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Summary 

Rice (Oryza sativa L.), a major cereal crop, is cultivated on more than 140 million 

hectares worldwide. Consequently, rice growing paddy fields are major consumers of 

nitrogen (N) fertilizer and the biggest users of agricultural water. Compared to other 

non-flooded agricultural lands, paddy soils contain 12%ï58% higher soil organic 

matter (SOM) content, which makes them an important carbon (C) sink. Rice straw 

retention, nitrogen fertilizer application and over-flooded water are the three most 

important factors responsible for the higher C sink in paddy fields. Together, they 

have great impact on rice-soil ecosystems. This thesis therefore presents three studies 

within the confines of these key factors. 

The two studies (Chapter 2 and 3) were designed to reveal: 1) the effects of N 

fertilization, and 2) the long term effects of rice straw retention on the distribution of 

photosynthates in varies soil C pools. Soil C and N availed by N fertilizer application 

and rice straw retention affect microbial composition and activities, resulting in 

altered SOM decomposition and plant assimilates allocation. Experiments conducted 

focused on the interactions between C and N availabilities and the consequent effects 

on rhizodeposition and microbial community in paddy soil. Using carboxymethyl 

cellulose (CMC) as long term rice straw decomposition mimic, treatments: CMC (+C), 

(NH4)2SO4 (+N), their combination (+CN), and unfertilized soil (control) were 

designed. Rice were continuously labeled with 
13

CO2 and the tracer (
13

C)incorporated  

into both above- and belowground plant biomass, SOM, dissolved organic matter 

(DOC), microbial biomass (MBC), and phospholipid fatty acids (PLFAs) was 

quantified. 

The long term degradation of rice straw as mimicked by single CMC application 

(+C) led to mobilization of a 3% of total N from SOM and a positive N priming effect. 

This finding supported the microbial N mining hypothesis. The highest rice yield 

increase occurred in +CN treatment despite smallest root biomass and lowest 
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assimilation of 
13

C into roots, DOC, SOM, and MBC. Additionally, +CN altered 

microbial community composition. Specifically, +CN application decreased 1) 

Gram-positive (G+)/ gram-negative (G-) ratios, and 2) G+ bacteria and fungi 

abundance. Contrary, G- and actinomycetes were stimulated by N fertilization.  

Fertilization and plant growth stage are the two factors that explained 81% of the 

variance in the microbial communities. Fertilization was responsible for 36.5% of the 

variance in the composition of microorganisms. 

Flooding, as another key factor in paddy field, creates anaerobic conditions, which 

changed root morphology and soil physiochemical properties such as root iron plaque, 

rhzodepositions and pH. Since the impact of flooding on paddy fields remain 

unknown, we introduced triple combination of 
14

C imaging, pH mapping and 

zymography for the first time in paddy soils (Chapter 4). This combination enabled 

the water effects from root iron plaque, rhzodepositions and pH on five enzyme 

activities involved in carbon (C) (ɓ-glucosidase, cellobiohydrolasĕxylanase), 

nitrogen (N) (leucine aminopeptidase), and phosphorus (P) (phosphatase) cycling to 

be evaluated. Varying the H2O content from <25% to oversaturation, we confirmed 

the hypotheses: 1) flooding increases root biomass but decreases water use efficiency; 

2) flooding increases rhzodeposition (
14

C) but decreases pH in both rhizosphere and 

bulk soil; 3) flooding is the dominant factor determining the spatial distribution 

patterns of enzyme activities. Through diffusion effects, flooding evenly distributed 

enzyme substrates. Through 3D mesh and contour map, we simultaneously evaluated 

the correlations of enzymes involved in C, N and P cycling successfully. The 

cancelling effect of flooding resulted in loss of several optimal combination peaks of 

C, N and P related enzymes through diffusion. This flooding effect ultimately 

narrowed the optimal combination area. Concluding, water effects improved 

formation of root iron plaque, increased rhzodepositions and decreased pH. 

This PhD thesis therefore introduced new concepts such as cancelling effects and 

developed new triple combination of enzyme zymography, 
14

C imaging and pH 

mapping approach. The study improved the understanding on how the three key 

factors: 1) rice straw retention, 2) N fertilization, and 3) flooding impact the rice-soil 
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ecosystem, and enabled further guidance on countering the challenges brought about  

global climate change.
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Zusammenfassung 

Wasserreis (Oryza sativa l.) ist eine wichtige Getreidepflanze, die weltweit auf 

mehr als 140 Millionen Hektar wächst. Das Reisfeld ist ein wichtiger Verbraucher von 

Stickstoffdünger und der größte Wasserverbraucher in der Landwirtschaft. Sein 

Gehalt an organischer Substanz im Boden ist 12-58% höher als der anderer 

landwirtschaftlicher Nutzflächen, und er ist eine wichtige Kohlenstoffsenke. 

Strohmulchen, Stickstoffausbringung und Überflutung sind drei Schlüsselfaktoren, 

die den Reisertrag beeinflussen. Sie haben wichtige Auswirkungen auf das 

Reis-Boden-Ökosystem. In diesem Papier werden drei Schlüsselfaktoren untersucht. 

Die erste und zweite Studie (Kapitel 2 und 3) zielten darauf ab, die Auswirkungen 

von Stickstoffdünger und langfristigem Strohmulchen aufzudecken. Die Verfügbarkeit 

von Bodenkohlenstoff und Stickstoff (Stickstoffdünger und Strohmulchen) beeinflusst 

die Zusammensetzung und Aktivität der Mikroorganismen, was zur Zersetzung der 

organischen Bodensubstanz (SOM) und zur Verteilung der pflanzlichen 

Photosyntheseprodukte führt. In den Kapiteln 2 und 3 wurde die Wechselwirkung 

zwischen Kohlenstoff- und Stickstoffverfügbarkeit, Wurzeldeposition und 

mikrobieller Gemeinschaft in Rohböden untersucht. Carboxymethylcellulose (CMC) 

(+C) wurde verwendet, um die langfristige Zersetzung von Stroh zu simulieren. Es 

wurden vier Behandlungen durchgeführt: Carboxymethylcellulose (CMC) (+C), 

(NH4)2SO4 (+N), die gleichzeitige Zugabe von beiden (+CN) und die Kontrolle ohne 

Düngung. Wasserreis wurde kontinuierlich 
13

CO2-markiert. Gleichzeitig wurden die 

13
C-Gehalte in oberirdischer und unterirdischer Pflanzenbiomasse, organischer 

Substanz, gelöster organischer Substanz (DOC), mikrobieller Biomasse (MBC) und 

Phospholipid-Fettsäuren (PLFAs) verfolgt. 

Die Ergebnisse in Kapitel 2 und Kapitel 3 zeigen, dass als Indikator für den 

langfristigen Strohabbau die einmalige Ausbringung von Kohlenstoffdünger (CMC) 

den Anregungseffekt von Stickstoff erzeugt, d.h. 3% Stickstoff im Boden werden 
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durch Mikroorganismen aufgrund des Strohmulchens aus SOM freigesetzt. Dieser 

Befund unterstützt die Hypothese von microbial N mining. Die gleichzeitige 

Anwendung von +CN maximierte den Reisertrag, führte aber auch zu einer 

minimalen Wurzelbiomasse und reduzierte den 
13

C-Gehalt im Wurzelsystem, DOC, 

SOM und MBC. In Bezug auf die Struktur der mikrobiellen Gemeinschaft reduzierte 

die +CN-Düngung das Verhältnis von Gram-positive (G+)/Gram-negative (G-), was 

zu einer Abnahme der Häufigkeit von G+-Bakterien und -Pilzen führte, während die 

Häufigkeit von G- und Aktinomyzeten durch die Anwendung von Stickstoffdünger 

stimuliert wurde. Düngung und Pflanzenwachstum erklärten 81% der Variation in der 

mikrobiellen Gemeinschaft. Unter ihnen hingen 36.5% der mikrobiellen Variation mit 

der Düngung zusammen. 

Überschwemmungen, ein weiterer Schlüsselfaktor in Reisfeldern, erzeugen 

anaerobe Bedingungen, die die Wurzelmorphologie und die physikalisch-chemischen 

Eigenschaften des Bodens verändern, wie z.B. die Eisenmembran der Wurzeln, die 

photosynthetische Kohlenstoffsekretion und den pH-Wert. In der dritten Studie 

stellten wir zum ersten Mal die Kombination von 14C-Bildgebung, 

In-situ-pH-Bildgebung und Enzymspektrum im Reiserde vor. Damit ist es möglich, 

die Auswirkungen von Staunässe auf den Eisenfilm von Pflanzenwurzeln, die 

photosynthetische Kohlenstoffabscheidung und den pH-Wert der Rhizosphäre zu 

bewerten. Fünf Enzyme sind an der Studie beteiligt: ɓ-Glucosidase, 

Fibrinosaccharid-Hydrolase, Xylanase, Leucin-Aminopeptidase und Phosphatase. 

Durch den Vergleich des Wassergehalts von 25% mit dem der Staunässebehandlung 

bestätigten wir die folgende Hypothese :1) Staunässe erhöht die Wurzelbiomasse, 

verringerte aber die Effizienz der Wassernutzung. 2) Staunässe erhöht die 

photosynthetische Kohlenstoffablagerung in der Rhizosphäre und Nicht-Rhizosphäre 

und senkt den pH-Wert. 3) Staunässe ist der dominierende Faktor bei der Bestimmung 

des räumlichen Verteilungsmusters der Enzymaktivität. Durch den Diffusionseffekt 

des Wassers wird das Substrat des Enzyms gleichmäßiger verteilt. Wir evaluierten 

erfolgreich die Korrelation zwischen den Enzymen, die an den C-, N- und P-Zyklen 

beteiligt sind, unter Verwendung eines dreidimensionalen Gitters und einer 
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Konturkarte. Das Fluten durch Diffusion eliminiert mehrere optimale 

Kombinationspeaks von C-, N- und P-verwandten Enzymen (Offsetting-Effekt). Die 

Überflutung reduzierte schließlich die Fläche des optimalen Kombinationspeaks. Die 

Ergebnisse zeigten, dass das Wasser die Bildung der Eisenmembran der Wurzeln und 

die Akkumulation der photosynthetischen Kohlenstoffablagerung förderte und auch 

den pH-Wert des Bodens senkte. 

Daher werden in diesem Papier neue Konzepte (wie die ausgleichende Wirkung 

von Wasser) vorgeschlagen und neue Methoden entwickelt (die dreifache 

Kombination von Enzymspektrum, 
14

C-Bildgebung und In-situ-pH-Bildgebung). 

Gleichzeitig zeigt diese Studie die Auswirkungen von drei Schlüsselfaktoren der 

Reisstroh-Erhaltung, der Stickstoffdüngung und die Staunässe auf das 

Reisboden-Ökosystem auf und liefert damit eine Anleitung zur Bewältigung der 

Herausforderungen, die der globale Klimawandel mit sich bringt.
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1.1 Importance of paddy soils 

  Mitigating global climate change and achieving sustainable use of natural resources 

are the most serious challenges facing the world nowadays (Zhang and Wen, 2008). 

The carbon cycle of soil-plant ecosystem has arisen great research interests. It plays 

an important role in regulating the change of atmospheric greenhouse gas emission, in 

affecting the system stability and productivity, and in maintaining soil fertility and 

sustainable agricultural development (Smith et al., 2007). 

  Carbon (C) in soil organic matter (SOM) is three times higher than that in the 

atmosphere (Fischlin et al., 2007). The composition and transformation of SOM affect 

the maintenance of soil fertility, the stability of ecosystem, the sustainable 

development of agriculture, and the regulation of greenhouse gas emission (Swift et 

al., 2004). 

  As a major cereal crop (Smith and Dilday, 2002), rice (Oryza sativa L.) production 

exceeded 506 million metric tons annually. Paddy soil, as hydragric anthrosols, is 

cultivated on more than 140 million hectares worldwide (Rice Statistics database; 

IRRI, 2018). Compared with other agricultural soils, paddy soil has a 12%ï58% 

higher SOM content (Liping and Erda, 2001). Thus, with large cultivation areas and 

higher SOM content, paddy soil is of great importance when researching mitigation of 

global climate change and the stabilization of sustainable natural resources(Liu et al., 

2006). 

With higher SOM content in paddy fields,  researches regarding to SOM cycle in 

paddy soil mainly focused on three aspects: (1) the dynamics and carbon sequestration 

of soil organic carbon (SOC, Zhang et al., 2007); (2) the mechanisms of carbon 

sequestration affected by biophysical factors, such as the increasing C input derived 

from straws and different fertilization management (Zhang et al., 2007); (3) SOC 

dynamics related to composition and biodiversity of microorganisms (Bambaradeniya 

and Amerasinghe, 2003). For example, it was preliminarily identified that the 

microorganisms in the rhizosphere, was a key factor in regulating the accumulation of 

new carbon (photosynthate) (Schimel and Schaeffer, 2012). 
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Related to those three aspects mentioned above, rice straw retention, nitrogen 

fertilizer applications and over-flooded water are the most important features in paddy 

fields. Hence, quantifying the impact on paddy fields (higher amount of SOM, 

microbial community etc.) under those three factors is of great importance for gaining 

a better understanding of future researches. 

  

1.2 Key factors in paddy fields 

1.2.1 Rice straw retention 

More than 506 million metric tons (FAO, 2018) of rice were generated annually. 

For each ton of rice grain harvested, 1.35 tons of straw remained in the field (Kadam 

et al., 2000). The disposal of such large amount of straws (740 to 1111 million tons 

per year, Abraham et al., 2016) can be problematic.  

With low digestibility, low protein and high lignin contents (Kausar et al., 2011), 

rice straw is not an optimal source for livestock fodder. Thus, straws were typically 

burnt in the field, which can cause air and water pollution, contamination, and 

greenhouse gas emissions (Gadde et al., 2009; Qu et al., 2012). The retention of rice 

straw in paddy fields has become an increasingly prevalent practice that can facilitate 

improvements in soil fertility, physical and chemical properties (Mahmoud et al., 

2009), and enhance crop yield (Fusi et al., 2014; Kanchikerimath and Singh, 2001; 

Wang et al., 2015).  

Rice straw consists of 32% cellulose, 24% hemicelluloses, and 18% lignin (Howard 

et al., 2003), and these constituents are strongly intermeshed and chemically bonded 

by non-covalent forces and covalent cross-linkages (Pérez et al., 2002) to form a 

lignocellulosic matrix structure (Fig. 1).  
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Fig.1 Structure of rice straw framework, lignocellulosic matrix of cellulose, hemicellulose and 

lignin 

 

Cellulose is the main structure in lignocellulosic matrix, and combined by 

D-glucose through ɓ-1,4 glucosidic bond (Sánchez, 2009). The molecular formula of 

the straight cellulose polymer chain is (C6H1005)n, where n is the number of glucose. 

The n ranges between 8000 ~ 10000 or even greater. This structure makes the 

cellulose with macromolecules. Hemicellulose are also macromolecules with a lower 

molecular weight than cellulose. It is formed from D-xylose, D-mannose, D- 

galactose, D-glucose, L-arabinose, 4-O-methyl-glucuronic, D-galacturo- nic and 

D-glucuronic acids, through ɓ-1,4- and sometimes by ɓ-1,3-glycosidic bonds(Pérez et 

al., 2002). Lignin, which linked to both hemicellulose and cellulose (Bugg et al., 

2011), formed a physical seal as an impenetrable barrier, to give resistance against 

microbial attack and oxidative stress(Martínez et al., 2005). With those large 

macromolecules of cellulose, hemicellulose, and the protection from lignin, it is hard 

for microorganisms to penetrate and degrade (Fig. 2). 
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Fig.2 Classic models of composition and enzymatic degradation of cellulose and 

hemicellulose (Alves et al., 2017) 

 

Thus, rice straw is typically slow to degrade (Kausar et al., 2011) with slow 

decomposition rate, especially under anaerobic environment created by over-flooding 

in paddy fields (Devêvre and Horwáth, 2000). Therefore, evaluating the effects of rice 

straw retention on soil C pools (rhizodeposition, SOM etc.) requires long-term studies 

with continuous or pulse 
13

C or 
14

C labelling (Kuzyakov, 2001). However, those 

labeling are generally conducted over short periods of weeks or months.  

By adding carboxymethyl cellulose (CMC) to mimic the cellulose (the major 

component of rice straw, Howard et al., 2003) with continuous 
13

C labeling in present 

studies (chapter 2 and 3), it facilitates to research the effects of rice straw retention on 
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rice-soil ecosystem in a relatively short term (39days).  

 

1.2.2 Nitrogen fertil izer application in paddy field 

Rice planted area in China accounts for 19% of the world's total paddy fields (Peng 

et al., 2009), yet the grain yields reaches for more than 29% of the world's total rice 

yield (Liu et al., 2011). However, this success achieved at the expense of large 

amounts of fertilizer application, especially N addition. China's nitrogen fertilizer 

consumption accounts for 30% of the world's total N addition, which makes China the 

world's largest N fertilizer consumer (Liu et al., 2011). Since the 1980s, China has 

been consuming a staggering 35% of the world's N on 7% of the world's arable land 

(Peng et al., 2006). China's annual grain production increased by 76% from 1981 (325 

million tons, Walker, 1984) to 2011 (571 million tons, Li et al., 2014), while the 

consumption of N fertilizer nearly tripled. At present, the average application rate of 

N fertilizer in paddy field in China is 180 kg per hm
2
, 75% higher than that in the 

world (Peng et al., 2002). N application in some high-yielding rice fields in China 

ranges from 270 to 300 kg per hm
2
, and some even reach 450 kg per hm

2
, and such 

trend is still increasing (Xuejun and Fusuo, 2011). 

At present, the absorption rate of N fertilizer in China is only 30 - 45% of the total 

N applied in the soil, in some regions, it is even less than 30% (Zhang et al., 2008). 

Whereas, the N absorption rate in paddy fields in other countries is as high as 50% ~ 

60% (Liu et al., 2013). Thus, large loss of N fertilizer in China occurs and may cause 

a decrease in economic benefit in that aspect. 

After N application, rice plant absorb 25% ~ 50%, 10% ~ 35% of N remain in the 

soil as residual, the rest of the fertilizer is lost through ammonia volatilization, 

nitrification, de-nitrification and nitrate leaching (Ju et al., 2009; Zhang et al., 2008). 

The root is the main absorbing organ. N from the soil and N applied into the rice 

field can only be absorbed by the root system into the rice plant (Yoneyama, 1950). 

The vertical distribution characteristics of rice roots are closely related to N 
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absorption. The development of finely branched roots is an important way to improve 

N use efficiency.  

N in rice leaves is closely related to photosynthesis, and N in chloroplasts accounts 

for 80% of total leave N (Imai et al., 2008). Photosynthates are the only source of 

organic matter in crops, about 90% of the crop yield is derived from photosynthetic 

product. With the decrease of N metabolism, photosynthesis also decreases, as N and 

C metabolisms are tightly linked (Shand, 2007). Former researches mainly focused on 

the rice genotypes with high N utilization efficiency, high photosynthetic rate per unit 

of nitrogen or chlorophyll. The effects of such large amount of N application on the 

distributions of photosynthates in varies soil C pools, and on the microbial 

communities are scarcely studied. By combining N addition, continuous 
13

C labeling 

and 
13

C-PLFA in this thesis (chapter 2 and 3), those questions are well answered. 

 

1.2.3 Over-flooded water in paddy field 

Rice is a typical semi-aquatic plant with strong demand of water (Parent et al., 

2010). Paddy field has the largest grain crop planting area in China, it consumes about 

54% of the total water consumption, and accounts for over 65% of the total 

agricultural water consumption (Sun et al., 2017).  

Once the paddy field is flooded, the tillage layer saturated with water, air is 

removed with gas exchange blocked, and the oxygen content drops sharply (Nishiuchi 

et al., 2012). Rice roots exhaled carbon dioxide and other gases, which were 

accumulated, and making the soil in a reductive state. Consequently, nitrogen and 

nitrate were reduced (Hasebe et al., 1987), followed with the reduction of manganese 

and iron nitrides (Mandal, 1961). And finally, the reduction of sulfate and the 

formation of methane (Dalsgaard and Bak, 1994; Wang et al., 1997). The whole 

reduction process can be divided into two stages: the first stage is the decomposition 

of organic matter, mainly conducted by both the aerobic and anaerobic 

microorganisms (Peters and Conrad, 1996). In the second stage, with the decrease of 
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redox potential, the decomposition of organic matter was dominated by obligate 

anaerobic microorganisms (Trolldenier, 1977). 

The length of the first reduction stage depends on the ratio of readily decomposable 

organic matter content to iron oxide content in the soil. In soils with high iron oxide 

content, the first stage was prolonged. However, the soil with high content of organic 

matter that is easy to decompose has a short duration in the first stage and will soon 

enter into the reduction process in the second stage (Takai and Kamura, 1966). 

Reductive state in paddy soil is helpful for rice nutrients absorption. For example, 

in the reduction state, inorganic nitrogen almost exists in the form of ammonium 

nitrogen, which is beneficial to the absorption and utilization of rice (Kirk, 2003). In 

addition, under the reduction condition, the solubility of phosphorus, iron, manganese 

and other elements can be improved for rice absorption and utilization (Patrick and 

Mahapatra, 1968). Iron phosphate is difficult to dissolve in water, in the reduction 

condition, iron phosphate is reduced to a more soluble ferrous phosphate. Therefore, 

the viscous alluvial soil with developed reduction layer has more available 

phosphorus, while the sandy soil, with strong seepage, strong acid and more active 

iron and aluminum, has less available phosphorus (Manzoor Alam, 1999). 

However, when the reduction state is too strong, the content of ferrous iron, organic 

acid and hydrogen sulfide are excessive produced, which will have a toxic effect on 

rice roots and inhibit the absorption of water, phosphorus, potassium, calcium and 

other substances in rice roots (Becker and Asch, 2005). Redox potential in paddy soil 

is influenced by many factors (Flessa and Fischer, 1992; Gao et al., 2002; Jiao et al., 

2006). 

The traditional rice cultivation is to maintain the flooded water layer. The water lost 

through natural evaporation accounts for about 80% of the irrigation water in the rice 

field (Li, 2001). This kind of management not only wastes a large amount of water, 

but also hinders the economical water utilization and affects the development of rice 

production potentially. Thus, Since the 1990s, measures of rice water-saving irrigation 

have been popularized and applied in various places (Zhang et al., 2004). However, 

those un-flooded and flooded cultivation methods may have strong impact on soil pH, 
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rice roots, photosynthates released from roots, and enzyme activities from both roots 

and microorganisms. Those impacts can be revealed by combining C pulse labeling, 

pH mapping and zymography in this thesis (chapter 4). 

Rice straw retention, N fertilization, and flooding are key factors responsible for 

higher C sink in paddy fields. The first and second studies (chapter 2&3) focused on 

the impact of N fertilization and long term rice straw degradation on paddy fields. 

Considering the low degradation rate of rice straw and the large amount of N fertilizer 

applied to these soils, this study aimed to assess: 1) how the mineral N and organic C 

fertilization affects the distribution and dynamics of photosynthesis-derived C in 

paddy soils during five stages of rice growth, 2) the effect of mineral N and organic C 

addition on the composition of soil microbial communities, and 3) if N priming 

effects can be triggered by organic C application. The hypotheses tested were: 1) 

long-term rice straw degradation increases the photosynthate distribution and 

recovery in the riceïsoil system, 2) different C and N fertilization management affects 

the recovery and partitioning of photosynthate in plants and various soil C pools 

(highest in +CN, and lower in +C and +N addition), and 3) different C and N 

fertilization management affects the structures of soil microbial communities utilizing 

photosynthates. 

When compared with non-flooded soils, frequent flooding in paddy fields results in 

relatively lower pH in rhizosphere and bulk soils. Being main factor in paddy fields, 

pH affects structures of microbial communities and photosynthates distribution. 

Gradients around roots are expected to be extremely different in flooded soils. The 

third study (chapter 4) was designed to 1) reveal the in situ pH by contrasting flooded 

and non-flooded paddy soils in presence of rice root, 2) evaluate rhizodepositions in 

flooded and non-flooded soils and the effects of hotspots on enzyme activities through 

14
C labeling, and 3) describe the quantity and spatial distribution patterns of enzyme 

activities in paddy soils under the influence of pH and rhizodepositions (
14

C) through 

zymography. We hypothesized that 1) flooding lowers pH in rhizosphere and bulk soil, 

2) flooding leads to higher root biomass with resultant increase in rhizodeposition 

(
14

C) and stimulation of enzyme exudation from both roots and microorganisms, and 
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3) flooding results in high degree of enzyme diffusion,  leading to moderate spatial 

distribution patterns of enzyme activities.  
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2.1 Abstract  

Background and Aims Carbon (C) and nitrogen (N) availability in soil change 

microbial community composition and activity and so, might affect soil organic 

matter (SOM) decomposition as well as allocation of plant assimilates. The study was 

focused on interactions between C and N availability and consequences for 

rhizodeposition and microbial community structure in paddy soil. 

Methods Rice continuously labeled in a 
13

CO2 atmosphere was fertilized with either 

carboxymethyl cellulose (CMC) (+C), ammonium sulfate (+N), or their combination 

(+CN), and unfertilized soil was used as a control. 
13

C was traced in aboveground and 

belowground plant biomass, soil organic matter, and microbial biomass. Microbial 

community composition was analyzed by phospholipid fatty acids (PLFAs). 

Results +CN application led to a higher yield and lower root C and N content: 
13

C 

assimilated in shoots increased for 1.39-fold and that in roots decreased for 0.75-fold. 

Correspondingly, after +CN addition, 
13

C from rhizodeposits incorporated into SOM 

and microorganisms decreased by 0.68-fold and 0.53-fold, respectively, as compared 

with that in the unfertilized soil. The application of +C or +N alone resulted in smaller 

changes. CMC led to a 3% of total N mobilized from SOM and resulted in a positive 

priming effect. Both fertilizations (+C, +N, or +CN) and plant growth stages affected 

soil microbial community composition. With decreasing microbial biomass C and N, 

and PLFA content under +CN amendment, +CN fertilization decreased Gram-positive 

(G+)/ gram-negative (G-) ratios, and resulted in lower G+ bacteria and fungi 

abundance, whereas G- and actinomycetes were stimulated by N fertilization. 

Conclusions Organic C fertilization led to N positive priming effect. Organic C and 

mineral N application decreased C input by rhizodeposition followed with lower 
13

C 

recovery in SOM and microbial incorporation. C and N addition also altered 

microbial community composition, as +CN decreased content of microbial groups, 

such as G+ bacteria and fungi, yet, +N stimulated G- bacteria and actinomycetes. 

Keywords: GC-IRMS; Continuous 
13

CO2 labeling; Belowground photosynthate 
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allocation; Rice rhizodeposition; N priming effect; phospholipid fatty acid analysis 
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2.2 Introduction  

Photosynthesized carbon (C) released from plant roots (a process known as 

rhizodeposition) is an important C source in the soil, which serves as a C and energy 

source for microorganisms (Curl and Truelove 1986; Lynch and Whipps 1990). 

Studies quantifying rhizodeposits in cropland soils have shown that 10% of net 

photosynthesized C is allocated to the roots, and in this 10% of photosynthesized C 

allocated to roots, 70% of them enters the soil (Pausch and Kuzyakov 2018). 

Compared with upland soils, flooded paddy soil creates specific conditions conducive 

to the accumulation of photosynthates as well as for soil organic matter (SOM) 

stabilization. This conditions include considerably reducing oxygen content and 

suppressing the activity of oxidizing enzymes, resulting in slower mineralization of 

new organic C inputs and old organic matter (Freeman et al. 2001; Kemmitt et al. 

2008; Wei et. al., 2017). Additionally, active iron oxides in paddy soils increase the 

stabilization of root-derived organic matter via complexation and co-precipitation 

(Pan et al. 2003). Therefore, SOM content in paddies is 12%ï58% higher than that in 

corresponding upland soils (Liping and Erda 2001), and thus it can serve as an 

important C sink for mitigating the effects of global climate change (West and 

Marland 2002; Xie et al. 2007). The amount of photosynthates entering the soil is 

affected by a number of factors, including light intensity (Kuzyakov and Cheng 2001), 

temperature (Bhattacharyya et al. 2013), CO2 concentration (Van Ginkel et al. 2000), 

soil and air moisture (Tian et al. 2013), and nutritional status (Carvalhais et al. 2011), 

as well as plant variety and growth stage. For paddy soils, Ge et al. (2015) found that 

the amount of photosynthesis-derived C converted into SOM proportionately 

increased with N fertilization and rice root biomass.  

Organic amendments (e.g., rice straw, plant residue, and manure) are frequently 

applied to paddy soils (Mikha and Rice 2004; Pan et al. 2009; Li et al. 2010), and this 

also changes root growth, rhizodeposition (Liu et al. 2013b, a), and SOM 

accumulation (Dong et al. 2012). Through physical and chemical associations with 
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hemicellulose and lignin, cellulose in manure forms a lignocellulosic matrix structure. 

This lignocellulosic matrix, prevents the decomposition and constitutes 22%ï34% of 

cow and swine manure (Sarko 1986; Himmelstein 1991; OôSullivan 1997; Sun and 

Cheng 2002; Liao et al. 2008). Cellulose is the most abundant compound (30%ï50% 

of plant dry weight) in plant residues. Thus, cellulose serves as an important C source 

for soil microorganisms. Owing to its polymeric molecular structure, three enzymes 

(endo-ɓ-1,4-glucanase, cellobiohydrolase, and ɓ-D-glucosidase) (Pérez et al. 2002; 

Sun and Cheng 2002) are required for degrading cellulose to soluble glucose that is 

accessible to microorganisms. A soluble analog of cellulose ï carboxymethyl 

cellulose (CMC), with similar molecular structure, is more readily utilized by 

microbes, as only one enzyme (endoglucanase) is needed for its degradation (Robson 

and Chambliss 1989). Thus, CMC can be used to mimic the microbial utilization of 

macromolecular organic C compounds, where the effects of organic amendments 

(straw, plant residues, and manure) on plant growth stages and microorganisms are of 

interest. Plant growth stages has strong effects on the distribution of photosynthates 

(Kuzyakov 2002). Keith et al. (1986) showed that approximately 50% of the 

photosynthates was transferred to the soil from young wheat, but only 3% was 

transferred from mature wheat. However, how the simultaneous application of 

mineral N and organic fertilizers affects the dynamics of photosynthesis-derived C 

and the fate of these nutrients in paddy soils during plant growth stages is unknown 

until date.  

The rhizosphere is the primary region in soil, wherein plants interact with 

microorganisms via rhizodeposits, and the rhizosphere has a complex composition, 

creating a high degree of spatial heterogeneity (Hinsinger et al. 2009; Kuzyakov and 

Blagodatskaya 2015). Rhizodeposits affect the composition and functioning of 

microbial communities (Paterson et al. 2007), leading to the development of 

fast-growing species, mainly G- bacteria (Dippold et al. 2014), which are capable of 

utilizing large amount of low-molecular-weight organic compounds as well as 

complex substances (Watt 2009). The abundance and activity of microorganisms in 
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the rhizosphere are strongly correlated with the amount of rhizodeposits and their 

composition as well as with environmental factors (e.g., temperature, moisture, O2 

concentration, nutrient content). Another factor that considerably affects the 

composition of microorganisms in the rhizosphere is the presence of mineral and 

organic fertilizers. Mineral N application increases the proportion of phospholipid 

fatty acids (PLFAs) of actinomycetes in soil (Zhang et al. 2007). In contrast, higher 

abundance of actinomycetes has also been reported in unfertilized soils (Clegg 2003). 

A previous study also found that organic fertilizers increase specifically fungal and 

actinomycete abundance (Dong et al. 2014b). However, the effects of organic C and 

mineral N on microbial community structure in paddy soils, especially in the presence 

of living plants, remain unknown. 

The aim of the study was to answer the following questions: (i) How does mineral N 

and organic C fertilization affect the distribution and dynamics of 

photosynthesis-derived C in paddy soils during five stages of rice growth? (ii) What's 

the effect of mineral N and organic C addition on the composition of soil microbial 

communities? (iii) Can N priming effects be triggered by organic C application? 

2.3 Materials and methods 

2.3.1Experimental design 

A typical paddy soil (plowing Anthrosol) developed from granitic red soil was 

collected from the plow layer (0ï20 cm) of a rice field located in the Changsha 

Research Station for Agricultural and Environmental Monitoring, Hunan Province, 

China (28Á33ǋ04ǌN, 113Á19ǋ52ǌE, 80 m a.s.l.). The paddy field had been annually 

rice-fallow-rice cropped for over 30 years. The climate is typically subtropical and the 

area has an annual mean temperature of 17.5 °C and annual rainfall of 1300 mm. Soil 

chemical and physical properties are a pH of 5.56 (1:2.5, soil: water ratio), 20.6 g C 

kg
-1

 soil, 2.6 g N kg
-1

 soil, 0.45 g phosphorus kg
-1

 soil, 6.7% clay, 69.4% silt, and 24.0% 

sand. 



Chapter 2 C and N availability in paddy soil affects rice photosynthate allocation, microbial community 

composition, and priming: Combining continuous 13C labeling with PLFA analysis 

 

33 
 

Soil samples were sieved (4 mm) under moist conditions and visible plant 

residues, algae, and stones were removed. Moist soil (water content of 41%, 

equivalent to 1.45 kg of dry soil) was filled in PVC pots (10 cm inner diameter and 20 

cm height). Each pot was planted with four rice plants (Oryza sativa L., two-line 

hybrid rice Zhongzao 39) at a similar height and weight at the seeding stage. All pots 

were irrigated with de-ionized water with a 2ï3 cm water layer maintained above the 

soil surface during the entirety of the labeling period.  

Four treatments, each with three replicates, were established: (1) control, 

unfertilized; (2) C addition (+C), where 2000 mg C in the form of CMC kg
-1

 dry soil 

was added; (3) N addition (+N), a total amount of 100 mg N kg
-1

 dry soil was added; 

and (4) CMC+N addition (+CN), where 2000 mg C kg
-1

 dry soil of CMC and 

sufficient (NH4)2SO4, such that 100 mg N kg
-1

 dry soil was simultaneously added. All 

the four treatments were destructively sampled at the 1st, 5th, 10th, 25th and 39th 

labeling days, respectively.   

 

2.3.2 
13

C continuous labeling  

An automatically controlled gas-tight growth labeling chamber (110 × 250, 180 

cm height) has been previously described by Ge et al. (2012) and was used in the 

present study. All pots were transferred into a single labeling chamber. Temperature 

was adjusted to the outdoor temperature (28 °C) via air conditioning with temperature 

sensors (SNT-96S, Hangzhou T-Domain Electronics Co. LTD), which were placed 

both inside and outside the chamber. To obtain a reference for the natural abundance 

of 
13

C and 
15

N, control pots that were not subjected to 
13

C labeling were maintained at 

a distance of 10ï15 m from the labeling chambers and cultivated under the same 

temperature and moisture conditions.  

Continuous labeling was performed over 39 days, and 
13

CO2 was produced in the 

chamber via the reaction of 80 mL 1 M 10 atom% 
13

C NaHCO3 and 90 mL 1 M HCl 

in a plastic beaker placed inside the chamber every day from 9 am to 12 am. During 



Chapter 2 C and N availability in paddy soil affects rice photosynthate allocation, microbial community 

composition, and priming: Combining continuous 13C labeling with PLFA analysis 

 

34 
 

the labeling, CO2 was released into the chamber only when the CO2 concentration in 

the chamber was lower than 380 µL L
-1

. At CO2 concentrations greater than 380 µL 

L
-1

, a switch diverted gas flow, so that it passed through CO2 traps (NaOH solution), 

and excess CO2 was absorbed. All pots in the labeling chamber were exposed to 

natural sunlight, and artificial light was used on cloudy days.  

 

2.3.3 Harvesting and soil sampling  

Plant and soil samples were destructively taken on the 1st, 5th, 10th, 25th, and 

39th labeling days respectively. 39 days of labeling including rice pre tillering stage, 

post tillering stage, and elongation and panicle formation stage. All the above ground 

rice tissues (shoots) were cut at the soil surface to separate from the roots. Roots were 

separated from the soil and carefully washed with de-ionized water to remove adhered 

mineral particles. Shoots and roots were dried at 60 °C, weighed, and milled 

(Yevdokimov et al. 2006). All soils in each pot were thoroughly mixed and divided 

into four subsamples, and 50 g soil samples were oven dried at 105 °C  to determine 

soil water content. Fresh soil samples (100 g) were used for microbial biomass C 

(MBC) analysis, and 200-g soil samples were carefully wrapped with aluminum foil, 

instantly frozen in liquid nitrogen, and vacuum freeze-dried for PLFA analysis. The 

remaining soils were air-dried and used for C and N analysis.  

 

2.3.4 Analytical methods 

Soil pH was analyzed using a pH meter (Delta 320; Mettler-Toledo Instruments 

Co. Ltd., China). MBC was determined by the chloroform fumigation-extraction 

method (Wu et al. 1990), and the C and N content of soil, shoots, and roots were 

analyzed using an automated C/N analyzer (vario MAX, Elementar Analysensysteme 

GmbH, Germany). The N priming effect was calculated from soil total N in control 
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minus that in +C addition. The ŭ
13

C values of shoots, roots, and soil were determined 

using an isotope ratio mass spectrometer (Finnigan
TM

 MAT253, Thermo Electron 

Corporation) coupled with an elemental analyzer FLASH 2000 (Thermo Fisher 

Scientific, US).  

PLFAs were assayed according to Tian et al. (2013) based on previous studies 

(Bossio and Scow 1995; Zelles 1997, 1999). Briefly, total lipids were extracted from 

3 g soil samples, with 25 ɛL of internal standard one added (1 ɛg ɛL
ī1

, 19:0 

phospholipid) (before extraction), using one phase buffer, which was prepared by 

mixing chloroform, methanol, and citric acid (0.15 M, pH 4.0) in the ratio 1:2:0.8 

(v/v/v). Extracted lipids were then separated into neutral-, glyco-, and phospholipids 

on a silica column. Collected phospholipids were saponified (0.3 M solution of BF3 in 

methanol) and methylated (1 M solution of NaOH in methanol) and the PLFAs thus 

obtained were extracted using hexane. Cleaned PLFAs were dried under an N2 stream 

and re-dissolved in toluene (185 ɛL), with internal standard two added (15 ɛL of 13:0 

fatty acid methyl ester, 1 ɛg ɛL
ī1

). PLFA content was measured using gas 

chromatography-mass spectrometry (GC-MS). 

 

2.3.5 Calculations and statistical analysis 

2.3.5.1 
13

C in a rice system 

The ŭ
13

C and 
13

C atom% values were used for 
13

C assimilation calculations in 

the plant and soil samples. The following equations were used (Lu et al. 2002a, b; Wu 

et al. 2009): 
 

( ) ( )[ ] xULxatomLxatomx CCCC ³-= 100/%%
,

13

,

1313
 

where, L and UL indicate labeled and unlabeled samples, respectively; 
13

Cx is the total 

13
C content in the plant and soil samples (mg 

13
C pot

-1
 and mg 

13
C kg

-1
 dry soil, 
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respectively). Cx is the total C content (mg C pot
-1

; mg C kg
-1 

dry soil). 
13

Catom is the 

atom percents of C samples (%). 

 

2.3.5.2 
13

C in microbial biomass and community classification 

The amount of 
13

C in MBC, MBC and microbial biomass nitrogen (MBN) was 

calculated as the difference between fumigated and unfumigated soil extractions and 

was divided by a factor of 0.45 (for C) or 0.38 (for N) (Lu et al. 2002a, b).
 

PLFAs were divided into six groups (Leckie 2005; Gunina et al. 2017): 

Gram-positive bacteria (G+) (i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0) (Yao et al. 

2000, 2012, Zhang et al. 2007, 2012); Gram-negative bacteria (G-) (17:1ɤ8c) (Moss 

and Daneshvar 1992; Li and Pang 2010); arbuscular mycorrhizal fungi (AMF) 

(16:1ɤ5c) (van Diepen et al. 2010), fungi (18:2ɤ6,9c, 18:1w9c) (Vestal and White 

1989; Yao et al. 2000; Zhang et al. 2007, 2012), anaerobes (cy17:0, cy19:0ɤ8c) 

(Vestal and White 1989); and actinomycetes (10Me17:0, 10Me18:0, and 10Me16:0) 

(Zhang et al. 2007, 2012). Ratios of total G+/G- bacteria were calculated by dividing 

the sum of the bacterial groups (G+ and actinomycetes) that belong to G+ bacteria 

(i14:0, i15:0, i16:0, i17:0, a15:0, a17:0, 10Me16:0, 10Me17:0, and 10Me18:0) by the 

sum of the bacterial groups (G- and anaerobes ) that belong to G- bacteria (17:1ɤ8c, 

cy17:0, and cy 19:0) (Yao et al. 2000; Zhang et al. 2007, 2012). PLFA content was 

calculated based on the calibration curves obtained for the external standards and 

presented as nmol g
-1

 soil (Apostel et al. 2015). To determine microbial community 

structure in soils at various stages of labeling and amendment, principal component 

analysis (PCA) was performed using SPSS19 (SPSS inc., Chigaco, IL, USA) and 

plotted with Canoco for Windows 4.5 (Biometris, Wageningen, The Netherlands), 

with response variables of all the 20 PLFAs (including 14:0, 15:0, 16:0, 17:0, and 

18:0) (mol%) after loge transformation. 



Chapter 2 C and N availability in paddy soil affects rice photosynthate allocation, microbial community 

composition, and priming: Combining continuous 13C labeling with PLFA analysis 

 

37 
 

2.3.5.3 Statistical analysis 

All data in the resulting figures is expressed as the mean of three replicates ± 

standard error (SE). One-way ANOVA with subsequent Tukey tests was used to 

identify means and differences between the treatments at a particular sampling date at 

a significance level of 0.05. The residuals were checked for normal distribution with a 

Shapiro-Wilk test and homogeneity was checked with a Levene test. All the analyses 

were performed using SPSS for Windows. 

 

2.4 Results 

2.4.1 Effects of C and N addition on plant properties 

Both C and N stock in shoots and roots increased substantially during the plant 

growth in all treatments. Shoot C and N stocks increased faster after +CN addition 

than they did in the separate +C or +N fertilization. ʉombined +CN addition 

decreased root biomass (C and N stocks) compared to individual additions or the 

control (Fig. 1). The +CN treatment led to a greater incorporation of shoot C (70%ï

79% of total plant C) and N (69%ï79% of total plant N) stock as compared with 

those of +C, +N, or the control. The highest rate of biomass growth (59ï72 mg C 

pot
-1

 day
-1

 in shoots and 14ï20 mg C pot
-1

 day
-1

 in roots) and N (1.7ï3.0 mg N pot
-1

 

day
-1

 in shoots and 0.72ï0.97 mg N pot
-1

 day
-1

 in root) occurred between the 10
th
 and 

25
th
 labeling days. 

 

2.4.2 Effects of C and N addition on photosynthate distribution in the riceïsoil 

system 

The amount of photoassimilated 
13

C in rice shoots and roots increased substantially 

during the labeling period in all additions compared to unfertilized Control (Fig. 2A; 
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2B). +CN application led to the greatest
 
incorporation of

 13
C in shoots and the least 

13
C incorporation in roots as compared with the single-fertilizer additions. The +CN 

addition resulted in a relatively higher shoot 
13

C/root 
13

C ratio (5ï10 times) than that 

in the +C, +N, and control treatments. The highest plant photosynthate 
13

C 

incorporation rates (1ï1.5 mg pot
-1

 day
-1

 in shoots and 0.3ï0.4 mg pot
-1

 day
-1

 in roots) 

occurred between day 10 to day 25. 

During the entire labeling period, the 
13

C amount incorporated into the SOM 

gradually increased in all additions, with the most rapid rate being recorded between 

day 10 to day 25 in all the amendments (Control, +C, +N and +CN)(Fig. 2C). As 

compared with the unfertilized soil, all amendments resulted in a lower 
13

C 

incorporation into SOM, with the lowest 
13

C incorporation observed after the +CN 

addition. 

Similarly, +CN application also led to a lower 
13

C accumulation in the microbial 

biomass carbon (MBC) (Fig. 2D) than in any other amendment, and the highest 

amount of 
13

C incorporated into MBC was detected in unfertilized soil. The most 

rapid incorporation rate of four amendments (Control, +C, +N and +CN) occurred 

between the 5th and 10th labeling day, which was earlier than that for 
13

C 

incorporation into SOM. In summary, simultaneous C and N application (+CN) 

resulted in a relatively higher shoot 
13

C allocation and lower 
13

C recovery in roots, 

SOM, and microorganisms as compared with that in single fertilizer addition (+C, +N) 

and non-fertilized soils. 

 

2.4.3 Positive N priming effect following CMC application 

 A positive N priming effect was induced by CMC addition, as 3% of soil total N 

mineralized from SOM, when compared with that in the unfertilized soil (Fig. 3). Of 

this N mineralized from SOM in +C amendment, 16% were taken up by rice plants. 

Compared with the unfertilized soil, less soil total N was found in the +N and +CN 

amendments at the end of labeling. 
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2.4.4 Effects of C and N addition on soil microbial community  

The effects of C and N addition on PLFA biomarker composition were evaluated by 

PCA (Fig. 4), which revealed a clear separation of microbial community structure 

according to each amendment and sampling stage. Microbial composition in 

+CN-amended and unfertilized soils (control) was highly different from that in +C- 

and +N-amended soils, which had comparable compositions. Fertilization had a 

stronger effect on microbial composition than rice development. 

The amount of MBC and MBN (Fig. 5 A, C) gradually increased during the entire 

labeling period, following the same order as that of increase in 
13

C content of SOM 

(Fig. 2C): control > +N > +C > +CN. Addition of +CN led to a relatively lower MBC 

and MBN content during microbial proliferation as compared with that of single 

applications or non-fertilized soils. 

The amounts of PLFA biomarkers (Fig. 5 B) increased substantially during the 39 

days of growth. +CN application resulted in minimum PLFA content as compared 

with that in the +C, +N, and control soil (control > +N > +C > +CN). 

The G+/G- ratio (Fig. 5D) in the control soil and +C and +N amendments steady 

increased until the end of labeling. The G+/G- ratio in +CN soil slightly decreased 

throughout the entire labeling period. After 39 days of rice growth, soils with +C and 

+N applications had similar G+/G- ratios. Addition of +CN led to the lowest G+/G- 

ratio recorded during the entire labeling period. 

Application of C or N or their combination decreased the PLFA biomarker contents 

for most microbial groups (Fig. 6). The strongest decrease after the additions of C or 

N or their combination were found in PLFA groups of G+ and fungi. +N application 

led to a specific increase of PLFAs responsible for G- bacteria and actinomycetes. 
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2.5 Discussion 

2.5.1 Effects of C and N addition on the riceïsoil system 

The stimulating effect of C and N addition on crop yield (Fig. 1) has been shown in 

many previous studies (Pan et al. 2009; Zhang et al. 2012; Wang et al. 2014a, b). In 

contrast, lower root C (F value:7.55, p value 0.01 in 39th labeling day), root N (F 

value:7.27, p value 0.12), and 
13

C photosynthate incorporation in root (F value:8.92, p 

value 0.006) (Fig. 1 B, D; Fig. 2 B) was observed following the addition of +C, +N 

and +CN. According to the Optimal Partitioning Theory (OPT) (Bloom et al. 2012), 

when nutrients in soil limited plant growth, plants invest preferentially in root growth 

at the expense of shoot growth (Janeļek et al. 2014; Wang et al. 2014c). Addition of 

+C, +N and +CN mitigated nutrients limitation for plant growth in soil, and so 

resulted in less root C, root N, and 
13

C photosynthate allocation. Root development 

depends on external factors such as availability of mineral N and other nutrients, pH, 

oxygen availability, and redox potential (Bloom et al. 2002). Many studies have 

reported that high mineral N levels inhibit root development and elongation (Britto 

and Kronzucker 2002; Linkohr et al. 2002; Li et al. 2010). Symptoms of root 

inhibition caused by NH4
+ 
generally appear with external NH4

+
 concentrations greater 

than 0.1 to 0.5 mM (Katwijk et al.; Peckol and Rivers 1995). In the +N and +CN 

addition, high NH4
+ 

content in soil solution (up to 3 mM) was detected. NH4
+
 can 

inhibit root activity through physiological mechanisms: rhizosphere acidification, 

nutrient imbalance, photosynthesis system damage, and carbohydrate limitation 

(Gerendás et al. 1997; Britto and Kronzucker 2002), as well as at the genetic level: 

inhibition of GDP-mannose pyrophosphorylase activity (Barth et al. 2010; Li et al. 

2010). Thus, +N and +CN decreased 
13

C photosynthate incorporation into the roots 

and consequently decreased 
13

C rhizodeposition, which ultimately led to a reduction 

in the 
13

C level in MBC and SOM (Fig. 2 C). 

Root growth under mechanical impedance displaces soil particles, and as a result, 

root elongation decreases with increasing soil strength and density (Hodge et al. 2009). 
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As a soil conditioner, water retainer, and remediating agent (Mishra et al. 2018), CMC 

increases soil glutinousness and water-retention capacity (Ang 1991). Through the 

binding of mineral particles via organic polymers, CMC application increases the 

cohesion of aggregates and their average diameter (Chenu et al. 2000; Subbian et al. 

2000), which increased soil strength and density. Thus, +C addition may impede root 

elongation and development and consequently lead to reduced incorporation of 
13

C 

photosynthates into roots, SOM, and microbial biomass. Moreover, CMC, due to its 

macromolecular structure, serves as a slow-release energy source for microorganisms. 

In +C-amended soil, microbes use labile C to decompose recalcitrant SOM and 

thereby acquire N, a process called ñmicrobial N miningò (Fontaine et al. 2003; 

Moorhead and Sinsabaugh 2006). As high mineral N levels inhibit root development 

and elongation (Britto and Kronzucker 2002; Linkohr et al. 2002; Li et al. 2010), 

long-term mining of mineral N by soil microbes from SOM may trigger relatively 

lower root biomass, which can also lead to less 
13

C incorporated into roots, SOM, and 

microbes in +C-amended soil.  

The maximum 
13

C accumulation rate in roots and SOM occurred at the same time 

(between the 10
th
 to 25

th
 labeling day) (Fig. 2 B, C), as plant photosynthates released 

by roots (rhizodeposited C) are one of the primary sources of SOM formation (Finzi 

et al. 2015). Rhizodeposited C strongly affects 
13

C incorporation into microbial 

biomass, as microorganisms preferentially use labile rhizodeposits over other 

substrates (Lambers et al. 2009; Jones et al. 2009). Rather than use photoassimilates 

for plant development, plants primarily release labile photosynthate C into the 

rhizosphere for microorganisms, which stimulates nutrient cycling for further plant 

nutrient uptake and growth (Paterson et al. 2007). Thus, the maximum 
13

C 

incorporation into microbial biomass occurred earlier (5
th
 and 10

th
 labeling days) (Fig. 

2 D) than that of 
13

C in roots and SOM.  

 Experiments have been performed to examine the effects of long-term 

fertilization on the fertility of paddy soils (Whitbread et al. 2003). Studies have, 

however, yielded inconsistent results. Some studies have shown enhanced soil 
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fertility under long-term fertilizer application (Whitbread et al. 2003), whereas other 

have reported severe degradation of red soils with high acidity and low nutrient 

content (Dawe et al. 2000; Kumar and Yadav 2001). By taking living roots into 

account and using CMC as a mimic to evaluate long-term organic fertilizer addition, 

our study has demonstrated lower photosynthate input into paddy soil.  

 

2.5.2 N mining by positive priming effect induced by CMC application 

Priming effects (PEs) have been defined by Kuzyakov et al. (Kuzyakov et al. 2000) 

as ñstrong short-term changes in the turnover of SOM caused by comparatively 

moderate treatments of the soil,ò and are now well documented (Fontaine et al. 2003; 

Kuzyakov 2010). Most of these studies primarily focus on the PE of SOM caused by 

exogenous addition of glucose or other substances (Hamer and Marschner 2005; 

Fontaine et al. 2007; Dilly and Zyakun 2008). Addition of organic substances to soil 

not only promotes the PEs of SOM, but also affect soil N (Liu et al. 2017). Organic C 

(CMC) application resulted in 3% of soil total N being released from SOM over 39 

days (Fig. 3). Organic fertilizers increase N mineralization because microbes shift 

from SOM to added organic fertilizer for energy and N (Ekschmitt et al. 2005; Chen 

et al. 2014). However, SOM can substitute N source when pure N free organic 

substances (CMC) are added. +C amendment promotes microbial decomposition of 

SOM to acquire N (Fontaine et al. 2003; Moorhead and Sinsabaugh 2006). Hence, 

positive N PEs occurred owing to N mining by microorganisms (Chen et al. 2014). In 

+C amendment, 16.2% of the newly released mineral N was taken up by the plants 

(Fig. 4), which is in line with previous reports of enhanced plant N uptake as a result 

of organic fertilizer application (Dijkstra et al. 2009).  

2.5.3 Effects of C and N addition on soil microbial community 

Nutrient availability is a strong determinant of microbial community composition 

(Drenovsky et al. 2004; Dong et al. 2014a) The +C, +N, and +CN amendments also 
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strongly affected soil microbial community structure over time (Fig. 4), which is 

consistent with the findings of previous studies (Marschner et al. 2003; Houlden et al. 

2008).  

The addition of low molecular weight organic substances, such as glucose, can be 

taken up by microorganisms from solution within a few hours (Jones and Edwards 

1998; Jones and Hodge 1999; Fischer and Kuzyakov 2010; Gunina et al. 2014), 

which rapidly stimulates microbial growth. In contrast, the addition of CMC 

introduced slow but steady release of energy to microorganisms, leading to microbial 

proliferation similar to that as by plant C inputs. With lower root C inputs, +C and 

+CN led to lower MBC, MBN, and PLFA content than that in unfertilized soils (Fig. 

5 A, B, C).  

In situ stable isotope probing revealed that G- and eukaryotic microorganisms are 

the most active assimilators of root-derived photosynthetic C in paddy soil, whereas 

G+ microorganisms are more important in bulk soil (Lu et al. 2007). Compared to 

+CN addition, higher G+/G- ratio in +C and +N (Fig. 5 D) indicate that during 

microbial proliferation, single C or N application promoted the growth of G+ bacteria 

in bulk soil over that of G- bacteria in the rhizosphere. In contrast, +CN addition led 

to a reverse effect.  

Changes in microbial community structure are linked to microbial metabolism with 

respect to soil C and N availabilities. G+ bacteria are reported with specialized 

activities in plant promotion (Kloepper 1980). As either C or N fertilization resulted 

in relatively slower root development (Fig. 1 B, D; Fig. 2 B), G+  bacteria PLFAs 

decreased most at the 39
th
 growth day (Fig. 6). G+ bacteria decreased with increasing 

soil organic C availability from crops, straw and manure were reported (Bossio and 

Scow 1998; Peacock et al. 2001; Buyer et al. 2010). When compared to +N 

amendment, C addition (+C and +CN) resulted in relatively smaller G+  bacteria 

PLFAs, as cellulose (CMC addition) is the major organic component of rice straw 

(Howard et al. 2003). . Either C or N fertilization can led to decreasing Fungi PLFAs 

(Fig. 6), as Fungi is more capable of colonizing in nutrient poor soils with their 
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wide-ranging enzymatic capabilities(Frey et al. 2003). Compared to +N amendment, 

C addition (+C and +CN) resulted in relatively smaller Fungi PLFAs (Fig. 6). As in 

anoxic environments (e.g., paddy soil), bacteria are almost exclusively responsible 

for the degradation of cellulose (Leschine 1995; Lynd et al. 2002). In this regard, 

bacteria outcompete fungi by producing inhibitors such as hydrocyanic acid, 

antibiotics, lytic enzymes, and volatiles, as well as nutrient-sequestering molecules, 

such as iron-chelating siderophores (Whipps 2001; Wheatley 2002). 

+N fertilization specifically stimulated G- bacteria (Fig. 6) which is in consistence 

with result reported by Zhang et al. (2007), who also found increasing G- bacteria 

PLFAs in paddy soil under N application with the absence of C fertilization. As fewer 

root derived C (compared to control) and less C source (compared to +C and +CN 

amendments), proliferation of G- bacteria in +N application indicated that G- bacteria 

can be active C assimilators in low C availability soils. With less root derived C and 

fewer available C, in order to gain access to energy source, +N fertilization 

stimulated proliferation of actinomycetes (Fig. 6), as hyphal growth of actinomycetes 

can enable efficient penetration through soils via pores and thereby facilitate access to 

energy sources (Lynd et al. 2002; De Boer et al. 2005).  

 

2.6 Conclusions 

By using CMC as a mimic of straw degradation for evaluating slow organic C 

mineralization, either a single application of +C or +N, or their combined addition 

(+CN) decreased root biomass (Fig. 1B). The decrease in root biomass led to lower 

incorporation of photosynthates transported to the roots, which resulted in less 
13

C 

incorporation into rhizodeposits (Fig. 7). Lower 
13

C in microbial biomass with a small 

delay lead to lower 
13

C incorporation into SOM confirming that microbial necromass 

is a significant source of C sequestered in soil (Fig. 7). Single CMC addition also 

released 3% of N stored in SOM through positive N priming effects. C and N 

availability in soil decreased the G+/G- ratio and PLFA content. By impeding root 
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development and decreasing the input of rhizodeposits, increased C and N availability 

decreased content of microbial groups, such as G+ and fungi, N fertilization 

stimulated G- bacteria and actinomycetes, thereby altering the composition of the soil 

microbial community.  
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Fig. 1 Total C and N in shoots and roots (g pot
-1

) of rice in Control (no addition), 

CMC addition only (+C), N fertilizer only (+N), and combined C and N application 

(+CN) on days 1, 5, 10, 25, and 39 of continuous 
13

CO2 labeling. A) shoot C; B) root 

C; C) shoot N; D) root N. Data points represent means (n = 3), and error bars 

represent standard errors. Capital letters adjacent to the points represent significant 

differences (p < 0.05) in the same labeling day between treatments, and lowercase 

letters represent significant differences (p < 0.05) in the same treatment between 

different labeling days. 
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Fig. 2 
13

C in rice shoots (mg pot
-1

), roots (mg pot
-1

), SOM (mg kg
-1
), and MB (ɛg 

kg
-1

) in four treatments: Control (no addition), CMC addition only (+C), N fertilizer 

only (+N), and combined C and N application (+CN) on days 1, 5, 10, 25, and 39 of 

continuous 
13

CO2 labeling. A) shoot 
13

C; B) root 
13

C; C) 
13

C in SOM D) MB
13

C. 

Data points represent means (n = 3), and error bars represent standard errors. Capital 

letters adjacent to the points represent significant differences (p < 0.05) in the same 

labeling day between treatments, and lowercase letters represent significant 

differences (p < 0.05) in the same treatment between different labeling days. 
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Fig. 3 Positive N priming effect in the CMC-amended (+C) soil on the 39
th
 day of 

continuous 
13

CO2 labeling. Four treatments: Control (no addition), CMC addition 

only (+C), N fertilizer only (+N), and combined C and N application (+CN). Red 

regions represent differences compared with the control. Data points represent means 

(n = 3), and error bars represent standard errors. Capital letters adjacent to the error 

bars represent significant differences (p < 0.05) between treatments. 
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Fig. 4 Principal component analysis (PCA) of PLFAs compositions in soil without 

addition (Control), CMC addition only (+C), N fertilizer only (+N), and combined C 

and N application (+CN) on days 1, 5, 10, 25, and 39along principal component axes 

PC1 and PC2.  
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Fig. 5 Microbial biomass carbon content (mg C kg
-1

), microbial nitrogen content 

(mg N kg
-1

), PLFA content (nmol g
-1

) and total G+/G- ratio in the four treatments: 

Control (no addition), CMC addition only (+C), N fertilizer only (+N), and 

combined C and N application (+CN) on days 1, 5, 10, 25, and 39 of continuous 
13

CO2 labeling. A) MBC; B) PLFA content; C) MBN; D) Total G+/G- ratio. Data 

points represent means (n = 3), and error bars represent standard errors. Capital 

letters adjacent to the points represent significant differences (p < 0.05) in the same 

labeling day between treatments, and lowercase letters represent significant 

differences (p < 0.05) in the same treatment between different labeling days. 

 


























































































































































