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Summary 
 

Cognition, the process by which animals acquire, process, store and use information from 

their environment, plays a major role in various behaviours across all aspects of an individuals’ 

life. However, despite this overall importance of cognitive abilities, we still know little about 

how cognitive traits evolved. In the past, research on cognitive evolution focussed on 

comparing different species in their cognitive abilities and linked variation in cognition to 

inter-specific differences in ecological and social conditions. This comparative approach helps 

to understand when in evolutionary history and under which conditions particular cognitive 

abilities evolved. Individual variation in cognitive abilities has been widely ignored in these 

studies on the species level, however. This changed only recently when the interest in how 

and why individuals differ in cognitive traits emerged. Only by investigating inter-individual 

variation in cognitive abilities and their link with fitness outcomes, we can begin to understand 

the causes and consequences of this variation and finally unravel how cognition evolved. 

Because fitness can only be studied in wild, free-ranging individuals, the study of individual 

differences in cognitive abilities and their fitness consequences is challenging and has been 

conducted mainly in different species of birds until today. The few studies so far focused 

largely on single measures of cognition and fitness and revealed not only positive but also 

negative and not significant correlations between cognitive performance and fitness 

outcomes.  

 With my thesis, I contribute to this young field of research aiming to better understand 

the adaptive value of cognitive traits. I investigated cognitive abilities in five cognitive tasks in 

wild grey mouse lemurs (Microcebus murinus), a primate species endemic to Madagascar, and 

linked cognitive performance with different fitness proxies. The cognitive tasks addressed 

different ecologically relevant cognitive abilities. They included associative and motor learning 

during repeated problem solving, causal reasoning and spontaneous problem solving in a 

string-pulling task, spatial learning, inhibitory control and behavioural flexibility during 

reversal learning. Subjects were tested during short-term captivity of up to three nights and 

subsequently released back into the wild. Furthermore, individuals were tested in two 

personality tests and their neophilia and activity during a novel object and an open field test 

was assessed. 
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 In the first part of my thesis, I focused on inter- and intra-individual differences of 

cognitive performance: the potential confounding effects of non-cognitive factors on 

cognitive performance and the structure of cognitive performance across different cognitive 

abilities. My results demonstrated that, first of all, subjects differed greatly in cognitive 

performance and performance was not systematically affected by non-cognitive factors such 

as personality, body condition, motivation, age or sex. Furthermore, performance in one 

cognitive task was generally a weak predictor of performance in any other tasks of the test 

battery and could not be summarized into a general factor. Thus, I could not find evidence for 

a general factor of cognitive performance similar to the general intelligence factor (g) in 

humans, where performance is positively correlated across cognitive tasks and domains. 

In the second part of the thesis, I studied different fitness-related traits in grey mouse 

lemurs and linked cognitive performance with two fitness proxies. I found that efficient 

repeated solving of a food extraction task correlated positively with the ability to maintain 

body condition during the long dry season with low food availability. This suggests that the 

ability to quickly apply a newly discovered motor technique during problem solving also 

facilitates the exploitation of new, natural food resources when food is scarce. By contrast, 

cognitive performance, irrespective of cognitive task, did not correlate with survival or 

longevity, suggesting that the assessed cognitive abilities did not provide (net) benefits in 

survival. Moreover, difficulties in validating a physiological condition factor, that summarized 

measures of body condition, hematocrit and long-term cortisol levels, demonstrated that 

identifying and operationalizing meaningful fitness proxies can be challenging for many taxa. 

In summary, my thesis contributes the first study on a wild primate to the growing 

body of research investigating individual differences in cognitive abilities and their link with 

fitness outcomes. Together with the other recent findings revealing heterogenous links 

between cognitive performance and fitness measures, my thesis demonstrates that cognitive 

abilities are involved in complex interactions between various traits. At the same time, they 

are likely to have costs and benefits, and thus do not necessarily correlate positively with 

fitness outcomes. Further studies in different species in the wild, that investigate multiple 

cognitive traits and fitness outcomes as well as potentially confounding covariates 

simultaneously, will help to unravel this complex system, the evolution of cognition. 
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Zusammenfassung 
 

Kognition, der Prozess durch den Tiere Informationen aus ihrer Umwelt erhalten, verarbeiten, 

speichern und nutzen, spielt eine existenzielle Rolle in unterschiedlichsten Verhaltensweisen 

in allen Lebensbereichen eines Individuums. Trotz dieser umfassenden Bedeutung kognitiver 

Fähigkeiten wissen wir jedoch bisher immer noch wenig darüber, wie Kognition im Laufe der 

Evolution entstanden ist. In der Vergangenheit hat sich die Forschung im Bereich der Evolution 

von Kognition darauf fokussiert, verschiedene Arten in ihren kognitiven Fähigkeiten zu 

vergleichen und diese Unterschiede mit Gegensätzen im ökologischen und sozialen Umfeld 

der Arten zu erklären. Dieser vergleichende Ansatz hilft zu verstehen, wann in der Geschichte 

der Evolution und unter welchen Bedingungen bestimmte kognitive Fähigkeiten entstanden 

sind. Individuelle Unterschiede in kognitiven Fähigkeiten wurden in diesen Studien mit Fokus 

auf den Unterschieden zwischen Arten jedoch weitestgehend ignoriert. Dies änderte sich erst 

vor kurzem, als das Interesse dafür, wie und warum Individuen sich in ihren kognitiven 

Fähigkeiten unterscheiden, geweckt wurde. Nur wenn wir Kognitionsunterschiede zwischen 

einzelnen Individuen untersuchen und mit Fitnessmerkmalen in Verbindung setzen, können 

wir beginnen die Ursachen und Konsequenzen von kognitiven Fähigkeiten zu verstehen und 

herausfinden wie Kognition entstanden ist. Da Fitness nur bei freilebenden Tieren realistisch 

zu messen ist, geht dieses Vorhaben mit einigen Herausforderungen einher und wurde bis 

heute vor allem mit verschiedenen Vogelarten durchgeführt. Die wenigen Studien bisher 

haben sich vorwiegend auf einzelne Kognitions- und Fitnessmaße konzentriert und brachten 

positive, negative und nicht signifikante Korrelationen zwischen kognitiven Fähigkeiten und 

Fitnessmerkmalen zum Vorschein. 

Mit meiner Doktorarbeit trage ich zu diesem jungen Wissenschaftsbereich bei, mit 

dem Ziel den adaptiven Wert kognitiver Fähigkeiten besser zu verstehen. Ich habe kognitive 

Fähigkeiten bei wildlebenden Grauen Mausmakis (Microcebus murinus), einer Affenart aus 

Madagaskar, untersucht und mit verschieden Fitnessmaßen korreliert. In fünf verschiedenen 

Kognitionstests wurden unterschiedliche, ökologisch relevante kognitive Fähigkeiten getestet. 

Sie umfassten Assoziationslernen und Bewegungslernen während wiederholtem Problem-

lösen, kausales Verständnis und spontanes Problemlösen während eines String-Pulling Tests, 

räumliches Lernen, inhibitorische Kontrolle und flexibles Verhalten innerhalb eines Reversal 

Learning Tests. Die Versuchstiere wurden in Kurzzeit-Gefangenschaft von bis zu drei Nächten 
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getestet und im Anschluss wieder in ihren Streifgebieten freigelassen. Des Weiteren wurden 

die Tiere in zwei Persönlichkeitstest getestet und ihre Neophilie und Aktivität in einem Novel 

Object und einem Open Field Test gemessen.  

Im ersten Teil meiner Arbeit ging es im Detail um die individuelle Variation in 

kognitiven Fähigkeiten und den potentiellen Einfluss von nicht kognitiven Faktoren auf die 

Performanz der Tiere. Außerdem ging es um darum, wie sich die kognitiven Fähigkeiten der 

Tiere in den verschiedenen Tests unterscheiden, der so genannten Struktur von Kognition. 

Meine Ergebnisse zeigen, dass die Tiere deutlich in ihren kognitiven Fähigkeiten variieren und 

kognitive Performanz nicht systematisch durch Persönlichkeitsmerkmale, Körperkondition, 

Motivation, Geschlecht und Alter beeinflusst wurde. Wie ein Tier in einem speziellen Test 

abschnitt, sagte nicht vorher wie es in den jeweils anderen Tests abschnitt und die Performanz 

der verschiedenen Tests konnte nicht zu einem generellen Faktor zusammengefasst werden. 

Daher konnte ich keinen Nachweis für einen generellen Faktor entsprechend dem General 

Intelligence Factor (g) beim Menschen, wo kognitive Fähigkeiten verschiedener Tests und 

kognitiven Domänen korrelieren, finden. 

Im zweiten Teil meiner Arbeit habe ich verschiedene Fitness-relevante Merkmale bei 

Grauen Mausmakis untersucht und die kognitiven Fähigkeiten der Tiere mit zwei 

Fitnessmaßen in Verbindung gesetzt. Ich fand heraus, dass effizientes, wiederholtes Lösen 

eines Food Extraction Tasks signifikant mit der Fähigkeit die Körperkondition während der 

nahrungsarmen Trockenzeit aufrechtzuerhalten korrelierte. Dies deutet darauf hin, dass die 

Fähigkeit schnell eine neuentdeckte motorische Technik anzuwenden auch unter natürlichen 

Bedingungen von Vorteil ist und möglicherweise beim Erschließen neuer, natürlicher 

Nahrungsquellen eine Rolle spielt. Im Gegensatz dazu haben die kognitiven Fähigkeiten in den 

durchgeführten Tests nicht mit dem Überleben oder der Lebensdauer der Tiere korreliert, was 

darauf hindeutet, dass die erfassten kognitiven Fähigkeiten keinen (Gesamt-)Vorteil beim 

Überleben mit sich bringen. Außerdem zeigten Schwierigkeiten beim Validieren eines Maßes 

der physiologischen Verfassung der Tiere, welches körperliche Kondition, Hämatokrit und 

Langzeit-Kortisolwerte zusammenfasste, dass es eine Herausforderung sein kann für manche 

Taxa geeignete und bedeutsame Fitnessmaße zu finden. 

Meine Arbeit ist die erste Studie, die individuelle Variation in kognitiven Fähigkeiten 

und deren Zusammenhang mit Fitnessmerkmalen bei einer wildlebenden Affenart untersucht 

hat und trägt damit zur wachsenden Forschung bei. Zusammen mit den jüngsten Ergebnissen 
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anderer Studien zeigen meine Ergebnisse, dass kognitive Fähigkeiten in vielschichtigen, 

komplexen Interaktionen mit verschieden Merkmalen eines Tieres agieren. Gleichzeitig haben 

bessere kognitive Fähigkeiten sehr wahrscheinlich nicht nur Vorteile sondern auch Nachteile, 

was erklärt, warum sie nicht notwendigerweise positiv mit Fitnessmerkmalen korrelieren. Um 

diese komplexen Zusammenhänge in ihrer Gänze zu verstehen, werden wir noch weitere 

Studien benötigen, die gleichzeitig unterschiedliche kognitive Fähigkeiten, Fitnessmaße und 

andere, möglicherweise korrelierende Merkmale in verschiedenen Arten untersuchen. Dies 

wird letztendlich helfen die Evolution von Kognition zu verstehen. 
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General Introduction 
 

Belonging to the apparently most intelligent, dominant and influential species on this planet, 

probably no human being would doubt that being smart pays off and made us hold this 

position. We possess one of the largest brains relative to body mass (Roth & Dicke, 2005), are 

superior innovators and problem-solvers, create art, use language and teaching, our 

knowledge accumulates over generations and we cooperate across the world (Shettleworth, 

2012; MacLean, 2016). In order to understand what sets us apart and how our cognitive 

capacities evolved, comparing humans’ and nonhuman animals’ cognitive abilities has been 

the focus of cognitive research for the last decades (e.g. Herrmann et al., 2007; MacLean et 

al., 2012).  

Yet, when looking around, it becomes clear that there are individual differences in 

people’s cognitive capacities and not all individuals are able to learn or solve problems to the 

same extent. Indeed, individual differences in human cognitive abilities have been extensively 

studied: intelligence is heritable and stable across developmental stages as well as long 

timespans (Deary et al., 2010). Moreover, inter-individual variation in general intelligence is a 

good predictor of important life outcomes, like school and occupational achievement, social 

mobility, health and survival (Deary et al., 2010; Plomin & Deary, 2015). 

Cognition is the neuronal process with which individuals acquire, process, store and 

use information from their environment (Shettleworth, 2010). Consequently, cognitive 

processes are involved in various behaviours across different contexts ranging from foraging 

to predator avoidance, but yet, the evolution of cognition remains poorly understood. Also in 

animals, stable individual differences in cognitive abilities exist (Cauchoix et al., 2018). 

However, research has only recently begun to pay attention to this inter-individual variation 

that provides the material on which selection can act (Thornton & Lukas, 2012) and the 

question if it actually pays off to be smart has rarely been asked. Today, few studies exist that 

linked individual variation in cognitive performance with fitness outcomes and also the not to 

be underestimated pitfalls and challenges that go along with this undertaking have been 

addressed (Rowe & Healy, 2014; Thornton et al., 2014; Morand-Ferron et al., 2016; Boogert 

et al., 2018). Nonetheless, only by acknowledging individual variation in cognition and 

investigating its fitness consequences, we can start to understand how selection acts on 

cognitive traits and how cognition evolved. 
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With my thesis, I contribute to this endeavour by investigating individual variation in 

cognitive abilities in a primate species and by linking cognitive performance with different 

fitness proxies in the wild. To begin with, in this introduction, I will start to review recent 

research approaches and insights into the evolution of cognition. I will focus on the 

importance of inter- and intra-individual variation in cognitive abilities for the study of 

cognitive evolution and address the fitness consequences of individual differences in 

cognition. Further, I will consider the challenges in quantifying individual cognitive variation 

and in studying the cognition-fitness link. Subsequently, I will introduce the study species, the 

grey mouse lemur (Microcebus murinus) and illustrate its suitability for studying the link 

between cognition and fitness in a wild primate. Finally, I will outline the specific aims of this 

thesis. 

 

 

Understanding the evolution of cognition 

From comparative cognition to individual differences 

Traditionally, research in cognition focused on understanding proximate mechanisms 

underpinning cognitive processes. Universal learning principles have been elucidated by 

studying few model species (e.g. rats and pigeons) that could be trained in elaborate cognitive 

tasks (Skinner, 1938). Furthermore, the adaptive value of cognition has been addressed by 

comparing species in their cognitive abilities or proxies for cognitive capacity, such as 

measures of brain size, and linking this interspecific variation to differences in ecological and 

social factors (Bshary et al., 2002; Lefebvre et al., 2004; Dunbar & Shultz, 2007; Maclean et al., 

2008; Scheid & Bugnyar, 2008; Dechmann & Safi, 2009; Gonzalez-Voyer et al., 2009; MacLean 

et al., 2014). This comparative approach helped to understand when in evolutionary history 

and under which conditions particular cognitive abilities evolved. Several, mutually non-

exclusive hypotheses have been discussed and empirically supported. For example, the 

ecological intelligence hypothesis predicts that dietary complexity and reliance on spatially 

dispersed fruits shaped primate cognitive evolution and correlates with interspecific 

differences in cognitive abilities (Clutton-Brock & Harvey, 1980; Milton, 1981), but also finds 

support in other taxa when linking feeding ecology with cognition (Balda & Kamil, 1989; 

Shettleworth, 1990; Barkley & Jacobs, 2007). In contrast, the social intelligence hypothesis 

proposes that differences in social complexity predict interspecific variation in cognitive 
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abilities and brain sizes, resembling another major driver of primate cognitive evolution 

(Humphrey, 1976; Byrne & Whiten, 1988; Dunbar, 1998). Evidence for convergent and 

divergent evolutionary processes have been provided (Emery & Clayton, 2004; Healy et al., 

2005; Lefebvre & Sol, 2008; Reader et al., 2011; MacLean et al., 2012; Van Horik et al., 2012) 

as well as for rapid cognitive divergence between populations of the same species facing 

different selective pressures in the wild (Pravosudov & Clayton, 2002; Brown & Braithwaite, 

2005; Roth et al., 2010; Roth et al., 2012).  

Typically, when comparing different species in their cognitive abilities, only a few 

captive individuals are tested in the same or similar cognitive tasks and sometimes even highly 

enculturated “genius” individuals serve to represent their whole species’ cognitive capacities 

(Thornton & Lukas, 2012; Boogert et al., 2018). With this emphasis on species-specific 

cognitive abilities, individual variation is treated as noise around the population mean, 

resulting in a binary perspective of the presence or absence of a given cognitive ability 

(Thornton & Samson, 2012). However, also within a given species, individuals differ 

remarkably in their cognitive abilities and only by acknowledging this inter-and intra-individual 

variation, we can really begin to understand the evolution of cognition through natural 

selection (Thornton & Lukas, 2012; Morand-Ferron et al., 2016; Boogert et al., 2018). 

 

 

Individual variation in cognitive abilities 

Studies in captivity reveal strong evidence that individuals differ in their cognitive abilities 

(Reader, 2003; Dukas, 2004; Boogert, et al., 2011; Thornton & Lukas, 2012). Since Darwin 

recognized that “no one supposes that all the individuals of the same species are cast in the 

same actual mould”, we know that individual differences are of critical importance in 

evolution as they “afford materials for natural selection to act on” (Darwin, 1859, pp. 59-60). 

Thus, variation in cognitive traits constitutes the first of three necessary conditions for 

selection and evolution of cognition (Darwin, 1859, 1871). 

Second, as with any other phenotypic trait, selection can only act on cognition if 

cognitive traits are heritable and if there is an underlying genetic variation. Substantial 

heritability of cognitive traits has been demonstrated for example in artificial selection 

experiments with model species (Wahlsten, 1972; Plomin, 2001; Dukas, 2004, 2008; Kawecki, 

2010; Mery, 2013; Croston et al., 2015; Smith et al., 2015). Moreover, in humans, more than 
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half of the individual differences in intelligence have been attributed to additive genetic 

variation (Deary et al., 2010; Davies et al., 2011). However, for most taxa and especially for 

wild populations, estimates of heritability are still lacking (Thornton et al., 2014). 

Third, variation in cognitive traits must result in fitness differences. An adaptive value 

of cognitive abilities has been suggested in various different contexts as cognitive abilities 

drive a wide range of behaviours with various fitness consequences, ranging from 

reproduction (Hollis et al., 1989; Boogert, et al., 2011; Minter et al., 2017), predator avoidance 

(Griffin, 2004; Lonnstedt et al., 2012), social interactions (Domjan et al., 2000; Hansen & 

Slagsvold, 2004), navigation (Dyer, 1998) to foraging (Slagsvold & Wiebe, 2007; Rahmani et 

al., 2009; Morand-Ferron, 2017). In conclusion, the finding that there is heritable variation in 

cognitive abilities between individuals which is likely to be related to variance in fitness 

indicates that cognitive abilities can be acted upon by natural and sexual selection. However, 

direct evidence for the selection of cognitive abilities in natural populations is still lacking 

(Morand-Ferron et al., 2016). 

 

 

Links between cognitive ability and fitness 

A handful of studies started to link variation in cognitive performance with proxies of fitness 

in wild animals of different species to examine how selection might act on cognitive abilities 

(for an overview see also Table S1 in Chapter 2, supplementary material). A positive 

correlation between learning speed and colonies’ overall foraging success was found in 

bumblebee colonies (Bombus terrestris) (Raine & Chittka, 2008) but individual bumblebees’ 

learning ability did not correlate with daily foraging performance in another study (Evans et 

al., 2017). In captive male bitterlings (Rhodeus ocellatus), spatial learning accuracy correlated 

positively with reproductive success in a sneaker role, but not in the dominant guarding role, 

the alternative male mating tactic in this fish species (Smith et al., 2015).  

Problem-solving performance was used as a cognitive performance measure in studies 

with various bird species in the wild, presenting subjects with novel problems, like artificial 

foraging tasks. In great tits (Parus major) (Cole et al., 2012; Cauchard et al., 2013; Preiszner et 

al., 2017) and house sparrows (Passer domesticus) (Wetzel, 2017), problem-solving 

performance or success correlated positively with measures of reproductive success, but 

problem-solver pairs were more likely to desert their nest, resembling a fitness cost associated 
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with better cognitive performance (Cole et al., 2012). Moreover, problem-solving 

performance did not correlate with survival of adults (Cole et al., 2012). Also in Australian 

magpies (Cracticus tibicen dorsalis), general cognitive performance in four different tasks 

predicted reproductive success in females (Ashton et al., 2018). In bowerbirds, males’ 

problem-solving performance in one species was positively correlated with mating success 

(Ptilonorhynchus violaceus) (Keagy et al., 2009, 2012), while cognitive performance in six 

different tests did not correlate with males’ mating success in another closely related species 

(Ptilonorhynchus maculatus) (Isden et al., 2013). Furthermore, in song sparrows (Melospiza 

melodia), reversal learning performance correlated positively with male song repertoire size, 

a predictor of various fitness-related traits, whereas motor and associative learning 

performance did not, and detour-reaching performance was negatively correlated to song 

repertoire size (Boogert et al., 2011). In contrast, in common pheasants (Phasianus colchicus) 

reversal learning performance was negatively correlated with fitness. Individuals that were 

slow to reverse a learned association were more likely to survive for 60 days under semi-wild 

conditions (Madden et al., 2018). In addition, links between associative learning and survival 

probability depended on the weight of birds; heavy pheasants that were quick in learning 

associations were more likely to survive, whereas for light individuals, quick associative 

learners were less likely to survive for 60 days (Madden et al., 2018). Finally, for female African 

striped mice (Rhabdomys pumilio), short-term spatial memory performance correlated 

negatively with survival. In contrast, in males, better long-term spatial memory performance 

correlated positively with the number of days subjects survived until the breeding season 

(Maille & Schradin, 2016). 

Taken together, the strengths and directions of correlations between cognitive 

performance and fitness proxies differ between studies and cannot be generalized across 

cognitive and fitness measures, but also not across and within species. This may partially be 

explained by differences in study design as studies vary in regard to the investigated cognitive 

mechanisms and tasks applied but also in the fitness proxies assessed. So far, most studies 

were conducted with different species of birds and only one study investigated fitness 

correlates of cognitive performance in a mammal (Maille & Schradin, 2016). Moreover, the 

majority of studies focussed on testing subjects (often of one sex) in only one cognitive ability 

and linked performance with variation in a single fitness measure. Thus, current findings 

indicate that drawing general conclusions on the fitness consequence of cognitive abilities is 
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still difficult but may also not be possible regarding the complex interactions and trade-offs 

cognitive abilities are involved in, which will be explained in the following. 

Importantly, not only benefits are associated with better cognitive abilities but higher 

cognitive performance is also correlated with costs resulting in fitness trade-offs. Especially 

the development and maintenance of neuronal structures is energetically very costly 

(Kawecki, 2010; Kotrschal et al., 2013), but also information gathering and processing costs 

time and energy (Dukas & Visscher, 1994; Laughlin et al., 1998; Laughlin, 2001; Jaumann et 

al., 2013; Evans et al., 2017). Artificial selection experiments with fruit flies (Drosophila 

melanogaster) and mice (Mus musculus), but also studies with wild populations detected 

fitness disadvantages that correlated with better cognitive performance, like reduction in 

immunity (Barnard et al., 2006), reduced longevity (Burger et al., 2008) and lower 

reproductive success (Mery & Kawecki, 2003; Snell-Rood et al., 2011). 

 Cognitive traits might also be correlated with other behavioural traits, such as  

personality traits (reviewed in Øverli et al., 2007; Carere & Locurto, 2011), which themselves 

are likely to impact fitness and could mask links between cognition and fitness (see Fig. 1)  

(Morand-Ferron & Quinn, 2015; Morand-Ferron et al., 2016). Thus, associated fitness trade-

offs and correlated traits demonstrate that better cognitive abilities will only be selected if 

they result in net benefits of fitness. Moreover, cognition is not a unitary trait but any given 

behaviour requires multiple cognitive processes and also a specific cognitive ability is involved 

in various different contexts (see Fig. 1) (Rowe & Healy, 2014). What is beneficial in one 

situation, might not be beneficial in another as it depends on the time, context and 

environment (Rowe & Healy, 2014; Ten Cate, 2014). Ultimately, these costs and benefits of 

cognition, as well as the complex relationships between various different traits may explain 

why individual variation in cognition is maintained (Morand-Ferron & Quinn, 2015). 

Furthermore, they indicate that cognitive performance in a particular test may not necessarily 

be closely and positively correlated with a given fitness measure, and detecting the underlying 

trade-offs can be especially challenging in the wild (Rowe & Healy, 2014; Morand-Ferron et 

al., 2016; but see Cole et al., 2012). 
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Figure 1: The potential complex pathways that link cognition with fitness. Pathways from genetic and 
environmental factors to cognitive abilities and other proximate factors, impacting behaviours that 
influence different fitness components which result in the final fitness of an individual; its genetic 
contribution to future generations. Importantly, proximate factors are likely to interact with each other 
but also to influence cognitive performance in a cognitive task, the measure used to infer cognitive 
traits or abilities. The degree to which a given cognitive ability influences various functional behaviours 
may vary. For example in a food-caching species, individual variation in spatial memory could impact 
foraging during the food-scarce winter, which influences physiological condition and over-winter 
survival (e.g. Rowe & Healy, 2014). By contrast, individual variation in other cognitive abilities, such as 
associative learning, may be more universally influencing behaviours involved in various fitness 
aspects. Depicted pathways and lists of different elements are non-exhaustive. Adapted from Morand-
Ferron et al., 2016. 

 

 

Intra-individual variation in cognitive abilities 

Another interesting aspect in understanding the evolution of cognition is how cognitive 

abilities are structured, i.e. correlated within individuals, and how these structures evolved. 

Humans possess domain-general intelligence which means that cognitive performance is 

positively correlated across tests assessing abilities in different cognitive domains such as 

reasoning, processing speed, executive function, memory and spatial ability (Deary et al., 

2010; Burkart et al., 2017). In other words, individuals that perform well in one test are also 

good in other psychometric tests tapping into other cognitive domains (Deary et al., 2010). 

Statistically, these positive correlations between test performances can be extracted and 

reveal a single factor, the general intelligence factor (g), that explains a significant amount of 

variation in cognitive performance (Burkart et al., 2017).  
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By contrast, in nonhuman animals, evidence for general intelligence is still rare. A 

modular organisation with domain-specific adaptations to specific ecological problems has 

been emphasized in the past and might be the ancestral state of vertebrate cognition 

(Shettleworth, 2012; Burkart et al., 2017). For example, food caching species would evolve 

enhanced spatial memory abilities as a specific cognitive adaptation to the challenges of food 

cache recovery (Pravosudov & Roth, 2013). Studies across a handful of animal species, 

applying different cognitive tests to captive but also to few wild individuals, revealed mixed 

evidence for domain-general intelligence and the presence of a general intelligence factor 

analogous to human g (reviewed in Shaw & Schmelz, 2017). Evidence for a g factor has been 

reported for laboratory rodents (Matzel et al., 2003; Galsworthy et al., 2005; Kolata et al., 

2008; Light et al., 2010; Wass et al., 2012; but see Locurto et al., 2003), dogs (Arden & Adams, 

2016), and in some studies with different species of birds tested in the wild (Isden et al., 2013; 

Shaw et al., 2015; Ashton et al., 2018) but not in others (Boogert et al., 2011; Keagy et al., 

2011; van Horik et al., 2018). 

Especially for nonhuman primates, tested with large test batteries in the laboratory, 

evidence of g is mixed. A modular organization of the primate brain with domain-specific 

cognitive skills has been discussed (reviewed in Amici et al., 2012) but general intelligence 

might coexist with these domain-specific adaptations (Amici et al., 2017; Burkart et al., 2017). 

A g factor has been reported for cotton-top tamarins (Saguinus Oedipus) (Banerjee et al., 

2009), orangutans (Pongo pygmaeus wurmbii and Pongo abelii) (Damerius et al., 2018), and 

in one study with chimpanzees (Pan troglodytes) (Hopkins et al., 2014). In contrast, two other 

studies on chimpanzees could not summarize individuals’ performance across tasks and 

domains into a single g factor but found “clusters of cognitive abilities”, thus evidence for 

domain-specific cognitive abilities (Herrmann et al., 2010; Herrmann & Call, 2012). 

To summarize, until today evidence on g is mixed and drawing general conclusions 

across species and studies is still difficult. Comparisons across studies are also complicated 

because studies differ widely in the applied cognitive tasks and the number and kind of 

addressed cognitive domains. Moreover, motivation and other confounding factors that might 

systematically affect cognitive performance across tasks are rarely controlled for and different 

statistical methods were applied when drawing conclusions on g (Burkart et al., 2017; Shaw & 

Schmelz, 2017; van Horik et al., 2018; Völter et al., 2018). Thus, more studies are needed that 

also account for systematic effects of non-cognitive factors. Especially studies with wild, 
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unexperienced subjects are promising in this regard as captive, human-reared individuals are 

often highly enculturated and have a long testing history which may bias general test 

performance (Thornton & Lukas, 2012). Once this additional data is gained, a more complete 

and coherent picture will advance our understanding how general intelligence evolved. 

 

 

Quantifying individual variation in cognition 

Importantly, cognitive abilities have to be reliably quantified as they cannot be observed 

directly but must be inferred through behaviour, i.e. performance in cognitive experiments 

(Shettleworth, 2010). Cognitive tasks should be designed to target defined cognitive processes 

and variation in cognitive performance due to confounding factors as well as random noise 

must be excluded (Rowe & Healy, 2014; Thornton et al., 2014; Morand-Ferron et al., 2016; 

Boogert et al., 2018).  

Various non-cognitive factors, like rearing condition, prior experiences, motivation, 

persistence and personality can potentially affect how an individual performs in a cognitive 

test (Thornton & Lukas, 2012; Rowe & Healy, 2014; Morand-Ferron et al., 2016; Dougherty & 

Guillette, 2018). Especially motivation is likely to determine participation and performance in 

a cognitive task and especially in food motivated tasks subjects’ feeding motivation might 

differ (Rowe & Healy, 2014; Morand-Ferron et al., 2016). Personality differences, i.e. stable, 

consistent individual variation in behaviour (Dall et al., 2004), can co-vary with the way 

animals acquire, process and store information, thus affecting cognitive processes directly 

(Carere & Locurto, 2011; Griffin et al., 2015; Sih & Del Giudice, 2012). For example, bold, fast 

exploring individuals are predicted to be quicker but less accurate in learning new 

contingencies than neophobic, less explorative individuals (Sih & Del Giudice, 2012). 

Furthermore, personality could affect cognitive performance by increasing probabilities or 

rates of exposure with the task and the learning contingencies (Carere & Locurto, 2011; 

Morand-Ferron et al., 2016; Guillette et al., 2017). Because it is difficult to exclude these 

confounding factors in most testing regimes, especially when testing wild individuals, 

assessing these differences in non-cognitive factors and controlling statistically for them is 

important to reliably quantify inter-individual variation in cognitive performance (Griffin & 

Guez, 2014; Morand-Ferron et al., 2016). 
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Testing performance in cognitive tasks repeatedly allows to demonstrate that 

individual variation in cognition is consistent across time and context and was not, for 

instance, influenced by temporary distraction (Boogert et al., 2018). Repeatability of cognitive 

performance across species and cognitive measures was shown to be low to moderate, either 

when the same task was presented twice (temporal repeatability), or when performance in 

different tasks addressing the same cognitive abilities was compared (contextual 

repeatability) (Cauchoix et al., 2018). 

In order to detect links between cognitive abilities and fitness outcomes, first of all, 

studying ecologically relevant cognitive abilities, i.e. choosing cognitive abilities with respect 

to a species’ natural history is important (Morand-Ferron et al., 2016). This means that 

targeted cognitive traits should be chosen with regard to a species’ ecological problems and 

the (potential) cognitive strategies to solve them (Morand-Ferron et al., 2016; Pritchard et al., 

2016). However, also less specific cognitive traits (e.g. associative learning) which are involved 

in behaviours in various contexts might be investigated, and detecting their role in specific 

fitness-determining behaviours such as predator avoidance, fighting, mating or foraging is 

important to understand correlations with fitness (Roth & Dicke, 2005; Morand-Ferron et al., 

2016).  

Studying variation in fitness-relevant traits is most meaningful in wild populations, i.e. 

in the environments to which organisms are adapted to and where selection is operating 

(Ellegren & Sheldon, 2008). Therefore, also individual variation in cognitive abilities that is 

linked with fitness outcomes should be studied in the wild or during short-term captivity which 

can be challenging (Thornton et al., 2014). Moreover, large sample sizes are needed to detect 

selection patterns, which imposes another challenge in the study of inter-individual 

differences of cognitive abilities and their link with fitness (Kingsolver et al., 2001; Dingemanse 

& Reale, 2005). Finally, studying several cognitive abilities and fitness traits, as well as non-

cognitive factors simultaneously can help to detect patterns of covariation, fitness trade-offs 

and potential masking effects on the link between cognition and fitness, in order to fully 

understand the evolutionary consequences of cognition (Roth et al., 2010; Morand-Ferron et 

al., 2016). 
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Grey mouse lemurs as a study species 

Studying cognitively sophisticated species such as corvids, cetaceans and primates is 

especially interesting in order to understand the evolution of cognition. Their close 

relatedness to humans make primates especially interesting for studying the fitness 

consequences of cognitive abilities. Many differences and similarities in cognitive abilities 

between humans and non-human primates have been studied in the past (e.g. Povinelli & 

Vonk, 2003; Herrmann et al., 2007; Matsuzawa, 2008). Primates have unusually large brains 

in relation to body size and most species live in complex social systems, which both have been 

linked to advanced cognitive abilities (Byrne & Whiten, 1988; Dunbar, 1998; Reader & Laland, 

2002; Deaner et al., 2006; Dunbar & Shultz, 2007; Reader et al., 2011). However, life histories 

of primates are usually slow, which complicates the study of fitness outcomes. In addition, 

most primates are very difficult to habituate, thus testing them in cognitive tasks in the wild 

is challenging (but see Lührs et al., 2009; van de Waal et al., 2013; Huebner & Fichtel, 2015). 

Thus, until today nothing is known about potential fitness consequences of inter-individual 

variation in cognitive abilities of wild primates. 

 Grey mouse lemurs (Microcebus murinus) offer a unique opportunity to study 

cognition and fitness simultaneously in a wild primate population for several theoretical and 

practical reasons, however. These strepsirrhine primates are endemic to Madagascar and 

inhabit different forest habitats in the West and South of the island (Kappeler & Rasoloarison, 

2003; Radespiel, 2006). They are small (60g), nocturnal primates that possess large brains 

relative to their body size (MacLean et al., 2009). Grey mouse lemurs forage solitarily, but 

individuals share sleeping nests and related females breed cooperatively in small sleeping 

groups (Eberle & Kappeler, 2006). The omnivorous ecological generalists have to respond 

flexibly to strong seasonal changes in food availability (Dammhahn & Kappeler, 2008b) while 

facing a high predation risk by various predators, including carnivores, snakes and owls 

(Goodman et al., 1993; Rasoloarison et al., 1995; Rahlfs & Fichtel, 2010; Fichtel, 2016). Thus, 

they face multiple ecological challenges under which species are likely to benefit from relevant 

cognitive abilities (Roth et al., 2010). Their cognitive abilities have been studied primarily in 

captivity (Joly et al., 2014; Kittler et al., 2018) but also in the wild with field experiments before 

the onset of this thesis (Lührs et al., 2009). As a practical advantage, mouse lemurs have one 

of the fastest life histories in primates as they reach sexual maturity in their first year of life 

and live on average only 2-3 years in the wild (Kraus et al., 2008; Hämäläinen et al., 2014), 
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thus studying variation in fitness outcomes is feasible within few field seasons. Furthermore, 

wild grey mouse lemurs can be captured easily (“trap happiness”) (Kraus et al., 2008), which 

makes it possible to track individuals over the course of their lifetime. Also, individuals can be 

tested during several bouts of short-term captivity lasting only a few days, thereby minimizing 

the impact of captivity on behaviour and fitness consequences (Morand-Ferron et al., 2016). 

Moreover, grey mouse lemurs in the study population of Kirindy Forest have been captured 

and individually marked regularly since 1994 and individuals occur in large sample sizes (Eberle 

& Kappeler, 2002). Thus, grey mouse lemurs as study species and the wild population in 

Kirindy Forest offer many theoretical and practical advantages for a first study on fitness 

consequences of different cognitive abilities in a wild primate species. 

 

 

Objectives and structure of this thesis 

The aim of my thesis was to add to the small body of research investigating the adaptive value 

of cognitive traits for a better understanding of the evolution of cognition. Thus, with my 

thesis, I aimed to answer the questions: What causes and affects individual differences in 

cognitive performance? What is the structure underlying cognition, i.e., how are cognitive 

abilities related to one another? And ultimately: How are cognitive abilities linked with fitness 

outcomes? Therefore, I tested wild grey mouse lemurs in different, ecologically relevant 

cognitive abilities and linked individual variation in cognitive performance with different 

proxies of fitness. As highlighted before, I also tested the effect of potential non-cognitive 

factors affecting performance in the cognitive tasks and investigated the structure of 

individuals’ cognitive performance across tasks.  

 More specifically, in Chapter 1, I assessed inter-individual variation in cognitive 

abilities in five cognitive tasks and investigated the effect of individual characteristics and non-

cognitive factors, like personality and motivation, on performance. Further, I investigated 

intra-individual variation in performance, i.e. the structure of cognitive performance and 

tested if there is a general factor explaining performance across different cognitive domains 

in grey mouse lemurs. 

In Chapter 2 and 3, I linked individuals’ performance in the cognitive tasks with 

variation in fitness outcomes. In Chapter 2, I examined links between spatial learning ability 

and problem-solving efficiency and two fitness proxies: body condition change across the 
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harsh dry season and survival. In Chapter 3, I focussed in detail on different fitness-related 

traits in grey mouse lemurs. I investigated variation in different fitness-related traits, i.e. body 

condition, hematocrit levels, and long-term cortisol concentration, that could be summarized 

into one factor. I tested if this physiological condition factor could be validated as a fitness 

proxy for a link with cognition. Moreover, I tested the link between cognitive performance in 

two problem-solving tasks, spatial learning and inhibitory control, and longevity, an important 

fitness proxy for grey mouse lemurs. 

Finally, in the General Discussion, the findings of the three chapters are summarized 

and their implications for the ongoing study of the evolution of cognition are discussed. I draw 

overall conclusions and discuss limitations and future directions. 
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Abstract 

Recent years have seen a surge of interest in inter-individual variation in cognitive abilities of 

a wide range of animal species. As a consequence, the underlying structure of cognitive 

performance, i.e., the question whether a general factor similar to the human general 

intelligence factor (g) can account for this variation in cognitive performance has received 

increased attention. However, evidence for g in animals has been mixed; perhaps because 

most studies were conducted in captivity and did not integrate individual characteristics and 

non-cognitive factors when testing for positive correlations among individuals’ cognitive 

abilities in different tests and domains. We tested wild grey mouse lemurs (Microcebus 

murinus) in five cognitive tasks addressing different cognitive abilities and assessed effects of 

individual characteristics and non-cognitive factors on variation in cognitive performance. 

While grey mouse lemurs varied greatly in performance in the different tasks, we found no 

systematic effects of personality, body condition, motivation, age and sex on individual 

performance. Although task-directed motivation predicted performance in two problem-

solving tasks, motivation measures were not correlated among tests, rendering a systematic 

effect on the covariation among cognitive performance measures unlikely. We found that 

performance in one cognitive task was generally a weak predictor of performance in any other 

task of our test battery, therefore providing no evidence for the existence of a general factor 

explaining cognitive performance in wild grey mouse lemurs. This first study of inter- and 

intra-individual variation in cognitive performance in a wild primate species therefore 

contributes several new insights for the comparative study of the evolution of general 

intelligence.  
 
 
 

Keywords 

Cognition, individual variation, motivation, personality, general intelligence factor, primate 

 
 
Introduction 

Recent research in animal cognition has experienced a shift from species differences to 

individual differences in cognitive abilities (Thornton & Lukas, 2012). Over decades, scientists 

have focused on comparative analyses of species differences in cognition and treated intra-
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specific variation as noise around a species mean (Thornton et al., 2014). However, to 

understand the evolution of cognitive abilities and potential fitness consequences thereof, 

studying individual differences in cognitive abilities is crucial. By acknowledging individual 

variation, several new, interesting questions can be asked: What causes and affects individual 

differences in cognition? What is the structure underlying cognition, i.e., how are cognitive 

abilities related to one another? And ultimately: How does cognitive performance relate to 

individual fitness outcomes? 

Causes and confounding variables of individual variation in cognitive performance 

include factors like age, sex and personality, but also motivation, persistence, rearing 

condition and previous experience can potentially affect how animals perform in a given 

cognitive test (Thornton & Lukas, 2012; Rowe & Healy, 2014; Morand-Ferron et al., 2016; 

Dougherty & Guillette, 2018). Thus, controlling for these individual characteristics and non-

cognitive factors while assessing individual differences in cognitive tasks is crucial to reliably 

compare cognitive performance across individuals. Especially the link between cognition and 

personality has received much attention recently (see meta-analysis by Dougherty & Guillette, 

2018). Personality traits can co-vary with the way animals acquire, process and store 

information, i.e. they are linked to individuals’ cognitive styles and result in speed-

accuracy/flexibility trade-offs during learning (Carere & Locurto, 2011; Sih & Del Giudice, 

2012; Griffin et al., 2015). Specifically, bold, fast-exploring, proactive animals are predicted to 

be faster but less accurate and flexible in learning a contingency, compared to shyer, slow-

exploring and reactive individuals (e.g. Sih & Del Giudice, 2012; Mazza et al., 2018). However, 

the directions of these links between cognitive performance and personality traits were found 

to be highly variable across species (Dougherty & Guillette, 2018). Moreover, personality can 

also affect cognitive performance by increasing probabilities or rates of exposure with the task 

and the learning contingencies (Carere & Locurto, 2011; Morand-Ferron et al., 2016; Guillette 

et al., 2017). Especially in problem-solving tasks, where animals are tested with novel objects, 

and when testing wild, unhabituated individuals in cognitive tasks, investigating the effects of 

personality differences therefore appears crucial (Griffin & Guez, 2014; Morand-Ferron et al., 

2016). 

Besides identifying confounding factors of cognitive performance, quantifying whether 

individual variation in cognition is consistent across time and context is important (Griffin et 

al., 2015; Boogert et al., 2018). Low to moderate contextual and temporal repeatability could 
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be demonstrated for different cognitive measures across species in a recent meta-analysis 

(Cauchoix et al., 2018) and appears to be widespread. 

Individual differences in cognitive performance across different cognitive domains 

have been assessed using cognitive test batteries, which allow investigating how cognitive 

performances in different tasks relate to one another, shedding light on the structure of 

cognition. Subjects can either perform consistently across domains and tasks (domain-

generality), or be good in one domain but fail in another (modularity) (Burkart et al., 2017). In 

human psychometric testing, performance across different cognitive domains is correlated 

and a single, general intelligence factor (g) explaining about 40% of variance in task 

performance can be extracted statistically (Plomin, 2001; Deary et al., 2010; Burkart et al., 

2017). 

Applying batteries of several cognitive tests to different species offers a possibility to 

illuminate the structure, evolution and function of cognition (Shaw & Schmelz, 2017). In 

animals, a g factor has been reported for some birds (Isden et al., 2013; Shaw et al., 2015; 

Ashton et al., 2018), rodents (Matzel et al., 2003; Galsworthy et al., 2005; Kolata et al., 2008; 

Light et al., 2010; Wass et al., 2012), dogs (Arden & Adams, 2016) and primates (Banerjee et 

al., 2009; Hopkins et al., 2014; Damerius et al., 2018). However, there are also studies that did 

not find evidence for the existence of a g in the same taxa or even the same species (birds: 

Boogert et al., 2011; Keagy et al., 2011; van Horik et al., 2018; rodents: Locurto et al., 2003, 

primates: Herrmann & Call, 2012; Herrmann et al., 2010).  

For example, extensive studies of captive primates assessing various cognitive 

measures in large test batteries reported mixed results. Banerjee et al., (2009) reported 

evidence for g in cotton-top tamarins (Saguinus oedipus, N= 22) tested on 11 tasks on various 

cognitive abilities. In contrast, Herrmann et al., (2010) found no evidence for g in neither 

chimpanzees (N= 106) nor 2-year-old human children (N= 105) based on data obtained with 

the primate cognition test battery (PCTB) comprising 16 tasks from the physical and social 

domain (Herrmann et al., 2007). However, Hopkins et al. (2014) reported evidence for g in 99 

chimpanzees based on their performance in 13 tasks in a modified version of the PCTB. 

Furthermore, Damerius et al. (2018) found evidence of g in orangutans (Pongo pygmaeus 

wurmbii and Pongo abelii, N= 53) based on five physical cognition tasks. This discrepancy in 

evidence for and against g indicates that drawing general conclusions across species and 

studies is currently difficult; also because studies differ in the nature and number of assessed 



Chapter 1 
 

 25 

tasks and domains, the degree to which confounding non-cognitive factors are controlled for, 

as well as in their general testing protocols and statistical methods (Burkart et al., 2017; Shaw 

& Schmelz, 2017; van Horik et al., 2018; Völter et al., 2018). 

In addition, testing captive, highly enculturated subjects might result in a sampling 

bias, as individuals have a lifelong experience with humans, and rearing environments of 

captive animals might influence cognitive performance (Call & Tomasello, 1996; Würbel, 2001; 

van de Waal & Bshary, 2010; Thornton & Lukas, 2012; Sauce et al., 2018). Therefore, testing 

wild animals with different cognitive tasks is desirable; not the least because it also allows 

linking cognitive performance across tasks with fitness outcomes (Thornton et al., 2014). In a 

handful of studies on wild birds, applying test batteries, either directly in the wild or during 

short-term captivity, either revealed evidence of g (Isden et al., 2013; Shaw et al., 2015; 

Ashton et al., 2018) or not (Boogert et al., 2011; Keagy et al., 2011; reviewed in Shaw & 

Schmelz, 2017). Hence, additional studies measuring performance in several cognitive tasks 

in diverse wild animals are required to obtain a more profound understanding of the evolution 

of a general intelligence factor.  

We therefore studied individual variation in cognitive performance in a wild primate 

species, the grey mouse lemur (Microcebus murinus). Mouse lemurs represent a suitable 

study species because they are small (60g), nocturnal, solitary, omnivorous Malagasy primates 

(Dammhahn & Kappeler, 2008b), and captive (Joly et al., 2014; Kittler et al., 2018) and wild 

individuals (Lührs et al., 2009; Henke-von der Malsburg & Fichtel, 2018; Huebner et al., 2018) 

have already been tested in different cognitive tasks and experiments. Wild individuals are 

“trap happy” (Kraus et al., 2008) and easily adapt to short-term captivity and cognitive testing 

(Huebner et al., 2018). Here, we explore cognitive performance in wild grey mouse lemurs 

using five cognitive tasks, while also investigating the potential effects of individual 

characteristics and non-cognitive factors, like feeding- and task-directed motivation and 

personality, on cognitive performance.  

The five tasks were chosen to measure different ecologically relevant cognitive 

abilities, including the ability to learn a novel motor task, causal reasoning and spontaneous 

problem solving, inhibitory control, as well as spatial and reversal learning abilities (Table 1). 

We assessed associative motor learning during repeated and spontaneous innovative problem 

solving (Griffin, 2016; Griffin & Guez, 2014), which is of general ecological relevance as 

innovations in the wild allow animals to exploit new resources or to use existing resources 
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more efficiently (Griffin & Guez, 2014; Reader & Laland, 2003). Inhibitory control, i.e. the 

ability to inhibit prepotent responses, is involved in various decision-making processes in 

asocial but also social contexts (Hauser, 1999; Amici et al., 2008; MacLean et al., 2014). Spatial 

learning and memory, i.e. the ability to remember the location of important resources, is 

crucial for mouse lemurs because they rely on sparsely distributed but predictable food 

resources during long and harsh dry seasons (Dammhahn & Kappeler, 2008a; Lührs et al., 

2009). Finally, reversal learning paradigms test how quickly animals learn that a previously 

successful strategy is no longer rewarded, therefore assessing animals’ behavioural flexibility, 

which plays an important role when environmental conditions change (Bond et al., 2007; 

Boogert et al., 2010). The aim of this study was, therefore, to quantify individual variation in 

cognitive performance in wild mouse lemurs while controlling for important non-cognitive 

factors and to test whether this variation can be explained by a single factor of general 

intelligence. 

 
 

 

Methods 

Study population and general procedure 

This study was conducted at Kirindy Forest (CNFEREF), a dry deciduous forest in central 

Western Madagascar, at the research station of the German Primate Center. Grey mouse 

lemurs inhabiting a 10ha study area were regularly captured during the dry season from April 

to August in 2015 – 2017. Animals were captured with Sherman live traps, marked individually 

with subdermal microtransponders (Trovan Euro I.D., Frechen, Germany), sexed and aged 

(juveniles: less than 10 months old) based on morphometric data collected at the time of first 

capture (Dammhahn & Kappeler, 2008a).  

In total, 97 individuals (44 females, 53 males, 63 juveniles, 34 adults) participated in 

the experiments of this study. For the experimental testing, animals were singly housed in the 

research station in 1m3 cages containing natural branches and a sleeping box. Animals were 

kept for up to three consecutive nights before they were released again in the evening to their 

specific site of capture. Tests were conducted at night under dim red light. Subjects were 

rewarded with small pieces of banana in all cognitive tests and obtained a 1.5cm long piece of 

banana per night after the testing, while water was provided ad libitum (for more details on 

the housing and testing conditions see Huebner et al., 2018). 
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Subjects were first tested in two personality tests, followed by the cognitive test 

battery in a determined order (as presented below). As subjects could not be tested within 

one housing session (three nights), they were recaptured after a minimum of 10 days in their 

natural home range to continue with the experiments. Animals participated voluntarily in the 

cognitive tasks; if subjects refused to do so and/or did not appear and interact with the task 

apparatuses, tests were not counted and repeated on a subsequent night (Table 1 for total 

drop out numbers). All test sessions were video-recorded and analysed with the software 

BORIS (Friard & Gamba, 2016). We assessed inter-observer reliability with a second person 

naive to the research question scoring more than 10% of test sessions, which was excellent 

(intra-class correlation coefficient: food extraction task= 1, N= 10; string pulling task= 1, N=10; 

maze= 0.998, N= 10; Cohen’s kappa: detour-reaching task= 0.87, N= 9). 

 
Body condition as a proxy for food motivation 

Since the body condition of small mammals reflects variation in energetic state (Schulte-

Hostedde et al., 2005), we used it as a proxy for food-related motivation to participate in the 

food-rewarded tasks (reviewed in Griffin & Guez, 2014). We assessed subjects’ body condition 

by calculating a body mass index (BMI) by dividing body mass (g) by bizygomatic breadth 

(mm), which reflects a reliable measure of linear body size in this species (Rasoloarison et al., 

2000). Morphometric measures were taken as closely as possible to the date of testing, with 

the majority of measures being obtained within 4 weeks of testing. 

 
Personality tests 

Subjects’ personality (measures of neophilia and activity) was assessed prior to habituation to 

the general test procedure, therefore representing individuals’ baseline behaviour in an 

unfamiliar environment. An unknown open field arena (80x60x60cm) with four blind holes in 

the walls and two bigger entrances covered with mesh, was used for the personality tests 

(Dammhahn, 2012). A plotted grid with 12 cells helped to record the location of the subjects 

in the test arena. After a subject finished the personality test, the open field arena was cleaned 

with 70 % ethanol. The two personality measures were repeatable (see appendix). 

 

Open field test 

Open field tests offer a standardized tool to measure personality variation in animals (Réale 

et al., 2007; Dammhahn, 2012; Dall & Griffith, 2014). The test started with the release of a 
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subject into the open field arena and lasted five minutes. During this time, we recorded 

individuals’ activity as the total time (sec) subjects spent walking or climbing.  

 

Novel object test 

Animals’ neophilia can be tested by measuring their response towards a novel object 

(Greenberg, 2003). The test lasted five minutes and started directly after the open field test 

with the introduction of a novel object (plastic toy ball, 2.5cm3) into the open field arena. We 

recorded an animal’s latency (sec) to contact this novel object as a measure of neophilia. If 

subjects did not contact the object within five minutes they were given the maximum latency 

of 300 seconds (i.e. capped latencies). 

 
 
The cognitive test battery 

 
 

 
Figure 1: The cognitive test apparatuses. 
(a) Food extraction task, (b) String-pulling task, (c) Plus maze, (d) Detour-reaching task, (e) T maze. 
Approximate proportional size of a mouse lemur is indicated by silhouette. 

 
 

Food extraction task 

During this novel motor task, subjects had to solve a novel problem repeatedly by removing 

sliding covers on six wells (5 x 4.5cm) of a small task box (Fig. 1), each containing a food reward. 

A small banana piece on top of the task box served as an initial incentive to interact with it. 
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During 20 minutes of testing, we recorded whether subjects had overall success in the task. 

For subjects that opened at least two lids, we recorded their solving time (s), i.e. the mean 

time they spent per successful opening after having opened the first lid. This measure of 

solving time addresses a subject’s efficiency in learning to apply the novel motor action as it 

correlates with subjects’ learning slopes in the food extraction task (Huebner et al., 2018). 

Moreover, individuals’ solving times were repeatable (Appendix) and therefore used as the 

main performance measure in this task. 

To assess task-directed motivation during the experiment, we calculated individuals’ 

manipulation rates. We differentiated between manipulation rates before the first success 

and during repeated lid openings. Manipulation rates before the first success were calculated 

by dividing the time spent manipulating until the first successful opening by the latency until 

the first success, i.e. the time between the first contact of the box and first success. 

Manipulation rates during repeated solving were calculated by dividing the time spent 

manipulating the task apparatus after the first success by the time from the first success until 

the end of the experiment. This measure was then divided by subjects’ number of repeated 

door openings to control for differences in successes. 

  
 
String-pulling task 

In this task, a piece of banana attached to a string of 20cm length was positioned outside of 

the test cage, with the other end within reach of subjects through the cage wire (Fig. 1). During 

20 minutes of testing, we recorded subjects’ latencies from the first attention to the reward 

until the successful pulling of the string. If subjects failed to pull the string and did not obtain 

the reward, we assigned maximal latencies. Solving latencies were repeatable (appendix). To 

assess task-directed motivation, we recorded subject’s attention towards the reward out of 

reach (the time when the head was oriented towards the reward/ string) and calculated 

attention rates by dividing the time spent with attention to the task by the solving latency. 

 
 
Spatial learning 
During the spatial learning task, subjects’ ability to remember the position of a food reward in 

a plus maze was tested. The maze consisted of four wooden arms (40x17cm; Fig. 1) with 

attached boxes (20x17cm) at each arm’s end. One of the boxes served as the starting point 
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from where subjects were released into the maze, and either the arm to the left or the right 

served as goal box that contained a small banana reward (Huebner et al., 2018). To control for 

olfactory cues, large banana pieces were placed out of reach at the end of each maze arm, 

masking the smell of the actual reward. In order to avoid subjects from using own odour trails, 

the maze was cleaned with 70% ethanol after every third trial. Before testing, subjects had to 

pass a familiarization trial where they had to find rewards in all three arms of the maze. 

Animals were then tested in 15 test trials. Each trial started with the release of the 

subject from the start box and ended with it obtaining the reward in the goal box. We recorded 

the number of errors made, i.e. the number of times animals entered an unrewarded maze 

arm, until reaching the learning criterion of finding the reward without errors in three 

consecutive trials or until the end of testing for animals that never met criterion, respectively. 

We graded the error scores to differentiate between the different levels of entering wrong 

arms. We assigned an error score of 1 if a subject entered the box at the end of an unrewarded 

arm, a score of 0.5 if a subject entered the arm but not the box at the end of the arm and a 

score of 0.25 when it entered a wrong arm with only part of the body.  

 
 
Inhibitory control 

We tested individuals’ inhibitory control by assessing their ability to inhibit an ineffective 

prepotent response towards a food reward (MacLean et al., 2014). This detour-reaching task 

consisted of an open-ended transparent cylinder (20cm length, 6cm diameter, Fig. 1d, right 

cylinder) containing a clearly visible food reward in the centre. To control for odour cues that 

subjects might follow to retrieve the reward, small holes were made in the centre of the 

cylinder and the cylinder was cleaned on every fourth trial with 70% ethanol. For each trial, 

subjects were attracted with a small reward to one corner of their test platform before the 

cylinder was placed in the test cage so that subjects started to reach it from a central position 

at about 40 cm distance. In a familiarization phase, subjects had to retrieve a food reward out 

of an opaque cylinder (Fig. 1d, left cylinder) in five consecutive trials in order to start the test 

phase with the transparent cylinder. For the 10 trials of the test phase, we scored the number 

of erroneous trials subjects made when trying to first directly reach the reward before 

detouring to the open ends of the cylinder. 
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Reversal learning 

In a T maze, subjects were tested in their ability to reverse a previously learnt reward location. 

The maze was similar to the plus maze but contained one arm less, i.e., subjects had to 

remember the location of a food reward either to the left or right of the starting arm (Fig. 1). 

The general testing procedure was similar to the plus maze used for spatial learning. Subjects 

habituated to the procedure during four familiarization trials. During the first familiarization 

trial, both arms were rewarded, followed by three trials where only one arm was rewarded 

and ended with the subject finding the reward in the correct location. Then the initial learning 

started with the rewarding scheme staying the same. 

We tested animals in sessions of 10 trials and scored for each trial whether the subject 

was correct when it directly entered the rewarded arm. A subject reached the learning 

criterion when it directly entered the rewarded arm in nine of 10 consecutive trials 

(significantly exceeding chance level, binomial test, P= 0.022), either in a single test session or 

over two sessions. After a subject reached this learning criterion, it was subjected to the 

reversal learning test sessions the following night. To assure that subjects still remembered 

the rewarded location from the previous night, the reversal learning started with a repetition 

of this initial rewarding scheme. After subjects retrieved the reward during this repetition 

three times correctly, the rewarding scheme was reversed. Again, subjects were tested in 

sessions of 10 trials and had to reach the criterion of nine correct trials out of 10 consecutive 

trials. For each subject, we counted the number of trials needed to reach this criterion 

(minimum 10 trials) as a reversal learning score. 

 

 
Table 1: Summary of cognitive tasks and respective performance measures, sample sizes and 
individuals’ participation, presented in the order of testing. 

Task Measure N addressing Drop-outs * 
Food 
extraction 

Solving time 77 Learning efficiency of novel 
motor action 

1a 

String pulling Latency first success 97 Spontaneous problem solving, 
causal understanding 

0 

Plus maze Errors until criterion 73 Spatial learning 13 
Detour-
reaching task 

Errors in 10 trials 67 Inhibitory control 2 

T maze Trials until criterion 22 Behavioural flexibility during 
reversal learning 

2 
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Sample sizes correspond to number of subjects for which personality was also measured.  
*Individuals’ participation: Animals that could not be tested because they did not participate 
voluntarily during task presentation were, if possible, retested during a subsequent night. We report 
final drop-out numbers here, i.e. animals that could not be retested or did not participate again during 
the next trial. 
a) 97 animals participated in the food extraction task and for 77 individuals a solving time could be 
calculated. Only one animal could not be retested. 

 
 
Statistical analyses 

To determine whether individual characteristics and personality measures predicted 

performance in the cognitive tasks, we ran five different models with the respective cognitive 

performance measure as response variable. As age class and BMI were collinear, we first 

tested for a general age difference in cognitive performance in all tasks, using Mann-Whitney 

U tests. Since juveniles and adults did not differ in the main measures of cognitive 

performance, we combined the two age classes for further analyses. In all models, we 

implemented sex, BMI, neophilia and activity as predictors. We included an interaction 

between sex and neophilia to test for sex differences in the relationship between cognitive 

performance and personality (Dougherty & Guillette, 2018). However, these interactions were 

not significant and were therefore removed again in the final models. Moreover, to control 

for learning or solving opportunities in tasks where subjects interacted freely with the task 

during the time of testing (Griffin & Guez, 2016), we implemented the measures of task-

directed motivation (manipulation and attention rate, respectively) as predictor variables in 

the models on performance in the food extraction and string-pulling task.  

For the food extraction task, we first tested the effects of predictors on overall success 

in the task with a generalized linear model (GLM). Then we focused on solving time during 

repeated lid openings (our main performance measure in this task) which was log-

transformed prior fitting as response in a general linear model (LM). To model the effects of 

predictors on solving latency in the string-pulling task and on the number of errors to reach 

criterion in the spatial learning task, we fitted Cox proportional hazards models (package 

survival in R: Therneau, 2015), treating maximal latencies for subjects that did not succeed 

(string-pulling task) and maximal errors for subjects that did not reach criterion (spatial 

learning) as censored observations. To model the effect of predictors on the proportion of 

erroneous responses in the inhibitory control task, we used a generalized linear model (GLM) 

with binomial error structure and logit link function. In this model, the number of failures and 
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successes per individual was implemented with a two-column matrix as the response. To 

further investigate whether individual characteristics would predict task-directed motivation, 

we fitted two general linear models (LM) with attention rates in the string-pulling task or 

manipulation rates in the food extraction task as response variables and BMI, personality 

measures and sex as predictor variables. 

Prior to fitting any model, we z-transformed covariates to facilitate interpretation of 

predictor estimates (Schielzeth, 2010). We checked the model assumptions ‘absence of 

collinearity’ using variance inflation factors (Fox & Monette, 1992; package car: Fox & 

Weisberg, 2011) and ‘absence of influential observations’ using dfbetas in all models (package 

survminer for Cox models: Kassambara & Kosinski, 2017). For the LM, we visually checked 

normally distributed and homogenous residuals and violation of proportional hazards for the 

Cox proportional hazards models. We always tested the full model against a null model 

containing the intercept only with an F-test (LM) or likelihood ratio test (GLM and Cox models).  

As the sample size in the reversal learning task was low (N= 22), we used a Mann 

Whitney U test to test for sex differences in performance and Spearman rank correlations to 

test for correlations between individuals’ performance measures and BMI or personality 

scores.  

To explore how performances in the different cognitive tasks were related to each 

other, we used Spearman rank correlations to test all pairwise correlations of the five tasks. 

To test whether a single general cognitive factor could explain performance across cognitive 

tasks, we performed a principal component analysis (PCA) with an unrotated factor solution 

and extracted principal components with an eigenvalue >1 (Burkart et al., 2017). We log-

transformed the performance measures solving time in the food extraction task, and solving 

latency in the string-pulling task to achieve symmetrically distributed variables prior to PCA. 

We tested sampling adequacy of the correlation matrix used in the PCAs with the Kaiser-

Meyer-Olkin (KMO) measure of sampling adequacy and the Bartlett’s test of sphericity, which 

was considered appropriate with a KMO> 0.5 and Bartlett’s test of P< 0.05 (Budaev, 2010). As 

the sample size of 22 subjects in the reversal learning task was critically low for PCA (Osborne 

& Costello, 2004), we performed two PCAs, one containing the four cognitive tasks with high 

sample sizes, and one with all cognitive tasks and a lower sample size which we interpret with 

caution, as also KMO and Bartlett’s test criterions of sampling adequacy were not met. All 
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analyses were conducted in R, v. 3.4.2 (R Core Team, 2017), only two-tailed tests were used, 

and the level of significance was set at 0.05. 

 

 

Ethical note 

All aspects of this study are in compliance with animal care regulations and applicable national 

laws of Germany and Madagascar. The Ministry for the Environment, Water and Forests of 

Madagascar, MINEEF and CNFEREF Morondava authorized research in Kirindy, and our 

research was approved by the relevant German Animal Use and Care committees and the 

animal welfare body of the German Primate Center (reference number E9-18). 
 

 

 

Results 

Effects of personality, motivation, body condition, age and sex on individual variation in 
cognitive performance 

We found no significant differences between juvenile and adult subjects in any of the main 

cognitive performance measures (Mann-Whitney U test: solving time during food extraction: 

U= 725, P= 0.38, string-pulling latency: U= 1340, P= 0.26, spatial learning: U= 643, P= 0.33, 

inhibitory control: U= 478, P= 0.61, reversal learning: U= 28.5, P= 1).  

 
Food extraction task 

In total, 88% (N= 85) of subjects opened at least one lid in the food extraction task. We found 

a significant difference in task-directed motivation between successful and non-successful 

individuals in the food extraction task; solvers manipulated the apparatus significantly more 

often than non-solvers (Mann-Whitney U test: U= 29, P< 0.001, N= 97, Fig. A1). Furthermore, 

more juveniles than adults were overall successful in the task (Proportion test, X21= 7.7, N= 

97, P= 0.01). We did not find that sex, neophilia or activity predicted overall success in the 

task, but subjects with lower BMI were more likely to solve it (GLM, full null model 

comparison: X24= 12.2, N= 97, P= 0.016, BMI: estimate± SE: -1.143±	0.421, P= 0.007, Table 

A1). 

Solving times of subjects that opened lids repeatedly differed widely (mean±	sd= 

134±	161 s). We did not find an effect of sex, BMI, or the two personality measures on 
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individuals’ solving time, but manipulation rates predicted performance (LM, full null model 

comparison: F5,71= 7.3, N= 77, P= <0.001, Table 2). Animals with higher manipulation rates had 

shorter solving times, i.e., they were quicker in opening the boxes repeatedly (Table 2). 

 

 
Table 2: Results of the linear model: Effects of individual characteristics and non-cognitive factors on 
solving times in the food extraction task. 

Predictor variable Estimate SE t P 
Intercept 4.383 0.144 30.492 <0.001 
Sex (male) 0.072 0.202 0.354 0.724 
BMIa 0.037 0.1 0.371 0.712 
Neophiliaa,b -0.062 0.096 -0.649 0.519 
Activitya 0.037 0.095 0.39 0.697 
Manipulation ratea -0.547 0.092 -5.972 <0.001 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 77. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI±	sd= 2.62± 0.4, 
neophilia= 176.2±	108.9 sec, activity= 200.8±	63.7 sec, manipulation rate= 0.06±	0.04. 
b Neophilia was measured as latency to contact novel object in sec; low values correspond to neophilic 
behaviour 

 
 
String-pulling task 

Subjects varied in their latencies to solve the string-pulling task (mean±	sd= 304 ± 384 sec) 

and 16 out of 97 individuals failed to solve the task. We found no effect of sex, BMI or 

personality, but attention rate predicted solving latencies (Cox proportional hazards model: 

full null model comparison: X25= 32.9, N= 97, P< 0.001, Table 3). 
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Table 3: Results of the Cox proportional hazards model: Effects of individual characteristics on success 
latency in the string-pulling task 

Predictor variable coeff Exp(coeff) SE(coeff) z P 
Sex (male) 0.228 1.256 0.26 0.876 0.381 
BMIa 0.149 1.161 0.136 1.097 0.273 
Neophiliaa,b -0.19 0.827 0.122 -1.558 0.119 
Activitya 0.129 1.138 0.129 1.002 0.317 
Attention rate to taska 0.655 1.925 0.13 5.038 <0.001 

Positive coefficients indicate a higher hazard (here solving), i.e., shorter solving latencies. Exponentially 
transformed coefficients are the hazard ratios and give the effect size on the hazard of predictor 
variables. Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 
97. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI±	sd= 2.66±	0.43, 
neophilia= 181.64±	110.55 sec, activity= 199.6±	65.09 sec, attention rate= 0.58±	0.3 
b Neophilia was measured as latency to contact novel object in sec; low values correspond to neophilic 
behaviour 
 
 
Task-directed motivation 

We found that subjects were consistent in their task-directed motivation within a task as 

manipulation rates until the first success and during the repeated lid openings correlated in 

the food extraction task (Spearman correlation: r= 0.372, N=77, P< 0.001). However, task-

directed motivation was not consistent across tasks; subject’s manipulation rates in the food 

extraction task and attention rates in the string-pulling task were not correlated (Spearman 

rank correlation, rho= 0.066, P= 0.572, N= 76, Fig.2). We neither found an effect of BMI, sex, 

neophilia and activity on subjects’ manipulation rates in the food extraction task (full null 

model comparison: F4, 72= 0.72, P= 0.581, N=77, Fig.2, Table A2), nor on attention rates in the 

string-pulling task (full null model comparison: F4,92= 2.23, P= 0.072, N=97, Table A3). Also, we 

failed to find an age difference in the two task-directed motivation measures (Mann Whitney 

U tests: manipulation rate: W=561, P= 0.76, attention rate: W= 1078, P= 0.457). 
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Figure 2: Relationship between the two measures of task-directed motivation: Attention rate in the 
string-pulling task and manipulation rates in the food extraction task. The size of circles reflects the 
BMI of subjects. 

 
 
Spatial learning 

Subjects differed in the number of errors they made until reaching the learning criterion in 

the plus maze (mean±	sd= 14.2 ± 9.0). We found no link between individuals’ sex, BMI, 

activity and neophilia and their learning performance in the plus maze (Cox proportional 

hazards model: full null model comparison:  X24= 1.96, N= 73, P= 0.744, Table 4). 
 

 
Table 4: Results of the Cox proportional hazards model: Effects of individual characteristics on the 
number of errors until reaching the learning criterion in the plus maze 

Predictor variable coeff Exp(coeff) SE(coeff) z P 
Sex (male) -0.284 0.753 0.295 -0.961 0.337 
BMIa -0.089 0.915 0.141 -0.633 0.527 
Neophiliaa,b 0.064 1.066 0.154 0.418 0.676 
Activitya -0.142 0.868 0.164 -0.865 0.387 

Positive coefficients indicate a higher hazard (here solving), i.e., shorter solving latencies. Exponentially 
transformed coefficients are the hazard ratios and give the effect size on the hazard of predictor 
variables. Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 
97. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI±	sd= 2.56±	0.41, 
neophilia= 173.41 ±	117.81 sec, activity= 207.57 ±	55.47 sec 
b Neophilia was measured as latency to contact novel object in sec; low values correspond to neophilic 
behaviour 
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Inhibitory control 

Subjects varied in the number of errors in the detour-reaching task (mean±	sd= 3.2 ± 2.3). 

We found a sex difference in performance, with males making fewer errors, and a trend that 

subjects with a higher BMI made more errors (GLM: full null model comparison: X24= 10.7, P= 

0.03, N= 67, Table 5). We found no relationship between measures of individuals’ personality 

and their performance in the inhibitory control task (Table 5). 

 
Table 5: Results of the GLM: Effects of predictors on subjects’ proportion of erroneous responses in 
the detour-reaching task. 

Predictor variable Estimate SE z P 
Intercept -0.55 0.131 -4.184 <0.001 
Sex (male) -0.391 0.178 -2.193 0.028 
BMIa 0.146 0.083 1.761 0.078 
Neophiliaa,b -0.05 0.095 -0.526 0.599 
Activitya -0.073 0.091 -0.799 0.424 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 67. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI±	sd= 2.63± 0.5, 
neophilia= 173.41 ± 117.81 sec, activity= 207.57± 55.47 sec 
b Neophilia was measured as latency to contact novel object in sec; low values correspond to neophilic 
behaviour 
 
 
Reversal learning 

All mouse lemurs were able to reach the learning criterion in the reversal learning trials and 

differed in the number of trials needed to do so (mean±	sd= 14.5 ± 4.1). We found no sex 

difference in the number of trials to meet criterion (Mann Whitney U test, U= 70.5, N= 22, P= 

0.335). Also, performance did not correlate significantly with subjects’ BMI and the personality 

measures activity and neophilia (BMI: r= -0.19, N= 22, P= 0.418; activity: r= -0.03, N= 21, P= 

0.894; neophilia, r= 0.392, N= 21, P= 0.078). 

 

 

Relationships between individual performances across tasks revealing the structure of 
cognition 

Correlations of individuals’ performances across tasks revealed that performance measures 

were not all positively correlated with each other, but that only solving time in the food 

extraction task and success latency in the string-pulling task correlated significantly positively 
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with each other (Table 7). A principal component analysis with the test performance of the 

four main tasks (N= 52) revealed that not all cognitive performance measures loaded 

positively on the first principal component extracted (PC1 with Eigenvalue >1, KMO= 0.51, 

Bartlett’s test: P= 0.005). PC1 contributed to 39.5% of the total variance in task performance 

(Table 8). Solving efficiency and latency in the string-pulling task loaded negatively on PC1, 

while spatial learning performance and detour-reaching performances loaded positively on 

PC1. When also adding reversal learning performance of subjects into the principal 

component analysis (N= 16, KMO= 0.41 Bartlett’s test: P= 0.4), PC1 with an Eigenvalue >1 

explained 36.3% of total variance and directions of variable loadings remained as before, with 

reversal learning performance positively loading on the first PC (Table 8). 

 
 
 
Table 7: Spearman rank correlations of all cognitive task performances 

 
Food extraction 
task, 
Solving time 

String-
pulling 
task 

Spatial 
learning 

Inhibitory control 

String-pulling task r= 0.27 
P= 0.016 
N= 78 

   

Spatial learning r= -0.11 
P= 0.36 
N= 63 

r= -0.14 
P= 0.24 
N= 75 

  

Inhibitory control r= -0.07 
P= 0.63 
N= 52 

r= -0.22 
P= 0.074 
N= 67 

r= -0.09 
P= 0.49 
N= 64 

 

Reversal learning r= 0.02 
P= 0.93 
N= 17 

r= -0.05 
P= 0.84 
N= 22 

r= 0.36 
P= 0.1 
N= 22 

r= 0.16 
P= 0.5 
N= 21 

Significant correlation indicated in bold. 
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Table 8: Results of the principal component analysis 

 
Task 

 
Main tasks 
PC1 

 
 
PC2 

Including 
reversal learning 
PC1 

 
 
PC2 

Food extraction -0.666 0.116 -0.429 0.312   
String pulling -0.657 -0.216 -0.592   -0.322 
Spatial learning 0.308 -0.626 0.389 -0.670 
Inhibitory control 0.171 0.740 0.524 0.505   
Reversal learning - - 0.198 -0.308  
Eigenvalue 1.256 1.080 1.346 1.105 
 % variance explained 39.5 29.2 36.3 24.4 
N 52  16  

 
 
 

Discussion 

We investigated the cognitive abilities of 52 wild mouse lemurs by assessing cognitive 

performance in four different main tasks targeting learning of a novel motor task, causal 

reasoning, inhibitory control and spatial learning. The aim of the first part of the study was to 

identify individual characteristics and non-cognitive factors that might have affected cognitive 

performance before investigating the structure of cognitive abilities in the second part. 

 

The influence of individual characteristics on cognitive performance 

Individuals differed greatly in performance across the cognitive tasks addressing different 

cognitive domains, which is an important prerequisite for investigating structures in cognitive 

performance (Shaw & Schmelz, 2017). However, we did not find a link between animals’ 

personality, body condition or age class and their cognitive performance in any of the tasks. 

Also, personality traits did not predict how quickly animals learned during spatial and reversal 

learning (i.e. number of errors or trials until learning criterion). More neophilic and more 

active grey mouse lemurs were not quicker during spatial learning or less flexible during 

reversal learning. Our results do therefore not support the hypothesis of a speed-

accuracy/flexibility trade-off that links personality types and cognitive styles during learning 

(Sih & Del Giudice, 2012; but see Dougherty & Guillette, 2018). Furthermore, neophilia and 

activity levels of subjects were not found to influence individuals’ rates of exposure to task 

contingencies as task-directed motivation, which we measured directly in two of the tasks, 
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was not predicted by these measures of personality. Thus, the assessed personality traits did 

not affect subjects’ performance in the tasks presented here. 

However, task-directed motivation predicted performance in the two tasks in which 

subjects could also avoid engaging with the test apparatus (food extraction and string-pulling 

task). Subjects that were more interested in the tasks were also quicker in succeeding in the 

string-pulling task, and more manipulative individuals had a higher overall success and were 

more efficient in solving the food extraction task repeatedly. These findings support the 

notion that only animals that actively engage with a task are also likely to solve it. In motor 

tasks, in particular, manipulation of relevant and irrelevant parts of the task apparatus, often 

measured as persistence, correlated with learning of novel motor actions or other measures 

of problem-solving performance also in other species (great tits, Parus major: Cauchard et al., 

2013; great tits and blue tits, Cyanistes caeruleus: Morand-Ferron et al., 2011; Indian mynas, 

Sturnus tristis: Griffin et al., 2014; common mynas, Acridotheres tristis: Lermite et al., 2017; 

pheasants, Phasianus colchicus: van Horik & Madden, 2016; spotted hyenas, Crocuta crocuta: 

Benson-Amram & Holekamp, 2012; grey squirrels, Sciurus carolinensis: Chow et al., 2016; 

redfronted lemurs, Eulemur rufifrons: Huebner & Fichtel, 2015; reviewed in Griffin & Guez, 

2014).  

In order to exclude the possibility that such task-directed motivation mediates 

correlations between performance measures (Shaw & Schmelz, 2017), it is important to 

account for the motivation to engage with a given task when analysing individual variation 

across cognitive tasks (as we did in the second part of the study). However, grey mouse lemurs 

were not consistent in their task-directed motivation across the two tasks, even though both 

tasks were food-motivated and conducted in the same night for the majority (87%) of subjects. 

Therefore, we think it is unlikely that general task-directed motivation mediated potential 

links between variation in individual cognitive performance across tasks. In other words, as 

individuals’ task-directed motivation in the food extraction and string-pulling task differed and 

was uncorrelated, it is unlikely that general motivation led subjects to perform similarly in the 

two tasks.  

Neither personality, sex or age were found to affect subjects’ task-directed motivation, 

nor did body condition predict their motivation to engage with, or to pay attention to the task, 

perhaps suggesting that task-directed motivation itself might have a cognitive component. In 

principle, all subjects were generally motivated to eat the first freely accessible reward in the 
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food extraction task, and thus seemed to be food-motivated, but not all subjects manipulated 

the boxes subsequently to extract more food. Because individual factors predicting task-

directed motivation and persistence during task manipulations have not yet received much 

attention (but see  Thornton & Samson, 2012; Lermite et al., 2017), it is presently difficult to 

place these results into a broader context. 

Interestingly, inhibitory control performance differed between the sexes, with males 

exhibiting a better inhibitory control than females, which has not been reported for other 

species. Perhaps male grey mouse lemurs are better in inhibiting prepotent responses 

towards food because they experience more relevant situations in the wild. While female grey 

mouse lemurs hibernate during the food-scarce period, males continue foraging during this 

period when predation pressure also increases (Rasoloarison et al., 1995; Schmid, 1999; 

Rasoazanabary, 2006), making it perhaps more adaptive for males to be able to inhibit a 

response in potentially risky situations. Moreover, females have to accumulate body fat in the 

months before the dry season in order to be able to hibernate (Vuarin et al., 2013). As we 

conducted the experiments during this period of body mass accumulation, females might have 

been potentially keener to reach the food reward in the detour-reaching task. 

Analyses of individual cognitive variation in wild subjects can be influenced by sampling 

biases as not all animals are willing to engage in tasks presented in the wild or to habituate to 

short-term captivity (Morand-Ferron et al., 2016; Shaw & Schmelz, 2017). In the current study, 

we did not have to limit our sample size to one sex in contrast to studies of wild birds (Boogert 

et al., 2011; Keagy et al., 2011; Shaw et al., 2015; but see Ashton et al., 2018), but we were 

able to test individuals of both sexes and different ages. Moreover, drop-out rates of subjects 

in the cognitive tasks were extremely low, meaning that almost all animals habituated to the 

test procedures and participated in the cognitive tasks (Table 1). In contrast to other studies 

in captivity focusing on highly trained lab animals, our subjects were naïve to general testing 

and had no prior experience with features of any of the tasks. Thus, we are confident that 

prior experience or sampling bias did not influence the performance of subjects across tasks. 

To summarise, we could not identify a single non-cognitive factor that affected 

cognitive performance across tasks and that could potentially mediate correlations between 

task performances (Shaw & Schmelz, 2017). Therefore, in the second part of the study, we 

further investigated the underlying structure across cognitive performance in the different 

tests. 
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Is there a general factor explaining cognitive performance? 

Only performance in the two problem-solving tasks was significantly positively correlated. For 

all other tasks, performance in one task was a weak predictor of performance in any other 

task of the test battery and subjects were not consistent in their performance across tasks. 

We applied a PCA in order to investigate whether there is a single factor explaining variation 

in cognitive performance, analogous to the general intelligence factor (g) in human 

psychometric testing. Performance in the food extraction and string-pulling task loaded 

strongly negatively on the first principal component, while performance in spatial and reversal 

learning and inhibitory control loaded positively on PC1. Thus, we could not find evidence of 

a general factor explaining variation in cognitive performance in these tests in grey mouse 

lemurs. Instead, individuals that scored high in the problem-solving tasks scored low in the 

other tasks addressing inhibitory control and spatial and reversal learning, suggesting the 

existence of a more modularized cognitive structure (Amici et al., 2012). 

The weak but significant positive correlation between the cognitive measures of 

solving efficiency in the repeated food extraction task and spontaneous performance in the 

string-pulling task suggests that the two tasks address related cognitive abilities. In both tasks, 

subjects had to perform a novel motor action and to link this motor action with the food 

reward outcome. The use of problem-solving tasks or other operant motor tasks for the 

analysis of a potential g factor in animals has been criticized, as “problem solving” per se is a 

vague cognitive domain and performance in these tasks might be particularly prone to be 

influenced by task-directed or feeding motivation (Thornton et al., 2014; van Horik & Madden, 

2016; Shaw & Schmelz, 2017) and related learning opportunities (Griffin & Guez, 2016). 

However, in our study, grey mouse lemurs’ problem-solving abilities were not influenced by 

personality traits, and performance in these tasks was unlikely to be predicted by a general 

factor of task-directed motivation (see above). Moreover, in the food extraction task, we 

tested subjects in their ability to apply a new motor action repeatedly. Since the measured 

solving time was correlated with individual learning slopes (Huebner et al., 2018), we think 

that performance in this task does indeed recflect cognitive abilities.  

For performance in the string-pulling task, however, we cannot fully exclude the 

possibility that subjects solved the task by chance and not due to their ability to perform causal 

reasoning or associative learning (Thornton et al., 2014; Shaw & Schmelz, 2017; Jacobs, 2018) 

as we measured performance for the majority of subjects only once. However, performance 
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in the task was repeatable for subjects that we retested (please see appendix), and the finding 

that performance in this task correlated with the performance in the motor learning task, 

while motivation to engage with the respective tasks did not, indicates that both tasks address 

similar cognitive abilities involved in understanding causal relationships, associative and 

motor learning. Moreover, also in the string-pulling task, subjects had to repeat the same 

motor action in order to obtain a reward because a single pulling action was only getting the 

reward closer, but not within immediate reach of the animal (see video or https://youtu.be/-

90U3cFECdQ) 

We found a weak positive, but nonsignificant correlation between individuals’ spatial 

learning and reversal learning performance. As reversal learning was also tested in a spatial 

learning context in the less complex T maze, this trend demonstrates that not only behavioural 

flexibility, but also spatial learning abilities were important for remembering the reversed 

reward location. Reversal learning has been argued to not only address behavioural flexibility 

but also to reflect cognitive mechanisms involved in inhibitory control, as individuals have to 

first inhibit previously learned associations in order to learn the reversed contingency 

(Coppens et al., 2010; Izquierdo & Jentsch, 2012). In the mouse lemurs, performance in the 

detour-reaching task and reversal learning in the T maze tended to be weakly, albeit not 

significantly, positively correlated with each other despite the small sample size, which may 

indicate that similar cognitive mechanisms are involved. Positive correlations between 

detour-reaching and reversal learning performance have been also found in test batteries with 

wild birds (Shaw et al., 2015; Ashton et al., 2018). 

When assessing the overall structure of cognitive performance, we found that 

individuals that performed well in the tasks that involved causal understanding and associative 

and motor learning during problem solving performed less well in inhibitory control and 

spatial and reversal learning. This contrasting performance within the same individuals might 

suggest a general trade-off in foraging strategies. Perhaps individuals that are less good at 

spatial learning, inhibitory control and behavioural flexibility during foraging compensate this 

handicap with better extractive and innovative foraging capacities. A similar suggestion has 

been made by van Horik et al. (2018), who found that pheasants that scored low in a detour-

reaching task also had a high motor-related performance in two foraging tasks. More detailed 

studies on the link between foraging strategies and outcomes and cognitive abilities will be 

needed in the future to further explore this idea. 
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The few studies that also included problem-solving or motor task performance in their 

analysis of the general structure underlying variation in cognitive performance reported mixed 

results. Shaw et al. (2015) reported evidence of g based on testing of 16 North Island robins 

(Petroica longipes) in six tasks involving a motor task assessing motor learning skills. While 

there was evidence for g in spotted bowerbirds (Ptilonorhynchus maculatus) with a test 

battery including also problem-solving ability and motor skills (Isden et al., 2013), there was 

no evidence of g in a study of the closely related satin bowerbird (Ptilonorhynchus violaceus) 

(Keagy et al., 2011). The test battery of Keagy et al. (2011) also comprised problem-solving 

tests and tasks addressing behaviours closely related to males’ natural display behaviour, but 

individual task loadings on the first component explaining 27.5% of variance were only 

partially positive. Similarly, there was no evidence for g in house sparrows (Passer domesticus) 

tested with a test battery including a motor task (Boogert et al., 2011). In the sparrows, results 

differed between test years, but in the 2010 sample, motor task performance and detour 

reaching performance loaded negatively on the first component that explained 37% of 

variance. There was also no evidence for a robust single factor comprising a broad variety of 

cognitive domains when testing pheasants in tasks addressing also novel motor skills (van 

Horik et al., 2018).  

Importantly, only half of these studies on g in wild birds investigated the relationship 

between non-cognitive factors, like motivation and neophobia, and cognitive performance in 

these motor/ problem solving tasks before drawing conclusions on g (Keagy et al., 2011; Shaw 

et al., 2015; van Horik et al., 2018). Thus, these mixed findings further indicate that the 

different tasks and domains used, together with differences in the analyses, make it currently 

difficult to compare studies of g across species (Shaw & Schmelz, 2017). It therefore is 

currently an open issue whether problem-solving tasks should be included in studies of the 

structure of cognitive abilities. Conclusions about the presence and strength of g should be 

evaluated critically with regard to the specific measures used, the cognitive abilities they 

address, and whether non-cognitive factors are controlled for. 

 

In conclusion, our study is the first to assess the structure of individual variation in cognitive 

performance in a wild primate species. The test battery we used allowed cognitive testing 

during short-term captivity of relatively large numbers of grey mouse lemurs. In the future, 

additional cognitive tests assessing additional cognitive domains and different tests for the 
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same cognitive domain may help to characterize cognitive abilities in grey mouse lemurs more 

fully (Shaw & Schmelz, 2017; van Horik et al., 2018; Völter et al., 2018). We found no 

systematic effects of various individual characteristics and non-cognitive factors on 

performance in the cognitive tasks. In contrast to some other studies on captive primates, we 

did not find evidence for a general factor explaining variation in cognitive abilities. More 

carefully controlled and methodologically coordinated studies of various cognitive abilities in 

diverse species will be needed for a more systematic and comprehensive investigation of the 

evolution of general intelligence. 
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Appendix 

 

Repeatability of personality measures activity and neophilia  

Repeatability of personality measures from the open field and novel object test with grey 

mouse lemurs was reported to be low to moderate (Dammhahn, 2012; Henke-von der 

Malsburg & Fichtel, 2018) which might be explained by the testing of wild animals prior to 

human contact and habituation to general testing procedures. Therefore, we considered the 

personality measures as baseline behaviour prior to general testing and expected subjects to 

change their behaviour after associating general testing procedures with rewards. To 

demonstrate cross-contextual repeatability of neophilia and activity, we correlated them with 

behavioural measures during cognitive tasks, which addressed similar personality traits in 

comparable situations but were also conducted at the beginning of an individual’s testing 

history. More specifically, our measure of activity in the open field test and the time animals 

needed to visit all three arms during the familiarization trial in the plus maze (see methods 

main text) correlated negatively (Spearman rank correlation, r= -0.266, N= 74, P= 0.022). 

Subjects that were more active in the open field test, were quicker in visiting all three arms in 

the plus maze. 

The measure of neophilia in the novel object correlated with subjects’ latency to 

contact the novel task apparatus in the food extraction task, a variable that is often directly 

used as personality measure (see Griffin & Guez 2014 for an overview on different variables 

used to assess neophobia or neophilia in studies on problem solving). Animals that were more 

neophilic in the novel object test, i.e. had a shorter latency to contact the novel object, were 

also faster to contact the food extraction box, resembling a novel object at the beginning of 

the food extraction task (intraclass correlation coefficient ICC= 0.263, N= 97, P= 0.004). 

 
 
Repeatability of problem-solving performance 

For the food extraction task and the string pulling task we were able to retest a subset of 

subjects after 10 to 30 days and calculated repeatability estimates using the rptR package 

(Stoffel et al., 2017). We fitted two linear mixed models for solving time in the food extraction 

task and solving latency in the string-pulling task (both variables log-transformed). To estimate 

95% confidence intervals, we used parametric bootstrapping (1000 simulations) and 
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likelihood ratio tests for significance testing. We calculated adjusted repeatabilities 

(Nakagawa & Schielzeth, 2010) by including individuals’ number of tests, as some subjects 

were already tested a year before the repeatability testing, and test order of subjects as fixed 

factor in the models. Solving time in the food extraction task (r= 0.575, CI= 0.114– 0.916, N= 

80 individuals, P= 0.043) and solving latencies in the string-pulling task (r= 0.535, CI= 0.175– 

0.867, N= 97 individuals, P= 0.005) were repeatable. 

 
Figure A1. Differences in manipulation rates between subjects that succeeded in opening the first lid 
in the food extraction task and subjects that did not solve the task. Manipulation rates until the first 
success and total manipulation rates were used for subjects that solved (N= 85) and did not solve the 
task (N= 12), respectively. 

 
 
 
Table A1: Results of the Generalized Linear Model (GLM) fitting the effect of individual characteristics 
on success probability in the food extraction task (success y/n) 

Predictor variable Estimate SE z P 
Intercept 2.862 0.715 4.003 <0.001 
Sex (male) -0.776 0.825 -0.941 0.346 
BMIa -1.143 0.421 -2.718 0.007 
Neophiliaa,b -0.446 0.369 -1.21 0.226 
Activitya -0.543 0.373 -1.456 0.145 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 97. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI±	sd= 2.67±	0.4, 
neophilia= 181.4± 110.7 sec, activity= 200±	65.4) sec 
b Neophilia was measured as latency to contact novel object in sec; low values correspond to neophilic 
behaviour  
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Table A2: Linear model of the effects of individual characteristics on manipulation rates in the food 
extraction task 

Predictor variable Estimate SE t P 
Intercept 0.063 0.007 8.709 <0.001 
Sex (male) 0.002 0.01 0.173 0.863 
BMIa -0.004 0.005 -0.732 0.466 
Neophiliaa,b -0.005 0.005 -0.965 0.338 
Activitya 0.003 0.005 0.653 0.516 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 77. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI±	sd= 2.62±	0.4, 
neophilia= 176.2±	108.9 sec, activity= 200.8±	63.6 sec 
b Neophilia was measured as latency to contact novel object in sec; low values correspond to neophilic 
behaviour 
 
 
Table A3: Effects of individual characteristics on attention rates in the string-pulling task 

Predictor variable Estimate SE t P 
Intercept 0.671 0.046 14.444 <0.001 
Sex (male) -0.166 0.067 -2.495 0.014* 

BMIa -0.058 0.033 -1.747 0.084 
Neophiliaa,b 0.011 0.032 0.336 0.737 
Activitya 0.034 0.032 1.076 0.285 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 97. 
*Please note that the full null model comparison was not significant (see main text) 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI±	sd= 2.66±	0.4, 
neophilia= 181.6±	110.6 sec, activity= 199.6±	65.1 sec 
b Neophilia was measured as latency to contact novel object in sec; low values correspond to neophilic 
behaviour 
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Abstract 

Linking the cognitive performance of wild animals with fitness consequences is crucial for 

understanding evolutionary processes that shape individual variation in cognition. However, 

the few studies that have examined these links revealed differing relationships between 

various cognitive performance measures and fitness proxies. To contribute additional 

comparative data to this body of research, we linked individual performance during repeated 

problem solving and spatial learning ability in a maze with body condition and survival in wild 

grey mouse lemurs (Microcebus murinus). All four variables exhibited substantial inter-

individual variation. Solving efficiency in the problem-solving task, but not spatial learning 

performance, predicted the magnitude of change in body condition after the harsh dry season, 

indicating that the ability to quickly apply a newly discovered motor technique might also 

facilitate exploitation of new, natural food resources. Survival was not linked with 

performance in both tasks, however, suggesting that mouse lemurs’ survival might not 

depend on the cognitive performances addressed here. Our study is the first linking cognition 

with fitness proxies in a wild primate species, and our discussion highlights the importance 

and challenges of accounting for a species’ life history and ecology in choosing meaningful 

cognitive and fitness variables for a study in the wild. 

 

Keywords 

Cognitive performance, fitness, survival, body condition, primate 

 

 

Introduction 

Observing animals around us, like a squirrel harvesting and caching nuts, it seems obvious that 

animals ought to benefit from cognitive abilities. Individuals of many species have to 

remember the location of food resources or shelters, respond flexibly to the presence of 

predators, potential mates or environmental changes, and could benefit from innovating new 

behavioural strategies in response to environmental change, for example. Cognitive abilities, 

i.e. the ability to acquire, process, store and respond appropriately to social and 

environmental information (Shettleworth, 2010), should therefore be associated with 

individual fitness benefits, so that individuals that learn faster, remember better, behave more 
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flexibly, or innovate when confronted with new challenges, should on average also be in 

better body condition, produce more offspring and survive better. Nonetheless, not all 

animals have maximized cognitive capacities, but persistent individual differences in cognitive 

performance exist as higher cognitive performance is not only associated with fitness benefits 

but also with costs and therefore under selection (reviewed in Morand-Ferron et al., 2016, 

and see below). However, we still know little about the evolutionary forces and trade-offs that 

shape cognitive abilities as the links between them and fitness outcomes have been 

investigated in only a few species, and these studies revealed differing relationships (see 

below). Here, we contribute to this body of research by presenting results of the first study of 

the cognition-fitness links in a wild primate species. 

Investigating fitness consequences of variation in cognitive abilities requires the study 

of both sets of variables in wild animals, which can be time-consuming and challenging for 

many practical reasons, especially for long-lived species (Cauchoix & Chaine, 2016; Morand-

Ferron et al., 2016). In humans, intelligence has been linked to fitness-related traits like 

education, health and longevity (Plomin & Deary, 2015). However, evidence for the predicted 

positive relationship between cognition and fitness measures from animals is still rare, 

especially from the wild (Table S1). Among invertebrates, learning speed of bumble bee 

(Bombus terrestris) colonies correlated positively with colonies’ overall foraging success 

(Raine & Chittka, 2008), but individual bumble bees’ learning ability did not correlate with 

daily foraging performance, and bees with better learning abilities foraged for fewer days, 

indicating a (neuronal) cost of enhanced learning ability (Evans et al., 2017). In selected lab 

populations of fruit flies (Drosophila melanogaster), improved learning ability was also 

associated with a fitness cost and correlated with decreased larval competitive ability (Mery 

& Kawecki, 2003). 

Among vertebrates, spatial learning accuracy in a maze correlated positively with 

reproductive success of captive rose bitterling males (Rhodeus ocellatus) in a sneaker role, but 

not in the dominant guarding role, the alternative male mating tactic in this fish species (Smith 

et al., 2015). Performance in problem-solving tasks, in which animals are presented with novel 

problems like artificial foraging tasks, was used as a measure of cognition in several studies of 

birds. However, this approach has recently been criticized because performance in problem-

solving tasks is likely also affected by non-cognitive factors, and because the involved cognitive 

processes are not well defined (Cauchoix & Chaine, 2016; Rowe & Healy, 2014; Thornton et 
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al., 2014). Nonetheless, in great tits (Parus major) (Cole et al., 2012; Cauchard et al., 2013; 

Preiszner et al., 2017) and house sparrows (Passer domesticus) (Wetzel, 2017), problem-

solving performance correlated positively with measures of reproductive success, but 

problem-solvers also exhibited a higher probability of deserting their nests (Cole et al., 2012), 

suggesting associated fitness costs. Problem-solving performance of male satin bower birds 

(Ptilonorhynchus violaceus) in tasks closely related to natural display behaviour correlated 

positively with their mating success (Keagy et al., 2009, 2012). However, cognitive 

performance in a closely related species, the spotted bower birds (Ptilonorhynchus 

maculatus), did not correlate with male mating success when tested in a task battery 

addressing multiple cognitive abilities (Isden et al., 2013). Moreover, performance in cognitive 

tasks was not consistently related to song repertoire size, a predictor of various fitness-related 

traits, in song sparrows (Melospiza melodia): whereas reversal learning performance 

correlated positively with male song repertoire size, performance in two other cognitive tasks 

did not, and performance in a detour-reaching task was negatively related to song repertoire 

size (Boogert et al., 2011). Pheasant chicks (Phasianus colchicus) that were slow to reverse 

learned associations were more likely to survive for 60 days in the wild. Moreover, heavy 

pheasants that were quick in learning associations had improved survival, but for light animals, 

slow associative learners were more likely to survive (Madden et al., 2018). In Australian 

magpies (Cracticus tibicen dorsalis) group size was positively correlated with cognitive 

performance, and general cognitive performance in four different tasks predicted 

reproductive success in females (Ashton et al., 2018). Finally, wild male African striped mice 

(Rhabdomys pumilio) that were better in a long-term spatial memory task survived for longer, 

whereas female survival correlated negatively with the number of errors in a short-term 

spatial memory task (Maille & Schradin, 2016).  

Thus, links between cognition and fitness outcomes have only been studied in a small 

number of wild vertebrate species, often focusing on members of one sex and on a single pair 

of variables. Furthermore, the differing results of these studies indicate that trade-offs of 

cognitive abilities and their links with fitness are likely to also depend on the study design such 

as the chosen cognitive measures, the conditions in which fitness measures are assessed, or 

individual characteristics like the sex or reproductive tactic of study subjects. Previous studies 

also demonstrated that, when studying the adaptive value of cognition, it is important to bear 

in mind that cognition is not a unitary trait, and that many different cognitive processes are 
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involved in shaping a given behavioural outcome (Rowe & Healy, 2014). Moreover, cognition 

is involved in various different contexts, and what is beneficial in one situation can be 

disadvantageous in another (Rowe & Healy, 2014; Ten Cate, 2014). Furthermore, cognitive 

ability per se is likely to be associated with costs because neuronal tissue is energetically 

expensive and therefore also under selection (Kotrschal et al., 2013; Morand-Ferron et al., 

2016). Hence, average individual cognitive performance in a particular test may not 

necessarily be closely and positively correlated with any fitness measure (Rowe & Healy, 

2014), and detecting the underlying trade-offs is especially challenging in the wild (but see 

Cole et al., 2012). Nevertheless, stable inter-individual variation in cognitive abilities persists 

(Cauchoix et al., 2018), and relating it to variation in multiple fitness outcomes provides a 

reasonable starting point for a better understanding of the evolution of cognition (Thornton 

& Lukas, 2012; Thornton et al., 2014). 

Primates stand out among mammals for their relatively large brains and social 

complexity, both of which have been linked to cognitive abilities (Byrne & Whiten, 1988; 

Dunbar, 1998; Reader & Laland, 2002; Deaner et al., 2006; Dunbar & Shultz, 2007; Reader et 

al., 2011). Because primates also have relatively slow life histories and wild populations do 

not readily cooperate in cognitive tests (but see Lührs et al., 2009; van de Waal et al., 2013; 

Huebner & Fichtel, 2015), nothing is known to date about potential fitness consequences of 

inter-individual variation in their cognitive abilities. Grey mouse lemurs (Microcebus murinus) 

are ideally suited among primates for such a study for several reasons, however. They are 

small (60g), nocturnal, solitary primates with large brains for their body size (MacLean et al., 

2009). Grey mouse lemurs are omnivorous ecological generalists, responding flexibly to 

seasonal changes in food availability (Dammhahn & Kappeler, 2008b) while evading several 

types of predators (Rahlfs & Fichtel, 2010). In addition, juveniles have to complete growth and 

physiological preparations in time for several months of hibernation by the time they are 

about 6 months old (Schmid & Kappeler, 1998). Thus, grey mouse lemurs face multiple 

ecological challenges under which they are likely to benefit from relevant cognitive abilities 

(Roth et al., 2010). As a practical advantage, mouse lemurs can be easily captured with live 

traps, enabling us to bring them into a field laboratory for short-term cognitive testing before 

returning them to their natural home ranges. They also have one of the fastest life histories 

among primates, reaching sexual maturity within their first year of life and living on average 
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for 2-3 years (Kraus et al., 2008; Hämäläinen et al., 2014), so that variation in fitness can be 

estimated within a few field seasons. 

The specific aims of this study were, therefore, to test wild grey mouse lemurs in a 

problem-solving task and a maze and link test performance with fitness proxies. To this end, 

we measured problem-solving efficiency during repeated lid opening of an artificial foraging 

task and spatial learning by remembering a food location in a maze, and linked individual 

variation in test performance with body condition after the dry season, a strong predictor of 

survival and males’ mating success (Eberle & Kappeler, 2004b), and with long-term survival. 

We expected performance in these two tasks to be ecologically meaningful and fitness proxies 

to be relevant because during the extended lean season that mouse lemurs face, spatial 

learning of available food resources and potential innovative foraging skills are likely to impact 

body condition and ultimately survival. 

 

 

Methods 

Study population and general procedure 

This study was conducted at the research station of the German Primate Centre in the Forêt 

de Kirindy/ CNFEREF, a dry deciduous forest in central Western Madagascar (Kappeler & 

Fichtel, 2012). The study site is characterized by pronounced seasonality, with a 3-4 month 

hot wet season with high fruit and insect abundance followed by 8-9 months of a cool dry 

season with reduced food abundance during which mouse lemurs enter daily torpor or 

hibernation (Eberle & Kappeler, 2004b). Grey mouse lemurs living in a 10ha study area have 

been regularly captured and monitored since 1994 (Eberle & Kappeler, 2002). For this study, 

we used animals captured during monthly capture sessions between March and November, 

respectively, between 2015 and 2017. All animals were individually marked with subdermal 

micro transponders, sexed and aged (juveniles: <10 months old) based on morphometric data 

collected at the time of first capture (Dammhahn & Kappeler, 2008a).  

For cognitive testing, individuals were kept at the research station in 1 m3 cages 

containing a nest box and a testing platform. Tests were conducted at night and video-

recorded under dim red light. Small pieces of banana served as reward in the tests. After 

testing, individuals were fed with a 1.5cm banana piece (minus the amount obtained in the 

tests) per night and water was provided ad libitum. After 1-3 nights in captivity, individuals 
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were released in the evening at their specific site of capture and, if possible, recaptured after 

a minimum of 10 days for further cognitive testing. Cognitive tests were conducted at the 

beginning of the dry season, months before the start of the mating season, thus rendering it 

unlikely that individuals’ fitness was affected by the few days in captivity. Testing subjects in 

captivity provided more controlled conditions and excluded potential threats from predators 

during the time of testing. Mouse lemurs were initially shy, but they habituated quickly and 

participated voluntarily in the experiments. We are therefore confident that testing under 

short-term captive conditions did not affect performance per se. Subjects were first tested 

with a food extraction task and then in a maze, either during three consecutive nights or after 

being recaptured. Because not all individuals could be recaptured with the same frequencies, 

sample sizes for the cognitive tests and fitness measures vary. Videos were analysed with the 

help of the software BORIS (Friard & Gamba, 2016). We assessed inter-observer reliability with 

a second person naïve to the research question scoring more than 10% of test sessions, which 

was excellent (intraclass correlation coefficient: food extraction task = 1, N= 10; maze = 0.998, 

N= 10). 

 

Food extraction task 

In the food extraction (FE) task, animals had to solve a novel problem by removing a sliding 

cover on each of the six wells (5 x 4.5cm) of a small box (6 x 12cm) in order to access a small 

piece of banana in each compartment (Fig. S1). Banana on top of the apparatus served as an 

initial incentive to start interacting with it. Subjects were presented with the task for a 

maximum of 20 min. If a subject did not appear on the test platform and interact with the box 

within 10 minutes (N= 16), the trial was not counted and repeated the following night. Fifteen 

of these subjects interacted with the box on the second attempt, resulting in a total sample 

size of 96 individuals for this task. 

 We recorded whether a subject opened at least one lid (general success: yes/ no), the 

total number of successes (0 to 6) and the latency from first contact with the box to first 

success. For subjects that interacted with the box but did not succeed, we recorded their total 

duration of testing, starting with the first contact with the box (i.e. capped latencies). 

Moreover, we measured an individual’s solving time, i.e. the mean time a subject spent per 

successful opening after having opened the first lid, thus reflecting a subject’s efficiency in 

repeatedly opening the lids of the novel motor task. For two subjects, we could not rate the 



Chapter 2 
 

 58 

total number of successes due to technical difficulties during testing. We were able to test 

part of the subjects repeatedly in the FE task with a time delay of 10 to 30 days and individuals’ 

solving time was repeatable (intraclass correlation coefficient= 0.63, p= 0.044, N= 8; for other 

measures see Table S2). 

 

Maze 

In this spatial learning task, the ability of subjects to remember and retrieve the position of a 

food reward in a plus maze was tested. The maze consisted of four wooden arms (40cm x 

17cm; Fig. S2) with attached boxes (20cm x 17cm) at each arm’s end. One of the boxes served 

as the starting point from where subjects were released into the maze, and either the arm to 

the left or the right led to the reward (goal box). After successfully finding the reward in the 

goal box, the box was closed and rebaited before subjects were returned to the starting 

position and released again. To avoid the use of olfactory cues, big pieces of banana were 

placed out of reach at the end of every arm, thus masking the smell of the 2mm3 reward inside 

the goal box. Each trial started with the release of the subject from the start box and ended 

with the subject consuming the reward in the goal box. After every third trial, the maze was 

cleaned with 70% ethanol in order to prevent individuals from using potential own odour trails 

as orientation cues. During an initial familiarization trial, all three boxes were rewarded, and 

subjects had to find all rewards to continue with the test trials. If subjects failed to find the 

food rewards within 10 min, testing was terminated and the familiarization trial was repeated 

on the following night. In total, 21 subjects did not complete the familiarization trial or 

stopped participating during the test session, but 12 of them could be re-tested on a 

subsequent day with eight subjects completing the test, resulting in a final sample size of 73 

subjects. 

 During each of the 15 test trials, we recorded the number of errors subjects made, i.e., 

the number of times animals entered an unrewarded maze arm. More specifically, we rated a 

subject entering the box at the end of an unrewarded arm with a score of 1, entering a wrong 

arm with all four limbs, but not the box at the end, with a score of 0.5, and entering an arm 

with only part of the body with a score of 0.25. We defined a learning criterion, which was 

reached when a subject found the reward directly without any errors in three consecutive 

trials. For each subject, we determined whether it reached the learning criterion as well as the 

total number of errors it made until reaching the criterion or across all 15 trials.  
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Body mass index  

To estimate body condition, which reflects variation in energetic state in small mammals 

(Schulte-Hostedde et al., 2005), we calculated a body mass index (BMI) by dividing body mass 

(g) by bizygomatic breadth (mm), the latter being a reliable measure of body size in this 

species (Rasoloarison et al., 2000). Because body mass fluctuates seasonally (Schmid & 

Kappeler, 1998), which may affect motivation to search for food rewards, we used individual’s 

BMI measured up to two months prior testing and mean values for subjects that were 

measured several times in this time window. For a total of 44 subjects, we were also able to 

calculate the change in BMI between the end of the rainy season (mean of BMIs measured in 

March – May) and the end of the dry season (mean of BMIs measured in September – 

November) by subtracting the latter from the former. 

 

Survival 

We estimated individual survival by determining the number of days alive between birth and 

the date of last capture, truncating the study period in November 2017. Birth dates for all 

individuals were set at the modal birth date January 1 of the year of first capture for juveniles 

and one year earlier for subjects first captured as adults (see Eberle & Kappeler, 2004b). This 

second estimate is reliable because natal dispersals occurs within the first year of life 

(Schliehe-Diecks et al., 2012), and the probability of not capturing a natal individual within the 

first year of life is presumably extremely small. To define death operationally for individuals 

not recaptured for longer periods, we determined the 95th percentile of the frequency 

distribution of 10936 inter-capture intervals recorded between 1995 and 2017 as a cut-off 

point. Accordingly, study subjects were operationally considered dead if they were not 

recaptured within 161 days before 1 November 2017. In total, we could estimate survival for 

84 individuals, excluding 11 juvenile males that presumably dispersed from the study area 

after their first test. 
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Statistical analyses 

To evaluate the potential effects of individual characteristics, such as age, sex and body 

condition (which might proximately affect motivation), on performance in the cognitive tasks, 

we fitted multiple models with the respective measure of test performance as response and 

sex and BMI at the time of testing as predictor variables. We could not implement age class in 

these models, as BMI and age class were correlated and thus collinear. Therefore, to test for 

age differences in subjects’ general ability to succeed in the FE task and to reach criterion in 

the maze, we ran proportion tests. To assess the effects of BMI and sex on subjects’ probability 

to succeed in the FE task and on the probability to reach the learning criterion in the maze, 

we fitted Generalized Linear Models (GLM) with binomial error structure and logit link 

function. To model the effect on the number of successes and failures per individual in the FE 

task as response, we fitted a logistic Generalized Linear Mixed Model (GLMM) with individual 

identity included as random effect (R package lme4: Bates et al., 2015). We used a general 

linear model (LM) to fit the effect of sex and BMI on solving time (log-transformed) in the FE 

task. We used Cox proportional hazards models (package survival in R: Therneau, 2015) to 

model the effect on success latencies in the FE task and on the number of errors until criterion 

in the maze, treating maximal latencies for subjects that did not succeed (FE task) and maximal 

errors for subjects that did not reach criterion (Maze) as censored observations.  

 To determine whether an individual’s performance in one task also predicted its 

performance in the other task, we used Spearman rank correlations for continuous measures 

of performance and Cohen’s kappa coefficients for qualitative measures (success: yes/no in 

FE task, reached criterion: yes/no in Maze). We interpreted kappa values according to Landis 

and Koch (Landis & Koch, 1977). 

 To assess the effect of subjects’ cognitive performance on their BMI change from the 

rainy to the dry season, we fitted LMs with BMI change as response. For the FE task, we 

implemented solving time (log transformed) as predictor and age and sex as control 

predictors. For the maze, we used the number of errors until criterion and the two control 

predictors. In both models, we first also tested the interactions between sex and performance 

measure and age class and performance measure. These interactions were not significant, but 

the full null model comparisons with the interactions and main effect removed were 

significant, and we therefore removed them from the model.  
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We used Cox proportional hazards models to fit the effect of cognitive performance, sex and 

age class on survival (in days). We implemented age class and sex as control predictors as 

these factors were previously shown to influence survival in mouse lemurs (Kraus et al., 2008). 

We fitted one model for the FE task with solving time (log transformed) and sex and age, and 

another model for the maze with the number of errors until criterion and the two control 

predictors. Again, interactions between test performance and age class and test performance 

and sex were removed from the models as they did not significantly explain individual survival. 

For all models, prior to fitting, we z-transformed covariates to a mean of zero and a standard 

deviation of 1 to facilitate interpretation of predictor estimates (Schielzeth, 2010). We 

checked the model assumptions “absence of collinearity” using Variance Inflation Factors (Fox 

& Monette, 1992; package car in R: Fox & Weisberg, 2011) and “absence of influential 

observations” using dfbetas in all models (package survminer in R for cox models: Kassambara 

& Kosinski, 2017). We controlled for the effect of potential outliers/ influential cases by 

comparing model results fitted with and without these observations but retained the 

complete dataset in all models. For LMs, we visually checked normally distributed and 

homogenous residuals and absence of overdispersion for the GLMM. For the Cox proportional 

hazards models, we checked the violation of proportional hazards. We always tested our full 

model against a null model containing the intercept only or just control predictors with an F 

test for general linear models and a likelihood ratio test for GLM, GLMM and Cox models. All 

analyses were conducted in R, version 3.4.2 (R Core Team, 2017). Level of significance was set 

at 0.05. 

 

 

Results 

Inter-individual variation in test performance 

FE-task 

Overall, 88% of 96 subjects successfully solved the FE task, i.e., they opened at least one of 

the six lids. Subjects varied in the total number of lids opened (mean±	sd= 4.6± 2.15; CV= 

46.74), their latency until the first success (mean±	sd= 207± 325 sec; CV= 156.88) and solving 

time per successful opening after the first success (mean±	sd= 134± 161 sec; CV= 120.53, Fig. 

1a). An individual’s BMI predicted its probability to open at least one lid (full null model 

comparison: X2= 9.63, df= 2, P= 0.008; estimate±	SE= -1.13± 0.41, z= -2.77, P= 0.006, N= 96, 
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Table S3), and also the total number of successes (full null model comparison: X2= 6.73, df= 2, 

P= 0.035; estimate±	SE= -2.26± 0.77, z= -2.94, P= 0.003, N= 94, Table S4): subjects with a 

lower BMI were more likely to solve the problem and opened more lids than subjects with a 

higher BMI. Moreover, subjects with a lower BMI had shorter latencies until first success (full 

null model comparison: X2= 9.17, df= 2, P= 0.010, estimate±	SE= -0.35± 0.12, z= -3.03, P= 

0.002, N= 96, Table S5), but solving time per successful opening after the first success was not 

influenced by BMI (full null model comparison: F2,73= 0.43, P= 0.655, estimate±	SE= 0.11± 

0.12, t= 0.92, P= 0.359, N= 76, Table S6). Significantly more juveniles than adults were 

successful (proportion test, X2= 7.7, df= 1, P< 0.01, N= 97). Sex had no influence on any 

measure of performance in the FE task (probability of success: estimate±	SE= -0.93± 0.82, z= 

-1.13, P= 0.258, N= 96, Table S3; number of successes: estimate±	SE= -1.10± 1.38, z= -0.80, 

P= 0.423, N= 94, Table S4; latency first success: estimate±	SE= -0.28±	0.23, z= -1.19, P= 0.234, 

N= 96, Table S5; solving time: estimate±	SE= 0.10±	0.24, t= 0.43, P= 0.667, N= 76, Table S6). 

 

Maze 

In the maze, 71% of 73 subjects reached the learning criterion within the 15 test trials. 

Individuals varied in their number of errors until reaching the learning criterion (mean±	sd= 

14.24± 8.97; CV= 63.00, Fig. 1b), but juveniles and adults did not differ in their ability to reach 

the criterion (proportion test, X2= 0.01, df= 1, P= 0.95, N= 73). BMI and sex did not influence 

performance and learning in the maze (probability of reaching criterion: full null model 

comparison: X2= 1.68, df= 2, P= 0.431, BMI: estimate±	SE= -0.17± 0.28, z= -0.59, P= 0.558, 

sex: estimate±	SE= -0.73± 0.58, z= 1.26, P= 0.209, N= 73, Table S7; number of errors: full null 

model comparison: X2= 0.81, df= 2, P= 0.667, BMI: estimate±	SE= -0.09± 0.13, z= -0.71, P= 

0.479, sex: estimate±	SE= -0.20± 0.82, z= -0.69, P= 0.49, N= 73, Table S8). 

 Individuals’ performance in the FE task and learning in the maze did not correlate 

between any performance measures (Table S9, Fig. S3). However, there was a tendency for 

successful animals in the food extraction task to be more likely to reach the learning criterion 

in the maze (Cohen’s Kappa= 0.019, N= 71, Table S9). 
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Figure 1. Inter-individual variation in performance in two cognitive tests and two fitness proxies. 
Depicted are histograms of the two main cognitive measures, (a) solving time of the FE task and (b) 
number of errors made until the learning criterion in the maze, and the two fitness proxies, (c) BMI 
change and (d) days alive. 

 

 

Relationship between test performance and fitness proxies 

Grey mouse lemurs varied in the two fitness proxies: BMI change during the dry season 

(mean±	sd= 0.21± 0.37; CV= 176.19, Fig. 1c) and survival (mean±	sd= 750.8±	499.1 days; 

CV= 66.48, Fig. 1d). Individuals’ solving time, the measure of performance in the FE task that 

was not affected by body condition during the time of testing, predicted BMI change (full null 

model comparison: F1,27= 4.742, P= 0.038). Animals that were slower in opening the lids after 

mastering it for the first time lost more body mass during the dry season (estimate± SE= 

0.12± 0.05, t= 2.18, P= 0.038, Fig. 2a, Table S10). Moreover, BMI change was also affected by 

sex (females lost more body mass than males (estimate± SE= -0.48± 0.11, t= -4.35, P< 0.001, 

Table S9), but not by age (estimate± SE= -0.01± 0.11, t= -0.13, P= 0.900, N= 31, Table S10). 

Subjects’ number of errors in the maze did not significantly predict their BMI change (full null 
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model comparison: F1,27= 3.88, P= 0.059), but there was a trend for animals that made more 

errors in the maze to experience a smaller change in BMI (estimate± SE= -0.12± 0.06, t= -

1.97, P= 0.059, N= 31, Fig. 2b, Table S10).  

 Subjects’ probability of survival was not predicted by their solving efficiency in the FE 

task (solving time: estimate± SE= 0.09± 0.15, z= 0.62, P= 0.534, N= 64, Fig. 2c, Table S11), 

whereas age class and sex predicted survival (full null model comparison: likelihood ratio test: 

X2= 25.97, df= 3, P< 0.001). Specifically, juveniles and females had lower survival probabilities 

(age class: estimate± SE= 1.87± 0.44, z= 4.28, P< 0.001; sex: estimate± SE= -0.72± 0.31, z= -

2.35, P= 0.019, Table S11). Mouse lemurs’ survival probability was also not predicted by the 

number of errors they made in the spatial learning task (estimate± SE= -0.04± 0.16, z= -0.23, 

P= 0.824, N= 62, Fig. 2d, Table S12). 

 

 

 

Figure 2. Relationship between BMI change and survival (number of days alive) and the cognitive 
performance measures, (a,c) solving time in the FE task and (b,d) number of errors in the maze. (a,b) 
BMI change: blue, males; grey, females; a positive BMI change corresponds to a decrease in BMI during 
the dry season, negative values reflect an increase in BMI from rainy to the end of dry season. (c,d) 
Survival: green, censored days alive for animals that are still alive; grey, dead animals. 
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Discussion 

Individual variation in test performance 

Our study contributes the first data on the cognition-fitness link for primates and established 

the feasibility of conducting cognitive tests with wild individuals during short-term captivity. 

We found that individual mouse lemurs varied in the chosen fitness proxies and in the 

measures of test performance in the two tasks, which is an important prerequisite for linking 

performance with fitness outcomes. Individuals’ performance in the two tasks did not 

correlate, suggesting that there is no general factor underpinning performance in the two 

tasks, which presumably address different cognitive abilities (cf. Shaw & Schmelz, 2017). 

Importantly, solving time in the FE task and the number of errors in the maze were not 

affected by a subject’s body condition, age or sex. Thus, we attempted to minimize the 

confounding effect of non-cognitive factors on individual test performance by linking variation 

in these performance measures with our fitness proxies in the second part of the study. 

Inter-individual variation in test performance can be due to differences in cognitive 

abilities, but also to variation in motivation, personality, sex and age (Rowe & Healy, 2014; 

Morand-Ferron et al., 2016). Especially problem-solving tasks have been criticized as a 

measure of cognitive performance because differences in test performance might also be 

caused by variation in neophobia, persistence and prior experience or simply by chance 

(Thornton et al., 2014; van Horik & Madden, 2016; reviewed in Griffin & Guez, 2014), and 

because the specific cognitive processes underlying problem solving are not well defined 

(Healy, 2012; Rowe & Healy, 2014). We attempted to address this issue by testing the 

influence of several non-cognitive factors on test performance (see below), and by using a 

problem-solving design that allowed to test the repeated solving of the novel problem 

(Thornton et al., 2014). Thus, we not only measured performance during the criticized initial 

innovative problem solving, but also solving efficiency after the first successful opening of the 

artificial feeding box. Subjects with a low solving time efficiently and quickly opened the lids 

repeatedly after the first discovery of the novel solution and we suggest that they were able 

to do so because they quickly learned the new motor actions and associated them with the 

reward (cf. Griffin et al., 2014, Fig. S4). 

Performance in problem-solving and other cognitive tasks can also be impacted by 

dimensions of individual personality, such as persistence, willingness to approach novel 

objects and speed to explore environments (Carere & Locurto, 2011; Dougherty & Guillette, 
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2018; reviewed in Morand-Ferron et al., 2016). To control for these potential effects, we 

assessed neophilia in a novel object task and general activity as well as exploration in an open 

field task. Details of these tests are beyond the scope of the present analysis and reported 

elsewhere (Huebner et al. in prep). The two cognitive performance measures (solving time in 

the FE task and number of errors in the maze) in the present study were not affected by these 

personality traits, however (Huebner et al. in prep). Thus, variation in these personality 

measures does not predict inter-individual variation in the measures of test performance in 

our study and are unlikely to mediate the correlation between solving efficiency in the FE task 

and body condition change as fitness proxy.  

Moreover, when testing animals in food-rewarded tasks, controlling for motivation is 

equally important albeit difficult to operationalize. Differences in feeding motivation can be 

reduced in captivity by controlling access to food or water during a certain time window 

before testing animals, but this level of control cannot be achieved with wild animals. 

However, body condition may present a good proxy for the energetic state of wild individuals 

and, hence, their motivation to feed in the experiment. In line with the idea that “necessity 

drives innovation” suggesting that young, low-ranking individuals in poorer body condition 

are more likely to innovate (Clayton, 2004; Laland & Reader, 2003, but see Griffin & Guez, 

2014; Reader & Laland, 2001), in the FE task, the initial and total number of successes, as well 

as first success latency were indeed affected by body condition at the time of testing, which 

differed widely between juveniles and adults. Juvenile mouse lemurs, which were tested 

during an important period of growth, had a lower BMI and appeared to be more motivated 

to solve the FE task than adults, which accumulated fat in the rainy season prior to testing. 

Yet, within a given age class, variation in BMI had no effect on test performance (unpublished 

data). In contrast to mammals, birds are limited in how much fat they can store (Witter & 

Cuthill, 1993), and motivation to feed (e.g. feeding latencies prior to testing, Sol et al., 2012), 

but not body condition (Griffin & Guez, 2014; Shaw, 2017) had an effect on problem-solving 

performance. Thus, lineage-specific constraints need to be considered and more comparative 

data are required for a more general assessment of the links between body condition and 

motivation in cognitive tasks.  
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Cognitive test performance and BMI change  

Changes in BMI across the austral winter should reflect the ability of grey mouse lemurs to 

cope with the energetic challenges of a long cool dry season with reduced food availability 

(Dammhahn & Kappeler, 2008a; Schmid, 1999). Individuals exhibiting greater reduction in BMI 

lost disproportionately more fat reserves, indicating that they used more and/or acquired less 

energy than others between subsequent measures. Body condition at the end of the dry 

season is functionally relevant because it influences male mating success (Eberle & Kappeler, 

2004b) and females’ mating strategies (Huchard et al., 2012). Hence, this measure may also 

be meaningful for other small mammals or species experiencing strong environmental 

seasonality.  

In our study, solving time in the FE task predicted BMI change, indicating a link 

between this specific measure of efficient, repeated problem solving and a fitness proxy. 

While necessity and motivation might drive initial innovations (Sol et al., 2012), after the initial 

discovery, associative learning and efficient reapplication of the new motor actions, as for 

example a novel behaviour to exploit new food resources, is crucial (Griffin & Guez, 2014). 

Especially under conditions where food resources are ephemeral, unpredictable and only 

seasonally available, innovation and efficient and swift associative learning of novel motor 

actions can be beneficial, as has been shown for several bird species (Sol et al., 2005; Sol et 

al., 2005). A previous field experiment with our study population revealed that mouse lemurs 

rapidly exploited new artificial feeding resources and swiftly learned changes in spatial 

arrangements (Lührs et al., 2009), suggesting that innovative foraging might be ecologically 

meaningful also under natural conditions. 

Performance in the maze was not linked to BMI change in this study. We chose this 

test because we expected a positive correlation between an animal’s ability to remember a 

food location in the maze and its ability to remember and find natural food resources, which, 

in turn, should affect body mass dynamics. Failure to demonstrate this link could be due to 

two reasons. First, females hibernate for several months during the dry season, whereas 

males only enter short daily torpor bouts (Rasoazanabary, 2006; Schmid, 1999). Thus, 

remembering food locations may not be subject to strong selection in females. In contrast, 

males feed on tree gum and sugary secretions of colonial invertebrates during the lean dry 

season, which are both patchily distributed, so that remembering the location of these food 

resources might be beneficial. Despite this sex difference in natural foraging ecology, the 
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effect of test performance on BMI change did not differ between males and females, however. 

Second, variation in motivation and explorative behaviour might have influenced the number 

of errors in the maze. There was indeed a trend indicating that subjects making more errors 

in the maze experienced smaller BMI changes. However, this trend could not be explained by 

the current BMI, our proxy for feeding motivation. Also, subjects were highly motivated to 

participate in all food-rewarded tasks, and we never observed any animal rejecting offered 

food. Unfortunately, we could not control for individual variation in exploratory behaviour 

during the trials in the maze. Imposing a cost for exploring the environment, as for example 

in the Morris water maze (D’Hooge & De Deyn, 2001), might allow to evaluate this possibility 

in a future study. 

 

Cognitive test performance and survival 

Grey mouse lemur’s solving time in the FE task or spatial learning performance in the maze 

did not predict their subsequent survival in the current study. One possible explanation for 

our failure to find a relationship between these performance measures and survival might 

involve a lack of statistical power, even though our sample sizes were larger than those in 

most previous studies of primate cognition. However, we found a significant correlation 

between BMI change and performance in the FE task, and several recent studies with even 

smaller sample sizes could demonstrate a link between cognitive measures and fitness proxies 

(Table S1). Thus, it is possible that mouse lemurs’ survival might not be predicted by the 

specific cognitive abilities addressed here.  

While the two tests measure cognitive performances that ought to impact survival via 

body condition, mouse lemur survival is probably impacted more profoundly by predation risk. 

Among primates, mouse lemurs are exposed to one of the highest predation rates (Fichtel, 

2012) and are preyed upon by various carnivores, owls, snakes and even another lemur 

species (reviewed in Fichtel, 2016). Predator avoidance has been shown to be linked with 

survival in striped mice: female survival was predicted by a faster response to predator stimuli, 

and male survival co-varied positively with better long-term spatial memory of shelter 

locations. In contrast, female striped mice that made more errors in a maze testing short-term 

memory survived longer, and overall survival was not linked to performance in the spatial 

memory task (Maille & Schradin, 2016), indicating that even when linking predator avoidance 

performance with survival, the direction of these links are not necessarily as predicted. 
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Because grey mouse lemurs are nocturnal, certain anti-predator tactics, such as vigilance and 

subsequent fleeing to a distant shelter, are not effective (Fichtel, 2016). Instead, grey mouse 

lemurs tend to freeze after detecting a predator (Rahlfs & Fichtel, 2010), a behaviour that is 

more difficult to address in a laboratory cognitive task. Thus, a species’ sensory ecology and 

their actual specific behaviours in fitness-relevant contexts needs to be taken into account 

when choosing appropriate cognitive tests and fitness proxies (Cauchoix & Chaine, 2016).  

 

Conclusions 

Our study indicates that links between experimental measures of cognitive test performance 

and fitness proxies of wild animals are not necessarily direct and easy to assess and interpret. 

It is essential to appreciate a species’ life history and ecology in studying how selection shapes 

certain cognitive abilities, not only with regard to study design, but also with respect to the 

complex interactions among cognitive performance and confounding factors like personality, 

motivation, age and sex differences. Similarly, fitness proxies have been notoriously difficult 

to measure in behavioural ecology, especially when egg-counting is not an option, and this 

and most other mammal species offer examples for the practical challenges of identifying and 

operationalizing meaningful fitness proxies. Thus, more comprehensive study designs than 

bivariate correlations will be required in the long term to broaden our understanding of the 

evolutionary mechanisms underlying species-specific adaptations in cognitive abilities and 

their intra-specific variation. 

 

 

Acknowledgments 

We are very thankful to Bruno Tsiverimana, Léonard Razamanantsoa and all other members 

of the Kirindy research station team for their support in the field. Moreover, we thank Henning 

Lahmann for the administration of the long-term data, Lynne Werner for scoring videos for 

the inter-observer reliability and Roger Mundry for statistical advice. Finally, we thank Alex 

Thornton and two anonymous reviewers for their constructive comments.  



Chapter 2 
 

 70 

Supplemental material 

 

Figures 

 
 

  
 
 
 
 
 
 

 
Figure S1: The food extraction task: Body width of a mouse lemur corresponds to the width of one 
compartment (5 x 4.5cm). 

 

 

 

Figure S2: The maze: Body size of a mouse lemur corresponds approximately to one quarter of the 
start box (20cm x 17cm). 
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Figure S3: Correlation between the two main measures of cognitive performance: solving time (in 
seconds) in the FE task and number of errors until criterion in the maze. 
 
 
 
 

 
Figure S4: Correlation between individual learning slopes and mean solving time (in seconds) for 
subjects that opened at least five lids in the FE task. Learning slopes were calculated from individual 
regression lines of successive latencies until lid openings from first success until fifth or sixth success 
(i.e. time intervals between successes). Negative slopes reflect a decrease in solving latencies and 
suggest learning across lid openings. Spearman rank correlation (r= 0.46, S= 25784, P< 0.001, N= 66) 
revealed that individuals’ mean solving time and learning slopes correlated positively, thus supporting 
the notion that for subjects with low solving times, learning is involved during the repeated opening 
of lids in the FE task and that individuals’ mean solving times are an adequate measure to compare 
among subjects that differed in the number of lids opened. 
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Tables 
 
Table S1: Overview of studies linking cognitive performance and fitness proxies 

Species Cognitive 
performance Fitness proxy Sample 

size Relationship 
Fitness 
measured 
in  

Reference 

Bumble bee, 
Bombus 
terrestris 

Associative 
learning 

Foraging 
success 

12 
colonies 

positive wild Raine & 
Chittka 
2008 

Bumble bee, 
Bombus 
terrestris 

Associative 
learning 

Lifetime 
foraging 
performance 

85 negative wild Evans et 
al. 2017 

Rose bitterling, 
Rhodeus 
ocellatus 

Spatial 
learning 

Reproductive 
success 

16 
males 

positive; 
depending 
on mating 
tactic  

captivity Smith et 
al. 2015 

Great tit, 
Parus major 

Problem 
solving 

Clutch size  368 
females 

positive wild Cole et al. 
2012 

Great tit, 
Parus major 

Problem 
solving 

Nest success 368 
females 

negative wild Cole et al. 
2012 

Great tit, 
Parus major 

Problem 
solving 

Adult 
survival 

698 none wild Cole et al. 
2012 

Great tit, 
Parus major 

Problem 
solving 

Fledgling 
number, 
clutch size, 
nestling 
survival 

26 pairs positive wild Cauchard 
et al. 
2013 

Great tit, 
Parus major 
 

Problem 
solving; 2 
tasks 

Hatching 
success, 
Fledgling 
number 

55 pairs positive for 
1 problem-
solving task 

wild Preiszner 
et al. 
2016 

Great tit, 
Parus major 
 

Problem 
solving; 2 
tasks 

Clutch size 55 pairs none wild Preiszner 
et al. 
2016 

House sparrow, 
Passer 
domesticus 

Problem 
solving 

Nestling 
survival 

80 none for 
females, 
positive for 
males (N= 
41) 

wild Wetzel et 
al. 2017 

Satin bower 
bird, 
Ptilonorhynchus 
violaceus 

Problem 
solving, 2 
tasks 

Mating 
success 

33 (25) 
males 

positive wild Keagy et 
al. 2009 

Spotted bower 
bird, 
Ptilonorhynchus 
maculatus 

PC score* 
from 6 tasks 
(Motor task, 

Mating 
success 

11 none wild Isden et 
al. 2013 
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color and 
shape 
discrimination, 
reversal 
learning, 
spatial 
memory) 

Australian 
magpie, 
Cracticus 
tibicen dorsalis 

PC score* 
from 4 tasks 
(inhibitory 
control,  
associative 
learning, 
reversal 
learning, 
spatial 
memory) 

Number of 
clutches and 
fledglings 
per year 

22 
females 

positive wild Ashton et 
al. 2018 

African striped 
mouse, 
Rhabdomys 
pumilio 

Spatial 
memory 

Survival until 
breeding 
season 

20 
males, 
22 
females 

positive for 
males, 
negative for 
females 

wild Maille & 
Schradin 
2016 

* Scores from principal component analysis used for the further analysis 
 
 
 
Table S2: Results of the repeatability tests for measures of the FE tasks 

Performance 
measure 

Test Result Sample 
size 

Interpretation 

Success yes/ no Cohen’s 
kappa 

Kappa= 0.42 13 Moderate agreement 

Latency success Intraclass 
correlation 

ICC= 0.34 12 Poor agreement 

Solving time Intraclass 
correlation 

ICC= 0.63 8 Good agreement 

Subjects were tested in the same task with a delay of 10 to 30 days. On the group level, subjects 
improved in performance: Latency to success decreased by 205±	500 sec (mean±	sd), solving time 
decreased by 72± 65 sec (mean±	sd). Interpretation of Cohen’s kappa and intraclass correlation 
coefficients according to Hallgren 2012. 
 

 
  



Chapter 2 
 

 74 

Table S3: Food extraction task: results of the Generalized Linear Model (GLM) fitting the influence of 
BMI on success probability (success y/n) 

Predictor variable Estimate SE z P 
Intercept 2.83 0.70 4.03 <0.001 
BMIa -1.13 0.41 -2.77 0.006 
Sex (male) -0.93 0.82 -1.13 0.258 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 96. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI (sd)= 2.66 (0.39). 

 
 
Table S4: Food extraction task: results of the Generalized Linear Mixed Model (GLMM) testing the 
influence of BMI on individuals’ number of successes 

Predictor variable Estimate SE z P 
(Intercept) 5.70 1.45 3.92 <0.001 
BMIa -2.26 0.77 -2.94 0.003 
Sex (male) -1.10 1.38 -0.80 0.423 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 94. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI (sd)= 2.66 (0.39). 

 
 
 
Table S5:  Results of the Cox proportional hazards model fitting the effects of body mass index on 
latency to solve in the food extraction task 

Predictor variable coeff Exp(coeff) SE(coeff) z P 
BMIa -0.35 0.71 0.12 -3.03 0.002 
Sex (male) -0.28 0.76 0.23 -1.19 0.234 

Positive coefficients indicate a higher hazard (here solving), i.e., shorter solving latencies. Exponentially 
transformed coefficients are the hazard ratios and give the effect size on the hazard of predictor 
variables. Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 
96.  
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI (sd)= 2.66 (0.39). 
 
 
 
Table S6: Food extraction task: results of the linear model testing the effect of body mass index at time 
of testing on individuals’ solving time 

Predictor variable Estimate SE t P 
Intercept 4.35 0.17 25.14 <0.001 
BMIa 0.11 0.12 0.92 0.359 
Sex (male) 0.10 0.24 0.43 0.667 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 76. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI (sd)= 2.61 (0.37). 
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Table S7: Maze: results of the Generalized Linear Model (GLM) fitting the effect of predictors on 
subjects’ probability to reach the learning criterion 

Predictor variable Estimate SE z P 
Intercept 1.34 0.45 2.98 0.003 
BMIa -0.17 0.28 -0.59 0.558 
Sex (male) -0.73 0.58 -1.26 0.209 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 73. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI (sd)= 2.56 (0.35). 
 
 
 
Table S8: Maze: results of the Cox proportional hazards model fitting the effect of predictors on 
individuals’ number of errors until reaching the learning criterion 

Predictor variable coeff Exp(coeff) SE(coeff) z P 
BMIa -0.09 0.91 0.13 -0.71 0.479 
Sex (male) -0.20 0.82 0.28 -0.69 0.488 

Positive coefficients indicate a higher hazard (here reaching the learning criterion), i.e., fewer errors. 
Exponentially transformed coefficients are the hazard ratios and give the effect size of predictor 
variables on the hazard. Reference category for categorical predictor is indicated in brackets, SE: 
Standard error, N= 73. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean of BMI (sd)= 2.56 (0.35). 
 
 
 
Table S9: Relationships between performances in the maze and in the food extraction tasks tested 
with Spearman rank correlations and Cohen’s Kappa tests 

 FE:  
Latency success 

FE:  
N of successes 

FE:   
solving time  

FE: 
 success y/n 

Maze: Errors 
until criterion 

Rs= 0.13 
P= 0.27 
N= 71 

Rs= -0.08 
P= 0.49 
N= 69 

Rs= -0.08 
P= 0.56 
N= 61 

/ 

Maze: criterion 
y/n 

/ / / Cohens 
Kappa= 0.019, 
N= 71 
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Table S10: Results of the linear models (LM) fitting the effects of test performance in food extraction 
task and maze on BMI change from the rainy to the end of dry season 

 Predictor 
variable 

Estimate SE t P 

Model 1: 
Food 
extraction 
N= 31 

Intercept 0.48 0.08 5.73 <0.001 
Solving timea 0.12 0.05 2.18 0.038 
Sex (male) -0.48 0.11 -4.35 <0.001 
Age (juvenile) -0.01 0.11 -0.13 0.900 

Model 2: 
Maze 
N= 31 

Intercept 0.64 0.10 6.33 <0.001 
Number of 
errorsb 

-0.12 0.06 -1.97 0.059 

Sex (male) -0.54 0.11 -4.89 <0.001 
Age (juvenile) -0.18 0.12 -1.57 0.129 

Reference categories for categorical predictors are indicated in brackets, SE: Standard error. 
a Covariate was log transformed and afterwards z-transformed to a mean of= 0 and sd= 1; original 
mean of log(solving time) (sd)= 4.49 (0.96). 
b Covariate was z-transformed to a mean of= 0 and sd=1; original mean (sd)= 13.61 (9.43). 

 
 
 
Table S11: Results of the Cox proportional hazards model fitting the relationship between test 
performance in the food extraction task and survival 

Predictor variable coeff Exp(coeff) SE(coeff) z P 
Solving timea 0.09 1.10 0.15 0.62 0.534 
Sex (male) -0.72 0.49 0.31 -2.35 0.019 
Age (juvenile) 1.87 6.50 0.44 4.28 <0.001 

Positive coefficients indicate a higher hazard (risk of death), i.e., a lower survival probability. 
Exponentially transformed coefficients are the hazard ratios and give the effect size on the hazard of 
predictor variables. Reference categories for categorical predictors are indicated in brackets, SE: 
Standard error, N= 64. 
a Covariate was log transformed and afterwards z-transformed to a mean of= 0 and sd= 1; original 
mean of log(solving time) (sd)= 4.42 (0.93). 
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Table S12: Results of the Cox proportional hazards model fitting the relationship between test 
performance in the maze and survival 

Predictor variable coeff Exp(coeff) SE(coeff) z P 
Number of errorsa -0.04 0.97 0.16 -0.23 0.824 
Sex (male) -0.75 0.47 0.31 -2.45 0.014 
Age (juvenile) 1.69 5.41 0.46 3.63 <0.001 

Positive coefficients indicate a higher hazard (risk of death), i.e., a lower survival probability. 
Exponentially transformed coefficients are the hazard ratios and give the effect size on the hazard of 
predictor variables. Reference categories for categorical predictors are indicated in brackets, SE: 
Standard error, N= 62. 
a Covariate was z-transformed to a mean= 0 and sd= 1; original mean (sd)= 14.81 (9.27) 
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Abstract 

Research on animals’ inter-individual differences in cognitive abilities and their fitness 

consequences is of growing interest recently. By now, various indicate that links between 

cognition and fitness in wild animals are complex and depend on various different factors, like 

a species’ ecology, the specific measures investigated, but also on individual characteristics 

and non-cognitive correlated traits. Because most studies investigated only bivariate 

relationships, understanding trade-offs and complex interactions between a given cognitive 

ability and various fitness aspects is difficult. Therefore, we investigated different fitness-

related traits in 86 wild grey mouse lemurs (Microcebus murinus) in order to link them with 

performance in four cognitive tasks addressing ecologically relevant cognitive abilities. We 

found that lemurs’ physiological condition factor, summarizing measures of body condition, 

hematocrit and long-term cortisol levels, did not predict short-term survival and could 

therefore not be validated as a fitness proxy. In contrast to some other studies reporting links 

between cognitive performance and short-term survival, we found no correlation between 

cognitive performance and longevity in grey mouse lemurs, suggesting that the assessed 

cognitive abilities did not provide (net) benefits in survival. Our results further highlight the 

need to expand links between cognition and fitness within study species by investigating 

multiple cognitive abilities addressing fitness-related behaviours in different contexts and 

various fitness outcomes simultaneously. This will help to detect the complex relationships 

between cognition and fitness and broaden our understanding how cognition evolved. 

 

Key words  

Fitness proxies, cognitive performance, individual differences, survival, primate 

 

 

 

Introduction 

Unravelling the evolution of cognition is an exciting research area and it remains unclear how, 

why and when cognitive abilities evolved (Boogert et al., 2018). To understand how selection 

acts on cognition, studies have to link cognitive abilities with fitness outcomes in wild animals. 

This requires studying individual differences in cognitive performance, as opposed to focusing 
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on species differences while ignoring individual variation, and linking this cognitive variation 

with measures of fitness. This endeavour is challenging in many ways: the difficulties in finding 

ecologically relevant and feasible cognitive tests and in quantifying reliable measures of 

cognitive abilities in wild animals has been discussed in detail (Rowe & Healy, 2014; Thornton 

et al., 2014; Morand-Ferron et al., 2016; Boogert et al., 2018). However, even if a wild animal’s 

cognitive ability has been measured reliably while controlling for confounding factors like 

motivation, personality, experience or environmental influences (Morand-Ferron et al., 2016), 

identifying and quantifying meaningful fitness proxies imposes an additional challenge.  

Evolutionary fitness can be defined as an individual’s genetic contribution to future 

generations and correlates positively with individual differences in quality, i.e. traits 

associated with survival and reproduction (Wilson & Nussey, 2010). Commonly used proxies 

of individual fitness are therefore, apart from survival and reproductive success, correlated 

traits like individual growth and body condition indices (Stearns, 1989; Blums et al., 2005; 

Wilson & Nussey, 2010). Linking variation in cognitive abilities with variation in fitness is only 

relevant in wild populations, i.e., in environments to which organisms are adapted and where 

selection is operating (Ellegren & Sheldon, 2008). However, measuring key proxies of 

individual fitness, like reproductive success and survival, can be challenging for some taxa 

because large sample sizes need to be assembled over large temporal and spatial scales 

(Kingsolver et al., 2001; Morand-Ferron et al., 2016). Nevertheless, studying links between 

cognition and fitness across species and taxa is crucial to understand how cognition evolved 

(Kolm, 2014). 

Because eggs, hatchlings and fledglings can be counted relatively easily and both 

putative parents can be often observed or even tested on cognitive abilities at the nest, many 

previous studies have examined the cognition-fitness link in birds (Cole et al., 2012; Cauchard 

et al., 2013; Preiszner et al., 2017; Wetzel, 2017; Ashton et al., 2018). Evidence for a link 

between cognitive performance and proxies of birds’ mating or reproductive success has been 

mixed and differed between studies, species, sexes, reproductive success measures and 

cognitive measures (positive correlation: Keagy et al., 2009; Cole et al., 2012; Cauchard et al., 

2013; Preiszner et al., 2017; negative correlation: Cole et al., 2012; no correlation: Preiszner 

et al., 2017; Isden et al., 2013; Wetzel, 2017). Direct reproductive success via parentage 

analysis was so far only analysed in rose bitterlings (Rhodeus ocellatus) in the laboratory and 
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learning accuracy predicted reproductive success of males when using the sneaker role as a 

mating tactic (Smith et al., 2015). 

Survival has been linked to cognitive performance, but existing studies have only 

addressed short-term survival, i.e. if subjects survived for 60 days (negative correlation for 

reverseal learning and correlation depending on body mass for associative learning: 

pheasants; Phasianus colchicus: Madden et al., 2018), until the following winter (no 

relationship: great tits; Parus major: Cole et al., 2012) or until the next breeding season 

(positive relationship for males, negative for females: African striped mice; Rhabdomys 

pumilio: Maille & Schradin, 2016). Moreover, foraging success has been used as a fitness 

proxy, in bumble bees (Bombus terrestris), which correlated positively with associative 

learning abilities in bee colonies (Raine & Chittka, 2008), but negatively on the individual bee 

level (Evans et al., 2017). Thus, different studies used different, mostly single fitness proxies, 

and their links with cognitive performance are heterogeneous across studies.  

Since increased cognitive abilities also have costs, like higher energetic costs for the 

maintenance of additional neuronal tissue (Kawecki, 2010), assessing different fitness-

associated parameters increases the chance to determine net benefits in fitness and to reveal 

trade-offs of increased cognitive abilities (Thornton et al., 2014, example in Cole et al., 2012). 

Therefore, in our study, we aimed at identifying several meaningful fitness proxies for a 

cognition-fitness link in a wild primate species. We assessed individual longevity as well as 

different measures of individual quality as fitness proxies, investigated variation in these 

measures, and linked them to cognitive performance in four cognitive tasks in a wild primate 

species.  

Grey mouse lemurs (Microcebus murinus) are exceptionally well suited among 

primates for a study of several fitness proxies and their link with performance in different 

cognitive tests. The small (60g), solitary, nocturnal primates are ecological generalists which 

have a relatively large brain for their body size (Dammhahn & Kappeler, 2008b; MacLean et 

al., 2009). Grey mouse lemurs have a fast life history and reach sexual maturity within their 

first year of life and live on average two to three years in the wild (Kraus et al., 2008; 

Hämäläinen et al., 2014). They face multiple ecological challenges under which animals are 

likely to benefit from pronounced cognitive abilities (Roth et al., 2010) as they live in a 

seasonally changing environment, with a long dry season characterized by low food 

availability. Moreover, they are preyed upon by several types of predators and face one of the 



Chapter 3 
 

 83 

highest predation risks among primates (Scheumann et al., 2007; Rahlfs & Fichtel, 2010). 

Mouse lemurs can be captured easily with live traps (Eberle & Kappeler, 2002) and their high 

recapture probability allows to reliably estimate survival in the wild. Moreover, they adapt 

rapidly to short-term captivity and the presence of a human experimenter which allows 

testing the wild subjects during short-term captivity without long phases of habituation. 

To assess different indices of physiological condition, we measured health and 

condition indicators that are likely to impact fitness. The different condition measures were 

combined into one composite factor of physiological condition, reflecting animals’ condition 

at the end of the rainy season and we tested its link with short-term survival. This validation 

is important when using condition measures that reflect only short time spans as a proxy for 

fitness (Hõrak et al., 2002; Hatch & Smith, 2010; Barnett et al., 2015; Beehner & Bergman, 

2017). First, we assessed body condition of individuals, which reflects variation in energetic 

state in small mammals (Schulte-Hostedde et al., 2005) and predicted survival or recruitment 

success in grey mouse lemurs (Rakotoniaina et al., 2017), as well as in several other species 

(Clutton-Brock et al., 1987; Tinbergen & Boerlijst, 1990; Blums et al., 2005; Bowers et al., 2014; 

reviewed in Barnett et al., 2015). 

Secondly, we measured hematocrit, which is the volume percentage of erythrocytes in 

the blood and determines the ability to deliver oxygen to tissues, therefore functioning as an 

indicator of anaemia. It has been frequently used as an indicator of health and condition, for 

example in wild birds (Ots et al., 1998; Fair et al., 2007; Bowers et al., 2014). Above optimal 

hematocrit levels cause an increase in blood viscosity which hampers oxygen delivery and 

reduces cardiac efficiency, but also below optimal hematocrit levels lead to a reduced ability 

to carry oxygen, suggesting a nonlinear relationship between hematocrit and individual 

fitness, which was found in bird hatchlings (Birchard, 1997; Bowers et al., 2014). 

Thirdly, glucocorticoids, i.e., cortisol, served as a further physiological indicator of 

relative condition and health (Bonier et al., 2009; Walker et al., 2005). Glucocorticoids play a 

key role in mediating various physiological processes, and glucocorticoid levels are commonly 

interpreted as an indicator of stress or allostatic load (Korte et al., 2005). Therefore, the Cort-

Fitness hypothesis predicts that high levels of baseline cortisol indicate an individual in worse 

condition (Bonier et al., 2009). However,  this hypothesis has been questioned lately because 

elevated glucocorticoid levels correspond to mobilized energy under environmental 

challenges, therefore providing fitness benefits in this situation (Bonier et al., 2009; Beehner 
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& Bergman, 2017). To noninvasively assess long-term basal cortisol levels in the wild mouse 

lemurs, we measured hair cortisol concentrations (HCC) (Fourie et al., 2016). HCC reflects 

average cortisol levels accumulated over time periods of up to several months as cortisol is 

incorporated into the growing hair shaft (Stalder & Kirschbaum, 2012). In addition, hair 

cortisol levels of grey mouse lemurs in our study area have been shown to predict survival 

(Rakotoniaina et al., 2017). 

Longevity served as the most direct fitness proxy as we could follow most of our 

subjects for their entire life. For juveniles, surviving the first dry season determines the chance 

to reproduce at all. Females start to reproduce in their first year and continue to have offspring 

once a year, thus female reproductive skew is negligible and longevity should correlate with 

lifetime reproductive success (Eberle & Kappeler, 2004a; Zimmermann et al., 2016). For males, 

surviving at least until the second year appears crucial as male reproductive success is 

determined by their body mass during the mating season, thus outcompeting adult 

competitors is difficult for males in their first year. In a prior study, we linked survival until the 

end of 2017 with two of the cognitive performance measures, but did not find that cognition 

predicted animals’ survival during this period.  

We linked subjects’ cognitive abilities in four cognitive tests addressing different 

ecologically relevant cognitive abilities with these fitness proxies. We tested associative motor 

learning during repeated and spontaneous innovative problem solving (Griffin, 2016; Griffin 

& Guez, 2014), which is of general ecological relevance as innovations allow animals to exploit 

new resources or to use existing resources more efficiently (Griffin & Guez, 2014; Reader & 

Laland, 2003). Spatial learning and memory, i.e. the ability to remember the location of 

important resources, is crucial for mouse lemurs because they rely on sparsely distributed but 

predictable food resources during long and harsh dry seasons (Dammhahn & Kappeler, 2008a; 

Lührs et al., 2009). Finally, inhibitory control, i.e. the ability to inhibit prepotent responses, is 

involved in various decision-making processes in asocial but also social contexts  (Hauser, 

1999; Amici et al. 2008; MacLean et al., 2014). Cognitive performance in these tasks was 

shown to differ between individuals, to not be systematically influenced by non-cognitive 

factors like personality and motivation and could not be summarized within one general factor 

of cognitive performance (Huebner et al. submitted).  
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Methods 

Study population and general procedure 

The study was conducted at Kirindy Forest (CNFEREF), a dry deciduous forest in central 

Western Madagascar, at the research station of the German Primate Center. Grey mouse 

lemurs inhabiting a 10ha study area were regularly captured between the beginning of the 

dry season in April and the beginning of the rainy season in November across four years (2015 

– 2018). Animals were captured with Sherman live traps and marked individually with 

subdermal microtransponders (Trovan Euro I.D., Frechen, Germany) while being sedated with 

0.01ml Ketanest 100 (see Rensing, 1999). Standard morphometric measures were taken and 

individuals were sexed and aged (juveniles: less than 10 months old) based on their body mass 

and size collected at the time of first capture (Dammhahn & Kappeler, 2008a).  

In total, 97 individuals (44 females, 53 males, 63 juveniles, 34 adults) participated in 

the cognitive experiments of this study. For the experimental testing, animals were singly 

housed in the research station in 1m3 cages and kept for up to three consecutive nights before 

they were released again in the evening to their specific site of capture. Tests were conducted 

at night under dim red light. Subjects participated voluntarily in the test and were rewarded 

with small pieces of banana in all cognitive tests and obtained a 1.5cm banana piece per night 

after the testing, while water was provided ad libitum (for more details on the housing and 

testing conditions see Huebner et al., 2018). 

Subjects were tested with the cognitive test battery in a determined order (as 

presented below). All test sessions were video-recorded and analysed with the software 

BORIS (Friard & Gamba, 2016). 

 

 

Measures of fitness-related traits 

Body mass index 

To estimate body condition, we calculated a body mass index (BMI) by dividing body mass (g) 

by bizygomatic breadth (mm), the latter being a reliable measure of body size in grey mouse 

lemurs (Rasoloarison et al., 2000). 
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Hematocrit 

We collected blood samples in heparinized microhematocrit capillary tubes during regular 

capture events when animals were sedated for the general handling procedure (see above). 

Blood was taken from the femoral vein and directly centrifuged at 10 000 x g for 5 minutes. 

Hematocrit was measured as the percentage of packed red blood cells relative to the whole 

blood volume. Additional to the original hematocrit values, we calculated for each month 

subjects’ absolute deviation from the population mean as a proxy for optimal hematocrit 

values. In total, hematocrit was obtained for N= 182 individuals in the months April to July. 

 

Cortisol 

Hair samples for cortisol analysis were taken in the months April and May, thus reflecting 

cortisol levels during the rainy season. Samples were taken from the animals’ dorso-caudal 

region using a pet grooming clipper (Aesculap Isis GT 420) to cut the hair as close as possible 

to skin. As the mouse lemurs’ hair needs about two months to fully regrow from these 

shavings (personal observation), we are confident that the obtained samples reflect hair 

cortisol concentrations of a time span of at minimum two months before sampling. The 

analysis of hair samples was carried out at the University of Dresden (Kirschbaum lab in 

Germany) and followed an adjusted standard protocol described by Gao et al. (2013) and 

Rakotoniaina et al. (2017). 
 

Short-term survival and longevity 

We used short-term survival as a fitness proxy for the validation of the physiological condition 

factor. To this end, we assessed subjects’ survival as a binary outcome in the year of their 

cognitive tests (i.e. typical the year of first encounter within the study period) between April 

and October. This period reflects the biggest part of the long, harsh dry season in Kirindy 

forest, during which food availability is low and females hibernate for several months, while 

males use shorter torpor bouts to save energy before the mating season starts in October 

(Schmid & Kappeler, 1998; Schmid, 1999; Rasoazanabary, 2006; Vuarin et al., 2013). To be 

able to hibernate, individuals have to accumulate body mass during the rainy season and 

juveniles have to complete growth at about six months of age. Thus, subjects’ physiological 

condition factor reflecting condition at the end of the rainy season is likely to predict survival 

during this period. 
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We estimated long-term survival until November 2018 by determining an individual’s 

number of days alive between birth and the date of last capture, truncating the study period 

in November 2018. We set birth dates for all individuals at the modal birth date 1 January of 

the year of first capture for juveniles and one year earlier for subjects firstly captured as adults 

(see Eberle & Kappeler, 2004b). As natal dispersals occur within the first year of life (Schliehe-

Diecks et al., 2012) and the probability of not capturing a natal individual within the first year 

of life is presumably extremely small, we were also able to assign birth dates to adults. To 

define death operationally for individuals not recaptured for longer periods, we determined 

the 95th percentile of the frequency distribution of 10 936 inter-capture intervals recorded 

between 1995 and 2017 as a cut-off point and considered individuals dead if they were not 

recaptured within 161 days before 1 November 2018. In total, we could estimate survival for 

86 subjects that also participated in the cognitive tasks, excluding 11 juvenile males for which 

we could not rule out dispersal from the study area in their first year of age. Only 7 individuals 

were still alive at the date of censoring.  

 

 

Cognitive test battery 

Food extraction task 

In this novel motor task, subjects had to solve a novel problem repeatedly by removing sliding 

covers on six wells (5 x 4.5cm) of a small task box (Fig. S1a), each containing a food reward. A 

small banana piece on top of the task box served as an initial incentive to interact with it. 

During 20 minutes of testing, we for subjects that opened at least two lids their solving time 

(s), i.e. the mean time they spent per successful opening after having opened the first lid. This 

measure is repeatable and addresses a subject’s efficiency in learning to apply the novel motor 

action (Huebner et al., 2018, Huebner et al. submitted).  

  

String-pulling task 

In this task we addressed subjects’ causal understanding and spontaneous problem solving. 

Banana attached to a string of 20cm length was positioned outside of the test cage, with the 

other end within reach of subjects through the cage wire (Fig. S1b). During 20 minutes of 

testing, we recorded subjects’ latencies from the first attention to the reward until the 
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successful pulling of the string. If subjects failed to pull the string and did not obtain the 

reward, we assigned maximal latencies.  

 

Spatial learning 

During the spatial learning task, subjects’ ability to remember the position of a food reward in 

a plus maze was tested. The maze consisted of four wooden arms (40x17cm; Fig. S1c) with 

attached boxes (20x17cm) at each arm’s end. One of the boxes served as the starting point 

from where subjects were released into the maze, and either the arm to the left or the right 

served as goal box that contained a small banana reward. To control for olfactory cues, large 

banana pieces were placed out of reach at the end of each maze arm, masking the smell of 

the actual reward. In order to avoid subjects from using own odour trails, the maze was 

cleaned with 70% ethanol after every third trial. Before testing, subjects had to pass a 

familiarization trial where they had to find rewards in all three arms of the maze. Animals were 

then tested in 15 test trials, each trial started with the release of the subject from the start 

box and ended with it obtaining the reward in the goal box. We recorded the number of errors 

made, i.e. the number of times animals entered an unrewarded maze arm, until reaching the 

learning criterion of finding the reward without errors in three consecutive trials or until the 

end of testing for animals that never met criterion. We graded the error scores to differentiate 

between the different levels of entering wrong arms. We assigned error scores of 1 if a subject 

entered the box at the end of an unrewarded arm, a score of 0.5 if a subject entered the arm 

but not the box at the end of the arm and a score of 0.25 when it entered a wrong arm with 

only part of the body.  

 

Inhibitory control 

We tested individuals’ inhibitory control by assessing their ability to inhibit an ineffective 

prepotent response towards a food reward (MacLean et al., 2014). This detour-reaching task 

consisted of an open-ended transparent cylinder (20cm length, 6cm diameter, Fig. S1d, right 

cylinder) containing a clearly visible food reward in the centre. To control for odour cues that 

subjects might follow to retrieve the reward, small holes were made in the centre of the 

cylinder and the cylinder was cleaned on every fourth trial with 70% ethanol. For each trial, 

subjects were attracted with a small reward to one corner of their test platform before the 

cylinder was placed in the test cage so that subjects started to reach it from a central position 
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at about 40cm distance. In a familiarization phase, subjects had to retrieve a food reward out 

of an opaque cylinder (Fig. S1d, left cylinder) in five consecutive trials in order to start the test 

phase with the transparent cylinder. For the 10 trials of the test phase, we scored the number 

of erroneous trials subjects made when trying to first directly reach the reward before 

detouring to the open ends of the cylinder. 

 

 

Statistical analysis 

To investigate the effect of individual characteristics and different extrinsic factors on 

variation in the measures of physiological condition, we fitted linear mixed models (LMM) 

using R package lme4 (Bates et al., 2015) with hematocrit or cortisol as a response, sex and 

age category as a fixed factors and individual ID as a random factor. To control for the effect 

of different sampling years, year was included as a further fixed effect. For hematocrit, we 

calculated two separate models, one with absolute hematocrit values as a response and one 

with the absolute deviation from mean hematocrit values as a proxy for optimal hematocrit 

as response. Moreover, we included test month as a further fixed factor in the models to 

investigate seasonal changes with increasing test months. Prior analysis, cortisol and 

deviations from hematocrit means were log-transformed.  

In order to combine the three different measures of physiological condition into one 

factor, we first tested correlations between deviations from mean hematocrit, BMI and 

cortisol using spearman rank correlations. Then we performed a principal component analysis 

(PCA) with an unrotated factor solution and extracted the first principal component (PC1) with 

an eigenvalue >1 as the combined physiological condition factor. We tested sampling 

adequacy of the correlation matrix used in the PCA with the Kaiser-Meyer-Olkin (KMO) 

measure of sampling adequacy and the Bartlett’s test of sphericity, which was considered 

appropriate with a KMO> 0.5 and Bartlett’s test of P< 0.05 (Budaev, 2010).  

To validate this factor of physiological condition, we examined its relation to short-term 

survival. To this end, we implemented survival (yes/no) as a response in a generalized linear 

model (GLM) with binomial error structure and logit link function, and the condition factor 

(PC1), sex, age and year as predictors. Because we cannot exclude dispersal for juvenile males, 

we compared model results with a second model, fitted with a reduced dataset with only 

females, thus lacking the sex predictor. 



Chapter 3 
 

 90 

To test the effect of cognitive performance on longevity, we fitted linear models (LM) 

with the (log-transformed) number of days an animal lived as response. We could not fit Cox 

proportional hazards models for this survival analysis as the assumption of proportional 

hazards was violated. Therefore, we fitted always two sets of models, one including all tested 

individuals and one lacking the individuals that were still alive at the end of observation, 

resembling censored observations in a Cox model (N= 7, reflecting not only the oldest subjects 

of the dataset). In these models, we included the respective measure of cognitive 

performance as a covariate and sex and age category as control factor first with performance 

measures in separate models to increase sample size. In the final models, we included all four 

measures of cognitive performance together in one model for subjects that were tested in all 

cognitive tasks, resulting in a reduced sample size. 

For all models, we z-transformed covariates to a mean of 0 and a standard deviation 

of 1 prior to fitting to facilitate interpretation of predictor estimates (Schielzeth, 2010), except 

for the physiological condition factor in the short-term survival models. In all models, we first 

tested the interactions between sex and age, sex or age and physiological condition, or sex or 

age and cognitive performance, respectively, but removed these interactions from the models 

if they were not significant but the respective full null model comparison with the interaction 

and main effect removed was significant. We always checked the model assumptions 

“absence of collinearity” using Variance Inflation Factors (Fox & Monette, 1992; package car 

in R: Fox & Weisberg, 2011) and “absence of influential observations” using dfbetas in all 

models. We controlled for the effect of potential outliers/ influential cases by comparing 

model results fitted with and without these observations and retained the complete dataset 

if results did not change. For the LMs testing the effect of all cognitive performance measures 

on longevity (see model S7a and S7b) we had to exclude one outlier as it changed model 

results significantly. For LMM and LM, we visually checked normally distributed and 

homogenous residuals. We always tested our full model against a null model containing the 

intercept only or just control predictors with an F-test for LM and a likelihood ratio test for 

LMM and GLM. For LMMs, p-values for individual predictors were obtained using likelihood 

ratio tests comparing the full with respective null model (Barr et al., 2013; function drop1 in 

R). All analyses were conducted in R, v. 3.4.2 (R Core Team, 2017) and the level of significance 

was set at 0.05. 
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Results 

Indices of physiological condition 

Hematocrit 

We did not find that hematocrit levels differed between the sexes, but hematocrit significantly 

increased over time, i.e., across the dry season, and was higher in adults (full null model 

comparison: X2= 15.384, df= 3, P= 0.002, Table 1). However, we found a sex difference in 

animals’ deviation from mean hematocrit as males had significantly higher absolute deviations 

from the estimated optimal hematocrit (full null model comparison: X2= 11.079, df= 3, P= 

0.011, Table 2), but age class and month did not predict deviations from mean hematocrit 

(Table 2). 

 

 

Table 1: Results of the linear mixed model testing the effect of predictors on hematocrit  

Term Estimate  SE CIlower CIupper X2 df P 

Intercept 48.215 0.473 47.283 49.147 a a a 

Month* 0.784 0.227 0.337   1.231 11.583 1 <0.001 

Age category 

(juvenile) 

-1.281 0.449 -2.165 -0.397 8.003 1 <0.01 

Sex (male) 0.089 0.438 -0.777  0.951 0.041 1 0.839 

Year (2016)b -0.059     0.490 -1.023   0.906 0.830 2 0.661 

Year (2017)b -0.488     0.568 -1.607   0.630    

Given are the estimated coefficients for each predictor and associated standard errors (SE), lower and 
upper limits of the 95% confidence intervals and the likelihood ratios (X2) with degrees of freedom and 
P values. N= 272 for 182 individuals. 
a) Not shown due to a very limited interpretation (testing the null hypothesis that the estimate, here 
intercept, is equal to zero). 
b) Indicated test was obtained from a likelihood ratio test comparing the full model with a reduced 
model lacking the year predictor. 
*  Covariate was z-transformed, mean and sd of the original values were 5.08 and 1.09, respectively. 
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Table 2: Results of the linear mixed model results testing the effect of predictors on absolute deviation 
from hematocrit mean 

Term Estimate  SE CIlower CIupper X2 df P 

Intercept 0.192 0.133 -0.068 0.453 a a a 

Month* 0.065 0.071 -0.075 0.205 0.829 1 0.363 

Age category 

(juvenile) 

0.046 0.130 -0.209 0.301 0.127 1 0.722 

Sex (male) 0.368 0.122   0.128 0.608 8.951 1 < 0.01 

Year (2016)b 0.043 0.148    -0.248 0.334 8.708 2 0.013 

Year (2017)b 0.474 0.169 0.141 0.807    

Given are the estimated coefficients for each predictor and associated standard errors (SE), lower and 
upper limits of the 95% confidence intervals and the likelihood ratios (X2) with degrees of freedom and 
P values. N= 271 for 181 individuals. 
a) Not shown due to a very limited interpretation.  
b) Indicated test was obtained from a likelihood ratio test comparing the full model with a reduced 
model lacking the year predictor. 
* Covariate was z-transformed, mean and sd of the original values were 5.08 and 1.09, respectively. 

 

 

Hair cortisol concentration  

We found a significant interaction between sex and age class predicting hair cortisol 

concentrations during the rainy season. In adults, cortisol concentrations differed significantly 

between the sexes and were higher in females, whereas for juveniles, we did not find a 

significant sex difference (full null model comparison: X2= 50.7, df= 3, P< 0.001, Table 3, Fig. 

S2). For males, cortisol concentration was significantly increased in juveniles compared to 

adults, whereas in females, this difference was not significant (Table 3, Fig. S2). 
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Table 3: Results of the linear mixed model results testing the effect of predictors on hair cortisol 
concentration in the rainy season 

Term Estimate  SE CIlower CIupper X2 df P 

Intercept 2.570     0.140 2.293 2.848 a a a 

Age category 

(juvenile) 

0.343 0.189 0.031 0.717 a a a 

Sex (male) -0.747  0.160 -1.064 -0.433 a a a 

Age.cat *sex 0.962 0.245 0.475 1.446 14.396 1 < 0.001 

Year (2016)b -0.112    0.132 -0.372  0.148 4.250 2 0.119 

Year (2017)b -0.376 0.181 -0.733 -0.019    

Given are the estimated coefficients for each predictor and associated standard errors (SE), lower and 
upper limits of the 95% confidence intervals and the likelihood ratios (X2) with degrees of freedom and 
P values. N= 139 for 97 individuals. 
a) Not shown due to a very limited interpretation.  
b) Indicated test was obtained from a likelihood ratio test comparing the full model with a reduced 
model lacking the year predictor. 

 

 

Physiological condition factor 

Individuals differed in the three physical condition proxies at the end of the rainy season, i.e.: 

BMI, deviation from mean hematocrit and hair cortisol concentration (Fig. S3). Individuals’ 

BMI and cortisol levels correlated significantly negatively (Spearman rank correlation, rho= -

0.37, P< 0.001, N= 80), but deviations from hematocrit means did neither correlate with BMI 

(rho= -0.11, P= 0.34, N= 80) nor cortisol levels (rho= 0.07, P= 0.55, N= 80). Subjects’ overall 

physiological condition at the end of the rainy season could be summarized into a first 

principal component that contributed to 45% of the total variance (PCA; N= 80, Table 4; KMO= 

0.52, Bartlett’s test: P< 0.05). Subjects’ BMI loaded positively, whereas cortisol and deviation 

from mean hematocrit levels loaded negatively on the first principal component, resulting in 

a condition factor with high values for animals in good physiological condition and low values 

for individuals in poorer condition.  
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Table 4: Results of the principal component analysis 

Proxy of physiological 

condition 

PC1 PC2 PC3 

BMI 0.671  -0.246 0.670 

Hair cortisol concentration -0.680 0.172 0.712 

Deviation hematocrit mean -0.295  -0.954 -0.052 

Eigenvalue 1.160 0.984 0.827 

% variance explained 0.45 0.32 0.23 

 

 

 

Is the general physiological condition factor a good fitness proxy? 

The physiological condition factor did not predict short-term survival across the dry season 

(GLM with all subjects: N= 80, full null model comparison: X2= 1.51, df= 4, P= 0.83, Table S1, 

Figure 1; GLM for females only: N= 36, full null model comparison: X2= 1.36, df= 2, P= 0.51, 

Table S2). Therefore, we did not further use the condition factor as a proxy for fitness and did 

not test the link between cognitive performance and physiological condition. 

 

 

Figure 1: The physiological condition factor of individuals that survived (1) and did not survive (0) until 
the beginning of the breeding season (short-term survival). Individual data points are jittered to 
increase visibility. 
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The link between cognitive performance and fitness proxies 

Does cognitive performance predict longevity? 

We did not find that cognitive performance in any of the four tests predicted longevity, i.e. 

the number of days subjects lived (LMs: Food extraction task: solving time: full null model 

comparison: F-1,63= 1.09, P= 0.3, N= 66, Table S3a; String pulling latency: full null model 

comparison: F-1,83= 0.87, P= 0.35, N= 86, Table S4a ; Maze: errors until criterion: full null model 

comparison: F-1,62= 0.44, P= 0.51, N= 65, Table S5a; Detour-reaching performance: Full null 

model comparison: F-1,55= 0.07, P= 0.79, N= 58, Table S6a). Also when we implemented all 

cognitive performance predictors together in one model, we did not find a significant effect 

of cognitive performance on the number of days an animal lived (LM: full null model 

comparison: F-4,37= 1.84, P= 0.14, N= 40, Table S7a). Model results with the reduced data set 

lacking animals that were still alive did not differ meaningfully (Tables S3b to S7b). 

 

 

 

Discussion 

Indices of physiological condition - natural variation and validity as fitness proxy 

We investigated variation in the measures of physiological condition that could be 

summarized into one physiological condition factor explaining a moderate amount of the total 

variance. However, we could not validate this condition factor to be a meaningful fitness proxy 

as it did not predict short-term survival. Several factors may explain the lack of this 

relationship. 

Firstly, variation in the three measures that we combined to describe physiological 

condition can be partially explained by extrinsic and intrinsic factors like season and 

individuals’ reproductive and developmental stages. Hematocrit levels in mouse lemurs were 

higher in adults compared to juveniles because growing individuals still increasingly produce 

red blood cells (Fair et al., 2007). Furthermore, we found that hematocrit levels increased with 

advancing months of sampling, which might be explained by corresponding reductions in  

humidity and food availability (Fair et al., 2007). Therefore, we used only measures at the end 

of the rainy season for the combined physiological condition factor. Deviations from the 

approximated optimal hematocrit level were low, albeit higher in males, which is difficult to 

explain and has not been reported in other studies. Only two individuals had haematocrit 
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values of <40%, which might reflect critically low values of anaemic animals (for example <35% 

in birds: Campbell, 1994 and 36-40% in humans: Billett, 1990). In contrast, in house wren 

(Troglodytes aedon) nestlings hematocrit ranged between 22 to 66% and predicted 

recruitment success and longevity (Bowers et al., 2014). In birds, blood samples of nestlings 

can be taken directly at the nest, so that even weak individuals will not be missed. However, 

in our study we could only sample active mouse lemurs and may have missed individuals in a 

critically weak physiological condition. In this context it is worth pointing out that we did not 

capture any mouse lemurs with extremely low body mass in 2357 capture events between 

2015 and 2017. Thus, hematocrit measures may have been biased towards animals in good 

condition. 

Hair cortisol concentrations during the rainy season were higher in adult females and 

juveniles. Glucocorticoids are secreted during energy-demanding situations or periods in 

response to extrinsic (e.g. ecological changes) or intrinsic challenges (e.g. different 

developmental and reproductive stages), therefore constituting an adaptive response, the 

“predictive homeostasis” (Romero et al., 2009; Beehner & Bergman, 2017). Therefore, higher 

cortisol concentrations in adult females, for which the measured period included lactation, 

and higher HCC in growing juveniles can be expected and were also found in other studies 

with primates (e.g. Fourie et al., 2016; Rakotoniaina et al., 2016). Thus, ecological challenges 

or intrinsic factors that themselves are likely to impact fitness have to be controlled for when 

linking glucocorticoids to fitness (Johnstone et al., 2012; Beehner & Bergman, 2017). The two 

previous studies that reported a link between glucocorticoid levels and survival in primates 

did not control for these potentially confounding factors, however. In ring-tailed lemurs 

(Lemur catta) mortality across two years was higher in individuals with above average 

glucocorticoids (Pride, 2005). Similarly, high levels of HCC were associated with reduced 

survival in grey mouse lemurs (Rakotoniaina et al., 2017), but both studies did not account for 

age effects. Thus, variation in our chosen physiological condition factor may not reflect 

individual health or quality, but rather differences in energetically costly conditions like 

reproductive and developmental stages, and does therefore not predict survival when 

controlling for these factors. 

Secondly, surviving the harsh dry season is not only determined by physiological 

condition but also by predation, which is probably the leading cause of death in this species 

(Goodman et al., 1993) and could mask direct effects of physiological condition on mortality. 
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However, poor physiological condition might not only increase individuals’ susceptibility to 

disease (Coop & Kyriazakis, 1999) but also to predation (Murray, 2002), so that interactions 

between condition and predation may affect survival. This is in line with the finding that body 

mass was lower in the season preceding death in the same mouse lemur population 

(Hämäläinen et al., 2014; Rakotoniaina et al., 2017). Yet, the sample size in the current study 

might be too low to detect such a condition-dependent mortality. 

 

 

The link between cognition and longevity 

Variation in survival is affected by various extrinsic factors, like resource availability, disease, 

competition and predation, and intrinsic factors, like age, sex and general physiological 

condition, as well as their various interactions (Jorgenson et al., 1997; Lindström, 1999; Farand 

et al., 2002; Blums et al., 2005; Ozgul et al., 2006; Wilson & Nussey, 2010). Cognitive abilities 

can help individuals to survive by facilitating adaptations to changing environmental 

conditions, maintaining a healthy body condition by more efficient foraging, enhanced spatial 

memory of resources and better predator avoidance (e.g. Pravosudov & Clayton, 2002; Sol et 

al., 2002; Sol et al., 2007; Raine & Chittka, 2008; Roth et al., 2010; Maille & Schradin, 2016).  

We tested grey mouse lemurs in different ecologically relevant cognitive abilities, 

including innovative problem solving and subsequent learning of novel motor patterns, spatial 

learning and inhibitory control. However, performance in none of the cognitive tasks 

predicted longevity. Thus, the cognitive abilities we tested here do not seem to provide grey 

mouse lemurs with survival advantages. The tests we used mainly addressed cognitive abilities 

that are likely to improve foraging success, which contributes to body condition, e.g. through 

innovative foraging or better spatial memory of dispersed food items. Indeed, for subjects’ 

ability to quickly and efficiently learn the new motor action in the food extraction task, we 

could demonstrate that efficient solvers were better in maintaining body condition across the 

dry season (Huebner et al., 2018); yet, this advantage did not translate into better survival. 

However, as mentioned above, grey mouse lemurs’ survival is determined by strong 

predation by several different predators, including owls, snakes and carnivores (Goodman et 

al., 1993; Fichtel, 2016), and physiological condition did not predict short-term survival in our 

population, suggesting that cognitive abilities involved in predator avoidance rather than in 

foraging are important for mouse lemurs’ survival. Thus, if the addressed cognitive abilities in 
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our study do not provide clear benefits in avoiding, detecting and escaping these predators, 

this could explain the difficulty to detect links with longevity. In a study that directly addressed 

antipredator behaviours in African striped mice, links between test performance and 

subsequent short-term survival were detected (Maille & Schradin, 2016). More specifically, 

the response to a predator stimuli and the ability to remember shelter locations in a maze 

using a predator dummy as motivative incentive predicted survival until the beginning of the 

breeding season in the wild (Maille & Schradin, 2016). However, the directions of correlations 

differed between the sexes in striped mice, indicating that even when linking directly 

predation-related behaviours with survival, these links are not always straightforward and as 

predicted.  

Testing cognitive abilities related to predator avoidance is difficult in mouse lemurs, 

however. As grey mouse lemurs are nocturnal, vigilance and subsequent fleeing to a distant 

shelter are not effective (Fichtel, 2016). After having detected a predator, grey mouse lemurs 

tend to freeze and behave cryptically (Rahlfs & Fichtel, 2010), a behaviour that is difficult to 

address in a cognitive task. We assumed that inhibitory control, i.e., the ability to inhibit the 

prepotent response of continuing foraging in the presence of a predator (van Horik et al., 

2018) could play an important role in the lemurs’ freezing behaviour. However, we also did 

not find a correlation between inhibitory control performance and survival, which might 

indicate that predator detection and predator-sensitive foraging are more crucial in this 

context (Dammhahn & Almeling, 2012; Fichtel, 2016).  

 In pheasants, chicks that were faster to reverse a learned association were less likely 

to survive for 60 days after being released into semi-wild conditions, which might indicate that 

also putative “better” cognitive abilities can be associated with maladaptive, costly fitness 

outcomes (Madden et al., 2018). In grey mouse lemurs, we also did not find a significant 

negative correlation between cognitive performance and longevity, even when we included 

all tasks together into one model. The cognitive abilities we addressed here do apparently not 

impact survival in either way. However, as large sample sizes are required to protect against 

Type II error in selection analyses (Kingsolver et al., 2001; Dingemanse & Reale, 2005; Morand-

Ferron et al., 2016), we cannot exclude the possibility that a lack of statistical power 

contributed to the non-significant results, especially when investigating longevity in the few 

subjects that participated in all cognitive tasks. 
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In great tits, problem-solving ability in a lever-removing task did not predict survival, 

but birds that were able to solve a novel problem had larger clutches compared to non-solvers, 

probably because solvers were more efficient in exploiting their environment (Cole et al., 

2012). Because reproductive success is highly dependent on the physiological condition of 

animals and is often traded off against survival (Roff, 1992, 2002;  Stearns, 1992), investigating 

the link between cognitive performance and reproductive success will help to complete the 

links between cognition and fitness and investigate the adaptive value of cognitive abilities in 

grey mouse lemurs in the future. Unfortunately, we could not include reproductive success 

via parentage analysis in this study because samples of an entire year were destroyed, 

presumably due to storage problems in Madagascar, resulting in missing DNA for 38 

individuals of the study population. 

Critically, cognition is not a unitary trait and various cognitive processes are involved 

in shaping a given behavioural outcome. Also, cognitive processes are involved in various 

different contexts and what is beneficial in one situation might be disadvantageous in another, 

therefore not necessarily resulting in net benefits of fitness (Rowe & Healy, 2014; Thornton et 

al., 2014). Furthermore, cognitive abilities themselves are associated with fitness costs like 

increased energetic costs for neuronal tissue and are therefore also under selection (Kotrschal 

et al., 2013; Morand-Ferron et al., 2016). Therefore, direct links between cognitive test 

performance in artificial tasks and fitness outcomes can be very difficult to detect or might 

not even be expected (Rowe & Healy, 2014; Ten Cate, 2014). Thus, only detailed studies of 

cognitive abilities addressing different ecologically relevant behaviours in different contexts 

and their link with various fitness outcomes will help to understand these trade-offs, selection 

pressures and various fitness consequences and can finally lead to a better understanding how 

and why cognition evolved. 

 

In conclusion, this study revealed the challenges in assessing meaningful fitness-related traits 

in a wild primate and highlights the importance of validating these measures before using 

them as a proxy for fitness. Our results on the cognition-fitness link demonstrate that better 

cognitive abilities do not necessarily translate into better survival, especially when testing links 

between cognitive performance and survival in the long-term, i.e. longevity of individuals. As 

predicted, links between cognition and fitness are complex and studying correlations between 
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multiple cognitive and fitness traits will allow to detect the underlying selective pressures, 

diverse covariations and fitness trade-offs in the future. 
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Supplemental material 

 

Cognitive test battery 

 

 

Figure S1: The cognitive test apparatuses. 
(a) Food extraction task, (b) String-pulling task, (c) Plus maze, (d) Detour-reaching task 
Approximate proportional size of a mouse lemur indicated by silhouette. 
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Measures of physiological condition 

 

 
 

Figure S2: Hair cortisol concentration reflecting the rainy season, depicted for males and females in 
the two age classes. 
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Figure S3: Histograms of the different proxies of physiological condition and the composite 
physiological condition factor. N= 80. For hematocrit, the population mean at 46.9% is depicted in 
blue. Hematocrit values are given in percent, hair cortisol concentration is given in pg/mg. 
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Is the general physiological condition factor a good proxy for individuals’ fitness? 

 

Table S1: Result of the Generalized Linear Model (GLM) fitting the effect of the general physiological 
condition factor on survival probability until the breeding season (survival y/n) for all individuals 

Predictor variable Estimate SE z P 

Intercept 2.032       0.778     2.61     <0.01  

Condition factor -0.275       0.384    -0.72     0.473    

Sex (male) 0.245 0.617     0.40     0.691    

Age (juvenile) -1.042       0.937    -1.11     0.266    

Year (2016) 0.208       0.636     0.33     0.743    

Reference categories for categorical predictors are indicated in brackets, SE: Standard error, N= 80. 

 

Table S2: Result of the Generalized Linear Model (GLM) fitting the effect of the general physiological 
condition factor on survival probability until the breeding season (survival y/n) for females only 

Predictor variable Estimate SE z P 

Intercept 1.857       0.883     2.10     0.035 

Condition factor 0.152       0.464     0.33     0.743   

Age (juvenile) -0.759       1.142    -0.67     0.506   

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 36. 
To reduce model complexity, we excluded year as a covariate as it did not significantly affect survival 
in the model with all subjects. 

 

 

Does cognitive performance predict longevity? 

 

Table S3a: Food extraction task: results of the linear model testing the effect of cognitive performance 
(solving time) on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.816 0.112 60.94 <0.001 

FE solving timea -0.062 0.059 -1.046 0.3 

Sex (male) 0.347 0.118 2.951 <0.01 

Age (juvenile) -0.914 0.125 -7.338 <0.001 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 66. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean (sd)= 138.6 (168.4) sec. 
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Table S4a: String-pulling task: results of the linear model testing the effect of cognitive performance 
(success latency) on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.841 0.089 76.935 <0.001 

Success latencya 0.048 0.051 0.931 0.355 

Sex (male) 0.309 0.1 3.088 <0.01 

Age (juvenile) -0.91 0.103 -8.836 <0.001 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 86. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean (sd)= 281.6 (364) sec. 

 

 

Table S5a: Maze: results of the linear model testing the effect of cognitive performance (number of 
errors until criterion) on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.66 0.115 57.772 <0.001 

Errors until criteriona 0.036 0.055 0.664 0.509 

Sex (male) 0.367 0.108 3.398 0.001 

Age (juvenile) -0.746 0.119 -6.26 <0.001 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 65. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean (sd)= 14.5 (9.2). 

 

 

Table S6a: Detour-reaching task: results of the linear model testing the effect of cognitive performance 
(% correct responses) on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.677 0.141 47.432 <0.001 

% correcta -0.017 0.064 -0.264 0.793 

Sex (male) 0.354 0.132 2.683 0.01 

Age (juvenile) -0.773 0.134 -5.776 <0.001 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 58. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean (sd)= 69.1 (22.5) %. 
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Table S7a: Results of the linear model testing the effects of cognitive performance of all cognitive tests 
on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.681 0.17 39.276 <0.001 

Food extraction: 

solving timea 

-0.202 0.14 -1.441 0.159 

String pulling: 

latency successa 

0.268 0.102 2.617 0.013 

Maze: 

errors until criteriona 

-0.004 0.077 -0.049 0.961 

Detour reaching: 

% correcta 

-0.047 0.079 -0.596 0.556 

Sex (male) 0.308 0.158 1.952 0.06 

Age (juvenile) -0.716 0.186 -3.846 0.001 

Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 40. 
Please note that outlier individual with extreme high solving time in the food extraction task was 
excluded from the dataset, as it changed model results significantly. 
a Covariate was z-transformed to a mean of= 0 and sd= 1. 

 

 

Longevity models with the reduced dataset, lacking animals that are still alive 

 

Table S3b: Food extraction task with reduced dataset: results of the linear model testing the effect of 
cognitive performance (solving time) on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.702 0.119 56.395 <0.001 

FE solving timea -0.056 0.057 -0.992 0.326 

Sex (male) 0.403 0.121 3.327 <0.01 

Age (juvenile) -0.85 0.135 -6.286 <0.001 

Reduced dataset without animals that are still alive. 
Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 59. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean (sd)= 134.8 (176.2) sec. 
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Table S4b: String-pulling task with reduced dataset: results of the linear model testing the effect of 
cognitive performance (success latency) on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.79 0.09 75.729 <0.001 

Success latencya -0.002 0.054 -0.035 0.972 

Sex (male) 0.349 0.1 3.487 0.001 

Age (juvenile) -0.92 0.104 -8.887 <0.001 

Reduced dataset without animals that are still alive. 
Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 79. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean (sd)= 248.4 (342.1) sec. 

 

 

Table S5b: Maze with reduced dataset: results of the linear model testing the effect of cognitive 
performance (number of errors until criterion) on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.613 0.119 55.752 <0.001 

Errors until criteriona 0.056 0.056 1 0.322 

Sex (male) 0.378 0.11 3.438 0.001 

Age (juvenile) -0.724 0.126 -5.727 <0.001 

Reduced dataset without animals that are still alive. 
Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 61. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean (sd)= 15 (9.2). 

 

 

Table S6b: Detour-reaching task with reduced dataset: results of the linear model testing the effect of 
cognitive performance (% correct responses) on individuals’ survival in days 

Predictor variable Estimate SE t P 

Intercept 6.624 0.141 46.928 <0.001 

% correcta -0.045 0.065 -0.692 0.492 

Sex (male) 0.384 0.132 2.905 <0.01 

Age (juvenile) -0.761 0.135 -5.627 <0.001 

Reduced dataset without animals that are still alive. 
Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 55. 
a Covariate was z-transformed to a mean of= 0 and sd= 1; original mean (sd)= 68.4 (22.7) %. 
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Table S7b: Results of the linear model testing the effects of cognitive performance of all cognitive tests 
on individuals’ survival in days with the reduced dataset 

Predictor variable Estimate SE t P 

Intercept 6.766 0.191 35.448 <0.001 

Food extraction: 

solving timea -0.253 0.155 -1.633 

 

0.113 

String pulling: 

latency successa 0.379 0.177 2.146 

 

0.04 

Maze: 

errors until criteriona -0.011 0.08 -0.138 0.891 

Detour reaching: 

% correcta -0.063 0.081 -0.777 

 

0.443 

Sex (male) 0.343 0.171 2.008 0.054 

Age (juvenile) -0.812 0.2 -4.066 <0.001 

Reduced dataset without animals that are still alive. 
Please note that an outlier individual with extreme high solving time in the food extraction task was 
excluded from the dataset, as it changed model results significantly. 
Reference category for categorical predictor is indicated in brackets, SE: Standard error, N= 37. 
a Covariate was z-transformed to a mean of= 0 and sd= 1.
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General discussion  
In this thesis, I focussed on individual variation in different cognitive abilities in a wild primate 

and linked cognitive performance with important fitness proxies. I investigated the 

determinants and potential confounds of individual differences in cognitive performance, 

studied the structure of individuals’ performance across different cognitive tasks and linked 

cognitive variation with different fitness components. Subjects were tested in five cognitive 

tasks during short-term captivity. The cognitive tasks addressed different ecologically relevant 

cognitive abilities of grey mouse lemurs. These included associative and motor learning during 

repeated problem solving, causal reasoning and spontaneous problem solving in a string-

pulling task, spatial learning, inhibitory control and behavioural flexibility during reversal 

learning. In contrast to most other studies that investigated individual variation in a single 

cognitive performance measure and its correlation with a fitness measure, I subjected the 

same individuals to several tasks of a cognitive test battery. This allowed to also assess how 

performance in one cognitive task and domain relates to performance in other domains, thus 

investigating the structure of cognition. Importantly, as highlighted throughout this thesis, a 

reliable quantification of individual differences in cognitive abilities is crucial and several 

pitfalls and challenges have been addressed. In the first part of this general discussion, I will 

address therefore the most important aspects in this regard, as this provides the foundation 

for the following discussion of my findings. I will discuss my results on the structure and fitness 

consequences of cognition in the light of recent empirical findings and theoretical approaches 

and discuss how my study contributes to the framework for the evolution of cognition. Finally, 

I will draw general conclusions and suggest some future directions for research on the 

evolution of cognitive abilities. 

 

 

Individual cognitive variation as a basis for the evolution of cognition 
and its study 

Similar to other recent studies addressing individual variation in cognitive abilities, mouse 

lemurs differed widely in the different measures of cognitive performance. Further, the results 

of this thesis demonstrated, that it is possible to assess personality differences and cognitive 
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performance of relatively large numbers of unhabituated grey mouse lemurs during short-

term captivity, a requirement that cannot be taken for granted in a wild animal. 

The test performance in the cognitive tasks was not systematically influenced by non-

cognitive factors and individual characteristics like age and sex, but also motivation and 

personality differences (Chapter 1), which is important when quantifying individual cognitive 

variation (Thornton et al., 2014; Morand-Ferron et al., 2016). In the following, I will discuss 

the most important aspects in this regard in the light of recent findings and recommendations 

in more detail. 

 

 

The choice of cognitive tasks - A problem with problem solving? 

The cognitive tasks that were used to assess variation in cognitive abilities in the grey mouse 

lemurs had to be feasible to be applied to wild subjects during short-term captivity while 

reaching high sample sizes for the investigation of the adaptive value of cognitive traits. 

Therefore, typical cognitive tasks that require long phases of training and testing which are 

commonly applied to captive individuals were not suitable. In order to meet these challenges, 

I assessed cognitive performance in two problem-solving tasks addressing associative and 

novel motor learning as well as causal reasoning and spontaneous problem solving. 

Furthermore, I tested subjects in commonly used cognitive tasks and assessed spatial learning 

in a maze, inhibitory control in a detour-reaching task and behavioural flexibility during 

reversal learning. 

Problem-solving tasks have been predominantly applied to study cognition in the wild 

as they do not require training and subjects can voluntarily interact with the task, even in their 

natural habitat (Keagy et al., 2009; Cole et al., 2012; Cauchard et al., 2013; Preiszner et al., 

2017; Wetzel, 2017). However, their usage has been criticized because cognitive processes 

involved in problem solving are difficult to define (Rowe & Healy, 2014; Thornton et al., 2014; 

van Horik & Madden, 2016). Further, performance is prone to be influenced by chance or non-

cognitive factors like motivation or personality traits (Thornton et al., 2014; for a detailed 

review of mechanisms please see (Griffin & Guez, 2014; Griffin & Guez, 2016). Thus, problem-

solving tasks as means for assessing cognitive performance have to be applied with caution. 

For example, in pheasants, problem-solving performance in three food extraction tasks did 

only improve in the most complex task that could not be solved by persistent pecking (i.e. 
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motivation), but required more precise grasping actions. In the two other less complex 

problem-solving tasks individuals did not learn across two trials but motivation determined 

performance (van Horik & Madden, 2016).  

To avoid these issues, problem-solving tasks and performance measures in this thesis 

were designed and chosen to avoid solving by chance or pure persistence: I measured 

repeated solving efficiency in the food extraction tasks and also success in the string-pulling 

task required a repeated and directed pulling action. Performance in the two tasks was 

repeatable and not influenced by systematic non-cognitive factors like body condition, 

neophilia and activity (Chapter 1). Moreover, repeated solving efficiency in the food extraction 

task correlated with individuals’ learning slopes, suggesting improved motor learning across 

the six possible trials (Chapter 2, supplementary material). Also, performance in the two 

problem-solving tasks correlated while motivation to engage with the respective task did not, 

indicating that similar cognitive processes are involved (Chapter 1). Thus, the results of this 

thesis demonstrate that using more complex problem-solving designs with carefully chosen 

performance variables, such as non-binary measures of success and repeated solving 

opportunities, allows to quantify cognitive performance in wild subjects. Combined with 

common psychometric tests and the simultaneous study of non-cognitive factors, this 

provides a good approach to study the cognitive abilities of relatively large numbers of wild 

individuals. Eventually, using this combination of tasks allows contributing data from new 

species to the growing body of research that links cognition and fitness in the wild. 

 

 

Motivation and personality as potentially confounding factors 

Motivation influences virtually every behaviour and therefore also performance in a cognitive 

task, but its mechanistic basis is still not fully understood (Houston & McFarland, 1976; Rowe 

& Healy, 2014). In order to quantify cognitive performance reliably and allow comparisons 

across individuals, it is therefore important to assess motivation or its proxies in the context 

of the respective cognitive task (Rowe & Healy, 2014; Morand-Ferron et al., 2016).  

In this thesis, I used body condition (BMI) as a measure of energetic state and proxy 

for feeding motivation in the food-rewarded tasks. Body condition did not correlate with 

performance in the string-pulling task, inhibitory control or spatial learning. However, it 

predicted performance in some measures in the food extraction task but did not correlate 
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with solving efficiency during the repeated food extraction, which was therefore used as the 

main performance measure in this task (Chapter 1 and 2). 

As an additional behavioural measure of motivation, I used task-directed behaviour in 

the two problem-solving tasks, in which subjects could voluntarily interact with the task 

apparatuses. This task-directed motivation predicted performance in the food extraction and 

string-pulling task. However, this is a common finding in motor-learning or problem-solving 

tasks because only subjects that actively engage with the details of a task are likely to learn or 

solve them (Griffin & Guez, 2014; and please see discussion in Chapter 1 for details). 

Interestingly, in the grey mouse lemurs, individuals were not consistent in this task-directed 

motivation across the two tests and task-directed motivation did not correlate with body 

condition, personality or other individual characteristics. This could suggest that task-directed 

motivation itself has a cognitive component. Furthermore, it excludes the possibility that 

consistent intrinsic motivation accounted for performance across tasks, an important 

prerequisite when investigating correlations between different cognitive performances in the 

study of general cognitive abilities (Shaw & Schmelz, 2017). 

With the growing interest in individual cognitive variation, also the interest in links 

between cognition and personality has emerged. Personality traits can covary with the way 

animals gather and act on information (Carere & Locurto, 2011; Sih & Del Giudice, 2012; Griffin 

et al., 2015) and could influence learning probabilities. For example, traits like boldness or 

exploration could influence probabilities or rates of exposure with learning contingencies in 

nature or task features in a cognitive testing design (Carere & Locurto, 2011; Morand-Ferron 

et al., 2016; Guillette et al., 2017; example in Damerius et al., 2017). Therefore, assessing 

personality traits that could cause individual variation in test performance is important to 

reliably quantify cognitive performance across individuals (Morand-Ferron et al., 2016). In the 

grey mouse lemurs, the personality traits neophilia (latency to contact a novel object) and 

activity (duration actively exploring a novel environment during an open field test) did not 

predict performance in any of the five tasks (Chapter 1). This shows that there was no 

performance bias due to personality traits in the chosen cognitive performance measures and 

test designs did not constrain, for example, less neophilic or shy individuals in engaging with 

and learning in the tasks.  

Another aspect in this regard is that especially when testing wild, free-ranging subjects, 

differences in personality or other individual characteristics may bias the voluntary 
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participation in cognitive experiments (Morand-Ferron et al., 2016; Shaw & Schmelz, 2017). 

For example, sampling may be biased because shy, less explorative individuals are less likely 

to participate in freely accessible tasks, or to enter traps for cognitive testing during short-

term captivity (Biro & Dingemanse, 2009; Carter et al., 2012; van Horik et al., 2017). Therefore, 

when subjects are directly tested in their natural habitat, participation rates are usually low 

(e.g. 47% in meerkats, Suricata suricatta; Thornton & Samson, 2012; or 6% in great tits, 

Morand-Ferron et al., 2015). However, in the study population of grey mouse lemurs, capture 

probabilities and recapture rates are high (Kraus et al., 2008), while drop-out rates of animals, 

that did not engage with the cognitive tasks and could not be tested, were low. Thus, in 

contrast to many other studies focusing on few participating individuals often of one sex (e.g. 

(Isden et al., 2013; Shaw et al., 2015), a sampling bias was unlikely in the individuals that 

participated in this study. 

 

 

The structure of cognition: Domain-specific cognitive abilities or general intelligence 

Within the cognitive performance measures in this thesis, I did not find support for a 

general factor explaining variation in cognitive performance across cognitive domains, similar 

to the general intelligence factor (g) in humans (Chapter 1). Subjects were not consistent in 

their performance across tasks and performance in the cognitive tasks addressing different 

cognitive domains did not correlate. In contrast, individuals that performed well in the two 

problem-solving tasks, i.e. in associative and motor learning as well as causal understanding, 

tended to score low in the other tasks addressing inhibitory control, spatial learning and 

behavioural flexibility. As discussed in Chapter 1, individuals’ contrasting performance in 

either problem solving or the other tasks might indicate a trade-off in foraging strategies. 

Individuals could compensate inferior abilities in spatial learning, inhibitory control and 

behavioural flexibility during foraging with better extractive and innovative foraging. The 

finding that efficient solving during repeated problem solving, i.e. motor and associative 

learning in the food extraction task, correlated with the ability to maintain body mass during 

the harsh dry season supports its role in the foraging context (Chapter 2). In a similar manner, 

inhibitory control and motor-related abilities were suggested to be involved in a trade-off 

during foraging in pheasants, where performance in the respective tasks correlated negatively 

and no general factor explaining cognitive performance across nine tasks could be extracted 
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(van Horik et al., 2018). Also in Carib grackles (Quiscalus lugubris fortirostris), speed in problem 

solving correlated negatively with discrimination and reversal learning abilities and 

individuals’ better performance in only one of both was suggested to reflect different 

cognitive strategies (Ducatez et al., 2019).  

In humans, evidence for domain-general intelligence and the presence of a general 

intelligence factor g that summarizes performance across cognitive tests is very strong (Deary 

et al., 2010). Unless general intelligence is inseparably linked to language, it should have 

evolved in other nonhuman animals as well, especially in closely related species like primates 

(Burkart et al., 2017). While domain-specific cognitive abilities are thought to have evolved 

independently in response to specific socio-ecological challenges, domain-general processes, 

i.e. general intelligence, allow to solve problems flexibly across domains and contexts and 

could coexist (Amici et al., 2017; Burkart et al., 2017). However, evidence for general 

intelligence in nonhuman animals is mixed; there is evidence for and against a general factor 

(g) explaining variation in cognitive performance in all tested taxa or even species so far 

(please see Chapter 1 for more details).  

 Especially for primates, evidence for g is contradictory, which make it currently 

difficult to draw general conclusions on how and when general intelligence evolved. In 

comparative approaches, different species are compared in their cognitive abilities across 

cognitive domains. These studies investigate whether some species evolved specialized 

cognitive skills or rather domain-general intelligence and thus outperform other species 

across different cognitive tasks (Burkart et al., 2017). Evidence for such general intelligence 

on the interspecific level (G) was provided in several studies on different primate species, 

demonstrating that species that performed well in one domain also performed well in others 

(24 species: Deaner et al., 2006; 62 species: Reader et al., 2011). Mixed approaches, however, 

in which test batteries are applied to multiple individuals from several species and combined 

for analysis, did not provide evidence for domain-general intelligence (seven primate species: 

Amici et al., 2012; four great ape species: Herrmann & Call, 2012). In contrast, Amici et al. 

(2012) concluded that domain-specific cognitive skills underlie different evolutionary 

pressures in the different species that led to an (at least partially) modular primate mind.  

Finally, a handful of studies on the individual level tested the performance of relatively 

large amounts of captive individuals, for example with the primate cognition test battery that 

consists of a broad range of tasks in the physical and social domain (Herrmann et al., 2007). In 
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great apes, evidence for g was supported for orangutans (Damerius et al., 2018) and in one 

study of chimpanzees (Hopkins et al., 2014). In contrast, cognitive performance was 

structured in different factors in another study on chimpanzees and human children 

(Herrmann et al., 2010), thus not providing evidence for g. In New World monkeys, the 

structure of cognition was assessed in cotton-top tamarins and evidence for a general factor 

explaining variation in cognitive performance of 22 individuals across 11 tasks was reported 

(Banerjee et al., 2009). Finally, in a lemur species, which represent the most basal living 

primates (Yoder, 2007), my study could not find evidence for g in wild grey mouse lemurs. 

An important issue in the study of general intelligence in animals is that, in contrast to 

humans, the composition of test batteries varies significantly between study species and 

cognitive abilities have to be inferred from performance in the respective tasks (Huber, 2017). 

Therefore, the mixed evidence for g might be partly explained by several inconsistencies 

across studies that could influence the probability of detecting g (Burkart et al., 2017; van 

Horik et al., 2018), which I will address in the following. Studies differ largely in the number 

and kinds of tests, the assessed cognitive abilities and domains, but also whether they control 

for non-cognitive factors that could systematically affect cognitive performance across tasks 

(Burkart et al., 2017; Shaw & Schmelz, 2017). For example, if all tests in a test battery involve 

associative learning albeit in different contexts, correlations between task performances will 

be more likely and thus also the likelihood to detect a general factor of cognitive performance 

increases (Herrmann & Call, 2012; van Horik & Lea, 2017). Moreover, statistical methods used 

in the detection of g vary and most animal studies are limited in sample size which results in 

low statistical power. For instance, particularly with wild subjects, sample sizes of about 20 

individuals are common. Hence, to improve these issues in the future, the challenge will be to 

design broad cognitive test batteries that address various cognitive domains and can test 

relatively large sample sizes. Ideally, these test batteries will be applicable to different species 

and also confounding factors of cognitive performance are controlled for (Shaw & Schmelz, 

2017). Furthermore, testing cognitive abilities in the same cognitive domain with several 

different tests will help to validate cognitive tasks and ensure that abilities in putative 

cognitive domains are really assessed (Shaw & Schmelz, 2017; Boogert et al., 2018; Völter et 

al., 2018). 

In the analysis on the structure of cognitive performance in wild grey mouse lemurs, I 

controlled for the effect of potential confounding factors like motivation and personality and 
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followed recent recommendations concerning the statistical analysis (Burkart et al., 2017). 

However, the number of different tasks and cognitive abilities that I could assess in this thesis 

as well as the number of individuals that participated in all tasks was limited. Thus, my findings 

are a valuable starting point to investigate potential general intelligence in grey mouse lemurs. 

Further data on intra-individual differences in cognitive abilities spanning more cognitive 

domains, but also tapping into the same domains will help to characterize the structure of 

cognitive abilities in grey mouse lemurs more fully. 

In conclusion, evidence for a g factor in non-human animals is mixed but the positive 

findings in rodents and primates suggest that domain-general cognitive abilities may not only 

be present in humans (Burkart et al., 2017). In the future, more carefully designed studies in 

various species will be needed to validate these findings and to better understand why, how 

and when general intelligence evolved. 

 

 

Fitness correlates of cognitive abilities – Implications for the 
evolution of cognition 

Understanding the fitness consequences of individual variation in cognitive abilities is one of 

the most pressing goals in order to shed light on the evolution of cognition. If we can link 

cognitive performance with fitness outcomes, this provides a starting point to understand the 

complex trade-offs, costs and benefits of cognitive traits, that are shaping individual 

differences in cognitive abilities and lead to their evolution. 

In chapter 2 and 3, I linked cognitive performance in the four main tasks with two 

different fitness proxies: body condition (BMI) change across the harsh dry season and survival 

or longevity. I found that the ability to efficiently solve the repeated food extraction task 

correlated with BMI change; individuals that were quick in associating a successful motor 

action with a reward and quickly repeated this action were better in maintaining their body 

condition during the dry season in the wild. Interestingly, this was not the case for spatial 

learning ability (Chapter 2), string-pulling ability and inhibitory control in the detour-reaching 

task (please see Appendix). For survival and longevity, I did not detect a significant correlation 

with cognitive performance independent of assessed cognitive ability. In order to expand the 

diversity of fitness proxies, I investigated individuals’ hair cortisol concentration and 

hematocrit levels which could be summarized together with body condition into a 
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physiological condition factor. However, this condition factor did not predict short-term 

survival of subjects and was therefore not used as a fitness proxy in this thesis (please see 

discussion chapter 3 for potential reasons). Further investigations into the physiological 

condition indices and their link with survival and other fitness proxies will be needed to draw 

final conclusions on their utility as a fitness proxy. Nevertheless, the difficulty in validating the 

measure as a fitness proxy further demonstrates that identifying and operationalizing 

meaningful fitness, that can be studied together with cognitive abilities in the wild, is 

challenging for most taxa. Together with the challenges of cognitive testing, this might explain 

why the entire class of mammals remains largely underrepresented with only two studies on 

fitness correlates of cognitive abilities in the wild (this study and Maille & Schradin, 2016 on 

African striped mice). 

 

 

Foraging success as a mediator between cognitive abilities and fitness outcomes 

A common mechanism by which cognitive processes are hypothesized to improve 

fitness is by increasing foraging efficiency or quality which impacts body condition and growth 

(e.g. Dukas & Bernays, 2000; Roth et al., 2010). However, assessing measures of body 

condition directly but also observing foraging success is difficult for most taxa in the wild, 

which is why different proxies have been used. Colony foraging success correlated positively 

with learning speed in bumble bee colonies (Raine & Chittka, 2008) but not on the individual 

bee level (Evans et al., 2017). For birds, foraging success is meaningful in regard to the 

individual’s own body condition but it also directly affects the feeding of nestlings and is 

therefore likely to predict reproductive success (Ydenberg, 1994). In great tits, problem-

solving success correlated positively with reproductive success (Cole et al., 2012; Cauchard et 

al., 2013). Moreover, successful problem solvers had a shorter daily timespan of provisioning 

the young and smaller home ranges, while provisioning rate was higher compared to birds 

that did not solve the novel problem. This suggests that successful problem solvers could 

increase their reproductive success because they were more efficient at exploiting their 

environment (Cole et al., 2012; Cauchard et al., 2017). By contrast, general cognitive 

performance also correlated with reproductive success in Australian magpie females, but 

there was no relationship between cognitive performance and foraging efficiency (Ashton et 

al., 2018).  
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In grey mouse lemurs, observing nocturnal foraging is difficult but assessing body 

measures of focal subjects is feasible. The ability to maintain body condition during the long 

dry season is especially meaningful, as food is scare (Schmid, 1999; Dammhahn & Kappeler, 

2008a). Moreover, at the end of the dry season, the mating season takes place during which 

body condition influences males’ mating success (Eberle & Kappeler, 2004b) and females’ 

mating strategies (Huchard et al., 2012). Therefore, I used body condition (BMI) change across 

the dry season as a fitness proxy: individuals that did not change much in BMI in this time 

either used less or were able to acquire more energy compared to individuals whose BMI 

decreased in the same period. Performance in spatial learning, causal reasoning during 

spontaneous string pulling and inhibitory did not predict BMI change across the dry season. 

This suggests that these cognitive abilities did not help mouse lemurs to maintain their body 

condition during the dry season by saving energy or improved foraging. Efficient repeated 

solving in the food extraction task predicted the ability to maintain body condition across the 

harsh dry season, however. This positive correlation indicates that innovative foraging might 

be also ecologically meaningful during food scarce seasons in the wild and that involved 

cognitive abilities could determine an important predictor of fitness in grey mouse lemurs. 

 

 

Why positive correlations between cognitive abilities and measures of fitness might not 
always be expected 

Measures of survival are an important predictor of fitness as survival until breeding and across 

multiple breeding seasons determines the chance to reproduce (Blums et al., 2005; Wilson & 

Nussey, 2010). However, in the study of fitness consequences of cognitive traits, so far only 

survival in the short-term has been used as a fitness proxy. Positive as well as negative 

correlations between cognitive performance and survival in the same species have been found 

(dependent on individuals' sex: Maille & Schradin, 2016; dependent on the cognitive measure 

and body mass of individuals: Madden et al., 2018), as well as no significant link (Cole et al., 

2012) has been detected. Thus, these contrasting findings already indicate, that links between 

cognitive abilities and survival are complex and likely to depend on various variables. 

In the grey mouse lemurs, I did not detect a link between cognitive performance, 

regardless of the addressed cognitive ability, and survival or longevity. As reviewed in the 

introduction, this absence of a link fits into the overall complex, ambiguous picture of 



General Discussion 
 

 119 

correlations between cognitive performance and fitness proxies across studies and species. 

Yet, the difficulty in detecting a link between cognitive abilities and fitness proxies or possible 

absence of a link can have several reasons, which I will summarize in the following and discuss 

in the light of recent empirical findings and theoretical frameworks. 

First of all, addressing methodological concerns, cognitive abilities have to be reliably 

quantified, a topic that I addressed in detail in Chapter 1 and at the beginning of this general 

discussion and could confirm within the assessed non-cognitive factors and repeatability 

measures. Moreover, a lack of statistical power could lead to non-significant findings as large 

sample sizes are needed in selection analyses (Kingsolver et al., 2001; Dingemanse & Reale, 

2005). However, the sample size in this thesis with 40 – 86 individuals, depending on the 

cognitive measure, was comparable to other studies in which cognitive performance and a 

measure of fitness correlated.  

Excluding these methodological issues, it is possible that tested cognitive abilities do 

not provide individuals with fitness benefits or benefits in the assessed fitness proxy are 

masked by other uncorrelated factors (Morand-Ferron et al., 2016). The assessed cognitive 

abilities in my thesis are likely to impact survival via a better maintenance of body condition, 

e.g. due to better memory of locations of food resources or better extractive foraging abilities, 

As mentioned before, I could support the role of extractive foraging abilities in maintaining 

body condition during the dry season, but nevertheless this did not seem to translate into 

better survival. However, grey mouse lemur’ survival is also crucially impacted by predation 

(Goodman et al., 1993; Fichtel, 2016; and details in Chapter 2 and 3) which could mask a 

potentially positive effect of the assessed cognitive abilities on survival. Thus, if the addressed 

cognitive abilities do not provide benefits in avoiding, detecting and escaping predators, this 

could explain the difficulty to detect links with longevity. Assessing cognitive abilities involved 

in predator detection and avoidance would, therefore, be a promising yet challenging study 

in the future. 

Alternatively, fitness benefits of cognitive abilities might be counteracted by direct 

fitness costs of better cognitive capacities or by other correlated traits that reduce fitness 

(Morand-Ferron et al., 2016). First of all, neuronal tissue and information gathering and 

processing itself is energetically costly (Laughlin et al., 1998; Kawecki, 2010; Kotrschal et al., 

2013). In artificial selection experiments, increased learning ability correlated with a reduction 

in immunity in laboratory mice (Mus musculus) (Barnard et al., 2006) and reduced longevity 
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(Burger et al., 2008) and larval competitive ability (Mery & Kawecki, 2003) in fruit flies 

(Drosophila melanogaster). For natural populations, these fitness trade-offs are much more 

difficult to detect. Yet, a study in butterflies (Pieris rapae) found that better learning correlated 

with fewer and less developed eggs (Snell-Rood et al., 2011). Moreover, cognitive traits might 

be correlated with other behaviours that have fitness disadvantages and therefore increased 

cognitive abilities do not result in net benefit of fitness. For example, individual variation in 

cognitive ability was found to be linked to stress reactivity, boldness and exploration 

(reviewed in Øverli et al., 2007; Carere & Locurto, 2011). In wild great tits, individuals with 

higher cognitive performance were less able to compete for food (Cole & Quinn, 2012), and 

more likely to desert their nests with dependent offspring, probably due to higher sensitivity 

to perceived predation risk during experimental trapping and handling (Cole et al., 2012). 

Unfortunately, detecting these correlated costs is extremely challenging in the wild, especially 

in a small nocturnal primate, for which behavioural observations are difficult. I could test links 

with personality, however, but did not find that cognitive abilities correlated with the assessed 

personality traits (Chapter 1). Thus, it seems unlikely that individuals that performed better in 

the cognitive tasks were, for example, more neophilic or bold which could have reduced 

sensitivity to predators and negatively affected survival (e.g. Hulthén et al., 2017).  

Cognitive performance in the grey mouse lemurs could not be summarized into one 

general factor but individuals differed in performance across tasks (Chapter 1). Therefore, 

trade-offs between cognitive abilities within individuals could result into equally effective 

cognitive strategies which would explain the missing correlation between cognitive 

performance in a given task and longevity (Rowe & Healy, 2014; Morand-Ferron et al., 2016). 

Only two other studies assessed performance of more than two different cognitive abilities 

and linked them with fitness outcomes. However, these studies did not detect different 

cognitive strategies but performance across tasks correlated and could be summarized into a 

general factor. This factor predicted reproductive success in Australian magpies (Ashton et al., 

2018) but did not correlate with mating success in bower birds (Isden et al., 2013). Hence, 

more studies that assess intra-individual differences in cognitive abilities and link them with 

fitness outcomes in the wild will be needed to better understand these potential cognitive 

strategies or trade-offs and their fitness consequences in the future. 

Finally, what is beneficial and a “better” cognitive ability depends on the time, space, 

i.e. environmental and social context (Rowe & Healy, 2014; Ten Cate, 2014; Morand-Ferron et 
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al., 2016). Together with the complex relationships between various traits and involved fitness 

trade-offs this may explain why individual variation in cognitive traits is maintained and 

selection of cognitive traits is so difficult to detect in natural populations (Rowe & Healy, 2014; 

Morand-Ferron et al., 2016; Boogert et al., 2018). Ultimately, also in humans, the advantages 

of better general cognitive abilities are not as overarching as perhaps expected. In our modern 

human performance societies, intelligence predicts indeed various important life outcomes, 

such as socioeconomic success, health and survival, but was also found to correlate negatively 

with reproductive success, the most direct predictor of evolutionary fitness (Strenze, 2006; 

Shatz, 2008; Reeve et al., 2013; Plomin & Deary, 2015). Thus, this thesis, together with the 

other studies until today, reveals that cognition and fitness are not necessarily positively 

correlated, but that involved relationships are complex and we are still in the beginning to 

understand how cognition evolved. 

 

 

Conclusions and future directions 

My thesis demonstrated that it is feasible to study cognitive abilities in different cognitive 

tasks with relatively large sample sizes in a wild primate and link performance with different 

fitness outcomes. I could show that individuals varied substantially in their cognitive 

performance and that performance was not systematically affected by non-cognitive factors 

which is important to exclude, especially, but not exclusively when testing wild subjects. In 

respect of the lately criticized use of problem-solving tasks, my results demonstrated that 

when carefully designing these tasks and thoughtfully choosing performance measures, they 

provide a useful tool to assess repeatable cognitive performance of relatively large numbers 

of wild subjects. I investigated intra-individual variation in cognitive performance across the 

different tasks and abilities and did not find evidence for a general factor explaining cognitive 

performance in grey mouse lemurs. Thus, my study contributes valuable findings for the 

ongoing question when, how and why general cognitive abilities evolved.  

Most importantly, this thesis contributed the first study in a wild primate to the 

growing body of research on the adaptive value of cognitive traits. My results showed that 

better cognitive performance during efficient problem solving correlated with an important 

fitness proxy in the short-term, i.e. the maintenance of body condition during food scare 

conditions. However, better cognitive abilities did not translate into better long-term fitness 
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benefits, such as survival and longevity. Thus, together with the present body of research 

revealing heterogeneous links between cognition and fitness across cognitive and fitness 

measures as well as species, my findings demonstrated that cognitive abilities are involved in 

complex interactions between various traits. At the same time, they are likely to have cost 

and benefits and thus do not necessarily result in positive correlations with fitness outcomes. 

Unravelling this complex system, the evolution of cognition, will require more studies on 

individual differences in cognitive abilities and their link with fitness in the wild. Some 

suggestions for these future studies, I will discuss in the following. 

 

Concerning the link between cognition and fitness in grey mouse lemurs, it will be particularly 

interesting to link cognitive performance with measures of reproductive success. This would 

also allow to test whether the correlation between cognitive performance and maintenance 

of body condition in the food-scarce season translates into reproductive success. As discussed 

before, the ability to maintain body condition during the dry season is likely to influence the 

body mass dependent mating success of males and reproductive strategies of females during 

the subsequent mating season. In addition, it is promising to design tasks that address 

cognitive abilities involved in predator detection and avoidance in order to test the link 

between performance in these tasks and survival. Also, further investigation of the structure 

of cognitive abilities in grey mouse lemurs (either in the laboratory or wild) will be important 

to get more evidence for the absence or presences of a general intelligence factor in the 

species and a better understanding of its evolution within primates. In this regard, it will be 

promising to increase the number of cognitive domains but also to further validate the 

assessed cognitive domains by testing the same subjects in different cognitive tasks 

addressing the same cognitive domain. 

To further expand our knowledge on the adaptive value of cognitive traits in the wild, 

it will be especially promising to expand the number of different cognitive abilities, potential 

confounding covariates, as well as fitness proxies that are measured within a given species. 

This will allow a more complete picture of trait interactions, complex relationships and 

involved trade-offs. My study also revealed, that identifying and operationalizing meaningful 

proxies can be challenging for some taxa. Therefore, further detailed studies of fitness proxies 

in different species will help to expand the body of research so far, that mainly focused on 

different species of birds. The need to establish broad cognitive test batteries, ideally 
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applicable to numerous individuals and a variety of species in the wild, has been highlighted 

before (Thornton et al., 2014; Shaw & Schmelz, 2017). However, its implementation still 

proves to be challenging. Cooperation across field sites and automatic testing devices, that 

allow to test voluntarily participating, individually identifiable subjects in their natural habitat, 

will be certainly promising in this regard (Morand-Ferron et al., 2016). So far, no study has 

linked cognitive abilities of the social domain, such as social learning, with fitness outcomes. 

This field of research could provide crucial insight into the social intelligence hypothesis (Byrne 

& Whiten, 1988) but is certainly associated with challenges in designing feasibly cognitive 

tasks. Once these ambiguous goals are achieved and the missing pieces of the puzzle of inter- 

and intra-individual differences in cognitive abilities and their fitness consequences are 

gained, a more complete understanding on the evolution of cognition can begin to emerge. 

  



General Discussion 
 

 124 

Appendix 

 

Relationship between performance in the string-pulling and detour-reaching task and BMI 

change across the dry season 

Subjects’ latency until success in the string-pulling task did not predict their BMI change across 

the dry season (full null model comparisons: F1,40= 0.035, P= 0.852, Table A1). Also subjects’ 

performance in the detour-reaching task, their percentage of correct trials did not significantly 

predict their BMI change (full null model comparisons: F1,28= 1.83, P= 0.190, Table A1). 

 

 

Table A1: Results of the linear models (LM) fitting the effects of test performance in string-pulling task 
and detour-reaching task on BMI change from the rainy to the end of dry season 

 Predictor variable Estimate SE t P 

Model 1: 

String-pulling  

task 

N= 44 

Intercept 0.46 0.07 6.26 <0.001 

Latency successa -0.01 0.05 -0.19 0.852 

Sex (male) -0.41 0.10 -4.19 <0.001 

Age (juvenile) -0.06 0.11 -0.59 0.559 

Model 2: 

Detour-

reaching task 

N= 32 

Intercept 0.67 0.14 4.83 <0.001 

% correctb -0.11 0.08 -1.36 0.186 

Sex (male) -0.52 0.15 -3.44 0.002 

Age (juvenile) -0.25 0.16 -1.61 0.118 

The statistical analysis was conducted in the same manner as the analysis of the effects of cognitive 
performance on BMI change in Chapter 2, please see methods there. 
Reference categories for categorical predictors are indicated in brackets, SE: Standard error. 
a Covariate was log transformed and afterwards z-transformed to a mean of= 0 and sd= 1 
b Covariate was z-transformed to a mean of= 0 and sd=1 



    

 125 

References 
 
 
Amici, F., Aureli, F., & Call, J. (2008). Fission-fusion dynamics, behavioral flexibility, and 

inhibitory control in primates. Current Biology, 18(18), 1415–1419.  
Amici, F., Barney, B., Johnson, V. E., Call, J., & Aureli, F. (2012). A modular mind? A test using 

individual data from seven primate species. PLoS ONE, 7(12), e51918.  
Amici, F., Call, J., & Aureli, F. (2017). Coexistence of general intelligence and specialized 

modules. Behavioral and Brain Sciences, 40, e196.  
Arden, R., & Adams, M. J. (2016). A general intelligence factor in dogs. Intelligence, 55, 79–85. 
Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018). Cognitive performance is 

linked to group size and affects fitness in Australian magpies. Nature, 554(7692), 364–
367.  

Balda, R. P., & Kamil, A. C. (1989). A comparative study of cache recovery by three corvid 
species. Animal Behaviour, 38(3), 486–495.  

Banerjee, K., Chabris, C. F., Johnson, V. E., Lee, J. J., Tsao, F., & Hauser, M. D. (2009). General 
intelligence in another primate: Individual differences across cognitive task performance 
in a new world monkey (Saguinus oedipus). PLoS ONE, 4(6).  

Barkley, C. L., & Jacobs, L. F. (2007). Sex and species differences in spatial memory in food-
storing kangaroo rats. Animal Behaviour, 73(2), 321–329.  

Barnard, C. J., Collins, S. A., Daisley, J. N., & Behnke, J. M. (2006). Odour learning and immunity 
costs in mice. Behavioural Processes, 72(1), 74–83.  

Barnett, C. A., Suzuki, T. N., Sakaluk, S. K., & Thompson, C. F. (2015). Mass-based condition 
measures and their relationship with fitness: in what condition is condition? Journal of 
Zoology, 296(1), 1–5. 

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for 
confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 
68(3).  

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models 
using lme4. Journal of Statistical Software, 67(1), 1–48.  

Beehner, J. C., & Bergman, T. J. (2017). The next step for stress research in primates: To 
identify relationships between glucocorticoid secretion and fitness. Hormones and 
Behavior, 91, 68–83.  

Benson-Amram, S., & Holekamp, K. E. (2012). Innovative problem solving by wild spotted 
hyenas. Proceedings of the Royal Society B: Biological Sciences, 279(1744), 4087–4095.  

Billett, H. H. (1990). Hemoglobin and hematocrit. In H. Walker, W. Hall, & J. Hurst (Eds.), 
Clinical methods: The history, physical, and laboratory examinations. Boston: Butter-
worths. 

Birchard, G. F. (1997). Optimal hematocrit: Theory, regulation and implications. American 
Zoologist, 37(1), 65–72. 

Biro, P. A., & Dingemanse, N. J. (2009). Sampling bias resulting from animal personality. Trends 
in Ecology & Evolution, 24(2), 66–67.  

Blums, P., Nichols, J. D., Hines, J. E., Lindberg, M. S., & Mednis, A. (2005). Individual quality, 
survival variation and patterns of phenotypic selection on body condition and timing of 
nesting in birds. Oecologia, 143(3), 365–376.  

Bond, A. B., Kamil, A. C., & Balda, R. P. (2007). Serial reversal learning and the evolution of 
behavioral flexibility in three species of North American corvids (Gymnorhinus 



References 
 

 126 

cyanocephalus, Nucifraga columbiana, Aphelocoma californica). Journal of Comparative 
Psychology, 121(4), 372–379. 

Bonier, F., Martin, P. R., Moore, I. T., & Wingfield, J. C. (2009). Do baseline glucocorticoids 
predict fitness? Trends in Ecology & Evolution, 24(11), 634–642.  

Bonier, F., Moore, I. T., Martin, P. R., & Robertson, R. J. (2009). The relationship between 
fitness and baseline glucocorticoids in a passerine bird. General and Comparative 
Endocrinology, 163(1–2), 208–213.  

Boogert, N. J., Anderson, R. C., Peters, S., Searcy, W. A., & Nowicki, S. (2011). Song repertoire 
size in male song sparrows correlates with detour reaching, but not with other cognitive 
measures. Animal Behaviour, 81(6), 1209–1216.  

Boogert, N. J., Fawcett, T. W., & Lefebvre, L. (2011). Mate choice for cognitive traits: A review 
of the evidence in nonhuman vertebrates. Behavioral Ecology, 22(3), 447–459.  

Boogert, N. J., Madden, J. R., Morand-Ferron, J., & Thornton, A. (2018). Measuring and 
understanding individual differences in cognition. Philosophical Transactions of the Royal 
Society B: Biological Sciences, 373(1756).  

Boogert, N. J., Monceau, K., & Lefebvre, L. (2010). A field test of behavioural flexibility in 
Zenaida doves (Zenaida aurita). Behavioural Processes, 85(2), 135–141.  

Bowers, E. K., Hodges, C. J., Forsman, A. M., Vogel, L. A., Masters, B. S., Johnson, B. G. P., … 
Sakaluk, S. K. (2014). Neonatal body condition, immune responsiveness, and hematocrit 
predict longevity in a wild bird population. Ecology, 95(11), 3027–3034.  

Brown, C., & Braithwaite, V. A. (2005). Effects of predation pressure on the cognitive ability of 
the poeciliid Brachyraphis episcopi. Behavioral Ecology, 16(2), 482–487.  

Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: a primate’s eye view. Animal 
Cognition, 5(1), 1–13.  

Budaev, S. V. (2010). Using principal components and factor analysis in animal behaviour 
research: Caveats and guidelines. Ethology, 116(5), 472–480.  

Burger, J. M. S., Kolss, M., Pont, J., & Kawecki, T. J. (2008). Learning ability and longevity: A 
symmetrical evolutionary trade-off in drosophila. Evolution, 62(6), 1294–1304.  

Burkart, J. M., Schubiger, M. N., & van Schaik, C. P. (2017). The evolution of general 
intelligence. Behavioral and Brain Sciences, 40, e195.  

Byrne, R. W., & Whiten, A. (1988). Machiavellian intelligence : social expertise and the 
evolution of intellect in monkeys, apes, and humans. Clarendon Press. 

Call, J., & Tomasello, M. (1996). The effect of humans on the cognitive development of apes. 
In A. E. Russon, S. T. Parker, & K. A. Bard (Eds.), Reaching into Thought: The Minds of the 
Great Apes. (pp. 371–403). New York, NY, US: Cambridge University Press. 

Campbell, T. W. (1994). Cytology. In B. W. Ritchie, G. J. Harrison, & L. R. Harrison (Eds.), Avian 
Medicine: Principles and Applications (pp. 199–221). Lake Worth: Winger. 

Carere, C., & Locurto, C. (2011). Interaction between animal personality and animal cognition. 
Current Zoology, 57(4), 491–498. 

Carter, A. J., Heinsohn, R., Goldizen, A. W., & Biro, P. A. (2012). Boldness, trappability and 
sampling bias in wild lizards. Animal Behaviour, 83(4), 1051–1058.  

Cauchard, L., Angers, B., Boogert, N. J., Lenarth, M., Bize, P., & Doligez, B. (2017). An 
experimental test of a causal link between problem-solving performance and 
reproductive success in wild great tits. Frontiers in Ecology and Evolution, 5, 1–8.  

Cauchard, L., Boogert, N. J., Lefebvre, L., Dubois, F., & Doligez, B. (2013). Problem-solving 
performance is correlated with reproductive success in a wild bird population. Animal 
Behaviour, 85(1), 19–26.  

Cauchoix, M., & Chaine, A. S. (2016). How can we study the evolution of animal minds? 



References 
 

 127 

Frontiers in Psychology, 7, 1–18.  
Cauchoix, M., Chow, P. K. Y., Horik, J. O. van, Atance, C. M., Barbeau, E. J., Barragan-Jason, G., 

… Morand-Ferron, J. (2018). The repeatability of cognitive performance: a meta-analysis. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 
20170281.  

Chow, P. K. Y., Lea, S. E. G., & Leaver, L. A. (2016). How practice makes perfect: The role of 
persistence, flexibility and learning in problem-solving efficiency. Animal Behaviour, 112, 
273–283. 

Clayton, N. S. (2004). Is necessity the mother of innovation? Trends in Cognitive Sciences, 8(3), 
98–99. 

Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brains and ecology. Journal of Zoology, 
190(3), 309–323.  

Clutton-Brock, T. H., Major, M., Albon, S. D., & Guinness, F. E. (1987). Early development and 
population dynamics in red deer. I. Density-dependent effects on juvenile survival. The 
Journal of Animal Ecology, 56(1), 53.  

Cole, E. F., Morand-Ferron, J., Hinks, A. E., & Quinn, J. L. (2012). Cognitive ability influences 
reproductive life history variation in the wild. Current Biology, 22(19), 1808–1812.  

Cole, E. F., & Quinn, J. L. (2012). Personality and problem-solving performance explain 
competitive ability in the wild. Proceedings of the Royal Society B: Biological Sciences, 
279(1731), 1168–1175. 

Coop, R. L., & Kyriazakis, I. (1999). Nutrition-parasite interaction. Veterinary Parasitology, 
84(3–4), 187–204.  

Coppens, C. M., de Boer, S. F., & Koolhaas, J. M. (2010). Coping styles and behavioural 
flexibility: towards underlying mechanisms. Philosophical Transactions of the Royal 
Society of London. Series B, Biological Sciences, 365(1560), 4021–4028.  

Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R., & Pravosudov, V. V. (2015). Heritability 
and the evolution of cognitive traits. Behavioral Ecology, 26(6), 1447–1459.  

D’Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of 
learning and memory. Brain Research. Brain Research Reviews, 36(1), 60–90. 

Dall, S. R. X., & Griffith, S. C. (2014). An empiricist guide to animal personality variation in 
ecology and evolution. Frontiers in Ecology and Evolution, 2, 1–7.  

Dall, S. R. X., Houston, A. I., & McNamara, J. M. (2004). The behavioural ecology of personality: 
Consistent individual differences from an adaptive perspective. Ecology Letters, 7(8), 
734–739.  

Damerius, L. A., Burkart, J. M., van Noordwijk, M. A., Haun, D. B. M., Kosonen, Z. K., Galdikas, 
B. M. F., … van Schaik, C. P. (2018). General cognitive abilities in orangutans (Pongo abelii 
and Pongo pygmaeus). Intelligence.  

Damerius, L. A., Graber, S. M., Willems, E. P., & van Schaik, C. P. (2017). Curiosity boosts orang-
utan problem-solving ability. Animal Behaviour, 134, 57–70.  

Dammhahn, M. (2012). Are personality differences in a small iteroparous mammal maintained 
by a life-history trade-off? Proceedings of the Royal Society B: Biological Sciences, 
279(1738), 2645–2651.  

Dammhahn, M., & Almeling, L. (2012). Is risk taking during foraging a personality trait? A field 
test for cross-context consistency in boldness. Animal Behaviour, 84(5), 131–1139.  

Dammhahn, M., & Kappeler, P. M. (2008a). Comparative feeding ecology of sympatric 
Microcebus berthae and M. murinus. International Journal of Primatology, 29(6), 1567–
1589. 

Dammhahn, M., & Kappeler, P. M. (2008b). Small-scale coexistence of two mouse lemur 



References 
 

 128 

species (Microcebus berthae and M. murinus) within a homogeneous competitive 
environment. Oecologia, 157(3), 473–483.  

Darwin, C. (1859). On the origin of the species by means of natural selection. In On the Origin 
of the Species by Means of Natural Selection. London, UK: John Murray. 

Darwin, C. (1871). The descent of man, and selection in relation to sex. London,: John Murray. 
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., … Deary, I. J. (2011). 

Genome-wide association studies establish that human intelligence is highly heritable 
and polygenic. Molecular Psychiatry, 16(10), 996–1005.  

Deaner, R. O., Schaik, C. P. Van, & Johnson, V. (2006). Do some taxa have better domain-
general cognition than others? A meta-analysis of nonhuman primate studies. 
Evolutionary Psychology, 4, 149–196.  

Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence 
differences. Nature Reviews Neuroscience, 11(3), 201–211.  

Dechmann, D. K. N., & Safi, K. (2009). Comparative studies of brain evolution: a critical insight 
from the Chiroptera. Biological Reviews of the Cambridge Philosophical Society, 84(1), 
161–172. 

Dingemanse, N. J., & Reale, D. (2005). Natural selection and animal personality. Behaviour, 
142(9), 1159–1184. 

Domjan, M., Cusato, B., & Villarreal, R. (2000). Pavlovian feed-forward mechanisms in the 
control of social behavior. The Behavioral and Brain Sciences, 23(2), 235-49; discussion 
249-82.  

Dougherty, L. R., & Guillette, L. M. (2018). Linking personality and cognition: a meta-analysis. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 
20170282. 

Ducatez, S., Audet, J.-N., & Lefebvre, L. (2019). Speed–accuracy trade-off, detour reaching and 
response to PHA in Carib grackles. Animal Cognition, 1–9.  

Dukas, R. (2004). Evolutionary biology of animal cognition. Annual Review of Ecology, 
Evolution, and Systematics, 35(1), 347–374.  

Dukas, R. (2008). Evolutionary biology of insect learning. Annual Review of Entomology, 53(1), 
145–160. 

Dukas, R., & Bernays, E. A. (2000). Learning improves growth rate in grasshoppers. 
Proceedings of the National Academy of Sciences of the United States of America, 97(6), 
2637–2640.  

Dukas, R., & Visscher, P. K. (1994). Lifetime learning by foraging honey bees. Animal Behaviour, 
48(5), 1007–1012.  

Dunbar, R. I. ., & Shultz, S. (2007). Understanding primate brain evolution. Philosophical 
Transactions of the Royal Society B: Biological Sciences, 362(1480), 649–658.  

Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology: Issues, News, 
and Reviews, 6(5), 178–190.  

Dyer, F. (1998). Cognitive ecology of navigation. In R. Dukas (Ed.), Cognitive Ecology. (pp. 201–
260). Chicago: University of Chicago Press. 

Eberle, M., & Kappeler, P. (2002). Mouse lemurs in space and time: a test of the 
socioecological model. Behavioral Ecology and Sociobiology, 51(2), 131–139.  

Eberle, M., & Kappeler, P. M. (2004a). Selected polyandry: Female choice and inter-sexual 
conflict in a small nocturnal solitary primate (Microcebus murinus). Behavioral Ecology 
and Sociobiology, 57(1), 91–100.  

Eberle, M., & Kappeler, P. M. (2004b). Sex in the dark: Determinants and consequences of 
mixed male mating tactics in Microcebus murinus, a small solitary nocturnal primate. 



References 
 

 129 

Behavioral Ecology and Sociobiology, 57(1), 77–90. 
Eberle, M., & Kappeler, P. M. (2006). Family insurance: kin selection and cooperative breeding 

in a solitary primate (Microcebus murinus). Behavioral Ecology and Sociobiology, 60(4), 
582–588.  

Ellegren, H., & Sheldon, B. C. (2008). Genetic basis of fitness differences in natural populations. 
Nature, 452(7184), 169–175.  

Emery, N. J., & Clayton, N. S. (2004). The Mentality of Crows: Convergent Evolution of 
Intelligence in Corvids and Apes. Science, 306(5703), 1903–1907.  

Ethan Pride, R. (2005). High faecal glucocorticoid levels predict mortality in ring-tailed lemurs 
(Lemur catta). Biology Letters, 1(1), 60–63.  

Evans, L. J., Smith, K. E., & Raine, N. E. (2017). Fast learning in free-foraging bumble bees is 
negatively correlated with lifetime resource collection. Scientific Reports, 7(1), 1–10.  

Fair, J., Whitaker, S., & Pearson, B. (2007). Sources of variation in haematocrit in birds. Ibis, 
149(3), 535–552.  

Farand, É., Allainé, D., & Coulon, J. (2002). Variation in survival rates for the alpine marmot 
(Marmota marmota): effects of sex, age, year, and climatic factors. Canadian Journal of 
Zoology, 80(2), 342–349.  

Fichtel, C. (2012). Predation. In J. Mitani, J. Call, P. Kappeler, R. Palombit, & J. Silk (Eds.), The 
evolution of primate societies (pp. 169–194). Chicago: Chicago University Press. 

Fichtel, C. (2016). Predation in the dark: antipredator strategies of Cheirogaleidae and other 
nocturnal primates. In S. M. Lehman, U. Radespiel, & E. Zimmermann (Eds.), The Dwarf 
and Mouse Lemurs of Madagascar (pp. 366–380). Cambridge: Cambridge University 
Press. 

Fourie, N. H., Brown, J. L., Jolly, C. J., Phillips-Conroy, J. E., Rogers, J., & Bernstein, R. M. (2016). 
Sources of variation in hair cortisol in wild and captive non-human primates. Zoology, 
119(2), 119–125.  

Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American 
Statistical Association, 87(417), 178. 

Fox, J., & Weisberg, S. (2011). An {R} companion to applied regression, 2nd edn. Thousand 
Oaks, CA: Sage. R package version 2.1.4. 

Friard, O., & Gamba, M. (2016). BORIS: a free, versatile open-source event-logging software 
for video/audio coding and live observations. Methods in Ecology and Evolution, 7(11), 
1325–1330.  

Galsworthy, M. J., Paya-Cano, J. L., Liu, L., Monleón, S., Gregoryan, G., Fernandes, C., … Plomin, 
R. (2005). Assessing reliability, heritability and general cognitive ability in a battery of 
cognitive tasks for laboratory mice. Behavior Genetics, 35(5), 675–692.  

Gao, W., Stalder, T., Foley, P., Rauh, M., Deng, H., & Kirschbaum, C. (2013). Quantitative 
analysis of steroid hormones in human hair using a column-switching LC–APCI–MS/MS 
assay. Journal of Chromatography B, 928, 1–8.  

Gonzalez-Voyer, A., Winberg, S., & Kolm, N. (2009). Social fishes and single mothers: brain 
evolution in African cichlids. Proceedings. Biological Sciences, 276(1654), 161–167.  

Goodman, S. M., O’Connor, S., & Langrand, O. (1993). A review of predation on lemurs: 
Implications for the evolution of social behavior in small, nocturnal primates. In P. 
Kappeler & J. Ganzhorn (Eds.), Lemur social systems and their ecological basis (pp. 51–
66). Boston, MA: Springer US. 

Greenberg, R. (2003). The role of neophobia and neophilia in the development of innovative 
behaviour of birds. In S. Reader & K. Laland (Eds.), Animal innovation (pp. 175–196). New 
York: Oxford University Press.  



References 
 

 130 

Griffin, A. S. (2004). Social learning about predators: a review and prospectus. Learning & 
Behavior, 32(1), 131–140.  

Griffin, A. S. (2016). Innovativeness as an emergent property: A new alignment of comparative 
and experimental research on animal innovation. Philosophical Transactions of the Royal 
Society B: Biological Sciences, 371(1690).  

Griffin, A. S., Diquelou, M., & Perea, M. (2014). Innovative problem solving in birds: A key role 
of motor diversity. Animal Behaviour, 92, 221–227.  

Griffin, A. S., & Guez, D. (2014). Innovation and problem solving: A review of common 
mechanisms. Behavioural Processes, 109, 121–134.  

Griffin, A. S., & Guez, D. (2016). Bridging the gap between cross-taxon and within-species 
analyses of behavioral innovations in birds: Making sense of discrepant cognition–
innovation relationships and the role of motor diversity. Advances in the Study of 
Behavior, 48, 1–40.  

Griffin, A. S., Guillette, L. M., & Healy, S. D. (2015). Cognition and personality: An analysis of 
an emerging field. Trends in Ecology and Evolution, 30(4), 207–214.  

Guillette, L. M., Naguib, M., & Griffin, A. S. (2017). Individual differences in cognition and 
personality. Behavioural Processes, 134, 1–3.  

Hämäläinen, A., Dammhahn, M., Aujard, F., Eberle, M., Hardy, I., Kappeler, P. M., … Kraus, C. 
(2014). Senescence or selective disappearance? Age trajectories of body mass in wild and 
captive populations of a small-bodied primate. Proceedings of the Royal Society B: 
Biological Sciences, 281(1791).  

Hansen, B. T., & Slagsvold, T. (2004). Early learning affects social dominance: interspecifically 
cross-fostered tits become subdominant. Behavioral Ecology, 15(2), 262–268.  

Hatch, M. I., & Smith, R. J. (2010). Repeatability of hematocrits and body mass of gray catbirds. 
Journal of Field Ornithology, 81(1), 64–70. 

Hauser, M. D. (1999). Perseveration, inhibition and the prefrontal cortex: a new look. Current 
Opinion in Neurobiology, 9(2), 214–222.  

Healy, S. D. (2012). Animal cognition: The trade-off to being smart. Current Biology, 22(19), 
R840–R841.  

Healy, S. D., De Kort, S. R., & Clayton, N. S. (2005). The hippocampus, spatial memory and food 
hoarding: A puzzle revisited. Trends in Ecology and Evolution, 20(1), 17–22.  

Henke-von der Malsburg, J., & Fichtel, C. (2018). Are generalists more innovative than 
specialists? A comparison of innovative abilities in two wild sympatric mouse lemur 
species. Royal Society Open Science, 5(8), 180480.  

Herrmann, E., & Call, J. (2012). Are there geniuses among the apes? Philosophical Transactions 
of the Royal Society B: Biological Sciences, 367(1603), 2753–2761.  

Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello, M. (2007). Humans 
have evolved specialized skills of social cognition: The cultural intelligence hypothesis. 
Science, 317(5843), 1360–1366. 

Herrmann, E., Hernández-Lloreda, M. V., Call, J., Hare, B., & Tomasello, M. (2010). The 
structure of individual differences in the cognitive abilities of children and chimpanzees. 
Psychological Science, 21(1), 102–110.  

Hollis, K. L., Cadieux, E. L., & Colbert, M. M. (1989). The biological function of Pavlovian 
conditioning: A mechanism for mating success in the blue gourami (Trichogaster 
trichopterus). Journal of Comparative Psychology, 103(2), 115–121.  

Hopkins, W. D., Russell, J. L., & Schaeffer, J. (2014). Chimpanzee intelligence is heritable. 
Current Biology, 24(14), 1649–1652. 

Hõrak, P., Saks, L., Ots, I., & Kollist, H. (2002). Repeatability of condition indices in captive 



References 
 

 131 

greenfinches (Carduelis chloris). Canadian Journal of Zoology, 80(4), 636–643.  
Houston, A., & McFarland, D. (1976). On the measurement of motivational variables. Animal 

Behaviour, 24(2), 459–475.  
Huber, L. (2017). Where is the evidence for general intelligence in nonhuman animals? 

Behavioral and Brain Sciences, 40, e206. 
Huchard, E., Canale, C. I., le Gros, C., Perret, M., Henry, P. Y., & Kappeler, P. M. (2012). 

Convenience polyandry or convenience polygyny? costly sex under female control in a 
promiscuous primate. Proceedings of the Royal Society B: Biological Sciences, 279(1732), 
1371–1379.  

Huebner, F., & Fichtel, C. (2015). Innovation and behavioral flexibility in wild redfronted 
lemurs (Eulemur rufifrons). Animal Cognition, 18(3), 777–787.  

Huebner, F., Fichtel, C., & Kappeler, P. M. (2018). Linking cognition with fitness in a wild 
primate: fitness correlates of problem-solving performance and spatial learning ability. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1756), 
20170295.  

Hulthén, K., Chapman, B. B., Nilsson, P. A., Hansson, L.-A., Skov, C., Brodersen, J., … Brönmark, 
C. (2017). A predation cost to bold fish in the wild. Scientific Reports, 7(1), 1239.  

Humphrey, N. K. (1976). The social function of intellect. In P. P. G. Bateson & R. A. Hinde (Eds.), 
Growing points in ethology. Oxford: Cambridge University Press. 

Isden, J., Panayi, C., Dingle, C., & Madden, J. (2013). Performance in cognitive and problem-
solving tasks in male spotted bowerbirds does not correlate with mating success. Animal 
Behaviour, 86(4), 829–838.  

Izquierdo, A., & Jentsch, J. D. (2012). Reversal learning as a measure of impulsive and 
compulsive behavior in addictions. Psychopharmacology, 219(2), 607–620.  

Jacobs, I. (2018). String Pulling. In J. Vonk & T. Shackelford (Eds.), Encyclopedia of Animal 
Cognition and Behavior (pp. 1–8). Springer International Publishing, Cham.  

Jaumann, S., Scudelari, R., & Naug, D. (2013). Energetic cost of learning and memory can cause 
cognitive impairment in honeybees. Biology Letters, 9(4), 20130149.  

Johnstone, C. P., Reina, R. D., & Lill, A. (2012). Interpreting indices of physiological stress in 
free-living vertebrates. Journal of Comparative Physiology B, 182(7), 861–879.  

Joly, M., Ammersdörfer, S., Schmidtke, D., & Zimmermann, E. (2014). Touchscreen-based 
cognitive tasks reveal age-related impairment in a primate aging model, the grey mouse 
lemur (Microcebus murinus). PLoS ONE, 9(10).  

Jorgenson, J. T., Festa-Bianchet, M., Gaillard, J.-M., & Wishart, W. D. (1997). Effects of age, 
sex, disease, and density on survival of bighorn sheep. Ecology, 78(4), 1019.  

Kappeler, P. M., & Fichtel, C. (2012). A 15-year perspective on the social organization and life 
history of sifaka in Kirindy forest. In Long-term field studies of primates (pp. 101–121). 
Berlin, Heidelberg: Springer Berlin Heidelberg. 

Kappeler, P. M., & Rasoloarison, R. M. (2003). Microcebus, mouse lemurs, Tsidy. In S. M. 
Goodman & J. P. Benstead (Eds.), The Natural History of Madagascar (pp. 1310–1315). 
Chicago: University of Chicago Press. 

Kassambara, A., & Kosinski, M. (2017). Survminer: Drawing survival curves using ‘ggplot2’. R 
package version 0.4.0. 

Kawecki, T. J. (2010). Evolutionary ecology of learning: insights from fruit flies. Population 
Ecology, 52(1), 15–25.  

Keagy, J., Savard, J. F., & Borgia, G. (2009). Male satin bowerbird problem-solving ability 
predicts mating success. Animal Behaviour, 78(4), 809–817.  

Keagy, J., Savard, J. F., & Borgia, G. (2011). Complex relationship between multiple measures 



References 
 

 132 

of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus 
violaceus. Animal Behaviour, 81(5), 1063–1070.  

Keagy, J., Savard, J. F., & Borgia, G. (2012). Cognitive ability and the evolution of multiple 
behavioral display traits. Behavioral Ecology, 23(2), 448–456.  

Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, S. N., Hill, C. E., … Beerli, 
P. (2001). The strength of phenotypic selection in natural populations. The American 
Naturalist, 157(3), 245–261. 

Kittler, K., Kappeler, P. M., & Fichtel, C. (2018). Instrumental problem-solving abilities in three 
lemur species (Microcebus murinus, Varecia variegata, and Lemur catta). Journal of 
Comparative Psychology, 132(3), 306–314.  

Kolata, S., Light, K., & Matzel, L. D. (2008). Domain-specific and domain-general learning 
factors are expressed in genetically heterogeneous CD-1 mice. Intelligence, 36(6), 619–
629. 

Kolm, N. (2014). Measuring variation in cognition can be done, but it requires hard empirical 
work: a comment on Rowe and Healy. Behavioral Ecology, 25(6), 1296–1297.  

Korte, S. M., Koolhaas, J. M., Wingfield, J. C., & McEwen, B. S. (2005). The Darwinian concept 
of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and 
disease. Neuroscience & Biobehavioral Reviews, 29(1), 3–38.  

Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Brännström, I., … Kolm, N. 
(2013). Artificial selection on relative brain size in the guppy reveals costs and benefits of 
evolving a larger brain. Current Biology, 23(2), 168–171.  

Kraus, C., Eberle, M., & Kappeler, P. M. (2008). The costs of risky male behaviour: Sex 
differences in seasonal survival in a small sexually monomorphic primate. Proceedings of 
the Royal Society B: Biological Sciences, 275(1643), 1635–1644.  

Laland, K. N., & Reader, S. M. (2003). Animal innovation: An introduction. In S. M. Reader & K. 
N. Laland (Eds.), Animal Innovation (pp. 3–35). 

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical 
data. Biometrics, 33(1), 159.  

Laughlin, S. B. (2001). Energy as a constraint on the coding and processing of sensory 
information. Current Opinion in Neurobiology, 11(4), 475–480.  

Laughlin, S. B., de Ruyter van Steveninck, R. R., & Anderson, J. C. (1998). The metabolic cost of 
neural information. Nature Neuroscience, 1(1), 36–41.  

Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and 
primates. Brain, Behavior and Evolution, 63(4), 233–246.  

Lefebvre, L., & Sol, D. (2008). Brains, lifestyles and cognition: Are there general trends? Brain, 
Behavior and Evolution, 72(2), 135–144.  

Lermite, F., Peneaux, C., & Griffin, A. S. (2017). Personality and problem-solving in common 
mynas (Acridotheres tristis). Behavioural Processes, 134, 87–94.  

Light, K. R., Kolata, S., Wass, C., Denman-Brice, A., Zagalsky, R., & Matzel, L. D. (2010). Working 
memory training promotes general cognitive abilities in genetically heterogeneous mice. 
Current Biology, 20(8), 777–782.  

Lindström, J. (1999). Early development and fitness in birds and mammals. Trends in Ecology 
& Evolution, 14(9), 343–348.  

Locurto, C., Fortin, E., & Sullivan, R. (2003). The structure of individual differences in 
heterogeneous stock mice across problem types and motivational systems. Genes, Brain 
and Behavior, 2(1), 40–55.  

Lonnstedt, O. M., McCormick, M. I., Meekan, M. G., Ferrari, M. C. O., & Chivers, D. P. (2012). 
Learn and live: predator experience and feeding history determines prey behaviour and 



References 
 

 133 

survival. Proceedings of the Royal Society B: Biological Sciences, 279(1736), 2091–2098.  
Lührs, M. L., Dammhahn, M., Kappeler, P. M., & Fichtel, C. (2009). Spatial memory in the grey 

mouse lemur (Microcebus murinus). Animal Cognition, 12(4), 599–609.  
MacLean, E. L. (2016). Unraveling the evolution of uniquely human cognition. Proceedings of 

the National Academy of Sciences, 113(23), 6348–6354.  
MacLean, E. L., Barrickman, N. L., Johnson, E. M., & Wall, C. E. (2009). Sociality, ecology, and 

relative brain size in lemurs. Journal of Human Evolution, 56(5), 471–478.  
MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., … Zhao, Y. (2014). 

The evolution of self-control. Proceedings of the National Academy of Sciences, 111(20), 
E2140–E2148.  

MacLean, E. L., Matthews, L. J., Hare, B. A., Nunn, C. L., Anderson, R. C., Aureli, F., … Wobber, 
V. (2012). How does cognition evolve? Phylogenetic comparative psychology. Animal 
Cognition, 15(2), 223–238. 

Maclean, E. L., Merritt, D. J., & Brannon, E. M. (2008). Social complexity predicts transitive 
reasoning in prosimian primates. Animal Behaviour, 76(2), 479–486.  

Madden, J. R., Langley, E. J. G., Whiteside, M. A., Beardsworth, C. E., & van Horik, J. O. (2018). 
The quick are the dead: pheasants that are slow to reverse a learned association survive 
for longer in the wild. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 373(1756), 20170297.  

Maille, A., & Schradin, C. (2016). Survival is linked with reaction time and spatial memory in 
African striped mice. Biology Letters, 12(8). 

Matsuzawa, T. (2008). Primate foundations of human intelligence: A view of tool use in 
nonhuman primates and Fossil Hominids. In Primate Origins of Human Cognition and 
Behavior (pp. 3–25). Tokyo: Springer Japan. 

Matzel, L. D., Han, Y. R., Grossman, H., Karnik, M. S., Patel, D., Scott, N., … Gandhi, C. C. (2003). 
Individual differences in the expression of a “general” learning ability in mice. The Journal 
of Neuroscience, 23(16), 6423–6433.  

Mazza, V., Eccard, J. A., Zaccaroni, M., Jacob, J., & Dammhahn, M. (2018). The fast and the 
flexible: cognitive style drives individual variation in cognition in a small mammal. Animal 
Behaviour, 137, 119–132.  

Mery, F. (2013). Natural variation in learning and memory. Current Opinion in Neurobiology, 
23(1), 52–56.  

Mery, F., & Kawecki, T. J. (2003). A fitness cost of learning ability in Drosophila melanogaster. 
Proceedings of the Royal Society B: Biological Sciences, 270(1532), 2465–2469.  

Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to 
primate mental development. American Anthropologist, 83(3), 534–548.  

Minter, R., Keagy, J., & Tinghitella, R. M. (2017). The relationship between male sexual signals, 
cognitive performance, and mating success in stickleback fish. Ecology and Evolution, 
7(15), 5621–5631. 

Morand-Ferron, J. (2017). Why learn? The adaptive value of associative learning in wild 
populations. Current Opinion in Behavioral Sciences, 16, 73–79.  

Morand-Ferron, J., Cole, E. F., & Quinn, J. L. (2016). Studying the evolutionary ecology of 
cognition in the wild: A review of practical and conceptual challenges. Biological Reviews, 
91(2), 367–389. 

Morand-Ferron, J., Cole, E. F., Rawles, J. E. C., & Quinn, J. L. (2011). Who are the innovators? 
A field experiment with 2 passerine species. Behavioral Ecology, 22(6), 1241–1248.  

Morand-Ferron, J., Hamblin, S., Cole, E. F., Aplin, L. M., & Quinn, J. L. (2015). Taking the operant 
paradigm into the field: Associative learning in wild great tits. PLoS ONE, 10(8), 1–16.  



References 
 

 134 

Morand-Ferron, J., & Quinn, J. L. (2015). The evolution of cognition in natural populations. 
Trends in Cognitive Sciences, 19(5), 235–237.  

Murray, D. L. (2002). Differential body condition and vulnerability to predation in snowshoe 
hares. Journal of Animal Ecology, 71(4), 614–625.  

Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: a 
practical guide for biologists. Biological Reviews, 85(4), 935–956.  

Osborne, J. W., & Costello, A. B. (2004). Sample size and subject to item ratio in principal 
components analysis. Practical Assessment, Research & Evaluation, 9(11). 

Ots, I., MurumAgi, A., & Horak, P. (1998). Haematological health state indices of reproducing 
great tits: methodology and sources of natural variation. Functional Ecology, 12(4), 700–
707.  

Øverli, Ø., Sørensen, C., Pulman, K. G. T., Pottinger, T. G., Korzan, W., Summers, C. H., & 
Nilsson, G. E. (2007). Evolutionary background for stress-coping styles: Relationships 
between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. 
Neuroscience & Biobehavioral Reviews, 31(3), 396–412.  

Ozgul, A., Armitage, K. B., Blumstein, D. T., & Oli, M. K. (2006). Spatiotemporal variation in 
survival rates: implications for population dynamics of yellow-bellied marmots. Ecology, 
87(4), 1027–1037.  

Plomin, R. (2001). The genetics of G in human and mouse. Nature Reviews Neuroscience, 2(2), 
136–141. 

Plomin, R., & Deary, I. J. (2015). Genetics and intelligence differences: five special findings. 
Molecular Psychiatry, 20(1), 98–108. 

Povinelli, D. J., & Vonk, J. (2003). Chimpanzee minds: suspiciously human? Trends in Cognitive 
Sciences, 7(4), 157–160.  

Pravosudov, V. V., & Clayton, N. S. (2002). A test of the adaptive specialization hypothesis: 
Population differences in caching, memory, and the hippocampus in black-capped 
chickadees (Poecile atricapilla). Behavioral Neuroscience, 116(4), 515–522.  

Pravosudov, V. V., & Roth, T. C. (2013). Cognitive ecology of food hoarding: The evolution of 
spatial memory and the hippocampus. Annual Review of Ecology, Evolution, and 
Systematics, 44(1), 173–193.  

Preiszner, B., Papp, S., Pipoly, I., Seress, G., Vincze, E., Liker, A., & Bokony, V. (2017). Problem-
solving performance and reproductive success of great tits in urban and forest habitats. 
Animal Cognition, 20(1), 53–63.  

Pritchard, D. J., Hurly, T. A., Tello-Ramos, M. C., & Healy, S. D. (2016). Why study cognition in 
the wild (and how to test it)? Journal of the Experimental Analysis of Behavior, 105(1), 
41–55.  

R Core Team. (2017). R: a language and environment for statistical computing. Vienna, Austria: 
R Foundation for Statistical Computing. 

Radespiel, U. (2006). Ecological diversity and seasonal adaptations of mouse lemurs 
(Microcebus spp.). In L. Gould & M. L. Sauther (Eds.), Lemurs: Ecology and adaptation 
(pp. 211–234). Boston, MA: Springer US.  

Rahlfs, M., & Fichtel, C. (2010). Anti-predator behaviour in a nocturnal primate, the grey 
mouse lemur (Microcebus murinus). Ethology, 116(5), 429–439.  

Rahmani, H., Hoffmann, D., Walzer, A., & Schausberger, P. (2009). Adaptive learning in the 
foraging behavior of the predatory mite Phytoseiulus persimilis. Behavioral Ecology, 
20(5), 946–950.  

Raine, N. E., & Chittka, L. (2008). The correlation of learning speed and natural foraging success 
in bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 275(1636), 803–



References 
 

 135 

808.  
Rakotoniaina, J. H., Kappeler, P. M., Kaesler, E., Hämäläinen, A. M., Kirschbaum, C., & Kraus, 

C. (2017). Hair cortisol concentrations correlate negatively with survival in a wild primate 
population. BMC Ecology, 17(1), 1–13.  

Rakotoniaina, J. H., Kappeler, P. M., Ravoniarimbinina, P., Pechouskova, E., Hämäläinen, A. M., 
Grass, J., … Kraus, C. (2016). Does habitat disturbance affect stress, body condition and 
parasitism in two sympatric lemurs? Conservation Physiology, 4(1), cow034.  

Rasoazanabary, E. (2006). Male and female activity patterns in Microcebus murinus during the 
dry season at Kirindy Forest, Western Madagascar. International Journal of Primatology, 
27(2), 437–464.  

Rasoloarison, R. M., Goodman, S. M., & Ganzhorn, J. U. (2000). A taxonomic revision of mouse 
lemurs (Microcebus) occurring in the western portion of Madagascar. International 
Journal of Primatology, 21(6), 963–1019. 

Rasoloarison, R. M., Rasolonandrasana, B., Ganzhorn, J. U., & Goodman, S. M. (1995). 
Predation on vertebrates in the Kirindy Forest, western Madagascar. Ecotropica, (1), 59–
65. 

Reader, S. (2003). Innovation and social learning: individual variation and brain evolution. 
Animal Biology, 53(2), 147–158.  

Reader, S. M., Hager, Y., & Laland, K. N. (2011). The evolution of primate general and cultural 
intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 
366(1567), 1017–1027. 

Reader, S. M., & Laland, K. N. (2001). Primate innovation: Sex, age and social rank differences. 
International Journal of Primatology, 22(5), 787–805.  

Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size 
in primates. Proceedings of the National Academy of Sciences, 99(7), 4436–4441.  

Reader, S. M., & Laland, K. N. (2003). Animal Innovation. Oxford University Press. 
Réale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating 

animal temperament within ecology and evolution. Biological Reviews, 82(2), 291–318.  
Reeve, C. L., Lyerly, J. E., & Peach, H. (2013). Adolescent intelligence and socio-economic 

wealth independently predict adult marital and reproductive behavior. Intelligence, 
41(5), 358–365.  

Rensing, S. (1999). Immobilization and anesthesia of nonhuman primates. Primate Report, 55, 
33–38. 

Roff, D. A. (1992). The evolution of life histories: theory and analysis. New York: Chapman & 
Hall. 

Roff, D. A. (2002). Life history evolution. Sunderland, Mass.: Sinauer Associates, Inc. 
Romero, L. M., Dickens, M. J., & Cyr, N. E. (2009). The reactive scope model — A new model 

integrating homeostasis, allostasis, and stress. Hormones and Behavior, 55(3), 375–389.  
Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence. Trends in Cognitive 

Sciences, 9(5), 250–257.  
Roth, T. C., LaDage, L. D., Freas, C. A., & Pravosudov, V. V. (2012). Variation in memory and the 

hippocampus across populations from different climates: a common garden approach. 
Proceedings of the Royal Society B: Biological Sciences, 279(1727), 402–410.  

Roth, T. C., LaDage, L. D., & Pravosudov, V. V. (2010). Learning capabilities enhanced in harsh 
environments: A common garden approach. Proceedings of the Royal Society B: 
Biological Sciences, 277(1697), 3187–3193.  

Rowe, C., & Healy, S. D. (2014). Measuring variation in cognition. Behavioral Ecology, 25(6), 
1287–1292. 



References 
 

 136 

Sauce, B., Bendrath, S., Herzfeld, M., Siegel, D., Style, C., Rab, S., … Matzel, L. D. (2018). The 
impact of environmental interventions among mouse siblings on the heritability and 
malleability of general cognitive ability. Philosophical Transactions of the Royal Society B: 
Biological Sciences, 373(1756), 20170289.  

Scheid, C., & Bugnyar, T. (2008). Short-term observational spatial memory in Jackdaws (Corvus 
monedula) and Ravens (Corvus corax). Animal Cognition, 11(4), 691–698.  

Scheumann, M., Rabesandratana, A., & Zimmermann, E. (2007). Predation, communication, 
and cognition in lemurs. In Primate Anti-Predator Strategies (pp. 100–126). Boston, MA: 
Springer US.  

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. 
Methods in Ecology and Evolution, 1(2), 103–113.  

Schliehe-Diecks, S., Eberle, M., & Kappeler, P. M. (2012). Walk the line-dispersal movements 
of gray mouse lemurs (Microcebus murinus). Behavioral Ecology and Sociobiology, 66(8), 
1175–1185. 

Schmid, J. (1999). Sex-specific differences in activity patterns and fattening in the gray mouse 
lemur (Microcebus murinus) in Madagascar. Journal of Mammalogy, 80(3), 749–757.  

Schmid, J., & Kappeler, P. (1998). Fluctuating sexual dimorphism and differential hibernation 
by sex in a primate , the gray mouse lemur (Microcebus murinus). Behavioral Ecology and 
Sociobiology, 43, 125–132.  

Schulte-Hostedde, A. I., Zinner, B., Millar, J. S., & Hickling, G. J. (2005). Restitution of mass-size 
residuals: validating body condition indices. Ecology, 86(1), 155–163.  

Shatz, S. M. (2008). IQ and fertility: A cross-national study. Intelligence, 36(2), 109–111.  
Shaw, R. C. (2017). Testing cognition in the wild: factors affecting performance and individual 

consistency in two measures of avian cognition. Behavioural Processes, 134, 31–36.  
Shaw, R. C., Boogert, N. J., Clayton, N. S., & Burns, K. C. (2015). Wild psychometrics: Evidence 

for “general” cognitive performance in wild New Zealand robins, Petroica longipes. 
Animal Behaviour, 109, 101–111. 

Shaw, R. C., & Schmelz, M. (2017). Cognitive test batteries in animal cognition research: 
evaluating the past, present and future of comparative psychometrics. Animal Cognition, 
20(6), 1003–1018. 

Shettleworth, S. J. (1990). Spatial memory in food-storing birds. Philosophical Transactions: 
Biological Sciences. Royal Society. 

Shettleworth, S. J. (2010). Cognition, evolution, and behavior (2nd ed.). Oxford: Oxford 
University Press. 

Shettleworth, S. J. (2012). Modularity, comparative cognition and human uniqueness. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2794–
2802.  

Sih, A., & Del Giudice, M. (2012). Linking behavioural syndromes and cognition: A behavioural 
ecology perspective. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 367(1603), 2762–2772. 

Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts. 
Slagsvold, T., & Wiebe, K. L. (2007). Learning the ecological niche. Proceedings. Biological 

Sciences, 274(1606), 19–23. 
Smith, C., Philips, A., & Reichard, M. (2015). Cognitive ability is heritable and predicts the 

success of an alternative mating tactic. Proceedings of the Royal Society B: Biological 
Sciences, 282(1809).  

Snell-Rood, E. C., Davidowitz, G., & Papaj, D. R. (2011). Reproductive tradeoffs of learning in a 
butterfly. Behavioral Ecology, 22(2), 291–302.  



References 
 

 137 

Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefebvre, L. (2005). Big brains, enhanced 
cognition, and response of birds to novel environments. Proceedings of the National 
Academy of Sciences, 102(15), 5460–5465.  

Sol, D., Griffin, A. S., & Bartomeus, I. (2012). Consumer and motor innovation in the common 
myna: The role of motivation and emotional responses. Animal Behaviour, 83(1), 179–
188. 

Sol, D., Lefebvre, L., & Rodríguez-Teijeiro, J. D. (2005). Brain size, innovative propensity and 
migratory behaviour in temperate Palaearctic birds. Proceedings. Biological Sciences, 
272(1571), 1433–1441.  

Sol, D., Székely, T., Liker, A., & Lefebvre, L. (2007). Big-brained birds survive better in nature. 
Proceedings of the Royal Society B: Biological Sciences, 274(1611), 763–769.  

Sol, D., Timmermans, S., & Lefebvre, L. (2002). Behavioural flexibility and invasion success in 
birds. Animal Behaviour, 63(3), 495–502.  

Stalder, T., & Kirschbaum, C. (2012). Analysis of cortisol in hair - State of the art and future 
directions. Brain, Behavior, and Immunity, 26(7), 1019–1029.  

Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3(3), 259.  
Stearns, S. C. (1992). The evolution of life histories. New York: Oxford University Press. 
Stoffel, M. A., Nakagawa, S., & Schielzeth, H. (2017). rptR: repeatability estimation and 

variance decomposition by generalized linear mixed-effects models. Methods in Ecology 
and Evolution, 8(11), 1639–1644.  

Strenze, T. (2006). Intelligence and socioeconomic success: A meta-analytic review of 
longitudinal research. Intelligence , 35(5), 401-426. 

Ten Cate, C. (2014). Towards fruitful interaction between behavioral ecology and cognitive 
science: A comment on Rowe and Healy. Behavioral Ecology, 25(6), 1295–1296.  

Therneau, T. (2015). A package for survival analysis in S. R package version 2.38. 
Thornton, A., Isden, J., & Madden, J. R. (2014). Toward wild psychometrics: Linking individual 

cognitive differences to fitness. Behavioral Ecology, 25(6), 1299–1301.  
Thornton, A., & Lukas, D. (2012). Individual variation in cognitive performance: Developmental 

and evolutionary perspectives. Philosophical Transactions of the Royal Society B: 
Biological Sciences, 367(1603), 2773–2783.  

Thornton, A., & Samson, J. (2012). Innovative problem solving in wild meerkats. Animal 
Behaviour, 83(6), 1459–1468.  

Tinbergen, J. M., & Boerlijst, M. C. (1990). Nestling weight and survival in individual great tits 
(Parus major). The Journal of Animal Ecology, 59(3), 1113.  

van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity 
shape a wild primate’s foraging decisions. Science, 340(6131), 483–485.  

van de Waal, E., & Bshary, R. (2010). Contact with human facilities appears to enhance 
technical skills in wild vervet monkeys (Chlorocebus aethiops). Folia Primatologica, 81(5), 
282–291. 

van Horik, J. O., Clayton, N. S., & Emery, N. J. (2012). Convergent evolution of cognition in 
corvids, apes and other animals. The Oxford Handbook of Comparative Evolutionary 
Psychology, 80–101.  

Van Horik, J. O., Langley, E. J. G., Whiteside, M. A., Laker, P. R., Beardsworth, C. E., & Madden, 
J. R. (2018). Do detour tasks provide accurate assays of inhibitory control? Proceedings 
of the Royal Society B: Biological Sciences, 285(1875).  

van Horik, J. O., Langley, E. J. G., Whiteside, M. A., Laker, P. R., & Madden, J. R. (2018). Intra-
individual variation in performance on novel variants of similar tasks influences single 
factor explanations of general cognitive processes. Royal Society Open Science, 5(7).  



References 
 

 138 

van Horik, J. O., Langley, E. J. G., Whiteside, M. A., & Madden, J. R. (2017). Differential 
participation in cognitive tests is driven by personality, sex, body condition and 
experience. Behavioural Processes, 134, 22–30.  

van Horik, J. O., & Lea, S. E. G. (2017). Disentangling learning from knowing: Does associative 
learning ability underlie performances on cognitive test batteries? Behavioral and Brain 
Sciences, 40, e220.  

van Horik, J. O., & Madden, J. R. (2016). A problem with problem solving: Motivational traits, 
but not cognition, predict success on novel operant foraging tasks. Animal Behaviour, 
114, 189–198.  

Völter, C., Tinklenberg, B., Call, J., & Seed, A. M. (2018). Comparative psychometrics: 
establishing what differs is central to understanding what evolves. Philosophical 
Transactions of the Royal Society B, 373(1756).  

Vuarin, P., Dammhahn, M., & Henry, P. Y. (2013). Individual flexibility in energy saving: Body 
size and condition constrain torpor use. Functional Ecology, 27(3), 793–799.  

Wahlsten, D. (1972). Genetic experiments with animal learning: A critical review. Behavioral 
Biology, 7(2), 143–182.  

Walker, B. G., Boersma, P. D., & Wingfield, J. C. (2005). Field endocrinology and conservation 
biology. Integrative and Comparative Biology, 45(1), 12–18.  

Wass, C., Denman-Brice, A., Rios, C., Light, K. R., Kolata, S., Smith, A. M., & Matzel, L. D. (2012). 
Covariation of learning and “reasoning” abilities in mice: evolutionary conservation of 
the operations of intelligence. Journal of Experimental Psychology. Animal Behavior 
Processes, 38(2), 109–124. 

Wetzel, D. P. (2017). Problem-solving skills are linked to parental care and offspring survival 
in wild house sparrows. Ethology, 123(6–7), 475–483.  

Wilson, A. J., & Nussey, D. H. (2010). What is individual quality? An evolutionary perspective. 
Trends in Ecology & Evolution, 25(4), 207–214.  

Witter, M. S., & Cuthill, I. C. (1993). The ecological costs of avian fat storage. Philosophical 
Transactions of the Royal Society of London. Series B: Biological Sciences, 340(1291), 73–
92.  

Würbel, H. (2001). Ideal homes? Housing effects on rodent brain and behaviour. Trends in 
Neurosciences, 24(4), 207–211.  

Ydenberg, R. C. (1994). The behavioral ecology of provisioning in birds. Écoscience, 1(1), 1–14.  
Yoder, A. D. (2007). Lemurs. Current Biology, 17(20), R866-8.  
Zimmermann, E., Radespiel, U., Mestre-Francés, N., & Verdier, J.-M. (2016). Life history 

variation in mouse lemurs (Microcebus murinus, M. lehilahytsara): the effect of 
environmental and phylogenetic determinants. In S. M. Lehman, U. Radespiel, & E. 
Zimmermann (Eds.), The Dwarf and Mouse Lemurs of Madagascar (pp. 174–194). 
Cambridge: Cambridge University Press.  



    

 139 

Acknowledgements 
 

There are so many people who have helped and accompanied me during this PhD and 
contributed to its completion. First, I want to thank Claudia Fichtel and Peter Kappeler for the 
long way on which you accompanied me. I am very grateful that you took me with you to 
Kirindy for the master field course back in 2012. This first 6 weeks in Madagascar broadened 
my horizons so intensively and was the beginning of all that has led to this PhD thesis and so 
much more. Peter, I thank you for the unique opportunity of being actively involved in forming 
the ideas and framework for my PhD project, so that I could work on a topic that really excites 
me. I am deeply thankful to both of you for your scientific guidance and experience on the 
way to realize and finalize this PhD project. I especially thank Claudia, my supervisor, for her 
constant support during all this time, be it scientifically or morally during all the ups and downs 
on the way from the first internship and the master thesis to the end of the PhD.   
 
I am very thankful to my thesis committee members Lars Penke and Oliver Schülke for their 
time, valuable input and advice. Furthermore, I want to thank Julia Fischer and Margarete 
Boos for being in my examination board. 
 
I thank Beate Kraus and Lynne Werner for their help with the video analysis and inter-observer 
reliability. 
 
I want to thank Joah Madden for inviting me to an exciting workshop on the causes and 
consequences of individual differences in cognitive abilities, his helpful advices and his 
understanding of the challenges involved in testing 96 wild living mouse lemurs. 
 
Furthermore, I thank Roger Mundry for his great, intensive, mind-opening statistic workshop 
and his uniquely comprehensive, funny and friendly way to teach which deeply impressed me. 
 
I would also like to thank all of my past and present colleagues and friends from the 
Behavioural ecology/ Sociobiology unit. Thank you for your help and support, without you 
these last years would not have been half as much fun! I thank Christina Glaschke for her work 
on the parentage analysis for my project. Moreover, I especially thank my long-time office 
mate and friend Klara Dinter, who I also thank a lot for proof reading parts of this thesis! 
Thanks! 
 
My deepest gratitude goes to all members of l’équipe de Kirindy for the unique time in the 
field: Leon, Rodin, Pata, Bary, Adrien, Alain, Mamy, Remy, Bruno and Jipa. Thank you for the 
nice conservations, guitar and singing evenings, the best beans I ever ate, and a lot of “tsanga 
tsanga” and shared hard work (be it eating hot soup for lunch in what felt like 40 degrees 
outside temperature or the rush hour setting of 160 traps before the sun sets). I especially 



Acknowledgements 

 

 140 

thank Bruno with whom I really enjoyed working, spending peaceful hours sitting next to each 
other handling mouse lemurs or cleaning traps. Misaotra betsaka! Without you all it wouldn’t 
have been the same. 
 
Another special thanks goes to my companions in the field who spent so much time with me 
in the forest and on the bi-weekly weekends in Morondava. Thanks especially to: 
Bako Rasolofoniaina, with whom I loved to go hunting for precious cauliflower and the best 
pineapples at the Morondava market. 
Anna Sperber, with whom I spent funnily desperate weekend nights in the Morondava 
townhouse, sitting in the candlelight and waiting for the end of the electricity cut-off, begging 
for a tiny bit of electricity for the much sighed-for skype calls with the loved ones at home.  
And to Louise Peckre and Alessio Anania, who let me view the forest again with the eyes of 
the first-time visitor when they joined the Kirindy team with their contagious passion for all 
living beings around us. 
 
Wholeheartedly, I want to thank my friends and family. Thank you for your endless support 
and love and for having you in my life. I thank my father for all his help and practical support 
with no matter what, be it escorting 100 microtransponders to Kirindy Forest or building a 
touch-screen testing device for the mouse lemurs. I thank my mother for all her love and for 
not worrying too much when I was away. I thank my sister for always saying the right words 
to cheer me up. And finally, I thank Hendrik for always being at my side, be it in thought during 
the times in the forest, via skype on the city weekends in Morondava or with all possible help 
and support in Göttingen, especially during the ups and downs in the last months of my PhD. 
Thank you!   



    

 141 

Curriculum vitae 
Franziska Hübner 
 
 
Personal information 
Date of birth: 23.01.1988 
Place of birth: Munich 
Nationality: German 
 
Education 
2015- 2019 PhD student at Georg-August-University Göttingen and German Primate 

Center (DPZ) 
Thesis: “The link between cognition and fitness in wild grey mouse lemurs 
(Microcebus murinus)” 

2011-2014 Master of science in Developmental, Neural and Behavioural Biology at 
Georg-August-University Göttingen 
Thesis: "Innovation and behavioural flexibility in wild redfronted lemurs 
(Eulemur rufifrons)" 

2008-2011 Bachelor of science in Biology at Georg-August-University Göttingen 
Thesis: "Male dispersal and behaviour of four-year-old stallions in a herd of 
semi-free-ranging Exmoor ponies (Equus ferus caballus) at Langeland, 
Denmark" 

 

Research experience 
2015-2017 Data collection for the PhD thesis, Kirindy forest, Madagascar  

(in total 11 months) 
2014 Pilot study for the PhD thesis, Kirindy forest, Madagascar (3 months) 
2014 Research assistant in the “Behavioural Ecology and Sociobiology Unit” 

at the German Primate center 
3/2012, 3/2013, 
3/2014 

Student assistant in the practical course “Animal physiology” for Bachelor 
students of Biology at Georg-August-University Göttingen 

2013 Data collection for the Master thesis, Kirindy forest, Madagascar (3 months) 
2011 Data collection for the Bachelor thesis, Langeland, Denmark (2 months) 
 

Grants and awards 
Research grant of the Ethologische Gesellschaft, for the master thesis, 2013 
Poster award, Conference of the Gesellschaft für Primatologie, Leipzig, 2015 
Poster award, Conference of the Gesellschaft für Primatologie, Zürich, 2017 
 

Honorary office 
PhD student representative of the German Primate Center, 2018 
 

 

 



Curriculum Vitae 
 

 142 

Conference contributions 
Hübner F & Fichtel C. Innovation and behavioural flexibility in wild redfronted lemurs (Eulemur 

rufifrons). Poster, Conference of the Gesellschaft für Primatologie (GfP), Leipzig 2015 
Hübner F, Fichtel C & Kappeler PM. Testing the link between cognition and fitness in a small, free-living 

primate, the grey mouse lemur (Microcebus murinus). Poster, Meeting of the Ethological Society, 
Göttingen, 2016 

Hübner F, Fichtel C & Kappeler PM. Does it pay to be smart? The link between cognition and fitness in 
the grey mouse lemur (Microcebus murinus). Oral presentation, University of Antananarivo, 2016 

Hübner F, Fichtel C & Kappeler PM. The link between cognition and fitness in a small, free-living 
primate, the grey mouse lemur (Microcebus murinus). Poster, Conference of the Gesellschaft für 
Primatologie (GfP), Zürich, 2017 

Hübner F, Fichtel C & Kappeler PM. Does it pay to be smart? The link between cognition and fitness in 
the grey mouse lemur (Microcebus murinus). Oral presentation, Wissenschaftliches Kolleg- 
Studienstiftung des deutschen Volkes, Göttingen, 2017 

Hübner F, Fichtel C & Kappeler PM. Individual differences in cognitive abilities in a small, wild primate, 
the grey mouse lemur (Microcebus murinus). Poster, International Ethological Conference (IEC) 
and Summer Meeting of the Association for the Study of Animal Behaviour (ASAB), Estoril, 2017 

Hübner F, Fichtel C & Kappeler PM. Does it pay to be smart? Cognition and fitness in wild grey mouse 
lemurs, Microcebus murinus. Oral presentation, Workshop “Causes and consequences of 
individual differences in cognitive abilities”, Exeter, 2017 

Hübner F, Fichtel C.& Kappeler PM. Does it pay to be smart? The link between cognition and fitness in 
the grey mouse lemur (Microcebus murinus). Poster, Conference of the Research Training Group 
2070, Göttingen, 2018 

 

Publications 
Hübner F, Fichtel C, Kappeler PM (2018) Linking cognition with fitness in a wild primate: Fitness 

correlates of problem-solving performance and spatial learning ability. Philosophical Transactions 
of the Royal Society B 373: 20170295. 

Cauchoix M, Chow PKY, van Horik JO, Atance CM, Barbeau EJ, Barragan-Jason G, Bize P, Boussard A, 
Buechel SD, Cabirol A, Cauchard L, Claidière N, Dalesman S, Devaud JM, Didic M, Doligez B, Fagot 
J, Fichtel C, Henke-von der Malsburg J, Hermer E, Huber L, Hübner F, Kappeler PM, Klein S, 
Langbein J, Langley EJG, Lea SEG, Lihoreau M, Lovlie H, Matzel LD, Nakagawa S, Nawroth C, 
Oesterwind S, Sauce B, Smith EA, Sorato E, Tebbich S, Wallis LJ, Whiteside MA, Wilkinson A, Chaine 
AS & Morand-Ferron J (2018). The repeatability of cognitive performance: a meta-
analysis. Philosophical Transactions of the Royal Society B 373: 20170281. 

Hübner F & Fichtel C (2015) Innovation and behavioral flexibility in redfronted lemurs (Eulemur 
rufifrons). Animal Cognition 18, 777-787. 

Kraus C, van Waveren C & Hübner F (2014) Distractible dogs, constant cats? A test of the distraction 
hypothesis in two domestic species. Animal Behaviour 93, 173-181. 

Schnoell AV, Hübner F, Kappeler PM & Fichtel C (2014) Manual lateralization in wild redfronted lemurs 
(Eulemur rufifrons) during spontaneous actions and in an experimental task. American Journal of 
Physical Anthropology 153, 61-67. 

 
 
 



 

 143 

Declaration  
 
I hereby declare that all parts of my thesis with the title “Cognition in the wild -Individual 

differences in cognitive abilities and their link with fitness in a wild primate, the grey mouse 

lemur (Microcebus murinus)” were written by myself. Assistance of third parties was only 

accepted if scientifically justifiable and acceptable in regards to the examination regulations. 

Contributions to the individual chapters are indicated and all sources have been quoted. 

 
 
 
 
 
 
Göttingen, 24th of April, 2019 
 


