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Abstract 

Microglia are the innate immune cells of the brain. In neurodegeneration, such as Alzheimer’s disease, 

these cells are involved in clearance of cellular debris and extracellular aggregates of misfolded proteins 

like amyloid beta (Aβ). However, alongside Aβ-clearance microglia are activated, resulting amongst others 

in the secretion of neurotoxic cytokines which contributes to neuronal cell death. Hence, it is not well 

understood whether microglia are beneficial or detrimental for the progression of AD. To address this 

question, we generated 5xFAD transgenic AD mice with microglia-specific depletion of Rab7 GTPase 

(Rab7ΔMG x 5xFAD), which is responsible for the fusion of late endosomes and autophagosomes with the 

lysosome, and thereby promotes lysosomal degradation. 

Surprisingly, we found that Rab7ΔMG x 5xFAD mice revealed fewer and smaller Aβ-plaques in aged female 

mice, while the overall amounts of soluble and insoluble Aβ-species were not changed in early (3 months) 

and progressed (9 months) stages of disease. We did not observe changes in micro- and astrogliosis. 

However, elevated levels of CCL2 were detected, which could provide a mechanism to attract peripheral 

derived myeloid cells which could compensate for degradation impaired Rab7 knockout microglia. 

All of these findings were exclusively found in female Rab7ΔMG x 5xFAD mice. This could either be caused 

by higher basal Aβ-burden in females or by sex-dependent differential features of microglia, including 

phago-lysosomal activity. 
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1. Introduction 

1.1. Alzheimer’s disease 

Alzheimer’s disease (AD) is named after the psychiatrist and neuropathologist Alois Alzheimer who 

first described the pathology in 1907 (Alzheimer, 1907; English translation: Alzheimer et al., 1995). 

As of today, AD is the most common form of dementia in the elderly with aging as a major risk 

factor. Its prevalence increases due to higher life-expectancies. In 2035 about 90 million are 

predicted to be diagnosed with AD worldwide (Jahn, 2013; Weuve et al., 2014). The disease is 

characterized by the progressive and irreversible loss of memory and other cognitive functions as 

well as by changes in behavior and mood due to neuronal and synaptic loss in the brain (Lam et al., 

2013). 

 

Symptoms and Diagnosis 

The neuropathology underlying AD begins two to three decades before the first clinical symptoms 

occur (Masters et al., 2015). This period is called preclinical phase. Neuropathological processes 

increase over time, resulting in early symptoms, e.g. deficits in short term memory, which do not 

fulfill the criteria of dementia. This stage is termed mild cognitive impairment (MCI) or prodromal 

disease stage. In the dementia stage, patients experience a progressive loss of spatial orientation 

and language skills, with additional impairment of daily living functions. Additionally, many patients 

experience changes in their personality and behavior, e.g. aggression or delusion (Dubois et al., 

2007; Galvin et al., 2010).  

The diagnosis of AD relies on a combination of neuropsychological testing, structural and functional 

MRI (Magnetic Resonance Imaging), FDG-PET (Fluorodeoxyglucose Positron Emission 

Tomography) and amyloid PET, and cerebrospinal fluid (CSF) biomarker analysis. AD diagnosis 

can only be secured post mortem by detection of amyloid plaques and neurofibrillary tangles with 

immunohistochemistry (Reitz and Mayeux, 2014). 

 

Therapy 

As of today, there is no cure for AD. So far, only two different symptomatic therapies have been 

approved for treatment of AD, acetylcholinesterase inhibitors and memantine (Glynn-Servedio and 

Ranola, 2017).  

In the early 1980s Whitehouse and colleagues discovered that cholinergic neurons were affected in 

brains of AD patients. Thus, treatment with acetylcholinestrase inhibitors is currently a therapy for 

early stage and moderate AD. The inhibitor blocks the enzymatic inactivation of acetylcholine 

through acetylcholinesterases in the synaptic cleft resulting in higher concentrations of this 

neurotransmitter as compensation for the loss of cholinergic neurons (Frozza et al., 2018). At 
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moderate and severe stages of AD, the N-methyl-aspartate (NMDA)-receptor antagonist 

memantine improves daily living functions in AD patients. Throughout the disease, NMDA-receptors 

tend to be over-stimulated, which can be counteracted by memantine (Frozza et al., 2018). 

 

Epidemiology 

Most cases of AD are diagnosed at 65 years or older (Masters et al., 2015). A minority of around 

1% of AD is caused by familial autosomal dominant mutations and the majority of cases are 

sporadic (see section 1.1.3). In the United States of America about two-third of diagnosed AD 

patients are women with this sex-discrepancy being based on higher life expectancies of women 

(Hebert et al., 2001). However, a well described risk factor for AD development, namely Apoprotein 

ApoE4, was found to have stronger association with AD in women than in men between 65 and 75 

years of age (Altmann et al., 2014; Farrer et al., 1997; Neu et al., 2017). There is evidence 

suggesting interaction of the sex hormone estrogen and ApoE4, which could explain these sex-

discrepancies about 10 years post-menopause in women (Kang and Grodstein, 2012; Neu et al., 

2017). 

1.1.1. Neuropathology 

The histopathology of AD consists of four prominent hallmarks: senile amyloid (Aβ) plaques, 

neurofibrillary tangles (NFTs), brain atrophy and neuroinflammation (Figure 1). 

 

Senile Aβ-plaques 

Senile plaques were identified as extracellular aggregates of Aβ-peptides (Masters et al., 1985). Aβ 

is cleaved from the highly conserved integral membrane protein Amyloid Precursor Protein (APP), 

which is encoded by the APP gene located on chromosome 21 in humans. APP contains 18 exons 

with a total length of 290 kb (kilobases) (Yoshikai et al., 1990). Various splicing variants of APP can 

be found in different tissues and cell types in mammals. In human neurons the splicing variant 

APP695 is the most abundant one (reviewed by Matsui et al., 2007). Noteworthy, APP is 

extensively post-translationally modified. This includes amongst others glycosylation, sialylation and 

phosphorylation but also enzymatic processing (Kummer and Heneka, 2014). Enzymatic 

processing of APP can occur e.g. in an amyloidogenic or non-amyloidogenic manner, which will be 

described in detail in section 1.1.2.  

Aβ-plaques can be categorized in dense-core also known as neuritic plaques and in diffuse plaques 

(Wisniewski et al., 1973). Dense-core Aβ-plaques consist of fibrillary amyloid clustering in a central 

core surrounded by loose Aβ-peptides, dystrophic neurites and gliosis. The dense core can be 

visualized by β-sheet binding dyes like Congo Red, Methoxy-XO4 or ThioflavinS (ThioS). Diffuse 

plaques are more amorphous lacking dystrophic neurites and a central core. Thus, they cannot be 

labeled with β-sheet binding dyes and need to be visualized by antibody staining (Selkoe, 2001). 
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Spreading of Aβ-plaques occurs in a distinct pattern, which can be categorized by the Thal Aβ 

phase (TAP) or the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) system 

(Mirra et al., 1991; Thal et al., 2002). The TAP system describes anatomical distribution of 

Aβ-plaques beginning in the neocortex (TAP 1), proceeding in the hippocampus, amygdala, 

allocortex and diencephalon (TAP 2+3) and further appears in the brain stem and cerebellum (TAP 

4+5) according to immunohistochemical analysis (Thal et al., 2002) (Figure 2A). CERAD uses a 

semi-quantitative approach to assess neuritic plaques, ranging from none (0), sparse (1), moderate 

(2) to severe (3) deposition (Mirra et al., 1991). 

 

Neurofibrillary tangles 

Intraneuronal protein accumulations known as NFTs are found in post mortem tissue of AD 

patients. NFTs are built of paired helical filaments (PHFs), which consist of hyperphosphorylated 

Tau protein (pTau), a microtubule-associated protein (MAPT) (Goedert et al., 1988; Kidd, 1963; 

Kopke et al., 1993). Under physiological conditions Tau is a modulator of the microtubule assembly 

and stabilization as well as of axonal transport (Goedert et al., 2006; Weingarten et al., 1975). Upon 

Figure 1: Histopathological hallmarks of AD. 

A) Atrophic hemibrain of a 70 year old AD patient (right) in comparison to a hemibrain of an age-matched healthy 

control (left). The cortex (C) shows extreme shriveling in the AD brain compared to the control brain. The hippocampus 

(H) also displays massive shrinkage, while the lateral ventricle (V) is prominently increased in the AD sample. B) Silver 

staining on post mortem brain tissue of the AD patient shows neuritic plaques (P) and neurofibrillary tangles (N). 

C) Immunohistochemistry for MHC II (major histocompatibility complex II) in brown labels reactive microglia in AD post 

mortem tissue. D) Alongside astrogliosis is detcted by staining for GFAP (glial fibrillary acidic protein) in brown. 

C+D) Blue counterstaining with haematoxylin labels nuclei. Images were modified after Gouw et al., (2008) and Wippold 

et al., (2008). 
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hyperphosphorylation Tau becomes dysfunctional, which is associated with synaptic dysfunction, 

altered intracellular trafficking and defective proteasomal degradation (Wang and Mandelkow, 

2016). 

Neither the pathological mechanisms causing Tau hyperphosphorylation, nor its interaction with Aβ-

peptides are fully understood yet (Hochgrafe et al., 2013; Sydow et al., 2011). Aβ-pathology seems 

to be upstream of Tau pathology as studies using Tau knockout (KO) mice with overexpression of 

human APP found neuroprotection even though Aβ-burden was not altered (Roberson et al., 2007). 

Furthermore, Aβ oligomerization can trigger pTau accumulation in neurons and thereby promote 

NTF formation (Ma et al., 2009; Oddo et al., 2003; Zempel et al., 2013).  

Albeit NFTs are a hallmark of AD and mutations in the human MAPT gene are associated with 

genetic forms of frontotemporal dementia and other tauopathies, there is no genetic link found to 

AD (Wolfe, 2009). 

In contrast to Aβ pathology, the location of NFTs correlates closely with the severity of AD. 

Therefore, spreading pattern of NFTs are staged according to the so-called Braak stages (Braak 

and Braak, 1991). Stage I and II describe NFTs in the locus coeruleus, the entorhinal and 

transentorhinal regions (Figure 2B). Stages III and IV describe NFTs in the hippocampus and 

within the frontal parts of the neocortex. NFT-burden in further parts of the neocortex is staged with 

Braak stages V and VI. 

 

Brain atrophy 

Brain atrophy is a very prominent feature of AD brains, correlating with NFT-burden and reflecting 

neuronal loss. Neuronal loss results in atrophy of hippocampus, temporal lobes and eventually 

Figure 2: Thal stages of amyloid (Aβ) and Braak 

stages of NFT pathology. 

A) Thal stages of  Aβ-plaque pathology are shown in 

blue. Phase 1 describes Aβ-deposits in the basal 

temporal cortex and in the orbitofrontal neocortex. 

Phases 2 and 3 classify Aβ throughout the neocortex, 

in the hippocampus, the amygdala, the basal ganglia 

and the diencephalon. Phases  4 and 5 are used to 

describe Aβ-deposits in the mesencephalon, cerebral 

cortex and the lower brainstem. B) NFT pathology is 

shown in green. Stage I and II describes intraneuronal 

accumulations of hyperphophorylated Tau in the loculs 

coeruleus, the entorhinal and transentorhinal cortex. 

Stage III and IV are used when NFTs are detected in 

the hippocampus and in the frontal neocortex. Stages 

V and VI define NFTs in neurons throughout the 

neocortex. Figure adapted from Goedert et al. (2015). 
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parietal cortex. Furthermore, it causes enlargement of ventricles (Figure 1A). Progressive reduction 

of brain volume due to neuronal loss can already be detected at early stages of the disease by MRI 

(Leung et al., 2013). Neuronal loss is preceded by synaptic dysfunction. All of these aspects lead to 

memory impairment. 

 

Neuroinflammation 

Another important finding in post mortem brains of AD patients is neuroinflammation. The term 

neuroinflammation describes activation of immune cells in the CNS as a consequence of brain 

injury, trauma or infection. Neuroinflammation is accompanied by reactive gliosis, which describes 

activation and proliferation of glia. Most commonly involved cell types in neuroinflammation are 

microglia and astrocytes. These cells are capable of clearing Aβ-deposits through phago-lysosomal 

degradation (Frackowiak et al., 1992; Wisniewski et al., 1991; Wyss-Coray et al., 2003). Briefly, 

phagocytosis is a specific form of endocytosis by which the cell membrane engulfs solid particles or 

whole microorganisms from the extracellular space. The engulfed debris is gradually transported 

within maturating endosomes, which eventually fuse with the lysosome for enzymatic degradation 

of the content. The detailed molecular mechanism underlying the endo-lysosomal pathway will be 

described in detail in section 1.2.4.  

In microglia, e.g. this phago-lysosomal activation coincides with morphologic changes displayed by 

cell swelling, altered gene expression and the secretion of signaling molecules like cytokines to 

interact with the environment (Kettenmann et al., 2011). Moreover, there is emerging evidence that 

microglia can also directly interact with astrocytes and vice versa, suggesting a close link between 

gliosis and neuroinflammation (Liddelow et al., 2017). Throughout disease progression the blood 

brain barrier eventually breaks down which allows peripheral immune cells to enter the brain. This 

includes e.g. peripheral monocytes, neutrophils and T cells (Zenaro et al., 2017). How these cells 

contribute to neuroinflammation in AD is not well understood yet. Detailed characteristics of 

microgliosis in AD will be discussed in detail in section 1.2.3. 

1.1.2.  Amyloid pathology 

There are two primary pathways processing APP: whereas the so-called non-amyloidogenic 

pathway creates no Aβ-species, the amyloidogenic pathway is responsible for the generation of Aβ-

peptides (Hardy and Higgins, 1992). The most important enzymes involved in these two pathways 

are the alpha- (α-), beta- (β-) and gamma- (γ-) secretases.  

 

Non-amyloidogenic pathway  

In the non-amyloidogenic pathway, APP is proteolytically cleaved by α-secretase (a disintegrin and 

metalloproteinase 10, ADAM10). Thereby, the soluble ectodomain, also called sAPPα, is released 

into the extracellular space and C83 also known as the α-C-terminal fragment (α-CTF) remains 



Introduction                                                                
 

 

6| P a g e  
 

membrane-bound (Figure 3 A). As the α-cleavage site is within the Aβ-sequence which is thereby 

disrupted, Aβ-synthesis is prevented. In a second step, α-CTF is then further processed by γ-

secretase cleaving at the C-terminal transmembrane domain. This results in the release of a small 

extracellular peptide called p3 and the cytosolic APP intracellular domain (AICD) (Hardy and 

Higgins, 1992; Heppner et al., 2015). 

 

Amyloidogenic pathway 

In the amyloidogenic pathway the first cleaving is achieved by β-secretase (β-site APP cleaving 

enzyme, BACE1), which cuts at the C-terminal end of the Aβ-sequence and releases the soluble 

sAPPβ residue into the extracellular space (Figure 3 A). The remaining β-CTF (C-terminal fragment 

of APP also referred to as C99) is then further processed by the γ-secretase, resulting in membrane 

bound AICD and free Aβ-peptide (Heppner et al., 2015). Depending on the exact cutting position of 

γ-secretase, Aβ-species with C-terminal lengths between 37- 43 amio acids are produced (Takami 

et al., 2009). Moreover, there are various N-terminal truncated forms of Aβ-peptide. N-terminal full-

length Aβ1-42 is considered to be highly synaptotoxic. In humans Aβ2-x species are highly enriched in 

the brain, while in transgenic AD mouse model  Aβ3-x are prominently expressed (Kummer and 

Heneka, 2014). In AD post mortem brains variant Aβ4-42 was found highly abundant, too (Masters et 

al., 1985). Thus, there must be other enzymes involved in alternative processing pathways of APP. 

Figure 3: Schematic presentation of non-amyloidogenic, amyloidogenic and η-secretase pathway. 

A) Representation of the non-amyloidogenic pathway on the left side and scheme of the amyloidogenic pathway on the 

right side. The Aβ-peptide sequence in colored in orange whereas the remaining parts of APP are colored in red. In the 

non-amyloidogenic processing of APP is characterize by the use of α- and γ-secretases. This results in intermediate 

products sAPPα and C83, which is also known as α-CTF (C-terminal fragment of APP). C83 is further processed into 

soluble p3 and membrane-bound AICD (APP intracellular domain). Through this pathway no Aβ is produced. In 

contrast, Aβ is released upon APP processing with β- and γ-secretases in the amyloidogenic pathway. The proteases 

α-, β- and γ-secretases are shown in blue. Side products which do not result in Aβ-monomers are labeled in grey.  

B) The recently identified η-secretase pathway does not produce Aβ-peptides but neurotoxic Aη-peptides. In a first step 

η-secretase cleaves within the N-terminal region of APP releasing sAPP-η. The remaining membrane-bound CTF-η can 

be further processed either by α- or β-secretase resulting in Aη-α or Aη-β peptides. Figure is adapted from Heppner et al., 

(2015). 
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Metalloprotease Meprin β, for example, was identified as alternative β-secretase which can 

generate amongst others N-terminal truncated Aβ2-x-peptides (Becker-Pauly and Pietrzik, 2016; 

Jefferson et al., 2011). In addition to the one cleaving site inside the Aβ-sequence, Meprin can cut 

within the N-terminus of APP. The cleaving site of theta- (θ- also known as BACE2) secretase is 

within the Aβ-sequence, thus processing Aβ-peptides (Sun et al., 2006). Delta- (δ-) secretase cuts 

within the N-terminus of APP (Zhang et al., 2015).  

Noteworthy, a recently identified APP processing pathway, underlying eta- (η-) secretase, also 

known as membrane-bound matrix metalloproteinase (MT5-MMP), does not process Aβ-peptides 

but results in neuro-toxic molecules (Willem et al., 2015) (Figure 3 B). In a first step η-secretase 

cleaves APP between amino acid 504 and 505 which is closer to the N-terminus than the cleaving 

site of the β-secretase (Figure 3 B). Thereby, the soluble sAPPη fragment is released. The 

membrane-bound CTFη is either degraded through the lysosomal pathway or further processed by 

α- or β-secretase resulting in soluble Aη-x peptide and membrane-bound CTFx-η (Wang et al., 

2015a; Willem et al., 2015). Interestingly, elevated levels of CTFx-η were found in dystrophic 

neurites in a human APP-overexpressing AD mouse model and in human AD post mortem brains 

(Willem et al., 2015). Comparable to treatment with BACE1 inhibitors, Aη-α was found to reduce 

neuronal activity in murine hippocampal slice culture (Willem et al., 2015). KO of MT5-MMP in the 

5xFAD transgenic AD mouse model showed attenuated Aβ burden, reduced gliosis and cognitive 

Figure 4: Cleaving sites of APP processing enzymes. 

On the bottom, the full-length APP-protein is shown in red with the Aβ-peptide in orange. The broad cleaving sites of 

multiple, prominent APP-processing enzymes are labeled. In a close-up of the amino acid (aa) sequence of Aβ shown 

on top, the precise cleaving sites are tagged. For instance α-, β- and γ-secretases which cleave within the Aβ-peptide 

sequence and which are the key components of the non-amyloidogenic and amyloidogenic pathway are shown in blue. 

Depending on the precise cleaving site of γ-secretase in the amyloidogenic pathway, Aβ-peptides with various lengths, 

like 38 aa, 40 aa or 42 aa are produced (grey). Other secretases which can cut within the Aβ-sequence are θ-secretase 

and MEP (Merpin) labeled in green. MEP and δ-secretase can further cleave within the N-terminus of the APP. The 

cleaving sites of η-secretase (purple) are N-terminal to the Aβ-sequence.  
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improvement compared to control animals (Baranger et al., 2017). This further illustrates the 

capacity of non-Aβ-species to influence AD-pathology. 

In terms of Aβ-peptides, Aβ42 is considered the most pathogenic form due to its strong tendency to 

form aggregates. After Aβ-peptides are released into the extracellular space, they gradually start to 

accumulate and to build energetically more stable, higher molecular aggregates: small oligomers, 

fibrils and finally Aβ-plaques. Aggregation properties of Aβ-peptides can be further altered by post-

translational modifications such as oxidation, phosphorylation, glycosylation or pyroglutamylation. 

For instance, pyroglutamylation at N-terminal position 3 of Aβ-peptides (AβpE3) impedes Aβ-fibril 

assembly while triggering formation of Aβ-oligomers which are having comparable neurotoxic 

properties to Aβ1-42 (Saido et al., 1995; Tekirian et al., 1999; Warner et al., 2016; Youssef et al., 

2008). Additionally, AβpE3 was discovered to reverse Aβ1-42 fibrils into oligomers in a prion-like 

manner, which further enhances its neurotoxic potential (Nussbaum et al., 2012; Schilling et al., 

2006). 

Aβ-peptides can also accumulate intracellularly and thereby induce cell toxicity amongst others by 

stress induced damage of cell organelles (Cabrejo et al., 2006; D'Andrea et al., 2002; Gouras et al., 

2000; LaFerla et al., 1997; Umeda et al., 2011). 

 

Amyloid cascade hypothesis 

In contrast to previous believes that the amyloidogenic pathways were exclusively linked to the 

diseased brain, it is now well established that both pathways are present in physiological conditions 

as a small amount of Aβ-peptides is also produced in the healthy brain (Haass et al., 1992). 

Figure 5: Amyloid cascade hypothesis. 

Genetic mutations or increased copy-numbers of App result in higher concentrations of APP and thereby also in 

increased production of aggregation prone Aβ42-peptides, which can aggregate to oligomers, protofibrils, fibrils and 

eventually into Aβ-plaques. These aggregation states can be modulated. All of these Aβ-aggregates induce cellular 

stress which triggers intraneuronal formation of paired helical filaments (PHFs) of pTau. This in turn contributes to 

neuronal dysfunction and cell death resulting in neuronal cell loss and ultimately leads to functional deficits as refleced 

in dementia. Figure adapted from Karran et al., (2011). 
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However, it is now reckoned that there is a balance in production and clearance of Aβ-species 

under healthy, physiological conditions, which is impaired in AD (Figure 3 B). Increased 

concentrations of Aβ-peptides are believed to facilitate extracellular and intraneuronal aggregation. 

Therefore, the amyloid cascade hypothesis suggests that toxic Aβ oligomers are causative for 

downstream AD pathology including neuronal pTau aggregation, contributing to synaptic 

dysfunction, neuronal loss and secondary neuroinflammation and gliosis. All of these events 

eventually lead to dementia (Figure 5). This hypothesis is supported by various mutations found in 

rare, genetic inherited forms of AD (familial AD or FAD) that enhance the production of aggregation 

prone Aβ42-peptides. In addition, a higher gene dosage of APP, which is found in Down syndrome 

due to a third copy of APP, results in the deposition of Aβ at a young age (Lemere et al., 1996).  

1.1.3. Risk factors for Alzheimer’s disease 

Alzheimer’s disease is known to be a complex and multifactorial disease that involves 

environmental, epigenetic and genetic factors (Huang and Mucke, 2012).  

1.1.3.1.  Environmental factors 

AD is a typical disease of the aged and thus, aging itself is the highest risk factor. Also, it is strongly 

linked to poor education, mental activity, physical fitness, obesity, diet and lifestyle (Lindsay et al., 

2002; Medina et al., 2017). Moreover, pre-existing medical conditions, including cardio-vascular 

diseases, periodontitis, brain trauma, sepsis or systemic inflammation increase the risk to develop 

AD (Lindsay et al., 2002; Medina et al., 2017). Mental illnesses, like depression, but also hearing 

loss, which could further contribute to social isolation, are also well documented risk factors for the 

development of AD (Livingston et al., 2017). Smoking and heavy alcohol consumption are 

associated with increased AD risk, too (Lindsay et al., 2002; Medina et al., 2017). These findings 

led to the conclusion that living a “healthy lifestyle” can already help to reduce the risk of AD by 

about 20% (Livingston et al., 2017). 

1.1.3.2.  Risk genes in sporadic AD 

Genome-wide association studies (GWAS) have helped to identify several genes which are 

associated with increased risk to develop sporadic forms of AD. Identified risk genes are amongst 

others TREM2 (Triggering receptor expressed in myeloid cells 2), DAP12 (DNAX-activating 

protein), ApoE, CR1 (complement receptor 1), CD33 (also known as Siglec-3, sialic acid–binding 

immunoglobulin-like lectin), MHC II (major histocompatibility complex class II, also known as HLA-

DRB5-DRB1) (Hollingworth et al., 2011; Lambert et al., 2009; Lambert et al., 2013). The most 

prominent and thus far best characterized ones are ApoE and TREM2 which will be described in 

the following in more detail. 
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Apoprotein E (APOE) 

The highest genetic risk factor for late onset AD is Apoprotein E (ApoE) (Holtzman et al., 2000a; 

Holtzman et al., 2000b). ApoE is a lipid binding protein, which is composed of 299 amino acids and 

which has three isoforms, ApoE2, ApoE3 and ApoE4, in humans (Rebeck et al., 1993). The 

isoforms differ only by two amino acids at position 112 and 158, respectively: ApoE2 (Cys112, 

Cys158), ApoE3 (Cys112, Arg158), and ApoE4 (Arg112, Arg158) (Mahley and Rall, 2000). In 

particular, carriers homozygous for isoform ApoE4 are associated with an increased risk to develop 

AD and with earlier onset of the disease (Mahley et al., 2006). In the early 1990s ApoE was found 

to cluster around senile Aβ-plaques in post mortem brain samples of AD patients (Namba et al., 

1991; Strittmatter et al., 1993a; Strittmatter et al., 1993b).   

Under physiological conditions ApoE is predominantly expressed by astrocytes, whereas Aβ 

exposure causes increased ApoE expression by microglia (Uchihara et al., 1995). ApoE binds 

monomeric Aβ-peptides and thereby facilitate the degradation by microglial phagocytic uptake (Lee 

et al., 2012). ApoE4 has lower functional capacity of Aβ-clearance in comparison to the other two 

isoforms of ApoE (Castano et al., 1995; Castellano et al., 2011; Holtzman et al., 2000b; Lin et al., 

2018; Strittmatter et al., 1993b). Accordingly, ApoE4 also shows slower kinetics in Aβ-clearance at 

the blood brain barrier compared to ApoE2 and ApoE3, as demonstrated in BL6 mice, which were 

microinjected with Aβ and the respective ApoE species (Deane et al., 2008). Studies in transgenic 

mice expressing human ApoE4, but not ApoE2 and ApoE3, also found indications that ApoE4 could 

contribute to blood brain barrier breakdown (Bell et al., 2012). 

Genetic KO of ApoE in APP-overexpressing mice resulted in dramatic reduction of diffuse 

Aβ-plaques and diminished dystrophic neurites (Bales et al., 1997; Holtzman et al., 2000a). 

However, using a more aggressive AD model with additional mutation within γ-secretase subunit 

PSEN1, ApoE ablation did not reduce Aβ load as strongly as in the previously described models 

(Ulrich et al., 2018). Nonetheless, ApoE KO resulted in altered Aβ-plaque distribution, decreased 

dystrophic neurites and in reduced microgliosis while changing transcription of inflammatory profiles 

in hippocampal tissue (Ulrich et al., 2018). These findings led to the conclusion that ApoE facilitates 

recruitment of microglia around Aβ-plaques and reduces Aβ-mediated neuronal toxicity.  

Besides modulating glial cells, ApoE was found to directly stimulate the transcription of APP in vitro 

and in mice. ApoE4 was identified as the most potent activator of a non-canonical MAP (mitogen-

activated protein) kinase pathway which enhances transcription of APP and thereby increases the 

concentration of Aβ, too (Huang et al., 2017). 

 

Triggering receptor expressed in myeloid cells 2 (TREM2) 

Exome, genome and transcriptome analysis of AD patients and controls identified the missense 

mutation R47H in triggering receptor expressed in myeloid cells 2 (TREM2) to be highly associated 

with development of AD disease (Guerreiro et al., 2013; Kleinberger et al., 2014). TREM2 is a cell 
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surface marker expressed by myeloid cells, where it regulates phagocytosis by activating DAP12 

which is an AD risk gene as well (Kleinberger et al., 2014; Takahashi et al., 2007).   

AD mouse models deficient in Trem2 showed the importance of the underlying signaling pathway to 

clear Aβ-peptides: microglia with Trem2 KO could not migrate towards Aβ-plaques and became 

apoptotic. Moreover, these Trem2 KO mice showed less dense and more diffuse Aβ-plaques as 

well as higher damage of neurites (Wang et al., 2015b; Wang et al., 2016). Overexpression of 

Trem2 in 5xFAD mice resulted in upregulation of phagocytosis genes in Aβ-plaques associated 

microglia and downregulation of immune cell activation genes. Furthermore, these animals showed 

less dystrophic neurites and improved memory (Lee et al., 2018). 

Current data identified ApoE to be a ligand of TREM2 (Atagi et al., 2015; Yeh et al., 2016). 

Transcriptome and proteome analyses of APP/PS1 mice identified a Trem2-ApoE pathway, which 

affects microglia behavior; as microglia clear dystrophic neurites by Trem2-mediated phagocytosis, 

an ApoE dependent downstream pathway is activated. This signaling pathway subsequently 

suppresses the homeostatic microglia phenotype and shifts the cells into a disease associated state 

(Krasemann et al., 2017). This microglial ApoE pathway was also found in mouse models of 

amyotrophic lateral sclerosis (ALS) and multiple sclerosis (Krasemann et al., 2017). 

In addition to the link of these two AD risk genes, transcriptome analysis of human blood-derived 

monocytes of AD patients revealed a correlation between the expression of TREM2 and AD risk 

gene CD33 (Chan et al., 2015). 

Notably, mutations within the homologue TREM1 were also reported to increase the risk of AD 

(Replogle et al., 2015). However, this receptor is triggering different downstream signaling 

pathways and is more involved in the activation of pro-inflammatory cytokine secretion. In 

comparison to Trem2 Trem1 shows opposing gene regulation upon LPS activation (Owens et al., 

2017). Moreover, Trem1 susceptibility allele rs6910730G correlates with decreased receptor 

expression and lower Trem1 / Trem2 RNA levels (Chan et al., 2015).  

Even though TREM2 is the best characterized microglia-expressed AD risk gene, several 

screenings of microglia from rodent AD models and human AD post mortem tissue, as well as 

whole tissue GWAS analyses identified various genes to be differentially expressed by myeloid 

cells, including microglia, in context of AD (Gosselin et al., 2017; Hollingworth et al., 2011; Lambert 

et al., 2009; Lambert et al., 2013). This includes late-onset AD risk genes such as DAP12, CD33 or 

CR1. In conclusion, there is a close link between sporadic AD development and various AD risk 

genes expressed by microglia which are associated with various microglia functions.  

1.1.3.3.  Familial AD 

As mentioned, most AD cases are sporadic. However, in few cases genetic mutations within APP or 

within Presinelin1 and 2 (PSEN1, PSEN2) are responsible for the development of AD. These 

familial AD (FAD) cases are inherited autosomal dominantly (De Jonghe et al., 2001; De Strooper 
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et al., 2012; Goate et al., 1991). Mutations within these genes have direct or indirect consequences 

on the processing of APP and thereby on increased production of Aβ-species.  

 

Mutations in Amyloid precursor protein (APP) 

Mutations within the APP facilitate the proteolytic processing of Aβ-peptide and thereby increase 

the amount of Aβ-peptides, accumulating to Aβ-plaques in the extracellular space. Some of the best 

characterized mutations within APP include the point mutations A692G (missense, “Flemish”) 

(Hendriks et al., 1992), K595N/M596L (point, “Swedish”), (Mullan et al., 1992), E693Q (missense, 

“Dutch” (Levy et al., 1990), V717I (missense, “London”) (Goate et al., 1991), V717F (“Indiana”) 

(Murrell et al., 1991) and I716V (missense, “Florida”) (Eckman et al., 1997) (Figure 6). As of today 

there are more than 50 pathogenic mutations found within APP (Weggen and Beher, 2012). 

Depending on the mutation site, APP processing is altered. For instance the “Swedish” mutation 

results in higher affinity binding of the BACE1 secretase to APP and thereby increased processing 

of Aβ (Cai et al., 2001; Das et al., 2015).  

 

Mutations in Presenilin 1 and 2 (PSEN1 +2) 

Mutations within the PSEN1 and PSEN2 genes are found in inherited FAD (Levy-Lahad et al., 

1995; Rogaev et al., 1995). PSEN1 is located on chromosome 14, whereas PSEN2 lies on 

chromosome 1. Both genes encode for a subunit of the γ-secretase. Numerous mutations are 

reported in PSEN1 (up to today more than 180), mutations within PSEN2 are less frequent 

(Weggen and Beher, 2012). Mutations within PSEN1 and PSEN2 increase Aβ42/Aβ40 ratios, 

associated with increased risk of AD (De Jonghe et al., 1999; Levy-Lahad et al., 1995; Rogaev et 

al., 1995). 

Figure 6: APP sequence with mutation sites found in FAD.  

The extracellular N-terminus of APP in the membrane-bound and cytosolic oriented C-terminus of APP are labeled in 

red. The Aβ-sequence is shown in orange. Cleaving sites for α-, β- and γ-secretases (blue) are indicated within the Aβ 

region. The close-up  on the bottom shows the aa sequence of Aβ. A selection of known point mutations within APP of 

FAD cases are shown: “Swedish”: K595N/M596L;  “Flemish”: A692G; “Dutch”: E693Q; “Florida”: I716V; “London”: V717I 

and “Indiana”: V717F. Mutation sites according to Eckman et al., (1997; Hyttinen et al., 2013), Goate et al., (1991),  

Hendriks et al. (1992), Levy et al., (1990), Mullan et al., (1992) and  Murrell et al., (1991). 
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1.1.4. Transgenic AD mouse models 

To investigate AD in vivo, many mouse models were generated based on genetic mutations found 

in FAD cases as illustrated for APP in Figure 6. Due to the fact that rodents do not develop AD, 

these mutations were introduced by transgenic overexpression of the mutated human sequences of 

APP, PSEN1 or PSEN2. 

One of the first generated AD mouse lines was the PDAPP line, which overexpresses human APP 

bearing the Indiana mutation (Games et al., 1995). Various other mouse lines with one or more 

FAD mutations in APP were generated throughout the years, e.g.  Tg2576 (Hsiao et al., 1996) and 

TgCRND8 (Chishti et al., 2001). These mouse lines mimic the Aβ-pathology, dystrophic neurite 

pathology and neuronal loss well.  

However, to achieve an earlier onset of the disease by having increased Aβ-levels, double 

transgenic mouse lines, which also overexpress FAD forms of PSEN1 and PSEN2 were generated. 

The most prominent ones are APPPS1-21 (Radde et al., 2006), APP/PS1 (APP/PS1ΔE9) (Borchelt 

et al., 1997) and 5XFAD (Oakley et al., 2006). APPPS1-21 mice overexpress APP harboring the 

Swedish mutation and PSEN1 containing the L166P FAD mutation. By 6 weeks of age these mice 

reveal Aβ-deposits in the cortex, astro- and microgliosis. However, increased neuronal loss is only 

detected in 17-month old mice (Rupp et al., 2011). APP/PS1 mice overexpress the APP containing 

the Swedish mutation and PSEN1 with deleted exon 9. Both transgenes are under transcriptional 

control of the prion promoter. APP/PS1 mice only show Aβ-deposits at 6 months of age (Reiserer et 

al., 2007).  

The mouse model of choice for this project was the 5xFAD (five times familial Alzheimer’s disease) 

mouse line. This mouse model is mimicking several aspects of AD pathology with a rapid 

development of Aβ-pathology due to five point mutations found in FAD cases: three point mutations 

are located within the APP gene, known as Florida (I716V), London (V717I) and Swedish (K670N) 

mutations, and additional two mutations within the PSEN1 gene, more precisely the point mutations 

M146L and L286. To achieve neuronal overexpression of those genes, they were introduced under 

transcriptional control of the neuron-specific Thy1-promoter (Oakley et al., 2006). By 2 months of 

age, 5xFAD mice already display Aβ-plaques in the subiculum and partially other parts of the 

hippocampus and within cortex layer V. By 9 months of age the animals show Aβ-plaques in most 

brain regions. By this time, also neuronal, synaptic and dendritic spine loss as well as astro- and 

microgliosis are observed in these mice. The neuropathology is paralleled by impaired contextual 

and spatial memory which can be detected as early as 5 months of age.  By 6 months of age, long-

term potentiation and depression (LTP/LDP), two events crucial for learning, are affected in these 

mice (Kimura and Ohno, 2009). Therefore, the 5xFAD represents a good model, which 

recapitulates amyloid pathology and neuronal loss to investigate early and fast AD progression due 

to Aβ-overexpression in vivo. 
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1.2. Microglia 

Microglia are the innate immune cells of the brain that belong to the myeloid cell lineage. They were 

first described in 1932 by Pío del Río Hortega using silver staining (Ramon y Cajal Agüeras, 2016). 

The microglia cell population comprises of 5-12% to the whole cell population of the brain (Spittau, 

2017). As immune cells, their main function is to remove debris and pathogens from the CNS.  

This is of great importance for neuronal development during embryonic development but also 

during neurological and neurodegenerative diseases (Lenz and Nelson, 2018; Spittau, 2017). 

Furthermore, as previously introduced, recent studies identified mutations within myeloid genes to 

be present in late-onset AD cases (see section 1.1.3.2). Therefore, the role of microglia in AD 

development and progression seems to have more aspects than we are aware of today.  

1.2.1. Microglia development and maintenance 

Whereas neurons, astrocytes and oligodendrocytes originate from a common progenitor developed 

in the neural tube, microglia arise from the yolk sac (Kessaris et al., 2008; Kierdorf et al., 2013). 

Their development is similar to other myeloid cells, which share common erythro-myeloid 

progenitors (EMPs) (Figure 7). Differentiation of EMPs is mostly driven by PU.1 (also known as 

Sfpi) which is the main transcription factor of myeloid cells. At E9.5 CX3CR1+ (CX3C chemokine 

receptor 1 also known as the fractalkine receptor positive) progenitor cells originating from the yolk 

sac migrate into their future domestic location (Kierdorf et al., 2013). Within these anatomical 

locations the resident precursors further differentiate into tissue-specific macrophages at around 

E10.25, including future microglia in the brain (Mass et al., 2016). To achieve differentiation into 

those cellular subtypes, different genes are expressed after the cells have arrived in their domestic 

anatomical location. In case of microglia, the CX3CR1+ precursors migrate to the future brain 

parenchyma with the help of matrix metalloproteinases. At this stage the microglia progenitors 

feature an amoeboid morphology. By embryonic day E13.5 in mice microglia precursors can be 

detected in the fourth ventricle (Arnò et al., 2014). Settling in the neuroectoderm, microglia 

progenitors start to locally proliferate and thereby to expand the cell colony to a stable population of 

ramified microglia in the murine brain at P28 (Bennett et al., 2016). By the end of the second 

postnatal phase, between P21 and two months, microglia feature gene expressions and 

morphological phenotypes of adult microglia (Bennett et al., 2016; Butovsky et al., 2014; 

Matcovitch-Natan et al., 2016). Interestingly, microglia development in male and female mice shows 

some fundamental differences: whereas male mice have higher numbers and amoeboid shaped 

microglia during embryonic and neonatal development, females feature fewer but ramified cells 

(Lenz et al., 2013; Schwarz et al., 2012). Within the first month after birth these disparities are 

mitigated as the numbers in females increase while the morphology in males changes towards 
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ramified cells (Schwarz et al., 2012). These features are associated with reduced phagocytic 

activity of male microglia (Lenz and Nelson, 2018; Lenz et al., 2013; Yanguas-Casas et al., 2018). 

 

As the differentiation of microglia progenitors happens beyond the blood brain barrier, and thereby 

in interaction with the neuronal environment, these cells display gene expression profiles that highly 

differ from those of other tissue macrophages (Gautier et al., 2012). However, they share a lot of 

markers with other myeloid cells due to their common origins (Mass et al., 2016).  

 

Under physiological conditions, reflected by intact blood brain barrier, microglia maintain 

themselves throughout adulthood by cell division and apoptosis. Hence, they are basically 

independent of the hematopoetic stem cell pool (Bruttger et al., 2015; Hashimoto et al., 2013; Tay 

et al., 2017). For instance, a parabiosis study using a mouse with depleted bone marrow-derived 

phagocytes conjoint to a mouse with GFP-labeled bone marrow-derived monocytes detected only 

small degree of infiltrating GFP+ cells in the brain of the recipient mouse (Wang et al., 2016). In 

addition, data obtained from human post mortem samples verified slow, but steady self-renewal of 

microglia with overall stable cell numbers throughout adulthood (Askew et al., 2017; Réu et al., 

Figure 7: Microglia development and maintenance in the rodent brain. 

During embryonic development CX3CR1+ precursors from the yolk sac micgrate to the neuroepithelium which is the 

origin of the brain. By embronic day 13.5 (E13.5) these precursors begin to differentiate and to migrate towards the 

neuroectoderm. Local cell proliferation starts and peaks after birth. Already at E13.5 the blood brain barrier starts to 

develop by recruiting pericytes towards blood vessels. Hence, fetal liver-derived monocytes are excluded from the 

microglia pool, but give rise to CNS macrophages such as perivascular macrophages. By the time of birth the blood 

brain barrier is fully closed through pericytes and astrocytes. Consequently, bone-marrow derived blood monocytes 

cannot enter the brain under physiological conditions, allowing microglia to only maintain themselves through cell 

division and apoptosis. However, in case of brain inflammation the blood brain barrier opens allowing blood-derived 

monocytes to enter the brain. Figures is modified after Ginhoux et al., (2013). 
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2017). Therefore, microglia maintenance is mostly autarkic which is in contrast to many other tissue 

macrophages, which undergo physiological turnover by cell differentiation from hematopoietic 

precursors (Ginhoux et al., 2010). 

However, radiation experiments, which damaged the blood brain barrier, showed infiltration of 

circulating macrophages to the brain and temporary aid of macrophages in neuroinflammation 

(Ajami et al., 2007; Mildner et al., 2007). Since leakiness of the blood brain barrier is observed in 

the chronically inflamed brain, e.g. as in progressed neurodegenerative diseases, infiltrating 

peripheral immune cells are likely to also play a role in AD.  

Even though peripheral myeloid cells do not contribute to the microglia pool under physiological 

conditions, it needs to be mentioned  that myeloid cells within the dural lymapthic vessels and along 

the blood-brain and blood-CSF barrier might also be involved in immune-regulation of the brain 

(Lapenna et al., 2018; Prinz et al., 2011). This includes perivascular macrophages, meningeal 

macrophages, choroid plexus macrophages and monocytes from the blood stream. These cells are 

considered as a potential mechanism for communication of microglia with the peripheral immune 

system (Lapenna et al., 2018; Prinz et al., 2011). 

1.2.2. Microglia function throughout aging 

The main roles of microglia include developmental aid, repair and damage response and 

maintenance of the neural environment (Lenz and Nelson, 2018). During embryogenesis and within 

the first postnatal days, microglia are essential for proper CNS development and homeostasis. For 

instance, early genetic and pharmacological ablation of microglia by targeting CSF1R (colony 

stimulating factor 1 receptor) resulted in disturbed outgrowth of dopaminergic axons in the forebrain 

of mice. Additionally, some neocortical interneurons were falsely positioned showing the importance 

of microglia for axonal guidance during development (Squarzoni et al., 2014). Microglia also support 

myelination of axons during early postnatal development (Lenz and Nelson, 2018; Mosser et al., 

2017). In early development, microglia are crucial for synaptic patterning through phagocytosis of 

cellular debris (Boulanger, 2009). Depending on neuronal activity, microglia engulf and digest 

presynaptic inputs (Paolicelli et al., 2011).   

 

In the adult organism the most important and best studied task of microglia is their aid in responses 

to injuries and pathogens. Microglia use their motile processes to constantly screen their 

surrounding for pathogenic cues (Davalos et al., 2005; Nimmerjahn et al., 2005). Microglia can be 

activated by direct pathogen binding or by stimulation through cytokines and chemokines. Both 

forms of activation can be mediated by various surface molecules commonly expressed along the 

myeloid lineages. This includes MHCI and MHCII, Toll-like receptors (TLRs), including TLR2, TRL3, 

TLR4 and TLR9, and several cluster of differentiation (CD) proteins, such as CD11b, CD11c and 

CD18 (Kettenmann et al., 2011; Trudler et al., 2010). Several of these molecules are upregulated 
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during aging, such as MHCII, TLR2, 4 and 7, CD68 and CD86 (Griffin et al., 2006; Letiembre et al., 

2007; Ogura et al., 1994; VanGuilder et al., 2011; Wong et al., 2005). This emphasizes the higher 

propensity of aged microglia for acquiring an activated phenotype. Upon activation, downstream 

signaling pathways induce transcriptional changes causing morphological transformation, altered 

secretion of cytokines and chemokines, and enhanced phago-lysosomal activity. 

 

Morphology 

In terms of morphological changes, resting microglia are characterized by a small soma with long 

and thin processes, constantly surveying their immediate surroundings for pathogens or injuries 

(Davalos et al., 2005; Nimmerjahn et al., 2005). Once activated microglia become amoeboid with a 

roundish shape due to increased soma and swollen and shortened processes (Nimmerjahn et al., 

2005). 

In aging the basal morphological state of microglia is shifted into a rather activated state 

manifesting itself in amoeboid-like shape (Spittau, 2017). Moreover, there are reports observing 

dystrophic states of microglia during aging (Streit et al., 2004). However, it remains uncertain, 

whether these changes in morphology represent degeneration of microglia (Tischer et al., 2016).  

 

Cytokines and chemokines 

Also, the secretory profile of microglia is changed upon activation and depends on the type of 

stimulus as well as its length and its duration (Jung et al., 2005; Kettenmann et al., 2011; Yao et al., 

2013). In comparison to young microglia, cells from aged rodents revealed higher basal amounts of 

pro-inflammatory cytokines such as TNF-α, IL-6 and NO (Kettenmann et al., 2011). For instance, in 

vitro experiments with young and aged murine microglia showed increased levels of TNF-α and 

increased NO (nitric oxide) in the cell culture medium of the aged cells (Lai et al., 2013). In addition, 

ex vivo experiments with microglia from aged mice revealed higher levels of IL-6 and TNF-α 

compared to microglia from young mice (Njie et al., 2012).  

By secretion of cytokines and chemokines microglia can interact with their microenvironment: this 

involves interaction with other brain resident cells like astrocytes and neurons but also with other 

microglia and potentially peripheral immune cells (Osman et al., 2017; Vay et al., 2018). 

 

The secretion of distinct chemokines, such as CCL2, builds a chemotactic gradient allowing myeloid 

cells to become motile and migrate towards a lesion site or a herd of infection (El Khoury et al., 

2007). This process is called chemotaxis. Thereby more cells from the neighboring environment 

can be recruited to the lesion site. However, during physiological aging the ability of microglia for 

chemotaxis and process motility are strongly diminished (Moraga et al., 2015). Hence, laser 

induced brain injury resulted in decreased migration of Iba1+ (ionized calcium-binding adapter 

molecule 1 positive) microglia towards the lesion site in aged animals compared to you counterparts 

(Damani et al., 2011). Nonetheless, CCL2 is upregulated in the brain during aging. Since the blood 



Introduction                                                                
 

 

18| P a g e  
 

brain barrier becomes leaky throughout aging, this also enables CCR2-expressing peripheral 

derived monocytes to enter the brain and thereby to compensate for aged microglia (Malm et al., 

2005; Roberts et al., 2012; Simard et al., 2006; Stalder et al., 2005; Varvel et al., 2016). This could 

also explain dissenting findings about changes in overall microglia numbers during aging: whereas 

studies in rhesus monkey described increasing numbers of microglia during aging, findings in rats 

did not show alterations in Iba1+ cell counts (Peters et al., 1991; VanGuilder et al., 2011). Since 

peripheral macrophages also express Iba1+, this marker does not allow to distinguish them from 

brain resident microglia. 

 

Phago-lysosomal activity 

Microglial phagocytic uptake can be mediated by several receptors and modulated by various 

molecules. The complement system, for instance, improves (complements) the capacity of 

phagocytes, such as microglia, to clear debris and to promote inflammation. Due to a triggering 

stimulus, systemic proteases can cleave inactive-pro-proteins of complement factors such as C1, 

C3 and C4 and thereby activate them.  

Knockout studies of several complement factors such as C1q and C3 or of complement receptor 

CR3 (also known as macrophage-1 antigen (Mac-1)) elucidated the importance of this signaling 

pathway on the development of synapses (Schafer et al., 2012; Stevens et al., 2007). For instance, 

C1q was reported to target synapses to mark them for phagocytic removal by microglia (Stevens et 

al., 2007). On microglia, CR3 and CR4 (complement receptor 4), which are heterodimers of CD18 

and CD11b or CD11c, respectively, are expressed (Kettenmann et al., 2011).  

During aging, transcription and protein levels of molecules involved in phagocytosis including 

complement factors like C1q, C3, C4 and C5, are highly upregulated in microglia of different 

organisms (Flowers et al., 2017; Peters et al., 1991; Reichwald et al., 2009; Ritzel et al., 2015). 

Alongside activation-associated markers like MHCII, CD40 and CD80 are found upregulated in 

microglia of aged mice compared to young counterparts (Lynch et al., 2010). Also molecules 

involved in phagocytosis downstream mechanism like lysosomal degradation are highly 

upregulated in aging. One example for this is CD68 (also known as lysosome-associated 

membrane protein LAMP4), which is a molecule shuttling from the plasma membrane to the 

lysosome and therefore is considered a marker for endocytic-lysosomal activation and microglia 

activity (Wong et al., 2009). Additionally, lysosome-associated membrane protein 1 and 2 (LAMP1 

and LAMP2), which are expressed on lysosomes, are upregulated in microglia of aged mice 

(Flowers et al., 2017). These markers are considered indicators for activated microglia (Henry et al., 

2009). Whereas phago-lysosomal markers are upregulated on transcriptional and translational 

levels, the efficiency of phagocytosis and downstream protein degradation by the endosomal-

lysosomal cascade are strongly diminished in microglia in aging (Peters et al., 1991; Ritzel et al., 

2015; Safaiyan et al., 2016).  
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 “Inflamm-aging” 

All these findings highlight the overall shift of aged microglia towards a basal inflammatory state 

which is also referred to as primed state. While young microglia can return into a homeostatic state 

after activation, primed microglia are stuck in their inflamed activity, resulting in chronic 

inflammation. To better describe this microglial state of chronic inflammation in aging, the term 

“inflamm-aging” was introduced (Franceschi et al., 2000). “Inflamm-aging” also emphasizes the 

altered characteristics of microglia in aging, thus it draws attention to these cells in age-associated 

diseases like Alzheimer’s disease.   

1.2.3. Microglia in Alzheimer’s disease  

One of the hallmarks of AD is microgliosis. More precisely, activated microglia cluster around Aβ-

plaques where they clear Aβ-peptides by phagocytic uptake and endo-lysosomal degradation 

(Frackowiak et al., 1992; Wisniewski et al., 1991). Moreover, by fencing Aβ-plaques they help to 

compress Aβ-peptides and thereby to limit toxicity and further Aβ-plaque growth (Baik et al., 2016). 

However, this phago-lysosomal activation contributes to chronic inflammation as revealed by hyper-

activation on electrophysiological, secretory, transcriptional and translational levels in AD mouse 

models which eventually results in neuronal, synaptic and dendritic spine loss (Knobloch and 

Mansuy, 2008; Plescher et al., 2018; Yin et al., 2017). Additionally, a tremendous amount of high 

risk genes for AD was found to be expressed by microglia including Trem2, ApoE4, CD33 or CR3 

(Hollingworth et al., 2011; Lambert et al., 2009; Lambert et al., 2013). Thus, the role of microglia in 

AD is ambivalent, and will be described in more detail. 

 

Phagocytosis  

As main phagocytes of the brain, microglia in close proximity to Aβ-plaques are highly active in 

clearing Aβ-peptides. Longitudinal transcriptome analysis of 5xFAD mice verified that throughout 

disease progression markers for microglia activation, phagocytosis and lysosome biogenesis were 

upregulated (Landel et al., 2014). Transcriptome analysis of cortical tissue of transgenic mice 

overexpressing AD risk gene ApoE4 verified significant enrichment of genes of the endo-lysosomal 

pathway (Nuriel et al., 2017). Interestingly, many of these genes are under control of transcription 

factors important for embryonic development, including PU.1 (Gosselin et al., 2017; Rustenhoven et 

al., 2018). 

As presented before, the complement system facilitates the phagocytic uptake by innate immune 

cells. For instance, single-cell RNA sequencing identified amongst others C3 and C4 to be highly 

upregulated in microglia of the AD-like CK-p25 mouse model (Mathys et al., 2017). Investigation of 

APP mice showed also correlation between fibrillary Aβ and C3 and C4 immuno-reactivity, 

respectively. C4 was predominantly detected around Aβ-plaques (Zhou et al., 2008). However, no 

effect on the total Aβ-plaque load was found. Blocking C3, which is predominantly secreted from 
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reactive astrocytes, resulted in increased Aβ-burden with no impact on neuronal loss (Maier et al., 

2008; Shi et al., 2017; Wyss-Coray et al., 2002). Surprisingly, genetic KO of the microglial C3a 

receptor (C3aR) in an APP transgenic AD mouse model resulted in decreased Aβ-burden achieved 

by more effective microglial Aβ degradation (Czirr et al., 2017).  

The genetic knockout of Cq1 in an APP transgenic mouse model resulted in fewer phagocytic 

microglia and less synaptic and neuronal loss (Hong et al., 2016). CR1 (complement receptor 1), 

the receptor of C1q, which was identified as risk gene for sporadic AD, was reported to bind to Aβ 

and thereby to induce phagocytosis by activating the classical complement cascade (Brouwers et 

al., 2012; Jiang et al., 1994; Lambert et al., 2009).  

Even though microglial phagocytosis is increased in AD, Aβ-burden is not reduced throughout 

disease progression. This gave rise to the idea that downstream endo-lysosomal degradation of Aβ 

is dysfunctional (Hickman et al., 2008). Indeed, Aβ engulfment by microglia in middle-aged 5xFAD 

mice resulted in re-distribution of Aβ-fibrils into the extracellular space, but not in proper protein 

degradation of Aβ-plaques (Baik et al., 2016; Njie et al., 2012). Since AD is a typical disease of old 

age, one possible explanation for impaired functional clearance of Aβ could be microglial priming. 

Microglia from aged, non-transgenic animals were not able to phagocytic clear Aβ in ex vivo 

organotypic slice cultures of aged APP/PS1-mouse. In contrary, microglia from young, non-

transgenic mice could restore the phagocytic clearance of Aβ in this model (Daria et al., 2017). 

Boosting microglia proliferation by treatment with macrophage colony-stimulating factor (M-CSF) 

resulted in efficient clearance of Aβ by primary mouse microglia in vitro (Mitrasinovic et al., 2003). 

However, degradation of bacterial particles is not impaired in primary mouse microglia, while 

degradation of Aβ is inefficient and results in release of undegraded Aβ into the extracellular space 

(Chung et al., 1999).  

Hence, microglia priming due to aging alone cannot explain their detrimental features on AD 

pathology. A study found altered innate immune gene expression in microglia of 10 week old 

5xFAD mice, already before the first Aβ-plaques could be detected (Boza-Serrano et al., 2018). 

Even more surprising are current data using a single somatic mutation (V600E) within proto-

oncogene BRAF introduced to yolk-sac erythro-myeloid progenitors. BRAF is a kinase in the RAS-

MEK-ERK signaling pathway. This early mutation within the myeloid cell lineage resulted in the late-

onset development of neurodegeneration and therefore further supports the idea of microglia as 

contributors on AD development (Mass et al., 2017).   
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Disease associated microglia (DAM) 

These opposing features of microglia on AD progression could be explained by the identification of 

broadly heterogenic microglia subpopulations achieved by analyses of differential gene expression. 

Single cell RNA sequencing in 5xFAD mice and transcriptional profiling have identified three 

subsets of microglia (Keren-Shaul et al., 2017). One subset was called disease associated 

microglia (DAM). These DAM are phago-lysosomal active cells in close proximity to Aβ-plaques 

(plaque-associated microglia; PAM). DAM seem to be a subset of PAM, which increases throughout 

disease progression (Keren-Shaul et al., 2017). Nonetheless, it is not clear yet, which proportion of 

PAM corresponds to functional DAM. The DAM subpopulation was also identified in other APP 

overexpressing AD mouse models and in the tauopathy models Tau P301L and Tau P301S 

(Friedman et al., 2018; Ofengeim et al., 2017). The analyses of MHCII-positive PAM from 5xFAD 

and APP23 mice identified upregulation of genes involved in immune response and phagocytosis, 

which were identified in DAM (Yin et al., 2017). These markers, including ApoE, AXL and Trem2, 

were also found in human post mortem PAM by immunohistochemistry (Yin et al., 2017).  

A current study used a different mouse model to mimic rapid and aggressive neurodegeneration 

without amyloid pathology (CK-p25). Single cell RNA sequencing of microglia from the 

Figure 8: Microglia activation throughout aging and in AD. 

Left: Resting, neonatal and adult microglia are ramified, screening their environment for pathogens and injuries. They 

are involved in various physiological features including synaptic pruning, myelin removal, neuronal support and immune 

response. Middle: Throughout aging microglia shift into an activated state as seen by a rather roundish shape while 

they become functionally less efficient. These age-associated changes are also referred to as “inflamm-aging”. Right: In 

AD microglia are highly activated as seen by their amoeboid shape. Also they reveal less efficient endo-lysosomal 

activity, and secretory and electrophysiological alterations compared to cells in age-matched controls. Figures are 

adapted and modified after Spittau (2017) and Mosher and Wyss-Coray (2014). 
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hippocampus identified 8 subpopulations of microglia, which contained 2 population of DAM 

(Mathys et al., 2017). These were identified as early-response and late-response microglia. The 

latter population shares upregulation of more than 270 genes with DAM from AD mice (Keren-Shaul 

et al., 2017; Mathys et al., 2017). The identification of DAM and therefore the existence of 

heterogenic microglial subpopulations could explain the contradictory findings of microglial impact 

on the progression of AD (e.g. Baik et al., 2016; Condello et al., 2015). 

 

DAM formation 

What drives microglia into transitioning towards DAM and thereby promotes the progression of AD 

is not well understood, yet. So far, it has been described that DAM differentiation is firstly activated 

in a TREM2-independent manner, downregulating proteins of homeostatic microglia. This includes 

e.g. CX3CR1, P2ry12 and Tmem119 (Keren-Shaul et al., 2017). Then, a TREM2-dependent 

program is activated in these DAM inducing the upregulation of phagocytic and lysosomal markers, 

as well as lipid metabolites such as Lpl (lipoprotein lipase), Cst7 (cystatin F or leukocystatin), and 

Axl (axl receptor tyrosine kinase) (Keren-Shaul et al., 2017). These findings on transcriptional level 

were further supported by mass spectrometry analyses comparing CD11b+ microglia from 6 month 

old 5xFAD mice to age-matched WT mice and LPS-induced acute inflamed microglia (Rangaraju et 

al., 2018). Interestingly, besides TREM2 also other AD risk genes were found to be highly 

expressed by DAM, including Cst7, Ctsb, Lpl, Tyrobp and ApoE (Keren-Shaul et al., 2017; Lambert 

et al., 2013; Mathys et al., 2017; Paz-y-Miño et al., 2015; Pottier et al., 2016; Scacchi et al., 2004). 

 

DAM features 

Besides more or less effective Aβ-clearance, microglia also attempt to shield Aβ-plaques from 

neurons to avoid neuronal toxicity. Therefore, they cluster around Aβ-deposits and compressed Aβ-

peptides into densely packed Aβ-plaques. Current data shows that microglia build functional 

barriers around Aβ-plaques to prevent protofibrillary Aβ42 hotspots and thereby inhibit further 

Aβ-plaque growth. These findings were verified in two APP overexpressing mouse models 

(Condello et al., 2015). Additionally, the microglia barrier is considered to avoid axonal dystrophy in 

the proximate neuropil (Condello et al., 2015). However, another current report showed by in vivo 

two-photon imaging of 4-7 month old 5xFAD mice that PAM are driven into cell death and thereby 

release un-degraded Aβ-peptides, in particular Aβ42, into the extracellular space. This contributes to 

further Aβ-plaque growth by attaching Aβ42 to pre-existing Aβ-plaques (Baik et al., 2016). Thus, 

depending amongst others on their physical proximity to Aβ-plaques, microglia reveal heterogenic 

activity and function, which emphasizes the necessity to distinguish PAM and DAM from Aβ-plaque 

distant microglia. 
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Inflammation and NLRP3 inflammasome 

Neuroinflammation is a prominent feature of AD. The microglial inflammatory response in AD is not 

only beneficial in recruiting other cells to clear Aβ-peptides and apoptotic cells, but it can also 

contribute to neurotoxicity (von Bernhardi et al., 2015; Wood et al., 2015). In particular, DAM show 

elevated upregulation of inflammatory gene expression, including IL-1β, IL-6, TNF-α (tumor 

necrosis factor alpha) and iNOS (Jay et al., 2017). Transcription of TNF-α was also rapidly 

upregulated in early-response to neurodegeneration in DAM of young CK-p25 mice (Mathys et al., 

2017). Interestingly, TNF-α can contribute to the activation of an intracellular multiprotein complex, 

called the NLRP3 (NACHT-, LRR- and pyrin (PYD)-domain-containing protein 3) in microglia, which 

helps to produce mature IL-1β. Typically external stimuli such as activation of TNF-receptors 

TNFR1 and TNFR2, TLRs and others can induce expression of the NLRP3, pro-IL-1β and pro-IL18 

genes through NF-κB (nuclear factor-kappa B) (Bauernfeind et al., 2009; Franchi et al., 2009). This 

process is termed priming. A second stimulus is needed to effectively activate the NLRP3 

inflammasome through assembly of the NLPR3 protein, which builds a molecular sensor, the ASC 

(adaptor molecule apoptosis-associated speck-like protein containing a CARD) and the effector 

protease caspase 1. In AD, this second stimulus can be Trem2-dependent signaling but also 

mediated by lysosomal damage (Amaral et al., 2018; Heneka et al., 2012; Hornung et al., 2008). 

Accumulation of Aβ-peptides in lysosomes due to acidification and dysfunctional degradation was 

identified to result in lysosomal rupture in AD (Baik et al., 2016; Halle et al., 2008; Heneka et al., 

2012; Yang et al., 1998).  

The functionally assembled NRLP3 complex then maturates pro-IL-1β into IL-1β and pro-IL-18 into 

IL-18 through caspase 1. NLRP3 activation can cause programmed cell death called pyroptosis, 

which results in the release of IL-1β, IL-18 and ASC specks into the extracellular space. 

In AD, NLRP3 was found to be highly active and to contribute to Aβ-pathology as inhibition of the 

NLRP3 in APP/PS1 mice prevented memory loss, diminished Aβ-burden and reduced pro-

inflammatory response of microglia (Heneka et al., 2012). Extracellular ASC specks can be taken 

up by other microglia and pursue an immune response (Baroja-Mazo et al., 2014; Franklin et al., 

2014). In AD, these extracellular ASC specks were found to rapidly bind to Aβ-peptides, triggering 

oligomerization and aggregations and thereby induce inflammation-dependent promotion of 

Aβ-plaque seeding (Venegas et al., 2017). 

 

Manipulation of microglia in AD mouse models 

To address whether microglia are beneficial or detrimental for AD progression, elimination of 

microglia was examined in different AD mouse models. 

One of the earliest studies used a ganciclovir-inducible approach to ablate CD11b+ microglia and 

macrophages. For four weeks APP/PS1 mice were treated via osmotic pumps with ganciclovir to 

activate the suicide gene HSVTK under control of the CD11b-promoter and to achieve microglia 

depletion (Grathwohl et al., 2009). Starting ganciclovir treatment at different ages, thus at 
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progressed stages of amyloidosis, did not result in changes in the overall Aβ-burden. Neither did 

the authors find diminished neuronal loss (Grathwohl et al., 2009). 

A current study achieved microglia ablation in a model with conditional depletion of diphtheria toxin-

sensoring CX3CR1+ cells in APP/PS1 mice. Briefly, i.p. tamoxifen application resulted in the 

CX3CR1-dependent expression of Cre-recombinase. Cre cleaved diphtheria toxin receptor (DTR) 

from Rosa26-stop-iDTR transgene in a CX3CR1-dependent manner. Additional i.p. application of 

diphtheria toxin then resulted in microglia depletion (Zhao et al., 2017). Microglia ablation at 12 and 

24 month old mice did not reduce Aβ-plaque numbers but led to moderate growth of Aβ-plaques 

within one week after microglia depletion as monitored by in vivo two-photon imaging (Zhao et al., 

2017). 

 

Other groups investigated microglia depletion on AD progression by pharmacological inhibition of 

CSF1R, which resulted in almost complete microglia ablation in 3xTg, APP/PS1 mice and 5xFAD 

mice (Dagher et al., 2015; Olmos-Alonso et al., 2016; Spangenberg et al., 2016). Olmos-Alonso 

and colleagues (2016) used the pharmacological inhibitor GW2580 as chow supplement on 

6 month old APP/PS1 mice for a duration of 3 months. After treatment these mice revealed reduced 

inflammatory phenotypes, improved memory and behavioral performances, reduced synaptic 

degeneration while Aβ-load was not altered. Another study used 1 month treatment with the dual 

CSF1R/c-kit inhibitor PLX3397 (600 mg/kg) to deplete microglia in 5xFAD. Treatment was 

performed in 2 month, 10 month and 14 month old animals, respectively (Spangenberg et al., 

2016). Again, microglia elimination did not improve Aβ-load. However, Golgi-Cox analysis revealed 

reduced loss of dendritic spines and cognitive abilities were restored as measured by contextual 

fear conditioning in the 10 month cohort. The study carried out by Dagher and colleagues (2015) 

found cognitive improvement upon inhibited microglia proliferation with low concentrations of 

PLX3397 (300 mg/kg) in 15 month old 3xTg mice. These mice harbor the Swedish mutation in 

human APP, M146V mutation in PSEN1 and additionally a P301L mutation in the MAPT gene and 

therefore develop Aβ- and Tau-pathology at the age of 15 months (Oddo et al., 2004). Already 

short-term treatment for 6 weeks with low concentrations of PLX3397 resulted in significant 

cognitive improvement validated by novel object recognition, while Aβ-burden and the load of pTau 

was not changed (Dagher et al., 2015). 

 

Given that Trem2 is crucial for phago-lysosomally active DAM formation in AD, it is important to 

know that Trem2 was identified to synergize with CSF1R signaling and thereby promote microglial 

survival (Wang et al., 2015b). 5xFAD mice with Trem2 KO could not migrate towards Aβ-plaques 

and resulted in more diffuse Aβ-plaques (Wang et al., 2015b). Strikingly, Trem2 overexpression 

was able to extenuate neurite dystrophy and improve cognitive performance in 5xFAD mice (Lee et 

al., 2018).  
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1.2.4. Rab7-dependent degradation pathways  

Impaired protein degradation is associated with various diseases, including neurodegeneration (Lee 

et al., 2010). In post mortem tissue of AD patients and in AD mouse models upregulation of proteins 

associated with endo-lysosomal pathway (Ba et al., 2017; Ginsberg et al., 2010a; Ginsberg et al., 

2011; Ginsberg et al., 2010b; Holtman et al., 2015; Nuriel et al., 2017) and autophagy have been 

identified (Hara et al., 2006; Komatsu et al., 2006). 

Whereas the endo-lysosomal pathway is mostly associated with degradation of internalized 

material, which was engulfed by phagocytosis, (macro-)autophagy is widely responsible for 

recycling of cellular components including misfolded proteins (Luzio et al., 2007). Both pathways 

have a common terminal point in fusion with the lysosome, which is a catabolic cell organelle, 

Figure 9: Expression of AD risk genes and endo-lysosomal degradation in microglia. 

Scheme of several signaling pathways in microglia, upregulated in AD. This includes Toll-like receptors TLR2 and TLR4, 

CD33 (also referred to as Siglec-3, sialic acid–binding immunoglobulin-like lectin), complement factor C3b and 

complement receptors CR1 and CR3, TREM2 (triggering receptor expressed in myeloid cells 2) and its downstream 

compound DAP12 (DNAX-activating protein), fractalkine receptor CX3CR1 and its ligand CX3CL. Apoproteins ApoE3 

and ApoE4 are involed in mediating Aβ-phagocytosis. Molecules in bold are identified late-onset AD risk genes. Also 

markers for the endo-lysosomal pathway such as LAMP1, CD68 and Rab7 were shown to be upregulated in AD. 

Receptor-dependent signaling but also lysosomal rupture can activeate the NLRP3 inflammasome  which is  one source 

of mature IL-1β. Iba1 (ionized calcium-binding adapter molecule 1) is cytosolic marker for microglia and CNS 

macrophages. Adapted from Mosher and Wyss-Coray  (2014). 
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responsible for enzymatic degradation of external and internal debris in eukaryotic cells. This fusion 

is mediated by Rab7 GTPase activity (Nakamura and Yoshimori, 2017).  

 

Endo-lysosomal degradation 

Early endosomes mature to late endosomes characterized by an exchange of surface molecules 

and gradual acidification (Figure 10). One typical marker of early endosomes is the GTPase Rab5, 

which is responsible for proper endosome formation (Hutagalung and Novick, 2011). Along 

endocytic trafficking and vesicle maturation, Rab5 is replaced by Rab7 marking the switch from 

early to late endosomes (Feng et al., 1995). Rab7 is expressed on matured, late endosomes and 

lysosomes (Wandinger-Ness and Zerial, 2014) (Figure 10).  

 

Autophagy 

In a first step the target components are encaged by a membrane known as phagophore. With the 

aid of several proteins such as microtubule-associated protein 1 light-chain 3 (LC3 protein) this 

membrane is closed and termed early autophagosome (Kabeya et al., 2000). This formation is 

amongst others induced by mTor signaling (Kaur and Debnath, 2015). Along maturation Rab7 is 

expressed on the membrane surface of late endosomes, where it is responsible for the fusion to the 

lysosome (Gutierrez et al., 2004; Jäger et al., 2004)(Figure 10). 

 

Rab7 

Rab7 belongs to the family of small Ras GTPases, which comprises more than 60 proteins in 

humans and which are involved in vesicle motility (Kiral et al., 2018). In general, Rab proteins 

shuttle between the cytosol and the membrane to reversibly regulate protein assembly at the 

membrane by hydrolysis of GTP to GPD (Hutagalung and Novick, 2011). 

In interaction with motorproteins like kinesin and dynein, Rab7 is involved in the intracellular 

transport of late endosomes /autophagosomes and lysosomes along the cytoskeleton and therefore 

is considered a key factor of the endocytic pathway (Cai et al., 2010; Edinger et al., 2003; Gutierrez 

et al., 2004; Jager et al., 2004). Moreover, Rab7 is important for the biogenesis and maintenance of 

lysosomes and finally, for the fusion of late endosomes / late autophagosomes to the lysosome 

within the perinuclear compartment (Bucci et al., 2000). At this stage of fusion, resulting in endo-

lysosomes / autophagosome-lysosome hybrids, markers like LAMP1 and LAMP2 are detectable. 

Alongside the maturation process the pH within the vesicle is gradually shifted from neutral to acidic 

pH by proton pumps. Considering that Rab7 is involved in the maturation of endosomes as well as 

in the fusion process with the lysosome, this protein is of great importance for proper protein 

degradation. Hence, it is not surprising that mutations of Rab7 underlie severe diseases. For 

instance, mutations within Rab7 were identified in genetic inherited Charcot-Marie-Tooth type 2B 

disease, which is characterized by neurodegeneration of somatosensory neurons (McCray et al., 
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2010; Verhoeven et al., 2003). This emphasizes the crucial role of Rab7 function on neuronal 

homeostasis. 

1.2.5. Impact of the endosomal-lysosomal pathway on AD  

Amongst the earliest findings in AD are enlarged endosomal compartments and accumulated 

phagocytic vacuoles in neurons (Cataldo et al., 2008; Cataldo et al., 2000; Nixon et al., 2005; Yang 

et al., 2011). One explanation for this is the imbalanced production and clearance of Aβ-peptides, 

which can also be a consequence of impairments in the ubiquitin-proteasomal pathway (Gregori et 

al., 1995; Tseng et al., 2008). Due to this imbalance in Aβ-production, proteins accumulate and 

become too large for ubiquitin-proteasomal degradation, and therefore require protein degradation 

through either autophagy or endo-lysosomal pathways. 

In terms of autophagy, mutations in PSEN1 contribute to elevated autophagosome enlargement 

and accumulation of autophagosomes within dystrophic neurites resulting in neuronal cell death 

(Boland et al., 2008; Lee et al., 2010; Yu et al., 2010). Genetic depletion of autophagy inhibitor 

Figure 10: Schematic role of Rab7 on endo-lysosomal degradation and autophagy. 

Top: In the first step of the endocytic pathway, extrinsic debris, pathogens or other molecules are internalized by 

endocytosis and caged in a Rab5+ early endosome. This vesicle maturates and Rab5 (red) is replaced by Rab7 (green) 

which labels the late endosome. By fusion with the lysosome the endo-lysosome hybrid is formed which is also positive 

for LAMP1 (blue). Bottom: To degrade internal material, an autophagophore is built up by membrane components and 

LC3 (microtubule associated protein 1 light chain3; red). As the membranes closes up to a vesicle, it is named early 

autophagosome. Throughout maturation Rab7 is expressed, which helps in fusion with the lysosome. Noteworthy, late 

endosomes and late autophagosomes can also fuse with each other and generate the so-called amphisome, which in 

turn fuses to the lysosome. Both pathways go along gradual acidification also vesicle maturation. Within the final step 

lysosomal enzymes are released which degrade the cargo in a pH-dependent manner. Adapted from Hyttinen et al.,    
(2017). 
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cystatin b restored autophagic function, and was able to prevent cognitive impairment while 

reducing Aβ-load in TgCRND8 mice (Yang et al., 2011). 

Besides autophagy, the endocytic pathway was found to be defective in AD. Severity and 

progression of MCI and AD were found to correlate with Rab5+ and Rab7+ endocytic vesicles, 

which are highly abundant in cholinergic neurons in brain regions with enriched pTau levels 

(Ginsberg et al., 2010a; Ginsberg et al., 2011; Ginsberg et al., 2010b). Moreover, human CSF 

samples of AD patients showed elevated levels of late endosomal markers like Lamp1, Lamp2 and 

Rab7 (Armstrong et al., 2014). On a functional level, inhibition of lysosomal proteolysis was shown 

to induce axonal dystrophy in neurons (Lee et al., 2011).  

GWAS analyses of patients with late onset AD identified risk genes associated with endo-lysosomal 

pathway, such as Sortilin Related Receptor 1 (SORL1), Phosphatidylinositol Binding Clathrin 

Assembly Protein (PICALM) and Ras And Rab Interactor 3 (RIN3) (Hollingworth et al., 2011; 

Lambert et al., 2009; Lambert et al., 2013). Surprisingly, whole-exome sequencing of early onset 

AD patients, who were not carrying mutations in APP, PSEN1 and PSEN2 or allele variants of 

known late-onset AD risk genes, identified candidate AD risk genes in the endo-lysosomal transport 

(Kunkle et al., 2017). Shared risk genes found in early and late onset AD samples not only included 

endo-lysosomal genes SORL1, RIN3, but also Trem2 and MHCII, which are associated with 

myeloid cells. Since microglia are the main phagocytes of the brain, it is not surprising that several 

identified overlapping genes are expressed in microglia. 

 

Microglia 

Concurrently, microglia show inefficiency of degradation activity through autophagy and endo-

lysosomal pathway in AD (e.g. Gosselin et al., 2017; Landel et al., 2014; Nuriel et al., 2017). 

Moreover, several risk genes for sporadic AD such as ApoE, Trem2 or DAP12 were found to induce 

expression of molecules involved in the endo-lysosomal pathway of myeloid cells (Hollingworth et 

al., 2011; Lambert et al., 2009; Lambert et al., 2013). This includes CD68 which is a myeloid cell 

specific transmembrane glycoprotein and is expressed along all stages of the endo-lysosomal 

pathway (Figure 10). CD68 belongs to the scavenger receptor family, which is associated with 

phagocytosis and protein degradation. In the CNS, it is often used as a marker for microglia 

activation and is highly abundant in AD brain tissue (Minett et al., 2016).  

As mentioned, Trem2 is responsible for the transcriptional change of microglia towards DAM. 

Trem2 KO in 5xFAD mice triggered elevated autophagy by suppressing mTor signaling in microglia 

(Ulland et al., 2017). Similarly, Rab7 KO in vitro experiments unveiled enhanced autophagosome 

formation in an mTOR1 independent pathway (Kuchitsu et al., 2018). Pharmacological and genetic 

disruption of autophagosome formation in myeloid cells of AD transgenic mice improve cognitive 

functions and diminished Aβ-pathology in these mice (Caccamo et al., 2010; Cho et al., 2014; Kim 

et al., 2017; Spilman et al., 2010). These findings are comparable to studies investigating 
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phagocytosis in AD by inhibiting complement factors (Fonseca et al., 2004; Hong et al., 2016; 

Paolicelli et al., 2011; Shi et al., 2017). 

Transgenic mice overexpressing human ApoE4, which is upstream of Trem2, revealed 

transcriptional upregulation of various genes of the endosomal-lysosomal pathway including Rab7, 

while showing enlarged endosomes in AD affected brain regions compared to non-affected ones 

(Nuriel et al., 2017). In contrast pretreatment of primary murine microglia with the benign variant 

ApoE3 increased Aβ-clearance by enhancing the recycling of Rab7+ endosomes from the lysosome 

back to the early endosome (Lee et al., 2012). 

Microglial cytokines IL-6 and IL-12 can directly modulate the endo-lysosomal pathway in vitro. While 

IL-6 can directly induce Rab5 expression and IL-12 activated Rab7 expression in the murine J774E 

monocyte cell line (Bhattacharya et al., 2006). Therefore, microglial autophagy and endo-lysosomal 

degradation seem of great importance for amyloidogenesis and AD development. Since Rab7 is 

crucial for the fusion with the lysosome in both of these pathways, this GTPase is a good target to 

evaluate lysosomal degradation on in microglia on AD pathology. 

1.2.6. Targeting microglial endo-lysosomal degradation in 
vivo: the Rab7ΔMG mouse line 

The myeloid lineage shares numerous features, such as the expression of similar genes. Thus, it is 

very difficult to specifically target a subset of this lineage, such as microglia. However, taking 

advantage of the fact that microglia do not renew by differentiation from hematopeotic precursor 

cells in adults, Yona and co-workers (2013) have created a tamoxifen inducible Cre-line which 

expresses Cre-recombinase under transcriptional control of the monocyte-specific CX3CR1-

promoter. CX3CR1 is a Gαi-coupled seven-transmembrane receptor prominently expressed by 

microglia and other cells of the myeloid lineage, but also found a subset of T cells and natural killer 

cells (NKs) (Bazan et al., 1997; Imai et al., 1997; Pan et al., 1997). CX3CL1-CX3CR1 interaction is 

crucial for phagocytic removal of synaptic debris during synaptic pruning (Paolicelli et al., 2011). 

CX3CL is expressed by a subset of neurons (Hughes et al., 2002).  

Due to the fact that microglia do not differentiate from hematopoetic stem cells throughout 

adulthood, in contrary to other cells of the myeloid lineage, and can maintain themselves through 

cell division the CX3CR1-CreERT2/+-mediated recombination is considered stable in microglia of adult 

mice (Figure 11). Moreover, other CX3CR1-expressing cells undergo physiological turnover and 

thereby gradually loose recombination, which is mostly erased in Ly6+ blood monocytes and 

intestinal macrophages two months after tamoxifen administration (Yona et al., 2013). Cross-

breeding of the CX3CR-CreERT2/+ line with a YFP-reporter line verified an efficiency of more than 

90% recombination in microglia (Yona et al., 2013). 
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The Cre-recombination and thereby the mediated KO in other CX3CR1-expressing cells of the 

myeloid cell lineage is not detectable. It must be mentioned though, that there are other myeloid cell 

types, such as Kupffer cells in the liver, which are also established before birth and are maintained 

by self-renewal. However, these cells lack CX3CR1 expression (Schulz et al., 2012; Yona et al., 

2013). 

Noteworthy, in the meantime TMEM119 was suggested to be a microglia specific molecule. 

However due to their heterogeneity, it cannot be ruled out yet that it is only expressed on a subset 

of microglia (Bennett et al., 2016). Also, there is still no in vivo model accessible that uses a 

Tmem119-Cre driver. Therefore, as of today, the CX3CR-CreERT2/+ line is a unique tool to 

specifically investigate genetic KO within microglia in adulthood.  

To achieve microglia-specific disruption of endo-lysosomal function, the CX3CR-CreERT2/+ line was 

already successfully crossed to the Rab7fl/fl mouse line which harbors loxP sites (fl) flanking exon 2 

of the Rab7 gene (Roy et al., 2013; Safaiyan et al., 2016). By application of tamoxifen transcription 

of Cre-recombinase in CX3CR1+ cells was achieved and resulted in the effective KO of Rab7 in 

microglia (Rab7ΔMG), which becomes microglia-exclusive through aging (Safaiyan et al., 2016). 

To elucidate the impact of microglia Rab7-mediated endo-lysosomal function on Aβ-pathology in 

vivo, we have crossed these mice to 5xFAD mice which were presented in 1.1.4. 

 

 

 

 

 

 

 

 

 

Figure 11: Recombination rate of CX3CR1-

CreERT2/+. 

Recombination rates [%] of CX3CR1-CreERT2/+ x 

R26-YFP mice after tamoxifen application in 

different myeloid cell types. Throughout time 

other CX3CR1-expressing cells  like Ly6C+ blood 

monocytes (red) and intestinal macrophages 

(blue) loose gene rearranngement due to 

physiological turnover. Microglia (green) show 

persisting recombination also 200 days after 

tamoxifen administration. Figure adapted form 

Wolf et at (2013). 



Introduction                                                                
 

 

31| P a g e  
 

1.3. Aim of this study 

There is much evidence pointing towards a crucial role of microglia, the main immune cells of the 

brain, on disease pathology in AD. It is not clear, whether microglia are beneficial by degrading 

toxic Aβ-species or whether they contribute to disease by secondary inflammatory activation.  

This study aims to elucidate the role of microglial clearance function on neuroinflammation and 

amyloid pathology in vivo. We hypothesize that microglia with defective endo-lysosomal pathway 

fail to degrade amyloid and thereby have stronger amyloid pathology compared to control mice. 

Therefore, triple transgenic mice with a microglia-specific (CX3CR1-CreERT2/+) knockout of the Rab7 

allele (Rab7fl/fl) were generated. These mice were further crossed with the 5xFAD mouse model to 

investigate the impact of the endo-lysosomal pathway in microglia on AD progression.  

The specific questions that my project addressed are: 

1. Does the knockout of Rab7 affect microglial amyloid uptake and degradation? 

2. Does the microglial disruption of the endosomal-lysosomal pathway affect amyloid burden, 

neuronal loss, synaptic loss and neuroinflammation? 

3. Does the microglial knockout of Rab7 induce compensatory mechanisms by recruiting other 

cell types in the 5xFAD mouse model? 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Buffers and Solutions 

All buffers and solution were prepared with autoclaved double-distilled water (ddH2O) and stored at 

room temperature (RT), unless explicitly declared otherwise. Chemicals were purchased from 

Merck Millipore (Darmstadt, Germany), Roth (Karlsruhe, Germany) or Sigma-Aldrich (München, 

Germany) unless stated otherwise. Plastic consumables were purchased from BD Falcon™ (BD 

Biosciences, Le Pont de Claix, France), Eppendorf AG (Hamburg, Germany) and Greiner bio-One 

GmbH (Frickenhausen, Germany). Glass slides and cover slips for microscopy were purchased 

from Jung HistoService (Nussloch, Germany). 

2.1.1.1. General buffers  

Table 1: Summary of used buffers and solutions in this thesis. 

Buffer Composition 

0.1 M Phosphate buffer (pH 7.2): 27 mM 
77 mM 
300 mM 

NaH2PO₄ * H₂O 

Na₂HPO₄ 
NaCl 
 

10x Phosphate buffered saline (PBS; 
pH 7.4): 

1.35 M 
27 mM 
100 mM 
18 mM 

NaCl 
KCl 
Na2HPO4 
KH2PO4 

 

Tail lysis buffer: 100 mM 
5 mM 
200 mM 
0.2% [w/v] 

Tris HCl , pH 8.5 
EDTA 
NaCl 
SDS 
 

10x TRIS-Borat-EDTA (TBE) buffer 
(pH 8.0): 

840 mM 
890 mM 
20 mM 

Tris Base 
Boric Acid 
EDTA 
 

10x Tris buffered saline (TBS): 1.37 M 
27 mM 
248 mM 

NaCl 
KCl 
Tris-HCl 
 

 

 

Working solutions like 1x PBS and 1x TBS were used as 10% [v/v] 10x stock solutions in ddH2O. 
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2.1.1.2. Buffers for Protein Biochemistry 

Table 2: Buffers for protein biochemistry. 

Buffer Composition 

1x CHAPS buffer (pH 8.0): 16 mM 
39 mM 
5 mM  

Chaps 
Tris-HCl 
EDTA 
 

Homogenization buffer:  1x 
1 mM 
1 mM 
3 µl/ml 
3 µl/ml 

PBS 
EDTA 
EGTA 
protease inhibitor mix 
phosphatase inhibitor I+II 
 

2x RIPA: 50 mM  
1% [w/v] 
0.5% [w/v] 
0.1% [w/v] 
150 mM 
2 mM 
50 mM 

Tris HCl, pH 7.4 
NP-40 
Sodiumdeoxycholate 
SDS 
NaCl 
EDTA 
NaF 
 

0.025% PBST: 0.025% [v/v] 
1x 

Tween-20 
PBS 
 

10x Running Buffer: 1.9 M 
192 mM 
1% [w/v] 

Glycine 
Tris-HCl 
SDS  
 

Sample Buffer: 
 

312.5 mM  
5 mM 
10% [w/v] 
0.05% [w/v] 
50% [v/v] 
0.5% [v/v] 

Tris-HCl, pH 6.8  
EDTA, pH 8.0 
SDS 
Bromphenol blue 
Glycerol 
β-Mercaptoethanol 

Long-term storage at -20°C;  
working aliquot stored at 4°C 
 

10x Transfer Buffer: 1.9 M 
192 mM 

Glycine 
Tris-HCl 

For 1x Transfer buffer the 1 part of the 10x stock was 
mixed with 2 parts methanol and 7 parts ddH2O 
 

Resolving Buffer (pH 6.8): 0.5 M Tris-HCl 
 

Stacking Buffer (pH 8.8): 1.5 M Tris-HCl 
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2.1.1.3.  Buffers for Histology 

Table 3: Buffers for histology. 

Buffer  Composition 

Avertin: 72 mM 
2% [v/v] 

2,2,2 Tribromethanol 
tert-amylalcohol 

 Dissolved at 40°C 
Stored at -20°C, light protected 
 

100% blocking solution: 2.5% [v/v] 
2.5% [w/v] 
2.5% [v/v] 
1x 

FBS 
BSA 
fish gelatin 
PBS 

 Stored at -20°C 
 

Citric buffer: 11 mM 
0.05% [v/v] 

Tri-Sodium Citrate  
Tween-20 

 Used for up to 3 months 
 

Cryoprotective medium: 25% [v/v] 
25% [v/v] 
1x 

Glycerol 
Ethyleneglycol 
PBS 
 

Golgi-Cox Stock solution 1: 5% [w/v] 
 

Potassium dichromate 
 

Stored in the 
dark at RT 

Golgi-Cox Stock solution 2: 5% [w/v] 
 

Mercuric chloride 

Golgi-Cox Stock solution 3: 5% [w/v] 
 

Potassium chromate 

Golgi-Cox Solution: 24% [w/v] 
24% [w/v] 
19.2% [w/v] 

Potassium dichromate (Stock solution 1) 
Mercuric chloride (Stock solution 2) 
Potassium chromate (Stock solution 3) 

 Mixed at least 48h prior to use to allow precipitates to sink to 
the bottom of the bottle. 
Stored at RT, in a well-ventilated, light-protected environment 
stable for up to 3 months 
 

Golgi-Cox Tissue Protectant 
Solution: 

50% [v/v] 
33.3% [w/v] 
90 mM 
33.3% [v/v] 

0.1 M Phosphate buffer (pH 7.2) 
Sucrose 
Polyvinylpyrrolidone 
Ethylene glycol 

 Stored at 4°C, in the dark 
 

Mowiol: 13.3% [w/v] 
33.3% [v/v] 
133 mM 
24 mg/ml 

Mowiol 
Glycerol 
Tris HCl, pH 8.5 
DABCO 
 

16% paraformaldehyd (PFA): 16% [w/v] 
1x 

Paraformaldehyd 
PBS 

 Dissolved at 55°C 
Adjust pH to 7.4 
Stored at -20°C 
Diluted to 4% PFA with 2x PBS 
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0.1% TBST: 0.1% [v/v] 
1x 

Tween-20 
TBS 
 

 

2.1.2. Commercial kits, compounds and consumables 

Table 4: Commercial kits. 

Kit Catalog number Company 

Pierce™ BCA Protein Assay Kit 23225 Thermo Fisher 

V-PLEX Aβ Peptide Panel 1 (6E10) 
Kit 

K15200E-2 Meso Scale Discovery, 
Rockville MD, USA 

   
Table 5: List of compounds and consumables. 

Solution/Medium  
 

Catalog number Company 

Amersham™ ECL Prime Western 
Blotting Detection Reagent 

GERPN2232 GE Healthcare Life Sciences, 
Little Chalfont, United Kingdom 

cOmplete™ Protease inhibitor 
cocktail  

000Z00011697498001 Roche Diagnostics, Rotkreuz, 
Switzerland  

Corn oil  C8267-500ML Sigma-Aldrich,  Munich, 
Germany 

Donkey serum S2170-500 VWR International, Langenfeld, 
Germany 

ECL Western Blotting Substrate 1 
and 2 

32106 Thermo Fisher Scientific 
Inc,Rockford, IL, USA 

Eukitt hard-drying medium 03989 Fluka Analytical, Munich, 
Germany 

Gel Red 41003 VWR International, Langenfeld, 
Germany 

GeneRuler 100 bp Plus DNA Ladder, 
ready-to-use-50 µg 

SM0323 Fermentas, St. Leon- Rot, 
Germany  

GoTaq G2 Flexi DNA Polymerase M7801 Promega, Mannheim, Germany 

HyClone™ Fetal Bovine Serum 
(FCS), South American Origin 

13567670 GE Healthcare Life Sciences, 
Little Chalfont, United Kingdom 
and Gibco®, Thermo Fisher 
Scientific, Waltham, MA, USA  

Immersol 518 F 444960-0000-000 Zeiss, Oberkochen, Germany 

PageRuler Plus Prestained Protein 
Ladder, 10 to 250 kDa 

26619 Thermo Fisher Scientific, 
Waltham, MA, USA  

Phosphatase Inhibitor Cocktail 1 
 

P2850-5ml Sigma-Aldrich,  Munich, 
Germany 

Phosphatase Inhibitor Cocktail 2  
 

P5726-5ml Sigma-Aldrich,  Munich, 
Germany 

Proteinase K 000000003115836001 Sigma-Aldrich,  Munich, 
Germany 

Tamoxifen Cas#10540-29-1 Sigma-Aldrich,  Munich, 
Germany 

Tissuetec® 4583 Jung HistoService, Nussloch, 
Germany 

Whatman® Protran Nitrocellulose Z613630 Whatman GmbH, Dassel, 
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Transfer Membrane Germany 

2.1.3. Primers 

All primers used in this thesis are listed below in Table 6. Primer stocks were ordered in 50 mM 

concentration either from the local AGCT core facility (Max-Planck Institute of Experimental 

Medicine, Göttingen, Germany) or from Sigma Aldrich.  Both primer stocks and 10 mM working 

aliquots were stored at -20°C. 

 

Table 6: List of primers. 

Primer 
Name  

Description  Primer sequence [5' -3'] 

24050 Fwd for CX3CR1-CreERT2 TATCTTCTATATCTTCAGGCGC 

24051 Rev for CX3CR1-CreERT2 GTGAACGAACCTGGTCGAAATCAG 

36122 Fwd for CX3CR1-Cre+/+ AGCTCACGACTGCCTTCTT 

36123 Rev for CX3CR1-Cre+/+ ACGCCCAGACTAATGGTGAC 

24052 Fwd for Rab7 floxed site CTCACTCACTCCTAAATGG 

24053 Rev for Rab7 floxed site TTAGGCTGTATGTATGTGC 

18718 Fwd for PS1 mutations in 5xFAD model AATAGAGAACGGCAGGAGCA 

18719 Rev for PS1 mutations in 5xFAD model GCCATGAGGGCACTAATCAT 

33022 Fwd for APP mutations in 5xFAD model AGGACTGACCACTCGACCAG 

33023 Rev for APP mutations in 5xFAD model CGGGGGTCTAGTTCTGCAT 

2.1.4. Antibodies 

Primary antibodies used in this project, their application and the correspondent concentrations are 

listed in Table 7. A summary of all secondary antibodies with their respective conjugates that were 

used in this thesis are shown in Table 8. 

 

Table 7: Primary antibodies. 

Antibody Host species Company Catalog 
number 

Working 
dilution 
(Application) 

6E10 mouse Covance SIG-39300 1:2000 (IHC) 

Aβ42 rabbit Invitrogen/Thermo 
Fisher 

44-344 1:1000 (IHC) 

Calnexin rabbit Sigma Aldrich C4731 1:1000 (WB) 

CD68 rat BD /Thermo Fisher NC 9471873 1:500 (IHC) 

GFAP ginea pig Synaptic Systems 173004 1:500 (IHC) 

Iba1 rabbit WAKO 019-19741 /  
NC9288364 

1:2000 (IHC) 

Iba1 goat Abcam ab5076 1:1000 (IHC) 

LAMP1 (CD107a) rat BD 553792 1:500 (IHC) 

NeuN mouse Millipore MAB377 1:500 (IHC) 

Synaptophysin rabbit Abcam ab16659 1:200 (WB) 
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Table 8: Secondary antibodies. 

Antibody Host Conjugate Company catalog 
number 

Working 
dilution 
(Application) 

Anti-ginea pig goat Alexa555 Invitrogen 1900250 1:300 (IHC) 

Anti-goat donkey Alexa555 Thermo Fisher A21432 1:300 (IHC) 

Anti-mouse rabbit Alexa488 Invitrogen A11008 1:300 (IHC) 

Anti-mouse goat Cy3 Dianova 115-165-146 1:300 (IHC) 

Anti-mouse donkey Alexa647 Thermo Fisher A31571 1:300 (IHC) 

Anti-mouse goat HRP Dianova 115-035-062 1:2000 (WB) 

Anti-rabbit goat Alexa488 Invitrogen A11008 1:300 (IHC) 

Anti-rabbit goat Cy3 Dianova 111-165-144 1:300 (IHC) 

Anti-rabbit donkey Alexa647 Invitrogen 1964354 1:300 (IHC) 

Anti-rabbit goat HRP Dianova 111-035-003 1:2000 (WB) 

Anti-rat donkey Alexa488 Thermo Fisher A21208 1:300 (IHC) 

Anti-rat goat Cy3 Invitrogen 1842804 1:300 (IHC) 

      

2.1.5. Equipment  

Table 9: List of equipment. 

Equipment Company 

Precellys 24-Dual Tissue homogenizer Bertin intstruments, Montigny-le-Bretonneux, 
France 

Bio-Rad- Mini-Sub® Cell GT Systems Bio-Rad Laboratories GmbH, Munich, Germany 

Bio-Rad Mini-PROTEAN® Tetra electrophoresis 
system 

Bio-Rad Laboratories GmbH, Munich, Germany 

Cryostate 3050S Leica Microsystems, Nussloch, Germany 

Mini-Trans Blot cell set up Bio-Rad Laboratories GmbH, Munich, Germany 

PELCO Prep-Eze™ 24-wellplate Insert PELCO, Redding, CA, USA 

FLUOstar omega plate reader BMG Labtech, Ortenberg, Germany 

Rotor TLA-55 Beckman Counter, Indianapolis, IN USA 

Sector Imager 6000 Meso Scale Discovery™, Rockville, MD, USA 

Sonicator CL-18 Thermo Fisher Scientific Inc,Rockford, IL, USA 

Heraeus™ Fresco™ 17, microcentrifuge  Thermo Fisher Scientific Inc,Rockford, IL, USA 

Thermomixer comfort Eppendorf, Hamburg, Germany 

T3000 Thermocycler Kombi  Biometra, Göttingen, Germany 

Ultracentrifuge Optima Max-XP Beckman Counter, Indianapolis, IN USA 

Vibratome VT1200S Leica Microsystems, Nussloch, Germany 

2.1.6. Software 

Table 10: List of software. 

Software Source Application 

Adobe Illustrator CS5.1 Adobe Systems Inc Illustration of figures 

EndNote X8 Clarivate Analytics  Bibliography 

GraphPad Prism® 6  GraphPad Software Inc. Statistical analyses and 
graph generation 

Image J http://imagej.nih.gov/ij/ Image processing and 
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  analysis 

Imaris 6 Bitplane, Oxford Instruments  3D image analysis ; e.g. 
NeuN quantification 

MS Office Excel 2010 Microsoft Data analysis 

MS Office Word 2010 Microsoft Text writing and editing 

MSD Discovery Workbench                      
3.0 Data Analysis Toolbox  

Meso Scale Discovery™, 
Rockville, MD, USA 

Measurement and analysis 
of MSD assay 

Omega Control BMG Labtech, Ortenberg, 
Germany 

Measurement of BCA assay 

Reconstruct  John C. Fiala Dendritic spine analysis of 
Golgi-Cox staining 

Zen blue 2.3 lite 
 

Zeiss, Oberkochen, Germany Image processing and 
analysis 

2.2. Methods 

2.2.1. Generation of the Rab7ΔMG x 5xFAD mouse line 

In this project I have analyzed a triple transgenic mouse model generated from the cross-breeding 

of three established mouse models: the CX3CR1-CreERT2/+ mouse line, the Rab7fl/fl mouse line and 

the 5xFAD mouse line (see Figure 12). The name of the model is abbreviated as the Rab7ΔMG x 

5xFAD. 

To achieve a disruption within the endo-lysosomal pathway in microglia, the monocyte-specific, 

Tamoxifen-inducible CX3CR1-CreERT2/+ mouse (originally from Dr. Steffen Jung, Department of 

Immunology, Weizmann Institute of Science, purchased via Jackson laboratories: 020940) was 

used in combination with a mouse line having loxP site flanked exon 2 of the Rab7 (Rab7 fl/fl) alleles 

(originally from Dr. Aimee Edinger, Department of Cell & Developmental Biology University of 

California, Irvine). This CX3CR1-CreERT2/+-mediated Rab7 knockout (KO; Rab7ΔMG) mouse line was 

previously established and characterized by Shima Safaiyan in terms of myelin turnover (Safaiyan 

et al., 2016). 

To investigate the impact of the endo-lysosomal pathway in microglia on the progression of AD, the 

CX3CR1-CreERT2/+ x Rab7fl/fl mouse line was crossed with the 5xFAD mouse model (Oakley et al., 

2006). The 5x FAD model heterozygous (het) expresses the human isoform of APP 695 bearing the 

Swedish, London and Florida mutations and the human PSEN1 bearing the M146L and the L286V 

mutations with the neuronal Thy1-promoter, respectively (see Figure 12). Therefore the animals 

develop early Aβ-pathology. 

For this study animals with the following genotype were used: CX3CR1-CreERT2/+ Rab7fl/fl 5xFADhet. 

Even though most studies in AD mice focus on female mice, due to their stronger phenotype, we 

have also investigated male mice. 
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2.2.2. Tamoxifen-induced depletion of Rab7 

To induce the CX3CR-CreERT2/+-mediated knockout of the Rab7fl/fl alleles, tamoxifen was 

administered intraperitoneal (i.p.) to P21 mice once every 24 hours, for 7 consecutive days. For the 

tamoxifen treatment, 10 mg/ml solutions of tamoxifen in sterile-filtered corn oil were prepared 

freshly the day before injection. The solution was vortexed and shook overnight (ON) at 37°C with 

maximum speed until the suspension was homogenous. Throughout the whole preparation the 

solution was light-protected. Animals were injected with 75 mg tamoxifen/kg body weight using 1 ml 

syringes and 3/8” beveled needle - 26 gauge. 

The first aging cohort was sacrificed at 3 months of age when 5xFAD mice were reported to have 

already developed Aβ-plaques in the hippocampus and in the cortex in both sexes (Oakley et al., 

2006). The second aging cohort was dissected at 9 months of age when neuronal loss was 

detectable in 5xFAD mice.  

2.2.3. Genotyping 

To discriminate animals with the proper genotype for the experiments – CreERT2/+ Rab7fl/fl 5xFADhet – 

from littermates with different genotypes, genomic DNA isolation and PCR amplification was done 

according to the following protocols. 

 

Figure 12: Generation of the Rab7ΔMG x 5xFAD mouse line. 

The mouse line was generated by cross-breeding a tamoxifen-inducible Cre-driver line under transcriptional control of 

the myeloid cell specific CX3CR1 promoter (left) with the Rab7fl/fl line (middle), bearing two lox p sites (fl; red) flanking 

exon 2 of the Rab7 allele. Thus, only after application of tamoxifen and thereby induction of Cre expression, the Rab7 

flanking lox p sites were cleaved resulting in a conditional Rab7 KO in CX3CR1+ myeloid cells (Rab7ΔMG). These mice 

were further crossed with the early onset AD mouse model 5xFAD. The 5xFAD mouse model overexpresses human 

APP and human PSEN1 (both in green) under the transcriptional control of the neuronal Thy1-promoter. APP and 

PSEN bear mutations found in familial cases of AD, respectively. Black triangles mark the mutation sites. Little grey 

boxes indicate Thy1 exons. 
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2.2.3.1. DNA isolation 

DNA was isolated either from small tail tips of P1-P5 animals or from ear punches of P14-P18 

animals. The tissue was digested ON at 55°C in a thermomixer with 350 µl tail lysis buffer and 20 µl 

Proteinase K (10 mg/ml stock) respectively. The supernatant was collected after centrifuging for 

5 min at RT at 13,200 x g. To precipitate the DNA 350 µl isopropanol was added and samples were 

repeatedly centrifuged and the supernatant discard. The DNA pellet was washed with 70% [v/v] 

ethanol. The remaining pellet was air-dried and further dissolved in either 200 µl ddH2O for tail tip 

obtained DNA or in 100 µl ddH2O for ear puncher obtained DNA. The DNA samples were stored at 

4°C. The isolated DNA was used for genotyping using polymerase chain reaction (PCR). 

2.2.3.2. Polymerase Chain Reaction (PCR) 

To determine the genotypes of the mice from the Rab7ΔMG x 5xFAD mouse line, the isolated, 

genomic DNA was specifically amplified by polymerase chain reaction (PCR). The compounds for 

the PCR reactions were purchased from Promega. Primer sequences are listed in Table 6. 

PCR products were size-separated on 1% [w/v] agarose gels casted with 1x TBE and containing 

3.5% [v/v] gel red. For size reference 5 µl 100bp “plus” DNA ladder was used. Depending on the 

band sizes for the PCRs, the runs were between 30 min to 90 min at 140V. 

The following PCR-protocols were used to genotype the animals: 

 

Table 11: PCR for CX3CR-Cre+/+ wildtype allele. 

Reagent Volume [µl] 

BQ 5x 5.0  

dNTPs 0.5  

MgCl2 1.0  

Primer 36122 [10pmol] 1.0  

Primer 36123 [10pmol] 1.0  

GoTaq pol 0.1 

H20 14.4 

DNA 2.0 

 

Table 12: CX3CR-CreERT2/+ PCR protocol. 

Reagent Volume [µl] 

BQ 5x 5.0  

dNTPs 0.5  

MgCl2 1.0  

Primer 24050 [10pmol] 1.0  

Primer 24051 [10pmol] 1.0  

GoTaq pol 0.1 

H20 14.4 

DNA 2.0 
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Table 13: PCR program for CX3CR-Cre +/+ wildtype and CX3CR-CreERT2/+ PCR. 

Temperature [°C] Duration Cycles 

94 3 min 1x 

94 45 sec  
35x 58 45 sec 

72 1 min  

72 5 min 1x 

4 hold  

The Cre-insertion (CX3CR-CreERT2/+) resulted in a 223 base pairs (bp) product whereas no insertion 

of the Cre (CX3CR-Cre +/+) amplified a 151 bp PCR product.  

 

Table 14: PCR reaction for Rab7fl/fl. 

Reagent Volume [µl] 

BQ 5x 5.0  

dNTPs 0.5 

MgCl2 1.0 

Primer 24052 [10pmol] 1.0 

Primer 24053 [10pmol] 1.0 

GoTaq pol 0.1 

H20 15.4 

DNA 1.0  

 

Table 15: PCR program for Rab7fl/fl PCR. 

Temperature [°C] Duration [min] Cycles 

94 5 1x 

94 1  
35x 55 1 

72 2 

72 10 1x 

4 hold  

Insertion of lox-sited in the Rab7 allele resulted in a 580 bp band whereas Rab7 wildtype was 

shown in a 550 bp product. 

 

Table 16: PCR protocol for 5xFAD PCR. 

Reagent Volume [µl] 

BQ 5x 5.0  

dNTPs 0.5 

MgCl2 1.0 

Primer 18718 (PSI fw) [10pmol] 1.0 

Primer 18719 (PSI rev) [10pmol] 1.0 

Primer 33022 (APP fw) [10pmol] 1.0 

Primer 33023 (APP rev) [10pmol] 1.0 

GoTaq pol 0.15 

H20 12.85 

DNA 2.0 
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Table 17: PCR program for 5xFAD PCR. 

Temperature [°C] Duration Cycles 

94 3 min 1x 

94 45 sec  
35x 63 45 sec 

72 1 min  

72 3 min 1x 

4 hold  

 

Mutations within the APP resulted in a PCR product of 377 bp. The PS1 mutations were verified by 

a 608 bp band. 

2.2.4. Histology and tissue preparation 
2.2.4.1. Perfusion and plasma isolation 

Mice were anesthetized for surgery by i.p. injection of 20 µl/g body weight Avertin stock solution. 

Blood was isolated by cardiac puncture with 15 µl 250 mM EDTA-coated 1 ml syringes with a 25xG 

needle. For plasma isolation the blood was processed within 20 min after drawing and centrifuged 

for 10 min at RT and 1.300 x g. The plasma was transferred into a fresh tubed, snap-frozen and 

stored at -80°C until further use. 

Afterwards, mice were perfused with ice-cold PBS for 15 min. The brain was dissected. The left 

hemibrain was post-fixed for 48 h in 4% PFA at 4°C for immunohistochemistry (IHC). Then the 

tissue was de-hydrated for at least 48 h with 30% [w/v] sucrose in PBS, before it was embedded in 

Tissuetec® and stored at -80°C until cryosectioning (see section 2.2.4.2). 

From the right hemibrain the hippocampus (HPC) as a whole were dissected and snap-frozen. 

These samples were used for biochemical analyses. 

2.2.4.2. Cryosectioning 

Coronal sections of 30 µm were sliced with a cryostate. Every 12th section was collected with a 

brush and placed in consecutive order in a 12-well plate. The start point of collection was the 

prefrontal cortex and the last sections collected were from the mid-part of the cerebellum. The 

sections were stored in cryoprotective solution at 4°C until usage. To avoid evaporation, the plates 

were sealed with parafilm. 

2.2.4.3. Free-floating immunohistochemistry with fluorescence 
detection  

All free-floating stainings were done in 12-, 24- or 48-well plates, depending on the number of 

sections picked per animal. For stainings of whole series ergo, every 12th section netwells were 

used for all steps, except for the blocking and antibody incubations.  Sections were briefly washed 
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with 0.1% TBST. For permeabilization sections were incubated with 0.1% Triton-X, 0.6% H2O2 in 

0.1% TBST for 30 min at RT. Sections were washed 3 times for 5 min and blocked with 10% normal 

donkey serum in 0.1% TBST for 1h at RT. Primary antibodies were diluted in 2% normal donkey 

serum in 0.1% TBST and incubated at 4°C ON. A list of used primary antibodies and their working 

dilutions is shown in Table 7. Fluorophore-coupled species-specific secondary antibodies were all 

used in 1:300 dilution in 2% normal donkey serum in 0.1% TBS and were incubated for 1 - 2h at RT 

protected from light. Secondary antibodies used in this project are listed in Table 8.  Sections were 

washed 3 times for 5 min with 0.1% TBST. Then the sections were placed carefully with a brush on 

HistoBond-adhesion-micro-glass slides and dried at RT in the dark. For mounting Mowiol 

supplemented with 0.1% [w/v] DAPI (4’, 6-Diamidino-2’-Phenylindol) was used together with cover 

slips no 1. Slides were dried ON at RT in the dark and stored light-protected at 4°C. 

 

Antigen retrieval: 

Some antibodies require antigen retrieval since tissue sections were fixed with PFA. If needed, this 

step was added after the permeabilization and washing. 

In brief, sections were treated for 15 min with pre-warmed ciric buffer at 80°C in a water bath. 

Afterwards the samples were cooled down on ice to RT.  

For 6E10 staining antigen retrieval with formic acid was done, for a better antibody binding. 

Therefore, the sections were incubated with 70% [v/v] formic acid in H2O for 15 min at RT.  

Afterwards sections were washed 3 times for 5 min with 0.1% TBST, before continuing with the 

blocking step. 

 

Two-step staining: 

Some antibodies were not compatible with the conditions, e.g. antigen retrieval, of the antibodies 

used in a co-staining approach. Then the staining was split into a two-step protocol.  

The sensitive antibodies, which did not appreciate antigen retrieval, were used according to the 

previous described staining protocol. After this first staining was completed, the bound antibodies 

were fixed by incubating the sections for 40 min at RT in 4% PFA. Sections were washed properly 

for 3 times for 10 min with 0.1% TBST. Then the staining protocol including the antigen retrieval 

step was done with these sections and the remaining antibody. After the second staining was 

completed, sections were mounted and cover slipped as described before.  

This protocol was e.g. used for the CD68, Iba1 staining with an additional 6E10 staining using 70% 

formic acid antigen retrieval.  

 

Sudan Black treatment: 

To reduce high autofluorescence from lipofuscin in aged tissue, sections were treated with sudan 

black after the fluorescent staining was completed. Sections were incubated for 15 min in 
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0.02% [w/v] sudan black in 70% [v/v] ethanol in ddH2O at RT on the shaker. Sections were washed 

three times for 5 min with 0.1% TBST and mounted as described.  

2.2.4.4. Thioflavin S staining 

Thioflavin S (ThioS) binds to β-sheet rich structures, resulting in specific labeling of the dense core 

of Aβ-plaques. The extinction peaks is at 342 nm and the emission maximum is around 440 nm. 

Hence, ThioS signal is detected in the green channel and spreads into the blue one as well, 

prohibiting additional DAPI staining.  

For additional ThioS staining sections were incubated for 15 min in 0.01 % [w/v] ThioS in TBS in the 

dark, after secondary antibody treatment. Then sections were rinsed 2 times in 50% [v/v] ethanol 

and washed 2 times for 10 min in 1x TBS, before mounted on HistoBond-adhesion-micro-glass 

slides and sealed with Mowiol without DAPI supplement.  

2.2.4.5. Golgi-Cox staining  

To analyze dendritic spine loss, Golgi-Cox staining was done with brain tissue of 9 month old 

animals. For the Golgi-Cox staining the protocol published by Zaqout and Kaindl (2016) was used. 

The composition of the used buffers and solutions is described in section 2.1.1. 

Briefly, one freshly isolated, PBS-perfused hemibrain was placed into 10 ml freshly prepared Golgi-

Cox solution ON at RT in the dark. The solution was exchanged after 24 h. After 7-9 days the brains 

were carefully transferred into a conical with Tissue Protectant Solution and stored at 4°C in the 

dark. This solution was refreshed after 24 h and the brains were further de-hydrated for 7 more 

days. The impregnated tissue was embedded in 3% [w/v] agarose/PBS and sliced with the 

vibratome VT1200S sections using 60 Hz and 15 mm/s into 100 µm thick sections. The vibratome 

chamber was filled with cooled Golgi-Cox Tissue Protectant Solution which was prior filtered 

through a 240 nm filter paper. Every forth section was collected on a pork gelatin-coated slide. The 

preparation of the gelatin-coated slides is described in detail at the end of the section. When all 

sections were collected, they were gently pushed into the gelatin matrix. 

The vibratome sections were dried at RT for 48 h in a dust-free environment.  

Afterwards the Golgi-Cox-staining was developed inside a fume hood according to the following 

protocol: 

• 2x 5 min ddH2O 

• 5 min 50% [v/v] ethanol 

• 8 min 3:1 ammonia 

• 2x 5 min ddH2O 

• 10 min 5% [w/v]  sodium thiosulfate (this step was done in the dark) 

• 2x 1 min ddH2O 

• 6 min 70% [v/v] ethanol 



Materials and Methods                                                                
 

 

45| P a g e  
 

• 6 min 95% [v/v]  ethanol 

• 6 min 100% [v/v]  ethanol 

• At least 6 min xylol (until mounting step) 

Samples were mounted with 10 drops of Eukitt hard-drying medium and evaporated in the fume 

hood for at least 48 h before imaging. 

 

Gelatin-coated slides: 

To obtain gelatin-coated slides, common glass microscopy slides were placed in a metal histology 

staining rack and rinsed briefly with ddH2O. Slides were allowed to dry in a dust-free area for at 

least 2 h. Meanwhile 3% [w/v] commonly available pork gelatin in ddH2O was dissolved by heating 

to 55°C with constant stirring. The gelatin was filtered through a 240 nm filter paper into a clean 

histological staining box. The dried glass slides were immersed for 10 min. Then the rack was 

removed and the slides were allowed to dry ON at RT in a dust-free environment. Gelatin-coated 

slides were stored for up to one month at 4°C in a closed histological cassette.  

2.2.5. Imaging 

For imaging microscopes within the Light Microscopy Facility of the DZNE in Bonn were used. 

Samples were blinded before imaging and unblinded after analysis of the respective images. To 

image with high magnification, 40x, 63x and 100x oil objectives were used in combination with 

Immersol 518 F. 

All objectives used in this study are listed in the table below: 

 

Table 18: Microscope objectives used in this study. 

Microscope Magnification  Objective 

AxioScan Z1 5x Plan-Apochromat, 0.25, M27 Air 

Confocal LSM700 and AxioScan Z1 20x Plan-Apochromat, 0.8, M27 Air 

Confocal LSM700 40x  Plan-Apochromat, 1.3 Oil, DIC III 

Confocal LSM700 63x  Plan-Apochromat, 1.4 Oil DIC M27  

Epi-Scope 100x  Plan-Apochromat 1.40 Oil Ph 3 M27 

2.2.5.1.  LSM700 Confocal 

Confocal imaging was used for higher resolution, to visualize spatial plaque morphology, investigate 

subcellular structures such as lysosomes and to allow for 3 dimensional reconstruction amongst 

others for cellular morphology analysis.  

To analyze neuronal loss, the NeuN staining was imaged with 20x for further three dimensional cell 

counting using Imaris software. Therefore z-stacks with step sizes of 1.5 µm and tile scans with 2% 

overlap were taken. Images with 8-bit depth were taken, using bi-directional, non-averaged line 

scanning. Image resolution was 512 x 512 pixels. Per animal the cortex was imaged in four slices 
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and the subiculum was imaged in two sections each. The sections had 360 µm distance from one 

another. 

For the analysis of spatial Aβ plaques architecture, triple plaque stainings using the markers ThioS, 

Aβ42 and 6E10 were imaged within cortical layer V, dorsal to the CA1 region at a section using the 

63x objective. The whole thickness of the section was scanned with a step size of 0.75 µm. Tile 

scans with 2.5% overlap were imaged, capturing at least 6 plaques per animal. Images were taken 

with 16-bit and 512 x 512 pixel resolution. 

 

The subcellular stainings with either LAMP1 together with Aβ42 and Iba1 or GFAP were imaged with 

the 40x oil objective. For the analyses of fluorescence intensity within Iba1+ or GFAP+ cells, tile-

scans within a single z-plane were taken with 5% overlap. At least 7x7 tiles, with 16-bit and pixels 

1024 x 1024 pixel were imaged within the cortex. 

 

For the analysis of microglia morphology, LAMP1+ lysosome volumes and CD68 volumes, z-stacks 

throughout the whole thickness of the section were taken within the cortex, dorsal to the CA1 

region. Images with z-stacks with 1 µm, resolution of 16-bit and 1024 x 1024 pixel were taken using 

the 40x oil objective. These images were processed using Imaris software.  

2.2.5.2.  AxioScan Z1 

For quantification of Iba1+ microglia, GFAP+ astrocyte and 6E10+ plaque numbers, whole sections 

were semi-automatically imaged using the Axioscan Z1 microscope (Zeiss, Oberkochen, Germany). 

All sections including a part of the hippocampus were manually marked as region of interest and 

were chosen for imaging. Tissue detection was achieved with transmitted light at 5x magnification. 

To find the focus within the specimen DAPI signal was chosen for the GFAP, Iba1 and 6E10 

staining. Using the coarse focus point found within the reference channel, a range of 60 µm was 

scanned within every individual tile for fine focusing. Fluorescence images were obtained using a 

20x objective. Images were taken with 16-bit depth and 1024x1024 pixels. Tile scans were stitched 

automatically due to the selected reference channel. Every brain section selected was saved as a 

scene within a glass slide / animal dependent file. Identical stainings from both aging cohorts were 

imaged with the same settings. Images were saved as czi-files.  

2.2.5.3. Epi-Scope 

The Epi-Scope (Zeiss, Oberkochen, Germany) was used to image the spines, stained by Golgi-Cox 

method (2.2.4.5). Therefore a 100x oil objective was used. Secondary dendrites within the 5th 

cortical layer were selected for focusing. Images were taken with 12-bit and 0.5 µm z-steps. Per 

animal at least 15 dendrites were imaged and further analyzed as described in detail in (Zaqout and 

Kaindl, 2016).  
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2.2.6. Image processing and data analysis 
2.2.6.1. Fiji (Fiji is just ImageJ) 

For image analysis slide scanner images were opened in ZEN blue software to add scale bare to 

the individual scenes which equals brain sections. Then images were exported as JPEG files with 

60% quality and 50% size for quantification using Fiji software. Confocal images were directly 

uploaded in Fiji.  

 

Cell counting 

Firstly, a ROI, such as the cortex or the hippocampus, were defined by hand using the lasso tool. 

To further analyze numbers of cells and plaques the cell counter plugin by Kurt De Vos for Image J 

was used. To distinguish plaque associated Iba1+ microglia (PAM) from plaque distant Iba1+ 

microglia, I programmed a macro to enlarge the marked plaque borders by 50 µm. All cells within 

this enlargement were counted as PAM whereas all cells outside the mark were defined as non-

plaque associated cells. Cell and plaque counts were normalized to the analyzed area of the ROI.  

 

Percent area (% area) 

The 16-bit confocal or slide scanner images were converted to 8-bit files to analyze the proportion a 

specific signal above a defined threshold within a ROI. This measurement was called % area. For 

this purpose a threshold was set to remove noise and to only measure specific signal, independent 

of its fluorescence intensity. The threshold was kept constant with only minimal changes in case of 

high signal-to-noise ratio in an individual sample. The converted image showed a binary black and 

white image. The ratio of black to white signal within this image was measured with the fraction 

area setting of ImageJ.  

 

Aβ-plaque morphology  

For the analysis of plaque composition by Thioflavin S, Aβ42 and 6E10 co-staining, the z-stack files 

imaged with the LSM700 were directly uploaded to Fiji. To study the spatial plaque morphology, all 

z-stacks were converted into a maximum projection. For every channel the outer border of the 

signal / plaque was marked with the lasso tool. The fluorescence intensity, the diameter of the 

plaque and the 6E10 fluorescence intensity were measured of at least 5 plaques per animal in a 

section of the prefrontal cortex layer V. To calculate the halo of the plaque, which represents 

loosely attached Aβ-fibrils that are not condensed into a ThioS+ dense core, the 6E10 diameter was 

subtracted from the ThioS diameter.  

 

Quantification of intralysosomal Aβ  

To quantify the degree of Aβ digestion by lysosomes within microglia and astrocytes single z-planes 

of LAMP1 / Aβ42 / Iba1a and LAMP1 / Aβ42 / GFAP stainings with 40x magnification of the LSM700 
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were analyzed. To generate a ROI covering all cells (Iba1+ or GFAP+) a constant threshold was set 

to label the morphology of the cells. These thresholds were converted into a mask and selected as 

ROI. The same way a second ROI for LAMP1+ lysosomal structures was generated. To measure 

the intensity of Aβ-signal in lysosomes, the lysosomal ROI was applied to the Aβ42 signal and the 

outside of the ROI was cleared. The resulting image showed Aβ-signal exclusively within 

lysosomes. This image was further processed by adding the cell-specific ROI and clearing the 

outside of the ROI. The fluorescence intensity of the Aβ42 signal was measured, to show all Aβ-

signal within lysosomes in the selected cell type. To double-check also the relative amount of Aβ-

signal was calculated. Therefore, the whole procedure was done with the threshold-processed Aβ-

image. In both cases the results were normalized to the numbers of cells or to the area in mm². 

2.2.6.2. Imaris 

Imaris was used to analyze the degree of neuronal loss, to quantify the volumes of LAMP1+ 

lysosomes and CD68+ vesicles as well as to analyze microglia morphology using z-stack images 

obtained by confocal microscopy for three dimensional reconstruction. 

 

Analysis of neuronal loss (NeuN staining) 

For neuronal loss quantification a customized macro was written by Dr. Manuel Schölling from the 

Image and Data Analysis Facility, DZNE, Bonn, to allow the quantification of the signal in a defined 

ROI. The ROI (either the cortex starting at the medial line until lateral to the CA3 region, or the 

subiculum) was marked using the lasso tool. Running the macro the ROI was filled with a green 

color, simulating a second channel. This newly generated two-channel image was uploaded into 

Imaris. A size and intensity threshold was set for the NeuN signal. All spheres above these 

thresholds were shown using the surface tool. Since unspecific signal from blood vessels or 

damaged tissue could result in false positive signals, all sections were checked and corrected 

accordingly by hand. Then the number of all NeuN+ spheres within the green-colored ROI was 

calculated by the software. To normalize the cell number to the analyzed area and the analyzed 

volume, these parameters were also calculated from the ROI. 

 

Determination of CD68 and LAMP1 volumes in activated microglia 

To analyze the volume of CD68+ or LAMP1+ vesicles within Iba1+ microglia, confocal obtained 

z-stacks were uploaded in Imaris. Single Iba1+ cells were selected for analysis. The surface tool 

was selected and a threshold for CD68 or LAMP1 signal intensity was set. A filter was applied to 

only select signal within the cell soma of the Iba1+ cell. The average volume [µm³] of the CD68+ or 

LAMP1+ vesicles was used for quantification. 
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Analysis of the microglia morphology 

Confocal z-stacks of Iba1 stainings were used for determination of microglia morphology using the 

surface tool from Imaris. Single cells in close proximity (PAM) and apart from plaques (non-PAM) 

were individually selected. Setting a threshold for fluorescence intensity in the Iba1 channel allowed 

labeling the morphology of Iba1+ cells including their processes. To remove cellular processes from 

neighboring cells, an additional filter for size was applied. Volumes and surface area of the cell 

were calculated and the ramification index was calculated as marker for cell activation according to 

Plescher et al. (2018). Briefly, this unit free index defines the spherical shape of the cell with 1 

representing a perfectly round cell without processes which is equivalent to an amoeboid shaped, 

activated microglia. 

2.2.7. Protein Biochemistry 
2.2.7.1. Sequential Amyloid β isolation 

Different soluble fractions of Aβ were isolated according to Henecka and colleagues (2012). 

Therefore the weight of the snap-frozen tissue was determined and the protocol downscaled for the 

hippocampus. The tissue was homogenized in 100 µl homogenization buffer using a Precellys 

24-Dual Tissue homogenizer at maximum speed for 15 sec. Half of the homogenate was snap 

frozen and stored at -80°C for further experiments. 

The remaining 50 µl of hippocampus homogenate were mixed with the equal volume of 2x RIPA 

buffer. Samples were sonicated for 10 s with 80% duty and 12% power, followed by cell lysis for 

30 min on ice. Using an ultracentifuge with a TLA-55 rotor the samples were spun for 30 min at 

100.000 x g at 4°C. The supernatant (RIPA-soluble fraction) was collected and snap frozen. The 

RIPA-insoluble pellet was dissolved in 100 µl 2 % SDS in 25 mM Tris-HCl (pH 7.5). After sonication, 

the samples were heated for 5 min at 90°C and ultracentrifuged with the same settings. The 

supernatant was collected (SDS-soluble fraction) and snap frozen. The SDS-insoluble pellet was 

dissolved in 50 µl 70 % formic acid (FA) and sonicated. The pH was neutralized with 950 µl 1 M Tris 

(pH 11). The samples were snap-frozen. All fractions were stored at -80°C until further usage.  

2.2.7.2.  BCA assay 

To determine the protein concentrations within the latter described soluble hippocampal fractions, 

BCA assays were done according to manufacturer’s instructions. Briefly, RIPA fractions were 

vortexed, while the SDS-fractions were heated for 5 min at 90°C, sonicated for 10 s with 80% duty 

and 12% power and spun at 13.000 x g for 2 min, before use. To measure the total protein 

concentration RIPA and SDS fractions were pre-diluted 1:10 with the respective buffers of 

preparation. These buffers were also used for standard preparation and as blank. 
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For the assay samples were analyzed as duplets. Briefly, 25 µl of sample was added per well to a 

96 well plate. 200 µl of provided detection solution (Buffer A: Buffer B used in a 50:1 ratio) was 

added per well. The plate incubated at 37°C in the dark with gentle shaking, prior to plate reading 

with FLUOstar omega plate reader at 562 nm. Protein concentrations were calculated using Excel. 

2.2.7.3.  Meso Scale Discovery™ (MSD) Electrochemi-
luminescence 

For this study the V-PLEX Aβ Peptide Panel 1 (6E10) Kit from Meso Scale Discovery™ (MSD) was 

used. MSD is an electrochemiluminescence (ECL) assay combining sandwich enzyme-linked 

immunosorbent assay (ELISA) with the high sensitivity of ECL based detection. Hence it provides 

very sensitive detection over a broad concentration range. Due to position-defined coating of Aβ-

species specific capture antibodies, simultaneous measurements of Aβ38, Aβ40 and Aβ42 within one 

sample are possible. To measure the concentrations of the individual Aβ species within the 

fractions obtained by sequential Aβ isolation described in 2.2.7.1, the samples were pre-diluted in 

the provided buffer Diluent 35. For samples obtained from 3 month old animals the following 

dilutions were used: RIPA fractions: 1:30; SDS fractions: 1:50; formic acid fractions: 1:300. For 

samples of 9 month old animals samples were diluted 1:100 (RIPA fractions), 1:300 (SDS 

fractions), 1:750 (formic acid fractions) and 1:4 (plasma).  

The assay was performed according to manufacturer’s instructions. Briefly, the provided pre-coated 

96-well plates were washed three times with 150 µl PBST (PBS supplemented with 0.025% Tween-

20) at 300 rpm shaking. To avoid unspecific binding, the wells then were blocked with 150 µl Diluent 

100 for 1h at RT. Aβ38, Aβ40 and Aβ42 standard and pre-diluted samples were applied in duplicates 

to the plate and incubated for 2h at RT at 300 rpm. Then the plate was washed three times with 

PBST, before 150 µl of Read Buffer T was added and the plate was read at 620 nm with the Sector 

Imager 6000. The data was transferred to MSD Discovery Workbench 3.0 Data Analysis Toolbox 

and further analyzed with Excel.  

2.2.7.4.  SDS-PAGE 

To analyze proteins according to their molecular weight, sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) was used. Two-layered polyacrylamid gels, containing an upper 

stacking part (1/3) and a lower resolving part (2/3), were cast using the Bio-Rad Mini-PROTEAN® 

Tetra electrophoresis system. Gels were prepared according to the protocol in Table 19. 
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Table 19: Protocol for one SDS gel composed of 12% resolving gel and 4% stacking gel. 

Compounds Resolving gel Compounds Stacking gel 
Resolving Buffer 1.30 ml Stacking Buffer 500 µl 
ddH2O 1.66ml ddH2O 1.21 ml 
30% Acrylamide 2.04ml 30% Acrylamide 540 µl 
10% SDS 50 µl 10% SDS 20 µl 
APS 50 µl APS 20 µl 
TEMED 2 µl TEMED 3 µl 

 

For equal protein concentrations SDS samples from paragraph 2.2.7.1 were diluted with 2% SDS 

buffer to a final concentration of 1 mg /ml. Samples were mixed with 5x sample buffer and heated 

for 5 min to 95°C to denature the proteins. Per gel 15 µg protein per sample were loaded. Samples 

were separated by running the gel for about 180 min at 120V. For a reference of the molecular 

weight, protein marker PageRuler® Plus Prestained Protein Ladder was used. 

2.2.7.5. Western Blotting 

The SDS gel was transferred to a nitrocellulose membrane using the Mini-Trans Blot cell set up 

according to the manufacturer’s protocol. Blotting was achieved at 100V, for 1h at 4°C. To check for 

successful protein transfer from the gel to the membrane, Ponceau S staining was done. Therefore 

the membrane was briefly exposed to 0.1% [w/v] PonceauS in 5% [v/v] acetic acid. To decolorize, 

the membrane was washed with tab water, until no red dye was visible anymore.  

To reduce unspecific antibody binding, membranes were blocked with 4 % non-fat dried milk 

powder in 0.025 % PBST for 1h at RT. Primary antibodies were diluted according to the Table 7 in 

1% non-fat dried milk powder in 0.025% PBST and incubated ON at 4°C. After 3 washing steps of 

10 min each with 0.025% PBST, membranes were incubated with species-specific secondary 

horse-radish peroxidase (HRP) coupled antibodies listed in Table 8 for 1h at RT. Membranes were 

washed again 3 times for 10min with 0.025% PBST. To detect chemiluminescence equal amounts 

of ECL substrate was mixed and was added to the membrane. After a brief incubation time of 

1 min, chemiluminescence signal was detected with the ChemiDocTM MP. After chemiluminescence 

was detected the marker was imaged, while keeping the membrane at the same position. This 

image was merged to the image of the chemiluminescence.  

In case of weak signals, Amersham™ ECL Prime Western Blotting Detection Reagent was added 

as substrate for higher sensitivity. 

To re-stain a membrane e.g for a house-keeper protein, the membrane was washed 3 times for 

15 min with 0.025% PBST, prior to blocking and re-incubation with another primary antibody. 

For quantification of protein levels, signal intensity of the bands were measured in a 16-bit image 

with 1200 dpi using Fiji software. The intensity of the protein of interest was normalized to the 

intensity of a house-keeper protein of the individual sample. 
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2.2.1. Olink® MOUSE EXPLORATORY Analysis service 

Olink® provides a Proximity Extension Assay (PEA)-based platform screening for 92 biomarkers in 

mouse samples. For this assay RIPA fractions obtained by sequential Aβ-isolation (see section 

2.2.7.1) were used. The total protein concentration was measured by BCA assay as described 

before and adjusted to 1 µg/µl. Samples were shipped on dry ice to Olink® and analyzed by the 

company.  

The assay uses two complementary oligonucleotide-labeled antibodies (probes) specifically binding 

to the target protein. Thereby nucleotide-hybrids are built in case of close proximity. These hybrids 

are amplified by DNA polymerization and quantified by real-time PCR. The multiplex-assay allows 

for simultaneous analysis of 92 proteins. The proteins screened included markers for inflammation, 

chemotaxis and cell mortality. 

2.2.2. Ethics Statement  

All experiments were conducted as approved by the Government of Lower Saxony, Germany. The 

Approval ID is G14-1738.  

Animals with the genotype CreERT2/+ Rab7 fl/fl 5xFAD het mice were used for all experiments. They 

were housed under standard conditions in ventilated cages with 2-5 animals each. Animals were 

held in temperature-controlled and air pressure controlled environment on a 12 h light/dark cycle 

with food and water available ad libitum. 

2.2.3. Statistics 

For statistical analysis GraphPad Prism® 6 (GraphPad Software, Inc.) was used. To compare 

Rab7ΔMG x 5xFAD and age-matched Rab7fl/fl x 5xFAD controls of the same sex unpaired student's 

t -test was used. A p value of <0.05 indicated statistical significance. All values are represented as 

mean ± SEM. N is the number of analyzed samples from the same biological sample, n is the 

number of biological samples.  
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3. Results 

3.1. Generation and validation of the Rab7ΔMG x 

5xFAD mouse model 

To investigate the degradation capacities of microglia on amyloid burden in vivo, the triple 

transgenic mouse model Rab7ΔMG x 5xFAD was generated. The microglia-specific KO of the endo-

lysosomal GTPase Rab7 (Rab7ΔMG) was induced by i.p. administration of tamoxifen at P21 as 

illustrated in Figure 13. To investigate the role of this cellular pathway on amyloid pathology these 

mice were further crossed with the 5xFAD mouse model, overexpressing human APP harboring 

3 FAD mutations and PSEN1 with two FAD mutations. This triple transgenic mouse line was called 

Rab7ΔMG x 5xFAD. Animals with tamoxifen induced Cre-recombination will be referred to as 

Rab7ΔMG x 5xFAD (labeled in red) and sham treated control animals will be addressed as Rab7 fl/fl x 

5xFAD (labeled in blue). 

Figure 13: Experimental setup. 

To generate the Rab7ΔMG x 5xFAD mouse line animals with the following genotype were crossed: CreERT2/+ Rab7 fl/fl and 

5xFAD het. To induce the microglial KO of Rab7 (Rab7MG) animals were i.p. injected at P21 with tamoxifen dissolved in 

corn oil for 7 consecutive days (Rab7ΔMG x 5xFAD). Littermate control animals were injected with the same dose of corn 

oil (Rab7fl/fl x 5xFAD). The first cohort was dissected at 3 months of age, the second cohort was sacrificed at 9 months 

of age. From both cohorts brain tissue was collected and was used either for protein biochemistry or for Golgi-Cox 

analysis and for immunohistochemistry. 
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The Rab7ΔMG x 5xFAD mouse line was investigated at two different time-points: one cohort was 

investigated at 3 months which is the earliest time point of Aβ-plaque deposition and the second 

cohort was investigated at 9 months of age when neuronal loss was observed in the 5xFAD mouse 

line (Oakley et al., 2006).  

To our knowledge, there is no antibody against Rab7 available which is suitable for 

immunohistochemistry. Hence, Rab7ΔMG was validated by immunohistochemistry staining the endo-

lysosomal markers CD68 and LAMP1. To verify degradation impairment we quantified the volumes 

of CD68+ and LAMP1+ endo-lysosomes as well as Aβ-peptide accumulations in these endo-

lysosomes. 

3.1.1. Microglia of Rab7ΔMG x 5xFAD mice showed 
increased CD68 positive endo-lysosomes 

Immunohistochemical analysis of a co-staining for CD68, Iba1 (Ionized calcium-binding adaptor 

molecule 1 or allograft inflammatory factor 1 (AIF-1)) as a microglial marker and 6E10 which binds 

to the N-terminus of APP was done (Figure 14 A). Given that CD68 is also a marker for microglia 

activation, which is upregulated in aging and in disease, Aβ-plaque distant Iba1-positive (+) 

microglia were selected for analysis to assess for enlarged lysosomes in microglia from Rab7ΔMG x 

5xFAD mice. The CD68 volume within these cells was measured using Imaris software for 3D 

reconstruction. The analysis showed significantly bigger CD68 vesicles in Iba1+ microglia of 

9 month old Rab7ΔMG x 5xFAD animals compared to Rab7fl/fl x 5xFAD controls (Figure 14 B).  

 

 

Figure 14: CD68 volumes were strongly increased in Iba1+ microglia. 

A) Confocal images of immunohistochemistry for CD68 (green), Iba1 (red) and 6E10 (white) on brain tissue of 9 month 

old Rab7fl/fl x 5xFAD (left) and Rab7ΔMG x 5xFAD (right) females. Arrowhead (<) indicates CD68-positive (+) vesicles 

inside Iba1+ microglia. The selected cell is magnified in the upper right corner. Scale bar: 10 µm. B) Quantification of 

average CD68 volume [µm³] in Iba1+, Aβ-plaque (6E10) distant cells within cortex layer V-VI shows significant 

enlargement of CD68 in the Rab7ΔMG x 5xFAD animals (red) compared to the Rab7fl/fl x 5xFAD controls (blue). Data are 

presented as mean ± SEM. n≥6 animals, N=10 cells per animal. Unpaired student‘s t-test. ***p<0.001. 
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3.1.2. Enlargement of LAMP1 positive lysosomes were 
found in Rab7ΔMG x 5xFAD mice 

To further confirm the KO of Rab7 in microglia of Rab7ΔMG x 5xFAD mice, immunohistochemistry for 

the lysosomal marker LAMP1 (lysosomal-associated membrane protein) in Iba1+ microglia was 

done (Figure 15). By disrupting the fusion of the late endosome with the lysosome in Rab7ΔMG 

animals, the lysosomes are functionally impaired, accumulate and increase within the cell over time 

(Safaiyan et al., 2016). Rab7ΔMG x 5xFAD animals showed larger volumes of LAMP1+ lysosomes 

within Iba1+, Aβ-plaque distant microglia (Figure 15 E-I) compared to control Rab7fl/fl x 5xFAD 

animals at 9 months of age (Figure 15 A-D; I). We analyzed Aβ-plaque distant microglia, to 

measure the basal lysosomal activity in the model, independent of immediate physical contact to 

Aβ-plaques. 

3.1.3. Aβ degradation is disturbed in Rab7ΔMG x 5xFAD 
mice 

 

Given that microglia are the main phagocytes of the brain which are highly active in removing 

Aβ-peptides in AD, validation of the functional deficit in the endo-lysosomal pathway in Rab7ΔMG x 

5xFAD mice in terms of Aβ clearance was done using immunohistochemistry for LAMP1, Aβ42 and 

Iba1 (Figure 16 A-H). Quantification revealed doubled fluorescence intensity of Aβ42 within 

LAMP1+ vesicles inside Iba1+ microglia (indicated by <) verifying significant accumulation of Aβ42 

Figure 15: LAMP1+ lysosomes were enlarged in Rab7ΔMG x 5xFAD microglia. 

A+E) Merge images of immunohistochemical co-stainings for B+F) nuclei stained with DAPI (blue), C+G) microglial 

marker Iba1 (red) and D+H) lysosomal marker LAMP1 (green). Images were obtained by confocal microscopy. Scale 

bar: 10 μm. I) Quantification of LAMP1 volume [μm³] in Iba1+ microglia was assessed by Imaris software. N≥10 cells of 

n≥7 females at 9 months of age were analyzed. Data are presented as mean ± SEM. Statistically significant differences 

between Rab7fl/fl
 x 5xFAD and Rab7ΔMG

 x 5xFAD females were determined using the unpaired student‘s t-test. *p<0.05. 
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inside microglia of Rab7ΔMG x 5xFAD (Figure 16 K). Measuring the relative area occupied by Aβ42 

inside microglial lysosomes supported this finding (Figure 16 L). In addition to the findings of 

enlarged CD68+ and LAMP1+ vesicles, we concluded that Rab7ΔMG x 5xFAD mice indeed showed 

functional impairment of the endo-lysosomal apparatus in microglia in terms of Aβ degradation. 

3.2. Plaque pathology in the Rab7ΔMG x 5xFAD mice 

was reduced 

After characterizing the properties of Rab7ΔMG impaired microglia in 5xFAD mice, the next question I 

addressed was whether Aβ-plaque pathology was altered in these animals compared to Rab7fl/fl x 

5xFAD littermates. Microglia are highly phagocytic active in AD clearing extracellular Aβ 

Figure 16: Aβ clearance was disrupted in Rab7ΔMG x 5xFAD microglia.  

A-J) Fluorescence staining for LAMP1 (green) and Iba1 (red) and Aβ42 (blue) on brain sections of 9 month old Rab7fl/fl x 

5xFAD (left) and Rab7ΔMG x 5xFAD (right) females. A+F) Merge images of C+H) LAMP1 (green), D+I) Iba1 (red), 

E+J) Aβ42 (white) stainings and B+G) nuclei stained with DAPI (blue) are shown. One confocal plane was imaged as tile 

scan and all Iba1+ cells within the cortical layers I-VI were analyzed. Scale bar: 10 µm. K) Quantification of Aβ42 

fluorescence intensity within LAMP1+ vesicles inside Iba1+ cells is shown. L) Quantification of the relative area positive 

for Aβ42 inside microglial LAMP1+ vesicles. Data are shown as mean ± SEM. n ≥ 9 animals, N ≥ 72 cells per animal. 

Unpaired student’s t-test. **p ≤ 0.01, ***p ≤ 0.001. 
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(Frackowiak et al., 1992; Wisniewski et al., 1991). Therefore, we hypothesized that disruption of 

Aβ-degradation after uptake in Rab7ΔMG x 5xFAD mice would cause reduced Aβ-clearance and 

thereby lead to increased Aβ-plaque burden. To investigate this, the numbers of Aβ-plaques, their 

architecture and composition were analyzed.  

3.2.1. Microglial Rab7ΔMG reduces Aβ-plaque numbers 
throughout disease progression in females of 5xFAD 

To investigate whether disruption of the Rab7-dependent degradation pathway in microglia resulted 

in changes in the Aβ-plaque load in Rab7ΔMG x 5xFAD mice, immunohistochemistry for Aβ using a 

6E10 antibody was done (Figure 17). The Aβ-plaque numbers in the cortex and the hippocampus 

were counted in 3 and 9 month old females and males, respectively. Whereas there was no 

significant difference detectable in the Aβ-plaque load in the young females, the aged Rab7ΔMG x 

5xFAD females showed significantly less Aβ-plaques compared to age-matched Rab7fl/fl x 5xFAD 

controls in the cortex (Figure 17 E). In the hippocampus a nearly significant reduction (p=0.0516) of 

6E10+ Aβ-plaques was found in 9 month old Rab7ΔMG x 5xFAD compared to Rab7fl/fl x 5xFAD 

controls (Figure 17 F). This effect was surprising, since we hypothesized to find more Aβ-plaques 

in Rab7ΔMG x 5xFAD animals, due to their impairment in protein clearance. This effect was only 

observed in females though. No differences in 6E10+ Aβ-plaques numbers were found in 3 or 

9 month old males (Figure 17 K+L). Moreover, Aβ-plaque load was in general lower in males 

compared to females of the same age. Therefore we concluded that Rab7ΔMG x 5xFAD had a 

sex-dependent effect on Aβ-plaque formation resulting in fewer Aβ-plaques in Rab7ΔMG x 5xFAD 

females compared to Rab7fl/fl x 5xFAD females while there was no effect detectable in males. 
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Figure 17: Aβ-plaque numbers were reduced in aged Rab7ΔMG x 5xFAD females. 

A-B) Representative fluorescence staining for 6E10 (white) on brain sections of of 3 month old Rab7fl/fl x 5xFAD and 

Rab7ΔMG x 5xFAD females. C+D) Staining on tissue of 9 month old females. Images were obtained by automated 

microscopy using the Axioscan Z1. Scale bar: 500 µm. E) Quantification of 6E10 positive plaques / area [mm²] within 

the cortex of 3 month old females (left) and of 9 month old females (right). F) Analysis of plaque numbers / area [mm²] 

within the hippocampus by 3 and 9 months. G-H) Histological stainings for 6E10 on brain tissue of 3 month old 

old Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD males. I+J) Equivalent staining on samples of 9 month old 

males. K) Quantification of 6E10+ plaque numbers / area [mm²] within the cortex of 3 month (left) and 9 month (right) 

males. L) Quantifiaction of plaque numbers within the hippocampus. Control Rab7fl/fl x 5xFAD animals are shown in blue 

(3 months) or dark blue (9 months) and Rab7ΔMG x 5xFAD are presented in pink (3 months) or red (9 months). Filled 

graphs represent the female cohorts, striped bars show male cohorts. Data are shown as mean ± SEM. n ≥ 8 animals with 

N = 2 sections / animal for both sexes at 3 month cohorts. n ≥ 4 animals with N ≥ 3 sections / animal for both sexes at 

9 month cohorts. Unpaired student’s t-test. *p ≤ 0.05. Analysis of 3 month cohort was done by Michaela Limmer. 
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3.2.2. Aβ-plaques were altered in morphology and 
composition 

We wondered whether the spatial morphology and composition of mature Aβ-plaques were altered 

due to Rab7 KO in 9 month old Rab7ΔMG x 5xFAD mice. Therefore I did immunohistochemical co-

stainings for Aβ42, 6E10 as a general marker of Aβ and APP, and for ThioflavinS (ThioS) to label the 

dense core of Aβ-plaques (Figure 18). To rule out Aβ-plaque overlap, due to high plaque density, 

Aβ-plaques within cortex layer V-VI were analyzed. We found significantly smaller Aβ-plaques in 

Rab7ΔMG x 5xFAD females (Figure 18 A-D). More precisely, these Aβ-plaques featured smaller 

dense cores (Figure 18 B) and smaller overall size (Figure 18 C). The Aβ-plaque halos, which are 

defined as Aβ-peptides of a plaque clustering around the dense core, were significantly smaller in 

females (Figure 18 D). We found the halos of the Aβ-plaques were more heterogeneous, with 

areas which appeared to be less condensed in Rab7ΔMG x 5xFAD females. Measuring the signal 

intensity of 6E10 to plaque area within the Aβ-plaque, we detected significantly more signal in 

Rab7ΔMG x 5xFAD females compared to Rab7fl/fl x 5xFAD females due to the overall smaller plaque-

area (Figure 18 E). By normalizing to 6E10 signal to the plaque number, we did not find differences 

(Figure 18 F). These findings suggest for changes in the global Aβ-plaque architecture in 9 month 

old female Rab7ΔMG x 5xFAD mice. 

In male Rab7ΔMG x 5xFAD mice Aβ-plaques did not show any difference in their sizes and 

architecture compared to Aβ-plaques in Rab7fl/fl x 5xFAD males (Figure 18 G-L). 

Consequently, the Rab7ΔMG in 5xFAD had a sex-dependent effect on Aβ-plaque composition. 

Hence, Aβ-plaque are smaller with changes in global morphology in Rab7ΔMG x 5xFAD females 

compared to Rab7fl/fl x 5xFAD females at 9 months. 
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Figure 18: Aβ-plaques were smaller and showed altered morpholgy in Rab7ΔMG x 5xFAD females. 

A+G) Representative images of histological staining for ThioS (green), Aβ42 (red) and 6E10 (blue) in 9 month old  

Rab7fl/fl x 5xFAD (left) and Rab7ΔMG x 5xFAD (right) animals. Images were taken within cortex layer V-VI above the CA1 

region using a confocal microscope with 63x oil objective. Here representative maximum projections of z-stacks are 

shown. Scale bar: 10 µm. B+H) Inner plaque diameter defined by ThioS signal are shown. C+H) The average outer 

plaque diameter was measured according to 6E10 and Aβ42 signals. D+J) The difference between the outer and the 

inner Aβ-plaque diameter gave information about the thickness of the halo. The halo is defined as the area of Aβ-

peptides which do not belong to the ThioS+ dense core of an Aβ-plaque. E+K) Fluorescence intensity of 6E10 signal  

within the whole Aβ-plaque area was  reduced due to smaller plaque size. F+K) When normalized to the plaque 

numbers, 6E10 fluorescence intensity did not show over all changes. Data are presented as mean ± SEM. Rab7fl/fl x 

5xFAD controls are shown in blue/blue stripes and Rab7ΔMG x 5xFAD are displayed in red/red stripes. n ≥ 7 animals per 

condition. N ≥ 5 plaques per animal. Unpaired student‘s t-test. *p < 0.05, **p ≤ 0.01. 
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3.2.3. No differences in concentrations of soluble and 
insoluble Aβ-peptides were found in RabΔMG x 5xFAD 

We next examined soluble and insoluble Aβ38, Aβ40 and Aβ42 concentrations in the hippocampus of 

3 month and 9 month old animals.  

In order to analyze this, different soluble Aβ-fractions from snap-frozen hippocampal tissue were 

isolated (illustrated in Figure 19). Therefore a well-established protocol for sequential Aβ-isolation 

based on extraction with RIPA buffer, SDS buffer and 70% formic acid (FA) in addition to 

ultracentrifugation steps, was used (Figure 19). 

The obtained fractions were analyzed for Aβ38, Aβ40 and Aβ42 by MSD technology (Mesoscale, 

Gaithersburg, MD, USA). MSD is an electrochemiluminescence (ECL) assay which combines the 

high sensitivity of ECL with a sandwich enzyme-linked immunosorbent assay (ELISA). Therefore 

analysis of a broad detection range is possible. Due to defined physical locations Aβ-species 

specific capturing antibodies coated to the wells, simultaneous measurement of Aβ38, Aβ40 and Aβ42 

within one well is possible. Due to the high sensitivity of the assay the sequential fractions were 

diluted in the respective buffers. The formic acid fraction was diluted in pH neutral Tris buffer. To 

receive comparable results, the measured values were normalized to the total protein amount of the 

homogenate measured by BCA assay of the respective samples. 

 

Analyzing the probes of 3 month old females, Aβ38 was only detectable in SDS buffer extracts 

(Figure 20 A, E, I, M). Between Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD there was no difference 

found in the levels of Aβ38 normalized to total protein content (Figure 20 E). Also the levels of Aβ40 

and Aβ42 did not show any differences between the genotypes within extracts in RIPA buffer 

(Figure 20 B, C), SDS buffer (Figure 20 F, G) and formic acid (Figure 20 I, J). Additionally, the 

analysis of the Aβ42 to Aβ40 ratio did not detect differences within the respective fractions at 3 month 

Figure 19: Workflow of sequential Aβ 

isolation from brain homogenates. 

Snap frozen hippocampi were homogenized 

in PBS buffer. Homogenates were mixed 

with RIPA buffer and after initial cell lysis 

centrifuged to remove cellular debris. The 

RIPA supernatants containing cytosolic and 

membrane-bound proteins were snap frozen 

for future analysis. RIPA insoluble pellets 

were further processed with SDS buffer and 

centrifugation obtained SDS supernatants 

were snap frozen. The remaining pellets 

were mixed with 70% formic acid and snap 

frozen. All samples were stored at -80°C until 

further use. 
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old animals (Figure 20 D, H, K). Finally, we addressed the question whether Rab7ΔMG x 5xFAD 

females showed alterations within the aggregation status of Aβ40 and Aβ42. Therefore the relative 

concentrations of the analyzed Aβ-peptides within the single solvents were set into relation to the 

overall amount of Aβ-peptide (Figure 20 L-N). In conclusion, we could not detect any differences in 

the levels and aggregation states of Aβ38, Aβ40 and Aβ42 in the hippocampus at 3 month old 

Rab7ΔMG x 5xFAD females compared to Rab7fl/fl x 5xFAD controls. 

 

 To elucidate whether the deposition of Aβ38, Aβ40 and Aβ42 had changed throughout disease 

progression, MSD measurements from fractions of hippocampal tissue of 9 month old Rab7ΔMG x 

5xFAD females were analyzed, too (Figure 21). In contrary to the samples at 3 months by 9 

Figure 20: MSD analysis of 3 month old females did not show differences in the aggregation states of Aβ38, Aβ40 

and Aβ42. 

A-C) Amounts of Aβ38, Aβ40 and Aβ42 normalized to total protein concentration [ng/mg] within the RIPA fraction are 

illustrated. D) The Aβ42 / Aβ40 ratio in the RIPA fraction is shown. E-H) Graphs of the amounts of Aβ38, Aβ40 and Aβ42 as 

well as the Aβ42 / Aβ40 ratio in the SDS extracts are shown. I-L) The respective measurements in the formic acid 

fractions of 3 month old females are presented. A+I) Aβ38 was not detectable in the RIPA and formic acid fraction, 

indicated by N/A (not applicable). Graphs are presented as mean ± SEM with the individal samples added to the blot as 

circles. M-O) Ratio [%] of Aβ38, Aβ40 and Aβ42 in the respective, measured fractions are shown. The percentage within 

the RIPA fraction is shown in white, the amount in the SDS fraction is colored in light grey and the ratio in formic acid is 

illustrated in dark grey with the precise values written next to the bars. The bars framed in blue show the measurements 

of Rab7fl/fl x 5xFAD females, the bars in pink represent the Rab7ΔMG x 5xFAD animals. n≥ 8 animals. Measurements in 

duplicates. 
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months Aβ38 was also present in the RIPA buffer extracts (Figure 21 A). In RIPA and SDS fractions 

there were no differences between the two conditions though in the levels of Aβ38 (Figure 21 A, E). 

Also the levels of Aβ40 and Aβ42 showed no differences between the conditions in none of the three 

extracts (Figure 21 B, C; F, G; I, J). The Aβ42 / Aβ40 ratio did also not differ between Rab7fl/fl x 

5xFAD and Rab7ΔMG x 5xFAD females at 9 months of age. The distribution of Aβ38, Aβ40 and Aβ42 

within the three fractions did not show alterations either (Figure 21 L-N).  

Therefore we can conclude that there were no differences in soluble and insoluble Aβ38, Aβ40 and 

Aβ42 between Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD females at 9 months.  

 

Figure 21: The amounts of soluble and insoluble Aβ38, Aβ40 and Aβ42 in 9 month old Rab7ΔMG x 5xFAD females 

were not changed. 

A-D) Amounts of Aβ38, Aβ40 and Aβ42 normalized to the total protein concentration [ng/mg] and the ratio of Aβ42 / Aβ40 in 

the RIPA fractions are shown. E-H) Identical measurements of the SDS fractions are presented. I) No Aβ38 was 

detectable in the formic acid fraction (N/A). J-L) Measurements of Aβ40, Aβ42 and the Aβ42 / Aβ40 ratio within the formic 

acid fractions in 9 month old females are illustrated. Graphs are shown as mean ± SEM with the individal measurements 

added to the blot as circles. M-O) Distribution [%] of Aβ38, Aβ40 and Aβ42 within the RIPA fraction (white), the SDS fraction (light 

grey) and the fromic acid fraction (dark grey) are shown. The exact values are next to the graphs. The bars in dark blue frames 

show Rab7fl/fl x 5xFAD females, the bars in red frames present Rab7ΔMG x 5xFAD females at 9 months. n≥ 6 animals. 

Measurements in duplicates. 
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The male cohorts were analyzed likewise. For 3 month old Rab7ΔMG x 5xFAD males, we also could 

not detect differences to their Rab7fl/fl x 5xFAD litter mates in the protein levels of Aβ38, Aβ40 and 

Aβ42 in the RIPA buffer fraction (Figure 22 A-C), the SDS buffer fraction (Figure 22 E-G) and in the 

formic acid fraction (Figure 22 I-K), respectively. Also the Aβ42 to Aβ40 ratios within all three 

solvents were the same for Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD males (Figure 22 D, H, L). The 

distributions of Aβ40 and Aβ42 within the three fractions showed no changes between Rab7fl/fl x 

5xFAD and Rab7ΔMG x 5xFAD males (Figure 22 N, O). Aβ38 was exclusively found in the SDS 

fraction (Figure 22 A, E, I, M).   

Figure 22: No differences in the aggregation states of Aβ38, Aβ40 and Aβ42 were found in 3 month old Rab7ΔMG x 

5xFAD males. 

A-D) Amounts of Aβ38, Aβ40 and Aβ42 as well as of Aβ42 / Aβ40 in the RIPA extracts were determined by MSD. 

E-H) Measurements of Aβ38, Aβ40 and Aβ42 and of Aβ42 / Aβ40 in SDS fractions are shown. J-L) Quantification of Aβ40, 

Aβ42 and the Aβ42 / Aβ40 ratio in the formic acid fractions are presented. A+I) Aβ38 was not detectable in the RIPA and 

the formic acid fractions (N/A). Graphs are shown as mean ± SEM with the individal measurements added as squares to the 

graphs. M-O) Fractions [%] of Aβ38, Aβ40 and Aβ42 within the RIPA fraction (white), the SDS fraction (light grey) and the fromic 

acid fraction (dark grey) are presented. The calculated values are written next to the graphs. The graphs in blue frames 

represent 3 month old Rab7fl/fl x 5xFAD males and the bars in pink frames show the Rab7ΔMG x 5xFAD males. n≥ 7 

animals. Measurements in duplicates. If values were below detection range, they were excluded from the graphs.  
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Finally, the MSD measurements of soluble and insoluble Aβ obtained from hippocampi of the 9 

month old males were analyzed the same way. In agreement with the previous data, no differences 

were detected in the absolute concentrations and the distributions of Aβ38, Aβ40 and Aβ42 (Figure 

23). Likewise to the female cohorts, we did not detect differences in male Rab7fl/fl x 5xFAD and 

Rab7ΔMG x 5xFAD mice, neither at 3 nor at 9 months within the different soluble fractions of Aβ38, 

Aβ40 and Aβ42.  

 

In summary, MSD analysis did not identify differences in the solubility of Aβ38, Aβ40 and Aβ42 

between Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD neither in females nor in males at 3 and 9 months, 

respectively. Also the ratios of Aβ42 / Aβ40 were widely unchanged. Therefore we could conclude 

that Aβ-processing per se was not affected by the Rab7ΔMG x 5xFAD.  

Figure 23: Aggregation states of Aβ38, Aβ40 and Aβ42 were not changed in 9 month old Rab7ΔMG x 5xFAD males. 

A-D) RIPA fraction analyses for Aβ38, Aβ40, Aβ42 and Aβ42 / Aβ40 are displayed. E-H) Simultaneous measurements of the 

SDS fractions. I) In the formic acid fraction Aβ38 was not detectable (N/A). J-L) Quantification of Aβ40, Aβ42 and the Aβ42 

/ Aβ40 ratio in the formic acid fractions. Graphs are shown as mean ± SEM with the individal measurements added as squares 

to the graphs. M-O) Proportions [%] of Aβ38, Aβ40 and Aβ42 within the RIPA fraction (white), the SDS fraction (light grey) and the 

fromic acid fraction (dark grey) are presented. The calculated values are written beside the graphs. Bars with dark blue frames 

show Rab7fl/fl x 5xFAD males and bars with red frames present Rab7ΔMG x 5xFAD males at 9 months. n≥ 8 animals. 

Measurements in duplicates. 
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3.3. Neuronal, dendritic spine and synaptic loss 

were not altered in the Rab7ΔMG x 5xFAD mice 

One of the most prominent hallmarks of AD is neuronal loss (Alzheimer et al., 1995). Other forms of 

neuronal damage occur along AD progression. For instance loss of synapses and dendritic spines 

are well reported throughout disease (Jacobsen et al., 2006; Lue et al., 1999; Mucke et al., 2000). 

Therefore we wanted to elucidate whether Rab7ΔMG x 5xFAD animals differ from Rab7fl/fl x 5xFAD 

controls in respect to synaptic density and neuronal loss. 

3.3.1. Neuronal loss was not reduced in Rab7ΔMG x 5xFAD 
mice   

To address whether Rab7 KO in microglia increased neuronal loss in our Rab7ΔMG x 5xFAD mouse 

model, immunohistochemistry for NeuN (neuronal nuclear antigen) was done (Figure 24). By 

9 months of age 5xFAD mice reveal a significant loss of neurons in cortical layer V and in the 

subiculum (Oakley et al., 2006). Therefore, Rab7ΔMG x 5xFAD mice and their respective controls 

were analyzed in these two brain regions for neuronal loss. Comparing 3 month to 9 month old 

mice, neuronal loss was clearly visible in the older animals for both sexes (Figure 24 A-LFigure 24 

O-Z). 

By 3 months females showed no differences in NeuN+ cells / area between Rab7fl/fl x 5xFAD and 

Rab7ΔMG x 5xFAD in cortex (Figure 24 C, E, M) or subiculum (Figure 24 D, F, N). Cell counts are 

moderately reduced in the cortex (Figure 24 I, K, M) and strongly diminished in the subiculum 

(Figure 24 J, L, N) 6 months later. Even though Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD females 

showed no difference in the cortex, there was a trend towards less neuronal loss in the subiculum 

of Rab7ΔMG x 5xFAD females, though.  

For male animals of the Rab7ΔMG x 5xFAD mouse line there was no difference of NeuN+ cells /area 

detectable within the cortex (Figure 24 Q, S, A’) or within the subiculum (Figure 24 R, T, B’) by 

3 months of age. Within the subiculum neuronal loss was more prominent (Figure 24 X, Z, B’). 

However, no difference was measured between the Rab7fl/fl x 5xFAD and the Rab7ΔMG x 5xFAD 

mice at 9 months in these two regions (Figure 24 W, Y, A’). 

Thus, we can conclude that Rab7ΔMG x 5xFAD has no impact of neuronal loss neither in males nor 

females. 
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3.3.2. Rab7ΔMG x 5xFAD showed mild effects on dendritic 
spine loss 

Another prominent feature of AD is the loss of dendritic spines. In the 5xFAD mouse model 

dendritic spines are significantly reduced in 14 month old mice compared to WT controls 

(Spangenberg et al., 2016).  

To investigate whether Rab7ΔMG x 5xFAD showed alterations in this pathological feature, Golgi-Cox 

analysis was done with tissue of 9 month old animals (Figure 25 A, B, E, F). The overall numbers 

of dendritic spines were not significantly altered in females and males due to the Rab7 KO (Figure 

25 C+G). However, when the specific spine forms were analyzed, Rab7ΔMG x 5xFAD females 

showed significantly more mushroom spines (Figure 25 D), whereas males had no detectable 

differences within dendritic spine classes (Figure 25 H). 

Figure 24: Rab7ΔMG x 5xFAD mice did not decelerate neuronal loss.  

A, B, O, P) Maximum intensity projections of confocal images of 3 month old animals stained for NeuN (red) are 

shown. G, H, U, V) Representative images of NeuN stainings in 9 month old Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD 

animals are shown. C, E, I, K, Q, S, W, Y) Close-ups within the cortex and  D, F, J, L, R, T, X, Z) within the subiculum 

are shown underneath the respective tile scan. Magnified areas within the macroscopic images are labeled with white 

rectangles. Scale bar of macroscopic images: 500 µm; scale bar of the close-ups: 500 µm. M, A’) Neuronal loss 

quantified in the cortex and N, B’) in the subiculum of 3 and 9 month old Rab7fl/fl x 5xFAD (blue/ dark blue) and 

Rab7ΔMG x 5xFAD (pink/red) females (filled bars) and males (striped bars), respectively. N ≥ 3 sections for cortex and 

N = 2 sections for subiculum per animal. n = 7 females, n = 8 males. Data are presented as mean ± SEM. 
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3.3.3. Synaptic loss was not altered due to Rab7 KO 

Loss of synapses is another hallmark of AD. Therefore, Western blot analysis for synaptic protein 

Synaptophysin was done to check for alterations within in Rab7ΔMG x 5xFAD mice compared to 

Rab7fl/fl x 5xFAD controls. There was no difference detectable in levels of Synaptophysin between 

Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD neither in females (Figure 26 A) nor in males (Figure 26 

B) at 9 months of age. Therefore we concluded that the Rab7ΔMG did not reduce synaptic loss in the 

5xFAD mouse model. 

 

 

Figure 25: Mushroom spine loss was reduced in Rab7ΔMG x 5xFAD females. 

A, B, E, F) Dendrites were impregnated with mercury containing Golgi-Cox solution to visalize neuronal morphology. 

Brain sections of 9 month old females and males of the Rab7ΔMG x 5xFAD mouse line were imaged within cortical layers 

IV-VI with 100x magnification. Secondary apical dendrites were chosen for analysis. Here, z-stack projections are 

shown. Scale bar: 5 µm. C, G) Quantification of absolute dendritic spine numbers per 10 µm dendrites were analyzed 

from female and male samples. D) Classification of the quantified dendritic spines depending on ratio of spine length 

and thickness is illustrated. D, H) Quantification according to dendritic spine types is shown of Rab7fl/fl x 5xFAD and 

Rab7ΔMG x 5xFAD females and males. Data are shown as mean ± SEM. n = 3 animals per condition, N = 5 dendrites per animal. 

Unpaired student’s t-test. *p ≤ 0.05. Analysis was done according to Risher et al. (2014). Quantification was done by 

Michaela Limmer. 
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3.4. Phenotypical characterization of microglia in the 

Rab7ΔMG x 5xFAD model  

After validation of the microglial Rab7 KO in 5xFAD mice, I next addressed the question whether 

the Rab7 KO per se had an effect on microglia numbers, recruitment to Aβ-plaques and 

morphology. In addition, we analyzed whether Rab7ΔMG x 5xFAD resulted in differential protein 

profiles in the brain of 5xFAD mice. To further investigate whether these features changed 

throughout disease progression, animals at 3 months and at 9 months of age were analyzed.  

3.4.1. Rab7ΔMG x 5xFAD had no effects on absolute 
microglia numbers or on their recruitment  

Since the cortex and hippocampus are brain regions affected early in the 5xFAD mouse model by 

Aβ-pathology, these regions were analyzed at 3 and 9 months of age by immunohistochemistry 

(Figure 27 and Figure 28) (Oakley et al., 2006).  

The absolute number of Iba1+ cells / area did not show differences in the cortex and the 

hippocampus in females and males at 3 months, respectively (Figure 27 A-J; M-V). To further 

elucidate whether the Rab7ΔMG had an impact on the recruitment of microglia around Aβ-plaques, 

the number of Aβ-plaque-associated microglia (PAM) / Aβ-plaque was quantified. We defined PAM 

as all Iba1+ cells within a 50 µm radius of a 6E10+ Aβ-plaque. Since 6E10 is an antibody 

recognizing amino acids 3-8 within the Aβ-peptide sequence and therefore also unprocessed, 

Figure 26: Synaptic loss was not decelerated by Rab7ΔMG in 5xFAD mice. 

A) Prepresentative Western blots probed for Synaptophysin (Syn) and Calnexin (Cal) as housekeeper on 3 individual 

samples of 9 month old Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD females. Quantification of Synatophysin normalized to 

the Calnexin signal of Rab7fl/fl x 5xFAD (blue) and Rab7ΔMG x 5xFAD (red) females. B) Western blots and quantifications 

of Syn and Cal on samples at 9 month old Rab7fl/fl x 5xFAD (blue striped) and Rab7ΔMG x 5xFAD (red striped) males. 

n ≥ 8 animals. Data are presented as mean ± SEM. 
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intracellular APP in neurons, extracellular Aβ-plaques were selected by morphology. There was no 

difference in the number of Iba1+ PAM cells / Aβ-plaque in the cortex or the hippocampus at 

3 months of age in neither females nor males (Figure 27 K, L, W, X). 

 

By 9 months Aβ-plaques can be found throughout most regions of the brain of the 5xFAD mouse 

model. Thus, we investigated whether the number of Iba1+ microglia has changed throughout the 

progression of the disease. There was no significant difference detectable in Iba1+ cell numbers / 

area in the cortex or the hippocampus of females or males (Figure 28 A-J; M-V). Interestingly 

though, the numbers of Iba1+ cells / area were higher in females at 9 months compared to those at 

3 months. This is true for Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD females for both investigated 

brain regions (Figure 27 I, J; Figure 28 I, J). There was no difference in Iba1+ cell numbers in male 

animals (Figure 27 U, V; Figure 28 U, V). Additionally, there was no significant difference in the 

number of Iba1+ PAM / Aβ-plaque at 9 months in female and male animals, respectively (Figure 28 

K, L, W, X).  
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Figure 27: Cell numbers and recruitment of Iba1+ microglia to Aβ-plaques were not affected in 3 month  

Rab7ΔMG x 5xFAD mice. 

A-H) Immunohistochemical stainings on brain sections (cortex and hippocampus) of 3 month old Rab7fl/fl x 5xFAD and 

Rab7ΔMG x 5xFAD females. A+E) Overlay images of the co-stainings for B+F) DAPI (blue), C+G) 6E10 (green) and 

D+H) Iba1 (red). Magnifications within the Aβ-plaque rich subiculum are highlighted with a white box and projected in 

the right upper corner. Scale bar: 500 µm.  I) Numbers of Iba1+ cells/ area [mm2] in the cortex and J) in the 

hippocampus were quantified for Rab7fl/fl x 5xFAD (blue) and Rab7ΔMG x 5xFAD (pink) females. K+L) Count of the 

numbers of plaque-assoicated microglia (PAM) per Aβ-plaque are presented. M-T) Likewise, immunohistochemistry for 

DAPI (blue), 6E10 (green) and Iba1 (red) are shown on sections of 3 month old Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD 

males. Scale bar: 500 µm. Quantifiations of Iba1+ cells/ area [mm2] U) in the cortex and V) in the hippocampus for 

Rab7fl/fl x 5xFAD (blue stripes) and Rab7ΔMG x 5xFAD (pink stripes) males are shown. W+X) Numbers of PAM per Aβ-

plaque in the cortex and hippocampus are shown for the male cohort. For both sexes n=5 animals with N≥1 sections 

were analyzed. Data are presented as mean ± SEM. Analysis was done by Michaela Limmer. 
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Figure 28: Cell numbers and recruitment of Iba1+ microglia to Aβ-plaques were not impaired in 9 month old 

Rab7ΔMG x 5xFAD mice. 

A-H) Representative images show immunohistochemical stainings on brain sections of 9 month old Rab7fl/fl x 5xFAD 

and Rab7ΔMG x 5xFAD females. A+E) Merge images of the co-stainings for B+F) DAPI (blue), C+G) 6E10 (green) and 

D+H) Iba1 (red). Cutout within the subiculum are highlighted with a white box and magnified in the right upper corner. 

Scale bar: 500 µm. I) Numbers of Iba1+ cells / area [mm2] in the cortex and J) in the hippocampus were quantified for 

Rab7fl/fl x 5xFAD (blue) and Rab7ΔMG x 5xFAD (red) females. K+L) Quantifications of PAM / plaque in cortex and 

hippocampus are presented. M-T) Corresponding immunohistochemical staining on brain slices of 9 month old Rab7fl/fl x 

5xFAD and Rab7ΔMG x 5xFAD males are displayed. Scale bar: 500 µm. U+V) Graphs show numbers of Iba1+ cells / 

area and W+X) of PAM / plaque in the cortex and in the hippocampus for Rab7fl/fl x 5xFAD (blue stripes) and Rab7ΔMG x 

5xFAD (red stripes) males. For both sexes n≥5 animals with N≥1 sections per animal analyzed. Data are presented as 

mean ± SEM. 
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3.4.2. Rab7ΔMG x 5xFAD did not display altered cellular 
morphology of microglia 

Since we only observed changes in Aβ-pathology and on mushroom spine loss in 9 month old 

females, we proceeded by only analyzing this cohort. As a consequence of cell activation microglia 

undergo amongst others changes in morphology: whereas resident microglia reveal thin processes, 

which are moderately ramified, activated microglia are characterized by their amoebic, round 

morphology. Thus the ramification index, which defines a spherical-like morphology of a cell having 

1 for a perfect sphere, was calculated. Therefore 3D analysis of confocal images from Iba1 staining 

was done (Figure 29 A-D), since Iba1 is expressed throughout the cytoplasm of microglia and 

thereby can be used to define the cellular morphology (Imai et al., 1996; Ito et al., 1998).  

To distinguish between Aβ-activated microglia and basal microglia activity ramification was 

quantified for PAM (Figure 29 A, B, E), and Aβ-plaque distant, non-PAM microglia (Figure 29 C, D, 

F). This analysis showed that PAM (Figure 29 B), and Aβ-plaque distant, non-PAM microglia 

(Figure 29 C), were highly activated according to their morphological shape with an average of 

approximately 1. However, there were no differences measurable between Rab7fl/fl x 5xFAD and 

Rab7ΔMG x 5xFAD females at 9 months of age. Thus, Rab7ΔMG x 5xFAD does not impair microglia 

activity in terms of morphological changes towards amoeboid shape.  

 

 

Figure 29: Morphology of Rab7ΔMG x 5xFAD microglia was not altered. 

A-D) 3D reconstrutions of confocal obtained z-stacks of Iba1 immunohistochemical staining from the cortex. 

A+B) Reconstrictions of PAM (yellow) and C+D) non-PAM (purple). Scale bar: 10 µm.  E) Ramification index of PAM 

was quantified. F) Ramification index of non-PAM was analyzed. The ramification index is the cell surface set into 

relation to the cell volume. A value of 1 represents a perfect sphere. Rab7fl/fl x 5xFAD animals (dark blue) and Rab7ΔMG 

x 5xFAD animals (red) were analyzed at 9 months of age. Per condition N=5 cells of n ≥ 4 animals were analyzed. Data 

are presented as mean ± SEM.  
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3.4.3. CCL2 was upregulated in Rab7ΔMG x 5xFAD mice 

The next question we addressed was how the expression pattern of different inflammation 

associated molecules change within the brain of Rab7ΔMG x 5xFAD mice compared to Rab7fl/fl x 

5xFAD controls. Therefore we used hippocampal RIPA-buffer extracts and send the samples for 

Olink® MOUSE EXPLORATORY (Olink Proteomics, Uppsala, Sweden) analysis. Olink is a 

proximity extension assay which uses biomarker specific oligonucleotide-coupled probes allowing 

for amplification by PCR. Due to the specificity of the oligonucleotides, simultaneous amplification of 

92 murine biomarkers amongst others for inflammatory response can be achieved. A list of all 

proteins analyzed including their abbreviations can be found in the appendix “Abbreviations of 

proteins analyzed by Olink® proximity ligation assay”. 

 

Overall there were no significant differences found between Rab7ΔMG x 5xFAD and Rab7fl/fl x 5xFAD 

females and males in both ages with the exception of CCL2 (chemokine (C-C motif) ligand 2 also 

known as monocyte chemoattractant protein 1 (MCP1); Figure 30 A). CCL2 was significantly 

upregulated in 9 month old Rab7ΔMG x 5xFAD females and males compared to their respective 

controls (Figure 30 B, C). The absolute amount was also increased in all conditions compared to 

3 month old animals. 
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Figure 30: Protein profiling identified upregulation of CCL2 in aged Rab7ΔMG x 5xFAD mice. 

A) Heatmap of all proteins analyzed by Olink® MOUSE EXPLORATORY. In the left panel the results of the female cohorts 

are shown, in the right panel the results of the male cohorts are presented. From left to right within the panel Rab7fl/fl x 

5xFAD and Rab7ΔMG x 5xFAD at 3 and 9 months, respectively. The scale is log2 of the respective protein expression in a 

color code using red for upregulation and blue for downregulation. From the 3 month cohorts n ≥ 8 animals and from the 

9 month cohorts n ≥ 6 animals were analyzed. Differences between the genotypes were statistically analyzed by two-way 

ANOVA with Tukey's multiple comparisons test. Significant upregulation in Rab7ΔMG x 5xFAD animals was found for CCL2 

(*p < 0.05; green). B) Absolute values of CCL2 in females at 3 and 9 months of age are displayes. C) Graph shows CCL2 

levels in males. Two-way ANOVA with Tukey's multiple comparisons test. Data are presented as mean ± SEM. *p < 0.05. 
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3.5. Rab7ΔMG cannot be compensated by other brain 

cells in the 5xFAD mouse model  

Throughout AD disease progression Rab7ΔMG x 5xFAD female mice showed fewer and 

morphologically altered Aβ-plaques compared to Rab7fl/fl x 5xFAD controls (Figure 17, Figure 18) 

while revealing no differences in soluble and insoluble Aβ-load (Figure 20-Figure 23). Since the 

Rab7ΔMG results in impaired protein degradation through the endo-lysosomal pathway in microglia, 

there could be other ways for the CNS to remove Aβ-deposits, explaining the above mentioned 

effects on Aβ-plaque pathology. Therefore, we investigated the impact of other glial cells, namely 

astrocytes, on the removal of Aβ. Also, the possibility of Aβ clearance by blood circulation was 

analyzed since endothelial Aβ-depositions are often found in blood vessels of AD post mortem 

samples. 

3.5.1. Astrogliosis was not affected in Rab7ΔMG x 5xFAD 
mice 

In neurodegenerative diseases such as AD reactive astrogliosis is a prominent feature. Astrogliosis 

is defined as the response of astrocytes to injury by increased cell proliferation / numbers and 

morphological changes of the cells. Additionally, there is emerging evidence, that microglia and 

astrocytes communicate during diseases. Therefore we checked whether the Rab7ΔMG x 5xFAD 

had an impact on astrogliosis. To address this immunohistochemistry was done for the astrocytic 

marker GFAP (Glial Fibrillary Acidic Protein) on brain sections of 9 month old females (Figure 31 

A-B) and males (Figure 31 E-F). In terms of absolute cell numbers of GFAP+ astrocytes 

normalized to the analyzed area, there was no detectable difference between Rab7fl/fl x 5xFAD and 

Rab7ΔMG x 5xFAD females in the cortex (Figure 31 C) and in the hippocampus (Figure 31 D). Also 

male mice did not show any differences neither in the cortex (Figure 31 G) nor in the hippocampus 

(Figure 31 H) in GFAP+ astrocyte numbers. These findings indicate that Rab7ΔMG x 5xFAD has not 

impact on astrogliosis in progressed AD. 
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3.5.2. No compensation of Aβ-degradation by astrocytes 
was found in Rab7ΔMG x 5xFAD females 

Even though we did not find astrocyte numbers to be changed in progressed AD in the Rab7ΔMG x 

5xFAD mouse line, we still wondered whether astrocytes could functionally compensate for 

impaired microglia in Aβ-degradation. This could be one mechanism to explain the smaller and 

fewer Aβ-plaques in female Rab7ΔMG x 5xFAD mice (Figure 17 - Figure 18). To address this, 

immunohistochemical co-staining for astrocytes (GFAP), lysosomes (LAMP1) and Aβ42 was done 

and the degree of lysosomal engulfed Aβ42 was measured (Figure 32 A-H). We could not detect 

differences in the Aβ42 fluorescence intensity engulfed in astrocytic lysosomes (Figure 32 I). Also 

measuring the relative area occupied by Aβ42 within astrocytic lysosomes, did not change between 

Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD females (Figure 32 J). 

Figure 31: Astrogliosis was not changed in Rab7ΔMG x 5xFAD mice. 

A+B) Representative images show immunohistochemical stainings for astrocytic marker GFAP (red) on brain sections 

of 9 month old Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD females. Scale bar: 500 µm. C+D) Numbers of GFAP+ cells / 

area [mm²] were quantified in Rab7fl/fl x 5xFAD (blue) and Rab7ΔMG x 5xFAD (red) females in the cortex and the 

hippocampus, respectively. E+F) Immunohistochemistry for GFAP on brain sections of 9 month old Rab7fl/fl x 5xFAD 

and Rab7ΔMG x 5xFAD males are shown. Scale bar: 500 µm. G+H) Graphs show GFAP+ cells / area [mm2] quantified in 

the cortex and in the hippocampus for Rab7fl/fl x 5xFAD (blue stripes) and Rab7ΔMG x 5xFAD (red stripes) males. For 

both sexes n ≥ 7 animals with N = 2 sections per animal were analyzed. Data are presented as mean ± SEM. Analysis was 

done by Pascal Kalbhen. 
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3.5.3. Plasma levels of Aβ were not changed in Rab7ΔMG x 
5xFAD mice 

Another possible pathway to help clearing Aβ-deposits from the brain is via the blood stream. This 

could be one possible mechanism to explain differences in Aβ-plaque deposits, between female 

Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD mice and between the sexes, respectively. To investigate 

Figure 32: Astrocytes did not compensate for Rab7ΔMG in clearing Aβ. 

A-H) Brain sections of 9 month old females were stained by immunohistochemistry for LAMP1 (green), GFAP (red) and 

Aβ42 (blue). Images were taken within cortex layer V-VI above CA1 region with a 40x maginification using a confocal 

microscope. A+E) Merge images of B+F) LAMP1, C+G) GFAP and D+H) Aβ42 co-stainings are presented. Scale 

bar: 10 µm. I) Fluorescence intensity of Aβ42 within LAMP1+ vesicles inside GFAP+ astrocytes was quantified. J) As 

additional readout the relative area of Aβ42 inside LAMP1+ structures within a GFAP+ astrocyte was measured. Values 

of Rab7fl/fl x 5xFAD controls are shown in dark blue and values of Rab7ΔMG x 5xFAD females are shown in red. Data are 

presented as mean ± SEM. n≥ 9 animals; N ≥ 92 cells analyzed. 
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this possibility plasma from 9 month old animals was analyzed for the presence of three Aβ-

peptides by MSD chemiluminescent ELISA.  

There were no differences found in the plasma levels of Aβ38, Aβ40 and Aβ42 between Rab7fl/fl x 

5xFAD and Rab7ΔMG x 5xFAD animals of both sexes, respectively (Figure 33 A-C, E-G). Also Aβ42 / 

Aβ40 ratios were not altered between the conditions neither in females (Figure 33 D) nor in males 

(Figure 33 H). The absolute values of Aβ38, Aβ40 and Aβ42 were similar in females and males as 

well. Consequently, alterations in the Aβ clearance by blood cannot explain the differences in Aβ-

plaque deposition observed in female Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD mice.  

 

Figure 33: Clearance of Aβ by the blood circulation is not altered in Rab7ΔMG x 5xFAD mice. 

A-D) Analysis for Aβ-species in plasma of 9 month old females of the Rab7ΔMG x 5xFAD line (red) wih their respective 

controls (blue) by MSD. E-H) Aβ-amounts detected in plasma from the 9 month male cohort. The absolute plasma 

concentrations of A+E)  Aβ38, B+F) Aβ40 and C+G)  Aβ42 [pg/ml plasma] were measured.  D+H) Aβ42 / Aβ40 ratios were 

calculated for females and for males. Graphs are presented as mean ± SEM with the individal samples added to the blot 

as circles (females) or squares (males). n ≥ 8 animals. Measurements in duplicates. 
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4. Discussion 

To elucidate whether microglial endo-lysosomal degradation is beneficial or detrimental in AD, we 

have used a microglia-specific conditional knockout of small GTPase Rab7 (Rab7ΔMG), which is 

crucial for endo-lysosomal maturation, in 5xFAD mice (Rab7ΔMG x 5xFAD) and investigated these 

mice at 3 and 9 months, respectively.  

Surprisingly, we found fewer and smaller Aβ-plaques in female 5xFAD mice with Rab7 KO microglia 

while no effect on overall soluble and insoluble forms of Aβ-peptides and only moderate 

amelioration on dendritic spine loss were found in 9 months old Rab7ΔMG x 5xFAD female mice. 

Interestingly, we found upregulation of chemokine CCL2 in Rab7ΔMG x 5xFAD mice of both sexes. 

 

4.1. Evaluation of the microglial Rab7 KO in 5xFAD 

mice 

Given that microglial lysosomal degradation is considered the main pathway for extracellular 

Aβ-clearance, it was startling to only detect moderate effects on Aβ-pathology while no 

improvement on neuronal loss was found in Rab7ΔMG x 5xFAD mice.  Hence, to assure the 

functionality of our tamoxifen-induced conditional microglial Rab7 KO, we quantified accumulation 

of Aβ42 in microglial endo-lysosomes and found significant enrichment in Rab7ΔMG x 5xFAD mice, 

which substantiates the functional impairment in our model (Figure 16). Alongside, we detected 

enlarged lysosome volumes by immunohistochemistry for lysosomal markers LAMP1 and CD68 

due to the lack of immunohistochemistry compatible antibodies against Rab7 (Figure 14, Figure 

15). Our findings that lysosome volumes were enlarged in Rab7ΔMG x 5xFAD microglia are in 

accordance with data of Safaiyan et al. (2016) who investigated Rab7 KO on myelin turnover using 

the same Cre and Rab7fl/fl mouse lines. Notably, a recent report suggested that the CX3CR1-

CreERT2-driver line could be “leaky”, which means that it might be expressed independently of 

tamoxifen application (Fonseca et al., 2017). However, the genetic background of the CX3CR1-

CreERT2-driver used by Fonseca and colleagues (2017) was different from the CX3CR1-CreERT2-

driver used by Safaiyan et al. (2016) and in this study. Additionally, we found significant 

enlargement of endo-lysosomes with Aβ42 accumulations in microglia of Rab7ΔMG x 5xFAD females 

compared to Rab7fl/fl x 5xFAD controls at 9 months of age (Figure 14, Figure 15). Thus, we 

concluded that Rab7ΔMG x 5xFAD mice displayed Rab7 dysfunction, even if there might be 

moderate and comparably low Cre-recombination in Rab7fl/fl x 5xFAD controls. To exclude the 

possibility of CX3CR1-CreERT2 leakiness in our model, Rab7 transcripts and protein levels of purified 

microglia need to be quantified by qPCR and Western blot analysis in future experiments. 
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4.2. Compensatory mechanisms for Rab7 KO in 

microglia 

To our surprise, Rab7ΔMG x 5xFAD mice showed smaller and fewer Aβ-plaques in females at 

9 months of age (Figure 18) while we detected only improvement in loss of mushroom spines with 

no overall reduction of neuron loss (Figure 24 - Figure 26). Therefore we addressed whether other 

cellular, enzymatic or transport mechanisms could compensate for microglial Aβ-clearance in 

Rab7ΔMG x 5xFAD mice. 

 

a) Peripheral monocytes and perivascular macrophages 

Aside from microglia, peripheral derived immune cells, including monocytes, neutrophils and T-cells 

have been detected in human post mortem samples of AD patients and in rodent models. These 

cells are thought to aid directly or indirectly in clearing Aβ (Baik et al., 2014; Itagaki et al., 1988; 

Vogel et al., 2015; Zenaro et al., 2015). Hence, Rab7ΔMG could initiate the infiltration of other 

myeloid cells for functional compensation. In favor of this idea are the findings of elevated levels of 

chemokine CCL2 (CC-chemokine ligand 2) or MCP1 (monocyte chemotactic protein 1) in 

hippocampal lysates of 9 months old Rab7ΔMG x 5xFAD mice compared to their respective controls 

(Figure 30). CCL2 is able to attract CCR2-expressing peripheral myeloid cells e.g. from the blood 

stream which is facilitated throughout disease progression by the gradual breakdown of the blood 

brain barrier (Malm et al., 2005; Roberts et al., 2012; Simard et al., 2006; Stalder et al., 2005; 

Varvel et al., 2016). CCR2+ cells were identified in various AD mouse models with progressed 

pathology in close proximity to Aβ-plaques contributing to Aβ-clearance (El Khoury et al., 2007; 

Naert and Rivest, 2011; Saederup et al., 2010). However, fate-mapping studies showed that neither 

microglia nor other long-lived Iba1+, CX3CR1+ CNS macrophages like perivascular and meningeal 

macrophages, express CCR2 (Goldmann et al., 2016; Mizutani et al., 2012; Yona et al., 2013). 

Thus, the enriched levels of CCL2 very likely contribute to the infiltration of CCR2+ peripheral 

myeloid cells. This idea is further supported by a current study that discovered small vascular 

channels within the skulls of mice and humans allowing for skull bone marrow-derived myeloid 

cells, including CCR2-expressing monocytes and neutrophils to rapidly enter the inflamed brain 

(Herisson et al., 2018). Hence, follow-up experiments for cell infiltration, e.g. by 

immunohistochemistry for CCR2 and Iba1 should be done. To investigate compensation of 

Aβ-clearance e.g. by immunohistochemistry for CCR2, LAMP1 and Aβ42, should be conducted in 

the future.  

 

Besides peripheral monocytes, perivascular macrophages could potentially compensate for Rab7 

KO microglia by various mechanisms and therefore could explain the moderate effects on neuronal 

loss and Aβ-pathology in our model. Perivascular macrophages, which are located along blood 

vessels, are well described as gatekeepers at the blood brain barrier where they monitor and 
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promote communication with the periphery and the CNS. By expression of CCL2 and GM-CSF, 

molecules which were shown to aid in blood monocytes migration across the blood brain barrier, 

these cells could actively promote infiltration of CCR2-expressing peripheral monocytes (Bechmann 

et al., 2001; Varvel et al., 2016; Vogel et al., 2015). Even though these cells have high phagocytic 

activity and are also capable of degrading Aβ, they are long-lived and express CX3CR1 (Goldmann 

et al., 2016; Hawkes and McLaurin, 2009; Mato et al., 1985; Mato et al., 1996; Thanopoulou et al., 

2010). Hence, it is likely that Rab7ΔMG x 5xFAD mice are also Rab7 depleted in perivascular 

macrophages. Due to overlapping markers such as Iba1 and CD68, these cells could potentially 

contribute to the pool of Iba1+ cells (Figure 27 I, J, U, V, Figure 28 I, J, U, V) and Aβ-plaque 

associated Iba1+ cells (Figure 27 K, L, W, X, Figure 28 K, L, W, X) which we found to be unvaried 

in Rab7ΔMG x 5xFAD and Rab7fl/fl x 5xFAD mice (Fabriek et al., 2005; Goldmann et al., 2016; Kim et 

al., 2006; Zeisel et al., 2015). Consequently, it will be of great importance to distinguish microglia 

from perivascular macrophages and from infiltrating peripheral monocytes. Thus, further 

experiments such as immunohistochemistry for microglia-specific marker TMEM119, perivascular 

maker CD163 and monocyte-marker CCR2 will need to be performed in the future.  

 

b) Aβ-degrading enzymes  

Besides degradation of Aβ by intracellular mechanisms, microglia can also mediate clearance of 

soluble Aβ by secreting various enzymes with Aβ-degrading capacity into the extracellular space. 

These enzymes include amongst others neprilysin (NEP), endothelin converting enzymes 1 and 2 

(ECE-1 and ECE-2), insulin degrading enzyme (IDE or isulysin), matrix metallopeptidases 2 and 9 

(MMP2, MMP9) and serine protease tissue plasminogen activator (tPA) (Hernandez-Guillamon et 

al., 2010; Iwata et al., 2001; Melchor et al., 2003; Song and Hersh, 2005; Yan et al., 2006).  

Moreover, lysosomal protease Cathepsin B (Cat B) is secreted via exocytosis into the extracellular 

space where it is associated with senile plaques and promotes neuroprotection by proteolytic 

cleaving of Aβ42 in APP-overexpressing mice (Cataldo and Nixon, 1990; Linebaugh et al., 1999; 

Mueller-Steiner et al., 2006; Sun et al., 2008). However, activity of those enzymes can be 

modulated by intrinsic enzyme inhibitors. This includes, amongst others, late onset AD risk gene 

cystatin C which acts as inhibitor of Cathepsin B. Additionally, serine protease inhibitors α1-

antichinotrypsin and α1-antichymotrypsin favor Aβ-fibril formation while inhibiting Aβ-plaque 

degradation (Abraham et al., 2000; Abraham et al., 1989; Bertram et al., 2007; Fraser et al., 1993; 

Sun et al., 2008). To exclude the possibility that Aβ-plaque reduction (Figure 17, Figure 18) was 

mediated by extracellular degradation by such enzymes, follow-up experiments are required such 

as quantification of NEP, IDE and MMPs by Western blotting. 

 

c) Aβ-clearance across the blood brain barrier 

Another clearance mechanism of extracellular Aβ-peptides, which could compensate for Rab7ΔMG in 

5xFAD mice, is through efflux of soluble Aβ-peptides across the blood brain barrier into the blood 
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stream (Keaney et al., 2015; Storck et al., 2016). Therefore, macromolecules such as 

apolipoproteins ApoE, ApoJ (also known as clusterin, CLU), tPA and pan-protease inhibitor 

α2-macroglobulin (A2D) can bind monomeric and oligomeric Aβ-peptides and facilitate efflux across 

the blood brain barrier (Beeg et al., 2016; Biere et al., 1996; Bobkova et al., 2014; Hoshino et al., 

2013; Iwata et al., 2013; Iwata et al., 2001; Melchor et al., 2003; Narayan et al., 2011; Yepes et al., 

2003). The guided transport is mediated through lipoprotein receptor-related protein 1 and 2 (LRP1, 

LRP2) which are abundantly expressed within small brain vessels (Rebeck et al., 1995). For 

instance, ApoE2 and ApoE3 bind Aβ40 and shuttle via LRP1, whereas ApoJ-attaches to Aβ42 and 

uses LRP2 to cross the blood brain barrier (Bell et al., 2007; Shibata et al., 2000). In our study we 

did not detect differences in the levels of soluble Aβ38, Aβ40 or Aβ42 in collected plasma of Rab7fl/fl x 

5xFAD and Rab7ΔMG x 5xFAD animals at 9 months of age (Figure 33). Therefore, we suggested 

that microglial Rab7 KO probably did not impact the efflux of Aβ-peptides across the blood brain 

barrier. However, steady state levels of plasma Aβ may not accurately reflect clearance kinetics, as 

Aβ is efficiently cleared from the blood stream by the renal system.  

 

d) Upregulation of other degradation pathways in microglia 

Interestingly, ApoJ, ApoE and A2D also belong to a group of extracellular chaperone proteins. 

Similarly to intracellular chaperons such as heat shock protein 70 (Hsp70), extrinsic chaperones 

bind to proteins and thereby form a stable complex. This facilitates trafficking, as described for the 

efflux across the blood brain barrier, but also helps cellular internalization for intracellular 

Aβ-degradation (Boland et al., 2018; Cascella et al., 2013; Yeh et al., 2016). In microglia, these 

pathways are mainly autophagy and endo-lysosomal degradation, which were both shown to be 

important in AD. Genetic and pharmacological disruption of autophagosome formation in myeloid 

cells in several AD transgenic mouse models reduced Aβ-burden while cognitive functions were 

improved (Caccamo et al., 2010; Cho et al., 2014; Kim et al., 2017; Spilman et al., 2010). These 

modulations were upstream of Rab7, which is only detectable at stages of late autophagosomes 

and late endosomes, and are essential for the fusion with the lysosome as illustrated in Figure 10 

(Cantalupo et al., 2001; Gutierrez et al., 2004; Kuchitsu et al., 2018). Since we validated vesicle 

enlargement in our Rab7ΔMG x 5xFAD model by immunohistochemical staining for LAMP1, which is 

also expressed in the late stages of autophagy, we cannot draw conclusions about upstream early 

autophagosome formation (Figure 14, Figure 15). Since KO of Trem2, which is upstream of Rab7 

and is responsible for the formation of endo-lysosomal active DAM, restored autophagy by 

suppressing mTor signaling in microglia of aged 5xFAD mice, it could be possible that early 

autophagosome formation was also enhanced in microglial Rab7 KO mice (Ulland et al., 2017). To 

address this question, further analysis would be needed. 

Similar to the disruption of autophagosome formation, ablating phagocytosis through KO of 

complement factors improved cognitive performance and reduced Aβ-pathology (Fonseca et al., 

2004; Hong et al., 2016; Paolicelli et al., 2011; Shi et al., 2017). Concomitantly, endo-lysosomal 
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degradation of Rab7 is crucial for the final fusion step with the lysosome. In the present work, we 

did not further investigate for alterations within the upstream endocytic pathway including early 

endosome formation and phagocytosis in Rab7ΔMG x 5xFAD mice. 

 

e) Astrocytes 

Other than microgliosis, astrogliosis is also a prominent hallmark of AD and reactive astrocytes are 

found in most Aβ-rich brain regions of AD post mortem samples and in transgenic AD mice 

(Gomez-Arboledas et al., 2018; Liddelow et al., 2017; Reichenbach et al., 2018). Similarly to 

microglia, reactive astrocytes can contribute to neurotoxicity while also supporting Aβ-clearance 

through endo-lysosomal degradation (Boisvert et al., 2018; Funato et al., 1998; Jones et al., 2013; 

Kamphuis et al., 2015; Kraft et al., 2012; Nagele et al., 2003; Söllvander et al., 2016; Xiao et al., 

2014). Even though microglia and astrocytes are known to tightly interact with each other, we did 

not find changes in astrogliosis indicated by unvarying numbers of GFAP+ cells within the cortex 

and the hippocampus in 9 months old Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD females and males, 

respectively (Figure 31). Neither did we find differences in enrichment of Aβ42 in astrocytic 

lysosomes (Figure 32). Since astrocytes were also demonstrated to have slow lysosomal 

degradation, which results in accumulation of Aβ42 in enlarged lysosomes in AD, our findings of 

unaffected Aβ42 in astrocytic lysosomes indicated that Rab7ΔMG was not likely to be compensated 

by astrocytes (Söllvander et al., 2016). It needs to be mentioned that this quantification does not 

allow for conclusions to be drawn about the dynamics and speed of Aβ-degradation. Since the 

speed of astrocytic endo-lysosomes could be increased in vitro, it still could be possible that 

astrocytes compensate for Rab7ΔMG by faster endocytic vesicle trafficking (Lööv et al., 2015). Thus, 

to elucidate astrocytic degradation speed, further experiments such as live cell imaging of mixed 

astro-microglial cultures would need to be conducted. 

 

4.3. Effects of microglial Rab7 KO on amyloid-

pathology and neurotoxicity in 5xFAD mice 

In our model of microglial Rab7 KO in 5xFAD mice, we found improvement on mushroom spine loss 

and fewer and smaller Aβ-plaques with overall unaffected insoluble and soluble Aβ-burden. Aside 

from those findings, our data is in contrast to studies which investigated acute and chronic total 

microglia depletion by pharmacological inhibition and which reported of strong neuroprotection in 

mice whilst no effect on Aβ-burden was found (Dagher et al., 2015; Olmos-Alonso et al., 2016; 

Spangenberg et al., 2016). These studies suggested that Aβ-deposition was independent of the 

presence of microglia. For example, genetic ablation of microglia did not change Aβ-load in 

3 months old APP/PS1 males (Grathwohl et al., 2009), and pharmacological ablation of microglia by 

CSF1 inhibitor treatment did not result in altered Aβ-burden of neither soluble nor insoluble 
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Aβ-species in 3xTg, APP/PS1 and 5xFAD mice (Dagher et al., 2015; Olmos-Alonso et al., 2016; 

Spangenberg et al., 2016).  

 

Time-dependency on Aβ-pathology 

One fundamental difference of our study to those studies investigating total microglia depletion was 

timing. In our model, microglial Rab7 KO was already induced with 3 weeks, even before 

transcriptional changes of innate immune genes in microglia and intraneuronal Aβ were found in 

5xFAD mice (Boza-Serrano et al., 2018; Oakley et al., 2006). This is in contrast to the studies using 

pharmacological inhibition of myeloid cell receptor CSF1 which did not change Aβ-burden, and 

started treatment only at ages when the investigated mouse lines already displayed abundant 

Aβ-pathology (Dagher et al., 2015; Olmos-Alonso et al., 2016; Spangenberg et al., 2016). As 

longterm in vivo imaging data of APP/PS1 mice revealed that new Aβ-plaques were not formed 

after 9 months of age, this emphasizes the importance of time in modulaing Aβ-pathology 

(Hefendehl et al., 2011). 

Therefore, we assumed that constitutive genetic ablation of Trem2, which is upstream of Rab7 and 

essential for the second step in formation of highly phago-lysosomal active DAM, would result in a 

similar phenotype than our Rab7ΔMG x 5xFAD model (Jay et al., 2017; Jay et al., 2015; Keren-Shaul 

et al., 2017; Krasemann et al., 2017; Wang et al., 2015; Wang et al., 2016). In accordance to 

Trem2 KO in 5xFAD, our microglial Rab7 KO in young (3 months) 5xFAD mice also did not display 

statistical differences in Aβ-plaque numbers or soluble and insoluble amounts of Aβ40 and Aβ42 

(Figure 17, Figure 20) (Wang et al., 2016). However, aged Trem2 KOs (8-9 months) revealed 

increased numbers of Aβ-plaques and enriched Aβ40 and Aβ42 in hippocampal lysates, whereas we 

found fewer and smaller Aβ-plaques and no differences in the levels of soluble and insoluble Aβ40 

and Aβ42 in 9 months old Rab7ΔMG x 5xFAD females (Figure 17, Figure 21) (Wang et al., 2015b; 

Wang et al., 2016). Similarly, Trem2 KO mice revealed elevated inflammatory response and 

increased neuronal loss, whereas we did not observe either of these. Thus, our findings support the 

idea that initial Aβ-plaque formation is independent of microglia function, but throughout disease 

progression functional microglia are important to modulate Aβ-plaque pathology.  

 

Dendritic spine loss 

In consistency with pharmacological microglia depletion in 5xFAD mice, we also observed 

significantly more mushroom spines in 9 months old Rab7ΔMG x 5xFAD females while the overall 

number of dendritic spines was not changed (Figure 25) (Spangenberg et al., 2016). 

Methodologically, we used the same samples size and parameters to classify dendritic spines as 

Spangenberg and colleagues (2016). Mushroom spines, which are essential for memory formation, 

were found to be the most affected spine type in the presence of Aβ in transgenic mice, explaining 

the AD-associated cognitive decline and memory loss (Luebke et al., 2010; Sun et al., 2014; 

Tackenberg and Brandt, 2009). Even though recent studies revealed high turnover rates of dendritic 
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spines in physiological context using high resolution microscopy, mushroom spines were identified 

to be the most persistence spine type (Grutzendler et al., 2002; Pfeiffer et al., 2018). These 

dynamics of other spine types, in combination with the observation of targeted mushroom spine 

loss in AD, substantiates our findings of selective mushroom spine phenotype (Figure 25). Studies 

in macrophages have identified a NF-κB coupled feedback mechanism from the lysosome to 

sustain phagocytosis of bacteria (Wong et al., 2017). Thus, we cannot exclude the possibility that 

such a mechanism also exists for microglial phagocytosis of Aβ-peptides and Rab7 KO results in 

reduced phagocytosis through a negative feedback mechanism. It is therefore possible that 

microglial Rab7 KO and subsequent accumulation of undigested Aβ in microglia decrease their 

phagocytic activity also towards spines. This may explain the protective effect of microglial Rab7 

KO. Since loss of dendritic spines and of synapses correlate with impaired synaptic plasticity, 

resulting in memory loss and cognitive deficits, electrophysiological features such as long-term 

potentiation should be analyzed in the future. Additionally, behavior analyses such as novel object 

recognition, conditional fear conditioning or Morris water maze would have been advisable to gain 

further insight into potentially neuroprotective effects in Rab7ΔMG x 5xFAD mice.  

 

Synaptic loss 

In our model we did not determine changes in the degree of synaptic loss between 9 months old 

Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD mice, measured by protein levels of Synaptophysin (Figure 

26). This is in contrast to studies which identified significant improvement of synaptic loss upon 

disruption of microglial phagocytosis e.g. by modulating factors of the complement system 

However, phagocytosis is upstream of Rab7 which could explain why microglial Rab7 KO was not 

sufficient to prevent from synaptic loss in our model.  

 

Neuronal loss 

Neurotoxicity is known to correlate with chronic inflammation and soluble Aβ-peptides (Lambert et 

al., 1998; Parajuli et al., 2013; Walsh et al., 2002; Yang et al., 2017; Zhao et al., 2018). Alongside 

increased amount of soluble Aβ42 and elevated neuroinflammation, Trem2 KO in 5xFAD showed 

significantly more neuronal loss in cortical layer V in 8.5 months old mice compared to 5xFAD 

control, whereas we did not find alterations in soluble and insoluble Aβ-peptides, pro-inflammatory 

cytokines and neuronal loss (Figure 24) (Wang et al., 2015b). Several studies explicitly analyzed 

neuronal loss within cortical layer V of 5xFAD mice, since they did not detect significant differences 

in overall cortical loss of neurons (Jawhar et al., 2012; Wang et al., 2015b). As we analyzed 

neuronal loss in all cortical layers and did not find significant amelioration in subicular neuronal loss 

due to one outlier in the female Rab7ΔMG x 5xFAD cohort, we cannot exclude the chance of reduced 

neuronal loss upon Rab7 KO in microglia of females (Figure 24). Hence, follow-up analysis with 

increased numbers of biological samples and analysis restricted to cortical layer V will need to be 

done.  
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Inflammation 

As mentioned before, neurotoxicity can either be mediated by soluble Aβ-species, which we did not 

find to be changed in Rab7ΔMG x 5xFAD. Pro-inflammatory molecules can contribute to neurotoxicity 

including IL-1β, IL-6, IL-10 and TNF-α which are highly abundant markers of Trem2-dependent 

DAM (Jay et al., 2017; Martin et al., 2017; Wang et al., 2015b; Wang et al., 2016). We did not find 

differences in the inflammatory profile between Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD (Figure 30). 

In contrast, transcriptional analyses of Trem2 KO in 5xFAD and APP/PS1 mice showed diminished 

levels of pro-inflammatory cytokines including IL-1β, IL-12 and TNF-α (Jay et al., 2015; Wang et al., 

2015b). For example, IL-1β is a product of the NLRP3 inflammasome, which can be activated by 

Trem2 and also by lysosomal rupture, which we assumed to be prevented in our Rab7 KO model 

due to inhibited endo-lysosomal fusion (Amaral et al., 2018; Halle et al., 2008; Heneka et al., 2012; 

Hornung et al., 2008; Jay et al., 2017; Martin et al., 2017).  

Also KO of progranulin (PNG), which is a key regulator of inflammatory response in myeloid cells 

and which is associated with other forms of dementia, namely frontotemporal dementia and familial 

frontotemporal lobar degeneration, resulted in enlarged Rab7+ and LAMP1+ vesicles and 

upregulation of complement factors in microglia (Baker et al., 2006; Cruts et al., 2006; Lui et al., 

2016; Rascovsky et al., 2011). This functional impairment coupled with enhanced secretion of pro-

inflammatory cytokines IL-1β, IL-6 and TNF-α and reduced IL-10 expression after toxin or LSP 

stimulation in vitro (Lui et al., 2016; Martens et al., 2012; Yin et al., 2010). Taking these findings 

together, we suggest that microglial Rab7 KO reduces or even prevents lysosomal rupture and 

thereby diminishes the activation of NLRP3. Furthermore, this could potentially reduce pyroptotic 

microglial cell death, which in turn could contribute to further Aβ-plaque seeding (Venegas et al., 

2017). To further elucidate this, follow-up experiments are needed to investigate the degree of 

inflammasome activation. 

 

Morphology 

Alongside inflammatory response, activated microglia undergo morphological changes towards 

amoeboid shape in AD (Davies et al., 2017; Navarro et al., 2018; Plescher et al., 2018). In vivo 

mouse studies observed that PAM actively degrade Aβ and thereby grow in size while the attacked 

Aβ-plaque is shrinking (Bolmont et al., 2008). Thus, altered cell morphology is frequently used as a 

readout for microglia activation. In our model, we could not detect differences in the microglia 

morphology in neither PAM nor non-PAM between Rab7fl/fl x 5xFAD and Rab7ΔMG x 5xFAD females 

at 9 months (Figure 29). This correlates to the findings of unaffected inflammatory response, 

concluding that microglial Rab7 KO were not impaired in their activity. Taking these findings 

together, microglia activity monitored by morphology and secretome analysis was not changed in 

microglia with Rab7 KO and therefore cannot explain the diminished Aβ-plaque numbers and sizes 

observed in 9 months old Rab7ΔMG x 5xFAD females.  
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Notably, Safaiyan and co-workers (2016) reported about significant shortening and swelling of 

microglia processes in the cortex of Rab7ΔMG mice compared to control animals at 10 weeks of age, 

concluding that Rab7 KO microglia have a higher basal activity compared to WT microglia.  

 

PAM recruitment 

Although we did not find differences in the load of soluble neurotoxic Aβ42-peptides, nor in the 

inflammatory response, we detected reduced mushroom spine loss in 9 months old Rab7ΔMG x 

5xFAD females (Figure 21, Figure 25, Figure 30). Dendritic loss is highly abundant in close 

proximity to Aβ-deposits (Crowe and Ellis-Davies, 2014; Masliah et al., 1996; Spires et al., 2005; 

Tsai et al., 2004; Zhao et al., 2017). Whereas high aggregates of Aβ are considered less toxic, 

Aβ-oligomers are considered to be of great neurotoxic potential (Lambert et al., 1998; Yang et al., 

2017; Zempel et al., 2013). This neurotoxicity was shown to be reduced by PAM which can build 

functional barriers around Aβ-plaques to shield neurons from Aβ-deposits resulting in densely 

packed Aβ-plaques (Condello et al., 2015). Hence, loosely attached Aβ-fibrils around the dense 

core, which build up big halos, are considered more toxic than dense senile plaques. In 

accordance, Wang and colleagues (2015b; 2016) identified bigger halos alongside increased 

neuronal loss and dystrophic neurites in their Trem2 KO. In contrast, we identified smaller 

Aβ-plaques with smaller halos, rescued loss of mushroom spines and unaffected neuronal loss as 

discussed before (Figure 18, Figure 24). Our findings are in line with the model of Aβ-plaque 

growth proposed by Baik and colleagues (2016): the authors identified accumulation of fibrillary 

Aβ42 in lysosomes due to acidification which eventually contributed to lysosomal membrane rupture. 

This resulted in microglial apoptosis and consequently, release of undegraded Aβ into the 

extracellular space (Yang et al., 1998). There the material was attached to pre-existing Aβ-plaques 

and contributed to Aβ-plaque growth. Since in the present work we ablated the fusion of the late 

endosome with the lysosome, this cascade should be abolished as well, which could explain the 

Aβ-plaque size reduction and the diminished number of Aβ-plaques due to fewer seeds in 9 months 

old Rab7ΔMG x 5xFAD females. 

Notably, other groups identified Aβ-plaque growth due to acute microglia depletion or to Trem2 KO 

in APP/PS1 (Jay et al., 2017; Jay et al., 2015; Zhao et al., 2017). These varying observations could 

be due to methodological differences to our study and the studies in Trem2 depleted 5xFAD. Firstly, 

Jay and colleagues (2017; 2015) used slidescanner obtained images with lower magnification, 

which make it difficult to distinguish Aβ-plaque borders in the analyzed 6E10 staining. Hence, less 

condensed Aβ-plaques could appear bigger due to loosely attached Aβ. Secondly, the authors 

investigated acute microglia depletion, quantified Aβ-plaque size in living animals by congo red 

administration and in vivo two-photon imaging (Zhao et al., 2017). In our study, we used 6E10 

antibody staining in combination with ThioS staining to label the dense core in fixed tissue, which 

were both shown to correlate well with congo red derivate X-34 dye used in the Trem2 KO studies 
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by Wang and co-workers (Crystal et al., 2003; Klunk et al., 2002; Nam et al., 2017; Styren et al., 

2000; Wang et al., 2015b; Wang et al., 2016).  

 

PAM function 

In contrast to Trem2 KO, microglial Rab7 KO did not impact PAM recruitment (Figure 27 K, L, W, 

X, Figure 28 K, L, W, X). Since Trem2 is upstream of Rab7, we propose that Trem2-mediated DAM 

formation was not impaired in Rab7ΔMG x 5xFAD females and was not compensated by another 

mechanism. Nonetheless, it remains interesting to quantify the proportion of functional DAM, since 

these cells are considered a subset of PAM with distinct transcriptional and protein profiles. Even 

though DAM markers Lpl and IL-17A were analyzed by Olink assay (Figure 30), these data were 

not sufficient to answer this question, since we analyzed whole hippocampal lysates and other cells 

of the CNS can also express those markers (Keren-Shaul et al., 2017; Sarma et al., 2009; Tzartos 

et al., 2008; Wang and Eckel, 2012). Consequently, further analysis is needed to investigate Rab7 

KO on functional alterations of DAM in the Rab7ΔMG x 5xFAD mouse model in the future. 

4.4. Role of sex on Aβ-load in Rab7-mediated 

degradation in microglia 

In accordance with findings in humans, where AD risk is higher in women than in men and in 

transgenic AD-mouse lines such as 5xFAD where pathology is more severe in females than in 

males, the overall Aβ-burden and neurotoxicity was higher in females Rab7fl/fl x 5xFAD controls 

compared to Rab7fl/fl x 5xFAD males (Bhattacharya et al., 2014; Callahan et al., 2001; Carroll et al., 

2010; Johnson et al., 2014; Wang et al., 2003). However, one striking observation in our study was 

that reduced Aβ-plaque numbers and sizes, as well as improved mushroom spine loss, were 

exclusively found in aged Rab7ΔMG x 5xFAD females while no effects in male Rab7ΔMG x 5xFAD 

were found (Figure 17, Figure 18, Figure 25). 

Thus, one possible explanation for these sex-dependent observations in our model could be due to 

Aβ-dose dependency on Rab7 KO in microglia. As a consequence of the stronger Aβ-pathology in 

females, many studies in rodents are exclusively conducted in this sex (e.g. Eimer and Vassar, 

2013; Jawhar et al., 2012; O'Leary et al., 2013). Aside from the sex-effect on Aβ-load, there is 

emerging evidence of sexually dimorphic properties of murine microglia under physiological 

conditions, and thus most likely also in diseases (Guneykaya et al., 2018; Hanamsagar et al., 2017; 

Villa et al., 2018). Transcriptome and proteome analyses of WT microglia of 3 weeks and 3 months 

old animals depicted male microglia to be more reactive, expressing more immune-receptors such 

as MHCII and TLRs, and bearing higher mortality ergo turnover rates compared to female microglia 

(Guneykaya et al., 2018; Villa et al., 2018). This was described as developmentally delayed since 

these features are highly abundant during embryonic development, where female microglia were 

shown to be highly phagocytic active (Hanamsagar et al., 2017; Schwarz et al., 2012; Stevens et 
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al., 2007). This delay was recently also identified in aging: male microglia response was 

prominently found in TLR2-activation after stroke induction in 15-17 month old males compared to 

2-3 month old counterparts and in comparison to females of the same ages (Rahimian et al., 2018). 

Those microglia sex-dependent features were manifested in adult microglia and could not be 

changed even upon transplantation into the brains of animals from the opposite sex (Villa et al., 

2018). Interestingly, various developmental genes are strongly upregulated in microglia during 

aging and in AD (Gosselin et al., 2017; Hanamsagar et al., 2017; Krasemann et al., 2017; 

Rustenhoven et al., 2018). These observations could explain why microglial Rab7 KO in 3 month 

old animals had no effect in both sexes, but showed effects in females but not in males throughout 

aging.   

Accordingly, a recent study identified transcriptional changes in microglia within the network of AD 

risk gene ApoE, which were more abundant in aged female mice than in aged males (Kang et al., 

2018). In combination with the latter described developmental delay in male microglia, this could 

also explain findings by meta-analyses of ApoE4 carriers, which described MCI and AD risks in 

women to peak between 65 to 75 years compared to male ApoE4 carriers who showed maximal 

risk to develop MCI and AD at 75 to 85 years of age (Neu et al., 2017). Since ApoE is upstream of 

Trem2, which in turn is activated before Rab7, this could be a potential explanation why we 

observed effects Aβ-pathology and mild neuroprotection in Rab7ΔMG x 5xFAD females at 9 months, 

whereas we did not detect differences in males of the same age. To elucidate whether male 

microglial delay was also influencing Rab7-dependent pathways, further experiments would need to 

be done with older males.  

 

It is worth mentioning that many of the cited studies did not mention the sex or the sex-distribution 

in their cohorts, therefore it remains difficult to draw conclusions about sex-dependent effects of 

microglia in Aβ-pathology and neuronal loss. Noteworthy, the data achieved by ganciclovir-

mediated ablation of microglia, which did not detect any changes in Aβ-load, was conducted in 

males only (Grathwohl et al., 2009). In contrast, the study which identified significantly more 

mushroom spines used pools of more or less the same numbers of males and females 

(Spangenberg et al., 2016).  
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4.5. Conclusion 

This study aimed to investigate whether microglial Rab7 KO could modulate Aβ-pathology and 

neurotoxicity in 5xFAD mice. 

We showed that microglial Rab7 KO could reduce the numbers and sizes of Aβ-plaques and 

reduced mushroom spine loss in progressed disease even though the overall amounts of soluble 

and insoluble Aβ38, Aβ40 and Aβ42 were not modulated. Interestingly, we detected elevated amounts 

of chemokine CCL2, which might contribute to infiltration of peripheral myeloid cells or could 

activate CNS macrophages to compensate for Rab7 KO microglia in 5xFAD mice. 

Moreover, Rab7 KO in microglia seems to be more important in females than in males which could 

be either due to higher Aβ-burden in females or due to sex-dependent behavior of microglia. 

Together, we conclude that microglial Rab7-dependent degradation of Aβ contributes to Aβ-plaque 

pathology and neurotoxicity in female 5xFAD mice of progressed disease stage. 
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