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Referent: Prof. Dr. Thorsten Hohage
Korreferentin: Prof. Dr. Gerlind Plonka-Hoch

Weitere Mitglieder der Prüfungskommission:
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Introduction

The field of inverse problems, although a rather young field of applied mathematics, has
proven to be of great importance in a wide range of applications both in science and
industry: Medical, astronomical and microscopic imaging, acoustics, geophysics, machine
learning, finance, and many others. We will give an introduction to inverse problems in
the first chapter. For now we just state that in all inverse problems it is usually the goal
to approximate some quantity of interest (for example parts of the interior of the human
body) by given observed data (for example X-ray measurements from different angles). To
this end one applies so called regularization methods, that can give useful approximations
even if the data is perturbed by noise.

This thesis is mainly concerned with the question how fast these approximations tend to
the true (or exact) solution of an inverse problem if the noise tends to zero. In other words
we want to determine the rate of convergence of the approximate to the exact solution.
We will see in the following that such convergence rates can only hold under certain
smoothness conditions on the true solution, also called source conditions, as generally
convergence can be arbitrarily slow.

Convergence rates are both of theoretical and practical interest because of various
questions: How do different regularization methods compare, when the noise is small?
What are the limitations of a certain regularization method concerning convergence? Is it
worth to invest effort and money into reducing the noise level, or is the payoff too small?
What properties of the object of interest favor fast convergence?

Linear inverse problems on Hilbert spaces are very well understood. One can formulate
source conditions that are both necessary and sufficient for certain convergence rates
[51] and can show that rates are order optimal under such conditions [25]. For nonlinear
problems or Banach space settings there are however still many open questions. The
reason for this is that on general Banach spaces and for nonlinear operators one can
not apply spectral theory, which is crucial for most of the results on Hilbert spaces.
Instead of considering regularization operators and analyze them by spectral theory we
will consider variational regularization. In variational regularization our approximation
to the true solution is given by the solution to a minimization problem and we have to
analyze our methods by variational methods like convex analysis. A large class of such
variational regularization methods can be condensed in generalized Tikhonov regularization,
a generalization of the famous and widely applied quadratic Tikhonov regularization.

An important step in the evolution of convergence rate theory for more general
regularization methods has been the introduction of variational source conditions (VSCs)
[37]. These generalize source conditions on Hilbert space, but can also be formulated for
variational regularization on Banach spaces with general (nonlinear) forward operator.
Under such a VSC one can prove convergence rates, however for many interesting problems
it still remained an open question, whether and how such a VSC can actually be verified.
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It was shown in [41] that at least in the Hilbert space the VSCs are necessary and sufficient
for convergence rates and if one considers certain prominent examples of forward operators
on L2 spaces. In these settings the true solution satisfies a VSC if and only if it is smooth,
with smoothness measured in Besov spaces.

Another problem connected to the VSCs is that they are limited in the sense that they
can only yield a limited range of convergence rates, so that from a certain smoothness
index on one does not profit from higher smoothness of the true solution as one would
expect. This problem was attacked in [34] where a second order variational source condition
(VSC2) was introduced that yields faster convergence rates up to the best possible rates
(saturation) for Tikhonov regularization. But again the VSC2 is limited as the first order
VSC and there are regularization methods that should exhibit faster convergence rates
than what can be shown under the VSC2. One example for such a method is Bregman
iterated Tikhonov regularization (or Bregman iteration), which has attracted a lot of
attention recently because of good numerical results, starting from [53]. This iteration
can be seen as a generalization of iterated Tikhonov regularization on Hilbert spaces, for
which it is known that it can converge faster that non iterated Tikhonov regularization.
However in the Banach space setting this had not been shown.

A major new contribution of this work is that we introduce variational source conditions
of arbitrary order (VSCn) on Hilbert space that allow to prove higher order convergence
rates, as well as a third order VSC in the more general Banach space setting. Under this
VSC3 we show new convergence rates for Bregman iteration that improve on the rates
possible for Tikhonov regularization.

A special focus of this work lies on the case where the noise is not in the same (Hilbert)
space as the data. This occurs for example in the distinguished cases, where the noise
is given by a Gaussian white noise or a Poisson process. As these two noise models are
extremely important in an abundance of applications there is of course already a large
amount of literature on both of them. Convergence rates under Gaussian white noise are
well understood again for linear problems on Hilbert spaces by spectral methods [6]. In
this work we will reprove these results by variational methods allowing for generalizations
to variational regularization. In a few aspects we can even improve the classical Hilbert
space results as we can prove a deviation inequality on the regularization error instead of
just convergence rates in expectation and we also show a saturation result for Gaussian
white noise.

In case of Poisson data convergence rates have been shown under a VSC in [75].
However due to the limitations of the VSC again there is the questions whether faster
convergence rates can be shown for Poisson data in the case of high smoothness of the true
solution. Thus another large part of this thesis is devoted to overcoming the limitations
of the VSC under statistical models. The idea is of course to use the VSC2 but actually
this condition is closely related to the data model, which complicates under the statistical
models. Therefore we again introduce new source conditions that generalize the VSC2 for
the statistical models and lead to higher order convergence rates up to the saturation of
Tikhonov regularization for Gaussian white noise.

To prove that all these abstract source conditions are useful we verify them for variants
of generalized Tikhonov regularization under smoothness assumptions on the true solution
and smoothing assumptions on the forward operator.
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In addition to these major contributions this work also contains a new proof of upper
and lower bounds for Bregman divergences. Bregman divergences are a crucial tool in
our convergence analysis and also the main ingredient of the Bregman iteration. Further
we show a result on boundedness of the regularized solution, which is important in the
statistical setting and allows us to neglect the assumption (H7) in [43, Assumption 4.1]
that was necessary in the existing proofs of convergence rates under Poisson data.

This thesis is structured as follows.
• In Chapter 1 we will provide some background on inverse problems and regularization

theory. Further we will motivate Tikhonov regularization and our noise model.
• Chapter 2 summarizes basic tools from convex analysis and contains our new proof

for upper and lower bounds of the Bregman divergence.
• Chapter 3 gives an overview of variational regularization in the form of generalized

Tikhonov regularization.
• Chapter 4 is the core of this work. We first introduce a generalized notion of the

noise level. Then we prove a result on boundedness of the regularized solution,
given stochastic noise. In Section 4.3 we recall how the VSC1 can be applied in the
deterministic setting and then show how it yields error estimates in the statistical
setting. In Section 4.4 we introduce the VSC2 and new second order source conditions
that generalize the VSC2 for stochastic data. Finally in Section 4.5 we introduce
VSCn for arbitrary n ∈ N in Hilbert space and further show how the VSC3 can give
error estimates for Bregman iterated Tikhonov regularization.
• Last but not least we verify the abstract source conditions in Chapter 5 under smooth-

ness assumption for the true solution. The first section gives general strategies for
verification. After that we consider in each section a more specialized regularization
class, including maximum entropy regularization, Besov space regularization and
Hilbert space regularization.
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Chapter One
Inverse problems and
regularization theory

“Could he write something original? He was not
sure what idea he wished to express but the
thought that a poetic moment had touched him
took life within him like an infant hope. He
stepped onward bravely.”

Dubliners/A little cloud, J. Joyce

1.1 Inverse problems

As stated in the introduction we want to take a closer look on inverse problems. In general
one could say that given observations of some scientific experiment the inverse problem
consists of determining the causes responsible for these observations. The forward problem
then instead is, given a certain cause, to find its corresponding effects. So in many physical
experiments the inverse problem is to relate observations made in the present to a certain
state of the physical system in the past, which usually turns out to be the more difficult
problem than predicting future outcomes from the knowledge of all relevant parameters.
However this definition is still quite vague and of course there are experiments like for
example numerical integration/differentiation, where it is not obvious which problem one
should call the inverse problem.

To model these kind of problems mathematically we define a forward operator F : X →
Y , which is a map from a certain set of causes X to the set of effects Y . Given the data
g ∈ Y the inverse problems then consists of finding a solution f ∈ X to the equation

F (f) = g. (1.1)

One might try to compute the solution f to (1.1) by just applying the inverse operator
F−1 (if it is defined), which gives another reason to call the problem an inverse problem.
However in practice this can cause several problems, due to the forward operator being
ill-posed. The definition of well- and ill-posedness goes back to Hadamard [36] and will
allow us to give a more concrete definition of inverse problems.

Definition 1.1.1. We say that a problem is well-posed if it fulfills the following three
properties:
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(a) There exists a solution.
(b) The solution is unique.
(c) The solution depends continuously on the data (stability).

Instead a problem is called ill-posed if it is not well posed. That is if at least one of the
three above conditions is violated.

Given these definitions we can now refine the scope of the field of inverse problems to
finding approximate solutions to ill-posed problems of the form (1.1). We will especially
focus on problems where the third condition of well-posedness is violated and one has to
apply some form of regularization to restore the stability of the problem.

We want to give a definition of ill-posedness related to the operator equation (1.1).
Clearly item (a) of Definition 1.1.1 is violated if F is not surjective, and item (b) is F is
not injective. If F is bijective then item (c) is violated if F−1 is not continuous. However,
for linear forward operators F on Banach spaces the bounded inverse theorem states that
if F is bijective then F−1 is continuous, so item (c) is only violated if at least one of
the other conditions is also violated. Until the 90s regularization theory focused mostly
on linear forward operators and there exists a vast amount of experiments that can be
modeled by a linear forward operator on Banach spaces. Thus we would like to define
ill-posedness given by a violation of item (c) independent of the existence of F−1. To this
end we introduce the generalized inverse.

Definition 1.1.2 (generalized inverse). Let F : X → Y a mapping F † : dom(F †) → X
with dom(F †) ⊂ ran(F ) is called generalized inverse of F if

F ◦ F † ◦ F = F

F † ◦ F ◦ F † = F †.

If F is injective, then it is clear that a generalized inverse F † with dom(F †) = ran(F )
exists and is given by the usual notion of inverse. For linear operators on Hilbert spaces
there always exists a generalized inverse, given by the Moore-Penrose inverse, which is a
linear operator with dom(F †) = ran(F ) + ran(F )⊥. In this thesis we will consider inverse
problems modeled by a forward operator F : X → Y between Banach spaces X and Y
that are ill-posed in the following sense.

Definition 1.1.3 (ill-posed inverse problem). We call the problem of solving F (f) = g an
ill-posed inverse problem if there does not exist a continuous generalized inverse of F .

Note that to capture the ill-posedness of an inverse problem one has to consider infinite
dimensional spaces X ,Y. For a linear forward the reason for this is clear. A generalized
inverse exists in the form of the Moore-Penrose inverse F † and is linear. If either X or
Y are finite dimensional then ranF † is finite dimensional and thus F † is bounded, which
is equivalent to being continuous. For a non-linear forward operator this is not obvious.
However, usually one assumes for a non-linear operator that it is continuously differentiable
in order to apply linearization. If one considers the linearized forward operator then again
the previous argument applies. However, in general ill-posedness of a non linear forward
operator is not necessarily related to ill-posedness of its linearizations as discussed in [26].
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1.2 Regularization theory

In this section we will recall some basic results from regularization theory and to this end
we of course firstly have to define a regularization method.
Definition 1.2.1 (Regularization method). Let X ,Y be normed vector spaces and the
mapping F : domF → Y be the forward operator. A family of continuous mappings
Rα : Y → X together with a parameter choice rule α : (0,∞) × Y → (0,∞) is called
a (deterministic) regularization method if for all g† ∈ ranF there exists f † ∈ X with
F (f †) = g† such that

lim
δ↘0

sup{‖Rα(δ,gobs)(gobs)− f †‖ : gobs ∈ Y , ‖gobs − g†‖ ≤ δ} = 0.

Such a regularization method solves all three difficulties of an ill-posed problem as we
demand Rα : Y → X to be continuous. Further if the noise level δ is sufficiently small,
then Rα(δ,gobs)(gobs) will be very close to the true solution f † independent of how the noise
gobs exactly looks like. The main goal of this thesis is to derive convergence rates for
certain regularization methods. That is we want even more than what is given by the
above definition. We intend to show that for certain g† ∈ ran(F ) there exists f † ∈ X with
g† = F (f †) such that the worst case error

E(g†, f †, δ) := sup{‖Rα(δ,gobs)(gobs)− f †‖ : gobs ∈ Y , ‖gobs − g†‖ ≤ δ}

goes to zero as δ → 0 at a certain rate φ(δ). However, for an ill-posed inverse problem
given as in Definition 1.1.3 such a rate cannot hold uniformly for all g† ∈ ran(F ) as the
following theorem shows.
Theorem 1.2.2. Assume for all g† ∈ ran(F ) that there exists f †(g†) ∈ X with F (f †) = g†

and a regularization method Rα such that E(g†, f †, δ) ≤ φ(δ), with limδ↘0 φ(δ) = 0. Define
F † : ran(F )→ X , g† 7→ f †(g†). Then F † is a generalized inverse of F which is continuous
with respect to the norm topologies of Y and X .

Proof. It is clear from Definition 1.1.2 that F † is a generalized inverse. Let ε > 0. As
limδ↘0 φ(δ) = 0 we can find δ > 0 such that 2φ(δ) ≤ ε. Now let g1, g2 ∈ ran(F ) with
‖g1 − g2‖Y ≤ δ, then we have

‖F †(g1)− F †(g2)‖X ≤ ‖F †(g1)−Rα(δ,g1)(g1)‖X + ‖Rα(δ,g1)(g1)− F †(g2)‖X ≤ 2φ(δ) ≤ ε,

which proves that F † is uniformly continuous.

This theorem shows that for a general combination of f † and g† the convergence of the
worst case error can be arbitrarily slow. Thus convergence rates can only be achieved on
certain subsets of ran(F ) respectively on subsets of X given by a-priori assumptions on f †
and g†. Define for a set K ∈ X and a regularization method R the worst case error on K
by

ER(δ, F,K) := sup{‖R(gobs)− f †‖X : f † ∈ K, gobs ∈ Y , ‖gobs − F (f †)‖Y ≤ δ}.

We will show that for all sets K and all reconstruction methods R this has a lower bound
given by the modulus of continuity

ω(δ, F,K) := sup{‖f1 − f2‖X : f1, f2 ∈ K, ‖F (f1)− F (f2)‖Y ≤ δ}.
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Theorem 1.2.3. We have for all maps R : Y → X that

ER(δ, F,K) ≥ 1
2ω(2δ, F,K).

Proof. Let f1, f2 ∈ K such that ‖F (f1)− F (f2)‖ ≤ 2δ, then we have for all g ∈ Y that

‖f1 − f2‖ ≤ ‖R(g)− f1‖+ ‖R(g)− f2‖.

Choosing g = 1
2 (F (f1) + F (f2)) we see that ‖F (fi)− g‖ ≤ δ for i = 1, 2 and thus

‖f1 − f2‖ ≤ 2ER(δ, F,K).

Taking the supremum over such f1, f2 gives the claim.
Remark 1.2.4. The last two theorems are generalizations of the classical results for linear
forward operators [25, Propositions 3.10 and 3.11].

For linear forward operators F = T the modulus of continuity is also often defined by

ωlin(δ, T,K) := sup{‖f‖X : f ∈ K, ‖Tf‖Y ≤ δ} (1.2)

and we have for K = −K that

ω(δ, Y,K) = ωlin(δ, T, 2K).

Definition 1.2.5. We say that a regularization method R has convergence rates of optimal
order on K if there exists φ : [0,∞)→ [0,∞) and C > 0 such that

ER(δ, F,K) ≤ Cφ(δ)

and there exists no other mapping R̃ : Y → X such that

ER̃(δ, F,K) = o(φ(δ)), i.e. lim
δ→0

ER̃(δ, F,K)
φ(δ) = 0.

For linear operators T on Hilbert spaces X ,Y sufficient conditions for convergence rates
are usually given by the so called Hölder source conditions, that is for some ν, % > 0 we
consider

f † ∈ Xν,% = {(T ∗T )νω : ω ∈ X , ‖ω‖X ≤ %}, (1.3)

where (T ∗T )ν is defined via the functional calculus (see [25, Sec. 2.3]). These conditions
can be interpreted as smoothness conditions as usually T and T ∗ should be smoothing
operators, so if f † lies in the image of (T ∗T )ν it should be smooth and the degree of
smoothness is increasing with ν. One can show [25, Proposition 3.15] for ill-posed T that
there exist arbitrarily small values of δ such that

ω(δ, T,Xν,%/2) = ωlin(δ, T,Xν,%) = δ
2ν

2ν+1%
1

2ν+1 .

Thus a regularization method is of optimal order on Xν,% if

ER(δ,Xν,%) ≤ Cδ
2ν

2ν+1 . (1.4)

For each ν > 0 there exist spectral regularization methods that are of optimal order on Xν,%
(see e.g. [25, Theorem 6.5]). Quadratic Tikhonov regularization, which will be introduced
in the next section, has order optimal convergence rates on Xν,% for 0 < ν ≤ 1 [25, Sec.
5.1].
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1.3 Tikhonov regularization1

We give a short probabilistic motivation for using generalized Tikhonov regularization.
From here until the end of this section we will consider the finite-dimensional setting X =
Rn, Y = Rm. We start from equation (1.1), where f ∈ Rn, gobs ∈ Rm and F : Rn → Rm is
some function. Given the data gobs we want an estimate for a possible solution f of (1.1),
but recall that we cannot just apply the inverse operator F−1 as discussed in Section 1.1.
Instead we might try to find an estimate f̂ of f by maximizing the likelihood function
L(f) = P(gobs|f), i.e. the probability that for a certain preimage f the data gobs will occur.
If we assume that our data is normally distributed with variance σ, then we can rearrange
the problem by using the monotonicity of the logarithm, as well as the fact that neither
additive nor multiplicative constants change the extremal point:

f̂ML ∈ arg max
f∈Rn

P(gobs|f)

= arg max
f∈Rn

log
(
P(gobs|f)

)
= arg min

f∈Rn
− log

(
P(gobs|f)

)
= arg min

f∈Rn
− log

(
1√
2πσ

m∏
i=1

exp
(
−(gobs

i − F (f)i)2

σ2

))

= arg min
f∈Rn

m∑
i=1

(gobs
i − F (f)i)2 = arg min

f∈Rn
‖gobs − F (f)‖2

2. (1.5)

So the maximum likelihood approach yields the well known least squares method. However
even if this estimator f̂ML is unique, this approach does not yield a regularization effect. In
fact it is more reasonable to maximize P(f |gobs) instead of P(gobs|f) as our goal should be
to find the solution f which is most likely to have caused the observation gobs, instead of
just finding any f , which causes the observation gobs with maximal probability. This seems
like a subtle difference, but in practice it will be really important. Note that by maximizing
P(f |gobs) we consider f as a random variable, which is the Bayesian perspective and in
contrast to that of a Frequentist. By Bayes’ theorem we have

P(f |gobs) = P(gobs|f)P(f)
P(gobs) ⇔ posterior = likelihood · prior

evidence

and estimating f by maximizing the posterior P(f |gobs) is called maximum a posteriori
probability (MAP) estimate. To actually find this maximum it will be important to
understand the prior P(f). If we assume that for our solution f the entries fj are normally

1The Bayesian motivation for Tikhonov regularization given in this section is not an original idea of
the author. It can be found already in [44] and is also outlined for the infinite dimensional setting in [65].
Further it has literal overlap with Chapter 5 in [23] to which the author contributed.
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distributed with mean (f0)j ∈ R and variance τ , then we find

f̂MAP ∈ arg max
f∈Rn

P(f |gobs)

= arg min
f∈Rn

[
− log

(
P(gobs|f)

)
− log(P(f))

]

= arg min
f∈Rn

1
σ

 m∑
i=1

(gobs
i − F (f)i)2 + σ

τ

m∑
j=1

(fj − (f0)j)2


= arg min

f∈Rn

[
1
2‖g

obs − F (f)‖2
2 + α

2 ‖f − f0‖2
2

]
=: arg min

f∈Rn
Jα(f),

where α = σ
τ
. The functional Jα(f) is actually nothing but the standard (quadratic)

Tikhonov functional, introduced in 1963 [67], and therefore MAP and Tikhonov regular-
ization coincide in this setting. Of course ending up with the functional Jα(f) was due
to assuming normal distributions for both the likelihood and the prior, which might not
always be appropriate.

Let us assume that the data gobs are Poisson distributed rather than normally dis-
tributed. Remember that a random variable X with values in N0 is called Poisson
distributed with rate parameter λ ≥ 0 if

P[X = k] = λk

k! e
−λ.

This already implies E[X] = Var[X] = λ. So let for j = 1, . . . , n the data entries
gobs
j =: kj ∈ N0 be Poisson distributed with rate parameter E[gobs

j ] =: g†j . Then the
negative log-likelihood is given by

− log
(
P(gobs|f)

)
= − log

m∏
j=1

F (f)kjj
kj!

e−F (f)j

=
m∑
j=1
−gobs

j log(F (f)j + log(gobs
j !)− F (f)j.

If we replace the additive constant ∑m
j=1 log(gobs

j !) by ∑m
j=1 g

obs
j log(gobs

j )− gobs
j (which is

even a reasonable approximation by Stirling’s formula, although we could also have chosen
any other constant) then this equals the Kullback-Leibler divergence of gobs and F (f),
given by

KL(gobs, F (f)) :=
m∑
i=1

gobs
i log

(
gobs
i

F (f)i

)
− gobs

i + F (f)i.

As any additive constant independent of f does not change the MAP estimator, this
justifies considering generalized Tikhonov regularization in the form of

f̂α ∈ arg min
f∈Rn

S(F (f)) + αR(f), (1.6)

where the data fidelity term can be chosen as S = KL(gobs, ·) for Poisson distributed data
or as S = 1

2‖g
obs − ·‖2

2 for normally distributed data. The penalty functional R depends
on the prior respectively the a-priori information that we have on our solution.
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1.4 Statistical noise models

Apart from the standard deterministic noise model, where gobs ∈ Y and ‖g† − gobs‖Y ≤ δ
we will consider the following statistical noise model. Let the forward operator act between
real Banach spaces X and Y ⊂ L2(M), where M ⊂ Rd is either a bounded Lipschitz
domain or the d-dimensional torus Td. Notice that in contrast to the last section we now
opt for continuous models, because these are the right ones to capture the ill-posedness of
an inverse problem as stated in the introduction. Our goal is to estimate the true solution
f † ∈ X given some observed data Gobs. We assume that the data is of the form

Gobs = g† + εZ, (1.7)

where g† = F (f †), Z is some random variable that models the noise and ε > 0 corresponds
to the noise level.

From now on we will make use of the concept of Besov spaces, which are a generalization
of other function spaces such as Sobolev spaces. Some basic facts that the reader needs
to know about them are found in the appendix. As mentioned in the introduction it
was shown in [40] that for certain inverse problems convergence rates are equivalent to
smoothness of f † measured in Besov spaces. Another reason why they are a crucial tool in
our analysis is that they give a sharp way to estimate the regularity of stochastic processes
as for example Gaussian white noise, which we then can transfer to sharp error estimates.

For M = Td let D(M) denote the space of infinitely differentiable functions on Td,
whereas for a bounded Lipschitz domain M ⊂ Rd let D(M) denote the space of infinitely
differentiable functions on Rd with compact support in M. In both cases let D′(M) denote
the corresponding dual space, called space of distributions on M. We consider the error
model (1.7) with a random variable Z : Ω→ D′(M) from some probability space (Ω,Σ,P)
to the space of distributions on M. Additionally we have the following assumption on the
Besov regularity of the noise.

Assumption 1.4.1. Assume that for some γ ≥ 0 and p′ ∈ [1,∞] we have Z ∈ B−γp′,∞(M)
almost surely and that there exist constants CZ ,MZ , τ > 0, such that

∀t > 0: P
(
‖Z‖B−γ

p′,∞
> MZ + t

)
≤ exp(−CZtτ ).

Now we introduce the two most important cases for Z.

1.4.1 Gaussian white noise

We work with the following definition from [72]. For a more general introduction to
Gaussian processes we refer to [33].

Definition 1.4.2. A random variable W : Ω→ D′(M) is called Gaussian white noise if
(a) for each g ∈ D(M), the random variable ω 7→ 〈W (ω), g〉 is a centered Gaussian

random variable,
(b) for all g1, g2 ∈ D(M) we have

E(〈W (ω), g1〉〈W (ω), g2〉) = 〈g1, g2〉L2(M).
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Additionally we introduce the notion of Hilbert space processes, that has been used in
[6] to study statistical inverse problems on Hilbert spaces.

Definition 1.4.3. Let Y be a Hilbert space and (Ω,Σ,P) a probability space. A Hilbert
process on Y is a bounded linear mapping

W : Y → L2(Ω).

E[W ] ∈ Y is called expectation of W if

〈E[W ], g〉 = E[W(g)], ∀g ∈ Y ,

and Cov[W ] : Y → Y is called covariance operator of W if

〈Cov[W ]g1, g2〉 = Cov[W(g1),W(g2)], ∀g1, g2 ∈ Y .

If Cov[W ] = id, where id(g) = g for all g ∈ Y, then we call W a white noise process and
if W(g) is a Gaussian random variable for all g ∈ Y, then we call W a Gaussian process.

For Gaussian white noise both definitions coincide in the following way.

Proposition 1.4.4. W : Ω→ D′(M) being a Gaussian white noise is equivalent to the map
W : L2(M) → L2(Ω), g 7→ 〈W, g〉 being a Gaussian Hilbert space process with E(W) = 0
and Cov(W) = id.

Proof. Given Gaussian white noise W one can show that W is a Gaussian Hilbert process
by using that D(M) is dense in L2(M) as in [72] (note that for M, a bounded Lipschitz
domain, density of D(M) in L2(M) is given by [71, Corollary 3.32]). The other implication
follows from the definitions.

Theorem 1.4.5. For Z = W Gaussian white noise Assumption 1.4.1 holds true for
M = Td, the d-dimensional torus, and all p′ ∈ [1,∞) with γ = d/2, τ = 2. If γ < d/2
then Z /∈ B−γp,q (M) almost surely for all 1 ≤ p, q ≤ ∞. Further if p′ =∞ then Assumption
1.4.1 instead holds true with γ = d/2 + ε for all ε > 0.

Proof. The first statements are given in [72, Theorem 3.4 and Corollary 3.7]. The last
statement follows from Theorem A.2.5 as it gives the continuous embedding B

−d/2
d/ε,∞ ⊂

B−d/2−ε∞,∞ . Thus
‖Z‖

B
−d/2−ε
∞,∞

≤ C‖Z‖
B
−d/2
d/ε,∞

and for the latter term we have the deviation inequality as d/ε <∞.

1.4.2 Poisson point process

We only give some basic properties and refer to [43, 48] for a more general overview.

Definition 1.4.6. Let g† ∈ L1(M) with g† ≥ 0. A point process G = ∑N
i=1 δxi is called a

Poisson point process or Poisson process with intensity g† if
(a) For each choice of disjoint, measurable sets A1, . . . , An ⊂ M the random variables

G(Ai) := #{xi ∈ Ai : i = 1, . . . , N} are stochastically independent,
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(b) E[G(A)] =
∫
A g
†dx for each measurable set A ⊂M.

By [47, Thm. 1.11.8] the number of event counts in each measurable subset of M is a
Poisson distributed random variable.

Proposition 1.4.7. Let G be a Poisson process with intensity g† ∈ L1(M). Then for each
measurable A ⊂ M the random variable G(A) = #{xi ∈ A : i = 1, . . . , N} is Poisson
distributed with rate parameter λ =

∫
A g
†.

For Poisson data we are interested in convergence rates as the observation time t or
equivalently the number of counts N goes to infinity. Therefore we consider a spatio-
temporal Poisson process G̃ on M× [0,∞) instead of just M and consider for each t > 0 a
rescaled Poisson process as in [43, Definition 2.5].

Definition 1.4.8. Let G̃ = ∑
j δxj ,tj be a (spatio-temporal) Poisson process on M× [0,∞)

with temporally constant intensity g̃†(x, t) = g†(x). Then a temporally normalized Poisson
process (Gt)t≥0 with intensity g† is defined by

Gt = 1
t

∫ t

0
G̃(·, τ)dτ = 1

t

∑
tj≤t

δxj ,tj .

Theorem 1.4.9. For Z =
√
t(Gt − g†) Assumption 1.4.1 with τ = 1, p = 2 holds true for

all γ > d/2.

Proof. Note that ‖Z‖B−γ2,∞
≤ ‖Z‖B−γ2,2

= sup‖g‖Hγ≤1〈Z, g〉 (see Section A.2 in the appendix)
and for this supremum the deviation inequality holds by [75, Theorem 2.1].

One would expect that for Z =
√
t(Gt − g†) Assumption 1.4.1 also holds true with

γ = d/2. However to our best knowledge this is only a conjecture up to now. If γ is chosen
as d/2 + ε with ε > 0 sufficiently small the analysis of this work can be done exactly in the
same way as for Gaussian white noise and will result in slightly weaker convergence rates.

1.4.3 Discretization

Although a continuous model is the correct way to theoretically treat the ill-posedness of
an inverse problem, in practice there has to be a discretization at some point. Even if one
could come up with a continuous measurement device, any computer can only deal with
a finite amount of data. Therefore we will show how the continuous noise models from
above can be related back to the finite dimensional models that we shortly introduced in
Section 1.3. Assume we have a partition M = ⋃m

j=1 Mj of our measurement domain, with
disjoint subsets Mj ⊂ M, |Mj| > 0. Under the Gaussian white noise model we then get
the discrete data

gobs
j = 〈g† + εW,1Mj

〉, 1Mj
(x) =

1, if x ∈Mj

0, else.

Let g†j =
∫
Mj
g†. Then gobs

j is normally distributed with E[gobs
j ] = g†j and Var[gobs

j ] = ε|Mj|
by Definition 1.4.2. Thus in oder to derive the negative log-likelihood as in (1.5) the bins
Mj should all have the same size, resulting in a uniform variance for all gobs

j .
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Under the Poisson model we get the discrete data

gobs
j = 〈Gt,1Mj

〉 = 1
t
#{(xi, ti) : xi ∈Mj, ti ≤ t}

and by Proposition 1.4.7 we have that tgobs
j is Poisson distributed with rate parameter tg†j .

Therefore both continuous models give back the discrete models from Section 1.3. As any
discretization usually causes a certain discretization error, convergence to a true underlying
continuous function f † can only by achieved by letting J go to infinity. This yields another
argument as to why we rather consider the continuous model. Each estimate on the
reconstruction error that one can obtain in the finite-dimensional setting will include a
constant that depends on the dimension J whilst an error estimate for the continuous
model also holds for all discretizations with a constant independent of J . In principle
the discretization error can be controlled as outlined e.g. in [43, Section 2.5], however
a convergence rate derived in the continuous setting more clearly illuminates the actual
dependence on the noise as it only depends on the noise level and not on the dimension.
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Notational conventions

We discuss a few conventions that will be assumed throughout this work. First of all C
will always denote a generic positive constant that is allowed to change from one occurence
to the next in the sense that for example C = 5C is true. Some of the resulting constants
depend on so many other constants that we will not always track all dependencies, but we
will rather highlight special and possibly problematic dependencies individually and will
leave it to the reader to put them together if she or he is interested. To point out that
C depends on certain mathematical quantities x1, . . . xn we will sometimes write Cx1,...,xn .
We of course guarantee that no constants depend on the noise level or the regularization
parameter and we are careful about dependencies on the true solution and related functions.
These may still occur and in fact it is common in regularization theory that the constant
of a convergence rate depends on % := ‖f †‖X̃ , where X̃ ⊂ X is some space corresponding
to a certain smoothness (compare (1.3)). We ensure that all constants depending on f †

can be bounded by some positive power of %.
Regarding function spaces like Lp(Ω) ⊂ D′(Ω) that are contained in the space of

distributions we will often write Lp(Ω) = Lp, when the underlying measure space Ω is
clear. For a real number 1 ≤ p ≤ ∞ the notation p′ is always defined by the real number
1 ≤ p′ ≤ ∞ such that

1
p

+ 1
p′

= 1.

The notation 〈f ∗, f〉 denotes the dual pairing f ∗(f), where f ∗ ∈ X ∗, f ∗ : X → R, f ∈ X
for some Banach space X . For functions f1, f2 ∈ D′(Ω) the dual pairing denotes the
standard L2 dual pairing

〈f1, f2〉 =
∫

Ω
f1(x)f2(x)dx.

We will sometimes make use of the Landau notation f(x) = O (φ(x)) , x → a with
the meaning that f(x) ≤ Cφ(x) if x ∈ R is sufficiently close to a ∈ R. The notation
f(x) ∼ φ(x) implies that there exist constants c1, c2 > 0 such that c1φ(x) ≤ f(x) ≤ c2φ(x).

We try to use most symbols consistently with the same meaning. A list of common
symbols can be found in Appendix A.3.
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Chapter Two
Convex Analysis and

the Bregman divergence

“To live, to err, to fall, to triumph, to recreate
life out of life. A wild angel appeared to him, the
angel of mortal youth and beauty, an envoy from
the fair courts of life, to throw open before him
in an instant of ecstasy the gates of all the ways
of error and glory. On and on and on and on!”

A potrait of the artist as a young man, J. Joyce

In order to treat Tikhonov regularization of the form (1.6) in a very general way, we
will make use of convexity, which induces several favorable properties. To this end we
introduce some basic notions of the field of convex analysis. In Chapter 4 we will see that
it is generally possible to obtain estimates on the reconstruction error, but with the error
measured with respect to the so called Bregman divergence, rather than in the norm of X .
Thus another large part of this chapter is dedicated to the question when and how the
Bregman divergence can be compared to the distance in the norm. In this chapter X will
always be a real Banach space, X ∗ denotes its dual space and F : X → R := R∪{−∞,∞}
some function.

2.1 Basics1

We allow that functions take the value∞ as this in particular allows to rewrite constrained
minimization problems of the form

min
x∈B
F(x),

with B ⊂ X as unconstrained minimization problems

min
x∈X
F̃(x), F̃(x) =

F(x), if x ∈ B
∞, else.

Then of course we need some rules how to calculate in R := R ∪ {−∞,∞}.
1The proofs for all results in this section are standard and can be found e.g. in [24]. We give some of

the proofs for the sake of self-containedness and to emphasize the simplicity of the variational approach.
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Definition 2.1.1 (infinity). We have

−∞ < λ <∞, ∀λ ∈ R
λ(±∞) = ±∞, ∀λ > 0
λ±∞ = ±∞+ λ = ±∞, ∀λ ∈ R
±∞+ (±)∞ = ±∞
∞+ (−∞) = (−∞) +∞ =∞.

Definition 2.1.2 (convex set). A ⊂ X is called convex if we have for all x, y ∈ A that

{λx+ (1− λ)y : λ ∈ [0, 1]} ⊂ A.

In words: all line segments connecting two points in A are contained in A.

Definition 2.1.3 (epigraph). The epigraph of a function F : X → R is given by the set

epi(F) = {(x, λ) ∈ X × R : F(x) ≤ λ}.

Definition and Theorem 2.1.4 (convex function). A functional F : X → R is called
convex if the following equivalent conditions hold true.

(a) epi(F) is convex.
(b) For all x, y ∈ X and λ ∈ [0, 1] we have

F(λx+ (1− λ)y) ≤ λF(x) + (1− λ)F(y). (2.1)

(c) For all x, y ∈ X and λ ∈ [1,∞) we have

F(λx+ (1− λ)y) ≥ λF(x) + (1− λ)F(y). (2.2)

F is called strictly convex if (2.1) holds true with “<” for x 6= y, λ ∈ (0, 1). F is called
(strictly) concave if −F is (strictly) convex.

Proof. (a)⇔ (b): epi(F) is convex if and only if for all λ ∈ [0, 1] and (x, α), (y, β) ∈ epi(F)
we have

λ(x, α) + (1− λ)(y, β) ∈ epi(F) ⇔ F(λx+ (1− λ)y) ≤ λα + (1− λ)β. (2.3)

Now if F is convex, then the latter condition holds true by

F(λx+ (1− λ)y) ≤ λF(x) + (1− λ)F(y) ≤ λα + (1− λ)β.

Conversely if epi(F) is convex then (2.3) implies (2.1) for all λ ∈ [0, 1], x, y ∈ X where
F(x),F(y) are finite, by simply putting α = F(x), β = F(y). If either F(x) = ∞
or F(y) = ∞ then (2.1) holds by Definition 2.1.1. Finally if F(x),F(y) < ∞ and
either F(x) = −∞ or F(y) = −∞ then one can let α or β go to zero to also show
F(λx+ (1− λ)y) = −∞.

(b)⇔ (c): (2.2) for all x, y ∈ X and λ ∈ [1,∞) can be equivalently rephrased as
1
λ
F(λx+ (1− λ)y) +

(
1− 1

λ

)
F(y) ≥ F(x) = F

(1
λ

(λx+ (1− λ)y) +
(

1− 1
λ

)
y
)

which is equivalent to (b) by putting λ = 1
λ
∈ (0, 1] and x = λx+ (1− λ)y in (2.1) as (2.1)

holds trivially for λ = 0 .
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Lemma 2.1.5. Let F ,G : → R convex, H : → R strictly convex.
(a) For α ≥ 0 the function αF is convex, αH, strictly convex.
(b) The function F + G is convex, F +H strictly convex.
(c) For TY → X linear the function F ◦ T : Y → R is convex.
(d) For x ∈ X the function F (·+ x) is convex.

Proof. Exercise.
Example 2.1.6. Recall that a function f : R→ R is convex on an interval (a, b) ⊂ R if it
is differentiable with increasing derivative or twice differentiable with non-negative second
derivative. Thus we have

(a) f(x) = ex is convex on R.
(b) f(x) = − log(x) is convex on (0,∞) thus f(x) = log(x) is concave.
(c) Let X be a normed space then F(x) = ‖x‖X is convex.
(d) For p > 1 the function f(x) = 1

p
|x|p is convex since it can be written as f =

f1 + f2, where f1 =

(−x)p/p, x ≤ 0
0, x > 0

, f2 =

0, x ≤ 0
(x)p/p, x > 0

and both functions

are differentiable with increasing derivative.
(e) Let X be a normed space and p > 1, then F : X → R, x 7→ 1

p
‖x‖p is convex as

f(x) = 1
p
|x|p is convex and increasing on [0,∞) and thus

F(λx+ (1− λ)y) ≤ f(λ‖x‖+ (1− λ)‖y‖) ≤ λF(x) + (1− λ)F(y).

Definition and Theorem 2.1.7 (lower semi-continuous). A functional F : X → R is
called lower semi-continuous if the following equivalent conditions hold true.

(a) For all x ∈ X we have lim infy→xF(y) ≥ F(x).
(b) epi(F) is closed.

Proof. (a)⇒ (b): Let (xn, λn) be a sequence in epi(F) converging to (x, λ) ∈ X ×R. Then
F(xn) ≤ λn for all n ∈ N and xn → x in X , λn → λ in R, thus

0 ≥ lim inf
n∈N

(F(xn)− λn) = lim inf
n∈N

F(xn)− λ ≥ F(x)− λ.

Therefore (x, λ) ∈ epi(F).
(b)⇒ (a): (a) holds trivially if F(x) = −∞. Thus we can assume on the contrary that

F(x) > λ for some λ ∈ R. This means that (x, λ) /∈ epi(F) and as epi(F) is closed there
exists a neighborhood Ux of x with Ux ⊂ X \ epi(F). This implies lim infy→xF(y) > λ
and this holds for all λ < F(x).
Example 2.1.8. Every continuous functional is lower semi-continuous. In Section 3.2.5
we will introduce the cross entropy functional which is lower semi-continuous, but nowhere
continuous.
Definition 2.1.9 (subgradient, subdifferential). x∗ ∈ X ∗ is called a subgradient of a
convex function F : X → R at x ∈ X if F(x) is finite and

F(y) ≥ F(x) + 〈x∗, y − x〉 , (2.4)

for all y ∈ X . The set of all subgradients of F at x is called the subdifferential of F at x
and denoted by ∂F(x).
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Example 2.1.10. The absolute value function f : R→ [0,∞), x 7→ |x| has subdifferential

∂f(x) =

{sgn(x)}, x 6= 0
[−1, 1], x = 0.

Theorem 2.1.11. Let F : X → R be convex and Fréchet differentiable in x ∈ X . Then
∂F(x) = {F ′[x]}.

Proof. From Definition A.1.2 we can see that

F ′[x]h = lim
t↘0

F (x+ th)−F(x)
t

.

As F is convex we have for λ ∈ (0, 1] that

F(x+ th) = F
(

(1− λ)x+ λ
(
x+ t

λ
h
))
≤ (1− λ)F(x) + λF

(
x+ t

λ
h
)

or equivalently
F(x+ th)−F(x)

t
≤ F(x+ (t/λ)h)−F(x)

t/λ
.

So the differential quotient is increasing in t and we have for all h ∈ X that

〈F ′[x], h〉 ≤ F(x+ h)−F(x),

which implies that F ′[x] ∈ ∂F(x). Alternatively if x∗ ∈ ∂F(x) we have

F(x+ λh)−F(x) ≥ 〈x∗, λh〉

dividing by λ and taking the limit we thus get

〈F ′[x]− x∗, h〉 ≥ 0.

This can only hold for all h ∈ X if x∗ = F ′[x].
Proposition 2.1.12. Let F : X → R be convex then we have

F(x) = min
y∈X
F(y) if and only if 0 ∈ ∂F(x).

Every local minimum is also a global minimum and if F is strictly convex, then there exists
at most one solution to the minimization problem.

Proof. The first claim follows from Definition 2.1.9. Let x be a local minimizer of F(y)
and assume that there exists x̃ with F(x̃) < F(x). Then by convexity of F we have for all
λ ∈ (0, 1] that

F(λx+ (1− λ)x̃) ≤ λF(x) + (1− λ)F(x̃) < F(x),

but this is a contradiction to F(x) being a local minimum. Therefore we must have
F(x) ≤ F(y) for all y ∈ X . If F is strictly convex, assume that there exist two minimizers
x1 6= x2 . Then we have for λ ∈ (0, 1) that

F(λx1 + (1− λ)x2) < λF(x1) + (1− λ)F(x2) = F(x1),

which is a contradiction.
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Definition 2.1.13 ((Fenchel/convex) conjugate). Let F : X → R. The convex conjugate
F∗ : X ∗ → R of F is defined by

F∗(x∗) = sup
x∈X

[〈x∗, x〉 − F(x)] .

From these two definitions one can directly conclude the following generalized Young
(in)equality.

Lemma 2.1.14 (generalized Young inequality). Let F : X → R. For all x ∈ X , x∗ ∈ X ∗
we have

〈x∗, x〉 ≤ F(x) + F∗(x∗). (2.5)

Equality holds true if and only if x∗ ∈ ∂F(x).

Example 2.1.15. For 1 < p, p′ <∞ such that 1
p

+ 1
p′

= 1 and f : Rto[0,∞), f(x) = 1
p
|x|p

we have

f ∗(x∗) = sup
x∈R

[
x∗x− 1

p
|x|p

]
= sup

sgn(x∗)x≥0

[
x∗x− 1

p
(sgn(x∗)x)p

]
= 1
p′
xp
′
,

as the unique maximum is assumed at x = sgn(x∗)|x∗|
1
p−1 and p′ = p

p−1 . This yields the
classical Young inequality

|x∗x| ≤ 1
p
|x|p + 1

p′
xp
′
.

Let F : X → [0,∞),F(x) = 1
p
‖x‖pX , then we have

F∗(x∗) = sup
t≥0

sup
‖x‖X=t

[
〈x∗, x〉 − 1

p
|t|p
]

= sup
t≥0

[
‖x∗‖X ∗t−

1
p
|t|p
]

= 1
p′
‖x∗‖p

′

X ∗ . (2.6)

As a special case of the Young inequality we also get the following lemma.

Lemma 2.1.16 (Peter-Paul-inequality). Let s, t ∈ R and 1 < p, p′ < ∞ such that
1
p

+ 1
p′

= 1 then for all c > 0 we have

|st| ≤ c|s|p + (pc)
−p′
p
|t|p′

p′
. (2.7)

Proof. Let f(s) = 1
p
|s|p, then one can compute that f ∗(t) = 1

p′
|t|p′ so we can apply (2.5)

to find

|st| = |s|(pc)
1
p (pc)

−1
p |t| ≤ f

(
(pc)

1
p |s|

)
+ f ∗

(
(pc)

−1
p |t|

)
= c|s|p + (pc)

−p′
p
|t|p′

p′
.

If we have two sequences sn, tn with limn→∞ sn = 0 then the above inequality allows
us to treat the product sntn in a way such that if we allow a large contribution from tn
we then can get an arbitrarily small contribution from sn in exchange (rob Peter to pay
Paul). This principle will be used quite frequently in this thesis.
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Lemma 2.1.17. Let F : X → R. Then F∗ is a convex and lower semi-continuous
function.

Proof. For all x ∈ X define the affine linear functional fx : X ∗ → R, x∗ 7→ 〈x∗, x〉 − F(x).
Then

epi(F∗) = {(x∗, λ) ∈ X ∗ × R : F∗(x∗) ≤ λ}
= {(x∗, λ) ∈ X ∗ × R : 〈x∗, x〉 − F(x) ≤ λ,∀x ∈ X} =

⋂
x∈X

epi(fx).

As all fx are convex and lower semi-continuous, the epigraph of F∗ is the intersection of
convex and closed sets, which is convex and closed.

Theorem 2.1.18. Let F : X → R. Then

F ≥ F∗∗ := (F∗)∗ , (2.8)

where equality holds if and only if F is convex and lower semi-continuous.

Proof. The inequality (2.8) follows from the definition and Young’s inequality (2.5) as

F∗∗(x) := sup
x∗∈X ∗

[〈x∗, x〉 − F∗(x∗)] ≤ sup
x∗∈X ∗

F(x).

Further if we have F = F∗∗, then F is convex and lower semi-continuous by Lemma 2.1.17.
For the other direction we refer to [24, Proposition 4.1].

Corollary 2.1.19. Let F : X → R be convex and lower semi-continuous. Then x∗ ∈ ∂F(x)
if and only if x ∈ ∂F∗(x∗).

Proof. By Lemma 2.1.14 and Theorem 2.1.18 we have

x∗ ∈ ∂F(x)⇔ F(x) + F∗(x∗) = 〈x∗, x〉 ⇔ F∗∗(x) + F∗(x∗) = 〈x∗, x〉 ⇔ x ∈ ∂F∗(x∗).

We will be especially interested in functionals F(x) = 1
p
‖x‖p for some p ≥ 1 and need

to understand their subdifferentials. For some p ≥ 1 the set-valued mapping Jp : X → 2X∗

given by

Jp(x) =
{
x∗ ∈ X ∗ : 〈x∗, x〉 = ‖x∗‖‖x‖, ‖x∗‖ = ‖x‖p−1

}
(2.9)

is called the duality mapping with respect to p of X . The sets Jp(x) are always non-empty.
A mapping jp : X → X ∗ is called selection of Jp if jp(x) ∈ Jp(x) for all x ∈ X . If
F(x) = 1

p
‖x‖p, then we have [18, Chap.1, Theorem 4.4]

∂F(x) = Jp(x).
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2.2 Upper and lower bounds for the Bregman diver-
gence2

In recent times the Bregman divergence (or Bregman distance) ∆x∗
F (y, x), introduced by

Bregman in [9], has been used as a generalized distance measure in various branches of
applied mathematics, for example optimization, inverse problems, statistics and computa-
tional mathematics, especially machine learning. To get an overview over the Bregman
divergence and its possible applications in optimization and inverse problems we refer to
[10, 15, 56]. In particular the Bregman divergence has been used for various algorithms in
numerical analysis and also for convergence analysis of numerical methods and algorithms.
In particular in regularization theory on Banach spaces the Bregman divergence has been
used to measure the reconstruction error and likewise we will use it in this way.
Definition 2.2.1 (Bregman divergence). F : X → R. For x∗ ∈ ∂F(x), x, y ∈ X the
Bregman divergence ∆x∗

F (y, x) is given by

∆x∗

F (y, x) = F(y)−F(x)− 〈x∗, y − x〉.

We will sometimes just write ∆F(y, x) for the Bregman divergence if the subgradient is
clear. If we also have y∗ ∈ ∂F(y) then we can define the symmetric Bregman divergence

∆sym
F (x, y) = ∆x∗

F (y, x) + ∆y∗

F (x, y) = 〈y∗ − x∗, y − x〉.

Lemma 2.2.2. The Bregman divergence has the following properties.
(a) ∆x∗

F (y, x) ≥ 0 for all x, y ∈ X .
(b) ∆x∗

F (y, x) is convex in y.
(c) Let x∗ ∈ ∂F(x), y∗ ∈ ∂F(y), then

∆x∗

F (y, x) = ∆y
F∗(x∗, y∗). (2.10)

Proof. The first two properties follow from the definition of the subdifferential respectively
Lemma 2.1.5. The third property follows from Young’s equality from Lemma 2.1.14 as

∆x∗

F (y, x) = F(y)−F(x) + 〈x∗, x〉 − 〈x∗, y〉 = F∗(x∗) + F(y)− 〈x∗, y〉
= F∗(x∗)−F∗(y∗)− 〈x∗ − y∗, y〉 = ∆y

F∗(x∗, y∗).

Remark 2.2.3. Although the Bregman divergence is non-negative, it is generally not
symmetric and not positive definite. If X is a Hilbert space and F = ‖·‖2

X then {2x} =
∂F(x) for all x ∈ X and thus

∆x
F(y, x) = ‖y‖2

X − ‖x‖2
X − 〈2x, y − x〉 = ‖y − x‖2

X .

So in this case the square root of the Bregman gives a metric. To give an example, where the
Bregman divergence is not very informative as a distance measure let X = R, F(x) = |x|,
then ∂F(x) = {sgn(x)} for x 6= 0, so that

∆sgn(x)
F (y, x) = |y| − |x| − sgn(x)(y − x) =

0, if sgn(y) = sgn(x)
2|y|, else.

2Most of this section is taken literally from the article [63] of the author.
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Especially when doing convergence analysis it is often crucial to have lower and upper
bounds on the Bregman divergence in terms of norms. In [77] the authors prove upper
and lower bounds for expressions

‖x+ y‖p − ‖x‖p − p 〈jp(x), y〉 =: ∆jp(x)
F (x+ y, x), (2.11)

where jp : X → X ∗ is a selection of the duality mapping, under certain assumptions on
the Banach space X . As it turns out that (2.11) is the Bregman divergence corresponding
to the functional F = ‖·‖p these results have been used since then in many publications
working with the Bregman divergence. However from the proofs of [77] it seems difficult to
transfer the results to other functions F . Thus we develop in this work a simple framework
to find such bounds and in fact can apply it to give a short new proof of the results from
[77] for F(x) = ‖x‖p, p > 1 .

Our approach is as follows: Proving upper bounds is rather simple if one sufficiently
understands the smoothness of F as the Bregman divergence is basically a linearization
error and linearization errors are related to differentiability by definition. In particular we
will show that one can obtain upper bounds for the Bregman divergence corresponding to
F = φ(‖·‖) if φ : R→ R is convex and sufficiently smooth.

Regarding lower bounds we will make use of F∗, the convex conjugate of F . Actually it
can be shown that lower bounds for ∆x∗

F (y, x) correspond to upper bounds for ∆x
F∗(y∗, x∗).

Note that this idea is not at all new. Already in [79, 5] this kind of connection between
F and F∗ was discussed in depth. So again one can just make use of the smoothness of
F∗ to conclude lower bounds for ∆x∗

F (y, x). One might argue that convex conjugates can
be rather complicated functions and expecting differentiability is too optimistic. This is
true to some extent, but actually reasonable lower bounds on ∆x∗

F (y, x) already imply
differentiability of F∗ at x∗ (see [79, Theorem 2.1]). So if one has any hope on finding
lower bounds then one might as well work with the convex conjugate.

If F is related to the norm ‖·‖X it is necessary to understand smoothness and convexity
of the space X and we therefore introduce the following definitions (see e.g. [49]):
Definition 2.2.4. Let dimX ≥ 2. Define SX := {x ∈ X : ‖x‖X = 1}. The modulus of
convexity δX : [0, 2]→ [0, 1] of the space X is defined by

δX (ε) := inf{1− ‖y + ỹ‖/2 : y, ỹ ∈ SX , ‖y − ỹ‖ = ε}.

The modulus of smoothness ρX : [0,∞)→ [0,∞) of X is defined by

ρX (τ) := sup{(‖x+ τy‖+ ‖x− τy‖)/2− 1 : x, y ∈ SX}.

The space X is called uniformly convex if δX (ε) > 0 for every ε > 0. It is called uniformly
smooth if limτ→0 ρX (τ)/τ = 0. The space X is called r-convex (or convex of power type r)
if there exists a constant K > 0 such that δX (ε) ≥ Kεr for all ε ∈ [0, 2]. Similarly, it is
called s-smooth (or smooth of power type s) if ρX (τ) ≤ Kτ s for all τ > 0.

The main result of this section is the following theorem
Theorem 2.2.5. Let X be a Banach space and F(x) = 1

p
‖x‖p for p > 1 then there exists

constants C1, C2 > 0 such that for all x, y ∈ X we have

∆jp(x)
F (y, x) ≤ C1 max{‖x‖, ‖y‖}pρX

(
2‖x− y‖

max{‖x‖, ‖y‖}

)
(2.12)
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and

∆jp(x)
F (y, x) ≥ C2 max{‖x‖, ‖y‖}pδX

(
‖x− y‖

3 max{‖x‖, ‖y‖}

)
. (2.13)

If the space X is s-smooth, then there exists C > 0 and for all τ > 0 also Cτ > 0 such that

∆jp(x)
F (y, x) ≤

C‖x− y‖
s, p = s

Cτ‖x‖p−s‖x− y‖s, for ‖x−y‖‖x‖ ≤ τ , p 6= s.
(2.14)

If the space X is r-convex, then there exists Cp,Y > 0 and for all τ > 0 also C̃τ > 0 such
that

∆jp(x)
F (y, x) ≥

Cp,Y‖x− y‖
r, p = r

C̃τ‖x‖p−r‖x− y‖r, for ‖x−y‖‖x‖ ≤ τ , p 6= r.
(2.15)

The moduli of smoothness and convexity have a well-developed theory, which is known
in the literature for a long time and we will not discuss all their properties. However for
our proofs we will need the following properties.
Lemma 2.2.6. (a) We have for τ1 ≤ τ2 that ρX (τ1)/τ1 ≤ ρX (τ2)/τ2.

(b) We have for all τ > 0 that there exists a constant Cτ such that for all Banach spaces
X we have

ρX (τ) ≥ (1 + τ 2) 1
2 − 1 ≥ Cττ

2, τ ≤ τ .

(c) If δX is extended by ∞ on R \ [0, 2] then (2δX )∗ = 2ρX ∗.
(d) The space X is r-convex if and only if its dual X ∗ is r′-smooth.
(e) There exists a convex function f such that δX (τ/2) ≤ f(τ) ≤ δX (τ). In particular

we have δ∗∗X (τ) ≥ δX (τ/2).

Proof. All statements follow from [49, Ch. 1.e]. The function f in the last statement can
be chosen as the Orlicz function f(τ) := (ρX ∗) (τ/2) by [49, Lemmata 1.e.6, 1.e.7].

For our purposes it will be more natural to introduce new definitions of the moduli of
smoothness and convexity related to functionals instead of spaces.
Definition 2.2.7. Let F : X → R be some arbitrary function, x ∈ X , F(x) < ∞ and
ξ ∈ X ∗. Define the linearization error functional ∆ξ

F(y, x) by

∆ξ
F(y, x) = F(y)−F(x)− 〈ξ, y − x〉 .

The modulus of smoothness ρξF ,x : [0,∞)→ [0,∞] of F in x with respect to ξ is defined by

ρξF ,x(τ) := sup
y∈SX

|F(x+ τy)−F(x)− 〈ξ, τy〉| = sup
‖x−y‖=τ

∣∣∣∆ξ
F(y, x)

∣∣∣ .
The modulus of convexity δξF ,x : [0,∞)→ [0,∞] of F in x with respect to ξ is defined by

δξF ,x(τ) := inf
‖x−y‖=τ

∣∣∣∆ξ
F(y, x)

∣∣∣ .
F is called r-convex (or convex of power type r) in x (w.r.t. ξ) if there exists K, τ > 0
such that δξF ,x(τ) ≥ Kτ r for all 0 < τ ≤ τ . Similarly, it is called s-smooth (or smooth of
power type s) in x (w.r.t. ξ) if ρξF ,x(τ) ≤ Kτ s for all 0 < τ ≤ τ .
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The quantities ρξF ,x, δ
ξ
F ,x give us a reformulation of our basic problem: We want to find

upper bounds for ρξF ,x(τ) and lower bounds for δξF ,x(τ). Before we show some properties
of these functions we should state some simple facts for their interpretation.
Remark 2.2.8. We will mostly consider convex functions F with ξ ∈ ∂F(x) so that the
linearization error functional is a Bregman divergence and one can neglect the absolute
value.
F is Fréchet-differentiable in x if and only if there exists ξ ∈ X ∗, such that ρξF ,x(τ)/τ →

0 as τ → 0 (see Definition A.1.2). F being s-smooth in x, with s ∈ (1, 2] then can be
seen as a stronger form of differentiability, comparable to fractional derivatives, however
F being 2-smooth is not equivalent to twice differentiability but rather to the notion of
strong smoothness.

δ
j(x)
F ,x (τ) > 0 for all x, τ implies strict convexity. As before r-convexity is an even

stronger notion of convexity and 2-convexity is connected to strong convexity. In [13]
the modulus of local (or total) convexity of F , νF(x, τ), was introduced and is basically
given by δξF ,x(τ) just that 〈ξ, y − x〉 is replaced by the right hand side derivative of F at
x in direction y − x. If F is convex and Gâteaux-differentiable then νF(x, τ) coincides
with δξF ,x(τ), where ξ = F ′(x). The modulus of total convexity has been studied in several
papers, see e.g. [14]. There exist further definitions of moduli of convexity and smoothness
related to functions (e.g. [56, 7]), but giving a complete overview over all such definitions
goes beyond the scope of this work.

It turns out that for functionals F that originate from the norm of X the moduli of
the space and of the functions are closely related.
Proposition 2.2.9. Let F = ‖·‖X and for all x ∈ X let ξx ∈ ∂F(x) be arbitrary. We
have

ρ ≤ sup
x∈SX

ρξxF ,x ≤ 2ρ. (2.16)

Proof. If we replace y by −y in the definition of ρξxF ,x we see

2ρ(τ) = sup {F(x+ τy) + F(x− τy)− 2F(x) + 〈ξx, τy − τy〉 : x, y ∈ SX}
≤ 2 sup

x∈SX
ρξxF ,x(τ)

and for all x, y ∈ SX we have by the definition of the subdifferential and as F(x) = ‖x‖X = 1
that

F(x+ τy)−F(x)− 〈ξx, τy〉 ≤ F(x+ τy) + F(x− τy)− 2 ≤ 2ρ(τ).

So this already gives us an upper bound for ρξ‖·‖X ,x(τ) if x ∈ SX , ξ ∈ ∂F(x). For
generalizing this to all x ∈ X we use the following.
Proposition 2.2.10. If the functional F is positively q-homogeneous then we have for
all x ∈ X \ {0}, ξ ∈ X ∗ that

‖x‖qδξ/‖x‖
q−1

F ,x/‖x‖

(
‖x− y‖
‖x‖

)
≤
∣∣∣∆ξ
F(y, x)

∣∣∣ ≤ ‖x‖qρξ/‖x‖q−1

F ,x/‖x‖

(
‖x− y‖
‖x‖

)
and for all λ > 0 we have λp−1ξ ∈ ∂F(λx) if and only if ξ ∈ ∂F(x).
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Proof. If F is positively q-homogeneous we have
∣∣∣∆ξ
F(y, x)

∣∣∣ = ‖x‖qF
(

y

‖x‖

)
− ‖x‖qF

(
x

‖x‖

)
− ‖x‖q

〈
ξ

‖x‖q−1 ,
y

‖x‖
− x

‖x‖

〉

= ‖x‖q
∣∣∣∣∣∆ξ/‖x‖q−1

F

(
y

‖x‖
,
x

‖x‖

)∣∣∣∣∣ ,
(2.17)

so that the first claim follows from Definition 2.2.7 . The second claim follows from
multiplying (2.4) either by λq or λ−q.

For convex functions F one can show that both moduli are nondecreasing.

Proposition 2.2.11. Let F be convex, x ∈ X and ξ ∈ ∂F(x). Then for λ ≥ 1 one has

ρξF ,x(λτ) ≥ λρξF ,x(τ), δξF ,x(λτ) ≥ λδξF ,x(τ).

In particular δξF ,x, ρ
ξ
F ,x are nondecreasing.

Proof. The idea is the same as in [13, sect. 2.4]. Let λ ≥ 1. For all y ∈ X , ‖y − x‖ = τ
one can define yλ = λy + (1− λ)x, so ‖yλ − x‖ = λτ. As λ ≥ 1 we get by the convexity
(see (2.2)) of F that

1
λ

∆ξ
F(yλ, x) = 1

λ

(
F(λy + (1− λ)x)−F(x)

)
− 〈ξ, y − x〉 ≥ ∆ξ

F(y, x).

So for all y ∈ X , ‖y − x‖ = τ we find

∆ξ
F(y, x) ≤ 1

λ
ρξF ,x(λτ),

which gives the first inequality. Similarly for all y ∈ X , ‖y − x‖ = λτ one can define
ỹλ = 1

λ
y + (1 − 1

λ
)x, then ‖ỹλ − x‖ = τ and again convexity of F can be used to show

∆ξ
F(y, x) ≥ λ∆ξ

F(ỹλ, x), which yields the other inequality.

Lemma 2.2.12. For p > 1 let f : R→ R, x 7→ 1
p
xp. Then ρ1

f,1 is nondecreasing.

Proof. We have

ρ1
f,1(τ) = sup

y∈{−1,1}

1
p
|(1 + yτ)p − 1− pyτ | =: max

y∈{−1,1}
|hy(τ)|.

Now |h1| = h1 is nondecreasing for τ ≥ 0 as h1(0) = 0 and h′1(τ) = (1 + τ)p−1− 1 ≥ 0. h−1
is positive and nondecreasing for 0 ≤ τ ≤ 2 as h−1(0) = 0 and h′−1(τ) = (1− τ)p−1 + 1 ≥ 0.
For τ = 2 we already have h1(τ) = 3p−2p−1 ≥ 2p−2 = h−1(τ) for all p > 1. For τ ≥ 2 we
have that |h−1| is decreasing until it gets 0 and from there on we have h1 ≥ |h−1| = −h−1 as
(τ +1)p ≥ (τ −1)p+2 for all τ ≥ 2. Thus ρ1

f,1(τ) = h1(τ) for τ ≥ 2 which is increasing.

We also have a chain rule.

Proposition 2.2.13. Let f : R → R and x ∈ X , ξ ∈ X ∗, t ∈ R be such that ρtf,F(x) is
nondecreasing. Then for all τ ≥ 0 we have

ρtξf◦F ,x(τ) ≤ |t| ρξF ,x(τ) + ρtf,F(x)

(
‖ξ‖τ + ρξF ,x(τ)

)
.
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Proof. Let s = F(x) and define functions R, r by
F(x+ y)−F(x) = 〈ξ, y〉+R(y) ∀y ∈ X
f(s+ h)− f(s) = th+ r(h) ∀h ∈ R.

Then we have for τ > 0 and y ∈ SX that
f ◦ F(x+ τy)− f ◦ F(x) = t (〈ξ, τy〉+R(y)) + r (〈ξ, τy〉+R(τy))

= 〈tξ, τy〉+ tR(τy) + r (〈ξ, τy〉+R(τy)) .

Now the claim follows from R(τy) ≤ ρξF ,x(τ) and r(h) ≤ ρtf,F(x)(|h|) together with the
assumption that ρtf,F(x) is a nondecreasing function.

Propositions 2.2.9, 2.2.11 and 2.2.13 are already sufficient to find upper bounds on
ρξF ,x for F = f (‖x‖X ) if f is convex and if we sufficiently understand the smoothness of
both f and the space X . Regarding lower bounds the following proposition will be our
key instrument.
Proposition 2.2.14. Let F be convex and x be such that there exists ξ ∈ ∂F(x). We
have (

δξF ,x
)∗

= ρxF∗,ξ. (2.18)

Further we have that F is p-convex in x w.r.t. ξ if and only if F∗ is p′-smooth in ξ w.r.t.
x.

Proof. We have
ρxF∗,ξ(τ) = sup

y∗∈SX∗
[F∗(ξ + τy∗)−F∗(ξ)− 〈τy∗, x〉]

= sup
y∗∈SX∗

sup
y∈X

[〈ξ + τy∗, y〉 − F(y)−F∗(ξ)− 〈τy∗, x〉]

= sup
y∈X

[〈ξ, y〉 − F(y)−F∗(ξ) + τ‖y − x‖] .

By Youngs equality (2.5) we then have
ρxF∗,ξ(τ) = sup

y∈X
[F(x)−F(y) + 〈ξ, y − x〉+ τ‖y − x‖]

= sup
ε∈R+

0

sup
y∈X ,‖y−x‖=ε

[
ετ −∆ξ

F(y, x)
]

=
(
δξF ,x

)∗
(τ).

The second statement follows from (2.18), which gives that

ρxF∗,ξ =
(
δξF ,x

)∗
, δξF ,x ≥

(
δξF ,x

)∗∗
=
(
ρxF∗,ξ

)∗
and the fact that by Proposition 2.2.11 we have for τ > τ that ρξF ,x(τ) ≥ τρξF ,x(τ)/τ ,
δξF ,x(τ) ≥ τδξF ,x(τ)/τ , so that in particular(

δξF ,x
)∗

(τ ∗) = sup
0≤τ≤τ

[
τ ∗τ − δξF ,x(τ)

]
, for τ ∗ ≤ δξF ,x(τ)/τ(

ρξF ,x
)∗

(τ ∗) = sup
0≤τ≤τ

[
τ ∗τ − ρξF ,x(τ)

]
, for τ ∗ ≤ ρξF ,x(τ)/τ .

Thus one can just put in the corresponding lower or upper bound and calculate the
maximum, which completes the proof.
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From now on we will consider F = 1
p
‖·‖p for some p > 1 and use the framework outlined

above to proof Theorem 2.2.5. Note that in light of Proposition 2.2.10 it is sufficient to
understand δ

jp(x)
F ,x and ρ

jp(x)
F ,x for x ∈ SX .

Theorem 2.2.15. For some fixed p > 1 let F = 1
p
‖·‖p.

(a) For all τ > 0 exists a constant Cτ ,p > 0, such that for x ∈ SX and τ ≤ τ we have

ρ
jp(x)
F ,x (τ) ≤ Cτ ,pρX (τ).

(b) If we have for τ > 0, τ ≤ τ and all x ∈ SX that

ρ
jp(x)
F ,x (τ) ≤ φ(τ),

then

ρX (τ) ≤ p1/p−1φ(τ) + Cττ
2,

for τ ≤ τ . In particular if φ : R+ → R+ fulfills limτ→0 φ(τ)/τ = 0, then X is
uniformly smooth.

(c) Let 1
p

+ 1
p′

= 1. For all x ∈ SX , τ > 0 we have

δ
jp(x)
F ,x (τ) ≥ Cτ ,p′δX (τ/Cτ ,p′), τ ≤ p′ − 1

2 τ

where Cτ ,p′ is the constant from (a).
(d) If there exists τ > 0 such that we have for all x ∈ SX and τ ≤ τ that

δ
jp(x)
F ,x (τ) ≥ φ(τ),

where φ : R+ → R+ is nondecreasing and φ(τ) > 0 for τ > 0, then X is uniformly
convex.

Proof. Claim (a): Note that F = f ◦ ‖·‖, with f(t) = 1
p
tp and ρ1

f,F(x) nondecreasing by
Lemma 2.2.12, so Proposition 2.2.13 gives

ρ
jp(x)
F ,x (τ) ≤ ρ

jp(x)
‖·‖,x (τ) + ρ1

f,F(x)

(
τ + ρ

jp(x)
‖·‖,x (τ)

)
.

We have by Taylor’s theorem

ρ1
f,1(τ) = sup

σ∈{−1,+1}

p− 1
2 τ 2 + r(στ)τ 2 ≤ Cτ 2, for τ ≤ 3τ ,

where the inequality holds for a constant depending on p and τ as ρ1
f,1 is always finite and

so is the remainder r. We have jp(x) ∈ ∂‖·‖(x) for x ∈ SX , so by Proposition 2.2.9 we
have ρjp(x)

‖·‖,x (τ) ≤ 2ρX (τ) and one can easily see that ρX (τ) ≤ τ . So we have

ρ
jp(x)
F ,x (τ) ≤ 2ρX (τ) + 9Cτ 2 ≤ (2 + 9C/Cτ )ρX (τ), τ ≤ τ

where the second inequality follows from item (b) of Lemma 2.2.6.
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Claim (b): Note that ‖·‖ = f−1 ◦F and f−1(t) = (pt)
1
p is concave, thus −f−1 is convex

and it is differentiable, so −1 ∈ ∂ (−f−1)
(

1
p

)
and by Proposition 2.2.11 ρ1

f−1,1/p = ρ−1
−f−1,1/p

is nondecreasing. Then Proposition 2.2.13 gives for all x ∈ SX that

ρ
jp(x)
‖·‖,x (τ) ≤ ρ

jp(x)
F ,x (τ) + ρ1

f−1,1/p

(
τ + ρ

jp(x)
F ,x (τ)

)
≤ φ(τ) + Cττ

2,

where the second inequality follows by Taylors theorem as above and the fact that by
Claim (a) we always have ρjp(x)

F ,x (τ) ≤ Cτ for some C > 0. Thus Proposition 2.2.9 yields
the claimed assertion.

Claim (c): First of all note that F∗(t) = 1
p′
tp
′ , with 1

p
+ 1

p′
= 1. We have

δ
jp(x)
F ,x (τ) ≥

(
δ
jp(x)
F ,x

)∗∗
(τ) =

(
ρxF∗,jp(x)

)∗
(τ) = sup

r≥0

[
τr − ρxF∗,jp(x)(r)

]
.

By Claim (a) we have for all x ∈ SX that ρxF∗,jp(x)(r) ≤ Cτ ,p′ρX ∗(r) for all 0 < r < τ . We
are only interested in the case τ → 0 so let τ ≤ Cτ ,p′ρX ∗(τ)/τ , where ρX ∗(τ)/τ > 0 by
Lemma 2.2.6, (b). Then by Lemma 2.2.6, (a). we have τr ≤ Cτ ,p′ρX ∗(r) for r ≥ τ and
thus find

sup
0≤r

[
τr − ρxF∗,jp(x)(r)

]
≥ sup

0≤r≤τ
[τr − Cτ ,p′ρX ∗(r)] = (CρX ∗)∗ (τ).

So we have by Lemma 2.2.6, (c) and (e) that

δ
jp(x)
F ,x (τ) ≥ (Cτ ,p′ρX )∗ (τ) = Cτ ,p′

2 (2δX )∗∗
(

2τ
Cτ ,p′

)
≥ Cτ ,p′ (δX )

(
τ

Cτ ,p′

)
.

Finally note that Cτ ,p′ ≥ p′−1
2 C−1

τ , with Cτ from item (b) of Lemma 2.2.6 and thus
Cτ ,p′ρX ∗(τ)/τ ≥ p′−1

2 τ .
Claim (d): By assumption we have δjp(x)

F ,x (τ) ≥ φ(τ) for τ ≤ τ and by Proposition 2.2.11
we have for τ > τ that δjp(x)

F ,x (τ) ≥ τδ
jp(x)
F ,x (τ)/τ and thus δjp(x)

F ,x (τ) ≥ φ̃(τ) with

φ̃(τ) :=

φ(τ), τ ≤ τ ,

τφ(τ)/τ , τ > τ.

So by Proposition 2.2.14 we have for all x∗ ∈ SX ∗ that

ρ
j∗p(x∗)
F∗,x∗ (τ) =

(
δx
∗

F ,j∗p(x∗)

)∗
(τ) ≤ φ̃∗(τ).

Now just observe that for τ < φ(τ)/τ we have

φ̃∗(τ)
τ

= sup
0≤t

[
t− φ̃(t)

τ

]
= sup

0≤t≤τ

[
t− φ(t)

τ

]
→ 0, τ → 0,

as φ is nondecreasing. So by part (b) of the theorem we get that X ∗ is uniformly smooth
from which it follows that X is uniformly convex [49, Prop. 1.e.2].
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Remark 2.2.16. One can see from the above proof that in the asymptotic case τ → 0 one
can choose the constant Cτ ,p such that

Cτ ,p →

2, X is not 2-smooth
1 + p, X is 2-smooth.

These constants are not sharp for every space X , but at least in the asymptotic case the
constants are much simpler than the ones given in [77]. For best known constants with
respect to Lp spaces we refer to [76] and [78].

The above theorem combined with Proposition 2.2.10 gives us upper and lower bounds
on the Bregman divergence for ‖x− y‖ ≤ τ‖x‖. However as for large ‖x− y‖ the Bregman
divergence will be dominated by the term 1

p
‖y‖p it is not difficult to also find bounds that

hold for all x, y ∈ X. Further one can additionally conclude bounds for the symmetric
Bregman divergence,

∆sym
F (x, y) := ∆jp(x)

F (y, x) + ∆jp(y)
F (x, y) = 〈jp(x)− jp(y), x− y〉 ,

from our theorem. These two claims are shown in the following two propositions.
Proposition 2.2.17. For some fixed p > 1 let F = 1

p
‖·‖p and let φ : R+ → R+ be

nondecreasing. Let V = X \ {0} × X and define the statements:

∃C, c > 0∀(x, y) ∈ V, ‖x− y‖ ≤ c‖x‖ : ∆jp(x)
F (y, x) ≤ C‖x‖pφ

(
‖x−y‖
‖x‖

)
(a)

∃C > 0∀(x, y) ∈ V : ∆sym
F (x, y) ≤ C max{‖x‖, ‖y‖}pφ

(
2‖x−y‖

max{‖x‖,‖y‖}

)
(b)

∃C > 0∀(x, y) ∈ V : ∆jp(x)
F (y, x) ≤ C max{‖x‖, ‖y‖}pφ

(
2‖x−y‖

max{‖x‖,‖y‖}

)
(c)

Then (a) ⇒ (b) ⇒ (c). Obviously one also has (c) ⇒ {(a) with φ replaced by φ(2·)}.

Proof. We only show that (a) implies (b) as (b) ⇒ (c) follows trivially. Without loss of
generality let c ≤ 1. First of all assume ‖x−y‖‖x‖ > c. Then by

‖x− y‖
‖x‖

‖x‖
‖y‖

= ‖x− y‖
‖y‖

≥ ‖y‖ − ‖x‖
‖y‖

≥ 1− ‖x‖
‖y‖

one can see that regardless of whether we have ‖x‖/‖y‖ > 1/2 or ‖x‖/‖y‖ ≤ 1/2 one
always has 2‖x−y‖

‖y‖ > c. So by

∆sym
F (x, y) = 〈jp(x)− jp(y), x− y〉 ≤ ‖x‖p + ‖y‖p + ‖x‖p−1‖y‖+ ‖y‖p−1‖x‖

≤ 4 max{‖x‖, ‖y‖}p

we find that

∆sym
F (x, y) ≤ 4

φ (c) max{‖x‖, ‖y‖}pφ
(

2‖x− y‖
max{‖x‖, ‖y‖}

)
.

Now consider the case ‖x− y‖/‖x‖ ≤ c ≤ 1. In this range we can conclude (b) from
(a) as ‖y‖ ≤ 2‖x‖, so that

φ

(
‖x− y‖
‖x‖

)
≤ φ

(
2‖x− y‖
‖y‖

)
.
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Proposition 2.2.18. For some fixed p > 1 let F = 1
p
‖·‖p, let φ : R+ → R+ be nondecreas-

ing and φ(τ) > 0 for τ > 0. Let V = X \ {0} × X and define the statements:

∃C, c > 0∀(x, y) ∈ V, ‖x− y‖ ≤ c‖x‖ : ∆jp(x)
F (y, x) ≥ C‖x‖pφ

(
‖x−y‖
‖x‖

)
(d)

∃C > 0∀(x, y) ∈ V : ∆jp(x)
F (y, x) ≥ C max{‖x‖, ‖y‖}pφ

(
‖x−y‖

max{‖x‖,‖y‖}

)
(e)

∃C > 0∀(x, y) ∈ V : ∆sym
F (x, y) ≥ C max{‖x‖, ‖y‖}pφ

(
‖x−y‖

max{‖x‖,‖y‖}

)
(f)

Then (d) ⇒ (e) ⇒ (f).

Proof. The proof is similar to the previous proof and we only show (d) ⇒ (e) as the
left implication follows trivially. Again w.l.o.g. c ≤ 1. We now look at three different
cases. We start with the case ‖x− y‖/‖x‖ → ∞, say ‖x− y‖/‖x‖ ≥ N , for some N > 3.
Therefore we have (N − 1)‖x‖ ≤ ‖y‖ so that in particular max{‖x‖, ‖y‖} = ‖y‖ and

‖x− y‖
‖y‖

>
1
2 .

For N sufficiently large we find that

∆jp(x)
F (y, x) ≥ Cp,N‖y‖p ≥

Cp,N
φ(1/2)‖y‖

pφ

(
‖x− y‖
‖y‖

)

= C max{‖x‖, ‖y‖}pφ
(

‖x− y‖
max{‖x‖, ‖y‖}

)
.

Now consider c ≤ ‖x− y‖/‖x‖ ≤ N . So ‖y‖ ≤ (N + 1)‖x‖ and thus

‖x− y‖
‖x‖

≤ N + 2, φ

(
‖x− y‖

max{‖x‖, ‖y‖}

)
≤ φ(N + 2).

By (d) we have for ‖x− y‖ = c‖x‖ that

∆jp(x)
F (y, x) ≥ ρ

jp(x)
F ,x (c‖x‖) ≥ C‖x‖pφ (c) ,

so that by Lemma 2.2.12 we have for c ≤ ‖x− y‖/‖x‖ ≤ N

∆jp(x)
F (y, x) ≥ ρ

jp(x)
F ,x (‖x− y‖) ≥ ρ

jp(x)
F ,x (c‖x‖) ≥ C‖x‖pφ (c)

= C‖x‖pφ (c) φ(N + 2)
φ(N + 2) ≥ C‖x‖p φ(c)

φ(N + 2)φ
(

‖x− y‖
max{‖x‖, ‖y‖}

)

≥ C(N + 1)−p‖y‖p φ(c)
φ(N + 2)φ

(
‖x− y‖

max{‖x‖, ‖y‖}

)
.

Last and least we have for ‖x− y‖/‖x‖ ≤ c ≤ 1 that ‖y‖ ≤ 2‖x‖ and thus by (d) that

∆jp(x)
F (y, x) ≥ C‖x‖pφ

(
‖x− y‖
‖x‖

)
≥ C2−p‖y‖pφ

(
‖x− y‖

max{‖x‖, ‖y‖}

)
.
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Proof of Theorem 2.2.5. By Proposition 2.2.10 we have

‖x‖pδjp(x)/‖x‖p−1

F ,x/‖x‖

(
‖x− y‖
‖x‖

)
≤ ∆jp(x)

F (y, x) ≤ ‖x‖pρjp(x)/‖x‖p−1

F ,x/‖x‖

(
‖x− y‖
‖x‖

)

Thus item (a) of Theorem 2.2.15 and the s-smoothness show the bound (2.14) for x ∈ X
and y such that ‖x− y‖ ≤ τ‖x‖. Similarly item (c) of Theorem 2.2.15 and the r-convexity
show (2.15) for x ∈ X and y such that ‖x − y‖ ≤ p′−1

2 τ‖x‖. As this holds true for all
τ > 0 one can just replace τ̃ = 2τ

p′−1 . Apply Proposition 2.2.17 and Proposition 2.2.18 to
conclude from this the uniform bounds for all x, y ∈ X .

2.3 Kullback-Leibler divergence

In this section we will formally introduce the Kullback-Leibler divergence, which is actually
also a Bregman divergence as we will see in Proposition 3.2.1. We have already motivated
the Kullback-Leibler divergence in 1.3 as the negative log-likelihood of Poisson data up to
a constant. Another reason for our interest in this special distance measure will be that
it can also be applied as a penalty term in maximum entropy regularization, see Section
3.2.5.

Definition 2.3.1 (Kullback-Leibler divergence). We first define the function kl : R2 → R
by

kl(s, t) =


s log

(
s
t

)
− s+ t, if s, t > 0

t, if s = 0, t ≥ 0
∞, else.

Then we can define on M ⊂ Rd the Kullback-Leibler divergence KL: L1(M)× L1(M)→ R
by

KL(g1, g2) =
∫
M

kl(g1(x), g2(x))dx.

Lemma 2.3.2. (a) KL(g1, g2) ≥ 0 and for g1, g2 ≥ 0 we have KL(g1, g2) = 0 if and only
if g1 = g2.

(b)

‖g1 − g2‖2
L2 ≤

(2
3‖g1‖L∞ + 4

3‖g2‖L∞
)

KL(g1, g2). (2.19)

(c)

‖g1 − g2‖2
L1 ≤

(2
3‖g1‖L1 + 4

3‖g2‖L1

)
KL(g1, g2). (2.20)

(d) For all g0 ∈ L1, g0 ≥ 0 and all R > 0 we have for all g ∈ L1, g ≥ 0 with ‖g‖L1 ≥
2e2R+1‖g0‖ that

KL(g, g0) ≥ R‖g‖L1 .
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Proof. (a) It suffices to show the claim pointwise for kl(s, t). If s = 0 the claim is clear.
For s > 0 we have kl(s, t) = s kl(1, t/s) . By the inequality log(t) ≤ t− 1 for t > 0
we find kl(1, t) = t− 1− log(t) ≥ 0, with equality only if t = 1.

(b) The function

φ(t) =
(2t

3 + 4
3

)
(t log(t)− t+ 1)− (t− 1)2

is strictly convex on (0,∞) with mint∈(0,∞) φ(t) = 0 attained at t = 1. Thus by
φ(s/t) ≥ 0 we have

(s− t)2 ≤
(2

3s+ 4
3t
)

kl(s, t). (2.21)

(Note that this also holds true for s = 0 as 1 ≤ 4/3). Integrating (2.21) gives the
claim.

(c) We can take the square root in (2.21) and obtain by Cauchy-Schwarz

(∫
M
|g1 − g2|dx

)2
≤
(∫

M

(2
3g1 + 4

3g2

) 1
2

kl(g1, g2) 1
2 dx

)2

≤
∫
M

(2
3g1 + 4

3g2

)
dx
∫
M

kl(g1, g2)dx.

(d) Let ‖g‖L1 ≥ 2e2R+1‖g0‖. Define B := {x ∈ M : g(x) ≥ e2R+1g0(x)}. Assume∫
B g <

1
2‖g‖L1 . This would imply

‖g‖L1 =
∫
B
g +

∫
M\B

g <
1
2‖g‖L

1 + e2R+1
∫
M\B

g0 < 2e2R+1‖g0‖,

which is a contradiction. Thus we have
∫
B g ≥ 1

2‖g‖L1 . This yields

KL(g, g0) ≥
∫
B
g log

(
g

g0

)
− g + g0 ≥

∫
B
g log(e2R+1)− g ≥ 2R

∫
B
g ≥ R‖g‖L1 .
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Chapter Three
Generalized Tikhonov

regularization

Let the forward operator F : X → Y be continuous between Banach spaces X and Y . As
motivated in Section 1.3 we will consider generalized Tikhonov regularization of the form

f̂α ∈ arg min
f∈X

T (f) := arg min
f∈X

[S(F (f)) + αR(f)], (3.1)

where S : Y → R, R : X → R are convex and lower semi-continuous. From now on we
will have to distinguish between linear and nonlinear forward operators. To this end we
will write the forward operator as T : X → Y whenever we assume it to be linear. If the
forward operator is linear then the Tikhonov functional T is convex by Lemma 2.1.5. T is
strictly convex if R is strictly convex. Convexity gives all the nice properties of Section
2.1, in particular Proposition 2.1.12. Further convexity gives us the strong tool of duality,
which we will introduce in the following section.

3.1 Duality1

In this section we will introduce the so called dual problem of the minimization problem
(3.1) for linear forward operators. For convenience we consider the equivalent problem

inf
f∈X

[ 1
α
S(Tf) +R(f)

]
= β. (3.2)

Duality is a well-known concept from optimization and the main reason why we consider
it here is that it will give a useful characterization for solutions of (3.1), the so called
Karush–Kuhn–Tucker conditions. First we have to introduce the perturbed problems

inf
f∈X
P(f, g) := inf

f∈X

[ 1
α
S(Tf − g) +R(f)

]
, g ∈ Y ,

so that minimizing P(f, 0) gives back our original problem.

Definition 3.1.1 (primal and dual problem). We call (3.2) the primal problem and define
the corresponding dual problem by

sup
ξ∈Y∗

[−P∗(0, ξ)] = γ. (3.3)
1Duality theory for optimization is well known and can be found e.g. in [24]. Still we give some proofs

to illustrate the idea of duality as it will be an important concept later on.
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We can compute the convex conjugate P∗ with respect to S and R to get a more
concrete formulation of the dual problem.

P∗(φ, ξ) : = sup
f∈X ,g∈Y

[
〈φ, f〉+ 〈ξ, g〉 − 1

α
S(Tf − g)−R(f)

]
= sup

f∈X
sup
g̃∈Y

[
〈φ, f〉+ 〈ξ, Tf − g̃〉 − 1

α
S(g̃)−R(f)

]
= sup

f∈X
[〈φ, f〉+ 〈T ∗ξ, f〉 − αR(f)] + 1

α
sup
g̃∈Y

[〈−αξ, g̃〉 − S(g̃)]

= sup
f∈X

[〈T ∗ξ + φ, f〉 − R(f)] + 1
α

(S)∗(−αξ)

= 1
α

(S)∗(−αξ) +R∗(T ∗ξ + φ).

Thus the dual problem is given by

ξ̂α ∈ arg max
ξ∈Y∗

[
− 1
α

(S)∗(−αξ)−R∗(T ∗ξ)
]
, sup
ξ∈Y∗

[
− 1
α

(S)∗(−αξ)−R∗(T ∗ξ)
]

= γ. (3.4)

Equivalently we can write the dual problem as infξ∈Y∗ P∗(0, ξ) and then consider the
bidual problem, that is the dual of the dual problem. According to Definition 3.1.1 this is
given by

sup
f∈X

[−P∗∗(f, 0)] = −β̃

and as P is convex and lower semi-continuous we have P = P∗∗ so that the bidual problem
is equivalent to the primal problem with β = β̃. We have the following relations between
primal and dual problem.

Theorem 3.1.2. (a) Weak duality: β ≥ γ.
(b) We say that strong duality holds if there exists solutions f̂α to the primal and ξ̂α to

the dual problem, as well as β = γ. Strong duality is equivalent to the (Karush-Kuhn-
Tucker) extremal relations

T ∗ξ̂α ∈ ∂R(f̂α) (3.5)
−αξ̂α ∈ ∂S(T f̂α). (3.6)

Proof. (a) By Young’s inequality we have

P(f, 0) + P∗(0, ξ) ≥ 〈0, f〉+ 〈ξ, 0〉 = 0.

Therefore β − γ = inff∈X P(f, 0)− supξ∈Y∗ −P∗(0, ξ) ≥ 0.
(b) Assume that strong duality holds with solutions f̂α and ξ̂α. Then as β = γ we have

P(f̂α, 0) + P∗(0, ξ̂α) = 0. (3.7)

This is equivalent to[
R(f̂α) +R∗

(
T ∗ξ̂α

)
+ 〈T ∗ξ̂α, f̂α〉

]
= − 1

α
[S(T f̂α) + (S)∗(−αξ̂α) + 〈−αξ̂α, T f̂α〉].
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As both expressions in brackets are non-negative by Young’s inequality they have to
be zero. Then the necessary condition for equality in Lemma 2.1.14 gives (3.5) and
(3.6).
On the contrary assume that the extremal relations (3.5) and (3.6) hold true. We
have just seen that this is equivalent to (3.7). The necessary condition for equality in
Lemma 2.1.14 gives (0, ξ̂α)T ∈ ∂P(f̂α, 0) as well as (f̂α, 0) ∈ ∂P∗(0, ξ̂α) by Corollary
2.1.19. By the definition of the subdifferential this is equivalent to

∀(f, g) ∈ X × Y : P(f, g) ≥
〈(

0
ξ̂α

)
, (f − f̂α, g)

〉
+ P(f̂α, 0)

∀
(
φ
ξ

)
∈ X ∗ × Y∗ : P∗(φ, ξ) ≥

〈(
φ

ξ − ξ̂α

)
, (f̂α, 0)

〉
+ P∗(0, ξ̂α).

Setting g = 0, φ = 0 we see that f̂α is a solution to the primal and ξ̂α to the dual
problem. Further by (3.7) we have that β = γ.

If we want to make use of the extremal relations, we have to understand for which
kind of problems strong duality holds. To this end we have the following theorem [24, Ch.
III, Proposition 4.1].

Theorem 3.1.3. Let there exist f0 ∈ X such that the map g 7→ P(f0, g) is finite and
continuous at g = 0. Then there exists a solution to the dual problem (3.3) and we have
β = γ.

Corollary 3.1.4. (a) Let there exist f0 ∈ X such that R(f0) <∞, S(Tf0) <∞ and S
continuous at Tf0. Then there exists a solution ξ̂α to the dual problem and we have
β = γ.

(b) Let there exist ξ0 ∈ Y∗ such that (S)∗(−αξ0) <∞, R∗(T ∗ξ0) <∞ and R∗ continuous
at T ∗ξ0. Then there exists a solution f̂α to the primal problem and we have β = γ.

Proof. (a) Immediate consequence of Theorem 3.1.3.
(b) Follows from the dual version of Theorem 3.1.3: If there exist ξ0 ∈ Y∗ such that

φ 7→ P∗(φ, ξ0) is finite and continuous at φ = 0, then there exists a solution to the
bidual problem, which actually is the primal problem based on our assumptions, and
we have β = γ.

Remark 3.1.5. If both assumptions of Corollary 3.1.4 hold true, then we have strong
duality. Actually, if we assume that the minimizer f̂α exists, it is already sufficient for
strong duality that (a) holds true. If we do not have existence of f̂α then we do not have
a regularization method, so existence is well understood for many interesting Tikhonov
functionals.

3.2 Examples

In this section we want to give an overview of some variants of generalized Tikhonov
regularization, which will be most important in this thesis. To this end we separately
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introduce several data fidelity and penalty functionals, that can be in principle combined
freely. We want to point out that we try to work as general as possible to ensure that our
convergence analysis works for as many variants of generalized Tikhonov regularization
as possible. In particular in the next chapter the results will hold for general penalty
functionals or at least under general assumptions on the penalty, however we will have to
distinguish the data fidelities at some points. On the contrary in Chapter 5 we will have
to look closer at the different penalty functionals.

In this work we consider basically three different data fidelity functionals and two types
of penalty functionals. The three data fidelities are first a simple deterministic data fidelity
functional given by a norm power and second a least square data fidelity for random
noise, which is of similar nature as the norm power data fidelity and is most interesting
for Gaussian white noise. Last but not least we consider a Kullback-Leibler type data
fidelity, which is tailored to the case of Poisson data. The first very general penalty term
is again given by a norm power R : X → R,R(f) = 1

t
‖f‖tX for some Banach space X and

t > 1 whilst the second is the cross entropy R : L1(M) → R,R(f) = KL(f, f0), where
f0 ∈ L1(M) is an a-priori guess.

3.2.1 Deterministic data fidelity

If the data are given by gobs ∈ Y , then we can define for p ∈ (1,∞) the data fidelity

Spgobs(g) = Sp(g − gobs) := 1
p
‖g − gobs‖pY .

The choice S = S2
gobs can be motivated for example as in Section 1.3, where it turned

out that this is the “correct” choice under the prior knowledge that the data noise is
normally distributed. More generally and simply put the choice S = Spgobs will lead to an
approximate solution f̂α such that F (f̂α) is close to the data in the norm of Y . The most
common and well studied example is S = S2

gobs , where Y is a Hilbert space, corresponding
to classical quadratic Tikhonov regularization.

As already shown in the last chapter Spgobs is convex (and it is obviously continuous).
The convex conjugate is given by

(Spgobs)∗(ξ) = sup
g∈Y

[
〈ξ, g〉 − Sp(g − gobs)

]
= sup

g∈Y

[
〈ξ, g + gobs〉 − Sp(g)

]
= 1
p′
‖ξ‖p

′

Y∗ + 〈ξ, gobs〉.

The subdifferential of Sp is given by the duality mapping (see Section 2.1)

Jp(g) =
{
ξ ∈ Y∗ : 〈ξ, g〉 = ‖ξ‖‖g‖, ‖ξ‖ = ‖g‖p−1

}
and thus we have ∂Spgobs(g) = Jp(g − gobs).

3.2.2 Least squares data fidelity for random noise

As motivated in Section 1.3 we would like to use a least squares approach for Gaussian
white noise and thus our estimator will be given by

f̂α ∈ arg min
f∈X

[1
2‖F (f)‖2

L2 −
〈
Gobs, F (f)

〉
+ αR(f)

]
. (3.8)
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Notice that if we had Gobs ∈ L2(M) the above minimization would be equivalent to
minimizing 1

2‖Tf −G
obs‖2

L2 + αR(f), however for Gaussian white noise we have Gobs 6∈
L2(M) with probability 1 by Theorem 1.4.5. Given the additive noise setting (1.7) we
denote our data fidelity by

SLS
Gobs(g) = 1

2α‖g‖
2
L2 −

〈
g† + εZ, g

〉
.

For this subsection we suppose that Assumption 1.4.1 holds true for some p′ > 1 and
consider Y = Bγ

p,1(M) with 1
p

+ 1
p′

= 1. If we have that P(Z ∈ B−γ+ε
p′,∞ (M)) = 0 for all ε > 0,

which is true for Gaussian white noise and γ = d/2 by Theorem 1.4.5, then this choice of Y
is necessary for the minimization functional to be well-defined (one could of course also set
SLS
Gobs(g) =∞ if g /∈ Y = Bγ

p,1(M) but this will complicate the duality). In the remaining
two chapters we will still put Y = L2 for Gaussian white noise as it is not necessary for
our analysis that Gobs ∈ Y and F (f) ∈ Bγ

p,1(M) can still be assumed as a property of the
forward operator. Note that the dual space to Y is Y ∗ = B−γp′,∞(M) by Theorem A.2.6.
Assume now that the forward operator F = T is linear. By Corollary 3.1.4 there exists a
unique solution ξ̂α of the dual problem as SLS

Gobs is continuous everywhere. The conjugate
of the data fidelity is given by(

SLS
Gobs

)∗
(ξ) = sup

h∈Bγp,1(M)

[
〈ξ, h〉 − 1

2‖h‖
2
L2 + 〈g† + εZ, h〉

]
. (3.9)

Thus we have for all g ∈ L2

(
SLS
Gobs

)∗
(g − εZ) = 1

2‖g + g†‖L2 .

In particular
(
SLS
Gobs

)∗
(−αξ0) < ∞ for ξ0 = − 1

α
(g − εZ), g ∈ L2 so that we have strong

duality if R∗ is continuous at T ∗ξ0 for some g by Theorem 3.1.3. Under strong duality
one has the extremal relations

T ∗ξ̂α ∈ ∂R(f̂α), (3.10)
−αξ̂α ∈ ∂SLS

Gobs(T f̂α). (3.11)

As S is differentiable in Y = Bγ
p,1(M) we have that

∂SLS
Gobs(T f̂α) =

{
T f̂α − g† − εZ

}
(3.12)

and for our error analysis we will decompose

ξ̂α = g† − T f̂α
α

+ ε

α
Z =: ξ̂α,L2 + ξ̂α,Z . (3.13)

3.2.3 Kullback-Leibler type data fidelity for random noise

If the data are given by a Poisson process we will choose, following [43], S(g) equal to

SKL
Gt,σ(g) :=


∫
M gdx−

∫
M log(g + σ) (dGt + σdx) , if g > −σ a.e.,

∞, else,
(3.14)
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for some σ ≥ 0, which is for σ = 0 the negative log-likelihood for Poisson data up to
a constant (see [43, Section 2.2]). Notice that, as in the previous subsection, if we had
Gt ∈ L1(M), then the data fidelity would equal the Kullback-Leibler divergence

KL(Gt + σ, g + σ) =
∫
M
g −Gt + (Gt + σ) log

(
Gt + σ

g + σ

)

up to a constant, so that we will call it Kullback-Leibler type data fidelity. In terms of
our general additive noise model (1.7) SKL

Gobs,σ is given by

SKL
Gobs,σ(g) := ‖g‖L1 − 〈g† + εZ + σ, log(g + σ)〉,

which equals (3.14) by setting ε = t−
1
2 and Z = t

1
2 (Gt − g†). Concerning the penalty

functional we can demand that R = R+ χB, with some suitable subset B ⊂ X , so that
our variational minimization problem is of the form

f̂α ∈ arg min
f∈B

[
SKL
Gobs,σ(F (f)) + αR(f)

]
.

As F (f †) is the density of the Poisson process F(f̂α) should be a density as well, thus we
want to choose B such that

F (f) ≥ 0 ∀f ∈ B. (3.15)

Then the offset parameter guarantees that we stay away from the singularity of the
logarithm. Further reasons to introduce an offset parameter have been discusses in [43].
In Chapter 4 we will work with the relaxed condition F (f) ≥ −σ/2 for all f ∈ B instead
of (3.15). The reason for this is that we can then find a set B, where f † is in the interior
(which will be important in Chapter 5) even if f † takes or approaches the value 0 at some
point. We again consider Y = Bγ

p,1(M) and F = T linear for the rest of this subsection.
The conjugate of SKL

Gobs,σ is given by(
SKL
Gobs,σ

)∗
(ξ) = sup

g∈Bγp,1(M)
g>−σ

[〈ξ, g〉 − ‖g‖L1 + 〈Gt + σ, log(g + σ)〉].

In particular we have(
SKL
Gobs,σ

)∗
((1− σ)−Gt) = sup

g∈Bγp,1(M)
g>−σ

[〈Gt + σ, log(g + σ)− g〉] <∞,

as log(x + σ) − x ≤ σ − 1 for all x ∈ (−σ,∞). Thus
(
SKL
Gobs,σ

)∗
(−αξ0) < ∞ for ξ0 =

− 1
α

((1−σ)−Gt) so that we have strong duality if R∗ is continuous at T ∗ξ0 as for the least
squares data fidelity. We have the same extremal relations as in the previous subsection
and

∂SKL
Gobs,σ(T f̂α) =

{
1− σ

T f̂α + σ
− 1
T f̂α + σ

Gt

}
. (3.16)

And similar as in the last subsection we decompose

ξ̂α = 1
α

(
g† − T f̂α
T f̂α + σ

)
+ 1
α(T f̂α + σ)

(
Gt − g†

)
=: ξ̂α,L2 + ξ̂α,Z . (3.17)
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3.2.4 Norm power penalty

The penalty R(f) = 1
t
‖f‖tX has similar motivation and properties as the data fidelity Spgobs ,

so there is some overlap with the above section on the deterministic data fidelity. The
penalty R = 1

2‖·‖
2
X can again be motivated as in Section 1.3, where it turned out that

this is the “correct” choice under the prior knowledge that f † is normally distributed. The
idea behind using a norm power can also be that our main a-priori knowledge on the true
solution is that f † belongs to the space X . So this penalty is in principle rather general,
but one can make it stronger by choosing the smallest space that f † belongs to. The exact
value for the power t can again be motivated as in Section 1.3 or it can be simply chosen
in a way such that R has favorable properties.

The most common and well studied example is R(f) = 1
2‖f‖

2
X , where X is a Hilbert

space, corresponding to classical quadratic Tikhonov regularization. We will also consider
R(f) = 1

t
‖f‖tB0

p,q
, where t is usually chosen either as t = p = q or as t = r, with r being

the convexity of the space B0
p,q (see for example [19, 50, 55, 74]).

As already shown in the last chapter R is convex (and it is obviously continuous) and
the subdifferential of R is given by the duality mapping Jt(x). The convex conjugate is
given by R∗(f ∗) = 1

t′
‖f ∗‖t′X ∗ . As this is continuous everywhere in X ∗ we get the existence

of f̂α for linear forward operators by Corollary 3.1.4 if S∗ is finite at some point.

3.2.5 Cross entropy penalty

We now consider X = L1(M), where M is a bounded measurement manifold and assume
that we are given an initial guess f0 ≥ 0 for the true solution f † ≥ 0. Given our observed
data Gobs we want to improve upon this initial guess. Considering probability distributions
f, f0 (or more general positive functions in L1(M)) there is probabilistic motivation (see
[62] or [25, Ch. 3.5]) that the correct way to do this is to find

f̂α ∈ arg min
f∈L1

[SGobs(Tf) +Rf0(f)] , (3.18)

where Rf0(f) is given by the cross entropy (or relative entropy or Kullback-Leibler)
functional Rf0(f) = KL(f, f0). Note that this is non-negativity enforcing as Rf0(f) =∞
if we have f < 0 on a set of positive measure, so one could equivalently take the arg min
over all non-negative functions.

Properties and the connection to Bregman divergences of the cross entropy functional
are well known and can be found e.g. from the perspective of regularization in [57, 58].
For the sake of self-containedness we show the crucial properties that will be of interest
for us.
Proposition 3.2.1. (a) Rf0 is convex and lower semi-continuous, however nowhere

continuous.
(b) For f ∗ ∈ L∞(M) we have R∗f0(f ∗) =

∫
M f0(x)(ef∗(x) − 1)dx.

(c) Let f0 > 0. The subdifferential ∂Rf0(f) is non-empty if and only if log
(
f
f0

)
∈ L∞(M)

and in this case we have

∂Rf0(f) =
{

log
(
f

f0

)}
,
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as well as

∆
log f

f0
Rf0

(h, f) = KL(h, f) = Rf (h),

for all h ∈ L1(M).

Proof. We can see that Rf0 is convex by looking pointwise at klt0(t) = t log
(
t
t0
− t+ t0

)
,

which has a non-negative second derivative. We calculate R∗f0 also pointwise and find

kl∗t0(t∗) = sup t ≥ 0[t∗t− klt0(t)] = t0(et∗ − 1),

as the unique maximum is attained at t = t0e
t∗ . As M is bounded and f ∗ ∈ L∞(M) we

have that Rf0 is well defined at f = f0e
f∗ and it maximizes f ∗f −KL(f, f0) pointwise and

thus also

R∗f0(f ∗) = sup
f∈L1

[f ∗f −KL(f, f0)] =
∫
M
f0(x)(ef∗(x) − 1)dx.

Similarly we can compute for f ∈ L1(M) that

R∗∗f0 (f) = KL(f, f0) = Rf0(f)

and therefore Rf0 is lower semi-continuous by Theorem 2.1.18.
By definition we have f ∗ ∈ ∂Rf0(f) if the inequality∫

M
klf0(x)(f(x) + h(x))− klf0(x)(f(x))− f ∗(x)h(x)dx ≥ 0

holds for all h ∈ X = L1. This is equivalent to

klf0(x)(f(x) + h(x))− klf0(x)(f(x))− f ∗(x)h(x) ≥ 0

almost everywhere (otherwise just choose h as the characteristic function on the subset,
where the above expression is negative). Now let t0 > 0, then klt0(t) is differentiable in
t > 0 and thus has subdifferential ∂ klt0(t) =

{
log t

t0

}
by Theorem 2.1.11, whereas for

t ≤ 0 the subdifferential is empty. Thus we see that f ∗ ∈ ∂Rf0(f) ⊂ L∞ has to be of the
form f ∗ = log f

f0
and exists only if this expression is in L∞. If f ∗ ∈ L∞, then

∆f∗

Rf0
(h, f) = KL(h, f0)−KL(f, f0)−

〈
log f

f0
, h− f

〉

=
∫
M
h log h

f
− h+ fdx = KL(h, f),

if h > 0 almost everywhere, else both sides equal infinity.
Regarding continuity of Rf0 at some arbitrary f ∈ L1(M), f ≥ 0 just note that f

has to be bounded by say B > 0 on a subset MB ⊂ M and thus for every ε > 0 one
can add a characteristic function h = −2BχMε to f , where Mε ⊂ MB, |Mε| ≤ ε

2B . Then
Rf0(f + h) =∞, ‖h‖L1 ≤ ε and thus Rf0 cannot be continuous at f .
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3.3 Bregman iteration2

Additionally to the plain generalized Tikhonov regularization (3.1) we consider Bregman
iterated Tikhonov regularization, which is based on the simple idea that starting out with
the first approximation f̂α from (3.1) we could try to improve the approximation by using
f̂α as an initial guess.

Assumption 3.3.1. Let the forward operator T : X → Y be linear and bounded, S(g) =
Spgobs(g) =: Sp(g − gobs), and R proper, convex and lower semi-continuous, with R∗
continuous.

Proposition 3.3.2. Suppose Assumption 3.3.1 holds true. Let f̂ (1)
α := f̂α be the solution to

(P1) := (3.1) and set R1 := R. Then for n = 1, 2, . . . we can define Rn+1(f) := ∆f∗n
R (f, f̂ (n)

α )
as well as

f̂ (n+1)
α ∈ arg min

f∈X

[ 1
α
Sp(Tf − gobs) +Rn+1(f)

]
, (Pn+1)

where

f ∗n :=
n∑
k=1

T ∗ξ̂(k)
α ∈ ∂R

(
f̂ (n)
α

)
,

with ξ̂(n)
α given by the unique solution

ξ̂(n)
α ∈ arg min

ξ∈Y∗

[ 1
α
S∗p (−αξ)− 〈ξ, gobs〉+R∗n(T ∗p)

]
(P ∗n)

to the dual problem (P ∗n) of (Pn) for which strong duality holds.

Proof. The existence of ξ̂(1)
α as well as strong duality for (P1), (P ∗1 ) follows from Theorem

3.1.3 as both Spgobs , (Spgobs)∗ are finite continuous, R is proper and R∗ is continuous. By
the extremal relation (3.5) we have

T ∗ξ̂(1)
α ∈ ∂R(f̂ (1)

α ),

so we can define f̂ (2)
α as claimed. Now assume that the claim holds for n = 1, 2, . . . ,m ∈ N.

Then again the existence of ξ̂(m)
α as well as strong duality for (Pm), (P ∗m) follows from

Theorem 3.1.3 as Rm is still proper and R∗m is just R∗ with shifted argument and an
additive constant, so still continuous. By the extremal relation (3.5) we have

T ∗ξ̂(m)
α ∈ ∂Rm(f̂ (m)

α ) = ∂R(f̂ (m)
α )−

m−1∑
k=1

T ∗ξ̂(k)
α .

Therefore, we have∑m
k=1 T

∗ξ̂(k)
α ∈ ∂R(f̂ (m)

α ) and can defineRm+1 in the way we claimed.
2Most of this section is taken literally from the article [64] to which the author contributed.
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We call this method Bregman iterated Tikhonov regularization or short Bregman
iteration. It reduces to iterated Tikhonov regularization if S(g) = ‖g‖2

Y , and R(f) = ‖f‖2
X

by (2.2.3). There is a considerable literature on this type of iteration from which we can
only give a few references here. Note that for R(f) = ‖f‖2

X the iteration (Pn+1) can
be interpreted as the proximal point method for minimizing T (f) := Sp(Tf − gobs). In
[16, 17, 21] generalizations of the proximal point method for general functions T on Rd

were studied, in which the quadratic term is replaced by some Bregman divergence (also
called D-function). For T (f) = Sp(Tf − gobs) this leads to (Pn+1) and the references
above discuss in particular the case of cross entropy functions R considered above. The
maximum entropy case shows how canonical Bregman iteration actually is as we then have

f̂ (n+1)
α ∈ arg min

f∈X

[ 1
α
Sp(Tf − gobs) + KL(f, f̂ (n)

α )
]

by Proposition 3.2.1, which is the only plausible way to iterate maximum entropy. In
the context of total variation regularization of inverse problems, the iteration (Pn+1) was
suggested in [53]. We emphasize that in contrast to all the references above, we consider
only small fixed number of iterations as already f̂ (2)

α should showcase improved convergence
rates upon f̂ (1)

α . In particular we study convergence in the limit of α → 0 instead of
n→∞. Low order convergence rates of this iterative method for quadratic data fidelity
terms S and general penalty terms R were obtained in [12, 30, 31, 32].

A useful fact about the penalty functionals Rn is that their corresponding Bregman
distances coincide for all n ∈ N as they only differ by an affine linear functional:

Lemma 3.3.3. Let f0 ∈ X , f ∗0 ∈ ∂R(f0) and ξ̃ := ∑n−1
k=1 ξ̂

(k)
α . Then we have for all f ∈ X

that

∆f∗0−T
∗ξ̃

Rn (f, f0) = ∆f∗0
R (f, f0).

Proof. By Proposition 3.3.2 we have T ∗ξ̃ ∈ ∂R(f̂ (n−1)
α ) so f ∗0 − T ∗ξ̃ ∈ ∂Rn(f0) and

∆f∗0−T
∗ξ̃

Rn (f, f0) = ∆T ∗ξ̃
R (f, f̂ (n−1)

α )−∆T ∗ξ̃
R (f0, f̂

(n−1)
α )−

〈
f ∗0 − T ∗ξ̃, f − f0

〉
= R(f)−R(f0)− 〈f ∗0 , f − f0〉 = ∆f∗0

R (f, f0).

The first step towards bounds on the error in the Bregman distance is given by the
next lemma.

Lemma 3.3.4. Suppose there exists ξ† ∈ Y∗ such that T ∗ξ† ∈ ∂R(f †). With the notation
of Proposition 3.3.2 define s(n)

α := ξ† −∑n−1
k=1 ξ̂

(k)
α . Then

∆T ∗ξ†

R

(
f̂ (n)
α , f †

)
≤ inf

f∈X

[
1
α
Sp
(
Tf − gobs

)
+
〈
s(n)
α , T f − gobs

〉
+ 1
α
S∗p
(
−αs(n)

α

)
+ ∆T ∗ξ†

R

(
f, f †

)]
.
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Proof. Due to the minimizing property of f̂ (n)
α we have

1
α
Sp
(
T f̂ (n)

α − gobs
)

+Rn

(
f̂ (n)
α

)
≤ 1
α
Sp
(
Tf − gobs

)
+Rn(f),

for all f ∈ X , which is equivalent to

Rn

(
f̂ (n)
α

)
−Rn(f) ≤ 1

α
Sp
(
Tf − gobs

)
− 1
α
Sp
(
T f̂ (n)

α − gobs
)
. (3.19)

As T ∗s(n)
α = T ∗ξ† − f ∗n−1 ∈ ∂R(f †)− f ∗n−1 = ∂Rn(f †) by Proposition 3.3.2, it follows that

∆T ∗s
(n)
α

Rn

(
f̂ (n)
α , f †

)
= Rn

(
f̂ (n)
α

)
−Rn

(
f †
)
−
〈
T ∗s(n)

α , f̂ (n)
α − f †

〉
≤ 1
α
Sp(Tf − gobs)− 1

α
Sp
(
T f̂ (n)

α − gobs
)

−
〈
T ∗s(n)

α , f̂ (n)
α − f †

〉
+Rn(f)−Rn

(
f †
)
.

Due to the strong duality (Propostion 3.3.2) the extremal relation −αξ̂(n)
α ∈ ∂Sp(T f̂ (n)

α −
gobs) holds true, and thus the generalized Young equality yields

− 1
α
Sp
(
T f̂ (n)

α − gobs
)

= 1
α
S∗p
(
−αξ̂(n)

α

)
+
〈
ξ̂(n)
α , T f̂ (n)

α − gobs
〉

= 1
α
S∗p
(
−αs(n)

α

)
+
〈
s(n)
α , T f̂ (n)

α − gobs
〉

− 1
α

∆S∗p
(
−αs(n)

α ,−αξ̂(n)
α

)
≤ 1
α
S∗p
(
−αs(n)

α

)
+
〈
s(n)
α , T f̂ (n)

α − gobs
〉

where we have used that the Bregman distance is non-negative. Combining this gives

∆T ∗s
(n)
α

Rn

(
f̂ (n)
α , f †

)
≤ 1
α
Sp(Tf − gobs) + 1

α
S∗p
(
−αs(n)

α

)
+
〈
s(n)
α , T f † − gobs

〉
+Rn(f)−Rn

(
f †
)

= 1
α
Sp(Tf − gobs) +

〈
s(n)
α , T f − gobs

〉
+ 1
α
S∗p
(
−αs(n)

α

)
+ ∆T ∗s

(n)
α

Rn

(
f, f †

)
.

Now the identity ∆T ∗s
(n)
α

Rn (f, f †) = ∆T ∗ξ†

R (f, f †) shown in Lemma 3.3.3 completes the
proof.

Given the above lemma all that is then left for proving an useful upper bound is to
construct appropriate vectors f which approximately minimize the functional on the right
hand side.
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Chapter Four
Error estimates

“What comforted his misapprehension?
That as a competent keyless citizen he had
proceeded energetically from the unknown to the
known through the incertitude of the void.”

Ulysses, J. Joyce

In this chapter we will prove estimates on the reconstruction error for generalized
Tikhonov regularization as introduced in the last chapter. As we have seen in Section 1.2 we
need some kind of source conditions on the possible solutions to achieve convergence rates.
We state these conditions in an abstract way to be as general as possible and will then
focus in the next chapter on the verification of source conditions in more concrete settings.
The first section of this chapter introduces a generalized notion of noise level. In the
second section we will consider the boundedness of regularized solutions under statistical
noise models. The last three sections introduce different types of source conditions that
correspond to different ranges of convergence rates.

4.1 Effective noise level

As we will not always assume the simple deterministic model ‖gobs − g†‖Y ≤ δ with noise
level δ > 0, we need a more general notion of noise level. Recall that given measurements
Gobs the data fidelity SGobs should measure in some way how far the data are away from
the argument. Thus one could consider SGobs(g†) as noise level. However, we can change
the data fidelity by an additive constant without changing the regularized solution, so
the absolute value of SGobs(g†) is not necessarily informative. Instead we will introduce
the effective noise level, based on [75, 42], which is actually not a plain number, but a
functional.

Definition 4.1.1 (Effective noise level). Let S† : Y → [0,∞) be some (“exact data fidelity”)
functional and let Cerr ≥ 0 some constant. Then we define the effective noise level
err : Y → R by

err(g) = SGobs(g†)− SGobs(g) + 1
Cerr
S†(g).

Further for a subset M ⊂ Y we define errM = supg∈M err(g).
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The following lemma indicates the use of the effective noise level for convergence
analysis.

Lemma 4.1.2. Let f̂α minimize (3.1), then we have

R(f̂α)−R(f †) ≤
err

(
F (f̂α)

)
α

− 1
Cerrα

S†
(
F (f̂α)

)
Proof. As f̂α minimizes the Tikhonov functional we have

1
α
SGobs

(
F (f̂α)

)
+R(f̂α) ≤ 1

α
SGobs(g†) +R(f †)

If we artificially add and subtract the exact data fidelity functional 1
Cerrα
S† we obtain the

effective noise level

R(f̂α) ≤ 1
α

[
SGobs(g†)− SGobs

(
F (f̂α)

)
+ 1
Cerr
S†
(
F (f̂α)

)]
− 1
Cerrα

S†
(
F (f̂α)

)
+R(f †).

For the simple deterministic model the effective noise level is nicely bounded by the
usual noise level. However, in general finding upper bounds on err can be difficult.

Lemma 4.1.3. (a) Let for 1 < p < ∞ the data fidelity be given by Spgobs and choose
S†(g) = 1

p
‖g − g†‖pY , Cerr = 2p−1. Then we have

errY ≤
2
p
δp.

(b) Let the data fidelity be given by SLS
Gobs and choose S†(g) = 1

2‖g − g
†‖2
L2, Cerr = 1.

Then we have

err(g) = 〈εZ, g − g†〉 ≤ ε‖Z‖B−γ
p′,∞
‖g − g†‖Bγp,1 .

(c) Let the data fidelity be given by SKL
Gobs,σ and choose S†(g) = KL(g†+σ, g+σ), Cerr = 1.

Then we have

err(g) =
〈
εZ, log

(
g + σ

g† + σ

)〉
≤ ε‖Z‖B−γ

p′,∞

∥∥∥∥∥log
(
g + σ

g† + σ

)∥∥∥∥∥
Bγp,1

.

(d) For a > γ, p ∈ [1, 2] and all c1, c2 > 0, r ≥ 1 we have

‖εZ‖B−γ
p′,∞
‖g‖Bγp,1 ≤ Cc

− 1−γ/a
1+γ/a

2

(
c
− γ
ra

1 ‖εZ‖B−γ
p′,∞

) 2
1+ γ

ra (2−r) + c1‖g‖rBap,2 + c2‖g‖2
L2 .

Proof. (a) Note that by convexity of | · |p we have for all s, t ∈ R that

|s− t|p = |2(s/2) + (1− 2)t|p ≥ 2|s/2|p + (1− 2)|t|p = 21−p|s|p − |t|p.

This allows us to estimate the effective noise level by

p err(g) : = ‖g† − gobs‖pY − ‖g − gobs‖pY + 21−p‖g − g†‖pY
≤ δp − |‖g − g†‖Y − ‖g† − gobs‖Y |p + 21−p‖g − g†‖pY ≤ 2δp.

As this holds for all g ∈ Y we have shown the claim.
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(b) By definition we have

err(g) = 1
2‖g

†‖2
L2 − 〈g† + εZ, g†〉 − 1

2‖g‖
2
L2 + 〈g† + εZ, g〉+ 1

2‖g − g
†‖2
L2

= 〈εZ, g − g†〉.

The norm bound then follows from the duality given by Theorem A.2.6.
(c) By definition we have

err(g) = ‖g†‖L1 − ‖g‖L1 +
〈
g† + εZ + σ, log

(
g + σ

g† + σ

)〉
+ KL(g† + σ, g + σ)

=
〈
g† + εZ + σ, log

(
g + σ

g† + σ

)〉
+
〈
g†, log

(
g† + σ

g + σ

)〉

=
〈
εZ, log

(
g + σ

g† + σ

)〉

and the norm bound follows as above.
(d) We have by Theorem A.2.7 that

‖g‖Bγp,1 ≤ C‖g‖1−γ/a
B0
p,2
‖g‖γ/aBap,2

≤ C‖g‖1−γ/a
L2 ‖g‖γ/aBap,2

where we used the fact that B0
p,2 ⊂ L2 continuously. Now we just have to apply the

Peter-Paul inequality (2.7) two times, firstly with q = 2
1−γ/a , q′ = 2

1+γ/a such that

‖εZ‖B−γ
p′,∞
‖g‖Bγp,1 ≤ Cc

− 1−γ/a
1+γ/a

2

(
‖εZ‖B−γ

p′,∞
‖g‖γ/aBap,2

) 2
1+γ/a

+ c2‖g‖2
L2

and secondly with q = r(γ+a)
2γ , q′ = 1+γ/a

1+ γ
ra

(2−r) to find

‖εZ‖B−γ
p′,∞
‖g‖Bγp,1 ≤ Cc

− 1−γ/a
1+γ/a

2

(
c
− γ
ra

1 ‖εZ‖B−γ
p′,∞

) 2
1+ γ

ra (2−r) + c1‖g‖rBap,2 + c2‖g‖2
L2 .

4.2 Bounds on regularized solutions

Boundedness of f̂α for deterministic data is not really an interesting question. If gobs 7→ f̂α
is a regularization method, then f̂α will be close to the solution for sufficiently small noise
level δ and in particular bounded. For stochastic data it can however happen that f̂α
is not almost surely in any bounded set even though the distribution of f̂α may be well
concentrated around f †. As we will later need to bound the norm ‖f̂α‖ at some points, we
want to understand its dependence on the random noise. In the white noise setting this is
straightforward.

Assumption 4.2.1. Let γ > 0 and p ∈ [1, 2] be as in Assumption 1.4.1.
(A1) There exists f̂α ∈ D(F ) minimizing (3.1).
(A2) For some a > γ we have ‖F (f1)− F (f2)‖Bap,2 ≤ L‖f1 − f2‖X for all f1, f2 ∈ D(F ).
(A3) There exists CR, θ > 0 such that ‖f‖X ≤ CRR(f) for all f ∈ X with ‖f‖X ≥ θ.



56 4. Error estimates

Remark 4.2.2. For a linear forward operator F = T (A1) follows for all penalty and data
fidelity functionals that we discussed in the last chapter from Corollary 3.1.4. Regarding
the existence of f̂α for nonlinear forward operators we refer to [54, Theorem 1.6] in the
general case, to [43, Proposition 4.2] for the case of Poisson data with S = SKL

Gobs,σ and to
[74, Proposition 4.10] for the case of Gaussian white noise with S = SLS

Gobs.
Note that by (A.1) from the appendix (A2) is only slightly stronger than the assumption

that Y = Bγ
p,1(M) (as in Sections 3.2.2 and 3.2.3) with a Lischpitz continuous forward

operator.
(A3) obviously holds for norm powers R = 1

t
‖·‖t if if t ≥ 1 and it holds for R(f) =

KL(f, f0) by Lemma 2.3.2.

Proposition 4.2.3. Let S = SLS
Gobs. Let Assumption 4.2.1 hold true. Then we have

‖f̂α‖X ≤ max(θ, CRR(f̂α)) and R(f̂α) ≤ 3R(f †) + C

‖εZ‖
2
B
−γ/2
p′,∞

α1+γ/a


1

1−γ/a

.

In particular for a parameter choice fulfilling α ≥ cε
2

1+γ/a we have

‖f̂α‖X ≤ max
(
θ, 3CRR(f †) + CRC‖Z‖

2
1−γ/a

B
−γ/2
p′,∞

)
.

Proof. By Lemma 4.1.2 and Lemma 4.1.3 with r = 1, c1 = CRα/(2L) and c2 = 1/2 we
have

αR(f̂α) ≤ err
(
F (f̂α)

)
− 1

2‖F (f̂α)− g†‖2
L2 + αR(f †)

≤ C
(
α
−γ
a ‖εZ‖

B
−γ/2
p′,∞

) 2
1−γ/a

+ CRα

2L ‖F (f̂α)− g†‖Bap,2 + αR(f †)

≤ C
(
α
−γ
a ‖εZ‖

B
−γ/2
p′,∞

) 2
1−γ/a

+ CRα

2 ‖f̂α − f †‖X + αR(f †).

In absence of any source conditions we can only bound ‖f̂α−f †‖X by the triangle inequality,
which leads to the claim by (A3) after subtracting (α/2)R(f̂α) on both sides and dividing
by α.

The approach for the case of Poisson data is the same, but the logarithm leads to
technical difficulties.

Proposition 4.2.4. Let S = SKL
Gobs,σ. Let g† ≥ 0, F (f̂α) ≥ −σ/2, and let Assumption 4.2.1

hold true for p = 2 and a ∈ {1, 2}, a > d/2. Then we have

‖f̂α‖X ≤ max(θ, CRR(f̂α)) and R(f̂α) ≤ 3R(f †) + Cg†,σ

‖εZ‖
2
B
−γ/2
2,∞

α1+γ/a


1

1−γ/a

.

In particular for a parameter choice fulfilling α ≥ cε
2

1+γ/a we have

‖f̂α‖X ≤ max
(
θ, 3CRR(f †) + CRCg†,σ‖Z‖

2
1−γ/a

B
−γ/2
2,∞

)
.
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Proof. We want to apply Items (c) and (d) of Lemma 4.1.3, so we have to understand the
Sobolev norm of the logarithm. By (A2) and Corollary A.2.12 we have for a ∈ {1, 2} that∥∥∥∥∥log

(
F (f̂α) + σ

g† + σ

)∥∥∥∥∥
Ha

≤ Cg†,σ,a
∥∥∥F (f̂α)− g†

∥∥∥
Ha
≤ LCg†,σ,a‖f̂α − f †‖X .

Let Cg†,σ = 2‖g
†‖L∞+σ
σ

‖ 1
g†+σ‖L∞ be the constant from Corollary A.2.12. By Lemma

4.1.2 and Lemma 4.1.3 with the choices c2 = 3
(
10‖g†‖L∞ + 6σ + 4 log(σ)2 + 2e3

)−1
C−1
g†,σ,

c1 = CRα/(2LCg†,σ,a) and r = 1 we have

αR(f̂α) ≤ err
(
F (f̂α)

)
−KL

(
g† + σ, F (f̂α) + σ

)
+ αR(f †)

≤C

‖εZ‖B−γ2,∞

αγ/a

 2
1−γ/a

+ c2

∥∥∥∥∥log
(
F (f̂α) + σ

g† + σ

)∥∥∥∥∥
2

L2
+ CRα

2 ‖f̂α − f †‖X

−KL
(
g† + σ, F (f̂α) + σ

)
+ αR(f †).

To estimate the integral

c2

∥∥∥∥∥log
(
F (f̂α) + σ

g† + σ

)∥∥∥∥∥
2

L2
−KL

(
g† + σ, F (f̂α) + σ

)
(4.1)

we cut the domain of integration in the two parts

A : = {x ∈M : F (f̂α)(x) ≤ max(2g†(x), σ, log(σ)2, e3/2)}
B : = {x ∈M : F (f̂α)(x) > max{2g†(x), σ, log(σ)2, e3/2}}.

In the first part we have the uniform bound F (f̂α)(x) ≤ 2‖g†‖L∞ + σ + log(σ)2 + 1
2e

3 so
by (2.19) we have

‖g† − F (f̂α)‖2
L2(A) ≤

1
3
(
10‖g†‖L∞ + 6σ + 4 log(σ)2 + 2e3

)
KLA

(
g† + σ, F (f̂α) + σ

)
and by Corollary A.2.12 we have∥∥∥∥∥log

(
F (f̂α) + σ

g† + σ

)∥∥∥∥∥
2

L2(A)
≤ Cg†,σ‖g† − F (f̂α)‖L2(A),

so on A the integral (4.1) is negative. On B we have 2g†(x), σ, log(σ)2, e3/2 ≤ F (f̂α)(x)
so we can bound it by

∫
B
c2 log

(
F (f̂α)(x) + σ

g†(x) + σ

)2

+ g†(x) + (g†(x) + σ) log
(

g†(x) + σ

F (f̂α)(x) + σ

)
− F (f̂α)(x)dx

≤
∫
B
c2 log

(
F (f̂α)(x) + σ

g†(x) + σ

)2

− 1
2F (f̂α)(x)dx

=
∫
B
c2
(
log(F (f̂α)(x) + σ)− log(g†(x) + σ)

)2
− 1

2F (f̂α)(x)dx

≤
∫
B

2c2

(
log
(
2F (f̂α)(x)

)2
+ max

(
log
(
2F (f̂α)(x)

)2
, log(σ)2

))
− 1

2F (f̂α)(x)dx,
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which is also negative as c2 ≤ 1
10 and F (f̂α)(x) ≥ 1

2e
3. Thus we have

αR(f̂α) ≤ C
(
α−γ/a‖εZ‖B−γ2,∞

) 2
1−γ/a

+ CRα

2 ‖f̂α − f †‖X + αR(f †).

and the claim follows as in the proof of Proposition 4.2.3.

Remark 4.2.5. The fact that the above result is only stated for a = 1, 2 comes from the
fact that Theorem A.2.10 is only proven for s = 1, 2. However, we suppose that the above
Proposition should hold for all a > d/2 and possibly also for all p ∈ [1, 2] (compare Remark
A.2.11).

4.3 (First order) Variational source conditions

In this section we will show how to obtain estimates on the reconstruction error based on
variational source conditions (VSCs). As we have seen in the introduction source conditions
are necessary to obtain convergence rates and VSCs have become increasingly popular
recently, because they are quite flexible in the sense that they yield convergence rates for
general regularization methods on Banach spaces and non-linear forward operators.

Definition 4.3.1 (Index function). We call a function Φ: [0,∞) → [0,∞) an index
function if it is increasing and continuous with Φ(0) = 0.

Definition 4.3.2 (Variational source condition VSC1(Φ,R,S†)). We say f † satisfies a
(first order) variational source condition VSC1(Φ,R,S†) if there exist f ∗ ∈ ∂R(f †) and a
concave index function Φ such that for all f ∈ X we have

〈f ∗, f † − f〉 ≤ 1
2∆f∗

R (f, f †) + Φ
(
S†(F (f))

)
. (4.2)

Remark 4.3.3. By definition of the Bregman divergence the inequality (4.2) is equivalent
to

1
2∆f∗

R (f, f †) ≤ R(f)−R(f †) + Φ
(
S†(F (f))

)
. (4.3)

4.3.1 Regularization error bounds

Assuming VSC1(Φ,R,S†) one can get immediately error bounds in the Bregman divergence
by the following Theorem (which is based on [42, Theorem 2.3]).

Theorem 4.3.4. Let f † fulfill a VSC with index function Φ, then the estimates

1
2∆f∗

R (f̂α, f †) ≤
err

(
F (f̂α)

)
α

+ (−Φ)∗
(
− 1
Cerrα

)
≤ errranF

α
+ (−Φ)∗

(
− 1
Cerrα

)
(4.4)

and

1
2∆f∗

R (f̂α, f †) ≤
err

(
F (f̂α)

)
α

− 1
2Cerrα

S†
(
F (f̂α)

)
+ (−Φ)∗

(
− 1

2Cerrα

)
(4.5)
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hold true. For errranF < ∞ the infimum of the right hand side of (4.4) is attained at
α = ᾱ if

− 1
Cerrᾱ

∈ ∂(−Φ)∗(Cerr errranF )

and in this case we have
1
2∆f∗

R (f̂ᾱ, f †) ≤ Φ(Cerr errranF ).

Proof. By (4.3) we have

1
2∆f∗

R (f̂α, f †) ≤ R(f̂α)−R(f †) + Φ
(
S†
(
F (f̂α)

))
and then Lemma 4.1.2 yields

1
2∆f∗

R (f̂α, f †) ≤
err

(
F (f̂α)

)
α

− 1
Cerrα

S†
(
F (f̂α)

)
+ Φ

(
S†
(
F (f̂α)

))
Introducing λ ∈ [0, 1] and writing S†

(
F (f̂α)

)
= τ we find

1
2∆f∗

R (f̂α, f †) ≤
err

(
F (f̂α)

)
α

− λ

Cerrα
S†
(
F (f̂α)

)
+ sup

τ≥0

[
−(1− λ)τ
Cerrα

− (−Φ)(τ)
]
.

The supremum is by definition the convex conjugate, thus by choosing λ = 0 we get (4.4)
and by λ = 1/2 we get (4.5). By Young’s inequality we have

Φ(Cerr errranF ) ≤ errranF

α
+ (−Φ)∗

(
− 1
Cerrα

)

and equality holds if and only if −(Cerrᾱ)−1 ∈ ∂(−Φ)(Cerr errranF ).

Thus we see that in the deterministic setting with data fidelity Spgobs a VSC immediately
implies the convergence rate

∆f∗

R (f̂ᾱ, f †) ≤ 2Φ(Cδp),

by Theorem 4.3.4 and Lemma 4.1.3, where the speed of convergence is determined by the
index function Φ. Before we come to the stochastic setting we want to give a short outlook
on how to verify a VSC for a given solution f †.

4.3.2 Outlook: Verification of variational source conditions

As the VSC is a rather abstract condition we would like to understand, what it takes for a
function to fulfill a VSC. We will actually verify the VSCs in complete detail for several
settings in Chapter 5, but we want to give a short outlook on how to verify a VSC. For
a linear forward operator T a VSC can be verified easily under the following condition
(compare [37, Remark 4.3]).
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Lemma 4.3.5. Assume that S†(g) = 1
p
‖g − g†‖p and that there exists ξ† such that

T ∗ξ† ∈ ∂R(f †). Then f † fulfills a VSC with Φ(t) = ‖ξ†‖Y∗(pt)
1
p .

Proof.

〈f ∗, f † − f〉 = 〈ξ†, T f † − Tf〉 ≤ ‖ξ†‖Y∗‖Tf † − Tf‖Y = ‖ξ†‖Y∗
(
pS†(Tf)

) 1
p .

The preceding lemma uses a rather strong assumption (T ∗ξ† ∈ ∂R(f †)), which leads
to a particular index function. More generally one can use the following strategy, which
has been proposed in [40, 74, 73].

Proposition 4.3.6. Assume that for some r ≥ 2 and for all f1, f2 ∈ X , f ∗2 ∈ ∂R(f2) we
have

∆f∗2
R (f1, f2) ≥ CR‖f1 − f2‖rX . (4.6)

Let f † ∈ X and f ∗ ∈ ∂R(f †). Suppose that there exists a family of operators Pk : X ∗ → X ∗
for k ∈ N0 and constants κk, νk such that the following holds true for all k ∈ N0:

‖(I − Pk)f ∗‖X ∗ ≤ κk and inf
k∈N0

κk = 0, (4.7a)〈
Pkf

∗, f † − f
〉
≤ νk

∥∥∥F (f †)− F (f)
∥∥∥
Y
,

for all f ∈ X with
∥∥∥f † − f∥∥∥

X
≤
(

2
CR
‖f ∗‖X ∗

) r′
r .

(4.7b)

Then f † fulfills VSC1(Φ,R,S2
g†) with the concave index function

Φ(τ) = inf
k∈N0

[
νkτ

1/2 + 1
r′

(
2
CR

)r′/r
κr
′

k

]
. (4.8)

If we have instead of (4.6) that R = 1
t
‖·‖tX , for t > 1 and X r-convex, then there exists

CR > 0 such that under (4.7) f † fulfills a variational source condition (4.2) with the
concave index function

Φ(τ) = inf
k∈N0

[
νkτ

1/2 + CX ,t‖f †‖r
′(r−t)/r
X κr

′

k

]
. (4.9)

Proof. We will not prove the case for general R fulfilling (4.6) and refer to [74, Theorem
3.3] for the original proof. Instead we will do the very similar proof for R = 1

t
‖·‖tX , which

is just slightly more complicated, because we have to work with Theorem 2.2.5 instead
of (4.6). We distinguish two cases. First of all we assume that for some B ≥ 3 to specify
later we have ‖f − f †‖ ≥ B‖f †‖. This in particular implies ‖f‖ ≥ (B − 1)‖f †‖ ≥ 2‖f †‖
and ‖f − f †‖ ≥ 1

2‖f‖ thus Theorem 2.2.5 gives that ∆f∗

R (f, f †) ≥ CX ,t‖f‖t−r‖f − f †‖r ≥
CX ,t2−r‖f‖t, where r ≥ 2. Therefore

〈f ∗, f † − f〉 ≤ 2‖f ∗‖X ∗‖f‖X = 2‖f †‖t−1
X ‖f‖X ≤ 2

(
‖f †‖
‖f‖

)t−1

‖f‖2

≤ 2(B − 1)1−t‖f‖t ≤ 1
2∆f∗

R (f, f †),
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if B is chosen large enough. Consequently the variational inequality (4.2) holds for all f
such that ‖f − f †‖ ≥ B‖f †‖. Conversely assume now that ‖f − f †‖ < B‖f †‖. For CR > 1
sufficiently small this implies that (4.7b) holds true and we can estimate

〈f ∗, f † − f〉 = 〈Pkf ∗, f † − f〉+ 〈(I − Pk)f ∗, f † − f〉 ≤ νk
∥∥∥F (f †)− F (f)

∥∥∥
Y

+ κk‖f † − f‖.

By (2.15) from Theorem 2.2.5 we have ∆f∗

R (f, f †) ≥ CX ,t,B‖f †‖t−r‖f − f †‖r and thus by
the Peter-Paul inequality (2.7) that

κk‖f † − f‖ ≤ ∆f∗

R (f, f †) +
(
2rCX ,t,B‖f †‖t−r

)−r′
r κr

′
k

r′
.

Thus we see that the variational inequality holds true with Φ as in (4.9). To see that Φ is
a concave index function note that it is given by an infimum over concave and increasing
functions and hence is also increasing and concave, which implies in particular continuity.
By (4.7a) we have Φ(0) = 0, thus it is an index function.

Remark 4.3.7. For many choices of Pk, such as projections onto spaces of trigonometric
polynomials or finite elements, Condition (4.7a) describes the smoothness of f ∗, which is
often closely related to the smoothness of f †. On the other hand (4.7b) describes the local
ill-posedness of the problem (for more details we refer to [73]). In [29] it was shown that
if f † is the unique solution to F (f †) = g† then f † fulfills a variational source condition of
the form (4.2) (possibly with a different constant) under mild assumptions on the forward
operator and the penalty. Of course the index function Φ will strongly depend on the
smoothness of f † so that one still can end up with arbitrarily slow convergence.

If one intends to use Proposition 4.3.6 with R = 1
t
‖·‖t to show convergence rates on a

set of possible solutions one has to be careful if t > r as the constant in the index function
will explode if ‖f †‖ → 0. So in this case a lower bound on ‖f †‖ would be required to get a
uniform constant.

At the end of this subsection we want to state a negative result on the range of index
functions for which a VSC can be verified (compare [28, Prop. 12.10]).

Proposition 4.3.8. Let the forward operator F be continuous. Assume that S†(g) =
1
p
‖g − g†‖p and that R is Fréchet-differentiable. If a VSC with Φ(t) = o

(
t

1
p

)
holds true

for f † then f † ∈ arg minR.

Proof. The VSC yields

〈f ∗, f † − f〉 ≤ 1
2∆f∗

R (f, f †) + Φ
(
S†(F (f))

)
≤ 1

2∆f∗

R (f, f †) + Φ
(
C‖f − f †‖p

)
, (4.10)

because of the continuity of F . Now for some arbitrary f0 ∈ X , t > 0 set f = f † + tf0 in
(4.10) and divide by t to find

〈f ∗, f0〉 ≤
1
2t∆

f∗

R (f † + tf0, f
†) + 1

t
Φ(Ctp),

for all t > 0. As R is differentiable we have limt→0 t
−1∆f∗

R (f † + tf0, f
†) = 0 and by

Φ(t) = o
(
t

1
p

)
the right hand side goes to 0 as t→ 0. As f0 was arbitrary we have f ∗ = 0.

By definition of the subdifferential this is equivalent to f † ∈ arg minR.
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As f † ∈ arg minR is not an interesting situation, the above proposition limits the
range of convergence rates that can be shown under VSC1. In the deterministic setting
VSC1 thus yields convergence rates only up to ∆f∗

R (fᾱ, f †) = O (δ).

4.3.3 The stochastic setting

We have seen that under a certain parameter choice a VSC immediately yields convergence
rates Φ(Cerr errranF ). However, this is only useful if errranF can be bounded. For the
data fidelity SLS

Gobs we have seen that the effective noise level is of the form err(g) =
〈εZ, g〉 − 〈εZ, g†〉. Clearly in this case there is little chance for a uniform bound. If for
example the forward operator is linear then ranF is unbounded and so is err(F (f)). Even
worse, if the noise is not in L2 (compare 1.4.5) then err(g) might not be well defined
for certain g ∈ L2 so these should not lie in the image of F . Still we will show in this
section that one can show order optimal convergence rates under the VSC1 if additionally
Assumption 1.4.1 holds true. Further we need the following assumption on F and R.

Assumption 4.3.9. Let γ > 0 and p ∈ (1, 2] be as in Assumption 1.4.1.
(B1) There exists f̂α ∈ D(F ) minimizing (3.1).
(B2) For some a > γ we have ‖F (f1)− F (f2)‖Bap,2 ≤ L‖f1 − f2‖X for all f1, f2 ∈ D(F ).
(B3) There exists CR, ρ ≥ 0, r ≥ 2 such that for all B ≥ 1, ‖f1‖X , ‖f2‖X ≤ B, f ∗ ∈

∂R(f2) we have ∆f∗

R (f1, f2) ≥ CRB
−ρ‖f1 − f2‖rX .

Remark 4.3.10. (B1) and (B2) are as in Assumption 4.2.1. (B3) holds for norm powers
R = 1

t
‖·‖t if X is r-convex with ρ = max(t − r, 0) by Theorem 2.2.5 and it holds for

R(f) = KL(f, f0) by Proposition 3.2.1 and Lemma 2.3.2 with r = 2 and ρ = 1.

Theorem 4.3.11. Let Assumption 4.3.9 hold true. Let B ≥ 1 such that ‖f̂α‖, ‖f †‖ ≤ B.
If S = SLS

Gobs and f † fulfills VSC1(Φ,R,S2
g†) we have

∆f∗

R (f̂α, f †) ≤ C

B
2γ
ra
ρ‖εZ‖2

B−γ
p′,∞

α1+ γ
a


1

1+ γ
ra (r−2)

+ 4(−Φ)∗
(
− 1

2α

)
,

where C is independent of any quantities on the right side and f †. If S = SKL
Gobs,σ, let

Assumption 4.3.9 hold true with p = 2, a > d/2 and further assume g† ≥ 0, F (f̂α) ≥ −σ/2.
If f † fulfills VSC1(Φ,R,KLσg†) we have

∆f∗

R (f̂α, f †) ≤ Cg†,σB
a−γ
a+γ

(
B

2γ
a ( ρr+max(a−1,0))α−1− γ

a ‖εZ‖2
B−γ2,∞

) 1
1+ γ

ra (2−r) + (−Φ)∗
(
− 1

2α

)
,

where Cg†,σ depends on g† and σ but not on any other quantities of the right side.

Proof. By (4.5) from Theorem 4.3.4 we have

1
2∆f∗

R (f̂α, f †) ≤
err

(
F (f̂α)

)
α

− 1
2Cerrα

S†
(
F (f̂α)

)
+ (−Φ)∗

(
− 1

2Cerrα

)
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Let S = SLS
Gobs , then by Lemma 4.1.2 we have for all c1, c2 > 0 that

err
(
F (f̂α)

)
≤ Cc2

(
c
− 2γ
ra

1 ‖εZ‖2
B−γ
p′,∞

) 1
1+ γ

ra (2−r) + c1‖F (f̂α)− g†‖rBap,2 + c2‖F (f̂α)− g†‖2
L2 .

Now use (B2) and choose c2 = 1
4 and c1 = α

4CRB
−ρL−r, then we have by (B3) that

1
2∆f∗

R (f̂α, f †) ≤ C
(
B

2γ
ra
ρα−1− γ

a ‖εZ‖2
B−γ
p′,∞

) 1
1+ γ

ra (2−r) + 1
4∆f∗

R (f̂α, f †) + (−Φ)∗
(
− 1

2α

)
.

Bringing 1
4∆f∗

R (f̂α, f †) to the other side gives the claim.
If S = SKL

Gobs,σ then by Lemma 4.1.2 we have c1, c2 that

err
(
F (f̂α)

)
≤Cc2

(
c
− γ
ra

1 ‖εZ‖B−γ2,∞

) 2
1+ γ

ra (2−r)

+ c1

∥∥∥∥∥log
(
F (f̂α) + σ

g† + σ

)∥∥∥∥∥
r

Ha

+ c2

∥∥∥∥∥log
(
F (f̂α) + σ

g† + σ

)∥∥∥∥∥
2

L2
.

By Corollary A.2.12 and (B2) we have∥∥∥∥∥log
(
F (f̂α) + σ

g† + σ

)∥∥∥∥∥
Ha

≤ Cg†,σ,aB
max(a−1,0)

∥∥∥F (f̂α)− g†
∥∥∥
Ha

≤ LCg†,σ,aB
max(a−1,0)‖f̂α − f †‖X .

Further by Corollary A.2.12 and Lemma 2.3.2 we have∥∥∥∥∥log
(
F (f̂α) + σ

g† + σ

)∥∥∥∥∥
2

L2
≤ C2

g†,σ

∥∥∥F (f̂α)− g†
∥∥∥2

L2
≤ 2BC2

g†,σ KL(g† + σ, F (f̂α) + σ).

Thus by choosing c1 = α
4CRB

−ρ(LCg†,σ,aBmax(a−1,0))−r and c2 = (4BC2
g†,σ)−1 we find

1
4∆f∗

R (f̂α, f †) ≤ Cg†,σB
a−γ
a+γ

(
B

2γ
a ( ρr+max(a−1,0))α−1− γ

a ‖εZ‖2
B−γ2,∞

) 1
1+ γ

ra (2−r) + (−Φ)∗
(
− 1

2α

)
.

Corollary 4.3.12. Let both Assumption 4.2.1 and 4.3.9 hold true. Define Qε,α :=(
ε2

α1+ γ
a

) 1
1+ γ

ra (r−2) .
(a) If S = SLS

Gobs and f † fulfills VSC1(Φ,R,S2
g†) we have under the parameter choice

α ≥ Cε
2

1+γ/a that

∆T ∗ξ†

R (f̂α, f †) ≤ C
(
R(f †)ρ + ‖Z‖

2aρ
a−γ

B−γ
p′,∞

)
(1 + ‖Z‖B−γ

p′,∞
)2Qε,α + 4(−Φ)∗

(
− 1

2α

)
.

(4.11)

Let additionally Assumption 1.4.1 hold true and let c = 2 + 2aρ
a−γ , then we have under

the parameter choice α ≥ Cε
2

1+γ/a that

P
(
∆T ∗ξ†

R (f̂α, f †) > C(1 + x)Qε,α + 4(−Φ)∗
(
−(2α)−1

))
≤ exp

(
−CZx

τ
c

)
,

E
(
∆T ∗ξ†

R (f̂α, f †)
)
≤ CQε,α + 4(−Φ)∗

(
− 1

2α

)
,

where the constant C > 0 depends on R(f †) if ρ > 0.
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(b) Let S = SKL
Gobs,σ, g† ≥ 0, F (f̂α) ≥ −σ/2, f † fulfill VSC1(Φ,R,KLσg†) and a ≥ a0 >

max(d/2, γ), where a0 ∈ {1, 2}. Then there exists c > 0 such that under the
parameter choice α ≥ Cε

2
1+γ/a0 we have

∆T ∗ξ†

R (f̂α, f †) ≤ Cf†,g†,σ

(
1 + ‖Z‖c

B−γ2,∞

)
Qε,α + 4(−Φ)∗

(
− 1

2α

)
.

Let additionally Assumption 1.4.1 hold true, then we have under α ≥ Cε
2

1+γ/a0 that

P
(

∆T ∗ξ†

R (f̂α, f †) > C(1 + x)Qε,α + 4(−Φ)∗
(
− 1

2α

))
≤ exp

(
−CZx

τ
c

)
E
(
∆T ∗ξ†

R (f̂α, f †)
)
≤ CQε,α + 4(−Φ)∗

(
− 1

2α

)
,

where the constant depends on R(f †), g† and σ.

Proof. For S = SLS
Gobs we have by Proposition 4.2.3 and the choice α ≥ cε

2
1+γ/a that

‖f̂α‖X ≤ CR,θ

(
R(f †) + ‖Z‖

2
1−γ/a

B
−d/2
p′,∞

)
.

Thus we can choose B = CR,θ(R(f †)+‖Z‖
2

1−γ/a

B
−d/2
p′,∞

) in Theorem 4.3.11, so that (4.11) follows
by

(
B

2γ
ra
ρ‖Z‖2

B−γ
p′,∞

) 1
1+ γ

ra (2−r) ≤ B
2γ
ra
ρ max(‖Z‖B−γ

p′,∞
, 1)2 ≤ Bρ max(‖Z‖B−γ

p′,∞
, 1)2

≤ C
(
R(f †)ρ + ‖Z‖

2aρ
a−γ

B−γ
p′,∞

)
(1 + ‖Z‖B−γ

p′,∞
)2

Under Assumption 1.4.1 we have for all x > 0 and c = 2 + 2aρ
a−γ that

P
(

∆T ∗ξ†

R (f̂α, f †) > C(1 + xc)Qε,α + 4(−Φ)∗
(
− 1

2α

))
≤ exp(−CZxτ )

so replacing x = x̃
1
c gives the claim. Let pk denote

pk = P
(
C(k + 1)2+ρQε,α < ∆T ∗ξ†

R (f̂α, f †)− 4(−Φ)∗
(
− 1

2α

)
≤ C(k + 2)2+ρQε,α

)
then

E
(
∆T ∗ξ†

R (f̂α, f †)
)
≤4(−Φ)∗

(
−(2α)−1

)
+
∞∑
k=0

pkC(k + 2)2+ρQε,α

+ P
(
∆T ∗ξ†

R (f̂α, f †)−+4(−Φ)∗
(
−(2α)−1

)
≤ CQε,α

)
CQε,α

≤ 4(−Φ)∗
(
−(2α)−1

)
+ CQε,α

(
1 +

∞∑
k=0

(k + 2)2+ρ exp
(
−CZk

τ
ρ+2
))
,

so that the claim follows as the sum is convergent.
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For S = SKL
Gobs,σ the proof is basically the same. Just note that Proposition 4.2.4

dictates the parameter choice α ≥ cε
2

1+γ/a0 and then we have

‖f̂α‖X ≤ 3R(f †) + Cg†,σ‖Z‖
2

1−γ/a0

B
−d/2
2,∞

.

Thus we can choose B = C(R(f †) + ‖Z‖
2

1−γ/a0

B
−d/2
p′,∞

) in Theorem 4.3.11 but the constant will

already depend on g† and σ.

To see how the term 4(−Φ)∗
(
− 1

2α

)
might behave we have the following lemma. Note

that by Proposition 4.3.8 the strongest index function such that VSC1(Φ,R,S2
g†) can hold

true fulfills Φ(τ) ≤ Cτ
1
2 .

Lemma 4.3.13. Let Φ(τ) = λτ ν for ν ∈ (0, 1), λ > 0 then we have

(−Φ)∗
(
− 1

2Cerrα

)
= ν

ν
1−ν (1− ν)λ

1
1−ν (2Cerrα)

ν
1−ν = Cα

ν
1−ν

Proof. We have for x ≥ 0 that

(−Φ)∗
(
−1
x

)
= sup

t≥0

[
Φ(t)− t

x

]

as Φ is strictly concave the unique maximum is attained at t = (νλx)
1

1−ν which gives

(−Φ)∗
(
−1
x

)
= λ

1
1−ν
(
ν

ν
1−ν x

ν
1−ν − ν

1
1−ν x

ν
1−ν
)

= ν
ν

1−ν (1− ν)λ
1

1−ν x
ν

1−ν .

4.4 Second order source conditions

We have seen in Lemma 4.3.5 and Proposition 4.3.8 that the strongest VSC1(Φ,R,Spg†),
which can be proven for non-trivial f † and Frechet differentiable R, fulfills Φ(τ) ∼ τ

1
p and

thus corresponds to deterministic convergence rates ∆f∗

R (f̂α, f †) = O(δ). This implies that
for quadratic Tikhonov regularization on Hilbert spaces the VSC1 only covers convergence
rates (1.4) with indices ν ∈ (0, 1/2], by ∆f∗

R (f̂α, f †) = 1
2‖f̂α − f

†‖2. We will call such rates
first order convergence rates. Several alternatives to the formulation (4.2) of the source
condition suffer from the same limitation: multiplicative variational source conditions
[4, 45], approximate source conditions [28], and approximate variational source conditions
[28]. Symmetrized version of multiplicative variational source conditions (see [4, eq. (6)]
and [2, Ch. 4]) cover a larger range of ν, but have no obvious generalization to Banach
space settings or non-quadratic S or R. The limiting case Φ(τ) = cτ

1
p of VSC1(Φ,R,Spg†)

implies by [61, Prop. 3.38] the source condition

∃ξ† ∈ Y∗ : T ∗ξ† ∈ ∂R(f †) (4.12)

studied earlier in [11, 22] (and is thus equivalent to this condition by Lemma 4.3.5). To
generalize also the Hölder rates (1.4) with ν > 1 to the setting (3.1), one can impose a
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variational source condition on ξ† [34], which turns out to be the solution of a Fenchel
dual problem. Again the limiting case of this dual source condition, which we tag second
order source condition, is equivalent to a simpler condition, Tω† ∈ ∂S∗p(ξ†), which was
studied earlier in [52, 57, 59]. Hence, the second order source condition corresponds to the
indices ν ∈ (1, 2] in (1.4).

As this new condition strongly depends on the choice of the data fidelity term we have
to consider the deterministic and stochastic cases separately.

4.4.1 The deterministic case

In this subsection we only consider the data fidelity term Spgobs(g) = Sp(g − gobs) :=
1
p
‖g− gobs‖pY for p ∈ (1,∞). First we give a definition of the second order source condition

in Banach spaces based on [34, (4.2)].

Definition 4.4.1 (Variational source condition VSC2(Φ,R,Sp)). Let Φ be an index func-
tion and R a proper, convex, lower-semicontinuous functional on X . We say that f † ∈ X
satisfies the second order variational source condition VSC2(Φ,R,Sp) if there exist ξ† ∈ Y∗
such that T ∗ξ† ∈ ∂R(f †) and ξ∗ ∈ ∂S∗p (ξ†) such that

∀ξ ∈ Y∗ :
〈
ξ† − ξ, ξ∗

〉
≤ 1

2∆ξ∗

Sp∗
(
ξ, ξ†

)
+ Φ

(
∆f†

R∗
(
T ∗ξ, T ∗ξ†

))
. (4.13)

We have the following slight variant of [34, Theorem 4.4].

Theorem 4.4.2. Let Y be p-smooth. Let there exist a minimizer f̂α to (3.1). Let f † fulfill
the second order variational source condition with index function Φ. Then there exists
C > 0 only depending on p and Y such that

∆T ∗ξ†

R (f̂α, f †) + 1
4∆sym
S∗p (−αξ̂α,−αξ†) ≤ C

δp

α
+ αp

′−1(−Φ)∗
( −1
αp′−1

)
.

Remark 4.4.3. The differences to [34, Theorem 4.4] are firstly that we allow the additional
term 1

2∆ξ∗

Sp∗
(
ξ, ξ†

)
in the VSC2, which makes the assumption formally weaker and will

be important for the verification later on. Secondly we additionally bound the dual error
1
4∆sym
S∗p (−αξ̂α,−αξ†), which can be of use for example in Lemma 4.5.6 below and lastly our

final bound is expressed differently.

Proof. Strong duality holds by Corollary 3.1.4 as f̂α exists and Sp is continuous everywhere.
Thus we have the extremal relations T ∗ξ̂α ∈ ∂R(f̂α) and −αξ̂α ∈ ∂Sp(T f̂α − gobs) or
equivalently T f̂α − gobs ∈ ∂S∗p (−αξ̂α) by Corollary 2.1.19. Therefore we have

∆sym
R (f̂α, f †) = 〈T ∗ξ̂α − T ∗ξ†, f̂α − f †〉 = 〈ξ̂α − ξ†, T f̂α − g†〉

= 〈ξ̂α − ξ†, T f̂α − gobs〉+ 〈ξ̂α − ξ†, gobs − g†〉

= 〈ξ̂α − ξ†,−αp
′−1ξ∗〉+ αp

′−1〈ξ̂α − ξ†,
T f̂α − gobs

αp′−1 + ξ∗〉+ 〈ξ̂α − ξ†, gobs − g†〉

= αp
′−1〈ξ† − ξ̂α, ξ∗〉 − αp

′−1∆sym
S∗p (ξ̂α, ξ∗) + 〈ξ̂α − ξ†, gobs − g†〉,
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where the last equality follows from the fact that −T f̂α−gobs

αp′−1 ∈ ∂S∗p(ξ̂α) by Proposition
2.2.10. Now we can apply V SC2 on the first term to find

∆sym
R (f̂α, f †) ≤ αp

′−1Φ
(
∆f†

R∗
(
T ∗ξ̂α, T

∗ξ†
))
− αp

′−1

2 ∆sym
S∗p (ξ̂α, ξ∗) + ‖ξ̂α − ξ†‖‖gobs − g†‖.

(4.14)

As Y is p-smooth we have that Y∗ is p′-convex and thus we have by Theorem 2.2.5 that

∆sym
S∗p (ξ̂α, ξ∗) ≥ C‖ξ̂α − ξ∗‖p

′
.

Consequently by the Peter-Paul inequality (2.7)

‖ξ̂α − ξ†‖‖gobs − g†‖ − αp
′−1

4 ∆sym
S∗p (ξ̂α, ξ∗) ≤ Cα

(p′−1)−p
p′ δp = C

δp

α
.

Finally we have ∆f†

R∗(T ∗ξ̂α, T ∗ξ†) = ∆T ∗ξ̂α
R (f †, f̂α) by (2.10) and αp

′−1∆sym
S∗p (ξ̂α, ξ∗) =

∆sym
S∗p (−αξ̂α,−αξ†) by (2.17). Thus we can on both sides of (4.14) subtract ∆T ∗ξ̂α

R (f †, f̂α)
and add 1

4∆sym
S∗p (−αξ̂α,−αξ†) to find

∆T ∗ξ†

R (f̂α, f †) + 1
4∆sym
S∗p (−αξ̂α,−αξ†)

≤ C
δp

α
+ αp

′−1Φ
(
∆f†

R∗
(
T ∗ξ̂α, T

∗ξ†
))
−∆f†

R∗(T ∗ξ̂α, T ∗ξ†)

≤ C
δp

α
+ αp

′−1 sup
τ≥0

[
− τ

αp′−1 − (−Φ)(τ)
]
.

By the definition of the convex conjugate this gives the claim.

4.4.2 The stochastic case

In this section we introduce a second order source condition that combines and generalizes
the ideas of the second order VSC and the verification approach from Proposition 4.3.6.
This condition can be used to show higher order convergence rates for statistical inverse
problems.

Assumption 4.4.4 (Assumption on f †, T and R). Let γ > 0 and p ∈ [1, 2] be as in
Assumption 1.4.1.
(D1) There exists f̂α minimizing (3.1).
(D2) Assume that for some a > γ we have ‖Tf‖Bap,2 ≤ L‖f‖X .
(D3) There exists CR, ρ > 0, r ≥ 2 such that for all B ≥ 1, ‖f1‖X , ‖f2‖X ≤ B, f ∗ ∈

∂R(f2) we have ∆f∗

R (f1, f2) ≥ CRB
−ρ‖f1 − f2‖rX .

(D4) Let ξ† ∈ L2(M) such that T ∗ξ† ∈ ∂R(f †).
Suppose there exist for all k ∈ N0 maps Pk : L2 → Bγ

p,1, as well as constants νk ≥ 1,
κk ≥ 0, µ ≥ 2,β ∈ {0, 1} such that we have
(D5) ∀ξ ∈ B−γp′,∞ : 〈ξ†−ξ, Pkξ†〉 ≤ 1

4‖ξ
†−ξ‖2

B−γ
p′,∞

+νk∆f†

R∗(T ∗ξ, T ∗ξ†)
1
µ + βν2

k

2 ∆f†

R∗(T ∗ξ, T ∗ξ†).
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(D6) ‖(I − Pk)ξ†‖L2 = κk, with infk∈N0 κk = 0.
(D7) ‖Pkξ†‖Ha

0
≤ νk.

For S(g) = SKL
Gobs,σ(g) let p = 2. Instead of (D5) we need the following two conditions:

(D8) For B ≥ 1, σ > 0 and GaLB = {g ∈ Ha(M) : ‖g‖Ha ≤ LB} assume for all ξ ∈ B−γp′,∞
and g ∈ GaLB that for νk = νk(B, σ, |M|) we have

〈ξ† − ξ, (g + σ)Pkξ†〉 ≤
1
4‖(g + σ)(ξ† − ξ)‖2

B−γ
p′,∞

+ νk∆f†

R∗(T ∗ξ, T ∗ξ†)
1
µ

+ βν2
k

2 ∆f†

R∗(T ∗ξ, T ∗ξ†).

(D9) Assume that a > d/2 and that R = R+ χB, with Tf ≥ −σ/2 for all f ∈ B.

Lemma 4.4.5. Let p ∈ [1, 2] and let conditions (D2), (D3) and (D7) of Assumption 4.4.4
hold true. For B ≥ 1 let ‖f‖X , ‖f †‖X ≤ B. Then we have the following interpolation
inequality

‖Tf − g† + λPkξ
†‖Bγp,1 ≤ C‖Tf − g† + λPkξ

†‖1− γ
a

L2 (Bρ∆T ∗ξ†

R (f, f †) + (νkλ)r)
γ
ar (4.15)

for all f ∈ X and λ ≥ 0. If p = 2 and (D9) holds true with f ∈ B then we also have∥∥∥∥∥Tf − g†Tf + σ
+ λPkξ

†
∥∥∥∥∥
Bγ2,1

≤ CBγ(1+ ρ
ar

)
∥∥∥∥∥Tf − g†Tf + σ

+ λPkξ
†
∥∥∥∥∥

1− γ
a

L2
(∆T ∗ξ†

R (f, f †) + (νkλ)r)
γ
ar

(4.16)

Proof. Same reasoning as in [74, Lemma 4.7]. We only prove (4.16). By (D2) we have
‖Tf + σ‖Ha ≤ BL+ σ|M|, so by Theorem A.2.9 ‖(Tf + σ)−1‖Ha ≤ σ−dae(BL+ σ|M|)a.
Further as a > d/2 we have by Theorem A.2.9 and Theorem A.2.8 that∥∥∥∥∥Tf − g†Tf + σ

+ λPkξ
†
∥∥∥∥∥
Bγ2,1

≤ C

∥∥∥∥∥Tf − g†Tf + σ
+ λPkξ

†
∥∥∥∥∥

1− γ
a

L2

∥∥∥∥∥Tf − g†Tf + σ
+ λPkξ

†
∥∥∥∥∥
γ
a

Ha
0

≤ C

∥∥∥∥∥Tf − g†Tf + σ
+ λPkξ

†
∥∥∥∥∥

1− γ
a

L2
Bγ
(
‖Tf − g†‖Ha

0
+ λ‖Pkξ†‖Ha

0

) γ
a .

The claim follows by (D2), (D3) and (D7).

Remark 4.4.6. Let us discuss this abstract condition and relate it to other conditions.
Conditions (D2),(D3) as well as the choice p ∈ [1, 2] are as in Assumption 4.3.9 and are
necessary for the interpolation inequality (4.15). The condition T ∗ξ† ∈ ∂R(f †) from (D4)
was also necessary for the VSC2 and is equivalent to the first order VSC with best possible
index function (see (4.12)). As we intend to improve on the rates shown under this first
order VSC it is natural to take this condition into our assumption. To see that ξ† ∈ L2(M)
is not necessarily an additional constraint, we refer to [64, Corollary 5.3] where it is shown
that in a specific setting the strongest first order VSC is equivalent to f † ∈ Ha

0 (M) and
thus equivalent to the existence of ξ† ∈ L2(M).

The inequality (D5) is a generalization of the second order VSC from Definition 4.4.1.
As the noise is not in L2 almost surely we have to formulate the inequality with respect
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to the space B−γp′,∞. However for the dual solution we only guarantee ξ† ∈ L2, so we need
to introduce the mappings Pk to make the dual products on the left hand side of (D5)
well-defined. This approach is very similar to that of the verification strategy for VSCs in
Proposition 4.3.6 so one can hope that it will still yield order optimal convergence rates,
which in the end will turn out to be true. The inequalities (D6) and (D7) are similar to
the assumptions of Proposition 4.3.6 and describe the smoothness of ξ†.

Inequality (D8) is a variant of (D5) tailored to the case of S(g) = SKL
Gobs,σ(g). This

inequality should not be stronger or weaker than (D5) as g ∈ GaLB is smoother than Pkξ
†.

(D9) is only necessary for the case of S(g) = SKL
Gobs,σ(g) and similar assumptions were

also necessary in [75] to show convergence rates for Poisson data. Different from [75] we
assume only Tf ≥ −σ/2 instead of Tf ≥ 0, which would be the more natural assumption
as Tf should be a density and thus positive. This has technical reasons as we will later
require some sort of differentiability of R at f †, which is only possible if f † lies in the
interior of B and f † might be equal or close to zero in some parts of M. Later in Remark
5.1.7 we discuss how (D9) can be fulfilled.

With the notation of Assumption 4.4.4 we define the function Ψ: [0,∞)→ [0,∞] by

Ψ(α) = inf
k∈N0
αν2
k≤1

[
αµ
′−1νµ

′

k + κ2
k

]
. (4.17)

The infimum of the empty set is +∞. Note that Ψ|[0,maxk ν−2
k

] : [0,maxk ν−2
k ] → [0,∞)

is a concave index function, i.e. increasing and continuous with Ψ(0) = 0. This follows
from the fact that it is an infimum over concave, increasing functions, thus concave and
increasing, so in particular continuous and by (D6) we have Ψ(0) = 0. The function Ψ
will describe the speed of convergence in the following theorems.

First we consider S(g) = 1
2α‖g‖

2
L2 −

〈
g† + εZ, g

〉
. We will show an upper bound on the

error in the Bregman divergence in terms of ε, α and ‖Z‖B−γ
p′,∞

. Assumption 1.4.1 then
immediately yields convergence rates in expectation and a deviation inequality on the
reconstruction error.

Theorem 4.4.7. Suppose (D1)-(D7) in Assumption 4.4.4 hold true. Let B ≥ 1 such that
‖f̂α‖, ‖f †‖ ≤ B. Then we have for Ψ as in (4.17) and some constant C > 0 independent
of Z,B, ε and α that

C∆T ∗ξ†

R (f̂α, f †) ≤

B
2γρ
ar ‖εZ‖2

B−γ
p′,∞

α1+ γ
a


1

1+ γ
ra (r−2)

+
‖εZ‖2

B−γ
p′,∞

α
+ αΨ(α). (4.18)

Remark 4.4.8. Note that for a fixed realization of the random variable ‖Z‖B−γ
p′,∞

and
ε, α→ 0 we have

‖εZ‖2
B−γ
p′,∞

α
= O


‖εZ‖

2
B−γ
p′,∞

α1+ γ
a


1

1+ γ
ra (r−2)

 ,
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as γ > 0 and r ≥ 2. Hence only the first term on the right side of (4.18) is important for
the rate of convergence. But to formulate the error bound uniformly with a constant C
independent of Z, in the case r > 2, we have to include also the other term. By definition
of Ψ the above result only gives a useful upper bound if α is sufficiently small. However,
Theorem 4.4.7 is most interesting in the asymptotic case, where ε, α→ 0. Even if one is
interested in a bound that holds for all α one could use the fact that by (D4) the first order
VSC holds true, so Theorem 4.3.4 gives a bound which is even superior to (4.18) for large
α.

Proof. As in the proof of Theorem 4.4.2 we begin by estimating the symmetric Bregman
divergence. The extremal relations (3.5), (3.6) yield by (3.12) and by the decomposition
(3.13) that

∆sym
R (f̂α, f †) = 〈T ∗ξ̂α − T ∗ξ†, f̂α − g†〉

= 〈ξ̂α − ξ†, T f̂α − g†〉
= 〈ξ̂α,L2 − ξ†,−αξ̂α,L2〉+ 〈ξ̂α,Z , T f̂α − g†〉
= α〈ξ† − ξ̂α,L2 , ξ†〉 − α‖ξ̂α,L2 − ξ†‖2

L2 + 〈ξ̂α,Z , T f̂α − g†〉
= α〈ξ† − ξ̂α,L2 , Pkξ

†〉+ α〈ξ† − ξ̂α,L2 , (I − Pk)ξ†〉
− α‖ξ̂α,L2 − ξ†‖2

L2 + 〈ξ̂α,Z , T f̂α − g†〉.

By

〈ξ† − ξ̂α,L2 , (I − Pk)ξ†〉 ≤
1
4‖ξ̂α,L

2 − ξ†‖2
L2 + ‖(I − Pk)ξ†‖2

L2

we find

∆sym
R (f̂α, f †) ≤ α〈ξ† − ξ̂α,L2 , Pkξ

†〉 − 3α
4 ‖ξ̂α,L

2 − ξ†‖2
L2 + ακ2

k + 〈ξ̂α,Z , T f̂α − g†〉

= α〈ξ† − ξ̂α, Pkξ†〉 −
3α
4 ‖ξ̂α,L

2 − ξ†‖2
L2 + ακ2

k + 〈ξ̂α,Z , T f̂α − g† + αPkξ
†〉.

The first term can be bounded by (D5), so that

∆sym
R (f̂α, f †) ≤ ανk∆f†

R∗(T ∗ξ̂α, T ∗ξ†)
1
µ + αβν2

k

2 ∆f†

R∗(T ∗ξ̂α, T ∗ξ†) (4.19)

+ α

4 ‖ξ
† − ξ̂α‖2

B−γ
p′,∞
− 3α

4 ‖ξ̂α,L
2 − ξ†‖2 + ακ2

k + 〈ξ̂α,Z , T f̂α − g† + αPkξ
†〉.

Now note that
α

4 ‖ξ
† − ξ̂α‖2

B−γ
p′,∞
≤ α

2 ‖ξ̂α,Z‖
2
B−γ
p′,∞

+ α

2 ‖ξ
† − ξ̂α,L2‖2

B−γ
p′,∞

≤ 1
2α‖εZ‖

2
B−γ
p′,∞

+ α

2 ‖ξ
† − ξ̂α,L2‖2

L2

as well as ∆f†

R∗(T ∗ξ̂α, T ∗ξ†) = ∆T ∗ξ̂α
R (f †, f̂α) and by Young’s inequality

ανk∆f†

R∗(T ∗ξ̂α, T ∗ξ†)
1
µ ≤ 1

2∆f†

R∗(T ∗ξ̂α, T ∗ξ†) + C(ανk)µ
′
. (4.20)
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From now on we assume that k is chosen such that αβν2
k ≤ 1 (this assumption is included

in the function Ψ) so we can subtract ∆f†

R∗(T ∗ξ̂α, T ∗ξ†) on both sides of (4.19) and together
with (4.20) we find

∆T ∗ξ†

R (f̂α, f †) ≤C(ανk)µ
′ + 1

2α‖εZ‖
2
B−γ
p′,∞

+ ακ2
k

+ 〈ξ̂α,Z , T f̂α − g† + αPkξ
†〉 − α

4 ‖ξ̂α,L
2 − ξ†‖2

L2 .
(4.21)

The only remaining task of the proof is to bound 〈εZ, T f̂α − g† + αPkξ
†〉 which can be

seen as a version of the effective noise level err(T f̂α), which was already treated in Lemma
4.1.3 in a similar way as below. By (4.15) we have

1
α
〈εZ, T f̂α − g† + αPkξ

†〉

≤ 1
α
‖εZ‖B−γ

p′,∞
‖T f̂α − g† + αPkξ

†‖Bγp,1

≤C
α
‖εZ‖B−γ

p′,∞
‖T f̂α − g† + αPkξ

†‖1− γ
a

L2 (Bρ∆R(f̂α, f †) + (νkα)r)
γ
ra

≤C
(
B

γρ
ar εα−1‖Z‖B−γ

p′,∞
‖T f̂α − g† + αPkξ

†‖1− γ
a

L2

) 1
1− γ

ra + 1
2∆T ∗ξ†

R (f̂α, f †) + 1
2(νkα)r.

Notice that from (4.21) we still can take advantage of the term

−α4 ‖ξ̂α,L
2 − ξ†‖2

L2 ≤ −
α

8 ‖ξ̂α,L
2 − Pkξ†‖2

L2 + α

4 ‖(I − Pk)ξ
†‖2
L2

= − 1
8α‖T f̂α − g

† + αPkξ
†‖2
L2 + α

4 κ
2
k,

(4.22)

so that finally by Young’s inequality with q = 2(1− γ
ra

)
1− γ

a
and q′ = 2(1− γ

ra
)

1+ γ
a
− 2γ
ra

we have

1
α
〈εZ, T f̂α − g† + αPkξ

†〉 − 1
8α‖T f̂α − g

† + αPkξ
†‖2
L2

≤ C

‖T f̂α − g† + αPkξ
†‖1− γ

a

L2

α
1
2−

d
4a


1

1− γ
ra

B
γρ
ar ε‖Z‖B−γ

p′,∞

α
1
2 + d

4a


1

1− γ
ra

− 1
8α‖T f̂α − g

† + αPkξ
†‖2
L2 + 1

2∆T ∗ξ†

R (f̂α, f †) + 1
2(νkα)r

≤ C

B 2γρ
ar

‖εZ‖2
B−γ
p′,∞

α1+ γ
a


1

1+ γ
ra (r−2)

+ 1
2∆T ∗ξ†

R (f̂α, f †) + 1
2(νkα)r.

Combining this with (4.21) and (4.22) we find

C∆T ∗ξ†

R (f̂α, f †) ≤
‖εZ‖2

B−γ
p′,∞

α
+

B
2γρ
ar ‖εZ‖2

B−γ
p′,∞

α1+ γ
a


1

1+ γ
ra (r−2)

+ ακ2
k + max

(
(ανk)µ

′
, (ανk)r

)
.

Taking the infimum over k ∈ N0 such that αν2
k ≤ 1 gives the claim as r ≥ 2 and µ′ ≤ 2,

thus (ανk)µ
′ ≥ (ανk)r.
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Now we consider S(g) = SKL
Gobs,σ(g) and prove an analogous upper bound to Theorem

4.4.7.

Theorem 4.4.9. Let Assumption 4.4.4 hold true with p = 2. Let B ≥ 1 such that
‖f̂α‖, ‖f †‖ ≤ B. Then we have for Ψ as in (4.17) and some constant C > 0 independent
of Z,B, ε and α that

C∆T ∗ξ†

R (f̂α, f †) ≤

B2γ(1+ ρ
ar

)‖εZ‖2
B−γ2,∞

α1+ γ
a


1

1+ γ
ra (r−2)

+
‖εZ‖2

B−γ2,∞

α
+ αΨ(α).

Proof. The proof is actually very similar to the previous proof. Basically the only difference
is the additional factor 1

T f̂α+σ
in ξ̂α. Still this causes some difficulties so for the sake of

completeness we give the proof. We introduce the short notation ĝσ = T f̂α + σ. As before
we begin by estimating the symmetric Bregman divergence. The extremal relations (3.5),
(3.6) yield by (3.16) and the decomposition (3.17) that

∆sym
R (f̂α, f †) = 〈ξ̂α − ξ†, T f̂α − g†〉

= 〈ξ̂α,L2 − ξ†,−αĝσ ξ̂α,L2〉+ 〈ξ̂α,Z , T f̂α − g†〉
= α〈ξ† − ξ̂α,L2 , ĝσξ

†〉 − α‖ĝσ(ξ̂α,L2 − ξ†)‖2
L2 + 〈ξ̂α,Z , T f̂α − g†〉

= α〈ξ† − ξ̂α,L2 , ĝσPkξ
†〉 − α‖ĝσ(ξ̂α,L2 − ξ†)‖2

L2 + 〈ξ̂α,Z , T f̂α − g†〉
+ α〈ξ† − ξ̂α,L2 , ĝσ(I − Pk)ξ†〉

The Peter-Paul inequality gives

〈ξ† − ξ̂α,L2 , ĝσ(I − Pk)ξ†〉 ≤
1
4‖ĝσ(ξ̂α,L2 − ξ†)‖2

L2 + ‖(I − Pk)ξ†‖2
L2

and we have

∆sym
R (f̂α, f †) ≤α〈ξ† − ξ̂α,L2 , ĝσPkξ

†〉 − 3α
4 ‖ĝσ(ξ̂α,L2 − ξ†)‖2

L2 + ακ2
k + 〈ξ̂α,Z , T f̂α − g†〉

=α〈ξ† − ξ̂α, (T f̂α + σ)Pkξ†〉 −
3α
4 ‖ĝσ(ξ̂α,L2 − ξ†)‖2

L2

+ ακ2
k + 〈ξ̂α,Z , T f̂α − g† + αĝσPkξ

†〉.

The first term can be bounded by (D8), so that

∆sym
R (f̂α, f †) ≤ ανk∆f†

R∗(T ∗ξ̂α, T ∗ξ†)
1
µ + αβν2

k

2 ∆f†

R∗(T ∗ξ̂α, T ∗ξ†) + ακ2
k

+ α

4 ‖ĝσ(ξ† − ξ̂α)‖2
B−γ2,∞
− 3α

4 ‖ĝσ(ξ̂α,L2 − ξ†)‖2
L2 + 〈ξ̂α,Z , T f̂α − g† + αĝσPkξ

†〉. (4.23)

By the same reasoning as in the proof of the last theorem we have

α

4 ‖ĝσ(ξ† − ξ̂α)‖2
B−γ
p′,∞
≤ 1

4α‖t
− 1

2Z‖2
B−γ
p′,∞

+ α

2 ‖ĝσ(ξ† − ξ̂α,L2)‖2
L2



4.4. Second order source conditions 73

and as from (4.19) to (4.21) we find for k with αβν2
k ≤ 1 that

∆T ∗ξ†

R (f̂α, f †) ≤C(ανk)µ
′
+ 1

4‖t
− 1

2Z‖2
B−γ
p′,∞

+ ακ2
k

+ 〈ξ̂α,Z , T f̂α − g† + αĝσPkξ
†〉 − σα

8 ‖ξ̂α,L
2 − ξ†‖2

L2 .
(4.24)

Bounding
〈ξ̂α,Z , T f̂α − g† + αĝσPkξ

†〉 = 1
α
〈εZ, (T f̂α − g†)/ĝσ + αPkξ

†〉

is analogous to the last proof. By the interpolation inequality (4.16) we have

1
α
〈εZ, (T f̂α − g†)/ĝσ + αPkξ

†〉

≤ 1
α
‖εZ‖B−γ2,∞

∥∥∥∥∥T f̂α − g†Tf + σ
+ αPkξ

†
∥∥∥∥∥
Bγ2,1

≤C
α
Bγ(1+ ρ

ar
)‖εZ‖B−γ2,∞

∥∥∥∥∥T f̂α − g†Tf + σ
+ αPkξ

†
∥∥∥∥∥

1− γ
a

L2
(∆R(f̂α, f †) + (νkα)r)

γ
ra

≤C
(
α−

1
2−

d
4aBγ(1+ ρ

ar
)‖εZ‖B−γ2,∞

‖
√
α(Pkξ† − ξ̂α,L2)‖1− γ

a

L2

) 1
1− γ

ra

+ 1
2∆T ∗ξ†

R (f̂α, f †) + 1
2(νkα)r.

Notice that from (4.24) we still have

−σα8 ‖ξ̂α,L
2 − ξ†‖2

L2 ≤ −
σα

16 ‖ξ̂α,L
2 − Pkξ†‖2

L2 + σα

8 ‖(I − Pk)ξ
†‖2
L2 (4.25)

left to work with. By Young’s inequality with q = 2(1− γ
ra

)
1− γ

a
and q′ = 2(1− γ

ra
)

1+ γ
a
− 2γ
ra

we obtain

1
α
〈εZ, T f̂α − g† + αPkg

†
σξ
†〉 − σα

16 ‖ξ̂α,L
2 − Pkξ†‖2

L2

≤ C

B2γ(1+ ρ
ar

)‖Z‖2
B−γ2,∞

α1+ γ
a t


1

1+ γ
ra (r−2)

+ 1
2∆T ∗ξ†

R (f̂α, f †) + 1
2(νkα)r,

which together with (4.24) and (4.25) gives the claim as in the last proof.

Corollary 4.4.10. Let Assumptions 1.4.1, 4.2.1 and 4.4.4 hold true and let Ψ be the
function from (4.17). Define Qε,α :=

(
ε2

α1+ γ
a

) 1
1+ γ

ra (r−2) .

(a) If S = SLS
Gobs and c = 2 + 2aρ

a−γ , then we have under a parameter choice α ≥ Cε
2

1+γ/a

that

P
(
∆T ∗ξ†

R (f̂α, f †) > C(1 + x)Qε,α + αΨ(α)
)
≤ exp

(
−CZx

τ
c

)
,

E
(
∆T ∗ξ†

R (f̂α, f †)
)
≤ CQε,α + αΨ(α),

where the constant C > 0 depends on R(f †) if ρ > 0.
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(b) Let S = SKL
Gobs,σ and a ≥ a0 ≥ max(d/2, γ), where a0 ∈ {1, 2}. Under the parameter

choice α ≥ Cε
2

1+γ/a0 we have

P
(
∆T ∗ξ†

R (f̂α, f †) > C(1 + x)Qε,α + αΨ(α)
)
≤ exp

(
−CZx

τ
c

)
E
(
∆T ∗ξ†

R (f̂α, f †)
)
≤ CQε,α + αΨ(α),

where the constant depends on R(f †), g† and σ.

Proof. Just as the proof of Corollary 4.3.12.

4.5 Higher order variational source conditions1

The aim of this section is to derive rates of convergence corresponding to indices ν > 2
in (1.4), i.e. faster than ‖f̂α − f †‖ = O(δ2/3) in a Banach space setting. By the well-
known saturation effect for Tikhonov regularization [35] such rates can occur in quadratic
Tikhonov regularization only for f † = 0. Therefore, we consider Bregman iterated Tikhonov
regularization as in Section 3.3. In Hilbert spaces we will obtain a full generalization of
Hölder source conditions by introducing variational source conditions VSCn for n ∈ N. In
Banach spaces things are more complicated but we still show that Bregman iteration can
yield better convergence rates than non-iterated generalized Tikhonov regularization by
introducing a VSC3(Φ,R,Sp).

4.5.1 Hilbert spaces

First we consider the Hilbert space setting, where X ,Y are Hilbert spaces and R(f) :=
1
2‖f‖

2
X , Sp(g) = 1

2‖g‖
2
Y , to prove rates (1.4) for all ν > 0 using variational source conditions,

which are defined as follows:

Definition 4.5.1 (Variational source condition VSCl(f †,Φ)). Let f † ∈ X , let Φ be a
concave index function, and let n ∈ N. Then the statement

∃ω†n−1 ∈ X : f † = (T ∗T )n−1ω†n−1

∧ ∀f ∈ X :
〈
ω†n−1, f

〉
≤ 1

2‖f‖
2 + Φ

(
‖Tf‖2

) (4.26)

will be abbreviated by VSC2n−1(f †,Φ), and the statement

∃ξ†n ∈ Y : f † = (T ∗T )n−1T ∗ξ†n

∧ ∀ξ ∈ Y :
〈
ξ, ξ†n

〉
≤ 1

2‖ξ‖
2 + Φ

(
‖T ∗ξ‖2

) (4.27)

will be abbreviated by VSC2n(f †,Φ). VSCl(f †,Φ) for l ∈ N will be referred to as variational
source condition of order l with index function Φ for (the true solution) f †.

1This section is mostly taken literally from [64] to which the author contributed.
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Note that that VSC1(f †,Φ) is the classical variational source condition, and VSC2(f †,Φ)
coincides with the source condition from [34] up to the term 1

2‖ξ‖
2, which implies that

VSC2(f †,Φ) is formally weaker than the condition in [34]. It is well known that the spectral
Hölder source conditions (1.3) with ν ∈ (0, 1] imply VSC1(f †, A idν/(ν+1)) for some A > 0
(see [38]). Therefore, it is easy to see that for any l ∈ N and ν ∈ [0, 1] the implication

f † ∈ ran
(
(T ∗T )

l−1+ν
2
)
⇒ ∃A > 0 : VSCl

(
f †, A id

ν
ν+1
)

(4.28)

holds true. The converse implication is false for ν ∈ (0, 1) as discussed in Section 5.4. For
ν = 1 we have by [61, Prop. 3.35] that

f † ∈ ran
(
(T ∗T ) l2

)
⇔ ∃A > 0 : VSCl

(
f †, A

√
·
)
. (4.29)

The aim of this section is to prove error bounds for iterated Tikhonov regularization based
on these source conditions:

Theorem 4.5.2. Let l,m ∈ N with m ≥ l/2, let Φ be an index function, and let ψ(s) :=
supt≥0[st + Φ(s)] denote the Fenchel conjugate of −Φ. If VSCl(f †,Φ) holds true, there
exists a constant C > 0 depending only on l and m such that

‖f̂ (m)
α − f †‖2 ≤ C

(
δ2

α
+ αl−1ψ

(
− 1
α

))
for all α, δ > 0. (4.30)

Proof. We choose n ∈ N such that l = 2n or l = 2n− 1. Then m ≥ n. In the following
C will denote a generic constant depending only on m and l. The proof proceeds in four
steps.
Step 1: Reduction to the case m = n. By Proposition 3.3.2 and the definition of the
Bregman distance we have for all k ≥ 2 and f ∈ X that

∆Rk(f̂ (k)
α , f) = Rk(f̂ (k)

α )−Rk(f)−
〈
f −

k−1∑
j=1

T ∗ξ̂(j)
α , f̂ (k)

α − f
〉
.

By the optimality condition ∑k−1
j=1 T

∗ξ̂(j)
α = f̂ (k−1)

α and the minimizing property of f̂ (k)
α

(3.19) we have

1
2‖f̂

(k)
α − f‖2 = ∆Rk(f̂ (k)

α , f) ≤ 1
2α

(
‖Tf − gobs‖2 − ‖T f̂ (k)

α − gobs‖2
)

−
〈
f − f̂ (k−1)

α , f̂ (k)
α − f

〉
.

(4.31)

Choosing f = f † gives

1
2‖f̂

(k)
α − f †‖2 ≤ 1

2α‖g
† − gobs‖2 + ‖f̂ (k−1)

α − f †‖‖f̂ (k)
α − f †‖.

Multiplying by four, subtracting ‖f̂ (k)
α − f †‖2 on both sides and completing the square we

get

‖f̂ (k)
α − f †‖2 ≤ 2δ2

α
+ 4‖f̂ (k−1)

α − f †‖2.
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So it is enough to prove (4.30) for m = n as this will then also imply the claimed error
bound for all m ≥ n by the above inequality.

Step 2: Error decomposition based on Lemma 3.3.4. Both Assumptions (4.26) and
(4.27) imply that there exist

ξ†1, . . . , ξ
†
n−1 ∈ Y , ω

†
1, . . . , ω

†
n−1 ∈ X

such that f † = (T ∗T )j−1T ∗ξ†j , f
† = (T ∗T )jω†j for j = 1, . . . , n− 1. In the following we will

write ξ†1 = ξ† and ω†1 = ω†. We have ∂R(f †) = {f †} = {T ∗ξ†}, so Lemma 3.3.4 yields

‖f̂ (n)
α − f †‖2 ≤ 1

α

(
‖Tf − gobs‖2 + 2α

〈
s(n)
α , T f − gobs

〉
+ ‖−αs(n)

α ‖2
)

+ ‖f − f †‖2 (4.32)

= 1
α
‖Tf − gobs + α

(
ξ† −

n−1∑
k=1

ξ̂(k)
α

)
‖2 + ‖f − f †‖2

for s(n)
α = ξ† −∑n−1

k=1 ξ̂
(k)
α and all f ∈ X .

We will choose f = nf † − αω† −∑n−1
k=1 f̂

(k)
α . As Tω† = ξ† and T f̂ (k)

α − gobs = −αξ̂(k)
α by

strong duality, we have

‖f̂ (n)
α − f †‖2 ≤ 1

α
‖n
(
g† − gobs

)
‖2 + ‖(n− 1)f † − αω† −

n−1∑
k=1

f̂ (k)
α ‖2. (4.33)

It remains to bound the second term, which does not look favourable at first sight as we
know that ‖f̂ (k)

α − f †‖ should converge to zero slower than ‖f̂ (n)
α − f †‖ for k < n. But it

turns out that we have cancellation between the different f̂ (k)
α . Therefore, we will now

introduce vectors σk ∈ X such that

‖(n− 1)f † − αω† −
n−1∑
k=1

f̂ (k)
α ‖ ≤

n−1∑
k=1
‖f̂ (k)

α − f † − σk‖ (4.34)

and then prove that all terms on the right hand side are of optimal order.
Let (bk,j) ∈ NN×N denote the matrix given by Pascal’s triangle,

(bk,j) =



1 1 1 1 1 1 · · ·
1 2 3 4 5 6 · · ·
1 3 6 10 15 21 · · ·
1 4 10 20 35 56 · · ·
1 5 15 35 70 126 · · ·
1 6 21 56 126 252 · · ·
... ... ... ... ... ... . . .


or equivalently bk,j =

(
k+j−2
j−1

)
for all k, j ∈ N. We will need the identities

∑
k+j=n

(−1)jbk,j = −δn−2,0 for all n ≥ 2, (4.35)
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which are equivalent to (1− 1)n−2 = δn−2,0 by the binomial theorem

(a+ b)n =
∑

k+j=n+2
bk,ja

k−1bj−1.

Moreover, we need the defining property of the triangle,

bk,j + bk−1,j+1 = bk,j+1. (4.36)

Using (4.35) we can add zero in the form

0 = αω† +
n−1∑
l=1

αlω†l
∑

k+j=l+1
(−1)jbk,j = αω† +

n−1∑
k=1

n−k∑
j=1

(−1)jbk,jαk+j−1ω†k+j−1

to find that

(n− 1)f † − αω† −
n−1∑
k=1

f̂ (k)
α =

n−1∑
k=1

f † − f̂ (k)
α +

n−k∑
j=1

(−1)jbk,jαk+j−1ω†k+j−1


and by the triangle inequality this yields (4.34) with

σk :=
n−k∑
j=1

(−1)jbk,jαk+j−1ω†k+j−1, k ∈ N.

It will be convenient to set σ0 := −f † and f̂ (0)
α := 0.

Step 3: proof of (4.30) for the case l = 2n− 1. In view of (4.33) and (4.34) it suffices
to prove by induction that given VSC2n−1(f †,Φ) (4.26) we have

‖f̂ (k)
α − f † − σk‖2 ≤ C

(
δ2

α
+ α2n−2ψ

(−1
α

))
, k = 0, 1, . . . , n− 1. (4.37)

For k = 0 this is trivial. Assume now that (4.37) holds true for k−1 with k ∈ {1, . . . , n−1}.
Insert f = f † + σk in (4.31) to get

‖f̂ (k)
α − f † − σk‖2 ≤ 1

α

(
‖g† + Tσk − gobs‖2 − ‖T f̂ (k)

α − gobs‖2
)

− 2
〈
f † + σk − f̂ (k−1)

α , f̂ (k)
α − f † − σk

〉
.

Now we add and subtract f̂ (k−1)
α − f † − σk−1 to the first term of the inner product to find

‖f̂ (k)
α − f † − σk‖2 ≤ 1

α

(
‖g† + Tσk − gobs‖2 − ‖T f̂ (k)

α − gobs‖2
)

− 2
〈
σk − σk−1, f̂

(k)
α − f † − σk

〉
+ 2‖f̂ (k−1)

α − f † − σk−1‖‖f̂ (k)
α − f † − σk‖

The last term, denoted by

E := 2‖f̂ (k−1)
α − f † − σk−1‖‖f̂ (k)

α − f † − σk‖,
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will be dealt with at the end of this step. Because of the identity T ∗Tω(l) = ω(l−1) and
(4.36) we have

σk − σk−1 = αk−1ω†k−1 +
n−k∑
j=1

(−1)j(bk,j + bk−1,j+1)αk+j−1ω†k+j−1

= − 1
α
T ∗Tσk + (−1)n−kbk,n−k+1α

n−1ω†n−1

for k > 1, and it is easy to see that this also holds true for k = 1. Therefore,
〈
σk − σk−1, f̂

(k)
α − f † − σk

〉
= 1
α

〈
Tσk, g

† + Tσk − gobs + gobs − T f̂ (k)
α

〉
+
〈
(−1)n−kbk,n−k+1α

n−1ω†n−1, f̂
(k)
α − f † − σk

〉
,

which yields

‖f̂ (k)
α − f † − σk‖2 ≤ 1

α

(
‖g† − gobs‖2 − ‖T f̂ (k)

α − Tσk − gobs‖2
)

+ E (4.38)

− (−1)n−k2bk,n−k+1α
n−1

〈
ω†n−1, f̂

(k)
α − f † − σk

〉
For shortage of notation denote b = 2bk,n−k+1. Apply VSC2n−1(f †,Φ) (4.26) with f =
(−1)n−k(f̂ (k)

α − f † − σk)/(bαn−1) and multiply by (bαn−1)2 to obtain

− (−1)n−k2bk,n−k+1α
n−1

〈
ω†n−1, f̂

(k)
α − f † − σk

〉
≤ 1

2‖f̂
(k)
α − f † − σk‖2 + (bαn−1)2Φ

(
(bαn−1)−2‖T f̂ (k)

α − g† − Tσk‖2
)
.

Combining this bound with (4.38) yields

1
2‖f̂

(k)
α − f † − σk‖2 ≤ 1

α

(
‖g† − gobs‖2 − ‖T f̂ (k)

α − Tσk − gobs‖2
)

+ E

+ (bαn−1)2Φ
(
(bαn−1)−2‖T f̂ (k)

α − g† − Tσk‖2
)
.

Then we have
1
2‖f̂

(k)
α − f † − σk‖2 ≤ 1

α

(
‖g† − gobs‖2 − ‖T f̂ (k)

α − Tσk − gobs‖2
)

+ E

+ (bαn−1)2Φ
(
(bαn−1)−2‖T f̂ (k)

α − g† − Tσk‖2
)

≤δ
2

α
− 1
α
‖T f̂ (k)

α − Tσk − g†‖2 + E

+ (bαn−1)2Φ
(
(bαn−1)−2‖T f̂ (k)

α − g† − Tσk‖2
)

≤ δ2

α
+ b2α2n−2 sup

τ≥0

[−τ
α
− (−Φ(τ))

]
+ E

= δ2

α
+ 4b2

k,n−k+1α
2n−2ψ

(−1
α

)
+ E.

To get rid of E = 2‖f̂ (k−1)
α −f †−σk−1‖‖f̂ (k)

α −f †−σk‖ subtract the term 1
4‖f̂

(k)
α −f †−σk‖2

on both sides and use Young’s inequality as well as the induction hypothesis (4.37).
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Step 4: Proof of (4.30) for the case l = 2n. In view of (4.33) and (4.34) it suffices to
prove by induction that given VSC2n(f †,Φ) (4.27) we have

‖f̂ (k)
α − f † − σk‖2 ≤ C

(
δ2

α
+ α2n−1ψ

(
− 1
α

))
, k = 0, . . . , n− 1. (4.39)

Again, the case k = 0 is trival. Assume that (4.39) holds true for all j = 1, . . . , k− 1. Note
that

‖f̂ (k)
α − f † − σk‖2 =

〈
f̂ (k)
α − f † − σk, f̂ (k)

α − f † − σk
〉

≤
〈
f̂ (k)
α − f † − σk,

k∑
j=1

(
f̂ (j)
α − f † − σj

)〉

+
k−1∑
j=1
‖f̂ (k)

α − f † − σk‖‖f̂ (j)
α − f † − σj‖.

Then Young’s inequality together with the induction hypothesis (4.39) gives

1
2‖f̂

(k)
α − f † − σk‖2 ≤

〈
f̂ (k)
α − f † − σk,

k∑
j=1

(
f̂ (j)
α − f † − σj

)〉

+ C

(
δ2

α
+ α2n−1ψ

(
− 1
α

))
.

(4.40)

A simple computation (for example another induction) shows that

−αω† −
k∑
j=1

σj =
n−k−1∑
j=1

(−1)jbk,jαk+jω†k+j =: σ̂k.

By VSC2n(f †,Φ) (4.27) we have σk ∈ ranT ∗ and by Proposition 3.3.2 we have T ∗ξ̂(k)
α ∈

∂Rk(f̂ (k)
α ) = {f̂ (k)

α −
∑k−1
j=1 T

∗ξ̂(j)
α } as well as −αξ̂(j)

α ∈ ∂Sp(T f̂ (j)
α − gobs) = {T f̂ (j)

α − gobs}
such that 〈

f̂ (k)
α − f † − σk,

k∑
j=1

(
f̂ (j)
α − f † − σj

)〉

=
〈

k∑
j=1

T ∗ξ̂(j)
α − T ∗ξ† − T ∗(T ∗−1σk),

k∑
j=1

f̂ (j)
α − kf † + αω† + σ̂k

〉

=
〈

k∑
j=1

ξ̂(j)
α − ξ† − (T ∗−1σk),

k∑
j=1

(−αξ̂(j)
α ) + αTω† + T σ̂k + k(gobs − g†)

〉

=α
〈
ξ† + (T ∗−1σk)−

k∑
j=1

ξ̂(j)
α ,

k∑
j=1

ξ̂(j)
α − ξ† −

T σ̂k
α

〉
+ kE,

where E :=
〈
ξ† + (T ∗−1σk)−

∑k
j=1 ξ̂

(j)
α , g† − gobs

〉
. On the right hand side of the scalar

product we now exchange ∑k
j=1 ξ̂

(j)
α − ξ† by (T ∗−1σk) to find〈

ξ† + (T ∗−1σk)−
k∑
j=1

ξ̂(j)
α ,

k∑
j=1

ξ̂(j)
α − ξ† −

T σ̂k
α

〉

=
〈
ξ† + (T ∗−1σk)−

k∑
j=1

ξ̂(j)
α , (T ∗−1σk)−

T σ̂k
α

〉
− ‖ξ† + (T ∗−1σk)−

k∑
j=1

ξ̂(j)
α ‖2
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and together with the identity

(T ∗−1σk)−
T σ̂k
α

=
n−k∑
j=1

(−1)jbk,jαk+j−1ξ†k+j +
n−k−1∑
j=1

(−1)jbk,jαk+j−1ξ†k+j

= (−1)n−kbk,n−kαn−1ξ†n

it follows that〈
f̂ (k)
α − f † − σk,

k∑
j=1

(
f̂ (j)
α − f † − σj

)〉
= −α‖ξ† + (T ∗−1σk)−

k∑
j=1

ξ̂(j)
α ‖2

+ bk,n−kα
n

〈
(−1)n−k

ξ† + (T ∗−1σk)−
k∑
j=1

ξ̂(j)
α

 , ξ†n
〉

+ kE, (4.41)

so we are finally in a position to apply VSC2n−1(f †,Φ) (4.27). For shortage of notation
denote b̃ = 4bk,n−k and ξ̃ = ξ† + (T ∗−1σk)−

∑k
j=1 ξ̂

(j)
α . Choose ξ = (−1)n−kξ̃/(b̃αn−1), and

multiply the inequality by α(b̃αn−1)2 to obtain

4b̃k,n−kαn
〈

(−1)n−k
ξ† + (T ∗−1σk)−

k∑
j=1

ξ̂(j)
α

 , ξ†n
〉

≤ α

2 ‖ξ̃‖
2 + b̃2α2n−1Φ

(
(b̃αn−1)−2‖T ∗ξ̃‖2

)
.

(4.42)

Now combine (4.40), (4.41) and (4.42) to find

2‖f̂ (k)
α − f † − σk‖2 ≤ b̃2α2n−1Φ

(
(b̃αn−1)−2‖f † + σk − f̂ (k)

α ‖2
)

+ α

2 ‖ξ̃‖
2 − 4α‖ξ̃‖2 + 4kE + C

(
δ2

α
+ α2n−1ψ

(
− 1
α

))
. (4.43)

Completing the square, we get
α

2 ‖ξ̃‖
2 − 4α‖ξ̃‖2 + 4kE = −7

2α‖ξ̃‖
2 + 4

〈
ξ̃, g† − gobs

〉
≤ 8k2δ2

7α .

Now we subtract
∥∥∥f̂ (k)

α − f † − σk
∥∥∥2

in (4.43) from both sides to find

‖f̂ (k)
α − f † − σk‖2 ≤ b̃2α2n−1Φ

(
(b̃αn−1)−2‖f † + σk − f̂ (k)

α ‖2
)

− ‖f̂ (k)
α − f † − σk‖2 + C

(
δ2

α
+ α2n−1ψ

(
− 1
α

))

≤b̃2α2n−1 sup
τ≥0

[−τ
α
− (−Φ (τ))

]
+ C

(
δ2

α
+ α2n−1ψ

(
− 1
α

))

=16b2
k,n−kα

2n−1ψ
(−1
α

)
+ C

(
δ2

α
+ α2n−1ψ

(
− 1
α

))
.

Note that under a spectral source condition as on the left hand side of the implication
(4.28), the VSC of the right hand side of (4.28) and Theorem 4.5.2 yield the error bound
C(δ/α2 + αl−1+ν). For the choice α ∼ δ2/(l+ν) this leads to the optimal convergence rate∥∥∥f̂ (m)

α − f †
∥∥∥ = O

(
δ(l−1+ν)/(l+ν)

)
. However, we have derived this rate under the weaker

assumption VSCl(f †, A idν/(ν+1)) using only variational, but no spectral arguments.
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4.5.2 Banach spaces

In this section we will introduce a third order variational source condition and apply
it to prove higher order convergence rates for two times Bregman iterated Tikhonov
regularization (see Section 3.3).

Definition 4.5.3 (Variational source condition VSC3(Φ,R,Sp)). Let Φ be an index
function. We say that f † ∈ X satisfies the third order variational source condition
VSC3(Φ,R,Sp) if there exist ξ† ∈ Y∗ and ω† ∈ X such that T ∗ξ† ∈ ∂R(f †) and
Tω† ∈ ∂S∗p(ξ†) and if there exist constants β ≥ 0, µ > 1 and t > 0 as well as
f ∗t ∈ ∂R(f † − tω†) for all 0 < t ≤ t such that

∀f ∈ X ∀t ∈ (0, t] :〈
f ∗t − T ∗ξ†, f † − tω† − f

〉
≤∆f∗t

R

(
f, f † − tω†

)
+ t2Φ

(
t−p‖Tf − g† + tTω†‖p

)
+ βt2µ.

Remark 4.5.4. To see how VSC2 and VSC3 relate to other source conditions, recall
from Section 4.4 that the strongest VSC1 is equivalent to the existence of ξ† ∈ Y∗ such
that T ∗ξ† ∈ ∂R(f †). Similarly one can show that the strongest VSC2 is equivalent to the
existence of Tω† ∈ ∂S∗p(ξ†) (see [34, Lemma 5.1, 5.3]). So by assuming the existence
of such ξ† ∈ Y∗, ω† ∈ X the VSC3 is stronger than VSC1 and VSC2. Similarly, as
discussed in the introduction of Section 4.4 the VSC2 and VSC3 are also stronger than the
multiplicative variational source conditions in [4, 45] and approximate (variational) source
conditions ([28]).

Now let X and Y be Hilbert spaces and R2(f) := 1
2‖f‖

2
X , S2(g) = 1

2‖g‖
2
Y . Then clearly

the VSC2(Φ,R2,S2) is equivalent to VSC2(f †,Φ). We also have that the VSC3(Φ,R2,S2)
is equivalent to VSC3(f †,Φ): In fact, for arbitrary β ≥ 0 and µ > 1 the condition
VSC3(f †,Φ) is equivalent to

∀f ∈ X ∀t > 0:
〈
ω†, f

〉
≤ 1

2‖f‖
2 + Φ

(
‖Tf‖2

)
+ βt2µ−2,

as the limit t → 0 gives back the original inequality. Now we replace f by f−f†+tω†
t

and
multiply by t2 to see that this is equivalent to

〈
−tω†, f † − tω† − f

〉
≤ 1

2‖f − f
† + tω†‖2 + t2Φ

(
‖Tf − g† + tTω†‖2

t2

)
+ βt2µ,

which is equivalent to VSC3(Φ,R2,S2).

We can now state the main result of this section:

Theorem 4.5.5. Suppose Assumption 3.3.1 and that Y is p-smooth and r-convex. Further
assume that f † fulfills the VSC3(f †,Φ,R,Sp) with constants β, µ, and t and that c−1δ ≤
αp
′−1 ≤ t for some c > 0. Define Φ̃(s) = Φ(sp/r). Then the error is bounded by

∆R
(
f̂ (2)
α , f †

)
≤ C

δp
α

+ α2(p′−1)
(
−Φ̃

)∗C̃
(
c+ ‖Tω†‖

)p−r
−αp′−1

+ βα2µ(p′−1)


with constants C, C̃ > 0 depending at most on p, r, c, and Y.
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The proof consists of the following three lemmata, in all of which we will tacitly
assume that Assumption 3.3.1 holds true and Y is p-smooth and r-convex. By choosing
f = f † in Lemma 3.3.4 we show that ∆R(f̂ (2)

α , f †) is related to the Bregman distance
∆S∗p (−αξ̂α,−αξ†), which is helpful as we will later actually use VSC3(f †,Φ,R,Sp) to
prove convergence rates for ξ̂α. In fact the following lemma is already sufficient to
show second order convergence rates for f̂ (2)

α as Theorem 4.4.2 gives an upper bound on
∆S∗p (−αξ̂α,−αξ†).

Lemma 4.5.6. If T ∗ξ† ∈ ∂R(f †), then there exists Cp′,Y∗ > 0 such that

∆R
(
f̂ (2)
α , f †

)
≤ 2
α

(
Sp
(
g† − gobs

)
+ Cp′,Y∗∆S∗p

(
−αξ̂α,−αξ†

))
.

Proof. We apply Lemma 3.3.4 with f = f † to find

∆R
(
f̂ (2)
α , f †

)
≤ 1
α
Sp
(
g† − gobs

)
+
〈
ξ† − ξ̂α, g† − gobs

〉
+ 1
α
S∗p
(
−α(ξ† − ξ̂α)

)
.

The generalized Young inequality applied to the middle term yields

∆R
(
f̂ (2)
α , f †

)
≤ 2
α

(
Sp
(
g† − gobs

)
+ S∗p

(
−α(ξ† − ξ̂α)

))
.

As Y is p-smooth, Y∗ is p′-convex by Lemma 2.2.6, so we can apply Theorem 2.2.5 to
obtain

∆R
(
f̂ (2)
α , f †

)
≤ 2
α

(
Sp
(
g† − gobs

)
+ Cp′,Y∗∆S∗p

(
−αξ̂α,−αξ†

))
.

The next lemma shows convergence rates in the image space.

Lemma 4.5.7. Suppose there exist ξ† ∈ Y∗ and ω† ∈ X such that T ∗ξ† ∈ ∂R(f †) and
Tω† ∈ ∂S∗p (ξ†) = JY∗,p′(ξ†). Then there exists a constant Cp > 0 depending only on p such
that

‖T f̂α − g†‖Y ≤ Cp
(
δ + αp

′−1‖Tω†‖Y
)
.

Proof. By Lemma 4.3.5 we get that T ∗ξ† ∈ ∂R(f †) implies VSC1(Φ,R,Spg†), with Φ(τ) =
‖ξ†‖Y∗(pτ)

1
p , which then implies by (4.5) in Theorem 4.3.4 that

1
p
‖T f̂α − g†‖p ≤ 2Cerr

(
errY +α(−Φ)∗

( −1
2Cerrα

))
.

By Lemma 4.1.3 and Lemma 4.3.13 we thus get

‖T f̂α − g†‖p ≤ Cp

(
δp + ‖ξ†‖

p
p−1
Y∗ α

p
p−1

)
,

so that the claim follows from ‖Tω†‖Y = ‖ξ†‖p
′−1
Y∗ and p/(p− 1) = p′, p′/(p′ − 1) = p.

The main part of the proof of Theorem 4.5.5 consists in the derivation of convergence
rates for the dual problem:
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Lemma 4.5.8. Define αp := αp
′−1, Φ̃(s) = Φ(sp/r). Let VSC3(f †,Φ,R,Sp) hold true with

constants β, µ, and t. If α is chosen such that c−1δ ≤ αp ≤ t, for some c > 0, then

1
2α∆S∗p

(
−αξ̂α,−αξ†

)
≤ C

δp

α
+ α2

p

(
−Φ̃

)∗−C̃
(
c+ ‖Tω†‖

)p−r
αp

+ βα2µ
p ,

where C, C̃ > 0 depend at most on p, r, c, Y.

Proof. It follows from Proposition 2.2.10 and Tω† ∈ ∂S∗p(ξ†) that −αpTω† ∈ ∂S∗p(−αξ†).
By (3.6) together with Corollary 2.1.19 we can consider

1
α

∆sym
S∗p

(
−αξ̂α,−αξ†

)
= 1
α

〈
−αξ† − (−αξ̂α),−αpTω† − (T f̂α − gobs)

〉
=
〈
T ∗ξ̂α − T ∗ξ†, f † − αpω† − f̂α

〉
+
〈
ξ̂α − ξ†, gobs − g†

〉
.

The second term E :=
〈
ξ̂α − ξ†, gobs − g†

〉
will be estimated later. Artificially adding zero

in the form f ∗αp − f
∗
αp with f ∗αp ∈ ∂R(f † − αpω†), we find

1
α

∆sym
S∗p

(
−αξ̂α,−αξ†

)
=
〈
f ∗αp − T

∗ξ†, f † − αpω† − f̂α
〉

+ E

+
〈
T ∗ξ̂α − f ∗αp , f

† − αpω† − f̂α
〉
.

In view of (3.5) the last term is the negative symmetric Bregman distance −∆sym
R (f̂α, f †−

αpω
†). The first term can be bounded using VSC3(f †,Φ,R,Sp) by choosing f = f̂α and

t = αp:

1
α

∆sym
S∗p

(
−αξ̂α,−αξ†

)
≤ α2

pΦ̃
(
α−rp ‖T f̂α − g† + αpTω

†‖r
)

+ βα2µ
p

+ ∆R
(
f̂α, f

† − αpω†
)
−∆sym

R (f̂α, f † − αpω†) + E

≤ α2
pΦ̃
(
α−rp ‖T f̂α − g† + αpTω

†‖r
)

+ βα2µ
p + E.

Now we use our joker. We subtract

1
α

∆S∗p (−αξ†,−αξ̂α) = 1
α

∆Sp(T f̂α − gobs,−αpTω†)

(see (2.10)) from both sides leading to

1
α

∆S∗p
(
−αξ̂α,−αξ†

)
≤ α2

pΦ̃
(
α−rp ‖T f̂α − g† + αpTω

†‖r
)

−∆Sp(T f̂α − gobs,−αpTω†) + βα2µ
p + E.

(4.44)

So we need to bound ∆ := ∆Sp(T f̂α − gobs,−αpTω†) from below. By Theorem 2.2.5 we
have (as p ≤ r)

∆ ≥ Cp,Y max
(
‖αpTω†‖, ‖T f̂α − gobs + αpTω

†‖
)p−r
‖T f̂α − gobs + αpTω

†‖r.
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Moreover, it follows from Lemma 4.5.7 and the choice δ ≤ cαp that

‖T f̂α − gobs + αpTω
†‖ ≤ ‖T f̂α − g†‖+ ‖g† − gobs‖+ ‖αpTω†‖
≤ Cp

(
δ + αp‖Tω†‖

)
≤ Cpαp

(
c+ ‖Tω†‖

)
.

Therefore,

max
(
‖αpTω†‖, ‖T f̂α − gobs + αpTω

†‖
)
≤ αp max

(
‖Tω†‖, Cp

(
c+ ‖Tω†‖

))
≤ αp max (1, Cp)

(
c+ ‖Tω†‖

)
.

Hence, there exists a constant C̃ > 0 depending on p, Cp,Y , and r such that

1
α

∆ ≥ 2r−1C̃
(
c+ ‖Tω†‖

)p−r
α(p′−1)(p−r)−1‖T f̂α − gobs + αpTω

†‖r.

Note that (p′− 1)(p− r)− 1 = −(r− 1)(p′− 1). In order to replace gobs by g† on the right
hand side we use the inequality

21−r‖T f̂α − g† + αpTω
†‖r − ‖T f̂α − gobs + αpTω

†‖r ≤ ‖g† − gobs‖r

(see [61, Lemma 3.20]) leading to

− 1
α

∆ ≤
C̃
(
c+ ‖Tω†‖

)p−r
αr−1
p

(
−‖T f̂α − g† + αpTω

†‖r + 2r−1δr
)
.

Inserting this into (4.44) yields

1
α

∆S∗p
(
−αξ̂α,−αξ†

)
≤ α2

pΦ̃
(
α−rp ‖T f̂α − g† + αpTω

†‖r
)

+ βα2µ
p + E

−
C̃
(
c+ ‖Tω†‖

)p−r
αr−1
p

(
‖T f̂α − g† + αpTω

†‖r − 2r−1δr
)

≤ α2
p sup
τ≥0

[
−C̃

(
c+ ‖Tω†‖

)p−r
α−1
p τ −

(
−Φ̃(τ)

)]

+ C̃
(
c+ ‖Tω†‖

)p−r
2r−1 δr

αr−1
p

+ E + βα2µ
p .

The supremum equals
(
−Φ̃

)∗ (
−C̃

(
c+ ‖Tω†‖

)p−r
α−1
p

)
, by the definition of the convex

conjugate . To deal with E let Cp′,Y∗ be the constant in (2.15) of Theorem 2.2.5. We use
the generalized Young inequality

1
α

〈(
Cp′,Y∗p

′

2

) 1
p′

(αξ̂α − αξ†),
(
Cp′,Y∗p

′

2

)−1
p′

(gobs − g†)
〉

≤ Cp′,Y∗

2α ‖αξ̂α − αξ
†‖p′ + 1

p

(
Cp′,Y∗p

′

2

)− p
p′ δp

α
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and apply Theorem 2.2.5, using that Y∗ is p′ convex, to find

E =
〈
ξ̂α − ξ†, gobs − g†

〉
≤ 1

2α∆S∗p
(
−αξ̂α,−αξ†

)
+ 1
p

(
Cp′,Y∗p

′

2

)− p
p′ δp

α
.

The assumption δ ≤ αp, or equivalently δr−p ≤ αr−pp , implies δr

αr−1
p
≤ δp

αp−1
p

= δp

α
. Further(

c+ ‖Tω†‖
)p−r

≤ cp−r, hence there exists a constant C > 0 depending on p, r, c, Cp,Y ,
and Cp′,Y∗ such that

1
2α∆S∗p

(
−αξ̂α,−αξ†

)
≤ C

δp

α
+ α2

p

(
−Φ̃

)∗ (
−C̃

(
c+ ‖Tω†‖

)p−r
α−1
p

)
+ βα2µ

p ,

which completes the proof.

Now Theorem 4.5.5 is an immediate consequence of Lemma 4.5.6 and Lemma 4.5.8.
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Chapter Five
Verification of

source conditions

“For that (the rapt one warns) is what papyr is
meed of, made of, hides and hints and misses in
prints. Till ye finally (though not yet endlike)
meet with the acquaintance of Mister Typus,
Mistress Tope and all the little typtopies.”

Finnegans Wake, J. Joyce

In this chapter we will show how the different source conditions that we have introduced
can be verified for many important inverse problems given smoothness of the exact solution
f †. To this end we will derive abstract strategies that work in a general setting. These
strategies are similar for all three orders of source conditions that we discuss. Firstly we
always have a result similar to Proposition 4.3.6 which establishes the source condition
for some function h† (e.g. f † or ξ†) under certain assumptions on the penalty function.
However, the index function of the source condition will not be given in an explicit form
yet, but rather as an infimum over terms related to projections of h†. These projections
will be chosen for the rest of this thesis as the wavelet approximations from A.2.13. So
secondly there will be a result that bounds these wavelet approximations and their tails in
certain norms.

After the first section on abstract strategies and assumptions we will consider specific
penalty functionals in each section. Note that against common praxis we do not start with
the most understood example of Hilbert space regularization, but rather with maximum
entropy regularization and Besov norm regularization. The reason for this order is that
these two examples show best why we need certain assumptions in the general strategies
and how we can profit from the variational approach.

The reader might consider to firstly read either Section 5.2 or Section 5.3 and then
come back to the abstract Section 5.1 to have a better understanding of the necessity of
the results.
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5.1 General strategies and assumptions1

5.1.1 Verification of first order VSCs

In Section 4.3.2 we have already seen a general strategy to verify the VSC1(Φ,R,S†) for
S† = Spg† . We now show how the assumptions (4.7a), (4.7b) of Proposition 4.3.6 can be
fulfilled with the wavelet approximation projections from Proposition A.2.13.

Lemma 5.1.1. For p ∈ [1, 2], q ∈ [1,∞] let B0
p′,q(M0) ⊂ X ∗, Y ⊂ L2(M) with continuous

embedding. Let Pk be given as in Proposition A.2.13. If for s > 0 we have h∗ ∈ Bs
p′,∞ then

we have

‖(I − Pk)h∗‖X ∗ ≤ C2−ks‖h∗‖Bs
p′,∞

Let a > s and assume that

‖f1 − f2‖B−a2,2 (M0) ≤ ‖F (f1)− F (f2)‖L2(M), (5.1)

for all f1, f2 ∈ X . Then we have

〈Pkh∗, f1 − f2〉 ≤ C2(a−s)k‖h∗‖Bs
p′,∞
‖F (f1)− F (f2)‖Y .

If, for a linear forward operator T , we assume instead of (5.1) that T ∗ viewed as a mapping
T ∗ : L2(M) → Ba

2,2(M0) has a bounded right inverse (T ∗)† (i.e T ∗ ◦ (T ∗)† = id) then we
have

‖(T ∗)†Pkh∗‖Y∗ ≤ C2(a−s)k‖h∗‖Bs
p′,∞

.

Proof. The first inequality follows directly from Proposition A.2.13 as we have

‖(I − Pk)h∗‖X ∗ ≤ C‖(I − Pk)h∗‖B0
p′,q(M0) ≤ C2−ks‖h∗‖Bs

p′,∞(M0).

The second inequality follows again from Proposition A.2.13 by

〈Pkh∗, f1 − f2〉 ≤ ‖Pkh∗‖Ba
p′,2
‖f1 − f2‖B−ap,2 ≤ C2(a−s)k‖h∗‖Bs

p′,∞
‖f1 − f2‖B−a2,2

,

so that (5.1) gives the claim. Concerning the statement for linear forward operators notice
that L2 ⊂ Y∗ with continuous embedding and (T ∗)† : Ba

2,2 → L2 is bounded so that we
have

‖(T ∗)†Pkh∗‖Y∗ ≤ C‖(T ∗)†Pkh∗‖L2(M) ≤ C‖Pkh∗‖Ba2,2(M0) ≤ C‖Pkh∗‖Ba
p′,2(M0).

Thus the claim follows from Proposition A.2.13.

By the following lemma, we can conclude from the VSC1(Φ,R,S†) with S† = Spg† the
corresponding VSC with S†(g) = KLσg†(g) := KL(g† + σ, g + σ).

1This section has some literal overlap with the article [64] to which the author contributed.
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Lemma 5.1.2. Let f † fulfill VSC1(Φ,R,S2
g†). If Assumption 4.3.9 holds true with p = 2,

a > d/2 and r > ρ + 1, then there exists a constant Cf†,R,F,σ > 0 such that f † fulfills
VSC1(Φ(Cf†,R,F,σ·),R,KLσg†). If instead of (B3) of Assumption 4.3.9 we have R(f) =
Rf0(f) = KL(f, f0) as in Section 3.2.5 with f0 ∈ L1, f0 ≥ 0 and f †/f0 ∈ L∞ then there
still exists Cf†,R,F,σ > 0 such that f † fulfills VSC1(Φ(Cf†,R,F,σ·),Rf0 ,KLσg†).

Proof. As f † fulfill VSC1(Φ,R,S2
g†) we have for all f ∈ X that

〈f ∗, f † − f〉 ≤ 1
2∆f∗

R (f, f †) + Φ
(
‖F (f)− g†‖2

)
and we want to verify VSC1(Φ(C·),R,KLσg†), i.e. that for all f ∈ X we have

〈f ∗, f † − f〉 ≤ 1
2∆f∗

R (f, f †) + Φ
(
C KL(g† + σ, F (f) + σ)

)
. (5.2)

If (B3) holds true we have for all f with ‖f‖X > max
(

2‖f †‖X ,
(
2rC−1

R ‖f ∗‖X ∗
) 1
r−ρ−1

)
that

∆f∗

R (f, f †) ≥ CR‖f‖−ρX ‖f − f †‖rX ≥ 2−r+1CR‖f‖r−ρ−1
X ‖f − f †‖X

≥ 2‖f ∗‖X ∗‖f − f †‖X ≥ 2〈f ∗, f † − f〉

so (5.2) holds true. Instead if R(f) = Rf0(f) then for f with ‖f‖ > 2e8‖f∗‖L∞+1‖f †‖ we
have by Lemma 2.3.2 and Proposition 3.2.1 that

∆f∗

R (f, f †) = KL(f, f †) ≥ 4‖f ∗‖L∞‖f‖L1 ≥ 2‖f ∗‖L∞‖f − f †‖L1 ≥ 2〈f ∗, f † − f〉. (5.3)

So in these cases the variational inequality holds trivially with Φ = 0. Now assume on the
contrary that ‖f‖ ≤ C and then we have by (B2) that

‖F (f)‖L∞ ≤ C‖F (f)‖Ba2,2 ≤ CL‖f‖X + C‖F (0)‖Ba2,2 ≤ C.

Therefore we have by (2.19) that ‖F (f) + σ − g† − σ‖2
L2 ≤ C KL(g† + σ, F (f) + σ), which

gives the claim.

5.1.2 Verification of second order source conditions

Proposition 5.1.3 (verification of VSC2(Φ,R,Sp)). Let Y be p-smooth. Assume that
there exists ξ† ∈ Y∗ such that T ∗ξ† = f ∗ ∈ ∂R(f †) and let ξ∗ ∈ Jp′,Y∗(ξ†) ∈ Y. We
distinguish two cases:

(a) Assume that for some µ ≥ 2 and all B ≥ 1 there exist constants Cµ,B > 0 such that
for all x∗ ∈ X ∗ with ‖x∗ − T ∗ξ†‖X ∗ ≤ B we have

‖x∗ − T ∗ξ†‖X ∗ ≤ Cµ,B∆f†

R∗(x∗, T ∗ξ†)
1
µ . (5.4)

Set V = X .
(b) Let X̃ be a Banach space continuously embedded in X and assume that R is con-

tinuously Fréchet-differentiable in a neighborhood of f † ∈ X̃ with respect to ‖·‖X̃
and R′ : X̃ → X̃ ∗ is uniformly Lipschitz continuous with respect to ‖·‖X̃ in this
neighborhood. Further assume that R′[f †] = (T ∗ξ†)|X̃ . Set V = X̃ and µ = 2.
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Suppose that there exists a family of operators Pk ∈ L(Y) indexed by k ∈ N such that
Pkξ

∗ ∈ T (V ) for all k ∈ N and let

κk := ‖(I − Pk)ξ∗‖Y , νk := max
{
‖T−1Pkξ

∗‖V , 1
}
. (5.5)

If limk→∞ κk = 0, then there exists C > 0 such that VSC2(Φ,R,Sp) holds true with the
index function

Φ(τ) := C inf
k∈N

[
νkτ

1/µ + κpk
]
. (5.6)

Proof. We show the VSC2(Φ,R,Sp), i.e.〈
ξ† − ξ, ξ∗

〉
≤ 1

2∆ξ∗

Sp∗
(
ξ, ξ†

)
+ Φ

(
∆f†

R∗
(
T ∗ξ, T ∗ξ†

))
. (5.7)

for all ξ ∈ Y∗ by distinguishing three cases:
Case 1: ξ ∈ A := {ξ ∈ Y∗ :

〈
ξ† − ξ, ξ∗

〉
≤ 1

A
∆R∗

(
T ∗ξ, T ∗ξ†

) 1
2}, with a constant A > 0

whose exact value will be chosen later. For these ξ the inequality thus holds with
Φ(τ) = 1

A

√
τ which is smaller than (5.6) for C ≥ 1/A.

Case 2: ξ ∈ B := {ξ ∈ Y∗ : ‖ξ† − ξ‖p
′−1
Y∗ ≥ 2C−1

p′,Y ∗‖ξ∗‖Y}, with constant Cp′,Y ∗ from
Theorem 2.2.5. Y∗ is p′-convex as Y is p-smooth, so by Theorem 2.2.5 we have for all
ξ ∈ B that 〈

ξ† − ξ, ξ∗
〉
≤ ‖ξ† − ξ‖‖ξ∗‖ ≤ 1

2∆S∗p
(
ξ, ξ†

)
,

so (5.7) also holds for ξ ∈ B.
Case 3: ξ ∈ Y∗ \ (A ∪ B). Assume that Item (a) holds true. As ξ /∈ B we know that
‖ξ† − ξ‖ is bounded, say ‖ξ† − ξ‖ ≤ B for some B ≥ 1 and thus ‖T ∗ξ† − T ∗ξ‖ ≤ ‖T ∗‖B.
So we can apply (5.4) which yields

〈ξ† − ξ, ξ∗〉 = 〈ξ† − ξ, Pkξ∗〉+ 〈ξ† − ξ, (I − Pk)ξ∗〉
≤ ‖T ∗ξ† − T ∗ξ‖‖T−1Pkξ

†‖+ ‖ξ† − ξ‖‖(I − Pk)ξ∗‖

≤ Cµ,‖T ∗‖Bνk∆f†

R∗(T ∗ξ, T ∗ξ†)
1
µ + 1

2∆S∗p
(
ξ, ξ†

)
+ Cpκ

p
k,

where the last inequality follows by (5.4) and Young’s inequality with Cp = 1
p

(
2

p′cp′,Y∗

)p/p′
.

Thus under Item (a) the claim holds true.
Now assume Item (b). By our regularity assumptions on R, there exist constants

Cf† , c > 0 such that for all f ∈ X̃ with ‖f − f †‖X̃ ≤ Cf† we have the first order Taylor
approximation

R(f) ≤ R(f †) +
〈
T ∗ξ†, f − f †

〉
+ c

2‖f − f
†‖2
X̃ ,

where c is the Lipschitz constant of R′. Applying Young’s inequalities R(f) +R∗(T ∗ξ) ≥
〈T ∗ξ, f〉 and R(f †) +R∗(T ∗ξ†) =

〈
T ∗ξ†, f †

〉
, we find

R∗(T ∗ξ) ≥ R∗(T ∗ξ†) +
〈
T ∗(ξ − ξ†), f †

〉
+
〈
T ∗(ξ − ξ†), f − f †

〉
− c

2‖f − f
†‖2
X̃
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for all ξ ∈ Y∗ and for all f ∈ X̃ with ‖f − f †‖X̃ ≤ Cf† , which is equivalent to〈
T ∗(ξ − ξ†), f − f †

〉
≤ ∆f∗

R∗(T ∗ξ, T ∗ξ†) + c

2‖f − f
†‖2
X̃ (5.8)

for all ξ ∈ Y∗ and for all f ∈ X̃ with ‖f − f †‖X̃ ≤ Cf† . We decompose the left hand side
of (5.7) as follows:〈

ξ† − ξ, ξ∗
〉

=
〈
ξ† − ξ, Pkξ∗

〉
+
〈
ξ† − ξ, (I − Pk)ξ∗

〉
.

Now for some small ε > 0 choose f in (5.8) as f = f † + εT−1Pkξ
∗. Then we can conclude

that 〈
ξ† − ξ, Pkξ∗

〉
=
〈
T ∗(ξ† − ξ), T−1Pkξ

∗
〉
≤ 1
ε

∆f∗

R∗(T ∗ξ, T ∗ξ†) + cε

2 ‖T
−1Pkξ

∗‖2
X̃ .

Again as ξ /∈ B we know that ‖ξ† − ξ‖ ≤ B. Now choose A from above as A = C
f†

B‖ξ∗‖ .
Then from ξ /∈ A we know, that

∆f∗

R∗(T ∗ξ, T ∗ξ†)
1
2 ≤ A‖ξ† − ξ‖‖ξ∗‖ ≤ AB‖ξ∗‖ ≤ Cf†

so we can choose ε = ∆f∗

R∗(T ∗ξ, T ∗ξ†)
1
2/νk, which ensures ‖f − f †‖ ≤ Cf† . Therefore we

have 〈
ξ† − ξ, Pkξ∗

〉
≤
(

1 + c

2

)
νk∆f∗

R∗(T ∗ξ, T ∗ξ†)
1
2 .

Combining everything and using Theorem 2.2.5 with Y∗ being p′-convex we find〈
ξ† − ξ, ξ∗

〉
≤
(

1 + c

2

)
νk∆f∗

R∗(T ∗ξ, T ∗ξ†)
1
2 + κk‖ξ† − ξ‖

≤
(

1 + c

2

)
νk∆f∗

R∗(T ∗ξ, T ∗ξ†)
1
2 + Cpκ

p
k + 1

2∆S∗p
(
ξ, ξ†

)
,

≤ 1
2∆S∗p

(
ξ, ξ†

)
+ C

(
νk∆f∗

R∗(T ∗ξ, T ∗ξ†)
1
2 + κpk

)
,

with Cp = 1
p

(
2

p′cp′,Y∗

)p/p′
, C = max

{
2+c

2 , Cp,
1
A

}
, which completes the proof.

In view of (5.5) we need a variant of Lemma 5.1.1 in order to verify VSC2 from
smoothness assumptions on the true solution.
Lemma 5.1.4. Let V ⊂ X be a normed space. For p ∈ [1, 2], q ∈ [1,∞] let B0

p′,q(M0) ⊂ V ,
L2(M) ⊂ Y with continuous embedding. Let Pk be given as in Proposition A.2.13. If for
s > 0 we have ξ∗ ∈ Bs

p′,∞ then we have

‖(I − Pk)ξ∗‖Y ≤ C2−ks

Let a > s and assume a linear forward operator T which, viewed as T : B0
p′,q(M0) →

Ba
p′,q(M), has a bounded right inverse T †. Then we have

‖T †Pkξ∗‖V ≤ C2(a−s)k.

If g ∈ Ba
p′,q and s > d/2 then also have

‖T †(g · Pkξ∗)‖V ≤ C‖g‖Ba
p′,q

2(a−s)k.
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Proof. By Proposition A.2.13 we have

‖(I − Pk)ξ∗‖Y ≤ C‖(I − Pk)ξ∗‖L2 ≤ C‖(I − Pk)ξ∗‖B0
p′,2
≤ C2−ks‖ξ∗‖Bs

p′,∞
,

as well as

‖T †Pkξ∗‖V ≤ C‖T †Pkξ∗‖B0
p′,q
≤ C‖Pkξ∗‖Ba

p′,q
≤ C2(a−s)k‖ξ∗‖Bs

p′,∞
.

If g ∈ Ba
p′,q and s > d/2 ≥ d/p′ then similarly by Theorem A.2.8

‖T †(g · Pkξ∗)‖V ≤ C‖gPkξ∗‖Ba
p′,q
≤ C‖g‖Ba

p′,q
2(a−s)k‖ξ∗‖Bs

p′,∞
.

The main task for verifying Assumption 4.4.4 lies in verifying (D5) respectively verifying
(D8). We will actually verify both inequalities simultaneously as usually one of them
should not be more difficult to prove than the other. However if one is only interested in
showing (D5), then one can set GaR = ∅ as the empty set to get a simplification.
Proposition 5.1.5 (verification of Assumption 4.4.4). Assume that there exists ξ† ∈ L2

such that T ∗ξ† ∈ ∂R(f †). Let σ > 0 and for R > 0 let GaR = {g ∈ Ha(M) : ‖g‖Ha ≤ R}.
We distinguish two cases:

(a) Assume that for some µ ≥ 2 there exists a constant Cµ > 0 such that

∀x∗ ∈ X ∗ : ‖x∗ − T ∗ξ†‖X ∗ ≤ Cµ∆f†

R∗(x∗, T ∗ξ†)
1
µ (5.9)

and that Pkξ† ∈ T (X ), (GaR + σ)Pkξ† ⊂ T (X ). Set ‖·‖V := ‖·‖X .
(b) Let X̃ be a Banach space continuously embedded in X and assume that R is continu-

ously Fréchet-differentiable in a neighborhood of f † ∈ X̃ with respect to ‖·‖X̃ and R′ :
X → X ′ is uniformly Lipschitz continuous with respect to ‖·‖X̃ in this neighborhood.
Further assume that R′[f †] = (T ∗ξ†)|X̃ and that Pkξ† ∈ T (X ), (GaR + σ)Pkξ† ⊂ T (X̃ ).
Set µ := 2 and ‖·‖V := ‖·‖X̃ .

Then there exists C > 0 such that (D5) and (D8) hold true for β = 0 (under (a)) or β = 1
(under (b)) and for any νk satisfying

νk ≥ C max

 sup
g∈{1−σ}∪GaR

‖T−1(g + σ)Pkξ†‖V , ‖Pkξ†‖Bγp,1

 (5.10)

In particular if ξ† ∈ T (X ), (GaR + σ)ξ† ⊂ T (X ) one can choose Pk = I for all k ∈ N0 and
thus (D5) and (D8) hold true with νk = C for some C > 0 and we have κk = 0 such that
Ψ as in (4.17) fulfills Ψ(α) ≤ Cαµ

′−1 for α sufficiently small.

Proof. Recall that we want to show the inequalities (D5), i.e.

∀ξ ∈ B−γp′,∞ : 〈ξ† − ξ, Pkξ†〉 ≤
1
4‖ξ

† − ξ‖2
B−γ
p′,∞

+ νk∆f†

R∗(T ∗ξ, T ∗ξ†)
1
µ + βν2

k

2 ∆f†

R∗(T ∗ξ, T ∗ξ†)

and (D8), i.e. for all ξ ∈ B−γp′,∞, g ∈ GaLB

〈ξ† − ξ, (g + σ)Pkξ†〉 ≤
1
4‖(g + σ)(ξ† − ξ)‖2

B−γ
p′,∞

+ νk∆f†

R∗(T ∗ξ, T ∗ξ†)
1
µ

+ βν2
k

2 ∆f†

R∗(T ∗ξ, T ∗ξ†).

of Assumption 4.4.4.
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(a) By (5.9) we find for g ∈ {1− σ} ∪ GaR that

〈ξ† − ξ, (g + σ)Pkξ†〉 = 〈T ∗ξ† − T ∗ξ, T−1(g + σ)Pkξ†〉 ≤ νk‖T ∗ξ† − T ∗ξ‖X ∗

≤ Cµνk∆f†

R∗(T ∗ξ, T ∗ξ†)
1
µ .

Therefore (D5) and (D8) holds true for all ξ ∈ B−γp′,∞ with β = 0. 2

(b) The proof of this case is similar to the one of Proposition 5.1.3. For all k ∈ N0,
ξ ∈ B−γp′,∞ we distinguish two cases:
Case 1: We assume ‖Pkξ†‖Bγp,1 ≤ νk∆f†

R∗(T ∗ξ, T ∗ξ†)
1
2 . Then we have by Young’s

inequality

〈ξ† − ξ, (g + σ)Pkξ†〉 = 〈(g + σ)(ξ† − ξ), Pkξ†〉 ≤ ‖(g + σ)(ξ† − ξ)‖B−γ
p′,∞
‖Pkξ†‖Bγp,1

≤ 1
4‖(g + σ)(ξ† − ξ)‖2

B−γ
p′,∞

+ ν2
k∆f†

R∗(T ∗ξ, T ∗ξ†)

Case 2: By our regularity assumptions on R, there exist constants Cf† , c > 0 such
that for all f ∈ X̃ with ‖f−f †‖X̃ ≤ Cf† we have the first order Taylor approximation

R(f) ≤ R(f †) +
〈
T ∗ξ†, f − f †

〉
+ c

2‖f − f
†‖2
X̃ ,

where c is the Lipschitz constant of R′. Applying Young’s inequalities R(f) +
R∗(T ∗ξ) ≥ 〈T ∗ξ, f〉 and R(f †) +R∗(T ∗ξ†) =

〈
T ∗ξ†, f †

〉
, we find

R∗(T ∗ξ) ≥ R∗(T ∗ξ†) +
〈
T ∗(ξ − ξ†), f †

〉
+
〈
T ∗(ξ − ξ†), f − f †

〉
− c

2‖f − f
†‖2
X̃

for all ξ ∈ Y∗ and for all f ∈ X̃ with ‖f − f †‖X̃ ≤ Cf† , which is equivalent to

〈T ∗(ξ − ξ†), f − f †〉 ≤ ∆f†

R∗(T ∗ξ, T ∗ξ†) + c

2‖f − f
†‖2
X̃ (5.11)

for all ξ ∈ Y∗ and for all f ∈ X̃ with ‖f − f †‖X̃ ≤ Cf† . Now for some small ε > 0
choose f in (5.11) as f = f † − εT−1(g + σ)Pkξ†. Then we can conclude that〈

ξ† − ξ, (g + σ)Pkξ†
〉

=
〈
T ∗(ξ† − ξ), T−1(g + σ)Pkξ†

〉
≤ 1
ε

∆f†

R∗(T ∗ξ, T ∗ξ†) + cε

2 ‖T
−1(g + σ)Pkξ†‖2.

Choose νk such that νk ≥ C−1
f† ‖Pkξ

†‖Bγp,1 . As we are not in Case 1 we have

∆f†

R∗(T ∗ξ, T ∗ξ†)
1
2 ≤ 1

νk
‖Pkξ†‖Bγp,1 ≤ Cf†

so we can choose ε = ∆f†

R∗(T ∗p, T ∗ξ†)
1
2/νk, which ensures ‖f − f †‖ ≤ Cf† . Therefore

we have 〈
ξ† − ξ, (g + σ)Pkξ†

〉
≤
(

1 + c

2

)
νk∆f†

R∗(T ∗p, T ∗ξ†)
1
2 .

2Under the slightly weaker assumption (5.4) instead of (5.9) we can still verify (D5) as for 4‖Pkξ
†‖Bγ

p,1
≤

‖ξ†−ξ‖Bγ

p′,∞
we have 〈ξ†−ξ, Pkξ

†〉 ≤ 1
4‖ξ
†−ξ‖2

Bγ

p′,∞
, thus we can assume ‖T ∗ξ†−T ∗ξ‖X∗ to be bounded.
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5.1.3 Verification of third order VSCs

Proposition 5.1.6 (verification of VSC3(Φ,R,Sp)). Let ω† ∈ X as in Definition 4.5.3
exist. Let 0 < t̄ ≤ 1 and assume that for all f ∗ ∈ ∂R(f †) there exists some ω∗ ∈ X ∗ such
that

‖f ∗ − f ∗t − tω∗‖X ∗ ≤ Cω†t
2, (5.12)

whenever 0 < t ≤ t̄ and f ∗t ∈ ∂R(f † − tω†). This last assumption follows for example
from R being two times Fréchet-differentiable in X in a neighborhood of f † with R′′ : X →
L(X ,X ∗) uniformly Lipschitz continuous in this neighborhood. Further assume

∆R (f1, f2) ≥ Cµ‖f1 − f2‖µ (5.13)

for some µ > 1, Cµ > 0 and all f1, f2 ∈ dom(R). We have:
(a) If ω∗ = T ∗ξ†2 for some ξ†2 ∈ Y∗, then f † fulfills the VSC3(Φ,R,Sp) with Φ(τ) :=
‖ξ†2‖τ 1/p.

(b) Suppose that µ ≤ 2, 1
µ

+ 1
µ′

= 1, and that there exists a family of operators Pk ∈ L(X ∗)
indexed by k ∈ N such that Pkω∗ ∈ T ∗Y∗ for all k ∈ N, and let

κk := ‖(I − Pk)ω∗‖X ∗ , νk := ‖(T ∗)−1Pkω
∗‖Y∗ . (5.14)

If limj→∞ κk = 0, then f † fulfills the VSC3(Φ,R,Sp) with the index function

Φ(τ) := inf
k∈N

νkτ 1/q + κµ
′

k

µ′(Cµµ)µ′/µ

 . (5.15)

Proof. Recall that the VSC3(Φ,R,Sp) is of the form

∀f ∈ X ∀t ∈ (0, t] :〈
f ∗t − T ∗ξ†, f † − tω† − f

〉
≤∆f∗t

R

(
f, f † − tω†

)
+ t2Φ

(
t−p‖Tf − g† + tTω†‖p

)
+ βt2µ.

Firstly, to prove that (5.12) is implied by two times differentiability with R′′ Lipschitz
continuous, recall that ∂R(f) = {R′[f ]} if R is Fréchet-differentiable in X . Then by the
first order Taylor approximation of t 7→ R′[f † − tω†] at t = 0 we have

‖R′[f † − tω†]−R′[f †] + tR′′[f †](ω†, ·)‖X ∗ ≤ Ct2‖ω†‖2

for some C > 0. Thus (5.12) holds with ω∗ = R′′[f †](ω†, ·) and Cω† = C‖ω†‖2. Now let
(5.12) hold true, then we have for all f ∗t ∈ ∂R(f † − tω†) that〈

f ∗t − T ∗ξ†, f † − tω† − f
〉
≤ −t

〈
ω∗, f † − tω† − f

〉
+ Cω†t

2‖f † − tω† − f‖. (5.16)

Then using (5.13) and Young’s inequality, we find that

Cω†t
2‖f † − tω† − f‖ ≤ γt2∆R

(
f, f † − tω†

) 1
µ ≤ ∆R

(
f, f † − tω†

)
+ βt2µ

′

with γ := Cω†C
− 1
µ

µ and β := 1
µ′
µ−

µ′
µ γµ

′ .
So we only need to bound the first term on the right hand side of (5.16) and this is

done in two ways based on the two different assumptions:
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(a) If ω∗ = T ∗ξ†2, then

−t
〈
ω∗, f † − tω† − f

〉
= −t

〈
ξ†2, g

† − tTω† − Tf
〉

≤ t2‖ξ†2‖
(
t−p‖Tf − g† + tTω†‖p

)1/p
.

Hence Assumption 4.5.3 holds true Φ(τ) := ‖ξ†2‖τ 1/p.
(b) In the second case we have for all k ∈ N with cµ := 1

µ′(Cµµ)µ′/µ that

− t
〈
ω∗, f † − tω† − f

〉
= −t

〈
Pkω

∗, f † − tω† − f
〉
− t

〈
(I − Pk)ω∗, f † − tω† − f

〉
≤ tνk‖Tf − g† + tTω†‖+ tκk‖f † − tω† − f‖
≤ t2

(
νkt
−1‖Tf − g† + tTω†‖+ cµt

µ′−2κµ
′

k

)
+ Cµ‖f † − tω† − f‖µ

≤ t2
(
νkt
−1‖Tf − g† + tTω†‖+ cµκ

µ′

k

)
+ ∆R

(
f, f † − tω†

)
for t ≤ t̄ ≤ 1 as µ′ ≥ 2. Substituting τ = t−p‖Tf − g† + tTω†‖p and taking the
infimum over k shows Assumption 4.5.3 with Φ given by (5.15). It follows as in [41,
Thm. 2.1] that Φ is an index function.

5.1.4 Required properties of penalty functionals

We give a short summary of the properties that we have to require from the penalty
functional in order to verify the source conditions and perform the convergence analysis as
in the last chapter.

(a) One has to understand the subdifferential ∂R(f †) in order to transfer smoothness
properties of f † to the elements in the subdifferential.

(b) One has to be able to show that the assumptions of either Proposition 4.3.6, Propo-
sition 5.1.3, Proposition 5.1.5 or Proposition 5.1.6 on R hold true.

(c) For the statistical setting we need that (A3) of Assumption 4.2.1 and (B3) of
Assumption 4.3.9 hold true.

(d) For higher order rates we need strong duality for which it is sufficient that R∗ is
continuous, given the data fidelities of Section 3.2.

We give a short exemplary overview how these properties can be shown for the penalties
that we are especially interested in.

Squared norm on Hilbert spaces The first case where all of these restrictions are
met in the most simple and beautiful way is of course the standard case of X being a
Hilbert space and R = 1

2‖·‖
2
X . Then the differential at f † coincides with f † and R∗ = R

such that the assumption of Proposition 4.3.6, case (a) of Proposition 5.1.5 and (B3) hold
true by

∆f2
R (f1, f2) = 1

2‖f1 − f2‖2.
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In the case of the Kullback-Leibler type data fidelity term we would like to incorporate
the constraint f ∈ B for a convex set B into the penalty function. So let

R̃(f) := 1
2‖f‖

2
X + χB(f) :=


1
2‖f‖

2
X if f ∈ B

∞ else.

If we have f † in the interior of B then we still have that R̃ is differentiable at f † with
derivative f † and

R̃∗(f) = 1
2‖f‖

2
X − inf

f̃∈B

[1
2‖f − f̃‖

2
X

]
is continuous everywhere. Further R̃ satisfies the condition (b) of Proposition 5.1.5 and
we still have

∆f†

R̃
(f, f †) = 1

2‖f − f
†‖2 + χB(f) ≥ 1

2‖f − f
†‖2.

In particular VSC1(Φ,R,S†) trivially implies VSC1(Φ, R̃,S†).
Remark 5.1.7. For many operators it is possible to find a convex and closed subset B ∈ X
such that (D9) holds true with f † in the interior of B if f † ≥ 0. In particular this is the
case if T is positivity preserving, i.e. Tf ≥ 0 for all f ≥ 0 and T fulfills (D2) with a ≥ d/p.
Then let f =: f+ + f−, with f+ = max(f, 0), f− = min(f, 0) and for some sufficiently small
Cσ > 0 choose B = {f ∈ X : ‖f−‖ ≤ Cσ}. Then f † is in the interior of B and we have for
all f ∈ B that ‖Tf − Tf+‖L∞ ≤ C‖Tf−‖Bap,2 ≤ CLCσ ≤ σ/2 for Cσ chosen appropriately,
by (D2) and Theorem A.2.5. Thus we also have Tf ≥ −σ/2.

Note that in many applications with Poisson data the true solution f † will be some
density and thus positive. Tf ≥ 0 for all f ≥ 0 holds true for example for a convolution
operator with positive kernel.

Cross-entropy penalty Higher order convergence rates for the choice X = L1(M),
R(f) = KL(f, f0) for some initial guess f0 ∈ X have already been discussed in [64] and
unsurprisingly this choice of R also works in the statistical setting of this paper. We have
∂R(f †) = log f†

f0
so that under suitable assumptions on the initial guess the smoothness

of f † transfers to the subdifferential. Case (b) of Proposition 5.1.5 is actually tailored to
the cross entropy functional. (A3) of Assumption 4.2.1 and (B3) of Assumption 4.3.9 are
fulfilled by Lemma 2.3.2. Finally R∗ is continuous in L∞(M) by Proposition 3.2.1.

Note that if f0 ≥ 0 then R = R + χB, where B = {f ∈ L1(M) : f ≥ 0} so (D9)
holds for a positivity preserving forward operator and there is no necessity for additional
constraints.

Wavelet Besov norm penalty In [74] deterministic and statistical convergence rates
under a VSC were shown for (3.8) with X = B0

p,q a Besov space and R = 1
t
‖·‖tB0

p,q
.

Smoothness of the subgradient was a key result of [74] and is given by Theorem 5.3.1. By
[46] the space B0

p,q is r = max(2, p, q)-convex, so if one chooses t = r, then by Theorem
2.2.5

‖f1 − f2‖r ≤ Cr∆
f∗2
R (f1, f2). (5.17)
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Further R∗ = 1
r′
‖·‖r′B0

p′,q′
is continuous and as B0

p′,q′ is max(2, p′, q′) =: µ convex by Lemma
2.2.6 we have

‖x∗ − T ∗ξ†‖µX ∗ ≤ Cµ∆f†

R∗(x∗, T ∗ξ†), (5.18)

for x∗ sufficiently close to T ∗ξ† by Theorem 2.2.5 so case (a) of Proposition 5.1.3 holds
true. If t = µ, then also case (a) of Proposition 5.1.5 holds true.

5.1.5 a-smoothing forward operator

Concerning the forward operator its smoothing property is most important for the verifica-
tion of source conditions. We will give a short summary of the properties that we require
for the forward operator. Notice that we will only consider linear forward operators as we
are mostly interested in higher order convergence rates and for these we need duality and
thus linearity of the forward operator. However, verification is similarly possible given a
non linear forward operator, see [74, Section 4] and [39].

Note that in the following we will only consider finitely smoothing forward operators.
This excludes severely ill-posed inverse problems [25, Section 2.2]. The reason for this
neglect of infinitely smoothing forward operators is that a first order variational source
condition is typically sufficient to yield the complete range of convergence rates for these
operators (with the exception of extremely smooth true solutions). For an example
of convergence rates for a severely ill-posed inverse problems under variational source
conditions we again refer to [74].

Assumption 5.1.8. Let T : X → Y ⊂ L2(M) be linear and bounded, let T ∗ denote the
L2-adjoint of T , let p ∈ [1, 2] as in Assumption 1.4.1, M,M0 ⊂ Rd bounded Lipschitz
domains or d-dimensional tori and a > 0. Assume that T is a-smoothing in the sense that
it has some of the following properties.
(T1) T viewed as a mapping T : X → Ba

p,2(M) is bounded.
(T2) T ∗ : L2(M)→ Ba

2,2(M0) has a bounded right inverse (T ∗)†.
(T3) T : B0

p′,q(M0)→ Ba
p′,q(M) has a bounded right inverse T † for all q ∈ [1,∞].

(T4) T ∗ : Bs
p′,∞(M)→ Bs+a

p′,∞(M0) has a bounded right inverse (T ∗)† for all s ∈ (0, a).
(T5) T : Bs

p′,∞(M0) → Bs+a
p′,∞(M) and T ∗ : Bs+a

p′,∞(M) → Bs+2a
p′,∞ (M0) have bounded right

inverses for all s ∈ (0, a).
(T6) T : B−a2,2(M0)→ L2(M) is bounded.
(T7) T : B0

p,q(M0) → Ba
p,q(M) has a bounded inverse T−1 and T : Bs

p,∞(M0) → Bs+a
p,∞(M)

is bounded and surjective for all s ∈ (0, a).

The first property is necessary for the stochastic error analysis in Chapter 4 (see e.g.
(D2) of Assumption 4.4.4). The second respectively third property is required so that we
can apply Lemma 5.1.1 respectively 5.1.4. Properties (T4) and (T5) are used in order to
get smoothness of preimages of f ∗ ∈ Bs+a

p′,∞(M0) respectively of f ∗ ∈ Bs+2a
p′,∞ (M0). The last

two properties will allow us to show optimality of convergence rates in Section 5.3.

Example 5.1.9. Note that for s ∈ R, p, q ∈ [1,∞] the operator (ρ id−∆)−k : Bs
p,q(Td)→

Bs+2k
p,q (Td), where ∆ is the Laplace-Beltrami operator, is an isomorphism if ρ > 0 is

sufficiently large by [70, Theorem 7.4.3]. Therefore Assumption 5.1.8 holds true for all
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p ∈ [1, 2], a = 2k and M = M0 = Td if T = (ρ id−∆)−k. More generally this assumption
can be shown for convolution operators, for which the convolution kernel has a certain
type of singularity at 0, boundary integral operators, injective elliptic pseudodifferential
operators, and compositions of such operators.

Remark 5.1.10. As laid out in [39, Example 2.7] one can also consider the Radon
transform on a bounded domain M0 ⊂ Rd as an a-smoothing Forward operator with a = d−1

2 .
The Radon transform appears as forward operator in computed tomography (CT) and
positron emission tomography (PET), among others. However, for the Radon transform the
measurement manifold M has to be chosen as Sd−1 × R, where Sd−1 := {x ∈ Rd : |x| = 1}
is the unit sphere, which does not quite fit into the setting of Assumption 5.1.8. Considering
more general manifolds in our framework is only a technical problem: One would have to
ensure that the results of the appendix remain true and verify the deviation inequality of
Assumption 1.4.1 in order to treat statistical noise.

In Section 5.4 we will work with a different definition of a-smoothing, which is simpler
and slightly more general, but of the same nature as the above assumption.

5.2 Maximum entropy regularization3

In this section we will verify our source conditions in the case where the penalty term is
chosen as a cross-entropy term given by the Kullback-Leibler divergence

R(f) := KL(f, f0) :=
∫
M0

[
f ln f

f0
− f + f0

]
dx (5.19)

for M0 ⊂ Rd a bounded Lipschitz domain or Td. Here f0 is some a-priori guess of f , possibly
constant. Under the source condition (4.12) convergence rates of order ‖f̂α−f †‖L1 = O(

√
δ)

were shown in [22] by variational methods and in [27] by a reformulation as Tikhonov
regularization with quadratic penalty term for a nonlinear forward operator. In [57] the
faster rate ‖f̂α−f †‖L1 = O(δ2/3) was obtained under the source condition T ∗Tω† ∈ ∂R(f †).

5.2.1 Convergence rates under Hölder-Zygmund smoothness as-
sumptions

Let Y = L2(M) and T : L1 (M0) → L2(M) linear and bounded. We apply generalized
Tikhonov regularization in the form of maximum entropy regularization

f̂α ∈ arg min
f∈L1(M0)

[S(Tf) + αKL (f, f0)] , (5.20)

respectively Bregman iteration given by

f̂ (n)
α ∈ arg min

f∈L1(M0)

[
S(Tf) + αKL

(
f, f̂ (n−1)

α

)]
. (5.21)

3This section has some overlap with the article [64] to which the author contributed.
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As we consider X = L1(M0) we have X ∗ = L∞(M0) so that in view of Lemma 5.1.1 it
will be natural to measure the smoothness of the true solution in the Hölder-Zygmund
spaces Cs(M0) := Bs

∞,∞(M0). Note that the definition of these spaces (see e.g. [69]) is
much more straightforward and easier to relate to differentiability than the definitions of
Besov spaces in the appendix.

Theorem 5.2.1. Let M,M0 ⊂ Rd be bounded Lipschitz domains or Td,X = L1(M0),
Y = L2(M). Let f0 ∈ L1(M0), f0 ≥ 0. Suppose that T is a-smoothing in the sense that
Assumption 5.1.8 (T1)-(T5) hold true for p = 1. Moreover, suppose there exists c > 0
such that

c ≤ f †

f0
≤ c−1 a.e. in M. (5.22)

We distinguish the different orders of convergence rates:
(a) Assume that

f †

f0
∈ Bs

∞,∞(M0) for some s ∈ (0, a) .

Then there exists C > 0 such f † fulfills VSC1(Φ,KL(·, f0),S2
g†) with

Φ(τ) = Cτ
s
s+a .

(b) Assume that

f †

f0
∈ Bs

∞,∞(M0) for some s ∈ (a, 2a) .

Then there exists C > 0 such that VSC2(Φ,KL(·, f0),S2) holds true with

Φ(τ) = Cτ
s−a
s .

Further (D5)-(D8) in Assumption 4.4.4 hold true and for Ψ as in (4.17) we have

Ψ(τ) ≤ Cτ
s−a
s

(c) Assume additionally to (5.22) that f † ≥ ρ and

f †, f0 ∈ Bs
∞,∞(M0) for some s ∈ (2a, 3a) . (5.23)

Let B ≥ 2‖f †‖L1 and χB be the characteristic function of ‖f‖L1 ≤ B. Then there
exists C > 0 such that f † fulfills VSC3(Φ,KL(·, f0) + χB,S2) with µ = 2 and

Φ(τ) = Cτ
s−2a
s−a .

Let f̂ (2)
α be given by (5.21). For s ∈ (a, 2a) ∪ (2a, 3a) we obtain under the deterministic

model with S = S2
gobs for the parameter choice α ∼ δ

2a
s+a the convergence rates

KL
(
f̂ (2)
α , f †

)
= O

(
δ

2s
s+a
)
, δ → 0. (5.24)
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Let f̂α be given by (5.20). Under the first and second order smoothness assumptions
(s ∈ (0, a) ∪ (a, 2a)) we get

KL
(
f̂α, f

†
)

= O
(
δ

2s
s+a
)
, δ → 0. (5.25)

under the deterministic noise model with S = S2
gobs. Under the Gaussian white noise model

with M = Td and S = SLS
Gobs we get for a > γ > d/2 and a parameter choice α ∼ ε

2a
s+a+γ

that

E
(
KL

(
f̂α, f

†
))

= O
(
ε

2s
s+a+γ

)
, ε→ 0. (5.26)

Proof. (a) We want to apply Proposition 4.3.6 to verify VSC1(Φ,KL(·, f0),S2
g†), however

there is the slight complication that (4.6) does not hold uniformly for all f ∈ L1.
Still, the variational inequality (4.2) holds obviously for non positive f (as R is just
infinity then) and as in (5.3) the variational inequality holds trivially if ‖f‖L1 > Cf† .
For ‖f‖L1 ≤ Cf† we have (4.6) with r = 2 by Lemma 2.3.2, thus we can then apply
Proposition 4.3.6.
Let f ∗ = log

(
f†

f0

)
. By Theorem A.2.9 we have f ∗ ∈ Bs

∞,∞(M). We apply Proposition
4.3.6 with Pk as in Proposition A.2.13, νk = ‖(T ∗)†Pkf ∗‖Y∗ and κk = ‖(I−Pk)f ∗‖X ∗
to find that f † fulfills VSC1(Φ,KL(·, f0),S2

g†) with

Φ(τ) = C inf
k∈N0

[
νkτ

1/2 + κ2
k

]
≤ C inf

k∈N0

[
2(a−s)kτ 1/2 + 2−2ks

]
,

where the inequality follows from Lemma 5.1.1 as B0
∞,2(M0) ⊂ L∞(M0) = X ∗.

Choosing 2−k ∼ τ
1

2(s+a) gives Φ(τ) ≤ Cτ
s
s+a . The deterministic rate (5.25) then

follows from Theorem 4.3.4 and the stochastic rate (5.26) follows from Corollary
4.3.12 and Lemma 4.3.13, which give

E
(
KL

(
f̂α, f

†
))
≤ C

ε2

α1+ γ
a

+ 4(−Φ)∗
(
− 1

2α

)
≤ C

(
ε2

α1+ γ
a

+ α
s
a

)
,

where γ has to be chosen such that γ > d/2 by Theorem 1.4.5 as X = L1 and we thus
only have T : X → Ba

p,2 bounded only for p = 1 by Theorem A.2.5. The parameter
choice α ∼ ε

2a
s+a+γ then yields (5.26).

(b) Note that due to (5.22) the functional R is Fréchet differentiable at f † in L∞(M0)
and

R′[f †](g) =
∫
M0

ln
(
f †

f0

)
g dx, R′′[f †](g, h) =

∫
M0

1
f †
hg dx (5.27)

Local Lipschitz continuity of R′ w.r.t. X̃ := L∞(M0) follows from local boundedness
of R′′ w.r.t. X̃ . As above we have f ∗ ∈ Bs

∞,∞(M0) and by (T4) (T ∗)†f ∗ = ξ† ∈
Bs−a
∞,∞(M) exists. Thus we can now apply both Proposition 5.1.3 and Proposition

5.1.5 with Pk as in Proposition A.2.13 in order to verify VSC2(Φ,KL(·, f0),S2)
respectively (D5)-(D8) of Assumption 4.4.4. By Lemma 5.1.4 we have κk ≤ C2−k(s−a)
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and νk ≤ C2k(2a−s) (note that regarding (D8) the constant for νk depends on GaR and
σ). Thus VSC2(Φ,KL(·, f0),S2) holds with

Φ(τ) ≤ C inf
k∈N0

[
2(2a−s)kτ 1/2 + 2−2k(s−a)

]
≤ Cτ

s−a
s ,

where the second inequality follows from 2−k ∼ τ
1

2s . By Theorem 4.4.2 and Lemma
4.5.6 we have the deterministic estimates

∆T ∗ξ†

R (f, f †) = O
(
δ2

α
+ α(−Φ)∗

(−1
α

))
= O

(
δ2

α
+ α

s
a

)
,

for both f = f̂α and f = f̂ (2)
α . The parameter choice α ∼ δ

2a
s+a gives the claim. Under

the white noise model we have for Ψ as in (4.17) that

Ψ(α) = inf
k∈N0
αν2
k≤1

[
αν2

k + κ2
k

]
≤

Cα
s−a
a if Cα s−a

a ≤ 1
∞ else.

(5.28)

Thus the white noise rate (5.26) follows from Corollary 4.4.10.
(c) Assumption (5.13) of Proposition 5.1.6 is satisfied for R̃ = KL(·, f0) +χB with µ = 2

due to Lemma 2.3.2. By Theorem A.2.8 and Theorem A.2.9 we have f ∗ ∈ Bs
∞,∞(M0).

By (T5) there exists ω† = (T ∗)†T †f ∗ ∈ Bs−2a
2,∞ (M0) ⊂ L∞(M0). In particular, R

is Fréchet-differentiable at f † − tω† > 0 w.r.t. L∞ for t < t := c/‖ω†‖L∞ with
f ∗t := R′[f †− tω†] given by 〈f ∗t , h〉 = 〈ln(f †− tω†)− ln f0, h〉 (see (5.27)). Therefore,
assumption (5.12) of Proposition 5.1.6 is satisfied with ω∗ = ω†

f†
as then

‖f ∗ − f ∗t − tω∗‖L∞ =
∥∥∥∥∥log

(
1 + tω†

f † − tω†

)
− tω

†

f †

∥∥∥∥∥
L∞
≤ Cω†t

2.

Again by Theorem A.2.8 and Theorem A.2.9 we obtain ω∗ ∈ Bs−2a
p,∞ (M). Thus

Proposition 5.1.6 with Pk as in Proposition A.2.13 and Lemma 5.1.1 show that f †
satisfies VSC3(Φ, R̃,Sp) with µ = 2 and

Φ(τ) ≤ C inf
k∈N0

[
2k(3a−s)√τ + 2−2k(s−2a)

]
≤ Cτ

s−2a
s−a ,

which follows from 2−k ∼ τ
1

2(s−a) .
Now instead of R̃ we consider iterated Tikhonov with R = KL(·, f0) however for
δ ≤ 1 both ‖f̂ (1)

α ‖L1 and ‖f̂ (2)
α ‖L1 are bounded (for example by Lemma 4.1.2 and

Lemma 2.3.2) so that we can choose B = max
(
‖f̂ (1)

α ‖L1 , ‖f̂ (2)
α ‖L1

)
so that both

choices for R give the same minimizers. Finally we apply Theorem 4.5.5 with
r = q = µ = 2 and note that Φ̃ = Φ, (−Φ)∗(x) = C(−x)(2a−s)/a for x < 0 and
(−Φ)∗(x) = ∞ else. Hence, KL

(
f †, f̂ (2)

α

)
≤ C(δ2/α + αs/a + βα4), and the choice

α ∼ δ
2a
s+a leads to (5.24).

Remark 5.2.2. Although the Hölder-Zygmund smoothness assumptions are simple and
natural it is possible to show the same convergence rates by considering weaker smoothness
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assumptions with respect to the Nikolskii scale Bs
2,∞(M0) (note that Bs

∞,∞(M0) ⊂ Bs
2,∞(M0)

by Theorem A.2.5) if one additionally assumes boundedness w.r.t L∞(M0) of the minimizer
f̂α. This will be shown in the next subsection.

We omitted S = SKL
Gobs,σ, respectively the case of Poisson data, in the above theorem. In

principle we can verify VSC1(Φ,R,KLσg†) by Lemma 5.1.2 and (D8) in Assumption 4.4.4
can be shown as in the above Theorem. However, we concentrated our error analysis for
S = SKL

Gobs,σ in Chapter 4 on the case p = 2 in Assumption 1.4.1, whereas for R = KL(f, f0)
we would need p = 1. The reasons for only considering p = 2 is that for Poisson data we
only have the deviation inequality 1.4.9 for p = 2 and the boundedness result of Proposition
4.2.4 also works only for p = 2 because of Theorem A.2.10. Both of these problems are
of technical nature and should be solved in future research. Alternatively the next section
provides a workaround given boundedness of the minimizer.

5.2.2 Convergence rates under boundedness assumptions

In this subsection we will assume that f † ∈ L∞(M0). Therefore it makes sense to restrict
regularization to bounded functions so we will consider R = Rf0 + χB, where B ⊂ L1(M0)
is closed and convex and for some constant R > 0 we have supf∈B‖f‖L∞(M0) ≤ R. With
the true solution and the minimizers bounded we can consider X = L2(M0) and as a
forward operator the restriction of the forward operator from the last section to X . Then
generalized Tikhonov regularization is of the form

f̂α ∈ arg min
f∈B

[S(Tf) + αKL (f, f0)] . (5.29)

If all iterates are in the interior of B, Bregman iteration is given by

f̂ (n)
α ∈ arg min

f∈B

[
S(Tf) + αKL

(
f, f̂ (n−1)

α

)]
, (5.30)

otherwise the iteration formula may involve an element of the normal cone of B at f̂ (n−1)
α .

Theorem 5.2.3. Let M,M0 ⊂ Rd be bounded Lipschitz domains or Td,X = L2(M0),
Y = L2(M). Let f0 ∈ L1(M0), f0 ≥ 0. Suppose that T is a-smoothing in the sense that
Assumption 5.1.8 (T1)-(T5) hold true for p = 2. Moreover, suppose there exists c > 0
such that

c ≤ f †

f0
≤ c−1 a.e. in M. (5.31)

We distinguish the different orders of convergence rates:
(a) Assume that

log
(
f †

f0

)
∈ Bs

2,∞(M0) for some s ∈ (0, a) .

Then there exists C > 0 such f † fulfills both VSC1(Φ,KL(·, f0) + χB,S2
g†) and

VSC1(Φ,KL(·, f0) + χB,KLσg†) with

Φ(τ) = O
(
τ

s
s+a
)
.
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(b) Assume additionally to (5.31) that f † ≥ ρ and

f †, f0 ∈ Bs
2,∞(M0) for some s ∈ (2a+ d/2, 3a) .

Then there exists C > 0 such that f † fulfills VSC3(Φ,KL(·, f0) + χB,S2) with µ = 2
and

Φ(τ) = Cτ
s−2a
s−a .

Let f̂α be given by (5.29). Under the first order smoothness assumption (s ∈ (0, a)) we get

KL
(
f̂α, f

†
)

= O
(
δ

2s
s+a
)
, δ → 0. (5.32)

under the deterministic noise model with S = S2
gobs. Under the Gaussian white noise model

with M = Td, a > d/2 and S = SLS
Gobs we get for a parameter choice α ∼ ε

2a
s+a+d/2 that

E
(
KL

(
f̂α, f

†
))

= O
(
ε

2s
s+a+d/2

)
, ε→ 0. (5.33)

Under the Poisson data model with M a bounded Lipschitz domain,a ≥ a0 > γ (with
a0 ∈ {1, 2}) and S = SKL

Gobs,σ we get that for all γ > d/2 and a parameter choice α ∼ t
−a

s+a+γ

that

E
(
KL

(
f̂α, f

†
))

= O
(
t−

s
s+a+γ

)
, t→∞. (5.34)

For f̂ (2)
α as in (5.30) and s ∈ (2a+ d/2, 3a) we obtain under the deterministic model with

S = S2
gobs for the parameter choice α ∼ δ

2a
s+a the convergence rates

KL
(
f̂ (2)
α , f †

)
= O

(
δ

2s
s+a
)
, δ → 0. (5.35)

Proof. The proof has obviously some similarities to the proof of the last subsection. But
actually it simplifies at some points due to the boundedness of the minimizers.

(a) Let f ∗ = log
(
f†

f0

)
. By assumption we have f ∗ ∈ Bs

2,∞(M). Due to supf∈B‖f‖L∞(M0) ≤
R we have that (4.6) holds true by (2.19). So we can apply Proposition 4.3.6 with
Pk as in Proposition A.2.13, νk = ‖(T ∗)†Pkf ∗‖Y∗ and κk = ‖(I − Pk)f ∗‖X ∗ to find

Φ(τ) = C inf
k∈N0

[
νkτ

1/2 + κ2
k

]
≤ C inf

k∈N0

[
2(a−s)kτ 1/2 + 2−2ks

]
,

where the inequality follows from Lemma 5.1.1 as B0
2,2(M0) = L2∞(M0) = X ∗.

Choosing 2−k ∼ τ
1

2(s+a) gives Φ(τ) ≤ Cτ
s
s+a . The deterministic rate (5.32) then

follows from Theorem 4.3.4 and the stochastic rates (5.33) and (5.34) follow from
Corollary 4.3.12 and Lemma 4.3.13, which give

E
(
KL

(
f̂α, f

†
))
≤ C

ε2

α1+ γ
a

+ 4(−Φ)∗
(
− 1

2α

)
≤ C

(
ε2

α1+ γ
a

+ α
s
a

)
,

where γ for Gaussian white noise can be chosen as γ = d/2 by Theorem 1.4.5,
whereas for Poisson noise we have to choose γ > d/2 by 1.4.9. The parameter choice
α ∼ ε

2a
s+a+γ then yields (5.26) and if we replace ε = t−1/2 we get (5.34).
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(b) Assumption (5.13) of Proposition 5.1.6 is satisfied for R = KL(·, f0) + χB with
µ = 2 by (2.19) as supf∈B‖f‖L∞(M0) ≤ R. By Theorem A.2.8 and Theorem A.2.9 we
have f ∗ ∈ Bs

2,∞(M0). By (T5) there exists (T ∗)†T †f ∗ = ω† ∈ Bs−2a
2,∞ (M0) ⊂ L∞(M0)

by Theorem A.2.5 as s − 2a > d/2. In particular, R is Fréchet-differentiable at
f † − tω† > 0 w.r.t. L∞ for t < t := c/‖ω†‖L∞ with f ∗t := R′[f † − tω†] given by
〈f ∗t , h〉 = 〈ln(f † − tω†) − ln f0, h〉 (see (5.27)). Therefore, assumption (5.12) of
Proposition 5.1.6 is satisfied with ω∗ = ω†

f†
as then

‖f ∗ − f ∗t − tω∗‖L2 =
∥∥∥∥∥log

(
1 + tω†

f † − tω†

)
− tω

†

f †

∥∥∥∥∥
L2
≤ Cω†t

2.

Again by Theorem A.2.8 and Theorem A.2.9 we obtain ω∗ ∈ Bs−2a
2,∞ (M0). Thus

Proposition 5.1.6 with Pk as in Proposition A.2.13 and Lemma 5.1.1 show that f †
satisfies VSC3(Φ, R̃, f0),Sp) with µ = 2 and

Φ(τ) ≤ C inf
k∈N0

[
2k(3a−s)√τ + 2−2k(s−2a)

]
≤ Cτ

s−2a
s−a ,

which follows from 2−k ∼ τ
1

2(s−a) . Finally we apply Theorem 4.5.5 with r = q = µ = 2
and note that Φ̃ = Φ, (−Φ)∗(x) = C(−x)(2a−s)/a for x < 0 and (−Φ)∗(x) =∞ else.
Hence, KL

(
f †, f̂ (2)

α

)
≤ C(δ2/α + αs/a + βα4), and the choice α ∼ δ

2a
s+a leads to

(5.35).

Remark 5.2.4. The rates (5.32), (5.33) and (5.35) are of optimal order, see [41]. We did
not consider second order rates in the above Theorem as χB with supf∈B‖f‖L∞(M0) ≤ R
cannot be differentiable w.r.t. L2(M0) so that we cannot verify an assumption like (b)
of Proposition 5.1.3. We might have differentiability w.r.t. L∞(M0), but then we would
have to choose V = X̃ = L∞(M0) in (5.5) of Proposition 5.1.3, which would result in no
improvement compared to Theorem 5.2.1. In [64, Theorem 5.7] the authors claimed second
order rates but oversaw this problem.

5.2.3 Numerical results

In this section we give some numerical results for the iterated maximum entropy regular-
ization.

Test problem: We choose T : L1 (T)→ L2(T) to be the periodic convolution operator
(Tf)(x) :=

∫ 1
0 k(x− y)f(y) dy with kernel

k(x) =
∞∑

j=−∞
exp(|x− j|/2) =

(
sinh 1

4

)−1
cosh 2x− 2bxc − 1

4 , x ∈ R

where bxc := max {n ∈ Z : n ≤ x}. Then integration by parts shows that T = (−∂2
x +

(1/4)I)−1, and hence T satisfies the assumptions of Theorem 5.2.1 with a = 2. We choose
f0 = 1 and the true solution f † such that f † − 1 is the standard B-spline B5 of order 5
with supp(B5) = [0, 1] and equidistant knots. Then we have f † ∈ B5.5

2,∞(T), i.e. s = 5.5 in
Theorem 5.2.3. (To see this note that piecewise constant functions belong to B0.5

2,∞(T) using
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Figure 5.1: Predicted and computed approximation error for standard and
iterated maximum entropy regularization.

the defintion of this space via the modulus of continuity.) Hence, according to Theorem
5.2.1 a third order variational source condition condition VSC3(Aτ 3/7,KL(·, 1) + χB,S2)
is satisfied for some A > 0. Note that by Theorem A.2.5 we also have f † ∈ B5

∞,∞(T),
thus one could also apply Theorem 5.2.1. This results in a worse index function for the
VSC3, however we can see that the strongest VSC2 should be fulfilled and thus expect the
maximal rate for non-iterated maximum entropy regularization.

Implementation: The operator T is discretized by sampling k and f on an equidistant
grid with 480 points. Then matrix-vector multiplications with T = T ∗ can be implemented
efficiently by FFT. The minimizers f̂α and f̂ (2)

α are computed by the Douglas-Rachford
algorithm. To be consistent with our theory, we consider the constraint set B := {f ∈
L1(T) : 0 ≤ f ≤ 5 a.e.}. We checked that for none of the unconstrained minimizers the
bound constraints were active such that an explicit implementation of these constraints
was not required for our test problem.

To check the predicted convergence rates with respect to the noise level δ the reg-
ularization parameter α was chosen by an a-priori rule of the form α = cδσ with an
optimal exponent σ > 0 and a constant c chosen to minimize the constants for the upper
bound given in the figures. As we bound the worst case errors in our analysis we tried to
approximate the worst case noise. Let Gδ := {g† + δ sin(2πk·) : k ∈ N}. For each value of
δ we found gobs ∈ Gδ such that the reconstruction error gets maximal. This in particular
yielded larger propagated data errors than discrete white noise.

Discussion of the results: Figure 5.1 shows the approximation error as a function of
α, i.e. KL(fα, f †) where fα and f (2)

α , respectively, are the reconstructions for exact data
gobs = g†. The two dashed lines indicate the corresponding asymptotic convergence rates
predicted by our theory, which are in good agreement with the empirical results. Note that
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Figure 5.2: Predicted and computed convergence rates for standard and iterated
maximum entropy regularization.

the saturation effect limits the convergence of the standard maximum entropy estimator
fα = f (1)

α to the maximal rate KL(fα, f †) = O(α2). Iterating maximum entropy estimation
yields a clear improvement to KL(f (2)

α , f †) = O(αs/a) = O(α11/4).
Figure 5.2 displays the convergence rates with respect to the noise level δ for the

a-priori choice rule of α described above. Of course, in practice one would rather use
some a-posteriori stopping rule such as the Lepskii balancing principle, but this is not
in the scope of this paper. Again, we observe very good agreement of the empirical
rate KL(f̂α, f †) = O(δ4/3) with the maximal rate for non-iterated maximum entropy
regularization, as well as agreement of the rate KL(f̂ (2)

α , f †) = O(δ2s/(s+a)) = O(δ22/15) of
the Bregman iterated estimator f̂ (2)

α with the rate predicted by Theorem 5.2.3.

5.3 Besov norm regularization4

Let X = B0
p,q(M0) with M0 a bounded Lipschitz domain in Rd or the d-dimensional torus

Td. We consider generalized Tikhonov regularization with penalty

R(f) = 1
t
‖f‖tB0

p,q(M0),

for 1 < p, q, t <∞ so that

f̂α ∈ arg min
f∈B0

p,q(M0)

[
S(Tf) + α

t
‖f‖tB0

p,q(M0)

]
. (5.36)

4This section has some overlap with the article [74] to which the author contributed.
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5.3.1 Upper bounds

To apply the verification strategies it will be crucial to understand the smoothness of the
subgradients of our penalty at f †. To this end we cite the following result from [74].

Theorem 5.3.1. Let R be given by (5.3), with 1 < p, q, t <∞. Let f † ∈ Bs
p,∞(M0) and

f ∗ ∈ ∂R(f †). Then we have f ∗ ∈ Bs(q−1)
p′,∞ (M0) with

‖f ∗‖
B
s(q−1)
p′,∞

= ‖f †‖t−qB0
p,q
‖f †‖q−1

Bsp,∞
.

Theorem 5.3.2. Let M0,M ⊂ Rd be bounded Lipschitz domains or Td, Y = L2(M).
Let p ∈ (1, 2], q ∈ (1,∞). Suppose that T is a > 0 times smoothing in the sense that
Assumption 5.1.8 (T1)-(T5) hold true. We distinguish the different orders of convergence
rates:

(a) Let s ∈
(
0, a

q−1

)
and let q ≤ t ≤ r = max(p, q, 2). There exists C > 0 such that for

all f † ∈ Bs
p,∞(M0) with ‖f †‖Bsp,∞ ≤ % the VSC1(Φ, 1

t
‖·‖tBsp,q ,S

2
g†) holds true with

Φ(τ) = Cτ ν where ν =


s(q−1)

s(q−1)+a , q ≤ 2,
qs

2(s+a) , q ≥ 2.

For f̂α as in (5.36) this yields with S = S2
gobs the deterministic convergence rates

∆T ∗ξ†

R (f̂α, f †) =


O
(
δ

2s(q−1)
s(q−1)+a

)
, q ≤ 2, if α ∼ δ

2a
s(q−1)+a

O
(
δ

qs
s+a
)
, q ≥ 2, if α ∼ δ

2a+(2−q)s
s+a

(5.37)

as δ ↘ 0 and under the Gaussian white noise model with S = SLS
Gobs, a > d/2 that

E
(
∆T ∗ξ†

R (f̂α, f †)
)

=


O
(
ε

2s(q−1)
s(q−1)+a+d/2

)
, q ≤ 2, if α ∼ ε

2a
s(q−1)+a+d/2

O
(
ε

qs
s+a+d/2

)
, q ≥ 2, if α ∼ ε

2a+(2−q)s
s+a+d/2 ,

(5.38)

as ε↘ 0.
(b) Let s ∈

(
a
q−1 ,

2a
q−1

)
and t ≥ q. Define µ = max(p′, q′). There exists C > 0 such that

for all f † ∈ Bs
p,∞(M0) with ‖f †‖Bsp,∞ ≤ % the VSC2(Φ, 1

t
‖·‖tBsp,q ,S2) holds true with

Φ(τ) = Cτ
2(s(q−1)−a)
µs(q−1) .

This yields for S = S2
gobs the deterministic rates

∆T ∗ξ†

R (f̂α, f †) =


O
(
δ

qs
s+a
)
, q ≤ p, α ∼ δ

2a+(2−q)s
s+a

O
(
δ

p′s(q−1)
(p′−1)(q−1)s+a

)
, q > p, α ∼ δ

2a+(p′−2)(q−1)s
(p′−1)(q−1)s+a .

(5.39)

Let t = q and q ≤ p, then there exists C > 0 such that for all f † ∈ Bs
p,∞(M0) with

‖f †‖Bsp,∞ ≤ % (D5)-(D8) in Assumption 4.4.4 hold true and for Ψ as in (4.17) we
have

Ψ(τ) ≤ Cτ
2(s(q−1)−a)

(µ−2)s(q−1)+2a ,
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for τ sufficiently small. This yields under the Gaussian white noise model with

S = SLS
Gobs, a > d/2 and for a parameter choice α ∼ ε

2a+(2−q)s

s+a+ d
2 (1+ (2−q)s

2a ) that

E
(
∆T ∗ξ†

R (f̂α, f †)
)

= O
(
ε

qs

s+a+ d
2 (1+ (2−q)s

2a )
)
.

Proof. (a) By Theorem 5.3.1 we have f ∗ ∈ Bs(q−1)
p′,∞ (M0) with

‖f ∗‖
B
s(q−1)
p′,∞

= ‖f †‖t−qB0
p,q
‖f †‖q−1

Bsp,∞
≤ C%t−1,

as t − q ≥ 0. As X is r-convex we can apply Proposition 4.3.6 with Pk as in
Proposition A.2.13, νk = ‖(T ∗)†Pkf ∗‖Y∗ and κk = ‖(I − Pk)f ∗‖X ∗ to find that f †
fulfills VSC1(Φ, 1

t
‖·‖tBsp,q ,S

2
g†) with

Φ(τ) = inf
k∈N0

[
νkτ

1/2 + CX ,t‖f †‖r
′(r−t)/r
X κr

′

k

]
≤ C% inf

k∈N0

[
2(a−s(q−1))kτ 1/2 + 2−kr′s(q−1)

]
,

where the inequality follows from Lemma 5.1.1 and the constant depends only
on % and not in another way on f † only because we have q ≤ t ≤ r. Choosing
2−k ∼ τ

1
2(s(q−1)(r′−1)+a) gives

Φ(τ) ≤ Cτ
s(q−1)r′

2(s(q−1)(r′−1)+a) .

Now use that for q ≤ 2 we have r = r′ = 2 and for q ≥ 2 we have r = q and r′ = q′,
as well as q′(q − 1) = q and (q − 1)(q′ − 1) = 1. The deterministic rate (5.37) then
follows from Theorem 4.3.4 and the stochastic rate (5.38) follows from Corollary
4.3.12 and Lemma 4.3.13, which give

E
(
∆f∗

R

(
f̂α, f

†
))
≤ C

(
ε2

α1+ d
2a

) 1
1+ d(r−2)

2ar + 4(−Φ)∗
(
− 1

2α

)

≤


C ε2

α1+ d
2a

+ Cα
s(q−1)
a , q ≤ 2

C
(

ε2

α1+ d
2a

) 1
1+ d(q−2)

2aq + Cα
qs

2a+(2−q)s , q ≥ 2,
.

We obtain (5.38) by the parameter choices α ∼ ε
2a

s(q−1)+a+d/2 for q ≤ 2 and α ∼
ε

2a+(2−q)s
s+a+d/2 for q ≥ 2.

(b) By Theorem 5.3.1 we have f ∗ ∈ Bs(q−1)
p′,∞ (M0) with ‖f ∗‖

B
s(q−1)
p′,∞

= ‖f †‖t−qB0
p,q
‖f †‖q−1

Bsp,∞
.

Note that because of this the assumption t ≥ q is crucial to get a uniform constant
for all ‖f †‖Bsp,∞ ≤ %. As X ∗ = B0

p′,q′(M0) is µ-convex with µ = max(p′, q′, 2) =
max(p′, q′) we have by (2.15) from Theorem 2.2.5 that (5.4) holds true (note that
t′ ≤ µ) and thus we can apply Proposition 5.1.3 with Pk as in Proposition A.2.13.
Together with Lemma 5.1.4 and ξ∗ ∈ B

s(q−1)−a
p′,∞ we see that VSC2(Φ, 1

t
‖·‖tBsp,q ,S2)

holds true with

Φ(τ) = C inf
k∈N0

[
νkτ

1/µ + κqk
]
≤ C inf

k∈N0

[
2k(2a−s(q−1))τ 1/µ + 2−2k(s(q−1)−a)

]
≤ Cτ

2(s(q−1)−a)
µs(q−1) ,
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where the last inequality follows from 2−k ∼ τ
1

µs(q−1) .
By Theorem 4.4.2 and Lemma 4.5.6 we have the deterministic estimates

∆T ∗ξ†

R (f, f †) = O
(
δ2

α
+ α(−Φ)∗

(−1
α

))
= O

(
δ2

α
+ α

µs(q−1)
2a+(µ−2)(q−1)s

)

= O
(
δ

µs(q−1)
a+(µ−1)(q−1)s

)
,

where the last bound follows from the parameter choice α ∼ δ
2a+(µ−2)(q−1)s
a+(µ−1)(q−1)s . If

q ≤ p, so µ = q′ the exponent simplifies significantly to qs
a+s by q′(q − 1) = q and

(q′ − 1)(q − 1) = 1.
Under a stochastic model with t = q and q ≤ p we have by Theorem 2.2.5 that (5.9)
holds true as t′ = µ and thus Proposition 5.1.5 gives that (D5)-(D8) in Assumption
4.4.4 hold true. For Ψ as in (4.17) and sufficiently small α we have that

Ψ(α) = inf
k∈N0
αν2
k≤1

[
αµ
′−1νµ

′

k + κ2
k

]
≤ Cα

2(s(q−1)−a)
2a+(µ−2)s(q−1) (5.40)

where the inequality follows from 2−k ∼ α
1

2a+(µ−2)s(q−1) . This leads to the stochastic
error bound

E
(
∆f∗

R

(
f̂α, f

†
))
≤ C

ε2

α1+ d
2a

+ αΨ(α) ≤ C
ε2

α1+ d
2a

+ Cα
µs(q−1)

2a+(µ−2)(q−1)s .

With the parameter choice α ∼ ε

2a+(2−q)s

s+a+ d
2 (1+ (2−q)s

2a ) we obtain the claimed rate as µ′ = q′,
q′(q − 1) = q and (q′ − 1)(q − 1) = 1.

5.3.2 Lower bounds

In the following we want to discuss the sharpness of the estimates obtained in the previous
theorem. Recall that for a linear forward operator lower bounds for the reconstruction
error measured in the norm can be formulated in terms of the modulus of continuity ωlin
introduced in (1.2). One can actually also show lower bounds in the Bregman divergence,
see [73, Lemma 4.1].
Theorem 5.3.3. Let R = 1

t
‖·‖tX for some t > 1 and K ⊂ X such that K = −K and let

jt be a selection of the duality mapping Jt, with jt(−f) = −jt(f). Then we have for any
reconstruction method R : Y → X the lower bound

inf
R

sup
{

∆jt(f†)
R (R(gobs), f †) : f † ∈ K, gobs ∈ Y , ‖Tf † − gobs‖Y ≤ δ

}
≥ 1
t′
ωlin(δ, T,K)t

Proof. Let f ∈ K such that ‖Tf‖ ≤ δ. Setting g = 0 we see that ‖Tf − g‖ ≤ δ is fulfilled.
By symmetry of K we also have −f ∈ K with ‖T (−f)− g‖ ≤ δ. Hence,

2 sup
{

∆jt(f†)
R (R(gobs), f †) : f † ∈ K, gobs ∈ Y , ‖Tf † − gobs‖Y ≤ δ

}
≥ sup

f∈K,‖Tf‖≤δ

[
∆jt(f)
R (R(0), f) + ∆jt(−f)

R (R(0),−f)
]

= sup
f∈K,‖Tf‖≤δ

2[R(R(0))−R(f) + 〈jt(f), f〉] = 2R(R(0)) + 2 sup
f∈K,‖Tf‖≤δ

R∗(jt(f)),
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where the last equality is Young’s equality. By definition of the duality mapping we have

R∗(jt(f)) = 1
t′
‖jt(f)‖t′X ∗ = 1

t′
‖f‖t

′(t−1)
X = 1

t′
‖f‖t.

As infRR(R(0)) = 0 the claim follows by (1.2).

A lower bound for the modulus of continuity can be shown under Assumption 5.1.8,
see [74, Theorem 4.12].

Theorem 5.3.4. Let K = {f ∈ Bs
p,∞ : ‖f‖Bsp,∞ ≤ %} and let T be a-smoothing in the

sense that (T6) of Assumption 5.1.8 holds true. Then we have ωlin(δ, T,K) ≥ C%δ
s
s+a .

In the light of this result we see that the first order rates from Theorem 5.3.2 are order
optimal in the Bregman divergence for q ≥ 2 and the second order rates are order optimal
in the Bregman divergence if t = q and q ≤ p.

Lower bounds for the statistical convergence rates can be concluded from results in
[20]. Instead of the continuous Gaussian white noise model they consider an n-dimensional
normal means model. However as their results in [20, Thms. 7 and 9] do not depend
on the dimension n one can send n to infinity, so that the Le Cam distance of the two
models goes to zero (compare [33, Ch. 1]) and thus conclude for general estimators
S = S(g† + εW ) ∈ Bs∗

p,q:

Theorem 5.3.5. We have

infS sup‖g†‖
Bs
∗∗
p,∞
≤% E

(∥∥∥g† − S(g† + εW )
∥∥∥
Bs∗p,q

)
≥ c%

s∗+d/2
s∗∗+d/2 ε

s∗∗−s∗
s+d/2 ,

with c depending on s∗, s∗∗, p, q.

Combining all results we see that we get order optimal rates in the norm for q ≥ 2,
both for deterministic data and for the Gaussian white noise model.

Corollary 5.3.6. Let the assumptions of Theorem 5.3.2 hold true and let T fulfill As-
sumption 5.1.8. Let s ∈

(
0, a

q−1

)
. There exists C > 0 such that for all f † ∈ Bs

p,∞(M) with
‖f †‖Bsp,∞ ≤ % we have the deterministic convergence rates

‖f̂α − f †‖B0
p,q
≤ Cδ

s
s+a

and under the Gaussian white noise model for M = Td

E
(
‖f̂α − f †‖B0

p,q

)
≤ Cδ

s
s+a+d/2 .

These rates are order optimal.

Proof. The rates in the norm follow immediately from Theorem 5.3.2 by Theorem 2.2.5
and Jensen’s inequality. The optimality of the rates for deterministic data follows from
Theorem 1.2.3 together with Theorem 5.3.4. To see that also the convergence rates under
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the white noise model are of optimal order we apply Theorem 5.3.5. By setting s∗ = a
and s∗∗ = s+ a in Corollary 5.3.5 we find that

inf
S

sup
‖Tf†‖

Bs+a
p,∞(M)≤%

E
(∥∥∥Tf † − S(Tf † + εW )

∥∥∥
Bap,q(M)

)
≥ C%

a+d/2
s+a+d/2 ε

s
s+a+d/2 .

For all reconstruction methods R we have by (T7) that∥∥∥f † −R(Tf † + εW )
∥∥∥
B0
p,q(M0)

≥ C
∥∥∥Tf † − TR(Tf † + εW )

∥∥∥
Bap,q(M)

.

Thus we get again by (T7) a lower bound

inf
R

sup
‖f†‖Bsp,∞(M0)≤C%

E
(∥∥∥f † −R(Tf † + εW )

∥∥∥
B0
p,q(M0)

)

≥ inf
R

sup
‖Tf†‖

Bs+a
p,∞(M)≤%

E
(∥∥∥f † −R(Tf † + εW )

∥∥∥
B0
p,q(M0)

)
≥ C%

a+d/2
s+a+d/2 ε

s
s+a+d/2 .

Remark 5.3.7. Although we did achieve order optimal second order convergence rates
in the Bregman divergence for t = q, q ≤ p this does not yield order optimal rates in the
norm. Therefore it would be interesting to find an approach which avoids the Bregman
divergence. For q = 1 such an approach was recently outlined in [39] and resulted in
optimal convergence rates. Closing the gap between upper and lower bounds for first order
rates with q ∈ (1, 2) remains an open problem.

5.4 Quadratic regularization on Hilbert spaces5

In this section we consider Tikhonov regularization (3.1) and iterated Tikhonov regular-
ization (Pn+1) on Hilbert spaces with R = 1

2‖·‖
2. We give some new results for statistical

inverse problems, like higher order convergence rates given Poisson data, a saturation result
for Gaussian white noise and the deviation inequality for the reconstruction error. But
we also want to see how variational source conditions compare to other source conditions
on Hilbert spaces. To this end we do not consider Hölder source conditions, but rather
more general conditions due to Neubauer [51], that are necessary and sufficient for rates
of convergence of spectral regularization methods. Let ET ∗T

λ := 1[0,λ)(T ∗T ), λ ≥ 0, denote
the spectral projections (see [25, Sec. 2.3]) for the operator T ∗T with the characteristic
function 1[0,λ) of the interval [0, λ). For an index function ψ we define

X T
ψ :=

{
f ∈ X : ‖f‖XT

ψ
<∞

}
, ‖f‖XT

ψ
:= sup

λ>0

1
ψ(λ)‖E

T ∗T
λ f‖X . (5.41)

If we want to compare this to Hölder source conditions (1.3), then the function ψ corre-
sponds to the function in f † ∈ ran(ψ(T ∗T )). The corresponding convergence rate function
is

Φψ(t) := ψ
(
Θ−1
ψ (
√
t)
)2
, Θψ(λ) :=

√
λψ(λ).

In particular Φidν = id
2ν

2ν+1 . Note that f † ∈ ranψ(T ∗T ) implies f † ∈ X T
ψ , but not vice

versa and it was shown in [51] that f † ∈ X T
ψ , with ψ(t) = t

s
2a , s ∈ (0, 2a] is equivalent to

convergence rates ‖f̂α−f †‖X ≤ Cδ
s
s+a for deterministic quadratic Tikhonov regularization.

5This section has some overlap with the article [64] to which the author contributed.
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5.4.1 Deterministic convergence rates

The following theorem is a generalization of [41, Thm. 3.1], where the first order VSC was
equivalently characterized by the set X T

ψ , to VSCs of arbitrary order.

Theorem 5.4.1. Let ψ be an index function such that t 7→ ψ(t)2/t1−µ is decreasing for
some µ ∈ (0, 1), ψ · ψ is concave, and ψ is decaying sufficiently rapidly such that

Cψ := sup
0<λ≤‖T ∗T‖

∑∞
k=0 ψ(2−kλ)2

ψ(λ)2 <∞. (5.42)

Moreover, let l ∈ N0 and define ψl(t) = ψ(t)tl/2. Then

f † ∈ X T
ψl

⇔ ∃A > 0 : VSCl+1(f †, AΦψ). (5.43)

Note that condition (5.42) holds true for all power functions ψ(t) = tν with ν > 0, but
not for logarithmic functions ψ(t) = (− ln t)−p with p > 0. The first two conditions on
the other hand imply that ψ must not decay to 0 too rapidly. They are both satisfied for
power functions ψ(t) = tν/2 if and only if ν ∈ (0, 1). We point out that for the case l = 0
the condition (5.42) is not required.

Proof. We first show for all l ∈ N that

f † ∈ X T
ψl

⇔ ∃ω†l
2
∈ X T

ψ : f † = (T ∗T ) l2ω†l
2

(5.44)

which together with the special case l = 0 from [41, Thm 3.1] already implies (5.43) for
even l:

(i) Assume there exists ω†l
2
∈ X T

ψ such that f † = (T ∗T ) l2ω†l
2
. Define

∫ λ+
0 := limε↘0

∫ λ+ε
0 .

The following notation is based on [25, Sec. 2.3]. We have

‖f †‖2
XT
ψl

= sup
λ>0

1
ψl(λ)2‖E

T ∗T
λ (T ∗T ) l2ω†l

2
‖2

= sup
λ>0

1
ψl(λ)2

∫ λ+

0
λ̃l d‖Eλ̃ω

†
l
2
‖2

≤ sup
λ>0

1
ψl(λ)2

∫ λ+

0
λl d‖Eλ̃ω

†
l
2
‖2

= sup
λ>0

1
ψ(λ)2

∫ λ+

0
d‖Eλ̃ω

†
l
2
‖2 = ‖ω†l

2
‖2
XT
ψ
<∞.

(ii) Now assume that f † ∈ X T
ψl

. It follows that

1
ψ(λ)2

∫ λ+

0
λ̃−l d‖Eλ̃f †‖2 = 1

ψ(λ)2

∞∑
k=0

∫ 2−kλ+

2−k−1λ
λ̃−l d‖Eλ̃f †‖2

≤ 1
ψ(λ)2

∞∑
k=0

∫ 2−kλ+

2−k−1λ
(2−k−1λ)−l d‖Eλ̃f †‖2

≤ 1
ψ(λ)2

∞∑
k=0

ψ(2−kλ)2

ψ(2−kλ)2(2−k−1λ)l
∫ 2−kλ+

0
d‖Eλ̃f †‖2
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= lim
ε↘0

2l
ψ(λ)2

∞∑
k=0

ψ(2−kλ)2

ψl(2−kλ)2‖E2−kλ+εf
†‖2

≤ 2l
ψ(λ)2

∞∑
k=0

ψ(2−kλ)2‖f †‖2
XT
ψl

≤ 2lCψ‖f †‖2
XT
ψl

.

This shows that ω†l/2 :=
∫∞

0 λ̃−l/2 dEλ̃f † is well defined. Moreover, we have that
ω†l/2= (T ∗T )−(l/2)f † and ‖ω†l/2‖XTψ <∞.

To prove the theorem in the case of odd l we use the polar decomposition T = U(T ∗T )1/2

with a partial isometry U satisfying N(U) = N(T ) and set ξ†l+1
2

:= Uω†l
2
. As U : X T

ψ → YT
∗

ψ

is an isometry, (5.44) implies

f † ∈ X T
ψl

⇔ ∃ ξ†l+1
2
∈ YT ∗ψ : f † = (T ∗T ) l−1

2 T ∗ξ†l+1
2
. (5.45)

Applying (5.43) for l = 0 from [41, Thm. 3.1] to Y and TT ∗ yields (5.43) for the case of
odd l.

The equivalence (5.43) together with the equivalence in [2, Prop. 4.1] also shows
that in Hilbert spaces higher order variational source conditions are equivalent to certain
symmetrized multiplicative variational source conditions.

We have already seen at the end of Section 4.5.1 that VSCl(f †, A idν/(ν+1)) implies the
order optimal convergence rate ‖f̂ (m)

α − f †‖ = O
(
δ(l−1+ν)/(l+ν)

)
for an optimal choice of

α and m ≥ l/2. It follows from [41] and Theorem 5.4.1 that VSCl
(
f †, A idν/(ν+1)

)
, with

ν ∈ (0, 1) is not only a sufficient condition for this rate of convergence, but in contrast to
spectral Hölder source conditions also a necessary condition:

Corollary 5.4.2. Let l ∈ N, m ≥ l/2, and ν ∈ (0, 1). Moreover, let f † 6= 0 and let
f̂ (m)
α = f̂ (m)

α (gobs) denote the m-times iterated Tikhonov estimator. Then the following
statements are equivalent:

(a)
∃A > 0 : VSCl

(
f †, A idν/(ν+1)

)
(b)

∃C > 0 ∀δ > 0 : sup
δ>0

inf
α>0

sup
‖gobs−Tf†‖≤δ

‖f̂ (m)
α (gobs)− f †‖ ≤ Cδ

l−1+ν
l+ν

For operators which are a-times smoothing in the sense specified below, higher order
variational source conditions can be characterized in terms of Besov spaces in analogy to
first order variational source conditions (see [41]):

Corollary 5.4.3. Assume that M is a bounded Lipschitz domain or a d-dimensional torus
Td and that T : Hs(M)→ Hs+a(M) is bounded and boundedly invertible for some a > 0
and all s ∈ R. Then for all f † ∈ L2(M), all l ∈ N and all ν ∈ (0, 1) we have

∃A > 0 : VSCl
(
f †, A id

ν
ν+1
)

⇔ f † ∈ B(l−1+ν)a
2,∞ (M), (5.46a)

∃A > 0 : VSCl
(
f †, A

√
·
)

⇔ f † ∈ Bla
2,2(M) = H la(M). (5.46b)
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5.4.2 Statistical convergence rates

In Section 5.1.5 we have already discussed properties that define an a-smoothing operator.
From now until the end of this chapter we will assume the following slightly more general
definition of a-smoothing.

Definition 5.4.4 (a-smoothing forward operator). We call a linear operator T : X →
L2(M) an a-smoothing operator if

(a) TT ∗ as a map TT ∗ : L2(M)→ H2a
0 (M) is bounded with bounded inverse,

(b) T as a map T : X → Ha
0 (M) is bounded with bounded inverse.

Lemma 5.4.5. Let M = Td. If the linear operator T is injective and fulfills item (a) of
Definition 5.4.4, then item (b) holds as well.

Proof. Let ∆ be the Laplace-Beltrami operator, with (I−∆)−a : L2(Td)→ H2a(Td) being
an isometric isomorphism. Then item (a) of Definition 5.4.4 is equivalent to the existence
of C1, C2 > 0 such that for all g ∈ H2a(Td) we have

C1‖(I −∆)ag‖L2 = C1‖g‖H2a ≤ ‖(TT ∗)−1g‖L2 ≤ C2‖g‖H2a = C2‖(I −∆)ag‖L2 .

Thus by the inequality of Heinz [25, Proposition 8.21] we conclude that for all g ∈ Ha(Td)
we have

C
1
2
1 ‖g‖Ha = C

1
2
1 ‖(I −∆)a2 g‖L2 ≤ ‖(TT ∗)− 1

2 g‖L2 ≤ C
1
2
2 ‖(I −∆)a2 g‖L2 = C

1
2
2 ‖g‖Ha

and thus (TT ∗)1/2 : L2(Td) → Ha
0 (Td) is bounded with bounded inverse. By [66, Theo-

rem 3.1.5] there exists a polar decomposition T ∗ = U(TT ∗)1/2 with a partial isometry
U : L2(M) → X , ker(U) = ker(T ∗) = 0. Therefore we have T = (TT ∗)1/2U∗ with an
isometry U and the claim holds.

Note that first order statistical convergence rates for an a-smoothing forward operator
follow from VSC1(f †,Φ) by Corollary 4.3.12 (together with Lemma 5.1.2 for Poisson data).
But for second order convergence rates we still have to show how to verify Assumption
4.4.4.

Theorem 5.4.6. Let T be an a-smoothing forward operator in the sense of Definition
5.4.4 with a > γ and let f † ∈ X T

ψ with ψ(t) = Ct
s

2a , s ∈ (a, 2a). Then (D1)-(D8) of
Assumption 4.4.4 hold true with p = 2, µ = 2, r = 2 and there exists CΨ > 0 such that the
index function Ψ in (4.17) satisfies

Ψ(α) ≤ CΨα
s−a
a , for all α such that CΨα

s−a
a ≤ 1. (5.47)

Moreover, if f † ∈ ranT ∗T , then (D1)-(D8) hold with Ψ(α) ≤ Cα for α sufficiently small.

Proof. Note that (D1),(D2) and (D3) are fulfilled by our choice of R and T . By (5.45)
we see that f † ∈ X T

ψ is equivalent to the existence of ξ† ∈ L2(M) such that ξ† ∈ L2(M)T ∗
ψ̃

,
where ψ̃(t) = Ct

s−a
2a . From [3, Proposition 2.2] we see that

L2(M)T ∗ψ̃ = (L2(M), TT ∗L2(M)) s−a
2a ,∞

= (L2(M), H2a
0 (M)) s−a

2a ,∞
= Bs−a

2,∞(M),
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where the second inequality follows from Definition 5.4.4 and the third by Theorem A.2.7.
Thus we have found ξ† such that (D4) holds true and we even have ξ† ∈ Bs−a

2,∞ . Now we
want to apply Proposition 5.1.3. Let Pk be given by the projections defined in Proposition
A.2.13. We have for g ∈ {1} ∪ GaR that

‖T−1gPkξ
†‖X ≤ C‖gPkξ†‖Ha

0
≤ C‖g‖Ha‖Pkξ†‖Ha

0
≤ CR‖Pkξ†‖Ha

0
.

By (A.6) in the appendix we see that

‖Pkξ†‖Ha
0
≤ C2k(2a−s)‖ξ†‖Bs−a2,∞

≤ C2k(2a−s),

thus we can choose νk := C2k(2a−s). Finally by (A.7) we obtain

κk = ‖(I − Pk)ξ†‖L2 ≤ C2−k(s−a)‖ξ†‖Bs−a2,∞
≤ C2−k(s−a).

Let α ≥ 1 then we can for all α ∈ (0, α] choose k ∈ N0 such that 2k ∼ α
−1
2a with the

implicit constants depending on α. With this choice of k we have

αν2
k + κ2

k ≤ Cα
s−a
a =: CΨα

s−a
a .

Now if CΨα
s−a
a ≤ 1 then we also have αν2

k ≤ 1, which implies

Ψ(α) = inf
l∈N0
αν2
l ≤1

[
αν2

l + κ2
l

]
≤ αν2

k + κ2
k ≤ CΨα

s−a
a .

The last statement in the theorem follows directly from Proposition 5.1.3 as gξ† ∈ Ha
0 = TX

and thus one can choose Pk = I for all k ∈ N0.

Combining Theorems 5.4.1 and 5.4.6 together with the deviation inequality from
Assumption 1.4.1 and Corollaries 4.3.12 and 4.4.10 yields optimal (or almost optimal)
convergence rates in expectation.

Corollary 5.4.7. Let T be an a-smoothing forward operator in the sense of Definition
5.4.4 with a > γ and let f † ∈ X T

ψ with ψ(t) = Ct
s

2a , s ∈ (0, a) ∪ (a, 2a). We have for
S = SLS

Gobs, with Z = W Gaussian white noise and a parameter choice α ∼ ε
2a

s+a+d/2 that

∀x > 0 : P
(
‖f̂α − f †‖L2 > (C + x)ε

s
s+a+d/2

)
≤ exp

(
−CWx2

)
,

for some constants C,CW > 0 which implies for all q ≥ 1 that

E
(
‖f̂α − f †‖qL2

) 1
q ≤ Cε

s
s+a+d/2 .

Assume additionally (D9), with f † in the interior of B, and that a ≥ a0 > d/2 for
a0 ∈ {1, 2}, s ≥ a d

2a0
− d/2. Then we get for S = SKL

Gobs,σ, Z =
√
t(Gt − g†), ε = t−1/2,

R = 1
2‖·‖L2 + χB and a parameter choice α ∼ t

−a
s+a+d/2 that for all 0 < ε we have

∀x > 0 : P
(
‖f̂α − f †‖L2 > (C + x)t

−s
2s+2a+d+ε

)
≤ exp(−CGtx).

This implies for all q ≥ 1 that

E
(
‖f̂α − f †‖qL2

) 1
q ≤ Ct

−s
2s+2a+d+ε .
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Proof. For s ∈ (0, a) we have by Theorem 5.4.1 that VSC1(f †,Φ) holds true with Φ(τ) =
Cτ

s
s+a and by Lemma 5.1.2 also VSC1(Φ(C·), 1

2‖·‖
2,KLσg†) holds true. For s ∈ (a, 2a) we

have by Theorem 5.4.6 that (D1)-(D8) of Assumption 4.4.4 hold true with p = 2, µ = 2,
r = 2 and index function as in (5.47). The bounds for the quadratic Tikhonov regularization
with Gaussian white noise follow directly from Corollaries 4.3.12 and 4.4.10 together with
Lemma 4.3.13 which give

∀x > 0 : P
(
‖f̂α − f †‖L2 > C

√
1 + x

(
ε

α
1
2 + d

4a
+ α

s
2a

))
≤ exp(−CWx),

so that the claim follows by the parameter choice α ∼ ε
2a

s+a+d/2 and replacing x by x2.
(Note that under (5.47) we would strictly speaking need α sufficiently small. However, if
s ∈ (a, 2a) then in particular the first order VSC holds true with Φ = C

√
· and for large

α this actually gives a stronger bound than the above, compare Remark 4.4.8. In other
words: large α respectively ε are not interesting.)

For the case of Kullback-Leibler regularization with Poisson data we have ε := t−1/2

and convergence rates follow likewise from Corollaries 4.3.12 and 4.4.10 together with
Lemma 4.3.13. The main differences to the white noise case are the different deviation
inequality (Theorem 1.4.9), as well as the additional assumption that

α ≥ Ct
−1

1+γ/a0 , (5.48)

where a ≥ a0 ≥ γ, a0 ∈ {1, 2}. Because of the deviation inequality we want to choose
γ = d/2 + ε with ε > 0 sufficiently small. Under the parameter choice α ∼ t

−a
s+a+d/2 we

have (5.48) if and only if s ≥ ad
2a0
− d

2 .

5.4.3 Converse and saturation results for Gaussian white noise

In this subsection we will only consider an a-smoothing forward operator T with a > d/2
as in Definition 5.4.4 and quadratic Tikhonov regularization given by

f̂α ∈ arg min
f∈X

[ 1
2α‖Tf‖

2
X −

〈
Gobs, T f

〉
+ 1

2‖f‖
2
L2

]
, (5.49)

with a Hilbert space X and Gobs = g† + εW , where W is Gaussian white noise. The
following theorem shows equivalence of the standard second order VSC and some conditions
of Assumption 4.4.4, which in particular implies that converse results from the literature
are applicable.

Theorem 5.4.8. Let T be a-smoothing in the sense of Definition 5.4.4 with a > d/2 and
M = Td. For s ∈ (a, 2a) the following statements are equivalent:

(a) (D4), (D5), (D6), (D7) hold true with p = ν = 2, β = 0 and the index function
Φ(t) := infk∈N0

1
2

[
νk
√
t+ κ2

k

]
= O

(
t
s−a
s

)
, t↘ 0.

(b) (D4), (D6), (D7), (D8) hold true with p = ν = 2, β = 0 and the index function
Φ(t) := infk∈N0

1
2CR,σ,M

[
νk
√
t+ κ2

k

]
= O

(
t
s−a
s

)
, t ↘ 0, with a constant CR,σ,M > 0

depending on R, σ and vol(M).
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(c) There exists ξ† ∈ L2(M) such that f † = T ∗ξ†. ξ† fulfills the standard (Hilbert space)
second order VSC

∀ξ ∈ L2(M) : 〈ξ, ξ†〉 ≤ 1
2‖ξ‖

2
L2 + Φ

(
‖T ∗ξ‖2

L2

)
with Φ(t) = O

(
t
s−a
s

)
, t↘ 0.

(d) f † ∈ X T
ψ with ψ(t) = O

(
t
s

2a
)
, t↘ 0.

(e)
(
infα>0 E

(
‖f̂α − f †‖2

X

)) 1
2 = O

(
ε

s
s+a+d/2

)
, ε↘ 0.

Proof. (a) or (b) ⇒ (c): We first assume (a) and thus have for all ξ ∈ L2(Td) and k ∈ N0
by applying (D5) for ξ = ξ† − ξ that

〈ξ, Pkξ†〉 ≤
1
4‖ξ‖

2
B
−d/2
2,∞

+ νk
2 ‖T

∗ξ‖L2 .

Thus together with (D6) we have

〈ξ, ξ†〉 = 〈ξ, Pkξ†〉+ 〈ξ, (I − Pk)ξ†〉

≤ 1
4‖ξ‖

2
B
−d/2
2,∞

+ νk
2 ‖T

∗ξ‖L2 + ‖ξ‖L2‖(I − Pk)ξ†‖L2

≤ 1
4‖ξ‖

2
L2 + νk

2 ‖T
∗ξ‖L2 + κk‖ξ‖L2

≤ 1
2‖ξ‖

2
L2 + νk

2 ‖T
∗ξ‖L2 + 1

2κ
2
k.

Taking the infimum over k gives the claim. The other implication works analogously by
choosing g ∈ GaR constantly so that this only gives an additional scalar factor depending
on R and vol(M). The resulting different constant in front of 1

2‖ξ‖
2
L2 can be changed by

rescaling ξ.
(c) ⇔ (d): As in the last section we see that (d) is equivalent to the existence of

ξ† ∈ L2(M)T ∗
ψ̃

, with ψ̃(t) = ψ(t)t− 1
2 by (5.45). ξ† ∈ L2(M)T ∗

ψ̃
is equivalent to (c) by

Theorem 5.4.1.
(d) ⇒ (a) and (b): This follows from the proof of Theorem 5.4.6 as we then have

νk ≤ C2k(2a−s) and κk ≤ C2−k(s−a), so choosing 2−k ∼ t
1

2s gives the claim.
(d) ⇔ (e): This follows from the general equivalence theorems 3.3 and 5.1 in [41] as in

the proof of [41, Theorem 7.1].

Finally we will prove a saturation result in the setting of this subsection. As we assume
a > d/2 we can compute the minimizer in (5.49) as usual by

f̂α = (T ∗T + αI)−1T ∗Gobs (5.50)

because the Tikhonov functional is differentiable, strictly convex and has the above solution
as unique zero of the derivative. Further we can show that for a nontrivial exact solution
f † one can bound each parameter choice rule ᾱ(ε,Gobs) in the following way.

Lemma 5.4.9. Let T be a-smoothing, with a > d/2, let f † 6= 0 and α0 > 0. Then for
every parameter choice ᾱ(ε,Gobs) ≤ α0 we have

E
(
ᾱ(ε,Gobs)2

)
= O

(
ε2 + E

(
‖f̂ᾱ − f †‖2

))
.
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Proof. For easier notation we just write ᾱ for ᾱ(ε,Gobs). By (5.50) we find

(T ∗T + ᾱI)(f † − f̂ᾱ) = ᾱf † − εT ∗W.

In particular as f † 6= 0 we have

ᾱ ≤ ‖T
∗W‖
‖f †‖

ε+ ‖T
∗T + ᾱI‖
‖f †‖

‖f̂ᾱ − f †‖

and thus by Young’s inequality

ᾱ2 ≤ 2
(
‖T ∗W‖
‖f †‖

ε

)2

+ 2
(
‖T ∗T + ᾱI‖
‖f †‖

‖f̂ᾱ − f †‖
)2

.

As T is a-smoothing we have E(‖T ∗W‖2
L2) ≤ E

(
C‖W‖2

B
−d/2
2,∞

)
<∞, so the claim follows

by monotonicity of the expected value.

Now we can prove the saturation result, which shows that the rate we obtain for
f † ∈ ranT ∗T is actually the best rate, that one can achieve by quadratic Tikhonov
regularization with nontrivial solution f † and an a-priori parameter choice for α.

Theorem 5.4.10. Let T be a-smoothing with a > d/2 and let α0 > 0. Assume that we
have

inf
0<α≤α0

E
(
‖f̂α − f †‖2

)
= o

(
ε

4
3+d/2a

)
,

then f † = 0.

Proof. Let fα be the solution to (5.49) for exact data, i.e. ε = 0. From (5.50) we can
conclude that

‖f̂α − f †‖2 = ‖fα − f †‖2 + 2〈f̂α − fα, fα − f †〉+ ‖f̂α − fα‖2.

Taking the expected value on both sides yields the bias-variance decomposition

E
(
‖f̂α − f †‖2

)
= ‖fα − f †‖2 + E

(
‖f̂α − fα‖2

)
,

as E(W ) = 0 and f̂α − fα depends linearly on W . By assumption there exists a parameter
choice ᾱ(ε), such that E

(
‖f̂ᾱ − f †‖2

)
= o

(
ε

4
3+d/2a

)
which leads to

E
(
‖f̂ᾱ − fᾱ‖2

)
= o

(
ε

4
3+d/2a

)
. (5.51)

Now assume that f † 6= 0. By Lemma 5.4.9 we then have

ᾱ2 = o
(
ε

4
3+d/2a

)
. (5.52)

We will show that such a parameter choice ᾱ cannot exist. To this end we consider a
different “true solution” h† with h† = T ∗Tω, ‖ω‖X ≤ 1 and the corresponding regularized
solutions ĥᾱ = (T ∗T + ᾱI)−1T ∗(Th† + εW ) for noisy data, hᾱ = (T ∗T + ᾱI)−1T ∗Th† for
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exact data. Note that ĥᾱ − hᾱ = ε(T ∗T + ᾱI)−1T ∗W = f̂ᾱ − fᾱ does not depend on the
true solution thus we have by the bias-variance decomposition and (5.51) that

E
(
‖ĥᾱ − h†‖2

)
= ‖hᾱ − h†‖2 + o

(
ε

4
3+d/2a

)
.

Now by classical regularization theory (or by Theorem 5.4.6 and Theorem 4.4.7 with
W = 0) we easily see that ‖hᾱ − h†‖2 ≤ Cᾱ2 so together with (5.52) we have

E
(
‖ĥᾱ − h†‖2

)
= o

(
ε

4
3+d/2a

)
, (5.53)

which is a contradiction to the optimal rates that one can show under the source condition
h† = T ∗Tω. (See [6, Section 5.3] for X = L2(M). If X 6= L2(M) then X still has to
be infinite dimensional as T is a-smoothing, so there exists an isometric isomorphism
iX : L2(M)→ X and one can consider the inverse problem related to T̃ = T ◦ iX . As T̃
is still a-smoothing one can conclude the same rate (5.53) for h† = T̃ ∗T̃ ω 6≡ 0, this also
leads to a contradiction.) Thus (5.52) cannot hold and we must have f † = 0.



120



121

Discussion and outlook

Whilst we successfully have derived higher order convergence rates for statistical inverse
problems and even introduced variational source conditions of third and higher order,
there emerge several open problems from what we achieved.

The most nail-biting one is how variational source conditions of fourth and higher
order for Banach spaces should look like. This problem has already been discussed in
[64, Section 7]. Usually a mathematician would expect that if he understands the first
two or three instances of an inductive problem then he will see some pattern and find a
generalization. However, in this case the second order VSC is already more complicated
and restrictive than the first order VSC and the third order VSC even more so. Thus it is
possible that there is no VSC4 which is as general as the VSC3 and that the Hilbert space
VSC4 is actually almost the most general version that one can find. Nonetheless we would
be glad to be proved wrong here.

Another big and non obvious problem is to show higher order rates for nonlinear
forward operators F under higher order VSCs. Since VSCs have been originally introduced
to relax the strong assumptions necessary on F it is a natural question whether higher
order VSCs also work for nonlinear F . As pointed out in [34] this comes down to the
problem that duality requires a linear forward operator, so that this concept has to be
generalized.

It would be interesting to see whether the higher order VSCs could be verified under less
restrictive assumptions on R. At the moment we require some kind of differentiability of R
(note that item (a) of Proposition 5.1.3 implies differentiability of R at f † by Proposition
2.2.14). This is the reason why we did not show a VSC2 under Nikolskii smoothness
assumptions for maximum entropy regularization in Theorem 5.2.3 and also a VSC3 for
Besov norm regularization in Theorem 5.3.2 is not obvious from Proposition 5.1.6 as the
norm is not twice differentiable for p < 2 or q < 2. Especially in the case of maximum
entropy (Theorem 5.2.3) it would be remarkable if it would be impossible to show a VSC2

under Nikolskii smoothness assumptions although we can show a VSC3. Therefore we
suspect that it should be possible to relax the assumptions required of R.

There are some open questions that seem to be of more technical nature and will
hopefully be resolved soon. This includes firstly an optimal deviation inequality for Poisson
processes, i.e. Assumption 1.4.1 with γ = d/2 and ideally also for all p ∈ [1, 2]. Secondly it
should be possible to show inequalities of the kind of Theorem A.2.10 for all smoothness
indices s and also for Besov spaces (where again integrability indices p ∈ [1, 2] would
be most interesting in order to consider entropy and Besov penalty terms for inverse
problems with Poisson data, compare Remark 5.2.2). Finally one can most likely consider
more general measurement manifolds M. To this end one would have to ensure that the
necessary results in Section A.2 of the appendix still hold true and to deal with statistical
data one would need to verify the deviation inequality on the manifold of interest.
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Concerning Theorem 5.3.2 for Besov norm regularization the error bounds (5.37) for
q < 2 can probably be improved. Similarly the second order rates (5.39) are not optimal
in the Bregman divergence so one would expect that some improvement is possible.

By Definition A.2.1 of the Besov spaces for bounded Lipschitz domains M and the
assumption F (f) ∈ Ba

p,2(M) for f ∈ X , a > d/2, that we consider for Gaussian white
noise, we restrict us to exact data g† that vanish on the boundary of M. If one is
interested in inverse problems with non trivial boundary values then one has to define
Bs
p,q(M) = {f ∈ D′(M) : f = g|M, g ∈ Bs

p,q(Rd)} for s > 0. The main difficulty then is to
find a wavelet system such that Theorem A.2.4 holds true. This problem is extensively
covered in [71, Ch. 5]. For the simple case of Ω = [0, 1] one can consider boundary-corrected
wavelet bases as in [33, Sec. 4.3.5].

We did not consider the problem of showing statistical convergence rates under the
third order VSC. The reason why our approach in the deterministic case cannot eas-
ily be generalized to solve also the statisical case is simply put that duality becomes
much more complicated for statistical noise. More concretely we cannot conlcude an
analogue of Lemma 4.5.6 for S = SLS

Gobs (or S = SKL
Gobs,σ) by Lemma 3.3.4 as the quantity

1
α

(
SLS
Gobs

)∗ (
−α(ξ† − ξ̂α)

)
almost surely equals ∞ if Z /∈ L2. To see this note that by (3.9)

and (3.13) we have
(
SLS
Gobs

)∗
(−α(ξ† − ξ̂α)) = sup

h∈Bγp,1(M)

[
〈−αξ† + 2g† − T f̂α, h〉 −

1
2‖h‖

2
L2 + 2〈εZ, h〉

]
.

Whilst the first two terms can be bounded by ‖h‖L2 the last term can not. Thus there is
a sequence (hn) ⊂ Bγ

p,1(M) with ‖hn‖L2 ≤ C and 〈εZ, hn〉 → ∞.
Last but not least there are of course a lot of regularization methods, penalty and data

fidelity terms that we did not consider in this work. It would be interesting to investigate
on which of those the methods that we outlined can be applied.
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Appendix

A.1 Normed vector spaces

Theorem A.1.1 (Bounded inverse theorem). Let X ,Y Banach spaces and T : X → Y
linear, bounded and bijective. Then the inverse operator T−1 is also linear and bounded.

Proof. [60, Cor. 2.12].

Definition A.1.2. Let X ,Y be normed spaces. F : X → Y is called Fréchet differentiable
in x ∈ X if there exists a bounded linear operator F ′[x] : X → Y such that

lim
h→0

1
‖h‖X

‖F(x+ h)−F(x)−F ′[x]h‖ = 0.

A.2 Function spaces

Besov spaces Bs
p,q(Rd) are function spaces that allow to measure smoothness s and

integrability p of a function and generalize other common function spaces. To this end
one has the additional fine tune parameter q. For example Sobolev spaces are given by
Bs

2,2(Rd) = Hs
2(Rd) for all s ∈ R and in particular B0

2,2(Rd) = L2(Rd).
We do not intend to give a full overview over Besov spaces, but will rather state the

theorems, that we need for our proof. In particular we will give no definition of Bs
p,q(Rd)

as we actually are interested in Bs
p,q(M) for a bounded Lipschitz domain M or M = Td,

the d-dimensional torus. However it is the standard approach to Besov spaces to start
with Bs

p,q(Rd) and then go to other domains and we refer the reader who wants to have a
thorough understanding of Besov spaces to [33, 69]. We also neglect the d-dimensional
torus, however it can be defined by a wavelet basis as in Definition A.2.3 below (see [33] or
[74]) and properties can be transfered from Bs

p,q(Rd) to Bs
p,q(Td) as described in [69, Ch.

9].
Let from now on M ⊂ Rd be a bounded Lipschitz domain. We will define Bs

p,q(M) in
two ways: first via restrictions from Rd to M and secondly via wavelet coefficients.

Definition A.2.1. Let 1 ≤ p, q ≤ ∞, define

Bs
p,q(M) =

{f ∈ D′(M) : f = g|M, g ∈ Bs
p,q(Rd)} if s ≤ 0

{f ∈ D′(M) : f = g|M, g ∈ Bs
p,q(Rd), supp g ⊂M} if s > 0.

and

‖f‖Bsp,q(M) = inf‖g‖Bsp,q(Rd),



124 A. Appendix

where the infimum is taken over all extensions g as above. For s > 0 denote Hs
0(M) =

Bs
2,2(M) and define the spaces

B̃s
p,q(M) = {f ∈ D′(M) : f = g|M, g ∈ Bs

p,q(Rd)}

with the norm given again by the infimum over the norm of all such extensions. Denote
Hs(M) = B̃s

2,2(M).

We only introduce the Sobolev spaces Hs
0(M), Hs(M) as special cases of the defined

Besov spaces, but one can also show that this definition coincides with more intrinsic
definitions for example by distributional derivatives for s ∈ N or by moduli of smoothness
(see [71, Remark 2.3]).
Theorem A.2.2. Let k ∈ N0. An equivalent norm on Hs(M) is given by

‖f‖ =
∑
|α|≤k
‖Dαf‖L2 .

Definition A.2.3. Let for u ∈ N,{
Φj
l : j ∈ N0, l = 1, . . . Nj

}
with Nj ∈ N ∪ {∞}

be an orthonormal wavelet basis of L2(M) (as in [71, Def. 2.4,2.31 and Thm. 2.33]). Then
we can define

Bs,W
p,q (M) = {f ∈ D′(M) : f =

∞∑
j=0

∑
l∈Nj

λjlΦ
j
l , ‖f‖Bs,Wp,q (M) <∞},

where

‖f‖Bs,Wp,q (M) =

 ∞∑
j=0

2jsq2jd( 1
2−

1
p

)q

∑
l∈Nj
|λjl |p


q
p


1
q

,

where one has to replace the lq (or lp) norm by the l∞ norm for q =∞ (or p =∞).

Actually both definitions give the same space for a suitable wavelet basis by [71, Thm.
3.23, Cor. 3.25].
Theorem A.2.4. Let (Φj

k) be a u-wavelet basis as in [71, Def. 2.4,2.31 and Thm. 2.33].
Then we have for all 1 ≤ p, q ≤ ∞, |s| < u that Bs

p,q(M) = Bs,W
p,q (M) with equivalent norms.

We have the following embedding results.
Theorem A.2.5. Let p1, p2, q1, q2 ∈ [1,∞], s1, s2 ∈ R with s1 < s2, then

Bs1
p1,q1(M) ⊂ Bs2

p2,q2(M)

if s1 − d
p1

= s2 − d
p2

and q1 = q2

or if s1 − d
p1
> s2 − d

p2
.

Let 1 ≤ p1 ≤ p2 ≤ ∞, q ∈ [1,∞] and s ∈ R then

Bs
p2,q(M) ⊂ Bs

p1,q(M).

Let p ∈ [1,∞], then

B0
p,min(p,2) ⊂ Lp(M) ⊂ B0

p,max(p,2).

All above embeddings are continuous.
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Proof. As in [69, Theorem 3.3.1] the first embedding follows directly from the definition
and the corresponding embeddings for Bs

p,q(Rd) and the second basically by boundedness
of M, compare [69, Lemma 3.3.1]. The final embedding is given by [69, Proposition 3.2.4]
together with the fact that F 0

p,2(M) = Lp(M), compare [69, 3.4.2/(1)].

From the above embeddings we can in particular conclude that the Besov spaces form
scales with respect to the smoothness and fine tune parameter: For s ∈ R, p ∈ [1,∞],
1 ≤ q1 ≤ q2 ≤ ∞ and ε > 0 we have

Bs+ε
p,∞ ⊂ Bs

p,1 ⊂ Bs
p,q1 ⊂ Bs

p,q2 ⊂ Bs
p,∞ ⊂ Bs−ε

p,1 . (A.1)

It is crucial for our work that we have the following duality result [71, Thm. 3.30].

Theorem A.2.6. Let 1 ≤ p, q <∞, s ∈ R, then(
Bs
p,q(M)

)∗
= B−sp′,q′(M).

Furthermore we need the following interpolation inequalities.

Theorem A.2.7. Let 1 < p < ∞, −∞ < s1 < s < s2 < ∞, q, q1, q2 ∈ [1,∞] and let
θ = s−s1

s2−s1 then (
Bs1
p,q1(M), Bs2

p,q2(M)
)
θ,q

= Bs
p,q(M)

and there exists Cq,θ > 0 such that

‖f‖Bsp,q(M) ≤ Cq,θ‖f‖1−θ
B
s1
p,q1 (M)‖f‖

θ
B
s2
p,q2 (M).

Proof. By [71, Thm. 4.19] we get the interpolation statement, which gives the inequality
by [68, Thm. 1.33].

For the case of the Kullback-Leibler fidelity term we also need the following two results.

Theorem A.2.8. Let f ∈ Bs
p,q(M), g ∈ B̃s

p,q(M) with 1 ≤ p, q ≤ ∞ and s > d/p, then
fg ∈ Bs

p,q(M) and there exists C > 0 such that

‖fg‖Bsp,q(M) ≤ C‖f‖Bsp,q(M)‖g‖B̃sp,q(M).

Proof. For M = Rd the statement follows from [69, Thm. 2.83]. To transfer it to bounded
Lipschitz domains we use Definition A.2.1. We have s > d/p > 0, so we know that
there exist f̃ , g̃ ∈ Bs

p,q(Rd), supp(f̃) ⊂ M such that f = f̃ |M and g = g̃|M. As we have
f̃ g̃ ∈ Bs

p,q(Rd) with supp(f̃ g̃) ⊂M and fg = f̃ g̃|M we know that fg ∈ Bs
p,q(M). The norm

is given by

‖fg‖Bsp,q(M) = inf{‖h‖Bsp,q(Rd) : h ∈ Bs
p,q(Rd), fg = h|M, supp(h) ⊂M}

≤ inf{‖f̃ g̃‖Bsp,q(Rd) : f̃ , g̃ ∈ Bs
p,q(Rd), fg = f̃ g̃|M, supp(f̃ g̃) ⊂M}

≤ inf{C‖f̃‖Bsp,q(Rd)‖g̃‖Bsp,q(Rd) : f̃ , g̃ ∈ Bs
p,q(Rd), f = f̃ |M, g = g̃|M, supp f̃ ⊂M}

= C‖f‖Bsp,q(M)‖g‖B̃sp,q(M).
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Theorem A.2.9. (a) Let f ∈ Hs(M) with s ≥ d/2 and f ≥ c > 0. Then log(f), 1/f ∈
Hs(M). Further let m− 1 < s ≤ m with m ∈ N, then

‖log(f)‖Hs(M) ≤ C min(1, c)−m
(
‖f − 1‖Hs + ‖f − 1‖max(1,s)

Hs

)
‖1/f‖Hs(M) ≤ C min(1, c)−m−1(‖f‖Hs + ‖f‖sHs).

(b) For p ∈ {2,∞} let f ∈ B̃s
p,∞(M) for some s > d/p with f ≥ c > 0. Then

log(f), 1/f ∈ B̃s
p,∞(M).

Proof. Let h̃ : [c− 1,∞)→ R, x 7→ log(1 + x), then h̃ can for all n ∈ N be continued to
a function h : R → R such that h(0) = 0 and there exists C > 0 such that ‖h′‖Cn−1 ≤
C min(1, c)−n (with constant independent of c > 0). Similarly let g̃ : [c,∞)→ R, x 7→ 1/x,
then g̃ can for all n ∈ N be continued to a function g : R → R such that g(0) = 0 and
there exists C > 0 such that ‖g′‖Cn−1 ≤ C min(1, c)−n−1.

(a) We first prove the statements for f ∈ Hs(Rd). By Theorem A and the following
remarks in [1] we have

‖h ◦ (f − 1)‖Hs(Rd) ≤ C‖h′‖Cm−1

(
‖f − 1‖Hs(Rd) + ‖f − 1‖max(1,s)

Hs(Rd)

)
.

Let now f̃ ∈ Hs(M), then for all ε > 0 there exists f ∈ Hs(Rd) with f̃ = f |M and
‖f‖Hs(Rd) ≤ ‖f̃‖Hs(M) + ε. As above we have log(f) ∈ Hs(Rd) with

‖log(f)‖Hs(Rd) ≤ C min(1, c)−m
(
‖f̃ − 1‖Hs(M) + ε+ (‖f̃ − 1‖Hs(M) + ε)max(1,s)

)
.

Of course log(f̃) = log(f)|M, thus log(f) ∈ Hs(M) and we can let ε go to zero to
show the claimed inequality. The same argument can be applied for the reciprocal.

(b) We have by [8, Thm. 6] (for 0 < s < 1) and [8, Thm. 10] (for s > max(d/p, 1)) that
for f ∈ Bs

p,∞(Rd) we have h ◦ f, g ◦ f ∈ Bs
p,∞(Rd). The claim for M instead of Rd

follows simply from Definition A.2.1.

Theorem A.2.10. Let s ∈ {0, 1, 2}, f ∈ Hs(M), f ≥ c > 0 and M given by the d-
dimensional torus or a bounded Lipschitz domain in Rd. In the latter case assume that
f = h+ c, where h ∈ Hs

0(M). Then log(f), 1/f ∈ Hs(M) and

‖log(f)‖Hs(M) ≤ C min(1, c)−1‖f − 1‖Hs

‖1/f‖Hs(M) ≤ C min(1, c)−2‖f‖Hs .

Proof. We will only consider the more interesting case of small c ≤ 1, as the other case
should then be clear. We show the claim for the equivalent norm from Theorem A.2.2.
We will use the short notation ∂i = ∂

∂xi
. For both s = 0, 1 the claims are quite clear. We

have | log(x)| ≤ max
(
x− 1, 1−x

c

)
≤ 1

c
|x− 1|.

‖log(f)‖2
L2 ≤

1
c2

∫
M
|f − 1|2 = 1

c2‖f − 1‖2
L2 . (A.2)
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Further by 1/f = f/f 2 we have ‖1/f‖L2 ≤ 1/c2‖f‖L2 and by

∫
M

(
∂if

fn

)2

dx ≤ 1
c2n

∫
M
|∂if |2dx

we get both ‖log(f)‖H1(M) ≤ Cc−1‖f − 1‖H1 and ‖1/f‖H1(M) ≤ Cc−2‖f‖H1 . The more
interesting part are the estimates for s = 2. Basically we have to understand ‖∂i∂j log(f)‖L2

(the estimates for the reciprocal 1/f then follow by pulling out ‖1/f‖L∞ of the norm). We
have

‖∂i∂j log(f)‖L2 =
∥∥∥∥∥(∂i∂jf)

f
− (∂if)(∂jf)

f 2

∥∥∥∥∥
L2
≤ 1
c
‖∂i∂jf‖L2 +

∥∥∥∥∥(∂if)(∂jf)
f 2

∥∥∥∥∥
L2
.

The first term is good, but we need to find a bound for the second. We have
∫
M

(∂if)2(∂jf)2

f 4 dx =
∫
M

(∂if)
([

(∂if)(∂jf)2

f 4 − 2(∂jf)(∂i∂jf)
3f 3

]
+ 2(∂jf)(∂i∂jf)

3f 3

)
dx

=
∫
M

(∂2
i f)(∂jf)2

3f 3 dx+ 2
3

∫
M

(∂if)(∂jf)(∂i∂jf)
f 3 dx

≤ 1
3

(
1
2

∫
M

(∂2
i f)2

f 2 dx+ 1
2

∫
M

(∂jf)4

f 4 dx
)

+ 2
3

(
1
2

∫
M

(∂i∂jf)2

f 2 dx+ 1
2

∫
M

(∂if)2(∂jf)2

f 4 dx
)
.

The second equality follows from integration by parts, where the boundary terms vanish
due to periodicity, and the last inequality by two times Young’s inequality. For i = j we
can conclude

∫
M

(∂jf)4

f 4 dx ≤
∫
M

(∂2
j f)2

f 2 dx

and with this also∥∥∥∥∥(∂if)(∂jf)
f 2

∥∥∥∥∥
2

L2
=
∫
M

(∂if)2(∂jf)2

f 4 dx ≤ 1
4

∫
M

(∂2
i f)2 + (∂2

j f)2 + 2(∂i∂jf)2

f 2

≤ 1
4c2

(
‖∂2

i f‖2
L2 + ‖∂2

j f‖2
L2 + 2‖∂i∂jf‖2

L2

)
,

which concludes the proof.

Remark A.2.11. The above theorem improves the estimates from Theorem A.2.9 both
in the constant c > 0 and it allows to forget the additive norm power for s = 2. This is
crucial in Proposition 4.2.4 and also generally the constants obtained for Poisson data
could improve a lot by estimates of this form . However, even though we suppose that these
estimates should hold for all s > 0, it is not known to us whether this is true. Also the
extension to B̃s

p,q is an open problem.
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Corollary A.2.12. Let σ > 0, B ≥ 1 and s ≥ d/2. Let g, g† ∈ Hs(M), with g† ≥ 0, g ≥
−σ/2, ‖g‖Hs , ‖g†‖Hs ≤ B. Then we have∥∥∥∥∥log

(
g + σ

g† + σ

)∥∥∥∥∥
L2
≤ Cg†,σ

∥∥∥g − g†∥∥∥
L2
, with Cg†,σ = 2‖g

†‖L∞ + σ

σ

∥∥∥∥∥ 1
g† + σ

∥∥∥∥∥
L∞
, (A.3)

∥∥∥∥∥log
(
g + σ

g† + σ

)∥∥∥∥∥
Hs

≤

Cg†,σ,s
∥∥∥g − g†∥∥∥

Hs
if s ∈ {1, 2}

Cg†,σ,sB
max(1,s)−1

∥∥∥g − g†∥∥∥
Hs

else,
(A.4)

∥∥∥∥∥g† + σ

g + σ

∥∥∥∥∥
Hs

≤ Cσ,sB
max(1,s)−1

∥∥∥g − g†∥∥∥
Hs
. (A.5)

Proof. Again we only consider small σ ≤ 1. In the other case the constants simplify. We
have g+σ

g†+σ ≥
σ

2(‖g†‖L∞+σ) and thus by (A.2) that A.2.10∥∥∥∥∥log
(
g + σ

g† + σ

)∥∥∥∥∥
L2
≤ 2(‖g†‖L∞ + σ)

σ

∥∥∥∥∥ g + σ

g† + σ
− 1

∥∥∥∥∥
L2
≤ 2‖g

†‖L∞ + σ

σ

∥∥∥∥∥ 1
g† + σ

∥∥∥∥∥
L∞

∥∥∥g − g†∥∥∥
L2
.

By Theorems A.2.9 and A.2.8 we have for m− 1 < s ≤ m that∥∥∥∥∥log
(
g + σ

g† + σ

)∥∥∥∥∥
Hs

≤ C

(
σ

‖g†‖∞ + σ

)−m(∥∥∥∥∥ g + σ

g† + σ
− 1

∥∥∥∥∥
Hs

+
∥∥∥∥∥ g + σ

g† + σ
− 1

∥∥∥∥∥
s

Hs

)

≤ C

(
σ

‖g†‖∞ + σ

)−m(∥∥∥∥∥ 1
g† + σ

∥∥∥∥∥
Hs

∥∥∥g − g†∥∥∥
Hs

+
∥∥∥∥∥ 1
g† + σ

∥∥∥∥∥
s

Hs

∥∥∥g − g†∥∥∥s
Hs

)

≤ C

(
σ

‖g†‖∞ + σ

)−m∥∥∥∥∥ 1
g† + σ

∥∥∥∥∥
Hs

1 +
∥∥∥∥∥ B

g† + σ

∥∥∥∥∥
s−1

Hs

∥∥∥g − g†∥∥∥
Hs

and Theorem A.2.10 gives the improved constants for s = 1, 2. Finally we have again by
Theorems A.2.8 and A.2.9 that∥∥∥∥∥g† + σ

g + σ

∥∥∥∥∥
Hs

≤ C

∥∥∥∥∥ 1
g + σ

∥∥∥∥∥
Hs

∥∥∥g − g†∥∥∥
Hs
≤ Cσ−m−1(‖g + σ‖Hs + ‖g + σ‖sHs)

∥∥∥g − g†∥∥∥
Hs
,

which concludes the proof.

The final result gives the projections Pk that we need for the verification of our
assumptions and crucial inequalities on them.

Proposition A.2.13. Let for s < t and u > |s|, |t| an u-wavelet basis as in Theorem
A.2.4 be given by (Φj

l ). Define Pk : Bs
p,q(M)→ Bs

p,q(M) by

Pkf =
k∑
j=0

∑
l∈Nj

λjlΦ
j
l , for f =

∞∑
j=0

∑
l∈Nj

λjlΦ
j
l .

Then we have for s < t and q̃ ∈ [1,∞] the Bernstein and Jackson inequalities

‖Pkf‖Btp,q(M) ≤ C2kq(t−s)‖f‖Bsp,q̃(M) (A.6)
‖(I − Pk)f‖Bsp,q(M) ≤ C2kq(s−t)‖f‖Btp,q̃(M). (A.7)

Proof. As in [74, Example 3.9].
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A.3 List of symbols

In the following we list some of the symbols that recur throughout this thesis.

Spaces and domains

X Banach space containing causes of an inverse problem
X ∗ dual space of X
Y Banach space containing effects of an inverse problem
R R := R ∪ {−∞,∞}
Td d-dimensional Torus
M generic domain (usually either a bounded Lipschitz domain in Rd or Td)
M0 see Assumption 5.1.8
Bs
p,q(M) Besov space, see Section A.2

B̃s
p,q(M) see Definition A.2.1

Hs(M) Sobolev space, see Section A.2
Hs

0(M) see Definition A.2.1

Functions

F Forward operator of an inverse problem, F : X → Y
T linear forward operator, T : X → Y
T ∗ adjoint operator of T , T ∗ : Y∗ → X ∗

f generic function f ∈ X
g generic function g ∈ Y
f † true solution of an inverse problem
f̂α Tikhonov minimizer, see Chapter 3
ξ̂α dual Tikhonov minimizer, see (3.4)
ξ† source element T ∗ξ† ∈ ∂R(f †)
ω† source element Tω† ∈ ∂S∗p(ξ†)
g† exact data of an inverse Problem, g† = F (f †)
gobs noisy data of an inverse Problem (deterministic)
Gobs random variable modelling the data, see Section 1.4
Z random variable modelling the noise, Gobs = g† + Z

W Gaussian white noise, see Definition 1.4.2
Gt temporally normalized Poisson process, see Definition 1.4.8
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F generic Functional, F : X → R
F∗ convex conjugate of F , see Definition 2.1.13
∂F(x) subdifferential of F at x, see Definition 2.1.9
∆f∗

F (·, ·) Bregman divergence, see Definition 2.2.1
Jp duality mapping, see (2.9)
R Tikhonov penalty functional, see Chapter 3
S Tikhonov data fidelity functional, see Chapter 3
Sp(g) Sp(g) = 1

p
‖g‖pY , see Section 3.2.1

Spg̃ (g) Spg̃ (g) = Sp(g − g̃), see Section 3.2.1
SLS
Gobs least squares data fidelity for statistical noise, see Section 3.2.2

KL Kullback-Leibler divergence, see Section 2.3
KLσg†(g) KLσg†(g) := KL(g† + σ, g + σ) for σ ≥ 0
SKL
Gobs,σ Kullback-Leibler data fidelity for statistical noise, see Section 3.2.3
S† “exact data fidelity”, see Definition 4.1.1
err effective noise level, see Definition 4.1.1
Φ generic index function, see Definition 4.3.1
Ψ index function for statistical second order rates, see (4.17)

χB characteristic function of B ⊂ X , χB(f) =

0 if f ∈ B
∞ else

Constants

α regularization parameter, α > 0
a (Besov) regularity of the image of F or T , see e.g. Assumption 5.1.8
a0 restriction of a to values {1, 2} emerging from Proposition 4.2.4
γ (Besov) regularity of the noise Z, see Assumption 1.4.1
δ deterministic noise level, δ > 0
d dimension of measurement domain M, d ∈ N
ε statistical noise constant, see (1.7)
κk, νk see either Proposition 4.3.6, Assumption 4.4.4, Prop. 5.1.3 or Prop. 5.1.6
σ offset parameter in SKL

Gobs,σ, σ ≥ 0, see Section 3.2.3
s (Besov) regularity of the true solution f †, s > 0
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[79] C. Zǎlinescu. On uniformly convex functions. Journal of Mathematical Analysis and
Applications, 95(2):344–374, 1983.



Benjamin Sprung
Curriculum Vitae

Personal Details
Address Institute for Numerical and Applied Mathematics

University of Göttingen
Lotzestraße 16 – 18
37083 Göttingen, Germany

Email b.sprung@math.uni-goettingen.de
Date of birth 23.06.1990
Place of birth Stuttgart, Germany

Education
Since 02/2016 Ph.D. student in the program “Mathematical Sciences”

University of Göttingen
Adviser: Prof. Dr. Thorsten Hohage

10/2013 –
09/2015

Graduate studies in Mathematics
University of Göttingen
Degree: Master of Science
Master Thesis: “Moments of symmetric square L-functions”

10/2010 –
09/2013

Undergraduate studies in Mathematics
University of Göttingen
Degree: Bachelor of Science
Bachelor Thesis: “Der grösste gemeinsame Teiler in arithmetischen Progres-
sionen”

06/2009 Secondary Education and ‘Allgemeine Hochschulreife’
Tilmann-Riemenschneider-Gymnasium Osterode am Harz

Research and Teaching Experience
Since 08/2016 Associated Member of the RTG 2088 “Discovering structure in complex data:

Statistics meets Optimization and Inverse Problems”

2/2016 – 6/2019 Member of the CRC 755 “Nanoscale Photonic Imaging” in the project C9
“Inverse problems with Poisson data”

10/2018 –
03/2019

Teaching Assistant for the lecture “Numerische Mathematik 1” at the Insti-
tute for Numerical and Applied Mathematics, University of Göttingen



10/2011 –
03/2014

Student Assistant for the lecture “Analytische Geometrie und Lineare Algebra
I” at the Mathematical Institute, University of Göttingen

08/2012 –
09/2012

Student Assistant for the lecture “Di�erential- und Integralrechnung I Som-
merstudium” at the Mathematical Institute, University of Göttingen

10/2013 –
03/2014

Student Assistant for the lecture “Di�erential- und Integralrechnung I” at
the Mathematical Institute, University of Göttingen

Publications
B. Sprung. Upper and lower bounds for the bregman divergence. Journal
of Inequalities and Applications, 2019(1), jan 2019.

B. Sprung and T. Hohage. Higher order convergence rates for Bregman
iterated variational regularization of inverse problems. Numer. Math,
141(1):215–252, 2019.

F. Weidling, B. Sprung, and T. Hohage. Optimal convergence rates for
tikhonov regularization in besov spaces. arXiv:1803.11019, 2018.


	Acknowledgements
	Contents
	Introduction
	Inverse problems and regularization theory
	Inverse problems
	Regularization theory
	Tikhonov regularization
	Statistical noise models
	Gaussian white noise
	Poisson point process
	Discretization


	Notational conventions
	Convex Analysis and the Bregman divergence
	Basics
	Upper and lower bounds for the Bregman divergence
	Kullback-Leibler divergence

	Generalized Tikhonov regularization
	Duality
	Examples
	Deterministic data fidelity
	Least squares data fidelity for random noise
	Kullback-Leibler type data fidelity for random noise
	Norm power penalty
	Cross entropy penalty

	Bregman iteration

	Error estimates
	Effective noise level
	Bounds on regularized solutions
	(First order) Variational source conditions
	Regularization error bounds
	Outlook: Verification of variational source conditions
	The stochastic setting

	Second order source conditions
	The deterministic case
	The stochastic case

	Higher order variational source conditions
	Hilbert spaces
	Banach spaces


	Verification of source conditions
	General strategies and assumptions
	Verification of first order VSCs
	Verification of second order source conditions
	Verification of third order VSCs
	Required properties of penalty functionals
	a-smoothing forward operator

	Maximum entropy regularization
	Convergence rates under Hölder-Zygmund smoothness assumptions
	Convergence rates under boundedness assumptions
	Numerical results

	Besov norm regularization
	Upper bounds
	Lower bounds

	Quadratic regularization on Hilbert spaces
	Deterministic convergence rates
	Statistical convergence rates
	Converse and saturation results for Gaussian white noise


	Discussion and outlook
	Appendix
	Normed vector spaces
	Function spaces
	List of symbols

	Bibliography
	Curriculum Vitae

