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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid tumors in 

humans. Median survival is around 12 months and is due to late diagnosis, early 

metastatic spread, and a high resistance towards available chemotherapeutic regimens. 

The desmoplastic reaction is a key feature of PDAC which contributes to disease 

progression and has also been reported to confer to chemoresistance and impaired drug 

delivery. Secreted protein acidic and rich in cysteine (SPARC) is an important 

matricellular protein that regulates collagen deposition and ECM remodeling. In human 

PDAC, SPARC is expressed by peritumoral fibroblasts and high expression is associated 

with a poor prognosis.  In several other cancer entities, SPARC has been shown to play 

either tumor promoting or tumor suppressing roles. However, the functional role of 

SPARC in PDAC is unclear. In my thesis, I investigated the expression of SPARC and 

its role during tumor progression from preneoplastic lesions to frank carcinomas in 

genetically engineered mouse models (GEMMs) of PDAC. In order to achieve this, I 

generated SPARCwt, SPARC-/-, KC-SPARCwt and KC-SPARC-/- mice with a global 

SPARC knock-out for in vivo studies. Furthermore, primary epithelial and fibroblast cell 

lines were derived from preneoplastic murine tissues and murine pancreas tumors for in 

vitro experiments. 

The in vivo results showed that the development of the murine pancreas was unaffected 

by germ- line SPARC knock-out. Immunohistochemical and western blot analysis 

revealed that SPARC is not expressed in the normal pancreas with a marked increase of 

SPARC in activated fibroblasts during preneoplastic stages and tumor progression. 

However, loss of SPARC in KC-SPARC-/- mice resulted in a significant reduction of 

intratumoral collagen deposition. Notably, SPARC and subsequent collagen depletion 

did not alter pancreatic intraepithelial neoplasia (PanIN) progression, tumor incidence or 

metastatic frequency to the liver. Both KC-SPARCwt and KC-SPARC-/- tumors exhibited 

similar tumor characteristic including proliferation, apoptosis and mean vessel density. 

Primary epithelial and fibroblast cell lines from both genotypes showed comparable 

morphology and proliferation rates. However, tumor bearing KC-SPARC-/- mice lived 

significantly shorter than of KC-SPARCwt mice, a finding that was most likely due to 

more severe clinical complications such as ascites, diarrhea and bile duct obstruction in 

KC-SPARC-/- mice.  
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Interestingly, SPARC mediated collagen deposition did not impede the delivery and 

metabolism of gemcitabine in pre-neoplastic lesions and tumors as determined by LC-

MS/MS. Strikingly, the amount of gemcitabine increased from normal pancreas tissues 

to pancreatic tumors questioning the drug delivery hypothesis for gemcitabine in PDAC. 
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1. Introduction  

1.1 Pancreatic ductal adenocarcinoma (PDAC) 

1.1.1 Epidemiology 

Pancreatic ductal adenocarcinoma (PDAC) constitutes one of the most aggressive 

malignancies in humans (Carpelan-Holmstrom, 2005; Howlader et al., 2012) and 

accounts for 7% of total cancers in both male and female (Carpelan-Holmstrom, 2005; 

Rahib et al., 2014; Schneider et al., 2005; Siegel et al., 2017). PDAC possesses one of 

the worst clinical outcomes of all solid tumors, and only about 6-8% of patients survive 

beyond 5 years. The median survival of untreated patients with advanced or metastatic 

disease is about 6-12 months. Around 80% of patients are reported to have either locally 

advanced disease or distant metastases during initial diagnosis and cannot be operated 

anymore (Siegel et al., 2017). 

In 2001, Parkin and colleagues have performed a study to examine the global cancer 

burden using multiple data sets from various sources including the World Health 

Organization (WHO), Disease surveillance points (DSP), GLOBCON 2000, 

International agency for Research on Cancer (IARC), Surveillance, Epidemiology and 

End Results (SEER) and EUROCARE-2 (Parkin et al., 2001). This study has shown that 

there were 216,000 new pancreatic cancer cases with an estimated death of 213,000 cases 

worldwide, while in Europe there were 60,139 newly reported cases with an estimated 

death of 64,801 cases (Parkin et al., 2001). In 2002, PDAC incidence in the United 

Kingdom was reported to be 7152 cases with the estimated death of 7250 cases (Ghaneh 

et al., 2008). More recently, the American Cancer Society reported 53,670 new cases in 

the US in 2017 with an estimated death of 43,090 cases (Siegel et al., 2017). Evidently, 

over the years the incidence is increasing while the mortality rate is unchanged 

(Lowenfels and Maisonneuve, 2004). Therefore, PDAC is the fourth common reason for 

cancer-related deaths worldwide, and it is expected to be the second leading cause of 

cancer-related deaths worldwide by 2030.  

There are various factors such as age, sex, ethnicity, smoking and alcoholic abuse, 

chronic pancreatitis, obesity, diabetes and Helicobacter pylori infections which have 

been associated with a slightly increased risk to develop PDAC (Maisonneuve and 

Lowenfels, 2010). In particular, tobacco and alcohol have been identified to accelerate 
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the risk of PDAC development up to 2-fold (Iodice et al., 2008; Tramacere et al., 2010). 

PDAC occurs predominantly in the elderly population (Howlader et al., 2012) and is 

slightly more often diagnosed in males than in females (Siegel et al., 2017). One proposed 

explanation for this difference might be the protective role of female hormones against 

PDAC, though there is no concrete validation for this hypothesis yet (Wahi et al., 2009). 

Recent studies have also explored the direct correlation between obesity and PDAC risk 

(Arslan et al., 2010; Incio et al., 2016). The highest incidence is reported among the 

populations of industrialized/western countries, while the incidence seems to be 

relatively lower among Indian and Nigerian populations (Boyle et al., 1989). 

PDAC is also associated with hereditary factors, in which germ line mutations in certain 

genes including BRCA1, BRCA2, APC, CDKN2A and PRSS1 result in PDAC 

development (Rizzato et al., 2013; Shi et al., 2009; Turati et al., 2013). Among these 

genes, BRCA2 was found to be the most frequently reported mutation to increase the risk 

of PDAC about 6-12% (Murphy et al., 2002; Shi et al., 2009; Thompson and Easton, 

2002).  

1.1.2 Current therapies of PDAC 

The treatment options for PDAC are extremely limited due to various reasons such as 

lack of early symptoms and diagnosis, high recurrence rate after surgery, and high 

resistance towards the existing chemotherapeutic regimens (Neesse et al., 2015). As 

mentioned earlier, only a small proportion of patients (̴ 20%) are eligible for surgery at 

the time of diagnosis (Neoptolemos et al., 2010). The prognosis of surgical patients is 

still poor due to local recurrence or distant metastases shortly after surgery. Therefore, 

patients who are eligible for surgery receive adjuvant therapy postoperatively. This has 

been shown to improve overall and disease free survival (Boeck et al., 2008; Stocken et 

al., 2005). Numerous clinical trials including CONKO-001, CONKO-005, JSAP-02, 

RTOG9704, European Study Group for Pancreatic cancer-1, 3, 4 (ESPAC-1, 3 and 4) 

have been performed over three decades to explore the optimal adjuvant therapy for 

PDAC (Kanji et al., 2018; Neoptolemos et al., 2010, 2017, Oettle et al., 2013, 2007; Sinn 

et al., 2017). Most of the above mentioned randomized trials studied the efficacy of 

gemcitabine alone or in combination with a second chemotherapeutic agent as adjuvant 

therapy following surgical resection.  
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In 2010, the ESPAC-3 randomized and controlled trial was aimed to explore the 

therapeutic value of gemcitabine monotherapy compared to 5-fluorouracil (5-FU) plus 

folinic acid as an adjuvant therapy on a large number of patients who underwent surgical 

resection of PDAC. Results of this trial have shown that there was no significant 

difference in terms of overall survival and disease-free survival between the groups 

treated with gemcitabine alone (median survival- 23.6 months, progression free survival-

13.5 months) and the group treated with 5-FU plus folinic acid (median survival- 23.0 

months, progression free survival-12.5 months). However, gemcitabine was tolerated 

well with less adverse side effects. Due to this advantage, gemcitabine has been 

considered as the standard adjuvant therapy (Neoptolemos et al., 2010). Recently, 

ESPAC-4 trial has aimed to study the clinical efficacy of gemcitabine and capecitabine 

combination compared to gemcitabine alone as an adjuvant therapy in surgically resected 

PDAC patients. This study has revealed that the combination had a significantly 

improved survival outcome compared to gemcitabine monotherapy while having a 

tolerable toxicity profile (overall median survival 28.8 months and 25.5 months 

respectively). Therefore, the combination of gemcitabine and capecitabine could be 

considered as the standard adjuvant therapy at present (Neoptolemos et al., 2017).  

In case of locally advanced and metastatic PDAC palliative treatment represents the only 

approved treatment option at present. In the past, 5-FU was used to treat patients with 

advanced pancreatic cancer based on the study results of Cullinan and colleagues in 1985. 

In this study, the authors compared therapeutic efficacy of 5-FU versus the combination 

of 5-FU and doxorubicin versus the combination of 5-FU, doxorubicin and mitomycin 

and reported no significant difference in terms of survival and quality of life of the 

patients. Thus, 5-FU was considered the better option based on the most acceptable 

toxicity profile (Cullinan et al., 1985).  In 1994, Casper and colleagues conducted a phase 

II trial using gemcitabine on patients with advanced PDAC with no prior treatment. This 

study reported an increased therapeutic efficacy of gemcitabine with a tolerable toxicity 

profile (Casper et al., 1994). Three years later, another randomized trial was conducted 

on a large cohort of patients (126 patients) to compare the clinical efficacy of gemcitabine 

versus standard 5-FU therapy. In this study, gemcitabine was shown to improve clinical 

benefit response (23.8% and 4.8% respectively), and overall survival (5.65 and 4.41 

months) compared to standard 5-FU treatment (Burris et al., 1997). Since then 

gemcitabine was used as a first line therapy for the locally advanced and metastatic 
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PDAC for several decades. In 2011, Conroy and colleagues showed that FOLFIRINOX 

(folinic acid, fluorouracil, irinotecan and oxaliplatin) prolonged overall median survival 

of patients about 4.3 months compared to the gemcitabine monotherapy in a large phase 

III trial conducted in France (Conroy et al., 2011). Two years later, an international phase 

III trial reported a significantly prolonged overall survival of metastatic PDAC patients 

with gemcitabine and nab-paclitaxel combination treatment compared to gemcitabine 

monotherapy (Von Hoff et al., 2013). However, the above mentioned treatment regimens 

have more side effects than gemcitabine monotherapy, and not all patients are eligible 

based on age, performance and nutritional status.  

1.1.3 Initiation and progression  

Oncogenic Kras mutation occurs in almost 95% of all human PDAC patients (Biankin et 

al., 2012; Jones et al., 2008; Kanda et al., 2012; Waddell et al., 2015; Witkiewicz et al., 

2015). Kras mutations are also found in several other tumor entities including breast, 

endometrial, cervical, bladder, liver cancers and myeloid leukemia (Anderson et al., 

1992; Bos et al., 1987; Downward, 2003; Schubbert et al., 2007). KrasG12D is the most 

common point mutation in PDAC in which glycine is replaced by aspartic acid in the 

twelfth codon. Mutation results in constitutional activation of Kras activity which further 

leads to accelerated proliferation, differentiation and survival via downstream signalling 

cascades (Campbell et al., 1998). Oncogenic Kras stimulates cell proliferation by 

activating serine/threonine protein kinase B-Raf (BRAF) and thus by simultaneous 

activation of mitogen-activated protein kinase kinase1/2 (MEK1/2), extracellular signal-

regulated kinase (ERK) and ETS domain- containing protein Elk-1 (Elk-1). It mediates 

survival by concomitantly activating phosphoinositide 3 kinase (PI3K) – protein kinase 

B (AKT) and mammalian target of rapamycin complex 1 (mTORC1) pathway (Carpeño 

and Belda-iniesta, 2013). Oncogenic Kras is also known to stimulate cytokine production 

by activating serine/threonine protein kinase TBK1 (TBK1) which leads to nuclear 

translocation of nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-KB) 

by releasing it from its inhibitory protein NFKBIA (NF-KB inhibitor α) (Carpeño and 

Belda-iniesta, 2013). Nuclear translocation of NF-KB ultimately leads to transcription of 

various cytokine including IL-6 (Ancrile, 2009; Ancrile et al., 2007; Leslie et al., 2010), 

IL-8 (Sparmann and Bar-Sagi, 2004) and Granulocyte-macrophage colony-stimulating 

factor (GM-CSF) (Pylayeva-Gupta et al., 2012). However, KrasG12D alone is not 

sufficient to initiate PDAC, and additional genetic events such as deletion or mutations 
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in tumor suppressor genes P53, INK4a, SMAD4, PTEN, Mist and transforming growth 

factor ß (TGF-ß) are required for progression to frank carcinoma (Guerra et al., 2007; 

Hahn et al., 1996; Hingorani et al., 2003; Morris et al., 2010). Moreover, inflammation 

induced by chronic pancreatitis in conjunction with Kras mutations also gives rise to 

pancreatic cancer as shown in genetically engineered mouse models (GEMMs) (Guerra 

et al., 2011). 

Upon activation of oncogenic Kras signaling, acinar cells undergo a transition process 

called “acinar to ductal metaplasia” (ADM) in which the normal acinar cells lose the 

morphological and functional acinar characteristics (e.g. expression of amylase) and start 

to acquire the phenotypic and molecular properties of ductal cells. Subsequently, ADM 

further progress to pre-neoplastic lesions of PDAC - Pancreatic Intra epithelial Neoplasm 

(PanIN) (Morris et al., 2010). PanINs are by far the most common precursor to PDAC 

(Matthaei et al., 2011). The initial classification and nomenclature of PanINs as 

precursors for PDAC was established in 1999 (Klimstra and Longnecker, 1994). 

 

Figure 1: Initiation and progression of PDAC. Normal cuboidal (ductal) epithelial cells transform into 

tall columnar epithelium with basal nuclei which further attains pseudostratification and other cellular 

abnormalities. Based on the degree of atypia the pre-neoplastic lesions are classified from PanIN1-PanIN3. 

Throughout the progression multiple mutations are accumulated at various stages. (Figure adapted from 

Hruban et al., 2000). 

During the progression of ADMs to PanINs, cells accumulate various cytological 

abnormalities including loss of polarity, nuclear crowding, mucinous cytoplasm and 

atypia. Based on the degree of cellular abnormalities, PanINs are further classified into 

three categories from PanIN1-3 (Hruban et al., 2004). PanINs cannot be detected in 
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patients by currently available imaging methods, and up to now it is not clear at which 

frequency PanIN lesions eventually progress to PDAC. 

1.2 Significance of stroma in PDAC 

Notably, pancreatic stellate cells (PSCs) are already activated during early PanIN 

progression resulting in a pronounced accumulation of extracellular matrix components 

such as collagen and hyaluronic acid (Neesse et al., 2011, 2015).  

Invasive PDAC harbors a pronounced desmoplastic reaction, and the tumor stroma 

comprises more than 90% of the entire tumor mass. The acellular compartment of stroma 

is made up of dense extracellular matrix components and various secreted growth factors. 

The cellular compartment of the stroma is comprised of abundant infiltrating 

inflammatory cells, activated fibroblasts, and altered endothelial cells (Chu et al., 2007; 

Neesse et al., 2011). Conflicting results have been published regarding the role of the 

tumor stroma in PDAC. Though different components of stroma have been shown to 

confer progression, invasion and chemoresistance of PDAC, there are few studies 

suggesting that stroma plays a tumor-suppressive role in PDAC (Chu et al., 2007; 

Ellenrieder et al., 2000; Hessmann et al., 2018; Hidalgo and Eckhardt, 2001; Mccleary-

Wheeler et al., 2012; Rhim et al., 2014). Recently, it was attempted to classify PDAC 

into subtypes based on stromal phenotypes (Collisson et al., 2011; Knudsen et al., 2017; 

Moffitt et al., 2015). Moffitt and colleagues have classified PDAC into basal (no stroma), 

normal and activated stromal subtypes and further assessed the survival of the respective 

subtypes using high throughput gene expression microarray analysis. In this study, the 

normal and activated stromal subtypes were differentiated by the expression of specific 

markers. The normal stroma expressed markers such as α- Smooth Muscle Actin (α-

SMA), vimentin and desmin while the activated stroma was shown to express markers 

including secreted protein acidic and rich in cysteine (SPARC), chemokine (C-C motif) 

ligand 13, 18 (CCL13 and 18), gelatinase B and stromelysin 3. Additionally, there was a 

significant survival difference reported between these two stromal subtypes, in which the 

normal stromal subtype had a median survival of 24 months while the activated stromal 

subtype had a median survival of only 15 months (Moffitt et al., 2015).   

1.2.1 Acellular compartment of stroma 

The abundant extra cellular matrix (ECM) is composed of various soluble and non-

soluble factors. The most abundant non-soluble constituents of the ECM are collagen 
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(type I, III and IV), laminin, fibronectin and hyaluronic acid (Thompson et al., 2010). 

Besides these solid components there are substantial number of soluble secreted factors 

such as connective tissue growth factor (CTGF), fibroblast growth factor (FGF), vascular 

endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and TGF-ß 

(Apte et al., 2013; Feig et al., 2012; Gress et al., 1998; Lohr et al., 2001; Neesse et al., 

2015; Ozawa et al., 2001). Apart from the above mentioned growth factors certain 

secreted proteins, which are collectively known as modulators of tumor - stroma 

interaction, are also abundantly found in the stromal compartment such as SPARC, 

periostin, thrombospondin and tenascin C (Baril et al., 2007; Esposito et al., 2006; Infante 

et al., 2007; Kanno et al., 2008; Lohr et al., 2001; Mantoni et al., 2008). The matrix 

metalloproteinases (MMPs) are a family proteolytic enzymes involved in multiple 

physiological functions including embryo implantation, development, angiogenesis, 

wound healing and tissue regeneration (Jabłońska-Trypuć et al., 2016). Among the big 

family of MMPs, MMP-2, MMP-9 and MMP-11 are known to be the crucial members 

of ECM composition (Iacobuzio-Donahue et al., 2003; Määttä et al., 2000; Qian et al., 

2001; Shek et al., 2002; Vonlaufen et al., 2008a). Initially, MMPs were not only reported 

to facilitate metastatic spread by degrading the ECM barrier but also contributed to 

carcinogenesis (Chambers and Matrisian, 1997). The inflammatory cytokines 

(interleukin-1 (IL-1), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α)) and 

various growth factors (TGF-ß, FGF, EGF and PDGF) are reported to increase the 

expression of MMPs. Thus by secreting the above mentioned inflammatory growth 

factors, tumor cells influence stromal cells in a paracrine manner to secrete more MMPs 

(Noël et al., 2008). 

1.2.2 Cellular compartment of stroma 

During the development of PDAC, there are various cell populations which are either 

activated within the pancreas or recruited from distant sites. Among them, inflammatory 

cells, activated fibroblasts and PSCs, endothelial cells and neurons are pivotal elements 

(Ceyhan et al., 2008; Demir et al., 2015; Neesse et al., 2011).  

Tumor associated macrophages (TAMs), myeloid derived suppressor cells (MDSC) and 

regulatory T cells are found to be the most abundantly recruited immune cell population 

in PDAC. The dynamics of immune cell recruitment from PanIN to PDAC has been 

investigated in GEMMs of PDAC and showed abundant immunosuppressive MDSC 

already during early PanIN stages (Clark et al., 2007). These immune populations 
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suppress T cell proliferation and response and were also shown to play a crucial role in 

tumor invasion by promoting ECM remodelling (Condeelis and Pollard, 2006; Hao et al., 

2012; Pollard, 2004).  

Activated fibroblasts or cancer associated fibroblasts (CAFs) are one of the most 

prominent cell populations within the tumor stroma. The majority of activated fibroblasts 

originate from PSCs. The resident fibroblasts of the pancreas are a sparse population 

which accounts for only 4% of total cells of the healthy pancreas (Apte et al., 1998; 

Bachem et al., 1998). PSCs are normally found in a quiescent state and are activated upon 

inflammatory or oncogenic stimuli from the pre- neoplastic or neoplastic cells. In turn, 

the activated PSCs produce abundant ECM and other growth factors to aid the neoplastic 

growth (Apte et al., 2004; Habisch et al., 2010; Kalluri and Zeisberg, 2006; Schäfer et 

al., 2012). Studies have reported that CAFs can also be derived from bone marrow 

(Direkze et al., 2004; Ishii et al., 2003). Additionally, tumor cells were also shown to 

mimic the phenotypic and molecular properties of activated fibroblasts in certain 

conditions (Kalluri and Zeisberg, 2006). Several studies have emerged that reveal the 

contribution of PSCs regarding ECM production, angiogenesis, invasion, metastasis and 

chemoresistance of PDAC (Erkan et al., 2009; Hessmann et al., 2018; Lohr et al., 2001; 

Schneiderhan et al., 2007).  

1.3 Genetically engineered mouse models of PDAC 

The development of GEMMs is a breakthrough in PDAC research. GEMMs are 

particularly useful for the investigation of the tumor stroma since tumorigenesis occurs 

within the normal pancreatic microenvironment. Compared to xenograft and orthotopic 

models, GEMMs are particularly useful to investigate the desmoplastic reaction and 

study the crosstalk between stromal- and tumor cells. 

GEMMs are generated by genetic mutations in oncogenes and tumor suppressor genes 

that also occur in human PDAC. To this end, activating mutations of the Kras oncogene 

occurs most frequently in PDAC and is critical for tumor development. Therefore, 

GEMMs of PDAC are generated by introducing a KrasG12D mutation that is flanked by 

lox-stop-lox (LSL) sites and excised by Cre-recombinases that are driven under a 

pancreas-specific promoter such as Pdx or Ptf1a (p48) that are expressed early during 

embryogenesis. Additional inactivating mutations in various tumor suppressor genes 
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such as p53, SMAD4 or p16 can be combined to accelerate tumorigenesis (Aguirre et al., 

2003; Ahmed et al., 2017; Bardeesy et al., 2006; Ijichi et al., 2006; Tuveson et al., 2006).  

The LSL-KrasG12D; Pdx or P48 Cre (KC) model was initially established by Hingorani et 

al., 2003 (Hingorani et al., 2003; Jackson et al., 2001). The KC model is considered as a 

slow progression model as mice develop ADM and PanIN lesions over the course of 

several months. These PanIN lesions highly resemble the precursor lesions found in the 

patients. Around 60% of mice develop invasive carcinoma between 10-15 months of age. 

Therefore, the KC model is best suited to study the disease initiation and progression.  

The LSL-KrasG12D;Trp53172H;PdxCre (KPC) harbors an additional inactivating mutation 

of the p53 tumor suppressor gene that dramatically accelerates pancreatic tumorigenesis. 

Mice develop invasive pancreatic tumors between 3-6 months of age, and median 

survival is about 150 days (Hingorani et al 2005). Notably, KPC mice develop the full 

spectrum of PDAC including desmoplastic, locally invasive carcinoma, bile duct 

obstruction, ascites, cachexia and liver and lung metastasis. Therefore, the KPC model is 

appropriate to test response to novel therapies in preclinical studies and is currently the 

most frequently used GEMM of PDAC.  

1.4 Stromal targeting in PDAC 

Many preclinical studies and clinical trials have attempted to target different components 

and pathways of the tumor stroma as a therapeutic option. Though these anti-stromal 

approaches have shown promising results at the experimental level, they all failed in 

clinical trials (Bramhall et al., 2001, 2002), and there is currently no approved anti-

stromal treatment for PDAC patients. For instance, Hedgehog (Hh) signalling is one of 

the central regulators of tumor-stroma crosstalk which is shown to contribute to 

desmoplasia in various tumor entities (Thayer et al., 2003). Following an inflammatory 

or oncogenic stimuli, pancreatic epithelial cells express Hedgehog ligands (Fendrich et 

al., 2008; Thayer et al., 2003).  In PDAC, Hh signalling has been shown to work in a 

paracrine manner in which Hh-ligands released by epithelial tumor cells affect the 

surrounding stromal cells and thus mediates desmoplasia (Lauth et al., 2010; Lee et al., 

2014; Yauch et al., 2008). In 2009, Olive and colleagues have successfully depleted 

stromal deposition in a GEMM of PDAC by inhibiting Hh-signalling using a 

pharmacological inhibitor (IPI-926). The authors reported that co-administration of IPI-

926 and gemcitabine led to a significant increase of intra- tumoral gemcitabine 
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accumulation and increased vascular density, and thus reduced the tumor growth. In 

contrast, four years later Rhim and colleagues showed that genetic inhibition of sonic 

hedgehog in a GEMM resulted in accelerated tumor growth with more aggressive tumor 

biology including undifferentiated histology, increased vascularity and proliferation of 

the tumors (Rhim et al., 2014).The data by Rhim et al explain the clinical failure of Hh-

inhibitors such as IPI-929. In the same year, Özdemir et al. depleted α-SMA positive 

myofibroblasts in a GEMM of PDAC. In line with Rhim et al, this preclinical study 

revealed increased tumor invasiveness and aggressiveness upon myofibroblast depletion. 

Furthermore, myofibroblast depleted tumor showed pronounced epithelial to 

mesenchymal transition (EMT) features and an increased amount of cancer stem cells. 

Additionally, the authors also showed a correlation between decreased myofibroblast 

content and reduced survival in the patients (Özdemir et al., 2014).  

Hyaluronic acid (HA) is one of the major stromal components of PDAC which has been 

shown to be correlated with poor survival (Whatcott et al., 2015). In preclinical 

experiments, HA depletion by the hyaluronidase PEGPH20 was shown to increase drug 

delivery and therapeutic efficacy of gemcitabine (Jacobetz et al., 2013; Provenzano et al., 

2012; Singha et al., 2015). In a phase II clinical trial (HALO 202) PEGPH20 was 

combined with nab-paclitaxel/gemcitabine compared to the standard therapy nab-

paclitaxel/gemcitabine to assess the therapeutic efficacy of HA depletion in PDAC 

patients (Hingorani et al., 2018). The results have shown that the highest benefit was 

achieved in PDAC patients with high intratumoral HA levels where an objective response 

rate of 45% vs 31%, and overall survival of 11.5 vs 8.5 months was achieved compared 

to the control group (Hingorani et al., 2018). Currently, PDAC patients with high HA-

expression are enrolled in a phase III trial to confirm the therapeutic potential of HA-

depletion in PDAC patients (NCT02715804). 

  

https://clinicaltrials.gov/show/NCT02715804
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1.5 Secreted Protein Acidic Rich in Cysteine (SPARC)  

SPARC, also known as osteonectin or BM-40 is a 32kDa, albumin and calcium binding 

matricellular protein (Sage et al., 1984), and belongs to a family of eight proteins 

(Bradshaw, 2012). Secreted modular calcium binding protein (SMOC) 1 and 2 

(Vannahme et al., 2002, 2003), hevin (SPARC like 1) (Hambrock et al., 2003), testican 

1, 2 and 3 (commonly known as SPOCK) (Alliel et al., 1993; Charbonnier et al., 1998; 

Schnepp et al., 2005; Vannahme et al., 1999) and folistatin like protein 1 (Hambrock et 

al., 2004) are the other members of the family.  

Originally, SPARC has been identified as a bone specific protein which is reported to aid 

in mineralization of collagen (Termine et al., 1981). Unlike the typical structural proteins 

of the ECM (collagen, fibronectin and laminin), SPARC plays a non-structural role by 

serving as a mediator of cell-matix interaction (Brekken and Sage, 2000; Lane and Sage, 

1994).  

1.5.1 Structure and biochemistry  

Human SPARC protein is encoded by a single copy gene located on chromosome 5q33.1. 

SPARC protein consists of three modular domains which are the acidic NH2-terminal 

domain (amino acid (aa) 1-52), the follistatin like domain (aa 53-137),  and the C-

terminal calcium binding domain (aa 138-286) (Hohenester et al., 1996; Lane and Sage, 

1994; Martinek et al., 2002).  

The NH2-terminal domain (domain I) includes a 17aa signal peptide rich in aspartic and 

glutamic acid residues. Domain I of SPARC has been shown to bind Calcium2+ ions with 

low affinity and also to interact with hydroxyapatite (bone mineral) (Maurer et al., 1992; 

Romberg et al., 1985). Depending on the availability of Ca2+, this domain has been shown 

to bind a maximum of 8 Ca2+ ions (Maurer and Hohenester, 1997). However, functions 

of the domain I are not completely calcium dependant (Lane et al., 1992). Specific 

sequences of domain I distinguish SPARC from other members of the SPARC like 

protein family.  

Domain II of SPARC is rich in cysteine and is named as follistatin-like (FS) domain due 

its high homology with follistatin (a peptide which inhibits the secretion of follicle 

stimulating hormone) (Esch et al., 1987; Patthy, 1991). However, SPARC does not 

mimic the inhibitory function of follistatin against avtivin-A (Maurer et al., 1992). A 

synthetic peptide derived from follistatin-like domain (domain II) termed as peptide 2.1 
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(aa 55-74) has exhibited an inhibitory effect on cell cycle progression similar to original 

SPARC protein in specific cell type such as bovine aortic endothelial cells (Funk and 

Sage, 1991). Another synthetic peptide derived from domain II (peptide 2.3-aa 113-130) 

has exhibited copper binding property due to the presence of Gly-His-Lys (GHL) 

residues (Funk and Sage, 1993; Lane T. F and Sage Helene., 1994; Vernon and Sage, 

1989). Peptide 2.3 has been also shown to promote proliferation (in fibroblasts), 

angiogenesis and wound healing (Pickart and Lovejoy, 1987; Pickart et al., 1980).  

The extracellular domain (EC domain or domain III) is highly conserved in SPARC of 

different species and among other members of the SPARC protein family. The EC 

domain of SPARC possesses the binding site for collagen type I and IV, and the two EF-

hands of the EC domain exhibit high affinity to calcium (Engel et al., 1987; Hohenester 

et al., 1997). Peptide 4.2 belongs to domain III (aa 254-273) and has been reported to 

impede the proliferation of endothelial cells (Kupprion et al., 1998; Motamed and Sage, 

1998). The structure and domains of SPARC are depicted in Figure 2. 

 

Figure 2: Structure of SPARC protein. Three domains of the SPARC protein, NH2 domain I, follistatin 

like domain and the extracellular Ca2+ binding domain are shown in purple, red and 

blue,respectively.Peptide2.1, peptide2.3 and peptide 4.2 are shown in green, black and yellow, 

respectively. Picture adapted from Brekken and Sage, 2000.   

There are certain domain and tissue specific post translational modifications such as 

glycosylation (Asn 99-domain II), crosslinking between transglutaminases or disulfide 

crosslinking between SPARC that give rise to structural heterogeneity of SPARC.  
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The heterogeneity in the protein structure allows SPARC to bind a wide range of proteins 

including different collagen subtypes (Kelm and Mann, 1991; Zhou et al., 1998). 

Additionally, certain structural similarities between SPARC family proteins explain their 

similar physiological roles (Bornstein, 1995).  

1.5.2 SPARC and ECM 

SPARC is a modulator of ECM whose expression is reported to be associated with 

increased ECM deposition (Framson and Sage, 2004). SPARC binds to various structural 

and non-structural proteins of the ECM including collagen (type I, II, III, IV, V and VIII) 

(Maurer et al., 1992; Sage et al., 1989; Termine et al., 1981), vitronectin (Rosenblatt et 

al., 1997) and thrombospondin (Clezardin et al., 1988). Collagen is one of the 

predominant components of the ECM which plays a significant role during embryonic 

development. The proper assembly and folding of collagen is mandatory for the 

biophysical and biochemical functions maintaining the homeostasis of the basal lamina 

and various connective tissues (Martinek et al., 2006). There are various molecular 

chaperons that are involved in the folding, assembling and maturation of collagen. 

Among them, heat-shock protein 47 (HSP47) is one of the best studied molecular 

chaperons of collagen whose homozygous deletion results in prenatal lethality in mice 

(Poschl, 2004). SPARC is a molecular chaperon of collagen due to its ability to bind to 

the triple helical domains of collagen. In concert with HSP47, SPARC mediates stability 

of collagen before its secretion from the endoplasmic reticulum (Martinek et al., 2006; 

Wang et al., 2005). Consistently, Fisher et al., have shown co-expression of HSP47 and 

SPARC during high collagen synthesis. However, unlike HSP47, homozygous SPARC 

knock out is not lethal in mice. It has been reported that the type I collagen fibrils of 

SPARC null mice are smaller than that of SPARC wildtype mice fibrils confirming the 

participation of SPARC in collagen folding and maturation (Bradshaw et al., 2003). 

Unlike HSP47, SPARC is thought to be still bound to procollagen during post 

endoplasmic reticulum (ER) events thus preventing side-to-side aggregation of 

procollagen (Martinek et al., 2006). The contribution of SPARC in collagen folding, 

fibrillogenesis and deposition is shown in Fig. 3.  
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Figure 3: A model showing the contribution of SPARC during endoplasmic and post-endoplasmic 

events in collagen fibrillogenesis. SPARC mediates proper folding of collagen together with HSP47, a 

known molecular chaperon of collagen. Unlike HSP47, SPARC is still bound to procollagen upon secretion 

and thus prevents self-aggregation of premature collagen which ultimately leads to the formation of mature 

and thicker collagen fibrils. 

Studies have also discussed various other possibilities by which SPARC maintains 

collagen homeostasis by interacting with intracellular components like Integrin linked 

protein kinase (ILK) or by regulating the activity matrix metalloproteinases and certain 

growth factors (Martinek et al., 2006). Studies have also shown the significance of 

fibronectin assembly at the cell surface in collagen fibrillogenesis (Robinson et al., 2004). 

There are certain ligands and receptors such as α2β1 integrin ligand, fibronectin and 

discoidin domain receptor 2 (DDR2) which are reported to share their binding site on 

collagen (aa 600-800) with SPARC (Carafoli et al., 2009; Ingham et al., 2002; Wang et 

al., 2005; Xu et al., 2000). In 2005, Barker and colleagues have shown a direct interaction 

between SPARC and ILK and they further claimed that SPARC modulates many 

signaling pathways including TGF-ß by acting as a counter-adhesive molecule. 

Additionally, SPARC has also been shown to regulate collagen fibrillogenesis by 
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regulating the activity of decorin, an important proteoglycan involved in collagen 

fibrillogenesis (Barker et al., 2005).  

1.5.3 SPARC and growth factor signalling 

SPARC has been reported to interact with various secreted growth factors such as PDGF, 

VEGF, TGF-ß and basic fibroblast growth factor (bFGF) (Francki et al., 1999b; 

Hasselaar and Sage, 1992; Kupprion et al., 1998; Raines et al., 1992). Thus, SPARC 

mediates a wide range of physiological functions by altering ECM organization and by 

interacting with intracellular growth factor signalling (Funk and Sage, 1991; Tremble et 

al., 1993; Yan and Sage., 1999). SPARC has been shown to bind PDGF and VEGF 

directly and thus preventing the ligand binding which further results in inactivation of 

the respective receptors and receptor mediated cellular functions. SPARC reduced the 

PDGF and VEGF mediated proliferation in human arterial vascular smooth muscle cells 

and microvascular endothelial cells, respectively (Kupprion et al., 1998; Raines et al., 

1992). SPARC has been also described to regulate the TGF-ß signalling pathway 

(Francki et al., 1999a; Schiemann et al., 2003). There is a mutual regulatory feedback 

loop that was identified between SPARC and TGF-ß due to the ability to regulate each 

other’s expression (Bassuk et al., 2000; WRANA et al., 1991). Unlike the direct 

interaction of SPARC with other growth factors, SPARC does not directly bind bEGF. 

However, an inhibitory effect against bFGF mediated migration of endothelial cell was 

reported (Hasselaar and Sage, 1992).  

1.5.4 SPARC in cancer 

Overexpression or loss of SPARC has been reported in many human tumor entities 

including breast, colon, oesophageal cancers and melanoma (Sato et al., 2003). SPARC 

seems to play pro-tumorigenic role in certain cancers such as non-small cell lung cancer, 

melanoma, glioblastoma while it has been ascribed a tumor suppressive role in other 

cancers such as colorectal, ovarian, acute myelogenous leukemia and prostate cancers 

(Chlenski et al., 2002; Dhanesuan et al., 2002; Fernanda Ledda et al., 1997; Koblinski et 

al., 2005; Koukourakis et al., 2003; Said et al., 2013; Shin et al., 2013; Suzuki et al., 

2005; Yiu et al., 2001).  
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1.5.5 SPARC in PDAC 

In PDAC, SPARC is highly expressed by peritumoral fibroblasts, while there is merely 

any expression in the tumor cell itself. Furthermore, high expression of SPARC in the 

stromal compartment was correlated with poor prognosis in PDAC patients (Infante et 

al., 2007; Mantoni et al., 2008). The loss of SPARC in epithelial tumor cells is associated 

with hypermethylation of the SPARC promoter. In particular, hypermethylation of the 

CPG-2 region is closely associated with pathophysiological conditions of the pancreas 

such as pancreatitis and PDAC (Gao et al., 2010; Sato et al., 2003). Different in vitro and 

in vivo studies have reported both tumor suppressive and tumor promoting roles of 

SPARC in PDAC. For instance, the tumor suppressive role of SPARC was shown by the 

study of Chen and colleagues, in which the authors reported a reduced growth and 

migration of PDAC cell lines in the presence of exogenous SPARC. Furthermore, a 

correlation between endogenous SPARC expression and reduced tumor aggressiveness 

was reported in a xenograft mouse model (Chen et al., 2010). In 2004, a study performed 

by Puolakkainen et al. revealed the complex nature of SPARC in tumorigenesis. Using 

subcutaneously implanted tumors in SPARC deficient mice, the authors reported an 

accelerated tumor growth which was associated with reduced ECM deposition and 

reduced apoptosis of tumor cells (Puolakkainen et al., 2004).  

Contradicting the above studies, SPARC also has been shown to play a protumorigenic 

role. Guweidhi et al., provided evidence that upon exogenous SPARC treatment Colo-

357 (low endogenous SPARC expression) cells exhibited an increased invasiveness in 

vitro. Similarly, inhibition of endogenous SPARC in PANC-1 (high endogenous SPARC 

expression) resulted in diminished invasion. Moreover, exogeneous SPARC treatment 

resulted in increased invasiveness of PDAC cell lines with parallel overexpression of 

MMP-2 (Guweidhi et al., 2005). Another study has revealed a negative correlation 

between stromal SPARC expression and overall survival of PDAC patients (Mantoni et 

al., 2008). 

Importantly, the role of peritumoral SPARC has not been assessed in appropriate 

experimental models that recapitulate the pronounced tumor microenvironment. To this 

end, GEMMs of PDAC seem to be particularly suited to investigate the role of stromal 

derived SPARC in PDAC. 
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1.6 Aim of the study 

Abundant collagen and HA deposition is a hallmark feature of the tumor 

microenvironment in PDAC. Several preclinical studies suggest that pharmacological 

depletion of collagen (e.g. by losartan) and HA (by PEGPH20) relieves vessel 

compression thus improving drug delivery and therapeutic response (Chauhan et al., 

2013; Diop-Frimpong et al., 2011; Jacobetz et al., 2013; Provenzano et al., 2012). In 

contrast, recent evidence in several GEMMs casted serious doubt on the stromal 

depletion strategy since preclinical results have shown that pancreatic tumors become 

more aggressive, invasive and undifferentiated upon genetic or pharmacological 

inhibition of pro-stromal signaling pathways such as the SHH-pathway (Özdemir et al., 

2014; Rhim et al., 2014). Therefore, stromal reprogramming rather depletion has become 

a novel approach to attempt to normalize tumor stroma rather than deplete it (Neesse et 

al., 2013; Sherman et al., 2014). To achieve this, a detailed knowledge of pro-tumorigenic 

and tumor-suppressive properties of the tumor stroma is required. Indeed, detailed 

molecular studies have identified first features of CAFs that distinguish between tumor 

promoting and tumor suppressive functions (Öhlund et al., 2017).  

In my thesis, I aim to examine the role of SPARC in PDAC. SPARC is overexpressed in 

human and murine CAFs in the tumor stroma of PDAC, whereas it is hardly expressed 

in preneoplastic and neoplastic cells. A recent study by Moffitt et al. provided first 

evidence that SPARC is an important marker of the activated tumor stroma in PDAC 

patients that is associated with a significantly shortened survival (Moffitt et al., 2015). 

However, it is not known whether and how peritumoral SPARC contributes to disease 

progression in PDAC. Furthermore, as SPARC is part of the activated tumor stroma and 

has been implicated in collagen deposition and remodelling, I hypothesize that genetic 

ablation of SPARC in a GEMM of PDAC may reprogram the tumor stroma, slowing 

down tumor progression and increasing drug accumulation and efficacy by collagen 

remodelling. 

To address this hypothesis, I crossed the KC model with a germ-line SPARC knock-out 

mouse. This mouse model allowed me to address the impact of SPARC during different 

stages of PanIN and tumor development, as well as metastasis formation. Furthermore, 

this model allows to conduct preclinical assays to investigate the role of SPARC 

dependent collagen remodelling on drug delivery and efficacy. 
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2. Materials 

2.1 Technical instruments  

Equipment Company 
Agarose gel electrophoresis 
chamber-Model 40-0911 

 
Peqlab Biotechnologie GmbH, Erlangen, 
Germany 

Arium®pro ultrapure water system Sartorius, Göttingen, Germany 
Aspirator with trap flask Grant Instruments Ltd, Cambs, England 
Autoclave  TecnomaraIntegraBiosciences, Deutschland 

GmbH 
Autoclave (heat sterilization) SHP Steritechnik AG, Haldensleben, Germany 
Centrifuge (Universal 320R) Hettich lab technology, Tuttlingen, Germany 
Centrifuge - Perfect spin 24 plus 
(Prism R) 

Peqlab Biotechnologie GmbH, Erlangen, 
Germany 

Centrifuge (HeraeusMultifuge 
X1R) 

Thermo Fisher scientific, Waltham, USA 

Cellometer®Auto 1000 cell counter Nexcelom Bioscience, Lawrence, MA 
Class II safety cabinet (S2020 -1.2) Thermo Fisher scientific, Waltham, USA 
Cold plate (Histocore Arcadia c) Leica Biosystem, Wetzlar, Germany 
Flex cycler block Analytikjena Germany 
Molecular 
Imager®ChemidocTMXRS System 

Bio-rad Hercules USA 

Heating plate Leica Biosystem, Wetzlar, Germany 
HERAcell 240i CO2 incubator Thermo Scientific, Waltham, USA  
Ice flaker (AF80) Scotsman, Edinburgh, UK 
INTAS- ECL Chemocam imager INTAS Science Imaging Instruments GmbH, 

Göttingen, Germany 
Inverted live cell microscope DMi8 
automated 

 
Leica Microsystems GmbH, Wetzlar, Germany 

Inverted microscope (CKX53SF) Olympus, Tokyo, Japan 
Light microscope "BX43" Olympus, Tokyo, Japan 
Magnetic stirrer (RH B S000) IKA®Laboratory equipment, Germany  
Microplate Luminometer "LUMO" Autobiolabtec Instruments Co.,Ltd, 

Zhengzhou, China 
Microplate reader "PHOmo" Autobiolabtec Instruments Co.,Ltd, 

Zhengzhou, China 
Microwave (NN-E209W) Panasonic; Japan  
Microtome (Leica RM2265) Leica Biosystems, Wetzlar, Germany 
Mini centrifuge (SPROUT TM) HealthrowScientific®LLC, Illinois, USA 
Mini gel tank (A25977) Invitrogen Thermo Fisher scientific, Waltham, 

USA 
Mini-water bath   Bodo Schmidt GmbH, Göttingen, Germany 
Multi-functional orbital shaker 
(PSu-20i) 

Grant Instruments Ltd., Cambs, England 

Multipipette®plus Eppendorf AG Hamburg, Germany 
Paraffin Tissue embedder 
(EG1150H) 

Leica Biosystems, Wetzlar, Germany 
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pH meter (FiveEasyTM Plus FEP20) Mettler-Toledo AG, Schwerzenbach, 
Switzerland 

Pipetus®Akku Hischmann, Laborgerate, Eberstadt, Germany 
Pipetor – pipetboyacu 2  Integra Biosciences, Zizers, Switzerland 
Pipettes Research series Eppendorf AG Hamburg, Germany 
PowerPacTM HC Bio-rad Hercules USA 
Refrigerator 4°C (Comfort) Liebherr, Bulle, Switzerland 
Shandon coverplateTM (cadenza 
system) 

Thermo Scientific, Waltham, USA  

SequenzaTMslide rack(cadenza 
system) 

TED PELLA,INC, Redding, CA 

T100TMThermal cycler Bio-rad Hercules USA 
Thermo mixer compact Eppendorf AG Hamburg, Germany 
Universal oven UF260 MemmertGmbH+Co. KG, Schwabach, 

Germany 
Universal oven UF55 pa MemmertGmbH+Co. KG, Schwabach, 

Germany 
Vacuum pump VacuubrandGmbH+Co. KG, Wertheim, 

Germany 
Vortex (MS1)  IKA®works do BrasilLtda, Taquara, Brazil 
Vortex (REAX1) HeidolphInstruments GmbH & Co. KG, 

Schwabach, Germany 
Waterbath (WNB14) MemmertGmbH+Co. KG, Schwabach, 

Germany 
Weighing balance  Sartorius  AG, Göttingen, Germany 
-20°C freezer Liebherr, Bulle, Switzerland 
-80°C Ultra low temperature freezer 
(MDF-U54V) 

 
Sanyo electric Co.,Ltd Japan 

Tissue dehydration machine 
(automated) 

Leica Biosystems, Wetzlar, Germany 

 

2.2. General consumables 

Goods Company 
Aluminium foil Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
Centrifuge tube 15 and 50 ml Sarstedt, Nümbrecht, Germany 
Cell strainer-100µm Falcon, Durham, USA 
Cell scrapper Sarstedt, Nümbrecht, Germany 
Cello meter counting chamber Nexcelom Bioscience, Lawrence, MA 
Cryo pure vial Sarstedt, Nümbrecht, Germany 
Combitips advanced (Multipipette tips) Starlab International GmbH, Hamburg, 

Germany 
Graduated sterile pipettes (2,10,25 and 
50ml) 

Greiner bio-one, Frickenhausen, Germany 

Glass coverslips (24×32, 24×60) Menzel Gläser®, Menzel GmbH+Co KG, 
Braunschweig, Germany  

Micropipette filter tips Starlab International GmbH, Hamburg, 
Germany 
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Micropipette tips  Starlab International GmbH, Hamburg, 
Germany 

Microtome blade (S35) Feather safety Razer Co. Ltd, Osaka, 
Japan 

Microtube (1.5 and 2ml) Sarstedt, Nümbrecht, Germany 
Injection needle (Sterile) B.Braun, Melsungen, Germany 
Nitrocellulose membrane GE Healthcare lifesciences, Marlborough, 

USA 
Parafilm Pechiney plastic packaging, Chicago, USA 
PCR tubes Sarstedt, Nümbrecht, Germany 
Scalpel Feather safety Razer Co. Ltd, Osaka, 

Japan 
Serological pipette (2ml) Greiner bio-one, Frickenhausen, Germany 
Sponge Pad ForXCell IITM Blotting Novex by Life technologies, Carlsbad, CA 
Superfrost glass slides (Histology) Thermo Scientific, Waltham, USA  
Syringe (1ml) BD Plastic, Madrid, Spain 
Syringe (5,10,20ml) B.Braun, Melsungen, Germany 
Sterile syringe Filter (0.2µm) Labsolute, Th.Geyer ingredients GmbH & 

Co.KG, Höxter, Germany  
Tissue culture multiwell plates  Greiner bio-one, Frickenhausen, Germany 
Tissue culture flasks Greiner bio-one, Frickenhausen, Germany 
Tissue culture dishes (2cm, 10cm) Sarstedt, Nümbrecht, Germany 
Tissue cassette Sanowa, Leimen, Germany 

 

2.3 Chemicals 

2.3.1 General chemicals 

Chemical Company 
Albumin standard Thermo Scientific, Waltham, USA 
Acetic acid Sigma-Aldrich, St. Louis, USA 
Agarose Biozym Scientific GmbH, Oldendorf, 

Germany 
Aqua  B.Braun, Melsungen, Germany 
BSA Serva, Heidelberg, Germany 
β-Mercaptoethanol  Merck, Darmstadt, Germany 
Boric acid Merck, Darmstadt, Germany 
Calcium chloride Applichem, Darmstadt, Germany 
Citric acid monohydrate Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
EDTA Acros organics, Geel, Belgium 
EGTA Sigma-Aldrich, St. Louis, USA 
Ethanol ChemSolute®, Th.Geyer ingredients 

GmbH & Co.KG, Höxter, Germany 
Eosin Sigma-Aldrich, St. Louis, USA 
Formaldehyde (4%) Merck, Darmstadt, Germany 
HEPES  Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
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Glycerol Carl Roth GmbH Co. KG, Karlsruhe, 
Germany 

Hematoxylin Sigma-Aldrich, St. Louis, USA 
HCl Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
H2O2 Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
Isofluran AbbVie Deutschland GmbH & Co. 

KG, Ludwigshafen, Germany 
Magnesium chloride Applichem, Darmstadt, Germany 
Methanol Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
Non-fat milk powder Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
PBS (Dulbecco's) Biochrom, Berlin, Germany 
PMSF Sigma-Aldrich, St. Louis, USA 
Roticlear Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
Rotimount Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
Saline (0,9% NaCl) B.Braun, Melsungen, Germany 
Sodium chloride Merck, Darmstadt, Germany 
Sodium citrate Sigma-Aldrich, St. Louis, USA 
Sodium fluoride Sigma-Aldrich, St. Louis, USA 
Sodium hydroxide Acros organics, Geel, Belgium 
Sodium Orthovanadate Sigma-Aldrich, St. Louis, USA 
Sodium pyrophosphate Sigma-Aldrich, St. Louis, USA 
Sodium pyruvate Gibco® Thermo scientific, Waltham, 

USA 
Tris-HCl Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
Tris-base Carl Roth GmbH Co. KG, Karlsruhe, 

Germany 
Triton X-100 Sigma-Aldrich, St. Louis, USA 
Tween-20 Sigma-Aldrich, St. Louis, USA 

 

2.3.2 Special chemicals and reagents 

Chemical or reagent Company 
Coomassie blue G-250 Thermo scientific, Rockford, USA 
DAPI mounting medium Vector laboratories, Burlingame, CA 
DMEM Gibco® by Life technologies ltd, 

Paisley, UK  
Fast SYBR Green Master mix Thermo scientific, Rockford, USA 
FBS Gibco® by Life technologies ltd, 

Paisley, UK 
Gemcitabine hydrochloride Sigma Aldrich, St. Louis, USA 
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HBSS 1x  Gibco® by Life technologies ltd, 
Paisley, UK 

LiberaseTL Research grade Roche, Basel, Switzerland 
MEM AA solution (50x) Gibco® by Life technologies ltd, 

Paisley, UK 
MEM NEAA solution (50x) Gibco® by Life technologies ltd, 

Paisley, UK  
Midori green Nippon genetics Europe GmbH, 

Germany 
MTT reagent Sigma Aldrich, St. Louis, USA 
NuPAGE 4-12% Bis-Tris gel Invitrogen by Thermo scientific, 

Carlsbad, CA 
Penicillin/streptomycin Gibco® Thermo scientific, Waltham, 

USA 
RNA later® RNA stabilization reagent Qiagen GmbH, Hilden, Germany 
SBTI  Sigma Aldrich, St. Louis, USA 
Trypsin EDTA (0.5%) Gibco® Thermo scientific, Waltham, 

USA 
Protease inhibitor cocktail (25x complete) Roche, Basel, Switzerland 
Dulbecco's PBS 1x Gibco® Thermo scientific, Waltham, 

USA 
 

2.4 Buffers and solutions 

2.4.1 Buffers for primary cell isolation 
Wash Buffer pH 6 

Component For 1000ml 
HBSS 770 ml 
HEPES (1M) 3.3 ml 
MEM Amino Acids (50x) 20 ml 
MEM NEAA (100x) 10 ml 
Sodiumpyruvate (100mM) 10 ml 
Trisodiumcitrate (0,68M), pH7.6 10 ml 
Glycerol 2.1 ml 
Magnesium chloride (200mM) 135 µl 
Calcium chloride (100mM) 80 µl 
H2O Make up to 1L 

 

Digestion buffer 

Component For 100ml 
Wash Buffer pH 6 97.5 ml 
Liberase1 (5mg/ml) 2 ml 
SBTI (50 mg/ml) 0.5 ml 
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2.4.2 Buffers for genotyping 

Alkaline lysis buffer pH 12 

Component Concentration 
NaOH 25 mM 
EDTA 0.2mM 

 

Neutralization buffer pH 5 

Component Concentration 
Tris. HCl 40mM 

 

TBE buffer (10X) pH 8.0 

Component For 1000ml 
Tris 108g 
Boric acid 55g 
EDTA 7,44G 
H2O Make up to 1L 

 

2.4.3 Buffers for Western blot 

Protein lysis buffer 

Component Concentration 
HEPES  pH 7.5-7.9 50mM 
NaF 100mM 
Na4O7P2×10 H2O 10mM 
NaCl 150mM 
EGTA 1mM 
Glycerin 10% 
Triton X-100 1% 

 

Readymade Buffers 

Stock  Working solution Company 
NuPAGE® LDS 
Sample buffer (4x) 

1:4 dilution+10% 
β-ME 

Invitrogen by Life 
Technologies, Carlsbad, 

CA 
NuPAGE®MOPS 
SDS Running buffer 
(20x) 

1:20 dilution in 
distilled water 

Invitrogen by Life 
Technologies, Carlsbad, 

CA 
NuPAGE®Transfer 
buffer (20x) 

1:20 dilution in 
distilled 
water+10% 
methanol 

Invitrogen by Life 
Technologies, Carlsbad, 

CA 
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Wash Buffer 

                          PBS+0.1% Tween-20 (PBS-T) 

Blocking solution             

Component Concentration 
PBS-T 1x 
Non-fat milk 5% 

 

2.4.4 Buffers for Immunohistochemistry 

Citrate buffer pH 6.0 

Component Concentration 
Citric acid monohydrate 2.1g 
H2O Make up to 1L 

 

TE buffer pH 9.0 

Component Concentration 
EDTA (1mM) 0.372g 
Tris 1.211g 
H2O Make up to 1L 

 

TBS 

Component Concentration 
Tris-HCl pH 7.4 50mM 
NaCl 150 mM 

 

TBS-T 

                        TBS+0.1% Tween-20 

Blocking solution 

                        10% Goat serum+1% BSA in TBS-T 

2.5 Kits 
Name Company 

DNeasy® Blood and Tissue 
kit 

Qiagen, Hilden, Germany  

ImmPACTTMDAB Peroxidase 
Substrate kit (SK4105) 

Vector laboratories, Burlingame, CA 

KAPA 2G fast HS KAPA Biosystems, MA, USA 
Masson trichrome staining kit Polysciences 
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M.O.MTM Kit (BMK-2202)  Vector laboratories, Burlingame, CA 
Picrosirius red stain kit  Polysciences, Germany  
Peroxidase Goat IgG kit (PK- 
4005)vectastain ABC kit 

Vector laboratories, Burlingame, CA 

Peroxidase Mouse IgG kit 
(PK- 4002)vectastain ABC kit 

Vector laboratories, Burlingame, CA 

Peroxidase Rabbit IgG kit 
(PK- 4001)vectastain ABC kit 

Vector laboratories, Burlingame, CA 

Peroxidase Rat IgG kit (PK- 
4004)vectastain ABC kit 

Vector laboratories, Burlingame, CA 

Western Lighting®Plus-ECL PerkinElmer, Inc., Waltham, USA 
 

2.6 Primers 

Genotype primers 

Gene name Sequence (5'-3') 
Cre (p48) forward TGCTGTTTCACTGGTTATGCGG  
Cre (p48) reverse TTGCCCCTGTTTCACTATCCAG 
K-ras mut forward AGCTAGCCACCATGGCTTGAGTAAGTCTGCG 
K-ras mut reverse CCTTTACAAGCGCACGCAGACTGTAGA 
SPARC Common forward TTCTTCCTTGCAACCCTCTC 
SPARC wild type reverse TGTGGAGCTTCCTCTGTCCT 
SPARC Mutant reverse GGGGTTTGCTCGACATTG 
1lox <K-ras> G12D forward GGG TAG GTG TTG GGA TAG CTG 
1lox <K-ras> G12D reverse TCCGAATTCAGTGACTACAGATGTACAGAG 

 

2.7 Antibodies 

2.7.1 Primary antibodies 

Antibody  Company Ref. Number Clone Dilution 
IHC WB 

α-SMA Dako M0851 Clone 1A4 1:100  

Cytidine 
deaminase  

Abcam Ab82346  1:100  

CD31 BD Pharmingen 553370  1:100  
CD45 BD Biosciences 550539  1:20  
Cleaved 
Caspase-3 

Cell signaling #9664L (D175)(5A1E) 1:100  

Collagen I Abcam ab21286  1:100  
CollagenIV Abcam ab19808  1:800 1:1000 
E-Cadherin BD Biosciences BD610181   1:1000 
HSP-90 Cell signaling 48755 E289  1:1000 
Hyaluronic 
acid 

 
Calbiochem 

385911  1:100  
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binding 
protein 
Ki-67 Thermo 

scientific 
RM-9106-50 SP 6 1:200  

NT5c1A Assay biotech 
company.Inc 

C15296  1:100  

Pan-
cytokeratin 

Abcam ab6401 PCK-26 1:700  

SPARC R&D Systems AF942  1:200 1:2000 

 

2.7.2 Secondary antibodies for western blot 

Name Company Ref. 
Number 

WB IHC 

Rabbit anti-Goat (IgG)-HRP Dako P0449 1:2000  
Rabbit anti-Mouse (IgG)-HRP Dako P0161 1:2000  
Rabbit anti-Rat (IgG)-HRP Dako P0450 1:2000  
Swine anti-Rabbit (IgG)-HRP Dako P0217 1:2000  
Biotinylated anti-Goat IgG Vectastain ABC kit  PK-4005  1:200 
Biotinylated anti-Mouse IgG Vectastain ABC kit  PK-4002  1:200 
Biotinylated anti-Rat IgG Vectastain ABC kit  PK-4001  1:200 
Biotinylated anti-Rabbit IgG Vectastain ABC kit  PK-4004  1:200 

 

2.8 Molecular weight standards 

Name Company 
Quick load® 100bp DNA ladder New England Biolabs, Ipswich, USA 
Precision plus protein Dual colour 
standard 

New England Biolabs, Ipswich, USA 

 

2.9 Cell lines 

Isolated primary PanIN and fibroblasts from KC-SPARCwt and KC-SPARC-/- were used 
in in vitro experiments of this study. 

2.10 Cell culture media 

DMEM+10% FBS+1% NEAA+ 1% P/S 

DMEM+10% FBS+1% NEAA 

DMEM+0.1% FBS+1% NEAA 
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3. Methods 

3.1 Mouse models 

SPARCwt, SPARC-/-, KC-SPARCwt and KC-SPARC-/- mice with the genetic background 

of 129SvB6 were used in this study. SPARCwt and SPARC-/- mice were initially 

purchased from Jackson Laboratory. Generation of KC-SPARCwt and KC-SPARC-/- mice 

was achieved through multiple breeding steps as previously shown by Hingorani et al., 

2003. 

Initially SPARCwt and SPARC-/- mice were crossed with mice harbouring conditional 

LSL-KrasG12D allele in which the expression of oncogenic KrasG12D is inhibited by Lox-

STOP-Lox cassette. Further, the expression of mutated oncogenic Kras was achieved by 

crossing KrasG12D(+/T); SPARCwt and KrasG12D (+/T); SPARC-/- mice with mice expressing 

Cre recombinase under the pancreas specific promoter p48. 

Genotyping of the different mouse strains was performed by various genotyping 

protocols as discussed in part 3.3.3. 

3.2 Cell culture 

3.2.1 Primary cell isolation 

Primary pancreatic cells were isolated from pre neoplastic lesions and tumour bearing 

KC-SPARCwt and KC-SPARC-/- mice using an established protocol. The protocol 

involves the dissociation of cells from collagen using Liberase. Liberase is an enzyme 

mixture in which Collagenase I and Collagenase II are mixed in an appropriate ratio 

together with Thermolysin at a low concentration. Upon mouse dissection 2-3mm of 

pancreas tissue was taken and placed on a petri dish with PBS on ice. The following steps 

were performed under sterile condition in a cell culture safety cabinet. The tissue was 

then chopped into small pieces using a scalpel as quick as possible and 10 ml of digestion 

buffer (buffer composition is mentioned in detail in the materials) containing Liberase 

and trypsin inhibitor was added and mixed well. The mixture was then incubated at 37°C 

for 10 min. After incubation, the cells were collected in a 50 ml falcon and centrifuged 

at 1200rpm for 5 min at room temperature (RT). After removing the supernatant 

carefully, the pellet was resuspended in 5-10 ml of digestion buffer. The mixture was 

centrifuged at 1200rpm for 5 min followed by incubation in the water bath at 37°C for 

10 min. The supernatant was removed carefully and the pellet was resuspended in 

washing buffer with 50mg/ml of Soy Bean Trypsin Inhibitor (SBTI) to prevent cell lysis 
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by trypsin. The cell suspension was then filtered through a 100 µm cell strainer and 

centrifuged at 1200rpm for 5 min. The cell pellet was resuspended in 10 ml of DMEM 

supplemented with 10% FBS, 1% NEAA and 1% P/S and cultured in a 10 cm petri-dish. 

Medium change was given the next day and every second day afterwards. The resulting 

cell population was a mixture of adherent epithelial cells and fibroblasts. The mixed cell 

population was then subjected to serial trypsinization until it became as homogenous 

population of epithelial and fibroblasts cells.  

3.2.2 Expansion and culturing of primary cells 

When the isolated primary cells reached 70-80% of growth confluence, the medium was 

removed and the cells were washed with PBS once. Then 2 ml of 0.5% trypsin EDTA 

per T75 culture flask was added and incubated at 37°C for 30 sec-60sec. As the 

fibroblasts are sensitive for trypsin treatment, they detach from plastic in a very short 

time of about 30 sec. The detached fibroblasts were cultured in a new culture flask with 

DMEM supplemented with 10% FBS, 1% NEAA.  

The original flask was washed once with PBS to get rid any left detached fibroblasts and 

then fresh DMEM supplemented with 10% FBS, and 1% NEAA was added. This process 

of serial trypsinization was done until the epithelial and fibroblast cell populations 

reached homogeneity. The homogeneity of the culture was confirmed by microscopic 

observation, genotyping and western blot.  

3.2.3 Wound healing assay 

Wound healing assays are used to assess the migration of the cells in 2D based culture. 

The cells were grown in a 6 well plate until they reached 70-80% confluence. 

Subsequently, the cells were subjected to serum starvation for 24h (serum concentration 

0.1%). The next day, the wound was introduced by making a precise scratch using a 

sterile 100µl micro tip across the middle of the wells. The migration was assessed by live 

cell imaging microscope (Leica DMi8) equipped with CO2 and 37°C temperature 

maintenance. The pictures were taken every 6h till the wounds were completely closed.  
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3.3. Molecular biology techniques 

3.3.1 DNA isolation from cultured cells 

DNA isolation from cultured cells was performed using DNeasy® Blood & Tissue Kit 

from Qiagen. The protocol given by the manufacturer was followed. Maximum of 5×106 

cells were collected from the culture flask and centrifuged at 190rpm for 5 min. The 

supernatant was removed and cells were resuspended in 200µl of PBS, and 20 µl 

proteinase K was added to this mixture. Then, 200 µl of buffer AL (lysis buffer) was 

added to this and mixed thoroughly by vortexing. The mix was then incubated at 56°C 

for 10 min. After the incubation 200 µl of 96-100% of ethanol was added to this and 

mixed well by vortexing. The whole mixture was then transferred to a DNeasy Mini spin 

column placed on a 2 ml collection tube provided in the kit. The column was then briefly 

centrifuged at 8000rpm for 1 min. The collection tube with the flow through was 

discarded and the column was placed on a new 2 ml collection tube. The column was 

then briefly washed with 500 µl of AW1 buffer (wash buffer with low concentration of 

quanidine) and centrifuged at 8000rpm. The flow through and the collection tube was 

discarded. The column was placed in a new 2 ml collection tube and washed with 500 µl 

of AW2 buffer (Tris- based wash buffer) and centrifuged at 14000rpm for 3 min. The 

flow through and the collection tube was discarded. The column was then placed in a 

new 1.5 ml mini centrifuge tube and 200 µl AE buffer (elution buffer) was added and 

incubated for 1 min at RT. The DNA was eluted by centrifuging the column at 8000 rpm 

and stored at -20°C. 

3.3.2 DNA isolation from mouse tails for genotyping 

DNA extraction was done from tail tips of 3-4 weeks old mice for genotyping.  2-3 mm 

of mouse tail tips were collected and the tissue lysis was achieved by heating the tail 

biopsy in 100 µl of alkaline lysis buffer for 30 min at 95°C. The lysates were then brought 

to RT and 100 µl of neutralization buffer was added. At this step, the tail tips look visibly 

intact but the DNA will be released into the supernatant. 

3.3.3 Genotyping 

The protocols for SPARC, KrasG12D and Cre-genotyping were obtained from the Jackson 

laboratory.  
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3.3.3.1 SPARC genotyping 

The reaction mix was prepared as given in the original protocol from the Jackson 

Laboratory by mixing 12.5 µl of KAPA 2G Fast HS with 8.5 µl H2O and 20pM of a 

common forward, a wild type reverse and a mutant reverse primer each. The triple primer 

system was used in order to detect WT, heterozygous and homozygous genotypes. 2 µl 

of DNA isolated from tail tip was added to the reaction mix and the following steps were 

performed in the thermal cycler.  

Step Temperature profile Time Note 
1 94°C 3 min  
2 94°C 20 sec 35 cycles 
3 65°C 15 sec 
4 72°C 15 sec 
5 72°C 2 min  
6 10°C Infinite hold  

 

3.3.3.2 KrasG12D and Cre genotyping 

Similar protocols for the reaction mix preparation and the thermal profile were used in 

KrasG12D and Cre genotyping. For KrasG12D genotyping the primers specific for mutated 

KrasG12D were used. The reaction mix was prepared as given in the original protocol by 

adding 12.5 µl of KAPA 2G Fast HS with 8.5 µl H2O and 10µM of forward and reverse 

primers each. The reaction mix was then subjected to the following thermal profile using 

a thermal cycler. 

Step Temperature profile Time Note 
1 95°C 2min  
2 95°C 30sec 34 cycles 
3 60°C 30sec 
4 72°C 1min 
5 72°C 5min  
6 4°C Infinite hold  

 

3.3.3.3 1lox-<K-ras> G12D genotyping 

1lox <K-ras> G12D genotyping was used to validate the homogeneity of isolated primary 

epithelial and fibroblast cells. The reaction mix was prepared by mixing 2 µl 5X 

advantage GC melt mix, 0.4 µl of 50X advantage GC-2 polymerase mix, 4 µl of 5X GC2 

PCR buffer, 24pM of each forward and reverse primers, 4 µl of 25mM d' NTP's and 11.2 

µl of H2O. The PCR reaction was performed in the thermal cycler as shown below. 
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Step Temperature profile Time Note 
1 94°C 3 min  
2 94°C 30 sec  

40 cycles 3 68°C 1.5 min 
4 68°C 3 min  

 

3.3.4 Agarose gel electrophoresis 

Agarose gel electrophoresis is a widely used technique in molecular biology laboratories. 

This technique was originally invented by Oliver Smithies in 1950 and is used to separate 

the nucleic acids by their length.  

Followed by PCR reaction, the amplified PCR product was run in 1.25-1.5% of agarose 

gel using gel electrophoresis technique with Tris-Borase-EDTA (TBE) buffer at 100V 

for 20 min. 100bp DNA ladder was used as a control. 

3.4 Protein techniques 

3.4.1 Protein extraction from cultured cells 

Cells were cultured on a 6 well plate and washed with cold 1x PBS twice. Depending on 

cell density, 30-200 µl of protein lysis buffer containing protease and phosphatase 

inhibitors was added per well. The cells were scrapped and collected in a micro centrifuge 

tube and subjected to a short sonication to improve the protein yield. Followed by 

incubation on ice for 20-30 min, the lysate was then centrifuged at 14000 rpm at 4°C for 

15 min. The supernatant was collected in a new micro centrifuge tube and stored at -20°C 

for a short period, and for longer storage at -80°C.  

3.4.2 Sample preparation  

The protein concentration was determined by Bradford method using Coomassie Blue 

G-250 protein assay reagent and known concentration of albumin as standard curve. Then 

1µg/µl of protein lysate was mixed with 4xNuPAGE® LDS sample buffer with 10% β-

Mercaptoethanol and boiled at 95°C for 5 min. 

3.4.3 SDS-PAGE 

The samples were then subjected to poly acrylamide gel electrophoresis (PAGE) using 

NuPAGE 4-12% Bis-Tris gel and Invitrogen mini gel tank. Minimum concentration of 

20 µg of protein was loaded per well.The separation of proteins was achieved by running 

the samples at160V for 1h in 1x running buffer containing Sodium dodecyl sulphate 

(SDS) as a denaturing agent.   
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3.4.4 Western blot analysis 

Followed by the separation of protein by SDS-PAGE, the proteins were blotted on a 

nitrocellulose membrane using 1xNuPAGE transfer buffer with 10% methanol. The 

resolved proteins from the gel were transferred to the nitrocellulose membrane using a 

transfer apparatus at 10V for 1.5h. The membrane was blocked with 5% non-fatty milk 

for 1h at RT to avoid unspecific binding of the primary antibody. Both primary and 

secondary antibodies were diluted in 5% non-fat milk in PBS containing 0.1% Tween-

20. The membrane was incubated with the appropriate concentration of primary 

antibodies (concentrations of antibodies are mentioned in materials section) at 4°C 

overnight. The following day, the membrane was washed 3 times with 1X PBS and then 

incubated with1:2000 dilution of secondary antibody conjugated with horseradish 

peroxidase for 1h at RT. The membrane was washed 3 times with PBS-T to get rid of 

unbound secondary antibody. The proteins on the membrane were detected using 

Enhanced Chemi Luminescence (ECL). ECL is a technique which detects the reactivity 

of horseradish peroxidase with its substrate luminol as light emission and thus detects 

immobilized proteins on the membrane. The imaging was done using INTAS- ECL 

Chemocam imager and analysed using the software provided by the equipment provider. 

3.5 Histology 

3.5.1 Tissue collection and processing  

Upon mouse biopsy, tissues such as pancreas, liver, spleen and intestines were collected 

in a glass vial containing 4% formaldehyde. The tissue samples were fixed with 4% 

formaldehyde overnight at RT. Fixation is the process which enhances the tissue stability 

by cross linking macromolecules and thus inhibiting the disintegration of biological 

materials. Following overnight fixation, the tissues were subjected to a dehydration 

process by treating them with a gradually increasing concentration of ethanol from 70-

99% at regular time intervals. The dehydration process was achieved using automated 

dehydration machine provided by Leica. After the dehydration process, the tissues were 

embedded in paraffin using tissue embedder system. The tissues in paraffin blocks were 

sectioned with the thickness of 4µm using a microtome (Leica RM2265) and fixed on 

SUPERFROST® microscope glass slides and used for various histological staining 

protocols.   
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3.5.2 Haematoxylin and Eosin stain 

Haematoxylin and Eosin (H&E) stain is one of the most commonly used dyes to study 

the basic histology of the tissues. The tissue sections were immersed in roticlear for 10 

min two times in order to de-mask the paraffin. The tissue slides were subsequently 

subjected to rehydration process by treating them with gradually decreasing 

concentration of ethanol from 99-50% each for 3 min. The tissue slides were then washed 

briefly in tap water 2-3 times and stained with haematoxylin for 5-7 min. Haematoxylin 

is a chemical compound which specifically stains cell nuclei in purple colour. The slides 

were washed with running tap water for 5 min until the colour turns purple. Then the 

slides were counterstained with eosin, a red stain specific for cytoplasm of the cell for 7 

min. The slides were washed three times with tap water and the tissue was dehydrated by 

treating them with increasing concentration of ethanol from 70-99% each for 3 min. 

Finally, the slides were treated with roticlear 4 times each for 10 min and mounted using 

rotimount solution. 

3.5.3 Immunohistochemistry 

For immunohistochemical analysis, the tissue slides were deparaffinized and rehydrated 

as mentioned above in the H&E staining protocol. Antigen retrieval was achieved by 

boiling the slides with appropriate buffer solutions (Tris-EDTA-pH 9.0 or Citrate buffer-

pH 6.0) for 10 min in the microwave at maximum power (700 watts). The slides were 

then cooled down on ice for 20 min and washed briefly with tap water. Then the slides 

were treated with freshly prepared 3% H2O2for 20 min to quench the endogenous 

peroxidase activity. Subsequently, the slides were rinsed in tap water for 5 min and 

aligned in a Cadenza slide holder system and washed thrice with TBS containing 0.1% 

Tween-20. Tween is a mild detergent used in many washing buffers. The tissues were 

then blocked with 10% of appropriate serum and 1% BSA in TBS-T for 1 hour at RT. 

Both primary and secondary antibodies were diluted in the blocking solutions. The 

tissues were then incubated with appropriate concentration (antibody concentration was 

given in materials) of primary antibody at 4°C overnight. The following day, the slides 

were washed thrice with TBS-T before incubating them with biotinylated secondary 

antibody provided in a species specific ABC vectastain kit for 1 hour at RT. Afterwards, 

the slides were washed thrice with TBS-T and incubated with AB complex prepared by 

mixing equal volumes of Solution A and Solution B containing peroxidase (i.e. 10µl of 

Solution A and 10µl of Solution B) provided in the same kit. The slides were washed 
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thrice with TBS-T before removing them from Cadenza system and once with tap water 

before treating them with 3,3’-Diaminobenzidine (DAB) a substrate of the peroxidase 

enzyme. The positive staining was observed as a brown chromogen development upon 

incubation with DAB. 

3.5.4 DAPI staining 

After de-waxing and rehydration of the tissue slides, the antigen retrieval was achieved 

by boiling the slides with appropriate buffer solutions (Tris-EDTA-pH 9.0 or Citrate 

buffer-pH 6.0) for 10 min in the microwave at maximum power (700 watts). The slides 

were cooled down on ice for 20 min and washed briefly with tap water 2-3 times. The 

slides were then aligned in a Cadenza system and washed thrice with TBS containing 

0.1% Tween-20. Afterwards, the tissues were blocked with 10% of appropriate serum 

and 1% BSA in TBS-T for 1h at RT before incubation with the appropriate concentration 

of primary antibody at 4°C overnight. For immunofluorescence the appropriate 

secondary antibodies coupled with fluorochromes were used and the detection was 

achieved by using a fluorescence microscope.   

3.5.5 Masson trichrome staining 

Masson trichrome is a chemical staining used to detect the collagen fibers in tissue 

specimen embedded in paraffin. For masson trichrome staining, different compartments 

of tissues were stained in three different colours. The collagen fibers are recognized from 

other compartments by a prominent blue colour stain, while the nucleus is stained in 

black and the muscle and other parts stained in red. The Masson trichrome staining kit 

from Polysciences, Inc was used. The protocol was performed under the fume hood in 

order to avoid health hazards. The de-waxing and rehydration of slides was done as 

mentioned above. The fixation was achieved by incubating the slides overnight with 

Bouin's solution at RT. The slides were washed with running tap water for 5 min to 

remove picric acid. Subsequently, the slides were stained with Weigert's iron 

haematoxylin working solution (prepared by mixing 1:1 ratio of Weigert's haematoxylin 

A and Weigert's haematoxylin B) for 15 min and washed in running tap water for 5 min 

and rinsed once with distilled water. The slides were further incubated with Biebrich 

Scarlet - Acid Fuchsin Solution for 5 min and rinsed in distilled water. The slides were 

then treated with phosphomolybdic acid for 10 minutes, and directly transferred into a 

glass beaker containing aniline blue for 5 min. Followed by rinsing with distilled water; 

the slides were treated with 1% acetic acid for 1 min and rinsed in distilled water. 
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Subsequently, the slides were dehydrated with 95% and 99% of ethanol each for 30 sec 

and cover slipped.  

3.5.5 Herovici staining 

Herovici is a chemical staining method used to distinguish young (pro) collagen from 

mature dense collagen (Friend, 1963). Herovici is a defined combination of methyl blue 

(aniline blue) and picro acid fuchsin. When the prestained sections are treated acetic acid 

or acidic water, the red stain is retained by the mature collagen while procollagen loses 

the red stain and turns into blue (Lillie et al., 1980). The cytoplasm and nucleus are 

counter stained yellow and black in colour respectively. The protocol provided by the 

Histopathology/ISH core facility, Cambridge research Institute was followed. The tissue 

slides were de-waxed and rehydrated as mentioned before and washed briefly in tap water 

before treating them with Weigert's hematoxylin solution for 5 min. The slides were then 

briefly rinsed with tap water for 45 sec and treated with Herovici's working solution (1:1 

Herovici's solution A and Herovici's solution B) for 2 min. The slides were then directly 

kept in 1% acetic acid solution for 2 min without rinsing. Finally, the slides were 

dehydrated, and coverslipped.   

3.5.6 Picrosirius Red stain 

Picrosirius red stain is a chemical staining used to detect the total collagen in the given 

tissue. The Picrosirius red stain kit and the protocol from Polysciences, Inc was used. 

The slides were subjected to de-waxing and dehydration as mentioned before and treated 

with Weigert's haematoxylin solution for 5 min. The slides were rinsed with tap water 

once and agitated with 2% acid ethanol for 10 sec. The slides were again rinsed with tap 

water and washed once with distilled water before counter staining with solution A 

(phosphomolybdic acid) provided in the kit for 2 min. Subsequently, the slides were 

washed with distilled water and placed in solution B (picrosirius red F3BA stain) 

provided in the kit for 110 min without rinsing the slides. Afterwards, the slides were 

treated with solution C (0.1N HCl) for 2 min. Then the slides were treated with 70% 

ethanol for 45 sec and further dehydrated and mounted.  

3.6. In vivo experiments 

The animal breeding and survival study (animal allowance application number -TVA-

14/1634) and other in vivo experiments (gemcitabine treatment- TVA15/2056) of our 

study have met the ethical requirements of the institute and the federal government. The 
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animals were bred and maintained in Central animal experimental facility, University 

Medical Center Göttingen (ZTE-UMG). The animals were subjected to 12/12h day/night 

cycles. The newly born pups were separated from mother after three weeks of birth.  

A clear score sheet with specific parameters (severity level 1-3) was followed to define 

the end point criteria. Severity level 1 includes isolation of animal in the cage, rough fur, 

narrowed ocular margins, slightly increased breathing, and alteration in the fecal /urine 

quantity, color and consistency. These animals were observed closely for recovery, and 

they are sacrificed if were found with persistent symptoms. Severity level 2 parameters 

include conditions such as persistant pain (facial expression, bent position), open 

wounds, severe breathing and diarrhea, notable weight loss (10%). Animals with severity 

level 2 were sacrificed upon veterinarian’s advice. While animals with severity level 3 

symptoms (paralysis, any other terminal illness and significant weight loss (20%) were 

immediately sacrificed. The animals that died of any symptoms mentioned above are 

considered as end point criteria. If the animals presented no symptoms at the age of 20 

months, they were sacrificed and considered as end point. 

3.6.1 Study design and sample collection 

KC-SPARCwt and KC-SPARC-/- mice were categorized into three different age groups: 

3 months, 7-8 months and 12-20 months in order to study the role of SPARC during 

different stages of PDAC progression. Tissue samples such as pancreas, liver, spleen and 

intestine were harvested in 4% formaldehyde for histological analysis. For protein 

extraction, tissues such as pancreas, liver and intestine were snap frozen using liquid 

nitrogen. For RNA isolation pancreas and liver were collected in a vial containing RNA 

later, a stabilizing reagent.  

3.6.2 Gemcitabine treatment and the sample preparation for Mass Spectrometry 

analysis 

PanIN lesions bearing (7-8 months old) and tumor bearing KC-SPARCwt and KC-

SPARC-/- mice and 3 months old SPARCwt and SPARC-/- (as control) cohorts were treated 

with 100mg/kg of Gemcitabine for 2h by an intraperitoneal injection. After 2 h, the mice 

were sacrificed and the pancreas was harvested and instantly frozen by immersing the 

tissue in liquid nitrogen. The drug injections and sample collection were done by Ms. M. 

Patzak with the assistance of technical assistants. The pancreas tissue was processed and 

subjected to liquid chromatography-mass spectrometry/ mass spectrometry (LC-MS/MS) 
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to analyse the concentration of native 2′,2′-difluorodeoxycytidine (dFdC) and its 

metabolites such as 2′,2′-difluorodeoxycytidine-5′-triphosphate (dFdCTP) and 2′,2′-

difluorodeoxyuridine (dFdU) as previously described (Bapiro et al., 2011). The LC-

MS/MS analysis was performed in CRUK-Pharmacokinetics & Bioanalytics (PKB) Core 

Facility, Cancer Research UK Cambridge Institute. 
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4. Results 

In this study, we explored the expression of SPARC in normal murine pancreas and 

during various stages of disease initiation and progression to PDAC in the context of 

oncogenic KrasG12D. To experimentally address the above mentioned issues, I employed 

KC-SPARC-/- and KC-SPARCwt GEMMs in this study. SPARCwt and SPARC-/- mice 

were used as controls.  

4.1 Characterization of mouse models 

The mouse models were successfully generated as mentioned previously in the methods 

section and observed closely for any noticeable phenotypes. Genetic ablation of SPARC 

has been reported to be lethal in the lower organisms such as C. elegans and Drosophila 

(Fitzgerald and Schwarzbauer, 1998; Martinek et al., 2011). Nevertheless, embryonic 

SPARC knockout is not lethal in mice according to the previous studies. In the absence 

of SPARC in higher animals, the functions of SPARC are partly accomplished by other 

members of the SPARC protein family (Liu et al., 2008; Sullivan and Sage, 2004).  

SPARC-/- mice showed certain specific non-lethal phenotypes such as fragile bones, 

cataract and curled tail tips. These phenotypic changes are caused by impairment in 

collagen maturity and deposition. SPARC has been reported to aid the folding and 

deposition of collagen through various mechanisms, and thus the lack of SPARC resulted 

in low bone density (Bradshaw, 2009). SPARC has also been shown to maintain the lens 

fiber and fluid transport, thus the absence of SPARC affects the lens homeostasis 

(Greiling et al., 2009; Norose et al., 1998a).  

3 months old SPARC-/- (n=6) and WT (n=6) mice were sacrificed and organs such as 

pancreas, liver, kidney and spleen were harvested and weighed. The whole body weight 

was measured prior to necropsy. The study results show that SPARC-/- mice have a trend 

towards reduced overall body weight compared to WT mice (Fig. 4A) (p=0.06). 

Additionally, the weight of internal organs such as pancreas (Fig.4B) (p=0.11), liver 

(Fig.4C) (p=0.13), kidney (Fig.4D) (p=0.02) and spleen (Fig.4E) (p=0.02) of SPARC-/-

mice were relatively lower than of WT mice. Though the difference was not statistically 

significant, the trend was obvious in terms of body weight, pancreas and liver weight 

between SPARC-/- and WT.  
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A.                                                                     B. 

             

C.                                                                        D. 

            

E. 

 

Figure 4: (A) Graph shows that SPARC-/- mice have a trend towards reduced overall body weight (p=0.06) 

compared with WT mice. (B, C, D & E) Graphs showing that the weight of the internal organs such as 

pancreas (p=0.11), liver (p=0.13), kidney (p=0.02) and spleen (p=0.02) are also lower in SPARC-/- mice 

compared to WT mice. Mann-Whitney test was used to assess the statistical significance. * p≤0.05.  
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4.1.1 SPARC knock out does not affect murine pancreas development 

Histology of pancreas assessed by H&E staining confirmed that the murine pancreas 

development was not affected by genetic SPARC ablation. Pancreas tissue sections from 

3 months old SPARC-/- and WT mice stained with H&E (Fig. 5) show the tissue integrity 

of the organ. Different compartments of the pancreas such as acinar cells (*) and islets 

(arrow) are found to be structurally intact.  

 

Figure 5: Representative images of H&E staining of 3 months old SPARC-/- and WT mice pancreata. The 

inset shows higher magnification of islets.  

4.1.2 Oncogenic KrasG12D activation results in disease initiation 

Upon oncogenic KrasG12D expression both KC-SPARC-/- and KC-SPARCwt mice 

developed ADMs and low grade PanIN lesions at the age of 3 months (Fig. 6A) which 

further progressed to advanced PanIN lesions (Fig. 6B). Based on the anticipated 

progression stage, mice have been categorized under three age groups: 3-5 months (early 

prenneoplasia), 7-8 months (late preneoplasia and more than 12 months (tumors, end 

point cohort) in order to study the effect of SPARC on different stages of PDAC 

progression. 
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A. 

 

 

B.  

 

Figure 6: (A) Representative images of H&E staining of 3 months old and (B) 7-8 months old KC-SPARC-

/- and KC-SPARCwt mice pancreata show ADMs (down arrow), low grade PanINs (*) and high grade 

PanINs (thick arrow head) respectively. The inset shows 40x magnification of ADMs and low PanINs and 

advanced PanIN lesion.  
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4.2 Primary cell isolation and characterization 

Primary PanIN associated fibroblasts (PAFs) and PanIN (epithelial) cells were 

successfully isolated from 3-5 months old KC-SPARCwt and KC-SPARC-/-and 

established in cell culture. Microscopic observation of the cells was performed to 

investigate the phenotypic characteristics of the isolated cells. Isolated fibroblasts 

exhibited spindle shaped elongated structure while the PanIN cells were growing in 

patches indicating the morphological fibroblast and epithelial properties respectively. 

 

 

Figure 7: Representative bright field pictures of PAFs and PanINs cultures confirm the homogeneity of the 

population. Pictures were taken at 20x magnification. 
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4.2.1 Characterization of PAF cells by 1LoxP Kras genotype 

Having confirmed the homogeneity of the cultured PAF cells by microscopic 

observation, we further employed 1LoxP Kras PCR to ensure the purity of the culture at 

DNA level. In KC mice Cre mediated recombination results in one WT allele and one 

mutated allele with a LoxP site. 1LoxP Kras PCR specifically targets the single LoxP site 

left after the Cre recombination. PCR results showed clear bands at 285bp (WT allele) in 

the lanes of fibroblasts (no Cre expression) while in the positive control (DNA from 

PanIN cells) there are two bands at 285bp (WT allele) and 325bp (mutated allele with 

loxp-site). This confirms the purity of PAF cells at DNA level with no detectable 

contamination with PanIN cells.  

 

Figure 8: Agarose gel electrophoresis of 1LoxP Kras PCR product shows clear single band at 285bp (Kras 

WT allele) in fibroblast lanes. DNA from PanIN cells was used as a positive control showing a 285bp (WT 

allele) and 325bp (mutated allele with loxp site) as the result of Cre recombination. 100bp DNA ladder 

was used as a marker. 

4.2.2 Characterization of PanIN cells by western blot 

In order to further confirm the homogeneity of cultured primary PanIN cells, western blot 

analysis was performed for E-Cadherin (epithelial marker) and α-SMA (fibroblast 

marker) in protein lysates of cultured PanIN cells. As shown in Fig. 9, E-Cadherin was 

strongly expressed by PanIN cells while there was no α-SMA expression (except two 

clones) by PanIN cells. The slight bands for α-SMA in two clones of KC-SPARC-/-
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PanINs show that there is a contamination of fibroblasts. Therefore, those two clones 

were not used for further experiments.  

 

 

Figure 9: Western blot analysis shows strong expression of E-Cadherin by primary PanIN cells isolated 

from 3 months old KC-SPARCwt and KC-SPARC-/- pancreata. In two clones of KC-SPARC-/-PanINs 

(down arrow) there was expression of α-SMA which shows contamination with fibroblasts. HSP-90 was 

used as a loading control.  

4.3 In vitro and in vivo expression of SPARC  

The expression of SPARC by isolated primary fibroblast and PanIN cells was assessed 

by western blot analysis. Furthermore, IHC for SPARC in KC-SPARCwt and KC-

SPARC-/- mice pancreata with PanIN lesions and tumor was performed to investigate the 

in vivo expression of SPARC during different stages of PDAC progression. SPARC is 

not expressed in healthy pancreas. However, SPARC is overexpressed by CAFs during 

tumorigenesis of PDAC  (Chen et al., 2010; Mantoni et al., 2008; Sato et al., 2003).  

The western blot analysis performed in cell lysates of cultured primary fibroblasts (KC-

SPARCwt and KC-SPARC-/-) and PanIN cells (KC-SPARCwt and KC-SPARC-/-) show 

strong expression of SPARC by fibroblasts of KC-SPARCwt (n=4), while there is nearly 

no expression in PanIN cells of KC-SPARCwt (n=3).The lack of SPARC expression in 

fibroblasts (n=3) and PanINs (n=4) of KC-SPARC-/- further confirms the genetic knock 

out of SPARC (Fig. 10A). Similarly, IHC analysis for SPARC in pre-neoplastic and 

tumor tissues of KC-SPARCwt and KC-SPARC-/- mice shows that there was no 

expression in the normal acinar cells and strong expression by PAFs and CAFs. 

Interestingly, SPARC is hardly expressed by tumor cells. The absence of positive staining 

in pre-neoplastic and tumor tissue of KC-SPARC-/- mice confirms the genetic ablation of 

SPARC in vivo (Fig. 10B). 
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A.  

 

B. 

 

Figure 10: (A) Western blot analysis of cultured PAFs and PanIN cell lysates showing expression of 

SPARC in PAFs and hardly any expression in PanIN cells of KC-SPARCwt mice. Absence of SPARC in 

PAFs and PanINs of KC-SPARC-/- confirms genetic knock out. HSP-90 was used as a loading control. (B) 

Representative pictures of IHC-SPARC in precursor lesions and PDAC of KC-SPARCwt and KC-SPARC-

/- shows that SPARC is not expressed in the normal acinar cells (*) and highly expressed by PAFs and 

CAFs of KC-SPARCwt, while there is nearly no expression in PanIN and tumor cells (arrow). Images were 

taken at 20x magnification and the inset shows 40x magnification.  
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4.4 Early tumorigenesis  

4.4.1 SPARC depletion does not affect ADMs, PanIN development and 

inflammation  

Having confirmed the elevated expression of SPARC during early tumorigenesis, we 

further elucidated whether ablation of SPARC promotes disease initiation and 

progression by performing a semi quantitative histological scoring of H&E stained 

pancreata from 3 months and 7-8 months old KC-SPARC-/-and KC-SPARCwt mice. 

Histological scores from 1-3 were given based on the extent of ADMs and PanIN 

development as well as the immune cell infiltration.  The scoring was performed by Prof. 

Dr. med. B. Sipos, Pathology, Universitätsklinikum, Tübingen. The semi-quantitative 

histological scoring shows that both KC-SPARCwt and KC-SPARC-/-(3 months and 7-8 

months old) mice have comparable scoring of ADMs, PanIN1, PanIN2 and immune 

infiltration (Fig. 11A &B). This finding indicates that expression of SPARC neither 

influences the disease initiation nor the disease progression in KC-SPARCwt. 

A.                                                                      B. 

        

Figure 11: (A&B) Semi-quantitative histological scoring of ADMs, PanIN1, PanIN2 and inflammation in 

3 months and 7-8 months old KC-SPARC-/- and KC-SPARCwt pancreas tissues show that stromal SPARC 

expression has no influence on disease progression.  
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4.4.2 Collagen deposition is significantly reduced upon SPARC depletion  

The abundant extra cellular matrix (e.g. collagen and hyaluronic acid) deposition has 

been reported to be associated with disease progression and poor clinical efficacy of 

drugs (Minchinton and Tannock, 2006; Netti et al., 2000). Furthermore, SPARC has been 

reported as a modulator of desmoplasia (Bradshaw, 2009; Tremble et al., 1993).  

Therefore, to see if SPARC affects ECM deposition, two chemical stainings for collagen 

such as masson trichrome (total collagen) and Herovici (mature collagen) were 

performed in pre-neoplastic pancreatic tissues of 3 months old KC-SPARC-/- and KC-

SPARCwt mice. Masson trichrome staining analysis of 3 months old pancreatic tissue 

revealed that the total collagen deposition was significantly reduced in pre-neoplastic 

pancreatic tissues of KC-SPARC-/-(n=10) mice compared to that of KC-SPARCwt (n=7) 

mice (p=0.0001) (Fig 12A&B).Masson trichrome staining analysis in 7-8 months old 

cohort (late tumorigenesis) exhibited similar trend though it did not reach statistical 

significance (p=0.08) (Fig. 12C). These results show that depletion of SPARC affects 

collagen deposition regardless of disease progression stage, with the most pronounced 

effect during early PanIN development. Furthermore, herovici staining was performed to 

quantify the mature dense collagen deposition (Fig. 12D). Consistent with the total 

collagen deposition, the mature collagen deposition was also found to be reduced upon 

SPARC ablation. The mature dense collagen deposition was less in KC-SPARC-/- mice 

from both early (3 months) (p=0.1) and late tumorigenesis (7-8 months) (p=0.0002) 

cohort compared to that of KC-SPARCwt mice (Fig12 E& F). 

A. 
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B.                                                                              C.   

    

D. 

 

 E.                                                                                 F.  

                  

 (B&C) Quantification of masson trichrome staining in 3 months old (p=0.0001) and 7-8 months old 

(p=0.08) KC-SPARC-/- and KC-SPARCwt mice pancreata. (D) Representative images of herovici staining 

in pancreas tissues of 3 months old KC-SPARC-/- and KC-SPARCwt mice. (E&F) Quantification of herovici 

staining in 3 months old (p=0.11) and 7-8 months old (p=0.0002) KC-SPARC-/- and KC-SPARCwt mice 

pancreata. Statistical analysis was performed using Mann-Whitney test. *** p≤0.005. 
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4.4.3 SPARC depletion does not affect fibroblast population 

Activated PSCs are the major source of ECM components production (Apte et al., 1998; 

Bachem et al., 1998). Having confirmed the significant reduction of collagen deposition 

upon SPARC depletion, we assessed if depletion of SPARC directly affects the PSC 

population. To achieve this, IHC was performed for α-SMA in pre-neoplastic pancreatic 

tissues of 3 months old KC-SPARC-/- (n=9) and KC-SPARCwt (n=6) mice. α-SMA 

positive fibroblasts were specifically stained while the ductal and other cell population 

were devoid of positive staining as shown in Fig. 13A. The quantification of this staining 

was performed by measuring the α-SMA positive area using color deconvolution tool, 

ImageJ software. The quantification of IHC-α-SMA revealed that both KC-SPARC-/-and 

KC-SPARCwt mice have comparable α-SMA positive area (4.16% vs 5.71%) (p=0.38). 

This result shows that SPARC ablation does not affect the fibroblast population during 

early tumorigenesis.  

A.                   

 

 
Figure 13: (A) Representative pictures of IHC-α-SMA in pancreata of 3 months old KC-SPARC-/-KC-

SPARCwt mice. Images were taken at 10x magnification, and the inset shows 40x magnification.  
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Figure 13: (B) Graph shows that KC- KC-SPARC-/- and SPARCwt mice have comparable positive areas of 

α-SMA (p=0.38). Statistical analysis was performed using Mann-Whitney test.                                        

4.4.4 SPARC depletion does not affect overall proliferation in vivo 

The role of SPARC in proliferation has been reported in several tumor entities such as 

ovarian, melanoma, head and neck cancers. For instance, SPARC has been shown to act 

as key regulator of proliferation in ovarian cancer (Chen et al., 2012). In melanoma, 

SPARC seems to promote proliferation of stromal cells but not tumor cells in a context 

dependent manner (Haber et al., 2008). Therefore, to investigate whether SPARC 

depletion affects overall proliferation in vivo, IHC for Ki67was performed in pre-

neoplastic pancreatic tissues (3 months old) in a SPARC dependent manner. Proliferation 

index (% of proliferating cells) was calculated by dividing the number of Ki67 positive 

nuclei by total number of nuclei. The result was expressed in percentage. IHC- Ki67 

specifically stained the nuclei of proliferating cells as shown in Fig. 14A. Quantification 

of the staining revealed that SPARC status does not affect the overall proliferation of pre-

neoplastic lesions as PanIN lesions of both KC-SPARC-/- (n=10) and KC-SPARCwt (n=7) 

mice have similar proliferation rate (5 vs 6% proliferating nuclei) (p=0.08). 
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A. 

 

 

B. 

 

Figure 14: (A) Representative pictures of IHC-Ki67 in the PanIN lesions of KC-SPARC-/- (n=10) and KC-

SPARCwt (n=7) mice. Images were taken at 10x magnification and the inset shows 40x magnification. (B) 

Graph shows that SPARC ablation did not affect the overall proliferation the PanIN lesions (p=0.08). 

Statistical analysis was performed using Mann-Whitney test. 
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4.4.5 Stroma derived SPARC does not affect migration of PanIN cells  

The role SPARC on tumor cell migration and invasion has been investigated in many 

tumor entities and was reported to play pro- and anti-invasive role in different cancers. 

Overexpression of SPARC has been shown to increase the risk of metastasis in various 

tumors such as melanoma, glioblastoma, clear-cell renal carcinoma, prostate carcinoma, 

breast and pancreatic ductal adenocarcinoma (Arnold and Brekken, 2009; Arnold et al., 

2012; Nagaraju et al., 2014).  

To investigate whether SPARC influences the migration of cells in vitro, PanIN and 

PAFs cells derived from KC-SPARC-/- and KC-SPARCwt cells were subjected to wound 

healing assays without any exogenous stimulation. Wound healing assays were 

performed with KC-SPARC-/- (n=3) and KC-SPARCwt (n=3) PAF cells showed no 

difference in terms of migration regardless of SPARC status (Fig. 15A). Similar results 

were obtained in wound healing assays performed with PanIN cells (Fig 15B). However, 

SPARC is predominantly secreted by activated fibroblast while there is almost no protein 

expression in the epithelial compartment as shown in Fig. 10. Therefore, to investigate if 

exogenous SPARC has any effect on wound healing properties of KC-SPARC-/-PanIN 

cells, we performed wound healing assay upon stimulation with the conditioned media 

(culture supernatant) prepared from KC-SPARC-/- and KC-SPARCwt PAFs. Result show 

that stimulation with PAF conditioned media did not influence the wound healing 

properties of KC-SPARC-/- PanIN cells (Fig. 15C).  
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A.      

  

B. 

 

C. 

 

Figure 15: Wound healing assays performed in isolated primary (A) PAF cells and (B) PanIN cells from 

KC-SPARCwt and KC-SPARC-/- mice shows that SPARC depletion does not affect the migration of both 

cell types in 2D based wound healing assays. (C) PanIN cells from KC-SPARC-/- were treated with 

conditioned media from PAFs derived from KC-SPARCwt and KC-SPARC-/- mice and wound healing 

assays were performed showing no difference upon stromal derived SPARC.  



                                                                                                                          4. Results 

54 | P a g e  
 

4.4.6 SPARC and angiogenesis during early and late tumorigenesis 

Angiogenesis is the process of forming blood vessels and it is important for tumor growth 

and to enhance metastatic spread. Angiogenesis is achieved through proliferation of 

endothelial cells. SPARC has been shown to play an anti-angiogenic role in various 

tumor entities such as gastric cancer and neuroblastoma (Chlenski et al., 2010; Zhang et 

al., 2012). To investigate whether stromal derived SPARC plays a pro- or anti-angiogenic 

role during tumorigenesis, immunohistochemistry was performed for CD31 in 3-4 

months and 7-8 months old KC-SPARC-/- (n=10 and 11) and KC-SPARCwt (n=7 and 9) 

pancreata bearing early and advanced PanIN lesions respectively. Interestingly, there was 

no significant difference between KC-SPARCwt and KC-SPARC-/-mice regarding mean 

vessel density in both the 3 months old cohort (p=0.66) and the 7-8 months old cohort 

(p=0.15). 

A. 

 

   B.                                                                             C. 

      

Figure 16: (A) Representative pictures of IHC-CD-31 in 3 months old pancreas tissues of KC-SPARCwt 

and KC-SPARC-/- mice taken at10x magnification. (B&C) Graphs show no statistical significance in terms 
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of number of vessels between 3 months and 7-8 months old KC-SPARCwt and KC-SPARC-/- mice (p=0.66) 

(p=0.15) respectively. Statistical analysis was performed using Mann-Whitney test.   

4.5 SPARC in invasive adenocarcinoma 

4.5.1 SPARC status does not affect the tumor incidence and the tumor weight 

Both KC-SPARC-/- and KC-SPARCwt mice developed invasive adenocarcinoma at about 

12 or more months. The tumor incidence was calculated by dividing the number of mice 

that developed tumors by the total number of mice in the cohort. Tumor incidence 

analysis (Fig. 17A) revealed that both KC-SPARC-/-and KC-SPARCwt cohorts have 

comparable tumor incidences. In the KC-SPARC-/- cohort 26 mice out of 53 mice (49%) 

developed tumors while in the SPARCwt cohort 19 mice out of 29 mice developed tumors 

(66%). Chi-square (Fisher’s exact test) was used to assess the statistical significance 

(p=0.17). The weight of the whole tumors was recorded during the sample collection and 

the relative tumor weight was calculated by normalizing the tumor weight with body 

weight. The relative tumor weight analysis (Fig. 17B) showed that the tumors of KC-

SPARC-/- (n=15) and KC-SPARCwt (n=11) were of similar size (p=0.75). Mann Whitney 

test was used for statistical analysis.  

A.                                                                                B. 

          

Figure: (A) Graph of tumor incidence in KC-SPARC-/-(49%) and KC-SPARCwt (66%) cohort. Statistical 

analysis was performed using Chi-square (Fisher’s exact test) (p=0.17). (B) Graph of relative tumor weight 

of KC-SPARC-/- and KC-SPARCwt mice tumors. Mann-Whitney test shows no statistical significance 

(p=0.75).  
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4.5.2 Collagen deposition was impaired upon SPARC depletion in established 

tumors 

To explore the effect of SPARC depletion on collagen deposition in established murine 

pancreatic tumors we performed chemical stainings for collagen such as masson 

trichrome and picrosirius in tumor tissues of KC-SPARCwt (n≥7) and KC-SPARC-/- 

(n≥17) mice. Consistent with the results in PanIN lesions (Figure 12), loss of SPARC 

resulted in a significant reduction of collagen deposition in established tumors (Fig. 20A). 

Quantification of masson trichrome and picrosirius staining was performed using an area 

based analysis in ImageJ software. The results of masson trichrome and picrosirius were 

expressed as % area fraction and % of picrosirius red positive area, respectively. 

Quantification of masson trichrome staining in tumor tissues of KC-SPARC-/- (13%) and 

KC-SPARCwt (22%) mice revealed that the total collagen deposition was significantly 

reduced in KC-SPARC-/- tumors (p=0.04) (Fig. 20B). The significant reduction in 

collagen deposition was further confirmed by picrosirius staining analysis (p=0.01) (Fig. 

20C).  

A.  

Figure 20: (A) Representative pictures of masson trichrome and picrosirius red stain in established tumor 

tissues of KC-SPARC-/- and KC-SPARCwt mice. The images were taken at 10x magnification (inset40x 

magnification). 
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B.                                                                           C. 

             

(B) Quantification of masson trichrome staining (p=0.04) and picrosirius red (p=0.01) shows significant 

reduction of collagen deposition in established tumors of KC-SPARC-/- mice. Mann-Whitney test was used 

to assess the statistical significance.*p≤0.05. 

4.5.3 SPARC and hyaluronic acid deposition in tumor 

HA is an abundant ECM component which has been shown to modulate the tumor 

microenvironment. HA is overexpressed in many tumors and the amount of HA is 

directly correlated with a poor prognosis in patients (Chanmee et al., 2016). The 

significance of HA expression and deposition has been described in many tumor entities 

such as breast, bladder and pancreatic cancer (Mahlbacher et al., 1992)(Lokeshwar et al., 

1997; Yahya et al., 2014). In pancreatic cancer, HA has been shown to promote tumor 

growth (Sato et al., 2003, 2016). 

Therefore, to investigate whether SPARC affects HA deposition in established KC 

tumors, chemical staining for HA in established tumors of KC-SPARC-/- (n=17) and KC-

SPARCwt (n=8) mice was performed. Quantification of HA staining showed similar 

amount of accumulation of HA in the tumors of KC-SPARC-/- and KC-SPARCwt mice 

(p=0.97) and thus revealed that SPARC status does not affect HA accumulation in 

established tumors (Fig. 21A & B).  
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A. 

 

B. 

 

Figure 21: (A) Representative pictures of HA stainings in KC-SPARC-/- and KC-SPARCwt tumors. Both 

KC-SPARC-/- and KC-SPARCwt tumors show extensive accumulation of HA. (B) Quantification of HA 

staining shows that SPARC depletion does not affect HA accumulation in tumors (p=0.97).Mann-Whitney 

test shows no statistical significance. 

4.5.4 SPARC depletion does not affect fibroblast density in established tumor 

As shown in the early tumorigenesis cohort, we investigated if SPARC affected the 

fibroblast population in established tumor by performing IHC for α-SMA in the tumor 

tissue sections of KC-SPARC-/-(n=16) and KC-SPARCwt (n=8) mice. Consistent with the 

results shown in the early PanIN cohort (Fig. 13A &B), the fibroblast density was not 

altered in established tumors upon SPARC depletion (16% vs 15% KC-SPARC-/-and KC-

SPARCwt tumors) (p=0.78) (Fig. 22).   
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Figure 22: Graph shows that α-SMA positive fibroblast density was not altered upon SPARC depletion 

(p=0.78). Mann-Whitney test shows no statistical significance. 

4.5.5 Tumor proliferation and apoptosis were not affected by stromal SPARC 

Uncontrolled proliferation and decreased apoptosis are the hallmark features of tumors. 

An increased number of proliferating cells and decreased rate of cell death result in tumor 

growth and aggressiveness. To assess the proliferation index of tumors in KC-SPARC-/- 

(n=6) and KC-SPARCwt (n=7) mice, IHC for Ki67 was performed (Fig 23A- top images). 

The proliferation index was determined by dividing the number of Ki67 positive nuclei 

by the total number of nuclei and was expressed as % of Ki67 positive cells.  To assess 

the apoptotic rate of the tumor, IHC for Cleaved Caspase 3 (CC3) was performed in 

tumor tissues of KC-SPARC-/- (n=12) and KC-SPARCwt (n=7) mice (Fig 23A-bottom 

images). Percentage of apoptotic nuclei was assessed using similar formula as mentioned 

above. 

Analysis of IHC-Ki67 shows that both KC-SPARC-/- and KC-SPARCwt tumors have 

similar proliferation index and thus revealed that stromal SPARC does not affect overall 

proliferation (Fig. 23B). The mean proliferation index of KC-SPARC-/- and KC-

SPARCwt tumors were 24% and 29% respectively (p=0.44). In line with the proliferation 

index, IHC-CC3 analysis showed no difference in apoptotic cells between the tumors of 

KC-SPARC-/- and KC-SPARCwt mice (0.82% vs 0.86%; p=0.85) (Fig. 23C).   
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A. 

 

B.                                                                         C. 

         

Figure 23: Representative pictures of IHC-Ki-67 and IHC-CC3 in KC-SPARCwt and KC-SPARC-/- tumors. 

(B) Quantification of IHC-Ki67 (p=0.44) and C) IHC-CC3 (p=0.85) shows that proliferation and apoptosis 

was not affected by stromal SPARC expression.  

4.5.6 SPARC status has no correlation with liver metastasis burden 

To see whether SPARC influences metastatic spread, we performed metastatic score 

analysis in H&E stained liver sections of tumor bearing KC-SPARC-/- (n=15) and KC-

SPARCwt (n=10) mice. The average number of liver metastasis per mouse was assessed 
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by counting the number of liver metastases in H&E stained liver sections. 5 serial 

sections were used per mouse. Liver metastases ranging from 100-200µm were 

considered as micro-metastases, and liver metastases with a size larger than 200µm were 

considered as macro-metastases. Each macro-metastasis was multiplied by 3 for the final 

count. Finally, the average number of liver metastasis per mouse was calculated by 

dividing the total number by 5. This analysis revealed that both KC-SPARC-/-(n=15) and 

KC-SPARCwt (n=10) tumor bearing mice cohort have comparable metastatic score 

(p=0.14).  

A. 

 

B. 

 

Figure 24: Representative H&E staining pictures show the micro (left) and macro (right) metastasis in the 

livers of tumor bearing KC-SPARCwt. (B) Metastatic score comparison of KC-SPARCwt and KC-SPARC-

/- mice showing similar metastatic burden for both genotypes (p=0.14).  
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4.6 Survival analysis 

4.6.1 Overall survival analysis 

Overall survival analysis of KC-SPARC-/- (n=90) and KC-SPARCwt (n=44) mice was 

performed using Kaplan Meier Curve. Overall survival refers to the survival of all mice 

that died for tumor related health concerns as well as other reasons. The mice were 

sacrificed using the endpoint criteria such as persistent pain, open wounds, dyspnea, 

diarrhea, weight loss>20%, ascites or inactivity. The remaining mice were sacrificed 

after 20 months. Overall survival analyses revealed that KC-SPARC-/-mice had a shorter 

survival than KC-SPARCwt mice (median survival- 390 vs 471 days). However, the 

difference was not statistically significant (p=0.77; Fig. 25).  

 

Figure 25: Kaplan Meier curve showing overall survival of KC-SPARC-/-(n=90) and KC-SPARCwt (n=44) 

mice. KC-SPARCwt and KC-SPARC-/- have median survival of 471 and 390 days respectively (p=0.77). 

Log-rank (Mantel-cox) test was used to assess the statistical significance.   
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4.6.2 Tumor related survival analysis 

Tumor related survival of KC-SPARC-/- (n=25) and KC-SPARCwt (n=16) mice was 

assessed by comparing the survival days of mice which died from tumor-related health 

concerns. Tumor status was confirmed by visual observation of tumors upon necropsy 

and subsequent H&E staining. Tumor related survival analysis shows that tumor bearing 

KC-SPARC-/- mice live significantly shorter (p=0.02). The median survival of tumor 

bearing KC-SPARC-/- and KC-SPARCwt mice was 280 and 485 days respectively (Fig. 

26). 

 

Figure 26: Kaplan Meier Curve of tumor-related survival shows that KC-SPARCwt have a significantly 

prolonged survival compared to KC-SPARC-/- mice (485 days versus 280 days; p=0.02).  
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4.6.3 Tumor bearing KC-SPARC-/- mice show severe tumor related complications  

Even though KC-SPARC-/-and KC-SPARCwt reveal comparable biological 

characteristics of their primary tumor and metastatic lesions (proliferation, apoptosis and 

liver metastasis status), stromal SPARC ablation resulted in a significantly shortened 

survival. One possible reason for this survival difference might be a more severe disease 

course and a higher and earlier complication rate in KC-SPARC-/- mice upon pancreatic 

tumor development. Table.1 depicts the recorded clinical complications following tumor 

development that prompted sacrifice of the mice. Even though the single parameters did 

not reach statistical significance, the accumulation of several factors such as ascites, 

biliary obstruction and diarrhea occurred more frequently in KC-SPARC-/- mice and 

might serve as a feasible explanation for the observed survival difference. 

 

  Tumor  p-value 

  KC-SPARC-/- (n=26)  KC-SPARCwt (n=18)    
Ascites  4          (15%)  0 p=0.13 
Jaundice  4          (15%)  1            (6%)  p=0.63 

Cachexia  3          (12%)  2            (11%)  p>0.9 
Bowel related complaints  
(Obstruction, dilation and 
ischemic)  3          (12%)  2            (11%)  p>0.9 
Incidence of 
macrometastasis 3          (12%)  4             (22%)  p=0.41 
Abdominal hemorrhage   2           (8%)  2            (11%)  p>0.9 
Spleen enlargement 3           (12%)  1            (6%)  p=0.63 
Diarrhea  2           (8%)  0 p=0.50 
Hypothermia  1           (4%)  1            (6%)  p>0.9 
 

Figure 27: Table shows the comparison of clinical features of tumor bearing KC-SPARC-/- and KC-

SPARCwt at endpoint.  
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4.7 SPARC does not affect gemcitabine delivery and metabolism 

4.7.1 SPARC mediated collagen deposition does not affect gemcitabine delivery and 

metabolism in murine pancreatic tumors 

SPARC is a modulator of desmoplasia. In the presented work, I have shown a significant 

reduction of collagen deposition upon SPARC depletion in murine pancreatic tumors. 

Extensive ECM deposition (especially collagen) has been shown to impede drug delivery 

and drug response (Dangi-Garimella et al., 2011; Khan et al., 2016; Olive et al., 2009). 

Recently, overexpression of collagen genes were found to associated with drug resistance 

in ovarian cancer (Januchowski et al., 2016; Sherman-Baust et al., 2003).  

To investigate whether SPARC mediated ablation of ECM components such as collagen 

has any effect on delivery and metabolism of gemcitabine, we have treated tumor bearing 

KC-SPARC-/- (n=10) and KC-SPARCwt (n=6) mice with gemcitabine (100mg/kg/body 

weight) and sacrificed animals 2h after the gemcitabine administration. Prior work had 

shown that peak levels of gemcitabine are detected about 2h after intraperitoneal 

administration (Neesse et al PNAS 2013). Metabolites of gemcitabine were then analyzed 

in freshly frozen bulk tumor tissue by LC-MS/MS. 

Gemcitabine is a prodrug which has to be further metabolized into a functionally active 

drug by subsequent phosphorylations. Difluorodeoxycytidine (dFdC) is transported into 

the cells by human nucleoside transporters (hENTs) and phosphorylated by 

deoxycytidine kinase (dCK) enzyme to form difluorodeoxycytidine monophosphate 

(dFdCMP), which is further phosphorylated to form difluorodeoxycytidine diphosphate 

(dFdCDP) and difluorodeoxycytidine triphosphate (dFdCTP) (Heinemann et al., 1988). 

dFdCTP is the cytotoxic form of gemcitabine. Upon incorporation into DNA, it inhibits 

the function of DNA polymerase and thus terminates chain elongation.  

In contrast to previously published data on collagen and drug delivery in murine 

pancreatic cancer, SPARC mediated collagen deposition in established KC-SPARCwt 

tumors did not impede drug delivery or affect metabolism of gemcitabine compared to 

collagen-poor tumors in KC-SPARC-/-mice. There was no difference in terms prodrug 

(dFdC) accumulation (p=0.11) (Fig. 28B), the amount of activated metabolite (dFdCTP) 

(p=0.11) (Fig. 28C), and the amount of inactivated metabolite (dFdU) (p=0.79) between 

the collagen-rich (KC-SPARCwt) and collagen-poor tumors.  This finding is surprising 

and contradicts previous studies which suggested that the extensive ECM (especially 
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collagen) deposition could impede drug delivery (Dangi-Garimella et al., 2011; Khan et 

al., 2016; Olive et al., 2009).  

A. 

 

B.                                                                     C. 

      

D. 

 

Figure 28: (A) Schematic diagram shows the experimental plan.  LC-MS/MS analysis of gemcitabine 

metabolites (B) dFdC, (C) dFdCTP and (D) dFdU shows that there is no difference in terms of the amount 

of dFdC (p=0.11), dFdCTP (p=0.11) and dFdU (p=0.79) between collagen-rich tumors (KC-SPARCwt) and 

collagen-poor tumors (KC-SPARC-/-). Mann Whitney test was used to assess the statistical analysis.  
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4.7.2 Overall cellularity but not the SPARC mediated collagen deposition affects 

drug accumulation and metabolism 

As shown above, SPARC mediated collagen deposition does not affect drug delivery and 

metabolism of gemcitabine in murine pancreas tumors. Further experiments were aimed 

to investigate whether drug uptake and metabolism between normal pancreas and 

different stages of tumorigenesis would differ in order to understand the role of 

desmoplasia and drug accumulation. In order to achieve this, wildtype mice with healthy 

pancreata (n=6), mice bearing PanIN lesions (n=8) and tumor bearing KC-SPARCwt mice 

(n=4) were treated with gemcitabine (100mg/kg/body weight) 2h prior to sacrifice, and 

gemcitabine metabolites were analyzed in freshly frozen bulk tissues by LC-MS/MS.  

The analysis revealed a gradual increase in native gemcitabine metabolite (dFdC) 

between normal pancreas, PanIN lesions and murine pancreatic tumors derived from KC-

SPARCwt mice (Fig. 29A). However, dFdC was rapidly inactivated to dFdU in a 

significant amount in the tumors (Fig. 29C). Hence, there was no significant difference 

in the amount of activated gemcitabine metabolites (dFdCTP) between normal pancreas, 

PanIN lesions and tumors (Fig. 29B).  

The accumulation of dFdC was found to be significantly higher in murine tumors (n=4) 

(15 times more) compared to healthy control pancreas (n=6) (p=0.009). This is surprising 

due to the fact that the normal pancreas tissue has a much better vascularization than the 

tumor (Hessmann et al., 2018; Olive et al., 2009). Therefore, one would expect increased 

accumulation of the pro-drug in normal pancreas compared to hypovascular pancreatic 

tumors. We hypothesized that the cellularity (both stromal and epithelial cells) might 

determine LC-MS/MS results for gemcitabine metabolites as an increased number of 

epithelial and stromal cells might also increase the number of intracellularly measured 

gemcitabine metabolites. To this end, DAPI staining and IHC for pan-cytokeratin and α-

SMA were performed to assess the overall epithelial and stromal cellularity. And indeed, 

an increased cellularity was detected in PanIN lesions and murine tumors compared to 

normal pancreas. Analysis of DAPI staining revealed that the total number of nuclei was 

significantly higher in tumor tissue (average 930 nuclei) compared to normal pancreas 

(average 503 nuclei) (Fig. D & E) (p=0.002).  
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Additionally, IHC-pan-cytokeratin and IHC-α-SMA analysis revealed that there is a 

significant increase in epithelial and mesenchymal cell population in murine tumors 

compared to PanIN lesions (Fig. 29 F-H) (p=0.04 and p=0.0007 respectively). Normal 

pancreas tissue sections were not included in the staining panel as it is well known that 

both epithelial (ductal) and the fibroblast cell populations are significantly lower in the 

healthy pancreata.  

 

A.                                                                     B. 

     

C. 

 

 

Figure 29: LC-MS/MS analysis of gemcitabine metabolites (A) dFdC, (B) dFdCTP and (C) dFdU in normal 

pancreas (n=6), PanIN lesions (n=8) and pancreatic tumors (n=4) of KC-SPARCwt mice. 
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D. 

 

  

E. 

     

 

(D) Representative pictures of DAPI staining in control pancreas and KC-SPARCwt tumor tissue. (E) The 

quantification of total nuclei in normal pancreas and tumor of KC-SPARCwt mice shows a significant 

increase in overall cellularity in tumors compared to normal pancreas (p=0.002).   

 

  



                                                                                                                          4. Results 

70 | P a g e  
 

F. 

 

 

G.                                                                         H. 

                 

(F) Representative pictures of IHC-pan-cytokeratin and IHC-α-SMA in PanIN lesions and tumor tissue 

shows the increase in cellularity of epithelial and stromal compartment between PanIN lesions and tumors. 

(G&H) Quantification of pan-cytokeratin and α-SMA showing the increase in cellularity of epithelial and 

stromal compartments in PanIN lesions compared to tumors. Mann Whitney test was used to assess the 

statistical significance. ** p≤0.01 and *** p≤0.005. 
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4.7.3 Gemcitabine is enzymatically inactivated by drug metabolizing enzymes  

Overexpression of the inactivating enzymes of gemcitabine is directly associated with 

drug resistance. Cytidine deaminase (CDA), and Cytosolic 5-Nucleotidase 1A (Nt5c1A) 

are the two major inactivating enzymes of gemcitabine nucleosides (Mini et al., 2006). 

In the previous part I had shown that a significant amount of pro-drug accumulated in 

tumor tissue compared to the normal and pre-neoplastic tissues. Although there was a 

trend towards more dFdCTP in tumor tissues, no significant difference of dFdCTP 

between the normal pancreas tissue, PanIN lesions and murine tumors was detected by 

LC-MS/MS (Fig. 29B). One possible explanation for this could be that rapid inactivation 

of dFdC occurred through CDA (dFdC to dFdU) and Nt5c1A (dFdCMP to dFdC). 

Indeed, IHC confirmed the strongest expression of Nt5c1A and CDA in murine tumors 

compared to PanINs and normal pancreas tissue (Fig. 30).  

 

 
 
Figure 30: Representative pictures of IHC-CDA and IHC-Nt5c1A in normal pancreas, PanIN lesions and 

tumors show increased expression in PanIN lesions, and robust overexpression in murine tumor compared 

to normal pancreas tissue. 
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5. Discussion 

The tumor microenvironment (TME) in PDAC is histologically composed of various 

components such as acellular and cellular stromal compartments. Each compartment has 

been shown to contribute to the initiation and progression of the disease. However, 

depletion of certain cellular components such as CAFs in several GEMMs of PDAC has 

led to a more aggressive and undifferentiated phenotype suggesting that certain 

components of the TME are tumor-suppressive whereas others are tumor-promoting 

(Özdemir et al., 2014; Rhim et al., 2014). SPARC is a matricellular protein that has been 

shown to be involved in various cellular processes such as development and wound 

healing. Aberrant SPARC expression is associated with various diseases such as renal 

fibrosis and arthritis. SPARC expression has also been described in various tumors. In 

PDAC, SPARC is overexpressed by activated fibroblasts of the tumor stroma and 

correlates with poor clinical outcome (Infante et al., 2007; Mantoni et al., 2008). Though, 

extensive research has been done on SPARC, its exact role in PDAC and the mechanism 

involved are yet a matter of debate. Therefore, analyzing the role of SPARC during 

different stages of PDAC tumorigenesis using GEMMs may shed light into the role of 

SPARC in PDAC. 

5.1 Advantages and disadvantages of genetically engineered mice used in this 

study 

In our study, we have provided a detailed insight into the phenotypic characterization of 

the mouse models including SPARC-/-, KC-SPARC-/- and KC-SPARCwt. As described 

previously (Gilmour et al., 1998; Norose et al., 1998b; Yan and Sage, 1999), we have 

observed SPARC knockout related phenotypes such as fragile bones and 

cataractogenesis in both SPARC-/-and KC-SPARC-/- mice. In addition, we have observed 

a trend towards reduced overall body weight as well as organ weight in SPARC knockout 

mice compared to SPARCwt. Though these phenotypes are not lethal, SPARC-/- mice may 

be more susceptible to tumor related complications such as weight loss, cachexia and 

ascites. This limitation could be circumvented by using a pancreas specific SPARC 

knockout mouse instead of a germline SPARC knockout system. Thus, collagen 

impairment in the muscle, bone and other tissues such as the cornea would not be 

affected. However, major advantages of the KC mouse model are the slow progression 

of ADM and PanIN lesions that eventually progress to frank carcinomas only after >8-

10 months. In addition, pancreatic precursor lesions are surrounded by a dense 
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extracellular matrix that resembles the histological features in human preneoplasia. Thus, 

the KC mouse models allow a detailed histological and molecular characterization at 

different stages of tumorigenesis, and eventually tumor growth and metastasis upon 

SPARC depletion. This prompted us to allocate KC mice into different age groups with 

well characterized preneoplastic lesions. However, a major drawback of p48-Cre driven 

mouse models is the fact that oncogenic Kras mutations are initiated during embryonic 

stages at day 8.5, and all p48 expressing cells bear an activating KrasG12D mutation. This 

is in stark contrast to human PDAC in which the tumor normally develops only at one 

site in the pancreas (head, body or tail) and from one or very few cell clones.  

From a technical and experimental point of view, GEMMs are expensive and time 

consuming due to multiple crosses and genotyping that is required to obtain the correct 

genotypes.  

5.2 Cancer associated fibroblast in PDAC 

The significance of CAFs and their ability to modulate PDAC stroma by secreting 

extensive amount of ECM proteins, MMPs and tissue inhibitors of MMPs have been 

unnoticed for decades (Phillips et al., 2003). Later, the contribution of CAFs in PDAC 

progression and the potential cross talks between neoplastic cells and CAFs have been 

described by many in vitro and in vivo studies. In vitro co-culture experiments have 

shown that both CAFs and tumor cells reciprocally contribute to their proliferation and 

migration which indeed results in tumor progression and metastasis (Kikuta et al., 2010; 

Vonlaufen et al., 2008b). Studies have also explored the signaling pathways involved in 

the interaction between these two different compartments. Tumor cells are known to 

influence the CAFs to produce more ECM through TGFß1, FGF2, and the increased 

proliferation of CAFs is known to be associated with the secretion of tumor PDGF, 

respectively (Bachem et al., 2005; Yoshida et al., 2004; Yoshida et al., 2005). The cross-

talk between CAFs and tumor cell was further validated by in vivo studies using xenograft 

models in which an increase in tumor growth was reported upon co-injection of CAFs 

and tumor cells compared to tumors cells alone. It has been also shown that the amount 

the tumor cells was also significantly increased upon co-injection which is supporting the 

fact that CAFs contribute to the proliferation of tumor cells (Bachem et al., 2005). Similar 

results were obtained in an orthotopic model in which co-implantation of human PDAC 

cells and human PSCs led to significant increase in tumor growth and metastasis (Hwang 

et al., 2008). Considering the tumor promoting roles of CAFs in PDAC, many groups 
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have recently attempted to target CAFs to improve therapeutic outcome. Even though 

few initial studies in preclinical models have shown convincing results (Olive et al 2009), 

most of those studies failed as the depletion of CAFs resulted in unfavorable tumor 

characteristics. This might be due to the fact that CAFs also have certain anti-tumorigenic 

roles (Froeling et al., 2011; Özdemir et al., 2014; Rhim et al., 2014).  

Initially, CAFs were considered a homogenous cell population in tumor biology. But 

later researchers have realized that CAF population express a wide range of molecular 

markers and were also thought to be functionally divergent. Further studies have explored 

the subtypes of CAFs based on different parameters including the expression profile, 

origin (locally recruited versus bone marrow derived), and their subsequent roles in 

PDAC (Öhlund et al., 2014; Sugimoto et al., 2006). More recently, Öhlund and 

colleagues have subclassified CAFs into myofibroblasts and inflammatory fibroblasts 

based on the expression of different markers and their location of distribution. The group 

distinguished myofibroblasts from inflammatory fibroblasts based on high expression of 

α-SMA and their proximity with the neoplastic cells (myoCAFs), while the inflammatory 

fibroblasts (iCAFs) were shown to express mostly inflammatory cytokines such as IL-6 

and were located distally from the neoplastic lesions (Öhlund et al., 2017).  

We hypothesized that SPARC might indeed determine specific functions in CAFs, as 

SPARC is predominantly expressed by CAFs during PDAC tumorigenesis. Similar to 

protumorigenic properties of CAFs, SPARC has been shown to enhance the invasiveness 

of the tumor cells (Guweidhi et al., 2005). Considering the fact that SPARC is a potent 

modulator of interaction between tumor and stromal cells, we hypothesized that SPARC 

may determine the fibroblast’s pro or anti-tumorigenic nature. Consequently, we 

anticipated a direct effect on CAF population upon SPARC depletion in our mouse 

model.  

To differentiate between cell-autonomous and non-cell autonomous effects of SPARC, 

we first investigated the role of SPARC in epithelial cells. Wound healing assays 

performed on primary PanIN cells revealed that endogenous SPARC expression has no 

direct effect on phenotypic properties of pre-neoplastic epithelial cells. This was not 

surprising due to the fact that there is hardly any expression of SPARC in PanIN cells 

itself. Similar results were obtained in wound healing assay performed on fibroblasts 

isolated from KC-SPARCwt and KC-SPARC-/- mice. Therefore, it appears that SPARC 
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had no autocrine effects on both epithelial as well as stromal cells. To investigate whether 

CAF derived SPARC has paracrine effects on surrounding epithelial cells, co-culture 

assays with supernatant from CAFs on epithelial cells were performed. To this end, 

PanIN cells from KC-SPARC-/- mice were incubated with supernatant from both KC-

SPARCwt and KC-SPARC-/- fibroblasts. Both KC-SPARCwt and KC-SPARC-/- fibroblast 

conditional media showed no measurable phenotypic effect on epithelial cells. However, 

a potential limitation of our in vitro experiments might be the 2D design. CAFs have been 

shown to exhibit different expression profile upon mono and co-culturing with tumor 

cells. In addition, CAFs may also require tumor cells in the proximity in order to achieve 

their original expression profile as seen in vivo. Thus, the stimulation with conditional 

medium may not fully recapitulate the in vivo. 3D organoid co-cultures would be the 

appropriate model to study this effect.  

Still, our in vitro results are in line with our in vivo findings from KC mice that SPARC 

has no effect on PanIN and tumor progression. In our model, the disease initiation and 

progression led to a gradual increase of the number of CAFs regardless of the SPARC 

expression. Although we did not observe a direct effect on the fibroblast cell population, 

loss of SPARC significantly changed the ECM composition by reducing the amount of 

collagen within preneoplastic lesions and murine tumors.  Surprisingly, these alterations 

in ECM composition did not show significant effects on tumor biology. 

5.3 SPARC mediated ECM deposition and PDAC progression 

The ECM in PDAC is a highly complex network composed of various acellular 

constituents such as collagen, laminin, fibronectin and proteoglycons which has been 

shown to regulate various vital cellular functions (Theocharis et al., 2016). SPARC has 

been shown to modulate the interaction between cellular and acellular (ECM) 

compartments (Bornstein, 1995; Brekken and Sage, 2000).  

In the existing literature, various partly opposing roles of SPARC have been described in 

different tumor entities. There are certain factors which determine the functions of 

SPARC in different systems such as the cellular origin of the protein, the amount of 

secretion and the availability of domains for receptor binding. To this end, SPARC 

interacts with soluble (i.e growth factors) and insoluble components (collagen, 

fibronectin etc.,) and is involved in a wide range of cellular functions. In 2003, Brekken 

et al., have performed a study in which pancreatic tumor cells were implanted 
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subcutaneously in SPARC-/- and SPARCwt mice. The authors reported that tumor growth, 

volume and weight was increased in SPARC-/- compared to SPARCwt mice indicating a 

tumor-suppressive role of SPARC (Brekken et al., 2003). Using a GEMM of PDAC, we 

first explored the expression pattern of SPARC in the KC model. In the KC mouse model, 

SPARC was mainly expressed by CAFs that either surrounded PanINs or tumor cells, 

while there was hardly any expression in epithelial (PanIN or tumor cells) compartment 

as such. An almost identical expression profile was described in human PDAC where 

SPARC was found to be expressed by peritumoral fibroblasts (Infante et al., 2007; 

Mantoni et al., 2008; Sinn et al., 2014). Therefore, we believe that GEMMs of PDAC, in 

this case KrasG12D driven model is more appropriate to recapitulate the human situation, 

especially in terms of the tumor microenvironment. Interestingly, SPARC has been 

characterized as one of the markers of activated stroma and its overexpression by stromal 

fibroblast is correlated with poor clinical outcome in the patients (Infante et al., 2007; 

Mantoni et al., 2008; Moffitt et al., 2015). However, overexpression of SPARC in 

activated fibroblasts in the KC model has not resulted in enhanced tumor progression. 

Our data is in line with previously published observations in the KPC model, in which 

SPARC ablation resulted in a similar frequency of liver metastases (Neesse et al., 2014). 

Comparing our data with the findings of Moffitt et al., we hypothesize that SPARC alone 

may not contribute to an activated tumor stroma. Rather, the combination of different 

markers such as CCL13, CCL18, Gelatinase B, Stromelysin 3 and SPARC resulted in 

the “activated” stroma subtype that was associated with significantly shortened survival 

in patients. Therefore, clinical and histopathological data that suggest that SPARC is 

associated with a poor prognosis in PDAC patients might not necessarily reflect pro-

tumorigenic functions of SPARC itself but rather SPARC as a marker for desmoplasia.  

Mechanistically, SPARC is involved in assembly, folding and secretion of collagen 

(Martinek et al., 2006). In KC-SPARC-/- mice, collagen deposition was significantly 

reduced upon SPARC depletion. Different types of collagen have been shown to confer 

to tumor growth and progression (Aguilera et al., 2014). However, in our model 

significant reduction in collagen deposition in KC-SPARC-/- mice did not affect both 

disease initiation and progression. Based on our data, one could hypothesize that collagen 

serves as a passive bystander during carcinogenesis, at least in the KC mouse model that 

was used in this study. Alternatively, as collagen deposition was not completely absent 

in KC-SPARC-/- mice, there might be a critical amount of collagen that drives PanIN and 
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tumor progression that was still present despite the ablation of SPARC. In addition, HA 

deposition was not affected by SPARC expression. HA is an important stromal 

constituent of the ECM in PDAC which was shown to promote disease progression and 

to contribute to drug resistance (Provenzano et al., 2012). Although we did not observe 

differences in terms of overall survival between KC-SPARCwt and KC-SPARC-/- mice, 

tumor bearing KC-SPARC-/- lived significantly shorter than tumor bearing KC- SPARCwt 

mice. However, the detailed preclinical analysis did not show any meaningful differences 

in terms of proliferation, apoptosis, angiogenesis and frequency of liver metastasis. Still, 

it became apparent that KC-SPARC-/- mice showed more severe tumor associated 

symptoms such as jaundice, ascites and diarrhea. Therefore, we hypothesize that 

germline SPARC knockout mice tolerate pancreatic tumor burden less due to intrinsic 

abnormalities such as metabolic disturbances, ascites development and more severe 

jaundice. 

Intriguingly, the association between SPARC and ascites formation has been previously 

described in experimental ovarian cancer. Here, host specific SPARC plays a tumor 

suppressing role by normalizing the ovarian tumor stroma through decreasing the pro-

tumorigenic and pro-metastatic factors in ascites (Said et al., 2007). Said and colleagues 

have explored the mechanism by which SPARC modulates the biochemical composition 

of the ascitic fluid using syngeneic mouse models. In this study, the authors injected 

either control ID8 cells or ID8 cells overexpressing VEGF in SPARC-/- and SPARC+/+ 

mice. They observed an increased tumor growth, increased incidence of ascites, increased 

ascites fluid volume and decreased survival in SPARC-/- mice which received 

ID8+VEGF cells. Furthermore, this study revealed that SPARC reduces the proliferation 

and invasion of ID8 cells by downregulating the VEGF-MMP levels. Additionally, the 

ascitic fluid of SPARC-/- mice was reported to have higher amounts of pro-tumorigenic 

inflammatory factors (Said et al., 2007). The positive feedback loop between MMPs and 

VEGF has been previously reported (Belotti et al., 2003). Thus quantification of VEGF 

level using ELISA or mRNA expression analysis in the ascitic fluid of KC-SPARCwt and 

KC-SPARC-/- mice may provide further insight into mechanisms by which the increased 

ascites incidence in KC-SPARC-/- mice had occurred. For this study, ascites was 

unfortunately not routinely collected for further analysis.     

Even though there was no obvious evidence showing the relationship between SPARC 

and increased incidence of jaundice, there is evidence suggesting a strong correlation 
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between the altered collagen level or mutation in collagen genes and jaundice incidence 

(Mizuguchi et al., 2005; Tomotaki et al., 2016). However, the exact mechanism has not 

been elucidated so far. 

5.4 SPARC and angiogenesis 

In general, PDAC is a highly desmoplastic and hypovascular tumor. This hypovascularity 

causes reduced tumor perfusion which is further decreased by physical compression of 

the existing tumor vessel by the ECM matrix and the high colloidal tumor pressure. These 

observations have led to the hypothesis that the abundant tumor stroma is one of the main 

reasons for the failure of chemotherapies (Olive et al., 2009). Therefore, various 

experimental attempts have been made to deplete the tumor stroma and increase vascular 

perfusion thus allowing drugs to enter the tumor more easily. SPARC has been 

extensively studied in the field of vascular biology and has been referred to as the 

regulator of angiogenesis (Sage et al., 1984, 1989). Previous studies have shown the anti-

angiogenic role of SPARC in various tumors entities such as ovarian cancer, 

neuroblastoma and gastric cancer (Chlenski et al., 2010; Said et al., 2007; Zhang et al., 

2012). In ovarian cancer, SPARC has been shown to downregulate VEGF and MMPs in 

order to achieve the anti-angiogenic activity (Said et al., 2007).  

SPARC has also been previously shown to interact with VEGF and thus regulate the 

proliferation and migration of endothelial cells (Kupprion et al., 1998; Raines et al., 

1992). Prior to this work, it could be hypothesized that SPARC depletion may result in 

enhanced angiogenesis and possibly improved perfusion of murine PDAC tumors. 

Therefore, mean vessel density was assessed by analyzing immunoreactivity of CD31 in 

tumor tissues of KC-SPARC-/- and KC-SPARCwt mice. Surprisingly, no changes in the 

number of tumor vessels were observed upon SPARC depletion. However, the finding 

that SPARC ablation resulted in a higher frequency of malignant ascites in tumor bearing 

mice may still indicate an anti-angiogenic role of SPARC that was abolished following 

SPARC depletion. Further experimental studies such as a detailed biochemical work-up 

of ascites and serum samples for secreted factors such as VEGF may further help to 

investigate this hypothesis in mice. From a clinical point of view, it is interesting to note 

that only a fraction of patients with PDAC develop malignant ascites during the end 

stages of the tumor disease. It remains to be determined whether these patients have any 

differences in global or tumor-associated SPARC expression. Again, this could be 

interrogated by a clinical proof of concept study where serum samples from patients with 
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and without ascites, but comparable tumor stages are analyzed for circulating SPARC, 

VEGF and other growth factors. 

5.5 SPARC mediated desmoplasia and drug delivery 

Previous studies have described the association between the extensive amount of ECM 

deposition and drug resistance in PDAC. Various components of ECM such as collagen 

and hyaluronan have been thought to impede drug delivery by acting as a physical barrier 

(Jacobetz et al., 2013; Minchinton and Tannock, 2006; Provenzano et al., 2012). In 

addition to the extrinsic resistance, the desmoplastic stroma of PDAC also has been 

shown to confer to intrinsic resistance by differentially regulating the cellular enzymes 

involved in gemcitabine metabolism pathway (Dangi-Garimella et al., 2011, 2013; 

Hessmann et al., 2018).  

Several investigators have used various GEMMs to assess different compounds that 

target the tumor stroma. For example, Cilengitide, an angiogenesis inhibitor, and 

Verapamil, a Ca++ channel blocker, were co-administered and resulted in improved 

vascular function, intratumoral gemcitabine accumulation and therapeutic response. 

There are a number of additional stromal targets such as TGF-β using the inhibitor 

LY364947, HA using the enzyme PEGPH20, or collagen maturation using the lysyl 

oxidase (LOX) inhibitor that have been experimentally probed in various mouse models 

with success (Jacobetz et al., 2013; Kano et al., 2007; Miller et al., 2015; Provenzano et 

al., 2012; Thompson et al., 2010). However, none of these findings could be successfully 

translated in phase III trials in humans, and so far, no approved anti-stromal drug is 

currently available in the clinical routine for PDAC patients. To this end, PEGPH20 

might represent the most promising candidate right now. A phase III study 

(NCT02715804) has recently been approved, and patients with high intratumoral HA 

levels are randomized to nab-paclitaxel/gemcitabine ± PEGPH20. This trial will show 

whether the biophysical drug delivery hypothesis in PDAC will translate to patient care. 

Another explanation for the failure of chemotherapies has recently been discovered in 

the Neesse laboratory. Experimental data from GEMMs indicate that CAFs, compared 

to epithelial tumor cells, metabolize and intracellularly store large amounts of 

gemcitabine metabolites that are not available for tumor cells anymore. This phenomenon 

was termed “drug scavenging” and may explain why tumor cells are very sensitive 
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towards the chemotherapeutic drug gemcitabine in vitro, but fail to undergo apoptosis 

when surrounded by a dense, fibroblast-rich environment (Hessmann et al., 2018). 

In my thesis, I explored whether SPARC or SPARC mediated desmoplasia affects 

gemcitabine delivery and metabolism by employing LC-MS/MS analysis in normal 

pancreas tissue, bulk preneoplastic tissues, and tumor tissues from KC-SPARC-/- and KC-

SPARCwt mice upon gemcitabine treatment.  These mice models provided an excellent 

platform to investigate whether collagen content really affected intratumoral gemcitabine 

accumulation in preneoplastic tissues as well as murine pancreatic tumors. Surprisingly, 

the results showed that there is no noticeable difference in terms of intrapancreatic 

gemcitabine accumulation between tumors with high and low collagen content. In fact, 

the amount of native gemcitabine (dFdC) accumulation was comparable between tumors 

with high and low collagen content (KC-SPARCwt vs KC-SPARC-/-). According to our 

model, the extensive deposition of collagen in KC-SPARCwt tumor does not affect the 

delivery and metabolism of gemcitabine. This is contradicting the previous studies which 

have described collagen as a physical barrier for gemcitabine delivery (Dangi-Garimella 

et al., 2013; Diop-Frimpong et al., 2011).  

We further investigated if the accumulation of gemcitabine is disease stage dependent in 

order to explore the contribution of desmoplasia for drug accumulation. Completely 

contradicting the biophysical drug barrier hypothesis, LC-MS/MS results revealed a 

gradual increase in gemcitabine accumulation dependent from normal pancreas to PanIN 

lesions and fully developed tumors. Bases on the stromal scavenging theory, we 

hypothesized that the increase in drug accumulation is rather due to the increase in overall 

cellularity. And indeed, performing nuclear density analysis (DAPI) and IHC for pan-

cytokeratin and α-SMA a significant increase in both epithelial and mesenchymal cells 

in tumors compared to normal pancreas tissues was detected. The ratio between native 

gemcitabine (dFdC), inactive gemcitabine (dFdU) and the activated form (dFdCTP) 

demonstrated that the increased accumulation of native gemcitabine in tumor tissue was 

eventually not phosphorylated to the active dFdCTP. Instead, the amount of inactive 

dFdU increased in tumor tissues indicating an increased activity of gemcitabine 

inactivating enzymes in tumor tissues compared to preneoplastic pancreas tissue and 

normal pancreas.  
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5.6 Conclusions 

We hypothesized that SPARC is an important matricellular protein in PDAC contributing 

to disease progression, ECM remodeling and possibly drug delivery. Therefore, genetic 

abrogation of SPARC in Kras-driven mouse models and cell lines may directly or 

indirectly affect tumorigenesis and progression, as well as the delivery of 

chemotherapeutic drugs such as gemcitabine.  

5.6.1 SPARC and tumorigenesis 

• SPARC depletion lead to significant reduction of collagen deposition in KC-

SPARC-/-mice regardless of the disease stage 

• SPARC depletion did not affect progression of the ADM-PanIN-tumor sequence 

in GEMMs. 

• The tumor incidence and liver metastasis rate were unaffected by genetic 

abrogation of SPARC in KC mice. 

• SPARC depletion did not change hallmark characteristics of murine pancreatic 

tumors including tumor weight, proliferation, apoptosis and angiogenesis.  

• In vitro, SPARC abrogation did not affect morphology and proliferation of both 

epithelial and fibroblast cell lines derived from preneoplastic lesions and murine 

pancreas tumors. 

• The overall median survival of KC-SPARCwt and KC-SPARC-/- mice was similar 

and was not affected by SPARC abrogation. 

• Loss of SPARC significantly shortened survival of tumor bearing KC-SPARC-/- 

mice compared to KC-SPARCwt mice and was associated with more severe 

clinical symptoms such as ascites, diarrhea and jaundice. 

5.6.2 SPARC and drug delivery 

• There was no difference in terms of delivery and metabolism of gemcitabine 

between collagen-rich and collagen-poor tumors (KC-SPARCwt vs. KC-SPARC-

/-).  

• There was a striking increase in the accumulation of native gemcitabine in murine 

tumors (high collagen) compared to normal pancreas tissue (no collagen) 

contradicting several reports that the desmoplastic reaction impedes gemcitabine 

delivery. 
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• Interestingly, native gemcitabine was inactivated by enzymes such as CDA and 

Nt5c1A that were overexpressed in murine tumors but not normal pancreas tissue 

resulting in comparable levels of activated gemcitabine metabolites in normal 

pancreas and murine tumors. 
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