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Abstract
Department of Applied Geology

Preferential flow dynamics in the vadose zone of fractured and fractured-porous
media: Development of a parallelized multi-scale Smoothed Particle

Hydrodynamics model

by Elena SHIGORINA

The main objective of this thesis is the development of a smoothed particle hydrodynam-
ics (SPH) model to study preferential flow dynamics in partially saturated porous-fractured
media at core- and micro scale. The research is focused on the numerical investigation of
preferential flow in the vadose zone, including the estimation of geometrical and hydraulic
properties of the subsurface, such as wettability, surface roughness, hydraulic conductivity,
and infiltration rate, which are influencing the infiltration dynamics under saturated, unsat-
urated and partially saturated conditions. In the first part of the thesis the simulation results
of sessile and transient droplets on hydrophobic and hydrophilic structured rough surfaces
are presented. The results show that the effective static contact angles of Cassie and Wen-
zel droplets on a rough surface are greater than the corresponding micro scale static contact
angles. As a result, micro scale hydrophobic rough surfaces can also exhibit effective hy-
drophobic behavior. This study considers, as well, the impact of the roughness orientation
(i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. The results
show that droplet flow velocities are lower if the surface roughness is oriented perpendicular
to the flow direction. The second part deals with the investigation of infiltration instabilities
in smooth and rough fractures, focusing on the influence of roughness and injection rate on
fluid flow modes and flow velocity. Both the rough and smooth fractures exhibit flow insta-
bilities, fingering, and intermittent flow regimes for low infiltration rates. A flat fluid front
is achieved when the flux supplied to a fracture is larger than the gravitationally driven sat-
urated flux. An increase in roughness decreases the flow velocity and increases the standard
deviation of velocity. This is caused by a higher likelihood of flow discontinuities in the form
of fingering and/or snapping rivulets. The scaling of specific discharge with normalized fin-
ger velocity and the relationship between fingertip length and scaled finger velocity are in a
good agreement with experimental results. The final part is devoted to a newly developed
fully-coupled multi-scale SPH model, which considers flow through a porous matrix gov-
erned by the volume-effective Richards equation, and discrete free-surface flows governed
by the Navier-Stokes equation. Inflow dynamics from the fracture into the porous matrix
are realized by an efficient particle removal algorithm and a virtual water redistribution for-
mulation in order to enforce mass and momentum conservation. The model validation is
carried out via comparison to a FEM model (COMSOL) for the Richards based flow dynam-
ics and laboratory experiments to cover more complex cases of free-surface flow dynamics
and matrix infiltration. The developed model is employed to investigate preferential flow
dynamics at a fracture-matrix interface. Simulation results show that preferential flow oc-
curs in most cases simultaneously with the diffuse flow. Depending on the infiltration rate,
the ponding effect can be dominant until the matrix saturation is high enough to activate
fracture flow. For extremely high infiltration rates, fracture flow is dominant and ponding
occurs when the fracture space is fully saturated. Next, the model is employed to simulate
infiltration dynamics in rough fractures embedded in impermeable and permeable porous
walls for different infiltration rates. The simulation results indicate a delay in arrival times
for fractures with permeable walls in comparison to impermeable fractures, especially for
small infiltration rates. Here, for higher infiltration rates, water flows rapidly to the bottom
of the fracture without any significant delay in arrival time.
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Chapter 1

Introduction

1.1 Motivation

The drinking water demand is increasing due to population growth, while the avail-
able drinking water resources are globally decreasing because of overexploitation
and pollution (Hoekstra and Chapagain; 2011). Groundwater resources supply the
largest amount of freshwater, and strongly depend on rainfall/infiltration events
and recharge amounts (McWhorter et al.; 1977).

The infiltration dynamics involve all aspects of flow through a variably saturated
porous medium, ranging in complexity from steady-state, saturated flow in a ho-
mogeneous, isotropic medium to transient, unstable, unsaturated flow through an
anisotropic, heterogeneous medium (Bear; 2012). Understanding the nature of water
movement in the vadose zone and its quantification is essential for solving a vari-
ety of problems, such as water resources management and vulnerability assessment
(Council et al.; 1996), waste repositories (Evans and Rasmussen; 1991; Follin et al.;
2014), geothermal reservoir exploitation and heat storage (Fox et al.; 2013; Hofmann
et al.; 2014), CO2 storage (Bond et al.; 2013), oil and gas recovery, fracking (Myers;
2012), and geotechnical applications (Berkowitz; 2002; Blaise Koffi et al.; 2013). All
these applications require a deep understanding of the unsaturated flow processes,
which are influenced by the subsurface properties, such as fracture/pore connectiv-
ity, fracture surface area and porous matrix/fracture interaction (Ebel and Nimmo;
2013; Flint et al.; 2001).

Fractured-porous media consist of porous permeable or impermeable matrix and
fractures, which provide major conduits or barriers for fluid flows. Unsaturated
or partially saturated flow through fractured-porous media is a complex process,
which depends on geometrical fracture and porous-medium parameters (e.g., grain
size distribution, structure, fracture thickness, fracture-wall geometry/roughness),
physical (density, soil mineralogy, anisotropy) and hydraulic properties (wettability,
permeability, saturation), see Fig. 1.1. Due to their complexity, flow processes though
through the vadose zone are still poorly understood (Faybishenko et al.; 2015). Par-
tially saturated hydrodynamics can be classified into two types: (1) diffuse/porous-
medium flow, where water slowly homogeneously saturates the porous medium,
and (2) preferential/fracture flow, where water follow path of less resistance and
bypass parts of the pore structure (Nimmo; 2006). Both of these two flow types can
also happen at the same time.

The mathematical description of diffuse flow relies on the Richards (1931) equa-
tion, which involves Brooks and Corey (1964) or Van Genuchten (1980) type of pres-
sure-saturation relationships. Many models apply this approach not only to porous-
medium flow, but also to porous-fractured media (Heilweil et al.; 2015; Kordilla
et al.; 2012; Therrien and Sudicky; 1996). Such models have little or no resemblance
to the original physical processes and/or they don’t take into account important
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FIGURE 1.1: Geometrical and hydraulic subsurface properties influ-
encing infiltration dynamics.

flow processes, e.g., fingering, preferential flow pathways (Nicholl and Glass; 2005),
flow meandering, and erratic flow dynamics (Dragila and Weisbrod; 2004; Wood and
Huang; 2015).

The mathematical description of fracture flow relies on the Navier-Stokes equa-
tion. In this case, flow through a single fracture can be approximated as a flow
between two smooth parallel plates (Dragila and Weisbrod; 2003; Keller et al.; 1995).
Many efforts have been made to demonstrate experimentally and numerically the
influence of natural wall roughness on fracture flow (Poon et al.; 1992; Schmittbuhl
et al.; 1995). These efforts can successfully reproduce flow instabilities in fractured
media. However, they consider fracture walls being impermeable, and do not take
into account fluid losses due to infiltration into the permeable fracture walls. An-
other challenge in characterizing flow in the unsaturated zone of fractured-porous
media is the spatial scale contrast between pore-space and fracture void space, which
makes it difficult to model flow processes with a single numerical approach.

In this work, both (diffuse and preferential flow) approaches are taken into ac-
count. This doctoral research is focused on the development of a numerical Smoothed
Particle Hydrodynamics (SPH) model to study the infiltration dynamics in the va-
dose zone at core scales (Fig. 1.1), and to investigate the influence of geometrical
(structure, wall roughness), and hydraulic (conductivity, wettability, saturation) pa-
rameters on preferential flow and rapid aquifer recharge. The first part of the thesis
provides simulation results of sessile and transient droplets on hydrophobic and
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hydrophilic surfaces. The second part deals with infiltration instabilities in smooth
and rough fractures. The third part considers flow through porous media, and at
a fracture-matrix interface. The simulation results demonstrate the influence of the
fracture wall permeability on arrival time and on the volume of water which can be
stored in porous fracture walls.

1.2 Objectives and approaches

The results of this thesis are intended to provide a better understanding of infiltra-
tion dynamics in unsaturated fractured porous media, including the flow instability
in smooth and rough fractures, and between matrix and fracture.

The main objectives this thesis are:

• Objective 1: Understand the effect of microscopic wetting dynamics due to (ori-
ented) surface roughness on the macroscopic contact angles and flow behavior
of droplets. Approach: SPH study of static and dynamic droplets on structured
rough surfaces covering hydrophobic and hydrophilic conditions. The impact
of the roughness orientation is considered via anisotropic fractal roughness of
the solid surfaces.

• Objective 2: Identification of the connection between fracture roughness and
flow modes on the onset of preferential flow dynamics, i.e. formation of insta-
bilities in variably-saturated fractures. Approach: SPH modeling of infiltration
dynamics under varying injection rates and fracture roughness as well as the
identification of velocity distributions and dimensionless slug(droplet) flow
characteristics under highly complex conditions.

• Objective 3: Determine the impact of fracture-matrix interaction during infiltra-
tion events on the formation of preferential flow dynamics and hence the par-
titioning into a diffuse (porous matrix) and rapid (fracture) domain. Approach:
Development of a mechanistic multiscale SPH code to simulate gravity-driven
free-surface and fracture flows coupled to a porous medium flow described by
the Richards (1931) equation. The code enables the study of the wetting process
caused by various rapid surface flow modes as well as the transport process
across the matrix-fracture interface via an efficient exchange algorithm.

1.3 Format of the thesis

This doctoral thesis consists of 7 chapters, which contain the introduction, literature
overview, model description, results of the main research, and conclusion.

Chapter 2 describes the complexity of flow in fractured-porous media, gives a
brief introduction to the scale concept, and introduces various experimental, analyt-
ical and numerical methods to characterize fractured porous medium flow.

Chapter 3 gives an overview of the employed SPH code and its key elements,
which were used, modified and implemented within this doctoral research. In par-
ticular, this includes the most important algorithms, governing SPH equations, and
time stepping procedure. This chapter can be read in conjunction with the Chapters
4, 5, and 6.
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Chapters 4 to 6 represent the main research work, which was done for this thesis.
Chapters 4 and 5 have been published in peer-reviewed journals, and Chapter 6 has
been submitted to a peer-reviewed journal.

Chapter 4 describes the effect of surface geometry/roughness and its orientation
on contact angle and droplet flow, as well as, on hydrophobic or hydrophilic be-
havior of water droplets, which has an impact on flow velocity, and, as a result, on
aquifer recharge.

Chapter 5 presents SPH simulations of unsaturated flow in smooth and rough
fractures and explains the effects of fracture wall roughness on forming preferential
flow pathways, flow mode distributions, and on average flow velocity.

Chapter 6 provides a coupled PF-SPH model for the Richards and Navier-Stockes
equations to simulate flow and transport in fractured porous media. This chapter
includes a model validation via comparison to a COMSOL model and small scale
laboratory experiments. The simulation results demonstrate the effect of matrix im-
bibition on preferential flow in the fracture domain and at a fracture-matrix interface.

Chapter 7 gives a comprehensive conclusion with regard to the objectives of the
thesis and provides suggestions for future research.
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Chapter 2

General overview

2.1 Fractured porous media

Most consolidated porous rocks have undergone metamorphic processes or tecton-
ically induced stress fields, which lead to discontinuities within the porous matrix
(Nelson; 2001). Naturally fractured porous media consist of pore networks and in-
terconnected fractures. Large pores and crevices are associated with fractures and
have dimensions of 1× 10−4 m to 1× 10−2 m (Fischer et al.; 1998; Tsang and Tsang;
1987), while pore throats of the matrix have dimensions of 1× 10−7 m to 1× 10−5 m
(Thoma et al.; 1992). However, the overall porosity of fractured-porous rocks is still
dominated by the porous matrix (Singhal and Gupta; 2010). Nevertheless, fractures
are considered fast transport pathways (Zimmerman and Bodvarsson; 1996), but un-
der partial saturation conditions they can also impede flow (Wang and Narasimhan;
1985). Individual fractures can be characterized by their location, orientation, length,
aperture, and roughness (Fossen; 2016), while fracture networks require also the
characterization of fracture density and connectivity (Berkowitz; 2002).

2.2 Characterization of flow in unsaturated fractured porous
media

The complexity of flow in fractured porous media is coarsed by the scale concept,
where the fracture thickness is associated with a small scale, while the fracture length
can extend over a large scale. The term "scale" describes a dimensional spectrum of
the system, e.g., characteristic length and time (Faybishenko et al.; 2003, Fig. 2.1).
The scale concept is based on the assumption that components of the system be-
have differently on different scales. The large scale allows to study flow in fracture
networks and regional hydrogeological processes. Intermediate scales can be used
to describe volume-averaged flow in fracture networks and fracture-matrix inter-
actions. The small scale allows to describe in detail flow processes in one or few
intersecting fractures. The core scale allows specific experiments for detailed inves-
tigations of flow in individual fractures and the adjacent porous matrix.

The strong contrasts in spatial scales between the fracture aperture and the ex-
tension of the fracture length and the scale contrast in the pores of the matrix make
the characterization of infiltration dynamics in fractured porous media difficult with
a single approach. There are several methodological approaches to describe infil-
tration dynamics in fractured-porous media in the unsaturated zone, which can be
divided into three categories: experimental, theoretical and numerical.
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FIGURE 2.1: Scale hierarchy of fractured rocks in the unsaturated
zone. Modified from Faybishenko et al. (2003)

2.2.1 Experimental approaches

Most of the laboratory experiments characterizing flow in fractures are limited to
small scale and simple configuration setups. A common experimental setup in this
case consists of two parallel (textured) glass plates (Hele-Shaw cell) with a small
aperture, representing a fracture (Dragila and Weisbrod; 2003; Jones et al.; 2018;
Nicholl et al.; 1994; Nicholl and Glass; 2005; Su et al.; 2001). These experimental se-
tups successfully demonstrate fingering effects, and the dependence of flow velocity
on infiltration rate, as well as free surface flow (Benson; 2001; Tokunaga and Wan;
1997; Tokunaga et al.; 2000). Tokunaga and Wan (1997), for example, investigated the
effects of capillary pressure on free-surface film flows, which shows the importance
of the porous matrix system on the effectiveness of rapid fracture discharge. Kordilla
et al. (2017) showed experimentally that flow modes (droplet, rivulet, or transition
between them) heavily influence the partioning behavior of water flowing along a
fracture junction. Some laboratory studies take natural rough fracture surfaces into
account to observe water infiltration in initially dry fractures (Brown et al.; 1998;
Tokunaga and Wan; 2001). Brown et al. (1998) found that fracture channeling caused
by fracture roughness can lead to breakthrough velocities or exceed the mean flow
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velocity.
Field investigations of unsaturated flow often deal with preferential flow path-

ways, —the phenomenon of irregular soil profile wetting, and, as a result, some
parts of the soil with fast moving water (Hendrickx and Flury; 2001). Several au-
thors (Berkowitz; 2002; Nimmo; 2012) have reviewed the observations and investi-
gations of preferential flow under unsaturated conditions during field experiments.
Simple field experimental setups are drip detectors and collection vessels installed
below a fractured unsaturated rock mass, which allow to collect hydrogeological
data, such as discharge, temperature, electrical conductivity, and turbidity in the
unsaturated zone (Faybishenko et al.; 2000; Pronk et al.; 2009; Wood and Huang;
2015). These findings are useful for quantification of water storage and contaminant
transport. However, such datasets commonly describe the hydraulic response of the
bulk system and are not able to characterize fractures and associated properties in
most cases. Thus, one of the fundamental problems is the determination of a frac-
ture location, thickness, and orientation, as well as the formation of preferential flow
paths based on measured data (Berkowitz; 2002).

2.2.2 Theoretical approaches

Theoretical approaches are based on an analytical solutions of flow equations, and
can be used to validate numerical models. Analytical solutions can be subdivided
into volume-effective (e.g., Richards equation) and discrete solutions, e.g. time-
dependent free-surface flow.

Volume-effective solutions often neglect the effects of preferential flow paths
and are commonly applied for large-scale characterization. Most of volume-effective
approaches are based on dual-domain concepts (Germann et al.; 2007; Nimmo; 2010),
which assume that the porous medium consists of two interacting regions, one of
them is associated with the fracture system, another one with the rock matrix. Dual-
domain models can have a dual-porosity (Van Genuchten and Wierenga; 1976) or
dual-permeability (Gerke and Köhne; 2004; Lassabatere et al.; 2014) description of
the flow processes. The main difference between them is that dual-porosity models
assume no water flow in the rock matrix, while dual-permeability models allow wa-
ter flow in the rock matrix as well (Šimunek et al.; 2003). The study of Nimmo (2010)
presents a dual-domain model, where the diffuse-flow domain (rock matrix) is al-
ways active, while the source-responsive domain (micropores or fractures) is only
sometimes active, depending on the water source, i.e. rainfall event, which gives a
better prediction of the height of water table at different times.

Discrete solutions take into consideration a single specific flow mode (droplet,
rivulet, film). The main flow regimes are adsorbed film flow with average flow ve-
locities of 3 × 10−7 ms−1, droplet flow, rivulet flow if flow rates are high enough
to prevent a breakup into droplets, and, at even higher flow rates free-surface films
may develop (Ghezzehei; 2004). Tokunaga and Wan (1997) demonstrated that ad-
sorbed films are an important mechanism for unsaturated flow in fractures, and a
fast flow process in contrast to diffuse flow in the porous matrix.

Numerous studies have been carried out to characterize the droplet flow regime,
including solutions for stationary shape (Gomba and Homsy; 2009), maximum height
(De Gennes et al.; 2013), and contact angle (Yuan and Lee; 2013) of sessile droplets.
Depending on wetting dynamics (hydrophobic or hydrophilic type of surfaces) and
on surface geometry, contact angles of sessile droplets can vary over large ranges.
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On a rough surface, droplets can be in a Cassie state (Cassie and Baxter; 1944) if they
touch only exposed parts of the rough surface, or in a Wenzel state (Wenzel; 1936)
if they fill all depressions of the surface. Transient dynamics of droplets including
breakup mechanisms have been investigated by Voinov (1976), Ghezzehei and Or
(2005), and Lunati and Or (2009). A general linear relationship between Bond and
Capillary number for a sliding droplet was found by Podgorski et al. (2001).

At a certain flow rate rivulets start to form. Rivulets are the main flow modes
that persist during the preferential flow (Germann et al.; 2007). Ghezzehei (2004) de-
rived an analytical solution for total flow rate of rivulets on smooth inclined surfaces.
Dragila and Weisbrod (2003) and Dragila and Weisbrod (2004) provide an analytical
solution for rivulet flow between two parallel plates. The recent study of McCreery
et al. (2005) provides an analytical prediction of rivulet velocity and Reynolds num-
ber based on hydraulic diameter of the rivulet for any given aperture spacing. This
study demonstrates, as well, a linear dependence of rivulet width on the flow rate.

At extremely high flow rates falling films start to form. Mikielewicz and Moszyn-
skl (1976) provide an analytical solution for minimum thickness of a liquid film flow-
ing on a vertical solid surface. Ghezzehei (2004) derives expressions for the critical
flow rate at which a stable film breaks into rivulets. A steady state film flow with
low Reynolds numbers is described by the laminar film theory of Nusselt (1916).
However, for high Reynolds numbers (Re > 20) film flow may contain ripples and
waves, which travel at much higher velocities and provide rapid fluid infiltration
(Dragila and Wheatcraft; 2001).

2.2.3 Numerical approaches

Several classifications of numerical models exist. They can, for example, be based on
the specification of the flow field (Eulerian and Lagrangian) (Batchelor and Batche-
lor; 2000), spatial discretization (grid-based or meshless models), spatial dimensions
(1, 2, or 3D), scale concept (micro, intermediate, or large scale), geometrical proper-
ties (e.g., single fracture or fracture network), or number of phases and components
(single-, two-, multi-phase). Here, we give some examples of numerical models and
their classifications which are used for characterizing the flow in fractured porous
media.

In hydrogeology, both Eulerian and Lagrangian approaches are used to model
fluid flow (Huyakorn; 2012), where the Eulerian grid is used for recording the prop-
erties of the fluid elements passing through a particular point or volume in space and
Lagrangian markers are used to visualize their motion in space and time (Batchelor
and Batchelor; 2000).

Figure 2.2 demonstrates the scale hierarchy of numerical techniques, which are
commonly used for solving hydrogeological problems. The grid-based models are
suitable for large spatial and temporal scales, while meshless models are used for
detailed investigations of fluid motion at small or even micro scale.

Grid-based methods are often based on the Eulerian approach. Common nu-
merical grid-based methods include finite element, finite difference, and finite vol-
ume methods, which are used to approximate the solution of governing differential
equations by dissecting the domain into meshes, and applying simpler equations to
individual elements or nodes in the mesh (Ismail-Zadeh and Tackley; 2010).

For fracture flow the grid based models can be subdivided into (Berre et al.; 2018):

• Single-continuum models, where fractures are represented by adapting the
permeability of the porous medium. They require a representative elementary
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geology. MD: molecular dynamics; DPD: dissipative particle dynam-
ics; SDPD: smoothed dissipative particle dynamics; SPH: moothed
particle hydrodynamics. Information compiled from Dzwinel et al.

(1999, 2006); Kulkarni et al. (2013)

volume (REV) (Bear and Braester; 1972) to be defined and are often modeled
with the Richards (1931) equation. Originally, this approach has been derived
for porous media, but with some approximations can be applied to fractured
media as well. However, depending on the type of heterogeneity they may not
be able to capture effects of preferential flow.

• Multi-continuum approaches represent the fractured porous medium by sev-
eral superimposed media with their own conservation equations. As in case of
single-continuum models, they rely on the REV concept.

• Discrete fracture network (DFN) models can model flow focusing and the com-
bined effect of diffuse matrix and rapid fracture flow (Hyman et al.; 2015; Mak;
2014; Zhang et al.; 2004).

Meshless methods are commonly based on Lagrangian approaches, which do
not require a connection between nodes of the simulation domain, but are rather
based on interaction of each node with all its neighbors. In hydrology such methods
are commonly applied to study small-scale flow and transport physics. The most
common meshless methods are the following:

• Smoothed particle hydrodynamics (SPH) models (Gingold and Monaghan;
1977; Lucy; 1977) commonly discretize the Navier-Stokes equation, where par-
ticle accelerations are computed from a pressure gradient (Kordilla et al.; 2017;
Kordilla J.; 2013; Meakin and Tartakovsky; 2009; Shigorina et al.; 2017, 2019;
Tartakovsky and Panchenko; 2016; Tartakovsky and Meakin; 2005).

• Dissipative particle dynamics (DPD) models (Hoogerbrugge and Koelman;
1992; Koelman and Hoogerbrugge; 1993) are used for simulating the dynamic
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and rheological properties of simple and complex fluids, where particle rep-
resents a cluster of atoms or molecules (Bian et al.; 2012; Huang and Meakin;
2008).

• Smoothed dissipative particle dynamics (SDPD) is a mesoscale particle-based
model. The governing equations show close resemblance with the DPD model.
SDPD has been used to study the dynamics of complex fluids such as particle
suspensions and dilute DNA solutions (Bian et al.; 2012; Litvinov et al.; 2011).

• Molecular dynamics (MD) models (Alder and Wainwright; 1959) allow the
closest approximation of the atomistic properties of a system. They have been
employed to study capillary flow dynamics (Wei et al.; 2014), contact line dy-
namics (Wang and Zhao; 2013), and biological flow phenomena (Fedosov et al.;
2014).

The research work of this thesis is carried out with a SPH model. In comparison
with grid-based and other meshless methods, SPH has several advantages:

• The main advantage of SPH method in comparison to other meshless methods
is that SPH allows to simulate flow on a larger spatial and temporal scale (Fig.
2.2), than other particle techniques.

• The SPH method allows to investigate infiltration dynamics based on wetting
conditions (e.g., hydrophobic or hydrophilic surfaces), and natural fracture
roughness can be easily implemented, which can be difficult with grid-based
methods.

• The SPH method is mass conservative, and no additional discretization of the
mass-conservation equation is required.

• The SPH model allows to simulate transient flow dynamics over a wide range
of wetting conditions without any need of resolving the air-phase, which pro-
vides a computational advantage, especially under low saturation conditions,
i.e. large amount of continuous air-phase.
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Chapter 3

Multiscale pairwise force
Smoothed Particle Hydrodynamics
model

The intention of this chapter is to give an overview of the SPH method and the
simulation algorithm used in the studies described in Chapters 4, 5, and 6.

3.1 PF-SPH method and governing equations

SPH is a mesh-free Lagrangian method where fluids are discretized with a set of N
points, commonly referred to as particles. Each particle is defined by its position ri,
mass mi, density ρi, and velocity vi, i = 1, ..., N. SPH is based on the approximation
of a continuous function and its derivative:

f (r) =
N

∑
j

mj

ρj
f (rj)W(|r− rj|, h), (3.1)

∇ f (r) =
N

∑
j

mj

ρj
f (rj)∇W(|r− rj|, h) , (3.2)

where the kernel W(|r− rj|, h) (Fig. 3.1) satisfies the normalization condition,∫
W(|r− rj|, h)dr = 1, (3.3)

and has compact support h. In the limit of h→ 0, W approaches the Dirac delta
function δ(|r− rj|):

lim
h→0

W(|r− rj|, h) = δ(|r− rj|). (3.4)

A number of functional forms of W have been used in the literature. In this study,
we use W in the form of a so-called “Wendland” kernel (Wendland; 1995):

W(rij, h) = αk

 (1− rij
h )

4(4 rij
h + 1) if 0 ≤ rij < h

0 if rij ≥ h
, (3.5)

where αk = 21/(2πh3).
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W

FIGURE 3.1: Kernel W with a circular support domain of length h and
value W(rij, h) between particles i and j at a distance rij.

The main equations, which we discretize with the PF-SPH method are the conti-
nuity equation (Chapters 4, 5, and 6),

dρ

dt
= −ρ∇ · v, (3.6)

the momentum conservation equation (Chapters 4, 5, and 6),

dv
dt

= −1
ρ
∇P +

µ

ρ
∇2v + g, (3.7)

and the Richards equation (Chapter 6),

∂Θ(ψ)

∂t
= (Cm + ρgSeSs)

∂ψ

∂t
= ∇ ·Kskr(ψ)∇ψ +

∂K(ψ)
∂z

. (3.8)

The parameters are the pressure P, viscosity µ, gravity g, water content Θ, hydraulic
head ψ, specific storage coefficient Ss, Cm specific moisture capacity, effective satu-
ration Se, relative hydraulic conductivity kr, and saturated hydraulic conductivity
Ks.

In this framework, we consider two types of particles: (1) solid/boundary par-
ticles, which represent a solid surface, fracture walls and/or porous media, and (2)
fluid/water particles. The solid particles are immobile, and placed on a uniform
cubic lattice with a lattice size ∆x. The spacing ∆x may vary depending on the sim-
ulation setup and on the required resolution. The fluid particles are initially placed
on a uniform cubic lattice with the same ∆x as solid particles, or they can be ran-
domly added to the simulation domain within a defined region during the simula-
tion. Changes in positions of fluid particles are found via an SPH discretization of
Eqs.(3.6)-(3.7):

dri

dt
= vi, (3.9)
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dvi

dt
= −

N

∑
j=1

mj

( Pj

ρ2
j
+

Pi

ρ2
i

) rij

rij
·

dW(rij, h)
drij

+ 2µ
N

∑
j=1

mj
vij

ρiρjrij
·

dW(rij, h)
drij

+ g +
1

mi

N

∑
j=1

Fij, (3.10)

where the density ρi is obtained from kernel summation as

ρi =
N

∑
j=1

mjW(rij, h) . (3.11)

This expression conserves mass exactly and, therefore, can be used instead of the
mass conservation (continuity) Eq.(3.6).

The particle-particle interaction force Fij in Eq. (3.10) is used to generate surface
tension and the fluid wetting behavior. Here, we use Fij in the form (Kordilla et al.;
2017; Kordilla J.; 2013):

Fij = sij

[
ÃijW̃

(
rij,

h
2

) rij

rij
− W̃(rij, h)

rij

rij

]
, (3.12)

where W̃ is a cubic spline function:

W̃(rij, h) =


1− 3

2 (
r
h )

2 + 3
4 (

r
h )

3 if 0 ≤ r
h < 0.5

1
4 (2−

r
h )

3 if 0.5 ≤ r
h < 1

0 if r
h ≥ 1

(3.13)

and sij and Ãij are parameters determining the magnitude of surface tension and
the microscopic static contact angle. The parameter sij is set to sff when particle j is a
fluid particle and ssf when particle j is a solid particle (particle i in Eq.(3.10) is always
a fluid particle). For a liquid to wet a surface, sff should be set greater than ssf and
vice versa.

To evaluate pressure at each time step, we employ an equation of state (EOS)
following Batchelor (1967) and Monaghan (2005):

P = P0

{( ρ

ρ0

)γ
− 1
}

, (3.14)

where

P0 =
c2ρ0

γ
. (3.15)

Here, γ = 3 (Chapter 4), and γ = 7 (Chapters 5, 6), and the speed of sound c is
chosen such way, that the relative density fluctuation |δρ|/ρ is small enough (less
than 3%) to approximate an incompressible fluid (Morris et al.; 1997).

Chapters 4 and 5 deal with open surface and fracture flow without water ex-
change between fracture and matrix. Chapter 6 considers flow through a porous
medium and at a fracture-matrix interface. The water exchange between solid and
fluid particles is done via redistribution of initial water contents of particles and a
particle removal algorithm. The fluid particles are initially fully saturated and have
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Θ f = 1.0 and ψ f = 0.0 m. Depending on the type of problem, the solid particles are
assigned Θb = 0.0 or Θb equal to a residual water content. Once fluid particles come
into a contact with solid particles the exchange of fluid is governed by the Richards
equation, i.e. a pressure-head dependent transfer is established. The changes in wa-
ter content and pressure head for solid and fluid particles are found from Eq. (3.16):

dΘi

dt
= (Cmi + ρigSeiSs)

dψi

dt
=

N

∑
j=1

2
mimj

mi + mj

ρi + ρj

ρiρj
·Kskri(dψij + dzij) ·

dW(rij, h)
drij

.

(3.16)
The maximum Θb of solid particles is equal to the saturated water content of the
porous matrix based on the user defined porosity. If the water content Θ f of fluid
particles falls below a critical threshold Θ f < 0.99, we redistribute the total water
content of all particles below the threshold such that most particles are fully satu-
rated again with Θ f = 1.0. Fluid particles that are still below the critical threshold
after the redistribution are marked and removed at the end of the time step. The
residual water content (commonly less than the water content of one single particle)
is stored and taken into account during the next time step. This procedure is carried
out over all particles within a single MPI domain.

To properly conserve the water balance in the system, we rely on the mass con-
servation equation:

∂Θ
∂t

= ∇ · (∑ qin −∑ qout) = 0 , (3.17)

where q is the specific flux. Every time step we calculate the sum of Θ f and Θb of all
fluid and boundary particles based on Eq. (3.18). To control the water balance in the
system, the total Θ must stay constant:

Θ = ∑ Θ f + ∑ Θb = const. (3.18)

3.2 Simulation algorithm

The three-dimensional SPH code is entirely written in Large-Scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) (Ganzenmüller et al.; 2011). LAMMPS con-
sists of various source files and classes, written in C/C++ (Plimpton; 1995). The
classes, which are used, modified, and implemented in this study are shown in Fig.
3.2 within a class hierarchy and time stepping algorithm. Each boxed name refers to
a class and has a pair of associated source files in lammps/src:

• The Memory class allocates all large vectors and arrays.

• The Error class checks for errors and prints warning messages.

• The Universe class sets up processors so that multiple simulations can be run,
each on a subset of the processors allocated for a run.

• The Input class reads an input script, stores variables, and invokes standalone
commands. The Read restart command reads all atom (particle) information
(e.g., position, velocity, density, pressure head) from a previous simulation, al-
lows to continue the simulation, and can be useful for long runs. The Read data
command imports list of particles (e.g., coordinates) from other files, which
allows to create complex rough fracture geometries separately from the main
input script. The main input Variables are ∆x, h, particle mass m0 and initial
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FIGURE 3.2: Simulation algorithm within the LAMMPS class hierar-
chy.
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density ρ0 (Eqs. 3.10, 3.16), µ, g (Eq. 3.10), ss f and s f f (Eq. 3.12), c (Eq. 3.15),
Θ0, ψ0, Ss, Ks (Eq. 3.16), and a time step ∆t.

• The Atom class stores all per-atom arrays. More precisely, they are allocated
and stored by the AtomVec class, and the Atom class simply stores a pointer to
them.

• The Domain class stores the simulation box geometry, as well as geometric
Regions and any user definition of a Lattice (resolution/particle spacing ∆x).

• The Update class takes care of the time stepping algorithm. We employ a mod-
ified Velocity Verlet time stepping scheme, where Initial Integrate calculates all
variables at 1/2∆t, and Final Integrate at the end of ∆t:

(1) vi(t + 1
2 ∆t) = vi +

1
2 ai(t); (3.19a)

(2) v̄i(t + ∆t) = vi(t) + ∆tai; (3.19b)

(3) ri(t + ∆t) = ri(t) + ∆tvi(t + 1
2 ∆t); (3.19c)

(4) calculation of ai(t + ∆t)using extrapolated velocity v̄i;

(5) vi(t + ∆t) = vi(t + 1
2 ∆t) +

1
2

ai(t + ∆t), (3.19d)

where ai = fi
mi

is the acceleration. Time step constraints are given by Tar-
takovsky and Meakin (2005):

∆t ≤ 0.25h/3c (3.20a)

∆t ≤ 0.25min(h/3 | ai |)1/2 (3.20b)

∆t ≤ min(ρih2/9µi), (3.20c)

where | ai | is the magnitude of acceleration ai.

The information about fluid particles (e.g., positions, velocities) is calculated
in fix_meso (Initial Integrate) for 1/2∆t, and in fix_meso (Final Integrate) for
∆t. The information about solid particles (e.g., hydraulic heads, water con-
tents) is calculated in fix_meso_ stationary (Initial Integrate) for 1/2∆t, and
in fix_meso_stationary (Final Integrate) for ∆t. The Pre_Exchange class inserts
or deletes particles from the system; fix_pour inserts new fluid particles with
a user defined volumetric flux; fix_infiltrate removes fluid particles if they
are desaturated (Eqs. 3.17 and 3.18).

• The Force class computes various forces between atoms. The Pair parent class
is for non-bonded or pair-wise forces; rho_sum computes densities (Eq. 3.11),
tait_pf_morris computes forces in Eq. (3.7), and richards computes changes
in water contents (Eq. 3.8).

• The Modify class stores lists of Fix and Compute classes, both of which are
parent styles. The Compute class allows to compute all additional variables,
which user would like to output.

• The Output class is used to generate 3 kinds of output from a LAMMPS sim-
ulation: information printed to the screen and log file, dump file snapshots,
which can be opened with a visualization tool (e.g., Visit, Paraview), and restart
files, which can be used to continue the simulation. These correspond to the
Thermo, Dump, and Restart classes respectively.
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• The Timer class holds MPI timing information.
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Chapter 4

Smoothed particle hydrodynamics
study of the roughness effect on
contact angle and droplet flow1

Abstract.
We employ a pairwise force Smoothed particle hydrodynamics (PF-SPH) model

to simulate sessile and transient droplets on rough hydrophobic and hydrophilic
surfaces. PF-SPH allows modeling of free surface flows without discretizing the
air phase, which is achieved by imposing the surface tension and dynamic contact
angles with pairwise interaction forces.

We use the PF-SPH model to study the effect of surface roughness and micro-
scopic contact angle on the effective contact angle and droplet dynamics. In the first
part of this work, we investigate static contact angles of sessile droplets on different
types of rough surfaces. We find that the effective static contact angles of Cassie and
Wenzel droplets on a rough surface are greater than the corresponding microscale
static contact angles. As a result, microscale hydrophobic rough surfaces also show
effective hydrophobic behavior. On the other hand, microscale hydrophilic sur-
faces may be macroscopically hydrophilic or hydrophobic, depending on the type
of roughness. We study the dependence of the transition between Cassie and Wen-
zel states on roughness and droplet size, which can be linked to the critical pressure
for the given fluid-substrate combination. We observe good agreement between sim-
ulations and theoretical predictions.

Finally, we study the impact of the roughness orientation (i.e., an anisotropic
roughness) and surface inclination on droplet flow velocities. Simulations show that
droplet flow velocities are lower if the surface roughness is oriented perpendicu-
lar to the flow direction. If the predominant elements of surface roughness are in
alignment with the flow direction, the flow velocities increase compared to smooth
surfaces, which can be attributed to the decrease in fluid-solid contact area similar to
the lotus effect. We demonstrate that classical linear scaling relationships between
Bond and capillary number for droplet flow on flat surfaces also hold for flow on
rough surfaces.

4.1 Introduction

Surface roughness and fluid-surface interactions control wettability and flow dy-
namics of droplets. Droplets are likely to spread on hydrophilic smooth surfaces to

1Shigorina, E., Kordilla, J., and Tartakovsky, A. M. (2017): Smoothed particle hydrodynamics study
of the roughness effect on contact angle and droplet flow. Physical Review E, 96(3):033115.
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form a thin film or puddle and commonly form a spherical shape on fully hydropho-
bic smooth surfaces when droplet sizes are comparable to the capillary length of
water (Quéré et al.; 2004). A surface is considered hydrophobic if the static contact
angle is larger than 90◦ and hydrophilic, otherwise. On smooth surfaces, the static
contact angle θ0 only depends on the fluid-solid molecular interactions. Therefore,
in this paper, we will refer to this as the microscopic contact angle θ0. On rough sur-
faces, the static contact angle, which we call the effective contact angle θeff, depends
on both the fluid-solid molecular interactions (and θ0) and surface roughness. Vari-
ous authors have experimentally investigated the dependence of the contact angles
on the chemical composition and roughness of solid surfaces (e.g., Genzer and Efi-
menko; 2006; Voigt and Gorb; 2009; Zhao et al.; 2007). Recently, molecular dynamics
(MD) simulations have been used to study the effect of nanoscale roughness on static
contact angles of droplets (Daub et al.; 2010; Yang et al.; 2008). It was shown that
smooth hydrophilic surfaces can become less hydrophilic if certain types of rough-
ness are added. In some cases, a superhydrophobic rough surface with a contact
angle of 180◦ can be created.

Droplet flow on rough surfaces has been investigated experimentally and numer-
ically using MD simulations by Huang et al. (2009), Byun et al. (2008), Zhang et al.
(2014), and Stamatopoulos et al. (2016). For example, Zhang et al. (2014) experi-
mentally studied the droplet velocities on grooved surfaces with various inclination
angles and different orientations of grooves relative to the flow direction. Results
indicated that droplets experience less resistance to flow if grooves are oriented par-
allel to the flow direction, and they move significantly faster. On the other hand,
water droplets barely moved when the grooves were oriented perpendicular to the
flow direction.

In this work, we investigate contact angle dynamics of sessile and transient droplets
on rough hydrophobic and hydrophilic surfaces using the pairwise force Smoothed
particle hydrodynamics (PF-SPH) method implemented in LAMMPS (Plimpton; 1995),
a massively parallel library for particle simulations. In PF-SPH, the boundary con-
ditions at the fluid-fluid and fluid-fluid-solid interfaces are modeled by pairwise
forces (Tartakovsky and Panchenko; 2016). In contrast to other numerical methods
for multiphase flows (e.g., Huang et al.; 2009), PF-SPH allows for discretizing only
the liquid phase in liquid-gas flows, which significantly reduces the computational
cost for modeling water droplet flows where most of the domain usually is occupied
by air.

A validation of the PF-SPH method for fluid-fluid systems (where both fluids
are explicitly modeled) for modeling fluid-fluid and fluid-fluid-solid interfaces, in-
cluding dynamic contact angles, with respect to Young-Laplace Voinov (1976) and
Tanner (1979) laws was presented in Tartakovsky and Panchenko (2016). Similarly,
here, we demonstrate the accuracy of PF-SPH for liquid-gas systems where only
the liquid phase is explicitly modeled. Furthermore, the model is shown to repro-
duce the Cassie-to-Wenzel transition based on critical capillary pressure and inter-
nal droplet pressure. Next, we use the PF-SPH model to simulate highly intermit-
tent, gravity-driven free surface flows for a diverse range of wetting conditions on
time and length scales that are inaccessible to MD. We also use the PF-SPH method
to study the effect of roughness on the effective static contact angle. We construct
four surface geometries to investigate the changes of static contact angles of sessile
droplets: rectangular, dual-rectangular, sinusoidal, and dual-sinusoidal surfaces.

Similar to the experimental work of Zhang et al. (2014), we study the effect of
surface roughness orientation relative to the flow direction on the motion of water
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droplets and observe good qualitative agreement with our simulations. Grooves ori-
ented parallel to the flow direction result in higher droplet velocities, while they im-
pede movement when oriented perpendicular to the flow direction. We cast our re-
sults in a dimensionless form to investigate the relationship between Bond (Bo) and
capillary (Ca) numbers for different surface inclination angles and types of rough-
ness. Simulations show that linear scaling relationships between Bo and Ca numbers
for droplet flow on smooth surfaces (Podgorski et al.; 2001) also hold on rough sur-
faces.

4.2 Governing equations and PF-SPH method

We consider flow of water and air phases, where the air phase is continuous. Under
this condition, it is common to disregard the effect of the air phase on water flow
and model the latter by a combination of the continuity equation,

dρ

dt
= −ρ∇ · v, (4.1)

and the momentum conservation equation,

dv
dt

= −1
ρ
∇P +

µ

ρ
∇2v + g, (4.2)

subject to the free surface boundary condition at the fluid-air interface,

− Pn = −τw · n + Sσn, (4.3)

and a no-slip boundary condition at the fluid-solid boundary. Here, τw = [µ(∇v +
∇vT)] is the viscous stress tensor, v is the velocity, P is the pressure, µ is the viscosity,
g is the gravitational acceleration, S is the interface curvature, σ is the surface ten-
sion, and the normal vector n points away from the non-wetting phase. In addition,
the microscopic contact angle needs to be specified at the water-air-solid contact line.

In this work, we use the weakly compressible PF-SPH method (Kordilla J.; 2013;
Tartakovsky and Meakin; 2005) to solve Eqs.(4.1)-(4.3). The PF-SPH discretization of
Eqs. (4.2) and (4.3) is

dvi

dt
= −

N

∑
j=1

mj

( Pj

ρ2
j
+

Pi

ρ2
i

) rij

rij
·

dW(rij, h)
drij

+ 2µ
N

∑
j=1

mj
vij

ρiρjrij
·

dW(rij, h)
drij

+ g +
1

mi

N

∑
j=1

Fij, (4.4)

where mi and mj is a mass of particle i or j, respectively, W(rij, h) is the kernel func-
tion. A number of functional forms of W have been used in the literature. Here, we
use W in the form of a so-called “Wendland” kernel (Wendland; 1995):

W = αk

 (1− |r|h )3 if 0 ≤ |r| < h

0 if |r| ≥ h
, (4.5)

where αk = 168/16πh3.
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The particle positions are advanced according to:

dri

dt
= vi. (4.6)

The particle-particle interaction force Fij in Eq. (4.4) is used to generate surface
tension and the fluid wetting behavior. Here, we use Fij in the form:

Fij = sij

[
ÃijW̃

(
rij,

h
2

) rij

rij
− W̃(rij, h)

rij

rij

]
, (4.7)

where W̃ is a cubic spline function:

W̃(rij, h) =


1− 3

2 (
r
h )

2 + 3
4 (

r
h )

3 if 0 ≤ r
h < 0.5

1
4 (2−

r
h )

3 if 0.5 ≤ r
h < 1

0 if r
h ≥ 1

(4.8)

and sij and Ãij are parameters determining the magnitude of surface tension and the
microscopic static contact angle. To impose the no-slip boundary condition away
from the fluid-fluid-solid contact line and the contact angle at the contact line, the
solid phase is discretized with a set of static “solid” particles, and summation in Eq.
(4.4) is performed over both fluid and solid particles. The parameter sij is set to sff
when particle j is a fluid particle and ssf when particle j is a solid particle (particle
i in Eq. (4.4) is always a fluid particle). For a liquid to wet a surface, sff should be
set greater than ssf and vice versa. In this work, the parameter Ãij is set to Ãff = 8
for interactions between two fluid particles and to Ãsf = 24 for interactions between
fluid and solid particles.

The density is obtained from kernel summation as:

ρi =
N

∑
j=1

mjW(rij, h) . (4.9)

To evaluate pressure at each time step, we employ an equation of state (EOS)
following Batchelor (1967) and Monaghan (2005):

P = P0

{( ρ

ρ0

)γ
− 1
}

, (4.10)

where

P0 =
c2ρ0

γ
. (4.11)

Here, γ = 3 and the speed of sound c are chosen so that the relative density fluctu-
ation |δρ|/ρ is small enough (less than 3%) to approximate an incompressible fluid
(Morris et al.; 1997). To integrate Eq. (4.4), we employ a modified Velocity Verlet time
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stepping scheme:

(1) vi(t + 1
2 ∆t) = vi +

1
2 ai(t); (4.12a)

(2) v̄i(t + ∆t) = vi(t) + ∆tai; (4.12b)

(3) ri(t + ∆t) = ri(t) + ∆tvi(t + 1
2 ∆t); (4.12c)

(4) calculation of ai(t + ∆t)using extrapolated velocity v̄i;

(5) vi(t + ∆t) = vi(t + 1
2 ∆t) +

1
2

ai(t + ∆t), (4.12d)

where ai =
fi
mi

is the acceleration.
Time step constraints are given by Tartakovsky and Meakin (2005):

∆t ≤ 0.25h/3c (4.13a)

∆t ≤ 0.25min(h/3 | ai |)1/2 (4.13b)

∆t ≤ min(ρih2/9µi), (4.13c)

where | ai | is the magnitude of acceleration ai.
In our simulations, we set the density and viscosity of water to ρ0 = 1000 kg/m3

and µ = 0.001 296 Pa s, respectively. Initially, the SPH particles are placed on a uni-
form cubic lattice with the lattice size 0.5× 10−4 m (unless mentioned otherwise),
which results in a fluid particle mass of m0 = 1.25× 10−10 kg. The mass of solid
particles is set to that of the fluid particle. The smoothing length is set to h =
1.71× 10−4 m, the speed of sound to c = 4.5 m s−1, and the gravitational acceler-
ation to g = 9.81 m/s2.

4.3 Model parametrization and verification

4.3.1 Surface tension

The parameter sff is calibrated with respect to the surface tension of water by simu-
lating a droplet and using the Young-Laplace law to relate the difference of pressure
inside and outside of the bubble, ∆P and its radius, Req, to the surface tension σ:

σ =
Req

2
∆P. (4.14)

Because the pressure outside of the bubble is zero, ∆P is equal to the pressure inside
the bubble. It should be noted that the total pressure in PF-SPH is a sum of the
pressure prescribed via the EOS and generated by Fij. As in any particle system, the
total pressure generated by SPH particles can be calculated from the virial formula
(Allen and Tildesley; 1989; Kordilla J.; 2013; Tartakovsky and Meakin; 2005):

PT =
1

2dVr
∑

i
∑

j
rijfij =

1
8r3

v
∑

i
∑

j
rijfij, (4.15)

where d = 3 for a three-dimensional system and ∑j fij = midvi/dt. The double
summation is performed over all particles within the distance rv from the droplet
center, where rv = Req − h, to exclude the boundary deficiency effect. We obtain the
surface tension of water with sff = 3.5× 10−6. Six liquid droplets with radii ranging
from 0.5 mm to 1 mm are simulated in the absence of gravity with sff = 3.5× 10−6

and the other parameters as described. Figure 4.1 shows the fluid pressure PT in the
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center of the equilibrated liquid droplet versus 1/Req. The surface tension, found
as half of the slope of the straight line fitted through the simulation results, is σ =
73.14 mN m−1 (the water surface tension is 72 mN m−1 at 25 C).

0 500 1000 1500 2000
0

100

200

300

400

1/R
eq

P
T
 (

P
a

)

FIGURE 4.1: Pressure for various droplet sizes.

4.3.2 Static contact angles on smooth surface

To measure static contact angles, we simulate droplets that are slowly brought into
contact with the flat surface. Each droplet has a volume of V = 2.14 mm3. After
droplets reach equilibrium and remain static, we select fluid particles at the intersec-
tion of the droplet surface with the xy- and zy-planes and fit circles with radius Rx
in the xy-plane and Rz in the zy-plane as shown in Fig. 4.2. The contact angles θx

0 in
the x direction and θz

0 in the z direction can be found as

θx,z
0 = 90± arcsin(

lx,z

Rx,z
), (4.16)

where lx,z is a distance between circle center and solid surface. In Eq. (4.16), the addi-
tion is carried out for static contact angles larger than 90◦ and subtraction otherwise.
The static contact angle θ0 is equal to the arithmetic mean of θx

0 and θz
0.

For the parameter set described above, the (microscopic) static contact angle θ0
on a smooth surface depends on the interaction forces ssf between solid and fluid
particles (Table 4.1). Figure 4.3 shows that θ0 decreases with increasing ssf. All static
contact angles θ0 are measured with a standard error SEθ̄0

≈ ±0.2◦, which is com-
puted as

SEθ̄0
=

s√
5

, (4.17)

where s is the standard deviation of the mean θ̄0 of 5 droplets. Droplets are brought
into contact with the solid surface from five different distances, in order to random-
ize the dynamic contact line movement until a static contact angle is achieved.

To investigate the pinning effect due to the discrete nature of the solid surface we
compute the difference ε0 in contact angles in the x and z directions:

ε0 =| θx
0 − θz

0 | . (4.18)
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FIGURE 4.2: Static contact angle measurements. Here, only the
droplet cross-section in the xy-plane is shown.

TABLE 4.1: Static contact angles of droplets for different solid-fluid
interaction strengths ssf.

ssf 0 1× 10−6 1.3× 10−6 1.8× 10−6 2.2× 10−6 2.8× 10−6

θx
0 122.4◦ 100.8◦ 85.2◦ 81.3◦ 77.2◦ 0.1◦

θz
0 122.9◦ 101.2◦ 84.3◦ 81.7◦ 77.7◦ 72.2◦

θ0 122.7◦ 100.9◦ 84.7◦ 81.5◦ 77.5◦ 72.8◦

ε0 0.5◦ 0.4◦ 0.9◦ 0.4◦ 0.5◦ 0.8◦

The values of ε0 are reported in Table 4.1. In these simulations ε0 is less than 1◦, and
we assume that pinning effects are negligible for the chosen resolution.
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FIGURE 4.3: Static contact angles for different solid-fluid interaction
strengths ssf.

To validate our model, we simulate droplet spreading on a horizontal surface
(Fig. 4.4, inset) and compare the time-dependent height of the droplet, H, with the
Tanner law: H ∼ t−2n/3, where n = 0.3 in three spatial dimensions (Tanner; 1979).
The simulation is initialized by placing a droplet with an initial radius R0 = 1.2 mm
on the horizontal surface. After equilibration of the droplet on the solid surface in
the presence of gravity, we prescribe a solid-fluid interaction force of ssf = 3× 10−6

and measure the height changes of the droplet over time.
Figure 4.4 shows H as a function of time obtained from the simulation with the

exponent n = 0.274, which is close to the theoretical value of n = 0.3.

4.3.3 Dynamic contact angles on smooth surface

Here we demonstrate that the PF-SPH model predicts dynamic contact angles in
accordance with the theoretical Cox-Voinov relationship (Bonn et al.; 2009; Voinov;
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FIGURE 4.4: Model verification with respect to Tanner’s law: height
of the droplet as a function of time. The inset shows the droplet

spreading on a horizontal surface.

1976). The dynamic contact angle as a function of the contact line velocity is mea-
sured by simulating a plate withdrawal from a pool of liquid. According to the Cox-
Voinov relationship, the receding contact angle scales with the capillary number, Ca,
as

θ3
0 − θ3

r ∼ Ca , (4.19)

where Ca is defined as
Ca = µ

v
σ

, (4.20)

and v is the velocity of the moving plate.
The simulation setup is shown in Fig. 4.5(inset). The receding angle is computed

as the angle formed by a circle, fitted to the interface, and the solid boundary. From
Fig. 4.5 we find that θ3

0 − θ3
r ∼ Caα with α = 0.9469, which is close to the theoretical

value α = 1.
Physically, θ0 depends on the chemical composition of fluids and the solid sur-

face, and, numerically (in the PF-SPH model), θ0 is a function of the interaction pa-
rameters ssf and sff. Therefore, we refer to θ0 as a microscopic static contact angle. In
the following, we study droplet behavior on rough surfaces obtained by “carving” a
flat surface and characterize macroscopic wetting properties of these rough surfaces
in terms of the effective contact angle formed by a droplet and a plane fitted to the
rough surface.

4.4 Wenzel and Cassie droplets on rough solid surfaces

Depending on θ0 and surface roughness, a droplet on a rough surface can be in one
of the three regimes: the Wenzel regime (Wenzel; 1936), the Cassie regime (Cassie
and Baxter; 1944), or the mixed Cassie-Wenzel regime. Figure 4.6 shows the PF-
SPH simulations of a droplet in all three regimes. On “microscopically” hydrophilic
rough surfaces (i.e., surfaces with θ0 > π/2), Wenzel drops are formed by the fluid



4.5. Effective contact angles of droplets on rough microscopically hydrophobic
surfaces

35

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

Ca

θ
03
−
θ

r3

 

 
simulation

y = 13.12 x
0.947

x

y

z

FIGURE 4.5: Cox-Voinov relationship for receding contact angles. The
inset shows the simulation results of a plate withdrawal from a pool

of liquid (x = 25 mm, y = 10 mm).

filling surface indentations (Fig. 4.6, middle). On microscopically hydrophobic sur-
faces, depending on the ratio of roughness to the size and mass of the droplet, Cassie
(Fig. 4.6, left) or Cassie-Wenzel regime (Fig. 4.6, right) droplets can form. In the
Cassie regime, a droplet “rests” on the surface spikes, while a droplet partially filling
the pits and depressions of a rough surface is considered to be in the Cassie-Wenzel
regime. In general, the effective contact angle θeff, formed by a droplet on a rough
surface, differs from the microscopic static contact angle θ0.

FIGURE 4.6: Different states of droplets depending on wetting con-
ditions (left to right): Cassie state, Wenzel state, and Cassie-Wenzel

state.

In the following, we simulate droplets in all three regimes and study the rela-
tionship between the roughness geometry, θ0 (or the parameter ssf), and θeff. We
investigate both hydrophobic surfaces (θ0 > 90◦) and hydrophilic (θ0 < 90◦) sur-
faces.

4.5 Effective contact angles of droplets on rough microscopi-
cally hydrophobic surfaces

Microscopically hydrophobic rough surfaces are modeled by setting ssf = 0, which
yields θ0 = 122.7◦. We consider four types of rough surfaces with rectangular, dual-
rectangular, sinusoidal, and dual-sinusoidal patterns (see Fig. 4.7).
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FIGURE 4.7: Surface parameters (four types, from left to right): (1) for
rectangular surface - height H and width l of a bar; d - distance be-
tween bars; (2) for dual-rectangular surface - height H and l width of
a block, d - distance between blocks; (3) for sinusoidal surface - period
T and magnitude A of a sinusoidal function in the x direction; (4) for
dual-sinusoidal surface - period T and magnitude A of a sinusoidal

function in the x and z directions.

(a)                                                 (b)                                                (c)     

(d)                                     (e)                                  (f)

FIGURE 4.8: Static contact angles of droplets on hydrophobic rectan-
gular (a - c) and dual-rectangular (d - f) surfaces. Surface parameters
are: d = 0.2 mm, l = 0.15 mm (a, d); d = 0.25 mm, l = 0.2 mm (b, e);
d = 0.25 mm, l = 0.25 mm (c, f); H = 0.2 mm for all types of surfaces.

We model droplets with an initial radius R = 0.8 mm, which are slowly brought
into contact with a rough surface. After equilibration of a droplet on the rough sur-
face, we measure the effective contact angle θeff in the x- and z-directions as shown
in Fig. 4.2. For Wenzel and Cassie-Wenzel droplets, which penetrate depressions of
the rough surface, we measure θeff relative to the nominal smooth surface on top
of the blocks, as indicated in Figs. 4.6(middle) and 4.6(right) by the solid line. De-
pending on their geometry, solid surfaces are discretized with approximately 20 000
boundary particles and droplets with 17 075 fluid particles. Simulations are run on
eight processors.

4.5.1 Rectangular and dual-rectangular surfaces

Figure 4.7 (first from left) shows the rectangular-patterned surface. This surface is
parametrized by the distance d between “bars,” the height H, and the width l of
the bars. We study three rectangular-patterned surfaces with different parameters l
and d, and H = 0.2 mm: a fine-roughness surface with small d and l (Fig. 4.8a), a
medium-roughness surface (Fig. 4.8b), and a coarse-roughness surface with large d
and l (Fig. 4.8c).
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Fig. 4.7 (second from left) depicts the dual-rectangular surface. It is constructed
of blocks of height H, length l, and the distance d between the blocks. Figures 4.8d-
4.8f show three types of dual-rectangular surfaces: a fine-roughness surface (Fig. 4.8d),
medium-roughness surface (Fig. 4.8e), and a coarse-roughness dual-rectangular sur-
face (Fig. 4.8f).

Figure 4.8 also shows the equilibrated droplets on rectangular-patterned sur-
faces. Table 4.2 provides the corresponding effective contact angle values. The ef-
fective static contact angle θx

eff measured in the x direction perpendicular to the bars
increases with decreasing l and/or increasing d. All droplets on hydrophobic rectan-
gular surfaces are in a Cassie state. The effective static contact angle θz

eff of a droplet
measured in the z direction parallel to the ripples varies between 123.3◦ and 125.5◦,
which is close to the corresponding θ0 = 122.7◦.

Due to the isotropic geometry of the dual-rectangular-patterned surfaces, θx
eff and

θz
eff are the same in both directions (Figs. 4.8d-4.8f). The largest contact angle θx

eff ≈
θz

eff ≈ 151◦ is measured on a fine dual-rectangular surface (Fig. 4.8d). In contrast, the
droplets on medium- and coarse-roughness surfaces are in the Wenzel state, even
though not all small surface depressions are completely filled with fluid because of
microscale surface hydrophobicity. The effective contact angles of “Wenzel” droplets
are larger than the microscopic static contact angle, and the microscale hydrophobic
rough surfaces also show macroscale hydrophobic behavior.

4.5.2 Sinusoidal and dual-sinusoidal surfaces

Here, we study the contact angles of droplets on sinusoidal surfaces with longitudi-
nal ripples in the z direction and a sinusoidal cross section in the x direction (Fig. 4.7,
third from left). The sinusoidal surfaces are parametrized as

S(x, z) =
A
2

cos(x
2π

T
) + 0.00015 , (4.21)

and the solid boundary in simulations is constructed by filling the region y < S(x)
with solid particles. The parameters of this surface are the period of the sinusoidal
function T and the magnitude A in the y-direction, which is equal for all types of
sinusoidal surfaces A = 0.2 mm. We employ three types of rough sinusoidal sur-
faces: a fine-roughness surface with T = 0.2 mm (Fig. 4.9a), a medium-roughness
surface with T = 0.25 mm (Fig. 4.9b), and a coarse-roughness sinusoidal surface
with T = 0.3 mm (Fig. 4.9c).

The dual-sinusoidal surface is created as a surface with sinusoidal cross sections
in the x and z directions (Fig. 4.7, forth from left), described by the equation:

S(x, z) =
A
2

cos(x
2π

T
) +

A
2

cos(z
2π

T
) + 0.00015. (4.22)

The parameter T is varied to create three surfaces: a fine-roughness surface with
T = 0.2 mm (Fig. 4.9d), a medium-roughness surface with T = 0.25 mm (Fig. 4.9e),
and a coarse-roughness dual-sinusoidal surface with T = 0.3 mm (Fig. 4.9f). The
magnitude A is equal to 0.2 mm for all three surfaces. In the simulations, the region
y < S(x, z) is filled with solid particles.

Figures 4.9 depict droplets on the sinusoidal and dual-sinusoidal surfaces and
Table 4.2 shows the effective static contact angles. Here, the droplet on the fine sinu-
soidal surface is in the Cassie state, the droplet on the medium sinusoidal surface is
in the Cassie-Wenzel state, and droplets on the coarse sinusoidal and dual-sinusoidal
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(a)                                                 (b)                                                (c)     

(d)                                     (e)                                    (f)

FIGURE 4.9: Static contact angles of droplets on hydrophobic sinu-
soidal (a - c) and dual-sinusoidal (d - f) surfaces. Surface parameters
are: A = 0.2 mm, T = 0.2 mm (a, d); A = 0.2 mm, T = 0.25 mm (b, e);

A = 0.2 mm, T = 0.3 mm (c, f).

surfaces are macroscopically in the Wenzel state. For all considered microscopically
hydrophobic rough surfaces, the effective static contact angle is greater than 90◦, i.e.,
these surfaces are macroscopically hydrophobic.

4.6 Effective contact angles of droplets on rough microscopi-
cally hydrophilic surfaces

The microscopic hydrophilic behavior of droplets on a solid surface is achieved by
setting the solid-fluid interaction strength to ssf = 1.3× 10−6, which yields θ0 =
84.7◦. The surface geometries are the same as in the preceding section (see Fig. 4.7).
We find that Wenzel droplets form on all considered microscopically hydrophilic
surfaces (see Figs. 4.10 and 4.11).

(a)                                                 (b)                                                (c)     

(d)                                   (e)                                    (f)

FIGURE 4.10: Static contact angles of droplets on hydrophilic rectan-
gular (a - c) and dual-rectangular (d - f) surfaces. Surface parameters
are: d = 0.2 mm, l = 0.15 mm (a, d); d = 0.25 mm, l = 0.2 mm (b, e);
d = 0.25 mm, l = 0.25 mm (c, f); H = 0.2 mm for all types of surfaces.
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Table 4.2 lists the resulting effective contact angles. The effective static contact
angle of Wenzel droplets on the dual-rectangular and dual-sinusoidal microscopi-
cally hydrophilic surfaces are larger than 90◦. This means that the dual-rectangular
and dual-sinusoidal roughnesses considered in this work make microscopically hy-
drophilic surfaces macroscopically hydrophobic. For the rectangular-rough and sinu-
soidal-rough surfaces, the effective contact angles in the x direction are greater than
90◦, but the effective contact angles in the z direction are smaller than the corre-
sponding microscopic contact angle. These types of surfaces have mixed effective
wettability, i.e., they are macroscopically hydrophilic in the z direction and hydropho-
bic in the x direction.

(a)                                                 (b)                                              (c)     

(d)                                     (e)                                    (f)

FIGURE 4.11: Static contact angles of droplets on hydrophilic sinu-
soidal (a - c) and dual-sinusoidal (d - f) surfaces. Surface parameters
are: A = 0.2 mm, T = 0.2 mm (a, d); A = 0.2 mm, T = 0.25 mm (b, e);

A = 0.2 mm, T = 0.3 mm (c, f).

4.7 Dimensionless analysis of effective static contact angles

The influence of surface geometry on the effective contact angles of droplets can be
described by the (dimensionless) scaling ratio λ. For rectangular and dual-rectangular
surfaces, the scaling ratio λ is defined as

λ =
ld
R2

0
, (4.23)

and for sinusoidal and dual-sinusoidal surfaces as

λ =
AT
R2

0
, (4.24)

where l, d, A, and T are the surface parameters and R0 is an initial droplet radius.
Table 4.2 lists the effective static contact angles of droplets, modeled in previous
sections, with respect to λ. All angles are measured with SEθ̄0

≈ ±0.2◦.
Figure 4.12 shows the relationship between λ and effective static contact angles,

θx
eff and θz

eff, of droplets on hydrophobic and hydrophilic rough surfaces. The depen-
dence of θx

eff and θz
eff on λ is different for Wenzel and Cassie droplets. The effective

contact angles of Cassie droplets decrease with increasing λ. The effective contact
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TABLE 4.2: Effective static contact angles of droplets on rough hy-
drophobic and hydrophilic surfaces. fr: fine roughness; mr: medium

roughness; cr: coarse roughness.

Rectangular
Dual-

rectangular Sinusoidal
Dual-

sinusoidal

λ 0.0469 0.0781 0.0977 0.0469 0.0781 0.0977 0.0625 0.0781 0.0938 0.0625 0.0781 0.0938
(fr) (mr) (cr) (fr) (mr) (cr) (fr) (mr) (cr) (fr) (mr) (cr)

Hydrophobic surfaces
θx

eff 152.9◦ 142.7◦ 130.3◦ 151.5◦ 135.5◦ 125.9◦ 144.6◦ 128.3◦ 145.3◦ 111.8◦ 121.2◦ 135.7◦

θz
eff 123.3◦ 124.6◦ 125.5◦ 150.6◦ 136.6◦ 128.1◦ 106.7◦ 110.5◦ 118.4◦ 110.5◦ 122.9◦ 135.7◦

εeff 29.6◦ 18.1◦ 4.8◦ 0.9◦ 1.1◦ 2.2◦ 37.9◦ 17.8◦ 26.9◦ 1.3◦ 1.7◦ 0◦

Hydrophilic surfaces
θx

eff 103.7◦ 129.2◦ 122.2◦ 98.1◦ 94.5◦ 96.5◦ 99.8◦ 117.6◦ 123.2◦ 105.4◦ 113.7◦ 95.7◦

θz
eff 80.9◦ 81.1◦ 84.7◦ 95.7◦ 94.5◦ 100.6◦ 74.6◦ 72.9◦ 79.7◦ 103◦ 114.5◦ 96.5◦

εeff 22.8◦ 48.1◦ 37.5◦ 2.4◦ 0◦ 4.1◦ 25.2◦ 44.7◦ 43.5◦ 2.4◦ 1.2◦ 0.8◦

angles of Wenzel droplets may increase or decrease with increasing λ, depending
on the type of surface geometry. For example, for hydrophilic dual-rectangular sur-
faces, the effective contact angles do not change significantly with λ (Fig. 4.12c),
while for other types of surfaces, θeff may increase or decrease with increasing λ.

The largest effective contact angles are achieved by Cassie droplets on hydropho-
bic dual-rectangular surfaces, and the smallest effective contact angles are reached
by Wenzel droplets on hydrophilic sinusoidal and dual-sinusoidal surfaces. The
angle θz

eff on the rectangular hydrophobic and hydrophilic surfaces is close to the
corresponding θ0, while θz

eff of sinusoidal hydrophobic and hydrophilic surfaces is
smaller than θ0. For all other considered surfaces, θx

eff and θz
eff are larger than the

corresponding θ0.
We quantify the directional dependence of the effective static contact angle by

εeff, the difference between θx
eff and θz

eff of each droplet:

εeff =| θx
eff − θz

eff | . (4.25)

We report εeff in Table 4.2 and Fig. 4.13 for all studied values of λ. For dual-rectangular
and dual-sinusoidal hydrophobic and hydrophilic surfaces εeff is less than 5◦, while
for rectangular and sinusoidal hydrophobic and hydrophilic surfaces εeff varies in
the range from 5◦ to 50◦. Droplets on rectangular and sinusoidal rough surfaces
are extended in the z direction parallel to groves, and pinned at sharp groove edges
only in the x direction, so their θx

eff are larger than θz
eff, and εeff may achieve 50◦. El-

evated blocks on dual-rectangular and dual-sinusoidal surfaces pose an energy bar-
rier (Gibbs; 1961; Tsoumpas et al.; 2014) hindering the extension of droplets in both
directions, so that droplets are pinned in the x and z directions, and θx,z

eff is much
larger than the corresponding θ0 on a smooth surface, while εeff stays less than 5◦.

4.8 The effect of resolution on effective static contact angle

To study the effect of resolution on PF-SPH solutions, we compare static contact
angles of droplets on a fine dual-rectangular-type surface obtained from PF-SPH
simulations with two different resolutions. In the high-resolution simulation, the
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FIGURE 4.12: Effective static contact angles θx
eff and θz

eff for scaling
ratio λ between 3.5× 10−3 and 8.5× 10−3 for hydrophobic rectan-
gular and dual-rectangular (a), hydrophilic rectangular and dual-
rectangular (b), hydrophobic sinusoidal and dual-sinusoidal (c), and
hydrophilic sinusoidal and dual-sinusoidal (d) surfaces. Solid sym-
bols represent droplets in a Cassie state, and open symbols represent
droplets in a Wenzel state. Symbols “plus" and “cross" represent a

droplet in a Cassie-Wenzel state.

number of particles is eight times higher than the number of particles in the low-
resolution simulation.

The particle spacing in the high-resolution simulation is 2.5× 10−5 m, the smooth-
ing length is h = 8.55× 10−5 m, the mass mi of each particle is 1.56× 10−11 kg, the
speed of sound c is 4.5 m/s, and the surface tension of water is achieved with a
fluid-fluid interaction strength sff = 1.9× 10−6. The low-resolution simulation has
the same parameters as the simulations in the preceding sections.

Figure 4.14 shows the static contact angles obtained from the simulations with
these two resolutions. The angles θx

eff and θz
eff are nearly the same in both simulations.

4.9 Transitions between Cassie and Wenzel states

Here, we simulate ten liquid droplets with initial radii ranging from 0.5 to 1.6 mm,
which are brought into contact with fine-roughness (d = 0.2 mm; l = 0.15 mm),
medium-roughness (d = 0.25 mm; l = 0.2 mm), and coarse-roughness (d = 0.25 mm;
l = 0.25 mm) dual-rectangular hydrophobic surfaces. The effective contact angles of
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FIGURE 4.13: The effective static contact angle difference of droplets
on rough hydrophobic and hydrophilic surfaces. Red: hydrophilic;
blue: hydrophobic; square: rectangular surface; circle: sinusoidal sur-

face; solid: dual surface; empty: non-dual surface.

FIGURE 4.14: Comparison of effective contact angles on a fine-
roughness dual-rectangular surface obtained from a high-resolution
(particle spacing 2.5× 10−5 mm; θx

eff = 149.36◦; θz
eff = 150.28◦)

and a low-resolution (particle spacing 5× 10−5 mm; θx
eff = 151.52◦;

θz
eff = 150.84◦) simulation. Green particles: solid surface; red parti-

cles: low resolution; blue particles: high resolution.

these droplets are listed in Table 4.3. Figure 4.15 demonstrates six liquid droplets on
a fine-roughness dual-rectangular surface.

All droplets on rough surfaces create unique shapes depending on the number of
blocks they touch, so their θx,z

eff values vary in the range from 120.6◦ to 151.5◦, and εeff
varies in the range from 0.1◦ to 14◦. The variation in θx,z

eff for different droplet sizes
can be explained by the Gibbs criterion (Gibbs; 1961), which attributes the pinning
effects of the liquid-air interface to sharp edges of the solid surface. In our simu-
lations, for two different-size droplets placed on equal number of blocks (droplets
with Req = 1.11 mm and 1.3 mm in Fig. 4.16), the larger droplet creates larger θx,z

eff ,
because it is pinned by the edge of the block. A further increase of the droplet size
(the droplet with Req = 1.5 mm in Fig. 4.16) leads to an immediate jump to the next
block and decrease of θx,z

eff .
We observe a transition between Wenzel and Cassie regimes based on droplet
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FIGURE 4.15: Droplets on a fine-roughness dual-rectangular surface.
Equilibrated radii of droplets are 1.5, 1.3, 1.11, 0.92, 0.54, and 0.44 mm.

TABLE 4.3: Effective static contact angles of droplets with R0 ranging
from 0.5 to 1.6 mm on fine-, medium-, and coarse-roughness dual-

rectangular hydrophobic surfaces.

R0 (mm) 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.6
Req (mm) 0.44 0.54 0.64 0.73 0.83 0.92 1.02 1.11 1.3 1.5
∆P (Pa) 330.68 269.33 227.34 199.32 175.3 158.15 142.65 131.08 111.92 97.00

Fine roughness
pc (Pa) 235.81
θx

eff 122.8◦ 135.7◦ 123.7◦ 151.5◦ 133.6◦ 139.3◦ 142.1◦ 129.8◦ 136.2◦ 126.1◦

θz
eff 124.1◦ 137.9◦ 122.7◦ 150.6◦ 135.2◦ 140.7◦ 143.4◦ 136.8◦ 136.7◦ 126.2◦

εeff 1.3◦ 2.2◦ 1.0◦ 0.1◦ 1.6◦ 1.4◦ 1.3◦ 7.0◦ 0.5◦ 0.1◦

Medium roughness
pc (Pa) 193.49
θx

eff 123.4◦ 135.2◦ 142.7◦ 135.5◦ 139.5◦ 129.5◦ 129.1◦ 137.4◦ 135.6◦ 132.8◦

θz
eff 124.1◦ 124.3◦ 138.4◦ 136.6◦ 131.7◦ 129.4◦ 131.2◦ 126.6◦ 137.7◦ 137.2◦

εeff 0.7◦ 10.9◦ 4.3◦ 1.1◦ 7.8◦ 0.1◦ 2.1◦ 0.8◦ 2.2◦ 4.4◦

Coarse roughness
pc (Pa) 209.61
θx

eff 120.6◦ 125.6◦ 136.6◦ 125.9◦ 130.8◦ 140.7◦ 146.4◦ 135.2◦ 128.9◦ 135.8◦

θz
eff 135.3◦ 125.0◦ 139.0◦ 128.1◦ 133.5◦ 126.7◦ 141.1◦ 130.4◦ 141.7◦ 126.6◦

εeff 14.7◦ 0.6◦ 3.4◦ 2.2◦ 2.7◦ 14.0◦ 5.3◦ 4.8◦ 12.8◦ 9.2◦

size (Figs. 4.15 and 4.17). Droplets with Req > 0.64 mm on a fine-roughness dual-
rectangular surface remain in the Cassie regime, droplets with Req ≤ 0.64 mm are in
a Wenzel state. Various authors (e.g., Dorrer and Rühe; 2007, 2009; Zheng et al.; 2005)
have investigated this transition phenomenon in terms of critical capillary pressure
pc:

pc = −
σ f cos(θ0)

(1− f )L
, (4.26)

where σ is the water surface tension, θ0 is the corresponding static contact angle of
a droplet on a flat hydrophobic surface, and f is a fraction of the wetted projection
area, where L = l/4 and f = l2/(l + d)2. Here l and d are the surface parameters as
described in the previous chapters.

A Cassie-to-Wenzel transition occurs if the pressure inside the droplet, ∆P, be-
comes larger than pc, where ∆P can be found from the Young-Laplace law:

∆P =
2σ

Req
. (4.27)

For a fine-roughness dual-rectangular surface and the given fluid configuration,
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FIGURE 4.16: Pinning effect of droplets on a fine-roughness dual-
rectangular surface. Equilibrated radii of droplets are 1.11, 1.3, and

1.5 mm.
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FIGURE 4.17: Cassie-to-Wenzel transition based on critical capillary
pressure and internal pressures of droplets with Req ranging from

0.44 mm to 1.5 mm for a fine-roughness dual-rectangular surface.

droplets switch from a Cassie to a Wenzel state when ∆P > pc (pc =235.81 Pa) at a
radius Req < 0.62mm (Fig. 4.17).

Some droplets with a value ∆P close to the theoretical value pc (like a droplet
with Req = 0.64mm in Fig. 4.17) can be in both Cassie and Wenzel states, such that
no clear transition point can be detected. Instead we define a transition region for
droplets with ∆P = pc ± 30 Pa which can be in both states (Fig. 4.18) based on our
simulation results. A region between two dashed lines in Fig. 4.18 represents the
region at which the Cassie-to-Wenzel transition occurs for all types of dual rectan-
gular surfaces. All large droplets with Req ≥ 0.92 mm (∆P ≤ 158.15 Pa) are in a
Cassie state, while small droplets with Req ≤ 0.64 mm (∆P ≥ 227.34 Pa) are in a
Wenzel state. The width of the transition region may depend on resolution effects or
pressure fluctuations during the equilibration of droplets on the surface.

Next, we investigate the dependence of droplet state on initial conditions. We
simulate droplets with Req = 0.64 mm and 1.3 mm, which are brought into contact
with a fine-roughness dual-rectangular surface. In the first case, the droplet center
is located between two rectangular blocks (left droplets in Figs. 4.19a and 4.19c), for
the second case, the droplet center is located above the center of a rectangular block



4.9. Transitions between Cassie and Wenzel states 45

100 150 200 250 300 350 400
190

200

210

220

230

240

Wenzel

regime

Cassie

regime

transition

range

Δ P (Pa)

p
c
 (

P
a

)

 

 

fine roughness

coarse roughness

medium roughness

FIGURE 4.18: Cassie-to-Wenzel transition based on critical capillary
pressures and internal pressures of droplets ranging from 97.00 Pa to
330.68 Pa (corresponding Req are ranging from 1.5 mm to 0.44 mm)
for fine-, medium-, and coarse-roughness dual-rectangular surfaces.

Open symbols: Wenzel regime; filled symbols: Cassie regime.

(right droplets in Figs. 4.19a and 4.19c). For both cases the droplet state remains the
same, independent on initial placement relative to the surface roughness. The small
droplet stays in a Wenzel state, and the large one in a Cassie state. This difference
is caused by the initial placement of droplets relative to the roughness, which in-
fluences the effective static contact angle due to pinning effects (Table 4.4). A small
droplet with a center located above a block has a larger effective contact angle. For
the large droplet the effective contact angle is larger if the droplet center is located
between blocks.

a b

c d

FIGURE 4.19: Droplet states depending on initial conditions: (a)
droplets with Req = 0.64 mm are brought into contact with a rough
surface; (b) droplets with Req = 0.64 mm are dropped from 1.3 mm
height; (c) droplets with Req = 1.3 mm are brought into contact with
a rough surface; (d) droplets with Req = 1.3 mm are dropped from

1.75 mm height.

Figures 4.19b and 4.19d show droplets with Req = 0.64 mm and 1.3 mm, which
are dropped from 1.75 mm height (measured between surface and droplet center).
Small droplets with Req = 0.64 mm stay in a Wenzel state (Fig. 4.19b), while large
droplets with Req = 1.3 mm turn from a Cassie to Wenzel state (Figure 4.19d) due
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TABLE 4.4: Effective static contact angles of droplets with Req =
0.64 mm and 1.3 mm on a fine-roughness dual-rectangular hydropho-

bic surface depending on initial conditions.

Req = 0.64 mm Req = 1.3 mm
Mode of
placement

Immediate contact 2 Dropped 3 Immediate contact Dropped

Droplet
position

Pit-
centered

Block-
centered

Pit-
centered

Block-
centered

Pit-
centered

Block-
centered

Pit-
centered

Block-
centered

θx
eff 121.7◦ 138.4◦ 118.7◦ 113.3◦ 137.9◦ 129.5◦ 118.8◦ 113.3◦

θz
eff 122.1◦ 137.9◦ 119.1◦ 113.5◦ 138.2◦ 130.4◦ 118.4◦ 113.8◦

εeff 0.4◦ 0.5◦ 0.4◦ 0.2◦ 0.3◦ 0.9◦ 0.4◦ 0.5◦

to additional pressure caused by gravitational impact. Therefore, the initial height
from which droplets are dropped influences the effective contact angle hysteresis.
Both, small and large droplets dropped from 1.75 mm height have smaller effective
contact angles than droplets placed directly above a surface.

4.10 Droplet flow on rough surfaces

In this section, we study droplet flow on rough surfaces with a surface inclination
angle α ranging from 10◦ to 90◦. We create two types of rough surfaces: a surface
with rectangular bars oriented parallel to the flow direction and one with rectangular
bars oriented perpendicular to the flow direction. For comparison, we also simulate
flow on smooth surfaces. We simulate flow of two different states: flow of Cassie
droplets on microscopically hydrophobic surfaces (with θ0 = 122.7◦ corresponding
to ssf = 0), and flow of Wenzel droplets on microscopically hydrophilic surfaces
(with θ0 = 84.7◦ corresponding to ssf = 1.3× 10−6). In these simulations, a droplet
is discretized with 195 216 fluid particles and the surface with approximately 235 000
solid particles. The simulations are run on 32 cores.

Figure 4.20 shows simulation results for Cassie and Wenzel droplet flows on
these rough surfaces with α = 90◦ after 50000 time steps (t = 46.296 ms). Cassie
and Wenzel droplets can easily slide along the rough surface with inclination an-
gles α ranging from 10◦ to 90◦ if rectangular bars are oriented parallel to the flow
direction. However, if rectangular bars are oriented perpendicular to the flow direc-
tion, a Cassie droplet barely moves and a Wenzel droplet remains stationary for all
surface inclination angles α. These results show a good qualitative agreement with
experimental results of Zhang et al. (2014).

Next, we investigate the relationship between Bo and Ca numbers observed in
our simulations. It was shown by Podgorski et al. (2001) that droplet dynamics on
smooth surfaces follows the linear scaling law:

Ca = γBosin(α)− ∆θ , (4.28)

where the Ca number is defined as

Ca = µv/σ, (4.29)

and the Bo number as

Bo =
ρgV2/3

σ
. (4.30)
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FIGURE 4.20: Hydrophobic and hydrophilic droplets flowing on a
rough rectangular surface with rectangular bars oriented parallel to
the flow direction (a) and rectangular bars oriented perpendicular to
the flow direction (b) at the time step t = 50000 (46.296 ms). Surface

inclination angle is α = 90◦.

Here, v is the droplet velocity, V the equilibrium droplet volume, α the surface in-
clination angle measured from the horizontal, ∆θ is a perimeter-averaged projection
factor of the surface tension, and γ a constant related to the specific fluid-solid com-
bination. The linear dependence between Ca and Bo for droplet flow on smooth
surfaces was numerically confirmed by Kordilla J. (2013) via PF-SPH simulations for
a range of wetting conditions; however, it has not been shown to hold for rough
surfaces.

The results of our simulations, plotted in Fig. 4.21, demonstrate an existing linear
relationship between Ca and Bo numbers for Bo sin α < 1. For higher values of
Bo sin α, the relationship becomes non-linear. A similar transition from linear to
non-linear behavior for droplets on smooth surfaces has been reported in Kordilla J.
(2013) and Podgorski et al. (2001), which is mainly caused by the deviation of droplet
shapes from the spherical cap form.

Our results show that Cassie droplets on a rough surface with parallel orientation
of bars to the flow direction move approximately 1.2 times faster than droplets on
a smooth surface with the same θ0 and α. On the other hand, Wenzel droplets on a
surface with the same roughness move 1.8 times slower than a droplet on a smooth
surface with the same θ0 and α. Cassie droplets on the rough surface with bars
perpendicular to flow do not start moving until Bo sin α ≈ 0.6. For larger Bo sin α,
Cassie droplets accelerate faster than droplets on a smooth surfaces with the same θ0.
Wenzel droplets on the rough surface with “perpendicular bars” remain immobile
for all considered Bo sin α.
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FIGURE 4.21: Dimensionless scaling for smooth and rough hy-
drophobic and hydrophilic surfaces with different orientations of
roughness relative to the droplet flow direction. (par.) – flow par-
allel to the orientation of the bars, (perp.) – flow perpendicular to
the orientation of bars. The surface inclination angles α are 10◦,

20◦,30◦,40◦,50◦,60◦,70◦,80◦ and 90◦.

4.11 Conclusion

We employed a three-dimensional PF-SPH model to simulate static and dynamic
droplets on rough hydrophobic and hydrophilic surfaces. We demonstrate that PF-
SPH can model ow under various wetting conditions. We also validated the model
against several analytical solutions and performed a convergence study.

In PF-SPH, the surface tension and microscopic static contact angle θ0 result from
pairwise forces added into the PF-SPH momentum conservation equation. In this
work, we chose the pairwise forces to cover a wide range of microscopic static con-
tact angles. We simulated droplets and measured effective static contact angles θeff
on surfaces with different types of surface roughness, including rectangular, dual-
rectangular, sinusoidal, and dual-sinusoidal. For each type of surface geometry, we
considered microscale hydrophobic and hydrophilic surfaces with different degrees
of roughness, including fine, medium, and coarse.

We observed that Cassie droplets form on microscopically hydrophobic surfaces,
and Wenzel droplets form on hydrophilic surfaces. We studied the dependence of
θeff on the degree of roughness, characterized by a dimensionless ratio λ, with larger
λ corresponding to coarser surface roughness relative to the droplet size. The effec-
tive static contact angle of Cassie droplets decreases with increasing λ. The effective
contact angle of Wenzel droplets may increase with increasing λ, which is attributed
to the existence of pinning effects. For most studied rough surfaces, we found θeff
to be greater than θ0. Our results showed that roughness can cause microscopically
hydrophilic surfaces to behave as macroscopically hydrophobic. Moreover, micro-
scopically hydrophilic surfaces showed even stronger macroscopic hydrophobic be-
havior.

In order to investigate the transition between the Cassie and Wenzel regimes
we simulated liquid droplets with initial radii ranging from 0.5 to 1.6 mm on dual-
rectangular hydrophobic surfaces and compare our results to theoretical predictions.
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Good agreement is found between the analytical solution and SPH simulations.
However, depending on size and internal pressure, a transition region exists where
droplets may stay in a Cassie or Wenzel state. This behavior is shown to depend on
initial conditions, in terms of lateral droplet position relative to the roughness and
initial height. Both parameters control the hysteresis of dynamic contact angles due
to pinning effects and are also present in our simulations, due to the rather coarse
roughness of the surfaces relative to droplet size.

Finally, we studied droplet flow on inclined rough and smooth surfaces. We
demonstrated that the type and degree of roughness, as well as the orientation of
surface features relative to flow, significantly affect droplet dynamics. If rectangular
bars are oriented parallel to the flow direction, water droplets can easily slide on
rough hydrophobic and hydrophilic surfaces. On the other hand, if rectangular bars
are oriented perpendicular to the flow direction, droplets barely move on hydropho-
bic surfaces and remain stationary on hydrophilic surfaces for all surface inclination
angles. We demonstrated numerically that the linear scaling between the Bo and Ca
numbers described in Podgorski et al. (2001) is valid not only for sliding droplets on
smooth surfaces, but also for sliding droplets on rough hydrophobic and hydrophilic
surfaces. The presented simulations covered a wide spectrum of wetting conditions
and types of surface roughness. The influence of surface roughness and orientation
on flow dynamics in the case of more complex flow regimes, such as rivulets and
stable and unstable films, is part of future work.
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Chapter 5

Investigation of gravity-driven
infiltration instabilities in smooth
and rough fractures using a
pairwise-force smoothed particle
hydrodynamics model2

Abstract.
This work investigates small-scale infiltration dynamics in smooth and rough

single fractures using a three-dimensional multiphase pairwise-force smoothed par-
ticle hydrodynamics (PF-SPH) model. Gravity-driven infiltration instabilities in frac-
tures under unsaturated conditions can significantly influence the arrival time of
tracers or contaminants, and the rapid and localized recharge dynamics in fractured-
porous aquifer systems. Here, we study the influence of roughness and injection rate
on fluid flow modes and flow velocity. Three types of fractures are considered with
different degrees of roughness, including a smooth fracture. Both the rough and
smooth fractures exhibit flow instabilities, fingering, and intermittent flow regimes
for low infiltration rates. In agreement with theoretical predictions, a flat fluid front
is achieved when the flux q supplied to a fracture is larger than the gravitationally
driven saturated flux (q > kρg/µ cos ϕ).

To characterize the flow instability, we calculate standard deviations of velocity
along the fracture width. For the considered infiltration rates, we find that an in-
crease in roughness decreases the flow velocity and increases the standard deviation
of velocity. This is caused by a higher likelihood of flow discontinuities in the form of
fingering and/or snapping rivulets. To validate our unsaturated flow simulations in
fractures, we estimate the scaling of specific discharge with normalized finger veloc-
ity and compute the relationship between fingertip length and scaled finger velocity,
and find a good agreement with experimental results.

• We study infiltration dynamics in smooth and rough fractures using a 3D SPH
model

• Roughness induces the formation of flow fingering and preferential flow paths

• Fractal roughness leads to a deceleration of average fingertip velocities

2Shigorina, E., Kordilla, J., and Tartakovsky, A. M. (2019): Investigation of gravity-driven infiltration
instabilities in smooth and rough fractures using a pairwise-force smoothed particle hydrodynamics
model. Vadoze Zone Journal, 18:180159. doi:10.2136/vzj2018.08.0159.
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• The velocity variance of fingers positively correlates with the degree of rough-
ness

• Normalized finger velocity and length scale in accordance with analytical pre-
dictions

5.1 Introduction

Preferential flows within the unsaturated zone have a significant influence on ground-
water recharge, infiltration, and contaminant transport (Nimmo; 2010, 2012). In con-
trast to diffuse Richards-type flows commonly encountered in soils and porous me-
dia, preferential flows are usually (but not exclusively) observed in fractured-porous
media and are characterized by a non-uniform water distribution within individual
fractures (Cueto-Felgueroso and Juanes; 2008; Dippenaar and Van Rooy; 2016; Ko-
rdilla et al.; 2017; Nicholl and Glass; 2005; Wang et al.; 2003).

Preferential flows affect various subsurface flow processes, such as water supply
and nuclear waste storage (Evans and Rasmussen; 1991), infiltration of water in karst
aquifers (Geyer et al.; 2008), and can be relevant on different scales, ranging from
macropores to catchment-scale fault zones (Hendrickx and Flury; 2001). On large
scales hydraulic input signals are often dominated by percolating fracture networks
(DiCarlo et al.; 1999; Khamforoush et al.; 2008; Mourzenko et al.; 2004; Patriarche
et al.; 2007), which may provide rapid transmission through several hundreds of
meters within the vadose zone.

Despite ongoing research, unsaturated flows in fractures are not well understood
due to various rate-dependent fracture-specific flow regimes, scale effects, character-
ization of process parameters across scales, and the assessment of their relevance in
the prediction of large-scale problems, e.g., the regional hydraulics of fault zones
(Eker and Akin; 2006; Hendrickx and Flury; 2001).

Most numerical large-scale studies employ the Richards’ equation (Richards; 1931)
to describe partially saturated flow in fractured media, which is treated as a porous
continuum (Heilweil et al.; 2015; Therrien and Sudicky; 1996a). In the presence of
a porous matrix, multi-continuum approaches can be used to resolve the large ra-
tio of fractures and porous matrix permeabilities (Kordilla et al.; 2012; Wang and
Narasimhan; 1985; Wu et al.; 2004).

In fully saturated systems, the parallel plate model (Dershowitz and Einstein;
1988; Snow; 1996) allows for a better discrete representation of internal fracture flow
dynamics, which are subject to ongoing modifications to account for roughness ef-
fects (e.g. Wang et al.; 2015).

However, in partially saturated fractures, the distribution of water within the
fracture depends on matric potential (of the adjacent porous medium), local aper-
ture, and flow rate dependent flow modes (droplets/slugs, rivulets, films), which
influence the formation of instabilities (fingering) and hence the travel times. Fur-
thermore, the fracture-specific water distribution to a large degree controls the inter-
fracture partitioning and redistribution dynamics (Jones et al.; 2018; Kordilla et al.;
2017; Noffz et al.; 2018), which is of importance for the application in discrete frac-
ture network models (DFN, Cacas et al.; 1990; Hyman et al.; 2015). The complexity
of unsaturated flows and the existence of several highly dynamic flow regimes in
fractures has been demonstrated by various authors (Ghezzehei; 2004; Tokunaga
and Wan; 1997, 2001). Depending on infiltration rates, flow regimes switch from
adsorbed films (with average flow velocities on the order of 10−7 m·s−1) to droplet
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flows and finally rivulet flows at high infiltration rates. Finally, at very high flow
rates, rivulets merge, and continuous (wavy) films can occur.

Transitions between flow modes and, therefore, the instability of an injected fluid
front depend on the complex force balance between gravity, capillary, and viscous
forces. Even under idealized conditions, e.g., smooth fracture surfaces and con-
stant infiltration rates, fluid fronts in fractures are prone to develop instabilities, i.e.,
fracture-specific preferential flow paths, due to the strong impact of gravitational
forces and relatively low capillary action (Nicholl et al.; 1994). The number of these
discontinuities (rivulets and/or droplet streams) is generally larger in rough frac-
tures (Briggs et al.; 2017; Wang et al.; 2016). Injected fluid follows the paths of least
resistance, accumulates in depressions, or flows around elevated parts of the rough
surface to form fracture-specific preferential flow pathways.

Laboratory experiments can provide valuable insights into infiltration dynam-
ics in unsaturated fractures. Most laboratory setups investigating unsaturated flows
consist of two (textured) parallel glass plates (Hele-Shaw cell), separated by a small
aperture, representing a fracture (Jones et al.; 2018; Nicholl and Glass; 2005; Nicholl
et al.; 1999). This allows to visually observe the internal transient flow dynamics,
i.e., the propagation of the fluid. Laboratory experiments in natural fractures are
challenging. For example, flow in a natural fracture was considered by Nicholl et al.
(1994), where only the post-infiltration state could be analyzed after the setup was
disassembled. Laboratory studies of saturated flow have for example been carried
out by Li et al. (2018) who used cement casts to create surfaces based on fractal
roughness and obtained information about flow channeling effects by measuring
outflow rates along the fracture width. Brown et al. (1998) used rubber molds to
manufacture transparent epoxy replicas of natural fractures and measured flow ve-
locities using nuclear magnetic resonance imaging. They found that flow velocities
in the fracture plane may vary over several orders of magnitude and maximum ve-
locities may be higher than the mean flow velocity by a factor of 5.

Of direct relevance to our present work are the studies of Nicholl et al. (1994) and
Nicholl and Glass (2005) who experimentally studied the finger formation across a
wide range of flow rates and fracture inclinations as a function of the gravitational
and viscous pressure differentials along infiltrating fingers.

In this work, we investigate the development of fluid front instability and for-
mation of complex flow modes in smooth and rough individual fractures by em-
ploying an efficient three-dimensional parallelized pairwise-force smoothed parti-
cle hydrodynamics (PF-SPH) model implemented in LAMMPS (Kordilla et al.; 2017;
Plimpton; 1995). The PF-SPH-LAMMPS code has been extensively validated (Ko-
rdilla et al.; 2017; Kordilla J.; 2013; Shigorina et al.; 2017) and employed to simulate
highly intermittent, gravity-driven free-surface flows under dynamic wetting con-
ditions. Our recent work (Kordilla J.; 2013; Shigorina et al.; 2017) investigated the
effect of surface roughness on droplet and rivulet flows. Here, we study the effect of
roughness on average flow velocity and fluid flow profile in fractures.

We use the PF-SPH model to characterize fluid front instabilities in smooth and
rough fractures for various infiltration rates in terms of finger front velocity. We
observe transitions between flow modes and fluid flow profiles for different infiltra-
tion rates. Flow in fractures with two types of surface roughness are studied and
compared to flow dynamics in a smooth fracture. For each infiltration rate, the av-
erage flow velocity is measured. We use the standard deviation of flow velocity to
quantify flow instability or degree of dispersion, and compare the standard devia-
tion for different infiltration rates and degrees of roughness. Finally, we study the
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specific discharge scaling with the normalized finger velocity and the relation be-
tween fingertip length and scaled finger velocity and find good agreement with the
experimental results of Nicholl and Glass (2005).

5.2 Governing equations and the PF-SPH method

We assume that free-surface flow of water in a fracture can be described by the con-
tinuity equation,

dρ

dt
= −ρ(∇ · v), x ∈ Ω f (t), (5.1)

and the momentum conservation equation,

dv
dt

= −1
ρ
∇P +

µ

ρ
∇2v + g, x ∈ Ω f (t), (5.2)

subject to the Young-Laplace boundary condition

Pn = τw · n + Sσn, x ∈ ∂Ωwa, (5.3)

and the continuity condition at the water-air interface ∂Ωwa,

(v− vb) · n = 0, x ∈ ∂Ωwa. (5.4)

The contact angle is prescribed at the water-air-solid contact line S and the no-
slip boundary condition at the boundary between water and solid phases. Here,
τw = [µ(∇v+∇vT)] is the viscous stress tensor, v the fluid velocity, vb is the bound-
ary velocity, P is the pressure, µ the viscosity, n is the normal vector pointing away
from the non-wetting phase, and g the gravitational acceleration.

To numerically solve the governing equations, we extend the domain Ω f (t) oc-
cupied by water to include the solid phase (walls of the fractures) as Ω(t) = Ω f (t)∪
Ωs, where Ωs is the extension of Ω f (t). Next, we discretize Ω f (t) with “fluid” parti-
cles with positions denoted by ri ∈ Ω f (t) and Ωs with solid particles with positions
ri ∈ Ωs. The positions of solid particles are fixed and their velocities are set to zero.
The positions and velocities of fluid particles are found from the momentum con-
servation equation discretized with the weakly compressible pairwise SPH scheme
(Kordilla et al.; 2017; Kordilla J.; 2013; Morris et al.; 1997; Tartakovsky and Meakin;
2005a):

dvi

dt
= −

N

∑
j=1

mj

( Pj

ρ2
j
+

Pi

ρ2
i

) rij

rij
·

dW(rij, h)
drij

+

2µ
N

∑
j=1

mj
vij

ρiρjrij
·

dW(rij, h)
drij

+ g +
1

mi

N

∑
j=1

Fij , ri ∈ Ω f (t),
(5.5)

and
dri

dt
= vi, ri ∈ Ω f (t), (5.6)

where the summation is performed over all particles including fluid and solid par-
ticles. Here, rij = ri − rj and rij = |ri − rj|, mj = m0 is the (constant) mass of particle
j, ρj and Pj are the density and pressure of fluid carried by particle j, and h is the
support range of the kernel W. Fluid and solid particles are assumed to have the
same mass and ρi is computed for both fluid and solid particles as (Morris et al.;
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1997; Tartakovsky and Meakin; 2005a)

ρi =
N

∑
j=1

mjW(rij, h) , ri ∈ Ω f (t) ∪Ωs. (5.7)

This expression conserves mass exactly and, therefore, can be used instead of the
mass conservation (continuity) equation (6.3). The pressure of both fluid and solid
particles is computed from the equations of state Batchelor (1967):

Pi = P0

{( ρi

ρ0

)γ
− 1
}

, ri ∈ Ω f (t) ∪Ωs. (5.8)

where

P0 =
c2ρ0

γ
, (5.9)

γ = 7, ρ0 is the equilibrium particle density, and the speed of sound c is chosen such
that the relative density fluctuation |δρ|/ρ is small (less than 3%) to approximate an
incompressible fluid.

The weighting function W is modeled with the third-order Wendland function
(Wendland; 1995):

W(rij, h) = αk

 (1− rij
h )

4(4 rij
h + 1) if 0 ≤ rij < h

0 if rij ≥ h
, (5.10)

where αk = 21/(2πh3).
The force Fij in Eq. (6.7) is used to impose the Young-Laplace boundary condition

(Tartakovsky and Panchenko; 2016). Following Tartakovsky and Meakin (2005a),
Tartakovsky and Panchenko (2016), Kordilla J. (2013), we employ a combination of
kernel functions to generate a continuous function with short-range repulsive and
long-range attractive components:

Fij = sij


(ÃW̃(rij, h1)

rij
rij
+ B̃W̃(rij, h2)

rij
rij
) if rij ≤ h

0 if rij > h,
(5.11)

where W̃ is the cubic spline function

W̃(rij, h) =



1− 3
2 (

rij
h )

2 + 3
4 (

rij
h )

3 if 0 ≤ r
h < 0.5

1
4 (2−

rij
h )

3 if 0.5 ≤ rij
h < 1

0 if rij
h ≤ 1.

(5.12)

Here, Ã, B̃, h1, and h2 determine the shape of Fij. We set Ã = 8, B̃ = −1, and h1 = 0.5,
h2 = 1. For a given Fij shape, sij determines the magnitude of surface tension and
static contact angle.

The parameter sij is equal to s f f for the interaction between two fluid particles
and ss f for the interaction between fluid and solid particles. The ratio of s f f and ss f
controls the static and dynamic contact angles. For a liquid to wet the surface, s f f
should be set greater than ss f and vice versa.



58
Chapter 5. Investigation of gravity-driven infiltration instabilities in smooth and

rough fractures

In SPH, the no-slip boundary condition at the fluid-solid boundary can be im-
posed by using ghost particles that mirror fluid particles in the direction normal to
the nominal solid interface (Libersky et al.; 1993) or uniformly distributed particles
in the solid phase (i.e., in the fracture wall, Morris et al.; 1997; Zhu et al.; 1999).
These methods require determining the ratio of normal distances from fluid and
mirror particles to the nominal solid boundary (the proximity ratio), which becomes
challenging for highly irregular surfaces. Moreover, the computational costs of these
methods are high compared to simpler bounce-back conditions, as demonstrated by
Tartakovsky and Meakin (2006), Tartakovsky et al. (2009), and Kordilla J. (2013), and
Kordilla et al. (2017).

To enforce the no-slip boundary condition at the nominal fluid-solid interface, we
use the proximity ratio (Holmes et al.; 2011). We first define the state of a particle, i.e.,
fluid or solid with κ and η. Next, a phase-specific number density ns

i is calculated to
easily determine the solid-fluid boundary even for highly irregular (rough) surfaces,

ns
i,κ =

N

∑
j=1

δκηW(ri,κ − rj,η , h) , (5.13)

where the Kronecker delta is

δκη =

{
1 κ = η

0 κ 6= η.
(5.14)

The proximity ratio for a fluid particle can then be obtained as

φi =
ns

i
ni

, (5.15)

where ni is the (total) particle density ni = ρi/mi defined as:

ni =
N

∑
j=1

W(ri − rj, h) . (5.16)

The value of φ varies from 1 for particles in the fluid phase at the distance greater
than h from the fluid-solid interface to 0.5 at the interface to zero for particles in the
solid phase at the normal distance greater than h. Note that for mi = m0, the total
particle number density can be found as ni = ρi/mi. To enforce a no-slip bound-
ary condition, we return fluid particles along the normal back into the flow domain
once they penetrate the boundary, i.e., for φi < 0.5. A smoothed color function ci is
employed to obtain the normals:

ci = ∑
j∈Ω f

mj

ρj
W(rij, h) , (5.17)

where the above summation is only over fluid particles. The surface normals can
then be calculated from the gradient:

ŝi = ∇ci . (5.18)
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Penetrating particles have their velocities inverted and are returned along the nor-
mal direction by a distance d proportional to the proximity ratio:

d = ω∆x(1− φi

0.5
) . (5.19)

In this work, we set ω = 1, which we found to prevent particle penetration even
for very complex surface geometries. In most cases, the pressure gradient and in-
teraction force are sufficient to prevent the penetration of fluid particles in the solid
phase.

Eq. (6.7) is integrated with a modified velocity-Verlet time-stepping scheme (Ganzen-
müller et al.; 2011):

vi(t + 1
2 ∆t) = vi +

1
2 ai(t), (5.20a)

v̄i(t + ∆t) = vi(t) + ∆tai, (5.20b)

ri(t + ∆t) = ri(t) + ∆tvi(t + 1
2 ∆t) (5.20c)

vi(t + ∆t) = vi(t + 1
2 ∆t) +

1
2

ai(t + ∆t) . (5.20d)

Once new positions ri(t + ∆t) are calculated, the new particle acceleration ai(t +
∆t) can be obtained using an extrapolated velocity v̄i. To ensure stability of the
numerical solution, the following time step constraints are satisfied (Tartakovsky
and Meakin; 2005a):

∆t ≤ 0.25h/3c (5.21a)

∆t ≤ 0.25min(h/3 | ai |)1/2 (5.21b)

∆t ≤ min(ρih2/9µi), (5.21c)

with | ai | representing the magnitude of acceleration ai.

5.3 Gravity-driven flow instability in initially dry fractures

Infiltration into a fracture is controlled by gravity, viscous, and capillary forces.
When gravitational forces dominate, the flow becomes unstable, and fingering oc-
curs. Instability of the gravity-driven fluid front occurs when the flux q supplied to a
fracture is less than the gravitationally driven saturated flux Ks cos ϕ (Nicholl et al.;
1994):

q < Ks cos ϕ , (5.22)

where Ks is the saturated hydraulic conductivity

Ks = kρg/µ, (5.23)

and k represents the intrinsic permeability of the fracture and ϕ is the fracture incli-
nation angle measured from the vertical direction.

In this work, we numerically study the propagation of a fluid front in smooth and
rough fracture planes along with the dependence on the supplied flux. Specifically,
we investigate the dynamic switching of flow regimes between droplets, rivulets,
and films and how it controls the formation of instabilities and average arrival times.
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5.3.1 Flow in smooth vertical fractures

In the following, we model flow between two smooth parallel vertical surfaces with
dimensions 10×30 cm separated by a 2.0 mm gap (Fig. 5.1, left). Fluid particles are
assigned a density and viscosity of water ρ0 = 1000 kg/m3 and µ = 1.296× 10−3 Pa s,
respectively. The equilibrium density of solid and fluid particles is set to 1000 kg/m3.
Initially, the SPH particles (solid and fluid) are placed on a uniform cubic lattice with
spacing ∆x = 2× 10−4 m, which results in a fluid particle mass of m0 = ρ0∆x3 =
8× 10−9 kg. The mass of individual solid particles is set to m0. The speed of sound
is c = 2.5 m/s, the gravitational acceleration g = 9.81 m/s2, and the smoothing
length is set to h = n1/3

d ∆x = 6.84× 10−4 m. Here, nd = 40 is the number of par-
ticles within a volume h3, which was found to be sufficient for three-dimensional
simulations including the effect of surface tension. The fluid is injected at the frac-
ture top with constant volumetric flux Q. According to Eq. (5.22), for a stable fluid
front to develop, the flux must be Q ≥ 5.06× 10−4 m3/s (q ≥ 2.52 m/s). To inves-
tigate the fluid front instability, we perform simulations with Q varying from Q =
4× 10−6 m3/s to 8× 10−4 m3/s (Fig. 5.2). For this simulation setup, the fracture is
discretized with 2 250 000 solid particles, and the fluid is discretized with 670 000 to
14 900 000 particles, depending on the infiltration rate and duration. Simulations are
run on 64 and 128 processors.

FIGURE 5.1: Fracture configurations: smooth (left); rough with ζ =
0.75 and ∆ = 10 mm (middle); rough with ζ = 0.75 and ∆ = 20 mm

(right).

To measure the average flow velocity, we divide the fracture surface into n = 20
longitudinal sections of equal width. Each section has a width of 0.5 cm and length
of 30 cm. At every time step, we measure the fluid front propagation within each
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section. The fluid velocity for each section vi
sec is found as

vi
sec =

z(t + ∆t)− z(t)
∆t

, (5.24)

where z(t + ∆t) and z(t) are the maximum fluid front positions into the direction
of flow at time step (t + ∆t) and t, respectively. The average flow velocity v̄ for the
whole fracture is then found as an arithmetic mean of flow velocities within each
section:

v̄ =
1
20

20

∑
i=1

vi
sec. (5.25)

The velocities v̄ for different Q are listed in Table 5.1. The average velocity v̄s

increases with increasing Q (Fig. 5.5, squares).

FIGURE 5.2: Flow inside smooth fractures (six flow rates, from left to
right): (a) Q = 4× 10−6 m3/s, t = 1.44 s; (b) Q = 8× 10−6 m3/s, t =
1.07 s; (c) Q = 2× 10−5 m3/s, t = 0.74 s; (d) Q = 6× 10−5 m3/s, t =
0.46 s; (e) Q = 1× 10−4 m3/s, t = 0.40 s; (f) Q = 5.06× 10−4 m3/s,

t = 0.11 s.

Figure 5.2 shows the fluid distributions inside a smooth fracture for different
infiltration rates and the transition between flow regimes. For fluxes up to Q >
1× 10−5 m3/s, the flow mainly consists of droplets, partially leaving behind trailing
films. At fluxes Q > 1× 10−5 m3/s, the flow transitions into a rivulet-dominated
regime with occasional occurrence of snapping droplets and/or rivulets. Similar
flow regimes were observed in our previous SPH studies (Kordilla et al.; 2017; Ko-
rdilla J.; 2013). In this work, we extend our studies to observe a transition be-
tween rivulets and film flow. For higher flow rates, Q > 4× 10−5 m3/s, we observe
the formation of snapping films, which extend throughout the periodic boundaries
on the lateral sides of the domain. Finally, a stable fluid front develops for Q =
5.06× 10−4 m3/s (Fig. 5.2f) in accordance with the theoretical condition (Eq. (5.22)).

To quantify the instability of the fluid front, we calculate the standard deviation
s of velocity within each section vi

sec with respect to the mean flow velocity v̄ (Ta-
ble 5.1). Squares in Figure 5.6 show the standard deviations for each infiltration rate.
The largest ss = 0.0813 is observed for Q = 8× 10−6 m3/s. For Q ≥ 8× 10−6 m3/s,
the standard deviation decreases and reaches its minimum value ss = 0.002 when a
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stable fluid front is developed at Q = 5.06× 10−4 m3/s. For Q > 5.06× 10−4 m3/s,
the standard deviation remains equal to its minimum value.

5.3.2 Flow in rough vertical fractures

Fractures encountered in geological environments have rough surfaces, despite the
fact that they are often approximated as smooth in, for example, discrete fracture
network modeling (Hyman et al.; 2015; Therrien and Sudicky; 1996b). In our previ-
ous work employing the PF-SPH model (Kordilla et al.; 2017; Kordilla J.; 2013; Shig-
orina et al.; 2017), we investigated various effects of surface roughness on droplet
flow and wetting dynamics, including capillary-Bond number scaling functions,
onset of trailing film formation, relation of microscale and macroscopic hydropho-
bic/hydrophilic behavior for Cassie and Wenzel droplets, and the effect of rough-
ness anisotropy on droplet flows. In this work, we extend these studies to investigate
the effect of roughness on the behavior of highly complex flows with flow regimes
ranging from droplet to droplet-to-rivulet and rivulet-to-film flows.

Following Tartakovsky and Meakin (2005b) and Kordilla J. (2013), we create
rough fractures characterized by the Hurst exponent ζ (Bouchaud et al.; 1990) and an
initial maximum value ∆ for the random displacement from a planar surface. It was
shown that ζ often assumes values of 0.80(5) for consolidated impermeable rocks
(Bouchaud; 1997; Ponson et al.; 2006), however, wider ranges of 0 < ζ < 0.9 have
been measured as well (Boffa et al.; 1998; Sahimi; 2011).

For our simulations, we create two rough fractures with dimensions 10×30 cm,
ζ = 0.75, and ∆ = 10.0 and 20.0 mm. The fracture aperture is b = 2.0 mm. Figure 5.1
(middle and right) shows the employed fractures, where light colors represent ele-
vated parts of the height field and dark colors are associated with depressions.

Figures 5.3 and 5.4 show the fluid distributions inside the rough fractures with
∆ = 10.0 and 20.0 mm for different infiltration rates. Compared to the flow in a
smooth fracture from section 5.3.1, a stable fluid front is established for a flux of
Q = 5.06× 10−4 m3/s (Figs. 5.3f and 5.4f).

FIGURE 5.3: Flow inside rough fractures with ∆ = 10.0 mm (six flow
rates, from left to right): (a) Q = 4× 10−6 m3/s, t = 1.65 s; (b) Q =
8× 10−6 m3/s, t = 1.19 s; (c) Q = 2× 10−5 m3/s, t = 0.74 s; (d) Q =
6× 10−5 m3/s, t = 0.46 s; (e) Q = 1× 10−4 m3/s, t = 0.40 s; (f) Q =

5.06× 10−4 m3/s, t = 0.12 s.
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FIGURE 5.4: Flow inside rough fractures with ∆ = 20.0 mm (six flow
rates, from left to right): (a) Q = 4× 10−6 m3/s, t = 1.65 s; (b) Q =
8× 10−6 m3/s, t = 1.19 s; (c) Q = 2× 10−5 m3/s, t = 0.74 s; (d) Q =
6× 10−5 m3/s, t = 0.46 s; (e) Q = 1× 10−4 m3/s, t = 0.40 s; (f) Q =

5.06× 10−4 m3/s, t = 0.12 s.

TABLE 5.1: Statistical properties for various fluxes in smooth and
rough fractures.

smooth rough

Q (m3/s) v̄s ss v̄r
∆=10 sr

∆=10 v̄r
∆=20 sr

∆=20

4× 10−6 0.15 0.0346 0.13 0.0368 0.12 0.0387
8× 10−6 0.25 0.0813 0.21 0.0927 0.23 0.0956
2× 10−5 0.41 0.0291 0.36 0.0433 0.32 0.0477
4× 10−5 0.55 0.0154 0.50 0.0251 0.43 0.0339
6× 10−5 0.69 0.0035 0.61 0.0047 0.53 0.0075
1× 10−4 0.89 0.0023 0.71 0.0036 0.65 0.0061
3× 10−4 1.63 0.0021 1.55 0.0033 1.45 0.0039
5× 10−4 2.53 0.0020 2.50 0.0030 2.41 0.0032
8× 10−4 3.69 0.0020 3.60 0.0030 3.50 0.0031

Figures 5.5 and 5.6 report the average flow velocities and standard deviations in
the rough fractures as a function of ∆ and Q, and Table 5.1 summarizes the velocities
and standard deviation values in the smooth and rough fractures for all studies of
Q. It is evident that velocities in rough fractures are smaller than the corresponding
velocities in the smooth fracture. The standard deviation of velocity is larger for
rough fractures than for smooth fractures due to enhanced flow focusing (fingering)
in roughness-induced channel structures.

5.3.3 Comparison with analog experiments

In this section we consider the experimental results reported by Nicholl and Glass
(2005), who studied the fluid infiltration in initially dry fractures. For the experiment
a textured glass fracture with dimensions 30×60 cm was used. The aperture of the
fracture is b = 0.2255 mm. In the experiment an averaged velocity v̄f of individual
fingers was investigated as a function of a supply rate Q (Nicholl and Glass; 2005,
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FIGURE 5.5: Average flow velocities in smooth and rough fractures
for different infiltration rates.

Fig. 27). To compare this experiment with our simulations, we calculate the specific
discharge q and the normalized velocity vs,r,∗

∆=10,20, v∗f :

q =
Q
bd

, (5.26)

vs,r,∗
∆=10,20, v∗f =

v̄, v̄f

b
, (5.27)

where d is the fracture width, vs,r,∗
∆=10,20 is the normalized averaged flow velocity from

simulations, the superscripts s and r represent smooth and rough fractures respec-
tively, v∗f is the normalized velocity of individual fingers from experiments. The
experimental and simulation data are listed in Table 5.2.

TABLE 5.2: Comparison of experimental (Nicholl and Glass; 2005,
Fig. 27) and simulation data.

Experiment Simulation

q v∗f q vs,∗ vr,∗
∆=10 vr,∗

∆=20

1.7× 10−5 7.39 0.02 7.6× 101 6.4× 101 6.0× 101

3.7× 10−5 9.24 0.04 1.2× 102 1.2× 102 1.1× 102

7.4× 10−5 13.3 0.10 2.4× 102 1.8× 102 1.6× 102

1.7× 10−4 20.7 0.20 2.7× 102 2.5× 102 2.1× 102

3.7× 10−4 29.6 0.30 3.4× 102 3.0× 102 2.8× 102

7.4× 10−4 37.0 0.50 4.5× 102 3.6× 102 3.3× 102

9.9× 10−4 48.0 1.50 8.2× 102 7.8× 102 7.3× 102

1.48× 10−3 59.1 2.53 1.3× 103 1.2× 103 1.2× 103

2.46× 10−3 81.3 4.00 1.9× 103 1.8× 103 1.8× 103

Figure 5.7 shows v∗f as a function of q. On the logarithmic plot, log v∗f shows



5.3. Gravity-driven flow instability in initially dry fractures 65

Discharge, Q (m
3
/s)

10
-6

10
-5

10
-4

10
-3

10
-2

S
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
, 

s

10
-3

10
-2

10
-1

smooth
rough (∆=10mm)
rough (∆=20mm)

FIGURE 5.6: Standard deviations of flow velocities in smooth and
rough fractures for different infiltration rates.

linear dependence on log q that assumes the power law dependence v∗ = qp. A
similar power law dependence was observed in the experiments with p = 0.48. In
our simulations, the exponent p lies in the range between 0.50 and 0.55 for smooth
and rough fractures, which is close to the experimental value of p (Fig. 5.7).

Next, we investigate finger tip length Ltip as a function of finger tip velocity and
compare our simulation results with an analytical solution and experimental data
from (Nicholl and Glass; 2005, Fig. 30). Here the term finger tip is often also referred
to as elongated droplets or slugs. For the sake of completeness the following is an
excerpt from Nicholl and Glass (2005). For a stagnant finger tip the viscous forces
vanish and capillary forces balance the gravitational component, i.e.,

∆Fg − ∆Fc = 0 , (5.28)

where gravitational forces are approximated as

∆Fg ≈ ∆ρgcos(ϕ)hg (5.29)

and act over a characteristic length scale hg. The pressure differential within the
water phase of a fingertip is approximated as

∆Fc ≈ σ

((
1
r1

+
1
r2

)
front
−
(

1
r1

+
1
r2

)
trail

)
, (5.30)

where the radius of curvature r1 (first principal radius spanning both walls of the
fracture) and the in-plane curvature r2 at each point could not be determined in the
laboratory experiments. In order to estimate the fingertip length Ltip from the equal-
ity Eq. (5.28) together with Eq. (5.29) and (5.30) Nicholl and Glass (2005) assume that
the pressure along the leading and trailing edge can be approximated by the wetting
and draining pressure head (ψw and ψd) such that

Ltip = (ψw − ψd)/cos(ϕ) . (5.31)
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Further they found that for a vertical fracture (cos(ϕ)=1) the measured stagnant fin-
gertip lengths are very close to the values obtained from Eq. (5.31). Hence, for our
simulations we define

ψw − ψd = L̄tip , (5.32)

where L̄tip is the average length of stagnant finger tips found to be 1.0 cm in our
simulations.

Under dynamic conditions viscous forces are introduced into the force balance
which now becomes

∆Fg − ∆Fc − ∆Fv = 0 . (5.33)

Viscous forces act over a characteristic length scale hv and are approximated by

∆Fv ≈ vµhv(kkr)
−1 , (5.34)

where kr = 1 under the assumption that fingertips are fully saturated and v is the fin-
gertip velocity. Insertion of Eq. (5.29), (5.30) and (5.34) into Eq. (5.33) and assuming
the characteristic length scales correspond to the fingertip length, i.e., Ltip = hg = hv,
the following expression for the fingertip length is obtained:

Ltip =
ψw − ψd

cos(ϕ)

(
1− v

Kskrcos(ϕ)

)−1

= L̄tip

(
1− v

Ks

)−1

. (5.35)

As the wetting pressure is dependent on the fingertip velocity the above equation
can only serve as a first-order approximation. Nicholl and Glass (2005) found a
better fit to their data using the following expression

Ltip =
ψw(1− v̂ε)− ψd

(1− v̂)cos(ϕ)
, (5.36)
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which takes into account the dependence of the leading contact angle (related to the
dynamic wetting pressure ψw) on velocity, where ε = 0.1 is an empirical coefficient.

Figure 5.8 shows the simulation data and experimental results of Nicholl and
Glass (2005) (Fig. 30 therein), as well as the analytical solutions Eq. (5.35) and (5.36)
for the scaled fingertip length (Ltipcosϕ) as a function of scaled fingertip velocity
v̂ = v/Kskrcosϕ. The analytical solution Eq. (5.35) shows a good fit with simulation
data for L̄tip = (ψw − ψd) = 1.0 cm and ε = 0.1. Similar to Nicholl and Glass
(2005), we also observe higher discrepancies between the analytical solution and the
simulations results for intermediate values of the scaled velocity v̂.
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FIGURE 5.8: Comparison of the scaled fingertip length (Ltipcosϕ) as
a function of scaled finger velocity v̂ = v/Kskrcosϕ for simulations
and experiment from Nicholl and Glass (2005). For the analytical so-
lutions L̄tip = 2.85 cm and ε = 0.1 (experiments) and L̄tip = 1.0 cm

and ε = 0.1 (simulations).

5.4 Discussion

In our previous work (Shigorina et al.; 2017), we observed that, depending on its
geometry and orientation, a “structured” surface roughness can accelerate or decel-
erate flow velocity. In this work, we create random rough fracture surfaces with
ζ = 0.75 and ∆ = 10.0 and 20.0 mm, to approximate natural rough fracture surfaces.
Our simulation results show that with increasing ∆, the velocity v̄ decreases for all
infiltration rates (Fig. 5.5, Table 5.1). For a given infiltration rate, the average velocity
v̄ in rough fractures can be 1.4 times lower than v̄ in the smooth fracture.

Here, we demonstrate the influence of fracture roughness and viscous and capil-
lary forces on flow instability. Our simulations show that even in a smooth fracture,
fluid flow is unstable for Q < 5× 10−5 m3/s (Fig. 5.2a-c). For Q between 5× 10−5

and 5× 10−4 m3/s, the evolving fluid front appears stable (straight) (Fig. 5.2d, e).
However, because of fluid snapping and merging, the fluid flow velocities may sig-
nificantly fluctuate. For the rough fractures, the fluid front is unstable for Q <
5× 10−4 m3/s (Figs. 5.3a-e and 5.4a-e). For Q > 5× 10−4 m3/s, the fluid front is
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stable for both rough and smooth fractures, and the velocity v̄ is constant (Figs. 5.2f,
5.3f, and 5.4f).

To characterize the instability, we calculate standard deviations of flow velocity
s (Fig. 5.6, Table 5.1). Unstable flows are characterized by rivulets (or fingering flow)
and/or droplet streams in parts of the fracture, while the remaining fracture is dry
with flow velocities close to zero. We observe a peak of standard deviation for a
discharge Q = 8× 10−6 m3/s (Fig. 5.6). At a discharge Q = 8× 10−6 m3/s approxi-
mately 50% of the fracture is saturated (exhibiting high flow velocities), and 50% of
the fracture is dry with very low velocity or no flow occurring. Hence, the distribu-
tion of flow velocities gives rise to the highest standard velocity deviation relative to
the mean flow velocity. According to Eq. (5.22) and in accordance with our results
for fluxes approaching Q = 5.04× 10−4 m3/s the standard deviation of velocity de-
creases, as the number of instabilities (i.e. rivulets or droplet pathways) decreases
and hence the likelihood of localized preferential flow paths declines. For flows
Q < 8× 10−6 m3/s the standard deviation is decreasing again as the number of in-
dividual streams is approaching a maximum (this has for example been studied by
Ghezzehei (2005) using an energy-minimization principle for free-surface systems)
and therefore the (bulk) system exhibits a more diffuse behavior again. It should
be noted that for even lower injection rates (that we haven’t studied in this work)
the flow may even be bounded by only one side of the fracture such that slugs (i.e.
droplets bounded by both fracture walls) may be transformed into "true" droplets
and for even lower flow rates thin films bounded by only one side of the fracture
wall may occur. This transition has been studied for example by Ghezzehei (2005)
and is most likely characterized by a different behavior of the velocity standard de-
viation. Our results show that with increasing ∆, the standard deviation s increases
for all infiltration rates due to the increasing likelihood of finger and droplet stream
formation. Fluid front instabilities create preferential flow pathways, which impacts
the fracture-matrix interaction area, wetting dynamics, infiltration processes, and
arrival times of tracers or contaminants in the vadose zone.

However, in fully saturated smooth and rough fractures, the standard deviation
s reaches its minimum value. As expected, in the fully saturated fractures, the mean
flow velocity v̄ is equal to the infiltration rate.

The comparison of our simulation to the experiments of Nicholl and Glass (2005)
show good agreement for two of the main characteristics of the experimental setup.
Despite the differences in geometry (our fractures are smaller but with larger aper-
ture) the scaling of normalized velocities with specific discharge show similar trends
and the scaling of fingertip length with scaled velocity agree with the analytical pre-
dictions.

In our simulations, the scaling of normalized velocities vs,r,∗
∆=10,20 and specific dis-

charge, v∗ ∼ qp, yields exponents on the order of 0.5 to 0.55 (the exponent is increas-
ing with increasing roughness) compared to p = 0.48 in the laboratory experiments.
The simulations cover a slightly higher range of normalized velocities, however, ex-
trapolated normalized velocities for the given scaling exponents (Fig. 5.7) and lower
velocity ranges are expected to be below the experimental ones. The main reason
for this is that flow velocities from the simulations are averaged along the whole
fracture, while in the experiment only velocities of individual rapid fingers were
measured.

The comparison of fingertip length and scaled fingertip velocities between exper-
iments and simulations proves that the model is able to represent the complex case
of a gravity-driven instability. The values of Ltip for the experiment are larger than
the simulated ones. This is mainly caused by the wider aperture employed in the



5.5. Conclusion 69

simulations, which triggers faster snapping of rivulets due to the increase of gravi-
tational force compared to the capillary component, hence, the resulting fingers are
smaller.

5.5 Conclusion

In this work, we employed a three-dimensional PF-SPH model to simulate gravity-
driven flow in smooth and rough fractures. Two types of rough fractures with ζ =
0.75, and ∆ = 10.0 and 20.0 mm were considered.

To study the effect of fracture roughness on the front instability and flow regimes,
the fluid was injected in fractures with a constant flux, and the average flow velocity
and standard deviation were computed for different infiltration rates.

Our results indicated that the flow velocity in smooth and rough fractures in-
creases with an increasing infiltration rate. We observe the transition between flow
regimes, which has been validated in our earlier studies via laboratory and numer-
ical experiments (Kordilla et al.; 2017). For both smooth and rough fractures, the
rivulet flow regime is dominant for Q ≤ 4× 10−5 m3/s, while, for higher fluxes,
a snapping or continuous film was observed. For the smooth fracture, the fluid
front remained stable for Q > 4× 10−5 m3/s, while, for rough fractures, the fluid
film front formed some preferential pathways. For the fluxes Q > 5× 10−4 m3/s,
the whole fracture filled with water, and the fluid profile was stable for rough and
smooth fractures. Furthermore, we observed deceleration of flow velocity due to
roughness. Average velocities v̄r in rough fractures were smaller than the corre-
sponding velocities v̄s in smooth fractures.

Our results show that the largest velocity variance s (a measure of front insta-
bility) occurs for Q = 8× 10−6 m3/s in both the smooth and the rough fractures.
For Q > 8× 10−6 m3/s, the standard deviation decreases and reaches its minimum
value when a stable fluid front developed. Because of the roughness inducing flow
channeling effects, for a given Q, the standard deviation sr in rough fractures was
larger than ss in smooth fractures.

The analysis of flux-dependent fluid flow velocity and instability in smooth and
rough vertical fractures is required to gain a better understanding of the formation of
preferential flow paths. Because of their flow-focusing properties, such fractures not
only contribute to the fracture-specific flow path, but are important to understand
large-scale hydro(geo)logical problems, i.e., infiltration/percolation through whole
fracture networks and associated processes, such as aquifer recharge or contaminant
transport (vulnerability). Large-scale fracture networks and connections between
fractures induce a variety of additional partitioning and dispersion processes. Pref-
erential flow paths along fracture networks exhibit depth-dependent reshaping of
the flow and input signal due to flow rate specific partitioning dynamics at fracture
intersections (e.g., Kordilla et al.; 2017), and hence, understanding the distribution
of flow within each fracture is an important factor in defining the partitioning dy-
namics for fracture cascades/networks (Noffz et al.; 2018).

For saturated systems promising extension of the classical cubic law are for ex-
ample applied to create two-dimensional depth-averaged representations of com-
plex three-dimensional flows via dimension reduction in individual fractures (Mod-
ified Local Cubic Law, Wang et al.; 2015). Unsaturated flows in fractures exhibit an
even higher degree of internal complexity and in order to bridge the gap between
large-scale applications (for example DFN models) and small-scale process oriented
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models of unsaturated flows in fractures further developments and studies are re-
quired to enhance existing solutions (Dippenaar and Van Rooy; 2016).

Convergence of large-scale applications and process oriented models may also
be facilitated by an increase in numerical efficiency and/or computing power. Non-
uniform resolution (or adaptivity) in SPH is not yet very well-established and has
been defined as one of the most important goals within the SPH community. Adap-
tive resolutions in principle only require particle-dependent sizes of h (and modifi-
cations of the kernel computation when particles of different size interact) in order
to account for variable particle number densities (volumes). This is rather straight-
forward for static grids (e.g. mesh-based approaches) and solid SPH boundaries but
becomes challenging once highly dynamic fluid interfaces in the Lagrangian frame-
work are considered. In order to apply non-uniform resolution to such flows, adap-
tive splitting and coalescence schemes are required and consequently a set of split-
ting/coalescence conditions, which are challenging to define for free-surface flows
in the presence of surface tension.

Despite methodological advances (e.g. dynamic non-uniform resolution) and in-
crease in computing power the simulation of unsaturated flows through whole frac-
ture networks (field scales with millions or billions of fractures in 3D) is not possible
with any numerical method that discretizes the Navier-Stokes equation in the near
future. On fracture scales, computational costs are largely affected by the highly
anisotropic properties with respect to the resolved length scales. In-plane dimen-
sions of fractures are generally orders of magnitude larger (centimeters to meters)
than aperture widths (micrometers to millimeters) which consequently control the
resolution required to discretize the flow field along the fracture normals as well as
the height-dependent roughness field. Vertically depth-integrated approaches such
as the modified local cubic law model (Wang et al.; 2015) are computationally more
efficient, however, they fail to resolve saturated and unsaturated flow processes in
the presence of preferential flow paths which may induce strong hydraulic contrasts,
especially for wide aperture fractures. Here free-surface flows, that is flows bounded
by only one fracture surface, may occur and hence invalidate or limit the application
of vertically depth-integrated modeling approaches.

For now the outcomes of such discrete simulations presented in this paper can
only serve as a tool to identify the importance of individual fracture-scale processes
and inter-fracture partitioning dynamics in order to enhance DFN models or even
upscaled lumped parameter models (Liu et al.; 1998, 2003).
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Chapter 6

Multiscale Smoothed Particle
Hydrodynamics model
development for simulating
preferential flow dynamics in
fractured porous media3

Abstract.
Here, we present our newly developed multiscale pairwise-force smoothed par-

ticle hydrodynamics (PF-SPH) model for the characterization of flow in fractured-
porous media. The fully-coupled multiscale PF-SPH model is able to simulate flow
dynamics within a porous and permeable matrix governed by the volume-effective
Richards equation coupled to the discretely resolved Lagrangian flow dynamics
within adjacent fractures based on the Navier-Stokes equation. Flow from fracture
to the the porous matrix is modeled by an efficient particle removal algorithm and
a virtual water redistribution formulation in order to enforce mass and momentum
conservation. The model is validated via (1) comparison to a FEM model (COM-
SOL) for the Richards-based flow dynamics in a partially saturated medium and (2)
laboratory experiments to cover more complex cases of free-surface flow dynamics
and imbibition into the porous matrix. For the laboratory experiments, a Seeberger
sandstone is used due to its well known homogeneous pore space properties. The
saturated hydraulic conductivity of the permeable matrix is estimated from a pore
size and grain size distribution analysis. The developed PF-SPH model shows a
good correlation with a COMSOL model and all types of laboratory experiments.

We employ the proposed model to study preferential flow dynamics for different
infiltration rates. Under the term “preferential flow” we consider a vertical fracture
flow, which provides a rapid water transmission in contrast to a diffuse/ porous-
medium flow. Depending on an infiltration rate and water inlet location, preferen-
tial/fracture flow can occur immediately or with a delay. In case of a delay, water
accumulates on the surface first (ponding), then a fracture rapidly transmits water.
For the immediate fracture flow, ponding occurs only when a fracture space is fully
saturated with water. For all these cases, a preferential flow is much faster than a
diffuse flow even under unsaturated conditions.

Finally, we study the infiltration dynamics in rough fractures adjacent to an im-
permeable or permeable matrix for different infiltration rates. The simulation results

3Shigorina, E., Rüdiger, F., Tartakovsky, A. M., Sauter, M., and Kordilla, J. (2020): Multiscale
smoothed particle hydrodynamics model development for simulating preferential flow dynamics in
fractured porous media. Water Resources Research, 2020WR027323, under revision
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show a significant delay in arrival times for small infiltration rates when a perme-
able porous matrix is employed, as opposed to an impermeable one. In contrast,
for higher infiltration rates, water rapidly flows through the fracture to the system
outlet without any significant delay in arrival time even in the presence of the per-
meable matrix. The analysis of the amount of water stored in permeable fracture
walls and in a fracture void space shows that for the small infiltration rate, most of
the injected water is sucked into the porous matrix. For the large infiltration rate,
the flow velocity is higher and most of the water flows rapidly to the bottom of the
fracture without an intensive matrix saturation.

6.1 Introduction

Flow in partially saturated porous media is commonly described by the volume-
averaged Richards (1931) equation. While it was originally developed for soil sys-
tems, the Richards equation is often applied to model flow in fractured systems
(Heilweil et al.; 2015; Therrien and Sudicky; 1996), when the fracture density is suf-
ficiently high (or fracture apertures are rather small) and an REV can be defined.
Given the complexity of gravity-driven flows, many discrete flow and transport pro-
cesses, including fingering, preferential flow pathway formation, meandering, and
erratic flow mode dynamics (droplets, rivulets), cannot be described properly de-
scribed by the Richards equation.

Preferential flow within the unsaturated (vadose) zone are known to strongly
influence groundwater recharge, infiltration and contaminant transport (Nimmo;
2010). There is no clear answer in the literature under which condition preferen-
tial flow occurs and what are the main parameters influencing the preferential flow
dynamics. Some authors (Buscheck et al.; 1991; Nitao; 1991) provide a criteria for a
critical flux under which preferential flow occurs. They assert, that for infiltration
rates smaller than the critical flux, a diffuse/porous-medium flow dominates in the
system. For fluxes larger than the critical flux, fracture flow dominates.

Another authors (Germann et al.; 2007; Nimmo; 2010, 2012) provide examples
demonstrating, that preferential flow occurs under various unsaturated and par-
tially saturated conditions, without surface ponding or full matrix saturation, and
in the absence of hydraulic equilibrium. Preferential flow also creates a nonuniform
water distribution on a surface, which affects an infiltration event (DiCarlo et al.;
1999).

Hence, unsaturated flow in fractures is not well understood due to uncertainty
in generalizing flow processes, scale effects, characterization of process parameters
across scales, and the assessment of their relevance in the prediction of large scale
problems, e.g. the regional hydraulics of fault zones.

We use the proposed multiscale model to study conditions leading to preferential
flow. The pairwise-force smoothed particle hydrodynamics (PF-SPH) component of
the multiscale model is implemented in LAMMPS (Kordilla et al.; 2017; Plimpton;
1995). It is based on PF-SPH discretization of the Navier-Stokes equations and can
efficiently model flow through fractures or fracture networks and adequately re-
cover all relevant flow dynamics including the effects of free surfaces and surface
tension (Kordilla et al.; 2017; Kordilla J.; 2013; Shigorina et al.; 2017, 2019). How-
ever, in porous-fractured systems, the porous and/or permeable matrix represents
an important storage compartment and influences flow dynamics within the highly
permeable fractures.
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In this work, we present a fully-coupled multiscale PF-SPH model, which is able
to simulate free-surface flow within fractures using a discretization of the Navier-
Stokes (NS) equation coupled to a SPH discretization of the Richards equation (Richards;
1931). The PF-SPH-LAMMPS code has been extensively validated (Kordilla et al.;
2017; Kordilla J.; 2013; Shigorina et al.; 2017) for simulating gravity-driven free-
surface and fracture flows under dynamic wetting conditions. The newly devel-
oped code for simulating flow in porous media and at a fracture-matrix interface
is validated against a finite-element COMSOL model and small-scale laboratory ex-
periments.

In order to study the preferential flow dynamics, we investigate at which infil-
tration rates a fracture flow dominates, and at which rates a fracture acts as a flow
barrier and ponding occurs, and, as a result, a diffuse flow dominates in the system.
Finally, we study the influence of fracture wall permeability and storage properties
of the porous matrix on the arrival times for different infiltration rates. We consider
two types of rough fractures: (1) with permeable and (2) impermeable adjacent ma-
trix. Each fracture has two surfaces with a width of 5.0 cm, a length of 10.0 cm, and
a thickness of 1.0 cm, separated by 2.0 mm aperture. The fracture roughness is char-
acterized by the Hurst exponent ζ (Bouchaud et al.; 1990; Shigorina et al.; 2019) and
an initial maximum value ∆ for the random displacement from a planar surface.

6.2 Governing Equations and the PF-SPH method

In the following, we introduce the governing partial differential equations (PDEs)
for the studied system and give an overview of the employed SPH model, including
SPH discretization of the PDEs and boundary conditions, as well as the coupling
procedure between the NS and Richards domains.

Partially saturated flow in porous media is commonly modeled using the Richards
equation and suitable pressure-saturation relationships:

∂Θ(ψ)

∂t
= (Cm + ρgSeSs)

∂ψ

∂t
= ∇ ·Kskr(ψ)∇ψ +

∂K(ψ)
∂z

, (6.1)

where Θ is the water content, ψ is the hydraulic head, Ks is the saturated hydraulic
conductivity, Ss is the specific storage coefficient, ρ is the water density, and g is
the gravitational acceleration. The parameters Cm (specific moisture capacity), Se
(effective saturation), and kr (relative hydraulic conductivity) are found from the
van Genuchten relationships (Van Genuchten; 1980):

Se =


1[

1+|αψ|n
]m if ψ < 0

1 if ψ ≥ 0

, (6.2a)

kr =

 Se0.5
[
1−

(
1− Se

1
m

)m]2
if ψ < 0

1 if ψ ≥ 0
, (6.2b)

Cm =


αm

1−m (Θs −Θr)Se
1
m

(
1− Se

1
m

)m
if ψ < 0

0 if ψ ≥ 0

. (6.2c)
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Here, α and n are the van Genuchten parameters, m = 1− 1/n, and Θs and Θr are
the saturated and residual liquid volume fractions respectively.

The free-surface fracture flow is governed by the continuity equation,

dρ

dt
= −ρ(∇ · v), (6.3)

and the momentum conservation equation,

dv
dt

= −1
ρ
∇P +

µ

ρ
∇2v + g. (6.4)

At the water-air interface the Young-Laplace boundary condition

Pn = τw · n + Sσn, (6.5)

and the continuity condition
(v− vb) · n = 0, (6.6)

are enforced.
The contact angle is prescribed at the water-air-solid contact line and the no-slip

boundary condition at the boundary between water and solid phases. Here, τw =
[µ(∇v +∇vT)] is the viscous stress tensor, v the fluid velocity, vb is the boundary
velocity, P is the pressure, µ the viscosity, n is the normal vector pointing away from
the non-wetting phase, and g the gravitational acceleration.

To numerically solve these equations with the SPH method, we discretize the
porous matrix with a set of solid particles and fluid in the fracture with a set of fluid
particles. The positions of solid particles are fixed and their velocities are set to zero.
The positions and velocities of fluid particles are found from the momentum con-
servation equation discretized with the weakly compressible pairwise SPH scheme
(Kordilla et al.; 2017; Kordilla J.; 2013; Morris et al.; 1997; Tartakovsky and Meakin;
2005b):

dvi

dt
= −

N

∑
j=1

mj

( Pj

ρ2
j
+

Pi

ρ2
i

) rij

rij
·

dW(rij, h)
drij

+

2µ
N

∑
j=1

mj
vij

ρiρjrij
·

dW(rij, h)
drij

+ g +
1

mi

N

∑
j=1

Fij ,
(6.7)

and
dri

dt
= vi, (6.8)

where the summation is performed over all particles including fluid and solid parti-
cles. In Eqs. (6.15)-(6.8), rij = ri − rj and rij = |ri − rj|, mi = mj = m0 is the (constant)
mass of particle i and j, ρj and Pj are the density and pressure of fluid carried by
particle j, and h is the support range of the kernel W. Fluid and solid particles are
assumed to have the same mass and ρi is computed for both fluid and solid particles
as (Morris et al.; 1997; Tartakovsky and Meakin; 2005b)

ρi =
N

∑
j=1

mjW(rij, h) , (6.9)
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The pressure of both fluid and solid particles is computed from the equations of state
Batchelor (1967):

Pi = P0

{( ρi

ρ0

)γ
− 1
}

, (6.10)

where

P0 =
c2ρ0

γ
, (6.11)

γ = 7, ρ0 is the equilibrium particle density, and the speed of sound c is chosen such
that the relative density fluctuation |δρ|/ρ is small (less than 3%) to approximate an
incompressible fluid.

In Eqs. (6.15), (6.7), and (6.9), we use W in the form of a so-called “Wendland”
kernel (Wendland; 1995):

W = αk

 (1− |r|h )3 if 0 ≤ |r| < h

0 if |r| ≥ h
, (6.12)

where αk = 168/16πh3.
The force Fij in Eq. (6.7) is used to impose the Young-Laplace boundary con-

dition. Following Tartakovsky and Meakin (2005b), Tartakovsky and Panchenko
(2016), Kordilla J. (2013) and Kordilla et al. (2017) we employ a combination of ker-
nel functions to generate a continuous function with short-range repulsive and long-
range attractive components:

Fij = sij


(ÃW̃(rij, h1)

rij
rij
+ B̃W̃(rij, h2)

rij
rij
) if rij ≤ h

0 if rij > h,
(6.13)

where W̃ is the cubic spline function

W̃(rij, h) =



1− 3
2 (

rij
h )

2 + 3
4 (

rij
h )

3 if 0 ≤ r
h < 0.5

1
4 (2−

rij
h )

3 if 0.5 ≤ rij
h < 1

0 if rij
h ≤ 1.

(6.14)

Here, Ã, B̃, h1, and h2 determine the shape of Fij. We set Ã = 8, B̃ = −1, and h1 = 0.5,
h2 = 1. For a given Fij shape, sij determines the magnitude of surface tension and
static contact angle.

The parameter sij is equal to s f f for the interaction between two fluid particles
and ss f for the interaction between fluid and solid particles. The ratio of s f f and ss f
controls the static and dynamic contact angles. For a liquid to wet the surface, s f f
should be set greater than ss f and vice versa.

The SPH discretization of Eqs. (6.1)-(6.2) is:

dΘi

dt
= (Cmi + ρigSeiSi)

dψi

dt
=

N

∑
j=1

2
mimj

mi + mj

ρi + ρj

ρiρj
·Kskri(dψij + dzij) ·

dW(rij, h)
drij

.

(6.15)
Here, each particle (solid and fluid) is assigned an initial water content Θ and

initial hydraulic head ψ.The water content of a solid particle is defined as the volume
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of water in the particle divided by the volume of this particle. The water content of
fluid particles is defined as the volume of fluid carried by the particle divided by its
initial volume.

The fluid particles are initially fully saturated and are assigned Θ f = 1.0 and
ψ f = 0.0 m. Depending on the type of a problem, the solid particles are assigned
Θb = 0.0 or Θb equal to a residual water content. Once fluid particles come into a
contact with solid particles the exchange of fluid is governed by the Richards equa-
tion, i.e. a pressure-head dependent transfer is established. The changes in water
content and pressure head for solid and fluid particles are found from Eq. (6.15).
The maximum Θb of solid particles is equal to the saturated water content of the
porous matrix based on the user defined porosity.

If the water content Θ f of fluid particles falls below a critical threshold Θ f < 0.99,
we redistribute the total water content of all particles below the threshold such that
most particles are fully saturated again with Θ f = 1.0. Fluid particles that are still
below the critical threshold after the redistribution are marked and removed at the
end of the time step (6.1). The residual water content (commonly less than the water
content of one single particle) is stored and taken into account during the next time
step. This procedure is carried out over all particles within a single MPI domain.
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FIGURE 6.1: Particle removal algorithm.

To properly conserve the water balance in the system, we rely on the mass con-
servation equation:

∂Θ
∂t

= ∇ · (∑ qin −∑ qout) = 0 , (6.16)

where q is the specific flux. Every time step we calculate the sum of Θ f and Θb of all
fluid and boundary particles based on Eq. (6.17). To control the water balance in the
system, the total Θ must stay constant:

Θ = ∑ Θ f + ∑ Θb = const. (6.17)
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We employ a modified Velocity Verlet time stepping scheme (Ganzenmüller et al.;
2011):

vi(t + 1
2 ∆t) = vi +

1
2 ai(t) (6.18a)

v̄i(t + ∆t) = vi(t) + ∆tai (6.18b)

ri(t + ∆t) = ri(t) + ∆tvi(t + 1
2 ∆t) (6.18c)

vi(t + ∆t) = vi(t + 1
2 ∆t) +

1
2

ai(t + ∆t), (6.18d)

where the new particle acceleration ai(t + ∆t) can be obtained using an extrapolated
velocity v̄i.

Time step constraints are given by Tartakovsky and Meakin (2005b):

∆t ≤ 0.25h/3c (6.19a)

∆t ≤ 0.25min(h/3 | ai |)1/2 (6.19b)

∆t ≤ min(ρih2/9µi), (6.19c)

where | ai | is the magnitude of acceleration ai.

6.3 Model Validation

6.3.1 Constant pressure head boundary

Here we provide a validation of the SPH discretization of the Richards equation
under static conditions. We model a pressure head distribution inside a vertical
porous column with a constant pressure head boundary. The dimensions of the
column are 0.5×0.5×2 m. This model setup includes 38 720 solid particles, with
initial pressure head ψ0 = −2.0 m, isotropic conductivity Ks = 1× 10−4 m s−1, Ss =
7.5× 10−5 Pa−1, Θs = 0.25, Θr = 0.0, and the van Genuchten parameters n = 2,
m = 0.5, α = 1 (Fig. 6.2a). A constant pressure head boundary with ψb = −0.5 m is
prescribed at the bottom of the domain. The particles are placed on a uniform cubic
lattice with a lattice size of ∆x = 2.5× 10−2 m. The mass and density of each particle
is m0 = 1× 10−3 kg, ρ0 = 1000 kg m−3, respectively. The smoothing length is set
to h = 8.55× 10−2 m. This yields an average number of 40 interacting particles,
which was shown to be sufficient to achieve an accurate solution (Kordilla et al.;
2017; Kordilla J.; 2013; Tartakovsky and Meakin; 2005a). Figure 6.2 shows the SPH
simulation results for the pressure head inside the vertical column at 0, 1, 6, and 16
hours.

The validation is carried out via comparison with a FEM COMSOL model. Fig-
ure 6.3 shows the pressure head distributions along the vertical column at 1, 6, and
16 hours for our SPH and the COMSOL model. To quantify the difference in the SPH
and COMSOL pressure head solutions, for t = 1, 6, and 16 hours we calculate the
standard deviation

st =

√
∑N

i=1(ψ
s
zi
− ψc

zi
)2

N − 1
, (6.20)

and standard error
SEt =

st√
N

, (6.21)

where ψs
z and ψc

z are the SPH and COMSOL pressure head solutions at distances
z =0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0 m, and the number of measurements
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FIGURE 6.2: Pressure head distributions for a vertical column with
constant pressure head boundary at different times: (a) t0 = 0 h, (b)

t1 = 1 h, (c) t2 = 6 h, and (d) t3 = 16 h.

is N = 9. Table 6.1 provides standard deviations and standard errors for t = 1, 6,
and 16 hours. The average standard deviation is s̃t = 3.9× 10−2 m, and the average
standard error is ˜SEt = 1.0× 10−2 m, which is less than the particle spacing ∆x and
indicates excellent numerical accuracy of the SPH model.
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FIGURE 6.3: Comparison of pressure heads at different times for SPH
and COMSOL models.

Next, we compare our model with three laboratory experiments, including fluid
resting on a porous permeable surface or flowing over it.

6.3.2 Drop imbibition

Experimental and simulation setup

First, we study the infiltration of a droplet into a sandstone. In the laboratory ex-
periment, a water droplet with radius 1.8 mm is placed above a slice of sandstone
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TABLE 6.1: Standard deviations and standard errors of pressure
heads at t = 1, 6, and 16 hours.

Standard deviation (m) Standard Error (m)

st=1h 3.9× 10−2 SEt=1h 1.3× 10−2

st=6h 3.0× 10−2 SEt=6h 1.0× 10−2

st=16h 2.1× 10−2 SEt=16h 0.7× 10−2

s̃t 3.0× 10−2 ˜SEt 1.0× 10−2

(type "Seeberger") at a distance of 5.8 mm between the surface and droplet center
(Fig. 6.4a, top). After the droplet is released from the pipette, it comes into contact
with the sandstone surface and slowly infiltrates the sandstone slice. During the
experiment, the changes in droplet size and shape are observed visually and the
infiltration time into the solid matrix is measured.

FIGURE 6.4: The experimental (top) and simulation (bottom) results
of droplet imbibition at different times: (a) t0 = −0.004 s, (b) t1 =

0.396 s, (c) t2 = 1.836 s, and (d) t3 = 2.676 s.

To model this laboratory experiment, we create a rectangular block of solid par-
ticles, representing the sandstone slice, and a sphere of fluid particles at a height of
5.8 mm above the solid surface (Fig. 6.4a, bottom). The dimensions of the solid block
are 12×12×2 mm, the water droplet has a radius 1.8 mm.

Solid particles are placed on a uniform cubic lattice with a lattice size of ∆x =
2.0× 10−4 m. Each particle (solid and fluid) has a density ρ0 = 1000 kg/m3 and a
mass m0 = ρ0(∆x)3 = 8× 10−9 kg. The viscosity is set to µ = 1.296× 10−3 Pa s,
the speed of sound to c = 2.5 m/s, the gravitational acceleration to g = 9.81 m/s2,
and the smoothing length to h = 3

√
40(∆x) = 6.84× 10−4 m, where 40 is the particle

number density, i.e. the number of interacting particles within the kernel range h.
The system is resolved with 39 600 solid and 3042 fluid particles. The input simu-
lation parameters are: the porosity εp, permeability Ks, storage coefficient Ss, sat-
urated Θs and residual Θr water content of the sandstone, and the van Genuchten
parameters α, m, n. These parameters can be estimated from the grain size and pore
size distribution analysis of Seeberger Sandstone sample as demonstrated in the fol-
lowing section.
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Parameter estimation

The effective porosity εp = 0.186 of the Sandstone is found from a pore size analysis
based on mercury porosimetry (Fig. 6.5, Sustrate (2017)).
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FIGURE 6.5: Porosimetry of Seeberger Sandstone (Sustrate; 2017).

The (isotropic) conductivity Ks is estimated from Kozeny-Carmen model (Car-
man; 1937; Kozeny; 1927):

Ks =
(ρg

µ

) ε3
p

(1− εp)2

( d2
m

180

)
. (6.22)

Based on the results of a sieve analysis (Sustrate; 2017), the representative grain
size was found to be dm ≈ 0.125 mm. Together with g = 9.81 m s−2 and ρ =
1000 kg m−3 the saturated hydraulic conductivity is determined with Eq. (6.22) as
Ks = 6.39× 10−6 m s−1.

The storage coefficient Ss is found from Eq. (6.23):

Ss = εpχ f + (1− εp)χp, (6.23)

where χ f = 4.6× 10−10 Pa−1 is the compressibility of water, χp = 3.8× 10−6 Pa−1

is the estimated compressibility of the porous matrix based on the porosity εp =
0.186 (Hall et al.; 1953). Using Eq. (6.23) we obtain the storage coefficient Ss =
3.09× 10−6 Pa−1.

The van Genuchten parameter α is found following Guarracino (2007) and Bear
(2013):

α =
(2σcosθ

ρgrmax

)−1
, (6.24)

where σ = 0.0735 N m−1 is the surface tension of water at 10 ◦C, θ = 90◦ is the static
contact angle of the fluid on a solid surface, rmax = 15 µm is the maximum pore
radius (Fig. 6.5, Sustrate (2017)), g = 9.81 m s−2, and ρ = 1000 kg m−3. Employ-
ing Eq. (6.24), we obtain α ≈ 1.0 m−1. The parameters m and n = [1 − m]−1 are
found based on the fractal dimension D (Ghanbarian-Alavijeh et al.; 2010; Mandel-
brot; 1983):

m =
3− D
4− D

. (6.25)
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The parameter D can be found from the mass-based relationship (Boadu; 2000; Tyler
and Wheatcraft; 1992):

M(d < dm)

MT
=
( dm

dmax

)3−D
, (6.26)

where dmax is the upper size limit of the particle sizes from the sieve analysis, MT
is the total mass of a sample and M(d < dm) is the mass of soil with grains smaller
than dm. From the sieve analysis we obtain MT = 159.0 g, M(d < dm) = 17.3 g, dm =
0.125 mm and dmax = 1.0 mm. The parameter D = 1.93 is estimated from Eq. (6.26)
by log transforming both sides of the equation, and Eq. (6.25) yields m ≈ 0.5, and
n = [1−m]−1 ≈ 2.0.

Results

During imbibition, the contact line between droplet and surface can evolve in two
different ways (Lee et al.; 2016; Marmur; 1988; Siregar; 2012): (1) the contact line
moves while the static contact angle remains constant, or (2) the contact line is
pinned to the surface while the contact angle decreases. According to our labora-
tory observations, droplet imbibition into the Seeberger sandstone takes place with
the pinned contact line (Fig. 6.4a-d, top). The contact angle in this case varies from
θ = 90◦ to its minimum value close to 0◦, while the contact line diameter stays equal
to 3.9 mm until the droplet is completely absorbed after 2.676 s (Fig. 6.4, top).

Figure 6.4(bottom) shows the simulation results of the droplet imbibition at dif-
ferent times. Here the fluid particles are initially fully saturated and have Θ f = 1.0
and ψ f = 0.0 m, the solid particles are initially set to Θb = 0.01 and ψb = −3.8 m
(fitted value for the given van Genuchten parameter set). The subscripts f and b
stand for the fluid and boundary particles, respectively.

To keep the contact line pinned to the surface, after the droplet is equilibrated on
the surface at (teq = 0.4 s), we linearly increase the interaction force ss f with time t
(Eq. 6.13) from ss f = 0.0 to 1× 10−5 (Fig. 6.6):

ss f = (4.39t− 1.60) · 10−6, (6.27)

where Eq. (6.27) is empirically obtained.
The equilibrated dynamic contact angle in this case decreases from Θ = 90◦ to

18◦, while the contact diameter stays equal to 3.9 mm. The absorption time for the
simulated droplet is 2.588 s, which is close to the experimental absorption time of
2.676 s.

6.3.3 Water infiltration into a sandstone

In the section, we consider the infiltration of 4.0 mL of water into a rectangular See-
berger sandstone sample. The dimensions of the sandstone block are 47.5×8.0×47.5 mm.
The back, front, left, and right sides of the sample are sealed and the water is sup-
plied to the top of the sample. During the experiment, we measure the infiltration
depth (Fig. 6.7, top) and the water level above the sandstone surface (Fig. 6.8).

In the simulation, we create a block of 280 840 solid particles, which are placed
on a uniform cubic lattice with the lattice size ∆x = 4.0× 10−4 m. A block of 62 500
(equivalent to 4.0 mL of water) fluid particles is placed above the solid (Fig. 6.7,
bottom). To reproduce the no-flow conditions at the back, front, left, and right side,
we prescribe periodic boundaries to the direction of length and width of the sample.
The mass and density of each solid and fluid particle is m0 = 6.4× 10−8 kg, ρ0 =
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FIGURE 6.6: The dependence of interaction forces between solid and
fluid particles ss f on time t, the stabilization time teq = 0.4s.

1000 kg/m3, respectively, and the smoothing length is set to h = 1.37× 10−3 m. The
viscosity is set to µ = 1.296× 10−3 Pa s, the speed of sound to c = 2.0 m/s, and the
gravitational acceleration to g = 9.81 m/s2.

The parameters εp, Ks, Ss, ψ f , ψb, Θs and Θr, and the van Genuchten α, m, n
are taken from the previous subsection. Figure 6.8 compares the experimental and
simulation results of the decreasing water level during the infiltration into the See-
berger sandstone sample. The simulation results are in a good agreement with the
laboratory experiment (Fig. 6.7, 6.8). Small deviations between simulation and ex-
perimental results are most likely due to small heterogeneities within the sandstone
sample and errors in the sandstone parameters estimated in Section 6.3.2.

6.3.4 Flow on the fracture wall and in the adjacent matrix in sandstone

In this section, we compare the experimental and simulation results of free-surface
flows on the fracture wall and in the adjacent permeable sandstone matrix and the
respective discharge rates at the outlet of the fracture.

The experimental setup consists of a Seeberger sandstone sample with dimen-
sions 47.5×8.5× 47.5 mm, which is placed between two acrylic glass plates. A water
inlet with continuous water flux Q = 3.5 mL min−1 is located 5.0 mm above the up-
per right corner of the sandstone. A silicon rubber sheet between the acrylic glass
plate and the sample prevents water flowing between the front and back side of
the sample. The upper and right side surfaces are left open in order to allow free-
surface films to evolve. During the experiment, the saturation of the porous matrix
is observed (Fig. 6.9, top), and the water outflow mass is measured (Fig. 6.10).

In the SPH simulation, we create a block of 297 381 solid particles, which are
placed on a uniform cubic lattice with the lattice size ∆x = 4.0× 10−4 m. A certain
amount of fluid particles (equivalent to the flux Q = 3.5 mL min−1) is added each
time step to the upper right corner of the solid block within a small injection vol-
ume. The input simulation parameters are taken from the previous subsection. Fig-
ure 6.9 (bottom) shows the porous matrix saturation during the simulation. The ex-
perimental and simulation outflow mass measurements are shown in Fig. 6.10. The
dotted line represents the outflow mass during the experiment, the solid straight line
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FIGURE 6.7: Comparison of the experimental (top) and simulation
(bottom) results of 4.0 mL water infiltrating into a sandstone at differ-
ent time intervals: (a) t1 = 3 s; (b) t2 = 16 s; (c) t3 = 30 s; (d) t4 = 50 s;

(e) t5 = 100 s.
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FIGURE 6.8: Experimental and simulation measurements of water
level above the sandstone during infiltration.

the SPH simulation data. During the first 42 s of the experiment and 44 s of the sim-
ulation the water infiltrates into the sandstone and accumulates mostly on the top of
the sample, i.e., no outflow is observed. Once the saturation of the sandstone reaches
a critical threshold and enough water has accumulated on the top of the sandstone,
rapid gravity-driven flow on the vertical surface is initiated and the outflow is in-
creasing nearly linearly. At this point the system is dominated by preferential flow
on the free surface and the imbibition into the porous matrix slowly diminishes. The
simulation results are in a good agreement with the laboratory experiment, both in
terms of the discharge rate, as well as the onset of the initial breakthrough.
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FIGURE 6.9: Comparison of experimental (top) and simulation (bot-
tom) results of free-surface flows on a porous sandstone at different
time intervals: (a) t1 = 5 s; (b) t2 = 22 s; (c) t3 = 44 s; (d) t4 = 66 s; (e)

t5 = 110 s.
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FIGURE 6.10: Experimental measurements and simulation results of
water outflow mass.

6.4 Preferential flow dynamics at a fracture-matrix interface

The following section is devoted to the numerical investigation of infiltration dy-
namics at a fracture-matrix interface. Here, we consider two types of vertical frac-
tures, one with a permeable and one with an impermeable matrix. The simulation
setup consists of two blocks of solid particles separated by a 2.0 mm fracture. Each
block of solid particles has a width and length of 2.0 cm, and a thickness of 2.0 mm.

The fluid is injected at a 12.0 mm distance from the fracture top with a constant
rate (Fig. 6.11). We consider 12 different injection rates, ranging from 2× 10−8 to
2× 10−6 m3 s−1.

The mass and initial density of each solid and fluid particle are m0 = 8× 10−9 kg,
ρ0 = 1000 kg/m3, respectively, and the smoothing length is set to h = 6.84× 10−4 m.
In the NS equations, the viscosity is µ = 1.296× 10−3 Pa s, the speed of sound is
c = 2.5 m/s, and the gravitational acceleration is g = 9.81 m/s2. In the Richards
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FIGURE 6.11: Infiltration dynamics in fractures with impermeable
(top) and permeable (bottom) walls: (a) Q = 2× 10−8 m3 s−1, t =
4.560 s; (b) Q = 8× 10−8 m3 s−1, t = 0.912 s; (c) Q = 6× 10−7 m3 s−1,

t = 0.251 s; (d) Q = 1× 10−6 m3 s−1, t = 0.228 s.

equation, the parameters εp, Ks, Ss, Θs, Θr, ψ f and ψb, and the van Genuchten α, m,
n are the same as described in subsection 6.3.2.

Based on the flux supplied to a fracture, the infiltration process in fractures with
impermeable (Fig. 6.11, top) and permeable (Fig. 6.11, bottom) walls can occur
according to one of the following scenarios (Fig. 6.12):

(1) For small fluxes Q < 6× 10−8 m3 s−1 (Fig. 6.11 a) accumulation of water on
the top (so-called, ponding effect) and fracture flow occur simultaneously.

(2) For fluxes Q in the range between 6× 10−8 and 1× 10−7 m3 s−1 (Fig. 6.11 b)
water accumulates on the top of the solid, once enough water has accumulated on
the top, preferential/fracture flow occurs. Similar scenario is observed during the
laboratory experiment for model validation (Subsection 6.3.4).

(3) For fluxes Q in the range between 1× 10−7 and 8× 10−7 m3 s−1 (Fig. 6.11 c)
preferential flow and ponding occur simultaneously.

(4) For large Q < 8× 10−7 m3 s−1 (Fig. 6.11 d) preferential flow dominates in the
system. Once, fracture space is fully occupied by water, ponding occurs.

6.5 Unsaturated fractured porous medium flow

In the following section, we study the influence of the fracture wall permeability on
arrival time and on the volume of water stored in the porous matrix for different
infiltration rates. For the simulations, we create two rough parallel fracture surfaces
separated by a 2.0 mm aperture. Each fracture surface has a width of 5.0 cm, a length
of 10.0 cm, and a thickness of 1.0 cm. The roughness of the solid surface is charac-
terized by the Hurst exponent ζ (Bouchaud et al.; 1990; Shigorina et al.; 2019) and
an initial maximum value ∆ for the random displacement from a planar surface. It
was shown that ζ often assumes values of 0.80(5) for consolidated rocks (Bouchaud;
1997; Ponson et al.; 2006), however, wider ranges of 0 < ζ < 0.9 have been measured
as well (Boffa et al.; 1998; Sahimi; 2011). Here we chose ζ = 0.75, and ∆ = 40.0 mm.
The rough fracture surfaces are resolved with 6 784 800 solid particles with a particle
spacing of ∆x = 2.0× 10−4 m. The amount of fluid particles depends on the flux Q
and the simulation duration.

The parameters m0, ρ0, h, µ, c, g, εp, Ks, Ss, Θs, Θr, ψ f and ψb, and the van
Genuchten α, m, n are the same as described in subsection 6.4.
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FIGURE 6.12: Four scenarios of infiltration dynamics in fractures with
impermeable and permeable walls: (1) for Q < 6× 10−8 m3 s−1 pref-
erential flow and ponding occur simultaneously; (2) for Q in the range
between 6× 10−8 and 1× 10−7 m3 s−1 ponding is dominating; (3) for
Q in the range between 1× 10−7 and 8× 10−7 m3 s−1preferential flow
and ponding occur simultaneously; (4) for Q < 8× 10−7 m3 s−1 pref-

erential flow is dominating.

We consider two types of rough fractures: (1) with impermeable matrix (Fig. 6.13,
top) and (2) with permeable matrix Ks = 6.39× 10−6 m s−1 (Fig. 6.13, bottom). Un-
der the term fracture wall we consider a thick porous (permeable or impermeable)
matrix adjacent to the fracture void space. The fluid is injected along the frac-
ture top with constant volumetric flux Q. Figure 6.13 shows the flow mode dis-
tributions inside fractures with impermeable and permeable walls for three infiltra-
tion rates: Q = 3× 10−6 m3 s−1 (Fig. 6.13a), Q = 9× 10−6 m3 s−1 (Fig. 6.13b), and
Q = 2× 10−5 m3 s−1 (Fig. 6.13c) at arrival times for impermeable fracture. We mea-
sure arrival time as a time between fluid injection start and a time when fluid in the
fracture void space reaches the bottom of the fracture.

For the smaller infiltration rate (Q = 3× 10−6 m3 s−1), the dominating flow modes
are droplets and a combination between temporary rivulets (slugs, elongated droplets)
and snapping droplets (Fig. 6.9a). For the higher flow rate Q = 9× 10−6 m3 s−1, we
observe a transition into a rivulet-dominated regime with occasional (lateral) merg-
ing of rivulets. For even higher flow rates (Q = 2× 10−5 m3 s−1) flows transitions
into snapping films, partially breaking up into rivulets.

Figure 6.13 (bottom) shows the saturation of the porous matrix. In compari-
son with simulations employing an impermeable matrix (Fig. 6.13, top), a smaller
amount of fluid occupies the fracture void space end hence alters the flow-rate de-
pendent formation of flow modes. Figure 6.14 compares the fluid arrival times for
for fractures with permeable and impermeable walls. The ratios t∗ between arrival
times for permeable and impermeable matrix systems are listed in Table 6.2.

t∗ = tim

tp
, (6.28)

where tim and tp are the arrival times for an impermeable and permeable matrix
respectively. As expected the simulation results indicate a delay in arrival time when
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FIGURE 6.13: Flow mode distributions inside a rough fracture with
impermeable (top) and permeable (bottom) walls for different fluxes
at arrival times for permeable fracture: (a) Q = 3× 10−6 m3 s−1, t =
1.026 s; (b) Q = 9× 10−6 m3 s−1, t = 0.570 s; (c) Q = 2× 105 m3 s−1,

t = 0.388 s

a permeable matrix is present (Fig. 6.14). For an infiltration rate Q = 3× 10−6 m3 s−1

we measure a value of t∗ = 2.11, i.e., in the case of a permeable fracture matrix
the breakthrough is about two times slower than for an impermeable one. For the
highest considered infiltration rate Q = 2× 10−5 m3 s−1, water is rapidly channeled
through the fracture void space to the bottom of the fracture without any significant
delay as compared to a fracture with permeable walls.

In order to quantify the amount of water stored in the fracture, we calculate the
outflow ratio η:

η = 1− Qout

Q
, (6.29)

where Qout is volume of water leaving the system at the bottom of the fracture di-
vided by time and η assumes values between 0 and 1. When η = 1, no fracture
outflow occurs and all of the injected water is kept in the porous matrix and within
the fracture void space, or on the fracture surface, while a value of η close to zero
represents a steady state condition, where the outflow rate is equal to the infiltra-
tion rate. Figure 6.15 compares changes in η over time for an impermeable and
permeable matrix. The difference in η between impermeable and permeable matrix
systems corresponds to the relative amount of water stored in the porous matrix.
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FIGURE 6.14: Dependence of fluid arrival time on infiltration rate for
an impermeable and permeable matrix.

Table 6.2 provides the difference in outflow ratio ∆η for an impermeable and perme-
able matrix at t = 3 s for different infiltration rates. The largest value of ∆ηt=3 = 0.71
occurs at the smallest flux of Q = 3× 10−6 m3 s−1, indicating that over 70% of water
is stored within the porous matrix. For larger infiltration rates Q = 9× 10−6 and
Q = 2× 10−5 m3 s−1, the outflow ratio decrease with ∆ηt=3 = 0.25 and 0.18 respec-
tively, i.e., due to limited uptake capacity of the matrix a smaller amount of water
infiltrates into the porous matrix.

TABLE 6.2: Statistical properties for different fluxes in rough frac-
tures.

Q (m3/s) 3× 10−6 9× 10−6 2× 10−5

t∗ 2.11 1.38 1.24
∆ηt=3 0.71 0.25 0.18
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FIGURE 6.15: The outflow ratio over time for different infiltration
rates: (a) Q = 3× 10−6 m3 s−1; (b) Q = 9× 10−6 m3 s−1; (c) Q =

2× 105 m3 s−1
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6.6 Discussion

In this paper, we present a novel SPH model to investigate preferential flow dy-
namics in fractures with porous matrix. As expected, we find that flow in fracture
is much faster than in matrix. We also find that flow in fracture is affected by the
diffuse flow in the adjacent porous matrix.

Specifically, we study infiltration dynamics in a 2.0 mm fracture for flux rates
ranging from 2× 10−8 to 2× 10−6 m3 s−1. For a given water inlet location, the infil-
tration occurs in one of the following four scenarios (see Figs. 6.11 and 6.12). In the
first scenario (small infiltration rates Q < 6× 10−8 m3 s−1), we observe droplet flow
in the vertical fracture with some water accumulates on the top horizontal surface.
In the second scenario (Q between 6× 10−8 and 1× 10−7 m3 s−1), the ponding effect
is dominating. In this case, water accumulates first on the top, until saturation is
high enough to activate a fracture flow. In the third case (Q is in the range between
1× 10−7 and 8× 10−7 m3 s−1), the ponding and fracture flow occur simultaneously.
When a water stream reaches the fracture top, it separates into two streams. One of
these streams goes into a fracture, another one transmits water to the solid top. In
the last scenario (Q < 8× 10−7 m3 s−1), all water flows into the vertical fracture. If
the infiltration rate is high enough to fill all fracture space with water, then water
eventually starts accumulating on the horizontal surface. In all these cases, prefer-
ential flow transmit water rapidly to the bottom of the fracture, while matrix flow
happens slowly even under unsaturated conditions.

Next, we investigate infiltration dynamics in rough fractures with permeable and
impermeable walls. We simulate a continuous water flux supplied to the top of a
fracture that is 5.0 cm width, 10.0 cm long, and has 2.0 mm aperture and 1.0 cm wall
thickness. The roughness of the fracture walls is characterized by Hurst coefficient
ζ = 0.75, and ∆ = 40.0 mm. We consider three infiltration rates Q = 3× 10−6,
Q = 9× 10−6 and Q = 2× 10−5 m3 s−1. The simulation results show a delay in
arrival times for a fracture with permeable walls as compared to impermeable walls,
especially for Q = 3× 10−6 m3 s−1, where due to low free-surface velocities and/or
high imbibition capacity, water can efficiently saturate the porous matrix. For the
Q = 2× 10−5 m3 s−1, water flows rapidly to the bottom of the fracture without any
significant delay in arrival time. Under the chosen conditions and depending on the
flow rate, the permeable fracture walls can be an efficient storage compartment and
store over 70% of the infiltrated water.

6.7 Conclusion

We developed a fully parallelized multiscale SPH model to study infiltration dy-
namics in porous-fractured rock formations. In our model, flow in porous matrix
is governed by the Richards (1931) equation coupled to free-surface flow in the ad-
jacent fracture governed by the Navier-Stokes equation. Inflow dynamics from the
fracture into the porous matrix are realized by an efficient particle removal algo-
rithm and a virtual water redistribution formulation in order to enforce mass and
momentum conservation. The model is validated via comparison with a numerical
COMSOL model and laboratory experiments.

The SPH model for free-surface flow in fractures was proposed and validated
in our previous work. To validate the implementation of the Richards equation in
the SPH model, we calculated the time-dependent pressure head distribution inside
a vertical solid column with a constant pressure head boundary and found a good
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agreement with the corresponding finite element solution obtained with the COM-
SOL package.

The validation of infiltration dynamics, i.e. imbibition from a free-surface flow
domain into the porous matrix is carried out via comparison to three types of small-
scale laboratory experiments: (1) droplet imbibition on a horizontal sandstone plate,
(2) water column infiltration into a sandstone, and (3) discharge of free-surface flows
on a porous medium. For the droplet imbibition experiment, we observe changes
in droplet size and shape, and measure the imbibition time. In the second experi-
ment, the time-dependent drawdown of a water column with a total initial volume
of 4.0 mL above a sandstone slice is measured, and in addition the saturation front
in the porous matrix visually determined. In the third experiment, we consider a
continuous water flux of 3.5 mL min−1 supplied to the top right corner of a rectan-
gular sandstone sample. Water accumulates on the top surface and is allowed to
discharge across the open right vertical surface. In order to quantify the outflow
and interaction of the fluid with the porous matrix, we measure the outflow mass
leaving the system and visually determine the saturation of the porous matrix. All
laboratory experiments are carried out with Seeberger sandstone samples. The per-
meability and van Genuchten parameters of the sandstone are estimated from pore
size and grain size distribution analysis. Our model is in very good agreement with
all considered types of laboratory experiments.

Next, we investigate under which condition preferential flow occurs. Our sim-
ulation results show, that a preferential flow occurs simultaneously with a diffuse
flow and transmits water much faster, providing a rapid aquifer recharge even un-
der unsaturated and partially saturated conditions. Depending on an infiltration
rate and water inlet location, preferential flow or ponding, or both of them can be
dominant in the system. For ponding dominating systems, we observe a small de-
lay in fracture flow. In this case, a fracture transmits water when enough water is
accumulated on the top of the solid surface. For the preferential flow dominating
systems, fracture flow occurs immediately, and ponding occurs only if a fracture
space is fully occupied by water.

Finally, we study infiltration dynamics in rough fractures with impermeable and
permeable walls. The 2.0 mm aperture fracture has dimensions of 5.0 cm width,
10.0 cm length, and 1.0 cm wall thickness. The roughness of the fracture walls is
characterized by Hurst coefficient. Using our fully coupled numerical model we
demonstrate the influence of the fracture wall permeability on the fluid arrival time
for different infiltration rates, as well as, on the volume of water which can be stored
in the porous fracture walls. A significant influence of the fracture wall permeability
we observe in arrival time and in outflow ratio for small infiltration rate.
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Chapter 7

Summary and conclusion

This chapter provides an overview of the main research results, and gives sug-
gestions for further investigations. The objectives of this thesis are the investiga-
tion of preferential flow dynamics in dry, partially saturated, and saturated porous-
fractured media at core- and micro scale, and the development of a comprehensive
numerical SPH model for their quantitative and qualitative simulations.

7.1 Main results

Chapters 4, 5, and 6 cover the main research work of this thesis.

7.1.1 The effect of roughness on contact angle and droplet flow

Chapter 4 studies the effect of surface roughness and type of surface (hydrophobic or
hydrophilic) on the effective contact angle and droplet dynamics. The main results
of this investigation are the following:

• The effective static contact angles of Cassie (Cassie and Baxter; 1944) and Wen-
zel (Wenzel; 1936) droplets on a rough surface are greater than the correspond-
ing static contact angles on a smooth surface. As a result, micro-scale hy-
drophobic rough surfaces also show effective hydrophobic behavior. On the
other hand, micro-scale hydrophilic surfaces may be macroscopically hydrophilic
or hydrophobic, depending on the type of roughness.

• The transition between Cassie and Wenzel states of droplets depends on the
roughness and droplet size, which can be linked to the critical pressure for
the given fluid-substrate combination. We observe good agreement between
simulations and theoretical predictions.

• The investigation of droplet dynamics depending on roughness orientation
(i.e., an anisotropic roughness) and surface inclination shows that droplet flow
velocities are lower if the surface roughness is oriented perpendicular to the
flow direction. If the predominant elements of surface roughness are in align-
ment with the flow direction, the flow velocities increase compared to smooth
surfaces, which can be attributed to the decrease in fluid-solid contact area
similar to the lotus effect.

• The classical linear scaling relationships (Podgorski et al.; 2001) between Bond
and capillary number for droplet flow on flat surfaces also hold for flow on
rough surfaces.
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7.1.2 Infiltration instabilities in smooth and rough fractures

Chapter 5 investigates fracture-specific infiltration dynamics in smooth and rough
single fractures. Three types of fractures are considered with different degrees of
roughness, including a smooth fracture. This work studies the influence of random
fracture roughness (Bouchaud et al.; 1990) and injection rate on fluid flow modes and
flow velocity. To characterize the flow instability, we calculate standard deviations
of velocity along the fracture width.

The main results of this research are:

• Both the rough and smooth fractures exhibit flow instabilities, fingering, and
intermittent flow regimes for low infiltration rates.

• In agreement with theoretical predictions (Nicholl et al.; 1994), a flat fluid front
is achieved when the flux q supplied to a fracture is larger than the gravitation-
ally driven saturated flux (q > kρg/µcosϕ).

• An increase in degree of roughness corresponds to a decrease in flow velocity
and an increase in standard velocity deviation. This is caused by a higher
likelihood of flow discontinuities in the form of fingering and/or snapping
rivulets.

• The scaling estimation of specific discharge with normalized finger velocity
and the relationship between fingertip length and scaled finger velocity show
a good agreement with experimental results (Nicholl and Glass; 2005), con-
firming the validity of the code even under such complex conditions.

7.1.3 The development of multiscale SPH model for flow in fractured-
porous media

Chapter 6 presents a newly developed multiscale SPH model which allows to sim-
ulate flow within a continuum-type porous matrix governed by the Richards (1931)
equation and discrete free-surface flows governed by the Navier-Stokes equation.
This work is focused on the investigation of preferential flow dynamics in fractures
and at a fracture-matrix interface.

The results of this research are:

• The validation examples of a newly developed SPH model are in a good agree-
ment with finite element COMSOL simulations and laboratory experiments.

• The simulation results show, that preferential flow occurs simultaneously with
a diffuse flow and transmits water much faster, providing rapid aquifer recharge
even under unsaturated and partially saturated conditions.

• A significant influence of the fracture wall permeability is observed in arrival
time and in outflow ratio especially for small infiltration rate.

7.2 General conclusion

In order to provide an innovative numerical tool for the investigation of rapid recharge
in fractured aquifers an PF-SPH model for open-surface, porous-medium and frac-
ture flow has been developed and implemented to simulate infiltration dynamics in
smooth and rough fractures and across a fracture-matrix interface. The model can
successfully recover the effects of preferential flow pathways for various wetting
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conditions and static and dynamic fluid contact angles. The newly developed fully
coupled SPH model discretizes the Navier-Stockes equation for fracture flow and
Richards (1931) equation for porous-medium flow and can predict the fluid arrival
time in dry, partially saturated or fully saturated fractured porous aquifers.

The simulation results show that preferential flow occurs under various unsat-
urated, partially-saturated and saturated conditions, providing a rapid water trans-
mission from the top to the bottom of the fracture. Based on the infiltration rate
different flow modes can be formed ranging from tiny adsorbed films and droplets
to rivulets and thick (wavy) films. Preferential flow dynamics is characterized by
the flow instability, fingering, irregular wetting fronts and irregular transitions be-
tween flow modes, which makes it difficult to generalize infiltration processes. The
effect of fracture/surface roughness on average flow velocity is rather complex un-
der most conditions. For some types of roughnesses and its orientation, the average
flow velocity on such surfaces can be higher than the corresponding flow velocity on
a smooth surface, but mostly the "natural" surface/fracture roughness decreases the
flow velocity, and increases the irregularity/ instability of a fluid front. In contrast
to the statement, that preferential flow occurs only for high infiltration rates or sat-
urated porous systems, the SPH simulations provide examples for preferential flow
occurring for all infiltration rates, even for unsaturated permeable-porous-fractured
rocks. For all infiltration rates and fracture roughness configurations, the preferen-
tial flow velocity is much higher than the diffuse flow velocity, even if diffuse flow
dominates the system.

The applications of the SPH model are limited to small-scale (maximum≈ 1.0 m3)
simulations. Large scales require coarser resolution, which is not suitable for the dis-
cretization of tiny fracture spaces. Furthermore, the discretization of infiltration pro-
cesses at a large scale with fine resolution requires high computational power, which
is not possible with most available computational resources. In order to provide a
reliable tool for the investigation of infiltration dynamics at a large field scale, the
existing SPH model requires further development and possible convergence with
upscaled methods.

7.3 Suggestions for further research

7.3.1 Adaptive resolution

The developed PF-SPH model can successfully simulate gravity-driven flow in frac-
tures and the adjacent porous matrix, including the effects of preferential pathways,
and flow mode distributions in smooth and rough fractures. The main research of
this thesis is carried out on a micro scale ≈1.0 cm3 (Chapter 4), and on a core scale
≈100.0 cm3 (Chapters 5 and 6). For the studied systems and given static resolution,
the Courant-Friedrichs-Lewy (CFL) conditions of the explicit time stepping algo-
rithm limit simulation to about 3.0 - 5.0 min real time.

However, many industrial problems, such as water supply, waste repositories,
CO2 storage, fracking are associated with large aquifers, reservoirs, and require
large-scale and long term simulations. The application of the developed PF-SPH
model on larger scales is computationally challenging. Due to the strong contrast be-
tween fracture void space and pore throats, an adaptive resolution algorithm would
decrease computation times. In order to capture all effects of preferential flow, the
fracture space can be resolved with a finer resolution, while porous medium flow
can be successfully resolved at a coarser resolution. An adaptive resolution in prin-
ciple only requires particle-dependent sizes of h (and modifications of the kernel
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computation when particles of different size interact) in order to account for vari-
able particle number densities (volumes), however, this task can be challenging for
free-surface flows in the presence of surface tension.

7.3.2 Implementation of an evapotranspiration equation

The main research of this thesis deals with the flow in unsaturated zone, therefore
in direct contact with the atmosphere. Eqs.(3.17)-(3.18) do not consider any fluid
losses due to evaporation. For the implementation of the evapotranspiration equa-
tion additional parameters (such as, temperature, humidity, etc.) must be taken into
account. In principal a similar algorithm as for the the particle removal (fracture-
matrix interaction) can be employed. The validation can be carried out via compari-
son to small-scale laboratory experiments. However, this process acts on rather large
time scales and may be out of reach under certain conditions.

7.3.3 Particle addition algorithm

For the fracture-matrix interaction a particle removal algorithm was developed, which
is suitable for the saturation of dry or partially-saturated soils, but does not take into
account water outflow through the lateral boundary or water migration from the
porous matrix back into the fracture (e.g., dripping processes). This task requires
implementation of additional LAMMPS classes and variable arrays, as well as vali-
dations via laboratory experiments.

7.3.4 Multiphase flow simulations

Many applications of flow in unsaturated fractured porous media not only deal with
one fluid phase. For example, CO2 or waste storage problems involve two or more
fluid phases.

In principle, this task requires the implementation of pair-wise forces for ad-
ditional phases, added in the SPH form of the momentum conservation equation.
The magnitude of these forces depends on respective wetting properties and surface
tension of the respective phase. SPH multiphase flow simulations were, for exam-
ple, shown by Tartakovsky et al. (2016), where pressure gradient in the momentum
conversation equation is commonly evaluated from the number density to avoid
restrictions due to strong mass density differences.

7.3.5 Reactive transport

The current model SPH model discretizes the Navier-Stokes equation and does not
consider (reactive) mass transport processes. However, the simulation of reactive
transport has, for example, been shown by Kordilla et al. (2014); Tartakovsky and
Panchenko (2016); Tartakovsky et al. (2016), and in general requires the implemen-
tation of chemical reaction and transport between different particle types (e.g., fluid
to fluid or fluid to solid) and allows to simulate complex precipitation phenomena.
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