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1 Abstract 

The integrated stress response (ISR) is activated following various stress stimuli which leads to the 

phosphorylation of the translation initiation factor eIF2alpha. Phosphorylation of eIF2alpha blocks 

cap−dependent translation as it prevents the recruitment of ribosomes and initiator tRNAs to the 5’ cap 

of the mRNA. On the other hand, translation of certain mRNAs coding for stress-responsive proteins is 

upregulated through cap-independent translation. One major downstream target of the ISR is ATF4, 

whose translation is enhanced when cap-dependent translation is impaired. Therefore, stimulation of 

the ISR leads to a block in global protein synthesis and also enrichment of the ATF4 transcription 

factor. Both inhibiting protein synthesis and upregulating ATF4 play important roles in ensuring survival 

during cellular stress. ATF4 can activate genes involved in maintaining survival of these cells. In 

addition, inhibiting protein synthesis helps the cell preserve energy and nutrients when conditions are 

unfavourable. As DNA replication is a highly regulated and energy-consuming process, we 

hypothesised that ISR activation should also hinder DNA replication for the same reason. 

Indeed, we found that activation of the ISR dramatically impairs DNA synthesis. This was observed 

within an hour of ISR stimulation and occurred independently of ATF4. Furthermore, this inhibition of 

DNA replication was not accompanied by an induction of the DNA damage response signalling. ISR led 

to the depletion of newly synthesised histones, likely through its role in blocking protein synthesis. Lack 

of histones upon ISR favoured a more open chromatin and accumulation of DNA:RNA hybrids 

(R−loops) which are responsible for inhibiting DNA replication. Conversely, the addition of histones or 

removal of R-loops following ISR induction significantly restored DNA replication progression. More 

importantly, the stalling of DNA replication in the context of ISR aids in cellular survival as removal of 

R−loops negatively impacted the long-term proliferation of these cells. Taken together, our study further 

expands the role of the ISR from blocking protein synthesis to directly hindering DNA replication.  

Due to its pro-survival role, some tumours have been shown to rely on the ISR to grow in 

nutrient−limiting conditions. In addition, the ISR has also been implicated in chemoresistance, although 

most of these studies involve the transcriptional programme changes following ATF4 induction. Our 

study suggests that the ISR could also mediate chemoresistance in tumours through slowing down 

DNA replication. Moreover, we found that this impairment in DNA replication protects cellular viability 

during stress. Although this warrants further investigation, inhibiting the ISR would be an attractive 

therapeutic option for cancer. This is especially important for solid tumours growing in areas with limited 

access to nutrients and oxygen, and are therefore dependent on the ISR for survival.  
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2  Introduction 

2.1 Central dogma of Molecular Biology 

The central dogma of Molecular Biology explains how genetic data coded within the DNA is converted 

to functional proteins in a biological system (Fig. 2.1) (Pukkila, 2001; Clancy and Brown, 2008). Double 

stranded DNA is replicated to form two identical strands which are passed on to each daughter cell 

during cellular division. This process maintains the genetic information within the organism. Genetic 

information (genes) encoded in the DNA is then transcribed into messenger RNAs (mRNAs), which are 

then processed and ultimately exported out of the nucleus. In the cytoplasm, this mRNA encounters the 

translational machinery where the information in the mRNA is translated into specific amino acids. The 

chain of amino acid forms a polypeptide, which is properly folded to form a fully functional protein. 

It is therefore essential that such processes (replication, transcription and translation) are properly 

regulated within a system to maintain proper homeostasis. In cancer, these processes are hijacked to 

allow for uncontrolled growth of cells. In this study, we touch on the 3 processes, how they are 

individually regulated and the possible interplay between them.  

 

Figure 2.1: The central dogma. Duplication 

of the double stranded DNA during DNA 

replication ensures that each daughter cell 

acquires an exact copy of the genetic 

information. The information encoded in the 

DNA (nucleotides) is then transcribed into 

messenger RNAs (mRNAs). These mRNAs 

are later translated into amino acids where 

they form a polypeptide chain.   
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2.2 Translational initiation – the rate limiting step of protein synthesis 

As briefly introduced in Section 2.1, translation occurs when an mRNA sequence is converted into an 

amino acid sequence. Similar to other cellular processes, translation is highly regulated involving many 

translation factors. Translational control provides the means for the cell to rapidly regulate expression of 

certain proteins (Sonenberg and Hinnebusch, 2009). As soon as the mRNA is transcribed from the 

template DNA, it undergoes multiple modifications in the nucleus. First, a 7-methyl guanosine 

triphosphate (m7GTP) moiety is added to the 5’ end of the RNA. This protects the RNA from 

degradation by 5’ to 3’ exonucleases (Gagliardi and Dziembowski, 2018). Then, introns are spliced out 

and the 3’ end is poly-adenylated. The mRNA is then exported out of the nucleus to be translated 

(Hocine, Singer and Grünwald, 2010). Translation occurs in three steps: initiation, elongation and 

termination. Here, we mainly focus on the initiation of translation, which is also the rate limiting step and 

the step that is most highly regulated (Choe et al., 2018; Tahmasebi et al., 2018). In eukaryotes, 

translation occurs on circularised mRNA. This is through the interaction between the m7GTP moiety at 

the 5’ end of the mRNA (or the cap) with the poly-A tail at its 3’ end (Tahmasebi et al., 2018). 

Circularisation of the mRNA is crucial as it signals the translational machinery that the mRNA is intact, 

thus preventing the translation of non-functional mutant forms of the protein (Kahvejian, Roy and 

Sonenberg, 2001; Svitkin and Sonenberg, 2006). Translation initiation can occur through two main 

mechanisms: cap-dependent initiation or cap-independent initiation, both of which will be discussed 

briefly below. 

2.2.1 Cap-dependent initiation  

Most mRNAs in a cell are translated through a cap-dependent mechanism where the initiation of 

translation starts at the 5’ cap of the mRNA. Once an mRNA leaves the nucleus, it is bound to the 

cap−binding complex, the eukaryotic initiation factor 4F (eIF4F). The eIF4F complex is composed of the 

RNA helicase (eIF4A) which unwinds secondary structures on the mRNA, the cap-binding protein 

(eIF4E), and the scaffold protein (eIF4G) which interacts with both the poly-A binding protein (PABP) at 

the 3’ end of the mRNA and the cap-binding protein eIF4E at the 5’ end of the mRNA (Fig. 2.2) 

(Kahvejian, Roy and Sonenberg, 2001; López-Lastra, Rivas and Barría, 2005). eIF2 (a complex of 

alpha, beta and gamma subunits) is involved in recruiting the ribosomes to the cap of the mRNA. Under 

normal conditions, the alpha subunit of eIF2 is not phosphorylated (discussed in Section 2.3.2) 

(Silvera, Formenti and Schneider, 2010). Unphosphorylated eIF2 enables the eIF2B guanine exchange 

nucleotide factor to exchange the GDP-bound eIF2 to GTP, providing the necessary energy required in 
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the following steps of translation initiation (Sonenberg and Hinnebusch, 2009). eIF2-GTP can then bind 

to an initiator methionyl-tRNA and eIF3, which recruits the small ribosomal subunit (40S), making the 

pre-initiation complex (PIC) (Merrick and Pavitt, 2018). The PIC associates with the cap of the mRNA, 

where the 40S ribosomal subunit scans the mRNA for an initiator codon (AUG) to begin translation at 

an open reading frame (ORF) (Richter and Sonenberg, 2005). Once the complex reaches an AUG start 

site, GTP is hydrolysed to GDP, resulting in a conformational change and the ejection of eIF2 from the 

ribosome. The larger ribosomal 60S subunit then binds to the small subunit and the remaining mRNA is 

translated (Hershey, Sonenberg and Mathews, 2012).  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Mechanism of cap-dependent translation. The eIF4F complex is recruited to the 5’ cap of the mRNA (m
7
G) 

where eIF4E binds the cap. The scaffold protein eIF4G binds to both the poly-A binding protein (PABP) and eIF4A/eIF4E, 

producing a circularised complex with the mRNA. When eIF2 is unphosphorylated, GDP can be exchanged to GTP by the 

guanine exchange nucleotide factor, eIF2B. eIF2-GTP recruits eIF3, initiator methionyl-tRNA and the 40S ribosome subunit, 

forming a pre-initiation complex (PIC) that can then be recruited to the mRNA via interaction with the eIF4F complex. The 40S 

ribosome starts scanning along the mRNA until it reaches a start codon (AUG). Upon hydrolysis of the bound GTP, 

conformational changes occur resulting in the ejection of eIF2 and subsequent binding of the 60S subunit as translation 

proceeds. Phosphorylation of eIF2 at the alpha subunit occurs downstream of multiple kinases (discussed in Section 2.3.2) 

and inhibits cap-dependent translation by inhibiting the exchange of GDP to GTP. Figure adapted and modified from Silvera, 

Formenti and Schneider, 2010.   
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2.2.2 Cap-independent initiation 

In addition to cap-dependent translation initiation, cells can also initiate translation via a 

cap−independent manner. This usually occurs under conditions where cap-dependent translation is 

inhibited. Although the majority of mRNAs in a cell relies on cap-dependent translation, some mRNAs 

can be translated irrespective of the 5’ cap. These mRNAs usually code for proteins necessary for 

stress response and their translation is usually inhibited under non-stressed conditions (Komar and 

Hatzoglou, 2011). In eukaryotic cells, cap-independent translation initiation can occur through re-

initiation or through an internal ribosomal entry site (IRES).  

Re-initiation 

A single mRNA may contain untranslated open reading frames (uORFs) upstream of the real ORF. 

These uORFs ensure that under unstressed conditions, the real ORFs are not translated at high 

efficiency. Once the small ribosomal subunit begins scanning the mRNA for the first AUG codon, it 

arrives at the first uORF (usually coding for a 3 amino acid polypeptide) and begins translation of the 

non-productive polypeptide. Upon arrival at the termination signal, the short uORF allows the 40S 

ribosome (together with eIF3, and possibly eIF4G) to remain on the mRNA as it scans for the next start 

codon (Kozak, 2001; López-Lastra, Rivas and Barría, 2005). When the tertiary complex (eIF2, GTP, 

Met-tRNAi) is of abundance (in unstressed cells), re-initiation of the second, third (or fourth) uORFs 

occurs efficiently and the real ORF is skipped. When the tertiary complex is limiting (stressed cells), 

re−initiation is inefficient (Somers, Pöyry and Willis, 2013). As the small ribosomal subunit scans 

through the last uORF, it misses the AUG codon and continues scanning. This allows the real ORF 

downstream to be recognised, allowing translation to begin, producing a productive polypeptide (Fig. 

2.3) (Morris and Geballe, 2000).  
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Figure 2.3: Re-initiation of translation. Once the tertiary complex (eIF2, GTP, methionyl initiator tRNA) and the 40S 

ribosome binds to the 5’ cap, the 40S ribosome scans for the first AUG start codon and starts translating as it reaches the first 

untranslated open reading frame (uORF). The short uORF allows the small 40S subunit to remain on the mRNA upon 

termination to resume scanning. When the tertiary complex is abundant, re-initiation of translation can occur efficiently at the 

next uORF, producing a non-productive polypeptide. When conditions are non-permitting (stress), eIF2 phosphorylation limits 

the tertiary complex available for re-initiation. This 40S ribosome continues scanning until it reaches the real ORF and initiates 

translation, producing the protein of interest. Figure adapted and modified from Somers, Pöyry and Willis, 2013. 

 

Internal ribosomal entry site (IRES)  

IRES is a site within the mRNA that allows binding of the translation machinery independent of the 5’ 

cap or the cap-binding eIF4E protein. Such sites are usually secondary structures on the mRNA that 

enable ribosomal binding (Fig. 2.4) (Shatsky et al., 2010; Komar and Hatzoglou, 2011). Translation 

initiation from these sites can occur with various subsets of the cap-dependent initiation factors 

(Ohlmann et al., 1996). IRES is present in many viral RNAs (Kieft, 2008). Viruses hijack the 

translational machinery of their host by blocking cap-dependent translation through the cleavage of 
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eIF4G. This allows continuous synthesis of viral proteins despite the inhibition of cap-dependent 

translation. To date, there has been no consensus on which initiation factors are required for IRES-

dependent translation initiation and different IRES structures require different subsets of IRES 

transacting factors (ITAFs) (Pilipenko et al., 2000). However, the eIF4E cap-binding protein was found 

to be dispensable for IRES-mediated translation initiation (Ohlmann et al., 1996; López-Lastra, Rivas 

and Barría, 2005). One example is the IRES of hepatitis C virus which does not require eIF4F for 40S 

ribosome binding (Sonenberg and Hinnebusch, 2009).   

 

 

 

 

 

 

 

Figure 2.4: Internal ribosomal entry site (IRES)-mediated translation initiation. Viral RNAs and certain cellular mRNAs 

contain secondary structures at the 5’ untranslated region that allow for ribosome binding and scanning along the RNA in the 

absence of the cap or cap-binding factors. Once the start codon (AUG) is found, the 60S ribosome binds and translation 

proceeds. IRES-transacting factors (ITAFs) play a role in recognising such secondary structures along with several other 

proteins. The other proteins involved (depicted with a question mark in this diagram) largely depend on the IRES structure 

present on the RNA.  

 

2.2.3 Signalling pathways affecting translation initiation  

Cells can regulate translation initiation via several pathways (Tahmasebi et al., 2018). Mostly, 

translation is regulated at the initiation step through modulating the activity of initiation factors. One 

example of a signalling pathway regulating translation is the mammalian target of rapamycin (mTOR) 

pathway. The mTOR pathway, mainly through the mTORC1 complex can regulate translation 

downstream of the Phosphoinositide 3-kinase/Protein Kinase B (PI3K/AKT) signalling pathway 

depending on the energy or redox status and nutrient availability in the cell (Proud, 2019). Briefly, when 

mTOR is active in the presence of growth stimuli, phosphorylation of the eIF4E binding proteins 



INTRODUCTION 
 

 8 
 

(4E−BP) can occur through downstream kinases (Morita et al., 2013). This hyperphosphorylation on 

4E-BP blocks its association with eIF4E, allowing eIF4E to bind to eIF4G and the mRNA cap to initiate 

cap−dependent translation (Kahvejian, Roy and Sonenberg, 2001; Braunstein et al., 2007). In 

situations where nutrient is limiting, mTOR and the downstream kinases are inactive and 

hypophosphorylated 4E-BP sequesters eIF4E and block translation. mTOR could also lead to the 

phosphorylation of eIF4B, which enhances the eIF4B-eIF3 interaction thereby promoting translation 

initiation. The mitogen activated protein kinase (MAPK) pathway could also stimulate translation 

through phosphorylation of eIF4B (Roux et al., 2007; Bhat et al., 2015). Apart from these, the integrated 

stress response (ISR) can also regulate translation. We will discuss the ISR in more detail in the 

following sections.  

2.3 The integrated stress response  

The integrated stress response (ISR) is a signalling pathway that is triggered following various stress 

stimuli. The ISR can be activated upon nutrient starvation, viral infection or during endoplasmic 

reticulum (ER) stress when cells cannot maintain proper protein folding (Robichaud et al., 2019). In 

addition, haem deprivation in erythroid cells could also trigger the ISR (Harding et al., 2000). These 

different stress stimuli can be sensed by the different sensors of the ISR which will be described in 

Section 2.3.1.  

Activation of the ISR leads to the phosphorylation of the alpha subunit of eIF2 (eIF2alpha). 

Phosphorylated eIF2alpha inhibits cap-dependent translation whereas the translation of activating 

transcription factor 4 (ATF4) is enhanced. ATF4 then translocates into the nucleus where it can activate 

the expression of a multitude of genes involved in stress response leading to a transcriptional 

programme that aids in cellular survival (Fig. 2.5). If the extent of the stress is too great to be resolved, 

the ISR programme switches to promote cell death (Pakos‐Zebrucka et al., 2016).  

2.3.1 ISR sensors/regulators 

The ISR can respond to a wide range of stress stimuli due to the four sensors or kinases within the 

pathway: protein kinase RNA-activated or protein kinase R (PKR), PKR‐like ER kinase (PERK), 

haem−regulated eIF2alpha kinase (HRI), and general control non‐derepressible 2 (GCN2) (Fig. 2.5) 

(Tahmasebi et al., 2018). These four kinases have highly homologous C-terminal kinase domains and 

only differ in their regulatory N-terminal regions (Donnelly et al., 2013). Binding of these kinases to their 

respective regulatory stimuli result in their homo-dimerization and subsequent activation.   
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Figure 2.5: The integrated stress response. Various stimuli such as endoplasmic reticulum (ER) stress, viral infection or 

other cellular stress can activate the ISR kinases (HRI, PKR, PERK, and GCN2) which all converge to phosphorylate the eIF2 

initiation factor at its alpha subunit. Phosphorylation of eIF2alpha inhibits cap-dependent translation but enhances the 

translation of the transcription factor ATF4. Upon translocation into the nucleus, ATF4 undergoes hetero- or homo-dimerisation 

to activate genes involved in stress response. Figure adapted and modified from Pakos‐Zebrucka et al., 2016. 

 

PERK is localized at the ER membrane with its regulatory N-terminal domain within the ER lumen and 

its C-terminal kinase domain towards the cytoplasm. PERK can be activated upon any disruption to the 

ER such as protein misfolding, irregular calcium levels or a change in redox potential (van Vliet et al., 

2017). The N-terminal regulatory domain of PERK binds to a 78 kDa glucose-regulated protein 

(GRP78) under normal homeostatic conditions. When misfolded proteins accumulate in the ER, or 

upon disruption of calcium/redox status, GRP78 dissociates from PERK, allowing PERK dimerisation 

and activation (Ni et al., 2009; Liu et al., 2015).  

PKR is activated upon viral infection which often leads to the introduction of double stranded RNA 

(dsRNA) in the cell. The dsRNA binding motif present at the N-terminus of PKR allows for dsRNA 

binding which activates its kinase activity (García, Meurs and Esteban, 2007). Interestingly, PKR has 

also been shown to be stimulated by stresses independent of dsRNA (Pakos‐Zebrucka et al., 2016). 

Other stresses that could activate PKR include oxidative stress, ER stress, growth factor deprivation or 

ribotoxic stress (Garcia et al., 2006; Bahal et al., 2015). Apoptotic induction can also stimulate PKR 

(Saelens, Kalai and Vandenabeele, 2001).   



INTRODUCTION 
 

 10 
 

GCN2 is highly conserved from yeast to humans and is activated following amino acid starvation. 

Within the C-terminal domain of GCN2 is a domain homologous to the histidyl-tRNA synthetase 

(HisRS) (Wek, Jackson and Hinnebusch, 1989). tRNA synthetases are enzymes that attach a specific 

amino acid to their respective tRNA, also known as tRNA charging. When amino acid is limiting, there 

is an accumulation of uncharged tRNAs. It is through this HisRS domain that GCN2 binds uncharged 

tRNA and is subsequently activated (Wek, Zhu and Wek, 1995; Donnelly et al., 2013). Studies have 

also shown that ultraviolet (UV) light could activate GCN2 either through cross-linking of tRNA to GCN2 

or through the depletion of arginine upon nitric oxide synthetase activation by UV (Deng et al., 2002; 

Anda, Zach and Grallert, 2017).  

Lastly, HRI is activated upon haem depletion in erythroid cells although there has been reports showing 

HRI activation by oxidative stress, heat shock and osmotic stress (Igarashi et al., 2004). Upon 

activation, all four kinases converge to phosphorylate their major substrate, the initiation factor 

eIF2alpha.  

2.3.2 eIF2alpha phosphorylation inhibits cap-dependent protein synthesis 

eIF2 is a translation initiation factor and is made up of a complex of three subunits – alpha, beta and 

gamma. Regulation of eIF2 occurs mainly through its alpha subunit. eIF2beta and eIF2gamma are 

involved in binding the guanine exchange nucleotide factor, eIF2B (Kimball, 1999; Clemens, 2001).  

Binding of eIF2B to eIF2 is important for the exchange of GDP to GTP, which is required for the 

recruitment of the PIC to the mRNA and thus translation initiation (Sonenberg and Hinnebusch, 2009). 

Following stimulation, the ISR kinases phosphorylate eIF2alpha at serine 51 and this phosphorylation 

of eIF2alpha is inhibitory. Phospho-eIF2alpha is a competitive inhibitor of eIF2B and at the same time 

enhances eIF2 and eIF2B binding (Fig. 2.6) (Harding et al., 2000). This results in the inability of eIF2B 

to perform its function in nucleotide exchange for eIF2. In addition, due to higher levels of eIF2alpha 

compared to eIF2B present in a cell, a small proportion of phospho-eIF2alpha would be sufficient to 

sequester the remaining eIF2B, thus blocking protein synthesis (Adomavicius et al., 2019). Dysfunction 

of this eIF2alpha phosphorylation has been shown to promote metabolic diseases. For example, mice 

harbouring eIF2alpha with a Ser51Ala (S51A) knock in mutation die shortly after birth and suffer from 

hypoglycaemia (Pakos‐Zebrucka et al., 2016).  
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Figure 2.6: eIF2-mediated translation control. When eIF2alpha is phosphorylated by either of the kinases, it binds more 

tightly to the eIF2B guanine exchange nucleotide factor and inhibits its activity. The GDP-bound eIF2 can no longer exchange 

its GDP for GTP, limiting the formation of tertiary complexes available for cap-dependent translation. Figure adapted and 

modified from Pakos‐Zebrucka et al., 2016. 

  

2.3.3 The ISR is active. What happens then? 

When the ISR is activated (through either of its kinases), eIF2alpha is phosphorylated. This blocks 

cap−dependent translation initiation and inhibits global protein synthesis. At the same time, several 

mRNAs that can bypass cap-dependent translation are upregulated. One of the major transcripts that 

undergo this process is the ATF4 transcription factor. The effects of these responses are discussed 

below. 

Reduction in global protein synthesis 

ISR-induced inhibition of protein synthesis is a major downstream effect of the pathway and plays a 

major role in aiding cellular survival during stress. Blocking protein synthesis downstream of PERK 

activation (following ER stress) reduces the influx of polypeptide chains entering the ER, thus 

minimising the ER load (Donnelly et al., 2013). Moreover, inhibiting protein synthesis following amino 

acid deprivation and GCN2 activation reduces the immediate need for more amino acids during 

conditions where amino acids are limiting (Anda, Zach and Grallert, 2017). Translation inhibition upon 

viral infection and subsequent PKR activation prevent the cells from synthesising viral proteins (Garcia 

et al., 2006). In erythroid cells, HRI activation, through inhibiting protein translation prevents an 
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accumulation of globin aggregates, which are toxic when haem is limiting (Han et al., 2001). Hence, 

ISR helps the cell survive during stress by blocking protein synthesis, which limits the use of energy 

and resources. 

ATF4 induction 

When cap-dependent translation is inhibited by the ISR (eIF2alpha phosphorylation), translation of 

mRNAs independent of the cap is enhanced. This is due to the limiting pool of cap-dependent factors. 

As described in Section 2.2.2, these mRNAs encode for proteins that enable cells to recover from 

stress. One such protein is ATF4 whose translation increases upon ISR stimulation (Donnelly et al., 

2013; Pakos‐Zebrucka et al., 2016; Taniuchi et al., 2016). ATF4 is a basic leucine zipper transcription 

factor and can act as homo- or hetero-dimers to induce or repress target genes (Ameri and Harris, 

2008). Human ATF4 mRNA contains three upstream uORFs and its productive translation is usually 

inhibited under normal conditions (Vattem and Wek, 2004). When ISR is active and cap-dependent 

translation is blocked, translation of the real ORF of ATF4 is enhanced (see Section 2.2.2: Re-

initiation). Although ATF4 is mainly regulated via translational control, transcriptional regulation and 

post-translational modifications also play a role in maintaining ATF4 levels and stability (Dey et al., 

2010; Frank et al., 2010; Miyamoto et al., 2011).  

ATF4 belongs to the activating transcription factor/cyclic AMP response element binding protein 

(ATF/CREB family) and binds to C/EBP-ATF response element (CARE) sequences where it can 

activate/repress transcription (Ameri and Harris, 2008). Binding of ATF4 with its interaction partner can 

modulate the downstream response of the cell towards certain stress stimuli. ATF4 binding to C/EBP 

Homologous Protein (CHOP) (also a downstream target of ATF4) promotes apoptosis whereas ATF4-

ATF3 dimers can induce genes involved in amino acid biogenesis to preserve cellular homeostasis 

(Pakos‐Zebrucka et al., 2016). Therefore, the transcriptional programme activated by ATF4 largely 

depends on its interaction partners and this is modulated by the strength and length of ISR activation.  

2.3.4 Termination of the ISR  

Termination of the ISR occurs through the dephosphorylation of eIF2alpha. The phosphatase involved 

in removing the phosphate from eIF2alpha consists of two subunits − the catalytic protein phosphatase 

1 (PP1c) subunit and a regulatory subunit. The two regulatory subunits present in mammals are 

constitutive repressor of eIF2alpha phosphorylation (CreP) and growth arrest and DNA damage-

inducible protein (GADD34). CreP is constitutively expressed in cells and it maintains low 
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phospho−eIF2alpha in unstressed cells. On the other hand, GADD34 is a target of ATF4 and provides 

a negative feedback loop following ISR (Novoa et al., 2001; Jousse et al., 2003). ATF4 induces the 

expression of GADD34, which in turns binds to the PP1c subunit to dephosphorylate eIF2alpha thus 

attenuating the ISR response (Walter and Ron, 2011).  

2.3.5 The ISR and cancer 

The ISR has been implicated in cancer, although its role in tumourigenesis appears to be context 

specific. The pro-survival role of ISR during conditions of nutrient deprivation and hypoxia has been 

shown to promote oncogenesis as it helps tumour cells survive harsh conditions in the body (Koromilas, 

2015; Robichaud et al., 2019). There have been reports suggesting that the overexpression of 

phosphorylated eIF2alpha or its kinases could promote tumourigenesis (Kim et al., 2002; Rosenwald et 

al., 2003). ISR has been shown to be involved in mediating chemoresistance in several cancer entities 

through the upregulation of pro-survival genes (Palam et al., 2015; Wang et al., 2018; Chen et al., 

2019). On the other hand, long-term activation of ISR can also promote cell death, suggesting tumour 

suppressive properties of ISR (Clemens, 2001). This would suggest that a fine balance in ISR 

activation is important in cancer. Nevertheless, the impact of ISR on cancer has prompted research on 

therapeutic molecules that can either induce or inhibit ISR. This will be discussed further in Section 

4.5. 

2.4 DNA replication 

DNA carries the genetic information of a cell and needs to be maintained with little or no damage to 

preserve the integrity of the cell and ultimately the organism. DNA consists of four nucleotides made up 

of a nitrogen-containing nucleobase (adenine, A; thymine, T; cytosine, C; or guanine, G), a sugar group 

and a phosphate group. Together, these nucleotides form sugar-phosphate covalent bonds to form a 

chain of polynucleotides (DNA). The characteristic double helix structure of DNA is held by hydrogen 

bonds formed between the bases of each nucleotide of the individual strand (Alberts et al., 2017). 

During cell division, DNA is replicated exactly once and in a timely manner to ensure controlled 

proliferation of cells (Waga and Stillman, 1998). It is also of importance that the accuracy of replication 

is maintained to prevent any error. Any error or mutations that lead to the alteration in structure or 

composition of the DNA such as single strand or double strand breaks could pose problems to the cell 

during transcription or replication. If unresolved, this could lead to genomic instability which could be 

detrimental, leading to either cell death or uncontrolled proliferation and subsequently tumourigenesis. 
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Furthermore, mutations that occur in gametes are passed on to future generations. To prevent this, 

DNA replication is tightly regulated in a spatial and temporal manner.  

2.4.1 Regulation of DNA replication 

The cell cycle is a coordinated series of events occurring in a cell that leads to its division into two 

daughter cells. It is divided into 4 distinct phases: the first growth/gap phase (G1), the synthesis phase 

(S), the second growth/gap phase (G2) and the final mitotic phase (M). The growth phases allow the 

cell to grow in size as it accumulates the necessary nutrients and proteins required for cell division. M 

phase involves the separation of the duplicated sister chromatids and subsequent division of the 

cytoplasm (cytokinesis) to form two daughter cells (Schafer, 1998; Vermeulen, Van Bockstaele and 

Berneman, 2003).  

DNA replication occurs during S phase of the cell cycle. Prior to that (late M and G1), cells begin 

assembling pre-replication complexes (pre-RCs) at origins of replication (Fig. 2.7). This process is 

termed as ‘licensing’ of replication origins (Machida, Hamlin and Dutta, 2005). Pre-RCs consist of origin 

recognition complex (ORC), chromatin licensing and DNA replication factor 1 (CDT1) and cell division 

cycle 6 (CDC6). CDT1 and CDC6 are involved in the loading of inactive minichromosome maintenance 

(MCM2-7) helicases at the origins in an ATP-dependent manner (Sun and Kong, 2010; Fragkos et al., 

2015). In eukaryotes, origins of replication are interspersed throughout the DNA, allowing simultaneous 

replication along the genome. DNA replication is ensured to occur only once during the cell cycle by 

limiting the assembly and activation of pre-RCs (Waga and Stillman, 1998; Tanaka and Araki, 2011). 

Licensed origins are kept dormant until the cell passes through regulatory checkpoints, which activates 

a series of kinases and phosphatases (Masai et al., 2010).  

As the cell enters S phase, a coordinated series of phosphorylation and de-phosphorylation steps lead 

to the activation of the MCM helicases and ‘firing’ at approximately 10% of the licensed origins (Bell and 

Dutta, 2002; Montagnoli et al., 2006; Fragkos et al., 2015). The resulting active and functional 

replisome moves forward bi-directionally with the help of the MCM helicases and ATP hydrolysis to 

unwind the double stranded DNA, leaving behind stretches of single stranded DNA (ssDNA). This 

ssDNA is immediately coated with replication protein A (RPA) (Forsburg, 2008; Bochman and 

Schwacha, 2009). The stretches of ssDNA are used as templates for the synthesis of the new daughter 

strands and this is done by DNA polymerases in a 5’ to 3’ manner (Fig. 2.7). Different polymerases play 

a role in synthesising DNA at the leading (Pol ε) or lagging strand (Pol δ) (Langston and O’Donnell, 

2006).   
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Figure 2.7: Simplified scheme of eukaryotic DNA replication initiation. Initiation of replication begins at late G1 when 

origin recognition complex (ORC) binds to origins of replication (in red). Recruitment of the minichromosome maintenance 

(MCM) proteins occurs with the aid of CDC6 and CDT1. At this point, the origin is licensed. At the onset of S phase, cyclin-

dependent kinases (CDKs) become active and this leads to a downstream phosphorylation signal that activates the MCM 

proteins and the simultaneous removal of CDC6 and CDT1 from the origin of replication. In addition, this signals for the 

association of several other factors (DNA polymerase, CDC45 and GINS complex) to the origin, forming an active replisome. 

The MCM helicases (with its associated proteins) then begins to unwind the DNA to expose a single strand template for the 

DNA polymerases and replication begins. The ORC is removed to ensure that the DNA is replicated only once per cell cycle. 

Figure adapted and modified from Machida, Hamlin and Dutta, 2005.   
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 2.4.2 Replicative stress 

As DNA replication proceeds, it can run into multiple obstacles that can be endogenously or 

exogenously generated. Such impediments (limiting nucleotides, nicks in the DNA, modified bases, 

perturbations in DNA structure, or DNA-bound proteins that obstruct replication forks) can cause the 

replisome to stall (Yekezare, Gó mez-González and Diffley, 2013). The replication machinery remains 

stalled until the obstacle is removed. Under circumstances where the fork stalls for too long, the 

replication machinery can ultimately fall off the DNA and the fork can no longer restart (fork collapse). 

Collapsed forks can be cleaved by endonucleases, leading to double strand breaks (DSBs) (Sancar et 

al., 2004; Yekezare, Gó mez-González and Diffley, 2013).  

When a fork meets an obstacle, the MCM helicase usually proceeds to unwind the double strand DNA 

(dsDNA) ahead, leading to a long stretch of RPA-coated ssDNA (Zeman and Cimprich, 2014). This 

increase in RPA-coated ssDNA activates the Serine/Threonine protein kinase Ataxia Telangiectasia 

and Rad3-related (ATR) via the ATR-Interacting Protein (ATRIP) (Masai et al., 2010). ATR then targets 

and phosphorylates checkpoint kinase 1 (CHK1) among other substrates which leads to the activation 

of a damage signalling cascade and this is indicative of replicative stress (Cimprich and Cortez, 2008; 

Iyer and Rhind, 2017). Certain hallmarks of replicative stress include phosphorylation substrates of 

ATR such as CHK1, RPA, or the histone variant H2AX (γH2AX). In addition, replicative stress can also 

be detected through the accumulation of stalled forks, increase in origin firing (to compensate for the 

stalled replication) and stretches of ssDNA (Dobbelstein and Sørensen, 2015). The intra-S checkpoint 

is activated when DNA replication is inhibited and aids in removing the specific obstacle (or repairing 

the DNA) to enable proper replication of DNA again (Ubhi and Brown, 2019). Apart from ATR, another 

Ser/Thr kinase ATM (Ataxia Telangiectasia Mutated) also constitutes the intra-S checkpoint. Unlike 

ATR, ATM is activated by DSBs. ATM phosphorylates and activates checkpoint kinase 2 (CHK2) and 

several other mediators and effectors of the DNA damage response (not discussed here) (Shiloh and 

Ziv, 2013). Briefly, the activation of either ATR or ATM (or both) induces signalling cascades that 

mediate cell cycle arrest and repair of the damaged DNA (Fig 2.8) (Maréchal and Zou, 2013; Awasthi, 

Foiani and Kumar, 2015).  

2.4.3 Replicative stress in cancer 

One hallmark of cancer is uncontrolled proliferation (Hanahan and Weinberg, 2000, 2011). Uncontrolled 

proliferation occurs due to the deregulation of checkpoints which leads to replicative stress in cancer 

(Macheret and Halazonetis, 2015; Ubhi and Brown, 2019). Oncogene overexpression has been 



INTRODUCTION 
 

 17 
 

proposed to induce replicative stress (Kotsantis, Petermann and Boulton, 2018). Hyperactivation of 

proteins involved in the G1/S transition could cause premature entry into S phase. In addition, 

overexpression of cyclin E promotes cyclin-dependent kinase 2 (CDK2) activity which can induce 

replication origin firing and thereby causing replicative stress (Hills and Diffley, 2014). Conventional 

chemotherapy enhances replicative stress in cancer cells. These cells are especially susceptible to 

replicative stress as their checkpoints are deregulated (Dobbelstein and Sørensen, 2015; Ubhi and 

Brown, 2019). Replicative stress can be induced either through reducing the available nucleotide pools 

for replication (gemcitabine, hydroxyurea, 5-fluorouracil), introducing lesions in the DNA template 

(platinum compounds, alkylating agents or UV) or by nucleoside analogues that are incorporated into 

the newly synthesised DNA (gemcitabine, 5-fluorouracil) (Longley, Harkin and Johnston, 2003; Wang 

and Lippard, 2005; Cerqueira, Fernandes and Ramos, 2007). Supercoiling within the DNA could also 

lead to defects in replication, and this is normally resolved through the action of topoisomerases. 

Therefore, topoisomerase inhibitors form another class of replicative stress inducers (Pommier, 2006).  

 

 

 

 

 

 

 

 

 

Figure 2.8: Replication checkpoint. Stalled forks or single strand DNA breaks lead to the accumulation of replication protein 

A (RPA). ATR, via ATRIP is recruited to these RPA-bound sites leading to its activation. Double strand breaks lead to the 

recruitment and activation of ATM at these sites. ATR can also activate ATM directly through phosphorylation or through 

subsequent conversion of single strand breaks to double strand breaks in the DNA. ATR and ATM can phosphorylate and 

activate their downstream targets such as CHK1 and CHK2 respectively. Targets of CHK1/2 can then mediate cell cycle arrest 

through inhibiting origin firing and S phase progression until the damage is repaired or the lesion is removed. Figure adapted 

and modified from Sancar et al., 2004.   
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2.5 Histones are essential for proper DNA replication 

A human genome has approximately 3 billion base pairs that can stretch out to about 2 metres in length 

(Piovesan et al., 2019). For the DNA to be stored in the nucleus (with an average diameter of 6 µm), 

the DNA has to be kept compact in the form of chromatin (Alberts et al., 2017). For this, DNA 

(negatively charged) is usually tightly wound around positively charged histones (Annunziato, 2008). 

There are four core replication-dependent histones – histone 3 (H3), histone 4 (H4), histone 2A (H2A) 

and histone 2B (H2B). Each nucleosome consists of hetero-dimers of (H3/H4)2 and (H2A/H2B)2 and 

can wrap a DNA 1.7 times covering approximately 145 base pairs (Mei et al., 2017). It is important to 

consider that as DNA duplicates, so must the chromatin. Although recycling of parental histones occur, 

new histones must be synthesised during DNA replication to make up the new chromatin. 

Approximately 20 million new nucleosomes need to form to properly package the newly replicated 

daughter strands (MacAlpine and Almouzni, 2013). When histones are lacking, the newly synthesised 

DNA is not decorated with histones. This can lead to genome instability as these naked DNA are now 

more prone to external damaging agents (Nair, Shoaib and Sørensen, 2017). Hence, the regulation of 

histone synthesis is tightly coupled to DNA replication.  

2.5.1 Regulation of replication-dependent histones 

Histone genes are separated into two classes based on their expression pattern: the replication-

dependent histones and replication-independent histone variants. The replication-dependent histones 

(core histones and linker histone H1) will be of focus in this study. These histones are expressed 

specifically in the S phase of the cell cycle in a coordinated manner with DNA replication. In eukaryotes, 

each core histone protein can be expressed from 10-12 functional copies of the gene. These gene 

copies are usually organised within transcription factor-rich clusters (or Cajal bodies) to facilitate 

transcription (Albig et al., 1997; Shopland et al., 2001). Outside of S phase, these histone genes are 

usually repressed by transcription repressors such as histone regulator A (HIRA) to limit their 

expression and prevent toxicity in cells (Mei et al., 2017). When cells enter S phase, cyclin-dependent 

kinases (CDKs) can phosphorylate factors like Nuclear Protein Ataxia-Telangiectasia Locus (NPAT) 

which leads to the activation of these histone genes (Zhao et al., 2000). At the end of S phase, the 

WEE1 kinase is active and plays a role in repressing histone gene expression again by re-recruiting 

repressor factors (Mei et al., 2017). Hence, histone mRNA levels elevate at the beginning of S phase 

and decrease at the end of S phase (Schümperli, 1988). To ensure proper histone synthesis, the 

histone mRNA has to be properly processed during S phase. Unlike other genes, histone genes are 
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intron-less and the 3’ end of their mRNA are not poly-adenylated. Instead, the 3’ ends of replication-

dependent histone mRNAs contain a highly conserved stem-loop structure that is bound by specific 

translation factors to regulate translation (Marzluff, 2005; Gagliardi and Dziembowski, 2018). Similar to 

how PABP binds to the poly-A tail at the 3’ end of other mRNAs, the stem-loop binding protein (SLBP) 

binds to the stem-loop structure on histone mRNAs (MacAlpine and Almouzni, 2013) (Fig. 2.9). Binding 

of SLBP to the 3’ end of histone mRNA is essential for proper translation and processing of these 

mRNAs (Sullivan et al., 2009; Koseoglu, Dong and Marzluff, 2010). SLBP recruits proteins such as 

SLBP-interacting protein 1 (SLIP1) which interacts with the 5’ cap of the mRNA through eIF4G, 

producing a circularised mRNA that is then translated (Fig. 2.9) (Gallie, 1996). 

Lack of histones can lead to cell cycle arrest and delayed S phase progression in cells. Studies have 

shown that histone depletion impairs DNA replication in cells (Groth, Corpet, et al., 2007; Mejlvang et 

al., 2014; Henriksson et al., 2018). However, the exact mechanism is not fully understood. Moreover, 

inhibition of replication can also regulate histone levels through enhancing the degradation of histone 

mRNAs (Schümperli, 1988; Meaux, Holmquist and Marzluff, 2018). It is this tight coupling of histone 

levels and DNA replication during S phase that is essential to prevent genomic instability (Alabert, 

Jasencakova and Groth, 2017).  

 

Figure 2.9: Translation of replication-

dependent histone mRNAs. Unlike other 

mRNAs present in the cell, replication-coupled 

histone mRNAs are not poly-adenylated at the 

3’ end. Instead, histone mRNAs contain a 

conserved stem-loop structure at the 3’ end, 

which is bound by stem-loop binding protein 

(SLBP) and this is important for regulating 

histone translation. SLBP, through interaction 

with the SLBP-interacting protein 1 (SLIP1) 

brings the 3’ end of the histone mRNA in 

proximity with the 5’ cap through direct 

interaction of SLIP1 and eIF4G.  
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2.6 R-loops 

As briefly discussed, the DNA replication machinery can encounter multiple perturbations as it 

replicates DNA. Some of these lesions include single or double strand breaks, intercalation of the DNA, 

bulky adducts within the DNA or R-loops. R-loops are DNA:RNA hybrids with a protruding ssDNA. 

R−loops are usually a by-product of transcription as the RNA exiting the RNA polymerase rehybridises 

with the template DNA, causing the displacement of the non-template DNA strand (Fig. 2.10) (Aguilera 

and García-Muse, 2012; Skourti-Stathaki and Proudfoot, 2014). R-loops are said to be involved in the 

termination of transcription as it causes RNA polymerase II (RNAPII) to slow down at the termination 

site of transcription (Allison and Wang, 2019). R-loops are also responsible for priming DNA replication 

in the mitochondria and play a role in immunoglobulin (Ig) class-switch recombination (Ohsato et al., 

1999; Pavri, 2017). However, R-loops can pose a threat to genomic stability (Crossley, Bocek and 

Cimprich, 2019). The protruding ssDNA becomes prone to lesions and exogenous insults. Due to the 

higher stability of DNA:RNA hybrid structures, R-loops themselves pose a steric hindrance to the 

transcription and replication machinery (Gan et al., 2011).  

 

 

 

 

 

 

 

 

 

Figure 2.10: R-loop formation. R-loops are formed as transcriptional by-products when the nascent RNA exiting the RNA 

polymerase (RNAPII) hybridises with its template DNA, causing the displacement of a ssDNA. R-loop formation is usually 

avoided by proper RNA surveillance through sufficient ribonucleoprotein binding. Factors or events that can favour formation 

of R-loops are indicated in the figure. Figure adapted and modified from Aguilera and Gómez-González, 2017.   
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Cells employ a number of mechanisms to prevent the accumulation of R-loops or to remove them. In 

eukaryotes, ways to remove R-loops include DNA:RNA helicases (Sentaxin, SENX) to unwind such 

structures or ribonucleases (Ribonuclease H, RNaseH) to digest the RNA portion of the R-loops 

(Skourti-Stathaki and Proudfoot, 2014; Al-Hadid and Yang, 2016). Nicks in the DNA, negative 

supercoiling, uncondensed chromatin and nascent RNA that is not decorated with ribonucleoproteins 

(RNP) upon exiting RNAPII can favour the formation of R-loops (Fig. 2.10) (Chédin, 2016; Aguilera and 

Gómez-González, 2017). To prevent this, cells use topoisomerase 1 (TOP1) to resolve negative 

supercoiling whereas sufficient RNA surveillance is ensured through specific RNA-binding proteins 

involved in RNA biogenesis (Li and Manley, 2006; Tuduri et al., 2009). Histones have also been shown 

to play a role in regulating R-loops through their role in maintaining proper chromatin compaction and 

structure (Castellano-Pozo et al., 2013; Bayona-Feliu et al., 2017; García-Pichardo et al., 2017). 

2.7 Scope of the study  

In this study, we aim to understand one general concept: the impact of the integrated stress response 

on DNA replication. Why is this important? The ISR plays a pivotal role in ensuring cell survival during 

stress, especially in situations of nutrient depletion or oxidative stress. Tumour cells often grow in such 

conditions, suggesting a high need for ISR activity in tumours. Although the ISR could also lead to 

apoptosis, tumour cells often upregulate anti-apoptotic proteins that could be used as a measure of 

limiting ISR to its pro-survival functions. Further understanding of the pro-survival mechanisms 

downstream of the ISR could help better target tumour cells dependent on these pathways. Although 

studies have suggested the role of ISR in chemoresistance, these roles focus on the transcriptional 

programme activated by ISR. It would be interesting to see if ISR could also modulate DNA replication 

and by that, aid in chemoresistance. Such information would be useful in determining the appropriate 

chemotherapy or treatment for these tumours.  

We address how the ISR can regulate DNA replication by answering the following questions. Together, 

these would provide a mechanistic insight with respect to the role of ISR on DNA replication. 

1. How does the ISR influence DNA replication? 

To date, there have been no studies showing the direct impact of ISR on DNA replication. Mostly, hints 

of the ISR regulating DNA replication is through the use of the compound thapsigargin (Shukla et al., 

1997; Wang et al., 2014; Cabrera et al., 2017). Thapsigargin interferes with calcium signalling in the cell 

and this also activates the ISR through ER stress. In addition, most studies on the ISR focus on the 
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transcriptional programme of ATF4 whereas the direct interplay between the ISR and DNA replication 

remains in question. It is known that the ISR shuts down protein synthesis under conditions of stress to 

reduce energy consumption in the cells. Therefore, we hypothesise that the ISR could save energy and 

resources also through slowing down DNA replication. First, we investigate if ISR could impair total 

DNA synthesis by measuring 5-ethynyl-2'-deoxyuridine (EdU) incorporation during S phase. We then 

study the role of ISR specifically on single replication forks by employing the fibre assay method which 

enables us to study and analyse single forks for their speed. Due to the limitations of double-labelled 

fibre assays in differentiating between stalled forks vs slowed polymerisation of DNA, we perform 

multiple-label fibre assays on ISR−induced cells.  

As introduced in Section 2.3.3, ATF4 accumulates with ISR activation. To further characterise how the 

ISR affects DNA replication, we follow up with ATF4 knockdown experiments under ISR stimulation and 

study the effects on DNA replication. In addition, we overexpress ATF4 to mimic ISR stimulation and 

measure DNA replication progression.  

2. Can the ISR induce R-loops? 

ISR blocks global protein synthesis and at the same time induces a stress-specific transcriptional 

programme downstream of ATF4. Approximately 50% of the cell’s transcriptome is positively 

upregulated upon ISR (Robichaud et al., 2019). Cap-independent initiation is at best 25% as efficient as 

cap-dependent translation (Merrick, 2004). It is not difficult to imagine that under such conditions, the 

increase in RNA production coupled with the dependence of the cell on cap-independent translation 

could lead to an accumulation of untranslated RNA in the nucleus. RNA surveillance may also be 

compromised upon ISR induction as translation of RNA binding proteins could be affected. We 

hypothesise that ISR stimulation could lead to a deregulation of the normal transcriptional machinery, 

compromised RNA surveillance and thus, enhanced R-loop formation. As R-loops are emerging as a 

major source of replication stress, we ask if the ISR could enhance R-loop formation in cells and impair 

DNA replication. We explore this by analysing R-loop formation using immunofluorescence and perform 

dot blots to detect these DNA:RNA hybrids. If R-loops are formed upon ISR, we ask if these R-loops 

impair DNA replication in the context of ISR using DNA fibre assays.  

3. Is histone synthesis affected downstream of ISR?  

Global protein synthesis is inhibited upon ISR stimulation. As discussed, mRNAs that are implicated are 

ones translated in a cap-dependent manner. We know that regulation of histones differ to that of most 
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mRNAs and histone mRNAs are translated using several specific translation factors (Marzluff, 2005; 

Gagliardi and Dziembowski, 2018). In this study, we investigate if the block in cap-dependent 

translation by ISR can also inhibit histone synthesis. Newly synthesised histones possess specific post-

translational modifications which allow for chaperone binding necessary for rebuilding the chromatin 

during DNA replication (MacAlpine and Almouzni, 2013). These post-translational modifications are 

usually removed within 30 min of incorporation with DNA making such histone marks a valuable tool in 

identifying newly synthesised histones (Jackson et al., 1976; Smith et al., 2008). We perform 

immunoblots on soluble proteins to measure levels of newly synthesised histones upon ISR induction.  

4.  Are R-loops involved in impairing DNA replication following histone depletion? 

There have been numerous reports studying how histone levels influence DNA replication. One 

proposal includes the direct interaction of histones (through chaperone proteins) with the MCM 

helicases. When histones are limited, the MCM helicases respond to the signal and stop unwinding the 

double stranded helix. This impairs DNA replication (Groth, Corpet, et al., 2007). In addition, histone 

chaperones have also been found to interact directly with the DNA polymerase clamp (PCNA) and can 

modulate the processivity of DNA polymerases (Mejlvang et al., 2014). However, most of these 

mechanisms proposed have not been fully clarified. As discussed in Section 2.6, R-loops can 

accumulate upon changes in chromatin. We hypothesise that histone depletion could potentially block 

DNA replication via the accumulation of R-loops. We address this by performing immunofluorescence 

and dot blots using an antibody (S9.6) to detect R-loops upon histone depletion. Following that, we 

investigate (via DNA fibre assays) if the inhibition in DNA replication when histones are limiting can be 

restored upon removal of R-loops by overexpressing RNaseH1.  
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3.1 ABSTRACT 

The integrated stress response (ISR) allows cells to rapidly shut down most of their protein synthesis in 

response to protein misfolding, amino acid deficiency, or virus infection. These stresses trigger the 

phosphorylation of the translation initiation factor eIF2alpha, which prevents the initiation of translation. 

Here we show that triggering the ISR drastically reduces the progression of DNA replication forks within 

one hour, thus flanking the shutdown of protein synthesis with immediate inhibition of DNA synthesis. 

DNA replication is restored by compounds that inhibit eIF2alpha kinases or re-activate eIF2alpha. 

Mechanistically, the translational shutdown blocks histone synthesis, thus promoting the formation of 

DNA:RNA hybrids (R-loops) which interfere with DNA replication. Histone depletion alone induces R-

loops and compromises DNA replication too. Conversely, histone overexpression or R-loop removal by 

RNaseH1 each restores DNA replication in the context of ISR and histone depletion. In conclusion, the 

ISR rapidly stalls DNA synthesis through histone deficiency and R-loop formation. We propose that this 

shutdown mechanism prevents potentially detrimental DNA replication in the face of cellular stresses. 

3.2 HIGHLIGHTS 

 The integrated stress response (ISR) triggers rapid inhibition of DNA replication. 

 The lack of histones and the formation of R-loops cause replication stalling as part of the ISR. 

 Re-supplying histones or removing R-loops restores DNA synthesis upon ISR. 

 Removing R-loops restores DNA synthesis upon histone depletion. 

3.3 SIGNIFICANCE 

The integrated stress response has long been explored regarding its immediate impact on protein 

synthesis. Translational shutdown represents an indispensable mechanism to prevent the toxicity of 

misfolded proteins and virus infections. Our results indicate that the shutdown mechanisms reach far 

beyond translation and immediately interfere with DNA synthesis as well. ISR depletes cells of new 

histones which induce accumulation of DNA:RNA hybrids. The impairment of DNA replication in this 

context supports cell survival during stress.  

Our work provides a link between the ISR and another subject of active research, i. e. the regulatory 

network of DNA replication forks. 
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3.4 INTRODUCTION 

The integrated stress response (ISR) is widely known as a mechanism to shut down the synthesis of 

most proteins when the cell suffers various stresses through the activation of the following kinases 

(Pakos‐Zebrucka et al., 2016). Protein kinase R (PKR) is activated upon virus infection and 

accumulation of double-stranded RNA. PKR-like endoplasmic reticulum kinase (PERK) becomes active 

when unfolded proteins accumulate in the endoplasmic reticulum. General control non-derepressible 2 

(GCN2) responds to amino acid deprivation. And heme-regulated inhibitor (HRI) is triggered in the case 

of heme depletion in erythrocytes. Each of these kinases triggers the phosphorylation of the translation 

initiation factor eIF2 at Serine 51 of its alpha subunit (Taniuchi et al., 2016). This modification of eIF2 

shuts down the translation of most mRNAs, with the exception of a few mRNAs that employ alternative 

mechanisms of translation initiation. One of these exceptions is the transcription factor ATF4, which is 

synthesized with greater efficiency as part of the ISR (Hinnebusch, 1993; Vattem and Wek, 2004) and 

then triggers a transcriptional program to counteract the specific stress stimuli (Hetz, Chevet and 

Harding, 2013). The ISR thus prevents further damage to the cell by avoiding further protein synthesis 

in the context of proteotoxic stress, or as part of a defense mechanism against virus infection. 

Besides gene expression, the replication of DNA represents an extreme demand on the cell with regard 

to metabolic activity and energy consumption. For one round of DNA replication, each human cell must 

synthesize and incorporate 2x3x109 dNTPs. This raises the question whether the ISR might also affect 

the replication of DNA, perhaps protecting the cell in the context of nutrient deprivation or infection. And 

indeed, the replication of DNA is a highly regulated process. Regulation is not only implied by the 

control of cell cycle progression. Rather, even during S phase, the cell can stall the progression of 

replication forks (Dobbelstein and Sørensen, 2015). One example of the underlying mechanisms is 

provided by the kinase MAPKAPK2, the activation of which diminishes replication fork progression 

(Köpper et al., 2013, 2014). Also, the absence of the tumor suppressor p53 or its target gene product 

Mdm2 can each enhance replication stress (Klusmann et al., 2016, 2018). Another way of slowing 

down DNA replication is through the lack of histone supply, e.g. by depleting histone chaperones 

(Groth, Corpet, et al., 2007; Mejlvang et al., 2014). In this situation, the newly synthesized DNA can no 

longer associate with nucleosomes to a sufficient extent. By mechanisms that are currently not fully 

explained, this leads to a reduction in DNA synthesis (Groth, Corpet, et al., 2007; Jasencakova et al., 

2010; Mejlvang et al., 2014). Finally, replication stress can be induced by the formation of R-loops, i.e. 

DNA:RNA hybrids that form by looping out the non-template strand of DNA after transcription, allowing 

the previously synthesized RNA to rehybridize with the template strand (Aguilera and García-Muse, 
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2012; Skourti-Stathaki and Proudfoot, 2014). Such R-loops represent obstacles to DNA replication 

(Santos-Pereira and Aguilera, 2015; García-Muse and Aguilera, 2016; Crossley, Bocek and Cimprich, 

2019). 

Previous findings provided hints that the ISR might not only affect the synthesis of proteins but also that 

of DNA (Shukla et al., 1997; Cabrera et al., 2017), with the earlier report mainly focusing on the drug 

thapsigargin and its role in replication through interfering with calcium homeostasis. On the other hand, 

Cabrera et al., uses thapsigargin to hinder proper protein folding (“ER stress”) which subsequently 

inhibited DNA replication (Cabrera et al., 2017). The mechanism was suggested to occur through the 

activation of claspin and its associated kinase Chk1 (Cabrera et al., 2017). Moreover, cycloheximide, a 

compound that inhibits overall protein synthesis, was found to diminish histone synthesis and slow 

down DNA replication (Mejlvang et al., 2014; Henriksson et al., 2018). This raises the question whether 

the ISR might generally interfere with DNA replication, through a shortage of histone synthesis. 

Here we show that the ISR triggered by various kinases each interferes with the progression of DNA 

replication forks. This can be mimicked by the depletion of histones. Strikingly, the removal of R-loops 

by RNaseH1, or the overexpression of histones, restores DNA replication upon ISR. This suggests a 

general mechanism that links ISR to the impairment of replication forks, through histone depletion and 

R-loops. 
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3.5 METHODS AND MATERIALS 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact Matthias Dobbelstein (mdobbel@uni-goettingen.de). 

This study did not generate unique reagents. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell culture 

The human osteosarcoma cell line U2OS (p53 proficient, female) was purchased from ATCC 

(RRID:CVCL_0042). Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (Merck), 2 mM L-glutamine (Life Technologies), 50 units/ml 

penicillin, 50 μg/ml streptomycin (Gibco), and 10 µg/ml ciprofloxacin (Bayer) at 37°C in a humidified 

atmosphere with 5% CO2. Cells used were routinely tested and ensured to be negative for mycoplasma 

contamination.  

 

METHOD DETAILS 

Treatments and transfections 

Cells were treated with thapsigargin (Thap, Sigma), 1H-Benzimidazole-1-ethanol, 2,3-dihydro-2-imino-

alpha-(phenoxymethyl)-3-(phenylmethyl)- monohydrochloride (BEPP, Sigma), L-Histidinol (L-Hist, 

Sigma), (E)-2-(2-Chlorobenzylidene) hydrazinecarboximidamide (Sephin, Sigma), trans-N,N′-

(Cyclohexane-1,4-diyl)bis(2-(4-chlorophenoxy) acetamide (integrated stress response inhibitor or 

ISRIB, Sigma), GSK2606414 (PERK inhibitor or PERK i, Calbiochem), gemcitabine (Gem, Actavis), 

cycloheximide (CHX, Sigma), 5,6-Dichloro-1--D- ribofuranosylbenzimidazole (DRB, Sigma) or LDC067 

(Selleckchem) as indicated in the figure legends. Thap, BEPP, Sephin, ISRIB, PERK i, DRB and 

LDC067 were dissolved in DMSO, L-Hist and gemcitabine dissolved in water, and cycloheximide was 

dissolved in 100% ethanol.  

mailto:mdobbel@uni-goettingen.de
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siRNA transfections were performed using Lipofectamine 3000 (Life Technologies). Cells were reverse 

transfected with 100 nM siRNA against SLBP (Ambion, custom made, pool of 3 siRNAs) or negative 

control scrambled siRNA (Ambion, pool of 2 siRNAs), medium replenished after 24 hours and cells 

harvested 40 hours post-transfection. For plasmid overexpression, 2 µg of the respective plasmids 

were forward transfected using Lipofectamine 2000. Medium was replenished after 4 to 6 hours, and 

cells were harvested for experiments 24 hours post-transfection. The following plasmids were used. 

Plasmid Origin 

pICE-NLS-mCherry Addgene #60364 

pICE-RNaseH1-NLS-mCherry Addgene #60365 

pICE-RNaseH1-D10R-E48R-NLS-mCherry Addgene #60367 

pFRT-ToDest-FlagHA Addgene #26361 

pFRT-ToDest-FlagHA-RNaseH1 Addgene #65782 

pCDNA3.1-Flag-H2A  Addgene #63560 

pCDNA3.1-Flag-H2A K118-119R Addgene #63564 

V48 pCS2+mRFP-N1  Addgene #17143 

pCS-H2B-mRFP1 

V48 pCS2+mRFP-N1  

Addgene #53745 

mEGFP  Addgene #18696 

mEGFP-H4-23 

 

FP-H4-23  

Addgene #56463 

Cell synchronization  

To obtain a majority population of cells in S phase, cells were synchronized using double thymidine 

block. Briefly, cells were seeded accordingly and allowed to settle and attach onto plates or coverslips 

for at least 6 hours, then treated with 2 mM Thymidine (Sigma). After 16 hours, cells were washed once 

in PBS and then replenished with fresh DMEM for 8 hours prior to the second Thymidine block (2 mM) 

for another 16 hours. Depending on the assay, cells were released into fresh DMEM for 1 hour (celigo 

proliferation assay) or 4 hours (R-loop detection on cells treated with CHX) prior to treatment, harvest 

and analysis.  

Immunoblot analysis  

Cells were washed once in PBS and harvested in radioimmunoprecipitation assay (RIPA) lysis buffer 

(20 mM TRIS-HCl pH 7.5, 150 mM NaCl, 10 mM EDTA, 1% Triton-X 100, 1% deoxycholate salt, 0.1% 



MANUSCRIPT 
 

 30 
 

SDS, 2 M urea) in the presence of protease inhibitors. Samples were briefly sonicated to disrupt DNA-

protein complexes. The protein extracts were quantified using the Pierce BCA Protein assay kit 

(Thermo Scientific Fisher). Protein samples were boiled at 95C in Laemmli buffer for 5 minutes, and 

equal amounts were analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE). Subsequently, proteins were transferred onto a nitrocellulose membrane, blocked in 5% (w/v) 

non-fat milk in PBS containing 0.1% Tween-20 for 1 hour and incubated with primary antibodies at 4°C 

overnight followed by incubation with peroxidase-conjugated secondary antibodies (donkey anti-rabbit 

or donkey anti-mouse IgG, Jackson Immunoresearch). The proteins were detected using either Super 

Signal West Femto Maximum Sensitivity Substrate (Thermo Fisher) or Immobilion Western Substrate 

(Millipore).  

Soluble histones were extracted as described (Mejlvang et al., 2014). Briefly, cells were washed once 

in PBS and harvested in a low detergent, hypotonic buffer (10 mM Tris pH 7.4, 2.5 mM MgCl2, and 

0.5% NP-40) for 10 minutes on ice. Following centrifugation at 1000 x g, the concentration of the 

solubilized proteins was determined as described above and equal amounts were analyzed by SDS-

PAGE.  

Antibodies Source (Catalog number) Research Resource 

Identifiers (RRID) 
ATF4 (D4B8) Cell Signaling (#11815) RRID:AB_2616025 

Chk1 Cell Signaling (#2360) RRID:AB_2080320 

eIF2alpha Cell Signaling (#9722) RRID:AB_2230924 

Flag  Sigma (F1804) RRID:AB_262044 

gamma H2AX, γH2AX (S139) Cell Signaling (#2577) RRID:AB_2118010 

GFP Clontech (632375) N/A 

H2B Abcam (ab52484) RRID:AB_1139809 

H3 Abcam (ab1791) RRID:AB_302613 

H3K56ac Cell Signaling (#4243) RRID:AB_10548193 

H4K5ac (EP1000Y) Abcam (ab51997) RRID:AB_2264109 

H4K12ac (EPR17906) Abcam (ab177793) RRID:AB_2651187 

HSC70 Santa Cruz (sc-7298) RRID:AB_627761 

mCherry Abcam (ab167453) RRID:AB_2571870 

PERK (C33E10)  Cell Signaling (#3192) RRID:AB_2095847 
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phospho-Chk1 (S317) Cell Signaling (#2344) RRID:AB_331488 

phospho-eIF2alpha (S51) Cell Signaling (#9721) RRID:AB_330951 

RNaseH1 Abcam (ab56560) RRID:AB_945244 

SLBP (EPR12673) Abcam (ab181972) N/A 

DNA fiber assay 

DNA fiber assays were performed as described previously (Klusmann et al., 2016). Briefly, cells were 

incubated with 5-chloro-2’-deoxyuridine (CldU, Sigma Aldrich) for 30 minutes, followed by 60 minutes 

incubation with 5-iodo-2’-deoxyuridine (IdU, Sigma Aldrich) in the presence of inhibitors or treatments 

as indicated. For the 7-label assay, cells were incubated with CldU for 1 h and then pulsed labeled with 

IdU and CldU for 15 min each for a total duration of 1.5 h.  

Cells were lysed using spreading buffer (200 mM Tris pH 7.4, 50 mM EDTA, 0.5% SDS) and DNA 

fibers spread on glass slides prior to fixation in a methanol:acetic acid solution (3:1). Upon treatment 

with 2.5 M HCl, fibers were incubated with rat anti-BrdU antibody (Abcam, RRID:AB_305426, 1:1000, 

to detect CldU) and mouse anti-BrdU (Becton Dickinson, RRID:AB_10015219, 1:400, to detect IdU) for 

1 h at room temperature, then fixed with 4% paraformaldehyde in PBS for 10 minutes. Slides were 

incubated with Alexa Fluor 555-conjugated goat anti-rat IgG antibody (RRID:AB_141733) and Alexa 

Fluor 488-conjugated goat anti-mouse IgG antibody (RRID:AB_138404) (both from Thermo Fisher, 

1:200) for 2 hours at room temperature.  

S9.6 Immunofluorescence  

Cells were seeded on glass coverslips, transfected or treated with reagents accordingly and fixed with 

4% paraformaldehyde in PBS for 10 minutes. Then, cells were permeabilized with 0.5% Triton X-100 in 

PBS for 15 minutes, blocked with 3% bovine serum albumin (BSA) in PBS containing 0.1% Tween-20 

for 1 hour and incubated overnight at 4C with S9.6 antibody (Kerafast, RRID:AB_2687463, 1:100, to 

detect DNA:RNA hybrids). Coverslips were washed in PBS prior to incubation with Alexa Fluor 488-

conjugated donkey anti-mouse IgG antibody (Thermo Fisher, RRID:AB_141607, 1:250) for 2 hours and 

subsequently counterstained with 0.5 µg/ml DAPI (Sigma) for 5 minutes prior to mounting using the 

Fluorescent Mounting Medium from DakoCytomation (#S302380-2) and imaged. 
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Dot blot analysis  

Cells were seeded in 6-well plates, treated with Thap, BEPP or CHX as indicated and harvested. Prior 

to CHX treatment, cells were synchronized using double thymidine block as described (chapter “Cell 

synchronization”) and released into fresh DMEM for 4 hours prior to addition of CHX. Cells were 

washed once in PBS and fixed with 1.1% paraformaldehyde in a solution of 0.1 M NaCl, 1 mM EDTA, 

0.5 mM EGTA and 50 mM HEPES pH 7 for 30 minutes at room temperature. To quench the cross-

linking reaction, glycin was added to a final concentration of 0.125 M for 5 minutes. Subsequently, the 

cells were lysed in 1% Triton X-100, 0.15 M NaCl, 1 mM EDTA, 0.3% SDS with protease inhibitors. The 

cell lysates were sonicated for 10 cycles (30 sec on/off) (Bioruptor, Diagenode) and then subjected to 2 

mg/ml proteinase K (Thermo Fisher) treatment for 1 h at 50°C. DNA was isolated using phenol-

chloroform extraction and DNA concentration normalized between samples.  

The DNA (1.3 µl) was spotted onto pre-wet nitrocellulose membrane, allowed to air dry and then cross-

linked with UVC for 5 minutes. The membrane was blocked in 5% BSA in PBS containing 0.25% 

Tween-20 for 30 minutes at room temperature and subsequently incubated with S9.6 antibody 

(Kerafast, 1:300) in blocking solution overnight at 4°C. Following incubation with peroxidase-conjugated 

donkey anti-mouse IgG (Jackson Immunoresearch, RRID:AB_2340773,1:10000), DNA:RNA hybrids 

(as measured using S9.6 intensity) were detected using Super Signal West Femto Maximum Sensitivity 

Substrate (Thermo Fisher). To confirm the specificity of the antibody, one half of the DNA samples 

were also pre-treated with RNaseH (0.03 U/ng DNA, Ambion Thermo Fisher) for 3 h at 37°C prior to 

spotting. As a loading control, the membrane was subsequently incubated with antibodies to single-

stranded DNA (ssDNA). Briefly, the membrane was incubated with 2.5 M HCl for 15 minutes (to 

denature the DNA), washed with PBS, and incubated with antibody to ssDNA (Millipore, 

RRID:AB_570342, 1:1000) for 2 hours at room temperature. The detection of ssDNA was performed 

following exposure to secondary antibody using Super Signal West Femto Maximum Sensitivity 

Substrate (Thermo Fisher). 

EdU Incorporation Assay 

5-ethynyl-2´-deoxyuridine (EdU, Thermo Fisher Scientific, #A10044) was added to exponentially 

growing cells to a final concentration of 20 µM for 1 hour until harvest. Prior to imaging, the cells were 

fixed and permeabilized as done for immunofluorescence staining. The following reagents were added 

to 100 mM Na-Phosphate buffer (pH 7) in the following order: 5 µM Alexa Fluor 488 picolyl-azide or 5 

µM Alexa Fluor 594 picolyl-azide (Jena Biosciences, #CLK-1276-1 or #CLK-1296-1), 100 µM CuSO4 
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(Jena Biosciences, #CLK-MI004) in 500 µM tris-hydroxypropyltriazolylmethylamine (THPTA; Sigma-

Aldrich, #762342) and 5 mM Na-Ascorbate (Jena Biosciences, #CLK-MI005). The click reaction was 

performed for 1 h on a shaker, at room temperature and protected from light. Samples were 

subsequently washed thrice for 10 min with PBS, followed by incubation with 0.3 µg/ml DAPI (Sigma-

Aldrich, #D9542) for 5-10 min. For experiments in Fig. 1, cells were kept in PBS prior to image 

acquisition with the Celigo Imaging Cytometer (Nexcelom Bioscience). DAPI was used to create a 

nuclear mask and quantify the DNA content while the nuclear EdU signal was quantified using the 

Celigo image analysis software. EdU and DAPI signals were presented in a horseshoe plot. For 

experiments in Fig. 4 and Fig. 6, cover slips were mounted using the fluorescent mounting medium 

(DakoCytomation, #S302380-2) and imaged. 

Proliferation assay (Celigo) 

To study the long-term effect of ISR on cells in S phase, proliferation assay was conducted on 

synchronized cells. Cells were seeded in duplicates in 24-well plates, synchronized using double 

thymidine block (as described), and released into fresh medium for 1 hour then treated with BEPP (30 

µM) for 6 h to ensure ISR activation during S phase of the cells. During synchronization, cells were also 

transfected with plasmids to RNaseH1 or an empty vector control as described previously. After 6 hours 

of treatment, medium was replenished and confluency of cells at day 0 was measured using Celigo 

Imaging Cytometer (Nexcelom Bioscience). Measurements were made subsequently every 24 or 48 

hours and medium was changed prior to every measurement.  

MNase sensitivity assay  

Cells were seeded onto coverslips and subsequently treated with Thap in the presence of 20 µM EdU 

to label nascent chromatin. Cells were also transfected with a plasmid to express RNaseH1. Then, the 

cells were fixed, permeabilized and click chemistry performed as described. Following multiple washes 

with PBS, the cells were subjected to digestion with 0.7 U/µl micrococcal nuclease (MNase, Thermo 

Fisher) in digestion buffer (10 mM Tris pH 7.4, 10 mM NaCl, 5 mM MgCl2 and 2 mM CaCl2) at 37°C. 

The cells were then washed again and incubated with 0.3 µg/ml DAPI (Sigma-Aldrich) for 5-10 min and 

mounted using DAKO fluorescence mounting medium, followed by image acquisition.  
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QUANTIFICATION AND STATISTICAL ANALYSIS 

DNA fiber analysis 

To avoid bias, data acquisition and analysis were conducted in a double-blinded manner where 

identities of the samples were blinded prior to imaging and analysis. Whenever possible, a minimum of 

100 DNA fiber structures were visualized with fluorescence microscopy (Axio Scope A1 microscope 

(Zeiss) equipped with an Axio Cam MRc/503 camera) and analyzed.  

For the 7-label fiber assay, the number of labels incorporated was counted using the cell counter plugin 

on Fiji. Fork stalling was then calculated by dividing the number of tracks with less than all seven labels 

by the total number of tracks and converted into percentage. The length of the second to third label was 

measured to determine the replication progression for the 7-label fiber assay. The Fiji software 

(RRID:SCR_002285) (Schindelin et al., 2012) was used to measure the labeled tracks in pixels and 

converted to micrometers using the conversion factor of 1 µm = 5.7 pixels (as determined by measuring 

scale bar under the same microscope settings) and then to kilo base (kb) using the conversion factor 1 

µm = 2.59 kb. Rate of fork progression was calculated by dividing the number of bases by the labeling 

time of the track.  

For the 2-label fiber assays, fibers were analyzed for their IdU track length and IdU fork progression 

rate calculated as described.  

Nuclear quantification of immunofluorescence  

Images were acquired (same exposure time for all images for each fluorescent channel per experiment) 

with Axio Scope A1 microscope (Zeiss) equipped with an Axio Cam MRc/503 camera. 

The Fiji software was used for automated analysis and quantification of nuclear S9.6 or EdU staining. 

DAPI staining was used to identify regions of interest (nuclei) prior to measuring mean intensity of the 

Alexa Fluor 488 staining (S9.6), Alexa Flour 488 picolyl-azide or Alexa Fluor 594 picolyl-azide (EdU). In 

the case of the MNase sensitivity assay, the mean intensity of DAPI was also measured. At least 200 

cells were subjected to analysis and quantification.  
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Statistical testing 

Statistical testing was performed using Graph Pad Prism 6 (RRID:SCR_002798). An unpaired 

Student’s t-test was calculated with an assumed significance for p-values ≤ 0.05. Asterisks represent 

significance in the following way: ****, p ≤ 0.0001, ***, p ≤ 0.005; **, p ≤ 0.01; *, p ≤ 0.05.  
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3.6 RESULTS 

DNA replication is compromised shortly after ISR induction  

The ISR triggers a shutdown of protein synthesis, representing an emergency response to nutrient 

deprivation or proteotoxic stress. Here, we tested whether this response might also affect the synthesis 

of DNA. We induced the ISR and the consequent phosphorylation of eIF2alpha at Serine 51 by 

stimulating the kinases PERK, PKR and GCN2, or by inhibiting GADD45A (regulatory subunit of the 

PP1 phosphatase) using the small compounds thapsigargin (Thap) (Thastrup et al., 1994), BEPP-

monohydrochloride (Hu et al., 2009), L-Histidinol (Hansen, Vaughan and Wang, 1972) or Sephin (Das 

et al., 2015), respectively (Fig. 1 A). Increased phosphorylation of eIF2alpha and elevated expression 

of ATF4 following treatment confirmed ISR activation in all cases (Fig. 1 B and Supp. Fig. 1 A). Sephin 

inhibits the removal of constitutive phosphate modifications on eIF2alpha. This induces a moderate 

increase in phosphorylation of eIF2alpha, less pronounced than with Thap or BEPP, i.e. activators of 

eIF2alpha kinases. We first performed an EdU incorporation assay to measure overall DNA synthesis 

in individual cells upon ISR activation during S phase. As shown in Fig. 1 C,D and Supp. Fig. 1 B, the 

activation of ISR using Thap or BEPP significantly reduced DNA synthesis in S phase. Then, we 

measured the progression of single DNA replication forks using DNA fiber assays, measuring the 

length of DNA tracks with incorporated IdU (Fig. 1 E). Treatment with Thap led to a reduction in fork 

progression (Fig. 1 F,G and Supp. Fig. 1 C,D). In addition, we found that treatment of U2OS cells with 

BEPP, Sephin or L-Histidinol all impaired DNA fork progression significantly, albeit to different extents 

(Fig. 1 H–L and Supp. Fig. 1 E–L). To understand if the reduction in fork progression upon ISR was 

due to lower speed of DNA polymerase or a higher frequency of polymerase stalling, we conducted a 

7−label fiber assay on Thap−treated cells (Fig. 1 M) as described in our previous publications 

(Klusmann et al., 2016, 2018). This revealed both increased stalling of DNA polymerase (i.e. decreased 

processivity) and slower DNA polymerization (Fig. 1 N−P and Supp. Fig. 1 M).  

Interestingly, despite the significant reduction in DNA replication progression following ISR stimulation, 

we did not observe a substantial increase in phosphorylation of Chk1 or histone variant H2AX (gamma 

H2AX) (Supp. Fig. 1 N) as compared to gemcitabine, a well-established inducer of replicative stress 

(Köpper et al., 2013) indicating that the ISR slows down replication forks without triggering a strong 

DNA damage response. These results suggest that the ISR not only triggers a shutdown in protein 

synthesis but also imposes severe and immediate restrictions on DNA replication.  
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Pharmacological antagonists of ISR partially rescue DNA replication  

Based on our findings suggesting that the ISR interferes with DNA replication, we now investigated if 

these effects are downstream of phosphorylated eIF2alpha and could be reversed using a small 

molecule inhibitor of ISR known as ISRIB (Sidrauski et al., 2013; Tsai et al., 2018; Zyryanova et al., 

2018) (Fig. 1 A). ISRIB enhances the activity of the nucleotide exchange factor eIF2B, thereby 

overcoming the inhibitory effect of eIF2alpha phosphorylation. We pre-treated cells with ISRIB, followed 

by the ISR inducers Thap, BEPP or Sephin, and then measured DNA replication fork progression (Fig. 

2 A,B). Single treatment of cells with Thap, BEPP or Sephin resulted in an impairment of DNA 

replication as observed before, but pre-treatment of these cells with ISRIB significantly prevented this 

inhibition of DNA replication (Fig. 2 C–H, Supp. Fig. 2 A−E). Similarly, inhibition of PERK with a 

pharmacological inhibitor, PERK i or GSK2606414 (Axten et al., 2012), was also able to significantly 

rescue DNA replication defects by Thap treatment (Fig. 2 I−K and Supp. Fig. 2 F,G). Activation and 

inhibition of ISR were confirmed using ATF4 detection as a readout in all cases (Fig. 2 L,M). These 

findings clarify that the compounds used interfere with DNA replication through the ISR and through 

eIF2alpha phosphorylation.  

Stimulation of the ISR induces R-loops 

We were now searching for a mechanism that allows the ISR to interfere with DNA replication. 

DNA:RNA hybrids have recently emerged as one of the major players in regulating DNA replication 

(Gan et al., 2011; Skourti-Stathaki and Proudfoot, 2014; Crossley, Bocek and Cimprich, 2019). They 

form by hybridizing just-synthesized RNA to its template DNA and looping out the opposite DNA strand 

and are termed R-loops. R-loops can pose as a steric hindrance to an oncoming replisome, thereby 

blocking DNA replication (Santos-Pereira and Aguilera, 2015). We investigated if an enrichment in R-

loops was inducible through the ISR. In cells treated with Thap or BEPP, we detected DNA:RNA 

hybrids by immunofluorescence with an antibody against them (S9.6) (Spitzer et al., 2011; Britton et al., 

2014) (Fig. 3 A). As a negative control, we overexpressed RNaseH1 (Spitzer et al., 2011) in these 

cells, i. e. an RNase that specifically removes the RNA portion of DNA:RNA hybrids (Skourti-Stathaki 

and Proudfoot, 2014). By quantification, we found a significant increase in the intensity of S9.6 

fluorescence in the nuclei of cells treated with Thap (1 h) or BEPP (3 h) (Fig. 3 B and Supp. Fig. 3 A). 

Upon RNaseH1 overexpression, the S9.6 staining intensity within these nuclei decreased to intensities 

similar to control−treated cells (Fig. 3 A,B and Supp. Fig. 3 A). We confirmed RNaseH1 

overexpression and ISR induction by immunoblot analysis of RNaseH1 and ATF4 levels (Fig. 3 C). To 

supplement our immunofluorescence experiments, we performed dot blot analyses using the antibody 
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S9.6. Cells were treated with Thap and BEPP, followed by chromatin preparation. Samples were also 

treated with RNaseH as a negative control. In each case, DNA:RNA hybrids were then detected on dot 

blots. Similar to the immunofluorescence, we observed a strong increase in S9.6 staining intensity upon 

ISR, which was largely abolished by RNaseH (Fig. 3 D,E and Supp. Fig. 3 B,C). Thus, ISR activation 

leads to an enrichment of R-loops. 

Removal of R-loops re-establishes DNA replication upon induction of ISR but compromises 

survival of stressed cells  

As ISR activation induced more R-loops, we hypothesized that these R-loops were responsible for 

compromising DNA replication. To test this, we first overexpressed wildtype or catalytically mutant 

RNaseH1 (Britton et al., 2014) and treated these cells with Thap or BEPP to induce ISR, and measured 

total DNA synthesis by EdU incorporation. As seen previously (Fig. 1 C,D), EdU incorporation was 

reduced upon ISR (Fig. 4 A,B and Supp. Fig. 4 A,B). Strikingly, we now observed that the 

overexpression of catalytically active RNaseH1 largely restored EdU incorporation and thus DNA 

synthesis in both Thap and BEPP−treated cells (Fig. 4 A,B and Supp. Fig. 4 A,B). To test if removal of 

R-loops was also able to rescue single DNA fork progression, we subjected cells overexpressing 

wildtype or catalytically inactive RNaseH1 and treated with Thap or BEPP to DNA fiber assay analysis 

(Fig. 4 C and Supp. Fig. 4 E). The removal of R-loops with wildtype but not mutant RNaseH1 

completely rescued DNA replication in the context of ISR (Fig. 4 D,E and Supp. Fig. 4 C,D,F−I). 

Immunoblot analysis confirmed that RNaseH1 overexpression did not interfere with eIF2alpha 

phosphorylation (Supp. Fig. 4 J,K) and thus not with the ISR per se. We then hypothesized that R-loop 

induction and the resulting impairment of DNA replication upon ISR might help cells to survive by 

halting the complex DNA replication program in the face of stress conditions. To investigate if the 

inhibition of DNA replication following accumulation of R-loops upon ISR is protective to the cell, we 

conducted a long-term proliferation assay of cells treated with BEPP in the presence or absence of 

RNaseH1. Indeed, removal of R-loops via the overexpression of RNaseH1 further reduced proliferation 

of cells compared to cells that were treated with BEPP alone (Fig. 4 F, and Supp. Fig. 4 L,M). Our 

findings therefore suggest that ISR impairs DNA replication through inducing R-loops and that this 

inhibition in DNA replication is supporting cell survival during stress.   
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Ongoing transcription is required for compromising DNA replication by the ISR 

R-loops were suggested to form between RNA and its DNA template, shortly after transcription 

(Skourti-Stathaki and Proudfoot, 2014). This raised the hypothesis that short-term inhibition of 

transcription should re-activate DNA synthesis in the context of the ISR. To test this, we employed two 

different CDK9 inhibitors, DRB (Baumli, Endicott and Johnson, 2010) and LDC067 (Albert et al., 2014). 

CDK9 inhibition is an established way to interfere with the elongation of transcription (Morales and 

Giordano, 2016). We measured DNA replication of cells treated with Thap or BEPP, in the presence or 

absence of CDK9 inhibitors (Fig. 5 A,B). And indeed, the inhibition of transcription significantly rescued 

DNA replication from its impairment by ISR (Fig. 5 C−F and Supp. Fig. 5 A−D), suggesting that 

ongoing transcription and R-loops formed by ISR are responsible for impairing DNA replication.  

ISR activation blocks the synthesis of histones required for DNA replication, reducing 

chromatin assembly on newly synthesized DNA 

Phosphorylation of eIF2alpha at Ser51 during ISR inhibits cap-dependent translation, thereby blocking 

the synthesis of most proteins in the cell. To investigate if abolished protein synthesis is sufficient to 

impair DNA replication, we treated cells with a well-established ribosome inhibitor, cycloheximide 

(CHX), and measured DNA replication progression (Supp. Fig. 6 A). Within an hour of CHX treatment, 

we observed a strong reduction in DNA replication (Supp. Fig. 6 B−D), mimicking the effects we 

observed with the ISR inducers (Fig 1 E−L and Supp. Fig.1 C−L). Next, we asked which kind of 

proteins need to be synthesized continuously to sustain DNA replication. Based on previous reports 

(Gunjan, Paik and Verreault, 2005; Groth, Corpet, et al., 2007; Mejlvang et al., 2014; Henriksson et al., 

2018) we suspected that histones need to be provided throughout DNA synthesis to avoid replication 

stress. Indeed, inducing the ISR by Thap or BEPP quickly reduced the levels of newly synthesized 

soluble histones, as marked by acetylation of lysine residue 56 (K56) on Histone 3 (H3K56ac) or lysine 

residues 5 (K5) or 12 (K12) on Histone 4 (H4K5ac or H4K12ac) (Sobel et al., 1995; Masumoto et al., 

2005; Groth, Rocha, et al., 2007; Alabert and Groth, 2012; Mejlvang et al., 2014), to a similar extent as 

upon CHX treatment (Fig. 6 A and Supp. Fig. 6 E). To test if a reduction in histone synthesis alone is 

sufficient to hinder DNA replication in our system, as found earlier (Mejlvang et al., 2014), we used 

siRNA to deplete the stem loop-binding protein (SLBP) that is required for translation of histones. As 

expected, SLBP depletion also resulted in a mark decrease in soluble H3K56ac, H4K5ac and H4K12ac 

(Fig. 6 A and Supp. Fig. 6 E). Of note, a significant impairment in DNA replication was observed by 

SLBP depletion alone (Supp. Fig. 6 F−I), strongly suggesting that histones are the critical protein 

species the reduced synthesis of which is responsible for impaired DNA replication during ISR.  
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To find out whether restoring histone levels alone might allow DNA replication even during ISR, we 

measured DNA replication in cells overexpressing histone H2A and treated with Thap or BEPP (Fig. 6 

B and Supp. Fig. 6 L). We transfected cells to express either wildtype H2A or H2A with a mutation at 

its ubiquitination residues (K118−119R) (Mattiroli et al., 2012). Strikingly, overexpression of wildtype 

histone H2A restored DNA replication despite ISR activation (Fig. 6 C,D and Supp. Fig. 6 J−O). 

Moreover, the ubiquitination residues of H2A were necessary for supporting DNA replication (Supp. 

Fig. 6 P,Q), as reported previously in a different replication context (Klusmann et al., 2018). As shown 

in Fig. 6 A, the ISR led to the general decrease in newly synthesized histones, making it difficult to 

explain how the overexpression of H2A alone could rescue DNA replication upon ISR. We 

hypothesized that the overexpression of any one histone (H2A in this case) could increase the levels of 

other free histones necessary for replication, e.g. by forming histone complexes. Indeed, we also 

observed an increase in histone H4 carrying an acetylation of lysine 5 upon H2A overexpression (Fig. 6 

E and Supp. Fig. 6 R). This modification is typically found on newly synthesized H4 (Mejlvang et al., 

2014). We performed additional fiber assay experiments to address if the overexpression of other 

histones such as H4 and H2B could also rescue DNA replication upon ISR. Indeed, similar to H2A, the 

overexpression of either H4 or H2B (Megason, 2009) restored DNA replication impairment downstream 

of ISR to a considerable extent (Fig. 6 F−I and Supp. Fig. 6 S−AF). It has been shown previously that 

histone depletion leads to an accumulation of nucleosome-free regions especially in areas of newly 

synthesized DNA (Mejlvang et al., 2014). To investigate if newly replicating DNA accumulates 

nucleosome-free regions during ISR as well, we conducted a micrococcal nuclease (MNase) assay on 

nascent chromatin pulse labeled with EdU on Thap−treated cells. We found that nascent chromatin of 

Thap−treated cells was more sensitive to MNase, as observed by a larger decrease in the EdU signal 

in these cells compared to the control−treated cells. In contrast, there was no detectable differences in 

the MNase accessibility of global, non-labeled chromatin (Fig. 6 J,K and Supp. Fig. 6 AG,AH). We 

conclude that the ISR interferes with DNA replication through inhibiting histone synthesis, leading to an 

enrichment of open chromatin at newly replicated sites.  

Inhibition of histone synthesis induces R-loops which impairs DNA replication 

We have found that the ISR compromises DNA replication and that the lack of newly synthesized 

histones upon ISR leads to the accumulation of nucleosome-free regions (Fig. 6). Moreover, the ISR 

can induce R-loops (Fig. 3), which are also required to perturb DNA replication (Fig. 4 and 5). Lack of 

chromatin compaction promotes R-loop formation since a more accessible chromatin structure favors 

rehybridization of RNA to its DNA template (Chédin, 2016). Therefore, we hypothesized that histone 

deprivation induces the formation of R-loops which then compromises DNA replication. To investigate 
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this, we performed immunofluorescence staining using the S9.6 antibody to detect R-loops on cells that 

had been treated with CHX to deplete newly synthesized histones, with and without RNaseH1 

overexpression. Indeed, CHX−treated cells accumulated DNA:RNA hybrids (Fig. 7 A and Supp. Fig. 7 

A−C). Similarly, dot blot analysis using the S9.6 antibody on chromatin from these cells also revealed a 

profound induction of R-loops which was removed upon RNaseH treatment (Fig. 7 B,C and Supp. Fig. 

7 D,E). Next, to investigate if DNA replication impairment by histone depletion could also be restored by 

removing R-loops, we depleted cells of new histones using CHX or by siRNA to SLBP, in the presence 

or absence of either wildtype or catalytically inactive RNaseH1, and then measured the progression of 

DNA replication (Fig. 7 D,E). We observed that overexpression of wildtype RNaseH1 but not its mutant 

rescued DNA replication upon histone depletion (Fig. 7 F−I and Supp. Fig. 7 F−K). Together, these 

results suggest a mechanistic concept of ISR-induced DNA replication impairment. Accordingly, ISR 

blocks histone synthesis which then interferes with DNA replication through R-loops.  
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3.7 DISCUSSION 

Our results indicate that the ISR compromises DNA replication, within the first hour of eIF2alpha 

phosphorylation, and through the depletion of histones. When new histones become unavailable, by 

ISR or histone chaperone inhibition, R-loops mediate the impairment of DNA replication fork 

progression. 

Is this replication stress? Previous reports suggest that the depletion of histones slow down replication 

fork progression, but do not detectably trigger the activation of Chk1, a classical hallmark of replication 

stress (Mejlvang et al., 2014; Dobbelstein and Sørensen, 2015; Henriksson et al., 2018). Similarly, in 

our hands, Chk1 phosphorylation or phosphorylation of the histone variant H2AX (gamma H2AX) are 

observed only to a low extent (when compared to treatment with the nucleoside analogue gemcitabine) 

(Supp. Fig. 1 N). Taken together with the observed accumulation of R-loops, we conclude that R-loops 

as such do not necessarily activate Chk1, despite interfering with the progression of DNA replication 

forks, at least not within the first few hours of blocking DNA replication.  

It was previously reported that the lack of histone supply hinders replication fork progression (Groth, 

Corpet, et al., 2007; Mejlvang et al., 2014; Henriksson et al., 2018). The mechanism(s) were suggested 

to include interactions of histones with the MCM helicase and/or the delayed removal of PCNA from 

Okazaki fragments but remain to be fully clarified (Mejlvang et al., 2014). Our results provide the 

following explanation. When histones are missing, nucleosome-free DNA accumulates upon replication 

(Fig. 6 J,K). This provides more opportunities of DNA:RNA hybridization (Fig. 7 A−C). The resulting R-

loops turned out to be required for the observed replication fork impairment, since RNaseH1 enhanced 

DNA synthesis in the context of histone depletion (Fig. 7 D−I). However, it remains to be determined 

how exactly such R-loops lead to stalled replication. Apart from physical collisions, the accumulation of 

R-loops might trigger signaling pathways that attenuate fork progression (García-Muse and Aguilera, 

2016). Indeed, it has been shown that R-loops induce the phosphorylation of Histone H3 at Ser10 

(H3S10), a mark of chromatin compaction (Castellano-Pozo et al., 2013). It is thus possible that the R-

loops formed could lead to torsional stress throughout the DNA surrounding them through chromatin 

condensation, which then signals the replication machinery ahead to stop replicating DNA (Santos-

Pereira and Aguilera, 2015).  

We propose that the inhibition of DNA replication as part of the ISR provides an advantage for cell 

survival. Under conditions of nutrient deprivation, it is conceivably advantageous that protein synthesis 

is reduced to a minimum. On top of this, our results show that slowing down DNA synthesis through R-
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loop accumulation, as a newly established part of the ISR, helps the cell to survive nutrient restriction. 

This can be seen with a substantial impairment in proliferation of cells overexpressing RNaseH1 under 

ISR stimulation (Fig. 4 F). After all, replicating a diploid human genome within one cell requires 2x3x109 

deoxynucleoside-triphosphates, each of which contains two energy-rich anhydride bonds. Stalling 

replication forks reduces the rate by that dNTPs are used and might thus contribute to survival under 

conditions of limited available energy. This might have contributed to the evolution of a tight coupling 

mechanism that immediately shuts down DNA synthesis in the context of ISR. 

The ISR has also been suggested as a target for cancer therapy (Urra et al., 2016; Ojha and 

Amaravadi, 2017). The idea is mainly to exacerbate proteotoxicity and the accumulation of unfolded 

proteins in cancer cells by inhibitors of kinases that would otherwise stimulate the ISR. Based on the 

results presented here, it is possible that negatively interfering with the ISR may also overcome the 

stalling in DNA replication, perhaps enhancing the vulnerability of cancer cells towards drugs that 

provoke replication stress, e.g. nucleoside analogues or ATR inhibitors (Dobbelstein and Sørensen, 

2015). This suggests the use of ISR inhibitors with nucleoside analogues and/or ATR inhibitors in an 

attempt to achieve synergistic responses to eliminate cancer cells. 

Proteasome inhibitors and HSP90 inhibitors form part of a general strategy to eliminate cancer cells by 

targeting essential cellular machineries (Dobbelstein and Moll, 2014), exploiting non-oncogene 

addiction (Luo, Solimini and Elledge, 2009; Nagel, Semenova and Berns, 2016). However, these 

inhibitors induce the ISR as well (Suh et al., 2012). The results presented here suggest that this will 

also halt DNA replication forks. It remains to be determined whether this will diminish the activity of 

DNA-damaging chemotherapeutics towards cancer cells. In such a case, the simultaneous 

administration of proteotoxic drugs with certain conventional chemotherapeutics might need to be 

avoided to prevent drug antagonisms. On the other hand, the addition of an ISR inhibitor might restore 

the cooperation of a proteotoxic and a DNA-damaging drug.  

In contrast to the direction explored here, replication stress can also induce the ISR, as has been 

reported in the case of the nucleoside analogue gemcitabine (Palam et al., 2015). Of note, however, 

gemcitabine was found to induce eIF2alpha phosphorylation with a delay of at least 6 hrs. In 

accordance with this, we were also unable to detect eIF2alpha phosphorylation within shorter periods of 

time upon gemcitabine treatment (data not shown). Thus, the ISR probably does not affect the 

immediate response of cells towards direct triggers of replication stress. However, upon long-term 

application of chemotherapy, the ISR might represent a mechanism of cell resistance, not only by 

avoiding proteotoxic stress but also by slowing down DNA replication.  
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Another important aspect of the ISR consists in the defense against virus infection, in particular through 

activation of the kinase PKR (Balachandran et al., 2000; Garcia et al., 2006). Most obviously, this will 

reduce the production of virus proteins, e.g. for building new virus particles. Our results suggest that, in 

addition, DNA synthesis is diminished. On top of cellular DNA, this may also pertain to viral genomes, 

especially when they are associated with nucleosomes and thus require histone synthesis. This 

packaging of viral DNA into nucleosomes has been observed (Bock et al., 1994; Lieberman, 2008; 

Knipe et al., 2013). It is therefore tempting to speculate that the ISR might also contribute to a decrease 

in the synthesis of viral DNA, perhaps antagonizing virus production more efficiently than through 

translational shutdown alone. 
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3.11 FIGURES/ FIGURE LEGENDS 

FIGURE 1: DNA replication is compromised shortly after ISR induction  

(A) Schematic representation of the integrated stress response (ISR) that can be activated upon 

stimulation of the kinases PERK, PKR or GCN2 or upon inhibition of the phosphatase PP1 using 

Thapsigargin (Thap), BEPP-monohydrochloride (BEPP), L-Histidinol or Sephin respectively. Activation 

of ISR can be measured by an increase in eIF2alpha phosphorylation or by the accumulation of the 

transcription factor ATF4. ISR can be inhibited using a small molecule inhibitor, ISRIB.  

(B) Immunoblot analysis of cells treated with Thap (4 μM, 1 h), BEPP (10 μM, 2.5 h) or Sephin (25 

μM, 2.5 h) to confirm ISR induction. HSC70 as loading control. For each set of treatment, a different 

exposure time was used to detect ISR activation.  

(C) Representative horseshoe plots showing EdU incorporation in relation to DNA content (DAPI) of 

cells treated with DMSO, Thap (4 μM, 1 h) or BEPP (10 μM, 2.5 h).  

(D) Average EdU staining intensity of cells in S phase as determined from the plots in (C) and 

displayed as mean ± SEM. For second biological replicate, see Supp. Fig. 1 B.  

(E) U2OS cells were incubated with 5’-chloro-2’-deoxy-uridine (25 μM CldU, 30 min) followed by 5-

iodo-2’-deoxyuridine (250 μM IdU, 60 min) in the presence of 4 μM Thap prior to harvesting for DNA 

fiber analysis.  

(F) Representative labeled tracks of newly synthesized DNA incorporating CldU (red) and IdU 

(green) of cells treated with Thap as indicated in (E). 

(G) Fork progression as determined from IdU track length (kb/min), displayed as 5-95 percentile 

whiskers boxplot of Thap–treated cells. Box plots represent data from one out of 3 independent 

experiments. See Supp. Fig. 1 C,D for additional experiments.  

(H) U2OS cells were pre-treated with 10 μM BEPP or 25 μM Sephin for 1 h and subsequently 

incubated with CldU (25 μM, 30 min) and IdU (250 μM, 60 min) in the presence of these reagents and 

then harvested for analysis. Different time periods were used for treatment and labeling in the cases of 

BEPP or Sephin treatment, to account for the different strengths of ISR induction by these compounds.  
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(I/J) Representative fiber tracks as visualized by immunostaining of CldU (red) and IdU (green) of 

BEPP (I) or Sephin (J) −treated cells.  

(K/L) Fork progression calculated from the IdU label (kb/min) of BEPP (K) or Sephin (L) –treated 

cells. Fork progression displayed as boxplots with 5-95 percentile whiskers which are representative of 

one out 3 independent experiments. See Supp. Fig. 1 E–H. 

(M) Cells were pulsed labeled with CldU (25 μM, 60 min) and then alternately with IdU (25 μM) and 

CldU (25 μM) for 15 min intervals for a duration of 1.5 h in the presence of Thap (4 μM) as indicated, 

then harvested for 7-label fiber assay analysis (Klusmann et al., 2016). From this, the number of labels 

incorporated was used for fork stalling analysis and the length of labels 2-3 was used for fork 

progression analysis.   

(N) Representative images of fiber tracks that have incorporated all 7 labels. 

(O) Percentage of forks with less than 7 labels indicating lower processivity or higher fork stalling 

rate of cells treated with Thap. Chart represents mean ± SEM of two independent experiments.  

(P) Velocity of fork determined from track length of labels 2 to 3 (kb/min) displayed as box plots (5-

95 percentile whiskers). Plot is a representative of 2 independent experiments. See Supp. Fig. 1 M. 
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FIGURE 2: Pharmacological antagonists of ISR partially rescue DNA replication  

(A) U2OS cells were treated with 1 μM ISRIB and at the same time incubated with CldU (25 μM, 30 

min). Cells were labeled with IdU (250 μM, 60 min) in the presence of ISRIB and 4 μM Thap and then 

harvested for DNA fiber assay analysis.  

(B) Cells were pre-treated with 1 μM ISRIB for 30 minutes and then with 10 μM BEPP or 25 μM 

Sephin in the presence of ISRIB for 2.5 h. To label newly synthesized DNA, cells were incubated with 

CldU (25 μM, 30 min) and IdU (250 μM, 60 min) during the last 1.5 h as shown, and then harvested for 

analysis.  

(C−E) Representative DNA tracks as labelled in red (CldU) and green (IdU) of cells treated with 

ISRIB/Thap (C), ISRIB/Sephin (D), or ISRIB/BEPP (E).  

(F−H) Fork progression (kb/min) of IdU label of cells treated with ISRIB/Thap (F), ISRIB/Sephin (G) or 

ISRIB/BEPP (H) represented as 5-95 percentile box plots. Plots shown are a representative of 2 or 3 

independent experiments. See Supp. Fig. 2. A–E. 

(I) U2OS cells were treated with 0.5 μM PERK i in the presence of CldU (25 μM, 30 min) followed 

by IdU (250 μM, 60 min) with both PERK i and 4 μM Thap as indicated prior to DNA fiber analysis. 

(J) DNA fiber tracks (representative) of cells in (I) visualized with immunostaining of CldU (red) and 

IdU (green). 

(K) DNA replication fork progression (kb/min) of PERK i and Thap–treated cells measured using the 

IdU track length. Representative box plot (5-95 percentile whiskers) of one of 3 independent 

experiments shown. See Supp. Fig. 2 F,G.  

(L) Western blot analysis of PERK i or ISRIB–treated cells with or without Thap confirming 

activation and inhibition of ISR in the context of PERK stimulation. HSC70 was used as loading control. 

(M) Expression of ATF4 and eIF2alpha phosphorylation status as measured via immunoblot 

analysis to ensure ISR activation and/or inhibition. HSC70 was visualized to ensure equal loading.  
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FIGURE 3: Stimulation of the ISR induces R-loops 

(A) Cells were treated with 4 μM Thap or 10 μM BEPP for 1 h or 3 h respectively with/without 

RNaseH1 overexpression prior to fixation and immunofluorescence analysis as described. 

Representative images of cells as visualized using DAPI (nuclei) or Alexa-Fluor488 (S9.6) staining. 

S9.6 antibody was used to detect R-loops as described in methods and materials. Note that the 

antibody also gives rise to a fluorescence signal in the cytoplasm, in agreement with previous reports 

(Schwab et al., 2015; Salas‐Armenteros et al., 2017). Unlike the nuclear signal, the cytoplasmic 

fluorescence was not removed by RNaseH1 and thereby confirmed to be non-specific. DAPI was used 

to determine the regions of interests within the nuclei for quantification of S9.6 staining as indicated by 

the white outlines. Of note, the nuclear S9.6 signal was removed by RNaseH1, indicating that it truly 

reflects DNA:RNA hybrids. Scale bar: 20 μm. 

(B) Scatter plot of S9.6 intensity per nucleus of cells (in arbitrary units), determined by quantification 

from one of 2 independent experiments (see Supp. Fig. 3 A). Red line represents mean nuclear S9.6 

staining.  

(C) Western blot analysis confirming RNaseH1 overexpression and ISR activation (ATF4 level). 

HSC70 was used as loading control.  

(D) ISR was induced in cells using Thap (4 μM, 1 h) or BEPP (10 μM, 3 h), followed by dot blot 

analysis to quantify DNA:RNA hybrids. Equal amounts of DNA were spotted onto nitrocellulose 

membrane, and R-loops were detected using the S9.6 antibody. RNaseH treatment was conducted 

alongside and used as a negative control to confirm the specificity of the signal. The signal of ssDNA 

was used as an internal sample loading control. See Supp. Fig. 3 B for a replicate.  

(E) The S9.6 signals obtained in (D) were quantified, normalized against the loading control (ssDNA 

signal), then against DMSO (without RNaseH) and plotted as bar charts. See Supp. Fig. 3 C. 
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FIGURE 4: Removal of R-loops re-establishes DNA replication upon induction of ISR but 

compromises survival of stressed cells  

(A) U2OS cells transfected with control, RNaseH1 wildtype (wt) or catalytically mutant RNaseH1 

(D10R-E48R) (mut) expression plasmids for 24 h were treated with Thap (4 μM, 1 h) or BEPP (10 μM, 

2.5 h). During the last 1 h of treatment, the cells were labeled with 20 μM EdU and then washed, fixed 

and subjected to fluorescence analysis of EdU incorporation. Representative images of DAPI (blue) 

and EdU (red) signals of one independent experiment out of 3 are shown. Scale bar: 100 μm 

(B) Box plot (5-95 percentile whiskers) of the quantified EdU intensities per nucleus of one of 3 

independent experiments. For replicates, see Supp. Fig. 4 A,B.  

(C) Transfection of cells with control or RNaseH1 plasmids (wt or mut) were conducted as 

described in (A) 24 h prior to labeling with CldU (25 μM, 30 min) and IdU (250 μM, 60 min). Cells were 

treated with 4 μM Thap during the IdU label and then harvested for analysis.   

(D) Representative DNA fiber tracks stained for CldU (red) and IdU (green) of Thap–treated cells 

overexpressing the respective plasmids as described in (C). 

(E) Box plot (5-95 percentile whiskers) of DNA fork progression (kb/min) of cells overexpressing 

RNaseH1 wt or mut plasmids in the presence/absence of Thap. Fork progression was measured using 

the IdU label and the plot shown is a representative of one out of 3 independent experiments. See 

Supp. Fig. 4 C,D.  

(F) Long-term proliferation assay of BEPP−treated cells with/without RNaseH1 overexpression 

displayed as percentage of confluence. Transfected cells that were synchronized at S phase were 

treated with either DMSO or BEPP (30 μM) for 6 hours. The media was then replenished and cell 

confluency at day 0 was measured using the Celigo Cytometer. Confluency was measured on the 

indicated days for 2 weeks. Mean ± SD of technical duplicates were plotted. The plot is a 

representation of 3 biological repeats (Supp. Fig. 4 L,M). 
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FIGURE 5: Ongoing transcription is required for compromising DNA replication by the ISR 

(A) Cells were pre-treated with CDK9 inhibitors (25 μM DRB, 10 μM LDC067 or the solvent control) 

for 1 h prior to labeling with CldU (25 μM, 30 min) and IdU (250 μM, 60 min) in the presence of CDK9i 

and Thap (4 μM). Cells were then harvested for DNA fiber analysis as described.  

(B) U2OS cells were treated with CDK9i (25 μM DRB or 10 μM LDC067) and BEPP (10 μM) for 1 h 

and then labelled with CldU (25 μM, 30 min) and IdU (250 μM, 60 min) with both CDK9i and BEPP as 

indicated prior to analysis.  

(C/D) Representative DNA fiber tracks of cells treated with CDK9i/ Thap (C) or CDK9i/BEPP (D) 

visualized via immunostaining of CldU (red) and IdU (green). 

(E/F) IdU tracks of cells treated with CDK9i and Thap (E) or CDK9i and BEPP (F) were used to 

measure fork progression (kb/min) and are presented as box plots (5-95 percentile whiskers). One 

representative plot from 3 independent experiments shown. See Supp. Fig. 5 A–D.  
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FIGURE 6: ISR activation blocks the synthesis of histones required for DNA replication, 

reducing chromatin assembly on newly synthesized DNA 

(A) Soluble proteins were extracted from cells treated with Thap (4 µM), BEPP (10 µM), CHX (50 

µg/ml) or cells transfected with siRNA against SLBP (100 nM) for the indicated periods of time. 

Immunoblot analyses of soluble histone-3 lysine-56 acetylation (H3K56ac) and histone-4 lysine-5 

acetylation (H4K5ac) were used to measure newly synthesized histones (Masumoto et al., 2005; 

Mejlvang et al., 2014). HSC70 was detected as a loading control.  

(B) Cells were transfected with plasmids, labeled with CldU (25 μM, 30 min) followed by IdU (250 

μM, 60 min). Cells were treated with Thap (4 μM) during the IdU label as indicated prior to subsequent 

analysis.  

(C) Representative DNA fiber tracks of cells transfected with plasmids (control, H2A wt or H2A 

K118R-K119R mutant) and labeled as described in (B) using CldU (red) and IdU (green). 

(D) Fork progression (kb/min) of cells in (C) calculated using IdU track length. DNA fork progression 

displayed as box plot (5-95 percentile whiskers) and is a representative data of one of 3 independent 

experiments. See Supp. Fig. 6 J,K. 

(E) Western blot analysis of soluble H4K5ac from H2A-overexpressing cells. HSC70 used as 

loading control. Representative blot shown. For replicate, see Supp. Fig. 6 R. 

(F/G) Images of DNA fibers (representative) of Thap–treated cells overexpressing either H4 (F) or 

H2B (G) and labeled for DNA fiber assay as described in (B). 

(H/I) DNA fork progression (kb/min) displayed as box plots (5-95 percentile whiskers). IdU-labeled 

tracks were used to calculate fork progression of Thap−treated cells overexpressing H4 (H) or H2B (I). 

Plots are a representation of one out of 3 independent experiments. See Supp. Fig. 6 S,T,Z,AA. 

(J) MNase sensitivity assay on nascent and global chromatin. Cells were incubated with 20 µM 

EdU for 1 hour in the presence of DMSO or 4 µM Thap to label newly synthesized DNA (or nascent 

chromatin). To overcome the lower DNA replication rate by Thap, the cells were transfected to 

overexpress RNaseH1. After fixation, and following click chemistry reaction to label nascent chromatin 

(EdU signal), the cells were subjected to MNase degradation for 0, 2 or 5 min as indicated, then stained 

for global DNA with DAPI. Images were acquired using fluorescence microscopy detecting EdU and 
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DAPI. Representative images of the EdU and DAPI signals from samples subjected to digestion with 

MNase for 0 or 2 min are shown. Scale bar: 100 µm. 

(K) The EdU (nascent chromatin) and DAPI (global chromatin) signals were quantified and 

normalized to their respective 0 min MNase control and plotted to display relative intensity vs MNase 

digestion time. See Supp. Fig. 6 AH for a replicate. 
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FIGURE 7: Inhibition of histone synthesis induces R-loops which impairs DNA replication 

 (A) Cells synchronized at S phase and transfected with either control or RNaseH1 expression 

plasmids were treated with cycloheximide (CHX; 50 µg/ml) for 1 h, then harvested for S9.6 

immunofluorescence analysis as described in Fig. 3 A. Intensity of S9.6 staining per nucleus was 

quantified and displayed as a scatter plot. Red line represents mean S9.6 intensity per nucleus. See 

Supp. Fig. 7 A,B for a replicate.  

(B) Dot blot analysis of S phase cells to detect R-loops using S9.6 antibody. Synchronized cells in S 

phase were treated with CHX (50 µg/ml, 1 h) and harvested. Equal amounts of DNA were spotted onto 

nitrocellulose membrane. R-loops were detected using S9.6 antibody whereas subsequent ssDNA 

detection (on denatured DNA) was used as an internal loading control. As a negative control, samples 

were treated with RNaseH enzyme for 3 h at 37°C. Blot is a representative of 2 independent 

experiments. See Supp. Fig. 7 D. 

(C) Signal from the spots in (B) were quantified and normalized to the loading control (ssDNA) and 

then to the sample without ISR or RNaseH treatment. See Supp. Fig. 7 E.  

(D) U2OS cells were transfected with plasmids (control, RNaseH1 wt or RNaseH1 catalytically 

mutant) 24 hours prior to labeling with CldU (25 μM, 30 min) and IdU (250 μM, 60 min). CHX (50 μg/ml) 

was added to the cell during the IdU label.  

(E) Cells were transfected with siRNA (scrambled non-specific control or siCtrl, or siSLBP, 100 nM) 

16 h prior to overexpression with plasmids (control, RNaseH1 wt or RNaseH1 mut) as indicated. Cells 

were then incubated with CldU (25 μM, 30 min) and IdU (250 μM, 60 min) to label newly synthesized 

DNA and then harvested.  

(F/G) DNA fiber tracks of CHX–treated cells (F) or cells depleted from SLBP (G) with overexpression 

of either control, RNaseH1 wt or RNaseH1 mutant plasmids. Fiber tracks were observed by 

immunostaining of CldU (red) and IdU (green). 

(H/I) Box plot (5-95 percentile whiskers) showing the fork progression (kb/min) as measured using 

IdU track length of CHX−treated (H) or SLBP–depleted (I) cells in the presence/absence of RNaseH1 

overexpression. Representative data shown from one of 3 independent experiments. See Supp. Fig. 7 

F−I.  
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3.12 SUPPLEMENTARY FIGURES/ SUPPLEMENTARY FIGURE LEGENDS 

SUPP FIGURE 1: DNA replication is compromised shortly after ISR induction. Related to Fig. 1. 

(A) Immunoblot analysis of cells treated with control or L-Hist (4 mM ,1 h) to confirm ISR induction 

(eIF2alpha phosphorylation status and ATF4 levels). HSC70 as loading control. 

(B) Average EdU intensity of cells in S phase displayed as mean ± SEM of the second independent 

experiment conducted in technical triplicates. See Fig. 1 D. 

(C−H) DNA fork progression (kb/min) of Thap (C,D), BEPP (E,F) or Sephin (G,H) –treated cells as 

described in Fig. 1 E or 1 H. Fork progression calculated using IdU track and displayed as box plots 

with 5-95 percentile whiskers. Replicate experiments for Fig. 1 G,K,L respectively. 

(I) U2OS cells were incubated with 5’-chloro-2’-deoxy-uridine (25 μM CldU, 30 min) followed by 5-

iodo-2’-deoxyuridine (250 μM IdU, 60 min) in the presence of 4 mM L-Hist prior to harvesting for DNA 

fiber analysis. 

(J) Representative images of IdU (green) and CldU (red) track lengths of L-Hist−treated cells.  

(K/L) Box plot (5-95 percentile) of DNA fork progression (kb/min) of IdU label of cells treated with L-

Hist. Cells were treated and labeled as described in (I). Two biological replicates of 3 shown.  

(M) Fork progression as determined using the track length of label 2-3 of the 7-label fiber assay. 

Box plot with 5-95 percentile whiskers of the second biological repeat of Fig. 1 P shown.  

(N) Cells were treated with Thap (4 μM) or Gem (500 nM) for 1 h and then harvested for western 

blot analysis. Chk1 phosphorylation and gamma H2AX induction marks replicative stress (Dobbelstein 

and Sorensen, 2015). Total Chk1 levels and H3 were used as loading controls. Thap treatment does 

not induce Chk1 phosphorylation or gamma H2AX to a similar extent as Gemcitabine treatment, a 

widely used replicative stress inducer. 
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SUPP FIGURE 2: Pharmacological antagonists of ISR partially rescue DNA replication. Related to 

Fig. 2. 

(A/B) Biological repeats of the experiment described in Fig. 2 A. Box plot (5-95 percentile whiskers) 

showing fork progression rate (kb/min) of ISRIB/Thap–treated cells, calculated using IdU length. 

Corresponding to Fig. 2 F.  

(C−E) Box plot (5-95 percentile whiskers) showing DNA fork progression rate (kb/min) measured using 

IdU length of ISRIB/Sephin (C) or ISRIB/BEPP (D,E) –treated cells as described in Fig. 2 B. Replicates 

to Fig. 2 G,H.  

(F/G) Fork progression rate (kb/min) of PERK i/Thap –treated cells of the experiment described in Fig. 

2 I. IdU label was used to calculate fork rate and displayed as box plots (5-95 percentile whiskers). See 

Fig. 2 K.  
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SUPP FIGURE 3: Stimulation of the ISR induces R-loops. Related to Fig. 3. 

(A) Biological replicate of the experiment described in Fig. 3 A,B showing S9.6 intensity per 

nucleus of cells (in arbitrary units) after quantification. Red line represents mean nuclear S9.6 staining.  

(B) Replicate of the dot blot analysis for S9.6 detection to quantify R-loops and ssDNA as internal 

sample loading control. Samples were subjected to RNaseH treatment to confirm the specificity of the 

signal. See Fig. 3 D. 

(C) Quantification of the S9.6 signal detected in (B) normalized against the ssDNA and against the 

DMSO (without RNaseH) control. See Fig. 3 E. 
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SUPP FIGURE 4: Removal of R-loops re-establishes DNA replication upon induction of ISR but 

compromises survival of stressed cells. Related to Fig. 4. 

(A/B) Biological replicates showing EdU intensity per nucleus of Thap or BEPP−treated cells in the 

presence/absence of wildtype or mutant RNaseH1. Box plots with 5-95 percentile whiskers shown. 

Corresponding to Fig. 4 B. 

(C/D) DNA fork progression (kb/min) measured using IdU track length of Thap–treated cells 

with/without RNaseH1 overexpression plasmids as described in Fig. 4 C. Results displayed as box 

plots with 5-95 percentile whiskers. Replicates to Fig. 4 E. 

(E) Transfection of cells with control or RNaseH1 plasmids (wt or mut) were conducted as 

described. Cells were then treated with 10 μM BEPP for 1 h and then incubated in CldU (25 μM, 30 

min) and IdU (250 μM, 60 min) in the presence of BEPP prior to analysis. 

(F) Labeled DNA fibers visualized via immunostaining of CldU (red) and IdU (green) of BEPP–

treated cells overexpressing the respective plasmids described in (E). 

(G−I) Box plots (5-95 percentile whiskers) showing the DNA fork progression (kb/min) of cells 

overexpressing RNaseH1 wt/mut and treated with BEPP as described. IdU label was used to measure 

fork progression.  

(J/K) Activation of ISR and RNaseH1 overexpression confirmed with immunoblot analysis of 

phosphorylated eIF2alpha and mCherry respectively with HSC70 as loading control. 

(L/M) Biological replicates of the proliferation assay described in Fig. 4 F of S phase cells treated with 

30 µM BEPP for 6 hours with/without RNaseH1 overexpression.  
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SUPP FIGURE 5: Ongoing transcription is required for compromising DNA replication by the 

ISR. Related to Fig. 5. 

(A−D) IdU fork progression in kb/min of cells treated with CDK9i and Thap (A−B) or BEPP (C−D) as in 

Fig. 5 A,B  displayed as box plots (5-95 percentile whiskers). Biological replicates to Fig. 5 E,F 

respectively.  
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SUPP FIGURE 6: ISR activation blocks the synthesis of histones required for DNA replication, 

reducing chromatin assembly on newly synthesized DNA. Related to Fig. 6. 

(A) U2OS cells were labelled with CldU (25 μM, 30 min) followed by IdU (250 μM, 60 min) in the 

presence of cycloheximide (CHX, 50 μg/ml) and then harvested.  

(B) Representative DNA fibers of cells treated with CHX or solvent control (EtOH) visualized with 

immunostaining of CldU (red) and IdU (green). 

(C/D) Box plot (5-95 percentile whiskers) showing fork progression (kb/min) calculated using IdU track 

length of CHX–treated cells in (A). Two biological replicates of 3 shown.  

(E) Soluble proteins were extracted as described from Thap (4 µM), BEPP (10 µM), CHX (50 µg/ml) 

–treated cells or cells transfected with siRNA against SLBP (100 nM). Immunoblot analysis of soluble 

histone-4 lysine-12 acetylation (H4K12ac) was used as a mark for newly synthesized histones. HSC70 

was used as loading control.  

(F) U2OS cells were transfected with control or siRNA against SLBP (100 nM) for 40 hours prior to 

incubation with CldU (25 μM, 30 min) and IdU (250 μM, 60 min). Cells were the harvested for DNA fiber 

analysis.  

(G) Representative DNA fiber tracks of cells treated depleted of SLBP visualized via 

immunostaining of CldU (red) and IdU (green). 

(H) IdU track length of cells in (G) was used to measure DNA fork progression (kb/min) as displayed 

as box plots (5-95 percentile whiskers). One representative experiment out of 3 shown. 

(I) Western blot analysis of cells treated in (F) confirming SLBP knock down. HSC70 used as 

loading control.  

(J/K) Box plots (5-95 percentile whiskers) showing DNA fork progression (kb/min) measured using the 

IdU tracks of cells treated with Thap and transfected with H2A plasmids as described (Fig. 6 B). 

Replicates to Fig. 6 D. 

(L) Cells were transfected with plasmids and treated with BEPP for 2.5 h. Newly synthesized DNA 

was labeled with CldU (25 μM, 30 min) followed by IdU (250 μM, 60 min) during the last 1.5 h in the 

presence of BEPP then harvested for analysis. 
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(M) Images of DNA fibers (representative) of BEPP–treated cells overexpressing control, H2A 

wildtype or H2A K118R-K119R mutant plasmids visualized as CldU (red) and IdU (green).  

(N/O) DNA fork progression (kb/min) of cells treated as in (L) and displayed as box plots (5-95 

percentile whiskers). IdU label was used to calculate fork progression. Two biological replicates of 3 

shown.    

(P/Q) Immunoblot analysis of cells confirming H2A overexpression (Flag) in cells treated with Thap (P) 

or BEPP (Q). Functional (or wildtype) and mutant H2A expression was confirmed using ubiquitylation 

status of H2A. HSC70 was used as loading control.  

(R) Biological replicate of Fig. 6 E showing induction of H4K5ac upon H2A overexpression. HSC70 

as loading control.  

(S/T) Biological replicates of Fig. 6 H. Rate of DNA fork progression (kb/min) shown as box plots (5-

95 percentile whiskers). IdU track length was used to calculate fork progression of Thap−treated cells 

overexpressing H4.  

(U) Representative fiber images of control or H4−overexpressing cells treated with BEPP and 

labeled for fiber assay as described in (L).  

(V/W) Box plots (5-95 percentile whiskers) of IdU fork progression (kb/min) of cells described in (U).  

(X/Y) Overexpression of H4 (tagged with GFP) in Thap (X) or BEPP (Y)−treated cells confirmed using 

immunoblot analysis against GFP antibody. HSC70 used as loading control.  

(Z/AA) Replicate experiments showing fork progression of cells overexpressing H2B and treated with 

Thap as in Fig. 6 I. Box plots with 5-95 percentile whiskers of fork progression calculated using IdU 

track length shown. 

(AB) Fiber tracks of BEPP−treated cells with/without H2B overexpression. CldU is visualized in red 

and IdU in green. 

(AC/AD)Fork progression of cells treated with BEPP, and overexpressing H2B were calculated using 

IdU tracks and plotted as box plots (5-95 percentile whiskers). Two replicates of 3 shown.  

(AE/AF)Immunoblot analysis confirming H2B overexpression in Thap (AE) or BEPP (AF)−treated cells.  
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(AG) Immunofluorescence images of cells labeled with/without EdU (20 µM, 1 h) (top). 

Representative images of DAPI signal of cells treated with MNase for 0 min vs 5 min (bottom). Scale 

bar: 100 µm. 

(AH) Biological replicate of experiment in Fig. 6 K to measure nucleosome occupancy in newly 

replicated regions. Relative EdU intensity (nascent chromatin) or relative DAPI intensity (global 

chromatin) plotted against MNase digestion time of Thap−treated cells overexpressing RNaseH1.  
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SUPP FIGURE 7: Inhibition of histone synthesis induces R-loops which impairs DNA replication. 

Related to Fig. 7. 

(A) S phase cells overexpressing control or RNaseH1 plasmids were treated with CHX (50 µg/ml) 

for 1 h and then harvest for S9.6 immunofluorescence analysis as described. Representative images of 

cells as visualized using DAPI (nuclei) or Alexa-Fluor 488 (S9.6) staining to detect R-loops. DAPI was 

used to determine regions of interests within the nuclei for quantification as indicated by the white 

outlines. Scale bar: 20 μm. 

(B) Biological replicate of S9.6 immunofluorescence staining of CHX−treated cells quantified and 

plotted as scatted plots. Red line represents mean S9.6 intensity per nucleus. Corresponding to Fig. 7 

A. 

(C) Western blot analysis confirming RNaseH1 overexpression in cells describe in Fig. 7 A and in 

(B). Total H3 used as loading control. 

(D/E) Biological replicate of the dot blot analysis in Fig. 7 B,C. S9.6 signal intensity in (D) was 

quantified and normalized to the internal loading control (ssDNA), then to the EtOH control (without 

RNaseH) and plotted as bar charts (E).  

(F/G) Box plots with 5-95 percentile whiskers displaying the DNA fork progression of cells 

treated/transfected as in Fig. 7 D. IdU track length was used to calculate the fork progression of 

CHX−treated cells with RNaseH1 overexpression. Replicates to Fig. 7 H. 

(H/I) Cells transfected with siRNA/plasmid as described in Fig. 7 E were harvested for DNA fiber 

analysis upon labeling with CldU and IdU. DNA fork progression of the IdU label (kb/min) of the 

additional 2 independent experiments corresponding to Fig. 7 I shown as box plots (5-95 percentile 

whiskers). 

(J) Immunoblot analysis of mCherry confirming overexpression of RNaseH1 in cells described in 

Fig. 7 D.  

(K) RNaseH1 overexpression and SLBP knockdown were confirmed with immunoblot analysis to 

mCherry and SLBP respectively. HSC70 as loading control.  
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4 Discussion 

In this study, we investigated the role of the integrated stress response (ISR) on DNA replication. We 

observed that the short-term induction of the ISR leads to a drastic impairment of DNA replication. We 

found that inhibition of DNA replication was due to both increased fork stalling and a lower rate of DNA 

polymerisation. In addition, we showed that the ISR leads to the accumulation of R-loops, and this is 

due to the lack of newly synthesised histones. Removing R-loops or introducing histones exogenously 

to the cell restores DNA replication upon ISR. Overall, we propose a model where ISR blocks cap-

dependent translation and thus histone synthesis. The lack of histones favour a more open chromatin 

and this leads to an increase in R-loop formation. R-loops inhibit DNA replication in the context of ISR 

and this is a protective mechanism to help the cell conserve nutrients and energy during stress (Fig. 

4.1). We discuss these observations in more detail in the following sub-sections.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: ISR impairs DNA replication. ISR activation blocks histone synthesis through inducing eIF2alpha 

phosphorylation and subsequently inhibiting cap-dependent translation. Consequently, insufficient histone supply leads to the 

accumulation of R-loops which impedes DNA replication.   
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4.1 Interplay between the ISR and DNA replication  

4.1.1 DNA replication is inhibited upon ISR stimulation 

The ISR has mainly been studied for its pro-survival role in situations of stress (Pakos‐Zebrucka et al., 

2016). ISR is activated upon stress stimuli, leading to the inhibition of global protein synthesis and the 

activation of a stress-associated transcriptional programme downstream of ATF4 (Kroemer, Mariño and 

Levine, 2010). Blocking protein synthesis enables the cell to reduce the need for amino acids and 

energy when conditions are not permitting. We proposed that the ISR should slow down DNA 

replication for the same reason. However, despite extensive studies on the ISR, there has been very 

little reported on its role in regulating DNA replication.  

Approximately 2x3x109 deoxynucleoside-triphosphates (dNTPs) are required to fully replicate a diploid 

human genome in a cell (Piovesan et al., 2019). Defects in DNA replication could lead to accumulating 

mutations which can favour genomic instability in cells. It is not surprising that an energy-consuming 

process such as DNA replication would need to be extensively regulated. Carbon and nitrogen 

precursors for dNTP synthesis are usually provided by amino acids (Lane and Fan, 2015). Under 

conditions of limited nutrients and energy, dNTP metabolism is impaired. Therefore, stalling DNA 

replication and reducing the consumption of dNTPs could be of importance for survival.  

We observed that the induction of ISR severely impaired DNA replication. This was not limited to single 

replication forks but also affected total DNA synthesis in the cell (Manuscript Fig. 1 C−L, Supp. Fig. 1 

B−L). The use of multiple ISR-inducing compounds in parallel, along with the reversal of the phenotype 

with ISRIB strongly suggests the role of ISR in inhibiting DNA replication (Manuscript Fig. 2, Supp. 

Fig. 2). Thapsigargin inhibits the calcium pump in the ER. This disrupts calcium homeostasis and 

induces ER stress which activates PERK (Thastrup et al., 1989). L-Histidinol competitively binds to and 

inhibits Histidine tRNA synthetase (Iiboshi et al., 1999). This results in an increase in uncharged 

tRNAHis which then activates GCN2. BEPP-monohydrochloride was shown to induce eIF2alpha 

phosphorylation in a PKR dependent manner (Hu et al., 2009). Sephin1 inhibits the GADD34 inducible 

phosphatase involved in dephosphorylating eIF2alpha (Das et al., 2015). Hence, Sephin1 acts by 

blocking dephosphorylation of naturally occurring phospho-eIF2alpha. As each ISR inducing agent 

used has a different mode of activating the pathway, we ruled out non-specific effects of these 

compounds. 
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Although the direct role of ISR on DNA replication has not been investigated, there have been some 

reports with hints of ISR regulating DNA replication. In one such study, Shukla et al. used several 

compounds such as thapsigargin, 2,5-di-tert-butylhydroquinone (DBHQ), ionomycin, cyclo-piozonic acid 

and the Ca2+ ionophore A23187 to increase cytosolic Ca2+ in human vascular smooth muscle cells 

(VSMC). Interestingly, they found that although all compounds tested raised cytosolic Ca2+, only 

thapsigargin significantly suppressed cell proliferation and nucleoside analogue incorporation (Shukla 

et al., 1997). This study clearly suggested the calcium homeostasis independent role of thapsigargin in 

impairing replication in cells. Similarly, exposure to thapsigargin for two days inhibited proliferation of 

human rheumatoid arthritis synovial cells (MH7A) (Wang et al., 2014). Another publication by Cabrera 

et al. elaborated this further. They showed that thapsigargin inhibited DNA replication in the 

osteosarcoma cell line U2OS by inducing ER stress and eIF2alpha phosphorylation (Cabrera et al., 

2017). The results from these studies complemented our observations. More importantly, our study 

expanded this to a whole range of ISR inducing agents. It is worth pointing out that thapsigargin 

negatively hampered replication in both transformed (U2OS) and non-transformed cells (VSMC and 

MH7A) (Shukla et al., 1997; Wang et al., 2014; Cabrera et al., 2017). In the studies mentioned, a 

significant reduction in replication was observed upon one hour of thapsigargin treatment in U2OS cells 

vs the 48 hour treatment required in the non-transformed cell lines. Although speculative, it is possible 

that tumour cells are more sensitive to ISR-mediated DNA replication inhibition. Tumour cells have a 

higher replicative capacity and a higher demand for nutrients and energy for cell division. We 

hypothesise that tumour cells, especially those growing in hypoxic, low-nutrient environments depend 

on the reduced speed of DNA replication induced by ISR to survive.  Indeed, a direct comparison of 

ISR-mediated DNA replication block between transformed and non-transformed cell lines would be 

more conclusive.  

4.1.2 The ISR does not activate replicative stress signalling 

Replicative stress describes defects in DNA replication that lead to the activation of kinases such as 

ATR and ultimately the induction of the DNA damage response. Cancer cells have high intrinsic 

replicative stress due to their elevated replicative potential (Dobbelstein and Sørensen, 2015). Recent 

research on cancer therapeutics aims to utilise this aspect, using compounds that further accelerate 

their replication (Ubhi and Brown, 2019). As a result, these cells may either acquire more mutations or 

undergo premature mitosis and progress to cell death. A greater understanding on the pathways that 

could lead to replicative stress would allow for more effective and specific targeting of cancer cells.  
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As described in Section 2.4.2, certain markers of replicative stress include an increase in phospho-

CHK1, γH2AX, and phospho-RPA, long stretches of ssDNA or increased origin firing (Cimprich and 

Cortez, 2008; Iyer and Rhind, 2017). Interestingly, the impairment in DNA replication upon ISR was not 

accompanied by an increase in γH2AX or phospho-CHK1. In contrast, treatment of the same cells with 

gemcitabine, a typical replicative stress inducer significantly increases the expression of both those 

marks (Manuscript Supp. Fig. 1 N) (Köpper et al., 2013). Is ISR-mediated attenuation of DNA 

replication equivalent to replicative stress? Although the lack of these markers suggests otherwise, 

long-term treatment of cells with ISR-inducing compounds negatively impacted cell proliferation 

(Manuscript Fig. 4 F, Supp. Fig 4 L−M). Indeed, it would be worthwhile to study the other markers of 

replicative stress such as phosphorylated RPA, ATR or measure origin firing following ISR. Hence, 

based on our current knowledge, we cannot conclude if impairment of DNA replication upon ISR is 

protective or destructive to the cell. 

On a different note, although replicative stress signalling was not observed even after 4 hours of ISR 

stimulation, studies have shown that replicative stress itself can activate the ISR (Palam et al., 2015; 

Wang et al., 2018; Chen et al., 2019). Work by Palam et al. showed an increase in eIF2alpha 

phosphorylation after 6 hours of treatment with gemcitabine. They found that the activation of ISR was 

important for gemcitabine resistance of pancreatic cancer cells (Palam et al., 2015). The proposed 

mechanism involved the upregulation of anti-apoptotic, pro-survival genes downstream of ATF4 

accumulation. Moreover, ATF4-mediated induction of antioxidant enzymes in breast and gastric cancer 

alleviates oxidative stress imposed by paclitaxel and cisplatin treatment respectively, resulting in better 

survival of these cells (Wang et al., 2018; Chen et al., 2019). Therefore, although the ISR did not lead 

to replicative stress and DNA damage within the time frame tested, replicative stress activates the ISR.  

4.2  Crosstalk between DNA replication and protein translation  

4.2.1 The processes of DNA and protein synthesis are co-regulated 

It is of no surprise that protein synthesis would play a major role in regulating DNA replication. After all, 

signalling pathways that promote cell proliferation (and DNA replication) such as the MAPK or 

PI3K/AKT pathways also activate translation (described in Section 2.2.3). Such pathways favour the 

G1/S transition of the cell cycle and promote origin firing by stimulating CDK activity through the 

upregulation of cyclins (Proud, 2019). As a cell prepares to divide, it would have to grow to a sufficient 

size and synthesise the necessary cellular components (Du and Stillman, 2002). Recently, it was 

shown that as many as 1400 different proteins are synthesised as cells enter the S phase, where DNA 
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replication occurs (Chen, Smeekens and Wu, 2016). Molecular function clustering of these newly 

synthesised proteins revealed an enrichment of proteins involved in DNA replication such as helicases, 

topoisomerases and DNA polymerases (Chen, Smeekens and Wu, 2016). This is in agreement with 

several independent studies showing an enhanced translation of CDC6, MCM3 and DNA polymerase 

(delta) upon entry of cells into S phase (Zeng et al., 1994; Musahl et al., 1998; Petersen et al., 2000).  

Furthermore, many studies have shown that blocking protein synthesis with cycloheximide is sufficient 

to severely halt DNA replication (Gautschi and Kern, 1973; Mejlvang et al., 2014; Henriksson et al., 

2018). The tight regulation between these two processes has also been widely observed in different 

organisms. Studies in archaea, yeast and bacteria showed that guanosine pentaphosphate (pppGpp) 

or guanosine tetraphosphate (ppGpp) accumulate upon starvation (Wang, Sanders and Grossman, 

2007; Srivatsan and Wang, 2008; Maciag et al., 2010; Denapoli, Tehranchi and Wang, 2013). These 

small molecules signal the cell to stop both translation and DNA replication. For example, pppGpp or 

ppGpp in Escherichia coli blocks DNA replication through reducing transcription of replication initiation 

proteins (Wang, Sanders and Grossman, 2007). Moreover, certain genes associated with DNA 

replication and translation are clustered together on the genome and this is conserved through 

evolution (Berthon, Fujikane and Forterre, 2009). Berthon et al. discovered that some ribosomal 

proteins can directly interact with MCM proteins. When translation is inhibited and there is a lack of 

requirement for ribosomal proteins, these proteins sequester the MCM helicases from origins of 

replication thus impairing DNA replication (Berthon, Fujikane and Forterre, 2009). Taken together, 

these studies and observations further indicate a tight regulation between DNA replication and protein 

translation. 

4.2.2 DNA replication proteins have long half-lives   

DNA replication is tightly regulated and involves many different proteins which can directly or indirectly 

interact with the replication machinery. Interestingly, studies revealed that most of these DNA 

replication proteins are relatively stable and have a half-life of at least 4 hours (Gautschi and Kern, 

1973; Chen, Smeekens and Wu, 2016). Few reports have shown stable levels of proliferating cell 

nuclear antigen (PCNA), MCM helicases and DNA polymerases (δ and ε) for up to 3 hours after 

cycloheximide treatment (Roseaulin et al., 2013; Henriksson et al., 2018). Therefore, it was puzzling 

that blocking protein synthesis for 20 minutes was able to profoundly halt DNA replication (Gautschi 

and Kern, 1973; Henriksson et al., 2018). It is unlikely that the induction of ISR (and inhibition of protein 

synthesis) in one hour could lead to the sufficient depletion of these replication proteins to negatively 

impact DNA replication. On the other hand, it may be worth noting that the continuous syntheses of 
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proteins that do not form the replisome or origin licencing complex are still required for proper DNA 

replication. Rather, inhibition of protein synthesis could hamper DNA replication because duplication of 

DNA and chromatin are tightly coupled (MacAlpine and Almouzni, 2013). As DNA replicates to form two 

daughter strands, these strands are wrapped in histones to reform chromatin. Although histone 

recycling occurs, formation of a new DNA duplex urges the need for newly synthesised histones.  

4.3 Histones: a limiting factor in DNA replication 

4.3.1 Continuous histone synthesis ensures proper DNA replication    

Although dNTPs make up the DNA, DNA is wrapped around histones to form chromatin. As DNA 

content in a cell doubles during replication, the amount of histones available should also double for 

proper chromatin formation (MacAlpine and Almouzni, 2013). Because histones are not actively 

required during DNA replication, they are not usually immediately considered a limiting factor for DNA 

replication. Nevertheless, many recent works have shown that depletion of histones negatively impacts 

DNA replication (Groth, Corpet, et al., 2007; Koseoglu, Dong and Marzluff, 2010; MacAlpine and 

Almouzni, 2013; Klimovskaia et al., 2014; Alabert, Jasencakova and Groth, 2017; Henriksson et al., 

2018).  

First, replication-dependent histone transcription is highly regulated according to the cell cycle status. 

Expression of these histone genes is elevated during S phase (Schümperli, 1988). The presence of 

more than one copy of these genes clustered in transcriptionally active regions suggests a need for the 

highly proficient expression of histones when cells replicate their DNA. Histone RNAs are intron-less 

(Marzluff, 2005; Gagliardi and Dziembowski, 2018). Moreover, histone RNAs do not require poly-

adenylation, suggesting their large-scale and rapid production during replication (Mei et al., 2017). This 

could be an evolutionary conserved mechanism to increase the efficiency of histone mRNA translation 

during DNA replication. Taken together, we hypothesise that histone RNAs are processed in a slightly 

different manner to non-histone RNAs. It is not difficult to speculate that a niche set of RNA processing 

factors could also further increase translation efficiency, as histone RNAs would not have to compete 

with other RNAs for such factors.  

4.3.2 ISR depletes cells of histones 

Since most proteins that associate with the DNA replication complex are relatively stable (Section 

4.2.2), we hypothesised that ISR-mediated block of protein synthesis after one hour affects DNA 
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synthesis by attenuating histone production in the cell. To date, cap-dependent translation regulation 

has not been directly affiliated with histone translation. Replication-dependent histone mRNAs are 

regulated differently to other mRNAs (Marzluff, Wagner and Duronio, 2008). mRNAs of replication-

dependent histones are the only non-polyadenylated mRNAs in a cell. Instead, histone mRNAs contain 

a conserved stem-loop bound by the stem-loop binding protein (SLBP) (MacAlpine and Almouzni, 

2013). SLBP has similar functions to the poly-A binding protein (PABP) required for poly-A binding of 

other cellular mRNAs. Removal of SLBP impaired translation of histone mRNAs but also enhanced 

degradation of these mRNAs (Kaygun and Marzluff, 2005; Meaux, Holmquist and Marzluff, 2018). 

PABP mediates circularisation of mRNAs through direct interaction with eIF4G at the 5’ cap. On the 

other hand, direct interaction between SLBP and the eIF4F complex requires SLBP-interacting protein 

1 (SLIP1) (Cakmakci et al., 2008; Marzluff, Wagner and Duronio, 2008). Studies have speculated that 

translation of histone mRNAs requires proper circularisation of the mRNA in a way similar to cap-

dependent translation of poly-adenylated mRNAs (Marzluff, 2005; Marzluff, Wagner and Duronio, 2008; 

Mei et al., 2017). Although speculative, this would suggest that histone mRNA translation occurs in a 

cap-dependent manner. It is interesting to note that although depletion of SLBP led to a marked 

reduction in histone levels, SLIP1 knock down which would impede circularisation and interaction with 

the 5’cap only moderately reduces histone levels in the cell (Cakmakci et al., 2008). This observation 

would argue against circularisation-dependent translational control of histone mRNAs.  

However, our results suggest that translation of histone mRNAs requires the cap-dependent 

translational complex. Upon ISR stimulation, newly synthesised histones are diminished (Manuscript 

Fig. 6 A, Supp. Fig. 6 E). Newly synthesised histones are marked with acetylation at several residues. 

Few examples include acetylation at lysine 5 or lysine 12 on histone 4 (H4K5ac or H4K12ac) or lysine 

56 on histone 3 (H3K56ac) (MacAlpine and Almouzni, 2013; Mejlvang et al., 2014). Once incorporated, 

these acetylation marks are removed within 30 minutes by histone deacetylases (HDACs) (Jackson et 

al., 1976; Smith et al., 2008). Therefore, soluble levels of H4K5/K12ac or H3K56ac are good indicators 

for measuring the synthesis of new histones. Histone chaperones such as anti-silencing function 

protein 1 (ASF1) and chromatin assembly factor 1 (CAF1) play a major role in bringing newly 

synthesised histones to the newly replicated DNA (Groth, Corpet, et al., 2007; Klimovskaia et al., 2014). 

As histone chaperones interact with histones through these acetylation marks, it is possible that 

recycled parental histones are also acetylated during transcription or DNA replication. Hence, 

measurement of soluble H4K5/K12ac or H3K56ac may not be the most accurate readout of newly 

synthesised histones. Recycled histones would not exist in the cytoplasm whereas newly synthesised 

histones are translated in the cytoplasm. Fractionating the cell prior to soluble protein extraction could 



DISCUSSION 
 

 89 
 

eliminate this problem. In addition, newly synthesised histones can also be distinguished through the 

use of radioactively-labelled 35S-Methionine. Of note, although we have yet to test this, it is also 

possible that ISR indirectly affects histone mRNA translation through the depletion of SLBP or SLIP1.  

ISR-induced depletion of histone pools could lead to decreased occupancy of histones on the DNA. 

This would lead to large amounts of naked DNA in the cell and can be demonstrated by an increase in 

micrococcal nuclease (MNase) sensitivity of newly replicated chromatin with ISR stimulation 

(Manuscript Fig. 6 J,K, Supp. Fig. 6 AH). Importantly, MNases mainly target naked DNA and can 

therefore be used as a good reflection of chromatin ‘openness’ (Luo et al., 2018; Pajoro et al., 2018; 

Ramani, Qiu and Shendure, 2019). Similar observations were made by Mejlvang et al. by directly 

depleting histones, further suggesting that the ISR leads to impaired histone synthesis (Mejlvang et al., 

2014).  

4.3.3 Histone overexpression restores DNA replication upon ISR  

Since ISR depletes cells of histones, we hypothesised that ISR impairs DNA replication through 

attenuating histone synthesis. Indeed, DNA replication in the context of ISR was restored upon single 

overexpression of H2A, H2B or H4 (Manuscript Fig. 6 C,D,F−I, Supp. Fig. 6 J−Q, S−AF). However, if 

ISR blocks overall histone synthesis, it was surprising that overexpression of either one of the core 

histones was able to rescue DNA replication inhibition by ISR. 

It is important to note that histone levels are tightly regulated in a cell. This not only ensures sufficient 

histone synthesis during DNA replication, but prevents accumulation of excess histones that could be 

toxic. Studies have shown that an enrichment of a single core histone is cytotoxic (Singh et al., 2010; 

Liang et al., 2012). A nucleosome is made of (H3/H4)2 and (H2A/H2B)2 hetero-dimers. To prevent an 

excess of any one histone, all core histones are regulated similarly. On top of that, the expression of 

each is tightly adjusted to the others (Marzluff, Wagner and Duronio, 2008). Taken together, it is 

unlikely that the ISR would only inhibit the translation of a subset of histone mRNAs.  

Interestingly we did not observe any obvious toxicity in control cells after 24 hours of histone 

overexpression. The histone expression plasmids used in our study are under the control of a 

constitutively active promoter. Expression of histones under such promoters has been shown to be 

lower compared to replication-dependent histone expression during S phase (Das and Tyler, 2012). 

Lack of cytotoxicity seen in our hands could reflect this. Furthermore, we observed an increase in newly 

synthesised H4 (marked by H4K5ac) in the cell upon H2A overexpression (Manuscript Fig. 6 E. Supp. 
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Fig. 6 R). These observations indicate that overexpression of a single histone could enhance the 

expression of other histones in a cell, possibly to avoid excess of this single histone. We hypothesise a 

regulatory mechanism where a short-term and ‘low-level’ histone overexpression could enhance 

expression of other histones in the cell. In this way, cells react to transient increase in histone 

expression to avoid cytotoxicity. 

We showed that the DNA damage response was not activated following ISR-mediated DNA replication 

impairment (Manuscript Supp. Fig. 1 N). Importantly, DNA replication block upon histone depletion did 

not activate the ATR/ATM checkpoints or lead to any detectable DNA damage (Mejlvang et al., 2014; 

Henriksson et al., 2018). Inhibiting protein synthesis for up to 7 hours also did not induce γH2AX 

(Bertoli et al., 2016). Activation of the DNA damage response pathways requires the accumulation of 

RPA due to increased stretches of ssDNA (Dobbelstein and Sørensen, 2015). When the helicase 

continues to unwind the dsDNA helix ahead whilst the DNA polymerase stops moving forward (or 

stalls), this is identified as helicase-polymerase uncoupling (Henriksson et al., 2018). Interestingly, 

histone depletion was shown to not lead to helicase-polymerase uncoupling (Henriksson et al., 2018). 

This could be explained by direct interaction of histones with the MCM helicases (Groth, Corpet, et al., 

2007; Klimovskaia et al., 2014). Therefore, the lack of histones keeps the MCM helicase from 

continuously unwinding the dsDNA. These observations further corroborate with our results suggesting 

the role of histones in blocking DNA replication upon ISR stimulation. 

4.4 R-loops accumulate with the ISR  

4.4.1 The ISR blocks DNA replication through R-loops independent of ATF4 

DNA:RNA hybrids (or R-loops) are transcriptional by-products (Aguilera and García-Muse, 2012). As 

the ISR also leads to the induction of the ATF4 transcription factor, we hypothesised that this could lead 

to an accumulation of R-loops. Moreover, we predict that inhibition of cap-dependent protein synthesis 

could lead to an enrichment of transcripts that cannot be properly translated. These situations could 

enhance R-loop formation.  

We observed an accumulation of R-loops with ISR induction using the S9.6 antibody that specifically 

recognises these structures (Manuscript Fig. 3, Supp. Fig. 3) (Britton et al., 2014). R-loops are 

removed by DNA:RNA helicases or nucleases. Specifically, RNaseH are the enzymes involved in 

digesting the RNA portion of R-loops. Hence, we confirmed our S9.6 signal by overexpressing 

RNaseH1 in the immunofluorescence (IF) experiments or via RNaseH treatment in the dot blot 
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experiments. Indeed, RNaseH1 overexpression or RNaseH treatment significantly removed the S9.6 

signal observed (Manuscript Fig. 3, Supp. Fig. 3). Importantly, we observed that RNaseH1 

overexpression also restored DNA replication downstream of ISR (Manuscript Fig. 4 A−E, Supp. Fig. 

4 A−K). This clearly indicates that R-loops are responsible for blocking DNA replication upon ISR 

stimulation. Further analysis of DNA replication showed increased fork stalling with ISR (Manuscript 

Fig. 1 O). The inherent structure of R-loops make these hybrids more stable than DNA duplexes 

(Allison and Wang, 2019). Thus, R-loops pose a direct steric hindrance to the MCM helicases and the 

replication machinery, and can stall the replisome. Chromatin compaction surrounding the R-loops has 

also been observed, and this could also give rise to problems for the replication machinery (Castellano-

Pozo et al., 2013). Studies have shown that R-loop accumulation is accompanied by phosphorylation of 

Histone 3 at Ser 10 (H3S10) and this also marks a tightly compact chromatin (Castellano-Pozo et al., 

2013). In addition, torsional stress induced by R-loops could directly interfere with DNA replication 

(Aguilera and García-Muse, 2012).  

Enhanced transcription could promote R-loop formation (Aguilera and García-Muse, 2012). This is 

mainly through an accumulation of RNA molecules which increases the probability of hybridisation to 

their DNA template. The activity of RNA polymerase II (RNAP II) is controlled through phosphorylation 

of its C-terminal domain (Hahn, 2004). CDK7 and CDK9 are the main kinases involved in regulating 

RNAP II activity (Fisher, 2005; Bacon and D’Orso, 2019). Thus, inhibition of CDK9 is considered a well-

established mechanism to inhibit transcription (Morales and Giordano, 2016). We hypothesise that 

CDK9 inhibition could supress R-loop formation. Indeed, CDK9 inhibition was able to significantly 

restore DNA replication in the context of ISR (Manuscript Fig. 5, Supp. Fig. 5). Although confirming 

the decrease in R-loops with CDK9 inhibition in our system would be interesting, our results further 

verifies the role of R-loops in impeding DNA replication downstream of the ISR.  

We observed an increase in ATF4 levels within one hour of ISR stimulation on western blots 

(Manuscript Fig. 1 B, Supp. Fig. 1 A). However, we find it unlikely that ATF4 is able to activate genes 

required to modulate DNA replication within that timeframe. Moreover, gene expression changes upon 

ATF4 induction have mainly been studied in cells after at least 6 hours post ATF4 accumulation (Han et 

al., 2013; Fusakio et al., 2016; Quirós et al., 2017). As discussed previously, transcription favours R-

loop formation and this can block DNA replication. This led us to propose that inhibition of DNA 

replication by ISR is independent of the transcriptional targets of ATF4. Rather, the increase in 

transcriptional rate upon enrichment of ATF4 could induce R-loops and block DNA replication. If true, 

ATF4 depletion following ISR activation should restore DNA replication progression. Interestingly, we 

found ATF4 to be dispensable in blocking DNA replication upon ISR. Knockdown of ATF4 did not 
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rescue the suppression of DNA replication by ISR (Appendix Fig. 1). Moreover, ATF4 overexpression 

was unable to phenocopy ISR inducers in impairing DNA replication (Appendix Fig. 2). Therefore, 

ATF4 is dispensable for attenuating DNA replication downstream of ISR. 

It is important to note that the ISR can also upregulate other transcription factors. Thapsigargin induces 

ER stress and this activates PERK. At the same time, ER stress (through the unfolded protein 

response) can also lead to the activation of other transcription factors such as ATF6 and XBP1 

(Schröder and Kaufman, 2005). Moreover, a study in 1999 showed that approximately 200 cellular 

mRNAs remain translated despite the inactivation of cap-dependent translation (Johannes et al., 1999). 

Among these proteins, transcription factors such as ATF3 and c-myc were significantly upregulated 

(Johannes et al., 1999). Upregulation of these transcription factors could equally play a role in impeding 

DNA replication through R-loop accumulation following ISR. Interestingly, RNAP II translation was also 

enhanced upon inhibition of cap-dependent translation (Johannes et al., 1999). Indeed, it would be 

interesting to confirm if ISR leads to an enhanced transcriptional activity and thus more R-loops.  

4.4.2 R-loops are enriched upon histone depletion 

We have shown that ISR blocks histone synthesis which led to an impairment of DNA replication. In 

addition, activation of ISR also enhanced the sensitivity of nascent DNA to MNase digestion, 

suggesting a more ‘open’ chromatin. Disruption in chromatin compaction can also favour R-loop 

formation (Aguilera and Gómez-González, 2017; García-Pichardo et al., 2017). R-loops have been 

studied with respect to histone modifications and chromatin compaction (Castellano-Pozo et al., 2013; 

Bayona-Feliu et al., 2017). However, the level of histones has not been directly correlated to R-loops. 

Therefore, we asked if histone depletion, which leaves large amount of naked DNA, leads to the 

accumulation of R-loops. Indeed, we found an enrichment of R-loops in cells treated with 

cycloheximide, which has been used as a quick way to deplete cells of histones (Manuscript Fig. 7 

A−C, Supp. Fig. 7 A−E) (Groth, Corpet, et al., 2007; Henriksson et al., 2018). Furthermore, impairment 

of DNA replication by histone depletion was also restored upon removal of R-loops through RNaseH1 

overexpression (Manuscript Fig. 7 D−I, Supp. Fig. 7 F−K). Despite extensive research with multiple 

hypotheses proposed, the mechanism of how histone levels can regulate DNA replication remains to be 

fully clarified (Liu and Gong, 2011; Mejlvang et al., 2014). Our results expand on this by showing that 

histone depletion favours R-loop formation which stalls DNA replication.  

It is important to note that new histones are of utmost importance at newly replicated DNA. Therefore, 

when protein synthesis is inhibited, regions of newly replicated DNA are likely the most affected and 
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devoid of histones. Hence, these areas would be most susceptible to R-loop formation. Our hypothesis 

suggests that ISR depletes cells of histones and this leads to more R-loops which impairs DNA 

replication. If R-loops are primarily formed at sites depleted of histones (newly replicated regions), how 

do these R-loops affect replication of the DNA ahead? We propose a few possible explanations. First, 

R-loops could lead to the compaction of the chromatin in regions in front of and behind the R-loops. In 

this way, R-loops formed at newly replicated regions can inhibit the replication machinery ahead 

through increasing the torsional stress of the chromatin in front (Aguilera and García-Muse, 2012; Al-

Hadid and Yang, 2016). Next, R-loop accumulation could potentially activate signalling pathways that 

modulate DNA replication. Indeed, R-loops have been shown to non-canonically activate ATM 

(Marteijn, Vermeulen and Tresini, 2017; Marabitti et al., 2019). Moreover, R-loops can also activate the 

Fanconi Anaemia (FA) pathway (García-Rubio et al., 2015; Schwab et al., 2015). Although the direct 

interplay between the activation of these pathways and a slower DNA replication progression has not 

been observed, it is possible that activation of the DNA repair signalling itself could suppress DNA 

replication. In fact, this would make sense as slowing down DNA replication provides the cell some time 

to repair their DNA.  

Both transcription and DNA replication require the DNA to be stripped off histones to provide a single 

strand DNA template for the RNA polymerases and DNA polymerases respectively. Both these 

processes rely on histone chaperones to recycle these existing histones. Usually, recycling of histones 

during transcription and replication is kept separate with specific histone chaperones required for each 

process. Facilitates chromatin transcription (FACT) is a histone chaperone specific for transcription-

induced histone recycling (Belotserkovskaya et al., 2003; Hsieh et al., 2013). On the other hand, the 

ASF1-HIR histone chaperone is involved in recycling parental histones during DNA replication (Groth, 

Corpet, et al., 2007; Das and Tyler, 2012). However, functional interchange between the histone 

chaperones has been observed. Cells with non-functional FACT are able to hijack the ASF1-HIR 

chaperones to recycle histones during transcription (Jeronimo, Poitras and Robert, 2019). When 

histones are limiting during DNA replication, the cell could possibly try to use histones removed during 

transcription and incorporate them into the newly replicated DNA (Fig. 4.2). In such cases, R-loops 

could occur in regions that have not been replicated ahead of the replication machinery.   
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Figure 4.2: Hypothetical model depicting the role of histone recycling on R-loop formation. (Top) Under normal 

conditions, specific histone chaperones recycle histones that are removed upon transcription and DNA replication respectively. 

Normal histone synthesis enables the newly replicated DNA to be properly wrapped around histones to form chromatin. 

Transcription-induced histone recycling occurs normally and R-loop formation is prevented. (Bottom) When ISR is activated 

and newly synthesised histones depleted, some of the histones removed during transcription could be used to decorate the 

newly synthesised DNA. This non-efficient recycling of histones downstream of transcription could facilitate R-loop formation 

which could then block the upcoming DNA replication machinery.  

 

4.4.3 R-loops formed upon ISR are not threats to genomic stability 

Studies on R-loops have suggested their role in causing genomic instability (Allison and Wang, 2019; 

Crossley, Bocek and Cimprich, 2019). This can be attributed to several factors. First, the displacement 

of the single strand non-template DNA is now more prone to mutations and external damaging agents. 

Indeed, R-loops have been shown to be more sensitive to activation-induced cytidine deaminase (AID), 
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an enzyme that catalyses the deamination of cytosine into uracil (Skourti-Stathaki and Proudfoot, 

2014). Moreover, the highly stable structure of these DNA:RNA hybrids stalls DNA replication, which 

could result in the detachment of the replisome from the DNA (Sollier and Cimprich, 2016; Aguilera and 

Gómez-González, 2017; Allison and Wang, 2019). This could lead to breaks in the DNA. DNA 

replication and transcription both require DNA as their template and can occur simultaneously in a cell. 

These processes are highly regulated to prevent collisions with each other (Hamperl and Cimprich, 

2016). R-loops could also stall transcription or DNA replication which can lead to collisions between the 

DNA replication and transcription machineries, forming breaks in the DNA (Brambati et al., 2015; Lang 

et al., 2017).  

Importantly, although R-loops accumulate upon ISR, this was not accompanied by DNA damage (at 

least not as far as detectable γH2AX induction). Similarly, our proliferation assay indicates that removal 

of R-loops in the context of ISR is more detrimental to the cell (Manuscript Fig. 4 F, Supp. Fig 4 L,M). 

These results suggest that R-loops play a protective role in the context of the ISR. Indeed, physiological 

roles of R-loops have been extensively discussed (Aguilera and García-Muse, 2012). R-loops are 

important in antibody class switching in B cells and also play a major role in regulating transcription and 

expression of genes (Pavri, 2017; Crossley, Bocek and Cimprich, 2019). R-loops have also been 

discussed for their role in protecting the genome, mainly through regulating DNA repair (Sollier and 

Cimprich, 2015, 2016). Therefore, R-loops themselves may not necessarily be a threat to genomic 

integrity, but rather the persistence of these structures that could pose problems to a cell. We 

hypothesise that a short-term accumulation of R-loops is not a threat to genomic stability. In fact, the 

ISR relies on such R-loops to slow down DNA replication during conditions of stress. 

4.5 Therapeutic potential of ISR in cancer 

4.5.1 Activating the ISR to block DNA replication and proliferation in cancer 

The ISR is mainly recognised as a pro-tumourigenic pathway. However, our results have shown that 

ISR induction significantly impairs DNA replication (Manuscript Fig. 1, Supp. Fig. 1). Although this 

was not immediately accompanied by the activation of the DNA damage cascade, we have seen that 

long-term activation of ISR in cancer cells negatively affected proliferation and viability of these cells 

(Manuscript Fig. 4 F, Supp. Fig. 4 L,M). The impairment in proliferation was also observed by several 

independent studies using thapsigargin (Shukla et al., 1997; Wang et al., 2014). A sustained ISR 

signalling has been shown to upregulate pro-apoptotic proteins such as CHOP. Moreover, γH2AX was 

found to accumulate after long-term inhibition of histone synthesis (Henriksson et al., 2018). Indeed, we 
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showed a downregulation of histone synthesis upon ISR (Manuscript Fig. 6 A, Supp. Fig. 6 E). Taken 

together, compounds that stimulate the ISR could be a good option to target cancer. On one hand, our 

results showed that ISR activation impairs DNA replication. On the other hand, pro-apoptotic genes can 

be induced by the ISR (Pakos‐Zebrucka et al., 2016).  

In this study, we used a variety of ISR inducers to activate the pathway. One such compound is 

thapsigargin, which blocks the ATP-dependent calcium pump on the ER (Thastrup et al., 1989). 

Thapsigargin does not only lead to ER stress and activation of the ISR. Disruption in calcium 

homeostasis in the cell can also activate a multitude of signalling pathways which could lead to cell 

death, making thapsigargin a potent and toxic compound to most cells (Shukla et al., 1997; Son et al., 

2014; Wang et al., 2014). Recently, a prodrug version of thapsigargin named mipsagargin has been 

developed (Andersen et al., 2015). Mipsagargin retained the potency of thapsigargin with fewer side 

effects. Once administered, the inactive mipsagargin is cleaved and activated by prostate specific 

membrane antigen (PSMA) (Mahalingam et al., 2016). As PSMA is often overexpressed in solid 

tumours, mipsagargin might act on tumour cells with greater specificity (Liu et al., 1997; Chang et al., 

1999; Haffner et al., 2009; Samplaski et al., 2011; Mahalingam et al., 2016). Mipsagargin has been 

evaluated under Phase II clinical trials for treatment of prostate cancer, renal cell carcinoma, 

glioblastoma and hepatocellular carcinoma (Andersen et al., 2015; Doan et al., 2015; Mahalingam et 

al., 2016, 2019).  

A different approach to activate the ISR could be through interfering with protein folding (Marcu et al., 

2002; Gallerne, Prola and Lemaire, 2013). Heat shock protein 90 (HSP90) are a class of chaperone 

proteins required for maintaining proper protein folding. Cancer cells usually have elevated expression 

of HSP90 (Neckers et al., 2018). This is of no surprise considering as many as 400 of the HSP90 

clients have roles in maintaining cancer cell signalling (Jaeger and Whitesell, 2019). Hence, a lot of 

work has gone into the development and clinical testing of HSP90 inhibitors such as ganestespib or 

tanespimycin (17-AAG) (Butler et al., 2015). Using HSP90 inhibitors to target cancer may not only be 

useful with respect to the downregulation of important cancer driving proteins that require the HSP90 

chaperone system. Our results suggest that HSP90 inhibition may also block DNA synthesis and 

possibly induce apoptosis in cancer cells through activating the ISR. Interestingly, HSP90 inhibition has 

not only been implicated with respect to PERK activation (through inducing ER stress) (Davenport et 

al., 2007). HSP90 was also found to associate with PKR and this interaction inhibits PKR. Inhibiting 

HSP90 using geldanamycin resulted in the dissociation of HSP90 from PKR and subsequent activation 
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of PKR (Donzé, Abbas-Terki and Picard, 2001). Taken together, HSP90 inhibition may be a promising 

strategy to stimulate ISR via the activation of more than one ISR kinase.  

Recent studies have discovered a compound ONC201 (or TIC10) with anti-cancer properties (Allen et 

al., 2016). ONC201 was first identified as being able to induce expression of TNF-related apoptosis-

inducing ligand (TRAIL) and death receptor 5 (DR5), independent of p53 (Allen et al., 2015). Thus, 

ONC201 appears to be a promising compound to target cancer cells irrespective of their p53 status. 

Subsequent investigation has found ONC201 to severely inhibit cancer cell proliferation through the 

downregulation of cyclin D1 following impairment of protein synthesis (Kline et al., 2016). Importantly, 

this occurs downstream of PKR or HRI-mediated eIF2alpha phosphorylation (Kline et al., 2016). 

Although the exact mechanism of ONC201-induced activation of HRI and PKR is currently unknown, 

the role of ISR in mediating these responses can be appreciated. Moreover, ATF4-induced expression 

of pro-apoptotic genes was found to be responsible for ONC201-mediated cell death (Allen et al., 2016; 

Ishizawa et al., 2016). ONC201 is currently under investigation for multiple solid tumour malignancies 

and has shown preliminary signs of efficacy in glioblastomas (Ralff et al., 2017; Stein et al., 2019).  

In contrast, ISR can also be activated through the inhibition of the phosphatases responsible for 

dephosphorylating eIF2alpha. Salubrinal and guanabez (or its derivative, Sephin1) are compounds that 

inhibit eIF2alpha dephosphorylation. Salubrinal has been used in pre-clinical models of Huntington’s 

and Alzheimer’s diseases (Reijonen et al., 2008; Lee et al., 2010). Importantly, guanabez is an US 

Food and Drug Administration (FDA)-approved drug for the treatment of hypertension (Tsaytler et al., 

2011). In this study, we used its derivative, Sephin1 and showed that cells treated with Sephin1 had 

impaired DNA replication (Manuscript Fig. 1 L, Supp. Fig. 1 G,H). Although we did not directly test the 

impact of Sephin1 on cell proliferation, we observed an inhibition in cell proliferation upon ISR activation 

with other inducers (Manuscript Fig. 4 F, Supp. Fig. 4 L,M). The fact that guanabez is already FDA-

approved makes it a strong candidate for clinical testing in diseases apart from hypertension. Our work 

suggests that guanabez, through activating the ISR could potentially be used as an anti-cancer 

compound via inhibiting both DNA replication and cell proliferation.  

4.5.2 Inhibiting the ISR to suppress tumourigenesis 

Inhibiting the ISR would also be a feasible approach to target cancers that rely on the pro-survival 

effects of this pathway. Although long-term ISR activation has been shown to induce apoptosis, cancer 

cells can overexpress anti-apoptotic proteins to counter this. In such situations, the ISR allows for the 

uncontrolled growth of cancer cells in conditions of stress. More importantly, ISR activation has been 
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implicated in mediating chemoresistance in a multitude of malignancies (Palam et al., 2015; Wang et 

al., 2018; Chen et al., 2019). Our results would suggest that blocking ISR could enhance DNA 

replication progression in the presence of stress stimuli. Cell proliferation assays upon RNaseH1 

overexpression and ISR induction suggest that continuous DNA replication during stress is a threat to 

cell survival (Manuscript Fig. 4 F, Supp. Fig. 4 L,M). We propose that ISR inhibitors could specifically 

target tumours not just through blocking the expression of pro-survival genes downstream of ATF4. 

Inhibiting ISR could also enhance replicative stress in these cells, which could lead to an accumulation 

of mutations and genomic instability. These observations suggest the potential of using ISR inhibitors in 

treating cancer. Indeed, this would first require us to correctly stratify patients with tumours that are 

reliant on the ISR, either through eIF2alpha phosphorylation status or through the expression levels of 

the eIF2alpha kinases. 

Stimulation of ISR relies mainly on the phosphorylation of eIF2alpha. Phospho-eIF2alpha is not only 

required to block cap-dependent protein synthesis, but this is also essential for the enhanced 

translation of ATF4. Therefore, inhibiting eIF2alpha phosphorylation is an obvious approach to inhibiting 

the ISR. Phosphorylation of eIF2alpha is mediated by four different kinases with homologous C-

terminal kinase domains (Donnelly et al., 2013). Due to the deep, active sites on kinase proteins, 

targeting kinases using small molecules inhibitors are highly favourable. Indeed, kinases are the 

second most targeted class of proteins in cancer drug development (Bhullar et al., 2018). GSK2606414 

and GSK2656157 are PERK inhibitors, which inhibit the autophosphorylation and activation of PERK 

(Axten et al., 2012, 2013). GSK2656157 has been shown to exhibit antitumour and antiangiogenic 

properties in human tumour mice xenografts (Atkins et al., 2013). Moreover, treatment of leukemic cell 

lines with GSK2606414 compromised viability of these cells (Mahameed et al., 2019). Importantly, 

PERK inhibitors can be administered orally and can penetrate the blood-brain barrier making these 

compounds even more attractive for clinical use in the future (Ma and Klann, 2014).  

Nevertheless, highly conserved active sites (ATP binding pockets) on kinases could also result in a lack 

of specificity of these small molecule inhibitors, leading to possible off-target effects (Berndt, Karim and 

Schönbrunn, 2017). Studies have demonstrated off-target effects of GSK2606414 and GSK2656157 in 

inhibiting receptor-interacting serine/threonine-protein kinase 1 (RIPK1) with comparable IC50 to a 

RIPK1 inhibitor (Rojas-Rivera et al., 2017). RIPK1 is involved in inducing apoptosis following tumour 

necrosis factor (TNF) stimuli (Degterev, Ofengeim and Yuan, 2019). Hence, PERK inhibitors may also 

promote resistance to TNF-induced apoptosis in cancer cells. This further illustrates the importance of 

extensive pre-clinical investigations on small molecule inhibitors to avoid undesirable side effects. 
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The ISR can also be inhibited downstream of eIF2alpha phosphorylation. A small molecule integrated 

stress response inhibitor (ISRIB) was found to impair ISR signalling irrespective of the eIF2alpha 

phosphorylation status (Sidrauski et al., 2013). Phospho-eIF2alpha inhibits the eIF2B guanine 

nucleotide exchange factor. eIF2B is necessary for the formation of eIF2-GTP and translation initiation. 

ISRIB binds to eIF2B and enhances its catalytic function by favouring the formation of the large hetero-

decameric complex (Sidrauski et al., 2015; Zyryanova et al., 2018). Hence, ISRIB attenuates the ISR 

independent of eIF2alpha phosphorylation. ISRIB was found to be a specific and well-tolerated 

compound (Chou et al., 2017). Indeed, studies have found that inhibition of ISR using ISRIB was much 

better tolerated compared to a PERK inhibitor (Palam et al., 2015). Although potent in impeding growth 

of pancreatic cancer in mouse models, PERK inhibitor also led to the degeneration of normal 

pancreatic tissue whereas ISRIB did not (Palam et al., 2015). ISRIB has been mainly investigated for 

treatment of neurodegenerative diseases by restoring protein synthesis in brain tissue (Chou et al., 

2017; Halliday et al., 2017). A recent study using patient-derived xenografts (PDXs) found ISRIB to 

promote cytotoxicity in metastatic and castration resistant prostate cancer (Nguyen et al., 2018). 

Furthermore, ISRIB was also shown to attenuate expression of genes involved in stemness thereby 

preventing resistance to therapy in breast cancer cells (Jewer et al., 2019).  

4.5.3 Modulating the ISR in combination with other therapies 

Previous sections discussed the therapeutic potential of both ISR activators and inhibitors as single 

treatment in cancer. Here, we highlight the pros and cons of combining ISR modulators with other 

therapies for the treatment of cancer.  

The role of ISR in mediating chemoresistance to drugs like gemcitabine or paclitaxel have been studied 

(Palam et al., 2015; Wang et al., 2018; Chen et al., 2019). Mostly, chemoresistance by ISR relies on 

the transcriptional expression of pro-survival genes. We showed that ISR impairs DNA replication 

(Manuscript Fig. 1, Supp. Fig. 1). It is possible that ISR activation, through slowing down DNA 

replication progression helps cells survive drugs targeting the DNA replication machinery. With these 

considerations in mind, combining ISR inhibitors with chemotherapeutics should be a promising 

approach in enhancing replicative stress in cancer. Indeed, PERK inhibitors and ISRIB were found to 

sensitise both breast and pancreatic cancer cells to chemotherapy that interferes with DNA replication 

(Palam et al., 2015; Alasiri et al., 2019).  

HSP90 inhibitors are widely accepted as a strategy to target cancer cells due to their high dependency 

on HSP90 clients for tumourigenesis (Neckers, 2007). Thus, HSP90 inhibitors in combination with 
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chemotherapeutics have been under extensive evaluation to better target cancer cells (Neckers, 2002; 

Kryeziu et al., 2019). We have previously discussed the role of HSP90 inhibitors as possible ISR 

inducers (Section 4.5.1). Based on our results, we hypothesise that HSP90 inhibitors could also slow 

down DNA replication. Although speculative, HSP90 inhibitors could possibly protect cells from the 

DNA damaging activity of chemotherapeutics. Co-treatment of cells with an ISR inhibitor could help 

prevent this and restore cooperation between HSP90 inhibitors and chemotherapeutics.  

In contrast, a study combining cycloheximide with a replicative stress inducer, hydroxyurea (HU) 

showed that blocking protein synthesis exacerbates the DNA damage response triggered by HU alone 

(Bertoli et al., 2016). They proposed a need for continuous protein synthesis to sustain the DNA 

damage response (DDR). Degradation of DNA damage signalling proteins such as CHK1 was greater 

upon replicative stress (Bertoli et al., 2016). Hence, lack of CHK1 upon protein synthesis inhibition may 

act in a similar manner to CHK1 inhibition, which could promote replicative stress in cells leading to 

accumulation of γH2AX (Syljuasen et al., 2005; Wayne, Brooks and Massey, 2016; González Besteiro 

et al., 2019). Indeed, the ISR blocks protein synthesis. This study would suggest that ISR inducers in 

combination with drugs that provoke replication stress would be beneficial to enhance DNA damage in 

cancer cells. It is important to note that in our hands, one hour of ISR stimulation did not affect the 

levels of total CHK1 (Manuscript Supp. Fig. 1 N).  

Replicative stress can also stimulate the ISR (Palam et al., 2015; Wang et al., 2018; Chen et al., 2019). 

Long-term activation of ISR could switch the pro-survival programme to a pro-apoptotic one (Pakos‐

Zebrucka et al., 2016). Therefore, it would be interesting to test if co-treating cancer cells with 

chemotherapeutics and ISR inducers could stimulate the ISR, further leading to apoptosis in these 

cells.   

4.6 Conclusions and future perspectives 

In conclusion, we observed a strong impairment of DNA replication upon ISR stimulation. ISR depletes 

cells of histones, which enhances R-loop formation and this is crucial for stalling DNA replication. Our 

work has expanded on the protective role of ISR in regulating protein synthesis and controlling DNA 

replication during stress. Although a few explanations were proposed, how ISR-mediated R-loop 

accumulation downstream of histone depletion could interfere with DNA replication remains to be fully 

clarified. Furthermore, we have yet to identify if impairment of DNA replication upon ISR is protective or 

destructive to the cell. Our experiments would suggest that ISR slows down DNA replication to protect 

the cells during stress, since ISR-mediated DNA replication impairment was not accompanied by an 
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induction of DNA damage markers. In addition, restoring DNA replication under ISR stimulation was 

detrimental to the viability of cells. However, long-term ISR activation alone also hampers cellular 

proliferation. In a similar manner to p53, it is likely that the timing and strength of ISR induction may 

play a role in determining the downstream effects of ISR. On one hand, p53 activity is required for DNA 

replication processivity and the depletion of p53 induces replicative stress (Klusmann et al., 2016). On 

the other hand, long-term p53 activation leads to the induction of apoptosis (Ryan, Phillips and 

Vousden, 2001; Zilfou and Lowe, 2009). Moreover, the dependency of cancer on the ISR could also be 

of importance. Solid tumours growing in areas of hypoxia and low nutrient availability may rely on ISR 

more. In such cases, inhibiting ISR and enhancing protein and DNA synthesis in these cells when 

nutrient is limited could be a viable option to target these tumours. In contrast, when tumours are not 

dependent on the ISR for growth, activating the pathway could severely impede DNA replication in 

these cells and also induce apoptosis. Stratifying patients based on the eIF2alpha phosphorylation 

status of tumours would be a plausible way of identifying ISR-dependent cancers. Importantly, the 

combination of ISR inducers or inhibitors with other treatments requires further investigation to avoid 

antagonistic effects of ISR modulators with chemotherapeutics. The rising problem of chemoresistance 

in cancer, especially in the case of a relapse raises the need for the development of new cancer 

therapeutics. Understanding molecular pathways that regulate tumourigenesis would help better target 

these cells. Taken together, as non-malignant cells proliferate slower and should be less susceptible to 

stress stimuli and less dependent on the ISR for survival, this provides a suitable therapeutic window 

for ISR modulation in tumours. Therefore, the ISR is an extremely promising target for cancer 

treatment.   
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APPENDIX FIG 1: Knockdown of ATF4 does not rescue DNA replication impairment upon ISR 

(A) U2OS cells were transfected with non-targeting control or ATF4 siRNA (100 nM) then incubated 

with 5’-chloro-2’-deoxy-uridine (25 μM CldU, 30 min) followed by 5-iodo-2’-deoxyuridine (250 μM IdU, 

60 min) in the presence of 4 μM Thap prior to harvesting for DNA fiber analysis.  

(B) Fork progression of cells treated in (A) calculated using the IdU track length. Fork progression 

represented as box plots with 5-95 percentile whiskers. 

(C) Immunoblot analysis of cells treated in (A) confirming ATF4 knockdown and ISR induction. 

HSC70 as loading control. 

(D) Cells were transfected with non-targeting control or ATF4 siRNA (100 nM) then incubated with 

CldU (25 μM, 30 min) followed by IdU (250 μM, 60 min). BEPP (10 μM) was added to the cells 1 hour 

prior to labeling and during labeling with CldU and IdU.   

(E) Box plots (5-95 percentile whiskers) showing IdU fork progression (kb/min) of cells treated in 

(D). 

 (F) Western blot confirming ATF4 knockdown and ISR activation of cells treated in (D). HSC70 as 

loading control. 
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APPENDIX FIG 2: ATF4 overexpression does not hinder DNA replication 

(A) Cells were transfected with control or ATF4-overexpression plasmid for 24 hours and then 

labeled with CldU (25 μM CldU, 30 min) and IdU (250 μM IdU, 60 min) for DNA fiber assay analysis. 

 (B) Fork progression (kb/min) of cells treated in (A) calculated using the IdU track length. Fork 

progression represented as box plots with 5-95 percentile whiskers. 

(C) Immunoblot analysis of cells treated in (A) confirming ATF4 overexpression. HSC70 as loading 

control.  
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7 Abbreviations 

°C Degree celsius 

µg microgram 

µl microlitre 

µm micrometre 

µM micromolar 

4E-BP eIF4E binding protein 

5’UTR 5’ untranslated region 

AKT Protein Kinase B 

ASF1 Anti-silencing function protein 1 

ATF3 Activating transcription factor 3 

ATF4 Activating transcription factor 4 

ATM Ataxia Telangiectasia Mutated 

ATP Adenosine triphosphate 

ATR Ataxia Telangiectasia and Rad3-related 

ATRIP ATR- Interacting Protein 

BEPP BEPP-mono hydrochloride 

bp Base pair 

BSA Bovine serum albumin  

Ca2+ Calcium ions 

CaCl2 Calcium chlloride 

CAF1 Chromatin assembly factor 1 

CARE C/EBP-ATF response element 

CDC6 Cell division cycle 6 

CDK Cyclin-dependent kinase  
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CDT1 Chromosome licensing and DNA replication factor 1 

CHK1 Checkpoint kinase 1 

CHK2 Checkpoint kinase 2 

CHOP C/EBP Homologous Protein  

CHX Cycloheximide 

CldU 5-chloro-2′-deoxyuridine 

CreP Constitutive repressor of eIF2alpha phosphorylation 

DAPI 4′,6-diamidino-2-phenylindole 

DBHQ 2,5-di-tert-butylhydroquinone 

DDR DNA damage response 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleotide triphosphate 

DR5 Death receptor 5 

DSB Double strand break 

dsDNA Double stranded DNA 

dsRNA Double stranded RNA 

EdU 5-ethynyl-2'-deoxyuridine 

eIF Eukaryotic initiation factor 

ER Endoplasmic reticulum 

EtOH Ethanol 

FACT Facilitates chromatin transcription 

FBS Fetal bovine serum 

g Gravitational force 

GADD34 DNA damage-inducible protein 
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GCN2 General control non‐derepressible 2 

GDP Guanosine diphosphate 

GFP Green fluorescent protein 

GRP78 78 kDa glucose-regulated protein 

GTP Guanosine triphosphate 

h Hour  

H2A Histone 2A 

H2AX Histone variant 2A.X 

H2B Histone 2B 

H2O Water 

H3 Histone 3 

H3K56ac Histone 3 Lysine 56 acetylation 

H4 Histone 4 

H4K12ac Histone 4 Lysine 12 acetylation 

H4K5ac Histone 4 Lysine 5 acetylation  

HCl Hydrochloric acid 

HCV Hepatitis C virus 

HRA Histone regulator A 

HRI Haem‐regulated eIF2alpha kinase 

HSC70 Heat shock cognate 71 kDa protein 

HSP90 Heat shock protein 90  

i Inhibitor  

IdU 5-iodo-2'-deoxyuridine 

IF Immunofluorescence  

IRES Internal ribosome entry site 
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ISR Integrated stress response 

ISRIB Integrated stress response inhibitor 

ITAF IRES-transacting factor 

kDa Kilodalton 

L-Hist L-histidinol 

MAPK Mitogen activate protein kinase 

MCM Minichromosome maintenance 

MEF Mouse embryonic fibroblast 

MgCl2 Magnesium chloride 

mM millimolar 

mRNA Messenger ribonucleic acid (RNA) 

mTOR Mammalian target of rapamycin 

mut Mutant 

NaCl Sodium chloride 

ng Nanogram 

nM Nanomolar 

NPAT Nuclear Protein Ataxia-Telangiectasia Locus 

ORC Origin replication complex 

ORF Open reading frame 

PABP Poly-A binding protein 

PBS Phosphate buffer saline 

PCNA Proliferating cell nuclear antigen 

PERK PKR‐like ER kinase 

PFA Paraformaldehyde 

Phospho Phosphorylated 
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PI3K Phosphoinositide 3-kinase 

PIC Pre-initiation complex 

PKR Protein kinase RNA-activated or protein kinase R 

PP1 Protein phosphatase 1 

pre-RC Pre-replication complex 

PSMA Prostate specific membrane antigen 

RFP Red fluorescent protein 

RNA Ribonucleic acid 

RNAPII RNA polymerase II 

RNaseH Ribonuclease H 

RNP Ribonucleoproteins  

RPA Replication protein A 

SDS Sodium dodecyl sulphate 

SDS-PAGE SDS-polyacrylamide gel electrophoresis 

SENX Sentaxin 

siRNA small interfering RNA 

SLBP Stem loop binding protein 

SLIP1 SLBP-interacting protein 1 

ssDNA Single stranded DNA 

TBS Tris buffered saline 

Thap Thapsigargin 

TNF Tumour necrosis factor 

TOP1 Topoisomerase 1 

TRAIL TNF-related apoptosis-inducing ligand 

Tris Trisamine 
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tRNA Transfer RNA 

uORF Untranslated open reading frame 

UV Ultraviolet 

w/v Weight per volume 

wt Wildtype 

γH2AX Phosphorylated H2AX (S319) 
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