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Summary 

The global impacts of greenhouse gas emissions from deforestation and forest degradation on 

climate change have increased international concern. An estimated 296 Gt of carbon is stored 

in the above- and below-ground biomass of global forests, which is almost half of the total 

carbon stored in forests. When forests are burned, degraded, or deforested, the stored carbon is 

released back into the atmosphere as carbon dioxide (CO2). Over the last 25 years, the global 

amount of carbon stored in forest biomass has been decreased at an annual rate of about 

0.44 Gt year-1, or equivalent to 1.6 Gt year-1 of CO2. The majority of this loss occurred in 

tropical forests, which are known to reserve approximately 40% of the global terrestrial 

carbon. This concern led to an agreement in the forestry sector to reduce carbon emissions 

from deforestation and forest degradation, and to conserve, enhance, and sustainably manage 

forest carbon stocks, referred to as the REDD+ scheme. The basic idea of the scheme is for 

developed countries to compensate forest-rich developing countries in return for preserving 

carbon in their forests, while simultaneously allowing for necessary economic development. 

The implementation of the REDD+ scheme requires an outline of a system for measuring, 

reporting, and verifying progress and changes. Paramount to this system is the establishment 

of “business-as-usual” baselines, against which the succession of carbon emission reductions 

of a country can be measured and compared. Hence, information on the amount of forest 

biomass and forest carbon stock is essential. This information can be used to estimate the 

amount of carbon that is potentially emitted into the atmosphere when a forest is burned or 

deteriorated. Such information is also useful for the stakeholders of forest planning, 

management and protection, as well as policy formulation. Combining remote sensing and 

field data has been recognized to increase the effectiveness in gathering this information, 

compared to that from the field data alone. The integration of remote sensing and field data 

also allows making wall-to-wall above-ground biomass (AGB) mapping over large areas. 

However, to achieve sound results, the integration requires the compatibility of the two 

datasets. 

This study took place in the lowland tropical peatland of Sebangau, Central Kalimantan 

Province, Indonesia. Peat in this area has been accumulating for millennia. The forestlands, 

including the underlying thick peat deposits, play an important role in terrestrial carbon 

storage. Even so, numerous pressures to the area for decades have caused a large part of these 

peatlands to be devastated and vulnerable to fire. Part of the remaining forests also burned 

during the forest fire events in Indonesia, contributing to more carbon emission to the 

atmosphere. This study aims to contribute to the methodological basis of the integration of 
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field inventory and optical RapidEye data for forest AGB estimation using the case of 

Sebangau tropical peat-swamp forest. Three sub-studies of related topics were conducted: (i) 

the effect of forest restricted visibility in the basal area estimates from angle count plot 

method; (ii) the integration between field inventory and optical RapidEye data for AGB 

estimation model; and (iii) the effect of different field plot sizes in the AGB estimation models 

derived from field and RapidEye data. 

Fixed-Area Plots and Angle Count Plots are frequently used plot designs in forest inventories. 

Angle Count Plot is known to be an efficient method for basal area estimation due to rapid 

application in the field. However, the estimation is rather sensitive to miscounted trees. In this 

study, the impact of the visibility condition in the Sebangau forest on the basal area estimation 

from Angle Count Plots was analyzed. Based on field measurements and simulation studies on 

a 1 ha plot of complete tree measurements, this study determined the maximum distance of 

visibility of the forest and the suitable basal area factor necessary to employ under this 

visibility condition. This study found a maximum distance of visibility of 6.6 m and 

recommends using a basal area factor of 5 for implementing the angle count plot method in the 

Sebangau forest to reduce the visibility effects on the estimation. The effects of restricted 

visibility in the Sebangau forest were further analyzed using field inventory data. For 

comparison, a dataset from an open savanna forest of Ncaute, Namibia, with almost no 

visibility restriction, was also used. The analyses were conducted for both the fixed-area- and 

the angle-count plot methods. The results showed that there was a visibility issue for 

estimating basal area using angle count plot in the Sebangau forest, while it was not found in 

the Ncaute forest. 

For the second sub-study, the field plots of the Sebangau peat-swamp forest were combined 

with the predictor variables derived from RapidEye data to build an AGB estimation model 

through stepwise multiple linear regression. For better understanding, this modelling approach 

was applied to two different inventory datasets from a temperate forest of Hainich, Germany. 

The relationships between field-observed AGB and predictor variables derived from RapidEye 

data were analyzed across three different inventory datasets representing two different forest 

types. Results in the study showed that in general, the Pearson correlation coefficients r of 

field-observed AGB estimates and RapidEye predictors were weak for each dataset. The 

resulting AGB models exhibited weak performance, given by some common indicators such 

as Adj R2 and RMSEr. The AGB model for the Hainich forest, which was derived from a 

dataset with larger plot size, showed a better performance than other AGB models with an Adj 

R2 of 0.65 and a RMSEr of 10.26%. The AGB estimations with integration of RapidEye data 
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showed a higher relative efficiency, in terms of their variances, when compared to the one 

derived solely from the field-data. Field plots in this study were according to the probability 

sampling design; the variance between the observed and the predicted AGB from the model 

was estimated using the model-assisted estimator, as well as the mean AGB estimate of each 

study area. 

In the third sub-study, the effects of different plot sizes in the resulting AGB model were 

analyzed using three different scenarios with the Hainich forest dataset of larger plot size. In 

the first scenario, the same predictors were continuously used to estimate the AGB of different 

field plot sizes. In the second and third scenario, different predictors were allowed to be 

selected in the AGB model. Results from the first scenario clearly showed a decreasing 

performance of the AGB model with decreasing plot size. Additionally, in the second and 

third scenarios a decreasing pattern in the model’s predictive power (RMSEr) was found by 

decreasing the plot size. This pattern was not found in the model Adj R2. Instead, the results 

showed that the relationships between the variability of the field-based AGB estimates and the 

variability of the RapidEye predictor variables are more complex. This study also showed that 

the plot perimeter lengths were significantly correlated with the model RMSEr, as well as the 

model relative maximum residuals. These correlations were slightly higher than those between 

the plot sizes and the model RMSEr and the model relative maximum residuals. However, the 

AGB estimations with integration of RapidEye data showed a higher relative efficiency of 3.4 

when compared to the one derived from the field-data only.  
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Zusammenfassung 

Die globalen Auswirkungen der Treibhausgasemissionen aus Abholzung und Schädigung von 

Wäldern auf den Klimawandel haben die internationale Besorgnis erhöht. Eine geschätzte 

Menge von 296 Gt Kohlenstoff ist in der ober- und unterirdischen Biomasse der globalen 

Wälder gespeichert. Das entspricht fast der Hälfte des gesamten in Wäldern gespeicherten 

Kohlenstoffs. Wenn Wälder verbrannt, abgebaut oder abgeholzt werden, wird der gespeicherte 

Kohlenstoff als Kohlenstoffdioxid (CO2) wieder in die Atmosphäre freigesetzt. In den letzten 

25 Jahren wurde die Menge des in Waldbiomasse gespeicherten Kohlenstoffs weltweit mit 

einer jährlichen Rate von etwa 0,44 Gt, oder entsprechend 1,6 Gt CO2, reduziert. Der größte 

Teil der Verluste ereignete sich in den tropischen Wäldern, wobei diese etwa 40 % des 

globalen terrestrischen Kohlenstoffs speichern. Dieses Problem führte zu einer Einigung über 

ein Schema im Forstsektor zur Verringerung der Kohlenstoffemissionen aus Entwaldung und 

Walddegradation und zur Erhaltung, Verbesserung und nachhaltigen Bewirtschaftung der 

Kohlenstoffbestände in Wäldern, das als REDD+ bezeichnet wird. Die Grundidee dieses 

Systems besteht darin, dass die Industrieländer waldreiche Entwicklungsländer als 

Gegenleistung für den Erhalt des Kohlenstoffs in ihren Wäldern entschädigen und gleichzeitig 

die notwendige wirtschaftliche Entwicklung ermöglichen. 

Die Umsetzung des REDD+-Schemas erfordert den Entwurf eines Systems zur Messung, 

Berichterstattung und Verifizierung, und auch eine Business-as-usual Baseline, woran die 

CO2-Emissionsreduktionen eines Landes gemessen und verglichen werden kann. Daher sind 

Informationen über die Menge an Forstbiomasse und den Waldkohlenstoffbestand 

unerlässlich. Die Informationen können verwendet werden, um die Menge an Kohlenstoff zu 

ermitteln, die bei der Verbrennung oder Zerstörung des Waldes potenziell in die Atmosphäre 

abgegeben wird. Die Informationen sind aber auch nützlich für Interessengruppen der 

Forstplanung, -bewirtschaftung und -schutz sowie der Politikgestaltung. Die Kombination aus 

Fernerkundungs- und Felddaten ist anerkannt, um die Effizienz bei der Erfassung dieser 

Informationen zu erhöhen, verglichen mit derjenigen, die nur aus Felddaten gewonnen wird. 

Die Verknüpfung von Fernerkundungs- und Felddaten ermöglicht auch die großflächige Wall-

to-Wall-Kartierung von oberirdischer Biomasse (above-ground biomass, AGB). Um jedoch 

gute Ergebnisse zu erzielen, erfordert die Verknüpfung die Kompatibilität beider Datensätze. 

Diese Studie wurde im tropischen Tiefland-Torfgebiet in Sebangau in der Provinz Zentral-

Kalimantan, Indonesien, durchgeführt. Der Torf in diesem Gebiet wird seit Jahrtausenden 

angebaut. Die Waldflächen einschließlich der darunter liegenden dicken Torfschichten spielen 

eine wichtige Rolle als terrestrische Kohlenstoffspeicher. Dennoch hat der jahrzehntelange 
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Druck auf das Gebiet dazu geführt, dass ein großer Teil dieser Torfmoore heute verheert und 

durch Brände gefährdet ist. Ein Teil der verbliebenen Wälder, die auch bei den Waldbränden 

in Indonesien zerstört wurden, trug zu mehr Kohlenstoffemissionen in die Atmosphäre bei. 

Diese Studie soll zur methodischen Grundlage der Kombination von Feldinventur und 

optischen RapidEye-Daten mit einer relativ hohen räumlichen Auflösung zur Wald-AGB-

Schätzung am Beispiel des tropischen Torf-Sumpfwaldes von Sebangau beitragen. Es wurden 

drei Teilstudien zu angrenzenden Themen durchgeführt: (i) der Effekt der eingeschränkten 

Sichtbarkeit im Wald in den Grundflächenschätzungen aus Winkelzählprobeflächen; (ii) die 

Kombination aus Feldinventur und optischen RapidEye Daten für das AGB-Schätzmodell; 

und (iii) der Effekt verschiedener Plotgrößen in den AGB-Schätzmodellen, die aus Feld- und 

RapidEye Daten abgeleitet sind. 

Probeflächen mit fester Größe und Winkelzählprobeflächen sind die am häufigsten 

verwendeten Plotdesigns in der Waldinventur. Die Winkelzählprobe ist bekannt dafür, dass sie 

aufgrund ihrer schnellen Anwendung im Feld eine effiziente Methode zur Schätzung der 

Grundfläche ist. Diese Schätzung ist jedoch eher sensibel gegenüber falsch gezählten Bäumen. 

In dieser Arbeit wird analysiert, wie sich die Sichtverhältnisse im Wald von Sebangau auf die 

Grundflächenschätzung aus der Winkelzählprobe auswirken. Basierend auf Feldmessungen 

und Simulationsstudien auf einem 1 ha großen Plot mit kompletten Baummessungen wurde in 

dieser Studie die maximale Sichtweite des Waldes und der geeignete Grundflächenfaktor 

ermittelt, der unter diesen Sichtverhältnissen anzuwenden ist. Diese Studie ermittelte eine 

maximale Sichtweite von 6,6 m und empfiehlt, einen Grundflächenfaktor von 5 für die 

Implementierung der Winkelzählprobenmethode im Sebangauer Wald zu verwenden, um den 

Effekt der Sichtverhältnisse auf die Schätzung zu reduzieren. Die Auswirkungen der 

eingeschränkten Sicht in Sebangau wurden anhand von Waldinventurdaten weiter analysiert. 

Zum Vergleich dazu wurde auch ein Datensatz aus einem offenen Savannenwald von Ncaute, 

Namibia, mit nahezu keiner Sichteinschränkung verwendet. Die Analysen wurden sowohl für 

den Ansatz der Festflächen als auch für den Ansatz der Winkelzählprobenplots durchgeführt. 

Die Ergebnisse zeigen, dass es ein Sichtbarkeitsproblem bei der Schätzung der Grundfläche 

mit der Winkelzählmethode im Sebangauer Wald gibt, während sie im Ncaute-Wald nicht 

vorkommt. 

Für die zweite Teilstudie wurden die Feldplots des Sebangauer Torf-Sumpfwaldes mit den aus 

den RapidEye-Daten abgeleiteten Prädiktorvariablen kombiniert, um ein AGB-Schätzmodell 

durch schrittweise multiple lineare Regression aufzubauen. Zum besseren Verständnis wurden 

in der Studie auch zwei verschiedene Inventurdatensätze aus einem gemäßigten Wald im 
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Hainich, Deutschland, verwendet. Die Beziehungen zwischen der feldbeobachteten AGB und 

den aus den RapidEye-Daten abgeleiteten Prädiktorvariablen, sowie die Performance jedes 

AGB-Modells aus verschiedenen Waldtypen mit unterschiedlichen Datensätzen, wurden 

analysiert. Die Ergebnisse der Studie zeigen, dass im Allgemeinen die Pearson-

Korrelationskoeffizienten r der feldbeobachteten AGB-Schätzungen und der RapidEye-

Prädiktoren schwach sind für jeden Datensatz. Die daraus resultierende Performance der 

AGB-Modelle war ebenfalls schwach, was durch einige gängige Indikatoren wie Adj R2 und 

RMSEr bestätigt ist. Das AGB-Modell für den Hainicher Wald, das aus einem Datensatz mit 

größerer Plotgröße abgeleitet wurde, zeigte eine bessere Performance als andere AGB-

Modelle mit einem Adj R2 von 0,65 und einem RMSEr von 10,26%. Die Feldplots in dieser 

Studie wurden nach dem Konzept der Wahrscheinlichkeitsstichprobe erstellt, und die 

modellgestützten Schätzer wurden zur Schätzung der AGB verwendet. 

In der dritten Teilstudie wurden die Auswirkungen unterschiedlicher Plotgrößen im 

resultierenden AGB-Modell anhand von drei verschiedenen Szenarien analysiert. Im ersten 

Szenario wurde immer das gleiche Modell verwendet, um die AGB des gleichen Gebietes mit 

unterschiedlichen Feldplotgrößen zu schätzen. Im zweiten und dritten Szenario konnten 

verschiedene Prädiktoren im Modell verschiedener Plotgrößen ausgewählt werden. Mit Hilfe 

dieser Modelle verschiedener Prädiktoren wurde die AGB des Untersuchungsgebietes 

geschätzt. Die Ergebnisse des ersten Szenarios zeigten deutlich eine abnehmende Performance 

des AGB-Modells bei abnehmender Plotgröße. Aus dem zweiten und dritten Szenario wurde 

ein abnehmendes Muster der Modellvorhersageleistung (RMSEr) durch die Verkleinerung der 

Plotgröße festgestellt. Dieses Muster wurde nicht im Modell-Adj R2 gefunden. Vielmehr 

zeigten die Ergebnisse, dass die Zusammenhänge zwischen der Variabilität der feldbasierten 

AGB-Schätzungen und der Variabilität der RapidEye Prädiktorvariablen komplexer sind. 

Diese Arbeit zeigte auch, dass die Längen der Plotperimeter signifikant mit dem Modell 

RMSEr und mit den relativen maximalen Residuen des Modells korreliert sind. Diese 

signifikanten Korrelationen waren etwas höher als die zwischen den Plotgrößen und dem 

Modell- RMSEr und den relativen maximalen Residuen des Modells. Die AGB-Schätzungen 

mit Integration von RapidEye-Daten zeigten jedoch eine höhere relative Effizienz von 3,4 im 

Vergleich zu derjenigen, die nur aus den Felddaten abgeleitet wurde.  
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Chapter 1 

Introduction 

1.1. Carbon emission from forests and peatlands 

Forests cover about 31 percent of the total global land surface and, provide a large habitat for 

terrestrial biodiversity (FAO, 2010), ecosystem services for local and global communities, and 

protection of land and water resources (Krieger, 2001). Through the processes of 

evapotranspiration, respiration, and photosynthesis, forests play a crucial role in global water 

and carbon cycles (Bonan, 2008). By absorbing carbon dioxide (CO2) from the atmosphere 

and storing this carbon, forests act as carbon sinks and contribute to the mitigation of climate 

change. The sequestered carbon is accumulated in the form of forest living biomass, dead 

wood, litter, and forest soil. An estimated amount of 296 Gt of carbon is stored in the above- 

and below-ground biomass of global forests, which is almost half of the total carbon stored in 

all forests worldwide (FAO, 2016). 

When forests are burned, degraded, or deforested, the stored carbon is potentially released 

back into the atmosphere as CO2. In this way, the forests are functioning as a source of carbon. 

The amount of global carbon stocks in forest biomass has decreased by nearly 11 Gt in the last 

25 years. The decrease in forest carbon stocks was equivalent to 0.44 Gt year-1, or about 1.6 Gt 

year-1 of CO2 (FAO, 2016). Among the main reasons for the decreased carbon stocks were the 

conversion of forest lands for other land uses, predominantly as agriculture fields and 

settlements, or exploitation for timber. In 2014, the Intergovernmental Panel on Climate 

Change (IPCC) indicated that the combined sectors of agriculture, forestry and other land uses 

are the second largest source of Green House Gas (GHG) emissions after energy production. 

Forestry and land uses alone were reported to account globally to nearly 12% of the 

anthropogenic CO2 emissions over the period of 2000-2009 (IPCC, 2014). 

1. Most of the global forest loss occurs in tropical forests. These losses are significant 

since tropical forests account for 40% of the total carbon stored in the terrestrial 

biosphere (Meister et al, 2012). During the period from 1990-2015, great losses of 

carbon stocks in forest biomass occurred in Africa, South America, and South and 

Southeast Asia, including Indonesia (Fig. 1.1). The Indonesian tropical forest is the 
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third largest tropical rainforest in the world (Baccini et al., 2017). The forests are rich 

in biodiversity and store an enormous amount of carbon. Despite their importance, 

Indonesian forests have been under significant pressures for decades. Forests 

decreased from 118.5 Mha in 1990 to 91.0 Mha in 2015, with an annual deforestation 

rate of 1.1 Mha year-1 over the period 1990-2015 (FAO, 2015). From 2000 to 2010, 

deforestation in Indonesia, including peatland deforestation, was motivated mainly by 

agricultural expansion, particularly of crop and tree-pulp plantation development, 

forest fire, and peat fire (Verchot et al., 2010). In the year 2014, the Land Use, Land 

Use Change, and Forestry (LULUCF) together with peat fire in Indonesia, accounted 

for 53.1% of the total carbon emission of the country (Masripatin, 2017). 

 

 

Fig. 1.1. Change of carbon stock in forest biomass 1990-2015 (FAO, 2016). Negative changes 

are net losses whereas positive changes are net gains. 

 

Indonesia comprises the largest area of peat within Southeast Asia (Page et al., 2011). The 

peatlands contain an estimated total carbon stock of 74 Gt, out of which 19 Gt is stored 

aboveground in forests and 55 Gt belowground in peat deposits (Baccini et al., 2012; Jaenicke 

et al., 2008; Page et al., 2011). The peatlands are mostly covered by forests and are distributed 

predominantly in the three largest islands of Indonesia: Sumatera, Kalimantan, and Papua 

(Page et al., 2011). Essentially, peat is partially decayed organic material. In peatlands, the 

decaying of organic material is inhibited by acidic and anaerobic conditions. Since the annual 

rate of organic matter production is higher than the rate of decomposition, peat has been 

accumulating over thousands of years, although at a very slow pace. In general, peatlands 
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sequester a large portion of CO2 and produce methane (CH4) and nitrous oxide (NO2), among 

other GHGs. Therefore, peatlands are either carbon sinks or sources, varying over time 

according to changing environmental conditions and the level of human disturbance (Strack, 

2008). The carbon balances of peatlands may be altered by various circumstances including 

drainage, fire, and land clearance through deforestation for logging or agricultural conversion. 

When the peat is drained, the organic carbon is exposed to the air and turns into CO2 by 

reacting with oxygen, which is released to the atmosphere (IPCC, 2014). The dry surface of 

the drained peat is then also susceptible to fire. In the last few decades, Indonesian forested 

peatlands have experienced frequent fires that have led to the reduction of their carbon stores 

(Hooijer et al., 2010, 2006; Page et al., 2002), e.g. fires in 1997, 2002, 2006, 2009, 2013, 

2014, 2015 (Page and Hooijer, 2016). Peat fires cause the release of a significant amount of 

carbon to the atmosphere. The smoke from peat fires blankets large areas, causing social 

economic losses and directly affecting the lives of the people in their daily routine (Page and 

Hooijer, 2016). Regarding land clearance, removal of above-ground vegetation on peatland 

reduces the capacity of sequestration of the CO2 released from the peat. Apart from their 

carbon-related functions, peatlands also play an essential role in the regulation of water flow, 

in the control of erosion and floods, in stabilizing micro- and macro-climates, and in providing 

forest resources and habitats for flora and fauna, some of which are endemic to these 

ecosystems (Strack, 2008). 

 

1.2. International concern on carbon emissions from forestry sector 

Growing awareness among international communities on the importance of forests in the 

global carbon cycle has increased concerns on the negative impact of GHG emissions from 

deforestation and forest degradation on climate change. Deforestation causes the loss of forest 

biomass as well as habitat and species loss and general environmental degradation. 

Disturbances on forests also negatively influence the capacity of carbon sequestration 

(Houghton, 1991). 

In December 2007, the 13th Conference of the Parties (COP) of the United Nations Framework 

Convention on Climate Change (UNFCCC), held in Bali, came to an agreement within the 

forestry sector to reduce GHG emissions from deforestation and forest degradation and to 

conserve, enhance, and sustainably manage forest carbon stocks. This agreed upon scheme is 

referred to as the REDD+ activities. The basic idea of the scheme is for developed countries to 

compensate forest-rich developing countries in return for reducing their carbon emissions 

from forests (Cronin and Santoso, 2010). The December 2015 Paris COP encourages the 
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parties to continuously move towards the implementation of the REDD+ scheme, as written in 

the article 5.2 of the Paris Agreement, thereby undertaking ambitious efforts to combat climate 

change and to adapt to its effects. Furthermore, the Paris Agreement encourages developed 

countries to enhance support and assistance for developing countries to reach the stipulated 

targets. In this regard, all parties are required to put forward their climate actions plans 

intended for the period after 2020 into the so-called nationally determined contributions 

(NDCs) (article 4.2 of the Paris Agreement). 

However, the implementation of the REDD+ scheme is not as simple as it sounds. It needs the 

outline of a system for measurement, reporting, and verification (MRV) as well as Business as 

Usual (BAU) baselines, against which reductions can be measured. In paragraph 71 of 

Decision 1/CP.16 of the Cancun agreement, the developing countries that aim to participate in 

the REDD+ are requested to develop the following elements: (i) REDD+ National Strategy or 

Action Plan, (ii) Forest Reference Emission Level/Forest Reference Level (FREL/FRL), (iii) 

A robust and transparent National Forest Monitoring System (NFMS), (iv) Safeguards 

Information System. To provide transparent, consistent, and reliable information, the 

UNFCCC encourages the Convention’s Parties to use the guideline developed by the IPCC as 

the methodological basis for estimating and reporting the GHG emissions and removals of 

their country (UNFCCC, 2009). The approaches to obtain information on carbon stock 

changes were classified into three levels of details, so-called tiers. The accuracy of the 

estimates increases with the increase of each tier, as well as the data requirements and 

analytical complexity. 

The development of the REDD+ elements mandates improvement in forest carbon stock 

estimation and forest resource monitoring methods. There are five carbon pools in which 

changes in ecosystem carbon stocks are to be monitored and reported: above-ground carbon 

(AGC), below-ground carbon (BGC), litter, dead wood, and soil (UNFCCC, 2009). The AGC, 

together with BGC, holds the most significant part of carbon at about 58%, while 

approximately 41% and 1% are stored in the soil and as litter, respectively (Meister et al., 

2012). 

 

1.3. REDD+ in Indonesia: International commitment to national actions 

Indonesia is a continuous participant in international climate change mitigation activities, both 

through advocating on behalf of the global community and through being aware that the 

country itself is vulnerable to the adverse impacts of climate change (PEACE, 2007). The 
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country signed the UNFCCC at the Earth Summit held in Rio de Janeiro in 1992 and ratified 

the Convention in 1994 when it came into force. During the G-20 Pittsburg meeting on 

September 2009, the government of Indonesia pledged to reduce the country’s GHG emission 

by 26% unconditionally under the BAU scenario by year 2020, or by 41% with international 

support. 

Following the 2009 commitment, the government of Indonesia is progressively formulating 

the legal and policy instruments to reach the target. The same target was stipulated in the 

Presidential Regulation (PERPRES) No. 61/2011, on the National Action Plan on GHG 

Emissions Reduction by 2020, both unconditionally and with international support. The 

government also published the Presidential Regulation No. 71/2011 on the national GHG 

inventory guidance. To reduce the emissions from the land use sector, a moratorium on 

primary forest clearance and peatland conversion was first declared in 2011 under the 

Presidential Instruction (INPRES No.10/2011) and has since been renewed every two years 

(INPRES No. 6/2013, No. 8/2015, No. 6/2017). This moratorium policy aims to halt the new 

concession on primary forests and peatlands, with some exemptions on the following 

conditions: (i) if the permit of the new concession was already issued, (ii) if the area is 

required to support the national priorities program including geothermal, oil and gas, 

electricity, rice and sugarcane, (iii) if the ongoing concession extends their permit before it is 

terminated, and (iv) if the area is used for ecosystem restoration. Moreover, and due to the fact 

that palm oil is among the major causes for deforestation in Indonesia (Austin et al., 2017), the 

government recently signed a moratorium to halt the issuance of new permits for palm oil 

plantations and call for a review of existing palm oil plantations for the next three years, 

starting from September 19, 2018 (INPRES No. 8/2018). Another relevant Government 

Regulation (PP) was the PP No. 71/2014 on the protection and management of peat 

ecosystems and was revised in 2016 (PP No. 57/2016) to strengthen the effort for protecting 

and managing peatlands in a sustainable way, including restoration of degraded peatlands. 

In January 2016, Indonesia submitted their forest reference emission level (FREL) for REDD+ 

to the UNFCCC Secretariat. The IPCC Guideline 2006 was used as general reference for 

measuring the emissions from deforestation, forest degradation, and peat decomposition. The 

FREL was calculated according to the tier 2 approach, where the country-specific emission 

factors and other parameters were applied using the reference period of 1990-2012. Based on 

the result, the Indonesian FREL from deforestation, forest degradation, and the associated peat 

decomposition was set at 0.568 Gt equivalent CO2 year-1 for the reference period of 1990-2012 
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(MoEF, 2016). The value was taken as the reference point against the actual carbon emission 

rate per year starting from 2013 to 2020 of the commitment period. 

In the FREL document, some opportunities to improve the current estimates using the results 

from the on-going initiatives, previously unused in the development of FREL, were also 

mentioned. For example, to increase the availability of field data used in determining forest 

emission factors, one option is to include data from permanent research plots by Forest 

Research and Development Agency (FORDA) in addition to the national forest inventory 

(NFI) data. The permanent research plots were established since 2011 in 13 provinces. The 

plot design followed the Indonesian National Standard for ground-based forest carbon 

accounting (SNI 7724: 2011) with a square plot of 20 m x 20 m size. In future, they are 

expected to compliment 4450 NFI plots collected across the country within the period of 

1990-2013 (MoEF, 2016). The Indonesian NFI was initiated by the Ministry of Forestry and 

started in 1989. Each sample in the Indonesian NFI design consisted of a cluster with nine 

sub-plots of 100 m x 100 m size, out of which only one sub-plot is permanent. The other sub-

plots are temporary, where the angle count plot approach is implemented to collect data. This 

NFI project was supported by the Food and Agriculture Organization (FAO) of the United 

Nations and the World Bank and is now financed from the national budget. The other option is 

to improve the NFI data through enhancement of measurement precision and validation of 

current plots. Regarding improvement of the activity data, the potential use of higher 

resolution imagery other than Landsat will be explored. To achieve this, coordination with 

Indonesia’s Aeronautics and Space Agency (LAPAN) is required for the provision of high 

resolution satellite imagery. The use of digital image classification, instead of the time-

consuming visual interpretation methods, will also be examined. 

Following up with the country’s commitments, Indonesia submitted their first NDC to the 

UNFCCC in November 2016. In this NDC, Indonesia committed to unconditionally reducing 

the country’s GHG emission by 29% below the BAU scenario by 2030, or by 41% below the 

BAU level with international support. 

 

1.4. Estimating forest carbon/forest biomass 

Biomass is commonly used as a proxy to estimate the amount of carbon preserved in forests 

(Meister et al., 2012), assuming dry biomass has a 50% carbon content (Goetz et al., 2009). 

The major focus is above-ground biomass (AGB), while below-ground biomass is usually 

modelled from AGB with conversion factors. AGB of a tree can be estimated through 
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destructive or non-destructive approaches (Köhl et al., 2006). In the destructive approach, the 

tree is harvested, cut down, dried, and weighed. This direct assessment of biomass produces an 

accurate measurement of AGB but is impractical for extensive forest inventories as it is often 

time-consuming and expensive. Therefore, the non-destructive approach is frequently used, in 

which the tree AGB is estimated using a selected empirical allometric model of some easier-

to-measure variables (Brown, 1997). An allometric model is built through a destructive 

sampling of sample trees. These sample trees should be selected in a way that they are able to 

represent the population of interest in terms of DBH ranges, tree species, and soil conditions 

(Köhl et al., 2006). Many allometric models have been developed for different applications, 

forest types, and site conditions. The standard predictor variable is the tree diameter at breast 

height (DBH) or a combination of the tree variables, such as DBH and tree height (H) or DBH, 

H, and wood density (WD). AGB estimation using an allometric model including only DBH 

often captures most of the variability (Albert et al., 2014). However, incorporating additional 

predictor variables may increase the predictive performance of the model. 

The most accurate method for estimating forest AGB over large areas is through sample-based 

forest inventory (Zhang et al., 2012). Based on the field inventory data and the selected 

allometric model, the estimated AGB at plot level is extrapolated to larger areas (Chave et al., 

2005). However, collection of field data requires much effort, particularly in remote and 

highly inaccessible forests. To combat these difficulties, remote sensing data are found to be 

useful to retrieve information with less effort and time, repeatedly. But then, AGB estimation 

from remote sensing alone is hardly feasible. Field data are still needed to establish or to 

calibrate the corresponding AGB estimation model. The integration of field inventory and 

remote sensing data has been proven to be suitable to make a wall-to-wall AGB estimate over 

large areas in a more efficient and realistic manner (Tomppo et al., 2008). In this approach, the 

remote sensing response signals are combined with the field-based AGB estimates from the 

field inventory plots to develop an AGB estimation model. 

Other studies use basal area to estimate biomass (Suganuma et al., 2006; Torres and Lovett, 

2012). Basal area is a good predictor of biomass since both variables are proportional to trunk 

diameter. The study of Suganuma et al. (2006) found basal area, rather than the canopy cover 

or leaf area index, to be the best predictor for estimating biomass in open dry forests. In 

addition, basal area can be rapidly estimated using Bitterlich sampling, also known as angle 

count sampling (ACS). While implementation of ACS is often very simple, it requires a clear 

visibility of the trees, which cannot always be attained, particularly in a closed and complex 

forest structures. 
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1.5. Remote sensing for estimating forest biomass 

A long history exists on the use of remote sensing to gather information for forest assessments, 

such as the spatial extent of forest cover, forest type, and biophysical and biochemical 

conditions at a particular site (Boyd and Danson, 2005). In line with the increased interests in 

quantifying forest carbon and biomass, remote sensing data across various platforms (airborne 

and spaceborne), sensors (optical, radar, and LiDAR), and sources of electromagnetic energy 

(passive, active) have been studied to enhance the estimation of forest AGB derived from field 

observations. Each sensor type and platform has its own characteristics and limitations. 

Passive optical sensors use the electromagnetic energy emitted from the sun to provide 

information on vegetation. The sensors usually cover parts of the electromagnetic spectrum 

from visible to infrared (400-2500 nm). The information recorded by the sensor is the 

response signal from the interaction between the incident energy and vegetation canopy 

surfaces. These spectral responses depend on the sensitivity of the spectrum to the variation in 

the canopy structures associated with leaf structures, pigmentations, and moisture contents 

(Jones and Vaughan, 2010). Passive optical sensors include multispectral and hyperspectral 

instruments. A multispectral sensor usually has 4 to 8 bands, while a hyperspectral sensor 

consists of many narrow bands, which provide a continuous spectral response signal dataset 

(Fassnacht et al., 2016). The availability of hyperspectral data is still limited. The data is 

mainly available based on airborne platforms, thereby capturing small areas at high costs. On 

the other hand, multispectral optical data is available at various spatial resolutions from less 

than 1 m to more than 100 m, some of which can be acquired at relatively little or no cost. 

Optical remote sensing data quality depends on the received influences from atmospheric 

conditions at the time of acquisition, which poses a major problem, especially for its 

implementation in the tropics. In most cases, to get a clear optical image without clouds and 

haze is very challenging since there are locations where clouds are persistent throughout the 

entire year. The problem can be reduced with a higher temporal resolution system that allows 

acquiring images at a higher frequency.  

The use of multispectral data for developing AGB estimation models has been researched 

using different satellite data: IKONOS (Proisy et al., 2007), Quickbird (Fuchs et al., 2009), 

Worldview-2 (Mutanga et al., 2012), RapidEye (Pfeifer et al., 2016; Rana et al., 2013; Wallner 

et al., 2015), Sentinel-2 (Sibanda et al., 2015), Landsat (Lu, 2005; Lu et al., 2004; Wijaya et 
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al., 2010b), and MODIS (Anaya et al., 2009; Baccini et al., 2008; Gallaun et al., 2010). The 

studies report that this optical data can be used to provide information on the variability of 

horizontal vegetation structure but is limited for vertical structure. Since vertical structure 

information is important for biomass, relationship between the derived remote sensing 

variables and the field AGB estimates is limited in forests with high variability of stand 

structures. There are also studies that reported promising results on the use optical data of 

relatively high spatial resolution of ALOS AVNIR-2, WorldView-2, and IKONOS to estimate 

AGB, with a model fit (Adj R2) of 0.8 for forest in southeast coast of China, (Sarker and 

Nichol, 2011), 0.8 for forest in northeast Madagascar (Eckert, 2012), and 0.7 for oil palm 

plantation in Africa (Thenkabail et al., 2004), respectively. 

Besides its limitations, in comparison to other sensors, optical systems hold some advantages 

for use in forest AGB monitoring systems. The data are available for longer periods, at regular 

time intervals, at global and local scales, and in various spatial resolutions. Some of these data 

are available at a relatively low cost (e.g., RapidEye) or free of charge (e.g., Landsat and 

Sentinel-2). Advanced knowledge about data processing and analysis has been extended. Data 

processing tools are also available in commercial and in open source platforms. 

This study focuses on data derived from passive optical remote sensing. However, it is worth 

mentioning data from active remote sensors that generate their own energy. For example, 

radio detection and ranging (Radar) or synthetic aperture radar (SAR) and light detection and 

ranging (LiDAR) that are also used for estimating AGB. Due to its wavelength characteristics, 

radar data is not influenced by clouds and haze. With the ability to penetrate through the forest 

canopy, radar data is expected to capture information on vertical vegetation structures. 

However, radar backscatter also saturates in forests with complex structures and high biomass 

density (Zolkos et al., 2013). It is also difficult to distinguish between vegetation types and 

speckles in radar data (Lu et al., 2014), which presents a major issue for forest AGB 

estimation. In comparison to optical data, the availability of radar data is still limited and 

costly (Joshi et al., 2015). Compared to optical and radar data, LiDAR has been found to be a 

promising tool for an accurate estimate of AGB with much higher saturation values (Næsset et 

al., 2016, 2015; Urbazaev et al., 2018; Zolkos et al., 2013). LiDAR has the ability to sample 

the vertical distribution of canopy and ground surfaces, providing detailed structural 

information on the target vegetation, whereas more accurate estimations of basal area, crown 

size, tree height and stem volume can be expected (Lu et al., 2014). However, LiDAR data 

usually covers only small areas and application of LiDAR for wall-to-wall AGB estimation 

over large areas is still cost-prohibitive (Pfeifer et al., 2016; Saarela et al., 2015). 
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1.6. Background of the study 

 The DFG Project (KL/894/17) of Kalimantan 

This study was part of the research project “Development of an integrated forest carbon 

monitoring system with field sampling and remote sensing” funded by the Deutsche 

Forschungsgemeinschaft (DFG) under the Project number KL894/17. In this project, the Chair 

of Forest Inventory and Remote Sensing, Georg-August-Universität Göttingen, was 

collaborating with the GeoBio Center, Ludwigs-Maximilians-Universität München, Germany, 

and the Center for International Cooperation in Sustainable Management of Tropical Peatland 

(CIMTROP) at the University of Palangka Raya, Indonesia. The project aimed to contribute to 

a methodological improvement of forest carbon monitoring systems in tropical peat forests by 

integrating sample-based forest inventory and remote sensing data to develop biomass 

estimation model. 

The DFG project took place on a logged-over secondary forest of lowland tropical peat-

swamp forests in the Province of Central Kalimantan, Indonesia. In this region, a large part of 

the forests had been under logging concessions intensively starting from 1970s (Sorensen, 

1993). In the late 1990s, about 1 million ha of forests in this region was designated to be 

converted into farmland under the Mega Rice Project (MRP). The project was initiated by the 

Indonesian government (Hirano et al., 2012; Page et al., 2002) and aimed to achieve national 

self-sufficiency in rice production. To support the program, large parts of the peat-swamp 

forests were cleared, and canals up to 30 m width with an approximate length of 4000-4500 

km were constructed for the irrigation system (Jaenicke et al., 2008; Putra et al., 2008). The 

MRP project failed and terminated in 1999. Among the reasons of the project failure were the 

knowledge gaps on peatland ecosystem function, the hydrology of peatland, peat subsidence, 

and the effect of long term drainage on peatland (Osaki et al., 2016). The MRP project left the 

remaining forests and a large area of devastated peatland (Hirano et al., 2012) in a fire-

vulnerable state (Page et al., 2002). 

Knowing that the information on the AGB of the remaining peat-swamp forests was essential, 

the DFG project was conducted in this site. This information can be used to estimate the 

amount of potential carbon that could be emitted into the atmosphere due to such burning. 

This information will also support the commitment of the government of Indonesia to reduce 

their CO2 emissions from forests and peatlands by year 2020 and year 2030. 
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 Challenges 

Field observation using angle count plot method 

Fixed-area plots and angle count plots are the frequently used plot designs in forest inventories 

(Piqué et al., 2011; Scott, 1990). Plot designs define the rules of the inclusion of trees at a 

sample point. A sample plot with a complete measurement of trees is considered less efficient 

than that of nested sub-plots. In nested sub-plots, trees are sampled with unequal inclusion 

probabilities, depending on their dimension, e.g. larger trees have a higher probability to be 

sampled in the larger sub-plot than smaller trees in the smaller sub-plot. The idea of nested 

sub-plots was further developed by Bitterlich and was introduced as angle count sampling in 

the year 1948 (Bitterlich, 1984). The name “angle count sampling” comes from a fixed 

opening angle used in the device to define the sample trees. It is also known as point sampling, 

variable plot sampling, relascope sampling, or Bitterlich sampling. In a strict sense, it is more 

of a plot design method than a sampling design method and should therefore more correctly be 

called “angle count plot”. Hence, the term “angle count plot” (ACP) is used in this thesis, 

along with fixed-area plot (FAP). 

The ACP mechanism is simple: with a device that produces a defined opening angle, a 360-

degree sweep centered at the sample point is performed (Bitterlich, 1984). All trees that 

appear, at 1.3 m height, larger than this angle are counted as sample trees. The inclusion 

probability of a tree is then strictly proportional to the tree basal area (Grosenbaugh, 1958). 

Larger trees are included up to a larger distance, while smaller trees are only counted at closer 

distances. The opening angle defines the basal area factor (BAF), with which the number of 

counted trees is simply multiplied to produce a per-plot basal area estimate per hectare. If the 

opening angle matches the tree DBH, this tree is a border tree. To ascertain whether the tree 

should be counted or not, the DBH of the tree and its distance to the plot center needs to be 

measured. As this measurement is time-consuming, a standard approach is to count every 

second border tree or to count a border tree half. 

Due to the ease of implementation and considering that the inclusion probability of the tree is 

directly related to stand basal area, ACP is found to be an efficient method and is widely used 

in forest inventories (Piqué et al., 2011; Schreuder et al., 1992; Sukwong et al., 1971). Basal 

area, the sum of the cross-sectional area measured at breast height (commonly at 1.3 m) of all 

trees in a stand, is an important variable since it is closely related to stand volume (Hasenauer 

and Eastaugh, 2012; Scrinzi et al., 2015), biomass (Pérez-Cruzado et al., 2011), and carbon 

stock (Torres and Lovett, 2012). Earlier studies also used ACP to derive diversity indices 

(Motz et al., 2010; Sterba, 2008) or, in combination with remote sensing data, to feed 
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regionalized models of biomass (Englhart et al., 2012b, 2011; Jochem et al., 2011; Kronseder 

et al., 2012; Scrinzi et al., 2015) and timber volume (Scrinzi et al., 2015), for example. 

Among the relevant sources of measurement errors in ACP is limited stand visibility 

(Bitterlich, 1984; Ritter et al., 2013), especially in forests with dense undergrowth. Trees at 

relatively large distances are then hardly visible. Tree omission is a typical plot measurement 

error that also occurs in FAP. This issue is particularly relevant for ACP since it is usually 

concerned with larger trees that are further away from the plot center. Selection of a higher 

BAF, which correspond to a “smaller plot size”, can minimize this limited visibility problem. 

On the other hand, a higher BAF will typically lead to higher standard errors on the estimation 

(Becker and Nichols, 2011; Brooks, 2006). 

The selection of a suitable BAF depends on the visibility conditions. However, the distance of 

visibility of the forest is usually unknown. Selecting a suitable BAF also constitutes a typical 

optimization issue of balancing precision, the probability of measurement errors, and cost. 

Some general recommendations of a proper BAF are given by Bitterlich (1984): a BAF of 1 or 

2 is commonly used in temperate and boreal forests with good visibility, and a factor of up to 

9 is common in dense tropical rainforests with limited visibility. 

While this method is convenient and efficient for field data collection, its implementation 

(e.g., selection of a BAF) very much depends on the forest conditions. A number of studies 

have looked at the identification of a suitable BAF under different forest types (Becker and 

Nichols, 2011; Bitterlich, 1984; Brooks and McGill, 2004). But to the author’s knowledge, 

none of the studies have been conducted specifically on tropical peat-swamp forests or by 

explicitly using the distance of visibility in the forest as basic information in selecting a 

suitable BAF. Tropical peat-swamp forest is characterized with dense undergrowth vegetation, 

in which obtaining error-free observations from ACP poses an issue. Some studies that 

employed ACP in this forest type did not specify the BAF used for their study or only reported 

that it was “relascope sampling with a wide scale of BAF” (Englhart et al., 2012b, 2011; 

Kronseder et al., 2012). Therefore, this study was conducted to examine some of the 

remaining questions. For example: How to define the maximum distance of visibility for 

implementing ACP? What is the effect of restricted visibility in the estimation based on ACP? 

What is the suitable BAF for implementing ACP in a closed and dense forest and in an open 

forest? 
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Combining field sample plots and optical remote sensing data 

Remote sensing cannot directly measure forest AGB. Auxiliary information is usually 

extracted from data at an area where ground reference data is available, e.g., forest inventory 

sample plots. This auxiliary information is then used as potential predictor variables of AGB. 

They linked with the AGB estimates of the plot, based on field observation, to develop an 

AGB estimation model (Næsset et al., 2016). The AGB of the area of interest is estimated 

using the developed model. The combination of the two datasets allows mapping the AGB 

distribution of the entire area of interest since field sample plots alone do not describe the 

spatial distribution.  

To date, linking remote sensing predictor variables and field-observed AGB presents many 

challenges. Among the potential predictor variables of AGB derived from optical remote 

sensing data are the spectral signatures, vegetation indices, and texture features (Lu et al., 

2014; Sarker and Nichol, 2011). 

Much research on the use of optical remote sensing for AGB estimation has been conducted. 

This research reported various results on the relationships between remote sensing predictor 

variables and field-observed AGB, depending on the data and the selected approach, as well as 

the relevant forest characteristics. While a number of comparative studies on the remote 

sensing AGB estimation model using different sensors and approaches have been done, there 

are still limited studies comparing the relationships between the predictors and AGB in 

different forest characteristics, particularly in tropical peat-swamp forests. Some primary 

reasons for this limited research for this specific forest type are related to the difficult 

accessibility of the forest, restricted availability of cloud-free remote sensing data, as well as 

the complex stand structures and high diversity of tree species compositions. Therefore, 

research in comparing the relationships between the predictor variables from optical remote 

sensing data and the field-observed AGB of tropical peat-swamp forests and other forest types 

is needed.  

This study developed AGB models between field-observed AGB and RapidEye satellite data 

in a tropical peat-swamp forest and a temperate forest. The high spatial resolution of RapidEye 

data is expected to capture more of the AGB variabilities in the sample plots, which in turn 

may increase the relationships between the two variables. The relatively high temporal 

resolution of 5.5 days of RapidEye data is advantageous to reduce the issue of cloud cover in 

the tropics. The sensor also covers the portion of the red-edge band that is found to be more 

sensitive to vegetation conditions (Barnes et al., 2000; Gitelson and Merzlyak, 1994, 1997). It 

is expected that the vegetation indices developed by using the combination of red-edge and the 
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GLCM texture features derived from red-edge, will show higher relationships with AGB in 

both forests. Studies using RapidEye data to develop such an AGB estimation model have 

been conducted with promising results in tropical forests of Borneo Island (Englhart et al., 

2012a; Pfeifer et al., 2016), also in Miombo Woodlands, Tanzania.  

In the study of Næsset et al. (2016), model-assisted estimators were used in the estimations. 

Such estimators allow making inferences on the developed model. The requirement of using 

such estimators is the availability of the field sample plots based on the probability sampling 

approach, in which the model prediction is corrected using the deviation between the model 

prediction and the field reference (Saarela et al., 2015). By using the model-assisted approach, 

the efficiency of combining the remote sensing and the reference field data in the AGB 

estimation, relative to the estimation from field data alone, can be calculated. In the 

comparative study of Næsset et al. (2016), they reported a higher relative efficiency value 

from RapidEye of 3.3, than that of the (InSAR) TanDEM-X data. The study was conducted in 

the Miombo Woodland of Liwale, Tanzania, using cloud-free RapidEye imageries. More 

research is needed to study the efficiency from RapidEye-assisted estimates of mean AGB 

estimates in other forest types. 

Given these key advantages, this study was conducted to assess the applicability of RapidEye 

data for AGB estimations in two different forest types using the model-assisted estimators. 

 

Field plot size for AGB estimation using optical remote sensing data 

The estimated AGB of the area of interest depends on the ability of the model to relate the 

AGB estimates of the plot with the auxiliary information on the entire area of interest. In this 

regard, a perfect co-registration between the field sample plots and the remote sensing data is 

required to ensure accurate estimators of the target estimation (Saarela et al., 2016). This co-

registration effect is reported to be less in larger plots (Næsset et al., 2015). Comparing the 

advantages between small versus large plots, the use of larger plots increases the chance of 

getting more overlapped area between the two data (Gobakken and Næsset, 2008). As a plot 

gets larger, the field and the remote sensing data also cover more of the spatial variations, in 

which a decreasing model error is expected (Zolkos et al., 2013). A larger plot is also likely to 

reduce the effect from the boundary-related elements, as the ratio between perimeter to area is 

decreased. The ratio between perimeters to a given plot area also depends on the geometric 

shape of the plot. 
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When remote sensing data is to be included in the estimation of field data, the selection of the 

field plot size should also consider the variability of the variable of interest to be captured by 

the remotely sensed data. It is found to be necessary for the forest inventories design using 

remote sensing auxiliary dataset (Næsset et al., 2015; Tomppo et al., 2017). However, field 

data collection is costly. Finding an optimum plot size is always an issue, as well as 

determining an efficient method for fieldwork. There is always a trade-off in selecting a plot 

size; smaller plots with higher sample size, or larger plots with lower sample size to reach a 

certain precision of the target variable of interest. Larger plots tend to capture more of the 

variability within the plots and reduce the variance among plots. On the other hand, smaller 

plots tend to capture more of the variability across plots, which contribute to higher 

uncertainty of the estimation, depending also on the sample size. 

Despite its importance, there is not much research on the effect of different plot sizes and 

shapes in AGB model performances. There were some studies using LiDAR (Mauya et al., 

2015; Zolkos et al., 2013) and radar (Saatchi et al., 2011), but to the author’s knowledge, not 

for optical remote sensing data. This study was conducted to analyze the effect of different 

plot sizes and shapes on the AGB model performance derived from RapidEye data. As larger 

plot sizes always mean higher costs, the analyses of the gain that can be achieved by the 

inclusion of remote sensing data by enlarging the field observation plots needed to be 

calculated. This study calculated the gain in precision of the AGB estimate from the inclusion 

of RapidEye data and compared to the precision of the estimate derived from using the field 

data only. 

 

1.7. Objectives of the study 

 Overall objective 

The overall objective of this study is to contribute to the methodological basis of the 

integration of field inventory and optical remote sensing data of high spatial resolution for 

forest AGB estimation. 

 

 Specific objectives and research questions 

Based on the overall objective, the study focuses on three relevant research topics as sub-

studies (Fig. 1.2); (i) research into the effect of forest restricted visibility in the basal area 

estimates from Angle Count Plot (ACP); (ii) research into the integration of field inventory 
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and optical RapidEye data for AGB estimation model; and (iii) research into the effect of field 

plot sizes on the AGB estimation model derived from field inventory and RapidEye data. Each 

of the sub-studies aims to contribute to the methodological development of forest AGB 

estimation, whereas in the sub-studies (ii) and (iii), the AGB estimations were derived by 

combining field and remote sensing data. 

 

 

Fig. 1.2. Contribution of the study to forest above-ground biomass (AGB) estimation using the 

field observation and the remote sensing data. BA = basal area, ACP = angle count plot, and 

RS = remote sensing. 

 

Each sub-study deals with a specific objective and the following research questions. 

1. Determining a distance of visibility and a suitable basal area factor to implement ACP. 

This sub-study contributes to the determination of basal area factor (BAF) based upon the 

given forest conditions when the ACP approach is employed for field data collection. Data 
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from two different forest types, a dense tropical peat-swamp forest of Sebangau and an open 

savanna forest of Ncaute, were used and compared for the study. 

To achieve the goal, some research questions were formulated: 

• How to define the distance of visibility for ACP? 

• How to determine a suitable BAF for ACP in a forest with a visibility issue? 

• What are the consequences for selecting a higher/lower BAF than the suitable one? 

• What is the effect of forest restricted visibility on basal area estimates from ACP? 

 

2: Developing and comparing the AGB estimation models using field inventory and optical 

RapidEye data in two different forest types. 

This sub-study was conducted to improve the understanding of the relationship between field 

AGB estimates and RapidEye derived predictors. By using the same approach, this study 

compares the results from two different forest types, a tropical peat-swamp forest of 

Sebangau, Indonesia, and a temperate forest of Hainich, Germany. Further comparison of the 

relationships between field AGB estimates and RapidEye predictors were based on two 

different field datasets, each with a different plot design, in the Hainich study site. 

For this sub-study, the following research questions will be addressed: 

• How are the relationships between field AGB estimates and predictor variables derived 

from RapidEye data in each dataset? 

• What is the AGB estimation model derived from each dataset, and how is the performance 

of each model? 

• What is the efficiency of the inclusion of RapidEye data in AGB estimation relative to the 

estimation from field data only, across the datasets? 

 

3: Determining the effect of different field plot sizes on the AGB models from field inventory 

and RapidEye data. 

This sub-study was conducted to improve the understanding on the effect of field plot sizes to 

the performance of AGB models derived from the field and the RapidEye data. The dataset of 

a large full census plot from a temperate forest was used to create different datasets of 

different plot sizes. 

 



Chapter 1. Introduction 
 

18 

 

For this specific objective, the following research questions are addressed: 

• What is the effect of different plot sizes on the field AGB estimates and the corresponding 

standard error? 

• What is the effect of different plot sizes and shapes on the performance of AGB estimation 

models derived from the field and RapidEye data? 

• What is the efficiency of the inclusion of RapidEye data in AGB estimation, relative to the 

estimation from field data only? 



 

Chapter 2 

Materials 

2.1. Study area and field inventory in the Sebangau 

 Description of study site 

The study was conducted in part of the Natural Laboratory of Peat-Swamp Forest (NLPF) of 

Sebangau, geographically located between 113° 46' to 114° 02' E and 2° 16' to 2° 31' S, 

Province of Central Kalimantan, Indonesia (Fig. 2.1). 

 

 

Fig. 2.1. The study area of Sebangau peat-swamp forest and surrounding lands. Background 

image is Landsat 5 imagery, acquired on 10th February 2010, presented in band combination of 

short-wave infrared, NIR, and red in the red-green-blue color composite (RGB 543). In 

addition, information on mean monthly rainfall (1981-2010) is given. 
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The lowland peat-swamp forests in the study area are situated on flat plains with an elevation 

of 10-30 m a.m.s.l. (Page et al., 1999), between the Sebangau and Katingan rivers of the 

southeastern part of Borneo Island (Fig. 2.1). In this region, the climate is characterized by 

tropical wet weather (Peel et al., 2007), with a mean annual rainfall (1981-2010) of 2600 mm 

(BMKG, 2014) and a mean annual air temperature (2002-2010) of 26.2°C (Hirano et al., 

2014). Most parts of the study area are peat-swamp forest with a high diversity of tree species 

(Page et al., 1999). The peat has taken more than 10,000 years to accumulate mass (Page et al., 

1999), with peat layers measuring up to 10 m (Jaenicke et al., 2008; Page et al., 1999). The 

forest was heavily logged for 25 years (Campbell, 2013) before it was transformed into the 

NLPF in 1997 for scientific research purposes under the management of the Center for 

International Co-operation in Management of Tropical Peatland (CIMTROP) of Palangka 

Raya University (Morrogh-Bernard, 2009). Fig. 2.2 shows the forest conditions during the 

fieldwork in 2013-2014. 

 

  

  

Fig. 2.2. (a) The abandoned railway previously constructed by concession loggers to access 

the forest. (b) The forest floor is waterlogged, seasonally flooded, or flooded along the year. 

The water is dark brown, indicating a high content of organic matter. (c) Trees with stilted 

roots as adaptation to wet environments. (d) Inside the Sebangau forest. 

(a) (b) 

(c) (d) 
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Given the unique ecosystem characteristics, including the diversity of flora and fauna, the 

forest became part of Sebangau National Park by a government decree in 2004 (Indonesia 

MoF, 2004). However, there is still illegal logging in parts of the forest, according to oral 

reports from the forest guards of CIMTROP. 

 

 Sampling and plot designs in the Sebangau 

 

Fig. 2.3. Three designs of data collection on the Sebangau study area; full census (FC) plot in 

yellow dots, large scale inventory (LSI) plots in red dots, and high intensity LiDAR (HIL) in 

blue dots. Two additional plots were added for each LSI plots located on the LiDAR sample 

(index). Background image is RapidEye imagery, acquired on 20th of September 2013, 

presented in band combination of red-edge, NIR, and red in the red-green-blue color 

composite (RGB 453). 

 

Fieldwork in Sebangau was carried out from July 2013 until June 2014. The field conditions 

were extremely challenging as this particular area of the forest is very difficult to access. 

Almost none of the remaining rail tracks from the era of the concession company were 

Additional plots 
on LiDAR stripes
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functional anymore (Fig. 2.2). The interior of the forest was only accessible by foot with an 

average walking speed of 2.5 km per day as it was experienced in this study. 

Three different sampling approaches guided by different project objectives were implemented 

independently to collect field data (Fig. 2.3). The three approaches were: (i) Large Scale 

Inventory (LSI) design over the entire study area (31,113 ha), (ii) High Intensity LiDAR (HIL) 

design over the LiDAR data covered area (869 ha). This HIL frame encompassed the largest 

patch of LiDAR data. It did not consider the other two LiDAR stripes of 5 and 15 km lengths 

located 25 km from each other. Notice that the LiDAR data were not part of these analyses, 

but rather the in-field data acquired within the LiDAR-based area frame were used. (iii) a Full 

Census (FC) design over one large observation plot (1.44 ha). In this one large plot, full 

enumeration was constructed to allow for simulation studies. Both the HIL and FC designs fell 

within the LSI frame (Fig. 2.3). 

The LSI and HIL plots were sampled probabilistically with systematic grids of 2500 m and 

500 m, respectively. The systematic design was selected for the uniform coverage of samples 

over the study area and for the generally higher effectiveness in comparison to the simple 

random sampling design with the same number of observation plots (Köhl et al., 2006; Van 

Laar and Akça, 2007). The grid sizes were determined considering both target precision and 

available resources. The resulting sample sizes of LSI and HIL for these grid sizes were n = 46 

and n = 35, respectively. The azimuth angle of the LSI grid was 57°, as defined by a random 

number. On the other hand, the HIL grid followed the orientation of the LiDAR polygon. In 

addition, n = 13 plots were taken to cover more observations on the LiDAR stripes. For each 

of the six LSI plots located on the southern LiDAR stripe, two additional plots were added. 

These 12 additional plots were located at 100 m distance from each side of the original plot 

and aligned with the LiDAR stripe (Fig. 2.3). Another plot was located on the northern LiDAR 

stripe, about 600 m below the LSI plot. The total number of LSI plots was n = 59 (Table 2.1). 

 

Table 2.1. Three sampling designs in Sebangau: Large Scale Inventory (LSI), High Intensity 

LiDAR (HIL), and Full Census (FC). In the LSI design, additional plots (n = 13) were taken to 

augment sample size used in LiDAR analysis (see details on the text). 

 

Variables HIL FC

Systematic Additional

Area (ha) 31,113 - 869 1.4

Grid size (m) 2,500 - 500 -

Sample size (n ) 46 13 35 1

LSI
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The LSI and the HIL shared the same plot design: a concentric design with three circular sub-

plots of radius 4, 8, and 16 m (50.3 m2, 201.1 m2, and 804.2 m2), as illustrated in Fig. 2.4.  

 

 

Fig. 2.4. The plot design of LSI (n = 59 plots) and HIL (n = 35 plots): concentric circular 

design with 3 nested sub-plots. 

 

A circular plot is generally preferred since only one control point, the center, is required to 

establish the plot in the field (McRoberts et al., 2013b). The concentric design was selected to 

obtain efficient field measurements. Small trees were measured in smaller sub-plots, while 

larger trees that contribute greatly to the total AGB estimates were measured in larger sub-

plots. In the smallest sub-plot, all trees with a DBH ≥ 5 cm were selected. Trees with a 

DBH ≥ 17 cm were selected in the medium sub-plot, while trees with a DBH ≥ 30 cm were 

selected in the largest sub-plot. The radius of each sub-plot, and the DBH thresholds for each 

sub-plot, were determined by the project using an approach given in APPENDIX A. 

The FC observation plot had a size of 120 m x 120 m, in which all trees with a DBH ≥ 5 cm 

were selected. For practical reasons in the field, such as visibility and measurement efficiency, 

the FC plot was divided into 64 quadrants of a 15 m x 15 m that were permanently marked 

with plastics pipes. A reference point was established in each quadrant. While the ideal 

position of the reference point was at the quadrant center, some centers were located in 

obstructed or inundated positions. In such cases, reference points were shifted to the nearest 

r = 4 cm

r = 8 cm

r = 16 cm

5 ≤ DBH < 17

17 ≤ DBH < 30

DBH ≥ 30
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feasible location in the vicinity of the obstructed or inundated position, rather than being in the 

center of the quadrant (Fig. 2.5). 

 

 

Fig. 2.5. Tree map of the FC plot, consisted of 64 quadrants of 15 m x 15 m size. The black 

dots are the quadrant-reference-points, from where: (i) the position of all trees in a quadrant 

was measured; (ii) basal area was estimated using the ACP of BAF 1, 2, and 4. The gray dots 

represent trees with a DBH ≥ 5 cm (z=3427); the size of each gray dot is proportional to the 

tree DBH. 

 

 Field measurements 

The field location of each LSI and HIL plots was found using a Garmin handheld GPS. Once 

the plot location was identified, final coordinates of the plots were recorded using long-term 

GPS measurements with an average maximum horizontal positioning error of 3 m. In each 

sub-plot, the following attributes were measured for each selected tree: DBH, tree position 

relative to the plot center (azimuth and horizontal distance), and local name. Measurements of 

height and crown-width were limited to ten trees per plot, making fieldwork more effective. 

These ten trees consisted of the six trees with the largest DBH and the four trees closest to 

Coordinate system :  UTM

Datum :  WGS 84

Zone :  49 S

Tree position

Quadrant-reference-point
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center of the plot. The crowns of the largest trees were expected to be more exposed and 

visible from above, thus easily detectable in remote sensing data. The four closest to the center 

were tagged to facilitate location of the plot during re-measurements. Basal area was estimated 

using ACP of BAF 1 from the plot center. To assess the effects of visibility on basal area 

estimates using ACP, some of the plots were re-assessed using BAF 2 and 4. The local tree 

names in the HIL and the LSI plots were recorded for the target trees that were selected 

according to the plot design. 

On the FC plot, all selected trees (DBH ≥ 5 cm) were tagged and measured for the same tree 

attributes mentioned above (DBH, tree position, local name, height, and crown width). The 

tree position was measured relative to the quadrant-reference point. ACP of BAF 1, 2, and 4 

was also performed from each of these reference points. In total, z = 3427 stems were recorded 

in the FC plot as shown in the trees map of Fig. 2.5. In a separate field study, the species name 

of each tree in FC plot was identified by a local botanist. The results were used to identify the 

species name of all trees in the Sebangau study area. In case of trees in which species name 

could not be identified, they were classified as not available (NA) tree species. 

The DBH of all trees in this study were measured at 1.3 m height with a diameter tape to the 

nearest millimeter. The definition of 1.3 m tree-height used in the fieldwork is given in 

APPENDIX B. The diameter of irregular stems, e.g. of a buttressed or a stilt-rooted tree, was 

measured above the stem irregularities as the diameter over deformation (DOD). The height 

where DOD was measured was also recorded. For the LSI and HIL plots, the relative tree 

position was recorded as the polar coordinates from the plot center. However, for the FC plot 

it was recorded from the quadrant-reference-point. Horizontal distance from the plot center, or 

from the quadrant-reference-point, to the tree was measured with a Vertex IV to the nearest 

centimeter. The azimuth was measured with a Suunto compass to the nearest sexagesimal 

degree. The tree height was measured with a Haglöf Vertex IV to the nearest decimeter. The 

ACP of BAF 1, 2, and 4 were carried out by using a Kramer Dendrometer (Kramer and Akça, 

1995). Following the general method of ACP, border trees were counted as half. 

In all designs, when a standing dead sample tree was encountered, only DBH and tree position 

were measured. General information about the fieldwork such as date and time, the plot site 

conditions including management level and crown closure, were also recorded. 
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2.2. Study area and field inventory data of Ncaute, Namibia 

 Description of study site 

 

 

Fig. 2.6. The map of Ncaute community forest and surrounding lands. The background image 

is Landsat 8 imagery, acquired on 16th October 2014, presented in band combination of short-

wave infrared, NIR, and red in the red-green-blue color composite (RGB 654). 

 

The Namibian study site is part of the Ncaute Community Forest, a dry open savanna forest. 

This study site was chosen in compliment to the Sebangau study site for a comparative study 

on the effect of forest visibility in basal area estimation using ACP. The forest is located in the 

West Kavango region, about 30 km in the south of the regional capital of Rundu (Fig. 2.6). 

The region is generally flat with an average altitude of 1100 m a.m.s.l. (Erkkilä and Siiskonen, 

1992). The study area is located geographically between 19° 45' to 19° 58' E and 18° 17' to 

18° 21' S. The area was declared as a community forest in 2006 (Namibia MoAWF, 2006) and 

classified as savanna forest on sandy soils (ferralic arenosols). The climate is characterized by 

an annual mean temperature between 20-22°C with annual average precipitation of 500-

550 mm according to (Mendelsohn et al., 2002). Fig. 2.7 shows the forest conditions during 

fieldwork. 
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Fig. 2.7. Trees in the Ncaute community forest. 

 

 Field measurements 

The field data were collected in September 2014 by a cooperation project between the 

University of Göttingen, Germany, the Stellenbosch University of South Africa, and the 

Polytechnic University of Namibia. In total, n=33 sample plots were measured for this study. 

Each plot consisted of three circular sub-plots of radius 10 m, 20 m, and 30 m (314.2 m2, 

1256.6 m2, and 2827.4 m2). Compared to the sub-plots in Sebangau, the size of sub-plots in 

Ncaute study were relatively large due to the low tree density of the forest. All trees with a 

DBH ≥ 5 cm were measured in the smallest sub-plot, while trees with a DBH ≥ 20 cm and 

trees with a DBH ≥ 45 cm were measured in the medium and largest sub-plots, respectively. 

Each selected tree was measured for the same attributes (DBH, tree position, and species) 

using the same devices and procedures as in Sebangau. As done in Sebangau, basal area was 

also estimated from ACP of BAF 1, 2, and 4 with the Kramer Dendrometer. 
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2.3. Study area and field inventory data of Hainich, Germany 

 Description of study site 

The Hainich study site is located in the Hainich-Dün region of western Thuringia, Central 

Germany. This study site was chosen together with the Sebangau study site for the 

development of an AGB estimation model from field and remote sensing data. Additionally, a 

dataset from this study site was also used to study the effect of different plot sizes in AGB 

model performances. Geographically, the site is situated in between 10° 16' to 10° 33' E and 

51° 01' to 51° 14' N (Fig. 2.8). The southern part of the forest belongs to the Hainich National 

Park as established by law in 1997 (Mölder et al., 2006), from a decommissioned military 

training area (Kharazipour et al., 2009). This deciduous temperate forest is dominated by 

beech (Fagus sylvatica) on mainly Luvisols and Stagnosols soil types (Fischer et al., 2010). 

The climate is characterized by an annual mean temperature between 6.5-7.5°C and annual 

average precipitation of about 750-800 mm (Birkhofer et al., 2012). Fig. 2.9 shows the 

Hainich forest conditions. 

 

 

Fig. 2.8. The map of Hainich forest study area and surrounding lands. Background image is 

Landsat 8 imagery, acquired on 1st October 2015, presented in band combination of short-

wave infrared, NIR, and red in the red-green-blue color composite (RGB 654). 

Thuringia

Hainich

Study area
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Fig. 2.9. Forest canopy and forest condition in the study area of Hainich forest. 

 

 Field measurements 

There were two field inventory datasets available for the Hainich study. One dataset referred 

to as experimental plots (EP), was collected under the framework of the Biodiversity 

Exploratories project and funded by the German Science Foundation (DFG) Priority 

Programme 1374 (Fischer et al., 2010). The selection of EPs was done according to Fischer et 

al. (2010) following a simple random sampling (SRS) design. The EPs have a size of 1 ha with 

a square shape of 100 m x 100 m, whereas all trees with a DBH ≥ 7 cm were measured (Table 

2.2). A total of n = 28 plots was collected from 2014 to 2015. 

Another dataset, so called the AWF plots (AWF), was designed and measured by the AWF 

department of Georg-August University Göttingen (GAUG) and the Hainich National Park 

Administration (HNPA). AWF plots sampled the Hainich study area in a systematic grid of 

800 m using different plot designs (Table 2.2). Different plot designs were used between the 

sample plots located inside the Hainich National Park, hereafter referred to as AWF-HNPA, 

and the plots located outside the national park, hereafter referred to as AWF-GAUG. To have 
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a comparable observation plots for the analysis, the AWF-HNPA plot design was adjusted to 

the plot design of AWF-GAUG. Thus, for each AWF-HNPA plot, all trees were excluded if 

they were located at a distance greater than 12.68 m from the plot center or they had a 

DBH < 30 cm at a distance further than 7.98 m from the plot center. Tree height was measured 

for approximately 5 trees per plot. The measurements were used to establish a height curve for 

predicting the heights of the non-height-measured trees. The AWF plots were measured during 

2011-2013 and were in total n = 177 plots. 

 

Table 2.2. Sampling and plot designs of the Hainich datasets. EP=Experimental Plot, GAUG= 

Georg-August University Göttingen, HNPA=Hainich National Park Administration, SRS*= 

Simple Random Sampling according to Fischer et al. (2010). 

  

 

2.4. Remotely sensed data 

 Characteristics of RapidEye sensor 

RapidEye imagery was used in two of the case studies: (i) development of an AGB estimation 

model from field and remote sensing data, and (ii) analysis of effects of plot sizes on AGB 

model performance. RapidEye is a German Earth observation satellite that was launched in 

August 2008 by the RapidEye AG and is currently owned and operated by Planet Labs, Inc. 

The RapidEye space system is a constellation of five satellites, orbiting at an altitude of 

630 km. Each of the satellites is equipped with identical sensors that are calibrated equally to 

Plot information EP

GAUG HNPA

Sampling design SRS* Systematic Systematic

Design grid size (m) - 800 800

Plot shape Square Concentric circular Concentric circular

Plot size (m
2
) 10000 - -

- sub-plot 1 - 200 200

- sub-plot 2 - 500 500

- sub-plot 3 - - 1,000

DBH  thresholds (cm) ≥   7 - -

- sub-plot 1 - ≥   7 ≥   7

- sub-plot 2 - ≥ 30 ≥ 25

- sub-plot 3 - - ≥ 50

Sample size (n ) 28 108 69

AWF
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each other (BlackBidge, 2015). The temporal resolution of each satellite for capturing the 

same location is 5.5 days. However, with a pointing capability up to ± 20º field in any 

direction of the observation camera, the sensor is able to make a daily acquisition of the same 

location. The original spatial resolution of the data is 6.5 m at nadir, which is resampled to 5 m 

in the orthorectified products. The data are collected in 12-bit radiometric resolution and 

converted to 16-bit during the on-ground processing (BlackBidge, 2015). 

The RapidEye sensor is a multi-spectral push-broom imager with five spectral bands ranging 

from Blue (B1: 440-510 nm), Green (B2: 520-590 nm), Red (B3: 630-685 nm), Red-edge (B4: 

690-730 nm), to Near-Infrared (NIR) (B5: 760-850 nm) as depicted in Fig. 2.10. RapidEye is 

the first commercial satellite system that included the red-edge band. While vegetation 

chlorophyll strongly absorbs the electromagnetic radiation (EMR) in the red band, leaf cell 

structures lead to strong reflectance in the NIR band. The red-edge band is located between the 

red and NIR bands. It is part of the spectrum where vegetation reflectance increases 

considerably from the red to the NIR wavelength. Additional sensitivity to detect different 

levels of vegetation chlorophyll content and leaf structure is expected from the red-edge 

reflectances (Barnes et al., 2000; Gitelson and Merzlyak, 1994, 1997). The variations shown 

by the red-edge region may provide additional information about the vegetation status, e.g., 

condition of health and nutrition (Armon and Hänninen, 2015; Eitel et al., 2011), useful for the 

characterization and separation of vegetation types. 

 

 

Fig. 2.10. Spectral characteristics of RapidEye images (BlackBridge, n.d.). 
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 Image availability 

For the Sebangau study site, a new acquisition of RapidEye data was requested from the 

RapidEye Science Archive (RESA) of the German National Aeronautics and Space Research 

Centre (DLR). The request was made for the time-series RapidEye ortho product of a 

processing level 3A (L3A), spanning from June 2013 to May 2014 with a time frame of 5 

days. The obtained L3A data was already orthorectified and radiometrically pre-processed. 

The obtained L3A data underwent two different calibration methods as the provider changed 

the calibration method starting from 24 January 2014. The geometric accuracy of the L3A 

product depends on the quality of the reference dataset (BlackBidge, 2015). Each tile 

represents an area of 25 km (5000 lines) by 25 km (5000 columns), with overlapping areas of 

500 m on all sides. However, due to the persistent cloud cover over the study area, only 26 

tiles were acquired during the requested period. Out of the 26 total tiles, 14 tiles were collected 

over the study area from different acquisition dates. Additionally, the received data spanned 

the two different calibration methods. Only three RapidEye tiles were needed to cover the 

Sebangau study area. These three images were acquired on September 20th, 2013 and were 

selected because they had the least percentage of clouds over the study area due to it being the 

dry season. The data were delivered with the same calibration method in UTM map projection 

for WGS 84 Datum Zone 49S. 

Additionally, RapidEye data of L3A product over the Hainich study site, Germany, were used 

in this study. The Hainich study area was covered by four RapidEye tiles. The images 

acquired on September 29th, 2011 with no cloud cover were then selected. The data were 

delivered in UTM map projection for WGS 84 Datum Zone 32 North.  



 

Chapter 3 

Methods 

3.1. The effect of forest restricted visibility on the basal area estimates from ACP in 

two different forest types of Sebangau and Ncaute 

 Estimation of the distance of visibility in Sebangau forest and simulation of ACP trees 

This study determined the distance of visibility for ACP in a dense peat-swamp forest with 

restricted visibility as one of the criteria to identify a suitable BAF that minimizes observation 

error as a function of ‘level of visibility’. The distance of visibility in this study characterized 

the distance to identify and count trees in the field using ACP. The complete field 

measurements of tree DBH and position in the FC plot enabled the development of the tree 

map shown in Fig. 2.5, and a simulation of the ACP trees in an experimental setting. 

Additionally, the study compared BA estimates derived from ACP and FAP in both the 

Sebangau forest (limited visibility) and the Ncaute forest (good visibility) to improve the 

understanding of visibility effects in forests with different structures. 

When simulating ACP trees, all reference points lying close to the plot border were excluded 

so as to avoid edge effects (Fig. 2.5). Thus, n = 37 out of 64 reference points were used. The 

distance of visibility was assessed for each reference point by assuming that the total number 

of trees counted (z) in the field using BAF = 1 were the z nearest trees to the reference point on 

the tree map, thereby assuming similar visibility in all directions. The distance between the 

reference point and the zth tree corresponded to the distance of visibility at that reference point. 

However, the “true” distance of visibility actually lies at an indeterminable point between the 

zth and the z+1th trees. In this study, the maximum distance of visibility for the entire FC plot 

was defined as the mean distance from all reference points (n = 37), taking into account the 

standard deviation of visibility distance from all reference points. 

In theory, a tree is counted into an ACP sample of a sample point if the sample point lies 

within the tree circular inclusion zone describing its probability of selection. All such trees are 

theoretically to be counted, hereafter referred to as theoretically-counted tree. To determine 

whether a sample point lay within the inclusion zone of a given tree, the radius of the circular 
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inclusion zone of the tree (Rt) and the horizontal distance of the tree from the sample point 

were compared. Rt was calculated as a factor of the employed BAF and the dimension of the 

tree (DBH) following (Bitterlich, 1984), 

𝑅𝑡 =
50

√𝐵𝐴𝐹
 ·  𝐷𝐵𝐻 

For each reference point, the theoretically-counted trees were simulated using different BAFs 

from 2 to 10, sequentially. The distance between the reference point and the zth theoretically-

counted tree corresponded to the required distance of visibility. Among these theoretically-

counted trees were trees located within the distance of visibility that had been determined for 

each reference point, referred to as field-counted trees. Whenever the number of field-counted 

trees was smaller than the number of theoretically-counted trees, it indicated that some of the 

trees that theoretically should be counted were not counted during field measurements. These 

trees were referred to as field-unseen trees. This study assumed that any field-unseen trees 

were omitted due to the restricted visibility of the reference point. Even though the reference 

point lay within the circular inclusion zone of the trees, their positions were farther than the 

distance of visibility. However, this is a strong assumption because other explanations could 

underline the difference between theoretically- and field-counted trees, such as measurement 

error or miscounting of border trees. By assuming that the difference between theoretically- 

and field-counted trees was only due to visibility, this study potentially overestimated the 

effect of restricted visibility on basal area estimates. All simulations were done using R 

software (R Core Team, 2015). 

Fig. 3.1 illustrates the distance of visibility dv for a reference point. The field-counted, 

theoretically-counted, and field-unseen trees that were simulated for different BAFs are also 

shown. In the example, there should have been 11 theoretically-counted trees. Due to the dv of 

the reference point, only 6 trees were counted in the field. It is assumed that the 7th to 11th trees 

were the field-unseen trees as a result of restricted visibility from the sample point. The 

general workflow of the study is shown in Fig. 3.2. 

 

 Selection of a suitable BAF for the Sebangau forest 

In order to determine the suitable BAF for the forest, the following criteria were tested for 

each BAF: (i) the conformity between the required distance of visibility and the mean distance 

of visibility for the entire FC plot, (ii) the difference between basal area estimates from the 

theoretically- and the field-counted trees, tested with the paired sample t-test (p = 0.05), and 
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(iii) the average number of field-counted trees. By considering these criteria, the suitable BAF 

should be large enough that the distance of the zth theoretically-counted tree will not exceed 

the maximum distance of visibility. Additionally, there should be no significant difference 

between basal area estimate derived from the theoretically- and field-counted trees. Also, the 

BAF should not be so small that it restricts the number of sample trees counted in each sample 

point. An average number of trees between 5 to 16 per sample point were considered suitable 

in this study, following the recommendation of earlier studies: between 5 to 15 trees (Avery 

and Burkhart, 2002), 6 to 16 trees (Van Laar and Akça, 2007), 10 to 15 trees (West, 2009), or 

at least 10 trees (Bitterlich, 1984). 

 

 

Fig. 3.1. Determination of distance of visibility (dv) as the distance from the sample point to 

the farthest field-counted tree; the field-unseen trees (white circles) are left out. 

 

 Comparison of basal area estimates of ACP and FAP in Sebangau and Ncaute forests 

A comparative study was conducted for a better understanding of the effect of forest restricted 

visibility in basal area estimates from ACP. The basal area estimates from ACP of the closed 

forest of Sebangau were compared to the basal area estimates of the open savanna forest of 

Ncaute. The input datasets were the basal area estimates from ACP and FAP of both study 

areas. In case of Sebangau, only the LSI plots in which ACP was conducted for BAF 1, 2, and 

4 were used (n = 21). For Ncaute datasets, data from n = 33 plots were used since basal area 

from ACP were estimated with BAF 1, 2, and 4 in all plots. Assuming the absence of 

measurement errors, both ACP and FAP allow for unbiased estimation of basal area. As both 

plot designs were installed around the same sample points, these paired datasets of ACP and 

FAP produced dependent pairs of stand basal area estimates. There is no statistically 

significant difference between the two estimations, because they both estimate the same 

population. The reference used the basal area estimated from FAP, since the population 

dv
+

Reference Point

Theoretically to be counted trees but not counted 

in the field (field-unseen trees); their position are 

further than the distance of visibility

Theoretically to be counted trees and counted 

in the field (field-counted trees); their position 

are within the distance of visibility

Distance of visibility (dv)dv
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parameter was not available. The pairs of per-plot basal area estimates from FAP and ACP 

were tested with the paired t-test (p = 0.05) using the t.test() function of R (R Core Team, 

2015). Prior to the test, normality of the data was assessed graphically using a Q-Q plot. 

Comparisons between the two approaches of different BAFs (1, 2, and 4) were conducted to 

assess the consequences of selecting a BAF on the basal area estimates from ACP between a 

forest with limited visibility and a forest with no visibility restriction. 

 

 

Fig. 3.2. General workflow for estimating the maximum distance of visibility by using the full 

census (FC) data. ACP for Angle Count Plot, BA for Basal Area, BAF for Basal Area Factor, 

QRP for Quadrant-Reference-Point; the point where ACP was installed. 
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3.2. Integration of field inventory and optical RapidEye data for the AGB estimation 

models in two different forest types of Sebangau and Hainich 

 Allometric model to calculate tree AGB 

Selection of a suitable biomass allometric model is essential (Pérez-Cruzado et al., 2015; 

Picard et al., 2016). Different models may produce considerably different AGB estimations for 

the same set of sample trees (Skole et al., 2011). For example, a study of Rutishauser et al. 

(2013) accounted for an absolute difference of 10-15% on average between DBH models and 

models including height measurement. Individual tree AGB in the Sebangau dataset was 

estimated using the multi-species model of Manuri et al. (2014) with DBH, wood density 

(WD), and height (H) as input variables: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐺𝐵 = 0.15 ∗ 𝐷𝐵𝐻2.095 ∗ 𝑊𝐷0.664 ∗ 𝐻0.552 

where AGB in Mg ha-1, DBH is in cm, WD in g cm-3, and H in m. 

The model from Manuri et al. (2014) was considered to be the most appropriate for AGB 

estimation in the Sebangau peat-swamp forest based on following characteristics. The model 

was developed by felling and determining the AGB of 148 sample trees (24 taxonomical 

families) from Indonesian peat-swamp forests in Riau and South Sumatera (Sumatera) and in 

West Kalimantan (Kalimantan) (Manuri et al., 2014). The 148 sample trees had a DBH range 

of 2-167 cm, a wood density range of 0.242-1.000 g cm-3, and a tree height range of 2.8-

49.5 m. These ranges covered the tree measurements from the Sebangau dataset. Information 

for the input wood density variable was taken from the list of tree species wood density of 

Sebangau that was compiled by the project KL894/17. In cases where the tree species could 

not be identified, the wood density for such tree was calculated as the average wood density of 

the 10 most abundant tree species in the dataset by terms of the basal area (Fischer et al., 

2011). The heights of the non-height-measured trees were predicted based on the 10 tree-

height measurements per plot. The models were built separately for each plot under the project 

of KL894/17. However, this modelling was not part of the study, but rather the output was 

used. 

For the Hainich dataset, tree AGB was calculated by considering two general tree types: 

deciduous and coniferous. The multi-species allometric models of Fehrmann (2007) were 

used, with DBH and height (H) as the input variables: 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐺𝐵 (𝐵𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓) = 0.0349 ∗ 𝐷𝐵𝐻2.0476 ∗ 𝐻0.7589 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐺𝐵 (𝐶𝑜𝑛𝑖𝑓𝑒𝑟𝑠) = 0.0818 ∗ 𝐷𝐵𝐻2.1704 ∗ 𝐻0.3492 

where DBH is in cm, H in m, and AGB in Mg ha-1. 
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The allometric models were developed using sample trees mainly from temperate forests in 

Germany and Central Europe. The broad-leaved tree model of Fehrmann (2007) was built 

from 528 sample trees of 8 different species with a range of DBH between 1 and 77.1 cm. The 

coniferous tree model was built from 963 sample trees of 7 different species with a DBH range 

between 2 and 73.8 cm. These DBH ranges covered more than 99% of the tree measurements 

in the EP and the AWF datasets, thus considered suitable for the current study. As in the 

Sebangau, biomass models in Hainich required DBH and H, while H was not measured in the 

field for all sample trees. Therefore, prior to the AGB calculation, a general logarithmic model 

(Schmidt, 1967; Van Laar and Akça, 2007) was selected to fit a DBH – H curve, using the 

available tree height measurements as input data. The resulting model was then used to 

generate the missing tree height for all non-H-measured trees. 

 

 AGB estimation based on field samples 

AGB at the plot level was calculated by aggregating all individual sample tree biomass 

estimations per plot. For the concentric plot design, the aggregation was done after applying 

an expansion factor for each sub-plot to transform the plot-wise measurement into a per 

hectare estimation. 

Simple random sampling (SRS) estimators were used to estimate the AGB of the study area, 

including its corresponding variance and standard error. This SRS estimator framework is 

frequently used to analyze systematic samples in the absence of unbiased statistical estimators 

for systematic sampling. Applying the SRS estimator to systematic samples is known to be 

unbiased at estimating the mean but conservative at estimating the standard error (Köhl et al., 

2006). The field-based estimated mean AGB �̅� (Mg ha-1), the estimated variance 𝑠2, and the 

estimated standard error of the mean SE were then calculated as follows:  

y̅  =  
1

𝑛
 ∑ 𝑦𝑖

𝑛
𝑖=1     

𝑠2 =  
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1 
 

 𝑆𝐸(y̅) =  √
𝑠2

𝑛
  =  √vâr(y̅)  

where 𝑦𝑖 is the estimated AGB for plot i, n is the sample size, and vâr(�̅�) is the estimated 

variance of the estimated mean AGB. 
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 Pre-processing of RapidEye data 

All spectral bands of RapidEye tiles were converted to the top of atmospheric (TOA) 

reflectances according to BlackBidge (2015). Furthermore, an atmospheric correction was 

applied using the 6S (Second Simulation of Satellite Signal in the Solar Spectrum) algorithm 

(Vermote et al., 2006) within the ForestEye Processor (Magdon et al., 2011). The standard 

method of the 6S algorithm was selected and had the following input parameters: designation 

of aerosol’s model, atmospheric profile, and meteorological visibility. Considering the 

geographical location of the study areas, the maritime aerosol model with tropical atmospheric 

profile was deemed appropriate and selected for the Sebangau. The meteorological visibility 

was calculated from the Aerosol Optical Thickness (AOT, 𝜏550) at 500 nm following 

Bojanowski (2007). The AOT value was obtained from the closest available station of the 

Aerosol Robotic Network (AERONET, https://aeronet.gsfc.nasa.gov/) of the National 

Aeronautics and Space Administration (NASA). The corresponding station was the Palangka 

Raya station located about 15 km from the Sebangau study site. The AOT value closest to the 

acquisition time of the images was selected to represent the atmospheric conditions at the time 

the images were acquired. The atmospherically corrected tiles were then mosaicked and 

masked to the study area boundary. 

A striping problem was observed in the blue band of the Sebangau data most likely resulting 

from the image calibration process (Pfeifer et al., 2016). Hence, this band was dropped and 

excluded from further processing and analysis steps. Clouds, cloud shadows, and haze areas 

were visually identified and delineated, before being masked out from the final data. 

 

Fig. 3.3. Striping problems of RapidEye blue band (band 1) over the Sebangau study area (red 

line). The image acquired on 20th September 2013, presented in gray scale. 

https://aeronet.gsfc.nasa.gov/
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 Deriving potential predictor variables from RapidEye data 

Various predictors for AGB can be derived from remote sensing data. This study assessed 

three types of predictor variables (Table 3.1) which were calculated using all RapidEye bands 

except the blue band. These variables included the reflectance values of the original bands, 

vegetation indices, and texture features from the grey-level co-occurrence matrix (GLCM). 

  

Table 3.1. Predictor variables derived from RapidEye images. 

Independent Variables Description/Equation References 

Spectral reflectance of RapidEye 

Band 2 to Band 5 

Green (520-590 nm), Red (630 -

685 nm), Red-edge (690-730 nm), 

Near Infrared (760-850 nm) 

(BlackBidge, 

2015) 

Vegetation indices   

Normalized Difference Vegetation 

Index (NDVI) 

𝐵5−𝐵3

𝐵5+𝐵3
  (Rouse et al., 

1974) 

Normalized Difference Vegetation 

Index Red-Edge (NDVIRE) 

𝐵5−𝐵4

𝐵5+𝐵4
  (Gitelson and 

Merzlyak, 1997) 

Normalized Difference Vegetation 

Index Red-Edge (NDRE) 

𝐵4−𝐵3

𝐵4+𝐵3
  (Gitelson and 

Merzlyak, 1994) 

Canopy Chlorophyll Content 

Index (CCCI) 

(𝐵5−𝐵4) (𝐵5+𝐵4)⁄

(𝐵5−𝐵3) (𝐵5+𝐵3)⁄
  (Barnes et al., 

2000) 

Modified Soil Adjusted 

Vegetation Index (MSAVI) 
2∗𝐵5+1−√(2𝐵5+1)2−8(𝐵5−𝐵3)

2
  

(Qi et al., 1994) 

GLCM Texture features   

Mean (MEAN) 

∑ 𝑖P𝑖,𝑗

𝑁−1

𝑖,𝑗=0

 

(Haralick et al., 

1973) 

Homogeneity (HOMO) 

∑ 𝑖
P𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

(Haralick et al., 

1973) 

Entropy (ENTR) 

∑ 𝑖P𝑖,𝑗

𝑁−1

𝑖,𝑗=0

(− ln P𝑖,𝑗) 

(Haralick et al., 

1973) 

Correlation (CORR) 

 ∑ 𝑖P𝑖,𝑗 [
(𝑖 − 𝜇)(𝑗 − 𝜇)

√𝜎𝑖𝜎𝑗

]

𝑁−1

𝑖,𝑗=0

 

(Haralick et al., 

1973) 

 

P is the dimension of the GLCM, i and j as the ith and jth element of P. Pij represents the 

frequency of the value of reference pixel i in combination with the adjacent pixel j. P is the 

frequency of the cell row and column i and j; μ is the Mean and σ is the Variance. 
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Each original spectral band contains specific information on a viewed object. However, two or 

more spectral bands are usually needed to characterize the object. For example, vegetation 

indices (VIs) are numerical combinations of two or more original spectral bands (Huete et al., 

2002) which are developed to achieve better information related to biophysical vegetation 

parameters, e.g., leaf area index, biomass, compared to any single original band (Jones and 

Vaughan, 2010). The most common combination used for creating VIs is the red and near-

infrared (NIR) spectra of the electromagnetic spectrum (Myneni et al., 1995). As depicted in 

Fig. 2.10, the difference between the reflectance in the red and NIR spectral regions creates a 

variable that is sensitive in detecting the presence of green vegetation (Bannari et al., 1995). 

The use of VIs also reduces the confounding effects of soil background, illumination angle, 

canopy geometry, and atmospheric conditions in the canopy reflectance of the original spectral 

bands (Jackson and Huete, 1991; Jones and Vaughan, 2010; Myneni et al., 1995). 

Five VIs were computed in this study (Table 3.1). The first was the most widely used VI, the 

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974). The next three were 

selected in combination with the red-edge band since they were expected to be more sensitive 

to the variation of the chlorophyll content in the vegetation. These are Normalized Difference 

Vegetation Index Red-edge (NDRE), Normalized Difference Vegetation Index Red-edge 

(NDVIRE), and Canopy Chlorophyll Content (CCCI). The last index was the Modified Soil 

Adjusted Vegetation Index (MSAVI), an index that consider the variation from soil 

backgrounds in low vegetation cover and is suitable for vegetation sensitivity as well as soil 

noise reduction (Qi et al., 1994). Moreover, the index has been successfully selected as one of 

the predictor variables for AGB estimation model in Borneo’s tropical forests (Pfeifer et al., 

2016). 

Information about an object or a land cover type in remote sensing data can generally be 

identified by shape, size, tone or color, pattern, shadow, and texture of the object. Image 

texture contains information about the spatial arrangement of tonal variation (Eichkitz et al., 

2015). Some objects can be identified more easily by using textural features rather than by the 

spectral reflectance properties only (Haralick et al., 1973). One of the most common 

approaches to extract textures from remotely sensed data is the GLCM texture features of 

Haralick et al. (1973). These GLCM textures measure the frequency of grey-tone levels of 

adjacent pixels within a define window size. Previous studies showed that the inclusion of 

GLCM texture features as predictor variables improved AGB model performance (Eckert, 

2012; Lu, 2005; Sarker and Nichol, 2011; Wijaya et al., 2010a). However, not all texture 

measures are useful for extracting AGB information. 
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Selection of a suitable texture measure and the associated window size for extracting AGB 

information also depends on the characteristics of the forest, the remote sensing data, and the 

band of the image. There is no standard approach in selecting proper texture features for 

estimating biomass since textures vary according to the studied landscape and the type of 

remote sensing data (Lu, 2005). In general, the GLCM texture features can be grouped into 

three main categories: orderliness, contrast, and descriptive statistics (Hall-Beyer, 2007). The 

texture features within one category contain similar information that tends to be highly 

correlated when used together, particularly if derived from the same band. Hence, the 

simultaneous use of all types of texture features as independent variables for a regression 

model may cause multicollinearity issues. Additionally, such simultaneous use may not be 

efficient since the computation of GLCM textures is also time-consuming (Hall-Beyer, 2007), 

especially in large area of interest. For these reasons, one type of GLCM texture feature was 

selected from each category. In addition, the GLCM texture mean was selected since it 

correlated the least with the other GLCM texture features. Therefore, in total four types of 

GLCM texture features were selected for this study. All texture features were derived from the 

red-edge band using the ‘raster’ package (Hijmans, 2016) and the ‘glcm’ package (Zvoleff, 

2016) implemented in R software (R Core Team, 2015).  

Image texture also depends on the window size from which the texture features are extracted. 

During the pre-processing step, texture features derived from the window size of 7x7, 11x11, 

and 15x15 were examined. Through visual investigations, texture features derived from the 

3x3 and 5x5 window sizes contained large inter-pixel variations and were therefore considered 

too small. Window sizes larger than 15x15 were considered too large, as they smoothens the 

variability among pixels and possibly lose important variation in pixel brightness. The 

correlation magnitude r between the field-based AGB estimate and the texture-features 

derived from the window size of 7x7, 11x11, and 15x15 ranged from 0.45-0.49, 0.49-0.51, and 

0.51-0.52, respectively. Thus, the GLCM texture features computed from the 15x15 window 

size that gave stronger correlations between field-estimated AGB and texture-predicted AGB 

were selected as predictor variables. To overcome the edge effects on the derived texture 

features, an additional buffer of 500 m was added from the boundary of the study area. In this 

step, a total of 40 potential predictor variables derived from RapidEye data were available. 

 

 Extracting information from remotely sensed predictor variables at plot level 

Using a commonly adopted method, the information from remotely sensed AGB predictor 

variables were extracted at the plot level as the mean value of all pixels within the plot. In 
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addition to the mean value, three other descriptive statistics were also calculated to 

characterize each plot including: maximum, minimum, and standard deviation. Pixels to be 

included in the calculation were restricted to the ones in which the center was located at or 

within the plot boundary. In case of a circular plot like in the Sebangau, the pixels included in 

the calculation were the ones in which the center was located at an equal or lesser distance 

than the plot radius (m), as illustrated in Fig. 3.4. 

Since the information from remotely sensed data was extracted according to the geographical 

position of the plots, it was important to analyze the mismatch of positions between the remote 

sensing data and the ground coordinates (Gobakken and Næsset, 2009). An initial 

investigation of the mismatch position was conducted to identify a suitable area size (plot size) 

for extracting the remote sensing information. In total, 18 ground control points (GCP) were 

recorded. However, attaining precise GCPs inside the Sebangau forest was difficult because 

the closed canopy of the forest likely degraded the received and the reflected signals from the 

GPS device. Therefore, the GCPs were instead collected in Palangka Raya city. I assumed the 

same location shift between the field GPS measurements and the RapidEye image coordinates 

over the Sebangau forest and the city area. Co-registration between the GCPs and the 

RapidEye image showed an RMSE of 0.77 pixels. Thus, a 4 m buffer distance was added to 

the 16 m radius of the LSI plots to counter the mismatch. Similarly, a 2.4 m buffer distance 

was added to the 12.6 m radius of the AWF-Hainich plots. The additional 2.4 m buffer 

distance was determined both by considering the higher accuracy of the RapidEye image over 

the Hainich forest compared to that of the Sebangau forest (BlackBidge, 2015) and also to 

have a convenient number. 

Information from all remotely sensed predictor variables was then extracted from a 20 m 

radius plot size for the Sebangau dataset, a 15 m radius plot size for the AWF-Hainich dataset, 

and a 1 ha plot size for the EP-Hainich dataset. For each dataset, the mean, minimum, 

maximum, and standard deviation were calculated for each predictor variable from the original 

band reflectances and vegetation indices. In addition, mean values were calculated from the 

texture features. The values were then assigned to the plot centers. 

For the Sebangau study, information from all predictor variables was extracted on the 

systematic plots of LSI (n = 46). Three plots were located under clouds or cloud shadows, so 

that no remote sensing data were available for these plots. Therefore, the final number of plots 

used for establishing the AGB model in the Sebangau study was n = 43. For the Hainich study, 

information from all predictor variables was extracted on both the EP (n = 28) and the AWF 



Chapter 3. Methods 
 

44 

 

(n = 177) datasets. Each of the datasets was independently used to establish an AGB 

estimation model for Hainich. 

 

 

Fig. 3.4. Plot boundary (black circle) of a defined radius (m), and a plot center point (x, y), 

overlaid on the 5 m pixel size of a RapidEye predictor variable. Information from the predictor 

variable was extracted as the mean, minimum, maximum, and standard deviation of all pixels 

within the plot, and assigned to the plot center point. Pixels included in the calculation are 

restricted to the ones whose center point is located at or within the plot boundary. 

 

 Biomass modeling and variable selection approach 

In this step, AGB was linked to remotely sensed predictor variables. A Box-Cox power 

transformation (Box and Cox, 1964) was applied to all predictor variables to test the normality 

and linearity of the variables using the ‘MASS’ R package (Venables and Ripley, 2002). The 

relationship between the field-based AGB and each predictor variable was evaluated using the 

Pearson correlation coefficient r and the corresponding p-value. The correlation was 

calculated by using the ‘Hmisc’ R package (Harrell Jr et al., 2016). 

In the modelling approach, field-based AGB was the response variable and remotely sensed 

variables were the potential predictors. A multiple linear regression analysis with a stepwise 

(exhaustive) variable selection procedure was conducted to fit the AGB model: 

𝐴𝐺𝐵 = ß0+ ß1 ∗ 𝑋1 + ß2 ∗  𝑋2 +…. + ß𝑖 ∗ 𝑋𝑖 + 𝜀𝑖 

where ß0 is the model intercept, ß1, ß2, .., ßi are the regression coefficients for the predictor 

variables 1, 2,..i, X1, X2,…Xi are the predictor variables 1, 2,..i, and εi is the random error term. 

The variable selection was conducted using the ‘leaps’ R package (Miller, 2009), where the 

regression algorithm was applied for any combination of two to eight predictor variables. For 
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each model combination, the Adjusted R2 (Adj R2), the residual standard error (RSE), and the 

statistical significance of each selected predictor variable were investigated. In order to 

produce a more stable model and to avoid overfitting, a supplementary analysis to measure the 

magnitude of multicollinearity among the model predictors was applied. The variance inflation 

factor (VIF) in the ‘car’ R package (Fox and Weisberg, 2011) was used to assess the potential 

correlation between predictor variables. The VIF of a predictor i (VIFi) was calculated as 

follows: 

VIF 𝑖 =  
1

1 − 𝑅𝑖
2 

where 𝑅𝑖
2 is a collinearity measure between the ith predictor and the remaining predictors. The 

value represents the proportion of variance in predictor i that is associated with other 

predictors in the model (O’brien, 2007). The study of Sileshi (2014) showed that a VIF > 5 

indicates significant collinearity. To minimize the multicollinearity effects on the model, a cut-

off VIF of ≤ 5 was employed, as recommended by O’brien (2007). The final AGB model was 

then defined as the one that provided the highest Adj R2, the lowest RSE, and each selected 

predictor variable in the model has a statistical significance of a p-value ≤ 0.05 and a VIF ≤ 5. 

The performance of the final AGB model was assessed with the leave one out cross validation 

(LOOCV) approach. The approach calls for the calculation of the cross-validated root mean 

squared error (RMSE) between observed and predicted AGB. RMSE is a good measure to 

assess how accurately a model predicts its target variable; hence it is considered the most 

important criterion for the purpose of model prediction (Yoo et al., 2012). In the LOOCV 

approach, the model was fit for n iterations. In each iteration, the model was trained from the 

n-1 plots and tested to predict the AGB of the excluded plot. Each time, a random plot was 

excluded and used as the tested case. For each iteration, the residuals between observed and 

predicted AGB were calculated for the excluded plot, including the RMSE. The final RMSE 

was calculated as the average RMSE value over all iterations. The relative RMSE (RMSEr) was 

calculated as the ratio between the RMSE and the estimated population mean from the field 

observation data. This procedure was done for all elements of the dataset using the ‘boot’ R 

package (Canty and Ripley, 2016). 

 

 Regionalization of the AGB model and model-assisted estimation 

Once the final AGB model was constructed, the model was applied to the entire study area. A 

typical approach for spatial extrapolation of the empirical model, from training area to the 
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entire area of interest (AOI), is by aggregating pixels of the remote sensing data into grid cells 

of similar spatial scale as the area used for extracting the remotely sensed predictor variables. 

An aggregation level of 35 m x 35 m was used for the Sebangau study, which corresponded to 

the field plot size of the area used for extracting the RapidEye information. In the Hainich 

study, an aggregation level of 100 m x 100 m was used for the EPs, and an aggregation level 

of 25 m x 25 m was used for the AWF plots. Because the population was considered to be the 

entire AOI, each grid cell represented one population element, for which AGB was predicted. 

Since this study used probability-based sample plots, the model-assisted regression estimator 

was used for calculating the mean AGB per hectare of the entire study area μ̂MA (Mg ha-1) 

according to McRoberts et al. (2013a), 

μ̂MA  =  
1

N
 ∑ �̂�𝑖

N

𝑖=1

 +  
1

𝑛 
∑ �̂�𝑖

𝑛

𝑖=1
 

where �̂�𝑖 is the AGB per hectare of the population element i predicted by the model, N is the 

population size, and �̂�𝑖 is the model prediction residual for plot i which is calculated over the 

sample units as the deviation between observation value and model prediction for plot i, �̂�𝑖 =

 𝑦𝑖 − �̂�𝑖. In the case that the least squares parameter estimation approach for a linear model is 

applied, as it was in the current study, the sum of the residual will be zero. This sum can 

theoretically also be different from zero, for example when the model was developed using 

observations from outside the sample (Næsset et al., 2016). 

The final AGB predicted maps of Sebangau, EP-AGB, and AWF-AGB are given with 35 m x 

35 m, 100 m x 100 m and 25 m x 25 m spatial resolutions, respectively. To avoid negative 

biomass values, the minimum value of the predicted AGB was set to 0 with a consequence of 

potentially overestimated AGB of the study areas. 

  

 Independent validation of the AGB predicted map 

An independent validation of the Sebangau AGB predicted map was conducted against the 

AGB estimates from HIL plots (n = 27). Eight HIL plots had to be excluded due to clouds and 

cloud shadows. An independent validation was also conducted for each of the produced AGB 

predicted maps in the Hainich study. The EP-AGB predicted map was validated against the 

AGB estimates from AWF dataset, and vice versa. Performance of the model prediction was 

evaluated using the Pearson correlation coefficient and the absolute RMSE between the model 

predicted and validation data.  
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 Efficiency of RapidEye-assisted AGB estimation 

The aim of the study was to quantify the improved precision of AGB estimation from the 

inclusion of RapidEye data compared to the precision achieved strictly from observation 

estimates. The magnitude of this improvement was assessed according to the relative 

efficiency (RE) between the two approaches (Mauya et al., 2015; McRoberts et al., 2016; 

Næsset et al., 2016). The RE measured the estimated variance of AGB estimates from the 

RapidEye-assisted method, relative to the estimated variance from the field observation 

estimates only. The variance of the field-based estimate �̂�(y̅) was estimated according to the 

SRS estimator. 

�̂�(y̅) =  
∑  (𝑦𝑖 − �̅�)2𝑛

𝑖=1

𝑛 (𝑛 − 1)
 

where yi is the estimated AGB for plot i, �̅� is the field-based estimated mean AGB, and n is the 

sample size. 

The variance for the RapidEye-assisted estimate �̂�(μ̂MA) was estimated according to the 

McRoberts et al. (2013a). 

�̂�(μ̂MA) =  
∑  (�̂�𝑖 −  �̅�)2𝑛

𝑖=1

𝑛 (𝑛 − 1)
 

where �̂�𝑖 is the model prediction residual for plot i, which was calculated as 𝑒�̂� =  𝑦𝑖 − 𝑦̂
𝑖
 and 

𝑦
�̂�
 is the model prediction for plot i, ē is the mean of the residuals from all plots that was 

calculated as �̄� =  
1

𝑛
 ∑ �̂�𝑖

𝑛
𝑖=1 . The standard error of the estimator μ̂MA (𝑆𝐸μ̂MA

) was estimated 

as the square root of the respective variance estimator. 

And the relative efficiency (RE) is computed as: 

𝑅𝐸 =  
�̂�(y̅)

�̂�(μ̂MA)

 

An RE value of 1.3, for example, would indicate a 30% greater efficiency from the RapidEye 

model-assisted estimates than from the field-based estimates. Consequently, to achieve the 

same precision as that from the remote sensing approach requires a 30% larger sample size for 

the field-based estimates along with the associated additional cost (Mauya et al., 2015; Næsset 

et al., 2016). 
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 AGB estimation model of Hainich derived from two different field inventory datasets 

Analysis into the use of optical RapidEye data for estimating AGB was conducted for different 

inventory datasets of Hainich. An AGB-difference map was produced from the EP- and AWF-

AGB predicted maps to investigate different AGB predictions between the two models. 

 

 
Fig. 3.5. Lower reflectances in the RapidEye spectrums from two EPs dominated by 

coniferous trees (HEW01 and HEW02), compared to two EPs with 100% broad-leaved trees 

(HEW19 and HEW50), with largest difference occurred in the NIR spectrum. 

 

Additional AGB models for broad-leaved forest were also generated using the EP and AWF 

datasets, where all plots dominated by coniferous trees were excluded. In the EP dataset, two 

plots were dominated by over 80% of coniferous trees, whereas in the remaining plots 

contained less than 1%. For the AWF dataset, about 16% of the AWF plots contained higher 

than 1% of coniferous trees. Based on the leaf characteristics, trees in the EP and AWF 

datasets can be classified into broad-leaved and coniferous groups. Leaf characteristic is one 

of the fundamental factors influencing the spectral signatures of vegetation in optical spectral 

regions (Jones and Vaughan, 2010). The visible spectrum is related to the chlorophyll 

absorption level, and the NIR spectrum is more associated with the leaf structures (Ollinger, 

2011). The plots dominated by broad-leaved trees would form a sharp contrast in the spectral 

signatures from the ones dominated by coniferous trees, with higher reflectance from the NIR 

spectrum (Fig. 3.5). The broad-leaved model was built using the reduced dataset of n = 26 EP 

plots, and n = 148 AWF plots. The objective was mainly to compare the resulting model 

performances with the one derived for the mixed forest, by using model Adj R2, RMSE, and 

variances. 
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3.3. The effect of different field plot sizes on the AGB estimation models derived from 

field inventory and RapidEye data using the EP data of Hainich 

The study was conducted to investigate the effects of different sample plot sizes in the AGB 

estimation in Hainich forest using the EP dataset. When field sample plots and remote sensing 

data are combined to make an AGB model, the use of larger plot sizes is advantageous for 

some specific reasons (Mauya et al., 2015; Næsset et al., 2016): (i) Larger plots increase the 

chance of co-registration areas between the field and the remotely sensed data. This is because 

the effect of plot positioning error is expected to reduce and the quality of the relationship 

between the two variables is expected to increase, (ii) larger plots are expected to capture more 

of the spatial variations between the two variables, thereby reducing the model error, (iii) 

larger plots are expected to minimize the effects of boundary elements since the ratio between 

plot perimeter and plot area decreases.  

For this study, two types of datasets were derived from the EP data with a sample size of 

n = 26 after the exclusion of the two plots dominated by coniferous trees: 

• Dataset 1 

The EP square plots were gradually reduced in size by 5 m steps, from 100 m x 100 m (1 ha) 

to 20 m x 20 m (0.04 ha), while maintaining the plot center (Fig. 3.6a). The study focused on 

the effect of different plot sizes at the same sample point. In total, 17 plot sizes with n = 26 

each were investigated. 

• Dataset 2 

Each of the EPs was subdivided into smaller sub-plots of different squares: 2x2 (50 m x 50 m), 

3x3 (33.3 m x 33.3 m), 4x4 (25 m x 25 m), 5x5 (20 m x 20 m), and rectangular shapes: 1x2 

(100 m x 50 m), 1x3 (100 m x 33.3 m), 1x4 (100 m x 25 m), 1x5 (100 m x 20 m), 2x3 

(50 m x 33.3 m), 2x4 (50 m x 25 m), 2x5 (50 m x 20 m), 3x4 (33.3 m x 25 m), 3x5 

(33.3 m x 20 m), and 4x5 (25 m x 20 m). For each dataset, one sub-plot was randomly selected 

from each of the EP sub-plots as shown in Fig. 3.6 (b and c).  

Including the 1 ha plot data, 15 plot sizes of sample size n = 26 were considered. 
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a) 

 

b) 

 

c) 

 

Fig. 3.6. Dataset 1 was derived by gradually reducing the 1 ha EP plot by 5 m, from 

100 m x 100 m to 20 m x 20 m, while maintaining the same plot center (a). In Dataset 2, 

different plot sizes were derived by subdividing the EP plots into different sub-plots of regular 

size of squares or rectangles, in which a sub-plot was randomly selected from each of the EP 

sub-plots of a certain size (b, c). The gray square in b) and c) is the randomly selected sub-plot 

for the 25 m x 25 m and 50 m x 25 m dataset, respectively. 

 

The effect of different plot sizes and shapes on the developed AGB model was analyzed using 

two approaches. The first approach involved fitting a regression for each dataset of the 

different plot sizes and shapes using the previously determined Hainich AGB model. In the 

second approach, a regression was fitted for each dataset by allowing different predictor 

variables to be selected in each model. 

The first approach was carried out to examine the performance of the Hainich AGB model 

with varying plot size and shapes. In the second approach, the performance of different AGB 

models of different plot sizes and shapes was examined. The second approach was conducted 

to obtain the ‘best’ model, without imposing specific predictor variables into the model when 

fitting the regression of each of the datasets. Field plot level biomass estimation, modelling, 

and variable selection were performed as described in section 3.2. For different plot sizes and 

shapes, the estimated variance, standard error, and relative efficiency were calculated as 

described in 3.2.9. The results were compared as a function of plot sizes and shapes.  
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Chapter 4 

Results 

4.1. Major forest variables derived from field inventory plots 

 Sebangau 

Table 4.1 presents the summary statistics of the Sebangau forest variables estimated from the 

different inventory plots, FC (n = 1), HIL (n = 35), and LSI (n = 59). According to the three 

designs, the estimated basal area ranged from 30.2 to 31.8 m2ha-1. The larger the sampling 

area, the wider the range of the basal area estimation (Fig. 4.1). The DBH distributions from 

the FC, HIL, and LSI datasets showed the typical inverse J-shape (Fig. 4.1). Twenty-five years 

of forest concession history has caused the present scarcity of large trees > 45 cm, with many 

trees < 15 cm. The higher tree density in the LSI, compared to FC and HIL, was mainly 

attributed to the small trees, as seen by the lower mean tree DBH and mean quadratic mean 

diameter (QMD) of LSI (Table 4.1). The cumulative curves in Fig. 4.1 show that 50% of the 

forest basal area was in the comparatively smaller trees with DBH sizes reaching up to 17, 18, 

and 15 cm, for FC, HIL, and LSI, respectively. 

 

Table 4.1. Description of Sebangau forest derived from different sampling designs. 

 

*Applied only for HIL and LSI sampling design, QMD = Quadratic Mean Diameter. 

 

Variables FC

n = 1

Area (ha) 1 869 31,113

BA (m
2
ha

-1
) ± *SE (%) 31.5 30.2 ± 2.5 31.8 ± 3.4

Tree density (stem ha
-1

) ± *SE (%) 2379.2 2172.7 ± 5.5 2777.8 ± 3.9

Mean DBH  (cm) ± *SE (%) 11.1 11.8 ± 2.4 10.7 ± 1.9

Mean QMD  (cm) ± *SE (%) 13.0 13.6 ± 2.5 12.2 ± 1.8

Number of observed tree species (unit) 114 75 87

n  = 35 n  = 59

HIL LSI
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Like in many other tropical forests, the Sebangau forest has a high diversity of tree species 

(Table 4.1). A total of 129 species were recorded during the fieldwork across all inventory 

designs, whereas 114 species were found in the FC plot. Syzygium sp. was the most frequent 

species in the FC plot, whereas Adenanthera pavonina Linn. was the most prevalent species in 

the HIL and LSI plots. 

 

 

Fig. 4.1. Range of basal area estimates for FC, HIL, and LSI inventories. The DBH 

distributions were given for the FC, HIL, and LSI datasets, showing that 50% of the forest 

basal area was in trees of DBH ≤ 17, 18, and 15 cm, respectively. 
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 Ncaute 

Based on the field observation plots of the Ncaute study (n = 33), the estimated forest basal 

area was 3.6 m2ha-1 with a mean QMD of 20.5 cm (Table 4.2). The DBH distributions from 

Ncaute followed the typical inverse J-shape with approximately 50% of the cumulative forest 

basal area from the trees of DBH < 25 cm (Fig. 4.2). 

 

Table 4.2. Description of Ncaute forest from field sample plots. 

 

 

 

Fig. 4.2. Distribution of tree DBH in Ncaute plots shows that 50% of the cumulative forest 

basal area was in trees of DBH < 25 cm. 

 

 Hainich forest 

The estimated basal area for the Hainich forest based on the EP dataset (n = 28) was greater 

than that based on the AWF dataset (n = 177) (Table 4.3). However, the estimated tree density 

from the AWF dataset was greater than that from the EP’s due to the small trees from the 

AWF dataset, as is seen by the lower estimation of basal area and mean QMD from AWF. The 

Variables

BA (m
2
ha

-1
) ± SE (%) 3.6 ± 10.4

Tree density (stem ha
-1

) ± SE (%) 135.5 ± 17.2

Mean DBH  (cm) ± SE (%) 18.6 ±   5.9

Mean QMD  (cm) ± SE (%) 20.5 ±   5.6
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number of small trees in the DBH class of 7-10 cm and of 10-15 cm in the AWF dataset was 

found to be twice as high as those in the EP’s (Fig. 4.3). Approximately 50% of the forest 

basal area was in trees of DBH ≤ 50 cm for the EP dataset and in trees of DBH ≤ 43 cm for the 

AWF dataset. 

 

Table 4.3. Description of the Hainich forest from EP and AWF sample plots. 

 

 

 
Fig. 4.3. The DBH distributions for the EP and AWF datasets showed that 50% of the forest 

basal area was in trees of DBH ≤ 50 and 43 cm, respectively. 

 

4.2. The effect of forest restricted visibility on the basal area estimates from ACP in 

two different forest types of Sebangau and Ncaute 

 The distance of visibility for ACP in the Sebangau forest and selection of a suitable 

BAF 

The distances of visibility over all quadrants in the Sebangau FC plot ranged between 4.5 to 

13.6 m, with a mean of 8.7 m and a standard deviation of ± 2.1 m (Fig. 4.4). The defined 

Variables EP

n = 28

BA (m
2
ha

-1
) ± SE (%) 33.9 29.4 ± 3.1

Tree density (stem ha
-1

) ± SE (%) 388.6 527.1 ± 7.0

Mean DBH  (cm) ± SE (%) 29.1 29.3 ± 3.4

Mean QMD  (cm) ± SE (%) 34.4 32.4 ± 3.9

AWF

n  = 177
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maximum distance of visibility for the FC plot was 6.6 m, after subtracting the standard 

deviation from the mean distance of visibility. The required distance of visibility for detecting 

the farthest theoretically-counted tree, given as the mean of all quadrants, ranked between 18 ± 

3.5 m for BAF 1 to 3.5 ± 1.4 m for BAF 10. 

 

 

Fig. 4.4. The red-dotted line presents the mean of the required distance of visibility in the FC 

plot that allows the farthest theoretically-counted tree to be counted from the sample point, as 

a function of basal area factor (BAF). The grey-dotted line represents the mean distance of 

visibility of the entire plot. The empirically found “maximum distance of visibility” is 

presented as the black horizontal line. 

 

Fig. 4.4 depicts conformity between the mean of the required distances of visibility with the 

maximum distance of visibility for a BAF of 5. When a BAF ≥ 5 is selected, the maximum 

distance of visibility is greater than the mean of the required distance of visibility. For 

BAFs < 5, the probability of omitting sample trees that should have been counted was 

assumed to be high. There is also conformity between the mean required distances of visibility 

with the mean distance of visibility for a BAF of 3. However, when a BAF of 3 or 4 is 

selected, the mean of the required distance of visibility is still greater than the maximum 

distance of visibility. 

When comparing the basal area estimates derived from the number of theoretically-counted 

trees to the estimate derived from the number of field-counted trees with restricted visibility, 

selecting a BAF ≤ 6 produced significant differences in the estimation (paired t-test, df = 36, 

p < 0.05), as it is shown in Fig. 4.5. There were three sample points in which the number of 

theoretically-counted trees was higher than the number of field-counted trees. These sample 

points had trees with larger inclusion zones located outside of the maximum distance of 

visibility. 
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Fig. 4.5. The difference of basal area estimates between the theoretically- and the field-

counted trees for different BAFs; the estimates from BAFs > 6 did not exhibit significant 

differences between the two estimates. 

 

The simulation results showed that the average number of counted trees decreased from 22.5 

counted trees for a BAF of 1 to 2.7 counted trees for a BAF of 10, thereby producing a basal 

area estimate of 22.5 m2ha-1 and 26.8 m2ha-1, respectively (Fig. 4.6). With wider opening 

angles, smaller trees were left out, and only trees with a relatively large DBH were counted in 

the sample. By examining the number of counted trees per sample, Fig. 4.6 illustrates that 

BAFs from 3 to 5 included between 5 to 16 counted trees per sample point on average, as 

recommended by earlier studies. 

 

 

Fig. 4.6. Mean number of trees counted per ACP based on the simulation of the number of 

trees counted for different BAFs. BAF < 3 and BAF > 5 produced higher and lower average 

numbers of trees than is recommended. 

 

Based on the aforementioned results, selection of a suitable BAF in the Sebangau forest is a 

trade-off between the maximum distance of visibility, the significance difference in the 
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estimation, and the average number of trees per sample point. However, based on the data and 

following the procedures applied in the current study, a BAF of 5 should be selected for 

implementing ACP in the dense tropical peat-swamp forest like the Sebangau with a 

consequence of slightly underestimating basal area. Selecting a BAF < 5 will produce greater 

underestimation values of basal area. When a BAF > 5 is selected, the average number of trees 

per sample point will be lower than the recommendation. Moreover, it will inflate the 

contribution of a single sample tree to the overall basal area estimate. 

 

 Comparison of basal area estimates from ACP and FAP datasets 

In order to confirm the results in 5.2.1, a comparison between basal area estimates from ACP 

and FAP in the dense forest of Sebangau and in the open savanna forest of Ncaute was 

conducted. The same population was sampled with two approaches that allow for unbiased 

estimation. The mean basal area estimates from ACPs in the Sebangau forest increased 

monotonically over increasing BAF and approached the mean estimates of FAP (Fig. 4.7). The 

mean estimates from the Ncaute were relatively stable, independent of BAF (1, 2 or 4), 

attributed to the unrestricted visibility. These results indicate that the distance of visibility was 

a critical issue in the implementation of ACP in dense forests like the Sebangau, particularly 

when a low BAF was selected. 

 

 

Fig. 4.7. Basal area estimates (G, m2ha-1) from FAP and ACP with different BAFs (1, 2, and 

4), in Sebangau forest (S- in grey) and Ncaute forest (N- in white). 
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The mean basal area estimates obtained from FAP of Sebangau and of Ncaute indicated that 

both forests had very different basal areas (Table 4.4). The relative standard errors of the mean 

basal area estimates in the Sebangau study were lower compared to those in the Ncaute study. 

In both forests, the number of sample trees decreased with larger BAFs, while the variability 

of basal area estimates increased. The precision of basal area estimates decreased with larger 

BAFs.  

 

Table 4.4. Estimated basal area (m2ha-1) of Sebangau (n = 21) and Ncaute (n = 33) forests 

from FAP and ACP; SE = Standard Error; CI = Confidence Interval at 0.95 probability level 

 

 

The mean estimate of the Sebangau study from FAP was within the confidence interval of the 

mean estimate from ACP with a BAF 4 (95% CI), but it was outside the confidence interval of 

the mean estimates from a BAF of 1 and of 2. For the Ncaute study, the mean estimate from 

FAP was within the 95% confidence interval of the ACP estimates from all BAFs. A paired-

samples t-test was conducted to compare the mean estimates from the two approaches. There 

were significant deviations (paired t-test, df = 20, p = 0.05) between the mean basal area 

estimates from ACP and from FAP in Sebangau (Table 4.5). In Ncaute, no significant 

deviation between the mean estimates from ACP and from FAP was found (paired t-test, 

df = 32, p = 0.05). While sampling the same population indicates significant differences in 

observations, the differences can only be explained by observation errors. In the study of 

Sebangau, the difference between the two methods decreased as the BAF increased. 

Mean SE SE (%) CI (0.95)

Basal area (m
2
ha

-1
)

Sebangau (df  = 20)

Fixed-Area Plot 31.0 1.8 5.9 (27.2, 34.8)

Angle Count Plot

  -  BAF 1 16.9 1.0 5.7 (14.9, 18.9)

  -  BAF 2 22.9 1.6 7.1 (19.5, 26.3)

  -  BAF 4 26.6 2.3 8.8 (21.7, 31.4)

Ncaute (df  = 32)

Fixed-Area Plot 3.6 0.4 10.4 (2.9, 4.4)

Angle Count Plot

  -  BAF 1 3.9 0.4 11.2 (3.0, 4.8)

  -  BAF 2 4.2 0.6 14.8 (2.9, 5.4)

  -  BAF 4 4.5 0.7 15.8 (3.1, 6.0)
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Table 4.5. t-test results comparing basal area estimates from FAP and ACP approaches in the 

Sebangau and Ncaute forests 

 

 

Among the criteria to determine an optimum plot size is the number of sample trees. In this 

study, the mean number of trees in the FAP was higher than in the ACP (BAF 1, 2, and 4) for 

both forest types (Fig. 4.8). In general, the number of trees counted per ACP in the Sebangau 

study was 12 to 23, 8 to 18, and 3 to 11 for BAFs of 1, 2, and 4, respectively. There was one 

plot in the Sebangau dataset with very few trees and small DBHs. No tree was counted for this 

plot when a BAF > 1 was selected, while five trees were measured using the FAP. 

 

 

Fig. 4.8. Number of sample trees per plot from ACP of BAF 1, 2 and 4 in Sebangau forest (S- 

in grey) and Ncaute forest (N- in white). 
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Pair 1: FAP - BAF 1 14.09 11.34 16.83 10.71 9.87E-10

Pair 2: FAP - BAF 2 8.09 5.08 11.09 5.61 1.71E-05

Pair 3: FAP - BAF 4 4.42 0.03 8.81 2.10 0.0487

Ncaute (df =32)

Pair 1: FAP - BAF 1 -0.31 -1.05 0.44 -0.84 0.4061
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In the case of Ncaute, the number of counted trees per ACP ranged from 0 to 9, 0 to 6, and 0 

to 4 for BAFs of 1, 2, and 4, respectively (Fig. 4.8). This number was less than four trees per 

sample point, on average. For the FAP, less than four trees were measured in 18% of the 

Ncaute plots, while less than 8 trees were measured in 52% of the plots. Compared to the 

average numbers of trees per sample plot as recommended by earlier studies, the figures 

indicated that a BAF of 1 was already too large for an open savanna forest. The use of a 

smaller BAF than 1 could be more suitable for this type of forest. The argument was supported 

by the high standard errors of the mean basal area estimates from ACP in Ncaute, as can be 

seen in Table 4.4. 

Results from the comparison between basal area estimates from ACP and FAP in the 

Sebangau and Ncaute forests confirmed the finding in 5.2.1. There was a visibility issue for 

estimating basal area using the ACP approach in the Sebangau forest. This study found that 

selecting the BAF of 5 can minimize the effect of restricted visibility on the estimation. On the 

other hand, a small BAF < 1 m2ha-1, should be selected for an open savanna forest like the 

Ncaute. 

 

4.3. Integration of field inventory and RapidEye for AGB estimation models in two 

different forest types of Sebangau and Hainich 

 Relationships between field-based AGB estimates and RapidEye predictor variables 

Table 4.6 presents the AGB estimates from all inventory datasets of the study areas. Based on 

the LSI systematic plots (n = 43), the estimated mean AGB of the Sebangau study area was 

297.7 Mg ha-1 with a standard error of 4.4% relative to the mean (Table 4.6). A large amount 

of this AGB was in small trees of DBH < 25 cm (Fig. 4.9). 

 

Table 4.6. Estimated AGB from field sample plots 

 

Study area Min Max Mean SE SE Variance CI (0.95)

(%) (Mg ha
-1

)
2

Sebangau  (n =43) 34.4 435.2 297.7 13.2 4.4 173.9 (271.1, 324.3)

Hainich - EP

Mixed plots (n =28) 198.3 369.2 298.0 8.9 3.0 79.2 (279.7, 316.2)

Broad-leaved plots (n =26) 198.3 369.2 298.6 9.1 3.1 83.1 (279.8, 317.3)

Hainich - AWF

Mixed plots (n =177) 1.0 575.1 244.5 8.7 3.6 76.3 (227.3, 261.8)

Broad-leaved plots (n =148) 1.0 575.2 242.3 9.4 3.9 88.6 (223.7, 260.9)

(Mg ha
-1

)
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In contrast with Sebangau, large trees of DBH > 40 cm contributed most to the AGB of the 

Hainich study area, given by the EP and AWF datasets. However, different mean estimates of 

AGB > 50 Mg ha-1 were observed between the EP and AWF datasets. In comparison to the EP 

dataset, more trees of DBH < 50 cm were recorded in the AWF plots, but less trees of 

DBH > 50 cm. 

 

  
Fig. 4.9. AGB distribution over DBH class estimated from field sample plots in the Sebangau 

(n = 43), and Hainich study areas (n = 28 for EP, n = 177 for AWF). 

 

In general, the Pearson correlation coefficients r between the plot-based AGB estimates and 

the RapidEye predictor variables of each dataset were low (Table 4.7). Some of these 

correlations were significant at p < 0.05 (Table 4.7, printed in bold). The predictor with the 

highest correlation changed for each dataset. 

In the Sebangau study, only 9 out of 40 predictors were significantly correlated with the AGB 

(n = 43) with absolute values of r between 0.30 and 0.52 at p < 0.05. All these nine predictors 

were related to the red-edge band, indicating that red-edge is an important spectral region for 

AGB estimation in the dense forest of Sebangau with mixed tree species. 

In reference to the Hainich study, ten predictor variables were significantly correlated with the 

AGB from the EP dataset (n = 28), with absolute values of r between 0.38 and 0.40 (p < 0.05). 

The exclusion of the two coniferous-dominated plots increased the number of predictors with 

significant correlation at p < 0.05 and increased the magnitude of r to 0.60. 
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Table 4.7. Pearson’s correlation coefficients of field AGB and RapidEye predictor variables. 

The correlation coefficients significant at p < 0.05 are printed in bold; max: maximum, min: 

minimum, sd: standard deviation, CORR: correlation, ENTR: entropy, HOMO: homogeneity, 

X15 represents the window size used to calculate all texture features (15x15). 

 

Predictors EP (n =28) EP (n =26) AWF (n =177) AWF (n =148)

variables r p-value   r p-value r p-value r p-value r p-value

Band Reflectance

B2_mean -0.15 0.3260 0.17 0.3799 0.30 0.1414 -0.36 1.23E-06 -0.31 1.46E-04

B2_max -0.18 0.2509 0.25 0.1985 0.26 0.2053 -0.39 5.70E-08 -0.36 6.74E-06

B2_min -0.17 0.2889 0.07 0.7108 0.15 0.4740 -0.19 0.0114 -0.11 0.1937

B2_sd -0.09 0.5752 -0.11 0.5705 -0.18 0.3882 -0.26 0.0004 -0.27 0.0010

B3_mean -0.19 0.2216 0.11 0.5609 0.14 0.5092 -0.29 0.0001 -0.23 0.0041

B3_max -0.18 0.2388 -0.14 0.4832 -0.25 0.2095 -0.33 9.06E-06 -0.28 0.0006

B3_min -0.11 0.4992 0.37 0.0537 0.42 0.0319 -0.17 0.0271 -0.09 0.2727

B3_sd -0.14 0.3850 -0.40 0.0359 -0.45 0.0205 -0.27 0.0003 -0.24 0.0030

B4_mean -0.36 0.0175 0.27 0.1663 0.54 0.0041 -0.30 4.42E-05 -0.25 0.0019

B4_max -0.36 0.0189 0.06 0.7575 0.09 0.6776 -0.38 2.34E-07 -0.35 1.71E-05

B4_min -0.21 0.1840 0.40 0.0365 0.53 0.0055 -0.15 0.0433 -0.08 0.3370

B4_sd -0.26 0.0979 -0.39 0.0381 -0.42 0.0344 -0.27 0.0002 -0.26 0.0012

B5_mean 0.05 0.7369 0.32 0.0952 0.44 0.0245 -0.24 0.0011 -0.17 0.0351

B5_max 0.01 0.9319 0.23 0.2431 0.31 0.1187 -0.32 1.50E-05 -0.26 0.0012

B5_min 0.14 0.3578 0.39 0.0409 0.48 0.0135 -0.14 0.0678 -0.07 0.3834

B5_sd -0.21 0.1851 -0.16 0.4140 -0.11 0.5769 -0.24 0.0016 -0.22 0.0075

Vegetation Indices

CCCI_mean 0.44 0.0031 -0.14 0.4689 -0.29 0.1568 0.18 0.0151 0.16 0.0476

CCCI_max 0.31 0.0409 -0.26 0.1839 -0.51 0.0085 0.19 0.0112 0.20 0.0132

CCCI_min 0.30 0.0527 0.00 0.9857 -0.07 0.7201 0.07 0.3751 0.03 0.6762

CCCI_sd -0.11 0.4736 -0.39 0.0412 -0.51 0.0082 0.13 0.0939 0.14 0.0904

NDVI_mean 0.18 0.2612 0.28 0.1421 0.35 0.0772 -0.12 0.1217 -0.05 0.5393

NDVI_max 0.12 0.4383 0.23 0.2373 0.31 0.1209 -0.16 0.0323 -0.09 0.2653

NDVI_min 0.17 0.2850 0.40 0.0355 0.48 0.0126 -0.07 0.3834 -0.01 0.9025

NDVI_sd -0.14 0.3539 -0.20 0.3044 -0.27 0.1829 -0.09 0.2564 -0.08 0.3270

NDRE_mean 0.12 0.4420 0.29 0.1319 0.42 0.0340 -0.19 0.0116 -0.13 0.1158

NDRE_max 0.05 0.7681 0.05 0.8168 0.10 0.6441 -0.20 0.0073 -0.14 0.0889

NDRE_min 0.11 0.4703 0.38 0.0477 0.51 0.0082 -0.13 0.0942 -0.08 0.3414

NDRE_sd -0.12 0.4592 -0.38 0.0480 -0.46 0.0171 -0.09 0.2475 -0.10 0.2355

NDVIRE_mean 0.34 0.0252 0.19 0.3370 0.25 0.2087 -0.04 0.6242 0.01 0.9065

NDVIRE_max 0.36 0.0191 0.09 0.6406 0.14 0.4845 -0.02 0.7617 0.03 0.6936

NDVIRE_min 0.25 0.1088 0.38 0.0456 0.35 0.0764 -0.03 0.6826 0.01 0.9272

NDVIRE_sd -0.10 0.5332 -0.06 0.7457 -0.02 0.9296 0.03 0.7043 0.06 0.4721

MSAVI_mean 0.10 0.5088 0.32 0.0980 0.41 0.0397 -0.21 0.0055 -0.14 0.0966

MSAVI_max 0.05 0.7654 0.26 0.1833 0.34 0.0869 -0.27 0.0002 -0.21 0.0111

MSAVI_min 0.15 0.3241 0.39 0.0375 0.46 0.0167 -0.12 0.1102 -0.06 0.4779

MSAVI_sd -0.19 0.2157 -0.11 0.5807 -0.05 0.8071 -0.20 0.0074 -0.18 0.0264

GLCM Texture Features

CORR_X15 0.06 0.7193 -0.28 0.1521 -0.35 0.0788 -0.21 0.0055 -0.31 0.0001

ENTR_X15 0.52 0.0004 -0.26 0.1791 -0.38 0.0563 -0.25 0.0007 -0.29 0.0003

HOMO_X15 -0.51 0.0004 0.20 0.3036 0.35 0.0785 0.22 0.0031 0.22 0.0068

MEAN_X15 -0.22 0.1516 0.30 0.1259 0.60 0.0013 -0.19 0.0117 -0.14 0.0868

Sebangau (n =43)
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For the AWF dataset (n = 177), 27 predictors were significantly correlated with AGB, with 

absolute values of r from 0.15 to 0.39 (p < 0.05). In contrast with the EP dataset, the exclusion 

of coniferous-dominated plots from the AWF dataset decreased the number of predictors that 

significantly correlated with AGB at p < 0.05 and decreased the magnitude of r of the 

predictors (n = 148). Noticeable changes occurred in the variables from the band reflectances 

and vegetation indices groups. The most likely reason for the decrease in r is the reduction of 

AWF sample size, since calculation for the p-value of the significance level is also a function 

of sample size. 

It was observed in this study that texture features were correlated (p < 0.05) more frequently 

with the AGB estimates of Sebangau and of Hainich with the AWF dataset, than that of 

Hainich with the EP dataset. The AGB estimates of Hainich with the EP dataset most 

frequently correlated with the band reflectance and vegetation indices predictors. 

 

 AGB estimation models 

The final AGB model for all study cases was selected through a stepwise method with 

exhaustive searches and multiple linear regressions (Table 4.8). Each predictor in the model 

was significant for p ≤ 0.05 and met the statistical collinearity requirements with the 

maximum VIF value of 5. 

The variables mean CCCI and GLCM homogeneity were the two selected predictors for the 

Sebangau model. The model was weak, as it explained only 34% of the variability in the 

dataset (n = 43). The cross-validation using the LOOCV approach showed a RMSEr of 24% 

relative to the mean. In comparison to the models derived from the Hainich datasets, the 

model performance in Sebangau was slightly higher than the model derived from the AWF 

dataset, but lower than that of the EP dataset. 

The Hainich mixed model based on the EP dataset (n = 28) consisted of three predictors. The 

selected predictors in the model were the maximum and minimum of the green band, as well 

as the standard deviation of the red-edge band. The model explained as much as 38% of the 

variability in the data and the RMSEr was 13.27% relative to the mean. An improvement in the 

model performance occurred when the coniferous-dominated plots were excluded from the EP 

dataset. The Hainich broad-leaved model based on the EP dataset (n = 26) comprised four 

combinations of predictors: the mean of the red band, the maximum of MSAVI, the minimum 

of CCCI, and the standard deviation of NDRE. The model explained 65% of the variability in 

the dataset with a RMSEr of 10.26% relative to the mean. 
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Table 4.8. Final AGB models derived from the Sebangau and Hainich datasets. The model 

performance is evaluated by using LOOCV; VIF = Variance Inflation Factor; RMSEr = 

Relative Root Mean Square Error. 

 

 

The performance of AGB models derived from the AWF dataset were lower than those 

derived from the EP dataset. The AWF mixed model (n = 177) explained only 23% of the 

variability in the dataset with a RMSEr of 42.24% relative to the mean. The exclusion of 

coniferous-dominated plots from the AWF dataset slightly decreased the model performance 

(n = 148). The decrease in the correlation between the AGB for broad-leaved and the selected 

predictor (B2_mean) (Table 4.7), which contributed most in estimating the AGB (Table 4.8), 

followed the decrease of the model performance. 

Scatterplots of the observed versus predicted AGB from the Sebangau and Hainich AWF 

models suggest a saturation at about 300 Mg ha-1. However, this was not observed for the EP 

model (Fig. 4.10). The highest residual was observed in the Hainich AWF models. 

AGB Model Predictor Estimate Std. t -value Pr(>|t|) VIF Adj RMSEr

Sample size (n ) variables Error R
2 (%)

Sebangau model 0.34 24.01

LSI (n =43) (Intercept) -1322.3 678.6 -1.949 0.05838

CCCI_mean 3501.8 1332.1 2.629 0.01210 1

HOMO_X15 -664.9 196.0 -3.391 0.00158 1

Hainich mixed model 0.38 13.27

EP (n =28) (Intercept) 199.7 158.8 1.257 0.22070

B2_max 16470.3 4859.0 3.390 0.00240 2

B2 _min -22222.6 8002.6 -2.777 0.01050 2

B4_sd -243158.2 59784.6 -4.067 0.00040 2

Hainich broad-leaved model 0.65 10.26

EP (n =26) (Intercept) 288.0 242.5 1.187 0.24840

B3_mean 28659.4 11386.7 2.517 0.02000 2

MSAVI_max 1029.3 175.7 5.857 0.00080 2

CCCI _min -1076.9 309.1 -3.484 0.00220 1

NDRE_sd -10579.5 2459.0 -4.302 0.00030 1

Hainich mixed  model 0.23 42.24

AWF (n =177) (Intercept) 1532.2 245.5 6.241 3.30E-09

B2_mean -7058.7 2303.9 -3.064 0.00250 4

B4_max -2782.6 944.4 -2.946 0.00370 5

MEAN_X15 1665.7 489.7 3.401 0.00080 4

CORR_X15 -230.3 91.5 -2.518 0.01270 1

Hainich broad-leaved model 0.20 42.79

AWF (n =148) (Intercept) 1515.7 237.8 6.374 2.30E-09

B2_mean -11169.5 2704.7 -4.130 6.10E-05 3

B2_min 4806.8 2246.2 2.140 0.03400 3

CORR_X15 -364.3 105.8 -3.441 0.00080 1
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Sebangau model 

(n=43) 

 

Hainich 

Mixed model 

EP (n=28) 

Hainich  

Broad-leaved  
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EP (n=26) 

 

Hainich 

Mixed model 

 AWF (n=177) 

 

Hainich 

Broad-leaved  

model 

AWF (n=148) 

 

Fig. 4.10. Scatterplots of predicted versus observed values and residual versus predicted 

values for the Sebangau and Hainich AGB models. 
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 Model regionalization and validation 

Sebangau 

While the model showed a weak predictive performance, the model regionalization over the 

Sebangau study area produced a predicted AGB map with plausible distributions, given in a 

35 m spatial resolution (Fig. 4.11). The bright areas on the map represent areas with low AGB 

estimates, predicted to be less than 50 Mg ha-1. These areas are in the forest areas the southern 

part of the study area, in the previously degraded/burnt areas in the western part, and in the 

riverine area in the northeastern part. The model-assisted mean AGB per hectare and the 

corresponding standard error estimate for the Sebangau study area (N = 242,735) was 281.7 ± 

10.4 Mg ha-1. This model-assisted estimate was within the confidence interval of the field-

based mean AGB estimates reported in 4.3.1. 

 

 

Fig. 4.11. The AGB distribution map over the Sebangau study area predicted from the model. 

 

However, an independent validation using the HIL dataset showed that the model performed 

poorly at predicting AGB in the HIL plots. The Pearson correlation between the observed 

AGB from HIL plots and the AGB predicted by the model is just r = 0.12 (p-value = 0.56). 
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Hainich 

Regionalizations of the produced AGB models from the EP and AWF datasets are presented in 

Fig. 4.12. Due to the smaller pixel size, the AGB-AWF map (25 m x 25 m pixel resolution) 

presents more detailed information of the spatial distributions of predicted AGB in the Hainich 

study area, compared to that of the EP-AGB map (100 m x 100 m pixel resolution). The image 

in the center is the RapidEye data, which was used to derive the predictor variables. Detailed 

information about the RapidEye image has been explained in 2.4.2. The image is presented in 

the false color composite (FCC) of the red-edge, NIR, and red band (FCC 543). The subset 

maps in Fig. 4.12 present a small part of the study area that consists of the dominant beech 

forests (of brownish-green appearance in the RapidEye image of FCC 543), dominant 

coniferous trees (very dark green), open areas (magenta), young trees (bright green), and bare 

lands and grass (light brown mixed with light magenta and light green). The differences in 

resolution between the two AGB maps are clearly visible in the subset maps. 

The EP-AGB map shows higher predictions than that of the AWF-AGB map. The model-

assisted mean AGB estimate for the Hainich study area based on the EP data (N = 11,780) was 

265.2 ± 6.6 Mg ha-1, while the model-assisted mean AGB estimate based on the AWF data 

(N = 188,585) was 243.4 ± 7.6 Mg ha-1. This was consistent with the field-based mean AGB 

estimate from the EPs, which was higher than the mean estimate from the AWF plots. 

Fig. 4.13. shows a map presenting the difference between predicted AGB derived from the EP 

and AWF datasets in the Hainich study area. The difference map was attained by subtracting 

the AWF-AGB map from the EP-AGB map. In the areas where the forest is dominated by 

coniferous trees, the AWF-AGB map generally showed higher values than in the EP-AGB 

map, resulting in a negative AGB prediction of up to more than 150 Mg ha-1. Similar results 

were found in the shadowed areas of the forest, in which the AWF-AGB map predicted higher 

AGB than that of the EP-AGB map. 

The younger stands appear as brighter green in the RapidEye image. For these areas, higher 

AGB values are predicted in the EP-AGB map than in the AWF-AGB map. This results in 

positive differences between the two maps. The EP-AGB map also showed higher AGB 

predictions in the open areas, e.g., open lands and grasses. A similar positive difference 

occurred in the forest edge along the road. Reflectances from this area were influenced by 

younger stands and grasses, producing higher predicted AGB of > 350 Mg ha-1 in the EP-AGB 

map. On the contrary, this area was detected with lower predicted AGB of < 50 Mg ha-1 in the 

AWF-AGB map. 
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Fig. 4.12. The AGB distribution maps of the Hainich study area predicted using the model derived from the EP dataset (left), and 

from the AWF dataset (right). RapidEye image of the study area acquired on 20th of September 2013, presented in band combination of 

red-edge, NIR, and red in the red-green-blue color composite, respectively (RGB 453). 
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Fig. 4.13. The AGB difference map showing the difference between AGB predicted from the 

EP model, and the AGB predicted from the AWF model. 

 

Results from the cross-validation of the two predicted maps show that the EP model was 

relatively weak in predicting the AGB of AWF plots, as well as when the AWF model was 

used for predicting the AGB of the EP plots. The correlation between the EP-AGB predicted 

map and the observed AGB in the AWF plots was r = 0.12 (p-value = 0.10), while the 

correlation between AWF-AGB predicted map and the observed AGB in the EP plots was 

r = 0.16 (p-value = 0.40), or simply no correlation. 

 

 Relative efficiency 

Table 4.9 presents the model-assisted estimates for the mean AGB (μ̂MA) and the associated 

standard error (𝑆𝐸(μ̂MA)) and variance (�̂�(μ̂MA)). The model-assisted mean AGB of the 

Sebangau and the Hainich-AWF mixed plots were within the 95% confidence interval of the 

corresponding estimates from the field observations. However, the mean AGB of the Hainich-

EP mixed plots fell outside of the confidence interval (Table 4.6). Compared to the estimates 

of the SE of the mean from field observations, the model-assisted SE estimates were lower in 

all cases. The efficiency of AGB estimates with the integration of RapidEye data, relative to 

Differences in AGB Predicted Map
(EP Map - AWF Map) Mg ha-1

< -150

-150 – -100

-100 – -50

-50 – <0

0

>0 – 50

50 – 100

100 – 150

150 – 200

> 200



Chapter 4. Results 
 

70 

 

the estimates from field data only was higher for all cases. The highest RE value of 3.4 was 

given when the RapidEye data was combined with the broad-leaved plots of Hainich-EP 

dataset. 

 

Table 4.9. The model-assisted estimates for the mean AGB (μ̂MA) and the associated standard 

error estimates (𝑆𝐸(μ̂MA)) and Variance (�̂�(μ̂MA)), and relative efficiency (RE). 

 

 

4.4. The effect of different field plot sizes on the AGB estimation models derived from 

field inventory and RapidEye data using the EP dataset of Hainich 

 Estimations based on field observations of different plot sizes 

Table 4.10 presents the field estimates for the mean DBH, stem density, estimated AGB, and 

estimated BA derived from the EP Dataset 1 (n = 26), as described in section 3.3. The mean 

estimation from the 95 m x 95 m and smaller plot sizes were calculated plot-wise and 

expanded to the 1 ha estimation using an expansion factor according to the plot size. The 

average number of measured trees per plot is also presented in the table for different plot sizes. 

The mean AGB estimates from all smaller plot sizes were within the confidence interval of the 

estimate from the 1 ha plot, except for the 25 m x 25 m sizes (Table 4.6). The mean stem 

density and DBH estimates increased as the plot size decreased, as well as the mean AGB 

estimates. As the plots get smaller, the SE of the mean AGB estimates increased, from 9.1 to 

18.9 Mg ha-1, while the range of AGB estimates increased from 170.9 to 402.15 Mg ha-1. 

Likewise, the field-based SE of the mean BA estimates increased from 18.15 to 40.07 m2ha-1, 

and the range of BA estimates increased from 18.15 to 40.07 m2ha-1. 

 

Study area RE

(Mg ha
-1

)
2 Sizes (m) N

Sebangau  (n =43) 281.7 10.4 108.6 1.6 35x35 242,735

Hainich - EP

Mixed plots (n =28) 265.2 6.6 43.9 1.8 100x100 11,780

Broad-leaved plots (n =26) - 4.9 24.3 3.4 - -

Hainich - AWF

Mixed plots (n =177) 243.4 7.6 57.4 1.3 25x25 188,585

Broad-leaved plots (n =148) - 8.3 69.2 1.3 - -

Pixels

(Mg ha
-1

)

�̂� μ̂MA
𝑆𝐸 μ̂MA

μ̂MA
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Table 4.10. Major forest variables from the EP datasets of different square plot sizes with the 

same plot center and a constant sample size of n = 26. 

 

 

 Performance of AGB estimation models derived from different plot sizes and shapes 

The performance of RapidEye-based AGB models is given in Adj R2 and relative RMSEr (%) 

by using different square plot sizes derived from the EP Dataset 1 (Fig. 4.14 and Fig. 4.15) 

and different plot sizes and shapes from the EP Dataset 2 (Fig. 4.16). Each of the datasets had 

a constant sample size of n = 26 as described in section 3.3. 

In Fig. 4.14, a single model with the same predictors as selected in the Hainich broad-leaved 

model (Table 4.8) was applied to fit a regression with varying square plot sizes. In general, the 

model performance declined as the plot size decreased. For example, the Adj R2 decreased 

from 0.65 to 0.12 when the plot size decreased from 1 ha (100 m x 100 m) to 400 m2 

(20 m x 20 m). Some of the predictors in the model derived from smaller plot sizes were 

Plot Avg DBH Stem Density

size trees Range Range Range Range

(m
2
) per plot

100x100 386 15.72 28.7 ± 0.96 463 386.2 ± 25.11 170.94 298.6 ±   9.12 18.15 33.3 ± 1.00

95x95 353 16.07 28.7 ± 0.97 468 391.7 ± 25.32 176.65 302.9 ±   9.74 19.27 33.8 ± 1.05

90x90 316 15.81 28.9 ± 0.98 489 389.9 ± 25.95 192.24 304.9 ±   9.94 20.39 34.0 ± 1.08

85x85 281 18.80 28.9 ± 1.01 502 388.7 ± 26.03 174.11 302.0 ±   9.79 18.43 33.6 ± 1.05

80x80 249 21.68 28.9 ± 1.05 509 389.1 ± 26.40 194.32 301.6 ± 10.49 20.09 33.6 ± 1.12

75x75 219 22.77 29.0 ± 1.07 548 389.9 ± 27.57 195.53 301.4 ± 10.69 20.86 33.6 ± 1.15

70x70 191 23.54 29.1 ± 1.12 549 389.4 ± 28.26 187.75 301.9 ± 10.49 20.18 33.7 ± 1.10

65x65 165 24.47 29.3 ± 1.12 592 391.6 ± 28.97 172.77 303.0 ±   9.95 19.06 33.8 ± 1.08

60x60 141 25.63 29.5 ± 1.17 575 390.9 ± 28.94 169.04 306.9 ±   9.54 17.91 34.2 ± 1.05

55x55 117 25.99 29.8 ± 1.25 582 387.3 ± 29.99 217.35 308.6 ± 12.09 22.51 34.3 ± 1.26

50x50 95 32.80 30.3 ± 1.42 612 381.4 ± 31.46 222.27 306.4 ± 12.09 23.32 34.0 ± 1.27

45x45 77 33.91 30.7 ± 1.52 607 379.3 ± 31.70 228.66 306.2 ± 11.06 23.75 34.0 ± 1.15

40x40 60 36.49 30.3 ± 1.58 575 376.7 ± 30.74 217.12 300.0 ± 12.12 20.87 33.3 ± 1.25

35x35 46 40.24 31.0 ± 1.73 629 375.2 ± 31.74 246.92 305.2 ± 14.04 23.50 33.7 ± 1.42

30x30 34 39.65 30.9 ± 1.69 633 373.5 ± 32.48 286.03 301.7 ± 12.98 28.20 33.4 ± 1.38

25x25 24 39.74 31.3 ± 1.80 592 385.2 ± 33.08 366.55 317.8 ± 17.62 35.83 35.1 ± 1.75

20x20 16 41.52 30.9 ± 1.92 600 397.1 ± 36.49 402.15 316.8 ± 18.86 40.07 35.1 ± 1.96

AGB BA

Mean ± SE Mean ± SE Mean ± SE Mean ± SE

(cm) (no ha
-1

) (Mg ha
-1

) (m
2
 ha

-1
)
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insignificant at p < 0.05. The decreasing plot size increased the relative RMSEr from 10.27 to 

34.04%. 

 

 

Fig. 4.14. The Adj R2 and RMSEr (%) of the same AGB model derived from different square 

plot sizes with a constant center point (n = 26). 

 

Fig. 4.15 depicts the effect of plot size in the performance of AGB models with changing 

predictors. The list of the separate AGB models is given in Appendix C for Dataset 1. These 

models explained 44 to 68% of the variability in the datasets, depending on plot size. The 

highest Adj R2 of 0.68 was obtained with the 55 m x 55 m plot size. A general decreasing 

pattern was observed in the relative RMSEr values, while this was not the case with the Adj R2. 

The lowest RMSEr was obtained from the 100 m x 100 m plot size. However, an initial steep 

decrease of RMSEr occurred at the 30 m x 30 m plot size with a value of 16.36% and a model 
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Adj R2 of 0.54. Some results from the adjacent plots were quite similar to each other, since the 

square plots shared the same center point and differed only 5 m in side length. 

 

 

Fig. 4.15. The Adj R2 and RMSEr (%) of different AGB models with varying predictors 

derived from different square plot sizes with a constant center point (n = 26).  

 

Fig. 4.16 depicts the effects of different sample plot sizes and shapes on the performance of 

separate AGB models with changing predictors. The list of the AGB models is given in 

Appendix C for Dataset 2. Depending on the plot size, the models explained 33 to 65% of the 

AGB variability in the datasets. The highest Adj R2 of 0.65 was obtained from the plot size of 

100 m x 100 m. Generally, it was observed that the model Adj R2 improved with an increase in 

plot size, e.g. Adj R2 of 25 m x 20 m < Adj R2 of 25 m x 25 m < Adj R2 of 33.3 m x 25 m or 

Adj R2 50 m x 20 m < Adj R2 of 50 m x 25 m < Adj R2 of 50 m x 33.3 m. However, it was also 

2
5
x2

52
0
x2

0

4
5
x4

53
5
x3

5

3
0
x3

0

5
5
x5

5

4
0
x4

0

5
0
x5

0

6
0
x6

0

6
5
x6

5

7
0
x7

0

7
5
x7

5

8
0
x8

0

8
5
x8

5

9
0
x9

0

9
5
x9

5

1
0
0
x1

0
0

0.0

0.2

0.4

0.6

0.8

0 2000 4000 6000 8000 10000

A
d

ju
s
te

d
 R

2

2
0
x2

0

2
5
x2

5

3
0
x3

0

3
5
x3

5

4
0
x4

0

4
5
x4

5

5
0
x5

0

5
5
x5

5

6
0
x6

0

6
5
x6

5

7
0
x7

0 7
5
x7

5

8
0
x8

0

8
5
x8

5

9
0
x9

0

9
5
x9

5

1
0
0
x1

0
0

0

10

20

30

40

0 2000 4000 6000 8000 10000

R
e

la
ti
ve

 R
M

S
E

 (
%

)

Plot size (m2)



Chapter 4. Results 
 

74 

 

observed that the reference plots of 20 m x 20 m, or plots with a combination side length of 

20 m, e.g., 33.3 m x 20 m, 50 m x 20 m, tended to have lower Adj R2 compared to other plots 

of comparable sizes. Hence, no clear direction between Adj R2 and plot size can be drawn in 

this study. 

Regarding the relative RMSEr values, a general decreasing pattern was also observed in Fig. 

4.16 with the increase in plot size. The lowest RMSEr of 10.27% was obtained from the plot 

size of 100 m x 100 m. However, the initial steep decreasing rate of the RMSEr occurred when 

the plot size was 25 m x 25 m with the value of 20.76% and the model Adj R2 of 0.53. 

 

 

Fig. 4.16. The Adj R2 and RMSEr (%) of different AGB models with varying predictors 

derived from different plot sizes and shapes selected randomly within the 1 ha EP plots 

(n = 26). 
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Statistically significant relationships were identified when correlating the AGB model 

performance with plot perimeter and plot size, using Datasets 1 and 2 and changing predictors. 

The Pearson’s correlation coefficients between perimeter and relative RMSEr were higher than 

those between plot size and relative RMSEr. In addition, the same results were identified with 

relative maximum residual (Table 4.11). The least correlation was found between both plot 

perimeter and plot size when paired with the model Adj R2. However, these correlations had 

higher significance in Dataset 2 with more variations on plot shape, compared to Dataset 1 

with only the square plot shape. Altogether, the results in this study indicate that plot 

perimeter has a higher effect in the model performance than plot size. 

 

Table 4.11. Pearson correlation coefficients between plot perimeter (or plot size) and model 

Adj R2, Relative RMSEr, or Relative maximum residual derived from different plot sizes 

(n = 26) using Dataset 1 and Dataset 2 of 17 and 15 different plot size, respectively. 

 

 

 Efficiency of AGB estimates with the integration of RapidEye data, relative to the 

estimates from field data alone, for different plot sizes 

Fig. 4.17 depicts the estimated SEs of the field-based mean AGB estimates and the model-

assisted mean AGB estimates, obtained from Dataset 1. The estimated SE from the model-

assisted estimates was lower than that of the field-based estimates. Both estimations showed a 

decreasing trend with increasing plot size, with the lowest estimated SE from the 

100 m x 100 m plot size. However, the initial steep decreasing rate of the estimated SE from 

both approaches occurred at a plot size of 30 m x 30 m. 

Correlation p-value Correlation p-value

Based on the EP Dataset 1 

Adj R
2 0.18 0.47950 0.13 0.62710

Relative RMSE r -0.70 0.00160 -0.61 0.00937

Relative Maximum Residual -0.82 5.37E-05 -0.78 0.00025

Based on the EP Dataset 2

Adj R
2 0.53 0.04135 0.55 0.03521

Relative RMSE r -0.89 1.12E-05 -0.72 0.00225

Relative Maximum Residual -0.84 8.73E-05 -0.74 0.00149

Plot perimeter Plot size
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Fig. 4.17. The standard error (SE, Mg ha-1) of different AGB models at different square plot 

sizes with the same center point. 

 

Fig. 4.18 depicts the relative efficiencies of the two approaches. The values range between 2.1 

and 3.7, with an average value of 2.8. The result showed that the precision of the mean AGB 

estimates improved when the RapidEye data was incorporated with the field observation data, 

compared to the precision from the field-based mean AGB estimate alone. However, the 

magnitude of this efficiency was different for different plot sizes with a similar oscillation 

pattern shown by the magnitude of the model Adj R2. 

 

 

Fig. 4.18. The relative efficiency (unitless) of different AGB models from different square plot 

sizes with the same center point. The line shows the average efficiency value. 
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The results from the Dataset 1 indicate an optimum plot size of 55 m x 55 m. The model 

derived from this plot size exhibits a high Adj R2, low RMSEr, low SE of the mean AGB 

estimate, and high efficiency from the inclusion of RapidEye data in the estimation. However, 

since a smaller plot size is usually preferable for field data collection, the 40 m x 40 m plot 

size can be taken as an alternative for the optimum plot size, depending on the available 

sources and the acceptable precision. 

Comparable results were achieved when the analysis was carried out using the Dataset 2, as it 

was depicted in Fig. 4.19. The estimated SE of the field-based mean AGB estimates ranged 

between 9.1 to 22.8 Mg ha-1, and the estimated SE of the model-assisted mean AGB estimate 

was within the range of 4.9 to 14.6 Mg ha-1. While the initial steep decreasing rate of the 

estimated SE from both approaches occurred when the plot size was 25 m x 25 m, the lowest 

estimated SE was achieved from the plot size of 100 m x 100 m.  

 

 

Fig. 4.19. The standard error (SE, Mg ha-1) of different AGB models from different plot sizes 

and shapes, selected randomly within the 1 ha EP plots. 

 

Fig. 4.20 depicts the relative efficiencies between the two approaches. The values were 

between 1.8 and 3.4 for different plot sizes, with an average value of 2.5. The highest relative 

efficiency of 3.4 was obtained from the plot size of 100 m x 100 m. A similar oscillation 

pattern as the one shown by the Adj R2 was also found in the relative efficiency of the two 

approaches. 
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Fig. 4.20. The relative efficiency (unitless) of different AGB models from different plot sizes 

and shapes, selected randomly within the 1 ha EP plots. The line shows the average efficiency 

value. 

 

From the results using the Dataset 2, the optimum plot size with a combination of high Adj R2, 

low RMSEr, low SE, and high efficiency from the inclusions of RapidEye data in the 

estimation, was the 50 m x 33.3 m plot size. Considering the available sources and the 

acceptable precision, a plot size of 25 m x 25 m can be taken as an alternative. 

Overall, the results showed that the AGB model with a higher Adj R2 exhibits a larger gain in 

the precision of AGB estimates by combining RapidEye and field data. 
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Chapter 5 

Discussion  

5.1. The effect of forest restricted visibility on the basal area estimates from ACP in 

two different forest types of Sebangau and Ncaute 

FAP and ACP designs are commonly used in forest inventories for the estimation of forest 

stand variables. In the absence of measurement error, both approaches produce unbiased 

estimates of, for example, basal area. When applying the ACP method, the trees missed to be 

counted at a larger distance are often the most relevant sources of measurement error, 

depending on the selected BAF and the visibility conditions of the forest during the 

measurement. 

The maximum distance of visibility of the Sebangau forest in this study was 6.6 m. Given this 

restricted visibility, a BAF of 5 was used per the standard in dense forest conditions like in 

Sebangau. This BAF was low enough to be largely unaffected by the restricted forest visibility 

and high enough to provide a high precision of estimation. Results from the simulation study 

indicated a systematic underestimation of the basal area from ACP in the Sebangau forest, 

particularly when a BAF < 5 was selected. These results were interpreted as the effect from 

the restricted visibility within the forest. The use of a lower BAF required a greater distance of 

visibility than the maximum distance of visibility of the forest, which led to a deviation of the 

estimations. The results were in accordance with earlier studies (Brooks, 2006; Husch et al., 

1982; Ritter et al., 2013). The study of Ritter et al. (2013) found that basal area estimates from 

ACP with a BAF of 1 or 2 were biased, due to the increased number of miscounted trees at a 

larger distance. Their study was conducted by using a simulated forest with trees spatially 

distributed as random and Poisson point patterns. On the contrary, selecting a BAF > 5 will 

inflate the rate of basal area estimates represented by each sample tree. The use of higher 

BAFs reduces the measurement error due to the missing counted trees, but it also tends to 

increase the sampling error of the estimations (Zeide, 1985). 

This study estimated mean basal area from FAP of 31.0 m2ha-1 in the Sebangau forest and of 

3.6 m2ha-1 in the Ncaute forest. Kronseder et al. (2012) reported a similar mean basal area for 

the Sebangau forest of (mean ± SD) 30.7 ± 12.4 m2ha-1, obtained using the ACP approach with 
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no information on the BAF used in the study. The sample plots of Kronseder et al. (2012) 

covered a wider range of AGB variabilities from unlogged to slightly-logged forests. This can 

be the reason for the higher standard deviation compared to the one in the current study of 

8.4 m2ha-1. No further comparison can be made since the study did not report the standard 

error of the estimation. 

The difference between the estimates from ACP and FAP in the field inventory data also 

indicated the effect of forest restricted visibility in basal area estimation from ACP in the 

Sebangau forest. As the BAF increased, the difference between the mean basal area estimates 

from both approaches decreased. This interpretation was motivated by the contrasting result 

from Ncaute open savanna forest with hardly any visibility restriction. In line with earlier 

studies (Piqué et al., 2011; Scrinzi et al., 2015), the estimates from Ncaute forest showed no 

significant deviation between the mean estimate from ACP and FAP. These studies were 

conducted in managed forests with much lower tree density and less undergrowth than in the 

Sebangau forest, where a relatively longer distance of visibility is expected. Piqué et al. (2011) 

found no significant differences between FAP and ACP in the mean estimates of the basal area 

of different Mediterranean forest stands of Catalonia, north-east Spain. The study of Scrinzi et 

al. (2015) found a correlation of r = 0.92 between the basal area estimates from ACP and the 

estimates from FAP. The study was conducted in the Latemar forest of Bolzano Province in 

the Italian Central Alps. 

Among the important criteria for ACP is the average number of trees per sample point. In the 

Sebangau field inventory data, the use of BAF 4 provided, on average, between 5 to 16 

counted trees per sample point, as suggested by earlier studies (Avery and Burkhart, 2002; 

Bitterlich, 1984; Van Laar and Akça, 2007; West, 2009). In contrast, BAFs from 1 to 4 did not 

provide a sufficient number of trees per angle count-plot in the Ncaute forest. An average 

number of less than 4 trees were obtained from all three BAFs in the Ncaute forest. This result 

indicated that a BAF of 1 was already too high for the forest. 

In the end, selection of a proper BAF is a trade-off between minimizing the deviation of the 

mean estimates and achieving the highest possible precision. The result of using a BAF of 5 in 

this study is different than the current practice applied in the temporary plots of the Indonesian 

NFI, in which a BAF of 4 is selected independent of the forest conditions (Indonesia MoF, 

1992). The objective of the measurements on the NFI temporary plots is to obtain information 

on forest stock conditions (i.e. wood supply) at the observation point in time. There was no 

further information available on the selection procedure of this BAF, except that the target 

trees to be counted had a minimum DBH of 20 cm. However, by using the dataset and 
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following the approach of the current study, selecting the BAF 4 for a logged-over secondary 

peat-swamp forest like the Sebangau would significantly underestimate the basal area of the 

forest, as it was found here in the field inventory data and the results from the simulation 

study. 

Regarding the Ncaute forest, this study found that the use of a BAF lower than 1 would be 

suitable for a forest type like the Ncaute. Lowering the BAF down to 0.25 m2ha-1 in an open 

savanna forest with a low tree density and large DBH had also been recommended by 

Bitterlich (1984). 

This study successfully determined the maximum visibility distance of the Sebangau forest 

and the suitable BAF to be used for implementing the ACP approach. The tree map used for 

the simulation study was based on the measured trees of a DBH ≥ 5 cm. In practice, trees with 

a DBH < 5 cm can also be selected in the field when implementing the ACP method. 

However, the chance of these trees to be selected during the field survey was assumed to be so 

low that it could be neglected. Since trees with a DBH < 5 cm were not tagged in the plot, they 

were recognized as the non-target trees of the study.  

The simulation assumed an equal visibility distance in all directions. However, this 

assumption may not apply in the field since natural forests stands are not necessarily isotropic. 

The assumption holds in the field because observers may step aside to get a better visibility for 

counting the sample trees. 

 

5.2. Integration between field inventory and optical RapidEye data for the AGB 

estimation models in two different forest types of Sebangau and Hainich 

 Relationships between field AGB estimates and predictor variables derived from 

RapidEye data 

The objective of the current study was to develop an AGB model derived from field inventory 

and RapidEye data using the Sebangau forest as the case study. The model was compared to 

the AGB models derived for the Hainich forest using two different field datasets. Results from 

this study were also compared with the results from earlier studies conducted for the 

development of a forest AGB estimation model. Some common statistical values such as the 

mean and its corresponding standard error or  standard deviation (when the standard error was 

not available), the model coefficient of determination R2, and the model prediction accuracy of 

RMSE have been used as performance indicators across various studies. However, these 
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studies may have used different remote sensing sensors, as well as sampling and statistical 

approaches to achieve their model. 

A number of studies on the AGB model development using field inventory and various remote 

sensing data have also been conducted in the Sebangau forest area (Ballhorn et al., 2011; 

Englhart et al., 2011, 2012b, 2013; Jubanski et al., 2013; Kronseder et al., 2012; Magdon et 

al., 2018; Schlund et al., 2015). Except for the study of Magdon et al. (2018), none of the 

studies were conducted using a probability sampling design, as it was implemented in the 

current study. The probability sampling design allows statistically sound estimates of the 

target population parameters and the corresponding standard error (Köhl et al., 2006).  

This study found that the field-based mean AGB estimate of the Sebangau peat-swamp forest 

was 297.7 Mg ha-1. An earlier study by Kronseder et al. (2012), which was conducted in the 

same forest, reported a lower mean AGB estimate of 258.5 Mg ha-1. Different results between 

the two studies can be explained by the wider range of AGB values in Kronseder et al. (2012), 

consisting of plots that were sampled from a larger area than the current study. The use of 

different allometric models is reported as one of the most important sources of uncertainty in 

estimating the forest AGB (Picard et al., 2015; Sileshi, 2014). This feature also contributed to 

the different AGB estimates between the two studies. Kronseder et al. (2012) used the general 

allometric model from Chave et al. (2005) to calculate the AGB estimates, whereas a specific 

allometric model for tropical peat-swamp forests was applied in the current study. The use of 

general allometric models is suitable for local AGB estimation in tropical remote sensing 

studies (Næsset et al., 2016), primarily when the local models do not represent all the sample 

trees, e.g., large trees. Since the local allometric model employed in the current study covered 

the ranges of DBH, height, and wood density of all trees in the observed sample plots, it was 

considered more appropriate. 

A recent study of Magdon et al. (2018) reported a field AGB estimation of the Sebangau forest 

of 241.4 Mg ha-1 and a standard error of 4.6% relative to the mean. The study covered a small 

portion of the study area with easy access to the forest. This explained the lower AGB 

estimates of their study compared to the estimate in the current study. 

The correlations between the AGB estimates and the predictor variables from the RapidEye 

bands were mostly negative in both the Sebangau and Hainich study areas. These inverse 

relationships are explained by the large proportions of incident solar radiation in the visible 

spectral region, between 400 to 700 nm, which is absorbed by the pigments at canopy level 

due to the photosynthesis process (Jones and Vaughan, 2010). 
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Some of the reasons for the weak relationships between the field-based AGB estimates and 

predictor variables in the Sebangau forest are related to the high stand density and high 

diversity of the tree species, in which AGB variations cannot be detected by RapidEye data. In 

the case of the Hainich forest, the high heterogeneity of the forest stand structure was a 

contributing factor. A relatively homogeneous absorption level of the red photosynthetic 

spectrum was observed in the Sebangau dataset. Earlier studies that were conducted in 

different forest types reported similar results and determined that dense and complex forest 

stand structures led to the saturation of the reflectance from optical data. This is one major 

drawback in estimating AGB (Lu et al., 2012, 2014; Pfeifer et al., 2016; Wijaya et al., 2010b). 

The red-edge band shows significant correlation with the AGB variability, particularly in the 

Sebangau dataset. The importance of the RapidEye red-edge band for AGB estimation using 

remote sensing data was also reported by Næsset et al. (2016) and Pfeifer et al. (2016). In 

general, GLCM texture features possessed higher correlations with the AGB of all datasets. 

The results confirmed reports from earlier studies on the importance of biomass predictor 

variables derived from the spatial variability of neighboring pixels in dense and complex 

forest structures (Castillo-Santiago et al., 2010; Eckert, 2012; Lu et al., 2014; Sarker and 

Nichol, 2011; Wijaya et al., 2010a). When the optical remote sensing data mainly captured the 

information at canopy surface including the associated canopy shadows, the GLCM texture 

features reduced the shadow effects at the canopy layers (Lu, 2005). These shadow effects are 

attributed to the heterogeneity of stand structures, tree species composition, and canopy gaps. 

Low spatial resolution data has less potential for textures (Wulder, 1998). Hence, the relatively 

high spatial resolution of RapidEye is considered as one of the advantages to derive the 

GLCM texture features from the data. The study of Næsset et al. (2016) also confirmed the 

ability of RapidEye data to capture spatial heterogeneity from the pixels. 

The inverse correlations shown with the red-edge and NIR reflectance in the EP and AWF 

datasets are explained by the young forest stands of the AWF plots. The more vigorous growth 

and denser canopy of young forest stands produces higher reflectance in the red-edge and NIR 

than the reflectance from the canopy of an old-growth stand (Jones and Vaughan, 2010). In 

old-growth stands, large trees generate more shadows on the canopy, contributing to the 

decreased relationships between forest stand parameters and remote sensing spectral responses 

(Lu et al., 2004). The increase in NIR reflectance followed the decrease in AGB estimates 

from the AWF plots but showed the opposite trend for the EPs. Therefore, the exclusion of 

coniferous-dominated plots slightly decreased the correlation between some predictor 

variables and the AWF-AGB estimates. In contrast, the exclusion of two coniferous-



Chapter 5. Discussion 
 

 

84 

 

dominated plots from the EPs produced higher correlation between predictor variables and the 

AGB estimates. The reduced sample size of AWF plots was the most likely reason for the 

decrease in the correlation, since the p-value calculation is a function of sample size. 

 

 AGB estimation models from field and RapidEye data 

As the relationships between the field-based AGB estimates and the predictor variables were 

weak, the model performance derived from the two datasets in the current study was also poor. 

By using the data and following the procedure applied in this study, the resulting AGB model 

in the Sebangau forest explained about 34% of the AGB variability in the dataset with a 

relative RMSEr of 24%. This coefficient of determination was much lower than that obtained 

by Englhart et al. (2012a), with R2 of 0.92, which was conducted in the same forest also with 

RapidEye data. Another study from Næsset et al. (2016) also reported a higher Adj R2 of 0.53 

of the AGB model obtained for the Miombo woodland, Tanzania, by using RapidEye data. 

The higher R2 of the models from Englhart et al. (2012a) and Næsset et al. (2016) could be 

explained by the wider range of AGB variability in their field reference plots. While the 

present study focused on the logged-over peat-swamp forest, the reference plots of Englhart et 

al. (2012a) spanned AGB variation of heavily degraded and regrown areas to peat-swamp 

forests, and the reference plots of Næsset et al. (2016) covered the AGB variation of open 

land, grassland, and woodland to forest. This wider range of AGB variation within the field 

dataset could not be captured completely by the variability of the remote sensing signals and 

led to a reduction of the estimation accuracy. This is one reason for the higher RMSEr of the 

model from Englhart et al. (2012a) of 44%, and from Næsset et al. (2016) of 62.7%, compared 

to the relatively more homogenous stand structures in the Sebangau forest. Different predictor 

variables and different statistical approaches for producing the models were also among the 

possible reasons of the different model performances among the three studies. 

Given a large amount of unexplained AGB variability in the Sebangau dataset, the predicted 

AGB values from the model regionalization are far from the field-based AGB estimations of 

the HIL plots. For example, while observing the model residuals, the plot with the largest 

negative residual contained many large trees and the model underestimated the AGB of this 

plot. On the other hand, in the plot with the largest positive residual, many small and medium 

trees were observed. 

In the case of Hainich study, the AGB models for the mixed and broad-leaved forests derived 

from the EPs were superior to those derived from the AWF plots, particularly with respect to 
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the RMSE values. These results are attributed to the larger EP plot sizes. Earlier studies have 

reported that larger plots are likely to capture more within-plot variability and reduce the 

variance among plots, thereby increasing the prediction accuracy of the model (Köhl et al., 

2006; Mascaro et al., 2011; Næsset et al., 2013). 

For the Hainich mixed AGB models, 77% of the AGB variability in the AWF dataset and 62% 

in the EP dataset remained unexplained. The two maps predicted different levels of AGB in 

the Hainich forest with almost no correlation between the predicted AGB on the EP-AGB map 

and the observed AGB from AWF plots. Also, no correlation was observed between the 

predicted AGB on the AWF-AGB map and the estimated AGB from EPs. Regarding spatial 

resolution, the predicted AWF-AGB map presents more detailed and precise information. The 

smaller pixel size of the predicted AWF-AGB map was expected to show greater variations of 

AGB in the study area compared to that of the EP-AGB predicted map. 

The smaller range between the minimum and maximum values of AGB in the EPs compared 

to the AWF plots limited the predictive ability of the EP-AGB model. The EP-AGB model 

was likely to under- and overestimate the AGB that fell outside of the model range. On the 

other hand, the wider range of AGB variability in the AWF dataset also influenced the 

accuracy of AGB predicted from the AWF-AGB model due to the saturation problem of the 

RapidEye data. 

The AWF-AGB map predicted high AGB values upwards of 350 Mg ha-1 for the areas 

dominated by coniferous trees and shaded areas. This result was attributed to the reflectance 

from the AWF plots that received higher influence due to shadow effects. The study from 

Hansen et al. (2015) reported that the shadow effect is higher in stands with larger tree crowns 

and greater in smaller plots. Accordingly, some of the broad-leaved-dominated plots in the 

AWF plots produced similar reflectances with the coniferous-dominated plots. This argument 

was supported by the overestimation of AGB values in the sample plots dominated by 

coniferous trees. This overestimation decreased after the exclusion of the coniferous plots. 

Hence, the exclusion of coniferous-dominated plots slightly reduced the model performance 

derived from the AWF plots, while the opposite was true for the model derived from the EPs. 

The AWF broad-leaved model derived from the AWF plots explained only 20% of the AGB 

variability in the dataset. On the contrary, the broad-leaved AGB model derived from the EPs 

explained 65% of the AGB variability in the dataset. Moreover, more variability was 

explained in the EP broad-leaved model than in the mixed forest model. This result is in 

accordance with the results from Latifi et al. (2012) and Wallner et al. (2015) that stratification 

based on forest types generally improved the estimation of forest structures and forest AGB. 
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The use of the EP and AWF datasets produced different descriptions of the Hainich forest with 

different mean AGB estimates of the forest, reaching up to 50 Mg ha-1. The EPs produced a 

lower standard error of mean AGB than the AWF plots. This result is explained by the larger 

size of the EP plots, which ultimately reduced the variance among plots. Based on the field 

inventory datasets, the EPs were likely representing a more homogenous stand structure than 

those of the AWF plots. The AWF dataset showed a higher standard deviation than the EP 

dataset due to the higher AGB variability in the AWF dataset. 

Different results from the EP and AWF datasets also arise from the differences in plots design. 

The concentric sub-plot design of the AWF dataset is known as an efficient approach for 

selecting sampled trees to be measured in forest inventory. In the development of an AGB 

model using a concentric sub-plot design, remote sensing information is usually extracted 

according to the size of the largest sub-plot and linked with the observed AGB of the plot. 

This observed AGB is estimated from subsample trees that are measured in each sub-plot 

according to their DBH threshold and then transformed into corresponding unit areas. The 

uncomplete measurement of trees in the circular plot may affect the performance of the AGB 

model developed from the field sampling and remote sensing data (Næsset et al., 2016). 

The AWF Hainich demonstrated a higher RMSEr (42.2%) than the Sebangau dataset (24.4%). 

The result could be attributed to the higher AGB variability of the AWF dataset arising from 

the higher heterogeneity of the stand structures among plots. According to the AWF dataset, 

19%, 41%, and 40% of the forest basal area were derived from trees within the DBH range of 

7-25 cm, 25-50 cm, and >50 cm, respectively. For the Sebangau dataset, 73%, 24%, and 3% of 

the forest basal area were derived from trees within the DBH range of 7-25 cm, 25-50 cm, and 

>50 cm, respectively. Referring to these stand structures, a higher influence from the shadow 

effects on the canopy level was expected in the AWF plots than in the Sebangau plots. 

However, future studies on the influence of stand structure on the shadow effect at canopy 

level are needed.  

It was also observed that 16% of the AWF dataset contained ≤ 7 sample trees per plot, which 

was not the case in the Sebangau plots. Two of the AWF plots contained only one single tree, 

with DBH values of 8.6 cm and 90.2 cm in each plot. This low number of sample trees led to a 

higher variance across sample plots and yielded a lower precision of estimation. Moreover, the 

influence of soil background on plots with low numbers of trees can significantly contribute to 

the total reflectance of the plots. This effect may lead to a wider range from the reflectance of 

all plots and reduce the correlation between the plots and the remote sensing variables. All 
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aforementioned reasons may contribute to the lower RMSEr of the AGB model derived from 

the AWF dataset when compared with the one derived from the Sebangau dataset. 

The results demonstrate improved performance of AGB estimation with larger plot sizes, 

consistent with studies conducted using different sensors, such as microwave radar (Saatchi et 

al., 2011), LiDAR (Gobakken and Næsset, 2009; Mascaro et al., 2011; Mauya et al., 2015; 

Zolkos et al., 2013), or the combination of both (Næsset et al., 2015). In general, larger field 

plots will cover larger overlapping areas between the field and remote sensing data, which will 

compensate for co-registration problems (Gobakken and Næsset, 2009). An increased plot size 

also has a tendency to reduce model prediction error, due to the spatial averaging of the error 

(Tomppo et al., 2017). However, larger field plot sizes always means higher costs per plot. 

Thus, selection of a suitable plot size is always a compromise between the field efficiency, the 

expected precision within the defined efficiency level, and the available resources. 

This study confirms the limitation of optical remote sensing data for extracting the AGB 

information in complex forest stand structures due to the insensitivity of the data to the change 

of AGB variations below the canopy layers. The largest negative residuals depict an 

underestimation in plots consisting of very large trees. In contrast, the plots with the largest 

positive residual contained many small trees, and the model overestimated the AGB. 

However, the results also imply that the saturation problems tend to have lower effects in 

larger plots like the EPs. 

 

 Relative efficiency 

The inclusion of RapidEye data, in addition to field data, improved the precision of AGB 

estimates, indicated by the RE values of > 1 for all AGB models. The highest improvement 

occurred in the 1 ha Hainich-EP broad-leaved plots. An earlier study of Mauya et al. (2015) 

also reported that the gain in RE is higher as plot size increases.  

This study shows that the gain in RE depends on the relationships between the RapidEye 

predictors and the field reference AGB estimates. This explained the similar gain in RE when 

the RapidEye data was combined with the Hainich-AWF mixed model or with Hainich-AWF 

broad-leaved model. When remotely sensed data is employed to assist in the estimation of 

AGB, a good model of fit is important to improve the gain in precision of the estimation. 
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 Other common source of errors 

Other sources of error may have influenced the AGB model performance. Potential errors in 

the field datasets include inaccuracy of the field measurements from human errors, 

measurement devices error, and discrepancies from different surveyors. High forest stand 

density made height measurements more challenging. The crowns of neighboring trees usually 

overlapped one another, and sometimes it was difficult to see the individual treetops. 

Measurement errors from DBH, tree height, and tree wood density due to misidentification of 

the tree species were also reported by Molto et al. (2013). To minimize such impacts, on-the-

job training of the measurement procedures and the standard use of the measurement devices 

was conducted for the surveyors in the Sebangau forest prior to the field survey. However, 

these errors cannot be removed entirely, with some remaining at an unknown level.  

The integration of field and optical remote sensing data was a complex process. There are 

factors influencing the interaction of radiation with leaves at the canopy level, including the 

incident angle of radiation with respect to the leaf and the leaf arrangement in the canopy 

(Jones and Vaughan, 2010). Variations of the reflectance in an image may also not represent 

the variations of the object reflectivity. This discrepancy can be due to local differences in 

irradiance over the entire image, e.g., areas with shadows (Jones and Vaughan, 2010). 

One of the major challenges with optical remote sensing data is capturing a clear image that is 

free of clouds and other atmospheric conditions that obscure the field sample plots. Therefore, 

a time gap between image acquisition date and the period of field data collection commonly 

takes place despite the potential error that may be introduced. The difference between image 

acquisition date and the field data collection was within 9 months in the Sebangau study, while 

it was within 2 and 4 years for the AWF and EP datasets for the Hainich study. The RapidEye 

tiles of the Hainich study were acquired from September 29, 2011, as it was latest data 

available for this study. During this period, some leaves from deciduous trees might start 

changing color. Since all the tiles had the same date of acquisition, similar effect from the 

seasonal environmental conditions can be expected for the entire study area. 

 

5.3. The effect of field plot sizes on the AGB estimation model derived from field 

inventory and RapidEye data 

The relationship between field reference plots and variables derived from remote sensing data 

is of key importance for the performance of the AGB estimation model. Some earlier studies 

reported an improvement in AGB model performance with increasing plot size, using different 
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remote sensing data such as LiDAR (Mauya et al., 2015; Zolkos et al., 2013), Radar (Saatchi 

et al., 2011), or both LiDAR and Radar (Næsset et al., 2015). 

Results in this study show that the performance of AGB models derived from the field and the 

RapidEye data was influenced by the change of field plot size, where the information from 

remotely sensed data was extracted, and also by the plot shape. The results from the AGB 

models imply that the model prediction error decreases with the increase in field plot size. 

However, this result was not observed for Adj R2.  

In this study, an oscillation pattern of the model Adj R2 was found as plot size changed. This 

pattern was slightly different than the result from Mauya et al., (2015), which found a general 

improvement of the model Adj R2 as the plot size increased from 200 m2 to 3,000 m2 and the 

sample size increased from n=22 to n=30. Different results between the two studies likely 

arise from the different remote sensing data used. While optical remote sensing data can 

capture only the variability at canopy surface from above, LiDAR data is able to characterize 

the vertical stand structures, and forest canopy in 3-dimensional structures. The difference can 

also be attributed to the range of the tested plot sizes and sample sizes. The range of plot sizes 

was wider in the current study than the one reported by Mauya et al. (2015). 

Increasing field plot sizes tended to increase the model prediction accuracy. This decreasing 

trend of the model RMSE with the increase of plot size has also been reported by earlier 

studies (Gobakken and Næsset, 2008; Mauya et al., 2015; Næsset et al., 2015; Saatchi et al., 

2011; Zolkos et al., 2013). Larger plots are likely to capture more of the variability within the 

plots and reduce the variance among plots. In other words, the mean estimate values between 

the plots are more similar to one another and closer to the estimated value of the population 

mean (Hansen et al., 2015). The declining trend in the model RMSE of larger plots is also 

attributed to the spatial averaging of the error (Mauya et al., 2015; Næsset et al., 2013; 

Tomppo et al., 2017). Comparisons between the prediction accuracy from Sebangau and 

Hainich-AWF in the previous sub-study indicated that this accuracy was also attributed to the 

heterogeneity of the forest stand structures and the AGB variability between sample plots in a 

dataset. 

The square plot shape, such as that used in the EPs, is more influenced by the boundary effect 

compared to the circular plot shape. Moreover, smaller plots are more influenced by the 

boundary effects since the ratio between plot perimeter and plot area is larger (Sala and 

Austin, 2000). In this study, different performances of the AGB models derived from a 

comparable field plot size of different side lengths were also found. The model derived using 

rectangular reference plots with 20 m length tended to have lower Adj R2 compared to the 
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models derived from comparable-sized rectangular plots with wider side lengths. Furthermore, 

this study found a significant correlation between the plot perimeter and model prediction 

accuracy. This correlation was higher than that from plot size. Similarly, a higher correlation 

was found between the plot perimeter and the model relative maximum residual, compared to 

that between the plot size and the relative maximum residual. Between the square and the 

rectangular plot shape, the rectangular plot shape exhibited higher correlation between plot 

perimeter and Adj R2 and between plot size and Adj R2. This result can be explained by the 

mismatch between the boundary of the plots and the pixels. This effect would be larger in 

rectangular plots and in smaller plots. However, in the context of forest inventory, a smaller 

plot is preferable for its efficiency and a rectangular plot shape is commonly used to capture 

more variability. 

In this sub-study, the inclusion of RapidEye data with the Hainich-EP dataset (n=26) improved 

the precision of the AGB estimation, compared to field observations alone. The highest 

efficiency from RapidEye data was found to be 3.7 for Dataset 1 and 3.4 for Dataset 2. Both 

results are considerably high. The study of Næsset et al. (2016) reported an efficiency of 3.3 

from RapidEye, which was higher than the efficiency from the InSAR data. They reported that 

the quality of the image, e.g. free of clouds conditions, was one of the possible reasons for the 

high efficiency from RapidEye. Indeed, the RapidEye images used over the Hainich study area 

were also free from clouds. 

Based on the results of the current study, the 55x55 m plot size from Dataset 1 or the 

50x33.3 m plot size from Dataset 2 were found to be the optimum size for estimating the AGB 

of the Hainich forest using field and RapidEye data. However, selection of an optimum plot 

size is always a compromise between the most efficient field cost (time, labor, money) and the 

target of precision. The use of larger plot size (e.g. plots greater than 1200 m2 (Mauya et al., 

2015) and plots greater than 2500 m2 (Saatchi et al., 2011)) has been recommended in 

previous studies that combine field and remote sensing data Regarding the field and the cost 

efficiencies, an optimum plot size depends also on the forest structure and conditions. For 

example, based on the experiences in the Sebangau, establishing and measuring large sample 

plots in the Sebangau forest would be very costly due to difficult access and forest conditions. 

In the analysis of this study, it was assumed that the EP dataset followed a SRS sampling 

design. The availability of a probability sample is the basic requirement to make an effective 

comparison of the precision inferences (Mauya et al., 2015; Næsset et al., 2015), as it was 

presented here. Assuming a SRS design will most likely introduce bias in the estimator at an 

unknown level. However, the EPs were the best data available during the study period for the 
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assessment of the effect of plot sizes. The sample size of EP was also limited (n=26). Hence, it 

was also assumed that the results from the limited sample size in this study could provide 

meaningful information on the effect of different plot sizes in the AGB model derived from 

the optical remote sensing data. 
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Chapter 6 

Conclusions 

One of the requirements for REDD+ country participants is to establish a robust and 

transparent national forest monitoring system (NFMS). In the implementation of the system, 

forest inventories and remote sensing are integrated and used as the primary data source.  The 

critical role of remote sensing data for observing, estimating, and monitoring forest biomass is 

widely recognized, particularly in forests with limited accessibility, as in many tropical 

countries. The data are also becoming more readily available and accessible to the public, at 

lower or even no cost. Yet, biomass assessments based on remote sensing data still rely on 

accurate field reference plots. This study provides a methodological basis of the integration 

between forest inventories and remote sensing data using the case of the Sebangau tropical 

peat-swamp forest and the optical remote sensing data of RapidEye. 

Regarding the effect of forest restricted visibility in the basal area estimates from ACP, this 

study demonstrates how to derive the distance of visibility of a forest for implementing ACP 

method. This information is of importance in choosing a suitable BAF to minimize the effect 

of forest visibility conditions in ACP estimation. When the distance from an ACP sample 

point to the target tree exceeds this maximum distance, it leads to an underestimation. The 

systematic underestimation from ACP with lower BAF is found to be an indication of the 

effect from forest restricted visibility. A simple approach to test the visibility condition of a 

forest in the field is by estimating the basal area from a sample point using different BAFs. 

When the estimation value keeps increasing in large steps with higher BAFs, there is an 

indication of limited visibility of the sample point. A practical selection of a proper BAF to 

minimize this effect is the smallest BAF, among two or several BAFs, that gives a similar 

basal area estimate. 

The determination of an optimum BAF in ACP is as necessary as the determination of an 

optimum plot size in FAP. Selection of a BAF depends on the complexity and the density of 

the forest stand structures and the density of the ground vegetation. The selected BAF should 

be the lowest BAF that is least affected by the forest restricted visibility and the highest BAF 

that provides the highest precision of estimation. 
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Even though this study was conducted for the basal area estimation of a dense tropical peat-

swamp forest, the results also contribute to the implementation of ACP method for estimating 

other forest variables and for other forest types. The information on the visibility condition of 

a forest is also useful for the selection between the FAP or ACP plot design. 

Regarding research into the integration of remote sensing and field data, this study confirmed 

the limitation of optical remote sensing to determine the variability of forest AGB, as reported 

in previous studies, since the data can mainly capture the reflectance from the canopy surfaces. 

Forests with higher variability of AGB, or forests with higher heterogeneity of stand structures 

and high diversity of tree species, produce more complex reflectances at the canopy level. 

Hence, optical remote sensing data is saturated. The red-edge band of RapidEye tends to be 

superior to the other spectral bands in capturing this variability. In the forest with complex 

stand structures, GLCM texture features are important predictors for estimating AGB. 

Stratification based on the leaf structures, such as coniferous versus broad-leaved, improve the 

AGB model performance, depending on the heterogeneity of the forest stands structure and 

plot size. In high heterogeneous stand structures, the variability of the reflectances of the 

remote sensing data at the canopy level is highly influenced by the shadow effect, thereby 

weakening the AGB model performance. The AGB estimation model from forests with more 

homogenous stand structures dominated by trees of relatively small DBH may have a higher 

performance than the model derived from forests with high heterogeneity of stand structures. 

The sample size of the field data also affects the significant relationships between remote 

sensing predictor variables and the field AGB but does not necessarily increase the 

relationship. 

Another conclusion from this study is the potential use of RapidEye and field data for 

estimating forest AGB. The inclusion of RapidEye data offers an opportunity to improve the 

precision of forest AGB estimates compared to the estimates solely from field observations. 

The use of model-assisted estimators allows for conducting comparison analyses on the gain 

in precision from RapidEye in different forest types of different datasets. 

The plot size and plot shape have a great effect on the performance of AGB model derived 

from RapidEye and field data and on the model-assisted AGB estimation. Analysis of the 

effect of plot size and plot shape is of importance for survey design, and plot size and shape 

are among the most important design elements of field surveys. 

This study confirmed the findings of earlier studies regarding the contribution of remote 

sensing data to improving the precision of carbon estimation. However, to obtain a higher 
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efficiency from combining field and remote sensing data to improve the precision of 

estimation, selection of plot size and shape should also consider remotely sensed data. An 

optimum size of field inventory plots might not be large enough to enable the remotely sensed 

data to capture all variability within the plots. A perfect co-registration between the plot and 

the pixel boundary is hard to achieve. A plot shape of larger perimeter with the same area is 

likely to increase the mismatch between the two boundaries and reduce the model 

performance. Thus, it is not recommended.  

Choosing an optimum plot size should also consider the forest stand structures. In more 

homogenous forest stands, the optimum plot size could be smaller than in a forest with high 

heterogeneity of the stand structures. 

Results from the current study contribute to the Indonesian government’s national program for 

estimating the amount of carbon from forests to assess the country’s commitment to reduce 

carbon emissions from the forestry sector. Many of the Indonesian forests are still difficult to 

access and are poor in infrastructure. Since the available budget is always limited, an effective 

survey design is required, in which the potential of remote sensing data can be leveraged to 

enhance the estimation. 

The results are also relevant for the plan of the Indonesian government to re-designing and to 

improve the NFI to include optical remote sensing data of higher spatial resolution than 

Landsat for the calculation of the national FREL. In this context, RapidEye can be considered 

as an option to be implemented in the carbon estimation of the Indonesian forests. The 

RapidEye constellation of 5 satellites increases the possibility of having more acquisition data, 

allowing for the formation of a mosaic image with minimum cloud coverage. 
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Appendices 

 

APPENDIX A. Determination of the plot design of LSI and HIL plots 

The approach was based on a consideration of having a comparatively equal contribution of basal 

area, which highly correlated with biomass, from each sub-plot. We used the available DBH 

distribution data from earlier research projects that were collected in the study area by the team of 

Prof. Florian Siegert from RSS Gmbh, Germany, and the team of CIMTROP, Indonesia. 

The questions of which trees to be measured in each sub plot, and how big the area of each sub-

plot, have to define before the field campaign.  

(i) Determination of the DBH thresholds in each sub-plot 

We estimated the tree basal area per hectare and calculated the cumulative basal area values. The 

DBH thresholds were determined by the proportional distribution of the cumulative basal area 

among sub-plots, which were three sub-plots in this study. We derived the DBH thresholds of 

approximately 17 cm for the smallest sub-plot and of approximately 30 cm for the medium sub-

plots, from the cumulative basal area at 33.3% and at 66.7%, respectively. All DBH class above 30 

cm or 66.7% of the cumulative basal area values belongs to the largest sub-plot (Figure 1). 

(ii) Determination of the radius of each sub-plot 

We estimated the number of trees per hectare over three DBH classes: 5 cm ≤ DBH < 17 cm, 17 

cm ≤ DBH < 30 cm, and DBH ≥ 30 cm (Figure 2), and calculated the proportional area of having 

not less than 10 trees per each class. We derived the radius of each sub-plots from the size of the 

area of each class. 

 

 

  

Proportional distribution of cumulative basal 

area over tree DBH 

Trees per per hectare over DBH distribution 
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APPENDIX B. Definition of 1.3 m height of the tree DBH measurements 

 

 

 

Definition of 1.3 m height used to measure the tree DBH in the field, for regular and irregular 

stems; 

The upper figure, left to right: deformation tree, buttress tree, forking tree. 

The lower figure, left to right: a straight tree with regular stem, leaning tree with regular stem, stilt-

root tree, the bifurcate tree at a higher than 1.3 m, bifurcate tree at lower than 1.3 m. 
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APPENDIX C. List of the selected AGB models based on the EP Dataset 1 and 2 

 

List of the selected AGB models based on Dataset 1. 

 

 

List of the selected AGB models based on Dataset 2. 

 

Plot sides Plot size Adj R
2

RMSE r

20x20 400 B4_max B4_min NDVI_min B2_sd 0.33 27.70

25x20 500 CCCI_max B2_min B5_min CCCI_sd 0.51 28.64

25x25 625 B2_mean B3_mean CCCI_max NDVI_sd 0.53 20.76

33.3x20 667 B4_max B5_max NDVIRE_max NDVIRE_min 0.49 22.33

33.3x25 833 B4_max B5_min CCCI_min HOMO_X15 0.55 22.63

50x20 1000 B5_mean B2_max NDVIRE_max NDRE_min 0.39 21.64

33.3x33.3 1111 B2_mean B3_min MSAVI_min B2_sd 0.50 18.91

50x25 1250 B3_mean B3_min B4_min CCCI_sd 0.49 19.70

50x33.3 1667 B2_mean B5_max NDVIRE_max MEAN_X15 0.62 14.69

100x20 2000 B2_min B4_min B3_sd B5_sd 0.55 14.16

100x25 2500 MSAVI_mean B2_min NDVI_min NDRE_sd 0.45 13.97

50x50 2500 B3_mean B4_max B3_sd MSAVI_sd 0.50 15.63

100x33.3 3333 NDVIRE_mean B5_min NDVI_max CCCI_max 0.58 12.70

100x50 5000 CCCI_mean MSAVI_max NDRE_max B5_min 0.51 12.78

100x100 10000 B3_mean MSAVI_max CCCI_min NDRE_sd 0.65 10.27

Selected predictor variables in the model

Plot sides Plot size Adj R
2

RMSE r

20x20 400 B2_min B2_sd MEAN_X15 CORR_X15 0.51 23.05

25x25 625 B4_mean B3_max B3_sd NDVI_mean 0.44 23.54

30x30 900 B4_max B3_sd B4_sd MEAN_X15 0.54 16.36

35x35 1225 B2_min B4_min B3_sd MEAN_X15 0.63 14.90

40x40 1600 B4_min B3_sd B5_sd MEAN_X15 0.62 13.52

45x45 2025 NDRE_max NDVI_max B3_sd B4_sd 0.59 14.06

50x50 2500 B3_mean B3_max NDVI_max B5_min 0.56 14.56

55x55 3025 NDRE_mean B3_max B2_min MEAN_X15 0.68 11.72

60x60 3600 B3_mean B3_max NDVIRE_max B2_min 0.60 11.12

65x65 4225 B3_mean B3_max NDVIRE_max B2_min 0.61 11.37

70x70 4900 NDRE_mean B2_min B3_sd MEAN_X15 0.60 11.97

75x75 5625 MSAVI_max NDRE_max CCCI_min MEAN_X15 0.49 15.07

80x80 6400 MSAVI_max NDRE_max B5_min MEAN_X15 0.50 14.09

85x85 7225 MSAVI_max NDRE_max CCCI_min MEAN_X15 0.54 12.94

90x90 8100 MSAVI_max CCCI_min NDRE_min NDRE_sd 0.61 11.63

95x95 9025 MSAVI_max NDRE_max CCCI_min MEAN_X15 0.53 12.33

100x100 10000 B3_mean MSAVI_max CCCI_min NDRE_sd 0.65 10.27

Selected predictor variables in the model
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