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Summary 

In animal societies, individual fitness partly depends on a decision on whether or not to 

provide parental care, and the number of mating partners. The later defines a social 

mating system, whereas consequences of copulations, namely breeding, define a genetic 

mating system, which may or may not be the same, i.e. monogamous, polyandrous, 

polygynous or promiscuous. Copulations and breeding are means to produce offspring, 

whereas parental care is a means to ensure offspring survival and ultimately its 

reproduction. In terms of fitness, parental care benefits the parents but can also incur 

costs, e.g. mobility constraints, increased risk of predation, higher energy expenditure. 

These costs may provoke a stress response, i.e. activated HPA axis and results in increased 

glucocorticoids in the blood. Short-term HPA axis activation ensures availability of 

additional energy and may be beneficial for coping with short-term stress, whereas long-

term HPA axis activation may lead to damaging consequences, e.g. in health, reproduction 

and it may alter behavior. Whether or not parental care costs results in increased 

glucocorticoid production, parental care cost are especially high in female mammals, due 

to obligatory gestation and lactation, and even more so for primate mothers, because 

they often transport their infants alone. On the contrary, primate males are not equally 

constrained. One of the parental care costs are reduced additional mating opportunities, 

thus a compromise between parenting effort and copulations must be reached. Infant 

care can be monoparental, biparental, or extended to other group members, non-

reproductive adults and subadults or so-called helpers. The latter is a characteristic of a 

cooperatively breeding system, which can be found within only a small percentage of 

animal species, including birds, mammals, fish, and insects. Within primates, only one 

family is classified as cooperative breeders: family Callitrichidae (marmosets and 

tamarins). In addition, callitrichids have flexible reproductive strategies, with the 

prevailing polyandry, particularly high amount of paternal care and normally only one 

breeding female per group, which usually gives birth to twins - dizygotic chimers. 

Callitrichid infants are heavy, regularly fed and carried for approximately three months, 

and caring for these infants is energetically costly. 
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In this thesis, I aimed to understand why some individuals, especially adult males, 

contribute more to infant care than others, and how does infant care relate to mating 

systems. For this reason I tried to identify mating systems, I measured infant-directed 

behavior, activity budgets while carrying or not and fecal cortisol metabolites (FCM) in 

relation to carrying and time periods – carrying or non-carrying. Adult males were the 

focus of this study because they are often the main carriers in callitrichids. I studied five 

wild groups of black-fronted tamarins (Leontocebus nigrifrons) from lowland Amazonia. I 

found that infant care shifts activity budgets: decrease feeding and foraging time yet 

increased time spend in vigilance. I suggest that these shifts are due to mobility 

constraints of carrying heavy infants, which are likely to contribute to behavioral 

modifications of predator avoidance strategies. Moreover, these changes are likely to 

incur energetic costs, implying that infant care may be stressful. Nonetheless, I found no 

increase in FCM levels in relation to infant care, thus I suggest that infant care is not 

physiologically stressful, potentially due to infants acting as a stress buffer. Females are 

likely to base their infant care contribution on whether they are breeders or not. Males 

are likely to base their infant care contribution on their physical fatigue, but most of all on 

their level of paternity certainty, which depends on the social system of a mother – 

whether a male copulated with her and whether other males also copulated with her. 

Shared paternities of twin litters, limited monopolization of paternities (only within a one 

twin litter) and extra-group copulations may be due to consorting males not sensing the 

entire female fertile period. I suggest that extra-group copulations are an important 

breeding strategy and that callitrichid mating system definitions cannot be limited to 

within a group description. Taken together, these complex relations are likely to relate to 

monogamy not being a modal mating system in callitrichids.                                                           
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Zusammenfassung 

Bei gruppelebenden Tieren hängt die individuelle Fitness teilweise davon ab, ob man 

elterliche Brutpflege leistet und mit wie vielen Partnern man sich paart. Letzteres definiert 

das soziale Paarungssystem, während die Konsequenz der Kopulationen, nämlich die 

erfolgreiche Fortpflanzung, das genetische Paarungssystem definiert. Diese 

Paarungssysteme, Monogamie, Polyandrie, Polygynie und Promiskuität, können, müssen 

aber nicht übereinstimmen. Kopulationen und Fortpflanzung sind Wege um Nachwuchs 

zu erzeugen, während Brutpflege dazu dient das Überleben des Nachwuchses zu sichern 

und letztendlich dessen eigene Fortpflanzung. Elterliche Brutpflege wirkt sich positiv auf 

die inklusive Fitness der Eltern aus, aber hat gleichzeitig negative Auswirkungen auf ihre 

individuelle Fitness, wie zum Beispiel eine eingeschränkte Mobilität, ein erhöhtes 

Prädationsrisiko und ein höherer Energieverbrauch. Diese negativen Effekte können eine 

Stressreaktion auslösen, sodass die HPA-Achse aktiviert wird, was zu einem Anstieg der 

Glucocorticoide im Blut führt. Eine kurzzeitige Aktivierung der HPA-Achse gewährleistet 

die Verfügbarkeit von zusätzlicher Energie und kann vorteilhaft für die Bewältigung von 

kurzzeitigem Stress sein. Im Gegensatz dazu kann eine langfristige Aktivierung der HPA-

Achse negative Konsequenzen haben, z.B. für Gesundheit und Fortpflanzung, und sie kann 

das Verhalten verändern. Unabhängig davon, ob die Fitnesskosten von elterlicher 

Brutpflege eine erhöhte Produktion von Glucocorticoiden nach sich ziehen, die Kosten der 

Brutpflege sind besonders für weibliche Säugetiere durch Trächtigkeit und Säugen hoch. 

Insbesondere gilt das für Primaten, da hier die Mütter auch nach der Geburt oftmals allein 

für den Transport der Jungtiere verantwortlich sind. Im Gegensatz dazu sind männliche 

Primaten nicht in vergleichbarer Weise eingeschränkt. Eine der negativen Auswirkungen 

der Brutpflege ist die geringere Zahl an zusätzlichen Paarungsmöglichkeiten, sodass Tiere 

einen Kompromiss zwischen Brutpflege und weiteren Kopulationen eingehen müssen. Die 

Brutpflege kann von einem oder beiden Elternteilen übernommen werden, oder sie kann 

sich auf weitere Gruppenmitglieder verteilen. Diese sogenannten „Bruthelfer“ sind 

subadulte Tiere oder Adulte, die sich selbst nicht fortpflanzen. Bruthelfer sind ein 
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Merkmal von kooperativer Brutpflege, die nur bei wenigen Arten von Vögeln, 

Säugetieren, Fischen und Insekten vorkommt. Innerhalb der Primaten kommt kooperative 

Brutpflege nur in der Familie der Callitrichidae (Marmosetten und Tamarine) vor. Die 

Callitrichidae haben zusätzlich flexible Fortpflanzungsstrategien, wobei Polyandrie 

vorherrscht; außerdem betreiben sie eine besonders aufwändige Brutpflege und 

normalerweise gibt es nur ein reproduktives Weibchen in einer Gruppe, welches meist 

Zwillinge gebärt, die dizygotische Chimären sind. Die Jungtiere der Callitrichidae sind 

schwer, werden regelmäßig gefüttert und circa drei Monate lang getragen; sie zu 

versorgen kostet daher viel Energie. 

In dieser Dissertation versuchte ich zu verstehen, warum manche Individuen, 

insbesondere adulte Männchen, mehr zur Brutpflege beitragen als andere und wie 

Brutpflege mit dem Paarungssystem zusammenhängt. Um diesen Fragen nachzugehen 

versuchte ich Paarungssysteme zu identifizieren, protokollierte das Verhalten gegenüber 

Jungtieren und Aktivitätsbudgets sowie fäkale Cortisolmetabolite (FCM) in Zeiträumen, in 

denen Individuen Jungtiere trugen oder nicht. Adulte Männchen waren der Fokus der 

Studien, da sie bei den Callitrichidae oft die wichtigsten Träger sind. Ich erforschte fünf 

frei lebende Gruppen von Schwarzstirntamarinen (Leontocebus nigrifrons) im 

Amazonastiefland. Ich konnte zeigen, dass Brutpflege das Aktivitätsbudget beeinflusst: 

Die Zeiten für Nahrungssuche und -aufnahme nahmen ab, währen die Zeit der 

Wachsamkeit zunahm. Vermutlich gehen diese Verschiebungen darauf zurück, dass das 

Tragen von schweren Jungtieren die Mobilität eines Individuums einschränkt, was 

wahrscheinlich die Anpassung von Strategien zur Prädationsvermeidung mit sich bringt. 

Zusätzlich bringen diese Veränderungen wahrscheinlich energetische Kosten mit sich, was 

impliziert, dass Brutpflege Stress verursacht. Nichtdestotrotz fand ich keinen Anstieg der 

FCM im Zusammenhang mit Brutpflege, was darauf hindeutet, dass Brutpflege nicht 

physiologisch belastend ist, eventuell weil Jungtiere als Puffer gegen Stress wirken. Bei 

Weibchen hängt der Beitrag zur Brutpflege meist davon ab, ob sie sich selbst fortgepflanzt 

haben. Bei Männchen hängt der Beitrag zur Brutpflege auch von der physischen 

Erschöpfung ab, aber vor allem wird er durch den Grad der Gewissheit der Vaterschaft 

bestimmt. Dieser hängt vom sozialen Paarungssystem der Mutter ab – davon, ob das 

Männchen mit ihr kopuliert hat und ob noch andere Männchen mit ihr kopuliert haben. 
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Geteilte Vaterschaften der Zwillingswürfe, beschränkte Monopolisierung der Vaterschaft 

(nur innerhalb eines Zwillingswurfs) und Kopulationen außerhalb der Gruppe gehen 

eventuell darauf zurück, dass die paarungswilligen Männchen nicht die gesamte 

fruchtbare Zeit der Weibchen wahrnehmen. Meine Ergebnisse legen nahe, dass 

Kopulationen außerhalb der Gruppe eine wichtige Fortpflanzungsstrategie sind und dass 

Definitionen der Paarungssysteme der Callitrichidae sich nicht auf eine Beschreibung 

innerhalb der Gruppe beschränken lassen. Insgesamt rühren diese komplexen 

Beziehungen wohl daher, dass Monogamie nicht das vorherrschende Paarungssystem der 

Callitrichidae ist. 
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General introduction 

A simple life cycle. Two cells merge to form a zygote that may or may not survive to 

adulthood. As an adult, it may mate, produce offspring and the cycle begins anew. 

Differences in fitness among individuals, i.e. to survive and reproduce, may arrive from 

differences at any of these life stages. Animal fitness partly depends on individual 

strategies, including decisions on whether or not to provide parental care, and the number 

of mating partners. The latter defines the mating systems: one mating partner defines 

monogamy, more than one mating partners define polygamy. Further division of 

polygamy depends on the sex-ratio: if a male mates with more than one female, that 

constitutes polygyny, if a female mates with more than one male, that constitutes 

polyandry and if more than one female mates with more than one male, that constitutes 

promiscuity. Another important aspect of mating systems is that includes two 

components, social and genetic. Social mating systems are defined by a specific type of 

interaction, namely copulations, whereas genetic mating systems are defined by the 

consequences of copulations, namely breeding (Clutton-Brock 1991; Kappeler and van 

Schaik 2002; Smiseth et al. 2012).  

Copulations and breeding are means to produce offspring, whereas parental care is a 

means to ensure offspring survival and ultimately its reproduction. Parental care is 

defined as any parental trait that increases offspring fitness (Clutton-Brock 1991; Kappeler 

and van Schaik 2002; Orr 2009; Smiseth et al. 2012). Parental traits vary considerably, 

starting with gamete provisioning (Williams 1994, birds; Fox and Czesak 2000, 

arthropods), up to the care of mature offspring (Surbeck et al. 2011, Pan paniscus). 

Parental care can be viewed as direct and indirect care. Behaviors like infant carrying and 
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food transfer are considered direct parental care because they are immediately beneficial 

for the offspring. Behaviors like territorial defense and vigilance are considered indirect 

parental care because they would be performed regardless of an offspring´s presence, 

still, they might benefit an offspring (Muller and Emery Thompson 2012). In this thesis, I 

am concerned with social and genetic mating systems and direct infant care1. 

Parental care benefits the parents but can also incur costs. Offspring survival and 

reproduction represent the benefits, whereas the costs are often linked to constraints in 

mobility, increased risk of predation, and higher energy expenditure (Clutton-Brock 1991; 

Smiseth et al. 2012). If energetic costs represent challenging, aversive and arousing 

situations they may provoke a stress response (Moberg and Mench 2000). In vertebrates, 

stress is usually detected through increased glucocorticoid output, such as the hormone 

cortisol (Sapolsky et al. 2000) that can be  measured in blood, urine or in feces (Moberg 

and Mench 2000). Cortisol is created in the adrenal glands and controlled by the 

hypothalamic-pituitary-adrenocortical (HPA) axis system, which is typically regarded as 

the body’s primary stress-responsive neuroendocrine system. Within a few minutes after 

exposure to a stressor the HPA axis increases secretion and circulating levels of 

glucocorticoids in the blood (Hennessy et al. 2009, review). Depending on a stressor, HPA 

axis activation can be short- or long-term. Exposure to long-term stress, results in 

prolonged and repeated HPA axis activation and may lead to damaging consequences 

(Moberg and Mench 2000), e.g. in health, reproduction and it may alter behavior. But 

exposure to short-term stress activates the HPA axis for only a short time and the amount 

of released glucocorticoids is adaptive for coping with the short-term stressors (Sapolsky 

et al. 2000, review). What happens is that the HPA axis response promotes the 

reallocation of resources from energy consuming systems, like immunity and 

reproduction. Thus, short-term HPA axis activation ensures availability of additional 

                                                      
1 In this thesis I interchangeably use the terms “parental care” and “infant care”. Infant care is equivalent 

to the term parental care, but with one difference. Parental care includes only parent-offspring dyad, 

whereas infant care involves any caretaker-offspring dyad, including parents, in regards to providing care 

for offspring.  
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energy that may help to ease damaging effects of short-term stressors (Willner 1993; 

Wingfried and Sapolsky 2003), such as carrying infants.  

Whether or not parental care costs results in increased glucocorticoid production, i.e. 

stress, due to obligatory gestation and lactation, parental care costs are especially high in 

female mammals. For primate mothers the parental costs are even higher, because they 

often transport their infants alone (van Noordwijk 2012). On the contrary, primate fathers 

are not equally constrained: they cannot provide the two most energy consuming parental 

traits, (gestation and lactation) (Oftedal 1984). Thus whether to care for offspring and to 

what degree is a fundamental question of male reproductive strategies. One of the 

parental care costs are reduced additional mating opportunities, thus a compromise 

between parenting effort and copulations must be reached (Trivers 1972; Maynard Smith 

1977; Muller and Emery Thompson 2012). Primate males show a variety of combinations, 

including both sides of the extremes: polygynous males with little or low parental care, 

e.g. chimpanzees and gorillas (Muller and Wrangham 2004a, Pan troglodytes; Harcourt 

and Stewart 2007, Gorilla gorilla), and social monogamy and high infant investment, e.g. 

Azara’s night monkey (Rotundo et al. 2005, Aotus azarae), but also males who occasionally 

care for unrelated infants, supposedly to gain access to the mother, e.g. olive baboons 

(Smuts and Gubernick 1992, Papio anubis). Overall, in comparison to other mammals, the 

number of primate taxa that provide paternal care is high (Kleiman and Malcolm 1981; 

Whitten 1987).  

Thus, infant care can be monoparental, i.e. provided by one parent, biparental, provided 

by both parents, but it can also extend to other group members, non-reproductive adults 

and subadults or so-called helpers2. The latter is a combination of parental and 

alloparental care and is in addition to strong ecological constraints on dispersal or 

                                                      
2 With the term “helpers” I refer to non-breeding individuals who help to rear offspring. In callitrichids all 

group members, i.e. parents and helpers contribute with infant care (summarized in Garber et al. 2016). 

However, most of the data on callitrichids does not provide with the parental information, especially about 

who the father is. Therefore, it is often impossible to make a clear distinction within adult males, in terms 

of who the father is and who the non-breeding helper is. Thus, whenever the callitrichid parentage status is 

unclear, I refer to the helping individuals with a more neutral term, i.e. “caretakers”.  
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independent breeding (Hatchwell 2009) a characteristic of a cooperatively breeding 

system (Solomon and French 1997; Koenig and Dickinson 2004). In terms of fitness in 

cooperative breeders, the role of a breeder is usually more profitable than the role of a 

helper. Helper´s infant care investment often trades off against helper´s own residual 

reproduction. Therefore, the cooperative breeding systems embody a major puzzle in 

evolutionary theory “how can altruistic behavior be favored by natural selection?”, and 

they embody an evolutionary conflict, which arises whenever the participants in an 

interaction cannot achieve their optimum fitness outcome simultaneously. Thus, 

cooperative breeding systems are an excellent model to investigate behavior ecology and 

the consequences of this evolutionary conflict, including effects on mating, breeding and 

parental care strategies (Cant 2012). Only a small percentage of animal species can be 

classified as cooperative breeders: around 9% of birds (852 species), 2% of mammals, less 

than 0.5% of fish (20 – 38 species) and hundreds of insect species. Some mammal 

representatives of cooperative breeders are arctic foxes, meerkats, banded mongoose, 

red wolves, Ethiopian wolves (Kullberg and Angerbjörn 1992, Alopex lagopus; Clutton-

Brock et al. 1998, Suricata suricatta; Nichols et al. 2010, Mungos mungo; Sparkman et al. 

2010, Canis rufus; Kesteren et al. 2013, Canis simensis), and among primates, only the 

family Callitrichidae (marmosets and tamarins). Callitrichids are small-bodied (100 – 650g) 

New World primates. Reproductive traits of callitrichids are unique: in addition to 

cooperative breeding, they produce dizygotic chimeric twins and have the potential to 

produce two litters per year (summarized in Garber et al. 2016). What is more, callitrichids 

have flexible reproductive strategies, including monogamy, polygyny, promiscuity, and 

the prevailing polyandry (Goldizen 1988) and a particularly high amount of paternal care 

(summarized in Garber et al. 2016). These traits combined constitute callitrichids as an 

outstanding and extremely complex model for studying mating systems in combination 

with infant care. 

Callitrichid caretakers provide infants with food transfer and carrying, normally on their 

backs.  For the first 2 – 3 months infants are carried in all group movements, and are 

provided with food for a few months more (Epple 1975; Terborgh and Goldizen 1985; 

Pryce 1988; Goldizen 1989; Tardif et al. 1992; Huck et al. 2004a). Although all group 

members help, the main carriers are usually adult males (Savage et al. 1996; Garber 1997; 
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Yamamoto et al. 2009). It was suggested, that infant care is a male tool to court a female. 

According to a courtship strategy, a male that is a better caretaker would gain access to 

(more) copulations (Price 1990, cotton-top tamarins, Saguinus oedipus; Smuts and 

Gubernick 1992, olive baboons, P. anubis) but also see Tardif and Bales (1997, captive 

common marmosets, Callithrix jacchus, cotton-top tamarins, S. oedipus). Another 

explanation for “why males help” is based on female polyandrous mating: i.e. males are 

likely to help because polyandrous mating provides males with a chance of being a father 

and males could be helping their own litter (Huck et al. 2004a). This may be plausible, if 

helping is not a form of altruism (Hamilton 1964), but instead is based on increasing own 

fitness (Huck et al. 2004a). If it´s the latter a mere chance for reproduction, like access to 

copulations, may result in increased infant care by males. In cooperative breeders, 

helper´s trade-off against own residual reproduction whereas breeder´s actually trade-off 

in favor of their own reproduction (Cant 2012). Thus we would expect that the breeders 

contribute more than the non-breeding helpers, and if males have any information on 

their paternity certainty level they might adjust their infant care effort accordingly.  

Callitrichids may have various reasons that trigger participation in infant care, nonetheless 

carrying is energetically demanding, due to heavy infants. Callitrichids routinely produce 

twins that at birth together weight ~15-20% of the maternal body mass (Tardif 1994). This 

makes infant carrying so costly that, even under captive conditions with unlimited food 

access, carrying fathers and helpers, experience loss in body mass (Sánchez et al. 1999, S. 

oedipus; Achenbach and Snowdon 2002, S. oedipus). The body mass loss implies on 

several non-excluding options. First, physical fatigue should occur and result in carrying 

reduction. Second, energetic costs of carrying imply that changes in the activity budget 

should occur. Carrying imposes constraints on the type and speed of locomotion and thus 

carrying may also effect foraging maneuvers (Schradin and Anzenberger 2001a; Caperos 

et al. 2012). Animal prey is a considerably high component in wild tamarin´s diet and thus 

prey foraging is one of the main daily activities (Soini 1987; Garber 1988; Porter 2001). A 

reduction of foraged prey may lead to lower energy intake. In addition, studies on captive 

callitrichids suggest an effort to reduce the predation risk, i.e. carriers spend more time in 

concealed areas (Price 1992). Captive studies also show that carriers spend less time in 

locomotion, socializing, foraging, feeding, have lower energy intake and are less likely to 



Chapter 1 General Introduction 

6 

be vigilant (Price 1992; Sánchez et al. 1999). Vigilance is an important part of anti-predator 

strategy (Stojan-Dolar and Heymann 2010, Saguinus mystax), yet the two studies on 

activity budget of wild carrying tamarins did not include vigilance (Goldizen 1987b; Huck 

et al. 2004a). However these two studies report decreased time spent feeding and 

increased time spent resting while carrying infants. Still, both studies were based on very 

small sample sizes (one or two infant care periods, respectively) and did not distinguish 

feeding from prey foraging. Third, energetic costs of infant care are likely to create 

physiological stress and would result in increased glucocorticoid levels. However, wild 

callitrichid males show no change in cortisol levels over the course of the year (Huck et al. 

2005b, S. mystax) or when compared between the breeding and infant care season (Bales 

et al. 2006, Leontopithecus rosalia). These two studies however did not focus on or include 

the carrying effort or infant care in general into their analysis. Captive studies did but 

nonetheless they showed no effect of carrying (da Silva Mota et al. 2006, C. jacchus) or 

they even showed lower cortisol levels in carriers (Nunes et al. 2001, Callithrix kuhlii). 

Diverse arguments suggest that cortisol levels in adult males are likely to be influenced by 

previous experience in infant care, interaction with pregnant females, and infants 

themselves (Nunes et al. 2001; Ziegler et al. 2004; da Silva Mota et al. 2006). The apparent 

lack of information from wild populations enhances the unclearness of a link between 

infant care, stress and cortisol in callitrichids. 

In addition, callitrichids are characterized by single-female breeding groups, yet multi-

female breeding groups can occur (summarized in Garber et al. 2016). More infants in the 

group are likely to raise the costs of infant care, therefore we can assume that helping 

individuals would make a choice: which infants to help and to what degree. Multi-female 

breeding have been observed in several tamarin species: Saguinus geoffroyi, Leontocebus 

weddelli, S. oedipus and S. mystax (detailed review in Garber et al. 2016) and Leontocebus 

nigrifrons (Tirado Herrera et al. 2000). Limiting factors on the number of breeding females 

in a group are resource availability and high energetic demands of infant care (Goldizen 

et al. 1996, L. weddelli). Nonetheless, multi-female breeding may result in allonursing 

(Smith et al. 2001, S. mystax) but potentially due to infanticide also lower infant survival 

(Tirado Herrera et al. 2000, L. nigrifrons; Culot et al. 2011, S. mystax). Callitrichids routinely 

produce dizygotic twins which may result in shared paternities of twins, but also in 
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monopolization of paternities within the twin litter and across the litters (Huck et al. 

2005a, wild S. mystax; Suárez 2007; Díaz-Muñoz 2011, S. geoffroyi). The comprehensive 

complexity of callitrichid mating systems enhances the research question of this thesis: 

how does individual infant care investment relate to copulations and (non-) breeding 

status, especially in a multi-female breeding situation? 

In this thesis I studied how infant care relates to mating systems, activity budgets and 

fecal cortisol metabolite levels (FCM). I aimed to understand why some individuals, 

especially adult males, contribute more to infant care than others, and how does infant 

care relate to mating systems. I studied wild black-fronted tamarins (L. nigrifrons). In 

chapter 4 I examine how differences in their social and genetic mating systems affected 

patterns of infant care. I found two occurrences of multi-female breeding, thus I 

compared groups with single-female and multiple-female breeding. I predict to find both, 

monopolization of paternities within a group and multiple paternities within a twin litter. 

I predict that breeders (mother and father) will contribute more to infant care than non-

breeding helpers. Regarding male help, I test three hypotheses: 1) paternity certainty, 

where I predict that males with a higher level of paternity certainty will help more, 2) 

physical fatigue, where I predict male carrying reduction for the second consecutive litter 

in the multi-female breeding cases, and 3) pay to copulate, where I predict that males who 

copulate more help more. In this chapter I present group composition, parentage, mating 

behavior, infant-directed behavior on individual level and on the study population level, 

i.e. in relation to age, sex and parentage. In chapter 5 I examine activity budgets when 

carrying or not carrying infants. I test the following hypothesis: infant care causes changes 

in the activity budget. Here I predict that infant carrying strongly reduces the time spent 

foraging for prey and the time spent feeding. In contrast, I predict that the time spent 

being vigilant will increase. An increase in vigilance might be compensation to limited 

mobility while carrying infants, because limited mobility implies higher risk of predation. 

Nonetheless, whether carrying or not, while travelling through home ranges any 

individual has to keep up with its group. Therefore I predict no differences in time spent 

in locomotion. In chapter 6 I examine how infant care behavior relates to stress hormone 

output in the carriers. Specifically, I examine differences in FCM levels in relation to 

carrying effort, and carrying and non-carrying period. My focus was on main carriers, i.e. 
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adult males (Savage et al. 1996; Garber 1997; Yamamoto et al. 2009). However since 

subadults, regardless of sex, can also make a significant contribution to infant care 

(Goldizen 1987b; Huck et al. 2004a), I have included them in the study. Due to energetic 

costs of infant carrying (Sánchez et al. 1999, S. oedipus; Achenbach and Snowdon 2002, S. 

oedipus) I predict FCM levels of adult males and subadult helpers increase during periods 

of infant carrying and that an increase in FCM levels is proportional to the carrying effort.  
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Study species 

Kingdom: Animalia  

Phylum: Chordata  

Class: Mammalia 

Order: Primates 

Suborder: Haplorhini 

Infraorder: Simiiformes 

Parvorder: Platyrrhini 

Superfamily: Ceboidea 

Family: Callitrichidae 

Genus: Leontocebus 

Species: Leontocebus nigrifrons 

 

Black-fronted tamarins (Leontocebus nigrifrons), locally known as “pichico común”, is one 

of the several tamarin species that in addition to the marmoset species, belong to the 

family Callitrichidae of Neotropical primates (Rylands et al. 2016). Callitrichids are known 

for their small body size, claw like nails, the ability to cling on to a vertical support, the 

ability to produce young twice a year, reproductive twinning, high litter weight, high levels 

of cooperative infant care with extensive male involvement and flexible mating systems 

with the prevailing polyandry (summarized by Garber 1993). Most tamarin groups are 

likely to be extended families, adult female-male pair with their adult and immature 

offspring. They often exhibit only one breeding female, although multi-female breeding 

does occur (Garber et al. 2016). The peak birthing time is between December and March, 
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which is the early half of the rainy season (Snowdon and Soini 1988). Both sexes migrate, 

with females usually as single individuals and males in pairs (Garber et al. 1993, 2016).  

Genus Leontocebus occupy a large terrain of the Amazonian basin, west from the Rio Ji-

Paraná in Brazil, east of the Andes to about 16°S in Bolivia, south from the rivers Caquetá, 

Caguán and Orteguaza in Colombia, and south through Ecuador and Peru (Rylands et al. 

2016). Saddleback tamarins (former Saguinus fuscicollis: the study species of this thesis 

was considered to be a one of the 14 sub-species (Hershkovitz 1977; but see Rylands et 

al. 2016) populate tropical lowland humid forests, but can also be found in secondary 

forests and seasonally flooded forests and its patches (Snowdon and Soini 1988). The 

widespread geographic distribution of saddleback tamarins and a tendency to form stable 

long-lasting associations with other callitrichid taxa, (Saguinus mystax, Saguinus labiatus, 

Saguinus imperator, and Callithrix argentata), has contributed to the extensive studies on 

saddleback tamarins (summarized by Garber 1993). Saddleback tamarins are the smallest 

among the tamarins, with a body mass of about 350 g (summarized by Garber 1993). 

Females are slightly heavier and bigger than males, even though the sexual morphism is 

not obvious (Snowdon and Soini 1988). They reach sexual maturity at the age of around 

two years, although they do not reproduce for an additional year (Epple and Katz 1980; 

Goldizen and Terborgh 1989).  

The study species of this thesis, L. nigrifrons, live in groups of approximately 5 individuals, 

often with more adult males than adult females (Heymann 2001). They are diurnal 

primates, which are active from shortly after dawn till late afternoon when they retire for 

the night in a palm or a tree (Heymann 1995). The predominant mode of locomotion of L. 

nigrifrons are trunk to trunk leaps (Garber 1991; Nyakatura and Heymann 2010). Home 

range size is 30 – 40 ha with 23 – 30% home range overlap and 1849m mean day range 

(summarized by Garber 1993). They have 0.69 intergroup encounters per day (Heymann 

2001) which can be aggressive, although extra-group copulations do occur (Lledo-Ferrer 

et al. 2011). Markings – anogenital, suprapubic and sternal – seem to be an important way 

of communication: likely to exchange information with neighboring groups, and 

allomarking may even function as a chemical mate guarding of a consorted female 

(Heymann 2001; Lledo-Ferrer et al. 2010, 2011). 
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L. nigrifrons primary diet component is ripe fruits, followed by plant exudates, nectar and 

arthropods. Occasionally they also prey on amphibians, reptiles (Knogge and Heymann 

2003; Nadjafzadeh and Heymann 2008) and small vertebrates, e.g. infant rats (Slana, 

personal observation). Temporary nutritional content depends on seasonal availability, 

distribution and habitat location of these resources (summarized by Garber 1993). 

Tamarins themselves are under high predation pressure, mostly from avian species – 

raptors, but also snakes and ground mammals. This is due to their small body size 

(Moynihan 1970; Terborgh 1983; Goldizen 1987a; Heymann 1987; Oversluijs Vasquez and 

Heymann 2001; Shahuano Tello et al. 2002; Lledo-Ferrer et al. 2009), although for the 

same reason they are not hunted by humans, instead are kept as pets (Slana, personal 

observation). At the EBQB study site, L. nigrifrons live sympatrically with another 

callitrichid species, moustached tamarins (S. mystax). They form mixed-species troops, 

although there is a vertical segregation between the species: S. mystax occupy higher 

parts of the canopy, whereas L. nigrifrons are mostly found on 10 – 15 m height (Heymann 

and Buchanan-Smith 2000). 
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General methods 

The study was carried out at the biological field station Estación Biológica Quebrada 

Blanco (EBQB) (Fig. 3-1, Fig. 3-2). The station is situated the north-eastern Peru, in the 

primeval Amazonian lowland rainforest, on the right bank of the river Quebrada Blanco, 

which is an affluent of the river Rio Tahuayo. It is positioned about 120m above sea level, 

with coordinates 4ᵒ21’S and 73ᵒ09’W (Heymann, 1995). I studied five groups of 

habituated black-fronted tamarins (Leontocebus nigrifrons). Three groups (Gr1, Gr2, Gr3) 

had already been habituated: Gr1 since May 1999, Gr2 since January 2000 and Gr3 since 

2001, and were routinely monitored every month by the field assistants. Another two 

groups (Gr5, Gr6)3 were known to exist in the area, however, Gr5 has only been 

habituated since August 2012 and Gr6 since December 2012, and only for the purpose of 

this thesis. The position of the study groups is presented in Fig. 3-3. The habituation 

process of both groups started in May 2012 and was completed by the end of July 2012 

for Gr5 and at the end of November 2012 for Gr6.  

 

                                                      
3 Numbering of groups at EBQB is based on the sympatric moustached tamarins (S. mystax) with which the 
black-fronted tamarins generally form mixed-species groups (Heymann and Buchanan-Smith 2000). Group 
4 (Gr4) which had been named before the onset of this study included only moustached tamarins. 
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Fig. 3-1: The location of the Estación Biológica Quebrada Blanco. Illustrated by Ulrike 
Walbaum. 

 

 
Fig. 3-2: Estación Biológica Quebrada Blanco: the housing and the working area. 
Illustrated by Darja Slana. 



Chapter 3 General methods 

15 

  
Fig. 3-3: Study area at the EBQB: A) approximate path grid of the EBQB; B) more exact 
path grid of the EBQB with the territory locations of the five study groups. Each dot 
represents a GPS location and most of them represent locations of the groups, taken 
several times per day when with the group. Yellow dots bellow represent Gr1; green dots 
on the right represent Gr2; violet, pink and light blue dots in the middle up represent Gr3; 
dark blue dots on the left represent Gr5; bright green dots on the left represent Gr6. (Figure 
A was illustrated by Eckhard W. Heymann; figure B was illustrated by Tiziana Gelmi.) 

 

 
Fig. 3-4: Climate data of the Tamshiyacu weather station, located approximately 30km 
from the research station. The diagram shows data from the relevant years 2012-2013 
(WorldWeatherOnline.com 2018) and long-term climate diagram data (Climate-data.org 
2018) as a comparison. The gray-shaded area marks the study period. Bars represent 
monthly rainfall (left scale), where dark blue bars show the years 2012 and 2013, while 
light blue bars show long-term climate data as a comparison. Solid lines represent monthly 
average temperatures (right scale), where the dark red line shows the years 2012 and 
2013, while the lighter orange line shows long-term climate data as a comparison. Shaded 
bands around the respective lines indicate monthly minimum and maximum temperature 
values. 
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In the two-month preparatory period, March to April 2012, we started following three 

study groups (Gr1, Gr2 and Gr3). The purpose was to become familiar with the 

surroundings, the study animals and the methods of data collection. Finally, the study 

period started in May 2012 (Gr1, Gr2, Gr3), in August 2012 (Gr5) and in December 2012 

(Gr6) until the end of July 2013 (Fig. 4-1). We identified the individual animals through 

natural markings, like genital size and shape, body size, fur pattern and tail shape (Fig. 

3-5). The individuals were assigned to age categories (infant: 0-3 months; juvenile: 4-11 

months; subadult: 12-23 months; adult: ≥24 months) based on known age or on the size 

and the stage of genital development (Goldizen 1989; Goldizen et al. 1996). The latter was 

assessed by experienced field assistants. The study groups consisted of 1 – 4 adult males, 

1 – 2 adult females, 0 – 3 subadults, 1 – 2 juveniles and 0 – 3 infants. Further details of 

group composition are given in Table 4-1. Observations and data collection were 

conducted by eight people – five field assistants (Ney Shanuano Tello, Camilo Flores 

Amasifuen, Migdonio Huanuiri Arirama, Gabriel Cartitimari Arirama, Carlos Cartitimari 

Arirama), two biology students (Judith Jacira Achong Sánchez, Allison Licett Núñez Levy) 

and myself – working in groups of two, simultaneously collecting data on three study 

groups. 

 
Fig. 3-5: Drawings of natural markings of animals, to help with the individual identification. 
Illustrated by Ney Shahuano Tello and Darja Slana. 

We followed the five study groups daily, from the time they left the sleeping site, between 

5:30 – 8:30 hour and until they entered the sleeping site, between 15:00 – 17:00 hour. 

We observed each group on average for 7.5 days per month and 8.5 hours per day. We 

observed Gr1 for 966.8 hours, Gr2 for 938.9 hours, Gr3 for 870.7 hours, Gr5 for 673.1 

hours and Gr6 for 419.3 hours, yielding a total of 3868.7 hours of observation. We 
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collected behavioral data by a) continuous behavior sampling for interactions, markings 

and rare behavior, like tongue flicking, b) scan sampling, which was conducted on every 

half an hour for two minutes, to access the differences in individual visibility and their 

activity budget, and c) 10-minute focal protocol for adults and subadults. In addition to 

the behavioral data we collected fecal samples from all individuals, for the purpose of 

genetic and hormonal analyses. The sampling methods are explained in greater detail in 

the respective chapters.  

The genetic analyses of the fecal samples were performed by me, under the instructions 

and supervision of technical assistants Christina Glaschke and Christiane Schwarz. I 

extracted the nuclear DNA from fecal samples, amplified it with PCR and used it for 

microsatellite analyses. The method is explained in greater detail in chapter 4. Considering 

hormonal analyses, the first part of the laboratory analyses – the extraction of hormones 

for evaluation – was conducted in the field station EBQB, by myself and the two biology 

students, Judith Jacira Achong Sánchez and Allison Licett Núñez Levy. The second part – 

the enzymeimmunoassay (EIA) technique – was performed in the laboratory by the 

technical assistant Andrea Heistermann. The method is explained in greater detail in 

chapter 6. The statistical analyses were executed by myself (chapter 4), and together with 

statistician Holger Sennhenn-Reulen (chapter 5, chapter 6). The methods are explained in 

greater detail in the respective chapters. Overall supervision of genetic part was done by 

Christian Roos, overall supervision of hormonal part was done by Michael Heistermann 

and overall supervision of the thesis was done by Eckhard W. Heymann. 
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Abstract  

In animal societies with cooperative breeding parents and helpers contribute to caring for 

offspring. In Neotropical callitrichid primates – tamarins and marmosets – infant care 

consists of carrying and food transfer. Infant care mediates changes of activity budgets 

and results in loss of body mass in carriers and thus affect helpers’ direct fitness. 

Therefore, individuals must decide whether to contribute in infant care or not, and to 

which extent, especially if caretakers are confronted with more than one litter. Callitrichid 

have a flexible mating system with a high degree of polyandry. Therefore, it has been 

suggested that male callitrichid help to increase their direct fitness. Here we present data 

on infant care in relation to group composition, mating patterns and parentage in three 

single- and two multi-female breeding groups of wild black-fronted tamarins, Leontocebus 

nigrifrons. We suggest monogamy and promiscuity as a social mating system within a 

group. Due to incomplete genetic results and extra-group paternities, we suggest genetic 

mating systems on individual levels – monogamy, polygyny, polyandry. We conclude that 

callitrichid mating system definitions cannot be limited to within a group description. 

Based on our multi-female breeding cases we provide evidence for a link between the 

level of paternity certainty, copulations, physical fatigue, and male infant care. We argue 

that a male’s infant care investment is based on a social mating system of the mother – 

whether she copulates with that male and also with other males – which influences the 

level of paternity certainty. Finally, we argue that in the case of a high level of paternity 

certainty, physical fatigue is of lesser importance for the male carrying investment. 

Keywords: Callitrichidae; infant care; mating system; parentage 

Introduction  

A wide variety of strategies ensure the direct and indirect fitness of individuals. This 

includes decisions on the number of mating partners and whether or not providing 

parental care. The number of mating partners defines the mating systems which include 

a social and genetic component. Social mating systems are defined by only one type of 

interaction, namely copulations, whereas genetic mating systems are defined by 

reproductive consequences of copulations, i.e. breeding. Copulations and breeding are 
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means to produce offspring, whereas parental care is defined as any parental trait that 

increases the offspring fitness (Clutton-Brock 1991; Kappeler and van Schaik 2002; 

Smiseth et al. 2012). Parental care can be viewed as direct care – behaviors that are 

immediately beneficial for offspring, e.g. carrying, and indirect care – behaviors that might 

benefit offspring, but would also be performed in the absence of infants, e.g. territorial 

defense (Muller and Emery Thompson 2012). In this study we are concerned with direct 

care.  

Parents exhibit benefits and costs of parental care. Benefits are shown in the offspring 

survival and reproduction, whereas costs often include higher energy expenditure, 

constraints on mobility and increased risk of predation (Clutton-Brock 1991; Smiseth et 

al. 2012). Mammals have especially high costs, females more so than males: due to 

obligatory gestation and lactation. The transportation of infants increases these costs and 

burdens the primate mothers even more, because they often transport the infants alone 

(van Noordwijk 2012). In contrast, primate fathers are not equally constrained, therefore 

whether to care for offspring and to what degree, is a fundamental question to male 

reproductive strategies. Caring males might gain a reproductive advantage but there is a 

trade-off in parental care costs, like energetic expenses and most of all additional mating 

opportunities (Trivers 1972; Maynard Smith 1977; Muller and Emery Thompson 2012). 

Compromises between copulations and parenting effort are diverse among primates 

(Muller and Emery Thompson 2012). In one extreme is social monogamy and high infant 

investment, e.g. Azara’s night monkey (Rotundo et al. 2005, Aotus azarae), in between 

are males who occasionally care for unrelated infants, apparently to gain access to the 

mother, e.g. olive baboons (Smuts and Gubernick 1992, Papio anubis) and in other 

extreme are polygynous males who provide little or no direct care and compete intensely 

for access to females, e.g. chimpanzees and gorillas (Muller and Wrangham 2004a, Pan 

troglodytes; Harcourt and Stewart 2007, Gorilla gorilla). 

Still, in comparison to other mammals, the number of primate taxa that provide paternal 

care is high (Kleiman and Malcolm 1981; Whitten 1987) and the amount of paternal care 

is particularly high in siamang (Lappan 2008) and in some New World primates, like owl 

monkeys – genus Aotus and titi monkeys – genus Callicebus (Wright 1984; Huck et al. 

2014), and many taxa of the family Callitrichidae (marmosets and tamarins). Callitrichids, 
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small-bodied (100-650g) primates, exhibit some unique reproductive traits; production of 

dizygotic chimeric twin offspring; potential to produce two litters per year; and 

cooperative breeding, where infant care is extended to other group members, so called 

non-breeding helpers4 (summarized in Garber et al. 2016). Due to (non-breeding) helpers, 

who usually help at the expense of own reproduction, cooperative breeding systems 

embody a major puzzle of evolutionary theory “how can altruistic behavior be favored by 

natural selection?”, and they embody an evolutionary conflict, which arises whenever the 

participants in an interaction cannot achieve their optimum fitness outcome 

simultaneously. Therefore are cooperative breeding systems an excellent model to 

investigate behavior ecology and consequences of this evolutionary conflict, including 

effects on mating, breeding and parental care strategies (Cant 2012). Moreover, 

callitrichids are an excellent and profoundly complex model. They are the only 

cooperative breeders among primates and they exhibit flexible reproductive strategies, 

including monogamy, polygyny, promiscuity, and the prevailing polyandry (Goldizen 

1988).  

Due to helper’s trade-off against own residual reproduction, each helper would prefer the 

other group member to help more. Therefore, we would expect that breeders, whose 

help actually trades-off in favor of their own reproduction (Cant 2012), help more than 

non-breeding helpers. Helping can be described as a form of altruism (Hamilton 1964), 

but if instead help indeed is based on increasing own fitness (Huck et al. 2004a) we might 

expect that the mere chance of reproduction, like access to mating and (un)certainty of 

paternity, results in increased infant care of male helpers. Indeed, in callitrichids males 

usually are the main helpers in carrying (Savage et al. 1996; Garber 1997; Yamamoto et 

al. 2009), potentially encouraged by a female polyandrous mating (Huck et al. 2004c) 

                                                      
4 With the term “helpers” we refer to non-breeding individuals who help to rear offspring. In callitrichids all 

group members, i.e. parents and helpers contribute with infant care (summarized in Garber et al. 2016). 

However, most of the data on callitrichids does not provide with the parental information, especially about 

who the father is. Therefore, it is often impossible to make a clear distinction within adult males, in terms 

of who the father is and who the non-breeding helper is. Thus, whenever the callitrichid parentage status is 

unclear, we refer to the helping individuals with a more neutral term, i.e. “caretakers”.  
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because copulations provide males with an option of paternity. Another explanation on 

why male helpers help is a courtship strategy, where infant care performance is a tool to 

court a female. Courtship strategy is based on female mate choice, and males that 

perform better in infant care would gain access to (more) mating (Price 1990, cotton-top 

tamarins, Saguinus oedipus; Smuts and Gubernick 1992, olive baboons, P. anubis) but also 

see Tardif and Bales (1997, captive common marmosets, Callithrix jacchus, cotton-top 

tamarins, S. oedipus). 

Regardless of what constitutes the initial trigger of caring for infants, carrying is 

energetically demanding. In callitrichids costs are expressed in loss of body mass (Sánchez 

et al. 1999, captive cotton-top tamarins, S. oedipus), which implies that physical fatigue 

should occur and result in a carrying reduction. Loss of body mass mostly affects fathers 

and to a lesser degree other adults and subadult (Sánchez et al. 1999, captive cotton-top 

tamarins, S. oedipus). These high costs are due to heavy twin infants, whose body mass at 

birth corresponds to up to 20% of mother’s body mass. Infants are carried intensively 

during all group movements until 2-3 months of age, at first both twins often 

simultaneously by only one adult (Terborgh and Goldizen 1985). In addition to carrying, 

callitrichid infants are, for many months, regularly fed. Both, carrying and food transfer, 

are provided unequally and intensively by individual caretakers (Epple 1975; Pryce 1988; 

Goldizen 1989; Tardif et al. 1992; Huck et al. 2004a).  

High energetic demands of infant care and resource availability, limits the number of 

breeding females in a group (Goldizen et al. 1996, Leontocenus weddelli)5. Callitrichids are 

characterized with only one breeding female per group, but do occasionally exhibit multi-

female breeding. Multi-female breeding may result in allonursing (Smith et al. 2001, 

Saguinus mystax) but also lower infant survival potentially due to infanticide (Tirado 

Herrera et al. 2000, Leontocebus nigrifrons; Culot et al. 2011, S. mystax). In tamarin 

species multi-female breeding have been observed in: Saguinus geoffroyi, L. weddelli, S. 

oedipus and S. mystax (detailed review in Garber et al. 2016) and Leontocebus spp. 

(Goldizen et al. 1996; Tirado Herrera et al. 2000). More infants in the group are likely to 

raise the costs of infant care, therefore we can assume that helping individuals would 

                                                      
5 In this study we use the current taxa naming of tamarins, following Rylands et al.  (2016). 
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make a choice: which infants to help and to what degree. Furthermore, callitrichids 

generally produce dizygotic twins which sometimes result in shared paternities of twins 

(Huck et al. 2005a, wild moustached tamarins, S. mystax; Díaz-Muñoz 2011, S. geoffroyi). 

Tamarin males are to a considerable degree equal in rank and copulations (Goldizen 

1987a), nevertheless, rare paternity data from wild populations suggest that in most 

groups a single male monopolizes the paternities (Huck et al. 2005a, wild moustached 

tamarins, S. mystax; Suárez 2007; Díaz-Muñoz 2011, S. geoffroyi). The overall complexity 

of callitrichid mating systems enhances the research question of this study: how does the 

individual infant care investment relate to mating and (non-)breeding status, especially in 

a multi-female breeding situation? 

We studied five wild groups of black-fronted tamarins (L. nigrifrons). Within 15 months of 

observation we had two occurrences of multi-female breeding, one per a group. In this 

study we examined how differences in their mating system affected patterns of infant 

care. Particularly, we compared groups with single-female and multiple-female breeding. 

We predict that we will find multiple paternities and in contrast, also monopolization of 

paternities within a group. We predict breeders (mother and father) will help in infant 

care more than non-breeding helpers. Regarding male help, we test three hypotheses: 1) 

paternity certainty, where we predict that males with a higher level of paternity certainty 

will help more, 2) physical fatigue, we predict male carrying reduction for the second 

consecutive litter in the multi-female breeding cases, and 3) pay to copulate, where we 

predict that males who copulate more help more. In this paper we present wild black-

fronted tamarin’s (L. nigrifrons) group composition, parentage, mating behavior, infant-

directed behavior on individual level and on the study population level, i.e. in relation to 

age, sex and parentage. 

Methods 

1. Study site and study population 

We carried out this study in primeval Amazonian lowland forest in northeastern Peru, at 

the Estación Biológica Quebrada Blanco (EBQB), 4ᵒ21’ S and 73ᵒ09’ W. For a more detailed 

description of the study site, see (Heymann 1995). We observed five groups of wild yet 
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well-habituated L. nigrifrons. Groups Gr1, Gr2, Gr3 were routinely monitored every month 

by field assistants before the onset of the study, and in groups Gr5 and Gr66 we started 

the processes of habituation in May 2012.  

All field work adhered to the “Code of Best Practices for Field Primatology” from the 

American Society of Primatologists(Riley et al. 2014) and was conducted under 

authorization from Dirección General Forestal y de Fauna Silvestre of the Peruvian 

Ministry of Agriculture (authorization no. 268-2012-AG-DGFFS-DGEFFS). 

Table 4-1. Composition of study groups 

Group Individual ID¹ Joint 

ID² 

Sex Age class³ Demographic notes⁴ 

Gr1 

 

 

 

 

 

 

 

 

 

1m1  m adult  

1f1  f adult  

1f2  f adult  

1sa1  f juvenile, 

subadult  

B: 04.03.2011 

1sa2  f juvenile, 

subadult 

B: 04.03.2011 

1c1/1j1 1c m infant, juvenile  B: February 2012 

1c2/1j2 m infant, juvenile B: February 2012 

1cv1 1cv  infant B: 12.12.2012 

1cv2  infant B: 12.12.2012     

D: 16.12.2012-13.01.2013 

1cn   infant B: app. 12.02.2013 

Gr2 

 

 

 

 

2m1  m adult B: before 2009, born in 

this group 

2m2  m adult B: 21.05.2009?⁵   

D: 29.06.2013 – 

08.07.2013 

                                                      
6 Numbering of groups at EBQB is based on the sympatric moustached tamarins (S. mystax) with which the 
black-fronted tamarins generally form mixed-species groups (Heymann and Buchanan-Smith 2000). Group 
4 (Gr4) which had been named before the onset of this study included only moustached tamarins. 
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Group Individual ID¹ Joint 

ID² 

Sex Age class³ Demographic notes⁴ 

 

 

2m3  m adult B: 21.05.2009?⁵   

D: 25.07.2012 – 

14.08.2012 

2f1  f adult I: before onset of study 

2f2  f adult I: February/March 2012 

2c1/2j1 2c m infant, juvenile  B: app. 03.04.2012 

2c2/2j2 m infant, juvenile  B: app. 03.04.2012 

2cv1 2cv  infant B: 19.02.2013 

2cv2  infant B: 19.02.2013 

Gr3 3m1  m adult B: 17.10.2008 or 

21.01.2010 ⁶ 

3m2  m adult B: 17.10.2008 or 

21.01.2010 ⁶ 

3f1  f adult B: 17.10.2008 or 

21.01.2010 ⁶ 

3f2  f adult B: 17.10.2008 or 

21.01.2010 ⁶ 

3sa1  m juvenile, 

subadult 

B: 10.05.2011 

3sa2  f juvenile, 

subadult 

B: 10.05.2011 

3c1/3j1 3c f infant, juvenile B: app. 10.04.2012 

3c2  infant B: app. 10.04.2012    

D: 20.06.2012 

3cv1 3cv  infant B: 23.01.2013    

3cv2  infant B: 23.01.2013  D: 

26.03.2013 

3cn1 3cn  infant B: 01.05.2013 

3cn2  infant B: 01.05.2013 
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Group Individual ID¹ Joint 

ID² 

Sex Age class³ Demographic notes⁴ 

Gr5 

 

5m1  m adult D: 17.04.2013 

5f1  f adult  

5sa1  f subadult  

5sa2  m subadult  

5sa3  f subadult  

5c/5j1  f infant, juvenile B: March 2012 

5cn1 5cn  infant B: 02.11.2012 

5cn2  infant B: 02.11.2012 

Gr6 6m1  m adult  

6m2  m adult  

6m3  m adult  

6m4  m adult  

6f1  f adult  

6f2  f adult  

6j1  m juvenile  

6j2  f juvenile  

6c1 6c 

 

 infant B: 06.12.2012    

D: 09.12.2012 – 

19.03.2013 

6c2  infant B: 06.12.2012    

D: 09.12.2012 – 

19.03.2013 

¹ If an individual's name changed during the study period, both names are noted. The 
names changed due to entering a higher age class; e.g., from infant to juvenile. 
² Joint ID is used for twin infants, before we could separately identify them. 
³ Age class as it could change throughout the observation time. 
⁴ B: born, I: immigrated, D: disappeared; emigrated or died 
⁵ One of the males (2m2 or 2m3) was born on that date. 
⁶ Two individuals were born on each of those dates. 
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2. Births and presence of infants 

We defined the infant carrying period as extensive transport of infants that lasts up to 3 

months, whereas food provisioning continued for many months. We have records of 

eleven births, four of them from before the study period (Fig. 4-1, Table 4-1). The data on 

infant care were available for nine litters (1cv, 1cn, 2c, 2cv, 3c, 3cv, 3cn, 5cn, 6c). From six 

litters, we collected data on infant-directed behavior for the entire carrying period (1cv, 

1cn, 2cv, 3cv, 3cn, 5cn). For two litters (2c, 3c) we collected data for the last two months 

of the carrying period and for one litter (6c) we collected only the first 3 days of the 

carrying period.  Gr6 could not be located for almost three months following the birth of 

infants (6c) on 6 Dec 2012. As the infants had disappeared when Gr6 was relocated in 

March 2013, we obtained only data for the first 3 days of life. Therefore, we did not use 

that data for any interpretation (results of infant-directed behaviors of Gr6 are in Fig. A-6. 

Four litters were born within half a year before the onset of the study. For two of these 

(litters 2c, 3c), the infant carrying period extended into the observation period, and data 

were collected. In two groups two females gave birth to infants: in both cases we consider 

a female that gave birth more often to be the main breeder (1f1 and 3f1) and the other 

female to be the secondary breeder (1f2 and 3f2).  

 
Fig. 4-1: Births and presence of infants in the study population 
¹ After the birth of infants the group was observed for 3 consecutive days. The group was 
not found until the second part of March, when infants were no longer present, meaning 
they disappeared between 9.12.2012 – 19.03.2013. 
2 We define infant carrying as the first three months of infant’s life.  



Chapter 4 Mating systems and infant care in a tamarin species 

29 

3. Behavioral data collection and analyses 

 Data collection started in May 2012 (Gr1, Gr2 and Gr3), August 2012 (Gr5) and December 

2012 (Gr6) until July 2013. Data were collected by the first author of this paper, four field 

assistants and two biology students. Our observations were throughout a group’s diurnal 

activity, starting between 5:30 – 8:30 h until 15:00 – 17:00 h. We observed each group for 

approximately 8.3 hours per day and 7.5 days per month, resulting in a total of 3868.7 

observation hours. We identified individuals by their natural markings, e.g., body size, fur 

patterns, tail shape and genital size and shape. Individuals were assigned to age categories 

(infant: 0-3 months; juvenile: 4-12 months; subadult: 1-2 years; adult: 2 years and more) 

according to known birth date or based on size and state of their genital development 

(Goldizen 1989; Goldizen et al. 1996). Group composition is shown in Table 4-1. 

We collected data on mating and all infant-directed behavior, except carrying, using 

continuous behavior sampling throughout the day. Data on carrying were collected using 

instantaneous sampling, at five minute intervals, starting when an individual was seen 

carrying an infant (Martin and Bateson 2007). For all behaviors, we noted which 

individuals we observed and when. Details are described in Table 4-2. Additionally, we 

collected data on the activity (food transfer, foraging, resting, locomotion, vigilance, 

socializing, others) of each visible individual using instantaneous scan sampling (Martin 

and Bateson 2007) at half-hour intervals for two minutes. 

Table 4-2. Description of infant-directed behavior, mating behavior 

Behavior  

(abbreviation) 

 

Description  

 Infant-directed behavior¹ 

Food transfer 

(feed) 

Infant obtains food from a food possessor²; does not include lactation. 

Infant carrying 

(carry) 

Infant is carried by an individual: once the carrying  started it would be 

recorded as a new event on every 5th minute; if a carrier got out of sight 

for more than 5 minutes and would be later again seen carrying an infant, it 

would be recorded as a new event.  



Chapter 4 Mating systems and infant care in a tamarin species 

30 

Behavior  

(abbreviation) 

 

Description  

Infant take 

attempt 

(take) 

Infant transfer attempt, where one animal tries to take the infant from 

another, who may or may not be dumping the infant.  

 

Rejecting food 

transfer 

(reject feed) 

Infant is refused to be fed: infant’s attempt to grab a food item from its 

possessor is unsuccessful, because it is physically refused so from the food 

owner.² 

Rejecting to 

carry infant 

(reject carry) 

Infant is refused to be carried: infant who was not carried before is trying 

to climb on an individual, who would push it away; infant has been carried, 

but is pushed down by the carrier. 

Mating behavior 

Copulation 

(cop) 

Mounting with pelvic thrusting. 

¹ Adjusted after (Vogt 1978; Coates and Poole 1983; Huck et al. 2004a). 
² Infant transfer equals the definition of food “stealing” from (Heymann 1990b), since food 
was always taken yet never freely given from the food possessor. A more precise 
description would be that food was allowed to be stolen. As in other callitrichids (Heymann 
1990b, S. mystax), the event was usually accompanied with the infant’s squeal vocalization 
directed towards the food possessor. This already partly overlaps with “food beg” 
definition of Cleveland and Snowdon (1984), which includes following, calling and 
grabbing at food possessor / food item. As a result, if an infant’s attempt of grabbing the 
food item from the possessor was successful we would define it as “infant transfer” and as 
“rejecting to feed infant” if unsuccessful.  

We calculated the percentage of infant-directed behaviors on a study population level, 

i.e. in relation to age, sex and parentage, and due to multi-female breeding, also on an 

individual level. We analyzed infant-directed behavior in terms of each individual’s 

contribution to the behavior, see formula below (adopted from Huck et al. 2004a). We did 

not distinguish between the twins but we treated them as one litter. When applied to the 

two infants, we considered infant-directed behaviors (e.g. carrying, carry rejection, take 

attempt) to be two occurrences. We corrected the data for individual visibility which is 

the relative proportion of instantaneous scan sample points on which an individual could 

be observed. We incorporated a visibility correction in a calculation of the expected 

frequencies (E):  
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𝐸 =  𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟 (𝑡𝑜𝑡𝑎𝑙)  ∗  𝑠𝑐𝑎𝑛𝑠 (𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙) / 𝑠𝑐𝑎𝑛𝑠 (𝑡𝑜𝑡𝑎𝑙), 

where behavior (total) = frequency at which the behavior was seen in all individuals; scans 

(individual) = number of sightings of a respective individual in scans; scans (total) = 

number of sightings of all individuals in scans. Following calculations of percentages were 

done by this formula:  

                              % behavior of individual 𝑋 =  
𝑂𝑋 𝐸𝑋⁄ ∗100 

∑ 𝑂 𝐸⁄group
,  

where 𝑂 = observed frequency of the behavior.  

For an individual level, we calculated the percentage of infant-directed behaviors for each 

set of infants separately for the entire carrying period together (Fig. 4-4-Fig. 4-7) and for 

each carrying month separately. Finally we calculated the carrying contribution of males 

in the groups with multi-female breeding (Fig. 4-12, Fig. 4-13) and for all infant-directed 

behaviors for all carriers in a study population, i.e. in relation to age, sex and parentage 

(Table A-1). If an individual carried or fed the infant more often it may also have more 

opportunities for rejection. Therefore we calculated “the index of rejections in carrying 

and food transfer” which is the number of rejections per carrying or food transfer time 

(Table 4-9). Calculations were based on the entire infant carrying period for each litter 

separately. We define this index of rejection as    

Index of rejection =  𝑂 of rejection / % behavior, 

where O = observed frequency of the behavior; carry reject (if the infant was carried 

before by the same individual) or feed reject; % = of carry or feed.  

Within the study population level, we calculated the percentage of infant-directed 

behaviors in relation to age class and parentage information of adults (mothers, other 

females, fathers, other males, subadults, juveniles) (Fig. 4-3, Fig. 4-8 - Fig. 4-11). For each 

class we calculated medium, minimum and maximum values, upper and lower quartile. 

We present the results in a box plot. The calculations are based on infant-directed 

behaviors towards litters within the complete observation period (6 litters: 1cv, 1cn, 2cv, 

3cv, 3cn, 5cn). Rates of infant-directed behaviors in litter 1cn (infant carrying, infant reject 
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carrying, infant take attempt), were extreme: very high in the mother and very low in one 

male and another female. These extreme values could strongly bias the overall average. 

Therefore, we additionally calculated the percentage of these infant-directed behaviors 

with the exclusion of litter 1cn.  

4. Genetic sample collection and analyses 

We collected fecal samples non-invasively. From each individual in our study groups we 

tried to obtain at least three fecal samples. We placed each sample on a filter paper in a 

twist-off PE tube with silica gel. We sealed the tubes with Parafilm and labelled them 

(collector, date, time, record number, individual, degree of certainty of individual’s 

identification; A – certain, when we were sure of an animal´s identification, B – less 

certain, when we were almost sure of an animal´s identification, but not entirely). We 

kept samples at ambient temperature of the camp (e.g. 20-30°C) up to three weeks, 

brought them to town where we placed them in a refrigerator (e.g. 5°C) until exportation 

to Germany. The collective and storing methods follow (Huck et al. 2005a).  

With exception of twin infants, which we could not distinguish in their first months, we 

analyzed only fecal samples with a clear identification of the individual; label A. We 

extracted nuclear DNA from the fecal samples using the First-DNA-all tissue kit (GEN-IAL). 

We used Nanodrop to concentrate DNA and perform purity measurements. We set UV 

light absorbance on a 260/280 wave length. For the amplification of the microsatellite loci 

we tested 12 primer pairs that were already used for S. mystax by Huck et al. (2005a), but 

were previously designed for S. bicolor, S. oedipus and C. jacchus (Nievergelt et al. 1998; 

Huck et al. 2005a; Böhle et al. unpublished data). For the purpose of our analyses we 

excluded three primers: two primers were not variable since they showed only one allele 

(SB_2, SO_258) and one primer failed to show any alleles (SB_7). Finally, we amplified 

each sample with the remaining 9 primer pairs (Table 4-3). We started the procedure of 

microsatellite loci amplification with the dilution of concentrated DNA extract on roughly 

10ng/µl with high performance liquid chromatography (HPLC) water. Then we created 

DNA multiplex: we added 1µl of the DNA extract to the mastermix for DNA multiplex 

(Table 4-4), which was the same for all primer pairs. We put the created DNA multiplex in 

a Thermal Cycler (2720, Applied Biosystems), with the aim of amplification of the 



Chapter 4 Mating systems and infant care in a tamarin species 

33 

microsatellite loci with hot start PCR technique (Table 4-5). We created a mastermix for 

DNA singleplex (Table 4-6) to which we added 1-4 µl of multiplex (depending on what has 

previously proven to be better for each primer pair) and again put it in the Thermocycler 

for the hot start PCR, optimized for the each primer pair (Table 4-7). For DNA fragment 

analysis of DNA singleplex we used Genetic Analyzer (3130, Applied Biosystems). We used 

1-4µl of DNA singleplex, depending on the previous result. We assigned genotypes 

manually, using the Peak Scanner 1.0 software (Applied Biosystems). Summary statistics 

of microsatellite loci we analyzed with Genepop 4.2 (Rousset 2008) (Hardy - Weinberg 

equilibrium test (HW χ²)), and Cervus 3.0.7. (Kalinowski et al. 2007) (null allele, expected 

heterozygosity (He), observed heterozygosity (Ho) (Table 4-3). 

Table 4-3: Summary statistics of used microsatellite loci¹ 

Locus Number 

of alleles 

Size range (bp) 

in L. nigrifrons 

HE HO HW      

χ² - test 

Null 

allele 

SB 8² 7 221-237 0.799 0.556 s. 0.174 

SB 19² 13 197 - 255 0.897 0.818 s. 0.005 

SB 24² 7 137 - 149 0.827 0.806 n.s. 0.036 

SB 30² 10 91 - 121 0.835 0.763 s. 0.003 

SB 38² 7 126 - 150 0.766 0.667 s. 0.038 

SO 251³ 11 126 - 150 0.884 0.706 s. 0.052 

SO 252³ 6 117 - 133 0.79 0.722 s. 0.108 

SO 284³ 6 168 - 180 0.774 0.656 n.s. 0.038 

CJ 12⁴ 5 138-146 0.789 0.767 n.s. 0.077 

mean 8   0.818 0.718    

¹ He = expected heterozygosity; Ho = observed heterozygosity; HW = Hardy - Weinberg 
equilibrium: estimation of exact P-Values by the Markov chain method; bp = base pairs; 
n.s. = not significant; s. = significant 
² Origin: Saguinus bicolor, Böhle and Zischler (2002) 
³ Origin: S. oedipus, Böhle et al. unpublished data 
⁴ Origin: C. jacchus, Nievergelt et al.  
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Table 4-4: Mastermix for DNA multiplex¹ 

Mastermix for DNA multiplex 

Ingredients Additional information on ingredients Amount 

H20 HPLC quality 16.4µl 

10x reaction buffer Company GeneCraft  3.0µl 

BT BSA² (10 mg/ml) + 0.7% Triton 4µl 

MgCl2 15 mM 2.0µl 

d’NTP  25 mM 0.5µl 

taq-Polymera Company GeneCraft 1unit 0.3µl 

Mix off all 9 primers “forward” 100pmol/µl, unlabeled 0.9µl 

Mix off all 9 primers “reverse” 100pmol/µl, unlabeled 0.9µl 

¹ Is the same for all primer pairs, calculations are applicable for 1 DNA extract.  
² BSA=Bovine serum albumin 

Table 4-5: PCR protocol for DNA multiplex 

PCR protocol for DNA multiplex 

Steps Degrees Time Rounds 

Initialization (with hot start) 92°C 10min 1x 

Denaturation 92°C 30s 20x 

Annealing 45°C 30s 20x 

Extension = elongation 72°C 30s 20x 

Final elongation 72°C 10min 1x 

Final hold 8°C ∞  
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Table 4-6: Mastermix for DNA singleplex 

Mastermix for DNA primers¹ 

Ingredients Additional information on ingredients Amount 

H20 HPLC quality 21.4µl 

10x reaction buffer  Company GeneCraft  3.0µl 

BT 10 mg/ml BSA² + 0.7% Triton 4µl 

d’NTP  25mM 0.2µl 

taq-Polymera Company GeneCraft 1unit 0.2µl 

Primer X “forward” 100pmol/µl, labeled 0.1µl 

Primer X “reverse” 100pmol/µl, unlabeled 0.1µl 

¹ Is different for each primer, calculations are applicable for 1 DNA multiplex. 
² BSA=Bovine serum albumin 

Table 4-7: PCR protocol of DNA singleplex 

PCR protocol for singleplex 

 

 

Steps 

                                        Primers 

SB_8, SB_38, SO_252 CI_12, SB_19, SB_24, SB_30, 

S0_251, SO_284 

Degrees Time Rounds Degrees Time Rounds 

Initialization (with hot 

start) 

92°C 10min 1x 92°C 10min 1x 

Denaturation 92°C 30s 30x 92°C 30s 30x 

Annealing 45°C 30s 30x 50°C 30s 30x 

Extension = elongation 72°C 30s 30x 72°C 30s 30x 

Final elongation 72°C 10min 1x 72°C 10min 1x 

Final hold 8°C ∞  8°C ∞  

5. Parentage analyses 

We performed parental analysis with software Colony 2.0.5.9. (Jones and Wang 2010). 

We looked for parents of all infants, juveniles and subadults. We considered all adult 

males as potential fathers as well as all adult females for mothers. Although, if it was 

already clear from the field study who the true mother was, we applied it as such. When 
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using the program, we did not discriminate between the groups. According to program 

recommendations we implemented the following parameters: male and female 

polygamy, without inbreeding and clone inference, diploid and dioecious species, scale 

for full sibship yet weak sibship priority, full likelihood [probability] method, medium 

precision, unknown allele population frequency, 1 medium long run, codominant marker, 

genotyping rate: 0.009 and null allele as they were calculated by Cervus software (Table 

4-3). Additionally we assumed that we sampled up to 80% of mothers and fathers. Where 

possible, Colony software assigned first and second most likely parentage. Here we report 

parentage probabilities as high (1.0-0.80) or intermediate (<0.80-0.70) (Table 4-8). If high 

and intermediate probabilities were assigned, it is only for the first most likely parentage. 

If a second most likely parentage was assigned, it had a lower probability range (0.003 to 

0.173).  In addition to parentage probability, the program provided full and half-sibling 

probabilities of offspring. Often when the Colony software was provided with sibling 

dyads we could combine this information with information on parentage. This gave us 

additional information about plausible parentage, so called “hints from sibling dyads”. An 

example of a hint: twin infants 2c had the same mother (2f1) and no assigned candidate 

father, but according to candidate full-sibling offspring dyads, they were full-siblings. 

Thus, a combination of this information suggests, that they had the same known mother 

(2f1) and the same unknown father (◊).  

6. Testing the predictions 

To test predictions on mating systems and paternities, we looked into individual mating 

behavior (Table 4-10, Fig. 4-14) and paternity results (Table 4-8). To test the prediction 

that breeders contribute in infant care more that non-breeders, we compared infant-

directed behaviors on a population level (Fig. 4-3, Fig. 4-8 - Fig. 4-11) with parentage 

information (Table 4-8). To test the hypothesis paternity certainty, with the prediction 

that males who have a higher level of paternity certainty help more, we compared adult 

male individual contributions of infant-directed behaviors (Fig. 4-4 - Fig. 4-7, Fig. 4-12, and 

Fig. 4-13), individual mating behaviors (Table 4-10) and paternity results (Table 4-8). To 

test the hypothesis physical fatigue, with the prediction that males lower their carrying 

contribution for the second consecutive litter in multi-female breeding cases, we 
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compared adult male individual carrying contributions between the consecutive litters 

(Fig. 4-12, Fig. 4-13). To test the hypothesis pay to copulate, with the prediction that males 

invest more in infant carrying if they mate more with the mother, we calculated the 

“Spearman correlation between number of copulations and infant carrying percentages” 

(Table 4-11). We calculated the correlation for the entire study period and for specific 

periods: infant carrying period, six months before birth and any other time. The period of 

six months before birth was to include the 5 month gestation in saddleback tamarins 

(Heistermannn and Hodges 1995) and the potential consorting time (Terborgh and 

Goldizen 1985, wild saddleback tamarin, L. weddelli; Baker et al. 1993, wild golden lion 

tamarin, Leontopithecus rosalia; Huck et al. 2004c, wild moustached tamarin, S. mystax; 

Lledo-Ferrer et al. 2010, wild black-fronted tamarin, L. nigrifrons).  
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Results 

Our study presents findings on parentage of five wild groups of L. nigrifrons, their infant 

care effort for 8 litters (1cv, 1cn, 2c, 2cv, 3c, 3cv, 3cn, 5cn), their mating behavior and 

offspring survival. Two litters (2c and 3c) were not observed in their first month, therefore 

are not strictly comparable to infant carrying periods of other litters and whenever we 

present or discuss the results, we state which litters were included. Furthermore, we 

examine in more detail carrying efforts of adult males in the two cases of two multi-female 

breeding. 

1. Parentage 

Parentage data with full and half-sibling dyads and hints from sibling dyads are presented 

in Table 4-8 whereas the parentage dyads alone are presented in Fig. 4-2. We identified 

the mothers of most of the offspring (infants, juveniles and subadults). Maternities of the 

youngest infants were known through observations of lactation (Fig. A-7). In cases of 

allonursing (litters 2cv and 3cv) and nursing only by a non-mother (litter 3cn) we based 

our conclusions on which female showed the strongest interest in infants during the first 

month of life, especially the first days, as measured through the rates of infant take 

attempt behavior (Table A-1). Finally, the five month gestation (Heistermannn and Hodges 

1995) excludes a female as mother of one set of twins if they were born within four 

months of another litter (litter 3cn) (Table 4-1). We classified groups Gr2, Gr5 and Gr6 as 

single-female breeding, and groups Gr1 and Gr3 as multiple-female breeding. Both multi-

female breeding groups had two resident adult females, both of them breeding (1f1 and 

1f2, 3f1 and 3f2). In Gr3, a female from Gr6 (6f2) was identified as the mother of a 

subadult (3sa2), but as she belonged to Gr6, we did not consider her to be an additional 

breeding female of Gr3. In Gr5 we did not assign a mother to the three older offspring, 

but “hints from sibling offspring dyads” indicated that the only adult female (5f1) in the 

group was likely to be a mother of one of the older offspring (5sa2).  
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Table 4-8. Most likely maternity, paternity, full- and half-sibling offspring dyads 

Group Offspring¹ Candidate 
mother²,³ 

Candidate 
father³ 

Candidate 
full-sibling 
offspring 
dyads³,⁴ 

Candidate 
half-sibling 
offspring 
dyads³,⁴ 

Hints from  
sibling 
offspring 
dyads⁵ 
(candidate 
father, 
mother) 

Gr1 1sa1 1f1** 1m1** A** d*  

1sa2 1f2**   a**, e**, f* Father: ● 

1c/1j1 1f1** 1m1** A** c*  

1c/1j2 1f1** 1m1** A**   

1cv1 1f1** 1m1** A** b*  

1cv2⁶ 1f1** N/A N/A N/A N/A 

1cn 1f2**   a** Father: □ 

Gr2 2c/2j1 2f1**  B** g** Father: ◊ 

2c/2j2 2f1**  B** h** Father: ◊ 

2cv1 2f1**   g**, h** Father: ø 

2cv2⁶ 2f1** N/A N/A N/A N/A 

Gr3 3sa1  6m4**    

3sa2 6f2**   l**, m** Father: ‡ 

3c1/3j1 3f1** 3m1**  i*, j**  

3c2⁶ 3f1** N/A N/A N/A N/A 

3cv1 3f1**   e**, j**, k* Father: ● 

3cv2⁶ 3f1** N/A N/A N/A N/A 

3cn1 3f2** 3m1*  i*  

3cn2⁶ 3f2** N/A N/A N/A N/A 

Gr5 5sa1    r*  

5sa2    p*, r*  Father: 5m1 or 
mother: 5f1 

5sa3      

5c/5j1 5f1**   o** Father: ᴥ 

5cn1 5f1**   f*, k*, n**, 
o** 

Father: ● 

5cn2 5f1** 5m1**  n**, p*  

Gr6 6j1 6f2** 1m1*  b*, c*, d*, 
l**, s** 

 

6j2 6f2** 6m1**  m**, s**  

6c1⁶ 6f2** N/A N/A N/A N/A 

6c2⁶ 6f2** N/A N/A N/A N/A 

¹ If an individual's name changed during the study period, both names are noted. 
² Underlined females: known mothers. 
³ High probability: **: 1.00-0.80, intermediate probability: *: <0.80-0.70. 
⁴ The same letters denote candidate (full/half) sibling relationship: A – B, a – s. 
⁵ The same symbols denote the same unidentified candidate father: ●, □, ◊, ø, ‡, ᴥ. Detailed 
explanation on hints is in section Parentage analyses (p. 35).  
⁶ Offspring not analyzed due to lack of fecal samples or insufficient number of amplifying 
alleles: 1cv2, 2cv2, 3c2, 3cv2, 3cn2, 6c1, 6c2.  
Light blue and dark green color are used to designate the known twins. 
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We could assign fathers to roughly one third of the offspring. Paternity assignments 

revealed a complex picture. Only in one group (Gr1) were all offspring of a female (1f1) 

sired by the same male (1m1). In other group, there was a case where paternity for a set 

of twins was shared between a group and an extra-group male (offspring 6j1 and 6j2, 

fathers 1m1, 6m1) or where there were indicated different fathers for different sets of 

twins of the same female (1f2, 3f1, 5f1). 

 
Fig. 4-2: Genetic parental dyads, including: identified individuals with high and 
intermediate parentage probability, unidentified candidate mother and unidentified 
candidate fathers. Groups are positioned roughly according to the position of their home 
ranges (Slana, unpublished data). The lines drawn to unidentified candidate fathers do not 
imply spatial relationships. The lines drawn to unidentified candidate fathers do not imply 
spatial relationships. 
¹ Unidentified candidate fathers (‡, ●, ᴥ, □, ◊, ø) derive from “hints from sibling dyads”, 
noted in Table 4-8. Detailed explanation on hints is in section Parentage analyses (p. 35) 
² Non-breeding females, although it is likely that 2f2 was pregnant, because she was 
allonursing a litter of 2f1 (Fig. A-7). 

2.  Infant survival 

We have a record of 11 litters with totally 20 infants, five of which died (Table 4-1, Fig. 

4-1). Surviving offspring had a minimum age of three and a maximum age of 18 months 

at the end of our study. All infants were born within 18 months, starting three months 

before data collection. Two litters might have been born as singletons, the other nine 

litters were born as twins. All five infants that died, did so within the first three months. 
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These infants were all born as twins; in three cases one of the twins died and in one case 

it was both of them. All infants from the secondary breeding females (Gr1, female 1f2; 

Gr3, female 3f2) survived. In contrast, both primary females (Gr1, female 1f1; Gr3, female 

3f1) lost one infant twin prior to the secondary females giving birth. 

3. Infant-directed behaviors 

Infant-directed behavior on the study population level, i.e. in relation to age, sex and 

parentage is depicted in Fig. 4-3, Fig. 4-8 - Fig. 4-11, based on 6 or 5 litters, and in Fig. A-1 

- Fig. A-5, based on all 8 litters (see section Behavioral data collection and analyses (p. 29) 

for explanation). The behavior on the individual level, of all of 8 litters, during carrying 

period, is depicted in Table 4-9, Fig. 4-4 - Fig. 4-7, and for each month separately in Fig. 

4-12, Fig. 4-13 and in Table A-1. In Appendix A we also present information on lactation 

and on female´s (mothers, allo-mothers) refusing to lactate and the behavior towards 

litter 6c, from the first three days after birth (Fig. A-6, Fig. A-7). 

3.1 Carrying  

Main infant carriers are mothers and adult males, regardless of paternity (Fig. 4-3). On an 

individual level, within the four litters (1cn, 2c, 3c, 5cn) three of the four main carrying 

females were mothers (Fig. 4 - Fig. 7). Within the other four litters (1cv, 2cv, 3cv, 3cn) only 

one of the four main carrying adult males was the father. On average, the main carriers 

contribute between 40-50% of carrying, with low values of around 20% (adult male 3m2, 

litter 3cn) and high values above 80% (mother 1f2, litter 1cn). Secondary carriers are also 

mostly adults: adult males in 4 litters; one of which was the father (litters 2cv, 3c, 3cv, 

3cn), mothers in 3 litters (1cv, 2c, 2cv) and a subadult in 1 litter (litter 5cn). Secondary 

carriers contribute roughly 20% of carrying with high values of 40% (mother, litter 1cv). 

Other carriers that contribute roughly between 10-20% are again mostly adults: fathers, 

mothers and subadult females (each in 3 litters), adult male (in 2 litter), adult female and 

subadult male (each in 1 litter). Individuals that carry up to 5% are subadults and juveniles, 

with exception of one adult male (litter 2c). Some individuals did not carry at all: a juvenile 

(in 3 litters: 2cv, 3cv, 5cn) and an adult female (in 2 litters: 1cv, 1cn). 
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Fig. 4-3: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to infant carrying, based on A) six litters with 
complete observation periods (0-3 months) B) five litters with complete observation 
periods (0-3 months), but without litter 1cn of mother 1f2, whose contribution was 
extremely high. Boxes extend from first quartile to third quartile. The horizontal line within 
the box represents the median. Whiskers below (above) the box extend to the lowest 
(highest) data point which is still within 1.5 times the interquartile range (IQR) of the first 
(third) quartile, where IQR is the difference between third and first quartile. Open circles 
(○) indicate data points outside the range encompassed by whiskers. 
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Fig. 4-4: Contribution of infant-directed behavior in Gr1, towards A) litter 1cv B) litter 1cn. 
The behavior is summed up from the entire infant carrying period, 3 months.  
¹ Litter 1cv represents twins: 1cv1 & 1cv.  
* Sibling on mother’s side. 
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Table 4-9: Index of rejections of carrying and food transfer for litters of A) Gr1 B) Gr2 C) 
Gr3 and D) Gr5. 
* Index of rejection could not be calculated because the individual had no record of 
carrying or food transfer. 

A) Index of rejection: Gr1 

Infant-directed  

behavior 

Litter Care takers 

 1m1 1f1 1f2 1sa1 1sa2 1j1 1j2 All 

Carrying 1cv 0.0 0.0 0.0 0.0 0.0 0.0 * 0.0 

1cn 0.3 * 0.1 0.0 0.8 0.8 1.0 0.2 

Food transfer 1cv * 0.0 * * 0.0 * 0.0 0.0 

1cn 0.5 0.0 0.2 0.1 0.1 * * 0.3 

 

B) Index of rejection: Gr2 

Infant-directed  

behavior 

Litter Care takers 

 2m1 2m2 2m3 2f1 2f2 2j1 2j2 All 

Carrying 2c 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 

2cv 0.1 0.3 NA 0.3 1.6 0.0 0.0 0.2 

Food transfer 2c 0.5 0.2 0.1 0.1 0 NA NA 0.1 

2cv 0.1 0.1 NA 0.1 0.1 0.1 0.0 0.1 

 

C) Index of rejection: Gr3 

Infant-directed  

behavior 

Litter Care takers 

 3m1 3m2 3f1 3f2 3sa1 3sa2 3j1 All 

 

Carrying 

3c 0.0 0.1 0.1 0.0 0.0 NA 0.0 0.1 

3cv 0.1 0.0 0.0 0.0 0.0 * 0.0 0.0 

3cn 0.0 0.7 1.1 0.3 0.5 3.1 0.5 0.4 

 

Food transfer 

3c 0.1 0.2 0.2 0.0 0.0 NA 0.1 0.1 

3cv 0.0 0.4 0.2 * 0.0 0.0 0.1 0.0 

3cn 0.0 0.1 0.0 0.0 0.1 0.1 0.0 0.0 
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D) Index of rejection: Gr5 

Infant-directed 

behavior 

Litter Care takers 

 5m1 5f1 5sa1 5sa2 5sa3 5j1 All 

Carrying 5cn 0.0 0.0 0.0 0.0 0.0 * 0.0 

Food transfer 5cn 0.0 0.1 0.0 0.1 0.0 * 0.0 

 

 
Fig. 4-5: Contribution of infant-directed behavior in Gr2, towards A) litter 2c, B) litter 2cv. 
The behavior is summed up from the entire infant carrying period: 2 months for litter 2c 
(without the first month of infant’s life) and 3 months for litter 2cv. 
¹ Litter 2c represents twins: 2c1 & 2c2. Litter 2cv represents twins: 2cv1 & 2cv2.  
* Maternal sibling 
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Fig. 4-6: Contribution of infant-directed behavior in Gr3, towards A) litter 3c B) litter 3cv C) 
litter 3cn. This behavior is summed from the entire infant carrying period: 2 months for 
litter 3c (without the first month of infant’s life) and 3 months for litter 3cv and 3cn. 
¹ Litter 3c represents twins: 3c1 & 3c2. Litter 3cv represents twins: 3cv1 & 3cv2. Litter 3cn 
represents twins: 3cn1 & 3cn2.   
* Maternal sibling 
** Paternal sibling 
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Fig. 4-7: Contribution of infant-directed behavior in Gr5, towards litter 5cn. The behavior 
is summed up from the entire infant carrying period: 3 months. 
¹ Litter 5c represents twins: 5cn1 & 5cn2. 
* Maternal sibling 

3.2 Reject carrying 

Rejection of carrying infant litters varied in frequency and from which individuals. Overall, 

fathers rejected to carry the most (Fig. 4-8). Some litters were never rejected (1cv and 2c), 

rejected by only one individual (5cn), rejected by less than half of the individuals (3cv), or 

by most or all individuals (1cn, 2cv, 3c, 3cn) (Fig. 4-4 - Fig. 4-7, Table 4-9). Individuals that 

rejected the most (1f2 in litter 1cn, 3f2 in litter 3c, 3m2 in litter 3cv, 5m1 in litter 5cn), 

between 40-100%, have a low carrying rejection index (0.0-0.1), meaning that 

proportionally they also carry a lot. The highest index of rejections (0.8-3.1) were by some 

juveniles, yet they rejected less than 10 %. In half of the litters (1cn, 2cv, 3c, 3cn) mothers 

who rejected to carry the infants, had a low index of rejection (0.0-0.1). The exception is 

the female 3f2, whose rejection index is 1.1, yet had the highest carrying rejection 

percentages in the group (30%). All adult males participated in carry rejection behaviors 

in all litters concerned (1cn, 2cv, 3cv, 3c, 3cn, 5cn) and resulted in 0.0-0.4 index of 
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was low, 0.0-0.2, for all but one litter (3cn), where it was 0.5. 
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Fig. 4-8: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to carrying rejection, based on A) six litters with 
complete observation periods (0-3 months) B) five litters with complete observation 
periods (0-3 months), but without litter 1cn of mother 1f2, whose contribution was 
extremely high. See Fig. 4-3 for details. 

3.3 Infant take attempt 

We have records of infant take attempt behavior from 6 out of 8 litters (1cv, 1cn, 2cv, 3cv, 

3cn, 5cn) (Fig. 4-4 - Fig. 4-7, Table 4-9). The other two litters (2c, 3c) were not observed in 

their first month, when the take behavior is the most pronounced (Table A-1). Overall, 

mothers try to take infants the most. However this includes both extreme values - from 

not trying to take the infant at all, to being the only individual in the group who attempts 

to take the litter (mother 1f2) (Fig. 4-9). Among adult males, fathers show the overall 
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greater interest in taking the infants although their extreme values do not differ. In most 

litters (1cn, 2cv, 3cn, 5cn) mothers were the main individuals who tried to take infants 

(30-100%). In other two litters adult males take infants most often (50%), followed by a 

mother (40%, litter 3cv) or they tried to take infants almost equally (litter 1cv). Subadults 

also participated, yet only in one litter (5cn) with a notable contribution (ca 40%). 

 
Fig. 4-9: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to infant take attempt, based on A) six litters 
with complete observation periods (0-3 months) B) five litters with complete observation 
periods (0-3 months), but without litter 1cn of mother 1f2, whose contribution was 
extremely high. Boxes extend from first quartile to third quartile. See Fig. 4-3 for details. 
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3.4 Infant food transfer  

Food transfer was the most equally divided infant-directed behavior. Overall, all age 

classes contributed substantially with subadults contributing the most (Fig. 4-10). Still, 

subadults included both extreme values, from not transferring the food at all, to the most. 

In all but one litter (1cv) infants are fed by all or most of group members (Fig. 4-4 - Fig. 

4-7, Table 4-9). In most litters (1cv, 1cn, 3cv, 5cn) subadults are the main food providers. 

Other main providers are mothers (litters 2c, 3c), adult males (litters 2cv, 3cv) and adult 

females (litters 3cn, 3cv). In litters where food transfer was distributed among all or most 

individuals (1cn, 2c, 2cv, 3c, 3cv, 3cn, 5cn) main providers contributed 20-45% and in the 

remaining litter (1cv) even close to 70%. Mothers fed their own litters, but their 

contribution varied. Among the group members, mothers were the most frequent food 

providers (approx. 35% for litters 2c and 3c) or the intermediate (approx. 20% for litters 

1cn, 2cv, 5cn) or the least frequent (approx. 15% for litter 1cv and below 5% for litters 

3cn, 3cv). All adult males fed all but one litter (1cv). Fathers did not differ from other males 

in their contribution, which was about 10-20%.  

 
Fig. 4-10: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to infant food transfer, based on six litters with 
complete observation periods (0-3 months). See Fig. 4-3 for details. 
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3.5 Reject food transfer 

Infants were occasionally rejected to be fed by all age/relative groups, except by the 

fathers (Fig. 4-11). Overall adult females rejected more than other age/relative groups. 

Considering each litter separately, in all eight litters infants were sometimes refused to be 

fed (Fig. 4-4 - Fig. 4-7, Table 4-9). Half of the litters (1cn, 2c, 2cv, 3c) were refused by most 

or all group members, three litters (3cv, 3cn, 5cn) were refused by less than half, whereas 

one litter (1cv) was refused by a single individual (1sa2). This subadult female (1sa2) also 

had the highest food transfer percentage off all study individuals (roughly 65%, litter 1cv), 

but a low index of rejection, 0.0-0.1. Indeed, with exception to one litter (1cn), individuals 

that rejected the most also fed a lot, thus had low index of rejections 0.0-0.2. The highest 

rejection index was 0.4 and 0.5, by two adult males (litter 1cn, 2c) and a mother (litter 

3cv). Other mothers (litters 1cn, 2c, 2cv, 3c, 5cn) had index of 0.1-0.2, although their food 

transfer contribution was between 20-60%. Only in two litters (1cv, 3cn) mothers never 

refused to feed. Adult males sometimes refused to feed infants in half of the litters (1cn, 

2c, 2cv, 3c): mostly with low feed refusal (10-20%) and low refusal index, 0.1 (2c, 2cv, 3c) 

or higher feed refusal (25-30%) and higher refusal index, 0.5 (1cn, 2c). When we 

considered the whole group as one individual the index of rejections was low (0.0-0.1) for 

all but one litter (1cn), where it was 0.3.  

 
Fig. 4-11: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to infant reject food transfer, based on six litters 
with complete observation periods (0-3 months). See Fig. 4-3 for details. 



Chapter 4 Mating systems and infant care in a tamarin species 

52 

4. The case of multi-breeding female groups 

We have records of multi-female breeding from two groups (Gr1, Gr3) (Fig. 4-1, Table 4-1 

and Table 4-8). Within 2 years and 5 months maternity in both groups was shared among 

both adult females. In Gr1 the primary breeding female (1f1) gave birth three times (litters 

1sa2, 1c, 1cv) and the secondary breeding female (1f2) gave birth twice (litters 1sa1, 1cn). 

In Gr3 the primary breeding female (3f1) gave birth twice (litters 3c, 3cv) and the 

secondary breeding female (3f2) gave birth once (litter 3cn). To the best of our knowledge, 

we present the first data on infant-directed behaviors in multi-female breeding in 

callitrichids. We present records of carrying periods from the last 15 months, which 

include five of these litters (1cv, 1cn, 3c, 3cv, 3cn). As already stated, we lack records of 

the first month of a carrying period of litter 3c, therefore we focused more on other four 

litters. In Gr1  the secondary breeding female (1f2, litter 1cn) gave birth two months after 

the primary female (1f1, litter 1cv), therefore it was still within the carrying period of the 

previous litter. In Gr3 the secondary breeding female (3f2, litter 3cn) gave birth four 

months after the primary breeding female (3f1, 3cn), therefore one month after the end 

of the carrying period of a previous litter. Contribution of infant-directed behaviors by 

different individuals for the litters of the primary and secondary breeding females are 

presented in Fig. 4-4, Fig. 4-6, Fig. 4-12, Fig. 4-13 and Table 4-9. 

4.1 Group 1: carrying, reject carrying, take attempt 

The litter of the primary breeding female (1cv) was mainly carried or attempted to be 

taken by its parents, in both cases roughly 50% by the father (1m1) and above 40% by the 

mother (1f1) (Fig. 4-4). Group members never rejected carrying the litter, thus resulting 

in the lowest possible index of rejections, 0.0 (Table 4-9). In contrast, the litter of a 

secondary female (1cn) was mainly carried only by the mother (1f2), above 80%. Likewise, 

she was the only individual who took her infant from others to carry it. She also rejected 

carrying the litter the most frequently (above 40%), but with a low index of rejection, 0.1. 

This female represents the extreme case of high carrying, high reject carrying and high 

take attempt (Fig. 4-3, Fig. 4-8, Fig. 4-9). In contrast, 1sa2 and 1j1 carried little (below 5%) 

yet proportionally rejected a lot and resulted in the highest index of rejection within the 
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group, 0.8. Mothers did not carry infants of another mother. In both litters subadults and 

juveniles contribute little to carrying or not at all. 

4.2 Group 1: adult male 

Carrying contribution of the only adult male in the group (1m1) had two extremes: for the 

litter that he sired (1cv) he was one of the main carriers (roughly 50%) and for the litter of 

the secondary breeding female (1cn) his carrying contribution was less than 5% (Fig. 4-4). 

He carried in four consecutive months: in the first two months, in December and January, 

only one litter was present (1cv) and in the next two months, in February and March, both 

were present (1cv, 1cn) (Fig. 4-12). His overall carrying contribution was the highest in the 

first consecutive month, in December, around 60%, and uneven over the next three 

months (Fig. 4-12A). In the third consecutive month, in February, he had a choice between 

his old litter (1cv) and a new litter (1cn). He continued to carry the old litter (1cv), above 

90% (Fig. 4-12C). His carrying contribution of the new litter (1cn) was the highest (80%) in 

March, in the last consecutive carrying month (Fig. 4-12B), although, he carried both litters 

roughly equally (Fig. 4-12C). Male’s index of carrying rejections differed for the two litters: 

it was the lowest possible for the litter of the primary female (1cv), 0.0, because he would 

never reject to carry it, and higher for the litter of the secondary female (1cn), 0.3 (Table 

4-9). 
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Fig. 4-12: Carrying contribution of male 1m1 of the litters from mothers 1f1 and 1f2 over 
time. A) Male´s overall carrying of the litter in the group. B) Male´s relative allocation of 
carrying for each litter separately. C) Male´s relative allocation of carrying between the 
litters. 
 ¹ Parents of litter 1cv are male 1m1 and female 1f1. Litter 1cv represents twins: 1cv1 & 
1cv2.  
² Mother of litter 1cn is female 1f2. 
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4.3 Group 1: food transfer 

Infant feeing contribution from group members differed for the two litters (Fig. 4-4, Table 

4-9). The most important food provider for the litter of the primary female (1cv) was a 

subadult female (1sa2), with roughly 65% of the contribution. Also, she was the only 

individual that rejected to feed but still resulted with the lowest possible rejection index, 

0.0. For the litter of the secondary female (1cn) two behaviors, food transfer and the 

rejection of food transfer, were distributed among majority individuals. The main food 

provider was with 35% again with the same subadult female (1sa2), a half-sibling to the 

litter, and again with low index of rejections, 0.1. The primary breeding female (1f1) was 

transferring the food to both infants, roughly 10% and never rejected any. The secondary 

breeding female (1f2) was transferring food only to her own infant (1cn) but also rejected 

to do so, with a low rejection index of 0.2. The adult male (1m1) did not feed or reject to 

feed the litter of a primary female (1cv). In contrast, he fed the other litter (1cn), 15%, but 

he rejected to feed it more than others, roughly 30% and had the highest index of 

rejections, 0.5.    

4.4 Group 3: carrying, reject carrying, take attempt 

All adults and subadults carry all three litters (1c, 1cv, 1cn), with adults contributing the 

most: in litter 3c close to 100%, in litters 3cv and 3cn roughly 80% (Fig. 4-6). The litter from 

the secondary female (3cn) received carrying rejections by all individuals, mostly the 

mother (3f2), whose rejection index was the second highest in this group, 1.1 (Table 4-9). 

First litter of the primary female (3c) received most rejections by the secondary female 

(3f2) and a subadult female (3sa2), each contributed roughly 30%, with a low index of 

rejections of 0.1 and 0.0, respectively. The second litter of the primary female (3cv) was 

rejected to be carried by only the two adult males, mainly by 3m2 (almost 80%), yet they 

both had a low index of rejection 0.0-0.1. The first litter of the primary breeder (3c) had 

no record of take behavior, likely due to no data observations in the first month of carrying 

period.  
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4.5 Group 3: adult males 

The second litter of the primary female (3cv) and the litter of the secondary female (3cn) 

were born only four months apart, therefore these two litters were a subject of our more 

detailed comparison (Table 4-1, Fig. 4-1). The most important difference of these two 

litters was a decrease in carrying effort by one adult male (3m1) in the consecutive litters 

(3cv, 3cn, respectively) (Fig. 4-6). In relation to other group members the male (3m1) 

decreased his carrying effort from 40% to 20%. The missing 20% in the next litter (3cn) 

was compensated by the group members, mostly by the mother (3f2). Indeed, the 

difference in her carrying effort between the two consecutive litters was close to 20%. 

The other adult male (3m2) contributed 20% of carrying in both litters. Once the first 

consecutive litter (3cv) was born in January, both males carried less than in the next two 

months, in February and March (Fig. 4-13). In the month after the carrying period (April) 

only one male (3m2) still continued carrying (Fig. 4-13A), although with his lowest 

investment (Fig. 4-13B). Once the new litter (3cn) was born in May, both males only 

carried the new litter, with similar investment. Thus, male 3m2 participated in carrying for 

7 consecutive months, whereas male 3m1, paused his carrying effort for one month: April, 

the fourth consecutive carrying month. Considering infant take attempt behavior, 3m1 

attempted to take the litter of the primary breeder (3cv) the most frequently (roughly 

40%), whereas for the litter of the second breeder (3cn) he again halves this respective 

behavior. 3m2 had no record of take for litter 1cv and roughly 20% for 3cn. 
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Fig. 4-13: Carrying contribution of males 3m1 and 3m2 for the litter from mothers 3f1 and 
3f2 over time. A) Male´s overall carrying of the litter in the group. B) Male´s relative 
allocation of carrying for each litter separately.  
¹ Mother of litter 3cv is 3f1, father is of one twin infant is 3m1. Litter 3cv represents twins: 
3cv1 & 3cv2.  
² Mother of litter 3cn is 3f2. Litter 3cn represents twins: 3cn1 & 3cn2. 

4.6 Group 3: food transfer 

Food transfer contribution was in two litters (3c, 3cn) shared among all individuals and in 

one litter (3cv) among all but a subadult male (3sa1) (Fig. 4-6, Table 4-9). Most individuals 

contributed 10-20% and had a low index of feed rejections, 0.0-0.2. The two adult males 

had parallels in their contributions and rejections: in litter 3c they fed with 20% and 

rejected 10%, in litter 3cv they again fed with 20% but never rejected to feed, likewise 

they never rejected to feed the next litter (3cn), but lowered their food transfer 

contribution (male 3m1 approx. 10% and male 3m2 below 5%). Food transfer contribution 

from mothers had two extremes: the primary breeding female (3f1) was the main food 

provider (30%) for her first litter (1c) and roughly 5% the least important provider for her 
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next litter (3cv). The secondary breeding female (3f2) was roughly 5% the least important 

food provider for her litter (3cn). Mothers did not provide any food within the first two 

months (litters 3cv and 3cn) (Table A-1). The breeding females shared lactation of the 

second primary breeding’s litter (3cv) (Table 4-5), with the mother lactating more. 

Moreover, in the next consecutive litter (3cn) only the primary breeding female (3f1) 

lactated, not the mother (3f2). Besides lactation the primary breeding female (3f1) was 

also the main food provider for the litter of the secondary female (3cn), close to 30%, with 

a low rejection rate, 0.1. In contrast, the secondary female (3f2) never refused to feed her 

own litter (3cn), but did refuse the litters of the primary female, especially the litter 

parallel to her gestation time (1cv), close to 80%, with the highest index of food transfer 

rejection within the group, 0.4.  

5. Mating behavior  

Copulation patterns varied within groups (Table 4-10, Fig. 4-14). All adult females but not 

all adult males copulated, as well as some subadults and we have a record of an extra-

group copulation. All copulations in Gr1 occurred between the primary breeding female 

(1f1) and the only male in the group (1m1). These copulations were roughly equally 

distributed throughout the observing time, with exception of a few months where there 

were none. In Gr2 copulations were shared among two of the three group males (2m1, 

2m2). Both males copulated more with the breeding female (2f1), male 2m2 even more 

so. Copulations were not evenly distributed over time, but clustered: in July 2012, June 

and July 2013 for the breeding female and August – September for female 2f2. One cluster 

of each female mostly overlaps with consorting time of male 2m2 (2f1, July 2012; 2f2, 

August 2012), and specifically at that time, he was the only male to copulate with 

consorted females. In Gr3 copulations were shared among all adult individuals. Male 3m1 

copulated more than the other male and more equally with both females, whereas 3m2 

copulated substantially more with the secondary female 3f2. Both males copulated mostly 

between June – September 2012, coinciding with carrying period, potential consorting 

and first months of gestation of a primary breeding females. In Gr5 we noted only a few 

copulations among the only adult pair (5m1, 5f1) and between two subadults. Gr6 

provided an extra-group copulation: among an adult male (6m3) and a subadult female 



Chapter 4 Mating systems and infant care in a tamarin species 

59 

from Gr3 (3sa2). Copulations and male carrying effort were not significantly correlated 

(Table 4-11).  

Table 4-10: Mating behavior of all sexually active individuals.  

Mating behavior¹ 

Individuals 
(copulation 

records) 

 
1f1 

 
1f2 

 
2f1 

 
2f2 

 
3f1 

 
3f2 

 
3sa2 

 
5f1 

 
5sa1 

 
6f1 

 
6f2 

Social 
mating 

systems² 

1m1 16 0          Mono-
gamy 

2m1   7 2         
 

Promis-
cuity 

2m2   12 10        

2m3   0 0        

3m1     14 13 0      
Promis-

cuity 
3m2     3 11 0     

5m1        2 0    
Mono-
gamy 

5sa2        0 2   

6m1          0 0  
 
 

? 

6m2          0 0 

6m3       1   0 0 

6m4          0 0 

¹ The figures represent the number of observed copulations. 
² Mating systems; we considered only the copulations among adults and within the groups. 
Light blue entries indicate within group copulation, dark violet entries extra-group 
copulation 
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Fig. 4-14: Temporal distribution of matings: among all adults and sexually active 
subadults. 
¹ We observed a male (2m2) consorting twice. Once he consorted the female 2f1, between 
19-22.07.2012, and within that time they copulated six times. A second time he consorted 
the female 2f2, between 14-21.08.2012, and within that time they also copulated six 
times. 
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Table 4-11: Spearman correlation between carrying and copulation 

Correlation between carrying & copulation¹ 
 

Entire observational 

period² 

Six months before 
birth³ 

Infant carrying 

period⁴ 

Any other time⁵ 

r 0.6 0.6 0.3 0.3 

p n.s. n.s. n.s. n.s. 

¹ For carrying we used percentages of records, for copulations we used numbers of counts. 
Sample size includes: 6 adult males (1m1, 2m1, 2m2, 3m1, 3m2, 5m1), 6 adults females - 
mothers (1f1, 1f2, 2f1, 3f1, 3f2, 5f1) and 6 litters (1cv, 1cn, 2cv, 3cv, 3cn, 5cn). This resulted 
in 9 combinations (data points) of different males copulating with mothers (mother-male 
combination). We correlated numbers of copulations of a mother-male combination and 
male´s percentages of carrying that mother´s litter.  
² Includes all the copulations of a mother-male combination within the entire 
observational period. 
³ Includes only copulations of a mother-male combination that happened within six 
months before birth of her litter. 
⁴ Includes only copulations of a mother-male combination that happened within carrying 
period of her infant. 
⁵ Includes only copulations of a mother-male combination that did not happen within six 
months before birth of her litter and did not happen within carrying period of her infant. 

Discussion 

The aim of this study was to identify the social and genetic mating systems of L. nigrifrons, 

measure their infant care effort and explain why some males help more than others. 

While the unexpected occurrence of multi-female breeding in two groups created high 

inter-group variation and thus hampered comparability of patterns of care behavior, it 

also provided the opportunity to address additional questions, namely on decisions on 

which litter to invest more when more than one were present.  

1. Mating systems  

In accordance with previous callitrichid research, our study confirms the diversity and 

complexity of the mating systems of black-fronted tamarins (L. nigrifrons). When we 

suggest a mating system, then we suggest a social mating system for the group, and a 

genetic mating system from the individual perspective (Table 4-12, Table 4-10). Mating 

system definitions are generally based on group and not on individual patterns (Goss-
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Custard et al. 1972; Rowell 1993; Kappeler and van Schaik 2002). Due to our incomplete 

parentage results and because parentage was not limited to group members, we cannot 

ascribe a genetic system that would adequately describe the complex situation in a group 

(Table 4-8). Thus, within this study, we always refer to a genetic system from an individual 

perspective and to a social system within a group. 

Table 4-12: Suggested genetic systems, including: identified individuals with high and 
intermediate parentage probability, unidentified candidate mother and unidentified 
candidate fathers (‡, ●, ᴥ, □, ◊, ø)¹. 

Suggested genetic systems² from an individual perspective 

Group Individuals Within a resident group³ Within a study population  

(only if it differs from within a 

resident group)⁴ 

Gr1 

 

1m1 Monogamy  (1f1) Polygyny (1f1, 6f2)  

1f1 Monogamy  (1m1) / 

1f2 / Polyandry (●,□) 

Gr2 

 

2m1 / / 

2m2 / / 

2m3 / / 

2f1 / Polyandry (◊, Ø) 

2f2 / / 

Gr3 

 

3m1 Polygyny ( 3f1, 3f2) / 

3m2 / / 

3f1 Monogamy (3m1) Polyandry ( 3m1, ●) 

3f2 Monogamy (3m1) / 

Gr5 

 

5m1 Monogamy (5f1) / 

5f1 Monogamy (5m1) Polyandry (5m1, ●, ᴥ) 

Gr6 

 

6m1 Monogamy (6f2) / 

6m2 / / 

6m3 / / 

6m4 / Monogamy 

(unidentified candidate mother) 

6f1 / / 

6f2 Monogamy (6m1) Polyandry (6m1, 1m1, ‡) 

¹ Unidentified candidate fathers (‡, ●, ᴥ, □, ◊, ø) derive from “hints from sibling dyads”, 
noted in Table 4-8. Detailed explanation on hints is in the section Parentage analyses 
section (p. 35) 
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² Verification of a breeding system would require genetic data on parentage over several 
breeding periods. Since breeding females may have up to two litters per year (summarized 
by Garber et al. 2016; this study), we considered that with 15 months of data we did not 
sample enough breeding periods, and due to incomplete parentage information of a study 
population, we speak only of suggested breeding systems. 
³ Genetic system of an individual based on parental dyads limited to a resident group.  
⁴ Genetic system of an individual based on parental dyads unlimited to a resident group.  

In primate groups, social and genetic mating systems within a group may be a incongruent 

(Kappeler and van Schaik 2002). Polyandry, social and genetic, are considered the 

prevailing mating systems in callitrichids (summarized in Garber et al. 2016). In our study, 

we found no evidence for social polyandry (see also Digby 1999, common marmosets, C. 

jacchus; Nievergelt et al. 2000), but we suggest a genetic polyandry for one female (6f2): 

her litter was sired by one resident and one non-resident male. Hints of unidentified 

fathers from sibling dyads suggest a genetic polyandry for four more females (1f2, 2f1, 

3f1, 5f1). We suggest social yet no genetic promiscuity (Gr2, Gr3), no social yet genetic 

polygyny of two males (3m1, 1m1) (but see Garber et al. 1993, moustached tamarins, S. 

mystax; Digby 1999, common marmosets, C. jacchus), and both social and genetic 

monogamy, the latter within a resident group of two males and two females (Gr1, 1f1 and 

1m1, Gr5, 5f1, 5m1). 

We suggest that mating systems partly depend on the number of adults. One of our study 

groups consisted of only one adult of each sex, therefore offers no other option but social 

monogamy (Gr5) (Table 4-10, Table 4-12). In contrast, the other group with social 

monogamy consisted of three adults (Gr1). The parentage analyses for these two groups 

suggest genetic monogamy, polygyny and polyandry, where the latter two systems 

include extra-group adults (including unidentified males) (Table 4-12). Genetic monogamy 

within the study population is shown for these five individuals (1f1, 3f2, 5m1, 6f2, 6m4), 

although due to lack of parentage information we cannot confirm it, except for one female 

(1f1). To confirm genetic monogamy for wild groups  we would require the parentage to 

belong to only one male and one female over several breeding periods (Garber et al. 2016) 

and so far genetic monogamy has been documented only in one wild callitrichid species 

(Huck et al. 2005a). We have records of three consecutive litters of one female (1f1) sired 

by the same male (1m1) and therefore we consider that the most likely genetic system of 
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that couple within a resident group is monogamous. But as already stated, since this male 

sired infants of a female in another group, we suggest a genetic polygyny (1m1, 1f1, 6f2). 

In wild primates, monogamy is common in species that form “nuclear family” groups 

(male - female pair and their immature offspring) or “extended family” groups (male - 

female pair, their immature and mature offspring). Some callitrichid groups might be best 

described as the latter (Suárez 2007, Saguinus labiatus; Garber et al. 2016), therefore it is 

likely that with more genetic data from wild populations more cases of monogamy will be 

confirmed. Still, many callitrichid traits such as breeding by multiple males and females 

per group, non-breeding adult females, and frequent migration, disagree with social and 

genetic monogamy as the modal pattern (Garber et al. 2016). In this study we report on 

most of the above traits: multi-female breeding (Gr1, 1f1 and 1f2; Gr3, 3f1 and 3f2), non-

breeding adult female (Gr2, 2f2; Gr6, 6f1), female immigrations (Gr2, 2f1 and 2f2) and 

potential male emigrations (Gr2, 2m2, 2m3; Gr5, 5m1) (Table 4-1). 

2. Mating and paternity 

We did not find evidence of monopolization of paternities within wild L. nigrifrons groups 

(Table 4-8). Group living often leads to a clear dominance hierarchy, with higher mating 

and reproductive opportunities skewed to higher ranking males (Altmann 1962, rhesus 

monkeys, Macaca mulatta; Preston et al. 2001, soay sheep, Ovis aries; Kutsukake and 

Nunn 2006, primates), or can even lead to  monopolization of paternities within a group 

(Ochi 1993, mouthbrooding cichlid, Ctenochromis horei). Agonistic interactions between 

males that often determine a male’s position in a group (Nishida 1983, chimpanzees, P. 

troglodytes schweinfurthii) are rare in wild callitrichids (Goldizen 1989; Caine 1993; 

Heymann 1996; Huck et al. 2004c). Therefore, callitrichids are not characterized by a clear 

dominance hierarchy (Knox 1989; Caine 1993; Huck et al. 2004c), but they are often 

characterized with polyandry (summarized in Garber et al. 2016). Thus, it seems less 

conceivable for one male to have a monopoly over paternities but scant genetic data on 

wild callitrichids shows evidence of monopolization of paternities (Huck et al. 2005a, wild 

moustached tamarins, S. mystax; Suárez 2007, red-bellied tamarins, S. labiatus; Díaz-

Muñoz 2011, wild Geoffroy’s tamarin, S. geoffroyi). Due to our incomplete parentage 

results we can neither confirm nor exclude monopolization of paternities over different 
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sets of twins in the groups. Nevertheless, monopolization of paternities over different sets 

of twins in the groups seems rather unlikely, because either we have no matching 

copulations and parentage between a breeding female and male (Gr1, female 1f2 and 

male 1m1), or hints point to one or more other sires (Gr1, Gr2, Gr3, Gr5), or we already 

determined more than one sire in a group (Gr3, Gr6). 

Instead, we found evidence of monopolization of paternities for a single set of twins (Gr1, 

litter 1c, father 1m1), but also shared paternities of twins, between a group and an extra-

group male (Gr6, litter 6j, fathers 6m1, 1m1). Considering the latter two outcomes are 

callitrichid consorting males, who function as mate-guards (Thornhill and Alcock 1983; 

Huck et al. 2004c, S. mystax; Lledo-Ferrer et al. 2010, L. nigrifrons), not entirely successful 

in mate guarding. We have two records of male consorting (Fig. 4-14), which most likely 

happened during the peak of the female’s fertility (Löttker et al. 2004b, S. mystax). Mate 

guarding is usually physical (Alberts et al. 1996, wild baboons, Papio cynocephalus), but in 

some mammals, including callitrichids, it can also be chemical, like male over-marking a 

female’s scent (Roberts and Dunbar 2000, klipspringer antelope, Oreotragus oreotragus; 

Huck et al. 2004c, S. mystax; Ferkin and Pierce 2007, other mammals, review; Lledo-Ferrer 

et al. 2010, L. nigrifrons). Callitrichid female scent marks may be the chemical equivalent 

of sexual swellings in some Old World primate taxa (review in Nunn 1999; Huck et al. 

2004c) and the chemical compounds may provide a graded signal about a fertile phase 

(Ziegler et al. 1993; Converse et al. 1995; Washabaugh and Snowdon 1998). This may 

result in a consorting male not guarding during the entire female fertile period and, in 

callitrichids, who mate all year long, (Goldizen 1988), a female may mate with other males 

outside the consorting time, but still within her fertile period (Nunn 1999; Huck et al. 

2004c, S. mystax). However, in some cooperative breeders, e.g. meerkats (Young et al. 

2007), copulations may not be restricted to between the individuals of the same group 

and extra-group copulations may be an alternative reproductive tactic. 

We also propose that in callitrichids, extra-group copulations are an important breeding 

strategy. Extra-group copulations may occur during intergroup encounters (Lledo-Ferrer 

et al. 2011, wild L. nigrifrons) or in a time of occasional separation of some individuals 

from the resident group. The latter extends for some hours or days (Slana, personal 

observation, L. nigrifrons) and is potentially equivalent to “extraterritorial forays” of 
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subordinate male meerkats (Young et al. 2007). For males, especially those less successful 

at mating with breeding females, extra-group copulations that result in conceptions might 

represent an alternative, low-cost strategy to reproduce. For a breeding female extra-

group copulations might present a greater mate choice (Birkhead and Parker 1997), 

especially if her mating opportunities in the group are restricted. This seemed to be the 

case for one secondary female breeder (1f2), as she did not mate within a group, yet gave 

birth to two litters, whose paternity was indicated to be from extra-group males (Table 

4-8). We have a record of one extra-group copulation (6m3 and 3sa2) (Table 4-10), 

however we identified two extra-group paternities (offspring 3sa1 and 6j1) and hints from 

siblings’ dyads indicated a few more. This suggests that extra-group copulations are an 

important strategy for males and some females to ensure breeding.  

3. Offspring survival 

Our data suggests that a critical period for offspring survival are an offspring’s first few 

months: five out of eight animals that disappeared were infants and the rest were adult 

males (Table 4-1, Fig. 4-1) (see also Löttker et al. 2004a, S. mystax). Infant mortality may 

be a result of a predator attack, infanticide, falling from carriers, getting trapped in tree 

holes etc. (Digby 1995; Tirado Herrera et al. 2000; Oversluijs Vasquez and Heymann 2001; 

Smith et al. 2001). Another critical factor for offspring survival may be group composition, 

like number of adults in callitrichids, especially males and breeding females (Koenig 1995, 

wild C. jacchus; Culot et al. 2011, wild S. mystax; summary by Garber et al. 2016; but see 

Heymann and Soini 1999, wild Cebuella pygmaea). In our study, a larger number of adults 

does not always guarantee infant survival: Gr6 included six adults, but both twins 

disappeared. On the other hand, in Gr5 all offspring survived, although only two adults 

(male and female) were present. The latter case is the second report of such a case from 

wild tamarins (see Windfelder 2000, wild emperor tamarin, Saguinus imperator).  

In our study, also the number of breeding females in a group did not guarantee infant 

survival: in both, in groups with one and two breeding females offspring survived and 

disappeared. Although in both cases of multi-female breeding, the primary female lost 

one of the twins before the consecutive litter from the secondary female was born, and 

all litters from the secondary female survived. Under similar circumstances, Tirado 
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Herrera and co-workers (2000) observed infanticide, and suggested a parental 

manipulation based on the infant´s low chances of survival or a stress-related infanticide 

due to simultaneous pregnancy of another female (see also Hrdy 1979).  Reasons for the 

disappearance of the two infants are unclear, yet the influence of another female’s 

pregnancy is a plausible explanation (Digby and Saltzman 2009; Yamamoto et al. 2009). 

Multi-female breeding or just simultaneous pregnancies may also result in allonursing or 

nursing by only a non-mother (Digby 1995, wild C. jacchus; Smith et al. 2001, wild S. 

mystax; Shahuano Tello et al. 2002, wild S. mystax). Thus, it can also be beneficial for 

offspring survival and for a mother herself, in terms of lower energy demand for milk 

production and shared maternal care. We have records of allonursing from two groups, 

one group with multi-female breeding (Gr3) and one with a single-female breeding (Gr2) 

(Fig. A-7). Based on allonursing in the latter group, it is likely that this was an additional 

third case of a multi-female pregnancy, but without resulting in a litter to care for.   

4. General patterns of infant-directed behavior  

Our study on L. nigrifrons confirms a general pattern of infant care in callitrichids (Savage 

et al. 1996; summarized by Garber 1997; Yamamoto et al. 2009): adults are the most 

important infant caretakers, more so for carrying than food transfer, whereas for food 

transfer subadults are also important (Fig. 4-3, Fig. 4-10). Among all infant-directed 

behaviors food transfer is similarly divided among caretakers, even by juveniles (Fig. 4-3, 

Fig. 4-8 - Fig. 4-11), which implies food transfer to be energetically less demanding than 

carrying. Also, everybody has to eat, thus everybody had more or less the same chance to 

be targeted by an infant. Costs of infant care in cooperative breeders, e.g. meerkats and 

callitrichids (Sánchez et al. 1999; Clutton-Brock et al. 2000; Achenbach and Snowdon 

2002) are important to an animal on an individual level (making a decision whether to 

help, how to help, how often and to which infant). Adult females can base their decision 

on their contribution to infant care on whether offspring are their own or not. In our study, 

along with adult males mothers are the principle carriers, whereas other adult females 

usually carry less or not at all (Fig. 4-3). Adult males, on the contrary, cannot be sure of 

their paternity, even in case they have copulated, and are certainly not fathers if they have 

not copulated, which may influence their contribution. In our study, both fathers and non-
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fathers contributed substantially to carrying (see also Huck et al. 2004a, S. mystax). 

Reasons why adult males help to carry are discussed in greater detail in section Why do 

adult males help? (p. 68).  

Our data from the two cases of multi-female breeding demonstrate that a mother’s 

contribution depends on an adult male’s contribution: it is mostly the mother who 

compensated for the lack of carrying from the adult male (see also, Lappan 2008). In Gr1 

the only group male (1m1) shared the main carrying position with the mother (1f1) for 

their litter (1cv) (Fig. 4-4, Table 4-9). The mothers´ carrying contribution was 45%, a bit 

lower than the male´s contribution of 51%. In contrast, he barely helped the other mother 

(1f2, litter 3cn) and contributed only 3%, which resulted in her being extremely burdened 

with carrying, close to 83%. Other carriers, subadults and juveniles, carried both litters 

(1cv, 1cn) less, but their carrying contribution for a second litter (3cn) increased from 3% 

to 14%. Although less extreme, data from Gr3 show a similar pattern. One male (3m1) 

reduced his carrying contribution to half, from almost 40% to 20%, for the second 

consecutive litter (3cn) and again carrying was compensated by subadults and juveniles, 

10%, and next 10% by the litter´s mother alone (3f2) (Fig. 4-6, Table 4-9). Despite her 

compensation of the male´s lack of carrying, her carrying contribution for own litter (3cn) 

was not very high (close to 20%), because both adult males together (3m1, 3m2) still 

contributed above 40%. These results show not only the importance for the mother to 

have adult male helper(s), but also suggests that more helpers help balance the carrying 

burden among the adults (see also Schradin and Anzenberger 2001b, Goeldi´s monkey, 

Callimico goeldii). But to unburden a mother, more than how many carriers, it is important 

the cumulative carrying effort of adult males.   

5. Why do adult males help?  

5.1 Paternity certainty  

On the basis of our two multi-female breeding cases we propose that in male callitrichid 

helping behavior the level of paternity certainty plays a role. Social monogamy is expected 

to increase the level of paternity certainty (Trivers 1972), whereas promiscuity is expected 

to reduce it (Smuts and Gubernick 1992, baboons and macaques). High levels of paternity 
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certainty are often associated with high male infant care (Wright 1984, owl monkeys, 

Aotus spp., titi monkeys, Callicebus spp.; Mendoza and Mason 1986) but also relatively 

low (Bradley et al. 2005; Harcourt and Stewart 2007). Due to female polyandrous mating 

in callitrichids it is suggested, that male may help to increase their chance for own 

reproduction (Huck et al. 2004c). This indicates that a level of paternity certainty plays a 

role. 

In our study, in one multi-female breeding case we suggest that the male´s high level of 

paternity certainty influenced his infant care behavior (Gr1, male 1m1, litter 1cv). Within 

a group, the only group male (1m1) and a primary breeder (1f1) mated exclusively, and 

he sired all of her litters (1sa, 1c, 1cv). Of her latest litter (1cv), the only litter with 

complete carrying period data, he was the main carrier, main seeker to carry (behavior: 

infant take attempt), he never rejected to carry and had the lowest possible index of 

carrying and food transfer rejections (Fig. 4-4, Table 4-8, Table 4-9, Table 4-10). On the 

other hand, the infant-directed behavior of the same male (Gr1, male 1m1) towards the 

litter of the secondary female (1f2, litter 1cn) suggests that a male behaves in accordance 

with low or zero paternity certainty. We have no records of copulations between the two, 

he was not the sire of her two litters, he carried her latest litter (1cn) very few times and 

was not seeking to carry it (behavior: infant take attempt), rather he often rejected to 

carry and feed.  

In the other group with multi-female breeding (Gr3), promiscuous mating between the 

adult males and females resulted in intermediate levels of paternity certainty. 

Consequently, both males were the main carriers for the litters of both females (litters 3c, 

3cv, 3cn) and fed them with little or without refusal (Fig. 4-6). Additional evidence comes 

from the temporal patterning of males’ carrying of the litters from the secondary females 

(litters 1cn, 3cn) in multi-female breeding groups. (Fig. 4-12, Fig. 4-13). In both cases the 

litter of the secondary female was born while the litter of a primary breeding female 

(litters 1cv, 3cv) was still carried (Table 4-1, Fig. 4-1). Hence, males and group members 

could choose which litter to help: older and thus heavier and presumably costlier (1cv, 

3cv) or, younger and thus lighter and presumably less costly litter (1cn, 3cn). In the case 

associated with high paternity certainty (Gr1, male 1m1, litter 1cv) and low to zero 

paternity certainty (Gr1, male 1m1, litter 1cn), a male continues to mostly carry his litter, 
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older and heavier (1cv). In the case associated with medium paternity certainty (Gr3, 

males 3m1, 3m2, litter 3cv, 3cn), both males changed to carry only the younger but lighter 

litter (3cn). 

We argue that male´s level of paternity certainty is based on a social mating system: on 

whether or not he copulates with a female, and whether or not copulations are shared 

with other males. The multi-female breeding cases (Gr1, Gr3) provide evidence, but the 

same pattern is indicated also in single-female breeding groups (Gr2, Gr5). Therefore, 

social monogamy increases the paternity certainty and males are likely to help extensively 

(Gr1, 1m1 and 1f1), social promiscuity lowers the level of paternity certainty, but because 

of a chance of paternity males help their mating partners (Gr3, 3m1, 3m2 and 3f1, 3f2; 

Gr2, 2m1, 2m2 and 2f1), and when there is no sexual relationship, this diminishes the 

chance of paternity and males invest the least (Gr1, 1m1 and 1f2). One group with 

observed social monogamy (Gr5) does not seem to follow this logic, because the male 

(5m1) helped very little (Fig. 4-7). Although, social monogamy reflects only a mating 

pattern inside a group, and additionally a male shares a paternity with an unknown extra-

group male (●) (Table 4-8). This suggests that males may adopt their strategy to the level 

of paternity certainty. In the case of male 5m1 this would be in relation to low level 

paternity certainty, i.e. he should help, but less than under a high level of paternity 

certainty. Furthermore, this imposes a question, whether a male has information about 

extra-group copulations of his mate or, about infant´s parentage.   

In terms of fitness, the role of a breeder is more profitable than the role of a helper (Cant 

2012). However, before helping kin, the individual must recognize it as a kin, and, only 

then can decide whether to discriminate between kin and non-kin (Waldman et al. 1988; 

Keller 1997; Cant 2012). A kin recognition may be achieved by using learned cues, e.g. in 

cooperative breeding birds (Komdeur et al. 2008, review), or less likely, using genetic cues 

(Crozier 1986; Rousset and Roze 2007), including odor (Leclaire et al. 2013, S. suricatta). 

But a kin-biased helping may not be favored in cooperatively breeding birds, mammals 

and insects, due to the cost of recognition errors, i.e. helping non-kin or not helping kin, 

that may lower the fitness benefits (Queller et al. 2000; Griffin and West 2003; Cornwallis 

et al. 2009, birds and mammals; Leadbeater et al. 2010, paper wasps, Polistes dominulus; 

Cant 2012). In addition, in cooperative breeding bird and mammal species, higher within-
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group relatedness is associated with lower kin discrimination (Cornwallis et al. 2009). 

Callitrichids exhibit high within-group relatedness (Huck et al. 2005a, S. mystax; Díaz-

Muñoz 2011, wild Geoffroy’s tamarin, S. geoffroyi; Garber et al. 2016), thus low kin-

discrimination is expected. Moreover, high levels of relatedness also imply that a kin-

recognition may not even be needed: in terms of inclusive fitness benefits, a male helper 

might benefit even under low or zero paternity certainty. The evolutionary conflict of 

cooperative breeding helpers: helper´s helping effort usually trades-off against helper´s 

own residual reproduction (Cant 2012), is likely to be less pronounced in callitrichids: 

because helping effort is a likely trade-off in their inclusive fitness benefits. Still, due to a 

paternity certainty and therefore a chance for a direct fitness benefit, males help more or 

less. 

5.2 Male’s physical fatigue  

The data from the two multi-female breeding cases suggests that in callitrichids, males´ 

contribution to parental care could be influenced by a male’s physical fatigue. The first 

indication is provided by the overall carrying contribution of the males from multi-female 

breeding cases. In one case (Gr1), the only group male (1m1) carried the first consecutive 

litter (1cv) over 50% of the time, but the next one (1cn) only less than 5% (Fig. 4-4). In the 

second case (Gr3), one male (3m2) contributed to both consecutive litters (3cn, 3cv) 

roughly equally, around 20%, whereas the other male (3m1) contributed unequally: 40% 

for the first consecutive litter (3cv) and 20% for the second one (3cn) (Fig. 4-6). Carrying 

reduction for the second consecutive litter was in line with costs of infant care, especially 

the body mass loss of carriers (Sánchez et al. 1999, S. oedipus; Achenbach and Snowdon 

2002, S. oedipus). These costs imply that physical fatigue should occur. The second 

indication is provided by the only one multi-female breeding case (Gr3). Right after the 

second consecutive litter (3cn) was born, both males chose to only continue carrying this 

new litter, lighter in comparison to the old litter (3cv) (Fig. 4-13). But as discussed in 

section Paternity certainty (p. 68), this is also likely due to promiscuous mating and a 

chance of paternity. 

Finally, we suggest, that in a case of high level of paternity certainty, physical fatigue is of 

lesser importance. This suggestion is based on a behavior of one male in a multi-female 
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breeding case (Gr1, 1m1). Once a female that he never mated with (1f2) gave birth to a 

new litter (1cn), he carried it less than 5% throughout the whole carrying period and he 

also rejected to carry (Fig. 4-4, Fig. 4-12, Table A-1). Instead, he never rejected to carry 

the old and thus heavier litter that he sired (1cv) and he continued to mostly carry it. This 

litter was from a female (1f1) with which he had a monogamous social and genetic 

relationship within a group, which suggests a high level of paternity certainty of this male 

towards this female´s litter. The data suggests that the male´s decision which litter to care 

for is more likely to be based on the level of paternity certainty rather than on physical 

fatigue. 

5.3 Pay to copulate (carrying as a male courtship strategy) 

We do not find evidence for carrying to be a male courtship strategy, although we suggest 

a link between male infant care and copulating or not (Fig. 4-14, Table 4-11). Courtship 

strategy is a female strategy, where female chooses mate. Accordingly, it would pay-off 

for a female to choose a mate who is competent caretaker and males would adopt 

strategies to convince females that they would be good caretakers, like investing more in 

infant care (Price 1990), and therefore using infant care as a payment to copulate with a 

mother (Huck et al. 2004a). Callitrichid females are predominantly polyandrous (Goldizen 

1988), thus the strategy seems plausible for callitrichid males (Price 1990). In addition, 

mother´s infant care investment seems to depend on investment of others, especially 

males (Goldizen 1987b; this study); the same has been suggested for breeding success 

(Goldizen 1987b). Nonetheless, in our study males’ carrying investment did not correlate 

with the number of copulations in any of the periods tested, including the entire study 

period (see also, Lappan 2008). Therefore we cannot confirm the hypothesis that infant 

carrying represents a courtship strategy (in contrast to Price 1990, captive C. jacchus; in 

agreement with Tardif and Bales 1997, captive C. jacchus and S. oedipus; Huck et al. 2004a, 

wild S. mystax). One group in our study (Gr1), however, appears to be an exception: a 

male (1m1) helps evidently more and with less rejections with a litter of his only mating 

and breeding partner (1f1, litter 1cv) than to the litter of the other female (1f2), litter 1cn) 

(Fig. 4-4, Table 4-9). But, more than the number of copulations, on relevant factor is 
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whether the male copulated (with 1f1) or not (with 1f2): detailed discussion is in sections 

Mating systems (p. 61) and Paternity certainty (p. 68) 1 and 5.1. 

6. Summary and conclusions 

Mating systems: Our study of L. nigrifrons confirmed the diversity and complexity of 

callitrichid mating systems. We suggest social monogamy and promiscuity for our study 

groups. Parentage is not limited to group members, therefore it is impossible to ascribe a 

genetic system on a group level, but rather on an individual level. We suggest genetic 

monogamy, polygyny and polyandry of individuals. We suggest that mating systems partly 

depend on the number of adults in the group.  

Mating and paternity: Throughout the data set we found one incidence of shared 

paternity in one set of twins and one incidence of monopolization of paternity in another 

set of twins. We find extra-group copulations and paternities, which suggests that these 

must be incorporated the interpretation of callitrichid mating systems. 

Offspring survival: We suggest that offspring´s first few months are critical for its survival. 

We show that group composition, i.e. number of adults, number of breeding females, 

does not guarantee infant´s survival.  

General on patterns of infant-directed behavior: Food transfer is the infant-directed 

behavior over age-classes that is most evenly distributed. The most important caretakers 

are adults, more so for carrying than food transfer. Adult males and mothers are the main 

carriers. We suggest that in a case of male´s carrying lack, it is mostly the mother who 

compensates.  

Why do adult males help? 

Paternity certainty: We suggest that males adjust their helping contribution on a level of 

paternity certainty, which is based on copulating or not with the female and whether 

copulations are shared with other males.  
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Male’s physical fatigue: We suggest that males helping contribution is affected by male´s 

physical fatigue. We suggest that in a case of high paternity certainty, physical fatigue is 

of a lesser importance.  

Pay to copulate (carrying as a male courtship strategy): We find no evidence for carrying 

to be a male courtship strategy, i.e. number of copulations are not related to the amount 

of carrying. We suggest that instead of number of copulations, it matters whether the 

male copulated or not.  
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Abstract  

In co-operatively breeding animal societies, helpers contribute to rearing offspring 

through feeding and guarding infants, behaviors that incur costs to helpers. In Neotropical 

callitrichid primates – tamarins and marmosets – infant care also involves carrying of 

heavy twins (15-20% of maternal body mass at birth). Under captive conditions with 

unrestrained access to food, infant carrying results in loss of body mass in fathers and 

helpers, mediated through changes in the activity budget. Here we compare the activities 

of wild black-fronted tamarins, Leontocebus nigrifrons, while carrying or not carrying 

infants. We show that infant carrying strongly reduces the time spent foraging for prey, 

reduces the time spent feeding and strongly increases the time spent on vigilance. These 

changes are possibly related to restricted mobility while carrying infants, which is likely to 

contribute to behavioral modifications of predator avoidance strategies. Furthermore, 

these changes are likely to incur fitness costs that must be compensated by both indirect 

and direct fitness benefits. Our findings also provide further arguments against non-

adaptive hypotheses of helping behavior. 

Keywords: cooperation; infant care; helping; Callitrichidae    

Introduction 

Infant care, e.g. provisioning or carrying offspring, is associated with energetic costs which 

are usually assumed by one or both parents (Clutton-Brock 1991). In cooperatively 

breeding animals, non-reproductive adults and subadults help parents to rear offspring 

(Solomon and French 1997; Koenig and Dickinson 2004), and thus also incur energetic 

costs that can convert into lower growth rates or loss of body mass (Taborsky 1984; 

Heinsohn and Cockburn 1994; Clutton-Brock et al. 1998).   

Callitrichids are a family of Neotropical primates that exhibit flexible mating systems and 

show high levels of co-operative infant care (Goldizen 1987a, 1988; Garber 1997). They 

routinely produce twins that at birth together possess ~15-20% of the maternal body mass 

(Tardif 1994) This makes infant carrying energetically so costly that, even under captive 
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conditions with unrestricted access to food, fathers and helpers lose body mass (Sánchez 

et al. 1999; Achenbach and Snowdon 2002).  

Infant carrying imposes constraints on the type and speed of locomotion and thus 

probably also on foraging maneuvers (Schradin and Anzenberger 2001a; Caperos et al. 

2012). Also in captivity, carriers spend more time in concealed areas, which suggest an 

effort to reduce the predation risk (Price 1992). Moreover, carriers are less likely to be 

vigilant, spend less time in locomotion, socializing, foraging, feeding and have lower 

energy intake (Price 1992; Sánchez et al. 1999). It is thus conceivable that energetic costs 

of infant carrying in callitrichids are likely to be mediated through changes in the activity 

budget. Two studies on wild tamarins report decreased time spent feeding and increased 

time spent resting while carrying infants (Goldizen 1987b; Huck et al. 2004a). However, 

both studies were based on very small sample sizes (one or two infant care periods, 

respectively) and did not distinguish feeding from prey foraging. Prey foraging is a major 

activity of wild tamarins, and prey represents a substantial component of the diet 

throughout the year (Soini 1987; Garber 1988; Porter 2001). In addition, the two studies 

on wild tamarins did not include vigilance (Goldizen 1987b; Huck et al. 2004a), which is an 

important part of anti-predator strategies (Stojan-Dolar and Heymann 2010, Saguinus 

mystax).   

In this paper, we test the hypothesis that infant carrying causes changes in the activity 

budget. We compare activity budgets of wild black-fronted tamarins, Leontocebus 

nigrifrons7, while carrying and not carrying infants. Specifically, we predict that infant 

carrying strongly reduces the time spent foraging for prey and the time spent feeding. 

Constraints on locomotion imposed by infant carrying also imply a higher predation risk 

for infant carriers, which could be compensated by increased vigilance. Therefore, we 

predict that more time is spent being vigilant while carrying infants than when not 

carrying. We do not predict differences in the time spent with locomotion, as any 

individual has to keep up with its group while travelling through the home range, whether 

or not it is carrying infants.  

                                                      
7 In this study we use the current taxa naming of tamarins, following Rylands et al.  (2016). 
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Methods 

1. Study Site and Study Population  

The study was carried out at the Estación Biológica Quebrada Blanco (EBQB), located at 

4ᵒ21’S 73ᵒ09’W in a largely pristine rainforest in lowland Peruvian Amazonia. We 

observed five groups of well-habituated groups of L. nigrifrons, from May 2012 (Gr1, Gr2, 

Gr3), August 2012 (Gr5) and December 2012 (Gr6) until July 2013. Each group was 

observed on average for 7.5 days per month and for 8.3 h per day, resulting in totally 

3868.7 hours of observation. Gr1 was observed for 966.8 hours, including 291.5 hours of 

the carrying period. Gr2 was observed for 938.9 hours, including 292.7 hours of the 

carrying period. Gr3 was observed for 870.7 hours, including 525.5 hours of the carrying 

period. Gr5 was observed for 673.1 hours, including 194.9 hours of the carrying period. 

Gr6 was observed for 419.3 hours, including 25.2 hours of the carrying period. Individuals 

were identified through natural markings (e.g., genital size, holes in earlobe, kinked tail). 

They were assigned to age categories (infant: 0-3 months; juvenile: 4-11 months; 

subadult: 12-23 months; adult: ≥24 months) based on known birth date or on size and the 

state of genital development (Goldizen 1989). The genital development was assessed by 

experienced field assistants. Group composition is shown in Table 5-1. All groups lived in 

mixed-species associations with moustached tamarins (Heymann and Buchanan-Smith 

2000, S. mystax). 
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Table 5-1. Composition of study groups (excluding infants) 

Group¹    A number of animals in 
an age-sex class 

  Total 
number  

adult 
females  

adult 
males  

subadult 
females  

subadult 
males  

juvenile 
females²  

juvenile 
males² 

Gr1  2  1  2  0  0  2  7  

Gr2  2  3  0  0  0  2  7  

Gr3  2  2  1  1  1  0  7  

Gr5  1  1  2  1  1  0  6  

Gr6³ 2  4  0  0  1  1  8  

¹ Group enumeration follows the S. mystax groups in the study area. Gr4 is not a mixed-
species group and does not include L. nigrifrons.  
² Excluded from analyses; because juveniles do not carry a lot of time (Tardif et al. 1992; 
EWH, personal observations).  
³ Excluded from analyses; due to too short observed carrying period (three days). 

 

Table 5-2. Number of litters, litter size, and length of observation periods for infant 
carrying  

Group Number 

of 

litters¹ 

Number of infants born 

in the litter 

Duration of the 

observation period for 

infant carrying 

(in months) 

Gr1 2 Twins, singleton² 3, 3 

Gr2 2 Twins, twins 2³, 3 

Gr3 3 Twins, twins, twins 2³, 3, 3 

Gr5 1 Twins 3 

Gr6⁴ 1 Twins 3 days 

¹ Number of litters equals number of infant carrying periods. 
² We were not present when the litter was born, therefore we cannot exclude that twins 
were born but one of the twins had died.  
³ The litter was born one month before we started with observations, thus we observed 
only the second and third month of the carrying period. 
⁴ Gr6 is due to too short observed carrying period (three days) excluded from analyses.  
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2. Data Collection  

We used instantaneous scan sampling (Martin and Bateson 2007) at 30-min intervals to 

record the activity of each individual that became visible within 2 min and that could be 

individually identified, and whether or not it was carrying infants. Carrying one or two 

infants does not affect the carriers activity (Goldizen 1987b), therefore regardless of 

whether an individual carried one or two infants, we consider this as one data point. We 

considered the following activities:  

Resting: sitting or lying, without performing any other activity except for autogrooming.  

Locomotion: walking, running, climbing or jumping over a distance of 1 m.  

Feeding: picking a food item with mouth or hands, chewing.  

Foraging: visually searching for prey (looking is directed within the arm´s reach), 

manipulating microhabitats or objects that may include prey (e.g. leaves or bromeliad 

tanks), reaching into knotholes and crevices.  

Socializing: any type of social interaction.  

Vigilance: head movements in stationary animals where looking is directed beyond arm’s 

reach (Treves 1998; Stojan-Dolar and Heymann 2010).  

All field work was conducted under authorization from the Dirección General Forestal y 

de Fauna Silvestre of the Peruvian Ministry of Agriculture (authorization no. 268-2012AG-

DGFFS-DGEFFS) and adhered to the ASAB/ABS Guidelines for the Use of Animals in 

Research.  

3. Statistical Analyses  

Our analyses are based on eight different litters (see Table 5-2) and data on the activity of 

21 adult and subadult tamarins (seven adult males, seven adult females, two subadult 

males, five subadult females) (see Table 5-1). Juveniles may carry infants, but generally do 

so for very short periods of time (Tardif et al. 1992; EWH, personal observations) and thus 

were excluded from the analyses. The statistical comparison of activities while carrying or 

not carrying infants is based on a Bayesian multinomial (logit-link) mixed-effects 

regression model (Fahrmeir et al. 2013, chap. 7.5.1, 7.6.2) for levels of activity (1: Feeding; 

2: Foraging; 3: Locomotion; 4: Resting; 5: Socializing; 6: Vigilance), with conditioning on 
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the binary covariate carrying status (ic: infant carried; inc: infant not carried). The model 

includes the effect of age class, but not of sex class. The calculation of posterior densities 

was performed with BayesX (Belitz et al. 2015a). From the resulting posterior samples of 

activity-specific regression coefficients, the distribution of relative frequency (i.e., a 

probability denoted with P) to observe activity 𝑘 = 1, … ,6, conditional on 

carrying status = 𝑖𝑛𝑓𝑎𝑛𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 was calculated as: 

P𝑠(Activity = 𝑘|carrying status = 𝑖𝑛𝑓𝑎𝑛𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑) =
exp(�̂�𝑖𝑐,𝑘)

∑ exp(�̂�𝑖𝑐,𝑗)6
𝑗=1

, 

where 𝑖𝑛𝑓𝑎𝑛𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑  is the reference category of the binary covariate, and as: 

P𝑠(Activity = 𝑘|carrying status = 𝑖𝑛𝑓𝑎𝑛𝑡 𝑛𝑜𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑) =
exp(�̂�𝑖𝑐,𝑘 + �̂�𝑖𝑛𝑐,𝑘)

∑ exp(�̂�𝑖𝑐,𝑗 + �̂�𝑖𝑛𝑐,𝑗)6
𝑗=1

, 

for carrying status =  𝑖𝑛𝑓𝑎𝑛𝑡 𝑛𝑜𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑, where coefficient �̂�𝐼𝑛𝑐,𝑘 is the coefficient for 

changing the covariate from 𝑖𝑛𝑓𝑎𝑛𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑 to 𝑖𝑛𝑓𝑎𝑛𝑡 𝑛𝑜𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑. Index 𝑠 = 1, … , 𝑆 

denotes the sample from the posterior density. In order to get to an identifiable model, 

one activity category 𝑘 ∈ {1, … ,6} has to be selected as reference category (Fahrmeir et 

al. 2013, chap. 6; Belitz et al. 2015a), for which we used feeding. 

For the Bayesian model fitting algorithm, all prior distribution assumptions were kept 

unchanged with respect to the BayesX default: diffuse (i.e., non-informative) priors are 

considered for fixed effects hyper-parameters (Belitz et al. 2015b), and an inverse Gamma 

prior for the unstructured Gaussian i.i.d. random intercepts with hyper-parameters 𝑎 =

𝑏 = 0.001 was included in order to cope with unobserved heterogeneity with respect to 

the subject grouping variable (sensitivity checks on this prior were performed by using 

hyper-parameters 𝑎 = 𝑏 ∈ {0.0001, 0.001,0.01, 0.1, 1}, showing only negligible changes 

in posterior distribution for coefficients 𝛽𝑝,𝑘). Markov chain Monte Carlo (MCMC) 

sampling from the posterior distribution was performed for 32,000 iterations, with 2000 

burn-in iterations and a thinning by each 10th iteration; therefore 𝑆 = 3000.  

Since relative activity frequencies are most convenient for interpretation, we base the 

inferential results on 99% credible intervals (calculated as highest posterior density 

intervals) for the activity-specific relative frequencies, which were calculated from the 

posterior samples �̂�𝑖𝑐,𝑘, and �̂�𝑖𝑛𝑐,𝑘, 𝑘 ∈ {1, … ,6}. In analogy to frequentist comparison of 
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confidence intervals, the credibility level in each pairwise comparison of 99% credible 

intervals is at most 0.01 (Schenker and Gentleman 2001). We therefore also calculate 

posterior model probability differences (PMP) to evaluate differences in the relative 

activity frequencies between carrying and not carrying infants. Whenever the value 0 is 

not covered by the distribution of 

P𝑠(Activity = 𝑘|carrying status = 𝑖𝑛𝑓𝑎𝑛𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑)

− P𝑠(Activity = 𝑘|carrying status = 𝑖𝑛𝑓𝑎𝑛𝑡 𝑛𝑜𝑡 𝑐𝑎𝑟𝑟𝑖𝑒𝑑), 

this provides strong evidence for a true underlying difference in the relative activity 

frequencies between carrying and not carrying infants. 

Results  

In three (feeding, foraging, and vigilance) out of the six activity frequencies, we find strong 

support for differences while carrying infants or not (Fig. 5-1). While carrying infants, 

tamarins are much less likely to forage for prey and to feed than when not carrying; 

posterior mode probability (PMP) of prey foraging decreases from 22.7% (no carrying) to 

2.3% (carrying), of feeding from 7.4% (carrying) to 1.2% (no carrying). The PMP of vigilance 

increased from 28.0% (no carrying) to 40.1% (carrying).  

The frequency of locomotion increased from 35.7% (no carrying) to 45.1% (carrying), but 

because of a small overlap of credible intervals, we cannot conclude this change to be 

statistically significant. The distribution of posterior probability differences of resting 

overlapped with 0 and that of socializing almost overlapped with 0. This suggests that 

these two activities do not differ while carrying or not. PMP of resting while carrying is 6% 

and when not carrying is 3%, PMP of socializing when carrying is 0.1% and 2.6% while not 

carrying. 
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Fig. 5-1. Results of the Bayesian multinomial logit mixed-effects regression model. Left: 
Posterior densities for frequencies of general activities of adult and sub-adult tamarins 
conditional on whether infants are carried or not. Vertical lines show limits of activity-
specific 99% credible intervals, conditional on carrying of infant status. Y axis is log(1+y) 
transformed for better visualization. When credible intervals of the two conditions (infants 
carried or not) do not overlap, this represents a difference that is - in classical statistical 
inference terminology - usually denoted as a statistically significant difference. However, 
as this graphical conclusion leaves out co-variances of the respective conditions, the 
inversion of such an argument - overlapping intervals are equivalent to non-significantly 
different conditions - is not correct. Right: Distribution of posterior differences in activity 
probabilities (P in the y-axis label is for probability) between carrying and not carrying 
infants. 

Discussion 

Our study shows that tamarins adjust their activity budget while carrying infants and that 

these shifts are likely to result in energetic costs in carriers, shown in a loss of body mass. 

Decreased feeding time does not necessarily translate into reduced amounts of ingested 

food (Zinner 1999) and theoretically could be compensated by increasing ingestion rates. 

However, saddleback tamarins mainly forage on cryptic prey or prey that is partially or 

completely concealed within bromeliad tanks and dead leaves, in the leaf litter, and other 

more or less closed microhabitats (Peres 1993a; Nickle and Heymann 1996; Nadjafzadeh 
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and Heymann 2008). Decreased foraging time thus could only be compensated by 

increasing foraging efficiency, i.e. capture rates; however, it is difficult to conceive a 

mechanism through which this could be achieved. Given that even under captive 

conditions with unrestricted access to food, infant carrying results in decreased body mass 

(Sánchez et al. 1999; Achenbach and Snowdon 2002), it is conceivable that wild tamarins 

lose body mass, too. Moreover, a decrease in foraging and/or feeding is one of the most 

frequently recorded change in activity budgets in wild (Goldizen 1987b, Leontocebus 

weddelli; Huck et al. 2004a, S. mystax) as well as captive carrying callitrichids (Price 1992, 

Saguinus oedipus; Sánchez et al. 1999, S. oedipus). This makes foraging and feeding 

decrease also less likely to be due to a seasonal effect. In addition, all our study periods in 

particular fall completely or mostly in the first half of the year which is usually the period 

of fruit abundance (E.R. Tirado Herrera & E.W. Heymann, unpublished data), thus the time 

when we would not expect it to be low on fruits and prey.  

Maneuvers and movements associated with feeding and foraging could increase the risk 

of infant falling off the back and increase exposure to predators (Goldizen 1987b). 

Foraging on cryptic and concealed prey requires attention to be strongly focused on 

foraging substrates and away from the surroundings, thus decreasing the probability of 

detecting a predator early enough to escape. Even if alarm calls by other members of the 

mixed-species group provide an early warning, constraints on the type and speed of 

locomotion during infant carrying, e.g. decreased leaping (Schradin and Anzenberger 

2001a; Caperos et al. 2012), would still increase the predation risk. Tamarins are subject 

to predation by raptors, snakes and probably felids (Emmons 1987; Goldizen 1988; 

Heymann 1990a; Oversluijs Vasquez and Heymann 2001; Shahuano Tello et al. 2002; 

Lledo-Ferrer et al. 2009) and show consistently high levels of vigilance (Peres 1993b; 

Stojan-Dolar and Heymann 2010) even under the predator-free conditions of captivity 

(Caine 1984, 1986, 1987, Saguinus labiatus).  

Also in our study, under both conditions – while carrying and while not carrying – vigilance 

is the most frequently recorded activity, next to locomotion. The increase in vigilance 

while carrying is at odds with findings by Price (1992) who reported a decrease of vigilance 

while carrying infants in captive cotton-top tamarins, S. oedipus. This author suggested 

that an increase of time infant carriers spent concealed in the upper parts of the enclosure 
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is an alternative strategy to vigilance – an active visual search for predators, thus both 

strategies aiming to reduce a perceived predatory threat. The contrast between our and 

her findings might be due to wild vs captive conditions, different measures of vigilance or 

species differences. First, in captive conditions there is no real threat by predators, 

therefore vigilance might be less pronounced as in the wild. Second, Price (1992) used 

alarm calls and animals looking up as a measure of vigilance. In contrast, we used visual 

scanning in all directions (Table 5-2), as predators might come also from side or below. 

Thus we might have captured more vigilance events. Third, results might be due species 

specific strategies as already shown for mixed-species groups of Avila-Pires saddleback 

tamarins (Leontocebus fuscicollis avilapiresi) and red-capped moustached tamarins (S. 

mystax pileatus), who differ in the frequency of vigilance in directed to above, the same 

horizon (Peres 1993b). Wild S. oedipus were rarely vigilant during infant carrying, but no 

detailed comparison between carrying and not carrying has been provided (Savage et al. 

1996). Increased vigilance while carrying infants should be expected, because vigilance 

can fulfill different functions at the same time, e.g. to remain in contact with its group, 

looking for another animal to transfer the infant and it increases the probability of early 

detection of predators in a situation where rapid escape is compromised due to 

constraints on locomotion. Carriers could also hardly employ the extreme response of 

dropping from trees (Heymann 1990a) as this would impose a high risk of infants getting 

hurt. Increased rates of alarm calling in the presence of an infant (Heymann 1990a) 

suggest increased vigilance, but could also be the consequence of increased sensitivity for 

(potentially) predatory stimuli and/or increased rates of approach and attack by 

predators. 

The social system of callitrichids is unique, as there are no other cooperatively breeding 

animals who are carrying their offspring. Therefore, our results cannot be directly 

compared to findings from other cooperative breeders. Nevertheless, there are parallels 

to findings from cooperatively breeding meerkats, where helpers (“babysitters”) guard 

and feed infants during the first 10-12 weeks after birth (Clutton-Brock et al. 1998, 

Suricata suricatta). Meerkats significantly increase levels of sentinel behavior in the 

presence of pups, and when pups are closer to helpers (<2 m) than when they are further 
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away; at the same time, time spent foraging and the amount of food ingested drop 

significantly (Clutton-Brock et al. 1998; Santema and Clutton-Brock 2013).  

In conclusion, our study confirms that infant carrying in a cooperatively breeding primate 

causes changes to activity budget, in terms of reduced foraging and feeding, and increased 

vigilance. Considering the latter, to the best of our knowledge, this is the first study that 

reveals increased vigilance while carrying in callitrichids. These activity budget shifts are 

likely related to restricted mobility while carrying infants and therefore to modified anti-

predator behavior. Furthermore, these activity budget shifts are likely to result in 

energetic costs in carriers. We do not know whether these costs translate into medium 

and long-term fitness consequences, e.g. lower probability of survival or of own 

reproduction. To make helping a stable strategy, costs need to be compensated by direct 

and indirect fitness benefits (Dickinson and Hatchwell 2004). Tamarins show high 

intragroup genetic relatedness (Huck et al. 2005a; Díaz-Muñoz 2011); thus, costs of infant 

carrying are likely to be compensated through inclusive fitness gains not only for parents 

but also for the helpers. In the case of unrelated helpers – which do occur in tamarins 

(Huck et al. 2005a), costs must be compensated by direct fitness benefits (Clutton-Brock 

et al. 2001; Dickinson and Hatchwell 2004). Demonstration of costs of infant carrying also 

argues against non-adaptive hypotheses put forward to explain helping behavior in co-

operative breeders (Jamieson and Craig 1987). 
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Abstract 

In cooperatively breeding animal societies, infant care is provided by parents as well as 

other group members, so-called helpers. In tamarins and marmosets, Neotropical 

callitrichid primates, infant care consists of carrying and food transfer and is costly to the 

caretakers. Infant care affects the activity budget of the caretaker, especially in reducing 

time spent feeding and foraging and decreases the carriers’ body mass. Due to these costs, 

infant care is likely to be stressful, i.e. associated with an increase in stress hormone 

output. Here we investigate, whether infant care affects fecal cortisol metabolite (FCM) 

levels, an indicator of the physiological stress response, in wild black-fronted tamarins, 

Leontocebus nigrifrons. We focus on adult males, the predominant infant care takers, and 

subadults, who carry less, and compare their FCM levels during periods of carrying and 

non-carrying and according to their carrying effort. Our study shows that FCM levels of 

adult males and subadults do not differ between the carrying and non-carrying period. 

Also, FCM levels did not change in proportion to the carrying effort of adult males nor 

subadults. FCM levels were higher in adult males than in subadults during the non-carrying 

period, but did not differ between them during the carrying period. Our data show that 

infant care is not associated with an increase in stress hormone output and thus imply 

that infant care is not stressful or that factors not identified in our study attenuate the 

stress. Due to known infant care costs, the first explanation is less likely than the second. 

We suggest that infants act as a stress buffer: they balance out the energetic costs that 

would otherwise lead to a physiological stress response. Furthermore, we suggest that 

infants can only act as effective stress buffers when caretakers obtain greater maturity 

and parental or alloparental experience.  

Keywords: Callitrichidae; infant care; stress, cortisol 

Introduction  

Parental care includes any parental trait that increases offspring fitness, i.e. offspring’s 

survival and eventually the breeding success (Clutton-Brock 1991; Smiseth et al. 2012). 

Animals show a wide variety of parental traits, starting with gamete provisioning (Williams 

1994, birds; Fox and Czesak 2000, arthopods), up to care of mature offspring (Surbeck et 
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al. 2011, Pan paniscus). Infant care can be provided by only one parent (monoparental), 

by both parents (biparental) or can be extended to other group members, non-

reproductive adults and subadults or so-called helpers. The latter combines parental and 

alloparental care, and is in addition to strong ecological constraints on dispersal or 

independent breeding (Hatchwell 2009) a characteristic of a rare cooperatively breeding 

system (Solomon and French 1997; Koenig and Dickinson 2004).  

Parental care benefits the caregivers but it can also incur costs, often to the parents 

(Clutton-Brock 1991; Smiseth et al. 2012). The diverse costs include a higher risk of 

predation, often due to carrying, e.g. in male brood carrying pipefish (Svensson 1988, 

Nerophis ophidionc) and energetic costs, often expressed in loss of body mass or growth 

delay, e.g. in great tit (Tinbergen and Verhulst 2000, Parus major). In mammals the costs 

are particularly high for mothers, due to a specific type of maternal care, lactation (Oftedal 

1984; van Noordwijk 2012). Unlike many other mammals, primates exhibit additional 

costs of parenting, because most primates transport their infants. Primate mothers, who 

in addition to lactation generally carry their offspring alone, experience major costs of 

parental care (van Noordwijk 2012). In the Neotropical family Callitrichidae (marmosets 

and tamarins), the mother receives help from other group members (helpers). This makes 

these small-bodied (100-650g) marmosets and tamarins unique, as they are the only 

cooperatively breeding primates. They have a potential to produce two litters per year, 

usually dizygotic chimeric twins (Garber et al. 2016), and they have high levels of 

alloparental care, with non-reproductive adults providing extensive offspring carrying and 

food provisioning. Due to energy demands of heavy infants, infant care is costly. 

Energetically, costs are expressed in loss of body mass (Sánchez et al. 1999, Saguinus 

oedipus; Achenbach and Snowdon 2002, S. oedipus; Morcillo et al. 2003, S. oedipus) and 

changes in almost all daily activities (Price 1992, S. oedipus; Sánchez et al. 1999, S. oedipus; 

Schradin and Anzenberger 2001a, Callithrix jacchus; Huck et al. 2004a, Saguinus mystax; 

chapter 5). 

Energetic costs may provoke a stress response (Moberg and Mench 2000). In vertebrates, 

stress is usually detected through increased glucocorticoid output, such as the hormone 

cortisol (Sapolsky et al. 2000). Cortisol can be measured invasively in blood, as plasma 

cortisol, or non-invasively in urine and feces (Moberg and Mench 2000). The latter is a 
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preferred method in the wild (e.g. Huck et al. 2005b; Bales et al. 2006; Ganswindt et al. 

2010). Glucocorticoids are controlled by the hypothalamic-pituitary-adrenocortical (HPA) 

axis system. Within a few minutes after exposure to a stressor HPX axis releases 

glucocorticoids into blood (Hennessy et al. 2009, review). In long-term stress, when HPA 

axis activation is prolonged or repeated, stress may lead to damaging consequences 

(Moberg and Mench 2000), e.g. in health, reproduction and it may alter behavior. On the 

other hand, the short-term activation of HPA axis releases an amount of glucocorticoids 

that are adaptive for coping with short-term stressors (Sapolsky et al. 2000, review). The 

HPA axis response ensures availability of additional energy by promoting the reallocation 

of resources from energy consuming systems, like immunity and reproduction (Wingfried 

and Sapolsky 2003). This short-term activation of an additional energy may help to 

alleviate detrimental effects of short-term stressors (Willner 1993), such as carrying of 

heavy infants.  

Given that callitrichids extensively carry and feed their heavy twin infants, the question 

emerges ‘Does infant care create stress in callitrichids?’ Heavy infants, who’s combined 

body mass of twins corresponds to 16 - 20 % of maternal body mass (Tardif et al. 1993), 

are carried in all group movements for the first 2 – 3 months, and are provided with food 

for a few months more (Epple 1975; Terborgh and Goldizen 1985; Pryce 1988; Goldizen 

1989; Tardif et al. 1992; Huck et al. 2004a). In addition we know that in callitrichids, caring 

for infants is costly, by imposing behavioral and physiological changes to the carriers, i.e. 

body mass loss (Sánchez et al. 1999, S. oedipus; Achenbach and Snowdon 2002, S. oedipus) 

and changes in time distribution of daily activities (Price 1992, S. oedipus; Sánchez et al. 

1999, S. oedipus; Schradin and Anzenberger 2001, C. jacchus; Huck et al. 2004, S. mystax; 

chapter 5). Based on the results mentioned above, we expect carrying to be stressful and 

therefore reflected in increased cortisol output.  

In this study we examine if in callitrichids caring for infants is associated with a 

physiological stress response reflected in increased glucocorticoid levels. More 

specifically, we test if in wild black-fronted tamarins (Leontocebus nigrifrons), carrying 

influences fecal cortisol metabolite (FCM) levels. Our focus is on adult males, as they are 

frequently reported to be main infant carriers (Savage et al. 1996; Garber 1997; 

Yamamoto et al. 2009). However since subadults, regardless of sex, can also make a 
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significant contribution to infant care (Goldizen 1987b), we have included them in our 

study, even though they carry less (Huck et al. 2004a). We predict that FCM levels of adult 

males and subadult helpers increase during periods of infant carrying and that an increase 

in FCM levels is proportional to the carrying effort. Yet, studies on captive callitrichids 

indicate no effect of carrying on cortisol levels (da Silva Mota et al. 2006, C. jacchus) or, 

opposite to expectation, lower cortisol levels in carriers (Nunes et al. 2001, Callithrix 

kuhlii). Since the natural environment is more complex, less predictable and generally 

more challenging than a captive environment, increased cortisol levels in response to 

carrying may be more evident for wild-living animals, like in yellow-bellied marmots 

(Smith et al. 2012, Marmota flaviventris). For callitrichids, studies on stress hormone 

output in wild populations indicate no change in cortisol levels in adult males over the 

course of the year (Huck et al. 2005b, S. mystax) or when compared between the breeding 

and infant care season (Bales et al. 2006, Leontopithecus rosalia). However, the latter two 

studies did not focus on or include the carrying effort or infant care in general into their 

analysis. Diverse arguments suggest that cortisol levels in adult males are likely to be 

influenced by previous experience in infant care (Nunes et al. 2001; Ziegler et al. 2004; da 

Silva Mota et al. 2006), interaction with pregnant females (Ziegler et al. 2004; da Silva 

Mota et al. 2006), and infants themselves (Nunes et al. 2001; da Silva Mota et al. 2006). 

The link between infant care, stress and cortisol in callitrichids is thus far from being 

certain, especially considering the apparent lack of information from wild populations. 

Here we present the first study of wild callitrichids that examines how infant care behavior 

relates to stress hormone output in the carriers.  

 Methods 

1. Study site and study population  

We carried out the study at the Estación Biológica Quebrada Blanco (EBQB), located in 

primary Amazonian lowland forest in northeastern Peru, 4ᵒ21’ S and 73ᵒ09’ W. For a more 

detailed description of the study site, see Heymann (1995). We studied five groups of well 

habituated black-fronted saddle-back tamarins (L. nigrifrons). Data collection started in 
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May 2012 (groups Gr1, Gr2, Gr3), August 2012 (group Gr5), December 2012 (group Gr68), 

and lasted until end of July 2013. We observed each group on average for 7.5 days per 

month and for 8.3 hours per day, resulting in a total of 3868.7 hours of observation. We 

identified individual animals by natural markings, e.g., fur pattern, tail shape and genital 

size and shape. Animals were assigned to age categories (infant: 0-3 months; juvenile: 3-

12 months; subadult: 1-2 years; adult: ≥ 2 years) according to known birth date or based 

on size and state of their genital development (Goldizen 1989; Goldizen et al. 1996). Group 

composition, not including infants, is shown in Table 6-1. All groups formed mixed-species 

associations with moustached tamarins (Heymann and Buchanan-Smith 2000, S. mystax).  

Table 6-1. Composition of study groups (excluding the infants) 

Group Number of animals Total 

number of 

animals 

Adult 

females 

Adult 

males¹ 

Subadult 

females¹ 

Subadult 

males¹ 

Juvenile 

females 

Juvenile 

males 

Gr1 2 1 2 0 0 2 7 

Gr2 2 3 0 0 0 2 7 

Gr3 2 2 1 1 1 0 7 

Gr5 1 1 2 1 1 0 6 

Gr6 2 4 0 0 1 1 8 

Total  9 11 5 2 3 5 35 

¹ Animal groups used for analyses for this study.  

2. Data collection 

2.1  Behavioral data  

We recorded infant carrying – an individual transport of infant/s on the back – with 

instantaneous sampling (Martin and Bateson 2007) at 5 minute intervals, starting when 

an individual was seen carrying an infant. If a carrier was out of sight for more than 5 

minutes and was again seen carrying an infant, we recorded it as a new data point 

(adjusted after Vogt 1978; Huck et al. 2004a). We defined infant carrying (transport) 

                                                      
8 Numbering of groups at EBQB is based on the sympatric moustached tamarins (S. mystax) with which the 
black-fronted tamarins generally form mixed-species groups (Heymann and Buchanan-Smith 2000). Group 
4 (Gr4) which had been named before the onset of this study included only moustached tamarins. 
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period to the first three months after birth. We collected data on individual visibility with 

a group scan sampling (Martin and Bateson 2007) performed every half hour for two 

minutes where we recorded every individual present. We used the latter data for a 

visibility correction when calculating infant carrying effort (see section Infant carrying 

effort (p. 96). 

All field work adhered to the “Code of Best Practices for Field Primatology” of the 

American Society of Primatologists (Riley et al. 2014) and conducted under authorization 

from Dirección General Forestal y de Fauna Silvestre of the Peruvian Ministry of 

Agriculture (authorization no. 268-2012-AG-DGFFS-DGEFFS). 

2.2 Fecal sampling 

We collected fecal samples throughout the entire study period. We collected feces from 

clearly identified individuals, and only if the feces (or parts of it up to ca. 0.5 g) did not fall 

into water and were not touched by urine or soil. This rigorous selection process was 

needed to avoid contamination as well as inaccuracies in determining fecal mass. We 

collected each sample immediately after defecation in 15 ml conical polypropylene tubes, 

pre-filled with 4 ml of 80% ethanol. Prior to placing into the collection tube, we removed 

any obvious non-fecal material (seeds, stones, undigested matter etc.) and homogenized 

the sample with a wooden stick. We labelled the tubes with the identity of the monkey 

and the collector, running number, date, and time.  

We extracted the samples within 18 hours of collection using the field extraction method 

described in Ziegler and Wittwer (2005). In brief, we shook the tubes horizontally by hand 

for two minutes in order to release the steroid hormones. This was followed by a manually 

operated centrifuge for two minutes. We pipetted 2 ml of the supernatant into 2.0 ml 

Eppendorf cups, which were parafilmed to reduce the risk of evaporation. Cups were 

stored in dark boxes for 1-3 weeks at ambient temperature (20–30◦C) and were 

subsequently stored refrigerated (5◦C) until transport to the German Primate Centre’s 

endocrinology laboratory for FCM analysis. Fecal samples were then dried to a constant 

weight to determine fecal dry weight. Three samples were excluded from analysis because 

their sample tubes partially melted during the drying process. 
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3. Analyses 

3.1 Study sample 

We based our analyses on infant carrying and FCM levels of adult males and all subadults. 

The data included 21 months of infant carrying periods of 8 different litters (analyses of 

infant carrying and FCM levels) and 36 months of infant non-carrying periods (analyses of 

FCM levels) (Table 6-2). In order to analyze FCM levels we used a minimum of 3 samples 

per individual for each particular study period. We have excluded from the analyses 1 

adult male that provided less than 3 hormonal samples, 1 sample with dubious 

identification, and 22 samples with dubious data entry or non-reliable dry fecal mass. 

Specifically for the analyses of “relationship between FCM and infant carrying” (Fig. 6-2), 

we have also excluded 2 subadults (18 samples) that provided less than 3 fecal samples in 

individual infant carrying periods. Additionally Gr6 was excluded from the analyses, as 

there were only 3 days where an observation of carrying period was made.  

In total, we analyzed 126 fecal samples for FCM. For the purpose of analyzes of “FCM in 

time periods; infant carrying vs. infant non-carrying” we analyzed 69 fecal samples of 6 

adult males and 57 samples of 7 subadults. For the purpose of analyzes of “relationship 

between FCM and infant carrying” we analyzed 43 fecal samples of 6 adult males and 22 

samples of 5 subadults.  
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Table 6-2. Number of litters per group, litter size and duration of observational periods 

Group Litter 

number 

Litter  

size 

Observation periods for 

infant carrying (months) 

Observation periods for 

infant non-carrying (months) 

Specific All Specific All 

Gr1 2 twins 

singleton¹ 

Dec 2012-Feb 2013 (3) 

Feb-Apr 2013 (3) 

5² May-Nov 2012 (7) 

May-July 2013 

10 

Gr2 2 twins³ 

twins 

May-Jun 2012 (2) 

Feb-Apr 2013 (3) 

5 Jul 2012-Jan 2013 

(7) 

May-July 2013 (3) 

10 

Gr3 3 twins³ 

twins 

twins 

May-Jun 2012 (2) 

Jan-Mar 2013 (3) 

May-Jul 2013 (3) 

8 Jul-Dec 2012 (6) 

Apr 2013 (1) 

7 

Gr5 1 twins Nov 2012 - Jan 2013 (3) 3 Aug-Oct 2012 (3) 

Feb-Jul 2013 (6) 

9 

Gr6⁴ 1 twins Dec 2012 (3 days) 0 Mar-Jul2013 (3) 5 

Total 9   21  41 

¹ We were not present when the litter was born, therefore we do not know if a female 
actually gave birth to two and not only a single infant. 
² One month overlap in observation of infant carrying period of the two litters. 
³ Infants born ~1 month before the onset of the study. 
⁴ Excluded from analyses due to short observation period of infant carrying (3 days). 

3.2 Fecal cortisol metabolite (FCM) analysis  

We measured fecal extracts for FCM applying a cortisol microtiterplate enzyme 

immunoassay previously described by Palme and Möstl (1997). Application of a fecal 

cortisol assay has been successful for assessing adrenocortical activity in numerous 

primate species (Cavigelli 1999; Lynch et al. 2002; Heistermann et al. 2006), including 

several species of callitrichids (Ferreira Raminelli et al. 2001; Ziegler and de Sousa 2002; 

Huck et al. 2004b; Heistermann et al. 2006). We confirmed the biological validity of our 

FCM measurement by demonstrating that it reliably detects the pregnancy-related 

increase in cortisol commonly found in callitrichids and other primate species (e.g. Ziegler 

et al. 1995; Smith and French 1997; Cavigelli 1999; Brent et al. 2011; Carnegie et al. 2011; 

Rimbach et al. 2013). Specifically, comparisons of FCM levels measured in fecal samples 

collected cross-sectionally from non-pregnant and pregnant females revealed a highly 

significant statistical difference, with FCM levels being on average three times higher in 
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the pregnancy samples (pregnancy samples, n=14: 5.24 ± 4.23 µg/g; non-pregnancy 

samples, n=16: 1.74 ± 0.71 µg/g; Mann-Whitney U-test: U=36, p<0.01). Accordingly, we 

are confident that our FCM assay is valid for assessing adrenocortical activity in our study 

species. The assay was performed as described in Huck et al. (2005b). Cross-reactivity data 

of the cortisol antibody are reported by Palme and Möstl (1997). Sensitivity of the assay 

at 90% binding was 0.6 pg. Inter-assay coefficients of variation, assessed by replicate 

determination of high- and low value quality controls, were 6.4% (high) and 5.7% (low), 

respectively. All hormone concentrations are presented as µg/g dry mass of feces. 

3.3 Statistical analyses  

a) Infant carrying effort  

We calculated the infant carrying effort as the relative contribution of each individual to 

total infant carrying with the formula given below (after Huck et al. 2004a). An individual 

carrying two infants at the same time is counted as two occurrences of infant carrying. 

We corrected carrying data for individual visibility, which derived from group scan 

sampling data (Martin and Bateson 2007) We incorporated a visibility correction in the 

calculation of the expected frequencies (E):  

E = behavior (total) * scans (individual) / scans (total), 

where behavior (total) = frequency at which the behavior was seen in all individuals; scans 

(individual) = number of sightings of a respective individual in scans; scans (total) = 

number of sightings of all individuals in scans. Calculations of percentages of carrying 

behavior were done by the following formula: 

         % behavior of individual 𝑋 =  
𝑂𝑋 𝐸𝑋⁄ ∗100 

∑ 𝑂 𝐸⁄group
,  

where O = observed frequency of the behavior.  

b) Determination of influences on FCM levels  

In the following statistical analyses, a relationship between “FCM levels” and “time 

periods” or “infant carrying” was investigated using Bayesian multilevel (mixed effects) 
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regression model for logarithmic transformed FCM values. We included individuals as 

random factor, thereby controlling for the repeated measurements from the same 

individual. A student t distributed response with identity Link was used, leading to robust 

regression, i.e. less influenced by potential extreme values. The regression analyses were 

conducted using a Bayesian inference algorithm (Markov chain Monte Carlo, MCMC) as 

implemented in the Stan (Carpenter et al. 2017) based R add-on package brms (Bürkner 

2017). MCMC estimation is a general tool for the estimation of Bayesian regression 

models that allows quantifying the joint posterior distribution of a model’s coefficients 

with high accuracy, but without calculation of a p-value (Gelman 2006). With the absence 

of substantial prior knowledge, we used non-informative priors for the regression 

coefficients included in the different models. Priors for standard deviations of random 

effects were kept on the weakly informative default implemented in brms. For the MCMC 

set-up, we used 4 chains per model, with a warm-up of 5 000 iterations, a thinning rate of 

1, and 10 000 iterations in total for each chain. 

c) FCM levels in time periods; infant carrying vs infant non-carrying  

To model the influence of time periods (infant carrying vs infant non-carrying) on the 

expected value of log(FCM) concentrations, an interaction term including time periods 

and age class (both binary) was used. To estimate a potential non-linear relationship 

between daytime and log(FCM) levels, we used a non-parametric Bayesian spline 

approach as implemented by the brms function s, being based on the R add-on package 

mgcv (Wood 2004).  

d) Relationship between FCM levels and infant carrying  

To model the influence of carrying percentages on log(FCM) levels, we used an interaction 

term between infant carrying percentage (numerical) and age classes (binary). Again, to 

estimate a potential non-linear relationship between daytime and log(FCM) 

concentrations, we used a non-parametric Bayesian spline approach as implemented by 

the brms function s, being based on the R add-on package mgcv (Wood 2004).  
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Results 

There was no influence of daytime on FCM levels during the entire study period (Fig. B-1) 

and within the infant carrying period in specific (Fig. B-2). Our data on the relationship 

between infant care behavior and FCM levels yielded only one significant result: during 

non-carrying periods FCM levels are higher in adult males than in subadults (Fig. 6-1D). 

On the contrary, during carrying periods there is no difference in FCM levels between the 

two age classes, regardless that absolute FCM levels are higher in adult males (Fig. 6-1C). 

Furthermore, neither FCM levels of adult males nor of subadults differ between infant 

carrying and non-carrying periods (Fig. 6-1A, Fig. 6-1B), contrary to our prediction. This is 

despite that in infant carrying period absolute FCM levels of adult males are lower, and of 

subadults are higher.  
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Fig. 6-1. Results of the Bayesian multilevel (mixed effects) regression model shown in the 
form of partial residual plots (https://en.wikipedia.org/wiki/Partial_residual_plot): 
logarithmic transformed FCM values of adult males and subadults in time periods (infant 
carrying and infant non-carrying). We compared FCM values between the infant carrying 
and the non-carrying period, of A) subadults B) adult males. We compared FCM values of 
subadults and adult males: C) within the infant carrying period, and D) within the infant 
non-carrying period. Dots (•) represent: partial residuals. Grey shaded lines ( ) 
represent: partial effects (only for one category per chart as the respective other one is the 
reference category) given by the original distribution of posterior samples. Bold lines ( ̶̶̶̶ ̶  ̶̶̶̶̶ ) 
represent: posterior means of coefficients (effects). Dashed lines (----) represent: the 
boundaries of posterior credible intervals. When a longer bold line is out of dash line 
boundaries, this represents a statistically significant result. 

 

During infant carrying periods FCM levels do not differ within adult males, regardless of 

how much they carry infants (Fig. 6-2A, Fig. 6-2B). The same applies to the FCM levels of 

subadults (Fig. 6-2A, Fig. 6-2C). Furthermore, there is no difference between adult males 

and subadults, with respect to FCM levels in relation to carrying effort (Fig. 6-2A, Fig. 

6-2D).  
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Fig. 6-2. Results of the Bayesian multilevel (mixed effects) regression model: logarithmic 
transformed FCM values of adult males and subadults, within infant carrying period in 
relation to individual carrying effort expressed as percentages. Above, A): Posterior 
distributions of logarithmic transformed FCM values of adult males (blue colored area) and 
sub-adults (green colored area) conditioned on percentages of the individual carrying 
contribution. Dots (•) and triangles (∆) represent: truly observed values. Dots (•) and 
triangles (∆) with the same score on the x-axis represent: repeated measurements, i.e. the 
same individual with different litters. When an individual carried more than one litter and 
we could collect at least the minimal amount of hormonal samples required for these 
specific carrying periods, this combination represents an additional dot or triangle vertical 
line. Therefore, although we base these analyses on 6 adult males, the vertical lines of dots 
are represented 9 times. And, for the 5 subadults the vertical lines of triangles are 
represented 6 times. Below: Slope coefficient of logarithmic transformed FCM values of B) 
adult males C) subadults D) subadults in relation to adult males, conditioned on 
percentages of the individual carrying contribution. Grey shaded lines ( ) represent: 
partial effects given by the original distribution of posterior samples. Bold lines ( ̶̶̶̶ ̶ ̶ ̶̶̶̶ ) 
represent: posterior means of coefficients (effects). Dashed lines (----) represent: the 
boundaries of posterior credible intervals. When a longer bold line is out of dash line 
boundaries, this represents a statistically significant result. 

Discussion 

The aim of our study was to examine whether caring for infants is stressful in wild L. 

nigrifrons, i.e. is associated with increased stress hormone output in caretakers. Our study 
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demonstrates that carrying, which represents a major part of infant care and has been 

shown to result in an energetic burden of the carrier (Sánchez et al. 1999, S. oedipus; 

Achenbach and Snowdon 2002, S. oedipus), does not influence glucocorticoid levels: FCM 

values, an indicator of glucocorticoid secretion, do not change according to carrying 

efforts in adult males nor subadults (Fig. 6-2). This suggests that carrying infants in 

callitrichids is not stressful in terms of increased glucocorticoid production. However, a 

link between infant care behavior and glucocorticoids might potentially still exist, but 

infants may buffer elevations in cortisol of caretakers in response to carrying costs. Our 

data nevertheless indicate that both adult males and subadults are influenced by the 

presence of infants, but with opposite effects. Within infant non-carrying periods we 

detected higher cortisol levels in adult males (Fig. 6-1D). Yet within infant carrying periods 

no clear difference between adult males and subadults exists (Fig. 6-1C). This implies that 

a change in cortisol levels in at least one of these two groups occurred. Indeed, we 

detected indications of changes in cortisol level, i.e. according to absolute FCM levels, 

during infant carrying period in both, but in opposite direction (Fig. 6-1A, Fig. 6-1B).  

In captive S. oedipus carrying heavy infants inflicts costs in terms of loss of body mass 

especially in larger enclosures (Sánchez et al. 1999; Achenbach and Snowdon 2002; 

Morcillo et al. 2003). It is therefore conceivable that caretakers in wild callitrichid groups 

also lose body mass during carrying of infants, perhaps even more so, considering the 

efforts required for finding and travelling between food resources. Moreover, carrying 

impacts carriers’ activities, particularly reducing time spent feeding and foraging for prey  

(Price 1992; Schradin and Anzenberger 2001a; Huck et al. 2004a; chapter 5). This creates 

a challenging and energetically demanding situation for caretakers which we predicted 

should induce an increase in cortisol output as a mean to compensate the heightened 

energetic demands. Our finding that FCM levels did not change in response to carrying 

effort is therefore surprising. We cannot entirely exclude, however, that carrying behavior 

in callitrichids may be associated to low levels of physiological stress rather than to high-

impact stress, and it is not therefore associated with significant or prolonged elevations 

in cortisol output. If this is the case, assessing FCMs as an integrated measure of cortisol 

production may just not be sensitive enough to detect any mild and/or short-term cortisol 

response associated with carrying behavior in our study subjects.  
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That said, however, all studies on the relationship between infant carrying and cortisol 

levels in callitrichids, including ours, agree that carrying is not associated with higher stress 

hormone output in the caretaker (Nunes et al. 2001, C. kuhlii; da Silva Mota et al. 2006, C. 

jacchus). Instead, FCM levels of adult males and subadults stay the same (Fig. 6-2) (see 

also da Silva Mota et al. 2006), or cortisol levels even decrease with more carrying activity 

by fathers (Nunes et al. 2001). The latter study demonstrates negative correlations 

between cortisol and carrying across all males. Two previous studies that examined 

cortisol output in wild adult male callitrichids did not focus directly on carrying behavior. 

Instead, one study presented FCM levels over the course of a year, including two groups 

and two new litters (Huck et al. 2005b, S. mystax), whereas the other study looked over 

the course of three years and included 24 adult males (Bales et al. 2006, L. rosalia). No 

significant seasonal variations in FCM levels were found despite covering two periods of 

infant carrying in the first study, and three mating periods compared to two infant care 

periods in the latter study. These combined findings suggest that the known costs 

associated with infant carrying, e.g. reduction in feeding time and body mass loss (see 

above), are not associated with significant elevations in glucocorticoid production and 

that therefore carrying is not stressful in terms of HPA axis activation. Overall, low cortisol 

concentrations in caretakers maybe indeed generally beneficial for offspring. There is 

increasing evidence from laboratory and wild vertebrates showing that small increases of 

cortisol have a positive effect on parental behavior, whereas large increases in cortisol 

concentrations in parents may impair parental behavior (Raulo and Dantzer 2018, review).  

We suggest that infants may act as a stress buffer for their caretakers in callitrichids. It is 

known that a positively associated social partner may reduce glucocorticoid responses to 

stressors, so called “social buffering” (Hennessy et al. 2009, review). According to these 

authors it is well established that mammalian mothers buffer stress for infants, while the 

reverse – that infants may buffer the stress of caretakers – has been poorly studied. Rare 

evidence on infants buffering the stress response of their caretakers comes from guinea 

pigs (Ritchey and Hennessy 1987, Cavia porcellus) and squirrel monkeys (genus Saimiri, 

Mendoza et al. 1978; Wiener et al. 1987). Among callitrichids, contact of male C. kuhlii 

with infants during carrying has been proposed to dampen the physiological stress 

response of carriers, and to cause a decrease of cortisol levels with increasing carrying 
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rates (Nunes et al. 2001). For C. jacchus, these effect of infants on carriers has been 

suggested for another hormone, prolactin (da Silva Mota and de Sousa 2000; da Silva 

Mota et al. 2006). Prolactin is broadly associated with parental care behavior in animals 

(Buntin 1996; Schradin and Anzenberger 1999; Koenig and Dickinson 2004). It is also 

suspected to counteract the potentially negative effects of high glucocorticoid levels on 

parental behavior because only when prolactin levels are low, high baseline 

glucocorticoids result in behavior of parents negative for offspring e.g. nest abandonment 

in Adelie Penguins (Spée et al. 2010, Pygoscelis adeliae), offspring abandonment 

(Groscolas and Robin 2001; Groscolas et al. 2008; Spée et al. 2010, 2011). As stated by 

Raulo and Dantzer (2018, rewiev) “prolactin could maintain the motivational effects of 

baseline GCs on parental behavior while at the same time reducing the probability that 

the individual enters an emergency life history stage (i.e., abandoning a nest)”. Therefore, 

in order to retain high levels of parental care, either low cortisol concentrations or high 

prolactin concentrations should be maintained in a caretaker. Indeed, in common 

marmosets, in contrast to cortisol, prolactin levels are increased during infant carrying, 

depending on carrying duration and the number of infants being carried (da Silva Mota 

and de Sousa 2000; da Silva Mota et al. 2006). The authors argue that physical contact is 

needed for prolactin to change. Considering cortisol, some evidence show that the extent 

of infant carrying matters, suggesting that a combination of physical contact with the 

extent of infant handling is needed for cortisol levels to change (Nunes et al. 2001, male 

C. kuhlii). In contrast, both our study and the study on C. jacchus (da Silva Mota et al. 2006) 

demonstrate that cortisol levels do not change according to carrying effort, indicating that 

a physical contact alone or a mere infant presence is enough to buffer a physiological 

stress response to carrying.  

There are, however, also other factors – previous parental or alloparental experience and 

male susceptibility to female reproductive condition – that had been suggested to affect 

the cortisol output in males (Nunes et al. 2001; Ziegler et al. 2004; da Silva Mota et al. 

2006). In this study we were unable to “measure” these factors and their influence on 

cortisol output, but discuss their plausibility when we try to explain the differences and 

similarities of FCM levels between adult males and subadults in the following.  
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One explanation for cortisol changes in captive callitrichids focuses on the period of one 

month prior to parturition and on parental or alloparental experience. In brief, within 

older offspring and adult males, only (or more) experienced fathers exhibit an increase in 

cortisol levels (Ziegler et al. 2004; da Silva Mota et al. 2006), an effect that disappears after 

parturition (da Silva Mota et al. 2006). Authors argue that the hormonal increase follows 

the hormonal change in pregnant females and thereby prepares males for their upcoming 

parenting role or also acts to reinforce affiliation between parents or alloparents. This 

contrast in cortisol levels between periods before and after parturition additionally speaks 

in favor of either infants having a role in influencing the cortisol levels in adult males, or 

the effect of female hormonal influences decreases after birth. Another study from 

captivity focused only on time after parturition and also noticed that cortisol levels in 

fathers decreased with parental experience, yet they still carry at a similar rate (Nunes et 

al. 2001). Experience seems to be the key element for adult males to respond to hormonal 

changes in females (Ziegler et al. 2004; da Silva Mota et al. 2006) and to reduce the stress 

response to infant carrying (Nunes et al. 2001). Subadults, however, may not be 

influenced by the hormonal changes in females, due to physical incapability, i.e. being 

physically sexually immature, or due to no or less alloparental experience. Therefore, 

subadults may also not reduce the stress response to infant carrying. Unfortunately, we 

cannot examine parental or alloparental experience since we lack the necessary 

information about how many litters each male or subadult had carried before the onset 

of our study and we have limited hormonal samples for one month before parturition.  

However, our data suggest that maturity may play a role in callitrichid stress response, 

and thus, FCM levels. In comparison to subadults, we found that adult males exhibit higher 

FCM levels during the non-carrying period (Fig. 6-1D). This result suggests that subadults 

and adult males are subjected to different stressors or they respond differently to 

stressors. The first suggestion is less likely, because they both live under the same 

environmental circumstances. During carrying period, there are no more differences in 

FCM levels between adult males and subadults (Fig. 6-1C). This suggests that between the 

carrying and the non-carrying period, a change in FCM levels occurred in at least one of 

the two groups. According to absolute FCM levels, a change during the carrying periods 

occurred in both groups, in adult males a decrease and in subadults an increase (Fig. 6-1A, 
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Fig. 6-1B). These changes, however, are non-significant. Still it implies that adult males 

and subadults may respond differently to infants: subadults, who usually carry less and 

have less caretaking experience (Goldizen 1987b; Huck et al. 2004a) to respond with a 

slight increase in cortisol output and adult males who generally carry more and are more 

experienced (Savage et al. 1996; Garber 1997; Yamamoto et al. 2009) to respond with a 

slight decrease in cortisol output. It seems unlikely that these results can be explained by 

mere differences in physical strength, because subadults already may have the size and 

appearance of adults (Yamamoto 1993). Moreover, a link between higher energetic costs 

and more carrying (Sánchez et al. 1999; Achenbach and Snowdon 2002), usually done by 

males (Savage et al. 1996; Garber 1997; Yamamoto et al. 2009) do not speak in favor of 

carrying being less demanding for adult males. Instead, it is more likely that if physical 

strength plays a role, it is in their investment in carrying.  

In conclusion, there seems to be no simple relationship between infant care and 

glucocorticoid output in caretakers within the callitrichids. We show, that carrying itself 

does not directly influence cortisol levels of adult males and subadults, regardless of their 

carrying effort. We suggest that infants act as a “stress buffer” in the way that infant’s 

physical contact or just their presence buffers the energetic costs of carrying that would 

otherwise lead to activation of the HPA axis and increased glucocorticoid output. 

Differences between adult males and subadults suggest that they are not exposed to the 

same stressors or that they respond differently to stressors. We suggest that sexual 

maturity in combination with parental or alloparental experience plays a role in the 

relationship between carrying and FCM output. Eventually this may lead adult males to 

be influenced more by infants. Potentially, infants can only act as effective stress buffers 

after their caretakers have gained parental or alloparental experience.  
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General discussion 

The focus of this thesis was to study the mating systems and infant care of wild black-

fronted tamarins (Leontocebus nigrifrons), by combining genetic, endocrinological and 

behavioral data. I aimed to understand why some individuals, especially adult males, 

contribute more to infant care than others, and how does infant care relate to mating 

systems. For this reason I tried to identify mating systems, I measured infant-directed 

behaviors, I tried to explain why some individuals – especially adult males, help more than 

others (chapter 4), I examined whether carrying incurs changes to activity budget (chapter 

5), I investigated whether infant care is physiologically stressful (chapter 6). Due to two 

unexpected occurrences of multi-female breeding I focused less on examining general 

patterns of care behavior in chapter 4 and more on those specific circumstances and 

answered more theoretical questions: “in which litter to invest more and why, if there is 

a choice of more than one?” In the following, I divide the discussion into specific sections: 

in the first nine sections, I explain why I looked into specific questions, what the results 

were and what I suggest (pp 108 - 114), in the next four sections I put my findings into 

broader context of callitrichids (pp. 115 - 118) and other cooperative breeders (p. 121), 

and finally I critically evaluate the thesis and give recommendations for future studies (p. 

124). The overall focus of this general discussion is to provide plausible answers to the 

aim of this thesis specified above. 
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Major findings and their interpretation 

1. Mating systems  

In line with the general understanding of callitrichids this thesis confirms the diversity and 

complexity of the mating systems of black-fronted tamarins. Definitions of mating systems 

focus on group and not on individual patterns (Goss-Custard et al. 1972; Rowell 1993; 

Kappeler and van Schaik 2002). Whereas this thesis shows that such definitions are not 

suitable for describing the mating systems of black-fronted tamarins (chapter 4), and 

according to general similarities of behavior among callitrichid this may apply to other 

callitrichid species too. I found that the parental dyads may include resident and non-

resident individuals. Therefore, it is impossible to conclude on a genetic mating system 

within a group that would adequately describe a genetic situation in a group. Thus in this 

thesis, I refer to a genetic system from an individual perspective. On the contrary, I refer 

to a social system within a group, because copulations – which define the social system – 

which I observed among adults were only within the group members. Still, because I found 

extra-group paternities, also extra-group copulations must occur, regardless whether I 

observed them or not.  

Mating systems may reveal insight into species dynamics. In callitrichids, polyandry is 

considered the prevailing mating system (Goldizen 1988). I found no evidence of social 

polyandry, instead I found monogamy and promiscuity, within two groups. I found 

evidence of genetic polyandry for one female and indications (according to hints) for four 

more females. I suggest two more genetic systems: polygyny and monogamy. Thus I 

conclude, that in L. nigrifrons polyandry is not the prevailing social system, but it may be 

the prevailing genetic system. Still, due to incomplete data on parentage, the latter is 

impossible to confirm. In primate groups, social and genetic mating systems within a 

group may be incongruent (Kappeler and van Schaik 2002). I suggest the same for L. 

nigrifrons: e.g. social promiscuity in Gr3, yet genetic monogamy and polygyny within 

resident individuals, or social and genetic monogamy in Gr1, but one resident female (1f2) 

is without a social and genetic system within a group, yet she has litters. Furthermore, 

incongruent may also be the genetic system of individuals within a group and within a 

study population, e.g.: male 1m1 and female 6f2 are monogamous within their resident 
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groups, yet polygamous within the study population. According to hints, two more 

females (5f1, 3f1) may show the same pattern.  

I suggest that mating systems in a group partly depend on the number of resident adults. 

For example, in this thesis one group consists of only one adult of each sex, therefore 

offers no other option but social monogamy (Gr5), nonetheless, the female may be 

genetically polyandrous within a population. The other group with social monogamy 

consists of one adult male and two breeding females (Gr1). Within this group is the 

breeding couple (1f1, 1m1) not just mating but also breeding exclusively. Monogamous 

genetic system has so far been documented only in one wild callitrichid species (Huck et 

al. 2005a). This is likely due to overall lack of genetic data from the wild callitrichids which 

would require the parentage to belong to only one male and one female over several 

breeding periods (Garber et al. 2016). I have records of three consecutive litters of one 

female (1f1) sired by the same male (1m1) and therefore I consider that the most likely 

genetic system of that couple within a resident group is monogamous. More detailed 

descriptions are in the respective section in chapter 4. 

2. Mating and paternity 

Despite polyandry being the prevailing callitrichid mating system (Goldizen 1988), rare 

genetic data on wild callitrichids show evidence of monopolization of paternities (Huck et 

al. 2005a, wild moustached tamarins, Saguinus mystax; Suárez 2007, red-bellied tamarins, 

Saguinus labiatus; Díaz-Muñoz 2011, wild Geoffroy’s tamarin, Saguinus geoffroyi). Due to 

my incomplete parentage results I can neither confirm nor exclude monopolization of 

paternities over different sets of twins in the groups. Nevertheless, monopolization of 

paternities over different sets of twins in the groups seems rather unlikely, because either 

I found no matching copulations and parentage between a breeding female and male 

(Gr1, female 1f2 and male 1m1), or hints point to one or more other sires (Gr1, Gr2, Gr3, 

Gr5), or I already determined more than one sire in a group (Gr3, Gr6). Instead, I found 

monopolization of paternities of one set of twins (Gr1, litter 1c, father 1m1). Callitrichid 

twins are dizygotic, which theoretically means that twins can be sired by two different 

males (summarized by Garber et al. 2016). Indeed, I found one twin litter with shared 

paternities (Gr6, twins 6j1 and 6j2, fathers 6m1 and 1m1). Callitrichid territories often 
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overlap with their neighbor´s territories and groups regularly meet (Lledo-Ferrer et al. 

2011, wild L. nigrifrons). I found two extra-group paternities (offspring 3sa1 and 6j1) and 

indications of a few more, yet only one extra-group copulation (6m3 and 3sa2). More 

detailed descriptions are in the respective section in chapter 4. I suggest that in 

callitrichids extra-group copulations are an important breeding strategy and should be 

included in interpretation of callitrichid mating systems.  

3. Offspring survival 

Typical twinning does not drastically increase callitrichid populations. In this thesis, five 

out of eight animals that disappeared were infants and the rest were adult males (see also 

Löttker et al. 2004a, S. mystax). Thus I suggest that in L. nigrifrons, the first few months 

are critical for offspring survival. In callitrichid groups, low numbers of adults, i.e. one male 

and one female, is rare (less than 10%, 23 cases) and is associated with unsuccessful 

rearing of offspring (summarized by Garber et al. 2016, but see Windfelder 2000, wild 

emperor tamarin, S. imperator). I report on a second case from wild tamarins of only two 

adults successfully rearing offspring. In addition, our groups with higher numbers of adults 

were both successful and unsuccessful in rearing offspring. Also rare and associated with 

unsuccessful offspring survival is multi-female breeding (Goldizen et al. 1996; summarized 

by Garber et al. 2016). In this thesis, I found two out of five groups with multi-female 

breeding, and offspring survived and disappeared in both, single and multi-female 

breeding groups. Thus I suggest, that group composition, i.e. number of adults, as well as 

number of breeding females, does not guarantee L. nigrifrons´ infant survival. In both 

multi-female breeding cases the infant disappearance happened while the secondary 

female was pregnant. I suggest, that these cases of unsuccessful breeding of young may 

be related to stress of simultaneous pregnancies (see also Hrdy 1979; Tirado Herrera et 

al. 2000). On the contrary, I also report on the positive side-effects of the multi-female 

pregnancies or breeding, i.e. allo-nursing. I have records of allo-nursing in one case of 

multi-female breeding (Gr3), where both females nursed the first consecutive litters but 

the next consecutive litter was nursed only by its non-mother. The second case of allo-

nursing comes from a single-female breeding group (Gr2), suggesting that a non-breeding 
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female was pregnant, but did not result in a litter to care for. More detailed descriptions 

are in the respective section in chapter 4. 

4. General patterns of infant-directed behavior 

In accordance with general patterns of infant care in callitrichids (Savage et al. 1996; 

summarized by Garber 1997; Yamamoto et al. 2009), I also confirm that L. nigrifrons adults 

are the most important infant caretakers, more so for carrying than food transfer whereas 

for the latter subadults are important too. Food transfer is the most evenly distributed 

infant-directed behavior over age classes, provided even by juveniles, which implies food 

transfer to be less energetically demanding than carrying. In callitrichids, the main carriers 

are often adult males (Savage et al. 1996; summarized by Garber 1997; Yamamoto et al. 

2009), which is regardless of paternity also true in this thesis. Adult males contribute up 

to 50% of group carrying, although in some cases they carry extremely little, below 5% 

(litter 1cn). Other principle carriers in this thesis are the mothers, whereas non-mothers 

usually carry less or not at all. A mother´s contribution is usually between 20-40%, with 

extreme values around 10% and 80% (litter 3cv and litter 1cn, respectively). Based on the 

two multi-female breeding cases (Gr1, Gr3) I suggest, that it is mostly the mother who 

compensates for the lack of carrying from adult males (see also Lappan 2008, wild 

siamang, Symphalangus syndactylus). In short, some males reduced their carrying 

contribution for the second consecutive litter, and carrying contribution of some other 

group members was increased, i.e. mostly by the litter´s mother and less by subadults and 

juveniles. The carrying contributions of adult males and the mothers are in multi-female 

breeding cases more extreme in a group with one adult male (Gr1) than in a group with 

two adult males (Gr3). More detailed descriptions are in the respective section in chapter 

4. These results show the importance for a mother to have adult male caretakers(s) and 

suggest that more caretakers help balance the carrying burden among the adults (see also 

Koenig 1995, wild Callithrix jacchus;  Schradin and Anzenberger 2001b, Goeldi´s monkey, 

Callimico goeldii). Moreover, to unburden a mother, I suggest that it´s more than how 

many carriers, but also the cumulative carrying effort of adult males.  
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5. Paternity certainty 

High levels of paternity certainty are often associated with willingness of a male to bear 

costs of infant care (Trivers 1972), like in socially monogamous male owl monkeys (Wright 

1984, owl monkeys, Aotus spp., titi monkeys, Callicebus spp.; Mendoza and Mason 1986), 

but can also be associated with relatively little investment in offspring, like in some single-

male groups (Bradley et al. 2005; Harcourt and Stewart 2007, mountain gorilas, Gorilla 

gorilla beringei). In contrast, promiscuous mating is expected to reduce paternity 

certainty, still, in several species of baboons and macaques, males often engage with 

infants, in terms of carrying, playing, cuddling and protecting (Smuts and Gubernick 1992). 

In the case of callitrichids it is suggested, that due to female polyandrous mating, male 

helpers help to increase their chance to reproduce (Huck et al. 2004c), indicating that a 

level of paternity certainty plays a role. Based on the two multi-female breeding cases in 

this thesis, I suggest that in L. nigrifrons adult males do adjust their helping contribution 

on their level of paternity certainty. In the case of one adult male in a group (Gr1) I 

recorded social monogamy with one female yet no social system with the other female, 

and therefore suggesting high and (low to) zero paternity certainty, accordingly. Male´s 

help to the female´s litter differed: was high (carrying was above 50%) and low (carrying 

was below 5%), accordingly. In the other multi-female breeding case with two adult males 

(Gr3), I found social promiscuity, suggesting intermedium paternity certainty for litters of 

both females. The males were the main carriers to the litters of both females, but in 

comparison to the male in Gr1, these two males from Gr3 helped with intermediate 

contribution. The same pattern: explained the connection between social systems, 

paternity certainty and male infant care contribution, is indicated also in one single-

female breeding group (Gr2). Whereas the other single-female group (Gr5) raises a 

question, whether a socially monogamous male that is likely to share paternity with an 

extra-group male, helps less because he has information about extra-group copulations 

with his mate or he differentiates between whether the infant is his or not, posing a 

question of kin-recognition. The later seems unlikely – in callitrichids kin-recognition may 

not be evolutionary favored, due to high within-group relatedness, and thus a helper´s 

inclusive fitness (Huck et al. 2005a, S. mystax; Cornwallis et al. 2009; Díaz-Muñoz 2011, 
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wild S. geoffroyi; Garber et al. 2016). More detailed descriptions are in the respective 

section in chapter 4. 

6. Male´s physical fatigue  

Changes in mobility, activity budget - especially lower feeding and foraging time, and body 

mass induced by infant care (Price 1992; Sánchez et al. 1999; Schradin and Anzenberger 

2001a; Achenbach and Snowdon 2002; Huck et al. 2004a; Caperos et al. 2012; chapter 5) 

indicate that a physical fatigue should occur. Due to the two multi-female breeding cases 

(Gr1, Gr3) in this thesis I suggest, that a male´s help is based on his physical fatigue, i.e. 

when comparing male´s helping contribution to first (1cv, 3cv) and second consecutive 

litters (1cn, 3cn), the latter litters received less help (from males 1m1, 3m1) or the same 

(from male 3m2). Moreover, when the second consecutive litter in Gr3 was born (3cn), 

both socially promiscuous males, continued carrying only this new, and thus lighter litter. 

In contrast, the male from Gr1 continued to mostly carry the old and thus heavier litter 

(1cv): this litter was sired by him, and within the resident group he was socially and 

genetically monogamous with litter´s mother (1f1), which suggests high level of paternity 

certainty. But, the new, lighter and not his litter (1cn) from the other female with which 

he had no social system, he carried little and also often refused to carry. I suggest that in 

a case of high paternity certainty, like in Gr1, physical fatigue is of lesser importance. More 

detailed descriptions are in the respective section in chapter 4. 

7. Pay to copulate (carrying as a male courtship strategy) 

 According to courtship strategy it would pay-off for a female to choose a mate who is a 

competent caretaker and males would adopt strategies to convince females they would 

be good caretakers (Price 1990), i.e. higher carrying effort. Callitrichid flexibility in mating 

systems, with the prevailing polyandry (Goldizen 1988), implies that males may adopt 

strategies which would increase their chances of paternity. In this thesis, male carrying 

investment did not correlate with the amount of copulations in any of the periods tested. 

Thus I found no evidence of carrying serving as a courtship strategy to gain more 

copulations (in contrast to Price 1990, captive C. jacchus; in agreement with Tardif and 

Bales 1997, captive C. jacchus and S. oedipus; Huck et al. 2004a, wild S. mystax). My results 
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are similar to socially monogamous and polyandrous groups of wild siamang (Lappan 2008 

S. syndactylus). More detailed descriptions are in the respective section in chapter 4. 

8. Activity budget while carrying or not carrying infants 

Callitrichids are small bodied animals, whose daily activities consist of foraging for prey, 

feeding, locomotion, vigilance, socializing and resting. Presence of infants does not 

eliminate these activities, but the energetic costs of infant care (Sánchez et al. 1999; 

Achenbach and Snowdon 2002; Morcillo et al. 2003) and constraints on carrier´s mobility 

while carrying (Schradin and Anzenberger 2001a; Caperos et al. 2012) imply that a shift in 

activity budget while carrying should occur. In this thesis I found that while carrying, 

carriers forage and eat less, but spend more time in vigilance. With less time feeding and 

foraging carriers are likely to have lower energy input. Although feeding time does not 

necessarily translate into amounts of ingested food (Zinner 1999) and could theoretically 

be compensated by increasing ingestion rates, it is hard to imagine a mechanism that 

would compensate for a decrease in prey foraging time. In callitrichids prey foraging 

requires good mobility skills, which impede carriers, e.g. decreased leaping (Schradin and 

Anzenberger 2001a; Caperos et al. 2012). Reduced mobility skills are also likely to results 

in increased time in vigilance and early detection of a predator may be a compromise to 

avoid situations where rapid escape would be needed. I suggest the following link: 

restricted carriers mobility (Schradin and Anzenberger 2001a; Caperos et al. 2012) causes 

activity budget to shift (Goldizen 1987b, Leontocebus weddelli; Price 1992, S. oedipus; 

Sánchez et al. 1999, S. oedipus; Huck et al. 2004a, S. mystax; chapter 5) and is likely to 

result in energetic costs of infant care – loss of body mass (Sánchez et al. 1999; Achenbach 

and Snowdon 2002; Morcillo et al. 2003). A more detailed interpretation is in chapter 5. 

9. Glucocorticoid response to infant care  

In callitrichids, the induced changes of infant care to their caretakers, e.g. loss of body 

mass, reduced mobility, shift in daily activities (Price 1992; Sánchez et al. 1999; Schradin 

and Anzenberger 2001a; Achenbach and Snowdon 2002; Huck et al. 2004a; Caperos et al. 

2012; chapter 5) imply that infant care is physiologically stressful. Stress can be detected 

with a stress indicator, i.e. as in an increase in cortisol metabolite (Moberg and Mench 
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2000). Thus I tested and compared fecal cortisol metabolite levels (FMC) in adult males, 

because they are often the main carriers (Savage et al. 1996; Garber 1997; Yamamoto et 

al. 2009), and in subadults, who carry less, but carrying can nonetheless be significant 

(Goldizen 1987b; Huck et al. 2004a). I compared their FMC levels between carrying and 

non-carrying periods, within the periods, and according to their carrying effort. Only 

within the non-carrying periods I found higher FMC levels in adult males than in subadult, 

whereas any other comparison yielded non-significant result. Overall, my data shows that 

infant care does not result in changes of fecal cortisol metabolite (FCM) levels. This 

suggests that infant care is not physiologically stressful, potentially due to infants acting 

as stress buffers. A more detailed interpretation is within the next part of this general 

discussion (A broader perspective, section 2), but most of all in chapter 6. 

A broader perspective 

1. Multi-female breeding 

Multi-female breeding is considered rare in callitrichids. Multi-female breeding was found 

in only 10 out of 288 wild groups of callitrichids, which corresponds to 5 out of 10 

callitrichid taxa studied: S. geoffroyi, S. oedipus, S. mystax, L. weddelli and L. nigrifrons 

(Tirado Herrera et al. 2000; summarized by Garber et al. 2016). This thesis adds two 

groups (Gr1, Gr3) to the list of observed multi-female breeding. All these cases include 

two females – if breeding or lactating or being pregnant. I suggest that a combination of 

high energetic costs of infant care (Sánchez et al. 1999; Achenbach and Snowdon 2002) 

and consequential physical fatigue (chapter 4), may be the limiting factor for the number 

of breeding females in callitrichids. If caring for only one litter can result in physical fatigue 

of males, and thus less carrying for the second consecutive litter, than a third, or even a 

fourth consecutive litter, could be helped very little by adult males – probably even under 

high level of paternity certainty. I showed that a lack of carrying by adult male´s is 

compensated mostly by the mothers (chapter 4). Thus, more breeding females would 

result in a mother´s increase of infant care investment and finally increased energetic 

costs.  
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Another limiting factor to the number of breeding females may be stress related 

infanticide due to simultaneous pregnancies. In callitrichids, multi-female breeding often 

results in unsuccessful breeding of young (Goldizen et al. 1996). Offspring death might be 

due to infanticide by the mother, the primary breeding female (Tirado Herrera et al. 2000, 

wild L. nigrifrons). Suggested reasons for this infanticide in particular, is a parental 

manipulation: for an infant who had low chances of survival a mother may have decided 

to terminate parental investment, or female reproductive competition: stress related 

infanticide due to a simultaneous pregnancy of another female (Hrdy 1979; Tirado Herrera 

et al. 2000). This thesis has two parallels to the study of Tirado Herrera and co-workers 

(2000). First, litters from both secondary females survived (litter 1cn, 3cn). Second, both 

primary females (1f1, 3f1) lost one of the twins (1cv2, 3cv3), while secondary females 

were still pregnant. I found no apparent reason why and how the two infants disappeared, 

yet an influence of another female pregnancy is a plausible explanation. If indeed 

simultaneous pregnancy imposes stress on mothers (Tirado Herrera et al. 2000) then 

multi-female breeding may not be favored in callitrichid groups. 

Nonetheless, based on this thesis I suggest that multi-female breeding with two breeding 

females may be more common in wild callitrichids than is currently assumed. Within only 

15 study months I confirmed multi-female breeding in two out of five groups. In one case 

I could confirm a secondary female giving birth twice. Due to observed allonursing, it is 

likely, that multi-female pregnancy occurred also in group Gr2. Still, allonursing can also 

result from pseudo-pregnancy, as is overall common in genus Canis and suggested for 

subordinates of cooperatively breeding Ethiopian wolf (Gobello et al. 2001; Kesteren et 

al. 2013, Canis simensis). Moreover, such a combination, i.e. allonursing and pseudo-

pregnancy, is suggested to increase non-breeding subordinate inclusive fitness in 

cooperatively breeding dwarf mongooses, by improving the survial of related offspring 

(Creel et al. 1991, Halogale parvula). The second group with single-female breeding (Gr6), 

had two adult females and therefore a potential for two breeding females, but I observed 

this group for the least time – almost half the time than the other groups. Thus, if multi-

female breeding existed, I might have missed it. The third group with single-female 

breeding (Gr5) consisted of a rare combination of only one adult male and one adult 

female (summarized by Garber et al. 2016), therefore offered no choice of multi-female 
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breeding. Based on maternity and paternity data, this thesis shows that all adult females 

copulate, even if not within their resident group (females 1f2, 5f2). Taken together, 

callitrichids may copulate and breed when given a chance, but limiting factors may be the 

number of adult males needed to help with infant care, male willingness to help and 

mother´s stress due to simultaneous pregnancies.  

2. Infant care and physiological stress 

My findings of fecal cortisol metabolite (FCM) levels suggest that infant care is not 

physiologically stressful (chapter 6). But, considering carrier´s activity budget changes 

shown in this thesis (chapter 5) and in other studies (Price 1992, S. oedipus; Sánchez et al. 

1999, S. oedipus; Schradin and Anzenberger 2001a, C. jacchus; Huck et al. 2004a, Saguinus 

mystax) as well as the high energetic costs of carrying (Sánchez et al. 1999; Achenbach 

and Snowdon 2002) this seems like an uncomplete explanation. Based on this thesis and 

other studies on carrying and/or cortisol in callitrichids – cortisol levels never increased, 

but stayed the same or decreased (Nunes et al. 2001, Callithrix kuhlii; Huck et al. 2005b, 

S. mystax; Bales et al. 2006, Leontopithecus rosalia; da Silva Mota et al. 2006, C. jacchus) 

– I suggest that in callitrichids infants may act as stress buffers. It is known that a positively 

associated social partner may reduce glucocorticoid responses to stressors, so called 

“social buffering” (Hennessy et al. 2009, review). Thus infants may balance out the 

energetic costs that would otherwise lead to a physiological stress response. This 

explanation agrees with the importance of maintaining low cortisol levels in vertebrate 

caretakers, because it increases the parental care, whereas high cortisol levels may result 

in negative behaviors of the parents towards the offspring (Raulo and Dantzer 2018, 

rewiev), e.g. nest abandonment in Adelie Penguins (Spée et al. 2010, Pygoscelis adeliae), 

offspring abandonment (Groscolas and Robin 2001; Groscolas et al. 2008; Spée et al. 2010, 

2011). Rare evidence on infants buffering the stress response of their caretakers comes 

from guinea pigs (Ritchey and Hennessy 1987, Cavia porcellus) and squirrel monkeys 

(genus Saimiri, Mendoza et al. 1978; Wiener et al. 1987). Furthermore, based only on this 

thesis I cannot explain why there are differences and similarities between FCM levels of 

adult males and subadults. But taken together with other studies on cortisol and/or infant 

care in callitrichids (Nunes et al. 2001; Ziegler et al. 2004; da Silva Mota et al. 2006), I 
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suggest that infants can only act as effective stress buffers when caretakers mature and 

gain parental or alloparental experience. In brief, prior to parturition within older 

offspring and adult males, only  more experienced fathers exhibit a change (an increase) 

in cortisol levels (Ziegler et al. 2004; da Silva Mota et al. 2006), an effect that disappears 

after parturition (da Silva Mota et al. 2006). This is an indication of the importance of 

maturity and parental experience. Furthermore, after parturition, cortisol levels in fathers 

decreased with parental experience, yet they still carry at a similar rate (Nunes et al. 

2001). Again, an indication of the importance of parental experience. A more detailed 

discussion is in chapter 6. 

3. How do my findings connect? 

The focus of this section is to link my findings and to provide plausible answers to the aim 

of this thesis: why some individuals, especially adult males, contribute more to infant care 

than others, and how does infant care relate to mating systems.  

What makes a group survive in the long run is the survival of its offspring. Callitrichid 

offspring are at the greatest risk of disappearance during the first few months of their life 

(Löttker et al. 2004a, S. mystax; chapter 4). Thus, callitrichid infants must be cared for 

intensively and they are, although unevenly by all group members (Epple 1975; Pryce 

1988; Tardif et al. 1992; Huck et al. 2004a; chapter 4). I show that juveniles are the least 

important caretakers, subadults contribute more, especially for feeding the infants, and 

adults contribute the most. Within adults differences also exist: mothers and adult males, 

the latter regardless of paternity, carry more than non-mothers (chapter 4). The question 

arises: “Why the differences in infant care contribution?” I suggest that the answer is 

based on costs and benefits of infant care, which in females relate to whether she is a 

breeder of not, whereas in adult males to a social mating system of a mother – which 

influences the level of paternity certainty, and to a physical fatigue. However, the answer 

is not based on males using carrying as a courtship strategy, or influenced by a 

physiological stress, i.e. glucocorticoid levels. 
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In callitrichids, carrying heavy infants impedes carrier movement, which is likely to affect 

activity budgets and result in high energetic costs (Price 1992; Sánchez et al. 1999; 

Schradin and Anzenberger 2001a; Achenbach and Snowdon 2002; Huck et al. 2004a; 

Caperos et al. 2012; chapter 5). Nonetheless, I show that infant care and carrying itself are 

not physiologically stressful, likely because infant´s act as a stress buffer (chapter 6; see 

also Hennessy et al. 2009, review). Whether infant social buffering occurs or not, it may 

only prevent the physiological stress response of energetic costs, i.e. glucocorticoid 

increase and thus the negative behavior of the parents towards the offspring (see Raulo 

and Dantzer 2018, review), but not the energetic costs themselves. Thus a decision 

whether to invest in infant care, how to invest and how much is unlikely to be influenced 

by a stress factor. Nonetheless the decision is still essential and ultimately leads to 

differences in infant care contribution.  

Due to breeder’s direct fitness benefits we might expect breeders to help more than non-

breeding helpers (Cant 2012), which is in this thesis true for females but not for males 

(chapter 4; see also Huck et al. 2004a, S. mystax). Due to pregnancy and lactation, mothers 

already exhibit high energetic costs (Oftedal 1984; van Noordwijk 2012). Thus, mothers 

are likely to adopt strategies that would benefit them in decreasing the cost of infant care. 

Help from other group members, especially adult males, seems to be essential (chapter 

4; see also Schradin and Anzenberger 2001b, C. goeldii): alongside the mothers, adult 

males are the main carriers and if males carry less, it is mostly the mother who 

compensates for his lack of carrying. Thus, if a mother is lacking help from an adult male, 

her energetic costs of infant care are likely to increase (chapter 4; see also Lappan 2008, 

S. syndactylus). The presence of a larger number of adult males increases females´ direct 

fitness benefits (Koenig 1995, wild C. jacchus), but since one male can contribute more 

than two males combined (chapter 4), the reasons why adult males contribute to carry 

are extremely important.  

Considering changes in mobility, activity budget and body mass loss induced by infant care 

(Price 1992; Sánchez et al. 1999; Schradin and Anzenberger 2001a; Achenbach and 

Snowdon 2002; Huck et al. 2004a; Caperos et al. 2012; chapter 5) and benefits of being a 

breeder (Cant 2012), it seem reasonable that males might try to obtain information about 

their paternity and use it to their advantage, i.e. help more if they are likely to be fathers 
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(see also Muller and Emery Thompson 2012). Indeed, a social system may give males 

information about their paternity certainty level and they help accordingly (chapter 4). 

Moreover, high paternity certainty seems to influence the decision about infant care 

contribution even more than male´s physical fatigue. On the contrary, if having no social 

system with a mother, indeed is the reason why a male may help less, than in addition to 

higher tolerance, i.e. less agonistic displays and aggression towards strangers when in 

small groups without helpers (Schaffner and French 1997, Callithrix kuhli), copulations – 

copulating or not, might be a female strategy to recruit adult male caretakers (chapter 4). 

For males to help more, I show that the amount of copulations are not important, thus 

carrying is unlikely to be used as a male courtship strategy (in contrast to Price 1990; in 

agreement with Tardif and Bales 1997; Huck et al. 2004a). 

Copulations may result in producing offspring. Shared paternity of a twin litter between a 

group and an extra-group male (chapter 4) suggests that consorting males who act as 

mate guards (Thornhill and Alcock 1983; Huck et al. 2004c, S. mystax; Lledo-Ferrer et al. 

2010, L. nigrifrons), may not be entirely successful at restricting a female from copulating 

with other (group or extra-group) males while she is in her fertile period (see Löttker et 

al. 2004b, S. mystax). This may be due to males not sensing the exact timing of female 

fertile period, but rather the probability of ovulation. Thus, a female may mate with other 

males outside the consorting time, but still within her fertile period (Ziegler et al. 1993; 

Converse et al. 1995; Washabaugh and Snowdon 1998; Nunn 1999; Huck et al. 2004c, S. 

mystax). I recorded consorting twice (Gr2) – one male consorted with both group females, 

but did not sire any offspring. Monopolization of paternities for a single set of twins was 

found in a group with one male (Gr1), potentially due to lack of female mating 

opportunities within a group after consorting. Still, in another group with one adult male 

(Gr5) according to the hints, the litter´s paternity is shared between a group and an extra-

group male – this is only one of many indications in this thesis, that extra-group 

copulations are an important breeding strategy in callitrichids (chapter 4). 

I found two types of social systems: monogamy and promiscuity. Considering the 

importance for a mother to have adult male caretakers which are highly involved with 

infant care, social promiscuity is likely to be more common than monogamy (chapter 4; 

see also Garber et al. 2016). I suggest that social monogamy may be mostly limited by the 
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number of adults in the group, i.e. two, a combination that is rarely found in wild 

callitrichid groups. Moreover, many callitrichid traits such as multi-male and multi-female 

breeding per group, but also non-breeding adult females, and frequent migration, 

disagree with social and genetic monogamy to be a modal pattern (Garber et al. 2016). I 

found all the traits listed above, although with a slight modification: when there was more 

than one sire of the group’s offspring, then only one sire was from the resident group. I 

suggest that the observed genetic systems of individuals are a result of these extremely 

complex relationships within the study population. I also suggest that in cases like this 

thesis – when a genetic system of an individual within a group may differ from within a 

population, genetic systems should be based on describing individual genetic patterns. 

In conclusion, I suggest that L. nigrifrons mating systems and infant care are closely linked 

(see also Smiseth et al. 2012), and are not affected by a physiological stress of the latter, 

because there is none (chapter 6). Considering changes induced by infant care: in mobility, 

activity budget, body mass (Price 1992; Sánchez et al. 1999; Schradin and Anzenberger 

2001a; Achenbach and Snowdon 2002; Huck et al. 2004a; Caperos et al. 2012; chapter 5) 

and a male´s physical fatigue, but also a mother´s need to have adult male caretakers 

(chapter 4), I suggest that it is in best interest of both, mothers and adult males, to have 

more caretakers, who can share and balance the infant care investment. This may help to 

explain overall low agonistic interactions between callitrichid males (Goldizen 1989; Caine 

1993; Heymann 1996; Huck et al. 2004c), due to tolerance probably working in favor of 

recruiting helpers (Schaffner and French 1997). Finally, since mothers benefit more from 

adult male caretakers with above zero levels of paternity certainty, females would, when 

possible, prefer to mate with more than one male, resulting in various social and genetic 

systems.  

4. How do my findings relate to the understanding of 
cooperative breeders? 

The evolutionary conflict of cooperatively breeding helpers: helper´s helping effort usually 

trades-off against helper´s own residual reproduction, represents the greatest challenge 

in studying cooperative breeders, i.e. “why is altruistic behavior favored by natural 

selection or, why do non-breeding helpers help?” (Cant 2012). I suggest that in callitrichids 
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this conflict may be less pronounced – based on two reasons. First, male helpers may not 

be sure of their non-breeding status. Females normally copulate with more than one male 

(Goldizen 1988; Huck et al. 2005a; Garber et al. 2016), thus males are unlikely to know 

whether they are a father or a non-breeding helper. Indeed, I show that carrying effort of 

fathers and helpers does not differ (chapter 4). Huck and co-workers (2004a) suggest, that 

males may help for a chance of their own reproduction – because the offspring they help, 

might be their own. Second, males may profit regardless of their breeding status. 

Callitrichids exhibit high within-group relatedness (Huck et al. 2005a, S. mystax; Díaz-

Muñoz 2011, wild S. geoffroyi; Garber et al. 2016; see also Erb and Porter 2017), thus in 

terms of inclusive fitness benefits, a male helper might benefit even as a non-breeding 

helper. Nonetheless I show that due to a level of paternity certainty and therefore a 

chance for a direct fitness benefit, males help more or less (chapter 4). Taken together, I 

suggest that help from callitrichid caretakers is likely to be more about potential benefits 

than altruism. I suggest that in cooperative breeders with similar social and genetic 

structure to callitrichids – polyandrous or promiscuous mating, high within-group 

relatedness – the conflict of whether an individual helps or not will be less pronounced. 

Given that the great majority of cooperative breeders exhibit groups of genetic relatives 

(Cant 2012), e.g. paper wasps, pied kingfishers, Australian bell miners, white fronted bee-

eaters, dwarf mongooses etc. (summarized by Griffin and West 2003; Cornwallis et al. 

2009; Leadbeater et al. 2010), this explanation may be plausible for many of them. 

One of the well-studied cooperative breeders that holds many similarities to callitrichids, 

including my own findings on L. nigrifrons, are mongooses or meerkats (Suricata 

suricatta). Meerkats are desert-adapted mammals, living in groups of 3 to 25 individuals, 

typically including a dominant couple and a number of helpers of both sexes. A dominant 

female is responsible for a vast majority of the breeding attempt, and a dominant male 

sires most of the groups offspring and helpers (summarized by Clutton-Brock et al. 2000). 

After birth, two or more helpers “babysit” the infants – helpers stay at the natal burrow 

for the first three weeks, usually for the whole day and often do not eat, while the rest of 

the group forage. Thus like in this study of L. nigrifrons and in other callitrichids, meerkat 

caretaker´s activity budgets changes – babysitters forage and feed less (Goldizen 1987b, 

L. weddelli; Price 1992, S. oedipus; Clutton-Brock et al. 1998, S. suricatta; Sánchez et al. 
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1999, S. oedipus; Huck et al. 2004a, S. mystax; chapter 5). Additional parallels between 

callitrichids and meerkats are: energetic costs of caretakers, i.e. loss of body mass up to 

11% (Clutton-Brock et al. 1998; Sánchez et al. 1999; Achenbach and Snowdon 2002), 

infant care is unequally provided by caretakers and more helpers (caretakers) lower the 

individual investment (Epple 1975; Pryce 1988; Goldizen 1989; Tardif et al. 1992; Clutton-

Brock et al. 2000; Huck et al. 2004a; chapter 4). Moreover, more meerkat helpers reduce 

the maternal care costs: higher maternal body mass at conception of the following litter 

(Russell et al. 2003, S. suricatta) – this may be equivalent to my findings of the mother´s 

compensation of the lack of carrying by males, for which I suggest that it is likely to result 

in increased maternal energetic costs. In addition to age and sex, the contribution of 

meerkat helper´s depend on the helper´s weight: heavier helpers of both sexes contribute 

more (Clutton-Brock et al. 2000, S. suricatta). This may be equivalent to my findings of 

physical fatigue, because I suggest its association with body mass loss and less carrying, 

and to a similar suggestion in another cooperative breeders – white fronted bee-eater: 

helper´s physical condition may affect its infant care contribution (Emlen and Wrege 1988, 

Merops bullockoides).  

Another callitrichid parallel with meerkats is based on copulations: extra-group 

copulations may be an important breeding strategy (Young et al. 2007, wild S. suricatta; 

chapter 4). In meerkats, extra-group copulations may be an alternative reproductive 

tactics for subordinate males: the majority of subordinate´s offspring are due to extra-

group paternities. This enables subordinates to breed without dispersal and to reduce 

their age at first reproduction. Extra-group copulations occur during males subordinate 

“extraterritorial forays”, which occur during peak periods of female fertility and often 

results in extra-group paternities (Young et al. 2007, wild Suricata suricatta). These forays 

may be equivalent to occasional separations of L. nigrifrons, two or more animals 

together, from the resident group, for hours or even days (Slana, personal observation). 

In addition, callitrichid groups have regular intergroup encounters, they are an 

opportunity to exchange information via scent. Encounters can be aggressive as males 

often try to restrain group females from intergroup interactions, still extra-group 

copulations may occur (Hubrecht 1985, wild C. jacchus; Digby 1999, wild C. jacchus; Huck 

et al. 2005a, wild S. mystax; Lledo-Ferrer et al. 2011, wild L. nigrifrons). For males, 
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especially those less successful at copulating with breeding females, extra-group 

copulations with conception present an alternative and low-cost strategy to reproduce 

(Birkhead and Parker 1997). This appears to be similar to subordinate males to copulate 

more in concealment, whereas the most dominant males mate in the open (Altmann 

1962, rhesus monkey Macaca mulatta). For a breeding female extra-group copulations 

may present a greater mate choice (Birkhead and Parker 1997), especially if her copulating 

opportunities in the group are restricted. This may be the case for the secondary breeding 

female (Gr1, female 1f2): she never copulated within the resident group, yet had two 

litters, whose father is hinted to be an extra-group male. 

Similar to this thesis, monopolization of paternities within a group was also not found in 

cooperatively breeding banded mongooses (Nichols et al. 2010, Mungos mungo). Authors 

explain, that females of banded mongooses typically synchronize the timing of oestrus, 

thus it is impossible for one male to mate-guard all group females. Males are divided into 

guarding and non-guarding males. Although guarding males reproduce more – especially 

due to older males who guard older and higher quality females, non-guarding males 

copulate with females when females evade their mate-guards. In contrast to callitrichids, 

where one male mate-guards one female, and a consorted female does not appear to try 

to evade her mate-guard (Lledo-Ferrer et al. 2010; Slana, personal observation). Although 

I also suggest a link between mate-guarding and limited monopolization, I suggest that it 

may be due to males not knowing the exact timing of breeding period (see explanation in 

section How do my findings connect?, p. 118). 

Strengths and limitations of this thesis, and future 
recommendations  

A limitation, that then became a strength of this thesis, was having both, single- and multi-

female groups (chapter 4). I focused less on examining general patterns of infant care 

since each group was a representation of different combinations, e.g. number of adults, 

copulations, parentage and individual infant care investment. Thus most of my 

conclusions are based on describing individual cases, how they differ from other individual 

cases, and describing the potential links between the cases. At the same time, this 
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embodies the strength of this thesis. Exactly because of the uniqueness of individual cases 

I could suggest answers, to more theoretical questions based on, in which litter to invest 

more and why, if there is a choice of more than one. On the contrary, when investigating 

activity budgets while carrying, the strength of this thesis is the sample size (chapter 5). 

Other studies from the wild gathered less data – from less groups and individuals, and 

during less carrying periods (see Goldizen 1987b; Huck et al. 2004a). An additional 

strength of this thesis is that I included more daily activities – also vigilance, and that I 

kept the daily activities separate, i.e. not clustering the foraging with feeding (see Goldizen 

1987b; Huck et al. 2004a), which enabled me to discuss the specific changes more 

precisely. 

A notable limitation of this thesis is incomplete genetic analyses (chapter 4). 

Unfortunately I could assign only a few paternities, which limited my possibilities of 

unveiling genetic systems and other explanations based on the genetic information. 

Nonetheless, already the limited genetic information revealed that descriptions of L. 

nigrifrons genetic systems cannot be limited to within the group and that there are big 

differences among the groups. This thesis is already the second study that tried to analyze 

nuclear DNA of L. nigrifrons using microsatellite primers (see Lledo Ferrer 2010). The 

analyses in this thesis failed only partly, whereas in the other study the analyses failed 

completely – at a stage of DNA amplification. In this thesis the problem was noted within 

the last steps of analyses – assigning the genotypes: DNA peaks were often inconsistent 

between different samples of the same individual. As stated by Lledo Ferrer (2010) many 

of the primers, that were already used for S. mystax (see Huck et al. 2005a) could not be 

adapted for L. nigrifrons. One difference between these two callitrichid species is that L. 

nigrifrons eat more gum (Peres 1993a), and certain types of gum have inhibitory effects 

on PCR amplification (Demeke and Adams 1992). Future studies may consider developing 

primers specifically for L. nigrifrons or using different types of genetic analyses, like 

sequencing methods (see Mardis 2008). 

This thesis revealed that infant care is not associated with an increase of FCM, and thus I 

suggest that infant care is not physiologically stressful (chapter 6). However, if infant care 

is associated with low levels of physiological stress, assessing FCMs as an integrated 

measure of cortisol may not be sensitive enough to detect small and/or short-term 
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endocrine changes. Since hormones in feces represent an integrative measure of pooled 

endocrine activity over several hours or days, measurements are less sensitive in 

comparison to urine and blood hormone analysis (Heistermann 2010). Thus, if the future 

studies from wild populations would use urine or blood samples, and would find results 

similar to ours, this would reinforce my suggestion that infant care does not cause 

physiological stress. However, an invasive method of taking repeated blood samples in 

wild group animals, is likely to negate the trust between observers and study animals, 

increase the momentary stress level of animals, and thus lowering the power of 

conclusion of what is influencing the glucocorticoid level. There are cases of taking urines 

samples from wild primates, e.g. chimpanzees (Muller and Wrangham 2004b, a), but it is 

hard to imagine how this could be achieved with small callitrichids, that are often high in 

the canopy. However, the three captive studies relevant to the topic of glucocorticoids 

and infant care in callitrichids, did use blood or urine samples and alike to this thesis, 

found no cortisol increase (see Nunes et al. 2001; Ziegler et al. 2004; da Silva Mota et al. 

2006). Although more sensitive methods for measuring physiological stress (Heistermann 

2010) are easily obtained in captivity, captive conditions are generally less challenging and 

cortisol increases may be less pronounced (Smith et al. 2012, Marmota flaviventris). 

Furthermore, in captive conditions samples can be taken regularly and in a controlled 

manner, whereas in wild populations, many fecal samples cannot be found or are 

contaminated. In wild studies, like this one, this may result in scarce and dispersed 

hormonal samples (chapter 6), which lowers the ability to “measure” hormonal levels 

within a potentially desired very narrow time window, e.g. days around parturition (see 

da Silva Mota et al. 2006). In addition, wild studies, like this one, often have none or only 

limited information about an individual’s past experience, e.g. parental experience, which 

may be clearly known for captive animals (see Ziegler et al. 2004; da Silva Mota et al. 

2006). I suggest that conclusions on the topic of hormones in callitrichids should be based 

on combining both, the studies from captivity and the wild (detailed discussion in chapter 

6). 

Last but not least, the overall limitation of a study in the wild is inability to observe and 

collect data all the time. Due to extra-group paternities I show that in L. nigrifrons extra-

group copulations occur more frequently than I actually observed them (chapter 4). 
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Ideally, to completely uncover the complex social systems within the population of 

neighboring callitrichid groups, researchers should document all copulations of each 

sexually active individuals over a longer period of time. Still, for callitrichid primates that 

are often difficult to detect for researchers – due to small size, height in canopy, crossing 

a river over a canopy – it is hard to imagine a better suitable non-invasive method than 

used in this thesis.  
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Conclusions 

Activity budget shifts are possibly related to restricted mobility while carrying infants, 

which is likely to contribute to behavioral modifications of predator avoidance strategies. 

Furthermore, these activity budget shifts are likely to result in energetic costs in carriers, 

and must be compensated by both indirect and direct fitness benefits. 

Infant care is not physiologically stressful, possible due to infants acting as stress buffers: 

infants may balance out the energetic costs that would otherwise lead to a physiological 

stress response. Possibly, infants can only act as effective stress buffers when caretakers 

are more mature with parental or alloparental experience. 

Infant care contribution is possibly based on individual energetic costs and direct or 

indirect fitness benefits. Adult females are likely to base their contribution on whether 

they are a breeder or not. Adult males are likely to base their contribution on their physical 

fatigue, but most of all on a level of paternity certainty, which is likely to depend on the 

social mating system of the mother – whether she copulates with that male and with other 

males.  

Mother´s compensate for a lack of carrying by male´s which suggests mother´s need to 

have adult male caretakers. Adult male´s physical fatigue due to carrying, also suggests 

adult male´s need to have additional adult male caretakers. Combined, this may relate to 

females copulating with more than one male, because copulations – not the amount but 

copulating or not, is likely to affect a male´s infant care investment. Whereas in males, 

this may relate to being tolerant of females copulating with other males. 
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Callitrichids may copulate and breed when given a chance, but occurrence of multi-female 

breeding may be limited by the number of adult males needed to help with infant care, 

male willingness to help and mother´s stress due to simultaneous pregnancies. 

Extra-group copulations are likely to be an important breeding strategy, for both, males 

and females. It is plausible, that female extra-group copulation occur partly because of 

consorting males cannot sense the exact timing of the female fertile phase. Moreover this 

may be related to shared paternities of twin litters and to limited monopolization of 

paternities.  

Taken together, there is a link between infant care and mating systems. These complex 

relations are likely to relate to monogamy not being a modal mating system in callitrichids. 

Finally, callitrichid mating system definitions cannot be limited to within a group 

description, but should be based on a description of an individual´s mating system or 

within a population. 
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Appendix A 

Supplementary data for chapter 4 

 
Fig. A-1: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to “infant carrying”, based on all eight litters (six 
litters with complete observation periods (3 months), and two litters with uncomplete 
observation periods (2 months)). Boxes extend from first quartile to third quartile. The 
horizontal line within the box represents the median. Whiskers below (above) the box 
extend to the lowest (highest) data point which is still within 1.5 times the interquartile 
range (IQR) of the first (third) quartile, where IQR is the difference between third and first 
quartile. Open circles (○) indicate data points outside the range encompassed by whiskers. 
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Fig. A-2: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to “reject infant carrying”. See Fig. A-1 for 
further details. 

 

 
Fig. A-3: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to “infant take attempt”. See Fig. A-1 for further 
details. 
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Fig. A-4: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to “food transfer”. See Fig. A-1 for further 
details. 

 

 
Fig. A-5: Tukey box plot of contribution of different classes of individuals, combining age 
class with parentage information, related to reject “food transfer”. See Fig. A-1 for further 
details. 
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Table A-1: Contribution of infant-directed behavior in A) Gr1 towards litter 1cv and 1cn, B) 
Gr2 towards litter 2c, C) Gr2 towards litter 2cv, D) Gr3 towards litter 3c, E) Gr3 towards 
litter 3cv and 3cn, F) Gr5 towards litter 5cn. The behavior is summed up for each carrying 
month separately, until the end of the carrying. 

A) Infant-directed behavior (%) in Gr1 towards litter a) 1cv, b) 1cn  

Caretakers 1m1 1f1 1f2 1sa1 1sa2 1j1 1j2 

Litter a) b) a) b) a) b) a) b) a) b) a) b) a) b) 
Carry 

 
 
 

Dec-12 59 NA 41 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Jan-13 27 NA 60 NA 3 NA 10 NA 0 NA 0 NA 0 NA 

Feb-13 41 1 46 0 0 86 0 2 3 5 10 6 0 0 

Mar-13 55 4 24 0 21 85 0 3 0 3 0 1 0 4 

Apr-13 0 0 0 0 0 36 0 0 100 0 0 0 0 64 

Reject 
carry 

 
 
 

Dec-12 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Jan-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Feb-13 0 0 0 0 0 15 0 0 0 58 0 27 0 0 

Mar-13 0 4 65 0 0 67 0 0 0 6 35 0 0 22 

Apr-13 0 100 0 0 0 0 0 0 100 0 0 0 0 0 

Take 
 
 
 

Dec-12 54 NA 46 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Jan-13 31 NA 45 NA 0 NA 24 NA 0 NA 0 NA 0 NA 

Feb-13 100 0 0 0 0 100 0 0 0 0 0 0 0 0 

Mar-13 0 0 0 0 100 0 0 0 0 0 0 0 0 0 

Apr-13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Feed 
 
 
 

Dec-12 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Jan-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Feb-13 0 0 18 0 0 100 0 0 67 0 0 0 15 0 

Mar-13 8 100 38 0 0 0 18 0 12 0 10 0 14 0 

Apr-13 0 8 40 9 4 20 11 21 29 41 0 0 15 0 

Reject 
feed 

 
 
 

Dec-12 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Jan-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Feb-13 0 0 0 0 0 0 0 0 100 0 0 0 0 0 

Mar-13 22 100 0 0 34 0 0 0 16 0 28 0 0 0 

Apr-13 0 22 18 0 20 17 25 4 18 9 19 30 0 18 

 

B) Infant-directed behavior (%) in Gr2 towards litter 2c  

 Caretakers 2m1 2m2 2m3 2f1 2f2 
Carry May-12 2 6 14 40 36 

Jun-12 0 0 0 100 0 

Reject 
carry 

May-12 0 0 0 0 0 

Jun-12 0 0 0 0 0 

Take 
 

May-12 0 0 0 0 0 

Jun-12 0 0 0 0 0 

Feed May-12 23 15 21 40 0 
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B) Infant-directed behavior (%) in Gr2 towards litter 2c  

 Caretakers 2m1 2m2 2m3 2f1 2f2 
Jun-12 13 13 0 35 39 

Reject 
feed 

May-12 26 6 7 27 34 

Jun-12 22 23 13 20 22 

 

C) Infant-directed behavior (%) in Gr2 towards litter 2cv  

Caretakers 2m1 2m2 2f1 2f2 2j1 2j2 
Carry Feb-13 69 6 29 2 0 0 

Mar-13 29 24 13 39 7 2 

Apr-13 45 30 9 13 2 0 

May13 39 0 61 0 0 0 

Reject 
carry 

Feb-13 0 0 0 0 0 0 

Mar-13 0 0 17 62 25 0 

Apr-13 15 31 17 20 16 0 

May13 100 0 0 0 0 0 

Take Feb-13 20 0 80 0 0 0 

Mar-13 17 38 17 28 0 0 

Apr-13 0 0 0 0 0 0 

May13 0 0 0 0 0 0 

Feed Feb-13 0 0 0 0 0 0 

Mar-13 0 0 0 0 0 0 

Apr-13 24 15 16 11 14 20 

May13 20 11 17 36 9 6 

Reject 
feed 

Feb-13 0 0 0 0 0 0 

Mar-13 0 0 0 100 0 0 

Apr-13 28 16 41 0 15 0 

May13 0 0 0 0 0 0 

 

D) Infant-directed behavior (%) in Gr3 towards litter 3c  

Caretakers 3m1 3m2 3f1 3f2 3sa1 3sa2 
Carry May-12 20 33 12 34 0 1 

Jun-12 15 14 9 53 6 3 

Jul-12 16 67 17 0 0 0 

Reject 
carry 

May-12 0 0 6 26 14 53 

Jun-12 17 9 15 46 0 13 

Jul-12 0 46 0 54 0 0 

Take May-12 0 0 0 0 0 0 

Jun-12 0 0 0 0 0 0 

Jul-12 0 0 0 0 0 0 

Feed May-12 0 0 85 0 0 15 

Jun-12 24 22 19 7 12 15 

Jul-12 30 16 22 19 8 4 

Reject 
feed 

May-12 0 0 0 0 0 0 

Jun-12 17 12 62 14 0 0 

Jul-12 24 0 65 0 11 0 
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E) Infant-directed behavior (%) in Gr3 towards litter a) 3cv, b) 3cn  

Caretakers 3m1 3m2 3f1 3f2 3sa1 3sa2 3j1 

Litter a) b) a) b) a) b) a) b) a) b) a) b) a) b) 
Carry Jan-13 25 NA 4 NA 25 NA 15 NA 22 NA 11 NA 0 NA 

Feb-13 43 NA 20 NA 12 NA 9 NA 8 NA 8 NA 0 NA 

Mar-13 41 NA 34 NA 2 NA 12 NA 8 NA 2 NA 0 NA 

Apr-13 0 NA 100 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

May-13 0 20 0 19 0 12 0 22 0 14 0 11 0 2 

Jun-13 0 23 0 28 0 6 0 17 0 11 0 15 0 1 

Jul-13 0 10 0 13 0 14 0 7 0 27 0 29 0 0 

Reject 
carry 

Jan-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Feb-13 0 NA 100 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Mar-13 21 NA 54 NA 0 NA 0 NA 0 NA 0 NA 25 NA 

Apr-13 0 NA 46 NA 0 NA 0 NA 54 NA 0 NA 0 NA 

May-13 0 17 0 0 0 14 0 38 0 14 0 0 0 18 

Jun-13 0 7 0 10 0 11 0 29 0 23 0 20 0 0 

Jul-13 0 9 0 5 0 16 0 17 0 8 0 38 0 7 

Take Jan-13 52 NA 0 NA 31 NA 0 NA 0 NA 17 NA 0 NA 

Feb-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Mar-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Apr-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

May-13 0 17 0 22 0 14 0 35 0 0 0 6 0 6 

Jun-13 0 0 0 0 0 100 0 0 0 0 0 0 0 0 

Jul-13 0 0 0 0 0 0 0 0 0  0 0 0 0 

Feed Jan-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Feb-13 0 NA 0 NA 0 NA 49 NA 0 NA 32 NA 20 NA 

Mar-13 29 NA 23 NA 5 NA 14 NA 0 NA 22 NA 7 NA 

Apr-13 0 NA 11 NA 4 NA 47 NA 20 NA 17 NA 0 NA 

May-13 15 0 13 10 2 0 31 0 4 0 32 0 4 0 

Jun-13 11 0 10 0 12 0 45 0 7 0 15 100 0 0 

Jul-13 9 15 0 0 25 29 35 3 0 15 31 18 0 20 

Reject 
feed 

Jan-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Feb-13 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 0 NA 

Mar-13 0 NA 0 NA 29 NA 73 NA 0 NA 0 NA 0 NA 

Apr-13 4 NA 20 NA 37 NA 25 NA 0 NA 20 NA 0 NA 

May-13 0 0 11 0 10 0 0 0 21 0 21 0 38 0 

Jun-13 15 0 0 0 11 0 12 0 0 0 62 0 0 0 

Jul-13 0 0 0 0 100 35 0 0 0 0 0 33 0 31 
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F) Infant-directed behavior (%) in Gr5 towards litter 5cn  

Caretakers 5m1 5f1 5sa1 5sa2 5sa3 5j1 
Carry Nov-12 19 46 7 26 1 0 

Dec-12 14 34 0 28 24 0 

Jan-13 33 28 32 6 0 0 

Feb-13 15 54 0 31 0 0 

Reject 
carry 

Nov-12 0 0 0 0 0 0 

Dec-12 0 0 0 0 0 0 

Jan-13 100 0 0 0 0 0 

Feb-13 0 100 0 0 0 0 

Take Nov-12 18 38 3 36 4 0 

Dec-12 23 42 0 34 0 0 

Jan-13 0 0 0 0 0 0 

Feb-13 0 0 0 0 0 0 

Feed Nov-12 0 0 0 0 0 0 

Dec-12 0 0 0 0 0 0 

Jan-13 4 11 9 7 67 0 

Feb-13 21 79 0 0 0 0 

Reject 
feed 

Nov-12 0 0 0 0 0 0 

Dec-12 0 0 0 0 0 0 

Jan-13 0 43 0 57 0 0 

Feb-13 33 0 66 0 0 0 

 

 
Fig. A-6: Contribution of infant-directed behavior in Gr6, towards litter 6c. Behavior is 
summed up from the entire infant carrying period of 6c that we could gather: 3 days, 
starting with the day the litter was born. We observed only one type of infant-directed 
behavior: “infant carrying”. 
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Fig. A-7: Contribution of infant-directed behavior deriving from food transfer: A) lactation 
B) refusal of lactation. The behavior is summed up from the entire infant carrying period, 
3 months. Percentages calculations are based on all adult females within each group. 
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Appendix B 

Supplementary data for chapter 6 

 

Fig. B-1: Daily fluctuations of cortisol levels of adult males and subadults collected overall 
the entire study period. 

 

 

Fig. B-2: Daily fluctuations of cortisol levels of adult males and subadults collected within 
infant carrying period. 
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