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1. Introduction 

Urbanization is a global trend. The United Nations (UN) Population Division estimates that 

6.8 billion people (68 percent of the world‘s population) will live in cities by 2050, 2.5 billion 

(13 percent) more than in 2018 (United Nations, Department of Economic and Social Affairs, 

Population Division, 2019). Whereas urbanization was long a phenomenon of the Western 

world, future urbanization hotspots are mainly located in Africa and Asia. The consequences 

of such developments for societies, economies, and the environment are diverse and complex, 

presenting challenges, as well as opportunities for many developing and transition countries 

located on these continents. Growing urban centers lead to an increase in the demand for 

living space, food, and other consumables (Boserup, 1965; Pribadi & Pauleit, 2015). To meet 

the additional demand, more land is needed for housing (i.e. urban expansion). Retail formats 

become more efficient and complex, and local industries grow due to additional labor force 

(Humphrey, 2007; Schipmann & Qaim, 2011; Christiaensen et al., 2013). The resulting 

economic growth draws more people and, thus, reinforces urbanization drivers described 

before. In the literature this is often referred to as urban pull factors (Ellis, 2000; Reardon et 

al., 2007; Sridhar et al., 2012). Once local markets are connected to national and international 

markets, economic growth and pull factors are further amplified. Consequently, an increasing 

share of the urban population will live in so-called mega-cities, urban agglomerations with 

more than 10 million inhabitants, of which most are located in developing countries (United 

Nations, Department of Economic and Social Affairs, Population Division, 2019). If such 

growth and urban expansion occur unmanaged and at a rapid pace, positive economic growth 

might be outweighed by negative environmental externalities (Elmqvist et al., 2013). Air and 

water pollution due to unfiltered industrial emissions and traffic, as well as decreased 

environmental services due to high shares of sealed surfaces, are only two examples (Shah, 

2007; Vanderhaegen et al., 2015; Srinivasan et al., 2017).
1
 

The dynamics discussed so far primarily address urbanization as such and possible effects on 

urban population. However, people living in the periphery of urban centers are equally 

affected by their changing surroundings. 90 percent of the global rural population lives in 

Asia and Africa depending on agricultural production for their own consumption and/or 

income generation (Food and Agriculture Organisation of the United Nations, 2013). At the 

                                                 
1
 These factors among others are referred to as urban push factors, i.e. they cause people to leave urban centers 

(Sridhar et al. , 2012). 
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same time India, China, and Nigeria alone will account for 35 percent of the urban population 

growth until 2050 (United Nations, Department of Economic and Social Affairs, Population 

Division, 2019). Consequently, many of these countries will experience significant 

demographic change with rural population either migrating to urban centers or rural areas 

turning into urban or peri-urban neighborhoods due to urban expansion. Thus, more and more 

smallholders will come under the influence of growing urban centers. Understanding how 

such a development affects agricultural production systems in the periphery of rapidly 

growing urban centers will be the key to many questions of poverty alleviation and nutrition 

security in the decades to come. Additionally, effects of natural resource depletion and 

environmental services have to be considered. Since proximity to urban centers often appear 

to be associated with agricultural intensification, depletion of natural resources and declining 

environmental services can be additional effects of urbanization threatening the long-term 

functioning of ecosystems and agricultural systems depending on them (United Nations, 

Department of Economic and Social Affairs, Population Division, 2019). 

In this context the three studies presented in this dissertation revolve around the following two 

research questions: 

1) How do agricultural management systems and the agricultural decision-making of 

smallholders change in the rural-urban interfaces of mega-cities? 

2) How do agricultural change and intensification affect environmental services and the stock 

of natural resources? 

In the literature, a common tool to describe urban effects on agricultural production are 

transportation costs, which are measured by distance to a city center or market (Dadi et al., 

2004; Chamberlin & Jayne, 2013; Damania et al., 2017; Euler et al., 2017; Vandercasteelen et 

al., 2017). As early as in 1826, this concept already enters the pioneering theory by von 

Thünen describing concentric rings of different agricultural production systems around a 

town. Von Thünen argues that agricultural production intensifies in urban proximity because 

profit made from the agricultural output has to cover higher land rates close to towns. More 

recent model extensions do not only consider transportation costs in terms of net output prices 

(market price minus transportation costs), but they also incorporate input prices and labor 

costs as functions of the distance to city (Vandercasteelen et al., 2017; Damania et al., 2017). 

The conclusions derived from these models, however, remain similar to von Thünen‘s theory. 
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Using the adoption of chemical fertilizers and improved seeds as indicators of agricultural 

intensification in Ethiopia, Vandercasteelen et al. (2017) show that the adoption of these 

inputs increases with decreasing distance to urban centers ceteris paribus. Similar results are 

presented by Minten et al. (2013) and Damania et al. (2017) for the adoption of modern inputs 

in Ethiopia and Nigeria, respectively.  

Even though these studies provide important evidence on effects of towns on agricultural 

management systems, they generally do not differentiate between different types of towns. 

Exceptions might be studies by Vandercasteelen et al. (2018) and Christiaensen et al. (2013). 

However, they still assume—as von Thünen did—that urbanization effects are concentric, i.e. 

the distance but not the direction from a city matters. Thus, they use one-dimensional 

(univariate) variables such as distance or travel time to a city to describe urbanization effects 

based on the assumption these proxies are proportional to transportation costs (Damania et al., 

2017; Vandercasteelen et al., 2017).  

However, considering the trend towards mega-cities, the assumption of concentric or linear 

urbanization effects might be increasingly difficult to hold in the future. Mega-cities are 

generally characterized by larger industrial and service sectors than smaller towns (Hall & 

Pain, 2009). Therefore, a more diverse set of urban factors influences smallholder decision-

making closer to mega-cities. An example is off-farm employment. Fafchamps & Shilpi 

(2003), Deichmann et al. (2009), and Imai et al. (2015) find that households are very likely to 

diversify their income when off-farm employment opportunities are available. Consequently, 

labor might be withdrawn from agriculture production counteracting labor-intensive 

agricultural intensification. Furthermore, towns are not isolated agglomerations expanding 

into the empty plain. Taylor et al. (2008) or Marull et al. (2015), for example show that rapid 

urbanization often occurs in polycentric patterns. In such a setting farm households can 

choose among several market centers to buy inputs or sell their produce, and the definition of 

one reference point becomes increasingly difficult. Urbanization effects might be neither 

concentric nor linear and the measure of distance to an urban center might not be the ideal 

methodological tool to describe urbanization effects on agricultural systems in the face of 

rapid urbanization and mega-cities. A possible solution to this problem is to model spatially 

explicit urbanization effects.  

Spatial analysis, including models from spatial statistics and spatial econometrics, is, 

therefore, the methodological focus of this dissertation. One way to overcome the assumption 
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of concentric urbanization effects is to estimate so-called smooth effect surfaces or two-

dimensional Penalized (P-) Splines based on GPS coordinates (longitude, latitude). P-Splines 

can be understood as nonlinear effect functions build of piecewise polynomials and a penalty 

term ensuring the smoothness of the function (Fahrmeir et al., 2013). In the spatial context, 

treating GPS coordinates as bivariate continuous variables, two-dimensional P-Splines 

represent effect surfaces. These show how a respective dependent variable (e.g. adoption of a 

particular input) is affected by the location of the observation unit (e.g. household) in two-

dimensional space. Therefore, unlike in the case of one-dimensional proxies, no reference 

point such as a city center or market place has to be defined and nonlinear, as well as 

nonconcentric effect patterns can be estimated. 

Aside from the flexible modeling of urbanization effects, the effect of agricultural 

intensification on environmental services has an important spatial component as well. 

Generally, the scales of agricultural decision making (e.g. plot or farm) and environmental 

services (e.g. pollination or water aquifers) do not coincide, the latter normally having larger 

boundaries than the former (Kremen et al., 2007). Thus, spatial correlation and endogeneity 

are likely to lead to estimation bias, if not addressed in the empirical strategy (Hoef et al., 

2018). Even though this issue has been repeatedly mentioned in the methodological literature, 

it has been rather neglected in empirical analyses (Lichstein et al., 2002; Hoef et al., 2018). 

Therefore, in this dissertation I apply spatial econometric techniques do present a suitable tool 

to overcome such issues in future research. In addition to controlling for estimation bias, these 

methods allow for quantifying spillovers from a smaller scale (farmers‘ decision-making) to a 

larger scale (environmental services). Therefore, the results are also relevant for the 

development of policies or programs aiming to protect the functioning of environmental 

systems. 

 

The empirical analysis is based on primary household data from the rural-urban interface of 

the mega-city of Bangalore in South India. Bangalore‘s population almost doubled during the 

last two decades and is currently estimated at around 12 million (as of 2018) (Directorate of 

Census Operations Karnataka, 2011; Sharma, 2018). Even though the rapid expansion and 

growth of Bangalore is largely attributed to industry and service providers—Bangalore is also 

referred to as the Silicon Valley of India—, the rural-urban interface is still dominated by 

smallholder farming (Sudhira et al., 2007). The climate of the region is classified as seasonal 
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dry savanna. The seasons are defined by a south-west monsoon, normally bringing heavy 

rains from June to September (Directorate of Census Operations Karnataka, 2011). The 

agricultural seasons depend on monsoon rain as a perennial irrigation source. Even though 

modern irrigation technologies are becoming more common, rainfed agricultural management 

systems are still the norm and have become under increasing pressure due to uncertain and 

absent monsoon rains in recent years (Srinivasa Rao et al., 2015). Next to staple crops such as 

ragi (Eleusine coracana) or maize, the area is particularly famous for fruit and vegetable 

production (Directorate of Census Operations Karnataka, 2011). The proximity to Mysore, 

known for its silk markets, promotes mulberry and silkworm farming in the Bangalore region. 

Several satellite towns within a 40-kilometer-radius around Bangalore lead to a polycentric 

urbanization pattern (Fig. 1). Proximity and improved roads connecting the satellite towns to 

Bangalore facilitate the growth of these smaller urban centers and create additional marketing 

and employment opportunities to abutting farm households. As a result, the research area 

exhibits all the characteristics of the urbanization trend predicted by the UN Population 

Division and offers an excellent study case for the research questions of this dissertation. 

The data collection and research presented in this dissertation is embedded in the framework 

of the Research Unit 2432 ―Social-ecological systems in the Indian rural-urban interface: 

Functions, scales, and dynamics of transition‖ funded by the German Research Foundation 

(DFG). The goal of the research unit is to quantify social, economic, and environmental 

change and interdependencies induced by urbanization. It follows an interdisciplinary 

research strategy bringing together scientists from different disciplines (e.g. economics, 

natural sciences, nutrition science) working in the same defined research area conducting 

surveys and experiments facilitating interdisciplinary research. Two research transects were 

defined along the rural-urban interface of Bangalore to represent the spatial variability caused 

by the urban center (Hoffmann et al., 2017) (Fig. 1). One transect is located north of 

Bangalore (hereafter referred to as northern transect), the other one extends in the southwest 

of Bangalore (hereafter southern transect).  

The main data source for the empirical analysis presented in this dissertation is a 

comprehensive socio-economic survey of 1,275 randomly selected households interviewed 

from December 2016 to May 2017. A subsample of 131 households was revisited between 

February and March 2018 for another round of interviews. In addition to the second survey, 

pan trap experiments were installed on plots of these 131 households. The result is a 
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combined and interdisciplinary data set that allows for the analysis of effects of agricultural 

management on pollinator abundance and richness. Furthermore, all interviewed households 

and sampled plots were geo-referenced (Fig. 1). Thus, advanced methods of spatial statistics 

and spatial econometrics could be applied.  

 

 

Note: Studies 1 and 2 only refer to farming households. Therefore, not all 1,275 households are plotted. Study 3 

only covered villages in the peri-urban and rural strata. 

Fig. 1. Overview of study area showing the polycentric setup of the region. 

 

The three studies presented in the dissertation analyze the interaction of urbanization, 

agricultural management decisions, and environmental services in the rural-urban interface of 
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Bangalore, with a particular focus on spatial modeling techniques. The first study is 

conceptual, aimed at developing theoretical, as well as empirical strategies, to represent 

nonlinear and nonconcentric urbanization effects on farmers‘ management decisions. The 

second study looks at farmers‘ decision behavior to adopt borewell technology under the 

influence of urbanization and weather variability. The third study combines economic and 

ecological data and analyzes the effect of agricultural intensification on pollinator abundance 

and richness in the rural-urban interface of Bangalore.  

 

The first study (Chapter 2) ―Somewhere in between towns, markets, and jobs – Opportunity 

costs of agricultural intensification in the rural-urban interface‖ was written in collaboration 

with Prof. Dr. Stephan von Cramon-Taubadel. It is currently under review at The Journal of 

Development Studies. The study investigates how polycentric urbanization affects farmers‘ 

decision-making to intensify their agricultural management systems. The general hypothesis 

is that urbanization effects on agricultural intensification are nonconcentric and nonlinear. 

When satellite towns channel urbanization effects from a larger urban center into the 

hinterlands, the influence of the urban center is no longer uniformly distributed. Furthermore, 

large urban centers offer a variety of off-farm employment opportunities for skilled, as well as 

unskilled labor (Deichmann et al., 2009). The consequence is a competition for labor between 

the off-farm sector and agricultural production; especially intensified management systems 

are generally associated with a higher labor demand (Haggblade et al., 2010). Therefore, the 

degree of agricultural intensification will likely depend on the relation between the access to 

agricultural input and output markets and access to off-farm employment.  

Previous studies model urbanization effects on agricultural management systems by using 

measures such as households‘ distance to the next urban center (Damania et al., 2017; 

Vandercasteelen et al., 2017; Vandercasteelen et al., 2018). They argue that net input costs 

decrease and net output prices increase with proximity to a city due to lower transportation 

costs. Comparable to the theory by von Thünen (1826), they assume concentric rings of 

monotonically decreasing agricultural intensification around an urban center. In a polycentric 

urbanization set-up, one could argue that every satellite town has its own cone of agricultural 

intensification (Vandercasteelen et al., 2018). However, this still implies that households can 

only access one city since the concept relies on the definition of transportation costs as the 

distance to one urban center (an a priori defined reference point). The question is how these 



1. Introduction 

 

8 

 

patterns change if one household has access to several towns. Furthermore, in the majority of 

studies, households are exclusively employed in agricultural production, i.e. all household 

labor is assigned to agriculture and income diversification through off-farm employment is 

neglected (Minten et al., 2013; Ebata et al., 2017; Vandercasteelen et al., 2017; Damania et 

al., 2017). This can be an unrealistic assumption as shown by other strands of literature 

implying that smallholder households will diversify their income sources if they have the 

chance (Fafchamps & Shilpi, 2003; Deichmann et al., 2009).  

Therefore, the first study of this dissertation contributes to the existing literature mainly by 

addressing two research questions:  

1) How do urbanization effects on agricultural management decisions change when 

households have access to more than one urban center? 

2) How do agricultural management systems change when allowing for income 

diversification, i.e. off-farm employment? 

The theoretical approach of this study integrates these questions in two ways. First, 

transportation costs are no longer represented by distance to one town but by a household‘s 

explicit location in two-dimensional space. Thus, household location contains the aggregate 

effect of more than one urban center on household decision-making.
2
 Second, by extending 

the Barnum & Squire model (Barnum & Squire, 1979), household decision-making is 

modeled as utility maximization based on two equilibria: a) a production equilibrium and b) a 

consumption equilibrium. Previous studies model decision-making exclusively based on the 

production equilibrium assuming pure agricultural households (Vandercasteelen et al., 2017). 

Adding the consumption equilibrium allows for off-farm income (wages) to influence farming 

decisions. Thus, farmers‘ choices are described by trade-offs between output prices and wage 

rates, both defined as functions of transportation costs and consequently household location.  

In the empirical analysis, we measure agricultural intensification by the adoption of modern 

inputs such as chemical fertilizers, pesticides, and new seeds varieties. To model potential 

nonconcentric and nonlinear urbanization effects, we apply the concept of so-called 

geosplines. These are two-dimensional effect functions—also referred to as surfaces—that are 

estimated as P-Splines (Fahrmeir et al., 2013). In a separate section of Chapter 2, we discuss 

                                                 
2
 We assume that spatial heterogeneity and the effects measured by household location exclusively result from 

urbanization patterns. Conditions under which this assumption holds, particularly for the empirical analysis, are 

discussed in detail in the first study (Chapter 2). 
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the conditions under which the estimated effect surfaces equal the urbanization effect derived 

in the theoretical model. To assess the additional value of a two-dimensional approach, we 

contrast the results based on geosplines with model specifications that employ the one-

dimensional variable distance to Bangalore city center. 

 

The second study (Chapter 3) ―Digging deep and running dry – the adoption of borewell 

technology in the face of climate change and urbanization‖ is a result of a collaboration with 

Johannes Wegmann and Prof. Dr. Oliver Mußhoff. The study is currently under review at the 

journal Agricultural Economics after the first round of revisions. The focus lies on identifying 

drivers of borewell technology adoption. Similar with the first study, the assumption is that 

proximity to an urban center reduces transaction costs and increases the likelihood of 

technology adoption due to reduced net installation costs. Groundwater lifting technologies 

such as borewells have become crucial in many developing countries to intensify agricultural 

management systems or to prevent crop failure due to increasing weather and climate 

variability (Alcon et al., 2011; Genius et al., 2014). Like in many other regions of the world 

weather patterns are shifting in South India (Shah, 2007). Monsoon rains are becoming 

increasingly unpredictable which threatens the food security and livelihood of many 

smallholders. Groundwater access, therefore, presents an appealing opportunity for 

agricultural growth and poverty alleviation, and the Indian government heavily subsidizes it 

(Kajisa et al., 2007). Nevertheless, improved access to the technology and risk pressure due to 

weather changes can lead to overexploitation and a drop of groundwater tables (Srinivasan et 

al., 2017). Since such developments leave smallholders in even worse circumstances than 

before, a better understanding of the factors driving the adoption of groundwater lifting 

technology is essential to promote sustainable agricultural growth. Therefore, the second 

study addresses the following research question: 

How do urbanization and weather changes affect the adoption of groundwater lifting 

technology? 

Unlike the decision to adopt variable inputs such as fertilizers or pesticides (Chapter 2), the 

adoption of a borewell is generally a one-time and long-term management decisions. Several 

authors argued that for such technologies the timing of the adoption decision is more 

informative than the adoption as such (Dadi et al., 2004; Abdulai & Huffman, 2005). 
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Accordingly, the conceptual framework, as well as the empirical analysis rely on dynamic 

models. In the theoretical model of the study, farmers have the choice between building a 

borewell in the present or next year (Irwin & Bockstael, 2004). To make this decision, they 

build expectations about potential profits with and without a borewell in both years. The 

farmer faces this decision every year until the borewell is adopted. We depict net input and 

output prices as functions of household location to account for varying transportation costs, 

i.e. urbanization effects (see first study). We integrate the weather component of the research 

question into farmers‘ decision-making by allowing their expectation about agricultural 

output to vary between systems with and without a borewell. The intuition is that farmers who 

expect unreliable rainfalls will calculate with a significantly lower agricultural output in a 

management system without borewell than in a system with borewell.  

Empirically, we model the farmer‘s decision problem in a semiparametric hazard rate model, 

an extension of the so-called Cox model (Cox, 1972; Kneib, 2006). The dependent variable of 

this model type consists of adoption time spells, i.e. the number of years between the first 

time the technology became available and the actual time of adoption (Therneau & Grambsch, 

2000). We assume that the technology became widely available with the start of the Green 

Revolution around 1970. As in the first study urbanization effects are modeled as geosplines. 

To quantify the effect of weather changes, three rainfall variables—total, pre-monsoon, and 

monsoon rainfalls—are included in the model.  

 

The third study (Chapter 4) ―Farmers‘ decision-making and pollination services: A spatial 

autoregressive analysis‖ was written together with Arne Wenzel, Prashant Hulamani, Prof. 

Dr. Stephan von Cramon-Taubadel, and Associate Professor Nicole M. Mason. It is currently 

under review in the journal Agriculture, Ecosystems & Environment. The study investigates 

the effect of agricultural intensification on pollinator populations. Many farmers, especially in 

developing countries, still rely on wild pollination of their crops (Kennedy et al., 2013). 

However, agricultural intensification, often promoted by better access to markets and 

information (see studies 1 and 2), has been shown to threaten pollinator communities 

(Ricketts, 2004; Motzke et al., 2016). If such pollinator services disappear, this does not only 

mean a general loss in biodiversity but also income losses for smallholders since many crops 

will fail without the pollination service (Klein et al., 2007). Therefore, understanding how 
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farmers‘ management choices and pollinator communities interact is essential to promote 

sustainable management practices that ensure intact ecosystems and farmers‘ livelihoods. 

Since this topic touches economic, as well as ecological questions, an interdisciplinary 

approach is necessary to obtain the full picture of linkages between agricultural management 

and pollinator communities. This claim has also become louder in the scientific literature 

(Bennett et al., 2015; Collins et al., 2011; Vanbergen & Initiative, 2013; Zhang et al., 2007). 

Nevertheless, most studies are still either primarily ecological or economic. Considerable 

empirical evidence has been produced. Studies by Kremen et al. (2007) and Tscharntke et al. 

(2005) show that pollinator richness and abundance is best explained by landscape scale 

factors. This is intuitive since studies show that pollinators can have dispersal ranges as large 

as six kilometers (Beekman & Ratnieks, 2000). This is the reason why they are also referred 

to as mobile agents. Therefore, conclusions and policy implications deduced in such studies 

often refer to the landscape scale. Even though this is valid from the perspective of pollinator 

communities, it contradicts the understanding of land use in the economic sense. Here, models 

generally assume that land use decisions are made at the local (i.e. plot) scale, i.e. it is not 

possible to manage the ―landscape‖ as such (Bockstael, 1996). Therefore, the third study of 

this dissertation aims to bridge the different perspectives of economic and ecological models 

by addressing the following research question: 

How do farmers’ management decisions on the plot scale affect pollinator abundance and 

richness on the landscape scale? 

The empirical analysis of this research question is based on a combined data set covering 131 

plots in the rural-urban interface of Bangalore. The data set comprises of socio-economic and 

farm management data collected during a survey in February and March 2018 and the 

abundance and species richness of wild bees, a key pollinator in the region, caught in pan 

traps over the same period on all 131 plots (Fig. 1). These data enable us to directly link 

agricultural practices and bee abundance and richness at the plot level. Because bees are 

mobile agents, their dispersal ranges exceed the plot boundaries of farms in the Bangalore 

area (average farm size of 2 acres). Thus, bee abundance and richness observed at one plot is 

likely to be influenced by management choices on other plots. Accounting for such spillovers 

and endogeneity in the dependent variable, we apply spatial econometric models, in particular 

the Durbin model (Kelejian & Prucha, 1999; LeSage & Pace, 2009; Elhorst, 2010). In 

addition to standard effects of regression analysis, this model allows for influences of 
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neighboring observations in the dependent and independent variables. These spillover effects 

are implemented by constructing so-called weight matrices based on the inverse distance 

between sampled plots. 

 

Results presented in this dissertation underline the necessity of more flexible modeling 

approaches of urbanization effects on agricultural systems. The application of two-

dimensional P-Splines in the first two studies proves to be a useful instrument in this context. 

We show that in comparison with one-dimensional variables of urbanization, geosplines give 

a more nuanced insight. We are able to show the importance of satellite towns for agricultural 

intensification and significant differences in effect patterns between the two research 

transects, for example. Applying spatial econometric methods in the third study, we find that 

the use of pesticide has significant negative spillovers on the pollinator services on 

neighboring plots.  

 

The three studies of this dissertation are presented in the following Chapters 2 to 4 

investigating the interaction between urbanization, agricultural change, and environmental 

services. Chapter 5 summarizes the main findings and implications of the three studies. In 

addition, I discuss limitations and ideas for future research.  
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Abstract 

We propose a flexible conceptual and methodological framework to model the dynamics of 

agricultural intensification in the complex rural-urban interfaces of large cities. We focus 

particularly on the effects of polycentric urbanisation patterns and trade-offs between 

agricultural intensification and off-farm employment. In our conceptual framework—

modelling household decision-making based on utility maximization—we show that 

agricultural intensification in the rural-urban interface is likely to exhibit non-linear and 

complex spatial patterns due to relative changes in location-dependent effective output prices 

and wage rates. This is confirmed by our empirical analysis based on a primary data set of 

638 smallholder farms in the rural-urban interface of Bangalore. Applying Structured 

Additive Regression (STAR) techniques, we model two-dimensional urbanisation effects 

using household and village coordinates. Results imply that proximity to secondary towns and 

road infrastructure are the primary channels of urbanisation effects on the uptake of modern 

agricultural inputs. Furthermore, proximity to the large urban centre of Bangalore appears to 

increase the opportunity costs of agricultural intensification through improved access to off-

farm labour opportunities. Overall, we show that agricultural intensification around urban 

centres does not necessarily occur in concentric and monotonic patterns.  

 

 

Keywords: Agricultural intensification, household model, India, Structured Additive 

Regression, urbanisation 
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2.1 Introduction 

Today more than one-half of the world population lives in cities. This share is expected to 

increase to two-thirds by 2050 (United Nations Population Division, 2015). Cities in Asia and 

Africa are growing especially rapidly and the implications of urbanisation are attracting 

increasing attention in the fields of development and agricultural economics. Heinrich von 

Thünen‘s (1826) pioneering model of agricultural activity surrounding a city predicts the 

formation of concentric rings of land use as a function of yields, prices, production costs and 

transport costs to the city for different agricultural products. While his model‘s assumption of 

an isolated city located on a uniform plain is unrealistic, von Thünen‘s approach to analysing 

the effects of proximity to urban centres on land use remains relevant today. Many recent 

studies include proxies for urbanisation to analyse the effects of cities on the livelihoods or 

productivity of smallholders (Asfaw et al., 2016; Vandercasteelen et al., 2017; 

Vandercasteelen et al., 2018). Proximity to an urban centre is expected to improve access to 

markets, information and technology, and thus increase the likelihood that smallholders 

modernise their production systems and improve their standards of living (Chamberlin & 

Jayne, 2013). Common urbanisation proxies used in empirical analyses include distance to the 

next city centre or market, transportation costs, or travel times (Minten et al., 2013; Damania 

et al., 2017; Ebata et al., 2017). The list is long and often variables are chosen based on the 

characteristics of a region such as topography or traffic conditions, or simply availability 

(Chamberlin & Jayne, 2013). Regardless of which proxies are used, most studies show that 

proximity to urban centres and market access can significantly improve smallholders‘ 

productivity, as farmers who are closer to urban centres tend to receive higher net output 

prices and are more likely to adopt modern inputs (Vandercasteelen et al., 2017) . 

While these insights are important, to date the literature on the effects of proximity to urban 

centres on smallholders has not considered two important characteristics of urban expansion 

into surrounding agricultural areas. The first of these is the complex, polycentric nature of 

most urban expansion (Taylor et al., 2008; Marull et al., 2015). Cities do not expand into the 

empty, uniform rural plains posited in von Thünen‘s seminal work. Indeed, in von Thünen‘s 

model the city does not expand at all, it is simply there. In reality, cities emerge from 

networks of settlements in heterogeneous space. Which settlements eventually come to 

dominate and grow most rapidly in a region is determined by a complex, path-dependent 

interaction of geography, chance and agglomeration effects (Krugman, 1996; Fujita & Thisse, 

2014). As it expands, a city will encounter and affect the growth of the other, surrounding 
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settlements. The resulting expansion and coalescence processes generate polycentric urban 

hierarchies (Schneider & Woodcock, 2008). Smallholders in the rural-urban interface, 

therefore, often find themselves in between an expanding urban centre and surrounding 

secondary towns, and subject to a web of interacting economic forces that pull in different 

directions. Hence, their production systems, choices and welfare are influenced by not only 

yields, prices and proximity to a single urban centre. In a polycentric rural-urban interface, for 

example, a smallholder might face a choice between delivering to the urban centre or 

delivering to a closer, perhaps specialised alternative market that is located in the opposite 

direction. In such settings, it is unrealistic to assume linear or monotonic gradients of 

agricultural intensification and productivity radiating out from the urban centre, and standard 

urbanisation proxies based on proximity to the centre may not perform well. 

The other salient characteristic of urban expansion is that it provides alternative employment 

opportunities to the members of smallholder households in the rural-urban interface. 

Economists have generated a rich literature on the push and pull factors that drive rural-urban 

migration and urban population growth (Harris & Todaro, 1970; Jedwab et al., 2017). 

However, smallholder households in the rural-urban interface do not necessarily have to 

migrate to switch from rural to urban. Indeed, such households will often be rural-urban 

composites, with some members engaged in farm and others in off-farm pursuits and this 

mixture shifting over time as household demographics evolve and urbanisation draws closer. 

Especially where urbanisation is driven by strong economic growth that generates pull forces, 

as is the case in the setting that we explore below (Bangalore), households in the rural-urban 

interface will face a choice between allocating labour to increasingly human capital-intensive 

modern agricultural production, or allocating it to off-farm employment opportunities. These 

effects might also lead to complex, non-linear patterns of agricultural intensification 

surrounding large, growing cities. While recent studies (for example Christiaensen et al., 

2013; Vandercasteelen et al., 2018) do account for the varying effects of city size on 

surrounding smallholders, they maintain the assumption that farmers are production 

maximisers who are only affected by access to input (including on-farm labour) and output 

markets. In addition, these studies generally assign one town of reference to each farm 

household to measure its urban proximity. Thus, these studies do not account for complex, 

polycentric patterns of urbanisation, and for the potential role of off-farm earning 

opportunities in the rural-urban interface.  
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This is the point of departure for our study. We derive theoretical and empirical models that 

are sufficiently flexible to capture the effects of polycentric urbanisation on the agricultural 

management decisions made by smallholder households. We develop a household model 

following Barnum & Squire (1979) in which both output prices and off-farm wage rates vary 

in space. The result is an economic model that can explain and predict non-linear pattern of 

agricultural intensification that are driven by antagonistic dynamics in access to output and 

off-farm labour markets. 

We illustrate the application of this model by analysing the use of modern agricultural inputs 

in the rural-urban interface of Bangalore, a rapidly growing megacity of roughly 12 million 

inhabitants (as of 2018) in southern India (Sharma, 2018). As India‘s ‗Silicon Valley‘, 

Bangalore exerts not only a strong demand for food and other agricultural products on the 

surrounding rural areas; it also provides households in these areas with diverse off-farm 

employment opportunities (Sudhira et al., 2007; Directorate of Census Operations Karnataka, 

2011). Furthermore, its rural-urban interface includes multiple secondary towns of different 

sizes that provide smallholders with opportunities for marketing agricultural produce as well 

as for off-farm employment. Thus, it exhibits the polycentric characteristics that we wish to 

study. Our analysis is based on primary data collected in a survey of 638 farm households in 

2016.  

Empirically, we test the implications of our theoretical model by estimating the effect of a 

household‘s location on its use of modern agricultural inputs. Standard models predict that the 

use of such inputs will increase monotonically with increasing proximity to the urban centre. 

The model that we propose considers the effects of location in two-dimensional space rather 

than proximity to a unique urban centre. The result is a framework that builds on but is more 

flexible than and subsumes previous models such as that of Vandercasteelen et al. (2018). To 

operationalise the model we employ Structured Additive Regression (STAR) techniques that 

allow us to directly model two-dimensional location effects based on household and village 

coordinates. We compare the results of this model with results generated using standard one-

dimensional urbanisation proxies based on distance to Bangalore city centre. Thus, we 

determine whether and under which circumstances a model that explicitly considers two-

dimensional effects will generate richer insights into the effects of urbanisation on 

smallholder decision-making in the rural-urban interface. 

The rest of this paper is structured as follows. In chapter two, we introduce our conceptual 

framework and in chapter three, we present our study design and data set. We describe our 
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empirical strategy in chapter four and discuss the results in chapter five. Chapter six 

summarizes our findings.  

2.2 Conceptual Framework 

Most studies of urbanisation effects on agricultural management focus on the effects of 

proximity to urban centres on access to input and output markets. Damania et al. (2017) and 

Vandercasteelen et al. (2017, 2018) develop models that predict a monotonic relationship 

between decreasing transportation costs and agricultural intensification—measured by the 

uptake of new and modern agricultural technologies—with increasing proximity to a city. 

However, a number of empirical studies on labour allocation demonstrate that smallholder 

households are likely to diversify their income if off-farm employment is available 

(Fafchamps & Shilpi, 2003; Deichmann et al., 2009; Imai et al., 2015). Just as access to input 

and output markets varies in space, so do off-farm employment opportunities and effective 

wage rates. There is theoretical (Krugman, 1991) as well as empirical (Fafchamps & Shilpi, 

2003) evidence that as the costs of commuting fall with increasing proximity to cities, wage 

rates and off-farm employment increase. Thus, in this study we expand on existing models to 

consider the interacting effects of improved access to agricultural markets and off-farm 

employment opportunities on household agricultural production decisions. We extend the 

conceptual frameworks introduced by Vandercasteelen et al. (2017, 2018) and Damania et al. 

(2017), which assume that household maximize farm profits, and consider instead 

comprehensive household utility maximization that also accounts for the opportunity costs of 

agricultural intensification in terms of off-farm income. Following the Barnum-Squire ‗Model 

of an Agricultural Household‘ (Barnum & Squire, 1979) and the notation proposed by Ellis 

(1993), we assume that a farm household maximizes its utility given in equation (1). 

 

                                                                                                                                  (1) 

 

  is the amount of the total farm output   consumed by the household, and   are purchased 

goods for consumption. In addition to   and   the household also consumes goods  . These 

are goods that do not have market values but are produced and consumed by the household 

(for example tailoring, cleaning). Therefore, a household‘s utility also depends on the time 

allocated to the production of   denoted by   . 

This utility function (1) is maximized subject to a production function (equation 2), a time 

constraint (equation 3) and an income constraint (equation 4). 
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                                                                                                                                    (2) 

                                                                                                                              (3) 

                           (4) 

 

Total farm output (equation 2) depends on land ( ), labour ( ) and other inputs ( ). The total 

time available to the household ( ) is split among time to produce goods   (  ), time to 

produce   (  ) and time spent in off-farm wage labour (  ) (equation 3). A negative sign for 

wage labour (    ) indicates that labour is hired in for farm production; a positive sign 

(    ) implies off-farm employment. The income constraint (equation 4) states that total 

household expenditures equal the net household earnings, where   is the market price for the 

farm output  ,   is the wage rate,   is the price of the inputs   and m is the price of the 

purchased goods  . 

Household utility is maximized when two equilibrium conditions are met: a production 

equilibrium and a consumption equilibrium. The production equilibrium is established when 

the marginal products of labour and inputs (    ,     ) equal the ratio of the wage to the 

output price (   ) and the ratio of the input to the output-prices (   ), respectively. The 

consumption equilibrium is met when the marginal rates of substitution (MRS) of all possible 

pairs of arguments in   equal the price ratios between the respective pairs. A partial graphical 

depiction of these equilibrium conditions is given in Fig. 2.1 and 2.2 (        , 

       
    )

3
. 

To model the effects of location on agricultural intensification, we propose two extensions to 

the Barnum-Squire Model. First, in equations (5) and (6) we assume that there are two 

different production systems that reflect different stages of agricultural intensification, each 

represented by a distinct production function: 

 

      ̅       
̅̅ ̅̅ ̅̅               (5) 

      ̅        
̅̅ ̅̅ ̅̅ ̅             (6) 

 

For simplicity, we limit the number of production systems to two:      representing a 

modern production system and       a traditional one. The household maximizes its utility 

                                                 
3
 We assume standard second-order conditions for both equilibria. Thus, the indifference curve,        

, is 

convex to the origin of   and    (right origin in Fig. 2.1 and 2.2). Furthermore, the second derivative of      is 

nonpositive.  
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subject to either of the two production systems (equations (5) and (6)), choosing the system 

that yields the highest utility in equilibrium. Household land use is assumed to be constant 

(  ̅) and therefore neglected in the following. The package of inputs used (    
̅̅ ̅̅ ̅̅  or      

̅̅ ̅̅ ̅̅ ̅) is 

assumed to be fixed given the choice of a specific production system (modern or traditional, 

respectively). The interesting factor is labour ( ). Labor productivity in a modern production 

system can be assumed to be substantially higher than in a traditional one (Haggblade et al., 

2010). Hence, all other things equal, the shape of the total physical product (TTP) of labour 

and consequently the location of the production equilibrium differs between the two systems. 

Contrasting Fig. 2.1 and 2.2, we see that in the modern production system more labour (own 

and hired-in) is allocated to farm production, while in the traditional system, due to its lower 

marginal farm labour productivity, more labour is allocated to the off-farm employment and 

producing  . 

 

 

 

 

Fig. 2.1 Equilibrium in a traditional management system at location   . 

 

 



2. Somewhere in between towns, markets, and jobs 

 

26 

 

 

Fig. 2.2 Equilibrium in a modern management system at location   . 

 

 

In the second extension to the basic Barnum-Squire Model, we define the effective output 

price and wage to be functions of household location (equations (7) and (8)).  

 

                                       (7) 

                                     (8) 

 

      and       are the price of agricultural outputs and the wage rate at the urban centre. The 

per unit transport or access cost to the city as a function of distances from any urban centre 

defined by household location   is denoted by      and and      with 
     

  
   and 

     

  
   

respectively. This notation also allows effects of more than one urban centre accessible to a 

household because location  —in contrast to a usual distance measure—does not rely on a 

town of reference. More generally, the prices of purchased goods ( ) and inputs ( ), could 

also be considered location-dependent. However, allowing only   and   to vary with location 

is sufficient to produce complex non-linear spatial patterns of agricultural intensification, and 

further generalization would increase the complexity of the model without generating 

additional insights. 
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Based on these extensions, we turn to Fig. 2.1 and 2.2 to analyse the effect of location on a 

household‘s choice between traditional and modern production. In both figures, the same 

slope of the wage/output price ratio           applies and the household attains the same 

level of utility, denoted by the indifference curve I. However, in Fig. 2.1 the household uses 

traditional production technology while in Fig. 2.2 it uses modern production technology. 

Hence, at location    traditional and modern production lead to the same utility and the 

household will be indifferent to which production system it chooses. 

However, when we consider an otherwise identical household at another location     the price 

ratio           will change depending on the relative slopes of      and     . Hence, new 

equilibrium solutions will be obtained for the traditional and modern production systems, and 

the household will choose the production system that generates the highest utility. If, for 

example, the effective wage rate increases more rapidly than the farm output price with 

increasing proximity to the urban centre, then the ratio           will become steeper in both 

figures, increasing the utility level that is attained in the traditional management system (as 

the household reduces agricultural production and allocates more labour to off-farm 

employment), but reducing the utility that is attained in the modern management system (as 

hired-in labour becomes more expensive). Under these conditions, therefore, we would expect 

to see more traditional and less modern agricultural production as we move towards the urban 

centre from location   . This is the opposite of the outcome that is generally predicted by 

models that only consider the effects of proximity on output and input prices.  

Several authors mention that the size of a city, that is the magnitude of demand by its 

population, determines the degree of agricultural intensification in its hinterlands 

(Vandercasteleen et al., 2017, 2018; Fafchamps and Shilpi, 2003). This is true to the extent 

that increasing city size will affect the spatial pattern of output prices. Yet, the introduction of 

location-dependent wages implies that not only the size of a city but its structure will 

determine the surrounding spatial pattern of agricultural intensification. A city with a large 

industrial sector that demands unskilled labour will have a different effect on farm 

households‘ management decisions than a city with a large service sector that demands more 

skilled labour. In addition, not every household is characterised by the specific indifference 

curves and production functions presented in Fig. 2.1 and 2.2. The ratio           will vary 

over space in a unique manner for each individual household, depending on its specific 

preferences and endowments (age structure, labour skills, land holdings, etc.). Hence, 

depending on the distribution of household types in space and the characteristics of the urban 
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economy, agricultural intensification will not necessarily increase towards the urban centre; it 

might decrease or, more likely, vary in a more complex, non-monotonic manner.  

Thus, two factors increase the likelihood of observing complex patterns of agricultural 

intensification surrounding a large city. First, we can extend the model above to distinguish 

between labour with higher and lower levels of human capital and different degrees of 

complementarity between human capital and other inputs in modern compared with 

traditional production systems. For example, the ratio           might increase with 

proximity to the urban center for labor with high levels of human capital, but increase at a 

lower rate or even decrease for unskilled labour. This will have implications for spatial 

patterns of agricultural intensification if the successful implementation of modern production 

systems requires higher levels of human capital. Second, the spatial pattern of agricultural 

intensification will be further complicated by polycentric urbanisation that can lead to non-

linear variations in the ratio           over space depending on the location of satellite towns 

and the quality of transportation infrastructure.  

In summary, agricultural intensification will not necessarily increased monotonically with 

proximity to urban centres. Instead, agricultural intensification can follow non-linear and 

complex spatial patterns. We have identified several factors, such as off-farm employment 

opportunities and polycentric urban expansion, that might be expected to generate complex 

spatial patterns of agricultural intensification, but other factors might also contribute. 

Whatever their underlying causes, to identify these complex spatial patterns in empirical 

analysis, we require alternative modelling strategies and proxies for urbanisation effects.  

2.3 The Study Area, Survey Design and Data Set 

Bangalore, one of the largest and fastest growing cities in India, and sometimes referred to as 

India‘s ‗Silicon Valley‘, is located in the South Indian state of Karnataka (Sudhira et al., 

2007). The last official census published in 2011 counted 9.6 million people living in the 

Bengaluru urban district (Directorate of Census Operations Karnataka, 2011), an increase of 

more than 30 per cent compared with the previous census in 2001. Estimates of the population 

in 2018 range around 12 million (Sharma, 2018). Bangalore thus represents the type of mega-

city urbanisation that is predicted for many cities in developing countries in future decades 

(United Nations Population Division, 2015), especially in Asia.  

There are several secondary towns within a 70 kilometre radius around Bangalore that have 

also experienced substantial growth during the last decades, developing their own industries, 

services and market infrastructure in the process (Fig. 2.3). In addition, the infrastructure 
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linking these smaller towns to Bangalore has been continuously upgraded, although 

congestion and daily traffic jams have, if anything, become more severe. Hence, our study 

area is best characterized as a polycentric urban hierarchy with Bangalore in the centre.  

 

 

Fig. 2.3 Rural-urban interface of Bangalore, research transects, village location and 

secondary towns. 

 

Rapid urbanisation notwithstanding, agricultural production still dominates the rural-urban 

interface surrounding Bangalore and the secondary towns (Directorate of Census Operations 

Karnataka, 2011). Individual household land holdings are small—about two acres—but the 

variety of crops produced is large and ranges from traditional staples to fruits and vegetables, 

tree crops, mulberry for silk production and even turf production for urban lawns. In addition, 

dairy cattle and other livestock are common. State regulated wholesale markets (referred to as 



2. Somewhere in between towns, markets, and jobs 

 

30 

 

APMC) and other retail formats (for example contracts, supermarkets, cooperatives, farmers‘ 

markets) in Bangalore and the secondary towns offer farmers a variety of marketing channels 

for their produce driven by increasing demand for agricultural products caused by economic 

and population growth in Bangalore, and by national and international trade. 

Our empirical analysis is based on socioeconomic survey data that was collected from 1,275 

households between December 2016 and May 2017. All households were selected in two pre-

defined research transects that cut across the rural-urban interface of Bangalore (see Fig. 2.3). 

One transect is located to the north of Bangalore (hereafter referred to as the northern 

transect) and the other transect to the southwest (the southern transect). To ensure an even 

distribution of households in the transects and, thus, a valid representation of the spatial 

heterogeneity in the rural-urban interface, household selection followed a two-step sampling 

procedure based on the Survey Stratification Index (SSI) introduced by Hoffmann et al. 

(2017). First, each transect was separated into three strata, namely urban, peri-urban and rural. 

In each of the resulting six strata (three per transect) 10 villages were randomly selected. The 

60 villages thus selected account for roughly 30 per cent of the total number of villages in the 

transects. In a second step, an average of just over 21 households per village was randomly 

drawn from household lists provided by the preschool teachers in each village. The exact 

number of household selected per village was proportional to total village population. 

The survey was designed to produce a representative sample of households in the rural-urban 

interface, both agricultural and non-agricultural. As we are interested in agricultural 

intensification, in the following we only consider households that managed at least one 

agricultural plot in 2016. Therefore, our final sample includes 638 farm households; 354 

households in the northern and 284 households in the southern transect. Fig. 2.3 shows the 

villages in which these agricultural households are located. All data are geo-referenced as we 

collected village and household coordinates. This allows us to calculate the distance to the 

Bangalore city centre for every household, but also to model location effects using the exact 

coordinates of each village and household in two dimensions. 

Each household was asked to provide detailed information on its socio-economic 

characteristics and the agricultural management and marketing practices that it applied in 

2016. The result is a complex data set with information on different scales. The smallest scale 

of observation is the crop level with 1,926 crop observations. At this scale, 72 different crop 

and 90 different inputs were recorded. Additional scales of observation are the plot, 

household, village and transect level. At the crop level, for example, we recorded information 
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on the growing season, the use of inputs including irrigation, growing season and the use 

(own consumption, marketing) of the output. At the plot level, we recorded size, soil quality 

and slope. Household level information includes the number of plots cultivated, as well as 

socio-economic characteristics such as caste, education, wealth indicators such as durable 

assets and off-farm employment. An overview of the collected data is provided in Table 2.1.  

Following Sharma et al. (2011), Lohr & Park (2002), Wollni et al. (2010) and Teklewold et al. 

(2013), we use a count of modern inputs applied per crop as a measure of agricultural 

intensification. We classified all inputs observed in our data set into six categories: (a) organic 

fertilizer, (b) traditional seed varieties, (c) new seed varieties, (d) pesticides, (e) inorganic 

fertilizer and (f) hormones. We use a count of all inputs in categories (c) to (f) per crop 

observation—hereafter referred to as modern inputs—to locate each household on a scale 

from traditional to modern production. In the conceptual framework presented in chapter 2, 

we assumed a strict dichotomy between traditional and modern production, but the rural-

urban interface is characterized by transition between systems. Any attempt to classify each 

household into one of two categories would be arbitrary and would not take advantage of the 

richness of our survey data. 

 

Table 2.1 

Descriptive statistics of all control variables  

 Variable N All Northern transect Southern transect 

Modern inputs (count) 1926 1.7747 (1.3592) 1.8808 (1.5565) 1.6837 (1.1568) 

     

Crop scale     

Irrigation (dummy) 1926 0.4766 0.3476 0.5873 

Purpose production 1926    

1: Marketing  0.3240 0.2857 0.3568 

2: Exclusively fodder  0.1267 0.1159 0.1360 

3: Fodder and home 

consumption 
 0.1869 0.1834 0.1900 

0: Others  0.3624 0.4151 0.3173 

Sowing season
a) 

1926    

0: Perennial  0.2347 0.2385 0.2314 

1: Kharif 2015  0.0223 0.0112 0.0318 

2: Rabi 2015  0.1054 0.0765 0.1302 

3: Summer 2016  0.0737 0.0720 0.0752 

4: Kharif 2016  0.4927 0.5422 0.4503 

5: Rabi 2016  0.0711 0.0596 0.0810 
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Table 2.1 continued 

 Variable N All Northern transect Southern transect 

Plot scale     

Plot property 1108    

1:Owned  0.9179 0.9425 0.8839 

2:Rented  0.0659 0.0420 0.0989 

3:Common area  0.0009 0.0016 0 

4:Government (permission)  0.0072 0.0062 0.0086 

5:Government (no permission)  0.0081 0.0078 0.0086 

Size (acres) 1105 1.8229 (3.9854) 1.6991 (3.6441) 1.9926 (4.4092) 

Slope 1104    

1:None  0.4092 0.4593 0.3412 

2:Moderate  0.4420 0.4158 0.4378 

3:Steep  0.1486 0.0956 0.2210 

Soil quality 1104    

1:Poor  0.0362 0.0392 0.0322 

2:Middle  0.4710 0.4765 0.4635 

3:Very good  0.4928 0.4843 0.5043 

Time to plot (minutes) 972 14.1472 (13.4997) 13.7256 (12.459) 14.7789 (14.9188) 

     

Household scale     

Age household head (years) 629 45.0254 (13.5583) 44.8357 (13.6167) 45.2589 (13.5066) 

Automobile owned in 2016 

(dummy) 
638 0.0345 0.0452 0.0211 

Dairy (dummy) 638 0.7743 0.7684 0.7817 

Durable assets (count) 638 2.8151 (1.2779) 2.8107 (1.2778) 2.8204 (1.2802) 

Education household head 

(years) 
600 6.275 (5.1595) 6.7868 (5.2273) 5.6367 (5.0104) 

Experience household head 

(years) 
632 28.5997 (14.299) 28.1543 (14.0771) 29.1525 (14.5759) 

Extension (dummy) 619 0.0969 0.0977 0.0959 

Gender household head 

(dummy) 
629 0.1653 0.1672 0.1631 

Household size (count) 629 4.6391 (2.0785) 4.732 (2.1745) 4.5248 (1.9517) 

Caste     

1:General  0.5192  0.4646 

2:Scheduled Castes  0.1314  0.1159 

3:Scheduled Tribes  0.0483  0.0697 

4:Other Backward Class  0.2648  0.3116 

5:Other
b) 

 0.0363  0.0382 

Adult household members in 

off-farm employment (share) 
638 0.2143 (0.2431) 0.2119 (0.2462) 0.2163 (0.2405) 

Off-farm employment 

(dummy) 
638 0.6191 0.6271 0.6092 

Note: Standard deviation in brackets. For dummy and factor variables shares are given. The number of 

observations N depends on the scale at which the variable was collected (plot, household, etc.). 
a)

Kharif: July-

October (monsoon season); Rabi: October-March; Summer: March-June. 
b)

This category includes households 

that did not associate themselves with any caste.  
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2.4 Methods 

In our empirical analysis, we use a Structured Additive Regression (STAR) framework. 

STAR models allow for different types of covariates in addition to classical linear effects 

(Fahrmeir et al., 2013). This flexibility allows us to account for the multiple scales at which 

our data was collected (plot, household, village and so forth), and to incorporate non-linear 

one- and two-dimensional spatial effects. Following Sharma et al. (2011), we assume that the 

dependent variable (number of adopted modern inputs) is Poisson distributed. We log-

transform the rate   of the Poisson distribution to ease interpretation and define the additive 

and semiparametric predictor        as follows:  

 

                                                     (9) 

 

The predictor consists of four elements, namely linear effects of standard control variables 

  , random intercepts for the different scales of the data set   , where   is an     identity 

matrix, a non-linear effect (one-dimensional spline) of distance to the Bangalore city centre 

     , and a vector of two-dimensional splines      to capture the effects of explicit household 

or village location. 

Descriptive statistics for the variables in   are presented in Table 2.1. As control variables, 

we include information on crop, plot and household characteristics.  

The main purpose of the random intercepts is to handle effects at different scales. Because the 

northern and the southern transects differ considerably in agricultural and economic structure, 

we estimate separate models for each transect and there is no need for random effects at the 

transect level. However, we do include random effects at the crop, plot, household and village 

levels:                                     . The crop level is especially important due to 

the high crop diversity observed in our sample. By introducing random effects for different 

crops, we capture each crop‘s individual input requirements as a deviation from the overall 

sample intercept. The interpretation of the other random effects is similar. 

Many models in the literature include distance to the next city or market as a standard linear 

effect. Our conceptual framework shows that urbanisation effects can be non-linear. We 

therefore estimate the effect function of distance to Bangalore city centre as a one-

dimensional P-spline,      . P-splines are polynomial splines of degree     with an 

additional penalty term ensuring the smoothness of the function (Fahrmeir et al., 2013). 

Polynomial splines consist of a series of polynomials of degree   over intervals           with 
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          being a defined number of knots. Furthermore,       has to be      -times 

continuously differentiable to be a smooth function. The penalty is simultaneously estimated 

with the polynomial splines and is based on the difference to neighbouring coefficients. We 

specify P-spline       with 20 knots and a second order random walk penalty. For a detailed 

introduction to P-splines see Kneib & Fahrmeir (2006) or Fahrmeir et al. (2013). The explicit 

spatial effects      are estimated as a two-dimensional P-spline surface smoother. The 

construction of the two-dimensional P-spline is equivalent to the one-dimensional P-spline. 

However, since the calculation is more complex, the two-dimensional spline is specified by 

only 10 knots and a first order random walk penalty. The function      represents the direct 

effect of household or village coordinates (bivariate variable), 

                     (        )  , on the number of adopted modern inputs. It can be 

interpreted as a bivariate non-linear effect that reflects position in the plain and is thus able to 

capture complex location effects in a polycentric setting.  

Inference in model (9) is based on a mixed model representation and estimation follows an 

empirical Bayesian approach; from a frequentist perspective, this is comparable to penalized 

likelihood estimation. The main difference between the Bayesian and frequentist perspectives 

is the definition of the penalty in the non-linear smoothers       and     ; this penalty takes 

the form of a smoothing parameter in the Bayesian approach, and a variance component in the 

frequentist approach (Kneib & Fahrmeir, 2006).
4
 

2.4.1 Model Specifications 

We estimate two models. Model one includes the one-dimensional urbanisation proxy 

distance to the Bangalore city centre,      :  

 

                                   (10) 

 

The second model contains the two-dimensional location effects     . We compared estimates 

of      based on household and village coordinates and find that two-dimensional splines 

based on village coordinates yield a lower Akaike information criterion (AIC). Therefore, we 

only considered village coordinates,  (        ) in the ensuing analysis: 

                                                 
4
 The estimation of the model was conducted in R using the package ‗R2BayesX‘ (Umlauf et al., 2013), which 

provides an interface to the free Software ‗BayesX‘ for Bayesian inference. For more information on the 

estimation techniques and inference see Kneib & Fahrmeir (2006), Umlauf et al., (2015) and Fahrmeir et al.  

(2013). 
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                      (        )                 (11) 

 

Estimating and comparing models (10) and (11) allows us to determine how well the one-

dimensional and two-dimensional non-linear effects capture spatial heterogeneity, and 

whether there are substantial differences between the two effects.  

With 20 control variables and four sets of random effects the models are already quite large 

and possibly subject to convergence and computational challenges, especially when we 

attempt to include the two-dimensional splines,     . To avoid these problems and over-

parameterization, we apply an adaptive algorithm based on the improved Akaike information 

criterion (iAIC) to eliminate covariates in   and random effects   that do not contribute to the 

fit of the base model (for details see Brezger & Lang, 2006; Belitz et al., 2012). 

2.4.2 Linking theoretical and empirical Concepts of Location 

Before we present results, we briefly consider the relationship between the location effects 

discussed in our conceptual framework above and the location effects estimated using       

and  (        ) in our empirical application. In the conceptual framework, proximity to urban 

centre affects the demand for agricultural outputs and off-farm earning opportunities.       

measures proximity to the urban center of Bangalore and will capture these effects if two 

assumptions hold: first that these urbanisation effects are common in all directions moving 

away from the centre of Bangalore, and second that there are no uniform concentric 

geological or biophysical patterns around Bangalore. If, for example, there were uniform a 

ring of especially good soil at a certain distance from the centre of Bangalore, its effects on 

household agricultural decisions would influence the estimated shape of the spline      , 

which would then no long only reflect urbanisation effects. Since we can safely assume that 

there are no such uniform and concentric geological or biophysical patters surrounding 

Bangalore, we can use the performance of       in our second model to assess whether the 

effects of urbanisation on agricultural decision making do indeed follow a common pattern 

moving away from the urban centre independent of direction. 

Interpreting  (        ) is less straightforward because it does not measure a distance from the 

urban centre but rather a set of location coordinates. Therefore, it might also capture local 

geological or biophysical effects such as soil quality or elevation that affect agriculture and 

are defined by the physical location of a village. To control for this and to ensure that the 
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urbanisation effects that we estimate using  (        ) are not confounded by geological or 

biophysical effects such as spatial variations in soil quality, we employ two strategies. First, 

we include plot characteristics such as soil quality and slope in  , to control for small-scale 

biophysical factors. Second, we include village-level random intercepts to control for 

unobserved variation at a larger scale, for example, distinct biophysical or hydrological 

features that affect agricultural decision making in a particular village. Examples of such 

features are hills, lakes, or wastewater drainages that could be used as alternative irrigation 

sources. We are confident that because of these controls the location effects that we estimate 

using       and  (        ) will primarily capture the urbanisation effects discussed in our 

conceptual framework.  

2.5 Results and Discussion 

We begin with the estimation results for the first model, which includes one-dimensional 

effects of distance to Bangalore on the use of modern inputs (equation (10)). For the northern 

transect the results suggest that the use of modern inputs increases significantly with 

increasing distance from Bangalore (Fig. 2.4, left panel). The y-axis in both panels of Fig. 2.4 

displays estimated coefficients. Because the models were estimated in log-linear form, the 

exponential of the coefficients yields the multiplicative effects on the mean rate of adopted 

modern inputs. For the northern transect this means on averag 11 per cent (         ) more 

adopted modern inputs on average at household locations beyond 40 kilometres. The effect 

for households located closer to Bangalore is of a similar magnitude but with a negative sign, 

that is 11 per cent fewer mean adopted modern inputs for households closest to Bangalore. 

For the southern transect the one-dimensional effect suggests that modern input use increases 

with proximity to Bangalore, however the confidence intervals indicate that this effect is weak 

and insignificant at conventional levels.  

There are two interesting findings from these results. First, even though our estimation 

approach allows for non-linear effects, both P-splines in Fig. 2.4 are very close to linear. 

Second, the estimated urbanisation effect in the northern transect is the opposite of what is 

found in previous studies (Vandercasteelen et al., 2017; Damania et al., 2017) because it 

indicates that modern input use falls with increasing proximity to Bangalore. 
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Fig. 2.4 Estimates of one-dimensional splines,      , model specification (10) (Nnorth= 829, 

Nsouth= 983). 

 

The results of our second model (equation (11)), which includes two-dimensional splines for 

village coordinates ( (        ), are presented in Fig. 2.5.  These results are roughly similar to 

those of the one-dimensional model presented in Fig. 2.4 above, but provide several 

additional insights. In the northern transect the two-dimensional location effects confirm the 

result presented above that the use of modern inputs increases with increasing distance from 

Bangalore. The magnitude of this effect is comparable to the one-dimensional splines as well. 

The two-dimensional spline for the northern transect shows that modern input use is roughly 

11 per cent above average in the dark red areas in the northern ranges of the transect and 11 

per cent below average in the southern ranges closest to Bangalore centre. However, the two-

dimensional location effects also reveal nuances that are not apparent in Fig. 2.4. Specifically, 

Fig. 2.5 reveals a cluster of high modern input use towards the northwest of the northern 

transect. This cluster might be related to the secondary town Doddaballapura, which has 

roughly 300,000 inhabitants and good agricultural marketing infrastructure including a state-

regulated APMC wholesale market and many local traders. The absence of such an effect 

cluster close to Bangalore might hint at higher opportunity costs of agricultural intensification 

closer to the large city.  
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Fig. 2.5 Estimates of two-dimensional splines,  (        ), model specification (11) 

(Nnorth= 829, Nsouth= 983). 

 

 

In the southern transect the results of the model that includes two-dimensional effects (Fig 

2.5) confirm that modern input use roughly declines with increasing distance from Bangalore. 

However, the magnitude of the estimated spatial effects is a factor of five lower in the 

southern than in the northern transect. As is the case in the northern transect, the two-

dimensional results for the southern transect reveal more spatial complexity. The results 

presented in Fig. 2.5 show that modern input use does not increase smoothly with increasing 

proximity to Bangalore but rather appears to peak in a cluster in the middle of the eastern 

range of the transect. The road map included in Fig. 2.5 suggests that this spatial cluster of 

higher modern input use might be related to the road that connects Bangalore to the secondary 
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town of Kanakapura in the south. Thus, the effect might be rather driven by proximity to 

infrastructure than Bangalore itself. 

In summary, the one-dimensional model captures the main feature of the two-dimensional 

pattern presented in Fig. 2.5. However it is less nuanced and does not, for example reveal the 

apparent cluster of higher modern input use near the secondary town Doddaballapura (Fig. 

2.5), or the cluster of higher input use along the eastern boundary of the southern transect. 

Furthermore, the fact that we observe very different patterns of urbanisation effects in the 

northern compared with the southern transect implies that approaches that are more flexible 

are necessary. 

Using a one-dimensional urbanisation proxy such as distance to the urban centre is based on 

the assumption that urbanisation effects are concentric and uniform. Our results prove that 

this can be an unreasonable assumption in settings characterized by rapid and polycentric 

urbanisation. Indeed, if we estimate the model in equation (10) with one-dimensional distance 

effects using pooled data from both transects, the results (Appendix 2.1) resemble those in the 

left panel of Fig. 2.4 estimated for the northern transect alone, but they are much less 

significant and essentially represent a hybrid of the separate results for the northern and the 

southern transects that blurs the differences between the two. Applying the two-dimensional 

model does not suffer from such a bias because it is based on the explicit location of 

households.  

In Table 2.2, we present the effects of explanatory variables on modern input use. Several 

aspects of these results are worth noting. First, in the northern transect a 1 per cent higher 

share of adult household members in off-farm employment decreases the mean rate of modern 

inputs used by almost 20 per cent. This result is in line with the expectation generated by our 

conceptual model that proximity to urban centres affects agriculture not only via its effects on 

output prices, but also by increasing the opportunity costs of agricultural labour. This is 

especially interesting in the light of the negative location effects close to Bangalore in the 

Northern transect (Fig. 2.5).  

In the southern transect the effect of off-farm employment is insignificant. However, the 

variable is important for the model fit according to the iAIC and also has a negative sign in 

the southern transect. Table 2.1 shows that in 62 per cent of all households at least one 

member is employed off-farm, and that on average about 21 per cent of all household 

members work in the off-farm sector. These results do not prove the dynamics implied by our 

conceptual framework. However, they do suggest that proximity to urban centres affects 
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agriculture not only via its effects on input and output prices, but also via its effects on 

alternative earnings opportunities.
5
 This can lead to more complex patterns of agricultural 

intensification than considered in the literature to date.  

Besides off-farm employment, several other control variables also have significant effects on 

the use of modern inputs (Table 2.2). In some cases, these effects are similar in the northern 

and the southern transects, in other cases they differ. First, irrigation has a highly significant 

positive effect on the number of adopted inputs in both transects. This is expected as access to 

irrigation is often a prerequisite of modern, intensive agricultural systems (Elliott et al., 2014). 

Second, more modern inputs are applied to market crops, and fewer are applied to fodder 

crops. The former effect is statistically significant in the northern transect, where on average a 

household uses 37.9 per cent more modern inputs on crops grown exclusively for marketing 

rather than own consumption; the latter effect is statistically significant in the southern 

transect, where almost 22 per cent fewer modern inputs are applied to fodder crops. In 

addition, the results show that seasonal crops such as corn, tomatoes and other vegetables—

independent of the season—receive more modern inputs than perennial crops such as 

eucalyptus or coconut, an effect that is most pronounced in the northern transect  

If households own an automobile in the northern transect, the mean rate of adopted modern 

inputs increases by more than 60 per cent. This can be interpreted in two ways. An 

automobile indicates relatively high wealth (only roughly 3.5% of all households in our 

sample own automobiles), and wealthier farmers likely face less liquidity constraints that 

might otherwise restrict access to modern agricultural inputs. Second, an automobile implies 

better access to input and output markets. In the southern transect, if a household has received 

extension services, its average modern input use increases by approximately 22 per cent. 

 

 

 

                                                 
5
 If we consider the conceptual framework, the decision of off-farm employment and agricultural intensification 

happens simultaneously. However, in our empirical model, we treat off-farm employment as standard exogenous 

variable. We believe that this is a reasonable assumption based on the structure of our data set. We only consider 

agricultural management decisions in the agricultural year of 2016. These decisions concern primarily seasonal 

crops and thus are short-dated. If household members are employed in the off-farm sector these are general 

permanent or long-term employments (teachers, drivers, etc.) or even self-employment such as shop owners. 

Even though seasonal or casual labor exists in the area, it does not contribute a significant share of off-farm 

employments in our sample. Consequently, we can assume that the labor allocation within the household is 

somewhat fixed before the agricultural year of 2016 and off-farm employment can be treated as exogenous. 

Nevertheless, it would be interesting for future studies to model the possible simultaneity of labor allocation 

decision either with data sets from areas with a higher share of casual labor or panel data.  
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Table 2.2 

Estimation results for model with two-dimensional splines, northern and southern 

transect separate 

Variables Effects of explanatory variables as percentage change of the 

mean rate of adopted modern inputs  

    ̂          

 Northern transect Southern transect 

Intercept -1.558 (0.934) -8.552 (0.588) 

Crop characteristics   

Irrigation   

Yes 35.866 (<0.001) 53.373 (<0.001) 

Purpose production (ref.: Other)   

Exclusively fodder -5.776 (0.632) -22.167 (0.046) 

Fodder and home consumption 11.460 (0.178) 12.829 (0.142) 

Marketing 37.892 (<0.001) 8.383 (0.372) 

Sowing season (ref.: Perennial)   

Kharif 2015 44.991 (0.163) 6.759 (0.727) 

Rabi 2015 40.270 (0.037) 22.385 (0.120) 

Summer 2016 44.513 (0.026) 25.722 (0.114) 

Kharif 2016 45.150 (0.013) 23.121 (0.103) 

Rabi 2016 78.515 (<0.001) 22.569 (0.155) 

Plot characteristics    

Slope (ref.: None)   

Moderate -3.004 (0.618)  

Steep 17.492 (0.114)  

Household characteristics    

Automobile owned in 2016   

Yes 60.031 (<0.001) -15.591 (0.330) 

Caste (ref.: General)   

Scheduled Castes  1.227 (0.890) 

Scheduled Tribes  34.797 (0.044) 

Other Backward Class  22.140 (0.009) 

Other  -3.468 (0.838) 

Education household head 

(years) 

-0.807 (0.219)  

Experience household head 

(years) 

-0.300 (0.193) -0.240 (0.267) 

Extension   

Yes  20.973 (0.031) 

Adult household members in 

off-farm employment  

(share) 

-19.668 (0.086) -11.944 (0.295) 

   

Random effects   

Crop Included Included 

Plot   

Household Included Included 

Village Included  

   

 (N=829) (N=983) 

Note: p-values in parentheses. The original number of observations for the northern transect was 850 and 1037 

for the southern. Differences result from dropped observations because of missing values. 
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2.6 Conclusions 

The rapid growth and expansion of Bangalore is a good example of future urbanisation trends 

and their effects on agriculture in surrounding areas. The goal of this study is to contribute to 

our understanding of the effect of urbanisation processes on agricultural intensification—

measured by the amount of adopted modern inputs—in the rural-urban interface of Bangalore. 

Past studies have focused on how urban centres affect agriculture via their effects on access to 

input and output markets, and have employed one-dimensional measures of proximity as 

proxies for these effects. We expand this framework by also considering the effects of 

polycentric urbanisation patterns and of potential opportunity costs of agricultural 

intensification due to off-farm opportunities. 

In our conceptual framework we model household decision-making as a utility maximization 

problem following Barnum & Squire (1979). In this model, the household allocates its labour 

between two types of agricultural production (traditional and modern), off-farm employment 

and the production of household goods subject to location-dependent agricultural output 

prices and off-farm wage rates. This model predicts that agricultural intensification in rural-

urban interfaces will display non-linear and complex patterns that cannot be captured by one-

dimension proxies for urban proximity. 

To test this model we analyse the use of modern agricultural inputs in a sample of 638 farm 

households in two study areas (transects) in the rural-interface of Bangalore. Based on 

household and village coordinates, we estimate two-dimensional splines measuring 

urbanisation effects in a STAR framework. The results confirm the existence of complex 

spatial patterns of agricultural intensification. In the northern transect the use of modern 

inputs generally increases with increasing distance from the centre of Bangalore and appears 

to be influenced by the secondary town of Doddaballapura. We observe a cluster of increased 

modern input use in the eastern-central range of the southern transect that may reflect the 

influence of road infrastructure that links Bangalore to the secondary town of Kanakapura. 

Hence, our empirical results indicate that the effects of urbanisation on agriculture are not 

uniform in all directions from the urban centre, and can display complex, non-linear patterns 

in any given direction from the urban centre. One-dimensional urbanisation proxies are not 

able to capture these complex patterns and can therefore lead to misleading results and 

interpretation in many real-world settings. 

Even though our results are rather explorative, we believe that we demonstrate some 

interesting concepts and methods for future research. We see a possible extension of our work 
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particularly in considering the simultaneity in decision-making concerning labour allocation 

between farm and off-farm labour within a household. Simultaneous equation models might 

be an adequate modelling approach. In addition, the differentiation between skilled and 

unskilled as well as between long- and short-term off-farm employments might lead to 

additional insights.  
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Abstract 

In this article, we analyze the effects of household location and weather variability on the 

adoption of borewell technology along the rural-urban interface of Bangalore, India. 

Understanding these effects can help to design policies that ensure smallholders‘ livelihoods 

and the functioning of ecosystems in drought-prone areas. First a theoretical framework was 

developed that conceptualizes how household location and weather can influence the farmers‘ 

adoption decisions. Afterwards, an empirical analysis based on a primary data set collected in 

2016 and 2017, covering 574 farm households was conducted. With a semiparametric hazard 

rate model, determinants of the borewell adoption rate were analyzed. Different rainfall 

variables to capture the effect of changing climate conditions and a two-dimensional 

penalized spline (P-spline) to capture the effects of household location were incorporated. 

Results show that proximity to Bangalore but also secondary towns accelerates adoption rates. 

In terms of weather variability, the study finds that a higher amount of total annual rainfall 

decelerates adoption rates whereas higher amounts of rainfall during the southwest monsoon 

(the most important cropping season) accelerate adoption rates.  

 

 

Key words: borewell technology, climate change, India, semiparametric duration models, 

urbanization 
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3.1 Introduction 

Borewell technology has surged in India since the Green Revolution of the 1970s, making 

India the largest groundwater user in the world today (Shah, 2014). The Indian government 

supported the uptake of groundwater lifting technology from the start and the adoption of this 

technology has maintained momentum to the present day. Changing rain patterns have made 

traditional rainfed agriculture less predictable and more vulnerable, thereby making borewell 

technology an attractive option to compensate for unreliable or a lack of sufficient rainfall 

(Alcon et al., 2011; Genius et al., 2014). Furthermore, economic development, improved 

infrastructure, and urbanization has improved access to input and output markets and has 

made it more profitable to modernize and intensify agriculture (Vandercasteelen et al., 2017). 

Though agricultural intensification can considerably improve smallholders‘ livelihood, 

increased uptake of borewell technology comes at a cost. More wells and uncontrolled water 

extraction have already led to over-exploited aquifers in many regions of India (Srinivasan et 

al., 2017). As a consequence, borewells dry up, threatening the well-being of water users. 

Thus, it is essential to implement policies that strike a balance between the present well-being 

of smallholders and sustainable, long-term availability of water resources.  

To do so, it needs to become clearer what determines farmers‘ decisions to adopt borewell 

technology, particularly when facing weather changes and urbanization. Recent literature 

primarily focuses on the adoption of irrigation technologies in the light of water use efficiency 

(Caswell & Zilberman, 1985; Caswell & Zilberman, 1986; Alcon et al., 2011). However, 

these studies—generally examining case studies in the global north—assume that farmers 

already have access to groundwater and the question is how they use it. The case is different 

in developing countries, where many farmers still rely on rain water as a primary irrigation 

water source (Srinivasa Rao et al., 2015). Thus, adoption decisions in this part of the world 

focus more on the access to groundwater itself than on technologies for efficient water use. To 

enhance agricultural productivity the Indian government subsidizes borewell implementation 

and electricity for pumping water; water extraction is hardly regulated and generally free of 

cost once a borewell is installed (Srinivasan et al., 2017). This is an obvious difference to the 

water management policies in the global north, where groundwater access is strictly regulated 

and studies show that water prices, for example, have a statistically significant effect in 

adoption decisions (Caswell & Zilberman, 1985; Alcon et al., 2011). It follows that results 

from adoption studies based on data from the global north cannot be generalized and applied 
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in a developing context without respective empirical analysis. However, to the best of our 

knowledge such evidence is scarce in the literature so far.  

By analyzing farmers‘ decisions to adopt borewell technology in the rural-urban interface of 

Bangalore, this study aims at providing such empirical evidence. Bangalore is a rapidly 

growing city and the area has experienced drastic weather changes (reduced or absent 

monsoon rains) in recent years. Such developments are prevalent in many developing 

countries and have been repeatedly identified as drivers of smallholders‘ decisions to adopt 

new technologies (Dadi et al., 2004; Euler et al., 2016; Damania et al., 2017). Thus, the area 

presents an excellent showcase to analyze farmers‘ decision-making regarding groundwater 

extraction in a developing context.  

For the analysis, a microeconomic model was developed to conceptualize the influence of 

weather and household location on farmers‘ borewell adoption behavior. Location is used as a 

proxy of market access, i.e. the location of a household in the rural-urban interface defines the 

transaction costs necessary to reach potential market centers. This approach was chosen 

instead of the traditional one-dimensional (1D) measures such as distance to markets (Key et 

al., 2000; Chamberlin & Jayne, 2013) because Bangalore is surrounded by several satellite 

towns and farmers have access to more than one market. Therefore, our definition based on 

household location allows for an aggregate effect of several markets. In the empirical 

analysis, a duration model framework was applied. This model class has been shown to be 

particularly suitable for analyzing the adoption of durable technologies such as a borewell 

(Dadi et al., 2004; Abdulai & Huffman, 2005). Several nonparametric elements were included 

in the model, among others a two-dimensional (2D) Penalized Spline (P-Spline) based on 

household GPS coordinates to directly estimate the effect of household location derived in the 

microeconomic model. The coordinates were treated as bivariate variable (latitude, longitude) 

and used to estimate nonlinear effect surfaces (2D spline). Because these surfaces are spatially 

explicit (coordinates), they can be mapped and areas with high or low effects on borewell 

adoption rates can be identified.  

The remainder of this paper is structured as follows: First, a short overview of irrigation in 

South India and technology adoption is given. Then a conceptual framework (section 3) is 

developed and the empirical strategy (section 4) is described. Finally, results (section 5) are 

discussed and the findings (section 6) are summarized. 
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3.2 Background on irrigation in South India and technology adoption 

The adoption of borewells has become crucial for the food security in large parts of South 

Asia; however, nowadays it is threatened by increasing over-exploitation and degradation of 

aquifers (Shah, 2007). A borewell describes a deep and narrow well that is cased into the 

ground using a tube. This type of well is often equipped with an electric pump and is the most 

frequently used technology for groundwater extraction in the study area (Srinivasan et al., 

2015). Water pumped from the ground can be combined with other irrigation techniques; 

most commonly in the region are flood, sprinkler, or drip irrigation.  

The traditional irrigation system in South India was dominated by reservoirs and local water 

bodies, also called tanks. These tanks were used and managed at the communal level. Since 

the 1990s, however, many farmers have decided to exit the communal irrigation system by 

investing in private well equipment to extract groundwater (Srinivasan et al., 2017). The 

reasons are manifold. First, coordination problems within the command area of the tanks led 

to uncertainty in water availability. Particularly during the critical stages of cultivation, 

farmers favor independent and secure water sources (Kajisa et al., 2007). Second, the 

maintenance of local water bodies requires high labor inputs (Shah, 2003). Third, pumping 

technology and drilling have become cheaper in absolute and relative terms. Domestic 

production of pumps and improved drilling technologies have lowered the prices for 

establishing a borewell, and decreased input prices through subsidized flat rate electricity 

prices (Srinivasan et al., 2017). However, increased output prices for agricultural products 

have lowered the relative price of groundwater irrigation (Kajisa et al., 2007). Due to the 

aforementioned reasons, India is now the biggest user of groundwater globally (Siebert et al., 

2010). 

Nevertheless, this development is spatially concentrated and large areas remain under rainfed 

agriculture (Srinivasa Rao et al., 2015), indicating that there are local differences in adoption 

rates. To understand what drives the adoption process at individual farm level, several factors 

were analyzed.  

One of the main reasons for adopting groundwater lifting technology is to hedge against 

production risks. One major production risk in agriculture is adverse climate and its 

consequences, such as drought and water scarcity as well as increased volatility in weather 

events (Alcon et al., 2011; Genius et al., 2014). At farm level, unfavorable slopes and soil 

characteristics (Koundouri et al., 2006; Genius et al., 2014) as well as farm size and the 

degree of commercialization additionally increase the probability to adopt (Feder et al., 1985).  
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Another important factor which may explain the differences in adoption rates is the diffusion 

of technology. Diffusion is understood as the adoption process of a technology over time 

(Taylor & Zilberman, 2017). A key role in the diffusion of technology in agriculture is the 

distance to regional centers. The less remote a producer is, the higher the probability is that 

they will adopt earlier than other producers. Since learning and implementation may require 

traveling, opportunity costs can be high and impede technology adoption (Sunding & 

Zilberman, 2001). More recently, the interconnectedness of market access and technology 

adoption has been studied. Damania et al. (2017) or Vandercasteelen et al. (2017), for 

example, find that lower transportation costs due to the proximity to cities and/or markets 

increase the likelihood of technology adoption. Another factor related to technology diffusion 

is learning due to social interaction (Abdulai & Huffman, 2005; Sampson & Perry, 2019). 

Even though our research focuses on exogenous spatial heterogeneity induced by urbanization 

dynamics, potential spatial interdependence in the decision making of neighboring farmers 

has to be mentioned and will be controlled in the empirical analysis of this study.  

3.3 Conceptual framework 

To identify mechanisms of technology adoption in the context of weather variability and 

urbanization, some microeconomic intuition is provided in this section following models such 

as Irwin & Bockstael (2004), Abdulai & Huffman (2005), and Genius et al. (2014). Note that 

for the conceptual model, it is assumed that spatial heterogeneity exclusively results from 

urbanization dynamics. 

It is assumed that smallholders are profit maximizing agricultural producers and they choose 

one out of two possible production systems  . The possible production systems are defined by 

the source of irrigation, i.e.  =1 if the household adopted the borewell technology, and  =0 if 

the technology has not been adopted. In that way, it can be noted that household  ‘s expected 

operational cash flows      are generated by either system,  , as function of time period   and 

household  ‘s location   :6
 

 

                                                                                                                        

 

       , is described by the difference between the product of expected output prices        

and expected output       and the product of expected input prices        and expected used 

                                                 
6
 For better clarity we drop the subscript   in equations (1) to (6). 
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inputs   . Both prices        and        are represented as the difference between the price 

paid at the market in time,  , and transportation costs      with 
     

  
   defined by the 

household location,  , in the rural-urban interface (urbanization gradient): 7  

 

                                                                                                                           

                                                                                                                            

 

The amount of used inputs   only depends on  . With reliable irrigation ( =1), farmers might 

apply additional and more sophisticated inputs. Such a system is also likely to generate a 

higher output,   , as more consistent irrigation is possible. Additionally, in regions highly 

vulnerable to altering weather patterns in the course of climate change, farmers‘ expectations 

concerning their production and outputs (i.e. a production function) are likely to vary with 

changing weather patterns, i.e. time. For example, if a farmer expects decreasing rainfall, the 

expected outputs from a rainfed production system will decrease. Therefore, the weather 

component of the research objective is captured by allowing farmers‘ expectations regarding 

output quantities to vary over time,      .
8
 

In the decision to adopt a borewell, also one-time installation costs        have to be 

considered. These costs depend on when a household decides to adopt the borewell 

technology and, as in the case of other input costs, the household‘s location (inherent 

transportation costs). 

Equation (1) and the one-time installation costs,       , are the basic building blocks that are 

used to formalize the decision of a profit maximizing farmer. Furthermore, for durable 

technologies such as a borewell, the timing of adoption is often more important to understand 

the drivers of decision-making (optimal timing problem) (Dadi et al., 2004; Irwin & 

Bockstael, 2004; Abdulai & Huffman, 2005). Therefore, it can be assumed that the farmer 

optimizes the time of adoption based on the comparison of the present value of expected net 

returns,       , of adopting a borewell in time period T (equation 4a), and the present value 

                                                 
7
 For simplicity we assume the same transportation costs,     , to input and output markets. However, these 

markets do not necessarily coincide and differences can be possible. 
8
 Thus, when talking about weather variability in this study, we generally refer to changing weather patterns over 

time. One could argue that    also depends on location, i.e. rainfall might also show spatial patterns. However, 

the research area is rather small and farmers mainly refer to Bangalore weather forecasts. Furthermore, possible 

alternative water sources in the research area are limited to one larger water reservoir in the southern transect, 

which is also completely rainfed. That means farmers‘ expectations concerning the reliability also depend on 

their expectations about weather, rather than the location as such.  
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of expected net returns,         , of adopting a borewell in time period T+1 (equation 4b) 

as:  

 

       ∑              

 

   

         ∑              

 

   

                                             

                 ∑              

 

   

              

                                ∑              

 

   

                                                                                

 

For simplicity, the time horizon of the decision is limited to T+1, i.e. until the technology is 

adopted, the farmer decides every year whether to adopt a borewell at that moment or wait 

another year
9
.  

If the technology is adopted in T (equation 4a), the present value of the expected net returns is 

given by the present value of the expected operational cash flows of a production system with 

borewell discounted to time T with discount factor     , minus the installation costs in  , and 

minus the expected operational cash flows of the production system without the technology 

discounted to time T. The net present value of a production system with a borewell ( =1) 

represents the farmer‘s expectation of all potential profits, which they make after the 

installation of the well; the net present value of a production system without a borewell ( =0) 

represents the forgone profit that is not earned because of the change to the system with the 

well. Analogously, in equation (4b) the first two elements depict the profits from one more 

year in the management system without the borewell plus all profits after the installation of 

the technology for all the following years. Since the adoption decision is delayed by one year 

(T+1), also the installation costs of the year T+1 are considered. The last two elements 

represent the forgone profits from waiting until year T+1.   

Assuming that equations (4a) and (4b) are the basis on which household   makes its decision,  

two decision criteria were defined, which have to be fulfilled so that the adoption of the 

borewell technology takes place in year  . First, the net returns of adopting the borewell 

technology in T have to be positive: 

                                                 
9
 We are aware that a full strand of literature on optimal stopping problems and stochastic dynamic optimization 

(Dixit & Pindyck (1994) exists. However, we believe that our simplification represents the time horizon of 

decision-making in our research area appropriately. For example, many farmers make cropping decisions from 

season to season which underlines the farmers‘ short-term decision-making. 
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Secondly, given the first criterion in equation (5), the technology is adopted in T, if the net 

returns in time T exceed the net returns of waiting (value of waiting) for another year T+1 

(see Appendix 3.1 for derivations): 

 

                

⇔                
                   

       
  

             

      
                                        

 

The left-hand side describes the expected output difference of both production systems in T. It 

therefore quantifies how relevant a farmer thinks water is for the success of their production 

system, and to what extent available rain-dependent water sources (e.g. reservoirs, rain) are as 

reliable as a borewell. Thus, a farmer who thinks that weather is becoming less predictable 

will expect a larger output difference than a farmer who assumes sufficient and timely rain or 

has alternative water sources. 

The first term on the right-hand side of equation (6) shows the difference of expected 

installation cost in T and T+1 normalized by two times the price of one output unit   . 

Similarly, the second term describes the difference between the variable inputs of both 

production systems normalized by the unit output price. Note that this representation places 

all variables that are influenced by farmers‘ expectations concerning weather and water 

availability in general to one side, and all variables that are affected by the household‘s 

location—market access—to the other side. Thus, the household will adopt the borewell 

technology if the output gain due to a management system with borewell is larger than or 

equal to the net installation costs and additional net variable input costs relative to the price 

can be achieved for the output gain. Therefore, the more pessimistic a farmer is about weather 

prospects, and the greater the access to borewell technology and input and output markets is, 

the higher the likelihood that they adopt the technology in T. 
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3.4 Empirical strategy 

The theoretical model of optimal timing of the adoption decision presented in the previous 

section can be empirically represented in the duration model framework. Thus, it can be 

assumed that the borewell technology became available to the sample population with the 

Green Revolution, t0 = 1970, after which households subsequently—some sooner, some 

later—adopt the technology at time points t+h, h=1,…n until time tn when all households 

adopted the technology. Based on the observed adoption time spells it is possible to estimate 

the probability that a household will adopt a borewell in the next time interval h, if it has not 

adopted the borewell until t. This probability is referred to as hazard rate       with T being a 

non-negative random number and the non-adoption spell ending if T = t:  

 

       
   
   

                    

 
                                                                                          

 

One of the most popular duration models to estimate covariate effects on the hazard rate is the 

so-called Cox model (Cox, 1972):  

 

                           
                                                                                                         

 

In this model the hazard rate,      , consists of two parts: the baseline hazard       and the 

effects of covariates   . The baseline hazard can be understood as the pure time effect on the 

hazard rate and, by construction, must be nonnegative as adoption rates cannot be negative 

(Therneau & Grambsch, 2000). The overall framework of the Cox model in the empirical 

analysis was followed but extended by a semiparametric predictor to accommodate for more 

flexible effects. Since duration models require a certain type and preparation of data, the next 

sections describe the survey, data set, and variables included in the empirical analysis; 

afterwards the specifications of the semiparametric predictor are presented. 

3.4.1 Survey design and data set 

The empirical analysis is based on data collected in a survey from 1,275 households in two 

transects following the rural-urban gradient of Bangalore (Fig. 3.1). To capture the systematic 

spatial heterogeneity caused by urbanization dynamics, a two-stage stratified sampling 

approach was applied to identify the households to be interviewed. In the first stage, a Survey 

Stratification Index (SSI) was used to classify all villages in the transects into three strata 
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(rural, peri-urban, urban) (Hoffmann et al., 2017). Then, ten villages in each stratum per 

transect were randomly selected. This equates to about one third of all villages located in the 

transects. Afterwards, an average of 20 households (adjusted by the village population) was 

randomly drawn from the household lists of the selected villages. All households were 

interviewed between December 2016 and May 2017. Thus, the maximum observed time spell 

in the duration model is 47 years (1970-2016). Household information prior to 2016 is based 

on recall data (e.g. year an asset was purchased) and calculation (e.g. age or years of 

experience). 

 

 

 

 

Source: Survey data. 

Fig. 3.1 Research area, grey polygons indicate northern and southern transect, 

respectively 
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Because the focus is on the adoption of borewells for agricultural purpose, in the following 

analysis only households that grew at least one crop in 2016 were considered (farm 

households). Therefore, the sample comprises of a total of 576 households of which 316 are 

located in the transect north of Bangalore (northern transect) and 260 in the transect south of 

Bangalore (southern transect).
 10

 

To accommodate time-variant covariates, the data set had to be augmented in a way that there 

is one observation per year and per household, i.e. a maximum number of 47 observations per 

household. An indicator variable (1/0) for each year observation signals whether or not the 

household adopted the borewell technology in the respective year. Once the household 

adopted the technology (t=T) all subsequent year observations were dropped; the adoption 

spell of the respective household ended. Comparably, year observations were omitted, if 

households entered the adoption spell later due to migration or age (left-truncation). If the 

technology had not been adopted, the indicator variable remains zero in the last year 

observation (year 47). These observations are called right-censored and it is assumed that they 

will adopt the technology in the future (Moore, 2016). As a consequence, our final data set for 

estimation included 7,641 observations for the northern and 6,563 observations for the 

southern transect. 

The consideration of time-variant covariates has some important methodological advantages 

(Dadi et al., 2004; Euler et al., 2016). First, one general assumption of the Cox model is that 

the hazard ratio of different subjects stays constant throughout the entire time spell 

(proportional hazard). Therefore, the baseline hazard can be left unspecified for estimating the 

covariate effects   and no a priori assumptions about the functional form of the baseline 

hazard are necessary. However, it is unlikely that the hazard ratio is actually constant over 

longer periods such as the 47 years in our case. Time-variant covariates in   
   can counter the 

proportional hazard assumption (Therneau & Grambsch, 2000). Second, some covariates 

might cause problems of reverse causality or endogeneity if they are included in a cross-

sectional fashion. If these covariates are included as time varying, temporal causality is 

established and, thus, these issues (see section 3.4.2. for respective variables) are avoided.  

                                                 
10

 This number of households excludes 66 observations which were excluded during the empirical analysis 

because of missing values in important covariates. The inference strategy does not allow for missing values 

unfortunately. The dropped observation is evenly distributed over both transects and includes two households, 

which already had adopted the borewell technology. 
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3.4.2 Variable description 

To estimate adoption probabilities and the hazard rate, all 574 farm households were asked 

whether they have a borewell and, if yes, when they installed it. To prevent recall bias and 

heaping effects
11

, i.e. a farmer is more likely to give responses such as five or ten years than 

seven years, farmers were asked to give the year of adoption instead of the number of years 

that they have a borewell. Table 3.1 shows that 148 (26%) of the farm households in the 

sample had adopted the technology by 2016. Of these 148 households, 88 are located in the 

northern and 60 in the southern transect. Thus, the adoption level appears to be higher in the 

northern transect. 

To model the effect of urbanization, i.e. market access, on borewell adoption rates, explicit 

household locations were used. The GPS coordinates of every household are a bivariate and 

continuous variable consisting of the latitude and longitude information of the repective 

location. Therefore, they can be used to estimate smooth surfaces of location effects (see 

section 3.4.3 for details). Previous studies quantify market access by proxies such as distance 

to the city based on the assumption that distance and transportation costs are proportional 

(Chamberlin & Jayne, 2013). However, urbanization dynamics in the rural-urban interface of 

Bangalore are likely to be polycentric, with several satellite towns offering additional 

marketing options to farmers. As a consequence, it is impossible to determine only one 

market or town of reference to establish a 1D proxy such as distance.  

 

Table 3.1 

Summary of Rainfall Variables, 1970-2016 

Variable Mean Std. Deviation Min Max 

Total Rainfall (mm/year) 777.24 211.31 475 1,200 

Pre-monsoon (mm/year) 157.89 59.38 60 313 

Southwest monsoon 

(mm/year) 
444.7 129.46 129 730 

Source: Rainfall data (Department of Agrometerology, UASB). 

                                                 
11

 The problem is that estimates of adoption probability will approximate zero at time points with no observed 

positive adoption decisions (Kneib (2006). This would lead to highly fluctuating estimates of the baseline hazard 

in the duration analysis. This does not seem to be a problem either (see Appendix 3.4). In addition the histogram 

in Appendix 3.3 shows that there is no obvious heaping. Therefore, we are confident that recall bias in the 

dependent variable is no issue in the empirical analysis and hence strategies such as interval censoring to correct 

it were not applied. 
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The amount of rainfall was used to measure weather variability over time. Rainfall has 

become more and more volatile in recent years in the Bangalore area (appendix 3.2), 

substantially increasing the drought pressure. Rain patterns define the agricultural seasons in 

Bangalore, of which the southwest monsoon determines the main cropping season. Therefore, 

to obtain a more nuanced understanding of the effect of the weather, not only the amount of 

total yearly rainfall, but also the amount of pre-monsoon rainfall and of rainfall during the 

southwest monsoon was included in the dataset. A summary of the rainfall variables are 

presented in Table 3.1. Furthermore, the current and previous years‘ rainfall is considered. 

Rainfall data was used for the Bangalore urban district published on the website of the 

Agrometerology Department of the University of Agricultural Sciences, Bangalore (UASB). 

The department provides disaggregated measures such as pre-monsoon or southwest 

monsoons on a yearly basis. The rainfall variables are time-variant but can be assumed to be 

consistent for the entire research area, i.e. they vary over time t but not among the households. 

This assumption is reasonable as the research area is rather small and farmers in the transects 

generally build their expectations about weather based on the weather forecast for Bangalore. 

Table 3.2 and 3.3 present a description and descriptive statistics of all other time-invariant and 

time-variant covariates, respectively. These tables also show the variation between the two 

transects and between adopters and non-adopters of the borewell technology.  

As time-invariant variables the following are considered: household caste, a dummy for dairy 

production, years of education of the household head, farm size, and the gender of the 

household head (Table 3.2). Caste is still an important social factor in India often defining 

access to resources and income level. A share of 77 percent of households in the sample 

pursues dairy production; the share appears to be even higher among borewell adopters (83-89 

percent). Household heads received an average of 6 years of formal education, without any 

large differences between the two transects or adopters and non-adopters. In contrast, adopters 

hold on average double the area of land than non-adopters. 17 percent of participants were 

female household heads, which is rather low. Furthermore, the share is even lower when 

looking exclusively on adopters (7-15 percent).  
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Table 3.2 

Descriptive statistics of time-invariant variables (Subsamples: Northern vs. Southern transect; Non-adopters vs. Adopters) 

  Both transects  Northern transect  Southern transect 

Variable Variable description 
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0
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Caste Factor variable            

   General  0.48 0.56 0.50  0.45 0.48 0.46  0.52 0.67 0.56 

   Scheduled Castes  0.18 0.11 0.17  0.17 0.11 0.15  0.20 0.12 0.18 

   Scheduled Tribes  0.07 0.04 0.06  0.08 0.06 0.07  0.07 0.02 0.05 

   Other Backward 

Class 

 0.22 0.26 0.23  0.26 0.33 0.28  0.18 0.15 0.17 

   Other  0.04 0.03 0.04  0.05 0.02 0.04  0.03 0.05 0.04 

Dairy Dummy variable (1: 

Dairy production) 

0.74 0.87 0.77  0.73 0.89 0.77  0.76 0.83 0.78 

Education  Years of education 

(household head) 

5.96 

(4.83) 

6.5 

(4.91) 

6.1 

(4.85) 

 6.51 

(4.7) 

6.63 

(4.69) 

6.54 

(4.69) 

 5.32 

(4.91) 

6.33  

(5.23) 

5.56  

(5.0) 

Farm size  Acres under 

management  

2.5 

(5.33) 

5.77 

(12.92

) 

3.35 

(8.13) 

 2.38 

(5.68) 

5.37 

(7.61) 

3.21  

(6.41) 

 2.64  

(4.9) 

6.36  

(18.09) 

3.51 

(9.83) 

Gender Dummy variables 

(1:Female household 

head) 

0.19 0.10 0.17  0.21 0.07 0.17  0.16 0.15 0.16 

Source: Survey data. 

Note: Std. Deviation in parentheses. For dummy and factor variables percentages are given. Statistics were derived based on variable values in 2016 for non-adopters, and 

variable values at the time of adoption for adopters. 
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Table 3.3 

Descriptive statistics of time-variant variables (Subsamples: Northern vs. Southern transect; Non-adopters vs. Adopters) 

  Both transects  Northern transect  Southern transect 

Variable Variable description 
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Age (t) Age household head 

(years) 

50.2 

(13.3) 

43.85 

(13.68) 

48.56 

(13.67) 

 49.42 

(13.47) 

43.94 

(13.13) 

47.9 

(13.58) 

 51.1 

(13.07) 

43.7 

(14.55) 

49.37 

(13.76) 

Experience (t) Years of farming 

experience (household 

head) 

27.72 

(13.9) 

30.2 

(14.35) 

28.36 

(14.05) 

 26.83 

(13.64) 

30.24 

(13.4) 

27.78 

(13.64) 

 28.73 

(14.16) 

30.13 

(15.73) 

29.06 

(14.53) 

Durable assets (t) Number of durable assets 

available to household 

(SEC) 

2.81 

(1.25) 

1.44 

(1.53) 

2.46 

(1.45) 

 2.85 

(1.23) 

1.24 

(1.46) 

2.4  

(1.49) 

 2.77 

(1.26) 

1.74  

(1.6) 

2.53 

(1.41) 

Transport equipment (t) Amount of transport 

equipment available to 

household (SEC) 

0.76 

(0.58) 

0.36 

(0.56) 

0.66  

(0.6) 

 0.83 

(0.57) 

0.43 

(0.58) 

0.72  

(0.6) 

 0.69 

(0.57) 

0.26 

(0.51) 

0.59 

(0.59) 

Off-farm employment 

(t) 

Dummy variable (1: at 

least one member 

involved in off-farm 

employment) 

0.59 0.21 0.49  0.63 0.11 0.49  0.54 0.35 0.50 

Peer effect (t) Number of adopted 

borewells on village level 

in t-1 

3.83 

(3.24) 

2.49 

(2.69) 

3.48 

(3.16) 

 4.04 

(3.55) 

2.51 

(2.64) 

3.48 

(3.16) 

 3.6 

(2.83) 

2.46 

(2.78) 

3.33 

(2.86) 

Source: Survey data. 

Note: Std. Deviation in parentheses. For dummy and factor variables percentages are given. Statistics were derived based on variable values in 2016 for non-adopters, and 

variable values at the time of adoption for adopters. 
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Time-variant variables included in the model are age of the household head, years of 

experience as a farmer, the number of durable assets available to the farmer, the amount of 

transport equipment available, a dummy for off-farm employment and the number of adopted 

borewells in the village at t-1. Table 3.3 shows that adopters are on average 5 to 10 years 

younger than non-adopters. However, adopters seem to have slightly more farming experience 

than non-adopters. Living standard and purchasing power can also effect farmers‘ decision to 

adopt technologies (Cameron, 1999). In India the New Socio-Economic Classification (SEC) 

System is a common tool to classify households according to their socio-economic status, 

particularly when comparing rural and urban households (MRSI, Market Research Society of 

India, 2011). The SEC is based on two variables, namely the education of the household head 

and a count of durables out of a list of 11 items. The items include transport equipment, such 

as a car or two wheelers, and other durable assets like TVs, laundry machines or air 

conditioners. Since the education variable is time-invariant the number of assets can change 

during the years. Hence, the SEC components are considered separately (durable assets and 

transport equipment). One could argue that the actual asset value would be an even better 

indicator of wealth. However, since the study relies on recall data and includes durable assets 

and transport equipment as time-variant, this means reported prices would have to be 

discounted, which would likely lead to a larger bias than using the count of assets. In addition, 

considering transport equipment and durable assets in a time-variant way allows to establish 

temporal causality and, thus, to prevent potential endogeneity between the asset variable and 

farmers‘ adoption decision. The same holds for the dummy of off-farm employment. Abdulai 

& Huffman (2005) show that the number of technology adopters in a village at t-1 is a useful 

way to capture social learning and interaction among farmers. Farmers observe their 

neighbors‘ experiences with the borewell technology and include them in their own 

optimization decision. This can include production-related information (e.g. yields) but also 

technical information, for example the depth of water tables which is generally unknown in 

the area. Next to quantifying the effect of social interaction, the variable also ensures that the 

location effect based on household coordinates is not biased by endogenous or small-scale 

local spatial patterns.  

3.4.3 Model specification and the use of P-Splines 

To accommodate more flexible non-linear effects in the duration model, the linear predictor 

  
   in equation (8) is extended to an additive predictor    (Kneib & Fahrmeir, 2007). By 
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transforming                  , the following semiparametric hazard rate model is 

specified: 

 

          (     )                                                                                                                                  

with  

               
                                     

 

 

Thus, the additive predictor consists of the log-baseline hazard      , linear effects   of time-

invariant covariates   , linear effects   of time-variant covariates      , potential non-linear 

effects of continuous and time-variant covariates           , effects of household location 

                         , and the household and village random effects    
. 

The baseline hazard,      , and            are estimated as 1D P-Splines, i.e. nonlinear effect 

functions. However, explorative data analysis implied that most of the explanatory variables 

show simple linear relationships with the hazard rate        and a non-linear estimate is 

unnecessary. The only exception is the number of borewell adopters in a village at t-1, which 

is considered in            in the subsequent analysis.  

The characteristic and advantage of P-Splines can be described as an optimized trade-off 

between the flexibility of an estimated function      and the smoothness of the function due 

to a penalty term (Fahrmeir et al., 2013). Function      is estimated as polynomial spline of 

degree      Such a spline is a piecewise construct of polynomials of degree   in intervals 

          defined by a number of knots          . Finally, to ensure that these 

interval polynomials result into one smooth function     , the condition that       is      -

times continuously differentiable must hold. With higher degrees and more knots, function 

     can become quite rough and is likely overfitted and difficult to interpret. Therefore, 

when estimating a P-Spline, simultaneous to the polynomial spline a penalty term based on 

differences of neighboring coefficients is considered. This ensures that the spline is smooth 

but still presents enough detail. For a detailed introduction to P-Splines and smoothing 

approaches see e.g. Kneib, 2006; Eilers & Marx, 2010; Fahrmeir et al., 2013.  

The concept of P-Splines can be transferred to spatial effects. Considering the GPS 

coordinates    as bivariate (latitude, longitude) and continuous variable, a 2D non-linear effect 

of household location (       ) on the borewell adoption rate can be estimated. Such 2D 

effects are referred to as smooth surfaces. Comparable to the 1D P-Splines, smoothness is 

achieved by a penalty term based on differences in coefficients of neighboring observations. 
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Because smooth surfaces are spatially explicit they can be mapped and areas with particularly 

large or small effects of household location on adoption rates can be identified. The 1D P-

Splines are estimated with three degrees of freedom and 20 knots. The 2D P-Splines are 

specified with ten knots and a two-dimensional first order random walk penalty.  

Traditionally random effects (sometimes also referred to as frailties) are used in the duration 

model framework to correct for omitted variables such as small-scale local patterns (e.g. soil 

quality, biophysical characteristics) or time-variant variables that are very difficult to collect, 

especially over the time of 47 years (Therneau & Grambsch, 2000). Examples would be 

crops, which have been grown in the past years, or other information concerning the 

agricultural management system. Therefore, random effects on household     and village     

level (   
  are included

12
. 

A mixed model approach introduced by Kneib & Fahrmeir (2007) was used for the inferences 

of the additive regression model in equation (9). The model was implemented using the 

software BayesX and the respective R-package R2BayesX (Umlauf et al., 2015). The 

estimation of smoothing parameters for non-linear effects was conducted via restricted 

maximum likelihood (REML). This estimation approach relies on a Laplace approximation 

and, thus, no Markov chain Monte Carlo (MCMC) simulation techniques as in a fully 

Bayesian approach was necessary. In this way, the smoothing parameters could be estimated 

from the data in advance, given priors for the other regression parameters. The result was an 

empirical Bayesian approach (Kneib & Fahrmeir, 2007). The REML approach became fairly 

standard in recent years and several studies show results are very similar to the ones of the 

fully Bayesian inference (Kneib, 2006). Furthermore, one can avoid mixing and convergence 

problems in the MCMC simulation step.  

Three model specifications were estimated as a robustness check in order to differentiate 

between the effects of current and past rainfall. The first model (I) includes all variables in 

equation (9), i.e. both the current and past years‘ rainfall values. The second model (II) only 

contains the current year‘s rainfall variables and the third model (III) only the past year‘s 

values. To compare the model fit, the Akaike information criterion (AIC) and the log-

likelihood of estimates are presented.  

                                                 
12

 The model displayed in equation (9) is large and its estimation computational intense. As a result, estimations 

household random effects did not converge. However, estimations of reduced model specifications imply that 

household random effects do not improve model fit or contribute to coefficient estimates (Appendix 3.6). 

Consequently, household random effects were excluded in all subsequent estimations.  
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3.5 Results and Discussion 

Tables 3.4 and 3.5 show the estimated linear effects of models I-III for the northern and 

southern transect. The linear effects are presented as percentage changes of the adoption 

hazard rate (AHR), a convenient transformation of estimated coefficients since the hazard rate 

is modeled as exponential function of the additive predictor      . Estimated nonlinear effects 

of borewell adopters in the village (1D P-Spline) and household location (2D P-Spline) are 

displayed in Fig. 3.2 and 3.3 respectively. These figures only show results from model I for 

the northern transect and model III for the southern transect. These are the model specification 

that yield the lowest AIC values (Tables 3.4 and 3.5) and are supported by likelihood ratio 

tests (10 percent significance level). However, estimated effects—linear as well as 

nonlinear—are robust through all model specifications and, thus, we can regard effects 

presented in Fig. 3.2 and 3.3 as statistically significant patterns. This is also supported by 

rather small differences among the AIC and log-likelihood values of the three model 

specifications for the respective transect. 

Fig. 3.2 shows the estimated 2D effect (smooth surface) of household location on the AHR. 

The scale at the bottom of Fig. 3.2 represents direct coefficient estimates and, thus, is an 

exponential scale. Transforming them comparable with the linear effects in Tables 3.3 and 3.4 

(e.g.    ̂         ), an absolute coefficient magnitude of 2 (the margins of the scale) 

implies a 639 percent change in the adoption rate whereas a coefficient of 1 results in a 122 

percent change. Furthermore, red areas imply an acceleration of the AHR whereas blue areas 

signal decelerating effects. Since the color shades in the northern transect are generally darker 

than in the southern transect, the urban influence appears to be more heterogeneous in the 

north. Households located in the southern part of the northern transect are likely to adopt 

borewells up to 6.39 times faster than the average household in the sample. This is in line with 

the conceptual framework. In terms of equation (6), the right-hand side decreases for 

households located closer to the city as market access increases and transport costs decrease. 

However, there is also an area in the northeast of the transect, where the household location 

has strong accelerating effects on the AHR. Though rather far away from Bangalore, this area 

is located right around a road, which connects households to the secondary town of 

Chikballapur (road intersection in the northeast corner of the map) and thus provides these 

households with access to markets. In the southern transect, there is one red area in the east of 

the transect, close to Bangalore and right next to a large highway (road in north-south 

orientation in Fig. 3.2).  
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Source: Own survey data  

Note: The scale presents direct coefficient estimates and is an exponential scale. For percentage changes 

transform by                     , e.g. an absolute coefficient magnitude of 2 implies a 639 percent change 

in the adoption rate. 

Fig. 3.2 Estimated smooth effect surfaces of household location (values are original 

coefficients; Northern transect: N=7,641, model specification I; Southern transect: 

N=6,563, model specification III) 
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Furthermore, there are two red areas located in the southern part of the transect. Comparable 

with the northern transect, there are three secondary towns located close to these areas 

(Bidadi, Ramanagara, and Kanakapura) and connected by highways. Interestingly, there is a 

break between these two red areas just next to a larger water reservoir. This might suggest that 

water demand is covered by sources which are cheaper to establish in this area. Pumping 

water from the reservoir saves the installation costs needed for drilling a borewell and, thus, 

could explain negative effects on the AHR. Finally, differences in the effect patterns and 

magnitude between the two transects as well as their fragmentation support the assumption 

that effects of market access in a complex rural-urban interface are nonlinear and polycentric 

and, thus, require a 2D representation. In contrast, 1D measure of market access (e.g. 

distance) will be of limited use because they assume that urban influences spread in uniform 

and concentric rings around an urban center. 

Concerning the effects of the rainfall variables on the AHR, the effects are very similar in 

both transects (Tables 3.4 and 3.5). Adoption rates decelerate with an increasing amount of 

total rainfall in the current (t) or preceding time period (t-1) as well as with the pre-monsoon 

rainfall in period t-1. The effects range from -0.2 to -0.9 percent per additional millimeter of 

rain. According to the conceptual framework in section 3 (in particular equation (6)) the value 

of waiting increases when the amount of rainfall increases. The farmer has then less need for a 

second water source and sticks to the old production system for another year. When there is 

less rain, the farmer expects a larger output difference between the two production systems 

and is more likely to adopt the borewell now rather than in the next year. However, we also 

observed an accelerating effect of increasing pre-monsoon rainfall in both transects in year t 

as well as with the southwest monsoon in year t-1, effect sizes between 0.2 and 0.8 per 

additional millimeter of rain. A year with more monsoon rain usually generates higher 

agricultural output as the monsoon season is the principal growing season. Thus, the 

accelerated AHR might result from extra agricultural income and capital for the next season 

or the desire to keep up with a previous successful season. This explains the positive lagged 

effect of monsoon rainfalls but an explanation of the contemporaneous effect of pre-monsoon 

rainfalls is less clear. First of all, the effect is only statistically significant in model I and, thus, 

not robust (compare to model II in Tables 3.4 and 3.5). Additionally, we observe borewell 

adoption on a yearly basis and since the pre-monsoon occurs early in the year (March to May) 

a time-lag in the adoption decision-making might be lost due to the level of aggregation. After 

observing this effect in both transects, it seems that the households overall response to 
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rainfall. They observe and take some time for their decision to adopt a borewell. This is 

consistent with the literature, which states that farmers try to hedge against production risks 

(Koundouri et al., 2006). 

 

Table 3.4 

Estimation results for linear effects on adoption hazard rate, Northern Transect  

  
Percentage change  

(                    ) 

  Model I Model II Model III 

Intercept  -99.981 (0.001) -99.997 (<0.001) -99.997 (<0.001) 

Time-invariant 

variables 
    

Caste     

   Scheduled Castes  -39.86 (0.264) -42.161 (0.25) -40.566 (0.272) 

   Scheduled Tribes  -0.995 (0.986) 15.639 (0.798) -0.19 (0.997) 

   Other Backward Class  -12.733 (0.622) -15.541 (0.549) -14.717 (0.569) 

   Other  -57.975 (0.262) -61.349 (0.232) -58.355 (0.264) 

Dairy     

Yes  135.773 (0.026) 140.873 (0.025) 133.474 (0.028) 

Education (years)  0.19 (0.95) 0.05 (0.987) -0.27 (0.931) 

Farm size (ha)  2.01 (0.145) 2.624 (0.069) 2.204 (0.122) 

Gender     

Female  -75.877 (0.03) -79.336 (0.002) -78.437 (0.002) 

     

Time-variant variables     

Age (years)  -3.382 (0.004) -3.488 (0.004) -3.642 (0.002) 

Experience (years)  5.201 (<0.001) 4.917 (<0.001) 5.096 (<0.001) 

Durable assets (count)  -34.111 (<0.001) -36.479 (<0.001) -37.412 (<0.001) 

Transport equipment 

(count) 
 52.791 (0.103) 39.612 (0.201) 45.659 (0.154) 

Off-farm employment     

Yes  -82.464 (<0.001) -83.815 (<0.001) -83.778 (<0.001) 

     

     

Year t     

Total rainfall (mm)  -0.389 (<0.001) 0.11 (0.086)  

Pre-monsoon (mm)  0.823 (0.012) 0.21 (0.276)  

Southwest monsoon(mm)  0.05 (0.5612) -0.06 (0.462)  

     

Year t-1     

Total rainfall (mm)  -0.21 (0.043)  -0.05 (0.512) 

Pre-monsoon (mm)  -0.886 (<0.001)  -0.638 (0.002) 

Southwest monsoon(mm)  0.491 (<0.001)  0.2 (0.011) 

AIC  1,073.16 1,086.18 1,078.5 

Log-likelihood  -493.128 -499.096 -496.663 

N  7,641 7,641 7,641 

Source: Own Survey data and rainfall data from Department of Agrometerology, UASB. 

Note: Exact p-values are given in parentheses. N refers to the number of observations of the augmented data set, 

not to the number of households.  



3. Digging deep and running dry 

 

70 

 

Table 3.5 

Estimation results for linear effects on adoption hazard rate, Southern Transect  

  
Percentage change  

(                    ) 

  Model I Model II Model III 

Intercept  -99.991 (0.004) -99.996 (<0.001) -99.993 (<0.001) 

     

Time-invariant 

variables 
    

Caste     

   Scheduled Castes  -66.915 (0.026) -67.044 (0.029) -67.851 (0.023) 

   Scheduled Tribes  -89.816 (0.031) -91.084 (0.023) -90.672 (0.025) 

   Other Backward Class  -43.17 (0.159) -48.149 (0.109) -45.382 (0.135) 

   Other  -55.974 (0.243) -58.996 (0.206) -56.308 (0.239) 

Dairy     

Yes  49.616 (0.293) 53.71 (0.264) 51.907 (0.276) 

Education (years)  4.645 (0.176) 3.884 (0.264) 4.362 (0.206) 

Farm size (ha)  2.881 (<0.001) 2.747 (<0.001) 2.819 (<0.001) 

Gender     

Female  -10.031 (0.798) -12.392 (0.753) -12.383 (0.751) 

     

Time-variant variables     

Age (years)  -6.471 (<0.001) -7.42 (<0.001) -6.919 (<0.001) 

Experience (years)  8.937 (<0.001) 9.221 (<0.001) 9.09 (<0.001) 

Durable assets (count)  1.725 (0.887) -3.806 (0.741) -2.244 (0.846) 

Transport equipment 

(count) 
 -48.737 (0.056) -54.674 (0.023) -52.365 (0.032) 

Off-farm employment     

Yes  17.257 (0.594) 6.396 (0.837) 14.176 (0.658) 

     

     

Year t     

Total rainfall (mm)  -0.21 (0.084) 0.05 (0.581)  

Pre-monsoon (mm)  0.713 (0.061) -0.05 (0.826)  

Southwest monsoon(mm)  0.06 (0.593) -0.03 (0.75)  

     

Year t-1     

Total rainfall (mm)  -0.28 (0.026)  -0.14 (0.13) 

Pre-monsoon (mm)  -0.509 (0.076)  -0.419 (0.071) 

Southwest monsoon(mm)  0.491 (<0.001)  0.260 (0.006) 

AIC  824.33 832.684 823.005 

Log-likelihood  -376.895 -382.16 -378.444 

N  6,563 6,563 6,563 

Source: Own survey data and rainfall data from Department of Agrometerology, UASB. 

Note: Exact p-values are given in parentheses. N refers to the number of observations of the augmented data set, 

not to the number of households. 
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Differences between the transects become more evident when looking at the effects of the 

control variables in Tables 3.4 and 3.5 and Fig. 3.3. Only the effects of age and experience are 

similar. Increasing age reduces the AHR, in the northern transect by about 3.5 percent and on 

the southern transect around 7 percent. In contrast, farming experience increases the AHR by 

5 percent in the northern and 9 percent in the southern transect.  

Turning to variables describing agricultural management and income composition of the 

household, dairy production has a large accelerating effect and off-farm employment a large 

decelerating effect on the AHR in the northern transect. Dairy production requires a lot of 

water for the animals to drink and wash them but also to grow fodder crops. In addition, dairy 

production is profitable and might lead to extra income that can be invested in the borewell 

adoption.
13

 Off-farm employment can generally have two effects on agricultural production. 

Either additional income is invested in agricultural production (e.g. in form of technology 

adoption) (Barrett et al., 2001; De Janvry et al., 2005) , or the relevance of the agricultural 

production for the income of the household decreases (Huang et al., 2009). A number of 

studies show that smallholders—if they have access to a labor market—will diversify their 

income sources (Fafchamps & Shilpi, 2003; Deichmann et al., 2009; Imai et al., 2015). 

Moreover, literature shows that higher management demands of new technologies and the 

opportunity costs of skilled labor further decreases technology adoption (Pannell et al., 2006). 

At least in the northern transect, it appears that the latter negative effect (82-84 percent, table 

3.4) of off-farm employment is the case. Neither dairy production nor off-farm employment 

show significant coefficients in the southern transect. However, farm size is a highly 

statistically significant factor for borewell adoption (in the northern transect only significant 

in model II). With every additional acre the AHR increases by 3 percent everything else 

equal.  

Furthermore, transport equipment and durable assets were included as measures of the living 

standard of a household. In the northern transect only durable assets show significant effects, 

whereas in the southern transect only transport equipment yields significant effects. However, 

both of them are showing negative signs and comparable magnitudes. Since both of them are 

measures of living standard, they are likely to signal the same effect. Furthermore, correlation 

between the two measures explains the insignificant coefficient of the respective other 

variable (see Appendix 3.5). Accordingly, these results imply that wealthier households are 

less likely to adopt borewell technology. This is somehow counterintuitive as it could be 

                                                 
13

 Unfortunately, no time-variant information on dairy production is available. Hence, results might suffer from 

potential endogeneity and we rather observe correlation than causality.  
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assumed that wealthier families have better access to financial resources needed to invest in 

borewell technology. One explanation of this effect could be that wealthier families are less 

and less dependent on agricultural production. Comparable with the effect of off-farm 

employment, income diversification decreases the borewell adoption rate. Table 3.3 shows 

that about 50 percent of the sample has at least one household member in the off-farm sector 

and off-farm employment is positively correlated with both wealth indicators (Appendix 3.5). 

If farming is no longer the main income source, the need to modernize production systems 

and adopt groundwater lifting technology might decrease.  

Furthermore, measures of social status and interaction produce different effects as well. For 

caste only significant negative effects of scheduled castes and scheduled tribes in the southern 

transect were found. These present the castes that generally hold the lowest social status. 

Thus, when belonging to these groups in the southern transect, a household‘s adoption rate is 

reduced by 67 or 90 percent respectively. While not finding any significant effects for caste in 

the northern transect, gender has a statistically significant negative effect on the AHR (not 

significant in the southern transect). If the household head is female the adoption rate of the 

household is 75 to 79 percent lower in the northern transect. These results imply different 

social structures between the two transects. Since the share of households in the different 

castes are very similar in both transects (Table 3.1), caste boundaries are more relevant in the 

southern transect. Lower caste households have less and later access to groundwater lifting 

technology. However, same holds for female-headed households in the northern transect. As a 

consequence, already disadvantaged households will be more vulnerable to water shortage. 

The number of borewell adopters in a village shows statistically significant effects in both 

transects (Fig. 3.3). Up to a number of six adopters per village in t-1 (sample population), we 

observe strong accelerating effects on the AHR (about 700 percent, the y-axis in Fig. 3.3 

presents coefficient estimates) in the northern transect (Fig. 3.3a). In the southern transect, the 

effect is lower (by about 100 percent) and lasts up to 4 adopters in the sample per village. 

Hence, there is a positive effect on technology diffusion due to social interaction. 

Interestingly, effects change at higher numbers of adopters. In the northern transect effects 

become even significantly negative, i.e. if there are more than 9 adopters, the adoption 

probability of remaining non-adopters decreases. Potential reason might be that wells are 

shared among neighbors. Since water extraction is unregulated, water prices are close to zero 

once the well is drilled. Consequently, even if farmers have to pay their neighbors a fee to use 

their well, it might still be cheaper than drilling one for themselves. However, no household in 
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the sample reported such agreements. Another explanation could be that with more wells and 

unregulated water extraction groundwater tables are likely to fall. Observing the drop in water 

availability in already existing wells might prevent further adoption as farmers are less 

optimistic that their own drilling will be successful. 

 

 

Source: Own survey data  

Note: The scale presents direct coefficient estimates and is an exponential scale. For percentage changes 

transform by                     , e.g. an absolute coefficient magnitude of 2 implies a 639 percent change 

in the adoption rate. 

Fig. 3.3 Estimated non-linear effect of number of adopters in village at t-1 on borewell 

adoption rate (values are original coefficients; Northern transect: N=7,641, model 

specification I; Southern transect: N=6,563, model specification III) 

 

3.6 Conclusions 

The analysis aims at understanding both the effect of households‘ location as a measure of 

urban influence and market access, and the effect of changing climate conditions on borewell 

adoption behavior in the rural-urban interface of Bangalore. Duration models were applied 

with semiparametric predictors to accommodate for complex and polycentric urbanization 

patterns (e.g. secondary towns) and three rainfall variables were used to obtain nuanced 

insights into the effect of weather changes.  
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The results show that household location matters. Both, proximity to Bangalore and proximity 

to secondary towns increase the borewell adoption rate. This supports the assumption that 

urbanization effects are polycentric and that empirical strategies using 2D splines are a useful 

instrument to quantify them. Moreover, adoption rates are further accelerated by social 

interaction within villages. The study finds that the number of adopters in a village increases 

the adoption probability of remaining non-adopters. Only if adoption shares are already high, 

will the effects decrease and even turn negative in the northern transect. Considering changing 

climate conditions, the study finds that the amount of rainfall affects decisions in two ways. 

First, a decelerating effect with the amount total rainfall in year t as well as in the lagged time 

period t-1 was observed. Hence, dry spells accelerate the adoption of borewell technology. 

Second, an accelerating effect with the amount of rainfall during the southwest monsoon in 

period t-1 was observed. As the monsoon season is the most important growing period, the 

adoption rate also depends on the household‘s additional income. 

Based on these results, the following policy implications are proposed. First, groundwater 

extraction should be regulated to at least some degree, for example via access rights. Not only 

better access to the technology but also social learning drives adoption rates and, thus, can 

quickly lead to local over-exploitation of aquifers. Consequently, over-exploitation is not an 

evenly distributed phenomenon but is often locally concentrated. Second, the management 

and number of aboveground water reservoirs should be increased. In the southern transect, 

lower adoption rates around such as water bodies were found, so that they can at least reduce 

the adoption speed. In that light, sustainable water management practices such as water 

efficient irrigation technologies (e.g. drip irrigation) could be promoted more strongly. Third, 

in policy programs promoting borewell adoption, vulnerable and already disadvantaged 

groups should be explicitly targeted. The study finds that for example female headed or lower 

caste households have statistically significantly lower adoption rates. 

Nevertheless, there is room for further research. These estimation results show that a 

household‘s income composition affects decision making in the context of urban growth and 

drought pressure. Urban centers provide opportunities for off-farm employment, and 

increasing water insecurity might encourage farm households to pursue off-farm 

opportunities. This means, farmers‘ decision-making might not only rely on the maximization 

of agricultural production but rather on the maximization of overall household utility. This 

aspect could be an interesting addition to models explaining technology adoption decisions.  
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Appendix  

Appendix 3.1 Derivation of equation (6) 
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Source: Rainfall data (Department of Agrometerology, UASB). 

Appendix 3.2 Total rainfall in the Bengaluru urban district, 1970-2016 
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Source: Survey data. 

Appendix 3.3 Response frequency of when borewell was adopted (N=148, households) 
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Source: Own survey data and rainfall data from Department of Agrometerology, UASB. 

Appendix 3.4 Estimated log-baseline of Spatial Model I (P-Spline), Northern and 

Southern transect (Northern transect: N=7,641; Southern transect: N=6,563) 
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Appendix 3.5 

Correlation among off-farm employment and assets owned by households 

 

Off-farm 

employment 

(dummy) 

Durable assets 

(count) 

Transport equipment 

(count) 

Off-farm 

employment 

(dummy) 
1.00   

Durable assets  

(count) 
0.219  

(<0.001) 
1.00  

Transport equipment 

(count) 
0.14  

(<0.001) 

0.552  

(<0.001) 
1.00 

Source: Own survey data. 
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Appendix 3.6 

AIC and log-likelihood values of estimations
a)

 with different random effects included 

Random effects included AIC Log-likelihood 

   

Northern transect   

None 1147.69 -547.74 

Household 1147.69 -547.74 

Village 1141.8 -542.23 

   

Southern transect   

None 830.843 -388.866 

Household 830.843 -388.866 

Village 835.726 -393.958 

Source: Own survey data. 

Note: Estimated coefficients and standard errors of models without and with household random effects are equal 

up to the third decimal place, 
a)

A reduced model was estimated, i.e. the model in equation (9) without 1D P-

Splines and without weather variables. 
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Abstract 

Ecosystem services provided by pollinators are essential for the agricultural production of 

smallholders, especially in low-income countries. However, increased adoption of modern 

inputs such as chemical fertilizers and pesticides threaten these services. Thus, understanding 

how farmers‘ use of modern management practices affects wild pollinator communities is 

crucial for the design and promotion of sustainable agricultural practices. We provide 

empirical evidence on the effects of chemical fertilizer and pesticide use on the abundance 

and species richness of wild bees, a key pollinator, on a sample of 131 agricultural plots in the 

rural-urban interface of Bangalore, India. To accommodate spatial scaling due to pollinator 

mobility, we apply spatial Durbin models in our empirical analysis allowing for spatial 

correlation and spatial spillovers. We find that pesticide use in particular has a negative effect 

on bee abundance, which spills over to neighboring plots up to a distance of four kilometers. 

In addition, our results show that bee richness decreases with continuing intensive plot 

management. These results suggest that strategies to protect pollination services by wild bee 

communities could include support for cooperative behavior among famers to handle 

externalities of pesticide use and rotation of intensive and extensive agricultural management 

systems.  

 

 

Key words: Agricultural management, India, pollination services, spatial autoregressive 

regression  
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4.1 Introduction 

The importance of ecosystem services and in particular pollinator services for agricultural 

production and food security has been repeatedly emphasized in the literature (Kleijn et al., 

2015; Tscharntke et al., 2012). The interest in the topic particularly increased with the so-

called ―pollinator crisis‖, the fast decline of pollinator populations on a global scale. Even 

though most staple crops do not rely on animal pollinations, many fruits and vegetable crops 

do (Klein et al., 2007). The latter are often crucial for smallholders in low-income countries to 

commercialize their production systems and, thus, to improve their income and living 

standards by participating in national and international agricultural value chains (Chamberlin 

& Jayne, 2013). However, such commercialized production systems are frequently 

characterized by greater use of chemical fertilizers and pesticides. These can harm pollinator 

populations, with negative implications for the economic performance of production systems 

(Klein et al., 2007; Allsopp et al., 2008). Therefore, it is essential to understand the interaction 

of agricultural management decisions and pollinator services, particularly in low-income 

countries where farmers primarily rely on wild pollinator populations (Kennedy et al., 2013), 

and where the services provided by these populations have been studied much less than in 

high-income countries.  

This problem has ecological as well as economic facets and several studies have called for 

increased interdisciplinary analysis of the topic (Bennett et al., 2015; Collins et al., 2011; 

Vanbergen & Initiative, 2013; Zhang et al., 2007). Nevertheless, the majority of studies so far 

have originated in ecological research. In this literature, management decisions are often 

considered at the landscape scale in an aggregate fashion, e.g., home gardens versus natural 

forest (Blitzer et al., 2012; Motzke et al., 2016; Tscharntke & Brandl, 2004; Tscharntke et al., 

2005). Since the traditional ecological area of reference is the habitat, this aggregation is 

intuitive because ecological and anthropogenic boundaries do not necessarily match, i.e. 

pollinators can move between agricultural plots. Thus, several articles make a strong case for 

case studies on larger scales and demonstrate the importance of fragmented landscapes in 

defining local pollinator services to account for pollinator mobility and dispersal ranges 

(Kremen et al., 2007; Tscharntke et al., 2005; Tscharntke et al., 2012; Tscharntke & Brandl, 

2004). Empirical evidence suggests that the landscape scale is indeed useful to explain the 

composition of pollinator communities but not necessarily with consistent results. Zou et al. 

(2017), for example, find that landscape fragmentation enhances pollinator abundance but 
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decreases pollinator diversity in China. Motzke et al. (2016) and Ricketts (2004) show that 

proximity of natural habitat supports pollination services. 

However, from an economic and policy perspective the landscape scale is of limited use 

because decision-making typically takes place at the household or farm level. In this regard, 

Bockstael (1996) refers to the ―confusion between public and private decisions, and between 

exogenous and endogenous effects‖ (p. 1170). What this means is that only considering the 

landscape scale implies the assumption that it is possible to manage the landscape in an 

overall or public fashion. But this is not how land use change happens in economic 

understanding. Even if there are public initiatives that aim at influencing landscape structure, 

they are normally implemented to influence individual decision-making at the local scale. 

Therefore, to derive conclusions that are policy-relevant, an analytical framework is required 

that can account for the effects of household- or farm-level decision-making on pollinator 

communities, as well as their spillover effects at larger scales.  

Consequently, the objective of this paper is to present an empirical strategy to model the 

interactions between specific agricultural management practices and pollinator populations. A 

key feature of this strategy is that it accounts for spatial spillovers, which allows us to 

measure whether and over what range management practices on one plot affect pollinator 

abundance and richness
14

 on neighboring and nearby plots. We explicitly incorporate both 

plot and landscape scales in our empirical analysis and consider the spatial scaling problems 

inherent to mobile agents such as insect pollinators. To capture spatial interactions at different 

scales (i.e., to estimate the dispersal ranges of pollinator communities and the extent of 

spillovers due to agricultural management practices), we apply spatial econometric 

techniques, namely a spatial Durbin model (Hoef et al., 2018).  

We illustrate the advantages of this empirical approach with primary data on the abundance 

and richness of bees collected on 131 plots in the rural-urban interface of Bangalore, India. 

This enables us to also contribute to the still small body of literature on pollinator 

communities in low-income and tropical countries. Our results can contribute to improve 

extension and policy measures to manage the use of agricultural inputs that significantly 

reduce pollinator abundance and richness, and that spill over to neighboring plots. 

Furthermore, knowledge about the dispersal range of pollinator populations can support 

                                                 
14

 These are standard proxies of pollination services in the literature (see e.g. Kremen et al. (2002); Kremen et al. 

(2004); Holzschuh et al. (2007)). Abundance refers to the number of bee individuals counted per plot whereas 

richness describes the number of bee species. 
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measures and landscape management on a larger scale – e.g., the maximum distance between 

high-quality habitats that still allow pollinator communities to recover. 

4.2 Data 

4.2.1 Study area 

Our empirical analysis is based on combined field data on bees captured in pan traps on 131 

agricultural plots and a panel survey on agricultural management. All plots are located in two 

geographic areas that extend from urban Bangalore roughly 40 km into the surrounding rural-

urban interface, one to the north and the other roughly to the southwest. We refer to these 

areas, which are mapped in Fig. 4.1, as the research transects. Although it is under the heavy 

influence of the rapidly growing city of Bangalore (the last official census in 2011 recorded 

9.6 million inhabitants and yearly growth rates of about 8 percent on average (Directorate of 

Census Operations Karnataka, 2011)), the rural-urban interface is dominated by smallholder 

agriculture leading to a highly fragmented agricultural land use pattern. Bangalore and several 

satellite towns offer a variety of marketing possibilities to farmers and connect them to local, 

national, and even international agricultural markets. Better infrastructure and urban 

expansion also improves farmers‘ access to input markets, especially for chemical fertilizers 

and pesticides. As a consequence, an increasing number of smallholders commercialize and 

intensify their production systems. Particularly common is the shift from subsistence, staple 

crop production to high-input fruit and vegetable production. Therefore, the agricultural 

production systems in the rural-urban interface of Bangalore represent perfectly the dilemma 

mentioned in the introduction, i.e. smallholders shift to more pollinator-dependent production 

systems and simultaneously increase the use of potentially pollinator-harming inputs. 
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Fig. 4.1 Location of sampled plots (excluding three outliers with maximum distance to 

Bangalore of 70km). 

 

 

4.2.2 Survey design 

Pan traps were placed on 131 plots farmed by households that represent a subsample of a 

larger sample of 1,275 farm households, which were visited for a detailed baseline socio-

economic survey in the period from December 2016 to May 2017. During this baseline 

survey, data on agricultural management in the agricultural year 2016/2017 and recall data for 

the years 2012 to 2015 was collected. To capture potential spatial heterogeneity induced by 
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the urban center of Bangalore, the selection of the 1,275 farm households followed a stratified 

random sample approach. Based on the Survey Stratification Index (SSI) introduced by 

Hoffmann et al. (2017), all villages in the two research transects were classified into three 

strata (rural, peri-urban, urban). In each stratum, ten villages were randomly selected (60 

villages in total). Preschool teachers provided us with household lists in the selected villages 

so that we could randomly draw 20 households on average (weighted by village size) per 

village. These households were interviewed from December 2016 to May 2017. To select the 

131 plots on which pan traps were placed, we drew a random subsample of the 1,275 

households. Of the 40 villages located in the peri-urban and rural strata,
15

 we randomly 

selected 24 villages, twelve in each transect. In these villages all households that managed 

agricultural land in 2016 according to the first survey (N=131) were visited in the second 

survey round.  

On each of these 131 sampled households‘ farms, we randomly selected one agricultural plot 

and installed four pan traps. These 500 ml bowls were sprayed with yellow UV-bright color 

and filled with unscented soapy water. To ensure we captured the maximum possible number 

of pollinators, all four pan traps were positioned at the margins of the agricultural plots close 

to flower-rich patches. The traps were collected after 48 hours. This is a standard sampling 

method to record pollinator communities (Westphal et al., 2008). Unfortunately, some traps 

failed; they spilled or were taken away by passers-by. As a consequence, we introduce 

dummy variables in our later analysis to control for the number of successful traps per plot 

(see Fig. A4.1). Pan traps were placed in the field on sunny, windless and dry days, only. 

After recollection, all bees caught in the bowls were treated with 70% ethanol, pinned, and 

identified to species or genus level. The vast majority of all captured insects were bees 

alongside a few other pollinating insects (e.g. beetles, butterflies, flies, wasps). Pollinator 

groups can greatly differ in their ecological characteristics and thus indicators based on a 

variety of different pollinator families can cause inconclusive results (Gagic et al., 2015). 

Consequently, we decided to only consider bees in our analysis. In the remainder of this 

article ―species‖ refers to the lowest taxonomic rank identified.  

 

 

                                                 
15

 Because only a few agricultural households are located in the urban stratum, we ignored these households in 

our subsample.  
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We used the number of bees caught per plot as proxy for bee abundance and the number of 

different bee species as proxy for bee richness.
16

 We are aware that these are only rough 

indicators for pollination services and that pan traps might oversample smaller species (see 

e.g. Baum & Wallen, 2011); however, both are standard in the ecological literature and hence 

our results can easily be put in the context of previous studies (Bates et al., 2011; Clough et 

al., 2011).  

In addition to setting out the pan traps on the 131 plots, we also conducted a second 

household survey of the corresponding households to collect detailed information on the 

recent (2017/2018) agricultural management decision on each of these plots. We recorded 

information on the direct neighborhood of the plots and took GPS-coordinates of plot 

centroids. Since the 131 pan trap plots are nested in the sample of the baseline socio-

economic survey, we also have information on the plot history back to 2012. The latter can be 

very important as land use patterns evolve through time and thus influence nesting and 

foraging possibilities for bee communities not only in space but also over time (Kremen et al., 

2007). 

4.3 Methods 

4.3.1 Conceptual framework 

We argue that spatial scaling is one of the major challenges in modeling the effect of farmers‘ 

agricultural decision-making on pollinator communities. Pollinator insects are mobile, so that 

their range is often larger than the size of a smallholder‘s plot. As a consequence, one 

pollinator community will be influenced by the decision-making of several farms.  

In their study, Kremen et al. (2007) conceptualize the effects of land-use change, including 

changing agricultural systems, on so-called mobile-agent-based ecosystem services (MABES) 

and outline the importance and relation of processes taking place at different spatial scales. 

Therefore, we adapt their framework for our study to motivate our own empirical strategy 

(Fig. 4.2).  

At the farm level, farmers make decisions on the management practices and inputs to use on 

the land they farm. The sum of all these individual decisions aggregate to the composition of 

                                                 
16

 We decided to control for different numbers of pan traps per plot by introducing dummies in the econometric 

model instead of normalizing the two bee proxies by the number of successful traps. Such a normalization would 

be particularly difficult for the richness proxy. Theoretically, the number of species caught should stay the same 

no matter how many traps were put on a plot. The case is different for the abundance measure. One could argue 

that four traps lead to a higher number of caught insects overall. However, Fig. A4.2 shows that this relationship 

does not hold. Therefore, we argue that potential systematic bias due to differences in the number of successful 

traps is best controlled for by including associated dummy variables in the econometric model. 
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the landscape (Fig. 4.2, a), i.e., a mosaic of ―different types of natural, semi-natural and 

anthropogenic habitats‖(Kremen et al., 2007, p. 301). Plant and pollinator communities are 

sensitive to these habitats and to changes in them (Fig. 4.2, b). In addition, plant and 

pollinator communities interact (Fig. 4.2, c), which amplifies the effects of landscape change.  

For example, the disappearance of certain plants might lead to the disappearance of pollinator 

species that depend on them for nesting or forage. At the same time, plant species vanish if 

pollinator species disappear that plants rely on for reproduction. Therefore, both plant and 

pollinator communities define the actual value of pollination services in an area (Fig. 4.2, d). 

The value of pollination in terms of agricultural production may then feed back into the 

decision-making behavior of the farmer on the plot scale (Fig. 4.2, e). There may also be 

feedback from the landscape scale to the local scale. Individual farmers are likely to be 

influenced by landscape structures (e.g., urban centers, management practices of neighbors) 

independent of pollinator services (Fig. 4.2, f). An important concept of this framework is that 

both feedback loops e and f are channeled through either policies or economic factors back to 

the individual plot or household level. In that sense the circle starts at the plot scale, moves 

through the landscape scale, and loops back to the local scale.  

 

 

Fig. 4.2 Conceptual framework: interaction of agricultural management decisions and 

pollinator services (adapted from Kremen et al. (2007)). 
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Moreover, the framework shows that there are ecological as well as economic aspects to the 

cycle of agriculture-pollinator interactions. Several economic studies analyze technology 

adoption and the effect of policies on agricultural decision-making (see for example Asfaw et 

al. (2016); Damania et al. (2017); Sharma et al. (2011)). In addition, several studies developed 

instruments to quantify the actual value of pollinator services (Allsopp et al., 2008; Cordier et 

al., 2014). Therefore, the economic literature to date has been mainly concerned with the two 

outer boxes of the framework in Fig. 4.2 and feedback loop e. Pollinator services are modeled 

as inputs in decision problems of farmers. To the extent that farmers attempt to maximize 

expected profit, pollinator services and the conservation of pollinators will only be 

incorporated into farmers‘ agricultural management decisions if they can see their value in the 

form of a market or shadow price (Narjes & Lippert, 2019; Schmidtner et al., 2012; Wollni & 

Andersson, 2014).  

In contrast, ecological studies are mainly concerned with the arrows b and c in Fig. 4.2. A 

common aspect is land fragmentation and agricultural intensification measured by distance to 

or the share of natural or high-quality habitats and its effects on pollinators (see, e.g., 

Carvalheiro et al., 2010; Clermont et al., 2015; Krishnan et al., 2012; Motzke et al., 2016). 

Most of these studies show that landscape patterns are a critical and significant factor in 

determining pollinator composition and abundance. Proximity to high-quality habitats 

generally supports pollinators (Motzke et al., 2016; Ricketts, 2004) , while regions with 

intensified agriculture threaten—in particular—wild pollinators (Kremen et al., 2002; Tuell & 

Isaacs, 2010).  

While we acknowledge the importance of larger landscape patterns, we argue that it is equally 

important to pay attention to the effects of farmers‘ decision-making at the plot level on 

pollinator communities because this is the level at which specific agricultural management 

decisions that affect pollinators are taken and implemented. As emphasized by the framework 

in Fig. 4.2 the usual starting point is the local household level. Therefore, an understanding of 

the interaction of plot level managements and pollinator communities is essential for informed 

policy making.  

To model the effect of local decision-making on pollinators subject to landscape scale 

variation, there are two conceptual challenges that have to be considered in an empirical 

model. First, observed bee abundance and richness might be spatially correlated. Previous 

studies show that pollinators can have dispersal ranges of up to six kilometers (Beekman & 

Ratnieks, 2000; Dyer & Seeley, 1991). Therefore, observations within this range might be 
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defined by the same pollinator community resulting in endogeneity and spatial clustering of 

observations. Models that do not control or at least test for spatial correlation run the risk of 

generating biased parameter estimates as the assumption of independent error terms is 

violated (Hoef et al., 2018; Lichstein et al., 2002). Second, agricultural management decisions 

on all plots within its dispersal range affect a bee population. Additionally, farmers‘ choices 

of agricultural practices are influenced by the decisions of their neighbors. These spillovers 

and simultaneity produces another spatial pattern that is not fully determined by exogenous 

forces and, thus, needs to be controlled for (see for example Wollni & Andersson (2014) or 

Läpple et al. (2017)).  

4.3.2 Empirical model 

To incorporate spatial correlation and spillovers, classical linear models can be extended by 

including spatially lagged dependent and independent variables and spatially lagged error 

terms (Elhorst, 2010; Kelejian & Prucha, 1999, 2010; LeSage & Pace, 2009). Since including 

all three spatial effects likely leads to an over-parameterization and estimation inefficiency 

(Elhorst, 2010), a central question is which effects should be included in empirical analysis to 

represent the data generating process most appropriately? Recent spatial econometrics 

literature argues that the spatial Durbin model, which includes spatial lags of the dependent 

and independent variables, should be favored over other models. It is most robust against bias 

in coefficient estimates when the true data-generating process results from another model 

specification, and it does not need any a priori assumption about the scale of spatial spillovers. 

For more details see e.g. Elhorst (2010) and LeSage & Pace (2009). Accordingly, we 

estimated a spatial Durbin model in our empirical model, which takes the following form: 

 

    𝒀  𝝆𝑾𝒀  𝜶𝜾  𝑿  𝑿𝑾𝜽  𝜺 

 

Here 𝒀 denotes the dependent variable, either bee abundance or bee richness. In addition to a 

constant, 𝜶𝜾 , and standard linear effects, 𝑿 , this model allows for spatial dependence in the 

dependent variable 𝒀 and in a set of explanatory variables 𝑿 by introducing the spatial weight 

matrix 𝑾. The matrix 𝑾 is of dimension 𝑁  𝑁 and non-negative. It is composed of known 

scalars that represent a priori assumptions on the spatial interdependence between 

observations   and 𝑗 where   𝑗 ∈ {    𝑁} (Lee, 2004). The main diagonal consists of zeros, 

i.e. if   𝑗. The error term 𝜺 is assumed to be i.i.d. and normally distributed. Even though 

both terms 𝝆𝑾𝒀 and 𝑿𝑾𝜽 represent interactions between observations, technically speaking 
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the spatial parameter 𝝆 is a autoregressive coefficient whereas 𝜽 can be estimated as fixed 

effects (Elhorst, 2010). 𝑾𝒀 is endogenous and captures the spillover of bee abundance or 

richness between plots, i.e. the mobility range of bee communities. In contrast, 𝑿𝑾 is 

exogenous and captures the spillover of explanatory variables on neighboring plots on bee 

abundance or richness. Since spillovers of agricultural decision-making is the focus of this 

study, dummy variables for chemical fertilizer and pesticide use are included in 𝑿𝑾.  

A standard procedure to construct 𝑾 is to assume that the strength of spatial interdependence 

is proportional to the inverse distance between observations (LeSage & Pace, 2009). In 

addition, it is assumed that beyond a certain distance no interdependence exists, i.e. the 

weight in 𝑾 equals zero. Previous studies indicate different mobility ranges of bees up to a 

maximum of 6 kilometers (Zurbuchen et al., 2010). Therefore, we set up six different 𝑾 

matrices with distance cut-offs from one to six kilometers in one kilometer steps. We 

estimated the model (equation 1) with each of these six matrices and retained the model that 

yields the best model fit according to the Akaike information criterion (AIC). To satisfy 

assumptions in the asymptotic theory of the estimators for the spatial parameters 𝝆 and 𝜽 and 

thus to guarantee estimability of the model in equation 1, 𝑾 has to be normalized. For more 

details see e.g. Kelejian & Prucha (2010). We chose spectral normalization, which means all 

entries in 𝑾 are divided by the largest absolute eigenvalue of the matrix. 

Table 4.1 shows the explanatory variables in the linear effects 𝑿 . We included variables at 

the landscape, as well as plot scale to capture as many factors that affect bee abundance and 

richness as possible. At the landscape scale, we calculated the distance of each plot from 

Bangalore city center based on its GPS-coordinates. This variable allows us to control for 

exogenous spatial heterogeneity induced by the rural-urban gradient. In addition, we include a 

dummy for the Southern transect to control for any effect due to the different research areas. 

Based on satellite images, we estimated the built-up area of every village, i.e. the area covered 

by infrastructure in a 1km-radius around the village center (for details see Hoffmann et al. 

(2017)). Built-up area is an indicator of habitat availability, and buildings can also represent 

physical barriers to bee dispersal. Finally, we collected information of the direct 

neighborhood of every plot. Thus, we were able to create several dummies describing the land 

use pattern in the vicinity of the plots on which the pan traps were placed.  
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Table 4.1 

Descriptive statistics of explanatory variables. 

Variable  Mean Std. Dev. Min Max 

Dependent variables      

Bee abundance (number of bees per plot)  4.68 4.44 0 22 

Bee richness (number of bee species per plot)  2.78 2.35 0 11 

      

Explanatory variables      

Landscape scale      

Distance to Bangalore (km)  3.18 9.57 16.32 67.48 

Southern transect (dummy)  0.46 0.50 0 1 

Village build-up area (percentage)  1.12 5.41 0.80 25.59 

Agricultural plot in direct neighborhood (dummy)  0.85 0.35 0 1 

Fallow plot in direct neighborhood (dummy)  0.49 0.50 0 1 

Forest in direct neighborhood (dummy)  0.10 0.30 0 1 

Building in direct neighborhood (dummy)  0.27 0.44 0 1 

Road in direct neighborhood (dummy)  0.37 0.49 0 1 

Water body in direct neighborhood (dummy)  0.11 0.32 0 1 

      

Local / Plot scale      

Successful pan traps (number)      

1  0.02 0.12 0 1 

2  0.11 0.31 0 1 

3  0.26 0.44 0 1 

4  0.62 0.49 0 1 

Clouds at time of pan trap placement (Okta scale)  2.63 0.51 2 4 

Temperature at time of pan trap placement (°C)  26.96 1.13 23 29 

Wind at time of pan trap placement (Beaufort scale)  2.16 0.37 2 3 

Plot status at time of pan trap placement      

0: Not harvested  0.52 0.50 0 1 

1: Fallow or already harvested  0.48 0.50 0 1 

Flower crop (dummy)  0.04 0.19 0 1 

Fruit crop (dummy)  0.08 0.27 0 1 

Staple crop (dummy)  0.78 0.42 0 1 

Trees (dummy)  0.05 0.21 0 1 

Vegetable crop (dummy)  0.60 0.49 0 1 

Pollinator forage crop (dummy)  0.81 0.39 0 1 

Flowers present in focal crop 2018 (number, logarithmic scale)  1.08 1.53 0 5 

Flowers in 2m proximity of bowls (number, average all  

     bowls per plot, logarithmic scale) 

 3.25 1.35 0 5 

Pollinator forage crops since 2012 (years)  3.41 2.41 0 6 

Chemical fertilizer (dummy)  0.78 0.42 0 1 

Irrigation (dummy)  0.37 0.49 0 1 

Pesticides (dummy)  0.25 0.44 0 1 

Chemical fertilizer since 2012 (years)  3.90 2.00 0 5 
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Table 4.1 continued 

Variable  Mean Std. Dev. Min Max 

Irrigation since 2012 (years)  1.58 2.26 0 5 

Pesticide use since 2012 (years)  0.34 1.18 0 5 

Plot size (acre)  1.34 1.37 0 10 

Slope      

1: Flat  0.22 0.42 0 1 

2: Moderate  0.57 0.50 0 1 

3: Steep  0.21 0.41 0 1 

Soil quality       

1: Poor  0.06 0.24 0 1 

2: Middle  0.45 0.50 0 1 

3: Very good  0.49 0.50 0 1 

 

At the plot level, we included several variables that are related to the pan traps and their 

placement and might therefore influence our measures of abundance and richness. These 

variables are the number of successful pan traps per plot and meteorological variables such as 

cloud cover, temperature, and wind conditions when the pan traps were in place. Since the 

cropping systems in the Bangalore area are very diverse, we also control for different crops. 

On the 131 pan trap plots, 32 different crops were grown. This crop diversity creates two 

main issues. First, different crops serve pollinator communities in different ways and certain 

management practices might be strongly correlated with certain crops. Second, different crops 

have different growing schedules. As a consequence, some plots had already been harvested 

when the pan traps were placed, while others were at different stages of development. We use 

different variables to test and control for these issues. We introduce a dummy variable 

indicating whether the plot was already harvested. In addition, we control for functional 

groups of crops, namely flowers, fruits, staples, trees, and vegetables on the plots. We also 

created a dummy variable indicating whether crops classify as forage crops for pollinators. 

Thus, this variable represents the forage quality of the plot in the current season. Furthermore, 

we used the recall data from the baseline survey to measure the number of years since 2012 

with bee forage crops on each plot. Finally, we estimated the number of flowers of the focal 

crop on the plot when the pan traps were in place and the number of flowers in direct 

proximity (2m radius) to the pan traps.  

To evaluate the effects of farmers‘ agricultural input and management decision-making on 

bee communities, we included dummy variables on the use of chemical fertilizers, irrigation, 

and pesticides. These are standard indicators in the literature to quantify agricultural 

intensification (see e.g. Asfaw et al., 2016; Sharma et al., 2011.). Similar to the forage crops, 

we also included variables that count the number of years since 2012 in which these practices 
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had been used. Other factors relevant for agricultural management such as plot size, slope, 

and soil quality were also included in the data set. 

Given the 131 observations of our data set, estimating a model that includes all of the 

explanatory variables described above could lead to over-parameterization and estimation 

inefficiencies. Therefore, we use the AIC to exclude explanatory variables that do not 

contribute to the model fit. In addition, we have to account for correlation among certain 

explanatory variables. Table A4.1 shows strong correlation between the irrigation and 

pesticide dummies. To avoid multicollinearity one of the two variables should be excluded. 

Since pesticide use is of primary interest for our research objectives and is more likely to have 

a direct effect on pollinator communities (Goulson et al., 2015), we exclude the irrigation 

dummy from further analysis. Furthermore, we also observe strong positive correlation among 

the past use of pesticides, chemical fertilizer, and irrigation (Table A4.1). Based on the model 

choice criterion (AIC) we keep the number of irrigated years in the model. However, 

considering the strong correlation with the other two variables on plot history, past irrigation 

should be rather understood as a general indicator of agricultural intensification. 

4.3.3 Estimation strategy and interpretation of effects 

We estimate the parameters of the spatial Durbin model via maximum likelihood (Elhorst, 

2010; LeSage & Pace, 2009). All estimations were conducted in Stata, which provides an 

updated and very flexible package for spatial econometric models in its new version Stata 15 

(StataCorp, 2017).  

Equation 1 represents the structural form of the spatial Durbin model. In order to estimate all 

parameters, the model is transformed into its reduced form.  

 

(2) 𝒀     𝝆𝑾   𝜶      𝝆𝑾    𝑿  𝑾𝑿𝜽     𝝆𝑾   𝜺 

 

This is necessary because 𝑾𝒀 is endogenous, i.e.    affects    and vice versa. Equation 2 also 

shows that the interpretation of parameters is more complex than in a simple linear regression. 

The second term on the right-hand side implies that the dependent variable observed on one 

plot is affected by changes in explanatory variables on the same plot and also by changes in 

explanatory variables on other plots. As a consequence, changes at one point in space can 

propagate through the entire system. Therefore, LeSage & Pace (2009) propose calculating 

mean direct, indirect, and total impacts based on the actual partial derivatives  𝒀  𝑿 instead 

of interpreting estimated  -coefficients themselves. Equation 3 shows the derivation of partial 
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derivatives  𝒀  𝑿 for an explanatory variable   . The main diagonal represents the direct 

impacts, i.e. the change in   on plot   if    changes on plot  . Off-diagonal elements represent 

indirect impacts, i.e. the effect of    observed on a neighboring plot 𝑗 on bee abundance or 

richness at plot  .  
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Equation 3 also implies that every observation has its own set of direct and indirect impacts 

due to the weights assigned in 𝑾. However, to present specific estimates of impact for every 

observation in the sample is impractical. Therefore, the general approach is to calculate the 

mean overall direct and indirect impacts (Elhorst, 2010). In addition, a mean total impact is 

presented, which is the sum of direct and indirect impacts and, thus, represents the overall 

effect of explanatory variable    on  . 

4.4 Results 

Overall, we caught 696 bee individuals and identified 31 species belonging to three different 

families (Apidaea, Halictidae and Megachile). The most abundant species were Apis florea, 

Lasioglossum sp. 1 and Apis cerana (160, 83 and 79 individuals respectively). These findings 

are comparable to other studies of tropical agricultural bee communities (Hass et al., 2018; 

Hoehn et al., 2008). Species accumulation curves indicate that our sampling effort was 

adequate to detect the majority of bee species present in the rural-urban interface of Bangalore 

(Table A4.2 and Fig. A4.3).  

Estimations with a 𝑾-matrix that assumes a four kilometer cut-off resulted in the best model 

fit based on the AIC
17

. Accordingly, we only present the results of this model in the 

following. Table 4.2 shows the estimates of the spatial parameters 𝝆 and 𝜽. Tables 4.3 and 4.4 

present direct, indirect, and total impacts of explanatory variables on bee abundance and 

richness, respectively. Effects are quite similar in both the abundance and the richness 

models
18

 but the levels of statistical significance are generally higher in the abundance model.  

                                                 
17

 Differences among AICs are rather small. Thus, the spillover distance should be understood as an 

approximation in the following analysis. Note that coefficients of the explanatory variables are robust to the 

different cut-offs in 𝑾.  
18

 Correlation between bee abundance and richness in our data set is 91.9 percent and highly statistically 

significant. 



4. Farmers’ decision-making and pollination services 

 

100 

 

Table 4.2 

Estimates of spatial parameters (N=131, 𝑾 matrix with 4km cut-off). 

Spatial parameter  Abundance Richness 

Pesticide use  𝜽   -4.701* (0.096)  

Abundance or Richness respectively  𝝆   0.365** (0.013) 0.292** (0.023) 

Note: asterisks indicate significance levels *p<0.1; ** p<0.05;*** p<0.01; p-values in parentheses. 

 

4.4.1 Spatial parameters 

For bee abundance the best model fit is achieved when spatial lags are included in the 

dependent variable and in the explanatory variable ―pesticide use‖. Spatial lags in chemical 

fertilizer use were omitted in exchange for a better model fit. In contrast, bee richness is best 

explained when a spatial lag is included for the dependent variable but for none of the 

explanatory variables. Table 4.2 shows that in both models the estimate of the spatial 

autoregressive parameter 𝝆 is highly significant and positive. This is a clear sign of spatial 

correlation in the observations of bee abundance and richness within a four kilometer radius. 

Assuming that the correlation results from bee mobility, the average dispersal range of bee 

communities in our research area is approximately four kilometers. 

Furthermore, we observe significant negative spillovers from pesticide use on neighboring 

plots, 𝜽, on bee abundance. The lack of such spillovers in the model of bee richness suggests 

that pesticide spillovers affect bee abundance but not the composition of bee communities as 

such.  

4.4.2 Effects of agricultural management practices on bee abundance and richness 

In both models dummies for farmers‘ adoption decisions for chemical fertilizer and pesticide 

use are included, as is total number of years of irrigation since 2012. In the bee abundance 

model, all three variables show significant negative total impacts (Table 4.3, third column). 

The magnitude of total impacts for chemical fertilizer and pesticide are particularly large. 

Given the average of 4.68 caught bees per plot in our data set (Table 4.1), effects of -2.089 

and -3.621 for the use of chemical fertilizer and pesticides respectively imply a strong 

negative influence of such practices on bee abundance. Furthermore, pesticide use appears to 

have a stronger overall influence on bee abundance than chemical fertilizer use; the latter 

effect is only about two-thirds the size of the former ceteris paribus (c.p.). The effect of past 

irrigation is also statistically significant but smaller in magnitude (-0.309). Comparing direct 
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and indirect impacts, chemical fertilizer use and past irrigation yield stronger direct than 

indirect impacts in terms of magnitude and significance. In contrast, the magnitude and 

significance of indirect impacts are higher for pesticide use than for direct impacts. These 

results imply that pesticides have effects that spill over to other plots, whereas the effects of 

chemical fertilizers and irrigation are more spatially concentrated. This coincides with the 

choice of spatial parameters presented in section 4.4.1, which also emphasizes the importance 

of spatial spillovers in pesticide use for bee abundance.  

The picture is different for the model on bee richness (Table 4.4). Even though irrigation, 

pesticide use and chemical fertilizer use have negative effects in this model as well, only the 

direct and total impact of past irrigation is statistically significant. Assuming 2.78 bee species 

per plot on average (Table 4.1), every additional year with an intensified management system 

c.p. leads to 0.24 fewer observed species. Overall, agricultural practices and their spillovers 

do not have strong effects on bee richness. In addition to rather high p-values, direct and 

indirect impacts of chemical fertilizer and pesticide use show low magnitudes (Table 4.4, 

columns 1 and 2). 

These results imply some significant differences in the dynamics of how agricultural 

management decisions affect bee communities. While bee abundance is more determined by 

present management practices, past plot management appears to be primarily important for 

the composition of the bee community.  

4.4.3 Other determinants of bee abundance and richness 

Several other explanatory variables have statistically significant effects on bee abundance and 

richness. Village build-up and the dummy for agricultural plots in the direct neighborhood are 

two landscape scale factors that show significantly negative direct impacts on bee abundance 

(Table 4.3). The latter variable is likely related to negative spillovers of management practices 

discussed in section 4.4.2. The negative effect of village build-up might be explained by 

physical barriers to bee dispersal (e.g. buildings, roads, etc.). The effect is also significantly 

negative in the model of bee richness but its magnitude is fairly small. On the plot level, soil 

quality has a highly significant positive direct (and total) impact on bee abundance as well as 

richness.  
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Table 4.3 

Direct, indirect, and total impacts on bee abundance (N=131, 𝑾 matrix with 4km cut-off). 

   dy/dx  

Variable  Direct impacts Indirect impacts Total impacts 

Landscape scale     

Village build-up area (percentage)  -0.205*** (0.003) -0.032* (0.055) -0.237*** (0.002) 

Agricultural plot in direct neighborhood (dummy)  -2.407** (0.02) -0.377 (0.147) -2.784** (0.024) 

Road in direct neighborhood (dummy)  -0.832 (0.233) -0.13 (0.319) -0.962 (0.237) 

     

Local / Plot scale     

Successful pan traps (number) (ref. four traps)     

1  -0.48 (0.862) -0.075 (0.863) -0.555 (0.862) 

2  0.984 (0.374) 0.154 (0.42) 1.139 (0.375) 

3  2.452*** (0.002) 0.384* (0.075) 2.836*** (0.002) 

Fruit crop (dummy)  0.581 (0.654) 0.091 (0.663) 0.672 (0.654) 

Chemical fertilizer (count)  -1.806** (0.029) -0.283 (0.168) -2.089** (0.034) 

Pesticides (dummy)  -1.383 (0.111) -2.238* (0.086) -3.621** (0.023) 

Irrigation since 2012 (years)  -0.381** (0.014) -0.06 (0.109) -0.441** (0.014) 

Slope (ref. flat)     

2: Moderate  1.313 (0.125) 0.206 (0.229) 1.518 (0.128) 

3: Steep  0.746 (0.468) 0.117 (0.506) 0.862 (0.47) 

Soil quality (ref. poor)     

2: Middle  3.813** (0.013) 0.598 (0.135) 4.41** (0.016) 

3: Very good  4.541*** (0.003) 0.712 (0.107) 5.253*** (0.004) 

Note: asterisks indicate significance levels *p<0.1; ** p<0.05;*** p<0.01; p-values in parentheses  
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Table 4.4 

Direct, indirect, and total impacts on bee richness (N=131, 𝑾 matrix with 4km cut-off). 

   dy/dx  

Variable  Direct impacts Indirect impacts Total impacts 

Landscape scale     

Distance to Bangalore (km)  0.031 (0.138) 0.004 (0.176) 0.035 (0.131) 

Village build-up area (percentage)  -0.067* (0.73) -0.008 (0.137) -0.075* (0.068) 

Agricultural plot in direct neighborhood (dummy)  -0.8775 (0.163) -0.093 (0.262) -0.867 (0.164) 

     

Local / Plot scale     

Successful pan traps (number) (ref. four traps)     

1  0.636 (0.654) 0.076 (0.66) 0.712 (0.654) 

2  0.76 (0.189) 0.091 (0.277) 0.851 (0.19) 

3  0.798* (0.05) 0.095 (0.153) 0.893** (0.049) 

Flowers present in focal crop 2018 (number, logarithmic 

scale) 

 

-0.156 (0.181) -0.019 (0.299) -0.175 (0.186) 

Chemical fertilizer (dummy)  -0.6 (0.164) -0.072 (0.28) -0.671 (0.168) 

Pesticide (dummy)  -0.67 (0.146) -0.08 (0.224) -0.749 (0.144) 

Irrigation since 2012 (years)  -0.215*** (0.008) -0.026 (0.108) -0.24*** (0.008) 

Plot size (acre)  0.187 (0.154) 0.022 (0.268) 0.209 (0.158) 

Slope (ref. flat)     

2: Moderate  0.836* (0.066) 0.1 (0.187) 0.936* (0.068) 

3: Steep  0.699 (0.202) 0.084 (0.296) 0.783 (0.204) 

Soil quality (ref. poor)     

2: Middle  1.753** (0.032) 0.209 (0.152) 1.962** (0.033) 

3: Very good  2.034** (0.015) 0.243 (0.125) 2.277** (0.015) 

Note: asterisks indicate significance levels *p<0.1; ** p<0.05;*** p<0.01; p-values in parentheses 
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4.5 Discussion 

The strong significance of the positive spillovers in bee abundance and richness indicated by 

the spatial parameter 𝝆 (Table 4.2) supports our assumption that observations of mobile 

pollinators are spatially correlated. Therefore, appropriate empirical models have to be chosen 

to avoid estimation biases. This is in line with methodological studies by Hoef et al. (2018), 

Lichstein et al. (2002), and Kissling & Carl (2007), who emphasize that ecological data often 

show spatial patterns and, thus, violate the assumptions of traditional linear models such as 

independent error terms.  

In addition to the methodological advantages of our modeling approach, our results also 

provide insights about the dispersal range of bee communities. Since the spatial weight matrix 

with a four kilometer cut-off yielded the best model fits, we can assume that this is roughly 

the average dispersal range of wild bee communities in the rural-urban interface of Bangalore. 

This estimate appears plausible in the context of the pollinator literature. The maximum 

dispersal or forage ranges (we use the two terms interchangeably) of some bee species are as 

high as six kilometers (Beekman & Ratnieks, 2000; Hagler et al., 2011; Pasquet et al., 2008); 

however, many species fall below that (Beil et al., 2008; Gathmann & Tscharntke, 2002; 

Zurbuchen et al., 2010). The distance a bee can fly to find forage depends to a large degree on 

species‘ characteristics such as body size or wing length (Greenleaf et al., 2007). Particularly 

in fragmented landscapes, access to sufficient forage resources can become a limiting factor 

to bee populations. Zurbuchen et al. (2010), for example, argue that increasing travel 

distances to find forage can decrease the development of brood cells by female bees. Thus, 

knowledge of forage ranges is essential for the understanding and management of pollination 

services. However, land fragmentation does not only refer to agricultural land use change but 

also physical infrastructure such as buildings and roads. These can impede biodiversity and 

ecosystem services due to changes in physical parameters (e.g. temperature) or reduction of 

habitat size and connectivity (Faeth et al., 2011; Pickett et al., 2011; Steffan-Dewenter, 2003; 

Turrini & Knop, 2015). This aspect is captured in our results in the negative direct impact of 

village build-up on bee abundance and richness (Table 4.3 and 4.4), though more significant 

for the abundance indicator.  

In terms of agricultural management, many studies highlight the negative effects of 

agricultural intensification on biodiversity and ecosystem services, including pollination 

(Matson, 1997; Tilman et al., 2002; Winfree et al., 2009). This matches our results since we 

find that chemical fertilizers, pesticides, and intensive past plot management have negative 
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effects on both bee abundance and richness. However, effects differ between these two 

dependent variables. 

Bee abundance is more prone to spatial spillovers, particularly of pesticide use (Tables 4.2 

and Table 4.3, column 2). Several studies analyze the effect of pesticides on bee abundance, 

but results are not consistent. Whereas Tuell & Isaacs (2010) find significant negative effects, 

Kremen et al. (2004) and Shuler et al. (2005) do not find any interactions. However, these 

studies do not consider spatial scaling, which has been shown to be an important factor 

determining effects on bee abundance; several studies have demonstrate that surrounding 

plots and distance to natural habitats influence bee abundance (Holzschuh et al., 2007; 

Krishnan et al., 2012; Motzke et al., 2016). This coincides with the significant negative effect 

of agricultural plots in the direct neighborhood of the experimental plots on bee abundance in 

our study. The negative significant spillovers of pesticide use suggest comparable dynamics. 

In addition, the spillover of pesticide use shows another advantage of our modeling approach. 

Because pesticide use is measured at the plot level, we can directly relate it to farmers‘ 

decision-making and resulting externalities. Even if a farmer wanted to reduce pesticide use to 

protect pollination services, he might still face decreased pollination rates due to pesticide use 

by neighbors. In the worst case, this farmer could end up with only pests and no pollinators on 

his/her plot. At the other extreme a free-riding problem can arise. If only one farmer applies 

pesticides while all others avoid them, then the farmer who applies pesticides faces lower pest 

rates and can also benefit from intact pollination services. Thus, our results show that 

cooperative behavior among smallholders is necessary to guarantee pollination services for all 

farmers. In game theory this is referred to as prisoner‘s dilemma (Rapoport, 1989). 

In contrast, the negative impacts of chemical fertilizers and intensive past plot management 

appear to be limited to the plot level and do not show any significant spillovers. Particularly 

bee richness, compared with abundance, appears to be primarly responsive to a plot history of 

intensified agriculture (indicated by past irrigation in Table 4.4). Several authors have 

emphasized the importance of time in determining pollinators‘ access to species-specific 

forage and nesting resources (Kremen et al., 2007; Potts et al., 2003; Tuell & Isaacs, 2010). 

Bee diversity (richness) can only be established and maintained if such resources are 

consistently available over a number of seasons. Soil quality can also support the availability 

of sufficient and high-quality forage (e.g. nectar, pollen) (Baude et al., 2011; Burkle & Irwin, 

2009; Burkle & Irwin, 2010; Muñoz et al., 2005). This explains the significant positive effect 

of soil quality in both models (Tables 4.3 and 4.4).  
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Whereas a sufficient number of pollinators (abundance) is necessary to guarantee a full 

pollination service (Kremen et al., 2002), other studies highlight the importance of bee 

richness for a complete fruit set referring to specialized plant-pollinator relationships (Klein et 

al., 2003). Both abundance and richness are common indicators of pollination services in the 

literature (Gabriel & Tscharntke, 2007; Kremen et al., 2004; Krishnan et al., 2012) and, thus, 

effects on both indicators have to be taken into consideration in evaluating effects of farmers‘ 

decision-making on pollination services.  

4.6 Conclusions and policy implications 

The goal of this study is to evaluate the effects of agricultural management practices on bee 

abundance and richness in an interdisciplinary fashion. Thus, we consider both ecological 

factors identified mostly on the landscape scale in the literature with local plot-level decisions 

on agricultural intensification. The latter is measured as farmers‘ decisions to use chemical 

fertilizers and pesticides. To handle spatial scaling in our empirical analysis we apply a spatial 

Durbin model that allows for spatial correlation and spatial spillovers. Furthermore, we 

include plot- and landscape-level exogenous explanatory variables in our analysis as well as 

variables on the history of plot management.  

Our results show strong spatial correlation among observations within a four kilometer radius. 

This distance can be interpreted as the approximate average dispersal range of bee 

communities in our study area. Furthermore, we find that bee abundance is significantly 

negatively affected by the adoption of chemical fertilizers and pesticides, and by a history of 

intensive plot management. Particularly, pesticide use has a large negative impact on bee 

abundance that spills over to neighboring plots. In contrast, the effects of chemical fertilizers 

and past plot management are local. Our results also imply that the intensive past management 

of agricultural plots is the primary determinant of decreasing bee richness. Thus, the response 

of bee populations to agricultural management practices in the rural-urban interface of 

Bangalore has spatial as well as temporal components. We argue that more empirical studies 

should include these two dimensions in an explicit fashion and that our empirical approach is 

a suitable way to do so.  

Because our results refer directly to farmers‘ decision-making, we can identify types of 

behavior which can contribute to wild pollinator conservation and, thus, are relevant for 

extension services or policy programs. First, the existence of negative spillovers from 

pesticide use call for cooperative approaches among farmers to avoid free-riding or prisoners‘ 

dilemma problems. Therefore, extension services that promote knowledge distribution and 
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pollinator conservation need to be inclusive, i.e. all farmers in a village should participate. 

Second, past plot history is important to conserve bee abundance and richness. Thus, rotation 

of intensive and extensive management practices might help to maintain sufficient forage and 

nesting opportunities for different bee species. In addition, sustainable practices to maintain 

and improve soil quality could help to provide bee communities with high-quality forage. 

Finally, we recommend larger samples for future studies that increase the statistical validity 

and precision of the estimates. Furthermore, data from other regions with fewer cultivated 

crops might reduce the correlation among variables and allow for even more specific 

conclusions concerning the effects of different agricultural practices and parameters.  
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Appendix 

 

Table A4.1 

Correlation among different measures of agricultural management practices. 

 Chemical 

fertilizer 

(dummy) 

Pesticides 

(dummy) 

Irrigation 

(dummy) 

Chemical 

fertilizer 

(years 

since 

2012) 

Pesticides 

(years 

since 

2012) 

Irrigation 

(years 

since 

2012) 

Chemical 

fertilizer 

(dummy) 

1.00 

     

Pesticides 

(dummy) 

0.10 1.00     

(0.27)      

Irrigation 

(dummy) 

0.11 0.53*** 1.00    

(0.22) (0.00)     

Chemical 

fertilizer 

(years since 

2012) 

0.05 -0.08 0.04 1.00   

(0.59) (0.38) (0.66)    

Pesticides 

(years since 

2012) 

-0.05 0.09 0.19** 0.16* 1.00  

(0.59) (0.33) (0.03) (0.06)   

Irrigation 

(years since 

2012) 

-0.06 0.30 0.47*** 0.28*** 0.41*** 1.00 

(0.51) (0.00) (0.00) (0.00) (0.00)  

Note: asterisks indicate significance levels *p<0.1; ** p<0.05;*** p<0.01; p-values in parentheses 
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Table A4.2 

Total number of individuals per bee species sorted by family. 

Family Species Author Abundance 

Apidae Amegilla sp. 1  3 

 
Amegilla sp. 2 3 

 
Apis cerana Fabricius 79 

 
Apis dorsata Fabricius 16 

 
Apis florea Fabricius 160 

 
Ceratina binghami Cockerell 58 

 
Ceratina heiroglyphica Smith 6 

 
Ceratina heiroglyphica  Smith 34 

 
Ceratina smaragdina Smith 9 

 
Ceratina unimaculata Smith 11 

 
Xylocopa latipes Drury 1 

 
Xylocopa sp. 1 1 

Halictidae Austronomia sp. 1 2 

 
Hoplonomia sp. 1 1 

 
Lasioglossum sp.1 83 

 
Lasioglossum sp.2 39 

 
Lasioglossum sp.3 58 

 
Lasioglossum sp.4 22 

 
Lasioglossum sp.5 22 

 
Lasioglossum sp.6 15 

 
Lasioglossum sp.7 6 

 
Leuconomia sp. 1 1 

 
Nomia westwoodi Gribodo 2 

 
Pachynomia sp. 1 2 

 
Seladonia sp. 1 29 

 
Seladonia sp. 2 17 

 
Sphecodes sp. 1 9 

 
Sphecodes sp. 2 3 

Megachilidae Coelioxys confusa Smith 1 

 
Megachile disjuncta Fabricius 1 

 
Megachile lanata  Fabricius 2 
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Fig. A4.1 Histogram of successful pan traps per plot. 
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Fig. A4.2 Distribution of bee abundance and richness over the number of successful pan 

traps. 
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Fig. A4.3 Species accumulation curve of bees, mean values (lines) and standard 

deviations (polygon) from 100 permutations of 154 sampled sites are shown. 

 

 



5. Conclusions, limitations, and future research potential 

 

121 

 

5. Conclusions, limitations, and future research potential 

In the introduction (Chapter 1) two research questions were defined outlining the focus of this 

dissertation. Accordingly, the three studies in Chapters 2 to 4 address effects of urban centers 

on agricultural management systems and consequences of agricultural change for natural 

resources and environmental services. The empirical work in all three studies is based on 

primary data from two research transects in the rural-urban interface of Bangalore in South 

India. Data were collected in two socio-economic surveys from December 2016 to May 2017 

and February to March 2018, and in pan trap experiments.  

This dissertation focuses particularly on effects of rapidly growing urban centers and mega-

cities such as Bangalore. This type of urbanization is predicted to dominate future 

urbanization trends and presents new challenges to modeling urbanization effects on 

agricultural systems (United Nations, Department of Economic and Social Affairs, Population 

Division, 2019). The setup of larger urban agglomerations is often polycentric, i.e. a larger 

city with several satellite towns (Marull et al., 2015). Additionally, such regions are 

characterized by well-functioning industrial and service sectors (Hall & Pain, 2009). 

Consequently, effects of such urban centers on farming households are complex because they 

provide access to multiple market centers and off-farm employment. In previous studies 

urbanization effects on agricultural systems have been measured by one-dimensional 

variables such as distance or travel time to the next urban center (Chamberlin & Jayne, 2013; 

Vandercasteelen et al., 2017). This definition relies on the concept of transportation costs, 

which are assumed to be proportional to the distance to a city or equivalent proxies (Damania 

et al., 2017). The closer a farm is located to a city the higher the degree of agricultural 

intensification due to lower transportation costs and, thus, lower net input and high net output 

prices (Vandercasteelen et al., 2017). However, what happens when smallholder farmers have 

access to more than one market or when some household members are employed in the off-

farm-sector? To account for this increasing complexity and interaction of multiple urban 

influences, more complex theoretical and empirical models are necessary. 

This is the point of departure for the first two studies presented in this dissertation. In both 

studies two-dimensional Penalized (P-) Splines are applied to model urbanization effects in a 

spatially explicit way (Fahrmeir et al., 2013). The goal is to present a more flexible alternative 

to the usually used one-dimensional proxies.  
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The first study ―Somewhere in between towns, markets and jobs – Opportunity costs of 

agricultural intensification in the rural-urban interface‖ addresses two research questions: 

First, it is interested in farmers‘ management decisions when they have access to more than 

one urban center, i.e. in a polycentric urbanization setting. Second, we investigate the effect of 

households‘ income diversification on agricultural management decisions. The number of 

adopted modern inputs represents the degree of agricultural intensification. Urbanization 

effects are estimated by two-dimensional P-Splines based on household and village 

coordinates in the rural-urban interface of Bangalore. In a conceptual framework, we are able 

to show that households‘ choices concerning labor allocation between off-farm employment 

in the city and labor-intensive modern agricultural management lead to complex and likely 

nonlinear patterns. The patterns are defined by the ratio of net wage and net output price as 

functions of household location. That means wages as well as output prices depend on the 

access to urban centers, i.e. transportation costs. The empirical analysis supports the 

hypothesis of complex spatial patterns. The estimated two-dimensional P-Splines differ 

significantly between the two research transects. Effect sizes are five times higher in the 

northern than in the southern transect, and effect patterns differ as well. In the northern 

transect proximity to a satellite town appears to increase the adoption of modern inputs, 

whereas proximity to Bangalore has a negative effect. In the southern transect, proximity to a 

highway has an increasing effect on modern input adoption.  

 

The second study ―Digging deep and running dry – the adoption of borewell technology in the 

face of climate change and urbanization‖ examines how urbanization and changing weather 

patterns influence farmers‘ decisions to adopt groundwater lifting technology. On the one 

hand, the adoption of such a technology is an indicator of the modernization of agricultural 

systems. On the other hand, it is also interesting in the context of natural resource 

management. Water is scare in the Bangalore area and access to groundwater is often a 

prerequisite for commercialized agriculture and income generation for many farm households 

(Alcon et al., 2011). Therefore, sustainable management of groundwater is essential to the 

long-term wellbeing of smallholders. This becomes especially important since weather and 

monsoon rains have become increasingly unreliable in the course of climate change (Shah, 

2007). To incorporate urbanization and weather changes in the analysis, we estimate a 

duration model with structured additive predictor including a two-dimensional P-Spline for 
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household coordinates (Kneib, 2006; Fahrmeir et al., 2013). The dependent variable of a 

duration model represents the probability that an event—in the present case the adoption of a 

borewell—takes place in a given time period (Therneau & Grambsch, 2000). It is thus a 

dynamic model and time-variant weather data (rainfalls) can be included. The results of the 

empirical analysis show that proximity to Bangalore, as well as to satellite towns increases the 

likelihood of borewell adoption. Furthermore, we observe a higher probability of borewell 

adoption when rainfalls decrease. In contrast, high monsoon rains increase the likelihood of 

borewell adoption in the subsequent year. One explanation could be additional capital from a 

year with sufficient monsoon rains or the wish to secure another good harvest. Moreover, we 

find some evidence of technology spillover among farmers in the same village. The more 

farmers in a village adopted the borewell technology the higher becomes the likelihood of 

non-adopters to build a borewell in the next period.
19

 Thus, increased probability of borewell 

adoption due to urban centers or droughts might be further amplified by social learning and 

information spillovers. 

The results of the first two studies confirm that modeling two-dimensional urbanization 

effects has several advantages. Particularly, the first study demonstrates that the adoption of 

modern inputs is not affected in a uniform and concentric gradient around Bangalore. To 

account for such differences, spatially explicit modeling is inevitable since one-dimensional 

measures such as distance to a city will only represent blurred and aggregate effects. 

Furthermore, the importance of satellite towns becomes visible in both studies. These towns 

appear to have an equal, if not stronger, positive effect on agricultural intensification. 

Therefore, polycentric setups of metropolitan regions have to be considered in the analysis of 

urban effects on agricultural management systems. Effects by satellite towns contribute to 

overall nonlinear effect patterns and thus underline the case for spatially explicit modeling 

approaches. A flexible representation of urbanization effect is also necessary because there is 

a multitude of urban influences. We show that urbanization effects very likely result from an 

interplay of antagonistic forces and can only be understood in a relative concept. The 

particular case outlined in the first study refers to household choices concerning labor 

allocation into off-farm employment or labor-intensive modern agriculture. This shows that 

nonlinear and nonconcentric effect patterns cannot only result from polycentric urbanization 

patterns but also from antagonistic incentives for farm households. 

                                                 
19

 Only in the northern transect this effect turns negative once a higher number of farmers adopted the 

technology. That might be a sign that water aquifers are already overexploited and wells start to fall try. 
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Despite the strong case that the first two studies make for spatially explicit modeling of 

urbanization effects on agricultural management systems, there are several limitations and 

additional research potentials that must be addressed. First, both studies rely on cross-

sectional data. With such data it is difficult to establish causality among variables. 

Urbanization and agricultural change are developments that both evolve over time. The 

simultaneity of these processes makes it hard to establish cause-effect-relationships in cross-

sectional data analysis without making strict or unrealistic assumptions. In the first study, we 

address the issue by considering only variable inputs for the construction of the dependent 

variable. Variable inputs can be adjusted every growing seasons and represent short-term 

responses to farmers‘ circumstances. Therefore, the status of urbanization at the time of 

decision-making is assumed to be a static and exogenous factor. In the second study, we try to 

overcome the limitation by using a dynamic modeling approach (duration model). The 

borewell technology—unlike variable inputs—is a long-term management decision and has a 

lasting effect on agricultural management systems. In addition, the second study shows that 

there are other time-dependent developments such as weather changes influencing 

management decisions that are neglected in cross-sectional analysis as well. Therefore, to 

obtain a comprehensive understanding of cause and effect relations between urbanization 

processes and agricultural change, panel data sets are indispensible. 

Moreover, the research transects which build the foundation of the empirical analysis of this 

dissertation, where designed under the impression of monocentric urbanization patterns 

around Bangalore. Consequently, detected urbanization effects by satellite towns or road 

infrastructure are somewhat arbitrary. Future studies should foresee polycentricity and plan 

research areas accordingly. That means, instead of several transects connected to one city, a 

larger coherent area including several towns of different structures, e.g. industrial vs. non-

industrial or large vs. small, should be chosen. In addition, the Bangalore area is characterized 

by diverse cropping patterns; in our sample, more than 70 crops were recorded. This crop 

diversity makes it difficult to draw general conclusions on effects of urban centers on 

agricultural systems because the different cropping systems already differ substantially by 

construction. Therefore, future studies—particularly if only cross-sectional data is available—

should focus on areas with one dominant or similar cropping systems. 

Another limitation lies in the modeling of simultaneous household decision-making 

concerning off- and on-farm labor allocation. In this dissertation we estimate one-equation 
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models with proxies of agricultural management decisions (input adoption) as dependent 

variable. Nevertheless, the conceptual framework developed in the first study implies that 

households simultaneously optimize their decisions subject to farm output prices and wage 

rates in the off-farm sector. In our household sample, the majority of off-farm employment 

refers to salary employment, which is generally a long-term decision. Therefore, in Chapter 2, 

we treat off-farm employment as exogenous variable using the same argument as with 

urbanization, i.e. decisions concerning variable inputs can be assumed to be more recent than 

decisions concerning off-farm employment. In the second study, we treat off-farm 

employment as time-variant variable, so that temporal causality can be established. However, 

in regions where seasonal and casual labor is more common such assumptions may not hold. 

Therefore, simultaneous equation models or estimation approaches with instrumental 

variables might be required.  

Finally, some suggestions for future research building on the findings presented in Chapters 2 

and 3: A full formal derivation of the conceptual framework would present an interesting 

objective for future research. Additionally, simultaneous estimation models might present a 

suitable empirical tool to investigate then formalized hypotheses. If employment for each 

adult household member is recorded, a variable could be created representing the share of 

household time allocated into the off-farm sector. With a simultaneous equation model, 

allowing interdependence between this variable and an intensification indicator (e.g. number 

of adopted modern inputs), the decision-making problem described in the conceptual 

framework could be directly estimated. Particularly interesting would be to connect such an 

equation system with the estimation of geosplines keeping up the flexible approach of 

estimating urbanization effects presented in Chapters 2 and 3. If panel data on the share of 

households‘ time allocated to either agricultural production or off-farm employment were 

available, it would also be possible to observe changes in the contribution of agricultural 

production to a household‘s income over time. Such changes can have implications for food 

and nutrition status of smallholder households, i.e. households might consume less own 

produce but purchase more in food markets when the importance of own agricultural 

production decreases, and for households‘ living standards in general. In addition, a 

disaggregation of effects of different kinds of off-farm employment should be investigated. 

Skilled and unskilled labor is likely to have very different consequences for the living 

standards of smallholder households. A good understanding of these developments is, thus, 

crucial for extension services and policy programs. 
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Furthermore, the second study shows that social learning and information spillover contribute 

to speeding up technology adoption. Thus, modeling social networks in a more explicit way 

presents an interesting research objective. Adhering to the focus on spatial analysis, a 

comparison of geographic and social distance between households and resulting effects on 

information transfer and adoption decisions comes to mind. Every exogenous variable can be 

used to construct weight matrices in the fashion presented in Chapter 4. Especially in 

developing countries tribal affiliation, age or comparable factors define social networks 

(Jackson, 2011; Jackson & Yariv, 2011). However, a majority of studies exclusively consider 

geographic distance to setup weight matrices and describe diffusion processes (Schmidtner et 

al., 2012; Wollni & Andersson, 2014). By applying recently developed spatial econometric 

models allowing for several weight matrices (Prucha et al., 2016; Bhattacharjee et al., 2018), 

the adequacy of different geographic and social distance measures could be directly tested and 

compared within the same model specification. Determining which and to which extent 

different distance measures affect technology adoption, would allow for a more nuanced 

understanding of technology diffusion processes and programs promoting the adoption of 

certain technologies could be targeted more effectively. In the Indian context, good examples 

for social distance measures would be caste or the age of farmers. Caste is still an important 

factor structuring Indian society; the same holds for age hierarchies.  

 

The second study already hints at consequences of agricultural change for natural resources 

and environmental services, and negative feedbacks threatening the agricultural production 

and wellbeing of smallholders. In this context, the third study of this dissertation ―Farmers‘ 

decision-making and pollination services: A spatial autoregressive analysis‖ analyzes the 

effect of agricultural intensification on bee communities in the rural-urban interface of 

Bangalore. More specifically, we model the effect of farmers‘ decisions to use chemical 

fertilizers and pesticides on bee abundance and species richness. The Bangalore area is 

famous for its fruit and vegetable production, which largely depends on wild pollination 

(Directorate of Census Operations Karnataka, 2011; Kennedy et al., 2013). In contrast to 

management systems in the northern hemisphere, where a lack of wild pollinators can be 

compensated by managed bee colonies, this is less common in the agricultural production in 

developing countries (Kennedy et al., 2013). Therefore, the use of agricultural practices 

threatening pollinator communities will eventually have devastating consequences for 
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smallholder agricultural production. It is, thus, essential to identify harmful management 

practices and investigate the way they affect pollinator communities. Only then can 

appropriate policy measures be designed and implemented. The majority of recent studies 

treat this issue at the landscape scale, which appears to be useful to explain the status of 

pollinator populations, which can have large dispersal ranges (Beekman & Ratnieks, 2000). 

Nevertheless, such a perspective does not allow for conclusions concerning individual 

decision-making at the plot level (Bockstael, 1996). This is however important because the 

plot or household level is normally the target of policy measures. To close this gap, the goal 

of the study in Chapter 4 is to connect the economic concept of decision-making on the plot 

level and ecological indicators of abundance and richness generally attributed to the landscape 

scale. Durbin models, a spatial econometric model specified by spatial lags in dependent and 

independent variables, are applied (LeSage & Pace, 2009). Moreover, explanatory variables 

on the plot and landscape scale are included, as well as information on the history of plot 

management.  

For both bee indicators we find strong spatial correlation among observations in a 4-kilometer 

radius. This can be interpreted as the mean dispersal range of bee populations in the area. 

Despite the dispersal range, effects differ between the indictors of abundance and species 

richness. Bee abundance significantly decreases with the use of chemical fertilizers and 

pesticides as well as with intensive past plot management. Furthermore, pesticide use shows a 

strong negative spillover on bee abundance on neighboring plots. In contrast, bee richness is 

primarily affected by intensive past plot management that leads to significant negative effects. 

Consequently, spatial as well as temporal factors influence bee populations in the Bangalore 

area. Based on these results we deduce two main policy implications: First, considering the 

negative spillovers of pesticide use, extension services should target groups of neighboring 

farmers to avoid free-riding or a prisoner‘s dilemma. Second, continuous intensive plot 

management should be avoided. A coordinated rotation between intensive and extensive 

management systems could create more forage and nesting opportunities for pollinators. 

By connecting economic and ecological concepts, the study presented in Chapter 4 addresses 

a gap in and contributes to the existing literature. However, there are some limitations that 

should be mentioned. The empirical analysis relies on a sample of 131 plots. Future studies 

should aim at larger samples to increase the statistical validity of estimates. In addition, 

comparable with the first two studies, the analysis would greatly benefit from a panel data set. 
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The consideration of recall data on past plot management was an attempt to control for some 

temporal factors influencing pollinator communities. However, panel data on the pollinator 

indicators, abundance and richness, would allow to more appropriately control for time-

dependent factors. 

Finally, some suggestions for future research: Bees are only one (though important) group of 

pollinators and environmental services providers. However, many other agents are crucial for 

agricultural production. These include other pollinator species (e.g. flies or beetles), birds, or 

soil organisms. The proposed spatial method presents a useful tool of analysis to overcome 

spatial scaling and resulting correlation, especially in the case of mobile agents. It would also 

be interesting to quantify the negative economic spillovers of pesticide use (i.e. reductions in 

revenues and profits). Several studies have quantified the contribution of pollination services 

to agricultural output in monetary terms (Allsopp et al., 2008; Cordier et al., 2014). If such a 

concept could be transferred to the production losses/gains farmers experience when their 

neighbors use/do not use pesticides, the value of policies and extension services could be 

quantified as well. To be more precise, if the actual contribution of pollinator services for the 

production of particular crops could be estimated in ecological experiments, simulations of 

production loss due to pesticide use in the area based on calculated spillovers in Chapter 4 are 

conceivable. By changing parameters such as the number or location/clustering of pesticide 

users, different scenarios could be tested and compared to assess consequences of different 

land use systems for pollinator communities.  
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