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Abstract 
 

Tail-anchored (TA) proteins are a group of integral membrane proteins defined by 

the presence of a single transmembrane domain (TMD) at the C-terminal domain and are 

involved in functionally diverse cellular processes. Since the C-terminal TMD of TA proteins 

emerges from the ribosome tunnel only after termination of translation, insertion of these 

proteins to target membrane occurs mostly by post-translational pathways. Two model TA 

proteins used in this study are VAPB and emerin.  

VAPB (vesicle-associated membrane protein-associated protein B) is an integral 

endoplasmic reticulum (ER) protein that is present at several contact sites of the ER. To 

understand the mechanism of insertion of VAPB into the ER, in vitro insertion assays were 

performed using rough microsomes and semi-permeabilized cells. VAPB was shown to be 

post-translationally inserted into the ER membrane independently of the TRC40 pathway. 

Apart from its ER-localization, immunoelectron microscopy and a rapamycin-based 

dimerization assay showed that VAPB also localizes to the inner nuclear membrane (INM). 

The engineered ascorbate peroxidase (APEX2) has been effectively employed in 

mammalian cells to identify protein-protein interactions. Using a modified APEX2-approach 

with rapamycin-dependent targeting of the peroxidase to a protein of interest, proteins that 

are in close proximity to VAPB were identified in the ER and the INM. In combination with 

stable isotope labeling with amino acids in cell culture (SILAC), followed by co-

immunoprecipitation assays, many well-known interaction partners of VAPB at the ER were 

confirmed and also novel proximity partners at the INM were identified. Hence, rapamycin-

APEX2-mediated proximity labeling of VAPB neighboring proteins provide insights into the 

VAPB interactome at the ER and the INM.  

Emerin is one of the best-characterized tail-anchored proteins of the INM but also 

localizes to the ER and the outer nuclear membrane (ONM). To better understand the 

dynamics of emerin at the nuclear envelope (NE), FRAP assays were performed at the NE 

on intact and permeabilized cells. The addition of cytosol to the permeabilized cells 

increased the diffusion of emerin to the NE and addition of a Ran deficient mutant, 

RanQ69L, a lectin wheat germ agglutinin (WGA) and a dominant-negative fragment of 

Importinb (Impb (45-462)) impaired the diffusion of emerin from the ER to the NE. These 

data suggest that diffusion of emerin to the NE is dependent on soluble components and 

thus may underscore a role of soluble factors in diffusion and retention mechanism for 

targeting of INM proteins.  
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 : Introduction 
 

1.1. The nuclear envelope 
The eukaryotic nucleus is enclosed by the nuclear envelope (NE) made up of two 

lipid bilayers: an inner nuclear membrane (INM) and an outer nuclear membrane(ONM). 

These two lipid bilayers are separated by a 30-50 nm lumen or perinuclear space. Nuclear 

pore complexes (NPCs) reside at regions of the NE, where the INM and ONM merge (Figure 

1; Lusk et al., 2007). The ONM is contiguous with the rough endoplasmic reticulum (ER) 

with ribosomes scattered on its surface. In metazoans, the INM is lined with an underlying 

filamentous protein meshwork called nuclear lamina that consists of nuclear intermediate 

filament proteins, lamins (Dwyer and Blobel, 1976; Gruenbaum et al., 2005; Stewart et al., 

2007) and several INM proteins that interact with the lamins (Schirmer et al., 2003). Lamins 

regulate genome organization and chromatin structure and mediate structural linkages 

between the nucleus and the cytoplasm (Dittmer and Misteli, 2011; Simon and Wilson, 

2011; Stewart et al., 2007). The ONM contains unique membrane proteins and shares many 

of its functions with the ER (Stewart et al., 2007). Thus, the NE consists of discrete 

interconnected regions; the INM, the ONM continuous with the ER and NPCs with the 

perinuclear space being an extension of the ER lumen. 

 

 
 

Figure 1. Overview of the nuclear envelope. 
The nuclear envelope consists of inner nuclear membrane (INM) and outer nuclear membrane (ONM). The 
nuclear pore complexes (NPCs) are embedded into the INM and ONM. The ONM is continuous with the 
endoplasmic reticulum (ER). The nuclear lamina underlies the INM consisting of lamins and lamina 
associated proteins. 
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1.2. The gatekeepers of the nucleus: the nuclear pore complex  
Nuclear pore complexes (NPCs) are large multiprotein complexes consisting of 

multiple copies of ~30 distinct protein subunits called nucleoporins (Nups) (Figure 2; 

Cronshaw et al., 2002). NPCs function as gatekeepers at the NE and restrict entry and exit 

of macromolecules into and out of the nucleus (Aitchison and Rout, 2012; Grossman et al., 

2012). In addition to their best-characterized function to mediate passive exchange of small 

molecules and active transport of macromolecules, NPCs also regulate genome 

organization and expression, transcriptional regulation of many genes and the organization 

of complexes that control DNA damage repair and chromatin silencing (Akhtar and Gasser, 

2007; Kalverda et al., 2010; Nakano et al., 2010; Towbin et al., 2009). 

 

 
Figure 2. The nuclear pore complex. 
Schematic of the nuclear pore complex (NPC) embedded between the inner and outer nuclear membrane. 
The NPC scaffold consists of a central channel lined by phenylalanine-glycine (FG) repeats. The nuclear 
basket faces the nucleoplasm and cytoplasmic filaments emanate to the cytoplasmic side. Peripheral 
channels are also present and allow for passive diffusion of small molecules. 
 

The NPC shows an eight-fold symmetric, cylindrical assembly and is anchored 

within the NE by a core scaffold consisting of coaxial inner and outer ring structures. The 

core scaffold surrounds a central channel containing nucleoporins characterized by 

phenylalanine-glycine (FG) repeats that contribute to its selectivity barrier function 

(Dickmanns et al., 2015). On the nucleoplasmic side, the nuclear basket is present 

consisting of eight extended filaments connected to a distal ring (Allen et al., 2000). The 

cytoplasmic side is also decorated with eight cytoplasmic filaments (Kim et al., 2018; 

Knockenhauer and Schwartz, 2016). 
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1.3. Nucleocytoplasmic transport through the NPC 
A bidirectional exchange exists between the nucleus and the cytoplasm through 

highly regulated nucleocytoplasmic transport. The exchange of molecules through the NPC 

occurs either by passive transport or by active transport. Typically, macromolecules smaller 

than 5 nm in diameter or 40 kDa in size diffuse through the NPC (Hülsmann et al., 2012; 

Mohr et al., 2009), whereas larger molecules like proteins, RNAs and RNPs are transported 

actively (Kutay et al., 1998). 

 

 
Figure 3. Nucleocytoplasmic transport through the NPC. 
During import, importins bind to cargo in the cytoplasm and are transported to the nucleus, where the cargo 
is released upon RanGTP binding. The importin-RanGTP complex is recycled back to the cytoplasm for the 
next round of import. Nuclear export requires the binding of exportins and RanGTP to the cargoes to form a 
trimeric complex in the nucleus that is exported via the NPC. In the cytoplasm, this complex is disassembled 
by RanGAP mediated hydrolysis of GTP-bound Ran. The free exportin re-enters back into the nucleus for 
the next round of export. 

 

Active transport of soluble cargoes requires very specific interactions with the NPC. It is 

typically mediated by soluble nuclear transport receptors (NTRs), which bind the cargo 

molecules and the RanGTPase system that determines the directionality of transport 

(Figure 3). NTRs are classified into importins and exportins, based on the direction in which 

they carry their cargo (Görlich and Kutay, 1999), although some of them mediate both 

export and import (Aksu et al., 2018; Gontan et al., 2009; Mingot et al., 2001; Yoshida and 

Blobel, 2001). They bind cargoes on one side, translocate through the NPC barrier and 

release cargoes on the other side. Next, they return to the original compartment to mediate 

another round of transport (Görlich and Kutay, 1999; Schmidt and Görlich, 2016; Weis, 
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2003). Cargo binding and release of importins and exportins is regulated by the two different 

nucleotide states of Ran, which cycles between a GTP- and GDP-bound form (Izaurralde 

et al., 1997). The Ran guanine nucleotide exchange factor (RanGEF) RCC1 catalyzes the 

nucleotide exchange in the nucleus (Bischoff and Ponstingl, 1991) and RanGTP hydrolysis 

is stimulated by the RanGTPase activating protein RanGAP in the cytoplasm (Bischoff et 

al., 1994). The compartmentalized distribution of RCC1 and RanGAP results in a RanGTP 

gradient across the NE with a high RanGTP concentration in the nucleus and low levels in 

the cytoplasm (Görlich and Kutay, 1999; Weis, 2003). 

Cargoes destined for import contain a nuclear localization sequence (NLS), which 

is recognized by importins. This facilitates movement through the central NPC channel and 

the cargo-importin complex is released in the nucleus upon binding to RanGTP (Izaurralde 

et al., 1997; Rexach and Blobel, 1995). The importin-RanGTP complex then returns to the 

cytoplasm, and a Ran binding protein (RanBP) dissociates RanGTP from importin to allow 

binding of another import cargo and and RanGAP stimulates hydrolysis of RanGTP (Görlich 

et al., 1996; Hieda et al., 1999; Izaurralde et al., 1997). Exportins, on the other hand, bind 

to cargoes containing a nuclear export sequence (NES) and RanGTP in the nucleus to form 

a trimeric export complex. The complex is then exported to the cytoplasm through the NPC, 

where it is disassembled upon hydrolysis of RanGTP to RanGDP (Arts et al., 1998; Kutay 

et al., 1997b; Kutay et al., 1998). The free exportin re-enters the nucleus to allow the export 

of the next cargo. RanGAP together with RanBP1 and Nup358 (RanBP2) stimulates 

conversion of  RanGTP to RanGDP (Bischoff and Görlich, 1997; Kehlenbach et al., 1999). 

RanGDP is imported into the nucleus by nuclear transport factor 2 (NTF2) (Paschal and 

Gerace, 1995; Ribbeck et al., 1998), where RCC1 facilitates conversion of RanGDP to 

RanGTP (Coutavas et al., 1993). 

 

1.4. Integral membrane proteins  
The mechanisms that regulate the nuclear transport of soluble proteins are well 

studied, however, much less is known about the mechanism by which integral membrane 

proteins of the INM reach their final destination (Katta et al., 2014; Laba et al., 2014). The 

targeting process of an INM protein involves its biogenesis, followed by trafficking to the 

INM, during which the proteins may engage in multiple distinct protein interactions.  

 

 Biogenesis of integral membrane proteins 
Integral membrane proteins have single (bitopic) or multiple (polytopic) 

transmembrane domains. Transmembrane domains (TMDs) help the protein to anchor to 

the membrane. They are further classified based on their topology into type I (single pass; 

C-terminus oriented to the cytoplasm), type II (single-pass; N-terminus oriented to the 
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cytoplasm), type III (multi-pass with several transmembrane domains) (Chou and Cai, 2005; 

Ott and Lingappa, 2002) and type IV (single-pass; tail-anchored (TA)). TA proteins are a 

distinct class of integral membrane proteins with a single TMD at the C-terminus (Kutay et 

al., 1995) that contains targeting information for membrane insertion and proper delivery to 

its final destination (Borgese et al., 2007; Hegde and Keenan, 2011).  

Newly synthesized membrane proteins are targeted to the membranes by two well-

characterized insertion systems, the co-translational pathway and the post-translational 

pathway. 

 

1.4.1.1. Co-translational membrane insertion 
Secretory proteins and integral membrane proteins can be translocated or inserted into 

membranes co-translationally i.e., during their synthesis (Cross et al., 2009). This mode of 

transport depends on a signal recognition particle (SRP) system, which consists of a 

cytosolic SRP and its membrane-bound receptor (SR) (Grudnik et al., 2009; Rapoport, 

2007). The signal or a hydrophobic N-terminal sequence of a nascent polypeptide chain 

emerging from the ribosome is recognized by the SRP (Figure 4 step1; Grudnik et al., 2009). 

Subsequently, the ribosome nascent-chain complex (RNC)-SRP is recruited to the SRP 

receptor in the ER membrane (Figure 4 step2).  

 
Figure 4. Co-translational membrane targeting by the SRP system. 
SRP interacts with the signal sequence of the polypeptide chain as soon as it emerges from the ribosome 
exit tunnel (step 1). The RNC-SRP complex is then targeted to the ER membrane, where it binds to the SRP 
receptor under GTP hydrolysis (step 2). The RNC is then transferred to the Sec61 translocon (step 3) and 
subsequently integrated into the ER lipid bilayer (step 4) (scheme adapted from Reid and Nicchitta, 2015). 

SRP

SRP
receptorSec61

translocon

cytosol

ER 
lumen

1

2
3

4
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The SRP receptor consists of two proteins, which are both GTPases: SRa and 

SRg (Gilmore et al., 1982a; Gilmore et al., 1982b). As a result of GTP hydrolysis in SRP 

and SR, the RNC is then transferred to the Sec61 translocon in the membrane (Wild et al., 

2004). Translation is resumed and the TMD interacts with the translocon channel (Figure 4 

step3; Rapoport, 2007). After termination of translation, the mature membrane protein is 

laterally integrated into the lipid bilayer of the ER from the Sec61 translocon (Figure 4 

step4). 

 

1.4.1.2. Post-translational membrane insertion of TA proteins 
Targeting and insertion of membrane proteins by post-translational pathways occur 

after the complete synthesis of the proteins. The post-translational pathways generally use 

TMD selective cytosolic chaperons for targeting and an ER-localized receptor for insertion 

(Mateja and Keenan, 2018). For TA proteins, the TMD remains sequestered inside the 

ribosome exit tunnel until the translation is complete and hence uses post-translational 

membrane insertion (Kutay et al., 1993). 

Multiple pathways have been identified over the past decade for post-translational 

TA protein biogenesis at the ER. The guided entry of tail-anchored proteins (GET) pathway 

described in yeast or the homologous mammalian transmembrane domain recognition 

complex of 40kDa (TRC40) pathway (Schuldiner et al., 2008; Stefanovic and Hegde, 2007) 

targets TA proteins with highly hydrophobic TMDs (Table 1). In the TRC40 pathway (Figure 

5), BCL2-associated athanogene cochaperone 6 (BAG6) interacts with the ribosome, forms 

a heterotrimeric complex with transmembrane domain recognition complex 35 (TRC35) and 

ubiquitin-like 4A (UBL4A) and binds to nascent TA substrates after their release from the 

ribosome (Mariappan et al., 2010; Mock et al., 2015; Mock et al., 2017). Then, the cytosolic 

chaperone small glutamine-rich tetratricopeptide repeat-containing protein alpha (SGTA) 

binds to either BAG6, or UBL4A (Figure 5 step 1; Darby et al., 2014; Leznicki et al., 2013). 

This pre-targeting complex binds to TRC40 in an ATP-bound conformation and delivers the 

TA protein to TRC40 (Figure 5 step2; Hegde and Keenan, 2011; Mariappan et al., 2010). 

The resulting TA-protein-TRC40 complex is targeted to the ER, where the membrane 

receptors tryptophan-rich basic protein (WRB) (Vilardi et al., 2011) and calcium-modulating 

cyclophilin ligand (CAML) (Vilardi et al., 2014; Yamamoto and Sakisaka, 2012) act as 

insertases for inserting TA proteins to the ER membrane (Figure 5 step 3 and 4). 

 
Table 1. Homologous proteins of the Get/TRC pathways in mammalian and yeast 
cells. 
Organism Pre-targeting complex ATPase effector ER receptor 
mammals BAG6 SGTA UBL4A TRC35 TRC40 CAML WRB 
yeast - Sgt2 Get5 Get4 Get3 Get2 Get1 



  1. Introduction 

 12 

 
Figure 5. TRC40 pathway of protein insertion to the ER membrane. 
After emerging from the ribosome exit tunnel, the TA-protein is bound via its TMD by a pre-targeting complex 
consisting of SGTA, BAG6, TRC35 and Ubl4A (step 1). Subsequently, the pre-targeting complex binds to 
TRC40 (step 2). After dissociation of the pre-targeting complex, TRC40 delivers the TA protein to the ER 
membrane. The ER receptors WRB and CAML bind to the protein under ATP hydrolysis (step 3) and 
integrate the protein into the ER membrane (step4). 

 

Although TRC40 is proposed to be the canonical factor for post-translational delivery 

of TA proteins, several studies have reported the existence of other post-translational 

insertion pathways into the ER membrane (Casson et al., 2017) (also discussed in section 

6.1.3). Abell et al., 2004 showed by chemical crosslinking that the SRP could interact with 

TA proteins and facilitate SR dependent membrane insertion in vitro. It was suggested that 

binding of the SRP to TA proteins might occur in a post-translational, but ribosome 

dependent manner (Abell et al., 2004; Abell et al., 2007; Berndt et al., 2009). 

Another alternative pathway that was recently described in yeast and later in human 

cell lines, is the SRP-independent targeting (SND) pathway (Aviram et al., 2016; 

Haßdenteufel et al., 2017). The SND pathway was shown to function as backup targeting 

system for proteins that are not entirely dependent on either the SRP pathway or the GET 

pathway (Aviram et al., 2016; Haßdenteufel et al., 2017). The SND pathway in yeast 

consists of ribosome-associated Snd1 and two ER-resident transmembrane proteins Snd2 

and Snd3 that form a complex with the Sec61 translocon (Aviram et al., 2016). In mammals, 

hSnd2, also known as TMEM208, which is the human orthologue of Snd2, has been shown 

to insert proteins with a C-terminal TMD (Haßdenteufel et al., 2017). 

The insertion of less hydrophobic TA proteins and some SRP-dependent membrane 

proteins were reported to use an ER membrane protein complex (EMC) pathway (Guna et 
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al., 2018). The TA proteins are shielded in the cytosol by Calmodulin (CaM) and, after 

release from CaM, are inserted by EMC (Guna et al., 2018). On the contrary, CaM was also 

reported to inhibit the insertion of the TA proteins Cytochrome b5 and Synaptobrevin 2 in 

vitro (Hassdenteufel et al., 2011). Some proteins also showed partial dependence on both 

EMC and TRC40 pathways (Guna et al., 2018). 

Studies have also shown the involvement of Hsp40/Hsc70 in membrane insertion of 

TA proteins with a low hydrophobic TMD (Abell et al., 2007; Rabu et al., 2008). Furthermore, 

an unassisted pathway has been reported for the insertion of some TA proteins like 

Cytochrome b5 (Brambillasca et al., 2006). Cytochrome b5 can be inserted into liposomes 

in an unassisted manner (Brambillasca et al., 2005; Brambillasca et al., 2006). 

 

 Integral membrane proteins of the INM 
The INM is considered to be molecularly distinct from the ONM, which is contiguous 

with the ER, harboring more than 100 unique transmembrane proteins according to 

proteomic analysis, of which only a few have been further characterized (Cheng et al., 2019; 

Korfali et al., 2010; Korfali et al., 2012; Schirmer et al., 2003; Schirmer et al., 2005; 

Strambio-de-Castillia et al., 1995; Wilkie et al., 2011). The INM proteins are involved in 

maintaining nuclear structure, genome organization and positioning of chromosomal 

domains (Mekhail and Moazed, 2010; Rothballer and Kutay, 2013; Starr and Fridolfsson, 

2010). The INM proteins from the SUN family connect the nucleus to the cytoskeleton (Starr 

and Fridolfsson, 2010). Several LEM (Lap2, emerin, Man1) domain-containing proteins and 

SUN proteins are involved in transcriptional control and DNA repair (Akhtar and Gasser, 

2007; Mekhail and Moazed, 2010). 

Mutations in genes encoding INM components and lamins are associated with 

several human diseases like tissue-specific diseases of the brain, muscle and fat disorders 

like laminopathies and progeria (Méndez-López and Worman, 2012; Schirmer et al., 2003; 

Schreiber and Kennedy, 2013; Stewart et al., 2007). Many transmembrane proteins of the 

INM are involved in multiple protein interactions (Bengtsson and Wilson, 2004). Moreover, 

these transmembrane proteins have different expression levels between different cell types 

(Korfali et al., 2012; Schirmer and Gerace, 2005; Wilkie et al., 2011).  

The integral membrane proteins of the INM harbor several single-pass and multi-

pass membrane proteins (Figure 6). The lamin B receptor (LBR) contains eight TMDs and 

binds to B-type lamins (Worman et al., 1988). It was also reported to bind to 

heterochromatin protein1 (HP1) and DNA (Mattout-Drubezki and Gruenbaum, 2003). LBR 

is essential for cholesterol synthesis (Tsai et al., 2016), and mutations in LBR are implicated 

in Pelger-Huet anomaly (Hoffmann et al., 2002) and Greenburg skeletal dysplasia 

(Waterham et al., 2003). The lamina associated polypeptide (Lap2b) is a single pass TA 
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protein, belongs to the Lap2 (thymopoietin) family of proteins that is involved in maintaining 

chromatin and nuclear architecture and transcriptional repression (Nili et al., 2001). Emerin 

was identified as a gene responsible for Emery-Dreifuss muscular dystrophy (Bione et al., 

1994). It is a well-characterized, single-pass, tail-anchored, membrane protein of the INM. 

MAN1, another integral-membrane protein, has two hydrophobic segments and a C-

terminal tail (Wu et al., 2002) and is related to several bone disorders (Hellemans et al., 

2004). The three proteins, Lap2, MAN1 and emerin, belong to a family of nuclear proteins 

with a ~40-residue LEM-domain (Wolff et al., 2001) and bind to the conserved chromatin 

protein barrier-to-autointegration factor (BAF) (Lee et al., 2001; Shumaker et al., 2001). 

 
Figure 6. Schematic view of integral membrane proteins anchored to the nuclear envelope. 
INM proteins including LBR, MAN1, emerin and Lap2b are depicted in the diagram based on their number 
of TMDs. All of them are associated with the underlying nuclear lamina. 

 

1.5. Traffic of integral membrane proteins to the INM  
Newly synthesized integral INM proteins are integrated into the ER membrane and 

afterwards traverse through the ONM to the INM via the NPC. To pass the central channel 

of the NPC, the nucleoplasmic domains of INM proteins would have to extend to the central 

channel from the membrane surface (Antonin et al., 2011). A size dependency of ~60 kDa 

for the nucleoplasmic domain for the passage through the central channel has been 

demonstrated. (Ohba et al., 2004; Soullam and Worman, 1995). Peripheral channels 

adjacent to the pore complex might also allow passage of membrane proteins (Maimon et 

al., 2012).  

Four models of INM targeting have been proposed: transport-factor mediated 

targeting, localization based on diffusion and retention, targeting via an INM signal 

sequence (sorting-motif) and transport through the NPC with the help of FG-motifs (Katta 

et al., 2014; Ungricht et al., 2015). In the transport-factor mediated model (Figure 7), INM 

proteins containing a NLS interact with a nuclear transport factor in the cytoplasm. The 

LBR MAN1
emerin Lap2ß

nuclear lamina

cytoplasm

nucleoplasm

ER

ONM

INM

NPC



  1. Introduction 

 15 

cargo-transport factor complex then passes through the NPC either through the central 

channel or via the peripheral channel. After reaching the nucleus, the transport factor is 

released from the cargo by Ran-GTP (Katta et al., 2014; Laba et al., 2014).  

 

 
Figure 7. Major models of membrane protein trafficking to the INM. 
The transport factor-mediated model uses similar principles of transport as those established for soluble 
proteins. Cargo proteins containing an NLS bind to transport factors and are transported through interaction 
with nucleoporins of the central channel. After reaching the nucleus, dissociation of the cargo-transport factor 
is mediated by RanGTP. The diffusion and retention model suggests that INM proteins laterally diffuse 
through the peripheral channel of the NPC, from the ER via the ONM to the INM. The proteins are retained 
at the INM by interacting with nuclear lamins or chromatin. 
 

It was previously reported that the yeast LEM-domain containing proteins Heh1 and 

Heh2 require active transport using karyopherin-a (Kap60) and karyopherin-b (Kap95), and 

also the RanGTPase cycle (King et al., 2006). An NLS was identified in Heh2 that binds to 

karyopherins, which was important for its INM localization (Liu et al., 2010; Meinema et al., 

2011). Many of the INM proteins may contain a putative NLS in their extraluminal domains, 

suggesting that this could be a widely used mechanism for INM targeting (Lusk et al., 2007). 

A possibility to consider with this targeting mechanism is whether INM proteins extend their 

NLSs through sideward openings of peripheral channel to provide a handle for transport-

factor mediated translocation through the central NPC channel (Turgay et al., 2010). 

Therefore, the functional and mechanistic contributions of these NLSs to the INM protein 

targeting process needs to be further investigated. A variant of transport factor mediated 

model was also described suggesting that INM proteins bind to soluble NLS-containing 

cargoes and ‘piggyback’ on their transport factor-mediated transport to reach the INM 

(Gardner et al., 2011). 

In the diffusion and retention model (Figure 7), INM proteins diffuse from the ER to 

the ONM, and from the ONM to the INM through the peripheral channels of the NPC. After 

reaching the INM, the proteins are retained by tethering to nuclear components like lamins 

or chromatin (Powell and Burke, 1990; Smith and Blobel, 1993; Soullam and Worman, 
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1995). This peripheral channel imposes a size limit of less than 40 kDa for the extraluminal 

domain of the INM proteins (Soullam and Worman, 1995). In line with this model, 

photobleaching studies performed on several INM proteins showed rapid diffusion from the 

ER to the INM (Ellenberg et al., 1997; Ostlund et al., 1999; Shimi et al., 2004; Ungricht et 

al., 2015; Wu et al., 2002; Zuleger et al., 2011). The mobility of the tested proteins was 

reduced at the INM compared to the ER, suggesting that they are associated with relatively 

immobile lamins or chromatin (Ungricht et al., 2015; Zuleger et al., 2011). 

The signal sequence or sorting motif model relies on small, charged motifs on the 

INM proteins that are recognized by membrane-associated, short isoforms of karyopherins 

(for example, Importin a-16). The transport occurs through the peripheral channel of the 

NPC and after reaching the nucleus, the protein release is stimulated by Nup50/Nup2, as 

reported for the yeast protein Heh2 (Braunagel et al., 2004; Braunagel et al., 2007; Saksena 

et al., 2004; Saksena et al., 2006). The fourth model is based on a systematic study 

performed on 15 different INM proteins suggesting that many INM proteins are enriched in 

FG-repeats that possibly allow for direct translocation of these proteins through the NPC 

and could use multiple overlapping pathways to reach INM (Katta et al., 2014; Zuleger et 

al., 2011). The transport models as well as the membrane-insertion pathways established 

for some well-characterized INM proteins are listed in Table 2. 
 
Table 2. Models of targeting of well-characterized INM proteins. 

Protein ER membrane 
insertion 

Nuclear import 
machinery 

Number 
of TMDs 

References 

LBR co-translational diffusion and retention, 

mobility dependent on 

RanGTP and Nup35 

8 (Braunagel et al., 2007; 

Smith and Blobel, 1993; 

Soullam and Worman, 

1993; Ungricht et al., 
2015; Zuleger et al., 

2011) 

Lap2b post-translational diffusion and retention 1 (Furukawa et al., 1995; 

Furukawa et al., 1998; 

Ohba et al., 2004; 

Zuleger et al., 2011) 

emerin post-translational diffusion and retention, 

mobility requires ATP 

1 (Berk et al., 2013a; 

Zuleger et al., 2011) 
Man1 co-translational diffusion and retention 2 (Wu et al., 2002) 

Heh1 

(yeast) 

co-translational transport factor 

mediated 

2 (King et al., 2006; 

Meinema et al., 2011) 



  1. Introduction 

 17 

Protein ER membrane 
insertion 

Nuclear import 
machinery 

Number 
of TMDs 

References 

Heh2 
(yeast) 

co-translational transport factor 
mediated 

2 (King et al., 2006; Liu et 
al., 2010; Meinema et 

al., 2011) 

 
1.6. Tools developed for assessing the molecular requirements of 

INM targeting 
Several tools have been developed in the past decade to elucidate the molecular 

requirements of INM protein translocation from the ER to the INM. The trafficking of 15 

integral INM proteins was compared by using FRAP (fluorescence recovery after 

photobleaching) assays (Zuleger et al., 2011). This study revealed that ATP and Ran 

dependence for translocation through the NPC are distinct for different proteins and are not 

essential for all INM proteins (Zuleger et al., 2011). 

An assay developed by Ohba et al. 2004 was used to analyze movement of 

membrane proteins from the ER to the INM in living cells. In this assay, constructs tagged 

to an FKBP (FK506 binding protein) and FRB ((FKBP12/rapamycin-binding) domain of 

human mTOR (mechanistic target of rapamycin)), which dimerize upon addition of 

rapamycin are used. The first component of the assay is a reporter protein consisting of the 

FRB domain, the membrane insertion domain of Lap2b and a GFP-moiety. The second one 

is a ‘trap’ consisting of FKBP domain and the lamin-binding domain of Lap2b. Upon 

treatment with rapamycin, the reporter accumulates at the NE. This reporter and trap 

system was used to monitor energy and temperature dependent targeting of Lap2b and 

demonstrated an impaired targeting of Lap2b with reduced temperature and ATP-depletion 

(Ohba et al., 2004). 

An INM protein targeting reporter system was developed in living mammalian cells. 

In this system, a pool of fluorescently tagged INM proteins is released from the ER by a 

self-cleaving retention domain (Boni et al., 2015). An inducible reporter system consisting 

of the Hepatitis C Virus NS3 protease (Soullam and Worman, 1995), a CMPK (chicken 

muscle pyruvate kinase) ER-retention domain and an NS3-cleavage site construct is tagged 

at the N-terminus of a minimal LBR (N-terminus and the first TMD, Ellenberg et al., 1997). 

The NS3 protease is induced by washout of its inhibitor, which removes the retention 

domain, releasing the protein from the ER and targeting it to the INM (Boni et al., 2015). 

Requirements of targeting of LBR were studied using this reporter in a siRNA gene-

screening platform, coupled with automated high resolution microscopy. This reporter 

system was further used for Lap2b and suggested that both LBR and Lap2b use diffusion 

and retention mechanism for localization to the INM (Boni et al., 2015). 
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Using human LBR, SUN2 and Lap2b as model substrates, a visual in vitro INM 

targeting assay was developed by Ungricht et al, 2015. In this system, two RFP-moieties 

are appended to the nucleoplasmic domain of the INM proteins, separated by a Tev 

(tobacco etch virus) protease site and a GFP-moiety at the C-terminus of the INM protein. 

Addition of TEV-protease or co-expression of CFP-Tev cleaves the two RFPs, releasing the 

much smaller protein from the ER to the INM (Ungricht et al., 2015). Using this targeting 

assay, it was shown that INM targeting is energy-dependent and that INM accumulation of 

proteins depends on a highly interconnected ER network and retention at the INM (Ungricht 

et al., 2015). In addition, an artificial reporter (AR) system was developed to recapitulate 

diffusion and retention-based INM targeting using the FKBP-FRP dimerization by 

rapamycin approach (Ungricht et al., 2015). Using the AR system, it was observed that 

energy depletion affected the INM accumulation of reporter protein containing an artificial 

TMD domain, WALP17 (Ungricht et al., 2015). 

Another approach to assess the requirements for targeting of INM proteins is the 

RUSH (retention using selective hooks) system, which was originally designed to study 

kinetics of proteins in the secretory pathway (Boncompain et al., 2012). This system was 

modified by Pawar et al, 2017, to trap INM proteins in the ER by using a SBP (streptavidin 

binding peptide) tag and STIM1-NN (a microtubule binding deficient mutant of ER protein 

STIM1) (Boncompain et al., 2012). By addition of biotin, release and accumulation of INM 

proteins at the NE was monitored (Pawar et al., 2017). Using the RUSH system together 

with INM targeting assays (Ungricht et al., 2015), it was reported that Atlastins, a family of 

membrane-bound GTPases of the ER, influence the efficient targeting of proteins to the 

INM (Pawar et al., 2017). 

 

1.7. The tail anchored protein emerin 
Emerin is predominantly anchored at the INM, where it binds to components of the 

nuclear lamina (Laba et al., 2014; Ostlund and Worman, 2003). Emerin belongs to the family 

of LEM-domain proteins, and mutations in the gene lead to an X-linked form of Emery-

Dreifuss muscular dystrophy, characterized by muscle weakness and cardiomyopathic 

abnormalities (Bione et al., 1994). Human emerin is a serine-rich protein of 254 amino acids, 

consisting of an N-terminal domain and a single TMD of 21 residues followed by 11 residues 

at the C-terminus (Bione et al., 1994). Emerin and another LEM- domain containing protein, 

Lap2b, are homologous at their TMDs, and both are known to interact with the DNA-bridging 

protein BAF (Furukawa et al., 1998; Lee et al., 2001). A significant fraction of emerin was 

also observed in the ONM and peripheral ER, where it interacts with the centrosome 

(Salpingidou et al., 2007). 
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Even though emerin is not essential for cell viability in humans (Harborth et al., 

2001), diverse functional roles have been implicated in gene regulation, mRNA splicing, 

signaling pathway regulation and maintaining the nuclear architecture (Holaska and Wilson, 

2007). Emerin occurs in four different phosphorylated forms, three of which play a role in 

cell-cycle dependent events (Ellis et al., 1998). Emerin was also reported to play a role in 

nuclear calcium transients and nuclear invagination (Shimojima et al., 2017). 

Emerin is inserted into the ER membrane post-translationally, mediated by the 

TRC40 pathway (Pfaff et al., 2016). Once inserted, emerin diffuses through the ER to the 

INM as shown by fluorescence loss in photobleaching (FLIP) and FRAP studies, since its 

cytoplasmic domain is small (25 kDa) (Ostlund et al., 1999). Emerin also lacks FG-repeats, 

and its predicted NLS (residues 35-47) does not seem to be required for nuclear import 

(Berk et al., 2013a; Tsuchiya et al., 1999). At the INM, emerin is retained and accumulated 

by binding to lamins, and knocking down lamin A redistributes emerin to the ER, further 

suggesting that lamin A serves as an emerin receptor at the INM (Sullivan et al., 1999). 

Accordingly, the diffusional mobility of emerin at the NE was observed to be three times 

slower than at the ER by FRAP assays (Ostlund et al., 1999). In the absence of lamin A, 

emerin was more mobile and was evenly distributed over the NE and ER, supporting the 

diffusion and retention model for emerin (Ostlund et al., 1999; Ostlund et al., 2006). It was 

also reported that the mobility of emerin required ATP both at the level of ER and also INM 

(Zuleger et al., 2011). 

 

1.8. The tail anchored protein VAPB 
The human vesicle associated membrane protein-associated protein (VAP) family 

was initially identified as homologous to the protein VAP33 from Aplysia californica (Skehel 

et al., 1995). Two protein coding VAP genes were identified in humans, VAPA and VAPB, 

the latter with an alternative splice variant (VAPC). The resulting proteins are shown in 

Figure 8A. VAPA and VAPB are ~60 % identical in sequence. They contain an N-terminal 

major-sperm protein domain (MSP), a coiled-coil domain and a single TMD defining it a TA 

protein (Figure 8A; Nishimura et al., 1999; Nishimura et al., 2004). VAPC lacks the coiled-

coil domain and the TMD (Nishimura et al., 1999). The MSP domain consists of seven-

stranded immunoglobulin-like b-sheet domains (Figure 8B; Shi et al., 2010). A mutation in 

this domain, P56S, leads to a familial form of amyotrophic lateral sclerosis (ALS) disease, 

which causes the death of motor neurons and muscular atrophy (Nishimura et al., 2004). A 

second mutation in this gene resulting in a T46I mutation was also reported to cause ALS 

in a mutation screen of genes responsible for familial ALS (Figure 8B) (Chen et al., 2010).  
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Figure 8. Domain organization of the VAPs and crystal structure of the MSP domain. 
(A) Schematic representation of the proteins VAPB, VAPA and the protein resulting from the alternative
splice variant of the gene VAPB, VAPC. The major sperm domain (MSP), coiled-coil (CC) and
transmembrane domain (TMD) are indicated. (B) Crystal structure of the MSP domain of human VAPB
(modified from Song, 2013). The P56S and T46I mutations causing ALS are represented as spheres. The
seven Immunoglobulin b-strands are represented as arrows. The last 20 residues at the C-terminus
represented in turquoise are absent in VAPC (Song, 2013).

The MSP domain is known to mediate interactions with the FFAT motif (two-phenlyalanines 

in an acidic tract) of lipid binding proteins (Loewen and Levine, 2005; Murphy and Levine, 

2016). The coiled-coil domain mediates oligomerization of VAPB and a GXXXG 

dimerization motif in the TMD mediates self-association of the TMD (Kim et al., 2010). 

VAPB has been implicated in the regulation of diverse cellular processes (Lev et al., 

2008). These include membrane trafficking (Skehel et al., 1995; Soussan et al., 1999), 

regulation of lipid transport and metabolism (Kagiwada and Zen, 2003; Kawano et al., 

2006), the unfolded protein response (Kanekura et al., 2006; Kanekura et al., 2009; Walker 

and Atkin, 2011) and autophagosome biogenesis (Zhao et al., 2018), microtubule 

organization (Amarilio et al., 2005; Pennetta et al., 2002; Skehel et al., 2000), calcium 

homeostasis (De Vos et al., 2012; Mórotz et al., 2012), synaptic activity (Gómez-Suaga et 

al., 2019; Pennetta et al., 2002), ephrin-induced signaling modulation (Mórotz et al., 2012; 

Tsuda et al., 2008) and cardiac and neuronal pacemaker channel function (Silbernagel et 

al., 2018). Furthermore, the P56S mutation in VAPB has been reported to cause nuclear 

envelope defects and block the transport of nucleoporins and emerin to the NE (Tran et al., 

2012). Recently, VAPB has also been connected to the nuclear egress stage of the 

replication of the Herpes Simplex virus (Saiz-Ros et al., 2019). 

Due to its main localization in the ER, VAPB acts as receptor for many cytoplasmic 

proteins (Murphy and Levine, 2016). The interactome of VAPB is very diverse, with 

components of many cellular pathways binding it to access the ER. So far nearly 100 

proteins have been identified as interacting partners of VAPB and/or VAPA, of which ~50% 

interact via the MSP-FFAT domains (Huttlin et al., 2015; Murphy and Levine, 2016; Slee 

and Levine, 2019). VAPB is involved in forming ER contacts with multiple organelles by 

membrane contact sites (MCSs; Figure 9; De Vos et al., 2012; Johnson et al., 2018; Zhao 

et al., 2018). VAPB was reported to interact with voltage-gated K+-channels (Kv2) at the 
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plasma membrane in brain neurons via a non-canonical FFAT motif present in C-terminus 

of the channel (Johnson et al., 2018; Kirmiz et al., 2018). The late-endosomal membrane-

anchored protein StAR related lipid transfer domain 3 (STARD3) interacts with VAPB by its 

FFAT domain at the ER-endosome junction (Alpy et al., 2013). VAPB also interacts with 

multiple autophagy proteins, focal adhesion kinase family-interacting protein of 200 kDa 

(FIP200) and Unc-51-like autophagy-activating kinase 1 (ULK1) through FFAT motifs for 

autophagosome biogenesis (Zhao et al., 2018). Tyrosine phosphatase-interacting protein 

51 (PTPIP51) and VAPB form a mitochondria-ER tethering complex to regulate association 

between the two organelles (De Vos et al., 2012; Stoica et al., 2014), whereas VAPB 

interacts with Acyl-CoA-binding domain proteins 5 and 4 (ACBD5 and ACBD4) to mediate 

membrane association between the ER and peroxisomes (Costello et al., 2017a; Costello 

et al., 2017b). The ER-Golgi recycling proteins YIF1A and YIF1B were reported to interact 

with VAPB to regulate membrane delivery into dendrites (Kuijpers et al., 2013) and the 

association of oxysterol-binding proteins (OSBPs) with VAPB mediates coordinated lipid 

transfer at the ER-Golgi junctions (Moustaqim-Barrette et al., 2014; Peretti et al., 2008; 

Venditti et al., 2019). 
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Figure 9. Intracellular membrane contact sites formed by VAPB. 
(previous page) Schematic representation of membrane-contact sites formed between VAPB and other 
membrane proteins. VAPB mediates association with the plasma membrane (Kv2 channel), late endosome 
(STARD3), mitochondria (PTPIP51), Golgi (OSBPs, YIF1A) and peroxisomes (ACBD5, ACBD4). 

 

1.9. Proximity based labeling methods for interactome mapping 
Various methods have been developed for mapping protein-protein interactions. 

Complementary to affinity purification of protein complexes, proximity-based labeling 

approaches combined with mass-spectrometry have emerged as a powerful technique to 

map the interactomes of proteins. These techniques are based on the fusion of an enzyme, 

either a biotin ligase or a peroxidase, to a protein of interest, followed by addition of an 

enzyme-substrate (biotin or a phenolic biotin derivative) to enable covalent labeling of 

proteins in proximity to the protein of interest. These biotinylated proteins are then isolated 

by affinity purification using immobilized streptavidin and subjected to quantitative 

proteomic approaches (Gingras et al., 2019; Kim and Roux, 2016; Trinkle-Mulcahy, 2019). 

Proximity labeling methods have several key advantages over affinity purification 

approaches. The labeling can be performed in vivo and it helps to detect transient 

interactions that are not captured by standard co-affinity purification approaches. In addition 

it helps to study interactions among membrane proteins that are difficult to be identified 

using pull-down approaches. It also helps to avoid post-lysis artifacts usually associated 

with biochemical purification steps (Gingras et al., 2019).  

Biotin ligases and peroxidases belong to the two main classes of enzymes used for 

proximity-dependent labeling (Table 3). Based on the enzyme used in proximity labeling 

approaches, protein associations over time or a snapshot of protein associations can be 

studied in vivo (Martell et al., 2012; Roux et al., 2012). 

 

 Biotin ligase-based proximity labeling 
The best studied biotin ligase is E. coli derived BirA, which facilitates biotinylation of 

a single protein, BCCP (AccB) subunit of acetyl-CoA carboxylase, on a lysine residue of 

acetyl-CoA carboxylase. When the protein is incubated with BirA, biotin and ATP, 

biotinylation occurs, which involves reactive biotinyl-5’-AMP (bioAMP). BioAMP is retained 

at the active site by BirA and mediates transfer to a lysine on the substrate protein (Choi-

Rhee et al., 2004). A proximity-dependent biotinylation approach termed ‘proximity-

dependent biotin identification’ (BioID) that uses a mutant form of BirA (BirA*; mutation in 

biotin- and bioAMP-binding domain of BirA) was developed. The BirA* was tagged to a 

protein of interest, resulting in biotinylation of neighboring proteins (Choi-Rhee et al., 2004; 

Roux et al., 2012). The labeling time of BioID-fusion protein is 15-18 hours, induced by 

addition of biotin, with a labeling radius of less than 20 nm (Kim et al., 2014). Biotinylated 

proteins are captured on a streptavidin based affinity matrix and analyzed by mass 
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spectrometry (Kim and Roux, 2016; Roux et al., 2012; Roux et al., 2013) (Figure 10A). BioID 

was first applied to study interactions of insoluble lamin A, revealing interactions with 

proteins of the INM and NPC (Roux et al., 2012).  

One of the limitations of BioID is the size of the biotin ligase, which is 35 kDa. Such 

a large domain might affect the localization or function when fused to the protein of interest. 

To overcome this, a smaller ligase (27 kDa) from Aquifex aeolicus was used in an improved 

assay termed as BioID2 (Kim et al., 2016). It was found that BioID2 required less biotin for 

efficient labeling and the biotinylation range of BioID2 could be modulated by using flexible 

linkers (Kim et al., 2016). The Khavari lab engineered a new mutant of BirA (28kDa) from 

Bacillus subtilis termed as BASU that was used to detect RNA-protein interaction in living 

cells (Ramanathan et al., 2018). Three mutations were introduced in the bioAMP-binding 

domain of BirA* that resulted in >1000-fold faster kinetics and >30-fold increased signal-to-

noise ratio compared to BioID2 (Ramanathan et al., 2018). 

Another drawback of the BioID method is its long labeling time (15-18 hours), which 

was circumvented by the development of TurboID and miniTurbo in yeast (Branon et al., 

2018). The biotin ligase used in TurboID is the same as in BioID but has 14 mutations in 

the bioAMP-binding domain that greatly increase its labeling efficiency. MiniTurbo has 12 

mutations in the bioAMP-binding domain of BirA* and a deletion of N-terminal DNA-binding 

domain that reduced the size of the tag to 28 kDa. Both tags enable a labeling time of 10 

minutes and greater efficiency than BioID and BioID2 (Branon et al., 2018). As an extension 

of the biotin ligase based proximity labeling, split-BioID was developed (De Munter et al., 

2017; Schopp et al., 2017). BirA* was split into two fragments that are compatible with 

protein-complementation assays and the N- and C-terminal fragments fused to two different 

proteins. Only if the two proteins associate, the activity of the ligase is regained by the 

reconstitution of both fragments (De Munter et al., 2017; Schopp et al., 2017). Split-BioID 

was used to map the interactome of protein phosphatase complexes (De Munter et al., 

2017) and miRISC (microRNA-induced silencing complex) (Schopp et al., 2017). More 

recently, the 2C-BioID method was developed, in which a rapamycin analogue is used to 

initiate the dimerization of the biotin protein ligase and the protein of interest (Chojnowski 

et al., 2018). 

Though mutations in BirA have improved the efficiency of tagging, biotin-based 

proximity has certain limitations. Biotin used in the method may not be accessible to the 

secretory pathway even though it is actively imported into the cytoplasm and freely diffuses 

into the nucleus (Zempleni, 2005). Moreover, the BioID methods have long labeling times 

in general, which prevent the analysis of events that have a short time duration, and the 

long labeling time may affect the function of the protein. As for all proximity labeling 
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approaches, BioID detects proteins in close proximity that may not necessarily be the direct 

interacting partners. 

 

 
Figure 10. Proximity based labeling approaches to study protein interactions. 
(A) BioID uses biotin ligase fused to a protein of interest (bait). The ligase catalyzes the conversion of biotin 
to biotinyl-5’-AMP (bioAMP), which leads to covalent tagging of lysine residues in the proteins in proximity 
to the bait. (B) The APEX approach is based on the expression of ascorbate peroxidase fused to the protein 
of interest (bait). The peroxidase catalyzes the conversion of biotin-phenol to the biotin-phenoxyl radical, 
which in the presence of H2O2 covalently labels tyrosine residues of proteins in close proximity. 

 

 Peroxidase based proximity labeling 
Instead of biotin ligases, a more rapid approach of proximity labeling was obtained using 

the enzymatic activity of peroxidases. Peroxidases generate short-lived free radicals from 

molecules such as phenolic derivatives and H2O2  (Rhee et al., 2013a; Gross and Sizer, 

1959). An engineered monomeric ascorbate peroxidase (APEX) from plants was 

developed, which was initially used in electron microscopy (EM) studies (Martell et al., 

2012). APEX, used as an EM tag, is fused to a protein of interest and expressed in cells, 

which were fixed and overlaid with a solution of DAB (diaminobenzidine). When H2O2 is 

added, APEX catalyzes the polymerization of DAB and recruits electron-dense osmium 

tetroxide generating EM contrast (Martell et al., 2012). For studying protein-protein 

interactions in vivo, cells expressing a version of APEX, either fused to a protein of interest 

or directly targeted to a cellular organelle, are treated with biotin-phenol for 30 minutes, 

followed by labeling with H2O2 for one minute. APEX catalyzes the conversion of biotin-

phenol to the biotin-phenoxyl radical that covalently tags tyrosine residues of endogenous 

proteins that are within a range of ~20 nm to APEX (Rhee et al., 2013a; Figure 10B). The 

biotinylated proteins are later enriched using streptavidin beads and identified using mass 

spectrometry (Rhee et al., 2013a). The enzyme tag can be fused to the N- or C-terminus of 

the protein of interest and is active in different cellular compartments. 
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Table 3. Overview of enzyme tags developed for BioID and APEX-based proximity 
labeling methods. 

Method Enzyme Source Labeling 
time 

Tag size 
(kDa) 

Reference 

BirA* Biotin ligase E. coli 15-18 hours 35 (Roux et al., 
2012) 

BioID2 Biotin ligase A. aeolicus 15-18 hours 27 (Kim et al., 2016) 

TurboID Biotin ligase E. coli 10 minutes 25 (Branon et al., 
2018) 

Mini Turbo Biotin ligase E. coli 10 minutes 28 (Branon et al., 
2018) 

2C-BioID Biotin ligase E. coli 15-18 hours 35 (Chojnowski et 
al., 2018) 

BASU Biotin ligase B. subtilus 15-18 hours 28 (Ramanathan et 
al., 2018) 

APEX Ascorbate 
peroxidase 

Pea 1 minute 28 (Martell et al., 
2012; Rhee et al., 
2013a) 

APEX2 Ascorbate 
peroxidase 

Soybean 1 minute 28 (Hung et al., 
2017; Lam et al., 
2015) 

 

A catalytically more active version of APEX, called APEX2 was developed (Lam et 

al., 2015). APEX-based methods are capable of generating a snapshot of interacting 

proteins with a rapid labeling time of one minute in contrast to BioID that requires 15-18 

hours of labeling. The APEX or APEX2 based methods have been used to map proteomes 

of the mitochondrial matrix and intermembrane space in mammalian cells (Hung et al., 

2014; Hung et al., 2017; Lam et al., 2015; Rhee et al., 2013b), primary cilia (Mick et al., 

2015), ER-PM junction (Jing et al., 2015), proteins engaged by G-protein coupled receptors 

(Lobingier et al., 2017; Paek et al., 2017) and also high resolution interactome mapping by 

EM (Lam et al., 2015; Martell et al., 2012). Similar to the split-BioID approach, a fragment 

complementation of APEX2-based proximity labeling called spilt-APEX2 was developed 

(Han et al., 2019; Xue et al., 2017). Two inactive fragments of APEX2, an N- and a C-

terminal fragment, reconstitute to an active peroxidase only upon co-localization of both 

fragments. The split-APEX2 reconstitution was demonstrated on engineered RNA motifs 

and at mitochondria-ER contact sites (Han et al., 2019).  

As an alternative to APEX, expression of horseradish peroxidase (HRP) fusion 

proteins or HRP-conjugated antibodies called ‘enzyme-mediated activation of radical 

source’ (EMARS) was also employed for proximity labeling (Jiang et al., 2012). In the 

presence of biotin and H2O2, active radical species are generated by HRP and proteins are 
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labeled within a radius of ~200 nm. Since HRP is a larger tag (44 kDa), it has been used 

primarily to study cell surface proteins like glycosylphosphatidylinositol-anchored proteins 

and receptor tyrosine kinases (Jiang et al., 2012). Another HRP-based approach termed 

‘selective proteomic proximity assay using tyramide’ (SPPLAT) uses ligand or antibody 

conjugated HRP with a biotin-tyramide compound and H2O2 to label neighboring proteins 

on the cell surface (Li et al., 2014). Very recently, HRP was used to study intracellular 

antibody-based proteomic labeling in fixed cells and tissues. In this approach, biotin-phenol 

and H2O2 were added to cells stained with primary and HRP-coupled secondary antibody 

to induce biotinylation. This has the advantage of avoiding fusion and overexpression 

artifacts but requires a monospecific primary antibody (Bar et al., 2018). 

APEX-based methods are advantageous in studying compartmental proteomics 

with faster kinetics. However, even with these advantages, there are certain limitations. The 

use of H2O2 in labeling could induce oxidative damage on some signal transduction 

pathways and organelle dynamics (Gerich et al., 2009; Lam et al., 2015). It also has to be 

noted that peroxidase based labeling is specific to electron rich amino acids like tyrosine, 

which are of low abundancy and might not be exposed to the surface and thus not be 

available for labeling (Echols et al., 2002). These limitations could be circumvented by 

designing more specific control experiments or by physically separating the enzyme from 

the protein of interest as performed by 2C-BioID (Chojnowski et al., 2018). Like any other 

proximity labeling approaches, APEX and APEX2 detects only proximate proteins and not 

necessarily direct protein-protein interactions. Standard biochemical approaches could be 

used for validating protein interactions with the possible caveat of losing interactions under 

harsh buffer conditions or due to insolubility. The use of methods like immunofluorescence 

assays, fluorescence complementation assays (Cooper et al., 2015; Snider et al., 2013), or 

proximity ligation assays (Chen et al., 2014) could also validate the results obtained even 

though these also provide proximity not direct interactions between proteins. 
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1.10. Aim of this work 
Most of the integral membrane proteins specific to the INM have been identified by 

proteomic approaches, including a few proteins that belong to a specific class known as TA 

proteins. Some of these proteins are known to localize in the ER and are also enriched in 

the INM. However, how these proteins are inserted into the ER after their synthesis in the 

cytoplasm and targeted to the INM is less studied. Furthermore, the interactome of these 

proteins is poorly defined. The aim of this thesis is to study the biogenesis of TA proteins, 

the molecular requirements of targeting of TA proteins to the INM and finally to map the 

interaction repertoire of these proteins in different cellular compartments.  

Two model TA proteins were used in this study: an ER protein, VAPB, and a well-

established INM protein, emerin. The first part of this study focuses on the membrane 

biogenesis of VAPB, concentrating on TRC40-mediated membrane insertion. Emerin was 

used as a positive control for insertion studies. 

In the second part of this thesis, the localization of VAPB and its interactome was 

studied in detail. VAPB is a protein that is involved in interactions at different contact sites. 

To study the interactome of VAPB at different intracellular localizations, a proximity based 

labeling approach was developed. 

The third part of the thesis focuses on the diffusional mobility of different integral 

membrane proteins of the INM. Fluorescence recovery after photobleaching (FRAP) assays 

were used to study the molecular requirement of targeting of INM proteins, focusing on 

emerin as a model protein. Together, this work should provide a better understanding of the 

journey of TA proteins from the ER to the INM after their synthesis in the cytoplasm. 

Deciphering the interactome of these proteins may further help to understand their 

physiological functions. 
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 : Materials and Methods 
 

2.1. Materials 

 Software 
Software Company 
Adobe Illustrator CC 2020 Adobe 
Axiovision (LE) Rel 4.5 Carl Zeiss 
Cell Profiler 2.2 Broad Institute 
GraphPad Prism 5.03 GraphPad Software Inc. 
Image Reader LAS-3000 Fujifilm 
ImageStudioLite 5.25 LI-COR 
Lasergene DNASTAR 
LSM Image Browser Carl Zeiss 
Mendeley Desktop Mendeley 
NanoDrop 2000  Thermo Scientific 
Perseus Max Plank Institute of Biochemistry 
Zen 3.1 (blue edition) Carl Zeiss 

 

 Equipment 
Equipment Company 
Agarose gel documentation GelSTICK 
touch 

INTAS Science Imaging Instruments 

Autoclave DX-200 Systec 
CASY 1 Schärfe System 
Cell culture hood Herasafe™ KS Thermo Scientific 
Cell culture incubator Heracell™ 150i Thermo Scientific 
Centrifuge 5415R Eppendorf 
Centrifuge 5424 Eppendorf 
Centrifuge Allegra® X-15R with rotor 
SX475 

Beckman Coulter 

Centrifuge AvantiTM J-30I , rotor JA30.50Ti Beckman Coulter 
Centrifuge J6-MI, rotor JS 4.2 Beckman Coulter 
Confocal microscope LSM 510 Carl Zeiss 
Dual gel caster for mini vertical units Hoefer 
Emulsiflex-C3 Avestin 
Fluorescence microscope Axioscope 2 Zeiss 
Incubator Heraeus function line Heraeus 
Incubator shaker INNOVA 4430 New Brunswick Scientific 
LAS-3000 documentation system Fujifilm 
Mini Trans-Blot® Cell Bio-Rad 
Odyssey® Sa Infrared Imaging System LI-COR 
Olympus CK40 Culture Microscope Olympus 
Spectrophotometer NanoDrop 2000c Thermo Scientific 
Thermocycler FlexCycler2 Analytik Jena AG 
Thermocycler Tprofessional Biometra 
Thermomixer comfort Eppendorf 
Thermomixer compact Eppendorf 
UV sterilizer Biometra 
Vertical Electrophoresis unit Hoefer 
Vortexer MS2 Minishaker IKA 
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 Consumables 
Consumable Company 
5 ml Polystyrene Round-Bottom Tubes BD Biosciences 
Amersham Hybound Nitrocellulose 
Blotting Membrane 

GE Healthcare 

Amersham Protran 0.45 µm NC GE Healthcare 
Cell culture consumables Sarstedt,Nalge Nunc International, greiner 

bio-one 
Cell culture plastic ware Sarstedt, greiner bio-one 
Dual gel caster for Mini vertical units Hoefer 
Lab Tek chambered coverglass 8-well Thermo Scientific 
Microscope cover slips (12 mm Ø) Marienfeld 
Microscope slides (76x26 mm) Glaswarenfabrik Karl Hecht GmbH & Co KG 
Minisart RC 15 single use syringe filters 
(0.45 µm, 0.20 µm) 

Sartorius Stedim Biotech 

NuPAGE® Novex® 4-12% Bis-Tris 
Protein Gels 

Thermo Scientific 

Parafilm ‘‘M‘‘ Bemis Company Inc. 
Reaction tubes (1.5, 2 mL) Sarstedt, greiner bio-one 
Spectra/Por® Dialysis Membrane Spectrum Laboratories 
Syringes (5 ml) and needles(27G X 4/5’’) B. Braun, BD Discardit™ II 
Whatman gel blotting paper GE Healthcare 

 

 Kits 
Kit Company 
Duolink® In Situ Detection Reagents Red  Sigma-Aldrich 
Duolink® In Situ Kit Sigma-Aldrich 
NucleoBond™ Xtra Midi Macherey-Nagel 
NucleoSpin® Gel and PCR Clean-up Macherey-Nagel 
NucleoSpin® Plasmid Macherey-Nagel 
Pierce® BCA Protein Assay Kit  Thermo Scientific 
T7 TnT® Quick Coupled 
Transcription/Translation System 

Promega 

 

 Chemicals and reagents 
All standard chemicals and solvents not listed here were purchased from AppliChem 

GmbH (Darmstadt), Carl Roth GmbH + Co. KG (Karlsruhe), Serva Electrophoresis GmbH 

(Heidelberg), Sigma-Aldrich (Taufkirchen) or Merck (Darmstadt). 

 

Chemical Company 
b-Mercaptoethanol Roth 
Acrylamide 4K Solution (30%) AppliChem 
Adenosine 5’-triphosphate disodium salt 
hydrate (A3377) 

Sigma-Aldrich 

Amylose Resin High Flow New England Biolabs 
Biotin-phenol Iris Biotech 
Bovine Serum Albumin (BSA) (20 mg/ml) Thermo Scientific 
Coomassie Plus™ Protein Assay Reagent Thermo Scientific 
D-Maltose  Serva Electrophoresis GmbH 
DAPI (D9542) Sigma-Aldrich 
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Chemical Company 
Desthiobiotin Sigma-Aldrich 
Digitonin Calbiochem 
dNTP Set, 100 mM Solutions Thermo Scientific 
Dithiobis[succinimidyl propionate] (DSP)  Thermo Scientific 
FBS Superior Biochrom 
GeneRuler 100bp DNA Ladder Thermo Scientific 
GeneRuler 1kb DNA Ladder Thermo Scientific 
Gibco® DMEM (1x) Thermo Scientific 
Gibco® DMEM for SILAC, without L-Glu, L-
Arg, L-Lys 

Thermo Scientific 

Gibco® Opti-MEM® (1x) Thermo Scientific 
Gibco® Penicillin Streptomycin (Pen Strep) Thermo Scientific 
Glutathione Sepharose 4 Fast Flow GE Healthcare 
Guanosine-5’-triphosphate sodium salt 
hydrate (51120) 

Sigma-Aldrich 

HeLa cell Cytosol Ipracell 
Hydrogen peroxide (35%) Sigma-Aldrich 
Imidazole Roth 
Immobilon™ Western Chemiluminescent 
HRP Substrate 

Millipore 

Isopropyl-ß-D-1-thiogalactopyranoside 
(IPTG) 

Thermo Scientific 

L-Arginine Sigma-Aldrich 
L-Arginine.HCl 13C15N-labeled Silantes 
L-Glutamine 200 mM Thermo Scientific 
L-Lysine Sigma-Aldrich 
L-Lysine.HCl 13C15N-labeled Silantes 
Lipofectamine® 2000 RNAiMAX Thermo Scientific 
MOWIOL® 4-88 Calbiochem 
NeutrAvidin® Agarose Resin Thermo Scientific 
Ni-NTA Agarose Qiagen 
NuPAGE® MES SDS Running Buffer (20x) Thermo Scientific 
PageRuler Plus Prestained Protein Ladder Thermo Scientific 
PageRuler Unstained Protein Ladder Thermo Scientific 
Paraformaldehyde solution (16%) EM 
grade 

Electron Microscopy Sciences 

Pierce® 660 nm Protein Assay Reagent  Thermo Scientific 
Poly-L-lysine solution 0.1% (w/v) Sigma-Aldrich 
Protease Inhibitor cocktail tablets Sigma-Aldrich 
Protein A-Agarose Roche 
Phenyl Sepharose® 6 Fast Flow Sigma-Aldrich 
Rapamycin 2.5 mg/ml in DMSO Sigma-Aldrich 
SafeView™ Classic nucleic acid stain Applied Biological Materials Inc. 
Trolox (6 Hydroxy 2,5,7,8 tetramethyl 
chromane 2 carboxylic acid) 

Sigma-Aldrich 

 

 Enzymes 
Enzyme Company 
Benzonase Sigma-Aldrich 
FastAP Thermosensitive Alkaline 
phosphatase 

Thermo Scientific 

Pfu Ultra II polymerase Agilent 
Phusion High-Fidelity DNA Polymerase Thermo Scientific 
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Enzyme Company 
PNGase F New England Biolabs 
Restriction digestion enzymes Thermo Scientific 
T4 DNA ligase Thermo Scientific 
Trypsin/ EDTA 0.25% (1X) Thermo Scientific 

 

 Stock solutions 
Stock solution Composition 
1,4-Dithiothreitol (DTT) 1 M in H2O 
Ammonium persulfate (APS) 10% APS (Sigma) in H2O 
Ampicillin 100 mg/ml in H2O 
Adenosine triphosphate (ATP) 100 mM ATP in 100 mM Mg(OAc)2, 20 

mM HEPES pH7.4 
CaCl2 buffer 250 mM CaCl2 H2O 
Creatine phosphokinase 2000 U/ml in 50% glycerol, 20 mM HEPES 

pH 7.4 
Creatine phosphate 80 mg/ml in H2O 
Cytosol 14.321 mg/ml in Transport buffer 
Digitonin 10% (w/v) in DMSO 
Isopropyl-b -D-1-thiogalactopyranoside 
(IPTG) 

1 M in H2O 

Kanamycin 50 mg/ml in H2O 
Leupeptin/Pepstatin 1 mg/ml each, in DMSO 
Phenylmethylsulfonyl fluoride (PMSF) 100 mM in 2-propanol 
WGA (wheat germ agglutinin/lectin) 2 mg/ml in Transport buffer 

 

 Buffers 
Buffer Composition 
1X TBST 50 mM Tris, pH 7.5, 150 mM NaCl, 0.05% 

(v/v) Tween-20 
Coomassie de-staining solution 10% acetic acid 
Coomassie fixation solution 40% ethanol, 10% acetic acid 
Coomassie staining solution 5% aluminum sulfate-(14-18)-hydrate, 10% 

ethanol, 2% ortho-phosphoric acid, 0.02% 
CBB-G250 

Cross-linking quenching buffer 20 mM Tris-HCl, pH 7.4 
DNA loading buffer (6X) 0.2% bromophenol blue, 0.2% xylene 

cyanole, 60% glycerol, 60 mM EDTA 
GST buffer 50 mM Tris, pH 6.8, 300 mM NaCl, 1 mM 

MgCl2, 2 mM DTT, 0.1 mM PMSF, 1 
μg/mL of each AP and LP 

HEPES (2X) buffer 50 mM HEPES, 250 mM NaCl, 1.5 mM 
Na2HPO4, pH 6.98 

His lysis buffer 50 mM Tris HCl, pH 7.5, 500 mM NaCl, 20 
mM imidazole, 5 mM b-Mercaptoethanol 

Homogenization buffer 10 mM HEPES, pH 7.8, 10 mM KCl, 1.5 
mM MgCl2 0.1 mM EGTA containing 1 mM 
DTT, 1 mM PMSF, 1 μg/ml each of 
pepstatin, leupeptin and aprotinin. 

IP lysis buffer 0.5% sodium deoxycholate, 50 mM Tris-
HCl, pH 7.4, 150 mM NaCl, 0.25% SDS, 
and 0.5% Triton X-100 with Complete 
protease inhibitor mixture 
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Buffer Composition 
IP wash buffer 10 mM HEPES, 150 mM NaCl, 1 mM 

EGTA, 0.1 mM MgCl2, 0.1% Triton X-100, 
and Complete protease inhibitor mixture 

Laemmli running buffer (10X) 250 mM Tris, 1.92 M glycine, 0.5% SDS 
LB agar plates LB supplemented with 1.5% (w/v) bacto-

agar 
LB-medium 1% (w/v) bacto-tryptone, 0.5% (w/v) yeast 

extract, 1% (w/v) NaCl, pH 7.0 
NP-40 lysis buffer 1% NP-40, 50 mM Tris HCl, pH 8, 5 mM 

EDTA, 5 mM EGTA, 15 mM MgCl2, 60 mM 
ß-glycerolphosphate, 0.1 mM NaVO4, 200 
mM NaCl, 2 mM DTT, and aprotinin, 
leupeptin, PMSF (1 μg/ml) 

PBS (10X) 1.37 M NaCl, 27 mM KCl, 100 mM 
Na2HPO4, 18 mM KH2PO4,  pH 7.5 

PLA Wash Buffer A 0.01 M Tris, pH 8.0, 0.15 M NaCl, 0.05% 
Tween-20 

PLA Wash Buffer B 0.2 M Tris, pH 7.5, 0.1 M NaCl 
PonceauS staining solution 0.5% PonceauS in 1% acetic acid 
RAPIDS quenching buffer 5 mM Trolox, 10 mM NaN3, and 10 mM 

sodium ascorbate in PBS 
RAPIDS wash buffer 1 50 mM HEPES, pH 7.4, 0.1% (w/v) sodium 

deoxycholate, 1% (v/v) Triton X-100, 500 
mM NaCl, 1 mM EDTA 

RAPIDS wash buffer 2 50 mM Tris HCl, pH 8.0, 250 mM LiCl, 
0.5% (v/v) Nonidet P-40, 0.5% (w/v) 
sodium deoxycholate, 1 mM EDTA 

RAPIDS wash buffer 3 50 mM Tris HCl, pH 7.4, 50 mM NaCl 
RIPA buffer 50 mM Tris HCl, pH 7.4, 5 mM Trolox, 

0.5% (w/v) sodium deoxycholate, 150 mM 
NaCl, 0.1% (w/v) sodium dodecyl sulfate 
(SDS), 1% (v/v) Triton X-100, 1 mM 
phenylmethanesulfonyl fluoride, 10 mM 
NaN3, 10 mM sodium ascorbate, aprotinin, 
leupeptin, and pepstatin (1 μg/ml) 

SDS sample buffer (4X) 125 mM Tris, pH 6.8, 4% SDS, 0.02% 
Bromophenol blue, 10% glycerol 

SOC-medium 2% (w/v) tryptone, 0.5% (w/v) yeast 
extract, 10 mM NaCl, 2.5 mM KaCl, 10 mM 
MgCl2, 10 mM MgSO4, 0.36% (w/v) 
glucose, pH 7.0 

TA protein high salt buffer 50 mM HEPES, 500 mM KOAc, 5 mM 
Mg(OAc)2, 10% glycerol, 1 mM PMSF, 1 
mM DTT, pH 7.0, 20 mM imidazole 

TA protein low salt buffer 50 mM HEPES, 150 mM KOAc, 5 mM 
Mg(OAc)2, 10% glycerol, 1 mM PMSF, 1 
mM DTT, pH 7.0, 20 mM imidazole 

TAE buffer (50X) 2 M Tris, 0.05 M EDTA, 5.71% acetic acid 
Transport buffer (TB) (10x) 200 mM HEPES, 1.1 M KOAc, 20 mM 

Mg(OAc)2, 10 mM EGTA, pH 7.3 
Western blot transfer buffer (10X) 250 mM Tris, 1.93 M glycine, 0.2% SDS 
Western blot transfer buffer (1X) 10% Western blot transfer buffer (10X), 

20% methanol 
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 Cell lines and bacterial strains 
Cell line Specification 
HeLa P4 (P4 MAGI CCR5+ Cells) Human adenocarcinoma cell line that 

expresses CD4; derived from cervix of a 
31-year-old woman, NIH AIDS Reagent 
program, (Charneau et al., 1994) 

 

Bacterial Strain Genotype 
BL21AI  F- ompT hsdSB (rB– mB–) gal dcm 

araB::T7RNAP tetA 
DH5α F- Φ80lacZΔM15 Δ (lacZYA-argF) U169 

recA1 endA1 hsdR17 (rK-,mK+) phoA 
supE44 λ- thi-1 gyrA96 relA1 

M15pREP4 F- Φ80ΔlacM15 thi lac- mtl- recA+ KmR 
 

 Antibodies 
 

Table 4. Primary antibodies 

Name Species Origin Application Dilution 
α-ACBD5 rabbit #21080-1-AP, 

Proteintech 
Western blotting 
IP: Western blotting 
Immunofluorescence 
PLA 

1:1000 
1:500 
1:100 
1:100 

α-ELYS rabbit #ab14431, Abcam Western blotting, IP 1:500 
α-ELYS rabbit #HPA031658, Sigma-

Aldrich 
Immunofluorescence 
PLA 

1:500 
1:300 

α-emerin rabbit #10351-1-AP, 
Proteintech 

Immunofluorescence 
PLA 

1:1000 
1:1000 

α-emerin mouse #AMAb90562, Sigma-
Aldrich 

IP: Western blotting 1:500 

α-emerin* rabbit raised by Genosphere 
Biotechnologies 

Western blotting 1:1000 

α-GAPDH rabbit #10494-1-AP, 
Proteintech 

Western blotting 1:5000 

α-GFP rat #3H9, ChromoTek Western blotting 1:1000 
α-GM130 mouse # 610823, BD 

Biosciences 
Immunofluorescence 1:200 

α-Imp11 rabbit #PA1-41600, Invitrogen Western blotting 1:1000 
α-Imp13* rabbit Baade et al. (2018) Western blotting 1:1000 
α-Imp7* rabbit A. Nath Western blotting 1:2000 
α-Impb* rabbit Frohnert et al. (2014) Western blotting 1:1000 
α-lamin B1 rabbit # ab16048, Abcam,  Western blotting 1:1000 
α-laminA/C rabbit #2032, Cell signaling 

Technology 
Western blotting 1:1000 

α-laminA/C mouse #ab40567, Abcam PLA 1:100 
α-Na+/K+-
ATPase  

mouse #sc-21712, Santacruz 
Biotechnology 

Western blotting 1:1000 

α-NUP153 rabbit # HPA027897, Sigma-
Aldrich 

Western blotting 1:200 

α-Nup62 rabbit #HPA005435, Sigma-
Aldrich 

Western blotting 1:1000 

α-opsin mouse Adamus et al. (1991) Western blotting 1:1000 
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Name Species Origin Application Dilution 
α-OSBPL9 rabbit #11879-1-AP, 

Proteintech 
Western blotting 
IP: Western blotting 
Immunofluorescence 
PLA 

1:1000 
1:500 
1:100 
1:100 

α-PMP70 mouse # SAB4200181, Sigma-
Aldrich 

Immunofluorescence 1:300 

α-POM121 rabbit #SAB2700248, Sigma-
Aldrich 

Western blotting 1:1000 

α-SEC22b  
(29-F7) 

mouse #sc-101267, Santacruz 
Biotechnology 

Western blotting 1:250 

α-SP1 rabbit #1860528, Thermo 
Scientific 

Western blotting 1:1000 

α-Stt3B mouse Laboratory of Stephen 
High (Manchester, UK) 

Western blotting 1:1000 

α-TMEM43 rabbit #ab184164, Abcam,  Western blotting 
IP: Western blotting 

1:1000 
1:500 

α-TMPO rabbit #14651-1-AP, 
Proteintech 

Western blotting 1:1000 

α-TNPO1 mouse Clone D45, Sigma 
Aldrich 

Western blotting 1:1000 

α-TOR1AIP1 rabbit #HPA050546, Sigma-
Aldrich 

Western blotting 1:1000 

α-TRC40 rabbit Favaloro et al. (2010) Western blotting 1:1000 
α-Tubulin rabbit #11224-1-AP, 

Proteintech 
Western blotting 1:2000 

α-VAPB rabbit #14477-1-AP, 
Proteintech 

Western blotting 
Immunofluorescence 

1:1000 
1:200 

α-VAPB mouse #66191-1-Ig, Proteintech Immunofluorescence 
PLA 
EM 

1:200 
1:100 
/ 

*Kehlenbach lab 

 

Table 5. Secondary antibodies 

Name Species Origin Application Dilution 
Duolink® In Situ 
PLA® probe Anti-
mouse PLUS 

donkey Sigma-Aldrich PLA 1:5 

Duolink® In Situ 
PLA® probe Anti-
Rabbit MINUS 

donkey Sigma-Aldrich PLA 1:5 

α-mouse 680 donkey LI-COR Western blotting 1:10,000 
α-mouse 800 donkey LI-COR Western blotting 1:10,000 
α-mouse IgG, 10 nm 
gold 

goat EM.GMHL10, BBI 
Solutions, Cardiff, 
UK 

EM / 

α-mouse-Alexa 
Fluor 488 

donkey #A-21202, Thermo 
Fisher Scientific, 
Waltham, MA, 
USA 

Immunofluorescence 1:1000 

α-rabbit 680 donkey LI-COR Western blotting 1:10,000 
α-rabbit 800 donkey LI-COR Western blotting 1:10,000 
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Name Species Origin Application Dilution 
α-rabbit-Alexa488 donkey #A-21206, 

Molecular Probes, 
Eugene, OR, USA 

Immunofluorescence 1:1000 

α-rabbit-HRP donkey #711-035-
152,Jackson 
ImmunoResearch 
Laboratories, West 
Grove, PA, USA 

Western blotting 1:5000 

α-rat 800 donkey LI-COR Western blotting 1:10,000 
α-rat-HRP goat #112-035-003, 

Jackson 
ImmunoResearch 
Laboratories, West 
Grove, PA, USA 

Western blotting 1:10,000 

 

 Oligonucleotides 
Oligonucleotides were purchased from Sigma-Aldrich with a concentration of 100 

µM, a synthesis scale of 0.025 µmol and purification grade desalted. Restriction sites were 

added to the 5’ end of the oligonucleotides and a 5’ end overhang was added to ensure 

high efficiency of cleavage of the restriction enzyme. A melting temperature between 68-

72°C was used for a two-step protocol using the Phusion DNA polymerase. 

 

Number Name Sequence (5’-3’)* 
G1268 Lap2b-fwd-KpnI TTTGGTACCACCGGAGTTCCTAGAG 
G1269 Lap2b-rev-SpeI TTTACTAGTGAGATGTGGCATGAAGGC 
G1386 VAPB-rev-BamHI GGATGGATCCCTACAAGGCAATCTTCCCAAT 
G1390 VAPB-fwd-KpnI TTTGGTACCAGCGAAGGTGGAGCAGGTC 
G1394 VAPB-opsin-rev-

BamHI 
TTTGGATCCTCAGCCCGTCTTGTTGGAGAAAGGCA
CGTAGAAGTTTGGGCCCAAGGCAATCTTCCCAATA
AT 

G1395 PTP1B-fwd-KpnI TTTGGTACCCATGGAGATGGAAAAGGAGTTC 
G1396 PTP1B-rev-BamHI TTTGGATCCCTATGTGTTGCTGTTGAACAG 
G1424 LBR-fwd-XhoI TTTCTCGAGTTATGCCAAGTAGGAAATTTGCC 
G1425 LBR-rev-BamHI TTTGGATCCCTAGTAGATGTATGGAAATATACG 
G1511 VAPB-fwd-SpeI TTTACTAGTCTACAAGGCAATCTTCCCAAT 
G1512 VAPB-fwd-EcoRI TTTGAATTCAATGGCGAAGGTGGAGCAGGTC 
G1562 FKBP12-fwd-AflII- GCCTTAAGATGGCTAGCGGAGTGCAGGTGG 
G1563 FKBP12-rev-BamHI GCGGATCCTTCCAGTTTTAGAAGCTCCAC 
G1571 APEX2-rev-BcuI TTTACTAGTAAGGCATCAGCAAACCCAAG 
G1573 APEX2-fwd-BcuI TTTACTAGTATGGGAAAGTCTTACCCAACTGT 
G1854 APEX2-fwd-EcoR1 GCGAATTCTGGAAAGTCTTACCCAACTGTGAG 
G1855 APEX2-rev-BamH1 GCGGATCCGGCATCAGCAAACCCAAGCTC 
G2065 Impb (45-462)-fwd-

NcoI 
AAAACCATGGGCAAATCCAGGAAACA 

G2066 Impb (45-462)-rev-
BglII 

TTTAGATCTAGCACTGAGACCCTCAATCAG 

*restriction sites are underlined 
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 siRNAs 
siRNA Sequence (5’-3’) Target Source 
siRNA non-

targeting 

UGGUUUACAUGUCGACUAA non-targeting Dharmacon 

siVAPB GCUCUUGGCUCUGGUGGUUUU  VAPB Sigma-Aldrich 

 

 Vectors 
 

Table 6. Available vectors 

Number Name Tag Resistance Application Source 
- pET28 His, ZZ amp in vitro TnT Pfaff et al. 

2016 

30 pEGFP-C1 EGFP kan transfection Clontech 

49 pEF-HA HA amp transfection - 

51 pcDNA 3 - amp transfection Invitrogen 

66 pmCherry-C1 mCherry kan transfection Clontech 

 
 Plasmids 
 

Table 7. Available plasmids 

Number Name Tag Resistance Application Source 
552 pEF-myc-Impb myc amp transfection S. Hutten 

1051 pmCherry-

emerin 

mCherry kan transfection R. Kehlenbach 

1052 pET328-HZZ-

tev-emerin-opsin 

His, ZZ, 

opsin 

amp in vitro TnT R. Kehlenbach 

1232 pmCherry-FRB-

emerin 

mCherry kan transfection K. Rajanala 

1233 pmCherry-FRB-

Lap2b 

mCherry kan transfection J. Pfaff 

1237 pQE80L-MBP-

tev-TRC40-HZZ-

tev-emerin-opsin 

MBP, His, 

ZZ, tev 

amp expression J. Pfaff 

1487 pmCherry-FRB-

VAPB 

mCherry kan transfection J. Pfaff 
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Number Name Tag Resistance Application Source 
1495 pmCherry-FRB-

PTP1B 

mCherry kan transfection J. Pfaff 

1503 pQE80L-MBP-

tev-TRC40-His-

ZZ-tev-VAPB-

opsin 

MBP, His, 

ZZ, tev 

amp expression C. Spillner 

1573 pmCherry-FRB-

LBR 

mCherry kan transfection C. Spillner 

1584 pEF-HA-FRB-

VAPB 

HA amp transfection J. Pfaff 

1595 pcDNA3 

Connexin43-

GFP-APEX2 

GFP amp transfection Addgene 

1604 pcDNA3-VAPB-

opsin28 

opsin amp in vitro TnT Fasana et al. 

(2010) 

1610 pcDNA3-

FKBP12-EGFP-

APEX2 

GFP amp transfection M. Müller 

1631 pdEGFP-APEX2-

cNLS-FKBP12 

GFP-GFP kan transfection M. Müller 

1878 pAPEX2-emerin - kan transfection M. Müller 

 
Table 8. Generated plasmids 

Number Name Tag Resistance Application Cloning 
2063 pQE60-His-

Impb (45-462) 

His amp expression Impb (45-462) from 

#552 (G2065, G2066) 

in vector #31 

(NcoI/BglII) 

2101 APEX2-VAPB - amp transfection Apex2 from #1878 

(Nhe1/Xho1) and 

VAPB from #1487 

(G1512, G1386) in 

vector #66 

(EcoRI/BamHI) 
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2.2. Molecular biology methods 
 

 Polymerase chain reaction (PCR) 
PCR reactions (Mullis KB, 1990) were performed using Phusion High-Fidelity DNA 

Polymerase according to the manufacturer’s instructions. The reaction volume was set to 50 

µl. The annealing temperature chosen was generally 5°C below the primer melting 

temperature. Elongation time was adjusted based on the size of the PCR product. 

After the PCR reaction, a 6X DNA sample buffer was added. Based on the expected 

size of the PCR products, the sample was loaded onto agarose gels (2.2.2). PCR products 

were cut from agarose gels with a scalpel and purified with the NucleoSpin® Gel and PCR 

Clean-up kit (Macherey-Nagel). Purified DNA was eluted in 20 µl water. The concentration 

and purity of DNA were measured using NanoDrop 2000c. 

 

 Agarose gel electrophoresis 
DNA fragments were separated using 1% agarose gels. The agarose was dissolved in 

1X TAE buffer and boiled in a microwave oven until completely dissolved. 2 µl of Safe View 

Classic nucleic acid stain per 60 ml gel was added to the dissolved agarose solution. 

The gel electrophoresis was performed in 1X TAE buffer at 100 V for 30 to 50 

minutes, depending on the size of the product. 

The GeneRuler 100 bp DNA Ladder or 1 kb DNA Ladder were used as molecular 

weight markers. The bands were cut on a UV transilluminator with a scalpel. Gels were 

documented with the GelSTICK "touch" system. 

 

 Restriction digestion 
Restriction digestion was performed using Fast Digest restriction enzymes as per 

manufacturer’s instructions. The total reaction volume was 20 µl for plasmids and PCR 

products. Agarose gel electrophoresis (2.2.2) was used to separate the digested DNA. Heat 

inactivation of the enzymes was performed as per manufacturer’s instructions. 

 

 Dephosphorylation of digested vectors 
Dephosphorylation of the digested vector was performed using FastAP 

Thermosensitive Alkaline Phosphatase that catalyzes the release of 5’ phosphate from the 

DNA to prevent re-circularization of the linear vector. 1U of the enzyme was used per µg of 

the vector in 1X FastAP reaction buffer at 37°C for 10 minutes. The reaction was inactivated 

at 75°C for 5 minutes. 
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 Ligation of DNA 
Ligation of the linearized vector and DNA fragment was performed using the T4 DNA 

ligase. A molar ratio of 3:1 to 5:1 of insert DNA to vector was used with 100 ng of vector, 

1U of the enzyme, 1X T4 DNA ligase buffer for a reaction volume of 10 µl. The reaction mix 

was incubated at room temperature for 1 hour, after which the enzyme was inactivated at 

65°C for 10 minutes.  

 

 Transformation into E. coli  
5 µl of ligation mix was added to 50 µl of chemically competent DH5a cells. The 

cells were incubated on ice for 20 minutes, followed by a heat shock at 42°C for 1 minute. 

The cells were then incubated on ice for 2 minutes and 300 µl of SOC medium was added. 

The mixture was shaken at a speed of 800 rpm at 42°C for 1 hour. After an hour, the cell 

suspension was centrifuged at 840 g for 3 minutes and the pellet was suspended in fresh 

50 µl SOC-medium and plated on LB-agar plate with the respective antibiotic. The plates 

were incubated at 37°C overnight. 

 

 Purification of plasmid DNA 
Mini preparation of plasmid DNA and midi preparation of plasmid DNA was 

performed depending on the scale of DNA purification. For mini preparation, a single colony 

picked from the agar plate was inoculated in 5 ml of LB medium containing the selective 

antibiotic. The culture was incubated at 180 rpm at 37°C overnight. Plasmid DNA was 

purified from the overnight culture using the NucleoSpin® Plasmid kit according to the 

manufacturer’s instructions, and the purified DNA was eluted in 50 µl water. The isolated 

DNA was subjected to restriction digestion (2.2.3) to check for the correct insert DNA and 

sequenced (2.2.8). 

For midi preparation, a pre-culture was made from a single colony picked from the 

agar plate inoculated in 5 ml of LB medium with the respective antibiotic and incubated at 

180 rpm at 37°C for 8 hours. 2 ml of the pre-culture was added to 200 ml LB medium with 

the respective antibiotic and incubated at 180 rpm at 37°C overnight. The NucleoBondTM 

Xtra Midi kit was used to purify plasmid DNA according to the manufacturer’s instructions 

and the purified DNA was eluted in water. The concentration of purified DNA was measured 

using Nanodrop 2000c and the concentration was adjusted to 1 µg/ml. 

 

 DNA sequencing 
The plasmid DNA isolated was sequenced by GATC Biotech, a sub-company of 

Eurofins. Primers for sequencing were selected from the standard sequencing primer list 

available from GATC Biotech (https://eurofinsgenomics.eu). 



2. Materials and Methods 

 41 

2.3. Biochemical methods 
 

 SDS-PAGE 
Separation of the proteins based on their molecular weight was performed by SDS-

PAGE (Laemmli, 1970; Smith, 1994). Depending on the molecular weight of the proteins, 

separating gels of 10-12% acrylamide and 4% stacking gel were used. The gels were cast 

using Dual gel caster for mini vertical units. In addition to self-made gels, pre-cast gradient 

NuPAGE® Novex® 4-12% Bis-Tris gels were used. Samples were mixed with a 4X SDS 

sample buffer and heated at 95°C for 5 minutes. Samples, as well as the Page Ruler Plus 

pre-stained or unstained protein ladder, were loaded onto the gels. The self-made gel run 

was performed using 1X Laemmli buffer in Mighty Small II Mini Vertical Electrophoresis 

Units, and pre-cast gel run run using 1X NuPAGE® MES SDS running buffer. After 

electrophoresis, proteins were visualized with Coomassie staining (2.3.2) or subjected to 

Western blotting (2.3.3). 

 

 Coomassie staining 
After SDS-PAGE, the proteins were visualized after Coomassie staining (Fazekas 

de St Groth et al., 1963). Gels were washed with water, fixed with Coomassie fixation 

solution for 10 minutes and washed again with water. The gels were then stained overnight 

using a Coomassie staining solution. For destaining, the gels were washed with water. 

Finally, they were imaged using Image reader LAS-3000. The images were analyzed and 

quantified by ImageStudioLite 5.25 software. 

 

 Western blotting  
To visualize proteins after SDS-PAGE, Western blotting (Burnette, 1981) was 

performed. The proteins were transferred to an Amersham Protran 0.45 μm NC 

Nitrocellulose Blotting Membrane under wet conditions in 1X Western blot transfer buffer 

using Mini Trans-Blot® Cell of Bio-Rad. The transfer was performed at 100 V and 350 mA 

for 1.5 hours. 

To check for uniform transfer and equal loading in all the lanes, a reversible Ponceau 

S staining was performed. The membrane was washed with 0.1% acetic acid and incubated 

with Ponceau S staining solution for 1-3 minutes. The membrane was then destained using 

a 1X TBST solution. 

For immunodetection of proteins, the membrane was blocked with 4% milk in 1X 

TBST solution at room temperature for 1 hour followed by primary antibodies (Table 4) 

incubation at 4°C overnight. The membrane was then washed thrice with 1X TBST for 10 

minutes, followed by incubation with either LICOR specific or HRP-coupled secondary 
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antibodies (Table 5) at room temperature for 1 hour. The membrane was washed thrice with 

1X TBST for 10 minutes each and developed using Odyssey® Sa Infrared Imaging System 

of LI-COR or Image reader LAS-3000 depending on the secondary antibodies used. The 

images were analyzed and quantified by ImageStudioLite 5.25 software. 

 

 Protein purification 
 
MBP-tev-TRC40/His-ZZ-tev-VAPB-opsin 
Expression and purification of the TA protein in complex with TRC40 were 

performed as previously described (Favaloro et al., 2010; Pfaff et al., 2016). For protein 

expression, the plasmid coding for MBP-tev-TRC40/His-ZZ-Tev-VAPB-opsin was 

transformed (2.2.6) into BL21AI E. coli strain and plated on LB-ampicillin agar plate. A 

preculture was prepared by inoculating a single colony into 100 ml of LB medium 

supplemented with ampicillin by shaking at 37°C overnight. 5% of the preculture was used 

per liter of LB medium supplemented with ampicillin to scale up the culture to 3-6 liters and 

shaken at 130 rpm at 30°C until an OD600 of 0.6 was reached. 0.05mM IPTG was added to 

induce the expression of MBP-tev-TRC40 at 30°C for 1 hour, and 0.25% (w/v) of L-

Arabinose was added to induce the expression of His-ZZ-Tev-VAPB-opsin at 30°C for 4 

hours. After the induction, cells were pelleted by centrifugation at 4500 g for 30 minutes. 

The pelleted bacterial cells were resuspended in TA protein low salt buffer 

supplemented with protease inhibitors (1µg/ml each of aprotinin, leupeptin-pepstatin), 1 mM 

PMSF, 20 mM imidazole and 10 µg/ml DNase I. The cell suspension was then lysed using 

an Emulsiflex-C3 and subjected to centrifugation at 100,000 g for 30 minutes using an 

AvantiTM J-30I centrifuge with JA 30.50Ti rotor. The supernatant was collected and 

incubated with pre-equilibrated Ni-NTA agarose resin at 4°C for 1 hour in a rotating wheel 

to bind the His-tagged VAPB. The resin was centrifuged later at 250 g for 2 minutes and 

washed with low salt buffer containing 5 mM ATP to remove bacterial heat shock proteins. 

Next, the resin was washed with a TA protein high salt buffer followed by washing with low 

salt buffer. The protein was eluted from the resin using the low salt buffer containing 300mM 

imidazole by loading the resin into an empty column. The protein content of the eluted 

fractions was monitored using a Bradford assay solution. The protein containing fractions 

were pooled and incubated with a pre-equilibrated amylose resin at 4°C for 1 hour in a 

rotating wheel to bind the MBP-tagged TRC40, in complex with VAPB. The washing steps 

were followed, as described before. The recombinant MBP-tev-TRC40/His-ZZ-Tev-VAPB-

opsin protein was eluted in low salt buffer containing 20 mM D-maltose. The purified protein 

was then dialyzed overnight at 4°C against transport buffer (TB) containing protease 
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inhibitors and 2 mM DTT. After dialysis, the proteins were frozen in liquid nitrogen and 

stored at -80°C. 

 
MBP-tev-TRC40/His-ZZ-tev-emerin-opsin 
MBP-tev-TRC40/His-ZZ-tev-emerin-opsin was purified as described before (Pfaff et 

al., 2016) and following the same procedure as described for MBP-tev-TRC40/His-ZZ-tev-

VAPB-opsin.  

 
His-Impb (45-462) 

His-Impb (45-462) was expressed and purified as previously described (Kutay et al., 

1997a). The plasmid coding for His-Impb (45-462) was transformed in M15pREP4 E. coli 

and a single colony was inoculated in 100 ml LB medium supplemented with kanamycin 

and ampicillin and incubated by shaking at 37°C overnight. To scale up the cultures to 5 

litres, 1% of the pre-culture was added per liter of LB medium and incubated by shaking at 

110 rpm at 37°C until an OD600 of 0.6 was reached. The cultures were induced for protein 

expression by adding 0.5 mM of IPTG and incubated at 16°C overnight, 110 rpm. The 

cultures were pelleted at 4500 g at 4°C for 30 minutes.  

The pellet was resuspended in cold His lysis buffer supplemented with protease 

inhibitors (1µg/ml each of aprotinin, leupeptin-pepstatin), 1 mM PMSF, and the lysis was 

performed by using an Emulsiflex-C3. The suspension was centrifuged at 100,000 g at 4°C 

for 30 minutes using an AvantiTM J-30I centrifuge with JA 30.50Ti rotor. The supernatant 

was then incubated with pre-equilibrated Ni-NTA Agarose resin at 4°C for 2 hours in a 

rotating wheel. The sample was centrifuged at 250 g at 4°C for 3 minutes and the resin was 

washed with His lysis buffer containing 5 mM ATP to remove bacterial heat shock proteins. 

The resin was then loaded on to a column and eluted with His lysis buffer supplemented 

with 400 mM imidazole. Protein containing fractions were pooled and dialyzed overnight 

against a buffer containing 50mM Tris-HCl, pH 7.4 and 250 mM sucrose. The dialyzed 

proteins were frozen in liquid nitrogen and stored at -80°C. 

 
Ran and Ran Q69L 
Expression and purification of Ran and Ran Q69L was performed as described by 

(Melchior et al., 1995). The stocks used were prepared by C. Spillner (Kehlenbach lab). 

 

 In vitro membrane integration assay 
In vitro membrane integration assays were performed as described before (Favaloro 

et al., 2010; Pfaff et al., 2016; Vilardi et al., 2011; Yamamoto and Sakisaka, 2012). These 
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assays were performed either using rough microsomes or cell-derived membranes as 

sources of ER membranes. 

 

2.3.5.1. Membrane integration into rough microsomes 
In vitro transcribed and translated membrane proteins with an opsin tag, that gets 

glycosylated upon insertion into ER membranes were inserted into canine rough 

microsomes (Gilmore et al., 1982a; Gilmore et al., 1982b). The glycosylation of the protein 

was observed by a shift in molecular weight that can be detected by Western blotting. 200 

ng of the constructs coding for proteins with a C-terminal opsin tag (pcDNA3 VAPB-opsin 

28, pET328-HZZ-tev-emerin-opsin) were used for expression. The transcription and 

translation was performed using an in vitro TnT® T7 Quick Coupled 

Transcription/Translation System kit. The reaction mixture consisted of 8.8 µl rabbit 

reticulocyte lysate supplemented with 0.2 µl of 1 mM methionine. The reaction mix was 

incubated at 30°C for 90 minutes, after which 1 µl of canine rough microsomes was added 

and incubated for an additional 60 minutes. The reaction was stopped by the addition of 50 

µl 4X SDS sample buffer and heated at 95°C for 5 minutes. The samples were subjected 

to SDS-PAGE and Western blotting. The glycosylated and non-glycosylated proteins were 

detected using an anti-opsin antibody. 

To validate post-translational membrane integration, the same assay was performed 

with the addition of puromycin at a final concentration of 2.5 mM at the start of reaction (at 

0 minutes) and after the first 90 minutes incubation step at 30°C for 10 minutes. 

The canine rough microsomes were a gift from the lab of Prof. Blanche 

Schwappach. 

 

Deglycosylation of membrane inserted proteins using PNGase F 
To confirm for N-glycosylation of opsin tagged protein, a deglycosylation reaction 

using peptide-N-glycosidase F (PNGase F) was performed as described (Pfaff et al., 2016). 

10% of the reaction mix was incubated with 1 µl glycoprotein-denaturing buffer at 99°C for 

10 minutes. The denatured mixture was then incubated with 1 µl PNGase F or water as a 

control, 2 µl G7 reaction buffer (0.5 M sodium phosphate buffer, pH 7.5) and 2 µl NP40 

(10% stock) with a final volume of 20 µl with water. The deglycosylation reaction was 

performed at 37°C for 1.5 hours. 4X SDS sample buffer was added to the reaction, and 

samples were analyzed by SDS-PAGE (2.3.1) and Western blotting (2.3.3). 

 
Membrane integration assay in the presence of MBP-WRBcc or GST-CAML-N 

To assess the membrane insertion via receptors of the TRC40 pathway, WRB and 

CAML, two inhibitory fragments WRBcc (Blenski and Kehlenbach, 2019; Pfaff et al., 2016; 
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Vilardi et al., 2011) and CAML-N (Blenski and Kehlenbach, 2019; Pfaff et al., 2016; 

Yamamoto and Sakisaka, 2012) were used in insertion assays. After the transcription and 

translation step, 5 or 10 µM of purified MBP-WRBcc or GST-CAML-N was added to the 

reaction mixture and the sample was incubated at 30°C for 10 minutes prior to the addition 

of rough microsomes. The reaction was further processed as in section 2.3.5.1. 

The WRBcc and CAML-N fragments were a gift from the lab of Prof. Blanche 

Schwappach. 

 
Immunodepletion of TRC40 from rabbit reticulocyte lysate 

The immunodepletion of TRC40 from rabbit reticulocyte lysate was performed using 

antibodies against rabbit TRC40 as previously described (Favaloro et al., 2010; Leznicki et 

al., 2010; Pfaff et al., 2016). Protein A Sepharose 4 Fast flow beads (20µl) were washed 

withl cold PBS and centrifuged at 500 g at 30°C for 2 minutes. 1.5 µg of rabbit anti-TRC40 

or rabbit IgG antibodies were added to the beads in 500 µl PBS and incubated at 4°C for 1 

hour in a rotating wheel. After binding of TRC40 or IgG antibodies, the beads were washed 

with cold PBS and centrifuged at 500 g at 30°C for 2 minutes. 120 µl rabbit reticulocyte 

lysate per condition was added to the immobilized beads and incubated at 4°C for 1 hour 

on a rotating wheel. The beads were centrifuged at 13,000 g at 4°C for 1 minute, and the 

supernatant was used for microsome integration assay as described above. To control for 

the efficiency of immunodepletion, 5ul of depleted lysates were analyzed by SDS-PAGE 

(2.3.1) and Western blotting (2.3.3) using antibodies against TRC40.  

 

2.3.5.2. Membrane integration into semi-permeabilized cells 
In addition to rough microsomes, semi-permeabilized or digitonin treated cells can 

be used as a source of ER membrane in membrane integration assays. HeLa cells were 

trypsinized and washed with PBS. The cells were counted using an automated cell counter 

(CASY 1). 10,000 cells/µl of TB containing protease inhibitors (1 µg/ml each of aprotinin, 

leupeptin-pepstatin) were permeabilized with 0.01% digitonin on ice for 5 minutes. 

Permeabilization efficiency was controlled by trypan blue staining. The cells were washed 

thrice with TB and resuspended again in TB. For the membrane integration assay, 200 ng 

of TA protein in complex with TRC40, permeabilized cells. (20,000 cells), and 1 mM ATP 

was mixed and added up to a volume of 100 µl in TB. The reaction mixture was incubated 

either at 30°C or at 4°C for 1 hour and was centrifuged at 16,000 g at 4°C for 10 minutes, 

and the pellet was washed in TB and pelleted again. 50 µl 4X SDS sample buffer was added 

to the pellet and heated at 95°C for 5 minutes. The samples were subjected to SDS-PAGE 

(2.3.1) and Western blotting (2.3.3). The glycosylated and non-glycosylated proteins were 

detected using an anti-opsin antibody. 
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 Subcellular fractionation 
Subcellular fractionation was performed as described previously (Cheng et al., 

2019) and as explained in James et al., 2019 (Supplementary Figure 1). HeLa cells were 

lysed by douncing in homogenization buffer (HB) containing protease inhibitors (1µg/ml 

each of aprotinin, leupeptin-pepstatin) and 1 mM PMSF. The whole-cell lysate was layered 

on top of 2.5 ml shelf of 0.8 M sucrose in HB and centrifuged in a JS4.2 rotor at 2,000 rpm 

at 4°C for 10 minutes yielding the pellet and the cytoplasmic fraction. The pellet was 

resuspended in 1.8 M sucrose and layered on top of a 2 ml 2 M sucrose cushion. The 

gradient was then centrifuged at 35,000 rpm at 4°C for 1 hour in an SW40 Ti rotor. The 

nuclear pellet was resuspended in HB containing 500 mM NaCl, 1 mM CaCl2 and 25 U/ml 

benzonase, incubated for 15 minutes at 37°C, layered on top of 2 ml 0.8 M sucrose and 

centrifuged at 4,000 rpm at 4°C for 10 minutes in a JS4.2 rotor. The layer above the sucrose 

cushion (nuclear content fraction) and the pellet (nuclear envelope fraction) were collected.  

 

 Cross-linking and co-immunoprecipitation 
Cross-linking and co-immunoprecipitation assays that were performed to validate 

interaction of proteins, are described in detail in James et al., 2019.  

Co-immunoprecipitation using the nuclear envelope fraction obtained by subcellular 

fractionation (2.3.6) was performed as described in James et al., 2019 (supplementary 

Figure 1). Briefly, the nuclear envelope fraction was resuspended in NP-40 lysis buffer 

supplemented with protease inhibitors (1µg/ml each of aprotinin, leupeptin-pepstatin) and 1 

mM PMSF. Immunoprecipitation of the proteins were done using antibodies against rabbit 

VAPB or rabbit IgG as a control. The proteins were detected using Western blotting (2.3.3). 

 

 Nuclear transport receptor depletion using phenyl sepharose 
HeLa cytosol (Ipracell) was depleted of nuclear transport receptors, as described by 

Ribbeck and Görlich, 2002. 500 µl of cytosol was added to 80 µl of Phenyl-Sepharose 6 

Fast flow resin and incubated at 4°C for 1 hour in a rotating wheel. The mixture was 

centrifuged at 800 g at 4°C for 2 minutes, and the depleted supernatant was tested for the 

efficiency of the depletion of various nuclear transport receptors by Western blotting. 

 

2.4. Cell biology methods 
 

 Culturing of mammalian cells 
HeLa P4 cells (Charneau et al., 1994) were grown in Dulbecco’s Modified Eagle 

Medium (DMEM) containing 10% fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/ml 

penicillin and 100 µg/ml streptomycin at 37°C and 5% CO2. Cells were passaged twice a 
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week for maintaining optimal cell growth and were tested regularly for Mycoplasma 

contamination. 

 

 Poly-L-Lysine coating of coverslips  
Coverslips were coated with Poly-L-Lysine to enhance adhesion of cells. The coated 

coverslips were used for proximity ligation assay (PLA; 2.4.6) and in vitro import assay 

(2.4.7). Coverslips were washed with 100% ethanol, air-dried and coated with 0.1% Poly-

L-Lysine at room temperature for 30 minutes. The coverslips were then washed once with 

water, air-dried and sterilized with UV at 0.12 J/cm2 for 3 minutes. 

 

 Transfection of plasmid DNA and siRNA in mammalian cells 
The transfection of plasmid DNA was performed according to the calcium-

phosphate method (Chen and Okayama, 1987). 40,000 HeLa P4 cells were seeded per 

well of a 24-well plate on the day prior to transfection. The next day, plasmid DNA (0.5-0.7 

µg) was mixed with 20 µl of 250 mM CaCl2 and vortexed for 5 seconds. Then, 20 µl of 2X 

HEPES buffer was added to the mixture and vortexed for 10 seconds. The transfection mix 

was incubated at room temperature for 20 minutes and added to the cells, which were then 

grown as described in 2.4.1. 

siRNA mediated knockdown of HeLa P4 cells was carried out using Lipofectamine 

RNAiMax based on the manufacturer’s protocol. 65,000 cells were seeded per well of a 24-

well plate on the day before transfection. 100 nM siRNA was added to 50 µl opti-MEM and 

1 µl Lipofectamine RNAiMax to 50 µl opti-MEM in separate tubes and incubated at room 

temperature for 5 minutes. After 5 minutes, the solutions were mixed and incubated for 

another 15 minutes. The mixture was added to cells in DMEM medium (2.4.1) without 

antibiotic. 

 

 Indirect immunofluorescence 
For the detection of endogenous or overexpressed proteins, indirect 

immunofluorescence was performed. Cells grown on coverslips were washed with PBS and 

fixed with 4% paraformaldehyde. Cells tagged with fluorescently labeled proteins were 

mounted directly using Mowiol containing 1 µg/ml DAPI. For immunofluorescence, fixed 

cells were permeabilized with 0.5% Triton X-100 for 5 minutes, followed by washing thrice 

with PBS. To reduce non-specific binding of the antibodies, the cells were blocked with 3% 

BSA in PBS (blocking buffer) for 20 minutes. After blocking, primary antibodies (Table 4) 

diluted in blocking buffer were added and incubated for 1 hour in a dark humidity chamber. 

The unbound antibodies were washed off with PBS, and the cells were then incubated with 

fluorescently labeled secondary antibodies (Table 5) diluted in blocking buffer for another 
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hour in the dark humidity chamber. Cells were washed with PBS, air-dried and mounted 

using Mowiol containing 1 µg/ml DAPI. 

 

 Confocal microscopy 
Microscopic analysis of the fluorescently labeled proteins was done using a LSM 

510 confocal laser-scanning microscope with a 63X/1.4 oil immersion lens. Depending on 

the fluorophores used, distinct filter sets with a combination of a maximum of four lasers 

were used for excitation. DAPI was excited using a Diode 405 nm laser, GFP and the 

AlexaFluor488 dye using the tunable Argon 458/477/488/514 nm laser, mCherry and the 

AlexaFluor594 dye using HeNe 594 nm laser and AlexaFluor647 dye using HeNe 633 nm 

laser. A multi-track image acquisition mode was used in the LSM software for acquiring 

images. Laser output was adjusted to reduce bleaching effects, and the pinhole was set to 

1 airy unit. The image intensity was adjusted using the Detector gain and the Amplifier 

Offset. Low scanning speed was used to get a high-resolution image. The acquired images 

were analyzed using Zen 3.1 and LSM image browser software. 

 

 Proximity ligation assay and image analysis by cell profiler 
To detect proteins in close proximity, the Duolink®in situ Proximity ligation assay kit 

was used. The assay was performed as described in James et al., 2019.  

The images acquired were analyzed for PLA interactions using CellProfiler 2.2 

(Carpenter et al., 2006). A pipeline was designed to quantify the number of PLA interactions 

in the whole-cell and the nucleus. Using the module “Identify Primary Object’’, cell nuclei 

were identified based on DAPI images. The diameter of primary objects was set to 70-140 

pixels, and two-class Otsu adaptive thresholding was used. The whole-cell was identified 

using the “Identify Secondary Object’’ module with the Distance-N method based on the 

images of protein of interest and by expanding the nuclear area by 80 pixels. Cells touching 

the border of the image were excluded from the analysis. PLA interactions were identified 

with the “Identify Primary Object’’ module using PLA images and by setting a diameter of 2-

10 pixels for the PLA interactions. A two-class Otsu adaptive thresholding with a minimum 

threshold value of 0.15 was set. With the module “Relate objects’’, the identified PLA 

interactions identified in the nucleus and whole cells were related back to the previously 

identified nucleus and whole cell. Data was exported with the module “Export to 

spreadsheet’’ and the number of PLA interactions was plotted and analyzed using 

GraphPad prism 5.03. 
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 In vitro import assay 
Import assay was essentially performed as described previously by Adam et al., 

1990. HeLa P4 cells (65,000 cells/well) were seeded in 24-well plates. After 24 hours, the 

cells were washed twice with cold TB and permeabilized with 0.007% digitonin on ice for 5 

minutes. The efficiency of permeabilization was monitored by trypan blue staining. The 

soluble proteins were washed out by washing three times with TB. The cells were then 

incubated with 40 µl import reaction mixture at 30°C for 25 minutes in a dark humidity 

chamber. The reaction mixture consisted of cytosol (0.125 µg/µl) or cytosol supplemented 

with either of the factors like Ran (1 µg/µl), Ran Q69L (1 µg/µl), WGA (0.2 µg/µl), Impb (45-

462) (1 µM) and Cy3-BSA-NLS (1:4 dilution in TB) and ATP regenerating system (1 mM 

ATP, 4 mM creatine phosphate, 100 U/ml creatine phosphokinase). After incubation, the 

cells were washed with TB and fixed with 4% paraformaldehyde and mounted using Mowiol 

containing DAPI. 

 

 Fluorescence loss after photobleaching (FRAP) assay 
FRAP assays were performed using a confocal 510 laser scanning microscope with 

a HeNe 594 nm laser with a 63X/1.4 oil immersion lens. For transfection, HeLa cells (20, 

000 cells /well) were seeded in 8-well Lab Tek chambered coverglass. 24 hours after 

transfection, cells were washed thrice with TB and subjected to FRAP assays directly. 

Alternatively, the cells were permeabilized with 0.007% digitonin, washed and 200 µl of 

transport reaction mix in TB was added before subjecting to FRAP assays. The reaction 

mixture consisted of either cytosol or cytosol supplemented with factors like Ran, Ran Q69L, 

WGA, Impb (45-462) or TRC40 and nuclear transport factor depleted cytosol (2.3.8). The 

concentration of the different factors used was the same as that used for in vitro import 

assay (2.4.7). For the FRAP assays, 3 pre-bleach images were taken, followed by bleaching 

an area of 5 µm2 at the NE or 10 µm2 at the ER using 100% laser intensity with the number 

of iterations set to 80. After bleaching, fluorescence recovery was measured every 7.86 

seconds for 25 cycles per cell with a laser intensity of 5%. The intensity value was collected 

for different time intervals using the LSM FRAP module for a region of interest in the 

bleached area, in an unbleached adjacent cell and the background. The region of interest 

was applied to each frame in a FRAP experiment. The intensity of the region of interest was 

normalized to the intensity of the adjacent cell and the background. The recovery curves 

were then plotted and analyzed using GraphPad prism 5.03. 

 

 Rapamycin-dependent dimerization assay 
In order to monitor localization of a protein of interest to the inner nuclear membrane, 

a rapamycin-dependent dimerization assay was used as described previously (Blenski and 
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Kehlenbach, 2019; James et al., 2019; Ohba et al., 2004; Pfaff et al., 2016; Ungricht et al., 

2015). In this assay, rapamycin binds to a 12-kDa FK506-binding protein (FKBP12) and an 

FKBP-rapamycin-binding (FRB) cassette, promoting rapid interaction of the appropriately 

tagged proteins (Chen et al., 1995). HeLa cells (40,000 cells/well) were seeded on 

coverslips in a 24-well plate and transfected the next day with plasmids coding for FKBP12 

reporter and FRB cassette fused to protein of interest. After 24 hours of transfection, cells 

were washed with TB and permeabilized with 0.007% digitonin for 5 minutes on ice. The 

cells were washed thrice with TB and the efficiency of permeabilization was monitored by 

trypan blue staining. Then, the cells were treated with 200 nM rapamycin in TB and 

incubated for 10 minutes on ice to allow dimerization of FKBP12 and FRB domains. The 

cells were washed again and fixed using 4% paraformaldehyde and mounted using Mowiol 

containing DAPI. 

 

 Immunoelectron microscopy 
Immunoelectron microscopy was performed in HeLa cells as described by James et 

al., 2019, by Prof. Martin W. Goldberg, Durham University. 

 

2.5. Rapamycin and apex dependent identification of proteins by 
SILAC (RAPIDS) 

RAPIDS uses APEX2 based proximity labeling with rapamycin-dependent targeting 

of the peroxidase to a protein of interest, to identify proteins that are in close proximity by 

SILAC and quantitative mass spectrometry (James et al., 2019; Müller et al., 2020). 

 

 FBS dialysis 
FBS was dialyzed against sterile 1X PBS to remove detectable amounts of free 

amino acids present in the serum (Ong et al., 2002). The dialysis was performed using a 

Spectra/Por® Dialysis Membrane with a molecular weight cut-off of 6-8 kDa. PBS was 

changed after 1 hour, overnight and again after one hour of exchange at 4°C with constant 

stirring. The dialyzed FBS was frozen and stored at -20°C. 

 

 Stable isotope labeling of amino acids in cell culture (SILAC) 
For SILAC, HeLa P4 cells were grown in DMEM without L-glutamine, L-arginine, L-

lysine supplemented with 10% dialyzed FBS, 6 mM L-glutamine, 100 U/ml penicillin, 100 

µg/ml streptomycin and heavy and light isotopes of amino acids arginine and lysine. For 

SILAC media with heavy isotopes, 0.4 mM L-[13C6,15N2] lysine and 0.2 mM L-[13C6,15N4] 

arginine were added and with light isotopes, 0.4 mM L-[12C6,14N2] lysine and 0.2 mM L-

[12C6,14N4] arginine were added. Cells were passaged 5-7 times in the SILAC medium to 
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ensure sufficient incorporation of heavy amino acids. The incorporation rates were above 

97% for all the experiments performed, which was confirmed by mass spectrometry. 

 

 Rapamycin-dependent biotinylation assay 
The day prior to transfection, 2 x106 HeLa P4 cells (heavy or light amino acid 

labeled) per 10 cm dish were seeded. A total of eleven 10 cm dishes were used per 

experiment, 5 dishes for cells grown in medium with heavy amino acids (heavy SILAC 

medium) and 5 dishes for cells grown in medium with light amino acids (light SILAC 

medium). One extra dish was seeded with cells grown in heavy SILAC medium to control 

for incorporation of heavy amino acids. To control for transfection efficiency by indirect 

immunofluorescence, one coverslip per dish was added. The next day, cells were 

transfected with APEX tagged FKBP12 reporter and FRB tagged VAPB constructs using 

Calcium phosphate method of transfection (2.4.3). The plasmids used for transfection were 

mCherry-FRB-VAPB and pcDNA3-FKBP12-GFP-APEX2 or pEF-HA-FRB-VAPB and 

pAPEX2-dGFP-NLS-FKBP12. After 24 hours of transfection, cells were incubated with 500 

µM biotin-phenol with or without 200 nM rapamycin at 37°C for 30 minutes. The experiment 

was performed in forward and reverse conditions. For forward condition, cells grown in light 

SILAC medium were treated with rapamycin, and cells grown in heavy SILAC medium were 

not. For reverse conditions, this labeling scheme was switched. After the addition of biotin-

phenol and rapamycin, cells were treated with 1 mM H2O2 at room temperature for 1 minute. 

The medium was aspirated, cells were washed twice with RAPIDS quenching buffer and 

once with PBS. Cells on coverslips for fluorescence microscopy were fixed with 4% 

paraformaldehyde and further processed by indirect immunofluorescence (2.4.4). 

 

 Biotinylated protein enrichment and Western blotting 
Cells from each dish were lysed with 1 ml RIPA buffer, scraped and incubated on 

ice for 5 minutes. The harvested cells were centrifuged at 16,000 g at 4°C for 10 minutes. 

The protein concentration of the cleared ‘heavy labeled’ and ‘light labeled’ lysates for both 

forward and reverse conditions was determined using Pierce 660 nm Protein Assay. For 

Western blotting, 2 ml of each lysate of equal concentrations was transferred to two 1.5 ml 

tubes. For mass spectrometric analysis, 3 ml of equal concentrations of heavy labeled and 

light labeled lysates were combined in 1:1 ratio and transferred to six 1.5 ml tubes for either 

forward or reverse condition. To each 1.5 ml tubes, 130 µl NeutraAvidin Agarose Resin was 

added and incubated at 4°C overnight in a rotating wheel to enrich for biotinylated proteins. 

The beads were centrifuged at 800 g, 4°C for 2 minutes. The beads were washed once with 

wash buffer 1, once with wash buffer 2 and twice with wash buffer 3 with a washing interval 

of 8 minutes each. After the last washing step, the proteins bound to the beads were eluted 
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with 90 µl of 4X SDS sample buffer supplemented with 5 mM desthiobiotin. To increase 

protein concentration, beads from three tubes were pooled for mass spectrometry analysis 

and beads from two tubes were pooled for Western blotting. The samples were analyzed 

using NuPAGE® Novex® 4-12% Bis-Tris Protein Gels and subjected to Western blotting 

(2.3.3). 

 

 Mass spectrometric analysis 
The mass spectrometric analysis was performed as described in James et al., 2019 

in collaboration with Dr. Christof Lenz and Prof. Dr. Henning Urlaub (Core Facility 

Proteomics, University Medical Center Göttingen). 

For statistical evaluation of the data Perseus software (Tyanova et al., 2016) was 

used. The workflow used in Perseus for identification of proteins in close proximity is 

described in Table S1 (Appendix).
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 : Membrane insertion of VAPB 
 

3.1. Introduction 
(see also 1.8) 

Vesicle-associated membrane protein-associated protein B (VAPB) is an ER-

resident, tail-anchored (TA) protein that belongs to a ubiquitously expressed family of 

proteins called VAPs. VAPB is involved in lipid metabolism and transport (Loewen et al., 

2003; Rocha et al., 2009), membrane trafficking, organelle transport along microtubules 

(Foster et al., 2000; Kagiwada et al., 1998; Kawano et al., 2006; Peretti et al., 2008; Skehel 

et al., 1995) and unfolded-protein-response (Kanekura et al., 2006; Suzuki et al., 2009). 

VAPB has an N-terminal Major Sperm Protein (MSP) domain, a coiled-coil (CC) domain 

and a C-terminal transmembrane domain (TMD) at the very end of the tail, defining it a C-

tail-anchored (TA) protein (Figure 11; Borgese et al., 2007). 

 

 
Figure 11. Domain structure of VAPB. 
243-residue human VAPB consists of a major sperm protein (MSP) domain, a coiled-coil (CC) and a C-
terminal transmembrane domain (TMD). See also Figure 8. 

 

Interest in studying VAPB was heightened in the past decades because of the 

identification of dominant missense mutations in the VAPB gene in patients affected with a 

familial form of amyotrophic lateral sclerosis disease (ALS; Nishimura et al., 2004). The 

best characterized interaction of VAPB is the one, where its MSP domain interacts with the 

protein ligands bearing two phenylalanine in an acidic tract (FFAT motif; Loewen and 

Levine, 2005; Loewen et al., 2003).  

Most TA proteins are known to integrate into the ER-membrane post-translationally. 

A conserved machinery for the post-translational insertion into the ER has been studied in 

yeast and mammalian cells (Aviram et al., 2016; Favaloro et al., 2008; Guna et al., 2018; 

Stefanovic and Hegde, 2007). One of the key players in the insertion mechanism of TA 

protein is the transmembrane domain recognition complex protein of 40 kDa (TRC40) also 

known as arsenical pump-driving ATPase protein (ASNA1) in mammals; guided entry of 

tail-anchored protein 3 (Get3) in yeast (Favaloro et al., 2008; Stefanovic and Hegde, 2007). 

Tryptophan-rich basic protein (WRB) and Ca2+-mediating cyclophilin ligand (CAML) function 

as receptors of TRC40 in the ER-membrane (Vilardi et al., 2011; Vilardi et al., 2014; 

Yamamoto and Sakisaka, 2012). Being a TA protein, VAPB is predicted to insert into the 

ER membrane using the post-translational mechanism of insertion (see 1.4.1.2; Borgese et 

MSP CC TMD
1 124 159 196 223 243
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al., 2007). Interestingly, VAPB was also reported to interact with TRC40 (Baron et al., 2014; 

Coy-Vergara et al., 2019). 

This chapter investigates the requirements for ER-membrane insertion of VAPB, 

focusing on TRC40 mediated insertion using in vitro studies. Rough microsomes and semi-

permeabilized cells were used as ER membrane sources for these studies. To study the 

insertion mechanism, either an opsin-tagged VAPB alone or in a complex with TRC40 was 

used. The N-glycosylation site (opsin tag) fused to the C-terminus of the protein of interest 

can be modified by luminal glycosyltransferase in the ER upon insertion (Pedrazzini et al., 

2000). 
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3.2. Results 
 

 Membrane insertion mechanism of VAPB 
VAPB is predicted to insert post-translationally into ER membrane because of its TA 

topology (Borgese et al., 2007). Since VAPB belongs to the class of TA-proteins, TRC40-

mediated pathway for TA-protein targeting to the ER (Colombo et al., 2016) was addressed 

in an initial attempt to study the mechanism of insertion. VAPB interacts with TRC40 through 

its FFAT-like motif (Baron et al., 2014) and was shown to interact with TRC40 by using a 

‘trap’ approach involving a dominant-negative ATPase-impaired mutant of TRC40 (Coy-

Vergara et al., 2019). 

 

3.2.1.1. VAPB is inserted post-translationally into microsomal membranes 
To determine whether VAPB can be inserted post-translationally into ER membrane, 

a rough microsome insertion assay (Abell et al., 2007; Favaloro et al., 2010; Vilardi et al., 

2011) was performed. In this assay, microsomes were used as a source of ER-membrane 

and an opsin-tag fused to the C-terminus of the target protein was used to monitor 

membrane insertion. Emerin tagged with opsin was used as a positive control. The proteins 

of interest were synthesized in an in vitro-transcription/translation system. Insertion into 

rough microsomes was monitored by N-linked glycosylation of an opsin-tag at the very C-

terminal end of the protein (Figure 12A). As shown in Figure 12B, VAPB-opsin and emerin-

opsin were synthesized in reticulocyte lysates. A shift in molecular weight of the protein, 

indicating glycosylation, was observed after the addition of rough microsomes. To 

determine whether VAPB is post-translationally inserted into microsomes, the translation 

inhibitor puromycin was added 90 minutes after the start of the transcription/translation 

reaction. 10 minutes after the addition of puromycin, rough microsomes were added to 

initiate post-translational membrane insertion. Even after the addition of puromycin, a 

membrane inserted (glycosylated) form of VAPB was observed, suggesting that the protein 

is post-translationally inserted (Figure 12B). Note that puromycin added at the beginning of 

the reaction (t=0 min) completely inhibited protein synthesis. As reported before (Pfaff et 

al., 2016), emerin was also observed to be post-translationally inserted (Figure 12B). This 

result shows that both VAPB and emerin are post-translationally inserted into the ER 

membrane. 
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Figure 12. VAPB and emerin are post-translationally inserted into microsomes. 
(A) Schematic depiction of in vitro membrane insertion assay. Tail-anchored-opsin (TA-op) proteins were 
synthesized in an in vitro-transcription/translation system and subsequent membrane insertion was carried 
out into rough microsomes. A shift in molecular weight occurs due to glycosylation of the opsin-tagged 
protein, which can be detected by Western blotting. (B) VAPB-opsin and emerin-opsin were synthesized by 
in vitro-translation/transcription system. Puromycin was added before translation/transcription step (t=0 min) 
or after for 10 minutes (t=90 mins) and the in vitro reaction mix was incubated in the presence of rough 
microsomes. After Western blotting the glycosylated bands were detected using an anti-opsin antibody. * 
indicates glycosylated protein and º indicates non-glycosylated protein. 

 

3.2.1.2. In vitro translated VAPB is inserted into microsomal membranes 
To further confirm that the shift in molecular weight of the protein resulted from 

glycosylation, peptide-N-glycosidase F (PNGase F) was added to 10% of the reaction mix. 

As a control, PNGase buffer alone was added to another 10% of the reaction mix. Indeed, 

only a non-glycosylated form of the proteins was observed upon PNGase treatment, 

indicating deglycosylation of both VAPB-opsin and emerin-opsin compared to the samples 

treated with buffer alone (Figure 13). This result demonstrates that the proteins had 

originally been N-glycosylated and the opsin-tag with its N-glycosylation site have reached 

the microsomal lumen, confirming membrane insertion of VAPB and emerin. 

 

 
Figure 13. Membrane insertion of in vitro translated VAPB-opsin and emerin-opsin. 
VAPB-opsin and emerin-opsin synthesized by in vitro-translation/transcription system was incubated in the 
presence of rough microsomes. 10% of each reaction mix with rough microsomes was taken and incubated 
either with PNGase buffer alone or with PNGase to facilitate deglycosylation. The samples were subjected 
to Western blotting and probed with an anti-opsin antibody to control for glycosylation. * indicates 
glycosylated protein and º indicates non-glycosylated forms of VAPB or emerin. 
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3.2.1.3. Membrane insertion of recombinant TRC40/VAPB complex into semi-
permeabilized cells 

In order to characterize the association of VAPB with TRC40 in the context of 

membrane insertion, recombinant VAPB tagged with opsin was purified in a complex with 

TRC40.  

 

Co-expression of VAPB with TRC40 
VAPB was expressed in BL21AI E. coli strain that allows induction of protein 

expression using an arabinose-inducible promoter or IPTG inducible promoter, as a fusion 

protein carrying an N-terminal HZZ-tag (i.e. a His tag linked to an IgG-binding ZZ-domain) 

and a C-terminal N-glycosylation site (an ‘opsin’ tag), together with MBP (maltose-binding 

protein)-tagged TRC40 (Figure 14A). The two distinct bands obtained after amylose elution 

suggest that TRC40 and VAPB were co-purified successfully (Figure 14B). This confirms 

that VAPB can indeed form stable complexes with TRC40.  

 

 
Figure 14.When co-expressed VAPB exists as a complex with TRC40.  
(A) Schematic depiction of constructs used in expression and purification of VAPB in complex with TRC40. 
(B) Co-purification of soluble HZZ-VAPB-opsin/MBP-TRC40 complex by Ni-NTA and amylose resins. The 
proteins were separated by SDS-PAGE and stained by Coomassie Blue. (UC; ultracentrifugation). 

 
3.2.1.4. TRC40/VAPB complex does not integrate into semi-permeabilized cells 

To establish membrane integration of VAPB using TRC40/VAPB-opsin complex, a 

semi-permeabilized cell system was used as a source of ER membranes. An N-

glycosylation site (opsin-tag) fused to the C-terminus of the protein of interest would help to 

monitor its insertion into the ER membranes. A shift in molecular mass indicates N-

glycosylation of the reporter protein, a reaction that is specific for the ER. As an initial step, 

HeLa cells were treated with digitonin for selective permeabilization. To analyze the TRC40-
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dependent membrane insertion of HZZ-VAPB-opsin, the purified HZZ-VAPB-opsin/TRC40 

complex was incubated with the semi-permeabilized cells in the presence or absence of 

ATP for 1 hour at 4°C and 30°C respectively, as shown in Figure 15A. ATP was added to 

the reaction mix, since the TRC40-dependent membrane integration of TA proteins was 

shown to be an active, ATP-dependent process (Favaloro et al., 2008; Stefanovic and 

Hegde, 2007). As a control, emerin was co-expressed and co-purified with TRC40 since it 

is a well characterized TA INM protein that uses the TRC40 pathway for membrane insertion 

(Pfaff et al., 2016). After co-expression and incubation in semi-permeabilized cells as 

described above, the samples were analyzed by Western blotting using anti-opsin 

antibodies. Emerin, as previously shown (Pfaff et al., 2016), was inserted in an ATP and 

temperature-dependent manner into membranes of semi-permeabilized cells. As shown in 

Figure 15B, VAPB-opsin failed to integrate into semi-permeabilized cells suggesting that 

TRC40 is not essential for membrane insertion of VAPB, even if it forms a complex with 

VAPB.  

 

 
Figure 15. Recombinant HZZ-VAPB-opsin in complex with TRC40 does not integrate into semi-
permeabilized cells. 
(A) Schematic overview of membrane insertion using semi-permeabilized cells. Affinity purified protein 
complexes were added to HeLa cells permeabilized with digitonin and were incubated in the presence or 
absence of ATP at 4 and 30°C. (B) Semi-permeabilized cells were incubated with purified VAPB-
opsin/TRC40 complex at 4 and 30°C, with or without ATP. Proteins were analyzed by SDS-PAGE and 
Western blotting. The glycosylated proteins were detected using an anti-opsin antibody. * indicates 
glycosylated and º indicates non-glycosylated proteins. Purified emerin-opsin/TRC40 complex was used as 
positive control for insertion into permeabilized cells.  

 

3.2.1.5. Insertion of VAPB into ER membranes does not require the TRC40-
pathway receptors. 

Next it was tested whether the receptors involved in TRC-40 pathway could assist 

in the post-translational insertion of VAPB. In order to investigate this, membrane insertion 

assays were performed in the presence of two inhibitory fragments of the pathway. TRC40 

mediated insertion of TA proteins requires an ER receptor consisting of WRB protein along 
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2014). A recombinant coiled-coil domain of WRB (WRB-CC) and an N-terminal domain of 

CAML (CAML-N) are known to interfere with TRC40 mediated insertion of TA proteins in 

vitro (Vilardi et al., 2011; Yamamoto and Sakisaka, 2012) (Figure 16A). To investigate 

whether the two dominant-negative fragments, WRB-CC and CAML-N, interfere with the 

insertion of VAPB-opsin into microsomes, insertion assay was performed using these 

fragments at two different concentrations, 5 µM and 10 µM. The insertion of emerin-opsin 

was strongly reduced as reported previously by Pfaff et al., 2016 in the presence of these 

fragments (Figure 16B and C). By contrast, membrane insertion of VAPB was marginally 

reduced by the addition of these fragments, indicating that membrane insertion of VAPB 

does not strictly require the receptors WRB and CAML (Figure 16B and C). 

 

 
Figure 16. VAPB does not require the receptors of the TRC-pathway for its insertion into 
microsomes. 
(A) Schematic representation of inhibition of TRC40 mediated insertion by dominant-negative fragments, 
WRB-CC and CAML-N. (B) In vitro translated VAPB-op and emerin-op were incubated with rough 
microsomes (RM) either in the presence or absence of 5 and 10 µM of WRB-CC or CAML-N. The 
glycosylated bands were detected using an anti-opsin antibody. * indicates glycosylated and º indicates non-
glycosylated proteins. (C) Quantification of percentage (%) glycosylation for both VAPB-op and emerin-op 
into rough microsomes (RM) with and without the addition of WRB-CC and CAML-N. The relative amount of 
glycosylation (*) was quantified using Image-studio software and normalized to the maximum value. The 
graph represents the means ± SD of three independent experiments with p < 0.001(***), p< 0.05(*), ns; non-
significant. 

 

3.2.1.6. TRC40 depletion has no effect on VAPB membrane insertion  
It was previously shown that the insertion of emerin could be inhibited by the 
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possibility of TRC40 dependent membrane insertion of VAPB into rough microsomes, 

immuno-depletion assays were performed. The reticulocyte lysate used for in vitro 

transcription/translation was immuno-depleted for TRC40. The efficiency of depletion of 

TRC40 was determined by Western blotting (Figure 17A). As shown in Figure 17B, TRC40-

depletion affected the membrane insertion of emerin showing an increase in non-

glycosylated form of emerin-opsin compared to the glycosylated protein, whereas VAPB 

remained unaffected.  

 

 
Figure 17. Membrane insertion of VAPB in immuno-depleted lysates. 
(A) Lysates used for in vitro translation/transcription was depleted for TRC40 using Protein-A-agarose beads 
bound to antibodies against TRC40. As a control for depletion (mock (-)), rabbit IgG was used. The efficiency 
of depletion for TRC40 was detected by western blotting. (B) The glycosylated proteins were detected using 
an anti-opsin antibody. * indicates glycosylated protein and º indicates non-glycosylated protein.   

 

Taken together, these results suggest that VAPB gets post-translationally inserted 

into the ER membrane but does not strictly require the TRC40 pathway for its insertion. 

Even though VAPB interacts with TRC40, this interaction may not help in the insertion into 

the ER membrane. 
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3.3. Discussion 
This chapter investigated the requirements for membrane insertion of VAPB. The 

TRC40 pathway is the most studied route for post-translational membrane insertion of TA 

proteins, although alternative mechanisms using other factors like the ER membrane 

complex (EMC) (Guna et al., 2018), SRP-independent targeting (SND) (Aviram et al., 2016), 

signal recognition-particle (Abell et al., 2004; Abell et al., 2007; Casson et al., 2017) or 

HSC70/HSP40 (Rabu et al., 2008) have been previously described. Insertion can also occur 

through unassisted pathways (Brambillasca et al., 2006; Colombo et al., 2009). VAPB 

formed a stable complex with TRC40 upon co-expression in E. coli (Figure 14), confirming 

the previous findings that VAPB interacts with TRC40 (Baron et al., 2014; Coy-Vergara et 

al., 2019). Mass spectrometric analysis of VAPB immunoprecipitates had revealed that 

VAPB interacts with the TRC pathway subunits-TRC40, BAG6, UBL4A and GET4 (Baron 

et al., 2014; 1.4.1.2) and interaction with TRC40 was confirmed by co-immunoprecipitation 

of endogenous VAPB in the same study. An FFAT-like sequence close to the N-terminus 

of TRC40 was also identified that interacts with the MSP domain of VAPB (Baron et al., 

2014). Additionally, using a dominant-negative ATPase impaired mutant of TRC40 that 

traps TA proteins in the cytoplasm, VAPB was reported to get trapped by the TRC40 mutant 

(Coy-Vergara et al., 2019).  

Although a stable complex was formed with TRC40, integration assay using semi-

permeabilized cells showed no membrane insertion (Figure 15). Given that the interaction 

of TA proteins with TRC40 for ER-membrane insertion occurs via their C-terminal TMD 

(Stefanovic and Hegde, 2007), it is interesting to investigate whether the interaction of 

VAPB via its N-terminus has other functions. It has been proposed that VAPB may serve 

as an alternative receptor for TRC40 whose ubiquitinated targets require the ATPase p97 

and its cofactor FAF1 (Baron et al., 2014). Further studies will be needed to determine this 

function of VAPB. 

Integration assays using WRB and CAML inhibitory fragments or TRC40 

immunodepletion (Figure 16 and Figure 17) also suggested that VAPB does not strictly use 

the TRC40 pathway for its insertion into the ER. However, integration assays using 

microsomes confirmed the post-translational membrane insertion of VAPB (Figure 12). 

These observations suggest that alternative mechanisms might contribute to the post-

translational insertion of VAPB (Abell et al., 2004; Abell et al., 2007; Aviram et al., 2016; 

Guna et al., 2018; Rabu et al., 2008; see also 6.1.3).  
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VAPB (vesicle-associated membrane 
protein-associated protein B) is a tail-
anchored protein that is present at several 
contact sites of the endoplasmic reticulum 
(ER). We now show by immunoelectron 
microscopy that VAPB also localizes to the 
inner nuclear membrane (INM). Using a 
modified APEX2 (enhanced ascorbate 
peroxidase 2)-approach with rapamycin-
dependent targeting of the peroxidase to a 
protein of interest, we searched for proteins 
that are in close proximity to VAPB, 
particularly at the INM. In combination 
with stable isotope labeling with amino 
acids in cell culture (SILAC), we confirmed 
many well-known interaction partners at 
the level of the ER with a clear distinction 
between specific and non-specific hits. 
Furthermore, we identified emerin, 
TMEM43 and ELYS as potential 
interaction partners of VAPB at the INM 
and the nuclear pore complex, respectively. 
The family of vesicle-associated membrane 
protein (VAMP/synaptobrevin) associated 
proteins (VAPs) includes VAPA and VAPB 

with described roles in the morphology and the 
function of the endoplasmic reticulum (ER) 
and the Golgi apparatus (1,2). VAPB is a tail-
anchored protein, i.e. a protein containing a 
single transmembrane domain close to its C-
terminus. Such proteins are typically inserted 
into the cellular membrane system in a post-
translational manner (3,4). In its N-terminal 
region, VAPB contains a characteristic major 
sperm protein (MSP) domain. VAPB localizes 
largely to the ER and its binding to several 
partner proteins has been shown to mediate the 
association of the ER with other organelles. 
The acyl-CoA binding domain protein 5 
(ACBD5), for example, interacts with VAPB 
and is involved in binding peroxisomes to the 
ER (5), whereas tyrosine phosphatase 
interacting protein 51 (PTPIP51) and VAPB 
form an ER-mitochondria tethering complex 
(6). In the secretory pathway, VAPB interacts 
with the Yip1-interacting factor homologue 
YIF1A, e.g. at the level of the ER-Golgi 
intermediate compartment (7). Furthermore, 
several oxysterol binding proteins (OSBPs), 
which play important roles in lipid transport, 
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interact with VAPB (8) and Kv2 potassium 
channels form ER-plasmamembrane junctions 
via interactions with VAPB (9). In total, >100 
proteins have been reported to directly or 
indirectly interact with VAPB and/or the 
highly similar protein VAPA (10,11) (see also 
https://thebiogrid.org). A major binding motif, 
which is found in many VAPB-interacting 
proteins, is the “two phenylalanines in an 
acidic tract” (FFAT)-motif (11,12). Typically, 
the FFAT- (or FFAT-like) motif interacts with 
the MSP-domain of VAPB. One example for a 
protein containing the FFAT-motif that binds 
VAPB is the WD repeat-containing protein 
WDR44 (13). A mutation in VAPB (P56S) is 
involved in an autosomal dominant form of 
amyotrophic lateral sclerosis (ALS) (14) and 
blocks transport of nucleoporins and emerin, a 
major protein of the inner nuclear membrane 
(INM), to the nuclear envelope (15). 
Several methods have been developed for the 
identification of proteins that are in close 
proximity to each other. They typically 
introduce biotin into unknown proteins as a tag 
that can be used for affinity capture with 
immobilized streptavidin and subsequent 
analysis by mass-spectrometry (for review see 
(16,17)). One prominent approach, proximity-
dependent biotin identification (BioID), is 
based on a mutant form of the biotin ligase 
BirA, which can be fused to a protein of 
interest (the bait) whose neighboring proteins 
are to be analyzed (18). The enzyme part of the 
fusion protein releases reactive biotin, which 
can modify proteins (the prey) within a small 
spatial range. One drawback of this method is 
a rather long reaction time of >15 hours, 
although a faster method has been described 
very recently (19). As an alternative to biotin 
ligase dependent modifications, peroxidase-
based methods have been introduced that allow 
short reaction times in the range of seconds to 
minutes (20). Ascorbate peroxidase (APEX) is 
a plant enzyme that generates biotin-phenoxyl 
radicals from biotin phenol in the presence of 
H2O2. These radicals have a very short half-life 
and, thus, can modify proteins within a range 
of ~20 nm, reacting with several amino acids 
with tyrosine as the primary site of 
biotinylation (21). Importantly, APEX can be 
fused to the N- or the C-terminus of proteins 

and may also reside internally. Furthermore, 
the enzyme has been shown to be active in 
several cellular compartments (20,22,23). 
Recently, APEX2 was introduced, which is far 
more active than the original enzyme (24). So 
far, APEX- or APEX2-based methods have 
mainly been used for the identification of 
proteins that reside in defined subcellular 
compartments, e.g. in primary cilia (23) or in 
the intermembrane space of mitochondria (25). 
As an alternative to APEX, horseradish 
peroxidase (HRP) can also be used as an 
enzyme to initiate the formation of biotin-
phenoxyl radicals, and antibody-directed 
targeting of HRP to proteins of interest was 
recently described (26).  
We previously characterized the post-
translational insertion mechanisms of emerin 
into ER-membranes and analyzed targeting of 
the protein to the INM (27). For this, we 
applied a rapamycin-dependent dimerization 
method to monitor sequestration of a soluble 
nuclear reporter protein (dGFP-GST-NLS-
FKBP12) to mCherry-tagged emerin 
(mCherry-FRB-emerin) at the INM. In this 
system, rapamycin binds to its two cognate 
binding regions, a 12-kDa FK506 binding 
protein (FKBP12) and an FKBP-rapamycin-
binding (FRB)-cassette, promoting rapid 
interaction of the appropriately tagged proteins 
(28).  
We now combine the APEX2-technology with 
the rapamycin-dependent dimerization 
approach. To this end, we target FKBP12-
tagged APEX2 to FRB-tagged proteins in a 
rapamycin-dependent manner. SILAC, 
followed by quantitative mass spectrometry, 
then allows the comparison of proteins that get 
biotinylated by APEX2 in either the absence or 
the presence of rapamycin. Using this method 
(rapamycin- and APEX-dependent 
identification of proteins by SILAC or 
RAPIDS), we found RMDN3 (PTPIP51), 
ACBD5, YIF1A, OSBPL9 and other 
previously known interacting proteins of 
VAPB. Using a version of APEX2 that 
accumulates in the nucleus, we identified 
additional neighboring proteins of VAPB that 
reside at the nuclear envelope, e.g. emerin, 
TMEM43, lamins and the nucleoporin ELYS 
(embryonic large molecule derived from yolk 
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sac; AHCTF1). We further demonstrate the 
INM-localization of VAPB by 
immunoelectron microscopy and confirm the 
close proximity of endogenous VAPB with 
several of the newly identified proteins using 
proximity ligation assays and co-
immunoprecipitation experiments. 

Results 
VAPB resides at the INM 
VAPB is typically described as an ER-resident 
protein, mediating interactions with multiple 
organelles. In addition, VAPB seems to play a 
role in the dynamics of the nuclear envelope 
and the nuclear pore complex. In this context, 
it was reported to affect transport of emerin to 
the INM (15). A localization of VAPB itself to 
the INM, however, has not been demonstrated 
so far. We therefore investigated the 
subcellular localization of VAPB in detail. 
First, we analyzed endogenous VAPB by 
indirect immunofluorescence using different 
buffers for the procedure. The specificity of 
the anti-VAPB antibody was confirmed by 
siRNA-mediated knockdown (compare Fig. 6). 
As shown before, VAPB localized to the 
endoplasmic reticulum (ER), with a clear rim 
around the nucleus visible in many cells (Fig. 
1A). Interestingly, the ratio of the ER- and the 
nuclear envelope signal varied a lot, depending 
on the buffer used (compare (i) and (ii)). 
Similar to the endogenous protein, differently 
tagged versions of VAPB (mCherry-FRB-
VAPB and HA-FRB-VAPB) were also found 
at the level of the ER and the nuclear envelope 
(Fig. 1B). We next tested if the nuclear rim 
could reflect targeting of VAPB not only to the 
outer, but also to the inner nuclear membrane. 
For readout, we used our established 
rapamycin-system (27). As shown before for 
emerin, the nuclear reporter protein dGFP-
GST-NLS-FKBP12 was sequestered to the 
nuclear rim upon the addition of rapamycin in 
cells co-expressing mCherry-FRB-VAPB (Fig. 
1C). This result suggested that at least a 
portion of the exogenously expressed VAPB 
reached the INM. To unequivocally 
demonstrate INM-localization of endogenous 
VAPB, we performed immunoelectron 
microscopy. As shown in Fig. 1D, 

immunoreactivity was detected at 
mitochondria, possibly reflecting the 
interaction of VAPB with PTPIP51. 
Furthermore, a significant number of gold dots 
were found at the level of the INM and also in 
close proximity to nuclear pores. In addition to 
these morphological studies, we also 
performed biochemical analyses. Obtaining 
pure INM-fractions is hardly possible, 
nevertheless, we subjected cell lysates to an 
established fractionation protocol (29). As 
shown in Fig. S1, VAPB was largely recovered 
in the same fraction as emerin and other 
proteins of the nuclear envelope, although 
other membrane proteins are certainly 
expected in this fraction as well. Together, our 
results clearly point to a localization of a 
fraction of the cellular VAPB-pool at the INM. 
They are in line with a recent study that was 
published during the review process of this 
paper, suggesting a role of VAPB in nuclear 
egress of Herpes Simplex viral particles (30). 

APEX2-dependent biotinylation of proteins 
A number of membrane proteins exposing 
binding regions to the cytoplasm have been 
shown to interact with the ER-form of VAPB 
(2). A portion of VAPB, however, localizes to 
the INM and we now set out to devise a 
method for the identification of neighboring 
partners of VAPB that allows to focus on 
either the cytoplasm (where the majority of 
VAPB is expected) or the nuclear 
compartment. Our approach is based on the 
APEX2-method for identification of proximity 
partners. In a “classic” approach, we first fused 
APEX2 directly to VAPB (Fig. 2A, left), as 
done before for many other proteins (9,20-
23,25,31-35). HeLa cells were transfected with 
constructs coding for APEX2-VAPB or, for a 
control reaction, GFP-APEX2. Fig. 2B shows 
the subcellular localization of the APEX2-
fusion proteins: as expected, GFP-APEX2 is 
found all over the cell and should promote 
unspecific biotinylation of many cellular 
proteins, whereas APEX2-VAPB localizes 
largely to the ER, very similar to other fusion 
proteins of VAPB (compare Fig. 1B). Next, 
the cells were subjected to the biotinylation 
protocol, including loading of cells with biotin-
phenol and a short pulse with H2O2. For 
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analysis, biotinylated proteins were enriched 
using neutravidin beads and detected by 
Western-blotting. As shown in Fig. 2C, both 
fusion proteins were detected at similar levels 
in total cell lysates and in the protein fractions 
as bound to the neutravidin beads, indicating 
self-biotinylation. Furthermore, they led to a 
similar pattern of biotinylated proteins as 
detected by streptavidin-HRP. Next, we probed 
the blots with antibodies against proteins that 
had previously been identified as interaction 
partners of VAPB. Indeed, ACBD5 and 
OSBPL9 were clearly enriched when cells 
expressed APEX2-VAPB. In the control cells 
expressing GFP-APEX2, much lower levels of 
ACBD5 and OSBPL9 were detected (compare 
lanes 7 and 8). This result shows that the 
APEX-method is suited for the identification 
of interaction/proximity partners of VAPB at 
the level of the ER. We noted, however, that 
the difference between specific and unspecific 
biotinylation (i.e. modification in cells 
expressing APEX2-VAPB versus cells 
expressing GFP-APEX2) varied a lot, possibly 
resulting from different transfection 
efficiencies. We therefore modified our 
approach in a way that should allow a better 
control over specific versus unspecific 
biotinylation and combined APEX2-dependent 
biotinylation with the protocol for rapamycin-
dependent targeting of proteins to a protein of 
interest (27). For a first proof-of-principle, we 
constructed a GFP-linked version of APEX2 
with the rapamycin-interaction cassette 
FKBP12 (Fig. 2A, right). Cells were 
transfected with this construct, together with a 
construct coding for mCherry-FRB-VAPB. 
Transfected cells were treated with or without 
rapamycin and subjected to the biotinylation 
protocol. Fig. 2B shows the localization of 
mCherry-FRB-VAPB at the ER and the 
nuclear envelope and the recruitment of GFP-
FKBP12-APEX2 to these sites upon addition 
of rapamycin. This treatment resulted in a 
pronounced overlap of the GFP- and the 
mCherry-signals, suggesting a tight interaction 
of FKBP12-GFP-APEX2 with mCherry-FRB-
VAPB (compare Fig. 1C). As for the “classic” 
approach, cells were then subjected to the 
biotinylation protocol and biotinylated proteins 
were analyzed by Western-blotting. As shown 

in Fig. 2C, ACBD5 and OSBPL9 were 
detected as biotinylated proteins (i.e. in the 
bound fraction) when cells had been treated 
with the drug, indicating rapamycin-dependent 
targeting of APEX2 to mCherry-FRB-VAPB 
and biotinylation of the known VAPB-
interaction partners. The levels of proteins that 
were recovered from the neutravidin beads 
were as high or higher than those found in the 
“classic” experiment using APEX2-VAPB as a 
fusion protein (compare lanes 4 and 8; 
compare also Fig. 3C). The added advantage of 
rapamycin-dependent targeting of APEX2 to 
our protein of interest, however, is twofold: 
first, a simple, single-parameter-change 
experiment (+/- rapamycin) can be performed 
for subsequent analysis of biotinylated proteins 
by quantitative mass spectrometry and 
discrimination between specific and unspecific 
hits. Second, the physical separation of 
APEX2 from the protein of interest allows an 
independent subcellular localization of the 
enzyme and, hence, a control over the 
population of cellular proteins that are 
potential targets for biotinylation. This is of 
particular importance for proteins like VAPB 
that can engage in interactions with different 
sets of proteins residing at distinct 
localizations. 

Rapamycin- and APEX-dependent 
identification of proteins by SILAC (RAPIDS) 
Based on the results described above, we 
decided to use the combined 
APEX2/rapamycin system for the 
identification of novel VAPB-proximity 
partners. The outline for an experiment with a 
version of APEX2 with the rapamycin-
interaction cassette and identification of 
proteins by SILAC and quantitative mass-
spectrometry is depicted in Fig. 3A. Briefly, 
cells are grown in media containing either light 
or heavy isotopes of the amino acids lysine and 
arginine and transfected with plasmids coding 
for mCherry-FRB-VAPB and FKBP12-GFP-
APEX2. The two types of cells (“light” and 
“heavy”) are then treated with or without 
rapamycin and subjected to the biotinylation 
procedure. Cellular lysates are combined and 
biotinylated proteins are enriched by binding 
to neutravidin beads. Mass-spectrometry of 
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eluted proteins then allows a direct comparison 
between plus- (i.e. specific biotinylation close 
to mCherry-FRB-VAPB) and minus- (i.e. 
background biotinylation) rapamycin 
conditions. A quantitative evaluation of heavy 
and light tryptic fragments of biotinylated 
proteins should immediately yield proteins that 
were in close proximity to mCherry-FRB-
VAPB in the presence of rapamycin. Fig. S2A 
shows the controls for H2O2-dependent protein 
biotinylation. Prominent bands that are seen in 
the absence of H2O2 correspond to 
endogenously biotinylated proteins. Similar 
transfection efficiencies in the two sets of cells 
(“light” and “heavy”) are controlled in Fig. 
S2B. 
Fig. 3B shows the combined results of two 
independent experiments, each with forward 
(i.e. using light and heavy medium for the 
plus- and minus-rapamycin conditions) and 
reverse reactions (i.e. with changed conditions, 
as depicted in Fig. 3A). Proteins that are 
preferentially biotinylated in the presence of 
rapamycin in both forward- (X-axis) and 
reverse-reactions (Y-axis) are expected in the 
upper left quadrant of the plot. One prominent 
protein here is VAPB itself, indicating its 
modification by the APEX2-fusion protein. 
Many previously known cytoplasmic 
interaction partners of VAPB were also 
identified with high levels of significance, 
including PTPIP51 (RMDN3), YIF1A, 
WDR44, OSBPL9, OSBPL8 and ACBD5. 
GAPDH, by contrast, was found in the cloud 
of proteins that were hardly affected by 
rapamycin, close to the intersection of the x- 
and the y-axis. The list of identified proteins is 
presented in Table S1. Interestingly, the INM-
protein emerin was also identified with a high 
significance. Another potential interaction 
partner is TMEM43, also known as LUMA, a 
membrane protein that interacts with emerin at 
the INM (36) and plays a role in certain forms 
of muscular dystrophies (37). Its localization 
is, however, controversial, since it was mainly 
found in zonula adhaerens and punctum 
adhaerens plaques in another study (38). 
Another nuclear protein that was identified is 
the AT-rich interactive domain-containing 
protein 4 A (ARID4A). This protein, also 
known as Rbbp1, is a retinoblastoma-binding 

protein (39) with functions in chromatin 
remodeling (40). The significance of the 
proximity and/or interaction of VAPB and 
ARID4A remains to be investigated.  
Next, we performed Western-blotting to 
confirm the mass-spectrometry data. As shown 
in Fig. 3C, high levels of mCherry-FRB-
VAPB, ACBD5, OSBPL9 and emerin were 
detected in the bound fraction when the cells 
had been treated with rapamycin, confirming 
rapamycin-dependent biotinylation. For 
GAPDH, by contrast, very similar levels were 
observed for rapamycin-treated and non-
treated cells. Based on the successful 
identification of known interaction partners, 
we termed our approach “RAPID-SILAC” or 
“RAPIDS” (Rapamycin- and APEX-dependent 
identification of proteins by SILAC). 

RAPIDS using a nuclear version of APEX2 
The identification of emerin supported the 
notion that VAPB can reach the INM (compare 
Fig. 1), although emerin could also localize to 
other regions of the cell (41,42). Two 
parameters of the assay as performed above 
disfavor the identification of bona fide INM-
proteins: first, FKBP12-GFP-APEX2 is found 
all over the cell and may preferentially interact 
with VAPB that localizes to the ER upon 
addition of rapamycin. Second, the version of 
VAPB in this experiment contains a large 
cytoplasmic mCherry-tag. Although the 
protein can reach the INM to some extent (Fig. 
1C), the efficiency of diffusion of proteins 
from the ER via the outer nuclear membrane to 
the INM in general is clearly affected by the 
size of the cytoplasmic domain (43-47). We 
therefore modified our approach twofold (Fig. 
4A). First, we used a version of APEX2, 
APEX2-dGFP-NLS-FKBP12, which strongly 
accumulates in the nucleus of transfected cells 
as a result of its nuclear localization signal. 
Hence, biotinylation of nuclear proteins or 
INM-proteins should be favored. Second, we 
designed a smaller version of VAPB, HA-
FRB-VAPB, which we expect to diffuse more 
readily across the nuclear pore to the INM than 
the mCherry-tagged version. As shown in Fig. 
4B, APEX2-dGFP-NLS-FKBP12 localized 
largely in the nucleus in the absence of 
rapamycin. Upon addition of the drug, the 
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reporter protein was sequestered to the nuclear 
envelope, suggesting binding to HA-FRB-
VAPB at the INM. We then performed 
RAPIDS and could show that VAPB (i.e. HA-
FRB-VAPB in this experiment) was 
prominently biotinylated in the presence of 
rapamycin (Fig. 4C, D). By quantitative 
proteomics, we identified at least 22 
biotinylated proteins that were enriched on the 
neutravidin beads upon addition of rapamycin 
to the cells, suggesting their close proximity to 
HA-FRB-VAPB (Fig. 4C and Table S2). 
Strikingly, many of the proteins identified are 
known to reside on the nuclear side of the 
nuclear envelope. The proximity-candidates 
fall into three categories: first, proteins of the 
INM like emerin, the lamina-associated 
polypeptide 1 (LAP1 or TOR1AIP1, Torsin-
1A-interacting protein 1; (48)) and LAP2b 
(TMPO, thymopoetin; (48,49)). Another 
protein in this category is TMEM43, which we 
also found with mCherry-FRB-VAPB as a bait 
(Fig. 3); second, proteins of the nuclear pore 
complex (NPC) like Nup153 (50), Tpr (51) 
and ELYS (AHCTF1; (52)) and third, 
components of the nuclear lamina like lamin A 
and lamin B (LMNA, LMNB; (53)). To 
confirm preferential biotinylation of candidates 
in the presence of rapamycin, we performed 
Western-blotting of proteins eluted from the 
neutravidin beads (Fig. 4D). Essentially all the 
tested protein showed increased recovery from 
neutravidin beads upon treatment of cells with 
rapamycin, including ELYS, lamin A/C, LAP1 
(TOR1AIP1), LAP2b (TMPO) and emerin. 
Together, our results show that RAPIDS 
allows the identification of known interaction 
partners of VAPB and, possibly, of novel 
proximity- and/or interaction partners.  

Validation 
Proteins identified by RAPIDS could be direct 
or indirect binding partners of VAPB and 
occur in biochemically stable complexes or 
just reside in very close proximity to our 
protein of interest. As a first step to distinguish 
between these possibilities, we performed co-
immunoprecipitation experiments, combined 
with a crosslinking approach to stabilize low-
affinity interactions. First, we 
immunoprecipitated endogenous VAPB using 

a specific antibody and analyzed the 
precipitate for co-precipitating proteins. As a 
control, total IgG was used (Fig. 5A). For the 
established binding partners of VAPB, 
ACBD5 and OSBPL9, and also for emerin and 
TMEM43, specific co-precipitation with 
VAPB was observed when the cells had been 
treated with the cleavable bi-functional 
crosslinker dithiobis(succinimidyl propionate) 
(DSP). For OSBPL9 and TMEM43, co-
precipitation above the IgG-background was 
also seen in the absence of the crosslinker, 
suggesting tight interactions. To corroborate 
these findings, we also used HA-FRB-VAPB-
overexpressing cells for co-
immunoprecipitation experiments, again with 
and without DSP as a crosslinking reagent. As 
shown in Fig. 5B, low levels of ACBD5 and 
OSBPL9 co-precipitated with overexpressed 
HA-FRB-VAPB. The levels of coprecipitated 
proteins strongly increased when the cells had 
been treated with DSP prior to cell lysis 
(compare lanes 5 and 7). For emerin and 
TMEM43 and, to some extent, for ELYS, co-
precipitation was observed in the cross-linked 
samples, suggesting that the corresponding 
complexes exist in intact cells. Very low levels 
of co-precipitating proteins were observed 
when the cells had been transfected with a 
plasmid coding for HA-FRB (lanes 6 and 8). 
Together, these results show that VAPB indeed 
interacts with some of the proteins that were 
identified as proximity partners by RAPIDS. It 
remains to be investigated whether these 
interactions are direct or indirect. 
Next, we performed proximity ligation assays 
(PLAs, (54)), which detect interactions (or at 
least proximity) of endogenous proteins and 
allow statements about the precise localization 
of the protein-protein interactions. These 
assays are based on the decoration of proteins 
in fixed cells, first with specific primary 
antibodies and subsequently with 
oligonucleotide-linked secondary antibodies. If 
the proteins of interest are in close proximity 
(i.e. within ~40 nm), subsequent ligation and 
amplification reactions lead to formation of a 
fluorescent product that can easily be detected 
by microscopy. We first analyzed VAPB with 
respect to its interaction with known binding 
partners that were also detected by RAPIDS, 
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namely ACBD5 and OSBPL9. To characterize 
our antibodies, we performed 
immunofluorescence analysis. As shown in 
Fig. S3A and B, ACBD5 co-localized with the 
peroxisomal marker protein PMP70, and 
OSBPL9 with the Golgi-marker GM130, 
indicating the specificity of the ACBD5- and 
the OSBPL9-antibodies. In PLAs, specific 
interactions of VAPB were observed with 
characteristic patterns of dots: for ACBD5 
(Figs. S3C, D), dots were found scattered all 
over the cell, consistent with signals derived 
from ER-peroxisome interactions. For 
OSBPL9, the observed dots were largely found 
in an area corresponding to the Golgi 
compartment (Figs. S3E, F). The specificity of 
the signals was supported by single-antibody 
controls. These results show that our 
antibodies are suitable for a faithful detection 
of VAPB-protein interactions. Next, we 
performed PLAs with antibodies against 
VAPB and emerin or ELYS (Fig. 6). TMEM43 
was not analyzed here due to lack of PLA-
suitable antibodies. For emerin, PLA-dots were 
mostly observed at the nuclear rim, consistent 
with the major localization of emerin at the 
INM (Fig. 6A). For ELYS (Fig. 6B), PLA-dots 
were observed at the nuclear envelope, but also 
in the nuclear interior. For both proteins, the 
number of dots decreased significantly when 
VAPB had been depleted by specific siRNAs 
as well as in single-antibody-controls, 
demonstrating the specificity of the PLA. In 
summary, co-immunoprecipitation 
experiments and PLA-assays suggest that 
VAPB indeed forms complexes with proteins 
of the INM and/or the NPC. Figure 7 depicts 
the interactome of VAPB, as revealed by our 
analysis and by previous studies.  

Discussion 
RAPIDS 
The known binding partners of VAPB localize 
exclusively to the cytoplasm or to cytoplasmic 
membranes. The INM-localization of VAPB 
therefore prompted us to search for nuclear 
proteins that could interact with VAPB or are 
at least in close proximity to VAPB at the level 
of the INM or the NPC. For this, affinity-based 
methods that require an initial cell-lysis step 

were not very promising, since the lysis 
buffers must fulfill two conflicting criteria: 
they must be strong enough to solubilize 
protein complexes like the nuclear lamina or 
the NPC, yet maintain the interactions of 
interest. Indeed, validation of our candidate 
proteins by co-immunoprecipitation 
approaches required a careful choice of 
specific reaction conditions concerning the 
lysis buffer, the specific antibody and, 
importantly, the crosslinker used for 
stabilization of protein-protein interactions. As 
an alternative, proximity-based approaches like 
BioID and the APEX-system have the 
advantage of targeting proteins in their natural 
environment, the living cells. BioID, in fact, 
was initially developed to probe the nuclear 
lamina for interaction partners of lamin A (18). 
In the last couple of years, APEX-based 
biotinylation approaches have been used very 
successfully for the analysis of the interactome 
of many proteins (9,20-23,25,31-35). With 
RAPIDS, we now introduce a method that 
combines APEX2-dependent biotinylation, 
rapamycin-dependent targeting of the enzyme 
to proteins of interest, and quantitative 
proteomics using SILAC. The use of 
rapamycin to induce rapid targeting of APEX2 
to a specific subcellular localization should 
facilitate the discrimination between proteins 
that are modified in a specific vs. a nonspecific 
manner. Furthermore, a careful choice of the 
tags used for APEX2- (here: +/- NLS) and the 
protein of interest (here: HA vs. mCherry) may 
strongly affect the spectrum of identified 
proteins. This is of particular importance for 
proteins of the INM, where the size and the 
nature of the tag may affect efficient targeting 
of proteins to their final destination. In general, 
the approach to physically separate the 
APEX2-enzyme from the protein of interest 
offers a tight control over the cellular proteins 
that are potential targets for biotinylation. This 
is a clear advantage for proteins like VAPB 
that can engage in interactions at different 
intracellular contact sites. Notably, a similar 
targeting approach using the rapamycin 
analogue AP21967 as a dimerizing agent was 
very recently described (55). In 2C-BioID, the 
authors used the rapamycin analogue AP21967 
to initiate dimerization of a biotin-protein 
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ligase and a protein of interest to analyze the 
interactomes of LAP2β and lamins A and C as 
a proof of principle.  
The feasibility of RAPIDS was demonstrated 
by the identification of many of the previously 
known binding partners of VAPB (Fig. 3). 
Furthermore, we identified several novel 
nuclear proximity partners of VAPB, 
consistent with the INM-localization of the 
protein. For this, usage of our nuclear version 
of APEX2 was important, as it favors the 
biotinylation of nuclear proteins. Fig. 7 
summarizes our findings and also indicates 
some of the proteins that had previously been 
identified as binding partners of VAPB. 
Together, RAPIDS is a versatile method for 
the identification of proteins that are in close 
proximity to a protein of interest. This 
modification of the classic APEX-approach 
should be applicable to proteins residing at 
different subcellular localizations.  

VAPB at the INM 
To our knowledge, a nuclear localization of 
VAPB itself has not been documented so far, 
except in a very recent publication (30). Using 
our rapamycin-dependent dimerization assay 
as well as immunoelectron microscopy, we 
now unequivocally show that VAPB can 
indeed reach the INM and can also be detected 
in close proximity to NPCs (Fig. 1). At this 
point, we cannot say with certainty, which 
percentage of the entire cellular pool of 
endogenous VAPB resides at the INM. In 
immunofluorescence, the ratio of the nuclear 
envelope- and the ER-signal of VAPB is 
affected by the buffer conditions (Fig. 1A). In 
immunoelectron microscopy (Fig. 1D), epitope 
masking is a general issue and could affect 
nuclear and cytoplasmic immunoreactivity of 
VAPB differently. Hence, other, more 
quantitative methods are required for an 
accurate determination of VAPB-levels at 
different localizations within the cell. 
VAPB has been described as a protein that 
localizes to ER-contact sites (2). Using 
RAPIDS under conditions that should favor 
the identification of cytoplasmic 
binding/proximity partners (i.e. with mCherry-
FRB-VAPB and FKBP12-GFP-APEX2; Figs. 
2 and 3), we found many of the previously 

known interaction partners of VAPB, 
including oxysterol binding proteins, PTPIP51 
and ACBD5. Most of the identified proteins 
associate with membranes and many of them 
localize to the ER (see Table S1), consistent 
with the major localization of mCherry-FRB-
VAPB. Nevertheless, we also identified emerin 
as a mainly nuclear protein using this 
approach, in agreement with the observation 
that mCherry-FRB-VAPB can reach the INM 
(Fig. 1C). A different picture emerged when 
we used FRB-VAPB with an HA-tag at the N-
terminal end instead of an mCherry-tag and 
APEX2-dGFP-NLS-FKBP12 as a nuclear 
version of the biotinylating enzyme (Fig. 4 and 
Table S2). Under this condition, we identified 
significantly more nuclear proteins, including 
emerin and other membrane proteins of the 
INM, several nucleoporins and components of 
the nuclear lamina. This result is consistent 
with the observation that the efficiency of 
translocation of proteins from the outer to the 
inner nuclear membrane inversely correlates 
with the size of the cytoplasmic/nuclear region 
of the protein (43-47). Since the HA-tag is 
significantly smaller than the mCherry-tag, a 
larger proportion of the overexpressed protein 
is expected to reach the INM via passive 
diffusion (45), where, upon rapamycin 
treatment, the nuclear version of APEX2 can 
then initiate efficient biotinylation of 
neighboring proteins.  
Importantly, interaction of endogenous VAPB 
or overexpressed VAPB with emerin and 
TMEM43 could be confirmed by co-
immunoprecipitation experiments, where the 
novel binding partners behaved very similar to 
the established binding partners ACBD5 and 
OSBPL9 (Fig. 5). Interestingly, co-
precipitation of TMEM43 with emerin has 
been described previously (36). For 
VAPB/emerin and VAPB/ELYS we also 
confirmed a close proximity in situ, using 
PLA-assays (Fig. 6). For emerin, PLA-dots 
were largely restricted to the nuclear envelope, 
consistent with the predominant localization of 
the protein. ELYS is a nucleoporin that can 
also localize to the nuclear interior in 
interphase cells (52) and plays a role in early 
steps of post-mitotic NPC-assembly (56,57). 
Hence, a role of VAPB in this process could be 
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envisaged. ELYS has previously been 
suggested to interact directly with VAPB 
based on an FFAT-like motif in its sequence 
(2,10). In our PLAs, we also observed 
intranuclear dots, suggesting that not only 
ELYS, but also VAPB might reside in the 
nucleoplasm. This seems counterintuitive, 
since VAPB is a membrane protein. Being a 
tail-anchored protein, however, a soluble pool 
of it must exist and a fraction could even reach 
the nuclear interior. At this point, we can only 
speculate about the functional significance of 
INM-localization of VAPB. VAPB has been 
implicated in the transport of emerin and 
nucleoporins to the INM and the NPC, 
respectively (15). 
In summary, our findings suggest that the 
interaction repertoire of VAPB is even larger 
than previously thought. VAPB not only serves 
as a bridging factor at multiple contact sites of 
the ER with mitochondria, peroxisomes, the 
Golgi apparatus and the plasma membrane, but 
also localizes to the INM, where it may contact 
several nucleoporins, integral membrane 
proteins and components of the nuclear lamina. 

Experimental procedures 
Plasmids 
Standard procedures were used for cloning and 
the obtained constructs were confirmed by 
sequencing. To obtain pcDNA3-FKBP12-
GFP-APEX2, the FKBP12 coding sequence 
was originally derived from pcDNA3-FKBP12 
(27,58) using primers G1562 and G1563 and 
cloned into pcDNA3-Connexin43-GFP-
APEX2 (Addgene plasmid #49385) through 
AflII and BamHI, thereby replacing the 
Connexin43 coding sequence (oligonucleotides 
are listed in Table S3). For APEX2-dGFP-
NLS-FKBP12, the APEX2 coding sequence 
was amplified by PCR using pcDNA3-
Connexin43-GFP-APEX2 as a template and 
primers G1573 and G1571. The PCR product 
was cloned into a pEGFP-C1 derivative 
encoding dGFP-cNLS-FKBP12 through BcuI. 
For pmCherry-FRB-VAPB, the VAPB coding 
sequence was amplified by PCR using primers 
G1390 and G1386 and pCAN-myc-VAPB (59) 
as a template. The PCR product was cloned 

into a pmCherry-C1 derivative coding for 
mCherry-FRB through KpnI and BamHI.  
For pEF-HA-FRB-VAPB, the FRB coding 
sequence (as above) from mCherry-FRB was 
first inserted into a modified pEF-HA vector 
(60) via NcoI and EcoRI, generating pEF-HA-
FRB. The VAPB coding sequence was
amplified by PCR using primers G1512 and
G1511 and pCAN-myc-VAPB (59) as a
template. The PCR product was then inserted
into pEF-HA-FRB plasmid through EcoRI and
SpeI. To obtain pEGFP-APEX2, APEX2 was
amplified from pcDNA3-FKBP12-GFP-
APEX2 using primers G1854 and G1855 and
cloned into pEGFP-C1 through EcoR1 and
BamH1. For APEX2-VAPB, VAPB was
amplified from pmCherry-FRB-VAPB using
primers G1512 and G1386 and cloned via
EcoR1 and BamH1 into pAPEX2-C1, which
had been generated by exchanging the
mCherry sequence of pmCherry-C1 for that of
APEX2.

Cell culture and transfection 
HeLa P4 cells (61) were obtained from the 
NIH AIDS Reagent Program. Cells were 
cultivated in DMEM (Life technologies, 
Carlsbad, CA, USA) supplemented with 10% 
(v/v) FBS (Life technologies, Carlsbad, CA, 
USA), 100 U ml-1 penicillin, 100 µg ml-1 
streptomycin and 2 mM L-glutamine (Life 
technologies, Carlsbad, CA, USA) under 5% 
CO2 at 37°C. They were tested regularly for 
contamination by mycoplasma. 
For SILAC, cells were grown in medium 
containing heavy or light isotopes of arginine 
and lysine. For this purpose, DMEM (high 
glucose) lacking glutamine, lysine and arginine 
(Thermo Fisher Scientific, Waltham, MA, 
USA) was supplemented with 10% (v/v) 
dialyzed FBS (Life technologies, Carlsbad, 
CA, USA), 6 mM L-glutamine (Life 
technologies), 100 U ml-1 penicillin and 100 
µg ml-1 streptomycin. To obtain SILAC media 
with heavy and light isotopes, either 0.4 mM 
13C6

15N2-L-lysine (Silantes, Munich, Germany) 
and 0.2 mM 13C6

15N4-L-arginine (Silantes, 
Munich, Germany) or 0.4 mM 12C6

14N2-L-
lysine (Sigma-Aldrich, St. Louis, MO, USA) 
and 0.2 mM 12C6

14N4-L-arginine (Sigma-
Aldrich, St. Louis, MO, USA) were added, 
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respectively. To ensure sufficient incorporation 
of heavy amino acids, cells were passaged five 
to seven times in SILAC medium before the 
biotinylation experiment, and the incorporation 
rate was confirmed to be ≥97% by mass 
spectrometry. 
Transfections were performed according to the 
calcium phosphate method (62). Briefly, the 
respective plasmids were mixed with 250 mM 
CaCl2. After the addition of the same amount 
of HEPES buffer (50 mM HEPES, pH 6.98, 
250 mM NaCl, 1.5 mM NaHPO4) and 20 min 
incubation at room temperature, the mixture 
was added to the cells, which were then grown 
as above. 
siRNA mediated knockdown of VAPB was 
carried out using Lipofectamine RNAiMAX 
(Thermo Fisher Scientific, Waltham, MA, 
USA) following the protocol of the 
manufacturer. VAPB siRNA 
(GCUCUUGGCUCUGGUGGUUUU, 
AAAACCACCAGAGCCAAGAGC; Sigma), 
and ON-Target plus non-targeting siRNA 
(Dharmacon, Lafayette, CO, USA, D-001810-
01-50) were used at a final concentration of
100 nM.

Rapamycin-dependent biotinylation assay 
HeLa P4 cells were grown in 10 cm dishes in 
SILAC medium as described above. Two sets 
of cells (in “light” or “heavy” medium) were 
transfected with pmCherry-FRB-VAPB and 
pcDNA3-FKBP12-GFP-APEX2 or pEF-HA-
FRB-VAPB and pAPEX2-dGFP-NLS-
FKBP12, using the same transfection mix to 
ensure similar expression levels, and grown to 
confluency. Cells were then incubated for 30 
min with 500 µM biotin-phenol (Iris Biotech, 
Marktredwitz, Germany), with or without 200 
nM rapamycin (Sigma Aldrich, St. Louis, MO, 
USA). For each experiment, forward and 
reverse reactions were performed. For forward 
reactions, cells grown in “light’’ SILAC 
medium were treated with rapamycin and cells 
grown in “heavy” SILAC medium were not. 
For reverse reactions, this labeling scheme was 
switched. After incubation with biotin-phenol 
and rapamycin, 1 mM H2O2 was added at room 
temperature. After 1 min, the medium was 
aspirated and cells were washed twice with 
quenching buffer (5 mM Trolox, 10 mM NaN3, 

10 mM sodium ascorbate in PBS) and once 
with PBS. Cells used for fluorescence 
microscopy were fixed immediately.  
For Western blot and SILAC analyses, cells 
from each dish were lysed with 1 ml RIPA 
buffer (50 mM Tris, pH 7.4, 5 mM Trolox, 
0.5% (w/v) sodium deoxycholate, 150 mM 
NaCl, 0.1% (w/v) sodium dodecyl sulfate 
(SDS), 1% (v/v) Triton X-100, 1 mM 
phenylmethane sulfonyl fluoride (PMSF), 10 
mM NaN3, 10 mM sodium ascorbate, 1 µg ml-1 
aprotinin, 1 µg ml-1 leupeptin and 1 µg ml-1 
pepstatin). The cell lysate was incubated for 5 
min on ice and centrifuged for 10 min at 
16,000 g and 4°C. The cleared cell lysate was 
used to enrich biotinylated proteins with 
neutravidin beads (Thermo Fisher Scientific, 
Waltham, MA, USA). For mass spectrometry, 
cell lysates derived from three 10 cm dishes 
were pooled, the protein concentration of the 
cell lysates was determined using the Pierce 
660 nm Protein Assay (Thermo Fisher 
Scientific, Waltham, MA, USA) and equal 
protein amounts of samples treated with or 
without rapamycin were mixed prior to 
addition to neutravidin beads. For Western blot 
analyses, the samples were kept separately. For 
each forward or reverse experiment, six 
batches of 130 µl neutravidin beads were 
incubated with 1ml cell lysate overnight at 4°C 
on a rotor. The beads were washed once with 
washing buffer 1 (50 mM HEPES (pH 7.4), 
0.1% (w/v) sodium deoxycholate, 1% (v/v) 
Triton X-100, 500 mM NaCl, 1 mM 
ethylenediaminetetraacetic acid (EDTA), once 
with washing buffer 2 (50 mM Tris (pH 8.0), 
250 mM LiCl, 0.5% (v/v) Nonidet P-40, 0.5% 
(w/v) sodium deoxycholate, 1 mM EDTA) and 
twice with washing buffer 3 (50 mM Tris (pH 
7.4) and 50 mM NaCl). For each washing step, 
the beads were incubated for 8 min at 4°C on a 
rotor. After the last washing step, the buffer 
was removed and bound proteins were eluted 
from the beads by incubation for 5 min at 95°C 
with 90 µl SDS sample buffer (4% (w/v) SDS, 
125 mM Tris pH 6.8, 10% (v/v) glycerol, 
0.02% (v/v) bromophenol blue, 10% (v/v) β-
mercaptoethanol) supplemented with 5 mM 
desthiobiotin (Sigma-Aldrich, St. Louis, MO, 
USA). To increase the protein concentration, 
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three batches of beads were consecutively 
eluted in the same buffer. 

Mass spectrometric analyses 
Samples were separated on 4-12% NuPAGE 
Novex Bis-Tris Minigels (Invitrogen, 
Carlsbad, California). Gels were stained with 
Coomassie Blue, and each lane sliced into 11-
12 equidistant bands. After washing, gel slices 
were reduced with dithiothreitol (DTT), 
alkylated with 2-iodoacetamide and digested 
with trypsin (sequencing grade, Promega, 
Madison Wisconsin) overnight. The resulting 
peptide mixtures were then extracted, dried in 
a SpeedVac, reconstituted in 2% 
acetonitrile/0.1% formic acid/ (v/v) and 
analyzed by nanoLC-MS/MS on a hybrid 
quadrupole/orbitrap mass spectrometer (Q 
Exactive, Thermo Fisher Scientific, Dreieich, 
Germany) as described previously (63). Raw 
data were processed using MaxQuant Software 
version 1.5.7.4 (Max Planck Institute for 
Biochemistry, Martinsried, Germany). Proteins 
were identified against the human reference 
proteome (v2017.02, 92.927 protein entries) 
along with a set of common lab contaminants. 
The search was performed with trypsine 
(excluding proline-proximal cleavage sites) as 
enzyme and iodoacetamide as cysteine 
blocking agent. Up to two missed tryptic 
cleavages were allowed for, as well as 
methionine oxidation and protein N-terminal 
acetylation variable modifications. Instrument 
type ‘Orbitrap’ was selected to adjust for MS 
acquisition specifics. Following an initial 
internal recalibration, this translated into an 
MS mass tolerance of 4.5 ppm and an MS/MS 
mass tolerance of 20 ppm. Protein and peptide 
results lists were thresholded at False 
Discovery Rates (FDR) of 0.01, using a 
forward-and-reverse decoy database approach. 
The Arginine R10 and Lysine K8 labels 
including the ‘Re-quantify’ option were 
specified for relative protein quantitation. 
Perseus Software version 1.5.6.0 (Max Planck 
Institute for Biochemistry, Martinsried, 
Germany) was used for statistical evaluation of 
relative protein quantitation values from the
MaxQuant Software results and a two-sided 
Significance B test (64) was performed using 
normalized log2 ratios. For the analysis, a 

Benjamini-Hochberg correction was applied 
and a threshold value of 0.05 was chosen. 
Mass spectrometry experiments were 
performed twice, each with two biological and 
two technical replicates. 

Data availability 
The MS proteomics data have been deposited 
to the ProteomeXchange Consortium via the 
PRIDE (65) partner repository with the dataset 
identifier PXD012157 (username: 
reviewer27517@ebi.ac.uk; password: 
LrJXmV8h) 

Western blot analyses 
Western blotting was performed according to 
standard methods using HRP-coupled 
secondary antibodies. To detect biotinylated 
proteins, they were separated by SDS-PAGE 
using 4-12% NuPAGE Novex Bis-Tris 
Minigels (Invitrogen, Carlsbad, California). 
After transfer to nitrocellulose, the membranes 
were incubated in blocking buffer (3% BSA in 
TBS-T (24.8 mM Tris, pH 7.4, 137 mM NaCl, 
2.7 mM KCl, 1% (v/v) Tween 20)) overnight 
at 4°C. Incubation with streptavidin-HRP 
(Jackson ImmunoResearch Laboratories, West 
Grove, PA, USA; diluted 1:5,000-1:40,000 in 
blocking buffer) for 1 h at room temperature 
was followed by three washing steps with 
TBS-T. For detection of proteins, Immobilon 
Western Chemiluminescent HRP Substrate 
(Millipore, Burlington, MA, USA) and a 
luminescent image analyzer (LAS-3000; Fuji, 
Tokyo, Japan) were used. Signal intensities 
were measured using Image Studio Lite (Ver. 
5.2). Two-way analysis of variance (ANOVA) 
followed by Bonferroni post-test was used for 
statistical analysis and a confidence interval of 
95% was set. Primary and secondary 
antibodies are listed in Table S4.  

Immunofluorescence and microscopy 
For fluorescence microscopy, cells were grown 
on coverslips and fixed with 4% (v/v) para 
formaldehyde. Cells expressing fluorescently 
labeled proteins were mounted directly with 
MOWIOL supplemented with 1 µg/ml DAPI. 
For immunofluorescence, fixed cells were 
permeabilized with 0.5% (v/v) Triton X-100 in 
PBS for 5 min at room temperature and 
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blocked with 3% (w/v) BSA in PBS for 20 min 
at room temperature. Staining was performed 
for 1 h at room temperature using appropriate 
primary antibodies and fluorescently labeled 
secondary antibodies (Table S4), which were 
diluted in 3% BSA in PBS. Afterwards, cells 
were embedded in MOWIOL-DAPI. 
Microscopic analysis was performed using an 
LSM510 Confocal laser scanning microscope 
using a 63X /1.4 oil immersion lens (Zeiss, 
Oberkochen, Germany). 

Electron microscopy 
For immunoelectron microscopy, HeLa cells 
were fixed with 2% paraformaldehyde, 0.2% 
glutaraldehyde in PHEM buffer (60 mM Pipes, 
25 mM Hepes, 2 mM MgCl2, 10 mM EGTA, 
pH 6.9) for 1 h, washed with PHEM, and 
scraped off. Cells were pelleted (200 x g, 2 
min) and resuspended in 0.1% glycine in PBS, 
pelleted (400 x g, 2 min), resuspended in 0.1% 
glycine in PBS (15 min), pelleted (400 x g, 2 
min), resuspended in 1% gelatin (Dr. Oetker) 
at 37°C for 10 min, pelleted (400 x g, 2 min), 
resuspended in 10% gelatin for 10 min at 
37°C, then replaced on ice. Pellets were 
immersed in 15% PVP (polyvinylpyrrolidone, 
10 kDa, Sigma), 1.7 M sucrose in PBS 
overnight, then mounted and frozen in liquid 
nitrogen and sectioned on a cryo-
ultramicrotome (Leica UC6 with FC6). 
Cryosections were thawed and placed at 37°C, 
washed in 0.1% bovine serum albumin (BSA, 
Sigma) in PBS, then 1% BSA in PBS for 3 
min, followed by overnight incubation with 
undiluted primary antibody (mouse anti-VAPB 
mouse, Proteintech), washed in PBS, incubated 
with 10 nm colloidal gold-anti-mouse antibody 
(BBI solutions). Grids were washed in PBS, 
transferred to 1% glutaraldehyde in PBS (5 
min), washed in H2O, and embedded in 2% 
methyl cellulose containing 0.4% uranyl 
acetate (Agar Scientific). Imaging was done 
using a Hitachi H7600 TEM at 100 kV. 

Cross-linking and co-immunoprecipitation 
2x106 Hela P4 cells per 10 cm dish were 
transfected with plasmids coding for HA-FRB-
VAPB or HA-FRB. After 24 hours, the cells 
were washed twice with cold PBS containing 
0.1 mM CaCl2 and 1 mM MgCl2 and incubated 

with DSP (Dithiobis (succinimidyl 
propionate), Thermo Scientific) at a final 
concentration of 1 mM in DMSO for two 
hours on ice. For control reactions, DMSO 
alone was used. DSP was quenched by the 
addition of 20 mM Tris-HCl pH 7.4 for 15 
min. The cells were then washed twice with 
cold PBS and lysed with 1 ml lysis buffer 
(0.5% Na-deoxycholate, 50 mM Tris-HCl pH 
7.4, 150 mM NaCl, 0.25% SDS, 0.5% Triton 
X-100 with complete protease inhibitor
cocktail (Roche)) for 30 min on ice. To reduce
viscosity, the lysate was passed through a
27Gx3/4” needle and then centrifuged at
15,000g for 20 min at 4°C. For
immunoprecipitation, 25 µl anti-HA-agarose
beads (Sigma A2095) were washed with
washing buffer (10 mM Hepes, 150 mM NaCl,
1 mM EGTA, 0.1 mM MgCl2, 0.1% Triton X-
100 and complete protease inhibitor cocktail).
The lysate from 24x106 cells was added to the
beads and rotated for three hours at 4°C. The
beads were then washed four times with
washing buffer and proteins were eluted with
sample buffer containing 50 mM DTT. For
immunoprecipitation of endogenous protein
complexes, 4 µg of rabbit-anti-VAPB, rabbit-
anti-ELYS or IgG as a control were
immobilized on 40 µl Protein A sepharose 4
Fast Flow beads (GE Healthcare) for three
hours and incubated with lysates from 24x106 

cells that had or had not been subjected to
cross-linking as described above.

Proximity Ligation Assay (PLA) 
HeLa cells were seeded at a density of 40,000 
cells/well in 24-well plates. After 48 hours, 
cells were fixed with 4% paraformaldehyde 
and permeabilized with 0.05% (v/v) Triton X-
100. PLA assays were performed using the
Duolink In Situ PLA kit (Sigma Aldrich, St.
Louis, MO, USA, DUO 9200). Cells were
blocked and incubated with mouse anti-VAPB
and rabbit anti-emerin, rabbit anti-ELYS,
rabbit anti-ACBD5 or rabbit anti-OSBPL9,
respectively (see Table S4 for antibodies).
After ligation and amplification using the
corresponding PLA probes, the cells were
counterstained for VAPB and mounted using
Duolink mounting medium with DAPI. Images
were acquired on an LSM510 Confocal laser
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scanning microscope using a 63X /1.4 oil 
immersion lens. 450 cells over three 
independent experiments were analyzed for 
PLA interaction using CellProfiler 2.2 (66). 
One-way analysis of variance (ANOVA) 
followed by Bonferroni post-test was used for 
statistical analysis and a confidence interval of 
95% was set. 
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Figure legends 

Figure 1 
VAPB localizes to the INM. 
(A) HeLa cells were grown on coverslips and subjected to indirect immunofluorescence using antibodies
against VAPB. Cells were blocked (i) with 3% BSA or (ii) with Sigma Duolink blocking solution.
(B) HeLa cells were transfected with plasmids coding for mCherry-FRB-VAPB or HA-FRB-VAPB, as
indicated.
(C) HeLa cells were co-transfected with plasmids coding for mCherry-FRB-VAPB and dGFP-GST-cNLS-
FKBP12. After treatment with (+) or without (-) rapamycin, cells were fixed and analyzed by confocal
microscopy. Scale bar, 10 µm.
(D) HeLa cells were analysed by immunoelectron microscopy, using antibodies against VAPB. C,
cytoplasm; M, mitochondria; N, nucleus. The arrows indicate nuclear pore complexes. Scale bar, 100 nm.

Figure 2 
Comparison of the classic and a new APEX-approach. 
(A) Schemes of the “direct fusion (classic) approach” (left) and the “rapamycin (new) approach” (right).
(B) For the direct fusion and the rapamycin approach, cells were transfected with plasmids coding for
GFP-APEX2 or APEX2-VAPB and FKBP12-GFP-APEX2 and mCherry-FRB-VAPB, respectively. Cells
were analyzed directly (left) or upon incubation with or without rapamycin (right). Scale bar, 10 µm.
(C) Cells were transfected as in B and subjected to the biotinylation protocol. Biotinylated proteins were
enriched using neutravidin beads and total and bound proteins were analyzed by SDS-PAGE followed by
Western blotting. Note that GFP-APEX2 (lanes 5 and 7) and APEX2-VAPB (lanes 6 and 8) have very
similar molecular weights.

Figure 3 
Proximity mapping of mCherry-FRB-VAPB by RAPIDS. 
(A) Experimental workflow. Cells grown in “light” or “heavy” medium are co-transfected with plasmids
coding for FKBP12-GFP-APEX2 and mCherry-FRB-VAPB, and subjected to APEX2-dependent
biotinylation in the absence or presence of rapamycin. Note that this labelling scheme reflects the reverse
reaction. In the forward reaction, “light” and “heavy” media are used for cells treated with or without
rapamycin, respectively. Proteins from cell lysates are bound to neutravidin beads and the total and the
bound fractions are analyzed by LC-MS.
(B) The scatter plot resulting from two independent experiments shows normalized log2-ratios of proteins
eluted from neutravidin beads in forward (heavy medium (H), without rapamycin; light (L) medium, with
rapamycin; x-axis) and reverse (heavy medium (H), with rapamycin; light (L) medium, without rapamycin
y-axis) experiments. The plot focuses on the upper left quadrant, because in the forward reaction, low
H/L-ratios (i.e. negative log2-values) are expected for specific hits, whereas high ratios are expected in the
reverse reaction. Known interacting partners of VAPB are underlined. Closed circles: proteins that were
significant in all experiments; open triangles: proteins that were significant only in forward experiments;
open squares: proteins that were significant only in reverse experiments.
(C) Total cell lysates (total) and proteins bound to neutravidin beads (bound) from one of the experiments
depicted in (B) were analyzed by Western blotting, using antibodies against VAPB, ACBD5, OSBPL9
and emerin and GAPDH as a loading control.

Figure 4 
RAPIDS using HA-FRB-VAPB. 
(A) Experimental workflow. Cells are grown in “light” or “heavy” medium as indicated, co-transfected
with plasmids coding for APEX2-dGFP-cNLS-FKBP12 and HA-FRB-VAPB, and subjected to RAPIDS
as described in Fig. 3A.
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(B) Transfected cells were treated with or without rapamycin as indicated, fixed and analyzed by
fluorescence microscopy. Scale bar, 10 µm.
(C) The scatter plot resulting from two independent experiments shows normalized log2-ratios of proteins
eluted from neutravidin beads in forward (heavy medium (H), without rapamycin; light (L) medium, with
rapamycin; x-axis) and reverse (heavy medium (H), with rapamycin; light (L) medium, without rapamycin
y-axis) experiments. As in Fig. 3, the plot focuses on the upper left quadrant. Closed circles: proteins that
were significant in all experiments; open triangles: proteins that were significant only in forward
experiments; open squares: proteins that were significant only in reverse experiments.
(D) Total cell lysates (total) and proteins bound to neutravidin beads (bound) from experiments depicted
in (C) were analyzed by Western blotting using antibodies against VAPB, ELYS, Lamin B1, Nup153,
Lamin A/C, TMPO, TOR1AIP1, SEC22b, emerin and GAPDH as a loading control.

Figure 5 
VAPB forms complexes with emerin, TMEM43 and ELYS. 
(A) HeLa cells were treated with (+) or without (-; DMSO as a control) DSP and endogenous proteins
from cell lysates were precipitated using rabbit-anti-VAPB and rabbit IgG as a control. *, IgG heavy
chain.
(B) HeLa cells were transfected with constructs coding for HA-FRB-VAPB or HA-FRB and subjected to
crosslinking with (+) or without (-; DMSO as a control) DSP. Proteins from cell-lysates were
immunoprecipitated using anti-HA antibodies. Note that HA-FRB was expressed and precipitated to
similar levels as HA-FRB-VAPBB (data not shown). (A, B) Precipitated proteins were analyzed by
Western blotting, detecting VAPB, ACBD5, OSBPL9, emerin, TMEM43, ELYS, the HA-tag and, for
control, Na+/K+-ATPase, as indicated.

Figure 6 
VAPB is in close proximity to emerin and ELYS. 
(A, B) Cells were treated with siRNAs against VAPB or non-targeting (nt) siRNAs as indicated and 
subjected to PLAs using antibodies against VAPB (A and B) and emerin (A) or ELYS (B), respectively. 
Indirect immunofluorescence was used to detect VAPB. The graphs show the quantification of PLA-
results from three independent experiments, analyzing a total of 450 cells. The bars indicate mean values 
± SD. Single antibody controls were performed to confirm the specificity of PLA interactions. ***, 
P<0.001. Scale bars, 10 µm.  

Figure 7 
The VAPB-interactome. Schematic representation of the protein network identified by RAPIDS using 
HA-FRB-VAPB (HA-VAPB) with APEX2-dGFP-cNLS-FKBP12 (NLS-APEX2) or mCherry-FRB-
VAPB (mCherry-VAPB) with FKBP12-GFP-APEX2 (APEX2). Dotted lines indicate interactions that 
have also been found in previous studies.  
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Supporting Information 

Figure S1 
(A) Subcellular fractionation was performed as described by Cheng et al (29). Briefly, Hela cells from
three 15 cm plates were lysed by douncing in homogenization buffer (HB, 10 mM HEPES pH 7.8, 10 mM
KCl, 1.5 mM MgCl2 0.1 mM EGTA) containing 1 mM DTT, 1 mM PMSF, 1 ug/ml each of pepstatin, 
leupeptin and aprotinin. The total cell lysate (T) was layered on top of 2.5 ml sucrose (0.8 M) in HB and 
centrifuged at 2000 rpm for 10 min at 4° C in a JS4.2 rotor yielding the pellet and the cytoplasmic (C) 
fraction. The pellet fraction was resuspended in 1.8 M sucrose and layered on top of a 2 ml sucrose 
cushion (2 M). The gradient was then centrifuged at 35.000 rpm for 1 hr at 40  C in a SW40 Ti rotor. The 
nuclear pellet was resuspended in HB containing 500 mM NaCl, 1 mM CaCl2 and 25 U/ml benzonase, 
incubated for 15 min at 37°C, layered on top of 2 ml sucrose (0.8 M) and centrifuged at 4000 rpm for 10 
min at 40 C in a JS4.2 rotor. The layer above the sucrose cushion (nuclear content, NC) and the pellet 
(nuclear envelope, NE) were collected. (B) Equivalent amounts of each fraction were subjected to SDS-
PAGE and Western blotting detecting SP1 (a nuclear transcription factor), ELYS and Nup62 (two 
nucleoporins) POM121 (a transmembrane nucleoporin), lamin A/C and B1, OSBPL9, TMEM43, emerin, 
VAPB, Stt3B (an ER-protein) and tubulin as a cytoplasmic marker. 

Figure S2 
(A) Cells were co-transfected with plasmids coding for mCherry-FRB-VAPB and FKBP12-GFP-APEX2
and subjected to APEX2-dependent biotinylation in the presence of biotin-phenol, and in the absence (-)
or presence of (+) H2O2 and rapamycin, as indicated. Proteins from cell lysates were bound to neutravidin
beads and the total and the bound fractions were analyzed by Western blotting. HRP-streptavidin was used
for the detection of biotinylated proteins. (B) Cells were transfected as in A, grown in “light” (L) or
“heavy” (H) medium and treated with or without rapamycin. Cells were subjected to APEX-dependent
biotinylation in forward and reverse reactions. Proteins from cell lysates were analyzed as in A, detecting
biotinylated proteins, FKBP12-GFP-APEX2 as a control for transfection efficiencies and GAPDH as a
loading control.

Figure S3 
HeLa cells were subjected to indirect immunofluorescence, detecting the peroxisomal protein PMP70 and 
ACBD5 (A) or the Golgi marker GM130 and OSBPL9 (B). Cells were subjected to PLAs using anti-
VAPB (C,E) and anti-ACBD5 (C) or anti-OSBPL9 (E) antibodies. Indirect immunofluorescence was used 
to detect VAPB (C,E). Quantification of the PLA-results for VAPB-ACBD5 (D) and VAPB-OSBPL9 (F), 
showing the number of PLA-dots in a total of 450 cells that were analyzed. The bars indicate mean values 
± SD. Single antibody controls were performed to confirm the specificity of PLA interaction. ***, 
P<0.001. Scale bars, 10 µm.

Table S1 
RAPIDS using FKBP12-GFP-APEX2 and mCherry-FRB-VAPB 

Table S2 
RAPIDS using APEX2-dGFP-NLS-FKBP12 and HA-FRB-VAPB 

Table S3 
Oligonucleotides used for cloning 

Table S4 
Antibodies used in this study 
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 : Analysis of dynamics of inner nuclear membrane 
(INM) proteins by photobleaching-based techniques 

 

5.1. Introduction 
(see also sections 1.5, 1.6, 1.7) 

As detailed in Chapter 1, the integral membrane proteins move across the ONM, 

the NPC before finally reaching the INM. Lateral diffusion is proposed as the primary model 

for targeting of INM proteins that diffuse through the lipid bilayer of the ER to the ONM and 

through the NPC to the INM. Once the proteins reach the INM, they are retained there by 

interaction with nuclear components. (Katta et al., 2014; Smith and Blobel, 1993; Soullam 

and Worman, 1995; Ungricht et al., 2015). In contrast, a receptor-mediated active transport 

was described in yeast (King et al., 2006; Meinema et al., 2011; see section 1.5).  

An accurate understanding of the dynamics of INM proteins has been achieved by 

studying them in living cells. The analysis of fluorescently tagged proteins of interest 

enables to study dynamics of proteins after being expressed in cells. Several techniques 

have been used to characterize the dynamics. One of the methods is the time-lapse imaging 

of the fluorescent proteins, while the second method is based on photobleaching technique 

that includes fluorescence recovery after photobleaching (FRAP) and the third based on 

fluorescence loss in photobleaching (FLIP) (reviewed in Lippincott-Schwartz et al., 2001). 

In FRAP, a portion of the fluorescently tagged protein is bleached with a high-intensity laser, 

and the fluorescence recovery in the bleached area is measured at different time intervals, 

whereas in FLIP, fluorescence loss is measured over time after bleaching in a region of 

interest. The mechanisms underlying transport to the INM have also been elucidated by 

several reporter systems that enable measurements of INM targeting kinetics (see section 

1.6). 

In this chapter, the dynamics of various INM proteins are studied by FRAP assays 

in both intact (living cells) and permeabilized cells. Previous FRAP studies on INM proteins 

have been performed on either intact cells or permeabilized cells. However, a comparative 

study on the dynamics of INM proteins under both conditions has not been performed 

before. The model proteins tested in this study are emerin, lamina-associated polypeptide 

2 (Lap2b), lamin B receptor (LBR), protein tyrosine phosphatase 1B (PTP1B) and VAPB. 

Emerin, Lap2b and LBR are well characterized INM proteins. Both emerin and Lap2b have 

one TMD while LBR has eight TMDs. PTP1B and VAPB are TA proteins that are also 

reported to localize to the INM (James et al., 2019; Saiz-Ros et al., 2019; Yip et al., 2012). 

In addition, the molecular requirements for the transport of emerin to the INM were studied 

in detail in a permeabilized cell system.
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5.2. Results 
 

 Fluorescence recovery after photobleaching (FRAP) of INM proteins at 
the NE 

 

5.2.1.1. FRAP assays performed in intact cells reveals different mobilities for INM 
proteins 

Fluorescence recovery after photobleaching (FRAP) is a versatile tool to monitor the 

dynamics of molecules in living cells, the movement between different organelles and the 

import and export of proteins through nuclear pores (Boni et al., 2015; Day et al., 2012; 

Ohba et al., 2004; Pawar et al., 2017; Shimi et al., 2004; Ungricht et al., 2015; 

Vijayaraghavan et al., 2018; Zuleger et al., 2011). FRAP assays were performed at the NE 

in cells overexpressing mCherry-emerin, mCherry-FRB-VAPB, mCherry-FRB-PTP1B, 

mCherry-FRB-LBR and mCherry-FRB-Lap2b. In this study, to analyze the diffusional 

properties of these INM proteins, HeLa cells were transiently transfected with the respective 

plasmids. After 24 hours of transfection, cells were subjected to FRAP experiments. 

Analysis of FRAP assays in intact cells showed that emerin and Lap2b recovered rapidly at 

the NE after photobleaching with a recovery rate of 60%, while VAPB, PTP1B and LBR 

recovered at the NE with 40% recovery (Figure 18A and B). These data suggest that all 

INM proteins tested had almost similar diffusional mobility at the NE with a higher recovery 

rate for emerin and Lap2b in comparison to VAPB, PTP1B and LBR. 
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Figure 18. Mobility of INM proteins emerin, VAPB, PTP1B, LBR and Lap2b at the NE in intact cells.  
(previous page) (A) HeLa cells expressing mCherry-tagged versions of emerin, VAPB, PTP1B, LBR and 
Lap2b were subjected to FRAP assays. The bleached areas are represented by circles. Cells were imaged 
by a confocal microscope at different time points. The scale bar corresponds to 10 µm. (B) Fluorescence 
recovery was plotted over time. The curve shows the normalized fluorescence intensities with error bars 
indicating the standard deviation from the mean of a total of 12 cells from two independent experiments per 
condition. 

 

5.2.1.2. Digitonin treatment affects the diffusional mobility of proteins at the NE 
To characterize the factors affecting diffusional mobility to the NE, a semi-

permeabilized cell system was used. This has been previously established to study the 

molecular requirements of nuclear import of soluble factors (Adam et al., 1990). HeLa cells 

were transiently transfected with constructs coding for mCherry tagged versions of emerin, 

VAPB, PTP1B, LBR and Lap2b. The cells were then treated with digitonin, which selectively 

permeabilizes the plasma membrane leaving the NE intact and washed to remove soluble 

factors (Figure 19A). The diffusional mobility of the fluorescent proteins at the nuclear 

envelope (NE), in both intact and semi-permeabilized cells, were measured by FRAP. As 

observed before (5.2.1.1), the fluorescence recoveries of untreated or intact cells ranged 

from 40-60% for the tested INM proteins. Strikingly, the fluorescence recovery of emerin, 

VAPB, LBR and Lap2b at the NE in semi-permeabilized cells were low (20%) compared to 

intact cells (Figure 19B and C). The effect of permeabilization on the recovery rate of PTP1B 

was marginally lower than in intact cells (Figure 19C). This suggests that digitonin reduces 

the diffusional mobility of these proteins. Moreover, cytosolic factors that were removed 

upon digitonin treatment could affect the transport of these proteins to the NE and/or the 

diffusional mobility of the proteins. 
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Figure 19: Mobility of INM proteins emerin, VAPB, PTP1B, LBR and Lap2b at the NE in semi-
permeabilized cells. 
(A) Schematic depiction of FRAP assays performed on both intact and semi-permeabilized cells. HeLa cells 
expressing INM proteins were permeabilized with digitonin and washed or left intact. FRAP assays were 
performed on both intact and semi-permeabilized cells. (B) Representative images of FRAP performed on 
cells over-expressing emerin with (+ digitonin) or without (- digitonin) permeabilization. The bleached areas 
are represented by circles. Cells were analyzed by a confocal microscope. The scale bar corresponds to 10 
µm. (C) Fluorescence recovery (normalized intensity) was plotted over time. The curve shows the 
normalized fluorescence intensities under both conditions as mentioned in (A) for emerin, VAPB, PTP1B, 
LBR and Lap2b with error bars indicating the standard deviation from the mean of a total of 12 cells from 
two independent experiments per condition.  
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5.2.1.3. Diffusion of emerin to the NE is cytosol dependent 
Semi-permeabilization and subsequent washing releases most of the soluble factors 

from the cells, thereby disrupting nucleocytoplasmic transport. However, addition of 

exogenous cytosol alleviates this effect by supplementing soluble factors (Adam et al., 

1990; Kehlenbach et al., 1998). To assess whether the addition of cytosol to semi-

permeabilized cells expressing INM proteins affects the fluorescence recovery at the NE, 

transiently transfected HeLa cells permeabilized with digitonin were supplemented with 

cytosol. FRAP assays were performed in intact cells and in semi-permeabilized cells with 

or without the addition of cytosol. Interestingly, emerin showed a partial recovery at the NE 

with a recovery rate of 30% after the addition of cytosol, compared to the untreated semi-

permeabilized cells (20%) (Figure 20A and B).  

In addition to emerin, the effect of cytosol supplementation on targeting of VAPB, 

PTP1B, LBR and Lap2b to the NE was also assessed using FRAP assay. The mobility of 

the three proteins, namely VAPB, PTP1B and LBR, was unaffected by the addition of 

cytosol, as shown by the confocal images and quantification in Figure 21. In contrast, Lap2b 

showed a minor recovery upon the addition of cytosol (Figure 22A and B), but not significant 

as compared to emerin. 

Together, these data demonstrate that the efficient targeting of emerin and to a 

smaller extent, Lap2b, to the NE requires cytosolic factors, whereas the targeting of VAPB, 

PTP1B and LBR do not require additional cytosolic factors.  

 

 
Figure 20. Cytosol affects the diffusional mobility of emerin at the NE in semi-permeabilized cells. 
(A) FRAP assays were performed on intact (- digitonin) and semi-permeabilized HeLa cells expressing 
mCherry-emerin in the presence or absence of cytosol (+ digitonin; + cytosol). The bleached areas are 
represented by circles. Cells were analyzed by a confocal microscope. The scale bar corresponds to 10 µm. 
(B) The curve shows the normalized fluorescence intensities under the three conditions as mentioned in (A) 
with error bars indicating the standard deviation from the mean of a total of 36 cells per condition from six 
independent experiments. 
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Figure 21. Diffusional mobilities of VAPB, PTP1B and LBR are unaffected by cytosol 
supplementation. 
FRAP assays were performed on intact (- digitonin) and semi-permeabilized HeLa cells transfected with 
either mCherry-FRB-VAPB (A) or mCherry-FRB-PTP1B (C) or mCherry-FRB-LBR (E) in the presence or 
absence of cytosol (+digitonin; + cytosol). Representative images of FRAP performed in cells over-
expressing VAPB, PTP1B and LBR (A, C and E). The bleached areas are represented by circles. The scale 
bars correspond to 10 µm. (B, D and F) The curve shows the normalized fluorescence intensities under the 
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three conditions as mentioned in (A, C and E) with error bars indicating the standard deviation from the 
mean of a total of 12 cells from two independent experiments. 

 

 
Figure 22. Cytosol supplementation facilitates the mobility of Lap2b to the NE to a lesser extent in 
semi-permeabilized cells. 
(A) FRAP assays were performed on intact (- digitonin) and semi-permeabilized HeLa cells expressing 
mCherry-FRB-Lap2b in the presence or absence of cytosol (+digitonin; +cytosol). Representative images of 
FRAP performed in cells over-expressing Lap2b. The bleached areas are represented by circles. Images 
were acquired by a confocal microscope. The scale bar corresponds to 10 µm. (B) Quantification of 
normalized intensity at the NE under the three conditions as mentioned in (A) with error bars indicating the 
standard deviation from the mean of a total of 12 cells from two independent experiments. 

 

5.2.1.4. In vitro import assay validates the functionality of cytosolic factors 
required for transport to the nucleus 

Import into the nuclear envelope of semi-permeabilized cells depends on the 

addition of cytosol or cytosolic fraction (Adam and Adam, 1994; Adam et al., 1990; Moore 

and Blobel, 1992). Therefore, supplementing soluble fractions responsible for import, or 

impeding import by addition of inhibitory fractions is a plausible way to study translocation 

of proteins. To control for the efficacy of recombinant cytosolic factors, nuclear uptake of a 

soluble protein Cy3-BSA-NLS, was monitored in digitonin permeabilized cells in the 

presence of cytosol alone or cytosol supplemented with (1) Ran, which is essential for 

nuclear protein transport, (2) GTPase-deficient RanQ69L, a mutant of Ran, deficient in 

hydrolyzing Ran bound GTP (Klebe et al., 1995), (3) WGA (wheat germ agglutinin), a lectin 

that binds to nuclear pores and inhibits import by disturbing the interaction of importins with 

nucleoporins containing FG repeats (Finlay et al., 1987) and (4) a dominant-negative 

fragment of Importinb (Impb (45-462)) that binds to sites of the NPC from which it cannot 

be cleared (Kutay et al., 1997a). 
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Figure 23. In vitro import assay to validate the functionality of cytosolic factors. 
HeLa cells were permeabilized with digitonin and subjected to nuclear import reactions. The cells were 
treated with either cytosol or cytosol supplemented with Ran, RanQ69L, WGA or Impb (45-462) and 
incubated with Cy3-BSA-NLS and an energy-regenerating system. Cells were washed and fixed. Images 
were analyzed using a confocal microscope. The scale bars correspond to 10 µm. 

 

An in vitro nuclear import assay (Adam et al., 1990) was performed to confirm that 

the recombinantly purified cytosolic factors were fully functional. HeLa cells were 

permeabilized with digitonin, washed to remove soluble transport factors and incubated with 

Cy3-BSA-NLS and an energy-regenerating system (Kehlenbach and Gerace, 2002) in the 

absence or presence of cytosol or cytosol with the addition of recombinant Ran, RanQ69L, 

WGA or Impb (45-462) at 30°C for 25 minutes. The presence of cytosol alone or with the 

addition of Ran favored transport in comparison to control cells treated with digitonin (Figure 

23). However, nuclear import of Cy3-BSA-NLS was impaired in the presence of Ran Q69L, 

WGA and Impb (45-462) respectively. This was in accordance with previously reported 

functions of these soluble factors in affecting nuclear transport (Finlay et al., 1987; Klebe et 

al., 1995; Kutay et al., 1997a), thereby further validating the functionality of these 

recombinant factors. 

 

5.2.1.5. A Ran mutant deficient in GTP hydrolysis inhibits targeting of emerin to 
the NE 

To test whether additional soluble fractions enhance the targeting of emerin to the 

INM, the nuclear transport factor Ran was added to the cytosol. Cytoplasmic Ran GDP and 

GTP hydrolysis by Ran (Melchior et al., 1993; Moore and Blobel, 1992) is required for 

nuclear protein import. HeLa cells were transfected with mCherry-emerin. The diffusional 

mobility of emerin in semi-permeabilized cells in the presence of cytosol and Ran was 

measured by FRAP assays. The addition of cytosol resulted in an increase in the diffusional 
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mobility of emerin compared to permeabilized cells (also shown in Figure 20) while the 

addition of Ran to the cytosol did not further increase the mobility of emerin (Figure 24A 

and B). 

 
Figure 24. Targeting of emerin to the NE is not affected by addition of Ran to the cytosol.  
(A) FRAP assays were performed on intact (- digitonin) and semi-permeabilized (+ digitonin) HeLa cells 
expressing mCherry-emerin in the presence or absence of cytosol (+ cytosol; +digitonin) and also in the 
presence of cytosol with Ran. The bleached areas are represented by circles. Images were analyzed by a 
confocal microscope. The scale bars correspond to 10 µm. (B) Quantification of normalized intensity at the 
NE under the conditions mentioned in (A) with error bars indicating the standard deviation from the mean of 
a total of 12 cells from two independent experiments. 

 

RanQ69L is a dominant-negative mutant of Ran, which is deficient in the hydrolysis 

of Ran bound GTP (Dickmanns et al., 1996; Klebe et al., 1995). A recombinantly purified 

Ran mutant, Ran Q69L, whose functionality was already validated (Figure 23) was used in 

FRAP assays. In this assay, HeLa cells transfected with mCherry-emerin and semi-

permeabilized were analyzed in the absence or presence of cytosol or cytosol with 

RanQ69L. Strikingly, the addition of RanQ69L reduced the mobility of emerin at the NE to 

20% as compared to that observed in permeabilized cells without the addition of cytosol 

(Figure 25A and B). In summary, targeting of emerin to the NE is dependent on a functional 

Ran as observed by the reduction in recovery rate at the NE in the presence of RanQ69L. 
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Figure 25. GTPase deficient RanQ69L impairs the mobility of emerin at the NE. 
(A) FRAP assays were performed on intact (- digitonin) and semi-permeabilized HeLa cells (+ digitonin) 
expressing mCherry-emerin in the presence or absence of cytosol (+ cytosol; + digitonin) and cytosol in the 
presence of RanQ69L, as indicated, and images were analyzed by a confocal microscope. The bleached 
areas are represented by circles. The scale bar corresponds to 10 µm. (B) Quantification of normalized 
intensity at the NE under the conditions tested as in (A) with error bars indicating the standard deviation from 
the mean of a total of 12 cells from two independent experiments. 

 

5.2.1.6. WGA inhibits the targeting of emerin to the NE 
WGA was described as an inhibitor that impairs the nuclear transport of a 

fluorescently labeled nuclear protein, nucleoplasmin (Finlay et al., 1987). Using electron 

microscopy, WGA was found to bind to the cytoplasmic face of the nuclear pore. It inhibits 

import by disturbing the interaction of importins with nucleoporins containing FG repeats 

(Finlay et al., 1987). Since WGA was functional in inhibiting the import of soluble proteins 

(Figure 23), it was assessed whether the diffusion of emerin to the NE was impaired by 

WGA. To compare targeting kinetics in the presence and absence of WGA in addition to 

cytosol, FRAP assays were performed. Interestingly, the recovery rate of transiently 

expressed emerin at the NE was reduced from 30% to 20% upon addition of WGA to 

cytosol, i.e. almost to the level as observed in the absence of cytosol (Figure 26A and B). 

This suggests that transport of emerin to the NE is inhibited when nuclear pores are blocked 

by WGA. 
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Figure 26. WGA restricts passage of emerin to the NE. 
(A) FRAP assays were performed on intact (- digitonin) and semi-permeabilized HeLa cells (+ digitonin) 
expressing mCherry-emerin in the presence or absence of cytosol (+ cytosol; + digitonin) and cytosol in the 
presence of WGA. Images were analyzed by confocal microscopy. The bleached areas are represented by 
circles. The scale bar corresponds to 10 µm. (B) Quantification of normalized intensity at the NE under the 
conditions tested as in (A) with error bars indicating the standard deviation from the mean of a total of 12 
cells from two independent experiments. 

 

5.2.1.7. Targeting of emerin to the NE is inhibited by a dominant negative fragment 
of Importinb (Impb 45-462) 

In addition to WGA, a fragment of Importinb was also reported to impair nuclear 

import. Importinb (45-462) inhibits protein import in a dominant negative manner by binding 

to sites at the NPC from which it cannot be cleared (Kutay et al., 1997a). To test whether 

this fragment could affect the targeting of emerin to the NE, it was bacterially expressed 

and purified and tested for its efficacy to inhibit transport by import assay. The purified Impb 

(45-462) blocked the import of Cy3-BSA-NLS (Figure 23). FRAP assays were performed to 

compare targeting of emerin in the presence or absence of Impb (45-462). As observed for 

RanQ69L and WGA, addition of the Impb inhibitory fragment also reduced the recovery rate 

of emerin from 30% to 20% (Figure 27A and B). Thus, the dominant-negative Impb (45-

462) has an inhibitory effect on the diffusional mobility of emerin to the NE. 
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Figure 27. Importinb (45-462) fragment impairs the mobility of emerin at the NE. 
(A) FRAP assays were performed on intact (- digitonin) and semi-permeabilized (+ digitonin) HeLa cells 
expressing mCherry-emerin in the presence or absence of cytosol (+cytosol; +digitonin) and also in the 
presence of cytosol with Impb (45-462). Images were analyzed by a confocal microscope. The bleached 
areas are represented by circles. The scale bar corresponds to 10 µm. (B) Quantification of normalized 
intensity at the NE under the conditions tested as in (A) with error bars indicating the standard deviation from 
the mean of a total of 12 cells from two independent experiments. 

 
5.2.1.8. Nuclear transport receptors depleted cytosol marginally reduces the 

mobility of emerin in permeabilized cells 
From the previous experiments, it was observed that RanQ69L and Impb (45-462) 

had a significant effect on the diffusional mobility of emerin to the NE. Since both of these 

factors contribute to NTR (nuclear transport receptor)-mediated NPC translocation (Ribbeck 

and Görlich, 2002b), the effect of NTRs on the mobility of emerin was determined. NTRs 

have hydrophobic properties that assist them to pass through the NPCs. These can be 

enriched by a hydrophobic interaction column, phenyl-sepharose (Ribbeck and Görlich, 

2002b). To deplete NTRs, HeLa cytosol was subjected to binding to phenyl-sepharose. The 

efficiency of depletion was monitored by Western blotting for Importins b, 11, 13, 7 and 

Transportin 1 (Figure 28A). FRAP assays were performed using cytosol depleted of NTRs 

in semi-permeabilized cells. As shown in (Figure 28B and C), the depleted cytosol showed 

a reduced effect (20%) compared to cytosol with no depletion (30%), but the mobility was 

not as low as that observed in digitonin treated cells (less than 20%). Thus, NTRs depletion 

only has a marginal effect on the mobility of emerin to the NE. 
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Figure 28. NTRs depleted cytosol has a reduced effect on the diffusion of emerin to the NE. 
(A) Cytosol was depleted of nuclear transport factors (NTRs) by phenyl-sepharose. The efficacy of depletion 
was monitored by Western blotting using antibodies against Impb, Imp11, Imp 13, Imp7 and TNPO1. GAPDH 
was used as a loading control. (B) FRAP assays were performed on intact (- digitonin) and semi-
permeabilized (+ digitonin) HeLa cells expressing mCherry-emerin using this depleted cytosol or untreated 
cytosol (+cytosol; +digitonin). Images were analyzed by a confocal microscope. The bleached areas are 
represented by circles. The scale bar corresponds to 10 µm. (C) The curve shows the normalized 
fluorescence intensities with error bars indicating the standard deviation from the mean of a total of 12 cells 
from two independent experiments per condition. 

 

 Cytosol supplementation affects the diffusional mobility of emerin in 
the ER 

The differences in the mobility of emerin in the NE upon addition of cytosol and 

cytosolic factors prompted us to check for its mobility in the ER. FRAP assays were 

performed on cells that were transiently transfected with mCherry-emerin, permeabilized 

and incubated in the presence or absence of cytosol. As shown in Figure 29, in intact cells 

recovery of nearly 60% was observed, whereas in semi-permeabilized cells only 20% 

recovery was obtained. This was in line with the NE targeting defect of emerin in semi-

permeabilized cells. Next, cytosol was added to the permeabilized cells to assess changes 

in mobility of emerin in the ER. Interestingly, the addition of cytosol slightly increased the 

recovery rate in semi-permeabilized cells to 30%. This suggests that the addition of soluble 
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factors indeed affect the diffusional mobility of emerin in the ER. Additional experiments will 

have to be performed to monitor what factors in the cytosol are responsible for this effect. 

 
Figure 29. Mobility of emerin in the ER measured by FRAP. 
(A) HeLa cells transfected with mCherry-emerin were subjected to FRAP assays in the ER. The regions that 
were bleached are represented by circles. The recovery of emerin was monitored over time in intact (- 
digitonin) and semi-permeabilized cells (+ digitonin), which were treated in the presence or absence of 
cytosol (+ cytosol; + digitonin). Images were analyzed by a confocal microscope. The scale bar corresponds 
to 10 µm. (B) Quantification of normalized intensity at the ER under the conditions as mentioned in (A) with 
error bars indicating the standard deviation from the mean of a total of 12 cells per experiment per condition. 
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5.3. Discussion 
This chapter addresses the dynamics of several INM proteins with both single and 

multiple TMDs using FRAP assays. Under the experimental conditions used in this work, 

all the tested proteins showed a percentage recovery of 40 to 60% in intact cells (Figure 

18). For emerin and Lap2b, similar percentages were observed, which were consistent with 

previous reports (Ostlund et al., 1999; Shimi et al., 2004; Wu et al., 2002). LBR had a lower 

percentage of recovery, possibly due to its binding to lamins and heterochromatin proteins 

(Ellenberg et al., 1997; Ostlund et al., 2006). Lower recovery rates were similarly observed 

for VAPB and PTP1B, suggesting that their mobility at the NE could also be affected by 

binding to proteins at the INM (James et al., 2019; Yip et al., 2012).  

In contrast to the high percentage of recovery monitored in intact cells, a lower 

recovery was observed in permeabilized cells for all the proteins tested (Figure 19). The 

measured fluorescence recovery may not only result from the exchange of proteins within 

the NE but also from transport of proteins from the ER. The effect observed due to 

permeabilization could result from the loss of cytosolic factors. Alternatively, the reduction 

in recovery may also result from an effect that might alter the ER topology. The long-range 

diffusional mobility of proteins in the ER network, and the efficiency of targeting to the INM 

is reduced when ER-topology is altered (Pawar et al., 2017). Interestingly, the addition of 

cytosol partially increased the recovery of emerin but not for other proteins tested. This 

suggests that diffusion of emerin is dependent on the presence of cytosolic factors and/or 

on a proper ER-topology, whereas diffusion of other tested proteins might be dependent 

solely on proper maintenance of the ER network. However, further investigations have to 

be performed to monitor the effect of proper maintenance of ER-topology on the diffusion 

of the proteins tested in this work. 

It has been previously reported that the mobility of emerin to the NE requires ATP 

(Zuleger et al., 2011) and that emerin also binds to cytoplasmic partners, which might affect 

its release from the ER (Lattanzi et al., 2000; Salpingidou et al., 2007; Zuleger et al., 2011). 

The observation that the addition of cytosolic factors led to an increase in fluorescence 

recovery at the NE may reflect an increase in the efficiency of diffusion of emerin. It was 

also observed that the addition of RanQ69L, WGA and Impb (45-462) that block nuclear 

import, impaired the diffusion of emerin to the NE, further suggesting that the decrease in 

recovery observed in permeabilized cells was indeed due to a lower rate of diffusion of 

emerin from the ER to the NE. A cytosol dependence has also been observed for an INM 

protein SUN2 (Ungricht et al., 2015), further raising the question of whether additional 

molecular requirements add to the diffusion and retention model for efficient targeting of 

INM proteins.  
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 : Discussion 
 

In eukaryotes, TA proteins with important roles in diverse processes can be found 

in different organelles like the mitochondria, peroxisome, ER, Golgi, plasma membrane, 

endosomes, lysosomes (Borgese et al., 2007) and also NE (Blenski and Kehlenbach, 2019; 

Pfaff et al., 2016). Two different TA proteins that localize to the INM were studied in this 

work. The first is VAPB, which is known as an ER-resident protein, and the second is 

emerin, which is a well-characterized INM protein.  

The entry site for several TA proteins that reside in the membranes of the secretory 

pathway is the ER (Behrens et al., 1996; Kutay et al., 1995; Linstedt et al., 1995). Even 

though VAPB is well studied as an ER protein, the biogenesis of the protein is not entirely 

understood. To characterize the biogenesis of VAPB, the possible role of the TRC40 

pathway in the membrane insertion of VAPB was analyzed. 

In addition to its already established ER localization, localization of VAPB to the INM 

was observed for the first time. Moreover, the interactome of VAPB at the INM was 

established by a new proximity-based approach Rapamycin and APEX-dependent 

identification of proteins by SILAC (RAPIDS) and the interactome at the INM and ER was 

validated by this approach. 

Requirements for targeting of newly synthesized TA proteins from the ER to the INM 

have been studied only for a few proteins. In this work, diffusional mobility of several INM 

proteins were assessed in intact and semi-permeabilized cells and emerin was one of the 

proteins that was studied further in detail. 

 

6.1. ER membrane insertion of VAPB  
 

 The interaction of VAPB with TRC40 is not required for its insertion 
into the ER membranes  

In this work, membrane insertion of VAPB via the TRC40 pathway was analyzed. 

Interaction of VAPB with TRC40 has been reported previously (Baron et al., 2014; Coy-

Vergara et al., 2019). FFAT-like motif in TRC40 mediates its interaction with the MSP 

domain of VAPB (Baron et al., 2014). VAPB was also identified as a TRC40 interacting 

precursor TA protein, using a dominant-negative ATPase-impaired mutant of TRC40 in 

which an aspartate 74 was replaced by a glutamate residue to trap TA proteins in the 

cytoplasm (Coy-Vergara et al., 2019). Even though a stable complex was formed by TRC40 

and VAPB (Figure 14), the complex, however, failed to get inserted into the ER membranes 

of semi-permeabilized cells (Figure 15). Neither the use of dominant-negative WRB/CAML-

fragments (Figure 16) nor the immuno-depletion of TRC40 (Figure 17) impeded the 
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membrane insertion of VAPB, which further confirms that TRC40 is not essential for VAPB 

insertion. It is possible that the interaction of VAPB with TRC40 has another role, unrelated 

to protein targeting to the ER. It has to be taken into account that TRC40 does not bind to 

the TMD of VAPB (Baron et al., 2014), unlike other established TA proteins where the 

interaction occurs via a TMD-dependent manner (Stefanovic and Hegde, 2007). It has also 

been previously reported that VAPB interacts with ubiquitinated proteins, p97 ATPase and 

FAF1 (ubiquitin binding protein) and these proteins are recruited by TRC40 (Baron et al., 

2014). Thus, it can be speculated that the TRC40-VAPB interaction may be required in the 

context of cellular quality control or proteasomal degradation. 

 

 Post-translational targeting of VAPB to ER membranes 
The presence of a single transmembrane domain at the C-terminal end of VAPB 

suggests that the protein can be post translationally inserted into ER membranes. Even with 

the addition of a 13-amino acid length opsin tag at the C-terminal end, VAPB could be 

inserted into rough microsomes, in a post-translational manner (Figure 12 and Figure 13). 

It had also been observed previously that in vitro translated VAPB can be inserted into 

microsomes, and protease protection assay confirmed its post-translational membrane 

insertion (Fasana et al., 2010). There are generally two pathways for TA protein insertion; 

an assisted and a non-assisted mode of insertion (Borgese and Fasana, 2011; Brambillasca 

et al., 2005; Hegde and Keenan, 2011). As a general rule, the pathway that TA proteins use 

depends on their TMD hydrophobicity. Low or moderately hydrophobic proteins use an 

unassisted pathway of insertion, whereas highly hydrophobic ones require assistance from 

chaperones or membrane proteins (Borgese et al., 2007; Brambillasca et al., 2006). As 

shown in Table 10, the TMD of VAPB is hydrophobic and has a similar hydrophobicity as 

that of emerin, which favors an assisted pathway of insertion. VAPB was also shown to be 

unable to get inserted into liposomes ruling out the possibility of unassisted membrane 

integration (Fasana et al., 2010). 

 

 Table 10. TMD hydrophobicity of VAPB and emerin. 

Protein TMD TMD 
hydrophobicity* 

C-tail sequence 

VAPB RLLALVVLFFIVGVIIGKIAL 2.562 - 

emerin VPLWGQLLLFLVFVIVLFFIY 2.481 HFMQAEEGNPF 

*TMD hydrophobicity score was calculated according to the GRAVY scale (Kyte and Doolittle, 1982). 
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 Redundancy in post-translational membrane insertion 
In vivo studies showed that TA proteins use several additional targeting options. 

Recently, calmodulin (CAM), a factor that recognizes hydrophobic domains in the cytosol 

(Shao and Hegde, 2011), was identified to interact with a TA protein of moderate 

hydrophobicity, squalene synthase (SQS) (Guna et al., 2018). CAM was reported to deliver 

these proteins to a transmembrane domain insertase, ER membrane complex (EMC), 

which aids in inserting them into the ER membrane (Guna et al., 2018; Shurtleff et al., 2018). 

An SRP-independent targeting (SND) pathway consisting of cytoplasmic Snd1 and ER-

resident Snd2 and Snd3 was recently described in yeast (Aviram et al., 2016). The human 

ortholog, TMEM208 (hSnd2) was reported to provide an alternative pathway for the 

insertion of substrates with a single TMD at the C-terminus into the ER membranes 

(Haßdenteufel et al., 2017). It was also proposed that some TA proteins can utilize the SRP 

pathway post translationally (Abell et al., 2004; Abell et al., 2007; Casson et al., 2017). 

Additionally Hsp40/Hsc70 was reported to promote the membrane insertion of TA proteins 

of low hydrophobicity (Abell et al., 2007; Rabu et al., 2008). All these studies suggest that 

TA proteins can utilize multiple pathways for their delivery to the ER and there are also 

possibilities of other unidentified routes contributing to their biogenesis. It is also possible 

that these pathways may compensate for one another if one pathway is non-functional. 

Taken together, the post-translational membrane insertion of VAPB is TRC40-independent 

as VAPB neither required the TRC40-receptors, WRB and CAML, for insertion nor was it 

inserted into the ER membrane when TRC40 was depleted. Further studies will be needed 

to determine whether VAPB uses any of these alternative mechanisms as depicted in Figure 

30.
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Figure 30. Alternate mechanisms for post-translational insertion of TA proteins. 
Scheme depicting additional pathways reported for the insertion of TA proteins. VAPB could use any of the 
alternate pathways namely the SND pathway, the EMC pathway, the SRP pathway or additional, yet 
unidentified routes for its ER insertion. 

 

6.2. VAPB localizes to the INM 
VAPB is an integral membrane protein previously characterized in the ER. In this 

work, an INM localization of VAPB is demonstrated. By using a rapamycin based 

dimerization approach (Pfaff et al., 2016), VAPB was shown to be localized at the INM 

(Chapter 4; manuscript Figure 1C). Since the rapamycin approach uses over-expression of 

the protein of interest (in this case VAPB), the INM localization of endogenous VAPB was 

also demonstrated by immunoelectron microscopy (manuscript Figure 1D). VAPB was also 

recovered mostly in NE fraction similar to emerin, lamin A/C and other NE proteins (Chapter 

4; manuscript Figure S1) by subcellular fractionation. Very recently, an INM localization of 

VAPB was demonstrated in which a role of VAPB in HSV-1 nuclear egress was reported 

(Saiz-Ros et al., 2019). Based on this study, a sub-population of VAPB was present in the 

INM, which was observed by immunoelectron microscopy and indirect-immunofluorescence 

assays. In the context of localization to the INM, VAPB knockdown was previously reported 

to affect the NE targeting of emerin and the nucleoporins, Nup214 and gp210 (Tran et al., 

2012). P56S VAPB mutation, which causes ALS was also reported to cause a nuclear 

envelope defect (Tran et al., 2012).  

A yeast homologue of VAPB, Scs2/Scs2p (Kagiwada and Zen, 2003; Kagiwada et 

al., 1998) was also reported to be a nuclear and ER membrane protein. There are also 

reports which mention that Scs2 mediates the activation of INO1, a target gene of the 
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unfolded protein response (UPR) at the nuclear membrane (Brickner and Walter, 2004). 

Scs2 binds at the nuclear membrane to an ER-associated transcription factor Opi1 which 

translocates to the nucleus upon reduction of phosphatidic acids (Loewen et al., 2004; 

Romanauska and Köhler, 2018). 

Taken together, these studies favor the localization of a sub-population of VAPB to 

the INM. However, the percentage of the total VAPB pool residing at the INM still needs to 

be investigated. It is also possible that VAPB resides at the INM only for a short duration. 

Since the ER is continuous with the ONM and the ONM with the NPC, lateral diffusion of 

VAPB through the NPC is favorable, as it is a relatively small protein of 29 kDa. However, 

more quantitative methods are required to demonstrate the population of VAPB at different 

subcellular localizations. Further studies are needed to prove if VAPB is retained at the INM 

and has a distinct function there or if it shuttles in and out of the nucleus by lateral diffusion. 

 

6.3. RAPIDS as an approach to detect protein-protein interactions  
Proximity-based labeling has become an important approach in mapping protein-

protein interactions. In this work, a method which was termed ‘RAPIDS’ (Rapamycin and 

APEX- dependent identification of proteins by SILAC) was used to identify the interactome 

of VAPB at the ER and INM (Chapter 4; manuscript Figures 3 and 4). In comparison to 

affinity purification based mass-spectrometry of proteins, which requires a careful selection 

of lysis buffers, and yeast-two hybrid methods, which detect interactions under non-

physiological conditions, proximity labeling techniques coupled with quantitative proteomics 

approaches give a snapshot of stable and transient interactions in a physiologically relevant 

cellular environment. In recent years there has been an advancement in biotin-based 

proximity labeling techniques using BioID and APEX systems. The use of BioID for 

interactome analysis has been steadily rising since its initial attempt to probe nuclear lamina 

for identifying the interactome of lamin A (Roux et al., 2012). However, the long labeling 

time in BioID experiments for efficient biotinylation has restricted its use to some extent, 

even though recent advances in BioID with shorter labeling time have been developed 

(Branon et al., 2018). A functionally related method, APEX based proximity labelling, has 

also been extensively used for the past seven years, following its initial attempt to map the 

proteome of mitochondria (Cho et al., 2017; Han et al., 2017; Hung et al., 2014; Hung et al., 

2017; Lee et al., 2016; Lobingier et al., 2017; Mick et al., 2015; Paek et al., 2017; Rhee et 

al., 2013b).  

RAPIDS is a method, which involves the combination of APEX2-dependent 

biotinylation, rapamycin-dependent targeting of APEX2 to a protein of interest, and SILAC 

based mass spectrometry. The initial attempt in this work was to differentiate between the 

‘classic’ approach, in which APEX2 is directly tagged to a protein of interest and RAPIDS. 
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This clearly showed an advantage for using the RAPIDS approach for known interactors of 

VAPB like ACBD5 and OSBPL9 (Chapter 4; manuscript Figure 2). There are mainly two 

limitations in using the ‘classic’ method; first, it requires the use of a protein (APEX2), with 

a size of 28 kDa, which could interfere with protein localization and function. Second, the 

additional requirement of a control reaction (GFP-APEX2 in this work) to compare for non-

specific interactions. These problems are circumvented by using RAPIDS. The localization 

of a protein is not affected, since APEX2 is physically separated from the protein of interest, 

and the use of rapamycin to facilitate targeting of APEX2 to a specific subcellular 

compartment helps to discriminate between proteins that are modified in a specific versus 

a non-specific manner.  

Additionally, by controlling the localization of tags used for APEX2, i.e., in the 

presence and absence of an NLS, it would be possible to map interactomes within specific 

cellular compartments. VAPB fused with a smaller tagged HA that diffuses freely to the INM 

or a 29 kDa mCherry-tag that is more restricted to the ER (Chapter 4; manuscript Figures 

3 and 4), gives additional flexibility to the approach to map interactome of a protein that 

localizes both in ER and the INM. Very recently, a similar targeting approach named as 2C-

BioID was described using the rapamycin analogue AP21967 as a dimerizing agent 

(Chojnowski et al., 2018). Using this approach, the dimerization of a biotin-protein ligase 

and a protein of interest was initiated by AP21967 to analyze the interactomes of LAP2ß 

and lamins A and C. 

The significant advantages of using APEX based proximity approach over BioID are 

its smaller tag size (APEX; 28 kDa versus BioID; 35 kDa) and the speed of labeling (1 

minute versus 18-24 hours) (Martell et al., 2012; Roux et al., 2012). Therefore, APEX2 

detects a ‘snapshot’ of protein-protein interactions, whereas BioID provides the sum of 

interactions of a protein of interest over several hours. Recently several modified 

approaches have been established to reduce the labeling time required for BioID. For 

instance, BioID2 uses a smaller version of biotin ligase (27 kDa) with 16 hours of labeling 

(Kim et al., 2016). In yeast, a much faster BioID approach has been recently developed 

called TurboID (with a tag size 35 kDa) and miniTurboID (with a tag size 27 kDa), which 

enables labeling in 10 minutes (Branon et al., 2018). 

 

 RAPIDS validates the known VAPB interactome at the ER 
VAPB is a protein that is present at several contact sites involving the ER (Murphy 

and Levine, 2016). Under conditions that should favor ER interacting partners using an 

mCherry-FRB-VAPB, which localizes mostly in the ER and FKBP12-GFP-APEX2, which 

has a cytoplasmic and nuclear localization, many previously known interaction partners of 

VAPB were identified (Chapter 4; manuscript Figures 2C and 3, Table 11). 
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Table 11. ER/cytoplasmic VAPB interactors identified in this and in previous 
studies. 

Protein 
name 

Reference Presence of 
FFAT motif 

Function 

PTPIP51 

(RMDN3) 

(De Vos et al., 2012; Stoica et al., 

2014) 

P signaling 

ACBD5 (Costello et al., 2017b) P membrane tether 
WDR44 (Baron et al., 2014) P - 

OSBPL9 (Mesmin et al., 2013; Moustaqim-

Barrette et al., 2014) 

P lipid transport 

OSBPL8 (Mesmin et al., 2013; Moustaqim-

Barrette et al., 2014) 

P lipid transport 

OSBPL10 (Mesmin et al., 2013; 

Moustaqim-Barrette et al., 2014) 

P lipid transport 

OSBPL11 (Mesmin et al., 2013; 

Moustaqim-Barrette et al., 2014) 

P lipid transport 

OSBP (Mesmin et al., 2013; 

Moustaqim-Barrette et al., 2014) 

P lipid transport 

YIF1A (Kuijpers et al., 2013) - ER-Golgi membrane 

trafficking 

 

Most of the identified proteins localized to the ER or ER-associated membranes, 

consistent with the prime ER localization of mCherry-FRB-VAPB. Additionally, the majority 

of the proteins identified had an FFAT domain that binds to the cytoplasmic MSP domain of 

VAPB (Loewen and Levine, 2005). Proteins localized to the NE like emerin and TMEM43 

were also identified using RAPIDS with the mCherry-tagged version of VAPB for which 

there were two possibilities; (1) mCherry-FRB-VAPB could also reach the INM (Chapter 4; 

manuscript Figure 1C) and (2) emerin and TMEM43 could also traverse through the ER 

before reaching their final destination. The ER interactome of VAPB identified in this study 

was also compared with two major VAPB interaction network studies (Huttlin et al., 2015; 

Murphy and Levine, 2016). Both studies were performed using the BioPlex network, an 

interaction network developed from affinity purification-mass spectrometry analysis for 

human proteins. Huttlin et al. identified 162 interactors for VAPB, and the identified proteins 

showed association with several OSBPs and other proteins linked with membrane 

trafficking or signaling. Murphy and Levine used the same BioPlex network to study VAPs-

(VAPA and VAPB) FFAT interaction (also known as VAPome) and could show that nearly 

50% of VAPome binds directly or indirectly via the VAP-FFAT interactions. As shown in 

Figure 31, almost 5% of proteins were common in all three approaches. The overlapping 

candidates mostly belonged to the FFAT motif- containing proteins.  
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Figure 31. Comparison of VAPB interactome reported by Huttlin et al, Murphy and Levine and by 
RAPIDS.  
Venn diagram depicts the overlap between proteins identified by the three approaches. Proteins common in 
all the studies are listed on the right. Note that the high degree of overlap between the two studies reported 
by Huttlin et al. and Murphy and Levine et al, is due to the use of the same BioPlex Interactome network. 

 

 RAPIDS identifies novel INM interactors of VAPB 
Since VAPB localized to the INM as well, RAPIDS was also used to identify nuclear 

binding partners of VAPB. RAPIDS was advantageous to identify nuclear partners 

compared to affinity-based methods since the latter requires strong lysis buffers for cell lysis 

in order to solubilize nuclear lamina, while keeping the interactions intact. The NPC imposes 

a size limit on the trafficking of membrane proteins between the outer and inner nuclear 

membranes (Blenski and Kehlenbach, 2019; Lusk et al., 2007; Soullam and Worman, 1995; 

Ungricht et al., 2015; Zuleger et al., 2011). Using a HA-tag instead of an mCherry-tag at the 

N-terminal end for VAPB, facilitated a smooth passage of VAPB to the INM. Besides, a 

nuclear version of APEX2, APEX2-dGFP-NLS-FKBP12 that predominantly localizes in the 

nucleus, favored the detection of proteins from the nuclear side. Significantly more nuclear 

proteins, including proteins of the nuclear lamina (lamin A and C, lamin B1), nucleoporins 

(Tpr, Nup153 and ELYS) and proteins of the INM (emerin, TMEM43, Tnpo1 and TOR1AIP1) 

were identified by this approach (Chapter 4; manuscript Figure 4).  

Like any other proximity labeling methods, RAPIDS identifies neighboring partners 

of a protein of interest. To test whether the neighboring proteins identified are indeed 

binding partners, further validations to prove the interactions have to be performed. 

Interaction of both endogenous and over-expressed VAPB with its INM partners emerin and 

TMEM43 were confirmed by cross-linking followed by co-immunoprecipitation experiments 

(Chapter 4; manuscript Figure 6). For emerin, the interaction with endogenous VAPB was 

further confirmed by co-immunoprecipitation using NE fractions obtained by subcellular 
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fractionation (Chapter 4; manuscript supplementary Figure S1C). It has been reported 

previously that the VAPB function is essential for the transport of emerin to the NE (Tran et 

al., 2012). Very recently, interactome analysis of emerin using BioID proximity labeling 

approach also detected VAPB as a proximity partner of emerin (Moser et al., 2020). The 

results obtained by immunoprecipitation assays further confirm that VAPB indeed forms a 

complex with emerin. Interaction of TMEM43 (LUMA) with emerin and its effect in 

distribution at the INM has also been previously reported (Bengtsson and Otto, 2008). The 

interaction of VAPB with TMEM43 might be dependent on the association of emerin with 

TMEM43. 

Proximity Ligation Assays (PLAs) were performed to detect the proximity of 

VAPB/emerin and VAPB/ELYS. The PLA interactions (dots) for emerin and VAPB were 

restricted to the NE, which was consistent with the INM localization of both proteins. In 

addition to PLA dots at the NE, intranuclear dots were also observed for VAPB/ELYS. ELYS 

is a nucleoporin required for nuclear pore assembly (Rasala et al., 2006). It also localizes 

to the nuclear interior during interphase. Since the dots were also observed inside the 

nucleus, VAPB might also reside in the nucleoplasm. However, this has to be further 

studied, since alternative splice variants of VAPB lacking the transmembrane domain are 

also present in human tissues and they localize to the nuclear interior (Nachreiner et al., 

2010). ELYS was also reported to interact with VAPB through its predicted FFAT like-motif 

(Murphy and Levine, 2016). Even though single antibody controls and silencing of VAPB 

was performed as a control reaction to monitor specificity of PLA interaction, the use of an 

antibody against an organelle marker protein, which is not involved in interaction would 

further validate the specificity of the PLA signal. 

 

 The interaction repertoire of VAPB identified by RAPIDS 
RAPIDS is an approach useful for assessing cell compartmental-specific protein 

interactions by the restriction of the enzyme to a specific compartment. The approach is 

also convenient when the protein of interest being investigated localizes to multiple cellular 

compartments. VAPB is an example of a protein that can be distributed between two 

different subcellular localizations, namely the ER and the INM. The Gene Ontology (GO) 

analysis performed on Cellular Compartment (CC) for the interactors of VAPB at the ER 

(Figure 32A) and the INM (Figure 32B) also clearly indicates the abundance of ER/ 

cytoplasmic proteins and NE proteins, respectively. GOCC enrichment score of VAPB 

interactome at the ER revealed a diverse list of ER and Golgi membrane compartment GO 

terms and a comparatively lower enrichment score for nuclear components. A stronger 

focus on the nuclear components was observed for VAPB interactome at the INM, such as 

‘nuclear pore basket’, ‘nuclear lamina’ and ‘INM’ with a high enrichment score. 
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Figure 32. GOCC analysis of VAPB interactome. 
Gene Ontology cellular compartment (GOCC) classification of all significant proteins identified using 
RAPIDS, which was used to enrich VAPB proteome in the ER (A) and in the INM (B). The x-axis shows the 
enrichment score of different cellular compartments.
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Taken together, this work demonstrates that the interactome of VAPB not only 

confines to the ER/cytoplasmic compartment, but VAPB as a contact site protein also 

localizes to the INM, where it may contact the nuclear lamina, integral membrane proteins 

and proteins of the NPC. Figure 33 summarizes the entire interactome of VAPB identified 

using RAPIDS. At this point, it is only possible to speculate on the function of VAPB at the 

INM. The P56S mutation of VAPB and also knockdown of endogenous VAPB have been 

reported to affect the transport of emerin and nucleoporins to the nuclear envelope (Tran et 

al., 2012). VAPB also has been implicated as an important contributor to the HSV-1 life 

cycle and might facilitate HSV-1 nuclear egress. VAPB was reported to play a role in primary 

envelopment since it localizes to the NE in association with primary enveloped 

nucleoplasmic virions (Saiz-Ros et al., 2019). Further studies have to be performed to 

investigate the role of VAPB at the INM. 

 

 
Figure 33. The VAPB interactome. 
Schematic depiction of interactome of VAPB identified by RAPIDS from the ER/ cytoplasmic pool of VAPB 
and nuclear pool of VAPB. 

 

 Limitations of RAPIDS and other proximity labeling approaches 
One of the advantages of RAPIDS over other proximity labeling approaches is that 

it reduces non-specific backgrounds to a larger extend compared to classic APEX2 or BioID 

approaches. The experimental setup in the absence of rapamycin serves as an internal 

control to identify non-specific interactors. Moreover, rapamycin treatment is performed in 

the same cellular context with the expression of the same fusion constructs. However, 

RAPIDS is a proximity labeling method, detecting neighbors, and therefore, the method as 

such cannot be used to demonstrate interactions of the proteins. It is crucial to validate the 
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candidates identified by independent approaches like immunoprecipitation approaches, 

super-resolution microscopy or bimolecular fluorescence complementation assays. 

Additionally, the impact that the addition of rapamycin and H2O2 may have on the 

interactome of proteins also needs to be considered. For instance, prolonged rapamycin 

treatment affects the mTOR signaling pathway (Sarbassov et al., 2006; Schreiber et al., 

2015). Therefore, analogs of rapamycin that are non-toxic to the cells are an alternative. 

There are also reports that H2O2 treatment, though brief, might affect the cellular oxidative 

status and stress response (Schreiber et al., 2015). Another concern is the expression level 

of fusion constructs used in RAPIDS that can vary between different transient transfections. 

An effective approach would be to use stable cell lines for one of the fusion construct 

(FKBP12-APEX2) that could be transfected with the other (FRB-protein of interest) or vice 

versa. The use of HA-tag in RAPIDS could also affect proximity labeling, since APEX2 can 

cause oxidative damage to tyrosine residues in the tag (Martell et al., 2017). Alternate 

smaller epitope tags like FLAG-tag could be used instead. It has to be noted that VAPB was 

not a significant hit in our recent work on the interactome of emerin by using RAPIDS (Müller 

et al., 2020), even though the raw data set included VAPB. This could be due to the 

unavailability of appropriate sites for biotinylation on the surface of VAPB. Alternatively, the 

tag used for the overexpression of emerin could affect protein-protein interaction. 

 

6.4. Kinetics of trafficking of integral proteins to the INM 
Different models have been suggested for the targeting of INM proteins from the ER 

to the INM through the NPC. Diffusion retention (Boni et al., 2015; Ungricht et al., 2015) and 

receptor-mediated translocation (King et al., 2006; Meinema et al., 2011) models have been 

described as the major mechanisms of INM protein translocation. Diffusional mobilities of 

several INM proteins like LBR, SUN2, Lap2b, Man1 and emerin (Ellenberg et al., 1997; 

Ostlund et al., 1999; Ungricht et al., 2015; Wu et al., 2002) have been previously measured 

using FRAP. In this work, the diffusional mobilities of four different single pass TA proteins, 

namely, emerin, VAPB, Lap2b, PTP1B, and a multi-pass protein LBR were studied in live 

cells and semi-permeabilized cells by FRAP assays. All the proteins exhibited different rates 

of fluorescent recovery in living cells, measured at the NE, ranging from 40-60% (Figure 

18). For emerin, the fluorescent intensity after recovery was 60% at the NE and it has been 

reported that emerin is less mobile in the NE compared to the ER (Ostlund et al., 1999). 

Ostlund et al. also suggest that emerin is not entirely immobile at the NE even though it 

binds to chromatin. Instead, it slowly diffuses as a complex by binding to non-chromatin 

nuclear proteins. In addition, export from the INM to the ER also might account for a 60% 

fluorescent intensity after recovery at the NE. Similar diffusional mobility was observed for 

Lap2b, consistent with the previous reports that emerin and Lap2b have similar half-time 
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(t½) recovery rate at the NE (Ostlund et al., 1999; Shimi et al., 2004; Wu et al., 2002). For 

LBR, the rate was rather low (40%), in accordance with its lower diffusional mobility at the 

NE due to extensive immobilization that occurs in the INM by binding to chromatin and 

lamins (Ellenberg et al., 1997). A similar observation was also made for the recovery rate 

of fluorescence for VAPB and PTP1B, suggesting that it could be either retained by 

interacting with other INM proteins or exported back to the ER. Using RAPIDS, VAPB 

showed an interaction with INM proteins emerin and TMEM43. It was also reported that 

PTP1B interacts with emerin at the INM (Yip et al., 2012). 

 

 Diffusion of emerin to the NE requires soluble cytoplasmic factors 
FRAP assays analyzing protein dynamics have been performed either on intact or 

semi-permeabilized cells. A comparative analysis under both conditions has not been 

studied previously. Interestingly, a different picture emerged when the FRAP assays were 

performed in semi-permeabilized cells. All of the tested proteins showed a decreased 

diffusional mobility at the NE in semi-permeabilized cells compared to intact or living cells 

(Figure 19). Even though a complete absence in the fluorescent recovery was not observed, 

which could be attributed to the fact that diffusion occurs within the NE, the recovery rate 

was reduced by 50% or more for emerin, Lap2b, VAPB and LBR. For PTP1B, only a slight 

reduction in recovery was observed, suggesting that permeabilization does not have a 

strong effect on its diffusional mobility. 

Since differential permeabilization with digitonin removes the cytosolic components 

leaving the NE intact, cytosol was added back to the permeabilized cells. Interestingly, the 

addition of cytosol significantly increased the fluorescent intensity after recovery of emerin 

(Figure 20) compared to the permeabilized cells with no cytosol addition, which was not the 

case for other INM proteins tested. The cytosol dependence of emerin might involve soluble 

components. This was also observed for another INM protein, SUN2, which was targeted 

to the INM efficiently in the presence of both cytosol and energy (Ungricht et al., 2015). 

Additionally, it was found that none of the three targeting signals of SUN2, a classical NLS, 

a Golgi retrieval signal and a lumenal SUN domain, were linked to its cytosol dependence 

for targeting to the NE (Ungricht et al., 2015). Further investigation is needed to determine 

whether the two INM retention signals present at the N-terminal of emerin (Ostlund et al., 

1999) are linked to its cytosol dependence on diffusion to the NE. The INM localization of 

emerin and SUN2 was compromised by ATP depletion, suggesting that an energy 

dependent step could assist them in diffusion to the INM (Zuleger et al., 2011). Moreover, 

the translocation of LBR to the INM was shown to be dependent on RanGTPase (Zuleger 

et al., 2011). These reports suggest that, additional cytosolic factors also assist in diffusion 

of INM proteins through the NPC. 
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 Molecular requirements for targeting of emerin to the NE in 
permeabilized cells 

The dependence of emerin on cytosol for its diffusional mobility prompted us to study 

the requirements for targeting to the NE in semi-permeabilized cells. An initial attempt by 

testing the factors that affect nuclear import of soluble, NLS-containing cargo, led to the 

observation that RanQ69L, WGA and Impb (45-462) impaired the diffusional mobility of 

emerin (Figure 25, Figure 26, Figure 27). The requirement of functional RanGTPase has 

also been reported for other INM proteins: the yeast proteins, Heh1 and Heh2 (King et al., 

2006), and the mammalian protein LBR (Zuleger et al., 2011). For LBR, it was also observed 

that Nup35 residing in the peripheral channels of the NPC plays a role in Ran-mediated 

INM translocation (Zuleger et al., 2011). It has to be investigated whether knocking down 

Nup35 has an effect on the targeting of emerin to the INM. The reduction in diffusional 

mobility observed with WGA and Impb (45-462), both of which bind to the NPC and inhibit 

protein import, also suggests that the diffusion of emerin through the NPC to the INM is 

dependent on a cytosolic factor that potentially contributes to importin-mediated NPC 

translocation. It has been previously reported that the higher mobility of exogenous emerin 

in the nuclear membrane depends on Samp1 and RanGTP. Ran regulates the interaction 

between Samp1 and emerin in the NE (Vijayaraghavan et al., 2018). Therefore, there is 

indeed an effect of functional Ran in the mobility of emerin at the NE. However, it has to be 

taken into account that NTR-depletion did not have a significant effect on the diffusional 

mobility of emerin to the NE (Figure 28). Recent studies have also suggested the 

involvement of components used for NPC transport of soluble proteins (King et al., 2006). 

Furthermore, soluble ‘piggyback’ proteins (Gardner et al., 2011) help in the targeting of INM 

proteins. Thus, further investigations are required to systematically determine the factor 

present in cytosol that promotes the diffusion of emerin to the NE. 

 Most of the recovery in fluorescence intensity observed in the FRAP assays 

performed at the NE likely comes from the protein exchange between the ER and NE, as 

confirmed by different factors that affect the transport from the ER to the NE (WGA, 

RanQ69L and Impb (45-462)). WGA binds to cytosolically exposed O-glycosylated regions 

of FG repeat nucleoporins to inhibit transport (Finlay et al., 1987) to the NE. WGA could 

potentially bind to other glycosylated proteins as well. Emerin is reported to be O-

glycosylated that regulates its association with barrier to autointegration factor (BAF) at the 

INM (Berk et al., 2013b). It has to be further investigated whether WGA binds to the 

glycosylated emerin which could inhibit its diffusion to the NE. It was also been reported 

that for many NETs (NE transmembrane proteins), binding in the INM is so stable that 

recovery after photobleaching depends more on diffusion of proteins between the ER and 

INM than on the mobility within the INM (Zuleger et al., 2011). However, the possibility of 

redistribution of the proteins within the NE cannot be ruled out as observed for the lower 
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mobility of all the tested INM proteins after permeabilization. Also, since targeting of INM 

proteins requires maintenance of ER topology (Pawar et al., 2017), FRAP assays performed 

at the ER, in the absence or presence of the factors tested in this study for NE, would 

provide better insights into the diffusion of emerin (Figure 29). Digitonin selectively 

permeabilizes the plasma membrane by binding to cholesterol that is more abundant in the 

plasma membrane than the ER membrane. It has to be further studied whether digitonin 

affects the ER topology of the cells and thereby the diffusion of proteins from the ER to the 

INM. It has also been demonstrated that Atlastins, a family of membrane-bound GTPases 

that preserve ER structure, are critical for efficient targeting of proteins to the INM (Pawar 

et al., 2017). Therefore, further investigation is needed to determine the importance of ER 

network topology on the targeting of emerin to the NE. 

In summary, different explanations for the effect of cytosol on the diffusional mobility 

of emerin are possible. First, cytosol addition might have a direct effect on emerin transport. 

This could be due to the presence of ‘piggyback’ proteins present in the cytosol that could 

assist in the transport of emerin. For instance, nuclear import of yeast SUN protein, Mps3, 

was assisted by a soluble histone H2A.Z protein (Gardner et al., 2011). Second, addition of 

cytosol might affect NPC itself, since classic reagents that block transport of soluble cargoes 

through NPC (WGA, Impb (45-462) and RanQ69L) also reduced the diffusional mobility of 

emerin. Third, cytosol addition might have assisted in an unhindered diffusion from the ER 

to the NE that could have been affected by the permeabilization of cells with digitonin. 

Figure 34 summarizes the requirements observed in this study for the diffusion of emerin to 

the NE in intact and permeabilized cells. 
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Figure 34. Schematic depiction of factors affecting diffusion of emerin to the NE. 
Emerin diffuses readily from the ER to the NE in intact cells whereas the diffusional mobility decreases in 
permeabilized cells. Cytosol addition to permeabilized cells increase the diffusional mobility in permeabilized 
cells. Addition of RanQ69L, WGA and Impb (45-462) impairs the diffusional mobility of emerin in semi-
permeabilized cells whereas NTP depleted cytosol had no significant effect on the diffusion of emerin. 
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Outlook 
 

ER membrane insertion of VAPB 
In this study, it was shown that post-translational insertion of VAPB into ER membranes 

does not depend on the TRC40 system. Therefore, other possible pathways for ER 

insertions need to be investigated. 

Knock down studies using components of the alternate pathways like ER membrane 

complex (EMC), hSnd2 and SRP targeting pathways could be performed in semi-

permeabilized cell system followed by membrane insertion. The role of VAPB-TRC40 

association could be studied using the ATPase-impaired trap mutants of TRC40 as 

described by Coy-Vergara et al., 2019. 

 

The VAPB interactome 
Using RAPIDS, the ER and INM interactome of VAPB was established, proving it as a 

versatile approach to identify proximity partners of a protein of interest. 

Using RAPIDS to identify the interactome of P56S VAPB, a mutant of VAPB that 

causes Amyotrophic Lateral Sclerosis (ALS) might shed light on the pathogenicity of the 

disease caused by P56S VAPB. RAPIDS could also be used to identify the interactome of 

VAPA, a related protein belonging to the VAP family. It will also be interesting to see whether 

both VAP proteins share the same interactome and whether VAPA also localizes to the 

INM. The functional characterization of VAPB at the INM could also be studied. For that, 

high-resolution ultrastructure imaging analysis of the NE obtained by electron microscopy 

performed on control, VAPB and VAPA knockdown cells could be useful to see whether the 

knockdown causes any NE defects. Additionally, the effect of VAPB and VAPA knockdown 

on its interaction partners could also be investigated. To overcome the caveats of RAPIDS, 

changes in experimental conditions like using a rapamycin analog that does not lead to any 

secondary toxic effects in cells or monitoring rapamycin based non-specific effects by 

performing a control experiment using only the APEX2 reporter could be performed. 

 

Kinetics of trafficking of emerin to the NE 
In this study, it was observed that the diffusional mobility of emerin was affected by 

permeabilization of the cells by digitonin and was enhanced by the addition of cytosol to the 

cells. Addition of RanQ69L, WGA and Impb (45-462) impaired the diffusion to the NE. 

A tool for studying INM targeting of emerin as described by Ungricht et al., 2015, 

could be used to identify and validate the requirements of protein targeting to the INM. 

Moreover, FRAP assays performed at the ER and also FLIP assays performed at the ER 

could help to find out a role of ER topology in efficient targeting of emerin to the INM. Finally, 
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it is important to determine what cytosolic factors assist the diffusion of emerin to the NE 

This could be achieved by fractionating the cytosol and analyzing each fractions for its 

transport-stimulating activity (Moore and Blobel, 1992). This would provide new insights into 

the mechanism of targeting of emerin to the NE. 
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Appendix 
 

Table S 1. Perseus workflow used for RAPIDS 

Matrix 
number 

Process Settings 

1 Load: Generic matrix 
upload 

• Main Column 
• Ratio H/L VAPB-fwd 
• Ratio H/L VAPB-rev 
• Ratio H/L normalized VAPB-fwd 
• Ratio H/L normalized VAPB-rev 

• Numerical columns 
• Intensity VAPB-fwd 
• Intensity VAPB-rev 
• Intensity 
• Ratio H/L count VAPB-fwd 
• Ratio H/L count VAPB-rev 
• Razor + unique peptides 
• Sequence coverage (%) 

• Categorical columns 
• Only identified by site 
• Reverse 
• Potential contaminants 

• Text 
• Protein IDs 
• Majority protein IDs 
• Protein names 
• Gene names 

2 Filter rows based on 
categorical column 

• Column Only identified by site 
• Values: + 
• Mode: Remove matching rows 
• Filter mode: Reduce matrix 

3 Filter rows based on 
categorical column 

• Column: Reverse 
• Values: + 
• Mode: Remove matching rows 
• Filter mode: Reduce matrix 

4 Filter rows based on 
categorical column 

• Column: Potential contaminant 
• Values: + 
• Mode: Remove matching rows 
• Filter mode: Reduce matrix 

5 Remove empty 
columns 

 

6 Transform • Transformation: log2(x) 
• Columns 

• Ratio H/L VAPB-fwd 
• Ratio H/L VAPB-rev 
• Ratio H/L normalized VAPB-fwd 
• Ratio H/L normalized VAPB-rev 
• Intensity VAPB-fwd 
• Intensity VAPB-rev 

7 Numeric Venn 
diagram 

• Columns 
• Ratio H/L VAPB-fwd 
• Ratio H/L VAPB-rev 
• Ratio H/L normalized VAPB-fwd 
• Ratio H/L normalized VAPB-rev 
• Intensity VAPB-fwd 
• Intensity VAPB-rev 
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Matrix 
number 

Process Settings 

• Intensity 
• Ratio H/L count VAPB-fwd 
• Ratio H/L count VAPB-rev 
• Razor + unique peptides 
• Sequence coverage (%) 

8 Significance B • Ratio columns 
• Ratio H/L VAPB-fwd 
• Ratio H/L VAPB-rev 
• Ratio H/L normalized VAPB-fwd 
• Ratio H/L normalized VAPB-rev 
• Intensity VAPB-fwd 
• Intensity VAPB-rev 
• Intensity 
• Ratio H/L count VAPB-fwd 
• Ratio H/L count VAPB-rev 
• Razor + unique peptides 

• Intensity columns 
• Intensity VAPB-fwd 
• Intensity VAPB-rev 
• Intensity 
• Ratio H/L count VAPB-fwd 
• Ratio H/L count VAPB-rev 
• Razor + unique peptides 
• Sequence coverage (%) 
• Ratio H/L normalized VAPB-fwd 

Significance B 
• Ratio H/L normalized VAPB-rev 

Significance B 
• Side: both 
• Use of truncation: Benjamini-Hochberg FDR 
• Threshold value: 0.05 

9 Result of Matrix 8 • Main Column 
• Ratio H/L VAPB-fwd 
• Ratio H/L VAPB-rev 
• Ratio H/L normalized VAPB-fwd 
• Ratio H/L normalized VAPB-rev 

• Categorical columns 
• Ratio H/L normalized VAPB-fwd 

Significance B: + 
• Ratio H/L normalized VAPB-rev 

Significance B: + 
• String columns 

• Protein IDs 
• Majority protein IDs 
• Protein names 
• Gene names 

• Numerical columns 
• Intensity VAPB-fwd 
• Intensity VAPB-rev 
• Intensity 
• Ratio H/L count VAPB-fwd 
• Ratio H/L count VAPB-rev 
• Razor + unique peptides 
• Sequence coverage (%) 
• Ratio H/L normalized VAPB-fwd 

Significance B 
• Ratio H/L normalized VAPB-rev 

Significance B 
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Matrix 
number 

Process Settings 

10 Scatter plot • Matrix access: Columns 
11 Data for export • Main Column 

• Ratio H/L VAPB-fwd 
• Ratio H/L VAPB-rev 
• Ratio H/L normalized VAPB-fwd 
• Ratio H/L normalized VAPB-rev 

• Categorical columns 
• Ratio H/L normalized VAPB-fwd 

Significance B: + 
• Ratio H/L normalized VAPB-rev 

Significance B: + 
• String columns 

• Protein IDs 
• Majority protein IDs 
• Protein names 
• Gene names 

• Numerical columns 
• Intensity VAPB-fwd 
• Intensity VAPB-rev 
• Intensity 
• Ratio H/L count VAPB-fwd 
• Ratio H/L count VAPB-rev 
• Razor + unique peptides 
• Sequence coverage (%) 
• Ratio H/L normalized VAPB-fwd 

Significance B 
• Ratio H/L normalized VAPB-rev 

Significance B 
 

 

 

Table S 2. List of significant proteins identified for VAPB interactome at the ER by 
RAPIDS 

 
Gene names 

 
Protein names 

Significance B Normalized H/L ratio 
(log2) 

forward reverse forward reverse 

RMDN3 
(PTPIP51) 

Regulator of 
microtubule dynamics 
protein 3 

+ + -1.01147 2.06309 

VAPB Vesicle-associated 
membrane protein-
associated protein B/C 

+ + -1.19496 1.64432 

WDR44 WD repeat-containing 
protein 44 

+ + -1.36606 1.57231 

CLCC1 Chloride channel CLIC-
like protein 1 

+ + -1.27129 1.40577 

ACBD5 Acyl-CoA-binding 
domain-containing 
protein 5 

+ + -1.28391 1.22132 

APOL2 Apolipoprotein L2 + + -1.31592 1.16131 
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Gene names 

 
Protein names 

Significance B Normalized H/L ratio 
(log2) 

forward reverse forward reverse 

ARID4A AT-rich interactive 
domain-containing 
protein 4A 

+ + -1.55563 1.12281 

OSBPL9 Oxysterol-binding 
protein-related protein 
9 

+ + -0.70495 1.01364 

EMD emerin + + -0.85175 0.960734 
LIFR Leukemia inhibitory 

factor receptor 
+ + -0.60333 0.955164 

OSBPL8 Oxysterol-binding 
protein-related protein 
8;Oxysterol-binding 
protein 

+ + -0.63356 0.856866 

BCAP31 B-cell receptor-
associated protein 31 

+ + -0.78066 0.841732 

ESYT1 Extended 
synaptotagmin-1 

+ + -0.74289 0.839315 

TMEM43 Transmembrane 
protein 43 

+ + -0.56211 0.791606 

RTN4 Reticulon;Reticulon-4 + + -0.62704 0.767316 
SRPR Signal recognition 

particle receptor 
subunit alpha 

+ + -0.47854 0.716508 

SRPRB Signal recognition 
particle receptor 
subunit beta 

+ + -0.46554 0.700795 

PTPN1 Tyrosine-protein 
phosphatase non-
receptor type 
1;Tyrosine-protein 
phosphatase non-
receptor type 

+  -0.64780 0.661111 

GOPC Golgi-associated PDZ 
and coiled-coil motif-
containing protein 

+  -0.62313 0.657 

KTN1 Kinectin +  -0.56109 0.644318 
HMOX2 Heme oxygenase 2 +  -0.46468 0.596649 
LMAN2 Vesicular integral-

membrane protein 
VIP36 

+  -0.59374 0.559541 

SUMO1 Small ubiquitin-related 
modifier 1 

+  -0.65444 0.556993 

NUP214 Nuclear pore complex 
protein Nup214 

+  -0.59268 0.552377 

FNDC3B Fibronectin type III 
domain-containing 
protein 3B 

+  -0.85992 0.528171 

SEC24A Protein transport 
protein Sec24A 

+  -0.52932 0.492007 

RANBP2 E3 SUMO-protein 
ligase RanBP2 

+  -0.56736 0.489646 
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Gene names 

 
Protein names 

Significance B Normalized H/L ratio 
(log2) 

forward reverse forward reverse 

MCCC2 Methylcrotonoyl-CoA 
carboxylase beta chain, 
mitochondrial 

+  -0.79596 0.486045 

YIF1A Protein YIF1A +  -0.82848 0.480265 
CANX Calnexin +  -0.49207 0.465295 
ACSL3 Long-chain-fatty-acid--

CoA ligase 3 
+  -0.51638 0.438612 

ITPR1 Inositol 1,4,5-
trisphosphate receptor 
type 1 

+  -0.60658 0.420078 

SCFD1 Sec1 family domain-
containing protein 1 

+  -0.60434 0.365245 

SEC23A Protein transport 
protein Sec23A 

+  -0.41730 0.364685 

SCD Acyl-CoA desaturase +  -0.51764 0.350837 
ARFGEF1 Brefeldin A-inhibited 

guanine nucleotide-
exchange protein 1 

+  -1.16104 0.305795 

MCCC1 Methylcrotonoyl-CoA 
carboxylase subunit 
alpha, mitochondrial 

+  -0.45379 0.244156 

ACACA Acetyl-CoA carboxylase 
1;Biotin carboxylase 

+  -0.52797 0.219215 
 

ACACB Acetyl-CoA 
carboxylase 2;Biotin 
carboxylase 

+  -0.561707 0.145091 

BOLA2;BOL
A2B 

BolA-like protein 2 +  -0.530718 0.135666 

ARHGEF16 Rho guanine nucleotide 
exchange factor 16 

+  -1.28191 0.003746 

PAFAH1B3 Platelet-activating factor 
acetylhydrolase IB 
subunit gamma 

 + -0.139236 1.36866 

XIAP E3 ubiquitin-protein 
ligase XIAP 

 + -0.379676 1.27029 

TEX2 Testis-expressed 
sequence 2 protein 

 + -0.449848 1.09518 

VPS13A Vacuolar protein 
sorting-associated 
protein 13A 

 + -0.476217 1.0597 

OSBPL11 Oxysterol-binding 
protein-related protein 
11 

 + -0.754821 1.02638 

DDRGK1 DDRGK domain-
containing protein 1 

 + -0.143452 0.963696 

YIF1B Protein YIF1B  + -0.676987 0.959622 
SYNE2 Nesprin-2  + -0.586709 0.934705 
ACBD3 Golgi resident protein 

GCP60 
 + -0.546161 0.911193 
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Gene names 

 
Protein names 

Significance B Normalized H/L ratio 
(log2) 

forward reverse forward reverse 

MFF Mitochondrial fission 
factor 

 + -0.405528 0.871134 

OSBP Oxysterol-binding 
protein 1 

 + -0.355922 0.849839 

MTOR Serine/threonine-
protein kinase mTOR 

 + -0.202472 0.844064 

ANKLE2 Ankyrin repeat and 
LEM domain-containing 
protein 2 

 + -0.253859 0.83552 

ATL2 Atlastin-2  + -0.552939 0.791606 
OSBPL10 Oxysterol-binding 

protein-related protein 
10;Oxysterol-binding 
protein 

 + -0.524417 0.717123 

SACM1L Phosphatidylinositide 
phosphatase SAC1 

 + -0.222667 0.700884 

LSG1 Large subunit GTPase 
1 homolog 

 + -0.55313 0.690819 

SEC22B Vesicle-trafficking 
protein SEC22b 

 + -0.3531 0.638862 

 

Table S 3. List of significant proteins identified for VAPB interactome at the INM by 
RAPIDS 

 
Gene names 

 
Protein names 

Significance B Normalized H/L ratio 
(log2) 

forward reverse forward reverse 

LMNB1 Lamin-B1 + + -1.5373 2.51293 

LMNB2 Lamin-B2 + + -1.9259 2.05581 

EMD emerin + + -1.10786 1.80553 

TOR1AIP1 Torsin-1A-interacting 
protein 1 

+ + -1.28535 1.72250 

NUP153 Nuclear pore complex 
protein Nup153 

+ + -0.89241 1.63987 

VAPB Vesicle-associated 
membrane protein-
associated protein B/C 

+ + -0.63206 1.59211 

LMNA Prelamin-A/C;Lamin-
A/C 

+ + -1.37097 1.59287 

AHCTF1 Protein ELYS + + -0.94652 1.56944 

TPR Nucleoprotein TPR + + -0.74460 1.12994 

TMPO Lamina-associated 
polypeptide 2,  
isoforms 
beta/gamma;Thymopoi

+ + -1.37759 1.35867 
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Gene names 

 
Protein names 

Significance B Normalized H/L ratio 
(log2) 

forward reverse forward reverse 

etin; 
Thymopentin 

APOL2 Apolipoprotein L2 +  -1.32257 0.71061 

ARHA;RHOA Transforming protein 
RhoA 

+  -1.30375 0.25398 

CYB5R3 NADH-cytochrome b5 
reductase; 
NADH-cytochrome b5 
reductase 3;NADH- 
cytochrome b5 
reductase 3 
membrane-bound  
form;NADH-cytochrome 
b5 reductase 3 soluble  
form 

+  -0.89676 0.42492 

LAMP1 Lysosome-associated 
membrane glycoprotein 
1 

+    

MAD1L1 Mitotic spindle 
assembly checkpoint 
protein MAD1 

+  -1.20619 0.81434 

LMAN2 Vesicular integral-
membrane protein 
VIP36 

+  -1.08079 0.44180 

SEC22B Vesicle-trafficking 
protein SEC22b 

+  -0.68214 0.93997 

ITGB1 Integrin beta-1 +  -0.75348 0.55070 

CANX Calnexin +  -1.055950 0.60928 

TMX1;TXND
C 

Thioredoxin-related 
transmembrane protein 
1 

+  -1.065883 1.38620 

RINT1 RAD50-interacting 
protein 1 

 + -0.430159 1.55768 

MTOR;FRAP
1 

Serine/threonine-
protein kinase mTOR 

 + -0.142194 2.144731 
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Abbrevations 
 

amp ampicillin 

Arg arginine 

ATP adenosine 5’-triphosphate 

bp base pair 

CaCl2 calcium chloride 

DAPI 4’,6-diamino-2-phenylindole 

DMEM Dulbecco’s modified eagle medium 

DMSO dimethyl sulfoxide 

DNA deoxyribonucleic acid 

dNTP deoxyribonucleotide triphosphate 

EDTA ethylenediaminetetraacetic acid 

EM electron microscopy 

FBS fetal bovine serum 

fwd forward 

GFP red fluorescent protein 

Glu glutamine 

GST glutathione S-transferase 

GTP guanosine-5’-triphosphate 

H2O2 hydrogen peroxide 

HA hemagglutinin 

HCl hydrochloric acid 

HEPES 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid 

His histidine  

HRP horseradish peroxidase 

IP immune precipitation 

kan kanamycin 

kb kilo base pair 

kDa kilo dalton 

LB Luria Bertani 

LC liquid chromatography 

Lys lysine 

M molar 

m/z mass-to-charge ratio 

MBP maltose binding protein 
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mM milli molar 

MS mass spectrometry 

MWCO molecular weight cut-off 

NC nitrocellulose 

nm nano meter 

nM nano molar 

P proline 

PBS phosphate buffered saline 

PMSF phenylmethylsulphonyl fluoride 

Ran Ras-related nuclear protein 

rev reverse 

RIPA radioimmunoprecipitation assay buffer 

RNA ribonucleic acid 

rpm revolutions per minute 

S serine 

SDS sodium dodecyl sulfate 

siRNA small interfering RNA 

SOC super optimal broth 

TAE Tris/ Acetate/ EDTA 

tev TEV-protease cleavage site 

Triton X-100 4-oxyphenol polythoxylate 

Tween 20 polyoxyethylene (20) sorbitan monolaurate 

U unit 

UV ultraviolet 

V volt 

w/v weight per volume 

ZZ protein tag (S. aureus protein A IgG-binding 

domain) 
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