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1 Introduction 
 

For condensed matter investigations the neutron is an established and ideal probe.  

Their mass close to that of the proton means that they can be slowed down by collisions with atoms 

of similar mass, such as Hydrogen or Deuterium. This allows an experimenter to tailor their energy to 

the experimental requirements. In addition neutrons are without net charge, they function as a 

probe interacting directly with the nucleus of a sample, because of this there is only weak interaction 

with matter making neutrons a very good probe for bulk phenomena, with the additional unique 

feature that they can easily be transmitted through sufficient thin sample enclosure. This gives the 

experimenter very good control over his sample environment. They can be used to probe for a wide 

range of nuclear lattice and super-lattice phenomena by elastic and inelastic scattering techniques. 

But, as the neutron has a well-defined spin state it can also function as a probe for magnetic systems. 

Especially inelastic polarized neutron scattering is a powerful tool for investigations into magnetic 

structures and interactions in materials. For several reasons polarized inelastic neutron scattering is 

among the most time consuming measurement methods using neutrons. The time consuming nature 

of this type of experiment lead to the idea to measure both possible spin states in parallel to save 

costly beam time, with the option for some additional benefits resulting from this unique option. 

This work describes the planning, development, installation and first tests of the polarization analysis 

setup for the thermal three axis neutron spectrometer PUMA @ FRM II.  The full name of the 

instrument is DAS PUMA (“Drei-Achsen-Spektrometer mit Polarisationsanalyse und Multidetektor”), 

meaning three-axis-spectrometer with polarization analysis and multi-detector.  

The PUMA polarization analysis introduces a new method for polarization analysis with neutrons, for 

the first time allowing the simultaneous measurement of both spin states by detecting spin-up and 

spin-down neutrons in different detector channels. Detecting both spin states at the same time can 

lead to a reduction in beam time necessary for a given experiment with polarized neutrons.  

In addition to this unique feature, the simultaneous detection of both spin states is very useful for 

kinetic experiments as one can directly observe the change of both spin components depending on 

the current state of the sample. It is also a mayor boon if one is interested in an experiment where, 

for the required information it is difficult to guarantee the same conditions for the two 

measurements in a conventional polarization setup. The new PUMA setup eliminates these 

experimental problems and is the first time a three axis spectrometer has the capability to measure 

both spin states at the same time. 

This work will describe the development process, implementation and testing of this new technique. 

The first part will give an overview of neutron scattering 
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The next part focusses on development and testing of the components used for the polarization 

setup. 

Following is a section about experiments done during this work, starting with early proof of principle 

measurements and continuing with first inelastic neutron measurements in the multiferroic phase of 

CuO. Multiferroic means that a material shows more than one ferroic attribute, such as 

ferroelectricity or ferromagnetism, in one phase. 

A chapter summarizing our achievements and sketching some ideas how to continue with this 

method can be found after the experimental section. 

The last part is a handbook for the installation of our setup at PUMA to give some guidelines for 

future investigators as well as an appendix with some further, not essential, information. 
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2 FRMII and the three axis neutron spectrometer PUMA 
 

 

Fig. 1: Photo of PUMA in its „simple“ conventional configuration 

 

PUMA is one of the world’s highest neutron flux three axis spectrometers (TAS)[1]. 

PUMA is located at beamline 7 (SR7) of the Heinz-Meier-Leibnitz (MLZ) neutron source in Garching 

near Munich. The neutron source is a nuclear reactor using highly enriched uranium as fuel, and it is 

moderated by heavy water. Thermal power output of the reactor reaches up to 20MW. This gives the 

source a peak neutron flux of 8 ∙ 1014 cm-2s-1. 

 As every TAS PUMA consist of three main components. These are, shown in Fig. 1, (respectively in 

the Fig. 2 general layout sketch) on the reactor side the castle, constructed from high density 

concrete to shield the environment from radiation originating from the monochromator housing. 

Following the beam path we arrive at the sample table. After this is the analyzer/detector located 

inside the blue shielding box.  
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This setup means that a TAS can be looked at as a very good direct visualization of the scattering 

triangle. The scattering triangle is a representation of the initial and final wave-vector of a scattering 

experiment forming a closed triangle with the Q-vector for a conserved momentum case. For a TAS 

the initial wave-vector ki is given by the monochromator angle and the final wave-vector kf by the 

angle of the analyzer, thus forming the triangle shown in Fig. 3. 

adjustable entrance slit 

monochromator  

(doubly focussing) 

sample table 

analyzer/detector 

α4 α3 

α2 

α1 

Fig. 2: Sketch of the general PUMA layout showing the monochromator, sample table, and 
detector/analyzer box as well as the four collimators, α1-4 
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Fig. 3: Scattering triangle build by initial/final wave-vector ki/f and scattering-vector Q  

 

The white neutron beam from the reactor reaches the monochromator drum. There are four 

different doubly focusing monochromator systems available for PUMA: PG(002), Cu(111), Cu(220) 

and Ge(311). Each monochromator selects a different energy range from the white neutron beam 

and reflects it towards the sample position. Between the source and the sample there are two 

collimators, α1 (20’, 40’, 60’ and open) before the monochromator and α2 (14’, 20’, 24’, 30’, 45’, 60’ 

and open) between monochromator and sample. For practical purposes, such as resolution 

calculations open means 120’ of collimation. 

The sample table allows full rotation of the sample as well as tilting (up to ±13°) and translations in all 

three dimensions (x,y ±10mm and z±19mm). 

Located behind the sample table is the analyzer/detector box. This box contains the conventional 

analyzer/detector setup or, if installed, the PUMA multianalyzer/-detector. The blue box is built to 

shield the detectors from background gamma or neutron radiation. It can move around the sample 

position in a large angular segment, allowing a wide range of possible scattering vectors. In addition 

to the angular movement the distance between sample table and analyzer/detector box can also be 

varied. This feature is fundamental for our polarization analysis setup as discussed in section 3 Setup.  

PUMA is a thermal TAS meaning that the neutrons arriving at the instrument are moderated to a 

temperature of 300K. In the MLZ this is done by the 300K water of the reactor. Thermal neutrons are 

used at SR 3, 5, 7 and 8. 

The MLZ also offers the option of hot and cold neutrons for other instruments. Hot neutrons are 

moderated by a 2300K carbon block heated by the gamma radiation of the fuel elements. These 

neutrons go to instruments located at SR9.  

To generate cold neutrons there is a moderator of 18K liquid deuterium located near the reactor 

core. SR 1, 2 and 4 are connected to the cold source. Roughly speaking neutrons of different 

temperatures have also different movement speeds, wavelengths, and different energies. There is 
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nearly unanimous consensus that neutrons of 25 meV or 300K are thermal, but there is no standard 

for neutron temperature ranges. For one interpretation see Table 1. 

 

 Temperature [K] Energy [meV] Wavelength [Å] Speed [m/s] 
Cold 1-116 0.1-10 28.6-9 138-1380 
Thermal 116-1160 10-100 9-0.9 1380-4370 
hot 1160-5802 100-500 0.9-0.4 4370-9770 
 

Table 1: Neutron temperatures/wavelengths 

 

A TAS is a very flexible instrument that can cover a very large area of (Q, ω) space. A conventional 

TAS can only follow point by point measuring programs, resulting in relatively slow probing of the 

sample. This is a problem, as beam time on a neutron experiment is a sparse resource and every 

experiment is a huge investment in time and money. There are some ways to speed up sampling of 

an area of interest in (Q, ω) space. The most basic idea is to increase neutron flux to reduce 

measurement time, but there are also some more subtle methods such as the multi-

analyzer/detector of PUMA discussed in the next section. 

So a TAS is a flexible and powerful, albeit slow, instrument, especially for inelastic measurements 

using polarized neutrons, as these techniques are very time consuming. 
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2.1.1 PUMA Multianalyzer/-detector 

 

 

Fig. 4: The PUMA MAD showing the eleven analyzer/single detectors, as well as the PSD, then 
translate movement range of the analyzers and the angular range of movement for the whole 
detector-unit and the individual single detectors 

 

The PUMA multi-channel analyzer and detector (MAD) system is a central part of this thesis. Its 

characteristics and use are discussed in more depth in this section.  The MAD consists of eleven 

independent analyzers and eleven corresponding detectors. Fig. 4 shows a drawing of the whole 

MAD with its main components in top down view. This practically results in a set of eleven secondary 

spectrometers that can be used simultaneously. In the conventional mode of operations this allows 

PUMA to scan eleven different kf-vectors at the same time. This reduces scanning time during an 

experiment by roughly an order of magnitude, depending on the used configuration. 

Now, combining the MAD with polarized neutrons we are able to measure both neutron spin states 

of our scattered beam simultaneously, a novel, and to our knowledge unique, feature for a TAS 

system. The development, implementation, and first experiments are the central motivation of this 

work. For the PUMA multianalyzer system exists an in depth description in “The multianalyser system 

of the three axes neutron spectrometer PUMA: Pilot experiments with the innovative multiplex 

technique” [2].   

Position 

Sensitive 

Detector 

Analyzer center 

Movement 

range of 

whole 

detector-unit 
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There are also other TAS multiplex systems and methods in use. For example the first TAS with 

multiplex system was the RITA spectrometer at Risø. RITA-1 had a seven-bladed PG analyzer working 

with a single detector or a PSA and different modes of operation. It could be operated as a normal 

TAS, as well as in focusing and dispersing analyzer modes, see  [3]. In this way it is a precursor to the 

PUMA MAD system. Its direct successor instrument, RITA-2, has a nine-bladed analyzer with the 

option of using PG (0 0 2) or Ge (1 1 1) and a PSD as the main detector. RITA-2 is a cold neutron 

instrument located at SINQ in Switzerland. 

Another option for a multiplex system is the flat cone approach where the analyzer reflects the 

scattered beam out of the horizontal plane and into a detector array covering a large area. This 

allows for the detection of  a wide range of scattering angles for a given energy simultaiously. An 

early example for such an instrument was the modified R1 spectrometer at the BER II reactor in 

Berlin [4]. An example for a contemporary instrument is IN20, a thermal TAS at ILL in France. 

Today there are several systems of both types in use.  

 
This sub-chapter aims to give a short overview over the system. The multianalyzer/-detector (MAD) 

consists of a multianalyzer (MA) with eleven independently movable analyzer blades and the 

multidetector (MD) with eleven detectors. Each analyzer corresponds to one detector. In addition to 

the array of single detectors there is also an integrated position sensitive detector (PSD). While the 

single detectors can be moved according to the analyzer angle the PSD is a fixed position facing the 

sample table. 

Each analyzer blade can be independently rotated by up to 90° and translated within a range of 25 

cm. Furthermore the whole analyzer can be rotated as a single unit. Each analyzer blade holds five 

Fig. 5: Backside of multi-analyzer blades, viewing direction towards 
sample table 
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vertically focusing 25x30 mm2 crystal plates of pyrolytic graphite ((002)-PG) crystals, giving us a total 

height of 15cm, for energy analysis of the scattered beam. This means that the MA can work like a 

collection of eleven analyzers, each with their own kf. 

The MD detectors are conventional 1’’ 3He tube detectors which can move around the analyzer 

center on a circle segment. The angular width of this segment is a little over 130°, see Fig. 4. While 

the whole MD unit can move over 130° the individual detectors mounted on it have a motion range 

of 21° on the MD (48° overall, each detector needs 2.46° of space to avoid collisions resulting in 21° 

of free range). Single detectors are positioned by combined movement of the whole MD unit and 

movement of the detector in question. Each detector tube has a set of two Cd-coated guides to avoid 

crosstalk between the detectors and to shield them from neutrons not on a trajectory associated 

with the corresponding analyzer. Each guide can be rotated towards its analyzer to find the correct 

cutoff point where the detector receives the maximal amount pf intensity from its analyzer with 

minimal stray neutrons. The cadmium in the guides has a very large absorption cross section (the 

peak cross section for 113Cd is around 20000 barn for thermal neutrons), thus preventing almost all 

neutrons from traversing a guide. 

 
The multidetector array of eleven 3He-detectors can be freely moved and is positioned according to 

the reflection of the neutrons at the corresponding analyzers. Each detector is a tube filled with 3He 

under a pressure of 10 bar. Detecting neutrons gives us the problem of converting a charge less 

particle into an electronic signal. One way to archive this utilizing 3He is sketched in the next 

paragraph: The detectors have a wire inside the gas filled tube that functions as an electrode. When 

a neutron hits the detector the following reaction takes place: 

Fig. 6: A photo of the multi-detector with the eleven single 
detectors in parking position on the right side. The detector tubes 
are concealed by their guides. 
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He3 + n
5333b
�⎯⎯� p + H + 0.765MeV3  

This means that we now have a charged particle in form of a single proton that can be detected. 

The PSD is constructed from seven detector tubes arranged in two rows, with three tubes in the first, 

and four tubes in the second row. So it is an array of 3He-detector tubes with an effective length of 

230 mm, covering an angular range of 6-7°. Over its range the PSD shows a sensitivity trend that 

needs to be taken into account. A scan where the whole detector was exposed to a uniform beam 

using a vanadium sample can be used for this, see Fig. 71 in the appendix. The PSD tubes work 

principally in the same way as the single detector tubes. What makes them position sensitive is that 

the read out electronics detect a signal on both ends of the electrode wire for each proton hitting it 

and use this time difference between the signals to calculate where on the wire the detection 

happened. For the polarization analysis developed in this work the PSD is mainly used for 

adjustments and checking the beam profile during the installation of the experiment. The use of the 

PSD is discussed in some detail in chapters 4.3.1, 5.1 and 7. 

 

2.2 Why polarization analysis? 
 

Due to the low intensities of polarized neutron beams PA started only in the 1980s to gain more 

mainstream use, nearly three decades after the first experiments. These low intensities are a result 

of every method used to polarize a white neutron beam.  

For the price of this reduced intensity one gains the key advantages of polarized neutrons, their 

ability to discriminate between magnetic and nuclear scattering processes. This allows getting 

information about spin dynamics and magnetic structure of a given sample.  

 

2.2.1 Polarizing crystals 

 

There are three common methods to polarize a neutron beam. The first is by Bragg-scattering from a 

magnetic Heusler-compound crystal. A Heusler-compound is a material containing an intermetallic 

Heusler-phase showing behaviors not expected from their component elements. For example the 

first discovered Heusler-compound Cu2AlMn shows ferromagnetic properties at room temperature 

despite the fact that all of its component elements are non-ferromagnetic. Another example of a 

Heusler compound would be Fe3Si. 

Such a Heusler crystal produces a polarized beam while under the influence of a magnetic field and 

when its Bragg fulfills certain conditions for magnetic interactions, see chapter 2.8.5 by B. Roessli and 
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P. Böni in [5]. Typically given examples are the (1 1 1) reflection of Cu2AlMn or the (2 0 0) reflection 

of Co0.92Fe0.08. These materials can be used to build polarizing neutron monochromators as well as 

energy and polarization analyzers.  

 

2.2.2 Polarizing mirrors 

 

Another method uses a polarizing bender where the total reflection of the incident neutron beam 

from a magnetic layer used as a neutron mirror produces a polarized beam. Fe/Si multilayers are an 

example for such a neutron supermirror. At such a mirror neutrons have different refractivity, 

depending on their spin state. Due to the refractivity difference the two spin states are reflected 

under differing angles, creating two beams. In this way such a device also acts as a spin selector. The 

result of this is the production of a beam of only one spin component while losing the intensity of the 

second component. More than half of the incident neutrons are lost, due to the removal of all 

neutrons with the “wrong” spin state, as well as some of the preferred neutrons (as no mirror has 

perfect reflectivity).  In this work we are utilizing a set of polarizing neutron mirrors, but not to 

polarize our incident beam, but to separate the spin components of our scattered beam. See 3.2 

“Deflectors“. 

 

2.2.3 Polarizing filters 

 

The third option it the method used in this work, a polarizing 3He-cell. The 3He in such a cell is 

polarized causing a much higher absorption cross-section for one of the neutron spin states. The cell 

absorbs neutrons of the undesired polarization state and transmits most of the other state as 

described in 3.1 “3He-filter”. Such a polarizing filter will start with a given polarization achieved by 

optical pumping of the He gas, but due to magnetic inhomogeneity and collisions of the polarized 

nuclei with the cell walls polarization will degrade over time.  

Again we are losing somewhat more than half of our incident neutrons. 

 

 

2.2.4 2D and 3D polarization analysis 

 

After the beam is polarized, a magnetic field along the beam path is necessary to preserve beam 

polarization. Even small disturbances in the homogeneity of the field will depolarize the beam. 

However, for some experimental conditions it can be useful to change the spin orientation. This can 
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be done by rotating the spin through changes in guide field orientation where neutron speed and 

field orientation need to be carefully coordinated. 

In addition to a method for polarizing there also needs to be a method for analyzing the scattered 

beam. This works along the same line as polarizing the incident beam. 

Polarization analysis can be done in basically two ways, uniaxial, where a guide field at the sample 

position orients the spins along its axis or as a full spherical polarization analysis where the 

interaction between sample and incident beam happens in a field free environment. The present 

work uses a uniaxial approach. The main disadvantages of a uniaxial system is that one is more 

restricted in planning and executing an experiment as the incident spin orientation and sample have 

to be matched. Furthermore one only measures a projection along single axis. This means that more 

than one measurement is necessary when the scattered polarization is not exactly parallel or 

antiparallel to the incident polarization. 

For a full 3D polarization approach the two options are CryoPAD or MuPAD. Both of them create a 

field free sample environment in which the spin-orientation of the incident neutrons and sample can 

be chosen at will. They differ in their method of creating the field free space; 

CryoPAD has two superconducting Meissner screens to isolate the sample from magnetic stray fields. 

The shields work with the Meissner effect where a magnetic field gets expulsed from a 

superconductor when it transits into the superconducting phase. For a more detailed description 

look at Tasset, 1989 [6]. 

MuPAD on the other hand works by isolating a field free region with a Mu-metal shield. A nice 

description of MuPAD can be found in Janoschek, 2007 [7]. 

In both cases the incident spin orientation is rotated in the requested orientation by a combination 

of a nutator and Lamor precession while entering the field free space. In the same way the scattered 

beam is oriented back parallel to the guide field upon leaving the shielded volume. 

Finally for uniaxial, as well as spherical polarized neutron scattering, the scattered beam has to be 

polarization analyzed.   

Now, taking into account the additional information provided by the polarization state of the 

incoming and scattered neutron-beam one can gain new conclusions regarding the magnetic 

behavior of the scattering sample 
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2.2.5 PUMA polarization analysis 

 

 

Fig. 7: Sketch of the PUMA polarization analysis idea 

 

All previous methods for polarized neutron analysis can only detect one spin component at a time, 

losing intensity and possibly information about the sample if the experiment doesn’t call for a 

repeated measurement with the second spin direction. This can also lead to some experimental 

problems for kinetic experiments.  

To avoid this we are using some polarizing neutron mirrors to split the scattered beam into its spin 

components and then utilize the PUMA MAD to detect both spin states simultaneously, see Fig. 7 for 

a sketch of the principle. 

For the PUMA polarization analysis we restricted the multianalyzer to a constant kf-configuration 

with kf= 2.662 Å-1 because of our use of a PG filter to avoid higher order contamination. Usually only 

the three central analyzer crystals 5, 6, and 7 are used.  

For the central channel, usually analyzer and detector number 6, this means the graphite angle of -

20.6° for the analyzer and the matching position for its detector. For the other two analyzers it is -

20.6 plus (analyzer 5) or minus (analyzer 7) angle of corresponding deflector. The single detectors 

themselves are mounted on a curved rail covering only 48°, but this setup can rotate around the 

analyzer center using a coupled axis device (CAD). This means that for most configurations the 

position of the detector is given by a combination of CAD position and position of the detector on its 

rail. CAD is a virtual axis where the whole sled housing the MD is rotating around the analyzer center 

Sample 

Deflectors 

Detectors 

Analyzer crystals 

Spin- 

components 

5 
6 

7 
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while the MA is stationary. This can be illustrated using Fig. 4. Everything would be stationary except 

for the detector-unit moving along the whole range indicated by the red arc. 

For the cost of some intensity, making polarized neutron experiments some of the most time 

consuming neutron measurements possible, one gains unique insights into magnetic structures and 

dynamics. 
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3 Setup 
 

In the following chapter the PUMA polarization analysis setup and its components will be examined 

in some detail. A sketch of the setup is shown in Fig. 8 to illustrate which components are used, if 

they have some influence on the beam polarization and how they are located relative to each other. 

This also shows the fundamental principle of the setup, separating spin-up and spin-down neutrons. 

Starting with an unpolarized beam from the monochromator we use a standard FRM II 3He-filter to 

get a polarized beam. After being scattered by the sample, the beam again includes both spin 

directions (postulating that some spin-flip interaction took place). After the sample are some 

components used to get a well-defined beam (slits, PG-filter), as well as an additional collimator to 

restrict beam divergence. Further along the beam path are the core components of our setup, two 

neutron deflecting devices. These are used to spatially separate the spin-up and spin-down parts of 

the scattered beam.  We use two deflectors to take the rather broad divergence of the neutron beam 

into account, as well as to improve on spin purity of the central beam which still contains spin down 

neutrons due to the not perfect reflectivity of the deflectors.  Each beam component, one direct 

beam for spin-up and two deflected spin-down beams, hits one of three different analyzer blades. 

There the analyzer selects a specific energy range for each beam which is finally reflected towards 

the corresponding detectors of the multi-detector.  

These deflectors consist of multilayer stack of silicon wafers coated with the reflective FeSi layer. The 

silicon wafer by itself is mostly transparent for neutrons while the coating of the wafers transmits 

spin-up neutrons, except for very low angles, and reflects spin-down neutrons over a larger angular 

range. These components slit, PG-filter, collimator and deflectors, on the analyzer side of the 

Fig. 8: Sketch for the polarization analysis setup at PUMA, excluding the monochromator. Shown 
here are the beam paths for both spin components along their way through the setup. On the right 
side both detector options are shown, three single detectors from the MD or, in dashed lines, the 
PSD. 
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experiment are installed on an 80 cm long optical rail connected to the analyzer/detector box. In 

addition to the eleven single tubes of the MD there is also a position sensitive detector (PSD) 

available in the MAD setup. This detector can be used to monitor the beam profile during some steps 

of the installation process. 

In addition to the components shown in Fig. 8 there are permanent magnet- and quasi-Helmholtz 

guide fields to preserve the spin stare of the neutron beam along its path from the polarizer to the 

spin-analyzer (deflector).   

The geometry and performance of the setup depend primarily on the distances between the 

movable components. These are, on the optical bench, mainly the deflectors. The other relevant 

variable distance is between the center of the analyzer table and the sample table LSA. In our 

experiments we typically choose LSA=141 cm, LSD1=61 cm and LSD2=66 cm. LSD1/2 are the distances 

between the sample and deflector ½. 

We will now look at each component in detail, starting with the 3He-polarizer, followed by 

deflectors, collimator, guide field, and additional components.  

Fig. 9 shows a photo of the complete PUMA polarization analysis setup with labeled components. 

 

 

 

 

Fig. 9: Complete setup for polarization analysis at PUMA with all components installed.  



Setup 

20 
 

3.1 3He-filter 
For holding our 3He filter cell we use a magnetostatic cavity that was formerly in use and provided by 

POLI1. The magnetostatic cavity/holding box is described in some detail in [8] as “Magic Box 2”, or 

MB2. It consists of a Mu-metal framework with a series of permanent magnets on the sides and a PE 

holding structure for the 3He-cell in its center. This cell produces a permanent magnetic guide field of 

about 18G to conserve the polarization of the 3He-cell. Fig. 10 shows our guide field box holding a cell 

in. The cell is 130 mm long 

over all, of which 124 mm 

are gas volume, and with a 

diameter of 60 mm [9]. 

Our 3He cells are polarized at 

the HELIOS facility, working 

by the MEOP (metastability 

exchange optical pumping) 

principle. This means that a 

low pressure 3He gas gets 

exited from ground state 

into the metastable 23S1 

state and then optically 

pumped by circular polarized 

light. Thereby the photons 

angular momentum is transferred to the helium electron shell resulting in a nuclear polarization. All 

of this is done under the influence of an external magnetic field hold polarization in place. Afterwards 

the polarized gas is compressed up to the required cell pressure. See  [10].  

Furthermore the cell is characterized by its gas parameters, the important ones being pressure and 

polarization of the helium. With this information the resulting beam polarization can be calculated as 

shown further down in this section. 

The filter selects neutrons with spins oriented vertically (z-direction) due to the orientation of the 
3He-cell box guide-field. SF-scattering changes the spin orientation of neutrons in anti-parallel to the 

guide field. This orientation towards -z-direction is conserved along the remaining beam-path by 

magnetic guide fields until after the beam is split up into its spin components by the deflectors. 

For polarized 3He we have an absorption cross-section of σabs(↑↑)≈0 b  for parallel and 

σabs(↑↓)=10666 b for antiparallel incident neutrons with a velocity of v=2200m/s (or 𝜆0 = ℎ
𝑚𝑛𝑣0

=

                                                           
1 POLI is the polarized hot neutron diffractometer directly located adjacent to PUMA at FRM2  

Fig. 10: 3He-cell inside guide-field box. The box holds the cell in 
position and provides a homogeneous permanent magnetic field to 
preserve the spin polarization of the helium. 
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1.798 Å). Here mn is the neutrons mass, h the Planck constant and v0 the neutron velocity. In 

addition we have 𝑛𝐻𝐻𝑡𝑡𝑡 = 𝑝
𝑘𝐵𝑇

 He particle density in our cell. With this we can calculate the opacity of 

our cell which we need to find the spin dependent transmission of our 3He-filter. For this we further 

use that 𝜎0
𝑝0
𝑘𝐵𝑇

1
𝜆0

= 0.144 𝑐𝑚−1Å−1 where 𝜎0 = 𝜎𝜆 ∙
𝜆0
𝜆

  is the unpolarized absorption cross section. 

From this we get that 

 

𝜎𝜆𝑛𝐻𝐻𝑡𝑡𝑡 = 𝜎0 ∙
𝑝
𝑘𝐵𝑇

𝜆
𝜆0

= 0.0732 ∙ 𝑝 ∙ 𝜆 𝑐𝑚−1Å−1𝑏𝑏𝑟−1  

 

(1) 

with p being the cell pressure inside in bar, and. The factor of 0.0732 results from spin dependent 

absorption cross-section (σabs) and particle density of the helium. Note that σabs is proportional to 

neutron wavelength. 

This gives us the opacity of a 3He-cell  

 

𝜂 = 0.0732 ∙ 𝑝 ∙ 𝑙 ∙ 𝜆 (2) 
 

with l the length of the cell in cm and λ the neutron wavelength in Å.  

From the opacity we can calculate terms for the spin dependent transmission for our filter cell: 

 

𝑇↑ =
1
2
∙ 𝑒−𝜂∙(1+𝑃𝐻𝐻) 

 

𝑇↓ =
1
2
∙ 𝑒−𝜂∙(1−𝑃𝐻𝐻) 

 
(3) 

 

The most important parameter for a polarization setup with a helium polarizer is the polarization of 

the incident beam. Incident beam polarization depends on the time-dependent polarization of the 

helium inside the cell which can be described by 

 

𝑃𝐻𝐻(𝑡) = 𝑃𝐻𝐻(0) ∙ 𝑒−𝑡/𝑇𝑅  (4) 

 

PHe(0) is the starting polarization of the cell, t elapsed time since the cell was polarized, and TR the 

relaxation-time of the cell.  

The helium in the cell is losing its polarization primarily by collisions with the cell walls and by 

magnetic in-homogeneities.  Hence a very homogenous guide field, as provided by the magnetostatic 

cavity, is necessary to archive a long relaxation time. In addition, every change of the magnetic 

environment, such as during the insertion of a new cell into the holding box, or a change in the guide 
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field provided by the quasi-Helmholtz coils, has to be done very carefully. The magnetic environment 

of our setup gives TR in the order of 100 h, see the following subsection. 

Polarization of a given neutron beam can be described by  

 

𝑃0 =
𝑁+ − 𝑁_
𝑁+ + 𝑁−

 

 

 
(5) 
 

 

Here N+ is the number of neutrons with a spin oriented parallel to the field, called up neutrons, while 

N- is the number of neutrons antiparallel to the field, the down neutrons.  

Now the time dependent polarization of the incoming beam is given by 

 

𝑃𝑛(𝑡) = tanh�𝜂 ∙ 𝑃𝐻𝐻(0) ∙ 𝑒−
𝑡
𝑇𝑅� 

(6) 

 

Even if the incident beam polarization is measured directly (see 4.3.1 for one option using a spin 

flipper) it is easier to use calculated polarization values for data evaluation. Especially for long scans 

where checking beam polarization during the scan may not be an option a calculated value is a good 

alternative to a measured polarization. Nevertheless checking calculated polarization by a 

measurement is always a good idea if the experiment allows time for this. 

To select the right cell parameters it is necessary to understand how many neutrons are absorbed by 

the polarizer. For this we need to know the transmission of a 3He-cell which is given by [11] 

 

𝑇𝑛 = 𝑇0 ∙ 𝑒−𝜂 ∙ cosh (𝜂 ∙ 𝑃𝐻𝐻) (7) 
 

 

Using these expressions it is possible to calculate polarization and transmission of a given polarizer-

cell. Fig. 11 shows an example for a 13cm long cell, with an initial helium polarization of 75%, and a 

neutron wavelength of 2.36 Å. 
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Fig. 11: Polarization of incoming beam and neutron Transmission in relation to cell pressure for a 
starting cell polarization 0.75 

 

For a cell with these characteristics going from a pressure of 1 bar up to 1.5 bar results in a loss of 

over 35% of transmitted neutrons with a gain of only 5.5% in beam polarization. 

When we take a look at the 3He-cell transmission separated by spin state, using equation  

(3) we get the plot shown in Fig. 12. 
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Fig. 12: Transmission of spin up and spin down neutrons for a standard He-cell with 78% He-
polarization dependent on cell pressure 

 

Note that below 1 bar the transmission for spin down neutrons starts to rise, for a cell with PHe=75%.  

For maximal neutron intensity without loss of neutron polarization a cell with p of 1 bar is advisable. 

If the goal is highest possible polarization a cell pressure of slightly above 1.6 bar should be sufficient 

as there is no gain in spin-down absorption for higher pressures.  

 

3.1.1 Relaxation time in the PUMA polarization analysis setup 

 

For data reduction, the relaxation time TR (see equation (4)) of the 3He-cell used in the experiment is 

needed. For the PUMA polarization setup the standard 3He cells of the FRM II, also used by POLI and 

described by Hutanu et al. [9] is utilized. As the paper already characterized the cell one could use 

the relaxation time given in this publication. But as the PUMA setup has its own unique magnetic 

environment it is better to check the relaxation time for its specific magnetic environment. 

The relaxation time of the 3He-cell can be determined experimentally by measuring the polarization 

of the incident beam over time. There are several possible ways how to execute such a 
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measurement. It can either be done by using the direct beam without a sample or by measuring a 

reflection of a sample without a spin-flip (SF) component, such as a lattice reflection. Furthermore it 

is possible to use the full polarization analysis setup, comparing the signal of the three single 

detectors. Or, as another valid option using the PSD by integrating the intensity over the channels 

associated with the three component beams. 

To get the relaxation time estimated incident beam polarization is fitted with a decay law of the 

following form:   

 

𝑃𝐻𝐻(𝑡) = 𝑃𝐻𝐻(0) ∙ 𝑒−
𝑡
𝑇𝑅  

 

 
(8) 
 

 

To give an example, in August 2016 we used the direct beam, PSD, and no sample. The resulting 

measurement and fit are shown in Fig. 13. 
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Fig. 13: Exponential decay fit to incident beam polarization during the August 2016 experiment. The 
observed relaxation time was TR=100(22) h, with the large error resulting from the comparatively 
short time interval considered here 

 

But doing regular control scans over a lattice reflection between other scans offers several additional 

benefits. It helps to confirm the calibration of the spectrometer, allows checking if something 

unexpected happened to the sample, and, as discussed, also gives us a set of data to calculate the 
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relaxation time for the specific experiment with using the described method. One only needs to fit 

the change in polarization that can be seen over time. 

 

3.2 Deflectors  
 

As already mentioned in the introduction to this chapter we are using two deflectors, obtained from 

Swiss Neutronics, to create multiple neutron beams. This is done to spatially separate spin-up and 

spin-down neutrons.  

They are formed by a stack of 36 coated silicon wafers. Each wafer has a thickness of d=0.55 mm, a 

length and height of 40 mm resulting in a 20x40 mm2 beam cross section. The coating of the wafers 

consist of a FeSi layer with m=4.5. Neutron supermirrors are characterized by their m-value, defining 

their wavelength dependent critical angle 

 
Θ𝐶 = 0.099𝑚𝜆 

 

 
(9) 

θC is in degrees and λ in Å. For cold neutrons with λ≈5Å the critical angle for natural Ni is defined as 

m=1. To reach higher angles one could choose a pure isotope, such as 58Ni, which has a higher 

neutron scattering length density compared to natural Ni resulting in m=1.18. But this approach 

cannot reach the high m-values provided by neutron supermirrors. Today supermirrors with m-

values up to m=8 have been realized, see [12, 13].  

Each deflector unit also has its own vertical magnetic guide field provided by permanent magnets 

with B=60 mT. 

The deflectors work as a stack of polarizing neutron supermirrors, with different reflectivity curves 

for spin up and down neutrons. This is a result of spin dependent reflectivity. Spin dependent 

refractivity for neutrons has a nuclear (nN) and magnetic (nM) component and depends on the 

neutron being parallel (+) or anti-parallel (-) to the applied magnetic field: 

 

𝑛± = 𝑛𝑁 ± 𝑛𝑀 = 1 −
𝑁𝜆2

2𝜋
(𝑏 ± 𝐶𝐶) 

 
(10) 

 

N is the atomic number density, b coherent scattering length, μ average magnetic moment per atom 

and C a constant of 0.2645 ∙ 10−12 cm μB
-1. See [14]. 

A combined reflectivity curve for our two deflectors is shown in Fig. 14. 

 



Setup 

27 
 

 

Fig. 14: Reflectivity curves of our two deflectors showing the spin dependence of their reflectivity. 
Details for the somewhat complicated form of the curves are given in the text. 

 

Shown are the reflectivity curves for spin-up and –down neutrons. In the reflectivity curves plot γ is 

the tilt angle between deflector and beam, given for a wavelength of 2.36 Å. This wavelength is often 

used for inelastic neutron experiments in a constant-kf configuration because of the benefits of PG-

filters, see section 3.5. The plot also illustrates that spin-up neutrons are only reflected for small 

angles (<<0.25°) and even then only in a small amount (below 5%). The figure shows a reflectivity 

curve for two identical deflectors placed in front of each other and with opposed tilt angles. This is 

done to optimize the separation of spin states and explained in some more detail in section 3.2.1. 

The reduction in reflectivity for angles lower than 1° is the result of our deflector being a stack of 

mirrors that work like a collimator for small enough incident angles. This leads to a loss of neutrons 

as some never hit one of the mirror planes, for an only slightly tilted deflector, but passing between 

them. Because of their construction from a stack of coated Si wafers the deflectors also work as a 

collimator, as we have the basic layout of a neutron collimator. The Si wafers themselves are mostly 

transparent for neutrons, and the coating works as a collimating sheet. This means that for small 

incident angles incoming neutrons have a chance to travel though the deflector without hitting a 

mirror coating. This results in the dip in the center of the Fig. 14 reflectivity curve. As our deflectors 

are 40mm deep and the wafers have a thickness of 0.55 mm a simple geometric calculation gives us a 
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collimation of 47’ or 0.79°. In addition this effect can be observed by rotating a deflector in the beam, 

for example during its calibration, see chapter 7 “Handbook for the PUMA polarization setup”. When 

the deflector wafers/coatings are perfectly parallel to the incident beam there is a sharp intensity 

spike where almost all neutrons travel through the Si wafer material. An example of this is shown in 

Fig. 75, found in the appendix. 

Overall there are four deflectors available, with each deflector having its own stepper motor drive to 

vary its tilt angle. The motors and deflectors were assembled in the chemistry workshops of the 

University of Göttingen and there are slight differences in the characteristics of each unit. The 

number of the deflector is written on the motor/slider holding the deflector. There are also small 

differences between the deflectors for transmission as shown in Table 2. Probably these differences 

are the result of some small deviations during the manufacturing process, and most likely due to not 

perfectly parallel wafers. This leads to the conjecture that deflector 2 and 3 have the most parallel 

oriented wafers. Because of this the use of deflector two and three is preferred. 

The order of deflectors also has some influence on the resulting beam profile. As shown in Fig. 72 in 

the appendix some combinations of deflectors result in small additional side peaks. The effects 

resulting in this phenomenon are currently not fully understood, but it is assumed that a chance 

combination of small manufacturing imperfections is to be blamed. Nevertheless this should be 

noted as a known occurrence for future reference. 

 

Deflector Transmission Angular range [°] 
1 0.824 -4,17..4.78 
2 0.849 -4.29..4.56 
3 0.837 -4.34..4.47 
4 0.793 -4.39..5.07 
 

Table 2: Neutron transmission and angular movement range for the four available deflectors at 
PUMA 
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In Fig. 15 a photo of one of the deflectors, without slider and stepper-motor is shown.  

 

 

3.2.1 Why we use two deflectors 

 

In this setup we use a pair of deflectors to separate the spin components of the scattered beam. As 

the use of a second deflector produces a third beam and thus increases the complexity of the 

experiment some explanations for this choice are in order.  

Using only one deflector would lead to some loss of intensity. There are two main reasons for this. 

The first is the divergence of the scattered beam, which is somewhat wider than a single deflector at 

a typical deflector position. The second reason is the non-perfect reflectivity of our deflectors. As 

there are some spin down neutrons that are simply transmitted through the first deflector a second 

deflector gives us a second chance to still separate these from the direct beam. 

Fig. 15: Photo of one 
deflector without its stepper 
motor. The silvery sheets in 
the center are the coated 
wafers 
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Fig. 16: PSD beam profile using four deflectors. This image is a composite of two exposures, as the 
PSD has only an angular range of 6-7°. The position is relative to the central beam, not centered on 
the PSD. 

 

The use of more deflectors, meaning up to four, was also tested. Besides making an already complex 

system more complicated the main problem with this approach is that it yields not more, but less 

intensity than the two deflector approach. 

A PSD image of the beam profile when four deflectors are used is shown in Fig. 16. 

An image using three deflectors can be found in the appendix, page 143 Fig. 73 and the preferred 

two deflector setup is shown in Fig. 17. 
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Fig. 17: PSD profile for two deflectors. The 0° position is the PSD center and is not identical with the 
optical axis 

 

The integrated intensities for the four deflector image are from left to right: 56, 19, 367, 40 and 150 

in arbitrary units. For the two deflector setup we get intensities of 66, 408 and 264 for the three 

component beams. This gives us a deflected/direct-beam ratio of 0.72 which is somewhat worse than 

the ratio of 0.81 for two deflectors.  

The idea behind using more deflectors was to gain in deflected intensity by getting a larger part of 

the scattered beam to hit a deflector, and by giving neutrons that passed a deflector without being 

redirected, due to the reflectivity of our deflectors being  <1, a “second chance” or even third and 

fourth one. What we see in testing this approach is a loss of overall neutron intensity (as each 

deflector also absorbs a small number of neutrons, see Table 2) of over 14%, a loss in relative 

deflected neutrons and a much more complicated setup.  

Using more deflectors also means using more detectors and their full counting chains with all the 

possible associated electronic problems and finally a higher impact of electronic background. 

The same problems we found for four deflectors are, for a lesser extent, also true for three. There is 

only a minimal gain in overall intensity which is outweighed by the associated problems. Using two 

deflectors seems to be an optimal compromise. But even using only two deflectors it can be 

beneficial to ignore the lower intensity deflected beam. This can be true for measurements with 
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overall low intensity. In this case the lower intensity side channel still adds to intensity, but the 

channel adds background so that the signal to noise ratio for the combined SF channel gets worse. 

This is further discussed in 5.5 “Copper (II) oxide”. 

 

3.2.2 Positioning of the deflectors 
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Fig. 18: Optimization of the deflector orientation. On the left is an example of our first trial using 
symmetrical deflected signals. On the right an example for asymmetric side peaks showing an 
intensity gain of around 10% 

 

When positioning the deflectors we have to consider their distance to the analyzer center, as well as 

their tilt angle towards the neutron beam.  

In our first setup we tried to produce deflected beams of nearly identical intensity. The naïve reason 

for this was the assumption that a symmetrical setup would be optimal, with the symmetry of the 

beam profile as point of orientation. This lead to a small loss of overall intensity and also resulted in a 

large drop in deflected beam intensity. A scan with symmetrical side peaks compared to the 

optimized asymmetrical setup is shown in Fig. 18.  

Considering the reflectivity curve of our deflectors it is easy to understand why a setup with 

symmetrical intensity in the deflected beams is less than optimal as it leads to a tilting angle of the 

deflectors bigger than the optimal critical angle. This results in a lower reflection probability and with 

this a loss of reflected neutrons and overall intensity. 

Placement of the deflectors on the optical rail should be 80 cm from the analyzer center for the first, 

and 75 cm for the second deflector. This gives us a spatial separation of the beams at the analyzer 

location so that we can move an analyzer into each beam just by translation.  
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When the deflectors need to be placed again it is recommended to orient on the analyzer center, as 

the sample analyzer distance will vary somewhat with each new installation. As the deflectors are 

mounted on an optical rail connected to the analyzer/detector-box the analyzer center is a fixed 

point of reference for them. In contrast to this the distance between sample and deflector is not 

fixed, as the coupling between sample table and analyzer/detector lacks a mechanical fix-point.  

The optimal angle for the deflectors is between 0.75 and 0.8° as found by analytical calculations, as 

well as by experimental experience. For this see chapter 4.3.1 “Analytical calculations for PUMA 

polarization analysis”. 

 

3.3 Collimator  
 

As the divergence of the scattered beam must be adapted to the reflectivity profile of the deflectors 

an additional collimator is set up on the optical rail between sample position and the deflectors. If 

the beam-collimation reaching the deflectors is too relaxed a good separation of the spin 

components can no longer be achieved. Without the collimator the central beam gets too broad and 

starts to “flow over” into the zones occupied by the analyzers intended for the reflected intensity. If 

this happens the detectors for the side peaks are no longer spin state pure which renders our 

method useless. To avoid this two different collimators are available, with 15’ and 30’ divergence. As 

expected the 30’ collimator gives us a higher neutron flux without broadening the deflected beams 

too much. This is shown in Fig. 19. The 30’ collimator gives a gain of roughly 60% intensity in this test 

measurement.  
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Fig. 19: Comparison of 15‘ and 30‘ collimator beam profiles showing intensity gain by using the 
rougher 30’ collimator while still preserving good beam separation. Note that this measurement used 
an early, suboptimal, configuration. This can be seen in the low count-rate of the right side peak, as 
well as the wide separation between central and right beam. From this one can conclude that 
deflector 1 had a larger than optimal incident beam angle.  

 

Still, if one wants to use finer collimation the 15’ collimator is available. The selected collimator is 

installed right after the PG-filter and in front of the deflectors. Both devices include their own vertical 

guide field provided by a series of permanent neodymium magnets of roughly 60 mT is inlaid in the 

frames holding the collimator. In addition to this they have stepper motor drives to rotate them in 

the x-y-plane so that they can be aligned to the beam.  
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Fig. 20: Calculations for intensity distribution at PSD position. X-axis is PSD position in m, y-axis 
intensity in arbitrary units. From top to bottom the profiles for spin-down neutrons, spin-up neutrons 
and both spin directions are shown. From left to right, for a 30’, 45’, and 60’ collimator 
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Fig. 20 shows calculations for the intensity distribution at the PSD using the formalism shown in 

chapter 4.3.1. For these calculations deflector angels of +/- 0.8° where used, as well as sample 

deflector distances of 55 cm for the first, respectively 60 cm for the second deflector. We also used 

to simulate a 2 cm diameter sample to take into account that after scattering the neutron can have 

some angular divergence respective to the optical axis as well as geometric effects resulting from the 

sample acting as a source.  

For 30’ collimation we see a clear separation between the three peaks, as well as a small spin-down 

component in the central beam. 

With the 45’ collimation the three beams start to flow into each other, which results in a small 

contamination of the side peaks with spin-down neutrons. This could still be avoided by lateral 

displacing the analyzers, but then they will also wander out of the highest intensity region. For 

estimation, the projected width of a given analyzer is roughly 2 cm as given by the distance of 

neighboring rails of the MA. This means that we need 2 cm of uncontaminated spin-down intensity in 

the side peaks for our measurement. The side peaks gain around 5-7% in peak intensity, but at the 

same time the analyzers need to be placed somewhat off-center to stay spin-state pure. In addition 

the central beam gains proportionally more spin-down contamination; so much that there is more 

spin-down intensity there than in the second deflected beam. 

If we now look at the 60’ collimation this effect is even more pronounced. Now we have still more 

spin-up intensity in the central channel, and it becomes completely impossible to guarantee spin 

state pure deflected beams without a big loss in flux, as well as a needlessly complicated analyzer 

setup compared to the option of a tighter collimation. 

Obviously the use of collimators is associated with a reduction of intensity. But due to the geometric 

restrictions of the MAD analyzer blades this effect is a minor concern.  

 

3.4 Guide Field 
 

As mentioned in the corresponding subsection some components of the polarization setup already 

have their own vertical guide field provided by a series of permanent magnets. These are the He-

cell/polarizer, the additional collimator and the deflectors.  After the deflectors a further guide field 

is no longer necessary as spin states were spatially separated while their spin orientation was still 

conserved by the guide field. If anything happens to the spin state of a neutron after the second 

deflector this has no influence on the experiment as the analyzer/detector system doesn’t 

discriminate between spin states. 
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Besides the need for a guide field to preserve the spin state of the neutron beam there is also the 

need to shield the experiment from external stray fields. These include fields from magnetic systems 

used in other, neighboring, experiments, from electrically powered systems in the experimental hall, 

such as the crane, as well as surprisingly strong remnant magnetic fields originating from the floor of 

the experimental area. We found fields of up to 0.6 mT under PUMA on ground level and still around 

0.1 mT at beam height. This is shown in Fig. 74 in the appendix. 

From August 2016 onwards a guide field of up to 2.2 mT for a current of 7 A is provided by our new 

pair quasi-Helmholtz2 coils. This set of coils allows free access to the sample table and a very easy 

way to install and manipulate even bulky sample environments. In addition this construction allows 

us to extend the optical benches as close as possible to the sample and gives a continuous guide field 

with smooth field gradients along the beam path. 

In day to day operation the guide field is limited to a maximum current of 5 A for power source 

reasons. This gives us a guide field of 1.8 mT which is still much stronger than the normal magnetic 

background. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2 It is quasi-Helmholtz, as for a Helmholtz coil the distance between coils is identical to their radius. Our setup 
has a larger distance then radius, the reasons for which are shown later 
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3.4.1 Interlude: The PANDA guide field 

 

 

Before we started to work on our own guide field we asked of one of the other instruments could 

provide some help. As it turned out PANDA3 had a set of guide field coils available which were not in 

regular use. 

As some test showed this setup produces a rather inhomogeneous field of up to some 13 mT (see 

Table 8 as well as Table 9 in the appendix). We only tested the two main coils, up to I=10 A, as we 

were only interested in a vertical guide field for the next measurement cycle. After we saw how 

uneven the field distribution is it was decided to continue exploring the possibility of building a guide 

field along our own specifications. 

An additional incentive was that the construction of these coils was very voluminous, making the 

handling of the coils and access to the sample table difficult. Furthermore the coils have some 

structural elements holding the upper coil in place which would block the beam while rotating the 

sample table. This was no problem for the intended use at PANDA, as the coil was to be stationary. 

For our setup, mounting the coils on our sample table, the whole system became freely rotatable. It 

would have been very difficult to take into account when one of the support stubs crossed the beam 

path during an experiment.  

                                                           
3 PANDA is a cold neutron three axis spectrometer, also located at the experimental hall of FRMII in Garching 

Fig. 21: PANDA guide field coils during testing. They turned out to be 
insufficient for our needs. 
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3.4.2 Calculations for the quasi-Helmholtz guide field 

 

In addition to field strength the most important attributes of a guide field are good homogeneity in 

the shielded area, as well as soft transitions between different regions. During the development 

process we modeled our field in two ways: once by using a freely available finite element method 

program, FEMM 4.24, and then by doing analytical calculations for the field. The results where 

compared and our coils build according to the optimized parameters. 

In the following we will take a more detailed look at the analytical approach and compare the results 

with FEMM models for some cases. 

 

For reasons of simplicity we are using a cylindrical coordinate system as shown in Fig. 22, where r is 

the distance from the z-axis to some point, z is the height and ϕ the azimuth angle.  

  

𝒆𝜑 = �
− sin𝜑
cos𝜑

0
� 

(11) 

 

 

φ
r

eφ

2R

r

z

2z0

 

 

                                                           
4 Available at http://www.femm.info/wiki/HomePage 

Fig. 22: Sketch for the coordinate 
system used in our Helmholtz coil 
calculations 
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A detailed derivation how we arrived at Br and Bϕ can be found in the appendix 8.1 on page 137. N is 

the number of windings for a given coil, I the current,  B is a magnetic field, A a vector potential (see 

equation (129)), z, z0, R and r are explained in Fig. 22. 

Here we will continue with 
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and  

𝑩𝜑 =
𝜕𝑨𝑟
𝜕𝒛

−
𝜕𝑨𝑧
𝜕𝒓

= 0 
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From this we can take a closer look at some interesting point in our field. For the origin of our 

coordinate system, meaning the center of the guide field at z=0 and r=0, we get 

 

𝑩𝑧(0) = −𝐶0
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�𝑧02 + 𝑁2
3 
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𝑩𝑟(0) = 𝑩𝜑(0) = 0 

 

 
(15) 
 

To get a cross-section of our field we calculate the profile of B along our cylinder-axis by setting r=0. 

From this get: 
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As already mentioned, it is important to consider how big the homogeneous field area is, as well as 

how steep the change in field strength at the edges of the homogeneous zone. For this we calculate 

the first and second derivative of equation (16). The first derivative gives us 
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which goes to 0 for z=0 and the second derivative 
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becomes 0 for 𝒛𝟎 = 𝑹
𝟐

 , as 𝝏
𝟐𝑩𝒛
𝝏𝒛𝟐

(𝒓 = 𝟎)
𝒛=𝟎
�⎯� 𝟑𝝁𝟎

𝟐
𝑵𝑵𝑹𝟐 �𝟐 − 𝟏𝟎 𝒛𝟎

𝟐

𝒛𝟎
𝟐+𝑹𝟐

�. This shows us that we have an 

enlarged area with a homogeneous magnetic field in direction for 𝒛𝟎 = 𝑹 in comparison to a 

conventional Helmholtz setup with 𝟐𝒛𝟎 = 𝑹. This is shown in Fig. 23 for both analytical and FEMM 

calculations.  

 

 

Fig. 23: Magnetic field profiles along r=0. On the top left are analytical calculations with a) showing 
the axial profile centered on the coil center; B is given as absolute value in mT. The other plots b)-d) 
are comparable FEMM profile calculations, but with B in T 

 

|B|, Tesla

Length, m

0.002

0.0015

0.001

0.0005

0
0 0.5 1 1.5 2 2.5

z0/R=0.6 

z0/R=0.5 

z0/R=0.4 

-0,4 -0,2 0,0 0,2 0,4
1,5

2,0

2,5

3,0

3,5

 z0/R = 0.5 
 z0/R = 0.625
 z0/R = 0.78

 

B 
/ m

T

z / m

Axial-profile at r = 0 

a) 

b) 

c) 

d) 



Setup 

42 
 

Now we take a look at the radial profile of our magnetic field by looking at z=0. This gives us the field 

profile along our beam path. 

Again using cylindrical coordinates (for a derivation in Cartesian coordinates see 8.1 “Intermediate 

steps for guide field calculations” in the appendix) we simplify our expression for B by considering it 

in two dimensions. This can be done by interpreting the field lines as contour lines of Aϕ. Again the 

problem becomes two dimensional with Bϕ=0, giving us 
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Fig. 24: Axial profiles of B at the coil edge. On the left, a), analytical for three different geometries 
and on the right once for z0/R=0.5. 
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Fig. 25: Magnetic field distribution for several coil geometries in FEMM and analytical calculations. 
Here a) and b) show a geometry with 2z0=R and c) and d) z0=R 

 

In Fig. 25 the calculated magnetic field structure for different geometries is shown. The realized  
𝒛𝟎
𝑹

= 𝟏 geometry is shown in c) for FEMM simulation and d) for analytical calculations. Both show the 

same field distribution and strength, as well as an increased area of homogeneity in beam direction 

compared to the other shown geometries. In a) and b) have 𝒛𝟎
𝑹

= 𝟏
𝟐
 , in which case the polarized beam 

would cross a stronger field gradient compared to the geometry shown in c)/d). 

FEMM field strengths are in T while the numbers given for the analytical approach are in mT. 
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3.4.3 Construction of quasi-Helmholtz coils 

 

After modeling our field we arrived at a quasi-Helmholtz configuration with 𝑧0
𝑅

= 1  that should have 

around 200 windings and be capable of sustaining a current of 5 A. 

Dimensions of the coils where adapted to the size of the sample table. Now the sample table guide 

field consists of a pair of coils with an inner diameter of 600 mm and an outer diameter of 640 mm. 

The wire windings are hold in place by a circle with a U-profile. As an interesting side fact, this 

fundamental structural component of the coils consists of two aluminum bicycle wheel rims. The 

upper and lower coils have a vertical distance of 500 mm. This makes the coils quasi Helmholtz, as an 

ideal Helmholtz setup would have a distance of 𝑅
2

= 300 mm between its coils. This enlarged 

distance gives us a larger homogenous field area, as well as better access to the sample  
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table. 

Each coil has 134 windings of copper wire with a 4 × 1 mm2 cross-section. Above and below the coils 

are a series of aluminum plates. These help to hold the windings in place and provide additional 

surface area for heat dissipation. In addition each plate has a number of notches. Originally it was 

planned to twist the small elements produced by the notches to create a radiator like structure to 

help with heat dissipation. For our normal setting with an electric current of 5-7 A the produced 

Fig. 26: Photos of the finished quasi-Helmholtz guide field.  
Top: Photo of the guide field coils installed on the spectrometer. Note the Mounting for the 
upper coil fastened to the short optical rail and one of the three mountings for the lower coil 
fastened to the sample table.  
Bottom: Look from above, showing the alignment of the coils and position of the collimator 
and the front mounting for the 3He-cell inside the coils.  
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waste heat turned out to be small (40 °C using 5 A) enough that this feature was not needed. The 

ohmic resistance of the coils is 1.3-1.4 Ω, and with an electric current of 5 A the coils produce a field 

of 1.8 mT at the sample position. 

The upper coil is held in place by a mount on the optical rail on the monochromator side of the 

instrument, the same rail holding the 3He-cell. The mounting can be seen in the upper left photo of 

Fig. 26.  

The lower coil is held in position by three support struts connected to the sample table.  

The support struts of the lower coils are shown in the upper row photos of Fig. 26. 

 

3.4.4 Result 

 

Some initial tests were done by placing some permanent magnets of various strengths at the sample 

position. The experimental setup consisted of the 3He polarizer cell, the guide field, all components 

on the analyzer bench and the PSD. Now, by iterating the strength of the guide field and the number 

and position of the permanent magnets the influence of an interfering magnetic field on the guide 

field could be observed. 

In conclusion, the guide field was shown to work very well and up to expectations both in the 

magnetic interference tests as well as in all following uses, as no problems with external magnetic 

fields or unexplained loss of polarization were observed. 
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Fig. 27: Graphs show the beam profile of a polarized beam with a stray field of 1.3 mT at the sample 
position. Without guide field the profile shows a complete depolarization, shown in a). In b), with a 
guide field current of 2.5 A the beam is still slightly depolarized. In c) no depolarization can be seen 
for guide field currents of 5 A. The same is true in d) for a 7 A current (black dots). However 
polarization starts to break down for a stray field of 2.8 mT (red dots). 

 

Some test beam profiles where taken utilizing the PSD and some permanent magnets as the source 

for a stray field. The magnets where placed at the sample position and provided stray fields of up to 

2.8 mT. As shown in Fig. 27  our quasi-Helmholtz setup provides a good quality guide field.  In a) we 

see a completely depolarized beam as the guide field is inactive. In b) the beam profile still shows 

some depolarization with guide field operating with a current of 2.5 A. Operating with a current of 5 

A we no longer see any depolarization in c) and in d) we see that a stray field of 2.8 mT is necessary 

to partly depolarize our beam. So, even operating our guide field with I=5 A we still have no effect on 

our beam polarization with a stray field one order of magnitude larger than the remnant stray fields 

originating from the floor. 
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Tests with standard equipment and situations, such as movement of the big experimental hall crane, 

moving the sample table, using a cryostat at the sample positon, etc. also showed no noticeable 

effect on beam polarization.  

Measuring with the I=7 A and no stray field setup we noticed a drop of 1.7% beam polarization over a 

time of 11 h 40 min. The data from this test also gave us a relaxation time for the 3He-cell of 

TR=100(22) h for this experimental conditions (see Fig. 13). 

 

3.5 Graphite Filter 
 

From the Bragg equation  

𝑛𝜆 = 2𝑑 sin(Θ) (20) 
 

it follows that not only neutrons with a wavelength of λ are reflected by a monochromator but also 

wavelengths of  𝜆
𝑛

 . From these higher order neutrons we can get additional, spurious peaks in our 

data. This makes the correct interpretation of a given measurement more difficult up to impossible. 

To avoid this there are usually filter systems to eliminate these higher order neutrons from the beam 

before the detectors. In our case we are using a filter that works by Bragg scattering. 

Right in front of our collimator we have a filter, made out of pyrolytic graphite (PG-filter). A PG filter 

is the best option for a thermal neutron instrument to filter higher order neutrons from the beam.  

The filter consists of a crystal with its highly aligned hexagonal c-axis and a randomly aligned a-axis. 

Placing the filter with its c-axis parallel to the beam makes it nearly transparent for neutrons of some 

given energies, while higher order neutrons are eliminated  

For example, looking at how the neutron cross section of a PG filter block depends on the incident 

neutron energy we see a minimum for incident neutrons of 14.6 meV (λ=2.36 Å). Looking at second 

order neutrons �𝜆
2
� carrying 60 meV of energy we see a maxima in the cross-section, see [15]. This 

means that such a filter has a good transmission for 15 meV neutrons, while higher order neutrons 

are attenuated by scattering processes.  
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3.6 Mezei Flipper 
 

During a polarized neutron experiment it might become interesting to 

change the spin direction of the beam. A device that changes the spin 

direction is commonly called a spin-flipper. PUMA has a pair of Mezei 

flippers available, one of which is shown in Fig. 28. In the following they 

will be identified as flipper no. 1 or 2.  

They were used during the early stages of the implementation of the 

PUMA polarization analysis and were constructed by the chemical 

department workshop in Göttingen, as apparently no comparable 

components where commercially available. The flippers are constructed 

from anodized aluminum wire of 1.6mm diameter (commercially 

available for flower bindings…). This wire was chosen as aluminum is 

mostly transparent for neutrons and anodization is necessary to isolate 

the windings of the coil from each other. The coils have 98 windings and 

a depth (in beam direction) of 20 mm each. 

The flippers consist of two coils, one to compensate for external 

magnetic fields, the compensation coil (C) and the main coil (M) to 

change the spin direction. 

Fig. 28 shows a photo of flipper 2. Both coils can be seen, the main coil 

wirings in magenta completely and partially also the windings of the 

compensation coil in gold. 

 

 

 

 

 

 

Fig. 28: Photo of flipper 2 
shows the windings 
(differently colored wire 
for both coils) and power 
connections for both coils  
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Fig. 29: Measurement of intensity depending on main coil current with for compensation currents of 
0, 0.5 and 1A for flipper 2. The data points very close to zero are in the 150 counts range 

 

The magnetic dipole moment of a neutron with spin S is given by 

 

𝝁𝑆 = 𝑔𝑛𝐶𝑁
𝑺
ℏ

 

 

 
(21) 
 

where gn=-3.826085 is the spin-g-factor  of the neutron, and μN is the nuclear magneton given by 

 

𝐶𝑁 =
𝑒ℏ

2𝑚𝑝
 

 

 
 
(22) 
 

Here mp is the mass of a single, undisturbed, proton. 

From this we get the gyromagnetic ratio of a particle with spin S 

 

𝛾𝑆 =
|𝝁𝑆|
|𝑺|

 

 

 
(23) 
 

Now combining and we get an expression for the Lamor frequency  
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Knowing the length of our neutron flight path though the flipper field (20 mm) and the speed of our 

neutrons (ki=kf=2.662 Å-1, λ=2.36 Å, v=1676 m/s) we can say that, and more importantly how, they 

will be influenced by B for the 11.9*10-6 seconds it takes them to cross the flipper. 

To characterize our flippers we put one into the beam-path on the monochromator side of the 

polarization setup, after our polarizer cell. Then we measured the intensity of the central channel as 
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a function of the current of the main coil (IM) and iterated the scan over different currents for the 

compensation coils (IC). Each flipped neutron will now be deflected towards one of the side channels. 

For such a scan a measured intensity of zero means perfect flipping of all detected neutrons as there 

are no longer ones reaching the central channel. One such scan for flipper 2 is shown in Fig. 29. Here 

a nearly perfect flipping is shown by the intensity minimum for IC=1 A and IM=1.23 A. 

From these measurements the best flipping ratio for flipper 1 was achieved with IM=1.3 A and IC=1 A.  

In addition to this a transmission of 92% was observed by measuring the beam intensity with and 

without the flipper in the beam path. During this transmission test where the flipper was in the beam 

path it was powered down so that only the effect of its materials was observed. 

For Flipper 2 we observed the best result using IM=1.23 A and IC=1 A. Flipper 2 has a transmission of 

97%. Consequently we used flipper 2 for all following tests. 

Flipping ratios of the two flippers where 72.4 for flipper 1 and 104 for flipper 2. The limiting factor in 

determining the flipping ratio was mostly the high, but not perfect, polarization of the incident beam 

and the, also not perfect, reflectivity of our deflectors resulting in a slightly too high count-rate for 

the central channel. Beam polarization is a limiting factor for this flipping ratio test as it was done in 

the early phases of this project before we started to correct for beam polarization. The flipping ratio 

itself is independent of beam polarization 

The deflectors were useful for determining the incident beam polarization and helped to discriminate 

between nuclear and magnetic signal during our first test measurement on hematite (see 5.4 

“Hematite”). 

We also did a longer series of measurements, alternating between on/off states of flipper 2. This 

scan is shown in Fig. 30.  

The flipping ratio in this plot is calculated by 𝐹𝑁 = 𝐼𝑜𝑜𝑜
𝐼𝑜𝑛

, without any further data correction. This 

means that our real FR is somewhat higher because of the not deflected neutrons reaching the 

central detector while the flipper is on. 

Because of this it primarily shows the aging of the He-cell, as the shown data is not corrected for 

polarization. So the plot shows polarization of the incident beam, over the course of the 

measurement, but also the extremely good flipping ratio of our Mezei-flipper can be seen at the 

beginning of the measurement where the highly polarized beam (Pn= 0.9996) makes a polarization 

correction unnecessary. 
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Fig. 30: Data for the measurement of the flipper 2 flipping ratio. As the data was not corrected for 
beam polarization the first measurement gives the best value for the flipping ratio, but is still a lower 
limit.  

 

3.7 Calculating the polarization analysis Multianalyzer/-detector positions 
 

The MAD used in the PUMA polarization analysis is a complex system with numerous degrees of 

freedom. Positioning all needed axis is a complex problem, but as the whole process of finding 

optimal positions for each analyzer, detector, and guide is a basic problem of geometry. The 

distances are given by the angles for the analyzers, by the neutron wavelength and the angles of the 

deflectors, and the position of the detectors and their guides by the angles of the analyzers. All of 

this can be calculated in advance and given as an output of commands for PUMA. A script to 

calculate the best positions is now available at PUMA and integrated into the PA setup software. 

In this subsection we will go through all necessary steps to get an optimized configuration for the MA 

in polarization analysis mode. The theory of operation, calculation of the MAD positions, as well as 

some of our first measurements where already published by us in [16]. 

We start with the following given quantities; 
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D = Distance between analyzer rails [2cm (fixed)] 
θA = Analyzer Bragg-angle [°] 
LSA = Distance sample-analyzer [cm] 
LSD1 = Distance sample-deflector 1 [cm] 
LSD2 = Distance sample-deflector 2 [cm] 
LAD = Distance analyzer-detector [cm] 
γ1 = Deflector 1 tilt angle [°] 
γ2 = Deflector 2 tilt angle [°] 
α = MA tilt angle [°] 
 

In addition to the relevant distances and angles shown in Fig. 31 there is also the option to rotate the 

whole analyzer around its center. The angle for this rotation is α. The center of this coordinate 

system is the analyzer center. 

We now have the position of the side analyzers (5 and 7, with 6 the central analyzer) given by 

  

𝑥5 = (𝐿𝑆𝑆 − 𝐿𝑆𝑆2 − 𝑑5)tan (2𝛾2) 
 

𝑥7 = (𝐿𝑆𝑆 − 𝐿𝑆𝑆1 − 𝑑7)tan (2𝛾1) 

(25) 
 

 

 

Fig. 31: Distances and angles relevant for the MA configuration calculation. The y-coordinate axis is 
perpendicular to x 

x 

y 
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The relation between the x and y coordinates of the analyzer crystals is given by the MA tilt angle α 

and can be expressed by 

 

𝑥5 = 𝐷 − 𝑑5tan (𝛼) 
 

𝑥7 = −𝐷 − 𝑑7tan (𝛼) 

(26) 
 

 

If we combine these equations we can determine the y-coordinates of the analyzers using 

 

𝑑5 =
(𝐿𝑆𝑆 − 𝐿𝑆𝑆2) tan(2𝛾2) −𝐷

tan(2𝛾2) − tan (𝛼)
 

 

𝑑7 =
(𝐿𝑆𝑆 − 𝐿𝑆𝑆1) tan(2𝛾1) + 𝐷

tan(2𝛾1) − tan (𝛼)
 

 
 
(27) 
 

 

Now, using equation (27) we have both x- and y-coordinates for the analyzers. This would be enough 

if the whole MA was never rotated. Then x is parallel to the optical path of our central neutron beam. 

But as the MA can rotate we have to take 

into account that the path traveled by 

analyzer 5 or 7 to reach their intended 

position is not given by y but rather by 

 

𝑑�5 =
𝑑5

cos (𝛼)
+ 𝐷 ∙ 𝑡𝑏𝑛(𝛼)

𝑑�7 =
𝑑7

cos (𝛼)
+ 𝐷 ∙ 𝑡𝑏𝑛(𝛼)

 

 
(28) 

 

As the analyzer crystals cannot move in 

x-direction calculating 𝑥�5 and 𝑥�7 for a 

tilted MA is not necessary. 

The angles for the analyzers are given by 

the neutron wavelength. For kf=2.663 Å-1 

the reflection angle for a graphite crystal 

is Θ𝑆 = 20.6°. From this we get -20.6° 

(minus sign to get a consistent sense of 

rotation) as the fixed angle for the central analyzer (normally number 6), and taking into account the 

angle of the scattered beams, defined by the deflector angles we get -20.6°+γ2 for analyzer 5 and -

20.6°-γ1 for analyzer 7.With this we know how to position our three analyzers. 

Fig. 32: Angles and distances relevant for the MD 
configuration calculation 
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What we now still lack is the position of the detectors and their guides. For this we take a look at the 

coordinate system in Fig. 32.  

L is the distance between the analyzer center and the center of the corresponding detector, while L’ 

is the distance between the outer edges of both components. r0 is the distance between the analyzer 

center and the individual analyzer blade, while bA is half the width of the analyzer blade and rD is the 

radius of a detector tube. 

We now have the following general relations: 

 

𝜅 = arctan �
𝑥𝑖
𝑑𝑖
� (29) 

 

Here xi/yi is the center of the relevant analyzer crystal. 

 

𝜏 = 𝜋 + 𝜅 − 𝛽 
 

sin(𝜀) = −
𝑟0
𝐿𝑆𝑆

sin(𝜏) = −
𝑟0
𝐿𝑆𝑆

sin(𝛽 − 𝜅) 

 
𝛿 = −𝛽 − 𝜀 

 

𝐿 = 𝐿𝑆𝑆
sin (−δ − κ)
sin (𝛽 − 𝜅)

 

 
𝐿′ = 𝐿 − 𝑏𝑆cos (Θ) 

 

 
 
 
 
 
(30) 
 

As already mentioned, the angles (β>0, see Fig. 32) between the beam towards a detector and direct 

beam are given by 

 
 
 

β5 = −2Θ𝑆 − 2𝛽2
β6 = −2Θ𝑆

β7 = −2Θ𝑆 − 2𝛽1
 

 
 
 
(31) 

 

We also need to know where to position the guides of each used detector. For this we now use 

𝜅5 = arctan �
𝑥5
𝑑5
�

𝜅7 = arctan �
𝑥7
𝑑7
�

 

 
(32) 

 

to obtain these expressions for the angles between LAD and L 
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sin(𝜀5) = ± ��
�𝑥52 + 𝑑52

𝐿𝑆𝑆
sin(𝛽5 − 𝜅5)��  𝑓𝑓𝑟 𝑑5 − 𝑥5cot (𝛽5)>

<0 

 
(33) 

 

𝜀6 = 0 (34) 
 

sin(𝜀7) = ± �
�𝑥72 + 𝑑72

𝐿𝑆𝑆
sin(𝛽7 − 𝜅7)�  𝑓𝑓𝑟 𝑑7 − 𝑥7cot (𝛽7)>

<0 
 
(35) 

 

From this the angular positions of the used detectors are given by 

 
𝛿5 = −β5 − 𝜀5

𝛿6 = −β6 = −2Θ𝑆
𝛿7 = −β7 − 𝜀7

 

 
 
(36) 

 

As any given analyzer is not hit head on by the neutron beam we have to look at the projection of the 

tilted analyzer inside the beam divergence. To get the projection of the effective analyzer width a 

correction for the rotation angle is needed. The correction angles can be calculated using 

 

Δ𝜀5 = �arctan�−
𝑏𝑆 𝑠𝑠𝑛(𝛩 − 𝑁𝑆)

𝐿5′
��  𝑤𝑠𝑡ℎ 𝐿5′ = 𝐿𝑆𝑆

sin(−𝛿5 − 𝜅5)
sin(𝛽5 − 𝜅5) − 𝑏𝑆 cos(Θ)

Δ𝜀6 = �arctan�−
𝑏𝑆 𝑠𝑠𝑛(𝛩 − 𝑁𝑆)

𝐿6′
��  𝑤𝑠𝑡ℎ 𝐿6′ = 𝐿𝑆𝑆 − 𝑏𝑆 cos(Θ)

Δ𝜀7 = �arctan�−
𝑏𝑆 𝑠𝑠𝑛(𝛩 − 𝑁𝑆)

𝐿7′
��  𝑤𝑠𝑡ℎ 𝐿7′ = 𝐿𝑆𝑆

sin(−𝛿7 − 𝜅7)
sin(𝛽7 − 𝜅7) − 𝑏𝑆 cos(Θ)

 

 
 
 
(37) 

 

With this we have calculated the angle for the guide sheets of each detector, εi+Δεi. We now have 

the angle  Θ𝑖  for the analyzer blades, the position of the analyzers in x and y given by equations (26) 

and (27) as well as the angular position of the detectors and their guides given by equations (36) and 

(37) respectively. 

For the case that the MA is not tilted, 𝛾 = 0 the equations for x and y look like  

 

 
𝑥5 = 𝐷 

𝑑�5 = 𝑑5 = 𝐿𝑆𝑆 − 𝐿𝑆𝑆2 −
𝐷

tan(2𝛾2) 

𝑥7 = −𝐷 

 
 
 
(38) 
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𝑑�7 = 𝑑7 = 𝐿𝑆𝑆 − 𝐿𝑆𝑆1 −
𝐷

tan(2𝛾1) 

 
 

This was the case for all measurements in this work. We now can calculate full set of coordinates and 

angles to position the MAD for any given PA setup. 

There are some ideas where tilting the whole MA is an option, some of which are discussed in section 

6.2.1. 
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4 Theory 
 

After introducing our setup we will discuss what can be done with it and how to interpret the data. 

For this we will, in the following chapter, first look at some formalism for neutron scattering, first 

unpolarized nuclear and magnetic scattering followed by a section about polarized neutron 

scattering. Then an analytical model for simulating experiments with our setup is introduced and 

compared to a Monte Carlo simulation. 

 

4.1 Theory of neutron scattering from nuclei 

nuclear scattering function5 
 

For discussing scattering processes it is advantageous to use the concept of reciprocal space. The 

position of an atom, or, for some systems, a unit of atoms in a lattice can be represented by the 

lattice vector R, with the components a, b and c. If this is the case for a lattice position in real space, 

we can also define a reciprocal lattice vector: 

 

𝑮ℎ𝑘𝑘 = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗ (39) 
 

This is a very useful representation for the description of scattering by Bragg reflections. Note that h, 

k, l are the Miller indices used to denote the orientation and plane distance in reciprocal space. 

Further 

 

𝒂∗ =
2𝜋(𝒃 × 𝒄)
𝒂 ∙ (𝒃 × 𝒄)

 
(40) 

 

represents one of the three independent basic vectors, with b* and c*having cyclic permutated 

definitions. Now, for a given lattice, Ghkl is perpendicular to the atomic plane. With d the lattice 

spacing, as defined for a Bragg scattering experiment we can connect d with the reciprocal lattice 

vector by 

 

                                                           
5 4.1 and 4.2 are mostly following chapter 1 and 2 of the book “Neutron Scattering with a Triple-Axis 
Spectrometer” by Shirane, Shapiro and Tranquada, see [17] 
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|𝑮ℎ𝑘𝑘| =
2𝜋𝑛
𝑑

 (41) 

 

Here n is an integer multiple for the lattice spacing d. 

While performing a scattering experiment there are two principal observable cases of scattering 

behavior; elastic and inelastic scattering. For elastic scattering we have |ki|=|kf|=k. ki and kf are the 

initial and final wave vectors as shown in Fig. 3. Further the scattering vector Q for elastic scattering 

is defined as: 

 

𝑸 = 𝑮 = 𝒌𝑖 − 𝒌𝑓 (42) 
 

ki is the direction of the incident beam, while kf is the direction of the scattered beam, relative to the 

sampled crystal. 

In the case of inelastic scattering things get somewhat more complicated. As energy is transferred 

form the incoming neutrons to the sample |ki|=|kf| is no longer true, and we have  

 

𝑸 = 𝑮 + 𝒒𝑗 (43) 
 

Here qj is the propagation vector of an excitation mode j. Thus the scattering vector becomes the 

sum of the reciprocal lattice vector of a Bragg peak (G) and some excitation momentum (qj) 

transferring energy. This transfer is between the incoming, scattered neutron and the object on 

which it is scattered.  

If we now take a look at the scattering process itself and how to describe it, we can start with the 

differential cross-section, as expressed by the sum of the incoherent and coherent parts: 

 
𝑑2𝜎
𝑑Ω𝑑𝑑

=
𝑑2𝜎
𝑑Ω𝑑𝑑

 𝑖𝑛𝑖 +
𝑑2𝜎
𝑑Ω𝑑𝑑

 𝑖𝑡ℎ 

 
(44) 

 

Here σ is the scattering cross-section and dΩ is the angle under which the neutron beam is scattered. 

The incoherent part contains information about phenomena of individual particles such as particle 

movement inside the sample. For this work the coherent part, which provides information about 

collective effects such as Bragg scattering and inelastic scattering by magnons and phonons is much 

more interesting. 

A scattered neutron induces a transition in the quantum states of a sample while maintaining the 

basic nature of these states. They can be described by λi and λf which are quantum numbers for the 



Theory 

60 
 

initial and final state. Neutron and sample interact with each other via the interaction operator V. 

With this the differential cross section can be written as 

 
𝑑2𝜎

𝑑Ω𝑓𝑑𝑑𝑓
=
𝑘𝑓
𝑘𝑖
�〈𝒌𝑓𝜆𝑓|𝑉|𝒌𝑖𝜆𝑖〉�

2𝛿�ℏ𝜔 + 𝑑𝑖 − 𝑑𝑓� 

 

 
(45) 
 

Equation (45) assumes specific initial and final states. In the more general case there will be a 

number of possible initial states weighted by 𝑃(𝜆𝑖).  𝑃(𝜆𝑖) is normalized by  ∑ 𝑃(𝜆𝑖) = 1𝜆𝑖 . 

Furthermore, there will also be a number of final states as long as there is no selection for a single 

state is taking place. This gives us the differential cross section in the form of 

 
𝑑2𝜎

𝑑Ω𝑓𝑑𝑑𝑓
=
𝑘𝑓
𝑘𝑖
� 𝑃(𝜆𝚤)
𝜆𝚤𝜆𝑜

�〈𝒌𝑓𝜆𝑓|𝑉|𝒌𝚤𝜆𝚤〉�
2𝛿�ℏ𝜔 + 𝑑𝚤 − 𝑑𝑓�

������������������������������������������������������
 

 

 
 
(46) 
 

The horizontal bar indicates all averaged quantities not included in 𝑃(𝜆𝑖), such as isotopes, nuclear 

spin orientations etc. 

Using the Born approximation and treating incident and scattered neutrons as plane waves the 

interaction matrix element can be written as 

 

�〈𝒌𝑓𝜆𝑓|𝑉|𝒌𝑖𝜆𝑖〉�
2 = 〈𝜆𝑓 �𝑉(𝑸)�𝑒𝑖𝑸𝒓𝑙

𝑘

� 𝜆𝑖〉 

 

 
(47) 
 

rl are the scattering center coordinates and 𝑉(𝑸) = ∫𝑑𝒓 𝑉(𝒓)𝑒𝑖𝑸𝒓. For nuclear scattering the 

nuclear potential can be treated as a delta function with b the nuclear scattering length, so that 

 

𝑉(𝒓) =
2𝜋ℏ2

𝑚𝑛
𝑏 ∙ 𝛿(𝒓)  

 

 
(48) 
 

Equation (46), when averaging over initial states and summing over final states then reads like 

 

𝑑2𝜎
𝑑Ωf𝑑𝑑𝑓

=
𝑘𝑓
𝑘𝑖
� 𝑃(𝜆𝚤) �〈𝜆𝑓 �𝑉(𝑸)�𝑒𝚤𝑸∙𝒓𝑙

𝑘

� 𝜆𝚤〉�
2

𝜆𝚤𝜆𝑜

𝛿(ℏ𝜔 + 𝑑𝚤 − 𝑑𝑓)
������������������������������������������������������������������

 

 

 
 
(49) 
 

The differential cross section can also, as shown by Van Hove [18], be expressed as  

 
𝑑2𝜎
𝑑Ω𝑑𝑑

= 𝑁
𝑘𝑓
𝑘𝑖

|𝑉(𝑸)|2𝑆(𝑸,𝜔) 

 

 
(50) 

however in newer literature it is more common to integrate V(Q) into S(Q,ω), so that we get  
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𝑑2𝜎
𝑑Ω𝑑𝑑

= 𝑁
𝑘𝑓
𝑘𝑖
𝑆(𝑸,𝜔) 

 
 

(51) 
 

We can now express the scattering function in the following form: 

𝑆(𝑸,𝜔) =
|𝑉(𝑸)|2

2𝜋ℏ𝑁
�� 𝑑𝑡〈𝑒−𝑖𝑸∙𝒓𝑙′(0)𝑒𝑖𝑸∙𝒓𝑙(𝑡)〉𝑒−𝑖𝑖𝑡

∞

−∞𝑘𝑘′
 

(52) 

 

N is the number of nuclei and t time. We use the thermal average, as shown by the angle brackets. 

Furthermore for inelastic scattering we can take a look at the general scattering function S(Q,ω) and 

eliminate all elastic contributions from it, for example Bragg scattering. What remains is a function of 

momentum and frequency that describes fluctuations in a given sample. Examples for such 

fluctuations are phonons for lattice excitations and magnons for magnetic excitations. 

In a crystal lattice the orientation of magnetic moments undergoes permanent fluctuations. Because 

spins are coupled by exchange interactions these fluctuations produce collective excitations in the 

electrons spin structure. This collective phenomenon is known as a spin wave. A spin wave is also 

often called a magnon, a magnetic quasiparticle equivalent of vibrational quasiparticle, the phonon. 

Spin wave energy shows dispersion with respect to q in a given Brillouin zone. A neutron scattered 

from a magnetic system can absorb or emit magnons. 

As this work is mostly concerned with magnetic excitation we will go into some more detail for 

magnetic scattering and magnons in the next sections. 

 

4.2 Theory of neutron scattering from magnetic moments; 

magnetic scattering function 
 

As they have a magnetic moment of their own neutrons can scatter from the magnetic moment of an 

atom, which makes them a good probe for the exploration of such phenomena. 

One important aspect for magnetic scattering is the magnetic form factor f(Q). 

 

𝑓(𝑸) = �𝜌𝑠(𝒓)𝑒𝑖𝑸𝒓𝑑𝒓 (53) 

 

The magnetic form factor describes the Fourier transformation of the normalized unpaired spin 

density 𝜌𝑠(𝑟) of an atom. 

The full differential cross section for magnetic scattering originates from equation (49) but also takes 

the initial (si) and final (sf) spin-state of the neutron into account ( [17] chapter 2.6, equation 2.61) 
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𝑑2𝜎
𝑑Ω𝑑𝑑

=
𝑘𝑓
𝑘𝑖
�𝑃(𝜆𝑖) �〈𝜆𝑓 ��𝑒𝑖𝑖𝑟𝑙𝑈𝑘

𝑠𝑖𝑠𝑜

𝑘

� 𝜆𝑖〉�
2

𝛿(ℏ𝜔 + 𝑑𝑖 − 𝑑𝑓)   
𝑖,𝑓

 
(54) 

 

with 

𝑈𝑘
𝑠𝑖𝑠𝑜 = 〈𝑠𝑓|𝑏𝑘 − 𝑝𝑘𝑺⊥𝑘𝝈+ 𝜕𝑘𝑵𝑘𝝈|𝑠𝑖〉 (55) 

 

Equation (55) is the atomic scattering amplitude for a site l where a spin state transitions from si to sf. 

In addition B is the spin dependent nuclear amplitude, I is the nuclear spin operator and 𝑺⊥ is the 

magnetic interaction vector. 𝑺⊥can be described by 

𝑺⊥ = 𝑸� × �𝑺 × 𝑸�� = 𝑺 − 𝑸�(𝑸� ∙ 𝑺) (56) 
  
𝑸�  is a unit vector along Q. Note that only the S component perpendicular to Q gives a contribution to 

the scattering amplitude. This has major experimental consequences as we can only measure the 

component of the magnetic interaction perpendicular to our scattering vector.  

 

|𝑺⊥|2 = ��𝛿𝛼𝛼 − 𝑄�𝛼𝑄�𝛼�𝑆 𝛼
∗ 𝑆𝛼

𝛼,𝛼

 

 

 
(57) 
 

The differential cross section for atomic magnetic scattering of a system with a single sort of 

magnetic atom for unpolarized neutrons can be written as 

 
𝑑2𝜎

𝑑Ω𝑓𝑑𝑑𝑓
=
𝑁
ℏ
𝑘𝑓
𝑘𝑖
𝑝2𝑒−2𝑊��𝛿𝛼𝛼 − 𝑄�𝛼𝑄�𝛼�𝑆𝛼𝛼(𝑸,𝜔)

𝛼,𝛼

 

 

 
(58) 
 

Where 

 

𝑝 = �
𝛾𝑟0
2
�𝑔𝑓(𝑄) 

 

 
(59) 

 

 
𝛾𝑟0
2

=
𝛾𝑒2

2𝑚𝐻𝑐2
= 0.2695 ∙ 10−12𝑐𝑚 

 

 
(60) 
 

here g is the Lande splitting factor, e and me are the electron mass and charge and c the speed of 

light.  

And furthermore 
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𝑆𝛼𝛼(𝑸,𝜔) =
1

2𝜋
� 𝑑𝑡 𝑒−𝑖𝑖𝑡�𝑒𝑖𝑖∙𝑟𝑙 〈𝑆0𝛼(0)𝑆𝑘

𝛼(𝑡)〉
𝑘

∞

−∞
 

 

 
(61) 
 

Here we averaged over different possible configurations, as indicated by <…>. Now integrating 

Sαβ(Q,ω) over all frequencies and then integrating over a whole Brillouin zone in reciprocal space 

gives the following sum rule 

 

� 𝑑𝜔
∞

−∞
� 𝑑𝑸𝑆𝛼𝛼(𝑸,𝜔) =

(2𝜋)3

3𝑣0
𝑆(𝑆 + 1)𝛿𝛼𝛼

𝐵𝐵
 

 

 
(62) 
 

Elastic Bragg scattering of a magnetically ordered system is proportional to 〈𝑆𝑧〉2, with z the axis 

along which the magnetic moments are ordered. For temperatures below the ordering transition and 

classical spins (S is large) we have 〈𝑆𝑧〉 = 𝑆. 

The weight of scattering from magnons compared to magnetic Bragg scattering is 1/S which goes to 

zero for large S. For temperatures above the ordering transition diffuse scattering is observed with a 

weight proportional to S(S+1).  

Up until this point magnetization density, from which a neutron is scattered, was only the result of 

spin angular momentum. But there are also contributions from orbital angular momentum. 

The scattering cross section includes the Fourier transform of the magnetization density, expressed 

by  

 
𝑴(𝑸)
𝐶𝐵

= 𝑔𝑺𝑓(𝑸) 

 

 
(63) 
 

With g=2. Using a radial wave function Φ(r) that corresponds to the unpaired spin we get 

 

𝑓(𝑄) = � 𝑑𝑟 𝑟2𝑗0(𝑄𝑟)|Φ(𝑟)|2 ≡ 〈𝑗0〉
∞

0
 

 

 
(64) 
 

With jn(Qr) a spherical Bessel function of n-th order. Now we can include the orbital moment and 

write (63) as 

 
𝑴(𝑸)
𝐶𝐵

= 2〈𝑗0〉𝑆 + (〈𝑗0〉+ 〈𝑗2〉)𝑳 

 

 
(65) 
 

L is the angular momentum vector. 
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4.3 Theory of polarized neutron scattering 
 

Neutrons have a magnetic moment of  

 

𝝁𝑛 = 𝛾𝐶𝑁𝝈𝑛  (66) 
 

with the gyromagnetic ratio γ=-1.91 and where 

 

𝐶𝑁 =
𝑒ℏ

2𝑚𝑝
 

 

 
(67) 
 

 is the nuclear magneton and  σn stands for the neutron spin operator.  

This magnetic moment allows neutrons to interact with magnetic phenomena, which in turn allows 

us to use neutrons as a probe for magnetic systems.  

So, by using polarized neutrons it is possible to probe a sample for its magnetic structure and 

behavior in details not possible by conventional neutron experiments.  

As a neutron is a spin 1
2
 particle with a magnetic momentum several observations can be made. 

When observed along one axis, such as the z-axis as given by our guide field, the vector component 

of its total angular momentum can take two different possible values, ± ℏ
2
. 

Like in most cases we only observe the polarization vector in the direction of the external magnetic 

field in our experiment. For us this is our guide field, described in section 3.4.  

Before we use this restriction given by our setup we will first find expressions describing in general 

terms how the neutron spin can interact. For this we start with the energy of a neutron interacting 

with a magnetic field, which is given by  

 

𝑉 = −𝝁𝑛𝑩 (68) 
 

The magnetic field of a moving electron is given by  

 

𝑩(𝒓) =
𝐶0
4𝜋

∇ ×
𝝁𝐻 × 𝒓

|𝒓|3 −
𝑒

4𝜋𝜀0
𝒗 ×

𝒓
|𝒓|3 

 

 
(69) 
 

with the coordinate-system centered on the electron. 
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Combining equations (68) and (69) we calculate the field of the magnetic moment between a 

neutron and a moving electron using a neutron with spin σ, located at r. We get an interaction 

potential described by 

 

 

𝑉(𝑟) = −𝝁𝑁𝑩 = −𝛾𝐶𝑁𝝈𝑩 = −𝛾𝐶𝑁𝝈 �
𝐶0
4𝜋

∇ ×
𝝁𝐻 × 𝒓

|𝒓|3 −
𝑒

4𝜋𝜀0
𝒗 ×

𝒓
|𝒓|3�

= 𝛾𝐶𝑁 �2𝐶𝐵𝝈∇ ×
𝒔 × 𝒓
𝑟3

−
𝑒

8𝜋𝜀0𝑚𝐻
�𝒑𝐻

𝝈 × 𝒓
𝒓3

+
𝝈 × 𝒓
𝒓3

𝒑𝐻�� 

 
 
(70) 

 

Here μN is the nuclear magneton, γ the gyromagnetic ratio, μ0 permeability of free space, μe the 

magnetic moment of the electron, v its speed, s the electron spin and pe its momentum. 

Now we write down the transition matrix element which takes the following form 

 

�〈𝒌𝑓𝝈𝑓𝜆𝑓|𝑉(𝒓)|𝒌𝑖𝝈𝑖𝜆𝑖〉�
2

= (𝛾𝐶𝑁)2 ��〈𝝈𝑓𝜆𝑓 ��𝑒𝑖�𝒌𝑖−𝒌𝑜�𝒓𝝈∇×
𝒔 × 𝒓
𝑟3

𝑑𝒓� 𝝈𝑖𝜆𝑖〉

−
𝑒

8𝜋𝜀0𝑚𝐻
〈𝝈𝑓𝜆𝑓 ��𝑒𝑖�𝒌𝑖−𝒌𝑜�𝒓 �𝒑𝐻

𝝈 × 𝒓
𝑟3

+
𝝈 × 𝒓
𝑟3

𝒑𝐻�𝑑𝒓� 𝝈𝑖𝜆𝑖〉� 𝑑𝒓�
2
𝛿(ℏ𝜔 + 𝑑𝜆𝑖 − 𝑑𝜆𝑜) 

(71) 

 

ki/f is the wave vector, σi/f the spin state, λi/f the wavelength and E the wavelength dependent energy 

of the initial/i or final/f neutron. Now, using 

 

∇ ×
𝒔𝐻 × 𝒓
𝑟3

=
1

2𝜋2
�

1
𝑞2
𝒒 × (𝒔𝐻 × 𝒒)𝑒𝑖𝒒𝒓𝑑𝒒 (72) 

 

 

on the first part of equation (71) we get  
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�𝑒𝑖�𝒌𝑖−𝒌𝑜�𝒓𝝈∇×
𝒔 × 𝒓
𝑟3

=
1

2𝜋2
�

1
𝑞2 

𝑒𝑖�𝒌𝑖−𝒌𝑜�𝒓𝝈(𝒒 × 𝒔 × 𝒒)𝑒𝑖𝒒𝒓𝑑𝒒𝑑𝒓

=
1

2𝜋2
�

1
𝑞2 

𝝈(𝒒 × 𝒔 × 𝒒)�𝑒𝑖�𝒌𝑖−𝒌𝑜�𝒓𝑑𝒒𝑑𝒓

=
4𝜋
𝑄2

𝝈(𝑸 × 𝒔 × 𝑸)

= 4𝜋𝝈�𝒔 − 𝑸��𝑸�𝒔��
= 4𝜋𝝈𝒔⊥ 

(73) 

 

Where∫ 𝑒𝑖�𝒌𝑖−𝒌𝑜�𝒓𝑑𝒒 = (2𝜋)3𝛿(𝑸 + 𝒒), 𝑸 = 𝒌𝑖 − 𝒌𝑓 and 𝑸� = 𝑸
𝑖

. 𝑸��𝑸�𝒔� is the component of s in Q 

direction and �𝒔 − 𝑸��𝑸�𝒔�� the s component perpendicular to Q. Only the spin components 

perpendicular to Q contribute to the scattering amplitude. 

For the second part of equation (71) we first get: 

 

 

�𝑒𝑖�𝒌𝑖−𝒌𝑜�𝒓𝒑𝐻
𝝈 × 𝒓
𝑟3

𝑑𝒓

=�𝑒𝑖𝑸𝒓𝒑𝐻
𝝈 × 𝒓
𝑟3

𝑑𝒓

= �𝑒𝑖𝑸𝒓𝒓
𝝈 × 𝒑𝐻
𝑟3

𝑑𝒓

= −�𝑒𝑖𝑸𝒓𝝈 �∇ �
1
𝑟
� × 𝒑𝐻� 𝑑𝒓

= −
1

2𝜋2
�𝑒𝑖𝑸𝒓𝝈�∇ ��

1
𝑞2
𝑒𝑖𝒒𝒓𝑑𝒒� × 𝒑𝐻�𝑑𝒓

= −
1

2𝜋2
�𝑒𝑖𝑸𝒓𝝈���

𝑠𝒒
𝑞2
𝑒𝑖𝒒𝒓𝑑𝒒�× 𝒑𝐻�𝑑𝒓

= 4𝜋𝑠𝝈
𝑸 × 𝒑𝐻
𝑄2

= 𝑠
4𝜋
𝑄
𝝈(𝑸� × 𝒑𝐻)  

 
 
 
 
 
 
(74) 

 

And then in the same way 

�𝑒𝑖�𝒌𝑖−𝒌𝑜�𝒓
𝝈 × 𝒓
𝑟3

𝒑𝐻𝑑𝒓

= 𝑠
4𝜋
𝑄
𝝈(𝑸� × 𝒑𝐻)  

 
(75) 

 

For the neutron scattering matrix element this means that we can write it down like 
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�〈𝒌𝑓𝝈𝑓𝜆𝑓|𝑉(𝒓)|𝒌𝑖𝝈𝑖𝜆𝑖〉�
2

= (𝛾𝐶𝐾)2𝛿 �ℏ𝜔 + 𝑑𝜆𝑖 − 𝑑𝜆𝑜�

∙ ��4𝜋〈𝝈𝑓𝜆𝑓|𝝈𝒔⊥|𝝈𝑖𝜆𝑖〉 − 𝑠
𝑒

𝜀0𝑚𝐻
〈𝝈𝑓𝜆𝑓 �

1
𝑄
𝝈(𝑸� × 𝒑𝐻)� 𝝈𝑖𝜆𝑖〉� 𝑑𝒓�

2
 

 

 
(76) 
 

for a single spin state and like 

 
�〈𝒌𝑓𝝈𝑓𝜆𝑓|𝑉(𝒓)|𝒌𝑖𝝈𝑖𝜆𝑖〉�

2

= (𝛾𝐶𝐾)2𝛿 �ℏ𝜔 + 𝑑𝜆𝑖 − 𝑑𝜆𝑜�

∙ ��4𝜋 〈𝝈𝑓𝜆𝑓 ��𝑒𝑖𝑸𝑹𝑘 𝝈𝒔𝑘⊥� 𝝈𝑖𝜆𝑖〉

− 𝑠
𝑒

𝜀0𝑚𝐻
〈𝝈𝑓𝜆𝑓 �

1
𝑄
�𝑒𝑖𝑸𝑹𝑘 𝝈(𝑸� × 𝒑𝑘)� 𝝈𝑖𝜆𝑖〉� 𝑑𝒓�

2
 

 
 

 
 
 
 
 
 
(77) 
 

for multiple spins. Again Q is the scattering vector, σ the Pauli spin operator, ki/f, σi/f, λi/f, and Ei/f are 

the wave vector, spin state, wavelength and energy of the incident respective scattered neutron. 

Position of the kth electron is given by Rk and 𝒔𝑘⊥is the spin component orthogonal to the scattering 

vector and σ is the Pauli spin operator. 

We will now use the Pauli matrices which together form σ and have the following form: 

 

𝜎𝑥 = �0 1
1 0�   𝜎𝑦 = �0 −𝑠

𝑠 0 �    𝜎𝑧 = �1 0
0 −1� 

 

(78) 

We can also write part of (77) concerning the orthogonal spin component as 

 

〈𝝈𝑓𝜆𝑓 �
1
𝑄
�𝑒𝑖𝑸𝑹𝑘 𝝈𝒔𝑘⊥�𝝈𝑖𝜆𝑖〉 = 〈𝝈𝑓𝜆𝑓�𝝈�𝑥𝑚𝑥 + 𝝈�𝑦𝑚𝑦 + 𝝈�𝑧𝑚𝑧�𝝈𝑖𝜆𝑖〉 

 

 
(79) 
 

again with σi/f the initial and final neutron spin state, λi/f the neutron wavelength  and σ the Pauli spin 

operator (equation (78)). Rk is the position of electron k, 𝒔𝑘⊥ is the spin component orthogonal with 

respect to Q and mx, my and mz are the components of the Fourier-transformed spins. 

Eigenvectors and Eigenvalues of the Pauli matrices are as follows: 

 

𝜎𝑥 �
1
1� = �1

1�    𝜎𝑥 �
1
−1� = �−1

1 � = −1 � 1
−1�    

𝒔±
𝑥 =

1
√2

� 1
±1� 

 
(80) 

    

𝜎𝑦 �
1
𝑠 � = �1

𝑠 �    𝜎𝑦 �
1
−𝑠� = �−1

𝑠 � = −1 � 1
−𝑠�    

𝒔±
𝑦 =

1
√2

� 1
±𝑠� 

(81) 
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𝜎𝑧 �
1
0� = �1

0�    𝜎𝑧 �
0
1� = � 0

−1� = −1 �0
1�    

𝒔+𝑧 = �1
0�  and 𝒔−𝑧 = �0

1� 

(82) 
 

 

A scattered neutron, as well as one before the scattering event, can be in one of these six spin states 

given by the Eigenvalues. Combining the six possible incident values with the six possible scattered 

values gives us a total of 36 combinations. For example a neutron with a spin oriented along the z 

axis that undergoes a spin-flip form z+ to z- can be described with the following expression: 

 
〈𝜎𝑧+�𝜎�𝑥𝑚𝑥 + 𝜎�𝑦𝑚𝑦 + 𝜎�𝑧𝑚𝑧�𝜎𝑧−〉 = 〈𝜎𝑧+|𝜎�𝑥𝑚𝑥|𝜎𝑧−〉+ 〈𝜎𝑧+�𝜎�𝑦𝑚𝑦�𝜎𝑧−〉+ 〈𝜎𝑧+|𝜎�𝑧𝑚𝑧|𝜎𝑧−〉

= �1
0� �

0 1
1 0� �

0
1�𝑚𝑥 + �1

0� �
0 −𝑠
𝑠 0 � �

0
1�𝑚𝑦 + �1

0� �
1 0
0 −1� �

0
1�𝑚𝑧

= 𝑚𝑥 − 𝑠𝑚𝑦 
 

 
(83) 
 

Doing this for all possible combinations shows that there are only six, different contributions to the 

scattering function: 

 

 

0:                                                                                                (xx),(xx���) 

A=|my|2:      (yy),(yy���),(zz�),(z�z) 

B=|mz|2:      (yy�),(y�y),(zz),(zz� ) 

C=1/2(|my|2+|mz|2+mymz*+my*mz):   (yz),(yz���),(zy),(zy���) 

D=1/2(|my|2+|mz|2-mymz*-my*mz):   (yz�),(y�z),(zy�),(z�y) 

E=1/2(|my|2+|mz|2+i(mymz*-my*mz)):   (x�x),(xy���),(x�y),(xz� ),(x�z),(y�x),(yx),(zx),(z�x) 

F=1/2(|my|2+|mz|2-i(mymz*-my*mz)):   (xx�),(xy),(xy�),(xz),(xz�),(yx�),(yx���),(zx�),(zx� ) 

 

Here (xx) means that the initial spin is oriented in positive x-direction and keeps its orientation during 

the scattering process. On the other hand (yz�) means an incident spin oriented in positive y-direction 

gets flipped in minus z-direction during scattering. All 36 possible combinations can be found in the 

appendix 8.2 “All magnetic scattering combinations”. 

The chosen coordinate system has x parallel to Q, and y perpendicular to Q, so that the x-y plane is 

the scattering plane. Perpendicular to the scattering plane is z. From this orientation 𝝈�mx=0 follows, 

as only components perpendicular to Q make a contribution to the scattered intensity. Intensity of 
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the scattered beam is proportional to the structure factor squared. This means for our SF-example 

(equation (83)) the resulting intensity ISF is proportional to �𝑚𝑦�
2

. 

Utilizing these contributions to construct a general tensor for the intensities for a 3d polarization 

experiment we find the following contributions listed in Table 3. 

 

 

 x x� y y� z z�  
x 0 2F F F F F  
x� 2E 0 E E E E  
y E F A B C D  
y� E F B A D C  
z E F C D B A  
z� E F D C A B  

 

Table 3: Contributions to scattered intensity depending on the polarization of incident (columns) and 
scattered (rows) neutrons 

 

As an example of how the general tensor behaves under certain conditions we will use a helical 

magnetic structure. For a chiral magnetic system this tensor can be further simplified. There are two 

cases, in the first one where mz=imy the six contributions are further simplified and we get the 

following elements: 

𝐴 = 𝜕 = �𝑚𝑦�
2 = |𝑚𝑥|2 

𝐶 =
1
2

(𝐴 + 𝐴 − 𝑠𝐴 + 𝑠𝐴) = 𝐴 

𝐷 =
1
2

(𝐴 + 𝐴 + 𝑠𝐴 − 𝑠𝐴) = 𝐴 

𝑑 =
1
2

(𝐴 + 𝐴 + 𝑠(−𝑠𝐴 − 𝑠𝐴)) = 2𝐴 

𝐹 =
1
2

(𝐴 + 𝐴 − 𝑠(−𝑠𝐴 − 𝑠𝐴)) = 0 

This results in the intensity tensor shown in Table 4. 
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 x x� y y� z z�  
x 0 0 0 0 0 0  
x� 4A 0 2A 2A 2A 2A  
y 2A 0 A A A A  
y� 2A 0 A A A A  
z 2A 0 A A A A  
z� 2A 0 A A A A  

 

Table 4: Contributions for a  mz=imy chiral system to scattered intensity depending on the 
polarization of incident (columns) and scattered (rows) neutrons 

 

This means that there is no magnetic scattering if the polarization of the incident neutron beam is 

parallel to x and for scattered neutrons with polarization parallel to –x. 

The second case is a chiral system where mz=-imy giving us the following contributions: 

 

𝐴 = 𝜕 = �𝑚𝑦�
2 = |𝑚𝑥|2 

𝐶 =
1
2

(𝐴 + 𝐴 + 𝑠𝐴 − 𝑠𝐴) = 𝐴 

𝐷 =
1
2

(𝐴 + 𝐴 − 𝑠𝐴 + 𝑠𝐴) = 𝐴 

𝑑 =
1
2

(𝐴 + 𝐴 + 𝑠(𝑠𝐴 + 𝑠𝐴)) = 0 

𝐹 =
1
2

(𝐴 + 𝐴 − 𝑠(𝑠𝐴 + 𝑠𝐴)) = 2𝐴 

These contributions result in the tensor shown in Table 5. 

 x x� y y� z z�  
x 0 4A 2A 2A 2A 2A  
x� 0 0 0 0 0 0  
y 0 2A A A A A  
y� 0 2A A A A A  
z 0 2A A A A A  
z� 0 2A A A A A  

 

Table 5: Contributions for a  mz=-imy chiral system to scattered intensity depending on the 
polarization of incident (columns) and scattered (rows) neutrons 
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This means that there is no magnetic scattering if the polarization of the incident neutron beam is 

parallel to –x and for scattered beam with polarization parallel to x 

 

4.3.1 Analytical calculations for PUMA polarization analysis 

 

As we have a new setup we did some simulations for our unique beam profile to better understand 

the interaction between the different components, optimize components (see Fig. 20 for the 

collimator as an example), and to build a solid understanding of its principles. For this McStas6, a tool 

for simulating neutron scattering experiments by a Monte Carlo approach was used. To supplement 

this we also did analytical calculations to confirm McStas findings and to better understand and 

control our experiment. 

The analytical solution showed to be much faster and was used to optimize the setup and later to 

improve our experimental data. For this approach the geometrical structures of the polarization 

setup were critical as even small deviations in some constraints can lead to rather large differences in 

calculated results.  

To get a successful quantitative interpretation of experimental data the characteristics of all 

components in the beam path and their influence on the neutron beam have to be taken into 

account. 

In this section the analytical approach necessary to calculate the expected count rates for a given 

setup of the three analyzer channels is demonstrated. Even more important than the bare count 

rates, the rates of the different spin states and their flipping behavior are calculated.  

                                                           
6 McStas can be found under http://www.mcstas.org/ 
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The used geometric parameters are illustrated in Fig. 33. 

The probability for a neutron to have spin up (↑) or spin down (↓) laterally displaced from the 

optical axis (xS) after interacting with the sample is given by 

Fig. 33: Notation of the geometrical parameters used for 
the analytical description of the polarization analysis 

y 

x 
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WS
↑↓(xS) = �S

↑↓ for −
BS
2

< xS <
BS
2

0 else
 

(84) 

 

where BS is the sample width, or the width of the slit if no sample is present. This makes 𝑆↑↓the 

scattered neutron flux. When the neutron leaves the sample with an angular divergence α respective 

to the optical axis the transmission probability for the collimator is given by   

Wc(α) = exp�−4ln2 �
α
αc
�
2
� 

 

(85) 

with αC denoting the collimator divergence. After the collimator the transmitted neutrons hit the first 

of two deflectors. The first deflector is tilted by γ1 (<0°) meaning the neutron hits under an angle of 

γ1-α. The probability of reflection at the first deflector is given by  

 

R1
↑↓(α, γ1) = R0

↑↓(γ1 − α) − D1
↑↓(α, γ1) (86) 

 

The reflectivity for spin up/down, (↑/↓) neutrons under grazing angle of γ is given by ( )0R γ↑↓ , 

( )1 1,D α γ↑↓ is the probability of double reflection between two wafer-coatings within the deflector 

which returns the neutron to its original direction. Double reflection occurs when a neutron hits a 

mirror coating, gets reflected and then hits another mirror before exiting the deflector. The effect of 

this is a reflection back into the original direction, resulting in a small lateral translation of the beam 

path.  

To get the reflectivity-characteristic of our deflectors a reflectivity curve provided by the 

manufacturer (Swiss Neutronics) was fitted. As a result of this fit reflectivity for our deflectors was 

modelled as  
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𝑁0↑ = 2.04772− �0.05616 ∗
1

tanh(𝛾) ∗
(−0.91817) + 1� +

1
tanh (−𝛾 ∗ (−33.32664))

 (87) 

 

 

for spin-up and 

𝑁0↓ = −0.00408 +

⎝

⎛ 0.00252

0.002 ∗ �𝜋2⎠

⎞ ∗ exp�−2 ∗ �
𝛾 − 0.0015

0.002
�
2

� 

 

 
 
(88) 

 

for spin-down reflectivity. In both cases using 

 

𝐶1 =
4 ∗ log 2
𝑐𝑓𝑙𝑙2

 
(89) 

 

where coll is the collimation of the deflector. The deflectors work also as collimators with a 

collimation of 47.25’ as a result of their construction, see chapter 3.2. 

 

Fig. 34: Reflectivity curves for our deflectors as recreated from manufacturer data 



Theory 

75 
 

Fig. 34 shows the reflectivity curve for a mono-layer mirror and a beam without any divergence, 

given by equations (87) and (88). 

The probability for a double reflection depends on the geometry of the wafer, explicitly its length L 

and thickness d. We can write ( )1 1,D α γ↑↓ as  

 

D1
↑↓(α, γ1) = ��

L
d

(α − γ1)− 1�R0
↑↓2(γ1 − α)for α − γ1 >

d
L

0 else
 

(90) 

 

The index (here 1) denotes which deflector is under consideration, with deflector 1 being the first 

deflector in beam direction. From this we get the following transmission function for deflector 1: 

 

T1↑↓(α, γ1) = 1 − R1
↑↓(α, γ1) = 1 − R0

↑↓(γ1 − α) + D1
↑↓(α, γ1) (91) 

 

For the second deflector we get similar expressions if we replace the index 1 by 2.  

Neutrons that are reflected at the first deflector, leaving it under an angle of 2γ1-α and transmit the 

second deflector can be described with the following probability formula 

 

W1
↑↓(xS,α, γ1, γ2) = W𝑆

↑↓(𝑥𝑆)𝑊𝑖(𝛼)R1
↑↓(𝛼, 𝛾1)T2↑↓(2𝛾1 − 𝛼, 𝛾2) (92) 

 

Because of the large divergence of our beam after interaction with the sample, compared to the 

width of the analyzer crystals, not all spin-down neutrons in the beam will hit the first deflector. The 

remaining spin-down neutrons reach the second deflector, which is tilted in opposite direction from 

the first deflector by an angle γ2 (>0). For this second deflector we get an equation for the reflection 

probability in much the same way as for the first deflector. See equation (92). 

 

W2
↑↓(xS,α, γ1, γ2) = WS

↑↓(xS)Wc(α)R2
↑↓(α, γ2)T1↑↓(α, γ1) 

 
(93) 

Using these equations for reflectivity of the deflectors ((87) and (88)), double reflection at (90) and 

transmission (91) through the deflectors we can use the probabilities given by (92)and (93) to 

simulate our beam profile at the PSD position. This is done by calculating neutron distribution for 

both spin directions at the distance of the PSD. 

A simulation of our beam profile is shown in Fig. 35. The lower row shows the beam profile after the 

first deflector, while the beam profile after the second deflector is shown on top. Up and down 

neutron intensities are shown separately with up intensities on the right. 
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Fig. 35: Results for the analytical calculations after the first and second deflector. Calculations were 
done in Maple. 

 

A comparison between the analytical calculation and McStas simulation is shown in Fig. 36. 

Agreement between two methods gets better for smaller sample sizes, with good agreement starting 

at samples of 2 cm radius. Otherwise McStas produces a broader and more triangular profile. In the 

shown comparison for a 2 cm sample integrated intensity for the small, left beam is nearly identical, 

the central beam shows a small deviance, while the right beam shows nearly 23% difference in 

integrated intensity. The main reason for this is the broader profile of the McStas simulation, but 

looking at our experimental data (for example in Fig. 18 and Fig. 27) the analytical calculated profile 

with its sharper and clearer separated peaks is a better fit to our measurements.  
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Fig. 36: Comparison between analytical calculations and McStas simulation of the PSD beam-profile 
for a 2 cm sample 

 

McStas simulations were done by Oleg Sobolev7 to model the PUMA polarization analysis setup. We 

learned that the analytical treatment of the problem provided very similar results; again see Fig. 36 

for a comparison between McStas and our analytical approach. There simulations for a 2 cm sample 

size are shown and the peak positions for both methods are a nearly perfect match. The largest 

deviation is in the form of the low intensity peak produced by the second deflector. Here McStas 

produces a rather triangular profile not matching any of our measurements. It should be noted that 

agreement between the analytical approach and McStas was only reached in calculations using 

sample sizes of 2 cm or less. For larger sample sizes the peak position was still good, but the shape 

and width of the side peaks started to deviate strongly.  

                                                           
7 Oleg Sobolev was the PUMA instrumental scientist for the larger part of this work and strongly involved in the 
polarization analysis setup 
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If we want to calculate the intensities for our setup we also have to take interactions with the 

analyzer crystals into account as well as the single detectors. 

At a distance yA from the center of the multianalyzer, neutrons that were deflected at the first 

deflector and transmitted by the second (see equation (92)) arrive with a lateral displacement of 

 

x1(𝑥𝑆,𝛼, 𝛾1) = (𝐿𝑆𝑆 − 𝐿𝑆𝑆1 − 𝑑𝑆)tan (2𝛾1 − 𝛼) + 𝑥𝑆 + 𝐿𝑆𝑆1tan (𝛼) (94) 
 

LSA is the sample-analyzer distance and LSD1 the distance between sample position and first deflector. 

Now, with an analyzer centered at (xA,yA) and tilted by an angle of θA(<0), we can write down the 

probability that a neutron is reflected by the analyzer and reaches the detector corresponding to the 

analyzer crystal by: 

 

WA,1(xS,α, γ1) = RA exp�−4ln2 �
Θ0 − ΘA + 2γ1 − α

ηA
�
2

� exp�−4ln2�
x1(xS,α, γ1) − xA

BAsinΘA
�
2

� 
(95) 

 

The first exponential expression describes the mosaic distribution of the analyzer crystal hit by a 

neutron under an angle of θA-(2γ1-α). For neutrons with a wavelength of 2.36 Å the ideal Bragg-angle 

for pyrolytic graphite (PG), as used within the PUMA multianalyzer, is θ0=-20.6°.  Other parameters of 

the analyzer we need are the mosaicity of the crystal, ηA, and its peak reflectivity, RA. The finite width 

of the analyzer blade, BA, is taken into account in the second exponential expression, describing the 

probability that the blade is hit by the incoming neutrons. 

Just as in the analytical treatment of the resolution function in the paper of Eckold and Sobolev [19], 

the Gaussian approximation appears as a good approximation. Alternatively it could also be 

exchanged by an expression like equation (84). 

After being reflected at the second deflector (see equation (93)) the neutrons are now located at a 

distance of LSD2 from the sample and have a divergence angle of 2γ2-α. They hit an analyzer crystal 

centered at (xA,yA) at 

 

x2(xS,α, γ2) = (LSA − LSD2 − yA) tan(2γ2 − α) + xS + LSD2tan (α) 
 

(96) 

 

where they are reflected with the probability 

 

WA,2(xS,α, γ2) = RA exp�−4ln2 �
Θ0 − ΘA + 2γ2 − α

ηA
�
2

� exp�−4ln2�
x2(xS,α, γ2)− xA

BAsinΘA
�
2

� 
(97) 
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While calculating the beam profile for our experiment it is necessary to take into account the 

possibility of double reflections inside our two deflectors. This is effectively the same as if the 

neutron had passed all mirrors without being reflected.  For the neutrons that are transmitted at the 

second deflector or experience a double reflection we obtain a probability of 

 

W0
↑↓(xS,α, γ1, γ2) = WS

↑↓(xS)Wc(α)T1↑↓(α, γ1)T2↑↓(α, γ2) (98) 
 

x0(xS,α) = (LSA − yA) tan(α) + xS (99) 
 

They are reflected by an analyzer at (xA,yA) with the probability 

 

WA,0(xS,α) = RA exp �−4ln2 �
Θ0 − ΘA + α

ηA
�
2

� exp�−4ln2�
x0(xS,α) − xA

BAsinΘA
�
2

� 
(100) 

 

(here the small parallel shift of the neutron after double reflection is neglected) 

For a configuration using the three analyzers 5,6 and 7, which are centered at (x5,y5), (x6,y6), (x7,y7) 

with tilt angles θ5, θ6, θ7, respectively, we can represent the individual count rates in the following 

way: 

 

Ii = ���W1
↑(xS,α, γ1, γ2) + W1

↓(xS,α, γ1, γ2)�Wi,1(xS,α, γ1)
∞

−∞

+ �W2
↑(xS,α, γ1, γ2) + W2

↓(xS,α, γ1, γ2)�Wi,2(xS,α, γ2)

+ �W0
↑(xS,α, γ1, γ2) + W0

↓(xS,α, γ1, γ2)�Wi,0(xS,α)� dxSdα   

for i = 5,6,7 

 
 
 
(101) 

 

We assume here that for all three channels the corresponding detectors have identical efficiencies. 

The expression includes the possibility of cross talk effects between the three different channels. 

Usually cross talk can be minimized by a careful choice of the geometric parameters, so that the 

neutrons reflected at the first deflector reach analyzer 7, neutrons reflected on the second analyzer 5 

and transmitted neutrons analyzer 6 exclusively. For this only the probabilities W6,0  and W7,1 are non-

zero and equation (101) is reduced to: 
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I5 = � � �S↑W2
↑(xS,α, γ1, γ2) + S↓W2

↓(xS,α, γ1, γ2)�W5,2(xS,α, γ2)dxSdα

BS
2

−BS2

∞

−∞

 

 
(102) 

 

I6 = � � �S↑W0
↑(xS,α, γ1, γ2) + S↓W0

↓(xS,α, γ1, γ2)�W6,0(xS,α)dxSdα

BS
2

−BS2

∞

−∞

 

 
(103) 

 

I7 = � � �S↑W1
↑(xS,α, γ1, γ2) + S↓W1

↓(xS,α, γ1, γ2)�W7,1(xS,α, γ1)dxSdα

BS
2

−BS2

∞

−∞

 

 
(104) 

 

The used integration limits for xS-integration are a result of equation (84). S↑/S↓ are the flux of 

scattered spin up/down neutrons, see equation (84). 

Using typical set-up conditions, the deflectors do not reflect spin-up neutrons and, consequently, 

( )11 2, ,,SW x α γ γ↑  and ( )12 2, ,,SW x α γ γ↑  vanish. Therefore equations (102) and (104) are further 

simplified to yield: 

I5 = S↓ � � W2
↓(xS,α, γ1, γ2)W5,2(xS,α, γ2)dxSdα = A′S↓

BS
2

−BS2

∞

−∞

 

(105) 

 

I7 = S↓ � � W1
↓(xS,α, γ1, γ2)W7,1(xS,α, γ1)dxSdα = A′′S↓

BS
2

−BS2

∞

−∞

 

(106) 

 

While equation (103) may be written as: 

 

I6 = CS↑ + DS↓ (107) 
 

with 

 

A′ = � � W2
↓(xS,α, γ1, γ2)W5,2(xS,α, γ2)dxSdα

BS
2

−BS2

∞

−∞

 

 
(108) 
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A′′ = � � W1
↓(xS,α, γ1, γ2)W7,1(xS,α, γ1)dxSdα

BS
2

−BS2

∞

−∞

 

 
(109) 

 

C = � � W0
↑(xS,α, γ1, γ2)W6,0(xS,α)dxSdα

BS
2

−BS2

∞

−∞

 

 
(110) 

 

D = � � W0
↓(xS,α, γ1, γ2)W6,0(xS,α)dxSdα

BS
2

−BS2

∞

−∞

 

 
(111) 

 

Because of this reflection behavior of the deflectors the intensities of channels 5 and 7 are 

proportional to S↓, i.e. the flux of scattered spin-down neutrons while channel 6 counts events of 

both neutron-spin directions. Since the quantities A’, A”, C and D can be calculated from the 

characteristic data of deflectors and analyzers as well as the geometrical parameters, we are able to 

determine the polarization of the scattered beam according to8 

 

PS =
S↑ − S↓

S↑ + S↓
=

1 − D+ �
I5 + I7

I6
�

1 − D− �
I5 + I7

I6
�

 

(112) 

 

with the abbreviation 

 

D± =
D ± C

A′ + A′′
 (113) 

 

While we can calculate these quantities in the demonstrated manner, they can also be determined 

experimentally. This is a good way to check the accuracy of the analytical calculations. 

If we solve for the intensity ratio of deflected and transmitted beams we get: 

 

                                                           
8 As usual, the intensities need to be corrected for background before the polarization can be determined. This 
can be achieved by using the other eight detectors of the multianalyzer system that are not used for the 
polarization analysis as background counters as described in chapter 5.2 Data reduction. 
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I5 + I7
I6

=
1 − PS

D+ − D−PS
 (114) 

 

For an unpolarized beam (PS = 0) we obtain 

 

�
I6

I5 + I7
�
PS=0

= D+ (115) 

 

The remaining parameter D- can be calculated from an additional measurement for a known 

polarization Ps such as provided by a 3He-filter with well-known properties:  

 

D− = D+ +
PS − 1

PS
�

I6
I5 + I7

�
PS

= �
I6

I5 + I7
�
PS=0

+
PS − 1

PS
�

I6
I5 + I7

�
PS

 (116) 

 

Taking into account these calibration factors and the non-ideal polarization of the incident neutron 

beam P0 ≠ 0, the probability for spinflip scattering is obtained as: 

 

Ŝ =
1
2
�1 −

PS
P0
� =

1
2
−

1
2P0

I6 − D+(I5 + I7)
I6 − D−(I5 + I7)

  (117) 

 

  

From this the true spinflip and non-spinflip intensity rates can be calculated using the detector count 

rates to yield: 

 

ISF =
1
2

I6 −
D−

2
(I5 + I7) −

1
2P0

�I6 − D+(I5 + I7 )� (118) 

 

and  

INSF =
1
2

I6 −
D−

2
(I5 + I7) +

1
2P0

�I6 − D+(I5 + I7 )� 

 

(119) 

 

Now to measure the incident polarization p0 we can make use of a Mezei flipper.  

For an unpolarized incident neutron beam, meaning P=0, we find: 
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�
𝑁5 + 𝑁7
𝑁6

�
𝑃=0

𝑡𝑓𝑓
= �

𝑁5 + 𝑁7
𝑁6

�
𝑃=0

𝑡𝑛
 

 

 
 
(120) 

With the assumption, that we have only SF scattering, for example a completely magnetic signal 

without any nuclear components, there would be a SF probability S of S=1.  In this case we can 

determine the incident polarization by using that: 

 

𝑃0 = �
𝑁5𝑛𝑡𝑟𝑚 + 𝑁7𝑛𝑡𝑟𝑚

𝑁𝑡𝑡𝑡𝑛𝑡𝑟𝑚
�
𝑆=1

𝑡𝑓𝑓

− �
𝑁5𝑛𝑡𝑟𝑚 + 𝑁7𝑛𝑡𝑟𝑚

𝑁𝑡𝑡𝑡𝑛𝑡𝑟𝑚
�
𝑆=1

𝑡𝑛

 
 
(121) 

 

Here 𝑁𝑡𝑡𝑡𝑛𝑡𝑟𝑚  and 𝑁5/7
𝑛𝑡𝑟𝑚  are the total normalized intensity of all three analyzer channels respective 

channel 5 and 7. As this is a rather rare occurrence we will use a case where we only have NSF 

intensity, such as scattering on a lattice reflection, meaning S=0. From this we get: 

 

𝑃0 = �
𝑁5𝑛𝑡𝑟𝑚 + 𝑁7𝑛𝑡𝑟𝑚

𝑁𝑡𝑡𝑡𝑛𝑡𝑟𝑚
�
𝑆=0

𝑡𝑓𝑓

− �
𝑁5𝑛𝑡𝑟𝑚 + 𝑁7𝑛𝑡𝑟𝑚

𝑁𝑡𝑡𝑡𝑛𝑡𝑟𝑚
�
𝑆=0

𝑡𝑛

 
 
(122) 

 

If we have normalized all count rates, using determined detector and analyzer efficiencies we can 

directly measure the polarization of our neutron beam.  

This means that with a direct beam setup using our flipper, see 3.6 “Mezei Flipper” we can now use 

equation (122) to determine the polarization of the incident beam P directly by measuring a pure NSF 

reflection. This allows easy checking of the polarization during two measurements of an experiment 

which is very useful to control if the polarization calculated from the helium-cell parameters is 

correct. 
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5 Experiments 
 

Of course the developing and implementing a new method of neutron polarization analysis is not an 

end in itself. During this work several crystalline samples were measured, some of them in the 

earliest state of development and some with the optimized polarization analysis. First and short 

experiments where done on Vanadium and a hematite sample as proof of principle. The largest part 

of this chapter will be used for copper-oxide, which again, started as another proof of principle 

experiment, but led us to some interesting, and unexpected new findings showing the value and 

potential of polarized neutron experiments in general and our new method in particular. 

In the following chapter each of these experiments will be described in some detail. There will be 

also some remarks regarding the characteristics of the finished setup. We will start with a direct 

beam test, followed by a general overview of what was done with the raw data from a given 

experiment, and finally the first experiments done with the new polarization setup will be discussed. 

For our first test experiments, before the measurements on CuO starting August 2016, we used a 

3He-filter cell with a PHe of 80.9 % and 2.38 bar pressure resulting in a polarization for the incident 

neutron beam of Pn=0.9996 for λ=2.36 Å. The resulting transmission is T=0.1832. 

For experiments after finishing the setup, meaning everything after August 2016, notably the copper-

oxide measurements, this was relaxed to PHe=75 %, p=0.975 bar and Pn=0.9277 for λ=2.36 Å. 

Transmission for this cell was significantly higher at T=0.3037 resulting in an intensity gain of more 

than 65%.   

 

5.1 Testing the analytical model 
 

One of the first points of interest was if our analytical calculation for the beam profile was 

reproducible in a measurement.  

Without the multianalyzer crystals (either by not installing the analyzer, or more simply by rotating 

the crystals away from their reflecting angle), the PSD can be used to observe the distribution of the 

scattered neutrons. This is of some interest for the polarization analysis to monitor the effects of the 

deflectors, their position and their angle on the neutron beam. In our typical configuration using two 

deflectors we get three distinct peaks on the PSD, one direct beam and one additional component 

per deflector. A typical profile for an unpolarized direct beam is shown in Fig. 37 a) in black. The 

central peak is identical to the transmitted beam, while the two side peaks can be attributed to the 

two used deflectors. The smaller one on the left originates form the second deflector and the larger 

on the right from the first one.  
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If we now move the analyzers into reflecting position most of the neutrons should be relayed to the 

single detector tubes of the MD. This can be seen in the PSD image as a loss of intensity as the 

neutrons hitting the analyzers/single detectors no longer reach the PSD. The beam profile with 

reflecting analyzers is shown in Fig. 37 a) as the red curve. When the dip in the profile is centered this 

means that the analyzer is hit in its center by the incoming neutron beam. 
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Fig. 37: a) Intensity profile of the position sensitive detector in the unpolarized, direct beam with 
(red) and without (black) analyzers. 
b) Reflected intensity (black) and calculated angular profile (red) according to parameter set 
listed in Table 6 

 

For this test, a sample slit of 1cm was used, simulating a rather large sample. Because the resulting 

beam is somewhat larger than the effective width of a single analyzer crystal (BAsinθ0 = 0.88 cm), only 

around 50% of the incoming neutrons are reflected towards the MD. 

Using the analytical formalism introduced in 4.3.1 “Analytical calculations for PUMA polarization 

analysis” the difference between both profiles, meaning the neutrons reaching the single detectors, 

can be calculated. As shown in Fig. 37 b) the calculated curve almost perfectly describes the 

experimental data if the parameter set from Table 6 is used9. 

If we integrate over the three peaks of the reflected/calculated angular intensity distribution the 

result will be proportional to the count rates of the corresponding MD single detectors. With these 

data, the calibration parameters A’, A”, A, C, D, D+, D- can be obtained using equations (108) to (113). 

Using the parameters from Table 6 and equation (112) we arrive at the conclusion that in this 

                                                           
9 Note, that for the direct beam (zero scattering angle) the effective collimation of the beam is determined by 
the combination of all collimator divergencies and the mosaicity of the monochromator. 
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configuration roughly 8% of spin-down neutrons are not reflected by the deflectors. These neutrons 

reach the central analyzer and detector channel (no. 6) and have to be taken into account while 

calculating the spin-flip/non-spin-flip intensities. This allows us to calibrate our experimental data so 

that we get quantitative and accurate information about the polarization of the scattered beam. 

For example a perfect unpolarized beam should result in the same count rates in both channels. This 

however will not be the case, as experimental imperfections, such reflectivity <1 will result in an 

intensity distribution differing from the ideal. To correct for this we have our calibration parameters. 

In a test measurement we found good agreement between our data and a calculated calibration 

parameter of D+=1.05. See equation (115). The calibration parameter D± strongly depends on sample 

size, or, with no sample, the width of the slits in front and after the sample position. The same 

parameter only weakly depends on the rest of the possible parameters of the deflector-MAD-system; 

even beam divergence of the scattered beam has only some small influence. Nevertheless the 

calibration parameters have to be carefully adapted to the actual setup of each experiment. 

kf Scattered wave vector 2.662 Å-1 

BS Width of sample slit 10 mm 
αC Collimator divergence 0.5° 
θ0 Bragg angle of the analyzer -20.6° 
ηA Analyzer mosaicity  0.4° 
BA Analyzer width 25 mm 
d Thickness of deflector wafer 0.55 mm 
L Deflector length 40 mm 
LSA Distance sample-analyzer center 1413 mm 
LSD1 Distance sample-deflector1 613 mm 
LSD2 Distance sample-deflector2 663 mm 
γ1 Tilt angle of deflector 1 -0.81° 
γ2 Tilt angle of deflector 2 0.71° 
x5 Transverse displacement of analyzer 5 20 mm 
x6 Transverse displacement of analyzer 6 0 mm 
x7 Transverse displacement of analyzer 7 -20 mm 
y5 Longitudinal displacement of analyzer 5 -56.8 mm 
y6 Longitudinal displacement of analyzer 6 0 mm 
y7 Longitudinal displacement of analyzer 7 92.8 mm 
θ5 Rotation angle of analyzer 5 -19.1° 
θ6 Rotation angle of analyzer 6 -20.6° 
θ7 Rotation angle of analyzer 7 -22.2° 
   
A’ Expected intensity of spin-down neutrons in channel 5 74.35 
A” Expected intensity of spin-down neutrons in channel 7 221.86 
C Expected intensity of spin-up neutrons in channel 6 282.28 
D Expected intensity of spin-down neutrons in channel 6 27.42 
D+ Calibration parameter 1.05 
D- Calibration parameter -0.86 

Table 6: List of parameters for polarization analysis as used in the fit shown in Fig. 37 b). Some 
parameters are mostly fixed (normal type) if the analyzer itself isn’t tilted, some change depending 
on the exact setup (italic type), and the parameter after the break in the table are calculated (bold 
type). 
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5.2 Data reduction 
 

The first step in our data reduction is to calculate the time dependent polarization of the He-cell. 

Typically we start with a cell polarization between PHe= 73-75%. The cell has a relaxation time TR 

greater than 100 h, as shown in the paper about the magnetostatic cavity used in this work by 

Hutanu et al. [8] giving a relaxation time of 150 h, or our own measurements, showing TR=100 h, see 

3.1.1 “Relaxation time in the PUMA polarization analysis setup”. The data for our setup and guide 

field is shown Fig. 13. There are small variations in relaxation time for each cell, but the impact of the 

magnetic environment the cell is used in is much bigger. Under ideal circumstances one should 

always confirm relaxation time for a given setup by measuring beam polarization from time to time, 

but using our measured TR=100(22) h still gives good results for calculating incident beam 

polarization as there are only minor deviations in final result between using our measurement or the 

data from the Hutanu paper. With this information the time dependent He-polarization can be 

calculated with the following equation: 

 
𝑃𝐻𝐻(𝑡) = 𝑃𝐻𝐻 ∙ 𝑒−𝑡/𝑇𝑅  

 

 
(123) 
 

Using the timestamp for each scan, and each data point of each scan, we can now calculate the time-

dependent Helium polarization of our spin filter cell. From this we can calculate the neutron 

polarization of the incident beam, using equation (124)  

 
𝑃(0) = tanh (𝑃𝐻𝐻(𝑡) ∙ 0,0732 ∙ 𝑝[𝑏𝑏𝑟] ∙ 𝑙[𝑐𝑚] ∙ 𝜆�Å�) 

 

 
(124) 
 

We now should have a P(0)value for each data-point which is later used to determine the SF/NSF 

components of scattered beam. 

 

5.2.1 Normalizing detectors 

 

All detectors have to be normalized to take differences of their counting behavior, originating in 

small deviations of the detectors and their electronics, into account. One way to do this is to place 

the detectors of the MD equidistant from each other (for example 4°) and expose all of them to a 

reflected beam without a sample and with only the central analyzer crystal in reflective position. 

Then, in this configuration, conduct a CAD scan. This means that we rotate the whole MD as far as 

possible around the analyzer center while the analyzers stay immobile, moving each detector 
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through the beam. The scan only detects the reflected beam from the central channel, as no sample, 

deflector, or other analyzer should be in the beam path. An example of such a scan where all but the 

central analyzer are in non-reflecting position is shown in Fig. 38. 
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Fig. 38: cad-scan of all eleven detectors of the MD used for normalizing the detector intensities 

 

What we see here is how each of the eleven detectors is moving though the beam, producing a series 

of equidistant Gaussian profiles. The upcoming, very strong signal for small absolute value of cad-

angles is the direct beam, not reflected by the central analyzer. It is first observed in detector 1 and 

then starts to turn up in detector 2, as expected. Integrating over the whole peak (excluding the 

direct beam peaks) gives us a data set to normalize our count rates for the respective detectors. Here 

only detectors number nine and eleven have an abnormally large aberration, but even the other 

detectors still have up to 15% differing counting rates. 

 

5.2.2 Background determination 

 

After normalizing the count-rates the next step is elimination of our detector background. Since we 

use only three of the eleven MD single detectors to measure the signal there are eight detectors 

counting background. Therefore for background reduction with the MA polarization analysis setup it 
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is a good idea to use these eight detectors, as all of them still count the neutron background in the 

analyzer box to establish mean background values and to give information about possible 

background variations. This can be done by subtracting the mean counts of detectors 1-4 from 

detector 5, of 9-11 from detector 7 and the mean of 1-4 and 8-11 from detector 6 in the simplest 

case. Using just the closest side detectors without taking their mean will not work as even in pure 

background there can be large intensity variations from scan-point to scan-point for a single 

detector. If there is a background gradient its influence on the used detectors can be estimated by 

comparing the side detectors10. If there is a localized higher background , for example if the 

measurement takes place near the direct beam, the side detectors can be used to extrapolate if the 

background trend influences one or more of the used detectors.  
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Fig. 39: Count rates of the side detectors during a scan. Detectors 1-4 show constant background 
while detectors 8-10 show an increasing background with higher values of the sample angle Φ. It is 
interesting to note that the increase in background for detector 8 starts later then for detector 9 and 
10, giving us an indication where the increasing background originates. (Detector 11 not shown for 
massive over-counting) 

                                                           
10 In this work the side detectors used to determine background counting rates were placed at the extreme 
ends of their movement-range. For future observations it’s recommended to place them in an equidistant 
fashion as shown in Fig. 76 in the appendix 
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Another example could be stray neutrons from somewhere within our instrument, or a beam coming 

from one of the neighboring experiments. So when detector one and two show increased counting 

rates after normalizing all detectors while detectors three and four do not show increased intensity 

this indicates a localized phenomenon that’s not concerning detector five. On the other hand, a 

background that shows a trend over detectors 1-4 but not 8-11 has to be taken into account for 

detector five, and depending on the trend also for six. An example for a background trend is shown in 

Fig. 39.  

How to do the background correction also depends on the type of scan. Using a constant q-scan as 

an example, where the scan duration was determined by monitor counts, we have very different 

counting times for each energy value and thus different background count-rates. So we can’t use the 

mean of detector four to correct detector five without normalizing for time. What we can do is to use 

the mean of detector one to four for each energy-point to correct detector five. In this case 

background correction has to be done point by point as the whole analyzer/detector box is moving 

during the scan. This opens up the possibility of the detectors encountering different background 

environments, such as stray neutrons from neighboring experiments, during different parts of the 

scan. 

On the other hand, using the mean of detector four as background is a good estimation for a 

constant energy-scan without any contamination resulting in a background trend.  
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Fig. 40: Background for an energy scan. On the left is the average count-rate of detector 1-4, showing 
a clear trend to lower background for higher energies. On the right side is the average of detector 8-
10 on top showing a higher, but trendless background. The steep increase for the last two points is 
the result of higher intensity in the two outermost detectors. This indicates a localized effect. Again 
detector 11 is ignored due to highly over-counting. 
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A complex example for the backgrounds used to correct an energy scan is shown in Fig. 40. Not only 

is there an energy dependent trend, there are also localized background difference which can be 

seen where the low numbered detectors show decreasing background for higher energies while the 

higher numbered detectors show constant level background (with the exception of the last two 

energy values). Best practice for such an incident was to take the trend of detectors 1-4 into account 

for the background of detectors 5 by using the fitted value for each energy, the mean of detectors 8-

10 for the background of detectors 7 and a combined approach for detector 6. 

 

5.2.3 Calculating SF/NSF intensities 

 

Now we take the background corrected intensities of the three detectors and apply the correction 

factors calculated using equation (113) to find the SF and NSF intensities of our scattered beam using 

equations (118) and (119). 

During an experiment the correction factors are calculated by using the software available at PUMA. 

Needed for the calculation are the distances between the sample and the first deflector, as well as 

the distance between deflector and analyzer center. All other distances and angles result from these 

distances see 3.7 “Calculating the polarization analysis Multianalyzer/-detector positions”. 

To calculate the correction factors via the script available at PUMA we also need the effective 

collimation of the beam. Usually collimation of the primary beam is not needed for SF/NSF 

calculation. In this case only collimation occurring after scattering at the sample is of interest. But 

when using the direct beam effective collimation is a result of the combination all used collimators 

(α1, α2, polarization analysis collimator), and also of the mosaicity of the monochromator. As a direct 

beam configuration can be utilized during some calibration steps it is good to know how to get 

effective collimation. 

The effective collimation of a series of collimators can be described by 

 

𝛼𝐻𝑓𝑓 = �
1

1
 (𝛼1)2 + 1

 (𝛼2)2 + 1
 (𝛼3)2 + ⋯

 

 

 
(125) 
 

The resulting effective collimation of our system (from α1, α2, coll,…) can then be utilized as a 

parameter to calculate the correction parameters for the SF/NSF calculations. The full set of 

parameters necessary to get the correction parameters for the SF and NSF intensities is shown in 

Table 6. 

Now, using equations (118) and (119) we can calculate two numbers, one for the spin-flip (SF) and 

one for non-spin-flip (NSF) component of our scattered neutron beam. 
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5.2.4 Data processing example 

 

An illustration of the whole data processing is 

given in the figure on the left (Fig. 41 ). The first 

plot on top shows the raw data, but with the 

intensities of detectors five and seven already 

added up. This is done for a better comparability 

between plots, as the side detectors (5 and 7) 

already detect mostly SF intensity. A plot of this 

scan where the intensities are shown for each 

individual detector is shown in Fig. 79 in the 

appendix. Information about the experiment this 

scan belongs to can be found section 5.5.2. 

The middle plot shows the data after background 

removal, as described in section 5.2.2 

“Background determination”.  

The major changes between these two plots 

illustrate how important a careful background 

reduction is for the analysis of polarization 

analysis raw data. 

The third plot shows the after the detector 

counts have been transformed into SF/NSF 

intensities. There are only small changes 

compared to the background corrected 

intensities. The reason for these is that some of 

the neutrons reaching detector six underwent a 

spin flip. As this is taken into account by 

equations (118) and (119) NSF intensity is 

somewhat lower than the raw counts from 

detector 6.  

Note that there is one NSF point, at 15meV, 

which has a negative intensity. This is because 

after background correction detector six had zero 

counts for this energy value. So the NSF intensity for 15 meV can be considered to be equally zero. 
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Fig. 41: Three plots of the same data set used to 
illustrate the data reduction process 
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If one now adds error bars and plots the average of each two neighboring data points to smooth the 

data we arrive at the final plot for this scan, shown in Fig. 62. Compared to the background reduction 

step calculating SF/NSF intensities introduced only small changes to the plot. Nevertheless this is an 

extremely important step for the correct interpretation of our raw data. 

 

5.3 Vanadium 
 

Now, after we understand the basis of our setup as well as the used components and knowing how 

to process our data we can take a look at our test experiments. The first one was a measurement of 

Vanadium to see if our measured ratio between SF and NSF intensities matches the well-known 

behavior of a Vanadium sample. 

Vanadium produces pure incoherent neutron scattering. Incoherent scattering of a polarized neutron 

beam from a pure Vanadium sample consist of 2/3 spin-flip and 1/3 non-spin-flip events, see [20]. 

Vanadium scatters neutrons in nearly pure incoherent fashion with a NSF cross section of 𝑑𝑑
dΩ

|++ =

𝑑𝑑
dΩ

|−− = 1
3
𝜕2𝑁(𝑁 + 1) and a SF cross section of 𝑑𝑑

dΩ
|+− = 𝑑𝑑

dΩ
|−+ = 2

3
𝜕2𝑁(𝑁 + 1) . Our 3He cell gives us 

an incoming beam with a polarization of P0 providing us with a spin-up and spin-down flux described 

by 
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Φ0
↑ =

1 + P0
2

Φ0
total    and    Φ0

↓ =
1 − P0
2

Φ0
total 

 

(126) 

 

(o
total being the total incident flux). 

After the sample, the now scattered beam can be described by: 

 

S↑ ∝
1

3
Φ0
↑ +

2

3
Φ0
↓ =

3 − P0
6

Φ0
total   and     S↓ ∝

2

3
Φ0
↑ +

1

3
Φ0
↓ =

3 + P0
6

Φ0
total 

 

(127) 

and the polarization of it as: 

PS =
S↑ − S↓

S↑ + S↓
= −

P0
3

 
(128) 

 

In our three detectors we observed count rates of I5=239, I6=1637 and I7=1434 during a test 

measurement of a Vanadium sample. Using the calibration relation (112) we get a PS=-0.28 which is 

in good agreement with the known polarization of our incident beam. At the time of this 

measurement the 3He-filter provided P0=0.85  
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Fig. 42: Vanadium energy spectra showing incoherent spin-flip (SF) and non-spin-flip (NSF) scattering 
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5.4 Hematite 
 

To further test our setup and to see if we could discriminate between nuclear and magnetic features 

some measurements on α-Fe2O3 (hematite) where done. The sample used was provided by Dr V. 

Hutanu11. 

α- Hematite is a system of space group 𝑁3�𝑐, with lattice parameters a=6.005, b=6.005, c=13.67, 

α=90°, β=90°, and γ=120°. Mosaicity of the sample was 0.22°.  

Under ambient conditions, Fe2O3 (hematite) shows an antiferromagnetic structure with spins 

oriented perpendicular to the trigonal axis characterized by magnetic super-lattice reflections of the 

type (0 0 3l) with l odd [21]. As the crystal consists of several antiferromagnetic domains, a neutron 

beam polarized perpendicular to the scattering plane is expected to become depolarized by the 

reflection at (003). In contrast, the pure nuclear reflection (006) will leave the beam unchanged. This 

gives us the option to test if we can detect a magnetic signal under ambient conditions. The used 
3He-cell was roughly one day old and hat a very high polarization and pressure (p=2,35 bar 

PHe=82,0%, resulting in a starting P0=0,9995). One can clearly see the non-optimized setup and 

polarization in the PSD measurements shown in Fig. 43. The not yet optimized setup shows in the 

very small secondary side peak in the (003) scans, and the polarization problems of our incident 

beam in the (006) scans. As shown in sub-chapter 3.6 about our flippers they have a very high 

flipping ratio, so the remaining neutrons in the central channel of the (006) flipper on scan show that 

several  days after installing the 3He-cell the beam was still highly, but not fully, polarized. As the He-

polarization was very high, and the cell was under large pressure we would have expected the central 

beam to vanish. The reason for the lower than expected beam polarization is the less than optimal 

improvised guide field around the sample before 

we installed our quasi-Helmholtz field (see section 3.4) and probably also not optimal handling of the 

cell itself. The low intensity can be explained by the almost black 3He cell, as well as not optimally 

chosen deflector angles and generally non-optimized instrumental setup. In addition peak count 

rates where determined for the three analyzer channels using the PUMA polarization analysis setup. 

From this we determined the polarization of the scattered beam, the results being in good 

agreement with our expectations when considering the not optimized experimental conditions. The 

results are listed in Table 7. 

 

 

                                                           
11 Dr. Hutanu from the RWTH Aachen is instrument scientist of POLI, a polarized hot neutron diffractometer 
neighboring PUMA 
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 (003) (006) 
I5 + I7 4335 2657 

I6 5629 26553 
Ps 0.09 0.82 

Table 7: Intensities and scattered beam polarization for the magnetic (003)-reflection and the 
nuclear (006)-reflection 

 

Our data clearly shows that the beam scatter at the magnetic reflection is in fact almost completely 

depolarized and the 82% polarization of the nuclear Bragg peak reflects the polarization of the 

incident beam as given by the 3He cell and the magnetic environment at this time. 

Normally we would have repeated this experiment with the optimized setup to have better statistics 

and measurements more representative of our instrument. But a lot of beam-time was lost due to 

technical problems with our beam-line as well as the reactor itself. As this was a proof of principle 

experiment that already showed that our setup was working it was decided to not invest more time 

into this sample. 

 

Fig. 43: First test experiment on Hematite using PSD and flipper for prove-of-concept. Upper row is 
the magnetic (003)-reflection; lower the nuclear (006)-reflection. Left-hand side shows the 
undisturbed signal and right-hand side the effect of the flipper. 
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5.5 Copper (II) oxide 
 

After the proof of principle measurements ended on Vanadium and Hematite our next experiments 

where done with a Copper(II) oxide (CuO) sample. As another, well known, substance it was first 

intended as a final test measurement. But even so, as we will show, much new information could be 

found by probing CuO with our method. 

CuO as a system started to get attention during the 1980-90s as a model substance to achieve better 

understanding of high temperature superconductors. This research avenue seemed to come to an 

end with the turn of the millennium. But in the last few years CuO again became a model substance, 

this time for high temperature multiferroic systems. 

 

Fig. 44: Crystal structure of CuO, red spheres represent O positions, while blue/green indicate Cu 
(y=0.25/0.75) 

 

CuO is a compound within the monoclinic space group C2/c with lattice parameters of a=4.6927(4) Å, 

b=3.4283(4) Å, c=5.1370(5) Å and a monoclinic angle of β=99.546(9) ° at room temperature [22]. A 

sketch of the crystal structure is shown in Fig. 44. It has three antiferromagnetic phases [23]. The 

most interesting feature is that it is also multiferroic. Multiferroic means that that a material shows 

two or more ferroic properties. This mostly means ferroelectricity and ferromagnetism, but can also 

include ferroelasticity or other ferroic properties. CuO is a system with three anti-ferromagnetic 

phases, at rather high temperatures. This makes CuO an interesting sample for understanding 

multiferroics and a possible intermediate step towards materials with multiferroic behavior under 

ambient conditions. In the low temperature AF1 phase, below TN1 =213 K, spins are oriented parallel 

or antiparallel to the monoclinic b-axis of the crystal. The AF1 phase shows a commensurate 

modulation of qC=(0.5 0 -0.5)In the AF2 phase, between TN1 and TN2≈ 230 K we have a somewhat 

more complex spin arrangement, forming a cycloidal order where the spins lie in a plane. The AF2 

phase is also the phase showing multiferroic properties at an unusually high temperature for such 
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phenomena [24].Here we have an incommensurate modulation of qIC=(0.506 0 -0.483) along which 

an additional spin component appears giving rise to the incommensurate helimagnetic structure. The 

cycloidal is formed by a slight phase shift between each Cu atom which leads to rotation like 

behavior. A sketch of the AF1 and AF2 magnetic arrangement is shown in Fig. 45, with an additional 

illustration of the cycloidal structure in Fig. 46. 

The AF3 phase has a very narrow temperature range, smaller than one degree and located around 

230 K. It should also be an incommensurable phase with a sinusoidal structure in direction of the b-

axis, but its magnetic structure has yet to be determined. In this work the AF3 phase was not 

observed, but for a future experiment using this sample and setup, locating it and getting some 

confirmation of its magnetic structure should be possible. 

 

Fig. 45: Sketch of the magnetic structure of CuO in the a-c-plane. On the left the AF1 and on the right 
AF2 phase are shown. The increased de-centering of the spin up/down dots indicates the cycloidal 
direction (along the blue arrow). 
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As this work is mostly concerned with the development and installation of the polarization analysis at 

PUMA there is less of a focus on the scientific samples. A more detailed look at most of the 

measurements and findings on copper oxide, as well as a detailed overview of multiferroics can be 

found in the PhD thesis of Fabian Ziegler12. His work and the work at hand are closely interwoven  

with the present thesis having a stronger focus on the experimental development and 

implementation.  

An exception for this split between our focus on the experimental method and setup and his focus on 

a more detailed look at the science of multiferroic CuO where some measurements taken after 

Fabian finished his work, these will be remarked on in the following text. 

 

 

 

 

 

Fig. 46: Sketch of the spin cycloidal in the AF2 phase, giving a side view of the spin direction along the 
blue arrow in Fig. 45 

                                                           
12 “Investigation of the Structure and Dynamics of Multiferroic Systems by Inelastic Neutron Scattering and 

Complementary Methods” 

Göttingen 2018  
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The goal of our CuO experiments was measuring the magnon spectra of CuO in the multiferroic AF2 

phase, as most prior inelastic neutron measurements where done either in the AF1 phase or in the 

paramagnetic phase. In addition some magnon spectra in the AF1 phase where measured to 

compare the two phases, showing that our system can easily distinguish between their magnetic 

structures.   

In addition to this we searched for a known electromagnon located in the AF2 phase at 3 meV, as 

well as for one predicted at 13.5 meV, see [25, 26]. As electromagnons are excitations with phonoic 

and magnetic characteristics our setup should be a very good tool for investigation. 

 

5.5.1 Sample preparation 

 

Our sample of CuO was a rather large crystal grown by MaTecK13 with an original length of ca. 3 cm 

and a diameter of 8-10 mm.  

Some grid pattern γ-ray measurements of the crystal were done to assert its quality. These scans are 

shown in Fig. 47, where x is the position where the beam hits the sample and ω the rotation angle of 

the sample. After the CuO was placed in the beam a series of rocking scans was done to create a map 

of the whole sample. As shown by the upper row in Fig. 47 the crystal contained several smaller 

grains, luckily mostly located in the cylindrical part of the sample. This gave the CuO sample an 

effective mosaicity larger than 1°. In order to improve the mosaicity of our sample we made a cut as 

shown in Fig. 48, discarding the cylindrical part for our experiments.  A diamond wire saw was used 

for cutting. The resulting, more or less, wedge shaped crystal, showed an improved effective 

mosaicity of roughly 0.5°. This was established by the gamma diffraction data shown in the lower row 

of Fig. 47. The sample resulting from this cut can still be considered rather large with a length of 15 

mm, a sketch of the cut is shown in Fig. 48. 

                                                           
13 MaTeck is a supplier of research materials specialized in single crystals located in Juelich 
https://mateck.com/ 
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Photos of the sample before and after the cut are in the appendix as Fig. 77. 

 

Fig. 47: Gamma-diffraction contour maps of our CuO sample. Top plots are before, bottom plots after 
cutting the crystal, showing that the cut part consisted of an accumulation of crystal grains  

 

 

Fig. 48: Sketch of our CuO crystal with orientation. Total length is 30mm, with an 8mm diameter. 
Dotted line indicates the cut after γ-diffraction examination of the sample 
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For our neutron experiments the crystal was mounted on a standard aluminum sample stick using an 

aluminum angle to get a proper orientation of the sample.

 

Fig. 49: Final setup of our CuO sample. The sample is glued with its (2 0 -2) plane to the sample 
holder, facing us in the central photo. In the right photo we look onto the (2 0 2) plane. 

 

An additional temperature sensor, a Pt-100 thermometer, was glued on the Al angle bracket holding 

the sample to get a more direct measurement of the sample temperature. Cold head temperature in 

the normal PUMA cryostat setup is controlled by a Si-diode thermometer located directly at the cold 

head of the cryostat. To minimize neutron scattering from Aluminum the sample stick was shielded 

by a boron nitrate casing. A photo of the final sample configuration is shown in Fig. 49.  

The sample was then enclosed in an Al sample can, filled with He-gas and sealed with indium wire for 

the improvement of thermal homogeneity. 

The sensor located at the cold head is fine for regulating cold head temperature but we expected a 

strong temperature gradient between the sensor position and our sample. Our additional 

temperature sensor showed how much the temperature of the sample was lagging behind the 

temperature measured at the cold head.  

One reason for this long thermal equalization time was that in our first CuO measurement the 

sample was mounted in a “standing up” position. Because of this the only thermal contact between 

the cold head on top and the sample was through the He gas and the very thin Aluminum walls of the 

sample can. Additionally the can was not completely gas tight and lost the Helium over time so that 

only the can walls remained. 

To improve the thermal conductivity during our following measurements the sample was mounted 

hanging down from the cold head. This slightly increased the risk of the sample falling down during 
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the experiment, but gave us much better thermal contact between sample and cold head via the 

sample stick. 

 

5.5.2 Elastic measurements on CuO 

 

 

Fig. 50: Sketch of the CuO scattering setup. The scattering plane in this case is identical with the 
crystallographic a-c plane. Neutron spin direction is parallel to z, and Q parallel to y. Non-spin-flip 
scattering occurs when magnetization perpendicular to the a-c-plane/parallel to b is probed. Spin-flip 
scattering occurs when magnetization is perpendicular to Q, so when it is oriented in the scattering 
plane. 

 

For the PUMA polarization analysis setup we have a neutron beam polarized in z-direction giving z- 

and –z-polarization. Two different spin contributions can be detected with the system, SF and NSF. 

The measured intensities correspond to 𝑁𝑆𝑆 ∝ �𝑚𝑦�
2

 and 𝑁𝑁𝑆𝑆 ∝ |𝑚𝑧|2. This connects the magnetic 

scattering selection rules from Table 4 with our experimental setup. 

For our experiment, the a*-c*-plane was chosen as scattering plane because the satellite reflections 

we are interested in have only a- and c-components. As provided by the setup vertically polarized 

neutrons where used. A sketch of the magnetic scattering setup and selection rules for the 

experiment is shown in Fig. 50. Magnetic moments perpendicular to the scattering plane are, in this 

way, parallel to the incident neutrons and to the incident neutron spin direction. From the selection 

rules (section 4.3) we know that NSF intensity is the result of magnetization perpendicular to the 

scattering plane. Magnetic moments parallel to the scattering plane and perpendicular to Q will 
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result in SF intensity. As all three antiferromagnetic phases of CuO have spin components parallel to 

the b direction, but only the AF2 phase shows magnetization inside the a-c-plane. Therefore elastic 

SF scattering can be used as a probe for the AF2 phase. 

This can be illustrated by the temperature scan shown in Fig. 51. We scanned over the 

commensurate and incommensurate satellite reflection while varying temperature. This was done to 

locate the phase transitions and calibrate the temperature sensor but is also useful to show the 

emergence of difference in scattering behavior for the AF1 and AF2 phase.  
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Fig. 51: Temperature variation of the satellite intensities of CuO for spinflip and non spinflip 
channels. Lines are drawn to guide the eye. (Please note, that the data represent raw intensities that 
are not corrected for a non-ideal polarization of the incoming neutron beam.) 
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Within the commensurate phase (AF1), the magnetic moments of the copper ions are either parallel 

or antiparallel to the neutron spin. Hence, superlattice reflections within the scattering plane do not 

contain any SF contribution and the neutron beam remains polarized as shown in Fig. 51. This is in 

clear contrast to the behavior of the incommensurate satellite observed for temperatures between 

TN1 and TN2: In the AF2 phase we have additional magnetic contributions depending on the scattering 

geometry.  

 

Fig. 52: Orientation of the scattering vector Q relative to the magnetic structure for the elastic 
measurements 

 

A sketch of our scattering geometry is shown in Fig. 52. In the AF2 phase at Q = qIC, the scattering 

vector is almost perpendicular to the plane of the rotating spins and the scattered beam becomes 

completely depolarized as NSF- and SF-scattering interact with the magnetization of the spin helix. 

The spin helix is nearly circular according to [24]. Consequently, as our Q is nearly perpendicular to 

the rather perfect circular structure the intensities for the SF and NSF channels are almost identical. 

SF intensity is a little bit lower than NSF intensity as the angle between scattering plane and Q is not 

exactly 90°.  

We also see coexisting of both AF1 and AF2 phases around TN1 during the phase transition. As the 

scans were done with 1 K temperature steps we assume that none of our scans found the AF3 phase, 

which is expected to be smaller than 1 K. 

 

5.5.3 Inelastic measurements on CuO 
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In addition to these elastic measurements some inelastic experiments on CuO using polarized 

neutrons with the new PUMA polarization setup where executed. In early experiments, Ain et al. and 

Yang et al. have investigated the magnon dispersion of the commensurate phase and found a steep 

branch that can hardly be resolved by inelastic neutron scattering at energies below 10 meV [27, 28]. 

Rather, resolution effects lead to the observation of an intensity maximum centered at the 

superlattice reflections that becomes broader and broader in q with increasing energy. Jacobsen et 

al. did some similar measurements published in [29]. In the last measurement of this work in 

September 2018 we replicated some scans from this paper. The results of both works are in 

agreement, but we have better resolution data, as well as the intrinsic bonus of our method, 

simultaneous detection of both spin states and additional low energy data. 

Fig. 53: Energy scans at the satellite position in different zones. Left in (0 0 2), right in (-2 0 2). Both 
are measured in the commensurate phase (top row) and the incommensurate phase (bottom row). 
Plotted is non-spinflip (red) and spinflip (black) scattering. These spectra are corrected for 
background and for the finite polarization of the incident beam according to equations (118) and 
(119). 
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The left hand side of Fig. 53, a) and c), displays energy spectra taken at the magnetic zone center at 

(002)+qIC,C. In this Brillouin zone, the scattering vector Q is almost perpendicular to the propagation 

vector qIC,C and, hence, only magnetic excitations are observed that exhibit components parallel to b 

or qIC,C. NSF intensity in Fig. 53 a) reaches only background level  as all spins in the AF1 phase are 

oriented parallel or antiparallel to b , the same as our neutron polarization. Because of this the spins 

can only be excited inside the scattering plane and we can only detect SF intensities in the AF1 phase. 

The NSF intensity in scan Fig. 53 c) can be illustrated by the sketch in Fig. 54 b), while the SF intensity 

is a result of the cone mode shown in Fig. 54 c) (on the right). 

 
 

 

 
Fig. 54: Different magnetic excitations of the 
four energy scans in Fig. 53 
Here δm indicates a displacement of the 
corresponding spin component (inelastic 
measurements). We can ignore δmy as our setup 
restricts us to neutrons oriented along z. In this 
case we have no my-contributions to the 
scattering intensity, see chapter 4.3. 
Sub-plots a) and b) show the excitations of the 
Phason in the two CuO Brillouin zones where we 
did inelastic measurements and c) a sketch of 
the tilt mode (left) and cone mode (right) 
excitation 

 

 
 

 

Looking at the two (0 0 2) scans in Fig. 53 one in the commensurate phase at 202 K, a), and the other 

in the incommensurate phase at 216 K, c), the two phases show significantly different behavior. In 

the commensurate phase we observe only spin-flip scattering, with very low intensity for energies 
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lower than 4 meV. At this energy we observe a steep increase in intensity which merges into a 

continuous decrease for energies above 7 meV. This is consistent with the known steep magnon 

branch. This spin gap of 4 meV was not observed prior to this experiment. 

In the commensurate phase (Fig. 53 a) we observe SF intensity because the magnetic moments are 

oriented parallel to the b-axis of the system. Therefore they can only be displaced in the a*-c* plane 

giving us SF scattering.  

From the incommensurate phase (Fig. 53 c) we get a different behavior. What we observe is a 

smaller spin gap of 2 meV for SF intensity, as well as the occurrence of NSF intensities at lower 

energies. This is due to the existence of a spin spiral with components along b and Q, giving us two 

different magnon modes. First a displacement within the spin spiral plane (b-Q plane) in the form of 

a phason mode. This one cannot change the neutron spin, resulting in NSF scattering. This is sketched 

in Fig. 54 b) where we see Q parallel to mx (mx= component of magnetization along x-axis). This leads 

to displacement of mz (perpendicular) producing NSF intensity and no displacement along mx so that 

we get no intensity in the SF channel. 

The second mode is the result of displacements perpendicular to the b-Q plane. This is almost 

parallel to qIC and results in a SF behavior very similar to the commensurate phase with a (smaller) 

spin gap an intensity maximum around 4 meV and a decrease in intensity towards higher energies. 

The picture of a tilting mode distorting spins orthogonal to the cycloidal plane and thus producing SF 

scattering may give the right idea for this mode. A sketch of the tilting (left) and cone mode (right) is 

shown in Fig. 54 c) 

SF scattering in both phases has a strong resemblance with each other, with the exception that the 

spin gap of the tilt mode in the incommensurate phase is reduced by a factor of 2. 

The phason mode is shown to exist by the occurrence of NSF scattering. The phason also shows 

indications for a steep dispersion. In contrast to the SF mode no spin gap is observed, only a 

continuous increase in intensity towards lower energies. 

In the (-2 0 2) zone the commensurate scan (Fig. 53 b)) looks very similar to the (0 0 2) scan in the 

same phase, but with a considerably smaller gap of only around 1.2 meV.  

For the incommensurate phase in the (-2 0 2) zone (Fig. 53 d)) we observe no spin gap in SF and NSF 

channels. Here Q is perpendicular to the cycloidal plane so intensity in both channels can be 

explained by a spin displacement inside the plane. See Fig. 54 a); Q is along the modulation direction 

and thus perpendicular to both my and mz. As the spin helix is nearly perfectly circular this gives us 

intensity in both channels with equal intensities. 

 

 



Experiments 

110 
 

-0,10 -0,05 0,00 0,05 0,10
0

20

40

60

80

100

120

140

160

180

200

 

 

AF2

T=218K

E=5meV

Q=(-202)+q
IC

+(,0,-)

 SF

 NSF

N
e
u
tr

o
n
s



-0,10 -0,05 0,00 0,05 0,10
0

20

40

60

80

100

120

140

160

180

200

 

 

AF2

T=218K

E=10meV

Q=(-202)+q
IC

+(,0,-)

 SF

 NSF

N
e
u
tr

o
n
s



-0,15 -0,10 -0,05 0,00 0,05 0,10 0,15
0

20

40

60

80

100
AF2

T=218K

E=25meV

Q=(-202)+q
IC

+(,0,-)

 

 

 SF

 NSF

N
e
u
tr

o
n
s



0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

 

 

 SF

 NSF

N
e
u
tr

o
n
s

E/meV

AF2

T=216K

Q=(-2 0 2)+q
ic

   =(-1.494 0 1.517)

From this point forward the discussed experimental data is unique to this work as the measurements 

where done after Fabian Ziegler finished his thesis: 

 

 

 

 

 

 

 

The first data of these experiments we will discuss are the constant energy scans with Q=(-2 0 

2)+qIC+(ξ 0 -ξ) shown in Fig. 55 a-c). These three constant energy scans show a broadening of the 

signal as well as a growing drift in intensity between SF and NSF channels towards higher energies. 

The constant Q scan (Fig. 55 d) in the same phase and zone shows no significant difference between 

Fig. 55: Constant energy scans of the AF2 phase of copper-oxide in (-202) direction. Top row 
are 5 and 10meV scans with the final 25meV scan in the bottom row. Bottom right shows a 
constant q -can in the same Brillouin-zone and crystallographic direction.  The green lines 
indicate the positions of the 5 and 10meV scans 
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SF and NSF scattering for low energies and only punctual differences between the channels. From the 

constant energy scans it appears that in the higher energy range NSF intensity is decreasing faster 

than SF intensity. While the constant Q scan indicates only small deviations between SF and NSF 

intensities for the probed energy range we already see a notable difference in SF/NSF intensity at 10 

meV in the constant energy scan. This gets much more pronounced for the 25 meV scan. If the 

constant energy scans are carefully fitted (taking the rather low intensity into account) and the 

FWHM are plotted we also clearly see the mentioned broadening of the measured signals towards 

higher energies, see Fig. 56. Again the channels start to drift apart for energies higher than 5 meV. 

 

 

This can be explained by the known steep dispersion of the measured magnon, see Ain et al [27]. The 

resolution ellipsoid of our setup cannot resolve the dispersion leading to broader signals for higher 

energies up to the point where the dispersion could be dissolved, but this energy range was outside 

the scope of this experiment. 

We also made a series of constant energy scans in the (0 0 -2) zone of the AF2 phase. Scans were 

done for 2, 3, 4, 12, 13, 14, and 20 meV, see Fig. 57. These energies were chosen because there is a 

known electromagnon at 2.9 meV observed using THz spectroscopy, see Jones et al. [25], as well as a 

some theoretical hints for another one at 13.5 meV, see Cao et al. [26]. Electromagnons are 

excitations combining magnetic and phononic components. 
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Fig. 56: FWHM plotted for the constant energy scans shown in Fig. 55. 
Broadening of the peaks towards higher energies can be explained by the 
steep dispersion of the measured magnon branch 
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As all of these polarized inelastic measurements in the second Brillouin-zone are scans right at the 

edge of the capabilities of PUMA a low intensity is to be expected.  

But nevertheless these scans still exhibit some interesting features. Even with the increased counting 

errors it is interesting to note that in the 3 and 13 meV scans the SF and NSF signals have a greater 

difference in their intensity then in the other scans. Also, in both of them there are slight indications 

of emerging side peaks in the positive ξ direction. 

As each detector produces a similar amount of noise and detector 5 only gets very little signal this is 

an interesting case to look at the influence of signal to noise for our setup. A comparison between 

using the signal from just detector 7 and from detector 7 and 5 is shown in Fig. 58. These are the two 

most extreme examples. For the 2 meV scan there is only a very small difference, SF intensity goes 

down as well as the SF error. The same is true for the 13 meV scan, showing the greatest difference 

for all considered scans. But even with reduced SF intensity the qualitative findings remain the same. 

We have more SF than NSF intensity, the NSF peak is broader and there are indications for an 

emerging side peak.  

For lower intensities it would be recommended to analyze the data without detector 5, but here 

there is no difference in qualitative information from the scan and the increased noise is taken into 

account by the larger errors. For scans with higher statistics there is no benefit of excluding detector 

5.  
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Fig. 57: Constant energy scans of the (0 0 -2) zone in the AF2 phase of copper oxide 
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Fig. 58: Comparison of two constant energy scans, where a) and c) only take detectors 6 and 7 into 
account while b) and d) use all three component beams. For these scans ignoring detector 5 leads to 
lower noise (smaller error bars) and increases the share of NSF intensity.  

 

All of the features get a bit clearer when looking at the FWHM of the peaks, shown in Fig. 59.  

It is interesting to note that the scans around 3 and 13 meV behave in a mirrored way. First the 2meV 

scan shows broad signals, then the 3meV scan somewhat sharper peaks and finally the 4meV scan 

shows the sharpest peaks. This corresponds to sharp peaks at 12 meV, somewhat broader peaks at 

13 meV and again a broad signal at 14 meV. So that the 2meV scan behaves like 14meV, 3meV like 13 

meV and 4 meV like 12 meV. 

In addition at 3/13 meV we see that the NSF signal is broader than the SF signal in contrast to the 

other scans.  

As already shown in Fig. 57 the peaks generally broaden towards higher energies. There are also 

slight indications of a shoulder on the positive ξ of the 3 and 13 meV scans.  

There is also a slight drift in peak position towards smaller ξ for higher energies, more prominent in 

the SF channel, see Fig. 60. 
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Fig. 59: FWHM of the peaks found in a series of constant energy scans in the AF2 phase of copper 
oxide 
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Fig. 60: Peak positon for (0 0 -2) AF2 scan. Shows a slight drift towards smaller ξ for higher energies 

 

Just looking at our measured SF intensities of the 12 and 14 meV scans shows indication for splitting 

of the magnon branches in accord with Ain et al [27]. They give a slope of 550 meVÅ for the magnon 

dispersion. This gives us an expected splitting of 0.041 ξ at 12 meV and 0.048 ξ at 14 meV. We 

observe a splitting of Δ𝜉 = 0.038  at 12 meV and at 14 meV we haveΔ𝜉 = 0.031, see Fig. 61. In Fig. 
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61 the 12, 13, 14 meV scans are shown with a multiple Gauss-fit to the SF intensity. The central peak 

is fitted in green with a single Gaussian for the 13 meV scan and two Gaussians for the 12 and 14 

meV scans indicating a splitting of the magnon branches. Peak-position for these fits is indicated with 

green arrows. 

As the data was carefully background corrected all of the measured intensity should be a real signal. 

Because of this the intensity next ot the central peak was fitted with two additional Gaussians (in 

blue). The complete multi-fit is shown in black, showing a good match to our data. However the 

possible branch splitting in the 12 meV scan should be taken with care as the statistics are rather 

weak. Furthermore the same is true for the 20 meV data. A fit showing a splitting of Δ𝜉 = 0.036 can 

be achieved but is not fully convincing. 

Splitting of the magnon branches in CuO has not been measured at such low energies before 

In both the 12 and 14 meV scan we see hints of a broad shoulder on the high ξ side as well as 

asharper peak on the low ξ side of the magnon peak. 

However, in our 13 meV scan there is no discernable magnon splitting, only a broader central peak. 

Also side features are more symmetric than in the energy scans directly above and below. This could 

be the result of phonon magnon interaction from the possible electromagnon at 13.5 meV, but with 

our data it is not possible to settle the form of this dispersion at this moment.  

If these features in the 13 meV scan are the result of a phonon this may indicate a rather flat slope.  

It strongly depends on the slope of the phonon and its interaction with the resolution ellipsoid of our 

instrument. 

But a conclusion for the nature of the electromagnon dispersion could not be made. 
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Fig. 61: 12,13 and 14 
meV scans with Gauss 
fits to SF 
measurements. 
The 12 and 14 meV 
scans show splitting of 
two steep magnon 
branches which is 
absent in the 13 meV 
scan. 
All scans also show 
hints for additional 
features (blue fit 
curves) besides the 
central magnon peak 
(green fit curves) 
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As an electromagnon cannot be distinguished from a magnon by inelastic neutron scattering there is 

no proof that the signal around 13 meV is indeed one. But the symmetrical behavior (hints for a side 

peak in positive ξ direction and a NSF signal broader than the SF signal as opposed to all other energy 

scans) between the scans around the known electromagnon at 3 meV and the scans around 13 meV 

is a good indication that the proposed electromagnon at 13 meV really exists. 

Overall the constant energy scans show hints at some interesting features and normally further 

experiments would be in order to get better statistics, scan over a wider q-range and more energy 

values. But due to technical problems at the reactor and external time constraints further, more 

conclusive, measurements are outside the scope of this work.  

 

5.5.4 Low temperature scans 

 

In addition to the 200 K (2 0 -2) scan we also did one with much lower temperatures to compare with 

a scan from a recent publication, Jacobsen et al. [29]. They did their neutron polarization analysis at 

the IN20 TAS located in Grenoble, measuring magnetic scattering at the AFM zone center in two 

directions, �1
2

 0 3
2
� and �1

2
 0 1

2
� at a temperature of 2K. An anisotropic spin gap was reported for both 

directions, as well as an asymmetric energy peak at 23 meV. The paper also presents a model to 

explain the observed features, explaining the 23 meV signal with the onset of a group of four 

degenerated optical modes and the anisotropy in the spin gap with splitting of the acoustic modes.
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Fig. 62: Energy scan of the AF1 phase @5K from 2-30 meV. The green lines indicate the positon of the 
two lowest energy magnon modes calculated after the model form Gaw [30]. Red and black lines to 
guide the eye.  

 

In comparison to Jacobsen et al. [29]  FIG. 5 (b) we see considerably more details in our scan, see Fig. 

62.  We confirm the existence of a peak at 23 meV, but in addition to this we get a few more 

features. The most obvious it the strong intensity dip at 18 meV. Furthermore we see three peaks in 

the lower energy range at 4, 10 and 15 meV. The 15 meV peak in SF intensity correlates with a 

minimum in NSF intensity. 

Our scan took roughly 10 hours, or 20 minutes per data point being on the boarder of feasibility for 

polarized inelastic neutron experiments.  

The energy resolution for our scan lies between 0.96 meV at 2 meV energy transfer, over 1.66 meV 

for an energy transfer of 15 meV up to 2.9 meV for our highest scan point at 30 meV. 

As the Jacobsen paper included a model for magnon dispersions we used this model to see if we 

could match it to our data. The magnon model form the Jacobsen paper gives around 50 meV for the 

lowest magnon branch, much higher than anything we observed. As this is not consistent with the 

fits shown in this publication we assume that there occurred a typo in writing down the model. In the 

publication the PhD thesis of Stephen M. Gaw [30] is cited for more details on the magnon dispersion 
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model. Model and calculated parameters differ from the paper, but this model produces two 

magnon branches with their lowest energies in Q=(1.5 0 1.5) direction. The calculated energies are 

16.6 meV for the lower and 23.8 meV for the higher branch a factor of ~2 lower than what the 

Jacobsen model gives. Interestingly these energies are close to two of the peaks measured in our 

energy scan. Interestingly the Jacobsen paper also mentions that their model gives a good 

description of AF1 magnon spectrum, except for anisotropic signals at low energies where they 

expect a further splitting of the magnon modes. This could be a possible explanation for the 

additional signals we see below 15 meV, but to come to a conclusion a refined model should be fitted 

to our data. Unfortunately this was outside the scope of this work.  
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6 Conclusion and future investigation 
 

The main goal of this work was the development and implementation of a polarization analysis setup 

with the unique feature of measuring both spin states simultaneously for PUMA. 

This setup is now fully commissioned and in use. Test measurements and the first experiments also 

demonstrated that the method for simultaneously detecting both spin channels is working and a 

valuable asset for probing magnetic structures with neutrons.  

Analytical calculations, McStas simulations and test experiments are in good agreement. This shows 

the fine grasp and control we have achieved with the PUMA polarization analysis. Furthermore our 

test measurements on Hematite and Vanadium showed that our method works as intended. 

The measurements on CuO proved that this new technique can generate new information about 

magnetic excitations as several previously unknown magnon modes were observed. Measurements 

with polarized neutrons allowed us to make a detailed analysis of the different behavior of magnons 

in different magnetic phases and Brillouin zones. We observed two different excitations in the AF2 

phase one of which might correspond to an already observed electromagnon. Also spin gaps in the 

spin-flip channel where observed for the first time. There were also measurements in the AF2 phase 

giving hints about a second electromagnon around 13 meV, as well as a low temperature energy scan 

in the AF1 phase showing more structures than previously known due to our better energy 

resolution. 

These measurements showed us what can be done with the technique, and where its limits lay. For 

example for large samples a different polarization analysis instrument may prove to be a better fit if 

there is no interest in measuring SF and NSF intensities simultaneously.  

The PUMA polarization analysis can half the time needed for a polarization experiment, as both spin 

channels are detected at the same time. This gain in intensity is true under certain conditions, such 

as for a sample with a diameter of 1 cm or less and a scattered beam with a divergence smaller than 

30’. For differing conditions the gain in time will be less, up to the point where a conventional setup 

will be more efficient.  

Furthermore the PUMA polarization analysis is uniquely suited for high resolution experiments or 

kinetic polarized neutron studies. The realization of a kinetic polarized neutron experiment should be 

among the most complex TAS experiments ever done. 

The first kinetic test experiments could unfortunately not be finished during this work, due to several 

technical problems with our beamline and the reactor itself.  Nevertheless every component for a 

future kinetic polarized neutron experiment is available and tested. In the following this next planned 

experiment, as well as some options for further refinements of the setup are outlined. 
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The setup should also prove to be valuable for observing both spin states at the same time during 

relaxation processes. 

 

6.1 Kinetic investigations with polarized neutrons 
 

One of the original goals for this project was the execution of kinetic polarized neutron experiments. 

Due to a series of technical problems all components for this only became ready to use in the last 

months of this work so that the execution was outside the scope of this thesis. 

Besides the normal experimental mishaps we experienced problems with the shutter of our 

beamline, once of an electronic nature that could be fixed after our experiment was aborted without 

collecting useful data, and once a mechanical problem that required the complete disassembly of 

PUMA. Fixing the problem and reassembling PUMA took two full beam cycles.  An additional cycle 

was lost due to damage on a secondary reactor component shutting down the whole reactor. One 

more cycle was lost due to massive software problems at the spectrometer, and finally we also 

experienced reduced beam time due to a lack of fuel elements. 

Due to these problems during this thesis there where two years where no test or experiments could 

be conducted as PUMA, or the whole FRMII, was inoperable. In two cases these problems manifested 

during a measurement, prematurely ending the planed experiment. 

After finishing the polarization analysis and CuO experiments we searched for a possible test 

experiment utilizing all features of PUMA. For this first planed kinetic experiment using the 

experimental setup developed in this work we will examine CoCr2O4 under the influence of an 

oscillating magnetic field. A roughly 2x3x5 mm3 crystal was obtained from MaTecK in the last months 

before the end of this work so only some preliminary work for a kinetic experiment can be described 

in this thesis. CoCr2O4 undergoes a reversal of its spontaneous polarization and magnetization under 

a weak external magnetic field of roughly 0.1 T, see [31]. Using an oscillating electro-magnet to 

trigger the reversal of the spontaneous polarization and magnetization in the ferroelectric phase 

(between 15-26 K) the crystal seems to be a good model for investigating the kinetic behavior of such 

changes. 

 

6.1.1 Oscillating magnetic field; construction and first tests 

 

As we want to do kinetic polarized neutron experiments under a varying magnetic field a suitable 

magnet was needed. The magnetic field has to be parallel/anti-parallel to the guide field and strong 
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enough to trigger (e. g.) phase transitions in a sample. As the magnet is intended to work inside a 

cryostat it had to be as compact as possible. In the end an electromagnet with a volume of 

105x60x30 mm3 was build that also functions as the sample holder. A sketch of the final design for 

the magnet is shown in Fig. 63. 

We tested several different coil setups, using different cores (soft iron, mu-metal with and without 

heat treatment…) and copper wire of varying diameters. In the end we chose a round wire with 

0.8mm diameter. Even if smaller diameter wire would have been preferable for its higher density of 

windings the smaller wires turned out to get too hot. Wires with a diameter larger than 0.8 tended to 

be too stiff, thus making a tight winding impossible. In addition to this thicker wire simply means 

fewer windings and so to a weaker magnet. For the core material heat treated mu-metal with a 

maximal magnetic permeability of up to 250000 Hm-1 was chosen. 

 
 

As we couldn’t wind our coil directly on the core, for obvious geometric reasons, some workaround 

had to be found. This was done by winding a set of small coils on a plastic core with a slightly bigger 

diameter than our Mu-metal core and a length corresponding to the opening in the core. Then the 

plastic core was inserted into the opening and the coil carefully pushed to its final position. In the 

end the six resulting coil parts were soldered together to form a single coil around our core. 

Guide field 

direction 

Fig. 63: Sketch of the magnet for the oscillating field. Red frames 
show the position of the coil segments, the red ball the sample 
position. Black rectangle above the sample is the screw that connects 
the magnet with the coldhead. Double headed red arrow indicates 
the direction of the produced magnetic field. 
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In the end there were 458 windings in total with an ohmic resistance of 2 Ω at room temperature. 

This high resistance can be explained by transfer resistance at the soldered connections between 

each of the six partial coils.  
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Fig. 64: B-field over time. The field closely follows the given current. Insert shows a close up to better 
illustrate switching behavior. The red curve is the given current amplified by a factor 30 it closely 
matches the amplitude of our magnetic field. 

 

 The magnet provides a magnetic field of up to 0.12 T under ambient conditions at a current of 5 A. 

A test of the magnet’s behavior for up to I=3 A is shown in Fig. 64. Magnetic field strength closely 

follows given current. Even so, field strength should be measured during an experiment to make sure 

how changes in temperature and interactions with the guide field influence the magnetic field at 

sample position. Also shown in Fig. 64 is a small insert of a close up of the plot showing that the field 

profile over time is almost rectangular. 

A switching frequency of some 100 Hz was reached under ambient conditions. 
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Fig. 65: Temperature of the coldhead, coil and magnetic core close to coldhead over time.  

 

During operation the magnet could be cooled down to a temperature of 12 K as measured close to 

the cold head that corresponds to a temperature of 62 K on the windings, some distance removed 

from the coldhead, see Fig. 65.  After this work was finalized a stable temperature of 5 K at the 

sample position was achieved with an inactive magnet and 24 K while the magnet received a current 

of 2.5 A producing a 133 mT field. A photo of the finished magnet is shown in Fig. 66. 

 

Fig. 66: Photo of the magnet 
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6.1.2 CoCr2O4 

 

CoCr2O4 is like CuO a multiferroic material, meaning that it shows both ferroelectricity as well as 

ferromagnetism. In general multiferroics are interesting research subjects, as they show a wide range 

of uncommon magnetic behaviors, as well as high potential for technical applications of the same. 

Cobalt-dichromate is also the first example of a multiferroic material where both the spontaneous 

magnetization and spontaneous polarization are of spin origin and that shows reversal of the electric 

polarization by reversal of its magnetization. Yamasaki et al. investigated the electric response to an 

external magnetic field in 2006 [31]. 

The space group of CoCr2O4 is 𝐹𝑑3�𝑚 at roomtemperature, and it shows a ferromagnetic phase 

between TC=94 K and TS=26 K as well as a ferroelectric phase between TS and Tlock-in=15 K, and a 

possible phase transition at 5 K as found in [32]. The ferroelectric phase shows cone shaped spin 

states with a spiral component described by an incommensurate vector of (0.63 0.63 0) within the (0 

0 1) plane as well as a ferrimagnetic component along the [0 0 1] direction. This structural transition 

to a conical spin states is also paired with the emergence of spontaneous electric polarization along 

the [-1 1 0] direction. In the ferroelectric phase, a small external magnetic field of around 0.1 T is 

sufficient for a reversal of its spontaneous polarization and magnetization. 

At Tlock-in the spin spirals period become commensurate, it “locks” to the lattice parameter. 

Using an external oscillating magnetic field, described in the following section, and the time resolved 

measurement option of PUMA such an experiment could be a good test for kinetic measurements 

using polarized neutrons.  

This could be a unique option for testing a kinetic inelastic neutron experiment with our setup. 
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Fig. 67: First test measurement on CoCr2O4 (0 4 0) lattice reflection with an alternating external 
magnetic field of ≈0.1 T 

 

A first test measurement of the crystal at PUMA was recently done, shown in Fig. 67. The (0 4 0) 

lattice reflection was measured under the influence of an external magnetic field, switching between 

± 0.1 T and at a temperature somewhat above 30 K. Measurement starts with positive magnetic field 

current until the 90 seconds mark where the field direction is reversed. Positive current means that 

the sample and guide field are parallel to each other and minus current means anti-parallel. The data 

set contains three full periods and taking each data point took a little over 2 seconds. We see that 

NSF and SF intensities of the lattice reflection behave differently under the external field. The sample 

was in the ferromagnetic phase and the magnetic field parallel to the guide field. Even without 

stroboscopic techniques, where the periodical excitation of the sample by our magnet with a timed 

detection of scattered neutrons, see [33], we can already see that with current in – direction SF 

intensity increases. With field current switched in + direction the overall intensity of the reflection 

increases. There is also some asymmetry in the increase and decrease of NSF intensity when the field 

is switched. Increasing NSF intensity takes around 8 seconds, while after switching back it takes 14 

seconds to go back to a constant count rate. Also after switching to + the increase in intensity looks 

like a fast linear increase, while the decrease starts very steep and then goes over into a tail, looking 

more logarithmic. 

In contrast to this the SF signal shows a more symmetric and abrupt reaction to field switches. 
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Even with this very short test measurement we already see some features like an influence of the 

external magnetic field. Considering this doing a full kinetic experiment looks very promising. 

 

6.2 Possible future improvements and advanced approaches for the PUMA 

polarization analysis 

6.2.1 Intensity optimization 

 

As shown in Fig. 37 a) a lot of the beam intensity is lost at the analyzer (red curve). The reason for 

this is that the three component beams are broader than the projection of the analyzer blades. The 

blades have a width of 25 mm resulting in a projected width of 8.8 mm if the (002) reflection of PG is 

used. As the beam divergence is broader than the analyzer blades some neutron flux is missing the 

analyzers and therefore is lost for the detectors. 

By using the (004) reflection of the analyzers a larger angle could be chosen, increasing the projected 

width of each analyzer to 16.5 mm. This would increase the amount of scattered neutrons redirected 

towards the detectors even if the analyzer reflectivity is reduced. Fig. 68 illustrates this effect  

 

Fig. 68: Sketch to illustrate the effect of using a higher order reflection for the analyzers 

 

6.2.2 Full 3d polarization analysis 

 

Another option would be to further develop PUMA for a full 3d polarization analysis. For this, there 

are basically two existing options, CryoPAD and MuPAD. Both systems work by providing a field free 
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sample environment, CryoPAD by utilizing the Meissner effect and MuPAD with a Mu-metal 

shielding. A detailed description of both PADs can be found in [6, 7]. 

This could not be combined with the oscillating magnetic field discussed above in 6.1.1  

A combination of full 3d polarization analysis and kinetic experiments, using an external magnetic 

field seem not feasible as the magnetic field at the sample would add a magnetic field to the field 

free zone of the PAD.  This eliminates the main advantage of the PAD, as now the spin of the incident 

(and scattered) neutrons will start to orient itself along the field. In this way the full 3d approach for 

incident beam-sample interaction gets lost. On the other hand experiments with, for example, an 

electric field would still be possible and offer additional insights. Another problem with a full 3d 

analysis would be the size of CryoPAD/MuPAD. Installation of a PAD instead of our quasi-Helmholtz-

coil means that the optical rails have to be farther removed from the sample position. This results in 

a further elongated experimental setup. There is simply no space in the experimental hall to combine 

our option to measure both spin channels simultaneously with a 3d option. 
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7 Handbook for the PUMA polarization setup 

7.1 Setup check-list 
 

1. Change PUMA to MAD setup 

a. check for wire connections, voltage, etc.  (remember 5mm atx offset14) 

b. Check ki and kf setting 

 

2. Install PE insert in the analyzer window 

3. Install both optical benches 

a. Clear the shorter optical rail on the monochromator side. Check that there is enough 

room for the helium box and a slit 

b. Rail on analyser side 

i. Use the 1 m rail with the supporting  

ii. Check that the rail is perpendicular to the entry window of the analyser  

iii. Re-check after every new component on the optical rail and  

4. Install Quasi-Helmholtz guide field 

a. Lower coil, install the three holders on the sample table. Check the wires between 

coil and power source for range of movement  

b. Install holder for the upper coil on the rail on the monochromator side of the setup. 

Take care that both coils are above each other 

c. Use the connector of the shielding drum for the holder of the upper coil 

d. Check guide field orientation and strength 

5. Install slits on both rails   

6. Install PG-filter 

7. Collimator 

a. Install 30‘ Collimator on rail 2 behind the slit 

b. Check alignment of the rail 

c. PSD collimator scan, integrated, move to highest intensity 

8. Two deflectors 

a. Deflector 1 (if possible use deflector No.3) 

i. Install deflector 1 80 cm away from the analyser rotating center on rail 1 

                                                           
14 Atx offset is necessary during the installation of the MA to avoid collisions 
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ii. (*)Deflector scan, PSD integrated. Scan around the range of expected 

intensity (should be around -0,8° for deflector 1) 

iii. Move to maximal intensity, take a PSD histogram 

iv. Determine angle of deflector using the histogram, if necessary move 

deflector   take a histogram to confirm position 

v. Note distance between deflector 1 and analyser window (gives the distance 

to the analyser rotation center and the detector ) 

vi. Note distance between deflector 1 and sample (accuracy should be around a 

few mm) 

vii. Reconfirm orientation of the rail  

b. If rail needs to be adjusted, redo collimator and deflector scans 

c. Deflector 2 (if possible use deflector No.2) 

i. Install deflector 1 75 cm away from the analyser rotating center on rail 1 

ii. (*)Deflector scan, PSD integrated. Scan around the range of expected 

intensity (should be around 0,75° for deflector 2) 

iii. Move to maximal intensity, take a PSD histogram 

iv. Determine angle of deflector using the histogram, if necessary move 

deflector   take a histogram to confirm position 

v. Note distance between deflector 2 and analyser window (gives the distance 

to the analyser rotation center and the detector ) 

vi. Note distance between deflector 2 and sample (accuracy should be around a 

few mm) 

d. Reconfirm orientation of the rail  

9. If rail needs to be adjusted, redo collimator and deflector scans 

10. Install 3He-cell 

11. Initiate software 

 

(*) Alternative: calculate multianalyser/-detector position using measured distances and  α1=-0,8° 

α2=0,75°, position the analyser/detector and do deflector scans 

 Guide and detector scans to confirm  

 Scan for deflectors to confirm 

  Iterate 
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7.2 Detailed setup guide 
 

As this is a new setup for PUMA this work includes this handbook how to install the polarization 

analysis, first in the form of a detailed description of the installation process, and then as a shorter 

list of necessary steps. 

The PUMA polarization set-up consists of several components (in order of typical installation): 

• Insert for analyzer window 

• Optical benches 

• Quasi-Helmholtz guide field 

• Slits 

• PG-filter 

• Collimator 

• Two deflectors 

• 3He-cell 

1 Change to MAD setup: 

Prior to the installation of any component the coupling between the analyzer box and the sample 

table needs to be changed. This is done by rotating the coupling by 90° and necessary to get space 

for the polarization set-up. That the coupling was rotated by 90° can and should be checked using the 

laser located on the monochromator castle window. When the coupling was changed it is important 

to check if the breaks have been reengaged. If the breaks are unlocked the distance between the 

analyzer and the sample will change while driving the spectrometer. This will result at least in wrong 

calibration calculations and probably even collisions between optical bench and sample table. In the 

best case this will make a recalibration of the setup necessary and could even lead to damages on the 

bench, the components installed on the bench, or the whole setup. 

Before closing the shielding do not forget to connect the data cable from the MSTD-16 and MPSD8 

module in the MAD.  

2 Install PE insert in the analyzer window: 

After changing the coupling between the analyzer box and sample table, which is necessary to move 

away the collimator holder for the normal setup allowing the installation of the MAD, an insert for 

the opening of the analyzer box can be installed. The insert, tooled from borated PE, reduces the 

opening to 4x4cm and minimizes background neutrons inside the Analyzer/Detector box. 

3 Install optical benches: 
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The polarization set-up uses two optical benches to install all its components. On the reactor side of 

the spectrometer the normally installed optical rail is used to carry one slit, the helium cell and the 

upper part of the quasi-Helmholtz-coil. The optical rail on the analyzer side needs to be installed 

after switching the coupling between sample table and analyzer (note distance between sample and 

analyzer-center).  

The optical rail installed at the analyzer side is 80 cm long and has a mark that shows the distance to 

analyzer center. Installing the rail it is important to mount it parallel to the neutron path. For proper 

alignment of the rail a machinist square can be used. From experience it is a good idea to orient it 

using the vertical metal plate connecting the rail to the analyzer box. Before the final alignment the 

lower support strut should be connected. When the rail is properly installed an adjusting aid with 

some adjustable screws is used to fix the orientation of the rail. There is also an additional support 

structure connecting the end of the rail with the MAD sample table coupling that doubles as a buffer 

for vibrations of the optical rail. 

Small errors in the alignment of the optical bench can be compensated by rotating the deflectors and 

the collimator, but it is always preferable to have the best possible alignment already at the level of 

optical rail installation. 

As the rail is in principle a long lever that is only fixed by three screws and the (soft) aluminum 

adjustment help, one should be very careful while moving around the bench and when installing 

additional components. If the bench is moved all prior adjustment of installed components is lost and 

has to be redone. 

4 Install guide field: 

Installing the guide field starts with installation of the lower coils three mountings. There is only one 

possible configuration for the mountings as they are asymmetrical and use two different sizes of 

screws. After the coil is placed carefully place the cable between coil and power-supply in a way that 

it doesn’t catch anywhere during rotation of the sample table. And make sure that the cable is not in 

the neutron beam. 

The upper coil is installed on the optical bench on the reactor side of the spectrometer.  For this the 

holding devise of the shielding drum for the sample table is used. The upper coil should be in good 

alignment with the lower one. 

5-7 Install slits, PG-filter and collimator: 

The two slits are to be installed directly in front and after the sample, on the ends of the optical rails. 

The PG-filter follows behind the slit, in beam direction, on the analyzer side. Behind the filter follows 

the collimator, this can be a 30’, or less common a 15’, collimator. When the collimator is installed it 

needs to be calibrated using neutrons. 
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Fig. 69: Scan for optimal position of first deflector using PSD 

To adjust the collimator a direct beam setup is used. The measurement can be done in two ways. 

One method is calculating the positions for the MAD using the software available at PUMA, and 

moving everything in position. Count while moving the collimator. If everything is aligned properly 

we get a Gaussian intensity profile as a function of collimator angle in the central detector, where the 

maximum of intensity corresponds to a collimator parallel to the beam.  

The method we preferred is using the PSD and integrating intensity over the whole detector. Again, 

this gives a Gaussian with its maximum at the position where the collimator is parallel to the beam. 

After the optimal position has been noted down reference the collimator and move it into position 

coming from low motor-steps. This eliminates a potential backlash problem. 

8 Install deflectors: 

When this is done the first deflector can be installed at the correct position 80 cm distant form the 

analyzer center. To calibrate the deflector again rotate it in the direct beam. Again, this can be done 

by using either the MAD single detectors or the PSD.  

Using the single detectors, if everything is correctly aligned rotating the deflector should give a 

constant count-rate in the central detector until the deflector starts to deflect neutrons away. These 

will turn up in the right detector. The maximum of intensity for the right detector gives a good 

position for the deflector.  

Again, we preferred using the PSD, where we integrated over parts of the PSD corresponding to the 

position of the analyzer crystals. This gives an integrated intensity profile as in Fig. 69 where the dips 
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correspond to the reflecting position where neutrons are deflected away from the center of the PSD. 

We calibrate for the detector 7 channel signal, as the first deflector is associated with detector 7. 

After the deflector has been positioned, again reference and move form low angels to the 

determined position. Afterwards take a histogram to check the beam profile. This is one of the 

reasons the PSD is preferred above the single detectors as a histogram can be used to control the 

angle between deflector and beam. This is done by identifying the position of the central and 

deflected signals on the PSD. As each PSD channel corresponds to 0.3 mm we now have the distance 

between the beam components at PSD position, DS. As we also know the distance between deflector 

and PSD, LDPSD, we can now calculate the angle using 𝛾 = tan � 𝑆𝑆
𝐿𝐷𝐷𝑆𝐷

�
−1
∙ 1
2
. 
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Fig. 70: Scan for optimal position of second deflector using PSD 

 

 

For the second deflector the procedure is essentially the same, there is just a different looking plot, 

as shown in Fig. 70. What we see is how the second deflector moves through the direct beam, as well 

as the first deflected beam. Coming from negative angles, we first see it deflecting intensity from 

channel 7 away from the detector. Then it starts to deflect intensity from channel 7 back into the 

central channel until it is reaching its intended position where its deflected beam starts to hit 

detector channel 5. We optimize for this position. Note that this peak is broader and less well defined 
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compared to the peak from the first deflector, meaning that we have a bit more play how to position 

the second one. Again, check the angle of deflector 2 and note it down. 

After this the positions of the relevant components should be noted down for the calculation of 

correction factors for the data analysis and nothing should be touched anymore.  

Then, if it hasn’t already be done, the positions for the MAD can be calculated and the analyzer and 

single detectors are moved into position.  

From this point forward one can switch to the single detector setup and test the calculations by 

simply counting for a second. This should produce counts in the three central detectors. If this is not 

the case the first step should be to control if the MAD moved into position, then re-check all 

distances and angles used in the calculation, and finally a series of iterating deflector and guide 

scans. 

10 Install 3He-cell: 

Put the cell in its holders and check the cell polarization with a short direct beam or lattice reflection 

measurement. 

11 Initiate software setup: 

There are three software setups; 

a) ‘defcal’ setup for calibrating the components, PSD is used as detector 

b) ‘polarization’ setup for the normal polarization analysis using the 11 single detectors of the 

MD. Data will be preprocessed by the mesydaq software and appear as standard FRMII 

NICOS data 

c) ‘polarizationkinetic’ setup for kinetic polarization analysis using the MD single detectors. 

Data is saved in listmode ‘.mdat’ with time stamps for each event (time resolution is 50 ns) 

Start the experiment. 

Take a look at section 5.2 to see how to handle the data. 
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8 Appendix 
 

 

8.1 Intermediate steps for guide field calculations 
We get the following solution for a Poisson equation for the vector potential A: 

 

𝑨(𝒓) =
𝐶0
4𝜋

�𝑑𝒓′
𝒋(𝒓′)

|𝒓 − 𝒓′|
 

 

(129) 
 

If we write this out in cylindrical coordinates we get the following equations for the components of 

A: 

 

𝐴𝑧 = 0 
 

(130) 

 

Fig. 71: Differences in efficiency along the full PSD range. A vanadium sample was used to expose the 
whole detector equally 
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𝐴𝑟 = 𝐴𝑥 cos𝜑 + 𝐴𝑦 sin𝜑

=
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� sin(𝜑 − 𝜑′)  

 
 
(131) 

 

𝐴𝜑 = 𝐴𝑦 cos𝜑 − 𝐴𝑥 sin𝜑
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+
1
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(132) 

 

From this we can start to calculate the magnetic field, using: 

 
𝑩 = ∇ × 𝐀 

 

𝑩𝑟 =
1
𝑟
𝜕𝑨𝑧
𝜕𝜑

−
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Also we get the following using Cartesian coordinates: 

 
𝑩𝑥 = 𝑩𝑟 cos𝜑 − 𝑩𝜑 sin𝜑 

 
𝑩𝑦 = 𝑩𝑟 sin𝜑 + 𝑩𝜑 cos𝜑 

 

 
 
(134) 
 

If we now calculate Bz using Biot-Savart for vector potentials (Equations (130), (131),(132)) we get 

after some transformations the following expression: 

 

𝑩𝑧 =
𝑨𝜑
𝑟

+
𝜕𝑨𝜑
𝜕𝑟

−
1
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Using 𝑑 = cos𝜑′ to calculate an expression for Br we get equation (12). 

Calculations for guide field profile along the beam path, starting with 

 

𝑩𝑧(𝑧 = 0) =
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3
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�1 − 𝑑2
 

1

−1
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𝑩𝑟(𝑧 = 0) = 0 

 

(137) 
 

If we, look at 𝑧0 = 𝑅
2

 we get for Bz and Br the following equations: 
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To simplify our problem we can consider it to be two dimensional, as the field lines can be expressed 

as level lines of Ay, meaning that 
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Using cylindrical coordinates this leads to equation (19). 

 

8.2 All magnetic scattering combinations 
Full set of contributions to the scattering function for a case where x is parallel to Q (mx vanishes): 
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(𝑧̅𝑧): �𝑚𝑦�
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(𝑧𝑧���): |𝑚𝑧|2 = 𝜕 

 

All of these possible contributions can be expressed by only six different terms. They are shown in 

section 4.3 “Theory of polarized neutron scattering” 
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Fig. 72: Occurrence of a small fourth peak. This was observed when deflector 2 was in front of 
deflector 3 and vanished when 3 was in front. Probably a chance interaction of small manufacturing 
imperfections is responsible. 
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Fig. 73: PSD image for a three deflector beam profile. There is a significant change in the 
deflected/direct beam quotient compared to the two deflector setup from Fig. 17 (0,81 to 0,623)  
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Fig. 75: Two scans for deflector calibration (deflector 2 September 2015). On the left without a PG-
filter and on the right with filter inserted into the beam-path. In addition to the effect of eliminating 
higher order neutrons, the behavior of the deflector as collimator is clearly shown. 

  

x-position [cm] -20 -10 0 10 20 

I[A]      

0 0.9 0.1 0.1 0.1 0.8 

1 2.1 1.6 1.4 1.6 1.8 

2 3.3 2.8 2.8 2.8 3 

3 4.5 4.2 4.2 4.2 4.5 

4 5.5 5.5 5.4 5.4 5.5 

5 7 7 6.6 6.6 7 

6 8.3 8.1 8 8.1 8.3 

7 9.9 9.2 9.2 9.2 9.5 

8 10.8 10.7 10.7 10.7 10.7 

9 12.3 11.9 11.6 11.8 11.9 

10 13.7 13.4 12.8 13.2 12.8 

Table 8: Measured magnetic flux of the PANDA guide field in [mT] 
coil in units of mT. Direction of x is arbitrary. 

Fig. 74: Magnetic field in the experimental area of PUMA on 03.05.2016. On the left directly above 
ground level and on the right in 1m height. Green numbers show south-pole, red ones a north-pole, 
in units of [mT] 
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y-position [cm] -20 -10 0 10 20 
I[A]      
0 0.7 0.1 0.1 0.1 0.9 
1 1.8 1.6 1.4 1.6 1.8 
2 3 2.8 2.8 2.8 3 
3 4.5 4.2 4.2 4.2 4.5 
4 5.4 5.4 5.4 5.4 5.5 
5 7 6.7 6.6 6.9 7 
6 8.2 8.1 8 8.1 8.2 
7 9.2 9.4 9.2 9.5 9.5 
8 10.7 10.8 10.4 10.8 10.7 
9 11.9 11.9 11.7 12 12 
10 12.8 13.3 12.9 13.2 13.4 
Table 9: Same as Table 8 but in y-direction, perpendicular to x. 

 

 

Fig. 76: On the left a sketch for the detector position as used during this work. On the right a sketch 
for an equidistant positioning of the detectors recommended to help estimating background during 
an experiment.  
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Fig. 78: Alternative display of Fig. for the first test experiment on Hematite. On the left measurement 
of AFM (003) reflex, on the right nuclear (006) reflex 

 

Fig. 77: CuO-sample after (left) and before (right) the cut. Note the boron nitride shielding for the sample 
holder and the wires for the second temperature sensor. On the left the sensor is directly behind the sample 
and on the right inserted into the sample holder 
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Fig. 79: The same scan as in Fig. 62 but before all corrections and “cosmetics” 

In Fig. 79 the uncorrected raw data for the constant q scan seen in Fig. 62 is shown. The difference 

between the two plots is a result of the following data manipulation steps: 

• First the background is reduced as discussed in section 5.2 

• Then the detector count rates are transferred into SF and NSF count rates, as shown in 

section 4.3.1 “Analytical calculations for PUMA polarization analysis”. A Bose correction of 

the data is done by dividing the count rate by 𝑒ℎ𝜈𝛼 − 1 

o Because of the low temperature this has nearly no effect on the data. The correction 

was done to assure comparability with an older measurement at a higher 

temperature (this data is shown in Fig. 53 b)) 

• To somewhat smooth the data the average between two neighboring data points is plotted 

• Finally error bars are calculated and added 

In the appendix (Fig. 41) is a three step plot for the data correction of this scan with some additional 

remarks. 
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8.3 Technical details useful to remember 
 

Information regarding the PSD: 

• The PSD tubes require voltage of 1750.0 V 

•  Corresponding configuration in MESYDAQ computer is ‘PSD.mcfg’ 

•  Common Gain 128 and Common Threshold 139 

•  First Data Bus channel of the central module is FED by the PSD signal. 

•  In NICOS the voltage ramping can be done using ‘hv1’ device 

•  Count command on PSD will be saved as a histogram file in the service folder using the name 

structure ‘puma_0000xxxx’  

•  In NICOS command line every count command will give img.sum, peak1, peak2, peak3, 

which are summations over different ranges of interest in channels & tubes, which can be 

changed by: 

o  peak1.roi=(start ch no, start tube no, increment in ch no, increment in tube no) 

o  peak2.roi=(start ch no, start tube no, increment in ch no, increment in tube no) 

o peak3.roi=(start ch no, start tube no, increment in ch no, increment in tube no) 

 

Information regarding the MAD single detectors: 

• The required voltage is 1550.0 V  

• Corresponding configuration in MESYDAQ computer is ‘##.mcfg’.  

• Third Data Bus channel of the central module is FED by the SD signal.  

• Common Gain 92 and Common Threshold 15 

 

How the channels are named in in Mesytec and NICOS software. The first two are monitor counts, 

sum over all detectors and then the corresponding MD channels 

Mesytec NICOS MD channels 

0 1  

1 2  

2 3 1 
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3 4 2 

4 5 3 

5 6 4 

6 7 5 

7 8 6 

8 9 7 

9 10 8 

10 11 9 

11 12 10 

12 13 11 

 

OPTICAL ALLIGNMENT: 

 

After changing the coupling between sample table and analyzer (ATT change by 90 degree): 

 

Install and set: 

Collimators: 20’, and 24’ 

phi.motor.stopdelay=10 

Air pressure under the blue box = 4 

 

Alignment of MA using neutrons: 

 

1st step 

Remove single analyzer 

Make ATH.OFFSET = 0 

Make ATH =  0 

Make ATT = 90 

Make ATX=0; ATY=0 

90° = ATT - CAD  
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Check for the following: 

ATT = 90 -> CAD = 0°; ATT = 85° -> CAD = 15°; etc. 

Insert the MA while  

ATX=+5 mm, ATY=0, ATH=0, ATT=90 

CAD has no intrinsic offset. 

CAD offset is related to ATT.OFFSET 

 

2nd step 

Keep CAD = -27.2º (nominal) 

rd6=-14.0º 

Such that rd6_cad=-41.2º 

Make scan for ra6 around -20.6º [Take care, this axis has huge backlash] 

If no intensity found during ra6 scan do the following 

 

3rd step 

Move ra6 to -20.6º(nominal) [backlash!!!] 

Make as much space around rd6, as possible by moving the other detectors to the sides 

Do a broad scan for rd6 around the position rd6=-14º [cad at -27.2º] 

Iterate between ra6 scan and rd6 scan to determine the offset properly 

ra6.offset=? 

rd6.offset=? 

After this do a ta6 scan around ta6=5mm to get the max intensity [remember nominally ta6=5 mm is 

at the center of the goniometer, as ATX=5 mm, because of the MA installation] 

Set ta6=5 mm with proper offset  

If you wish you can iterate between ta6 and ra6 while rd6 is fixed, later again ta6=5 mm and iterate 

between ra6 and rd6  

This step is important as depending on that all rd# and rg# offsets will be determined. 

 

4th step 

Keep ra6 after offset correction at -20.6º, ta6=5 mm 

Keep all the detectors 4º apart with rg#=0º[optically] 

Move the whole multi detector by CAD to determine calculated position and the real position from 

neutron intensity and determine the offsets 

Put all the offsets found from the neutron alignment of the beam reflected from ra6 
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5th step 

Once all the detectors are aligned, keeping each of the detectors at the reflected beam positions, do 

the corresponding rg# scans. 

When the intensity starts falling down sharply, set that value to 0º for each of the guide. 

After all offsets are properly adjusted, all the rg# 0 and rd# are 4º apart from each other do a CAD 

scan with high statistics. 

 

6th step: 

Once all rd#, rg# are aligned, with help of already aligned ra6 reflected beam, align rest of the ra#s 

This is done via putting the corresponding analyzer on the beam path via moving PHI  
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