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Abstract  
Texture analysis, i.e. the analysis of the crystallographic preferred orientations of minerals in 

rocks, contributes to the understanding of the deformation history and physical properties of 

rocks. Methods generally applied in geosciences, like optical methods, X-ray, neutron, or 

electron backscatter diffraction are often not suitable for multiphase, polycrystalline rocks rich 

in phyllosilicates as preparation or measurement procedures are inapplicable. Applying 

synchrotron radiation for quantitative texture analysis, i.e. high energy X-rays, with its high 

penetration depth, allows to measure a sample volume, is unaffected by water and overcomes 

preparation effects on the sample surface. A relative small beam size of 0.5-1 mm in diameter, 

however, makes it usually inapplicable to materials with larger grain sizes. An advanced 

workflow from sample preparation, to measuring and data processing was developed to make 

the method applicable to such specific rocks. Whole “slices” of cylindrical samples are 

measured and - if necessary - several slices per sample are finally added to represent a bulk 

rock texture. The applicability of the work flow using synchrotron diffraction was tested by three 

case studies regarding phyllosilicate-rich rocks. 1) Quantitative texture analysis of Devonian 

black shales from the Appalachian Plateau in Pennsylvania (USA) was applied to calculate the 

anisotropy of the magnetic susceptibility. The modeling results are compared to experimental 

AMS measurements, which show a good agreement and quantitatively prove that the magnetic 

anisotropy in these samples is carried by the phyllosilicates. Texture and magnetic fabric 

dominantly reflect compaction, but also far field tectonic imprint from the Alleghenian orogeny. 

2) Water-rich muds and mud rocks from the subduction zone offshore Costa Rica were 

analyzed regarding their composition and texture. The results give insight into the texture 

development processes as the compaction of these “freshly” sedimented clay-rich rocks and 

the tectonic overprint at the continental slope. 3) Fresh oceanic serpentinites consisting from 

chrysotile and lizardite from the Atlantis Massif oceanic core complex show textures which are 

interpreted by microstructural analyses to be originating from two different processes. In one 

case, texture was created by the pseudomorphic serpentinization of pyroxenes leading to the 

formation of bastites, which generates a local texture. In the other case, texture developed due 

to a preferred orientation of the serpentinizing microfractures which are supposed to be linked 

to deformation, either prior to serpentinization or due to the volume increase during 

metamorphosis. Serpentine minerals adopt a growth direction linked to the orientation of the 

fractures and thereby generate a textured microfabric. Both processes can lead to seismic 

anisotropy in these rocks. In all three case studies synchrotron texture analysis in combination 

with Rietveld refinement lead to the successful determination of textures of the extremely 

complicated rock material and allowed new insights in processes of texture formation and the 

contribution to the physical anisotropies. This thesis extends the common comprehension and 
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applicability of texture analysis usually applied to intra-crystalline plastically deformed rocks to 

delicate samples affected by sedimentary or metamorphic processes. 
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1. Introduction  
1.1. Rationale 

From a rheological point of view, phyllosilicates play an important role in the localization of 

tectonic processes. Most phyllosilicates exhibit pronounced plate-like shape anisotropy and 

deform easily by basal glide on these planes (e.g. Shea and Kronenberg, 1992), which 

characterizes them as rheologically weak minerals. It was shown that the total strength of a 

rock is highly dependent on the strength of the weakest phase inherited (e.g. Handy, 1990), 

which makes phyllosilicates a key mineral in deformation. In most of these tectonic processes 

the primary orientation of the phyllosilicates in the rock to-be-deformed is of major importance 

as it can ease or hamper the deformation. Therefore, the knowledge of the shape preferred 

orientation and texture is of major importance in understanding tectonic processes and their 

localization. Furthermore, it influences the rock’s physical properties which are important to a 

variety of different disciplines besides structural geology, e.g. geophysics or material sciences. 

Therefore, understanding how preferred orientation of phyllosilicates develops has impact in a 

wide scientific field. 

Hence, texture analysis in phyllosilicate-rich rocks is a well-established field in geosciences. 

The term texture describes the orientation distribution of crystallites in a polycrystalline material 

(Bunge, 1986). Other synonymously used terms are crystallographic preferred orientation 

(CPO) or lattice preferred orientation (LPO). Analysis of the crystallographic preferred 

orientation has a long tradition especially in materials sciences where it is used to characterize 

e.g. metals and alloys and their properties (e.g. Kocks et al., 1998). Methods applied for texture 

analysis have evolved over time, from U-stage microscopy to X-ray and neutron diffraction and 

most recently electron backscatter diffraction (EBSD) using a scanning electron microscope 

(SEM). Despite this evolution the textures of some phyllosilicates are still beyond the limits of 

measurability, due to e.g. intra-lattice water, sample preparation or grain size issues.  

Synchrotron radiation, i.e. high-energy X-rays generated in a particle accelerator, overcomes 

some of these restricting issues as it is insensitive to water, does not require a high sample 

preparation effort and is sensitive to grain sizes down to nanometer-scale.  

In this study synchrotron diffraction was applied to explore the quantitative textures of 

phyllosilicates and accompanying minerals in three case studies. These case studies concern 

three different tectonic settings posing different problems to conventional texture analysis: (1) 

clay minerals, chlorites, and micas in black shales span over a large range of grain sizes, (2) 

clay samples from the frontal prism and slope of a convergent margin yield water in swelling 

minerals and voids, and (3) serpentinite samples from the spreading center at the mid-Atlantic 

ridge with unique crystallographies of the mineral phases. These examples extend the limits 
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of quantitative texture analysis of phyllosilicates and allow the understanding of particular 

geological processes in more detail.  

1.2. Thesis Structure 
This thesis is organized in six chapters, supplemented by an appendix. Chapter 1 gives an 

introduction on the topic and the objective of this thesis. The chapter provides a short 

background and explains the aim of this thesis and the thesis structure. The appearance and 

significance of phyllosilicates and their texture formation are presented. Chapter 2 introduces 

the method synchrotron diffraction for rock texture analysis and explains the advances 

achieved in this thesis. Chapter 3 is a manuscript in revision at Tectonophysics with the title 

“Quantitative comparison of microfabric and magnetic fabric in black shales from the 

Appalachian plateau (western Pennsylvania, U.S.A.)”. This study uses different methods, such 

as synchrotron texture analysis, microstructure analysis and anisotropy of the magnetic 

susceptibility (AMS), which describe the fabric of Devonian black shales. From the measured 

texture an AMS is calculated and compared to the measured AMS values. Chapter 4 is a 

manuscript in revision at the Journal of Geophysical Research: Solid Earth with the title 

“Texture development of clay-rich sediments entering the Costa Rica subduction zone”. Within 

this chapter the texture of wet, soft, clay-rich mud and mudrock samples is determined using 

synchrotron diffraction. The results are linked to tectonic activity in the slope offshore Costa 

Rica. Chapter 5 is a manuscript nearly ready for submission with the title “Textures in 

serpentinites from the Atlantis Massif, Mid-Atlantic Ridge”. This chapter explores the textures 

of serpentinite samples with synchrotron diffraction and explains texture development based 

on microstructural observations. Chapter 6 summarizes and discusses the results of the three 

manuscripts and draws a final conclusion. 

1.3. Texture formation in phyllosilicate-bearing rocks  
Phyllosilicates or sheet silicates represent one of the five silicate mineral groups. In general 

sheet silicates consist of alternating layers of tetrahedra and octahedra sheets. SiO4-

tetrahedra are connected layer-wise by sharing three of their oxygen ions with the adjacent 

tetrahedron and thus form relatively stable sheets. In octahedral layers the tetrahedrons 

additionally share the fourth oxygen with the next, reversely arranged layer. These layers can 

be stacked and in between cations can find their lattice position. Phyllosilicates exhibit a strong 

cleavage in one direction parallel to the basal layers. This leads to a platy morphology and 

strong shape anisotropy of certain crystallites. When distributed in a preferred orientation 

within a rock they can introduce a special appearance to a rock, like slaty cleavage in slates 

and schists. 
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Phyllosilicate minerals occur in all rock groups, in magmatic rocks most often as biotite or 

muscovite, in sedimentary rocks for example as clay minerals and in metamorphic rocks e.g. 

as micas. Therefore, they can take part in all kinds of geologic processes. They play a major 

role in fault and shear zones and are significant also in other tectonic processes.  

As mentioned above, phyllosilicates appear in many different kinds of rocks. Due to their 

largely developed shape anisotropy as platy minerals, the formation of a preferred orientation 

is very likely for phyllosilicates when exposed to any kind of stress. Of course, in different rocks 

different processes can contribute to the evolution of texture. Generally, texture is considered 

to be generated by intra-crystalline plastic deformation (e.g. Almqvist and Mainprice, 2017; 

Passchier and Trouw, 2005) and commonly applied as an indicator for ductile deformation. 

Besides deformation, other processes exist which lead to texture formation in rocks like 

sedimentation and burial or brittle faulting. 

While clay minerals are mostly random oriented during descent and first deposition on the 

ground, especially when flocculated, this changes during further burial (e.g. Oertel, 1983). With 

increasing overburden, compression and dewatering the parallel alignment will increase 

(Figure 1.1a). This is mainly realized by rigid-body rotation and intergranular slip (Oertel, 1983). 

During this process grain contacts change from dominant edge-to-edge (EE) over edge-to-

face (EF) to more face-to-face (FF) grain contacts (e.g. Bennett and Hulbert, 1986). Due to the 

shape anisotropy of phyllosilicates, this process leads to preferred alignment and hence 

texture formation.  

In metamorphic rocks texture formation occurs mostly in combination with deformation, but in 

rare cases also static recrystallization in combination with remineralization can lead to texture 

formation, e.g. if there was already a texture in the precursor rock. 

As already mentioned, deformation is an important texture forming process affecting 

phyllosilicates, either brittle or ductile. In brittle fault gouges, phyllosilicates, especially clay 

minerals align parallel to the fault geometry either by rigid body rotation or by recrystallization 

(Figure 1.1b). While fault gouges in experiments can show a strong preferred orientation, those 

observed in nature mostly show only weak alignment (e.g. Haines et al., 2009). At elevated 

temperatures rocks deform ductile by intra-crystalline plastic deformation. In phyllosilicates this 

is mainly realized by basal glide (Figure 1.1c). Biotite, for example, deforms mainly by 

dislocation slip on either (001)<110> or (001)[100] (e.g. Kronenberg et al., 1990).  
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Figure 1.1. Different texture forming processes affecting phyllosilicates and phyllosilicate-rich rocks a) alignment of 
phyllosilicates during sedimentation and burial modified from Moon and Hurst (1984) b) alignment in fault gouges 
modified from Haines et al. (2009) c) realization of ductile intra-crystalline deformation as slip on basal planes  

 

The results of texture analysis are commonly visualized as pole figures, which are directional 

projections of the statistical distribution of the spatial orientation of crystal lattice plane normals. 

While isotropic aggregates are statistically random, texture intensities can be measured in 

multiples of random distribution (mrd) (Bunge, 1986). 

Due to the crystallographic structure of some minerals physical properties can be different in 

the different directions of a single crystal leading to anisotropic physical behavior. In 

polycrystalline aggregates in which the anisotropic axes of a certain mineral phase are aligned, 

i.e. the mineral phase has a texture, this leads to anisotropy of the rock. So, using the intrinsic 

physical properties of the minerals inherited and the texture of a rock, its anisotropy can be 

estimated. Almqvist and Mainprice, (2017) mentioned that micas and clay minerals are the 

most anisotropic mineral phases with regard to their elastic constants and also for the 

anisotropy of the magnetic susceptibility the preferred orientation of mica is a well-known issue 

(Biedermann et al., 2014; Siegesmund et al., 1995). This emphasizes the significance of 

phyllosilicate textures for rock physical properties. 
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2. Synchrotron diffraction for rock texture analysis 
Using synchrotron diffraction for texture analysis has several advantages compared to other 

texture determining methods, like common lab X-ray sources, neutron diffraction or electron 

backscatter diffraction. Due to the high energy of synchrotron radiation it can also penetrate 

absorbing materials to a large extent and allows a quantitative volume measurement. Thereby, 

the beam is not absorbed by hydrogen, e.g. in water-containing structures and can therefore 

be used for wet samples or samples incorporating minerals rich in water. Furthermore, sample 

preparation is kept to a minimum, as no polishing or other surface treatment is needed. 

Besides, it is a non-destructive method. 

2.1. Experimental setup 
Today synchrotron diffraction is available in large research facilities, e.g. at the European 

Synchrotron Radiation Facility (ESRF) in Grenoble, France or at the German Electron 

Synchrotron (DESY) in Hamburg, Germany.  

To generate synchrotron radiation electrons are accelerated to a speed close to the speed of 

light. They travel in a circular or circle-like electron guide consisting of vacuum tubes and 

magnets which keep the electrons on the correct path. When the electrons leave a straight line 

of travel, i.e. curve, they change their speed and thereby emit synchrotron radiation, i.e. 

bremsstrahlung, which is then used for experiments. The energy and direction of the 

synchrotron beam can be modulated by filters, monochromators and mirrors (e.g. Cockcroft 

and Fitch, 2008).  

Synchrotron texture analysis is applicable at beamlines built for powder diffraction as they are 

equipped with the necessary experimental setup. The measurements are conducted in 

transmission mode, with the beam hitting the sample directly and the diffracted beam leaving 

the sample towards an area detector behind the sample (Figure 2.1).  

The detector image includes the diffractions of all crystal lattice planes hit by the beam. As the 

sample is rotated about the cylinder axis by 175° in 5° steps full pole figure coverage is 

achieved.  

Due to the high intensity and collimation of the beam, the size of the synchrotron beam is 

restricted to only a small aperture, which ranges between 500 µm and 1 mm. Thus, only a 

limited number of grains diffract in one measurement. Absorption effects can affect samples 

with a diameter >2 mm in transmission. This limits samples to a size which is too small for 

most geological samples, to reach a statistically sufficient number of diffracting grains. 

Additionally, grain size can vary over a large range and might be heterogeneous throughout 

geological samples. 
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Figure 2.1. Experimental setup for synchrotron texture measurements a) general experimental setup b) 
experimental setup at beamline ID22, ESRF 

To overcome the restrictions posed by the small beam size, previous measurement strategies 

for geological samples as applied by e.g. Lutterotti et al. (2014) and Schumann et al. (2014) 

were advanced. Two aspects were considered, when planning the measurements: First, the 

utilization of cylindrical samples with a certain diameter, which was already applied by 

Schumann et al. 2014, was adopted. Second, several “slices” of the samples were measured, 

increasing the number of diffracting grains.  

An increase in sample thickness has three effects for the peaks in the resulting diffraction 

pattern: 1.) intensity decreases 2.) peak broadening leads to a degradation in 2Θ resolution 

which complicates refinements, especially for phyllosilicate-rich samples with a high amount 

of overlapping diffractions 3) background increases. For bulk rock texture analysis, it is 

necessary to find the right balance between grain statistics and intensity. Therefore, the 

applicability of larger sample thicknesses for the texture evaluation after Rietveld Refinement 

is important. To experimentally determine the maximum sample thickness for our sample type, 

a test series of Opalinus clay samples with different diameters was measured. 
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2.2. Sample diameter 
To test the influence of the sample diameter on the measurement results experimentally, a fine 

grained sample set from the Jurassic Opalinus formation (Dogger alpha), was used. The 

sample set originates from the tunnel drilling project of the “Scheibengipfeltunnel” at the 

northern rim of the Swabian Alb in southern Germany (kindly provided by Prof. Dr. Lempp, 

Halle University). The shale is composed from mica, chlorite, quartz and calcite, and described 

as homogeneous (Lempp et al., 2016). 

Six samples with different diameters were used: 2 mm, 5 mm, 10 mm, 15 mm, 27 mm, and 

50 mm. For all samples the same experimental settings were used (wavelength λ=70 keV, 

sample detector distance=1401 mm, beam size = 1 mm). Measurements were conducted at 

beam line ID22 at the ESRF.  

Comparing the integrated results of the differently sized samples we can clearly see the loss 

in intensity, the peak broadening and the increase in background (Figure 2.2) with increasing 

sample diameter. It can be already seen that the prepared samples are not totally 

homogeneous in composition and texture as well as peak heights vary. There are slight 

variations due to the natural sample material.  

 

 

Figure 2.2. Comparison of diffraction patterns integrated from 2D detector images, measured in transmission on 
Opalinus clay for different sample diameters.  
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To test the reproducibility of the sample texture, Rietveld texture analysis was performed on 

samples with different diameter. The pole figures recalculated from the different diffraction 

patterns are shown in Figure 2.3.  

Pole figures of the inherited phyllosilicates in all samples show a single maximum for the basal 

plane normal perpendicular to the foliation reflecting pure flattening strain, while the a-axes 

form a foliation parallel girdle. The distribution of the maxima within this girdle is comparable 

between the different samples. The maximum intensities vary for the different phases. Illite has 

the strongest intensity in all samples, ranging from 9.3 mrd (15 mm sample) to 12 mrd (27 mm 

sample) for the basal planes maximum. Kaolinite basal planes maximum ranges from 5.6 mrd 

(5 mm sample) to 7.5 mrd (27 mm sample). Chlorite basal planes maximum is weakest in the 

5 mm sample with 5.1 mrd and strongest in the 50 mm sample with 7.5 mrd.  

 

Figure 2.3. Recalculated pole figures of the phyllosilicates resulting from the evaluation of the diffraction data of the 
samples with different diameter. Equal area, lower hemisphere projection. Maxima in mrd.  
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The total intensity and the texture index F2 (Bunge, 1986) are used as indicators and compared 

in all samples. A slight variety is attributed to minor compositional changes and therefore 

tolerated. As no systematic de- or increase of these indicators can be observed, the mean is 

considered to represent the real texture. Frequent outliers regarding the intensity were found 

in the 5 mm, 25 mm, and 50 mm sample. Frequent outliers regarding the texture index F2 were 

found in the 2 mm and 50 mm samples. Considering the results and trying to keep the samples 

as large as possible, it was decided to use samples with a diameter of about ~15-20 mm for 

synchrotron texture measurements for the beamlines and sample material analyzed in this 

study. Of course, the sample diameter also strongly depends on the wavelength λ and the 

composition of the sample material. 

2.3. Further improvements and workflow 
A second possibility to increase the number of measured grains was to measure several 

positions along the cylinder axis in each sample, further called slices. Depending on sample 

homogeneity and grain size different numbers of slices were measured and analyzed.  

In samples with certain mineralogy, it might be necessary to determine the mineralogy in 

advance, especially when analyzing clay minerals. 

The application of these methodical aspects lead to the implementation of a certain workflow 

(Figure 2.4) applied to the case studies within this thesis.  

First, the sample composition is estimated depending on the nature of the sample and previous 

studies on the same or similar material. If the mineral composition is straightforward with only 

a small number of phases which are clearly defined, this information is sufficient for the texture 

analysis. But if the composition is more complex, with a large number of phases which might 

be more complicated regarding their mineral chemistry or overlapping diffractions in the 

diffraction pattern, additional analyses like X-ray powder diffraction or microscopic analyses 

are necessary to determine the composition. When the composition is known, the grain size is 

determined, either from macroscopic observations or using the analyses previously run for 

mineral determination. If the grain size is relatively fine and homogeneous, i.e. is not visible 

with the unaided eye, measuring one to three sample slices is sufficient for quantitative texture 

analysis. If the grain size is coarser or the fabric is more heterogeneous, the measurement of 

multiple slices is necessary for quantitative texture analysis. The measured slices are then 

analyzed separately and the resulting pole figures are averaged and summed up at the end of 

the analysis procedure, giving a representative texture for this sample.  



2. Synchrotron diffraction for rock texture analysis 

 

11 

 

 
Figure 2.4. Workflow for advanced quantitative synchrotron texture analysis of bulk rock samples 
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2.4. Data refinement 
The 36 detector images from each measurement are then converted into *tif images using the 

Fit2D (Hammersley, 1998) software. An average image is created and used for a first 

refinement. The refinement is conducted using the Rietveld code MAUD (Material Analysis 

Using Diffraction) (Lutterotti et al., 1997). MAUD integrates 72 individual diffraction patterns 

from each image which will then be used for the refinement (Figure 2.5). To model a diffraction 

pattern, which can then be refined, the incorporated mineral phases with the correct 

crystallography are required. Those are *cif files from the COD (Grazulis et al., 2009) and 

AMCDS (Downs and Hall-Wallace, 2003) data bases. The following parameters were used for 

a first refinement: sample specific parameters like background and scale parameters, 

instrumental parameters like intensity, wave length and beam center. Further crystallographic 

parameters, i.e. the unit cell dimensions and axes, were refined, followed by microstructural 

parameters like microstrain and grain size.  

 

 

Figure 2.5. Area detector image of a clay sample recovered at European Synchrotron Radiation Facility, Grenoble 
(France) ID11 and experimental beam line setup.  
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After the first refinement, the average file is replaced by the 36 single images in 5° steps to 

perform the texture calculation. A texture is induced, using the EWIMV algorithm. This 

algorithm is implemented in the software MAUD and derived from WIMV (Matthies and Vinel, 

1982). The background and scale parameters of the individual images are refined again and 

the texture is calculated. If necessary, additional parameters of the above described are further 

refined. By comparing the measured and the modeled data, the quality of the refinement can 

be visually checked (Figure 2.6). 

 

 

Figure 2.6. Exemplary 2D Multiplot in MAUD of the 15mm diameter sample showing good agreement between 
measured and modeled texture 

Pole figures can then be extracted from the MAUD software and imported and treated with 

other pole figure data programs like Pole Figure Plot (Umlauf and Ullemeyer, 2012) or the 

Matlab toolbox MTEX (Hielscher and Schaeben, 2008). 

Useful Rietveld refinement strategies for texture analysis can be found in Lutterotti et al. (2014); 

Schumann (2013); Wenk et al. (2014). Advices regarding the treatment of special delicate 

samples, like e.g. clays, as applied in this thesis are summarized in Appendix A1.  
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3. Quantitative comparison of microfabric and magnetic fabric in 

black shales from the Appalachian plateau (western 

Pennsylvania, U.S.A.)  
* in revision as Kuehn, R., Hirt, A.M., Biedermann, A. R., Leiss, B. at Tectonophysics  

Abstract 
Anisotropy of magnetic susceptibility (AMS) has been shown to be a good proxy for 

crystallographic preferred orientation (texture). However, it is not clear in detail how different 

factors, e.g. modal composition and preferred orientation, define the total AMS in a rock. Black 

shale samples from a drill core on the Appalachian Plateau in western Pennsylvania were 

analyzed with respect to their microfabric as determined by texture and microstructure, and 

AMS. Low- and high-field AMS, which was measured at room temperature, reveals that the 

AMS of the samples is dominated by the para- and diamagnetic phases. Synchrotron 

diffraction was applied to determine the texture of all relevant mineral phases incorporated in 

the samples. Muscovite and chlorite pole figures show single maxima perpendicular to the 

foliation, reflecting dominant flattening strain. From these textures and the modal compositions, 

AMS models were calculated using the intrinsic magnetic anisotropy of the single crystals. The 

modeled and measured AMS are comparable in terms of their principal directions and shapes 

of the anisotropy ellipsoid for the dominantly paramagnetic samples, with the maximum 

susceptibility axes oriented subhorizontal to the NE-SW. Both textures and AMS indicate that 

the samples have undergone largely bedding compaction with a weak tectonic overprint linked 

to the Alleghenian orogeny. The AMS modeling from the textures demonstrates how the 

contribution of the intrinsic AMS of each mineral controls the AMS of the whole rock. 

3.1. Introduction 
The magnetic fabric of a rock is determined by the intrinsic magnetic susceptibility of the 

minerals incorporated and their texture (e.g. Hirt and Almqvist, 2011). We use the term texture 

synonymously for crystallographic preferred orientation, in the way it is also used in materials 

science (e.g. Bunge, 1986, Leiss and Ullemeyer, 1999). Features, such as mineral phase 

distributions, grain boundary configurations, grain intergrowth, veins, voids or cracks, are 

described as the microstructure of the rock. The term microfabric considers both, texture and 

microstructure.  

Determining the texture of rocks containing clay-sized phyllosilicates can be challenging for 

several reasons. Depending on the sensitivity of the material and its components, the 

preparation can be difficult because the microfabric might be destroyed during preparation, 

e.g. polishing, which is necessary for electron backscatter diffraction. The grain size of some 
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particles might be too small to be resolvable with optical methods. In addition, as some clay 

minerals have similar crystallographic structures, diffraction reflections can overlap, which 

makes Rietveld Refinement (Rietveld, 1969) mandatory. 

The relationship between texture and anisotropy of magnetic susceptibility (AMS) has long 

been observed since Fuller (1960) discovered that the preferred orientation of mica long axes 

coincides with the long axis of the AMS ellipsoid. Since then, texture and AMS have been 

qualitatively compared in numerous studies (e.g. Balsley and Buddington, 1960; Cifelli et al., 

2005; Graham, 1954; Hirt et al., 2004; Kligfield et al., 1983; Lüneburg et al., 1999; Schmidt et 

al., 2007), but attempts to quantitatively link a measured texture with intrinsic mineral AMS 

have been shown to be complex and dependent on a number of factors, e.g., mineralogy and 

deformation fabric (cf. Borradaile and Jackson, 2010). Because several mineral subfabrics 

contribute to the magnetic anisotropy in a rock, it is important to understand how different 

magnetic subfabrics can either enhance or interfere with one another (e.g. Biedermann et al., 

2018, 2015; Hirt and Almqvist, 2011).  

First measurements of magnetic anisotropy in the Appalachian plateau in New York and 

Pennsylvania were conducted by Graham (1966). During the 1980’s, work on the anisotropy 

of the rocks’ physical properties in the Appalachian area attracted considerable attention (e.g. 

Engelder and Engelder, 1977, Evans, 1989; Evans et al., 1989a, 1989b), especially due to 

exploration interests for gas and oil by industry under the US Department of Energy’s Eastern 

Gas Shales Project (Cliffs Minerals Inc., 1982) (Figure 3.1). Devonian strata were recovered 

under this program from a series of cores along the Appalachian Plateau between Virginia and 

New York. In Pennsylvania, the Devonian rocks consist of prodeltaic turbiditic siltstones and 

mudstones, which alternate between black and grey, depending on organic content. At the 

bottom of the sequence is the Onondaga limestone, which is overlain by calcareous siltstones 

that grade into limestones, as with the Tully limestone. The calcareous contribution disappears 

in the upper Genesee Group as more quartzitic clastics become common in the Cashaqua and 

Rhinestreet formations. 

Hirt et al. (1995) analyzed Devonian black shales from the Appalachian Plateau in New York 

and showed a consistency in orientation of the AMS with chlorite textures determined by Evans 

et al., (1989b). Other observed strain indicators, such as the direction of fast P-wave velocity 

and fabric-controlled stress-relief microcrack orientation, are also parallel to the direction of the 

maximum susceptibility (Evans et al., 1989b; Meglis and Engelder, 1994). 
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Figure 3.1. Drilling location and stratigraphy of well PA5: a) overview of map, b) map with drilling location in western 
Pennsylvania. Additionally, the two drill sites referred to in Hirt et al. (1995) are plotted. Orientation and intensity of 
the P-wave velocity anisotropy is indicated (data from Evans et al. (1995b) OH: Ohio, PA: Pennsylvania, NY: New 
York, WV: West Virginia. The Allegheny front line marks the farthest tectonically influenced front during Alleghenian 
orogeny. c) Devonian stratigraphy in core PA5 and sampling depths of samples, circles indicate samples for low-
field AMS, and arrows samples used for texture and high-filed AMS. 

 

A drop in compaction degree was observed at the base of Rhinestreet formation, which is 

associated with overpressure in the Rhinestreet formation and an increase of stress in the 

Tully limestone (Evans et al., 1989a). Since these studies, research on texture and magnetic 

fabrics has developed further. The concept of different magnetic subfabrics has led to a 

development of numerous methods to differentiate e.g. paramagnetic, ferromagnetic (s.l.) and 

diamagnetic contributors to the total AMS (e.g. Borradaile and Henry, 1997; Martin-Hernandez 

and Ferre, 2007). Information on the intrinsic AMS of paramagnetic minerals has advanced 

sufficiently (Biedermann et al., 2014; Schmidt et al., 2007; Martín-Hernández and Hirt, 2003), 

so that it is now possible to model AMS on the basis of the texture and contribution of the 

incorporated minerals (Biedermann et al., 2018, 2015; Haerinck et al., 2015; Schmidt et al., 

2009). In this study, we investigate samples from ~1000 to 1250 m depth (Devonian age) from 

a drill core in western Pennsylvania (PA5) (Cliffs Minerals Inc, 1982) and analyze samples 

regarding texture and AMS and compare this data to the neighboring New York cores (NY1 & 

NY4) from Hirt et al. (1995) (Figure 3.1). To gain texture information on all incorporated phases 

we use synchrotron texture analysis, which yields the opportunity to use the same sample for 
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texture measurements and for AMS measurements. From these data, we model the AMS and 

compare it to the measured data. This establishes a link between observed physical 

anisotropies and rock microfabric that are influenced by sedimentary and tectonic processes 

on the Appalachian Plateau. Our results, however, can be extrapolated to other deformed fold 

belts. 

3.2. Material 

3.2.1. Geologic background  

The eastern margin of the Laurentian craton evolved due to the break-up of Rodinia 750-

725 m.y. ago (Moores, 1991; Powell et al., 1993). A carbonate shelf developed that faced the 

Theic ocean (Faill, 1997a). This period lasted until the beginning of the Taconic orogeny at 

~ 470 Ma (Rankin, 1994), which is marked by the docking and obduction of several Theic 

terranes on the carbonate shelf (Faill, 1997a). Eastern highlands evolved, which separated the 

Theic ocean from the craton, and as a reaction to the load of the basement, a basin located 

northwest of the highlands developed (Faill, 1997b). This basin collected sediments during the 

Taconic orogeny (Faill, 1997b), and was stable as indicated by widespread evaporitic 

deposition, such as the Salina Group, until the onset of the Acadian orogeny in the middle 

Devonian (Williams and Hatcher, 1982). The flysch of this orogenic event was deposited in the 

basin creating the Catskill Delta formation, which consists of four cycles related to four 

collisional tectophases (Ettensohn, 1985a). All cycles show the transition from basinal to 

proximal delta facies, where the black shales represent rapid subsidence and transgression 

(Ettensohn, 1985b). The deposition of black shales indicates an equatorial near-shore setting 

of the basin, which enhanced terrestrial nutrient input and thus increased plankton productivity. 

The organic material is probably preserved due to oxygen depletion and water column 

stratification. Sedimentation lasted until the Alleghenian orogeny, which was the final collision 

between Laurussia and Gondwana in the early Permian. The final orogenic event lead to 

decollement tectonics with westward transport and ca. 10% layer parallel shortening; the 

Salina salt served as detachment level (Engelder and Engelder, 1977; Evans, 1989). There 

has been considerable discussion about the direction and timing of layer parallel shortening 

(LPS) around the Pennsylvania salient on the Appalachian plateau. Studies over the past 20 

years favor a single phase of shortening deformation. Gray and Stamatakos (1997) explain 

differences in shortening direction around the salient as being due to lateral difference in LPS, 

which leads to vertical axis rotation. Wilkins et al., (2014) on the other hand favor fanning of 

the NW shortening directions prior to the fold-and-thrust belt, which resulted in an initial arcuate 

trend of deformation. Mount et al. (2017) also support a constant shortening direction with LPS 

occurring earlier in the deformation history. 
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3.2.2. Description of core PA5 

Well PA5 is located in northeastern Lawrence County, Pennsylvania close to the border of 

Ohio (Figure 3.1a, b). Bedrock at the drill site consists of lower Pennsylvanian sediments from 

the Allegheny and Pottsville Groups. There are no major structural features in the area and the 

Devonian strata show a northeast strike with gentle dipping to the southeast. Coring started at 

1073.5 m depth (3522.0 feet) in the Hanover formation and ended at 1274.5 m (4125.8 feet) 

in the Onondaga limestone, covering 184.0 m of the middle and upper Devonian stratigraphy 

(Figure 3.1c) (Cliffs Minerals Inc., 1982). Black to grey shales dominate the upper part of the 

core, but more calcareous-rich sediments are found below the Sonyea Group. Two sets of 

joints are found in the cored rock with a major trend 280-290° and a secondary trend at 320-

330°. The two sets were thought to reflect two separate phases of deformation (Cliffs Minerals 

Inc., 1982). Seismic anisotropy of p-waves was determined from compressibility and ultrasonic 

measurements and can reach up to 3% (Evans et al., 1989b). 

The diameter of the core is 8.89 cm from which we prepared 2.5 to 4.0 cm thick slices. Two to 

five cylindrical specimens with 2.54 cm diameter were drilled from each core section and 

trimmed to 2.3 cm length. A total of 47 sample sections were considered along the length of 

the core to follow the change in the fabric down core (Figure 3.1c). Note that sample names 

reflect the depth in feet. Eleven samples, representing the major lithologies in the core, were 

used for texture and microstructure analysis, as well as high-field torque measurements. 

3.3. Methods 

3.3.1. Optical and Scanning Electron Microscopy 

Thin sections in three orthogonal directions using foliation and magnetic lineation as 

references, were prepared for nine samples based on material availability. Due to the small 

grain size, the usefulness of optical microscopy was limited. For the scanning electron 

microscopy (SEM) analysis, the thin sections were polished and coated with carbon. 

Backscatter electron (BSE) analyses were obtained using a FEI QUANTA 200T SEM (spot 

size: 3, voltage: 15 kV, vacuum: 6.4*10^-6 mbar) equipped with a BSE detector. 

3.3.2. Synchrotron texture analysis 

Texture analysis has been conducted with hard synchrotron X-rays, which offers the possibility 

to penetrate the whole diameter of the sample cylinders without destruction. Synchrotron 

experiments were conducted at the German Electron Synchrotron (DESY) in Hamburg at the 

HASYLAB beamline W2 (DORIS ring) and at Beamline ID22 at the European Synchrotron 

Radiation Facility (ESRF) in Grenoble, France. The cylindrical cores, which were used for AMS 

measurements, were measured as full samples in transmission mode, being mounted with the 

cylinder axis perpendicular to the beam. The samples were rotated 180° about the cylinder 
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axis, measuring in 5° steps, resulting in 36 images per sample. A marXperts mar345 (DESY) 

and a Perkin Elmer XRD 1611 (ESRF) image plate detector were used. The beam energy was 

adjusted to ~100 keV at DESY (corresponding to a wavelength of ~0.127 Å) and ~70 keV at 

ESRF (~0.177 Å) and the beam size was 1 x 1 mm. We measured ~470 mm³ of the sample 

volume of each sample. The sample detector distance was adjusted to ~1300 mm (DESY) and 

1401 mm (ESRF).  

Image plate detector data was transformed into *tif-data using the program FIT2D 

(Hammersley, 1998). The program was also used to determine the image center from a 

standard measurement. For a first fitting approach, an average-file was created from the 36 

different images. For further analysis, the program MAUD (Materials Analysis Using Diffraction 

(Lutterotti et al., 1997)) was used, which is a code that employs the Rietveld method (Rietveld, 

1969). MAUD applies a least squares fitting approach for polyphase sample materials which 

fits hypothetical peaks by given crystal lattices of certain minerals to the measured spectrum, 

and allows to calculate textures using the EWIMV algorithm (derived from WIMV; Matthies and 

Vinel, 1982). MAUD also allows to calculate textures from shales (Kanitpanyacharoen et al., 

2012, 2011; Lutterotti et al., 2010; Omotoso et al., 2006; Vasin et al., 2013; Wenk et al., 2007, 

2010). The images were loaded by integrating every image in 5° steps, resulting in 72 different 

diffraction patterns per image and rotational step, respectively. As we measured 36 images 

per sample, this leads to a total of 72 x 36 = 2592 spectra per sample measurement. Parameter 

refinement was performed as described previously (Lutterotti et al., 2014; Schumann et al., 

2014; Wenk et al., 2014, 2012). Input phase data (cif-files) was available from the 

Crystallographic Open Database (Grazulis et al., 2009) and the AMCDS data base (Downs 

and Hall-Wallace, 2003). The following cif-files were used for the refinements: quartz (Antao 

et al., 2008), chlorite (Zanazzi et al., 2009), a muscovite for the illite/muscovite compound 

(Liang and Hawthorne, 1996), calcite (Graf, 1961) and dolomite (Graf, 1961). The innermost 

diffraction in the detector images, corresponding to the chlorite (001), cannot be used for the 

refinement, as it is partly covered by the beam stop, which gives the peak an irregular shape 

and influences the texture calculation. The rear part of the spectra is characterized by multiple 

overlying peaks of the different phases. As this part is not improving texture calculations, it is 

excluded. 

3.3.3. Magnetic anisotropy  

Low-field AMS was measured on an AGICO KLY-2 susceptibility bridge, with an applied field 

of 300 A/m and frequency of 920 Hz. High-field AMS was measured on a home-built torque 

magnetometer (Bergmüller et al., 1994). Samples were measured in seven fields between 750 

mT and 1500 mT, every 30° in three mutually perpendicular planes. Dia-/paramagnetic and 
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ferrimagnetic subfabrics were isolated using the processing routines outlined in Martin-

Hernandez and Hirt (2001). 

Magnetic susceptibility can be geometrically represented by an ellipsoid; it is determined by a 

second-order tensor with the eigenvalues k1 ≥ k2 ≥ k3 and their related eigenvectors. The 

degree of anisotropy of this tensor can be described by k’: 

𝑘𝑘′ = √
(𝑘𝑘1 − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)2 + (𝑘𝑘2 − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)2 + (𝑘𝑘3 − 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘)²

3
 

with kmean = (k1+k2+k3)/3 (Jelinek, 1984). The shape of the ellipsoid is described by the 

parameter U, 

𝑈𝑈 = (2𝑘𝑘2 − 𝑘𝑘1 − 𝑘𝑘3)/(𝑘𝑘1 − 𝑘𝑘3) 

ranging from -1 (prolate) to 1 (oblate ellipsoid shape) (Jelinek, 1981). We use k’ because it 

allows us to describe the degree of anisotropy for both the full and deviatoric tensors. The 

magnetic lineation is described by Lm=k1/k2 and the magnetic foliation by Fm=k2/k3 (Hrouda, 

1982). Minerals can be either diamagnetic (e.g. quartz), paramagnetic (e.g. phyllosilicates) or 

ferromagnetic (s.l.) (e.g. magnetite) and all components contribute to the total AMS. 

3.3.4. AMS modelling 

Anisotropic physical properties of multiphase aggregates, e.g. magnetic or seismic anisotropy, 

can be modeled based on texture data and single crystal properties (Mainprice et al., 2011; 

Mainprice and Humbert, 1994). Two types of models have been computed for the present 

study: (1) calculating the separate contributions of each mineral, i.e. mica, chlorite, quartz, 

calcite and dolomite, to the specimens’ magnetic anisotropies, and (2) computing the bulk 

anisotropy as a superposition of each individual mineral contribution weighted by their modal 

composition. Single crystal tensors were determined from published data for muscovite and 

chlorite (Ballet and Coey, 1982; Biedermann et al., 2014; Martin-Hernandez and Hirt, 2003), 

quartz (Voigt and Kinoshita, 1907), and calcite and dolomite (Schmidt et al., 2007, 2006). 

Because the specimens used in this study contain little iron, we used the single crystal 

properties for calcite and dolomite with low iron content (Schmidt et al., 2007, 2006). The 

contribution of each mineral was determined separately using Hill averages, which often give 

accurate results for modelled elastic properties (Hill, 1952). For the second type of model, Voigt 

averages were used because the mean susceptibilities of all contributing minerals vary over 

several orders of magnitude (Voigt, 1928). All models were computed in the MATLAB toolbox 

MTEX (Hielscher and Schaeben, 2008; Mainprice et al., 2011). 
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3.4. Results 

3.4.1. Sample composition 

The quantitative composition of the crystalline part of the sample is calculated from the Rietveld 

refinement of the synchrotron analyses (Figure 3.2). The majority of the samples is composed 

of ~30-50 wt-% illite/muscovite, ~25-40 wt.-% quartz, ~10-25 wt.-% chlorite and in some 

samples a few percent of pyrite or calcite. Sample 3890 (Cashaqua formation), however, is an 

exception with a higher quartz content (~60 wt.-%) and lower chlorite content (~4 wt.-%). 

Sample 3967 from Geneseo formation consists of about ~40 wt.-% quartz, ~30 wt.-% 

illite/muscovite, ~20 wt.-% chlorite and ~8 wt.-% calcite. Sample 3977 from Tully limestone has 

a very different composition with about 74 wt.-% calcite, ~9 wt.-% quartz, ~8 wt.-% muscovite, 

no chlorite and additionally 9 wt.-% dolomite. Samples 4020 and 4103, although shales, 

contain 4 to 12 wt.-% calcite. 

 

 

Figure 3.2. Sample composition from Rietveld Refinement with the main components quartz, illite/muscovite, 
chlorite and calcite. ‘Other’ minerals include pyrite and dolomite. 

 



3. Microfabric and magnetic fabric in black shales from the Appalachian plateau 

24 

 

3.4.2. Microstructure 

SEM microstructure analysis shows that the foliation in the samples arises mainly from aligned 

phyllosilicates (Figure 3.3a). Mica and chlorite can be well distinguished by their different 

atomic mass due to inherited Fe in chlorite. No difference can be observed in grain size or 

orientation of the two types of phyllosilicates. They show a mean length of 10 µm, but can 

reach lengths up to 40 µm. Larger phyllosilicate grains can be bent, kinked or fanned out. Mica 

shows a tendency to build thicker stacks than chlorite. Sometimes there are stacks of mica 

with chlorite. Detritic quartz grains with a mean grain size of 10 to 20 µm have irregular grain 

boundaries, often surrounded by organic material. Pyrite is present in all samples and can 

appear in a spherical shape or as idiomorphic cubes as well as framboidal aggregates. Voids 

appear to be filled by organic material leaving no open pore space. The filled voids appear as 

layer parallel oriented lenses, or as local accumulations (Figure 3.3b).  

 

 
Figure 3.3. Typical microstructures of the Appalachian Plateau black shales. (a) BSE image of sample 3751 showing 
the incorporated phases quartz (qz), illite/muscovite (ms), chlorite (chl) and pyrite (py). Phyllosilicates show a 
parallel orientation building the foliation. (b) same image as a), showing only the voids filled with organic material 
(c) Polarized microscopy image of sample 3967 showing aligned calcitic shells and fossil fragments of Styliolina 
s.l.. 
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Many calcitic shells and microfossils can be observed in sample 3967 (Figure 3.3c), which are 

mainly Styliolina (s.l.) as described for the Geneseo formation by Wilson and Schieber (2015). 

Shells and microfossils are aligned layer parallel with their flat shape but not parallel to each 

other. Some of the fossils preserve their original shape, while others are broken due to 

compaction. Foliation is not as strongly developed as in non-fossil-bearing lithologies. Sample 

3977 from the Tully limestone is composed mainly from calcitic grains, with some dolomite 

grains exhibiting zonation to lower Mg-contents towards the margin. Phyllosilicates are very 

rare in this sample and a foliation is not developed. 

3.4.3. Texture analysis 

Results of the texture analysis are displayed as pole figures in Figure 3.4. Quartz (001) pole 

figures show either weak texture (< 2 mrd) or are dominated by irregular reflections, caused 

by e.g. single crystal diffractions or other minor phases. Illite/muscovite (001) pole figures 

represent a strong single maximum in most samples with an intensity of up to ~22 mrd in 

sample 3634 from the Angola formation. The maximum is located in the center of the pole 

figure i.e. perpendicular to the foliation. In most of the samples a slight elongation of the (001) 

maxima can be observed in NW-SE orientation. The samples from the Geneseo formation 

(3967) and Tully limestone (3977) show only very weak maxima (1.89 and 1.97 mrd), which 

are not properly developed. The (010) maxima always lie at the margin of the pole figure i.e. 

within the foliation. In some samples they are distributed within a homogeneous girdle, and in 

some samples they show distinct sub-maxima within the girdle. Chlorite pole figures are 

comparable to the illite/muscovite pole figures, sometimes with less intense maxima and 

sometimes with more pronounced maxima. The NW-SE elongation of the chlorite (001) 

maximum is less pronounced, compared to muscovite. The (010) maxima at the margin of the 

pole figures mostly show a stronger separation in two distinct maxima than the illite/muscovite 

(010) axis pole figures. Exceptions are sample 3890 from the Cashaqua formation, where only 

one elongated maximum appears and sample 3967 from the Geneseo formation, which shows 

two distinct maxima but rotated by ca. 10° from the margin towards the center of the pole figure 

reflecting an inclination of the bedding which is also macroscopically visible in the sample 

cylinder. Calcite can show a strong texture (up to 9.93 mrd) as in samples 3967, 4020 and 

4103 from the Geneseo and Mahantago formations or a very weak texture as in 3977 (1.3 mrd) 

from the Tully limestone. Samples 4020 and 4103, have only one (001) maximum in the center 

of the pole figure and additional maxima at the margin. The complex pole figures for calcite 

may represent microfossils, as observed in SEM microscopy that are aligned parallel to the 

foliation. In sample 3977 calcite mostly appears as granular components, which show no 

crystallographic preferred orientation. 
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Figure 3.4. a) Recalculated pole figures for the main mineral phases. Equal area, lower hemisphere projection. 
Maxima in mrd (multiples of random distribution). Quartz shows no crystallographic preferred orientation. Most 
samples show a strong alignment of the phyllosilicates perpendicular to the core axis reflecting the compaction, 
except 3967 and 3977. Calcite and dolomite, are only found in 3 samples, and texture arises most likely due to 
aligned fossil fragments and shells. b) Sample shape and mounting during synchrotron diffraction measurements. 
The dot in the orientation overview marks the orientation of the core axis and the normal to the foliation, which are 
parallel.  
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3.4.4. Magnetic fabric and anisotropy 

Low-field AMS was measured on all samples and is shown in Figure 3.5 and App. A2: Suppl. 

Table 1. The mean magnetic susceptibility in low-field varies over 2 orders of magnitude from 

1.0*10^-5 to 8.0*10^-4 (SI). The mean deviatoric susceptibility, expressed as k’, ranges from 

~2.0*10^-7 (SI) to 2.6*10^-5 (SI), which corresponds to 0.3% to 7.2% of the mean susceptibility 

(Figure 3.5a). It is higher in the upper third of the core above 3760, although lower k’ is found 

in samples 3583, 3593, 3665, 3674 and 3685. There is a drop in k’ below 3760, in which k’ 

remains below 1.5*10^-5 (SI). The Tully limestone (samples 3977) and Onondaga limestone 

(samples 4125) have the lowest k’.  

 

 

Figure 3.5. Measured magnetic fabric in core PA5. a) mean deviatoric susceptibility k’, b) shape of the susceptibility 
ellipsoid U, c) magnetic lineation, d) magnetic foliation, and e) orientation of the principal directions; k1 (squares), 
k2 (triangles), and k3 (circles) that are plotted on an equal-area, lower hemisphere stereonet. Filled symbols indicate 
samples with texture measurements. Symbols for the AMS axes are used in subsequent figures.  

 

The shape of the ellipsoid is described by the shape parameter U which is positive for the 

majority of the samples reflecting an oblate magnetic fabric (Figure 3.5b). Most of the oblate 
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samples are strongly oblate with U ranging from 0.8 -1.0. Exceptions are the samples from the 

calcite containing formations 3962, 3967, 3977 and 4125 (U=0.2-0.8). The only prolate sample 

is 3552 from the Pipe Creek formation with U = -0.8. The magnetic lineation is very weak and 

is in a range from 1.000 (sample 3583) to 1.009 (sample 3593) (Figure 3.5c). The magnetic 

foliation, can be very weak, 1.004 (sample 3977) to 1.16 (sample 3634) (Figure 3.5d). For most 

samples it is greater than 8%. 

The principal axes of the AMS ellipsoids show that k3 is well-grouped and sub-parallel to the 

foliation normal (Figure 3.5e). Only the prolate samples have k1 subparallel to the foliation 

normal and k3 in foliation. The magnetic susceptibilities for k1 and k2 show only very small 

differences, as has been seen from the weak degree of lineation. In spite of this weak lineation, 

the orientation of k1 lies NE-SW for most samples and k2 NW-SE (Figure 3.5e). Only two 

samples from 3967, which have a prolate shape, show an interchange between the direction 

of k1 and k2.  

High-field torque measurements were conducted on the 11 samples that were used for texture 

analysis. Only the paramagnetic AMS is significant in all the samples, i.e., the ferrimagnetic 

component is isotropic. Both k’ and U of the high-field AMS have similar values as the low-field 

AMS, which indicates that paramagnetic minerals control the low-field AMS (blue triangles in 

Figure 3.5a, b; App. A2: Suppl. Table 2). The directions of the principal axes are also similar 

in all samples except for the sample from the Tully limestone in which k2 and k3 are 

interchanged for the dia/ paramagnetic susceptibility (Figure 3.5e). 

3.4.5. AMS modelling 

Figure 3.6 shows an example of how the AMS can be modeled from the different minerals that 

contribute to the bulk rock AMS. The final bulk rock models for all samples are displayed in 

Figure 3.7. An overview of all modeled mineral contributions can be found in App. A2: Suppl. 

Figure 1 & Suppl. Table 3. The contributions from the two phyllosilicates, illite/ muscovite and 

chlorite are generally coaxial. The orientation of phyllosilicate magnetic fabric is mainly defined 

by the direction of the minimum susceptibility axes. The intrinsic AMS of these minerals is 

uniaxial with the unique axis parallel to (001). Because the orientation of the principal axes of 

the AMS due to illite/muscovite and chlorite are similar, their magnetic fabrics are additive. 

Quartz, calcite and dolomite can affect the bulk susceptibility strongly but have less of an effect 

on the principal directions. It is interesting to note that when the magnetic fabric of calcite is 

coaxial to the muscovite fabric, the quartz fabric is opposite (cf., App. A2: Suppl. Fig. 1; 3967, 

4103), and vice versa (App. A2: Suppl. Fig. 1; 3977).  
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Figure 3.6. Modelling path for calculating the AMS as demonstrated for sample 4020. The texture of each 
incorporated mineral and single crystal AMS tensors, are first used to obtain the single phase model, and then 
combined by applying their modal contribution to the rock. Orientation is the same as in Fig. 4. 

 

The principal anisotropy directions of the combined models strongly reflect the magnetic fabric 

contribution of the phyllosilicates (Figure 3.7). Quartz and calcite, even when they dominate 

the bulk composition, do not appear to affect the orientation of principal axes. They do, 

however, change the modeled mean susceptibility. For all samples except 3977 (Tully 

limestone) the modeled k3 is within 10° of k3 from the low-field AMS, and within 7° from the 

high-field AMS. The difference between the measured and modelled k1 and k2, respectively, 

reflect the uniaxial nature of the phyllosilicate anisotropy. 
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Figure 3.7. Calculated whole rock AMS models, which mostly reflect the phyllosilicate texture, showing the principal axis of the modeled AMS (black symbols) and measured low-
field (white) and high-field (grey) AMS. Data is weight normalized. Orientation is the same as in Fig. 4. 
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3.5. Discussion 

3.5.1. Role of mineralogy and texture on AMS 

From thin section and X-ray diffraction analyses we know that samples contain both 

paramagnetic minerals, mainly illite/muscovite and chlorite, and diamagnetic minerals, quartz 

and in some samples calcite. High-field torque measurements indicate that dia-/paramagnetic 

minerals are responsible for the observed AMS, and the ferromagnetic phases do not 

contribute. The ferromagnetic minerals, however, can contribute to the bulk susceptibility. Rock 

magnetic studies on neighboring drill cores NY1 and NY4 indicate that pyrrhotite and magnetite 

could be present (Hirt et al., 1995).  

We have found a good agreement between the measured and modeled AMS. The agreement 

of the modeled AMS with the separated dia-/paramagnetic component is slightly better than 

with the low-field AMS. This difference may be related to any ferromagnetic minerals. It is also 

clear from the models that the phyllosilicate minerals control the magnetic fabric, even in rocks 

that have a large quartz and/or calcite content. Compared to the earlier work of Evans et al. 

(1989b) and Hirt et al. (1995) we demonstrate that illite/muscovite also contributes to the 

observed AMS. Our results prove the interpretations of other studies that suggested 

phyllosilicates as the carrier of AMS (Borradaile et al., 1993; Hirt et al., 1995; Hounslow, 1985; 

Rochette and Vialon, 1984; Schulmann and Jecek, 2011; Zak et al., 2008). 

The intrinsic anisotropy of phyllosilicates in combination with the strong texture results in a 

strongly oblate magnetic fabric with flattening in the foliation plane. There is a weak magnetic 

lineation that leads k1 to lie NE-SW along the trend of the Allegheny front to the E. This 

lineation reflects the slight ellipsoidal shape of the phyllosilicates’ (001) pole figure maxima, 

which is in the direction NW-SE. This can be related to the bending and kinking that is observed 

in thin section (cf. Figure 3.3). Sample 3977, the Tully limestone sample, has a less oblate 

shape, but its principal directions are still dominated by illite/muscovite.  

Shape is the most difficult anisotropy parameter to model (Borradaile and Jackson, 2010). This 

may be related to small errors/noise either in the texture or anisotropy measurements, and is 

consistent with Biedermann et al., (2013), who showed that principal directions are least, and 

anisotropy shape most affected by noise in the data. In our samples there is a fairly good 

agreement between the modeled and measured U-parameter (Figure 3.8a), where the 

difference could easily be related to measurement noise.  

Models underestimate the measured k' by a factor of 1.6 to 3.6 (2.2 on average) (Figure 3.8b). 

This is most likely linked to the chemical composition, especially the Fe content, of the single 

crystal tensors used compared to the composition of the minerals in the samples. Because 

there is a linear relationship between k' and Fe content (Biedermann et al., 2014; Schmidt et 
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al., 2006), the observed factor of 2.2 indicates possible difference in Fe concentration of a 

factor of 2.2. Better results could be obtained by extracting a single tensor from the rock to be 

modeled, and using that tensor rather than a tensor from the literature.  

 

 

Figure 3.8. Comparison of a) U, and b) k’ for measured and modeled AMS. K’HF is plotted on a second axis as 
values differ strongly from LF and modeled values. 

 

For texture analysis we use crystallographic and chemical data from the literature which might 

be different to the minerals in our samples. Resulting deviations can introduce little errors into 

the texture data from which error propagation to the AMS calculations can result. Possible 

sample composition heterogeneities can also introduce an error. Such an error could be 

minimized by measuring additional sample cylinder slices for the texture analysis. 

3.5.2. Micro- and magnetic fabric development 

The micro- and magnetic fabric development observed in our samples reflect dominant 

flattening strain and slight NW-SE directed compression. Sedimentation represents mostly the 

basin facies of the Catskill Delta complex (Ettensohn, 1985b). The sedimentation and 

compaction processes most likely only lead to a fabric showing a flattening component and did 

not develop any lineation (Figure 3.9a). Deltaic currents or other synsedimentary processes 

could possibly invoke a lineation during sedimentation, but as the sedimentary facies changed 

progressively as recorded by the differing lithologies, the sediment succession experienced 

several cycles of progression (Ettensohn, 1985b). It seems to be very unlikely that during the 

different stages the flow direction was constant over time. During burial the induced rigid body 

rotation can be expected to show a circular maximum in the phyllosilicates (001) pole figure 

and k1=k2 in the magnetic anisotropy tensor. The slight ellipsoidal appearance of the maxima 

and appropriate magnetic lineation can be explained by a later compressional deformation. A 

weak directional compression component could be able just to kink the phyllosilicates (Figure 

3.9b). Since the kinking is related to a kink or fold axis an elliptical (00l)-texture-maximum 
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follows. The slightly inclined basal planes do not fully contribute to the magnetic horizontal NW-

SE component, which leads to a slightly lower k2 compared to k1. An elliptical distribution of 

the (00l) axes of the phyllosilicate phases can lead to a magnetic lineation (Martin-Hernandez 

et al., 2005). As the chlorite also shows elliptic (00l) maxima, even though they are less 

pronounced, this indicates that the deformation happened during a later stage of rock history, 

not during sedimentation. 

 

 

Figure 3.9. Model for the influence of the Allegheny orogeny on microfabric and resulting asymmetry of pole figure 
maxima and resulting AMS ellipsoid a) sediment exposed only to flattening strain by burial and b) resulting micro- 
and magnetic fabric due to tectonic influence of the Allegheny orogeny. 

 

3.5.3. Regional geologic implications  

The preferential alignment of phyllosilicates reflects the dominant flattening strain due to burial 

compaction. The phyllosilicate minerals control the magnetic anisotropy in all samples, 

including samples in which calcite is the main constituent. As chlorite is commonly assumed 

to be a secondary mineral phase in sedimentary rocks, its orientation parallel to the primary 

muscovite/illite platelets emphasizes the burial dominated rock history. Evans et al. (1989b) 

determined the magnitude of horizontal stress in wells on the Appalachian Plateau in New York 

state NY1 and NY4. They also estimated the degree of compaction from chlorite texture, which 

was determined by X-ray goniometry of chlorite. They showed that the degree of compaction 
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increases with depth until there is a drop at the base of Rhinestreet formation, and this is also 

seen by a decrease in stress. The authors explain the sudden drop to paleo-overpressure in 

the lower Rhinestreet formation. Hirt et al. (1995) demonstrated a similar drop in degree of 

anisotropy at this level. In our study, variations in k’ and degree of foliation are strongly 

dependent on mineralogy. It should be noted, however, that there is a general decrease in k’ 

in the lower part of the Rhinestreet formation (Figure 5). The difference is not large, but is on 

the same order of what was found for the AMS in cores NY1 and NY4. There is a slight increase 

of bulk susceptibility with depth which cannot be seen in the observed textures, but the intensity 

of the susceptibility and anisotropy is more dependent on the individual sample composition. 

Samples show a very weak lineation to the NE (Figure 5e), but it is significant on the 95% 

confidence level for most samples and 90% confidence level for the remainder. This orientation 

is parallel to the fast Vp direction (Evans et al., 1989b), which is sub-parallel to the Alleghenian 

front line. The Devonian strata in PA5 show no major structural features, which could give 

insight into the timing of LPS. The elliptic (001)-texture maxima caused by microfolding and 

the weak magnetic lineation with a direction to the NE-SW are consistent with northwesterly 

directed LPS. Although the drill site lies approximately 200 km from the Allegheny Front, the 

Devonian strata have undergone a small amount of LPS that is detected by the ellipsoid 

maxima shape in the pole figures and the weak magnetic lineation. 

3.6. Conclusion 
This study demonstrates that the analysis of texture and microstructure in combination with 

texture derived AMS-modeling is a crucial approach to the understanding of the AMS 

formation. Modeling the AMS from quantitative texture analysis can explain how individual 

mineral fabrics contribute to the whole rock AMS. We can clearly show that the bulk 

susceptibility is composed of all of the dia- and paramagnetic minerals composing the samples, 

while the anisotropic component is only carried by the paramagnetic phyllosilicates. The 

magnetic lineation, even though it is weak, is defined by microscale kinking and folding of the 

phyllosilicates as microstructure impressively demonstrates. This underlines the dominance of 

phyllosilicates in defining the magnetic fabric. Consequently, the phyllosilicates are able to 

record the layer-parallel shortening of the black shales of Appalachian Plateau, even if it is 

only a very weak shortening, by the folding and kinking. Since we could establish the 

correlation between the ellipticity of the (001)-maxima and the magnetic lineation, for these 

rocks and this tectonic setting, the AMS can now be employed to routinely measure large 

sample series in a quick and cost-effective way to upscale the results to a regional scale.  
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4. Texture development of clay-rich sediments across the Costa 

Rica subduction zone 
* in revision as Kuehn, R., Stipp, M., Leiss, B., at Journal of Geophysical Research: Solid Earth 

Abstract 
During sedimentation, burial and deformation at active continental margins, clay-rich 

sediments develop crystallographic preferred orientations (textures) due to the progressive 

alignment of phyllosilicates. Such textures help to interpret sedimentation and compaction 

conditions as well as tectonic processes at such convergent margins. We collected samples 

of varying depths from four different drilling locations across the Costa Rica Trench retrieved 

during IODP (International Ocean Discovery Program) expeditions 334 and 344 as part of the 

Costa Rica Seismogenesis Project (CRISP). Samples from the incoming Cocos Plate, the 

frontal prism and the slope of the overriding Caribbean plate were analyzed regarding their 

composition and texture. Sample composition is quite similar for all sample locations across 

the trench in the hemipelagic section as determined by X-ray powder diffraction analysis. 

Synchrotron texture analysis reveals that phyllosilicates in samples from the incoming plate 

show in general weaker textures than those from upper and middle slope of the overriding 

plate. Samples from the small frontal accretionary prism, however, correspond more to the 

incoming plate fabric according to their oceanic origin. Texture intensity depends on 

compaction, deformation, grain size, porosity and composition. In samples from the continental 

wedge and the frontal accretionary prism, we are able to distinguish tectonically undisturbed 

compacted sediments from core sections that suffered faulting and folding due to subduction-

related deformation.  

4.1. Introduction 
The microfabric anisotropy of marine phyllosilicate-rich sediments generally increases during 

burial and progressive compaction at continental margins. This can be determined indirectly 

by, for example, AMS (anisotropy of the magnetic susceptibility) measurements, void ratios or 

preferred alignment of larger grains, e.g. illite flakes (e.g., Bowles et al., 1969; Agar et al., 1989; 

Kawamura and Ogawa, 2004; Kawamura, 2011; Schumann et al., 2014; Maffione and Morris, 

2017) or more costly but also more accurately, by analyzing crystallographic preferred 

orientations (e.g., Kopf & Behrmann, 1997; Schumann et al., 2014). Microstructural 

parameters influencing the successive compaction besides increasing overburden load and 

pore pressure state are grain size distributions and shape fabrics of the grains. During 

compaction, platy grains typically rotate from a chaotic orientation with predominantly edge-to-

edge and edge-to-face contacts towards an alignment parallel to the seafloor with 
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predominantly face-to-face contacts resulting in crystallographic preferred orientations 

(textures; Bennett et al., 1981; Bennett and Hulbert, 1986; Milliken and Reed, 2010).  

As for platy phyllosilicates crystallographic and shape preferred orientations are closely linked, 

textures can control the physical properties and deformation behavior of such sediments (e.g., 

Carson et al., 1982; Oertel, 1983; Kock & Huhn, 2007; Mondol et al., 2007; Hashimoto et al., 

2010; Schumann et al., 2014), hence the strain distribution in active continental margins and 

also the frictional behavior in the forearc wedge as well as in the subduction channel along the 

plate boundary. Sediment strength, friction and related seismogenic behavior are governed by, 

amongst other parameters, the mineralogical composition and fabric and their relevant 

physical properties (e.g., Kopf, 2013; Stipp et al., 2013; Schumann et al., 2014). 

At erosive continental margins such as the Costa Rica margin (Figure 4.1), material from the 

overriding plate is tectonically eroded and transported within the subduction channel towards 

greater depth (von Huene et al., 2000; von Huene & Scholl, 1991; Ranero & von Huene, 2000). 

The properties of this material might be crucial for earthquake nucleation and rupture. During 

IODP Expeditions 334 and 344 in the Pacific Ocean offshore Costa Rica, westward of the Osa 

Peninsula, sedimentary and crustal material from the subducting Cocos plate and the 

overriding Caribbean plate were sampled. Drilling was part of the Costa Rica Seismogenesis 

Project (CRISP) which was aimed to investigate the nucleation and rupture of earthquakes at 

the erosional continental margin offshore Costa Rica (Vannucchi et al., 2012). The Costa Rica 

trench is well-known for shallow seismogenesis and tsunami generation as expressed in the 

2002 Osa earthquake at 6 km depth (Arroyo et al., 2014) and the 2012 Nicoya earthquake at 

13.1 km depth (Yue et al., 2013). 

This study is intended to determine composition and texture of the sedimentary material of 

incoming and overriding plate, to detect overprinting by tectonic erosion or accretion, and to 

characterize the fabric differences with respect to the tectonic setting. Synchrotron texture 

analysis is the most suitable method for direct measurements of the textures of soft sediments 

with high water content as it contains swelling and hydrated minerals (e.g. smectite) and as 

intergranular water and hydrated minerals make other bulk texture methods like X-ray 

goniometry or neutron diffraction difficult or even impossible to apply. 
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Figure 4.1. Study area of IODP Expeditions 334 & 344 offshore Costa Rica. Inset (a) shows geographical position 
of bathymetric map shown in (b). Drill core locations of the samples used in this study and trace of the seismic cross 
section of Figure 2 are indicated in the bathymetric map. Core location U 1381 is located on the incoming Cocos 
plate. Core locations U 1378 and U 1379 are at the slope and location U 1412 at the frontal wedge of the overriding 
Caribbean plate. Map is based on the GEBCO data (The GEBCO_2014 Grid, www.gebco.net). 

 

4.2. Geological Setting and Sampling 
The Costa Rica trench (Figure 4.2) represents the southern segment of the Middle America 

trench (MAT), where the Cocos plate is subducting beneath the Caribbean plate at a rate of 

70-90 mm/yr (DeMets, 2001) with a shallow slab angle of <10° (Protti & Schwartz, 1994). 

Additionally, there is northwestward trench-parallel slip of ~14 mm/yr (DeMets, 2001).This part 

of the MAT is an erosive continental margin (von Huene et al., 2004; Ranero & von Huene, 

2000), where the subducting Cocos plate removes material from the overriding Caribbean 

plate with an erosional rate of 115 km³/Myr/km (Vannucchi et al., 2003). The subducting crustal 

material of the Cocos plate is created at two locations: at the East Pacific Rise as well as the 

Cocos-Nazca spreading center. The Cocos plate crustal material is modified by the movement 

of the plate over the Galapagos hotspot that created the up to 2.5 km high Cocos Ridge 

(Barckhausen et al., 2001; von Huene et al., 2000). Cocos Ridge is now subducting below Osa 

peninsula, which is uplifted due to the elevation and the lower buoyancy of the Cocos Ridge. 

The oceanic crust except the Cocos Ridge is covered by a pelagic section of calcareous ooze 

from the Miocene covered by a hemipelagic section of clay and silty clay representing Plio- 
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and Pleistocene sedimentation. The frontal part of the overriding Caribbean plate directly at 

the thrust is a <10 km wide accretionary prism built up from oceanic sediments (Bangs et al., 

2016). The accretionary prism continues landwards into a continental margin wedge consisting 

of folded and faulted sediments (Bangs et al., 2015, 2016). These sediments can be either 

interpreted as a depositionary forearc whose missing underlying forearc basement is supposed 

to be eroded by subduction erosion (Vannucchi et al., 2016), or as a very recent, rapidly 

growing accretionary prism (Bangs et al., 2016). The observed deformation is attributed to the 

compressional as well as the erosional nature of the subduction zone. The sequence is 

terminated by an unconformity and overlain by a relatively undeformed sedimentary slope 

cover of sand-, silt- and clay(stones) of Pleistocene age.  

 

Figure 4.2. Seismic cross section Profile Line 7 BGR99 (see trace in Fig. 1) with investigated drilling locations of 
IODP expeditions 334 & 344 offshore Costa Rica, modified from Harris et al., 2013; Vannucchi et al., 2012. Triangles 
with the abbreviated core section information indicate the samples used in this study. Stars mark samples, which 
are taken from drill core 1381 during expedition 334, while the core description is from expedition 344. F: fine, M: 
medium, C: coarse. Note the different total depths and hence length scales of the drill cores.  

 

We selected samples from four drilling locations penetrating the slope cover (Figure 4.2), one 

at the upper slope (U1379), one at the mid slope (U1378), one directly at the frontal 

accretionary prism (U1412) of the Caribbean Plate and one at the incoming Cocos plate 

(U1381). In most cores, our sampling was restricted to the uppermost 120 mbsf (meters below 
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sea floor). Only at Site U1379 samples from deeper levels (up to ~860 mbsf) could be 

collected. Samples in this study mainly represent the phyllosilicate-bearing hemipelagic core 

sections, but also two calcite-dominated pelagic samples are included. The full sample names 

are indicated in Figure 2. In the following text, we will refer to the samples by naming them 

after drilling location and core section (i.e. 1379 5H3). 

4.3. Methods 

4.3.1. XRD powder analysis 

To gain precise information about the composition of the samples, XRD powder analyses were 

carried out. Mineral phases are crucial input parameters for Rietveld texture analyses. We 

used two methodical steps to finally get a quantitative analysis. First, to exactly determine the 

incorporated clay minerals, the grain size fraction <2 µm was extracted by the particle settling 

rate. Oriented mounts of the <2 µm fraction were prepared to enhance the peak intensity of 

the (00l) peaks. These mounts were measured in four different states: in air-dried condition, 

ethylene glycol desiccated for at least 48 hours, and heated for 30 minutes to 400 °C and 

550 °C, respectively (e.g. Moore and Reynolds, 1997). The measurements at the different 

conditions were then compared to each other to identify clay minerals, which can share the 

same peak position (e.g. smectite and chlorite). The smectite (001) peak for example shifts 

from ~6.2°2ϴCuKα to ~5.2°2ϴCuKα when ethylene glycol treated, while the chlorite (001) 

peak, which is also located at ~6.2° 2ϴCuKα intensifies, when the sample is heated (e.g. 

Moore and Reynolds, 1997). Second, for quantitative analyses, whole rock powder samples 

were prepared by using the side loading technique, which provides the best conditions to 

prepare non-textured samples of phyllosilicate-bearing material (Środoń et al., 2001). XRD 

measurements were conducted using a Philipps PW1800 powder diffractometer with a Cu X-

ray tube with an operating current of 30 mA and a voltage of 45 kV. Settings for the different 

measurement types are given in Table 4.1.  

Table 4.1. Instrumental settings used for the different XRD measurements. Whole rock powder was scanned with 
long counting time to get a high resolution for Rietveld refinement. Textured samples for clay phase identification 
were measured in a faster mode. 

Sample 2ΘCuKα range 
[°] 

Step size  
[° 2ΘCuKα] 

Counting time/step 
[s] 

Whole rock powder for Rietveld 4-65 0.02 12 
Textured sample fraction <2 µm 
        - air dried 

 
3-70 

 
0.02 

 
4 

        -ethylene glycol desiccated 3-32 0.02 4 

        - heated 400 °C/ 550 °C  3-32 0.02 4 
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Phase identification of the non-clay phases was conducted with the software X’Pert HighScore 

by PAN’alytical. Sample height correction of the diffraction patterns was based on the quartz 

(100) peak at ~20.85° 2ΘCuKα. 

According to the diffraction patterns of the different measurement states, we identified the clay 

phases. Peak shifts and break downs (Figure 4.3) are characteristic for certain clay mineral 

phases (e.g. Moore and Reynolds, 1997). For a quantitative phase analysis the Rietveld 

powder measurements were analyzed using the Open Source software Profex (Doebelin & 

Kleeberg, 2015), which is based on the Rietveld code BGMN (Bergmann et al., 1998). 

 

Figure 4.3. Clay mineral phase identification by measuring at different conditions: air-dried, desiccated with ethylene 
glycol, heated to 400 °C and 550 °C. Smectite (001) is shifted to smaller 2Θ angles when ethylene glycol desiccated 
and breaks down when heated, Kaolinite (001) breaks down during heating between 400 and 550 °C. 
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4.3.2. Synchrotron texture measurements 

Cylindrical samples with a diameter of 10 – 20 mm were analyzed. If possible, samples were 

“cored” with a small core stamp that produces sample cylinders with a diameter of about 15 mm 

and then fixed in non-diffracting, small acrylic sample holders (Schumann et al., 2014). If it was 

not possible to core sample cylinders due to crumbly material, we tried to keep as close as 

possible a cylindrical sample shape to avoid any shape artifacts during synchrotron 

measurements.  

Synchrotron measurements were carried out at the European Synchrotron Radiation Facility 

(ESRF) in Grenoble and at the German Synchrotron Radiation Facility (DESY) in Hamburg. 

The experimental setup consisted of a xyz-stage with a ω-rotation stage on which the sample 

was mounted. In a distance of ca. 1663 (ESRF) mm and 1250 mm (DESY) from the sample, 

a Perkin Elmer 2D-image plate detector was installed to measure in transmission mode. The 

beam size was limited to 500 x 500 µm and the energy of the beam was restricted to 80 keV 

at ESRF and 60 keV at DESY, which corresponds to a wavelength of ~ 0.155 Å (ESRF) and 

0.208 Å (DESY). The samples mounted on the ω-rotation stage were rotated from 0° to 175° 

in 5°-steps resulting in 36 images. The size of the cylindrical samples varied in diameter, this 

led to an adjustment of the total measurement time per frame from 1 to 3 s at ESRF and 10-

360 s at DESY. Due to the small beam size, one to three measurements at different y-positions 

were executed to improve grain statistics.  

For data analysis the Open Access software MAUD (Materials Analysis Using Diffraction, 

Lutterotti et al., 1997), a code based on the Rietveld method (Rietveld, 1969) was used. MAUD 

applies a least squares fitting approach for polyphase sample materials which fits hypothetical 

peaks by given crystal lattices of certain minerals to the measured spectrum, and allows to 

calculate textures using the EWIMV algorithm (derived from WIMV; Matthies and Vinel, 1982). 

The program is suitable to calculate textures from clays and clay bearing samples as 

demonstrated by a number of studies (Omotoso et al., 2006; Wenk et al., 2010, 2007, Lutterotti 

et al., 2010; Vasin et al., 2013; Schumann et al., 2014a). The plate detector images were 

loaded in MAUD by integrating every image in 5° steps resulting in 72 different diffraction 

patterns per image and rotational step, respectively. As we measured 36 images per sample, 

this produces a total of 72 x 36 = 2592 spectra per sample measurement. For Rietveld texture 

analysis, only the main rock forming minerals (>5%) were fitted to reduce calculation time. 

Textures of minerals with small portions cannot be adequately modelled and are not significant 

for the texture development at all. Crystallographic input phase data (cif-files) available from 

the Crystallographic Open Database (Grazulis et al., 2009) and the AMCDS data base (Downs 

& Hall-Wallace, 2003) were used for the refinement process: quartz by Antao et al. (2008), 

calcite by Graf (1961), anorthite by Wainwright & Starkey (1971), illite by Gualtieri et al. (2008), 

kaolinite by Bish & Von Dreele (1989). Due to material science conventions, for minerals with 
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monoclinic symmetry the unique folding axis has to be changed from b to c (Lutterotti et al., 

2010; Matthies & Wenk, 2009). For smectite, montmorillonite by Gournis et al. (2008) was used 

and the basal distance initially increased to 15.2 Å to represent a hydrated smectite (Moore & 

Reynolds, 1997). In addition, amorphous silica from fossil remnants is inherited in the samples 

(Kurzawski et al., 2016, 2018), but as it is not a crystalline phase and therefore not contributing 

to the anisotropy of the samples, it is ignored here and subtracted with the background. 

4.4. Results 

4.4.1. Sample composition 

In the core from the upper slope (1379C), the samples 5H3, 9H2, 21X3, 24X5, 30X3, 44X6 

and 66X6 originate from the various subunits of Unit II with clay, claystone, silt, siltstone and 

sandstone, while samples 80X1 and 101X5 were collected from the subjacent fine to medium 

sandstone unit. An overview of the full sample compositions is given in Figure 4.4. The smectite 

content is very variable ranging from 17 wt.-% in 21X3 to 41.5 wt.-% in 101X5. Kaolinite ranges 

from 7.1 wt.-% in sample 5H3 to 22.2 wt.-% in sample 30X3 and illite, present in six of the 

samples, varies (if present) from 6.6 wt.-% (44X6) to 18.5 wt.-% (21X3). Of the non-clay 

minerals, plagioclase is most abundant ranging from 11.1 wt.-% in sample 80X1 to 24.7 wt.-% 

in sample 5H3. Quartz ranges from 10.3 wt.-% (44X6) to 15.5 wt.-% (80X1), and calcite from 

0.3 wt.-% in 24X6 to 9.1 wt.-% in 80X1. Zeolites constitute up to 10.3 wt.-% (66X6). 

In the samples from the mid slope (1378B), the three uppermost samples 4H4, 7H5 & 10H4 

originate from the clay, silt and sand unit, while sample 15H3 originates from the clay, 

claystone, silt, siltstone and sandstone unit. The main constituent mineral is also smectite 

(Figure 4), ranging from 28.3 wt.-% (15H3) to 37.6 wt.-% (4H4), followed by plagioclase 

(12 wt.-% in 15H3 to 24.7 wt.-% in 7H5) and kaolinite (10.2 wt.-% in 4H4 to 20.5 wt.-% in 7H5). 

Quartz content is equal in all samples around 11 wt.-%, while calcite strongly varies from 

2.2 wt.-% (sample 7H5) to 14.7 wt.-% (sample 4H4). Illite occurs only in two samples with 

3.3 wt.-% (7H5) and 13.1 wt.-% (15H3). Zeolite minerals vary from 3.8 wt.-% in sample 4H4 to 

8 wt.-% in sample 10H4.  

In the samples from the accretionary frontal prism (1412A) (calcareous silty clay to clayey silt), 

smectite is the most abundant mineral (Figure 4.4), ranging from 31.5 wt.-% in sample 2H1 to 

48.9 wt.-% in sample 7H4, followed by plagioclase (from 13.2 wt.-% in 15H1 to 22.6 wt.-% in 

2H1) and kaolinite (from 13 wt.-% in 2H1 to 17.4 wt.-% in 7H4). Quartz content in all samples 

is about 10 wt.-%, while calcite varies between 4.1 wt.-% (7H4) to 10.3 wt.-% (15H1). Zeolite 

minerals range from 2.5 wt.-% in sample 7H4 to 4.9 wt.-% in 2H1.  

In cores 1381A and C from the incoming plate the hemipelagic and pelagic samples are clearly 

distinguished by their smectite and calcite content (Figure 4). In the hemipelagic silty clay 

samples the amount of smectite ranges from 45.7 wt.-% in 3H5 to 53.1 wt.-% in 6R4 and 
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kaolinite from 16.1 wt.-% in 6R4 to 12.8 wt.-% in 3H5. We found 12.7 wt.-% (6R4) to 14.6 wt.-

% (3H5) plagioclase, 4 wt.-% (6R4) to 4.8 wt.-% (3H5) calcite and 7.3 wt.-% (6R4) to 10 wt.-% 

(3H5) quartz and ~3 wt.-% zeolites. In contrast, the pelagic calcareous ooze samples contain 

53.8 wt.-% (9H1) and 71.1 wt.-% (11R2) calcite, 6.3 wt.-% (11R2) to 24.2 wt.-% (9H1) 

plagioclase and no quartz. Smectite is also present with 7.9 wt.-% in sample 9H1 and 12.8 wt.-

% in sample 11R2, as well as minor amounts (3.8 wt.-% in 11R2 and 6.5 wt.-% in 9H1) of 

kaolinite.  

 

Figure 4.4. Quantitative sample compositions determined from whole rock X-ray powder analysis. “Other” contains 
the minerals aragonite, pyrite, chlorite and halite. The two pelagic samples (1381 9H1 and 1381 11R2) are clearly 
distinguished from the hemipelagic samples by their calcite content. 



4. Texture development of clay-rich sediments across the Costa Rica subduction zone 

51 

 

4.4.2. Texture analysis  

4.4.2.1. Textures of phyllosilicates 

In the sediments from the upper slope (1379C, Figure 4.5a) most phyllosilicate (001)-maxima 

are single maxima parallel or subparallel to the core axis, except for sample 44X6 (351 mbsf), 

which shows a girdle distribution inclined from the core axis, and 66X6 (554 m) which shows 

a single maximum inclined from the core axis. The pole figure pattern of the (001)-maximum 

is the same for all three phyllosilicate phases. Smectite (001) maxima increase with depth from 

1.3 mrd (multiples of random distribution) in sample 5H3 (35 mbsf) to 2.3 mrd in sample 30X3 

(213 mbsf), then decreasing again to 1.5 mrd in sample 101X5 (867 mbsf). Kaolinite (001) 

maxima have slightly stronger intensities starting from 1.73 mrd in sample 5H3, increasing 

towards 2.95 mrd in sample 66X6 and then decreasing again to 1.61 mrd in sample 101X5. 

Illite, if present, starts from 1.8 mrd in sample 5H3, increases to 3.15 in sample 44X5 and then 

decreases to 2.17 mrd in sample 66X6.  

In mid-slope samples from core 1378B, the incorporated phyllosilicates mostly show a (001) 

maximum perpendicular to the bedding with a slight inclination. An exception is sample 7H5 

where the maxima are inclined by 45° with respect to the core axis. Phyllosilicate texture 

intensity decreases from sample 4H4 (29 mbsf) to sample 7H5 (60 mbsf), but increases slightly 

towards greater depths.  

Smectite and kaolinite pole figures in samples of core 1412A from the frontal prism, show a 

slight preferred orientation with a single maximum, which is inclined from the core axis ~10° in 

sample 7H4 (55 mbsf) and ~45° in samples 2H1 (7 mbsf) and 15H1 (106 mbsf). Texture 

intensity does not increase with depth.  

In hemipelagic and pelagic samples at Site U1381 from the incoming plate, smectite (001) pole 

figures show a weak single or non-symmetric maximum oriented parallel or sub-parallel to the 

core axis. Kaolinite is only present in the hemipelagic samples and shows a broad, not very 

strong maximum with the same (001) orientation as the smectite.  
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Figure 4.5.  
a) Recalculated pole 
figures of phyllosilicate 
minerals (001) arranged by 
location and depth. Planar 
fabric orientation is inferred 
from 00l maximum 
inclination. b) Exemplary 
recalculated pole figures of 
non-clay phases. Equal 
area, lower hemisphere 
projection. Maxima in mrd 
(multiples of random 
distribution). Pole figures 
for quartz, calcite and 
plagioclase in sample 1412 
2H1 which are dominated 
by irregular reflections. 
Strong calcite (001) 
maximum in sample 1378 
15H3. Strong plagioclase 
(001) maximum in sample 
1379 66X6. 
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4.4.2.2. Textures of non-clay minerals 

Quartz, plagioclase and calcite pole figures in most of the hemipelagic samples are dominated 

by irregular reflections, caused by e.g. single crystal diffractions or minor phases (Figure 4.5b). 

Exceptions are the calcite (001) pole figure in mid-slope sample 1378 15H3, which shows a 

strong double maximum parallel to the core axis. A large fossiliferous component aligned 

subparallel to the bedding might generate this. Plagioclase only showed a texture in sample 

1379 66X6 from the upper slope, which has a maximum of 2.2 mrd. A large plagioclase single 

grain might cause this. In the pelagic, calcite dominated samples from the incoming plate no 

calcite preferred orientation can be observed.  

4.5. Discussion 
In the following, we discuss the composition of the sediments, the origin and development of 

the observed textures and the implications, which arise for the regional tectonic framework. In 

addition, we discuss the advantage of synchrotron texture analysis for our samples in 

comparison to other methods. 

4.5.1. Synchrotron texture analysis 

Non- or partly lithified, water-containing soft sediments are difficult to analyze when studying 

the crystallographic preferred orientation (texture). Synchrotron texture analysis is the only 

method, which meets all necessary requirements of sample preparation, measurement and 

data analysis. First, sample disturbance usually occurs during sample preparation. Water-rich 

samples like ours with a porosity of 70% or even a little bit higher require a special treatment 

for most microfabric investigations, e.g., freeze-drying or replacing sample fluid by low-

viscosity resin to withstand further mechanical or chemical polishing as necessary for X-ray 

texture goniometry (XTG) or scanning electron microscopy (SEM). These preparation 

procedures at least significantly modify the soft and sensitive microfabric of the soft sediments. 

By punching out full sample cylinders (Schumann et al., 2014), we restrict fabric manipulation 

to the sample outline, i.e. the outermost tenth and usually not more than a few 100 µm wide 

zone that becomes negligible when investigating sample volumes with 15 to 20 mm in diameter 

for texture analysis. The use of a sample volume according to the high penetration depth of 

the high-energy synchrotron X-rays, provides orders of magnitude better grain statistics than 

surface-bound methods like XTG and electron backscatter diffraction (EBSD) at the SEM. 

By summing up data from several sample slices acquired perpendicular to the long axis, we 

further enhance grain statistics and provide a good representation of the sample. Our samples 

exhibit a broad grain size distribution, ranging from clay size fraction to sand and may even 

include mm-size shell fragments. The orientation of all these grain sizes can be captured, as 

there is no optical resolution limit like for optical universal stage or EBSD. By rotating the 
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sample 180° in 5° steps, we achieve full pole figure coverage with a 5° grid, as we extract 

diffraction patterns every 5° from the plate detector images. This is a higher resolution as, for 

example, used by Lonardelli et al. (2007), Wenk et al. (2008b), or Kanitpanyacharoen et al. 

(2015), who rotated their samples about 60-90° by measuring every 10-15° and did not get full 

pole figure coverage. Especially for our heterogeneous material it is important to reach a good 

pole figure coverage, which represents the fabric adequately, due to grain size variability, 

number of different mineral phases, and weak preferred orientations. In transmission mode, 

we can use a large range of the 2Θ-spectra (0.6-6°2Θλ=70keV) as no defocusing errors occur at 

high reflection angles like in XTG measurements. Due to the adjustable sample detector 

distance, we are also able to resolve small 2Θ-angles, which include the important clay mineral 

(001)-peak positions. This can be very difficult with XTG, because too small reflection angles 

produce a high scattering background. 

By using Rietveld analysis, we can analyze all sample components, which contribute to the 

anisotropy, even though the composition is complex. Earlier studies had to use different 

methods for different mineral phases (e.g. Kopf & Behrmann 1997: XTG for smectite, relative 

orientation of particles in optical microscopy), which may have led to incomplete data sets. 

Background scattering from incorporated water molecules is increased by amorphous silica, 

which locally (~2.2° 2Θλ=70keV) contributes to the background as broad hump (e.g. Ghisoli et al. 

2010). As we consider the full spectra for background calculation, we can better subtract these 

features. Using multiple peaks for texture analysis we can determine the texture more 

accurately than by using only single peaks like for XTG. In clay-rich samples peak overlapping 

is frequent. Nevertheless, as we consider multiple phases contributing to peak intensities with 

Rietveld, we can consider all minerals and all belonging peaks, which might contribute to the 

fabric anisotropy. In comparison to AMS measurements and microstructure observations, we 

can quantify the orientation of the different included minerals contributing to the total 

anisotropy. 

4.5.2. Composition 

The quantitative mineralogical composition of the sediments from the incoming Cocos Plate 

has been subject to several studies (e.g. Spinelli and Underwood, 2004; Kameda et al., 2015). 

Regarding the hemipelagic sediments, these studies are largely comparable to what we found. 

Only a lower quartz content in the Spinelli and Underwood (2004) study with 2-5 wt.-% quartz 

compared to 7-10 wt.-% in our study can be observed, which might arise from local 

heterogeneities, as these samples originate from offshore Nicoya Peninsula which is ~200 km 

further north. Differences might also result from methodical aspects, as our “clay” represents 

all clay minerals and is not restricted to the <2 µm fraction as in the other studies. The 

composition of the pelagic calcareous ooze in contrast, differs largely. Kameda et al. (2015) 
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did not detect clay and Spinelli and Underwood (2004) determined trace amounts to 6 wt.-% 

clay, while we measured 15-19 wt.-% clay minerals. Same holds for plagioclase, with 4-8 wt.-

% (Spinelli & Underwood, 2004) and 15 wt.-% in average (Kameda et al., 2015) while we found 

6-24 wt.-%. Consequently, we found a lower calcite contribution than the other studies (Spinelli 

and Underwood, 2004: 83-92 wt.-%; Kameda et al., 2015: 85 wt.-%; this study: 54-71 wt.-%). 

The differences may arise from different methods in calcite content determination. While we 

applied powder diffractometry measurements, Kameda et al. (2015) used a leaching technique 

and Spinelli and Underwood (2004) determined the total inorganic carbon by coulometry. 

However, it is quite likely that most of the data differences are related to compositional sample-

to-sample variability. 

Unfortunately, there is no published quantitative data for samples from the overriding 

Caribbean plate offshore Costa Rica. However, the qualitative results (i.e. the minerals 

identified) described by Vannucchi et al. (2012) and Harris et al. (2013) are in good agreement 

with our results as we detected the same minerals. Even though two samples from the core 

1379C originate from Unit III, which is described as fine to medium sand (Vannucchi et al., 

2012), the portion of quartz and plagioclase is not significantly higher than in other samples 

described as silt or silty clay. This might indicate that the quartz and plagioclase grains in the 

other units are predominantly silt size but constitute the same volumetric proportion. 

4.5.3. Texture development with ongoing compaction 

The platy shape of phyllosilicates requires the grains to align by a kind of a rigid body rotation 

process during progressive burial, contemporaneous to the reduction of porosity and 

dewatering. The latter should progressively intensify the texture strength with increasing depth 

and compaction (e.g., Voltolini et al., 2009). A general reduction of porosity with increasing 

depth is observed in the investigated cores of this study (Figure 4.6; data from Vannucchi et 

al., 2012, and Harris et al., 2013). Deviations from the general trend are probably mainly due 

to variations in composition and grain fabric as well as the local rate of burial and compaction. 

For the uppermost 100 mbsf of the sediment sequence, present in all drill cores, there is no 

general trend in texture development and intensification with depth. The cores show variable 

and weak fabrics, indicating that the onset of texture development is chaotic and in the 

uppermost part not primarily controlled by burial, dewatering and hence decreasing porosity 

but by other factors (Figure 4.6). Maffione and Morris (2017) determined the onset of fabric 

development in clay-rich sediments from the Philippine Sea in a zone of 83-113 mbsf using 

AMS data. Even though we already found a weak fabric at shallower depth, we observe a 

significant increase from 1.5 mrd to 1.8 mrd between 58 and 125 mbsf samples in core 1379, 

and from 1.4 mrd (87 mbsf) to 1.7 mrd (120 mbsf) in core 1378, which support the findings of 
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Maffione & Morris (2017). In this depth range, also the characteristic basal fabric of the 

phyllosilicates becomes predominant. 

For greater depths, we can only rely on 1379C as we have only from this core samples down 

to greater depth to ~867 mbsf. A rough increase in intensity of pole figure maxima can be 

observed, which has already been described by earlier studies for other IODP drill cores (e.g., 

Kopf and Behrmann, 1997; Schumann et al. 2014). The texture intensification stops at a depth 

of ~350 mbsf that corresponds to a grain coarsening of the sediment indicated by the 

occurrence of silty sand and sandstone (Subunit IIC), followed by fine to medium sandstone 

(Unit III) (Vannucchi et al., 2012). Several studies demonstrated that an increase of quartz 

content in clay samples negatively correlates with fabric development (Curtis et al., 1980; 

Sintubin, 1994; Voltolini et al., 2009). We did not detect a significant increase in quartz content, 

but an increase of non-platy particles may also weaken the fabric. Below ~350 mbsf, the 

phyllosilicate alignment is more strongly affected by grain size, as larger grains do inhibit the 

rotation of platy phyllosilicates more effectively. 

In most of the samples, we observe a stronger texture for illite and kaolinite than for smectite. 

This might be caused by a more flocculated microstructure of smectite that remains preserved 

during compaction. Smectite is less compactable than kaolinite and illite, which is attributed to 

a larger number of smaller grains resulting in a better distribution of stress over the grain 

contacts by Mondol et al. (2007). A chaotic aggregate of platy minerals with variable orientation 

cannot be aligned as easy as single platy crystals in a matrix of small, equant and rounded 

grains (Mondol et al., 2007). Kopf and Behrmann (1997) and Schumann et al. (2014) observed 

a stronger maximum for illite than for smectite and kaolinite in oceanic sediments that can at 

least partly be related to large illite flakes in these studies. All other minerals, i.e., mainly quartz, 

plagioclase and calcite, do not show any texture trends that can be related to grain shape and 

size-dependent effects on compaction. 

4.5.4. Origin of texture 

In most of the samples, a preferred orientation of quartz, plagioclase and calcite cannot be 

observed. Exceptions, as shown in Figure 4.5, are due to large single crystals, for example 

plagioclase from volcanic ash, or shell fragments, which have been described from smear slide 

analysis of the cores (e.g., Vannucchi et al., 2012) or for other drilling locations, for example, 

the Nankai accretionary prism offshore SW-Japan (Schumann et al., 2014). 

Platy phyllosilicates tend to align perpendicular to the direction of vertical effective stress, 

induced by the overburden, or become aligned parallel or subparallel to a fault plane (e.g. 

Moon and Hurst, 1984). Accordingly, the planar fabric is perpendicular to the (00l) maxima of 

the phyllosilicates. Regarding crystallographic preferred orientation and intensity four 

characteristic texture types are distinguishable: 
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Samples with a planar fabric perpendicular or at a great angle to the core axis most likely 

represent the undisturbed, horizontal or nearly horizontal bedding plane (see Figure 4.5). For 

most samples this corresponds to a maximum slope angle of 5-7° reported for the slope 

offshore Costa Rica (Vannucchi et al., 2003) and bedding dips determined by shipboard 

measurements at the split core sections (Vannucchi et al., 2012; Harris et al., 2013). For some 

samples (marked in green in Table 4.2), our results agree well within a difference of ≤5° to the 

shipboard data. If they do not fit this might be related to the spatial distance between our whole 

round samples and the next measured bedding plane in the core indicating fabric 

heterogeneities caused by local cross-bedding or local slope changes or, alternatively, by the 

local occurrence of discrete faults. 

Samples with a more strongly inclined single maximum (>15°: 1379 101X5, 1378 7H5, 1412 

2H1, 1412 7H4) may represent tectonically tilted sediment packages. At such high angles wet 

slope sediments are supposed to be remobilized, excluding a pure sedimentary origin of these 

bedding inclinations. Sample 1379 66X6 is also inclined by 45°; but as observed from split core 

images (Vannucchi et al., 2012) the sediment core is fractured and fragmented, and therefore 

we cannot prove if the bedding plane orientation is true or if the fragment experienced a drilling-

induced rotation. Nevertheless, the observed texture intensity can be interpreted, as any 

fragment rotation would not influence the occurrence of pole figure maxima, but only their exact 

position. 

Samples 1379 44X6 and 1412 15H1 show girdle or partial girdle fabrics of the phyllosilicates 

instead of a single maximum. Small-scale folds can explain such an orientation distribution and 

here possibly drag folding close to a fault plane. Documented faulting within the 300-350 mbsf 

section in core 1379C (Vannucchi et al., 2012) supports this interpretation. Other small-scale 

folding could also explain these girdle fabrics. 

Weak and non-symmetric fabrics of the hemipelagic samples from the incoming plate (U1381) 

contrast to the symmetric fabrics with predominant basal maximum of the samples from the 

overriding plate of comparable composition and depth. Considering the higher porosity in the 

samples from the incoming plate as documented by shipboard porosity measurements (Harris 

et al., 2013; Vannucchi et al., 2012), which is approximately 5-10% higher than in overriding 

plate samples, it can be stated that the (hemi)pelagic sediments are less compacted and 

therefore less textured. Furthermore, the amount of phyllosilicates in the (hemi)pelagic 

samples is relatively low and a pronounced phyllosilicate texture is therefore more difficult to 

attain and would require higher compaction strain. Finally, the incoming plate sediments are 

largely undeformed, whereas the sediments of the overriding plate are considerably deformed 

as outlined in the following section and this contributes to their generally stronger texture.  
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Table 4.2. Comparison of dip angle determined from 00l orientation of texture measurements to dip angles from 
shipboard measurements above and below the actual sample position in the core. * data from (Harris et al., 2013; 
Vannucchi et al., 2012). Abbreviations: b: bedding, f: fault, sz: shear zone, l: lamination, as interpreted by shipboard 
scientists, ta: tectonic activity. 

Sample  
(depth [mbsf]) 

Dip from 00l 
maximum  

Dip from core above 
actual sample*(depth 
[mbsf]) 

Dip from core below 
actual sample*(depth 
[mbsf]) 

Fit of 00l dip 
and core dip 
(± 5°) 

Mid slope     
1378 4h4 (29.30) 2° b 5° b (26.72) 2° b (32.53)   
1378 7h5 (60.07) 42° ta 2° b (57.84) 6° b (62.61)   
1378 10h4 (86.99) 8° b 10° b (84.26) 8° b (92.09)   
1378 15h3 (119.87) 3° b 26° b (116.27) 4° b (121.77)   
Upper slope     
1379 5h3 (34.59) 1° b 19° b (32.24) 35° b (38.85)   
1379 9h2 (58.22) 10° b  10° b (61.03)   
1379 21x3 (124.71) 5° b 12° b (123.99)    
1379 24x6 (158.54) 2° b 12° b (157.23) 3° b (159.05)   
1379 30x3 (213.09) 3° b 8° b (176.83) 8° b (247.28)   
1379 44x6 (350.77) 2.5° ta 46° f (343.92) 16° sz (353.91)   
1379 66x6 (553.50) 45° b 28° b,f (546.44) 4° b (559.54)   
1379 80x1 (671.64) 7° b 58° f (670.94) 8° b (672.03)   
1379 101x5 (866.95) 15° b 61° f (865.8)    
Incoming Plate     
1381 3h5 (24.95) 0.5° b 16° b (26.75)    
1381 6r4 (47.39) n.d. 0° b (51.75)   
1381 9h1 (75.95) n.d. 10° b (76.2) 0° b (76.32)  
1381 11r2 (92.35) 3° b 0° b (91.9)    
Frontal Prism     
1412 2h1 (7.25) 34° b 11° b (6.73)    
1412 7h4 (54.62) 17° b 67° b (54.34)    
1412 15h1 (105.56) 12°b,ta 5° l (98.9)    

 

4.5.5. Deformation features of the active continental margin off Costa Rica 

Considering the above-discussed aspects of texture type and intensity, the different zones of 

the active continental margin offshore Costa Rica can be characterized by their texture. 

Sediments from the incoming plate are only weakly textured, most likely due to small grain 

sizes, high water content, slow compaction rates and the absence of tectonic strain. 

In the frontal accretionary prism we mostly found weakly textured, probably tectonically tilted 

or deformed sediments. The generally weak textures might be related to their origin on the 

incoming plate followed by their accretion in the frontal prism, as determined by Bangs et al. 

(2016). This means that the process of frontal accretion might not enhance texture strength 

but cause the small scale folding documented in sample 1412 15H1. Its possible relation to 

faulting is most likely a result of accretion and compressive deformation and not a relict 
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microfabric of the incoming plate sediments. Hence, the fabric is mainly controlled by original 

sedimentation (composition), initial compaction and accretionary tectonics. 

 

 

Figure 4.6. Texture intensity versus porosity and smectite content with increasing depths for smectite, kaolinite and 
illite at all locations. Texture intensity of the three phases is largely corresponding within the cores, but generally 
lower in the incoming (1381) and accreted (1412) sediments. Figure includes data from Harris et al. (2013) and 
Vannucchi et al. (2012). 

 

In contrast to (hemi)pelagic sediments from the incoming plate and the accretionary frontal 

prism discussed before, sediments from the slope cover of the mid and upper slope are in 

general stronger textured (0.1-0.2 mrd stronger at corresponding depth) and mostly contain 

horizontal or slightly inclined bedding. These sediments show compositions mostly lower in 
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smectite and a generally 5-10% lower porosity compared to incoming plate and accretionary 

prism (Harris et al., 2013; Vannucchi et al., 2012; Figure 4.6). The lower porosity is probably 

caused by the different grain sizes as documented in the core description and mentioned 

before. The slope cover sediments contain clay, silt and sand-sized particles (Vannucchi et al., 

2012) in contrast to the incoming and accreted sediments, which consist almost exclusively of 

clay and silt (Figure 4.2). In addition, deformation within the mid and upper slope cover 

sediments is much more intense as indicated by the structural core descriptions (Vannucchi et 

al., 2012). Correspondingly, we locally observed textures indicative of tectonically inclined, 

deformed and small-scale folded sediments apart from the overall compaction texture record. 

In contrast, the two samples from greater depth, which are assumed to represent an earlier 

and larger accretionary prism by Bangs et al. (2016), show only moderate tectonic reworking 

mainly expressed by tilted sediment blocks. 

4.6. Conclusions 
Our study provides the first quantitative compositional characterization of Caribbean plate 

slope cover sediments in the Pacific offshore Costa Rica, and also the sediments from the 

oceanic Cocos Plate are characterized.  

Applying synchrotron texture analysis we could show that sediments from the incoming plate 

and accretionary prism are less textured than sediments from the slope due to higher smectite 

contents, higher porosity and resulting lower compaction rates. Compaction trends can be 

derived from the texture analysis. Apart from describing the compaction processes, the 

textures lead to the identification of faulting, folding and drag folding as well as rotated fault 

blocks located within the accretionary prism and slope cover sediments of the active 

continental margin, based on steeply inclined bedding plane orientations and girdle fabrics of 

phyllosilicate (001) pole figures. 
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5. Textures in oceanic serpentinites from the Atlantis Massif, 

Mid-Atlantic Ridge 
Abstract  
Oceanic serpentinites are mainly composed of the serpentine minerals lizardite and chrysotile. 

For the challenging analysis of the crystallographic preferred orientations (CPO, texture) of 

such mineral phases, we applied high-energy synchrotron diffraction.  

A suite of serpentinite samples was cored during the International Ocean Discovery Program 

Expedition 357 at the Atlantis Massif oceanic core complex, located on the mid-Atlantic ridge 

at ~30°N. Samples are highly altered ultramafics, containing lizardite and chrysotile, as well as 

magnetite and further minor minerals. The microstructure varies from weakly foliated bastite-

rich to bastite-free mesh structures. Serpentine CPOs in bastite-rich samples are dominated 

by bastites, while in bastite-poor samples the CPO seems to be controlled by the serpentinizing 

microfractures. The variations could depict differences in strain, in primary composition or 

fabrics inherited from the peridotite. Even though the CPO in the samples originates from 

different microfabrics, it leads to global texture with resulting anisotropic physical properties. 

5.1. Introduction 
Serpentinites are of great importance in plate tectonic processes. They occur at slow spreading 

ridges as well as in hydrated wedges in subduction zones. Serpentinization changes i.a. the 

rheology (Escartín et al., 2001) and the physical properties (Miller and Christensen, 1997) 

compared to the precursor rocks. 

Serpentinite forms from peridotite and ultramafic rocks by hydration of olivine and pyroxene. 

Pseudomorphic alteration of olivine leads to the formation of a mesh microstructure. 

Serpentinization starts at fractures and grain boundaries forming mesh rims of serpentine 

(Wicks and Whittaker, 1977), typically traced by magnetite. Mesh rim growth can either 

progress up to the center of the grain (hourglass structure) or be followed by a mesh core 

which might still comprise olivine, or is completely serpentinized lacking an optically 

differentiable microstructure (Viti and Mellini, 1998; Wicks and Whittaker, 1977). 

Pseudomorphic alteration of pyroxene leads to the formation of bastites, fine-grained 

serpentinized regions. Different formation temperatures lead to the crystallization of different 

serpentine minerals. Lizardite, the flat stacked polymorph, and chrysotile, the fibrous 

polymorph, form at temperatures <300-400°C (Evans, 2004). Antigorite in contrast, which has 

a wavy crystal structure and is not a polymorph sensu strictu as it contains less water can be 

stable from 300 °C up to 720 °C at P=2 GPa (Ulmer and Trommsdorff, 1995). Whether 
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chrysotile or lizardite is formed is most likely determined by stress mode under which they form 

(Evans, 2004). 

Serpentine crystallites in oceanic low-temperature serpentinites are often considered randomly 

oriented (e.g. Christensen, 2004). Therefore seismic velocities and anisotropies are often seen 

only as a function of the serpentinized volume fraction of the sample (Christensen, 2004; Ji et 

al., 2013), where increasing volume fraction of serpentine leads to a reduction of P-wave 

velocity from ~8 km/s to ~5 km/s (Miller and Christensen, 1997). Due to the irregular crystal 

structure it can be challenging to determine the crystallographic preferred orientation (=texture) 

of serpentinites, especially when including chrysotile. Most conventional texture analysis 

methods reach their limits. Electron backscatter diffraction (EBSD) requires highly polished 

crystal surfaces, which is impossible for the non-planar polymorphs, and neutron texture 

measurements can be hampered by the high amount of intracrystalline water incorporated in 

the serpentine minerals. A method suitable for these challenging samples is synchrotron 

diffraction as it is not demanding high preparation efforts and no absorption takes place by 

intracrystalline water. While textures of antigorite bearing serpentinites (often highly deformed) 

have been subject of a number of studies (e.g. Bezacier et al., 2010; Kern et al., 2015, 1997), 

the oceanic serpentinites have been more rarely explored (Lizardite: Boudier et al., 2010; 

Dewandel et al., 2003).  

The texture of oceanic serpentinites is of major importance as it influences the geophysical 

properties. Large-scale anisotropies could change the interpretation of seismological models 

and thus enhance our ideas of the build-up of the oceanic crust. We therefore analyze 

serpentinite samples from the Atlantis Massif at the mid-Atlantic ridge regarding their texture 

using synchrotron diffraction. In combination with microstructural analyses we investigate the 

texture forming processes which contrast previous assumptions. 

5.2. Geological setting and samples  
We examined fresh oceanic serpentinites from the Atlantis Massif, located at 30°N at the Mid-

Atlantic Ridge (MAR). The Atlantis Massif is a 1.5 – 2 m.y. old (Blackman et al., 2002, 1998), 

domal structure which is southerly bounded by the Atlantis Transform Fault and to the East by 

the MAR median valley (Figure 5.1).  

The Atlantis Massif is an oceanic core complex (OCC), where upper mantle peridotites and 

gabbroic rocks are exhumed along a large scale detachment fault (e.g. Blackman et al., 1998; 

Cann et al., 1997; Tucholke and Lin, 1994; Tucholke et al., 1998). Faulting is thought to happen 

due to episodic and insufficient magma supply at slow spreading ridges, which cannot 

counterbalance the spreading velocity. The massif can be roughly subdivided in the central 

dome, where a large gabbroic body was discovered during IODP Expedition 305 drilling 

(Blackman et al., 2006; Ildefonse et al., 2007), an eastern hanging block formed by basalts 
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(Blackman et al., 2002), and the southern wall which is to large extent (45%) altered to 

serpentinite and which hosts the Lost City hydrothermal field (Früh-Green et al., 2018). 

Seismological modelling shows a higher p-wave velocity in the eastern part of the southern 

wall, indicating a change in lithology (Henig et al., 2012). 

 

 

Figure 5.1. Bathymetric map of the Atlantis Massif Oceanic Core Complex. Black circles mark drill locations from 
where samples were used in this study. Black dots mark other locations drilled during IODP Expedition 357. 
Modified from Früh-Green et al. 2017. 

 

During IODP Expedition 357, which explored the “Atlantis Massif Serpentinization and Life”, 

shallow cores (maximum depth: 16.5 m) were drilled at nine sites along the top of the southern 

wall of the massif. The rock types discovered range from sediments over basalts to 

serpentinized peridotites, talc-amphibole-chlorite schists and gabbros (Früh-Green et al., 

2018, 2017). Serpentinite was reported to be very heterogeneous in microstructure (Rouméjon 

et al., 2018). 

We present texture data of four serpentinite samples from the drill cores M0068, M0071 & 

M0076, which were chosen due to their composition of serpentine and magnetite. Here and in 

the following we use an abbreviated sample name, the complete sample names including 
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depth and section can be found in Table 1. Two samples (71C3R1&71C9R1) originate from a 

drill core located in the western part of the southern wall of Atlantis Massif (Figure 5.1). Their 

macroscopic structure shows large (up to 1 cm) bastites. Another sample is from the central 

part of the southern wall (76B5R1), displaying multiple white veins in macroscopic section. The 

last sample originates from a drill hole further east on the southern wall (68B4R1). It is a dark 

rock with white and green veins. 

Table 5.1. Samples used in this study 

Sample  

(Drill site +section) 

Interval [cm] Depth below 

seafloor [m] 

Petrographic description from 

Früh-Green et al. (2017) 

71C3R1 24-28 5.2 Serpentinized harzburgite 

71C9R1 34-38 10 Serpentinized harzburgite 

76B5R1 63-67 7.4 Serpentinized harzburgite 

68B4R1 87-90 4.9 Serpentinized harzburgite 

 

5.3. Method  

5.3.1. Microstructure 

Thin sections were produced from the samples and analyzed using a polarizing microscope 

with an accessory plate inducing a wave difference of 550 nm.  

5.3.2. Synchrotron texture measurements 

Synchrotron texture measurements were conducted at the European Synchrotron Radiation 

Facility (ESRF) in Grenoble, France. Samples are cylinder shaped with a diameter of 1.5 to 

2 cm. Measurements were carried out in transmission mode while rotating the sample about 

the cylinder axis from 0° to 175° in 5° steps with 1 s overall exposure time. As we used a Perkin 

Elmer image plate detector, this results in 36 images per measured sample position. Due to 

relatively large grain sizes of the samples, we measured several positions along the cylinder 

axis of the samples. Beam size was set to ~1 mm and wavelength to 70 keV. Sample-detector 

distance was 1401 mm.  

5.3.3. Texture data analysis 

The image data is transferred into *.tif images using the program Fit2D (Hammersley, 1998), 

which also allows the determination of the beam center.  

Data treatment and analysis is conducted using the Rietveld program MAUD (Material Analysis 

Using Diffraction) (Lutterotti et al., 1997). As input lattice parameters the following cif-files from 

the AMCDS (Downs and Hall-Wallace, 2003) and COD (Grazulis et al., 2009) data bases are 

used: chrysotile from a powder containing nano-tubes by Falini et al. (2004), a lizardite 1T by 
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Laurora et al. (2011), magnesioferrite (Passerini, 1930) and magnetite (Gatta et al., 2007). 

First an average image is analyzed, and background and scale factors, instrumental 

parameters and crystal lattice parameters are refined. Then the images for every single 

measurement position are loaded and the texture is calculated using the EWIMV algorithm 

(derived from WIMV by (Matthies and Vinel, 1982)). 

5.4. Results  

5.4.1. Microstructure  

Sample 71C9R1 (Figure 5.2a&b) shows large (>1 cm) altered bastitic clasts, which can still 

show the original cleavage or exhibit zonation. Some clasts are not completely altered but can 

still have some pyroxenic areas. The bastites are embedded in a mesh structure of mostly 

random oriented serpentinizing microfractures decorated with magnetite, with a width of up to 

30 µm. Mesh rims can be feathery and can have isotropic mesh cores. Hourglass structures 

can also be observed. Other mesh cores are more isotropic. The density of serpentinizing 

microfractures can increase towards the embedded bastites. Foliation is hard to discover but 

there seems to be a predominant orientation in which more serpentinizing microfractures are 

oriented than in other directions. Additionally, late, rather parallel serpentine veins crosscut the 

mesh fabric.  

Also in sample 71C3R1 (Figure 5.2c&d) large elongated bastite clasts (~ 1cm length) can be 

recognized, in some of them the original pyroxene cleavage can be visible. Serpentinizing 

microfractures are often oriented parallel, defining a foliation. They anastomose around the 

bastites, some of which are elongated and oriented parallel to the foliation. The mesh rims are 

diffuse and the amount of oriented feathery serpentine is less extensive, compared to sample 

71C9R1. The mesh cells show some rare hourglass structures as well as some clearly visible 

cores, while the rest is more diffuse. 

In sample 76B5R1 (Figure 5.2e&f) some rare, rather small (up to 300 µm) unaltered relic 

pyroxenes can be recognized. There is a strong parallel orientation of serpentinizing 

microfractures, which can be fairly broad (~50 µm), forming the foliation. The mesh rims look 

like perpendicular fibers. Veins of magnetite, serpentine, calcite, and talc crosscut the fabric 

perpendicular to the foliation. Mesh rims at microfractures with roughly the same serpentine 

orientation reveal the same orientation in some areas when the accessory plate is used. 
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Figure 5.2. Thin section scans of the samples a) 71C9R1 in parallel light b) same section as a) with crossed polars 
c) sample 71C3R1 in parallel light d) same as c) with crossed polars; e) sample 75B6R1 in parallel light f) same as 
e) with crossed polars g) sample 68B4R1 in parallel light h) same section as g) with crossed polars. Orientation of 
the foliation is indicated by red line (F). B: Bastite.  
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In sample 68B4R1 (Figure 5.2g&h) no bastites or relicts can be recognized. There is a strong 

and closely spaced parallel alignment of serpentinizing microfractures in at least two directions, 

which define in combination a foliation and build a ribbon-shaped microstructure. Some 

microfractures are pure magnetite and some are magnetite at the rims and serpentine in the 

microfracture centre. The magnetite veins are thinner than in the samples described before 

(~10 µm). The mesh centers can reveal isotropic cores. The serpentine orientation is 

colorcoded by the orientation of the microfractures when using the accessory plate. One family 

of parallel microfractures turns out yellow, and the other one blue. Large serpentine veins 

crosscut the fabric, with a higher microfracture density around them. 

5.4.2. Texture results 
In sample 71C9R1 (Figure 5.3a) chrysotile (002) pole figure shows a single maximum with a 

maximum intensity of 1.7 mrd. The same maximum orientation is shown by the lizardite (001) 

pole figure, but smaller and sharper with a maximum intensity of 3.4 mrd (multiples of random 

distribution). The (00l) maxima of both serpentine minerals are inclined ~35° from the foliation 

plane. The magnetite shows no preferred orientation (maximum pole figure intensity: 1.1 mrd). 

The chrysotile (002) in sample 71C3R1 (Figure 5.3b) only shows a weak preferred orientation 

with a girdle inclined from the foliation plane with a pole figure maximum of 1.2 mrd. However, 

the lizardite (001) pole figure shows a small distinct maximum with a maximum intensity of 2.0 

mrd. The magnetite pole figures do not show a texture (maximum intensity 1.2 mrd).  

In sample 76B5R1 (Figure 5.3c) the chrysotile (002) pole figure shows a broad main maximum, 

which is inclined from the normal to the foliation but parallel to the core axis. The maximum 

intensity is 1.6 mrd. The lizardite (001) pole figure shows two maxima in about the same 

orientation as the chrysotile (002) submaxima. The maximum intensity is 1.7 mrd. All 

submaxima are inclined from the foliation plane. The magnetite pole figures show clear distinct 

symmetric maxima with a maximum intensity of 2.6 mrd.  

The chrysotile (002) maximum in sample 68B4R1 (Figure 5.3d) shows a broader single 

maximum with a maximum intensity of 2.4 mrd. The same pattern is presented by the lizardite 

(001) pole figure, which is even broader than the chrysotile (002) maximum and with a stronger 

maximum intensity of 3.7 mrd. Both serpentine (00l) maxima lie perpendicular to the foliation. 

The magnetite pole figures show very clear distinct symmetric maxima with a maximum 

intensity of 5.1 mrd. 
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Figure 5.3. Recalculated pole figures for chrysotile, lizardite and magnetite. Equal area, lower hemisphere projection. Maxima in mrd (multiples of random distribution). Orientation is 
given in the first pole figure for each sample: foliation is given as solid line, “hard to determine“-foliation is given as dashed line. Reference to the drill core axis is given by solid dots, 
circles are used for samples which are rubble, where core axis orientation is useless. In sample 71C9R1 the orientation of the piece of rubble to the core axis could not be 
reconstructed. The number of measured slices for each sample is given in brackets behind the sample name. Pole figures are projected in the same plane as the thin sections in Fig. 
2. 
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5.5. Discussion  

5.5.1. Quality of the texture analysis 
Using synchrotron diffraction for the texture analysis of oceanic serpentinite samples was very 

successful. We could extract lizardite and chrysotile textures by using Rietveld refinement. As 

both minerals have, beside their shared peaks, some peaks separated from each other it is 

possible to determine the texture by using the full spectra. However, we have to consider that 

our samples probably rank at the upper range of measurable samples regarding grain size. 

We compensated this by measuring several slices per samples which enhances the statistics.  

Our compositional results from Rietveld texture refinement show a higher amount of chrysotile 

than lizardite. This is in contrast to all observations, which state that lizardite is the most 

important serpentine mineral in oceanic serpentinites (e.g. Evans, 2004). It might be possible, 

that our samples are mineralogically different compared to all the other samples in the 

literature. As this case seems to be unlikely, we assume that the determination of the modal 

composition from textured rock samples with serpentine was not successful. As the 

composition does not affect the texture determination, we are still confident in our texture 

results.  

5.5.2. Texture development 
A direct link between serpentine texture and microstructure is unequivocally proven with our 

analytical approach, and the combination of the results of these analyses indicates how the 

observed texture is formed. 

The sharp maxima in the serpentine texture in samples 71C9R1 and 71C3R1 are a result of 

bastite formation and oriented growth of serpentine in the host minerals. In sample 71C9R1 

both serpentine minerals show the same sharp single maximum in the (00l) pole figure, while 

it is only lizardite in sample 71C3R1. This indicates that in the first sample both minerals are 

involved in the bastite formation, while it is only lizardite in the latter. While it is more commonly 

observed that lizardite forms bastites, it has also been described that chrysotile can be involved 

(Viti and Mellini, 1998; Wicks et al., 1977). The comparably low maxima might be a result of 

poor crystallization of bastites, as described by Viti and Mellini (1998). The “background 

texture” besides the bastites is very weak to non-existent. Even though the CPO generated by 

bastites is very local, we can interpolate that an inherited CPO of pyroxenes could lead to a 

pronounced more regional texture. 

In samples 76B5R1 and 68B4R1 the broad, more intense maxima in the serpentine (00l) pole 

figures, are a result of strongly oriented serpentinizing microfractures and the accompanying 

perpendicular oriented feathery serpentine in the mesh rims. This has already been described 

by e.g. Rouméjon and Cannat (2014). Some studies (e.g. Boudier et al., 2010; Viti and Mellini, 
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1998) observed a parallel orientation of lizardite (001) plains parallel to the serpentine/olivine 

interface, i.e. parallel to the serpentinizing microfracture, which is stacked to columns 

appearing fibrous in optical microscopy. As we observed fibrous serpentine perpendicular to 

the serpentinizing microfractures this is most likely the source of texture in samples 68B4R1 

and 76B5R1. In 76B5R1 it is inclined from the foliation normal, maybe due to local 

heterogeneities in foliation orientation. The serpentinizing microfractures show a clear parallel 

orientation, which leads to texture formation. A variety of studies considered the formation of 

serpentinizing microfractures (e.g. Malvoisin et al., 2017; Plümper et al., 2012; Rouméjon and 

Cannat, 2014; Wicks, 1984a, 1984b, 1984c), indicating that a strong preferred orientation of 

serpentinizing microfractures is a result of strain of the precursor olivine grains (Wicks, 1984c) 

or accommodate the volume increase (Rouméjon et al., 2018). This indicates that the texture 

in these samples is induced by deformation, either by external former or contemporaneous 

strain, or by internal strain generated by volume increase during serpentinization.  

In all our samples the pole figures of chrysotile and lizardite appear very similar. Considering 

the different crystallographic structure of the two minerals, curly fibers and platy stacks, this is 

at least remarkable. It indicates that the chrysotile fibers are oriented in a plane which is parallel 

to the lizardite basal planes.  

The strong magnetite texture observable in samples 76B5R1 and 68B4R1 is striking. Wicks 

and Whittaker (1977) mentioned, that the magnetite grains form primarily distributed within the 

mesh cells and then migrate towards clusters or fractures. If the migration happens within an 

external stress field, this could lead to a preferred orientation of the magnetite grains within the 

microfractures. This emphasizes the deformation-related texture formation in these samples. 

5.5.3. Implications 
As physical properties of single crystals can be highly dependent on crystallography, texture 

in a rock can lead to anisotropic p-wave velocities, which is of major importance for 

seismological models. We therefore calculated the texture-controlled Vp anisotropy from 

intrinsic elastic tensors for the minerals using the Matlab toolbox Mtex (Hielscher and 

Schaeben, 2008) following the method described by Mainprice et al., (2011). We used the 

elastic stiffness tensor for lizardite from Auzende et al. (2006), which was modified to be also 

used for chrysotile. The modeled Vp anisotropy varies over a large range from 1.1 to 8.2% 

(Figure 5.4). Bastite-controlled textures have lower anisotropies than microfracture controlled 

textures. The latter are therefore of higher importance for the interpretation of seismological 

models. Nevertheless, it has to be considered that the modeling does not take into account 

structural features as fractures, voids, etc., but may give an idea of anisotropy in serpentinites 

at depth, assuming closed fractures. In sample 68B4R1 with direction of fast Vp anisotropy 

parallel to the fractures, the foliation might further increase the anisotropy.  
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Figure 5.4. Modeled Vp anisotropy for the samples in this study. Orientation corresponds to pole figures in Figure 
3. Square: fast p-wave direction. Circle: slow p-wave direction. 

 

Texture intensity and thus anisotropy increase towards the detachment shear zone and the 

mid-Atlantic ridge. This might either reflect a change in precursor lithology from more pyroxene-

rich to pyroxene-free or an increase in deformation towards the shear zone, or a combination 

of both. Regarding the seismological modeling of the southern wall of the Atlantis Massif (Henig 

et al., 2012) which showed higher velocities in the eastern part of the southern wall, the reason 

might be more likely the anisotropy formed by the deformation or slight changes in precursor 

mineralogy than a lithological change from serpentinite to gabbro. 

5.6. Conclusion  
Our study for the first time reports bulk rock quantitative textures of oceanic serpentinites. 

Synchrotron diffraction in combination with Rietveld refinement allowed to determine the 

textures. This overcomes the severe limitations posed by other texture analysis methods, and 

opens the possibility of quantitative modeling of physical properties of hydrated oceanic earth´s 

mantle. 

Texture in our serpentinite samples is either generated by bastite formation or induced by pre- 

or syn-serpentinization deformation, as documented by preferred parallel orientation of 

microfractures. The latter one leads to strong seismic anisotropies, which vary in our samples 

between 5.8 – 8.2 % AVp. It is probably of more pervasive scale and therefore of higher 

importance for the interpretation of seismological models. 
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6. Summary, Discussion & Conclusion 
The aim of this thesis was the development and application of an advanced methodology for 

the analysis of quantitative bulk rock textures using synchrotron diffraction. So far applied 

measurement strategies like those used by e.g. Lutterotti et al. (2010); Schumann et al. (2014); 

Wenk et al. (2010) were improved and extended. In three case studies with phyllosilicate-rich 

samples, it was demonstrated that synchrotron texture analysis is a powerful tool to study the 

texture development in delicate polycrystalline multiphase samples.  

In the first case study (Chapter 3) on the texture and AMS of Devonian black shales it could 

be demonstrated by modeling the AMS from texture that the phyllosilicates carry the anisotropy 

in absence of ferromagnetic minerals. Modeling the principal direction was very successful and 

fitted very well with the experimental AMS measurements, while the models were less 

successful when comparing the total susceptibility. These differences might be a result of 

different chemical composition of intrinsic susceptibility of literature phases ad those actually 

present in the samples. The study gives new insights on how magnetic fabric is formed in 

detail. Furthermore, it was possible to link kinked phyllosilicates in the microstructure, the 

appearance of the pole figure maxima, and therefore the magnetic lineation, to far field 

deformation by the Alleghenian orogeny.  

In the second case study (Chapter 4), the texture of clay-rich sedimentary samples from the 

subduction zone offshore Costa Rica was determined. These samples are highly delicate in 

handling as they contain clay minerals. According to their tectonic setting the sediments from 

IODP cores drilled during expeditions 334 and 344 on the incoming plate and accretionary 

prism are less textured than the samples from the slope. This is due to the total smectite 

content, lower compaction rates and higher porosity. Due to the inclination of the foliation plane 

and the pole figure geometry it was possible to relate some samples to faulting and folding in 

the slope and its sedimentary cover. 

In the third case study (Chapter 5) oceanic serpentinite samples from the Atlantis Massif at the 

Mid-Atlantic Ridge were analyzed regarding their texture. The samples were drilled during 

IODP expedition 357. Texture analysis of serpentinites has been challenging in the past as 

more conventional methods hit their limits due to the curly and fibrous habit of the low-

temperature serpentine minerals lizardite and chrysotile. Two mechanisms of texture formation 

in oceanic serpentinites were identified; firstly, the appearance of bastites leads to local (001) 

pole figure maxima which could get more regional when the precursor pyroxene already 

involved a CPO. And secondly, a pre- or syn-serpentinization strain which led to the 

development of parallel serpentinizing microfractures invokes a texture to the rocks.  
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6.1. Application of synchrotron texture analysis 
The method overcomes the severe limitations posed by more conventional texture analysis 

methods used in geosciences, but it is limited to fine grained samples due to the small beam 

size. By employing a certain sample diameter and measuring several slices of the samples, 

limitations arising from grain size can be extended. Still coarse grained samples cannot be 

measured, but as they are more likely to be suitable for the conventional methods, it was not 

the intention of this thesis to implement the method for all kinds of rocks and samples.  

The advantages of synchrotron texture analysis with regard to the more conventional texture 

analysis methods generally applied in geosciences are in detail discussed in Chapter 4.5.1.  

The three case studies posed three different problems to quantitative texture analysis: the first 

case study in Chapter 3 demanded a destruction free method to use the same sample material 

for AMS and texture analysis and showed a wide range of grain sizes. Due to the enlarged 

sample size it was possible to use the same samples for AMS and texture measurements. The 

second case study concerned mud samples whose water-bearing fabric is very sensitive to 

drying and external manipulation. Due to the measurement of sample cylinders, preparation 

could be restricted to a minimum and does therefore not or only slightly affect the delicate 

microstructure of such samples. Considering the measured sample diameter and volume 

external minor manipulations become negligible. The samples in the third case study in 

Chapter 5 had crystallographic issues and incorporated water in their crystal lattice. 

Synchrotron radiation is unaffected by the water in the crystal lattice and by applying Rietveld 

texture analysis it was possible to analyze the unconventional crystallographic patterns. 

Beside the great improvements the method introduces to quantitative texture analysis of 

delicate samples, some constraints have to be considered. It turned out to be very difficult to 

determine the modal composition and the texture from rock samples, when it comes to delicate 

samples, especially the clay-rich sediments. For the composition of the samples it is still more 

reasonable to analyze the bulk composition from random powder samples, especially when 

considering delicate samples including e.g. swelling or irregularly stacked minerals. 

Nevertheless, this has no impact on texture analysis and calculation.  

6.2. Significance of phyllosilicate textures 
The three case studies focused on three totally different rocks incorporating a broad range of 

different phyllosilicate minerals. The black shales presented in Chapter 3 included 

illite/muscovite and chlorite. The samples are highly textured which was mostly induced by 

burial compaction. A slight elliptification of the (001) maximum in the pole figures of both 

minerals recorded layer parallel shortening as far field deformation, which is documented in 

the signal of the physical properties. The muds and mudrocks in Chapter 4 consist to a large 

extent from the clay minerals smectite, kaolinite and illite. These minerals report tectonic 
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movements, probably at small scale, in the partially soft material of the accretionary wedge, 

which were not documented so far. The serpentine minerals lizardite and chrysotile are also 

phyllosilicates and underline the importance of the combination of texture and microstructure 

analysis, as the texture in some samples is defined by re-mineralization only while in other 

samples it is a combination of deformation and re-mineralization. 

The results show that also samples and lithologies which seem to be of minor interest 

regarding deformation and anisotropy of physical properties can yield important information 

about tectonic processes. Phyllosilicates, due to their strong shape anisotropy, can be really 

sensitive to tectonic processes and therefore record movements which are otherwise 

unrecognized.  

In all three case studies, the texture formation due to intra-crystalline plastic deformation was 

less important than usually considered when talking about textures. It is sedimentary and 

remineralization processes in combination with brittle or far field deformation that control 

texture formation in these rocks. So, the interpretation of phyllosilicate textures should always 

be done carefully and the microstructure and composition should always be explored with 

regard to texture origin. Large scale tectonics always leave their foot print in the microscale 

universe.  

6.3. Conclusion 
The application of synchrotron texture analysis in combination with Rietveld refinement 

enlarges the field of quantitative texture analysis to delicate rocks which can have an irregular 

crystallography. The analyzed rocks pose problems to more conventional texture analysis due 

to the different special mineralogical or crystallographic features. By implying a new workflow 

and measuring a certain sample volume and several slices of cylindrical samples, it was 

possible to overcome restrictions of very fine grain sizes. The results were successfully used 

to monitor far field compression, brittle faulting in a wedge associated with a subduction zone 

and metamorphic re-mineralization which can be a result of spreading-related detachment 

faulting. As phyllosilicates are rheologically weak, they get affected by slight tectonic 

deformations first and record it. This was demonstrated for three case studies concerning 

different rocks from different tectonic settings. The texture and microstructure in Appalachian 

black shales was successfully used to model the AMS and showed layer parallel shortening 

from far field deformation. Muds and mudrocks from the sedimentary cover of the Costa Rica 

subduction zone showed faulting and folding recorded by the texture. In oceanic serpentinites 

from the Atlantis Massif oceanic core complex texture was identified, caused by 

serpentinization mechanisms and pre-serpentinization strain. The determined texture can then 

be used to model physical properties like anisotropy of the magnetic susceptibility and seismic 

P-wave anisotropy. 
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A1 Synchrotron Texture Refinement with MAUD 
This manual describes the work flow which was used to analyze the texture data presented in 

this thesis. This procedure was successful for the data analyzed and presented in this thesis 

and is not necessarily recommended for different samples and data. The manual was 

developed based on the work routines given by Lutterotti et al. (2014); Schumann (2013); 

Wenk et al. (2014). The reader is referred to these studies for further information.  

The programs used (Maud (Lutterotti et al., 1997), Fit2D (Hammersley, 1998), Mtex (Hielscher 

and Schaeben, 2008) are freeware and can be downloaded at the source given in the 

Literature. Only Mtex is Matlab-based and therefore needs to be run in Matlab. 

Refinement of a standard 
Standard measurements are executed to define the instrumental parameters used for the 

refinements. From the experimental measurements the following parameters should be known 

by the user: 

• Wavelength 

• Sample-detector distance 

• Detector parameters: pixel size and number or size in each direction   

• Rotational measurement step  

In Fit2D the beam center can be determined from the Standard as described by (Schumann, 

2013). Then in Maud the Standard can be refined using this information, following the 

instructions given by (Lutterotti et al., 2014) and the online available appendix 

(http://eps.berkeley.edu/~wenk/TexturePage/MAUD.htm). The Fit2D beam center is probably 

more precise than a determination “by hand” in Maud itself. 

 

Data transformation & input 
Depending on the detector used for the synchrotron measurements the results will be in *.esg 

or *.mar format or else. Using the Fit2D program, the images can be converted in tiff16bit data, 

which are suitable to be used in Maud.  

Additionally, an average file of all 36 measured images can be created using the File Series -

> Average option. Using the average file will speed up the refinement. 

When loading the average file in Maud as described by (Lutterotti et al., 2014; Schumann, 

2013) pay attention to the orientation of the image (already when you refine the Standard). The 

orientation necessary for Maud is given by (Lutterotti et al., 2014). This is essential for texture 

calculation. 
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Sample Refinement using the average file 
Refining a file in Maud is described by (Lutterotti et al., 2014; Schumann, 2013; Wenk et al., 

2014). This is the refinement routine used here: 

a. Background and scale factors 

b. Instrumental parameters: intensity, beam center, wavelength, sample detector distance 

c. Crystallographic parameters, each phase separately, be careful to only refine 

components which are clearly defined by their peaks  

d. Parameters defining peak broadening: crystallite size & microstrain 

e. Temperature factor B-iso 

f. Give every phase the texture model EWIMV (derived from WIMV (Matthies and Vinel, 

1982)  

g. Duplicate the datafileset 36 times (or the number of single step measurements you 

have done)  

h. Load the single step measurements separately in the 36 datafilesets 

i. Calculate texture 

 

Pole figure extraction & treatment  
Pole figures and ODF can be extracted from the EWIMV panel. The pole figures in *.xpc format 

can then be imported in Mtex. Here pole figures can be visualized in different ways, used for 

physical property calculations.  
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Supplementary Table 1 Eigenvalues and eigendirections for principal axes of the deviatoric tensor for the bulk magnetic component with their 

corresponding anisotropy parameters as determined from low-field AMS measurements 

Sample k_mean k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
3522,21 2,70E-04 1,050 34,9 0,9 1,0440 124,9 0,0 0,906 214,9 89,1 2,703E-04 0,93 6,6 
3522,22 2,65E-04 1,048 49,4 0,6 1,0420 139,4 1,1 0,910 290,4 88,7 2,647E-04 0,92 6,4 
3522,23 2,69E-04 1,051 28,0 1,2 1,0440 118,1 1,9 0,905 266,1 87,7 2,685E-04 0,91 6,7 
3522,24 2,70E-04 1,052 21,6 0,9 1,0450 111,6 0,4 0,903 226,0 89,0 2,696E-04 0,91 6,9 
3531,91 3,18E-04 1,052 49,7 1,0 1,0470 319,6 1,6 0,902 172,6 88,1 3,182E-04 0,93 6,9 
3531,92 3,11E-04 1,051 221,1 2,8 1,0460 131,1 0,2 0,903 37,0 87,2 3,114E-04 0,93 6,8 
3531,93 3,09E-04 1,052 234,9 1,8 1,0460 324,9 0,0 0,902 56,4 88,2 3,086E-04 0,93 6,9 
3531,94 3,12E-04 1,053 243,4 1,5 1,0470 333,4 0,8 0,901 90,0 88,3 3,122E-04 0,93 7,0 
3542,71 3,12E-04 1,048 38,0 1,1 1,0440 128,0 0,9 0,908 256,9 88,6 3,120E-04 0,94 6,5 
3542,72 3,10E-04 1,048 232,0 0,3 1,0440 322,0 0,1 0,908 63,8 89,7 3,103E-04 0,94 6,5 
3542,73 3,16E-04 1,049 222,6 1,7 1,0450 132,5 0,6 0,906 23,6 88,2 3,158E-04 0,94 6,7 
3552,21 8,87E-04 1,042 284,1 87,8 0,9820 127,2 2,0 0,977 37,2 0,8 8,865E-04 -0,86 2,9 
3552,22 8,54E-04 1,037 278,6 87,5 0,9840 124,1 2,2 0,979 34,1 1,1 8,538E-04 -0,81 2,6 
3552,23 8,37E-04 1,036 286,5 86,5 0,9840 137,5 3,0 0,979 47,4 1,8 8,367E-04 -0,82 2,6 
3572,81 3,06E-04 1,040 217,7 1,3 1,0380 307,8 1,3 0,921 84,0 88,2 3,063E-04 0,96 5,6 
3572,82 3,06E-04 1,041 59,0 1,7 1,0390 329,0 0,5 0,919 221,4 88,2 3,064E-04 0,96 5,7 
3572,83 3,06E-04 1,040 219,3 1,9 1,0350 309,4 3,3 0,925 98,9 86,2 3,061E-04 0,92 5,3 
3583,21 4,11E-04 1,014 247,5 0,5 1,0120 157,5 0,2 0,974 44,2 89,5 4,111E-04 0,93 1,9 
3583,22 4,20E-04 1,011 58,3 0,9 1,0100 148,3 1,2 0,979 289,5 88,5 4,203E-04 0,93 1,5 
3583,23 3,84E-04 1,019 308,0 0,6 1,0180 38,0 0,3 0,964 153,9 89,3 3,836E-04 0,95 2,6 
3583,24 4,22E-04 1,010 90,0 1,9 1,0100 0,0 0,0 0,979 270,0 88,1 4,217E-04 1,00 1,5 
3593,71 1,91E-04 1,040 51,3 0,4 1,0310 321,3 0,5 0,929 177,6 89,4 1,909E-04 0,83 5,0 
3593,72 1,93E-04 1,040 221,8 0,2 1,0320 131,8 1,2 0,928 322,3 88,7 1,928E-04 0,85 5,1 
3593,73 1,90E-04 1,039 233,8 1,5 1,0320 143,8 1,8 0,929 3,9 87,6 1,904E-04 0,86 5,0 
3603,71 2,90E-04 1,048 28,5 1,0 1,0440 298,5 0,6 0,909 176,1 88,9 2,903E-04 0,95 6,5 
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Sample k_mean k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
3603,72 2,96E-04 1,047 51,3 0,4 1,0420 141,3 0,1 0,911 252,3 89,6 2,963E-04 0,92 6,3 
3603,73 2,94E-04 1,048 64,7 1,6 1,0440 334,7 0,8 0,908 217,0 88,2 2,941E-04 0,94 6,5 
3603,74 2,92E-04 1,048 51,2 0,8 1,0430 141,2 1,2 0,909 286,9 88,6 2,924E-04 0,93 6,4 
3623,31 2,61E-04 1,048 42,9 0,5 1,0430 133,0 1,1 0,910 291,3 88,8 2,607E-04 0,93 6,4 
3623,32 2,61E-04 1,047 40,9 1,3 1,0430 131,0 1,1 0,910 261,5 88,3 2,605E-04 0,93 6,4 
3623,33 2,57E-04 1,048 198,6 0,7 1,0400 108,6 0,3 0,912 358,9 89,2 2,565E-04 0,88 6,2 
3623,34 2,59E-04 1,046 38,5 0,5 1,0410 128,5 1,5 0,914 290,8 88,5 2,593E-04 0,93 6,1 
3634,11 3,02E-04 1,053 40,6 0,0 1,0480 310,6 0,9 0,899 132,5 89,1 3,019E-04 0,94 7,2 
3634,12 2,67E-04 1,053 34,3 0,5 1,0480 124,3 1,1 0,899 282,5 88,8 2,671E-04 0,94 7,2 
3644,82 2,58E-04 1,045 219,2 2,2 1,0390 309,3 1,8 0,916 78,7 87,2 2,581E-04 0,92 5,9 
3653,41 2,51E-04 1,050 26,7 1,8 1,0450 116,7 2,4 0,905 259,9 87,1 2,513E-04 0,93 6,7 
3653,42 2,54E-04 1,051 27,2 1,1 1,0470 117,3 3,1 0,902 278,7 86,7 2,538E-04 0,95 6,9 
3653,43 2,54E-04 1,052 14,8 1,1 1,0450 104,9 2,6 0,904 262,5 87,2 2,536E-04 0,91 6,8 
3665,71 1,85E-04 1,038 212,3 4,5 1,0350 122,2 1,3 0,928 16,5 85,3 1,851E-04 0,95 5,1 
3665,72 1,93E-04 1,039 213,9 3,2 1,0340 123,7 3,1 0,927 349,6 85,5 1,926E-04 0,91 5,2 
3665,73 1,89E-04 1,038 208,8 1,6 1,0310 118,7 4,1 0,931 319,6 85,6 1,888E-04 0,87 4,9 
3665,74 1,82E-04 1,036 210,2 0,2 1,0330 300,2 1,7 0,931 112,8 88,2 1,821E-04 0,94 4,9 
3674,51 1,59E-04 1,030 209,3 2,7 1,0260 119,2 0,5 0,944 19,2 87,2 1,589E-04 0,91 3,9 
3674,52 1,59E-04 1,030 216,3 2,7 1,0260 306,3 0,6 0,944 48,4 87,3 1,590E-04 0,91 4,0 
3674,53 1,58E-04 1,030 211,7 1,6 1,0250 121,7 1,0 0,945 358,4 88,1 1,579E-04 0,88 3,9 
3685,41 1,53E-04 1,028 205,1 0,1 1,0240 115,1 0,4 0,948 303,3 89,6 1,526E-04 0,91 3,7 
3685,42 1,53E-04 1,029 188,7 0,2 1,0240 98,7 0,6 0,947 299,8 89,4 1,529E-04 0,88 3,8 
3685,43 1,54E-04 1,028 194,2 1,0 1,0250 104,2 0,6 0,947 343,8 88,8 1,543E-04 0,93 3,7 
3695,41 2,40E-04 1,049 42,3 1,0 1,0460 312,2 2,5 0,906 155,2 87,3 2,404E-04 0,96 6,7 
3695,42 2,43E-04 1,051 256,9 2,0 1,0460 346,9 0,6 0,902 94,2 87,9 2,434E-04 0,93 6,9 
3695,43 2,24E-04 1,050 20,3 1,0 1,0460 290,2 5,1 0,904 121,0 84,8 2,242E-04 0,95 6,8 
3695,44 2,44E-04 1,050 28,2 1,8 1,0460 298,1 2,2 0,904 157,3 87,1 2,438E-04 0,95 6,8 
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Sample k_mean k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
3705,21 2,28E-04 1,054 211,0 0,6 1,0470 121,0 1,7 0,899 319,4 88,3 2,279E-04 0,91 7,1 
3705,22 2,36E-04 1,051 46,0 0,1 1,0460 136,0 0,1 0,903 271,0 89,9 2,360E-04 0,93 6,8 
3714,61 2,68E-04 1,049 36,0 0,1 1,0440 306,0 0,0 0,907 206,2 89,9 2,684E-04 0,93 6,6 
3714,62 2,71E-04 1,047 225,8 0,1 1,0410 135,8 0,9 0,912 324,6 89,1 2,713E-04 0,91 6,2 
3714,63 2,65E-04 1,050 29,3 0,1 1,0430 299,3 2,0 0,907 123,5 88,0 2,645E-04 0,90 6,6 
3727,51 2,34E-04 1,046 221,8 1,8 1,0410 311,8 1,4 0,913 80,6 87,7 2,337E-04 0,92 6,1 
3727,52 2,28E-04 1,046 222,8 2,0 1,0390 312,9 2,0 0,915 87,8 87,2 2,277E-04 0,90 6,0 
3727,53 2,25E-04 1,041 236,1 2,7 1,0370 326,2 1,9 0,922 91,1 86,7 2,245E-04 0,92 5,5 
3739,01 1,70E-04 1,037 41,4 1,2 1,0330 311,4 0,3 0,931 206,0 88,8 1,700E-04 0,92 4,9 
3739,02 1,69E-04 1,037 227,6 0,8 1,0310 137,6 0,0 0,933 44,8 89,2 1,691E-04 0,89 4,8 
3739,03 1,70E-04 1,037 233,7 0,4 1,0330 143,7 0,8 0,930 349,6 89,1 1,699E-04 0,92 5,0 
3751,21 2,38E-04 1,044 239,9 0,3 1,0380 149,9 0,3 0,918 9,9 89,6 2,383E-04 0,90 5,8 
3751,22 2,24E-04 1,043 218,0 0,3 1,0370 128,0 0,8 0,920 327,1 89,1 2,244E-04 0,91 5,7 
3751,23 2,29E-04 1,044 41,9 0,2 1,0390 311,9 0,4 0,917 157,2 89,5 2,294E-04 0,91 5,8 
3751,24 2,32E-04 1,043 228,0 0,6 1,0370 318,1 1,2 0,920 110,7 88,6 2,320E-04 0,91 5,7 
3763,41 2,00E-04 1,047 20,8 1,6 1,0420 110,8 1,1 0,911 235,4 88,0 1,997E-04 0,92 6,3 
3763,42 1,98E-04 1,047 29,7 1,1 1,0420 119,7 1,1 0,911 253,8 88,4 1,983E-04 0,92 6,3 
3763,43 1,99E-04 1,047 42,1 2,1 1,0420 312,1 0,0 0,911 221,0 87,9 1,993E-04 0,93 6,3 
3763,44 2,00E-04 1,047 19,9 1,2 1,0400 289,9 0,3 0,914 183,6 88,8 2,003E-04 0,90 6,1 
3774,51 1,46E-04 1,032 45,3 3,4 1,0290 135,8 8,9 0,939 294,4 80,4 1,461E-04 0,95 4,3 
3774,52 1,47E-04 1,032 208,4 1,0 1,0300 118,2 9,5 0,937 304,5 80,5 1,466E-04 0,96 4,4 
3774,53 1,45E-04 1,033 201,3 1,1 1,0290 111,1 9,0 0,938 298,5 81,0 1,448E-04 0,93 4,4 
3774,54 1,47E-04 1,032 36,7 0,7 1,0290 126,8 7,8 0,940 301,5 82,2 1,473E-04 0,93 4,3 
3786,71 1,44E-04 1,032 20,1 1,1 1,0280 110,1 0,3 0,941 215,6 88,8 1,444E-04 0,92 4,2 
3786,72 1,46E-04 1,032 210,3 0,5 1,0290 300,3 0,9 0,940 90,8 88,9 1,455E-04 0,94 4,3 
3786,73 1,46E-04 1,032 20,3 1,4 1,0280 110,3 0,7 0,941 228,6 88,4 1,458E-04 0,91 4,2 
3798,91 1,51E-04 1,038 43,6 0,4 1,0350 133,6 0,7 0,927 287,3 89,2 1,508E-04 0,95 5,2 
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Sample k_mean k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
3798,92 1,51E-04 1,039 42,2 0,0 1,0360 132,2 1,6 0,925 310,8 88,4 1,512E-04 0,95 5,3 
3798,93 1,48E-04 1,039 41,4 0,6 1,0360 311,4 0,1 0,925 215,4 89,4 1,478E-04 0,96 5,3 
3798,94 1,52E-04 1,040 205,1 0,2 1,0370 115,1 0,3 0,924 322,4 89,6 1,517E-04 0,94 5,4 
3813,91 2,08E-04 1,037 42,1 0,8 1,0330 312,1 0,3 0,930 202,5 89,1 2,079E-04 0,92 5,0 
3813,92 2,07E-04 1,036 38,0 0,0 1,0320 308,0 0,6 0,933 128,0 89,4 2,070E-04 0,92 4,8 
3813,93 2,09E-04 1,036 232,7 0,9 1,0320 322,8 1,1 0,931 105,1 88,6 2,092E-04 0,93 4,9 
3813,94 2,07E-04 1,037 43,2 1,4 1,0320 133,2 1,7 0,931 274,2 87,8 2,069E-04 0,92 4,9 
3826,61 2,09E-04 1,039 221,1 1,2 1,0350 131,1 1,8 0,926 344,3 87,8 2,087E-04 0,93 5,2 
3826,62 2,08E-04 1,038 222,1 0,9 1,0340 132,1 0,3 0,928 26,0 89,0 2,083E-04 0,92 5,1 
3826,63 2,08E-04 1,039 231,3 0,9 1,0350 141,3 0,6 0,927 17,5 89,0 2,082E-04 0,93 5,2 
3826,64 2,09E-04 1,039 36,7 0,3 1,0340 306,6 1,2 0,927 141,5 88,7 2,088E-04 0,92 5,1 
3840,41 2,27E-04 1,038 221,4 0,3 1,0330 311,4 1,6 0,929 122,0 88,4 2,268E-04 0,92 5,1 
3840,42 2,28E-04 1,038 218,0 0,1 1,0340 308,0 1,9 0,928 126,3 88,0 2,276E-04 0,92 5,1 
3852,91 1,83E-04 1,043 52,6 0,5 1,0370 142,6 1,1 0,920 300,0 88,8 1,826E-04 0,91 5,6 
3852,92 1,78E-04 1,042 49,3 0,2 1,0370 319,3 0,6 0,921 157,5 89,3 1,779E-04 0,92 5,6 
3852,93 1,79E-04 1,042 53,8 1,0 1,0360 143,8 1,9 0,923 294,8 87,9 1,786E-04 0,91 5,5 
3865,21 1,81E-04 1,042 38,6 0,8 1,0360 308,6 2,1 0,922 149,7 87,8 1,805E-04 0,91 5,5 
3865,22 1,78E-04 1,041 46,4 0,6 1,0370 316,4 0,3 0,922 200,9 89,4 1,775E-04 0,92 5,5 
3865,23 1,78E-04 1,042 45,0 1,3 1,0370 135,0 0,7 0,921 252,6 88,5 1,778E-04 0,91 5,6 
3865,24 1,72E-04 1,043 40,7 1,0 1,0380 130,8 1,4 0,919 275,2 88,3 1,724E-04 0,92 5,7 
3890,91 2,03E-04 1,041 40,7 2,0 1,0360 130,7 0,8 0,923 241,8 87,8 2,032E-04 0,92 5,5 
3890,92 2,16E-04 1,042 218,0 1,0 1,0370 128,0 0,5 0,921 9,5 88,9 2,157E-04 0,93 5,6 
3890,93 2,03E-04 1,041 43,8 1,5 1,0370 133,8 0,4 0,922 238,8 88,4 2,030E-04 0,94 5,5 
3905,81 2,12E-04 1,037 45,0 0,2 1,0330 135,0 0,2 0,931 271,1 89,8 2,117E-04 0,92 4,9 
3905,82 1,96E-04 1,037 234,7 1,0 1,0320 144,6 2,1 0,931 349,5 87,7 1,955E-04 0,91 4,9 
3905,83 2,13E-04 1,037 213,9 0,7 1,0330 123,9 0,6 0,930 351,5 89,1 2,126E-04 0,91 4,9 
3905,84 2,06E-04 1,041 42,6 1,0 1,0360 132,6 0,5 0,924 249,2 88,9 2,064E-04 0,91 5,4 
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Sample k_mean k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
3920,01 1,57E-04 1,037 36,8 0,0 1,0320 126,8 1,2 0,931 304,8 88,8 1,573E-04 0,91 4,9 
3920,02 1,58E-04 1,037 209,4 0,1 1,0320 119,4 1,0 0,931 304,7 89,0 1,576E-04 0,91 4,9 
3920,03 1,58E-04 1,036 31,0 0,2 1,0310 121,0 0,9 0,933 285,9 89,1 1,579E-04 0,91 4,7 
3935,61 1,89E-04 1,041 233,3 1,5 1,0370 323,3 0,3 0,922 63,7 88,5 1,894E-04 0,94 5,5 
3935,62 1,86E-04 1,040 219,0 0,7 1,0360 309,0 0,3 0,924 64,1 89,2 1,861E-04 0,94 5,4 
3935,63 1,85E-04 1,040 220,9 1,0 1,0370 130,9 0,3 0,923 26,2 89,0 1,849E-04 0,94 5,4 
3948,71 1,73E-04 1,033 216,8 1,1 1,0260 306,9 1,3 0,941 86,3 88,4 1,730E-04 0,85 4,2 
3948,72 1,59E-04 1,031 216,5 0,2 1,0270 306,5 2,8 0,942 122,2 87,2 1,592E-04 0,91 4,1 
3948,73 1,53E-04 1,031 234,2 0,7 1,0250 324,2 1,0 0,944 110,2 88,7 1,525E-04 0,86 4,0 
3962,61 5,21E-05 1,017 71,2 2,0 1,0100 161,2 0,8 0,973 273,1 87,8 5,214E-05 0,69 2,0 
3962,62 4,12E-05 1,012 243,4 1,5 1,0080 333,4 1,5 0,980 107,9 87,9 4,121E-05 0,75 1,4 
3967,71 1,02E-04 1,035 96,0 10,4 1,0300 187,8 9,8 0,936 320,2 75,6 1,015E-04 0,90 4,6 
3967,72 1,04E-04 1,031 239,2 3,2 1,0260 329,5 6,0 0,943 121,4 83,2 1,037E-04 0,88 4,0 
3967,73 9,74E-05 1,034 107,9 16,1 1,0300 199,7 6,5 0,936 310,8 72,6 9,739E-05 0,92 4,5 
3967,74 1,00E-04 1,029 54,2 0,5 1,0250 324,2 2,5 0,945 154,5 87,4 1,002E-04 0,91 3,9 
3977,81 6,69E-05 1,004 3,2 1,4 1,0010 93,4 8,2 0,995 263,9 81,7 6,687E-05 0,29 0,4 
3977,82 6,98E-05 1,003 180,0 1,1 1,0010 90,0 0,0 0,995 0,0 88,9 6,983E-05 0,59 0,3 
3977,83 6,71E-05 1,003 184,0 2,8 1,0010 274,1 2,0 0,997 38,6 86,5 6,705E-05 0,23 0,3 
3977,84 6,62E-05 1,004 7,5 2,3 1,0010 97,5 1,1 0,995 213,5 87,5 6,623E-05 0,41 0,4 
3977,85 6,59E-05 1,004 18,9 2,6 1,0010 109,0 2,2 0,995 238,6 86,6 6,592E-05 0,18 0,4 
3991,21 1,21E-04 1,034 220,3 3,0 1,0290 310,3 1,4 0,936 64,6 86,7 1,213E-04 0,90 4,5 
3991,22 1,26E-04 1,035 215,2 1,5 1,0300 125,2 0,3 0,935 22,6 88,5 1,255E-04 0,90 4,6 
3991,23 1,25E-04 1,035 217,9 2,5 1,0290 308,0 1,5 0,936 68,5 87,1 1,254E-04 0,89 4,5 
3991,24 1,26E-04 1,036 221,9 1,9 1,0310 131,9 0,7 0,934 21,9 88,0 1,260E-04 0,90 4,7 
4004,71 1,18E-04 1,040 212,8 1,5 1,0350 302,9 3,4 0,925 98,4 86,3 1,178E-04 0,92 5,3 
4004,72 1,17E-04 1,041 206,7 1,4 1,0350 296,8 1,9 0,925 79,6 87,6 1,165E-04 0,90 5,3 
4004,73 1,16E-04 1,040 216,8 1,5 1,0340 306,9 2,2 0,926 93,5 87,3 1,163E-04 0,90 5,3 
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Sample k_mean k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
4020,01 1,91E-04 1,044 46,3 1,4 1,0390 316,3 0,4 0,918 209,6 88,5 1,909E-04 0,92 5,8 
4020,02 1,93E-04 1,044 46,2 0,9 1,0380 316,2 1,2 0,919 174,7 88,5 1,929E-04 0,91 5,8 
4020,03 1,92E-04 1,044 41,5 0,9 1,0390 311,4 2,0 0,918 156,2 87,8 1,916E-04 0,91 5,8 
4065,31 2,29E-04 1,051 37,1 0,8 1,0440 127,1 1,6 0,905 280,9 88,2 2,285E-04 0,91 6,7 
4065,32 2,30E-04 1,051 39,5 0,4 1,0440 129,5 2,1 0,905 298,9 87,9 2,296E-04 0,91 6,7 
4065,33 2,24E-04 1,051 39,7 0,0 1,0450 129,7 1,0 0,905 0,0 90,0 2,240E-04 0,91 6,8 
4065,34 2,28E-04 1,050 221,8 0,0 1,0440 131,8 0,9 0,906 314,8 89,1 2,279E-04 0,90 6,7 
4080,11 2,31E-04 1,047 222,0 1,0 1,0420 312,1 2,5 0,911 110,3 87,3 2,305E-04 0,93 6,3 
4080,12 2,32E-04 1,047 217,5 0,7 1,0400 127,5 1,1 0,912 340,4 88,7 2,317E-04 0,90 6,2 
4080,13 2,33E-04 1,047 212,6 0,8 1,0410 302,6 0,9 0,912 79,8 88,8 2,334E-04 0,92 6,2 
4080,14 2,30E-04 1,047 225,0 0,5 1,0400 135,0 0,5 0,912 358,8 89,3 2,302E-04 0,90 6,2 
4092,71 2,13E-04 1,046 221,9 0,7 1,0410 131,9 0,3 0,913 19,7 89,2 2,128E-04 0,92 6,2 
4092,72 2,10E-04 1,046 221,4 0,3 1,0390 131,4 1,2 0,915 326,7 88,8 2,096E-04 0,89 6,0 
4092,73 2,01E-04 1,045 216,5 0,4 1,0390 126,4 1,8 0,915 318,8 88,2 2,009E-04 0,91 6,0 
4092,74 1,91E-04 1,046 222,1 1,4 1,0390 132,1 0,2 0,915 35,7 88,6 1,910E-04 0,89 6,0 
4102,11 7,35E-05 1,023 16,3 0,3 1,0210 286,3 12,7 0,956 112,7 87,3 7,347E-05 0,95 3,1 
4102,12 7,29E-05 1,024 4,3 0,5 1,0200 274,3 1,7 0,957 111,7 88,2 7,285E-05 0,89 3,1 
4102,13 7,41E-05 1,022 24,6 0,2 1,0210 294,6 2,0 0,957 121,2 88,0 7,412E-05 0,97 3,0 
4102,14 7,35E-05 1,022 201,1 0,0 1,0210 291,1 3,1 0,957 110,9 86,9 7,351E-05 0,95 3,0 
4103,01 2,05E-04 1,046 217,0 0,9 1,0400 127,0 1,0 0,915 350,5 88,6 2,052E-04 0,91 6,0 
4103,02 2,05E-04 1,046 223,9 0,2 1,0410 133,9 0,9 0,913 327,4 89,1 2,052E-04 0,92 6,2 
4103,03 2,00E-04 1,046 221,4 0,8 1,0410 311,4 0,7 0,913 80,8 88,9 1,998E-04 0,92 6,2 
4103,04 2,05E-04 1,047 231,0 1,2 1,0400 321,1 0,7 0,913 79,8 88,6 2,053E-04 0,91 6,2 
4125,31 1,75E-05 1,019 14,8 0,8 1,0110 104,9 3,8 0,970 272,2 86,1 1,745E-05 0,69 2,1 
4125,31 1,17E-05 1,018 36,3 3,4 1,0110 126,7 5,5 0,971 274,9 83,5 1,170E-05 0,67 2,1 
4125,31 1,17E-05 1,019 18,0 4,2 1,0120 108,1 2,4 0,970 228,1 85,2 1,168E-05 0,71 2,2 
4125,32 1,28E-05 1,013 27,1 7,0 1,0060 117,6 4,3 0,981 239,0 81,8 1,275E-05 0,57 1,4 
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Sample k_mean k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
4125,32 1,27E-05 1,012 14,4 5,1 1,0050 284,2 1,7 0,983 175,5 84,6 1,268E-05 0,50 1,2 
4125,32 1,27E-05 1,011 34,1 9,8 1,0070 124,5 2,2 0,982 227,0 80,0 1,265E-05 0,68 1,3 

 

  



Appendix 

xxi 

 

Supplementary Table 2 Eigenvalues and eigendirections for principal axes of the deviatoric tensor for the paramagnetic component with their 

corresponding anisotropy parameters as determined from high-field torque AMS measurements 

Sample k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
3531 1,72E-05 212,5 2,1 1,51E-05 122,5 1,0 -3,23E-05 8,0 87,7 2,29E-05 0,92 7,2 
3593 8,44E-06 41,4 0,1 6,52E-06 131,4 2,0 -1,50E-05 307,9 88,0 1,06E-05 0,84 5,6 
3634 8,40E-06 42,1 0,2 6,48E-06 132,1 2,2 -1,49E-05 308,1 87,8 2,48E-05 0,93 8,2 
3665 7,68E-06 200,4 1,6 6,22E-06 110,3 4,8 -1,39E-05 309,2 85,0 9,85E-06 0,87 5,3 
3674 5,48E-06 213,9 2,7 4,56E-06 123,8 1,2 -1,00E-05 9,5 87,0 7,10E-06 0,88 4,5 
3751 1,13E-05 51,3 0,3 9,68E-06 141,3 0,0 -2,10E-05 237,4 89,7 1,49E-05 0,90 6,3 
3890 9,80E-06 217,5 0,7 8,54E-06 127,5 1,2 -1,83E-05 338,1 88,6 1,30E-05 0,91 6,4 
3967 9,37E-07 218,4 4,3 3,28E-07 126,7 21,9 -1,27E-06 318,9 67,6 9,28E-07 0,45 0,9 
3977 5,10E-08 182,0 4,7 8,61E-09 285,5 70,6 -5,96E-08 90,4 18,7 4,56E-08 0,23 0,1 
4020 9,55E-06 42,1 1,0 8,18E-06 132,1 0,9 -1,77E-05 263,7 88,6 1,26E-05 0,90 6,6 
4092 1,15E-05 220,0 1,2 9,84E-06 130,0 1,1 -2,13E-05 355,8 88,4 1,50E-05 0,90 7,0 
4103 1,01E-05 217,9 0,8 8,70E-06 127,9 0,5 -1,88E-05 7,7 89,0 1,33E-05 0,90 6,5 
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Supplementary Table 3 Eigenvalues and eigendirections for principal axes of the deviatoric tensor for the modeled bulk rock composition with their 

corresponding anisotropy parameters 

Sample k_mean k1 Dec k1 Inc k1 k2 Dec k2 Inc k2 k3 Dec k3 Inc k3 k' U k'% 
3531 5,31E-08 5,53E-08 201,6 1,9 5,51E-08 291,6 0,2 4,90E-08 27,8 88,1 2,92E-09 0,94 5,5 
3593 4,85E-08 5,01E-08 50,3 1,9 4,97E-08 140,2 1,8 4,56E-08 6,6 87,4 2,03E-09 0,83 4,2 
3634 5,14E-08 5,40E-08 212,9 1,9 5,38E-08 302,9 0,6 4,63E-08 50,4 88,0 3,58E-09 0,96 7,0 
3665 4,53E-08 4,72E-08 198,0 2,0 4,65E-08 107,5 4,4 4,21E-08 312,5 85,1 2,25E-09 0,75 5,0 
3674 3,98E-08 4,10E-08 203,7 2,8 4,07E-08 293,6 0,4 3,77E-08 16,5 87,1 1,51E-09 0,79 3,8 
3751 4,99E-08 5,16E-08 43,3 0,4 5,14E-08 313,3 0,1 4,67E-08 27,8 89,6 2,29E-09 0,92 4,6 
3890 2,17E-08 2,26E-08 36,0 0,4 2,25E-08 306,0 0,0 1,99E-08 218,9 89,6 1,24E-09 0,89 5,7 
3967 3,65E-08 3,71E-08 219,5 0,3 3,69E-08 309,4 16,6 3,54E-08 310,3 73,4 7,48E-10 0,72 2,1 
3977 1,97E-09 2,05E-09 355,4 13,9 1,97E-09 266,0 2,5 1,88E-09 186,2 75,9 6,61E-11 0,02 3,4 
4020 4,48E-08 4,68E-08 40,0 1,8 4,66E-08 310,1 0,7 4,10E-08 61,5 88,1 2,67E-09 0,91 6,0 
4103 5,30E-08 5,49E-08 43,4 0,2 5,48E-08 313,4 0,1 4,94E-08 250,0 89,8 2,57E-09 0,97 4,8 

 



 

 

 

 
Supplementary Figure 1 Overview of all model contributions of the different minerals and the 

combined paramagnetic and bulk magnetic mode 
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