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Summary 

Within the last decade, the cabbage whitefly has become a major agricultural pest for 

Brassica crops, which has influenced the agricultural productivity of cabbage (Brassica 

oleracea convar. capitata L.) Brussels sprouts (Brassica oleracea var. gemmifera DC.), 

cauliflower (Brassica oleracea var. botrytis L.), kale (Brassica oleracea var. sabellica L.), 

kohlrabi (Brassica oleracea var. gongylodes L.), savoy cabbage (Brassica oleracea 

convar. capitata var. sabauda L.), and broccoli (Brassica oleracea var. italica Plenck). 

The current population increase of this species could be explained by climate change 

with warmer winters, increasing cultivated areas of oilseed rape and Brassica cover 

crops, and the development of insecticide resistant strains of cabbage whitefly. In the 

past, the cabbage whitefly was known as a non-significant pest of Brassica crops, 

which is partly why its biology has only been marginally studied. In this respect, 

exploring the biological parameters of A. proletella is likely to be of great value to 

understand the population dynamics of this insect species as well as to discover the 

reasons behind its current outbreak. 

The biological parameters of A. proletella on different host plants were examined in a 

greenhouse experiment to assess their suitability for the cabbage whitefly. The impact 

of constant and alternating temperature regimes on the major life cycle component of 

cabbage whitefly were investigated in growth chamber-experiments. The influence of 

mating history on the population dynamics of this species was also examined and 

evaluated under different conditions. 

1. Various biological traits (fecundity, pre-oviposition period, survival rate, sex ratio) 

of A. proletella were studied on winter oilseed rape, kale, cabbage, and kohlrabi to 

assess the suitability of these host plants. 

a. A. proletella was more fecund on winter oilseed rape than kale, kohlrabi, and 

cabbage. 

b. Host plants influenced the pre-oviposition period of A. proletella, resulting in 

shorter pre-oviposition periods on oilseed rape.  

c. Survival rate of A. proletella adults was strongly influenced by host plants, 

which was the lowest on white cabbage. 
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d. The sex ratio of A. proletella offspring was significantly influenced by the host 

plant, with the highest female ratio being on kale and winter oilseed rape. 

e. Winter oilseed rape was therefore determined to be the most suitable host 

plant among all those considered.  

2. Evaluating the influence of fluctuating temperatures versus their equivalent 

constant average on reproduction parameters (fecundity, mean daily fecundity, 

age-specific fecundity, survival rate, sex ratio) of cabbage whitefly. 

a. The 23 °C fluctuating temperature regime decreased the survival rate of 

cabbage whitefly males in comparison to their equivalent constant temperature 

mean.  

b. The 20 °C fluctuating temperature increased the total fecundity of cabbage 

whitefly females in comparison to their representative constant temperature 

mean.  

c. The pattern of the age-specific fecundity curve under fluctuating temperature 

regimes differs from those at constant regimes, leading to a higher peak 

throughout the earlier stages of the lifespan and a sharper decrease as females 

become older. 

d. The temperature regime did not affect the sex ratio of cabbage whitefly. 

3. The influence of mating scenarios (life span mated female and male; virgin female 

and male; short time mated females) on longevity, survival rate, total fecundity, 

and sex ratio of A. proletella was examined under constant temperature regimes of 

20°C. In addition, the first two experiments also evaluated the influence of mating 

scenarios on the survival rate and oviposition of cabbage whitefly.   

a. The total number of eggs of eight day mated females was slightly lower than 

those of virgin and life span mated females. 

b. The mating history did not influence the life span or survival rate of A. 

proletella females or males. 

c. The sex ratio of life span mated females was lower than that of short time 

(eight day) mated females, whereas virgin females produced purely male 

offspring. 

d. In the greenhouse experiment the mating history did not affect the survival rate 

and oviposition of the cabbage whitefly. 
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e. Under fluctuating temperature conditions, the influence of mating scenario was 

only detectable under the 20 °C fluctuating temperature regime, where the 

fecundity of eight day mated females was reduced in comparison to the virgin 

and life span mated females. 
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General introduction 

Vegetable Brassica crops are some of the most important cultivated vegetables crops 

in Germany with cultivation covering 18,802.1 ha. This includes cauliflower (Brassica 

oleracea var. botrytis L.) which occupies 3 268.6 ha, broccoli (Brassica oleracea var. 

italica Plenck) 2 194.6 ha, Chinese cabbage (Brassica rapa supbs. pekinensis Lour. 

hanelt) 850.6 ha; kale (Brassica oleracea var. sabellica L.) 959.3 ha, kohlrabi (Brassica 

oleracea var. gongylodes L.) 1 830.8ha; Brussels sprouts ( Brassica oleracea var. 

gemmifera DC.) 474.3 ha, red cabbage (Brassica oleracea convar. capitata var. rubra 

L.) with 2 109.1 ha, white cabbage (Brassica oleracea convar. capitata var. alba) 6 

166.0 ha, and savoy cabbage (Brassica oleracea convar. capitata var. sabauda L.), 

which is planted over 948.5 ha of land (Statistisches Bundesamt, 2017). However, the 

production of these crops can be threatened by several herbivorous insects such as 

cabbage whitefly (Aleyrodes proletella L.), green peach aphid (Myzus persicae Sulzer); 

cabbage aphid (Brevicoryne brassicae L.), thrips (Thrips tabaci Lindeman), cabbage flea 

beetles (Phyllotreta spp.), cabbage gall weevil (Ceutorhynchus pleurostigma Marsh.), 

small cabbage white (Pieris rapae L.), cabbage root fly (Delia radicum L.), the cabbage 

moth (Mamestra brassicae L.), and the diamondback moth (plutella xylostella L.) 

(Crüger and Backhaus, 2002). 

Surprisingly, the cabbage whitefly has been gaining more importance as a key pest of 

Brassica crops ( Richter and Hirthe, 2014; Muñiz and Nebreda, 2003; Ramsey and Ellis, 

1996) and it is today one of top three most important insect pests that attack cabbage 

cultivars (R. Meyhöfer,  personal communications). The reasons for this increasing 

problem are not well understood, but the increase in their population could be linked 

to the impacts of climate change. For instance, warmer, shorter winters could increase 

the survival rate of overwintering adults. As a result, the density of the starting 

population that invades the Brassica crops in the early season will rise as well. In 

addition to milder winters, an increase in summer temperatures could also influence 

the cabbage whitefly population. It has been reported that increasing summer 

temperatures can accelerate the life cycle time, enhance the oviposition, and increase 

the population growth of an insect (Bale et al., 2002; Curnutte et al., 2014; Porter et 

al., 1991). Furthermore, temperature could also indirectly influence the population 
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growth of herbivorous insects through changing plant quality. Pereira et al. (2002) 

reported that temperature might change secondary metabolites such as glucosinolate 

concentrations in the plant, which in turn could affect the population growth of 

cabbage whitefly. Another factor that could influence population growth is the 

increasing cultivation area of oilseed rape, which offers suitable overwintering host 

plants for the cabbage whitefly (Richter and Hirthe, 2014). In addition, cabbage 

whitefly can benefit from the increasing cultivation areas of Brassica cover crops 

(White mustard Sinapis alba L. and oilseed radish Raphanus sativus L. ssp. Oleiferus), 

which provide this species with host plants to hibernate and reproduce.  From another 

point of view, oilseed rape production is associated with intensive insecticide use such 

as Neonicotinoide and Pyrethroide (Jeschke et al., 2011; Slater et al., 2011; Williams, 

2010) , which can indirectly decrease the vulnerability of cabbage whitefly, as a non-

target species, to such insecticides or lead to the development of resistant cabbage 

whitefly strains (B. Ulber, personal communications). 

Cabbage whitefly is a polyphagous phloem sucker that invades a wide range of host 

plants.  According to Mound and Halsey (1978) this species was found on a broad 

range of host families, e.g. Balsaminaceae, Berberidaceae, Campanulaceae, 

Compositae, Brassicaceae, Euphorbiaceae, Fagacea, Leguminosae, Papaveraceae, 

Ranunculaceae, Scrophulariaceae, and Umbelliferae, but preferring to obtain its 

nutrition from cruciferous vegetables. This whitefly species is native to continental 

Europe, but it has been recorded in many parts of the world, including Palearctic, 

Neotropical, and Pacific regions (Chen et al., 2007; Evans, 2007; Martin et al., 2000). 

 A. proletell is a small herbivorous insect, approximately 1.5 mm long, and has a 

piercing mouth parts for sucking (Hill and Hill, 1994). Their wings are marked with four 

gray spots, which distinguish it from other whitefly species. The body, as well as the 

wings, is covered with white wax, which gives the cabbage whitefly their powdery 

white appearance (Byrne, 1991). Males are smaller than females and develop from 

unfertilized eggs, whereas females develop from fertilized eggs ( Byrne, 1991; Byrne 

and Devonshire, 1996). Adult females lay their eggs in circular or semicircular clutches, 

usually in groups of 30 to 40 eggs, surrounded with a thin white wax (Broekgaarden et 

al., 2012; Martin et al., 2000). Within an incubation period of 10 to 20 days, depending 
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on the surrounding environmental conditions, the eggs develop into scale-like nymphs 

(Nebreda et al., 2005).  As the first nymphal stage has functional legs, they crawl 

searching for a suitable place to feed and settle. The following nymphs (second, third 

and fourth instar nymphs) lose their functional legs and develop by shedding their 

larval skin. Nevertheless, the fully grown fourth instar pupates without molting within 

the nymphal skin (Byrne, 1991). Shortly before hatching, the red eyes of adults can be 

seen through the pupae skin. The entire life cycle takes approximately three to four 

weeks, depending on the host plant and temperature (Alonso et al., 2009; Barro and 

Hart, 2000; Nebreda et al., 2005). In addition, El-Helaly et al. (1977) reported that the 

development time of eggs, nymphs and pupae could be affected by the length of the 

photophase. The development of nymphs under short photoperiod conditions could 

induce female diapause (Adams, 1985). Cabbage whitefly hibernate as adults on 

oilseed rape, cover crops, weeds (e.g. Chelidonium majus L.) or overwintering cabbage 

crops (e.g. winter cabbage and winter kale).  Therefore, adults can be seen on the host 

plant throughout the year. Being a multivoltine insect species, the cabbage whitefly 

generates up to five overlapping generations per year (Chen et al., 2007; Crüger and 

Backhaus, 2002). 

Both adults and juveniles feed by injecting their piercing mouthparts into the phloem 

vessels and extracting the plant sap. As a result of the feeding process, large amounts of 

sugary liquid, called honeydew is secreted. The covering of leaves with honeydew 

encourages black fungal growth (Bährmann and Moritz, 2002; Crüger and Backhaus, 2002; 

Hill and Hill, 1994). Coating the leaves with honeydew and black fungi decreases the 

growth rates of the plants. The contamination of plants with eggs, wax, larvae, and black 

fungi decreases the plant quality and marketability (Mound and Halsey, 1978; Schultz et 

al., 2010). 

The control of this species is demanding and hard to accomplish as adults and nymphs 

are generally found on the underside of the leaves. This makes insect pest control a 

very difficult process, which has led to the majority of control to be based on chemical 

insecticides (Springate and Colvin, 2012; Trdan et al., 2003; Wyss and daniel, 2002). 

According to Springate and Colvin (2012) frequent applications of insecticides lead to 

resistant cabbage whitefly strains. A number of predators (Coccinella undecimpunctata 
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L., Clitostethus arcuatus Rossi) and parasitoids (Encarsia tricolor Förster, Encarsia 

inaron Walker) have been found to attack cabbage whitefly (Cabral et al., 2006; Huang 

et al., 2009; Loomans et al., 2002; Manzari et al., 2002; Mound and Halsey, 1978) .  

However, neither biological nor chemical control have been able to dominate the 

control of this species (Loomans et al., 2002; Richter and Hirthe, 2014; Trdan et al., 

2003); a high level of skill and timing is required. 

Historically, cabbage whitefly has had negligible impact on the production of field 

Brassica crops (Iheagwan, 1977; Martin et al., 2000). Therefore, little attention has 

been given to this species leading to gaps in information about it. This lack of 

information includes the influence of temperature, host plant, and adult mating status 

on the A. proletella reproduction parameters and population dynamics. In contrast, the 

population dynamics and the reproduction parameters of the most important whitefly 

spices, Bemisia tabaci Gennadius and Trialeurodes vaporariorum Westwood, have 

been widely studied and reported (Campos et al., 2003; Coudriet et al., 1985; Gerling 

et al., 1986; Lorenzo et al., 2016; Manzano and van Lenteren, 2009; Nava-Camberos et 

al., 2001; Xie et al., 2011). These studies indicate that temperature is one of the most 

important factors that influence the specific life history traits of whitef lies. Although 

there is significant evidence indicating that the performance of ectothermic insects 

under fluctuating temperature regimes did not reflect those under the equivalent 

constant average (Lamb, 1961; Mironidis and Savopoulou-Soultani, 2008), to date,  

whiteflies studies have been performed under constant temperature regimes. 

Messenger (1964) reported that fluctuating temperature enhances the development 

time, longevity, and oviposition of the Spotted Alfalfa Aphid, Therioaphis maculata 

(Buckton), in comparison to the representative constant mean. Beck (1983) 

summarized the thermoperiodism of insects and indicated that the alternating 

temperature regime could not reflect their correspondent constant mean. 

Host plant and host plant suitability are other important factors which also influence 

the biology of whiteflies. Several studies on the relationship between host plant and B. 

tabaci have reported that the oviposition, longevity, and sex ratio of whiteflies could 

be influenced by the host plant (Lin and Ren, 2005; Omondi et al., 2005; Qiu et al., 

2011). On the other hand, it is widely reported that the mating history is an important 
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factor that influences the performance of an insect species (Ridley, 1988; Walker, 

1980). For example, Horowitz and Gerling (1992) reported that the longevity of 

multiple mated female of B. tabaci was shorter than those of females that mated 

shortly after emergence. Furthermore, (Arnqvist and Nilsson, 2000) summarized the 

influence of mating in different insect taxa and reported that mating history could 

influence the biological traits of an insect species.  In this respect, all essential factors 

that affect the population growth of whitefly should be taken into consideration when 

management strategies are developed. 
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Objective 

As far as we know, knowledge about the population dynamics of A. proletella is rather 

scattered, and data on the reproduction parameters of this species is limited. This 

study, therefore, is aimed to fill the information-gaps on the biological parameters of 

this species by, a) understanding the influence of fluctuating temperatures and their 

equivalent constant average on A. proletella reproduction parameters, b) evaluating 

the relationship between the population dynamics of this species and their host plants, 

and c) investigating the impact of mating scenarios on the major life cycle component 

of A. proletella. A more comprehensive understanding of the links between these 

crucial factors and the basic biological parameters of A. proletella will contribute 

towards the improvement of forecasting models of A. proletella population growth, 

and subsequently leading to the development of management strategies to control 

this insect pest. 

a. Evaluation of the reproduction parameters of A. proletella and its interactions with 

different host plants (Chapter 1) 

1. What is the influence of the host plant on the oviposition, pre-oviposition time, 

survival rate of adults, and sex ratio of cabbage whitefly? 

2. Is winter oilseed rape a suitable host plant for A. proletella? 

b. The relationship between ambient temperature regimes and the biological 

parameters of A. proletella (Chapter 2) 

1. What influence does the ambient temperature have on the survival rate of 

adults, oviposition, and sex ratio of cabbage whitefly? 

2. What is the cabbage whitefly response to the fluctuating temperature regimes 

in comparison to the constant temperature regimes? 

c. Understanding the biology and population dynamics of A. proletella (Chapter 1, 2 

and 3) 

1. Exploring the basic biological parameters of A. proletella including the 

development time, mortality of developmental stages, fecundity, longevity, and 

sex ratio. 

2. Does the mating scenario influence the reproduction parameters of A. 

proletella? 
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Chapter 1 

 Life history parameters of Aleyrodes proletella L. (Hemiptera: 

Aleyrodidae) on different host plants 

Khaldon Askoul, Ellen Richter, Stefan Vidal, Inka Lusebrink* 
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Chapter 2 

Effects of constant and fluctuating temperatures on the biological traits 

of cabbage whitefly Aleyrodes proletella L. (Hemiptera: 

Aleyrodidae) 

Khaldon Askoul1
*
 and Stefan Vidal1 

1Department of Crop Sciences, Agricultural Entomology, Georg-August-Universität, 

Grisebachstrasse 6, 37077 Göttingen, Germany 

*Corresponding author: kaskoul@gwdg.de 

Abstract  

Despite the fact that, Aleyrodes proletella L. (Hemiptera: Aleyrodidae), has become a 

serious agricultural pest of Brassica crops, few studies so far have investigated the 

impact of temperature on the biological characteristics of this pest species. Laboratory 

studies were used to explore the influence of fluctuating temperature regimes (18 to 

22 °C and 21 to 25 °C) and their equivalent constant means of 20 °C and 23 °C on the 

reproduction parameters of the cabbage whitefly. In addition, within each 

temperature regime the effect of mating scenario (64-day mated female and male; 

virgin female and male; eight day mated female) on the survival rate and oviposition of 

A. proletella adults was also evaluated. The survival rate of males as well as females 

was not affected by mating scenario. The oviposition of A. proletella females was also 

not influenced by the mating scenario, except under the 20 °C fluctuating regime 

where the oviposition of eight day mated females was significantly lower than that of 

the virgin and 64 day mated females. The survival rate of A. proletella adults was 

significantly affected by the temperature regimes. Overall, the oviposition of A. 

proletella was significantly affected by temperature regimes. The maximum total 

number of eggs was obtained under the 20 °C fluctuating temperature regime. The 

shapes of age-specific fecundity curves obtained under fluctuating regimes differ from 

those under constant regimes. At all temperature regimes, A. proletella females 

produced significantly more females than males. The sex ratio of A. proletella was not 

significantly affected by temperature regimes. These results demonstrate that the 

mailto:kaskoul@gwdg.de
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alternating temperature regimes are not likely to represent the corresponding 

constant means. In this respect, all future population growth prediction models should 

take such differences into account.  

Keywords: Aleyrodes proletella, cabbage whitefly, temperature regimes, fluctuating 

temperature, biological parameters. 

Introduction 

The Cabbage Whitefly, Aleyrodes proletella L. (Hemiptera: Aleyrodidae), is a 

polyphagous insect that feeds on a wide variety of host plants within more than ten 

different host families (Martin et al., 2000; Mound and Halsey, 1978). It is native to 

Europe, but has spread worldwide (Dale et al., 1976; Evans, 2007). 

Since the late 1990s, this insect has caused serious economic problems and was able to 

flourish in brassica cultivation areas across Europe, including Germany, Spain, and the 

U.K. (Muñiz and Nebreda, 2003; Ramsey and Ellis, 1996; Richter and Hirthe, 2014b). 

The reasons why A. proletella has become a major pest are not well understood and 

appear to be related to a combination of the following factors: a) increased cultivation 

of oil seed rape (Brassica napus L.), which can provide A. proletella with a suitable host 

plant to reproduce and overwinter (Richter and Hirthe, 2014b); b) climate change with 

temperate winters cause a decrease in overwintering mortality; and hot summers 

enhance the growth of insect populations and increase the generation number per 

year (Bale et al., 2002; Curnutte et al., 2014; Porter et al., 1991); and c) insecticide 

resistance (Springate and Colvin, 2012). Damage occurs either directly through sap 

sucking nymphs and adults, or indirectly by the excreted sugary sticky liquid known as 

honeydew, which enhances the growth of sooty mold (Capnodium sp.) (Hill and Hill, 

1994). The presence of honeydew and sooty mold not only reduces the photosynthesis 

of the plant but it decreases produce quality (Martin et al., 2000; Schultz et al., 2010). 

The entire life cycle of A. proletella takes three to four weeks, depending on 

environmental conditions and host plant (Alonso et al., 2009; Muñiz and Nebreda, 

2003; Nebreda et al., 2005). The cabbage whitefly can produce up to four generations 

per year (Chen et al., 2007), which hibernate as adults on oil seed rape (Brassica napus 

L.) (Richter and Hirthe, 2014b), cover crops (white mustard (Sinapis alba L.), oilseed 
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radish (Raphanus sativus L. ssp. oleiferus), weeds like greater celandine (Chelidonium 

majus L.), or overwintering cabbage crops such as winter cabbage (Brassica oleracea 

convar. capitata L.), and winter kale (Brassica oleracea var. sabellica L.). The control of 

whitefly typically relies on chemical control such as Pyrethroid insecticide, which has 

lead to the development of resistant cabbage whitefly strains (Springate and Colvin, 

2012). Biological control programs have been applied using the parasitoids Encarsia 

tricolor Förster (Schultz et al., 2010). In part due to the lack of information on cabbage 

whitefly biology neither the biological nor the chemical programs have been effective 

(Loomans et al., 2002; Richter and Hirthe, 2014a; Trdan et al., 2003).  

Classified as a minor pest in the past (Iheagwan, 1977; Martin et al., 2000) little 

attention has been given to the biology of cabbage whitefly and its relation to 

environmental conditions such as temperature. In contrast, the influence of 

environmental factors on the fitness of the most important whitefly spices like Bemisia 

tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood) has been broadly 

studied and reported (Gerling et al., 1986; Nava-Camberos et al., 2001; Xie et al., 

2011). These studies indicate that temperature is a critical factor that influences the 

development time, lifespan, fecundity, and growth rate of those species. However, 

these studies were performed under constant temperature conditions. So far there are 

no studies investigating the influence of fluctuating temperatures versus their constant 

equivalent mean on the biology of whiteflies. Messenger (1964) and Lamb (1961) 

reported that constant temperature regimes do not reflect what occurs in nature. In 

addition, many studies reported that the influence of fluctuating temperature on the 

development time of an insect species could differ from their representative constant  

mean (Bahar et al., 2012; Beck, 1983). For instance, the development time of the 

diamondback moth, Plutella xylostella L., was accelerated under fluctuating 

temperatures in comparison with their specific constant means (Bahar et al., 2012). 

Messenger (1964) reported that the fluctuating temperatures positively affected the 

development time, lifespan, and oviposition of the spotted alfalfa aphid, Therioaphis 

maculata (Buckton). Not just the fluctuating temperatures per se influence the life 

cycle of an insect, but also the amplitude of those fluctuating temperatures plays an 

important role (Auad et al., 2015; Mironidis and Savopoulou-Soultani, 2008).  
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The influence of temperature on major life cycle components of cabbage whitefly has 

not been extensively examined (Alonso et al., 2009). To the best of our knowledge, no 

such studies have been conducted for the cabbage whitefly and this is the first study 

that investigates the influence of fluctuating temperatures versus their representative 

constant means on the life history traits of A. proletella. This study therefore, aimed to 

investigate the effect of fluctuating temperature and the corresponding constant mean 

on cabbage whitefly reproduction parameters including: fecundity, survival rate, and 

sex ratio. A more comprehensive understanding of the influence of fluctuating 

temperature versus the corresponding constant mean on the population growth and 

population dynamics of A. proletella will contribute towards improved model 

prediction of A. proletella population growth and subsequently lead to management 

strategy refinements for this pest species. 
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Material and methods  

Insects 

The A. proletella females were collected from three regions in Germany 

(Braunschweig, Bonn, and Dresden). Fifteen whitefly colonies (five from each region) 

were developed by confining single females in rearing cages (60×60×60 cm), in order 

to obtain colonies that would host identical secondary endosymbiont species and 

minimize the genetic variability. The whitefly colonies were reared on Brussels sprout 

plants (Brassica oleracea var. gemmifera) in a growth chamber at 20 °C and a 

photoperiod of L16:D8. The determination of endosymbionts demonstrates that our 15 

colonies contain identical secondary endosymbiont species (P.Hondelmann, IGPS - 

Dept. Phytomedicine, April 15, 2015). We selected one of the colonies established 

from Braunschweig and used this for the present experiment. 

Plant material 

Brussels sprouts (Brassica oleracea var. gemmifera cv.Maximus, Syngenta, Germany) 

were used as test plants, which were grown in a greenhouse in 14-cm plastic pots filled 

with potting compost (Klasmann-Deilmann Geeste, Germany) at 19-21 °C and 55-75 % 

RH. Plants were fertilized twice a week using 0.01 % flory-1 (N-P-K-Mg 0.18-6-12-2, 

Gebr. Riege oHG, Germany) and watered as necessary. At two months of age, Brussels 

sprout plants were moved to climate chambers and used for the experiment, fertilized 

and watered as described above. 

Temperature regimes: 

The following fluctuating temperature regimes 18-20-22-20 °C, 21-23-25-23 °C and 

their equivalent constant means of 20 °C and 23 °C were used. The fluctuating 

temperature regimes were held for 11 h at the maximum (i.e: 22 and 25 °C), 11 h at 

the minimum temperature (i.e: 18 and 21 °C) and for a recovery period of one hour at 

20 and 23 °C, respectively [Figure. 1]. A photoperiod of L16:D8 was employed for all 

temperature regimes.  
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Figure 1: Schematic representation of fluctuating and constant temperature regimes. 

Reproductive parameters  

1. Acquirement of one-day old virgin adults 

One day-old-virgin adults of A. proletella were obtained by applying the following 

procedure: Brussels sprout plants were maintained in a growth chamber at 25 °C with 

a photoperiod of L16:D8 and 55-75 % RH and were initially infested with A. proletella 

adults. Females were allowed to oviposit for 24 hours; thereafter, all adults were 

removed. Shortly before hatching, red eye pupae were moved to small Petri dishes 

(35×10mm) using a needle (one pupa per Petri dish). The Petri dishes contained pieces 

of Brussels sprout leaves placed on wet filter paper. Adults that hatched within 24 

hours were considered equal in age. On emergence, the sex of one-day-old virgin 

adults was determined under a microscope (Zeiss, Stemi sv8, Germany).  

2. Fecundity and survival rate measurements 

To compare and evaluate the influence of temperature regimes on oviposition and  the 

survival rate of A. proletella, clip cages were attached to the underside of the tenth 
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fully grown leaf (the numbering of leaves started with the youngest fully grown leaf). 

Thereafter, the following treatments were constructed within each temperature 

regime: a) 64-day mated females (64MF) and males (64MM): for this treatment, pairs 

of one-day-old virgin adults were placed individually in clip cages for the whole 

experimental period (64 days). b) Eight day mated females (8MF): where pairs of one-

day-old virgin adults were individually placed in clip cages for eight days after which 

the males were removed. c) Virgin females (VF): one-day-old virgin females were 

individually confined in clip cages during the experimental period. d) Virgin males 

(VM): one-day-old virgin males were individually placed in clip cages during the 

experimental period. All differently treated adults were transferred to new leaves (the 

next younger leaf on the same experimental plant). This procedure was performed 

every four days until the end of the experiment, which was terminated after 64 days 

(due to the high mortality of adults under the 23 C° temperature regime). Eggs laid 

every four days were counted under a microscope (Zeiss, Stemi sv8, Germany). New 

clip cages were placed in the same position as the old cages to confine the eggs.  

Additionally, the survival rate of adults was recorded daily throughout the 

experimental time. A random block design with eight replicates was used in each 

mating scenario as well as in each temperature regime.  

3. Sex ratio 

After adult cabbage whiteflies were removed and eggs counted, leaves bearing eggs 

were allowed to continue to grow for one week on mother plants. Then the leaves 

with clip cages were removed from the stem and the petioles transferred to glass 

tubes filled with water. The glass tubes were kept in the same chamber as the mother 

plants. After all A. proletella adults had hatched in the clip cages, adults were killed by 

placing the leaves in a freezer at -16 °C. The sex ratio of the adults was then 

determined using a microscope (Zeiss, Stemi sv8, Germany). 
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Statistical analysis 

All statistical analyses were performed using the R statistical program version 3.2.3 (R 

Core Team, 2016). 

To detect the influence of mating scenario on the survival rate of cabbage whitefly 

adults, the Kaplan-Meier survival analysis (log-rank test) was performed (Therneau and 

Grambsch, 2000). Due to the non-significant effect of the mating scenario on the 

survival rate of cabbage whitefly adults (see results), the survival rate data of males as 

well as of females was pooled across mating treatment for each temperature regime. 

To detect the influence of the temperature regimes on the survival rate of whitefly 

adults, a Kaplan-Meier survival analysis (log-rank test) was firstly performed. 

Thereafter, a non-constant hazard model using Weibull errors was used to reveal 

differences between temperature regimes (Crawley, 2013). 

In order to analyze the influence of mating scenario on the total fecundity, generalized 

linear models (GLM) were fitted with quasi Poisson errors (R Core Team, 2016). The 

total number of eggs was then used as the dependent variable and mating scenario as 

the independent variable. The mean daily fecundity (total number of eggs laid during 

the experimental time divided by oviposition time) was analyzed using the linear 

model function (gls: linear model using generalized least squares) with the mean daily 

fecundity as the dependent and mating scenario as independent variable (R Core 

Team, 2016). 

To analyze the influence of temperature regime on the mean daily fecundity and the 

total number of eggs, the fecundity data of virgin, 64-day, and 8-day mated females at 

23 °C fluctuating, 23 °C constant, and 20 °C constant temperature regimes was pooled 

across mating scenarios due to the non-significant effect of mating treatment on 

fecundity (see results). Whereas, the fecundity data under the 20 °C fluctuating regime 

was pooled across virgin and 64-day mated females due to the insignificant differences 

between virgin and 64-day mated females under this temperature regime (see results). 

Thereafter, the above described analyses were repeated with the temperature regime 

as independent variable. 



Chapter 2 

19 

In order to analyze the influence of temperature regimes on the shape of the age-

specific fecundity (eggs/ female/ four-days) curve, data was pooled across mating 

scenarios as described above and mixed-effect polynomial models for longitudinal data 

(lmer) (Bates et al., 2015) were fitted (by maximum likelihood). In this model we used 

temperature regimes and age of females (as cubic polynomial) as independent 

variables, whereas the number of eggs at four day intervals was used as the response 

variable. The random-effects structure of this model included whitefly (subject) as well 

as mating scenario (virgin, 64-day mated and eight-day old mated) as non-nested 

random effects. Because the number of replicates (whitefly) decreased towards the 

end of the experiment, this model was only fitted for the first 56 days of the 

experimental time.  

To determine whether temperature regimes affect the sex ratio of whitefly offspring , 

males and females were grouped together as the response variable and analyzed using 

the general linear model with quasi binomial errors (Crawley, 2013). Additionally, 

binomial tests were performed to determine whether the sex ratio of cabbage white 

flies departed from the even sex ratio of 50:50 (Crawley, 2013). 

Survival rate, total and daily fecundity graphics were developed using SigmaPlot 

(Systat Software, San Jose, CA). The age-specific fecundity plots were performed with 

the Package ‘effects’ in the statistical program R (Fox, 2003). 
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Results 

Survival rate of A. proletella females and males  

The mating scenario did not affect the survival rate of female A. proletella at 23 °C 

fluctuating (log-rank test: x2 = 1.1, p = 0.58), 23 °C constant (log-rank test: x2 = 0.3, p = 

0.86), 20 °C constant (log-rank test: x2 = 0.1, p = 0.93), and 20 °C fluctuating (log-rank test: 

x2 = 3.4, p = 0.18) temperature regimes.  

Similarly, the survival rate of virgin as well as 64-day mated males did not significantly 

differ within each tested temperature regime (23°C fluctuating: log-rank test: x2 = 1.1, p = 

0.87; 23 °C constant: log-rank test: x2 = 0.3, p = 0.57; 20 °C fluctuating: log-rank test: x2 = 

1.5, p = 0.22; 20 °C constant: log-rank test: x2 = 0.2, p = 0.62). 

Moreover, the survival rate did not significantly differ between female (pooled data from 

virgin, 64-day, and 8-day mated females) and male (pooled data of virgin and 64-day 

mated males) whitefly adults within each temperature regime tested i.e. at 23 °C 

fluctuating (log-rank test: x2 = 0.8, p = 0.35), 23 °C constant (log-rank test: x2 = 0, p = 0.90), 

20 °C constant (log-rank test: x2= 1, p= 0.31), and 20 °C fluctuating (log-rank test: x2 = 1.1, p 

= 0.30). 

Temperature regimes significantly affected the survival rate of A. proletella females 

(pooled data of virgin, 64-day, and 8-day mated females) (log-rank test: x2 = 13.6, p < 

0.05), in that the survival rate of females was significantly lower at 23 °C fluctuating 

than those at 20 °C constant (z =-2.61, p < 0.05), and at 20 °C fluctuating temperature 

regimes (z = 2.77, p < 0.05). However, the survival rate of females at 20 °C fluctuating, 

20 °C constant and 23 °C constant did not significantly differ from one another ( 23 °C 

fluctuating: 23 °C constant, z = 1.6, p = 0.28; 20 °C  fluctuating: 20 °C  constant, z = 

0.58, p = 0.55; 23 °C constant: 20 °C constant, z = -1.57, p = 0.11; 20 °C fluctuating: 

23°C constant z = -1.9, p = 0.05) [Figure. 2]. 
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Figure 2: Survival rate of A. proletella females under different temperature regimes. log-

rank test (P < 0.05). 

The temperature regime significantly influenced the survival of A. proletella males 

(log-rank test: x2 = 20.4, p < 0.001). The 23 °C fluctuating temperature significantly 

reduced the survival rate of males in comparison with the equivalent constant mean (z 

= 1.97, p < 0.05), whereas the survival rate at 20 °C fluctuating did not significantly 

differ from that of 20 °C constant temperature regime (z = -1.28, p = 0.19). Moreover, 

the survival rate of males at 23 °C fluctuating temperature significantly differed from 

that of 20 °C fluctuating (z = 3.01, p < 0.01) and the 20 °C constant temperature regime 

(z = -3.33, p < 0.001). In addition, the difference between 23 °C and 20 °C  constant 

temperature regime was significant (z = -2.02, p < 0.05), while the difference between 

23 °C constant and 20 °C fluctuating temperature regime was not significant (z = -1.04, 

p = 0.29) [Figure.3].  
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Figure 3: Survival rate of A. proletella males under different temperature regimes. log-rank 

test (P < 0.05). 

  



Chapter 2 

23 

Oviposition of A. proletella 

Total number of eggs  

For the 20 °C fluctuating temperature regime, the total number of eggs of eight day 

mated females was significantly lower than those of virgin females (t  = 2.20, p < 0.05) 

and those of 64-day mated females (t = 2.23, p < 0.05), while the difference between 

mated and virgin females under this temperature regime was not significant (t = 0.02, 

p = 0.97). By contrast, the mating scenario at 23 °C fluctuating, 23 °C constant, and 20 

°C constant temperature regimes did not influence the total number of eggs laid by A. 

proletella females (F = 1.4, p = 0.25; F = 0.08, p = 0.92; and F = 0.38, p = 0.68 

respectively). 

The total number of eggs laid by A. proletella under the 20 °C fluctuating temperature 

regime was significantly higher than those under the 20 °C constant regime (z = 2.14, p 

< 0.05). Moreover, A. proletella was significantly more fecund under the 20 °C 

fluctuating temperature regime than under that of 23 °C constant (z = -2.16, P < 0.05). 

However, there was no significant difference between 23 °C and 20 °C constant (z = -

0.15, p = 0.88); 23 °C fluctuating and 23 °C constant (z = -0.38, p = 0.69); 23 °C 

fluctuating and 20 °C constant (z = 0.26, p = 0.79); 23 °C and 20 °C fluctuating 

temperature regimes (z = -1.84, p=  0.06) [figure. 4]. 



Chapter 2 

24 

 

Figure 4: Total number of eggs of A. proletella under different temperature regimes 

(means + SD). Different letters indicate significant differences between temperature 

regimes. Generalized linear model (GLM) with quasi Poisson errors (P < 0.05). 

Daily fecundity of A. proletella 

Under the 20 °C fluctuating temperature regime, the daily fecundity of 64-day mated 

females was significantly higher when compared with the eight day mated females (t = 

2.34, p < 0.05). However, there were no significant differences between virgin and 64-

days mated females (t = 0.5, p = 0.55). Conversely, the mean daily fecundity of A. 

proletella did not significantly differ between virgin, 64-day and eight day mated 

females under the 23 °C fluctuating (F = 0.68, p = 0.51), 23 °C constant (F = 0.67, p = 

0.52), and 20 °C constant temperature regimes (F = 0.47, p = 0.62). 

We found a significantly higher mean daily fecundity under the 23 °C  fluctuating 

temperature regime when compared to the 23 °C constant regimes (t = -1.99, p < 

0.05), and 20 °C constant regimes (t = 3.19, p < 0.05). No significant differences were 

detected between the 23 °C fluctuating and 20 °C fluctuating (t = 0.8, p = 0.38); 20 °C 
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fluctuating and 20 °C constant (t = -1.77, p = 0.07); 20 °C fluctuating and 23 °C constant 

(t = -0.83, p = 0.40); 20 °C constant and 23 °C constant temperature regimes (t = 1.06, 

p = 0.29) [figure.5]. 

 

 

Figure 5: Daily fecundity of A. proletella under different temperature regimes (means + 

SD). Different letters indicate significant differences between temperature regimes (GLS, p 

< 0.05).  
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Age-specific fecundity of A. proletella 

No significant overall effect of temperature under the 23 °C temperature regimes was 

found in terms of age-specific fecundity (F = 1.21, p = 0.27). However, a significant 

interaction between age and temperature regime was revealed (F = 8.53, p < 0.001) 

[Figure. 6]. 

 

 

Figure 6: Age-specific fecundity (eggs/ female/ four days) of A. proletella under 23 °C 

fluctuating and constant temperature regimes. The curves were obtained from the mixed-

effects polynomial model. 
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The 20 °C fluctuating temperature regime led to higher age-specific fecundity in 

comparison to the 20 °C constant temperature regime (F = 4.17, p < 0.05). Moreover, 

our model indicated that the interaction between temperature regime and age was 

also significant (F = 3.08, p < 0.5) [Figure. 7]. 

 

 

Figure 7: Age-specific fecundity (eggs/ female/ four days) of A. proletella under 20 °C 

fluctuating and constant temperature regimes. The curves were obtained from the mixed-

effects polynomial model. 
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Effect of temperature regimes on sex ratio of A. proletella 

Under all temperature regimes A. proletella 64-day mated females produced 

significantly more females (23 °C fluctuating = 70 %; 23 °C constant = 67 %; 20 °C 

fluctuating = 69 %; 20 constant = 64 %) than males (23 °C fluctuating = 30%; 23 °C 

constant = 33 %; 20 °C fluctuating = 31 %; 20 constant = 36 %) (Binomial test: 23 °C 

fluctuating: p < 0.001; 23 °C constant: p < 0.001; 20 °C fluctuating: p < 0.001; 20 °C 

constant: p < 0.001). Although the sex ratio of cabbage whitefly offspring under the 23 

°C as well as the 20 °C fluctuating temperature regime was higher than those at the 

representative constant temperature mean, we did not find any significant differences 

between the different temperature regimes (F = 0.90, p = 0.45), [Figure. 8]. 

 

 

Figure 8: Effect of temperature regimes on the sex ratio of A. proletella offspring (%; mean 

+ SD). Generalized linear model (GLM) with quasi-binomial distribution (P < 0.05); ns not 

significant. 
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Discussion 

Despite the increasing importance of cabbage whitefly as a serious agricultural pest, 

few studies on the influence of temperature on its biological parameters have been 

performed to date. However, those studies that have been conducted have been 

based on constant temperature regimes. Body temperatures of ectothermic organisms 

are usually very close to those of the ambient environmental temperature. As a result, 

their metabolism can change in-line with temperature variation. Constant temperature 

regimes do not allow the metabolism of an insect to change as fluctuating 

temperatures do, which could in turn influence the fitness of an ectothermic organism. 

Despite the importance of these factors, this study reports, for the first time, the 

influence of fluctuating temperatures versus their equivalent constant means on the 

reproduction parameters of cabbage whitefly. 

Survival rate: 

 We did not find any significant differences within the various temperature regimes 

between the survival rates of virgin, eight day mated, and 64-day mated female of 

cabbage whitefly. Similar behavior was reported in B. tabaci, in that the lifespan of the 

exotic B biotype reared on dwarf poinsettia (Euphorbia cyathophora Murray) did not 

differ between mated (23.4 days) and unmated females of 27.6 days (Barro and Hart, 

2000). Conversely, Horowitz and Gerling (1992) demonstrated that B. tabaci multiple 

mated females had shorter lifespans than females that mated only once after 

emergence (10.4 days vs. 15.1 days). Our study demonstrated that mating history did 

not have any impact on the survival rate of cabbage whitefly males. Li et al. (2015) 

reported that the mating history of arrhenotokous Thrips tabaci males did not affect 

their survival rate. However, Partridge and Farquhar (1981) found that mating activity 

decreased the longevity of male fruit flies (Drosophila melanogaster Meigen). Our 

study did not find any significant differences within each temperature regime between 

the survival rate of A. proletella males and females. Salas and Mendoza (1995) 

reported identical lifespans of B. tabaci males (19.4 days) and females (19.0 days) on 

tomato plants (Lycopersicon lycopersicum L.) under laboratory conditions (25°C and 
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65% R.H.). Nevertheless, Powell and Bellows (1992) highlight that the lifespan of B. 

tabaci  virgin females with 24.6, 15.5, 9.64, and 15.04 days was significantly higher 

than those of virgin males with 18.6, 12.23, 7.03, and 7.59 on cucumber plants 

(Cucumzs sutivus L., variety Poinsett 76) at different temperature regimes of 20, 25.5, 

29, and 32 °C , respectively.  

In the present study, we found that A. proletella adults exhibited different responses 

to temperature regimes. In detail, the survival rate of A. proletella females did not 

differ between fluctuating temperature and their constant mean. Nonetheless, we 

detected a significant difference between 20 °C constant and 23 °C fluctuating 

regimes, while the difference between 20 °C constant and 23 °C constant was not 

significant [Figure. 2]. 

We found that the survival rate of A. proletella males was significantly reduced by the 

fluctuating temperature regime. In this respect, the survival of males under the 23 °C 

fluctuating temperature was about 16 % towards the end of the experiment, whereas 

the survival rate of males at their representative constant mean was about 27 % 

[Figure. 3]. The survival rate of males (50 %) at the 20 °C fluctuating temperature 

towards the end of the experiment was lower than those at the 20 °C constant regime 

(78 %), but the difference was not significant. This could be explained through the 

concept that our experimental time (64 days) was not enough to detect the differences 

under such conditions. The reduced survival rate of males under fluctuating regimes 

versus the corresponding constant mean could be explained through the notion that 

fluctuating temperatures may be energetically demanding for males and therefore 

require a high metabolic rate. Accordingly, this cost in energy could be reflected as 

reduced survival rate in comparison to the constant temperature mean. Howe (1967) 

reported that the biological processes of an insect increase along with temperature. 

Another explanation could be that the 23 °C fluctuating temperature reached an 

unfavorable temperature for males, which could induce proteins that accelerate the 

aging process. There are no known comparable studies on the influence of fluctuating 

and constant temperature on the reproduction parameters of whiteflies.  We therefore 

compared our results with studies on other insect species. 
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For instance, Davis et al. (2006) studied the effect of constant and alternating 

temperature on the green peach aphid, Myzus persicae (Sulzer), and reported that 

fluctuating temperature promoted the survival of the species compared to when kept 

at the comparative constant mean of (15 °C). However, this effect disappeared under 

moderate temperature conditions (20 °C fluctuating and constant temperature 

regimes). Joshi (1996) compared some biological traits of mosquitoes, Aedes krombeini 

(Huang), under fluctuating temperatures versus their constant means. He found that 

when mosquitoes were subjected to fluctuating temperatures, they lived longer than 

those subjected to the same constant means.  

The significant differences detected in the survival rate of males, but not in females 

could mean that males are more sensitive to changing in temperatures than females. 

Cui et al. (2008) reported that the survival rates of B. tabaci females was higher than 

those of males when females and males were subjected to different heat-shock 

treatments. 

Fecundity: 

We found that mating for short periods of time under 20 °C fluctuating conditions 

reduced the fecundity of cabbage whitefly females in comparison to 64-day mated 

females. This shortage in fecundity could be explained through the notion that the 

eight day mated females reduced their fecundity in response to the exhaustion of 

stored sperm. However, this effect has become practically undetectable under the 

other temperature regimes. A possible negative effect of short mating periods on the  

oviposition of females has been examined in other insect taxa (Arnqvist and Nilsson, 

2000). For instanc, French and Hammack (2011) reported that the multiple mated 

females of northern corn rootworm, Diabrotica barberi (Smith and Lawrence), 

oviposited more eggs than females that only mated once. The non-significant effect of 

mating scenario on the fecundity of cabbage whitefly under 20 °C constant, 23°C 

constant and fluctuating temperature regimes could be explained through the concept 

that the effects of mating scenario are not detectable under all conditions. This was 

also reported in other species, where the positive effect of multiple mating on the 



Chapter 2 

32 

longevity of the brunched beetle callosobruchus maculatus (Fabricius) was only 

noticeable under nutrient-stressed conditions (Fox, 1993). 

The temperature regimes showed different responses in terms of the total number of 

eggs of cabbage whitefly. The total number of eggs deposited under the 20 °C 

fluctuating regime was significantly higher than those under the equivalent constant 

mean. Although the total number of eggs under the 23 °C fluctuating regime was 

higher than the corresponding constant one, this difference was not significant 

[Figure.5]. These results indicate that the 20 °C fluctuating temperature is likely to be 

the optimal body temperature for cabbage whitefly females. Accordingly, they 

maximized their oviposition under this temperature regime. 

Davis et al. (2006) reported that M. persicae females produced at the best convenient 

constant temperature 5.9 offspring a week, while this production reached 12.2 

offspring at the most favorable fluctuating temperature condition. The authors related 

this increase in the performance of this species under alternating temperature regimes 

to endosymbionts, which are likely to increase the amount of produced amino acids 

that in turn can enhance the fitness of this insect. Moreover, Auad et al. (2015) found 

that when S. flava aphids reared in climate chamber, that simulated the mean hourly 

temperature of an uncontrolled greenhouse, they had significantly more fecundity per 

female than aphids that lived under the constant temperature mean of 22.5 °C. Joshi 

(1996) compared the biological traits of mosquitoes, A. krombeini, under fluctuating 

versus their constant mean temperature regimes. He found that the fecundity values 

differ significantly between fluctuating and constant temperature conditions. 

In the present study, fluctuating temperature affected the mean daily fecundity of 

cabbage whitefly, as shown by the higher mean daily fecundity under the 23 °C 

fluctuating temperature regime in comparison with the 23 °C constant temperature 

regime. Moreover, the shape of the age-specific fecundity curve at fluctuating regimes 

differ from those at constant temperature regimes (Figure. 6 and 7), resulting in a 

higher peak during the younger stages of the lifespan and a sharp decrease in 

oviposition as females become older. Similar behavior has been reported in other 

insect species. For instance, Mironidis and Savopoulou-Soultani (2008) found that the 

daily number of eggs of Helicoverpa armigera (Hübner) females reared under 
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fluctuating temperature regimes (25-10, 35-20, 35-27.5 °C) was higher than that of 

females reared under the corresponding constant means. Enkegaard (1993) 

investigated the influence of temperature on the biological parameters of the 

poinsettia strain of b. tabaci. Similar to our study, they found that females subjected 

to high temperatures reached a rapid and higher peak of age-specific fecundity when 

compared to those reared under lower temperature regimes. Moreover, a comparable 

behavior was also reported for M. persicae where the number of progeny per day was 

significantly increased under the fluctuating temperature compared to the 

corresponding constant temperature mean of 20 C° (Davis et al., 2006).  

From another point of view, plant quality and food supply could also affect the 

reproduction parameters of an insect species. Biederbeck and Campbell (1973) found 

different soil microbial activities under fluctuating temperature regimes versus the 

corresponding constant means. As a result, the availability of nitrogen could be 

changed, which in turn could subsequently alter the quality of the plant. Jauset et al. 

(2000) reported that nitrogen fertilization not only changed tomato plants 

Lycopersicon esculentum (Miller), characteristics but it also influenced the 

reproduction of T. vaporariorum reared on the plants used. Fluctuating temperatures 

could therefore influence plant growth (Dale, 1964), which may affect the 

reproduction parameters of herbivorous insects. 

Sex ratio  

In this study, female adults were the predominant sex of A. proletella offspring by a 

significant margin, regardless of temperature regime. Despite the result that 64-day 

mated females reared under fluctuating temperatures tended to produce more 

females than those reared under constant temperatures, we did not find any 

significant influence of temperature regime on the sex ratio of A. proletella offspring. A 

similar female-biased sex ratio was also found for A. proletella that reared on different 

host plants (see chapter one). An increase in female sex ratio in-line with rising 

temperatures was also reported for B. tabaci that reared on poinsettia plants 

(Euphorbia pulcherrima), where the female ratio rose from 60 % at 19 °C to 76 % at 28 

°C (Enkegaard, 1993). Powell and Bellows (1992) found that the sex ratio of B. tabaci 
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on cucumber plants (Cucumis sativus L.) increased with rising temperatures, for 

instance 50.2 % at 20 °C, 56 % at 25 °C, and 59.9 % at 30 °C. In addition, Gerling et al. 

(1986) reported that the sex ratio of B. tabaci changed depending on the season, being 

dominated by females in the spring and early summer and by males in the autumn. 

However, van Lenteren and Noldus (1990) summarized the findings of several studies 

and reported that the sex ratio of T. vaporariorum is likely to be even (1:1) and is not 

associated with temperature. Moreover, Cui et al. (2008) found that T. vaporariorum 

females that were exposed to different heat shock treatments were not influenced in 

terms of their sex ratio of the progeny.  

Conclusion  

In conclusion, this study shows that mating history could influence the fitness of 

cabbage whitefly under specific conditions. Interestingly, the difference in age-specific 

fecundity pattern, fecundity, and survival rate of males indicates not only that the 

fluctuating temperature regimes did not represent their corresponding constant mean, 

but also that fluctuating temperatures could be in favor of some aspects of the 

biological characteristics of cabbage whitefly. Therefore, our results suggest that all 

future estimating population dynamic models, as well as management strategies of A. 

proletella, should take all differences into account. 
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Abstract  

Although the cabbage whitefly, Aleyrodes proletella L. (Hemiptera: Aleyrodidae), has 

become a serious agricultural pest of Brassicas vegetables (Brassica oleracea L.), little 

information is known about its life history traits and population dynamics. For a more 

detailed understanding of its biology, we investigated development time, mortality of 

developmental stages, as well as the effect of mating scenario on fecundity, longevity, 

survival rate of Adults, and sex ratio under controlled conditions (temperature 20 °C, 

relative humidity 55-70 %, photoperiod: L16:D8) on Brussels sprouts (Brassica oleracea 

var. gemmifera). The different mating scenarios were, life span mated female and 

male, where the female and male A. proletella remained together throughout the 

experimental period, virgin female and male, and eight day mated female, where 

female and male were kept together for the first eight days of the experiment. The 

total life cycle from egg to adult was 28.93 ± 1.64 (mean ± SD) days. Egg mortality (7.6 

%) was significantly higher than that of nymphs. The mating scenario did not 

significantly affect the life span and survival rate of males. The mating scenario did not 

significantly influence the longevity, survival rate or fecundity of A. proletella females. 

Virgin females produced male progeny only, whereas life span mated and eight day 

mated females produced female-biased sex ratio. However, the sex ratio of A. 

proletella offspring was significantly influenced by the duration of A. proletella male 

presence. The life span mated females produced significantly less female offspring 

than those of the eight day mated females 64 % and 71 %, respectively. The female-

biased sex ratio and the similarity in longevity and fecundity for both eight day and life 
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span mated females suggest that A. proletella females do not need to mate frequently 

throughout their lifespan to optimize their reproduction parameters. These results 

could provide a better understanding of A. proletella population dynamics and growth, 

which will be helpful to develop control management strategies. 

Keywords: Aleyrodes proletella, cabbage whitefly, development time, mating scenario, 

biological parameters. 

Introduction 

In the past, the cabbage whitefly, Aleyrodes proletella L. (Hemiptera: Aleyrodidae), was 

classified as a minor pest of several Brassica cultivars (Brassica oleracea L.) as well as 

related plants (Barro and Carver, 1997; Dale et al., 1976; Iheagwan, 1977; Martin et al., 

2000). Nevertheless, it has increasingly become an important agricultural pest in many 

Europeans countries, e.g. United Kingdom (Springate and Colvin, 2012), Germany 

(Richter and Hirthe, 2014) and Spain (Muñiz and Nebreda, 2003), which has caused 

economical damage to the production of cabbage (Brassica oleracea convar. capitata 

L.), Brussels sprouts ( Brassica oleracea var. gemmifera DC.), cauliflower (Brassica 

oleracea var. botrytis L.), kale (Brassica oleracea var. sabellica L.), kohlrabi (Brassica 

oleracea var. gongylodes L.), savoy cabbage (Brassica oleracea convar. capitata var. 

sabauda L.), and broccoli (Brassica oleracea var. italica Plenck) (Muñiz and Nebreda, 

2003; Ramsey and Ellis, 1996; Richter and Hirthe, 2014; Schultz et al., 2010; Trdan et 

al., 2003; van Rijn et al., 2008). Moreover, Loomans et al. (2002) claimed that A. 

proletella has reached pest status on gerbera crops (Gerbera jamesonii L.) in green 

houses in the Netherlands. 

 The reasons for increasing problems of A. proletella reaching pest status are discussed 

controversially. Richter and Hirthe (2014) related the high population numbers to 

increased cultivation of oilseed rape (Brassica napus L.), which is considered to be a 

suitable habitat for overwintering of A. proletella. Mild winters and increasing 

temperatures are also likely to raise the survival of hibernating insects and enhance 

the growth of insect populations (Bale et al., 2002; Porter et al., 1991). 

A. proletella originates from the European continent and is found worldwide (Dale et 

al., 1976; Evans, 2007; Martin et al., 2000). The species is a polyphagous phloem 
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sucker infesting a wide range of host plant species; with cruciferous plants considered 

to be the most important host plant family (Barro and Carver, 1997; Evans, 2007; 

Martin et al., 2000).  

Adults are 1.5 mm in length, with four white wings marked with four gray spots (Byrne, 

1991; Hill and Hill, 1994). Both body and wings are covered with a white powdery wax 

(Martin et al., 2000). The species is multivoltine, with more than three generations per 

year that overwinter on weeds (greater celandine Chelidonium majus L.), or 

overwintering cabbage crops such as winter cabbage and winter kale (Chen et al., 

2007; Crüger and Backhaus, 2002; Iheagwan, 1977; Richter and Hirthe, 2014). Its 

developmental time from egg to adult depends on temperature and host plant (Alonso 

et al., 2009). Males and females develop through unfertilized and fertilized eggs, 

respectively (Byrne, 1991; Byrne and Devonshire, 1996). Eggs are laid in patches on the 

underside of leaves in a circular or semicircular pattern (Broekgaarden et al., 2012). 

After hatching, the neonate nymphs move short distances searching for suitable 

feeding sites (Bährmann and Moritz, 2002; Martin et al., 2000). Second, third, and 

fourth instar nymphs lose their ability to move and remain at the same feeding site 

throughout the developmental part of their lifecycle (van Emden, 2015). The nymphs 

grow by molting and finalize their development through pupation within the nymphal 

skin (Byrne, 1991; Hill and Hill, 1994). 

 Both adults and nymphs feed on plant sap and excrete honeydew, which is frequently 

colonized by black sooty molds (Hill and Hill, 1994). The presence of honey dew and 

mold fungi disturb plant photosynthesis and reduce plant growth (Martin et al., 2000). 

Additionally, plant quality and marketability are decreased by the presence of eggs, 

wax, nymphs, and honeydew (Mound and Halsey, 1978; Schultz et al., 2010).  

The control of this species is a major challenge as adults and nymphs are hidden on the 

undersides of leaves. Conventionally, this pest is controlled by leaf applications of 

chemical insecticides (Springate and Colvin, 2012; Trdan et al., 2003). Repeated 

applications of these insecticides are needed to ensure total leaf coverage, eventually 

leading to resistant cabbage whitefly strains (Springate and Colvin, 2012). Recently, 

several biological control options were studied using predators (Coccinella 

undecimpunctata L., Clitostethus arcuatus Rossi) and parasitoids (Encarsia tricolor 
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Förster, Encarsia inaron Walker) (Cabral et al., 2006; Huang et al., 2009; Manzari et al., 

2002; Mound and Halsey, 1978; Schultz et al., 2010; Williams, 1995). 

Information about the specific life history traits of A. proletella is difficult to find and 

data on the basic biological parameters of this species is lacking. This study therefore 

aimed to fill the knowledge gap by providing detailed information on the biology of A. 

proletella, including developmental times of immature stages, live span, fecundity, sex 

ratio, and the influence of mating scenarios on reproduction parameters. A more 

comprehensive understanding of the population growth and population dynamics of A. 

proletella will contribute to refine management strategies of this pest species. 

Material and methods 

Whitefly source 

Whitefly females of A. proletella were collected from Brussels sprout fields in 

Braunschweig (Lower Saxony, Germany; 52°16′N, 10°31′E) in October 2014. Five 

female adults were individually placed in rearing cages (60 × 60 × 60 cm) to obtain 

whitefly colonies that would harbor identical endosymbiont species. Adults were also 

reared on Brussels sprout plants (Brassica oleracea var. gemmifera). Consequently, 

whitefly clones were raised in a growth chamber at 20 °C and a photoperiod of L16:D8. 

Results of the identification of endosymbionts indicate that all colonies harbor 

identical secondary endosymbionts (P. Hondelmann, personal communication, April 

15, 2015). One colony was chosen and all adults used in this experiment were sampled 

from this colony only. 

Plant material 

Brussels sprouts (Brassica oleracea var. gemmifera cv.Maximus, Syngenta, Germany) 

were used as test plants, which were grown in a green house in 14-cm plastic pots 

filled with potting compost (Klasmann-Deilmann, Geeste, Germany) at 16-20 °C and 

50-75 % RH. Pots were fertilised two times a week with 0.01 % flory-1 (N-P-K-Mg 0.18-

6-12-2, Gebr. Riege oHG, Germany) and watered as necessary. After two months, the 

plants were moved to a growth chamber and used for the experiments,  fertilized and 

watered as described above. 
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 Whitefly development and survival  

Seven mated whitefly females (7-10 days old) were confined to the lower surface of 

the first fully grown leaves of Brussels sprout plants using clip cages (35×10 mm). The 

caged females were allowed to lay eggs for ten hours. Subsequently, adults were 

removed with an aspirator. Only ten eggs were chosen at random, and all remaining 

eggs were removed. After the eggs had hatched and the first instar had settled down, 

each location of the first larvae was marked and numbered. The larvae were examined 

under a microscope daily (Zeiss, Stemi sv8, Germany) to determine their development 

and emergence rates. Instars were identified according to their body size and the 

presence of molting skin. Seven replicates were used in this experiment and the mean 

total development time was calculated from whitefly adults that successfully 

completed their development. Plants were kept in growth chambers at 20 °C and 50-

70 % relative humidity, with a photoperiod of L16:D8. 

Reproductive parameters  

1. Obtaining of one-day old adults 

In order to obtain one day old virgin females and males of A. proletella, adults were 

transferred to clip cages attached to the lower side of fully grown leaves of Brussels 

sprout plants (15 adults in each cage). Plants were kept in a growth chamber at 25 °C 

with a photoperiod of L16:D8. Females were allowed to lay eggs for 24 hours. 

Subsequently, all adults and clip cages were removed. Later on, to insure virgin adults, 

red eye pupae were transferred to small Petri dishes (35×10mm) using a needle (one 

pupa per Petri dish) one day before adult emergence. The Petri dishes were filled with 

small pieces of Brussels sprout leaves placed on wet filter paper. Adults that hatched 

within 15 h were considered to have the same age (one day old). The sex of newly 

emerged adults was determined under a microscope (Zeiss, Stemi sv8, Germany) with 

the help of a modified mouth aspirator. 
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2. Measuring of fecundity and longevity  

To monitor the fecundity and longevity of the whitefly, clip cages were attached to the 

lower surface of the tenth fully grown leaf of each plant (the numbering of leaves 

started with the youngest full grown leaf). Thereafter, the following treatments were 

set up: a) Life span mated females (LMF) and males (LMM): in this treatment, females 

and males were kept together throughout the experimental period. b) Eight day mated 

females (8MF): where females and males were kept together for the first eight days, 

after which the males were removed. c) Virgin females (VF): unmated females were 

kept alone throughout the experimental period. d) Virgin males (VM): unmated males 

were kept alone throughout the experimental period. At four day intervals, adults and 

clip cages were transferred to new leaves, i.e. the next younger leaf on the same 

experimental plant. Thereafter, the number of eggs was recorded using a microscope 

(Zeiss, Stemi sv8, Germany) and new clip cages were again placed on the leaves in the 

same position. Additionally, the survival rate of adults was recorded daily. This 

experiment was finished when all adults (females as well as males) were dead. The 

experiment was designed as a random block design with ten replicates. The 

experiment was carried out in a growth chambers at 20 °C and 50-70 % relative 

humidity, and a photoperiod of L16:D8.  

3. Sex ratio 

Every seven days, following the transfer of adults to new leaves, all infested leaves 

were excised and the petioles were transferred to glass tubes filled with water and 

kept in the same growth chamber (at 20 °C, relative humidity of  50-70 % and a 

photoperiod of L16:D8). After adult emergence, leaves with clip cages were placed in a 

deep freezer at -16 °C to kill the adults. The sex ratio of the adults was then 

determined using a microscope (Zeiss, Stemi sv8, Germany). 
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Statistical analysis 

Data was analyzed using the R statistical program version 3.2.3 (R Core Team, 2016) 

Differences between the mortality of egg and nymph stages were analyzed using the 

Kruskal-Wallis Test. Due to the similar mortality between different nymphal stages, 

mortality was compared only between the eggs and the first instars. 

Adult longevity was analyzed using the linear model function (lm) with Adult longevity 

as the dependent and treatments as the independent variable (R Core Team, 2016). 

Longevity data was transformed with the Box-Cox power transformation using the 

MASS package to meet normality (Venables and Ripley, 2002). To detect the influence 

of mating scenario on the survival rate of cabbage whitefly adults, the Kaplan-Meier 

survival analysis (log-rank test) was performed (Therneau and Grambsch, 2000). 

In order to analyze the fecundity, generalized linear models (GLM) were fitted with 

quasi Poisson errors (R Core Team, 2016). Total fecundity was used as the dependent 

variable and treatments as the independent variable. 

To determine whether the mating scenario influenced the sex ratio of the progeny, 

males and females were grouped together as the response variable and analyzed using 

the general linear model with quasi binomial errors (Crawley, 2013). Additionally, 

binomial tests were performed to determine whether the sex ratio of cabbage white 

flies departed from the even sex ratio of 50:50 (Crawley, 2013) 

All previous general Linear models (GLM) that were used have shown no obvious 

pattern when the residuals were plotted against the fitted values. 
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Results  

Development time 

The mean development times of eggs, first to fourth instars and pupa were (mean ± 

SD) 9.85 ± 0.057, 4.19 ± 0.22, 2.86 ± 0.10, 3.63 ± 0.06, 4.76 ± 0.10, and 3.97 ± 0.06 

days, respectively. The mean total development time of A. proletella was about 28.93 

± 0.28 days for the rearing conditions used in the experiment [Figure.1]. The mortality 

of eggs was significantly higher with 7.6 ± 3.19 % compared to those of the instars with 

zero % (x2 = 5.09, p = 0.024) [Figure.1]. 

 

Figure 1: Development duration in days (means + SD) and mortality (%; mean + SD) of 

different development stages of A. proletella. Asterisks (*) indicate significant differences 

between treatments according to Kruskal-Wallis Test (P < 0.05). 
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Adult longevity 

Life span did not significantly differ between the whitefly adults for all treatments 

tested (F = 1.2, P = 0.31). The mean longevity of virgin females, life span mated 

females, eight day mated females, virgin males, and life span mated males was about 

67.8 ± 5.07, 64 ± 5.28, 71 ± 6.04, 82 ± 6.00, and 68 ± 8.48 days, respectively [Figure.2]. 

In addition, the mating scenario also did not affect the survival rate of A. proletella 

females (log-rank test: x2 = 1.4, p = 0.48) [Figure.3]. 

 The survival rate of virgin males did not significantly differ from that of the life span 

mated males (log-rank test: x2 = 1.8, p = 0.17) [Figure.4]. 

 

 

Figure 2: Effect of mating scenarios on total longevity of A. proletella adults. Treatments: 

LMF: Life span mated females; 8MF: Females mated for eight days; VF: Virgin females; 

VM: Virgin males; LMM:  Life span mated males ANOVA (P < 0.05); ns: not significant. 
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Figure 3: Survival rate of A. proletella females in different treatments. Treatments: LMF: 

Life span mated females; 8MF: Females mated for eight days; VF: Virgin females. log-rank 

test (P < 0.05). 

 

Figure 4: Survival rate of A. proletella males in different treatments. Treatments:  VM: 

Virgin male, LMM: Life span mated males. log-rank test (P < 0.05). 
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Effect of mating on fecundity  

The fecundity of virgin females (284 ± 31.52 eggs) as well as that of life span mated 

females (283 ± 33.51 eggs) was slightly, but not significantly (F = 0.36, p = 0.69),  higher 

than that of eight day mated females 250 ± 30.89 [Figure. 5]. 

 

Figure 5: Effect of mating scenarios on total fecundity of A. proletella (means +SD). 

Treatments: LMF: Life span mated females; 8MF: Females mated for eight days; VF: Virgin 

females. Generalized linear model (GLM) with quasi Poisson errors (P < 0.05); ns: not 

significant. 

Effect of mating scenarios on Sex ratio   

The sex ratio of whiteflies at 20 °C significantly differed from an even sex ratio (50:50). 

Both, life span mated females and eight day mated females produced significantly 

more female (FM = 64 %; 8MF = 71 %) than male (MF = 36 %; 8MF = 29 %) whiteflies 

(binomial test: FM, p < 0.001; 8MF, P < 0.001). The sex ratio of A. proletella offspring 

was significantly influenced by the mating treatment (b = 0.36, SD = 0.14, t (16) = 2.50, 

P < 0.05). The eight day mated females produced significantly higher female offspring 

than those of the life span mated females [Figure. 6]. One hundred percent of 

unmated females gave birth to male flies. 
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Figure 6: Effect of mating scenarios on sex ratio of A. proletella (%; means + SD). 

Treatments: LMF: Life span mated females; 8MF: Females mated for 8 days. Asterisks (*) 

indicate significant differences between treatments according to generalized linear model 

(GLM) with quasi binomial distribution (P < 0.05). 
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Discussion 

Despite increasing damage caused by the cabbage whitefly, information on life history 

traits of this species remains limited. A more detailed understanding of the biology of 

this insect pest could contribute to the development of more refined control 

management strategies. 

Development time 

In this study, the entire life cycle (egg-adults) of A. proletella reared on Brussels 

sprouts was nearly equal to that reported by Alonso et al. (2009), i.e. 28.5 days, on 

broccoli at the same temperature regime of 20 °C. However, other studies have 

reported that both host plant and temperature influence the developmental time of A. 

proletella (Campos et al., 2003; Iheagwan, 1978; Nebreda et al., 2005).  

The survival of cabbage whitefly nymphs on Brussels sprout plants has not been 

studied in detail. So far we found that the survival of eggs was significantly lower than 

that of nymphs, given the specific conditions in our experiments. While the nymphs 

completed their development with a 100 % survival rate, the eggs finalized their 

development with a 7.6 % mortality rate. Similar high survival rates of immature A. 

proletella ranging from 73 to 100 % were reported by Alonso et al. (2009) on broccoli 

at different constant temperatures (16, 18, 20, 22, 24, 26, 28, and 30 °C). Lin and Ren 

(2005) reported high survival rates for the first, second, and fourth development 

stages (100 %) of Bemisia tabaci (Gennadius) on cotton rose hibiscus (Hibiscus 

mutabilis L.). Nava-Camberos et al. (2001) reported similar survival rates (100 %) for 

Bemisia argentifolii (Bellows & Perring) for all development stages when B. argentifolii 

was reared on cantaloupe (Cucumis melo var. cantalupensis) at 20 °C. Based on 

information from other whitefly species, the mortality of whitefly developmental 

stages could be influenced by the host plant (Kakimoto et al., 2007), host leaf age 

(Zhang and Wan, 2012), nitrogen fertilization (Bentz et al., 1995), and temperature 

(Mansaray and Sundufu, 2009; Nava-Camberos et al., 2001). 
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Lifespan and survival 

In this study, the life span of cabbage white fly adults on Brussels sprout plants was 

seven to ten times higher than what was reported by El-Helaly et al. (1972) on 

cauliflower (Brassica oleracea var. botrytis L.) at 16 °C, who noted the life spans of 

mated females, virgin females and mated males to be 12.4, 7.4, and 7.8 days, 

respectively. Differences in temperature regimes, host plant species, methods used, 

and techniques between these studies could contribute to the variance in results.   

We did not find any significant differences between the life span of differently treated 

males and females of A. proletella. Similar longevity of males (19.4 days) and females 

(19.0 days) was also reported for B. tabaci adults on tomato plants (Lycopersicon 

lycopersicum L.) under laboratory conditions of 25 °C and 65 % R.H. (Salas and 

Mendoza, 1995). However, Khan and Wan (2015) found that the females of B. tabaci  

lived slightly longer than males. Furthermore, Powell and Bellows (1992) reported that 

the longevity of B. tabaci  females with 15.5, 9.64, and 15.04 days was significantly 

higher than those of males with 12.23, 7.03, and 7.59 days on cucumber plants 

(Cucumzs sutivus L.) at the temperature regimes of 25.5, 29, and 32 °C, respectively. 

Moreover, Campos et al. (2003) reported that the life span of Trialeurodes 

vaporariorum (Westwood) females reared on different bean (Phaseolus vulgaris L.) 

cultivars is likely to be slightly greater than that of males at 23 °C.  

We also demonstrated that the mating treatments did not have any effect on the 

survival rate of the cabbage whitefly adults. Moreover, the non-significant effect of 

mating scenario on the longevity of virgin, eight day, and life span mated females 

indicated that the mating activity did not influence the reproduction parameters of A. 

proletella females in terms of increasing or decreasing their life span. De Barro and 

Hart (2000) did not find any differences in the longevity between mated and unmated 

females of indigenous and exotic biotypes of B. tabaci. However,  Horowitz and Gerling 

(1992) found that multiple mated B. tabaci females lived shorter than those that only 

mated once after emergence, 10.4 and 15.1 days, respectively. 

Although the virgin males lived longer (82 ± 6.00 days) than the mated males (68 ± 

8.48), the cost of sexual activity in terms of a decreased longevity was not significant in 
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our study. Possible negative effects of mating history on the longevity of males have 

been reported in other taxa. For instance, Cordts and Partridge (1996) reported that 

mating activity decreased the longevity of fruit fly males Drosophila melanogaster 

Meigen. Moreover, the lifespan of male Saltella sphondylli was also negativity affected 

by mating frequency (Martin and Hosken, 2004). 

Fecundity 

Neither the absence of males nor the duration of A. proletella male presence 

significantly influenced the fecundity of A. proletella [Figure. 5]. In this respect, the 

total number of eggs of eight day mated females tends to be slightly, but not 

significantly, lower than those of virgin and life span mated females. The assumption 

that mating could be costly or beneficial for females in terms of increasing or 

decreasing their total fecundity was not detectable in this investigation.  This is in line 

with Omondi et al. (2005), who reported similar numbers of eggs laid by virgin (8.64 

eggs) and mated females (9.56 eggs) of cassava biotypes of B. tabaci on eggplant 

Solanum melongena L.. De Barro and Hart (2000) also reported that the daily fecundity 

of indigenous eastern (EAN) biotypes of B. tabaci did not differ between mated and 

non-mated females with 10.31, and 9.31 eggs, respectively. Horowitz and Gerling 

(1992) demonstrated that the total number of eggs laid per multiple mated females of 

B. tabaci did not differ from those that mated only once after emergence. Although, 

the cost or benefit of mating scenario could not be seen in our study, those that 

investigated other insects taxa demonstrated that mating history could positively or 

negatively influence the fecundity of some insects (Arnqvist and Nilsson, 2000; Li et al., 

2015). 

Sex ratio 

We found that the sex ratio of A. proletella offspring was significantly influenced by 

the presence of males. While females that were able to mate throughout their life 

span produced 64 % female offspring, females that mated for eight days produced 71 

% female offspring, which was significantly higher than the former female ratio. This 

result could be explained by the reduced fecundity in females that mated for eight 

days (250 compared to 283 eggs in those were able to mate throughout their life 
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span). This could be a response to the depletion of stored sperm leading to a 

subsequent decrease in the proportion of males to only 29% compared to 36% in life 

span mated females. 

In contrast to our study, Van Lenteren and Noldus (1990) reported that the sex ratio of 

other whitefly species (T. vaporariorum and B. tabaci) tends to be even (50:50). 

However, Omondi et al. (2005) reported a 68 % female sex ratio of cassava biotypes of 

B. tabaci on eggplant. Cui et al. (2008) found a 53.0 to 55.2% female sex ratio of T. 

vaporariorum on green bean plants Phaseolus vulgaris L. under different heat shock 

treatments. Tsueda and Tsuchida (2011) claimed that mating between different 

biotypes of B. tabaci could influence the sex ratio of whitefly. Another parameter that 

may influence sex ratio is the host plant (Qiu et al., 2011). In this study, the virgin 

females produced only males. These observations are similar to those reported for 

other whitefly species (Byrne and Devonshire, 1996). Horowitz and Gerling (1992) 

investigated the sex ratio of B. tabaci females that mated only once after emergence, 

compared to females that mated throughout their life time. In contrast to our study, 

they found that the presence of males increased the production of female in the 

progeny. 

The similar longevity, fecundity and female-biased sex ratio for both eight day and life 

span mated females suggest that mating for short periods over of lifetime could be 

sufficient for A. proletella females to optimize their reproduction parameters. A 

behavior that has also been documented in other insects studies (Fox, 1993; Kakimoto 

et al., 2007; Li et al., 2015; Ridley, 1988; Walker, 1980). Further investigation into the 

biology of cabbage whitefly, will help to understand their reproduction potential, and 

to develop cabbage whitefly-specific management strategies. 

 

 

 

 

 

 



Chapter 3 

56 

References 

Alonso, D., Gómez, A.A., Nombela, G., Muñiz, M., 2009. Temperature-Dependent 

Development of Aleyrodes proletella (Homoptera: Aleyrodidae) on Two Cultivars of 

Broccoli under Constant Temperatures. Environmental Entomology 38 (1), 11–17. 

10.1603/022.038.0103. 

Arnqvist, Nilsson, 2000. The evolution of polyandry: multiple mating and female fitness in 

insects. Animal behaviour 60 (2), 145–164. 10.1006/anbe.2000.1446. 

Bährmann, R., Moritz, G., 2002. Die Mottenschildläuse: Aleyrodina, 1st ed. Westarp 

Wissenschaften, Hohenwarsleben, 240 pp. 

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., 

Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., 

Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 

2002. Herbivory in global climate change research: Direct effects of rising temperature 

on insect herbivores. Global Change Biol 8 (1), 1–16. 10.1046/j.1365-

2486.2002.00451.x. 

Bentz, J.-A., Reeves, J., Barbosa, P., Francis, B., 1995. Nitrogen Fertilizer Effect on 

Selection, Acceptance, and Suitability of Euphorbia pulcherrima (Euphorbiaceae) as a 

Host Plant to Bemisia tabaci (Homoptera: Aleyrodidae). Environmental Entomology 24 

(1), 40–45. 10.1093/ee/24.1.40. 

Broekgaarden, C., Riviere, P., Steenhuis, G., del sol Cuenca, M., Kos, M., Vosman, B., 2012. 

Phloem-specific resistance in Brassica oleracea against the whitefly Aleyrodes 

proletella. Entomologia Experimentalis et Applicata 142 (2), 153–164. 10.1111/j.1570-

7458.2011.01210.x. 

Byrne, D., 1991. Whitefly Biology. Annual Review of Entomology 36 (1), 431–457. 

10.1146/annurev.ento.36.1.431. 

Byrne, F.J., Devonshire, A.L., 1996. Biochemical evidence of haplodiploidy in the whitefly 

Bemisia tabaci. Biochem Genet 34 (3-4), 93–107. 10.1007/BF00553606. 

Cabral, S., Soares, A.O., Moura, R., Garcia, P., 2006. Suitability of Aphis fabae, Myzus 

persicae (Homoptera: Aphididae) and Aleyrodes proletella (Homoptera: Aleyrodidae) 

as prey for Coccinella undecimpunctata (Coleoptera: Coccinellidae). Biological Control 

39 (3), 434–440. 10.1016/j.biocontrol.2006.08.008. 

Campos, O.R., Crocomo, W.B., Labinas, A.M., 2003. Comparative biology of the whitefly 

Trialeurodes vaporariorum (West.) (Hemiptera - Homoptera: Aleyrodidae) on soybean 

and bean cultivars. Neotrop. entomol. 32 (1), 133–138. 10.1590/S1519-

566X2003000100020. 



Chapter 3 

57 

Chen, C.-H., Kumar Dubey, A., Ko, C.-C., 2007. Comparative morphological studies on two 

species of Aleyrodes (Hemiptera: Aleyrodidae). Pan-Pacific Entomologist 83 (3), 244–

254. 10.3956/0031-0603-83.3.244. 

Cordts, R., Partridge, L., 1996. Courtship reduces longevity of male Drosophila 

melanogaster. Animal behaviour 52 (2), 269–278. 10.1006/anbe.1996.0172. 

Crawley, M.J., 2013. The R book, second edition, 2nd ed. John Wiley & Sons, Chichester, 

West Sussex, U.K., 1 online resource. 

Crüger, G., Backhaus, G.F., 2002. Pflanzenschutz im Gemüsebau, 4th ed. Ulmer, Stuttgart 

(Hohenheim), 318 S. 

Cui, X., Wan, F., Xie, M., Liu, T., 2008. Effects of Heat Shock on Survival and Reproduction 

of Two Whitefly Species, Trialeurodes vaporariorum and Bemisia tabaci Biotype B. 

Journal of Insect Science 8 (24), 1–10. 10.1673/031.008.2401. 

Dale, P.S., Hayes, J.C., Johannesson, J., 1976. New records of plant pests in New Zealand. 

New Zealand Journal of Agricultural Research 19 (2), 265–269. 

10.1080/00288233.1976.10426777. 

De Barro, P.J.d., Carver, M., 1997. Cabbage Whitefly, Aleyrodes proletella (L.) (Hemiptera: 

Aleyrodidae), Newly Discovered in Australia. Aust J Entomol 36 (3), 255–256. 

De Barro, P.J. de, Hart, P.J., 2000. Mating interactions between two biotypes of the 

whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of 

Entomological Research 90 (02), 103–112. 

El-Helaly, M.S., El-Shazli, A.Y., El-Gayar, F.H., 1972. Biological Studies on a New Pest 

Aleyrodes proletella L. in Egypt (Aleyrodidae; Homoptera). Zeitschrift für Angewandte 

Entomologie 70 (1-4), 323–327. 10.1111/j.1439-0418.1972.tb02190.x. 

Evans, G.A., 2007. The whiteflies (Hemiptera: Aleyrodidae) of the world and their host 

plants and natural enemies. USDA/Animal Plant Health Inspection Service (APHIS) 

Version 070606 (Version 070606). 

Fox, C.W., 1993. Multiple Mating, Lifetime Fecundity and Female Mortality of the Bruchid 

Beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Functional Ecology 7 (2), 

203. 10.2307/2389888. 

Hill, D.S., Hill, J.D., 1994. Agricultural entomology. Timber Press, Portland, Or., 635 pp. 

Horowitz, A.R., Gerling, D., 1992. Seasonal Variation of Sex Ratio in Bemisia tabaci on 

Cotton in Israel. Environmental Entomology 21 (3), 556–559. 10.1093/ee/21.3.556. 

Huang, Y., Loomans, A.J.M., van Lenteren, J.C., RuMei, X., 2009. Hyperparasitism 

behaviour of the autoparasitoid Encarsia tricolor on two secondary host species. 

BioControl 54 (3), 411–424. 10.1007/s10526-008-9189-2. 



Chapter 3 

58 

Iheagwan, E.U., 1977. Photoperiodism in the cabbage whitefly, Aleyrodes brassicae. 

Physiol Entomol 2 (3), 179–184. 10.1111/j.1365-3032.1977.tb00099.x. 

Iheagwan, E.U., 1978. Effects of Temperature on Development of the Immature Stages of 

the Cabbage Whitefly, Aleyrodes proletella (Homoptera: Aleyrodidae). Entomologia 

Experimentalis et Applicata 23 (1), 91–95. 10.1111/j.1570-7458.1978.tb02735.x. 

Kakimoto, K., Inoue, H., Yamaguchi, T., Ueda, S., Honda, K.-i., Yano, E., 2007. Host plant 

effect on development and reproduction of Bemisia argentifolii Bellows et Perring (B. 

tabaci [Gennadius] B-biotype) (Homoptera: Aleyrodidae). Appl. Entomol. Zool. 42 (1), 

63–70. 10.1303/aez.2007.63. 

Khan, I., Wan, F.-H., 2015. Life history of Bemisia tabaci (Gennadius) (Homoptera: 

Aleyrodidae) biotype B on tomato and cotton host plants. Journal of Entomology and 

Zoology Studies 3 (3), 117–121. 

Li, X.-W., Fail, J., Shelton, A.M., 2015. Female multiple matings and male harassment and 

their effects on fitness of arrhenotokous Thrips tabaci (Thysanoptera: Thripidae). 

Behavioral ecology and sociobiology 69 (10), 1585–1595. 10.1007/s00265-015-1970-5. 

Lin, L.I., Ren, S.-X., 2005. Development and reproduction of 'B' biotype Bemisia tabaci 

(Gennadius) (Homoptera: Aleyrodidae) on four ornamentals. Insect Science 12 (2), 

137–142. 10.1111/j.1744-7917.2005.00016.x. 

Loomans, A., Staneva, I., Huang, Y., Bukovinskine-Kiss, G., van Lenteren, J.C., 2002. When 

native non-target species go indoors: A new challenge to biocontrol of whiteflies in 

European greenhouses. IOBC/wprs Bulletin 25 (1), 139–142. 

Mansaray, A., Sundufu, A.J., 2009. Oviposition, development and survivorship of the 

sweetpotato whitefly Bemisia tabaci on soybean, glycine max, and the garden bean, 

Phaseolus vulgaris. Journal of insect science (Online) 9, 1–6. 10.1673/031.009.0101. 

Manzari, S., Polaszek, A., Belshaw, R., Quicke, D.L.J., 2002. Morphometric and molecular 

analysis of the Encarsia inaron species-group (Hymenoptera: Aphelinidae), parasitoids 

of whiteflies (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 92 (2), 165–

175. 10.1079/BER2001144. 

Martin, J.H., Mifsud, D., Rapisarda, C., 2000. The whiteflies (Hemiptera: Aleyrodidae) of 

Europe and the Mediterranean Basin. BER 90 (05), 407–448. 

10.1017/S0007485300000547. 

Martin, O.Y., Hosken, D.J., 2004. Copulation reduces male but not female longevity in 

Saltella sphondylli (Diptera: Sepsidae). Journal of Evolutionary Biology 17 (2), 357–362. 

10.1046/j.1420-9101.2003.00668.x. 

Mound, L.A., Halsey, S.H., 1978. Whitefly of the world A systematic catalogue of the 

Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum 

(Natural History); Wiley, [London], Chichester, New York, 340 pp. 



Chapter 3 

59 

Muñiz, M., Nebreda, M., 2003. Differential variation in host preference of Aleyrodes 

proletella (L.) on some cauliflower cultivars. IOBC/wprs Bulletin 26 (10), 49–52. 

Nava-Camberos, U., Riley, D.G., Harris, M.K., 2001. Temperature and Host Plant Effects on 

Development, Survival, and Fecundity of Bemisia argentifolii (Homoptera: 

Aleyrodidae). Environ Entomol 30 (1), 55–63. 10.1603/0046-225X-30.1.55. 

Nebreda, M., Nombela, G., Muñiz, M., 2005. Comparative Host Suitability of Some 

Brassica Cultivars for the Whitefly, Aleyrodes proletella (Homoptera: Aleyrodidae). 

Environ Entomol 34 (1), 205–209. 10.1603/0046-225X-34.1.205. 

Omondi, B.A., Sseruwagi, P., Obeng-Ofori, D., Danquah, E.Y., Kyerematen, R.A., 2005. 

Mating interactions between okra and cassava biotypes of Bemisia tabaci (Homoptera: 

Aleyrodidae) on eggplant. Int. J. Trop. Insect Sci. 25 (03), 159–167. 10.1079/IJT200578. 

Porter, J.H., Parry, M.L., Carter, T.R., 1991. The potential effects of climatic change on 

agricultural insect pests. Agricultural and Forest Meteorology 57 (1-3), 221–240. 

10.1016/0168-1923(91)90088-8. 

Powell, D.A., Bellows, T.S., 1992. Adult longevity, fertility and population growth rates for 

Bemisia tabaci (Genn.) (Hom., Aleyrodidae) on two host plant species. Journal of 

Applied Entomology 113 (1-5), 68–78. 10.1111/j.1439-0418.1992.tb00637.x. 

Qiu, B.-L., Dang, F., Li, S.-J., Ahmed, M.Z., Jin, F.-L., REN, S.-X., Cuthbertson, A.G.S., 2011. 

Comparison of biological parameters between the invasive B biotype and a new 

defined Cv biotype of Bemisia tabaci (Hemiptera: Aleyradidae) in China. J Pest Sci 84 

(4), 419–427. 10.1007/s10340-011-0367-0. 

R Core Team, 2016. R: A Language and Environment for Statistical Computing, Vienna, 

Austria. https://www.R-project.org/. 

Ramsey, A.D., Ellis, P.R., 1996. Resistance in wild brassicas to the cabbage whitefly 

Aleyrodes proletella. Acta Hortic. (407), 507–514. 10.17660/ActaHortic.1996.407.64. 

Richter, E., Hirthe, G., 2014. Hibernation and migration of Aleyrodes proletella in Germany. 

Integrated protection in field vegetables. IOBC/wprs Bulletin 107, 143–149. 

Ridley, M., 1988. Mating Frequency and Fecundity in Insects. Biological Reviews 63 (4), 

509–549. 10.1111/j.1469-185X.1988.tb00669.x. 

Salas, J., Mendoza, O., 1995. Biology of the Sweetpotato Whitefly (Homoptera: 

Aleyrodidae) on Tomato. The Florida Entomologist 78 (1), 154. 10.2307/3495680. 

Schultz, B., Zimmermann, O., Liebig, N., Wedemeyer, R., Leopold, J., Rademacher, J., Katz, 

P., Rau, F., Saucke, H., 2010. Anwendung natürlich vorkommender Gegenspieler der 

Kohlmottenschildlaus (KMSL) in Kohlgemüse im kombinierten Einsatz mit 

Kulturschutznetzen: [Application of naturally occurring antagonists of the cabbage 

whitefly (Aleyrodes proletella) in organic crops in combination with netting.]. 



Chapter 3 

60 

Universität Kassel, D-Witzenhausen, Fachbereich 11: Ökologischer 

Pflanzenschutz/Entomologie. 

Springate, S., Colvin, J., 2012. Pyrethroid insecticide resistance in British populations of the 

cabbage whitefly, Aleyrodes proletella. Pest management science 68 (2), 260–267. 

10.1002/ps.2255. 

Therneau, T.M., Grambsch, P.M., 2000. Modeling survival data: Extending the Cox model. 

Springer, New York, xiii, 350. 

Trdan, S., Modic, S., Bobnar, A., 2003. The influence of cabbage whitefly (Aleyrodes 

proletella L., Aleyrodidae) abundance on the yield of Brussels sprouts. IOBC/wprs 

Bulletin 26 (3), 265–270. 

Tsueda, H., Tsuchida, K., 2011. Reproductive differences between Q and B whiteflies, 

Bemisia tabaci, on three host plants and negative interactions in mixed cohorts. 

Entomologia Experimentalis et Applicata 141 (3), 197–207. 10.1111/j.1570-

7458.2011.01189.x. 

van Emden, H.F., 2015. Handbook of agricultural entomology. Wiley-Blackwell; Credo 

Reference, Hoboken, New Jersey, Boston, Massachusetts, 1 online resource (256 

entries). 

van Lenteren, J.C., Noldus, L., 1990. Whitefly-plant relationships: behavioural and 

ecological aspects. In: Whiteflies: their bionomics, pest status and management. 

Intercept, Andover, Hants, UK, pp. 47–89. 

van Rijn, P.A., Belder, E.d., Elderson, J., Vlaswinkel, M., van Alebeek, F., 2008. Perspectives 

for functional agro biodiversity in Brussels sprouts. IOBC/wprs Bulletin 34, 121–124. 

Venables, W.N., Ripley, B.D., 2002. Modern applied statistics with S, 4th ed. Springer, New 

York, xi, 495. 

Walker, W.F., 1980. Sperm Utilization Strategies in Nonsocial Insects. The American 

Naturalist 115 (6), 780–799. 

Williams, T., 1995. The Biology of Encarsia tricolor: An Autoparasitoid of Whitefly. 

Biological Control 5 (2), 209–217. 10.1006/bcon.1995.1026. 

Zhang, G.-F., Wan, F.-H., 2012. Suitability changes with host leaf age for Bemisia tabaci B 

biotype and Trialeurodes vaporariorum. Environmental Entomology 41 (5), 1125–1130. 

10.1603/EN11288. 



General discussion 

61 

General discussion  

Exploring the biological traits of a herbivore insect species is considered to be of a 

great importance to understand the population dynamics and develop sufficient 

management strategies to control this insect species. Historically, the cabbage whitefly 

was known as a non-significant pest of Brassica crops. Accordingly, it gained little 

attention and its biology was understudied. However, this species has recently gained 

more importance, as a key Brassica crops pest, and is today classified among the most 

destructive insect pests that threaten Brassica crop production. Due to a lack of 

knowledge on its biology, as well as the reasons behind the current outbreak, it can be 

argued that current management programs have not worked effectively. To tackle the 

knowledge gaps on the basic biology of cabbage whitefly, we investigated the 

influence of different host plants, temperature regimes, and mating scenarios on its 

basic biological traits and population dynamics. Gaining such information about the 

biological traits of this insect pest could contribute towards understanding the reasons 

behind the current population growth and the development of management strategies 

to control this pest. 

In the present study we found that the pre-oviposition period of A. proletella was 

affected by the host plant where the highest and the lowest pre-oviposition period 

was detected on winter oilseed rape (1.61 ± 0.1 days) and cabbage (2.61 ± 0.27 days), 

respectively. This could be explained through the assumption that the structure and 

nutrient components of winter oilseed leaves were in favor of young cabbage whitefly 

females. It has been shown that components and structure of plant leaves have an 

effect on the fitness of cabbage whitefly (Broekgaarden et al., 2012; Loomans et al., 

2002; Ramsey and Ellis, 1996). In addition, Qiu et al. (2011) investigated the influence 

of different host plants on the performance of the B biotype and Cv biotype of B. 

tabaci. Similar to our results, they reported that the pre-oviposition period of both 

biotypes was affected by the host plant.  

On the other hand, we found a significantly higher daily fecundity on winter oilseed 

rape (9.07 eggs) in comparison to kale (7.56 eggs), kohlrabi (6.11 eggs), and cabbage 

(5.00 eggs). Also, the age-specific fecundity was the highest on winter oilseed rape and 
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the lowest on white cabbage. In a previous study, the highest daily fecundity of 

cabbage whitefly was reported on late cauliflower Brassica oleracea L. variety 

‘botrytis’ cultivar Picasso (4.7 eggs) (Nebreda et al., 2005). The differences in 

performance of cabbage whitefly in terms of fecundity on different host plants could 

be related to leaf characteristics. Accordingly, Ramsey and Ellis (1996) reported that 

the thick leathery leaves of Brassica cretica and Brassica insularis are likely to 

negatively affect the oviposition of cabbage whitefly.  

Another impact of host plants on the biology of whitefly was detected on the survival 

rate of females and males. In this respect, the lowest survival rates of female and 

males were detected on white cabbage while the highest survival rates were found on 

winter oilseed rape as well as on kohlrabi. This finding corresponds to Broekgaarden et 

al. (2012) who found that the A. proletella adults were able to survive for a short time 

on white cabbage (B.oleracea capitate var. alba) cultivar Rivera. More interestingly, we 

found that the host plant significantly affected the sex ratio of A. proletella progeny. In 

this respect, the highest female ratio was found in winter oilseed rape (70 %) and kale 

(75 %) whereas the lowest was fund on kohlrabi (64 %) and cabbage (64%). Similarly, 

Huang et al. (2014) found that the host plant significantly influenced the sex ratio of 

the castor whitefly Trialeurodes ricini (Misra). Furthermore, Omondi et al. (2005) 

reported that the sex ratio of the okra biotype of B. tabaci was associated with the 

host plant. 

To gain a more comprehensive understanding of the effect of temperature on the 

biology of cabbage whitefly, we compared the performance of whitefly adults under 

different fluctuating and constant temperature regimes. Our results indicate that the 

survival rates of A. proletella females were significantly affected by the temperature 

regime, where the lowest survival rates were observed under 23 °C fluctuating 

temperature and the highest were observed under 20 °C constant and fluctuating 

temperature regimes. A similarly significant effect of the temperature regime was also 

observed in the survival rate of males. In detail, the survival of males at 23 °C 

fluctuating temperature was significantly lower than those at a 23 °C constant, 20 °C 

fluctuating, and 20 °C constant temperature regime. This indicates that the fluctuating 

temperature did not represent their equivalent constant mean at the 23 °C 
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temperature regime. Similar behavior was also reported by Davis et al. (2006) for the 

green peach aphid, Myzus persicae (Sulzer), as the study found that the survival rate of 

the green peach aphid maintained at a 15 °C fluctuating temperature did not represent 

their equivalent constant mean. Auad et al. (2015) found that the longevity of aphids 

Sipha flava (Forbes) at fluctuating temperature was longer than those that lived under 

the same equivalent constant temperature mean. Also, we found that the oviposition 

of A. proletella females exhibited different responses to temperature regimes. The 

main interesting difference was found between 20 °C fluctuating and 20 °C constant 

temperature regimes, in that the 20 °C fluctuation regime significantly increased the 

total fecundity of the cabbage whitefly females. Another difference was also detected 

on the shape of the age-specific fecundity curve where the shape of the curve 

obtained at fluctuating regimes did not reflect those obtained at constant temperature 

regimes. Davis et al. (2006) studied the performance of the green peach aphid, M. 

persicae, under alternating and constant temperature regimes. Similar to our results, 

they reported that the reproduction of green peach aphids was the highest under 

alternating temperature regimes. The authors linked this increase in the reproduction 

to the increasing performance of endosymbionts, which support aphid with amino 

acids. Moreover, Joshi (1996) reported that the oviposition of mosquitoes, Aedes 

krombeini (Huang), differed significantly between fluctuating and constant 

temperature regimes. 

On the other hand, the sex ratio of cabbage whitefly in this study was significantly in 

favor of females. However, the temperature regimes had no influence on the sex ratio 

of cabbage whitefly. This finding corresponds to van Lenteren and Noldus (1990) who 

reported that the temperature did not influence the sex ratio of T. vaporariorum. By 

contrast, Powell and Bellows (1992) claimed that the sex ratio of B. tabaci on 

cucumber plants (Cucumis sativus L.) increased with increasing temperatures. 

To gain more knowledge and understand further aspects of the biological 

characteristics of cabbage whitefly, we investigated the influence of mating history on 

the fecundity, life span, survival rate, and sex ratio of this insect species. The mating 

scenario did not significantly affect the pre-oviposition period of cabbage whitefly. The 

mated and unmated females started to oviposit at the same time after emergence. By 
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contrast, El-Helaly et al. (1972) found that Pre-oviposition period of virgin females 

tended to be slightly higher than those of mated females.  

Our findings indicate that the survival rate of A. proletella adults reared under 

different temperature regime conditions or those reared on different host plants was 

not associated with the mating scenario. The life span of A. proletella adults was also 

not affected by the mating history. This is in line with Barro and Hart (2000), who 

found a similarly long lifespan between mated and unmated B. tabaci females. By 

contrast, Horowitz and Gerling (1992) found that multiple mated B. tabaci females 

lived longer than females that mated shortly after emergence. Moreover, the longevity 

and survival rate of females did not differ significantly from those of males. Salas and 

Mendoza (1995) did not find significant differences between the life span of males and 

females of B. tabaci. However, Powell and Bellows (1992) reported that the life span of 

B. tabaci females was significantly higher than those of males. 

In all experiments, the mating scenario did not affect the fecundity of A. proletella 

females, except under 20 °C fluctuating temperature regimes where the fecundity of 

eight day mated females was significantly lower than that of virgin and 64-day mated 

females. Barro and Hart (2000) reported that the fecundity of B. tabaci virgin females 

did not differ from mated females. We also demonstrated that the mating treatments 

significantly influence the sex ratio of cabbage whitefly. In detail, females that were 

able to mate throughout their life span produced 64 % female offspring, whereas 

females that mated for eight days produced 71 % female offspring.  However, in this 

study, virgin females only produced male progeny. There is no data to compare our 

results with, as research has until now failed to investigated the sex ratio of cabbage 

whitefly. 

In conclusion, this study shows that a) winter oilseed rape is a susceptible host plant 

for the cabbage whitefly, which supports the hypothesis that the increasing cultivated 

areas of oilseed rape could be one of the reasons for the current outbreak of cabbage 

whitefly. b) The fluctuating temperature regime did not represent their equivalent 

constant mean, which indicates that laboratory experiments under constant 

temperatures might not be able to reflect what happens in nature. c) The female-

biased sex ratio and similar life span and survival rate of short period mated females 
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and life span mated females indicate that mating for short period of time after 

emergence is likely to be sufficient for A. proletella females to reach their optimal 

reproduction parameters. Further studies on the biology of cabbage whitefly could 

help to discover the reasons behind its current population growth and subsequently to 

optimize their management strategies. 

 

 



References: General introduction and general discussion  

66 

References: General introduction and general discussion 

Adams, A.J., 1985. The photoperiodic induction of ovarian diapause in the cabbage 

whitefly, Aleyrodes proletella (Homoptera: Aleyrodidae). Journal of Insect Physiology 

31 (9), 693–700. 10.1016/0022-1910(85)90049-6. 

Alonso, D., Gómez, A.A., Nombela, G., Muñiz, M., 2009. Temperature-Dependent 

Development of Aleyrodes proletella (Homoptera: Aleyrodidae) on Two Cultivars of 

Broccoli under Constant Temperatures. Environmental Entomology 38 (1), 11–17. 

10.1603/022.038.0103. 

Arnqvist, Nilsson, 2000. The evolution of polyandry: multiple mating and female fitness in 

insects. Animal behaviour 60 (2), 145–164. 10.1006/anbe.2000.1446. 

Auad, A.M., Silva, S.E.B., Santos, J.C., Vieira, T.M., 2015. Impact of Fluctuating and 

Constant Temperatures on Key Life History Parameters of Sipha flava (Hemiptera: 

Aphididae). Florida Entomologist 98 (2), 424–429. 10.1653/024.098.0205. 

Bährmann, R., Moritz, G., 2002. Die Mottenschildläuse: Aleyrodina, 1st ed. Westarp 

Wissenschaften, Hohenwarsleben, 240 pp. 

Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., 

Butterfield, J., Buse, A., Coulson, J.C., Farrar, J., Good, J.E.G., Harrington, R., Hartley, S., 

Jones, T.H., Lindroth, R.L., Press, M.C., Symrnioudis, I., Watt, A.D., Whittaker, J.B., 

2002. Herbivory in global climate change research: Direct effects of rising temperature 

on insect herbivores. Global Change Biol 8 (1), 1–16. 10.1046/j.1365-

2486.2002.00451.x. 

Barro, P.J. de, Hart, P.J., 2000. Mating interactions between two biotypes of the whitefly, 

Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia. Bulletin of Entomological 

Research 90 (02), 103–112. 

Beck, S.D., 1983. Insect thermoperiodism. Annual Review of Entomology 28 (1), 91–108. 

Broekgaarden, C., Riviere, P., Steenhuis, G., del sol Cuenca, M., Kos, M., Vosman, B., 2012. 

Phloem-specific resistance in Brassica oleracea against the whitefly Aleyrodes 

proletella. Entomologia Experimentalis et Applicata 142 (2), 153–164. 10.1111/j.1570-

7458.2011.01210.x. 

Byrne, D., 1991. Whitefly Biology. Annual Review of Entomology 36 (1), 431–457. 

10.1146/annurev.ento.36.1.431. 

Byrne, F.J., Devonshire, A.L., 1996. Biochemical evidence of haplodiploidy in the whitefly 

Bemisia tabaci. Biochem Genet 34 (3-4), 93–107. 10.1007/BF00553606. 

Cabral, S., Soares, A.O., Moura, R., Garcia, P., 2006. Suitability of Aphis fabae, Myzus 

persicae (Homoptera: Aphididae) and Aleyrodes proletella (Homoptera: Aleyrodidae) 



References: General introduction and general discussion  

67 

as prey for Coccinella undecimpunctata (Coleoptera: Coccinellidae). Biological Control 

39 (3), 434–440. 10.1016/j.biocontrol.2006.08.008. 

Campos, O.R., Crocomo, W.B., Labinas, A.M., 2003. Comparative biology of the whitefly 

Trialeurodes vaporariorum (West.) (Hemiptera - Homoptera: Aleyrodidae) on soybean 

and bean cultivars. Neotrop. entomol. 32 (1), 133–138. 10.1590/S1519-

566X2003000100020. 

Chen, C.-H., Kumar Dubey, A., Ko, C.-C., 2007. Comparative morphological studies on two 

species of Aleyrodes (Hemiptera: Aleyrodidae). Pan-Pacific Entomologist 83 (3), 244–

254. 10.3956/0031-0603-83.3.244. 

Coudriet, D.L., Prabhaker, N., Kishaba, A.N., Meyerdirk, D.E., 1985. Variation in 

Developmental Rate on Different Hosts and Overwintering of the Sweetpotato 

Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Environmental Entomology 14 (4), 

516–519. 10.1093/ee/14.4.516. 

Crüger, G., Backhaus, G.F., 2002. Pflanzenschutz im Gemüsebau, 4th ed. Ulmer, Stuttgart 

(Hohenheim), 318 S. 

Curnutte, L.B., Simmons, A.M., Abd-Rabou, S., 2014. Climate Change and Bemisia tabaci 

(Hemiptera: Aleyrodidae): Impacts of Temperature and Carbon Dioxide on Life History. 

ann entomol soc am 107 (5), 933–943. 10.1603/AN13143. 

Davis, J.A., Radcliffe, E.B., Ragsdale, D.W., 2006. Effects of High and Fluctuating 

Temperatures on Myzus persicae (Hemiptera: Aphididae). en 35 (6), 1461–1468. 

10.1603/0046-225X(2006)35[1461:EOHAFT]2.0.CO;2. 

El-Helaly, M.S., El-Shazli, A.Y., El-Gayar, F.H., 1972. Biological Studies on a New Pest 

Aleyrodes proletella L. in Egypt (Aleyrodidae; Homoptera). Zeitschrift für Angewandte 

Entomologie 70 (1-4), 323–327. 10.1111/j.1439-0418.1972.tb02190.x. 

El-Helaly, M.S., Ibrahim, E.G., Rawash, I.A., 1977. Photoperiodism of the whitefly Bemisia 

tabaci Gennadius (Aleyrodidae; Homoptera). Zeitschrift für Angewandte Entomologie 

83 (1-4), 393–397. 10.1111/j.1439-0418.1977.tb02414.x. 

Evans, G.A., 2007. The whiteflies (Hemiptera: Aleyrodidae) of the world and their host 

plants and natural enemies. USDA/Animal Plant Health Inspection Service (APHIS) 

Version 070606 . 

Gerling, D., Horowitz, A.R., Baumgaertner, J., 1986. Autecology of Bemisia tabaci. 

Agriculture, Ecosystems & Environment 17 (1-2), 5–19. 10.1016/0167-8809(86)90022-

8. 

Hill, D.S., Hill, J.D., 1994. Agricultural entomology. Timber Press, Portland, Or., 635 pp. 

Horowitz, A.R., Gerling, D., 1992. Seasonal Variation of Sex Ratio in Bemisia tabaci on 

Cotton in Israel. Environmental Entomology 21 (3), 556–559. 10.1093/ee/21.3.556. 



References: General introduction and general discussion  

68 

Huang, H., Zhao, H., Zhang, Y.-M., Zhang, S.-Z., Liu, T.-X., 2014. Influence of selected host 

plants on biology of castor whitefly, Trialeurodes ricini (Hemiptera: Aleyrodidae). 

Journal of Asia-Pacific Entomology 17 (4), 745–751. 10.1016/j.aspen.2014.07.001. 

Huang, Y., Loomans, A.J.M., van Lenteren, J.C., RuMei, X., 2009. Hyperparasitism 

behaviour of the autoparasitoid Encarsia tricolor on two secondary host species. 

BioControl 54 (3), 411–424. 10.1007/s10526-008-9189-2. 

Iheagwan, E.U., 1977. Photoperiodism in the cabbage whitefly, Aleyrodes brassicae. 

Physiol Entomol 2 (3), 179–184. 10.1111/j.1365-3032.1977.tb00099.x. 

Jeschke, P., Nauen, R., Schindler, M., Elbert, A., 2011. Overview of the status and global 

strategy for neonicotinoids. Journal of agricultural and food chemistry 59 (7), 2897–

2908. 10.1021/jf101303g. 

Joshi, D.S., 1996. Effect of fluctuating and constant temperatures on development, adult 

longevity and fecundity in the mosquito Aedes krombeini. Journal of Thermal Biology 

21 (3), 151–154. 10.1016/0306-4565(95)00035-6. 

Lamb, K.P., 1961. Some Effects of Fluctuating Temperatures on Metabolism, 

Development, and Rate of Population Growth in the Cabbage Aphid, Brevicoryne 

Brassicae. Ecology 42 (4), 740–745. 10.2307/1933502. 

Lin, L.I., Ren, S.-X., 2005. Development and reproduction of 'B' biotype Bemisia tabaci 

(Gennadius) (Homoptera: Aleyrodidae) on four ornamentals. Insect Science 12 (2), 

137–142. 10.1111/j.1744-7917.2005.00016.x. 

Loomans, A., Staneva, I., Huang, Y., Bukovinskine-Kiss, G., van Lenteren, J.C., 2002. When 

native non-target species go indoors: A new challenge to biocontrol of whiteflies in 

European greenhouses. IOBC/wprs Bulletin 25 (1), 139–142. 

Lorenzo, M.E., Grille, G., Basso, C., Bonato, O., 2016. Host preferences and biotic potential 

of Trialeurodes vaporariorum and Bemisia tabaci (Hemiptera: Aleyrodidae) in tomato 

and pepper. Arthropod-Plant Interactions 10 (4), 293–301. 10.1007/s11829-016-9434-

z. 

Manzano, M.R., van Lenteren, J.C., 2009. Life history parameters of Trialeurodes 

vaporariorum (Westwood) (Hemiptera: Aleyrodidae) at different environmental 

conditions on two bean cultivars. Neotrop. entomol. 38 (4), 452–458. 10.1590/S1519-

566X2009000400002. 

Manzari, S., Polaszek, A., Belshaw, R., Quicke, D.L.J., 2002. Morphometric and molecular 

analysis of the Encarsia inaron species-group (Hymenoptera: Aphelinidae), parasitoids 

of whiteflies (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 92 (2), 165–

175. 10.1079/BER2001144. 



References: General introduction and general discussion  

69 

Martin, J.H., Mifsud, D., Rapisarda, C., 2000. The whiteflies (Hemiptera: Aleyrodidae) of 

Europe and the Mediterranean Basin. Bulletin of Entomological Research 90 (05), 407–

448. 10.1017/S0007485300000547. 

Messenger, P.S., 1964. The Influence of Rhythmically Fluctuating Temperatures on the 

Development and Reproduction of the Spotted Alfalfa Aphid,Therioaphis maculata. 

Journal of Economic Entomology 57 (1), 71–76. 10.1093/jee/57.1.71. 

Mironidis, G.K., Savopoulou-Soultani, M., 2008. Development, Survivorship, and 

Reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) Under Constant and 

Alternating Temperatures. en 37 (1), 16–28. 10.1603/0046-

225X(2008)37[16:DSAROH]2.0.CO;2. 

Mound, L.A., Halsey, S.H., 1978. Whitefly of the world A systematic catalogue of the 

Aleyrodidae (Homoptera) with host plant and natural enemy data. British Museum 

(Natural History); Wiley, [London], Chichester, New York, 340 pp. 

Muñiz, M., Nebreda, M., 2003. Differential variation in host preference of Aleyrodes 

proletella (L.) on some cauliflower cultivars. IOBC/wprs Bulletin 26 (10), 49–52. 

Nava-Camberos, U., Riley, D.G., Harris, M.K., 2001. Temperature and Host Plant Effects on 

Development, Survival, and Fecundity of Bemisia argentifolii (Homoptera: 

Aleyrodidae). Environ Entomol 30 (1), 55–63. 10.1603/0046-225X-30.1.55. 

Nebreda, M., Nombela, G., Muñiz, M., 2005. Comparative Host Suitability of Some 

Brassica Cultivars for the Whitefly, Aleyrodes proletella (Homoptera: Aleyrodidae). 

Environ Entomol 34 (1), 205–209. 10.1603/0046-225X-34.1.205. 

Omondi, B.A., Sseruwagi, P., Obeng-Ofori, D., Danquah, E.Y., Kyerematen, R.A., 2005. 

Mating interactions between okra and cassava biotypes of Bemisia tabaci (Homoptera: 

Aleyrodidae) on eggplant. Int. J. Trop. Insect Sci. 25 (03), 159–167. 10.1079/IJT200578. 

Pereira, F.M.V., Rosa, E., Fahey, J.W., Stephenson, K.K., Carvalho, R., Aires, A., 2002. 

Influence of Temperature and Ontogeny on the Levels of Glucosinolates in Broccoli 

(Brassica oleracea Var. italica ) Sprouts and Their Effect on the Induction of 

Mammalian Phase 2 Enzymes. J. Agric. Food Chem. 50 (21), 6239–6244. 

10.1021/jf020309x. 

Porter, J.H., Parry, M.L., Carter, T.R., 1991. The potential effects of climatic change on 

agricultural insect pests. Agricultural and Forest Meteorology 57 (1-3), 221–240. 

10.1016/0168-1923(91)90088-8. 

Powell, D.A., Bellows, T.S., 1992. Adult longevity, fertility and population growth rates for 

Bemisia tabaci (Genn.) (Hom., Aleyrodidae) on two host plant species. Journal of 

Applied Entomology 113 (1-5), 68–78. 10.1111/j.1439-0418.1992.tb00637.x. 

Qiu, B.-L., Dang, F., Li, S.-J., Ahmed, M.Z., Jin, F.-L., REN, S.-X., Cuthbertson, A.G.S., 2011. 

Comparison of biological parameters between the invasive B biotype and a new 



References: General introduction and general discussion  

70 

defined Cv biotype of Bemisia tabaci (Hemiptera: Aleyradidae) in China. J Pest Sci 84 

(4), 419–427. 10.1007/s10340-011-0367-0. 

Ramsey, A.D., Ellis, P.R., 1996. Resistance in wild brassicas to the cabbage whitefly 

Aleyrodes proletella. Acta Hortic. (407), 507–514. 10.17660/ActaHortic.1996.407.64. 

Richter, E., Hirthe, G., 2014. Hibernation and migration of Aleyrodes proletella in Germany. 

Integrated protection in field vegetables. IOBC/wprs Bulletin 107, 143–149. 

Ridley, M., 1988. Mating Frequency and Fecundity in Insects. Biological Reviews 63 (4), 

509–549. 10.1111/j.1469-185X.1988.tb00669.x. 

Salas, J., Mendoza, O., 1995. Biology of the Sweetpotato Whitefly (Homoptera: 

Aleyrodidae) on Tomato. The Florida Entomologist 78 (1), 154. 10.2307/3495680. 

Schultz, B., Zimmermann, O., Liebig, N., Wedemeyer, R., Leopold, J., Rademacher, J., Katz, 

P., Rau, F., Saucke, H., 2010. Anwendung natürlich vorkommender Gegenspieler der 

Kohlmottenschildlaus (KMSL) in Kohlgemüse im kombinierten Einsatz mit 

Kulturschutznetzen: [Application of naturally occurring antagonists of the cabbage 

white fly (Aleyrodes proletella) in organic crops in combination with netting.]. 

Universität Kassel, D-Witzenhausen, Fachbereich 11: Ökologischer 

Pflanzenschutz/Entomologie. 

Slater, R., Ellis, S., Genay, J.-P., Heimbach, U., Huart, G., Sarazin, M., Longhurst, C., Muller, 

A., Nauen, R., Rison, J.L., Robin, F., 2011. Pyrethroid resistance monitoring in European 

populations of pollen beetle (Meligethes spp.): a coordinated approach through the 

Insecticide Resistance Action Committee (IRAC). Pest management science 67 (6), 633–

638. 10.1002/ps.2101. 

Springate, S., Colvin, J., 2012. Pyrethroid insecticide resistance in British populations of the 

cabbage whitefly, Aleyrodes proletella. Pest management science 68 (2), 260–267. 

10.1002/ps.2255. 

Statistisches Bundesamt, 2017. Publikation - Land- & Forstwirtschaft - Gemüseerhebung - 

Anbau und Ernte von Gemüse und Erdbeeren - Statistisches Bundesamt (Destatis). 

Internet. 

https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/ObstGem

ueseGartenbau/Gemueseerhebung.html. Accessed 14 March 2017. 

Trdan, S., Modic, S., Bobnar, A., 2003. The influence of cabbage whitefly (Aleyrodes 

proletella L., Aleyrodidae) abundance on the yield of Brussels sprouts. IOBC/wprs 

Bulletin 26 (3), 265–270. 

van Lenteren, J.C., Noldus, L., 1990. Whitefly-plant relationships: behavioural and 

ecological aspects. In Whiteflies: their bionomics, pest status and management. 

Intercept, Andover, Hants, UK, pp. 47–89. 



References: General introduction and general discussion  

71 

Walker, W.F., 1980. Sperm Utilization Strategies in Nonsocial Insects. The American 

Naturalist 115 (6), 780–799. 

Williams, I.H., 2010. Biocontrol-Based Integrated Management of Oilseed Rape Pests. 

Springer Science+Business Media B.V, Dordrecht, 1 online resource. 

Wyss, E., daniel, c., 2002. Wirkung verschiedener Insektizide gegen die 

Kohlmottenschildlaus Aleyrodes proletella in biologischem Rosenkohl. Mittelprüfung 

2002, Nr. 02/11e. Forschungsinstitut für biologischen Landbau (FiBL) CH-Frick 2002. 

http://orgprints.org/8505/1/wyss%2Ddaniel%2D2002_11e_Kohlmottenschildlaus.pdf. 

Accessed 20 July 2016, 4 pp. 

Xie, M., Wan, F.-H., Chen, Y.-H., Wu, G., 2011. Effects of temperature on the growth and 

reproduction characteristics of Bemisia tabaci B-biotype and Trialeurodes 

vaporariorum. Journal of Applied Entomology 135 (4), 252–257. 10.1111/j.1439-

0418.2010.01524.x. 

 

 



Danksagung 

72 

Danksagung 

Prof. Dr. Stefan Vidal danke ich für die wertvolle Betreuung während meiner 

Promotionszeit, die anregenden Diskussionen, den Freiraum eigener Ideen, der 

Möglichkeit an Tagungen teilzunehmen und für die Durchsicht der Manuskripte. 

Herrn Dr. Rainer Meyhöfer danke ich für die Begutachtung dieser Arbeit und für die 

hilfreichen Diskussionen während mehrerer Projekttreffen.    

Herrn Prof Dr. Martin Hommes danke ich für die Mitgliedschaft im Prüfungskomitee.  

Frau Dr. Ellen Richter danke ich für die Möglichkeit am Kohlmottenschildlausprojekt 

teilzunehmen und für ihre tatkräftige Unterstützung. 

Besonderer Dank gilt dem gesamten Team des Institutes für Pflanzenschutz in 

Gartenbau und Forst in Braunschweig. Während meiner Arbeit wurde ich immer sehr 

herzlich aufgenommen.  

Ich danke Frau Dr. Katharina Lohaus für die wertvollen Diskussionen, für die hilfreichen  

Hinweise und ihre auflockernde Art. 

Meinen Freunden und Kollegen von der Agrarentomologie danke ich für die moralische 

Unterstützung, für  die viel Kuchen zu jeder Gelegenheit und für die schönen 

gemeinsamen Zeiten. 

Ich danke meinen Eltern für ihre großartige Unterstützung.  

 



Erklärungen 

 

E r k l ä r u n g e n 

 

 

1. Hiermit erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form 
bereits anderen Prüfungsbehörden vorgelegen hat. 
 
 
Weiter erkläre ich, dass ich mich an keiner anderen Hochschule um einen   

Doktorgrad beworben habe. 

 

 

 Göttingen, den  ............................... 

 

 

 

 ............................................................. 

 (Unterschrift) 

 

 

 

2. Hiermit erkläre ich eidesstattlich, dass diese Dissertation selbständig und ohne 

unerlaubte Hilfe angefertigt wurde. 

 

 

 Göttingen, den .......................................... 

 

 

 

 

 

 


