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1. Introduction 

1.1. Neurodegenerative diseases in modern society 

With the advances in medicine, public health and economic development, the life 

expectancy of the population has increased steadily over the last two centuries. Alongside 

the increase in average lifespan and a continuously aging society, a much higher incidence 

of neurodegenerative diseases takes place. Between the years of 1990 and 2015, the 

number of deaths decurrent from neurological disorders increased in dramatic 36.7% 

(Feigin et al., 2017). Several studies have shown that neurodegenerative diseases configure 

an important cause of disability, mortality, and lead to an important social and economic 

burden worldwide (Feigin et al., 2017; Oeppen and Vaupel, 2002; Riley, 2001; Tuljapurkar 

et al., 2000). 

Neurodegenerative diseases are a product of neuronal dysfunction and neuronal 

cell death in the central and/or peripheral nervous system, usually associated to protein 

misfolding, aggregation and, in many cases, inflammation and immune cell activation. That 

results in a progressive neurological pathology in affected patients (Bredesen et al., 2006; 

Glass et al., 2010; Ross and Poirier, 2004; Skovronsky et al., 2006). Among the most 

common neurodegenerative diseases, Parkinson’s Disease (PD) is the second most 

prevalent and fastest-growing neurological disorder. The number of affected individuals is 

expected to double in the next 20 years (Dorsey and Bloem, 2018; Feigin et al., 2017). 

Therefore, efforts into understanding the key pathogenetic mechanisms and the 

development of disease-modifying therapies are of fundamental importance and have 

been object of intense research recently. 

 

1.2. Parkinson’s Disease 

1.2.1. Parkinson’s Disease – history, epidemiology and etiology 

The first scientific record on PD dates from 1817. In James Parkinson’s “Essay on the 

Shaking Palsy”, the cardinal motor features of PD were described in a group of patients. 

The main symptoms related to the disease - which include resting tremors, rigidity, postural 

instability and bradykinesia/hypokinesia - remain the clinical hallmarks used in PD diagnosis 

to this date (Agid, 1991; Lees, 2007). Later on, it was shown that the motor dysfunctions 

presented by patients result from a progressive neurodegeneration of dopaminergic cells 
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in the nigrostriatal pathway  (Agid, 1987, 1991; Hornykiewicz, 1966). Besides the 

extrapyramidal motor dysfunction, patients present a number of non-motor symptoms 

that range from sensory abnormalities to autonomic dysfunctions, as well as sleep 

alterations, mood disorders, depression and cognitive decline (Agid, 1991; Dauer and 

Przedborski, 2003a; Lim et al., 2009). 

PD is the second most prevalent neurodegenerative disease worldwide, only after 

Alzheimer's disease (AD). It is an age-related disorder, affecting up to 2% of individuals aged 

over 60 years. For the age group between 85 and 89 years of age, PD is prevalent in up to 

3,4% of individuals in Europe (De Lau and Breteler, 2013; de Rijk et al., 2000). From 1990 

to 2015, the prevalence of PD more than doubled worldwide (Feigin et al., 2017). The 

majority of the cases is composed of the sporadic form of the disease, and around 5% of 

the cases comprise familial/autosomal cases. Several autosomal mutations linked to the 

development of the familial form of PD were identified in the last decades. Classical PD-

related mutations affect genes that include, for example, SNCA, LRRK2, PINK1, DJ-1, and 

parkin. Although familial cases present different pathogenetic mechanisms and a wider age 

span in their occurrence, there are several common mechanisms between those cases and 

idiopathic forms of PD. Those include oxidative stress, excitotoxic mechanisms, 

mitochondrial dysfunction and defects in protein handling, for example (De Lau and 

Breteler, 2013; Dexter and Jenner, 2013a; Johnson et al., 2019). 

The presence of proteinaceous inclusions called Lewy bodies (LB) in the brains of 

PD patients is one of the pathological hallmarks of the disease. LBs are intracytoplasmic 

inclusions majorly composed of the protein alpha-synuclein (αSyn), but also contain 

ubiquitin and neurofilaments (Spillantini et al., 1997). As previously mentioned, mutations 

in the αSyn coding gene (SNCA) are broadly linked to familial forms of PD. However, LBs are 

present in both sporadic and familial PD cases (Bendor et al., 2013; Polymeropoulos, 1997; 

Singleton, 2003). Moreover, these aggregates are not constrained to the affected 

dopaminergic neurons but found spread throughout affected brains (Braak et al., 2003; 

Spillantini et al., 1997). The pathological role of LB formation is not completely understood. 

While some studies suggest they might be a direct cause of death to the affected nerve 

cells, others hypothesize that these inclusions might be a reactive mechanism aiming to 

protect the cell from the toxicity of misfolded proteins (Braak et al., 2003; Dexter and 
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Jenner, 2013a; Lu et al., 2005; Olanow et al., 2004). Nevertheless, the formation of protein 

aggregates in both familial and sporadic forms of PD suggests that a defective protein 

handling machinery is a mechanism directly related to the pathogenesis of PD (Bendor et 

al., 2013). 

Neuroinflammatory mechanisms have also been broadly linked to 

neurodegenerative diseases, including PD. The presence of activated microglial cells in the 

substantia nigra of PD-affected brains was one of the first findings correlating 

neuroinflammation to PD (McGeer et al., 1988a). The main neuroinflammatory 

mechanisms in PD pathology include microglial activation, lymphocytic infiltration and 

astrogliosis (Hirsch and Hunot, 2009). A series of studies showed that a chronic 

inflammatory state contributes to the neurodegenerative processes in PD. The release of 

neurotoxic cytokines by glial cells likely extends the neuronal cell damage even further 

(Joers et al., 2017; Liddelow et al., 2017; Macchi et al., 2015). Markers of inflammation are 

reported to be present not only in the brain of PD patients but also in the periphery (Macchi 

et al., 2015). Furthermore, there is evidence for the contribution of inflammatory 

mediators to αSyn misfolding and aggregation (Gao et al., 2008). Currently, 

neuroinflammation is not only referred as a consequence of the neurodegeneration in PD 

but also as one of the possible primary causes to the progression of PD. 

Several environmental and genetic risk factors may predispose to the occurrence of 

PD (Dexter and Jenner, 2013a; Schapira and Jenner, 2011). Nonetheless, there is no 

canonical mechanism or pathway that would describe the exact pathogenesis of PD to date. 

Despite the several known mechanisms contributing to different aspects of PD pathology, 

recent studies in the field point to a multitude of primary causes that might differ between 

affected patients, suggesting that PD might not be configured as a single disease, but rather 

be a multifactorial syndrome with multiple pathogenic subgroups (Dexter and Jenner, 

2013a; Johnson et al., 2019). 

 

1.2.2. Pathophysiology and progression of PD 

PD patients present a chronic and progressive phenotype of motor dysfunction 

intimately related to the degeneration of dopaminergic neurons taking place in the 
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midbrain. The loss of pigmentation in one of the nuclei of the midbrain, the substantia 

nigra, was one of the earliest histological findings linked to PD (Trétiakoff, 1919), which 

was, later on, proved to be resultant from the degeneration of the neuromelanin-positive 

dopaminergic cells in that region (Marsden, 1983). A very prominent dopaminergic cell loss 

occurs in the nigrostriatal system, more specifically in the substantia nigra pars compacta 

(SNpc) (Figure 1A). Studies have shown that by the start of the clinical signs of PD, there is 

a dramatic reduction on dopamine levels in the striatum of the patients (up to 80% 

reduction), while only 30-50% of the dopaminergic cell bodies seem to be degenerated at 

that phase. Those findings suggest that a retrograde dopaminergic degeneration occurs in 

the nigrostriatal pathway, starting from the striatal pre-synaptic terminals of axonal 

projections, progressing to the cell bodies located in the substantia nigra. The severe 

deficits in motor control and initiation of voluntary movements observed in PD patients are 

intrinsically related to the degeneration of nigral dopaminergic neurons and the 

consequent dopamine depletion in the nigrostriatal system. (Braak et al., 2003; Burke and 

O’Malley, 2014; Dauer and Przedborski, 2003a; Schmidt and Kretschmer, 1997). 

The basal ganglia comprise a collection of subcortical nuclei that include the 

striatum (formed by the putamen and the caudate nucleus), the globus pallidus (internal 

and external parts), the subthalamic nucleus (STN) and the substantia nigra. These nuclei 

present extensive connectivity between each other and several other brain regions, 

forming complex neuronal networks that regulate motor functions in different levels. The 

anatomical organization of the motor circuit is illustrated in Figure 1B. In more detail, 

glutamatergic excitatory projections from the motor cortex reach the striatum (at the 

postero-lateral putamen), communicating with GABAergic neurons. These inhibitory 

neurons are involved in two distinct projection pathways - the so-called “direct” and the 

“indirect” basal ganglia signaling pathways. They encompass the connection of the striatum 

to other two basal ganglia nuclei: the internal globus pallidus (GPi) and the substantia nigra 

pars reticulata (SNpr). In the direct pathway, GABAergic striatal neurons make direct 

connections to the GPi and the SNpr, exerting inhibitory input to the neurons present in 

those nuclei. Upon activation, the direct pathway leads to inhibition of the neurons in the 

GPi/SNpr and subsequent excitation of the thalamus and the motor cortex, a loop that 

facilitates the initiation of voluntary movements. On the other hand, in the indirect 
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pathway, the putamen is primarily connected with the external globus pallidus (GPe) and 

the STN, which finally send projections to the GPi/SNpr regions. The GPe contains 

GABAergic inhibitory neurons, while STN neurons are glutamatergic. Upon stimulation, the 

striatal neurons belonging to the indirect pathway promote inhibition of the GPe and 

subsequent disinhibition of the STN, which finally leads to excitation of the GPi/SNpr nuclei, 

inhibiting thalamic/cortical regions and, consequently, suppressing motor activity. The 

antagonistic effects of these two pathways influence the output activity of the basal 

ganglia, regulating voluntary movement initiation and motor control (Forno, 1996; Obeso 

et al., 2000).The dopaminergic neurons present in the SNpc exert a key regulatory input to 

the motor circuit by innervating the spiny striatal neurons present in the putamen. Striatal 

neurons belonging to each pathway express a different type of dopamine receptor. 

Neurons that are part of the direct pathway express excitatory D1 receptors, while the 

indirect pathway contains neurons bearing inhibitory D2 receptors. Thus, the dopamine 

signaling in the nigrostriatal circuit produces dual effects on the motor circuit, promoting 

either the enhancement of the direct pathway or the suppression of the indirect pathway. 

In the parkinsonian state, the dopamine deficiency caused by the nigral neurodegeneration 

results in an impairment in both direct and indirect pathways, which ultimately leads to 

increased activity in the GPi and the SNpr. With that, excessive inhibition of the thalamus 

and the motor cortex takes place, progressively affecting motor control in PD patients  

(Forno, 1996; Obeso et al., 2000; Schmidt and Kretschmer, 1997).  

Figure 1. (A) Nigrostriatal projections - schematic representation. In a midbrain section of a 

healthy subject (left side), the substantia nigra pars compacta (SNpc) presents normal pigmentation 
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by the presence of neuromelanin expressing dopaminergic neurons. Preserved striatal projections 

represented in red (thick lines); in the parkinsonians state (right side), a marked depigmentation is 

observed in the SNpc due to the degeneration of the dopaminergic neurons. A consequent 

disruption of the striatal projections is represented in red (thin/dotted lines).  (Dauer and 

Przedborski, 2003a), adapted. (B) Representation of coronal brain sections depicting the basal 

ganglia circuits (both in healthy and Parkinson’s Disease states). Thickness of lines indicates the 

strength of the connections. In the parkinsonian state, nigral degeneration leads to increased 

thalamic inhibition. DA: dopamine; GPe: globus pallidus externus; GPi: globus pallidus internus; 

SNpc: substantia nigra pars compacta; SNpr: substantia nigra pars reticulata; STN: subthalamic 

nucleus. (Calabresi et al., 2014; Dauer and Przedborski, 2003a), adapted. 

Furthermore, the basal ganglia present connections to a number of other brain 

regions. These include for instance the limbic system, prefrontal cortex, medulla oblongata 

and the pons. Hence, the PD pathology produces a series of nonmotor neuropsychiatric 

symptoms that are present in a majority of all PD cases (Braak et al., 2003; Dexter and 

Jenner, 2013a; Witjas et al., 2002). 

 

1.2.3. PD diagnosis and therapeutic alternatives 

The diagnosis of PD strongly relies on the clinical manifestation of the motor 

phenotype. Generally, the criteria considered for the diagnosis of PD are the presence of 

bradykinesia together with other cardinal features, such as muscular rigidity, resting 

tremor or postural instability and the absence of exclusion criteria (Postuma et al., 2015). 

Recently, neuroimaging techniques and biochemical tests with cerebrospinal and 

peripheral body fluids have been employed as additional evidence for differential 

diagnosis. However, PD misdiagnosis is still a major problem (Tolosa et al., 2006). 

Particularly, there is a strong need for better diagnosis at early stages, since PD patients 

start to display the first motor symptoms only when the dopaminergic neurodegeneration 

is already at an advanced stage (Kalia and Lang, 2015).  

Despite extensive studies on the mechanisms contributing to the 

neurodegeneration and disease progression in PD,  the exact pathogenetic events – 

possibly occurring decades before the symptoms start to emerge – are not completely 
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understood. Allied to the late diagnosis, the limited regenerative capability of neurons in 

the central nervous system substantially hinder the development of causative treatment 

options. Although there are multiple and effective therapeutic options for PD, all currently 

available therapies for PD are symptomatic. The most common of them relies on the 

pharmacological replenishment of dopamine by oral or enteric administration of the 

prodrug L-3,4-dihydroxyphenylalanine, also known as levodopa (L-DOPA). L-DOPA 

administration is usually combined with drugs that prevent its peripheral metabolism, 

enhancing the bioavailability of this dopamine precursor before it crosses the blood-brain 

barrier. In spite of attenuating the symptoms, the treatment with L-DOPA presents a 

number of limitations and possible side effects. The majority of the patients on a long-term 

L-DOPA therapy experience loss of efficacy, drug-induced dyskinesia, fluctuations or 

toxicity by the drug. Other common adverse effects are progressive cognitive defects, 

depression and other neuropsychiatric dysfunctions (Connolly and Lang, 2014; Marsden, 

1994; Nutt et al., 1994) 

Due to the lack of effective therapeutic strategies for PD,  effort into understanding 

the pathogenic mechanisms in more detail and finding possible biomarkers for the disease 

would be of extreme importance, facilitating the early diagnosis and allowing the 

development of novel curative treatments for PD. 

 

1.3. Gene expression regulation and miRNA biology 

Recently, a number of studies showed that dysfunctions in the regulation of gene 

expression are critical to the development of brain diseases. Several studies have shown 

that non-coding RNAs (ncRNAs) are necessary for the development and survival of neurons. 

They are involved in a myriad of cellular mechanisms and of major importance for the 

homeostatic maintenance of cells. In addition, they have been shown to play a very 

important role in the pathogenesis of neurodegenerative diseases (Eacker et al., 2009; 

Galasso et al., 2010; Hebert and De Strooper, 2007; Roser et al., 2018a). 

Among the ncRNAs classes, miRNAs are by far the most studied species, and 

research has drawn substantial attention to the role of miRNAs in brain diseases in the last 

years (De Guire et al., 2013; Hebert and De Strooper, 2007; Rao et al., 2013). miRNAs 
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provide a widespread machinery of post-transcriptional regulation of gene expression by 

mechanisms similar to RNA interference, targeting multiple genes and a variety of 

pathways in health and disease (He and Hannon, 2004).  

 

1.3.1. Overview on epigenetics and miRNAs 

The number of studies concerning the epigenetic regulation of gene expression has 

increased dramatically in the last decades. The term “epigenetics” was initially introduced 

by Conrad Waddington in 1942, even before the first studies on structural and functional 

properties of genes were published. Waddington referred to an “epigenetic landscape” 

while postulating on the ways genetic information act systemically in order to produce a 

phenotype (Waddington, 1942, 2012). A modern definition for epigenetics was proposed 

by Riggs and colleagues, stating that epigenetics comprise “the study of mitotically and/or 

meiotically heritable changes in gene function that cannot be explained by changes in the 

DNA sequence” (Allen, 2015; Holliday, 2006; Riggs, 1996). To date, known epigenetic 

mechanisms include histone modifications, DNA methylation and ncRNAs. The latter class 

has been extensively studied in the context of CNS diseases (Bird, 2007; Fischer, 2014). 

NcRNA species are usually classified according to their nucleotide length: small 

ncRNAs present up to 200 base pairs, while species with over 200 base pairs are referred 

as long ncRNAs. Small ncRNAs are further subdivided into Piwi-interacting RNAs (piRNAs), 

small nucleolar RNAs (snoRNAs) and micro RNAs (miRNAs). miRNAs are processed from the 

transcripts of endogenous genes and comprise the most-studied class of ncRNAs. They 

exert a post-transcriptional regulation of gene expression, targeting mRNAs by base-pair 

complementarity. Upon binding to the 3’ untranslated regions (UTR) of transcripts, miRNAs 

are able to silence genes via translational repression or mRNA destabilization/degradation. 

Furthermore, miRNAs are involved in a number of important cellular and biological 

processes, including differentiation and development, cellular proliferation, homeostatic 

maintenance, hematopoiesis and inflammation. Disbalance in miRNA networks are linked 

to the development of a series of diseases, from cancer to metabolic and neurologic 

disorders  (Bartel, 2004; Berezikov et al., 2006; Fabian et al., 2010; Friedman and Jones, 

2009; Friedman et al., 2008; He and Hannon, 2004; Hebert and De Strooper, 2007). 
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The coding sequences for miRNA species are located in both coding and intergenic 

regions, and they are processed either from introns or from exons after splicing. Mature 

miRNAs are encoded from genomic stem-loop precursors, presenting very short nucleotide 

length (between 17-24 nucleotides) (Bartel, 2004; Berezikov et al., 2006; He and Hannon, 

2004). A recent review refers to over 2,000 miRNA species already identified in humans, 

which are responsible for collective targeting and regulation of more than 60% of the genes 

from the human genome (Friedman et al., 2008; Hammond, 2015). A remarkable feature 

from miRNAs is that each mature sequence may target hundreds of targets mRNAs. 

Furthermore, individual genes can be targeted by several different miRNA species, creating 

a very complex regulatory network of gene expression that potentially affects thousands 

of genes (Friedman and Jones, 2009; Friedman et al., 2008). Those findings were confirmed 

in a number of important studies that employed transcriptomic and proteomic profiling 

approaches, indicating that translational repression by miRNAs encompasses an important 

mechanism of fine-tuning for protein expression at the cellular level (Baek et al., 2008; 

Elkan-Miller et al., 2011; Gillardon et al., 2008; Lim et al., 2005; Moraes et al., 2017). 

 

1.3.2. miRNA biogenesis and gene silencing 

The biogenesis of miRNAs takes place in the nucleus, and most of the described 

miRNAs are derived from the canonical biogenesis pathway (illustrated in Figure 2). Primary 

miRNA genes are transcribed by RNA Polymerase II enzymes into long precursor transcripts, 

the pri-miRNAs. Those long transcripts are then processed by the RNAse III enzyme known 

as Drosha, giving rise to long hairpin-looped miRNA precursors (pre-miRNAs). The cleavage 

by Drosha is dependent on the interaction with the DGCR8 class of proteins for the active 

binding to double-stranded RNA molecules (Han, 2004; Lee et al., 2003, 2004). The newly 

formed hairpin-shaped pre-miRNAs are then carried to the cytoplasm by the Exportin-5 

transporter (a process dependent on RAN-GTP binding proteins), to be further cleaved by 

another kind of RNAse III called Dicer. These interactions take place in the so-called 

processing (p-) bodies in the cytoplasm. The resulting oligonucleotides duplexes present 

already short length, typical from miRNAs. One of the strands is then converted into the 

mature form of the given miRNA, while the exceeding strand is usually degraded. Dicer also 

recruits the so-called Argonaute (AGO) proteins – a process dependent on TRBP mediating 
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proteins - and this interaction is fundamental to the silencing activity of miRNAs. More 

specifically, the AGO2 subtype of these proteins is exclusively present in active miRNA 

silencing complexes in humans. Upon assembly, miRNA-AGO2 complexes finally turn into 

the active RNA-induced silencing complex (RISC) and are able to target mRNAs by 

nucleotide complementarity (Bartel, 2004; Chendrimada et al., 2005; Gregory et al., 2005; Haase 

et al., 2005; Kim et al., 2009; Kulkarni et al., 2010).  

Figure 2. Canonical miRNA biogenesis pathway - schematic representation. Inside the nucleus, 

miRNA coding genes are transcribed into pri-miRNA transcripts, which are further processed by an 

RNase type III (Drosha) associated with DGCR8.  The resulting looped Pre-miRNAs are exported to 

the cytoplasm by RAN-GTP dependent exportin-5 and cleaved by Dicer, resulting in a duplex miRNA 

molecule. Upon assembly with AGO2 proteins, the RNA-induced silencing factor (RISC) is formed 

and miRNAs are able to target mRNAs for gene expression regulation. (Li and Rana, 2014), adapted. 
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1.3.3. The role of miRNAs in neurodegeneration and PD 

miRNAs are widely expressed over all the different types of human tissue, but 

astonishing 70% of all miRNAs are expressed in the human central and peripheral nervous 

system (Nowak and Michlewski, 2013). Numerous studies have shown that miRNAs 

contribute to a variety of biological processes in nervous tissue, including neurogenesis and 

differentiation, neuronal development, maintenance, morphogenesis and regulation of 

programmed cell death (Chen and Qin, 2015; Kapsimali et al., 2007; Narayan et al., 2015; 

Schratt et al., 2006). For their absolute importance in maintenance and function of 

neuronal cells, defects in miRNAs networks might lead to a series of pathogenic processes 

in the brain. 

Alterations in miRNA expression have been linked to a number of 

neurodevelopmental and neurodegenerative diseases (Sun and Shi, 2015).  For example, 

the expression levels of several miRNAs were found altered in the brains of AD and 

Huntington's disease (HD) patients (Quinlan et al., 2017; Shioya et al., 2010; Zovoilis et al., 

2011). Similarly, several described alterations in miRNA expression are also reported in PD, 

both in nervous tissue and in peripheral fluids of affected patients (Mouradian, 2012; Roser 

et al., 2018b). A couple of studies found deficient levels of miR-133b in the midbrain of both 

PD patients and from mouse models of PD  (Hebert and De Strooper, 2007; Kim et al., 2007). 

Another important study found alterations in the levels of miR-34b/c in several regions of 

PD-affected brains. By manipulation of the levels of these miRNAs in vitro, researchers 

were able to mimic impairments in mitochondrial functions and oxidative stress, 

pathomechanisms believed to be crucial for the development of PD (Miñones-Moyano et 

al., 2011). Furthermore, studies identified two specific miRNAs regulating the expression 

of αSyn (namely, miR-7 and miR-153) in vitro. Interestingly, the former has been found 

altered in the striatum and substantia nigra of PD patients, as well as in murine models of 

PD (Doxakis, 2010; Farh, 2005; Junn et al., 2009). In addition, target prediction and 

enrichment analyses identified several miRNAs that might regulate PD-associated genes, in 

regard to autophagy and lysosomal related pathway. Those miRNAs species include miR-

98, miR-124, miR-142, miR-130, and miR-204 (Jegga et al., 2011; Junn et al., 2009). 

Another important aspect of miRNA regulation in PD is the fact that they are 

fundamental for the development and function of dopaminergic neurons. A prominent 
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study in the field showed that the deletion of the enzyme Dicer – pivotal for the biogenesis 

of miRNAs – led to reduced neurogenesis and a strong dopaminergic degeneration in vitro. 

Similarly, when analyzing a murine model presenting a conditional Dicer knockout, a 

marked and progressive dopaminergic neurodegeneration is observed in the midbrain of 

the animals, reaching up to 90% of dopaminergic cell loss in up to 6 weeks of age. 

Remarkably, the phenotype is significantly rescued when transfecting Dicer-deleted 

cultured neurons with midbrain-derived small RNAs (<200bp), but not with large RNAs 

(>200bp) of same origin, indicating that the miRNA machinery as a whole is of vital 

importance for the development and maintenance of dopaminergic neurons (Kim et al., 

2007). All in all, the aforementioned findings suggest that disruption in the miRNA 

machinery might be intrinsically related to the pathogenesis and progression of PD. 

The studies presented above here indicate that miRNAs comprise a very promising 

tool for the discovery of novel pathological aspects of PD and, consequently, for the 

improvement of diagnosis and therapeutic options for this disease. Moreover, the 

possibility of studying not only miRNA expression profiles but also the ones of their direct 

mRNA interactors (by transcriptomic profiling) and the final protein products (by 

proteomics experiments) represents a powerful strategy into the field of 

neurodegenerative diseases. 
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1.4. Objectives of this doctoral thesis 

With the advance of biotechnology, large scale high-throughput omics studies 

permit the generation of very detailed datasets with high efficiency and relative low costs. 

That represents a huge advantage to the study of molecular mechanisms and pathways 

involved in the development of complex diseases. Analytical approaches for the 

visualization and integration of multi-omics data allow a deeper look into underlying 

pathophysiological mechanisms, and might permit the exploitation of the finding into novel 

therapeutic strategies. These approaches are especially important in the context of 

neurodegenerative diseases, including PD. Exploring the exact molecular mechanisms 

taking place in the midbrains of PD-affected patients is fundamental for better 

understanding the pathogenesis and progression of the disease. 

Thus, the central aim of this doctoral thesis was to analyze postmortem midbrain 

tissue samples from a cohort of PD patients and controls through a set of multi-omics 

approaches, in order to profile miRNA expression patterns, their target transcripts, the final 

protein products and possible genomic alterations underlying the pathologic phenotypes. 

The main techniques employed here were the following: 

• Gene panel sequencing and Multiplex ligation-dependent probe amplification: 

To verify the presence of classic mutations and other genetic alterations linked 

to PD in a selected set of genes; 

• Small RNA sequencing; 

To profile the miRNA expression patterns in the present midbrain samples; 

• RNA sequencing; 

To obtain the transcriptomic profiles from the present midbrain samples; 

• Mass spectrometry; 

To evaluate the quantifiable proteome in the present midbrain samples; 

Each generated dataset might contain a large number of potential underlying 

mechanisms from PD pathology per se and was analyzed in depth individually. In addition, 

we have been especially interested in analyzing the generated datasets in an integrative 



Objectives 
 

14 
 

fashion, aiming to depict pathways of deregulation across the omics data that might permit 

the exploration of novel miRNA-based regulatory mechanisms. Overall, our findings are 

likely to reveal molecular networks involved in PD pathogenesis as well as drugable targets 

for the development of novel therapeutic alternatives. 

Finally, to complement our studies in the human tissue, another objective was to 

validate the small RNA / RNA sequencing results from human midbrains in an established 

animal model of PD (the αSyn.A53T transgenic mouse line). By comparing the validation 

results from both sources, our main goal was to verify whether the expression patterns 

observed in PD-affected human brains correlate with the ones found in the animal tissue, 

assessing the validity of the model in terms of miRNA / mRNA expression. 
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2. Material and Methods 

2.1. Materials 

2.1.1. Human samples 

Case ID Age Sex Duration (y) PMI (h) Neuropathological diagnosis 

PD      

PD029 76 M 7 15 LBDBS 

PD039 82 F 15 12 LBDBS 

PD050 82 F 14 18 LBDBS 

PD074 85 M 9 17 LBDBS 

PD125 74 M 25 20 LBDN 

PD134 74 M 10 21 LBDBS 

PD153 76 F 7 12 LBDN 

PD180 85 F 15 15 LBDN 

PD182 75 M 10 3 LBDN 

PD184 71 M 7 24 LBDE 

PD187 72 M 8 11 LBDN 

PD201 87 M 11 19 LBDN 

PD203 84 F 18 19 LBDN 

PD207 81 M 10 11 LBDN 

PD229 85 F 18 7 LBDN 

PD268 72 M 20 8 LBDN 

PD334 87 M 9 21 LBDN 

PD458 73 M 19 10 LBDBS 

PD666 93 F 15 24 LBDBS 

Controls      

C028 60 F  13 Diffuse hypoxic damage 

C046 65 M  24 Ischemic infarct caudate and capsule 

CO54 66 M  16 n.a. 

C064 63 F  21 n.a. 

CO74 84 F  22 n.a. 
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C075 88 M  8.5 n.a. 

C077 84 F  12 n.a. 

PDC023 78 F  23 n.a. 

PDC034 90 M  12 n.a. 

PDC035 89 F  13 Diffuse hypoxic damage 

PDC040 61 F  15 n.a. 

PDC078 91 M  18 n.a. 

PDC087 92 F  24 n.a. 

PDC088 96 F  24 n.a. 

PD549 76 M  25 Age associated changes - normal control 

Table 1: Characterization of the human tissue samples analyzed in this thesis. PMI: post-

mortem intervals; LBD-BS: Lewy body disease, brain stem predominant. LBD-N: Lewy body 

disease, neocortical (according to Lewy-body pathology classification (Alafuzoff et al., 

2009)). 

 

2.1.2. Reagents 

Reagent Producer 

1-Bromo-3-Chloropropane Sigma Aldrich (Germany) 

2-Propanol AppliChem (Germany) 

Ethanol absolute AppliChem (Germany) 

GlycoBlue Coprecipitant ThermoFisher Scientific (USA) 

Phosphate buffered saline (PBS) AppliChem (Germany) 

DNase I (2U/μL)   Life Technologies (USA) 

RNase OUT Life Technologies (USA) 

Nuclease free water Sigma Aldrich (Germany) 

10X DNAse I Incubation buffer Life Technologies (USA) 
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Reagent Producer 

Trizol (TRI Reagent) Sigma Aldrich (Germany) 

Table 2: List of Reagents 

 

 

2.1.3. Primers and Kits 

Kit / Primer Producer 

RNA Clean & Concentrator-5 KIT Zymo Research (USA) 

QIAamp DNA Mini Kit Qiagen (Germany) 

miScript II RT Kit Qiagen (Germany) 

miScript SYBR Green PCR Kit Qiagen (Germany) 

Quantitect RT Kit Qiagen (Germany) 

QuantiTect SYBR Green PCR Kit Qiagen (Germany) 

SALSA P051 Parkinson MLPA kit MRC Holland (The Netherlands) 

SALSA P052 Parkinson MLPA kit MRC Holland (The Netherlands) 

TruSeq Small RNA Library Prep Kit Illumina (USA) 

CleanTag Library Preparation for Next-Generation 

Sequencing Kit 
TriLink (USA) 

dsDNA 905 Kit Agilent (USA) 

dsDNA 905 Reagent Kit Agilent (USA) 

TruSeq Stranded Total RNA Illumina (USA) 

RiboMinus Thermo Fisher Scientific (USA) 

Bradford Roti-Nanoquant protein quantification kit Carl Roth (Germany) 



Material and Methods 
 

18 
 

Pierce High pH Reversed-Phase Peptide 

Fractionation Kit 
Thermo Fisher Scientific (USA) 

Hs_RNU6-2_11 miScript Primer Assay Qiagen (Germany) 

Hs_GAPDH_1_SG Quantitect Primer Assay Qiagen (Germany) 

Hs_RIMS1_1_SG Quantitect Primer Assay Qiagen (Germany) 

Hs_DHX57_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_RNF170_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_TMEM178B_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_C7orf73_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_STEAP3_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_MIER2_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_FOXF1_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_SOCS4_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_BRWD1_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_PPTC7_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Hs_ENTPD5_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Socs4_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Steap3_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Mier2_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Foxf1_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Pink1_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Polg_1_SG QuantiTect Primer Assay Qiagen (Germany) 
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Mm_Nfkb2_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Hspa1a_2_SG QuantiTect Primer Qiagen (Germany) 

Mm_Sqstm1_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Dyrk1a_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Rims1_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Galc_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Nod2_1_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_Gapdh_3_SG QuantiTect Primer Assay Qiagen (Germany) 

Mm_miR-143_1 miScript Primer Assay Qiagen (Germany) 

Mm_miR-122a_1 miScript Primer Assay Qiagen (Germany) 

Mm_miR-10a_2 miScript Primer Assay Qiagen (Germany) 

Hs_let-7i_1 miScript Primer Assay Qiagen (Germany) 

Hs_miR-26a_2 miScript Primer Assay Qiagen (Germany) 

Hs_miR-218_1 miScript Primer Assay Qiagen (Germany) 

Hs_miR-424_1 miScript Primer Assay Qiagen (Germany) 

Hs_miR-29c_1 miScript Primer Assay Qiagen (Germany) 

Hs_let-7g_2 miScript Primer Assay Qiagen (Germany) 

Hs_miR-20a_1 miScript Primer Assay Qiagen (Germany) 

Hs_miR-145_1 miScript Primer Assay Qiagen (Germany) 

Hs_miR-98_1 miScript Primer Assay Qiagen (Germany) 

Table 3: List of Kits and Primer Assays 
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2.1.4. Buffers 

Component Amount 

7M Urea (Sigma) 10.51 g 

2M Thiourea (Sigma ) 

 

3.8 g 

4% Chaps (Applichem) 

 

1 g 

ASB14 2% (Sigma) 0.5 g 

cOmplete™, Mini, EDTA-free Protease 

Inhibitor (Roche) 
1:25 (v/v %) 

Phos Stop Phosphatase Inhibitor (Roche) 1:20 (v/v %) 

Deionized water q.s. 25 ml 

Table 4. Composition of lysis buffer for Proteomics experiments 

 

 

 

 

 

 

 

 



Material and Methods 
 

21 
 

2.1.5. Equipment 

Equipment Producer 

96 well micro test plates Sarstedt (Germany) 

MicroAmp Optical 96-Well Reaction Plates Applied Biosystems (USA) 

Tecan Spark 10M Plate reader Tecan (Switzerland) 

Mastercylcer nexus X2 Eppendorf (Germany 

Micro-centrifuge 5415R Eppendorf (Germany) 

NanoDrop One Thermo Fisher Scientific (USA) 

Agilent 2100 Bioanalyzer Agilent (USA) 

Fragment Analyzer Agilent (USA) 

Quant Studio 3 q-RT-PCR system Thermo Fisher Scientific (USA) 

QuantiFluor dsDNA System Promega (USA) 

ABI 3130XL or 3500XL capillary seq Applied Biosystems (USA) 

HiSeq 4000 sequencing platform Illumina (USA) 

RNAse-Exitus Plus AppliChem (Germany) 

Eksigent nanoLC425 nanoflow 

chromatography system 
AB Sciex (USA) 

Hybrid triple quadrupole-TOF mass 

spectrometer (TripleTOF 5600+) 
AB Sciex (USA) 

Chrommatography Pre-column (0.18 mm 

ID x 20 mm; symmetry C18, 5 µm) 

Waters (USA) 

Chrommatography RP-C18 column Waters (USA) 

Perfusion syringe Becton Dickinson 

NuPAGE Novex Bis-Tris Minigels Invitrogen (USA) 

Thermomixer Comfort Eppendorf (Germany) 

1.5ml Biosphere Safeseal tubes Sarstedt (Germany) 

Table 5. List of equipment 
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2.1.6. Software 

Software Producer 

CorelDraw Graphics Suite Corel Corporation (Canada) 

GraphPad Prism software version 8.1.2 GraphPad software (USA) 

R software (version 3.5.1) R Core Team, 2017 

Python v.2.7.1 Python Software Foundation 

limma (version 3.36.5) (Ritchie et al., 2015) 

Rank-Rank Hypergeometric Overlap (RRHO) (Plaisier et al., 2010) 

FastQC version 0.11.5 (Andrews et al., 2010) 

QuantStudio Design and Analysis Software v1.5.1 Thermo Fisher Scientific (USA) 

BaseCaller software Thermo Fisher Scientific (USA) 

Analyst TF 1.7.1 software build 1163 AB Sciex (USA) 

Cutadapt (Martin, 2011) 

RNA-STAR version STAR_2.5.2b (Dobin et al., 2013) 

htseq-count script (HTSeq package version 0.9.1) (Anders et al., 2015) 

Bowtie version 1.1.2 (Langmead et al., 2009) 

Coffalyser 
MRC Holland (The 

Netherlands) 

ProteinPilot Software version 5.0 AB Sciex (USA) 

PeakView Software version 2.1 AB Sciex (USA) 

SWATH quantitation microApp version 2.0 AB Sciex (USA) 

Perseus 1.5.6.0 

Computational Systems 

Biochemistry, Max Planck 

Institute, Martinsried Germany 

(Tyanova et al. 2016) 

 

Table 6. List of software used for experiments, data analysis and figure design 
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2.1.7. Genes selected for MLPA and gene panel sequencing experiments 

Gene Technique 

SNCA MLPA 

PARK2 MLPA 

UCHL1 MLPA 

PINK1 MLPA 

PARK7 MLPA 

ATP13A2 MLPA 

LRRK2 MLPA 

GCH1 MLPA 

A30P (point mutation) MLPA 

G2019S (point mutation) MLPA 

Parkin Gene panel sequencing 

PINK1 Gene panel sequencing 

DJ-1 Gene panel sequencing 

SNCA Gene panel sequencing 

LRRK2 Gene panel sequencing 

GBA Gene panel sequencing 

VPS35 Gene panel sequencing 

PLA2G6 Gene panel sequencing 

RAB39B Gene panel sequencing 
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VPS13C Gene panel sequencing 

TOR1A Gene panel sequencing 

THAP1 Gene panel sequencing 

GCH1 Gene panel sequencing 

GNAL Gene panel sequencing 

SGCE Gene panel sequencing 

KMT2B Gene panel sequencing 

ANO3 Gene panel sequencing 

PRKRA Gene panel sequencing 

RAB12 Gene panel sequencing 

TAF1 (4 variants) Gene panel sequencing 

ADCY5 Gene panel sequencing 

COX20 Gene panel sequencing 

MCOLN1 Gene panel sequencing 

PDGFB Gene panel sequencing 

PDGFRB Gene panel sequencing 

SLC20A2 Gene panel sequencing 

XPR1 Gene panel sequencing 

POLG Gene panel sequencing 

VAC14 Gene panel sequencing 

Table 7. List of genes analyzed in MLPA and gene panel sequencing experiments 
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2.2. Methods 
 

2.2.1. Human samples 

2.2.1.1. Human midbrain sample source and ethics statement 

All human midbrain samples were provided by the Parkinson’s UK Brain Bank 

(Imperial College London, London, England). Midbrain tissue blocks (snap frozen) were 

transported and stored under controlled temperature conditions (-80°C). The samples 

were conceded to the Lingor Lab (Department of Neurology of the University Medical 

Center Göttingen, Göttingen, Germany). Ethical approval was given by the Multicenter 

Research Ethics Committee (07/MRE09/72). Table 1 encloses all information about the 

human samples. 

 

2.2.1.2. Midbrain tissue sampling 

For the sake of having the midbrain blocks under controlled temperature 

conditions, the samples were transferred to a cryostat chamber and kept at -20°C for 20 

minutes for temperature balancing.  Each frozen tissue block was punched with a 20-G 

Quincke Spinal Needle (Becton Dickinson, Madrid, Spain), and around 20 mg of were 

collected into RNAse/DNAse free tubes for each sample. Tissue punches were kept at -80°C 

until further use. 
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Figure 3. Information on human midbrain Samples and tissue processing. (A) Human midbrain 

sample IDs; sample source: UKPD brain bank. (B) Experimental design for RNA isolation and protein 

lysate preparation experiments; extraction of tissue punches was performed with a spinal needle. 

RNA isolation done by the TRIzol method. Protein lysates prepared with Urea/Thiourea/Chaps lysis 

buffer. 

 

 

2.2.2. Animal samples 

2.2.2.1. αSyn.A53T mice selection and cohort designing 

Transgenic Prnp-SNCA*A53T mice were provided by the central animal facility (ZTE) 

of the University Medical Center Göttingen. Wild-type / homozygous animals were selected 

upon 10-12 weeks of life and kept in ventilated cages (multiple housing; groups of 

maximum 6 individuals per cage), under a 12-hour dark-light cycle and fed ad libitum. Six 

different cohorts (n = 5 animals/group)  were designed according to genotype and age for 

sacrification. Animals in the ‘early-stage’ cohorts were kept until 100 days of age before 

sacrification. For the ‘intermediate-stage’ and ‘late-stage’ cohorts, animals were kept for 
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250 and 400 days of age before scarification, respectively. Animals showing any signals of 

paralysis or weight loss were immediately sacrificed. All experiments were performed in 

accordance with the national German animal protection law under the project 17/2470, 

grant no. 13/1118 approved by the local authorities. 

 

2.2.2.2. Animal euthanasia and tissue processing 

2.2.2.2.1. Cervical dislocation  

Cervical dislocation was employed for mouse euthanasia and performed by a 

trained individual. The animals were restrained by the base of the tail on the wire-bar grid 

of a housing cage. After the animals gripped on the grid, the body was carefully stretched, 

so the base of the skull was completely accessible. Closed scissors were placed on the back 

of the neck/base of the skull and the cervical dislocation was performed with a firm 

horizontal push of the scissors whilst pulling the tail base to the opposite direction. Cervical 

dislocation effectiveness was assessed by palpation of the cervical tissues, and the death 

of the animals was confirmed by checking toe pain reflexes and respiratory arrest. 

 

2.2.2.2.2. Transcranial perfusion 

In order to obtain RNA of good quality for further experiments, fresh, nonfixed 

mouse brain tissue was required. For that sake, after euthanasia, the animals were quickly 

moved to a perfusion table and the abdominal skin was cut open longitudinally. The rib 

cage was cut open in order to expose the heart and a perfusion cannula was inserted into 

the left ventricle. A perfusion syringe (Becton Dickinson, Heidelberg, Germany) filled with 

50 ml of ice-cold PBS was connected to the cannula and the animals were perfused with 

that volume for 3 minutes. After perfusion, the cranium was cut open, the brain was 

removed and placed on an ice pad for microdissection. 
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2.2.2.2.3. Preparation of midbrain regions from fresh mouse brain 

The mouse brains were microdissected in order to isolate the midbrain region from 

both hemispheres. For that, brains were cut sagittally with a scalpel. After removing the 

olfactory bulb and the cerebellum (by cutting at the cerebellar peduncle), the cortex was 

flipped over until unraveling of the hippocampal structure and both were excised. The 

remaining structures containing the basal ganglia and the pons were further dissected to 

isolate the midbrain region. Freshly prepared midbrains were collected into Nuclease-free 

tubes, snap-frozen with liquid nitrogen and kept at -80°C until RNA isolation experiments. 

 

 

2.2.3. Molecular biology techniques 

2.2.3.1. RNA isolation, DNAse treatment of RNA samples, RNA cleaning and 

concentration 

Total RNA was isolated from human and animal midbrain samples using TRI Reagent 

(Sigma Aldrich, Taufkirchen, Germany). All RNA-related experiments were performed 

under an RNA-workstation fume hood. Shortly, 1 ml of TRI Reagent was added to each 

midbrain sample and incubated for 5 minutes, followed by addition of 100µl of 1-Bromo-

3-Chlor-Propane (Sigma Aldrich, Taufkirchen, Germany). The reaction tubes were mixed by 

inversion for 10 - 15 seconds and incubated at room temperature for 3 minutes. The lysates 

were centrifuged at 12.000 x g for 15 minutes / 4°C, leading to separation of organic and 

aqueous phases. The RNA-containing aqueous phase was transferred to a fresh Nuclease-

free tube. RNA precipitation was performed by adding 500 µl of 2-propanol (AppliChem, 

Darmstadt, Germany) and 2 µl GlycoBlue Co-precipitant (15 mg/ml) (ThermoFisher, 

Waltham, MA, USA), followed by overnight incubation at -20°C. Next, the samples were 

centrifuged at 12.000 x g for 30 minutes / 4°C, the supernatant was discarded and the RNA 

pellets washed three times with 75% ice-cold ethanol (AppliChem, Darmstadt, Germany). 

The pellets were dried for 5 minutes under the fume hood, reconstituted with 15-20 µl of 

Nuclease-free water (Sigma Aldrich, Taufkirchen, Germany) and RNA samples incubated at 

55°C for 2 minutes in a thermoshaker in order to completely dissolve the RNA. 
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After the RNA isolation, a DNAse treatment was performed in order to remove any 

remaining DNA from the samples. For that, 5μl of 10X DNAse I Incubation buffer (Life 

Technologies, Carlsbad, CA, United States) were added to each sample, followed by the 

addition of 5μl DNase I (2U/μL) and 0.5μl - RNase OUT (40U/μl). Samples were made up to 

a volume of 50 µl by the addition of Nuclease-free water, followed by incubation at 37°C 

for 20 minutes. Finally, the RNA samples were cleaned and concentrated with the RNA 

Clean & Concentrator-5 KIT (Zymo Research, Irvine, CA, USA), following the manufacturer’s 

instructions. 

 

2.2.3.2. DNA isolation and sample processing 

DNA isolation from human midbrain samples was performed with the QIAamp DNA 

Mini Kit following the manufacturer’s instructions. Midbrain DNA samples were freshly 

prepared and directly shipped to the Laboratory of Translational Neurogenetics (Institute 

of Neurogenetics, University of Lübeck) for MLPA and gene panel sequencing experiments.  

 

2.2.3.3. Determination of nucleic acid concentration and purity 

Directly after RNA / DNA isolation, nucleic acid concentration and purity were 

measured in the NanoDrop One spectrophotometer (ThermoFisher, Waltham, MA, USA). 

Spectrophotometric quantification in the NanoDrop system required 1 μl of each sample. 

For RNA samples used in RNA sequencing experiments, RNA integrity was assessed with 

the Agilent 6000 Nano Chip in the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). 

 

2.2.3.4. Reverse transcription 

For quantitative real-time PCR experiments (q-RT-PCR), complementary DNA 

(cDNA) synthesis was performed. For miRNA q-RT-PCR validation experiments, 500 ng of 

RNA from each sample were reverse transcribed using the miScript II RT Kit (Qiagen, Hilden, 

Germany) with the HiSpec buffer (designed for the reverse transcription of mature 

miRNAs). For transcriptomics validation experiments, 1 µg RNA / sample was reversed 
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transcribed using the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany). All 

steps were performed on ice. A master-mix was prepared for each RT reaction, as follows: 

Component Volume/reaction 

5x miScript HiSpec Buffer 

10x miScript Nucleics Mix 

miScript Reverse Transcriptase Mix 

Template RNA (volume for 500ng) 

RNase-free water (quantum sufficit) 

2 µl 

1 µl 

1 µl 

variable 

variable 

Total Volume 10 μl 

Table 8. Components for Reverse Transcript reactions 

Following the addition of the master mix to the samples, the reaction tubes were 

incubated for 60 minutes at 37 °C in the Mastercycler nexus X2 PCR thermocycler 

(Eppendorf, Hamburg, Germany), followed by incubation at 95°C for 5 minutes to inactivate 

the reverse transcriptase. cDNA samples were diluted 1:3 in nuclease-free water and stored 

at -20 °C until q-RT-PCR experiments. 

 

2.2.3.5. Quantitative Real-Time Polymerase Chain Reaction (q-RT-PCR) 

To determine expression levels of selected miRNAs and mRNAs in human and 

animal midbrain samples, q-RT-PCR reactions were conducted in the QuantStudio 3 system 

(ThermoFisher, Waltham, MA, USA). For miRNA q-RT-PCR experiments, the miScript SYBR 

Green PCR Kit (Qiagen, Hilden, Germany) was used, and miRNA expression was normalized 

to the endogenous control RNU 6.  For the validation of transcriptomics experiments, the 

QuantiTect SYBR Green PCR Kit (Qiagen, Hilden, Germany) was employed, using GAPDH as 

a housekeeping control. MicroAmp Optical 96-Well Reaction Plates (Applied Biosystems, 

Foster City, CA, USA) were prepared at room temperature and the reaction plates were 

tightly sealed with a heat-sealing adhesive film before placement inside the cycler. Reaction 

volumes were calculated as described in the tables below. 
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Table 9. miScript q-RT-PCR Reactions Master mix (for miRNA validation experiments)  

 

Table 10. QuantiTect q-RT-PCR Reactions Master mix (for mRNA validation experiments) 

  

The cycling conditions are described in the table below. A melt curve analysis was 

set for every q-RT-PCR run. 

Table 11. qPCR cycling settings 

Component Volume/reaction 

2x QuantiTect SYBR Green PCR Master Mix 

10x miScript Universal Primer 

10x miScript Primer Assay 

RNase-free water 

cDNA template 

10 µl 

2 µl 

2 µl 

4 µl 

2 µl 

Total volume 20 µl 

Component Volume/reaction 

2x QuantiTect SYBR Green PCR Master Mix 

10x miScript Primer Assay 

RNase-free water 

cDNA template 

12,5 µl 

2,5 µl 

9 µl 

1 µl 

Total volume 25 µl 

Step Time Temperature 

PCR initial activation step 15 min 95 °C 

3-step cycling: 

Denaturation 

Annealing 

Extension 

15 s 

30 s 

30 s 

94 °C 

55 °C 

70 °C 

Cycle number 40 cycles 
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 The relative expression levels of miRNA and mRNA species were calculated by the 

ΔΔCt method (delta-delta-Ct). Ct values for each sample were compared to the average of 

ΔCt of the respective control group. 

 

2.2.3.6. Multiplex Ligation-dependent Probe Amplification (MLPA) 

MLPA experiments were performed in order to detect abnormalities in copy 

numbers (e.g. deletions, duplications, triplications) of specific PD-related genes. For the 

MLPA analyses, SALSA P051 and P052 Parkinson MLPA kits (MRC Holland, Amsterdam, The 

Netherlands) - a set of standard commercial probes - were employed. These kits cover 

exons that include Parkin, PINK1, and DJ-1 and selected mutations in LRRK2 and SNCA 

genes. Further analyzed exons are listed in table 7. DNA samples were prepared (as 

described in 2.2.3.2) and shipped to the lab of Prof. Christine Klein / Dr. Katja Lohmann 

(Universität zu Lübeck), were the experiments were perfomed. MLPA experiments were 

conducted according to the manufacturer's protocol. PCR amplification products were 

visualized on capillary sequencing machines (either ABI 3130XL or 3500XL) (Applied 

Biosystems, Foster City, CA, USA) using the coffalyser software (MRC Holland, Amsterdam, 

The Netherlands). 

 

2.2.3.7. Gene Panel sequencing 

For Gene Panel analysis, similar to the MLPA experiments, DNA samples were 

prepared (as described in section 2.2.3.2) and shipped to the lab of Prof. Christine Klein / 

Dr. Katja Lohmann (Universität zu Lübeck) for the DNA sequencing. After preparation of the 

panels, the samples were sequenced on a next-generation sequencing platform with a 

collaboration partner (Centogene AG, Rostock, Germany). 29 genes previously linked to PD 

or dystonia (DYT) phenotypes were analyzed. The mean sequencing depth was 600x. 

Variants were filtered according to quality scores (cut-offs: quality score >200; coverage 

>10, allele fraction >20%), further filtered for the number of times that they appeared in 

public databases (cut-off: <0.01 in public databases and the in-house database) and finally 

for protein-changing variants in PD genes. Candidate variants were confirmed by Sanger 

sequencing. All genes included in the gene panel are disclosed in table 7. 
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2.2.3.8. RNA sequencing experiments 

2.2.3.8.1. Small RNA sequencing library preparation 

Small RNA sequencing experiments were performed in the Transcriptome and 

Genome Analysis Laboratory (TAL) of the University Medical Center Göttingen. Small RNA 

libraries were prepared using the TruSeq Small RNA Library Prep Kit (Illumina, San Diego, 

CA, USA) with minor modifications. 600 ng total RNA were used as starting material for 

library preparation. In order to prevent the formation of adapter dimers (by 5΄ and 3΄ self-

ligation) and consequent amplification of these dimers, the CleanTag Library Preparation 

for Next-Generation Sequencing Kit (TriLink, San Diego, CA, USA) was employed.  

 

2.2.3.8.2. Small RNA sequencing library quality assessment 

Small RNA libraries quality and integrity were assessed in the Fragment Analyzer 

platform (Agilent, Santa Clara, CA, USA). Therefore, the standard sensitivity RNA Analysis 

Kit was used. All samples selected for sequencing exhibited a comparable RNA integrity 

number (7-8). For accurate quantitation of small RNA libraries, a library pool was quantified 

with the QuantiFluor dsDNA System (Promega, Madison, WI, USA). Finally, the size of the 

small RNA libraries was determined using the dsDNA 905 Reagent Kit (Agilent, Santa Clara, 

CA, USA). Small RNA sequencing was performed on the Illumina HiSeq 4000 platform 

(Illumina, San Diego, CA, USA), generating 50 bp single-end reads (10-20 Million reads/ 

sample).  

 

2.2.3.8.3. RNA sequencing library preparation 

Likewise small RNA sequencing experiments, transcriptomics were performed in the 

Transcriptome and Genome Analysis Laboratory (TAL) of the University Medical Center 

Göttingen. The same RNA source was used for both small RNA and RNA sequencing 

experiments. RNA libraries were prepared using a modified version of the TruSeq Stranded 

Total RNA protocol (Illumina, San Diego, CA, USA), a strand-specific, massive-parallel cDNA 

sequencing protocol. 200 ng of total RNA were used as a start material. A ribosomal RNA 

(rRNA) depletion protocol (RiboMinus™, ThermoFisher, Waltham, MA, USA) was 
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performed in order to maintain rRNA content under 5% in the samples. Shortly, this 

technology utilizes specific locked nucleic acid (LNA) bind rRNA and subsequently to 

streptavidin-coated magnetic beads to remove those species from the samples. Next, an 

adaptor ligation step is performed, followed by PCR amplification of the reads. A reduced 

number of PCR cycles was employed in order to avoid PCR duplication artifacts, as well as 

primer dimers in the final libraries.  

 

2.2.3.8.4. RNA sequencing library quality assessment 

A Fragment Analyzer (Agilent, Santa Clara, CA, USA) was used for assessment of RNA 

quality and integrity. RNA integrity numbers from all samples selected for sequencing 

ranged from 7-8. For accurate quantitation of the libraries, the QuantiFluor dsDNA System 

(Promega, Madison, WI, USA) was employed. cDNA library sizes were determined with the 

dsDNA 905 Kit (Agilent, Santa Clara, CA, USA). Finally, the libraries were pooled and 

sequenced on an Illumina HiSeq 4000 (Illumina, San Diego, CA, USA) generating 50 bp 

single-end reads (30-40 Million reads/sample).  

 

2.2.3.8.5. Raw sequencing reads and sequencing quality check 

After RNA sequencing runs, sequence images were transformed to BCL files with 

the BaseCaller software. Thereafter, the files were demultiplexed to fastq files with 

bcl2fastq v2.17.1.14. Both software were provided by Illumina (Illumina, San Diego, CA, 

USA).  Quality check of the reads fastq files was done with FastQC version 0.11.5  (Andrews 

et al., 2010) 

 

2.2.3.9 Proteomics experiments 

2.2.3.9.1 Lysate preparation 

For proteomics experiments, human midbrain tissue lysis was performed in freshly 

prepared Urea/Thiourea/Chaps lysis buffer. The detailed composition of the lysis buffer is 

depicted in table 4. Samples were homogenized with plastic stabs and lysates were 

spinned-down in order to remove bubbles produced by the manual homogenization. For a 
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fine homogenization of the lysates, the samples were sonicated twice for 15-second 

intervals at an amplitude of 40%. Sonication was performed on ice. A new centrifugation 

step was performed to remove the produced bubbles. 

 

2.2.3.9.2 Protein quantification and sampling 

 Protein quantification was performed with the modified-Bradford Roti-Nanoquant 

protein quantification kit (Carl-Roth, Karlsruhe, Germany), following the manufacturer’s 

instructions. The prepared colorimetric reactions were read in the TECAN Spark 10M Plate 

reader. A final amount of 50 µg protein was aliquoted for further proteomics experiments. 

 

2.2.3.9.3 Mass spectrometry runs 

For mass spectrometry (MS) experiments, previously prepared protein aliquots 

(50µg protein/sample) were loaded into a 4-12% NuPAGE Novex Bis-Tris Minigels 

(Invitrogen, Carlsbad, CA, USA). Samples were run for 1.5 cm by electrophoresis and stained 

with Coomassie Brilliant Blue. The bands were cut out, diced and undergo reduction with 

the use of dithiothreitol, alkylation with iodoacetamide. Next, proteins were digested with 

trypsin overnight. Tryptic peptides were extracted from the gel and the solution was dried 

in a Speedvac (Atanassov and Urlaub, 2013). For the generation of peptide libraries, equal 

aliquots from each sample were pooled to a total of 80 µg and further separated into eight 

fractions using a reversed-phase spin column (Pierce High pH Reversed-Phase Peptide 

Fractionation Kit) (ThermoFisher, Waltham, MA, USA). Spike-ins from a synthetic peptide 

standard were added to the samples and used for retention time alignment (iRT Standard, 

Schlieren, Switzerland). Protein digests were analyzed on the Eksigent nanoLC425 nanoflow 

chromatography system (AB Sciex, Framingham, MA, USA), hyphenated to a hybrid triple 

quadrupole-TOF mass spectrometer (TripleTOF 5600+) equipped with a Nanospray III ion 

source (Ionspray Voltage 2400 V, Interface Heater Temperature 150°C, Sheath Gas Setting 

12) and controlled by Analyst TF 1.7.1 software build 1163 (AB Sciex, Framingham, MA, 

USA). Briefly, peptides were dissolved in a loading buffer (composed of 2% acetonitrile and 

0.1% formic acid in water) to a concentration of 0.3 µg/µl. For each analysis, 1.5 µg of 

digested protein was enriched on a pre-column of dimensions 0.18 mm ID x 20 mm and 
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symmetry C18, 5 µm (Waters, Milford, MA, USA). Next, separation was performed on an 

analytical RP-C18 column of dimensions 0.075 mm ID x 250 mm, HSS T3, 1.8 µm (Waters, 

Milford, MA, USA) using a 90 min linear gradient of 5-35 % acetonitrile / 0.1% formic acid 

(v:v) at 300 nl min-1. 

 

2.2.3.9.4 Mass spectrometry analysis 

Qualitative liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis 

was performed using a Top25 data-dependent acquisition method. For that, an MS survey 

scan of m/z 350–1250 accumulated for 350 ms at a resolution of 30,000 full width at half 

maximum (FWHM) was performed. MS/MS scans of m/z 180–1600 were accumulated for 

100 ms at a resolution of 17,500 FWHM and a precursor isolation width of 0.7 FWHM, 

resulting in a total cycle time of 2.9 s. Precursors above a threshold of 125 cps for MS 

intensity and with charge states of 2+ / 3+ / 4+ were selected for MS/MS. Dynamic exclusion 

time was set to 30 s. An MS/MS activation was achieved by CID using nitrogen as a collision 

gas. The manufacturer’s default rolling collision energy settings were employed. Three 

technical replicates per reversed-phase fraction were analyzed to construct a spectral 

library. For quantitative sequential window acquisition of all theoretical fragment ion 

spectra (SWATH) analysis, MS/MS data were acquired using 65 variable size windows 

across the 400-1,050 m/z range. Fragments were produced using rolling collision energy 

settings for charge state 2+, and fragments acquired over an m/z range of 350–1400 for 40 

ms per segment. With the inclusion of a 100 ms survey scan, the overall cycle time was of 

2.75s. Either two or three replicate injections were acquired for each biological sample 

(Gillet et al., 2012; Losensky et al., 2017; Zhang et al., 2015).  

 

2.2.3.10 Bioinformatics analyses 

MLPA and gene panel sequencing data processing was done in collaboration with 

the lab of Prof. Christine Klein / Dr. Katja Lohmann (Universität zu Lübeck). RNA sequencing 

quality control and data processing were performed with the assistance of Dr. Gaurav Jain 

(Lab of Prof. André Fischer, DZNE Göttingen) using in-house developed pipelines. 

Processing of Proteomics data was performed in collaboration with the lab of Prof. Henning 
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Urlaub / Dr. Christof Lenz (UMG Göttingen). Proteomics differential expression (DE) 

analyses were done with the assistance of the Department of Medical Statistics (UMG 

Göttingen). 

 

2.2.3.10.1 Small RNA sequencing data processing and mapping 

After small RNA sequencing, the data was processed with a customized in-house 

pipeline (Jain, 2018). After fastq file quality control check with FastQC, the 3' adapters were 

trimmed and reads with the minimum length of 16 nucleotides were filtered out with the 

Cutadapt pipeline (Martin, 2011). The reads are then mapped to the reference genome for 

miRNAs and piRNAs known sequences, followed to the reference genome made from other 

small noncoding RNAs. The remaining unmapped reads were mapped to the human 

genome.  Bowtie version 1.1.2 (Langmead et al., 2009) was employed for all mapping steps, 

and no mismatches were allowed for reads ≤ 32 b. For reads between 33 b and 50 b, one 

mismatch was tolerated.  

 

2.2.3.10.2 RNA sequencing analyses data processing and mapping 

Likewise, the small RNA sequencing data processing, the RNA sequencing data were 

processed with a customized in-house pipeline (Jain, 2018). Adapter trimming and 

demultiplexing were performed alongside base calling. Quality control of raw sequencing 

reads was performed using FastQC. RNA reads were mapped to the human transcriptome 

using RNA-STAR version STAR_2.5.2b (Dobin et al., 2013) for all mapping steps. The reads 

were mapped in the non-splice-junction-aware mode and no mismatches for the reads <19 

b were allowed. For reads between 20 b and 39 b, one mismatch was allowed, and for reads 

between 40 b and 59 b, two mismatches were tolerated. Besides the parameters depicted 

here, all other parameters were default in RNA-STAR. Aligned reads overlapping exons (for 

each gene) was counted with the intersection-non-empty mode of the htseq-count script 

(HTSeq package version 0.9.1) (Anders et al., 2015).  
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2.2.3.10.3 Mass spectrometry data processing and mapping 

Protein identification was achieved using ProteinPilot Software version 5.0 build 

4769 (AB Sciex, Framingham, MA, USA) at thorough settings. A total of 407,752 MS/MS 

spectra from the combined qualitative analyses were searched against the UniProtKB 

human reference proteome (revision 04/2018, 93.609 entries) augmented with a set of 52 

known common laboratory contaminants. Spectral library generation and SWATH peak 

extraction were achieved in PeakView Software version 2.1 build 11041 (AB Sciex, 

Framingham, MA, USA) using the SWATH quantitation microApp (version 2.0 build 2003). 

Following retention time correction by the iRT standard, peak areas were extracted using 

information from the MS/MS library at a False Discovery Rate (FDR) of 1% (Lambert et al., 

2013). Finally, the resulting peak areas were summed to peptide area values and next to 

protein area values.  

 

2.2.3.10.4 Differential expression and sample correlation analyses for small RNA 

sequencing/transcriptomics 

In order to identify the differentially expressed (DE) small RNAs and genes (from 

both small RNA sequencing and transcriptomics experiments), linear shifts associated with 

different batches of shipped samples were removed using the removeBatchEffect function 

from the limma package (Ritchie et al., 2015). Thereafter, unwanted sources of variation 

(RUVs) were identified and corrected by the RUVSeq script (v. 1.8.0) (Risso et al., 2014). 

Finally, the DESeq2 pipeline (v. 1.14.1) using a variance-stabilizing transformation was 

employed to perform the DE analysis for small RNA / transcriptomics datasets (Anders and 

Huber, 2010; Love et al., 2014). Heatmaps and volcano plots were generated either with a 

custom python script (python v.2.7.1 and Matplotlib 1.5.1) or with the web-enabled 

Heatmapper tool (Babicki et al., 2016). For the for small RNA sequencing dataset, the cut-

offs for significantly DE small RNAs were basemean ≥ 20, log2foldchange <> 0.20 and FDR ≤ 

0.1 were adopted for further analyses. Because of the substantially greater number of 

mapped reads for the transcriptomics dataset, more stringent cut-offs were adopted for 

further analyses, as follows: basemean ≥ 20, log2foldchange <> 0.20 and FDR ≤ 0.05. 

Pairwise sample correlation analyses for small RNA sequencing results were performed 

using Bayesian Hierarchical Clustering (Heller and Ghahramani, 2005; Savage et al., 2019) 



Material and Methods 
 

39 
 

2.2.3.10.5 Differential expression analyses for proteomics 

For the proteomics data, DE analyses were conducted in the R software (version 

3.5.1) (R Core Team, 2017)  using the limma (version 3.36.5) (Ritchie et al., 2015) accounting 

for technical replication (Smyth et al., 2005). Normalized protein quantitation data have 

been log2 transformed prior to the analyses. Heatmaps and volcano plots were generated 

with R-based Ggplot2 (Wickham, 2009) and the web-enabled Heatmapper tool (Babicki et 

al., 2016). 

 

 

2.2.3.10.6 Putative signature for miRNA data 

Using the miRNA expression data, a putative signature iteration was performed in 

order to identify potential informative features for differentiation between PD and Control 

groups in the dataset. Briefly, Measure of Relevance (MoR) was performed in the first 

iteration. With the MoR analysis, the features were evaluated according to parameters that 

include biological difference, distribution overlap and dispersion parameters of the 

samples. Thereafter, a machine learning variable ranking was performed in order to filter 

out low ranking miRNAs from the previous iteration. MoR values are then assigned to the 

features and filtered (as described in  Yassouridis et al., 2012). A reliability investigation 

iteration (RiA) (Denk et al., 2015) was performed to test the output features in randomized 

stratified samplings of the dataset (n = 500), and class weights were adopted in order to 

minimize false negatives. The final features were selected from the overlapping outputs 

from both analyses. 

 

 

2.2.3.10.7 Stepwise candidate selection from integrative results (within datasets) 

Figure 4 illustrates the exact steps performed for the multi-omics integration, from 

the complete datasets (DE results from each technique) to the selection and validation of 

overlapping candidates across the datasets. Further details on each method are depicted 

below. 



Material and Methods 
 

40 
 

2.2.3.10.7.1 Rank-Rank Hypergeometric Overlap 

The integration of the datasets was performed stepwise, first from the small RNA 

to the transcriptomics datasets, and then from the transcriptomics to the proteomics 

dataset. For the integration of the first two datasets, the available pipeline entitled Rank-

Rank Hypergeometric Overlap (RRHO) was applied (Plaisier et al., 2010). Briefly, this 

bioinformatical pipeline assigns an enrichment score to the components of two different 

datasets based on DE data (p-value / log2FoldChange values and directionality). Then, the 

method overlaps the two ranked lists using features that include rank-based gene set 

enrichment analysis and hypergeometric statistics. For the miRNAs / transcripts 

integration, only the discordant overlap was considered (i.e. down-regulated miRNAs from 

small RNA sequencing dataset paired with the respective up-regulated target (mRNA) from 

the transcriptomics dataset, and vice-versa). In contrast, for mRNAs / proteins integration, 

only concordant overlaps were considered (i.e. only up-regulated transcripts from the 

transcriptomics dataset paired with the respective up-regulated protein product from the 

proteomics dataset - and vice-versa). The full datasets were used as an input for the 

pipeline and the output results were generated in the form of excel sheets. 

 

 

2.2.3.10.7.2 Cross-checking lists 

After the stepwise integration using the RRHO pipeline, the output lists were 

extracted and filtered in terms of significance. For that, the specific cut-offs defined for 

each dataset during DE analyses. A manual stepwise cross-check of DE lists was performed. 

Similar to the RRHO pipeline integration, only valid interactions were considered (i.e. 

discordant expression between miRNA and mRNAs, concordant expression between 

mRNAs and proteins), narrowing down the RRHO output results to a final list of candidates 

from the stepwise dataset integration. These final lists were considered for the selection of 

validation candidates both in human and animal q-RT-PCR validation experiments. 
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2.2.3.10.7.3 Selection of validation targets from RNA sequencing experiments 

After obtaining the final list of miRNA and mRNA candidates from the RRHO and list 

cross-check methods, the probability of interaction between miRNA-mRNA pairs was 

assessed in the TargetScan 7.2 database (Agarwal et al., 2015). Among its functionalities, 

this database allows the ranking of the targeting predictions by their probability of 

conserved targeting (Pct scores) (Friedman et al., 2008). For the selection of miRNA / mRNA 

candidates for q-RT-PCR validation experiments, only interactions with Pct values  ≥  0.7 

were considered (aiming for pairs with the highest probability of interaction among the 

ones identified in the integrative approaches). 
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Figure 4. (A) Stepwise integration of the human multi-omics datasets and candidate selection for 

q-RT-PCR validations (both for miRNA and transcriptomics in human and mouse midbrain tissue). 

DE results from each technique considered as the starting input for integrative approaches. 
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2.2.3.10.8 Functional annotation and target prediction tools 

As described in the previous section, target prediction of miRNA species was done 

with the TargetScanHuman 7.2 database (Agarwal et al., 2015). This database predicts 

miRNA targeting according to nucleotide sequence and miRNA seed region. Experimentally 

validated targets were retrieved from the miRTarBase database (Chou et al., 2018). 

Functional annotation of transcripts / miRNA predicted targets, as well as enrichment 

analyses (Gene Ontology and KEGG Pathway analyses),  were performed both with the 

DAVID 6.8 platform (Huang et al., 2009a, 2009b) and WEBGESTALT (Liao et al., 2019). Data 

mining for experimentally validated miRNA target lists was performed with the miRWalk 

3.0 database (Sticht et al., 2018). 

 

2.2.3.10.9 Statistical analyses 

Besides the aforementioned bioinformatical pipelines for DE analyses, statistical 

analyses were conducted with the GraphPad Prism software version 8.1.2 (GraphPad, San 

Diego, CA, USA). q-RT-PCR relative expression data were tested for normality with both 

D'Agostino & Pearson omnibus normality test and Shapiro-Wilk tests. For the human 

relative expression values, group comparisons were tested with the non-parametric Mann-

Whitney-U test.  For the animal validation experiments, group comparisons were 

performed with mixed-effects ANOVA followed by the Bonferroni post-hoc test. Statistical 

tests and cohort numbers are always indicated in the respective figure legends. Data are 

given as mean ± standard error of the mean (SEM). Differences were considered significant 

when p < 0.05 (* p < 0.05 / ** p < 0.01 / *** p < 0.001 / p < 0.0001).  
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3 Results 
 

3.1 Assessment of genetic alterations in PD patients by MLPA and gene panel 
sequencing 

In order to explore the genetic background of PD patients selected for this study, 

genomic DNA from midbrains of the PD patient cohort was extracted and both  Multiplex 

Ligation-dependent Probe Amplification (MLPA) and gene panel sequencing were 

performed (Figure 5A). The presence of classic mutations and further genetic alterations 

previously linked to PD pathophysiology were assessed for selected genes.  

First, deletions, duplications and triplications in specific PD-related genes were 

verified using MLPA runs. This is a multiplex PCR-based method that allows the detection 

of abnormal copy numbers for given genes. PD-specific MLPA probemix kits – the SALSA 

P051 and P052 – were applied. The screening revealed no changes in copy numbers of the 

examined genes. MLPA results revealed no alterations in copy numbers of genes that 

included Parkin, PINK1, DJ-1, LRRK2 and SNCA genes (Figure 5B). 

A gene panel comprising 29 genes previously linked to PD or DYT phenotypes was 

applied for targeted next-generation sequencing analysis of the PD patient cohort. No 

major alterations were found in the patients by gene panel sequencing. One patient 

(PD666) presented a variation of uncertain significance (VUS) for the POLG gene (single 

nucleotide variant, NM_001126131.1:c.2542G>A). Studies linked the presence of this 

variant to alteration in PD predisposition and progression in the carriers (Gui et al., 2015b; 

Luoma et al., 2007). None of the other patients presented mutations in the analyzed genes 

according to the gene panel sequencing (Figure 5C). The findings indicate that the cohort 

is composed of idiopathic PD cases, excluding a major genetic influence to the PD cases 

analyzed in this work. In spite of phenotypic overlaps between familial and idiopathic cases 

for PD, the different pathogenic/cellular events underlying autosomal forms of PD have not 

been focused in the course of this study (Cookson et al., 2005; Papapetropoulos et al., 2007; 

Vibha et al., 2010). 
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Figure 5. Gene panel and MLPA experiments overview. (A) Experimental design; after quality 

check, DNA samples were processed in MLPA / Gene panel sequencing experiments (B) Exemplary 

MLPA results for a PD patient showing no alteration (deletion, duplications or triplications) for the 

explored genes. Likewise, no alterations were found in the PD patient cohort. (C) Gene panel 

experiments reveal a single nucleotide variant (length: 1 bp) for the POLG gene in one of the PD 

patients (PD666). No mutations found for the rest of the cohort. 
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3.2 Small RNA sequencing overview and small RNA profiles in PD / control midbrains 

In order to evaluate the small RNA content and profile the miRNA expression 

patterns in the present cohorts, total RNA was isolated from the midbrain of controls and 

PD patients. Subsequently, RNA quality control and small RNA sequencing was performed 

on the Illumina HiSeq 4000 platform (Figure 6A). To this, small RNA libraries were prepared 

from total RNA from each midbrain sample. Libraries from all patients had a satisfactory 

number of uniquely mapped reads (>50.000 reads/library) and were further used for 

downstream analyses of sequencing results (Figure 6B).  

Figure 6. Small RNA sequencing overview. (A) Experimental design; after quality check, small RNA 

libraries were prepared from total RNA from each midbrain sample. Sequencing performed in the 

Illumina HiSeq 400 platform was followed by bioinformatical analysis. (B) Barplots representing 
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small RNA library size for samples from individual subjects (dark purple: PD patients; light purple: 

controls). Values correspond to uniquely mapped reads. (C) Pie charts showing average ratios of 

the different small RNA species detected in the small RNA libraries as a readout for quality of the 

sequencing technique; miRNAs represent the vast majority of mapped small non-coding RNAs in 

both conditions  (dark purple: PD patients; light purple: controls). (D) Top 15 expressed miRNAs in 

all samples; bar at the far right represents the sum of remaining miRNAs found in the samples. The 

central plot represents the distribution of all miRNA species detected in the sequencing. 

 

All bioinformatical analyses were performed in collaboration with the Lab of Prof. 

André Fischer using in-house modified pipelines. The vast majority of mapped small RNA 

sequencing counts were composed by miRNAs in both PD and control conditions (90.39 % 

and 92.61 % of all mapped counts for different small RNA species, respectively) (Figure 6C). 

Amongst the top 15 miRNA with the highest average expression in all subjects, at least 4 

miRNAs (miR-181a-5p, miR-127-3p, miR-99b-5p, miR-9-5p) have been previously reported 

to be brain / CNS specific (Figure 6D) (Hinske et al., 2014). The normalized expression for 

miRNA species was considered for the following downstream and DE analyses. 

 

3.3 Differential expression analyses of small RNA sequencing results reveal regulated 

and potential signature miRNAs for PD 

DE analyses conducted with small RNA sequencing results showed regulation in the 

expression of a number of miRNAs in PD patient samples in comparison to controls (Figure 

7A). A custom cut-off for a minimum number of reads was defined in order to exclude very 

lowly expressed miRNAs (min. number of reads per condition = 20). Under the default 

DESeq2 pipeline conditions for DE analyses (log2FC ± 1; FDR < 0.05), 21 miRNAs were found 

regulated. For exploratory handling of the miRNA expression data, less stringent cut-offs 

were applied for the fold-change in expression and FDR corrections (log2FC ± 0.1; FDR < 

0.1) and considered for subsequent pathway enrichment analyses with miRNA targets. 

Under those parameters, significant differences in the expression of 27 miRNAs were 

observed. The majority of these miRNAs (74 % of them) were found up-regulated in PD 

patients.  
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In order to have an overview about the expression levels of regulated small RNA 

species in different disease states (PD / controls), a heatmap was created using the full 

output of the DESeq2 differential analyses (Figure 7C). The heatmap shows variable 

expression patterns for the different species within conditions with a rather high inter-

individual variability in both PD and control groups.  

Figure 7. Differential expression results for small RNA sequencing experiments. (A) Volcano plot 

showing DE miRNAs in midbrain samples from the different cohorts. Plot correlates significance to 
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the log2FoldChange in the expression of transcripts. The volcano plot  was generated under default 

DESeq2 pipeline cut-offs (Significant species indicated in colors; red = FDR < 0.05; green = FDR < 

0.05 and log2FC ± 1). A custom cut-off for a minimum number of reads was defined (min. nr. Reads 

per condition = 20), and a less stringent cut-off for the log2FC and FDR correction was employed 

for subsequent exploratory pathway analyses(log2FC ± 0.1; FDR < 0.1). With that, 27 miRNAs were 

found DE and were considered for further analyses.  (B) Plot showing the Measure of Relevance 

(MoR) used for the identification of miRNA putative signatures for the discrimination of disease 

state in the analyzed cohorts. The dotted orange line represents the MoR value cut-off. miRNAs 

above the cut-off are considered informative. (C) Heatmap for DE transcripts; comparison between 

PD and control samples. The color key indicates expression levels of DE small RNAs per patient. The 

dendrogram on the left indicates hierarchical clustering based on expression level. 

  

Parallel to the DE analyses, the small RNA sequencing dataset was used for the 

development of an iterative feature analysis based on miRNA expression. Aiming to identify 

candidates for the discrimination between PD and control samples, Measure of Relevance 

(MoR) analysis was performed, followed by a machine learning variable ranking for the 

selection of the informative features. All the mapped miRNA reads were used as an input 

to the MoR pipeline. Additionally, a reliability analysis (RiA) was performed with the 

discovered candidates (as depicted in section 2.1.3.10.6). With these analyses, a set of 10 

miRNAs were identified as potential putative signatures for the discrimination of disease 

states with the analyzed samples (Figure 7B). Four of those were also significant in the 

aforementioned DE analyses and are marked with stars in the putative signature plots 

(namely, miR-29a-3p,  miR-223-3p, miR-29c-3p, let-7g-5p). 

 

3.4 Sample correlation analyses 

In order to check the overall inter-individual differences in small RNA expression of 

PD patients, a Bayesian Hierarchical Clustering was performed. These analyses required 

normalized mapped counts without any transformation as an input.  Therefore, the batch 

correction algorithms used to treat the data prior to DE analyses were not applied here. In 

order to exclude a bias related to the different sequencing runs, the expression data from 

PD patients from the largest batch (13 patients) were considered in the hierarchical 
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clustering (Figure 8). The results show that the PD patients show high heterogeneity in 

regard to small RNA expression, concordant to what was observed in the Heatmap for DE 

analyses. Different clusters and sub-clusters for patients with similar small RNA expression 

are revealed with hierarchical clustering analyses. Relevant clinical data are also depicted 

for each analyzed patient. Parameters that include age, gender, disease duration and post-

mortem intervals (PMI) are shown in color codes and indicate also a big variability in the 

distribution of clinical features. Although, there is no obvious correlation from those with 

the different clusters for small RNA expression. 

Figure 8. Bayesian Hierarchical Clustering analysis of PD patients for small RNA sequencing data. 

(A) Triangular heatmap showing unbiased clustering analysis. Samples with similar expression are 

located next to each other in clusters (dendrogram links in blue and red). PD patients of a single 

batch from sequencing runs considered for the analyses (n = 13). Clinical parameters corresponding 

to each PD patient showed in rectangles at the bottom of the triangular heatmap. PMI: Post-

mortem intervals; LBDBS: Lewy body disease (alpha-synucleinopathy), brain-stem predominant; 

LBDE: LBDE: Lewy body disease, early-neocortical; LBDN: LBDN Lewy body disease, neocortical. 

(according to Lewy-body pathology classification (Alafuzoff et al., 2009)). 
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3.5 Literature screening links differentially expressed miRNAs to important biological 

processes both in health and disease 

A thorough literature search was performed using the miRNAs found significantly 

deregulated in the present study. The PubMed database (NCBI-NIH) was screened for 

publications that included the regulated miRNAs until the year 2019.  The various key-terms 

employed in the literature mining were related to important biological and cellular 

processes that included, for example, neuronal development, function, plasticity and 

survival, as well as neurodegenerative processes and disorders, inflammatory and immune 

response, among others. The key-terms were sub-categorized as shown in Figure 9. 

Figure 9. Literature compilation; key terms related to the differentially expressed miRNAs found 

in the small RNA sequencing experiments. (A) Up-regulated miRNAs in PD on the left-hand side 

(list in orange), Down-regulated miRNAs in the right-hand side (list in blue). Color key indicates the 

involvement of a given miRNA to the respective key-term according to the literature screening. 
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The diagram shows that the candidates have been already linked to several neuron-

related processes (both in health and disease), as well as in cancer studies. The screening 

revealed that almost half of the DE miRNAs found here were previously linked to PD or 

dopaminergic neuronal function, the category with the highest number of matches. Several 

of them were also linked to processes that include neuronal differentiation and 

development, aging and neurodegeneration, as well as neuronal apoptosis and survival. 

Several of the up-regulated miRNAs were also linked to inflammatory and immune 

response, processes which have been broadly associated to neurodegenerative diseases, 

including PD (Barcia et al., 2003; Hunot and Hirsch, 2003; Tiwari and Pal, 2017). 

 

3.6 Functional annotation with targets of differentially expressed miRNAs identify 

important enriched pathways in the context of PD 

In order to further explore the functional role of the DE miRNAs in the context of 

PD, a computational miRNA-target prediction was performed, followed by functional 

enrichment analysis in the Web-based gene set analysis toolkit (WebGestalt). Gene 

ontology (GO) for biological processes (BP) and cellular components were annotated using 

the targets of up- and down-regulated miRNAs separately (Figure 10). Moreover, only 

experimentally validated targets were retrieved for the functional annotation, aiming to 

have the highest level of evidence enriched in the gene ontology terms. For targets of up-

regulated miRNAs, results show that almost one-third of the enriched gene ontology terms 

are related to neuronal function, follow by a high ratio of processes related to 

nucleus/chromosome and cell division. Cytoskeleton related terms account to one-fifth of 

the enriched gene ontology terms.  Figure 10B show the 15 most significant gene ontology 

terms for biological processes for targets of miRNAs found up-regulated in PD patients. 

Enriched terms include cell development and proliferation-related processes, as well as 

processes related to the biosynthesis of macromolecules and regulation of cell death.  
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Figure 10. Functional enrichment analysis for targets of differentially expressed miRNAs. (A and 

C) Proportion of enriched gene ontology processes to different cellular component merged 

categories. (B) Gene ontology term enrichment for targets of significantly up-regulated miRNAs. (D) 

Gene ontology term enrichment for targets of significantly down-regulated miRNAs. X-axes 

represent -log2 of FDR corrected values for the functional enrichment. Experimentally validated 

targets considered for the analyses. GO-BP: gene ontology for biological processes. 
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On the other hand, validated targets for miRNAs found down-regulated in PD 

showed no enrichment for neuronal-related processes. Nucleus/chromosome- and cell 

division- related terms followed by cytoskeleton- and cell growth-related terms account to 

50 % off all enriched gene ontology terms (26 % and 24 %, respectively) (Figure 10C). 

Vesicular- and membrane-related terms account to 19 % of the GO results, while 

mitochondria-related terms comprise 7% of the enrichment. In more detail, several of the 

most highly ranked significant GO terms are related to gene expression, transcription and 

other RNA-related processes. Furthermore, gene ontology terms related to response to 

stress, apoptosis and protein phosphorylation, as well as regulation of phosphorus and 

phosphate metabolic processes are among the top 15 most significant enriched GO-BP 

terms (Figure 10D). Functional enrichment analyses for regulated miRNA targets indicate 

that these candidates might be involved in important biological processes that range from 

cell proliferation and maintenance to gene expression, stress and apoptotic related 

processes. The previous evidence for the involvement of those miRNAs in PD 

pathophysiological events is further explored in the integration of the various datasets 

object of this work.  

3.7 RNA sequencing overview and transcriptomic raw data processing 

RNA sequencing experiments were performed in order to assess the transcriptomic 

profiles of the present midbrain cohorts. For that, RNA aliquotes coming from the same 

sample source used for the small RNA sequencing experiments were used. RNA sequencing 

experiments were performed on the Illumina HiSeq 400 platform. In a similar way, as 

previously described for the small RNA sequencing, RNA libraries were prepared directly 

from the sourced total RNA from each midbrain sample for both PD and control cohorts 

(Figure 11A). Quality control performed with the sequencing output files (fastQC) denoted 

satisfactory quality information from the RNA sequencing for all analyzed samples (Figure 

11B). Read counts coming from individual patient/control libraries were then mapped and 

relative expression values for the whole transcriptome were assigned to the sequencing 

results of each subject. Normalization and removal of unwanted variances (RUV) were 

performed with the output results (Figure 11C) previous to downstream functional 

enrichment analyses. Sequencing read counts were mapped and assigned to the reference 

genome, accounting to a total of 46,500 genes with valid read values before filtering. 
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Figure 11. RNA sequencing overview. (A) Experimental design; after quality check, RNA libraries 

were prepared from total RNA from each midbrain sample. Sequencing performed in the Illumina 

HiSeq 400 platform followed by bioinformatical analysis. (B) Exemplary plot showing quality 

information from the sequencing of an RNA sample. Quality (Phred) score is represented in the Y-

axis. Quality scores reflect the Illumina estimate for the probability of a particular base to be 

identified incorrectly (cite). In the example, all read nucleotides lie on the ‘good quality’ region of 

the plot (same for the rest of the samples)  (C) Relative log expression (RLE) plots showing the 

expression levels of the whole transcriptome for all samples; plots represent variances after 

removal of unwanted variances (RUV) bioinformatically (dark blue: PD patients; light blue: 

controls). 
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3.8 Transcriptomic differential expression analyses point towards dopaminergic 

depletion and massive inflammation/immune response in midbrains of PD subjects 

DE analysis was performed with the RNA sequencing results in order to explore gene 

expression in midbrains of PD patients when compared to controls. Following the mapping, 

the complete output from the RNA sequencing was used for the DESeq2 pipeline. Only 

protein-coding genes were considered for downstream analyses. A cut-off value for a 

minimum number of reads was adopted in order to filter out very lowly expressed genes 

from the differential analysis (min. nr. reads = 50). Furthermore, custom cut-offs values for 

the fold change in expression and false-discovery rate were applied during data analysis  

(log2FC ± 0.2; FDR < 0.05). Under these conditions, a total of 1452 transcripts were found 

significantly deregulated in PD in comparison to controls. Similar to what was observed in 

the small RNA sequencing results, the majority of transcripts – 975 of them - were found 

up-regulated in PD, whereas 477 transcripts appear down-regulated in that condition.  

A volcano plot correlating significance to the log2FoldChange in gene expression is 

presented in Figure 12A, showing DE transcripts in colors. These plots were generated 

under DESeq2 default settings for FDR and log2FoldChange and considered the full 

transcriptomic expression data before the aforementioned filtering. Highlighted transcripts 

were extracted from pathway enrichment analyses depicted below. A gene expression 

heatmap was generated for the transcriptomic significant results, in order to have an 

overview of the overall expression in different subjects and disease states. (Figure 12B). 

Despite inter-individual variabilities in the expression profiles, the general transcriptomic 

profile seems to be concordant to the disease state, showing a more obvious pattern in 

terms of group separation than the small RNA sequencing data. 
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Figure 12. Differential expression results for RNA sequencing experiments and pathway analyses. 

(A) Volcano plot showing DE miRNAs in midbrain samples from the different cohorts. Significant 

species indicated both in colors (volcano plots created under DESeq2 default settings: red = FDR < 

0.05; green = FDR < 0.05 and log2FC ± 1). For the sub-sequential pathway and integrative analyses, 

only coding genes were considered. Custom cut-offs for a minimum of 50 reads per condition and 

minimum log2FC of ± 0.2 were employed, leading to a final number of DE 1452 transcripts (PD vs. 

controls comparison). Enrichment analyses (performed with the DAVID Database) revealed altered 

biological processes related to inflammatory response and several pathways related to the immune 

response in PD midbrains (highlighted for up-regulated transcripts); down-regulated transcripts 

show enrichment to terms that include translational machinery and dopamine-related processes. 

(B) Heatmap for DE transcripts; comparison between PD and control samples. Color key indicates 

expression levels of DE transcripts per patient. (C) Gene Ontology (GO) – Biological Processes term 

enrichment status for down-regulated transcripts in PD. (D). Gene Ontology (GO) – Biological 

Processes term enrichment status for up-regulated transcripts in PD. (E) KEGG PATHWAY 

enrichment status for down-regulated transcripts in PD. (F) KEGG PATHWAY enrichment status for 

up-regulated transcripts in PD. Bars represent p-values (log2 transformed) for the respective terms. 

Pathway analyses conducted in DAVID Functional Annotation Tool 6.8. 

 

Functional enrichment analyses were conducted aiming to explore 

pathophysiological events that might underline the results for the transcriptomic profiling 

of PD and control midbrains. Up- and down-regulated transcripts in PD from the DE analysis 

were considered separately (Figures 12D/F). The functional annotation with down-

regulated transcripts revealed enrichment for several important gene ontology terms, 

including translational machinery, synaptic transmission and protein localization. Pathways 

related to dopamine signaling/metabolism and locomotory behavior, hallmark processes 

in PD pathology (Dauer and Przedborski, 2003b; Langston et al., 1983; Ungerstedt et al., 

1974), were among the enriched terms. KEGG pathway analyses retrieved alterations in 

metabolic pathways, ribosome processes, dopamine-related pathways and 

neurodegenerative diseases including PD itself (as the third most significant pathway 

enriched for down-regulated transcripts). The annotated down-regulated transcripts 

included tyrosine hydroxylase (TH), Dopa decarboxylase (DDC), dopamine transporters 

(SLC6A3 and SLC18A1) and dopamine receptor D2 (DRD2) (Figure 12A, highlighted in blue).  
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For up-regulated transcripts, functional enrichment analyses revealed altered gene 

ontology terms (GO-BP) related to inflammatory response and several pathways related to 

the immune response in PD midbrains (Figure 12C). Moreover, KEGG pathway analyses 

with up-regulated genes indicate a massive activation of the immune system and 

inflammation-related pathways, being the majority of significantly enriched pathways 

related to those processes. Inflammation and activation of the adaptative immune system 

have been implicated in the context of PD  progression (Fiszer et al., 2009; McGeer et al., 

1988b; Ouchi et al., 2005; Tristão et al., 2016). Pathways related to apoptosis, NFKB-, 

MAPK- and RAB1-signalling were also enriched for transcripts up-regulated in PD (Figure 

12E). The presence of different infectious diseases enriched in the analyses might be 

related to the high number of immune system-related transcripts found up-regulated in PD 

(as highlighted in the volcano plot in Figure 12A – highlighted transcripts in red selected 

from the intersection between inflammatory/immune response and apoptosis enriched 

pathways. Highlighted transcripts, namely, IKBKB; BAX; RELA; PIK3CD;TRAF2; TNFRSF10B; 

CASP4; NFKB2; CIITA; C3; CXCR4).  

In summary, findings in this dataset indicate that multiple pathways contribute to 

PD mechanisms, rendering an integrative analysis for the present multi-omics data very 

promising for the exploration of novel miRNA-based regulatory mechanisms. 

 

3.9 Differences in protein content in PD and control midbrain are portrayed by 

proteomics analysis 

Mass spectrometry experiments were performed in order to profile the proteomic 

changes in PD and control midbrains samples. Protein lysates were prepared from midbrain 

tissue punches directly adjacent to the ones used for small and RNA sequencing 

experiments. The protein content was run into electrophoresis gels and subsequentially 

digested for preparation of peptide libraries. The analysis method of Sequential window 

acquisition of all theoretical fragment ion spectra (SWATH) was employed for the mass 

spectrometry experiments. (Figure 13A). A spectral library was used to extract peptide-

specific peak areas. These areas are combined with protein quantitation values, which are 

then identified and mapped to the human reference proteome (Figure 13B). After 

normalization of protein quantitation, 2,257 proteins were uniquely identified, all subject 
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to an FDR of 1%. DE analyses were conducted with the log2 transformed data of protein 

quantitation and the significance level was set to alpha = 5% for all the differential statistical 

analyses for the proteomics dataset. DE results revealed 127 significantly regulated 

proteins in PD in comparison to controls. As seen in the two previous datasets, the majority 

of the DE proteins were found up-regulated in PD (87 proteins), whereas 40 of them were 

down-regulated in the same condition. These results are presented in a volcano plot 

correlating the significance to the log2FoldChange in expression (Figure 13C).  

Figure 13. Proteomics overview and differential expression analyses. (A) Experimental design; 

proteins extracted from midbrain tissue undergone electrophoresis and trypsinization, 

subsequentially. Peptide libraries were generated and proteomics (SWATH-MS) experiments were 



Results 
 

61 
 

performed, followed by data analysis. (B) Exemplary workflow for SWATH-MS experiments. The left 

panel shows the global MS/MS product ion maps of all precursors. A spectral library is used to 

extract peptide-specific peak areas, which are finally combined for protein quantitation. (Schematic 

representation of SWATH-MS Workflow kindly provided by Dr. C. Lenz - UMG Göttingen).  (C) 

Volcano plot showing DE proteins in midbrain samples. Significant species indicated in colors; 

down-regulated (in blue) and up-regulated (in red) in PD in comparison to controls (straight line in 

red: cut-off for p < 0.05). 87 proteins were significantly up-regulated in PD, whereas 40 proteins 

were found down-regulated in that condition. (D) Heatmap for DE transcripts; comparison between 

PD and control samples. Color key indicates expression levels of DE transcripts per patient. 

Next, the results from the DE analyses were used for designing a heatmap for the 

protein expression (Figure 13D). In order to exclude technical biases linked to the SWATH-

MS runs, only the biggest sample batch processed in the mass spectrometry experiments 

was considered for designing the heatmap (similarly to what was done sample correlation 

analyses for the small RNA expression). For the proteomics experiments, this batch 

accounted for 13 PD samples and 13 controls. The profiles for protein expression present 

certain concordance to the disease state. Nevertheless, inter-individual differences appear 

similar to the other omics datasets presented previously. 

 

3.10 Functional enrichment of proteomics data reveals regulation in PD-related 

pathways 

Similar to what was done for the previous datasets, DE results from the proteomic 

profiling were analyzed in terms of functional annotation using the Web-based gene set 

analysis toolkit (WebGestalt). The enrichment results showed gene ontology terms related 

to the regulation of protein folding as the most enriched category. Defects of protein 

folding have been extensively linked to neurodegenerative diseases, including PD (Dauer 

and Przedborski, 2003b; Ebrahimi-Fakhari et al., 2013; Ross and Pickart, 2004; Ryu et al., 

2002; Selkoe, 2003, 2004). Another important term appearing in the enrichment analyses 

for the regulated proteins in PD midbrains is the Oxidation-reduction processes, a category 

that is also broadly linked to PD pathophysiology (Fahn and Cohen, 1992; Jenner, 2003; 

Jenner and Olanow, 1996; Jenner et al., 1992).  
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Figure 14. Functional enrichment results for proteomics expression data. (A) Enrichment ratio plot 

correlating the log2 of enrichment values of significant gene ontology terms for biological processes 

(assigned by the WebGestalt tool); names of the significantly enriched terms are highlighted and 

also shown in the ranked bar plot on the upper-right corner. (B) Directed Acyclic Graph (DAG) 

visualization Biological processes tree; in blue: enriched terms annotated to the submitted DE 

protein list. 
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Table 12. List of proteins annotated to each GO category in the functional enrichment 

Enriched GO Terms 

Annotated / total 

nr. of proteins in 

GO term 

Proteins annotated in each GO term set 

Negative regulation of 

protein folding 

2 / 5 SNRNP70,  ST13 

Drug metabolic process 17 / 760 

ATP5ME, CBR1, CD47, FAH, GPD1, MAOB, NDUFB3, 

NDUFB8, NDUFS2, OGDH, PFKFB2, PGM2L1, PRDX1, 

PRDX6, PRPS2, PSAT1,TH 

Oxidation-reduction 

process 

18 / 968 

CBR1, CISD1, COX6C, ECHDC1, GPD1, MAOB, MECR, 

NDUFB3, NDUFB8, NDUFS2, OGDH, DIA4, PGM2L1, 

PHYHD1, PRDX1, PRDX6, SELENBP1, TH 

Immune effector 

process 

20 / 1141 

ACTR10, ARPC1A, ATP8A1, C1QC, CAMK4, CD47, CHI3L1, 

CREG1, CRK, FABP5, HTRA1, KRT1, LAMP2, NCKIPSD, 

PA2G4, PADI2, PRDX1, PRDX6, RAB18, SERPINA3 

Secretion by cell 24 / 1472 

ACTR10, ATP8A1, CD200, CD47, CHI3L1, CREG1, ERP29, 

FABP5, KRT1, LAMP2, LGALS3BP, MAOB, PA2G4, PADI2, 

PDIA4, PFKFB2, PRDX6, RAB18, RAB8A, SERPINA3, 

SLC1A3, SLC25A6, SPTBN1, SYP 

Organophosphosphate 

metabolic process 

18 / 1148 

ATP5ME, CAPN2, CPNE6, ENPP6, FABP5, GPD1, MPI 

NDUFB3, NDUFB8, NDUFS2, OGDH, PFKFB2, PGM2L1, 

PLCD3, PRDX6 PRPS2, TKT, VAC14 

Vesicle mediated 

transport 

27 / 1942 

ACTR10, AP3D1, ARPC1A, ATP8A1, CD47, CHI3L1, CPNE6, 

CREG1, CRK, CTNNB1, FABP5, KRT1, LAMP2, LGALS3BP, 

MAP2K2, MSN, NCKIPSD, OSBPL1A, PA2G4, PADI2, 

PRDX6, RAB18, RAB6B, RAB8A, SERPINA3, SPTBN1, SYP 

Organonitrogen 

compound biosynthetic 

process 

22 / 1776 

ATP5ME, CAPN2, CTNNB1, DARS, EIF4A1, FABP5, GPD1, 

HNRNPR, MPI, MTPN, OGDH, PA2G4, PFKFB2, PGM2L1, 

PRELP, PRPS2, PSAT1, RPL35, RPLP0, RPN1, SLC1A3, TH 
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In concordance to the transcriptomics results, the immune effector process term 

was also enriched for the DE proteins in PD. Further enriched processes include drug 

metabolic process, secretion by cell, organophosphate metabolic process, vesicle-mediated 

transport and organonitrogen compound biosynthesis. These functional enrichment results 

are presented in a Directed Acyclic Graph (DAG) for a compact biological processes tree 

(Figure 14B). In summary, the enrichment results for the proteomics results outlined 

important mechanisms related to PD pathology in the analyzed samples and added another 

level of evidence further explored in integrative approaches. 

 

3.11 Step-wise integration of multi-omics dataset for pathway identification 

In order to identify DE pathways across the different omics data sets (miRNA targets 

or coding products), the multi-omics results were integrated using both a bioinformatical 

tool (the Rank-Rank Hypergeometric Overlap, RRHO)(Plaisier et al., 2010) and a manual 

cross-checking method for the differential results lists derived from each technique (see 

Figure 4 and section 2.1.3.10.7). 

 

3.11.1 Integration of Small RNA and Transcriptomic datasets 

A computational target prediction for the DE miRNAs in PD and control midbrains 

was performed using the TargetScan 7.2 database (Agarwal et al., 2015). This database 

allows the prediction of miRNA targeting according to nucleotide sequence and miRNA 

seed region. Furthermore, with TargetScan 7.2 it is also possible to retrieve the probability 

of conserved targeting scores (Pct scores) for miRNA target prediction (Friedman et al., 

2008). For the integration of the present datasets, the list of predicted targets was retrieved 

for miRNAs found up- and down-regulated in PD midbrains in comparison to controls. 

Next, the discordant overlap between the two lists was assessed by RRHO and 

manual cross-check of differential results for small / total RNA sequencing data (Figure 

15A). Significantly regulated candidates from both datasets were considered for these 

analyses. These methods allowed the extraction of the valid miRNA-mRNA interactions 

(containing potential pairs that would support hypotheses of a miRNA regulation of gene 
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expression in the samples - i.e. up-regulated miRNA paired with the respective down-

regulated targets mRNA, and vice-versa). 

The RRHO algorithm required the full sequencing DE results from both sequencing 

techniques as an input, retrieving a total of 163 DE transcripts presenting valid interactions 

with regulated miRNAs. On the other hand, the manual approach used the stricter custom 

cut-off values applied for the DE and other downstream analyses from each sequencing 

dataset. With that, miRNAs and transcripts with a very low number of reads and/or very 

slight fold change in expression were filtered out from start (as described in sections 3.4 

and 3.9). Those settings resulted in a much smaller outcome for valid interactions: 23 

miRNA targets (DE transcripts) were found cross-checking the differential results.  

Remarkably, these two integrative methods showed a great overlap in their 

outcomes, with 22 out of the 23 DE transcripts found with the manual method being 

present in the RRHO integrative results. This overlap was considered for further steps, and 

a final list of 22 transcripts (namely, DHX57; RNF170; REEP1; TMEM178B; BRWD1; ACADSB; 

CNTN1; SIAE; NHLRC3; ENTPD5; CGNL1; C7orf73; SOCS4; ZNF202; ATPB3; KCNK6; STEAP3; 

CYB561D1; MIER2; FOXF1; RIMS1; KLHL6 and PPTC7) and 9 miRNAs (namely, let-7i-5p; miR-

26a-5p; miR-2018-5p; miR-424-5p; miR-29c-3p; let-7g-5p; miR-20a-5p; miR-145-5p and 

miR-98-5p) that potentially regulate those transcripts were extracted (Figure 15B). The 

exact miRNA-mRNA pairs is depicted in Figure 15C. 

In order to narrow down the list of miRNA-mRNA pairs and select candidates for a 

q-RT-PCR validation of the sequencing results, only interactions with Pct values  ≥  0.7 were 

considered. With that, pairs with the highest probability of interaction among the 

candidates identified in the integrative approaches were extracted. 12 out of the 22 

identified transcripts -  and all of the 9 miRNAs potentially regulating them - were selected 

and further validated by q-RT-PCR (Figure 15C). 
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Figure 15. Integrative approaches for miRNA and mRNA expression data and selection of targets 

for validation. (A) Integration was done by two different methods; manual cross-check method 

between DE lists / RRHO (Rank-Rank Hypergeometrical Overlap) bioinformatical approach (Plaisier 

et al., 2010). Only valid interaction between miRNA-mRNA pairs were considered. (B) Overlap 

between the two methods shows that 22 mRNA are potentially regulated by 9 miRs. (C) Selection 

of miRNA/mRNA candidates for validation; using a cut-off for Pct values (Pct≥ 0.7) (Friedman, et al., 

2009), 9 miRs and 12 mRNAs (circled or underlined in purple) were selected for validation by q-RT-

PCR. 
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3.11.2 Integration of Transcriptomic and Proteomic datasets 

Similar to what was done in the previous section, the overlapping results from the 

transcriptomic and the proteomic datasets were explored. In here, inversely to what was 

done for the miRNA/transcriptome integration, the concordant overlap between coding 

transcripts and their respective protein products were of interest (i.e. up-regulated 

transcript paired with the respective up-regulated protein product). Factors like protein 

kinetics, synthesis and degradation rates were out of the scope of this study and therefore 

not considered for these analyses.Here, we applied the manual cross-check method for the 

integration (Figure 16A), due to the very different nature and coverage of the proteomics 

results in comparison to the RNA sequencing results. Additionally, the much smaller range 

of DE proteins (127) was also favorable for such an approach. 

The total number of uniquely identified proteins – 2,257 – was more than 20 times 

smaller than the number of mapped transcripts (46,500). Consequently, several of the 

transcripts found DE by RNA sequencing did not have their respective protein product 

identified in the proteomics results, and the opposite was at times also true. The first step 

for the integration of these two datasets was to look for transcripts and respective protein 

products which were found differentially regulated in both datasets (Figure 16B). From the 

1422 DE transcripts found in RNA sequencing experiments, 30 of them also had the 

respective protein product significantly deregulated determined by proteomics 

experiments. When considering only valid mRNA-Protein pairs (concordant expression 

patterns), the integrative overview of the two datasets delineates a final list of 7 up-

regulated candidates (namely, ATP6V1E1; C9ORF47; CD47; ACOT7; RPL35; SEC23A and 

RPN1) and 6 down-regulated candidates (TH; DBT; CD200; RAB18; NIPSNAP3A and UBE2L3) 

(Figure 16C) (regulation given PD vs controls). These candidates are currently being 

validated by Western Blotting and the results will not figure in the scope of this thesis. The 

presence of a very important marker for dopamine metabolism (tyrosine hydroxylase [TH]) 

among the down-regulated candidates in both datasets adds more evidence to the results 

presented above over the functional enrichment for those results (chapters 3.8 and 3.10).  
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Figure 16. Integrative approaches for mRNA and protein expression data (A) Overlap between 

proteomics and transcriptomics datasets reveal that from 127 significant DE proteins, 30 of them 

also present the respective DE coding transcript in RNA sequencing experiments. (B) Integration 

was done by two different methods; manual cross-check method between DE lists. Only valid 

interactions between mRNA-Protein pairs considered. (C) Final list of proteins presenting significant 

DE in both datasets and expressed in the same fashion (in orange: up-regulated 

transcripts/proteins; in blue: down-regulated transcripts/proteins). 
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3.12 Validation of small RNA sequencing results in human midbrain tissue by q-RT-PCR 

The 9 miRNA candidates selected after the integrative approaches of the small RNA 

and RNA sequencing results (section 3.11.1) were validated by q-RT-PCR. Since there was a 

substantial amount of time between the RNA sequencing experiments from the validation 

of the selected candidates, new tissue punches were collected from frozen midbrain 

samples from each individual. A fresh RNA isolation was conducted right before the start 

of the validation experiments, followed by the production of cDNA samples by reverse 

transcription. q-RT-PCR validation experiments were conducted in the QuantStudio 3 

platform (Figure 17A). 

For selected miRNAs found down-regulated in PD by RNA sequencing experiments, 

relative expression levels from q-RT-PCR results show that all tested miRNAs presented 

significant differences in expression concordant to the small RNA sequencing results (Figure 

17B). On the other hand, for selected miRNAs found up-regulated in PD by RNA sequencing 

experiments, q-RT-PCR results showed a significant difference in expression levels of two 

miRNAs (let-7i and miR-29c). Interestingly, both miRNAs presented the opposite direction 

for the regulation.  

Overall, four out of the nine selected miRNAs were successfully validated by q-RT-

PCR, presenting concordant expression to what was found in DE analyses with the small 

RNA sequencing data. 
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Figure 17. Validation of small RNA sequencing results (selected miRNAs) by q-RT-PCR. (A) Relative 

expression levels of selected miRNAs found up-regulated in PD patients. (B) Relative expression 

levels of selected miRNAs found down-regulated in PD patients. Error bars show standard error of 

the mean. Data analyzed by Mann-Whitney-U test. * p < 0.05, ** p < 0.01, *** p < 0.001 
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3.13 Validation of transcriptomics results in human midbrain tissue by q-RT-PCR 

Parallel to the miRNA validation in the midbrain samples, the 12 mRNA transcripts 

selected in the integrative approaches (section 3.11.1) were also validated by q-RT-PCR. 

Fresh RNA was aliquoted from the same sample source used for the miRNA q-RT-PCR 

validation, and cDNA samples were prepared using the Qiagen Quantitect reverse 

transcription kit. The PCR reactions were conducted in the QuantStudio 3 platform (Figure 

16A) 

Seven from the selected transcripts presented a significant up-regulation in PD in 

RNA sequencing experiments. According to the relative expression results, four out of the 

seven candidates were also found significantly up-regulated in q-RT-PCR experiments, 

concordant to the findings from the transcriptomics. Another two mRNAs presented 

apparent up-regulation in PD samples, but relative expression results were not significant 

(Figure 18B). 

Opposite to the aforementioned findings, from the transcripts presenting down-

regulation in RNA sequencing results, there were no significant differences in relative 

expression levels in q-RT-PCR experiments. Despite the non-significant results, all 

transcripts presented, on average, lower expression levels in comparison to controls. 

Possibly, the limited cohort size is influencing the statistical power of the experiments 

presented here (Figure 18C). 

In summary, a limited number of candidates found DE in RNA sequencing 

experiments presented a concordant significant regulation by q-RT-PCR, both for selected 

miRNAs (4/9 candidates validated) and mRNA transcripts (4/12). Technical and sensitivity 

differences in the two methods could account for these divergent findings. Nevertheless, 

the patterns of the relative expression levels determined by q-RT-PCR were similar to the 

ones found in RNA sequencing experiments for the majority of the selected species. 
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Figure 18. Validation of RNA sequencing results (selected mRNAs) by q-RT-PCR. (A) Relative 

expression levels of selected mRNAs found up-regulated in PD patients. (B) Relative expression 

levels of selected mRNAs found down-regulated in PD patients. Error bars show standard error of 

the mean. Data analyzed by Mann-Whitney-U test. * p < 0.05, ** p < 0.01. 
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3.14 Comparison of human RNA sequencing results with data from a PD mouse model  

Another objective of this thesis was to evaluate whether the alterations observed 

in the human tissue could be reproduced in a common mouse model for PD. Therefore, 

experiments with the transgenic alpha-synuclein[A53T] mouse model (αSyn.A53T) were 

designed to explore the findings from the small RNA and RNA sequencing experiments in 

the midbrain tissue of αSyn.A53T mice. These mice express the human form of the αSyn 

protein with the A53T point mutation. This mutation can lead to severe and progressive 

motor phenotypes in the carrier animals, with an average onset at 8 months of age (Giasson 

et al., 2002) Briefly, transgenic αSyn.A53T mice were bred and both, wild type and 

homozygous animals, were selected shortly after birth for the experimental cohorts. Six 

cohorts were designed according to the genotype and the anticipated age at sacrifice (n = 

5 animals per group). The animals were kept under controlled conditions. Early-stage 

animals were sacrificed at 100 days of age, intermediate-stage mice were sacrificed at 250 

days of age and late-stage at 400 days of age (or whenever any signs of pathology were 

shown). After sacrification, animal brains were micro-dissected and snap-frozen. Midbrain 

tissue from the selected animals was processed in the exact same way as done for human 

q-RT-PCR validation studies  (Figure 19A). 

 

3.14.1 Validation of PD-deregulated miRNAs in αSyn.A53T midbrains 

Similar to what was done with the human midbrain tissue, total RNA was isolated 

from mouse midbrain and cDNA samples were prepared by reverse transcription reactions. 

The q-RT-PCR validation experiments were conducted in parallel to the ones performed 

with the human midbrain tissue (Figure 19B). The relative results were tested for 

significance between mutated and control genotypes within each age group. The miRNAs 

presenting significant differences in the validations studies in humans were further 

selected for the validation in mice (Figure 19C). Furthermore, a miRNA target prediction 

was performed in TargetScan 7.2 (Agarwal et al., 2015) in order to find any further miRNAs 

potentially regulating the mRNA transcripts selected for validation (selected targets shown 

in the section below). From the several retrieved miRNAs, three miRNAs were also found 

to be regulated in human small RNA sequencing results and were also selected for 

validation in the animal tissue. 
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Figure 19. Mouse model - experimental setup and validation of selected miRNA targets. (A) 

Experimental setup for the mouse validation study. αSyn.A53T transgenic mice were bred from 

A53T heterozygous pair. Wild type and homozygous animals selected for further experiments. 
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Animals were sacrificed according to age (early-stage = 100 days; intermediate stage = 250 days; 

late-stage = 400 days; total number of groups = 6). Late-stage animals were sacrificed either at end 

point or when symptoms of paralysis / pronounced weight loss started to appear. After sacrifice, 

mouse brains were microdissected into different brain regions and snap-frozen for further use. RNA 

was isolated from midbrain samples from animals (n = 5 animals per group). Groups were tested 

for significance between mutated and wild-type genotypes within the different age groups. (B) 

Experimental setup for miRNA q-RT-PCR validation of targets selected from the human midbrain 

small RNA sequencing results. (C ; D) Relative expression levels of selected miRNAs in midbrains of 

transgenic animals. Panel C shows relative expression levels of selected miRNAs found deregulated 

in PD patients. Panel D shows relative expression levels of newly selected (see Figure 4 / section 

3.14.1 for the selection of targets). Error bars show standard error of the mean. Data analyzed by 

mixed-effects ANOVA followed by Bonferroni post-hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 

  

The validation results indicate no differences between the genotypes at the early-

stage groups, an evidence for a possible age-related alterations in miRNA expression. The 

relative expression levels of all miRNAs show a trend to reduced expression in both wild 

type and homozygous genotypes in the intermediate stage groups compared to their 

expression levels at the early-stage group. The relative expression of miRNAs at late-stage 

groups seems to be more variable, although significant changes were only found for one 

miRNA species there (miR-98). 

For two candidates (mir-98 and miR-20a), alterations in late-stage and 

intermediate-stage groups, respectively, were concordant to the results presented in the 

human midbrain tissue validation. The expression levels for both miRNAs were significantly 

down-regulated in homozygous groups in comparison to the respective controls at the 

given time points. Another miRNA (miR-145) presented significantly up-regulated levels in 

homozygous animals in comparison to wild-type groups at the intermediate stage - an 

opposite finding to the results from the human tissue validation (Figure 19C). miR-122a 

presented a trend for up-regulation in mutated animals (Figure 19D). Outlier values for 

relative expression results were excluded from the analyses. 
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3.14.2 Validation of PD deregulated mRNAs in αSyn.A53T midbrains 

Similar to the miRNA candidate selection described in the previous chapter, mRNA 

species successfully validated in human tissue by q-RT-PCR were now selected for 

validation the αSyn.A53T mouse model (Figure 20B). Furthermore, in order to have a 

deeper look into the possible correlation of pathological features presented by the 

αSyn.A53T mice in relation to PD pathology in humans, further transcripts were selected 

for validation by q-RT-PCR. First, genes that were previously described to be involved in PD 

pathogenesis and pathophysiology in humans were retrieved from a comprehensive review 

of PD and the cellular processes involved the pathogenesis of the disease (Kalia and Lang, 

2015). Next, a screening of the results of the largest genomic-wide association study in PD 

(which involved the analysis of 7.8 million single nucleotide polymorphism [SNPs] in dozens 

of thousands of PD cases and more than one million control cases) was performed (Nalls et 

al., 2018). For both strategies, the cut-off criterion was that candidates had to be 

significantly regulated in the RNA sequencing results from the human midbrain study. With 

the aforementioned setting, 9 further transcripts were selected for validation by q-RT-PCR 

in the αSyn.A53T mouse tissue (Figure 20C). 

Similar to the miRNA validation in the previous section, the statistical evaluation of 

the results focused on the differences between the different genotypes in each stage. The 

results showed that in general, most of the evaluated genes present changes between 

genotype groups either at an earlier stage (already at 100 days of age) or at an intermediate 

time points (250 days of age). Significant differences in the relative expression levels of 

SOCS4 (intermediate stage) fitted the findings from the transcriptomics validation in the 

human tissue, while the significant findings for MIER2 (both in early and in intermediate 

stages) were opposed to the ones found in humans. Interestingly, for the further selected 

targets, all the relative expression changes were observed as an up-regulation in the 

homozygous animals: DYRK1a (both in early and in intermediate stages), GALC (early stage), 

HSPA1 (intermediate stage), PINK1 (both in early and in intermediate stages), POLG1 (early 

stage), RIMS1 (intermediate stage) and SQSTM1 (early stage). No differences were found 

in the late stage groups, suggesting again that relative expression might be influenced by 

cellular changes linked to aging in the control animals. 
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Figure 20. Experimental setup and validation of selected mRNA targets in midbrains of control 

and transgenic animals. (A) Experimental setup for mRNA q-RT-PCR validation of targets selected 
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from the human midbrain small RNA sequencing results. (B) Relative expression levels of selected 

mRNAs (previously validated in human midbrain tissue) in midbrains of transgenic animals. (C) 

Relative expression levels of further selected targets for q-RT-PCR validation with the αSyn.A53T 

mouse midbrain tissue. Error bars show standard error of the mean. Data analyzed by mixed-effects 

ANOVA followed by Bonferroni post-hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 
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4 Discussion 

To this date, the exact molecular mechanisms underlying the pathogenesis and 

progression of PD are not completely understood. In addition, the diagnosis of PD mainly 

relies on clinical criteria related to the motor dysfunction presented by the patients. Since 

the symptoms only start to appear at advanced stages of the nigrostriatal degeneration 

characteristic in PD, there is a strong limitation for the promotion of therapeutic strategies 

that might be able to change the course of the disease. Allied to that, the limited 

regenerative capabilities of cells in the central nervous system complicate the development 

of restorative treatment options.  

Profiling the expression of molecular elements such as miRNAs, transcripts and 

proteins in brains affected by PD might reveal a series of pathological events taking place 

both at cellular and systemic levels in the course of the disease. Ultimately, these 

approaches might provide valuable insights into PD progression and facilitate the 

development of novel disease-modifying therapies. The present doctoral thesis aimed to 

analyze midbrain tissue samples from a cohort of PD patients and controls in a multi-omics 

set of experiments, looking into the genetic background of the selected subjects, as well as 

characterizing the expression patterns of miRNAs, transcripts and proteins on those 

samples. By approaching the multi-omics techniques both individually and in an integrative 

way, we aimed to identify patterns of deregulation potentially containing novel 

pathomechanisms related to PD, with special focus to miRNA-based regulatory processes 

underlying the disease. Finally, an animal model of PD was evaluated in respect to the 

changes observed in the human tissue, in order to assess the similarity of the pathological 

mechanisms occurring in both systems. 

 

4.1 No major genetic alterations are found in the PD patient cohort 

In order to evaluate the genetic background of the present PD-patient cohort and 

explore possible alterations influencing the course of the disease, targeted gene evaluation 

was performed with both gene panel sequencing and MLPA techniques for pre-selected 

known PD-associated genes. With the latter technique, the presence of deletions, 

duplications and triplications for given genes is screened by PCR-based reactions. MLPA 
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results revealed no alterations for the present cohort, indicating the absence of copy 

number abnormalities for the genes examined. 

Gene panel sequencing experiments identified a VUS (variation of uncertain 

significance) for the POLG gene in one out of the nineteen PD patients (variant 

NM_001126131.1:c.2542G>A in patient PD666). A couple of studies linked the presence of 

POLG variants to PD predisposition in Finnish and Chinese populations, based on alterations 

in mitochondrial DNA copy number in the variant carriers (Gui et al., 2015b; Luoma et al., 

2007). Nevertheless, no mechanistic evidence for this specific VUS in the pathophysiology 

of PD is found in the literature. All in all, the MLPA and gene panel sequencing experiments 

showed that no significant genetic alterations are present in the analyzed patients for the 

classical PD-related genes. These results indicate that the present PD cohort seems to be 

homogeneously composed of idiopathic cases. However, it is important to highlight that 

the techniques employed here are targeted and, therefore, restricted in terms of screening 

for alterations in the whole genome. Thus, the presence of causative mutations in genes 

not contained in the pre-selected panel cannot be excluded. Although studying genetic 

cases might reveal a number of important mechanisms in the context of PD pathology, the 

main focus of this study was to investigate the molecular events taking place in idiopathic 

PD midbrains, which account for the vast majority of cases.  Therefore, for the subsequent 

analyses presented here, we did not focus on any particular pathomechanisms related to 

the known autosomal forms of PD. 

 

4.2 Small RNA sequencing results reveals differentially expressed miRNAs in PD 

including candidates with potential discriminative power 

Small RNA sequencing experiments were employed in order to evaluate the small 

RNA content and profile miRNA expression patterns in the present midbrain samples. The 

sequencing results revealed that the vast majority of mapped small RNA reads accounted 

to miRNAs species in both PD and control patients. Relative to the whole small RNA content 

in the samples, miRNAs represented 90.39 % and 92.61 % of all mapped reads, respectively, 

in agreement to the small RNA composition found in human CNS tissue in reference studies 

in the field (Landgraf et al., 2007; Shao et al., 2010). Interestingly, among the top 15 miRNA 
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with highest average expression in these samples, at least 4 miRNAs have been reported 

to be brain-specific (miR-181a-5p, miR-127-3p, miR-99b-5p, miR-9-5p) (Hinske et al., 2014; 

Lukiw, 2012), confirming the quality of the sequencing readouts acquired from the 

midbrain tissue of the analyzed individuals. 

A number of significantly deregulated miRNAs were identified by DE analyses with 

the small RNA sequencing data. When comparing the sequencing results from PD samples 

with the ones from the controls, 27 miRNAs were found deregulated – 20 of which are up-

regulated in the PD condition. This miRNA up-regulation in almost two-thirds of the DE 

species in PD samples is a phenomenon widely reported for neurodegenerative diseases 

like PD and AD (Gui et al., 2015a; Loring et al., 2001; Lukiw, 2007; Lukiw et al., 2012; Sethi 

and Lukiw, 2009; Starhof et al., 2019), and was also observed in a parallel study performing 

small RNA sequencing with CSF-exosomes of PD and control patients (Roser & Caldi Gomes 

et al, in preparation). This general miRNA upregulation might be related to a number of 

factors, for instance, the presence of a marked neuroinflammation and a high number of 

immune cells being recruited to the brain tissue of these patients (De Virgilio et al., 2016; 

Hunot and Hirsch, 2003; Kempuraj et al., 2016), as well as to the disruption of blood-brain 

barrier that takes place in PD and AD brains (Desai et al., 2007; Gray and Woulfe, 2015; 

Kortekaas et al., 2005; Rite et al., 2007), which could also be a potential source for 

exogenous miRNAs (e.g., from blood cells) being transported to the brain tissue and 

captured by sequencing techniques. Remarkably, the opposite is reported for amyotrophic 

lateral sclerosis (ALS), where the miRNA machinery and biogenesis is impaired in the 

affected motor neurons, resulting in a global downregulation of miRNAs (Eitan and 

Hornstein, 2016; Emde et al., 2015). 

Overall, a high inter-individual variability is observed for small RNA expression 

patterns even within conditions (portrayed in the heatmap from Figure 7), indicating that 

the disease state does not correspond entirely to the expression levels of the identified 

small RNAs. These findings evidence a molecular variability seen throughout the datasets 

presented in this work and might indicate the presence of individual subtypes of the 

disease.   In order to explore the aforementioned inter-individual differences even further, 

a Bayesian hierarchical clustering was performed with the miRNA expression data of a 

subgroup of PD patients considering clinical parameters that included age, gender, disease 
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duration, PMI for tissue extraction and neuropathological diagnosis. In accordance with the 

overall picture given by the miRNA expression heatmap, the PD samples present a high 

heterogeneity in terms of miRNA expression. The hierarchical clustering was able to 

identify three sub-clusters of samples, two of them presenting more obvious similarities 

for miRNA expression levels within patients. Nevertheless, there seems to be no clear 

correlation for any of the clusters with the clinical features. Very similar findings were 

observed in PD CSF in a concomitant study conducted in this laboratory (Roser & Caldi 

Gomes et al., in preparation). These results indicate a potential pathological diversity at the 

molecular level that is reflected by miRNA expression. Interestingly, this diversity appears 

to result in a clinical Parkinsonism phenotype that does not permit to deduce the molecular 

background. 

Next, aiming to identify potential discriminative miRNAs between disease states, 

the small RNA sequencing results were employed in the development of an iterative 

feature analysis based on machine learning approaches with the miRNA expression data. A 

variable ranking was built for the selection of candidates that are more efficient in 

classifying disease states. Interestingly, four of the candidates identified as potential 

discriminative signatures were also found deregulated in DE analyses (namely, miR-29a-3p,  

miR-223-3p, miR-29c-3p, let-7g-5p), suggesting an important role of these miRNAs both in 

the context of PD pathophysiology and also as potential diagnostic biomarkers for PD. In 

addition, these candidates have been frequently found in altered levels in biomarker 

studies using body fluids of PD / controls patients (as reviewed in Roser et al., 2018), adding 

another level of evidence to the importance of these candidates in the context of PD.  The 

mechanistic relevance of these and several other DE miRNAs found here was explored in 

the context of PD pathology in subsequent experiments of this work. Ideally, replication 

studies both in midbrain samples and in circulating body fluids from independent patient 

cohorts would be required for the verification of the biomarker potential of the 

aforementioned candidates. 

In addition to the bioinformatical analyses, a thorough literature screening was 

performed using the DE miRNAs found in the present study in the context of neuronal-

related processes, neurodegeneration and other related processes. A list of all the searched 

key-terms and related miRNAs is depicted in Figure 9. Remarkably, 12 out of the 27 
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deregulated miRNAs identified here were already reported to play an important role in 

dopaminergic neuronal function and/or PD pathology (Batistela et al., 2017; Caggiu et al., 

2018; Chi et al., 2018; Ghanbari et al., 2016; Lin et al., 2019; Singh and Sen, 2017; Wang et 

al., 2017; Xie et al., 2017). A number of these miRNAs have also been identified as putative 

circulating biomarkers in dozens of PD and AD studies up to now (extensively reviewed by 

three recent publications (Batistela et al., 2017; Mushtaq et al., 2016; Roser et al., 2018b)). 

Several of the deregulated miRNAs are linked to key-terms that include aging, 

neurodegeneration and brain injury (Dluzen et al., 2017; Gaudet et al., 2016; Goedeke and 

Fernández-Hernando, 2014; Kangas et al., 2017; Kim et al., 2016; Li et al., 2013a; Mo et al., 

2016; Xie et al., 2017) and neurogenesis, neuronal development and differentiation (Basak 

et al., 2016; Oh et al., 2018; Pieczora et al., 2017; Pons-Espinal et al., 2017; Qu et al., 2019). 

Another search category with a considerable number of hits for the DE miRNAs is 

inflammatory/immune response (Cardoso et al., 2012; Ge et al., 2016; Haneklaus et al., 

2013; Lambert et al., 2018; Sawant et al., 2015; Thome et al., 2016; Wu et al., 2018). More 

than a third of the miRNAs found up-regulated in the PD condition has been previously 

linked to processes related to immune response and inflammation, possibly indicating a 

feedback regulatory mechanism responding to the neuroinflammation observed in PD. The 

aforementioned processes are of extreme importance in PD pathology and progression and 

are discussed in more detail in section 4.4. It is important to highlight that postmortem 

midbrain samples are employed in this work, exclusively. Thus, the changes in miRNA 

expression (and also for the further molecular elements analyzed here) must reflect a very 

advanced stage of the PD pathology. Therefore, the relevance of the identified candidates 

for the pathogenesis of the disease has to be interpreted with caution. 

 

4.3 Pathway enrichment analysis reveals important biological roles for the targets of 

differentially expressed miRNAs in the context of PD 

Aiming to explore the functional role of the deregulated miRNAs both in neuronal 

function and homeostasis, as well as in neuropathological states, pathway enrichment 

analyses were conducted with experimentally validated targets of the deregulated miRNAs 

identified in the DE analyses. Using validated targets exclusively obviously restricts the 
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number of potential miRNA-mRNA pairs offered by computational target prediction 

(usually based on prediction by nucleotide complementarity), but offers the highest level 

of evidence for enriched biological processes and excludes the bias of non-canonical miRNA 

pairing or imperfect seed match that would not lead to any relevant biological consequence 

to the cell or organism (Agarwal et al., 2015; Friedman et al., 2008; Garcia et al., 2011). The 

enrichment analyses were conducted for targets of up- and down-regulated miRNAs 

individually. 

For up-regulated targets, the significantly enriched biological processes were 

characterized as neuron-related (32%), nucleus/chromosome related (30%) and 

cytoskeleton/cell growth-related (20%) (as the most representative GO categories). These 

findings indicate an important involvement of the up-regulated candidates in neuronal 

processes and also suggest that several of these miRNAs are likely originated in neurons, 

fitting well with the RNA samples of midbrain source analyzed here. Moreover, midbrain 

tissue biopsies contain a variety of neuronal and glial cell types (La Manno et al., 2016), 

which are likely accounting to the different categories annotated for the regulated miRNAs 

(depicted in figure 10). The top 5 most significant biological processes are related to 

regulation of cell proliferation, differentiation, cell cycle and neurogenesis, well in line with 

the results retrieved by the literature screening (Basak et al., 2016; Oh et al., 2018; Pieczora 

et al., 2017; Pons-Espinal et al., 2017; Qu et al., 2019). Remarkably, cell proliferation- and 

cell cycle-related proteins are known to play an important role also in the survival and 

maintenance of mature neurons (Herrup and Yang, 2007; Omais et al., 2018). Aberrant cell 

cycle was also reported to be intimately linked to apoptosis of post-mitotic neurons and 

neurodegeneration overall (Feddersen et al., 1992; Heintz, 1993). Interestingly, the 

regulation of targets related to cell proliferation and cell death seems to happen in both 

directions, being enriched for both up- and down-regulated miRNAs. That might indicate 

that the enrichment on the aforementioned categories might be related both to a response 

to the neurodegenerative processes occurring in the PD-affected brains, as well as reflect 

an impairment of mechanisms related to cell maintenance and survival leading to the 

neurodegeneration in PD.  More to that, regulation of cell death and  apoptotic process also 

figure among the enriched GO terms for the validated targets of up-regulated miRNAs, 
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providing further evidence for the involvement of these candidates in (or as a response to) 

the cell death occurring in PD midbrains (Kim et al., 2016; Li et al., 2013a; Xie et al., 2017).  

On the other hand, for the target of PD down-regulated miRNAs, the majority of the 

enriched GO terms belong to nucleus/chromosome-related processes (26%), 

cytoskeleton/cell growth-related processes (24%) and vesicular-related processes (19%). 

Interestingly, no enriched processes seem to be directly related to neuronal processes for 

the validates targets of PD down-regulated miRNAs. It’s important to account, though, that 

the number of down-regulated miRNAs in the PD condition is almost 3 times smaller than 

the up-regulated category, which consequently decreases the number of analyzed targets 

substantially. Some of the enriched biological processes seem to be related to 

mitochondrial mechanisms (7%), which also have fundamental implications in PD 

pathophysiology (Bose and Beal, 2016; Liu et al., 2017; Rocha et al., 2018). When analyzed 

individually, the biological processes enriched for the targets of down-regulated miRNAs 

are mostly related to the regulation of gene expression, transcription / RNA metabolism 

and regulation of biosynthetic processes, in line to what was observed for the results from 

the up-regulated miRNAs. Interestingly, GO terms related to apoptotic process and cellular 

response to stress figure among the enriched categories for the targets of down-regulated 

miRNAs, indicating that a possible insufficient miRNA regulation of stress- and apoptotic- 

related genes might be taking place for some of the identified candidates.  

In general, for the functional annotation of miRNA targets, it is important to 

consider that RNA material from a diversity of cells populating the analyzed midbrains was 

used for the sequencing. Thus, the enriched biological processes annotated for miRNA-

targets are reflecting cellular changes not only of neurons but also of glial and immune cells 

present at the analyzed tissue. This is especially important since a massive activation of the 

immune response was observed when analyzing the transcriptomics results for these 

samples (as discussed in section 4.4). As many of the most significant pathways enriched 

for targets of the deregulated miRNAs were related to cell proliferation and cell cycle and 

positive regulation of cellular biosynthetic processes, it is likely that several of the enriched 

pathways are related not only to the apoptosis of dopaminergic cells but also to an immune 

cell proliferation taking place in the PD-affected brains, for example(Hirsch and Hunot, 

2009; Hunot and Hirsch, 2003; Kempuraj et al., 2016; McGeer et al., 1988a; Nazmi et al., 
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2019; Rea et al., 2018; Viviani, 2004). To a certain extent, the aforementioned findings 

indicate a disturbance in the homeostatic state of the cell populations present in the 

analyzed midbrains and might reflect possible cellular responses to dopaminergic insults 

and the neurodegenerative events taking place at the PD-affected midbrains. The exact 

events happening at the transcriptomic and proteomic levels and detailed miRNA-mRNA 

interaction pairs were further explored in subsequent steps of this work. 

 

4.4 Transcriptomic profiling documents dopaminergic depletion and indicates an 

important inflammatory reaction in PD midbrains 

Aiming to explore the gene expression patterns in the analyzed samples, 

transcriptomic profiling through RNA sequencing and subsequent DE analyses were 

performed. In comparison to the DE results from miRNA expression depicted above, a much 

higher number of genes are found significantly deregulated in the transcriptomics analysis. 

Following pre-defined cut-offs, a total of 1452 transcripts were found altered when 

comparing PD samples to controls. Similar to the miRNA data, the majority of the 

deregulated candidates were found up-regulated in the PD condition, accounting to 67.1% 

of the significant results (975 transcripts). Furthermore, also similar to the findings of 

miRNA DE analyses, a rather high inter-individual variability in gene expression is observed. 

Nevertheless, in spite of some individuals presenting a general gene expression that differs 

from the other subjects within their disease state group, the majority of the PD patients 

seem to present an inversed pattern of expression for the genes found DE in comparison 

to the control subjects (as shown in heatmap from Figure 12). Moreover, the control group 

presents more homogeneous patterns of gene expression within subjects, while the PD 

once again presented a much higher expression heterogeneity, as observed in the 

hierarchical clustering analyses done with the miRNA data. That might be due to the fact 

that the postmortem midbrain samples used as controls here are obtained from patients 

that died from a variety of diseases but presented no neurological disorder besides age-

related changes. Remarkably, the opposite has been found in CSF studies in PD conducted 

in this lab, where controls presented a higher variability in miRNA expression (Roser & Caldi 

Gomes, in preparation). Nevertheless, the CSF study contained almost one hundred control 
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samples (in comparison to 15 analyzed here). Taken together, these findings support the 

concept that idiopathic PD is not a uniform disorder regarding its molecular pathogenesis 

and that there may exist multiple pathogenic subgroups among the affected subjects 

(Dexter and Jenner, 2013b; Johnson et al., 2019). 

In order to verify the functional role of the deregulated transcripts and explore the 

pathophysiological events taking place in the midbrains of the analyzed patients, pathway 

enrichment analyses were performed with the DE results for transcriptomics experiments, 

considering up-and down-regulated transcripts separately. The results for transcripts found 

down-regulated in PD revealed enrichment for dopamine-related biological processes, 

indicating that dopamine biosynthesis and dopaminergic transmission are indeed depleted 

in the patient samples, as expected for midbrain PD pathology (Dauer and Przedborski, 

2003a; Langston et al., 1983). The annotated genes for the enriched categories included 

key players for dopamine metabolism and function, for instance, tyrosine hydroxylase (TH), 

Dopa decarboxylase (DDC), dopamine transporters (SLC6A3 and SLC18A1) and dopamine 

receptor D2 (DRD2). Further, dopamine-related GO processes retrieved included 

locomotory behavior, learning, social behavior and dopamine biosynthetic process per se, 

all annotated for down-regulated genes in the PD condition. Moreover, KEGG pathways 

analyses retrieved Parkinson’s disease as the third most significant pathway for down-

regulated transcripts in PD samples. The term dopaminergic synapse is also enriched for 

those transcripts. Interestingly, the most significant KEGG pathway for PD down-regulated 

genes was the metabolic pathway. Although the enriched term is rather unspecific, 

metabolic dysfunctions, in general, have been often linked to PD pathology previously (Fai 

Poon et al., 2005; Hoepken et al., 2007; Huang et al., 2007; Perry et al., 1982; Polito et al., 

2012).  Dopaminergic neurons are also known to be especially sensitive to metabolic 

alterations, oxidative stress and mitochondrial dysfunction, for example (Anandhan et al., 

2017; Dexter and Jenner, 2013b; Greenamyre et al., 1999; Hauser and Hastings, 2013; Lin 

and Beal, 2006; Winklhofer and Haass, 2010). Another interesting enriched pathway for 

down-regulated transcripts in PD is annotated for genes playing a role in ribosomal 

processes. Coincidentally, it figures as the second most significant KEGG pathway for PD 

down-regulated transcripts, matching the strong enrichment for biological processes 

related to cell proliferation, cell cycle and regulation of biosynthetic processes reported for 
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up-regulated miRNAs in PD (and consequent down-regulation of their targets). Similarly, 

processes related to the translational machinery figure at the top of the list of significantly 

enriched GO terms for PD down-regulated transcripts. Those findings support the 

connection between the miRNA and gene expression datasets and encourage the 

integrative efforts for the multi-omics approaches presented in this work. Overall, the 

dopamine-related enrichment results presented here indicate that molecular events 

related to dopaminergic pathology were indeed captured in the present experiments and 

is also an indicator for the quality of sample preparation and sequencing and for the 

plausibility of the results obtained.  

Remarkably, for genes up-regulated in the PD samples, the pathway enrichment 

results are predominantly related to a marked inflammatory response and immune system 

activation taking place in the patient midbrains. Eight out of the top 10 most significant GO 

terms enriched for those genes are directly or indirectly related to the immune / 

inflammatory response. Actually, the GO terms entitled inflammatory response and innate 

immune response figure at the very top of the list. Similarly, the vast majority of the KEGG 

pathway enrichment results are either related to immune system activation or to a variety 

of infectious diseases – probably due to the fact that the pathways for that kind of diseases 

also present a massive enrichment for genes related to immune cell activation and 

inflammation, as observed in the PD midbrains analyzed here. 

In more detail, highly significant enriched GO terms included, for example, 

interferon-gamma (IFNγ) mediated signaling, positive regulation of interferon type I 

production and positive regulation of NF-kappa B (NFKB) activity/signaling, processes 

intrinsically related to both adaptative and innate immune response (Dev et al., 2010; 

Kopitar-Jerala, 2015; Le Page et al., 2000). These processes have also been extensively 

linked to aging and neurodegeneration previously (Kaltschmidt et al., 1993; Kempuraj et 

al., 2016; Nazmi et al., 2019; Rea et al., 2018; Taylor et al., 2018; Viviani, 2004). In fact, 

NFKB signaling has been considered as the culprit of the so-called “inflammaging”, since 

this pathway seems to regulate immune and inflammatory responses at the cellular level 

both in aging and in age-related disorders (Balistreri et al., 2013; Salminen et al., 2008). An 

important study described an intense inflammatory reaction and dopaminergic cell damage 

in rats upon intranigral injections of the immunostimulant lipopolysaccharide (LPS) 
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(Castaño et al., 2002). Interestingly, lipopolysaccharide-mediated signaling pathway also 

figures among the enriched GO terms for PD up-regulated genes.  

There is also ample evidence for the participation of inflammatory cytokines in the 

pathophysiology and progression of PD. Neuroinflammatory and increased immune activity 

are known to contribute to the cascades of mechanisms that result to the 

neurodegeneration in PD (Hirsch and Hunot, 2009; Hunot and Hirsch, 2003; McGeer et al., 

1988a). Moreover, several postmortem studies have found a substantial increase of 

proinflammatory cytokines in parkinsonian brains (Imamura et al., 2003; Mogi et al., 1996a, 

1996b, 1996c; Nagatsu and Sawada, 2005; Sawada et al., 2006). Interestingly, the 

infiltration/activation of immune cells and marked neuroinflammation have been 

considered as aggravators of the disease, taking place at late stages of the 

neurodegenerative pathology in PD (Johnson et al., 2019; Maetzler et al., 2007; Menza et 

al., 2010). Oppositely, very early glial changes in PD brains seem to be related to αSyn 

deposition and a resultant astrocytic dysfunction (rather than microglia 

activation/leucocyte infiltration) (Gu et al., 2010; Halliday and Stevens, 2011; Johnson et 

al., 2019; Lee et al., 2010). These findings indicate that the marked changes in 

neuroinflammatory markers identified by us and the above-referred postmortem studies 

are most likely related to end-stage changes in PD-affected brains. 

Furthermore, a handful of studies have specifically implicated the cytokines NFKB 

and IFNγ – especially important in the context of our transcriptomic findings -  in PD 

pathophysiology. Mogi and colleagues found elevated levels of both NFKB and IFNγ in the 

postmortem brain tissue (substantia nigra, caudate nucleus and putamen) of PD-affected 

brains (Mogi et al., 2007). Furthermore, increased levels of IFNγ were reported to induce 

both a progressive degeneration of neurons in the nigrostriatal system and calcification of 

the basal ganglia (Chakrabarty et al., 2011). Another study pointed to the involvement of 

IFNγ in microglial-mediated dopaminergic neurodegeneration taking place in PD brains 

(Mount et al., 2007). Microglial activation seems to be closely related to the nigral 

degeneration in PD. They seem to produce deleterious effects to dopaminergic neurons by 

the release of multiple cytotoxic mediators, leading to a chronic and progressive 

neuroinflammatory state that directly influences the dopaminergic neurodegeneration 

(Joers et al., 2017). Large numbers of activated microglia have been found in nigral areas 
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of extensive dopaminergic degeneration in PD midbrains (Langston et al., 1983, 1999; 

McGeer et al., 1988a). Additionally, reactive microglia were shown to be highly detrimental 

to dopaminergic neurons in in vitro/in vivo models of PD  (Chen et al., 1998; Le et al., 1995, 

2001). Others showed that peripheral immune cells might also take part in the 

neuroinflammation occurring in PD. Cytotoxic CD4+ and CD8+ T lymphocytes were found 

in increased amounts in the substantia nigra of PD patients and, less extensively,  in the 

substantia nigra of AD-affected brains (McGeer et al., 1988a).  A subsequent study also 

showed that lymphocyte infiltration powered the dopaminergic degeneration in a mouse 

model of PD (Brochard et al., 2008). Similarly, postmortem studies identified increased 

amounts of T cells throughout AD-affected brains (Togo et al., 2002). Interestingly, 

immunostaining approaches revealed that cytotoxic lymphocytes cells are located close to 

blood vessels and also in the vicinity of neuromelanin-positive dopaminergic neurons in 

postmortem PD midbrains, suggesting that these immune cells are able to penetrate the 

brain from the bloodstream through the brain parenchyma, and that they might effectively 

interact with the degenerating dopaminergic neurons in those regions (Brochard et al., 

2008). The insults promoted by microglial and other immune cells in PD could be mediated 

by oxidative damage resultant from the cytotoxic activity of these cells, to which 

dopaminergic neurons are very sensitive (Hirsch and Hunot, 2009). However, other 

mechanisms, e.g. neuro-glial gliapse formation and subsequent phagocytosis, could also be 

involved (Barcia et al., 2012). 

For the few enriched pathways not linked to immune/inflammatory reactions, some 

terms are also relevant and worth mentioning for the up-regulated transcripts found in PD. 

The GO term entitled positive regulation of GTPase activity is also enriched for these 

transcripts and has been object of intense study by our group. The Rho family of GTPases, 

for example, are involved in several crucial neuronal processes including actin dynamics, 

axon growth, stabilization and guidance and synaptic plasticity. Some of these players and 

related interactors (e.g., RhoA; CDC42; RAC1; ROCK) are known to be important regulators 

of neuronal death, axon de- and regeneration, for example (Bustelo et al., 2007; Koch et 

al., 2018; Ridley, 2016). Preclinical studies have also shown that inhibiting the activity of 

these kinases could prevent degeneration and promote regeneration in in vitro and in vivo 

models of PD (Koch et al., 2014, 2018; Tatenhorst et al., 2014; Tönges et al., 2011, 2012). 
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Additionally, KEGG pathways for apoptosis and MAPK signaling pathways are both 

enriched for the PD up-regulated transcripts. These pathways are very likely reflecting the 

neurodegenerative processes and alterations in mechanisms related to cell survival taking 

place in the midbrains of the patients (Dauer and Przedborski, 2003a; Dexter and Jenner, 

2013b). Furthermore, positive regulation of transcription (and related) GO terms are also 

enriched. The MAPK signaling cascade is not only linked to cell survival and stress 

responses, but also to the regulation of gene expression, for example (Cargnello and Roux, 

2011). These findings once again match the positive regulation of gene expression, RNA 

biosynthetic processes and cell response to stress found enriched for the deregulated 

miRNAs, suggesting once again an interplay between the miRNA and the gene expression 

data. 

All in all, the functional annotation with the transcripts found up-regulated in the 

PD condition showed that the inflammatory and immune responses are major processes in 

the physiopathology in the affected patients.  In fact, there is a present consensus that 

neuroinflammation is an important factor in the context of PD (Hirsch and Hunot, 2009; 

Johnson et al., 2019; Kalia and Lang, 2015). Neuroinflammation has also been considered 

also a predictive feature for the development of cognitive decline and non-motor 

symptoms in PD, another indication for its role in intensifying the dopaminergic damage, 

directly influencing the progression of the disease (Maetzler et al., 2007; Menza et al., 

2010). As we have analyzed postmortem midbrain samples from patients presenting PD 

pathology at advanced stages, it is not possible to determine whether the 

neuroinflammation-related mechanisms contributed to the initiation of the disease. 

Nonetheless, our transcriptomics findings provided additional evidence that 

neuroinflammatory changes are indeed playing a major role in the pathophysiology of PD, 

at least in advanced stages. As a matter of fact, end stages of the disease are the most 

complicated to target therapeutically, and dramatically burden the quality of life of PD 

patients (Lim et al., 2009). Therefore, exploring whether the attenuation of the 

neuroinflammation in advanced stages of PD could lead to any improvements to disease 

progression would be essential, and might lead to promising novel therapeutic strategies 

for this devastating disorder. 

 



Discussion 
 

92 
 

4.5 Proteomic profiling reveals enrichment in PD-related pathways matching the 

transcriptomic results 

In order to explore the differences in protein expression in the analyzed midbrain 

samples, mass spectrometry experiments were performed, followed by DE and functional 

enrichment analyses. In comparison to the small RNA and transcriptomics datasets, only 

proteins uniquely identified within all analyzed samples are considered for the 

quantitation, making the coverage and the size of the proteomics dataset substantially 

smaller. After peptide mapping and protein quantitation, a total of 2,257 proteins were 

uniquely identified, and DE analyses revealed 127 significantly regulated proteins when 

comparing the PD condition to the respective controls. In line with what was observed in 

the previous datasets, the majority of the DE proteins (69%) were found up-regulated in 

the PD samples (87 proteins), while only 31% of the significantly regulated proteins (40 out 

of 127) were down-regulated in PD. Also similar to the small RNA and transcriptomics, the 

protein expression data presented high inter-individual differences within subjects. The 

protein expression data shows a high inter-individual variability even within 

diseased/control cohorts (Figure 13). Similar findings were observed for all approaches 

employed here and again suggests multiple molecular subtypes in PD patients. 

Expectedly, the DE results for the protein expression data revealed a down-

regulation in TH - the most robust marker for dopamine metabolism and dopamine 

depletion in PD (Molinoff and Axelrod, 1971; Perez et al., 2002) - in line with the TH down-

regulation found for the transcriptomics experiments. Remarkably, functional annotation 

revealed the pathway immune effector process as significantly enriched for the DE proteins 

in PD, matching the massive immune/inflammatory activation reported for the 

transcriptomics results. Several cytokines, immune mediators and receptors seem to be 

deregulated in PD, indicating that the alterations seen in the previous omics results 

presented here are also captured at the proteomic level. For instance, the category immune 

effector process was annotated for a variety of important genes that included CD47, C1QC, 

CHI3L1, LAMP2, RAB18 (full list portrayed in table 12). A strong enrichment is shown for 

the process entitled negative regulation of protein folding - the most significant of all 

enriched categories. Defects in protein folding and metabolism have been extensively 

linked to neurodegeneration and also PD (both in patients and in models for the disease) 



Discussion 
 

93 
 

(Dauer and Przedborski, 2003a; Ebrahimi-Fakhari et al., 2013; Ross and Pickart, 2004; Ryu 

et al., 2002; Selkoe, 2004). It is important to mention that the mechanisms for protein 

folding involve a multitude of players, but this particular category enriched in our 

proteomics DE results (GO term ID: 1903333) is composed of only 5 genes (BAG5, PDCD5, 

PDCL, SNRNP70, ST13) – 2 of which are present in our dataset (SNRNP70, ST13). ST13 and 

SNRNP70 are both found up-regulated in PD. ST13 (encoding for the Hsc-70 interacting 

protein) is a co-chaperone that activates the heat-shock protein 70 (HSP70), a chaperone 

known to reduce αSyn aggregation and toxicity (Klucken et al., 2004; Nollen et al., 2001). 

Alterations in levels of ST13 have been already reported in PD blood, with decreased levels 

of this protein being found in PD patients in comparison to controls and to AD patients 

(Scherzer et al., 2007). Although ST13 levels in our proteomics study are opposed to the 

ones reported for PD blood, a compensatory mechanism in response to increased αSyn 

aggregation may be involved in the up-regulation of ST13 in PD midbrains.  SNRNP70 (Small 

Nuclear Ribonucleoprotein U1 Subunit 70), a protein originally involved in spliceosome 

formation (Will and Lührmann, 2001), is reported to selectively associate with Tau 

neurofibrillary tangles and aggregate in the brains of AD patients (Bai et al., 2013). 

SNRNP70 was also found in increased levels in the brains of AD patients through proteomics 

approaches (Diner et al., 2014; Hales et al., 2016). Tau pathology has been increasingly 

implicated in synucleinopathies, Lewy body formation and PD pathology (Ishizawa et al., 

2003; Wills et al., 2010; Zhang et al., 2018), reinforcing the relevance of the findings 

presented here. 

Another important enriched category for the DE proteins in PD is entitled Oxidation-

reduction process. As discussed in section 4.4, oxidative damage is especially important in 

the context of dopaminergic degeneration in PD and may be responsible for the increased 

selective vulnerability of dopaminergic neurons (Anandhan et al., 2017; Dexter and Jenner, 

2013b; Hauser and Hastings, 2013; Lin and Beal, 2006). The presence of deregulated 

proteins annotated to these processes matches the previous datasets presented here and 

indicate that previously described pathological mechanisms are indeed captured by our 

multi-omics analysis. Up-regulated proteins in this category included MAOB, NADH-

ubiquinone oxidoreductase core subunits B3 and S2, CBR1, PRDX 1 and 6 – all of them also 

annotated to another enriched category, Drug metabolic process, and several of them also 
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common to the pathway entitled organophosphate metabolic process. Table 12 encloses 

the list of all enriched pathways and annotated proteins. Interestingly, MAOB inhibitors 

have been reported to have neuroprotective effects for dopaminergic neurons. 

Furthermore, MAOB polymorphisms were associated with increased risk for PD 

development (Dezsi and Vecsei, 2017). Pre-clinical results motivated a number of clinical 

trials with MAOB inhibitors for PD. These candidates presented inconsistent results at the 

trials and have not been considered as clinically relevant for PD (Clarke et al., 2011; Olanow 

et al., 2009). Nevertheless, MAOB inhibitors are still considered as relevant in terms of PD 

pathomechanisms and have been object of a handful of recent studies (Bar-Am et al., 2015; 

Guo et al., 2016; Huleatt et al., 2015; Robakis and Fahn, 2015; Tong et al., 2017). Studies 

have also linked the activity of mitochondrial NADH-ubiquinone oxidoreductase to MTPT 

and MPP+ dopaminergic neurotoxicity, for example (Conn et al., 2001; Mizuno et al., 1986). 

The enriched pathways secretion by cell and vesicle-mediated transport contain several 

overlapping proteins, and despite being very broad pathways with thousands of involved 

proteins, the might be very relevant for PD pathology. Recent studies have suggested that 

both αSyn and Tau are propagated through neurons trans-synaptically, being secreted and 

uptaken by neurons via extracellular vesicles fueling the αSyn pathology spreading 

hypothesis and relating it to PD progression (Cheng et al., 2018; Gustafsson et al., 2018; 

Okuzumi et al., 2018; Vasili et al., 2019). Furthermore, several studies have also indicated 

an important synaptic dysfunction as one of the pathogenic mechanisms in PD, particularly 

in the early stages of the disease (Abeliovich and Gitler, 2016; Bagetta et al., 2010; Burke 

and O’Malley, 2014; Schirinzi et al., 2016). 

Overall, the functional enrichment results for the multi-omics experiments 

presented above showed several processes of importance in the context of PD, validating 

known pathways and providing evidence for the involvement of previously less-regarded 

pathomechanisms involved in PD (e.g. inflammatory responses). Efforts into integrating the 

results across the omics studies guided the subsequent experiments of this project and are 

presented below. 
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4.6 Multi-omics integration identifies common pathways in matched datasets 

4.6.1 Integration of small RNA and transcriptomics 

In order to explore pathways of deregulation within the multi-omics studies 

presented here, a step-wise integration of the datasets was performed using the DE results 

for each of the techniques (miRNAomics, transcriptomics and proteomics). First, the 

integration of the small RNA and transcriptomics data was performed. After a 

computational target prediction for the DE miRNAs, both a bioinformatical tool 

(RRHO)(Plaisier et al., 2010) and a manual cross-correlation were performed in parallel for 

the identification of overlapping candidates. The discordant overlap between the two lists 

was retrieved in order to extract the valid miRNA-mRNA interacting pairs. The list of 

overlapping candidates contained potential pairs that would support hypotheses of miRNA 

regulation of gene expression in the samples (up-regulated miRNAs were considered for 

the retrieval of the respective down-regulated targets mRNA, and vice-versa). The RRHO 

algorithm was less stringent in the overlap retrieval since it used the full sequencing results 

including very lowly expressed transcripts and miRNAs that were manually disregarded for 

downstream analyses. Therefore, the number of transcripts and miRNAs identified there 

was much higher than in the manual cross-correlation (that considered cut-offs for fold 

change in expression and a minimum number of reads). Nevertheless, when comparing the 

results from both approaches, a big overlap is observed, with 22 out of the 23 DE transcripts 

found with the manual approach being also present in the RRHO output results. Therefore, 

the manual method was considered as a refinement of the automated bioinformatical 

approach. A final list of 22 transcripts and 9 miRNAs was thus considered for further steps 

(Figure 15B). Finally, in order to select the most relevant interacting pairs, the candidates 

were filtered according to the highest probability of conserved targeting (Friedman et al., 

2008). With that, twelve out of the 22 retrieved transcripts and all of the 9 miRNAs 

potentially regulating them were selected for validation of the sequencing results. The 

selected mRNAs included DHX57, RNF170, TMEM178B, BRWD1, ENTPD5, C7orf73, SOCS4, 

STEAP3, MIER2, FOXF1, RIMS1 and PPTC7. For the miRNAs, the selected candidates were 

the following: let-7i-5p; miR-26a-5p; miR-2018-5p; miR-424-5p; miR-29c-3p; let-7g-5p; 

miR-20a-5p; miR-145-5p and miR-98-5p.  
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The relevance of several of the selected miRNAs in processes as neurodegeneration, 

neuroinflammation and PD pathology was discussed in sections 4.2 and 4.3. For the 

selected DE transcripts, several of them have been studied in the context of 

neurodegenerative diseases. For example, SOCS4 (Suppressor of cytokine signaling 4), 

found in increased levels in PD in the transcriptomics results, is known to be involved in 

both JAK-STAT and PTEN-mTOR signaling pathways, influencing processes that include cell 

growth, apoptosis, survival, neuroinflammation and neurodegeneration (Nicolas et al., 

2013; Park et al., 2004, 2008, 2009; Sekine et al., 2018). In addition, an important study 

showed that deleting a protein of the same family of SOCS4 (SOCS3) promoted 

regeneration in optic nerve neurons in vivo (Smith et al., 2009). All members of the SOCS 

family share a central Src homology 2 (SH2) domain, as well as an extended SH2 domain 

and a C-terminal SOCS box (Palmer and Restifo, 2009). Interestingly, the triplet composed 

by  SOCS3/SOCS4/SOCS5 is reported to have a marked pair-wise homology (Duncan et al., 

2017), indicating the importance of these findings for in the context of neurode- and 

regeneration. Another important candidate is RNF170 (Ring finger protein 170), known to 

be involved in protein ubiquitination/degradation (Claessen et al., 2012; Nakamura, 2011). 

RNF170 seems to be especially important for the metabolism of inositol-1,4,5-triphosphate 

(IP3), and might thereby play a role in regulating autophagy-related mechanisms, a 

mechanism that plays an important role in PD pathology due to its involvement in protein 

and aggregate degradation (Anglade et al., 1997; Lu et al., 2011; Sarkar and Rubinsztein, 

2006; Williams et al., 2008; Winslow and Rubinsztein, 2011). Moreover, a study showed 

that a point mutation in the RNF170 gene is responsible for autosomal cases of sensory 

ataxia by impairing IP3-mediated Ca2+ signaling (Wright et al., 2015). The protein STEAP3 

(Six-Transmembrane Epithelial Antigen Of Prostate 3), a metalloreductase, also figures as 

an interesting candidate among the selected transcripts. It has been implicated in 

processes that include apoptosis and survival, and also in the regulation of inflammatory 

responses (Grunewald et al., 2012; Passer et al., 2003; Zhang et al., 2012). It has also shown 

robust pro-amyloidogenic properties in vitro, suggesting that it might influence protein 

aggregation also in PD (Roberts et al., 2017). Interestingly, STEAP3 is involved in iron 

homeostasis (Lambe et al., 2009) and can also regulate copper metabolism (Ohgami et al., 

2006). Both elements are known to play an important role in PD and have also been object 

of study in previous projects of our lab (Javier Jiménez-Jiménez et al., 1992; Joppe et al., 
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2019; Maass et al., 2018; Montes et al., 2014). The final list of selected candidates 

(portrayed in Figure 15) was considered for the q-RT-PCR validation of the sequencing 

studies. The relevance of all validated candidates is further discussed in the subsequent 

sections. 

 

4.6.2 Integration of and transcriptomics and proteomics 

Similar to what was done with the small RNA and transcriptomics datasets, the 

overlapping DE results for transcriptomics and proteomics experiments were also explored 

in an integrative fashion. In this case, we looked for the concordant overlap between the 

coding mRNAs and their respective protein product (i.e. up- and down-regulated transcript-

protein pairs). Factors related to protein metabolism and kinetics (e.g., synthesis and 

degradation rates of proteins) were out of the scope of this study and were therefore not 

considered for the integrative analyses presented here, although they are likely to 

significantly contribute to the overall picture.  

Proteomics and RNA sequencing results are fundamentally very different, starting 

by the nature of the signals and the coverage of those techniques. That makes the 

comparison of quantitative values (in this case, counts and intensities) by bioinformatical 

pipelines rather challenging. Therefore, we decided to apply a manual cross-correlation 

method for the integration, similarly to what was done for the manual integration of the 

miRNA and transcriptomics data. The much smaller range of DE proteins (127) was also 

favorable for the employment of such an approach. As presented in section 3.11.2, the 

total number of uniquely identified proteins was more than 20 times smaller than the 

number of mapped transcripts. Therefore, several of the DE transcripts found in the RNA 

sequencing results did not have their respective protein product identified in the 

proteomics results. The opposite also happened, to a lesser extent. Overall, disregarding 

the validity of the interaction pairs (i.e. the directionality of the fold changes in expression) 

the integrative approaches applied here revealed that 30 candidates were found 

significantly regulated in both transcriptomics and proteomics experiments (around 24% of 

all the proteomics DE results). When considering the valid pairs with concordant fold 

change in expression in both datasets, a final list of 13 candidates was retrieved from the 
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integration of the transcriptomics and proteomics datasets. Seven of them presented up-

regulation in the PD samples (ATP6V1E1, C9ORF47, CD47, ACOT7, RPL35, SEC23A and 

RPN1) while six candidates were found down-regulated in PD, both in transcriptomics and 

proteomics (TH, DBT, CD200, RAB18, NIPSNAP3A UBE2L3). It is important to mention that 

the final list of candidates selected from the integration of transcriptomics and proteomics 

is currently being validated by Western Blotting and the results will not figure in the scope 

of this thesis. As discussed in sections 4.4 and 4.5, the presence of the dopamine marker 

TH among the down-regulated candidates in both datasets, as well as the present of 

coincidentally enriched pathways throughout the omics datasets (e.g. inflammatory 

response, metabolism- and apoptosis-related processes) provide additional reliability to 

the functional annotation presented for each approach. 

 

4.7. Validation of sequencing results in human midbrain tissue by q-RT-PCR 

4.7.1. miRNA data validation 

After integration and the final miRNA candidate selection (section 3.11.1), nine 

miRNAs were validated in the human midbrain tissue (upon fresh RNA isolation and reverse 

transcription for cDNA preparation). For the miRNAs found down-regulated in PD by 

sequencing experiments, all selected candidates (let-7g-5p, miR-20a-5p, miR-145-5p, miR-

98-5p) were successfully validated by q-RT-PCR, presenting the same expression 

directionality as observed in the sequencing. For the miRNAs found up-regulated in PD by 

small RNA sequencing, 2 out of 5 (let-7i and miR-29c) presented significant differences in 

the validation studies with a regulation in the opposite direction compared to what was 

observed in the sequencing. Similar findings with an opposing regulation of one and the 

same target from discovery to validation studies have been frequently reported in 

biomarker studies using PD body fluids (Roser et al., 2018b; Halbgebauer et al., 2016). A 

number of factors might influence the outcome of validation studies. For example, 

alternative splicing often leads to discordant results between sequencing and q-RT-PCR 

experiments (Nazarov et al., 2017). The sensitivity of the two methods might also be an 

issue. A study reported a sensitivity threshold for the validation of sequencing results by q-

RT-PCR. Validation of significantly DE miRNAs identified by Solexa sequencing was not 
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possible for species presenting very low sequencing reads (<100 reads per species) (Cristino 

et al., 2011). In addition, the design of different commercially available primers and the 

number of amplified exons might also interfere with the validation of candidates identified 

by the sequencing. The opposing results presented here could be further explored by 

repeating the experiments with additional primers for the selected candidates, for 

example. Overall, the results showed that four out of the nine selected miRNA candidates 

were successfully validated by q-RT-PCR and concordant to the small RNA sequencing data.  

An overview of the biological relevance of all DE miRNAs is presented in section 4.4. 

For the validated miRNAs (let-7g-5p, miR-20a-5p, miR-145-5p, miR-98-5p), several of them 

have been implicated in neuronal- and neurodegeneration-related processes. A 

comprehensive study showed that let-7g-5p is among the top 40 highly expressed miRNA 

found in human brains (Shao et al., 2010). Deregulation of let-7g-5p has been also linked 

to neurodegenerative diseases. For instance, this miRNA has been included in a plasma 

biomarker panel of signature miRNAs able to distinguish AD patients from controls with 

high accuracy (Kumar et al., 2013). It has been also found significantly down-regulated in 

peripheral blood of Amyotrophic Lateral Sclerosis (ALS) patients (Liguori et al., 2018). Let-

7g-5p has also been shown be deregulated in PD models of αSyn overexpression (Asikainen 

et al., 2010), and the complementary strand of this miRNA, let-7g-3p, has been found 

differentially expressed in PD CSF (Gui et al., 2015a). Similarly, miR-20a-5p has been found 

in altered levels in both AD CSF and PD cortical brain regions (Chatterjee and Roy, 2017; 

Riancho et al., 2017). This miRNA is known to regulate neuronal differentiation (Cui et al., 

2016). Another of the validated miRNAs, miR-98-5p, has been extensively linked to AD. It 

has been shown to regulate amyloid β-peptide (Aβ) protein production (Li et al., 2016) and 

has been found in decreased levels in AD serum (Tan et al., 2014). Finally, miR-145-5p has 

been implicated in a variety of neuronal-related processes. For example, it is known to play 

a role in neuronal differentiation as well as to induce glial inflammatory insults (Jauhari et 

al., 2018; Li et al., 2013b). Remarkably, miR-145-5p is known to regulate, for example, 

microglia activation and astrocyte injury in models of cerebral stroke (Qi et al., 2017; Xie et 

al., 2017; Zheng et al., 2017), matching the intense inflammatory and immune response 

activation observed in our PD samples. Our findings provide more robust evidence for the 
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validated miRNA candidates as important regulators in neurodegenerative processes 

taking place in PD.  

4.7.2. Transcriptomics data validation 

Similarly, the mRNA candidates selected by the integration of miRNA and 

transcriptomics datasets (section 3.11.1) were validated by q-RT-PCR in the midbrain 

samples of PD and controls studied here. Seven of the selected candidates were found in 

up-regulated levels in PD by the RNA sequencing results. Out of these,  four mRNAs were 

successfully validated and presented the same pattern of regulation in the validation 

experiments. These were SOCS4, STEAP3, MIER2 and FOXF1. The relevance of the first two 

for PD pathology has been extensively discussed in section 4.6.1. MIER2 (Mesoderm 

induction early response protein 2) is a chromatin-binding transcript and is involved in 

histone deacetylation (Derwish et al., 2017), a process extensively linked to the 

development of neurodegenerative disorders as AD and PD (Abel and Zukin, 2008; Chuang 

et al., 2009; Fischer, 2014; Harrison and Dexter, 2013; Sharma and Taliyan, 2015; Stilling 

and Fischer, 2011). FOXF1 (Forkhead box protein F1) is an important transcription factor 

regulating embryonic development and is reported to play a role in dopaminergic 

differentiation through interaction with sonic hedgehog (SHH) (Peterson and Turnbull, 

2012; Wu et al., 2012).  

On the other hand, for the transcripts found down-regulated in PD by RNA 

sequencing experiments, none of the selected candidates presented significant differences 

in relative expression levels in the q-RT-PCR validation results. Nevertheless, all transcripts 

presented, on average, lower expression levels in PD samples when compared to controls. 

The same effect was observed several times both for the mRNA and the miRNA validation 

experiments. One plausible possibility is that the limited cohort size might influence the 

statistical power of the experiments presented here, being a technical limitation for the 

validation of the sequencing results. As discussed above (section 4.7.1), it is also worth 

mentioning that the different methods employed for discovery and subsequent validation 

of transcripts and miRNAs present obvious differences in sensitivity, what could account 

for the divergent findings presented here. Several factors are reported to influence 

validation outcomes, including alternative splicing, sensitivity limitations for the validation 
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of candidates presenting a low number of sequencing reads, primer design and differences 

in exonal region amplification might influence the outcome of validation studies (Cristino 

et al., 2011; Nazarov et al., 2017). Thus, similar to the miRNA validation, the transcriptomics 

validation results could also be further explored by repeating q-RT-PCR experiments with 

additional primers for the selected transcripts.  

In conclusion, a substantial number of the selected miRNA and mRNA candidates 

found DE in RNA sequencing experiments were successfully validated by q-RT-PCR. A 

number of the candidates also presented similar tendency for the expression levels in the 

validation studies in comparison to the sequencing results, but the results were not 

statistically significant - likely because of the aforementioned technical limitations of the 

methods employed here. Nevertheless, the patterns of the relative expression levels 

determined by q-RT-PCR were similar to the ones found in RNA sequencing experiments 

for the majority of the selected species. Interestingly, there was a good match for the 

validated miRNA-mRNA interacting pairs: down-regulated miRNAs in PD were successfully 

validated, and PD up-regulated transcripts – known targets of the validated miRNAs –   were 

also validated by q-RT-PCR. The valid interaction pairs validated here were the following: 

let-7g-5p/SOCS4; let-7g-5p/STEAP3; miR-20a-5p/MIER2; miR-20a-5p/FOXF1. Those 

findings indicate that these candidates are likely to play an important mechanistic role in 

the pathology presented by the affected patients. Further validation studies (e.g. 

immunoblotting) will be conducted with these and the additional candidates identified in 

integrative approaches. 

 

4.8. Validation of PD-deregulated miRNAs and transcripts in αSyn.A53T midbrains 

To complement our studies of human tissue, we compared the miRNA and mRNA 

expression results obtained in human midbrains with corresponding results from a 

transgenic mouse model of PD. For that, male mice overexpressing human αSyn containing 

the A53T mutation under the prnp promoter were employed. This mouse model 

reproduces a genetic (autosomal-dominant) form of PD, but it also resembles features of 

the idiopathic form of the disease, such as αSyn aggregation: Studies showed that the 

mutant forms seem to be more prone to aggregate in comparison the wild-type forms 
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(Conway et al., 1998; Dauer and Przedborski, 2003a; Krüger et al., 1998). Thus, the 

αSyn.A53T mouse model is considered a useful tool to study synucleinopathies as PD. The 

transgenic mice develop a progressive and severe motor phenotype starting around 8 

months of age. The appearance of αSyn aggregate inclusions matches the onset of the 

motor impairments (Giasson et al., 2002). Here, we evaluated the expression levels of the 

human validated miRNAs and transcripts in different stages of the pathology presented by 

the transgenic mice. In summary, the aim of the animal experiments presented here was 

to verify whether the alterations observed in the human midbrain tissue correlate with the 

patterns found in the same cerebral region in the mouse model. Details about cohort 

design and experimental setups are described in sections 2.2.2.1 and 3.14. 

The miRNA validation in αSyn.A53T mice midbrains revealed that no significant 

alterations are observed in miRNA levels in early time points, indicating that deregulation 

of miRNA expression is likely linked to the development of the progressive motor 

phenotype presented in later stages. At an intermediate time point, the levels of two 

miRNAs are found significantly deregulated in the transgenic condition in comparison to 

control animals. miR-20a-5p is found down-regulated in transgenic animals – in line with 

the human findings - while miR-145-5p is up-regulated in those individuals, inversely to the 

expression presented in PD-affected human midbrains. At late stages of the αSyn pathology 

in the mice, the results seem to be more variable within the subjects of individual cohorts, 

potentially denoting a misbalance in the miRNA machinery in older animals. Another 

miRNA, miR-98-5p, presented significant changes in relative expression, being down-

regulated in the transgenic animal, also in line with the human results. 

For the mRNA validation, not only the human validated transcripts were considered 

for q-RT-PCR experiments, but an extended candidate selection was conducted (section 

3.14.2). In order to explore possible correlations in further pathological features presented 

by the transgenic mice in relation to the PD pathology in humans, a set of PD-related genes 

was also selected for validation experiments. The cut-off criterion for further-selected 

genes was that candidates must be significantly regulated in the human transcriptomics 

results. Classical genes previously described to be involved in PD pathogenesis and 

progression were retrieved from a comprehensive review (Kalia and Lang, 2015). In 

addition, we considered the largest genomic-wide association study in PD (which included 
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the analysis of 7.8 million SNPs in dozens of thousands of PD cases / over a million control 

cases) (Nalls et al., 2018). In the end, a total of 9 transcripts were additionally selected for 

the validation by q-RT-PCR. 

The mRNA validation results showed that most of the analyzed transcripts 

presented changes in relative expression at early and intermediate ages, suggesting that, 

at the transcriptomic level, pathological mechanisms related to the motor phenotype might 

start taking place very early in the course of the lifespan of these animals. No differences 

were observed for any of the genes at late time points, indicating that not only the 

pathology but also aging per se might cause changes in the expression level of the evaluated 

genes in control animals. Only one gene, MIER2 (extensively discussed above), presented 

significant differences discordant to the human results, being down-regulated in the 

transgenic animals at intermediate ages. For all the other genes presenting significant 

altered relative expression levels, the results were concordant with the human findings for 

the validated targets. Genes as SOCS4, HSPA1, PINK1, GALC, POLG1, RIMS1, DYRK1a and 

SQSTM1 presented elevation in relative expression levels in the transgenic animals either 

at 100 days of age or at 250 days of age (or for both in the case of PINK1 and DYRK1a. As 

discussed in previous sections, SOCS4 is involved in processes that include cell growth, 

apoptosis and survival, neuroinflammation and neurodegeneration, thus, showing to be 

relevant for the pathology and progression of PD (Nicolas et al., 2013; Park et al., 2004, 

2008, 2009; Sekine et al., 2018). HSPA1 is a member of the heat shock proteins and plays 

an important role in protein folding and degradation and is also linked to neuronal 

apoptosis (Leak, 2014; Mayer and Bukau, 2005). Another gene related to protein 

degradation is SQSTM1, important for the formation of autophagosomes and ubiquitin-

related protein degradation (Bjørkøy et al., 2005; Clausen et al., 2010; Isakson et al., 2013; 

Taillebourg et al., 2012). Defects in protein degradation are known to be important in the 

context of αSyn aggregation, LB formation and for PD pathology in general, indicating that 

these players might be relevant for the pathology related to the αSyn.A53T mutation.  

Furthermore, PINK1 is a classical PD gene and encodes a protein kinase important 

for mitochondrial function and energy metabolism, for example. PINK1 mutations are 

known to cause early-onset PD cases (Dagda et al., 2014; Lazarou et al., 2013; Narendra et 

al., 2010; Truban et al., 2017). Interestingly, PINK1 is one of the genes presenting up-
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regulation in the transgenic mice midbrains both at early and intermediate stages, 

indicating that mitochondrial dysfunction might be one of the pathomechanisms caused by 

the synucleinopathy presented by the animals. DYRK1a also presented elevated relative 

expression levels both at early and intermediate stages in transgenic animals. DYRK1a is 

known to interact with αSyn and enhance the intracellular formation of inclusions (Kim et 

al., 2006; Wegiel et al., 2011). It is also known to influence the survival of dopaminergic 

neurons upon development (Barallobre et al., 2014) and DYRK1a polymorphisms have been 

associated with the development of sporadic PD (Cen et al., 2016). Thus, our findings 

suggest that DYRK1a might play an important role in the development of the 

synucleinopathy in transgenic mice.  

Some studies linked defects in POLG1 to PD predisposition and progression (Gui et 

al., 2015a; Luoma et al., 2007). Moreover, a VUS in the POLG gene was even identified for 

one of the PD patients analyzed here. The results presented here provide an additional 

indication that POLG1 might indeed play a role in the neurodegenerative processes in PD. 

Another transcript found deregulated in αSyn.A53T midbrains was RIMS1, a member of the 

Ras superfamily and regulator of GTPase activity. GTPase activity is very relevant for axonal 

degeneration and PD progression (Koch et al., 2014, 2018; Tatenhorst et al., 2014; Tönges 

et al., 2011, 2012). RIMS1 is also important for regulation of neurotransmitter release 

(Coppola et al., 2001; Ohtsuka et al., 2002; Takao-Rikitsu et al., 2004), and the deregulation 

in the affected midbrains might be related to the dopaminergic dysfunction present in the 

PD-like pathology. Finally, GALC was also found in elevated levels in the transgenic animals 

at the early time point. GALC is an enzyme responsible for the lysosomal catabolism of 

myelin-containing lipids. Interestingly, alterations in myelination have already been 

reported in PD (Dean et al., 2016; Gattellaro et al., 2009). 

In conclusion, the findings presented here for the miRNA/mRNA validation in the 

midbrain of αSyn.A53T mice indicate that a substantial number of pathological processes 

are overlapping between the PD animal model and the pathology in humans. To a certain 

extent, our longitudinal study with the αSyn.A53T animals yielded insights to the pathology 

presented by the transgenic animals upon aging and indicated a satisfactory validity of the 

model in regard to the miRNA/mRNA expression patterns observed in PD-affected 

midbrains. It is important to point out that in spite of several significant findings, the 
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conducted validation study presented limited cohort numbers and strong outlier values 

have been excluded from the analysis, decreasing the statistical power of the analyses. 

Several of the analyzed transcripts/miRNAs presented a high intra-cohort relative 

expression variability, which could possibly be ameliorated with the inclusion of more 

animals. Additional animals were sacrificed by the time of the experiment execution, and 

the repetition of the presented experiments in bigger cohorts would provide stronger 

evidence to the aforementioned findings.
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5. Concluding remarks 

The experiments conducted in the course of this doctoral thesis demonstrated that 

the use of high-throughput omics techniques allows the generation of comprehensive 

datasets for the exploration of molecular pathomechanisms of complex diseases, such as 

neurodegenerative disorders. Exploring the molecular events taking place in PD-affected 

brains is fundamental for better understanding the pathogenesis and progression of the 

disease and for the development of novel therapeutic avenues for PD. Nevertheless, results 

from post-mortem analyses always have to be put into context of an advanced disease 

stage. 

Here, several levels of deregulation were identified across multi-omics datasets in 

human midbrains affected by PD. Important players and molecular networks that seem to 

be relevant for advanced stages of PD pathology were revealed: we showed that a marked 

inflammation and immune response activation takes place in the analyzed midbrains, in 

addition to defects in protein degradation and metabolic dysfunctions. Our data thus 

strongly suggest that neuroinflammation may be a veritable therapeutic target, at least in 

advanced stages of the disease. 

Furthermore, we have been especially interested in the miRNA regulation of gene 

expression in PD. We identified and validated four miRNAs (let-7g-5p, miR-20a-5p, miR-

145-5p, miR-98-5p) in postmortem PD midbrains that have been previously linked to 

neurodegenerative / neuroinflammatory processes, providing additional evidence for the 

importance of these targets in the context of PD pathology. Furthermore, our multi-omics 

analyses allowed not only the profiling of miRNA expression patterns but also to verify the 

expression of miRNA direct targets and their protein products, providing insightful 

evidence for the participation of miRNAs in the neurodegenerative processes linked to the 

disease. Remarkably, miRNA-mRNA interacting pairs were identified and validated in the 

present samples (let-7g-5p/SOCS4; let-7g-5p/STEAP3; miR-20a-5p/MIER2; miR-20a-

5p/FOXF1). These pairs are likely to play an important mechanistic role in the pathology 

presented by the affected patients and will be further explored. 
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All in all, our approaches also evidence that efforts into optimizing the integration 

of large scale high-throughput datasets are absolutely required for the meaningful 

treatment and exploration of the data. 

Another important aspect shown here is that PD patients present a high inter-

individual variability for the expression of all types of molecular elements analyzed in our 

study, suggesting that patients with similar clinical phenotypes may have different 

molecular phenotypes. Moreover, our results also provided additional evidence for known 

pathomechanisms in PD (such as the aforementioned inflammatory changes, oxidative 

stress and metabolic dysfunctions). miRNAs possibly mediating these alterations were 

identified in our study and should be further validated in larger human cohorts as well as 

in animal models as therapeutic targets. Therefore, our findings might contribute to the 

exploration of novel disease-modifying avenues, which may increase the chances of 

attenuating disease progression. 

Finally, we have also assessed the validity of the prnp. αSyn.A53T mouse model of 

PD in terms of the overlap in miRNA and mRNA expression with human pathology. A 

number of correlating results were identified in our longitudinal animal study, providing 

insight into the time course of pathological changes in the animal brains upon aging that 

are similar to the ones occurring in human PD patients.  

All in all, the findings presented in this thesis yielded new insight in the 

pathomechanisms involved in PD, may contribute to the development of novel 

experimental PD models based on miRNA regulation and could establish promising new 

therapeutic targets for future studies. 
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6. Summary 

Parkinson’s Disease (PD) is the second most prevalent and fastest-growing 

neurological disorder. The number of affected individuals is expected to double in the next 

20 years. The exact molecular mechanisms underlying PD pathology are not completely 

understood. In addition, its diagnosis mainly relies on clinical criteria related to the 

characteristic motor dysfunction in PD. Since the symptoms only start to appear at 

advanced stages of the nigrostriatal degeneration characteristic in PD, there is a strong 

limitation for the promotion of therapeutic strategies that might be able to change the 

course of the disease. Allied to that, the limited regenerative capabilities of cells in the CNS 

complicate the development of restorative treatments. Therefore, understanding the key 

pathogenetic mechanisms of PD is fundamental for the the development of disease-

modifying therapies. Profiling the expression of molecular element such as miRNAs, 

transcripts and proteins in brains affected by PD might reveal a series of pathological events 

taking place both at cellular and systemic levels in the course of the disease.  

The present doctoral thesis aimed to analyze midbrain tissue samples from a cohort 

of PD patients and controls in a multi-omics set of experiments, looking into the genetic 

background of the selected subjects, as well as characterizing the expression patterns of 

miRNAs, transcripts and proteins on those samples. Here, several levels of deregulation 

were identified across multi-omics datasets in human midbrains affected by PD. Important 

players and molecular networks that seem to be relevant for advanced stages of PD 

pathology were revealed: we showed that a marked inflammation and immune response 

activation takes place in the analyzed midbrains, in addition to defects in protein 

degradation and metabolic dysfunctions. Our data thus strongly suggest that 

neuroinflammation may be a veritable therapeutic target, at least in advanced stages of 

the disease. In addition, we identified not only deregulated transcripts and proteins linked 

with pathological processes, but also miRNAs that might be involved in the pathophysiology 

of the disease. Finally, we have also assessed the validity of the prnp. αSyn.A53T mouse 

model of PD in terms of the overlap in miRNA and mRNA expression with human pathology. 

A number of correlating results were identified in our longitudinal animal study, providing 

insight into the time course of pathological changes in the animal brains upon aging that 

are similar to the ones occurring in human PD patients.  
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