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Abstract 
 
Background and Objectives:  The Caveolin (CAV1-3) family contains a unique 
class of membrane integral proteins with cytosolic termini. CAV1 or CAV3 are 
essential components of the caveolar core complex, a disc-shaped multimeric 
macromolecular scaffold, which interacts with membrane lipids and proteins. 
CAV3 was conceptualized as a muscle-specific and CAV1 alternative isoform. 
Finally, most CAV3 protein interactions were identified under non-endogenous 
conditions in heterologous overexpression systems. However, recent 
quantitative analysis by mass spectrometry demonstrated both CAV1 and CAV3 
in the human heart. Therefore, we hypothesized that isoform-specific CAV1 and 
CAV3 protein interactions provide unique subcellular functions. Therefore, we 
have targeted the CAV3 complex for live-cell proteomic analysis. Moreover, we 
developed isoform-specific affinity proteomic approaches to compare CAV1 
versus CAV3 interactors. As human CAV3 mutations were associated with 
action potential prolongation in HEK293 cells, we analyzed the functional impact 
and pathogenic proteomic mechanisms of the CAV3-F97C and CAV3-S141R 
mutations in gene edited human induced pluripotent stem cell (iPSC) derived 
cardiomyocytes. 
 
Methods and Results: In this thesis, an ascorbate peroxidase (APEX2) 
proximity assay was combined with stable isotope labeling for quantitative 
CAV3 proximity proteomics. We developed an N-terminally tagged V5-APEX2-
CAV3 expression construct for viral transfection of living neonatal rat 
cardiomyocytes (NRCMs). This assay labels proteins in the proximity of the 
CAV3 core complex and identified the monocarboxylate transporter (McT1) and 
the transferrin receptor (TfR1) as novel CAV3 candidate interactors. STED 
microscopy confirmed the nanometric proximity of McT1 and TfR1 with CAV3 
clusters in adult mouse ventricular cardiomyocytes. Affinity proteomics and co-
immunoprecipitation of ventricular cardiomyocyte lysates confirmed McT1 and 
TfR1 as CAV3 interactors, while aquaporin-1 was identified as a novel CAV1 
interactor. Importantly, introducing the human mutations in V5-APEX2-CAV3-
F97C and V5-APEX2-CAV3-S141R disrupted the proximity of the CAV3 
complex with McT1 and TfR1. In addition, V5-APEX2-CAV3-F97C diminished 
the physiological interactions between essential proteins that constitute the 
caveolar core complex. CRISPR/Cas9 gene editing was used to generate CAV3 
knock-out and CAV3-F97C knock-in human iPSC-derived cardiomyocytes. 
CAV3 knock-out led to decreased surface expression of both McT1 and TfR1. 
Importantly, the human CAV3-F97C reduced McT1 surface expression by 97%, 
destabilizing proton-coupled lactate export and reducing the extracellular 
acidification, mitochondrial respiration and ATP production. Quantitative mass 
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spectrometry and STED microscopy confirmed abundant CAV1 expression in 
mouse ventricular cardiomyocytes. Interestingly, CAV1 clusters were juxta-
positioned in proximity to CAV3 clusters in transverse tubules. Immunoblotting 
of atrial cardiomyocytes revealed distinct �. and �� CAV1 forms, while ventricular 
cardiomyocytes expressed only the longer CAV1 �.-form. 
 
Conclusion:  Using a combination of proximity and affinity proteomics, we 
identified CAV1 and CAV3 isoform-specific protein interactions in 
cardiomyocytes. McT1 and TfR1 define a new functional group of CAV3 
interacting proteins with immediate relevance for cardiac metabolism. CAV3 
surface expression was�� �Q�H�F�H�V�V�D�U�\�� �W�R�� �V�W�D�E�L�O�L�]�H�� �0�F�7���� �D�Q�G�� �7�I�5���� �I�X�Q�F�W�L�R�Q�� �L�Q�� �W�K�H��
�V�D�U�F�R�O�H�P�P�D�O�� �P�H�P�E�U�D�Q�H. Knock-in of F97C in human iPSC-derived 
cardiomyocytes destabilized McT1 surface expression and lactate-coupled 
proton export, resulting in depressed mitochondrial respiratory ATP production. 
These data support a novel pathomechanism for the CAV3-F97C mutation 
through impaired lactate and proton transport, which may affect mitochondrial 
function in human cardiomyocytes. Given that lactate is an important energy 
substrate, the functional stabilization of McT1 provides a novel role of Caveolin3 
for cardiac stress adaptation. 
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1 Introduction 
 
1.1 Cardiomyocyte structure, function and protein expression 
 
Cardiomyocytes are electrically excitable muscle cells that provide the 
contractile functions of four principally different cardiac chambers and tissues.1 
For example, in vivo, a near synchronous contraction of millions of 
cardiomyocytes is required to accelerate and "pump" the oxygenated blood 
from the left ventricle through the arterial and capillary vessels to support all 
organs and cells with oxygen and nutrients.1 At least two principally different cell 
types of cardiomyocytes were recently established, atrial and ventricular 
cardiomyocytes.2 Interestingly, atrial versus ventricular cardiomyocytes each 
develop a cell-specific morphology, function and unique protein expression 
profile, which is fully differentiated only in mature adult cells and tissues.3  
Ventricular cardiomyocytes are rod shaped cells that contain densely packed 
myofilaments and mitochondria, as well as perinuclear and scattered Golgi 
complexes.4 In addition, ventricular cardiomyocytes postnatally develop a high 
density of specialized membrane invaginations that include both caveolae and 
transverse (T-)tubules,5 the latter to enable electrical excitation through the 
relatively large intracellular volume of membrane conduits.6 For Ca2+ influx 
during excitation-contraction (E-C) coupling, T-tubules contain voltage-
dependent L-type Ca2+ channels in nanometric proximity to the calcium release 
channel ryanodine receptor type 2 (RyR2) in the sarcoplasmic reticulum (SR) 
membrane.7 In contrast atrial cardiomyocytes are significantly smaller and 
feature typically one nucleus,8 again associated with perinuclear and scattered 
Golgi complexes. Additionally, atrial cardiomyocytes contain numerous 
secretory granules and vesicles for example to release atrial natriuretic peptide 
upon increased atrial stretch.9 Recently, atrial cardiomyocytes were shown to 
contain abundant axially oriented but only sparse T-tubule membrane 
structures.8 Therefore, important differences compared to ventricular 
cardiomyocytes exist that provide a cell-type specific E-C coupling and 
intracellular calcium release machinery in atrial cardiomyocytes.10 In particular, 
axial tubules are junctional associated with the sarcoplasmic reticulum and  
contain dense clusters of L-type Ca2+ channels functionally coupled to extensive 
RyR2 clusters for rapid intracellular calcium release.11 Together, rapid activation 
of E-C coupling and predominant expression of the fast myosin isoform 6 in 
atrial cardiomyocytes allows for faster contraction as compared to ventricular 
cardiomyocytes.3 
Moreover, ventricular and atrial cardiomyocytes display distinct gene expression 
profiles.12 For ventricular development the transcription factor Irx4 promotes the 
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expression of the ventricle myosin heavy chain-1 (VMHC1) and suppresses the 
atrial myosin heavy chain-1 (AMHC1).13 The transcription factor Hey2 maintains 
ventricular identity by suppressing the atrial myosin light chains (Myl4 and 
Myl7), the SERCA2a inhibitor sarcolipin, the gap junction associated connexin-
40 (Cx40) and the prohormone natriuretic peptide precursor A (Nppa).14 
Furthermore, the nuclear receptor COUP-TFII promotes the longer action 
potential, increased cardiomyocyte size, and development of a high density of 
T-tubules in ventricular cardiomyocytes.15 Interestingly, recent mass 
spectrometry analysis of different human heart regions confirmed the chamber-
specific proteome profile of atrial and ventricular cardiomyocytes, and among 
others previously discussed transcription factors and the proteins Nppa, Cx40, 
Myl4, and Myl7, which are differentially expressed.16  
Directly related to the subject of this thesis, the proteomic profile of the human 
heart revealed the expression of caveolin-1 (CAV1), caveolin-2 (CAV2) and 
caveolin-3 (CAV3) in ventricular and atrial heart tissue by label-free mass 
spectrometry (SWATH-MS, Sequential Window Acquisition of All THeoretical 
Mass Spectra) (Table 1.1 ).16 However, only CAV3 was previously accepted as 
isoform in heart and skeletal muscles, while CAV1 was described as 
predominant isoform in nonmuscle cells, for example in adipocytes and 
fibroblasts.17 Accordingly, the expression of CAV1 was controversially 
discussed in cardiomyocytes.18,19,20,21 However, electron microscopy studies of 
human ventricular cardiomyocytes18, as well as Western blotting of cultured 
mouse ventricular cardiomyocytes provided evidence for CAV1 expression19,20, 
while studies of isolated cardiac myocytes showed CAV1 in mouse and rat 
hearts.21  
 
Table 1.1  Caveolin (CAV) expression in the human heart. �6�:�$�7�+-�0�6�� �Z�D�V��
�X�V�H�G�� �W�R�� �T�X�D�Q�W�L�I�\�� �G�L�I�I�H�U�H�Q�W�L�D�O�O�\�� �H�[�S�U�H�V�V�H�G�� �S�U�R�W�H�L�Q�V�� �L�Q�� �W�K�H�� �O�H�I�W�� �D�W�U�L�X�P�� ���/�$������ �U�L�J�K�W��
�D�W�U�L�X�P�� ���5�$������ �O�H�I�W�� �Y�H�Q�W�U�L�F�O�H�� ���/�9���� �D�Q�G�� �U�L�J�K�W�� �Y�H�Q�W�U�L�F�O�H�� ���5�9������ �7�K�H�� �S�R�V�W-�K�R�F�� �V�X�P�P�D�U�\��
�V�K�R�Z�H�G���U�R�E�X�V�W�O�\���G�H�W�H�F�W�H�G���O�R�J�����6�:�$�7�+���L�Q�W�H�Q�V�L�W�\���D�U�H�D�V���R�I���D�O�O���W�K�U�H�H���&�$�9���L�V�R�I�R�U�P�V��
�D�F�U�R�V�V���D�W�U�L�D�O���D�Q�G���Y�H�Q�W�U�L�F�X�O�D�U���V�D�P�S�O�H�V����Table modified from Doll et al, 2017.16 

Protein  LA RA LV RV Peptides 
Unique 
peptides 

CAV1 33.04 32.88 32.56 32.67 14 3 
CAV2 29.23 28.98 28.75 28.40 9 2 
CAV3 24.61 25.05 24.46 25.10 6 4 
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1.2 Biogenesis of caveolae  
 
CAVs are integral membrane proteins in caveolae, 50-100 nm large omega 
shaped nanodomain invaginations of the plasma membrane.22 A spiked 
caveolar coat structure was resolved by cryo-electron microscopy, and the 
spikes were interpreted as cytosolic protrusions of oligomeric CAV protein 
complexes (Figure 1.1 ).23 The oligomerization of CAVs and their interactions 
with cholesterol and phospholipids is thought to be essential to form the 
characteristic invaginated membrane shape.23  
 

 
Figure 1.1  Caveolae coat model . Cryo-electron microscopy of an ultrathin 
section of a baby hamster kidney cell showing a spiked caveolar coat on the 
cytosolic surface; spikes are marked by red dots. Scale bar: 100 nm. Figure 
modified from Parton et al., 2006.23 
 
 
CAV oligomers of 7�±14 protomers are formed in the ER.24 The CAV oligomers 
enter the secretory pathway to be exported to the Golgi complex in COPII 
vesicles. CAV oligomers associate with cholesterol in the Golgi, followed by 
export and assembly of oligomers in filament-like supercomplexes to form 
caveolae.25 Interestingly, cholesterol is required for CAV oligomer stability, as 
the exit from the Golgi complex is slowed by cholesterol depletion.25 
Accordingly, Golgi exit was proposed as a step for quality control to ensure 
assembly of CAV multimers, which define the essential structural component of 
the caveolae core complex.26,27 Caveolae are present in most mammalian cells, 
except for lymphocytes and hippocampal neurons.28 Especially in mechanically 
active cells, such as endothelial, adipocytes and muscle cells, caveolae are 
highly abundant and were proposed to buffer the mechanical deformation of the 
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plasma membrane as a protective mechanism.29 In the heart, a high density of 
caveolae have been shown at the plasma membrane, increasing the surface 
area up to 2-fold.22,30,31,32 Indeed, disruption of caveolar biogenesis in cardiac 
muscles can lead to cell damage and compensatory hypertrophy.33 Caveolae 
exist as single pits with a characteristic omega-shaped structure at the cell 
surface,22 while association of multiple caveolae was proposed to contribute to 
T-tubules biogenesis in postnatal muscle cells5, or to multi-lobed caveolar 
structures called rosettes34. CAV3 knock-out in mice resulted in a complete loss 
of caveolae and decreased T-tubule density.35 It was proposed, that the actin 
cytoskeleton regulates the organization of caveolae such that actin 
polymerization increases caveolae abundance.36 Furthermore, the actin 
cytoskeleton was proposed to be involved in caveolae endocytosis and 
recycling.37,38 The association of caveolae with actin filaments was documented 
by electron microscopy in fibroblasts39, epithelial cells40 and muscle cells29.  
 
1.3 CAVs are structural components of the caveolae core complex 
 
CAVs are 21-24 kDa integral membrane proteins, which were identified as 
essential structural components of the caveolae core complex.41 CAV isoforms 
are encoded by three genes: CAV1, CAV2, and CAV3.22 Additionally, the 
mRNA of CAV1 is spliced to produce �.- �D�Q�G�� ��-�I�R�U�P�V���� �Z�K�L�O�H�� �W�K�H�� ��-form only 
lacks the first 31 amino acids (Figure 1.2 ).42 So far, the functional differences 
between �.- and ��-forms remain unclear.43 The �.-form was proposed as 
predominant CAV1 isoform43���� �K�H�Q�F�H�I�R�U�W�K�� �,�� �U�H�I�H�U�� �W�R�� �W�K�H�� �.-form as CAV1 unless 
stated otherwise. All CAV proteins contain five functional domains: the N-
terminal domain, the oligomerization domain including the scaffolding domain, 
the intramembrane domain, and the C-terminal domain (Figure 1.2 ).44 The 
scaffolding domain is essential for CAV oligomerization45, and required for 
caveolae biogenesis.46 While the oligomerization, scaffolding, intramembrane 
and C-terminal domains are conserved across the CAV isoforms23, the length 
and sequence of the N-terminal domain is highly variable.23 Human CAV1 and 
CAV3 are 61 % identical.47 CAV2 is less conserved compared to CAV1 (30%) 
and CAV3 (33%).48 Both the N and C termini are predicted to be directed 
toward the cytoplasm, while the central intramembrane domain is predicted to 
form a hairpin-like structure.44 The C-terminal domain contains three 
palmitoylation sites, which stabilize the membrane association of CAVs 
(Figure 1.2 ).49,50  
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�)�L�J�X�U�H�������� Domain model of human CAV isoforms.  CAV isoforms consist of 
five functional domains: the N-terminal domain, the oligomerization domain 
including the scaffolding domain, the intramembrane domain, and the C-
terminal domain. The N-terminal domain is highly variable. Palmitoylation sites 
are indicated by green dots and residues identified by amino acid number. 
Figure modified from Parton et al., 2006.23 
 
 
CAV1 and CAV3 were established as essential proteins for caveolar 
biogenesis23, while CAV2 was not necessary but may contribute to the stability 
of CAV1-dependent caveolae invaginations.51 CAV1 and CAV2 are co-
expressed as shown for adipocytes, lung endothelial cells and fibroblasts52 and 
form hetero-oligomeric complexes, which are transported to the cell surface.53,54 
In contrast, CAV3 form homo-oligomeric complexes.48 Recently, a cryo electron 
microscopy (cryoEM) study revealed the first single-particle 3D structure of 
CAV3 oligomers in a 200 kDa nonameric disc-shaped complex with a diameter 
of �ý165 �@.48 It was proposed that the outer ring consists of the N-termini, while 
the C-termini form the central cone domain (Figure 1.3 ). Both, N- and C-
terminal domains are pointed into the cytosol.48 Assembly of nonameric CAV3 
complexes may thus represent the building block for subsequent caveolae 
biogenesis.48 
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Figure 1.3  Three-dimensional structure of the multimeric human CAV3 
core complex.  Reconstituted cryoEM CAV3 structure expressed in Sf9 insect 
cells. Figure modified from Whiteley et al., 2012.48 
 
 
1.4 Cavins are key accessory proteins of the caveolar core complex 
 
Cavins are soluble proteins that were more recently discovered and shown to 
stabilize the membrane-inserted CAV1 and CAV3 complexes through protein 
and lipid interactions by forming an additional Cavin coat. The Cavin coat is 
formed via Cavin coiled-coil domain protein interactions, which drive the 
oligomerization in higher-ordered homo- and hetero-trimers.55 The Cavin 
multimers were suggested to preassemble in the cytosol, and then bind to 
cholesterol- and CAV-rich membrane domains.56 Cavins exist as four isoforms 
further detailed in Table 1.2 . Cavin1 was shown to be an essential cytosolic 
coat component that can directly interact with all other Cavin isoforms.57 
Together with CAV1 or CAV3, Cavin1 was identified as essential component of 
the caveolar core complex.58 Cavin1 is a ubiquitously expressed key lipid-
binding protein, that directly stabilizes caveolar structures at the surface 
membrane.22,57 Accordingly, Cavin1 knock-out in mice resulted in a complete 
loss of caveolae in skeletal muscle as evidenced by electron microscopy.59 For 
in-depth discussion of Cavin functions in different cell types please refer to 
Kovtun, 2015.55 
Moreover, Eps15 homology (EH) domain containing proteins and Pacsin2 
(Table 1.2) were identified as components of caveolae and localized to the 
caveolar neck region.60,61,62,63,64 These proteins are not essential for caveolar 
biogenesis, however they influence the caveolar morphology, dynamics and 
inhibit endocytosis of caveolae (Table 1.2).60,61,62,63,64 
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Table 1.2.  Caveolin core complex and key accessory proteins of caveolae . 
Table modified from Parton et al., 2018.22 
Protein  Gene  Properties 
CAV1 CAV1 Integral membrane protein;41 

Cholesterol binding, palmitoylated;50 
Essential for caveolae biogenesis in non-muscle 
cells23 

CAV2 CAV2 Integral membrane protein;41 
Cholesterol binding, palmitoylated;65 
Forms a complex with caveolin-1;51 
Not essential for caveolae biogenesis51  

CAV3 CAV3 Integral membrane protein;41 
Cholesterol binding, palmitoylated;49  
Essential for caveolae biogenesis in muscle cells23 

Cavin1 PTRF Soluble coat protein;55 
Ubiquitiniously expressed;66 
Essential for caveolae biogenesis;42 
Recruits Cavin2, Cavin3 and Cavin4 to caveolae55,67 

Cavin2 SDPR Soluble coat protein;55 
Only essential for caveolae biogenesis in endothelial 
cells;68 
Oligomerizes with Cavin155,67 

Cavin3 SRBC Soluble coat protein;55 
Not essential for caveolae biogenesis;68 
Role in trafficking of caveolae;69 
Oligomerizes with Cavin155,67 

Cavin4 MURC Soluble coat protein;70 
Muscle-specific;70 
Not essential for caveolae biogenesis;71 
Promotes Rho/ROCK signaling;70 
Oligomerizes with Cavin172 

EH 
domain 
containing 
proteins 

EHD1 
EHD2 
EHD3 
EHD4 

Localized to caveolae neck;73 
ATPase forming ring around neck of caveolae;60,61 
Inhibits endocytosis;60,61 
Essential for Caveolae stabilization60,61 

Pacsin2 PACSIN2 Localized to caveolae neck;59 
Essential for caveolae stabilization;74 
Recruits GTPase dynamin2, which mediates 
caveolae internalization by GTP-driven membrane 
fission64 
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1.5 CAV protein interactions provide important functions 
 
In addition to the structural function of CAVs for caveolar biogenesis22, CAVs 
are thought to mediate functional protein interactions with the nitric oxide 
synthase (NOS) and G-protein coupled receptors (GPCRs), as well as with ion 
channels and ion transport proteins (Table 1.3).75,76,77 Accordingly, human CAV 
mutations were shown to interfere with functionally relevant protein interactions, 
and lead to dysregulated mechanosensing, cell signaling or ion homeostasis 
(for further information, please refer to chapter 1.7). 17,78 However, a relatively 
large cumulative number of candidate protein interactions is based on 
overexpression in heterologous cell systems. Importantly, the functionality of the 
protein interactions was often not established under endogenous conditions of 
relatively low CAV expression levels (Table 1.3 ). For example, the proposed 
CAV3 interaction with the Na+ channel Nav1.5 was identified in HEK293 cells 
stably expressing NaV1.5 after exogenous CAV3 overexpression.75 Moreover, 
overexpression of mutant F97C-CAV3 in HEK293 cells resulted in increased 
late Na+ currents suggesting a mechanism for action potential prolongation as 
the basis for the long-QT syndrome in patients.75 However, overexpression can 
profoundly influence protein interactions in heterologous cell systems, as CAV1 
overexpression was shown to specifically increase the pool of non-caveolar 
CAV1 in endosomes, but not the physiological caveolar pool.79,80 
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Table 1.3  CAV1 and CAV3 protein interactions.  Previously published CAV1 
and CAV3 protein interactions, identified by co-immunoprecipitation using 
heterologous overexpression or endogenous cell systems, as indicated. 

Protein 
Interacting 
CAV isoform 

Cell system 

Src kinase (Src) CAV1 Overexpression in Cos7 cells76 

Insulin receptor (IR) 
CAV1 Overexpression in Cos7 cells81 
CAV3 Overexpression in HEK293 cells82 

Endothelial nitric 
oxide synthase 
(eNOS) 

CAV1 aortic endothelial cells83 

CAV3 Cardiomyocytes 84 

Connexin-43 (Cx43) 
CAV1 

Keratinocytes from human 
epidermis85 

CAV3 Mouse heart tissue86 

Sodium/potassium 
ATPase �.����������������������   
���1�D���.���$�7�3�D�V�H���.���� 

CAV1 Kidney tubular epithelium cells87 

CAV3 Mouse ventricular tissue88 

Potassium/sodium  
hyperpolarization-
activated cyclic 
nucleotide-gated 
channel (HCN4) 

CAV1 Mouse SAN myocytes89 

CAV3 Mouse SAN myocytes89 

��-1-����-2-adgeneric 
�U�H�F�H�S�W�R�U������-1-����-2-
AR) 

CAV3 Overexpression in HEK293 cells90 

Glucose transporter 
(GluT4) 

CAV3 Skeletal muscle cells91 

Sodium/calcium 
exchanger (Ncx1) 

CAV3 Mouse ventricular tissue92 

Inward-rectifier 
potassium ion 
channel (Kir2.1) 

CAV3 Overexpression in Cos1 cells93 

L-Type calcium 
channel (CaV1.2) 

CAV3 Mouse ventricular 
cardiomyocytes77 

Sodium voltage-gated 
channel (NaV1.5) 

CAV3 Overexpression in HEK293 cells75 
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1.6 APEX2 proximity biotinylation to identify CAV3 protein networks 
 
In this thesis, the engineered Ascorbate PEroXidase variant 2 from soybean 
(APEX2)94,95 was used as CAV3 tag to target a proximity-based biotinylation 
technique for mass spectrometry analysis to the macromolecular CAV3 
complex. As protein biotinylation represents a rare posttranslational modification 
in mammalian cells, for example mainly restricted to few mitochondrial 
carboxylases, exogenous biotinylation can be used to identify endogenous 
proteins in nanometric proximity of the APEX2 enzyme reactive cloud.96,97 
APEX2 catalyzes the oxidation of biotinphenol to a short-lived (<1 ms) 
biotinphenoxyl radical, a reaction which is typically activated by a 1 min H2O2 

pulse.97 The biotinphenoxyl radical reacts with electron-rich amino acids, 
particularly tyrosine, tryptophan, cysteine, and histidine of proteins in 
nanometric proximity.97 Based on the short half-life of the biotinphenoxyl radical 
and electron microscopy analysis of APEX2 tagged proteins98, a biotinylation 
radius of 20 nm was measured in HEK293 cells.97 Due to the optimized high 
enzymatic activity of APEX295, the APEX2 biotinylation approach was 
previously shown to resolve the dynamics of protein interactions with G-protein-
coupled receptors.99 The scheme of the CAV3-tagged APEX2 biotinylation 
reaction is illustrated in Figure 1.4 . 
 

 
�)�L�J�X�U�H�� ���������7�R�S�R�O�R�J�L�F�D�O�� �P�R�G�H�O�� �R�I�� �$�3�(�;��-�&�$�9���� �S�U�R�[�L�P�L�W�\-based ��
�E�L�R�W�L�Q�\�O�D�W�L�R�Q�����&�$�9���� �Z�D�V�� �1-�W�H�U�P�L�Q�D�O�O�\�� �W�D�J�J�H�G�� �Z�L�W�K�� �$�3�(�;������ �8�S�R�Q�� �F�H�O�O�X�O�D�U��
�W�U�H�D�W�P�H�Q�W�� �Z�L�W�K�� �+���2���� �I�R�U�� ���� �P�L�Q���� �$�3�(�;���� �J�H�Q�H�U�D�W�H�V��a reactive cloud of 
�E�L�R�W�L�Q�S�K�H�Q�R�[�\�O�� �U�D�G�L�F�D�O�� �P�R�O�H�F�X�O�H�V�� ���U�H�G���� �W�K�D�W�� �F�R�Y�D�O�H�Q�W�O�\�� �O�D�E�H�O�� �S�U�R�W�H�L�Q�V�� ���\�H�O�O�R�Z��
�F�L�U�F�O�H���� �L�Q�� �Q�D�Q�R�P�H�W�U�L�F�� �S�U�R�[�L�P�L�W�\���� �%�L�R�W�L�Q�\�O�D�W�H�G�� �S�U�R�W�H�L�Q�V-�R�I-�L�Q�W�H�U�H�V�W�� ���3�2�,���� �D�U�H��
�L�G�H�Q�W�L�I�L�H�G���E�\���P�D�V�V���V�S�H�F�W�U�R�P�H�W�U�\�����%�����E�L�R�W�L�Q�S�K�H�Q�R�O�����,�&�����L�Q�W�U�D�F�H�O�O�X�O�D�U 
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1.7 CAV knock-out mouse models exhibit cardiac dysfunction  
 
While CAV1 expression in cardiomyocytes has remained controversial,18,19,20,21 
CAV1 knock-out mice were associated with a phenotype of cardiac 
hypertrophy.100,101 Importantly, the hypertrophic heart changes in CAV1 knock-
out mice were solely related to cardiac fibroblasts and endothelial cells.100,101 
Since CAV1 was shown to inhibit the enzymatic nitric oxide synthase (NOS) 
function through direct protein interactions102, it is interesting that increased 
nitric oxide (NO) levels were identified in fibroblasts and endothelial cells of 
CAV1 knock-out mice.100,101 Chronically increased NO levels may induce 
fibrosis,103 which was proposed to cause myocardial hypertrophy.104 Moreover, 
CAV1 knock-out has been shown to decrease left-ventricular conduction 
velocity through decreased connexin-43 expression.105 Connexin-43 is essential 
for electrical coupling between myocytes at gap junctions106  
In addition, a progressive cardiomyopathy at 4 months of age with significant 
hypertrophy was shown in CAV3 knock-out mice.107 T-tubule disorganization 
and a decreased T-tubule density were observed by confocal microscopy in 
isolated ventricular cardiomyocytes from CAV3 knock-out mice.108 Consistent 
with T-tubule remodeling in heart failure,109 fewer transverse and more 
longitudinal tubules were documented in CAV3 knock-out cardiomyocytes.108 
Therefore, reorganization of T-tubules due to CAV3 deficiency was proposed to 
impair E-C coupling.108 
 
1.8 Human CAV mutations cause a spectrum of muscle diseases  
 
CAV1 mutations were associated with lung and vascular diseases110, 
lipodystrophy111 and breast cancer27. The breast cancer associated CAV1 
mutation CAV1-P132L was shown to �G�L�P�L�Q�L�V�K��caveolar�� biogenesis�� �D�Q�G��
�D�F�F�X�P�X�O�D�W�H�� �L�Q�� �W�K�H�� �*�R�O�J�L�� �W�K�U�R�X�J�K�� �G�L�V�U�X�S�W�H�G�� �S�U�R�W�H�L�Q�� �R�O�L�J�R�P�H�U�L�]�D�W�L�R�Q�� �L�Q��CAV1-
P132L stable expressing human mammary epithelial cells.27 Moreover, 
genome-wide studies have associated common CAV1 mutations with atrial 
fibrillation.112,113 Human atrial tissues from patients with atrial fibrillation showed 
a reduced expression of CAV1, while expression of CAV2 and CAV3 was not 
affected.114 However, CAV1 mutations have never been studied in striated 
muscles, particularly not in cardiomyocytes. 
To date, 24 distinct missense mutations have been reported in the human 
CAV3 gene.78 Both skeletal and heart muscle diseases have been linked to 
CAV3 mutations including rippling muscle disease115, hyperCKemia116, limb-
girdle muscular dystrophy (LGMD-1C)117 and a hypertrophic cardiomyopathy 
classified as long QT syndrome type 9 (LQT9)75. Autosomal-dominant CAV3 
mutations78 can cause a loss of CAV3 expression, as revealed by immunoblot 
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and immunohistochemistry analysis in patient muscle biopsies.118,119 Consistent 
with a severe loss of CAV3 protein expression, electron microscopy analysis of 
muscle samples from LGMD-1C patients showed diminished caveolae at the 
sarcolemma and a reorganized T-tubule system.119 The LGMD-1C patient 
mutation CAV3-P104L120 was established as a model of disrupted��caveolar��
biogenesis.121,117,26 Transgenic overexpression of CAV3-P104L in mice showed 
CAV3 protein aggregates, which were retained in the Golgi complex121, and 
may induce proteasomal degradation.117 Skeletal muscles of CAV3-P104L 
transgenic mice revealed proliferated ER-Golgi intermediate compartment 
(ERGIC) structures and abnormal localization of the dystrophin-glycoprotein 
complex.26 Moreover CAV3-P104L was shown to diminish the surface 
expression of the insulin-dependent glucose transporter type 4 (GluT4) as well 
as glucose uptake in skeletal myotubes, indicating that muscle dysfunction is 
potentially associated with compromised transmembrane substrate uptake.122  
Related to the subject of this thesis, six CAV3 mutations were identified in 17 
patients with the Long-QT syndrome 9, while CAV3-F97C and CAV3-S141R 
were proposed as disease causative CAV3 mutations.75 Overexpression of 
CAV3-F97C and CAV3-S141R in HEK293 cells increased the late Na+ 
current.75 Mechanistically, CAV3-F97C was proposed to lose its function as 
NOS inhibitor,123 while increased nitrosylation of Nav1.5 channels can increase 
Na+ currents. 123,124 Furthermore, F97C was associated with a decreased Kir2.1 
current based on co-expression in HEK293 cells.93 Immunostaining of 
overexpressed CAV3-F97C in HEK293 cells co-localized CAV3-F97C with the 
trans-Golgi marker Golgin97, indicating CAV3-F97C accumulation in the Golgi 
complex.93 Therefore, CAV3-F97C was proposed to reduce Kir2.1 channels 
surface expression presumably by retaining Kir2.1 channels in the Golgi 
complex.93 
 
1.9 Human induced pluripotent stem cells (iPSC) derived 

cardiomyocytes as model of heart disease 
 
Inducible pluripotent stem cells (iPSCs) can be generated from patient samples 
to study genetic diseases in the patient-specific genetic background.125 
Furthermore iPSC-derived atrial and ventricular cardiomyocytes126 can be 
derived through standard protocols to study the mechanisms of cardiac 
diseases, as regenerative therapeutic approach, and for drug discovery.125 
Previously, the functional effects of ion channel mutations identified in long QT 
syndrome (LQTS) patients were studied in iPSC-derived cardiomyocytes.127 
Recently, clustered regularly interspaced short palindromic repeats (CRISPR) 
based on the CRISPR associated protein Cas9 has been applied for gene 
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editing of iPSCs.128 CRISPR/Cas9 can also be used to correct and thus prove a 
disease-causative mutation effect.129 Moreover, CRISPR/Cas9 genome editing 
enables the expression of a targeted protein intervention under its endogenous 
promotor, overcoming limitations of heterologous overexpression cell systems 
and potentially aberrant protein interactions.130 However, the differentiation 
process of the iPSC�±derived cardiomyocytes is critical for phenotype 
development and cellular metabolism.131,132 Long-term cultivation for 60�±100 
days is currently used to generate differentiated human cardiomyocytes with 
well-organized sarcomeric structures, functional Ca2+ handling, and expression 
of cardiac-specific ion channels.126 
 

2 Aim of this thesis 
 
The aim of this thesis was to define the cardiac CAV protein interactions by 
unbiased proximity and affinity based mass spectrometry approaches. Previous 
studies established a large number of CAV3 protein interactions of functional 
relevance in heterologous cell overexpression systems. Here, we used an 
alternative APEX2-based ratiometric proximity assay to identify CAV3 protein 
interactions in living neonatal rat cardiomyocytes (NRCMs). To overcome the 
limitations of CAV3 overexpression, plasmid and viral vector transfection 
strategies were tested in parallel to express CAV3 at a similar level to 
endogenous CAV3. In order to validate APEX2 based candidate hits and to 
analyze CAV1 and CAV3 isoform-specific interactions, we used affinity 
proteomics and confirmed putative hits by co-immunoprecipitation. As CAV1 
was recently identified both in atrial and ventricular human heart tissue by 
quantitative mass spectrometry methods, we investigated the relationship 
between CAV1 and CAV3 in adult mouse cardiomyocytes by immunoblotting 
and STED superresolution microscopy (nanoscopy).  
Moreover, the human CAV3-P104L mutation was shown to interfere with CAV3-
dependent protein interactions and to affect CAV3 oligomerization.117 For this 
purpose the �S�R�W�H�Q�W�L�D�O�� �L�P�S�D�F�W�� �R�I�� �W�K�H�� �K�\�S�H�U�W�U�R�S�K�L�F�� �F�D�U�G�L�R�P�\�R�S�D�W�K�\�� �D�V�V�R�F�L�D�W�H�G��
�)�����&�� �D�Q�G�� �6�������5�� �P�X�W�D�W�L�R�Q�V�� �Z�H�U�H�� �D�Q�D�O�\�]�H�G�� �E�\�� �S�U�R�[�L�P�L�W�\�� �S�U�R�W�H�R�P�L�F�V����
�F�U�R�V�V�O�L�Q�N�L�Q�J�� �D�Q�G��blue native polyacrylamidgelelektrophorese (BN-PAGE) 
analysis�����)�L�Q�D�O�O�\�����E�D�V�H�G���R�Q���W�K�H���L�G�H�Q�W�L�I�L�H�G���&�$�9�����L�Q�W�H�U�D�F�W�R�P�H�����W�K�H��cardiomyocyte-
specific disease mechanism of the monocarboxylate transporter McT1 was 
investigated by extracellular cell surface biotinylation. Metabolic changes were 
analyzed by Seahorse measurements in CRISPR/Cas9 gene-edited CAV3 
knock-out and CAV3-F97C knock-in human iPSC-derived cardiomyocytes. 
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Major parts of my work contributed to a first author manuscript. The manuscript 
is part of my thesis in the following chapter 3, including a detailed table of my 
contributions. Data, which are not included in the manuscript are part of 
chapter 4 (Additional Methods ) and chapter 5 (Additional Results ). 
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3.1 Abstract 
 
Rationale:  CAV3 mutations were associated with action potential prolongation. 
As Caveolin1 was recently identified in cardiomyocytes, we hypothesize that 
conserved isoform-specific protein interactions underlie human loss-of-function 
mutations. To analyze the Caveolin1 versus Caveolin3 interactome, we 
developed unbiased live-cell proteomic and isoform-specific mass spectrometry 
techniques. We demonstrate the functional relevance and pathogenic 
mechanism of a novel Caveolin3 interactor in gene-edited human iPSC-
cardiomyocyte models. 
 
Objective:  To identify differential Caveolin1 versus Caveolin3 protein 
interactions and to define the molecular basis of CAV3 mutation induced 
cardiomyopathy. 
 
Methods and Results:  Combining stable isotope labeling with proximity 
proteomics, we applied mass spectrometry to screen for putative Caveolin3 
interactors in living cardiomyocytes. Isoform-specific affinity proteomic and co-
immunoprecipitation experiments confirmed the monocarboxylate transporter 
McT1 versus aquaporin1 respectively as Caveolin3 or Caveolin1 specific 
interactors in cardiomyocytes. Superresolution STED microscopy showed 
distinct Caveolin1 versus Caveolin3 cluster distributions in transverse tubules in 
cardiomyocytes. CRISPR/Cas9-mediated Caveolin3 knock-out uncovered a 
new role for stable McT1 surface expression and proton-coupled lactate 
shuttling in human iPSC-derived cardiomyocytes. Strikingly, knock-in of the 
F97C mutation in the human CAV3 gene caused a 97% loss of McT1 surface 
expression with depressed mitochondrial respiration in human cardiomyocytes. 
 
Conclusions:  Combining the strengths of proximity and affinity proteomics, we 
identified isoform-specific Caveolin1 versus Caveolin3 binding partners in 
cardiomyocytes. McT1 represents a novel class of functionally relevant 
Caveolin3-specific interactors. Accordingly, Caveolin3 knock-out uncovered a 
previously unknown role for functional stabilization of McT1 in the surface 
membrane of human cardiomyocytes. Knock-in of the F97C mutation in the 
human CAV3 locus not only disrupted McT1 surface expression, but additionally 
impaired mitochondrial energy metabolism in human cardiomyocytes. Given 
that lactate is a major substrate for stress adaption both in the healthy and the 
diseased human heart, functional stabilization of McT1 through conserved 
Caveolin3 interactions provides a mechanistic rationale to develop muscle-
specific therapeutic approaches. 
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3.2 List of abbreviation 
 
APEX2 engineered Ascorbate PEroXidase variant from soybean 

BN-PAGE Blue Native PAGE  

CAV1  Caveolin1 

CAV3  Caveolin3 

KI  Knock-in 

KO  Knock-out 

POI  Protein-of-interest 

SWATH-MS Label-free Sequential Window Acquisition of All THeoretical Mass 
Spectra 

T-tubule Transverse tubule 

WT  Wild-type  
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3.3 Introduction 
 
Cardiomyocytes exhibit a high density of caveolae in the plasma membrane 
increasing their surface area up to 2-fold.1,2 Recent progress revealed how 
caveolae are molecularly stabilized through the coordinated actions of key lipid-
binding proteins.1 The membrane-inserted caveolin (CAV) family members 
CAV1 and CAV3, as well as Cavin1 were identified as essential cytosolic coat 
components that directly stabilize the characteristic omega-shaped caveolae 
structure in the surface membrane.1,3 The caveolar neck constriction is 
stabilized through a ring-shaped protein complex, where Eps15 homology 
domain 2 (EHD2) inhibits caveolar endocytosis.5,3  
 
Since CAV1 knockout mice develop heart failure and CAV1 is highly abundant 
in fibroblasts, it was assumed that cardiomyocytes are not primarily affected.4 In 
contrast, immuno-gold EM localized CAV1 in caveolae in human 
cardiomyocytes,5 and immunoblotting confirmed CAV1 expression in isolated 
mouse cardiomyocytes.6 In addition, genome-wide studies have associated 
common CAV1 variants with cardiac conduction disease and atrial fibrillation.7 
Accordingly, a cardiomyocyte-specific mechanism of conduction disease was 
demonstrated in CAV1 knockout hearts.6 However, neither the relationship 
between endogenous CAV1 and CAV3 nor human loss-of-function mutations 
were established in cardiomyocytes previously. 
 
Both functionally important mechanoprotective and signal transduction roles 
have been assigned to caveolae.1 For example, in skeletal muscle, flattening 
and disassembly of caveolae in response to increased stretch protects 
membrane integrity during muscle contraction.2 In addition, G-protein coupled 
receptor and ion channel signaling have been associated with caveolae.2,8 
However, the multitude of candidate protein interactors cumulatively assigned 
through overexpression studies contrasts with recent observations in gene-
edited cell lines showing that bulk membrane proteins are relatively depleted in 
caveolae.9 Caveolar exclusion of membrane proteins was proposed to involve 
steric barriers provided by the coat and the ring complexes, as well as 
unfavorable membrane curvatures.3,9 However, neither  were putative CAV3 
interactions nor CAV1 binding proteins functionally established in 
cardiomyocytes.1,2 
 
CAV1 knock-out mouse embryonic fibroblasts with dichloroacetate shifts 
glucose utilization from lactate and pyruvate production to OXPHOS stimulation 
and cell death.10 This was linked to mitochondrial dysfunction due to abnormal 
cholesterol accumulation leading to impaired mitochondrial import of the key 
antoxidant glutathione, such that OXPHOS increases reactive oxygen species 
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(ROS) sufficiently to trigger apoptosis.10 Notably, an increase in apoptotic 
hepatocytes and neurons was confirmed in CAV1 knockout mice in vivo.10 
Interestingly, in the failing human heart it has been shown that lactate is an 
important respiratory substrate and lactate uptake through McT1 is chronically 
increased, apparently compensating for decreased fatty acid utilization in 
mitochondrial energy production.11 Finally, during exercise lactate uptake is 
markedly increased in cardiomyocytes and mitochondrial lactate oxidation may 
then account for over 50% of oxygen consumption in the human heart.11  
 
In patients, rare CAV3 mutations cause a hypertrophic cardiomyopathy 
classified as long-QT syndrome type 9.8 Accordingly, overexpression of CAV3 
containing the human F97C or S141R mutation in HEK293 cells stably 
expressing the Na+ channel NaV1.5 resulted in action potential prolongation.8 
On the other hand, CAV3 was found to co-purify with the dystrophin-
glycoprotein complex (DGC) presumably through indirect interactions with the 
nitric oxide synthase,12 whereas NaV1.5 was shown to bind indirectly to the 
DGC through �D- and �E-syntrophin.13 Hence, the molecular nature and 
pathogenic mechanism of the putative CAV3 interactions each with itself in core 
caveolar complexes, with NaV1.5, or the DGC remain unclear. As powerful live-
cell as well as quantitative proteomic techniques have emerged recently, we set 
out to develop advanced mass spectrometry techniques to define the spectrum 
of cardiac CAV1 and CAV3 protein interactions in an unbiased fashion.14,15 
 
Here, we identify McT1 as a member of a new class of CAV3 binding proteins 
and a functional link to cardiac metabolism. While this interaction does not 
extend to the CAV1 isoform, McT1 and CAV3 occur in functionally important 
membrane domains, specifically in transverse (T-) tubules. In human iPSC-
cardiomyocytes CAV3 knock-out uncovered a stabilizing role both for McT1 
surface expression and co-transport of small monocarboxylates, particularly for 
lactate/proton shuttling. Strikingly, the F97C mutation abolished the biogenesis 
of the multimeric CAV3 core complex and McT1 surface expression, and 
depressed mitochondrial respiration in human iPSC-cardiomyocytes. Hence, 
stabilization of functional McT1 expression in the surface membrane requires 
isoform-specific CAV3 protein interactions to sustain mitochondrial energy 
production in human iPSC-cardiomyocytes. 
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3.4 Methods 
 
The authors declare that all supporting data including complete proteine tables 
are available within the article and the Supplemental methods. Detailed 
experimental protocols and buffer composition tables are provided in the 
Supplemental methods. 
 
3.4.1 Ratiometric Proximity Proteomics in Live Cardiomyocytes .  
 
We used the engineered peroxidase APEX2 to genetically tag CAV3 in living 
cardiomyocytes to label endogenous proteins in nanometric proximity of the 
macromelecular CAV3 complex via biotinylation (Figure 3.1 A). Bicistronic 
recombinant adenoviral vectors were generated to express V5-APEX2-CAV3 
and eGFP at the lowest effective multiplicity-of-infection (MOI 1) in neonatal rat 
ventricular myocytes (NRCMs) for 48 h in culture. In addition, adenoviral V5-
APEX2 expression served as soluble control that does not associate with CAV3 
or membrane lipids. For ratiometric proteomic analysis we used stable isotope 
labeling by amino acids in NRCM culture and systematic label switching as 3-
state SILAC approach (Figure 3.2 A). Based on 96.5% or higher SILAC 
incorporation in NRCMs after 13 days (Figure 3.2 B), adenoviral transfection 
occurred on day 11 for subsequent V5-APEX2-CAV3 or V5-APEX2 protein 
labeling. Biotinnylated proteins were enriched by avidin and identified by liquid 
chromatography-tandem-mass spectrometry (LC-MS/MS). 
 
3.4.2 Label-free Sequential Window Acquisition of All THeoretical Mass 

Spectra (SWATH-MS) 
 
For affinity purification (AP) followed by label-free quantification (AP-MS), CAV1 
and CAV3 were immunoprecipitated from 500 µg mouse ventricular tissue. For 
label-free SWATH-MS quantification samples were run on 4-12 % gradient gels, 
cut out as a single fraction, and in-gel trypsin digested. Rabbit IgG (12-370, 
Merck) was used as negative control. Digested proteins were analyzed with a 
�Q�D�Q�R�À�R�Z���F�K�U�R�P�D�W�R�J�U�D�S�K�\���V�\�V�W�H�P�����(�N�V�L�J�H�Q�W���Q�D�Q�R�/�&�����������6�&�,�(�;�����K�\�S�K�H�Q�D�W�H�G���W�R��
a hybrid triple quadrupole-TOF mass spectrometer (TripleTOF 5600+, SCIEX) 
equipped with a Nanospray III ion source. In short, qualitative LC/MS/MS 
analysis was performed with a Top25 data-dependent acquisition method. For 
quantitative SWATH analysis, MS/MS data were acquired using 65 variable size 
windows14 across the 400-1,050 m/z range. 
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3.4.3 Blue Native (BN)-PAGE analysis, Co-immunoprecipation, and 
Immunoblotting 

 
BN-PAGE was used to identify high molecular weight (MW) macromolecular 
complexes of the V5-APEX2-CAV3 fusion protein with endogenous CAV3 in 
NRCMs, as well as high MW complexes of recombinant wild-type or mutant 
CAV3. Reciprocal co-immunoprecipitations followed by immunoblotting were 
used to confirm isoform-specific CAV1 versus CAV3 protein interactions. 
 
3.4.4 Human CAV3 knock-out and F97C CAV3 knock-in iPSC-

cardiomyocytes 
 
CRISPR/Cas9-mediated genome editing in human induced pluripotent stem 
cells (iPSCs) was applied to generate CAV3 knock-out and F97C CAV3 knock-
in lines, and engineered iPSCs were directly differentiated into ventricular-like 
cardiomyocytes for functional analysis. The study was approved by the Ethics 
Committee (approval number 10/9/15) and carried out in accordance with the 
approved guidelines.  
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3.5 Results 
 
3.5.1 Targeting the macromolecular CAV3 complex for live-cell 

proteomics 
 
To label endogenous proteins in cardiomyocytes, we developed an N-terminally 
tagged V5-APEX2-CAV3 tool construct (Figure 3.1 A). APEX2, an engineered 
peroxidase, is used to biotinylate proteins in nanometric proximity (i.e., <20 nm) 
to CAV3 in living cells upon H2O2 treatment (Figure 3.1 A).14,15 We hypothesized 
that V5-APEX2-CAV3 and endogenous CAV3 form a multimeric protein 
complex in neonatal rat cardiomyocytes (NRCMs) if their expression levels are 
similar. Using adenoviral vectors, we titrated the multiplicity of infection down to 
the lowest effective dose (MOI 1) and immunoblotting confirmed V5-APEX2-
CAV3 expression levels similar to endogenous CAV3 (Figure 3.1 B). Since 
plasmid transfected NRCMs showed a significantly lower V5-APEX2-CAV3 
expression (Figure 3.1 B), we used adenoviral transfection of V5-APEX2-CAV3 
(MOI 1) henceforth. As CAV3 expression in Sf9 cells produced a stable disc-
shaped complex,16 we asked if V5-APEX2-CAV3 is competent to bind CAV3 in 
a heteromeric complex�" 
�)�L�U�V�W�O�\���� �Z�H�� �X�V�H�G���F�R-�L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q�� �I�R�O�O�R�Z�H�G�� �E�\�� �9���� �D�Q�G�� �&�$�9����
�L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �W�R�� �H�[�F�O�X�G�H�� �X�Q�V�S�H�F�L�I�L�F�� �L�Q�W�H�U�D�F�W�L�R�Q�V�� �Z�L�W�K�� �W�K�H�� �V�R�O�X�E�O�H���9��-�$�3�(�;����
�F�R�Q�W�U�R�O�����6�X�S�S�R�U�W�L�Q�J���R�X�U���K�\�S�R�W�K�H�V�L�V�����F�R-�L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q���R�I���9��-�$�3�(�;��-�&�$�9����
�F�R�Q�I�L�U�P�H�G���H�Q�G�R�J�H�Q�R�X�V�� �&�$�9���� �D�V���E�L�Q�G�L�Q�J���S�D�U�W�Q�H�U��(Figure 3.1 C).�� �6�H�F�R�Q�G�O�\���� �E�O�X�H��
�Q�D�W�L�Y�H�� ���%�1�(���� �J�U�D�G�L�H�Q�W�� �J�H�O�� �D�Q�D�O�\�V�L�V�� �V�K�R�Z�H�G�� �D�� �K�L�J�K�� �0�:�� �F�R�P�S�O�H�[�� �X�Q�G�H�U�� �Q�R�Q-
�G�H�Q�D�W�X�U�D�W�L�Q�J�� �F�R�Q�G�L�W�L�R�Q�V���� �&�$�9���� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �F�R�Q�I�L�U�P�H�G�� �D�� �P�D�M�R�U�� �F�R�P�S�O�H�[�� �D�W��
�a������ �N�'�D�� �E�R�W�K�� �L�Q�� �X�Q�W�U�D�Q�V�I�H�F�W�H�G�� �D�Q�G���9��-�$�3�(�;��-�&�$�9���� �W�U�D�Q�V�I�H�F�W�H�G�� �1�5�&�0�V��
(Figure 3.1 D)���� �,�Q�� �D�G�G�L�W�L�R�Q���� �9���� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �L�G�H�Q�W�L�I�L�H�G���9��-�$�3�(�;��-�&�$�9����
�X�Q�D�P�E�L�J�X�R�X�V�O�\�� �D�V�� �H�[�R�J�H�Q�R�X�V�� �F�R�P�S�R�Q�H�Q�W�� �R�I�� �W�K�H�� �a������ �N�'�D�� �F�R�P�S�O�H�[��
(Figure 3.1 D)���� �)�R�U�� �I�X�Q�F�W�L�R�Q�D�O�� �Y�H�U�L�I�L�F�D�W�L�R�Q���� �Z�H�� �X�V�H�G�� �D�I�I�L�Q�L�W�\�� �S�X�U�L�I�L�F�D�W�L�R�Q�� �P�D�V�V��
�V�S�H�F�W�U�R�P�H�W�U�\�����$�3-�0�6�������$�3-�0�6���F�R�Q�I�L�U�P�H�G���L�Q���O�L�Y�L�Q�J���1�5�&�0�V���W�U�H�D�W�H�G���I�R�U����-�P�L�Q���Z�L�W�K��
�+���2���� �W�K�D�W���9��-�$�3�(�;��-�&�$�9���� �U�R�E�X�V�W�O�\�� �O�D�E�H�O�V�� �H�Q�G�R�J�H�Q�R�X�V�� �S�U�R�W�H�L�Q�V�� �W�K�U�R�X�J�K��
�E�L�R�W�L�Q�\�O�D�W�L�R�Q�� ���6�X�S�S�O�H�P�H�Q�W�� �)�L�J�X�U�H�� ������ �%-�&���� Finally, confocal imaging confirmed 
that V5-APEX2-CAV3 co-localizes with endogenous CAV3 in NRCMs 
(Figure 3.1 E; see �6�X�S�S�O�H�P�H�Q�W��Figure 3.9 A for higher MOI doses). 
 
3.5.2 Quantitativ e CAV3 proximity proteomics in cardiomyocytes 
 
To develop a quantitative proteomic approach, we established a 3-state SILAC 
workflow for systematic label switching (Figure 3.2 A; �6�X�S�S�O�H�P�H�Q�W��
Figure 3.10 A). NRCMs cultured in SILAC media expressing V5-APEX2-CAV3 
showed a 96.5% or higher isotope incorporation (Figure 3.2 B). As ratiometric 
controls, we used adenoviral transfection of V5-�$�3�(�;���� �R�U�� �H�*�)�3�� �E�D�V�H�G�� �R�Q��
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�S�X�E�O�L�V�K�H�G protocols.15,17 �9��-�$�3�(�;��-�&�$�9���� �D�Q�G�� �9��-�$�3�(�;���� �H�[�S�U�H�V�V�L�R�Q�� �Z�D�V��
�F�R�Q�I�L�U�P�H�G�� �E�\�� �9���� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J (Figure 3.2 C). Biotinylated proteins were 
enriched by���D�I�I�L�Q�L�W�\���S�X�U�L�I�L�F�D�W�L�R�Q���D�Q�G AP-MS identified 1131 biotinylated proteins, 
of which 101 proteins including 9 proteins of interest (POIs) were significantly 
enriched for �9��-�$�3�(�;��-�&�$�9���� ��Figure 3.2 D; �7�D�E�O�H 8.11 (see Appendix )������ �$�V��
�H�[�S�H�F�W�H�G���I�R�U���&�$�9�����S�U�R�W�H�L�Q���F�R�P�S�O�H�[�H�V�����D�V�V�H�P�E�O�H�G���L�Q���W�K�H���(�5���D�Q�G���*�R�O�J�L���I�R�O�O�R�Z�H�G��
�E�\�� �Y�H�V�L�F�X�O�D�U�� �W�U�D�I�I�L�F�N�L�Q�J�� �W�R�� �W�K�H�� �S�O�D�V�P�D�� �P�H�P�E�U�D�Q�H����V5-APEX2-CAV3 labeling 
occurred in the proximity of multiple��organelles, for example in ER-associated 
mitochondria��(�6�X�S�S�O�H�P�H�Q�W��Figure 3.10 B).10 Electron tomography confirmed that 
caveolae are situated in less than 10 nm proximity to mitochondria in 
cardiomyocytes (�6�X�S�S�O�H�P�H�Q�W��Figure 3.10 C-E), within the range of V5-APEX2-
CAV3 labeling. 
�%�D�V�H�G���R�Q���W�K�H���6�7�5�,�1�*���G�D�W�D�E�D�V�H�����Y������18���Z�H���P�D�S�S�H�G���W�K�H���L�Q�W�H�U�D�F�W�L�R�Q���Q�H�W�Z�R�U�N�V���R�I��
�W�K�H�� �L�G�H�Q�W�L�I�L�H�G�� �3�2�,�V�� �X�V�L�Q�J�� �W�K�H�� �*�2�� �W�H�U�P�V�� �
�F�D�Y�H�R�O�D�H�
���� �
�P�X�V�F�O�H�� �F�R�Q�W�U�D�F�W�L�R�Q�
����
�
�S�\�U�X�Y�D�W�H�� �P�H�W�D�E�R�O�L�V�P�
�����D�Q�G���
�L�U�R�Q�� �X�S�W�D�N�H�� �	�� �W�U�D�Q�V�S�R�U�W�
��(Figure 3.2 E)�����&�R�Q�I�L�U�P�L�Q�J��
�R�X�U�� �S�U�R�[�L�P�L�W�\�� �S�U�R�W�H�R�P�L�F�� �V�W�U�D�W�H�J�\���� �D�O�O�� �H�V�V�H�Q�W�L�D�O�� �D�Q�G���P�X�V�F�O�H-�V�S�H�F�L�I�L�F���F�R�P�S�R�Q�H�Q�W�V��
�R�I���W�K�H���F�R�U�H���F�D�Y�H�R�O�D�U���F�R�P�S�O�H�[�����Q�D�P�H�O�\���&�$�9�������&�D�Y�L�Q�������D�Q�G���&�D�Y�L�Q�����Z�H�U�H���L�G�H�Q�W�L�I�L�H�G��
�F�R�Q�V�L�V�W�H�Q�W�� �Z�L�W�K�� �H�D�U�O�L�H�U�� �V�W�X�G�L�H�V��19,20�� �6�X�U�S�U�L�V�L�Q�J�O�\�����Z�H�� �L�G�H�Q�W�L�I�L�H�G�� �&�$�9�������Z�K�L�O�H��
�3�D�F�V�L�Q�����K�D�V�� �E�H�H�Q�� �D�V�V�R�F�L�D�W�H�G�� �Z�L�W�K�� �F�D�Y�H�R�O�D�H�� �S�U�H�Y�L�R�X�V�O�\��21��Moreover, myosin 
light chain (Myl2, Myl3, Myl6), actin (Acta1, Acta2 and Actc1), and troponin 
(Tnni1) �Z�H�U�H���L�G�H�Q�W�L�I�L�H�G���W�R�J�H�W�K�H�U���Z�L�W�K���W�K�H���1�D���.-�$�7�3�D�V�H���D���D�Q�G���E���V�X�E�X�Q�L�W�V���D�Q�G���W�K�H��
�1�D���&�D�� �H�[�F�K�D�Q�J�H�U�� ���1�F�[������ �F�R�Q�I�L�U�P�L�Q�J�� �H�D�U�O�L�H�U�� �V�W�X�G�L�H�V��22��23��Finally, proteins that 
define key transmembrane metabolic substrate carriers were detected 
(�7�D�E�O�H 8.11 (see Appendix )). Importantly, we identified the �P�R�Q�R�F�D�U�E�R�[�\�O�D�W�H��
�W�U�D�Q�V�S�R�U�W�H�U ���� �0�F�7���� �D�Q�G���W�K�H���W�U�D�Q�V�I�H�U�U�L�Q���U�H�F�H�S�W�R�U�������7�I�5�����D�V���Q�H�Z���&�$�9�����S�U�R�[�L�P�L�W�\��
�F�D�Q�G�L�G�D�W�H�V��(Figure 3.2 E)���� 
 
3.5.3 Differential CAV1 versus CAV3 expression in cardiomyocytes 
 
As the presence of CAV1 in striated muscle cells remains controversial,4,24 we 
validated CAV1 protein expression in lysates of ventricular cardiomyocytes 
isolated from adult mouse hearts. Immunoblotting confirmed that CAV1 is 
robustly expressed, visible as single band below 25 kDa, while antibody 
specificity was confirmed in CAV1 knock-out mouse hearts ��Figure 3.3 A; 
Supplement Figure 3.11 A��. Moreover, label-free quantification by SWATH-MS 
(Sequential Window Acquisition of All THeoretical Mass Spectra Mass 
Spectrometry) established the expression of all three mammalian CAV isoforms 
in isolated cardiomyocytes with, surprisingly, �W�K�H���K�L�J�K�H�V�W���S�U�R�W�H�L�Q���D�U�H�D���P�H�D�V�X�U�H�G��
�I�R�U�� �&�$�9���� ���)�L�J�X�U�H ������ �%��. SWATH-MS protein areas were previously 
demonstrated to correlate strongly with absolute cellular protein 
concentrations.25 Out of 1816 proteins detected, the ubiquitous CAV1 isoform 
was ranked #205 by protein area and thus as highly abundant, whereas the 
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muscle-specific CAV3 ranked #1105, consistent with a lower abundance 
(Figure 3.3 C).  
To investigate the relationship between CAV1 and CAV3 in adult ventricular 
cardiomyocytes, we used confocal and STimulated Emission Depletion (STED) 
superresolution microscopy (nanoscopy). STED nanoscopy resolved CAV1 
cluster signals in physiologically relevant membrane structures, namely the 
intercalated disk and T-tubules, but not in the lateral surface membrane 
(Figure 3.3 D). While the CAV1 and CAV3 signals occurred frequently adjacent 
to each other, co-localized signals were not observed (Figure 3.3 D). Murine 
CAV1 knockout myocytes confirmed specific CAV1 signals in T-tubules 
(Supplement Figure 3.11 B). Finally, r�H�F�L�S�U�R�F�D�O�� �L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q�� �R�I��CAV1 
versus CAV3 in �F�D�U�G�L�R�P�\�R�F�\�W�H�� �O�\�V�D�W�H�V�� �L�Q�G�L�F�D�W�H�G�� �U�H�O�D�W�L�Y�H�O�\�� �Z�H�D�N�� �K�H�W�H�U�R�P�H�U�L�F��
�Y�H�U�V�X�V���V�W�U�R�Q�J���K�R�P�R�P�H�U�L�F���S�U�R�W�H�L�Q���L�Q�W�H�U�D�F�W�L�R�Q�V��(Figure 3.3 E). Hence, CAV1 and 
CAV3 clusters are differentially distributed in cardiomyocytes, presumably 
through their isoform-specific core complexes, but frequently juxta-positioned 
right next to each in T-tubules. 
 
3.5.4 Isoform-specific CAV interactions 
 
To explore the hypothesis that CAV1 and CAV3 provide macromolecular 
scaffolds for differential subcellular protein interactions, we analyzed mouse 
ventricular tissue lysates by immunoprecipitation followed by SWATH-MS. We 
identified 62 potential protein interactions for CAV1 and 70 for CAV3 
(Supplement Figure 3.12 A-B, �7�D�E�O�H 8.14 and 8.15 (see Appendix )). To further 
dissect isoform-specific interactions, positive hits were filtered by comparing 
CAV3/CAV1 enrichment after permutation-based false-discovery rate analysis 
(p<0.05).26 We identified each 7 interactors for CAV1 versus 23 interactors for 
CAV3 (Figure 3.4 A). Importantly, among POIs with an established 
pathophysiological role, affinity-based SWATH-MS confirmed McT1 as a 
previously unknown CAV3 interactor (Figure 3.4 A). Next, we compared the fold 
change of the logarithmic ratio each for CAV1 or CAV3 normalized to IgG 
(Figure 3.4 B) finding preferential CAV1 interactions with aquaporin-1, CAV1, 
CAV2, Cavin1 and Cavin2. In contrast, CAV3 binds preferentially to itself, the 
insulin-dependent glucose transporter (GluT4), to �0�F�7������the �1�D���.-�$�7�3�D�V�H �D1 
and �E1 subunits�����&�R�Q�Q�H�[�L�Q�������� �D�Q�G�� �1�F�[������ �&�R�Q�V�L�V�W�H�Q�W�� �Z�L�W�K�� �K�R�P�R�P�H�U�L�F�� �S�U�R�W�H�L�Q��
�F�R�P�S�O�H�[�H�V, heteromeric interactions between CAV1 and CAV3 were not 
detected by affinity-based SWATH-MS.  
Finally, to validate our findings in ventricular tissue lysates, we performed 
reciprocal immunoprecipitation experiments followed by immunoblotting. 
Whereas CAV1 showed an exclusive interaction with aquaporin1, we confirmed 
isoform-specific CAV3 interactions with connexin43, McT1, and TfR1. Again, 
relatively weak heteromeric interactions between CAV1 and CAV3 were 



Results 

27 

apparent contrasting with strong self-interactions (Figure 3.4 C). Finally, STED 
nanoscopy resolved McT1 clusters as punctate signals both in the lateral 
surface membrane and in T-tubules of adult mouse cardiomyocytes, the former 
consistent with the subcellular CAV3 versus CAV1 distribution (Figure  3.4 D). 
As the McT1 clusters were frequently localized directly adjacent to or inside 
CAV3 clusters, we propose that McT1 functionally associates with CAV3 
complexes in the plasma membrane. Taken together, these data confirm 
isoform-specific protein interactions of CAV3 with McT1 and physiologically 
relevant locations. 
 
3.5.5 CAV3 knockout affects McT1 surface expression �L�Q�� �K�X�P�D�Q��

cardiomyocytes 
 
�:�H�� �K�\�S�R�W�K�H�V�L�]�H�G�� �W�K�D�W�� �W�K�H�� �&�$�9���� �L�Q�W�H�U�D�F�W�L�R�Q�� �V�W�D�E�L�O�L�]�H�V�� �0�F�7���� �H�[�S�U�H�V�V�L�R�Q�� �L�Q�� �W�K�H��
�V�X�U�I�D�F�H�� �P�H�P�E�U�D�Q�H���� �7�R�� �W�H�V�W�� �W�K�L�V���� �Z�H�� �J�H�Q�H�U�D�W�H�G�� �D�� �K�X�P�D�Q���L�Q�G�X�F�H�G�� �S�O�X�U�L�S�R�W�H�Q�W��
�V�W�H�P���F�H�O�O�����L�3�6�&�����N�Q�R�F�N-�R�X�W���P�R�G�H�O�����&�$�9�����.�2�����W�D�U�J�H�W�L�Q�J���W�K�H���V�W�D�U�W���F�R�G�R�Q���R�I�� �H�[�R�Q��
���� �E�\�� �&�5�,�6�3�5���&�D�V���� ��Supplement Figure 3.13 A)���� �,�P�P�X�Q�R�E�O�R�W�W�L�Q�J��of�� �Y�H�Q�W�U�L�F�X�O�D�U-
�O�L�N�H���F�D�U�G�L�R�P�\�R�F�\�W�H���O�\�V�D�W�H�V���G�H�U�L�Y�H�G���I�U�R�P���:�7 ���L�3�6�&���F�R�Q�I�L�U�P�H�G��robust expression 
of CAV3 and McT1 (Figure 3.5 A). In contrast,�� �&�$�9���� �.�2�� �L�3�6�&-�F�D�U�G�L�R�P�\�R�F�\�W�H�V��
�Z�H�U�H�� �F�R�P�S�O�H�W�H�O�\�� �&�$�9���� �G�H�I�L�F�L�H�Q�W���� �Z�K�H�U�H�D�V��McT1 expression was decreased 
(Figure 3.5 A). To explore if the McT1 decrease is functionally relevant in the 
sarcolemma, we applied extracellular surface biotinylation to living 
cardiomyocytes in culture. Surface biotinylated proteins were enriched by �S�X�O�O-
�G�R�Z�Q�� �D�Q�G��McT1 identified by immunoblotting. Indeed, McT1 was specifically 
decreased in the surface membrane of CAV3 KO cardiomyocytes 
(Figure 3.5 B).  
To investigate if decreased McT1 surface expression functionally impacts 
substrate uptake, we exposed human iPSC-cardiomyocytes to extracellular 3-
bromopyruvate (3-BP), a glycolysis-disrupting compound previously established 
as McT1-specific substrate.27,28 Accordingly, �:�7  and CAV3 KO cardiomyocytes 
were treated with ��-�%�3�� ������ �—�0���� �D�Q�G��cell viability�� �D�V�V�H�V�V�H�G���E�\�� lactate 
dehydrogenase (LDH) release using published protocols.29 Consistent with 
McT1 loss in the surface membrane leading to decreased ��-�%�3�� �X�S�W�D�N�H, �/�'�+��
�U�H�O�H�D�V�H was significantly �G�H�F�U�H�D�V�H�G���L�Q human �&�$�9���� �.�2 cardiomyocytes 
(Figure 3.5 C)�� 
�0�F�7�����L�V���W�K�R�X�J�K�W���W�R���U�H�S�U�H�V�H�Q�W���W�K�H���P�D�M�R�U���S�D�W�K�Z�D�\���I�R�U���O�D�F�W�D�W�H���X�S�W�D�N�H���L�Q���W�K�H���K�H�D�U�W��30��
�D�Q�G�� �L�V���X�S�U�H�J�X�O�D�W�H�G�� �L�Q�� �K�H�D�U�W�� �I�D�L�O�X�U�H��11�� �7�R�� �D�V�V�H�V�V���L�I�� �K�X�P�D�Q�� �&�$�9���� �.�2 
cardiomyocytes experience substrate-dependent metabolic limitations���� �Z�H��
�P�H�D�V�X�U�H�G��oxygen consumption and extracellular acidification using Seahorse 
protocols established for iPSCs previously.31 While oxygen consumption was 
normal in CAV3 KO cardiomyocytes (Figure 3.5 D), extracellular acidification 
was �V�L�J�Q�L�I�L�F�D�Q�W�O�\�� �G�H�F�U�H�D�V�H�G��(Figure 3.5 E)�����0�R�U�H�R�Y�H�U���� �L�Q�K�L�E�L�W�L�Q�J�� �$�7�3�� �V�\�Q�W�K�H�V�L�V��
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�Z�L�W�K�� �R�O�L�J�R�P�\�F�L�Q�� �L�Q�F�U�H�D�V�H�G���Hxtracellular acidification maximally in WT but not in 
CAV3 KO cardiomyocytes consistent with impaired proton-coupled lactate 
export (Figure 3.5 E). Finally, mitochondrial uncoupling by ionophore (FCCP) or 
electron transport chain inhibition (Antimycin+Rotenone) did not result in further 
changes. Together, these experiments established that CAV3 KO destabilizes 
functional McT1 expression and extracellular acidification through the 
lactate/proton shuttle in human cardiomyocytes. 
 
3.5.6 The human F97C but not the S141R mutation affects CAV3 

oligomerization 
 
Based on the cardiomyopathy allele frequency cut-off provided by ExAC,32 only 
F97C and S141R were confirmed as potentially pathogenic CAV3 variants 
(Supplement Table 3.1). �,�Q���F�D�U�G�L�R�P�\�R�F�\�W�H�V���� �K�R�Z�H�Y�H�U����it is unknown if and how��
�)�����&�� �R�U�� �6�������5�� �D�I�I�H�F�W�� �&�$�9���� �S�U�R�W�H�L�Q�� �L�Q�W�H�U�D�F�W�L�R�Q�V. For proximity proteomic 
analysis, we transfected NRCMs with mutant V5-APEX2-CAV3-F97C or V5-
APEX2-CAV3-S141R adenoviral vectors (MOI 1). While endogenous CAV3 
expression was not changed, we found a decreased level of V5-APEX2-CAV3-
F97C relative to the V5-APEX2-CAV3-S141R or WT V5-APEX2-CAV3 
(Supplement Figure 3.14 A). Confocal imaging revealed that V5-APEX2-CAV3-
F97C accumulated in a perinuclear fashion (Supplement Figure 3.14 B). In 
contrast, V5-APEX2-CAV3-S141R was distributed similar to endogenous CAV3 
(Supplement Figure 3.14 B). To identify the nature of the perinuclear V5-
APEX2-CAV3-F97C accumulation, co-localization with the trans-Golgi marker 
P115 previously established in cardiomyocytes indicated a trafficking problem 
(Supplement Figure 3.14 C).33 Hence, extending earlier findings from 
heterologous model systems to cardiomyocytes,34 the F97C mutation is 
predicted to disrupt the biogenesis of trafficking-competent hetero-oligomeric 
complexes with endogenous CAV3. 
�7�R���D�V�V�H�V�V��the mutation-specific impact on the biogenesis of the CAV3 complex����
�I�L�U�V�W�O�\���Z�H���X�V�H�G���F�R-�L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q���R�I���1�5�&�0���O�\�V�D�W�H�V���I�R�O�O�R�Z�H�G���E�\�� �&�$�9�����D�Q�G��
�9�����L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�����7�K�L�V���V�K�R�Z�H�G���W�K�D�W���E�R�W�K���D�Q�G��V5-APEX2-CAV3-�)�����&���D�Q�G��V5-
APEX2-CAV3-�6�������5��can �E�L�Q�G�� �W�R�� �H�Q�G�R�J�H�Q�R�X�V�� �&�$�9����(Figure 3.6 A)�����0�R�U�H�R�Y�H�U����
�D�V�� �Q�H�J�D�W�L�Y�H�� �F�R�Q�W�U�R�O�� �Z�H�� �V�K�R�Z�H�G�� �W�K�D�W�� �V�R�O�X�E�O�H���9��-�$�3�(�;���� �G�R�H�V�� �Q�R�W�� �E�L�Q�G�� �W�R��
�H�Q�G�R�J�H�Q�R�X�V�� �&�$�9����(Figure 3.6 A). Secondly, to analyze F97C and S141R 
depedent V5-APEX2-CAV3 oligomerization �L�Q�� �W�K�H�� �D�E�V�H�Q�F�H�� �R�I�� �H�Q�G�R�J�H�Q�R�X�V��
�&�$�9������ �Z�H���X�V�H�G���R�Y�H�U�H�[�S�U�H�V�V�L�R�Q���L�Q���+�(�.���������F�H�O�O�V���W�R���D�Q�D�O�\�]�H���K�R�P�R�P�H�U�L�F���S�U�R�W�H�L�Q��
�F�R�P�S�O�H�[�H�V���X�Q�G�H�U���Q�D�W�L�Y�H���F�R�Q�G�L�W�L�R�Q�V���L�Q���%�1�(���J�H�O�V�����:�K�L�O�H���Z�H���F�R�Q�I�L�U�P�H�G���D���K�L�J�K���0�:��
�F�R�P�S�O�H�[�� �H�D�F�K�� �I�R�U�� �W�K�H�� �P�X�W�D�Q�W���9��-�$�3�(�;��-�&�$�9��-�6�������5�� �D�Q�G�� �:�7�����W�K�H�� �)�����&��
�P�X�W�D�W�L�R�Q��diminished the biogenesis of the major �a������ �N�'�D��complex 
(Figure 3.6 B)�� 
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�)�L�Q�D�O�O�\���� �W�R�� �F�D�S�W�X�U�H�� �V�P�D�O�O�H�U�� �R�O�L�J�R�P�H�U�L�F�� �D�V�V�H�P�E�O�L�H�V���� �Z�H��treated living HEK293 
cells transfected with WT or �9��-�$�3�(�;��-�&�$�9��-F97C���Z�L�W�K���W�K�H cross-linker DSS. 
�&�$�9���� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �U�H�Y�H�D�O�H�G�� �G�L�P�H�U�V���� �W�U�L�P�H�U�V���� �D�Q�G�� �K�L�J�K�H�U�� �R�O�L�J�R�P�H�U�V�� �I�R�U�� �:�7��
�9��-�$�3�(�;��-�&�$�9�������Z�L�W�K�� �G�L�P�H�U�V�� �D�Q�G�� �W�U�L�P�H�U�V��increasing in a dose-dependent 
fashion (Figure 3.6 C). Strikingly, the F97C mutation disrupted each oligomeric 
state��(Figure 3.6 C)�����7�R�J�H�W�K�H�U�����W�K�H�V�H���G�D�W�D���H�V�W�D�E�O�L�V�K�H�G���W�K�D�W���W�K�H���)�����&���E�X�W���Q�R�W���W�K�H��
�6�������5�� �P�X�W�D�W�L�R�Q�� �D�I�I�H�F�W�V�� �W�K�H�� �E�L�R�J�H�Q�H�V�L�V�� �R�I��V5-APEX2-CAV3 complexes with 
endogenous CAV3���L�Q���F�D�U�G�L�R�P�\�R�F�\�W�H�V�� 
 
3.5.7 Proximity proteomic analysis of CAV3 mutations 
 
�8�V�H�G�� �U�D�W�L�R�P�H�W�U�L�F�� �S�U�R�[�L�P�L�W�\�� �S�U�R�W�H�R�P�L�F�V�� �E�D�V�H�G�� �R�Q�� �������� �R�U�� �K�L�J�K�H�U��SILAC 
incorporation (Supplement Figure 3.15 A), we explored the impact of CAV3 
mutations in the NRCM model. Robust biotinylation of endogenous proteins by 
V5-APEX2-CAV3-F97C was confirmed in living NRCMs (Supplement 
Figure 3.15 B). AP-MS detected 986 biotinylated proteins, 64 of which were 
enriched including the muscle-specific CAV3 and Cavin4 (Figure 3.7 A). 
However, the physiologically relevant proximity with Cavin1, �0�F�7������ �D�Q�G�� �1�&�;����
�Z�D�V�� �G�L�P�L�Q�L�V�K�H�G��(Figure 3.7 A). Furthermore, the number of mitochondrial and 
plasma membrane proteins in proximity to V5-APEX2-CAV3-F97C was 
substantially decreased, whereas the proximity with Golgi-associated proteins 
was strongly increased (Supplement Figure 3.15 C; Table 8.12 (see 
Appendix )). 
�8�V�L�Q�J�� �6�7�5�,�1�*18�� �E�D�V�H�G���*�2���W�H�U�P���D�Q�D�O�\�V�L�V���� �Z�H���F�R�P�S�D�U�H�G���:�7��V5-APEX2-CAV3 
�D�Q�G��V5-APEX2-CAV3-�)�����&��enriched proteins. This showed that the F97C 
mutation diminshed the proximity in protein networks relevant for �S�\�U�X�Y�D�W�H��
�X�W�L�O�L�]�D�W�L�R�Q�� �L�Q�F�O�X�G�L�Q�J�� �0�F�7���� �D�Q�G�� �W�K�H�� �P�L�W�R�F�K�R�Q�G�U�L�D�O�� �U�H�V�S�L�U�D�W�R�U�\�� �F�K�D�L�Q��(Supplement 
Figure 3.15 D, Table 8.12 (see Appendix ))�����0�R�U�H�R�Y�H�U���� �)�����&�� �F�D�X�V�H�G�� �D�Q��
�L�Q�F�U�H�D�V�H�G�� �S�U�R�[�L�P�L�W�\�� �Z�L�W�K�� �S�U�R�W�H�L�Q�V���L�Q�Y�R�O�Y�H�G�� �L�Q�� �
�&�2�3�,-�G�H�S�H�Q�G�H�Q�W�� �*�R�O�J�L�� �W�R�� �(�5��
�U�H�W�U�R�J�U�D�G�H�� �W�U�D�I�I�L�F�N�L�Q�J�
���D�Q�G�� �
�&�2�3�,�,�� �P�H�G�L�D�W�H�G�� �Y�H�V�L�F�O�H�� �W�U�D�Q�V�S�R�U�W�
��(Supplement 
Figure 3.15 E)����To confirm that the F97C mutation disrupts the core caveolar 
complex, we compared the logarithmic ratio of V5-APEX2-CAV3-F97C versus 
WT V5-APEX2-CAV3 over V5-APEX2. F97C strongly increased the ratio 
consistent with Golgi accumulation (Figure 3.7 B). In addition, the Cavin1 and 
Cavin4 ratios were significantly decreased (Figure 3.7 B) confirming a loss of 
proximity with key cytosolic proteins necessary for caveolae stabilization. 
�,�Q�� �F�R�Q�W�U�D�V�W�����Z�K�H�Q�� �Z�H�� �U�H�S�H�D�W�H�G�� �W�K�H�� �V�D�P�H�� �D�Q�D�O�\�V�L�V�� �I�R�U�� �W�K�H�� �6�������5�� �P�X�W�D�W�L�R�Q�� �W�K�H��
�S�U�R�[�L�P�L�W�\�� �Z�L�W�K���&�D�Y�L�Q���� �Z�D�V���S�U�H�V�H�U�Y�H�G��(Figure 3.7 C), consistent with our finding 
of a normal subcellular distribution of the V5-APEX2-CAV3-S141R protein in 
NRCMs. Nonetheless, the proximity with McT1, Ncx1, and TfR1 was also not 
detected for S141R (Figure 3.7 C) similar to the F97C mutation. When we 
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compared the logarithmic ratio of V5-APEX2-CAV3-S141R versus WT V5-
APEX2-CAV3 over V5-APEX2, we found no significant differences indicative of 
Golgi accumulation (Figure 3.7 D). Together, these data indicate that the CAV3 
mutation F97C profoundly impact the assembly of the caveolar core complex 
and post-Golgi trafficking. 
 
3.5.8 The F97C mutation disrupts McT1-depedent �K�X�P�D�Q��cardiomyocyte 

functions 
 
�6�L�Q�F�H���W�K�H���)�����&���P�X�W�D�W�L�R�Q���G�L�V�U�X�S�W�V���0�F�7�����H�[�S�U�H�V�V�L�R�Q���L�Q���W�K�H���V�X�U�I�D�F�H���P�H�P�E�U�D�Q�H���R�I��
�1�5�&�0�V���� �Z�H�� �K�\�S�R�W�K�H�V�L�]�H�G�� �W�K�D�W�� �W�U�D�Q�V�P�H�P�E�U�D�Q�H�� �W�U�D�Q�V�S�R�U�W�� �R�I�� �V�P�D�O�O��
�P�R�Q�R�F�D�U�E�R�[�\�O�D�W�H���V�X�E�V�W�U�D�W�H�V���L�V���L�P�S�D�L�U�H�G���E�\���)�����&���L�Q���K�X�P�D�Q���F�D�U�G�L�R�P�\�R�F�\�W�H�V�����7�R��
�W�H�V�W�� �W�K�L�V���� �Z�H�� �J�H�Q�H�U�D�W�H�G�� �D�� �K�X�P�D�Q�� �L�3�6�&�� �N�Q�R�F�N-�L�Q�� �P�R�G�H�O�� ���)�����&�� �.�,���� �Y�L�D��
�&�5�,�6�3�5���&�D�V���� �L�Q�V�H�U�W�L�Q�J�� �W�K�H�� �P�X�W�D�W�L�R�Q�� �L�Q�� �H�[�R�Q�� ���� �R�I�� �W�K�H�� �K�X�P�D�Q�� �&�$�9���� �J�H�Q�H��
��Supplement Figure 3.13 C)���� �: �H���D�Q�D�O�\�]�H�G��lysates of�� �)�����&�� �.�,�� �L�3�6�&-
�F�D�U�G�L�R�P�\�R�F�\�W�H�V�� �E�\�� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �D�Q�G�� �V�K�R�Z�H�G�� �W�K�D�W��CAV3-F97C and McT1 
expression were similar to the WT control (Figure 3.8 A). Strikingly, extracellular 
surface biotinylation of F97C KI cardiomyocytes revealed a 97% loss in McT1 
surface expression (Figure 3.8 B). As expected for the negative control, ��-�$�F�W�L�Q 
�Z�D�V���Q�R�W���O�D�E�H�O�H�G���E�\���H�[�W�U�D�F�H�O�O�X�O�D�U���V�X�U�I�D�F�H���E�L�R�W�L�Q�\�O�D�W�L�R�Q��(Figure 3.8 B)�� 
�7�R�� �D�V�V�H�V�V�� �L�I�� �W�K�H�� �&�$�9��-�)�����&�� �P�X�W�D�W�L�R�Q��disrupts substrate-dependent energy 
metabolism in human cardiomyocytes���� �Z�H�� �X�V�H�G�� �6�H�D�K�R�U�V�H�� �P�H�D�V�X�U�H�P�H�Q�W�V. 
Importantly, both extracellular acidification and oxygen consumption were 
�F�R�Q�V�W�L�W�X�W�L�Y�H�O�\��depressed in F97C KI cardiomyocytes at baseline (Figure 3.8 C-
D). �2ligomycin maximally increased extracellular acidification in WT but not in 
F97C KI cardiomyocytes (Figure 3.8 C) while oxygen consumption remained 
significantly more decreased in F97C KI cardiomyocytes (Figure 3.8 D). 
Importantly, oxygen consumption remained significantly depressed after FCCP 
treatment only in F97C KI cardiomyocytes (Figure 3.8 D). Finally, inhibition of 
electron transport by antimycin A and rotenone decreased oxygen consumption 
more in F97C KI than in WT cardiomyocytes (Figure 3.8 D). We calculated the 
glycolytic ATP production rate through mitochondrial oxidative phosphorylation 
using published protocols,35 confirming that F97C KI diminished mitochondrial 
ATP production (Supplement Figure 3.16 A-B). Taken together, destabilizing 
functional McT1 surface expression the CAV3-F97C mutation constitutively 
affected proton/lactate export and mitochondrial respiration, which established a 
key molecular role of the isoform-specific McT1 protein interaction as a disease 
target and a new human heart disease model.  



Discussion 

31 

3.6 Discussion 
 
Combining the strengths of proximity- and affinity-based proteomics, we have 
characterized previously unknown, isoform-specific CAV1 versus CAV3 protein 
interactions in cardiomyocytes. Reciprocal co-immunoprecipitation experiments 
confirmed McT1 and TfR1 as new CAV3-specific binding partners of immediate 
relevance for cardiac metabolism, while aquaporin1 was identified as CAV1-
specific interactor. Interestingly, quantitative proteomics identified CAV1 as 
highly abundant isoform contrasting with less muscle-specific CAV3 protein in 
cardiomyocytes. Consistent with a functionally important and CAV3-dependent 
McT1 interaction in the surface membrane, CAV3 knock-out uncovered a 
stabilizing role for transmembrane proton/lactate shuttling in human 
cardiomyocytes. Moreover, the CAV3-F97C mutation suspended the 
oligomerization of the core caveolar complex and abrogated McT1 surface 
expression in human cardiomyocytes. Importantly, while genome editing 
established a human cardiomyocyte model with low physiological levels of the 
CAV3-F97C mutant protein, McT1 destabilization with depression of 
mitochondrial respiration defines a new molecular and metabolic framework of 
cardiomyopathy mechanisms. 
 
STED nanoscopy showed that CAV3 and McT1 frequently occur in immediate 
proximity to each other in the lateral cardiomyocyte surface membrane and in T-
tubules. Immunogold EM studies demonstrated previously that McT1 is highly 
expressed in caveolae, intercalated disks, and T-tubules, but only the latter 
were located adjacent to mitochondria.36 Here we discovered a new role of 
CAV3 as an isoform-specific interactor of McT1. CRISPR/Cas9 knock-out in 
human cardiomyocytes established a causal role, since McT1 expression was 
specifically decreased in the plasma membrane of CAV3 deficient cells. McT1 is 
known to facilitate the proton-coupled transport of small monocarboxylates, 
most importantly of lactate and pyruvate.30 During exercise lactate represents a 
major cardiac energy source that may account for over 50% of oxygen 
consumption.37 Whereas cardiac ischemia drives lactate efflux from affected 
cells,38 chronic heart failure leads to significantly increased McT1 protein 
expression and lactate uptake.11 Given that McT1 has a prominent role both in 
physiological and pathological cardiac stress adaptation, our discovery that 
CAV3 interacts with McT1 and functionally stabilizes substrate metabolism in 
human cardiomyocytes is highly relevant. 
 
�$�V���F�X�O�W�X�U�H�G���L�3�6�&-�G�H�U�L�Y�H�G���F�D�U�G�L�R�P�\�R�F�\�W�H�V���S�U�H�G�R�P�L�Q�D�Q�W�O�\���X�W�L�O�L�]�H��glucose for ATP 
production,39 energy homeostasis depends directly on McT1 surface expression 
and proton-coupled metabolite export.30 Consistent with this model both CAV3 
knock-out and CAV3-F97C knock-in resulted in decreased extracellular 
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acidification. However, only cardiomyocytes expressing the CAV3-F97C 
showed a complete loss of McT1 surface expression. Interestingly, 
pharmacologic inhibition of monocarboxylate transport in tumor cells rapidly 
increases intracellular lactate, whereas ATP and glutathione (GSH) synthesis 
are decreased, contributing to mitochondrial dysfunction.40 In analogy, human 
cardiomyoctes expressing the CAV3-F97C mutant protein exhibited a severe 
McT1 loss-of-function with decreased mitochondrial respiration and ATP 
production. 
 
In addition, the F97C mutation resulted in a loss of proximity with Cavin1, 
�3�D�F�V�L�Q������Ehd3 and Ehd4���� �L�Q�G�L�F�D�W�L�Q�J�� �W�K�D�W���D��disrupted biogenesis of the CAV3 
core complex prevents spatial associations with key proteins involved in 
caveolae biogenesis.1 Interestingly, Golgi accumulation and defective 
mechanosensing were recently demonstrated for the CAV3 mutations P28L and 
R26Q in skeletal myofibers of patient biopsies.41 As expected from confocal 
imaging studies showing perinuclear V5-APEX2-CAV3-F97C but not V5-
APEX2-CAV3-S141R accumulation, the F97C mutation increased the proximity 
with Golgi-associated proteins. Notably, both the F97C and S141R mutation 
resulted in unphysiological proteomic proximities with 26S proteasome subunits 
(Psmd1, Psmd3, and Psmd14) and polyubiquitin C that were not detected for 
WT V5-APEX2-CAV3, which implicates that the unfolded protein response was 
activated in NRCMs. Together with the human iPSC-cardiomyocyte �G�D�W�D���W�K�H�V�H��
�V�K�R�Z�V���W�K�H���E�U�R�D�G�H�U���L�P�S�D�F�W���R�I���W�K�H���&�$�9�����P�X�W�D�W�L�R�Q���)�����&�� 
 
Quantitative proteomics and superresolution imaging established that CAV1 is 
highly abundant in the T-tubules in adult mouse cardiomyocytes. Our data thus 
overcome the prevailing notion that CAV1 is expressed predominantly in non-
muscle cells.1 In addition, immunolabeling freeze-fracture EM studies localized 
CAV1 in caveolae of human heart sections previously.5 Here, STED nanoscopy 
showed that CAV1 and CAV3 are not co-localized, although clusters of the two 
isoforms occurred frequently immediately adjacent to each other. This led to the 
hypothesis of isoform-specific subcellular nanodomain functions based on 
unique protein interactions of CAV1 versus CAV3. In line with our data, the 
CAV3 mutation P104L associated with limb girdle muscular dystrophy was 
shown to diminish insulin-induced surface expression of GluT4 and glucose 
uptake in skeletal myotubes.42 Finally, directly corresponding with the P104L 
mutation, the CAV1 mutation P132L was associated with extracardiac 
pathologies. Taken together, our findings of isoform-specific protein interactions 
provide an important template for future studies to explore the molecular impact 
of human CAV1 mutations in the context of cardiac muscle function. 
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CAV1 knockout in mice has been shown to decrease left-ventricular conduction 
velocity through decreased connexin-43 expression.6 As STED imaging showed 
CAV1 signals both in WT and CAV1 KO mouse cardiomyocytes at the 
intercalated disc, we have to assume unspecific antibody binding. Nonetheless, 
we confirmed robust CAV1 expression in mouse cardiomyocytes by 
immunoblotting in WT versus CAV1 KO mouse cardiomyocytes and 
quantitatively by SWATH-MS in mouse ventricles. Importantly, our proteomic 
analysis showed that the CAV3 interaction with connexin43 and the Na+/Ca2+ 
exchanger are isoform-specific, whereas aquaporin1 was confirmed as CAV1-
specific interactor through co-immunoprecipitation experiments. While human 
CAV1 and CAV3 are 61 % identical, only CAV1 exhibits an extended N-terminal 
domain subject to Src phosphorylation at tyrosine-14, augmenting Src binding 
to CAV1.43 As the CAV1 variant P132L represents a well-established model of 
disrupted��caveolae��biogenesis,44 follow-up studies will need to explore the 
impact of this particular human mutation on aquaporin1 function in 
cardiomyocytes. 
 
Excessive overexpression in heterologous cell system has been shown to 
interfere with caveolae biogenesis, to lead to aberrant CAV1 trafficking, and to 
increase the pool of non-caveolar CAV1.44,45 For example, 4 hours after CAV1 
transfection in CV1 fibroblasts most of the overexpressed CAV1 failed to co-
localize with endogenous CAV1 in caveolae, instead accumulating in the late 
endosome.46 Therefore, we have carefully titrated adenoviral expression of V5-
APEX2-CAV3 to the lowest effective level and showed this was similar to 
endogenous CAV3, which resulted in preserved CAV3 trafficking. In sharp 
contrast, at an MOI of 3 or higher V5-APEX2-CAV3 accumulated in Golgi 
organelles in NRCMs.  
Genome editing of NIH3T3 cells to enable CAV1 expression at low endogenous 
levels demonstrated recently that caveolae are endocytosed at a very low rate 
and that bulk membrane proteins are excluded from caveolae.9 Therefore, we 
used genome editing to establish low physiological levels of the CAV3-F97C in 
human cardiomyocytes and in line with our quantitative analysis identifying 
lower CAV3 than CAV1 levels in mouse cardiomyocytes. In contrast, earlier 
studies used overexpression of CAV3-F97C in HEK293 cells to infer a Nav1.5 
channel interaction as cause of the long-QT syndrome.8 Of note, unbiased 
affinity- and proximity-based proteomic analysis did not detect Nav1.5 as CAV1 
or CAV3 interactor in ventricular cardiomyocytes. Consistent with our findings, a 
3-fold transgenic overexpression of WT CAV3 causes a degenerative 
cardiomyopathy in mice and diminished dystrophin expression.47 Hence we 
reason that our novel gene-edited human CAV3-F97C KI iPSC model has 
overcome significant limitations associated with heterologous overexpression 
systems. 
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In summary, we have developed a proximity proteomic technique that identified 
McT1 as putative CAV3 interactor in cardiomyocytes. As a second isoform-
specific approach, affinity proteomics was used, which established CAV1- 
versus CAV3-specific interactors. For CAV3 we identified GluT4, McT1 and 
TfR1 as a new class of isoform-specific interactors relevant for cardiac energy 
metabolism, whereas aquaporin1 was identified for CAV1. Hence, combining 
proximity and affinity proteomics, we demonstrate that previously unknown 
interactors of CAV complexes can be detected �Z�L�W�K���K�L�J�K���V�S�H�F�L�¿�F�L�W�\�����S�U�R�Y�L�G�L�Q�J���D��
comprehensive strategy for systematic functional analysis. Furthermore, we 
show that McT1, an abundant cardiac lactate/proton co-transporter, requires 
CAV3 for functional surface expression in human cardiomyocytes. In contrast, 
the CAV3-F97C mutation disrupted the biogenesis of caveolar core complexes 
and destabilized McT1-dependent substrate-transport and mitochondrial 
function in human cardiomyocytes. These observations highlight the potential of 
in situ protein labeling to screen for new components in macromolecular 
complexes in the physiological context of cardiac cells. Characterization of 
novel interactors of CAV1 and CAV3 complexes is central to understand 
isoform-specific functions, cardiac cell biology, disease mechanisms, and to 
develop new therapeutic rationales for example to stabilize McT1 and cardiac 
metabolism during increased cardiac stress. 
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�1�5�&�0�V�� ���F�R�Q�W�U�R�O������ �Q� �������( ����Confocal imaging of adenovirally transfected NRCM 
(MOI 1) showing co-localized V5-APEX2-CAV3 with endogenous CAV3. Scale 
bars 10 µm.  
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�)�L�J�X�U�H���������� �5�D�W�L�R�P�H�W�U�L�F�� �S�U�R�[�L�P�L�W�\�� �S�U�R�W�H�R�P�L�F�V�� �L�G�H�Q�W�L�I�L�H�V�� �Q�H�Z�� �&�$�9����
�L�Q�W�H�U�D�F�W�R�U�V�����$����Systematic workflow for quantitative NRCM protein labeling by 
3-state SILAC switching in 35 mm culture dishes. NRCM were labeled with light 
(L), medium (M), or heavy (H) L-arginine and L-lysine isotopes as indicated, 
followed by adenoviral transfection of V5-APEX2-CAV3 versus V5-APEX2 
(control-1) or eGFP (control-2). �%���� �/�&-�0�6���0�6�� �D�Q�D�O�\�V�L�V�� �V�K�R�Z�H�G��>96.5%��L-
arginine (Arg) and L-lysine (Lys) incorporation (red line, 95%). n=3. C, APEX2 
biotinylated proteins were captured by avidin.�� �,���� �L�Q�S�X�W���� �)�7���� �I�O�R�Z�� �W�K�U�R�X�J�K���� �(����
�H�O�X�D�W�H���� �9��-�$�3�(�;��-�&�$�9���� �D�Q�G�� �9��-�$�3�(�;���� �H�[�S�U�H�V�V�L�R�Q�� �F�R�Q�I�L�U�P�H�G�� �E�\�� �9����
�L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�����Q� �������' �� S�F�D�W�W�H�U���S�O�R�W���E�D�V�H�G���R�Q���W�K�H���L�Q�G�L�F�D�W�H�G���O�R�J�D�U�L�W�K�P�L�F���U�D�W�L�R�V���R�I��
�H�Q�U�L�F�K�H�G���S�U�R�W�H�L�Q�V���L�G�H�Q�W�L�I�L�H�G���E�\���/�&-�0�6���0�6. Positive hits are represented by blue 
and yellow color (p<0.05; z-test), the latter highlighting functionally relevant hits 
identified by GO analysis. n=3. E, Exploration of CAV3 interactions based on 
the STRING database�� �I�R�U�� �W�K�H�� �*�2�� �W�H�U�P�V�� �&�$�9�H�R�O�D�H���� �P�X�V�F�O�H�� �F�R�Q�W�U�D�F�W�L�R�Q����
�S�\�U�X�Y�D�W�H���P�H�W�D�E�R�O�L�V�P�����D�Q�G���L�U�R�Q���X�S�W�D�N�H�� Coloring analogous to panel D.���3�U�R�W�H�L�Q-
�S�U�R�W�H�L�Q���L�Q�W�H�U�D�F�W�L�R�Q�V���D�U�H���U�H�S�U�H�V�H�Q�W�H�G���E�\���J�U�H�\���O�L�Q�H�V���E�D�V�H�G���R�Q���D���F�R�Q�I�L�G�H�Q�F�H���V�F�R�U�H��
�!��������  
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�)�L�J�X�U�H�����������&�$�9�����L�V���G�L�I�I�H�U�H�Q�W�L�D�O�O�\���G�L�V�W�U�L�E�X�W�H�G���L�Q���Y�H�Q�W�U�L�F�X�O�D�U���F�D�U�G�L�R�P�\�R�F�\�W�H�V����
�$�����,�P�P�X�Q�R�E�O�R�W�W�L�Q�J���V�K�R�Z�H�G���D���V�S�H�F�L�I�L�F���&�$�9�����V�L�J�Q�D�O���L�Q���Y�H�Q�W�U�L�F�X�O�D�U���F�D�U�G�L�R�P�\�R�F�\�W�H�V��
�R�I�� �Z�L�O�G-�W�\�S�H�� �K�H�D�U�W�V���� �F�R�Q�I�L�U�P�H�G�� �L�Q�� �&�$�9���� �N�Q�R�F�N�R�X�W�� �P�R�X�V�H�� �K�H�D�U�W�V���� �Q� �������%����
�6�:�$�7�+-�0�6�� �Z�D�V�� �X�V�H�G�� �W�R�� �H�V�W�L�P�D�W�H�� �W�K�H�� �U�H�O�D�W�L�Y�H�� �F�R�Q�F�H�Q�W�U�D�W�L�R�Q�� �R�I�� �W�K�H�� �F�D�Y�H�R�O�L�Q��
�L�V�R�I�R�U�P�V���� �&�$�9���� �S�U�R�W�H�L�Q�� �D�U�H�D�� �Z�D�V�� �V�L�J�Q�L�I�L�F�D�Q�W�O�\�� �K�L�J�K�H�U�� �F�R�P�S�D�U�H�G�� �W�R�� �&�$�9���� �R�U��
�&�$�9������ �Q� �������
�
�
 �S���������������� �$�1�2�9�$�����&���� �5�D�Q�N�L�Q�J�� �R�I�� �D�O�O�� �S�U�R�W�H�L�Q�V�� �G�H�W�H�F�W�H�G�� �E�\��
�6�:�$�7�+-�0�6���S�U�R�W�H�L�Q���D�U�H�D. �&�$�9�����U�D�Q�N�V���D�P�R�Q�J���W�K�H���P�R�V�W���D�E�X�Q�G�D�Q�W���S�U�R�W�H�L�Q�V����n=5. 
D�� Confocal and STED co-immunofluorescence imaging of CAV1 and CAV3 
clusters in ventricular myocytes. D�D�V�K�H�G�� �E�R�[�H�V�� �L�Q�G�L�F�D�W�H�� �P�D�J�Q�L�I�L�H�G�� �U�H�J�L�R�Q�V�� �R�I��
�L�Q�W�H�U�H�V�W��at the intercalated disk and transverse tubules, where STED 
superresolution nanoscopy resolved differential CAV1 versus CAV3 cluster 
distributions����Scale bars: top 10 ���P���� �&�R�Q�I�R�F�D�O microscopy 2 ���P���� �6�7�(�'��
nanoscopy 2 µm;�� STED magnified 200 nm. E, �5�H�F�L�S�U�R�F�D�O�� �F�R-
�L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q�� �R�I�� �&�$�9���� �D�Q�G�� �&�$�9������ �,�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �L�Q�G�L�F�D�W�L�Q�J�� �V�W�U�R�Q�J��
�K�R�P�R�P�H�U�L�F�� �Y�H�U�V�X�V�� �Z�H�D�N�� �K�H�W�H�U�R�P�H�U�L�F�� �L�Q�W�H�U�D�F�W�L�R�Q�V�� �E�H�W�Z�H�H�Q�� �Q�D�W�L�Y�H�� �&�$�9�����&�$�9������
�1�H�J�D�W�L�Y�H���F�R�Q�W�U�R�O�����U�D�E�E�L�W���,�J�*�����Q� ����  
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�)�L�J�X�U�H����������Identification of differential protein interactions by AP- MS. �$����
�9�R�O�F�D�Q�R�� �S�O�R�W�� �F�R�P�S�D�U�L�Q�J�� �&�$�9���� �D�Q�G�� �&�$�9���� �L�Q�W�H�U�D�F�W�L�Q�J�� �S�U�R�W�H�L�Q�V�� �L�G�H�Q�W�L�I�L�H�G�� �E�\���$�3-
�0�6����Logarithmic ratios identify enriched CAV1 and CAV3 interacting proteins as 
indicated by positive hits (blue circles) or functionally relevant proteins of 
interest (yellow circles). Positive hits and proteins of interest were identified by 
permutation-based false-discovery rate analysis (t-test, p>0.05, FDR=5%, 
S0=0.1) and logarithmic cut-off >1 (dashed line). Negative hits were excluded 
based on the same criteria. n=3. �%���� �%�D�U�� �J�U�D�S�K�� �F�R�P�S�D�U�L�Q�J�� �W�K�H�� �O�R�J�D�U�L�W�K�P�L�F�� �U�D�W�L�R��
���F�R�Q�W�U�R�O�� �,�J�*���� �R�I�� �F�D�Q�G�L�G�D�W�H�� �S�U�R�W�H�L�Q�� �L�Q�W�H�U�D�F�W�L�R�Q�V�� �E�H�W�Z�H�H�Q�� �&�$�9���� �D�Q�G���R�U�� �&�$�9������ �$��
�O�R�J��������fold-change �!�����Z�D�V���X�V�H�G���D�V���F�X�W-�R�I�I�����G�D�V�K�H�G���O�D�Q�H�V������ �
 �S�����������������6�W�X�G�H�Q�W�¶�V��
�W-�W�H�V�W����C, �,�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q�� �I�R�O�O�R�Z�H�G�� �E�\�� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �Z�D�V�� �X�V�H�G�� �W�R�� �F�R�Q�I�L�U�P��
�F�D�Q�G�L�G�D�W�H�� �S�U�R�W�H�L�Q�� �L�Q�W�H�U�D�F�W�L�R�Q�V���� �5�D�E�E�L�W�� �,�J�*�� �V�H�U�Y�H�G�� �D�V�� �Q�H�J�D�W�L�Y�H�� �F�R�Q�W�U�R�O���� �Q� �������' ����
Confocal and STED co-immunofluorescence imaging of CAV3 and McT1 in 
ventricular myocytes. The cartoon of a ventricular cardiomyocyte corresponds 
with the subcellular imaging planes subjected to confocal and STED imaging. 
�'�D�V�K�H�G�� �E�R�[�H�V�� �L�Q�G�L�F�D�W�H�� �K�L�J�K-�S�R�Z�H�U�� �P�D�J�Q�L�I�L�F�D�W�L�R�Q�V����Scale bars: image panels 
1 ���P�����P�D�J�Q�L�I�L�F�D�W�L�R�Q�V�������� nm.  
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�)�L�J�X�U�H����������CAV3 KO disrupts McT1 function ���L�Q���K�X�P�D�Q��cardiomyocytes �����$����
�,�P�P�X�Q�R�E�O�R�W�� �D�Q�D�O�\�V�L�V�� �R�I�� �K�X�P�D�Q�� �L�3�6�&-�G�H�U�L�Y�H�G�� �&�$�9���� �N�Q�R�F�N�R�X�W�� ���.�2����
�F�D�U�G�L�R�P�\�R�F�\�W�H�V���� �&�$�9���� �D�Q�G�� �0�F�W���� �Z�H�U�H��robustly expressed, while CAV3 signals 
were confirmed by using CAV3 KO cardiomyocytes. �%�D�U�� �J�U�D�S�K�� �V�K�R�Z�L�Q�J��
�V�L�J�Q�L�I�L�F�D�Q�W�� �U�H�G�X�F�W�L�R�Q�� �R�I�� �J�O�R�E�D�O�� �0�F�W���� �H�[�S�U�H�V�V�L�R�Q�� �L�Q�� �&�$�9���� �.�2�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V��
�Q�R�U�P�D�O�L�]�H�G�� �W�R�� ��-�$�F�W�L�Q���� �Q� ������ �6�W�X�G�H�Q�W�¶�V�� �W-�W�H�V�W���� �
 �S��������������B, Extracellular protein 
biotinylation was used in living human cardiomyocytes�� �W�R�� �D�V�V�H�V�V�� �0�F�W���� �V�X�U�I�D�F�H��
�H�[�S�U�H�V�V�L�R�Q���� �%�L�R�W�L�Q�\�O�D�W�H�G�� �S�U�R�W�H�L�Q�V�� �Z�H�U�H��enriched by �S�X�O�O-�G�R�Z�Q�� �D�Q�G��Mct1 
identified by immunoblotting in the eluated fraction. Vice versa, ��-�$�F�W�L�Q��
�L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �Z�D�V�� �X�V�H�G�� �D�V�� �Q�H�J�D�W�L�Y�H�� �F�\�W�R�V�R�O�L�F�� �S�U�R�W�H�L�Q�� �O�D�E�H�O�L�Q�J�� �F�R�Q�W�U�R�O���� �%�D�U��
�J�U�D�S�K�� �V�K�R�Z�L�Q�J�� �D�� �V�L�J�Q�L�I�L�F�D�Q�W�� �O�R�V�V�� �R�I�� �V�X�U�I�D�F�H�� �0�F�W���� �L�Q�� �&�$�9���� �.�2�� �Y�H�U�V�X�V�� �:�7��
�F�D�U�G�L�R�P�\�R�F�\�W�H�V���� �Q� ������ �6�W�X�G�H�Q�W�¶�V�� �W-�W�H�V�W���� �
 �S���������������&���� �8ptake of 3-bromopyruvate 
(3-BrPA), a glycolysis-disrupting compound, was determined by cell viability��
�E�D�V�H�G�� �R�Q extracellular release of lactate dehydrogenase (LDH). �%�D�U�� �J�U�D�S�K��
�V�K�R�Z�L�Q�J�� �D�� �V�L�J�Q�L�I�L�F�D�Q�W�� �U�H�G�X�F�H�G�� �/�'�+�� �U�H�O�H�D�V�H�� �I�R�U��CAV3 KO cardiomyocytes 
incubated with ����  �—�0����-�%�U�3�$�����Q� �������6�W�X�G�H�Q�W�¶�V���W-�W�H�V�W�����
�
�
 �S�����������������' �����7�K�H���Rxygen 
consumption rate (OCR) of human�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V�� �Z�D�V�� �Q�R�W�� �D�I�I�H�F�W�H�G�� �E�\�� �&�$�9����
�.�2�� n=32.�� �6�W�X�G�H�Q�W�¶�V�� �W-�W�H�V�W�� E, The extracellular acidification rate (ECAR) was 
blunted by �&�$�9���� �.�2�� �D�W�� �E�D�V�H�O�L�Q�H���� �Z�K�L�F�K�� �Z�D�V�� �H�[�D�J�J�H�U�D�W�H�G�� �E�\��oligomycin 
treatment. n=32.���6�W�X�G�H�Q�W�¶�V���W-�W�H�V�W�����
 �S���������������
�
�S���������������
�
�
 �S�������������� 
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�)�L�J�X�U�H���������� �3�U�R�W�H�R�P�L�F�� �W�D�U�J�H�W�L�Q�J�� �R�I�� �W�K�H�� �K�X�P�D�Q�� �&�$�9���� �Y�D�U�L�D�Q�W�V�� �)�����&�� �D�Q�G��
�6�������5. �$���� �5�H�F�L�S�U�R�F�D�O�� �F�R-�L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q�� �R�I�� �1�5�&�0�� �O�\�V�D�W�H�V�� �D�Q�G��
�L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �V�K�R�Z�H�G�� �W�K�D�W�� �U�H�F�R�P�E�L�Q�D�Q�W�� �)�����&�� �D�Q�G�� �6�������5�� �D�Q�G�� �H�Q�G�R�J�H�Q�R�X�V��
�&�$�9�����I�R�U�P���V�W�D�E�O�H���S�U�R�W�H�L�Q���F�R�P�S�O�H�[�H�V�����9��-�$�3�(�;�������Q�H�J�D�W�L�Y�H���F�R�Q�W�U�R�O�����
�����,�J�*���E�D�Q�G����
�%�D�U�� �J�U�D�S�K�� �H�[�F�O�X�G�L�Q�J�� �V�L�J�Q�L�I�L�F�D�Q�W�� �G�L�I�I�H�U�H�Q�F�H�V�� �L�Q�� �W�K�H�� �U�H�F�R�P�E�L�Q�D�Q�W�� �R�Y�H�U�� �Q�D�W�L�Y�H��
�H�[�S�U�H�V�V�L�R�Q�� �U�D�W�L�R���� �$�1�2�9�$���� �Q� ������B, �%�1�(�� �J�U�D�G�L�H�Q�W�� �J�H�O�� �V�H�S�D�U�D�W�L�R�Q�� �I�R�O�O�R�Z�H�G�� �E�\��
�&�$�9���� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �R�I�� �:�7���� �)�����&�� �D�Q�G�� �6�������5�� �H�[�S�U�H�V�V�L�R�Q�� �L�Q�� �W�K�H�� �D�E�V�H�Q�F�H�� �R�I��
�Q�D�W�L�Y�H�� �&�$�9���� �L�Q�� �+�(�.�������� �F�H�O�O�V���� �7�K�H�� �P�D�M�R�U�� �R�O�L�J�R�P�H�U�L�F�� �:�7�� �F�R�P�S�O�H�[�� ���•������ �N�'�D����
�Z�D�V�� �G�H�W�H�F�W�H�G�� �I�R�U�� �6�������5�� �E�X�W�� �D�E�R�O�L�V�K�H�G�� �E�\�� �W�K�H�� �)�����&�� �P�X�W�D�W�L�R�Q���� �,�Q�W�H�Q�V�L�W�\�� �O�L�Q�H��
�S�U�R�I�L�O�H�V���G�R�F�X�P�H�Q�W���W�K�H���O�R�V�V���R�I�� �W�K�H���P�D�M�R�U���V�L�J�Q�D�O���S�H�D�N���I�R�U���)�����&�����Q� �������&���� �/�L�Y�H-�F�H�O�O��
�F�U�R�V�V-�O�L�Q�N�L�Q�J���Z�L�W�K di-succinimidyl-suberat (DSS) revealed significant differences 
between �:�7�� �D�Q�G�� �)�����& oligomerization in HEK293 cells���� �&�R�Q�W�U�R�O�� �Z�L�W�K�R�X�W�� �'�6�6��
�W�U�H�D�W�P�H�Q�W��(w/o).�� �&�$�9���� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �V�K�R�Z�H�G�� �P�R�Q�R�P�H�U�L�F�� ���P������ �G�L�P�H�U�L�F�� ���G������
�W�U�L�P�H�U�L�F�� ���W������ �D�Q�G�� �K�L�J�K�H�U�� �R�O�L�J�R�P�H�U�L�F�� ���R���� �S�U�R�G�X�F�W�V���� �%�D�U�� �J�U�D�S�K�V�� �G�R�F�X�P�H�Q�W�� �W�K�H��
�G�L�V�U�X�S�W�L�R�Q�� �R�I�� �R�O�L�J�R�P�H�U�L�]�D�W�L�R�Q���� �Q�R�U�P�D�O�L�]�H�G�� �W�R�� �W�K�H�� �P�R�Q�R�P�H�U�L�F�� �I�R�U�P���� �E�\�� �)�����&��
�U�H�O�D�W�L�Y�H���W�R���:�7. �6�W�X�G�H�Q�W�¶�V���W-�W�H�V�W���
�
 �S���������������
�
�
 �S��������������  
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�)�L�J�X�U�H�����������&�$�9�����P�X�W�D�W�L�R�Q�V���G�L�V�U�X�S�W�L�Q�J���S�K�\�V�L�R�O�R�J�L�F�D�O���S�U�R�W�H�L�Q���S�U�R�[�L�P�L�W�L�H�V�����$����
�5�D�W�L�R�P�H�W�U�L�F�� �S�U�R�[�L�P�L�W�\�� �S�U�R�W�H�R�P�L�F�� �D�Q�D�O�\�V�L�V�� �R�I�� �1�5�&�0�V�� �H�[�S�U�H�V�V�L�Q�J�� �9��-�$�3�(�;��-
�&�$�9��-�)�����&���� �/�R�J�D�U�L�W�K�P�L�F�� �U�D�W�L�R�� �V�K�R�Z�L�Q�J�� �H�Q�U�L�F�K�H�G�� �S�R�V�L�W�L�Y�H�� �Y�H�U�V�X�V�� �Q�H�J�D�W�L�Y�H�� �K�L�W�V����
�&ut-off criteria (�O�R�J�D�U�L�W�K�P�L�F���U�D�W�L�R��<0) are indicated by dashed lines. Positive hits 
and POIs (p<0.05, z-test) are indicated by filled circles. Red circles indicate 
negative POIs. n=3. B, Bar graphs comparing the logarithmic ratio of �H�V�V�H�Q�W�L�D�O��
�F�R�P�S�R�Q�H�Q�W�V���R�I���W�K�H���F�D�Y�H�R�O�D�U���F�R�P�S�O�H�[���E�H�W�Z�H�H�Q WT and V5-APEX2-CAV3-F97C����
�Q� ������ �6�W�X�G�H�Q�W�¶�V�� �W-�W�H�V�W�� �
 �S�������������� �
�
 �S�������������� �
�
�
 �S�����������������&���� �3�U�R�[�L�P�L�W�\�� �S�U�R�W�H�R�P�L�F��
�D�Q�D�O�\�V�L�V���R�I���S�U�R�W�H�L�Q�V���O�D�E�H�O�H�G���E�\���9��-�$�3�(�;��-�&�$�9��-�6�������5�����/�H�J�H�Q�G���V�D�P�H���D�V���L�Q���$����
D, Bar graphs comparing the logarithmic ratio of the indicated caveolar complex 
proteins labeled by WT or V5-APEX2-CAV3-S141R�����Q� ������  
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Figure ����8 F97C disrupts McT1 function in human cardiomyocytes.  A, 
Immunoblot analysis of human iPSC-derived F97C knockin cardiomyocytes. 
F97C CAV3 and McT1 were robustly expressed. Bar graph showing no 
�V�L�J�Q�L�I�L�F�D�Q�W���G�L�I�I�H�U�H�Q�F�H�V���E�H�W�Z�H�H�Q���)�����&���D�Q�G���:�7���F�D�U�G�L�R�P�\�R�F�\�W�H�V���Q�R�U�P�D�O�L�]�H�G���W�R����-
Actin. n=3. B, Extracellular protein biotinylation was used in living human 
cardiomyocytes to assess McT1 surface expression. Biotinylated proteins were 
enriched by pull-down and McT1 identified by immunoblotting in the eluated 
fraction. Vice versa, ��-Actin immunoblotting was used as negative cytosolic 
protein labeling control. Bar graph showing a significant loss of surface McT1 in 
F97C �Y�H�U�V�X�V�� �:�7�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V���� �Q� ������ �6�W�X�G�H�Q�W�¶�V��t-test, ** p<0.01. C, The 
extracellular acidification rate (ECAR) was blunted by F97C at baseline, which 
was exacerbated by oligomycin treatment. n=32. �6�W�X�G�H�Q�W�¶�V��t-test, *** p<0.001. 
D, The oxygen consumption rate (OCR) of human cardiomyocytes was 
significantly decreased by F97C at baseline. Significant differences were 
maintained each after treatment by oligomycin, FCCP, and 
Antimycin+Rotenone. n=38. �6�W�X�G�H�Q�W�¶�V��t-test, *** p<0.001. 
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Detailed methods 
 
Human stem cell study ethical approval. The study was approved by the 
Ethics Committee of University Medical Center Göttingen (approval number 
10/9/15) and carried out in accordance with the approved guidelines. Written 
informed consent was obtained from all donors prior to participation in the 
study. 
CAV1 knock-out mouse study approval.  Breeding and humane euthanasia 
for organ harvesting were carried out according to guidelines for the care and 
use of laboratory animals, following directive 2010/63/EU of the European 
Parliament and in keeping with NIH guidelines. All procedures were reviewed by 
the institutional animal committee of the University Medical Center Göttingen 
and approved by the veterinarian state authority (LAVES, Oldenburg, Germany; 
33.9-42502-04-18/2975). 
 
APEX2 plasmids and recombinant adenoviral vectors for cardiomyocyte 
transfection . The V5 epitope and APEX2 were N-terminally tagged to wild-type 
mouse Caveolin3 (V5-APEX2-CAV3). In addition, plasmids for expression of 
V5-APEX2-CAV3 with the CAV3 missense mutations F97C or S141R were 
generated. The CAV3 cDNA (MR226246, Origene) was amplified according to 
the �P�D�Q�X�I�D�F�W�X�U�H�U�¶�V instructions (In-Fusion HD Cloning Kit, Clontech) using the 
following primers: 

- Fwd-���•-GGGGCAGCGGCTCGAGCATGATGACCGAAGAGCACA-���• 
- Rev-���•-TAGATGCATGCTCGAGTTAGCCTTCCCTTC-���• 

The CAV3 insert was cloned into the V5-APEX2 tagged pcDNA3 vector using 
XhoI restriction digest (NEB). The construct was transformed in Stellar 
Competent Cells (Clontech). The CAV3 mutations F97C or S141R were 
introduced by site-directed mutagenesis (Gene Art Site-Directed Mutagenesis 
PLUS Kit, Thermo Fisher Scientific) using the following primers: 

- Fwd-���•-TCGCCTGTATCTCCTCTTGCCACATCTGGGC-���• 
- Rev-���•-GCCCAGATGTGGCAAGAGGAGATACAGGCGA-���• 

The resulting construct was transformed in �'�+���.�� �F�H�O�O�V (One Shot MAX 
�(�I�I�L�F�L�H�Q�F�\�� �'�+���.-T1R, Thermo Fisher Scientific). For adenoviral transfection, a 
custom-designed bicistronic subtype-5 vector (pO6A5-CMV, Sirion Biotech) was 
used to express eGFP and V5-APEX2 or V5-APEX2-CAV3 in neonatal 
cardiomyocytes. In analogy, adenoviral vectors of V5-APEX2-CAV3 containing 
the CAV3 mutations F97C or S141R were prepared and transfected. Adenoviral 
transduction of cardiomyocytes was monitored by eGFP fluorescence (Axiovert 
A1, Zeiss). 
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Neonatal rat cardiomyocyte (NRCM) isolation and purification . Hearts from 
40 Wistar rat pups (P0-P3) were collected on ice in CBFHH buffer (Supplement 
Table 3.2). The atria were excised with scissors (914012-12, FST) under 
magnification view, the ventricles harvested for digestion (Enzyme D, Neonatal 
Heart Dissociation Kit, Miltenyi Biotech) and dissociation (gentleMACS 
Dissociator, Miltenyi Biotech)  according to the �P�D�Q�X�I�D�F�W�X�U�H�U�¶�V instructions 
(Neonatal Heart Dissociation Kit, Miltenyi Biotech). To enrich isolated ventricular 
cardiomyocytes, the raw cell suspension was filtered by gravity through a 
stainless steel mesh (grid size 250 µm, Thermo Fisher Scientific). The cells 
were pelleted by centrifugation (60 x g for 20 min at 4 °C), resuspended in 5 mL 
ice-cold PBS (PBS, pH 7.4, without Ca2+and Mg2+, Gibco), and each 2.5 mL of 
the suspension was layered on top of two Percoll density gradients (63 %, 
40.5 % Centrifugation Media, pH 8.5 to 9.5, GE-Healthcare) using published 
protocols,1 and centrifuged at 3,000 x g for 30 min at RT (acceleration speed 9; 
deceleration speed 0; Heraeus Multifuge X1R, Thermo Fisher Scientific). NRCM 
enriched at the Percoll layer interface were collected with a 10 mL glass pipette 
(10 mL wide tip, Ratiolab) and suspended in 10 mL of 37 C NRCM cultivation 
medium (Supplement Table 3.2). 
 
3-state SILAC cardiomyocyte culture conditions . SILAC containing DMEM 
(Flex Media, Gibco) without L-arginine and L-lysine was supplemented with 
penicillin-streptomycin (100 U/mL), D-glucose (1 g/L), Na-pyruvate (100 mM), 
and BRDU (10 mM) containing either heavy, medium, or light isotope lysine and 
arginine as follows: for heavy SILAC labeling, L-lysine [13C6,

15N2]HCl (Lys-8) 
and L-arginine [13C6,

15N4]HCl (Arg-10) were added; for medium SILAC labeling, 
L-lysine-4,4,5,5-d4 (Lys-4) and L-arginine [13C6]HCl (Arg-6); and for light SILAC 
labeling, DMEM liquid medium with 1 g/L D-glucose was used. All solutions 
were vacuum-filtered (Steritop, Merck). For NRCM culture, 10 % (vol/vol) heat 
inactivated FBS (Gibco) was added to the medium. NRCMs were seeded at a 
density of 500,000 cells on 35 mm dishes (CELLSTAR 6-well plate, Greiner) 
coated with collagen (13.96 mg/mL Collagen I rat tail, Corning) diluted 1:100 in 
PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco) and cultivated for 13 days in 
2 mL light (non-labeled), medium, or heavy SILAC medium in 5 % CO2 / 21 % 
O2 at 37 °C (Heracell VIOS, Thermo Fisher Scientific). SILAC media were 
completely exchanged every 2nd day. Mass spectrometry determined SILAC 
incorporation (%) for up to 20 days in culture. SILAC incorporation reached a 
plateau (>95%) after 13 days culture (Supplement Figure 3.10 A). 
For the proximity proteomic analysis (described in the next chapter) we used an 
experimental design for systematic label switching with three biological 
replicates as outlined in Figure 3.2 A. 
 



Supplemental methods 

52 

Ratiometric APEX2 mediated biotinylation in NRCM . For ratiometric APEX2 
mediated biotinylation of endogenous NRCM proteins, SILAC labeled NRCM 
were transfected with recombinant adenoviral vectors expressing V5-APEX2-
CAV3 for 48 h using MOI 1 between day 11 and 13 in SILAC culture (for higher 
MOI doses please see Supplement Figure 3.9 A). In parallel, adenoviral vectors 
expressing soluble V5-APEX2 or eGFP were used as controls. Based on 
protocols published previously for ratiometric APEX biotinylation in heterologous 
cell systems,2,3 1 mL of each SILAC medium (chapter above) was exchanged 
by the same SILAC medium containing �������� ���0�� �E�L�R�W�L�Q-phenol. After 30 min 
equilibration, a final concentration of 1 mM H2O2 was added and the medium 
gently mixed for 1 minute. After 1 min, the biotinylation reaction was quenched 
by replacing the medium with 1 mL quenching buffer (Supplement Table 3.3). 
NRCM were washed thrice with quenching buffer, scraped (Cell Scraper 25 cm, 
Sarstedt), and collected in 250 µL RIPA buffer (Supplement Table 3.3). The 
NRCM suspension was passed 15 times through a 27 gauge syringe on ice and 
centrifuged at 13,000 x g for 10 min at 4 °C to collect the solubilized proteins in 
the supernatant. The protein concentrations were determined by absorption 
measurement (Pierce 660 nm protein assay, Thermo Fisher Scientific). Heavy, 
medium and light labeled NRCM lysates were mixed at a 1:1:1 ratio at a total 
protein concentration of 250 µg. 
For ratiometric APEX2 mediated biotinylation for the CAV3 mutations F97C and 
S141R, NRCM were transfected with adenoviral vectors containing mutant V5-
APEX2-CAV3 for 48 h at MOI 1.  
 
Avidin capture and elution of biotinylated proteins . Avidin beads (Pierce 
Monomeric Avidin Agarose, Thermo-Fisher-Scientific) were equilibrated in a 
ratio 1:1 with RIPA buffer (Supplement Table 3.3) and 80 µL avidin beads 
added to 250 µg of NRCM lysate. The suspension was gently rotated for 1 h at 
4 °C in a spin column (Pierce Spin Columns Screw Cap, Thermo Fisher 
Scientific). Next, beads were washed twice with 500 µL RIPA buffer, once with 
500 µL Tris/HCl buffer containing 2 M urea (pH 8.0) and again twice with 500 µL 
RIPA quenching buffer (Supplement Table 3.3). Two centrifugation steps at 
100 x g for 30 sec and 2 min at 2000 x g (Heraeus, Fresco 21 centrifuge, 
Thermo Fisher Scientific) were used to harvest the beads, while the supernatant 
was discarded. Biotinylated proteins were eluted in 75 µL biotin buffer 
(Supplement Table 3.3) for 15 min at RT, followed by 15 min at 70 °C. Beads 
were pelleted by centrifugation for 1 min at 1000 x g and the supernatant 
containing the eluted proteins was collected. The eluted proteins were analyzed 
by mass spectrometry as described below. 
 
 
 



Supplemental methods 

53 

Sample preparation for NanoLC-MS/MS analysis of SILAC labeled 
samples. Mass spectrometry was performed by the proteomic service unit in 
Göttingen according to published protocols.4 Eluted protein samples were 
fractionated on 4-12 % Bis-Tris minigels (NuPAGE Novex, Invitrogen). Gels 
were stained with Coomassie Blue overnight (Coomassie Brilliant Blue R-250 
Staining Solution, BioRad) for protein visualization, and each lane sliced into 11 
equal-sized gel pieces. After washing the gel pieces with 50 mM ammonium 
bicarbonate (TEAB, Sigma-Aldrich), gel slices were reduced with 10 mM 
dithiothreitol (1,4-dithiothreitol, Sigma-Aldrich), alkylated with 55 mM 
iodoacetamide (2-iodoacetamide, Sigma-Aldrich), and digested with 
endopeptidase trypsin (sequencing grade, Promega) diluted 1:50 in 55 mM 
iodoacetamide overnight. Post-trypsin peptides were solubilized in MS loading 
buffer (Supplement Table 3.4), dried (SpeedVac, Thermo Fisher Scientific), 
reconstituted in MS loading buffer and prepared for NanoLC-MS/MS analysis as 
described previously.5 
 
NanoLC-MS/MS analysis of SILAC-labeled samples . NanoLC-MS/MS 
analysis was performed by the proteomic service unit in Göttingen according to 
published protocols.4 For mass spectrometric analysis of solubilized trypsin 
peptides, samples were enriched on a self-packed reversed phase-C18 
precolumn (0.15 mm ID x 20 mm, Reprosil-Pur120 C18-AQ 5 µm, Dr. Maisch, 
Ammerbuch-Entringen, Germany) and separated on an analytical reversed 
phase-C18 column (0.075 mm ID x 200 mm, Reprosil-Pur 120 C18-AQ, 3 µm, 
Dr. Maisch) using a 30 min linear gradient of 5-35 % acetonitrile/0.1 % formic 
acid (v/v) at 300 nl min-1. The eluent was analyzed on a mass spectrometer (Q 
Exactive hybrid quadrupole/orbitrap, Thermo Fisher Scientific) equipped with a 
FlexIon nanoSpray source and operated under Excalibur 2.5 software using a 
data-dependent acquisition method. Each experimental cycle was of the 
following form: one full MS scan across the 350-1600 m/z range was acquired 
at a resolution setting of 70,000 FWHM, and AGC target of 1*10e6 and a 
maximum fill time of 60 ms. Up to the 12 most abundant peptide precursors of 
charge states 2 to 5 above a 2*10e4 intensity threshold were then sequentially 
isolated at 2.0 FWHM isolation width, fragmented with nitrogen at a normalized 
collision energy setting of 25%, and the resulting product ion spectra recorded 
at a resolution setting of 17,500 FWHM, and AGC target of 2*10e5 and a 
maximum fill time of 60 ms. Selected precursor m/z values were then excluded 
for the following 15 s. Two technical replicates per sample were acquired.  
 
APEX2 assay data processing . Raw data were processed using quantitative 
proteomic software (MaxQuant Software version 1.5.7.4, Max Planck Institute 
for Biochemistry). Proteins were identified against a UniProtKB-derived rattus 
norvegicus protein sequence database (v2018.02, 37830 protein entries) along 
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with a set of common lab contaminants. The search was performed with 
trypsine as enzyme and iodoacetamide as cysteine blocking agent. Up to two 
missed tryptic cleavages and methionine oxidation as a variable modification 
�Z�H�U�H�� �D�O�O�R�Z�H�G�� �I�R�U���� �,�Q�V�W�U�X�P�H�Q�W�� �W�\�S�H�� �µ�2�U�E�L�W�U�D�S�¶ was selected to adjust for MS 
acquisition specifics. The Arginine Arg-10, Arg-6 and Lysine Lys-8, Lys-6 labels 
�L�Q�F�O�X�G�L�Q�J���W�K�H���µ�5�H-�T�X�D�Q�W�L�I�\�¶���R�S�W�L�R�Q���Z�H�U�H���V�S�H�F�L�I�L�H�G���I�R�U���U�H�O�D�W�L�Y�H���S�U�R�W�H�L�Q���T�X�D�Q�W�L�W�D�W�L�R�Q����
For identification of APEX2 biotinylated proteins (each for the WT, F97C, or 
S141R forms of V5-APEX2-CAV3), the ratios of V5-APEX2-CAV3 versus V5-
APEX2 or eGFP were calculated and log2 transformed. The V5-APEX2-CAV3 / 
V5-APEX2 ratio was plotted on the X-axis and the V5-APEX2-CAV3 / eGFP 
ratio on the Y-axis (Figure 3.2 D, Figure 3.7 A and 3.7 C). Scatter plots were 
generated with Prism version 7.03 (GraphPad). Enriched biotinylated proteins 
were tested for statistical significance (p<0.05) by one sample z-test 
(Excel2007, Microsoft Office) and visualized �D�V�� �µ�S�R�V�L�W�L�Y�H�¶�� �R�U�� �µ�Q�H�J�D�W�L�Y�H�¶�� �K�L�W�V��
including proteins-of-interest (POIs). See Excel file for mass spectrometry 
results (�7�D�E�O�H 8.11, 8.12 and 8.13 (see Appendix )). 
 
Immunoblotting and streptavidin blotting for protein analysis. Mouse heart 
tissue, NRCMs, iPSC-cardiomyocytes, or HEK293A cells were homogenized in 
ice-cold RIPA buffer (Supplement Table 3.7) by 20 strokes on ice using a Potter 
homogenizer (RW20 digital, IKA). The homogenate was centrifuged at 10,000 x 
g for 10 min at 4 °C to pellet insoluble materials and protein concentration 
determined (Pierce BCA Protein Assay Kit; Thermo Fisher Scientific). For 
immunoblotting, 30 ���J�� �R�I�� �F�O�H�D�U�H�G�� �K�R�P�R�J�H�Q�D�W�H�� �Z�D�V�� �O�R�D�G�H�G�� �S�H�U�� �O�D�Q�H�� �R�Q�W�R�� �D�� ��-
20 % Tris-Glycine gradient gel (Novex 4-20 % Tris-Glycine, Thermo Fisher 
Scientific) and resolved by SDS gel electrophoresis at constant 200 V for 
45 min. Proteins were transferred onto PVDF membranes (0.45 mm, 
Immobilon-FL, Merck Millipore) using an electrophoretic transfer cell (Mini 
Trans-Blot Electrophoretic Transfer Cell, Bio-Rad) at constant 100 V for 1 h in 
transfer buffer (Supplement Table 3.7) at 4 °C. PVDF membranes were blocked 
for 1 h in 5 % w/v non-fat milk (Milkpowder, Roth) in Tris-buffered saline with 
0.05 % v/v Tween (Tween 20, Sigma Aldrich). PVDF membranes were 
incubated with the primary antibodies (Table 8.10 (see Appendix )) at 4 °C 
overnight, washed thrice with PBS (pH 7.4, without Ca2+ and Mg2+, Gibco) and 
incubated with fluorescent anti-mouse or anti-rabbit secondary antibodies at a 
dilution of 1:15,000 for a minimum period of 1 h at RT (P/N 926-32212, P/N 
926-68072, P/N 926-32213, P/N 926-68073, IRDye LI-COR). Fluorescence 
signals were captured with the Odyssey CLx imaging system (LI-COR) and 
band intensities analyzed with Image Studio Lite Version 5.2 (LI-COR). 
To analyze biotin-phenol labeled proteins (Figure 3.2 C and Supplement 
Figure 3.9 B-C) PVDF membranes were incubated with streptavidin (RD680, LI-
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COR) for at least 1h at RT and the fluorescence detected with the Odyssey CLx 
imaging system (LI-COR) as described above.  
 
Blue Native (BN)-PAGE analysis. BN-PAGE was used to analyze oligomeric 
complexes of endogenous CAV3 with �9��-�$�3�(�;��-�&�$�9���� �W�U�D�Q�V�I�H�F�W�H�G�� �L�Q�� �1�5�&�0��
(Figure 3.1 D) as well as �9��-�$�3�(�;��-�&�$�9������ �9��-�$�3�(�;��-�&�$�9��-�)�����&�� �R�U�� �9��-
�$�3�(�;��-�&�$�9��-�6�������5�� �H�D�F�K�� �W�U�D�Q�V�I�H�F�W�H�G�� �L�Q�� �+�(�.�������$�� �F�H�O�O�V��(Figure 3.6 B)����
�7�U�D�Q�V�I�H�F�W�H�G���Fells were centrifuged at 13,000 x g for 10 min at 4 °C and 100 mg 
of the cell pellet resuspended in 1 mL homogenization buffer (Supplement 
Table 3.10). Cells were homogenized at 4 °C by 50 strokes on ice using a 
Potter homogenizer (RW20 digital, IKA). Homogenates were centrifuged at 
1,000 x g for 10 min at 4 °C to remove cell debris. The cleared supernatant was 
centrifuged at 100,000 x g for 1 h (Optima Max-XP, MLA-150 rotor, Beckman) 
to enrich the membrane fraction. The plasma membrane fraction was 
resuspended in 30 µL solubilization buffer (Supplement Table 3.10), snap-
frozen and stored at -80 °C. Solubilized membranes were thawn on ice and the 
protein concentration determined by absorption measurement (Pierce BCA 
Protein Assay Kit; Thermo Fisher Scientific). Digitonin (Digitonin, Sigma Aldrich) 
was added as detergent (6 g digitonin / g protein) and insoluble membranes 
were removed by centrifugation at 13,000 x g for 10 min at 4 °C. The cleared 
supernatant was mixed 1:10 with a Coomassie blue solution (Coomassie 
Brilliant Blue R-250, 5 % w/v, Sigma Aldrich) and a glycerol solution (Glycerol, 
50 % w/v, Sigma Aldrich). Anode/cathode buffers were prepared according to 
�P�D�Q�X�I�D�F�W�X�U�H�U�¶�V�� �L�Q�V�W�U�X�F�W�L�R�Q�V�� ��NativePAGE Bis-Tris Mini Gel Electrophoresis 
Protocol, Thermo Fisher Scientific). For BN-Page, 50 µg of solubilized 
membrane proteins were separated on a 3-12% Bis-Tris gradient gel 
(NativePAGE 3-12% Bis-Tris Gel, Thermo Fisher Scientific) at constant 150 V 
for 1 h, followed by replacing the cathode buffer (Dark Blue Cathode Buffer, 
Novex) to cathode buffer light (Light Blue Cathode Buffer, Novex) and 
electrophoresis at constant 250 V for 1 h. Native markers (Serva Native Marker, 
Serva) were used to estimate molecular weight. Solubilized membrane proteins 
were transferred onto PVDF membranes (0.45 mm, Immobilon-FL, Merck 
Millipore) using an electrophoretic transfer cell (Mini Trans-Blot Electrophoretic 
Transfer Cell, Bio-Rad) at constant 50 V for 2 h in transfer buffer (Supplement 
Table 3.7) at 4 °C. PVDF membranes were blocked for 1 h in 5 % w/v non-fat 
milk (Milkpowder, Roth) in Tris-buffered saline with 0.05 % v/v Tween (Tween 
20, Sigma Aldrich). Immunoblotting (Figure 3.1 D and Figure 3.6 B) was 
performed using V5 and CAV3 antibodies (Table 8.10 (see Appendix )). 
 
Co-immunoprecipitation of CAV interacting proteins. Mouse ventricular 
heart lysates were solubilized with CHAPS co-IP buffer (Supplement 
Table 3.13) and 500 ���J�� �Z�D�V�� �L�Q�F�X�E�D�W�H�G�� �Z�L�W�K�� �� ���J�� �D�Q�W�L-CAV3 antibody (ab2912, 



Supplemental methods 

56 

Abcam), 3 ���J�� �D�Q�W�L-CAV1 antibody (ab2910, Abcam) or normal rabbit IgG (12-
370, Merck) antibody at 4 °C overnight. The samples were incubated with 
magnetic beads (Dynabeads Protein G, 15 µL, Thermo Fisher Scientific) in 
100 µL CHAPS co-IP buffer for 2 h at 4 °C. The magnetic beads were extracted 
with a magnet (DynaMag-2 Magnet, Thermo Fisher Scientific), the solution 
discarded and the beads washed thrice with 500 µL ice-cold CHAPS co-IP 
buffer to minimize unspecific binding. Precipitated proteins were eluted in 60 µL 
of 2 × �6�'�6�� �E�X�I�I�H�U�� �F�R�Q�W�D�L�Q�L�Q�J�� ��-mercaptoethanol (Supplement Table 3.7). For 
the McT1 co-IP, 60 µL �R�I�� ���[�� �/�'�6�� �E�X�I�I�H�U�� �Z�L�W�K�R�X�W�� ��-mercaptoethanol 
(1× NuPAGE, Invitrogen) was used to decrease IgG signals at 55 kDa. Eluated 
samples were heated to 70 °C for 5 min and resolved on 4-20% Tris-Glycine 
gradient gels (Novex 4-20% Tris-Glycine, Thermo Fisher Scientific). For SDS 
gel electrophoresis and protein transfer please see: Immunoblotting and 
streptavidin blotting for protein analysis . After transfer and blocking, primary 
antibodies against the proteins shown in Figure 3.3 E and Figure 3.4 C were 
applied (Table 8.10 (see Appendix )) at 4 °C overnight. To reduce unspecific 
background signals, for Aquaporin1, McT1, Ncx1, and TfR1 antibody incubation 
the IRDye-680 detection reagent was added according to the �P�D�Q�X�I�D�F�W�X�U�H�U�¶�V��
instructions (Quick Western Kit, LI-COR). 
 
Co-immunoprecipitation of V5-APEX2-CAV3. Adenovirally transfected 
NRCMs expressing V5-APEX2-CAV3, V5-APEX2-CAV3-F97C, V5-APEX2-
CAV3-S141R or V5-APEX2 were solubilized with sodium deoxycholate co-IP 
buffer (Supplement Table 3.13) and incubated with 3 ���J�� �D�Q�W�L-V5 antibody 
(R960-25, Thermo Fisher Scientific) at 4 °C overnight. Magnetic beads 
(Dynabeads Protein G, Thermo Fisher Scientific) were added to the sample, 
incubated for 2 h at 4 °C, washed and resuspended in 2× SDS buffer containing 
��-mercaptoethanol as described above. Samples were heated to 70 °C for 
5 min and resolved on 4-20% Tris-Glycine gradient gels (Novex 4-20% Tris-
Glycine, Thermo Fisher Scientific). For SDS gel electrophoresis and protein 
transfer please see: Immunoblotting and streptavidin blotting for protein 
analysis . After transfer on PVDF membranes and blocking, PVDF was 
incubated with the antibodies anti-V5 (R960-25, Thermo Fisher Scientific) and 
anti-CAV3 (ab2912, Abcam) (Figure 3.1 C). 
 
Sample preparation for label-free SWATH-MS (Sequential Window 
Acquisition of All THeoretical Mass Spectra). Label-free SWATH-MS 
quantification was performed according to published protocols.5 Samples were 
run on 4-12% NuPAGE Novex Bis-Tris Minigels (4-12% NuPAGE, Invitrogen) 
for a short distance (~1 cm), cut out as a single fraction and trypsinized as 
described: In-gel tryptic digestion . Post-trypsin peptides were solubilized in 
MS loading buffer (Supplement Table 3.4), dried (SpeedVac, Thermo Fisher 
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Scientific), reconstituted in MS loading buffer, and prepared for nanoLC-MS/MS 
as described previously.5 A synthetic peptide standard for retention time 
alignment was used to spike all samples (iRT Standard, Biognosys). 
Affinity purification (AP) followed by label-free quantification (AP-MS) was 
performed as previously described with few modifications.6 CAV1 and CAV3 
were immunoprecipitated from 500 µg mouse ventricular tissue. Normal rabbit 
IgG (12-370, Merck) was used as negative control. Immunoprecipitates were 
run on a 4-12% NuPAGE Novex Bis-Tris Minigels (4-12% NuPAGE, Invitrogen) 
as a single fraction and prepared for nanoLC-MS/MS as described above. 
 
NanoLC-MS/MS analysis by label-free SWATH-MS. Label-free SWATH-MS 
quantification was performed by the proteomic service unit in Göttingen 
according to published protocols.5 Protein di�J�H�V�W�V���Z�H�U�H���D�Q�D�O�\�]�H�G���R�Q���D���Q�D�Q�R�À�R�Z��
chromatography system (Eksigent nanoLC425, SCIEX) hyphenated to a hybrid 
triple quadrupole-TOF mass spectrometer (TripleTOF 5600+, SCIEX) equipped 
with a Nanospray III ion source (Ionspray Voltage 2400 V, Interface Heater 
Temperature 150 °C, Sheath Gas Setting 12) and controlled (Analyst TF 1.7.1 
software build 1163, SCIEX). Peptides were dissolved in MS loading buffer 
(Supplement Table 3.4) to a concentration of 0.3 µg/µL. For each analysis 1.5 
µg of digested protein were enriched on a precolumn (0.18 mm ID x 20 mm, 
Symmetry C18, 5 µm, Waters) and separated on an analytical RP-C18 column 
(0.075 mm ID x 250 mm, HSS T3, 1.8 µm, Waters) using a 90 min linear 
gradient of 5-35% acetonitrile/0.1% formic acid (v/v) at 300 nl min-1. 
Qualitative LC/MS/MS analysis was performed using a Top25 data-dependent 
acquisition method with an MS survey scan of m/z 350�±1250 accumulated for 
350 ms at a resolution of 30,000 full width at half maximum (FWHM). MS/MS 
scans of m/z 180�±1600 were accumulated for 100 ms at a resolution of 17,500 
FWHM and a precursor isolation width of 0.7 FWHM, resulting in a total cycle 
time of 2.9 s. Precursors above a threshold MS intensity of 125 cps with charge 
states 2+, 3+, and 4+ were selected for MS/MS, the dynamic exclusion time 
was set to 30 s. MS/MS activation was achieved by collision-induced 
dissociation �X�V�L�Q�J�� �Q�L�W�U�R�J�H�Q�� �D�V�� �D�� �F�R�O�O�L�V�L�R�Q�� �J�D�V�� �D�Q�G�� �W�K�H�� �P�D�Q�X�I�D�F�W�X�U�H�U�¶�V�� �G�H�I�D�X�O�W��
rolling collision energy settings. Two technical replicates per sample were 
analyzed to construct a spectral library. 
For quantitative SWATH analysis, MS/MS data were acquired using 65 variable 
size windows7 across the 400-1,050 m/z range. Fragments were produced 
using rolling collision energy settings for charge state 2+, and fragments 
acquired over an m/z range of 350�±1400 for 40 ms per segment. Including a 
100 ms survey scan this resulted in an overall cycle time of 2.75 s. 3x3 
replicates (biological x technical) were acquired for each biological state. 
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Data processing for label-free �6�:�$�7�+-MS. Data processing was performed 
by the proteomic service unit in Göttingen according to published protocols.8. 
�3�U�R�W�H�L�Q�� �L�G�H�Q�W�L�¿�F�D�W�L�R�Q�� �Z�D�V�� �D�F�K�L�H�Y�H�G�� ���3�U�R�W�H�L�Q�3�L�O�R�W�� �6�R�I�W�Z�D�U�H�� �Y�H�U�V�L�R�Q�� �������� �E�X�L�O�G��
4769, SCIE�;���� �D�W�� �³�W�K�R�U�R�X�J�K�´�� �V�H�W�W�L�Q�J�V���� �7�K�H�� �F�R�P�E�L�Q�H�G�� �T�X�D�O�L�W�D�W�L�Y�H�� �D�Q�D�O�\�V�H�V�� �Z�H�U�H��
searched against the UniProtKB mouse reference proteome (revision 04-2018, 
61,290 entries) augmented with a set of 52 known common laboratory 
contaminants to identify proteins at a False Discovery Rate (FDR) of 1%. 
Spectral library generation and SWATH peak extraction were achieved 
(PeakView Software version 2.1 build 11041, SCIEX) using the SWATH 
quantitation microApp version 2.0 build 2003. Following retention time 
correction using the iRT standard, peak areas were extracted using information 
from the MS/MS library at an FDR of 1%.6 The resulting peak areas were then 
�V�X�P�P�H�G�� �W�R�� �S�H�S�W�L�G�H�� �D�Q�G�� �¿�Q�D�O�O�\�� �S�U�R�W�H�L�Q�� �D�U�H�D�� �Y�D�O�X�H�V�� �S�H�U�� �L�Q�M�H�F�W�L�R�Q���� �Z�K�L�F�K�� �Z�H�U�H��
used for further statistical analysis.  
At least, three biological replicates were performed and proteomic differences 
were evaluated for statistical significance (p<0.05) by permutation-based false-
discovery rate analysis (t-test, p>0.05, FDR=5%, S0=0.1). Furthermore, a log2 
fold change ratio �•���� �Z�D�V�� �X�V�H�G�� �D�V��cutoff.9 CAV���� �Y�H�U�V�X�V�� �&�$�9���� �L�Q�W�H�U�D�F�W�L�Q�J��
�S�U�R�W�H�L�Q�V��(Figure 3.4 A) �L�G�H�Q�W�L�I�L�H�G���E�\���6�:�$�7�+-�0�6���Z�H�U�H���L�O�O�X�V�W�U�D�W�H�G���E�\ volcano plot 
(Perseus, MaxQuant). The fold changes were log2 transformed and plotted on 
the X-axis, while the permutation-based false-discovery rate analysis p values 
(t-test, p>0.05, FDR=5%, S0=0.1, Perseus, MaxQuant�����Z�H�U�H���í�O�R�J10 transformed 
and plotted on the Y-axis. Putative binding partners are listed in Table 8.14 and 
8.15 (see Appendix ). 
 
STRING analysis. Following protein identification by MS, we analyzed their 
context based on the STRING database for cellular compartments (Supplement 
Figure 3.10 B) and protein�±protein interaction networks (string-db.org) using 
Gene Ontology (GO) terms (Figure 3.2 E and Supplement Figure 3.15 D-E) as 
described previously.10 We used a scoring cut-off of �•0.75 to define positive 
interactions following published workflows.11 
 
Cell culture of human induced pluripotent stem cells (iPSCs) . Cell culture 
and ventricular differentiation of human induced pluripotent stem cells (iPSCs) 
was performed by the Stem Cell Unit in Göttingen. The human iPSC lines 
isWT1.14 (UMGi014-C.14; abbreviated as WT iPSC), isWT1-CAV3-KO.34 
(UMGi014-C-3.34; abbreviated as CAV3 KO iPSC) and isWT1-CAV3-F97C.56 
(UMGi014-C-4.56; abbreviated as F97C KI iPSC) were maintained on Matrigel-
coated (Matrigel, growth factor reduced, BD Biosciences) 35 mm plates 
(CELLSTAR 6-well plate, Greiner), passaged every 4-6 days with a non-
enzymatic cell dissociation reagent (Versene solution, Thermo Fisher Scientific) 
and cultured in iPSC medium (Supplement Table 3.5) for 24 h after passaging 
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and with daily complete medium changes. For c�H�O�O�� �F�X�O�W�X�U�H�� �D�� �K�X�P�L�G�L�¿�H�G��
incubator with 5% CO2 and 21% O2 at 37 °C was used (Heracell VIOS, Thermo 
Fisher Scientific). 
 
Stem cell differentiation . Directed differentiation of human iPSCs into 
ventricular iPSC cardiomyocytes was performed via WNT signaling modulation 
as described previously.12 The ventricular differentiation was initiated at 80%�±
90% confluence on Matrigel-coated 35 mm plates using the cardiac 
differentiation medium (Supplement Table 3.5) and sequential treatment with 
4 µM of a GSK-���.���� inhibitor (CHIR-99021, Merck Millipore) for 48 hours, 
followed by 5 ��M PORCN Inhibitor (IWP2, Merck Millipore) for 48 hours. The 
complete medium was replaced by cardio culture medium (Supplement 
Table 3.5) at day 8. Differentiated cultures around day 15 were digested with 
0.25 % trypsin (Trypsin/EDTA, Thermo Fisher Scientific) and replated in 35 mm 
plates (CELLSTAR 6 Well plate, Greiner). Metabolic ventricular cardiomyocyte 
selection was done with cardio selection medium (Supplement Table 3.5) for 5 
days. Afterwards, iPSC cardiomyocytes were cultured in cardio culture medium 
(Supplement Table 3.5) at least to day 60 for further maturation. iPSC 
cardiomyocytes were washed thrice with PBS (PBS, pH 7.4, without Ca2+and 
Mg2+, Gibco) and scraped (Cell Scraper 25 cm, Sarstedt) in 500 µL ice cold 
PBS. iPSC cardiomyocytes were pelleted at 13,000 x g for 10 min at 4 °C, 
snap-frozen in liquid N2 and stored at -80 °C until further use. 
 
CRISPR/Cas9-mediated genome editing.  For genome editing of human iPSC 
lines we used ribonucleoprotein (RNP)-based CRISPR/Cas9 to target exon 1 of 
the human CAV3 gene to generate CAV3 knock-out iPSCs or exon 2 to 
introduce the F97C-CAV3 mutation (Supplement Figure 3.13 A and B). The 
guideRNA target sequences, with PAM in bold, were: 

- �&�5�,�6�3�5���������¶-TCCCCCCAGCTCTGCGATGATGG-���¶ 
- �&�5�,�6�3�5���������¶-CACCGCCCAGATGTGGCAGAAGG-���¶ 

For F97C-CAV3 knock-in via homology-directed repair, a single-stranded 
oligonucleotide with 60 bp homology arms including the respective SNP and 
silent SNPs for PAM mutation was used. The human iPSC line is WT1.14 
(UMGi014-C.14; abbreviated as WT iPSC) was cultured in StemFlex medium 
(StemFlex medium, Thermo Fisher Scientific) on Matrigel-coated (growth factor 
reduced, BD Biosciences) plates and transfected by nucleofection according to 
the �P�D�Q�X�I�D�F�W�X�U�H�U�¶�V instructions (P3 Primary Cell 4D-Nucleofector X Kit, Lonza) 
between passage 12 to 15. The CRISPR/Cas9 RNP complex was assembled 
by mixing of the individual Alt-R CRISPR-Cas9 crRNA and the Alt-R CRISPR-
Cas9 tracrRNA, preassembled in a 1:1 ratio, with the Alt-R S.p. HiFi Cas9 
Nuclease 3NLS (all: IDT DNA Technologies) at a 1:3 molar ratio, incubated for 
10 min at RT and diluted in nucleofector solution (P3 4D-Nucleofector X 
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Solution, Lonza). 1 h before nucleofection, iPSCs were pretreated with 2 µM of 
Rho inhibitor (Thiazovivin, Merck Millipore) and dissociated using a non-
enzymatic cell dissociation reagent (Versene solution, Thermo Fisher Scientific) 
at a confluence of 70-80%. For each approach, 2×106 iPSCs, quantified by cell 
counter (CASY, OMNI Life Science), were used according to the �P�D�Q�X�I�D�F�W�X�U�H�U�¶�V��
instructions. Following nucleofection, iPSCs were replated in two Matrigel-
coated (Matrigel, growth factor reduced, BD Biosciences) wells of a 35 mm 
plates (CELLSTAR 6 Well plate, Greiner) and cultured in StemFlex medium 
(Thermo Fisher Scientific) supplemented with 2 µM of Rho inhibitor 
(Thiazovivin, Merck Millipore). After 48 h, transfected iPSCs were replated as 
single cells by limited dilution as described previously,12 and cultured in 
StemFlex medium (Thermo Fisher Scientific) for one week. Individual iPSC 
colonies were manually picked and expanded for approximately one to three 
weeks in StemMACS iPS-Brew XF medium (Miltenyi Biotech) with daily medium 
change. Expanded colonies were analyzed for genetic modification by Sanger 
sequencing (Supplement Figure 3.13 B and D) and positive clones were 
selected for further analysis. The normal karyotype was determined in post-
edited cells and clones were resequenced for purity every 5-10 passages. 
Genomic stability of human iPSC cultures was assessed between passage 25 
and 30 using the G-banding method according to previous protocols.13 At least 
15 metaphase cells per sample were analyzed, all of which were concluded to 
have no structural abnormality (Supplement Figure 3.13 E). 
 
Immunocytochemical staining and flow cytometry of stem cells . 
Immunostaining and flow cytometry was performed by the Stem Cell Unit in 
Göttingen according to previous published protocols.14 For immunocytochemical 
studies, cells were cultured on glass coverslips (Ø 18mm, width 1.5, Menzel), 
fixed (Roti-Histofix 4%, Carl Roth) at RT for 20 min, and blocked with stem cell 
blocking solution (Supplement Table 3.6) at 4 °C overnight. Cells were 
incubated with primary antibodies against OCT4, NANOG, and TRA-1-60 
(Table 8.10 (see Appendix )) diluted in stem cell blocking solution (Supplement 
Table 3.6) at 4 °C overnight, washed thrice with stem cell blocking solution, and 
finally incubated with secondary antibodies in stem cell blocking solution at RT 
for 1 h. Cells were permeabilized with 0.1 % Triton-X100 (Triton-X100, Carl 
Roth) in 1 % BSA (BSA; Sigma-Aldrich) in PBS (PBS, pH 7.4, without Ca2+and 
Mg2+, Gibco). Nuclei were stained with 4.8 µM DAPI (DAPI solution, Thermo 
Fisher Scientific) at RT for 10 min. Samples were mounted (Fluoromount-G, 
Thermo Fisher Scientific) and images collected by light microscopy (Axio 
Imager M2 microscopy system, Zen 2.3 software, Carl Zeiss) (Supplement 
Figure 3.13 F).  
For flow cytometry, cells were manually agitated with a 10 mL glass pipette 
(Serological Pipette 10 mL, Sarstedt), fixed (Roti-Histofix 4 %, Carl Roth) at RT 
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for 20 min, and blocked with stem cell blocking solution (Supplement Table 3.6) 
at 4 °C for at least 2 h. iPSCs were permeabilized with 0.1% Triton-X100 
(Triton-X100, Carl Roth) in stem cell blocking solution and co-incubated with 
fluorescence-conjugated antibodies against OCT4 and TRA-1-60 at RT for 1 h 
(Table 8.10 (see Appendix )). Nuclei were co-stained with 8.1 µM Hoechst 
(Hoechst 33342, Thermo Fisher Scientific). Subsequently, cells were analyzed 
using the flow cytometry (LSRII, BD Biosciences) using BD FACSDiva software 
(BD Biosciences). Gating of cells was applied based on forward scatter area 
(FSC-A) and sideward scatter area (SSC-A) as well as on gating of single cells 
based on DNA signal width. At least 10,000 events were analyzed per sample. 
 
iPSC-cardiomyocyte 3-bromopyruvate (3-BP) uptake and cell viability 
assay . Differentiated iPSCs cardiomyocytes cultured for 30 days from the �:�7  
and CAV3 KO iPSC lines were digested with 0.25 % trypsin (Trypsin/EDTA, 
Thermo Fisher Scientific) and 1 million iPSC-cardiomyocytes quantified by cell 
counter (CASY, OMNI Life Science). iPSC-cardiomyocytes were seeded on 
Matrigel-coated (growth factor reduced, BD Biosciences) 35 mm dishes 
(CELLSTAR 6-well plate, Greiner). �:�7  and CAV3 KO iPSC-cardiomyocytes 
were cultured in cardio culture medium (Supplement Table 3.5) until day 60 and 
�W�K�H���F�D�U�G�L�R���F�X�O�W�X�U�H���P�H�G�L�X�P���H�[�F�K�D�Q�J�H�G���E�\���W�K�H���V�D�P�H���P�H�G�L�X�P���F�R�Q�W�D�L�Q�L�Q�J�����������0����-
bromopyruvate (3-BP). After incubation for 3 h in 5 % CO2 / 21 % O2 at 37 °C 
(Heracell VIOS, Thermo Fisher Scientific) the culture medium was collected and 
extracellular release of the lactate dehydrogenase (LDH) into the media 
quantified by a coupled enzymatic reaction (LDH Cytotoxicity Assay Kit, Thermo 
Fisher Scientific). For this purpose, 50 µL of culture media were each 
transferred into a 96-well plate (Cellstar 96 well plates, Greiner) for triplicate 
measurements and the enzymatic reaction initiated by adding 50 ���/�� �U�H�D�F�W�L�R�Q��
mixture (LDH Cytotoxicity Assay Kit, Thermo Fisher Scientific). After 30 min 
incubation, the absorbance was measured at 490 nm and 680 nm (Spark 10M, 
Tecan) and LDH release calculated according to the �P�D�Q�X�I�D�F�W�X�U�H�U�¶�V���L�Q�V�W�U�X�F�W�L�R�Q�V��
(LDH Cytotoxicity Assay Kit, Thermo Fisher Scientific) (Figure 3.5 C). 
 
iPSC-cardiomyocyte cell surface biotinylation and elution of biotinylated 
surface proteins . 60 day cultured human iPSC-cardiomyocytes were washed 
thrice with 500 µL PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco) to remove 
primary amine groups. For cell surface biotinylation, iPSC-cardiomyocytes were 
incubated for 1 h at 4 °C with 2 mM tagging solution (EZ-Link Sulfo-NHS-Biotin, 
Thermo Fisher Scientific) or PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco), 
the latter as negative control. Cell surface biotinylation was quenched after 1 h 
by adding 100 µL of 1 M Tris (pH 7.5) to the tagging solution and following 
incubating for 5 min at RT. The iPSC-cardiomyocytes were washed twice with 
ice cold PBS (PBS, pH 7.4, without Ca2+and Mg2+, Gibco), scraped (Cell 
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Scraper 25 cm, Sarstedt) in 250 µL ice cold PBS (PBS, pH 7.4, without Ca2+and 
Mg2+, Gibco), and centrifuged at 13,000 x g for 1 min. The pellet was 
resuspended in 500 µL RIPA buffer (Supplement Table 3.7) and homogenized 
by 20 strokes on ice using a Potter homogenizer (RW20 digital, IKA). The 
homogenate was centrifuged at 10,000 x g for 10 min at 4 °C to remove 
insoluble contents and the protein concentrations determined by absorption 
measurement (Pierce BCA Protein Assay Kit; Thermo Fisher Scientific). 
Biotinylated surface proteins were precipitated by adding 40 µg avidin beads to 
500 µg lysate for 1 h at 4 °C in a spin column (Pierce Spin Columns Screw Cap, 
Thermo Fisher Scientific). Next, beads were washed thrice with 500 µL RIPA 
buffer. Two centrifugation steps at 100 x g for 30 sec and 2 min at 2000 x g 
(Heraeus, Fresco 21 centrifuge, Thermo Fisher Scientific) were used to harvest 
the beads and the supernatant was discarded. Biotinylated proteins were eluted 
in 100 µL 2 x �6�'�6���E�X�I�I�H�U���F�R�Q�W�D�L�Q�L�Q�J����-mercaptoethanol (Supplement Table 3.7). 
For Immunoblotting, 15 µg of input and 15 µL eluate sample were loaded onto a 
4-20% Tris-Glycine gradient protein gel (Novex 4-20% Tris-Glycine, Thermo 
Fisher Scientific). For SDS gel electrophoresis and protein transfer please refer 
to Immunoblotting and streptavidin blotting for protein analysis . 
Immunoblotting (Figure 3.5 B and Figure 3.8 B) was performed with McT1 and 
��-Actin antibodies (Table 8.10 (see Appendix )). 
 
iPSC-cardiomyocyte Seahorse studies. Initially, iPSC-cardiomyocytes were 
cultured for 7 days in cardio culture medium (Supplement Table 3.5) to form a 
confluent synchronously beating monolayer. After 60 days of cultivation, iPSC 
cardiomyocytes were prepared for metabolic studies by exchanging the medium 
for the Seahorse XF assay buffer (Supplement Table 3.8). To determine the 
respiratory capacity, 20,000 cells seeded per Matrigel-coated well (growth factor 
reduced, BD Biosciences) using a Seahorse 96-well plate (XF96 cell culture 
microplate, Agilent). The Oxygen Consumption Rate (OCR) and the 
Extracellular Acidification Rate (ECAR) were measured with a Seahorse 
Extracellular Flux Analyzer (XF96, Seahorse Bioscience). Periodic 
measurements of OCR and ECAR were repeated under basal conditions and 
after inhibition of the ATP synthase (Oligomycin, 3 µM, Sigma Aldrich), after 
mitochondrial oxidative phosphorylation uncoupling (Carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone (FCCP), 1 µM, Sigma Aldrich) and after 
ComplexI/ComplexIII inhibition (rotenone, 2 µM plus antimycin A, 1 µM, Sigma 
Aldrich) according to a previously published protocol15 (Figure 3.5 D-E and 
Figure 3.8 C-D). Mitochondrial and glycolytic ATP levels were calculated based 
on experimentally determined OCR and ECAR values (Supplement Figure 
3.16 A-B) according to the manufacture�U�¶�V�� �S�U�R�W�R�F�R�O��(Quantifying Cellular ATP 
Production Rate Using Agilent Seahorse XF Technology, Agilent). 
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Transfection and live-cell cross-linking of V5-APEX2-CAV3 or V5-APEX2-
CAV3-F97C expressing HEK293A cells . HEK293A cells were passaged using 
trypsin (Trypsin/EDTA solution, Sigma) and seeded at a density of 250,000 cells 
on 35 mm dishes (CELLSTAR 6-well plate, Greiner). HEK293A cells were 
cultured in HEK293 medium (Supplement Table 3.9) in 5% CO2 / 21% O2 at 
37 °C (Heracell VIOS, Thermo Fisher Scientific). At 70% confluency, HEK293A 
cells were transfected by plasmid using Lipofectamin 3000 (Lipofectamin 3000 
Transfection Reagent, Thermo Fisher Scientific). For this, the culture medium 
was exchanged using 1 mL of the following transfection reagents: 3 µg plasmid 
expression vector (V5-APEX2-CAV3 or V5-APEX2-CAV3-F97C) with 3 µL 
Lipofectamin 3000 reagent and 6 µL P3000 in DMEM with low glucose 
���'�X�O�E�H�F�F�R�¶�V�� �0�R�G�L�I�L�H�G�� �(�D�J�O�H�¶�V�� �0�H�G�L�X�P�� �O�R�Z�� �J�O�X�F�R�V�H���� �6�L�J�P�D���� �Z�L�W�K�R�X�W��
supplements. After 6 h incubation in 5% CO2 / 21% O2 at 37 °C (Heracell VIOS, 
Thermo Fisher Scientific), the transfection mix was exchanged against HEK293 
culture medium. 24 h post-transfection, HEK293A cells were washed thrice with 
PBS (PBS, pH 7.4, without Ca2+and Mg2+, Gibco) to treat primary amine groups 
for cross-linking. 
For cross-linking, a 50 mM stock solution of disuccinimidyl suberate (DSS, 
Thermo Fisher Scientific) was prepared by dissolving 2 mg DSS in 108 µL 
dimethyl sulfoxide (DMSO, Thermo Fisher Scientific) and HEK293A cells were 
incubated at the final concentrations of 100 µM or 300 µM DSS or DMSO as 
negative control for 1 h at 4 °C. Cross-linking was quenched by adding 50 µL of 
1 M Tris (pH 7.5) for 5 min at RT. The HEK293A cells were scraped (Cell 
Scraper 25 cm, Sarstedt) in 250 µL ice-cold PBS (PBS, pH 7.4, without Ca2+and 
Mg2+, Gibco) and centrifuged at 13,000 x g for 1 min. The pellet was 
resuspended in RIPA buffer (Supplement Table 3.7) and homogenized by 20 
strokes on ice using a Potter homogenizer (RW20 digital, IKA). The 
homogenate was centrifuged at 10,000 x g for 10 min at 4 °C to remove 
insoluble material and the protein concentration determined by absorption 
measurement (Pierce BCA Protein Assay Kit; Thermo Fisher Scientific). For 
immunoblotting, 30 ���J protein were loaded per lane onto a 4-20% Tris-Glycine 
gradient protein gel (Novex 4-20% Tris-Glycine, Thermo Fisher Scientific,). For 
SDS gel electrophoresis and protein transfer please refer to Immunoblotting 
and streptavidin blotting for protein analysis . Immunoblotting (Figure 3.6 D) 
was performed with the documented CAV3 antibody materials (Table 8.10 (see 
Appendix )). 
 
CAV1 KO mouse model . All animal procedures were performed according to 
institutional rules reviewed by IACUC of the University Medical Center 
Göttingen and approved by the veterinarian state authority (LAVES, Oldenburg, 
Germany; 33.9-42502-04-18/2975). CAV1 KO mice were purchased form 
Jackson Lab (B6.Cg-Cav1tm1MLs/J, 007083) and back-crossed into the 
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C57BL/6N background. We used adult mice of 12-14 weeks age and mixed 
genders. 
Mice were anesthetized with 3 % isoflurane, euthanized by cervical dislocation, 
and the heart extracted following protocols for the humane use of laboratory 
animals based on approval by the institutional animal care and use committee 
(T2/11, Lehnart). For ventricular tissue preparation for biochemical analysis, 
mice were anesthetized and the hearts perfused as detailed in the next chapter 
for 2 min to clear blood cells. Ventricular tissue was manually dissected under a 
binocular microscope (Stemi 305, Zeiss), snap-frozen in liquid N2, cut into small 
pieces, and stored at -80 °C until further used for analysis.  
 
Adult mouse ventricular cardiomyocyte isolation . We used our customized, 
published protocol for isolation of adult ventricular cardiomyocytes.16 The 
proximal aorta was connected to a 21 gauge cannula and connected to a 
modified Langendorff perfusion setup.17 Hearts were perfused by constant flow 
at 4 mL/min with a nominally Ca2+ free perfusion buffer (Supplement 
Table 3.11) for 4 min at 37 °C, followed by collagenase containing buffer 
(Supplement Table 3.11) for another 9 min at 37 °C. The ventricles were 
dissected under a binocular microscope (Stemi 305, Zeiss) in 2 mL digestion 
buffer and digestion was stopped by adding 3 mL stopping buffer (Supplement 
Table 3.11). Isolated ventricular cardiomyocytes were washed twice with the 
stopping buffer, cells sedimented for 8 min by gravity at RT, the supernatant 
discarded and the cells resuspended. Cell quality was documented by 
transmitted light imaging (Zeiss LSM 710 and 880, Jena, Germany) using Fiji 
(https://imagej.net/Fiji) following criteria documented previously.17 
 
Confocal microscopy and superresolution STED immunofluorescence 
nanoscopy . Isolated cardiomyocytes were plated on glass coverslips (Ø 
18 mm, width 1.5 mm, Menzel) after coating with laminin (2 mg/mL) at a dilution 
of 1:10 in perfusion buffer (Supplement Table 3.11). Cardiomyocytes were fixed 
with 4% paraformaldehyde (PFA, Sigma-Aldrich) for 5 min at room temperature 
followed by three PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco) washing 
steps. Fixed samples were incubated overnight at 4 °C in 
blocking/permeabilization buffer followed by incubation with the primary 
antibodies (Table 8.10 (see Appendix )) diluted in blocking buffer overnight at 
4 °C. After washing thrice with blocking buffer, samples were incubated with 
secondary antibodies diluted 1:1000 overnight at 4 °C. For confocal 
immunofluorescence microscopy, Alexa Fluor 633 and Alexa Fluor 514 
conjugated antibodies were used (Table 8.10 (see Appendix )). For STED 
microscopy, STAR 635P and STAR 580 conjugated antibodies were used 
(Table 8.10 (see Appendix )). After washing thrice with PBS, samples were 
embedded in mounting medium with DAPI (ProLong Gold Antifade Mountant 
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with DAPI, Thermo Fisher Scientific) for confocal microscopy or DAPI-free 
mounting medium (ProLong Gold Antifade Mountant, Thermo Fisher Scientific) 
for STED nanoscopy. Embedded samples were stored overnight at RT and 
imaged the next day. 
Confocal images were acquired with a Zeiss LSM 710 microscope using a Plan-
Apochromat 63x/1.40 oil objective and a pixel size of 50 x 50 nm. Alexa Fluor 
514 was excited at 514 nm and detected at 520�±620 nm. AlexaFluor 633 was 
excited at 633 nm and detected at 640�±740 nm. The confocal laser power was 
adjusted to maximize resolution following established workflows.17 For STED 
nanoscopy a Leica TCS SP8 system with a HC PL APO C2S 100x/1.40 oil 
objective and a pixel size 16.23 x 16.23 nm was used. STAR 635P was excited 
at 635 nm and detected at 650-700 nm. STAR 580 was excited at 580 nm and 
detected at 600-630 nm. For STED depletion of STAR 580 and STAR 635P a 
775 nm laser beam was used. The STED laser power was adjusted to 
maximize resolution following previously established workflows.17 Raw images 
were processed in Fiji (https://imagej.net/Fiji) following established protocols.17  
 
High-pressure freezing and electron tomography . High-pressure freezing 
was performed at the EMBL Heidelberg electron microscopy core facility 
according to published protocols.18 Isolated mouse ventricular cardiomyocytes 
�Z�H�U�H���S�O�D�F�H�G���L�Q�������������P���D�O�X�P�L�Q�L�X�P���W�\�S�H A specimen carriers coupled with type B 
lids (HPF carrier, Leica) and the specimens were rapidly frozen (HPM100, 
Leica). Specimens were freeze substituted for 24 h in 1% OsO4 in acetone 
(AFS2, Leica), dehydrated in graded acetone and embedded (Epon-Araldite 
resin, EMS). Semi-thick (280 nm) sections were placed on formvar-coated slot-
grids (TEM Grids, Science Services), post stained with 2% aqueous uranyl 
acetate (2% Uranyl Acetate Solution, Science Services) �D�Q�G�� �5�H�\�Q�R�O�G�¶�V�� �O�H�D�G��
citrate (Supplement Table 3.12). Colloidal gold particles (Gold nanoparticles 15 
nm, Sigma Aldrich) were added to both surfaces of the sections to serve as 
fiducial markers for tilt series alignment. 
For imaging an intermediate voltage electron microscope (Tecnai TF30, FEI) 
was operated at 300 kV. Electron tomography was performed according to 
published protocols.18 Images were captured on a 4K x 4K charge-coupled 
device camera (UltraScan, SerialEM software package; Gatan). For imaging, 
the specimen holder was tilted from +60 ° to -60 ° at 1 ° intervals. For dual-axis 
tilt series the specimen was then rotated by 90° in the X-Y plane, and another 
+60 ° to -60 ° tilt series was taken. The images from each tilt-series were 
aligned by fiducial marker tracking and back-projected to generate two single 
full-thickness reconstructed volumes (tomograms), which were then combined 
to generate a single high-resolution 3D reconstruction of the original partial cell 
volume.19 Isotropic voxel size ranged from 0.765-1.206 nm. In some instances, 
tomograms were computed from montaged stacks, to increase the total 
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reconstructed area to up to 10 ���P�� �[�� ���� ���P�� �L�Q�� �;�<�� Biologically meaningful 
resolution was approximately 4 nm in X-Y. All tomograms were processed and 
analyzed using IMOD software,20 which was also used to generate 3D models 
of relevant structures of interest.21 Models were smoothed and meshed to 
obtain the final 3D representation, in which spatial relations between caveolar 
and mitochondrial structures were quantified. 
 
Statistical analysis. Data are presented as mean ± standard error of the mean 
(SEM) unless indicated otherwise. Unpaired 2-tailed �6�W�X�G�H�Q�W�¶�V t-test or 1-way-
ANOVA was applied as specified in the figure legends. A p value of less than 
0.05 was considered statistically significant.  
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Supplemental figures and figure legends 

Supplement Figure 3.9  �&�$�9����proximity labeling in living neonatal rat 
cardiomyocytes  A, �&�R�Q�I�R�F�D�O�� �P�L�F�U�R�V�F�R�S�\�� �V�K�R�Z�H�G�� �W�K�H�� �O�R�F�D�O�L�]�D�W�L�R�Q�� �R�I V5-
APEX2-CAV3 after adenoviral transfection at the indicated MOIs. Only a MOI of 
1 resulted in subcellular V5-APEX2-CAV3 signals similar to endogenous CAV3. 
In contrast, MOIs of 3 or 10 resulted in abnormally large perinuclear, sharply 
demarked signal regions indicative of Golgi accumulation and a potential 
trafficking defect at MOI 10. Scale bars: 10 ���P����B, APEX2 proximity labeling in 
V5-APEX2-CAV3 versus V5-APEX2 transfected or untransfected (Ø) NRCM. 
Biotinylated proteins were enriched by affinity purification and detected with 
streptavidin IRDye 680 RD. Dark signals indicate proteins eluted with biotin 
buffer (E1; Supplement Table 3.3), as second elution step (E2) with 2x SDS 
buffer confirmed sufficient elution in E1 (weaker signals in E2). Untransfected 
NRCM (Ø) were used as negative control and to document endogenously 
biotinylated proteins. I, input; FT, flow through; E, eluate; n=3. C, Biotinylation 
analyzed in V5-APEX2-CAV3 or V5-APEX2 transfected NRCM after 1-min 
treatment versus omission of H2O2 documenting APEX2-depedent biotinylated 
proteins. n=2.   
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�6�X�S�S�O�H�P�H�Q�W���)�L�J�X�U�H���������� �6�,�/�$�&�� �L�Q�F�R�U�S�R�U�D�W�L�R�Q���� �*�2�� �W�H�U�P�� �D�Q�D�O�\�V�L�V�� �R�I�� �9��-
�$�3�(�;��-�&�$�9���� �H�Q�U�L�F�K�H�G�� �S�U�R�W�H�L�Q�V���� �D�Q�G�� �(�O�H�F�W�U�R�Q�� �7�R�P�R�J�U�D�S�K�\�����$���� �0�D�V�V��
�V�S�H�F�W�U�R�P�H�W�U�\�����/�&-�0�6���0�6�����D�Q�D�O�\�V�L�V���R�I���K�H�D�Y�\���L�V�R�W�R�S�H-�O�D�E�H�O�H�G��(13C6,

15N4-Arg and 
13C6,

15N2-Lys), trypsin-digested NRCM cell lysates. SILAC incorporation 
reached �•96% after 13 days of culture (red arrow). n=1. B, �6�X�E�F�H�O�O�X�O�D�U��
�F�R�P�S�R�Q�H�Q�W���F�O�D�V�V�L�I�L�F�D�W�L�R�Q���R�I���9��-�$�3�(�;��-�&�$�9�����H�Q�U�L�F�K�H�G���S�U�R�W�H�L�Q�V based on Gene 
Ontology (GO)  annotation���� �7�K�H�� �Q�X�P�E�H�U�� �R�I�� �L�G�H�Q�W�L�I�L�H�G�� �K�L�W�V�� �D�Q�G�� �W�K�H�U�H�� �S�H�U�F�H�Q�W��
�F�R�Q�W�U�L�E�X�W�L�R�Q�� �D�U�H�� �V�K�R�Z�Q�����&-�' ���� �(�O�H�F�W�U�R�Q�� �W�R�P�R�J�U�D�S�K�\�� �L�P�D�J�H�V�� �V�K�R�Z�L�Q�J�� �F�D�Y�H�R�O�D�H��
�E�X�O�E�V�� �D�W�� �W�K�H�� �V�X�U�I�D�F�H�� �P�H�P�E�U�D�Q�H�� ���&���� �R�U�� �D�W�� �W�K�H�� �W�U�D�Q�V�Y�H�U�V�H�� ���7-���� �W�X�E�O�H�� ���' ���� �L�Q��
�Q�D�Q�R�P�H�W�U�L�F�� �S�U�R�[�L�P�L�W�\�� �W�R�� �P�L�W�R�F�K�R�Q�G�U�L�D���� �6�X�U�I�D�F�H�� �V�H�F�W�L�R�Q�� �Q� ���������7-�W�X�E�X�O�H�� �Q� ���������(����
�%�D�U���J�U�D�S�K���V�X�P�P�D�U�L�]�L�Q�J���W�K�H���F�D�Y�H�R�O�D�H���W�R���P�L�W�R�F�K�R�Q�G�U�L�D���G�L�V�W�D�Q�F�H���D�W���W�K�H���P�H�P�E�U�D�Q�H��
�V�X�U�I�D�F�H���������� �Q�P�����D�Q�G���D�W���7-�W�X�E�O�H���������� �Q�P�������6�W�X�G�H�Q�W�¶�V���W-�W�H�V�W�� 
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�6�X�S�S�O�H�P�H�Q�W���)�L�J�X�U�H���������� �&�$�9���� �H�[�S�U�H�V�V�L�R�Q�� �L�Q�� �Y�H�Q�W�U�L�F�X�O�D�U�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V����
�$�����,�P�P�X�Q�R�E�O�R�W�� ���I�X�O�O�� �J�H�O���� �V�K�R�Z�L�Q�J�� �V�L�Q�J�X�O�D�U�� �&�$�9�����E�D�Q�G�V�� �D�W�� ���� �N�'�D�� �L�Q�� �Y�H�Q�W�U�L�F�X�O�D�U��
�F�D�U�G�L�R�P�\�R�F�\�W�H�V�� �L�V�R�O�D�W�H�G�� �I�U�R�P�� �Z�L�O�G-�W�\�S�H�� �P�R�X�V�H���K�H�D�U�W�V���� �� �&�$�9���� �N�Q�R�F�N�R�X�W�� �P�R�X�V�H��
�K�H�D�U�W�V�� �Z�H�U�H�� �X�V�H�G�� �W�R�� �F�R�Q�I�L�U�P�� �V�S�H�F�L�I�L�F�L�W�\���� �Q� �������%����Confocal and STED co-
immunofluorescence imaging of CAV1 (red) and CAV3 (green) in a ventricular 
myocyte from a CAV1 �N�Q�R�F�N�R�X�W�� �P�R�X�V�H�� �K�H�D�U�W. Of note, CAV1 staining showed 
unspecific signals at the intercalated disc, while no CAV1 signals were 
observed at the transverse (T-) tubules. D�D�V�K�H�G�� �E�R�[�H�V�� �L�Q�G�L�F�D�W�H�� �P�D�J�Q�L�I�L�H�G��
�U�H�J�L�R�Q�V��representing the intercalated disk and T-tubules. Scale bars: top 10 ���P����
Confocal microscopy 2 ���P�����6�7�(�'���Q�D�Q�R�V�F�R�S�\���� µm;��STED magnified 200 nm. 
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�6�X�S�S�O�H�P�H�Q�W���)�L�J�X�U�H���������� CAV1 versus �&�$�9�����S�U�R�W�H�L�Q���L�Q�W�H�U�D�F�W�L�R�Q�V���L�G�H�Q�W�L�I�L�H�G��
�E�\���$�3-�0�6�����$-�%���� �9�R�O�F�D�Q�R�� �S�O�R�W�V�� �V�X�P�P�D�U�L�]�L�Q�J�� �D�I�I�L�Q�L�W�\-�H�Q�U�L�F�K�H�G�� �&�$�9���� ���$�����D�Q�G��
�&�$�9���� ���%�����L�Q�W�H�U�D�F�W�R�U�V�� �L�G�H�Q�W�L�I�L�H�G�� �E�\���$�3-�0�6����Significantly enriched proteins were 
identified by permutation-based false-discovery rate analysis (t-test, FDR=5%, 
S0=0.1) and logarithmic cut-off >1. n=3. Positive hits (blue circles) including 
functionally relevant proteins of interest (yellow circles) versus negative hits 
(open circles) and negative POI (red circles) as indicated by the legend.  
  



Supplemental methods 

71 

�6�X�S�S�O�H�P�H�Q�W���)�L�J�X�U�H���������� CRISPR/Cas9 mediated CAV3 knock-out and 
F97C CAV3 knock- in. �$����CAV3 knockout iPSCs were generated with a 
CRISPR guide RNA targeting the start codon of the CAV3 gene and a clone 
with a start codon destruction on both alleles was selected for further analysis. 
B, Sanger sequencing of genomic DNA confirmed the deleted start codon in 
CAV3 knockout iPSCs. C, The F97C-CAV3 variant was introduced by 
CRISPR/Cas9-based homology-directed repair and a clone with a homozygous 
insertion was selected for further analysis. D, Sanger sequencing of genomic 
DNA confirmed the introduced SNP c.290T>G/p.F97C (arrow) in F97C iPSCs. 
Silent SNPs (asterisks) were introduced for mutation of the PAM site. E, Bright 
field imaging of the CAV3 KO and F97C KI iPSC lines exhibited a typical human 
stem cell-like morphology and proliferation characteristics. Scale bar: 100 ���P����
F, Immunofluorescence staining of the key pluripotency markers OCT4, 
NANOG and TRA1-60 in the CAV3 KO and F97C KI iPSC lines. Nuclei were 
counter-stained with DAPI. Scale bar: 100 ���P����G, Purity of edited iPSC lines 
was evaluated by flow cytometry analysis of pluripotency markers OCT4 and 
TRA1-60. Gray dots represent the negative controls. H, Karyotypes of the 
edited iPSC lines between passages 25-30 demonstrated chromosomal stability 
after CRISPR/Cas9-based genomic editing and passaging.  
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�6�X�S�S�O�H�P�H�Q�W���)�L�J�X�U�H���������� �:�H�V�W�H�U�Q���E�O�R�W���D�Q�G���L�P�D�J�L�Q�J���R�I���)�����&���D�Q�G���6�������5���9��-
�$�3�(�;��-�&�$�9�������$���� �$�Q�W�L-�&�$�9���� �L�P�P�X�Q�R�E�O�R�W�� �G�H�W�H�F�W�L�Q�J�� �W�K�H�� �H�[�S�U�H�V�V�L�R�Q�� �R�I�� �W�K�H�� �9��-
�$�3�(�;��-�&�$�9�����I�X�V�L�R�Q���S�U�R�W�H�L�Q�V���:�7�����F�R�Q�W�U�R�O�������)�����&�����D�Q�G���6�������5���L�Q���1�5�&�0���O�\�V�D�W�H�V����
�%�D�U�� �J�U�D�S�K�V�� �V�X�P�P�D�U�L�]�H�� �W�K�H�� �H�[�S�U�H�V�V�L�R�Q�� �R�I�� �H�Q�G�R�J�H�Q�R�X�V�� �Y�H�U�V�X�V�� �U�H�F�R�P�E�L�Q�D�Q�W��
�&�$�9���� �S�U�R�W�H�L�Q�V�� �H�D�F�K�� �Q�R�U�P�D�O�L�]�H�G�� �W�R�� �.-�$�F�W�L�Q�L�Q���� �Q� ������ �
�
�
�S���������������� �6�W�X�G�H�Q�W�¶�V�� �W-�W�H�V�W����
�%����Confocal V5-immunofluorescence images showing a perinuclear and 
scattered accumulation of F97C V5-APEX2-CAV3. In contrast, WT and S141R 
mutant V5-APEX2-CAV3 showed peripherally distributed signals and co-
localized with endogenous CAV3.��Scale bars 10 ���P. B, Confocal imaging of V5 
and the Golgi marker P115. F97C mutant V5-APEX2-CAV3 accumulated in the 
trans-Golgi compartment. N�X�F�O�H�X�V���V�W�D�L�Q�H�G���Z�L�W�K���'�$�3�,����Scale bars 10 ���P. 
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�6�X�S�S�O�H�P�H�Q�W���)�L�J�X�U�H���������� �3�U�R�[�L�P�L�W�\�� �S�U�R�W�H�R�P�L�F�� �D�Q�D�O�\�V�L�V�� �X�V�L�Q�J�� �9��-�$�3�(�;��-
�&�$�9��-�)�����&�����$���� �/�&-�0�6���0�6�� �G�H�W�H�F�W�H�G�� �•95%��13C6,

15N4-Arg and 13C6,
15N2-Lys 

incorporation in NRCM adenovirally transfected with V5-APEX2-CAV3-F97C 
(F97C). n=3. B, APEX2 biotinylated proteins were captured by streptavidin.���,����
�L�Q�S�X�W���� �)�7���� �I�O�R�Z�� �W�K�U�R�X�J�K���� �(���� �H�O�X�D�W�H���� �)�����&�� �D�Q�G�� �9��-�$�3�(�;���� �H�[�S�U�H�V�V�L�R�Q�� �F�R�Q�I�L�U�P�H�G��
�E�\�� �9���� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �I�R�U�� �L�Q�S�X�W�� �D�Q�G�� �I�O�R�Z�� �W�K�U�R�X�J�K�� �I�U�D�W�L�R�Q�V���� �Q� �������&����B�D�U�� �J�U�D�S�K��
�F�R�P�S�D�U�L�Q�J���W�K�H���Q�X�P�H�U�L�F�D�O���F�K�D�Q�J�H�V���L�Q��proteomic organelle components between 
WT and F97C positive hits. Note the strong increase in Golgi proteins. �' �� 
Analysis of identified proteins by the GO term '�Syruvate metabolism' based on 
the STRING database. The open circles indicate a loss of proximity; the red 
circle highlights the loss of McT1 and TfR1 proximity. Blue circles indicate a 
remaining interaction. Grey lines indicate �S�U�R�W�H�L�Q���L�Q�W�H�U�D�F�W�L�R�Q�V���Z�L�W�K���D���F�R�Q�I�L�G�H�Q�F�H��
�V�F�R�U�H�� �!�����������( ����STRING analysis confirming exclusive F97C-induced aberrant 
Golgi interactions for the indicated �*�2�� �W�H�U�P�V�� �Q�R�W�� �S�U�H�V�H�Q�W�� �L�Q�� �:�7���� �*�U�H�\�� �O�L�Q�H�V��
�L�Q�G�L�F�D�W�H���S�U�R�W�H�L�Q���L�Q�W�H�U�D�F�W�L�R�Q�V���Z�L�W�K���D���F�R�Q�I�L�G�H�Q�F�H���V�F�R�U�H���!�������� 
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�6�X�S�S�O�H�P�H�Q�W���)�L�J�X�U�H���������� �0�L�W�R�F�K�R�Q�G�U�L�D�O�� �D�Q�G�� �J�O�\�F�R�O�\�W�L�F�� �$�7�3�� �L�Q�� �)�����&�� �&�$�9����
�N�Q�R�F�N-�L�Q�� �L�3�6�&-�&�0�����$-�%�����%�D�U�� �J�U�D�S�K�V�� �F�R�P�S�D�U�H�G�� �E�D�V�D�O�� �Pitochondrial (A) and 
glycolytic ATP (B) levels for WT versus �)�����&�� �K�X�P�D�Q�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V�� ATP-
levels were calculated according to Agilent manufacture protocols. �Q� ��������
�
�
�
�S�����������������6�W�X�G�H�Q�W�¶�V���W-�W�H�V�W�� 
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�6�X�S�S�O�H�P�H�Q�W���)�L�J�X�U�H����������. Documentation of full scans of Western blots . 
Frames indicate the data presented as manuscript figures or supplemental 
information.  
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Supplemental tables and supporting information 
 
 
 
 
 

 
 
 
 
 
 
Supplement Table 3.2  NRCM isolation buffer and cultivation medium 
 

CBFHH buffer    
 MW(g/mol) Final concentration 
NaCl 58.44 37 mM 
KCl 74.56 5.4 mM 
KH2PO4 136.09 0.44 mM 
Na2HPO4· 2 H2O 177.99 33.5 mM 
Glucose 180.16 5.6 mM 
HEPES 238.31 20 mM 
MgSO4 120.37 0.8 mM 
In 500 mL ddH2O, pH 7.4  
 
NRCM cultivation medium  
 MW(g/mol) Final concentration 
FBS - 10 % (v/v) 
5-Bromo-2'-deoxyuridine 307.10 10 mM  
Penicillin/streptomycin ��647 1 % (v/v) 
In 500 mL cell culture medium (DMEM-1 g/L D-glucose, Thermo Fisher 
Scientific)  

Supplement Table 3.1  ExaC based analysis of human CAV3 mutations 
 

Human CA3 
mutation22 

Electrocardiogram 
QTc > 440 ms22 

Allele frequency ExAc 
Rare frequency cut off < 

0.0001 %23 
G56S - > 0.010 % 
C72W - > 0.001 % 
T78M 456 > 0.003 % 
A85T - - 
F97C 532 - 
S141R 480 - 
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Supplement Table 3.3 APEX2 biotinylation buffers 
 
Quenching buffer  
 MW(g/mol) Final concentration 
6-Hydroxy-2,5,7,8-
tetramethylchroman-2-
carboxylic-acid (Trolox) 

250.29 5 mM 

Sodium azide 65 10 mM 
Sodium ascorbate 136.09 10 mM 
In 50 mL PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco)  
 
RIPA quenching buffer  
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 50 mM 
NaCl 58.44 150 mM 
Triton-X-100 ��647 1 % (v/v) 
Sodium deoxycholate 414.55 0.5 % (w/v) 
Sodium dodecyl sulfate 288.37 0.2 % (v/v) 
6-Hydroxy-2,5,7,8-
tetramethylchroman-2-
carboxylic-acid (Trolox) 

250.29 5 mM 

Sodium azide 65 10 mM 
Sodium ascorbate 136.09 10 mM 
In 10 mL ddH2O, pH 7.4 + 1 tablet of protease inhibitors (Complete Mini EDTA 
free, Sigma Aldrich)  
 
Tris/HCl buffer containing urea 
 MW(g/mol) Final concentration 
Tris HCl, pH 8 157.60 50 mM 
Urea 60.06 2 mM 
In 1 L ddH2O, pH 8  
 
Biotin buffer  
 MW(g/mol) Final concentration 
Biotin 244.31 2 mM 
Sodium dodecyl sulfate 288.37 2 % (v/v) 
In 1 mL ddH2O, pH 8  
 
Supplement Table 3.4  Mass spectrometry loading buffer 
 
MS loading buffer 
 MW(g/mol) Final concentration 
Acetonitrile 41.05 2 % (w/v)  
Formic acid 46.03 0.1 % (w/v)  
In 50 mL ddH2O 
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Supplement Table 3.5 Stem cell differentiation and human 
cardiomyocyte culture media 
 
iPSC culture medium 
 MW(g/mol) Final concentration 
Thiazovivin ��311.4 2 µM 
In 500 mL cell culture medium (StemMACS iPS-Brew stem cell culture media, 
Miltenyi Biotec) 
 
Cardio differentiation medium 
 MW(g/mol) Final concentration 
Human recombinant 
albumin 

- 0.5 mg/mL 

L-ascorbic acid 2-phosphate 289.54 0.2 mg/mL 
In 500 mL cell culture medium (RPMI 1640 cell culture medium with Glutamax 
and HEPES, Thermo Fisher Scientific )  
 
Cardio selection medium 
 MW(g/mol) Final concentration 
Human recombinant 
albumin 

- 0.5 mg/mL 

L-ascorbic acid 2-phosphate 289.54 0.2 mg/mL 
lactate 89.07 4 mM 
In 500 mL cell culture medium (RPMI 1640 cell culture medium, no glucose, 
Thermo Fisher Scientific) 
 
Cardio culture medium 
 MW(g/mol) Final concentration 
B27 - 2 % (v/v) 
In 500 mL cell culture medium (RPMI 1640 cell culture medium with Glutamax 
and HEPES, Thermo Fisher Scientific ) 
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Supplement Table 3.6 Stem cell blocking buffer 
 
Stem cell blocking buffer (immunofluorescence) 
 MW(g/mol) Final concentration 
Bovine Serum Albumin - 1 % (v/v) 
In 50 mL PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco) 
 
 
 
Supplement Table 3.7 Cell lysis and protein transfer buffers 
 

 

 

 
 
Supplement Table 3.8 Seahorse XF assay buffer 
 
Seahorse XF assay buffer 
 MW(g/mol) Final concentration 
Pyruvate 88.06 1 mM 
Glucose 180.16 4.5 mg/mL 
In 500 mL Seahorse assay medium (Seahorse XF assay medium, Agilent) 

RIPA buffer  
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 50 mM 
NaCl 58.44 150 mM 
Triton-X-100 ��647 1 % (v/v) 
Sodium deoxycholate 414.55 0.5 % (w/v) 
Sodium dodecyl sulfate 288.37 0.2 % (v/v) 
In 10 mL ddH2O, pH 7.4 + 1 tablet of protease inhibitors (Complete Mini EDTA 
free, Sigma Aldrich) 

Transfer buffer (immunoblot) 
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 191.6 mM 
Glycine 75.07 1.92 M 
In 1 L ddH2O, pH 7.4  

5 x SDS buffer (immunoblot) 
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 191.6 mM 
Glycine 75.07 1.92 M 
SDS 288.37 34.69 mM 
��-Mercapto Ethanol 78.31 5 % (v/v) 
In 1 L ddH2O, pH 8.3; dilute 2 mL 5 x SDS buffer in 3 mL to yield 2 x SDS buffer   
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Supplement Table 3.9 HEK293A cell culture medium 
 
HEK293A cell culture medium  
 MW(g/mol) Final concentration 
FBS - 10 % (v/v) 
L-glutamine 146.14 2 mM  
penicillin/streptomycin ��- 1 % (v/v) 
In 500 mL cell culture medium ���'�X�O�E�H�F�F�R�¶�V���0�R�G�L�I�L�H�G���(�D�J�O�H�¶�V���0�H�G�L�X�P��- low 
glucose, Sigma Aldrich) 
 
Supplement Table 3.10 Blue Native (BN)-PAGE buffers 
 
Homogenization buffer 
 MW(g/mol) Final concentration 
Sucrose 342.30 250 mM 
Tris HCl, pH 7.4 157.60 10 mM 
EDTA 292.24  1 mM 
PMSF 174.19 1 mM 
In 50 mL ddH2O, pH 7.4  
 
Solubilization buffer 
 MW(g/mol) Final concentration 
NaCl 58.44 50 mM 
imidazole 68.08 50 mM 
EDTA 292.24  1 mM 
aminocaproic acid 414.55 2 mM 
In 50 mL ddH2O, pH 7.4  
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Supplement Table 3.11 Mouse cardiomyocyte isolation, blocking, and 
permeabilization buffers 
 
Perfusion buffer (mouse heart) 
 MW(g/mol) Final concentration 
NaCl 58.44 120.4 mM 
KCl 74.56 14.7 mM 
KH2PO41 36.09 0.6 mM 
Na2HPO4· 2 H2O 177.99 0.6 mM 
MgSO4· 7 H2O 246.48 1.2 mM 
HEPES 238.31 10 mM 
NaHCO3 84.01 4.6 mM 
Taurin 125.20 30 mM 
2,3-Butanedione monoxime 101.1 10 mM 
Glucose 180.16 5.5 mM 
In 1 L ddH2O, pH 7.4 
 
Digestion buffer (mouse heart) 
 MW(g/mol) Final concentration 
Collagenase type II - 2 mg/mL 
CaCl2 110.98 40 ���0 
In 50 mL perfusion buffer, pH 7.4 
 
Stop buffer (mouse heart) 
 MW(g/mol) Final concentration 
Bovine calf serum - 10 % (v/v) 
CaCl2 110.98 12.5 ���0 
In 50 mL perfusion buffer, pH 7.4 
 
Blocking/permeabilization buffer (mouse cardiomyocytes 
immunofluorescence) 
 MW(g/mol) Final concentration(mM) 
Bovine calf serum - 10 % (v/v) 
Triton X-100 74.56 0.2 % (v/v) 
In 50 mL PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco) 
 
 
Supplement Table 3.12 Electron tomography buffer 
 
�5�H�\�Q�R�O�G�¶�V���O�H�D�G���F�L�W�U�D�W�H 
 MW(g/mol) Final concentration 
Pb(NO3)2 331.23  80 mM  
Na3C6H5O7 258.06 136 mM  
NaOH, 1N 40.00 8 mL (v/v) 
In 50 mL ddH2O, pH 12  
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Supplement Table 3.13 Immunoprecipitation buffers 
 
CHAPS co-IP buffer 
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 50 mM  
NaCl 58.44 150 mM  
CHAPS 614.88 0.15 % (w/v) 
EGTA 380.35 1 mM 
In 10 mL ddH2O, pH 7.4 + 1 tablet of protease inhibitors (Complete Mini EDTA 
free, Sigma Aldrich) 
 
Sodium deoxycholate co-IP buffer 
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 50 mM  
NaCl 58.44 150 mM  
Triton-X-100 614.88 1 % (v/v) 
Sodium deoxycholat 414.55 0.5 % (w/v) 
In 10 mL ddH2O, pH 7.4 + 1 tablet of protease inhibitors (Complete Mini EDTA 
free, Sigma Aldrich) 
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4 Additional Methods  
 
Methods that are described in the manuscript are not stated again. All buffers 
that are not listed in this additional method part are specified in the buffer lists 
(Supplement Tables 3.2-3.13 ) in the supplemental method part of the 
manuscript. 
Used adenoviruses, cell lines, chemicals, drugs, kits, cell-culture media, 
consumables, general equipment and software are listed in the Appendix Table 
8.1�±8.9 and the used antibodies with detailed information are listed in Appendix 
Table 8.10. 
 
4.1 Co-immunoprecipitation of CAV3 interacting proteins 
 
Mouse ventricles were prepared from perfused mice hearts as described in the 
supplemental methods of the manuscript (Adult mouse ventricular 
cardiomyocyte isolation) . Ventricular tissues from nine adult mice (12 weeks) 
were manually dissected under a binocular microscope (Stemi 305, Zeiss), 
snap-frozen in liquid N2, cut into small pieces, and stored at -80 °C until further 
use. Next, ventricular tissues of three mice, were solubilized with either 1 mL 
CHAPS-, 1 mL sodium deoxycholate- or 1 mL octylglucoside co-IP buffer, 
respectively (Figure 5.1 A ; Table 4.1). The protein concentration was 
determined by absorption measurement (Pierce BCA Protein Assay Kit; Thermo 
Fisher Scientific), and lysates of 500 ���J�� �Z�H�U�H�� �L�Q�F�X�E�D�W�H�G�� �Z�L�W�K�� �� ���J�� �D�Q�W�L-CAV3 
antibody (ab2912, Abcam) or normal rabbit IgG (12-370, Merck) antibody at 
4 °C overnight in an overhead rotator (Overhead rotator, Bio Grant). Magnetic 
beads (Dynabeads Protein G, Thermo Fisher Scientific) were equilibrated in a 
ratio 1:1 in the respective co-IP buffer and 30 µL equilibrated magnetic beads 
were added to the samples and incubated for 2 h at 4 °C (Overhead rotator, Bio 
Grant). The magnetic beads were extracted with a magnet (DynaMag-2 
Magnet, Thermo Fisher Scientific), the solution was discarded and the beads 
were washed thrice with ice-cold 500 µL of the respective co-IP buffer to 
minimize unspecific binding. Precipitated proteins were eluted in 60 µL of 
2 × SDS buffer containing ��-mercaptoethanol (Supplement Table 3.7 ). The co-
IP samples were analyzed by label-free SWATH-MS (Sequential Window 
Acquisition of All THeoretical Mass Spectra) as described in the supplemental 
methods of the manuscript (Sample preparation for label-free SWATH-MS 
(Sequential Window Acquisition of All THeoretical Mass Spectra) and 
NanoLC-MS/MS analysis by label-free SWATH- MS). Mass spectrometry was 
carried out by the proteomic service unit (Dr. Christof Lenz, Institute of Clinical 
Chemistry, University Medical Center Göttingen, Göttingen). 
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Table 4.1 Immunoprecipitation buffers 
CHAPS co-IP buffer 
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 50 mM  
NaCl 58.44 150 mM  
CHAPS 614.88 0.15 % (w/v) 
EGTA 380.35 1 mM 
In 10 mL ddH2O, pH 7.4 + 1 tablet of protease inhibitors (Complete Mini 
EDTA free, Sigma Aldrich) 

 
Sodium deoxycholate co-IP buffer 
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 50 mM  
NaCl 58.44 150 mM  
Triton-X-100 614.88 1 % (v/v) 
Sodium deoxycholat 414.55 0.5 % (w/v) 
In 10 mL ddH2O, pH 7.4 + 1 tablet of protease inhibitors (Complete Mini 
EDTA free, Sigma Aldrich) 

 
Octylglucoside co-IP buffer 
 MW(g/mol) Final concentration 
Tris HCl, pH 7.4 157.60 50 mM  
NaCl 58.44 150 mM  
Triton-X-100 614.88 1 % (v/v) 
�2�F�W�\�O����-D-glucopyranoside 292.37 60 mM 
In 10 mL ddH2O, pH 7.4 + 1 tablet of protease inhibitors (Complete Mini 
EDTA free, Sigma Aldrich) 

 
4.2 Adult mouse atria cardiomyocyte isolation 
 
Similar to the protocol described for ventricular cardiomyocytes, adult atrial 
cardiomyocytes were perfused and digested as described in the supplemental 
methods of the manuscript (Adult mouse ventricular cardiomyocyte 
isolation ). Atria tissue was dissected under a binocular microscope (Stemi 305, 
Zeiss) using microsurgical scissors (Fine Science Tools GmbH, 15025-10) and 
gently minced in 1 mL digestion buffer (Supplement Table 3.11 ). Digestion was 
stopped by adding 1.5 mL stopping buffer (Supplement Table 3.11 ) and the 
suspension was transferred into a 15 mL Falcon tube (1048400, Sarstedt). 
Isolated atrial cardiomyocytes were centrifuged at 200 x g for 5 min (Heraeus, 
Fresco 21 centrifuge, Thermo Fisher Scientific) and resuspended in 2 mL 
perfusion buffer (Supplement Table 3.11 ). Cell quality was documented by 
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transmitted light imaging (Zeiss LSM 710 and 880, Jena, Germany) using Fiji 
(https://imagej.net/Fiji) following criteria documented previously.133 
 

4.3 Superresolution STED immunofluorescence nanoscopy 
 
Isolated atrial and ventricular cardiomyocytes were prepared and fixed for 
STED microscopy as described in the supplemental methods of the manuscript 
(Confocal microscopy and superresolution STED immunofluorescence 
nanoscopy ). The fixed samples were incubated overnight at 4 °C in 500 µL 
blocking/permeabilization buffer (Supplement Table 3.11 ) followed by an 
incubation overnight at 4 °C with TfR1 (13-6800, Invitrogen) and CAV3 (2912, 
Abcam) or CAV1 (Ab17052, Abcam) and CAV3 (2912, Abcam), diluted in 
blocking buffer to a final concentration of 1 µg antibody/mL in 
blocking/permeabilization buffer. After washing thrice with 
blocking/permeabilization buffer, samples were incubated with secondary 
antibodies diluted 1:1000 overnight at 4 °C. For super resolution STED 
microscopy, STAR 635P (2-0002-007-5, Abberior) and STAR 580 (2-0012-005-
8) was used. After washing thrice with PBS (PBS, pH 7.4, without Ca2+ and 
Mg2+, Gibco), samples were embedded in DAPI-free mounting medium 
(ProLong Gold Antifade Mountant, Thermo Fisher Scientific). Embedded 
samples were stored overnight at RT and imaged the next day.  
 
4.4 Transferrin and Cholesterol-PEG-KK114 live labeling in ventricular 

cardiomyocytes 
 
For the live labeling of ventricular cardiomyocytes with differic Transfferin-488 
(differic Transferrin Alexa Fluor conjugate 488, Thermo Fisher Scientific) and a 
custom-made photostable cholesterol dye (Cholesterol-PEG-KK114)8, isolated 
ventricular cardiomyocytes were plated on glass coverslips (Ø 18 mm, width 
1.5 mm, Menzel) after coating with laminin (2 mg/mL) at a dilution of 1:10 in 
perfusion buffer (Supplement Table 3.11 ). Living ventricular cardiomyocytes 
were incubated with 250 ���J���G�L�I�I�H�U�L�F Transfferin-488 diluted in 500 µL PBS (PBS, 
pH 7.4, without Ca2+ and Mg2+, Gibco) for 5 min on ice, according to the 
manufacture protocol (Transferrin conjugates, Thermo Fischer Scientific). After 
washing thrice with ice cold PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco), 
living ventricular cardiomyocytes were incubated 15 min at RT with 250 nM 
Chol-PEG-KK114, according to our previous published protocol.8 After 
incubation, living ventricular cardiomyocytes were washed thrice with ice cold 
PBS (PBS, pH 7.4, without Ca2+ and Mg2+, Gibco).  
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For STED nanoscopy a Leica TCS SP8 system with a HC PL APO C2S 
100x/1.40 oil objective and a pixel size 16.23 x 16.23 nm was used. For live 
imaging, KK114 was exited at 635 nm, and fluorescence was detected at 650�±
700 nm. Differic Transfferin-488 was exited at 488 nm, and fluorescence was 
detected at 490�±540 nm. For STED depletion of KK114 a 775 nm laser beam 
was used, and for STED depletion of Transfferin-488 a 595 nm laser beam was 
used. To maximize the imaging resolution, the STED laser power was adjusted 
following previously established workflows.133 Raw images were processed in 
Fiji (https://imagej.net/Fiji) following established protocols.133  
 
4.5 iPSC cardiomyocyte cell surface biotinylation of TfR1 
 
Stem cell differentiation and genome editing was carried out by the stem cell 
service unit (Dr. Lukas Cyganek, Stem Cell Unit, Göttingen). 
Human iPSC-WT or CAV3 knock-out derived cardiomyocytes were seeded at a 
density of 1 million cells on 35 mm dishes (CELLSTAR 6-well plate, Greiner) 
and cultured for 60 days. For cell surface biotinylation, iPSC-cardiomyocytes 
were washed thrice with 500 µL ice cold PBS (PBS, pH 7.4, without Ca2+and 
Mg2+, Gibco) and incubated for 1 h at 4 °C with 2 mM tagging solution (EZ-Link 
Sulfo-NHS-Biotin, Thermo Fisher Scientific) or PBS (PBS, pH 7.4, without Ca2+ 
and Mg2+, Gibco) as negative control. Further, sample preparation and avidin 
pulldown of biotinylated proteins were performed as described in supplemental 
methods of the manuscript (iPSC-cardiomyocyte cell surface biotinylation 
and elution of biotinylated surface proteins ). 
 
4.6 Immunoblotting of iPSC derived cardiomyocytes and isolated mouse 

cardiomyocytes 
 
Stem cell differentiation and genome editing was carried out by the stem cell 
service unit (Dr. Lukas Cyganek, Stem Cell Unit, Göttingen). 
For immunoblotting of iPSC derived and isolated cardiomyocytes, cells were 
homogenized and the proteins were transferred onto PVDF membranes as 
described in the supplemental methods of the manuscript (Immunoblotting 
and streptavidin blotting for protein analysis ). 
PVDF membranes were incubated with 1 µg / mL TfR1, CAV3, ��-�$�F�W�L�Q���R�U���&�$�9����
��Table 8.10�����L�Q��5 % w/v non-fat milk (Milkpowder, Roth) in Tris-buffered saline 
with 0.05 % v/v Tween (Tween 20, Sigma Aldrich) at 4 °C overnight. Followed 
by washing thrice with PBS (pH 7.4, without Ca2+ and Mg2+, Gibco) and 
incubated with fluorescent anti-mouse or anti-rabbit secondary antibodies (P/N 
926-32212, P/N 926-68072, P/N 926-32213, P/N 926-68073, IRDye LI-COR) at 
a dilution of 1:15,000 at 4 °C overnight. Fluorescence signals were captured 
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with the Odyssey CLx imaging system (LI-COR) and band intensities quantified 
with Image Studio Lite Version 5.2 (LI-COR). 
 
4.7 Proximity analysis for CAV3-S141R biotinylated proteins  
 
The APEX2 assay, avidin capture of biotinylated proteins, MS analysis and 
APEX2 data processing for V5-APEX2-CAV3-S141R was performed as 
described for the V5-APEX2-CAV3-F97C in the supplemental methods of the 
manuscript (page 50-54). Mass spectrometry was carried out by the proteomic 
service unit (Dr. Christof Lenz, Institute of Clinical Chemistry, University Medical 
Center Göttingen, Göttingen). 
Following protein identification by mass spectrometry, we analyzed the GO 
�W�H�U�P�V���µ�F�D�Y�H�R�O�D�H�
�����
�S�\�U�X�Y�D�W�H���P�H�W�D�E�R�O�L�V�P�
�����D�Q�G���µ�L�U�R�Q���X�S�W�D�N�H���	���W�U�D�Q�V�S�R�U�W�¶���E�D�V�H�G���R�Q��
the STRING V11 database for protein�±protein interaction networks (string-
db.org). We used a scoring cut-�R�I�I�� �R�I�� �•���������� �W�R�� �G�H�I�L�Q�H�� �S�R�V�L�W�L�Y�H�� �L�Q�W�H�U�D�F�W�L�R�Q�V��
following published workflows.134 
 
4.8 Statistical analysis 
 
Data are presented as mean ± standard error of the mean (SEM). Unpaired 2-
�W�D�L�O�H�G�� �6�W�X�G�H�Q�W�¶�V��t-test or 1-way-ANOVA was applied as specified in the figure 
legends. A p value of less than 0.05 was considered statistically significant. 
Statistical analyses were performed with Graph Pad Prism version 7.03.  
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5 Additional Results 
 
5.1 Validation of CAV immunoprecipitation conditions 
 
To validate the �:�7��V5-APEX2-CAV3 proximity proteomic data, which include 
the �P�R�Q�R�F�D�U�E�R�[�\�O�D�W�H���W�U�D�Q�V�S�R�U�W�H�U���������0�F�7�������D�Q�G���W�K�H���W�U�D�Q�V�I�H�U�U�L�Q���U�H�F�H�S�W�R�U���������7�I�5������
�D�V�� �S�R�W�H�Q�W�L�D�O�O�\�� �Q�H�Z�� �&�$�9���� �L�Q�W�H�U�D�F�W�R�U�V (manuscript Figure 3.4) and to further 
dissect CAV1 and CAV3 isoform specific protein interactions, we established 
immunoprecipitation protocols for CAV3 in mouse ventricular tissue lysates. For 
that purpose, three different lysis buffers were tested in parallel according to 
previously reported CAV3 immunoprecipitation protocols in heterologous cell 
systems.135,136,123 Specifically, three whole ventricular tissues were lysed with 
either �R�F�W�\�O�� ��-D-glucopyranoside (OGP), sodium deoxycholate (DCA) or 3-((3-
cholamidopropyl) dimethylammonio)-1-propanesulfonate (CHAPS), and �&�$�9����
�D�I�I�L�Q�L�W�\���S�X�U�L�I�L�H�G���L�Q�W�H�U�D�F�W�R�U�V were quantified by Sequential Window Acquisition of 
All Theoretical Mass Spectra (AP/SWATH-MS) (Figure 5.1 A ). Mass 
spectrometry was carried out by the proteomic service unit (Dr. Christof Lenz, 
Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen). 
Positive hits were identified by permutation-based false-discovery rate analysis 
(p<0.05)137, and a log2 fold change of the CAV3 versus IgG ratio >1 was 
defined as cut-off criteria, according to previous established protocols.138  
As compared to the control (IgG), we identified 12 potential CAV3 protein 
interactions using OGP, 17 potential interactions using DCA, and 70 potential 
interactions using CHAPS (Figure 5.1 B-D , Table 8.15-8.17). Importantly, 
�S�U�R�W�H�L�Q�V-�R�I-�L�Q�W�H�U�H�V�W�� ��POIs) identified by proximity proteomic analysis 
(manuscript Figure 3.2 ), including the e�V�V�H�Q�W�L�D�O�� �F�R�U�H�� �F�R�P�S�O�H�[�� �F�D�Y�H�R�O�D�U��
�S�U�R�W�H�L�Q�V�� �&avin1 and Cavin4,139,140, as well as McT1, Na,K-�$�7�3�D�V�H�� �.������ �1�F�[������
Connexin43, and the insulin-dependent glucose transporter (GluT4) were 
comprehensively identified by CHAPS solubilisation and SWATH-MS 
(Figure 5.1 D ).��Therefore, CHAPS was used for the identification of isoform-
specific CAV interactions (manuscript Figure 3.4 A-B). Finally, CAV3 
immunoprecipitation experiments followed by immunoblotting confirmed McT1 
and TfR1 as CAV3 interactors (manuscript Figure 3.4 C). 
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�)�L�J�X�U�H�� �������� �9�D�O�L�G�D�W�L�R�Q�� �R�I�� �&�$�9���� �L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q�� �F�R�Q�G�L�W�L�R�Q�V�� �Ey AP and 
SWATH-MS. �$����Workflow used for CAV���� �L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q�� �L�Q�� �P�R�X�V�H��
�Y�H�Q�W�U�L�F�X�O�D�U���W�L�V�V�X�H���O�\�V�D�W�H�V�����7�K�U�H�H���Zhole���Yentricular tissues were lysed with octyl 
��-D-glucopyranoside (OGP), sodium deoxycholate (DCA) or 3-((3-
cholamidopropyl) dimethylammonio)-1-propanesulfonate (CHAPS) and 500 µg 
tissue lysate incubated with CAV3 antibody. �&�$�9�����L�Q�W�H�U�D�F�W�R�U�V���Z�H�U�H���H�Q�U�L�F�K�H�G���E�\��
�L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q�� ���,�3���� �D�Q�G�� �D�Q�D�O�\�]�H�G�� �E�\�� �6�:�$�7�+-�0�6�����%-�' ���� �9�R�O�F�D�Q�R�� �S�O�R�W�V��
�V�K�R�Z�L�Q�J�� �&�$�9���� �H�Q�U�L�F�K�H�G�� �S�U�R�W�H�L�Q�� �L�Q�W�H�U�D�F�W�R�U�V�� �I�R�U��tissue lysates solubilized with 
OGP (B), DCA (C) or CHAPS (D). Logarithmic ratios identified enriched CAV3 
interacting proteins as indicated: positive hits (blue circles) including functionally 
relevant proteins of interest (POIs, yellow circles). Positive hits and POIs were 
identified by permutation-based false-discovery rate analysis (t-test, p>0.05, 
FDR=5 %, S0=0.1) and a log2 fold change >1 defined as cut-off criteria (dashed 
line). Negative hits (red circles) were excluded based on the same criteria. n=3. 
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5.2 TfR1 and Transferrin are localized in close proximity to CAV3 
nanodomains  

 
Using affinity proteomics we confirmed TfR1 as a novel candidate CAV3 
interactor (manuscript Figure 3.4 C), suggesting that CAV3 stabilizes TfR1 in 
the surface membrane as a prerequisite for Transferrin uptake. To investigate 
the relationship between CAV3 and TfR1 in mature adult mouse 
cardiomyocytes, we used confocal (LSM 710 system, Plan-Apochromat 
63x/1.40 oil objective, Zeiss) and STimulated Emission Depletion (STED) 
microscopy (TCS SP8 system, HC PL APO C2S 100x/1.40 oil objective, Leica). 
While confocal imaging resulted in blurred TfR1 (13-6800, Invitrogen) signal 
blobs, STED nanoscopy resolved small punctate TfR1 cluster signals in the 
lateral surface membrane and in transverse (T-)tubules in close proximity to 
CAV3 (2912, Abcam) cluster signals (Figure 5.2 A ).  
Since TfR1 facilitates the binding and subsequent endocytosis of monoferric 
and differic Transferrin,141 we hypothesized that iron-bounded Transferrin is 
located in immediate proximity to CAV3 clusters. To investigate the localization 
of iron-bounded Transferrin, we labeled living ventricular cardiomyocytes with 
extracellular differic Transferrin-Alexa488 (differic Transferrin Alexa Fluor 
conjugate 488, Thermo Fisher Scientific). Confocal imaging revealed differic-
Transferrin cluster signals across the cell surface (Figure 5.2 B , top). 
Cardiomyocytes not exposed to differic Transferrin-Alexa488 (negative control) 
confirmed the specificity of differic Transferrin-Alexa488 signals (Figure 5.2 B , 
bottom). 
To validate if the differic Transferrin signals are also in close proximity to 
cholesterol-rich CAV3 membrane nanodomains in living cardiomyocytes,23 we 
used a custom-made photostable cholesterol dye (Cholesterol-PEG-KK114) for 
staining.8 Co-labeling of living ventricular cardiomyocytes with differic 
Transferrin-Alexa488 and Cholesterol-PEG-KK114 indeed showed fluorescent 
differic Transferrin-Alexa488 signals adjacent to cholesterol membrane domains 
at the lateral surface and in T-tubules in cardiomyocytes (Figure 5.2 C ). These 
data suggested that differic Transferrin binds to cholesterol-rich nanodomains 
stabilized by CAV3 clusters, namely caveolae and T-tubules.  
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�)�L�J�X�U�H�� �������� �'�L�V�W�U�L�E�X�W�L�R�Q�� �R�I�� �7�I�5���� �D�Q�G�� �7�U�D�Q�V�I�H�U�U�L�Q�� �L�Q�� �Y�H�Q�W�U�L�F�X�O�D�U��
�F�D�U�G�L�R�P�\�R�F�\�W�H�V. �$����Confocal and STED co-immunofluorescence of CAV3 and 
TfR1 in ventricular cardiomyocytes. The cartoon of a ventricular cardiomyocyte 
corresponds with the subcellular image panels on the right showing the confocal 
and STED data. �'�D�V�K�H�G���E�R�[�H�V���L�Q�G�L�F�D�W�H���K�L�J�K-�S�R�Z�H�U���P�D�J�Q�L�I�L�F�D�W�L�R�Q�V����Scale bars: 
image panels 1 ���P���� �P�D�J�Q�L�I�L�F�D�W�L�R�Q�V�� ������ nm. B, Confocal imaging of living 
ventricular cardiomyocytes labeled with differic Transferrin-Alexa488. Differic 
Transferrin signals at the lateral membrane surface of extracellularly labeled 
ventricular cardiomyocytes are shown. Ventricular cardiomyocytes not exposed 
to differic Transferrin-Alexa488 were used as negative control. Scale bars: 
image panels 10 ���P����C, STED imaging of a living ventricular cardiomyocyte co-
labeled with differic Transferrin-Alexa488 and Cholesterol-PEG-KK144 showing 
differic Transferrin signals adjacent to cholesterol-rich domains at the lateral 
surface and in transverse tubules. �'�D�V�K�H�G���E�R�[�H�V���L�Q�G�L�F�D�W�H���P�D�J�Q�L�I�L�F�D�W�L�R�Q�V����Scale 
bars: image panels 1 ���P�����P�D�J�Q�L�I�L�F�D�W�L�R�Q�V�������� nm. 
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5.3 CAV3 protein complexes maintain the surface expression of the TfR1 
 
Based on the proposed organization of TfR1 and CAV3 in cholesterol-rich 
membrane domains, we hypothesized that CAV3 protein complexes are 
necessary as scaffolds for protein interactions that stabilize the expression of 
TfR1���L�Q���W�K�H���V�X�U�I�D�F�H���P�H�P�E�U�D�Q�H. To test this hypothesis, �Z�H���J�H�Q�H�U�D�W�H�G���D���K�X�P�D�Q��
�S�O�X�U�L�S�R�W�H�Q�W���V�W�H�P���F�H�O�O�����L�3�6�&�����N�Q�R�F�N-�R�X�W���P�R�G�H�O�����W�D�U�J�H�W�L�Q�J���W�K�H���V�W�D�U�W���F�R�G�R�Q���R�I���&�$�9����
�H�[�R�Q�� ���� �E�\��clustered regularly interspaced short palindromic repeats��
���&�5�,�6�3�5�����&�D�V���� ��manuscript Supplement Figure 3.13 A )���� �:�K�L�O�H��
�L�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �R�I�� �:�7�� �L�3�6�&-�G�H�U�L�Y�H�G�� �F�D�U�G�L�R�P�\�R�F�\�W�H�� �O�\�V�D�W�H�V�� �F�R�Q�I�L�U�P�H�G�� �U�R�E�X�V�W��
�S�U�R�W�H�L�Q���H�[�S�U�H�V�V�L�R�Q���H�D�F�K���R�I���&�$�9������2912, Abcam�����D�Q�G���7�I�5������13-6800, Invitrogen����
(Figure 5.3 A ), �7�I�5�����H�[�S�U�H�V�V�L�R�Q���Z�D�V���Vignificantly decreased���L�Q���&�$�9�����N�Q�R�F�N-�R�X�W��
�L�3�6�&�� �G�H�U�L�Y�H�G�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V��(Figure 5.3 A ). Furthermore, the expression of 
TfR1 was analyzed by extracellular surface biotinylation in living �L�3�6�&-
cardiomyocytes to explore if a global decrease in TfR1 is functionally relevant in 
the sarcolemma. Biotinylated proteins were enriched by affinity purification���D�Q�G��
immunoblotting indeed demonstrated a significantly reduced surface expression 
of TfR1 in human CAV3 �N�Q�R�F�N-�R�X�W cardiomyocytes (Figure 5.3 B ). As expected 
the negative control, ��-�$�F�W�L�Q�� ��sc-47778, Santa Cruz������ �Z�D�V�� �Q�R�W�� �E�L�R�W�L�Q�\�O�D�W�H�G��
(Figure 5.3 B )�����7�D�N�H�Q���W�R�J�H�W�K�H�U���� �Z�H�� �V�K�R�Z�H�G�� �W�K�D�W�� �&�$�9���� �N�Q�R�F�N-�R�X�W��disrupts TfR1 
expression in the plasma membrane, indicating that �&�$�9���� �F�R�P�S�O�H�[�H�V�� �D�U�H��
�U�H�T�X�L�U�H�G���W�R���P�D�L�Q�W�D�L�Q��TfR1 surface expression. 
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�)�L�J�X�U�H����������CAV3 knock-out leads to disrupted TfR1 surface expression ���L�Q��
�K�X�P�D�Q���L�3�6�&-cardiomyocytes �����$�����,�P�P�X�Q�R�E�O�R�W���D�Q�D�O�\�V�L�V���R�I���K�X�P�D�Q���L�3�6�&-�G�H�U�L�Y�H�G��
�&�$�9�����N�Q�R�F�N-�R�X�W���F�D�U�G�L�R�P�\�R�F�\�W�H�V���V�K�R�Z�H�G���U�R�E�X�V�W���H�[�S�U�H�V�V�L�R�Q���R�I���&�$�9�����D�Q�G���7�I�5������
�&�$�9���� �D�Q�W�L�E�R�G�\-�V�S�H�F�L�I�L�F signals were confirmed in CAV3 knock-out iPSC-
derived cardiomyocytes. �%�D�U�� �J�U�D�S�K�� �V�K�R�Z�L�Q�J�� �D�� �V�L�J�Q�L�I�L�F�D�Q�W�� �U�H�G�X�F�W�L�R�Q�� �R�I�� �J�O�R�E�D�O��
�7�I�5�����H�[�S�U�H�V�V�L�R�Q���L�Q���&�$�9�����N�Q�R�F�N-�R�X�W���F�D�U�G�L�R�P�\�R�F�\�W�H�V���Q�R�U�P�D�O�L�]�H�G���W�R����-�$�F�W�L�Q�����Q� ������
�6�W�X�G�H�Q�W�¶�V�� �W-�W�H�V�W���� �
 �S��������������B, Extracellular protein biotinylation was applied to 
living human iPSC-derived cardiomyocytes���W�R���D�V�V�H�V�V���7�I�5�����V�X�U�I�D�F�H���H�[�S�U�H�V�V�L�R�Q����
�%�L�R�W�L�Q�\�O�D�W�H�G�� �S�U�R�W�H�L�Q�V�� �Z�H�U�H��enriched by affinity purification �D�Q�G�� �7�I�5�� was 
identified by immunoblotting in the eluated fraction. ��-�$�F�W�L�Q���L�P�P�X�Q�R�E�O�R�W�W�L�Q�J���Z�D�V��
�X�V�H�G�� �D�V�� �Q�H�J�D�W�L�Y�H�� �F�\�W�R�V�R�O�L�F�� �S�U�R�W�H�L�Q�� �O�D�E�H�O�L�Q�J�� �F�R�Q�W�U�R�O���� �%�D�U�� �J�U�D�S�K�� �V�K�R�Z�L�Q�J�� �D��
�V�L�J�Q�L�I�L�F�D�Q�W���O�R�V�V���R�I�� �V�X�U�I�D�F�H���7�I�5���� �L�Q���&�$�9���� �N�Q�R�F�N-�R�X�W���Y�H�U�V�X�V���:�7���F�D�U�G�L�R�P�\�R�F�\�W�H�V����
�Q� �������6�W�X�G�H�Q�W�¶�V���W-�W�H�V�W�����
 �S������������ 
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5.4 Ratiometric proteomics identifies a loss of McT1 and TfR1 proximity 
due to the CAV3-S141R mutation 

 
To �D�Q�D�O�\�]�H�� �H�I�I�H�F�W�V�� �R�I��CAV3 mutations �L�Q�� �O�L�Y�L�Q�J�� �Q�H�R�Q�D�W�D�O�� �U�D�W�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V��
���1�5�&�0�V�������Z�H���X�V�H�G the same APEX2 labeling strategy���H�V�W�D�E�O�L�V�K�H�G���I�R�U���:�7���&�$�9����
(manuscript Figure 3.2 A)����Similar to WT CAV3, we achieved stable Isotope 
Labeling by Amino acids in Cell culture (SILAC) based on incorporation of 
96.5% or higher in NRCMs using adenoviral expression (MOI 1) of V5-APEX2-
CAV3-S141R (Figure 5.4 A ). Furthermore, V5-APEX2-CAV3-S141R 
expression was confirmed by V5 (R960-25, Invitrogen) immunoblotting��(Figure 
5.4 B)���� �D�Q�G��V5-APEX2-CAV3-S141R dependent biotinylation of proximal 
proteins was �F�R�Q�I�L�U�P�H�G�� �E�\�� �V�W�U�H�S�W�D�Y�L�G�L�Q�� ���V�W�U�H�S�W�D�Y�L�G�L�Q-RD680; LI-COR���� �E�O�R�W�W�L�Q�J��
(Figure 5.4 B ). Confocal V5 immunofluorescence imaging confirmed the co-
localization of V5-APEX2-CAV3-S141R with native CAV3 (manuscript 
Supplement Figure 3.14 B ). Consistent with a physiological localization pattern 
in NRCMs, we frequently identified plasma membrane proteins. In comparison 
to the WT, we identified a small increase of 5 Golgi-associated proteins for 
CAV3-S141R over 3 Golgi-associated proteins for CAV3-WT (Figure 5.4 C ). 
Importantly, we identified a significant increase of 15 Golgi-associated proteins 
for CAV3-F97C (manuscript Supplement Figure 3.15 C ). Interestingly, similar 
to the F97C mutation (manuscript Supplement Figure 3.15 C ), the number of 
mitochondrial proteins in the proximity of V5-APEX2-CAV3-S141R were also 
reduced (Figure 5.4 C ). We identified 28 mitochondrial annotated proteins for 
V5-APEX2-CAV3-S141R, while 46 proteins were identified for WT V5-APEX2-
Cav3 (Figure 5.4 C ). 
As described in the manuscript, blue native polyacrylamidgelelektrophorese 
(BN-PAGE) analysis showed that the S141R mutation formed high molecular 
weight complexes similar to the WT (manuscript Figure 3.6 B). Moreover, the 
S141R mutation preserved the proximity between proteins of the caveolar core 
complex, while the more peripheral proximity near the core complex with McT1, 
Ncx1, and TfR1 was disrupted (manuscript Figure 3.7 C). We mapped �W�K�H��
�L�Q�W�H�U�D�F�W�L�R�Q���Q�H�W�Z�R�U�N�V���X�V�L�Q�J���W�K�H���*�2���W�H�U�P�V���
�F�D�Y�H�R�O�D�H�
�����
�S�\�U�X�Y�D�W�H���P�H�W�D�E�R�O�L�V�P�
�����D�Q�G��
�
�L�U�R�Q�� �X�S�W�D�N�H�� �	�� �W�U�D�Q�V�S�R�U�W�¶ b�D�V�H�G�� �R�Q�� �W�K�H�� �6�7�5�,�1�*�� �G�D�W�D�E�D�V�H�� ���Y��������142��For the �*�2��
�W�H�U�P�� �µ�F�D�Y�H�R�O�D�H�¶���� �R�Q�O�\�� �W�K�H�� �S�U�R�[�L�P�L�W�\�� �W�R�� �&�$�9���� �Z�D�V�� �O�R�V�W���� �Z�K�L�O�H�� �W�K�H�� �S�U�R�[�L�P�L�W�\�� �I�R�U��
�µ�S�\�U�X�Y�D�W�H�� �P�H�W�D�E�R�O�L�V�P�¶�� �D�Q�G�� �µ�L�U�R�Q�� �X�S�W�D�N�H�� �	�� �W�U�D�Q�V�S�R�U�W�¶�� �D�V�V�R�F�L�D�W�H�G�� �S�U�R�W�H�L�Q�V�� �Z�D�V��
�F�R�P�S�O�H�W�H�O�\�� �G�L�P�L�Q�L�V�K�H�G��(Figure 5.4 D )���� �7�K�H�V�H�� �G�D�W�D�� �V�X�J�J�H�V�W��that V5-APEX2-
CAV3-S141R is transported as a core complex to the plasma membrane, 
however, select peripheral interactions with key metabolic proteins, namely 
McT1 and TfR1 may become impaired.  
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Figure 5.4 ��S141R��V5-APEX2-CAV3 �V�K�R�Z�V�� �S�U�R�[�L�P�L�W�\�� �F�K�D�Q�J�H�V�� �Z�L�W�K�� �&�$�9����
�L�Q�W�H�U�D�F�W�R�U�V���� �$���� �0�D�V�V�� �V�S�H�F�W�U�R�P�H�W�U�\�� ���/�&-�0�6���0�6���� �T�X�D�Q�W�L�I�L�H�G��>96 % or higher��L-
arginine (Arg) and L-lysine (Lys) incorporation. Of note, the y-axis starts at 0.9 
to visualize that the SILAC incorporation was >95 % (red line). n=3. B, APEX2 
biotinylated proteins were captured by streptavidin.���,�����L�Q�S�X�W�����)�7�����I�O�R�Z���W�K�U�R�X�J�K�����(����
�H�O�X�D�W�H���� �9��-�$�3�(�;��-�&�$�9��-�6�������5�� �D�Q�G�� �9��-�$�3�(�;���� �H�[�S�U�H�V�V�L�R�Q�� �Z�D�V�� �F�R�Q�I�L�U�P�H�G�� �E�\��
�9���� �L�P�P�X�Q�R�E�O�R�W�W�L�Q�J���� �Q� �������&�� B�D�U�� �J�U�D�S�K�� �F�R�P�S�D�U�L�Q�J�� �W�K�H�� �Q�X�P�H�U�L�F�D�O�� �F�K�D�Q�J�H�V�� �L�Q��
�R�U�J�D�Q�H�O�O�H-�V�S�H�F�L�I�L�F�� �S�U�R�W�H�L�Q�� �Q�X�P�E�H�U�V�� �G�H�W�H�F�W�H�G��for WT and S141R V5-APEX2-
CAV3 positive hits. D, Analysis of identified proteins for the GO terms 
�µ�F�D�Y�H�R�O�D�H�
���� �
�S�\�U�X�Y�D�W�H�� �P�H�W�D�E�R�O�L�V�P�
���� �D�Q�G�� �µ�L�U�R�Q�� �X�S�W�D�N�H�� �	�� �W�U�D�Q�V�S�R�U�W�¶�� �E�D�V�H�G�� �R�Q���W�K�H��
STRING database. Open circles indicate a loss of proximity identification; the 
red circle highlights the loss of CAV1, McT1 and TfR1 in proximity; blue circles 
indicate preserved interactions. Grey lines indicate �S�U�R�W�H�L�Q�� �L�Q�W�H�U�D�F�W�L�R�Q�V�� �Z�L�W�K�� �D��
�F�R�Q�I�L�G�H�Q�F�H���V�F�R�U�H���R�I���!���������R�U���K�L�J�K�H�U�� 
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5.5 Differential expression of the CAV1 �.- and �� -forms in atrial versus 
ventricular cardiomyocytes  

 
Initially, we identified CAV1 in ventricular cardiomyocytes from adult mouse 
hearts due to the robust isolation of large cell numbers for the mass 
spectrometry analysis (manuscript Figure 3.3 B). Interestingly, a recent 
SWATH-MS analysis identified CAV1 in atrial and ventricular healthy human 
heart tissues from three adult male individuals.16 To investigate if CAV1 is 
expressed in isolated mouse atrial cardiomyocytes, we used immunoblotting 
�D�Q�G�� �6�7�(�'�� �Q�D�Q�R�V�F�R�S�\���� �0�R�U�H�R�Y�H�U���� �W�R�� �D�Q�D�O�\�]�H�� �L�I�� �W�K�H�� �&�$�9���� �.- �D�Q�G�� ��-forms, 
previously identified in skin fibroblasts,143 are present in cardiomyocytes, we 
used a CAV1 antibody (Ab17052, Abcam) that detects the epitope shared by 
both �&�$�9���� �.- �D�Q�G�� ��-�I�R�U�P�V���� �&�$�9���� �.- �D�Q�G�� ��-forms were robustly detected in 
�D�W�U�L�D�O�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V���� �Z�K�L�O�H�� �Y�H�Q�W�U�L�F�X�O�D�U�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V�� �R�Q�O�\�� �H�[�S�U�H�V�V�H�G�� �W�K�H�� �.-
form ��Figure 5.5 A ). Even increased signal intensities by 2-fold (Image Studio 
software, LICOR���� �G�L�G�� �Q�R�W�� �U�H�Y�H�D�O�� �D�� �E�D�Q�G�� �I�R�U�� �W�K�H�� ��-form in ventricular 
cardiomyocytes ��Figure 5.5 A ). �,�Q�W�H�U�H�V�W�L�Q�J�O�\�����Z�H���R�E�V�H�U�Y�H�G���W�Z�R���E�D�Q�G�V���I�R�U���W�K�H����-
form in atrial cardiomyocytes, suggesting additional posttranslational 
�P�R�G�L�I�L�F�D�W�L�R�Q�V���� �Z�K�L�F�K�� �K�D�Y�H�� �Q�R�W�� �E�H�H�Q�� �U�H�S�R�U�W�H�G�� �I�R�U�� �W�K�H����-form yet ��Figure 5.5 A ). 
The CAV1 antibody specificity was confirmed in CAV1 knock-out mouse hearts 
��Figure 5.5 A ). �7�K�H�� �.-form was predominantly expressed in atrial 
�F�D�U�G�L�R�P�\�R�F�\�W�H�V�����Z�K�L�O�H���Y�H�Q�W�U�L�F�X�O�D�U���F�D�U�G�L�R�P�\�R�F�\�W�H�V���H�[�S�U�H�V�V�H�G���W�K�H���.-form at more 
modest (�a25 %) levels (Figure 5.5 B ). Of note, for a quantitative analysis of the 
CAV1 expression levels in atrial versus ventricular cardiomyocytes, a further 
quantitative SWATH-�0�6�� �D�Q�D�O�\�V�L�V�� �L�V�� �Q�H�H�G�H�G���� �)�X�U�W�K�H�U�P�R�U�H���� �W�K�H�� �.-form was 
identified as the major form in atrial cardiomyocytes, with 2-fold higher 
�H�[�S�U�H�V�V�L�R�Q�� �F�R�P�S�D�U�H�G�� �W�R�� �W�K�H�� ��-form (Figure 5.5 B ). Importantly, �&�$�9����
�H�[�S�U�H�V�V�L�R�Q�� �Z�D�V�� �Q�R�W�� �D�I�I�H�F�W�H�G�� �L�Q��CAV1 knock-out mice (Figure 5.5 C ). Taken 
�W�R�J�H�W�K�H�U���� �R�X�U�� �G�D�W�D�� �L�Q�G�L�F�D�W�H�� �W�K�D�W�� �W�K�H�� �V�K�R�U�W�H�U�� �&�$�9���� ��-form is differentially 
expressed in atrial cardiomyocytes, suggesting so far unknown CAV1 form 
specific subcellular or functional roles. 
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�)�L�J�X�U�H�� �������� Identification of CAV1 isoforms in atrial and ventricular 
cardiomyocytes �����$���� �,�P�P�X�Q�R�E�O�R�W�W�L�Q�J�� �G�H�W�H�F�W�H�G�� �V�S�H�F�L�I�L�F�� �&�$�9���� �V�L�J�Q�D�O�V�� �L�Q�� �D�W�U�L�D�O��
���$�0�����D�Q�G���Y�H�Q�W�U�L�F�X�O�D�U���F�D�U�G�L�R�P�\�R�F�\�W�H�V�����9�0�����R�I���Z�L�O�G-�W�\�S�H���K�H�D�U�W�V�����&�$�9�����V�S�H�F�L�I�L�F�L�W�\��
�Z�D�V�� �F�R�Q�I�L�U�P�H�G�� �L�Q�� �&�$�9���� �N�Q�R�F�N-�R�X�W�� �K�H�D�U�W�V���� �%�D�Q�G�� �L�Q�W�H�Q�V�L�W�\�� �Z�D�V�� �L�Q�F�U�H�D�V�H�G�� ��-�I�R�O�G��
��Image Studio software, LICOR) to confirm the absence of the CAV1 ��-form in 
VM. �Q� ������B, �%�D�U���J�U�D�S�K���F�R�P�S�D�U�L�Q�J���W�K�H��expression levels of CAV1 isoforms in AM 
�D�Q�G���9�0���� �2�Q�O�\���$�0�� �H�[�S�U�H�V�V�H�G�� �E�R�W�K�� �&�$�9���� �I�R�U�P�V���� �Z�K�L�O�H�� �W�K�H�� �.-form�� �Z�D�V��
�V�L�J�Q�L�I�L�F�D�Q�W�O�\�� �O�R�Z�H�U��in VM. �Q� ������One-way-ANOVA���� �
�S�������������� �
�
�S���������������&���� �%�D�U��
�J�U�D�S�K���V�K�R�Z�L�Q�J���Q�R���V�L�J�Q�L�I�L�F�D�Q�W���G�L�I�I�H�U�H�Q�F�H�V���R�I���H�Q�G�R�J�H�Q�R�X�V���&�$�9�����H�[�S�U�H�V�V�L�R�Q���O�H�Y�H�O�V��
�E�H�W�Z�H�H�Q���$�0���D�Q�G���9�0�� �L�Q���:�7���R�U�� �&�$�9���� �N�Q�R�F�N-�R�X�W�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V���� �Q�R�U�P�D�O�L�]�H�G�� �W�R��
�*�$�3�'�+�����Q� ������One-way-ANOVA���� 
 
 
5.6 Distribution of CAV1 versus CAV3 nanodomains in atrial 

cardiomyocytes 
 
As described in the manuscript (�P�D�Q�X�V�F�U�L�S�W�� �I�L�J�X�U�H�������� �' ), we identified 
differential subcellular CAV1 versus CAV3 cluster distributions in the 
transverse-tubules in ventricular cardiomyocytes. To further investigate the 
relationship between CAV1 and CAV3 in atrial cardiomyocytes, we used 
confocal and STED microscopy. Confocal imaging of atrial cardiomyocytes 
showed CAV1 (Ab17052, Abcam) and CAV3 (Ab2912, Abcam) signals mainly 
at the lateral membrane and in axial tubules (�)�L�J�X�U�H�� ������ �$). In contrast, 
unspecific cytosolic CAV1 signals not associated with any membrane structures 
were occasionally apparent in AMs from CAV1 knock-out mice (�)�L�J�X�U�H�� ������ �$). 
STED nanoscopy was used to show the CAV1 and CAV3 cluster signals at 
superresolution (�)�L�J�X�U�H�� ������ �%). CAV1 and CAV3 signals occurred frequently 
adjacent to each other (�)�L�J�X�U�H�� ������ �%). While the presence of CAV1 in 
cardiomyocytes is still controversially discussed for striated muscles,18,19,20,21 
our data show that CAV1 and CAV3 are both abundantly expressed in atrial and 
ventricular cardiomyocytes from the same mouse hearts. The differential 
distribution of CAV1 versus CAV3 clusters indicate independent 
macromolecular scaffolds that may provide distinct subcellular protein 
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interactions and functions and highlight an atria-specific expression pattern 
different from the ventricular myocytes.  
 

 
�)�L�J�X�U�H�� �������� �/�R�F�D�O�L�]�D�W�L�R�Q�� �R�I�� �&�$�9���� �D�Q�G�� �&�$�9���� �F�O�X�V�W�H�U�V�� �L�Q atrial 
cardiomyocytes �����$����Confocal imaging of CAV1 and CAV3 clusters in atrial 
cardiomyocytes showed CAV1 (Ab17052, Abcam) signals at the lateral surface 
membrane and in axial tubules. The CAV1 signal specificity was confirmed by 
confocal microscopy of atrial cardiomyocytes isolated from CAV1 knock-out 
mouse hearts, which also showed some regions with unspecific cytosolic 
signals. CAV1 signals were detected by using the same CAV1 antibody 
concentration (1 µg/mL of Ab17052, Abcam). Dashed boxes���L�Q�G�L�F�D�W�H���P�D�J�Q�L�I�L�H�G��
�U�H�J�L�R�Q�V�� �R�I�� �L�Q�W�H�U�H�V�W����Scale bars: 10 ���P�� �R�Y�H�U�Y�L�H�Z�V���� �P�D�J�Q�L�I�L�F�D�W�L�R�Q�V�� �� ���P����B, 
Cartoon of an atrial myocyte corresponding to the subcellular region of interest 
subjected to confocal and STED imaging. STED nanoscopy of CAV1 and CAV3 
clusters in atrial cardiomyocytes �U�H�V�R�O�Y�H�G��frequently adjacent CAV1 and CAV3 
clusters at the lateral surface membrane and in axial-tubules. �'�D�V�K�H�G�� �E�R�[�H�V��
�L�Q�G�L�F�D�W�H�� �K�L�J�K�H�U�� �P�D�J�Q�L�I�L�F�D�W�L�R�Q�V����Scale bars: confocal microscopy 2 ���P���� �6�7�(�'��
nanoscopy 2 µm;��STED magnifications 200 nm.�� 
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6 Discussion 
 
6.1 Summary of the results 
 
The aim of this thesis was to define the cardiac CAV1 and CAV3 protein 
interactions by live-cell proximity and affinity based mass spectrometry 
approaches. For live-cell proteomics, we used an engineered Ascorbate 
PEroXidase (APEX2) as genetic tag for protein biotinylation to initially screen for 
unknown CAV3 protein interactors in living neonatal rat cardiomyocytes 
(NRCMs). In addition, to establish a quantitative proximity proteomic technique, 
the APEX2 proximity labeling assay was combined with a 3-state Stable Isotope 
Labeling with Amino Acids in Cell Culture (SILAC) workflow. Through APEX2 
labeling and mass spectrometry, we identified the �1�5�&�0-�V�S�H�F�L�I�L�F�� �F�R�P�S�R�Q�H�Q�W�V��
�R�I�� �W�K�H�� �F�D�Y�H�R�O�D�U�� �F�R�U�H�� �F�R�P�S�O�H�[�� �F�R�Q�V�L�V�W�H�Q�W�� �Z�L�W�K�� �H�D�U�O�L�H�U�� �V�W�X�G�L�H�V��139,140 Importantly, 
mass spectrometry identified the monocarboxylate transporter (McT1) and the 
transferrin receptor (TfR1) �D�V���Q�H�Z���F�D�Q�G�L�G�D�W�H�V���L�Q���W�K�H���Q�D�Q�R�P�H�W�U�L�F���S�U�R�[�L�P�L�W�\���R�I���W�K�H��
�&�$�9���� �F�R�P�S�O�H�[. Surprisingly, �Z�H�� �D�O�V�R�� �G�H�W�H�F�W�H�G�� �&�$�9���� �L�Q�� �S�U�R�[�L�P�L�W�\�� �R�I�� �&�$�9��, 
overcoming the historical notion that CAV1 is not expressed in muscle cells.22 
To validate the existence of CAV1 in cardiomyocytes, we used superresolution 
STED microscopy and quantitative SWATH-MS proteomics, identifying CAV1 
as a highly abundant isoform in functional important membrane domains in 
ventricular cardiomyocytes. Furthermore, immunoblotting revealed a differential 
�H�[�S�U�H�V�V�L�R�Q�� �R�I�� �G�L�V�W�L�Q�F�W�� �&�$�9���� �V�S�O�L�F�H�� �S�U�R�G�X�F�W�V���� �:�K�L�O�H�� �W�K�H�� �&�$�9���� �.-form was 
�H�[�S�U�H�V�V�H�G�� �L�Q�� �E�R�W�K�� �Y�H�Q�W�U�L�F�X�O�D�U�� �D�Q�G�� �D�W�U�L�D�O�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V���� �W�K�H�� �&�$�9���� ��-form was 
exclusively expressed in atrial cardiomyocytes. Taken together, these data 
indicate a functional relevance of CAV1 in atrial and ventricular cardiomyocytes. 
Superresolution microscopy revealed juxta-positioned but not mixed CAV1 and 
CAV3 cluster signals, indicating an isoform-specific cluster organization in 
ventricular cardiomyocytes. Moreover, affinity proteomics identified CAV1 
versus CAV3 isoform-specific protein interactions. CAV3 specific interactors 
included the insulin dependent glucose transporter (GluT4), McT1 and TfR1, 
which are highly relevant for cardiac energy metabolism. Vice versa, aquaporin-
1 was identified as specific CAV1 interactor. In line with CAV3-dependent McT1 
and TfR1 protein interactions, CAV3 knock-out in human induced pluripotent 
stem cell (iPSC) derived cardiomyocytes resulted in reduced surface expression 
of McT1 and TfR1, suggesting a previously unknown role of CAV3 for functional 
stabilization of these transmembrane proteins in the surface membrane. 
Furthermore, destabilization of McT1 expression by CAV3 knock-out was 
associated with reduced extracellular acidification. In conclusion, these data 
uncovered a previously unknown role of CAV3 for stable surface expression of 
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McT1 and thus transmembrane proton/lactate shuttling in human iPSC-derived 
cardiomyocytes. 
To explore how potentially pathogenic human CAV3 mutations interfere with 
CAV3-specific protein interactions, we used proximity based proteomics in 
NRCMs for V5-APEX2-CAV3-F97C and V5-APEX2-CAV3-S141R. Both the 
F97C and S141R mutations disrupted the proximity to McT1 and TfR1. 
However, confocal microscopy in NRCMs revealed that only V5-APEX2-CAV3-
F97C resulted in�� �*�R�O�J�L�� �D�F�F�X�P�X�O�D�W�L�R�Q�� �D�Q�G��diminished CAV���� �R�O�L�J�R�P�H�U�L�]�D�W�L�R�Q�� �D�V��
�V�K�R�Z�Q���E�\���%�O�X�H���1�D�W�L�Y�H�����%�1��-�3�$�*�(�����,�Q���F�R�Q�W�U�D�V�W��V5-APEX2-CAV3-S141R���G�L�G���Q�R�W��
�D�F�F�X�P�X�O�D�W�H���L�Q���W�K�H���*�R�O�J�L��and formed high molecular weight complexes similar to 
WT V5-APEX2-CAV3. Furthermore, CAV3-F97C knock-in in iPSC derived 
cardiomyocytes caused a 97% loss in McT1 surface expression, leading to 
significantly depressed transmembrane proton export and decreased 
mitochondrial respiration. Therefore, we propose a novel pathogenic 
mechanism for the CAV3-F97C mutation leading to impaired metabolite 
transport, which affects mitochondrial respiration in human cardiomyocytes. 
 
6.2 APEX2 proximity assay identified CAV3 protein networks  
 
We used an APEX294,95 proximity assay in living NRCMs to identify unknown 
CAV3 protein interactions based on biotinylation and mass spectrometry. Since 
protein biotinylation is a rare posttranslational modification in mammalian 
cells,96,97 this strategy has been previously used to �L�G�H�Q�W�L�I�\�� �Q�H�Z��protein 
interaction networks in HEK293A and Cos-7 cells.95,99,144,145 Previously, two 
protein biotinylation techniques, APEX297 and BioID144, were developed. While 
APEX2 biotinylates proteins within a radius of approximately 20 nm97, BioID, 
based on the biotin protein ligase BirA144, provides a smaller biotinylation radius 
of approximately 10 nm.146 However, the key advantage of APEX2 over BioID is 
the higher enzymatic activity.95,145 While APEX2 catalyzes within a ��-�P�L�Q�� �+���2����
�S�X�O�V�H the oxidation of biotin-phenol to a short-lived biotin-phenoxyl radical��95,145��
�%�L�U�$�� �F�D�W�D�O�\�]�H�V��biotin to biotinoyl-5-AMP within several hours (18-24h).147 The 
long incubation time increases the chance for unspecific protein detection 
based on diffusion in the biotinylation radius.95,145 However, a short treatment 
with �+���2������ �Q�H�F�H�V�V�D�U�\�� �I�R�U�� �W�K�H�� �$�3�(�;���� �S�U�R�W�R�F�R�O���� �F�D�Q�� �L�Q�G�X�F�H�� �R�[�L�G�D�W�L�Y�H�� �V�W�U�H�V�V����
�Z�K�L�F�K�� �F�D�Q�� �O�H�D�G�� �W�R�� �F�K�D�Q�J�H�V�� �L�Q�� �J�H�Q�H�� �H�[�S�U�H�V�V�L�R�Q,148 and to changes in protein 
interactions.149 For example, oxidative stress induces the oxidation of redox 
sensitive cysteines, which may be linked by disulfide bonds to potentially 
unspecific protein complexes.149 Despite this potential limitation, the higher 
enzymatic activity of APEX2 allows for a more effective enrichment of 
biotinylated proteins. 
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For APEX2 based biotinylation, we expressed V��-�$�3�(�;��-�&�$�9���� �X�V�L�Q�J�� �D�Q��
�D�G�H�Q�R�Y�L�U�D�O�� �W�U�D�Q�V�I�H�F�W�L�R�Q�� �V�W�U�D�W�H�J�\����As excessive overexpression of CAV1 in 
heterologous cell systems was shown to specifically increase the pool of non-
caveolar CAV1 in endosomes and interfere with caveolar biogenesis79,80, we 
carefully titrated the V5-CAV3-APEX2 expression at levels similar to 
endogenous CAV3 levels. Confocal imaging of adenoviral transfected NRCMs 
with a multiplicity of infection of 1 (MOI 1), showed co-localized V5-APEX2-
CAV3 with endogenous CAV3 at the plasma membrane, indicating a preserved 
physiological surface expression of V5-APEX2-CAV3. Moreover �F�R-
�L�P�P�X�Q�R�S�U�H�F�L�S�L�W�D�W�L�R�Q and blue native (BN)-PAGE of V5-CAV3-APEX���L�Q���1�5�&�0�V��
�F�R�Q�I�L�U�P�H�G�� �W�K�D�W�� �H�[�R�J�H�Q�R�X�V���9��-�$�3�(�;��-�&�$�9���� �I�R�U�P�H�G�� �D�� �K�L�J�K�� �P�R�O�H�F�X�O�D�U�� �Z�H�L�J�K�W��
hetero-oligomeric complex with endogenous CAV3. In contrast, 3-fold or 10-fold 
MOI doses led to excessive V5-APEX2-CAV3 overexpression and accumulation 
in Golgi organelles of NRCMs. Therefore, the titration of �9��-�$�3�(�;��-�&�$�9����
�H�[�S�U�H�V�V�L�R�Q down to the lowest effective dose was necessary to overcome the 
limitations of CAV3 overexpression. However, the use of adenoviral vectors can 
�L�Q�G�X�F�H���F�H�O�O���V�W�U�H�V�V150���D�Q�G���W�K�H��heterogeneity of transfection can influence the �9��-
�$�3�(�;��-�&�$�9���� �H�[�S�U�H�V�V�L�R�Q���� �D�Q�G�� �W�K�X�V�� �W�K�H��effective enrichment of biotinylated 
proteins. Nevertheless, we could show that using this protocol in 
cardiomyocytes, V��-�$�3�(�;��-�&�$�9����maintained essential protein interactions with 
Cavin1, �3�D�F�V�L�Q������Ehd3 and Ehd4, protein components of the multimeric CAV3 
core complex. In future studies, genome editing of human stem cells could be 
used to establish endogenous expression levels of the �9��-�$�3�(�;��-�&�$�9������ �W�R��
overcome limitations of overexpression systems.  
In addition, the APEX2 assay biotinylates proximal proteins prior to any cell 
lysis, to overcome false negative data due to cell lysis dependent disruption of 
protein interactions.95,99 Therefore, APEX2 allows to label high and low affinity 
and��transient interactions, in addition to proximal proteins.95,99 By that, protein 
interaction networks can be mapped, in which specific interactions can be 
further validated and characterized by affinity based interaction approaches. 
Therefore the strength of APEX2 in combination with affinity proteomics was 
used to identify CAV3 interactors. 
 
6.3 CAV3 stabilizes the surface expression of novel interactors with 

transmembrane metabolic functions  
 
Combining the APEX2 proximity and affinity proteomics, we identified a novel 
role of CAV3 as an isoform specific interactor of McT1 and TfR1. STED 
superresolution microscopy revealed proximal McT1 and TfR1 at CAV3 
domains at lateral membranes and transverse (T-)tubules. This is in line with 
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immunogold electron microscopy (EM) studies showing McT1 in rat hearts151 
and TfR1 in mouse hearts152 in caveolae and T-tubules. Importantly, CAV3 
knock-out in iPSC derived cardiomyocytes resulted in a significant decrease of 
McT1 and TfR1 surface expression, indicating a previous unknown role for 
functional stabilization of McT1 and TfR1 in the surface membrane. TfR1 
facilitates the uptake of monoferric and differic Transferrin via clathrin-mediated 
endocytosis.141 Co-labeling of living ventricular cardiomyocytes with diferric 
Transferrin-Alexa488 and Cholesterol-PEG-KK114 indicated that Transferrin 
binds to cholesterol-rich membrane domains, which are organized by CAV3 
clusters. Therefore, we hypothesized that CAV3 membrane nanodomains serve 
as a macromolecular scaffold that provides the machinery for cardiomyocyte 
iron uptake by stable TfR1 surface expression and extracellular receptor 
presentation. Iron is required for the synthesis of iron co-factors153, which are 
essential for oxygen transport154, DNA synthesis155 and oxidative 
phosphorylation.156 For example, iron-sulfur (Fe-S) clusters are synthesized in 
mitochondria and facilitate the electron transport chain of mitochondrial inner 
membrane complexes.153 Indeed, TfR1 knock-out hearts were previously 
associated with iron deficiency, leading to enlarged, disrupted mitochondria and 
reduced enzymatic activity of respiratory complexes I�±IV.156 Moreover, iron 
deficiency was associated with a reduced production of ATP leading to impaired 
myocyte contractility and heart failure.157,158 Therefore, we hypothesized that a 
reduced TfR1 surface expression induced, by CAV3 knock-out can severely 
impact mitochondrial respiratory function. 
Furthermore, the CAV3 interactor McT1 mediates the proton-coupled transport 
of small monocarboxylates, particularly lactate and pyruvate, across the plasma 
membrane.159 Destabilization of McT1 expression by CAV3 knock-out in iPSC 
derived cardiomyocytes was associated with reduced extracellular acidification, 
indicating that CAV3 knock-out impaired the transmembrane proton/lactate 
shuttling. Lactate import is essential for normal heart function as lactate 
deprivation was associated with reduced ATP synthesis.160 During exercise 
lactate is utilized as a major cardiac energy source, and can account for over 
50% of oxygen consumption.161 Importantly, McT1 protein expression and 
lactate uptake are significantly upregulated in heart failure.162 Finally, during 
ischemia, cardiomyocytes rely significantly on anaerobic glycolysis, which 
required rapid lactate efflux.163  
In summary, we proposed a novel function of CAV3 for the organization and 
stable surface expression of McT1 and TfR1, which are known to be highly 
relevant for cardiac metabolism.  
 
 



Discussion 

105 

6.4 Metabolic effects of the CAV3-F97C mutation  
 
�$�V�� �G�L�V�F�X�V�V�H�G�� �L�Q�� �W�K�H�� �P�D�Q�X�V�F�U�L�S�W���� �9��-�$�3�(�;��-�&�$�9��-�)�����&�� �O�R�V�W�� �W�K�H�� �S�U�R�[�L�P�L�W�\�� �W�R��
�0�F�7���� �D�Q�G�� �7�I�5������ �)�X�U�W�K�H�U�P�R�U�H���� �Z�H�� �L�G�H�Q�W�L�I�L�H�G�� �D severe loss of McT1 surface��
�H�[�S�U�H�V�V�L�R�Q�� �L�Q��CAV3-F97C knock-in human �L�3�6�&-�G�H�U�L�Y�H�G�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V�� �$�V��
�H�[�S�H�F�W�H�G�� �I�R�U�� �W�K�H��proton-coupled monocarboxylate metabolite export, which 
depends on McT1 surface expression159����the near-complete loss of McT1 
surface expression resulted in decreased extracellular acidification, indicating 
intracellular lactate and proton accumulation. Moreover, a CAV3-F97C knock-in 
resulted in decreased mitochondrial respiration and less ATP production. ATP is 
required for muscle relaxation and contraction and for ATP-driven ion pump 
function, particularly for �1�D���.-�$�7�3�D�V�H164 and SERCA2A164. In cardiac ischemia, 
reduced ATP levels by more than 70 % contribute to increased intracellular 
concentrations of Na+ and Ca2+ ions, which can contribute to cardiac 
dysfunction and to arrhythmia.165 Interestingly, pharmacological inhibition of 
McT1 in tumor cells was associated with decreased glutathione (GSH) 
synthesis, leading to mitochondrial dysfunction and reduced ATP levels.166 The 
mechanism, however, of how increased lactate and proton levels affect GSH 
synthesis, needs to be further characterized. Of note, as discussed above, the 
impact of CAV3-F97C knock-in on the mitochondrial respiratory function could 
additionally originate from iron deficiency, induced by reduced TfR1 surface 
expression, as shown by CAV3 knock-out. The impact of CAV3-F97C knock-in 
on TfR1 needs to be further investigated by future studies. 
 
6.5 Pathological effects of the human CAV3-F97C and -S141R mutations 
 
�:�H�� �V�K�R�Z�H�G�� �W�K�D�W��V5-APEX2-CAV3-F97C�� �S�U�R�W�H�L�Q�� �D�F�F�X�P�X�O�D�W�H�G�� �L�Q�� �W�K�H�� �*�R�O�J�L�� �D�Q�G��
disrupted the biogenesis of trafficking-competent oligomeric complexes. 
Therefore, we propose that the C V5-APEX2-CAV3-F97 Golgi accumulation 
caused �D���O�R�V�V���R�I���7�I�5�����D�Q�G���0�F�7�����L�Q���W�K�H���V�X�U�I�D�F�H���P�H�P�E�U�D�Q�H���R�I���1�5�&�0�V�����6�L�P�L�O�D�U�O�\����
V5-APEX2-CAV3-S141R proximity biotinylation showed a loss of�� �7�I�5���� �D�Q�G��
�0�F�W���� �S�U�R�[�L�P�L�W�\���� �+�R�Z�H�Y�H�U���� �E�D�V�H�G�� �R�Q�� �F�R�Q�I�R�F�D�O�� �L�P�D�J�L�Q�J�� �L�Q�� �1�5�&�0�V����V5-APEX2-
CAV3-S141R �G�L�G���Q�R�W���D�F�F�X�P�X�O�D�W�H���L�Q���W�K�H���*�R�O�J�L��and was correctly transported to 
the plasma membrane. Moreover,��BN-PAGE analysis after overexpression of 
V5-APEX2-CAV3-S141R in HEK293A cells�� �U�H�Y�H�D�O�H�G���� �W�K�D�W��V5-APEX2-CAV3-
S141R formed high molecular weight complexes similar to WT V5-APEX2-
CAV3. In line with these results, V5-APEX2-CAV3-S141R�� �G�L�G�� �Q�R�W�� �D�I�I�H�F�W�� �W�K�H��
�S�U�R�[�L�P�L�W�\�� �R�I�� �W�\�S�L�F�D�O�� �S�U�R�W�H�L�Q�V�� �R�I�� �W�K�H�� �F�D�Y�H�R�O�D�U�� �F�R�U�H�� �F�R�P�S�O�H�[�� �R�U�� �R�I�� �F�D�Y�H�R�O�D�H��
�D�V�V�R�F�L�D�W�H�G�� �S�U�R�W�H�L�Q�V���� �0�R�U�H�R�Y�H�U����we identified multiple plasma membrane 
annotated proteins in proximity to V5-APEX2-CAV3-S141R. Interestingly, 
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immunofluorescence of muscle tissue biopsies from hyperCKemia patients with 
the CAV3-T78M mutation also showed that the CAV3-T78M protein is correctly 
transported to the plasma membrane.167 However, the pathomechanism of 
CAV3-T78M mutation remains unclear.167 Taken together, our proximity 
proteomic data suggest that the CAV3-S141R mutation may have an impact on 
the cell physiology in NRCMs through impaired protein interactions. In contrast 
to CAV3-F97C mutation, S141R did not impair the biogenesis of trafficking 
competent oligomers to the plasma membrane. However, the precise role of the 
CAV3-S141R mutation on transmembrane proteins needs to be further 
characterized by future studies.  
 
6.6 Function of CAV3 in GluT4 mediated glucose uptake  
 
In addition to the metabolite transporters McT1 and TfR1, affinity proteomics 
identified the insulin dependent glucose transporter (GluT4) as CAV3 protein 
interactor in mouse ventricular cardiomyocytes. The GluT4-CAV3 interaction 
was previously shown by immunoprecipitation in isoflurane treated adult rat 
cardiomyocytes.168 GluT4 is an insulin dependent glucose transporter, which is 
expressed in adipocytes, skeletal and cardiac muscles.169 In the heart, GluT4 
knock-out diminished the insulin mediated glucose uptake, resulting in cardiac 
hypertrophy.170 However, the influence of CAV3 on GluT4 mediated glucose 
uptake in cardiomyocytes is not well understood. The functional relevance of 
the GluT4-CAV3 interaction has been previously shown in skeletal myocytes, in 
which CAV3 facilitates the insulin dependent transport of GluT4 to the surface 
membrane.171 Confocal microscopy in skeletal muscle fibers revealed GluT4 in 
proximity to CAV3 domains at the lateral surface and in T-tubules.172 
Furthermore, CAV3 knock-out resulted in decreased insulin-stimulated glucose 
uptake in skeletal muscle of CAV3 knock-out mice.173 Strikingly, the CAV3 
mutation P104L which was associated with limb girdle muscular dystrophy, 
resulted in a decreased glucose uptake in cultured skeletal myotubes through 
diminished insulin-induced surface expression of GluT4.122 Consequently, we 
hypothesized a similar functional role of CAV3 for the regulation of glucose 
uptake in cardiomyocytes. Further analysis of the CAV3-GluT4 interaction in the 
CAV3 knock-out and F97C knock-in stem cell models can be used in future 
studies to validate the proposed functional role in human cardiomyocytes.  
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6.7 Differential expression of CAV1 splice forms in cardiomyocytes 
 
We identified CAV1 by quantitative SWATH-MS as highly abundant isoform in 
ventricular adult mouse cardiomyocytes, overcoming the historical notion that 
CAV1 is only expressed in non-muscle cells.17 Accordingly, a recent SWATH-
MS analysis identified CAV1 in atrial and ventricular healthy human heart 
tissues.16 Interestingly, two CAV1 splice forms were previously identified in skin 
fibroblasts, a full length �.-form and a 31 amino acid N-terminally truncated ��-
form.143 As the CAV1 ��-form is identical with the CAV1 �.-form, except for the N-
terminal extension, both splice forms cannot be distinguished by mass 
spectrometry. Therefore, we used immunoblotting to analyze the presence of 
CAV1 �.- and ��-forms in atrial and ventricular cardiomyocytes. By using a CAV1 
antibody detecting both CAV1 �.- and ��-forms, we identified the �&�$�9�����.- �D�Q�G����-
�I�R�U�P�� �L�Q�� �D�W�U�L�D�O�� �F�D�U�G�L�R�P�\�R�F�\�W�H�V���� �Z�K�L�O�H�� �R�Q�O�\�� �W�K�H�� �&�$�9���� �.-form was expressed in 
ventricular cardiomyocytes. A d�L�I�I�H�U�H�Q�W�L�D�O�� �H�[�S�U�H�V�V�L�R�Q�� �R�I�� �&�$�9���� �.- �D�Q�G�� ��-forms 
was previously shown by comparing lysates of endothelial with alveolar 
epithelial cells of rat lungs.174 �:�K�L�O�H���O�X�Q�J���H�Q�G�R�W�K�H�O�L�D�O���F�H�O�O�V���H�[�S�U�H�V�V�H�G���R�Q�O�\���W�K�H���.-
�I�R�U�P���� �O�X�Q�J�� �D�O�Y�H�R�O�D�U�� �H�S�L�W�K�H�O�L�D�O�� �F�H�O�O�V�� �H�[�S�U�H�V�V�H�G�� �W�K�H�� �&�$�9���� ��- form.174 Therefore, 
the differentially expression of CAV1 splice forms were proposed to have 
potentially unique physiological functions.143  
�$�V�� �W�K�H�� ��-form lacks the first 30 amino acids, which are required for the Src 
mediated phosphorylation at tyrosin 14 of the alpha-form,175 functional 
�G�L�I�I�H�U�H�Q�F�H�V���I�R�U�� �W�K�H�� �&�$�9���� �.- �D�Q�G����-forms were proposed.176 Phosphorylation of 
CAV1 at tyrosin 14 promotes caveolae-mediated endocytosis177 and the 
recruitment of proteins containing the Src Homology 2 (SH2)-domain, which 
modulate the receptor tyrosine kinase pathway.178,179 Therefore the CAV1 �.-
form was proposed to regulate receptor tyrosine kinases,178,179 while a specific 
�I�X�Q�F�W�L�R�Q���I�R�U�� �W�K�H�� �&�$�9���� ��-form remains unknown.143 Future studies may explore 
the precise function of the CAV1 forms in cardiomyocytes. 
 
6.8 Substantial role of CAV1 for cardiomyocyte function 
 
As the presence of CAV1 in cardiomyocytes remained controversial,18,19,20,21 the 
adverse effects of CAV1 knock-out on the mouse heart where solely related to 
cardiac fibroblasts and endothelial cells.100,101 Consequently, the effects of 
human CAV1 mutations were never considered in cardiomyocytes. Recently, a 
CAV1 deficiency was proposed as cause of atrial fibrillation.114,112,113 Thus, our 
confirmation of CAV1 expression in atrial cardiomyocytes will open new 
perspectives about atrial myocytes in health and disease. Atrial tissue samples 
from patients with atrial fibrillation also showed a reduced CAV1 expression, 
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while the expression of CAV2 and CAV3 was not changed.114 Furthermore, 
genome-wide studies identified one intronic single nucleotide polymorphism 
(SNP) in the CAV1 gene (rs3807989), which was proposed to contribute to the 
risk of atrial fibrillation.112,113 Given that the human CAV1-P132L mutation 
associated with breast cancer was demonstrated to disrupt��caveolae��biogenesis 
and to accumulate in the Golgi79, similar to the human CAV3-F97C mutation, we 
anticipate that CAV1 has an important role in cardiomyocyte function.  
 
6.9 Potential role of CAV1 and aquaporin- 1 interaction 
 
STED superresolution imaging in ventricular cardiomyocytes revealed that 
CAV1 and CAV3 signals are not co-localized. The subcellular CAV1 and CAV3 
clusters frequently occurred adjacent, yet separate to each other. Therefore, we 
propose CAV1 and CAV3 isoform-specific macromolecular complexes. 
Supportingly, SWATH affinity proteomics and reciprocal co-immunoprecipitation 
experiments identified CAV1 and CAV3 isoform specific protein interactions. 
Aquaporin-1 was identified as exclusive CAV1 interactor in ventricular 
cardiomyocytes by SWATH affinity proteomics and reciprocal co-
immunoprecipitation. Previous studies identified aquaporin-1 as a bidirectional 
water channel, which facilitates the selective transport of H2O molecules across 
cell membranes according to the prevailing osmotic gradient.180 Consistent with 
our affinity proteomics analysis, previous immunogold EM studies demonstrated 
that aquaporin-1 is localized in CAV1 containing caveolae in endothelial cells.181 
This may indicate that CAV1 has a stabilizing role for aquaporin-1 surface 
expression in the plasma membrane. Accordingly, aquaporin-1 expression was 
reduced in rat lung tissue lysates after CAV1 protein knock-down of 87% by 
small interfering RNA (siRNA).182 Additionally, aquaporin-1 was identified in 
human, rat and mouse heart tissue lysates by immunoblotting and aquaporin-1 
knock-out was associated with significant reduction in water permeability in 
membrane vesicles of mouse hearts and impaired osmotic homeostasis.183 An 
impaired osmotic homeostasis can indirectly affect cellular ionic concentrations 
and thus cardiac electrophysiology.184 Interestingly, increased intracellular 
lactate levels due to ischemia created a strong inwardly directed osmotic 
gradient,185,186 which led to swelling of cardiomyocytes and cell damage.186 
Together with our data showing a CAV3-dependent stabilization of McT1-
dependent lactate transport and CAV1 interactions with aquaporin-1, we 
hypothesize that both CAV1 and CAV3 have important roles for cardiac stress 
adaptation.  
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6.10 Summary and Outlook 
 
The original aim of this thesis was to identify previously unknown cardiac CAV3 
protein interactions preferentially through unbiased proteomic methods. 
Combining the strengths of proximity and affinity proteomics, we established 
CAV1- versus CAV3-specific interactors. In this context, we showed that 
exogenous V5-APEX2-CAV3 expression at levels similar to endogenous CAV3 
levels is an important prerequisite to detect protein interactions with the 
multimeric CAV3 core complexes. In contrast, excessive V5-APEX2-CAV3 
overexpression in NRCMs disrupted the physiological surface expression of the 
CAV3 core complex likely due to Golgi accumulation and lack of trafficking-
competent protein-lipid complexes. For CAV3 we identified McT1 and TfR1 as 
new isoform-specific protein interactors in ventricular cardiomyocytes, which are 
relevant for the cardiac energy metabolism. CAV3 knock-out in human stem 
cells revealed, that CAV3 is required for surface expression of both McT1 and 
TfR1. Importantly, F97C knock-in in human stem cells destabilized the surface 
expression of McT1 and thus the lactate-coupled proton export, which led to 
reduced extracellular acidification, mitochondrial respiration and ATP 
production.  
Moreover, in contrast to V5-APEX2-CAV3-S141R, V5-APEX2-CAV3-F97C 
expression in NRCMs resulted in a loss of physiological proximity with Cavin1, 
�3�D�F�V�L�Q������Ehd3 and Ehd4 protein components of the multimeric CAV3 core 
complex. Interestingly, proximity proteomics also showed that both V5-APEX2-
CAV3-F97C and V5-APEX2-CAV3-S141R resulted in a loss of proximity with 
McT1 and TfR1, indicating that both CAV3 variants impaired the same isoform-
specific protein interactions.  
Furthermore, quantitative proteomics and superresolution imaging showed that 
CAV1 clusters exist in mouse ventricular cardiomyocytes, which are juxta-
positioned to CAV3 clusters in T-tubules. In line with our hypothesis that CAV1 
and CAV3 provide differential protein interactions, we identified aquaporin-1 as 
a specific CAV1 interactor. This may indicate a novel role also for CAV1 to 
stabilize the surface expression of aquaporin-1. In addition, we showed that the 
�&�$�9���� �.- �D�Q�G�� ��-forms were differentially expressed in atrial and ventricular 
cardiomyocytes, indicating so far unknown specific functional roles.  
 
In summary, the combination of proximity and affinity proteomics, revealed 
previously unknown cardiac CAV1 and CAV3 protein interactions, providing a 
strategy for systematic functional analysis. The identified cardiac CAV1 and 
CAV3 protein interactions can be used in future studies to explore the molecular 
impact of human CAV mutations in the context of cardiac muscle function, as 
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the identified CAV3 interactions McT1 and TfR1 provide an important role in 
energy metabolism. Taken together, the validation of CAV1 and CAV3 protein 
networks represent an important direction to identify and define isoform-specific 
protein interactions in cardiac cell biology.  
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8 Appendix  
 

Table 8 .1 Used adenoviruses for NRCM transfection.  Adenoviruses type 5 
(Ad5) were purchased from Sirion Biotech, containing a CMV promotor, the 
APEX2 construct and a GFP sequence, separated by an internal ribosomal 
entry site.  

 
Table 8.2 Used cell lines   

 
Table 8.3 Used chemicals 

Name Order No. Company 
4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid 

7365-45-9 Sigma Aldrich 

Acetic Acid 3738,5 Roth 
Acrylamide 2x 10675,02 SERVA 
Agarose 50004 Lonza 
aminocaproic acid A-2504 Sigma Aldrich 
ammonium bicarbonate  T7408 Sigma-Aldrich 
Ammonium persulfate A3678 Sigma Aldrich 
Ampicillin K029.1 Roth 
B27 A3582801 Gibco 
Biotin (d-) Apr 68 SUPELCO 
Biotinphenol LS-3500 Iris Biotech 
Bis-Acrylamide 2x 29195,02 SERVA 

Ad5 adenovirus Source 
V5-APEX2-CAV3 Sirion Biotech 
V5-APEX2-CAV3-F97C Sirion Biotech 
V5-APEX2-CAV3-S141R Sirion Biotech 
V5-APEX2 Sirion Biotech 
eGFP Sirion Biotech 

Cell line Source 
Human embryonic kidney 293 cells ATCC no. CRL 1573 
Neonatal rat cardiomyocytes           primary culture 
Atrial and Ventricular cardiomyocytes fresh isolated 
WT1.14 (UMGi014-C.14; abbreviated 
as WT iPSC),  

Stem Cell Unit, Universitätsmedizin 
Göttingen  

WT1-CAV3-KO.34 (UMGi014-C-3.34; 
abbreviated as CAV3 KO iPSC)  

Stem Cell Unit, Universitätsmedizin 
Göttingen  

WT1-CAV3-F97C.56 (UMGi014-C-
4.56; abbreviated as F97C KI iPSC 

Stem Cell Unit, Universitätsmedizin 
Göttingen 
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Bovine Serum Albumin 1023184 GE Heathcare 
Bromdesoxyuridin 1028736 Sigma Aldrich 
Bromophenol blue 114391 Sigma Aldrich 
calcium chloride C2661 Sigma Aldrich 
CHAPS 1479.1 Roth 
collagen type 1 rat tail 354236 Corning 
Collagenase Type 2 #LS004177 Worthingotn 
Coomassie Blue G-250 35050,02 SERVA 

DAPI solution 62248 Thermo Fisher 
Scientific 

Digitonin 19551,01 SERVA 
Dimethylsulfoxide D5879 Sigma Aldrich 
Di-sodiumhydrogen phosphate 10049-21-5 Sigma Aldrich 
Dithiotreitol D0632 Sigma Aldrich 
EDTA 0.5 M solution A3145 AppliChem 
EGTA E4378 Sigma Aldrich 
Ethanol 1.009.831.011 Merck Millipore 
EZ Blue Gel staining G1041 Sigma Aldrich 
Fetal Bovine Serium 10500-064 Invitrogen 
Glucose G8644 Sigma Aldrich 
Glycerol / glycerin 3783,1 Roth 
Glycin 3908.3 Roth 
HEPES 9105.4 Roth 
Hydrochloric acid fuming 37 % X942.2 Roth 
Hydrogen peroxide H1009 Sigma Aldrich 

Imidazole I5513 Sigma Aldrich 
�,�V�R�S�U�R�S�\�O����-D-1-thiogalactopyranoside I6758 Sigma Aldrich 
L-Arginine:HCl- 13C6 99%13C CLM-2265-H-1 Eurisotop 
L-Arginine:HCl- 13C6, 99%; 15N4, 
99% 

CNLM-2,6-H-0.1 Eurisotop 

L-ascorbic acid 2-phosphate 66170-10-3 Sigma Aldrich  
LB Agar powder A0927 AppliChem 
LB Medium A0954 AppliChem 
L-Glutathione reduced G4251 Sigma Aldrich 
Lipofectamine 3000 L3000-008 Invitrogen 
L-lactate L7022-5G Sigma Aldrich  
L-Lysine:2HCl- 4.4.5.5-D4 DLM-2640-1 Eurisotop 
L-Lysine:2HCl- U-13C6; U-15N2 CNLM-291-H-0.1 Eurisotop 
Lysozym from chicken egg L68876 Sigma Aldrich 
Magensium sulfate monohydrate 10034-99-8 Sigma Aldrich 
Matrigel, growth factor reduced 356234 BD 
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Biosciences 
Methanol 8388.6 Roth 
Milk, powdered blotting grade T145.2 Sigma Aldrich 
�2�F�W�\�O����-D-glucopyranoside  O8001 Sigma Aldrich 
ortho-Phosphoric acid 89 % 1.005.642.500 Merck Millipore 
Paraformaldehyde 158127 Sigma Aldrich 
Penicillin-Streptomycin P4333 Sigma Aldrich 
Percoll 10607095 GE Healthcare 
Phenylmethylsulfonyl fluoride P7626 Sigma Aldrich 
PhosSTOP tablet 4906837001 Roche 
Pierce Bovine Serum Albumin 
Standard  

#23209 Thermo Fisher 
Scientific 

Potassium chloride 7447-40-7 Sigma Aldrich 

Potassium dihydrogenphosphate 04.11.7758 Sigma Aldrich 
Protease Inhibotor tablet 11836170001 Roche 
Sodium ascorbate A-7631 Sigma Aldrich 
Sodium azide 822335 Merck Millipore 
Sodium chloride HN00.2 Roth 
Sodium chloride 7647-14-5 Sigma Aldrich 
Sodium deoxycholate D6750 Sigma Aldrich 
Sodium dodecylsulfate 4360.1 Roth 
Sodium dodecylsulfate (20% solution) 1057.1 Roth 
Sodium hydroxide solution 1.091.361.000 Merck Millipore 
ß-mercaptoethanol M6250 Sigma 
Sucrose 9097,2 Roth 
Tetramethylethylenediamine 2367.3 Roth 
Transferrin-Alexa488  T13342 Thermo Fisher 

Scientific 
Tricine T0377 Sigma Aldrich 
Tris(hydroxymethyl)aminomethane 48552 Roth 
Triton-X-100 T8787 Sigma Aldrich 
Trolox 238813 Sigma Aldrich 
Trypsin V5111 Promega 
Trypsin/EDTA (0.25 %) 25200056 Thermo Fisher 

Scientific 
Tween-20 P1379 Sigma Aldrich 
Urea 2317.1 Roth 
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Table 8.4 Used drugs 

Name Order No. Company 

3-bromopyruvate (3-BP) 16490 Sigma Aldrich 
Antimycine A8674  Sigma Aldrich 
Carbonyl cyanide-4-
(trifluoromethoxy)phenylhydrazone 
(FCCP) C2920 Sigma Aldrich 
Isofloran (Forene 100%) B506 Abott  
Oligomycin O4876   Sigma Aldrich 
Rotenon R8875  Sigma Aldrich 

 
 
 
 
 
 
 
Table 8.5 Used Kits 

Name Order No. Company 
Gene Art Site-Directed Mutagenesis 
PLUS Kit A14604 

Thermo Fisher 
Scientific 

In-Fusion HD Cloning Kit 121416 Clontech 
Neonatal Heart Dissociation Kit 130-098-373 Miltenyi Biotech 

�2�Q�H���6�K�R�W���0�$�;���(�I�I�L�F�L�H�Q�F�\���'�+���.-T1R 12297016 
Thermo Fisher 
Scientific 

Pierce 660 nm protein assay 23227 
Thermo Fisher 
Scientific 

�3�L�H�U�F�H�Œ���%�L�R�W�L�Q�\�O�D�W�H�G���3�U�R�W�H�L�Q�� 
Interaction Pull-Down Kit 21115 

Life 
technologies 

Native PAGE Running Buffer Kit 
BN2007 

Thermo Fisher 
Scientific  

Pierce BCA Protein Assay 
23225 

Thermo Fisher 
Scientific  

Pierce 660 nm protein assay 23227 
Thermo Fisher 
Scientific 

�3�L�H�U�F�H�Œ���%�L�R�W�L�Q�\�O�D�W�H�G���3�U�R�W�H�L�Q�� 
Interaction Pull-Down Kit 21115 

Life 
technologies 

Stellar Competent Cells  636763 Clontech 
 
  



Appendix 

133 

Table 8.6 Used cell-culture media 

Name Order No. Company 
DMEM, low glucose, GlutaMAX  21885-025 Gibco  

DMEM-1 g/L D-glucose 11965084 
Thermo Fisher 
Scientific 

�'�X�O�E�H�F�F�R�¶�V���0�R�G�L�I�L�H�G���(�D�J�O�H�¶�V���0�H�G�L�X�P��- 
low glucose D6046-500ML Sigma Aldrich 
RPMI 1640 cell culture medium, no 
glucose 

11879020 Thermo Fisher 
Scientific  

RPMI 1640 cell culture medium with 
Glutamax and HEPES 

72400047 Thermo Fisher 
Scientific 

Seahorse XF assay medium 103681-100 Agilent 

SILAC DMEM Flex Media  A2493901  
Thermo Fisher 
Scientific  

StemMACS iPS-Brew XF, human 130-104-368 Miltenyi Biotec 

 
Table 8.7 Used consumables 

Name Order No. Company 
12 % Bis-Tris minigels NuPAGE Novex NP0341BOX Invitrogen 
27 gauge syringe  4665406 Braun 
6-well, 12-well, 96-well plate 
CELLSTAR  

657160, 665102, 
650161 

Greiner 

Cell Scraper 25 cm 831830 Sarstedt 

Dynabeads protein G 10003D 
Thermo Fisher 
Scientific 

Falcon tubes, 50, 15 
1048393, 
1048400 Sarstedt 

glass coverslips Ø 18mm, width 1.5 1063810 Menzel 
Matrigel, growth factor reduced 356234 BD Biosciences 

NativePAGE 3-12% Bis-Tris Gel BN1001BOX Thermo Fisher 
Scientific 

NuPAGE LDS Sample buffer NP0007 Thermo Fisher 
Scientific 

Pasteur Pipette 10 mL wide tip 3110014 Ratiolab 

Pasteur Pipettes 25, 10, 5 mL (sterile) 
20003475, 
20003474, 
2000347 

Sarstedt 

peqGOLD Protein-Marker V  27-2210 Peqlab 

Phosphate bufferd saline 10010-015 
Gibco, Life 
technologies 

Pierce Monomeric Avidin Agarose 20228 Thermo-Fisher-
Scientific 
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Pierce Spin Columns Screw Cap 69705 
Thermo-Fisher-
Scientific 

Pipetboy BR26300 Brand 

Pipettes, Eppendorf Research plus; 
1mL; 100µL; 10µL 

EP3120000062, 
EP3120000046, 
EP3124000016 

Eppendorf 

PVDF 0.45 mm, Immobilon-FL IPFL00010 Merck Millipore 

Reaction tube, 2ml, 1.5mL, 0.5mL 
1049535, 
1048694, 
1049755 

Eppendorf 

SDS Running Buffer LC2675 Thermo Fisher 
Scientific 

Serva Native Marker  39219.01 Serva 
Vaccum filter Steritop SCGPS05RE Merck 
Whatman Cellulose Acetate Membrane 
Filters 10403012 Whatman 

XF96 cell culture microplate 101085-004 Agilent 
 
Table 8.8 Used general equipment 

Name Company  
CO2 incubator Heracell VIOS Thermo Fisher Scientific 
Centrifuge Heraeus Fresco 21 Thermo Fisher Scientific 
Centrifuge Heraeus Multifuge X1R Thermo Fisher Scientific 
Confocal microscope LSM710 Zeiss 
GentleMACS Dissociator Miltenyi Biotech 
Microscopy Axio Imager M2 Zeiss 
Mini Trans-Blot Electrophoretic Transfer Bio-Rad 
MLA-150 rotor Beckman Coulter 
Odyssey CLx LI-COR  Licor 
Overhead rotator Bio Grant Thermo Fisher Scientific 
Potter homogenizer RW20 digital IKA 
Power supply 2A200 Hofer 
STED microscope Leica TCS SP8  Leica 
Table Shaker Heidolph 
Tecan Microplate Reader Spark Life Science 
Thermomixer comfort Eppendorf 
Ultra centrifuge Optima Max-XP Beckman Coulter 
Vortexer NeoLab 
Waterbath WNB7 Basic 7L Memmert 
Wet blotting apparatus Life Technologies 
XF96, Seahorse Bioscience Agilent 
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Table 8.9 Used software 

Program Application Provider 
Excel2007,  Data analysis Microsoft Inc. 

FijiImage  Immunofluorescence 
analysis 

https://imagej.net/Fiji 

Image Studio Immunoblot quantification Licor 
Las X Life  Confocal microscope 

software 
Zeiss 

Microsoft Word 
2010 

Writing Microsoft Inc. 

Perseus Data analysis MaxQuant 
Power Point 2010 Figure preparation Microsoft Inc. 
Prism version 7.03 Data analysis GraphPad 
STRING Protein network analysis string-db.org 
ZEN 2009 STED software Carl Zeiss 
Zotero Citation https://www.zotero.org 

 
 
 

 
 



 

 

Table 8.10 Documentation of antibody materials 

Protein Species Clonality Clone Antigen / 
Immunogen 

Company Catalog 
no. 

Conc. Dilution 
WB 

Dilution 
IF 

Flow 
cytometry 

Tissue/Cell 

Primary antibodies 

�.���±
Actinin 

Mouse monoclonal EA-
53 

 

Rabbit 
�V�N�H�O�H�W�D�O���.-

Actinin 

Sigma-
Aldrich 

A7811 
 

- 1:1000 -  NRCM 

��-Actin Mouse monoclonal - ��-Actin (C4) 
is a mouse 
monoclonal 

antibody 
raised 
against 

gizzard Actin 

Santa 
cruz 

 

sc-
47778 

 

250 
µg/m

L 
 

1:1000 
 

-  Human 
cardiomyocyte

s 

Aqp1 Mouse monoclonal - AQP1 (B-11) 
is a mouse 
monoclonal 

antibody 
raised 
against 
amino 

acids215-
269 of AQP1 

of human 
origin 

Santa 
cruz 

 

sc-
25287 

 

200 
µg/m

L 
 

1:500 
 

-  Mouse 
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Caveoli
n-1 

Rabbit polyclonal - Synthetic 
peptide 

correspondin
g to Human 
Caveolin-1 
aa 1-17. 

Sequence 

Abcam ab2910 1 mg/
mL 

 

1:1000 -  Mouse 

Caveoli
n-1 

Mouse monoclonal 7C8 The antibody 
recognizes 

epitope 
between 

residue 32 
and the C-
terminus. 

Abcam Ab17052 100 µ
g/mL 

- 1:50 1:500 Mouse 

Caveoli
n-3 

Rabbit polyclonal - Synthetic 
peptide aa. 
1-18 of rat 
Caveolin 3 

Abcam ab2912 1 mg/
mL 

 

1:1000 
 

1:500  Mouse, 
NRCM 

Caveoli
n-3 

Rabbit monoclonal [EPR
1897

5] 

Synthetic 
peptide 
within 

Human 
Caveolin-3 
aa 1-100 

Abcam ab18273
9 

145 µ
g/mL 

1:500 
 

-  Human 
cardiomyozyte

s 

cTnT Mouse monoclonal 13-11 Troponin-T- 
heart isoform 
from rabbit 
(TnT4R) 

Thermo 
Fisher 

Scientific 

MS-295-
P0 

200 ��
g/mL 

  1:50 NRCM 

Cx43 Mouse monoclonal Clone
  2 

Rat 
connexin-43 
aa 252270 

BD 
transducti

on 

610062 250 
µg/m

L 

1:500   Mouse 
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FITC Mouse 
 

polyclonal - Fluorescein Jackson 
Immuno 

Research 
Labs 

115-097-
020 

500 
µg/m

L 

- 1:1000 
 

 Human iPSC 

GAPD
H 

Mouse monoclonal - Derived from 
hybridization 

of Sp2/0 
myolema 
cells with 

spleen cells 
og Balb/c 

mice 

Biotrend 
 

5G4 
Mab 
6C5 

 

5,3m
g/mL 

1:16000
0 
 

-  Mouse 

IgG-
cy3 

Mouse polyclonal   Jackson 
Immuno 

Research 
Labs 

715-165-
150 

   1:100 NRCM 

McT1 Mouse polyclonal - Full length 
Human 
protein 

(P53985) 

Abcam ab90582 500µ
g/mL 

1:500   Human 
cardiomyozyte

s 

McT1 Rabbit polyclonal - KLH 
conjugated 
synthetic 
peptide 

derived from 
human 
MCT1 

Bioss 
Antibodies 

 

BS-
10249R 

1 mg/
mL 

 

1:1000 
 

1:1000 
 

 Mouse, 
NRCM 

Mouse 
IgG 

Mouse monoclonal   DAKO X0931    1:50 NRCM 
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NANO
G 

Rabbit polyclonal - Full-length 
human 

recombinant 
protein 

expressed in 
bacteria 

Thermo 
Fisher 

Scientific 

PA1-097 1 mg/
mL 

 

- 1:1000 
 

 Human iPSC 

Na/K 
ATPas
�H���.�� 

Mouse monoclonal - Raised 
against 
purified 

rabbit renal 
outer 

medulla 

Santa 
cruz 

 

sc-
21712 

 

200 
µg/m

L 
 

1:1000 -  Mouse 

Ncx1 Rabbit polyclonal - Serum was 
produced 
against 
canine 
cardiac 

sarcolemmal 
Na+/Ca2+-
exchanger 
(NCX1; full 

lengthisolate
d protein) 

Swant �Œ������-13  1:1000 
 

-  Mouse 

OCT4 goat polyclonal - E. coli-
derived 

recombinant 
human 
Oct-3/4 

Met1-Asn265 
(Met262Leu) 
Accession # 

Q01860 

R and D 
Systems 

AF1759 200 µ
g/mL 

- 1:1000  iPSC 
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OCT4 
conjug
ated 

Alexa 
Fluor 
647 

mouse monoclonal Clone
  40/O
ct-3 

Mouse Oct3 
aa. 252-372 
Recombinant 

Protein 

BD 
Bioscienc

es 

560329  -  1:50 iPSC 

P115 Mouse monoclonal  Rat p115 aa. 
843-955 

BD 
Bioscienc

es 

612261 250 
µg/m

L 

 1:1000  NRCM 

TfR1 Mouse monoclonal H68.4 C terminal 
part 

Invitrogen 13-6800 500 µ
g/mL 

1:500 1:500  Mouse, 
Human iPSC 

TRA-1-
60 

Mouse monoclonal - Issue, cells 
or virus 

correspondin
g to Human 
TRA-1-60 

(R). Human 
embryonal 
carcinoma 

cell line 
2102Ep 
cl.2A6 

Abcam ab16288 
 

- - 1:1000  iPSC 

TRA-1-
60 

conjug
ated 

Alexa 
Fluor 
488 

mouse monoclonal - Immunogen 
Human 

Embryonal 
Carcinoma 
Cell Line 

BD 
Bioscienc

es 

560173 - -  1:50 Human iPSC 
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V5 Mouse monoclonal - Prepared by 
crosslinking 
the anti-V5 

antibody with 
HRP using 

glutaraldehy
de 

Invitrogen R960-25 1 mg/
mL 

 

1:1000 
 

1:1000 
 

 Mouse, 
NRCM 

Secondary antibodies 

goat 
anti-

mouse 
Alexa 
Fluor 
633 

goat polyclonal - Mouse IgG Thermo 
Fisher 

Scientific 

A-21052 2 mg/
mL 

 

- 1:1000 
 

  NRCM 

goat 
anti-
rabbit 
Alexa 
Fluor 
514 

goat polyclonal  - Mouse IgG Thermo 
Fisher 

Scientific 

A-31558 2 mg/
mL 

 

- 1:1000 
 

  NRCM 

donkey 
anti-
goat 

Alexa 
Fluor 
555   

donke
y 

polyclonal   Goat IgG Thermo 
Fisher 

Scientific 

A-21432 2 mg/
mL 

 

- 1:1000 
 

 iPSC 

donkey 
anti-
rabbit 
Alexa 
Fluor 
555 

donke
y 

polyclonal   Rabbit IgG Thermo 
Fisher 

Scientific 

A-31572 2 mg/
mL 

 

- 1:1000 
 

 iPSC 
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goat 
anti-
rabbit 
STAR 
635P 

goat polyclonal - Rabbit IgG Abberior 2-0012-
007-2 

- - 1:1000 
 

  Mouse 

goat 
anti-

mouse 
STAR 
635P 

goat polyclonal - Mouse IgG Abberior 2-0002-
007-5 

- - 1:1000 
 

  Mouse 

goat 
anti-
rabbit 
STAR 
580 

goat polyclonal - Rabbit IgG Abberior  2-0012-
005-8 

- - 1:1000 
 

  Mouse 

goat 
anti-

mouse 
STAR 
580 

goat polyclonal - Mouse IgG Abberior 2-0002-
005-1 

- - 1:1000 
 

  Mouse 

 

 

 

 

 

 

 

142 

A
ppendix 



 

 

Online Table 8.11  WT V5-APEX2-CAV3 enriched biotinylated proteins by SILAC-MS analysis.  

# Protein IDs Protein names Gene 
names 

log2 WT 
V5-
APEX2-
CAV3 / 
APEX2 
mean 

log2 WT 
V5-
APEX2-
CAV3 / 
GFP 
mean 

z-test WT 
V5-
APEX2-
CAV3 / 
APEX2 

z-test WT 
V5-
APEX2-
CAV3 / 
GFP 

1 G3V8L9 Cavin1 Ptrf 0.92 3.87 0.0000 0.0000 

2 P53987 Monocarboxylate transporter 1 Slc16a1 0.37 0.55 0.0000 0.0000 

3 B1PRL5 Cavin4 Murc 1.25 2.68 0.0000 0.0000 

4 F1LXA0 NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex 
subunit 12 

Ndufa12 0.43 0.10 0.0000 0.0076 

5 Q09073 ADP/ATP translocase 
2;ADP/ATP translocase 2 

Slc25a5 0.26 0.25 0.0000 0.0108 

6 Q6P6R2 Dihydrolipoyl dehydrogenase Dld 0.81 0.29 0.0000 0.0471 

7 P11661 NADH-ubiquinone 
oxidoreductase chain 5 

Mtnd5 1.55 0.98 0.0000 0.0227 

8 P16409 Myosin light chain 3 Myl3 1.63 3.10 0.0000 0.0000 

9 P05508 NADH-ubiquinone 
oxidoreductase chain 4 

Mtnd4 1.37 1.32 0.0000 0.0007 
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10 P19511 ATP synthase F(0) complex 
subunit B1, mitochondrial 

Atp5f1 0.72 0.43 0.0000 0.0169 

11 B2RYW3 NADH dehydrogenase 
(Ubiquinone) 1 beta subcomplex, 

Ndufb9 1.81 1.85 0.0000 0.0000 

12 P10888 Cytochrome c oxidase subunit 4 
isoform 1, mitochondrial 

Cox4i1 2.15 2.33 0.0000 0.0003 

13 D3ZJX5 Mitochondrial import inner 
membrane translocase subunit 
TIM50 

Timm50 0.15 0.32 0.0000 0.0013 

14 Q5XI04 Stomatin Stom 0.88 1.30 0.0000 0.0000 

15 G3V9N7 Protein kinase C and casein 
kinase substrate in neurons 3  

Pacsin3 0.36 2.61 0.0000 0.0000 

16 G3V936 Citrate synthase, mitochondrial Cs 0.44 0.52 0.0000 0.0000 

17 P00507 Aspartate aminotransferase,  Got2 1.18 0.34 0.0000 0.0000 

18 P21913 Succinate dehydrogenase iron-
sulfur subunit, mitochondrial 

Sdhb 0.74 0.81 0.0000 0.0037 

19 D3Z802 Nebulin-related-anchoring protein Nrap 0.68 0.53 0.0000 0.0149 

20 P08733 Myosin regulatory light chain 2, 
ventricular/cardiac muscle 
isoform 

Myl2 1.41 3.59 0.0000 0.0000 
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21 D3ZZ21 NADH dehydrogenase 1 beta 
subcomplex, 6  

Ndufb6 2.12 2.17 0.0000 0.0009 

22 P63081 V-type proton ATPase 16 kDa 
proteolipid subunit 

Atp6v0c 0.76 0.80 0.0000 0.0000 

23 D4A0T0 NADH:ubiquinone 
oxidoreductase subunit B10  

Ndufb10 1.96 2.05 0.0000 0.0000 

24 D4A7L4 NADH dehydrogenase 
(Ubiquinone) 1 beta subcomplex 

Ndufb11 2.07 2.23 0.0000 0.0003 

25 M0RCY2 40S ribosomal protein S13 Rps13 0.56 0.53 0.0000 0.0000 

26 Q66HF1 NADH-ubiquinone 
oxidoreductase 75 kDa subunit, 
mitochondrial 

Ndufs1 0.87 0.75 0.0000 0.0004 

27 P00406 Cytochrome c oxidase subunit 2 Mtco2 1.12 1.11 0.0000 0.0044 

28 Q8R491 EH domain-containing protein 3 Ehd3 0.63 1.37 0.0000 0.0004 

29 Q66H98 Cavin2 Sdpr 1.19 2.96 0.0000 0.0000 

30 G3V741 Phosphate carrier protein Slc25a3 1.23 1.66 0.0000 0.0000 

31 Q7TQ16 Cytochrome b-c1 complex 
subunit 8 

Uqcrq 1.70 1.21 0.0000 0.0000 

32 A0A0G2K4M6 Actin, aortic smooth muscle Acta2;A
ctg2 

0.58 1.49 0.0000 0.0000 
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33 D4A565 NADH dehydrogenase 
(Ubiquinone) 1 beta subcomplex 

Ndufb5 2.08 2.47 0.0000 0.0014 

34 D4A9Q5 Carboxypeptidase M  Cpm 3.00 2.63 0.0001 0.0000 

35 Q01728 Sodium/calcium exchanger 1 Slc8a1 0.28 1.01 0.0001 0.0000 

36 Q68FX0 Isocitrate dehydrogenase [NAD] 
subunit beta, mitochondrial 

Idh3B 0.26 0.23 0.0001 0.0000 

37 R9PXU3 Protein kinase C and casein 
kinase substrate in neurons 2 
protein 

Pacsin2 0.72 2.02 0.0002 0.0000 

38 F1LM33 Leucine-rich PPR motif-
containing protein, mitochondrial 

Lrpprc 0.94 0.57 0.0002 0.0003 

39 D4AC36 Eukaryotic translation initiation 
factor 3 subunit F (eIF3f)  

Eif3f 0.33 0.48 0.0002 0.0000 

40 P67779 Prohibitin Phb 0.80 0.64 0.0004 0.0000 

41 P14562 Lysosome-associated membrane 
glycoprotein 1 

Lamp1 1.56 1.33 0.0006 0.0044 

42 B5DF63 Sarcolemmal membrane-
associated protein 

Slmap 0.67 1.37 0.0006 0.0000 

43 A0A0G2K174 LIM domain 7 Lmo7 0.16 1.61 0.0008 0.0000 

44 F1LN88 Aldehyde dehydrogenase, 
mitochondrial  

Aldh2 0.76 0.87 0.0009 0.0072 
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45 G3V6P2 Dihydrolipoyllysine-residue 
succinyltransferase component 
of 2-oxoglutarate dehydrogenase 
complex, mitochondrial 

Dlst 1.04 1.82 0.0011 0.0000 

46 A0A0G2K4N8 Abhydrolase domain-containing 
protein 16A 

Abhd16
a 

0.22 0.17 0.0012 0.0000 

47 F1M7L9 Uncharacterized protein   0.67 0.33 0.0012 0.0045 

48 Q8R3Z7 EH-domain-containing 4  Ehd4 0.57 1.58 0.0012 0.0000 

49 Q6AXV4 Sorting and assembly machinery 
component 50 homolog 

Samm5
0 

0.54 0.71 0.0013 0.0015 

50 P63039 60 kDa heat shock protein, 
mitochondrial 

Hspd1 1.38 0.80 0.0014 0.0000 

51 P04636 Malate dehydrogenase, 
mitochondrial 

Mdh2 1.44 0.95 0.0016 0.0440 

52 D4ADS4 Microsomal glutathione S-
transferase 3  

Mgst3 0.53 0.94 0.0017 0.0275 

53 P68035 Actin, alpha cardiac muscle 1 Actc1 0.30 0.56 0.0017 0.0000 

54 P13803 Electron transfer flavoprotein 
subunit alpha, mitochondrial 

Etfa 0.24 0.44 0.0019 0.0113 

55 Q66HH8 Annexin;Annexin A5 Anxa5 0.48 1.89 0.0020 0.0000 
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56 B2GV15 Dihydrolipoamide 
acetyltransferase component of 
pyruvate dehydrogenase 
complex  

Dbt 0.40 0.69 0.0020 0.0000 

57 Q03346 Mitochondrial-processing 
peptidase subunit beta 

Pmpcb 0.35 0.34 0.0023 0.0006 

58 A0A0G2K6J5 Myosin light polypeptide 6 Myl6 0.38 2.81 0.0024 0.0000 

59 D4ABA9 Uncharacterized protein Xirp1 0.23 1.04 0.0024 0.0105 

60 F1LMC6 Troponin I, slow skeletal muscle Tnni1 0.44 1.45 0.0027 0.0000 

61 D3ZEY0 Coiled-coil domain-containing 
141 

Ccdc141 0.66 0.89 0.0027 0.0000 

62 P23358 60S ribosomal protein L12 Rpl12 0.31 0.27 0.0029 0.0327 

63 B0K020 CDGSH iron-sulfur domain-
containing protein 1 

Cisd1 1.22 2.59 0.0030 0.0000 

64 P04692 Tropomyosin alpha-1 chain Tpm1 1.22 3.93 0.0033 0.0000 

65 P62982 Ubiquitin-40S ribosomal protein 
S27a 

Rps27a 0.17 1.11 0.0035 0.0000 

66 P11240 Cytochrome c oxidase subunit 
5A, mitochondrial 

Cox5a 1.84 1.85 0.0047 0.0000 

67 M0R608 Reticulon-1 Rtn1 0.24 2.08 0.0055 0.0000 
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68 P06685 Sodium/potassium-transporting 
ATPase subunit alpha-1 

Atp1a1 0.59 0.88 0.0060 0.0000 

69 P07895 Superoxide dismutase [Mn], 
mitochondrial 

Sod2 2.07 2.20 0.0062 0.0001 

70 Q5PPL3 Sterol-4-alpha-carboxylate 3-
dehydrogenase, decarboxylating 

Nsdhl 0.12 0.33 0.0063 0.0004 

71 M0R5K9 40S ribosomal protein S18 Rps18 0.79 1.30 0.0063 0.0000 

72 D3ZFQ8 Cytochrome c-1  Cyc1 2.06 1.74 0.0066 0.0000 

73 Q63584 Transmembrane emp24 domain-
containing protein 10 

Tmed10 0.55 0.29 0.0075 0.0021 

74 Q6IRJ7 Annexin Anxa7 0.52 1.04 0.0080 0.0000 

75 G3V679 Transferrin receptor protein 1 TfR1 0.58 0.10 0.0081 0.0000 

76 A0A0H2UHQ0 4F2 cell-surface antigen heavy 
chain 

Slc3a2 0.99 0.70 0.0087 0.0006 

77 Q06647 ATP synthase subunit O, 
mitochondrial 

Atp5o 0.67 0.31 0.0088 0.0040 

78 G3V7J0 Methylmalonate-semialdehyde 
dehydrogenase 

Aldh6a1 1.41 1.81 0.0108 0.0000 

79 P63322 Ras-related protein Ral-A Rala 0.22 1.94 0.0118 0.0000 

80 Q6IMZ3 Annexin;Annexin A6 Anxa6 0.37 3.25 0.0121 0.0000 
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81 P35565 Calnexin Canx 1.22 2.16 0.0155 0.0000 

82 P51638 Caveolin-3 Cav3 0.79 1.46 0.0159 0.0000 

83 Q6AY30 Saccharopine dehydrogenase-
like oxidoreductase 

Sccpdh 0.91 1.66 0.0166 0.0000 

84 Q5XI78 2-oxoglutarate dehydrogenase, 
mitochondrial 

Ogdh 1.39 0.73 0.0179 0.0000 

85 Q62969 Prostacyclin synthase Ptgis 0.92 1.61 0.0189 0.0000 

86 A0A0G2JZR4 Ras-related protein Rab-11B Rab11b 0.36 0.64 0.0194 0.0000 

87 P62890 60S ribosomal protein L30 Rpl30 0.41 1.00 0.0206 0.0000 

88 F1M953 Stress-70 protein, mitochondrial Hspa9 0.54 0.66 0.0220 0.0009 

89 P68136 Actin, alpha skeletal muscle Acta1 0.40 1.02 0.0256 0.0010 

90 Q1PBJ1 Lactadherin Mfge8 1.39 1.73 0.0286 0.0004 

91 A0A0G2JTS3 Vacuolar protein sorting-
associated protein 29 

Vps29 0.10 0.31 0.0290 0.0000 

92 Q2I6B2 V-type proton ATPase subunit a Atp6v0a
1 

0.66 1.22 0.0326 0.0000 

93 P07340 Sodium/potassium-transporting 
ATPase subunit beta-1 

Atp1b1 0.67 2.14 0.0339 0.0000 

94 D3ZNS1 Pleckstrin homology-like domain 
family B member 1 

Phldb1 0.46 0.90 0.0354 0.0000 
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95 A0A096MJW2 Fatty acyl-CoA reductase 1 Far1 0.40 0.75 0.0380 0.0000 

96 Q2IBC6 Caveolin-1 Cav1 0.12 1.67 0.0389 0.0000 

97 P18886 Carnitine O-palmitoyltransferase 
2, mitochondrial 

Cpt2 1.36 1.64 0.0413 0.0000 

98 P10860 Glutamate dehydrogenase 1, 
mitochondrial 

Glud1 0.91 0.85 0.0449 0.0169 

99 F1LNF7 Isocitrate dehydrogenase [NAD] 
subunit, mitochondrial 

Idh3a 0.33 0.84 0.0467 0.0000 

100 P12007 Isovaleryl-CoA dehydrogenase, 
mitochondrial 

Ivd 0.59 0.52 0.0476 0.0348 

101 Q68FU3 Electron transfer flavoprotein 
subunit beta 

Etfb 0.71 1.41 0.0493 0.0000 
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Table 8.12 V5-APEX2-CAV3-F97C enriched biotinylated proteins by SILAC-MS analysis. 

# Protein IDs Protein names Gene 
name 

log2 V5-
APEX2-
CAV3-
F97C / 
APEX2 
mean 

log2 V5-
APEX2-
CAV3-
F97C / 
GFP 
mean 

z-test V5-
APEX2-
CAV3-
F97C / 
APEX2 

z-test V5-
APEX2-
CAV3-
F97C / 
GFP 

1 P60711 Actin, cytoplasmic 1 Actb 0.41 0.27 0.0000 0.0009 

2 G3V6T1 Coatomer subunit alpha Copa 0.36 0.79 0.0000 0.0000 

3 F1LX07 Solute carrier family 25 member 
12 

Slc25a1
2 

0.54 0.31 0.0000 0.0441 

4 F1LZW6 Solute carrier family 25 member 
13 

Slc25a1
3 

0.61 0.40 0.0000 0.0006 

5 P35565 Calnexin Canx 1.02 1.31 0.0000 0.0000 

6 G3V8Q1 Coatomer subunit epsilon Cope 0.38 0.27 0.0000 0.0004 

7 Q6AY20 Cation-dependent mannose-6-
phosphate receptor 

M6pr 1.58 1.69 0.0000 0.0000 

8 B0BNG3 Lectin Lman2 0.89 1.47 0.0000 0.0000 

9 P67779 Prohibitin Phb 0.77 0.71 0.0000 0.0000 

10 F1LU48 Endoplasmic reticulum-golgi 
intermediate compartment 1 

Ergic1 0.29 0.42 0.0000 0.0000 
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11 Q68FP1-2 Gelsolin Gsn 0.59 0.72 0.0000 0.0002 

12 Q6P7A7 Dolichyldiphosphooligosaccharid
e protein glycosyltransferase 1 

Rpn1 0.44 0.31 0.0000 0.0016 

13 Q5XIW9 Flotillin-2 Flot2 0.16 0.26 0.0000 0.0034 

14 P11661 NADH-ubiquinone 
oxidoreductase chain 5 

Mtnd5 1.42 0.70 0.0000 0.0406 

15 G3V6P2 Dihydrolipoyllysine-residue 
succinyltransferase component 
of 2-oxoglutarate dehydrogenase 
complex, mitochondrial 

Dlst 0.58 0.56 0.0000 0.0280 

16 D4A133 ATPase H+-transporting V1 
subunit A  

Atp6v1a 0.67 0.63 0.0000 0.0000 

17 Q62969 Prostacyclin synthase Ptgis 1.30 1.47 0.0000 0.0000 

18 G3V741 Phosphate carrier protein, 
mitochondrial 

Slc25a3 1.27 1.12 0.0000 0.0018 

19 P06685 Sodium/potassium-transporting 
ATPase subunit alpha-1 

Atp1a1 0.34 0.88 0.0000 0.0000 

20 P62815 V-type proton ATPase subunit B, 
brain isoform 

Atp6v1b
2 

0.48 0.90 0.0000 0.0000 

21 G3V6B0 Pyridoxal-dependent 
decarboxylase domain-
containing 1 

Pdxdc1 1.12 0.88 0.0000 0.0000 
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22 P23514 Coatomer subunit beta Copb1 0.41 0.51 0.0000 0.0000 

23 F1LML2 Ubiquitin-60S ribosomal protein 
L40 

Ubc 0.79 1.65 0.0000 0.0000 

24 O08700 Vacuolar protein sorting-
associated protein 45 

Vps45 0.59 0.64 0.0000 0.0359 

25 A0A0G2JZF0 SEC24 homolog C Sec24c 0.23 0.94 0.0000 0.0000 

26 P05708 Hexokinase-1 Hk1 0.30 0.19 0.0000 0.0065 

27 F1LUA1 Early endosome antigen 1 Eea1 0.69 0.74 0.0000 0.0068 

28 P05508 NADH-ubiquinone 
oxidoreductase chain 4 

Mtnd4 1.20 1.03 0.0000 0.0000 

29 P68136 Actin, alpha skeletal muscle Acta1 0.25 0.51 0.0000 0.0006 

30 G3V8Q8 SEC23-interacting protein Sec23ip 0.35 0.66 0.0000 0.0020 

31 M0RAQ6 Hexokinase Hk1 0.27 0.30 0.0000 0.0000 

32 Q6AYF4 Integrin beta-6 Itgb6 0.23 1.45 0.0000 0.0005 

33 B1PRL5 Cavin4 Murc 0.23 1.88 0.0000 0.0000 

34 D3ZUY8 AP-2 complex subunit alpha Ap2a1 0.19 0.25 0.0000 0.0413 

35 Q4V8E2 14 Proteasome 26S subunit Psmd14 0.21 0.48 0.0000 0.0018 

36 Q3MID3 ADP-ribosylation factor GTPase-
activating protein 2 

Arfgap2 0.25 0.23 0.0000 0.0392 
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37 Q6DGF2 Clathrin interactor 1 Clint1 0.35 0.95 0.0000 0.0000 

38 Q5M7T6 V-type proton ATPase subunit Atp6v0d
1 

0.37 0.64 0.0000 0.0000 

39 P63259 Actin, cytoplasmic 2;Actin, 
cytoplasmic 2, N-terminally 
processed 

Actg1 0.52 0.30 0.0000 0.0138 

40 Q9Z1E1 Flotillin-1 Flot1 0.14 0.40 0.0000 0.0012 

41 Q4AEF8 Coatomer subunit gamma-1 Copg1 0.27 0.40 0.0001 0.0228 

42 P41542 General vesicular transport factor  Uso1 0.33 1.38 0.0001 0.0000 

43 A0A0G2K4M6 Actin, aortic smooth muscle Acta2 0.36 0.66 0.0001 0.0000 

44 A0A0G2K1F9 Glycerol-3-phosphate 
dehydrogenase 

Gpd2 0.20 1.25 0.0005 0.0000 

45 G3V8B6 26S proteasome non-ATPase 
regulatory subunit 1 

Psmd1 0.33 0.50 0.0008 0.0149 

46 G3V834 Protein PRRC1 Prrc1 0.27 0.65 0.0009 0.0004 

47 P51638 Caveolin-3 Cav3 2.49 1.64 0.0015 0.0000 

48 D3ZUD8 Transmembrane 9 superfamily 
member 

Tm9sf3 0.66 0.49 0.0017 0.0134 

49 A0A0G2JX64 Tropomyosin alpha-1 chain Tpm1 0.40 2.21 0.0021 0.0000 

50 P07340 Sodium/potassium-transporting 
ATPase subunit beta-1 

Atp1b1 0.38 1.19 0.0046 0.0000 
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51 P58775-2 Tropomyosin beta chain Tpm2 0.23 0.95 0.0050 0.0002 

52 P23928 Alpha-crystallin B chain Cryab 0.17 0.18 0.0055 0.0078 

53 F1LZX9 Integrin subunit alpha V Itgav 0.27 1.10 0.0098 0.0000 

54 P61751 ADP-ribosylation factor 4 Arf4 0.16 0.31 0.0117 0.0000 

55 Q5U2S7 Proteasome (Prosome, 
macropain) 26S subunit 

Psmd3 0.30 0.20 0.0128 0.0017 

56 P68035 Actin, alpha cardiac muscle 1 Actc1 0.24 0.18 0.0172 0.0000 

57 Q09073 ADP/ATP translocase 2 Slc25a5 0.06 0.16 0.0186 0.0007 

58 F1M9N7 Arf-GAP domain and FG repeat-
containing protein 1 

Agfg1 0.12 0.90 0.0191 0.0000 

59 G3V885 Myosin-6 Myh6 0.11 0.12 0.0212 0.0000 

60 A0A0G2K0X9 Protein transport protein Sec31A Sec31a 0.05 0.92 0.0221 0.0000 

61 P04692 Tropomyosin alpha-1 chain Tpm1 0.43 1.99 0.0278 0.0000 

62 D4A4W8 T, brachyury homolog  Tbxt 0.19 0.51 0.0291 0.0048 

63 B3DM90 Nicastrin Ncstn 0.50 2.05 0.0387 0.0000 

64 Q62991 Sec1 family domain-containing 
protein 1 

Scfd1 0.18 1.19 0.0395 0.0000 
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Table 8.13 V5-APEX2-CAV3-S141R enriched biotinylated proteins by SILAC-MS analysis. 

# Protein IDs Protein names Gene 
name 

log2 V5-
APEX2-
CAV3-
S141R / 
APEX2 
mean 

log2 V5-
APEX2-
CAV3-
S141R / 
GFP 
mean 

z-test V5-
APEX2-
CAV3-
S141R / 
APEX2 

z-test V5-
APEX2-
CAV3-
S141R / 
GFP 

1 Q66H98 Cavin2 Sdpr 1.46 2.74 0.0000 0.0000 

2 P29266 3-hydroxyisobutyrate 
dehydrogenase, mitochondrial 

Hibadh 1.96 0.85 0.0000 0.0003 

3 P68136 Actin, alpha skeletal muscle Acta1 0.51 0.69 0.0000 0.0000 

4 Q5RK27 Solute carrier family 12 member 
7 

Slc12a7 0.45 1.11 0.0000 0.0000 

5 G3V8L9 Cavin1 Ptrf 0.93 3.21 0.0000 0.0000 

6 B1PRL5 Cavin4 Murc 1.22 2.61 0.0000 0.0000 

7 P13803 Electron transfer flavoprotein 
subunit alpha, mitochondrial 

Etfa 0.20 0.11 0.0000 0.0070 

8 F1M953 Stress-70 protein, mitochondrial Hspa9 0.30 0.17 0.0000 0.0000 

9 D3ZZN4 60S ribosomal protein L35a Rpl35a 0.11 0.28 0.0000 0.0000 

10 P61589 Transforming protein RhoA Rhoa 0.14 0.49 0.0000 0.0001 
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11 P07340 Sodium/potassium-transporting 
ATPase subunit beta-1 

Atp1b1 0.71 2.04 0.0000 0.0000 

12 Q6AY58 B-cell receptor-associated 
protein 31 

Bcap31 2.61 1.97 0.0000 0.0003 

13 G3V741 Phosphate carrier protein, 
mitochondrial 

Slc25a3 1.58 1.39 0.0000 0.0000 

14 B4F761 Monocarboxylate transporter 4 Slc16a3 0.41 0.33 0.0000 0.0000 

15 Q1PBJ1 Lactadherin Mfge8 1.83 1.04 0.0000 0.0000 

16 F1LX07 Solute carrier family 25 member 
12 

Slc25a1
2 

0.58 0.16 0.0000 0.0304 

17 P11884 Aldehyde dehydrogenase, 
mitochondrial 

Aldh2 0.73 0.17 0.0000 0.0028 

18 P06685 Sodium/potassium-transporting 
ATPase subunit alpha-1 

Atp1a1 0.69 0.98 0.0000 0.0000 

19 F1LZW6 Solute carrier family 25 member 
13 

Slc25a1
3 

0.66 0.32 0.0000 0.0006 

20 A0A0G2JSK5 Integrin beta-1 Itgb1 0.61 1.81 0.0000 0.0000 

21 F1LZX9 Integrin subunit alpha V Itgav 0.94 1.57 0.0000 0.0000 

22 A0A0G2K6J5 Myosin light polypeptide 6 Myl6 0.63 1.87 0.0000 0.0000 

23 Q6P7S6 Clusterin;Clusterin;Clusterin beta 
chain;Clusterin alpha chain 

Clu 1.00 0.29 0.0000 0.0000 
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24 P04692 Tropomyosin alpha-1 chain Tpm1 0.70 3.33 0.0000 0.0000 

25 D4A133 ATPase H+-transporting V1 
subunit A (RCG52629) 

Atp6v1a 0.53 0.41 0.0000 0.0003 

26 P08733 Myosin regulatory light chain 2, 
ventricular/cardiac muscle 
isoform 

Myl2 1.53 2.70 0.0000 0.0000 

27 Q5RJR8 Leucine-rich repeat-containing 
protein 59 

Lrrc59 0.54 0.93 0.0000 0.0000 

28 Q5FVG5 Tropomyosin beta chain Tpm2 0.94 2.05 0.0000 0.0000 

29 P62815 V-type proton ATPase subunit B, 
brain isoform 

Atp6v1b
2 

0.32 0.59 0.0000 0.0000 

30 Q09073 ADP/ATP translocase 
2;ADP/ATP translocase 2, N-
terminally processed 

Slc25a5 0.16 0.19 0.0000 0.0001 

31 G3V7J0 Methylmalonate-semialdehyde 
dehydrogenase [acylating], 
mitochondrial 

Aldh6a1 0.82 0.15 0.0000 0.0002 

32 A0A0G2JSR0 Voltage-dependent anion-
selective channel protein 3 

Vdac3 0.28 0.20 0.0000 0.0001 

33 Q6IRI3 Protein kinase C and casein 
kinase substrate in neurons 2 
protein 

Pacsin2 0.71 1.52 0.0000 0.0000 
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34 Q68FP1-2 Gelsolin Gsn 0.88 1.19 0.0000 0.0000 

35 G3V885 Myosin-6 Myh6 0.04 0.06 0.0000 0.0057 

36 B2GV15 Dihydrolipoamide 
acetyltransferase component of 
pyruvate dehydrogenase 
complex (EC 2.3.1.-) 

Dbt 0.28 0.71 0.0000 0.0000 

37 P35565 Calnexin Canx 1.28 1.61 0.0000 0.0000 

38 A0A0G2K0Z7 Glycerol-3-phosphate 
dehydrogenase, 
mitochondrial;Glycerol-3-
phosphate dehydrogenase 

Gpd2 0.60 0.89 0.0000 0.0252 

39 P16409 Myosin light chain 3 Myl3 1.54 2.28 0.0000 0.0000 

40 P10860 Glutamate dehydrogenase 1, 
mitochondrial 

Glud1 1.22 0.71 0.0000 0.0000 

41 P67779 Prohibitin Phb 0.89 0.79 0.0000 0.0000 

42 B0BMW0 Ras-related protein Rab-14 Rab14 0.08 0.12 0.0000 0.0000 

43 Q8R3Z7 EH-domain-containing 4 
(Pincher) 

Ehd4 0.57 1.43 0.0000 0.0000 

44 F1LYS7 Sarcoglycan, delta Sgcd 0.41 1.58 0.0000 0.0000 

45 F1LS79 Chondroitin sulfate proteoglycan 
4 

Cspg4 0.35 1.38 0.0000 0.0017 
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46 D3ZUD8 Transmembrane 9 superfamily 
member 

Tm9sf3 0.51 0.72 0.0000 0.0002 

47 P62890 60S ribosomal protein L30 Rpl30 0.32 0.48 0.0000 0.0000 

48 D3ZFQ8 Cytochrome c-1  Cyc1 1.40 2.21 0.0000 0.0035 

49 A0A0G2JTS3 Vacuolar protein sorting-
associated protein 29 

Vps29 0.13 0.88 0.0000 0.0000 

50 P14668 Annexin A5;Annexin Anxa5 0.82 2.34 0.0001 0.0000 

51 P63259 Actin, cytoplasmic 2;Actin, 
cytoplasmic 2, N-terminally 
processed 

Actg1 0.95 1.15 0.0001 0.0000 

52 D4A4W8 T, brachyury homolog (Mouse) 
(Predicted), isoform CRA_b (T-
box transcription factor T) 

Tbxt 0.28 0.86 0.0001 0.0000 

53 P14669 Annexin A3 Anxa3 0.59 0.76 0.0001 0.0203 

54 Q5UAJ6 Cytochrome c oxidase subunit 2 COX2 0.70 1.17 0.0001 0.0025 

55 A0A0G2K9L2 Target of myb1-like 2 membrane-
trafficking protein 

Tom1l2 0.52 1.50 0.0001 0.0067 

56 Q3KRE0 ATPase family AAA domain-
containing protein 3 

Atad3 0.51 0.46 0.0001 0.0487 

57 A0A0G2K1L8 Brain acid soluble protein 1 Basp1 1.06 1.50 0.0002 0.0000 
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58 P54311 Guanine nucleotide-binding 
protein G(I)/G(S)/G(T) subunit 
beta-1 

Gnb1 0.23 0.81 0.0002 0.0040 

59 A0A0G2K4M6 Actin, aortic smooth muscle Acta2 0.70 1.06 0.0003 0.0000 

60 P04692-2 Tropomyosin alpha-1 chain Tpm1 1.02 2.20 0.0004 0.0000 

61 Q6AYF4 Integrin beta-6 Itgb6 0.59 1.35 0.0005 0.0006 

62 Q9Z0V5 Peroxiredoxin-4 Prdx4 0.20 0.48 0.0006 0.0029 

63 F1M8Z8 Sorbin and SH3 domain-
containing protein 1 

Sorbs1 0.22 0.93 0.0006 0.0000 

64 D3ZJE2 60S ribosomal protein L12 Rpl12-
ps1 

0.10 0.24 0.0006 0.0044 

65 B0BNG3 Lectin, mannose-binding 2 Lman2 0.54 1.13 0.0008 0.0006 

66 Q5XID6 Sarcoglycan, gamma  Sgcg 0.42 1.84 0.0008 0.0000 

67 P04762 Catalase Cat 0.77 1.10 0.0009 0.0000 

68 Q62969 Prostacyclin synthase Ptgis 0.92 1.39 0.0009 0.0000 

69 P20070-3 NADH-cytochrome b5 reductase 
3 

Cyb5r3 1.37 0.73 0.0009 0.0041 

70 B0BN52 Mitochondrial carrier 2  Mtch2 0.32 1.00 0.0012 0.0000 

71 Q63030 Rat alpha-smooth muscle actin    1.49 1.09 0.0014 0.0001 
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72 G3V6P2 Dihydrolipoyllysine-residue 
succinyltransferase component 
of 2-oxoglutarate dehydrogenase 
complex, mitochondrial 

Dlst 0.78 0.87 0.0015 0.0000 

73 P54313 Guanine nucleotide-binding 
protein G(I)/G(S)/G(T) subunit 
beta-2 

Gnb2 0.11 0.57 0.0017 0.0000 

74 Q9QZA6 CD151 antigen Cd151 0.50 1.59 0.0020 0.0054 

75 B4F7C9 STT3 oligosaccharyltransferase 
complex catalytic subunit A 

Stt3a 0.35 0.19 0.0020 0.0315 

76 Q9Z1E1 Flotillin-1 Flot1 0.26 0.82 0.0021 0.0000 

77 D3ZKE6 Sarcolemmal membrane-
associated protein 

Slmap 0.39 1.17 0.0022 0.0000 

78 P04636 Malate dehydrogenase, 
mitochondrial 

Mdh2 1.07 1.14 0.0023 0.0103 

79 A0A0G2K5E7 ATP-citrate synthase Acly 0.15 0.39 0.0026 0.0333 

80 Q63355 Unconventional myosin-Ic Myo1c 0.25 0.84 0.0028 0.0000 

81 F1LU48 Endoplasmic reticulum-golgi 
intermediate compartment 1 

Ergic1 0.24 0.52 0.0032 0.0116 

82 P60711 Actin, cytoplasmic 1 Actb 0.43 0.53 0.0041 0.0119 
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83 M0R402 Thioredoxin-related 
transmembrane protein 3 

Tmx3 0.36 0.30 0.0055 0.0000 

84 P29975 Aquaporin-1 Aqp1 0.55 3.46 0.0073 0.0000 

85 A0A140TAA4 Programmed cell death 6-
interacting protein 

Pdcd6ip 0.10 1.17 0.0080 0.0000 

86 D3ZCG9 Integrin alpha 3 variant A Itga3 0.32 1.49 0.0110 0.0002 

87 Q6AXV4 Sorting and assembly machinery 
component 50 homolog 

Samm5
0 

0.37 0.80 0.0186 0.0078 

88 Q6AY23 Pyrroline-5-carboxylate 
reductase 2 

Pycr2 0.12 0.80 0.0188 0.0007 

89 Q5XIW9 Flotillin-2 Flot2 0.22 0.64 0.0230 0.0000 

90 Q07936 Annexin A2 Anxa2 0.09 1.28 0.0248 0.0000 

91 D4A772 Dystrobrevin beta Dtna 0.17 0.52 0.0249 0.0231 

92 E9PT87 Myosin light chain kinase 3 Mylk3 0.26 0.82 0.0254 0.0000 

93 F1LMC6 Troponin I, slow skeletal muscle Tnni1 0.84 1.25 0.0256 0.0000 

94 B4F7E8 Niban-like protein 1 Fam129
b 

0.17 0.62 0.0259 0.0189 

95 P55161 Nck-associated protein 1 Nckap1 0.10 0.41 0.0333 0.0000 

97 Q63654 Ubiquitin-60S ribosomal protein 
L40  

Ubb 0.31 1.28 0.0366 0.0024 
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98 F1LM33 Leucine-rich PPR motif-
containing protein, mitochondrial 

Lrpprc 0.52 0.08 0.0383 0.0206 

99 P12075 Cytochrome c oxidase subunit 
5B, mitochondrial 

Cox5b 0.19 0.68 0.0400 0.0010 

100 P61621 Protein transport protein Sec61 
subunit alpha isoform 1 

Sec61a1 0.27 0.50 0.0406 0.0005 

101 Q6NYB7 Ras-related protein Rab-1A Rab1A 0.05 0.11 0.0428 0.0049 

102 Q5M7T6 V-type proton ATPase subunit Atp6v0d
1 

0.45 0.64 0.0464 0.0000 
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Table 8.14 CAV1 isoform-specific enrichment of protein interactors by CHAPS co-IP and SWATH-MS prote in 
quantification.  

# UniProt_Accession 
mouse 

Protein name Gene 
names 

log2 
Cav1 / 
IgG 
Mean 

-log p 

1 Q02013 Aquaporin-1  Aqp1 5.32 5.41 

2 P49817 Caveolin-1 Cav1 5.05 6.56 

3 Q63918 Cavin-2 Cavin2 4.13 7.77 

4 O54724 Cavin-1 Cavin1 3.80 8.72 

5 Q9WVC3 Caveolin-2 Cav2 3.27 7.10 

6 Q8VDD5 Myosin-9  Myh9 3.16 9.11 

7 Q08857 Platelet glycoprotein 4  Cd36 2.98 6.10 

8 P03888 NADH-ubiquinone oxidoreductase 
chain 1  

Mtnd1 2.87 2.64 

9 A0A0N4SW94 Myeloid-associated differentiation 
marker  

Myadm 2.83 2.00 

10 Q8K3J1 NADH dehydrogenase 
[ubiquinone] iron-sulfur protein 8, 
mitochondrial  

Ndufs8 2.55 4.22 

11 P00397 Cytochrome c oxidase subunit 1  Mtco1 2.48 3.45 
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12 Q8CDV7 Ectonucleoside triphosphate 
diphosphohydrolase 1 

Entpd1 2.40 3.51 

13 Q9D023 Mitochondrial pyruvate carrier 2  Mpc2 2.40 2.42 

14 P03911 NADH-ubiquinone oxidoreductase 
chain 4 

Mtnd4 2.32 2.98 

15 Q9D6J6 NADH dehydrogenase 
[ubiquinone] flavoprotein 2, 
mitochondrial  

Ndufv2 2.22 1.80 

16 F6U7V1 Ryanodine receptor 2 Ryr2 2.20 5.87 

17 Q9WTR5 Cadherin-13  Cdh13 2.19 4.87 

18 F8WI35 Histone H3 H3f3a 2.18 1.12 

19 Q02566 Myosin-6  Myh6 2.15 0.88 

20 F8WHP8 ATP synthase, H+-transporting, 
mitochondrial F0 complex, subunit 
F2 

Atp5j2 2.05 2.79 

21 A0A1B0GRT5 Ras-related protein R-Ras2 Rras2 2.03 1.98 

22 Q3UIK0 Myosin-binding protein C, cardiac-
type 

Mybpc3 2.00 1.67 

23 Q9DCS9 NADH dehydrogenase 
[ubiquinone] 1 beta subcomplex 
subunit 10 

Ndufb10 1.95 3.74 
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24 Q9CR68 Cytochrome b-c1 complex subunit 
Rieske, mitochondrial  

Uqcrfs1 1.91 4.13 

25 Q9CZ13 Cytochrome b-c1 complex subunit 
1, mitochondrial  

Uqcrc1 1.86 5.01 

26 Q5SX46 Mitochondrial 2-
oxoglutarate/malate carrier protein  

Slc25a11 1.85 1.26 

27 E9QPX3 NADH dehydrogenase 
[ubiquinone] iron-sulfur protein 4, 
mitochondrial 

Ndufs4 1.84 3.25 

28 P51881 ADP/ATP translocase 2  Slc25a5 1.84 2.53 

29 G5E902 MCG10343, isoform CRA_b  Slc25a3 1.83 6.76 

30 O35129 Prohibitin-2  Phb2 1.82 3.13 

31 P48962 ADP/ATP translocase 1  Slc25a4 1.79 4.77 

32 Q8BH59 Calcium-binding mitochondrial 
carrier protein Aralar1  

Slc25a12 1.76 4.31 

33 Q61941 NAD(P) transhydrogenase, 
mitochondrial  

Nnt 1.73 6.01 

34 B1AU25 Apoptosis-inducing factor 1 Aifm1 1.72 4.83 

35 Q5SX22 Polyubiquitin-B (Fragment) Ubb 1.60 1.73 

36 P19783 Cytochrome c oxidase subunit 4 
isoform 1 

Cox4i1 1.60 6.35 
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37 Q9D0M3 Cytochrome c1, heme protein, 
mitochondrial  

Cyc1 1.59 4.85 

38 Q9D3D9 ATP synthase subunit delta Atp5f1d 1.58 2.66 

39 Q9QXX4 Calcium-binding mitochondrial 
carrier protein Aralar2  

Slc25a13 1.58 2.01 

40 Q99LC3 NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex 
subunit 10 

Ndufa10 1.57 5.10 

41 P63260 Actin, cytoplasmic 2 (Gamma-
actin)  

Actg1 1.56 4.16 

42 Q9CQ54 NADH dehydrogenase 
[ubiquinone] 1 subunit C2  

Ndufc2 1.54 2.07 

43 Q91VD9 NADH-ubiquinone oxidoreductase 
75 kDa subunit, mitochondrial 

Ndufs1 1.52 6.22 

44 Q9ERS2 NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex 
subunit 13 

Ndufa13 1.52 1.48 

45 D3YUM1 NADH dehydrogenase 
[ubiquinone] flavoprotein 1, 
mitochondrial 

Ndufv1 1.49 5.81 
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46 P52503 NADH dehydrogenase 
[ubiquinone] iron-sulfur protein 6, 
mitochondrial 

Ndufs6 1.46 1.95 

47 Q9DB77 Cytochrome b-c1 complex subunit 
2, mitochondrial  

Uqcrc2 1.42 4.65 

48 Q9CQZ5 NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex 
subunit 6  

Ndufa6 1.39 1.73 

49 Q9DCT2 NADH dehydrogenase 
[ubiquinone] iron-sulfur protein 3 

Ndufs3 1.38 4.85 

50 Q5SQG5 Prohibitin Phb 1.34 3.35 

51 Q8VDN2 Sodium/potassium-transporting 
ATPase subunit alpha-1  

Atp1a1 1.33 6.24 

52 G3UX26 Voltage-dependent anion-selective 
channel protein 2 

Vdac2 1.33 5.92 

53 P14094 Sodium/potassium-transporting 
ATPase subunit beta-1 

Atp1b1 1.30 5.00 

54 Q9CQC7 NADH dehydrogenase 
[ubiquinone] 1 beta subcomplex 
subunit 4 

Ndufb4 1.27 3.06 

55 Q9D050 Mitochondrial carrier homolog 2 Mtch2 1.25 1.83 

56 Q9D881 Cytochrome c oxidase subunit 5B Cox5b 1.21 5.04 

170 

A
ppendix 



 

 

57 Q9DCJ5 NADH dehydrogenase 
[ubiquinone] 1 alpha subcomplex 
subunit 8  

Ndufa8 1.19 1.96 

58 Q99JY0 Trifunctional enzyme subunit beta, 
mitochondrial (TP-beta) [Includes: 
3-ketoacyl-CoA thiolase  

Hadhb 1.19 2.27 

59 Q9Z2Z6 Mitochondrial 
carnitine/acylcarnitine carrier 
protein  

Slc25a20 1.17 2.49 

60 P56480 ATP synthase subunit beta, 
mitochondrial ) 

Atp5f1b 1.17 5.82 

61 P20612 Guanine nucleotide-binding protein 
G(t) subunit alpha-1 

Gnat1 1.03 3.12 

62 O55143-2 Sarcoplasmic/endoplasmic 
reticulum calcium ATPase 2 
(SERCA2) 

Atp2a2 1.00 4.28 
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Table 8.15 CAV3 isoform-specific enrichment of protein interactors by CHAPS co-IP and SWATH-MS prot ein 
quantification.  

# UniProt_Accession 
mouse 

Protein name Gene 
names 

log2 Cav3 
/ IgG 
Mean 

-log p 

1 P14142 Solute carrier family 2 (GLUT-4) Slc2a4 5.37 6.53 

2 Q8VDN2 Sodium/potassium-transporting 
ATPase subunit alpha-1  

Atp1a1 4.52 12.05 

3 P14094 Sodium/potassium-transporting 
ATPase subunit beta-1  

Atp1b1 4.47 10.36 

4 A0A0N4SW94 Myeloid-associated differentiation 
marker  

Myadm 4.33 6.20 

5 Q9CR06 Aspartate-beta-hydroxylase, isoform  Asph 4.06 4.24 

6 Q9WTR5 Cadherin-13  Cdh13 3.81 7.44 

7 P53986 Monocarboxylate transporter 1  Slc16a1 3.78 8.21 

8 Q08857 Platelet glycoprotein 4  Cd36 3.41 7.30 

9 F6U7V1 Ryanodine receptor 2 Ryr2 3.31 8.55 

10 Q8C129 Leucyl-cystinyl aminopeptidase  Lnpep 3.27 6.76 

11 O55143-2 Sarcoplasmic/endoplasmic 
reticulum calcium ATPase 2 
(SERCA2) 

Atp2a2 3.11 8.88 
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12 J3QP71 Basigin Bsg 3.11 5.47 

13 A0A1B0GRT5 Ras-related protein R-Ras2 Rras2 2.83 2.89 

14 Q9D1G3 Protein-cysteine N-
palmitoyltransferase HHAT-like 
protein 

Hhatl 2.73 5.51 

15 P54116 Erythrocyte band 7 integral 
membrane protein  

Stom 2.71 6.57 

16 Q5SX46 Mitochondrial 2-oxoglutarate/malate 
carrier protein  

Slc25a11 2.70 2.70 

17 Q5SS83 Flotillin 2, isoform  Flot2 2.68 2.54 

18 Q8VDD5 Myosin-9  Myh9 2.67 8.73 

19 Q5SX22 Polyubiquitin-B  Ubb 2.65 3.75 

20 P51637 Caveolin-3  Cav3 2.65 4.54 

21 F8WI35 Histone H3 H3f3a 2.64 3.14 

22 Q9D023 Mitochondrial pyruvate carrier 2  Mpc2 2.49 3.44 

23 P03888 NADH-ubiquinone oxidoreductase 
chain 1  

Mtnd1 2.43 2.16 

24 G3UYU4 Flotillin-1 Flot1 2.26 2.86 

25 E9PZ69 Transmembrane 9 superfamily 
member 

Tm9sf2 2.12 2.13 
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26 P51881 ADP/ATP translocase 2 Slc25a5 2.07 2.87 

27 Q9D1D4 Transmembrane emp24 domain-
containing protein 10  

Tmed10 2.01 2.85 

28 P48962 ADP/ATP translocase 1  Slc25a4 2.00 5.16 

29 P00397 Cytochrome c oxidase subunit 1  Mtco1 1.94 2.76 

30 P23242 Gap junction alpha-1 protein 
(Connexin-43)  

Gja1 1.93 5.01 

31 G3X9J1 Sodium/calcium exchanger 1 Slc8a1 1.91 3.74 

32 P20612 Guanine nucleotide-binding protein 
G(t) subunit alpha-1  

Gnat1 1.88 6.09 

33 Q8BH80 Vesicle-associated membrane 
protein, associated protein B and C  

Vapb 1.85 4.17 

34 Q8BH59 Calcium-binding mitochondrial 
carrier protein Aralar1  

Slc25a12 1.85 5.43 

35 P03911 NADH-ubiquinone oxidoreductase 
chain 4 ( 

Mtnd4 1.85 2.39 

36 Q8K3J1 NADH dehydrogenase [ubiquinone] 
iron-sulfur protein 8, mitochondrial  

Ndufs8 1.85 1.83 

37 Q9D6J6 NADH dehydrogenase [ubiquinone] 
flavoprotein 2, mitochondrial  

Ndufv2 1.81 1.40 

38 G5E902 MCG10343, isoform CRA_b  Slc25a3 1.81 6.70 
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39 F8WHP8 ATP synthase, H+-transporting, 
mitochondrial F0 complex, subunit 
F2 

Atp5j2 1.78 2.39 

40 P07724 Serum albumin Alb 1.75 4.33 

41 G3UY29 Ras-related protein Rab-11B Rab11b 1.74 3.85 

42 Q9DCS9 NADH dehydrogenase [ubiquinone] 
1 beta subcomplex subunit 10  

Ndufb10 1.69 3.50 

43 Q9D050 Mitochondrial carrier homolog 2 Mtch2 1.69 2.59 

44 Q99JI6 Ras-related protein Rap-1b  Rap1b 1.63 1.63 

45 Q61941 NAD(P) transhydrogenase, 
mitochondrial  

Nnt 1.63 5.88 

46 Q9CPU4 Microsomal glutathione S-
transferase 3  

Mgst3 1.62 1.72 

47 Q9CR68 Cytochrome b-c1 complex subunit  Uqcrfs1 1.61 3.62 

48 G3UX26 Voltage-dependent anion-selective 
channel protein 2 

Vdac2 1.56 6.81 

49 P00158 Cytochrome b  Mt-Cyb 1.52 1.33 

50 Q9Z2Z6 Mitochondrial carnitine/acylcarnitine 
carrier protein  

Slc25a20 1.47 3.71 

51 Q9CZ13 Cytochrome b-c1 complex subunit 
1, mitochondrial  

Uqcrc1 1.41 3.99 
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52 Q99JY0 Trifunctional enzyme subunit beta, 
mitochondrial  

Hadhb 1.41 2.69 

53 Q9D3D9 ATP synthase subunit delta Atp5f1d 1.37 2.31 

54 O35129 Prohibitin-2  Phb2 1.37 2.35 

55 Q924X2 Carnitine O-palmitoyltransferase 1, 
muscle isoform  

Cpt1b 1.35 5.29 

56 E9QPX3 NADH dehydrogenase [ubiquinone] 
iron-sulfur protein 4, mitochondrial 

Ndufs4 1.33 2.37 

57 O54724 Cavin-1 Cavin1 1.29 5.27 

58 Q9CQZ5 NADH dehydrogenase [ubiquinone] 
1 alpha subcomplex subunit 6  

Ndufa6 1.27 2.11 

59 Q8CGP4 Histone H2A Hist1h2aa 1.27 0.88 

60 J3QMG3 Voltage-dependent anion-selective 
channel protein 3 

Vdac3 1.19 4.92 

61 P19783 Cytochrome c oxidase subunit 4 
isoform 1, mitochondrial  

Cox4i1 1.16 4.31 

62 Q99LC3 NADH dehydrogenase [ubiquinone] 
1 alpha subcomplex subunit 10, 
mitochondrial 

Ndufa10 1.15 4.08 

63 Q91VD9 NADH-ubiquinone oxidoreductase 
75 kDa subunit, mitochondrial  

Ndufs1 1.15 5.62 

176 

A
ppendix 



 

 

64 D3YUM1 NADH dehydrogenase [ubiquinone] 
flavoprotein 1, mitochondrial  

Ndufv1 1.14 4.48 

65 Q9QXX4 Calcium-binding mitochondrial 
carrier protein Aralar2  

Slc25a13 1.14 1.12 

66 Q9D0M3 Cytochrome c1, heme protein, 
mitochondrial 

Cyc1 1.13 3.47 

67 P52503 NADH dehydrogenase [ubiquinone] 
iron-sulfur protein 6, mitochondrial  

Ndufs6 1.12 1.38 

68 Q60932 Voltage-dependent anion-selective 
channel protein 1  

Vdac1 1.06 5.91 

69 Q9DCT2 NADH dehydrogenase [ubiquinone] 
iron-sulfur protein 3, mitochondrial  

Ndufs3 1.04 4.45 

70 D3YXT0 NADH dehydrogenase [ubiquinone] 
iron-sulfur protein 2, mitochondrial 

Ndufs2 1.00 4.55 
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Table 8.16 CAV3 isoform-specific enrichment of protein interactors by sodium deoxycholate co- IP and SWATH-
MS protein quantification.  

# UniProt_Acces
sion mouse 

Protein name Gene 
names 

log2 Cav3 
/ IgG 
Mean 

-log p 

1 P51637 Caveolin-3 Cav3 4.03 4.40 

2 O08917 Flotillin-1 Flot1 3.83 10.37 

3 A0A075B6A0 Immunoglobulin heavy constant Ighm 3.60 7.57 

4 Q91V79 Fat storage-inducing 
transmembrane protein 1 

Fitm1  3.12 4.31 

5 F6U7V1 Ryanodine receptor 2 Ryr2 3.04 8.60 

6 P49817 Caveolin-1 Cav1 2.98 7.46 

7 P54116 Erythrocyte band 7 integral 
membrane protein  

Stom  2.91 8.41 

8 Q8C522 Endonuclease domain-containing 1 
protein  

Endod1  2.56 6.50 

9 Q02788 Collagen alpha-2(VI) chain Col6a2 2.43 11.04 

10 Q924L1 LETM1 domain-containing protein 1  Letmd1  2.41 6.29 

11 Q60634 Flotillin-2 Flot2  2.25 6.31 

12 Q8BJS4 SUN domain-containing protein 2 Sun2  2.25 2.76 
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13 E9PWQ3 Collagen, type VI, alpha 3 Col6a3 2.09 8.34 

14 Q04857 Collagen alpha-1(VI) chain Col6a1 1.79 3.54 

15 Q9D1G3 Protein-cysteine N-
palmitoyltransferase HHAT-like 
protein 

Hhatl  1.44 3.53 

16 F6XI62 60S ribosomal protein L7 Rpl7 1.29 4.18 

17 P00848 ATP synthase subunit a Mtatp6  1.27 1.83 
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Table 8.17 CAV3 isoform-specific enrichment of protein interactors by octylglucoside co-IP and SWATH-MS 
protein quantification.  

# UniProt_Acces
sion 

Protein name Gene 
names 

log2 Cav3 
/ IgG 
Mean 

-log p 

1 Q61781 Keratin, type I cytoskeletal 14  Krt14  3.93 1.40 

2 Q04857 Collagen alpha-1(VI) chain Col6a1 3.06 2.84 

3 E9PWQ3 Collagen, type VI, alpha 3 Col6a3 2.47 1.67 

4 Q02788 Collagen alpha-2(VI) chain Col6a2 2.33 2.35 

5 Q9CR57 60S ribosomal protein L14 Rpl14 2.27 2.29 

6 P51637 Caveolin-3  Cav3 1.97 2.82 

7 O08917 Flotillin-1 Flot1 1.62 1.99 

8 Q8CI12 Smoothelin-like protein 2 Smtnl2 1.56 1.86 

9 A0A0G2JE47 Immunoglobulin kappa variable 8-28  Igkv8-28 1.33 2.23 

10 P11499 Heat shock protein HSP 90-beta  Hsp90a
b1  

1.25 1.79 

11 Q9DB34 Charged multivesicular body protein 
2a  

Chmp2a 1.23 2.19 

12 A0A0G2JEU1 Aldehyde dehydrogenase, 
mitochondrial 

Aldh2 1.17 1.99 
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