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Abstract

Epithelial cells are able to sense and mechanically respond to the forces and movements

generated and transmitted through their neighbors. These forces are multicellular at the

tissue level, and are transmitted via multimeric protein complexes at the cell adhesion sites

between two neighboring cells. The cell membrane in epithelial cells serve as a major site

for receiving external mechanical forces, and via mechano-transduction these stimuli are

converted into intracellular biochemical signals. Previous understanding of the junctional

adhesion complexes (cadherin/catenin complex) may provide an insight, yet the key

molecular components of mechano-transduction remained unidentified so far. In this study,

we hypothesize that mechanosensitive (MS) ion channels (TMC, NOMPC and Piezo), might

respond to the changes in tension at the plasma membrane and are crucial for maintenance

and establishment coordinated cell behavior.

A major morphogenetic transformation event in Drosophila embryos is Dorsal closure (DC).

This event critically depends on the dynamics of a squamous epithelium called the

Amnioserosa (AS). AS cells exhibit dynamic mechanical behavior that appears to be

coordinated between cells by undergoing stable oscillations between cross-sectional area.

In addition, AS cells are highly accessible to genetic manipulations and quantitative live cell

imaging. This provides a robust model system to study mechanosensing and mechano-

transduction in epithelial cells.

Changes in tension at the adherens junction could be detected via mechano-transduction

pathways, allowing cells to communicate with each other. I have found that MS ion channels

are expressed in AS epithelium and are involved in establishing coordination between AS

cells. In particular, I have found that the putative ion channel TMC is required for achieving

isotropic junction tension and morphology within the AS. In order to understand the potential

role of MS ion channels in establishing this coordinated cell behavior, I established methods

and assays to follow Ca2+ dynamics and turnover in the AS cells.

This study could reveal and characterize previously unanticipated functions of MS putative

ion channel TMC in epithelial tissue morphogenesis. I attempted to elucidate the principles

by which the interaction of adherens junctions and MS ion channels may contribute to guide

the active mechanical behavior in the epithelial cells.
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Chapter 1. Introduction

1.1 Epithelial morphogenesis

Morphogenesis is derived from the Greek word gennisi (generation) and morphê (shape). It

is the process of how an organism, is shaped at every stage of its growth and development

starting from the fertilized egg (Keller, 2012).  Tissue-scale morphogenesis and cell shape

changes are crucial for driving major developmental processes, such as gastrulation, tube

formation, neurulation, to name a few. Many morphogenetic events involve coordinated

movement of group of cells, in order to shape a tissue during development.

Fig 1.1 Coordinated cell behavior during tissue-scale morphogenetic events in Drosophila embryo. (A-

A´) Apico-basal constriction of the ventral cells driving mesoderm invagination during Gastrulation. (B-B´) Cell

intercalation during germ-band extension. (C-C´) Apical constrictions in amnioserosa cells during dorsal
closure. Figure modified from (Kong et al., 2017) and (Martin and Goldstein, 2014).

In the Drosophila melanogaster, some of the well-characterized morphogenetic processes

correspond to gastrulation (Leptin and Grunewald, 1990), germ-band extension (Kong et al.,

2017), and dorsal closure (DC) (Jacinto et al., 2002) among others. These tissue-scale

morphogenetic events are largely the consequence of continuously regulated and

coordinated behavior of a group of cells via complex mechanisms (Fig 1.1) (Kiehart et al.,

A

B

C

Germ(band-extension

C

A

B
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2000b; Heisenberg and Bellaïche, 2013; Gilmour et al., 2017). One of the many

morphogenetic events employing coordinated cell behavior occurs during gastrulation in

Drosophila. During this process, the apical surface of a stripe of ventral cells constituting the

mesoderm constricts, modifying their length along their apico-basal axis, while neighboring

cells remain unchanged in their morphology. This further drives mesoderm invagination (Fig

1.1, A-A´). (Kölsch et al., 2007).

Another example of coordinated cell behavior in tissue-scale morphogenesis is during germ-

band extension. At this stage, the embryo extends up to two-fold along the anterior-posterior

axis. Major contribution to drive this tissue scale morphogenetic event is provided by cell

intercalation, where a group of cell are able to modify their relative position within the tissue,

by transiently shortening their cell junctions (Kong et al., 2017) (Fig 1.1, B-B´).

Dorsal closure is one of the major morphogenetic events during embryonic development of

Drosophila. During dorsal closure, coordinated tissue rearrangements occur in order to drive

the lateral epidermis dorsally in a cohesive manner. Additionally, this leads to the

displacement of extra-embryonic, squamous epithelial tissue called Amnioserosa (AS), in

order to fully envelope the embryo and for continuous epithelium. In order to drive this

process, coordinated apical constrictions of the AS cells significantly contribute to the

generation of tissue-scale forces (Fig 1.1, B-B´) (Kiehart et al., 2000a; Martin and Goldstein,

2014).

Previous studies in the field collectively indicate that the spatiotemporal control and

regulation of local cell behavior of a group of cells is crucial in order to determine the shape

of the tissue. Regulation of cell behavior of a group of cells relies on complex mechanisms

including morphogens, signaling pathways and mechanical forces (Gilmour et al., 2017).

One of the most intriguing questions, in order to completely understand the cellular and

tissue-scale morphogenetic abilities of the organisms, is how different cellular mechanisms

are coordinated and regulated while performing collective cell movements, with the motive

of shaping the organism (Keller, 2012).
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1.2 Apical constrictions: A common cell-shape change resulting in
epithelial morphogenesis

Within the epithelial tissue, highly coordinated dynamic movements and deformations shape

the embryo (Quintin et al., 2008) (see Fig 1.1). Coordinated apical constrictions of group of

cells are central to some key developmental events occurring throughout the metazoa. In

many organisms, epithelial cells undergo apical constrictions generally at early stages of

embryogenesis, such as during gastrulation in Caenorhabditis elegans (Rohrschneider and

Nance, 2009), during gastrulation and dorsal closure in Drosophila melanogaster (Sawyer

et al., 2010; Sokolow et al., 2012), as well as during vertebrate neural tube formation, among

others (Andrew and Ewald, 2010).

Fig 1.2 Mechanism and function of apical contractile cell behavior. (A) Myo-II dynamics during apical cell

constriction. The contractile pulse is initiated by Rok dependent Myo-II phosphorylation and activity. (B) Myo-
II assembly during pulsatile contractions: Myo-II pulses induce contraction asynchronously in the adjacent

cells. In addition, Myo-II remodeling allows cells to adjust contacts to maintain stable intercellular cytoskeletal

connections. On the other hand, Continuous Myo-II assembly decreases the ability of actomyosin networks to

dynamically adjust to changes in tissue mechanics, resulting in loss of intercellular connections of Myo-II
structures. Figure adapted from (Vasquez et al., 2014).

Myo-II dynamics during apical constriction

Pulsatile constriction

Continuous constriction

A

B
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In epithelial cells, actomyosin contractility play a crucial role during continuous apical

contractions. Previous studies suggest that the sub-cellular organization of contractile

cytoskeletal networks facilitates force generation., senses and transmits forces between the

cells and therefore better understanding for coordinated cell behavior. During tissue-scale

morphogenetic events, each cell should be able to mechanically sense and respond to the

external forces in order to participate effectively in controlling the cellular and tissue

remodeling. Continuous expansion or contraction of plasma membrane domains during

apical constriction requires changes in membrane tension in single cells or in a group of

cells. Dynamic regulation of cell-cell adhesion at the junction between two cell-borders play

a crucial role in cell rearrangements during these events (Gumbiner, 1996).

Apical constriction requires the apical and junctional recruitment and remodeling of an

actomyosin contractile network. Non-muscle Myosin II pulses have been shown to correlate

with transient fluctuations and change of cell shape and area in epithelial cells (Fig 1.2). In

the Drosophila epithelium, phosphorylation of the regulatory light chain (Myo-IIRLC) by Rok

activates Non-muscle Myosin-II (Dawes-Hoang et al., 2005; Vasquez et al., 2014). Rok is

activated by the RhoGTP exchange factor RhoGEF2 and RhoA (Kölsch et al., 2007). During

apical constriction, the apical actomyosin network predominantly flows towards the apico-

medial region of the cortex in order to drive constriction of the apical surface of the cells (Fig

1.2, A and B) (Martin and Goldstein, 2014).

1.3 Dorsal closure as a model system to study coordinated epithelial
morphogenesis

Large tissue-scale movements drive the shaping of the embryo during development. Dorsal

closure (DC) is one of the major morphogenetic events during early embryogenesis in

Drosophila. It has been well studied with respect to the force distribution intrinsic and

extrinsic to the tissue in order to drive morphogenesis (Kiehart et al., 2000a; Hutson et al.,

2003; Solon et al., 2009). DC occurs 8–12hr after the egg lay, corresponding to the

embryonic stages 13–15 (Campos-Ortega and Hartenstein, 1997). In a preceding event to

DC, germ-band retraction takes place. During germ-band retraction, the extended germ-

band (extending from the ventral and posterior side of the embryo to its dorsal side, post

gastrulation stage) now retracts back to the posterior end of the embryo. The retraction
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causes exposure of a hole on the dorsal side of the embryo that is filled with an extra-

embryonic squamous epithelial tissue called Amnioserosa (AS) (Fig 1.3).

Fig 1.3 Morphogenesis at cellular levels and tissue-scale during DC in Drosophila embryos. (A) AS cells

undergo continuous apical constriction, reflecting oscillatory behavior. (B) Leading edges meet at the canthi of

the opening. (C) Zippering forces (green arrows) drive the closing of the dorsal hole. Figure adapted from

(Heisenberg, 2009). Red arrows indicate contractile forces acting at individual AS cell (shown in the inset

figure) and at the leading edge of the epidermis (from early to late panels).

1.3.1 Multiple tissue-scale forces during DC

The two highlights of DC event are (1) Continuous pulsatile constriction of the apical

surfaces of AS cells, which contribute to the forces driving DC (Fig 1.3, A) (Pasakarnis et

al., 2016). (2) The movement of supra-cellular actin cable (AC), located at the leading edges

(anterior-most lateral epidermis) on either side of the opening, towards the midline in order

to seal the dorsal gap and form a continuous epithelium (FIG 1.3, B, C) (Jacinto et al., 2002).

At the end of the DC, following the dorsal-ward movement of the leading edges, AS cells

ingress below the epidermal cell sheets and undergo apoptosis (Toyama et al., 2008).

Number of studies, exploring the cellular and tissue-scale mechanisms and signaling

pathways during DC, suggest that a coordinated interplay of forces generated within the two

tissue, the lateral epidermal cells and the AS cells, is essential for driving this event (Fig 1.4)

(Solon et al., 2009). First, the AS cells exert active actomyosin dependent contractile forces

via continuous oscillations, pulling on the two edges of the lateral epidermis together at the

cathus. Continuous pulsatile contractions of AS cells are essential to drive this process, as

the disruption of cell contractility lead to failure of the DC event (Kiehart et al., 2000a;

A B C

Posterior

Anterior

Early Late
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Pasakarnis et al., 2016). In addition to this, there are resistive forces being generated from

the epidermal cells surrounding the AS tissue in order to counteract the contractile forces.

These forces at the epidermal front were revealed via laser micro-ablation of the cells at the

leading edge, along the epidermis-AS boundary. Laser dissections induces fast retraction

of the lateral epidermis revealing the high tension underlying at the epidermal-AS boundary

(Fig 1.3 inset image, B, Fig 1.4) (Hutson et al., 2003).

Fig 1.4 Tissue-scale forces during DC. Schematic showing key morphogenetic events at the cellular level

and tissue-scale during DC in Drosophila embryo. AS (green) and the AC are able to generate contractile

forces (blue arrows) and the lateral epidermis (yellow) generate tension counteractive (orange) to the

contractile forces. Figure adapted from (Mateus and Arias, 2011).

In addition to the different forces originating from the AS and the lateral epidermis, tensile

forces are generated by a highly dynamic, supracellular actomyosin cable (AC), which forms

around the dorsal opening and at the border between the leading epidermis and AS tissue.

The actomyosin cable is thought to behave as a purse string that contracts and shortens the

leading edge, eventually bringing the two epidermal fronts together (Fig 1.3, Fig 1.4). During

the late phase of DC, dynamic filopodial protrusions on the AC of the opposing leading edges

intertwine, in order to form a tight seam at the dorsal midline. This completely seals the

dorsal gap and give rise to a continuous epithelium (Kiehart et al., 2000a; Hutson et al.,

2003; Heisenberg, 2009).

1.3.2 Non-autonomous oscillatory behavior in AS cells

A central player of DC is the highly dynamic and morphogenetic AS tissue. AS cells undergo

rapid and continuous cycles of cell surface area oscillations, which is crucial in the dorsal-

ward displacement of the neighboring lateral epidermis. Individual AS cells continuously

contract their apical surfaces with a periodicity of 230±76 sec (Fig 1.5, A) (Solon et al., 2009;
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Blanchard et al., 2010). The major driving force for the apical contraction and expansion

come from the cycles of assembly and disassembly of cortical actomyosin networks (Fig

1.5, B). Sqh-GFP (GFP fused to the regulatory light chain of non-muscle Myosin II: spaghetti-

squash) localize as two distinct structures at the apices of the cells. Myosin II localizes as

Fig 1.5 Pulsed contractions in AS cells. (A) 45 mins to 1 hour prior to the initiation of the DC, AS cells,

undergo apical surface fluctuations with a periodicity of 230±76 sec. (B) Cell shape fluctuations are result of
contractions of the apical surface area without stabilization, between pulses. Figure modified from (Solon et

al., 2009; Martin and Goldstein, 2014).

dynamic apico-medial network, and at cell-cell adherens junctions forming a cortical ring. It

has been shown that Myosin II transiently accumulate and disperse as a wave across the

apical surface of cells. The formation of these Myosin II foci coincided with the local

displacements of the membrane towards the foci. This further suggest a contribution of the

apico-medial pool of Myosin II in driving the cell shape fluctuations (Fig 1.5, B) (Hutson et

al., 2003; Blanchard et al., 2010; Lynch et al., 2013; Martin and Goldstein, 2014; Pasakarnis

et al., 2016)

AS cell pulsing appears to be non-autonomous and coupled with the neighboring cells. It

has been shown that the pulsation pattern of the direct neighbors was repeatedly indicated

to be an in-phase or anti-phase correlation (Fig 1.6, A). This coupling fades with distance as

the oscillations of cells further apart does not seem to be affected. Furthermore, when laser-

induced cuts are made at a single junction connecting two AS cells, the neighboring cells

respond with a relaxation of the surrounding tissue. The AS cells adjacent to the opening,

that are in direct contact with the ablated target junction, stop their oscillatory behavior

0 sec 80 sec 160 sec 240 sec 320 sec 400 sec 480 sec 560 sec
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almost instantaneously. This provides stronger evidence for coordination and coupling

between neighboring cells (Solon et al., 2009; Jayasinghe et al., 2013).

Fig 1.6 AS pulses are coupled during dynamic oscillations. (A) Cross-correlation map of neighboring AS

cells over three to four full oscillation phases (blue boundaries: in-phase correlations, red boundaries: anti-

phase correlations, and yellow boundaries: cells switching between the two). (B) Short phase correlation of
apical surface area fluctuations in two neighboring AS cells of over time. Figure adapted from (Solon et al.,

2009).

These experiments (Fig 1.6 A, B) strongly suggest that the oscillatory behavior AS cell are

neighbor cell-dependent and temporally coordinated. It also suggests that in order to

maintain balance in the tissue tension there is a requirement of a mechanism based on

mechanosensing and mechanical feedback within the tissue. Coordination and coupling

between the neighbors within the AS, via adherens junction, might provide a mechanism for

this.

A B
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1.4 Mechano-transduction and force-sensing at the adherens junction

Physical forces play a major role in cell shape change and morphogenesis of epithelial cells.

Mechanical forces experienced by the cells could be either external, exerted via the

neighboring cells in the tissue, or internally induced by the intracellular actomyosin driven

contractility. These forces once transmitted, are sensed by the cell. This force transduction

and sensing could be understood as mechanotransduction: transduction of mechanical

stimuli into biochemical signals, which enables the cell to sense and respond (Orr et al.,

2006). Understandings from the previous research show the involvement of

mechanosensitive ion channels, integrins, cadherins, actomyosin networks, and several

other signaling molecules in mechano-transduction at the cell junctions. However, how cells

respond and transmit forces and adapt to the mechanical properties of neighboring cells

remained vaguely understood so far.

Epithelial cells interact with each other and their physical environment primarily via cell-cell

adhesion, which is E-Cadherin dependent in the epithelium. Cell-cell communication and

coordination could be established within the epithelium via (1) exchange of biochemical

signals such as secreted signaling ligands, and (2) via the ability of the cells to respond to

mechanical stimulus. Cells in epithelial tissue are physically coupled to each other via

intercellular junctions and forces are transmitted across the tissue and as well as between

connected neighboring tissues (Borghi et al., 2012; Maître and Heisenberg, 2013). Adherens

Junctions function as a platform to sense changes in tension exerted by the adjacent cells

(Matsuzawa et al., 2018). E-Cadherin in epithelial cells facilitates homophilic adhesion

between the cells. The intracellular domain of E-Cadherin binds to the adaptor proteins β-

catenin and α-catenin and form an adhesion complex and links adhesion receptors to the

underlying actin cortex (Fig 1.8, A). These complexes serve as a major site for receiving

mechanical stimuli in the cell (Niessen et al., 2011) (Guillot and Lecuit, 2013; Chanet and

Martin, 2014). Based on these previous understanding, conceivable mechanisms

concerning the mechano-transduction and force sensing via adherens junctions are

discussed in following subsection:

1.4.1 Force-dependent E-Cadherin clustering.
1.4.2 Force-dependent conformational changes in α-Catenin,
1.4.3 Mechano-sensitive ion channels.
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1.4.1 Force-dependent E-Cadherin clustering

E-cadherin mediated trans-homodimerization and cis-interactions results in lateral

clustering. In the epithelium, the maintenance and stability of these E-cadherin clusters

require interaction with actin. E-cadherin clusters at the adherens junction (AJ) form an

adhesive belt that mechanically holds and couple two epithelial cells together. Clustering

and de-clustering of E-Cadherin provide cells the ability to deform and remodel cell contacts

and eventually might transduce tension to control local junction dynamics (Truong Quang et

al., 2013).

Fig 1.7 E-Cadherin clusters at the cell-cell junction. Schematic representation of tension dependent

clustering of E-Cadherin and actomyosin reorganization at the adherens junction.

N-glycosylation (Post-translational modification for membrane proteins) is crucial for

distribution and clustering of E-Cadherin within the plasma membrane and at the adherens

junctions. One of the genes contributing to E-cadherin glycosylation is xit. xit encodes for

one of the conserved enzymes involved in the addition of the terminal glucose residues to

the glycan precursor. Among others, E-Cadherin may be one of the major targets of xit

during early morphogenetic events like the germ-band extension. In xit depleted embryos

intracellular distribution and clustering of E-Cadherin seem to be affected, although the total

amount of E-Cadherin protein is not affected. Also, during germ-band extension

morphogenetic rearrangement of cells via cell intercalation in the lateral epidermis is

impaired in xit mutants (Zhang et al., 2014). This evidence suggests that stable E-Cadherin

clusters are essential for junctional dynamics and morphological events. The balance

between remodeling of adhesion via E-Cadherin clustering and transmission of force may

facilitate mechanosensing and transduction at the junction (Fig 1.7) (Cavey et al., 2008;

Guillot and Lecuit, 2013).
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1.4.2 Interplay between cell adhesion and actomyosin dependent contractility

E-Cadherin, together with other junction-associated proteins, for an adhesion complex. The

intracellular domain of E-Cadherin binds to β-catenin and α-catenin, forming a link to the

underlying local actin-cortex. β-Catenin binds to the intracellular domain of E-Cadherin and

forms a stable link. α-catenin is known to dynamically bind to β-catenin and is essential for

AJ formation and function. α-catenin acts as an interface between cadherin-catenin complex

and the actin cytoskeleton and can undergo a force-induced conformational change (Harris

and Tepass, 2010)(Niessen et al., 2011). This makes α-catenin a promising candidate as a

force sensor. Conformational change in α-catenin eventually lead to the exposure of a

binding site for another key actin-binding protein Vinculin (Fig 1.8, A) (Yonemura et al., 2010;

Twiss et al., 2012). Recruitment of Vinculin to the AJ play a crucial role in anchoring junctions

to the actin-networks. However, it has been shown that α-catenin can also directly bind to

F-actin (Drees et al., 2005) (Gates and Peifer, 2005). It is possible that rather being only a

stable link to the actin-networks, α-catenin instead acts as a key regulator of actin dynamics.

Once the forces are sensed through the adhesion complexes they are subsequently

transmitted and non-muscle Myo-II motors assemble into antiparallel oligomers called

minifilaments. These minifilaments processively move along the F-actin. In addition to

regulating Myo-II dynamics, mechanical forces can also affect the activity of proteins

involved in F-actin assembly and disassembly (BERSHADSKY et al., 2006) (Chanet and

Martin, 2014).

Fig 1.8 Adhesion complex at the epithelial junction. (A) E-cadherin forms cis and trans clusters stabilized

by the interaction between extracellular domains and actin filaments via β-catenin, α-catenin, and vinculin. (B)

Schematic representation of α-catenin undergoing conformation change in the presence of the force which
eventually recruits Vinculin. Figure adapted from (Guillot and Lecuit, 2013) and (Kong et al., 2019).

A B
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1.4.3 Mechano-sensitive ion channels

Behaving as molecular switches, mechano-sensitive ion channels transduce mechanical

forces exerted on the cell membrane into electrical or biochemical signals. Molecular

interactions between the ion channel and the plasma membrane are crucial for the force

transduction. Since the actomyosin networks are linked to the plasma membrane through

adhesion sites, changes in plasma membrane could render the information about the

changes in intrinsic (generated by cortical actin networks) and extrinsic forces (via

neighboring cells) (Diz-Muñoz et al., 2013). MS ion channels are able to sense the stretch

or mechanical stimuli on the plasma membrane and can be activated by increased

membrane tension. Once activated, MS ion channels can undergo conformational changes.

Mechanical gating or opening of the MS ion channels could be explained via two models

discussed below (Fig 1.9):
(1) Membrane model in which the channel is sensitive to forces parallel to the plasma

membrane (ex: Piezo)
(2) Tethered model, in which a channel interacts with accessory proteins (such as the

cytoskeleton or cytoskeleton-regulating proteins) and force applied to the tether leads to

changes in gating (ex:NompC) (Fig 1.11, B) (Christensen and Corey, 2007; Zhang et al.,

2015).

Fig 1.9 Model of MGC response to mechanical stimuli. The opening of MGCs allows ion flux, in response

to the forces generated in (1) the extracellular space, (2) the plasma membrane, and/or (3) the cytoskeleton.
Figure adapted from (Hunter et al., 2014).

The opening of MS channels can induce a range of cell responses by mediating the flux of

specific ion. A very well studied example of MS ion channels is, signaling via Ca2+ dependent

stretch-sensitive, TRP ion channels (transient receptor potential channel family) which result

in actin cytoskeleton remodeling (Clark et al., 2008; Árnadóttir and Chalfie, 2010). In

Drosophila photoreceptor cells, it has been shown that upon exposure to light, TRP channels
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can actively redistribute and reshape the actin cytoskeleton (Kosloff et al., 2003). In

Drosophila, during DC, disrupting expression of dTRPA1 (Ca2+ permeable TRP channel

subunit) leads to severe closure defects. Perturbing ion channels by delivering toxic peptide

GsMTx4 (alters the sensitivity of ion channels) to the embryos, shows a significant decrease

in apico-medial actin networks. This Finding indicates that MS ion channels can affect actin

dependent cell contractility (Hunter et al., 2014).

MS ion channels have been studied extensively so far in specialized mechanosensory

neurons and largely in the context of sensory neurobiology, such as noci or auditory

sensation (Lin and Corey, 2005; Kamikouchi et al., 2009; Effertz et al., 2011; Coste et al.,

2012; Guo et al., 2016). Although the role of these ion channels in sensory-structures in

adult flies has now been established, their function in epithelial cells during early embryonic

development remained elusive. MS ion channels are widely expressed in non-neuronal

tissue, as reported by genome-wide expression studies. Thus, MS ion channels might

provide an alternative mechanism for force sensing. However, there has not been any

detailed study dissecting the role of MS ion channels in the epithelial system.

1.5 Role of MS ion channels in mechano-transduction across different
species

During this study, I have focused on understanding and exploring the role of MS ion channels

in establishing coordinated cell-behavior via force sensing and mechano-transduction.

Specifically, I investigated their function in the amnioserosa, a dynamic extra-embryonic

epithelial tissue during early DC stage in Drosophila embryo (refer to section 1.3.2). To start

with three candidate mechanosensitive ion channels namely putative MS ion-channel TMC,

NOMPC, and Piezo, were chosen based on the knowledge and understanding about their

role in sensory mechano-transduction in Drosophila (as discussed in the following sections)

(Effertz et al., 2011; Kim et al., 2012; Zhang et al., 2015; Guo et al., 2016).

1.5.1 Transmembrane channel-like protein (TMC)

The TMC gene family were discovered around two decades ago through positional cloning

of genes involved in hereditary deafness. Mutation in TMC1 (one of the members of the

TMC gene family), causes dominant and recessive hearing loss in humans and is required
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for the auditory mechanical transduction by cochlear hair cells. The mouse ortholog for

TMC1 also causes hearing loss. Mutations of TMC1 can alter the conductance and Ca2+

selectivity of the MET channels (cation channel with high selectivity for Ca2+) (Kurima et al.,

2002; 2003; Kim and Fettiplace, 2013). TMC1 has multiple transmembrane topologies (10

transmembrane domains), resembling an ion channel or a functional subunit of an ion

channel.  Recently, mTMC1 has been predicted to be a pore-forming component of sensory

transduction channels in auditory and vestibular hair cells (Fig 1.10, A) (Pan et al., 2018).

Various studies exploring contributions of TMC1 to sensory function in hair cells provide

genetic and physiological evidence supporting the role of TMC in mechano-transduction, yet

the underlying molecular mechanism remains unclear (Pan et al., 2013; Fettiplace, 2016).

Insight from sensory hair cells:
The hair cells of the inner ear contain ‘the hair bundle’, which are a cluster of actin rich

stereocilia located at the apical surface of the hair cells. Deflections in hair bundles in the

presence of mechanical stimuli such as sound and pressure are converted into electrical

signals via mechano-transduction. Extracellular protein filaments known as tip links are

required for mechano-transduction and are thought to transmit physical force to the MS

channels located at the stereocilia tips (Hudspeth, 1989). Tip links display heterophilic

interactions with Protocadherin-15 (PCDH15) homodimers at the lower end and it has been

shown that TMC interacts with transmembrane and cytoplasmic domains of PCDH15 (Fig

1.10, B) (Maeda et al., 2014; Beurg et al., 2015; Kurima et al., 2015).

Fig 1.10 Transmembrane channel-like protein. (A) Predicted transmembrane topology for mmTMC1. (B)

Schematic diagram of the stereocilia in inner hair cells. TMC1 and TMC2 localize with the components of the
MET ion channel complex. Figure adapted from (Pan et al., 2018) and (Kurima et al., 2015).

TMC homologs are also found in other vertebrates (Gallus gallus, Xenopus laevis, Danio

rerio) and invertebrates (Drosophila melanogaster, Caenorhabditis elegans). Only one tmc

A B
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gene (CG46121) is found in Drosophila and the protein sequence is highly conserved with

the TMC family members in other species. In Drosophila, in the sensory system, TMC is

expressed in Class I da, Class II da, and bd sensory neurons and contributes to the

mechanosensation in the body-wall. TMC mutant larvae display locomotion defects (Guo et

al., 2016). Furthermore, food texture sensing in the adult fly labellum also depends on TMC,

as it is expressed in the cluster of mechanosensory neurons at the fly tongue (Zhang et al.,

2016). There has been no significant study regarding the role of TMC in the epithelium and

if they are involved in the junctional mechano-transduction at the epithelial cell interface

remains an open question.

1.5.2 NOMPC (no mechanoreceptor potential C)

NOMPC belongs to the  TRP (Transient Receptor Potential) superfamily of cation channels

(Clapham et al., 2001). In Drosophila, loss of function mutations in nompC gene affect

mechanosensory responses and impair normal hearing, touch sensation, and have severe

locomotion defects in the larvae and adult (Walker et al., 2000; Göpfert et al., 2006;

Kamikouchi et al., 2009; Yan et al., 2013). NOMPC has 29 Ankyrin repeats (largest number

of ARs among TRP channels). It is thought to be gated via tethering mechanism where

ankyrin repeat domain tethers to the microtubule/ cytoskeleton and are able to displace and

thereby activate the channel (Fig 1.11, B). Structurally ankyrin repeat domain of NOMPC

resembles a helical spring which links mechanical displacement of the

microtubule/cytoskeleton to the opening of the channel (Fig 1.11, A) (Zhang et al., 2015)(Jin

et al., 2017).

Another example of Ca2+ permeable TRP channel subunit is Drosophila TRPA1 (Hamada

et al., 2008). Knockdown of dTRPA1 causes severe morphogenetic defects during  DC and

eventually leads to the failure of DC in the embryos (Hunter et al., 2014). Taking these

findings into account suggests a crucial function of Ca2+ dependent ion channels, which

further suggests that NOMPC may have an important role in establishing mechano-

transduction at the epithelial interface.
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Fig 1.11 Mechanotransduction via NOMPC. (A) Schematic diagram illustrates major structural domains of

one NOMPC subunit with long Ankyrin repeats. (B) Displacement of Ankyrin repeats tethered to the plasma
membrane-associated microtubules can lead to channel activation. Figure adapted from (Jin et al., 2017) and

(Zhang et al., 2015).

1.5.3 Mechanosensitive Piezo channels

Piezo family of MS ion channels are evolutionarily conserved transmembrane proteins. In

mice, Piezo1 and Piezo2 are mechano-gated and can be modulated in the presence of

mechanical stimuli. They are expressed in many mechanosensitive cell types for example,

Piezo1 is expressed in endothelial cells of developing blood vessels in the mice. Piezo1

deficient embryos have defects in vascular remodeling, causing death mid-gestation

(Ranade et al., 2014). Piezo2 deficiency in sensory neurons in mice as well as in humans

results in loss of normal touch sensation and proprioception (Mahmud et al., 2017). Recent

studies reveal a function of Piezo channel also in epithelial sheet homeostasis in MDCK

cells. Upon experimental stretching of the epithelial sheet, Piezo1 channel is able to sense

the mechanical stretch and activate which rapidly stimulates cell division (Gudipaty et al.,

2017).

High-resolution cryo-electron microscopy structure of the mouse Piezo1 suggests that they

organize at the membrane as a homotrimeric complex. This complex adopts a three-blade

propeller shape (with at least 26 transmembrane helices per protomer) and an extracellular

A

B
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cap domain (Fig 1.12). The three propeller blades are predicted to be flexible and can adopt

distinct conformations, with the help of a series of four transmembrane helix bundles termed

as ‘Piezo Repeats’. The structural information suggests that the membrane tension is able

to induce conformational changes of the Piezo repeats which is transmitted via the beam

and anchor domains to the inner helix and C-terminal domain, in turn activating the channel

(Fig 1.12) (Saotome et al., 2018).

Fig 1.12 Structure and conformation of Piezo1. The scheme depicts the various structural elements of

Piezo1 that contribute to its function as a mechanosensitive mechano-gated gated ion channel. Figure adapted
from (Saotome et al., 2018).

In Drosophila there are two Piezo genes, Dmpiezo an ortholog, and piezo-like (pzl) a

homolog of piezo gene families. Piezo deficiency in flies does not seem to have major

developmental defects, as Piezo-KO flies are viable and fertile. However, noxious

mechanical stimuli induced behavioral responses are severely reduced in Dmpiezo

knockout larvae suggesting the role of Piezo in mechanosensory nociception (Kim et al.,

2012). Loss of pzl shows severe defects in crawling pattern and body gesture control in the

larvae and can be rescued by expressing human or mouse Piezo1 (Hu et al., 2019).

Interestingly, one of the recent studies suggests stretch-activated Piezo channel dependent,

mechanical regulation of stem-cell differentiation in the adult fly midgut. Also, loss of piezo

phenotypes in the midgut can be rescued by manipulation of cytosolic Ca2+ levels,

suggesting that Piezo might function via Ca2+ signaling (He et al., 2018).

1.6 Calcium signaling in epithelial morphogenesis

Calcium signaling is known to have an impact in many developmental and morphogenetic

events. In the epithelial cells, Calcium signaling is crucial for cytoskeletal dynamics.

However, it is unclear how calcium is linked to actomyosin dependent contractile cell

behavior. In cultured epithelial cells (human carcinoma line C-4II) there are evidences

indicating the requirement of extracellular Calcium influx to induce epithelial cell contractions
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(Lee and Auersperg, 1980). In Xenopus, intracellular Ca2+ are required for neural tube

formation. Transient increase in Ca2+ concentration induces apical constriction in the cells

of the developing neural plate (Suzuki et al., 2017).

Ubiquitous involvement of Ca2+ signaling in multiple cellular functions is crucial during

development. However, an excessive increase in Ca2+ also leads to cytotoxicity and cause

cell death. The intracellular Ca2+ sensing mechanisms play a crucial role in the maintenance

of Ca2+ homeostasis and signaling during cellular functions. Within the cytoplasm, under

resting conditions, the Ca2+ concentration is maintained at ∼10-7M which is 104 times lower

compared to the Ca2+ concentration in extracellular spaces (∼10-3M). Among other

intracellular organelles, the endoplasmic reticulum (ER) can accumulate and maintain a

higher Ca2+ than the cytoplasm (1.5x10-4M) as they are the main internal Ca2+ stores (Bagur,

R. and Hajnóczky, 2017).

The increase in the intracellular Ca2+ concentration can be promoted by various stimuli such

as extracellular signaling molecules, intracellular messenger, or mechanical stimulus,

inducing an increase of Ca2+ concentration from 100nM to up to 1 μM or more. This increase

mainly occurs either via the influx of extracellular Ca2+ through Ca2+ dependent ion channels

at the plasma membrane, or the release of Ca2+ from internal stores (from ER, via the 1,4,5-

triphosphate receptor (IP3R) and ryanodine receptor (RyR)). Synchronized activation and

rapid deactivation of the ion channels leads to repetitive spikes or oscillation of intracellular

Ca2+. The increase in intracellular Ca2+ is controlled via multiple positive and negative

feedback mechanisms, maintaining homeostasis (Bagur, R. and Hajnóczky, 2017).

1.6.1 Calcium signaling in Drosophila development

In Drosophila, calcium signaling is involved in the regulation of multiple developmental

stages starting from oogenesis to embryogenesis (Markova et al., 2019). As the Drosophila

egg is ovulated, an intracellular calcium wave is observed to be spread across the oocyte.

Interestingly, external pressure on the oocyte (or swelling by the oocyte) can also induce a

similar rise in intracellular calcium flux presumably through the action of MS ion channels

(Kaneuchi et al., 2015). During Drosophila oogenesis it has been shown that Ca2+ activated,

Myosin II dependent contractions are able to generate active forces in order to control egg

chamber elongation (He et al., 2010).
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Fig 1.13 Calcium signaling dependent cell contractions. (A) Ion channels desensitized by toxic peptide

GsMTx4 affects actomyosin dependent contractility. (B)  Ca2+ dependent Myosin II activation in smooth muscle
contraction Figure modified from (Hunter et al., 2014).

Cardiac muscle contractions during the larval stages depend on the Calcium-Induced

Calcium Release (CICR) where transient calcium signals are able to promote its own release

from intracellular calcium stores (from the sarcoplasmic reticulum). CICR release occurs via

a specialized ion channel known as the ryanodine receptor (RyR) in cardiac muscle. The

opening of the RyR is induced by the Ca2+ influx via calcium-dependent ion channel (for

example TRP ion channel) and lead to the release of a larger amount of calcium from the

SR. The RyR mutation leads to slow heartbeat in the larvae and has a role in heart function

(Sullivan et al., 2000).

In germ-band epithelium Ca2+ uncaging induced, sudden Ca2+ bursts trigger cell contractions

(Kong et al., 2019). These findings suggest that actomyosin cytoskeleton can be actively

reorganized in a Calcium-dependent manner to drive contractility (Fig 1.12, A). An increase

in intracellular free Ca2+ by photolytic uncaging as well as pharmacologic inhibition of Ca2+

channels using GsMTx4 leads to significant decrease in actomyosin network (Fig 1.13, A)

(Hunter et al., 2014). During smooth muscle contraction, it is known that myosin II activation

is regulated by Ca2+/calmodulin complex that activates myosin light chain (MLC) via MLC

kinase (Fig 1.13, B) (Kitazawa et al., 1991). Recent studies in the epithelium, have shown

that intracellular Ca2+ dependent non-muscle myosin II activation could be mediated via Rho

kinase activity (Rok) (Kong et al., 2019). Yet the detailed mechanism of how Ca2+ can

regulate actomyosin networks remained elusive so far in the non-muscle cells.
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1.6.2 Calcium-dependent response to the epithelial wounding

Calcium signaling plays a very significant role in wound healing. It is well understood that

epithelial wound healing requires coordination of a group of cells to detect the presence of

a wound and to migrate and proliferate in order to drive closure of the wounded site (Abreu-

Blanco et al., 2012; Enyedi and Niethammer, 2015). A very intriguing and crucial early

aspect of the wound response is a rapid rise in cytosolic calcium within seconds of wounding.

Studies across many organisms have shown that following the wound induction there is a

rise in cytosolic calcium levels within the wounded cell which also spreads to the neighboring

cells (Sammak et al., 1997; Antunes et al., 2013; Shannon et al., 2017). What initiates such

a dynamic response across the field of cells is not very well understood. There are studies

suggesting a change in tissue tension mediated opening of stretch-activated calcium ion

channel or MS channel dependent model, which would allow propagation of Ca2+ signal

across neighboring cells (Wood, 2012). In support of this hypothesis, in Drosophila wing

disks, it has been shown that calcium waves can be generated by applying mechanical

pressure which facilitates the opening of mechano-gated or MS ion channels (Restrepo and

Basler, 2016). A detailed understanding of the role of MS ion channels during coordinated

tissue-scale morphogenetic movement, in association with the cytoskeletal network, is

required in order to fully understand the mechanism behind these complex events. Several

factors, including the size and shape of the wound, and the intrinsic distribution of tension in

the tissue are responsible to induce a multicellular coordinated mechanism in order to either

repair or remove the wounded cell from the epithelial sheet. In the adult tissue, a commonly

observed mechanism is crawling of lamellipodia at the leading edge of the wounded site in

order to drive the wound closure.
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Fig 1.14 wound repair in Drosophila epithelium. The scheme shows phases of multicellular wound repair

in epithelial cells. Damaged cells in the epithelial sheet are either repaired (gray) or removed (white) depending

on the size and shape of the wound. Wound closure can then proceed with the help of dynamic actin and

junctional remodeling and either via lamellipodial crawling, cells at the leading edge of the wound push

themselves forward over the wounded site, or by the formation of an actin purse string which induces
contractions to achieve wound closure. Figure adapted from (Abreu-Blanco et al., 2012)

The epithelial wound closure in the embryos is often mediated by the formation of an

actomyosin purse string at the leading edge of the wounded site inducing contractile forces

in order to achieve wound closure. The actin purse string is intercellularly linked by the

adherens junctions (Fig 1.14) (Abreu-Blanco et al., 2012). Multiple actin regulators

contribute to the assembly and remodeling of actin-rich protrusions at the wounded site.

Studies in the ventral epidermis of stage 15 embryos suggest that the formation of actin

protrusions is dependent on the activity SCAR, which is an activator of the Arp2/3 complex

(branched actin remodeling protein complex). Loss of SCAR activity leads to complete loss

of protrusion activity at the actin cable of the leading edge. However, the absence of

protrusion activity only contributes to the speed of wound closure and wound healing still

progresses at a relatively slow speed (Matsubayashi et al., 2015).

Wounded sites in the epithelium are known to have a highly dynamic activity of non-muscle

myosin II, along with junctional (E-cadherin) remodeling (Fig 1.14) (Abreu-Blanco et al.,

2012). As epithelial wounding is known to trigger Ca2+ influx, it may induce and regulate the

contractile forces at the actin cable/purse string and drive the repair mechanisms (Paul

Martin and Julian Lewis, 1992)

1.7 Objective

This study attempts to elucidate the role of putative mechanosensitive ion channel protein

TMC (Transmembrane channel-like protein) in coordinated cell behavior and

morphogenesis in the amnioserosa epithelium of Drosophila. Although having a substantial

amount of information regarding their function and mechanism (as shown in the tip-links of

the auditory hair cells), TMC has remained unexplored in the epithelial cells so far. We

hypothesize that TMC is an essential component for coordinated and force-induced cell

behavior in the AS. In epithelial cells, TMC may function in a Ca2+ dependent manner where

it is able to transduce mechanical forces across neighbors via a molecular link with the

adherens junctions.
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Chapter 2. Material and methods

2.1 Material

2.1.1 General buffers
Table 2.1: List of general buffers

Agent Ingredients

PBS (1X) 137 mM NaCl, 10 mM Na2HPO4, 2.7 mM KCL, 1.8 mM
KH2PO4, [pH 7.4], 1l

SDS-Page buffer
(10x)

0.25 M Tris, 2 M glycine, 1% SDS, 1l

TAE-buffer (50x) 2 M Tris, 50 mM EDTA, 1 M acetic acid [pH 8.5], 1l

Transfer-buffer (1x) 193 mM glycine, 25 mM Tris, 5% methanol, 1l

(For detailed list of Buffers, refer to section 2.1.12)

2.1.2 Chemical reagents

Chemicals used for this study were purchased from these companies unless otherwise

stated:

· AppliChem GmbH (Darmstadt, Germany),

· Carl ROTH (Karlsruhe, Germany)

· Sigma-Aldrich (Steinheim, Germany).

2.1.3 Enzymes and Kits

Restriction enzymes used in this study were purchased from

· Fermentas/Thermo Fisher Scientific (Waltham, USA)

· New England Biolabs GmbH (Ipswich, USA).
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Table 2.2: List of enzymes from other sources.

DNaseI Roche (Basel, Swiss)

Long PCR Enzyme Mix Fermentas

Lysozym AppliChem (Darmstadt, Germany)

M-MLV Reverse transcriptase Promega (Madison, USA)

PfuS mix DNA Polymerase expressed and purified in the Großhans lab

Proteinase K Roche

RQ1 RNase-free DNase Promega

T4 DNA Ligase Fermentas

T4 DNA Polymerase Fermentas

Taq DNA Polymerase expressed and purified in the Großhans lab

Kits were used as per the instruction manual from the manufacturer.

• ArcturusTM PicoPureTM RNA isolation Kit, Thermo Fisher Scientific

• MiniElute Gel Extraction Kit, Qiagen (Hilden, Germany)

• Plasmid Midi Kit Nucleobond Xtra, Macherey-Nagel (Düren, Germany)

• PureLinkR PCR-Purification Kit, Invitrogen (Carlsbad, USA)

2.1.4 Antibodies

Table 2.3 Primary antibodies used in the study.

Antibody Raised in Dilution and working
concentration

Source

α-Tubulin Mouse 1:50000 (0.7 μg/ml) (Western) Hybridoma bank
B512

Dlg Mouse 1:100 (~0.4μg/ml) Hybridoma bank
4F3
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TMC Rabbit 1:5000 Guo et al., 2016

NompC Rabbit 1:1000 (Liang et al.,
2011)

 E-Cadherin
(DCAD1)

Rat  1:100  T. Uemura
(Oda et al.,
1993)

• Alexa-conjugated secondary antibodies were added at a final concentration of 1:500 (4
μg/ml) (Source: Life Technologies Carlsbad, USA).

• Phalloidin-Alexa 488: used for actin staining, in a final concentration of 6 nM (Molecular

Probes)

• GFP-Booster-Atto488 was added at a final concentration of 2 μg/ml (Source: Chromotek

Martinsried, Germany).

• DNA staining was performed using DAPI. (Working concentration - 1:250 (0.2 mg/ml),

Source: Sigma-Aldrich, St. Louis, USA).

• For western blots, secondary antibodies (IRDye-800CW and IRDye-680), were added at
a dilution of 1:20000 (0.05 μg/ml) (Source: LI-COR Biotechnology Bad Homburg,

Germany).

2.1.5 Fly stocks

Table 2.4 Fly stocks used in the study.

Name Genotype Source

OrR +/+ -

E-Cad-GFP (K-in) w; DE-Cadherin-GFP[k-in];
+/+; +/+

(Huang et al., 2009)

myr-GCaMP6s w [1118]; +/+; UASt-
GCaMP6s-myr; +/+

(Chen et al., 2013)
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Utrophin-GFP w; sqh-Utr::GFP/CyO Prof. T. Leciut (Levayer et
al., 2011)

 Mat 67, 15 w; tub-Gal4-VP16{w+} [67];
tub-Gal4-VP16{w+} [15]; +/+

St. Johnston / Cambridge

Gla/CyO, twi>GAL4,UAS-
GFP

w[1118]; In(2LR)Gla, wg[Gla-
1]/CyO, P{w[+mC]=GAL4-
twi.G}2.2, P{w[+mC]=UAS-
2xEGFP}AH2.2

BDSC

Ovo 2L y w hs-Flp [122]; ovoD Frt2L
[40A] / Cyo, hs-hid {w+}; +/+;
+/+

S. Luschnig / Münster

20X UAS-6X GFP y[1] w[*]; PBac{y[+mDint2]
w[+mC]=20XUAS-
6XGFP}VK00018/CyO,
P{Wee-P.ph0}Bacc[Wee-
P20]

BDSC

TMCΔ w[*]; +/+; tmcGal4 Guo et al., 2016
(Martin Göpfert/Dept. of
Cellular
Neurobiology,Göttingen)

Tmc-Gal4 P{Tmc-GAL4.3.0} Zhang et al., 2016

xit w xit[X-330] f Frt [9-2, 18E]
Flp122{ry+} /FM7c, y w[a] sn
B; +/+; +/+

Germline clone screening
(Vogt et al., 2006)

xit; E-Cad-GFP w xit[X-330] f Frt [9-2, 18E]
Flp122{ry+} /FM7c; DE-
cadherin-GFP[k-in]; +/+

D. Kong /
J. Grosshans lab

nompC-Gal4 P{nompC-GAL4.L} Liu et al., 2007

nompC RNAi y[1] v[1]; P{y[+t7.7]
v[+t1.8]=TRiP.JF01067}attP2

BDSC

nompCTrojan-gal4 w[*]; nompCTrojan-gal4 /CyO,
P{Wee-P.ph0}Bacc[Wee-
P20]; +/TM6b

Martin Göpfert/Dept. of
Cellular
Neurobiology,Göttingen
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nompCTrojan-gal4;
nompC3,nompc GFP

w[*]; nompCTrojan-gal4

/nompC3, UAS-nompC::GFP
Martin Göpfert/Dept. of
Cellular
Neurobiology,Göttingen

Piezo [KO] w[*];
PBac{w[+mC]=RB5.WH5}Pie
zo [KO]

BDSC

Piezo-Gal4 w[*]; P{w[+mC]=Piezo-
GAL4.1.0}III

Chadha and Cook, 2015

P{UAS-Piezo.GFP}IIA-2 w[*]; P{w[+mC]=UAS-
Piezo.GFP}IIA-2/CyO;
MKRS/TM6B, Tb[1]

BDSC

Piezo Mi{MIC} gfp y[1] w[67c23]; Mi{PT-
GFSTF.0}Piezo[MI04189-
GFSTF.0]

BDSC

Table 2.5 Fly stocks generated in the study.

Name Genotype

E-Cad-GFP; TMCΔ w; DE-Cadherin-GFP[k-in]; tmcGal4/TM3

TMCΔ ;myr-GCaMP6s w; +/+; UASt-GCaMP6s-myr, TMCΔ

Utrophin-GFP; TMCΔ w;UASp-GFP-Utrophin; tmcGal4

Tmc::eGFP W;;CRISPR Tmc::eGFP(K-in) (InDroso)

xit;; GCaMP6s-myr w xit[X-330] f Frt [9-2, 18E] Flp122{ry+} /FM7c;+/+; UASt-
GCaMP6s-myr

E-Cad-GFP, nompCTrojan-gal4 w; E-Cad-GFP, nompCTrojan-gal4, Frt (neo) 2L/CyO; +/+

nompC (CRISPR) KO w; nompCKO::attP::loxP-3xP3-Ds-Red::loxP/Cyo; +/+
(InDroso)
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2.1.6 Fly media

Fly food

64 g of agar was cooked and homogeneously dissolved in seven liters of water. To this 0.64

g maize meal, 80 g soya-bean meal, 200 g of baker`s yeast, 640 g malt extract and 175 g

sugar-beet molasses were added. Food was properly mixed and cooked for another 30 min.

After the food was cooled down to 55 - 60 °C, 12g Nipagin (dissolved in 90 ml ethanol) and

75 ml propionic acid was mixed into the food. Food was then filled into the vials and kept

overnight to cool down and solidify at room temperature. Vials were plugged with sponge

plugs the next day. Ready to use fly food vials were stored at 18 °C.

Apple juice agar plates

To prepare one liter of apple juice agar, 17.5g agar was dissolved in 750 ml of water. The

mixture was autoclaved and post-autoclaving a mix of 25g sugar was dissolved in 250 ml of

apple juice. To the agar solution, 1.5g of Nipagin (dissolved in 10 ml of ethanol) was added.

After the mixture was allowed to cooled down to 60 °C. Apple juice agar was poured to the

Petri dishes and plates were stored at 4 °C.

2.1.7 Media for bacterial culture

LB-medium

10g Bactotryptone, 5g Yeast extract, and 10g Sodium chloride were dissolved

homogeneously in water, in order to make one liter of LB-medium. Media was then

autoclaved and stored at 4 °C.

LB-plates

To make LB-plates, 10g agar and the desired antibiotic was added after LB-solution was

cooled down to 55 °C. LB-solution was then poured into Petri dishes and the dishes were

stored at 4 °C.
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2.1.8 High Resolution Microscopy

Spinning Disk microscope: Zeiss Observer.Z1, CSU-X1 (Carl Zeiss,
Jena, Germany, 2009)

Cameras:   AxioCam MRm
  AxioCam ICc1

  emCCD evolve 512

Optics:   Epifluorescence, DIC

Lasers: 488nm (20mW, OPSL)

561nm (20mW, DPSS)

Objectives: A. Plan (10X, NA 0.25)

Plan-Apochromat (25X, NA 0.5, multi-
immersion, DIC)

Plan-Neofluar (40X, NA 1.3, oil, DIC)

LCIPlan-Neofluar (63X, NA 1.3, multi-
immersion, DIC)

Plan-Apochromat (100X, NA 1.4, oil)

Laser ablation system: UGA-42 (Rapp OptoElectronic, Wedel,
Germany)

Lasers: DPSL-355/14: 355 nm pulsed YAG laser,
14 mW average power, 70 μJ per pulse,
Up to 200Hz

Filter: TB355/405/473

Confocal Microscope
LSM 780:

           Zeiss AxioObserver.Z1

(Carl Zeiss Jena,Germany, 2011)

Detection: PMT
GASP
cooled PMT
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Lasers: Diodelaser (405nm, 30mW)
Argonlaser (458nm, 488nm, 514nm,
25mW) DPSS-Laser (561nm, 20mW)
HeNe-Laser (633nm, 5mW)

Objectives: EC Plan-Neofluar (10x, NA 0.3)

LCI Plan-Neofluar (25x, NA 0.8, multi-
immersion, DIC)

C-Apochromat (40x, NA 1.2, water)

Plan-Apochromat (63x, NA 1.4, oil)

LCI Plan-Neofluar (63x, NA 1.3, multi-
immersion)

2.1.9 Equipment

Other microscopes:

• Axioplan 2 Fluorescence Microscope, Zeiss

• MZ12.5, Leica

• PrimoVert Inverted Microscope, Zeiss

• Stemi 2000 Stereomicroscope, Zeiss

• SteREO Lumar V12, Zeiss

• SZX12 Fluorescence Stereo Microscope, Olympus

Other equipment:

• Centrifuges, Eppendorf

• ChemiDoc, Biorad

• Concentrator, Eppendorf
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• DynaMagnet, life technologies

• Electrophoresis Constant Power Supply, Pharmacia

• FemtoJet, Eppendorf

• High Pressure Homogenizer/Mickrofluidizer- EmulsiFlex-C5, Avestin

• NanoDrop 2000c, Thermo Scientific

• Odyssey CLx Infrared imaging system, LI-COR Biosciences

• Real time PCR machine - rotor gene 6000, Corbett/Quiagen

• Thermomixer, Eppendorf

• Trans-Blot Semidry, Biorad

• Ultrasonics Sonifier-450, Branson

2.1.10 Other reagents and materials

• Agarose, Invitrogen

• Aquapolymount, Polysciences, Inc.

• BSA/Albumin Fraction V, Roth

• Cover Slides, Thermo Scientific

• CitraSolve (Danbury, Connecticut)

• DanKlorix

• DNA ladder (1 kb), Thermo Scientific

• dNTPs, Thermo Scientific

• Falcon tubes (15 ml, 50 ml), BD Falcon
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• Filter papers (Ø 110 mm) Macherey-Nagel

• Fly cages (Ø 50 mm, Ø 94 mm)

• Fly vials, Greiner

• Forceps

• Formaldehyde (37%), Sigma-Aldrich

• Glass homogenizer, B. Braun Biotech International

• Glass pipettes (5 ml – 25 ml), Silber Brandt

• Glass slides, Thermo Scientific

• Green Taq buffer (10x), Thermo Scientific

• Halocarbon oil 700, Sigma-Aldrich

• Immersol 518F/DROSOPHILA, Zeiss

• Mifepristone (RU468), Sigma-Aldrich

• Milk powder, Sucofin

• Parafilm M, Bemis

• Pasteur pipettes, Brandt

• Petri dishes, Greiner

• Phenol/Chloroform/Isopropanol, Roth

• Pipetman (2 µl, 10 µl, 200 µl, 1000 µl), Gilson

• Pipette tips, Sarstedt

• Platinum wire
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• Poly-L-Lysine Solution (0.1%), Sigma-Aldrich

• Polypropylene column, Quiagen

• Pre-stained Protein Ladder, Thermo Scientific

• Protease Inhibitor Cocktail - Complete Mini (EDTA free), Roche

• Proteinase K, Roche

• Protran Nitrocellulose Membrane, Amersham

• Sodium Hypochlorite solution (15%), Sigma-Aldrich

• TRI-reagent, Sigma-Aldrich

• TritonX-100, Roth

• Tween20, Roth

• Viva spin, Sartorius

• VoltaLef Oil 10s, Lehmann, Voss & Co.

• Weigh Boat, VWR

• Whatman 3 mm blotting paper, GE healthcare

• Yeast, Dr. Oetker
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2.1.11 Software

• Adobe Illustrator CS6, Adobe

• Adobe Photoshop CS6, Adobe

• GraphPad Prism6, GraphPad Software, Inc.,

• FIJI (NIH)

• Image Studio, LI-COR Biosciences

• Microsoft Excel 2013, Microsoft

• Microsoft Word 2013, Microsoft

• NanoDrop 2000, Thermo Fischer Scientific

• SeqBuilder, DNASTAR

• Zen 2012, Carl Zeiss

2.1.12 Buffers

Buffers preparation was done according to Sambrook and Russel, 2001 unless otherwise

stated.

1) Buffers for DNA extraction from adult flies:

Homogenization buffer 10 mM Tris/HCl pH7,5

60 mM NaCl

10 mM EDTA
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2) Buffer for Immuno-staining and western blot:

PBS 130 mM NaCl

7 mM Na2HPO4

3 mM NaH2PO4

pH 7.4

PBST 0.1% Tween 20 in PBS

Embryo fixation solution 4.5 ml 1X PBS

0.5 or 1ml Formaldehyde (37%)

5 ml Heptane

Immuno-staining blocking buffer 5% BSA in 1X PBS

Western blot blocking buffer 5% milk powder in 1X PBS

3) Buffer for Miniprep of plasmid DNA:

Solution I 50 mM Tris/HCl, pH 8.0

10 mM EDTA

Solution II 1% SDS

0.2M NaOH

Solution III 3 M Potassium acetate

Adjusted to pH 5.4 with acetic
acid

4) Buffer for Insitu Hybridisation:

NTP+Dig labelling mix (10x): Dig-11-UTP: 10mM solution (25
μl, Roche #1209256)

10 mM ATP

10 mM GTP
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10 mM CTP

6,5 mM UTP

3,5 mM Dig-11-UTP, pH7,5

transcription buffer for SP6, T3, T7 RNA
polymerase, store at -20°C

400 mM Tris-HCl, pH 8 60 mM
MgCl2

100 mM DTT

20 mM Spermidine

100 mM NaCl

AP buffer 100 mM NaCl

50 mM MgCl2

100 mM Tris pH9.5 0,2% Tween

ddH2O

1 ml (5 M) 2,5 ml (1 M) 5 ml (1
M) 500μl (10%) ad 50 ml

NBT/BCIP NBT (nitrobluetetrazolium,
Sigma)

75 mg/ml in 70% DMF

BCIP (X-phosphate, Sigma)

50 mg/ml in DM
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store at -20°C

5) Buffer for immunoprecipitation:

RIPA buffer 10 mM Tris/HCl pH 7.5

150 mM NaCl

0.1% SDS

1% TritonX 100

1% Deoxycholate

5 mM EDTA

2 mM PMSF, 20μl, dissolved in
isopropanol (freshly added)

1X Roche protease inhibitor
cocktail (freshly added)

6) Buffer for ion channel blocking

25mM MgCl2 10mM NaCl

2mM KCl

2mM EGTA

5mM Hepes

25mM MgCl2

pH 7.5

All buffers were filtered before use
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2.2 Methods

2.2.1 Genomic DNA extraction from adult flies

Approximately 200 adult flies were taken and anesthetized. Flies were transferred to a

mortar filled with liquid nitrogen and were ground with a pestle until a homogenous mixture

was formed. Dounce homogenizer was precooled on ice. This mixture was transferred to a

pre-cooled Dounce homogenizer containing 5 ml of homogenization buffer. The mixture was

centrifuged at 1000 rpm for a minute in order to remove the debris. The supernatant was

carefully taken out and transferred to a new Eppendorf tube and centrifuged at 8000 rpm for

5 min in order to separate the nuclei. The pellet was resuspended in 0.5 ml homogenization

buffer. The sample was incubated at 37°C for 45 to 60 min. After incubation, 50 µl of 10%

SDS and proteinase K (at the final concentration of 100 µg/ml) were added and mixed well.

0.5 ml phenol/chloroform was added to the sample and mixed for 5 minutes. The sample

was centrifuged at 13,000 rpm for 5 min. To remove protein impurity completely, the upper

phase was taken out and transferred to a new Eppendorf tube. This step was repeated twice.

After adding and mixing 0.5 ml of Chloroform to this the sample was centrifuged again at

13,000 rpm for 5 min. Once again, the upper phase was taken out and transferred to a fresh

Eppendorf tube. NaCl was added to a final concentration of 200 mM and mixed well. 100%

ethanol (two volume) was added and mixed gently. The DNA was visible at the interface as

a clump. The DNA pellet was precipitated by centrifugation of 13000 rpm for 5 min. The

pellet was washed in 80% ethanol and then 100% ethanol. The supernatant was discarded

and the pellet was dried in the Speedvac. The dried pellet was resuspended in 0.5 ml of TE

buffer.

2.2.2 Polymerase chain reaction (PCR)

PCR reactions were performed by using Taq - polymerase (for general reactions) or PfuS-

polymerase (for reactions requiring improved proofreading). PCR reactions were set up with

the following reagents:

1. 0.5-2.5 µl forward Primer (10 µM)

2. 0.5 – 2.5 µl reverse Primer (10 µM)

3. 1.0 µl dNTP mix (10 mM)
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4. 1x Buffer (Green Taq Buffer (10x)/ Phusion HF buffer (5x))

5. 0.3 U/µl Polymerase (Taq/PfuS)

6. 50 – 200 ng DNA template

7. ad 50 µl ddH2O

PCR program for DNA amplification by Taq or PfuS polymerase:

1. Initial Denaturation: 95 °C, 2 min / 98,5 °C, 30 s

2. Denaturation: 95 °C, 30 s / 98,5 °C, 5 -10 s

3. Annealing: X °C (Oligonucleotide specific), 30 s 25-35 x

4. Extension: 72 °C, 1 kb/min / 72 °C, 1kb/15-30s

5. Final Extension: 72 °C, 10 min

2.2.3 Phenol-Chloroform extraction

A DNA/RNA sample was taken and volume was increased up to four-fold by adding ddH2O.

200 µl of Phenol/Chloroform/Isopropanol (25:24:1) was added and mixed. The Sample was

centrifuged for 5 min at 13,000 rpm and the upper phase was transferred to a new reaction

tube. 200 µl of chloroform was added, mixed well and centrifuged the same as the previous

step. To precipitate the DNA was upper phase was transferred to a new reaction tube. 1/10

volume of sodium acetate (3 M) and 2.5 volumes of ethanol (100%) was mixed. The sample

was stored at –20 °C for overnight or at –80°C for at least 30 min. The sample was then

centrifuged at 14,000 rpm for 30min at 4°C. The supernatant was removed and the pellet

was washed with 200 µl of ethanol (70%). Centrifugation step was repeated and the

supernatant was removed.  DNA pellet was dissolved in 10–30 µl of ddH2O.
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2.2.4 In situ hybridization

Embryos were dechorionated using 50% bleach and were fixed (as described in section

2.2.12) and stored at –20°C. Fixed embryos were transferred to PBST, rinsed 3X in PBST

(5min incubation) and 2X in 1:1 hybridization-solution(hyb-sol)/PBST (10 min). Embryos

were incubated 10min in hyb-sol. Embryos were then prehybridize in hyb-sol for 1h at 57°C.

Finally, the RNA probe was added in hyb-sol and was incubated overnight at 57°C (RNA

probe in hyb-sol can be saved to be reused). Next day the embryos were rinsed 3x with pre-

warmed hyb-sol and washed 3X30 min in hyb-sol at 57°C.

Embryos were washed in the following manner

- 10 min 4:1 hyb-sol/PBST at 57°C

- 10 min 3:2 hyb-sol/PBST at 57°C

- 10 min 2:3 hyb-sol/PBST at 57°C

- 10 min 1:4 hyb-sol/PBST at room temperature

-  Embryos were washed 2X 20 min in PBST with 1% BSA at room temperature

and rinsed with PBST.

Detection with AP

Alkaline phosphatase coupled Digoxigenin antibody (Boehringer, Fab Fragments) was

added at the dilution of 1:2000 in PBST. The embryos were incubated for 2 Drosophila at

room temperature or overnight at 4°C. Embryos were rinsed 3X with PBST and washed

4X15 min with PBST. Embryos were washed again 3X5 min with AP buffer.

To start the reaction, 4,5 μl NBT and 3,5 μl BCIP was added into 1 ml of AP buffer and

incubated until color developed (NOMPC, TMC - overnight, Piezo - 4 hours). After incubation

embryos were rinsed 4X with PBST. The embryos were washed with ethanol series up to

100% ethanol (20%, 40%, 60%,80%,100%), and each step for 10 min in order to wash out

the background. The embryos were washed again going down the ethanol series to only

PBT and were mounted in aquapolymount.
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2.2.5 Western blot

Embryos staged from 12–24 hours, were collected on apple juice agar plates. Embryos were

dechorionated in 50% Klorix bleach for 1min. The dechorionated embryos were collected

into an Eppendorf tube and weighed. The weight of the embryos was determined (~1mg

=100 embryos). The embryos were snap frozen and stored in liquid nitrogen. The embryos

were homogenized in 1X Lämmli buffer with the volume to make the final concentration 20

embryos/μl. The sample was heated to 95°C for 5 min (65°C for TMC) and followed by

centrifugation at 14,000 rpm for 1 min.

After centrifugation, the supernatant (protein extracts) was loaded on the SDS-PAGE. Using

a semi-dry transfer, the proteins from the gel were transferred onto a nitrocellulose

membrane (1 hour at 60 V/gel). The membrane was blocked in 5% milk powder in freshly

made PBST for at least 30 min and incubated with primary antibody either overnight at 4°C

or 2 hours at the room temperature. The membrane was rinsed 3X with PBT followed by

4X15 min PBST washes. The membrane was incubated with secondary antibody for 1 hour

at room temperature, covered and protected from light. The membrane was rinsed in PBST

for 3X followed by 4X15 min PBST washes. Odyssey CLx Infrared Imaging system was

used to detect the bands.

2.2.6 Co-Immunoprecipitation (Co-IP) with Tmc::eGFP and sepharose beads GFP
binder

Tmc::eGFP expressing embryos collected on apple-juice agar plates, were staged from 10–

20 hours. Embryos were dechorionated in 50% Klorix bleach for 1min. The dechorionated

embryos were collected into an Eppendorf tube and weighed. The weight of the embryos

was determined (~1mg =100 embryos). Embryos were stored liquid nitrogen.

Sepharose-GFP-binder beads (Chromotek) were vortexed and 20μl was pipetted into 500μl

cold RIPA buffer. Then it was centrifuged for 2mins and 8000rpm at 4°C. The supernatant

was discarded and the centrifugation step was repeated twice as above.

The embryo was transferred to pre-cooled homogenizer filled with 600μl of RIPA buffer,

homogenized. Homogenized embryos were transferred to a pre-cooled Eppendorf and

centrifuged for 15 mins at 14,000 rpm. Lipid layer was carefully removed and the

supernatant was transferred to a new Eppendorf. After taking 10μl+20μl Lämmli input

sample, the lysate was loaded on the beads and incubated overnight at 4°C.
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After incubation, beads were centrifuged for 2mins and 8000rpm and unbound sample was

taken out (10μl+20μl Lämmli). Beads were washed 3X2min in 1ml RIPA at 8000 rpm.

Bound proteins were eluted from the beads in 20μl Lämmli buffer. The sample was heated

to 65°C (for transmembrane proteins) for 5 min and centrifuged at 14,000 rpm for 1 min.

Samples (along with the beads) were loaded on SDS-PAGE and followed by western blot.

2.2.7 Generation of germline clones

The germline clones were generated following the protocol by Chou and Perrimon (Chou

and Perrimon, 1992) (includes minor modifications). Flippase induction was mediated by the

heat shock at 37°C for 60min per day for two days (24-48 hour and 48-72 hour) post-

hatching. For xit germline clones, duration of the heat shock was modified to once for

15mins.

2.2.8 UAS-GAL4 system

The UAS-GAL4 system is used as a tool to ectopically over-express the gene of interest

tissue as well as stage-specific manner (Brand and Perrimon, 1993). Binding of a yeast

transcription factor GAL4 to an upstream activating sequence (UAS), allows the activation

and expression of the target gene. In UAS reporter flies the target gene is placed under the

control of UAS. In a GAL4 driver line, GAL4 gene is under the control of a promoter or

enhancer of a gene with a known expression pattern.

2.2.9 Meiosis recombination

For Meiotic recombination, ‘Frt2L2R/al dp b pr Frt2L, 2L367’ virgins were collected and

crossed with ‘al dp b pr Bl c px sp/SM1’ males. The heterozygotes for the chromosome

carrying mutant (nompC (CRISPR) KO, nompCTrojan-Gal4) and the recessive markers and

Frt2L2R recombined during meiosis. During this process various classes of recombinant

chromosomes were segregated and deposited to the female egg which could be detected

by crossing with ‘al dp b pr Bl c px sp/SM1’ males.

2.2.10 Lethality test
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In order to estimate the total number of embryos which failed to develop to the larval stage

lethality test was done. Flies were allowed to lay eggs for 0-5hrs at room temperature on

apple juice agar plates. The embryos were collected in a sieve and washed. Embryos were

then aligned on agar plates and kept at room temperature for further development. The

number of unhatched embryos was counted after 24 hrs. and 48 hrs.

2.2.11 larval cuticles preparation

Embryos were collected overnight and incubated for another 24 hours and allowed to age

and complete the embryonic development. The embryos were then washed by transferring

into a sieve, dechorionated (using 50% Klorix for 2 mins) and washed several times with

water. Using a fine brush, dechorionated embryos were then transferred to a clean slide into

a drop of the mixture of Hoyer’s medium (Hoyer, 1882) and lactic acid. The embryos were

covered with a clean coverslip and incubated overnight at 65°C. Cuticles were images using

a dark field optic or phase contrast.

2.2.12 Embryo fixation and Immuno-staining

Embryo fixation

Embryos of desired stages were dechorionated using 50% of Klorix for 2 min. The embryos

were collected in a sieve and washed thoroughly with water to remove any trace of Klorix

completely. 5 ml heptane, 4.5 ml 1x PBS and 0.5 ml formaldehyde (37%) were added to a

scintillation vial. Embryos were added to this scintillation vial and fixed for 20min at room

temperature under constant shaking. The lower phase containing formaldehyde was

removed carefully. 5 ml of methanol were added to the embryos and the embryos were

vortexed for 30 s to remove the vitelline membrane. Devitalized embryos were transferred

to an Eppendorf tube. The embryos were washed with methanol multiple times and were

stored at –20 °C.

Hand devitalization of the early Drosophila embryos

For Phalloidin and nompC staining, the embryos were hand devitalized. After 20 min fixation

in 5 ml heptane, 4.5 ml 1XPBS and 0.5 ml formaldehyde (37%), embryos are removed from

the interface of upper and lower phase and washed with 1x PBS. Embryos were placed on

a double-sided tape attached to a petri dish lid. A drop of 0.1% PBST was added on the top
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of the embryo. The vitelline membrane was manually removed by hand devitalizing the

embryos using 2–3gauge needles under a dissecting microscope. Devitalized embryos

started to float into the PBST and thus, were collected.

Embryo immuno-staining

Fixed embryos stored in methanol or hand-devitalized were rinsed multiple times and

washed once for 5min with 1 ml 1X PBST. Blocking step was performed by incubation of

embryos for 1h in 500 µl PBT containing 5% BSA at room temperature. Primary antibodies

were diluted in the indicated ratio in 500 µl of PBT with 1% BSA and incubated for 2 hours

at room temperature or overnight at 4 °C (Table 2.4). Embryos were rinsed 3X and washed

for 4X, every 15 minutes with 500 µl PBT. The secondary antibody was added and incubated

for 1 hour at room temperature. Washing steps were performed using the same procedure

mentioned above (all incubation step was done under continuous rotation). In the final

washing step, embryos were stained with DAPI (1:250, 0.2 mg/ml) for 2-5min, rinsed 3X and

washed once again for 5min with PBT. Embryos were mounted in Aquapolymount medium.

2.2.13 Permeabilization of vitelline membrane for Drug perturbation

Embryos were dechorionated and washed with distilled water. Permeabilization by

immersion in a 1:10 solution of CitraSolve and water, for 2mins (Rand et al., 2010). Embryos

were washed multiple time with 1X PBS. Embryos were dried carefully (as they appear

softer) and glued to the coverslip and submerged in PBS. 10mins before the live imaging,

PBS was removed and the embryos were submerged in 5–50mM MgCl2 solution in order to

block all the Calcium-dependent ion channels (Hartzell and White, 1989).

2.2.14 Live imaging of Drosophila embryo

Stage 10–14 embryos were collected and dechorionated using 50% of Klorix for 2min. The

embryos were transferred and collected in a sieve and washed multiple times with water to

remove any traces of Klorix completely. Dechorionated embryos were lined with dorsal-up

orientation (in order to image AS cells) on an agar block and were glued on to a coverslip.

Embryos were covered in a drop of halocarbon oil before imaging. Time-lapse image stacks

were recorded using spinning disc microscope with a Zeiss X40, N.A. 1.3, and water-
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immersion objective every 10 seconds at a single plane. Images were processed using

ImageJ/Fiji.

The time interval for data acquisition (Frame rate)

• Recording for oscillatory cell behavior in AS - 10s/frame (40X), 35s/frame (25X)

• Laser cut and wounding experiments - 1s/frame

2.2.15 Laser ablation and wounding

Embryos were collected on apple juice agar plates at 25°C for 2 hours, and aged for 15

hours at 22°C (until early dorsal closure stage) and were dechorionated. Embryos were lined

on agar block (in dorsal-up orientation) and transferred to a coverslip and dried for 2 min, in

a desiccation chamber. Before imaging embryos were covered in a drop of halocarbon oil.

The UV laser (DPSL355/14, 355 nm, 70 μJ/pulse, Rapp Optoelectronic) was targeted to the

cells from the epi-port of the microscope and was controlled by an independent scanning

head (Rapp Optoelectronic). An ablation was targeted in a single cell, at the plane of

adherens junction (or in the middle of the cell for wounding experiments) with the 1.5% of

laser power. The exposure time was kept at 200 milliseconds (around 40 pulses) during

recording mode on an inverted spinning disc microscope (Zeiss, 40X oil, N 1.3) with a CCD

camera (Zeiss). Images were recorded every 1s and 0.3s per frame (for different

experiments). The image stacks were processed using ImageJ/Fiji.

The imaging microscope and laser ablation system were independently installed; therefore,

an ablation was performed during imaging on an inverted spinning disc microscope. Laser

ablation experiments for the recoil velocity measurement was carried out at the plane of

adherens junction. Images were acquired every 0.3s using spinning disc microscope (Zeiss,

40X oil, N 1.3). Imaging started approximately around 1min prior to the ablation and was

stopped at around 5min after the ablation. Recoil velocity after the laser ablation was

measured by tracking the displacement between two adjacent 3X vertices from the target

junction. Initial recoil velocity was measured using the first five seconds of the displacement

trajectory of the junctional recoil after the laser cut.

Cell wounding was done using a 355 nm pulsed YAG laser (DPSL-355/14, Rapp

OptoElectronic) illumination. ‘Click and Fire’ mode was chosen, while a movie was recorded
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on a spinning disc microscope (Zeiss, 40X oil, N1.3). With 1.5% laser power (around 0.5

μJ/cell), the laser was exposed for 1500 milliseconds (around 300 pulses) per cell. Images

were acquired every 0.3s using spinning disc microscope (Zeiss, 40X oil, N 1.3).

2.2.16 Large-scale Image segmentation

Large-scale recordings in multiple embryos of all genotype was performed. The continuous

cell shape change during AS oscillations were acquired. During this study, an improved
image segmentation method was developed by our collaborators Matthias Häring (AG Fred

Wolf, Dept. of Theoretical Neurophysics, Max-Planck-Institute for Experimental Medicine,

Göttingen, Germany). New machine learning technique based on deep neural networks was

applied as a segmentation approach of the AS (Ronneberger et al., 2015). Cycle-consistent

generative adversarial networks (GAN) segmentation was used as our main approach for

processing of our large-scale time-lapse data in this study. Reconstruction of cell shape

dynamics for complete AS tissue was achieved using Cycle-GAN trained with manually

created ground truth images. (Haering et al., 2018).
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Chapter 3. Results

The initial experiment to observe the expression of the ion channels in the amnioserosa cells

using GFP reporter lines, expressed from the promoter of ion-channel proteins (tmc, nompC,

and piezo, was performed by Dr. Deqing Kong and I repeated and reconfirmed them.

Starting from this step, I carried the study further. I performed all the biological experiments,

time-lapse recordings, laser cut experiments, wounding assays and Fiji based

quantifications, shown in this study. The segmentation of AS cells via deep neural network

and machine learning was performed by Matthias Häring (Dept. of Theoretical

Neurophysics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany)

(section 3.4). Large-scale computational analysis for spatiotemporal changes in the cellular

anisotropy (section 3.5), AS cell oscillatory dynamics (section 3.6.1), and cell-pair coupling

type analysis were done by Matthias Häring (section 3.4.2–3).

3.1 Expression of mechanosensitive ion channels in the AS epithelium

First of all, I analyzed the expression of the three candidate proteins, putative MS ion

channel TMC, and MS ion channel NOMPC, and Piezo in the epithelial cells in Drosophila

embryos. I used GFP reporter UAS-nls-GFP/UAS-palmitoylated-GFP, which were driven by

the GAL4 expressed from the promoters of nompC, tmc and piezo (Zhang et al., 2016) (Fig.

3.1 A).

3.1.1 Expression of TMC, NOMPC, and Piezo in the epithelial cells during
embryogenesis

TMC was found to be expressed in the epidermis and the amnioserosa (AS) during dorsal

closure (DC), in stage 13–14 embryos. The signal to noise ratio for tmc-Gal4 driven GFP

reporter was high probably due to relatively low expression of TMC during early

embryogenesis stages. TMC accumulated as clusters or puncta in the AS cells (Fig 3.1, B).

nompC-Gal4 driven GFP reporter expression was observed in the AS, as well as in the

epidermis (Fig 3.1, C). Interestingly, I found that the GFP reporter, expressed via piezo-

GAL4 driver, displayed mosaic expression in the AS tissue (Fig 3.1, D). However, this

experiment did not display the actual localization of the ion channel proteins as in this case,
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the specific localization of the ion channel proteins inside the cells were dependent on the

type of GFP reporter line used with the desired promotor Gal4 line.

Fig 3.1 Expression of mechanosensitive ion channels in AS epithelium. (A) Scheme depicts GFP reporter

genes, driven by GAL4 enhancer traps for the tmc, nompC, and piezo. (B) tmc-Gal4 was crossed with
palmitoylated GFP reporter, (C) nompC and (D) piezo-Gal4 lines were crossed with nls-GFP reporter. The

dotted line in yellow marks the boundary between AS and epidermis in the early DC stage embryos. Scale

bar=10µm. (All Images are maximal intensity projections of multiple z-stacks).

3.2 Sub-cellular localization of ion-channels in the AS cells

In order to find out the specific sub-cellular localization of the endogenous TMC and NOMPC

ion channel proteins, immuno-staining with polyclonal antibodies were performed. In the

case of Piezo, sub-cellular localization was detected using a GFP-tagged fusion protein.

3.2.1 TMC is uniformly expressed at the apical and apico-lateral membrane in the
AS cells

Immunostaining of AS cells in Dorsal closure stage embryos using TMC antibody suggested

that TMC was uniformly expressed apically and at the membrane/cell border of AS cells (Fig

3.2 B, C). To check the specificity of the protein localization, I performed immunostainings

in the TMCΔ mutant embryos. TMCΔ allele is a knock-in of GAL4, substituting

transmembrane region of the TMC locus (Fig 3.2, A) (transgene provided by Prof. Martin

Göpfert, Cellular Neurobiology, University of Göttingen). The staining for TMC was specific,

since I detected strongly reduced signals in the TMCΔ embryo. Also, the membrane

localization of TMC was completely lost in the TMCΔ mutant embryos (Fig 3.2, C). I also
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performed phalloidin staining in TMCΔ mutant embryos which suggested that F-actin levels

in the TMCΔ mutants were comparable to the wild-type.

Fig 3.2 Cellular localization of TMC in the AS cells. (A) TMCΔ mutant allele: knock-in of GAL4 substituting

transmembrane region of the TMC locus (Guo et al., 2016). (B) Scheme depicts the cellular distribution of TMC

in AS cells. (Green=TMC localization, AJ=adherens junction) (C) Immunostaining of fixed embryos, with
antibodies against DAPI (nuclear staining) TMC and F-actin (Phalloidin) in wild-type and TMCΔ mutant

embryos (surface and sagittal views). Scale bar=10µm.

3.2.2 NOMPC localizes as clustered structures at the membrane in the AS cells

Immunostaining with NOMPC antibody suggested that NOMPC was distributed as

punctate/clustered structures at the apical and apico-lateral membrane of the AS cells (Fig

3.3). However, the expression and distribution of NOMPC was strongly reduced in nompC-

RNAi, expressed under control of Maternal-Gal4 driver. Also, the overall F-actin levels were
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lowered. Specifically, the apical actin protrusions in the cells seemed to be affected. This

phenotype is yet to be reconfirmed in the NOMPC null mutants (NOMPC(CRISPR)KO) .

Fig 3.3 Cellular localization of NOMPC in the AS cells. Immuno-staining of fixed embryos with antibodies

against DAPI (nuclear staining), NOMPC and F-actin (Phalloidin) in the wild-type and nompC-RNAi embryos

(surface and sagittal). Scale bar=10µm.
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3.2.3 Piezo localizes as clusters at the membrane and apico-medial region in the
AS cells

In order to detect sub-cellular localization of Piezo I expressed UAS-Piezo-GFP driven via

Amnioserosa-Gal4. The signal was detected as a distribution of punctate structures along

the apical and lateral membrane (Fig. 3.4, A). I followed the dynamics of Piezo-GFP positive

puncta in the oscillating AS cells, at a higher magnification (100X). Piezo puncta appeared

to move dynamically on the apical/apico-medial surface, in a similar fashion as Myosin II

dynamics previously shown in the AS cells (Fig. 3.4, C). The oscillation of Piezo puncta also

coincided with the cell shape changes during AS dynamic oscillations however, phalloidin

staining revealed that F-actin levels were not affected in the Piezo-KO embryos (Fig. 3.4,

C).

Fig 3.4 Cellular localization of Piezo in the AS cells. (A) UAS-Piezo-GFP expressed via tissue-specific AS-

Gal4 driver. (B) Fixed Piezo-KO embryos stained for Phalloidin (F-actin). (C) Piezo GFP positive puncta

accumulate as foci at the apico-medial region of the AS cells and oscillate over time. Dashed line indicates the

cell outline. Scale bar=10µm.
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3.3 TMC and NOMPC depletion lead to the embryonic lethality and cuticle
defects in the embryo

I analyzed TMC and NOMPC mutant embryos for hatching rate as well as for proper cuticle

formation in unhatched embryos. TMCΔ mutants showed a mild 18% of embryonic lethality.

For NOMPC depletion in the embryos, nompC-RNAi was expressed maternally (via

maternal-Gal4 driver) and zygotically (via AS-Gal4 driver), in the same embryo. Among the

total population of observed embryos (N=300), 50% of the embryos showed embryonic

lethality. Piezo-KO embryos were viable and fertile with no embryonic lethality and cuticle

defects.

Further, I analyzed extracellular cuticles from unhatched, TMCΔ and nompC-RNAi embryos.

Unhatched TMCΔ mutant embryos showed a range of cuticle phenotypes, in which cuticle

hole remained a dominant phenotype, and was found in 70% of the total population of

unhatched embryos (Fig. 3.5, B).

Fig 3.5 Cuticle phenotype in (A) Wild-type (B) unhatched TMCΔ and (C) nompC-RNAi embryos. (Yellow

arrow marks the cuticle hole).

Approximately 50% of the unhatched embryos expressing nompC-RNAi, showed cuticle

hole phenotype (among other cuticle phenotypes) thus, indicating perturbed epithelial

integrity in NompC depleted embryos (Fig. 3.5, C).
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3.4 Imaging and segmentation pipeline for large-scale computational
image analysis

To study the dynamic cell behavior and morphogenesis in an unbiased manner in the AS

cells, large scale imaging, segmentation, and computational analysis were performed in

multiple embryos. An optimized and robust large-scale imaging pipeline was established

during this study. Embryos from all the genotypes, were prepared for live imaging under

same conditions and at room temperature (for detail description refer to the section 2.1.4).

Overnight collections of stage 10–14 embryos were done. Time-lapse recordings of the live

wild-type, TMCΔ, and xit embryos were done in order to analyze multiple parameters of cell

behavior (cell anisotropy, cell dynamics, cell-area) in the whole AS tissue. 25X objective was

used for well-resolved view of the complete AS tissue. To specifically analyze detailed

cellular and junctional morphology, high resolution images were acquired using 40X

objective.

Oscillatory behavior of AS cells was followed over time in the E-cadherin labelled embryos.

Multiple time frames (including z-stacks) were acquired starting from the end of germ-band

retraction to the initiation of the DC (stage 13–14). I chose a time point based on the distance

traveled by the germ-band relative to the cephalic furrow of the embryo, during the course

of germband retraction. All the embryos from wild-type, TMCΔ and xit were aligned to this

time-point, referred to as the end of germ-band retraction stage. Images were acquired at

the interval of 35s per frame for 1.5h in wild-type and TMCΔ, and for 3.5h in xit embryos (due

to delayed progression of germ-band retraction to complete open amnioseros stage).

For further quantitative analysis, segmentation of the AS tissue was done. Segmentation

approach was developed and performed by Matthias Häring. In order to quantitatively

analyze spatiotemporal morphological behavior and cell dynamics of AS cells in detail, the

whole AS tissue was reconstructed. Deep convolutional networks and a new network and

training architecture called Cycle-GAN was used, to achieve a near complete reconstruction

of the cell shape and dynamics for all the cells in the AS tissue (Haering et al., 2018). (Fig

3.6 A, B). Machine learning based image processing techniques, used for automated

segmentation and image processing applications, typically require very large and manually

prepared, ground truth segmentation training datasets.
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Fig 3.6 Deep learning neural network-based Segmentation approach. (A) Example of segmented AS cells

in stage 14 wild-type embryos (image shown on the right side) from the raw maximal intensity projection image

(shown on the left). (B) Pipeline for computational image analysis and image segmentation by cycle-consistent

generative adversarial networks (GAN), trained with manually created ground truth images. (C) Comparison

of tracking accuracy of Cycle-GAN approach and Tissue Analyzer, in the same AS movie. (D) Performance
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comparison between Cycle-GAN segmentation and two state of the art methods (U-Net and watershed-based

segmentation from the Tissue Analyzer) during AS oscillations.

To circumvent this requirement of large training dataset, we used generative adversarial

networks (GAN) as a deep learning approach for image segmentation. This segmentation

approach works as reliable as the currently best machine learning method (U-Net), but

requires only single ground-truth data set and one initial training session (Fig 3.6, D).

Reliable segmentation was achieved also for the images with low signal-to-noise ratio using

Cycle-GAN segmentation approach. Tracking accuracy via Cycle-GAN approach is robust

and accurate also during dynamic cell behavior (Fig 3.6, C). However, as a limitation to this

approach, the waviness of the cell borders could not be reconstructed via segmentation.

Therefore, this approach was used to quantify and analyze total cell area and cell orientation

dependent parameters.

Dynamic reconstruction of AS allowed us to follow the cell dynamics (coordinated oscillatory

cell behavior) and morphological changes (spatiotemporal changes in anisotropy of the

cells) over time for each and every cell in the AS.
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3.5 TMC is involved in the maintenance of cell morphology and isotropy
in the AS epithelium

During this study, I mainly focused on understanding the functional mechanism of the

putative MS channel TMC in detail. Loss of TMC did not have a large impact on the

development of the embryo, yet the cuticle phenotypes in unhatched embryos indicated its

involvement in the maintenance of epithelial integrity. Unhatched embryos (although in low

percentage-18%) showed morphological defects during stage 11–14. Deformed AS and the

epidermis tissue morphology suggested that TMCΔ mutant embryos, plausibly stop

developing at this stage during embryogenesis (Fig 3.7).

To analyze detailed morphological cell dynamics in TMC depleted embryos, E-Cadherin-

GFP was expressed from the endogenous locus in TMCΔ embryo. E-Cadherin GFP marks

the epithelial cell junctions, and allow visualization of dynamic epithelial rearrangement

during morphogenesis. Time-lapse recordings of the live wild-type and TMCΔ embryos

(stage 13–14) were done. AS cell dynamics (pulsing/oscillatory behavior of AS cells) were

followed over time, starting from the end of germ-band retraction to the initiation of the DC.

Fig 3.7 Loss of epithelial integrity in unhatched TMCΔ embryos. (A) Embryo orientation as shown in the
scheme. (B) TMCΔ embryos (embryo 1 and embryo 2) had deformed amnioserosa (AS) tissue and lateral

epidermis (LE). Scale bar=10µm. (All Images are maximal intensity projections of multiple z-stacks).

In one of the earlier studies from our group, it was shown that during the germ-band

extension morphogenetic rearrangement of cells via cell intercalation in the epidermis is

impaired in xit mutant embryos. xit encodes for a glucosyltransferase enzyme and is
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involved in glycosylation of E-Cadherin. It was also reported that loss of xit affects E-

Cadherin dynamics (Zhang et al., 2014). For this study, xit mutant embryos were used as a

reference to which I compared the phenotypes of embryos TMC depleted embryos in the

AS.

3.5.1 AS cells display anisotropic morphology in TMCΔ and xit mutant embryos

In wild-type embryos, AS cell morphology was highly anisotropic during germ-band

retraction phase. These elongated AS cells gradually became isotropic, as the germ band

retraction was complete and the AS moved dorsally at the end of stage 13 (Fig 3.8, C). This

morphological transition of the AS has been reported before however, how the AS cells are

able to induce this transition is not understood well (Lynch et al., 2013). Unlike wild-type, in

TMCΔ and xit embryos the AS cell remained comparatively anisotropic even after the dorsal

ward movement of AS was complete (Fig 3.8, B; Fig 3.9, C, D).

Fig 3.8 AS cells in TMCΔ and xit embryos remain anisotropic post-germ-band retraction. (A) Scheme

shows orientation of the embryos in anterior to the posterior manner (axial and lateral are orientation of the

cells with respect to the anterior-posterior axis). (B) Specific time frames from the time-lapse recording of live

embryos show the transition of AS cells from anisotropic (end of germ band retraction stage) to isotropic
morphology (early DC stage) in wild-type (1st panel). In TMCΔ and xit embryos, most of the AS cells remained

anisotropic after the germ-band retraction was complete (quantified in Fig 3.9). Amnioserosa (AS) and lateral
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epidermis (LE) is labelled in yellow. Stages corresponding to the time points: 0 min=End of Germ-band

retraction stage, 30 min=Early dorsal closure, and 120 min=onset of dorsal closure. (C) Histogram depicts

normalized frequency distribution of the degree of average anisotropy in the AS cells in wild-type embryos

from germband extension to initiation of dorsal closure (N=436 cells). Scale bar=10µm. (All images are

maximal intensity projections of multiple z-stacks).

Images acquired at higher magnification (using 40X objective) clearly showed that

anisotropic shape of the AS cells were stretched towards the lateral epidermis in TMCΔ and

xit embryos (Fig 3.10, A).  This stretched cell morphology was prominent in the xit embryos.

I performed time-lapse recordings in multiple embryos, starting from the end of the germ-

band retraction stage until the initiation of the DC (identified by the meeting of the lateral

epidermis at the anterior front of the AS). Multiple time frames (including z-stacks) were

acquired, starting from time aligned germ-band retraction stage until the initiation of the DC.

Images were acquired at the interval of 35s per frame (for 1.5h in wild-type and TMCΔ, and

for 3.5h in xit embryos). Based on the distance between the germ-band and the cephalic

furrow of the embryo, during germ-band retraction, I chose a time point. All embryos from

wild-type, TMCΔ and xit were aligned to this time-point (referred to as the end of germ-band

retraction stage, shown at 0min in Fig 3.8, B).
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Fig 3.9 Quantification of spatiotemporal change in anisotropy of the AS cells from germ-band
retraction to early DC stage. (A) Quantification was done selectively and separately for the cells located in

the middle (area marked in blue) and at the periphery (area marked in red) of the AS, by choosing a selective

ROI. (B) Scheme shows the orientation of the cell axis with respect to the anterior-posterior axis of the embryo.

(C) AS cell elongation measured. (D) Heat map depicting isotropic and anisotropic cell shapes. On the scale

of anisotropy 0.0 represents a circle and 1.0 represents a straight line. (E) Histogram depicts normalized

frequency distribution of the AS cells displaying the degree of average anisotropy in the cells located in the
middle of the AS in wild-type, TMCΔ and xit embryos during early DC stage. N=436, 317 and 238 cells in 8

wild-type, 7 TMCΔ, and 7xit embryos respectively.

Time-lapse images were segmented in order to proceed with large-scale computational

analysis (as discussed in section 3.4, Fig 3.6, B). We quantified the anisotropy or cell-

elongation using a nematic tensor characterizing the magnitude of the elongation (Etournay

et al., 2018). Anisotropy in the AS cells were computed independent of lateral and axial axis

orientation (Fig 3.9, C, D).

Quantification of anisotropy in AS cells over multiple embryos showed that wild-type AS cells

display anisotropic morphology during germ-band retraction, and eventually became

isotropic during early DC stage when the complete amnioserosa tissue is exposed dorsally

(Fig 3.8, B, C). However, unlike wild-type, the cells in TMCΔ and xit, remained comparatively

anisotropic even after completion of germ-band retraction and during early DC stage (Fig

3.9, C, D).

Interestingly, I also found that, cells located in the middle of the AS tissue had increased

anisotropy compared to the cells at the periphery i.e. at the boundary of AS and epidermis

in TMCΔ and xit embryos. AS cells in the middle were unable to induce isotropic morphology,

post-germ-band retraction in TMCΔ and xit embryos. However, AS cells at the periphery

stayed comparatively isotropic throughout their transition from germ-band retraction to DC

stage (data shown in appendix section). This phenotype was evident during the end of germ-

band retraction stage but more obvious during the early DC stage. In order to separately

quantify the cells in the middle and at the periphery of the AS, selective region of interest

(ROI) were chosen. The quantification was done over 8 wild-type, 7 TMCΔ, and 7 xit embryos

(Fig 3.9, C, D).
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3.5.2 AS cell junctions display wavy morphology in TMCΔ and xit mutant embryos

Unlike the straight junctions in the wild-type embryos, a distinctly wavy and undulating

morphology of cell junctions was observed in TMCΔ and xit embryos (Fig 3.10, A). In order

to quantify the waviness of the junctions in wild-type, TMCΔ and xit embryos, a ratio between

the total length of the junction (referred to as bond) and distance between two tricellular

junctions (referred to as nodes) were taken (Fig 3.10, B).

Fig 3.10 Quantification for cell junction waviness. (A) Images show AS cells in wild-type (straight junctions),

TMCΔ and xit (wavy junctions) (B) Waviness was quantified as a ratio between the distance between the node

and the length of bonds. On the scale of 1–2, 1 refers to straight junctions and ≥1.5 refers to wavy junctions
(as shown in the scheme). (C) Boxplots show mean ± SEM (p<0.005). N=135 cell borders in 3 embryos for
Wild-type (shown in blue), TMCΔ (shown in green) and xit (shown in red). Scale bar=10µm.

Waviness of the junctions were quantified in 135 cell-borders, over 3 embryos and for each

genotype. There was a significant increase in the degree of waviness in AS cell junctions in

TMCΔ and xit embryos, compared to the wild-type. xit displayed higher degree of waviness

at the junction compared to wild-type as well as TMCΔ (Fig 3.10, C).
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3.5.3 Total number of AS cells are reduced in TMCΔ and xit embryos

The total number of cells in complete AS tissue was measured which suggested that there

was a significant decreased in the total number of AS cells in the TMCΔ and xit embryos

compared to the wild-type. Total cell count in the AS tissue was taken from wild-type, TMCΔ,

and xit embryos at a fixed time-point during the early DC stage, and plotted as a boxplot

(Fig 3.11). Each dot in the boxplot represent one embryo. Quantification for cell count was

done for 8 wild-type, 7 TMCΔ, and 7 xit embryos.

Fig 3.11 Total cell-count in the AS. Boxplot indicate the total number of AS cells in each embryo (mean ±

variance). Each dot represents one embryo. N= 8 wild-type (blue), 7 TMCΔ (green), and 7 xit (red) embryos.

3.6 Coordinated oscillatory cell behavior and intercellular coupling
between AS cell-pairs is affected in TMCΔ and xit mutants

AS cells exhibit continuous oscillations during DC. I investigated, if the loss of TMCΔ, and xit

has any effect on the coordinated cell behavior of the AS cells. Continuous oscillations in

the AS cells during the initial stationary stage of the DC are coordinated with their neighbors

(discussed in detail in section 1.3.2). I chose temporal oscillatory cell dynamics, and

intercellular coordination of cell-pairs linked by junctions, as a parameter to investigate

coordinated cell behavior in wild-type, TMCΔ, and xit embryos. To study the dynamic

oscillatory behavior of the AS cells, in an unbiased manner, large scale imaging,

segmentation, and computational analysis were performed. I performed time-lapse

recordings, in the stationary phase of oscillation of the AS cells during early DC stage

embryos. As reported previously, the AS cells contract with a periodicity of 230±76s (Solon
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et al., 2009; Blanchard et al., 2010). Therefore, I acquired time-lapse at the rate of 1 frame

per 35s to include complete oscillatory phases of the AS cells.

3.6.1 Neighbor dependent, non-autonomous oscillations are faster in the AS cells
in TMCΔ and xit compared to the wild-type

Oscillatory cell dynamics were analyzed specifically during the stationary phase of the AS

oscillations, when the total area of the AS tissue is maintained and remain constant. We

estimated the period of oscillation in AS cells directly from a Fourier transformation on the

cell area trajectory over time. Periods from the autocorrelation function were indicated as a

histogram plot.  Dashed lines in the plot depict the median (Fig 3.12, C). The major period

of oscillation was determined from the autocorrelation function of the cell area trajectories.

The first peak represented the major period in the autocorrelation function in the wild-type,

TMCΔ, and xit (Fig 3.12, B).

We found that AS cells in the wild-type embryos oscillate with a period of 5.15min (consistent

with the previous reports (Solon et al., 2009)). However, oscillations were faster in TMCΔ

(4.05 min), and xit (2.55 min) compared to the wild-type (Fig 3.12, B), suggesting the

involvement of TMCΔ, and xit in the regulation of dynamic cell behavior in the AS.

Fig 3.12 Oscillatory dynamics of AS cells in wild-type, TMCΔ, and xit. (A) Contact-mediated AS cell-pair.

(B) Curves represent the dynamics of the cell oscillations. The first peak represents the major period in the
autocorrelation function. Period for TMCΔ and xit was significantly faster compared to the wild-type. (B) Periods

from the autocorrelation function of the cell area trajectory. Dashed line represents median for wild-type (5.20
min), TMCΔ (4.38 min), xit (3.59 min). Statistical significance by Kolmogorov-Smirnov Test, p<0.00001. N=8

wild-type, 7 TMCΔ, and 7 xit embryos.
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3.6.2 Distribution of coupling types and intercellular coordination is affected in
TMCΔ and xit mutants

In the AS, contact-mediated cell-pairs were temporally coupled during the oscillations (Fig

3.13, A). In order to characterize the coupling type of the AS cell-pairs, intercellular

coordination of AS cell contraction was analyzed using iso-correlation subsampling. From

the entire population of the reconstructed cell-pairs, maximal subsamples exhibiting positive

or negative correlations were selected. The cell-pairs physically linked to the neighboring

cell via the cell junctions, were found to be positively (correlated), negatively (anti-correlated)

or neutrally coupled (Fig 3.13, B–E). For these uniform ensembles of cell-pairs, ensemble

averaged cross-correlation functions were calculated. The correlation coefficient was

analyzed in order to depict the strength of the relationship between positively, negatively

and neutrally coupled cell types (Fig 3.13, B).

In wild-type embryos, there was approximately equal distribution of positively and negatively

coupled cell-pairs in the AS (positive/negative cell-pairs ratio=0.99). Interestingly, this

balance was shifted in TMCΔ with a significant decrease in the population of positively

coupled cells types (positive/negative cell-pair ratio=0.31) (Fig 3.13 C–E). However, the

strength of intercellular coordination of cell-pairs was not affected in TMCΔ embryos as the

ratio between significant/insignificant correlations in TMCΔ (0.29) was comparable to wild-

type (0.27) (Fig 3.13, E).

In xit mutants, all aspects of correlation were affected including cell-pair coupling as well as

the overall strength of the correlation. There was a decrease in both positively and negatively

coupled cell-pairs in the AS (Fig 3.13 C–E). The ratio between significant/insignificant

correlations in xit was=0.22, significantly lowered, compared to the wild-type.
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Fig 3.13 Intercellular coupling between AS cell-pairs in wild-type, TMCΔ, and xit. (A) AS cell-pair are

coupled in positive and negative manner. (B) Curves show change in AS cell area plotted over time for cells

oscillating in positively correlated and negatively correlated manner. (C) The plot shows correlation coefficient
for all negatively and positively correlated cells pairs in the wild-type, TMCΔ, and xit. (D) Positively and

negatively coupled cell-pairs are shown with respect to the normalized axial position in the wild-type, TMCΔ,

and xit embryo. Cell-pairs were selected according to their correlation to a reconstructed neighboring cell. (E)

Table shows total ratio of positive/negative correlations, and the ratio of total significant/insignificant
correlations in the AS of wild-type, TMCΔ, and xit embryo. Tracked cell-pairs: wild-type (7374), TMCΔ (4633),
and xit (4714). N=8 wild-type, 7 TMCΔ, and 7 xit embryos.
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3.6.3 Spatial pattern of coupling types of AS cell-pair

Interestingly, we found that coordinated cell-pairs were not only coupled as a specific type

but were also distributed in a position-based manner in the wild-type embryos. We attempted

to generate a spatioal map of cell-coupling types in the AS tissue. In order to generate spatial

distribution of positively and negatively coupled cell-pairs, the correlation coefficients were

taken in to account (significant and insignificant).

Fig 3.14 Spatial 2D map of cell coupling types in AS in the wild-type, TMCΔ, and xit embryo. All the data-

points for the correlation coefficient were averaged over many embryos in a position-based manner. Tracked
cell-pairs: wild-type (7374), TMCΔ (4633), and xit (4714). N=8 wild-type, 7 TMCΔ, and 7 xit embryos.

AS cell-pairs in wild-type were able to maintain a balance between positively coupled (red)

and negatively coupled cells (blue), as they were evenly distributed throughout the AS.

However, there was a significant reduction in positively coupled cell types in TMCΔ, which

resulted in shift of the balance towards the negatively coupled cell-types (indicated by
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increased blue area in the map). There was an overall reduction in both coupling types in xit

embryos (Fig 3.14).

3.7 AS cell junctions exhibit anisotropic force distribution in TMCΔ and
xit mutants

Next, based on the observation of anisotropic shapes of AS cells in the TMCΔ and xit

mutants, I asked whether the mechanical properties of the cells are also affected. Increased

waviness of the AS cell junction in TMCΔ, and xit embryos also suggested a plausible change

in the mechanical tension distributed within the AS cells (section 3.5.2). A commonly used

approach to estimate mechanical tension experienced by the membrane/junction of the cell,

is via laser ablation (Hutson et al., 2003). In order to reveal junctional tension, I did laser-

induced junctional cuttings using a pulsed UV laser. Early DC stage Wild-type, TMCΔ, and

xit embryos were chosen and individual AS junctions were selected. I made laser-induced

cuts separately on the junctions with an axial or lateral orientation with respect to the

anterior-posterior axis of the embryos (Fig 3.16; Fig 3.17). A single laser-induced cut was

made in each embryo. N=10 for each condition. The time-lapse recordings were done at the

rate of 0.3s/frame.

To calculate the recoil velocity, displacement of the adjacent 3X vertices of the ablated

junction were followed over time by using MTrack plugin in Fiji. Velocity was calculated as

a function of time-post-laser cut, and the data were then fit using the equation for a

viscoelastic element to the strain trajectory (strain = v/k * [1-exp(-k*t)]). Here v represented

the recoil velocity and k was the time-scale parameter. Initial recoil velocity was calculated

from the recoil velocity of first 5s after the laser-cut (Fig 3.15).

Fig

3.15 Quantification recoil velocity in axially vs. laterally oriented junctions in the AS cells. (A) Scheme

for junction ablation experiment in laterally orientated junctions. (B) Kymograph indicate laterally oriented AS

junction followed over time, post laser ablation, in wild-type embryos. (C) Displacement d of the adjacent 3X
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vertices of the selected junction was calculated and plotted as a strain trajectory. Curves indicate strain

trajectory followed in 1 embryo each, for axial and lateral junction cut. Equation for viscoelastic element was

fit to the strain theory to obtain recoil velocity. (D) Boxplots show quantification for the initial recoil velocities of

axial and lateral junctions in Wild-type. Initial recoil velocity was calculated from the first 5s time-frame of the

displacement trajectory. N=10 for each condition. Time resolution is 0.3s. Statistical significance by Student’s

T-test.

3.7.1 Recoil velocity in the junctions with axial orientation

First, I made laser induced cuts at the junctions oriented axially to the anterior-posterior axis

of the embryo. Initial recoil velocity, in the axially oriented junctions in TMCΔ and xit mutants,

were comparable to the wild-type junctions (Fig 3.16, B–E).

Fig 3.16 Recoil velocity at the axial junctions within the AS cells in the wild-type, TMCΔ, and xit
embryos. (A) Scheme of AS. Arrows indicate the axial and lateral orientation of junctions with respect to the

anterior-posterior axis of the AS. (B) Kymograph for ablation of a junction with axial orientation. (C) Scheme
for junction ablation experiment in axially orientated junctions. Displacement d of the adjacent 3X vertices of

the selected junction is followed over time (as indicated by the arrows). (D) Curves indicate 3X vertices
displacement trajectory followed in 1 embryo, for axial junction cut in wild-type, TMCΔ, and xit (E) Boxplots
show mean and variance for the initial recoil velocities of axial junctions in Wild-type (blue), TMCΔ (green) and

xit (red). N=10 for each condition. Statistical significance by Student’s T-test.
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3.7.2 Increased recoil velocity in the laterally oriented junctions in TMCΔ and xit

mutants compared to the wild-type

Unlike axial junctions, laterally oriented AS cell junctions showed significantly higher initial

recoil velocity post laser-cut, in TMCΔ and xit mutants, compared to the wild-type (Fig 3.17,

B–E).

Fig 3.17 Laterally oriented junctions in TMCΔ and xit display higher recoil velocity compared to wild-
type junctions. (A) Scheme of AS indicating the axial and lateral orientation of junctions with respect to the

anterior-posterior axis of the AS. (B) Kymograph for ablation of a junction with lateral orientation. (C) Scheme
for junction ablation using UV laser in laterally orientated junctions. Displacement d of the adjacent 3X vertices

of the selected junction is followed over time (as indicated by the arrows). (D) Curves indicate 3X vertices
displacement trajectory followed in 1 embryo, for lateral junction cut in wild-type, TMCΔ, and xit (E) Boxplots

show mean and variance for the initial recoil velocities of lateral junctions in wild-type (blue), TMCΔ (green)

and xit (red). N=10 for each condition. Statistical significance by Student’s T-test (p-value as indicated in the

figure).

In wild-type embryos, recoil velocity did not change based on the orientation of the junction

suggesting isotropic tension distributed within the AS cell junctions in wild-type (Fig 3.15).
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Also, there were no significant differences in initial recoil velocities, of the junctions with axial

orientation in TMCΔ, and xit mutants compared to the wild-type (Fig 3.16). However, a two

to three-fold increase in recoil velocity was detected in the junctions with lateral orientation,

in TMCΔ and xit mutants, compared to the wild-type (Fig 3.17). Higher tension in the AS cell

junction with lateral orientation was consistent with the laterally stretched anisotropic

morphology of the cells in TMCΔ and xit mutants (Fig 3.8 and Fig 3.9). These evidences

suggested a differential and anisotropic distribution of tension within the AS cell depending

on the junctional orientation in TMCΔ and xit mutants.

3.7.3 Anisotropic tension at the actin cable in the wild-type

Actin cable (AC) is a contractile purse-string at the leading edge of the lateral epidermis.

Differential distribution of tension at the AC in a position-based manner is reported and well-

studied after the initiation of the DC in stage 14–15 embryos (Ducuing and Vincent, 2016;

Kiehart et al., 2000a). However, position-dependent, tension distribution at the AC during

early dorsal closure stage embryos (stage 13–14) remain vaguely understood. I attempted

to address if this differential distribution of tension at the AC already arises during early

dorsal closure stage, in the wild-type embryos.

I performed laser-induced junctional cutting at the AC of the early dorsal closure stage

embryos. Selective cuts were made at the axial position (AC towards the anterior, cephalic

furrow region) and lateral position of the AC (aligned parallel to the lateral epidermis) (Fig

3.18, A). N=10 for each case in wild-type embryos.

Interestingly, I found that the AC at the lateral position had increased recoil velocity

compared to the axial position in the wild-type embryos. It has been reported before that

lateral epidermis counteracts the forces produced by the AS and the leading edge (Kiehart

et al., 2000a). This finding further suggested that despite the anisotropic forces exerted on

the amnioserosa tissue via the AC, AS cells maintain isotropic morphology within the tissue

in Wild-type embryos. Also, this suggests the presence of a mechanism in the AS cells for

the maintenance of isotropic cell shape despite the anisotropic forces experienced by the

tissue. Another evidence that indicated towards this property of AS, was the relatively

stretched morphology of the cells at the leading edge of the epidermis (Fig 3.18, D).

Epidermal cells at the leading edge became anisotropic as DC progressed. However, AS

cells maintained their isotropic morphology.
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Fig 3.18 Anisotropic tension distribution at the AC. (A) Images show positions at the AC where laser-

induced cuts were made. (a) Axial position at the AC, (b) lateral position at the AC. (B) Curves indicate 3X
vertices displacement trajectory followed in 1 embryo, for axial and lateral AC cut in wild-type. (C) Boxplot

show mean and variance of the initial recoil velocity at axial (green) and lateral (grey) position of the AC in

wild-type embryos. N=10 for each condition. Statistical significance by Student’s T-test (p-value as indicated

in the figure). (D) Images show the stretched morphology of the first row of epidermal cells at the leading edge
(yellow), while AS cells maintain isotropy in the wild-type but not in TMCΔ and xit. Scale bar=10µm.
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3.8 Neighbor dependent Ca2+ mediated wound response is perturbed in
TMCΔ and xit mutant

Next, I attempted to understand molecular aspects of the function of putative

mechanosensitive ion channel TMC. Having known to affect Ca2+ conductance in sensory

system, I asked if Ca2+ dependent responses are altered in TMCΔ embryos. Previously it

has been reported that epithelial tissue damage induced coordinated neighbor cell

responses. Therefore, I asked, if the neighbor-dependent wound response was affected in

the TMCΔ, and xit embryos, in comparison to the wild-type. To investigate neighbor cell-

dependent wound response, I performed cell ablation in individual cells in the AS (referred

to as target cell), using pulsed UV laser (355nm). Early DC stage embryos expressing

genetically encoded, myristoylated (membrane-bound) Calcium-sensor GCaMP6s (Chen et

al., 2013) in the wild-type, TMCΔ, and xit background, were used for the wounding assay.

Following the laser ablation of the cell, Ca2+ dynamics in the neighboring cells was followed

and recorded for the next 5 min with the frame acquisition rate of 1s/frame.

To follow the Ca2+ signaling dynamics, GCamp6s fluorescence was measured as mean

intensity over time, at the membrane of the first neighboring cells that were in physical

contact to the target cell (Fig 3.17, A). Fluorescence intensity was measured every 10s for

300s in the wild-type, TMCΔ and xit embryos (using Fiji). GCamp6s fluorescence intensity

was normalized to the average intensity of the first 4 frames, prior to laser ablation (I/I0).

3.8.1 Ca2+ dependent Myosin II accumulation following epithelial wounding

I performed laser induced wounding in the target AS cell in embryos expressing GCaMP6s

sensor. This triggered an instantaneous increase (within ~10s) in the Ca2+ fluorescence

signal at the membrane of adjacent cells in wild-type embryos (Fig 3.19). Wounding in wild-

type embryos expressing Spg-Sqh GFP (GFP tagged to non-muscle myosin II regulatory

light chain) displayed an increase in Myosin II intensity in the neighbors within ~1.5–2min

(Fig 3.19, B, C). Increased Myosin II levels at the wounded site, following sudden Ca2+

increase in the neighbors suggested Ca2+ induced accumulation of Myosin II at the wounded

site following laser cut.



85

Fig 3.19 UV laser induced wounding triggers ca2+ dependent response in the neighbor cells in the AS
tissue. (A) Experimental scheme for cell wounding (a single target cell is ablated by pulsed UV laser), followed

by measurement of Ca2+ dependent response of the neighboring cells junctions. GCaMP6s sensor

fluorescence is measured in the indicated areas of the junctions between the first neighbors (marked in green).

(B) Time-points from the recording of before and after wound induction in individual AS cells in wild-type
embryos expressing membrane-bound GcaMP6s sensor and Spg-Sqh GFP. Boxes indicate the area where

fluorescence intensity is measured in the neighbors. (C) Normalized mean fluorescence intensity of the

neighboring cell membrane plotted over time (solid curve) in embryos expressing membrane-bound GcaMP6s

sensor (blue curve) and Spg-Sqh GFP (orange curve). Mean intensity was measured at all the junctions of the

cells adjacent to the wounded cell (area indicated in the box). Mean fluorescence intensity was measured

every 10s for 300s. Shaded area indicates the standard deviation of the mean. N=3 for each condition. Scale

bar=10µm.
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3.8.2 Ca2+ dependent neighbor cell response to wounding is perturbed in TMCΔ

In TMCΔ embryos, the instantaneous increase of Ca2+ in the neighboring cells following

wounding of the target cell, as a response to the wounding was significantly decreased

compared to the wild-type (Fig 3.20, A). Also, this mild increase in Ca2+ levels stayed longer

in the neighboring cells post wounding (data not shown). Perturbed neighbor-dependent

Ca2+ response in the TMCΔ embryos, indicated TMC mediated Ca2+ dependent response to

the disruption of epithelial integrity.

3.8.3 Neighbor dependent Ca2+ response to wounding is severely perturbed in xit

To investigate Ca2+ dependent wound response by the neighboring cells in xit depleted

embryos, laser-induced cuts were made in the xit germline clones expressing GCamp6s,

under the control of AS tissue-specific Gal4 driver (AS-Gal4). As a result of this

recombination, in the 50% of the embryos xit was depleted maternally as well as zygotically.

However, in the remaining 50% of the embryos xit was only maternally depleted and had a

zygotic rescue. Since these two pools of embryos were indistinguishable from each other

during selection, I performed the laser cut experiment with multiple embryos in order to

phenotypically differentiate between them (N=31).

Out of the total no. of embryos analyzed, in 58% of the embryos showed significant decrease

in Ca2+ levels in any of the neighboring cells that were in contact with the wounded cell.

These embryos showed an autonomous response to the tissue damage. In addition to this,

in xit mutants neighboring AS cells continue oscillating upon wounding unlike in wild-type

where neighboring AS cells slow down or stop their oscillations (data not shown). Remaining

42% showed a subtle and transient increase of Ca2+ in the neighboring cells and thus, a

non-autonomous, neighbor dependent response, to the tissue damage. A subtle increase in

normalized peak fluorescence intensity was observed in the embryos with non-autonomous

response, at around 10–20s post-laser cut was observed as a result of this transient

increase (Fig 3.21, B). Despite the weak transient increase in Ca2+ levels in the neighboring

cells, in approximately half of the xit germline clones, total Ca2+ dependent response in xit

embryos was significantly reduced in both genotypes. (Fig 3.20; Fig 3.21).
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Fig 3.20 Wound induced neighbor dependent Ca2+ dynamics is perturbed in TMCΔ, and xit mutant. (A)

Time-points from the recording of before and after wound induction in individual AS cells in wild-type, TMCΔ,

and xit. (The target cell is marked with a star) (B) Normalized mean fluorescence intensity of the neighboring

cell junctions, was plotted over time (solid curve) for wild-type (blue), TMCΔ (green), and xit (red). Shaded area

indicates the standard deviation of the mean. Mean fluorescence intensity was measured every 10s for 300s.

N=10 for each condition. (C) Boxplots show mean ± SEM. Each dot represents one embryo. Normalized mean
fluorescence intensity is compared in wild-type (1.60), TMCΔ (1.14), and xit (1.02) at 10s post-laser cut. p-

value<= 0.005 (Statistical significance by Student’s T-test). N=10 for each condition. Scale bar=10µm.

Overall, Ca2+ dependent wound response in the adjacent neighboring cells was severely

perturbed in the absence of xit. Although the initial Ca2+ levels prior to the wound induction

seemed to be comparable to the wild-type, there was no significant increase in fluorescence

intensity in the neighbors, following wound induction, in xit mutants.
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Fig 3.21 Ca2+ dynamics in xit mutant. (A) Post laser cut time points in xit embryos, showing autonomous

response (maternal and zygotic depletion) and non-autonomous response (zygotic rescue) to the wounding,
in the neighbors. (B) Transient increase in Ca2+ in the neighbors in xit embryos displaying non-autonomous

response, compared to the embryos with autonomous response. Boxplot indicate mean ± SEM. Normalized
peak fluorescence intensity was compared in xit embryos, with autonomous (1.010 ± 0.0267), and non-

autonomous (1.113 ± 0.02367) response to the wounding, at 10s post laser cut. Statistical significance by

Student’s T-test (p-value as indicated in the figure). Scale bar=10µm.

3.9 Increasing extracellular Mg2+ induces morphogenetic defects in AS
cells

I further asked, if the chemical inhibition of Ca2+ dependent ion channel induce an effect on

AS cell morphology in a similar manner as loss of TMC. It has been reported in the myocytes

from frog ventricle, that Ca2+ dependent ion channels can be blocked rapidly by exposing

the cells to the excessive concentration of free Mg2+ ions (Hartzell and White, 1989). Studies

in smooth muscle and vascular endothelial cells also suggest that Mg2+ is able to regulate

the Ca2+ influx through voltage-gated Ca2+ ion channels (Bara et al., 2001). Excessively

present free Mg2+ in the extracellular spaces can bind to and block divalent ion channels, via

a competitive inhibitory mechanism.

For the delivery of Mg2+ to the extracellular spaces of the AS cells, the vitelline membrane

of the embryos was permeabilized, by treating the embryos with CitraSolve for 2 min (refer

to section 2.2.13 for detailed methodology). Embryos were incubated for 10min in 1X PBS

(control) and 5–50mM concentrations of MgCl2. Live time-lapse recording was done to

analyze cell morphology.
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Fig 3.22 MgCl2 treatment induced morphological defects in the AS. (A) Stage 13 embryos incubated in

5mM, 25mM and 50mM concentration of MgCl2, separately. Treatment of embryos with ≥25mM MgCl2 for

10min resulted in a wavy and undulating morphology of the AS junctions (indicated by the arrow).

Permeabilized embryos immersed in 1X PBS were used as control. (B) GcaMP6s expressing wild-type

embryos were treated with 50mM of MgCl2 for 10min before the image acquisition. Arrow indicates

accumulated GcaMP6s signal at the apical membrane of the embryo. Scale bar=10µm.

Adding MgCl2 in high concentrations (25mM, 50mM) resulted in wavier junctions, compared

to straight junctions in control and 5mM MgCl2 treated embryos (Fig 3.20, A). Furthermore,

when wild-type embryos expressing GcaMP6s were treated with high concentrations of

MgCl2 (50mM for 10min), accumulated GcaMP6s signal was observed at the apical

membrane of the AS cells (Fig 3.20, B, as indicated by the arrow). This accumulated

GcaMP6s signal indicated the increased pool of free unbound Ca2+ in the AS cells. The

junctional morphological phenotype was similar to the phenotype observed in TMCΔ mutant

embryos. This indicated towards Ca2+ dependent role of TMC in the maintenance of junction

morphology.
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3.10 NOMPC depletion results in overall decrease in junctional tension
compared to wild-type

Since, Phalloidin staining in nompC-RNAi revealed decreased levels of F-actin (Fig 3.3), I

investigated the morphology of the AS cells in these embryos. I expressed E-

Cadherin(knock-in) GFP in nompC-RNAi (driven maternally and zygotically). Morphological

observation of AS cells in NOMPC depleted embryos revealed wavy junctional morphology

similar to TMCΔ and xit mutants. However, the AS cell shape were isotropic and comparable

to the wild-type (Fig 3.23, A).

Fig 3.23 NOMPC depletion affects junctional morphology and tension. (A) E-Cadherin expressed in

nompC-RNAi embryos, displayed wavy junctional morphology. However, unlike TMCΔ mutants the cell shape

remained isotropic and comparable to the wild-type. (B) Boxplot indicate mean and variance of the initial recoil
velocity at axially (green) and laterally (grey) oriented AS cell junctions in the wild-type and nompC-RNAi

embryos. Laser induced junctional cuts revealed overall decrease in junctional tension (axially as well as
laterally oriented junctions) in nompC-RNAi embryos, compared to the wild-type.

In order to reveal tension underlying AS junctions in nompC-RNAi embryos, I did Laser

induced junctional ablation. Initial recoil velocity revealed an overall decrease in junctional

tension. Additionally, this decrease was independent of the orientation of the junction as

both axial as well as lateral orientation displayed decreased recoil velocity and therefore,

decreased tension in the nompC-RNAi embryos (Fig 3.23, B). This overall decrease in the

junctional tension was consistent with the decrease in F-actin levels in the nompC-RNAi

embryos.
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Chapter 4. Discussion

4.1 Mechanosensitive ion channels are expressed in the AS epithelial
cells in Drosophila

Mechnosensitive ion channels have been studied extensively in specialized mechano-

sensory neurons, mainly in the context of sensory neurobiology (Lin and Corey, 2005;

Kamikouchi et al., 2009; Effertz et al., 2011; Coste et al., 2012; Guo et al., 2016). However,

their function in epithelial cells during early embryonic development has not been explored

in detail so far. As reported by genome-wide expression studies (Flybase), MS ion channels

are widely expressed in the non-neuronal tissue during embryonic development. In this

study, I confirmed the expression of our candidate MS ion channel in the epithelial cells in

Drosophila embryo. GFP reporter driven by GAL4, expressed from the promoters of tmc,

nompC, and piezo, allowed the investigation of their expression in the AS squamous

epithelial tissue. Putative MS ion channel TMC was found to be expressed in the

amnioserosa tissue, as well as in the epidermis during dorsal-closure. NOMPC, a member

of Trp ion channel superfamily was also expressed in the AS and in the epidermis. In case

of MS ion channel Piezo, interestingly the GFP reporter expressed via piezo-Gal4 driver

displayed a mosaic expression of Piezo in the AS (Fig 3.1). One of the many reasons for

this pattern of Piezo expression, could be due to its dependence upon the type of GFP

reporter line used with the desired promotor Gal4. In summary, this experiment suggested

that MS ion channels are expressed in the epithelium but did not display the actual

localization of the ion channel proteins.

4.1.1 TMC, NOMPC, and Piezo display specific sub-cellular localization in the AS
cells

Immunostaining with specific antibodies, in the AS cells, revealed the sub-cellular

localization of the ion channels (TMC and NOMPC). TMC uniformly localizes to the apical

and apico-lateral membrane in the AS cells. TMC antibody staining in TMC depleted

embryos showed complete loss of protein localization at the apical/apico-medial membrane.

Despite the perturbed cell morphology in TMCΔ mutant AS cells there was no effect on F-

actin levels and it was comparable to the wild-type AS cells on the apical as well as on the
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lateral membrane of the cells (Fig 3.2). Apico-lateral localization of TMC indicates a potential

overlap with the adherens junctions and E-Cadherin.

NOMPC localized as clusters/punctate structures at the apical and lateral membrane of the

AS cells. This localization was strongly reduced in the embryos expressing nompC-RNAi

(expressed under control of Maternal-Gal4 driver). The overall F-actin levels were also

lowered in nompC-RNAi. Specifically, the apical actin protrusions in the cells were strongly

reduced (Fig 3.3). A similar phenotype has been reported upon desensitization of MS ion

channels using toxic peptide GsMTx4. GsMTx4 treated embryos show a significant

reduction in the number of actin protrusions in the AS cells (Hunter et al., 2014). This

phenotype is yet to be reconfirmed in NOMPC null mutants (NOMPC(CRISPR)KO).

Piezo displayed clustered/punctate distribution at the apical as well as apico-lateral

membrane. Piezo-GFP positive puncta appeared to dynamically move on the apical/apico-

medial surface, similar to Myosin II dynamics reported in the AS cells. This oscillatory

accumulation of Piezo puncta/clusters coincided with cell shape change during AS dynamic

oscillations. Plausibly, these Piezo foci are linked to the apico-medial actomyosin structures.

Thus, the oscillatory accumulation of Piezo could be a passive response to the Myosin II

driven oscillations in the AS cells. Piezo ion channels are known to be mechano-gated, and

thus able to sense mechanical stretch. Therefore, their involvement in such a dynamically

morphogenetic process of AS oscillations cannot be ruled out. However, contrary to our

assumption, no morphogenetic changes were observed in the AS cells and dorsal-closure

was successfully completed in Piezo-KO embryos. Also, the overall F-actin level was not

affected in the Piezo-KO embryos. Further study is required to get more insight into the role

of Piezo in dynamically coordinated AS cell behavior.

4.1.2 Role of TMC and NOMPC during embryogenesis

Loss of TMC had a mild effect on the embryonic development of the embryos. 18% of the

embryos from the total population did not hatch (tracked until 48h).  Further, analyzing the

cuticles suggested that among a variety of phenotypes, cuticular holes were dominant and

occurred in 70% of the unhatched embryos. Generally, cuticle holes indicate compromised

epithelial cells integrity (Bachmann et al., 2001). The remaining population of the TMCΔ

embryos that hatched successfully were viable and fertile and were kept as homozygous

stocks.



93

Embryos expressing nompC-RNAi (expressed maternally and zygotically together) showed

50% embryonic lethality. Among the unhatched population of embryos, approximately 50%

of the embryos displayed cuticle hole phenotype, among other cuticular phenotypes (Fig

3.5). Functional significance of NOMPC during embryonic developmental stages was not

assessed further due to the lack of a null mutant. Currently, we have a NOMPC(CRISPR)KO

transgene available in the lab which will allow further study of the role of NOMPC.

Unlike TMCΔ and nompC-RNAi, Piezo-KO mutants were completely viable and fertile and

were kept as homozygous stocks. This indicated that Piezo ion-channel might not have an

absolutely essential function, for the embryonic development of the Drosophila embryo.

However, their dynamic behavior and wide expression suggests that they might contribute

to the maintenance of coordination between cells. Further study is required to explore the

functional significance of Piezo during embryogenesis.

4.2 TMC and xit are involved in the regulation of isotropic force balance
within the AS

Probing E-Cadherin in live embryos gave more insight into the role of TMC and xit during

the embryonic development. Since the rate of unhatched embryos were low, most of the

embryos successfully completed DC. However, I found few embryos that failed to complete

the embryonic development and also displayed severe morphological defects in the

amnioserosa and epidermis tissue. It is clear that these embryos with severe morphogenetic

defects contribute to the of 18% embryonic lethal population of the TMCΔ embryos. TMCΔ

mutant embryos which successfully completed dorsal closure were chosen for further

analysis to investigate the role of TMC coordinated cell behavior in the AS.

Our group had earlier reported xit-dependent morphogenetic rearrangement of cells via cell

intercalation in the lateral epidermis during germ-band extension (Zhang et al., 2014). xit is

a glucosyltransferase in the ER (Endoplasmic reticulum) and is involved in N-glycosylation.

xit functions indirectly via one or more of its N-glycosylation targets, and E-Cadherin might

be one of the major targets of xit during early morphogenetic events. Heterozygous embryos

from xit germline clones develop until late embryogenesis and form an AS tissue. During the

early DC stage, neighbor cell coordinated non-autonomous AS oscillation is regulated via
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xit dependent pathway. In wild-type embryos, neighboring AS cells stop or slow down their

oscillations following laser induced tissue damage. Unlike wild-type, in xit mutant embryos,

adjacent cells proceed with area oscillations following junction cuts (according to preliminary

experiments done by Dr. Deqing Kong). xit mutants displayed morphogenetic defects in the

AS tissue during DC. Since xit functions in an E-Cadherin dependent manner, therefore, cell

behavior phenotypes in xit mutant embryos were used as a reference in this study, to which

the morphological and behavioral phenotypes of the AS cells in TMCΔ mutant embryos were

compared.

4.2.1 Maintenance of isotropic morphology of the AS cells during early DC is
dependent on TMC and xit

AS cells in the wild-type embryos display highly anisotropic morphology at the end of germ-

band retraction phase (stage 11–12). These elongated AS cells gradually become isotropic

as the germ band retracts and unfolds while the AS tissue is exposed dorsally at the end of

stage 13 (Lynch et al., 2013). The transition of AS cells from anisotropic to isotropic

morphology, during these developmental stages, was TMC and xit dependent. AS cells in

TMCΔ and xit mutants remained anisotropic and stretched towards the lateral epidermis of

the embryo even after the complete retraction of the germband and dorsal ward movement

of the AS (Fig 3.8).

Quantification of temporal anisotropy in the AS cells over multiple embryos suggested that

majority of the cells in TMCΔ and xit remained anisotropic post-germ-band retraction. The

ability of AS cells to transition from highly anisotropic to isotropic indicate a mechanism

within the AS tissue, for the maintenance of the isotropic cell shape, despite anisotropic

forces being experienced by the tissue. In wild-type embryos as the DC progresses,

contractile forces from the AS and the AC increases. At the same time, there is a contribution

of resistive forces from the lateral epidermis surrounding the AS tissue, in order to resist the

contractile forces (Hutson et al., 2003). This results in elongated and stretched morphology

of epidermal cells at the leading edge. However, despite the presence of anisotropic forces

from surrounding, AS cells are able to maintain an isotropic morphology in wild-type

embryos. This ability of the AS tissue was lost in TMCΔ and xit mutants. An explanation for stretched

morphology of the AS cells towards lateral epidermis, could be the pronounced forces from the
epidermis in TMCΔ and xit mutants. Continuous pulsatile behavior of AS cells is known to generate

tissue scale forces, and contribute to the dorsal ward movement of the lateral epidermis during DC.
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Since the contractile behavior of the AS cells were altered in TMCΔ and xit mutants (discussed in

section 3.5.1 and 4.3.1), it is possible that AS cells failed to efficiently counteract the resistive forces

arising from the epidermis, and thus displayed anisotropic morphology. DC still progressed in a

normal way in TMCΔ mutants. Multiple tissue scale coordinated forces contribute to driving

the DC (Kiehart et al., 2000a). These highly dynamic processes rely upon complex

pathways, which are sufficient to drive the DC in the absence of TMC. Additionally, TMC is

one of the many ion channel proteins that are expressed during this stage (For example

NOMPC, dTRPA1, Piezo). Therefore, it is less likely that loss of TMC induces severe defects

in one of the major morphogenetic processes during embryogenesis. However, the

stretched morphology of AS cells did reflect an altered force balance in the tissue.

Interestingly, we also found that increased anisotropy in the AS cells was position-

dependent within the tissue, in TMCΔ and xit mutants. AS cells in the middle were unable to

induce isotropic morphology post-germ-band retraction in TMCΔ and xit mutants. However,

AS cells at the periphery stayed comparatively isotropic throughout their transition from

germ-band retraction to DC stage. This phenotype was more obvious during the early DC

stage. The position-based difference in anisotropy was not as striking in wild-type embryos.

Being a highly morphogenetic event, DC is driven via multiple forces that are intrinsic and

extrinsic to the tissue (Kiehart et al., 2000a; Hutson et al., 2003; Solon et al., 2009). AS and

epidermis, are the two-main tissue involved in this process, that experience as well as exert

forces upon each other during the course of DC. Therefore, despite having the same

genotype, it is likely that the cells are influenced from the neighboring tissue (lateral

epidermis, AC) to a different extent within the AS, in a position-dependent manner.

4.2.2 TMC and xit maintain isotropic tension distribution in the AS cells

Cellular morphology reflects internal and external force/tension being experienced by the

cells (Hara and Shagirov et al.,2016). The anisotropic cell shapes in TMCΔ, and xit mutants

indicate towards anisotropic tension distribution within the AS, compared to the wild-type.

Employing laser-induced cut at the individual AS cell junction using a pulsed UV laser,

revealed altered tension distribution within the AS cells in TMCΔ, and xit embryos. In wild-

type embryos, tension underlying the AS cell junction remained isotropic, independent of the

orientation of the junction within the embryo. Unlike wild-type, AS cells in TMCΔ, and xit had

differential tension underlying the junction, based on the orientation of the junction with

respect to the anterior-posterior axis of the embryo. In TMCΔ and xit mutants, two to three-
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fold higher tension was detected underlying the junctions with lateral orientation with respect

to the anterior-posterior axis (Fig 3.16). Higher tension in the junctions with lateral orientation

was consistent with the laterally stretched anisotropic morphology of the cells in TMCΔ and

xit mutants. Increased recoil velocity in lateral junctions may be due to increased tension or

decreased friction in the cells. Interestingly this increase in junctional tension was not

observed in axially oriented AS cell junctions in TMCΔ and xit mutants. The recoil velocities

of axially oriented junctions were comparable to the wild-type. This further suggested that

increased tension in laterally oriented cell junction might not be as a result of the change in

the intrinsic mechanical property of the cells in TMCΔ and xit mutants, as all the junctions

should be affected equally, if that was the case. It has been reported previously that low

level of myosin at cell-cell junction lead to wiggly/wavy morphology, suggesting that the wavy

cell borders are not under high tension (Blanchard et al., 2010). Surprisingly, despite the

wavy junction morphology in TMCΔ and xit mutants, increased tension was observed only in

the laterally oriented junctions. Therefore, anisotropic tension distribution at the lateral AS

cell junctions in TMCΔ and xit could be a result of the external forces being experienced by

the AS which is not efficiently counteracted by the tissue.

It is established that the actin cable (AC) at the leading edge is under tension also during

the early DC (Hutson et al., 2003). I found that in the wild-type embryos, AC exhibited higher

tension at the lateral position compared to the axial position. This finding suggests that

anisotropic forces via AC, are exerted on the AS tissue (Fig. 3.17). At the same time, there

are resistive forces arising from the epidermis. Given these conditions, it is not surprising

that the tension within the tissue is stronger in the lateral, than in the axial direction.

However, in wild-type condition these anisotropic forces are counteracted by the contractile

behavior of the AS tissue. Loss of TMC and xit revealed the anisotropic forces experienced

by the AS tissue. Our findings strongly suggest that TMC and xit are involved in a

mechanism that prevents the anisotropy of force distribution in the AS tissue, by evenly

spreading the stronger external tension within the tissue, while maintaining a uniform

distribution of internal tissue tension and thus morphology (Fig 4.1).
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Fig 4.1 TMC and xit play a role in the maintenance of the uniform force distribution within the AS tissue.
Lateral tension originating from the lateral epidermis (green) is counteracted by the actomyosin cable (cyan)

and AS tissue (red) and is uniformly distributed within the tissue. This is regulated via TMC and xit in wild-type

embryos.

4.3 TMC is an essential component in the pathway establishing
coordinated cell behavior in the AS

Continuous oscillations in the AS cells are non-autonomous and coordinated with the

neighbors within the tissue. (Solon et al., 2009; Jayasinghe et al., 2013).TMCΔ, and xit

mutant embryos had altered coordinated AS cell behavior. Loss of TMC, and xit affected

temporal oscillatory dynamics and intercellular coordination within the cell pairs linked via

the junction.

4.3.1 TMC and xit regulate oscillatory dynamics in AS cells

The temporal reconstruction of complete AS tissue, with the help of improved segmentation

(Cycle-GAN based) approach, allowed the analysis of dynamic cell behavior in the AS. The

major period of the cell oscillation from the cell area trajectories were determined via

autocorrelation function. The analysis of oscillatory behavior in the AS, revealed faster

oscillations in the TMCΔ (4.05 min) compared to the wild-type (5.15 min). Cell oscillations in

the xit mutants were faster (2.55 min) in comparison to both wild-type and TMCΔ embryos.

These evidences suggest that the dynamic regulation of coordinated oscillatory behavior in

the AS is mediated via TMC and xit dependent pathway.

In order to drive such a dynamic cell behavior, a robust regulatory mechanism for force

sensing, transduction, and mechanical response would be required within the tissue.

Lateral epidermis

Actomyosin cable

Wild type

xit

Amnioserosa

mutants

xit

TAC
TAC

Amnioserosa
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Generation of forces (mechanical response) in the presence of mechanical stimuli could be

driven intrinsically by the cells via the sub-cellular organization of contractile cytoskeletal

networks (apico-medial Myosin II pulses) (Martin and Goldstein, 2014; Blanchard et al.,

2010; Solon et al., 2009). However, proper sensing of the mechanical stimulus is required

in order to trigger a mechanical response. Mechanosensitive ion channels can sense the

increased membrane tension in the presence of a mechanical stimulus.

Mechanotransduction at the adherens junction of the AS cells, facilitated via TMC, might

transduce mechanical stimulus into increased intracellular Ca2+ signal, which further could

trigger myosin mediated mechanical response in the cells.

Faster oscillations suggest that the cells are unable to induce efficient cell contractions, and

as a result cells start relaxing sooner compared to the wild-type, during AS oscillations. xit

functions in an E-Cadherin dependent manner, therefore, the reason for faster oscillations

in xit mutants could be a direct result of perturbed interactions of E-Cadherin with

actomyosin network.

4.3.2 TMC mediated mechanotransduction is essential for the distribution of
positively coupled cell-pairs within the AS tissue

In the AS tissue, contact-mediated cell-pairs are temporally coupled during the oscillations.

Neighbor dependent contractions in AS cell-pairs can either be positively, negatively, or

neutrally correlated in the subpopulation of the cells. Analysis of intercellular coordination of

AS cell pairs in wild-type suggested approximately equal distribution of positively and

negatively coupled cell pairs in the AS tissue. Interestingly, in case of loss of TMC, this

balance shifted with a significant decrease in the population of positively coupled cells types,

while the overall correlation remained unaffected. These findings suggest TMC dependent

distribution of positive coupling of cell pairs within the AS tissue. It is possible that TMC

selectively mediates mechanotransduction at the junction between positively coupled cell

pairs. In contrast, all aspects of correlation were affected in xit depleted embryos, including

a strong reduction in the total number of correlated cell pairs (negatively and positively

coupled) (Fig 3.13).

These results confirmed that there is a contact-based coupling of AS cell pairs in order to

drive dynamic oscillations (Jayasinghe et al., 2013; Wang et al., 2012). Further, TMC-

mediated mechano-transduction in the AS is essential for maintaining even distribution of
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both coupling types. However, the overall strength of the correlation is not TMC dependent.

A key aspect of the stationary phase of oscillation in the AS, is that the total area of the AS

tissue remains unchanged, despite continuous fluctuations in the AS cells. In wild-type

embryos, this property is maintained by keeping an equal distribution of positive and

negative correlated cell pairs, during AS oscillations, in TMC dependent manner.

It is known that actomyosin driven cell contractions can be induced in AS cells in a Ca2+

dependent manner. Therefore, the requirement of Ca2+ signaling and dynamics is higher in

positively correlated cell pairs, as they induce contraction together at the same time.

However, in negatively correlated cell pairs only one of the two cells induce contractions at

a time and thus, there is a limited requirement of Ca2+. I found that Ca2+ signaling dependent

response in the neighbors was significantly reduced in the absence of TMC (section 4.4).

This may provide an explanation for the selective reduction in positively coupled cells in

TMCΔ mutant embryos. Positively coupled cells require additional mechanotransduction at

the linked junctions and in AS cells, this requirement is probably fulfilled via TMC mediated

pathway (Fig 4.2). Also, cell oscillations were faster in TMCΔ mutant embryos suggesting

perturbed contractile behavior of the AS cells. This further point towards perturbed Ca2+

dynamics and transduction in the AS cells, during oscillations in TMCΔ mutant.

Fig 4.2 TMC and xit dependent mechanotransduction distinctly control the coordination of the coupled
cell pairs. TMC is required for mechanotransduction between positively coupled AS cell-pairs and xit controls

overall coordination. TMC functions in Ca2+ dependent manner and thus, fulfills the increased requirement of
Ca2+ signaling in positively coupled cell-pair during contractions. xit mediated mechanotransduction is required

for overall coordination, thus, xit might function in an E-Cadherin dependent manner at the junction of all types

of correlated cell pair.
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xit dependent mechano-transduction is essential for overall coordination between the

neighboring cells as all the aspects of correlation were affected in xit mutants, independent

of the coupling type of the cells. It is likely that xit is required at each junction irrespective of

the correlation type of the cell pairs and thus, affects overall neighbor cell interaction and

coordination in an E-Cadherin dependent manner.

4.4 TMC play a role in Ca2+ dependent response of the neighboring cells
to wounding

In the AS cells, immediate Ca2+ influx is triggered in the neighboring cells as a response to

wounding or tissue damage. In TMCΔ mutants, there was a significant decrease in Ca2+

influx in the neighbors. This suggested that TMC is involved directly or indirectly in signal

transduction, to trigger wound response in the neighbors. However, a complete loss of Ca2+

dependent response was not observed in the TMCΔ mutants. It is not surprising, considering

the fact that other major Ca2+ dependent ion channels are also expressed during these

stages (NOMPC, dTRPA1, Piezo) and could compensate for the loss of TMC function.

These experiments provide strong evidence for Ca2+ dependent function of TMC as it had a

direct effect on ca2+ signaling dynamics in the AS cells.

In xit mutants, there was a significant decrease in Ca2+ dependent neighbor cell response.

Despite of the transient increase in Ca2+ response in the neighbors in approximately half of

the xit germline clone embryos, total Ca2+ dependent response was significantly reduced

independent of the genotype. In addition to this, the overall coordination between cell pairs

was also significantly reduced within the AS in xit mutant embryos. Based on these findings,

it is likely that as a result of lack of coordination between the AS cells, the change in

mechanical properties following wounding of the target cell is not being transduced to the

neighbors in xit mutant embryos.

Further, chemical inhibition of Ca2+ dependent ion-channels induced similar morphological

phenotype in the AS cells as the loss of TMC. To specifically block the Ca2+ dependent ion-

channels expressed at this stage of development, the concentration of free Mg2+ was

excessively increased in the extracellular spaces. This excessively present Mg2+ can bind to

and block divalent ion channels, via a competitive inhibitory mechanism (Hartzell and White,

1989). Wavy junctional morphology in the AS cells was observed upon chemical inhibition
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of Ca2+ dependent ion channels. This phenotype was similar to the junctional morphological

phenotype in TMCΔ mutant. The similarity in phenotype further emphasized that TMC might

functions as a Ca2+ dependent MS ion channel in the AS cells. (Fig 3.21).

In auditory hair cell system, mutations of TMC1 alters the conductance and Ca2+ selectivity

of the MET channels (cation channel with high selectivity for Ca2+) (Kurima et al., 2002;

2003; Kim and Fettiplace, 2013). However, whether TMC itself is involved in Ca2+ dependent

transduction remained elusive so far. This study suggested that putative ion channel TMC

is involved and contribute to the Ca2+ dependent mechanotransduction in the epithelial cells.

Fig 4.3 Insight from functional mechanism of TMC in the auditory system. In the inner ear hair cells of

the auditory system, protocadherin (sensing the differential movement of hair cells), are linked to the channel

complex, including TMC and MET ion channel (schematic drawing according to Kurima, 2015). In the epithelial

cells, we hypothesize that TMC (probably with other ion channels) is linked either directly to the E-Cadherin
complex at the adherens junctions or indirectly via cortical actin.

TMC is well studied in extracellular protein filaments known as ‘tip links’ that are required for

mechanotransduction in auditory hair cells (Hudspeth, 1989). At the tip links, TMC has been

shown to interact with the transmembrane and cytoplasmic domains of PCDH15. Interaction

of TMC with E-Cadherin in epithelial cells could not be ruled out based on the range of

phenotype affecting coordination between cell pairs linked via junction in the AS.

Additionally, the similarity of phenotypes in TMC and xit mutants also indicate towards the

junctional association of TMC (Fig 4.3). In order to determine the physical interaction of TMC

with E-Cadherin in the epithelial cells, I will perform Co-Immunoprecipitation experiment in

wild-type embryos.
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At the tip-links of auditory hair cells, TMC is known to functions in association with the large

ion-channel complexes (MET, TRP) (Kurima et al., 2015). Such an association of TMC is

also likely in the epithelial cells. In epithelial cells, one of the candidates for TMC association

could be NOMPC, a Ca2+ dependent ion channel, which is a member of the transient

receptor potential (TRP) family of ion channels. NOMPC depletion in embryos induced

junctional morphological phenotypes similar to TMCΔ and xit mutants. However, unlike

TMCΔ and xit embryos, recoil velocity at the AS cell junctions was decreased in nompC-

RNAi embryos, independent of orientation of the junction with respect to the anterior-

posterior axis of the embryo. Decrease in F-actin levels in the AS cells in nompC-RNAi

mutants, was consistent with decrease in the junctional tension. It is likely that

mechanotransduction via NOMPC ion-channel can regulate actomyosin networks in the AS

tissue, in a Ca2+ dependent manner. Such a functional mechanism for TRP ion-channels

has been suggested in the Drosophila photoreceptor cells. Light exposure mediated opening

of TRP channels can actively redistribute and reshape the actin cytoskeleton (Kosloff et al.,

2003) (Fig 4.3).

In this study, I was able to establish that the putative ion channel TMC is expressed and

play a role in regulation of coordinated cell behavior in the epithelial cells in Drosophila

embryos. TMC is an essential component for the dynamic regulation of coordinated cell

behavior in the AS cells. TMC might provide a molecular link between adherens junctions

and cytoskeletal networks, and is able to transduce mechanical force into increased

intracellular Ca2+. Specifically, TMC dependent mechanotransduction is crucial for the

efficient positive coupling of the AS cell pairs and thus, maintain even distribution of both

positively and negatively coupled cell types in the wild-type embryos. TMC also play a role

in the regulation of force-induced cell behavior of the AS cells, which further maintains

isotropic distribution of tissue tension and thus, isotropic cellular morphology in the AS.
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Appendix 1: Anisotropy of AS cells (single cases)
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Appendix 2: Displacement trajectories of junctions (single cases)
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Appendix 4: Spatial distribution of positive and negative coupling type
of AS cell pairs.

           (Data overlapped from 8 wild-type, 7 TMCΔ, and 7 xit embryos)
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Appendix 5: F-actin staining in WT and TMCΔ mutant embryos
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