3.2 Three-dimensional Simulation

We now consider the three-dimensional case (full model). There are two major differ-

ences between the simplified model and the full model: (1) in the former, the subhalo

is assumed to be in a state of synchronous rotation, i.e. the subhalo rotates like a

rigid body (∇ × v 6= 0), which cannot be true for FDM cores whose velocity field

is curl-free; (2) the simplified model assumes a spherically symmetric tidal force, so

the solitonic core spins at a constant rate. On the contrary, in the full model, the

solitonic core can spin up due to tidal torque (see Sec. 3.4 for detail).

In the three-dimensional case, it is difficult to find a well-defined tidal radius.

Therefore, instead of analyzing the mass within the tidal radius, we will look at the

evolution of the core mass Mc, defined as the enclosed mass within the core radius

rc (about 1/4 of the total soliton mass). In our simulations, we find that after the

core loses some of its mass, it quickly relaxes to a new soliton profile with a smaller

central density (see Fig. 3.7). From the density profile of solitons, Eq. (3.8), we can

see that the core mass Mc ∝ ρ
1/4
c . Therefore we need to adjust Eq. (3.6) accordingly:

Ṁc

Mc

=
1

4

ρ̇c
ρc

=
1

2
Im(E) . (3.17)

Figure 3.8 presents slices through the density field at different times for µ = 50.

The thick and thin contour lines mark where the density drops to 50% (core radius)

and 1% of the maximum density, respectively. For comparison, we also show the tidal

radius computed from the spherically symmetric approximation (dashed circles). As

can be seen, the core loses mass gradually but since the gravitational time scale is

smaller than the mass loss time scale, it quickly relaxes to a new soliton state with a

lower central density (upper-right plot, see also Fig. 3.7). At t = 4.36Torbit (lower-left

plot), the tidal radius is comparable to the core radius. Afterwards, in less than one

orbit, the core is totally disrupted and leaves only a long tail behind (lower-right

plot).

Figure 3.9 illustrates the core mass loss rate from simulations with different initial

conditions compared to the prediction from Eqs. (3.7) and (3.17). In general, the

results are close to the predictions. At very early times, the core mass decreases

more slowly than the prediction. This can be attributed to the initial conditions. We

initially assume a soliton without self-rotation, i.e. the proportionality coefficient in

the tidal potential should be γ = 1 at the beginning. The core subsequently acquires

angular momentum and starts to spin up due to tidal torque, so γ approaches 3/2.

For comparison, the dotted line shows the prediction with γ = 1. As can be seen, at
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Figure 3.7: The density profile of the core at the initial time and at t = 4Torbit for a
density ratio µ = 50. The circles and squares show the average radial density profile
obtained from the simulation. The lines display fitted profiles defined in Eq. (3.8).
It can be seen that the cores are well described by soliton profiles even after losing
substantial amounts of mass. Reproduced from [7], Fig. 4.

early times the mass loss rate computed from simulations roughly falls between the

solid and dotted curves.

3.4 Tidal Locking

One important difference between FDM subhalo cores and rigid-body satellites is

that the solitonic core does not sustain uniform self-rotation. In our simulations, we

find that an initially spherical solitonic core without self-rotation gradually spins up

and forms an irrotational ellipsoid in the tidal field of the host. The velocity field

in a typical simulation with µ = 50 can be seen in Fig. 3.10. Inside the tidal radius

(dashed circle, computed from the spherically symmetric approximation), the velocity

field is characteristic for an irrotational Riemann-S ellipsoid [8]. The core is elongated

towards the host’s center (the hollow arrow in Fig. 3.10), indicating that the core is

tidally locked. However, unlike a rigid body, the core does not rotate uniformly.

As the central density of the core decreases over time, the shape of the ellipsoid

also changes. Denote the semiaxes of the core as a1, a2, and a3 (a1 ≥ a2 ≥ a3). Then

the change can be characterized by the eccentricities of the ellipsoid. In the middle

panel of Fig. 3.11, we show the evolution of the eccentricity of the ellipsoid in the
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Figure 3.8: Slices through the density field at different times for an initial density
ratio µ = 50. The circle in the center of each plot indicates the size of the host (for
simplicity the host is treated as a small sphere with uniform density). The thick and
thin contour lines mark where the density drops to 50% (core radius) and 1% of the
maximum density, respectively. The dashed circles show the tidal radii computed
from the spherically symmetric approximation. Reproduced from [7], Fig. 5.
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Figure 3.9: Core mass loss rate for different initial density ratios. The lines show the
prediction from Eq. (3.7) and Eq. (3.17) with γ = 3/2 (solid line) and γ = 1 (dashed
line). The vertical dashed lines are the same as in Fig. 3.3. Reproduced from [7], Fig.
6.
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Figure 3.10: Slice through the core. The color map indicates the density while the
black arrows trace the velocity field relative to the core’s collective motion. Inside
the tidal radius (dashed circle) the velocity field is characteristic for an irrotational
Riemann-S ellipsoid [8]. Outside the core, vortices can be seen. The thick black circle
in the middle represents the core radius while the thin black ellipsoid marks the area
where the density drops to one percent of the central density, i.e. almost all the
mass lies within the tidal radius. The hollow arrow points towards the host’s center.
Reproduced from [7], Fig. 7.
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plane that contains the shortest and longest principal axes, i.e. ε13 = [1−(a3/a1)2]1/2.

We find that the eccentricity ε12 = [1− (a2/a1)2]1/2 is very close to ε13, implying that

the core is approximately spheroidal.

Assuming constant densities ρh and ρsat for the host and satellite, Roche found

that the ellipticity of an equilibrated, tidally locked, fluid satellite can be calculated

analytically as a function of its density ratio [154]

ρh/ρsat =
1− ε2

2ε3
[(

3− ε2
)

artanh ε− 3ε
]
. (3.18)

Since the satellite’s density inside the core radius does not change significantly, we set

ρh/ρsat = µ and calculate the expected ellipticity from Eq. (3.18). The center panel

of Fig. 3.11 confirms that this approximate solution agrees well with our numerical

results as long as the core stays tidally locked.

The rotation of the core can be parameterized by the dimensionless spin parameter

as defined in [155] for DM halos

λ′ =
Lc√

2McV R
, (3.19)

where Lc is the core angular momentum with respect to its center, R ≡ (a1a2a3)1/3

is the mean core radius, and V is the circular velocity at R. We show the evolution

of λ′ in the lower panel of Fig. 3.11.

The top panel of Fig. 3.11 displays the angle between the longest principal axis of

the core and x-axis, compared to the angle between the line joining the center of the

core and the x-axis. It can be seen that the core becomes tidally locked in less than

1/4Torbit.

From the center panel of Fig. 3.11, we see that the core eccentricity increases

over time. In order for the core to stay tidally locked, the spin parameter has to

increase as well. Thus the core will slightly deviate from tidal locking until it obtains

additional angular momentum due to tidal torque and becomes tidally locked again.

At late time, angular momentum transfer from orbital motion to self-rotation of the

satellite becomes insufficient to maintain tidal locking. The core rotation lags behind

its orbital frequency and the core quickly becomes tidally disrupted.

3.5 Satellite Galaxies in the Milky Way

Having quantified the core mass loss rate solely depending on the ratio µ between

the central density ρc of the satellite’s core and the average host density ρhost, it is
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Figure 3.11: Representative run with initial density ratio µ = 50. Top: angle between
the longest principal axis of the core and x-axis (grey circles). The dashed line shows
the angle between the line joining the center of the core and the center of host and
x-axis. It can be seen that the core is tidally locked most of the time. Center:
eccentricity ε13 of the core. The solid line shows the expected values from Eq. (3.18).
Bottom: spin parameter of the core. Reproduced from [7], Fig. 8.

straightforward to estimate the survival time of satellite galaxies in the Milky Way.

Assuming a host mass of Mhost, a given satellite distance D to the galactic center

directly translates into a mean host density ρhost within the satellite’s orbit. If we

further assume that the satellite’s core evolves along the fitting curve in Fig. 3.9, we

can compute the minimum central density of the satellite required to survive for Nsur

orbits:

ρc,min = µmin(Nsur)ρhost = µmin(Nsur)
3Mhost

4πD3
, (3.20)

where µmin(Nsur) is the minimum density ratio required. Furthermore, for a fixed

FDM particle mass m22 ≡ m/(10−22eV), ρc determines the core mass Mc ∝ ρ
1/4
c [29].

Thus, the mass of the core surviving for Nsur orbits must satisfy

Mc > 5.82× 108 [µmin(Nsur)]
1/4m

−3/2
22

(
D

kpc

)−3/4

(
Mhost

1012M�

)1/4

M� . (3.21)

If we consider the satellite to be disrupted when its core loses 90% of its mass and

take γ = 3/2 and Nsur = 10, we find µmin = 74 which is slightly larger than estimated

in [6]. Taking γ = 1 and Nsur = 1, we get a more conservative constraint µmin = 8.4.
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In Fig. 3.12, we use Eq. (3.21) for different FDM particle masses to constrain the

minimum mass of cores that can survive for Nsur orbits as a function of the distance

to the Galactic center. The corresponding satellite mass should be larger than its

core mass. We consider a Milky Way–like host Mhost = 1012M�. For comparison,

we also show the half-light mass M1/2 of some satellite galaxies in the Milky Way

[9]. As expected, satellites close to the Galactic center are particularly susceptible

to tidal disruption and therefore place the most stringent constrains on the particle

mass. Specifically, the lightest satellites close to the Galactic center will only survive

for more than one orbital time if the particle is as heavy as m ' 2× 10−21 eV.
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104
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M
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Figure 3.12: Minimum mass of cores that can survive forNsur orbits assuming different
FDM particle masses m22 ≡ m/(10−22eV) versus the distance to the Galactic center
D. For comparison, we also show the half-light mass M1/2 of some satellite galaxies
in the Milky Way [9]. The mass of the host is taken to be 1012M�. For each particle
mass, the solid curve is obtained by assuming γ = 1 and Nsur = 1 while the dashed
curve is obtained by assuming γ = 3/2 and Nsur = 10. To survive for Nsur orbits, the
half-light mass of satellite galaxies should be above the lines (assuming core mass is
at most equal to the half-light mass). Reproduced from [7], Fig. 9.

3.6 Effects on Subhalo Mass Function

To study how tidal stripping of subhalos cores affects the SHMF, again we use

GALACTICUS with modifications described in the last chapter. But additionally, we
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allow the core to lose mass due to tidal stripping. The core mass loss rate is computed

from Eqs. (3.7) and (3.17) with γ = 3/2 which is a good approximation to our nu-

merical results (see Fig. 3.9). We note that a more recent version of the GALACTICUS

code, v0.9.4 (revision a184070149c5), is used in the following computation. A bug in

computing the tidal stripping mass loss rate is fixed in this revision. We find that the

resulting SHMF for CDM is slightly more consistent with the results from N-body

simulations at lower mass end even without recalibration 2.

We run merger trees with 1000 trees per decade in mass for host halos with masses

in the range [1× 1012, 3× 1012]M�. The FDM mass ranges from 10−22eV to 10−21eV.

To resolve the smallest subhalos, we set the mass resolution of merger trees Mres below

the mass cutoff of the halo mass function. In general, we set Mres = 107M�. Note

that Mres is the resolution of merger trees, but subhalos are tracked till the merging

criteria are satisfied (see Section 2.3.4). We also run merger trees for a higher FDM

mass ma = 5 × 10−22eV with 100 trees per decade in mass. In this case, we set

Mres = 106M� since the cutoff of the halo mass function is lower for this FDM mass.

For comparison, we run simulations with and without tidal stripping of subhalo cores.

Finally, we also run merger trees for the standard CDM model with mass resolution

Mres = 107M�.

The left (right) panel of Fig. 3.13 shows the SHMF for different FDM masses with

(without) including tidal stripping of subhalo cores. As can be seen, if we assume the

cores are stable against tidal stripping, the SHMF exhibits two peaks (as we showed

in the last chapter). But if the the tidal stripping of cores is included, the first peak

at lower masses is smeared out while the SHMF at higher masses is not affected.

We find that in both cases, with and without tidal stripping of subhalo cores, the

FDM SHMF can be fitted by a universal formula

dN

d lnM

∣∣∣∣
FDM

= f1(M) +
dN

d lnM

∣∣∣∣
CDM

f2(M), (3.22)

with

f1(M) = β exp

[
−
(

ln
M

M1 × 108M�

)2

/σ

]
, (3.23)

f2(M) =

[
1 +

(
M

M2 × 108M�

)−α1
]−10/α1

. (3.24)

2However, a recalibration may be needed to ensure that other properties of subhalos are also
consistent with simulations.
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Figure 3.13: SHMF for different FDM masses. The solid and dashed curves are from
the fitting functions Eqs. (3.22) and (3.25). Left: with tidal stripping of subhalo
cores. Right: without tidal stripping of subhalo cores.

Here the function f1(M) accounts for the possible bumps in the SHMF at lower

masses (see the right panel of Fig. 3.13). f2(M) characterizes the suppression in the

SHMF for FDM compared to CDM, while the SHMF for CDM can be well fitted by

dN

d lnM

∣∣∣∣
CDM

= a0

(
M

108M�

)−α0

, (3.25)

with a0 = 113.094 and α0 = 0.85858. The fitting formula for CDM derived from

GALACTICUS is very close to that obtained from N-body simulations by [156]. The

best-fit values for parameters {α1,M1,M2, β, σ} can be found in Table 3.1.

Without stripping of cores With stripping of cores
α1 0.709259 0.719117

M1/m
−3/2
22 3.35981 4.67990

M2/m
−1.6
22 1.82263 1.97020

β/m
3/2
22 0.100882 0.0144670

σ 0.168529 1.41892

Table 3.1: Best-fit parameters in the fitting SHMF for FDM. Here m22 ≡
ma/(10−22eV).

Note that to test the robustness of the fitting formula Eq. (3.22) under variation of

the FDM mass, we perform the fitting to the cases with m22 ≡ ma/(10−22eV) = 1−10

only, and extrapolate the fitting formula to higher FDM masses. Fig. 3.14 shows the

fitting SHMF for m22 = 50 compared to results derived from merger trees. It can be

seen that the fitting function works well for higher FDM masses.
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Figure 3.14: Robustness test of the fitting formula Eq. (3.22) for FDM with (solid
line) and without (dashed line) tidal stripping of subhalo cores. The FDM mass
m22 = ma/(10−22eV) = 50. The solid and dashed lines show the prediction from the
fitting formula. Note that the fitting formula is derived from the results of merger
trees with m22 = 1− 10 and extrapolated to m22 = 50.

3.7 Conclusions and Discussions

In this chapter, we studied the tidal disruption of fuzzy dark matter (FDM) subhalo

cores numerically by using a fourth-order pseudospectral method. First, we considered

an idealized case with a spherical tidal potential. We calculated the mass loss of

the core resulting from mass transfer through the tidal radius and decreasing tidal

radius, and found that the contribution from the former is close to the semi-analytic

prediction of [6] if the decreasing density ratio is taken into account. For lower

density ratios, the mass loss due to a decreasing tidal radius dominates. In general,

the core loses mass more quickly than estimated in [6] since while the core loses mass,

its central density decreases, making the core more vulnerable to tidal forces (see

Fig. 3.2).

We also performed three-dimensional simulations of a more realistic case where the

core is evolved in the central potential of a host, treated as a small uniform sphere. In

this case, it is difficult to find a well-defined tidal radius contrary to the previous case

with spherical symmetry. The results show that when the solitonic core loses mass,

it rapidly equilibrates to a new solitonic state with lower central density (Fig. 3.3).

Even after losing a substantial fraction of its initial mass, the average core density
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profile can still be fitted by a solitonic profile. Therefore, instead of computing the

mass loss rate of the matter within the tidal radius, we calculated the evolution of the

core mass Mc ∝ ρ
1/4
c with ρc the central density of the core. The mass loss rate as a

function of the density ratio µ can be well described by the semi-analytic prediction

of [6] if we account for a dynamically varying density ratio and an extra factor of 1/4

coming from the scaling relations of solitonic cores (see Fig. 3.9).

Additionally, [6] assume a spherical tidal potential Φt = −γω2r2 with γ = 3/2.

They thus model the satellite as a rigid body that orbits the host with synchronous

rotation which cannot be satisfied by FDM cores whose velocity field obeys∇×v = 0.

For a satellite without self-rotation, we have γ = 1. Thus in general, γ varies between

1 and 3/2 depending on the internal velocity of the core.

Finally, we found that initially non-rotating cores acquire angular momentum in a

tidal field due to tidal torque. The cores become tidally locked in less than 1/4Torbit.

The internal velocity field is described by an irrotational Riemann-S ellipsoid instead

of a uniformly rotating rigid body satellite. With decreasing central density, the ec-

centricity of the ellipsoid increases and can be well approximated by a Roche ellipsoid

as long as the core is approximately tidally locked. At later times, the core cannot

gain sufficient additional angular momentum and begins to deviate from tidal locking.

It is then rapidly disrupted.

In the three-dimensional simulations, we assumed the host to be a small uniform

sphere. This is a good approximation as long as the subhalo is not too close to the

center of the host. We also tested an NFW potential for the host. In this case,

the tidal force is slightly smaller due to the non-vanishing density of the host at the

position of the satellite. This difference can be accounted for by a redefinition of the

density ratio µeff ≡ ρc/ρeff = ρc/[ρhost − ρhost(rsat)] and an effective orbital angular

velocity ωeff = (4/3πGρeff)1/2. With these redefinitions, the results are consistent

with the approximation of the host as a uniform sphere.

With our results for the core mass loss rate, we estimated the lower bound on the

mass of satellite galaxies that can be observed in the host galaxy in FDM scenarios.

We calculated the minimum mass of cores that can survive for a given number of

orbits in a Milky Way–like host. Its value depends on the FDM particle mass and

the distance to the center of the host. We compare it with observed satellite galaxies

in the Milky Way (see Fig. 3.12).

Implementing the core mass loss rate due to tidal stripping into the semi-analytic

code GALACTICUS, we investigated its effects on the subhlao mass function (SHMF).

We found that if we account for the core mass loss instead of simply assuming the
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core is stable against the tidal force, the first peak in SHMF found in Section 2.4.3

is smeared out. Thus it is important to include the tidal stripping of subhalo cores

to get reliable SHMF for FDM. We also gave a fitting formula for FDM SHMF and

showed it is robust under variation of the FDM mass.
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Chapter 4

Outlook

In this dissertation, I discussed the structure formation in the scenario of ultralight

axion dark matter [which is also called “fuzzy dark matter” (FDM)] using a modified

semi-analytic code for galaxy formation, GALACTICUS. I also did a few idealized

simulations to study the tidal disruption of subhalo cores.

One possible extension of this work in the future would be to activate the baryonic

physics in the semi-analytic code GALACTICUS and see how FDM will deviate from

CDM, e.g. how the compact core in FDM halo will affect the star-formation history. It

has been found in hydrodynamic simulations that adding baryonic feedback to CDM

model, e.g. from AGN and supernova, could produce an inner flatter dark matter

profile. Certain processes in baryonic physics may also alleviate the discrepancy in the

number of satellite galaxies between CDM simulations and observations. Therefore,

it is crucial to include also the baryonic physics for FDM. While it is computational

infeasible at present to perform a large enough hydrodynamic simulation with FDM

including baryonic feedback, semi-analytic model will provide us a useful tool to

explore such possibilities and enable us to get more robust constraints on the mass

of FDM (for doing this, a recalibration of the GALACTICUS is also needed).

Another interesting work is to simulate in more details different processes happen-

ing within the FDM host halo, such as dynamical friction, interference patterns and

tidal streams, and to compare the results with observations from galaxy surveys, e.g.

2MASS, SDSS, and Gaia. For example, with carefully created initial conditions and

the pseudo-spectral code I have, simulations can be done to study the evolution of

substructure in Milky Way-like halos. Furthermore, to make the code more efficient,

it will also be very interesting to combine the current pseudo-spectral code with some

extension of adaptive mesh refinement algorithm. Although a full cosmological simu-

lation would be difficult, the results from such kinds of numerical simulations can be

implemented into the semi-analytic code to explore the cosmological consequences.
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Appendix A

Numerical method for solving the
integral equation

In [91], the integral equation Eq. (2.86) is solved by discretizing the integral using

the trapezoid rule as

ˆ Sj

0

f(S ′)K(Sj, S
′)dS ′ =

j−1∑
i=0

f(Si)K(Sj, Si) + f(Si+1)K(Sj, Si+1)

2
∆Si. (A.1)

Here, K(Sj, S
′) is the kernel of the integral equation. To increase precision for our

specific problem, we instead implement the mid-point rule:

ˆ Sj

0

f(S ′)K(Sj, S
′)dS ′ =

j−1∑
i=0

f(Si+1/2)K(Sj, Si+1/2)∆Si. (A.2)

The first crossing distribution f(S) at Sj−1/2 is given by

f(Sj−1/2) =
1

K(Sj, Sj−1/2)∆Sj−1/2

(
erfc

[
B(Sj)√

2Sj

]
−

j−2∑
i=0

f(Si+1/2)K(Sj, Si+1/2)∆Si

)
.

(A.3)

Fig. A.1 shows that the results from the trapezoid rule display artefacts near the

cutoff at lower masses. Additionally, we see unphysical oscillations at intermediate

masses, which is a common behaviour when one solves integral equations using the

trapezoidal rule [157, 158]. Our method avoids these artefacts.
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Figure A.1: HMF for FDM fraction f = 1.0 derived using the mid-point rule (solid
lines) compared to the result using the trapezoid rule (dashed lines). Redshifts range
from z = 14 to 0. The FDM mass is set to ma = 10−22eV. Reproduced from [1], Fig.
A1.
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J. D. Simon, and F. F. Avedo. Accurate masses for dispersion-supported galax-

ies. Mon. Not. R. Astron. Soc., 406:1220–1237, August 2010.

95



[10] F. Zwicky. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys.

Acta, 6:110–127, 1933. [Gen. Rel. Grav.41,207(2009)].

[11] Vera C. Rubin, W. Kent Ford, Jr., and Norbert Thonnard. Extended rotation

curves of high-luminosity spiral galaxies. IV. Systematic dynamical properties,

Sa through Sc. Astrophys. J., 225:L107–L111, 1978.

[12] Gianfranco Bertone and Dan Hooper. A History of Dark Matter. Submitted to:

Rev. Mod. Phys., 2016.

[13] Edwin Hubble. A relation between distance and radial velocity among extra-

galactic nebulae. Proc. Nat. Acad. Sci., 15:168–173, 1929.

[14] Adam G. Riess et al. Observational evidence from supernovae for an accelerating

universe and a cosmological constant. Astron. J., 116:1009–1038, 1998.

[15] S. Perlmutter et al. Measurements of Omega and Lambda from 42 high redshift

supernovae. Astrophys. J., 517:565–586, 1999.

[16] Graeme E. Addison, Gary Hinshaw, and Mark Halpern. Cosmological con-

straints from baryon acoustic oscillations and clustering of large-scale structure.

Mon. Not. Roy. Astron. Soc., 436:1674–1683, 2013.

[17] Arno A. Penzias and Robert Woodrow Wilson. A Measurement of excess an-

tenna temperature at 4080-Mc/s. Astrophys. J., 142:419–421, 1965.

[18] G. Hinshaw et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Cosmological Parameter Results. Astrophys. J. Suppl., 208:19,

2013.

[19] N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. 2018.

[20] Y. Akrami et al. Planck 2018 results. I. Overview and the cosmological legacy

of Planck. 2018.

[21] Matthew R. Buckley and Annika H. G. Peter. Gravitational probes of dark

matter physics. 2017.

[22] Paul Bode, Jeremiah P. Ostriker, and Neil Turok. Halo formation in warm dark

matter models. Astrophys. J., 556:93–107, 2001.

96



[23] Kevork Abazajian. Linear cosmological structure limits on warm dark matter.

Phys. Rev. D, 73:063513, 2006.

[24] David N. Spergel and Paul J. Steinhardt. Observational evidence for selfinter-

acting cold dark matter. Phys. Rev. Lett., 84:3760–3763, 2000.

[25] Wayne Hu, Rennan Barkana, and Andrei Gruzinov. Cold and fuzzy dark matter.

Phys. Rev. Lett., 85:1158–1161, 2000.

[26] Varun Sahni and Li-Min Wang. A New cosmological model of quintessence and

dark matter. Phys. Rev. D, 62:103517, 2000.

[27] Tak-Pong Woo and Tzihong Chiueh. High-Resolution Simulation on Structure

Formation with Extremely Light Bosonic Dark Matter. Astrophys. J., 697:850–

861, 2009.

[28] V. Lora, Juan Magana, Argelia Bernal, F. J. Sanchez-Salcedo, and E. K. Grebel.

On the mass of ultra-light bosonic dark matter from galactic dynamics. JCAP,

1202:011, 2012.

[29] Hsi-Yu Schive, Tzihong Chiueh, and Tom Broadhurst. Cosmic Structure as the

Quantum Interference of a Coherent Dark Wave. Nature Phys., 10:496–499,

2014.

[30] V. Lora and Juan Magaña. Is Sextans dwarf galaxy in a scalar field dark matter

halo? JCAP, 1409:011, 2014.

[31] David J. E. Marsh and Ana-Roxana Pop. Axion dark matter, solitons and the

cusp-core problem. Mon. Not. Roy. Astron. Soc., 451(3):2479–2492, 2015.

[32] Brandon Bozek, David J. E. Marsh, Joseph Silk, and Rosemary F. G. Wyse.

Galaxy UV-luminosity function and reionization constraints on axion dark mat-

ter. Mon. Not. Roy. Astron. Soc., 450(1):209–222, 2015.

[33] Hsi-Yu Schive, Tzihong Chiueh, Tom Broadhurst, and Kuan-Wei Huang. Con-

trasting Galaxy Formation from Quantum Wave Dark Matter, ψDM, with

ΛCDM, using Planck and Hubble Data. Astrophys. J., 818(1):89, 2016.

[34] Abir Sarkar, Rajesh Mondal, Subinoy Das, Shiv.K. Sethi, Somnath Bharad-

waj, and David J. E. Marsh. The effects of the small-scale DM power on

the cosmological neutral hydrogen (HI) distribution at high redshifts. JCAP,

1604(04):012, 2016.

97



[35] Erminia Calabrese and David N. Spergel. Ultra-light dark matter in ultra-faint

dwarf galaxies. Mon. Not. Roy. Astron. Soc., 460(4):4397–4402, 2016.

[36] W.J.G. de Blok. The Core-Cusp Problem. Adv. Astron., 2010:789293, 2010.

[37] Anatoly A. Klypin, Andrey V. Kravtsov, Octavio Valenzuela, and Francisco

Prada. Where are the missing Galactic satellites? Astrophys. J., 522:82–92,

1999.

[38] B. Moore, S. Ghigna, F. Governato, G. Lake, Thomas R. Quinn, J. Stadel,

and P. Tozzi. Dark matter substructure within galactic halos. Astrophys. J.,

524:L19–L22, 1999.

[39] C. A. Baker et al. An Improved experimental limit on the electric dipole moment

of the neutron. Phys. Rev. Lett., 97:131801, 2006.

[40] David J. E. Marsh. Axion Cosmology. Phys. Rept., 643:1–79, 2016.

[41] R. D. Peccei and Helen R. Quinn. CP Conservation in the Presence of Instan-

tons. Phys. Rev. Lett., 38:1440–1443, 1977. [,328(1977)].

[42] Cumrun Vafa and Edward Witten. Parity Conservation in QCD. Phys. Rev.

Lett., 53:535, 1984.

[43] Steven Weinberg. A new light boson? Phys. Rev. Lett., 40:223–226, Jan 1978.

[44] F. Wilczek. Problem of strong p and t invariance in the presence of instantons.

Phys. Rev. Lett., 40:279–282, Jan 1978.

[45] John Preskill, Mark B. Wise, and Frank Wilczek. Cosmology of the Invisible

Axion. Phys. Lett., 120B:127–132, 1983.

[46] L. F. Abbott and P. Sikivie. A Cosmological Bound on the Invisible Axion.

Phys. Lett., 120B:133–136, 1983.

[47] Michael Dine and Willy Fischler. The Not So Harmless Axion. Phys. Lett.,

120B:137–141, 1983.

[48] Pierre Sikivie. Axion Cosmology. Lect. Notes Phys., 741:19–50, 2008.

[,19(2006)].

[49] Michael S. Turner. Coherent Scalar Field Oscillations in an Expanding Universe.

Phys. Rev., D28:1243, 1983.

98



[50] William H. Press, Barbara S. Ryden, and David N. Spergel. Single Mechanism

for Generating Large Scale Structure and Providing Dark Missing Matter. Phys.

Rev. Lett., 64:1084, 1990.

[51] Sang-Jin Sin. Late time cosmological phase transition and galactic halo as Bose

liquid. Phys. Rev., D50:3650–3654, 1994.

[52] Jeremy Goodman. Repulsive dark matter. New Astron., 5:103, 2000.

[53] P. J. E. Peebles. Fluid dark matter. Astrophys. J., 534:L127, 2000.

[54] Luca Amendola and Riccardo Barbieri. Dark matter from an ultra-light pseudo-

Goldsone-boson. Phys. Lett. B, 642:192–196, 2006.

[55] David J. E. Marsh and Joe Silk. A Model For Halo Formation With Axion

Mixed Dark Matter. Mon. Not. Roy. Astron. Soc., 437(3):2652–2663, 2014.

[56] Erminia Calabrese and David N. Spergel. Ultra-light dark matter in ultra-faint

dwarf galaxies. Mon. Not. Roy. Astron. Soc., 460(4):4397–4402, 2016.
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