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ABSTRACT

Proteins are one of, if not the most, versatile of biology’s tools, performing a great variety of

functions in living organisms and giving rise to behavior as complex as life itself. They are linear

chains of amino acids and therefore heteropolymers from a chemical point of view. Performing

diverse tasks while obeying the laws of thermodynamics and microscopic physics, proteins thus

invoke the interest of biologists, chemists and physicists alike.

While the theoretical foundations for describing molecular motion can be traced back more than

a century, experimental techniques allowing us to measure the dynamics of single molecules have

only become available in the last twenty years. Here, we aim to link the two together and use data

from single-molecule experiments to infer characteristic properties of individual proteins in a

systematic and quantitative manner. In particular, we have at our disposal three complementing

methods which measure dynamical properties of single molecules. The first is photo-induced

electron transfer paired with fluorescence correlation spectroscopy (PET-FCS) which measures

their end-to-end or internal-to-end loop formation rate, the second is dual-focus fluorescence

correlation spectroscopy (2fFCS) which measures their hydrodynamic radius, and the third is

dynamic metal-induced energy transfer (dynaMIET) which measures their reconfiguration time

when bound to a surface.

In this thesis, we develop a polymer model which enables the efficient interpretation of re-

sults from PET-FCS, 2fFCS and dynaMIET experiments. This model is a bead-rod chain which

takes into account hydrodynamic interactions, excluded volume effects, bending rigidity and

the fluorophore with which the protein is labeled, while including only two free parameters. It

quantitatively reproduces systematically measured data from PET-FCS and 2fFCS applied to

glycine-serine (GS) repeats – the prototype of an intrinsically disordered protein (IDP). Loop for-

mation dynamics in GS-repeats typically take tens of nanoseconds, and their hydrodynamic radius

is around one nanometer. From this data, the model yields a persistence length of lP = 5.2±1.9 Å

and one amino acid’s hydrodynamic radius of a = 3.5±0.7 Å, while at the same time validating

the important role of excluded volume effects in the dynamics of GS-repeats.

Thus, we now have at hand a combined method of performing single-molecule experiments and

Brownian dynamics simulations for IDPs which yields quantitative insights into their molecular

properties. This enables further study of the elastic and hydrodynamic properties associated

with different amino acid sequences. Extending the model to take into account secondary struc-

tures, inhomogeneities or internal friction effects should be subject to future work. This may

improve our understanding of the mechanisms governing protein function and folding, and hence

contribute to novel medical treatments and drug design.
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CONVENTIONS AND THEOREMS

Conventions Any simple symbol such as x, N or λ denotes a number, regardless of whether it

is real, imaginary or complex. Column vectors are denoted as~x, row vectors as~xT and matrices

as bold letters such as D. The unity matrix in N dimensions is denoted by 1N×N . Scalar elements

of vectors and matrices are written as xi and D i j. Submatrices (blocks) of a matrix D are written

as Di j. The matrix product is A ·B which is also used for 1×1-matrices, i.e. scalar. This means

~xT ·~x is a scalar and~x ·~xT is a matrix. Occasionally, we also write~x ·~x for readability, by which

we mean the dot product ~xT ·~x. Values of functions are denoted with round parenthesis such

as f (t) and functionals as capital letters with square brackets such as G[ f ] (capital letters are

not necessarily functionals, though). The partial derivative of f with respect to x is ∂x f := ∂ f /∂x,

and the total derivative of f with respect to x is dx f := d f /dx. When f depends on both spatial

coordinates~x = (x1, . . . , xn)T and time t, we write f (~x, t) and ∂k f = ∂ f /∂xk but still ∂t f = ∂ f /∂t, so

the letter t has special meaning in this context. The nabla operator is ~∇= (∂1, . . . ,∂n)T such that
~∇· f is the gradient of f ,~∇·~g is the divergence of ~g and~∇×~g is its curl. We further use Einstein’s

index convention which states that any index appearing twice in a term is summed over, such

that e.g. aibi c j = ∑
i aibi c j. The Dirac delta function is written as δ(t− s), and the Kronecker

delta as δi j. Pointed brackets 〈·〉 denote the ensemble or time average of a stochastic quantity.

The mean value of a random variable is denoted by µ and its variance by σ2, but µ and σ also

have other meanings, and the reader is expected to distinguish between them. Furthermore, we

set Boltzmann’s constant to kB = 1. As a consequence, the entropy S is dimensionless, and the

temperature T is an energy.

Theorems The reader is assumed to be familiar with basic calculus, stochastics and algebra,

and in particular with Gauss’ integral theorem and L’Hospital’s theorem concerning limits of

fractions. Furthermore, we utilize a version of Reynold’s transport theorem which states that

the total time derivative of an integral over a volume V can be pulled into the integral, thereby

becoming a partial derivative

dt

∫
V

f (~x)d~x =
∫

V
∂t f (~x)d~x ,

which holds true when V is constant over time. Moreover, we make use of the central limit

theorem. It states that the sum of N identical, independent stochastic variables with mean

values µ and variances σ2 is a new stochastic variable with the following properties; its mean and

variance are N ·µ and N ·σ2 (which is trivial), and as N goes to infinity, its probability distribution

becomes a Gaussian, regardless of the probability distribution of the stochastic variables which

are summed over (which is fascinating). More precise formulations and proofs of these theorems

can be found in numerous textbooks such as references [1, 2].
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LIST OF SYMBOLS AND ACRONYMS

symbol name see page symbol name see page

2fFCS dual-focal fluorescence 79 lP persistence length 67

correlation spectroscopy ~mi material frame 55, 59

a hydrodynamic bead radius 19, 82 MC (Metropolis) Monte-Carlo 92

α(n) jump moment 35 µ mobility matrix 22
~bi Bishop frame 55, 60 N number of beads 22

β inverse temperature 29 Ω phase space / rotation rate 27, 54

B Cholesky decomp. of D 47 p pressure / probability 17, 28

d bond length 81 PET photo-induced 74

D diffusion coefficient 52 electron transfer

D diffusion matrix 24, 83 Ψ complex curvature 56

Di j 3×3 block in D 24, 83 ~r Cartesian position vector 19

dynaMIET dynamic metal-induced 76 RC critical contact radius 76

energy transfer Re Reynolds number 17
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1
INTRODUCTION

At least since Isaac Newton has discovered the link between differential equations and the

movement of physical objects, we humans can use mathematics to predict the future. While

these predictions can sometimes only be approximate or statistical due to practical or fundamen-

tal limitations, the remarkable fact remains: Using abstract mathematical rules, seemingly only

concerning the manipulation of symbols on a piece of paper, we can make logical leaps exceeding

our mind’s limitations, and find out how the world around us works.

Consider for instance two pendulums connected by a spring, swinging with small amplitudes.

Personally, I have a good intuition about how gravitational restoring forces lead to period motion

of the pendulums, and how they push and pull at each other, but must admit that this intuition

does not suffice for quantitative reasoning. Without mathematics, how could I figure out that

the pendulums’ motions are precisely described by the sum and difference of two sine functions,

regardless of their initial speed and deflection? Perhaps a rare genius like Leonhard Euler could

have done that, but nowadays anyone can do so by absent-mindedly following the laws governing

differential equations, matrices and determinants – even without having any physical intuition

whatsoever. With similar ease, one finds that one harmonic oscillation of an apple with mass

m connected to a spring with stiffness k lasts exactly 2π
p

m/k . I find this fascinating: we have

at hand a concrete numerical value which is entirely independent of how far the apple was

initially pulled from the spring’s equilibrium position. It is valid for any values of m and k, and, of

course, is by no means limited to apples. All this can be tediously tested in numerous real-world

experiments, but is almost trivial to prove with a few lines of calculus. Furthermore, this insight

implies that the value of π can be measured with a rope, a stone and a stop watch.
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As a physics student, one learns to apply this sort of trick in a number of well-understood situa-

tions: planets circling each other, electric circuits, quantum particles in a box, electromagnetic

fields around point charges, an ideal gas and so forth. The methods of theoretical physics are by

no means limited to such toy systems, however. After all, why should the laws of physics be appli-

cable in laboratories and galaxies, but not inside our cells and brains? With the developments in

statistical physics and thanks to an ever expanding amount of numerical modeling techniques

and computational power at our disposal, biological systems have increasingly shifted into the

focus of modern physics. While the study of fundamental physics has already made – mostly as a

side effect – remarkable impacts on the technological advancement of humankind (navigational

devices such as GPS, engines for the industrial revolution, transistors for electronic devices,

X-ray and NMR scans for medicine, not to speak of nuclear plants and bombs), the importance

of understanding biological systems cannot be overestimated. Without a doubt, figuring out

the physical mechanisms which make a living organism function is of great academical and

philosophical importance, and we cannot begin to imagine the impact such understanding may

have on future technological and medical applications.

One of the first steps in this direction is to study the basic building blocks of biology such as

proteins. Naturally, their properties are of interest in their biological environment, i.e. dissolved

in water. From a physicist’s point of view, this solution of water and proteins is described as the

canonical ensemble: the system of interest is coupled to a heat bath of a given temperature with

which it can exchange heat, and thus constantly undergoes thermal fluctuations. The physical

disciplines treating the canonical ensemble are thermodynamics and statistical physics. They are

concerned with complex systems consisting of particles which are too numerous to realistically be

treated non-statistically. Classical thermodynamics is incredibly powerful in that it immediately

delivers all statistical properties of the system (e.g. protein) from its energy function alone; they

are given by the Boltzmann distribution for molecular conformations. However, thermodynamics

does not include (or require) any notion of time which is its power and flaw at the same time.

How fast does a protein change its conformations? How frequently do two sites on the molecule

come together and form a loop? These questions are of great biological and physical interest, and

classical thermodynamics explicitly does not answer them.

Since it is reasonable to say that this entire thesis is concerned with dynamical properties of

polymer chains in thermal equilibrium, let us clarify the distinction between statistics and

dynamics with an analogy: Imagine x to be a conformation of a polymer chain, and we have at

hand 106 independently taken pictures of that chain. It is then easy to extract a probability

distribution for x from these snapshots and determine e.g. its average end-to-end distance – a

statistical property. In order to determine dynamical properties, we also require knowledge about

the order of the pictures, and the time which has passed between them.
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CHAPTER 1. INTRODUCTION

About proteins Proteins are biology’s incredibly versatile tool to perform a diverse array of

functions in living organisms. For instance, the dry mass of Escherichia coli (E. coli) bacteria

consists of about 50% proteins. While the human body consists of around 60% water, proteins

still make up around 17% of our weight – almost half of our dry mass. Chemically speaking, each

protein is a linear chain of subunits which are called amino acids. From a theorist’s perspective, a

protein consisting of N amino acids A i is thus simply the linear chain A1−A2−A3−·· ·−AN , which

is called its primary structure. There are twenty natural different amino acids in the human body,

each of which consists of a backbone and a side chain. The simplified two-dimensional chemical

structure of an amino acid is

H2N Cα

R

H

C

O

OH

where the central N-C-C chain is called its backbone, and “R” stands for the amino acid’s side

chain. The side chain is unique for all twenty amino acids but always branches out from the

central carbon atom (Cα). Two amino acids can bond together by forming a peptide bond: the left

part (NH2) of the first amino acid reacts with the right part (OH) of the second. The result is that

a water molecule (H2O) is emitted and the reaction product (a protein) has a combined backbone

which is N-C-C-N-C-C, and two side chains R1 and R2.

This product is the prototype of a protein, and the distance between two consecutive Cα atoms

is 3.8Å. Natural proteins typically consist of hundreds of amino acids. It is the variety of the

twenty amino acid’s side chains which leads to the great diversity among proteins. As an example,

figure 1.1 shows the three-dimensional structures of glycine (G), serine (S) and tryptophan (W),

which are the most relevant amino acids for this thesis. The side chains of G and S are in fact

the shortest among all amino acids. In a physiological environment, proteins are not straight

lines, but often fold into a stable three-dimensional structure, both locally on basis of a few amino

acids (secondary structure), and also the entire molecule as a whole (tertiary structure). Based

on the tertiary structures, they can perform their specific biological functions, and often a sort

of “lock-and-key” principle applies between the two. Over the course of about 4 billion years on

earth, a self-organized trial-and-error algorithm called evolution has yielded a great number of

amino acid sequences which make biologically useful proteins. Today, the famous protein folding

problem is still unsolved; we cannot predict a protein’s three-dimensional structure, let alone its

biological function, based on a given amino acid sequence. In the future, such predictions may

enable us to design proteins performing desired tasks in a living organism. In recent years, it

has become known that many proteins contain parts which do not fold into stable secondary

or tertiary structures at all, but keep on fluctuating (“random coil”), earning them the name

“intrinsically disordered protein” (IDP). In fact, more than 30% of all eukaryotic proteins are IDPs;

5



but even regularly folding proteins are initially disordered when they are chemically formed, and

thus the dynamics of IDPs sets an upper speed limit for protein folding. Within the scope of this

thesis, we can think of IDPs as random coils which constantly undergo conformational changes

due to thermal fluctuations – or as the perfect playground for polymer physics.

Figure 1.1: The three-dimensional structures of the three amino acids glycine (left), serine
(center) and tryptophan (right). The beads represent carbon (gray), oxygen (red), hydrogen
(white) and nitrogen (blue) atoms. The backbones can be found at the respective molecule’s
top left (C-C-N), and the side chains branch out from the central carbon atom towards the
bottom right.

Situation at hand The past few decades have witnessed great progress in single-molecule

measurements. It is now possible to obtain information not only about a molecule’s statistical

properties (e.g. its radius of gyration measured from small-angle x-ray scattering (SAXS) or its

force-extension curve measured from atomic force spectroscopy (AFM)), but also to measure

dynamical properties like the rate with which a linear polymer’s two ends diffusively come

together (called loop formation rates or contact rates). These are truly exciting times: we are in

the process of creating a link between modern physics and biological processes by subjecting

proteins to single-molecule experiments. The group I have worked with is pushing the frontier

of what can be achieved on this scale, with my colleagues employing state-of-the-art single-

molecule techniques and continuing to develop new ones. At the time when I started my doctoral

work in June 2016, Man Zhou had already measured loop formation rates and hydrodynamic

radii of a number of IDPs called GS-repeats, using photo-induced electron transfer combined

with fluorescence correlation spectroscopy (PET-FCS) and dual-focal fluorescence correlation

spectroscopy (2fFCS) respectively. A GS-repeat is a short protein (10 to 40 amino acids long)

whose amino acid sequence alternatingly consists of glycine (G) and serine (S). They are known to

be flexible, intrinsically disordered proteins lacking secondary structures and showing no internal

friction [3]. Their dynamics take place on the nanoscale, both temporally as well as spatially. We

aim to translate the experimental findings into characteristic properties of these GS repeats,

such as their persistence length, and interpret the results via a custom variant of polymer theory.

6



CHAPTER 1. INTRODUCTION

Problem statement We require a polymer model which enables us to interpret data from our

single-molecule experiments for short proteins. In particular, the model must be able to predict

values for contact rates as well as hydrodynamic radius values. It is not required that the model

is analytically solvable by any means; computational treatability suffices. The model should

be reasonably realistic while keeping the total number of free parameters to a minimum not

only (i) to avoid overfitting, but also because (ii) every additional dimension in parameter space

makes finding the best-fitting parameter set exponentially more expensive from a numerical

perspective. On the other hand, we want to be in control of the model’s behavior and test which

mechanisms are important to match the experimental data, and this requires at least one tunable

model parameter. The experimentally determined time between loop formation events in proteins

(inverse contact rate) is on the order of tens or hundreds of nanoseconds, and thus simulated

trajectory lengths should be at least on the order of microseconds to estimate the simulated

contact rate with a reasonable level of convergence. Given such a model, we would like to develop

a combined routine of performing experiments with different molecules (i.e. different amino-acid

sequences in proteins) and assigning properties (e.g. their persistence length) to these molecules

by fitting the experimental results using our model.

State of the art Several experimental studies quantified the rate at which two sites on a

peptide chain come together (contact rate k+) [3–13] and found a power law dependence of the

loop formation rate in disordered proteins on chain length [3, 6, 7] as long as the chains are no

shorter than about 10 amino acids [14].

Theoretical studies delivered explicit (yet approximate) expressions for contact rates which can

be evaluated once a polymer model has been chosen. The most commonly used polymer models

are Gaussian chains [15–17] which, inspired by the central limit theorem, are characterized by

having Gaussian statistics between all of their monomers. A comprehensive treatment (including

hydrodynamic interactions and internal friction) of Gaussian chains can be found in reference [18].

The Gaussian property leads to linear equations of motion, but it turns out that even for the

simplest Gaussian polymer models, simplifying assumptions must be made to calculate contact

rates analytically. The Szabo-Schulten-Schulten (SSS) theory [19] considers the end-to-end

dynamics of the polymer to be Markovian, which leads to an explicit expression for the contact

rate. Kramers theory [20] also delivers (approximate) scaling properties of the contact rate from

a one-dimensional picture. The Wilemski-Fixman (WF) [21, 22] theory takes into account that

the polymer dynamics are high-dimensional, but this comes at the cost of making the so-called

closure approximation necessary to obtain an expression for the contact rate. The Friedman-

O′Shaughnessy theory [23–25] is more concerned with the scaling behavior of the contact rate

rather than delivering realistic values. These theories have been widely used for simple polymer

models [26–35], yielding important understandings of the dynamics of loop formation.
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Power laws for the contact rate as a function of chain length are often found, and it turns out

that different scaling regimes (depending on the critical contact radius for loop formation, chain

length and persistence length) with different power law exponents exist as long as the chains

are significantly longer than their persistence length. However, all currently available theories

require numerical evaluation for non-oversimplified polymer models, and even then only yield

approximate contact rate values within those models. Since we do not seek analytical results

but want to fit experimental data quantitatively, we conclude that no currently available theory

exists which serves our purpose. Instead, it is advantageous for us to formulate a fairly realistic

polymer model, and extract the contact rate from it using simulations rather than analytics.

Computational studies have also found the predicted power-law-like scaling behavior [36–39] and

deviations from it for short, semiflexible chains (i.e. chains with finite bending stiffness) [40, 41].

Computational models of fluctuating polymers can be separated into two categories: Those using

an explicit fluid, and those using an implicit fluid. As the name suggests, explicit-fluid models

represent the heat bath surrounding the polymer of interest via explicit variables whose dynamics

are simulated along with the polymer’s coordinates. Simulating each water molecule explicitly is

known as a molecular dynamics (MD) simulation. Modern MD simulations for proteins such as

one of our GS-repeats need to simulate around 20000 water molecules explicitly and reach around

100 ns per day, if run on 64 processors [42–44]. Since sufficiently long trajectories, from which

contact rates on the order of 1/100 ns can be estimated, therefore take months of computation

time for each tested chain length, MD is eliminated as a potential quick and efficient tool to

interpret our single-molecule experiments. Implicit-fluid techniques, on the other hand, only

simulate the polymer’s coordinates and combine their dynamics with hydrodynamic theory to

capture the fluid’s impact on the chain. This impact is three-fold: friction (energy dissipation),

hydrodynamic interaction (coupled movement of objects in the fluid) and thermal fluctuations

(stochastic momentum transfer). These three effects need to be treated approximately for implicit-

fluid models, while they emerge automatically in explicit-fluid models (which also means they

cannot be turned on or off). Implicit-fluid models represent the molecule with a chosen spatial

resolution – one bead in the model represents one amino acid for instance, or even a large

number of them, depending on the situation at hand. Hydrodynamic interactions are nonlinear,

pairwise interactions of the beads, severely limiting the number of beads which can be handled

numerically. For this reason, many polymer models neglect hydrodynamic interactions, and –

in pursuit of capturing them in an emergent manner – explicit fluid techniques representing

the solvent more coarsely than MD does exist. Such “mesoscale hydrodynamics” or “coarse-

grained fluid” techniques (including lattice-Boltzmann [45], dissipative-particle dynamics [46]

and multiparticle-collision dynamics [47]) are well-suited for simulating hundreds of beads,

but are being outperformed by implicit-fluid models (with hydrodynamic interactions) in both

accuracy and speed [48] the smaller the system of interest is (short chains).

8



CHAPTER 1. INTRODUCTION

We are therefore in the sweet spot where numerical simulations with an implicit fluid are both

required and possible: Our proteins are too long for MD, too short for Gaussian analytics, and

short enough to include hydrodynamic interactions in an implicit fluid.

Model structure The polymer model developed and applied in this thesis is a semiflexible bead-

rod chain with hydrodynamic interactions and excluded volume effects. Each bead represents

one amino acid, and the fluorophore is represented by one additional larger bead at one chain

end. The distances between neighboring beads (bond lengths) are constant over time, and thus

the model underlies geometric constraints. The model has two free parameters. The first one is

the chain’s bending stiffness σ which enters the model from within the framework of discrete

differential geometry as a prefactor of its bending energy. It quantifies how much energy is

required to bend the chain and can be bijectively mapped onto the chain’s persistence length. σ

entirely determines the chain’s statistical properties via the Boltzmann distribution. The second

free parameter is the hydrodynamic bead radius a of a single bead (amino acid) in the chain. It

enters the model from within the framework of hydrodynamics via the Rotne-Prager diffusion

matrices. Given σ, it entirely determines the model’s dynamical properties.

Polymer Model
Constrained 
Brownian 
Motion

Overdamped 
Hydrodynamics

Discrete 
Differential 
Geometry

Numerical 
Computation

Single-Molecule 
Experiments

New insights 
about molecules

Figure 1.2: We combine the theories of hydrodynamics, Brownian motion and differential
geometry into a polymer model. Results from single-molecule experiments can be com-
pared with those predicted by the model, which yields quantitative information about the
investigated molecules.
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Philosophy behind modeling A mathematical model of a complex system yields an imagi-

native, simplified reality. Unlike in the real world, the rules governing this reality are perfectly

known to us and are ours to modify as we please. We can control this alternative reality from the

outside by erasing rules, introducing new ones or by changing the values of model parameters.

Meanwhile, the model predicts values for observables (such as the contact rate of a polymer)

which can be compared with values measured in the real world. Since the importance and fun of

understanding which rules lead to which behavior often seem incomprehensible to our peers, it is

fortunate that building a model also has pragmatic justifications:

• We can tune parameter values such that the model’s prediction matches the measured

reality as well as possible. Properties of the real-world system can then be deduced from

these parameter values. For instance, we can tune our polymer model’s persistence length

such that the measured contact rates are reproduced, and then attribute this persistence

length to the studied proteins.

• We can cleanly test how altering the parameter values changes the observables. In reality,

it is often impossible to e.g. change the protein’s persistence length without also changing

the solvent’s viscosity or the amount of ions in it.

• Modeling allows us to turn physical effects on or off which are irrefutable in reality. For

instance, it is easy for us to allow the polymer chain to cross through itself or turn off

hydrodynamic interactions, while in reality this is clearly impossible. Consequently, it can

e.g. be tested if the fact that the proteins cannot cross through themselves is relevant for

their dynamics.

• Having at hand complete information about the model’s output, it is possible to extract

information which is in reality expensive, time-consuming, unethical or even impossible to

measure.

I would like to emphasize that our mathematical polymer model is derived from physical princi-

ples. Rather than heuristically writing down a mathematical model which is taylored to predict

specific observables, we are following a “bottom-up” approach and only after having the model

at hand do we specify which observables (contact rate, hydrodynamic radius, reconfiguration

time) we extract from it. In particular, we are not designing the model such that it automatically

delivers some desired or experimentally observed behavior, as this would be pointless but alas

not unheard of.
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CHAPTER 1. INTRODUCTION

Thesis structure A list of symbols and acronyms, as well as the conventions for our mathe-

matical notation can be found right before this chapter.

In chapter 2, the existing theories of hydrodynamics, statistical mechanics, differential ge-

ometry and polymer theory are introduced in this order. The section on hydrodynamics first

derives the continuity equation and the Navier-Stokes equation, introduces the concept of the

Reynolds number and then finds the (overdamped) Stokes-equation. Next, the dynamics and

hydrodynamic interactions of a number of spheres embedded in a Stokes-flow are investigated

within the Rotne-Prager approximation, resulting in an analytical expression for the diffusion

matrix. The section on statistical mechanics starts with the basic thermodynamic principles

governing systems in thermal equilibrium (free energy minimization, the Boltzmann distribu-

tion etc.) and basic concepts of stochastic processes, in particular of Markov processes. From

there, we derive the Fokker-Planck equation as the Kramers-Moyal expansion of the Master

equation. We show the equivalence of the Fokker-Planck equation with the Langevin equation –

the stochastic differential equation governing our polymer model’s dynamics – and demonstrate

how to impose geometric constraints on the dynamics using Lagrangian multipliers. The section

on statistical mechanics ends with introducing the diffusion coefficient, hydrodynamic radius

and the Stokes-Einstein relation. The section on differential geometry is concerned with one-

dimensional, framed curves in three-dimensional space. First the case of a continuous Kirchhoff

rod is treated in a Lagrangian manner. Afterwards, we study its discrete analogue, arriving at

analytical expressions for the elastic forces which are present in our polymer model. Next we give

a brief overview of aspects of polymer theory which are important for us. By the end of chapter

2, we introduce the experimental methods of single-molecule spectroscopy (SMS), fluorescence

correlation spectroscopy (FCS), photo-induced electron transfer (PET), dynamic metal-induced

energy transfer (dynaMIET) and dual-focus fluorescence correlation spectroscopy (2fFCS).

In chapter 3, we assemble the ingredients from chapter 2 and compose our polymer model.

In chapter 4, we explain the computational methods utilized to breath life into the model. To this

end, we first nondimensionalize the model equations and then explain the numerical integration

scheme used for the Langevin equation in the presence of geometric constraints. Next, we

introduce a method called Monte-Carlo sampling (MC) which allows the evaluation of ensemble

averages without running a simulation, and demonstrate how to use it for calculating the

hydrodynamic radius of a polymer chain undergoing conformational dynamics. After showing how

to calculate the contact rate from a simulated trajectory, we conclude chapter 3 by benchmarking

our model and numerical methods by checking that they reproduce known analytical results.
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In chapter 5, the main results of this thesis are presented. We start off by investigating how

the model parameters influence its behavior without considering experimental results yet. Next

comes what I consider the main project of this thesis: Loop formation and translational diffusion

of GS-repeats investigated using PET-FCS and 2fFCS. Here we find that the model excellently

reproduces experimental results, and are able to assign a persistence length of 5.2±1.9Å to the

measured proteins, as well as a hydrodynamic radius of 3.5±0.7Å to their individual amino acids.

In the next, very similar, project, it turns out that the model fails in reproducing the experimental

results for a different type of protein (FG-proteins) which has a highly heterogeneous amino

acid sequence. Lastly, we apply the model to a different experimental setup: the reconfiguration

dynamics of DNA molecules being bound to a surface investigated via dynaMIET. The model

predicts the DNA’s dynamics to take place on a time scale of tens to hundreds of nanoseconds.

In chapter 6, we discuss our findings and conclude the thesis.

In chapter 7, we suggest possible directions of future work which may succeed this thesis, and

show preliminary results in some of these directions.

In chapter 8, four side-projects that I have been working on during my doctoral dissertation are

briefly presented. These are (i) multiplane imaging of flagellar motion, (ii) geometric constraints

in protein folding, (iii) electric field lines of arbitrarily moving point charges and (iv) kinetics of

loop closure in disordered proteins.

The appendices include details or calculations which were removed from the thesis for readability,

and are referred to in the main text.

How to read this thesis? I recommend one of two options:

1. You can read this thesis from front to back, learning about all theoretical concepts

step by step before they are assembled into our polymer model.

2. You can jump straight to the model definition (chapter 3) and treat chapter 2 as

a source of reference to read up on individual concepts as needed. The numerical

methods (chapter 4), as well as the outlook (chapter 7) and side projects (chapter 8)

may be skipped as well.
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CHAPTER 1. INTRODUCTION

Historical context Fluid dynamics is described by the well-known Navier-Stokes equation

which was discovered in the 1820s [49] by Claude-Louis Navier. In the decades after, signifi-

cant distributions were made by Sir George Gabriel Stokes [50], including the introduction of

the Reynolds number. This lead to the overdamped Navier-Stokes equation (called the Stokes

equation), the solution of which we require in this thesis to quantify hydrodynamic interactions

and solvent friction. Its Green’s function is called the Oseen matrix which was published in

1910 [51]. Taking into account that the objects in the fluid have a finite size is achieved by using

the so-called Rotne-Prager diffusion matrix. It was originally calculated by Rotne and Prager [52]

and Yamakawa [53] in the 1960s and 1970s. We require an analytical expression of this matrix for

spherical beads of finite size which are potentially different-sized and overlapping. Remarkably,

this expression was only found in 2015 [54, 55].

Building on the 19th century’s work on statistical mechanics and thermodynamics performed by

Maxwell, Boltzmann, Clausius, Gibbs and others [56], the theory of Brownian motion was mainly

developed in the early 20th century by Smoluchovski [57], Langevin [58], Fokker [59], Planck [60]

and Einstein [61]. The combination of Brownian dynamics with overdamped hydrodynamics,

which we use in this thesis, goes back to Ermak and McCammon’s work in 1978 [62]. Within

the framework of Brownian motion, our model is subject to geometric constraints. Constrained

Brownian motion is an ongoing research topic [63] (2017), first treated by Kramers [64] (1946)

and Fixman [65] (1974). In particular, the evaluation of the entropic pseudoforce we use later on

was described in 2002 by Pasquali and Morse [66], and the numerical integration algorithm in

2005 by Montesi et al [67].

Meanwhile, polymer theory can be regarded as a branch of statistical mechanics which has

seen major developments since the middle of the 20th century. The worm-like chain (an elastic

rod in a heat bath) is the standard model for a polymer with finite bending stiffness, and was

first published by Kratky and Porod [68] in 1949. Flory’s work on chains with excluded volume

effects was published in 1953 [69]. The most paradigmatic polymer model whose dynamics can

be treated analytically because it is Gaussian is the Rouse chain [15] (1953), which was later on

generalized to include hydrodynamic interaction (Zimm chain [16], 1956) and internal friction

(RIF chain [70], 2007). With the work on stochastic processes by Zwanzig, van Kampen, Risken,

Mazo and others in the 1970s, and with the recent advent of computational power, the dynamics

of nonlinear polymer models which are only numerically accessible has garnered more and more

attention since the beginning of this century. In the last 10 years in particular, beads models

have been used to study intrinsically disordered proteins [71–73].
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The theory of elastic rods with an energy function which is quadratic in its curvature is an ancient

paradigm, already studied by Leonhard Euler and Daniel Bernoulli in the 18th century [74].

Major progress is due to Kirchhoff ’s work [75] in the 19th century, who described elastic rods as

framed curves using an orthonormal triad. The efficient description of the triad’s evolution along

the curve goes back to Bishop’s work in 1975 [76]. Using local rather than Cartesian coordinates,

a Lagrangian treatment of such framed curves was described in 1996 by Langer and Singer [77],

and physical dynamics of inextensible rods within this framework were described shortly after

(1998) by Goldstein et al [78]. In this thesis, we use the more recently developed theory of discrete

differential geometry (2010 by Bergou et al. [79]) to describe discrete chains in a Lagrangian

manner and calculate the elastic forces acting on them. Discretizing an intrinsically continuous

theory for numerical purposes is thereby avoided, and instead the theory itself treats the chain

as a discrete object.

The first direct, optical detection of a single molecule in a liquid was achieved by Hirschfeld [80,

81] in 1976. In 1996, Keller et al. [82, 83] detected individual molecules in a fluid flow. The field

of single-molecule spectrocopy (SMS) has since seen vast developments. In particular, it was

combined with fluorescence correlation spectroscopy (FCS) which had already been developed in

the 1970s [84–86], but not yet been applied to single-molecule data. Experimental techniques

which, when combined with SMS and FCS, allow the investigation of a single molecule’s dynamics

are Förster-resonance energy transfer (FRET), triplet-triplet energy transfer (TTET) and photo-

induced electron transfer (PET), all of which have been available since around the year 2000.

TTET and PET, in particular, allow measuring loop formation rates in single molecules, with PET

being the more “direct” method because, in contrast to TTET, quenching of the excited fluorophore

occurs virtually instantaneously upon loop closure. PET-FCS has been used since the beginning of

this century to study loop formation rates in IDPs. The hydrodynamic radius of single molecules

(e.g IDPs) can be measured using dual-focal fluorescence correlation spectroscopy (2fFCS), which

was developed in 2007 by Dertinger et al [87].

To the best of my knowledge, we are the first to systematically use both 2fFCS and PET-FCS

to simultaneously measure translational diffusion and loop formation of short IDPs of varying

chain lengths, and develop an efficient, quantitative fitting routine to interpret the data.
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In this chapter the physical and mathematical concepts which are being utilized in this thesis

are introduced. Roughly starting at the level of a physics graduate, its contents can either be

found in advanced text books, which we name at the beginning of the respective section, or in

published manuscripts we cite at the appropriate places. I would thus like to make clear that

none of the results in this chapter were originally derived by me. Our aim here is not to replace

or summarize full textbooks on the treated subjects.

Instead, an effort will be made to streamline them towards their aspects which are relevant for

our polymer model, thereby combining hydrodynamics, statistical mechanics and differential

geometry into a global picture which can be understood from the perspective of polymer theory.

2.1 Hydrodynamics

When a force acts on a classical body in a vacuum, Newton’s second law allows us to calculate its

velocity. In this thesis, however, we are not considering an object in a vacuum, but microscopic

objects surrounded by a fluid – a continuum of water. It is dense enough for microscopic volumes

dV to still be treatable as a continuum of water. Instead of talking about individual molecules,

the fluid’s state is described by its mass density ρ, velocity~v and pressure p as functions of both

space ~r and time t. The objects embedded in this fluid are the vertices of a discrete polymer

chain which are treated as spherical beads. The entire purpose of this section is to calculate the

beads’ velocities when the forces acting on them are known. This is achieved as follows: We derive

the continuity equation, the Navier-Stokes equation, and their incompressible, overdamped

version: the Stokes equation. Next, spherical beads will be embedded in the Stokes flow, where
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2.1. HYDRODYNAMICS

hydrodynamic interactions and solvent friction are quantified by the diffusion matrix D. The

derivation of this matrix is ultimate goal of this section.

Unless explicitly stated otherwise, we follow the line of reasoning from the textbook “An Intro-

duction to Dynamics of Colloids” by Jan Dhont [88].

2.1.1 Continuity equation

The continuity equation describes the conservation of mass in a fluid. Considering any volume V

fixed in space, it balances the influx and outflux of fluid into that volume as follows. The change

of the total mass M in V changes only due to fluid flux ~j = ρ~v through its boundary ∂V :

(2.1)
dtM = dt

∫
V
ρd~r =

∫
V
∂tρd~r

!=−
∫
∂V

(~j ·~n)dA =−
∫

V
(~∇·~j)d~r =−

∫
V
~∇· (ρ~v)d~r

where ~n is the normal vector of ∂V (pointing outwards, thus the minus sign). Gauss’ integral

theorem was used in the last line and Reynold’s transport theorem in the first line. The transport

theorem simply states that for our case of a fixed volume V , the total time derivative may be

pulled into the integral, becoming a partial derivative. Since V is arbitrary, the integrands of

both integrals must coincide and thus we have

(2.2)
0= ∂tρ+~∇· (ρ~v)

= dtρ+ρ~∇·~v .

This equation is a partial differential equation coupling the evolution of ρ and~v. In this thesis,

we are dealing with incompressible fluids such that ρ is a constant. The continuity equation

therefore reduces to the incompressibility equation, which constrains the fluid flow to obey

(2.3) ~∇·~v = 0 .

2.1.2 Navier-Stokes equation

Newton’s second law states that the momentum ~P of an object changes according to the total

force ~F = dt~P applied to it. We take this object to be an arbitrary volume V which is fixed in space

as before. Its momentum balance reads

(2.4)
dt~P = dt

∫
V
ρ~vd~r =

∫
V
∂t(ρ~v)d~r

!=
∫
∂V
ρ~v · (~v ·~n)dA+

∫
V
~f d~r+

∫
∂V

(σ̂ ·~n)dA .

The first line is a mathematical identity, and the second line consists of three terms which

contribute to a change of momentum in V . Firstly, there is a convective flow of momentum density

ρ~v through the boundary of V . Secondly, in general, an external force density ~f acts within V .
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CHAPTER 2. THEORY

Thirdly, a short ranged force σ̂ ·~n acts on the surface of V . This force is conveniently expressed

as the matrix product of the stress tensor σ̂ with the surface’s normal vector ~n such that Gauss’

integral theorem can be applied. The stress tensor’s entries for incompressible Newtonian fluids

such as water read (see page 233 in ref. [88])

(2.5) σ̂i j =−pδi j +η
(
∂ jvi +∂iv j

)
where the first term describes the fluid’s pressure p (a force density per area) experienced by

V on its surface. The second term describes the friction V experiences from interacting with

surrounding fluid cells which may have different velocities. This friction is proportional to the

local velocity gradient and the fluid’s viscosity η acts as the proportionality factor. The property

that this friction force is linear in the velocity gradient defines both Newtonian fluids and η.

Making use of the incompressibility equation as well as Gauss’ integral theorem for every

component of ρ~v and every row of σ̂, we again equalize the integrands in equation 2.4 because V

is arbitrary. This leads to a partial differential equation which the fluid’s flow must obey:

(2.6) ρ ·
(
∂t~v+ (~v ·~∇)~v

)
= η~∇2~v−~∇p+~f .

It is called the Navier-Stokes equation for incompressible Newtonian fluids. Save for the diffusive

term ~∇2~v, which is a material property, it is as exact as Newton’s second law together with the

incompressibility condition. We only need to keep in mind that we are treating the fluid as a

continuum of mass rather than individual molecules.

2.1.3 Stokes equation

In many applications, approximate knowledge of the orders of magnitude that the variables

in the Navier-Stokes equation take on is available. For example, when a person is swimming

in water, a typical length scale is that person’s height, and a typical velocity might be 2km/h.

Let us assume that for some abstract application, a length scale r0, a velocity scale v0, as well

as the fluid’s mass density ρ and viscosity η are given. One can then make use of these scales

and nondimensionalize the Navier-Stokes equation by introducing the primed variables~r = r0~r′,
~v = v0~v′ and so forth. The dashed variables are thus dimensionless by construction and can be

expected to take on values which are approximately of order 1. Choosing a time scale t0 = r0 /v0,

a pressure scale p0 = v0η / r0 and a force scale f0 = ηv0 / r2
0, and inserting the primed quantities

into the Navier-Stokes equation yields

(2.7)
(ρ v2

0/r0) ·
(
∂t′~v′+ (~v′ ·~∇′)~v′

)
= (ηv0/r2

0) ·
(
~∇′2~v′−~∇′p′+~f ′

)
⇔Re ·

(
∂t′~v′+ (~v′ ·~∇′)~v′

)
=~∇′2~v′−~∇′p′+~f ′

where we have introduced the Reynolds number

(2.8) Re= ρr0v0

η
.
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Since all appearing terms are of order 1, the Reynolds number dictates how relevant the inertial

terms (left hand side) are compared to the acting forces (right hand side). If it is very large,

inertial effects dominate the fluid’s dynamics, which leads to turbulence (starting at around

Re≈ 2000). Throughout this thesis, we assume that Re is small enough to neglect inertial terms

and therefore set the left hand side of equation 2.7 to zero. Given the values of ρ and η, this

is appropriate for small velocity and length scales; it is thus a much better approximation for

microscopic objects than it is for whales. In our applications later on, estimating the Reynolds

number yields values on the order of 10−2, which makes the neglect of inertial effects reasonable.

The corresponding Navier-Stokes equation is called the Stokes equation and reads

(2.9) 0=~∇2~v−~∇p+~f .

It is linear and time does not enter it, and therefore the fluid’s velocity ~v and pressure p

must be linear functions of the applied force density ~f at each individual instant of time. As

a direct consequence, the fluid is immediately at rest when forces are no longer applied to it.

This has astonishing physical implications on microscopic swimming mechanisms, which are

beautifully demonstrated in Purcell’s famous paper “Life at low Reynolds number” [89]. Due

to these properties, the Stokes equation and the incompressibility equation taken together are

also called the creeping flow equations. From a mathematical perspective, the four creeping flow

equations form a set of equations for the four variables~v(~r) and p(~r). We do not consider the force

density ~f as a variable, but as given input at each time, for which the equations are to be solved

independently of all other times because of the lack of inertial effects. Due to the linearity of the

creeping flow equations, the dependence of~v and p on ~f must be linear superpositions of the form

(2.10)
~v(~r)=

∫ (
T(~r−~r′) ·~f (~r′)

)
d~r′

p(~r)=
∫ (
~g(~r−~r′) ·~f (~r′)

)
d~r′

where the matrix T and the vector ~g are Green’s functions for the creeping flow equations. They

can be found explicitly by inserting equation 2.10 into equations 2.3 and 2.9. Using the boundary

condition that the velocity field drops to zero at |~r|→∞, one finds that

(2.11)
T(~r)= 1

8πη
1
|~r|

(
13×3 +~r ·~r

T

|~r|2
)

and ~g(~r)= 1
4π

~r
|~r|3 .

An identity we require later on is

(2.12)
∫
∂S

T(~r−~r′)dA′ = 2a
3η
13×3 where ~r ∈ ∂S

and S is a sphere with radius a. The matrix T is called the Oseen-matrix [51, 90] and satisfies

T(~r) = T(−~r). Its explicit derivation from the creeping flow equations is straightforward but

lengthy, and we refer the interested reader to the mentioned textbooks or to reference [91].
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2.1.4 Spheres in a Stokes flow

Let us consider a single sphere S1 with radius a embedded in a Stokes flow with a total non-

hydrodynamic force ~F1 and no torques acting on it. The sphere resides at position ~r1 with

translational velocity ~v1 and angular velocity ~ω1. The force ~F1 is equally distributed over the

surface ∂S1 of S1. Thus, the force density determining the fluid’s velocity via equation 2.10 is

(2.13) ~f1 = 1
4πa2δ(|~r−~r1|−a)~F1 .

Furthermore, the presence of the sphere imposes no-slip boundary conditions on the fluid flow,

which read

(2.14) ~v1 +~ω1 × (~r−~r1)=~v(~r)= 1
4πa2

∫
∂S′

1

(
T(~r−~r′) ·~F1

)
dA′ where~r ∈ ∂S1 ,

which simply means that there is no relative velocity between fluid and surface elements on

∂S1. While it is clear why the fluid cannot possess a velocity component through the sphere’s

surface, the physical reason why there is no component parallel to it is the following [92]. At the

microscopic level, there are interaction (adhesion) forces between surface and water molecules

which statistically reduce their relative velocity upon collision. As a result of the short mean free

path of water molecules, i.e. the distance they travel before colliding with another water molecule,

each water molecule near the surface collides with it many times. Therefore, the average fluid

velocity in any small volume V at the surface loses its velocity component parallel to the wall,

even though individual water molecules within V may not be at rest. The no-slip boundary

condition can thus be understood as a consequence of the continuum description of a dense fluid

which microscopically interacts with the surface. It fails when the fluid is too diluted, or when its

molecules only elastically bounce off a (hydrophobic) surface.

Stokes law Integrating the boundary conditions over ∂S1 eliminates the rotational term on

the left hand side and, using equation 2.12, leads to

(2.15)

4πa2~v1 = 1
4πa2

∫
∂S1

∫
∂S′

1

(
T(~r−~r′) ·~F1

)
dA′dA

= 1
4πa2

∫
∂S1

2a
3η
~F1dA

= 2a
3η
~F1

⇔ γ~v1 = ~F1 ,

which is the famous Stokes law for a sphere with radius a in an overdamped fluid: The linear

relation between its velocity and the force acting on it is quantified by the friction coefficient

(2.16) γ= 6πηa .

Remarkably, this coefficient itself is a linear function of the sphere’s radius a (rather than its

cross sectional area).
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Flow field around the sphere The velocity field~v(~r) caused by the sphere is given by insert-

ing the force density 2.13 into equation 2.10. The resulting integral can be solved analytically

and, defining ∆~r =~r−~r1 and ∆r = |∆~r|, reads

(2.17)

~v(~r)= 1
4πa2

∫
∂S1

(
T(~r−~r′) ·~F1

)
dA′

=


(

3
4

a
∆r

[
13×3 + ∆~r ·∆~r

T

∆r2

]
+ 1

4

( a
∆r

)3
[
13×3 −3

∆~r ·∆~rT

∆r2

])
·~v1 for R > a

~v1 for R ≤ a
.

Note that this flow is continuous and satisfies the no-slip boundary conditions. It is visualized in

figure 2.1. One may think of the inside of the sphere as consisting of fluid which is moving with

the same velocity as the sphere’s center and shell.

Dynamics of the sphere’s center position Considering the translational dynamics of the

sphere’s center~r1 instead of the fluid, the Stokes law 2.15 replaces Newton’s second law (a second

order, ordinary differential equation)

(2.18) md2
t~r = ~F

with the first order, ordinary differential equation

(2.19) 0=−γdt~r+~F .

Hence the widely used linear friction force −γ~v is not a heuristic term, but is as exact as the

Stokes equation.

Faxén’s law So far we considered a sphere in a fluid which would be at rest without the force

acting on that sphere. Now we are going to consider the same sphere embedded in a given velocity

field~v0(~r) (which satisfies the creeping flow equations) without specifying what this velocity field

is caused by. Due to the linearity of the Stokes equation, we now have

(2.20) ~v(~r)=~v0(~r)+ 1
4πa2

∫
∂S′

1

(
T(~r−~r′) ·~F1

)
dA′ .

This leads to modified no-slip boundary conditions at the sphere’s surface, reading

(2.21) ~v1 +~ω1 × (~r−~r1)=~v(~r)=~v0(~r)+ 1
4πa2

∫
∂S′

1

(
T(~r−~r′) ·~F1

)
dA′ where~r ∈ ∂S1 .

Again, we integrate the boundary conditions over ∂S1, but now we study how the new term~v0

behaves inside the integral.
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Expanding ~v0 as a Taylor series, terms of odd order do not contribute to the integral due to

the spherical symmetry of ∂S. It can furthermore be shown in a lengthy but straightforward

calculation (see pages 254–255 in [88]) which we omit here, that terms of even order higher than

two vanish for all flow fields obeying the creeping flow equations.

Keeping only the zeroth and second order term, we can hence update Stokes law (equation 2.15)

with two new terms introduced by the given velocity field~v0 as follows:

(2.22) ~v1 = 1
γ
~F1 +

(
1+ a2

6
~∇2

)
~r=~r1

~v0 .

This equation is called Faxén’s law for translational motion. For~v0 = 0 it immediately reduces to

the Stokes law. We treat~v0 and the force ~F1 acting on the sphere as given and use Faxén’s law to

determine the sphere’s resulting velocity~v1. Naturally, Faxén’s law can also be used the other

way around – it determines ~F1 when~v1 is known.

Figure 2.1: The velocity field (red arrows) around a unit sphere (origin) moving with unit
speed in x-direction as given by equation 2.17. The background color shows its absolute
value in terms of the sphere’s velocity. The closed lines show contour lines of the velocity
field’s absolute value. At the inner green line, the velocity has dropped to 50%, and at the
outer black line it has dropped to 25%. A second sphere (bottom right) is embedded in the
velocity field caused by the first sphere. It moves along with the fluid flow around it – this
effect is called a “hydrodynamic interaction”. Its velocity can be quantified using Faxén’s law
(equation 2.22), or equivalently via the Rotne-Prager matrices (equation 2.29). The velocities
of both spheres are indicated with black arrows at their respective centers. The lengths of
these arrows have the correct ratio, but are not in the proper scale with the fluid flow for
visual purposes. The fluid velocity equals that of the first sphere at its boundary.
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Two spheres in a Stokes flow Let us now consider two spheres S1 and S2 with radii a1 and

a2, center points~r1 and~r2, translational velocities~v1 and~v2, rotational velocities ~ω1 and ~ω2, and

forces ~F1 and ~F2 acting on them in a Stokes flow which would be at rest in the absence of the

spheres (see figure 2.1). The no-slip boundary conditions for the fluid flow~v(~r) now read

(2.23)
~v1 +~ω1 × (~r−~r1)=~v(~r) where ~r ∈ ∂S1

and ~v2 +~ω2 × (~r−~r2)=~v(~r) where ~r ∈ ∂S2

and the force density is given by

(2.24) ~f (~r)= 1
4πa1

δ(|~r−~r1|−a1)~F1 + 1
4πa2

δ(|~r−~r2|−a2)~F2 .

Even for only two spheres of equal size, this boundary value problem for the creeping flow

equations does not have a closed analytical solution. The solution can be constructed, however,

using an iterative method which is called the method of reflections. It can be found e.g. in chapter

5.12 of the textbook by Dhont [88], but exceeds the scope of this thesis. The method of reflections

is in principle straightforward for two spheres. For three spheres, only the leading order terms in

a series expansion of the correct flow field are known, and for more accuracy or more spheres

one needs to retreat to expensive numerics. This makes the method of reflections impractical for

most applications, including ours, which is why we do not discuss it in detail1. Instead, we find

an approximate solution to the given boundary value problem.

2.1.5 Rotne-Prager approximation

Let us now consider N spheres numbered k = 1, . . . , N. Even in this case, we can expect a linear

relation between the spheres’ velocities and the forces acting on them due to the linearity of the

creeping flow equations. Defining the collection of velocities ~V := (~v1, . . . ,~vN )T and the collection

of forces ~F analogously, one may therefore write

(2.25)

~V =µ ·~F

~vi =
N∑

j=1
µi j ·~F j .

This is the defining equation for the 3N ×3N-dimensional mobility matrix µ, which consists of

N2 3×3-blocks µi j (see also equation 2.30).

1In a nutshell, one finds the required solution~v(~r) of the boundary value problem 2.23 as a series expansion. The
first term in this series is the velocity field ~v(0) that sphere i causes in absence of sphere j, see equation 2.17. ~v(0)

obeys the boundary conditions on sphere i. Next, one embeds sphere j in the flow field ~v(0) using Faxén’s law and
determines the additional flow field~v(1) sphere j causes on top of~v(0).~v(1) obeys the boundary conditions on sphere j.
This additional flow field is then used to consider sphere i again in order to calculate a flow field~v(2) which is more
accurate than~v0 and obeys the boundary conditions on sphere i. Next, sphere j is considered again in the flow field
~v(2) and so forth.
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Note that due to the Stokes law, the “self mobility matrix" of a sphere with radius a is already

known to us: it is µii = γ−113×3. The off-diagonal matrices µi j describe how the velocity of sphere

i is affected by the force acting on sphere j, which is called a hydrodynamic interaction. Without

hydrodynamic interactions, µ would therefore be diagonal.

The most commonly used approximation that enables us to calculate closed analytical expressions

for all mobility matrices is called the Rotne-Prager approximation [52, 53]. Let us consider the

mobility matrix µi j, i.e. the influence the force ~F j acting on sphere j has on the velocity ~vi of

sphere i. This situation is visualized in figure 2.1 – here, we are calculating the bottom right

sphere’s velocity. The Rotne-Prager approximation is twofold:

1. We ignore all other spheres which are neither i nor j.

2. We assume that sphere i experiences the flow field which sphere j would cause in the

absence of sphere i.

Using these assumptions, the situation at hand is the following: Sphere j experiences a force

acting on it and thus causes the velocity field~v( j)(~r) given by equation 2.17. This velocity field

solves the creeping flow equations and fulfills the boundary conditions on sphere j. Next we

embed sphere i in this velocity field and immediately make use of Faxén’s law (equation 2.22)

to find its velocity~vi. This procedure yields only an approximation to the true solution for two

spheres because the flow field~v( j)(~r) ignores the boundary conditions on sphere i.

Within the Rotne-Prager approximation, the velocity of sphere i due to the force on sphere j is

thus

(2.26)

~vi =
(
1+ a2

i

6
~∇2

)
~r=~r i

~v( j)(~r)

= 1
4πa2

i

∫
∂Si

~v( j)(~r)dA

= 1
4πa2

i

∫
∂Si

∫
∂S j

T(~r−~r′) 1
4πa2

j

~F jdA′dA .

Comparing this with equation 2.25, we read off that

(2.27) µi j =
1

4πa2
i

1
4πa2

j

∫
∂Si

∫
∂S j

T(~r−~r′)dAdA′ ,

which is invariant under exchanging i and j:

(2.28) µi j =µ ji .

From a physical perspective, this symmetry is remarkable: Pulling on sphere i affects sphere j in

the same way as pulling with the same force on sphere j affects sphere i.
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From a mathematical perspective, we have at hand pairwise interactions of surface elements on

the two spheres, which are mediated via the underlying symmetric Green’s function T(~x)=T(−~x).

The expressions above are also valid for overlapping spheres: For physical intuition, note that

the flow field ~v( j)(~r) (according to equation 2.17) exists even inside of sphere j where it has

the constant flow velocity~v j. Sphere i is embedded in this field at an arbitrary position, which

requires a case distinction upon solving the integrals above, depending on whether or not parts

of ∂Si lie within S j.

The double integrals can be solved analytically, which we do not demonstrate here for obvious

reasons – they can be found in references [54, 55] for potentially overlapping and different-sized

spheres. Defining~r i j =~r i −~r j and r i j = |~r i j|, the final expressions we require in this thesis read

(2.29)

µi j =



1
8πηr i j

·
[(

1+
a2

i +a2
j

3r2
i j

)
13×3 +

(
1−

a2
i +a2

j

r2
i j

)
~r i j ·~rT

i j

r2
i j

]
if ai +a j < r i j

1
6πηaia j

·
16r3

i j(ai +a j)−
(
∆a2 +3r2

i j
)2

32r3
i j

13×3 +
3
(
∆a2 − r2

i j
)2

32r3
i j

~r i j ·~rT
i j

r2
i j

 if ∆a < r i j ≤ ai +a j

1
6πηa>

13×3 if r i j ≤∆a ,

where a< (a>) is the smaller (larger) value among ai and a j, and ∆a = a>−a<. Note that only

the first line is required for non-overlapping spheres and that the expressions further simplify for

equally sized spheres. As may be expected, µi j depends only on the vector~r i j. For large distances

r i j between the two spheres (or for a → 0) it converges towards the Oseen-tensor. This makes

sense from a physical perspective as the two spheres will then perceive each other as mere points.

In fact, the Rotne-Prager mobility matrices can be regarded as a higher-order correction to the

Oseen-tensor, taking into account the beads’ finite sizes. As a side note, the method of reflections

we mentioned earlier delivers further correction terms which are of higher order in a/r i j than

the mobility matrices we are using. However, to my knowledge, these higher order terms are not

known in closed form for different sized, overlapping spheres.

For later use in this thesis, let us define the 3N ×3N-dimensional diffusion matrix D which

consists of N2 3×3-blocks Di j = Tµi j where T is the surrounding fluid’s temperature (not the

Oseen matrix!):

(2.30) D= T ·


µ11 µ12 . . . µ1N

µ21 µ22
...

...
. . .

µN1 . . . µNN

 .

Note that D is symmetric.
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2.1.6 Hydrodynamics near a wall

So far, we have considered hydrodynamics in an infinite medium (bulk). In some applications,

the presence of a wall is relevant, e.g. when a molecule is bound to a surface (see section 5.4,

page 133). All concepts we have shown are formally universal. The only changes required when

a wall is present is to take additional no-slip boundary conditions at the wall into account. In

particular, these boundary conditions alter the Green’s functions T(~r) and ~g(~r) of the creeping

flow equations. The Green’s function Twall(~r) for the velocity field near a wall is called the Blake

tensor [93]. For physical intuition, figure 2.2 shows a sketch of the velocity caused by a sphere

moving away from a wall.

Figure 2.2: A 2-dimensional cross section of the flow field near a wall when a sphere is
moving away from it. This figure was kindly provided by Rajesh Singh and published in [94].

The Rotne-Prager approximation next to a wall is considered in references [94–96], and the

mobility matrices read

(2.31) µ(wall)
i j (~r i,~r j)=

µ
self
i (zi) if i = j

µi j(~r i −~r j)−µi j(~r i −~̄r j)+ µ̂(~r i,~r j) if i 6= j .
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Here it is assumed that the wall lies in the x-y-plane and that the spheres do not overlap with the

wall. Moreover, the mirrored coordinate ~̄r j = (x j, yj,−z j)T and the matrix µ̂(~r i,~r j) were defined as

(2.32)

µ̂α,α = 1
4πη

(
−zi z j

R3

(
1−3

R2
α

R2

)
+ a2R2

3

R5

(
1−5

R2
α

R2

))
,

µ̂α,β =
1

4πη

(
3zi z jRαRβ

R5 −5a2 RαRβR2
3

R7

)
,

µ̂α,3 =
1

4πη

(
z jRα

R3

(
1−3

ziR3

R2

)
− a2RαR3

R5

(
2−5

R2
3

R2

))
,

µ̂3,α = 1
4πη

(
z jRα

R3

(
1+3

ziR3

R2

)
−5

a2RαR3
3

R7

)

and µ̂3,3 =
1

4πη

(
zi z j

R3

(
1−3

R2
3

R2

)
− a2R2

3

R5

(
3−5

R2
z

R2

))

where ~R =~r i −~̄r j, R = |~R| and α,β ∈ {1,2}. The self-mobility matrices read

(2.33) µself
i =


µ∥(zi) 0 0

0 µ∥(zi) 0

0 0 µ⊥(zi)

 ,

where

(2.34)
µ∥ =

(
1− 9a

16z
+ 1

8

(a
z

)3 +O
(a

z

)5
)

/γ

and µ⊥ =
(
1− 9a

8z
+ 1

2

(a
z

)3 +O
(a

z

)5
)

/γ .

We observe that in the presence of a wall, the mobility matrices no longer depend only on the

vector~r i −~r j, but on both~r i and~r j individually, which makes sense, as information where the

spheres are placed in relation to the wall is required. Even the self-mobility matrices require the

distance of the sphere from the surface and show that a single sphere’s movement is altered next

to a wall due to the additional no-slip boundary condition.
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2.2 Statistical mechanics

Statistical mechanics is the application of probability theory and the theory of stochastic processes

to physical systems. We make use of it to derive the forces acting on the beads considered in the

previous section and thereby arrive at their stochastic equation of motion, which is called the

Langevin equation. In contrast to quantum mechanics, the reason why randomness plays a role in

statistical mechanics is not because it is an inherent property of the physical processes. Its origin

is instead a result of our practical viewpoint; although we have an enormous number of degrees

of freedom at hand, we explicitly study only a few of them (the “system”) and choose to treat the

remaining ones (the “heat bath”) in a statistical manner only. The laws of statistics are, however,

powerful and universal, and their implications on physics are vast. As any physical theory

does, statistical mechanics requires axioms from which to start our calculations. A hallmark of

statistical mechanics is that one can view and understand it from many different viewpoints

which in the end all turn out to be equivalent. Often, there is no consensus if statement A should

be the axiom from which statement B follows, or vice versa – in a sense it is a matter of taste.

For instance, one can equivalently claim that all microstates in a closed system with fixed energy

must be equally probable, and then deduce that this probability distribution maximizes entropy,

or one can use entropy maximization as an axiom and then deduce that all states are equally

probable. The same holds true for the Langevin equation – it can be derived from the Fokker-

Planck equation; or it can be constructed in its own right and the Fokker-Planck equation be

derived from it. In the following, we first consider the thermodynamics of the canonical ensemble,

then derive the Fokker-Planck equation by combining thermodynamics with hydrodynamics and

probability theory, and finally deduce the Langevin equation from it.

Many introductory level textbooks on thermodynamics and statistical mechanics are available.

For the more advanced topics treated here, the textbooks by Risken [97], Gardiner [1], van

Kampen [98] and Mazo [99] can be recommended. Unless stated otherwise, I have mainly

followed the reasoning found in the lecture script by Garcia [100] and Schön [101].

2.2.1 Physics of the canonical ensemble

Let us consider a system whose state is represented by the abstract variables~x ∈Ω embedded

in a heat bath. Imagine, for example, a discrete chain swimming in water at finite temperature

T, such that Ω is the set of all 3N-dimensional chain conformations (phase space). The system

also possesses an energy function E(~x) (e.g. reflecting its elastic properties). This situation is

known in thermodynamics as the canonical ensemble: the system of interest is coupled to a heat

bath and is allowed to exchange heat with it, making its total energy and momentum fluctuating

rather than preserved quantities.
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When the microstate of a system is prepared to be ~x0 at time zero, all information about it is

initially available: the probability distribution for~x is a delta function: p(~x,0)= δ(~x−~x0). For times

t > 0, the system’s current microstate~x is no longer known since its evolution is stochastic. We

imagine an ensemble of trajectories~x(t): A set of infinitely many independent realizations of the

experiment obeying the initial condition. The trajectories in the ensemble independently branch

out from the initial condition, and to an outside observer who went for lunch after preparing

the initial condition, the particular stochastic trajectory the system has chosen is unknown.

Therefore, its current state can then only be quantified in terms of a probability distribution

p(~x, t). This distribution is best understood as a histogram over all microstates in the ensemble at

time t. For intuition, compare figures 2.4 (page 44) which shows trajectories in an ensemble, and

figure 2.3 (page 40) which shows the corresponding probability distributions at different times.

Entropy We start our calculations with the following axiom: Sufficiently long after knowledge

about the system’s initial state is available, p(~x) has relaxed towards a stationary state which

has maximum uncertainty S[p]. This situation is referred to as thermal equilibrium. Thanks

to the groundbreaking work of Claude Shannon [102], the founder of information theory, the

somewhat vague concept of uncertainty can be mathematically quantified by the probability

distribution’s entropy S. It can in fact be shown (see e.g. pages 68–71 in [103]) that the functional

S is uniquely determined from the three axioms that (i) S be a real, continuous functional of p, (ii)

if p is constant, say pi = 1
N

, then S be an increasing function of N, and (iii) S be additive under

groupings of the states~x in Ω. The third axiom makes sure that the uncertainties on distinct

regions in Ω add up when they are treated as a whole: uncertainties about independent systems

must be additive. Up to an arbitrary prefactor which we set to 1, the only function with these

properties is known as entropy, and it reads

(2.35) S[p]=−〈ln p〉 =−
∫
Ω

p(~x) lnp(~x)d~x .

Note that contrary to entropy in conventional thermodynamics, this entropy is dimensionless,

which corresponds to setting Boltzmann’s constant to kB = 1. This definition of entropy is also

known as the Gibbs entropy: p(~x) arises from an ensemble rather than from a time average.

Technically speaking, Shannon’s axioms above only lead to a discrete version (“Shannon entropy”)

of the Gibbs entropy. Taking its continuum limit is not trivial, and requires singling out a set

of variables~x with respect to which p(~x) shall be maximally ignorant. For instance, a uniform

distribution on a spherical surface2 is constant with respect to the variables (φ,cosθ) but not with

respect to (φ,θ). We must thus keep in mind that~x in our entropy definition represents Cartesian

coordinates. For technical details on this issue, we refer to chapters 4.5 and 5.2 in reference [103].

2For a uniform distribution on the surface of a unit sphere, surface elements carry a probability ∝ |dA| =
|sinθdθdφ| = |d(cosθ)dφ|. Therefore, cosθ and not θ is uniformly distributed.
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Boltzmann distribution At the same time as maximizing its entropy, it is required that

p fulfills two constraints. Firstly, any probability distribution must be normalized such that∫
Ω p(~x)d~x = 1. Secondly, the average energy E of the chain cannot be unbounded, but the heat

bath dictates some fixed average value U = 〈E〉 which is called its inner energy. Let us now

find the function p(~x) which maximizes its entropy while fulfilling these two constraints. The

variational problem at hand can be solved by introducing two scalar Lagrangian multipliers α

and β representing the constraints, and solving

(2.36)

0 != δ
(
S[p]−α ·

(∫
Ω

p(~x)d~x−1
)
−β ·

(∫
Ω

p(~x)E(~x)d~x−U
))

=
∫
Ω
δ

(−p ln p−αp−βpE
)
d~x

=
∫
Ω
δp · (− ln p−1−α−βE

)
d~x .

Setting the integrand to zero yields

(2.37)
0=− ln p−1−α−βE

⇔ p(~x)= 1
Z

exp
(−βE

)
where we redefined Z−1 = exp(−α−1). Z is called the partition sum and plays the role of a

normalization factor of p. It can hence be determined from the normalization constraint and is

given by

(2.38) Z =
∫
Ω

exp
(−βE

)
d~x .

The second Lagrangian multiplier, β, can be interpreted as follows. Since the argument of the

exponential function must be dimensionless, β−1 must be an energy. It determines the energy

scale on which the probability to find the system in a certain state~x decays. For β→∞, states

with more energy than the minimum energy the system can take on do not carry any statistical

weight. For β→ 0, all states carry the same statistical weight, regardless of their energy. At the

same time, the system’s inner energy U can be tuned by changing β because

(2.39) U ∝
∫
Ω

E ·exp
(−βE

)
d~x .

It would be perfectly reasonable to treat β as a free parameter characterizing the heat bath

that the system is embedded in. It is more intuitive, however, to deal with the energy scale β−1

instead, which is better known as the temperature

(2.40) T =β−1 .

The fact that the temperature is an energy is a result of our convention that kB = 1.
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The probability distribution therefore takes on the simple form

(2.41) p(~x)= 1
Z

exp
(
−E(~x)

T

)
,

which is called the Boltzmann distribution. Note that it is entirely characterized by the system’s

energy landscape E and the heat bath’s temperature T – no kinematic details enter it. For

instance, whether or not all vertices (beads) of the chain have identical friction coefficients and

whether or not hydrodynamic interactions are considered for the chain’s dynamics does not alter

the Boltzmann distribution, which is quite remarkable. The Boltzmann distribution has two

further properties which are sometimes even used to derive it in a heuristic manner. Firstly,

due to being normalized, it does not change when a constant is added to the energy function

E′(~r) = E(~r)+ const., as it should not because only the gradients of potential functions have

physical relevance. Secondly, when two non-interacting physical systems with energy functions

E1(~x1) and E2(~x2) are treated as one global system with E = E1 + E2, then the probability

distribution for the global system factorizes ( p(~x1,~x2)∝ exp(−E1/T)·exp(−E2/T) ), which correctly

demonstrates the statistical independence of the two subsystem’s states.

Another side note is that the celebrated equipartition theorem directly follows from the Boltzmann

distribution: Consider any variable q which enters the system’s energy function in a quadratic

manner (e.g. a harmonic elastic potential, or a particle’s velocity) such that E = c
2
· q2. Then its

probability distribution is the Gaussian

(2.42) p(q)∝ exp
(
− cq2

2T

)
,

and we can immediately read off its variance to be

(2.43) 〈q2〉 = T
c

.

This gives the average energy in q’s degree of freedom:

(2.44) U = 〈E〉 = 〈 c
2

q2〉 = T
2

.

This is yet another perspective which allows us to interpret the Lagrangian multiplier we named

temperature as an energy scale relevant to the physical system.

Free energy From equation 2.36 we observe that, within the space of all normalized probability

distributions, the Boltzmann distribution minimizes the functional

(2.45) F =U −TS ,

which is called the (Helmholtz) free energy. It is the minimized thermodynamic potential in the

canonical ensemble.
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The distinction between entropy maximization and free energy minimization is entirely formal:

the latter considers the system’s inner energy U as part of the extremized functional, while the

former uses its value solely as a mathematical constraint. Both perspectives consider the normal-

ization of p as a mathematical constraint. Taking the viewpoint of free energy minimization, some

physical insight is gained: We have at hand a balancing act between two contradicting extreme

cases: minimizing energy (causing a sharply peaked probability distribution) and maximizing

entropy (causing a uniform probability distribution), with the temperature acting as a weighting

factor dictating which of these two extremes enjoys higher priority.

Inserting the Boltzmann distribution into the definition of entropy (equation 2.35) yields

(2.46)

S =−
∫
Ω

p lnpd~x

=−
∫
Ω

p ln
(

1
Z

exp
(
−E

T

))
d~x

=−
∫
Ω

p ·
(
− ln Z− E

T

)
d~x

= ln Z+ U
T

,

which (upon comparison with equation 2.45) shows us that the system’s free energy is given by

(2.47) F =−T ln Z .

Finally, we consider a subset ΩA of Ω: a mesostate A. For example, if Ω is the set of all confor-

mations (microstates) of a polymer, then ΩA (the set of all open states) could be the set of all

conformations for which the end-to-end distance of the polymer exceeds some given value.

The total probability to find the system in ΩA is given by

(2.48) p(A)=
∫
ΩA

pd~x = 1
Z

∫
ΩA

exp
(
−E

T

)
d~x =:

ZA

Z
.

Thus, the partition function Z denotes the total probability of the set of microstates~x over which

p was integrated. In analogy to the probability of a microstate, which is given by the Boltzmann

distribution with that microstate’s energy in the exponent, we may therefore write

(2.49) p(A)= 1
Z

exp
(
−FA

T

)
where FA = −T ln ZA is the free energy of the mesostate A. The relative probabilities of mi-

crostates~x1 and~x2, and of mesostates A and B are therefore given by Boltzmann factors

(2.50)

p(~x1)
p(~x2)

= exp
(
−E(~x1)−E(~x2)

T

)
and

p(A)
p(B)

= exp
(
−FA −FB

T

)
.

In summary, one may hence interpret the free energy as the effective energy associated with

a mesostate (or Ω itself) rather than a microstate. The probability distribution for microstates

hidden within that mesostate minimizes its free energy.
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Detailed balance Note that, by construction, all the arguments above include no mention

of time. That is because we just studied statistical properties of a physical system in thermal

equilibrium, which is well known as classical thermodynamics. In my opinion, this terminology is

very unfortunate as thermodynamics explicitly does not concern itself with dynamics. We must

bear in mind, however, that even in thermal equilibrium, a physical system constantly evolves

over time. It changes its microstate~x, sampling the Boltzmann distribution as its time average.

While the statistical properties of the system are easily found – only the energy function E(~x) is

required – examining its dynamical properties (anything requiring a notion of time) is far from

trivial. Consider, for example, the fact that the sampled probability distribution of a sufficiently

long trajectory~x(t) does not change when it is sped up or slowed down, or when it is cut into parts

which are then reassembled such that~x(t) may perform discontinuous jumps.

To study dynamics in thermal equilibrium, we require another physical axiom other than free

energy minimization (determining all statistical properties), and this is called the detailed

balance condition. It states that a sufficiently long time after~x was prepared to obey some known

initial condition, the trajectories~x(t) obey time-reversal symmetry. For instance, this means that

there is no way of telling if a video of a polymer chain in thermal equilibrium is played forward or

backward. This is a stronger requirement than stating that the probability distribution p(~x) be

stationary. Consider for example a three-state system Ω= {x1, x2, x3} whose dynamics cyclically

move from states x1 → x2 → x3 → x1 → x2 → . . . with unit speed – these trajectories sample a

stationary distribution but do not obey time reversal symmetric. The detailed balance condition

must hold for any two states xi and x j:

(2.51)

probability flux(xi → x j)= probability flux(x j → xi)

p(xi) ·k(xi, x j)= p(x j) ·k(x j, xi)

⇔ k(xi, x j)
k(x j, xi)

= exp
(
−E(~x j)−E(~xi)

T

)
where k(p, q) is the transition rate per time from state p to state q.

2.2.2 Basic notions of probability theory

This section presents textbook knowledge about probability theory which can also be found in e.g.

the textbook by Gardiner [1].

Notation We consider the temporal evolution of a random variable X which takes on values

x(t) ∈Ω at times t > 0, and we use the convention that 0= t0 ≤ t1 ≤ t2 ≤ . . . . The set Ω is called the

phase space and the collection of the values {x(t)}t>0 is called a trajectory, which is one particular

realization of the stochastic process X (t).
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An infinite number of independent trajectories is called an ensemble of X , and histogramming its

values at any given time t yields the probability distribution p1(x, t). If all trajectories start at

X (0)= x0, the histogram yields p1|1(x, t|x0,0). More formally, pn(A) denotes the unconditioned

probability distribution for a number of events A = {A1, . . . , An} to occur. Each single event

A i has the form (xi, ti), meaning that X takes on the value xi at time ti. The conditional

probability distribution pn|m for the n events A i (i = 1, . . . ,n) to occur, given that m events

B := {B j} ( j = 1, . . . ,m) occurred in the past, is defined as

(2.52) pn|m(A|B)= pn+m(A;B)
pm(B)

.

For instance, p1|2(x3, t3|x2, t2; x1, t1) is the probability (distribution) that X (t3) = x3, given that

first X (t1)= x1 and then X (t2)= x2. Equation 2.52 also holds true when all probabilities appearing

in it are additionally conditioned on another set of even earlier events C := {C}k (k ∈N ):

(2.53) pn|m+k(A|B;C)= pn+m|k(A;B|C)
pm|k(B|C)

.

For readability in the following sections, we drop all subscripts on the functions pn and pn|m,

instead simply writing p for all of them, even though technically speaking they are different

mathematical functions. The reader is prompted to distinguish those functions by their arguments

instead of by their name.

Consistency condition As a starting point for our calculations we choose the consistency

condition which holds true for any probability distribution and time t1, and is used as an axiom:

(2.54)

p(x2, t2)=
∫

p(x1, t1; x2, t2)dx1

2.52=
∫

p(x2, t2|x1, t1) p(x1, t1)dx1

and p(x2, t2|x0, t0)=
∫

p(x2, t2; x1, t1|x0, t0)dx1

2.53=
∫

p(x2, t2|x1, t1; x0, t0) p(x1, t1|x0, t0)dx1 .

As the name indicates, these statements simply formalize logical consistency: The probability to

end up at some final state equals the sum of the probabilities for all paths ending there, even

when conditioned on an initial state in the past.

Markov processes Throughout this thesis, we focus on so-called Markov processes. Physically

speaking, this means that the current state of a system contains all information required to make

best-possible predictions about its future. The history of past events does not allow for more

accurate predictions. Mathematically speaking, the conditional probability fulfills the Markov

condition:

(2.55) p(xN , tN |xN−1, tN−1; xN−2, tN−2; . . . )= p(xN , tN |xN−1, tN−1) .
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Chapman Kolmogorov equation Pairing the Markov condition with the consistency condi-

tion, which holds for all processes, Markovian or not, leads to the Chapman-Kolmogorov equation

(CKE):

(2.56)
p(x2, t2|x0, t0) 2.54=

∫
p(x2, t2|x1, t1; x0, t0) p(x1, t1|x0, t0)dx1

2.55=
∫

p(x2, t2|x1, t1) p(x1, t1|x0, t0)dx1 .

The CKE holds true only for Markov processes. Note that the first part of equation 2.54 looks

almost identical to the CKE but holds true for any process. The difference is that the CKE

considers conditional probabilities.

Master equation We now derive the master equation: the partial integro-differential equation

which describes the temporal change of the probability distribution p(x, t|x0, t0) in the phase

space of a Markov process. Before we start, let us consider the conditional probability to be at

some point x at time t+τ after starting at y at time t:

(2.57) p(x, t+τ|y, t)= τk(y, x)+δ(x− y) ·
[
1−τ

∫
k(y, x′)dx′

]
+O (τ2) .

This is a simple balance equation stating that probability flows with a rate k(y, x) from y to

x (which defines k as a transition rate of probability per time, see also eq. 2.51). The second

term states that the amount of probability which is still left in y after a time τ equals 1 minus

the total outflux. It further takes care of the proper τ→ 0 behavior, as well as normalization

of p(x, t+τ|y, t). For non-infinitesimal times τ, probability may flow back from x to y. This is

a second order (∝ τ2) effect, however, which is all we need to know about it. We remark that

equation 2.57 can also be rigorously derived from the CKE (see e.g. chapter 4 in reference [98]).

Next, we calculate the partial time derivative of the probability distribution at some point x:

(2.58)

∂t p(x, t|x0, t0)= lim
τ→0

p(x, t+τ|x0, t0)− p(x, t|x0, t0)
τ

2.56= lim
τ→0

1
τ

∫
[p(x, t+τ|y, t)p(y, t|x0, t0)− p(x, t|y, t) p(y, t|x0, t0)]dy

2.57= lim
τ→0

1
τ

∫ [
p(y, t|x0, t0) ·

(
τk(y, x)+δ(x− y) ·

[
1−τ

∫
k(y, x′)dx′

])
− p(y, t|x0, t0) ·δ(x− y)

]
dy

= lim
τ→0

1
τ

∫
p(y, t|x0, t0) ·

(
τk(y, x)−δ(x− y) ·τ ·

∫
k(y, x′)dx′

)
dy

= lim
τ→0

1
τ

∫
τ p(y, t|x0, t0)k(y, x)dy − lim

τ→0

1
τ

[
τ p(x, t|x0, t0)

∫
k(x, x′)dx′

]
dy

=
∫

[p(y, t|x0, t0)k(y, x)− p(x, t|x0, t0)k(x, y)]dy .

This is the famous master equation. It is easily interpreted: The probability at some point x

changes according to the balance between total influx and outflux from all other states y.

Note that setting the integrand above to zero corresponds to the detailed balance condition.
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2.2.3 Kramers-Moyal expansion

The Master-equation is a partial integro-differential equation which is often difficult to handle3.

As will now be demonstrated, it is possible to convert it into an equivalent partial differential

equation (PDE). To this end we change the way we denote the transition rates k: Instead of

having the initial and final states of the transition as arguments, the initial state and increment

(step size) are chosen. Hence we define said increment ∆ and the transition rate w(x,∆) from x to

another state at a distance ∆ from x as

(2.59)
∆ := y− x

and w(x,∆)= w(x, y− x) := k(x, y)= k(x,∆+ x) .

Inserting these definitions into the Master equation 2.58 (and dropping the condition (x0, t0) for

readability) yields

(2.60)

∂t p(x, t)=
∫

[w(y, x− y) p(y, t)−w(x,∆) p(x, t)]dy

=
∫

[w(∆+ x,−∆) p(∆+ x, t)−w(x,∆) p(x, t)]d∆

=
∫

w(∆+ x,−∆) p(∆+ x, t)d∆ − p(x, t)
∫

w(x,∆)d∆

=
∫

w(x−∆,∆) p(x−∆, t)d∆ − p(x, t)
∫

w(x,∆)d∆ ,

where in the last line, the sign of ∆ was changed assuming infinite integration limits. We now

expand the integrand of the first integral around x and find

(2.61)

∂t p(x, t)=
∫ ∞∑

n=1

(−∆)n

n!
∂n

∂xn [w(x,∆) p(x, t)]d∆

=
∞∑

n=1

(−1)n

n!
∂n

∂xn

[
p(x, t)

∫
∆n w(x,∆)d∆

]
=

∞∑
n=1

(−1)n

n!
∂n

∂xn

[
p(x, t)α(n)(x)

]

where the zero-order term of the Taylor expansion cancelled out the second integral, and we have

introduced the jump moments

(2.62) α(n)(x) :=
∫
∆n w(x,∆)d∆ .

3Due to its linearity, the Master equation is commonly solved by using characteristic functions.
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An alternative expression for the jump moments can be obtained as follows. For n ∈N, we define

(2.63)

Ψ(n)(x,τ) := 〈
[X (t+τ)− X (t)]n 〉 |X (t)=x

=
∫

(y− x)n p(y, t+τ|x, t)dy

2.57=
∫

(y− x)n
[
τk(y, x)+δ(x− y) ·

[
1−τ

∫
k(y, x′)dx′

]
+ O (τ2)

]
dy

= τ
∫

(y− x)n k(y, x)dy+O (τ2)

= τ
∫
∆n w(x,∆)d∆+O (τ2)

= τα(n)(x) + O (τ2)

where, after line 3, n ≥ 1 was assumed. Hence we found

(2.64) Ψ(n)(x,τ)=
1 for n = 0

α(n)(x)τ + O (τ2) for n ≥ 1

and read off

(2.65)
α(n)(x)= lim

τ→0

Ψn(x,τ)
τ

= lim
τ→0

1
τ

〈
[X (t+τ)− X (t)]n 〉 |X (t)=x ,

which then holds true only for n ≥ 1. So far, we have assumed that x, y and ∆ are scalars. When

they are not, the Master equation does not formally change, but its Kramers-Moyal expansion

(equation 2.61) must be performed in N dimensions where~x = (x1, . . . , xN ) and ~∆= (∆1, . . . ,∆N ).

This is straightforward and will not be done here explicitly. The formerly scalar n-th jump

moment α(n)(x) turns into the n-dimensional, symmetric tensor

(2.66)

α(n)
i1 ... in

(~x)=
∫

. . .
∫
∆i1 . . .∆in w(~x,~∆)d∆i1 . . .d∆in

= lim
τ→0

1
τ

〈
n∏

k=1
X ik (t+τ)− X ik (t)

〉
|X (t)=~x

where the indices i1, . . . , in ∈ {1, . . . , N} point out one of its elements.

No approximations were made above, and hence equation 2.61 is equivalent to equation 2.58

itself. Why then use the Kramers-Moyal expansion of the Master equation? Firstly, it is a regular

PDE, while the master equation is an integro-differential equation. Secondly, one may in some

cases pre-calculate the jump moments analytically and thereby simplify solving the full PDE.

Thirdly, one may truncate the expansion after an appropriate number of terms and thereby

simplify the problem at hand systematically.

Note that we can now identify a Markov process not only by its transition rates k(x, y) (Master

equation) or jump moments α(n)(x) (Kramers-Moyal expansion), but also by statistical properties

of the underlying random variable’s trajectories X (t) (equation 2.65).
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2.2.4 The Fokker-Planck equation

The theorem of Pawula [104] states that the Kramer-Moyal expansion ends after either one

term, two terms, or never. We proof this theorem in appendix B. It can further be shown that

non-vanishing higher-order (k > 2) jump moments are linked to discontinuous processes (jump-

processes) [105]. In the N-dimensional physical situations which are relevant in the scope of this

thesis (continuous diffusion processes), the jump moments are α(k) = 0 for k ≥ 3. This turns the

Master equation into the Fokker-Planck equation:

(2.67) ∂t p(~x, t)=−∂k
[

p(~x, t)α(1)
k (~x)

] + 1
2
∂i∂ j

[
p(~x, t)α(2)

i j (~x)
]

.

Due to Pawula’s theorem, the Fokker-Planck equation is exact and not an approximation. An

equivalent formulation is found via the product rule

(2.68)

∂t p =−∂k
[

pα(1)
k

] + 1
2
∂i∂ j

[
α(2)

i j p
]

=−∂k
[

pα(1)
k

] + 1
2
∂i

[
α(2)

i j ∂ j p
] + 1

2
∂i

[
p∂ jα

(2)
i j

]
=−∂k

[
p (α(1)

k −∂ jα
(2)
k j )

] + 1
2
∂i

[
α(2)

i j ∂ j p
]

=−∂k
[

Ak p
] + ∂i

[
D i j ∂ j p

]
where we have defined the drift vector and the diffusion matrix as

(2.69)
Ak(~x) :=α(1)

k (~x)−∂ jα
(2)
k j (~x)

and D i j(~x) := 1
2
α(2)

i j (~x) .

By further denoting the probability current as

(2.70)
~j(~x) :=− ~A p +D~∇p

= (−~A+D ·~∇ ln p) · p ,

the Fokker-Planck equation takes on the simple form

(2.71) ∂t p =−~∇·
(
(−~A+D ·~∇ ln p) · p

)
=−~∇·~j ,

which is a continuity equation for the total probability, unsurprisingly confirming that it is a

conserved quantity.
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The physical Fokker-Planck equation We now derive the Fokker-Planck equation for an

ensemble of polymer chains from a physical viewpoint by implementing (i) overdamped dynamics

with hydrodynamic interactions and (ii) free energy minimization on ensemble level. The probabil-

ity distribution defined on Ω, the set of all chain conformations, must obey a continuity equation

of the form of equation 2.71. Denoting the collection of velocities as~v = dt~x, the probability current

can be written as

(2.72) ~j = p ·~v .

As we have established in the section on hydrodynamics, ~v has a linear relationship with the

collection of forces ~F acting on the chain and the diffusion matrix D (see page 24) translates

between them:

(2.73) ~v = T−1D ·~F

where T denotes the temperature. Inserting equations 2.72 and 2.73 into the continuity equation

yields

(2.74) ∂t p =−T−1~∇· (p ·D ·~F) .

At this point the overdamped dynamics and hydrodynamic interactions are already built in, but

free energy minimization is not. To do so, we revisit the free energy’s functional form:

(2.75)

F[p(~x)]=U −TS

= 〈E+T ln p〉

=
∫
Ω

p(~x) · [E(~x)+T ln p(~x) ]d~x .

This is an integral of the term [E(~x)+T ln p(~x) ], weighted by the probability p(~x). Equivalently,

it can be understood as a non-weighted sum over all trajectories in the ensemble of X because

they are by definition distributed according to p(~x). We deduce that, in order to globally minimize

free energy, each trajectory in the ensemble experiences a force

(2.76) ~F =−~∇(E+T ln p ) ,

and thereby contributes to global free energy minimization. That is because free energy is the

physical potential of the canonical ensemble, and forces are the negative gradients of physical

potentials, leading to dynamics which minimize them.

Inserting this force into equation 2.74 finally yields the physical Fokker-Planck equation:

(2.77) ∂t p =~∇· (T−1 pD ·~∇E) +~∇· (D ·~∇p) .
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While the first force term is clearly related to energy minimization, the second force term depends

on the probability p itself, showing that it is of a purely statistical nature. This makes sense as its

origin is entropy maximization. Remarkably, this second force term also shows up in the “default”

Fokker-Planck equation. This indicates that its logarithmic nature is quite naturally linked to

the diffusive behavior of Markov processes in general, even without any physical considerations.

To summarize, the first term (drift term) in the Fokker-Planck equation minimizes energy and

the second term (diffusion term) maximizes entropy.

Now, let us study the stationary solution of the physical Fokker-Planck equation. It represents

thermal equilibrium, and is found by setting the time-derivative to zero such that

(2.78) ~∇·~j = 0 .

Given that the hydrodynamic diffusion matrix is invertible and that the detailed balance condition

(time reversal symmetry) sets ~j itself to zero, we find

(2.79)
0=~j = T−1 D ·

(
−~∇(E+T ln p ) p

)
⇔~∇E · p = T~∇ ln p · p = T~∇p .

This equation can be interpreted as a local force balance between energetic and entropic forces. It

is solved by the Boltzmann distribution

(2.80) peq(~x)= 1
Z

exp(−βE(~x) ) ,

which is not very surprising, remembering that free energy minimization is equivalent to taking

on the Boltzmann distribution. What is remarkable, however, is that the Fokker-Planck perspec-

tive explicitly shows that equilibrium statistics are independent of the diffusion matrix D, while

it simply does not make an appearance in thermodynamics at all.
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Diffusion equation Let us consider the one-dimensional Fokker-Planck equation in the case

E = 0 and D = 1
2

. Equivalently, the jump moments are given by

(2.81)
α(1) = 0

and α(2) = 1 .

The corresponding Fokker-Planck equation is called the diffusion equation and reads

(2.82) ∂t p = 1
2
∂2

x p .

This equation can easily be solved analytically via Fourier transformation (see e.g. reference [106])

and the solution for p(x,0)= δ(x) reads

(2.83) p(x, t|0,0)= 1p
2πt

exp
(
− x2

2t

)
,

which has the interesting properties 〈x〉 = 0, but
〈
x2〉= t. This solution is visualized in figure 2.3.
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Figure 2.3: The solution of the diffusion equation plotted at different times using the initial
condition x(0)= 0.
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2.2.5 Langevin equation

Now we move away from the ensemble level and instead study the properties of individual

trajectories~x(t) within the ensemble described by the physical Fokker-Planck equation. In the

previous sections, a Markov process has been uniquely characterized by its jump moments, which

can be calculated from equation 2.62 on ensemble level. The same can be done on trajectory level

by using the alternative expressions

(2.84) α(n)(x)= lim
τ→0

1
τ

〈
[X (t+τ)− X (t)]n 〉 |X (t)=x .

Their evaluation requires an equation of motion for X : the Langevin equation. Rather than

defining it right away, let us first motivate it from a physical perspective. Between the dynamics

of~x (the polymer) and the dynamics of the water molecules, there is a significant separation of

time scales. The configurational dynamics of the studied proteins takes place on a time scale of

tens or hundreds of nanoseconds (10−7s−10−8s), while reconfiguration times of water molecules in

the fluid are on the order of tens of femtoseconds 10−14s. Therefore, even during time steps which

seem very short from the protein’s perspective, an enormous number of momentum transfers from

the surrounding water molecules take place. Consequently, the net momentum transfer in each

time step of say 10−11s is practically stochastic from the protein’s perspective and furthermore

normally distributed due to the central limit theorem. To describe the dynamics of X , we turn

back to the overdamped dynamics within a Stokes flow (see equation 2.19, page 20) and represent

the discussed fluctuating momentum transfer by introducing a stochastic term~ξ:

(2.85) dt~x =~a(~x)+b(~x) ·~ξ .

The coefficients ~a and b are to be determined later on to match the Fokker-Planck equation’s

jump moments. The stochastic term~ξ has a mean value of zero, as any non-zero mean could be

subtracted from~ξ and be absorbed into ~a. Each vector component of~ξ independently takes on

values which we assume to be uncorrelated in time – a convenient idealization justified by the

separation of time scales. Therefore

(2.86)

〈~ξ(t)〉 =~0

and 〈ξi(0)ξ j(t)〉 =
δi j f (t) if t = 0

0 if t 6= 0
where i, j ∈ {1,2,3} .

The function f (t) must be a Dirac delta function for the following reason. The Wiener-Khinchin the-

orem states that for any time series ξ(t), the integral over its autocorrelation function 〈ξ j(0)ξ j(t)〉
is related to its power spectrum |ξ̂ j|2 via

(2.87) |ξ̂(s)|2 =
∫ ∞

−∞
〈ξ j(0)ξ j(t)〉exp(−i2πst) dt .
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Therefore, if this integral is zero, the power spectrum is zero, and then ξ itself is zero. The

integral must thus be finite and since the autocorrelation function is zero for t1 6= t2, it must be a

delta function. It is thus an artifact of the idealization that~ξ is uncorrelated at different times

that its autocorrelation is infinite – otherwise it would not have a net effect on the trajectory.

Consequently, its power spectrum is a constant, which earns ξ the title of “white noise”. Due

to its stochastic nature, the Langevin is a stochastic differential equation, and we write it in

differential form

(2.88) d~x =~adt+b ·~ξdt

such that, formally, we have

(2.89) ~x(t)=~x(0)+
∫ t

0
~a(~x(t′))dt′+

∫ t

0
b(~x(t′)) ·~ξ(t′)dt .

The first integral is a regular, deterministic integral as known from standard calculus. The second

integral, however, is a stochastic integral whose practical evaluation must be discussed.

The Wiener process Defining each component of the integral of~ξ(t) as

(2.90) ∆W(t)=W(t+∆t)−W(t)=
∫ t+∆t

t
ξdt

such that d~W =~ξdt, one finds

(2.91)

〈∆W〉 =
∫ t+∆t

t
〈ξ〉dt = 0

〈
∆W2〉= ∫ t+∆t

t

∫ t+∆t

t

〈
ξ(s) ·ξ(s′)〉ds′ds

=
∫ t+∆t

t

∫ t+∆t

t
δ(s− s′)ds′ds

=∆t .

The stochastic process W(t) is called the Wiener process. A typical size of its time increments is

(2.92)
√〈
∆W2

〉 =
p
∆t .

Assuming that the Wiener increments are Gaussian in nature (due to the central limit theorem,

the net momentum transfer due to the stochastic force ξ must be Gaussian as a result of a large

number of collisions with water molecules), their probability distribution is determined by their

first two moments (being 0 and ∆t respectively) and reads

(2.93) p(W(t+∆t), t+∆t|W(t), t)= 1p
2π∆t

exp
(
−∆W2

2∆t

)
.
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Note that this is precisely the solution of the diffusion equation (see equation 2.83). In fact, the

Wiener process has the same jump moments

(2.94)
α(1) = 0

and α(2) = 1 .

as the diffusion equation does (see paragraph “Jump moments for the Langevin equation” below)

and can therefore be regarded as its analogue at the level of trajectory – the histogram over an

ensemble of Wiener processes equals the solution of the diffusion equation!

The Wiener process is stationary (increments do not depend on t) and spatially homogeneous

(increments do not depend on W). It is also Markovian since increments at different times are

independent of each other.

Trajectories of the Wiener process Trajectories {W0, . . . ,WN }= {W(0),W(∆t), . . . ,W(N∆t)} of

the Wiener process can be generated by successively drawing increments Wi+1 −Wi from the

Gaussian probability distribution 2.93. This is done as follows: Each increment is first drawn

from a standard normal distribution (zero mean and variance one), and then multiplied withp
∆t such that its variance equals ∆t. A number of such trajectories are displayed in figure 2.4.

It is therefore intuitively clear that the sample paths are continuous because

(2.95) lim
∆t→0

∆W ∝ lim
∆t→0

p
∆t → 0 ,

but at the same time nowhere differentiable because

(2.96) lim
∆t→0

∆W
∆t

∝ lim
∆t→0

1p
∆t

→∞ .

Mathematically more rigorous proofs of the continuity and non-differentiability of the Wiener

process (which require technically more precise notions of limits of stochastic variables) are

available in literature [1, 107]. The non-differentiability in particular implies that, technically

speaking, the process ξ with the properties given by equation 2.86 does not exist. Its integral,

the Wiener process, does exist however, and thus the Langevin equation has meaningful solutions.

The same properties (equations 2.95 and 2.96) hold true for the trajectories of the Langevin

equation 2.88 because the Wiener increments are simply multiplied with the matrix b and then

the vector ~a ·∆t is added. It turns out, however, that the statistical properties (jump moments)

of the resulting process depend on where in the interval [t, t+∆t] the matrix b is evaluated, no

matter how small ∆t is. This curiosity is being discussed below under the paragraph “Itô versus

Stratonovich”.
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Figure 2.4: Twenty independent trajectories of the Wiener process, all starting at zero.
They are everywhere continuous, but nowhere differentiable. Viewed as an ensemble, their
distribution spreads over time according to the diffusion equation 2.82. Therefore, this
distribution is at all times t a Gaussian with zero mean and variance t, see also figure 2.3.

Another quite fascinating property of the Wiener process is that the time resolution used to

arrive at a final increment is irrelevant – starting at some value W(t), drawing a single increment

∆W at time t+∆t from a Gaussian (statistically) gives the same result as drawing i = 1, . . . , N

successive (smaller) increments ∆Wi with time resolution ∆t/N such that ∆W =∑
i∆Wi.

That is because

(2.97)

〈∆W〉 =∑
i
〈∆Wi〉 = 0

and 〈∆W2〉 =∑
i j
〈∆Wi∆Wj〉 =

∑
i
〈∆W2

i 〉 = N
∆t
N

=∆t .

This is consistent with the fact that the final increment could have just been drawn from its

own Gaussian probability distribution in the first place. Intuitively speaking, this means that

the trajectories in figure 2.4 would (statistically) look the same if the time resolution during

their generation was increased. The practical limitation of numerical time steps in a Langevin

simulation hence stems solely from the fact that the coefficients ~a and b are in general not

constant.
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The jump moments for the Langevin equation In order to calculate the jump moments

(2.98) α(n)(x)= lim
τ→0

1
τ

〈
[X (t+τ)− X (t)]n 〉 |X (t)=x

of the Langevin equation dt~x =~a+b ·~ξ, we prepare the term

(2.99)

= [xi(t+τ)− xi(t)]n

=
[∫ t+τ

t
dtxi(t′)dt′

]n

=
[∫ t+τ

t

[
ai(x(t′))+bi j(x(t′))ξ j(t′)

]
dt′

]n

=
[∫ t+τ

t

[
ai(~x(t))+∂kai(~x(t)) · (xk(t′)− xk(t)

)+ . . .

+bi j(~x(t)) ·ξ j(t)+∂kbi j(~x(t)) ·ξ j(t′) ·
(
xk(t′)− xk(t)

)+ . . .
]
dt′

]n

where we have Taylor expanded the integrand to take into account that it changes during the

time interval [t, t+τ]. Here, we have only performed the first step in an iterative process. Next

we would need to reinsert xk(t′)− xk(t) into itself because it occurs in the first line as well as in

the Taylor expanded integrands. The reinserted terms then involve that same integral again and

again. Making use of 〈~ξ〉 =~0, 〈ξ(t)ξ(t′)〉 = δ(t− t′) and realizing that the jump moments are only

interested in terms proportional to τ, this iterative process can quickly be truncated.

For n = 1, one finds

(2.100)
α(1)

i (~y |Strato)= lim
τ→0

1
τ
〈 [xi(t+τ)− xi(t)]〉 |x(t)=y

= ai(~y)+b jk∂ jbik(~y)

where, interestingly, a term from the first reinsertion-iteration has survived the limiting process.

For n = 2 one finds

(2.101)
α(2)

i j (~y |Strato)= lim
τ→0

1
τ

〈
[xi(t+τ)− xi(t)]2 〉 |x(t)=y

= bikb jk(~y) .

All higher order jump moments are zero, because for n ≥ 3, no terms remain which are of order τ.

The reason why we supplemented our notation with the term “Strato” will now be discussed.
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Itô versus Stratonovich interpretation Carefully studying the calculations of the first

jump moment α(1)
i above, it turns out that the additional term b jk∂ jbik(~y) comes from the Taylor

expansion of the integrand in equation 2.99. This Taylor expansion takes into account that the

integrand is not constant during the time interval [t, t+τ] over which it is integrated. In regular

calculus, this would not need to be taken into account due to the limit τ→ 0 which is applied to

the integral: no Taylor-expanded terms related to the deterministic force ~a (i.e. regular calculus)

remain after taking this limit. It is solely a result of the properties of the stochastic force that a

Taylor-expanded term contributes to the first jump moment: Because (ξdt)2 = dW2 ∝ dt, a term

which would be of second order in regular calculus scales linearly with τ, and thus does not

vanish. In other words: It matters at which time during [t, t+dt] the matrix b(~x(t)) is evaluated,

no matter how small dt is. In the calculations above, we have effectively evaluated b(~x(t)) at

~x(t+τ/2). This is a choice we have made, which is known as the Stratonovich interpretation: the

prefactor of the noise term is evaluated in the middle of the infinitesimal time step. An alternative

choice is the Itô interpretation, which evaluates the prefactor of the noise term at the beginning

of the time step. Within the Itô interpretation, the integrand in equation 2.99 therefore does not

need to be Taylor expanded, which simplifies the calculation. The resulting jump moments read

(2.102)
α(1)

i (~y |Itô)= ai(~y)

and α(2)
i j (~y |Itô)= bikb jk(~y) .

The consequence of the differing jump moments is that the Langevin equation on its own does not

have well-defined statistical properties. In fact, the Langevin equation is meaningless until it is

supplemented by an interpretation rule such as “Itô” or “Stratonovich”. It must be noted, however,

that any Itô-Langevin equation can easily be transformed into an equivalent Stratonovich-

Langevin equation (and vice versa) by simply compensating the additional term in the first

jump moment by redefining ai 7→ ai −b jk∂ jbik(~y). After this transformation, both interpretations

yield identical jump moments and thus describe the same Markov process. Note that the Itô

and Stratonovich interpretations automatically coincide if the matrix b does not depend on the

system’s state~x.

We remark that there are other interpretation rules such as the Hänggi-Klimontovich interpreta-

tion, which evaluates the noise term at the end of the infinitesimal time interval [108]. Which

interpretation to use is a question of modeling, and for further reading, I highly recommend

Van Kampen’s paper “Itô versus Stratonovich” [109] which is clear and short. For this thesis,

however, this question is irrelevant because we do not model the system under consideration

in terms of the Langevin equation at all. All the physics has already been implemented within

the Fokker-Planck equation 2.77 which determines the physically correct jump moments. Thus

we can make use of this Fokker-Planck equation and find the equivalent Itô-Langevin equation,

solely owing to the fact that the Itô-interpretation leads to simpler numerics.
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Translation between Langevin and Fokker-Planck equation For better readability, let

us repeat the Fokker-Planck equation in terms of jump moments (equation 2.67):

(2.103) ∂t p =−∂i
[

pα(1)
i

] + 1
2
∂i∂ j

[
pα(2)

i j
]

,

and directly compare it with the physical Fokker-Planck equation (equation 2.77):

(2.104)

∂t p = T−1∂i
[

pD i j∂ jE
] + ∂i(D i j∂ j p)

= T−1∂i
[

pD i j∂ jE
] + ∂i∂ j

[
D i j p

] − ∂i
[
∂ jD i j · p

]
= ∂i

[ (
T−1D i j∂ jE−∂ jD i j

) · p
] + ∂i∂ j

[
D i j p

]
.

The physical jump moments can therefore be read off to be

(2.105)
α(1)

i =−T−1D i j∂ jE+T∂ jD i j

and α(2)
i j = 2D i j .

The following Itô-Langevin equation has the same jump moments:

(2.106) d~r =T−1D · [−~∇E
]
dt + (~∇T ·D)T dt +

p
2 B ·d~W

where B is the Cholesky decomposition of D, meaning that D=B ·BT . Due to the equivalence

to the Fokker-Planck equation, the dynamics described by this Langevin equation samples the

Boltzmann distribution p ∝ exp(−E/T) independently of the matrices D and B. The diffusion

matrix D is a function of the coordinates~r itself, and it should be noted that the diffusion matrix

in an infinite medium (see equation 2.29, page 24) is divergence-free, while the diffusion matrix

near a wall (see equation 2.31, page 25) is not.

The last term is stochastic, and it is referred to as thermal noise or Brownian noise. It can

alternatively be understood as a force
p

2 T (BT )−1d~W/dt which would then be added to the

parenthesis in the first term. The equation D=B ·BT is called a fluctuation-dissipation relation

because it links the noise strength B to the friction matrix Γ= T D−1. The fact that the two are

linked is remarkable, and heuristically owes to the fact that both solvent friction as well as

thermal fluctuation are caused by the same fluid.

Considering the Langevin equation for an assembly of N objects in three-dimensional space (e.g.

a polymer chain), we saw in section 2.1.5 that the diffusion matrix D consists of N2 3×3-blocks

Di j. With~r = (~rT
1 . . .~rT

N )T being the collection of Cartesian coordinates, the Langevin equation can

be written as

(2.107) d~r i = T−1
N∑

j=1
Di j ·

[−~∇ jE
]
dt + (~∇T ·D)i dt +

p
2

N∑
j=1

Bi j ·d~Wj .

To summarize, the following Fokker-Planck equation and Itô-Langevin equation are equivalent:

(2.108)
∂t p =−∂i

[
ai p

] + 1
2
∂i∂ j

[
bikb jk p

]
d~x =~adt+b ·d~W .
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This equivalence must be understood as before: The Fokker-Planck equation describes how an

entire ensemble of trajectories evolves. The Langevin equation describes a single trajectory within

that ensemble. Since all trajectories in the ensemble are identical, in practice, solutions to the

Langevin equation sample the Boltzmann distribution over time.

Remember also that the physical Fokker-Planck equation describes ensemble dynamics which

minimizes its free energy. The free energy has an energetic part and an entropic part. Revisiting

the calculations above from this perspective, one finds that the first term in the Langevin

equation 2.106 minimizes energy, and that the second and third (random) term maximize entropy.

2.2.6 Constrained Langevin equation

In the following, we present aspects of the theory of constrained Brownian motion which can

also be found in reference [110]. Many polymer models, including ours, are subject to geometric

constraints. Let us denote them as

(2.109) gµ(~x)= 0 where µ= 1, . . . , M .

For example, we are going to study polymer chains whose bond lengths are fixed (inextensible

chains, see figure 2.6). The Langevin dynamics above, however, is unconstrained and must

therefore be modified in order to take the constraints into account. This can be achieved in two

ways, both of which require additional physical forces acting on the polymer chain.

Firstly (see green line in figure 2.5), one can simply punish deviations from the constraints by

introducing an additional energy term. The (negative) gradient of this energy term describes

restoring forces which push the system back towards the constraints. In the presence of thermal

noise, the elastic constant of these forces must be chosen larger the more accurately the con-

straints are to be fulfilled. This limits the allowed numerical time step severely. Moreover, the

constraints need to be violated in the first place in order for the restoring forces to react. Since

the Langevin equation remains form-invariant, the dynamics of this first method will still sample

the correct Boltzmann distribution for the modified energy function.

Secondly (see red dot in figure 2.5), it is possible to exactly preserve the constraints in each

time step by introducing constraining forces which include Lagrangian multipliers (like in the

Lagrange I formalism the reader might know from classical mechanics). The constraining forces

enter the Langevin equation 2.107 by modifying the force term as follows:

(2.110) −~∇ jE 7→ −~∇ jE+
M∑
µ=1

λµ~∇ j gµ(~x) .

Here, λµ is the Lagrangian multiplier associated with the µ-th constraint. When solving the

Langevin equation, the Lagrangian multipliers must be determined from the constraints in each

time step anew. Using this method, the constraints are fulfilled exactly.
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trajectory within constraint

trajectory around constraint

constraint

Figure 2.5: A two-dimensional sketch of Ω = R3N . The black curve represents the set of
all chain conformations which fulfill the geometric constraints imposed on the dynamics.
The green trajectory is subject to strong restoring forces which push it back towards the
constraint, and thus it only approximately fulfills them. It correctly samples the Boltzmann
distribution because it can be generated from the default form of the Langevin equation. The
red dot, on the other hand, undergoes dynamics within the constraint which is described by
a modified Langevin equation including Lagrangian multipliers. The (red) dynamics within
the constraint disregard the entropy of the fluctuations (width of green fluctuations) and
therefore do not correctly minimize free energy. This error is easily remedied by adding a
force term which is the gradient of this entropy. This extra force pushes the red dot along
the constraint towards regions of higher entropy (wider green fluctuations) as indicated by
the red arrow.

The Langevin equation is not form-invariant, however, and therefore (for the time being) it is

unclear whether the resulting dynamics still correctly samples the Boltzmann distribution and

minimizes free energy.

We choose the second method of using Lagrangian multipliers in this thesis as it fulfills the

constraints exactly while not entailing additional model parameters. It turns out that the modified

Langevin equation does not minimize free energy. This is because it (by construction) does not

take into account the entropy contribution SC of fluctuations around the constraints which the

limiting case of the first method (for infinitely strong restoring forces) does while having correct

statistics. Since fluctuations along and around the constraints can take on values independently

of each other, their entropies are additive due to entropy’s logarithmic dependence on p.
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Fortunately, the entropy SC can be calculated analytically and thus the constrained Lagrangian

dynamics can be repaired by adding its gradient (with respect to~x) as an additional force:

(2.111) −~∇iE 7→ −~∇iE+
M∑
µ=1

λµ~∇i gµ(~x)+T~∇iSC .

Thereby, the full free energy F = 〈E〉−TS (not only 〈E〉−T · (S−SC)) is minimized. The entropy

SC is explicitly calculated for general geometric constraints in appendix C. Its gradient is often

called the (entropic) pseudoforce and reads

(2.112) ~∇iSC =−1
2
~∇i ln detG

where the matrix elements of G are

(2.113) Gk j =~∇i gk ·~∇i g j .

The constrained Langevin equation which correctly minimizes free energy then reads

(2.114)

d~r i =T−1
N∑

j=1
Di j ·

[−~∇ j(E−TSC)+
M∑
µ=1

λµ~∇ j gµ
]
dt

+ (~∇T ·D)i dt +
p

2
N∑

j=1
Bi j ·d~Wj .

It must be supplemented with the constraints to determine the values of the Lagrangian multi-

pliers λµ and with the interpretation rule “Itô”, the numerical method for which is explained in

section 4.2 on page 87.

Inextensibility and bound-end constraints There are two types of constraints which are

relevant in the scope of this thesis. In both cases, the abstract microstate~x denotes the i = 1, . . . , N

Cartesian coordinates~r i of a discrete chain’s vertices. Firstly, one end of some simulated chains

is bound to a surface which will be referred to as the bound-end constraint:

(2.115) g0(~r)= |~r1|−const.= 0 .

The other constraint is that all simulated chains are inextensible. This means that the bond

lengths between their adjacent beads are fixed:

(2.116) gµ(~r)= |~rµ−~rµ−1|−const.= 0 .

Both type of constraints are visualized in figure 2.6. We started with index zero to emphasize

that the bound-end constraint is “optional” in the applications later on, while the µ= 1, . . . , N −1

inextensibility constraints are not.
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Ԧ𝑟𝑘+1Ԧ𝑟0 Ԧ𝑟𝑘−1

Figure 2.6: A sketch of a model polymer consisting of N beads (vertices). The black lines’
(rods) fixed lengths represent the inextensibility constraint (non-dashed), and the bound-end
constraint (dashed). Each rod exerts a force on its adjacent beads such that its own length is
preserved.

From a physical perspective, one may think of each constraint as being imposed by a rod of fixed

length. Each of the µ= 0, . . . , N −1 rods acts with a constraint force on the beads connected to it.

The constraint forces have magnitudes λµ (Lagrangian multipliers) and must be directed parallel

to the rod’s orientation which are given by the chain’s tangent vectors

(2.117) ~tµ =
~rµ+1 −~rµ
|~rµ+1 −~rµ|

where ~r(0) is not a variable but a fixed point in space that we choose to be the origin of our

coordinate system such that

(2.118) ~t0 = ~r1

|~r1|
.

Note that these vectors (directions of constraint forces) coincide with the gradients of the con-

straints. The constraint force λµ~tµ then acts on its two adjacent beads with opposite sign such

that no total force is generated on the chain (except for the bound-end constraint, which exerts a

force on e.g. a surface). Thus, the total force (including thermal noise) on bead i is modified as

(2.119) ~Fi = ~Fuc
i +λi~ti −λi−1~ti−1

where we set λN = 0 for a simpler notation and the total sum of unconstrained forces (including

thermal noise) acting on the beads is formally given by

(2.120) ~Fuc =−~∇(E−TSC)+D−1 · (~∇T ·D)+
p

2 (BT )−1d~W /dt .

The sign convention used here implies that if λµ > 0, the corresponding rod counteracts being

pulled apart by unconstrained forces on beads µ+1 and µ. Putting everything together, the

Langevin equation constrained by bound-end and inextensibility constraints reads

(2.121) d~r i =T−1
N∑

j=1
Di j ·

[−~∇ j(E−TSC)+λi+1~ti+1 −λi~ti
]
dt +

p
2

N∑
j=1

Bi j ·d~Wj

where the gradient of the constraint entropy can be found in appendix C. Furthermore, λN = 0,

and in order to drop the bound-end constraint, one only needs to set λ0 to zero as well.
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2.2.7 Diffusion coefficient and hydrodynamic radius

Let us study a 3-dimensional object with a constant 3×3 diffusion matrix D=B ·BT in absence

of a potential energy function, i.e. E = 0. With equation 2.106 on page 47, we established that its

dynamics is described by the following Langevin equation:

(2.122) d~r =
p

2 B ·d~W .

Multiplying this equation with its own transpose from the right, it follows that

(2.123) d~r ·d~rT = 2B ·d~W ·d~WT ·BT .

Performing an ensemble average 〈·〉 on both sides leads to

(2.124)

〈d~r ·d~rT〉 = 2B · 〈d~W ·d~WT〉 ·BT

= 2B · 13×3 ·BTdt

= 2Ddt .

Taking the trace of both sides yields

(2.125) 〈dr2〉 = 2TrDdt .

This equation holds for infinitesimal time increments. The long term behavior can be found from

the sum of a large number of such infinitesimal increments. Indexing them as d~r i such that

~r =∑
i d~r i and t =∑

i dt, and noting that they are statistically independent shows that

(2.126)

〈r2〉 = 〈~rT ·~r〉
= 〈(∑

i
d~r i

)T · (∑
j

d~r j
)〉

=∑
i

∑
j
〈d~rT

i ·d~r j〉

=∑
i

∑
j
δi j2TrDdt

=∑
i

2TrDdt

= 2TrD t .

Diffusion coefficient For the simplest case of a diagonal diffusion matrix D = D13×3 we

immediately obtain the well-known diffusion law

(2.127) 〈~r2〉 = 3 ·2Dt

where the prefactor 3 stems from the dimensionality of the problem. The defining equation for

the scalar diffusion coefficient D of any diffusing object hence is

(2.128)
D := lim

t→∞
〈~r2〉
6t

=1
6

lim
t→∞∂t′〈~r2〉|t .
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The t →∞ limit was included since, in general, the diffusion matrix D may be time-dependent,

and so the system’s average behavior is being considered. For a polymer chain, for instance, the

short-term behavior is further influenced by fast conformational dynamics. Due to the long-time

limit, these intrachain effects are separated from the translational diffusion of the chain as a

whole, which the diffusion coefficient aims to quantify. For a constant non-diagonal matrix D, we

read off that

(2.129) D = 1
3

TrD .

As a side note, the trace of a matrix is independent of the chosen coordinate system, and so the

diffusion coefficient must also be.

Stokes-Einstein relation With equation 2.15 on page 19, we found that the dynamics of a

sphere with radius a is described by the Stokes law γdt~r = ~F where γ= 6πηa. In that context, the

diffusion matrix for this sphere was defined as D= T/γ13×3. As we just found in the context of

stochastic dynamics, the diagonal entries of this diagonal diffusion matrix are in fact equal to the

scalar diffusion coefficient D. This leads to the famous Stokes-Einstein relation

(2.130) T = Dγ= 6Dπηa .

The diffusion coefficient D does not only play the role of an inverse friction coefficient for deter-

ministic dynamics, but also dictates the mean square displacement of purely stochastic dynamics.

Thus the Stokes-Einstein relation links the statistical properties of a random walk to determinis-

tic, hydrodynamic properties of the object undergoing the random walk.

Hydrodynamic radius In analogy to the case of a diffusing sphere of radius a, which the

Stokes-Einstein relation sets equals to T/(6Dπη), here we define any three dimensional object’s

hydrodynamic radius RH as

(2.131) RH := T
6πηD

based on its scalar diffusion coefficient. This radius is best understood as the radius of an

imagined sphere which diffuses as fast as the object under consideration. We emphasize that it is

not assumed that the object itself is a sphere – its hydrodynamic radius is simply a convenient

and intuitive measure for its size. For intuition, a sketch of a number of polymer chains together

with their hydrodynamic radii is displayed in figure 4.3 on page 97, where we also demonstrate a

numerical method to calculate a polymer chain’s 3×3 diffusion matrix.
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2.3 Differential geometry

This section treats the mathematical description of one-dimensional curves living in three-

dimensional space. These curves may be either continuous or discrete, and they may be framed. A

framed curve is a curve which consists not only of its centerline’s Cartesian coordinates, but also

of information about how it twists around its centerline at each point. Throughout this thesis, we

assume curves to be inextensible, meaning that they cannot be stretched or compressed locally.

The ultimate purpose of this section is to find analytical expressions for the elastic force −~∇E

which can be used for the Langevin equation.

2.3.1 Continuous space curves

We first present the general formalism of describing continuous framed space curves as introduced

by Kirchhoff [75], later reformulated by Bishop [76] for unframed curves and then supplemented

by Langer and Singer [77] to treat framed curves in a Lagrangian manner. This allows for the

efficient treatment of framed curves in minimal coordinates.

Description of a continuous curve We parametrize a curve~r(s) by its arc length s ∈ [0,L],

e.g. |∂s~r| = 1, where L is the curve’s contour length. The unit vector~t(s)= ∂s~r is called the curve’s

tangent vector. Its tip describes a trajectory on the surface of a unit sphere, which is called the

indicatrix. Given its starting point~r(0), the curve can be reconstructed from its indicatrix via

(2.132) ~r(s)=~r(0)+
∫ s

0
~t(s′)ds′ .

Generally speaking, an indicatrix is more easily parametrized than an arbitrary three-dimensional

curve because the tangent vector’s normalization is easily taken into account by only allowing

rotational changes of~t. This rotation can be conveniently described by introducing two additional

vectors ~m1 and ~m2 which, together with ~m3 :=~t, form a right-handed, orthonormal triad. The

triad’s rotation along the curve is threefold: Any two vectors ~mi and ~m j may simultaneously

rotate around ~mk with an angular rate Ωk (which has the physical dimension angle per length),

where k = 1,2,3 and i 6= j 6= k 6= i, such that

(2.133) ∂s


~m1

~m2

~m3

=


0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0

 ·


~m1

~m2

~m3

 .

This description of a framed continuous curve is visualized in figure 2.7. Note that the matrix

above represents the most general case of a skew-symmetric matrix, and that the sign convention

used here makes the rotations around ~mk right-handed if Ωk > 0. Equivalently, one may write

∂s~ek =~Ω×~ek where ~Ω := (Ω1,Ω2,Ω3)T is called the Darboux vector.
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Figure 2.7: A continuous three-dimensional framed curve with its material frame (black
triad) shown at one particular point~r at arc length s. The triad rotates around its three vec-
tors with angular rates Ωk, which are shown in blue. Red objects have a physical dimension
of length, blue ones have dimension 1 / length, and black ones are dimensionless.

The triad (~m1, ~m2, ~m3) is also referred to as the material frame. It constitutes the most general

description of a framed space curve. In particular, it allows us to encode the twist rate of a physical

object via the function Ω3: the rotation rate around the tangent vector. Imagine for example the

track of a roller coaster – its centerline is of interest, and so is its orientation, i.e. the direction

the passengers refer to as “up”. The rate with which this direction twists around the centerline of

the roller coaster track is exactly Ω3. In many applications, however, the twist component of the

physical object under consideration is unavailable, or not even of interest. Consider, for instance,

noisy microscopy data of thread-like molecules, or the trajectory of a star around the center of the

Milky Way. In such cases where only the bare one-dimensional centerline of the curve is given, it

is impossible to infer the full material frame simply because of incomplete information.

Bishop frame An alternative frame whose evolution requires only two independent functions

can be constructed in the following way. From any material frame one can construct a so-called

Bishop [76] (or natural) frame (~b1,~b2,~b3 = ~m3 =~t) which is defined by its lack of a twist rate, i.e.
~b2·∂s~b1 = 0. This is easily achieved by introducing the orthonormal vectors~b1 = cosΘ~m1−sinΘ~m2

and~b2 = sinΘ~m1 +cosΘ~m2, where

(2.134) Θ(s) :=
∫ s

0
Ω3(s′)ds′

is the total twist angle at arc length s.
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Thereby, the influence of Ω3 gets undone: the material frame gets “untwisted”. It follows that

(2.135) ~b1 + i~b2 = (~m1 + i~m2) eiΘ

such that

(2.136) ∂s(~b1 + i~b2) (2.133)= −(Ω2 − iΩ1)eiΘ~b3 .

Conveniently, one also has

(2.137)
∂~b3

∂s
(2.133)= Ω2~m1 −Ω1~m2

=Re
(
(Ω2 − iΩ1) eiΘ · (~m1 − i~m2) e−iΘ

)
such that we may write

(2.138)
∂

∂s


~b1

~b2

~b3

=


0 0 −Re(Ψ)

0 0 −Im(Ψ)

Re(Ψ) Im(Ψ) 0

 ·


~b1

~b2

~b3

 .

where we have introduced the complex curvature

(2.139) Ψ= (Ω2 − iΩ1) eiΘ .

This formula for Ψ allows us to calculate it from a known material frame. However, even without

initial knowledge about the material frame, the (unframed) curve~r(s) can be constructed from

any complex function Ψ alone by using equations 2.138 and 2.132. Note also by comparing 2.133

and 2.138 that the Bishop frame is indeed twist-free. Hence, a framed curve can now be efficiently

defined in a Lagrangian manner by supplementing a complex function Ψ (which determines the

curve’s centerline via the Bishop frame) with a scalar function Ω3 (which delivers the angle Θ(s)

between Bishop frame and material frame independently of the centerline). For unframed curves,

Ψ suffices.

We make two remarks. Firstly, one may globally (for all s) rotate~b1 and~b2 around the tangent

vector by any globally fixed angle φ, which leads to an identical curve~r(s) when Ψ is simultane-

ously multiplied with eiφ. Thus, for a given curve, there are infinitely many twist-free Bishop

frames and we have singled out one particular Bishop frame by choosing ~b1(0) = ~m1(0) and
~b2(0)= ~m2(0). Secondly, the modulus of the tangent vector’s derivative is called the curvature κ.

Since~t = ~m3 =~b3, it follows that

(2.140) κ= |∂s~t| =
√

(Ω2
1 +Ω2

2) = |Ψ| = 1
R

where R is the radius of the curve’s local osculating circle.
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Energy of a continuous rod The bending energy and twisting energy of an elastic rod can

be rigorously derived in the framework of elasticity theory. This theory considers macroscopic

materials for which the continuum limit applies and bulk properties of the considered material

(e.g. the Young’s modulus or shear modulus) are meaningful. In this thesis, however, we are

not dealing with such materials, but with single molecules whose contour lengths are a few

nanometers, and (in a side project) also consider the shapes of flagella whose contour lengths are

a few micrometers. Therefore the use of the bending and twisting energy function for macroscopic,

elastic rods must clearly be understood as an idealization and we refrain from diving into

elasticity theory. The elastic energy of a generic, elastic rod with contour length L reads [111]

(2.141) E[~Ω]=
∫ L

0

(α1

2
Ω2

1 +
α2

2
Ω2

2 +
c
2
Ω2

3

)
ds .

This energy is a functional of the three arbitrary perturbations from a straight, untwisted rod,

which is obviously the functional’s minimum. It is a local functional which implies that the

perturbations at different arc lengths contribute to the total energy independently. Therefore, if

required, nonlocal interactions such as steric effects (excluded volume) or electrostatic interactions

need to be considered in addition and are not captured by this elastic energy. In general, different

elastic constants α1 and α2 for bending components in the two directions given by the material

frame are allowed (imagine a rod with an elliptical cross section for instance). Throughout this

thesis, however, the special case α1 =α2 =:α applies, which allows us to write

(2.142) E[~Ω]=
∫ L

0

(α
2
κ2 + c

2
Ω2

3

)
ds .

The elastic constant c in front of the last term is different from α because it quantifies the

response to twisting, not bending.

Heuristically, the functional form of the elastic energy’s integrand can easily be justified: Let us

interpret it as a Taylor expansion in powers of ~Ω. Constant terms in any physical potential are

irrelevant because they do not contribute to that potential’s gradient. Furthermore, all appearing

terms must not change signs when any Ωk is replaced by −Ωk. Hence, from this simple argument

alone, equation 2.142 is correct up to at least third (inclusive) order.

Dynamics of a continuous curve We do not require any dynamics or variational treatments

of continuous rods in this thesis. Suffice to say that the force density acting on the rod equals the

functional derivative of the elastic energy with respect to the Cartesian coordinates of the rod’s

centerline. For a given functional, this functional derivative can be explicitly calculated. For the

quadratic functional we are using here, Goldstein et al. [78, 112] derive these terms in explicit

form, together with a closed set of partial differential equations describing the spatiotemporal

evolution of Ψ and Ω3. We remark that for a quadratic bending energy, boundary conditions

apply to Ψ: Ψ|0,L = ∂sΨ|0,L = 0. We elaborate on this in the context of a side project on page 166.
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2.3.2 Discrete space curves

For the discrete analogue of the previously introduced concepts, we present the formalism of

Bergou et al [79, 113]. For our purposes, the notation used therein was slightly altered in order

to emphasize the physical dimension of the quantities (e.g. a curvature is an angle per length

etc.). It should also be noted that we do not aim for the limit of fine discretization, thereby merely

approximating a continuous curve. Instead, each vertex of the discrete curve corresponds to a

physical monomer (amino acid) whose properties are to be investigated, making the discrete

curve an interesting object in its own right rather than a mere approximations to a continuous

curve. Furthermore, an inherently discrete framework in minimal coordinates naturally leads us

to an efficient numerical treatment.

Figure 2.8: A discrete version of the curve in figure 2.7, consisting of N vertices. Hence there
are N −1 edges and N −2 joints (inner vertices). The material frame is naturally associated
with an edge, while a bending angle and its curvature (vector) are associated with a joint.
The thick red part of the curve around one of its joints shows the arc length ∆s associated
with that joint. Red objects have a physical dimension of length, blue ones have dimension
1 / length, and black ones are dimensionless.

Description of a discrete curve While in principle a continuous chain has an infinite number

of degrees of freedom, a discrete chain of finite length does not. It is a polygonal chain given by N

Cartesian coordinates

(2.143) ~r i where i = 1, . . . , N ,

which represent the centerline of the discrete curve.
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A discrete curve (see figure 2.8) consisting of N vertices has N −1 edges. These edges are parallel

to the normalized tangent vectors

(2.144) ~ti := ~r i+1 −~r i

|~r i+1 −~r i|
where i = 1, . . . , N −1 .

Let us further define the arc length associated with an inner vertex as

(2.145) ∆si := |~r i+2 −~r i+1|+ |~r i+1 −~r i|
2

where i = 1, . . . , N −2 .

Two vectors

(2.146) ~m(1)
i ⊥ ~m(2)

i ⊥~ti where i = 1, . . . , N −1 .

are attached to each edge which together with ~m(3)
i =~ti form the material frame at that edge.

Analogous to the continuous case, the material frame carries information beyond the mere

centerline. Again, we do not explicitly represent it via its vector components, but by signed total

twist angles Θi (associated with edges) or their discrete derivative, the twist ratesΩ(3)
i (associated

with inner vertices)

(2.147)
Θi := sign

((
~b(1)

i × ~m(1)
i

)
·~ti

)
·arccos

(
~b(1)

i · ~m(1)
i

)
where i = 1, . . . , N −1

Ω(3)
i := Θi+1 −Θi

∆si
where i = 1, . . . , N −2

relative to the Bishop frame, thereby avoiding redundant information and stiff constraints.

Instead, the material frame is easily reconstructed from the Bishop frame by rotating it around

the respective tangent vectors with angles Θi.

Parallel transport In order to establish the notion of a Bishop frame attached to a discrete

curve, we first introduce the concept of parallel transport. When a tangent vectors rotates from

an initial state~tbefore to a new state~tafter, parallel transporting an arbitrary vector~vbefore simply

means rotating it along with the tangent vector; it gets rotated around the axis ~a by an angle φ

given by

(2.148)
~a = ~tbefore ×~tafter

|~tbefore ×~tafter|
and φ= arccos(~tbefore ·~tafter) .

Let us denote parallel transport via a multiplication with a rotation matrix P as follows:

(2.149) P(~tbefore,~tafter) ·~vbefore =~vafter .
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Bishop frame The axis ~a is perpendicular to both~tbefore and~tafter. Thus, when we parallel

transport a vector along the curve such that~tbefore =~ti and~tafter =~ti+1, the applied rotation does

not correspond to a twisting rate Ω3 (which rotates around the tangential direction, see equation

2.133). Therefore, the (twist-free) Bishop frame of a given curve is easily constructed via repeated

parallel transport:

(2.150) ~b(1)
i =

(
i−1∏
k=1

P
(
~tk,~tk+1

)) ·~b(1)
1 where i = 2, . . . , N −2 .

This equation is, of course, best solved in an iterative manner after an initial triad (~b(1)
1 ,~b(2)

1 ,~t1) is

chosen. The third vector of each triad immediately follows from its orthonormality. Like in the

continuous setting, we choose the initial Bishop frame to coincide with the material frame,

(2.151) ~b( j)
1 = ~m( j)

1 where j = 1,2 ,

but in principle there are infinitely many Bishop frames which can be transformed into each

other by globally rotating around the tangent direction.

Discrete curvature Next we define the curvature κi associated with an inner vertex. The

discrete curvature must converge to the continuous curvature κ(s)= |∂s~t| in the limit N →∞ at

fixed contour length. It must hence have the physical dimension of angle per length. Since in said

limit, the bending angles

(2.152) θi := arccos(~ti ·~ti+1) where i = 1, . . . , N −2

become infinitesimal, it is sufficient that ∆sκi ∝ θi +O (θ2
i ) for proper convergence to the contin-

uous limit alone. For a continuous curve which is everywhere slightly displaced by an offset ε

into its normal direction, Steiner’s theorem relates its curvature to its change in contour length

via ∆L = ε
∫
κds. Motivated by this simple theorem, different definitions of discrete curvature

are used in literature [114]: κ(1) = θ /∆s, κ(2) = 2sin(θ/2) /∆s and κ(3) = 2tan(θ/2) /∆s. All these

definitions correctly converge towards the continuous curve while reproducing some of its prop-

erties, but unfortunately there is no single discrete curvature which preserves all properties of

the continuous curve simultaneously. For instance, the continuous curvature of a closed, planar

curve always adds up to a multiple of 2π when integrated over the curve, and only κ(1) has

this property in the discrete setting. Conservation of the curve’s center of mass under so-called

curve-shortening flows is only given when κ(2) is chosen as the discrete curvature. The bottom

line is that a choice must be made depending on which properties of the discrete curve are desired

for the application at hand. For our purposes, we choose the third definition

(2.153) κi := 2tan(θi/2)
∆si

where i = 1, . . . , N −2
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for two reasons. Firstly, using this curvature definition, the probability distribution of a discrete

chain’s end-to-end distance (in a heat bath) converges faster to the continuous worm-like chain

limit than for the other two definitions. We demonstrate this numerically in appendix A, and the

worm-like chain is introduced on page 66. Secondly, using finite discretization, the tangent-based

curvature has the property that it diverges as θ→±π, which – due to the chain’s elastic response

to deformations – ensures that the bending angles cannot exceed π and the bond vector cannot

make “a full turn”, which would be unphysical.

Let us now introduce the curvature binormal vector~κi as

(2.154) ~κi = 1
∆si

· 2~ti ×~ti+1

1+~ti ·~ti+1
where i = 1, . . . , N −2

which indeed satisfies |~κi| = κi and is by construction parallel to the axis around which the

tangent vector is rotated. Therefore ~κi may be utilized to find the bending rates into the two

direction given by the material frame vectors. This is analogous to disentangling ∂s~t into Ω1 and

Ω2 in the continuous setting, see equation 2.133. Note that while the material and Bishop frame

are associated with edges, bending angles and thus curvature values are associated with inner

vertices. Therefore, the angular bending rates

(2.155) Ω
( j)
i = (−1) j+1~κi ·

~m( j)
i + ~m( j)

i+1

2
where i = 1, . . . , N −2 and j = 1,2

are defined by projecting the curvature binormal vector onto the average directions given by the

two adjacent material frames. The minus sign is introduced to maintain the convention that the

Ω
( j)
i describe right-handed rotations around ~m( j)

i .

Energy of a discrete rod The elastic energy of a discrete, elastic rod reads

(2.156) E =
N−2∑
i=1

(α
2

(Ω(1)
i − Ω̄(1)

i )2 + α

2
(Ω(2)

i − Ω̄(2)
i )2 + c

2
(Ω(3)

i )2
)
∆si

and can be interpreted as a discretized version of the previously discussed elastic energy of a

continuous rod. Here, we have already assumed that the bending response is isotropic (α1 =
α2 =α), which corresponds to a circular cross section of the elastic rod. Furthermore, we have

introduced the reference curvatures Ω̄( j)
i which are not variables describing the curve, but fixed

material properties. They allow us to model elastic rods whose energetic minimum (equilibrium

conformation) is not necessarily a straight rod. The arbitrary energetic minimum is still assumed

to be untwisted, i.e. Ω̄(3)
i = 0. For example, constant reference curvatures refer to a circular arc

as the rod’s energetic minimum. It must be noted that the reference curvatures are not only

associated with a centerline conformation, but also with a reference material frame, which in our

untwisted reference state is a Bishop frame.
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Elastic forces The elastic forces acting on vertex i are given by the negative gradient of the

elastic energy E with respect to~r i. Defining~e i :=~r i+1 −~r i, χ := 1+~ti ·~ti+1, ~̃ti := (~ti + ~ti+1) /χ and

~̃m( j)
i := (~m( j)

i + ~m( j)
i+1) /χ, the only nontrivial gradients required to calculate these forces are

(2.157)

∂Ω(1)
i

∂~e i
= −Ω(1)

i
~̃ti +~ti+1 × ~̃m(2)

i

|~e i|
,

∂Ω(1)
i

∂~e i+1
= −Ω(1)

i
~̃ti −~ti × ~̃m(2)

i

|~e i+1|
,

∂Ω(2)
i

∂~e i
= −Ω(2)

i
~̃ti −~ti+1 × ~̃m(1)

i

|~e i|
,

∂Ω(2)
i

∂~e i+1
= −Ω(2)

i
~̃ti +~ti × ~̃m(1)

i

|~e i+1|
,

∂Ω(3)
i

∂~e i
= ~κi

2 |~e i|

and
∂Ω(3)

i

∂~e i+1
= ~κi

2 |~e i+1|
.

Throughout this thesis, we are assuming inextensible curves, e.g. ∆si = const..

One important special case is that of a naturally straight curve without twisting elasticity., i.e.

Ω̄(1)
i = Ω̄(2)

i = c = 0. In this case, one has (Ω(1)
i )2 + (Ω(2)

i )2 = (~κi)2 = κ2
i such that the elastic energy E

reduces to the bending energy

(2.158) Eb =
α

2

N−2∑
i=1
~κ2

i ∆si .

The only nontrivial terms required to calculate its gradient are

(2.159)

~∇i ·~κT
i = 2Ei+1 +~κi ·~eT

i+1

|~e i| · |~e i+1|+~e i ·~e i+1
,

~∇i+1 ·~κT
i =−(~∇i +~∇i+2) ·κi

and ~∇i+2 ·~κT
i = 2Ei −~κi ·~eT

i

|~e i| · |~e i+1|+~e i ·~e i+1

where E j ·~x =~e j ×~x. Note that these expressions are matrices and do not require knowledge of

the material or Bishop frame. Therefore, in applications where this special case applies, one does

not need to keep track of any adapted frames at all, but can describe the chain’s dynamics in

terms of the Cartesian coordinates of its vertices alone.
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Dynamics of a discrete rod So far, we have dealt with the description of an elastic rod at

a fixed point in time. Later on, the dynamics of discrete chains will be simulated and thus we

need to study how the introduced quantities change when a chain is moved. Let us consider

an initial discrete rod at time t1, for which all geometric quantities have already been calcu-

lated, being transformed into a new conformation given at time t2 > t1. This transformation is

described by some physical equation of motion such as the Langevin equation to which the elastic

forces contribute. Calculating the new geometric quantities from the new coordinates~r i(t2) is

straightforward in all cases except for one: the material frame. Physically speaking, the material

frame at edge i is fixed to that edge, which is being rotated from~r i+1(t1)−~r i(t1) to~r i+1(t2)−~r i(t2).

The material frames along the curve are thus undergoing the same rotations as their respective

tangent vectors which are parallel to that edge. Conveniently, this transformation is described

via parallel transport as

(2.160) ~m( j)
i (t2)= P

(
~ti(t1),~ti(t2)

) · ~m( j)
i (t1) .

Therefore, material frames at a fixed edge i can be found iteratively via parallel transport in time.

On the other hand, Bishop frames at a fixed time t can be found iteratively via parallel transport

in space. Generally speaking, even if material frame and Bishop frame coincide at an initial time

t0, any transformation dt~r which is not perpendicular to the twist gradient ~∇Ω3 drives them

apart. In other words: out-of-plane bending induces twist.

We reiterate that in the mentioned special case Ω̄(1)
i = Ω̄(2)

i = c = 0, keeping track of the material

frame during a simulation is not required.
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2.4 Polymer theory

A polymer is a linear chain of many (poly) units (mer) which may be identical (homopolymer) or

differ from each other (heteropolymer).

Different polymer models can all be understood within the framework of statistical mechan-

ics [115, 116]. One specifies variables by which the polymer’s state is to be represented and

then assumes a probability distribution for these variables. This is equivalent to assuming an

energy function because of the simplicity of the Boltzmann distribution. From the probability

distribution, one then calculates statistical properties of the polymer which are of interest, e.g.

its mean squared end-to-end distance 〈R2〉 or persistence length lP . For later reference in this

thesis, a number of mathematical models of individual polymer molecules will now be introduced.

Freely jointed chain A freely jointed chain (FJC) describes a random walk in three-dimensional

space. This random walk consists of N steps which are statistically independent of each other.

Each step ∆~r i has a fixed step length d and points into a random direction, each of which are

equally likely such that

(2.161)

p(∆~r i)= 1
4πd2δ(|∆~r i|−d) ,

〈∆~r i〉 = 0

and 〈∆~r i ·∆~r j〉 = d2δi j .

The contour of the polymer is the trajectory described by the random walk. It starts in the origin

and ends at the point ~R which is

(2.162) ~R =
N∑

i=1
∆~r i .

One trivially has 〈~R〉 = 0, but the polymer still has finite size which is commonly quantified by√
〈~R2〉 :

(2.163)
〈~R2〉 =

N∑
i j
〈∆~r i ·∆~r j〉 = Nd2

and
√
〈~R2〉 =

p
N d .

This square-root behavior with the number of steps is the hallmark of diffusion – we have

already seen it in the diffusion equation (the variance obeyed σ2 = t) and in the Wiener process

(
〈
∆W2〉=∆t). The analogy is clear: Before, we considered a random walk in time and here we

consider a random walk in space, but the underlying concepts are identical.

The FJC is clearly an oversimplified polymer model, but the simple scaling law (R ∝ N0.5) which

it predicts is surprisingly accurate and universal as long as the considered polymer is long enough

for the spatial orientation of its sub-units to indeed be random and uncorrelated. In literature, d

is also known as the Kuhn length, and the FJC as the Kuhn chain.
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Gaussian chain Due to the central limit theorem, the probability distribution of the end-to-

end vector ~R is always Gaussian for large values of N. The Gaussian chain is thus the limiting

case of any polymer model, and in particular of the FJC. The central limit theorem states

that variance and mean of the individual ∆~r i enter the Gaussian end-to-end distribution in

an additive way. We need to be careful, however, since we are dealing with vector quantities.

Let us thus consider each component individually. For a single component ∆r(k)
i of ∆~r i one has

(from equation 2.161) 〈∆r(k)
i 〉 = 0 and 〈(∆r(k)

i )2〉 = d2/3. The components of the end-to-end vector

therefore satisfy 〈R(k)〉 = 0 and 〈(R(k))2〉 = Nd2/3 = 〈~R2〉/3. Multiplying all three components

together yields the Gaussian distribution for the end-to-end vector:

(2.164) lim
N→∞

p(~R)= 1(
2π〈~R2〉/3

)3/2 exp

(
−3

2

~R2

〈~R2〉

)
.

Comparing this with the Boltzmann distribution, it is easy to read off that the free energy

associated with a particular value of ~R is

(2.165) F = T · 3
2

~R2

〈~R2〉
.

A quadratic energy results in a linear force and since linear equations are simple, Gaussian

chain models enjoy great popularity in polymer dynamics. They are valid for sufficiently long

polymers: When each of their monomers~r i represents enough physical monomers for the central

limit theorem to apply, then they experience two forces proportional to ∆~r i−1 and ∆~r i respectively.

The simplest Gaussian chain is that which neglects hydrodynamic interactions, and is called the

Rouse model [15].

Flory chain A Flory chain is a polymer model which takes into account excluded volume

effects. Excluded volume effects state that non-neighboring units cannot overlap sterically. In

order to study the scaling behavior

(2.166) 〈~R2〉∝ Nν ,

Flory [69, 115, 116] made a simple scaling argument which we repeat here. We consider a

sufficiently long FJC (consisting of N bonds) whose end-to-end distance is fixed to |~R| = R. In

equation 2.165, we have already found the free energy associated with the mesostate defined by

the fixed value of R = |~R|:

(2.167) F1(R)= T · 3
2

R2

Nd2 .

This free energy is of a purely entropic nature since there is no energy term present in the FJC.
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Now we add a second free energy contribution F2 which is of a purely energetic nature and takes

into account excluded volume effects. The excluded volume effects are of a repulsive nature and

are assumed to be pairwise interactions between monomers such that

(2.168) F2(R)∝V ·ρ2 ∝ N2

R3

where V ∝ R3 is the volume occupied by the chain and ρ∝ N/V is the monomer density within

V . Flory’s idea was to change the perspective and treat this FJC with end-to-end distance R as a

sphere of radius R whose energy is given by

(2.169) E(R)= F1(R)+F2(R) .

A mechanical force balance ∂RE(R) != 0 then delivers the simple scaling law

(2.170) R ∝ N0.6 .

Although Flory’s argument is somewhat hand-waving as it disregards the inherently stochastic

nature of the system, the scaling law he acquired is surprisingly accurate – more sophisticated

considerations (see pages 27-29 in [115] and references given therein) deliver the value ν= 0.588.

As a side note, Flory’s result is exact in one, two and 4 dimensions. In any case, 0.5 < 0.6 < 1

and hence excluded volume effects make the chain swell compared to a purely random walk

(R ∝ N0.5), but we are still well below the scaling behavior of a straight line (R ∝ N).

Worm-like chain The worm-like chain [17] (WLC) is a famous polymer model which takes

into account bending stiffness and is thus a semiflexible chain. In contrast to the polymer models

we treated before, the WLC is a continuous curve. It is an elastic rod embedded in a heat bath.

Its geometry and elastic properties can thus be described as before (see section 2.3.1) and its

bending energy reads

(2.171) EWLC = α

2

∫ L

0
|∂s~t(s′)|2ds′ .

The difference to a classical elastic rod is that the heat bath surrounding it leads to thermal

activation of the WLC such that the probability density value for a particular conformation

represented by the function~t(s) is given by the Boltzmann distribution

(2.172) p[~t(s)]∝ exp
(
−EWLC

T

)
= exp

(
− α

2T

∫ L

0
|∂s~t(s′)|2ds′

)
.

In other words, in contrast to a macroscopic elastic rod, it minimizes its free energy, not its energy.

In appendix D we show that in thermal equilibrium, the autocorrelation of the tangent direction

of the WLC decays exponentially:

(2.173) 〈~t(s1) ·~t(s2)〉 = exp
(
−|s1 − s2|

lP

)
.
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Here, the persistence length

(2.174) lP = α

T

was defined. It dictates the length scale on which the tangential direction becomes uncorrelated

along the curve and is thus an important quantity which quantifies how quickly a polymer bends.

While a rope thrown on the ground may have a persistence length of one meter, a protein’s

persistence length is on the order of one nanometer.

The WLC’s end-to-end distance

(2.175) ~R =
∫ L

0
~t(s)ds

obeys

(2.176)

〈~R2〉 =
∫ L

0

∫ L

0
〈~t(s1) ·~t(s2)〉ds1 ds2

=
∫ L

0

∫ L

0
exp

(
−|s1 − s2|

lP

)
ds1 ds2

= 2NP l2
P −2l2

P

(
1− e−NP

)
where NP := L/lP is the number of persistence lengths fitting into the chain’s contour length. This

expression consists of two terms. For NP ¿ 1 we can Taylor expand the exponential function in

the second term. The result is that 〈~R2〉 NP¿1−−−−→ L2, which is the limit of a straight rod. This makes

sense because a WLC which is much shorter than its persistence length has a constant tangent

direction according to equation 2.173. The first term dominates when NP À 1, i.e. when the WLC

is much longer than its persistence length, which is the diffusive limit of a FJC. Comparison with

the FJC, together with L = Nd = NP lP , yields the translation rule

(2.177) d = 2 lP .

In other words: a WLC with length L and persistence length lP has the same contour length and

mean-squared end-to-end distance as a FJC with L/(2lP ) bonds of length 2lP . The number L/(2lP )

must therefore be large for the central limit theorem to make the WLC’s end-to-end vector be

Gaussian. When excluded volume effects are included in a WLC, a non-local energy term is added

to the bending energy. This term depends on all tangential vectors simultaneously in a non-trivial

manner. The simple monoexponential form of 〈~t(s1) ·~t(s2)〉 can thus no longer be expected to hold

true. In this case, we redefine the persistence length as

(2.178) lP = 1
1−〈~t(0) ·~t(L)〉

∫ L

0
〈~t(0) ·~t(s′)〉ds′ ,

which coincides with the first definition in the absence of excluded volume effects. The denomi-

nator’s purpose is to compensate the fact that L may be finite, in which case the integral is too

small because it has not summed up all the area below the exponential function.
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Discrete worm-like chain A discrete WLC is also called a Kratky-Porod chain [68]. It can

alternatively be understood as either a FJC which is supplemented with a bending energy, or as

a discrete elastic rod in a heat bath. Due to the additive nature of the discrete bending energy

E, the Boltzmann distribution factorizes and, remembering that κi = 2tan(θi/2)/∆si, we may

consider each bending angle θi individually:

(2.179)
p(~θ)∝ exp

(
−E

T

)
= exp

(
− α

2T

N−2∑
i=1

κ2
i ∆si

)
=

N−2∏
i=1

exp
(
− α

2T
κ2

i ∆si

)
p(θi)∝ exp

(
− α

2T
κ2

i ∆si

)
.

Note that no energy is associated with bond rotations of a tangent vector around the previous

tangent vector (azimuthal or torsion angle). As a result, analogous to the continuous WLC, we

have (see appendix D)

(2.180) 〈~t1 ·~tk+1〉 = exp
(
−kd

lP

)

where we set all ∆si = d. In the discrete case, the simple relation lP = α

T
does not hold true,

however. Instead, setting k = 1 in the equation above yields

(2.181)
〈cosθ〉 = exp

(
− d

lP

)
⇔ lP =− d

ln〈cosθ〉
where (y := cosθ)

(2.182) 〈cosθ〉 =

∫ 1

−1
y ·exp

(
− σ

2d

(
2tan

(arccos y
2

))2
)
dy∫ 1

−1
exp

(
− σ

2d

(
2tan

(arccos y
2

))2
)
dy

.

Here, we defined σ as

(2.183) α= Tσ ,

and refer to σ instead of α as the bending stiffness even though it is a length. Solving these

integrals analytically is hopeless, but one can easily calculate the function lP (σ/d) numerically,

which we have done in figure 2.9. As expected, it turns out that lP /σ→ 1 as σ/d →∞, which is

the limit towards the continuous WLC.

In the case of a discrete chain with excluded volume effects, we define the persistence length

analogously to our definition in the continuous setting: as the integral over 〈~t1 ·~tk+1〉. The integral

of this discrete function is evaluated using the Simpson method for discrete integration.
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Figure 2.9: The relationship between the bending stiffness σ and persistence length lP
(both in units of the bond length d) in a discrete WLC without excluded volume interactions
(shown in red). The dashed diagonal line has slope one and is only shown for visual purposes.
In the limit of a very stiff chain, one has many chain vertices per persistence length of the
chain, thus arriving at the limit of a continuous WLC in which case lP =σ.
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2.5 Experimental methods

In this section we introduce the experimental methods whose results we are modeling in this

thesis. It is not meant as a detailed description, but is solely focused on the concepts, as I have

not performed any experiments myself.

2.5.1 Single-molecule spectroscopy (SMS)

Fluorescence is the basic photo-physical mechanism which all experimental methods below are

based on. It is described in the Jablonski diagram (see figure 2.10) and made use of by chemically

labeling single molecules (e.g. proteins) with a so-called fluorophore (also called a dye) at their

chain end. The fluorophore is typically much smaller than the molecule itself but larger than

an amino acid, and unlike the molecule itself it is fluorescent, i.e. it emits light. Having the

fluorophores as optically visible reporters attached to the otherwise invisible molecules of interest

allows the investigation of the molecules via single-molecule spectroscopy (SMS). A typical

experimental setup for SMS is shown in figure 2.11. Possible samples are those described below

(PET and dynaMIET), for both of which the experimental setup does not need to be altered. The

data collected by the detector(s) is analyzed using fluorescence correlation spectroscopy.

2.5.2 Fluorescence correlation spectroscopy (FCS)

Fluorescence correlation spectroscopy (FCS) is not an experimental setup or a physical effect, but

a data-analysis technique [84–86]. Suppose that we have at hand experimental data recorded by

the detectors in figure 2.11 – they have detected a large number of individual photons p = 1, . . . ,P

arriving at times t1, . . . , tP . The basic idea of FCS is to histogram the arrival time differences of

all photon pairs. The resulting histogram (a function of the time difference) yields information

about the temporal dynamics of individual photon sources (molecules), and now we demonstrate

why this is the case.

Suppose that, for whatever reason, the detected intensity (rate of photon emission) of a single

molecule is time-dependent. Such reasons could be that the molecule diffuses out of the excitation

focus, or that the PET or MIET effect, which will be discussed in the following subsections, takes

place. Let us thus denote the intensity of molecule number m as Im(t) where m = 1, . . . , M. Due to

thermal fluctuations, this function will be the realization of a stochastic process and therefore it

only makes sense to study statistical properties of Im(t) such as its autocorrelation function

(2.184) Cm(τ)= 〈∆Im(t) ·∆Im(t+τ)〉t

σ2
m

where ∆Im(t)= Im(t)−〈I〉 and σ2
m = 〈(∆Im)2〉. The functional form of Cm(τ) contains information

about the molecule’s dynamics and can be compared with simulation results. It is thus the

function that we are interested in.
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Experimentally, however, one does not only detect photons from molecule m but from a large num-

ber M (the average number of molecules in the excitation volume) of molecules simultaneously.

The measured intensity hence is

(2.185) I(t)=
M∑

m=1
Im(t)∝

P∑
p=1

δ(t− tp)

such that when a photon is detected, it is unclear which molecule it was emitted by. Let us thus

define C(τ), ∆I(t) and σ2 as above, but for the total intensity I instead of Im.

Figure 2.10: The Jablonski diagram is a simplified scheme of the energy levels of a molecule
labeled with a fluorophore. On the bottom (lowest energy) is its electronic ground state S0.
Upon absorption of one or more photons, its energy level gets excited to the first excited state
S1. Several physical processes (possibly occuring on different time scales) allow the excited
molecule to emit energy and return to S0. These processes include not only photobleaching
(due to which the molecule permanently loses its fluorescent properties), transitions to a
long-lived triplet state T1 and energy transfer to its surroundings (vibrational, translational
or rotational modes, interactions with quenchers), but also the emission of a photon. This
photon has a lower energy than the initially absorbed photon because the absorbed energy
is partially lost to the mentioned competing mechanisms of energy transfer (depicted in
the diagram as small energetic steps around S0, S1 and T1 respectively). This phenomenon
is called the Stokes shift – the wavelength of the fluorescence light is longer than that of
the excitation light. Repeated cycling between S0 and S1 (yellow loop) thus leads to light
being emitted from the labeled molecule, which is called fluorescence. Transitions back
to the ground state S0 after getting excited typically take place on a time scale of several
nanoseconds (fluorescence lifetime). This figure was kindly provided to me by Jörg Enderlein.
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Figure 2.11: The experimental setup for single-molecule spectroscopy. An excitation laser
beam (green beam) with wavelength λ1 is pointed onto a dichroic mirror which reflects light
with wavelength λ1 upwards. Using an objective lens, the laser light is focused into a small
excitation volume (on the order of µm3) in the sample wherein it excites fluorophores. The
fluorescence light (red beam) with wavelength λ2 > λ1 is emitted isotropically from this
volume, and the fraction of it which hits the objective is made parallel by it. The dichroic
mirror does not reflect light with wavelengths λ2, but lets it pass through. The fluorescence
signal is then focused by a tube lens such that it passes exactly through a small pinhole.
This step filters out the non-parallel light entering the tube lens, as the tube lens does not
focus it onto the pinhole. It is crucial in order to preserve the fluorescence signal while
subtracting unwanted light from the surroundings. Unwanted light is mainly due to inelastic
(Raman) scattering of the laser light with λ≈λ2, which is thus not reflected by the dichroic
mirror. Next the fluorescence signal is split into two equal beams with halved intensity by a
beam splitter, which are independently detected by two detectors. Thereby one bypasses the
technical limitation that after detecting a photon, a single detector cannot detect another
photon for a few hundred nanoseconds (dead-time), and thus the fluorescence signal emitted
by the sample can be detected at almost all times. This figure was kindly provided to me by
Jörg Enderlein.
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For practical purposes which will soon become clear, let us further define the functions h and f as

(2.186) h(τ|∆t) := 1
∆t

∫ ∆t/2

−∆t/2
f (τ+ t′)dt′ ≈ f (τ) := 〈I(t) · I(t+τ)〉 =σ2C(τ)+〈I〉2

where ∆t should be small compared to the time scale on which f (τ) changes for the approximation

f ≈ h to be adequate. Now we firstly show that h(τ|∆t) is the FCS histogram (with bin size ∆t)

of arrival time differences of all detected photon pairs. Secondly, we show that Cm(τ) can be

extracted from f (τ), and conclude that FCS indeed yields information about the dynamics of

single molecules. First:

(2.187)

h(τ|∆t)= 1
∆t

∫ ∆t/2

−∆t/2
〈I(t) · I(t+τ+ t′)〉dt′

= 1
∆t ·T

∫ ∆t/2

−∆t/2

∫ T

0
I(t) · I(t+τ+ t′)dt′dt

2.185= 1
∆t ·T

P∑
p,q=1

∫ ∆t/2

−∆t/2

∫ T

0
δ(t− tp) ·δ(t+τ+ t′− tq)dt′dt

∝
P∑

p,q=1

∫ ∆t/2

−∆t/2
δ(tp − tq +τ+ t′)dt′ .

The remaining delta function triggers for all photon pairs (p, q) for which τ−∆t/2 < |tp − tq| <
τ+∆t/2. Hence, prefactors aside, we have at hand a histogram of arrival times between photons,

centered at τ with bin size ∆t. Second:

(2.188)

f (τ)=
M∑

m,n=1
〈Im(t) · In(t+τ)〉t

=
M∑

m=1

M∑
n 6=m

〈Im〉〈In〉+
M∑

m=1
〈Im(t) · Im(t+τ)〉t

= M · (M−1) · 〈Im〉2 +M · 〈Im(t) · Im(t+τ)〉t

= M · (M−1) · 〈Im〉2 +M · (σ2
m Cm(τ)+〈Im〉2)

= M2 · 〈Im〉2 +M ·σ2
m Cm(τ)

where we have assumed that the intensities coming from different molecules are uncorrelated

such that their average product factorizes, and that the different molecules’ fluorescence is

statistically identical. The recipe is thus to measure photon arrival times, calculate the histogram

h(τ|∆t)≈ f (τ) for an appropriately small value of ∆t (a too small value yields too few photon pairs

in each bin, and thus a very noisy histogram) and then compare

(2.189) Cm(τ)≈ h(τ|∆t)−h(∞|∆t)
h(0|∆t)−h(∞|∆t)

τ→∞−−−−→ 0

with simulation results. In experimental practice, one does not calculate a histogram with

equidistant bin size, but chooses exponentially growing (equidistant on a logarithmic time axis)

bin sizes because C(τ) varies more slowly for later times, and more photons contribute to later

bins this way.
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2.5.3 Photo-induced electron transfer (PET)

Figure 2.12: Schematic representation of a single molecule labeled with the fluorescent
dye Atto655 (orange bead surrounded by red/green sphere) and the quencher tryptophan
(lone orange bead). When the dye and quencher are spatially separated (open state, left),
fluorescence is turned on as indicated by the sphere around the dye being green. The sphere
turns red when the distance between dye and quencher deceeds a certain threshold (its
radius), indicating that fluorescence is turned off (closed state, right). Transitions between
the open and closed state stochastically occur with rates k+ and k− respectively.

Photo-induced electron transfer [117] (PET) is a physical effect that can be combined with FCS.

For our purposes, PET is an interaction between the excited fluorophore Atto655 and the amino

acid tryptophan (W), which are both part of (or bound to) the protein under investigation. In the

experiments, the labeled proteins diffuse freely through water, thus entering and leaving the

excitation focus randomly. At the same time, each molecule constantly undergoes conformational

dynamics. When the distance between Atto655 and tryptophan is sufficiently low (≈ 0.5nm

or lower), they “stick together” via a π-stacking interaction of their aromatic ring structures,

forming a complex for tens of nanoseconds before the molecule opens up again. In this “closed

state”, Atto655 transfers energy from its excited state to tryptophan via electron transfer, and

afterwards the complex non-radiatively recombines the charges to relax back to the ground

state (see reference [8] and references therein). This transfer occurs on a time scale of femto- to

picoseconds [118, 119], which is significantly faster than the decay to the fluorophore’s unexcited

ground state via fluorescence, which typically takes several nanoseconds. The consequence of

this separation of time scales is that whenever Atto655 and tryptophan are in close proximity,

the fluorescence signal emitted by Atto655 is effectively quenched: The molecule turns dark.

From an experimentalist’s perspective there are thus only two relevant mesostates of the polymer

chain – it can be open and bright, or it can be closed and dark (see figure 2.12).

Two-state model Due to this circumstance, let us change our perspective from the chain’s full

conformational dynamics to mere transitions from the open to the closed state and vice versa.

This perspective can be most easily described by a two-state model which is in the open state

with probability popen and in the closed state with probability pclosed.
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Given that the molecule is in the open state, we assume that transitions to the closed state occur

with a rate k+ (contact rate or loop formation rate) and in the other direction with a rate k−.

Using popen + pclosed = 1, the time evolution of popen is thus described by the differential equation

(2.190) dt popen =−k+ popen +k− pclosed =−(k++k−) popen +k−

whose solution, assuming popen(0)= 1, is given by

(2.191) popen(t)= k−
k++k−

+ k+
k++k−

exp
(
− t

(k++k−)−1

)
.

Setting the intensity Im of molecule m to I0 in the open state and to 0 in the closed state, it

follows that

(2.192) 〈Im(0) · Im(t)〉 = 〈I0 · Im(t)〉 = I2
0 · popen(t)+ I0 ·0 · pclosed(t)= I2

0 · popen(t) .

The initial condition Im(0)= I0 reflects the experimental situation at hand: Detecting a photon

pair from molecule m implies that at the arrival times of both photon, the molecule was fluorescent.

Hence its contribution to the functional form of the FCS histogram can be interpreted as the

conditional probability that the molecule is fluorescent at time τ, given that it was fluorescent at

time 0. Equation 2.192 confirms this interpretation because, due to its initial condition, popen(t)

is precisely that conditional probability. Note that, at time 0, the molecule is somewhere in the

open state – it has not necessarily just left the closed state!

In practice, there are dynamic effects present in the labeled proteins other than only the opening-

closing dynamics which make their intensity time-dependent – for instance their translational

diffusion out of the excitation focus where the fluorescence intensity vanishes. Since this diffusion

is much slower than the protein’s conformational dynamics, the probabilities of being (i) opened

or closed and (ii) inside and outside of the excitation focus factorize, leading to an extra factor

appearing in equation 2.192. This factor is typically approximated with the term (1+ t/tD)−1,

where the fit parameter tD is the time scale of the molecules’ translational diffusion through the

excitation focus. In practice, the normalized experimental histogram (see equation 2.189) is thus

fitted with the function

(2.193) Cm(t)∝
[
1+ k+

k−
exp

(
− t

(k++k−)−1

)](
1+ t

tD

)−1
.

A set of measured PET-FCS correlation curves is shown in figure 5.7 on page 116. It turns out

that 1/k+ and 1/k− are both on the order of tens to hundreds of nanoseconds, whereas tD is on

the order of milliseconds. We remark that under equilibrium conditions (t →∞)

(2.194)
popen

pclosed = k−
k+

= exp
(
−Fopen −Fclosed

T

)
such that the free energy difference between the open and closed states is given by

(2.195) ∆F = T ln
k+
k−

.
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Contact radius value As of now, it is unclear exactly how close the fluorophore and the

quencher have to get in order to form a non-fluorescent complex. This question has been ad-

dressed in literature [13, 117, 120], and the best value available specifically for Atto655 and

tryptophan [117] is a critical contact radius of

(2.196) RC = 5.4±0.2Å .

This value has been determined by comparing (a) the experimentally measured ratio of fluorescent

Atto655 molecules in a solution with tryptophan with (b) the probability distribution of the

distance between Atto655 and tryptophan in solution extracted from an all-atom (MD) simulation.

It should be noted that both the experimental as well as the simulated systems in that study

include an interaction energy between Atto655 and tryptophan which our idealized beads model

(see next chapter) does not include. Furthermore, it is unclear how the critical contact radius

above (value for the minimum distance between any of their respective atoms) translates into the

proper distance between bead centers (vertices of our discrete chain). We must therefore bear in

mind that the proper critical contact radius in any bead model is only known approximately.

2.5.4 Dynamic metal-induced energy transfer (dynaMIET)

Like PET, metal-induced energy transfer (MIET) is an effect that can be combined with FCS

in order to gain insight into the dynamics of individual molecules. Doing so leads to a method

called dynamic metal-induced energy transfer (dynaMIET). Whereas in PET, the fluorescence

intensity is essentially a step function of the distance between the fluorophore and the quencher,

in dynaMIET the intensity is a smooth, continuous function of the distance of the fluorophore

from a metal surface (see figure 2.14). The experimental sample setup which utilizes this effect is

the following (see figure 2.13): The molecule of interest is immobilized by binding one if its chain

ends to a surface. The other (free) chain end is labeled with the fluorophore which undergoes

Brownian motion, and thus its distance from the surface is a stochastic function of time (see

figure 5.22, page 139).

The physical reason for the MIET effect is that there is a rate of energy transfer from the

fluorophore’s excited state to the metal surface. The strength of this coupling can be calculated

within the framework of classical electrodynamics: Maxwell’s equations are solved in the presence

of a surface and the boundary conditions it imposes on the electric and magnetic field [121–123].

Integrating the Poynting vector around the fluorophore then delivers the total energy flux emitted

by the fluorophore (a dipole), and it turns out that this integral – among other parameters which

classify the experimental setting (wavelength, various refractive indices, etc.) – depends on the

distance of the fluorophore from the surface. The fluorescence intensity is reduced due to the

energy transfer to the surface, and the resulting intensity-over-distance curve is shown in 2.14

for one particular set of experimental parameters.
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Figure 2.13: Sketch of a typical sample used in dynaMIET experiments. A cover slip is
coated with several layers on top of it, the thicknesses of which are in the order of (tens
of) nanometers. One of these layers is a metal, gold in this case, which is necessary for the
MIET effect to take place. On top of the layers are strands of double-stranded DNA (dsDNA),
to which the molecules of interest, single-stranded DNA (ssDNA) in this example, are bound.
These molecules are surrounded by water, and are each labeled with a fluorophore at their
free end. They undergo Brownian motion, making the dye’s intensity time-dependent. In
the setup shown here, the end of the ssDNA can bind and unbind to the end of the dsDNA,
which occurs on a slower time scale than the free polymer dynamics. In practice, the entire
cover slip is covered with (ideally) identical molecules, and the sample is scanned by the
excitation focus (dashed red track), in order to overcome the limitation which photobleaching
imposes on the number of photons collectable from a single fluorophore. This figure was
kindly provided to me by Roman Tsukanov.

Shape of intensity autocorrelation An analytical form for the intensity autocorrelation

function in dynaMIET is not available. That is because (i) the polymer dynamics are high-

dimensional and nonlinear, (ii) only a projection (z-position of chain end) is the relevant observable

and (iii) I(z) is also slightly nonlinear. Nevertheless, a simple educated guess can be made –

assuming Gaussian statistics of the fluorophore’s z-position due to the central limit theorem,

and further neglecting that the z-dynamics may be highly non-Markovian, one is left with one-

dimensional diffusion in a harmonic potential. That is because the physical potential associated

with a Gaussian probability distribution is quadratic due to the Boltzmann factor in thermal

equilibrium. It can be shown that the autocorrelation function of such a process (called the

Ornstein-Uhlenbeck process) is a mono-exponential decay [1]. As a first guess, autocorrelation

curves from dynaMIET experiments or simulations can thus be fitted with mono-exponentials,

and the resulting fit quality be compared with the fit result using a sum of exponential functions.
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Figure 2.14: The theoretically predicted intensity of a fluorophore as a function of its distance
from the topmost layer of the cover slip (see figure 2.13). The fluorophore is typically at most
20−30nm away from the surface, thus making the intensity curve virtually linear. This
curve was calculated with a Matlab-script provided by Daja Ruhlandt.
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2.5.5 Dual-focus fluorescence correlation spectroscopy (2fFCS)

Dual-focus fluorescence correlation spectroscopy (2fFCS) is an experimental method for measur-

ing the diffusion coefficient (or equivalently the hydrodynamic radius) of single molecules [87].

The experimental setup required for 2fFCS is slightly different from that used for PET-FCS and

dynaMIET, and is shown in figure 2.15.

The idea behind 2fFCS is the following: Instead of autocorrelating the photon-arrival times from

molecules in a single excitation volume in the sample, one uses two excitation volumes which are

very close to each other. The arrival times of photons from the two foci are then cross-correlated

(only photon pairs coming from different foci contribute to the FCS histogram) and histogrammed

as a function of their time delay τ. Analogous to regular FCS, this histogram yields information

about the probability that a single molecule has been in one focus at time τ= 0 and then in the

other focus at time τ. The cross-correlation (histogram) depends on a number of experimental

parameters such as the shapes of the foci and the distance between them (see reference [87] for

details), but also on the molecules’ diffusion coefficient which is thus infered as a fit parameter.

In practice, the hydrodynamic radius RAtto655
H of the fluorophore Atto655 is well-known in

literature, and is thus used to determine the molecule’s hydrodynamic radius RH via the Stokes-

Einstein relation (see equation 2.131, page 53):

(2.197) RH = RAtto655
H

D
DAtto655 .

Systematic biases in measuring diffusion coefficients or hydrodynamic radii are thus reduced

because D and DAtto655 are measured independently.
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2.5. EXPERIMENTAL METHODS

Figure 2.15: The experimental setup used for dual-focus fluorescence correlation spectroscopy
(2fFCS). This setup is similar to the FCS setup explained in figure 2.11. The differences
are the following: Instead of only one excitation laser, two lasers are used. Their beams and
wavelengths coincide, but they are polarized in perpendicular directions. Based on their
polarizations, a differential interference contrast (DIC) prism slightly separates the two
beams before entering the objective. As a result, the objective lens focuses them into two
separate excitation foci in the sample. These foci are spatially separated, but close enough
such that the fluorescence light from both foci passes through the pinhole. The two excitation
lasers are pulsed and send out light alternatingly. The time between pulses is on the order
of tens of nanoseconds. Thereby, when a photon is detected in any detector, it can be inferred
which laser pulse is the most recent, and therefore it is also known which laser the pulse
belongs to and from which excitation volume in the sample the photon was emitted. This
figure was kindly provided to me by Jörg Enderlein and published in [87].
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3
THE POLYMER MODEL

In this chapter, we define our polymer model, present its equation of motion and discuss its

parameters. Any real polymer embedded in a thermal fluid has the following properties:

1. It undergoes thermal fluctuations.

2. It cannot cross through itself.

3. Neighboring tangent vectors have finite angular correlation.

4. Its subunits stay connected along the chain.

5. Its subunits experience solvent friction and hydrodynamic interactions.

With the preparations of the previous chapter at hand, it is straightforward to define our polymer

model which fulfills all the criteria above: We embed a discrete elastic rod (section 2.3.2) in an

overdamped fluid (section 2.1.5) which is in thermal equilibrium (section 2.2.6). Its bending energy

E quantifies elastic forces and results in a finite persistence length (criterion 3). A spherical bead

with hydrodynamic radius a is associated with each of the chain’s vertices, including its end

points. The hydrodynamic diffusion tensor D within the Rotne-Prager approximation quantifies

solvent friction via its diagonal blocks Dii, and also hydrodynamic interactions via its off-diagonal

blocks Di j (criterion 5). The beads’ dynamics is described by the Langevin equation (criterion 1)

underlying inextensibility constraints: the distances between neighboring beads are fixed to the

bond length d (criterion 4). In order to fulfill criterion 2, we introduce an excluded volume radius

REV which is associated with each bead (hard sphere): any two beads~r i and~r j are prohibited

from overlapping in the sense that |~r i −~r j| < 2REV.
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The two bead radii a and REV must not necessarily coincide: One is related to geometric con-

straints on protein motion, while the other is related to hydrodynamic coupling and drag, taking

into account the hydration shell of tightly bound water molecules around an amino acid.

To furthermore mimic the experimental situation at hand more accurately and make use of all

available information, we take the fluorophore with which the real molecules are labeled into

account. This is easily achieved within our model by allowing the chain’s first bead to possess a

given hydrodynamic radius a1 and the first edge (bond) to have a given length d1, both of which

may reflect the fluorophore’s properties rather than the protein’s. A sketch of our polymer model

can be found in figure 3.1.

Figure 3.1: A sketch of one particular conformation of our polymer model. It consists of N
spherical beads. The blue spheres show their excluded volume radius REV, and the green
spheres show their hydrodynamic radius a. The bond lengths d (rods) in the model are fixed
and are only shown for visual purposes. The first bead has its own hydrodynamic radius a1
and bond length d1, which enable it to represent the fluorophore rather than e.g. an amino
acid. Parameters which are not shown in this sketch are the chain’s bending stiffness σ and
the fluid’s temperature T and viscosity η.

From the perspective of polymer theory, our model can be classified as follows: We have at

hand an overdamped, semiflexible bead-rod chain with excluded volume effects, hydrodynamic

interactions and an attached fluorophore.

82
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Equations of motion As we established in the previous chapter, the constrained (section 2.2.6,

page 48) Langevin equation (section 2.2.5, page 41) for the polymer model described above reads

(3.1) d~r i =T−1
N∑

j=1
Di j ·

[−~∇ j(EEV −TSC)+λi+1~ti+1 −λi~ti
]
dt +

p
2

N∑
j=1

Bi j ·d~Wj

where i = 1, . . . , N, D=B ·BT , λ0 =λN = 0,~ti = ~r i+1 −~r i

|~r i+1 −~r i|
and

(3.2) EEV =


E if min

i, j
|~r i −~r j| > 2REV

∞ otherwise
.

The N −1 inextensibility constraints (page 50) read

(3.3)
|~rk+1 −~rk| =d

and |~r2 −~r1| =d1 .

The bending energy E is given by equation 2.158 (page 62) and on page 68 we explained how

it can be translated into a persistence length. The constraint-entropy gradient ~∇SC is given by

equation C.14 (page 181) and the diffusion matrix D is given by equation 2.29 (page 24). This

expression for the diffusion matrix can be simplified in the case of equally sized beads (size a),

with only the first one being differently sized (size a1). It reads

(3.4)

D i j =



3
4
·D0 · a

r i j
·
[(

1+
a2

i +a2
j

3r2
i j

)
13×3 +

(
1−

a2
i +a2

j

r2
i j

)
~r i j~rT

i j

r2
i j

]
if ai +a j < r i j

D0 ·
16r3

i j(ai +a j)−
(
∆a2 +3r2

i j
)2

a> ·32r3
i j

13×3 +
3
(
∆a2 − r2

i j
)2

a> ·32r3
i j

~r i j~rT
i j

r2
i j

 if ∆a < r i j ≤ ai +a j

D0 · a1

a
13×3 if r i j ≤∆a

where D0 = T
6πηa

is the diffusion coefficient of a single bead, r i j = |~r i −~r j|, a> =max(ai,a j) and

∆a = |ai −a j|. For i 6= 1 6= j, ∆a can immediately be set to zero and ai +a j to 2a. Furthermore, we

have already utilized the fact that D is divergence-free.

Parameters The parameters included in our model are summarized in table 3.1. Of these

nine parameters, only two are free fit parameters: The number of beads N can be freely chosen

without altering the characteristic properties of the polymer model itself, and is dictated by the

application at hand: Later on, one bead represents one amino acid, and the number of amino

acids in experimentally studied proteins is known. The same holds true for the bond length d:

The distance between two consecutive amino acids in a protein (i.e. the distance between Cα

atoms) equals d = 3.8Å.
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symbol name

N number of beads
a hydrodyn. bead radius
a1 hydrodyn. radius of first bead
d bond length
d1 length of first bond
σ bending stiffness
η fluid viscosity
T temperature

REV excluded volume radius

Table 3.1: The nine parameters appearing in our polymer model.

Moreover, the two parameters a1 and d1 have only been introduced for the first bead to represent

the fluorophore with which experimentally studied proteins are labeled. Fortunately, the relevant

properties of the fluorophore used for this thesis (Atto655) are known: a1 = 6Å and d1 = 7Å [124].

The fluid around the polymer (heat bath) determines the two parameters η and T, which are

hence not model parameters but known environmental parameters. Furthermore, the purpose of

the excluded volume radius REV is to prevent the model chain from crossing through itself. We

set it to REV =p
2 /4 ·d ≈ 0.35 ·d, which is the minimum value preventing bond crossings while

interfering with the local bending stiffness the least. This value was chosen for this geometric

reason alone and is also the value displayed in figure 3.1.

Therefore, only two model parameters remain: The chain’s bending stiffness σ and one bead’s

hydrodynamic radius a. Both indeed quantify characteristic properties of the molecule itself.

We reiterate that (given the other parameters) σ alone determines all statistical properties of

our polymer model, while a influences only dynamical properties. That is because σ enters the

Boltzmann distribution, which is independent of the diffusion matrix D and thus independent

of a. The influence of a, σ and N on the model’s dynamics will be investigated in section 5.1

(page 107), and the numerical method to solve the constrained Langevin equation is explained on

page 89.

Let us agree upon the following three conventions:

1. If a1 and d1 are not explicitly specified, they equal a and d respectively.

2. If REV is not specified, excluded volume effects are not taken into account such that REV = 0.

3. The bound-end constraint (page 50) only applies if explicitly stated. Otherwise, the chain is

swimming freely.
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4
NUMERICAL METHODS

In the previous chapters, the theoretical background for this thesis has been laid and we have

arrived at a polymer model whose dynamics is described by the geometrically constrained

Langevin equation. In this chapter, we introduce the numerical methods used to (i) generate

trajectories from the Langevin equation, (ii) efficiently perform ensemble averages by sampling

the Boltzmann distribution, (iii) calculate the hydrodynamic radius and (iv) calculate the contact

rate from a model chain’s trajectory. Finally, we benchmark these methods by checking that they

reproduce known analytical results.

4.1 Nondimensionalization

Quantities appearing in physical equations often carry a physical unit: a weight may be measured

in kilograms, a time in seconds, and so forth. If we measured lengths in meters, Cartesian

coordinates x in the Langevin equation would take on values around x ≈ 10−10 m. In order to

avoid numerical rounding errors, it is purposeful to have at hand variables which take on values

on the order of 1. In this example, this could easily be achieved by measuring x in nanometers

instead. However, not only decimal multiples of SI-units can serve as physical units, and it pays

off to make use of the physical system’s natural units. For instance, in section 2.1.3 (see page 17)

we nondimensionalized the Navier-Stokes equation by manually constructing units from the

application at hand: an object embedded in a fluid. The object’s length r0 and velocity v0, and the

fluid’s viscosity η and density ρ enabled us to construct a length scale, a time scale, a pressure

scale and a force scale. Consequently the total number of free parameters was reduced, and

instead a single “aggregated” parameter emerged naturally: the Reynolds number Re= ρr0v0η
−1.
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4.1. NONDIMENSIONALIZATION

More formally, physical quantities y are replaced by primed variables such that y= y′ · y0. Here,

y0 serves as a unit (scale) and y′ is dimensionless and takes on values on the order of 1. Numeri-

cal computations are then only performed at the level of the primed variables. Afterwards the

numerical results are translated back into the physical quantity y by multiplying them with y0.

This formal procedure will now be performed for all quantities which possess a physical dimension

and appear in the constrained Langevin equation. We choose the temperature T as an energy

scale, the bond length d as a length scale, and the diffusion coefficient of a single bead D0 =
T/(6πηa) as a “diffusion” scale. From these three values alone, all other scales can be constructed

as follows:

(4.1)

~r = d ·~r′

a = d ·a′

D= D0 ·D′

~∇= (1/d) ·~∇′

σ= d ·σ′

∆s = d ·∆s′

E = T ·E′ = T · σ
′

2

N−1∑
k=2

(2 tan(θk/2))2

∆s′

λ= (T/d) ·λ′

t = (d2/D0) · t′

B=
√

D0 ·B′

d~W =√
t0 ·d~W ′

Inserting these primed variables into the constrained Langevin equation yields

(4.2)

d~r′i =
N∑

j=1
D′

i j ·
[−~∇′

j(E
′−SC)+λ′

i+1~ti+1 −λ′
i~ti

]
dt′ +

p
2

N∑
j=1

B′
i j ·d~W ′

j

where 1= |~r′k+1 −~r′k|
and d′

1 = |~r′2 −~r′1| .

Note that the dimensional and nondimensional equations of motion evidently differ only in

that the first explicitly includes the temperature T, which is not true. In the most general case,

the dimensional equations of motion include a total of 9 physical parameters whose values

must be specified to find a solution (see also table 3.1, page 84): d, d1, a, a1, σ, T, η, N, and REV.

The nondimensional equations require only 6: d′
1, a′, a′

1, σ′, N and R′
EV. As the Buckingham-Π

theorem dictates [125], this difference of 3 is no coincidence but results from making use of 3

physical scales to nondimensionalize our system.
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The consequence is that dimensional parameter choices which lead to identical values for the

non-dimensional parameters can be treated in a single numerical simulations. To translate a

simulated, non-dimensional trajectory~r′(t′) back into physical units, we must only specify the

length scale d and the time scale

(4.3) t0 = d2

D0
= d36πηa′

T
.

To do so, the “missing parameters” d, η and T are required after all. Let us make two remarks.

Firstly, since d2 = 6D0 (t0/6), the chosen time scale t0 can be interpreted as 6 times the time

during which a single bead typically diffuses one bond length. Hence, it is a relevant duration for

the local movement of the chain’s vertices in that it does not depend on the chain length N. It is

hence well-suited to simulate loop formation events for different chain lengths with comparable

accuracy. Secondly, the hydrodynamic radius RH is a length and is therefore nondimensionalized

by dividing it with the bond length d; and the contact rate k+ has the physical unit 1/time and is

thus nondimensionalized by multiplying it with t0.

Hereafter, we will only deal with the dimensionless quantities and omit the primes for readability.

In particular, times and distances will be denoted in units of t0 and d unless they are explicitly

compared with experimental values.

4.2 Constraints

The general case of both inextensibility as well as bound-end constraints being present at the

same time will now be discussed. The special case of an inextensible chain which is not bound

but freely swimming follows immediately from the general case, which will be demonstrated by

the end of this section. The N constraints read

(4.4)
|~r1| = const.

and |~rµ+1 −~rµ| = const.

where µ = 1, . . . , N −1 and µ = 0 refers to the first line. To combine them with the Langevin

equation, we differentiate them with respect to time, which yields

(4.5)
~t0 ·d~r1 = 0

and ~tµ ·
(
d~rµ+1 −d~rµ

)= 0

where µ= 1, . . . , N −1 and~t0 =~r1/|~r1| as before. According to the constrained Langevin equation,

the increments d~r i depend linearly on the Lagrangian multipliers λµ. This is fortunate because

it means that the differentiated constraints above can be written as a set of linear equations for

the Lagrangian multipliers~λ := (λ0,λ1 . . . ,λN−1)T , which reads

(4.6) M ·~λ=~v .
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Here, M is an N ×N-matrix and~v is an N-vector. Their entries (whose indices start counting at

zero) are derived in appendix E and read

(4.7)

v0 =−
N∑

j=1
~tT

0 ·D1 j ·~Fuc
j ,

vµ =−
N∑

j=1
~tT
µ ·Hµ j ·~Fuc

j ,

M00 =−~tT
0 ·D11 ·~t0 ,

M0ν =~tT
0 ·G1ν ·~tν ,

Mµ0 =−~tT
µ ·Hµ,1 ·~t0 ,

and Mµν =~tT
µ ·Cµν ·~tν

where µ,ν= 1, . . . , N −1 and the following 3×3-matrices were defined:

(4.8)

Gpq :=Dpq −Dp,q+1, p = 1, . . . , N, q = 1, . . . , N −1

Hpq :=Dp+1,q −Dpq, p = 1, . . . , N −1, q = 1, . . . , N

Cpq :=Hpq −Hp,q+1, p = 1, . . . , N −1, q = 1, . . . , N −1 .

The unconstrained force ~Fuc is

(4.9) ~Fuc =−~∇(E−SC)+D−1 · (~∇T ·D)+
p

2 (BT )−1d~W /dt .

Once these expressions are evaluated, the Lagrangian multipliers are easily identified as

(4.10) ~λ=M−1 ·~v .

In each simulation time step, the Lagrangian multipliers must be determined anew and then be

inserted into the equations of motion. That is because M depends on the chain conformation, and

because~v depends on both the chain conformation and the unconstrained forces simultaneously.

In order to treat the case of a freely swimming, inextensible chain, the bound-end constraint can

easily be dropped by discarding all terms from equation 4.7 with at least one index which is zero,

and by setting λ0 = 0. Thus the dimensionality of equation 4.6 is reduced by 1 and the elements

of M and~v are

(4.11)
vµ =−

N∑
j=1
~tT
µ ·Hµ j ·~Fuc

j

and Mµν =~tT
µ ·Cµν ·~tν

where µ,ν= 1, . . . , N −1.
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4.3 Simulation algorithm

The simulation algorithm is shown as a flow chart in figure 4.1. It involves a method called

Monte-Carlo sampling (MC sampling) which is explained in the section following this one. In

order to start a simulation, one needs to specify six dimensionless parameters – the chain length

N, the bending stiffness σ, the hydrodynamic bead radius a, the excluded volume radius REV

and the first bead’s hydrodynamic radius a1 and the first bond length d1 (the latter 5 in units

of d). The algorithm itself requires three more parameters – the numerical time step size ∆t,

the constraint tolerance tol1 and the material frame tolerance tol2. If applicable, the twisting

stiffness and reference curvatures (see equation 2.156, page 61) must also be specified.

Initialization MC sampling is used to draw N −2 bending and azimuthal angles from the

Boltzmann distribution. Starting the chain from the origin into z-direction, these angles are

then used to construct the initial chain. The initial chain is equipped with a Bishop frame which

starts at the first chain edge as unit vectors in x and y directions, and is then iteratively con-

structed using parallel transport. To find the initial material frame, the Bishop frame is rotated by

integrated twist angles which are also drawn from their Boltzmann distribution via MC sampling.

Integration step The integration step itself is a midpoint algorithm adapted from refer-

ence [67]. It requires that we first calculate the diffusion matrix D and the stochastic forcep
2 (BT )−1∆W /∆t by performing a Cholesky decomposition of D, and then preproject it. Preprojec-

tion means that the force itself is modified using Lagrangian multipliers (as already explained)

such that it fulfills the geometric constraints at the level of forces, not velocities. This stochastic

force is held fixed throughout the integration step. Then the deterministic forces are evaluated at

the chain’s state~r at the beginning of the integration step. Next, the Lagrangian multipliers are

determined and the chain’s coordinates are updated with a halved time step size ∆t/2, arriving at

the midpoint~rmid. At the midpoint, the diffusion matrix, deterministic forces and Lagrangian

multipliers (but not the stochastic force) are reevaluated and the resulting velocity dt~r is used

to perform the full time step ~r 7→~r+dt~r ·∆t. Throughout this thesis, the value ∆t = 10−3 t0 is

used. Simulated trajectory lengths range from at least 104 t0 to several 105 t0, corresponding to

≈ 107 −108 or more integration steps. One such trajectory typically takes from several hours up

to two days to simulate on a regular desktop PC, using four processor cores such as an Intel Core

i5-6600 at 3.30 GHz.
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Figure 4.1: This figure shows the numerical algorithm used to generate trajectories from the
nondimensional, constrained Langevin equation (equation 4.2, page 86). Starting the algorithm
at the top left corner, the initial state of the chain is drawn from the Boltzmann distribution
using MC sampling. Afterwards we repeatedly perform integration steps, in between which the
observables of interest are stored to an external file. Each integration step that results in any
two beads overlapping gets rejected (and the chain before the step restored), and accepted if it
does not. After successful integration steps, the geometric constraints and the orthonormality
of the material frame are repaired if a predefined tolerance has been violated. For simulations
where the material frame is not required, all orange boxes can be omitted.
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Overhead Before each integration step, the chain’s current state is stored and observables of

interest are saved to an external file. After the integration step, it is checked whether any two

beads overlap sterically, i.e. min
i, j

|~r i −~r j| < 2REV. If this is the case, the previously stored state

before the integration step is retrieved and the integration step repeated (with a new realization

of the random force). In this case the retrieved state gets stored to the external file twice for

two consecutive time steps, which is necessary for correct Boltzmann statistics1. When a time

step is rejected, one may therefore imagine the chain remaining in its state for a time interval

of length ∆t. If the integration step was successful, the material frame is updated via paral-

lel transport and it is checked whether either the constraints or the material frame require repair.

Repair step There are two independent repair steps. Firstly, whenever any bond length

deviates from 1 (or d1/d) by an amount tol1 = 10−3 or more, the chain is separated into two

parts: the part before and after that bond. Both parts are then rigidly shifted into the tangential

direction of that bond, such that (i) the bond length after the shifting process equals 1, and that (ii)

the center of mass of the entire chain is preserved. This “repair” process for the constraint lengths

is required because the method of using Lagrangian multipliers does lead to time increments

which are parallel to the constraints, but due to the finite numerical time step size, higher order

errors slowly add up during a simulation. Secondly, the material vectors ~m(3) are known exactly

in each time step because they equal the tangent vectors. The material vectors ~m(1), however, are

correctly initialized before the simulation, and are then iteratively parallel transported along

with the dynamics of the tangent vectors. While normalizing these vectors is trivial, we cannot be

certain that they do not slowly acquires a tangential component over the course of the simulation

due to numerical errors. Thus, whenever any |~m(1) ·~m(3)| > tol2 = 10−5, we subtract the tangential

component via

(4.12) ~m(1) 7→ ~m(1) − (~m(1) · ~m(3)) ~m(3)

and normalize ~m(1) afterwards. The remaining material vector ~m(2) is found as the cross product

of the other two.

1According to the detailed balance condition, the probability outflux from a state close to a region of zero probability
must be lowered.
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4.4 Monte-Carlo sampling

In order to sample the Boltzmann distribution in presence of excluded volume effects, we make use

of an algorithm which is called the Metropolis Monte-Carlo, Markov-Chain-Monte-Carlo or simply

Monte-Carlo algorithm [126]. We simply refer to it as MC sampling. MC sampling constitutes an

efficient method to sample a given probability distribution defined on a high-dimensional space

Ω. It only requires that the values of the (not necessarily normalized) probability distribution

can be numerically evaluated. For the Boltzmann distribution, this condition breaks down to the

energy function E being evaluable.

The MC sampling algorithm is shown in figure 4.2 as a flowchart and works as follows: A discrete

random walk L := {xi|i = 1,2,3, . . . } within Ω is designed in such a way that the probability to go

from a state A to a state B is the same as going from B to A. The index i is a step index, not

time, and x parametrizes the model chain. The random walk must satisfy the detailed balance

condition:

(4.13)

flux(A → B)= flux(B → A)

⇔ p(A) ·k(A,B)= p(B) ·k(B, A)

⇔ k(B, A)
k(A,B)

= p(A)
p(B)

!= exp
(
−E(B)−E(A)

T

)
.

The transition rate k is then written as the product

(4.14) k(A,B)= ktrial(A,B) · paccept(A,B)

where ktrial(A,B) is isotropic and uniformly distributed around A, describing trial steps from

point A to a point B in its vicinity. It is crucial that these trial steps are unbiased and allow

all points within Ω with non-zero probability to be reached by the algorithm. In particular, this

means that ktrial(A,B)= ktrial(B, A), and thus the detailed balance condition above reduces to

(4.15)
paccept(B, A)
paccept(A,B)

= exp
(
−E(B)−E(A)

T

)
.

After a trial step has been chosen, it is accepted with probability paccept(A,B), or otherwise

rejected and a new trial step starting from A is attempted. The core idea of MC sampling is to

implement unbiased trial steps and then cleverly choose the functional form of Paccept(A,B) such

that detailed balance is obeyed while the ratio paccept(A,B)/paccept(B, A) equals the Boltzmann

factor. This condition is fulfilled for

(4.16) Paccept(B, A)=min
(
1,exp

(
−E(B)−E(A)

T

))
,

which can be easily checked for both E(A)≤ E(B) and for E(A)> E(B). Therefore, it suffices that

any chain conformation’s energy can be computed in order to sample the Boltzmann distribution.
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draw random number 

calculate 

no yes  

make random step 

update list

choose initial state

start with empty list

update state

Figure 4.2: This flow chart shows the algorithm called Monte-Carlo (MC) sampling. Starting
at the top, an arbitrary state of the system (e.g. a straight chain) is initiated. The state’s
parametrization~x is then repeatedly varied in a random manner (trial steps) leading to a
new state. If the new state’s energy is lower than the energy of the current state, the trial
step is accepted and the current state of the system is updated to this new state. If the
energy is higher than before, the trial step is only accepted with probability exp(−∆E /T)
and otherwise rejected. Before each trial step, the current state is saved to a list, regardless
if the preceding trial step was successful or not. After a sufficient number of trial steps, this
list is saved to an external file. Its elements are distributed according to the Boltzmann
distribution.
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In this thesis, the parametrization used to represent chain conformations withinΩ is the following:

A chain consisting of N beads is constructed via its N−1 tangent vectors, where the first tangent

vector is held fixed because the chain’s global orientation in space is irrelevant for its energy

function. The remaining N −2 tangent vectors are represented in spherical coordinates via N −2

torsional (azimuthal) angles φ and N −2 cosines of bending (polar) angles cosθ respectively. The

polar axis for each bond is the previous bond’s tangent vector, and the azimuthal angle of tangent

vector ~ti is its angle to the plane spanned by ~ti−1 and ~ti−2. Trial moves consist of changing

these 2N −4 values by independently and simultaneously adding random numbers to each of

them. These random numbers are uniformly distributed on the interval [−∆,∆], and we employ

reflecting boundary conditions for cosθ in order to stay in the interval [−1,1]. Note that, without

further discrimination, these trial moves are unbiased and lead to a uniform distribution of cosθ

and φ, which is the correct equilibrium distribution on a sphere’s surface (see the footnote on

page 28) in the absence of bending energy and excluded volume effects. The trial moves are

then accepted or rejected using the Boltzmann factor, and thus detailed balance is achieved. For

calculating the Boltzmann factor, the energy of chain conformations where any two beads overlap

is set to infinity such that corresponding trial moves are automatically rejected:

(4.17) p
(
cos~θ,~φ

)
=


0 if any two beads overlap
1
Z

exp
(
−E

T

)
otherwise

.

Whenever MC sampling is used, the value of ∆ is chosen anew such that the average acceptance

rate of trial moves is around 30%. The average acceptance rate of the MC sampling algorithm

does not influence the sampled distribution, but does determine the efficiency (speed) with with

different regions of Ω are sampled. It is typically larger for small step sizes ∆ because in that case,

the energy difference E(B)−E(A) is small and the Boltzmann factor close to 1. We remark that a

Langevin simulation samples the Boltzmann ensemble as well, but is a computational overkill

when used for this purpose alone. That is because MC sampling allows for much larger “time

steps” and does not require the calculation of forces, diffusion matrices, Choleski decompositions

and Lagrangian multipliers. Note also that the MC sampling algorithm is not altered by the

presence or absence of the bound-end constraint, demonstrating that it results in correct statistics,

not correct dynamics! To give the reader an intuition, in practice (using my code) a sufficiently

long Langevin simulation takes a few days, and sufficiently long MC sampling a few minutes.
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4.5 Hydrodynamic radius of a polymer chain

As we found in section 2.2.7 on page 52, the Stokes-Einstein relation relates any object’s hydrody-

namic radius RH = T/(6πηD) to its diffusion coefficient D, which in turn is defined via the object’s

mean-square displacement over time ( 6D = lim
t→∞∂t′〈~R2〉|t ) and is related to the 3×3-dimensional

diffusion matrix D via D = TrD /3. Before evaluating these expressions for a polymer chain,

let us present a result from De la Torre and coworkers [127, 128]. They have shown that the

scalar diffusion coefficient D of any rigid conformation of a polymer can be directly calculated

from its 3N ×3N-dimensional diffusion matrix D as follows. Given the collection of forces on

all beads, ~F = (~F1, . . . ,~FN ), the collection of velocities~v is given by~v =βD ·~F. Inversion delivers
~F = Γ ·~v where Γ= T D−1 is the 3N ×3N-dimensional generalized friction tensor, consisting of

N2 3×3-blocks Γi j. A rigid translation with velocity ~vR (all beads move with same velocity) is

thus related to the total force ~FR =∑
i ~Fi acting on the entire molecule via

(4.18) ~FR =
N∑

i, j=1
Γi j~vR =:ΓR~vR .

Hence, the connection between total force and rigid translational velocity is described via the

3×3-dimensional friction tensor ΓR =∑N
i, j=1Γi j. Therefore, the diffusion coefficient of one chain

conformation is obtained as

(4.19) D = 1
3

TrDR

where DR = TΓ−1
R is the rigid molecule’s 3×3-dimensional diffusion tensor. Our polymer chains

are not rigid, however, but undergo conformational dynamics, making DR time-dependent because

the diffusion matrix D is a function of the Cartesian coordinates of the chain’s vertices. We will

now make an argument that in this case, the (long-term) diffusion coefficient is given by the

average over the Boltzmann ensemble:

(4.20) D = 〈D(~r)〉 = 1
3
〈TrDR(~r)〉 .

The diffusive chain dynamics of the polymer is a series of infinitesimal increments at different

times with different chain conformations such that

(4.21)
~R(t)=

∫ t

0
d~R

and 〈~R2〉 = 〈
∫ t

0

∫ t

0
d~R(t′) ·d~R(t′′)〉 .

Here, ~R is any coordinate of the chain, for example one of its vertices. For short times, the indi-

vidual vertices undergo conformational dynamics, which are faster than the chain’s translational

diffusion we seek to study here. The reason for this is that the polymer is not a rigid object,

and the friction associated with the movement of a single bead is smaller than that associated
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with movements of the chain as a whole. This circumstance can be observed in the simulated

curve 〈~R2〉(t) displayed in figure 4.7 on page 104, and in the additional figures in appendix F;

the function 〈~R2〉(t) is concave with its slope decreasingly converging towards 6D. It would

therefore be incorrect to insert the Langevin equation for d~R as it describes the vertices’ short

term dynamics – doing so would deliver an average of initial slope ∂t〈~R2〉(0) for different chain

conformations. To obtain instead a chain conformation’s long-term slope ∂t〈~R2〉(∞), we make use

of De La Torre’s result above2 and obtain

(4.22)

〈~R2〉 = 〈
∫ t

0

∫ t

0
d~R(t′) ·d~R(t′′)〉

=
∫ t

0
〈d~R2〉(t′)

= 6
∫ t

0
D(t′)dt′

= 6〈D〉 t

= 6 · 1
3
〈TrDR〉 t .

Here, the statistical independence of increments at different times was used, which is justified

for translational dynamics of a rigid chain, but not necessarily for intrachain dynamics. Finally,

we find the hydrodynamic radius of a polymer chain to be:

(4.23)

RH = T
6πηD

= T
2πη〈TrDR〉

= 3T
6πηD0〈TrD′

R〉
= a

3
〈TrD′

R〉
where DR = TΓ−1

R ,

ΓR =
N∑

i, j=1
Γi j

and Γ= T D−1 ,

and D0 = T/(6πηa) as before. In numerical practice, the average 3 · 〈TrD′
R〉−1 is evaluated using

MC sampling. In order to be converted into physical units, the so-found value only needs to be

multiplied with the single bead hydrodynamic radius a, which also enters the diffusion matrix

during the averaging process.

2In De La Torre’s picture of a rigid chain, the mean square displacement is a linear function of time with a
constant slope for all times. Thus its short-term and long-term behaviors are identical.
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We remark that in the absence of hydrodynamic interactions, D and Γ are diagonal such that

ΓR ∝ N and thus RH ∝ N. To be more precise, one obtains RH =∑
i ai where ai is the i-th bead’s

hydrodynamic radius. For intuition, a number of polymer chain conformations together with their

respective hydrodynamic radii are displayed in figure 4.3.

Figure 4.3: 8 polymer chains, shown in blue, consisting of 10 beads each. The rods connecting
the beads are only shown for visual purposes. The hydrodynamic bead radius a decreases
from left to right (displayed bead radii are a ∈ {1,0.5,

p
2 /4,0.2} bond lengths), which de-

creases the hydrodynamic radius of the chain (shown in gray, calculated using equation 4.23
for a single conformation). More compact conformations can be seen on the bottom and more
elongated ones on top. On average, the gray sphere would diffuse as fast as the respective
polymer chain in that conformation.

The polymer’s diffusion coefficient can also be obtained directly from a Langevin simulation

by evaluating 6D = lim
t→∞∂t′〈~R2〉|t. A simulated trajectory used for this purpose needs to be long

enough to sample a sufficiently large set of chain conformations and noise realizations, however,

which is numerically much more expensive than using MC sampling.

A quantitative analysis of the dependence of RH on the chain’s parameters a, σ and N can be

found in chapter 5.1 on page 107.
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4.6 Contact rates

Next we demonstrate how the contact rate k+ is calculated from a simulated trajectory~r(t). For

better understanding, one such trajectory’s end-to-end distance is shown in figure 4.4.
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Figure 4.4: A simulated trajectory of the end-to-end distance (black) in a chain with parame-
ters σ= 0, a = 1 and N = 5. Shown in red is the corresponding fluorescence intensity (state)
of the chain, using a critical threshold (green line) of RC = 1.

As we have seen in section 2.5.3 (page 74), the experimentally measured rate k+ with which a

fluorophore and quencher meet is given by

(4.24) k+ = 1
〈τ〉 .

When starting in an open state, τ denotes the time until the first fluorophore-quencher encounter,

meaning that their distance deceeds the critical contact radius RC. The average runs over the

Boltzmann ensemble of all open initial states. Note that the rate k+ is therefore not the frequency

with which the end-to-end distance crosses the threshold RC, as this rate would be very high,

considering that in general every opening event is immediately followed by several re-closing

events! Instead, the rate k+ must be understood like this: Given an ensemble of chains which are

somewhere in the open state, k+ is the rate with which this ensemble loses trajectories which

have never left the open state. For a single trajectory, let us denote the times when the state of

the chain (open or closed) is changing in either direction as tk. A simulation thus delivers a list of

“threshold crossing events” {t1, t2, t3, . . . }.
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Next, we divide the time axis into intervals Ik := [tk−1, tk[ such that the time intervals including

all open and closed states respectively are

(4.25)

Iopen = ⋃
kodd

Ik

and Iclosed = ⋃
keven

Ik .

Here, we assumed that the simulation starts in the open state which in practice is almost always

the case. If, against all odds, a simulation starts in the closed state, we simply start the list of

events with t1 = 0 and proceed as usual. For any open initial state at time t ∈ Iopen, the time

until the next closing event is τ(t)=min
tk>t

tk − t and we note that within any open interval Ik, the

average time until the next event is given by

(4.26) 〈τ〉k =
|Ik|
2

= tk − tk−1

2
.

Averaging τ over the set of all open initial conditions Iopen then yields

(4.27)
〈τ〉 = 1

|Iopen|
∫

Iopen
τ(t′)dt′

=
∑

kodd
∫

Ik
τ(t′)dt′∑

kodd tk − tk−1
.

The integrals in the enumerator can easily be evaluated as

(4.28)
∫

Ik

τ(t′)dt′ = |Ik|
|Ik|

∫
Ik

τ(t′)dt′ = (tk − tk−1) · 〈τ〉k =
(tk − tk−1)2

2
.

Hence, the contact rate k+ is given by the simple expression

(4.29) k+ = 〈τ〉−1 = 2
∑

kodd tk − tk−1∑
kodd (tk − tk−1)2 .

When running a simulation, one thus only needs to save the event times tk (closing and opening

events!) into a text file in order to determine the contact rate k+. It should be noted that the

trajectory length should be long compared to 〈τ〉 in order not to incorrectly underrepresent

long first passage times τ. The contact rate’s error bars are obtained as follows: We calculate

M independent values for k+, estimate their standard deviation, and divide it by
p

M . The

M independent values stem from independent trajectories with identical parameters, or from

dividing a single sufficiently long trajectory into M equally long parts.

Since the numerical values of tk are nondimensional, the contact rate k+ above must be multiplied

with t−1
0 in order to be compared with experimental results.

Clearly, it can be expected that k+ depends on the chosen threshold RC. This dependence is

investigated in section 5.2 (see page 127). In the experimentally relevant regime, we will find the

simple scaling law k+ ∝ R2
C to be a good approximation.
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4.7 Benchmarks

Our simulation algorithm generates trajectories which obey the constrained Langevin equation.

Due to the presence of geometric constraints and the nonlinearity of both the diffusion matrix

and the force terms, a full analytical solution is not available. Nonetheless, some properties of

the solution are known to us, and it is possible for us to validate our algorithm by comparing

numerical with theoretical results.

Firstly, simulated chains have to fulfil the imposed geometric constraints. Secondly, the simulated

trajectories’ bond angles have to sample their Boltzmann distribution. Thirdly, the slope of the

chain’s long-term mean squared displacement has to be a linear function of time and yield the

correct scalar diffusion coefficient. Fourthly, although no analytical values for the contact rates are

available, our numerical values have to converge as the numerical time step size ∆t is decreased.

Unless stated otherwise, we consider chains with uniform bond lengths and hydrodynamic bead

radii, and without excluded volume effects. The free parameters are therefore a, σ and N.

Constraints With the help of Lagrangian multipliers, our numerical algorithm projects the

increments d~r such that they have no component perpendicular to the geometric constraints.

Due to the geometric nonlinearity of these constraints and the finite time step size utilized,

higher-order errors exist and accumulate during a simulation. Our algorithm repairs the slightly

violated constraints whenever a tolerance of tol1 = 10−3 is exceeded. The criterion we test here is

thus that the deviation δg from a constraint, as a function of time, should take on values between

0 and tol1.

σ 〈|δg|〉/tol

0 0.374
0.25 0.366
0.5 0.357
0.75 0.347

1 0.344

Table 4.1: The time-averaged deviations from the inextensility constraints for different chain
stiffnesses σ.

The time-averaged values of δg, where g denotes the inextensibility constraints in freely swim-

ming chains, were monitored and are shown in table 4.1. The chains consist of N = 10 beads

with hydrodynamic radii a = 1, and the bending stiffness σ was altered between 0 and 1. The

displayed values were monitored after a time step was performed and before the constraints

were potentially repaired. We also verified that all increments d~r indeed have no component

perpendicular to the constraints after adding the Lagrangian multipliers to the forces.
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Boltzmann distribution As before (see the section on MC sampling, page 92), we represent

each tangent vector in spherical coordinates (φ,θ), and the corresponding Boltzmann distribution

for each bond is given by

(4.30) p
(
y= cosθ,φ

)= 1
Z

exp
(
− σ

2d

(
2tan

(arccos y
2

))2
)

.

It notably does not depend on the azimuthal angles φ whose distribution must hence be uniform.

Chains with N = 10 and a = 1 were simulated for different values of σ. The simulated histograms

of values for cosθ and φ were taken over all times and all vertices, and are shown in figure 4.5.

We show the bending angles’ cosines instead of the bending angles themselves because without

a bending energy (σ= 0), the cosines would be uniformly distributed, and thus the asymmetry

introduced by the bending energy (σ> 0) becomes more clear.

The histograms for each individual bond have the same form, but are less well converged since

there is less data available from the same trajectory. Choosing a different hydrodynamic bead ra-

dius for the first bead (i.e. attaching a fluorophore) does not alter the histograms (data not shown).

To verify that the excluded volume effect is correctly implemented, we additionally simulated

a trimer (N = 3) without bending stiffness (σ= 0) and with an excluded volume radius for each

bead of REV = 1/2. Thus, purely geometrically, bending angles exceeding that of an equilateral

triangle (θ = 2π/3 ⇒ cosθ = −0.5) are forbidden, and all larger cosines of bending angles are

equally probable. The simulated histogram is shown in figure 4.6.

Diffusion coefficients Here, we simulated chains which resemble those modeling GS-repeats

in section 5.2, using short chain lengths for good convergence. They have parameters N = 5

and N = 16, σ = 1, an excluded volume radius REV = p
2 /4 and the following hydrodynamic

properties: (i) no hydrodynamic interactions, a = 0; (ii) hydrodynamic interactions, a = 1; and

(iii) hydrodynamic interactions and a fluorophore attached, a = 1, a1 = 6/3.8, d1 = 7/3.8. In each

simulation, the mean square displacements (MSD) 〈~R2〉 of the chain’s center of mass and of the

first bead were calculated and they correctly turned out to be linear functions of time in the

long-time limit. For each parameter set, this function was compared with the slope predicted by

equation 4.22 (page 96). This is achieved by dividing the MSD by 6D such that its slope must

converge towards 1. An offset between the MSD and a diagonal line is allowed – the MSD’s

initially higher slope reflects the fast intrachain dynamics. Figure 4.7 shows a successful test

of this criterion for N = 5 (simulation results for short chains converge faster) and a = 1. The

(similarly looking) tests for the other parameter sets are shown in appendix F.
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Figure 4.5: Validation that the simulated trajectories sample the Boltzmann distribution.
Top: Histograms (dots) of simulated cosines of bending angles θ versus their Boltzmann
distribution ∝ exp

(−2σtan(θ/2)2)
(lines). These simulations were performed for N = 10

and a = 1, thus including hydrodynamic interactions. Bottom: Histograms of simulated
azimuthal angles (dots) versus their Boltzmann distribution (line), which is a constant since
no energy is associated with changes of azimuthal angles. In both figures, the simulated
histograms lie on the theoretically predicted curves.
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Figure 4.6: Validation that excluded volume effects are implemented correctly and the
Boltzmann distribution is sampled. Here, a trimer (N = 3) with hydrodynamic interactions
(a = 1) but without bending stiffness (σ = 0) was simulated. Each of the three beads has
an excluded volume radius of REV/d = 0.5 such that bending angles θ with cosθ <−0.5 are
not allowed. The Boltzmann distribution (red line) is thus a step function. The simulated
histogram (black dots) lies on this step function.
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Figure 4.7: Top: The simulated (“BD” means Brownian dynamics) mean square displacement
(MSD) of a chain consisting of N = 5 beads and having parameters a =σ= 1 and REV =p

2 /4.
The blue and black dots show the MSD of the chain’s first bead, and of its center of mass
taken from the same trajectory. Both curves were divided by 6D, where D is the chain’s
diffusion coefficient as calculated from equation 4.20 (page 95). Therefore, both curves’ slopes
must converge towards 1. Bottom: The slopes of the curves from the top figure. Indeed, both
the single-bead’s as well as the center-of-mass’ MSDs’ slopes converge towards 1. The single-
bead dynamics are faster (higher slope) at first, which reflects the intrachain dynamics on
short time scales.
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Time step size The end-to-end contact rates k+ for chains with identical parameters N = 10,

a = 1 and σ = 1 were simulated, thus including the nonlinearities that both hydrodynamic

interactions and elastic forces impose on the numerics. The critical contact radius was set to

RC = 5.4/3.8 because this is the same value which is later used for fitting PET-FCS data. We have

systematically changed the numerical time step size ∆t in logarithmic steps from 10−3.5 to 10−1.

All trajectory lengths are identical (105 · t0), but naturally, the simulated real times may differ by

a factor of around three thousand. Thus, a trade-off has to be made between accuracy and numer-

ical expense. Contact rate values for larger time steps are smaller because threshold-crossing

events are more likely to go unnoticed the coarser the temporal resolution is. Most importantly,

figure 4.8 shows that the value of the simulated contact rate indeed converges as ∆t decreases,

and that the value ∆t = 10−3 t0 is sufficiently accurate. This value was also used to validate the

sampled Boltzmann distribution, correct diffusion coefficient, fulfilled constraints and excluded

volume effects in the previous paragraphs, and hence we choose ∆t = 10−3 t0 throughout this

thesis.
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Figure 4.8: The simulated contact rate for N = 10, REV = 0 and a = σ = 1 as a function of
the numerical time step ∆t. Both the time step and contact rate are given in dimensionless
units (t0 and t−1

0 respectively). All six trajectory lengths equal 105t0. Therefore the data
point on the right (< two minutes) was calculated more than 3000 times faster than the one
on the left (three days).
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5
APPLICATIONS

In this chapter, the results of my research related to the main theme of this thesis are presented.

Side projects can be found in chapter 8. I have not performed any experiments myself – PET-

FCS experiments were performed by Man Zhou, 2fFCS experiments by Arindam Ghosh, and

dynaMIET experiments by Roman Tsukanov, Arindam Ghosh and Jan Christoph Thiele.

5.1 Model behavior

In this section, we develop a physical intuition about the model’s behavior before we start fitting

experimental data with it. To this end, we study the influence of the two model parameters σ and

a on the model chain’s hydrodynamic radius RH and contact rate k+, as well as the change of

k+ as the quencher position is shifted along the chain’s contour. Throughout this section, we are

using dimensionless units and thus measure a and σ in units of d = 1. Excluded volume effects

are not considered, and the chains consist of N identical beads with equidistant bond lengths.

5.1.1 Hydrodynamic radius

We study the hydrodynamic radius for different values of σ, a and N. Each parameter is varied

while the other two are fixed. σ= 1 corresponds to a persistence length of lP ≈ 2.
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Hydrodynamic radius as a function of chain length Figure 5.1 shows the functional form

of RH(N) for a ∈ {0.5,1} and σ ∈ {0,1}. For N = 1, one naturally has a = RH . All curves are

monotonically growing, and the ones with larger bending stiffness grow faster. The reason for

this is clear: An additional bead in a stiff chain is on average spatially further away from the

other beads and thus the volume which is effectively occupied by the chain grows faster than for

a flexible chain. Furthermore, since the volume occupied by infinitely growing chains also grows

indefinitely, the functions RH(N) do not converge, but are unbound.

Interestingly, the difference between curves with identical σ values but different values for a

seems to be reasonably constant as the chains grow in length. This is consistent with the findings

in the next paragraph.
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Figure 5.1: The hydrodynamic radius RH of model chains as a function of the number of
identical beads N which the chain consists of. The curves for a = 0.5 are shown in black
(σ= 0) and blue (σ= 1). The curves for a = 1 are shown in green (σ= 0) and red (σ= 1).
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Hydrodynamic radius as a function of bead size Figure 5.2 shows the functional form

of RH(a) for σ ∈ {0,1} and N ∈ {10,20}. For a → 0 one naturally has RH → 0. In this limit,

hydrodynamic interactions are negligible which means that RH = a ·N (see page 96). We can

confirm this by checking that the initial slopes of all curves RH(a) equal N. In the limit a →∞,

the beads overlap entirely which makes the chain essentially behave like a single large bead with

radius a. In this case, all individual 3×3 Rotne-Prager diffusion matrices (equation 3.4, page 83)

have converged towards the unity matrix, and it is straightforward to check that RH /a → 1 in

this limit, which our results confirm. It follows that the RH(a) curves do not converge but grow

indefinitely. In between the two limits, the slopes of all curves decrease from N to 1. This decrease

is faster for short chains because all beads overlap more quickly for growing a when the chain is

more compact. For the same reason, the slope’s decrease is slower for stiffer chains. Already, the

logical consequence is that the RH values themselves are larger for larger σ values, as the next

paragraph confirms. We further remark that the fact that the curves’ slopes decrease (compared

to the initial situation without hydrodynamic interactions) implies that the chain as a whole

diffuses faster through space due to the beads’ coupled, more cooperative, movement.
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Figure 5.2: The hydrodynamic radius RH of model chains as a function of the hydrodynamic
radius (a) of each bead which the chain consists of. The curves for N = 10 are shown in black
(σ= 0) and blue (σ= 1). The curves for N = 20 are shown in green (σ= 0) and red (σ= 1).
Straight lines of given reference slopes are shown for visual purposes.
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Hydrodynamic radius as a function of bending stiffness Figure 5.3 shows the functional

form of RH(σ) for a ∈ {0.5,1} and N ∈ {10,20}. For σ= 0 we have at hand a purely random walk in

space (FJC). For growing bending stiffness the chains swell and take up more effective volume

in space – the hydrodynamic radius grows. In the limit σ → ∞, the chains’ conformational

probability distribution becomes narrowly peaked around a straight rod. Since a straight rod

of given contour length has a finite hydrodynamic radius Rmax
H , this value serves as the curves’

respective supremum. We independently calculated RH for straight rods (horizontal lines in

figure 5.3) and can confirm this limiting behavior. The convergence is slower for longer chains

because of entropic effects – more bending angles have to simultaneously be zero to reach the limit.

Moreover, the limit is reached faster for smaller individual bead sizes a because the Rotne-Prager

matrices are functions of powers of a/r (r representing the inter-bead distances), and are thus

less sensitive to deviations from a perfectly straight rod for smaller a. We remark that in the

absence of hydrodynamic interactions, RH would not depend on σ at all: All chains would obey

RH = a ·N, independently of their conformation and of the conformational probability distribution

which σ tunes. From this perspective, we can understand the faster convergence of RH(σ) for

smaller a as being closer to the absence of hydrodynamic interactions in which RH(σ)= const. .
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Figure 5.3: The hydrodynamic radius RH of model chains as a function of the chain’s bending
stiffness σ. The curves for N = 10 are shown in black (a = 0.5) and blue (a = 1). The curves
for N = 20 are shown in green (a = 0.5) and red (a = 1). For growing chain stiffness, all curves
converge towards the hydrodynamic radius of the respective straight rod. These limiting
values are shown as horizontal lines.
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5.1.2 Contact rate

While the hydrodynamic radius can be quickly calculated using MC sampling (seconds to minutes),

the contact rate requires a full Langevin simulation (hours to days). For the sake of well-converged

contact rate values, we thus only studied short model chains of length N = 10 to demonstrate

the influence of σ and a on the end-to-end contact rate k+. Additionally, we demonstrate the

so-called tail effect by comparing the end-to-end contact rate with the contact rate between the

chain’s end and a bead placed at different sites within the chain. We set the critical contact

radius to RC = 5.4/3.8≈ 1.42 because this is the same nondimensional radius that we later use

for interpreting PET-FCS measurements.

The functional behavior of k+(N) is the treated in the next section which constitutes the main

project of this thesis.

Contact rate as a function of bead size We must be careful when comparing contact rates

from simulations with different values of a for the following reason. The contact rate is the

inverse of the mean first passage time 〈τ〉 and as such, when reconverted into physical units,

is proportional to the time scale t0 ∝ a, which may differ between simulations. Without hy-

drodynamic interactions, for instance, the bead radius a does not influence the numerics at

all, and thus k+ ∝ a−1. To take this into account, we do not study k+ but the dimensionless

quantity k+ · t0 as a function of a. In the absence of hydrodynamic interactions, the resulting

curves would be constant. The influence of hydrodynamic interactions on the contact rate can

thus be observed in the form of deviations from a horizontal line – a decreasing function means

that hydrodynamic interactions lower the contact rate, and a growing function means that they

enhance it. Thereby, we disentangle the effects that a larger bead (i) diffuses more slowly on its

own, but (ii) is hydrodynamically coupled to other beads more strongly which dampens their

relative motion.
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5.1. MODEL BEHAVIOR

Figure 5.4 shows the functional form of k+(a) (normalized to the first data point for visual

purposes) for σ ∈ {0,1} and N = 10. We observe that the curves are decreasing for both tested

chain stiffnesses. Thus, the hydrodynamic coupling between the beads reduces the contact rate –

their relative movement is dampened because they fluctuate more cooperatively. Furthermore,

the curve of the more flexible chain drops faster. Mathematically, that is because the limit of

the Rotne-Prager matrices becoming identity matrices is reached faster for smaller inter-bead

distances. Physically, the closer the beads’ centers are, the more the beads overlap. Thus their

relative movement is dampened faster in flexible chains as the beads grow.
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Figure 5.4: The simulated nondimensional contact rates k+ · t0 as a function of the hydro-
dynamic bead radius a, shown for two different bending stiffness values σ. The two curves
were normalized such that both start at 1. They both decrease, meaning that hydrodynamic
coupling decreases the contact rate. The stiffer chain shows a slower decrease than the more
flexible one.
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Contact rate as a function of bending stiffness Figure 5.5 shows the functional form of

k+(σ) (normalized to the first data point for visual purposes) for a ∈ {0,1} and N = 10. We observe

that bending stiffness decreases the simulated contact rate, which is intuitive – the energetic

barrier which must be overcome for the chain ends to meet limits the rate of successful loop

formation. Moreover, the curve for chains with smaller bead size drops faster. That is because

hydrodynamic interactions decrease the contact rate, and the bending stiffness in turn reduces

hydrodynamic interactions because the inter-bead distances grow the stiffer the chain is. As

expected, the contact rate seems to vanish in the limit σ→∞.
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Figure 5.5: The simulated contact rates k+ as a function of the bending stiffness σ, shown
for two different bead sizes. The chains consist of 10 beads. The curves were normalized such
that they start at 0 in order to be visually comparable. The curve of the chain consisting of
smaller beads drops faster.

Contact rate as a function of quencher position In figure 5.6, we show the simulated

contact rate of two chains consisting of N = 10 and N = 20 beads respectively, both of which have

parameters a =σ= 1. The contact rate was evaluated for looping events taking place between the

first bead (fluorophore) and another bead (quencher) at position s within the chain, with the rest

of the chain being present behind it. For growing s, entropic effects can be expected to lower k+
as the vector connecting fluorophore and quencher grows, but “searches” for a small volume of

fixed size ∝ R3
C. For s ≈ lp ≈ 2, the (bending) energetic barrier which must be overcome for loop

formation limits k+ but since RC ≈ 1.42 is finite, we do not expect to observe this effect here.
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We indeed observe that the contact rate decreases as the fluorophore-quencher s distance in-

creases. This decrease flattens out towards the ends of the respective chains: The growing s is

being balanced by the fact that the end of the chain can diffuse more freely than the middle of

the chain. This is because for the chain end’s diffusive dynamics, fewer beads have to be moved

through the fluid. This reduces hydrodynamic friction and thus speeds up the dynamics. This

“free-end effect” is not present in the N = 20 chain at s = 10 – it has additional beads behind

the quencher, which is called the tail. The so-called tail effect is thus that it slows down the

dynamics between fluorophore and quencher, reducing the contact rate. It cannot be inferred from

the chain’s conformational probability distributions. For instance, the random walk described

by MC sampling samples the Boltzmann distribution but does not include any tail effect – the

variations of bond angles in the middle of the chain occur completely independently of those at the

chain’s ends. In the Langevin simulation, however, correct physical dynamics are implemented:

the hydrodynamics obey the Stokes equation which alone implies the tail effect. This is further

investigated in the next section and discussed in chapter 7.

Note that the tail effect has not been explicitly built into the model but emerges naturally!

tail effect
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Figure 5.6: The simulated contact rate as a function of the distance s between fluorophore
and quencher. The fluorophore is the first bead of the chain, and the quencher’s position s
is altered while the total length of the chain remains fixed. We compare the curves k+(s)
for two chains of different length but otherwise identical parameters a =σ= 1. The curves
initially coincide, but towards their respective ends, they flatten out instead of dropping
further. Hence, at s = 10, the curve for N = 20 lies below the curve for N = 10 by around 21%.
This is called the “tail effect”.
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5.2 End-to-end contact rates and hydrodynamic radii of
GS-repeats

The project presented in this section constitutes the main project of this thesis. It was published

in Physical Review E in November 2019 [129]. What follows are major parts of the published

manuscript, which were have altered only slightly in order to fit into the narrative of this thesis.

The experiments were performed by my colleagues Man Zhou (who also published some of the

experimental results in his doctoral thesis [130]) and Arindam Ghosh, and here we omit the

experimental details because they can be found in the published article, and the concepts were

explained in section 2.5 (page 70).

In this project, we use PET-FCS and 2fFCS for measuring end-to-end contact rates k+ and

hydrodynamic radius values RH of intrinsically disordered dye-labeled GS-repeats as a function of

chain length. Additionally, we also investigate the tail effect in protein conformational fluctuation:

The effect the chain beyond the quencher has on the contact rate. These are the measured

proteins:
Atto655− (GS)n −W

and Atto655− (GS)5 −W− (GS)5

where n ∈ {5,7,9,10,15,20} and “G”, “S” and “W” stand for the amino acids glycine, serine and

tryptophan (see figure 1.1, page 6), and Atto655 is the fluorophore used, which is quenched by

tryptophan. Thus the shortest proteins contain 11, and the longest 41 amino acids.

Experiments The experimental results are summarized in table 5.1, and are also displayed in

figures 5.9 and 5.15. The PET-FCS curves from which the contact rates were extracted are shown

in figure 5.7.

N 12 12+tail 16 20 22 32 42

RH /Å 9.4 - 9.6 10.1 11.1 13.2 15.2
k+ ·10−6 s 36.4 23.7 26.4 19.1 16.6 5.8 4.0
k− ·10−6 s 12.8 9.2 11.4 11.2 11.0 12.4 9.9

Table 5.1: The results of PET-FCS and 2fFCS measurements performed on GS-repeats of
different chain lengths N. Error bars are shown in figures 5.9 and 5.15.

As expected, the hydrodynamic radius RH increases with chain length length, while the contact

rate k+ decreases with chain length. The relation between contour length L (see equation 5.3)

and contact rate is well approximated by a power law with exponent ε=−1.86±0.15, i.e.

(5.1) k+(L)∝ Lε .
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Figure 5.7: Normalized PET-FCS autocorrelation curves C(t) (see equation 2.193, page 75)
measured on different protein-dye constructs as indicated in the legend. The nanosecond
timescale decay (green shading) is due to the opening/closing dynamics of the protein chain.
The millisecond timescale decay (gray shading) is due to translational diffusion.

Mean loop formation times range from about 25 to 200 ns, depending on chain length. From

the power law fit of contact rates as a function of chain length, we estimate systematic contact

rate errors as the average deviation between fit and experimental value, and find a value of

around 12%. A similar analysis for the hydrodynamic radius yields a value of ∼ 2.5%, where an

additional offset of 6 Å was added to the power law to take the fluorophore into account. The

error bars shown in figures 5.9 and 5.15 do further include experimental statistical errors which

are comparatively small. Fitting a two-state-model (equation 2.193, page 75) to the experimental

PET-FCS curves (see figure 5.7) delivers not only the closing rate k+, but also the opening rate

k−. The latter is only used to weigh the open and closed states when calculating hydrodynamic

radii (see equation 5.4 and figure 5.9). We find that the proteins (increasingly ordered by chain

length) spend around 74, 70, 63, 60, 32 and 29% of their time in the closed state.

To quantify the tail effect, we define the value ζ as the percentage by which the contact rate

decreases due to the presence of the tail, i.e.

(5.2) ζ := 1−ktail
+ /k+ .

Experimentally, we find ζ= 34.9±12.2%, meaning that the tail increases the mean time of contact

formation by around one half.
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Protein model The molecules are modeled as semiflexible inextensible chains of N connected

spherical beads. Both hydrodynamic interactions as well as excluded volume effects are taken

into account. Each bead represents one amino acid (pseudoatom) and has a fixed distance to

its neighbors along the chain’s backbone. We call this distance the bond length d and set it

to d = 3.8Å, the distance between two Cα-atoms in a protein’s backbone. An additional bead

representing the dye Atto655 is (semiflexibly) attached to one end of the chain with a fixed bond

length of d1 = 7Å. A model chain with N beads (N −1 amino acids) thus has contour length

(5.3) L = 7Å+ (N −2) ·3.8Å .

The dye’s hydrodynamic radius is known to be a1 = 6Å [131]. To account for the fact that a real

chain cannot cross through itself, we assign an excluded-volume radius REV to each bead and

reject all time steps that result in an overlap of two beads. Geometrically, this radius value has to

be at least equal to REV =p
2 /4 ·d. The values a1, d1, d, REV and RC = 5.4Å are fixed throughout

this study and are not considered to be free parameters. This model allows us to simulate contact

rate values using the constrained Langevin equation, and to calculate hydrodynamic radii using

MC sampling. In all simulations, we set the temperature to room temperature T = 293.15 K and

the value of viscosity to that of water, η= 0.955 ·10−3 Pa·s [131].

A sketch of the model chain is provided in figure 5.8 (see also chapter 3). The two free model

parameters are (i) the hydrodynamic radius a of a single bead (amino acid), and (ii) the chain’s

bending stiffness σ (or equivalently its persistence length lP ). It should be emphasized that

our empirical model admits different values for the hydrodynamic and the excluded volume

radius. The first one is related to geometric constraints of motion, whereas the second refers to

hydrodynamic interactions within the protein. It should also be noted that the parameter σ fixes

the statistical properties of the chain, while the other parameter (a) influences only its dynamical

properties. The core tasks are to find values for these two parameters which globally match the

experiments as best as possible, and to investigate how they influence the simulated dynamics.

Persistence length On page 68, it was described how the discrete bending stiffness σ can

be translated into the persistence length lP . The described procedure is performed without the

fluorophore attached to the chain because we are interested in the properties of the bare protein

itself. The resulting value for lP turn out to be virtually independent of chain size, so we choose

the shortest considered chain (11 beads) for the best convergence during MC sampling. For the

later on considered discrete values of bending stiffness σ= 0, . . . ,4 Å, the found persistence length

values are lP = 2.67, 4.26, 5.59, 6.81 and 7.97 Å. The finite persistence length of the chain with

zero bending stiffness is purely due to excluded volume interactions.
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Figure 5.8: Schematic representation of the model molecule. Each blue bead represents one
amino acid. The first and last bead represent the dye Atto655 (surrounded by the green/red
sphere) and the quencher amino acid tryptophan, respectively. When the distance between
their centers becomes smaller than RC = 5.4Å (indicated by the green sphere turning red),
fluorescence is completely quenched, otherwise completely non-quenched. The shown bead
size is the excluded volume size, and throughout this entire study its radius is set to

p
2 /4

times the bond length – the minimum value preventing bond crossings. The hydrodynamic
radius of a bead (not shown) may differ from its excluded volume radius. The hydrodynamic
radius of Atto655 is set to 6Å [131], while all other beads (amino acids) are assumed to
have the same hydrodynamic radius a (free model parameter). The length of one bond (rods
connecting adjacent beads) is fixed to d = 3.8Å. The fluorophore Atto655 is attached to the
chain’s end at a fixed distance of 7Å.

Contact rate A contact event between the fluorophore and tryptophan is assumed to take

place whenever the distance r between their centers becomes smaller than a critical value RC.

Conformations with r < RC are considered a closed state, whereas those with r > RC are con-

sidered an open state. Under equilibrium conditions, transitions from the open to the closed

state occur with an average rate k+, and transitions back to the open state with an average rate

k−. One experimental complication is that the direct contact between the fluorophore and the

tryptophan has a non-negligible association energy which stabilizes the closed state. In our model,

a chain almost immediately returns to the open (fluorescent) state after a diffusive encounter

between the fluorophore and the quencher. Thus, the model-derived opening rate k− is expected

to be much larger than the experimentally observed one. Consequently, we will focus here on

the rate k+ which is assumed to be unaffected by a short-ranged association energy. The critical

radius RC and resulting contact rate k+ depend on the photophysical details of contact-induced

fluorescence quenching. Here, we adopt a value of RC = 5.4 Å following the experimental study of

reference [117]. The value that would be most appropriate for our model calculations is difficult

to pin down since we replace amino acids and the fluorophore by spheres which do not interact

energetically. This may lead to some systematic bias of the absolute values of the model-derived

contact rates, but their dependence on chain length and model parameters should be unaffected.
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For chain length values of N ∈ {12,16,20,22,32,42} (number of amino acids plus one fluorophore

bead), we computed k ∈ {4, 6, 8, 8, 14,20} independent trajectories for each tested parameter

set, respectively. Initial conditions were drawn from a Boltzmann distribution by running a

sufficiently long MC simulation (106 steps) before the start of each Brownian dynamics simulation.

Simulation times per trajectory ranged from 104 t0 to 105 t0, which is on the order of tens of

microseconds. The resulting statistical errors for the determined contact rate values were between

1.3% and 5.7%.

Hydrodynamic radius In the experiments, fluorophore and quencher temporarily stick to-

gether after loop formation (due to the non-zero contact interaction energy), which alters the

average chain size and the equilibrium ensemble. Because our model does not include this effect,

the simulated conformational ensemble Ωsim will not correctly reproduce the experimentally sam-

pled ensemble Ωexp because conformations belonging to the closed state are underrepresented in

it. To correct for this, we divide the equilibrium ensemble Ωsim into two sub-ensembles Ωopen and

Ωclose, defined by the distance between fluorophore and quencher exceeding (or being less than)

the critical radius RC = 5.4Å for contact formation. A weighted average over both sub-ensembles

then yields the corrected diffusion coefficient

(5.4) Dmodel = ∑
α∈{open,close}

pα · 〈D〉α .

In numerical practice, open and closed states sampled during an MC sampling procedure con-

tribute to the two averaging processes independently. The probabilities popen and pclose are

calculated from the chain-length dependent experimental ratio k−/k+ = popen/pclose (see page 75).

Finally, the hydrodynamic radius of a chain is given by RH = kBT/(6πηDmodel). Example RH-

values calculated with this method for chains of different lengths but identical parameters (σ,a)

are presented in figure 5.9 together with the experimental values.

Comparison with simulations In what follows, we explain how we determined optimum

parameters of hydrodynamic bead radius a and bending stiffness σ that globally fit all experi-

mental findings best – simultaneously for all chain lengths. Note that, as we saw in the previous

section, both parameters influence k+ and RH .

Since computation time for the hydrodynamic radius is much shorter than for simulating contact

rates, we first determined values for a which lead to the best match between calculated and

measured RH values. We did this for five discrete values of bending stiffness σ from 0 to 4 Å in

steps of 1 Å. For each of them, we determined the best value a(σ) by minimizing the quadratic

relative deviations from the experimental RH values summed over all chain lengths:

(5.5) a(σ)= argmin
∑

N∈chain lengths

(
Rexperiment

H (N)−Rmodel
H (a|σ, N)

Rexperiment
H (N)

)2

.
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Figure 5.9: Experimental (red) and model (black) hydrodynamic radius values as functions
of chain length. MC results for RH were calculated using equation 4.23 (see page 96), con-
sidering the sub-ensembles of open (green) and closed (blue) states separately. The black
curve was calculated by weighting open and closed states according to their experimentally
measured ratio k−/k+ = popen/pclose. The shown model curve has parameters σ= 1 Å (persis-
tence length 4.26 Å) and the corresponding best matching bead radius a(σ= 1 Å)= 3.81 Å
(see equation 5.5). The hydrodynamic radius of the attached fluorophore was set to 6 Å [131]
(single data point on the left). Model curves for the other candidate parameter sets (σ,a)
(figure 5.10) look very similar and are not shown.

Thus, we obtained five candidate parameter sets [σ,a(σ)]. Figure 5.9 compares the experimental

and best model curves RH(N) for one of these five parameter sets. The dependency of a on σ is

shown in figure 5.10 and the candidate parameter values are also summarized in table 5.2.

Next, we performed Brownian dynamics simulations for all chain lengths N and all five candidate

parameter sets. The five simulated curves k+(L) are shown in figure 5.11. Each of them follows a

power law virtually precisely. Observing that the slope in the log-log plot changes systematically

as the parameter set is changed, we fit power laws to the functions k+(L) for each candidate

parameter set. The so-found exponent values ε are shown in figure 5.12 and table 5.2. All

simulation values for the rates k+ are of the same order of magnitude as the experimental ones,

but are systematically too large. In particular, we find for the studied σ-values of 0 to 4 Å that the

simulated values of the contact rates exceed the experimentally measured ones by 35,32,23,19

and 8% (averaged over N). Considering the uncertainties of the simulation results due to the not

precisely known correct value of contact radius RC, these results are highly encouraging.
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Figure 5.10: The “candidate parameter sets” for which Brownian dynamics simulations
were run. For five discrete values of σ (σ= 0, . . . ,4 Å), values of a were determined that lead
to hydrodynamic radius values that match the experimental values best. This procedure
yields tuples (σ,a) (shown as black dots), which can be fitted with the heuristic function
a = A exp(−σ/B)+C where A = 2.90 Å, B = 3.47 Å and C = 1.65 Å (shown in red).

At the same time, identifying one parameter set as the best-fitting one based on a least-squares

criterion is problematic. As an alternative, we study two dimensionless quantities that can be

extracted from both simulated and experimental contact rates. The first one is the exponent ε,

which quantifies the functional form of k+(L) rather than its magnitude, and the second is the

tail effect value ζ (equation 5.2). Both are invariant to rescaling all rates by a constant factor and

may hence be expected to depend only weakly on photophysical details of contact formation. In

contrast, the rates’ values themselves do. The power law exponent ε increases along the candidate

parameter curve (figure 5.10) from ∼−2.1 to ∼−1.7, seemingly converging towards ∼−1.5 (see

figure 5.12). We attribute this to the fact that excluded volume effects are less influential for

chains with a higher persistence length, which changes the scaling behavior of their end-to-end

distance as a function of chain length (see discussion, page 142). Tail effect values ζ weakly

increase along the candidate parameter curve from ∼ 35% to ∼ 42%, see figure 5.13. All these tail

effect values are well within the experimental error margin of 34.9±12.2%.
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Figure 5.11: The simulated contact rates for all candidate parameter sets as functions of
contour length L. We show the data points together with respective power law fits (lines)
to the simulated curves. The slopes (power law exponents) change systematically as the
parameter set is changed, see also figure 5.12 and table 5.2.

set 1 2 3 4 5

σ/Å 0 1 2 3 4
⇔ lP /Å 2.67 4.26 5.59 6.81 7.97

a/Å 4.56 3.81 3.29 2.89 2.56

exponent ε −2.08 −1.87 −1.84 −1.72 −1.68

tail effect ζ /% 35.5 32.8 37.6 38.4 41.9

probability p 0.33 0.98 0.97 0.63 0.42

Table 5.2: Simulation results for power law exponent ε and tail effect value ζ for the
investigated candidate parameter sets (σ,a). The corresponding persistence length values
and the probability density values calculated with equation 5.6 are also given.

The globally best-fitting parameter set is determined as follows. We assume that the experimen-

tally derived joined probability distribution p(ε,ζ) for ε and ζ is given by the following product of

two Gaussian distributions:

(5.6) p(ε,ζ)= 1
Z

exp

[
− (ε−µε)2

2δ2
ε

− (ζ−µζ)2

2δ2
ζ

]
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Figure 5.12: For each candidate parameter set, the simulated end-to-end contact rates as a
function of contour length were fitted with a power law. The resulting power law exponents
are shown here as a function of the parameter set (σ,a) (see figure 5.10 and table 5.2). The
exponent values increase monotonically, seemingly converging towards a value of ∼−1.5,
similar to the scaling behavior found for ideal chains as predicted by SSS theory [19]. We
attribute this to the fact that for increasingly flexible chains (from right to left), excluded
volume interactions play a more important role, which alters their scaling behavior (see
discussion, page 142). The power law exponent for the experimental data is shown in red
(−1.86±0.15). The shaded area is its fit error.

with the mean values µε, µζ and standard deviations σε, σζ determined from the experimental

measurements, and Z being a normalizing factor. This allows us to associate with each simulation

result a probability density value. For the investigated candidate parameter values of (σ,a), the

resulting probability density values are shown in figure 5.14 and table 5.2, where the figure

shows two separate probability density curves, one as a function of persistence length lP and

the other as a function of hydrodynamic bead radius a. By fitting these curves with Gaussian

functions, parameter values that globally best match the experiments are determined. The found

values are a = 3.5±0.7Å and lP = 5.2±1.9Å, which is the main result of this project. We have

simulated the contact rates for this parameter set, which is shown in figure 5.15 together with

the experimental rates for comparison, which are on average about 17% smaller.
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Figure 5.13: Tail effect values ζ for Atto655-(GS)5-W-(GS)5 versus Atto655-(GS)5-W. Sim-
ulation values are shown as a function of the parameter set (figure 5.10 and table 5.2).
The experimental value (34.9%) is shown in red, and the shaded area indicates its error of
∼ 12.2%.

Influence of model parameters on exponent and tail effect An important question is

how changes in σ and a individually affect the values of ε and ζ. For investigating this question,

we performed additional simulations where we change σ while a is fixed and vice versa. Tables 5.3

and 5.4 show their outcome.

a = 3.81Å

lP /Å tail effect ζ /% exponent ε

2.67 34.8±1.2 −2.10±0.02
4.26 32.8±1.9 −1.87±0.04
7.72 34.1±2.7 −1.66±0.03

Table 5.3: Fixing the bead radius and increasing the chain stiffness increases the power law
exponent, while the tail effect value remains constant within the statistical error.

Our results clearly show that ε is predominantly a function of chain stiffness but not of hydro-

dynamic coupling strength, while the ζ is predominantly a function of hydrodynamic coupling

strength but not of chain stiffness. Thus ε and ζ can be varied independently which justifies our

silent assumption in equation 5.6 that they are statistically independent.
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Figure 5.14: Probability density values (equation 5.6) as a function of hydrodynamic bead
size a (triangles) and persistence length lP (diamonds). These values were both fitted with
Gaussian distributions (solid lines), and their maximum values and widths function as the
optimal parameter values of lP and a and their standard deviations. We find lP = 5.2±1.9Å
and a = 3.5±0.7Å.

lP = 4.26Å

a/Å tail effect ζ /% exponent ε

1.90 43.0±1.3 −1.93±0.03
3.81 32.8±1.9 −1.87±0.04
5.71 26.5±5.4 −1.93±0.03

Table 5.4: Fixing the chain stiffness and increasing the bead radius decreases the tail effect
value, while the power law exponent remains constant within the statistical error.

Finally, we have studied the question how much our results are influenced by the excluded volume

effect. For this purpose, we repeated our simulations for candidate parameter set 2 (a = 3.81Å

and σ= 1Å), but not taking into account any excluded volume effects by setting the excluded

volume radius REV to zero. The result (see table 5.5) shows that the value of the power law

exponent ε dramatically increases. Moreover, the tail effect value is reduced, indicating that the

tail’s presence sterically reduces the chance of looping events.
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Figure 5.15: Simulated (black dots) and measured (red dots) end-to-end contact rates as
function of contour length together with power law fits (dashed lines). Parameter values
chosen for this figure are a = 3.53 Å and σ = 1.83 Å, which corresponds to a persistence
length of 5.2 Å. Simulated rates are ∼ 17% larger than experimentally measured values.
This lies well within the expected inaccuracy due to the simplified model details of contact
formation. Moreover, the found power law exponents for the experimental (−1.86±0.16)
and simulated (−1.80±0.04) curves are in excellent agreement. The statistical errors of the
simulated contact rates shown here are within a few percent (∼ 3%) of the displayed values
which is why the corresponding error bars in logarithmic space are smaller than the round
symbols.

(a, lP )= (3.81,4.26)Å

REV/d tail effect ζ /% exponent ε

0 25.3±1.9 −1.53±0.01p
2 /4 32.8±1.9 −1.87±0.04

Table 5.5: Turning off excluded volume effects decreases the tail effect and the power law
exponent’s magnitude.
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Best contact radius This paragraph contains extra information which cannot be found in

the published manuscript [129]. Here, we investigate how the contact radius RC influences the

simulated power law exponent ε and tail effect ζ, and how the contact rates themselves depend

on it. We employ the best fitting candidate parameter set (a ≈ 3.53Å and σ≈ 1.83Å) and we keep

track of contact events with contact radii RC = 3.8Å, RC = 5.4Å and RC = 7.6Å for all previously

considered chain lengths N. RC = 5.4Å is the previously used value and the two other values

lie approximately a factor of
p

2 under and above it. The resulting mean first passage times in

numerical units t0 (inverse contact rates) can be found in table 5.6, and the corresponding power

law exponents and tail effects can be found in table 5.7.

N = 12 N = 12+tail N = 16 N = 20 N = 22 N = 32 N = 42

RC = 3.8Å 170±3 277±7 280±5 418±7 480±8 1007±35 1509±62
RC = 5.4Å 90±3 144±3 155±4 227±5 267±5 586±33 871±33
RC = 7.6Å 45±1 67±1 77±1 121±2 140±3 297±6 485±17

Table 5.6: The simulated mean first passage times (in numerical units) for the globally
best-fitting parameter set a ≈ 3.53Å and σ≈ 1.83Å. They are shown for all chain lengths
and for three different critical contact radius values: the one used before (5.4Å), and two
values approximately a factor of

p
2 above and below that value.

RC = 3.8Å RC = 5.4Å RC = 7.6Å

power law exponent −1.750±0.031 −1.790±0.024 −1.885±0.017
tail effect 38.8±1.9 37.0±1.6 33.0±1.2

Table 5.7: The power law exponents and tail effect values corresponding to the mean first
passage times in table 5.6.

The mean first passage times are approximately a factor of 2 apart for each increase/decrease

in RC by a factor of
p

2 . We conclude that we have at hand a scaling law which goes roughly

k+ ∝ R2
C. At the same time, the experimental rates lie about 17% below the simulated ones. The

“true” contact radius Rtrue
C that should be used such that model and experiment show the same

contact rate values is hence

(5.7) Rtrue
C = 5.4Åp

1.17
≈ 5Å .

Linearly interpolating the simulated data from table 5.7 to this value, one obtains a power law

exponent which is about 0.7% larger than the one we found by using RC = 5.4Å, and a tail effect

which is about 1.2% larger. These deviations are small when compared to the error bars of the

experimental values, which are about 8.1% and 12.2% respectively.
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Conclusion We have measured end-to-end contact rates as well as hydrodynamic radius values

of short GS-repeats, labeled with Atto655. As expected, the hydrodynamic radius RH increases

with chain length from 0.9 nm to 1.5 nm for the considered range of chain lengths from 11 to 41

amino acids. In contrast, the contact rate k+ decreases with chain length. We also investigated the

so-called tail effect by measuring and comparing contact rates of the proteins Atto655-(GS)5-W

and Atto655-(GS)5-W-(GS)5, the latter having a “tail” behind the quencher position.

To interpret our experimental findings, we performed Brownian dynamics simulations of semi-

flexible bead-rod chains with an attached fluorophore, including hydrodynamic interactions

and excluded volume effects. By comparing our simulations with our experimental results, we

determined model parameter values that best fit all observations. In particular, we found for the

hydrodynamic radius of one amino acid a value of a = 3.5±0.7 Å, and for the persistence length a

value of lP = 5.2±1.9 Å. Our model excellently reproduces all experimental hydrodynamic radius

values, the exponent of the power law describing contact rate change as a function of chain length,

and the effect of the tail. At the same time, it reproduces the contact rates’ absolute values with

surprising accuracy even though this match was not a fit criterion at all. Further testing of the

model showed that the tail effect value is determined by the interplay of hydrodynamic drag and

hydrodynamic interactions, and that the power law’s exponent is determined by the interplay of

persistence length and excluded volume radius.

We conclude that Brownian dynamics of generic bead-rod chains can be an efficient and valuable

tool for describing a large set of experimentally measured characteristics of protein size (hydrody-

namic radius) and dynamics (loop formation rates). This is even more remarkable as our model

contains only two free and independent parameters. Moreover, we found that excluded volume

effects are a crucial ingredient in modeling intrinsically disordered proteins.
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5.3 Internal-to-end contact rates and hydrodynamic radii of
FG-proteins

This section presents a follow-up project to the previous one on GS-repeats and is thus largely

analogous to the previous section. The difference is the following: Instead of GS-repeats with

different chain lengths, here we investigate a different amino acid sequence with a single chain

length N = 52. It is given by

Atto655-CTNNGGGFNLKTTNSNTSNNFLSSSGFTNGGATGNSKTQQASSSGFLSTGA

and, other than the GS-repeats, is highly heterogeneous. The quencher tryptophan is not placed

at the other chain end, but at different positions within the chain, which are marked in red.

These marked amino acids are replaced by the quencher tryptophan one at a time such that a

total of four internal-to-end contact rates are measured. In contrast to the previous section, the

quencher position (let us call it s) now plays the role of chain length, and thus a power law is

fitted to the function k+(s). Since there is only a single chain length, no tail effect is measured or

simulated. For a given parameter set, all internal-to-end contact rates can be calculated from

the same simulated trajectories – the four relevant inter-bead distances are simply kept track of

simultaneously. The PET-FCS experiments were performed by Man Zhou (and published in his

doctoral thesis [130]), and the 2fFCS experiments by Arindam Ghosh.

Experiments The experimental results are summarized in table 5.8.

s 13 23 33 43

RH /Å 17.6 17.9 19.2 19.2
k+ ·10−6 s 5.3 3.2 2.1 1.4
k− ·10−6 s 4.3 4.1 4.8 4.7

Table 5.8: The results of PET-FCS and 2fFCS measurements performed on FG-proteins,
with the quencher tryptophan being placed at different sites s within the chain. Error bars
are shown in figures 5.16 and 5.18.

Hydrodynamic radius The model predicts (see figure 5.16) that the hydrodynamic radius of

a closed chain is smaller when the quencher is positioned further away from the fluorophore.

Intuitively, this makes sense – a chain’s size is reduced more strongly when its ends are pulled

together than when one end is pulled towards a center-position. Furthermore, the model predicts

that the hydrodynamic radius of an open chain is not significantly altered as the quencher

position changes. This also makes sense as the respective ensembles of open conformations are to

a great extend identical.
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Meanwhile, the experiments show that the proteins spend more time in the open state the greater

the dye-quencher distance is. This makes the model’s weighted mean of open and closed states

shift more towards the open state’s hydrodynamic radius as s increases. This effect counteracts

the drop of hydrodynamic radii in the closed state and hence, the model’s predicted hydrodynamic

radius depends only weakly on the quencher position, which holds true for all candidate parameter

sets. The experimental data, on the other hand, show an increase as a function of quencher

position. This increase is weak, however, and only slightly exceeds the experimental error bars.
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Figure 5.16: Experimental (red) and model (black) hydrodynamic radius values as functions
of quencher position. MC results for RH were calculated using equation 4.23 (page 96),
considering the sub-ensembles of open (green) and closed states (blue) separately. The red
curve was calculated by weighting open and closed states according to their experimentally
measured ratio k−/k+ = popen/pclose. Shown are model curves for σ= 3 Å (persistence length
6.81 Å) and the best matching parameter a(σ= 3 Å) = 2.90 Å. Model curves for the other
parameter sets (σ,a) look similar and are not shown.

Candidate parameter sets Turning to the candidate parameter sets which best fit the exper-

imental hydrodynamic radii (see figure 5.17), we observe a stronger dependence of a on σ than for

the previously studied GS-repeats. This may be due to the fact that the FG-protein is longer and

thus a change in persistence length entails a steeper growth of the effectively occupied volume by

the chain, which must be compensated by lowering the bead radius a further.

130



CHAPTER 5. APPLICATIONS

0 1 2 3 4 5
0

1

2

3

4

5

6

7

bending stiffness σ / Å

be
ad
ra
d
iu
s
a
/
Å

A exp(-σ/B) + C

candidate parameter sets

Figure 5.17: Parameter sets for which Brownian dynamics simulations were run. For four
discrete values of σ (σ= 1, . . . ,4 Å), values of a were determined that lead to hydrodynamic
radius values that match best the experimental values, see figure 5.16. This procedure yields
tuples (σ,a) (shown as black dots) which can be fitted with the heuristic function (red line)
a = A exp(−σ/B)+C where A = 5.35 Å, B = 2.93 Å and C = 0.96 Å.

Contact rates The simulated contact rates as a function of quencher position are again well-

fitted by power laws (see figure 5.18), and again the corresponding power law exponent changes

systematically as a different candidate parameter set is chosen. However, the simulated rates’

values do not reproduce the experimental values regardless of the chosen parameter set – they

exceed the experimental ones by a factor of 2 to 5, which may be considered as acceptable

considering the systematic uncertainty of simulated rates due to the chosen contact radius

RC = 5.4Å. However, this factor of 2 to 5 does not fit together with the one found for GS-repeats

(a factor of ≈1.17) and even more importantly, the experimental power law exponent differs

significantly from all simulated ones.

Conclusion The model failed in reproducing the functional form of the measured internal-to-

end contact rates in FG-proteins. Possible causes are mainly the inhomogeneity of the amino acid

sequence as well as the possible presence of internal friction. This will be discussed in the next

chapter (see page 145).
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Figure 5.18: Top: The simulated contact rates for all chain lengths and candidate parameter
sets, together with the experimentally measured contact rates (black dots). We show the data
points together with respective power law fits (lines). Their slopes (power law exponents)
change as the parameter set is changed and the experimental curve is notably flatter than
all simulated ones. Furthermore, the measured rates are smaller than the simulated ones
roughly by a factor of 2–5. Bottom: For each candidate parameter set, simulated internal-to-
end contact rates as a function of the quencher position were fitted with a power law. The
resulting power law exponents are shown here as a function of the candidate parameter set
(σ,a). As can be seen, exponent values increase monotonically, converging towards a value
of ∼−1.6. The power law exponent for the experimental data is shown in red (−1.07±0.09).
The shaded area is its fit error.
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5.4 Polymer dynamics using dynaMIET

This project is yet (May 2020) unpublished due to unresolved experimental complications. The

experimental work has been done by my colleagues Arindam Ghosh, Roman Tsukanov, Ingo Gre-

gor, Narain Karedla, Sebastian Isbaner and Jan Christoph Thiele. In what follows, I present my

own work in this project as a supplementary method for dynaMIET experiments in general. The

particular system that we are working on merely serves as a hands-on application. Experimental

details which are irrelevant in the context of this thesis are therefore omitted.

In this project, we do not study contact rates in freely swimming proteins using PET-FCS, but

reconfiguration times of single-stranded DNA (ssDNA) consisting of 45 monomers (nucleotides)

bound to a surface using dynaMIET (see also section 2.5.4, page 76). The ssDNA is ∼29 nm

long and attached to an 11.7 nm long dsDNA strand, which in turn is bound to a surface. It is

known from literature that dsDNA has a persistence length of around 50 nm [132, 133], while

the persistence length of ssDNA is around 2 nm [134–136]. It is thus a reasonable idealization

to treat the dsDNA strand as straight and fixed compared to the ssDNA. A model sketch of the

system under investigation can be found in figure 5.19.

Figure 5.19: Sketch of the model system. Each bead represents three nucleotides. The bond
length between them is fixed to 1.95nm. The chain’s end is held fixed at the end of a stalk
representing the dsDNA. The stalk is not part of the simulation, and is shown here only for
visual purposes. The blue spheres cannot overlap with each other or the surface.

The ssDNA undergoes Brownian motion and its end is labeled with the fluorophore Atto647N.

The observable of interest in the ssDNA’s dynamics is the distance of its chain end (z-position)

from the surface, because the fluorophore’s intensity depends on this time-dependent distance.

The z-position has an almost linear relationship with the experimentally measured intensity (see

figure 2.14, page 78) whose autocorrelation function is being measured via dynaMIET. A typical

experimentally measured FCS-curve is shown in figure 5.20.
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Figure 5.20: Experimental dynaMIET intensity-based correlation curve. The time span
of six orders of magnitudes allows us to identify multiple dynamic processes which occur
in the sample. (a) Exemplary fluorescence intensity autocorrelation curve obtained from
dynaMIET surface scanning-based experiments at a salt concentration of 300 mM. (b)
Characteristic time constants obtained from fitting the correlation curve with a sum of
exponential functions. Shown are the amplitudes of the respective exponential function
as a function of the time scale on which they decay. The top panel shows our preliminary
identification of dynamic processes occurring on different time scales. The background colors
were used to guide the eye. This figure was kindly provided to me by Roman Tsukanov.

The polymer’s dynamics is not the only dynamic process influencing this curve – for example

the photophysics of the fluorophore and its rotational dynamics must also do. The purpose of

modeling dynaMIET experiments is to give an estimate for the time scale on which these intensity

fluctuations occur in order to help interpret and verify experimental results. In particular, as

a first step, the simulation results are supposed to test the hypothesis that the peak at a few

hundred nanoseconds is due to polymer dynamics. In other words: The model’s task is to deliver

the order of magnitude on which the autocorrelation function of the stochastic intensity signal

decays (reconfiguration time). At this stage, great accuracy of this time scale is not required.
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Method As before, we model the studied polymer as an inextensible, semiflexible bead-rod

chain with hydrodynamic interactions and excluded volume effects. The novelty here is that the

bound-end constraint applies. One chain end is bound to a point at a distance of h0 = L · cosφ

away from the surface, where L = 11.7 nm is the length of the dsDNA strand and φ is the average

tilt angle of the dsDNA strand (when φ= 0 the strand is parallel to the surface’s normal vector).

The angle Φ was experimentally determined via lifetime measurements to be ∼ 42 degrees such

that h0 ≈ 8.7 nm. The equations of motion for the N beads’ position vectors~r i read

(5.8)

d~r i =β
N∑

j=1
Dwall

i j (−~∇ j(E−TSC)+λ j~t j −λ j−1~t j−1)dt

+ (~∇·Dwall)i dt +
p

2
N∑

j=1
Bi j d~Wj

where λN = 0, and are supplemented by the constraints

(5.9)
~t j · (d~r j+1 −d~r j)

!= 0

and ~t0 ·d~r1
!= 0

where j = 1, . . . , N −1. Note that compared to the case of freely swimming chains in the previous

sections, the additional bound-end constraint alters the entropic force ~∇SC. Moreover, we take

the presence of the surface into account by using the Rotne-Prager-Blake diffusion matrix Dwall

which (other than the diffusion matrix in free space) is not divergence free. Its divergence can be

found in reference [96] (equation 14 therein). The bending energy E includes the “zeroth” vertex

placed at the origin (end of dsDNA stalk), which implies that we impose a favored initial direction

to the ssDNA chain at its base where it is bound to the dsDNA stalk. The dsDNA stalk itself was

not included in the simulations – its presence is only reflected by the bound-end constraint at the

proper distance h0 from the surface and by the first term in the bending energy. Representing

the ssDNA by one bead per nucleotide (N = 45) has turned out to be numerically too expensive

and thus we coarse grained three nucleotides into a single bead. This choice is arbitrary and was

made simply because 45 is divisible by 3. We will see below that this choice still allows us to

reproduce experimentally found radii of gyration of ssDNA chains, while representing them with

too few beads would not. Following this model, our ssDNA chain with 45 nucleotides translates

into a chain length of 15 beads. Small-angle x-ray scattering (SAXS) experiments [134] report

a bond length between two nucleotides of 6.5Å, so we take the bond length between two of our

beads to be 19.5Å, resulting in a fixed contour length of 29.25 nm.
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We further choose the excluded volume radius REV for each bead to equal its hydrodynamic

radius a. This choice was made because of three reasons; (i) the diffusion matrix does not allow

the beads to hydrodynamically overlap with the wall1, and rejecting time steps resulting in

such overlaps prevents this from happening, (ii) the previously made choice of REV = d ·p2 /4 is

potentially too large due to the coarse grained value of d =1.95 nm, and (iii) it turns out that

the model parameter a ≈ 0.25 ·d which we find later, while not preventing all crossing events,

strongly prohibits them. Thus, the physics that excluded volume effects are supposed to add to

the model are essentially captured.

The model includes two free parameters – the chain’s bending stiffness σ and the single-bead

radius a – whose values we need to estimate in order to run simulations. They were chosen such

that (i) the model’s radius of gyration

(5.10) RG = 1
2N2

〈
N∑

i, j=1
(~r i −~r j)2

〉

equals the experimentally found value from SAXS measurements available in literature [134]

and (ii) its translational diffusion coefficient D equals that which we measured independently for

the ssDNA strand using 2fFCS. The model’s radius of gyration and diffusion coefficient are both

calculated using MC sampling. Matching the two criteria for the two parameters was achieved as

follows: The parameter a influences RG only because a = REV, but this influence is weak. Thus,

an initial guess for a was made, and σ was tuned to match the experimental RG value. Next, a

was tuned while holding σ fixed to match the experimental diffusion coefficient D. This change of

a then slightly altered the model’s RG value, such that σ needed to be slightly readjusted in turn.

After a few iterations of this process, the model virtually precisely delivered the desired values for

RG and D simultaneously. All model parameters were thus determined and Langevin simulations

can be run. For each tested parameter set, 40 independent trajectories were run. Each trajectory

was at least 104 t0 long, which is on the order of 100 µs – roughly three orders of magnitude

longer than the intensity autocorrelation time (see table 5.9). During each simulation, the chain

end’s distance from the surface h(t) was kept track of as a function of time. Afterwards, it was

translated into the intensity function I(h(t)) using the function shown in figure 2.14 (page 78).

Finally, the autocorrelation function was calculated as

(5.11) g(τ)= 〈∆I(t) ·∆I(t+τ)〉
σ2

I

where ∆I = I −〈I〉, σ2
I = 〈∆I2〉 and the average 〈·〉 was taken over all times and simulations.

1If they do overlap with the wall, the diffusion matrix Dwall is no longer positive definite such that the Cholesky
decomposition Bwall does not exist.
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Diffusion coefficients The diffusion coefficient was measured for different salt concentrations

in water. For salt concentrations of 150, 300, 500 and 700 mM, we obtained values 86.5, 83.9, 82.7

and 82.9 µm2/s, the average value of which is D̂ ≈84.0 µm2/s.

Radius of gyration We have not measured the radius of gyration of the ssDNA chains our-

selves, but utilize literature values from SAXS measurements [134], where the radii of gyration

of poly-A chains2 of different chain lengths were investigated for different salt concentrations.

Since the exact salt concentrations and chain length we are using had not been investigated in

said study (see supplemental material therein), we interpolated their values in two steps. Firstly,

we fitted RG as a function of chain length for each salt concentration independently, and inserted

our chain length (45 nucleotides) into the fitted power law. For salt concentrations 25, 225, 525

and 1025 mM this yielded RG values 3.96, 3.81, 3.71 and 3.56 nm – the black dots in figure 5.21.

Secondly, we heuristically fitted a monoexponential function with an offset to the so-found data

points (RG of 45 nucleotides as a function of salt concentration) and read off RG values for our

salt concentrations (see above). We obtained values 3.87, 3.79, 3.71 and 3.64 nm, the average

value of which is R̂G ≈3.75 nm.

Simulation results Since the experimental values for both D and RG show a relatively

weak salt dependence for the considered salt concentrations, we used the average values of

D̂ ≈84.0 µm2/s and R̂G ≈ 37.5 Å. The corresponding model parameters a and σ then represent

the ssDNA for all salt concentrations at once. With the parameter values N = 15, d = 1.95nm,

a = REV = 0.25d and σ = 0.071d, the model chain possesses the same diffusion coefficient D̂,

radius of gyration R̂G and contour length L as the average experimental ssDNA chain. 1 µs of

a simulated trajectory h(t) and I(t) is shown in figure 5.22. The resulting simulated intensity

autocorrelation was sampled at the same times as in the experimental setting (the time bins in

the FCS histogram) and was then fitted with a mono-exponential and with a double-exponential

function (see figure 5.23).

In the experimentally accessible time regime (> 25ns), the mono- and double exponential fits

virtually coincide – their time constant (reconfiguration time) is τ1 = 166±2ns. In the short-time

regime (< 25ns), the double-exponential fit additionally reveals a fast component of the polymer

dynamics on a time scale τ2 ≈ 12 ns, which has thus essentially already decayed before the first

experimental data point at 25 ns. The amplitude of this fast component is around one order of

magnitude smaller than that of the slower component.

2“A” stands for the nucleobase adenine. Our ssDNA chains also predominantly contain adenine.
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Figure 5.21: Interpolated RG values for different salt concentrations from SAXS measure-
ment taken from reference [134]. Black dots show values interpolated to a chain length of
45 nucleotides (poly-A strands). Red dots show values which are further interpolated to the
required salt concentrations using a heuristic monoexponential fit with an offset (blue line).

In order to further test the model parameters’ influence on τ1, we ran two additional sets of

simulations: The chain’s stiffness was increased (decreased) while the bead size was decreased

(increased) in such a way that the model’s diffusion coefficient D remained unchanged but RG did

not. That is because the RG values were taken from literature studies for different chain lengths

and salt concentrations as described above, whereas we measured the diffusion coefficients for

our exact molecules ourselves. The bending stiffnesses in these additional simulations were

chosen to be σ= 0 and σ= 0.5d, and the corresponding bead sizes were a = 0.27d and a = 0.21d

respectively. We remark that the radius of gyration cannot be reduced further down than ∼ 35.5Å

in our model (σ= 0) as long as N = 15. Lowering it further would require finer discretization of

the chain, but our discretization turned out to be sufficient because R̂G > 35.5Å. For all tested RG

values, the corresponding persistence lengths lP and time constants can be found in table 5.9.

The autocorrelation time does depend on the radius of gyration, but it does not change its order

of magnitude even when the radius of gyration is increased drastically (by more than 20%).

138



CHAPTER 5. APPLICATIONS

0 200 400 600 800 1000
0

5

10

15

20

25

30

time / ns

z
/
nm

in
te
ns
it
y
/
a.
u.

Figure 5.22: 1 µs of a simulated trajectory. In red, we show the chain end’s distance from the
surface, and in black we show the corresponding intensity in arbitrary units. The two signals
look almost identical because the relationship between height and intensity is virtually
linear in this regime (see figure 2.14, page 78).

D = 84.0 µm2/s

RG /Å lP /Å τ1 /ns

35.5 14.4 166 ± 5
37.5 16.3 166 ± 2
45.7 25.8 250 ± 6

Table 5.9: The simulated parameter sets and corresponding mono-exponential time scales of
intensity autocorrelation decay.

Conclusion The simulation results yield two useful pieces of information. Firstly, the experi-

mentally measured autocorrelation of the polymer dynamics can be expected to decay on a time

scale in the order of tens or hundreds of nanoseconds. Secondly, fitting it with a mono-exponential

function is reasonable. As a side note, if a continuous excitation laser is used such that the

fast polymer dynamics (< 25ns) can be investigated, additional fast components of the polymer

dynamics may be revealed.
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Figure 5.23: The autocorrelation C(t) of the simulated intensity I, sampled at the same times
as in experiments (black dots) and for interest’s sake also sampled at logarithmically spaced
times (green dots). The time axis is logarithmic. The grey area indicates the experimentally
inaccessible time interval. The red solid line shows a double exponential fit to the black data
points, and the solid blue line shows a mono-exponential fit to the black data points. The
red, dashed line is the slower component (first term) of the double-exponential fit. As can be
seen, it almost coincides with the blue solid line, meaning that the monoexponential fit is a
good approximation to the data points in the experimentally accessible regime.
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DISCUSSION AND CONCLUSION

The results of this thesis will now be discussed. The findings for GS-repeats constitute the

main experimental application of the polymer model we developed. Therefore, they enjoy the

highest priority in this chapter, being followed up with the findings concerning the FG-proteins.

The dynaMIET project is still unfinished as final experimental results are yet unavailable. Its

state is briefly mentioned by the end of this chapter and further discussed in the next one. Our

polymer model itself is reviewed by the end of this chapter (conclusion). Its behaviour was already

discussed in section 5.1 (page 107), which will not be repeated here.

Contact rates The values of contact formation rates k+ are highly dependent on the photo-

physical details of contact formation. In our simulations, all these details are subsumed by the

effective radius for instantaneous contact formation, for which we had chosen RC = 5.4Å [117].

The appropriate numerical value for RC, as well as the number of fluorophore-quencher collisions

required for successfully forming a non-fluorescent fluorophore-quencher complex have been

investigated using molecular dynamics simulations and experimental techniques [13, 117, 120],

which share the fact that the investigated systems do not consist of energetically non-interacting

spheres as is the case in our model. Some systematic bias of the modeled absolute values of

fluorophore-quencher formation rates is therefore unavoidable for any beads model. The fact that

our simulated rates are nonetheless within ∼ 17% of the experimental values is reassuring and

confirms that the experimentally measured contact rates and hydrodynamic radius values are

globally consistent with each other and our model. We reemphasize that the model parameters

were not at all fitted to match the experimental rates’ order of magnitude – we got this match for

free. It can furthermore be observed that the magnitude of the simulated contact rates does not
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differ significantly between the candidate parameter sets. That is because these parameter sets

attribute identical hydrodynamic radii to the chains. This is achieved by balancing the increase

in hydrodynamic radius RH due to higher chain stiffness σ with making the bead size a smaller.

The same balancing effect simultaneously takes place at the level of the contact rates’ values:

chain stiffness decreases the rates and making the beads smaller counteracts this decrease.

Fitting the experimental rates’ exact values is therefore in some sense redundant with fitting the

experimental hydrodynamic radii. This circumstance would make a two-dimensional parameter

search based on these two criteria difficult. Instead, our method of fitting the dimensionless

power law exponent and tail effect seems sensible. If, however, the precise values of simulated

contact rates become of interest in the future – for example to compare them for different amino

acid sequences – I suggest using the critical contact radius RC = 5Å, which we had estimated to

give the correct contact rate values for the simulated GS-repeats. For these proteins, the model

has performed exceptionally well, which is why they are well-suited to serve as a calibration.

Previous literature on contact rates Several experimental studies measured the rate with

which two sites on a protein come together [3–13]. The loop formation rate in disordered proteins

was found to have a power law dependence on their chain length [3, 6, 7], as long as the chains

are no shorter than about 10 amino acids [14]. The order of magnitude of our experimentally

measured contact rates (∼ 107 s−1) is in agreement with that measured previously for GS-repeats.

Reference [6] finds them to be on the order of 107 −108 s−1 for proteins with 10 or fewer amino

acids (1999). Reference [14] confirms this and observes the rates dropping to ∼ 5 · 106 s−1 for chain

lengths up to 60 amino acids (2003). Reference [3] reports slightly larger values, although still

on the same order (2007). These three studies did not use PET-FCS as we did, but an outdated

method called triplet-triplet energy transfer (TTET), in which fluorescence quenching is not

instantaneous. It occurs with a rate similar to k+ whenever fluorophore and quencher are in

contact, thus requiring an additional fit parameter when interpreting FCS-curves. A more recent

study [13] from 2010, which uses PET-FCS for GS-repeats as we did, considers chain lengths up to

15 amino acids and also finds contact rates on the order of 107 s−1. On the theoretical side, several

studies [19–25] delivered explicit but approximate expressions for contact rates which can be

evaluated once a polymer model has been chosen. The most commonly used theory among these is

the Szabo-Schulten-Schulten (SSS) theory [19]. In a nutshell, SSS theory assumes the end-to-end

dynamics in a polymer chain to be a one-dimensional Markov-process. Given the end-to-end

probability distribution p(R), one immediately finds the associated free energy function F(R) by

inverting the Boltzmann distribution. Upon insertion of F(r) into the one-dimensional Fokker-

Planck equation, SSS theory yields an explicit expression for the contact rate. For Gaussian

end-to-end statistics, this expression (integral) can be solved analytically [10] and reads

(6.1) k+ ∝〈R2〉−1.5 ∝ L−1.5ν
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which is a power law, since typically 〈R2〉∝ Lν. Studies which numerically evaluate theory-based

expressions for k+ typically confirm its power law behavior as a function of chain length. Different

scaling regimes (depending on critical contact radius, chain length and persistence length) with

different power law exponents exist [26–35], however, and deviations for too short, semiflexible

chains are observed [40, 41]. Purely computational studies for coarse-grained polymers (less

realistic than ours though) confirm this power law behavior [36–39] for chains significantly longer

than their persistence length. Considering how accurately our own simulated contact rates follow

power laws (see figure 5.11, page 122), we can conclude that the true relation between contact

rates and chain length – if it is not one exactly – is at least well-approximated by a power law.

Power law exponent Our results show that the power law exponent ε depends (i) only weakly

on hydrodynamic bead size a, (ii) but strongly on bending stiffness σ. Without hydrodynamic

interactions, the first statement is trivial: the bead size only linearly re-scales the time scale of

the dynamics for all chain lengths in the same manner and will hence not change the power law

dependence on chain length. With hydrodynamic interactions, our results show that while the

contact rates depend non-linearly on a, they do so in a similar fashion for all chain lengths. The

second statement, that the power law behavior strongly depends on bending stiffness σ, can be

understood as follows. For the dynamics of less stiff chains, excluded volume effects become more

important as beads collide statistically more often. This alters the chain’s end-to-end distance

(R) scaling behavior with chain length L; writing 〈R2〉 ∝ Lν, one has ν = 1 for an ideal chain

and ν> 1 for self-avoiding random walks (Flory chains, see page 65). This scaling behavior can

be linked to the contact rate’s scaling behavior in light of the SSS theory assuming Gaussian

end-to-end statistics (see equation 6.1 above). Therefore, the power law exponent ε is altered from

−1.5 for ideal chains towards lower values for self-avoiding chains. With a simulated exponent of

−1.52±0.01, our simulations without excluded volume effects (see table 5.5, page 126) confirm this

interpretation excellently. Although SSS-theory is oversimplified as it assumes the end-to-end

dynamics to be Markovian, its predicted relationship between contact-rate scaling and end-to-end

distance scaling seems correct. A similar impact of excluded volume effects on the dependence of

the power law exponent on persistence length has also been found in reference [7]. Note that the

quantitative relation between power law exponent and chain stiffness can be expected to depend

on the model’s excluded volume radius for each monomer. We emphasize again that the value we

used (
p

2 /4 times a bond length) is the minimum value preventing bonds from passing through

each other and was chosen only for this geometric reason. We remark that, since excluded volume

effects lower the contact rates, a smaller power law exponent (steeper slope in log-log-plot) implies

that excluded volume effects play a more important role in longer chains.

The exponent value of −1.86±0.15 that we found is relatively small compared to findings of other

studies of the same types of proteins (GS-repeats). Reference [6] reports a value of −1.36±0.26 for
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very short chains (4-10 amino acids only) where deviations from sufficiently long polymer chains

(i.e. significantly longer than their persistence length) may be expected. Reference [13] reports

a value of −1.4±0.2 using chain lengths of 10 to 30 amino acids. Reference [14] used chains

even longer than ours (up to 56 amino acid residues) and found a value of −1.72±0.08, which is

within our error margin. The last reference determined also the exponent for serine-only proteins

(measuring no chains longer than 12 amino acids though) and found a value of −2.1±0.3.

When fitting a power law via least squares, we weighted each rate according to its error (weight∝
1/error2) which we took, for the experimental data, to be proportional to the rate’s value itself,

and, for the model, to be proportional to the statistical error over the ensemble of simulated

trajectories. We fitted the power law to the contact rates as a function of contour length, including

the fluorophore, whereas the references above fitted them as a function of the number of amino

acids. We have tested that neglecting the fluorophore’s contribution to the chain’s contour length

leads to a larger (smaller in magnitudes) fitted exponent for our data (−1.68±0.15), which thus

seems a likely source of discrepancy with other studies.

Tail effect We found that the tail effect depends predominantly on the hydrodynamic bead

radius a, but not on the chain stiffness σ. We interpret this result as a clear indicator that the tail

effect originates from the hydrodynamic drag that the extra beads behind the quencher add to its

movement (see also reference [11]). Larger beads (i) diffuse more slowly as individual particles,

but (ii) are hydrodynamically more strongly coupled and fluctuate more cooperatively. The second

effect is dominated by the first when considering e.g. the absolute value of contact rates or the

translational diffusion of the entire chain. The tail effect value, however, is a dimensionless ratio

of rates which remains unaffected by the first effect. Therefore, the more cooperative motion of

quencher and tail reduces the tail effect when the hydrodynamic bead size a is increased. One

may expect that the tail effect would also depend on persistence length as the tail is, on average,

farther away from the quencher for stiffer chains, which reduces the hydrodynamic coupling

between them. Our simulations show that this effect plays a minor role when compared to the

impact of bead size. Another effect that contributes to the tail effect is that the tail leads to an

additional sterical hindrance during loop formation. Our simulations without excluded volume

show that this effect exists, but is relatively weak compared to the impact of changing a, which

confirms again that solvent friction is the main origin of the tail effect.

More detailed investigations of the tail effect than ours are available in literature. For instance,

reference [5] experimentally found that the tail effect increases as a function of the tail’s length,

and as such converges towards a value where the contact rate is about 2.5 times lower than the

rate with no tail. Reference [11] systematically studied the tail effect in single-stranded DNA and

in simple coarse-grained simulations. They demonstrated that the dependencies of contact rates

as a function of quencher position (for different contour lengths) can be mapped to a universal
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curve when properly normalized. Reference [137] analytically investigated the tail effect in the

Rouse chain (Gaussian chain), though not at the level of contact rates, but of reconfiguration

times (time scale of end-to-end distance fluctuations).

For our purposes, we reiterate that the tail effect is a purely dynamical effect which cannot be

inferred from the chain’s statistical properties (Boltzmann distribution). It is therefore a good

test for a dynamic model to reproduce an experimentally measured tail effect because correct

chain statistics alone do not suffice to pass this test.

Fit parameter values We determined the persistence length of GS-repeats to be lP = 5.2±
1.9 Å, and the hydrodynamic radius of one of their amino acids to be a = 3.5±0.7 Å. For com-

parison, other authors found hydrodynamic radius values of 4.1 Å [138], 4.5 Å [139], 5.1 Å [140],

> 3.6 Å [141] and 5.3 Å [142] for single amino acids. These values were found by comparing

experimentally measured diffusion coefficients with those of bead models of proteins within the

Rotne-Prager approximation. Our value is on the lower end of this spectrum, which is reasonable,

taking into account that glycine and serine are comparatively small amino acids. It should

be noted that all these values are larger than half the distance between adjacent Cα atoms,

which is equal to 1.9 Å. Thus, hydrodynamically speaking, neighboring beads overlap. Citing

reference [55], “this reflects the fact that: 1) the interior of the protein is densely packed, 2) the

side chains of amino acids are usually longer than 1.9 Å, and 3) the protein is covered by the

hydration layer of tightly bound water molecules.”

Finally, our persistence length value is in good agreement with findings of other authors for

intrinsically disordered proteins: lP = 4±0.7 Å [143] (measured from Förster resonance energy

transfer experiments), lP = 4 Å [144] (fitting a worm-like chain model to end-to-end distances

extracted from the protein data base), lP = 6.4 Å [10] and lP = 4 to 5.5 Å [7] (both comparing ex-

perimental contact rates with SSS theory inserted with the end-to-end statistics from a worm-like

chain, the latter study taking into account excluded volume effects).

The model’s failure in reproducing FG results It turns out that applying the exact same

model and fitting procedure, which worked splendidly for GS-repeats, to the internal-to-end

contact rates and hydrodynamic radii measured for the FG-proteins was unsuccessful. Candidate

parameter sets reproducing the experimental hydrodynamic radius values did not reproduce the

correct contact rate values. The simulated contact rates of the FG-protein are a factor of 2 to 5 too

large when using the same experimental flurophore-quencher pair (Atto655 with tryptophan) and

critical contact radius (5.4 Å) as used for the GS-repeats. More importantly, the simulated power

law exponents (between −1.9 and −1.6) do not match the experimental one which is −1.07±0.09

(see figure 5.18, page 132). It is thus clear that none of the candidate parameter sets can be

regarded as well-fitting. It would be possible to try out parameter sets with an even greater chain

stiffness σ, but the exponents’ trend already indicates this task’s futility.
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We must hence discuss why model and experiment do not fit together for these proteins. There

are three major differences to the GS-repeats. Firstly, the quencher tryptophan is not placed at

the chain end but within the chain. This will likely make it more difficult for the quencher to dif-

fusively come together with the fluorophore due to steric hindrances. The model accounts for this

at least partly as it contains excluded volume interactions of the central backbone. It is possible,

however, that the sterical hindrance is more crucial in the real molecules because the aromatic

rings of tryptophan and Atto655 must properly stack together to form a nonfluorescent complex.

The model treats them both as spheres with isotropic interaction, thus possibly overestimating

the contact rate. Secondly, the FG-protein is highly heterogeneous, whereas the GS-repeats are ho-

mogeneous. In terms of our model, this may correspond to the bending elasticity σ and the amino

acids’ hydrodynamic radii a varying along the chain. The model does not take heterogeneities

into account and can hence be expected to fit GS-repeats better than FG-proteins. GS-repeats

are known to be disordered proteins, but we cannot be certain that the more complicated amino

acid sequence of the FG-proteins does not result in remnants of secondary structures. Thirdly,

the model does not include internal friction. Internal friction is a dissipative mechanism which

is known to play a role in the dynamics of proteins in general [145, 146]. Like solvent friction,

internal friction is caused by interactions between the degrees of freedom whose dynamics is ex-

plicitly considered (the protein’s backbone) and faster variables whose is not. For solvent friction,

these interactions are collisions with water molecules, which statistically decrease the relative

velocity between backbone and fluid. Internal friction is less well understood, but believed to be

an analogous interaction of the chain with itself, slowing down conformational dynamics: When a

bending angle changes, the amino acid’s side chains must move along, but they are not explicitly

considered at our level of description, and so they statistically add a friction force dampening

the relative motion of neighboring parts of the protein. In a sense, both friction mechanisms can

thus be considered to be coarse-graining artifacts. Our model does not include internal friction

for the following reasons: (i) it requires an additional free parameter, and we tried to keep the

number of parameters as small as possible; (ii) experiments have shown that the contact rates

in GS-repeats exhibit an inversely linear viscosity dependence [3] which indicates that solvent

friction and not internal friction is the dominant dissipation mechanism for GS-repeats; and (iii)

it cannot be implemented in a trivial, straightforward manner. In any case, internal friction slows

down conformational dynamics, which would be an appropriate correction for our model to better

match the FG-proteins: the simulated contact rates are too large compared to the experimental

ones. Moreover, it is analytically known from Gaussian chains [70] that the influence of internal

friction (compared to solvent friction) decreases with chain length. This implies that including

internal friction in our model would lead to an increased power law exponent of internal-to-end

contact rate versus quencher position (flatter slope in log-log plot because points on the left are

decreased further). This would further improve our model’s fit quality for FG-proteins.
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Moreover, internal friction only influences the conformational dynamics of the simulated chain,

and not its translational diffusion as a whole, thus leaving the hydrodynamic radii and candidate

parameter sets untouched. To conclude, the lack of internal friction hence seems to be a likely

cause of the mismatch between the existing model and the experimental data for FG-proteins. In

the next chapter we suggest possible ways to take internal friction into account in our model.

Systematic discrepancies between model and experiment Other than the obvious ne-

glect of quantum and relativistic effects, chemical transformations and internal friction, there

are four systematic differences between our model and real proteins which deserve mentioning.

First is hydrodynamics – the continuum description of water becomes questionable as we ap-

proach length scales on the order of individual water molecules (a few Angstrom). We use the

Rotne-Prager approximation to solve the Stokes equation, which is known to reproduce more

accurate higher-order methods very well [55]. Particularly vicious thermal fluctuations may tem-

porarily cause high thermal velocities for which inertial effects play a role, thus invalidating the

Stokes equation itself. Estimating an object’s Reynolds number Re= ρr0v0η
−1 in water requires

knowledge of the object’s typical size r0 and its velocity v0 relative to the fluid. Taking r0 as the

hydrodynamic radius of the GS-repeats and v0 as their thermal velocity from the equipartition

theorem1 for the kinetic energy v0 =
p

3 ·T/m , with m being the molecule’s mass [124, 147], yields

Re≈ 0.05, meaning that the neglect of inertial effects is justified, but not perfect. Secondly, the

geometry of our model chain is that of a discrete elastic rod of fixed length (bead-rod chain),

while proteins possess a finite stretching stiffness. The stretching stiffness in proteins is large

enough for bond fluctuations to be very small and much faster than conformational dynamics,

however [148]. More importantly, the geometrically allowed deformations in proteins are bond

rotations around their N −Cα and Cα−C bonds (also known as the angles Φ and Ψ), and not

free rotations of each tangent vector on a spherical shell as is the case in our model. For too short

chains this will impact the values the end-to-end vector can take on, but for a sufficient number

of degrees of freedom, such atomistic details lose their relevance (which is the whole point of

statistical mechanics). Thirdly, we have not discriminated between amino acids, whether they are

glycine, serine or tryptophan. Tryptophan, which is by far the largest of the three, may slow down

the end-to-end dynamics more than glycine or serine would in its stead, especially when placed

at the chain’s end. A more detailed description may take this into account by employing different

bead sizes, which would come at the cost of introducing new parameters to the model. Fourthly,

molecular dynamics simulations have shown [13] that the formation of intrachain hydrogen

bonds influences the end-to-end dynamics, an effect that our model does not capture since we

included only steric interactions between non-neighboring amino acids.

1It reads
m
2
〈v2

0〉 =
3
2

T .

147



Conclusion In this thesis, we have combined the existing theories of overdamped hydrodynam-

ics, discrete differential geometry and constrained Brownian motion into a polymer model. Our

model is fairly realistic as it includes solvent friction, hydrodynamic interactions, bending rigidity,

excluded volume effects and also takes into account the attached fluorophore. This realism came

at the cost of the model losing analytical solvability and being treatable only computationally.

Generally speaking, adding effects to a mathematical model in pursuit of making it more realistic

entails introducing free parameters, which quickly become too numerous to be quantified. We

have succeeded in utilizing all experimental information at our disposal in order to compose

a realistic model, while keeping the number of free parameters to a minimum: The number of

amino acids (chain length), the medium’s temperature and viscosity, the fluorophore’s properties

and the distance between Cα atoms in proteins are all available to us. Our model is capable

of taking all these pieces of information into account and consequently includes only two fit

parameters. As a second step, we designed a fitting routine for estimating these two remaining

parameters from systematically measured hydrodynamic radii and contact rate values of IDPs.

The crucial “trick” was to further simplify the parameter search process in two dimensions:

Making use of the fact that hydrodynamic radii can be calculated much faster than contact

rates can be simulated, the parameter search was reduced to take place in a single dimension:

Brownian dynamics simulations must only be run along the curve of candidate parameter sets.

We have therefore succeeded in developing an efficient computational method for interpret-

ing single-molecule experiments, which explicitly delivers molecular properties of the proteins.

For GS-repeats, considered an ideal disordered protein without internal friction or secondary

structures, our model has performed excellently. It is simultaneously able to reproduce the

hydrodynamic radius values for different chain lengths, the contact rate values for different

chain lengths, the power law exponent and the tail effect. We found out that GS-repeats are

well described by a generic semiflexible chain which represents the proteins by one bead with

a hydrodynamic radius of 3.5±0.7Å per amino acid and has a persistence length of 5.2±1.9Å,

and that excluded volume effects are a crucial ingredient in the model. Thanks to the model, we

also gained insights into the microscopic mechanisms which lead to the experimentally observed

values of RH , k+, the power law exponent and the tail effect. At the same time, the model fulfills

all available analytical benchmarks, and yields a scaling behavior of the contact rates which is

explained by SSS theory. The fitting process has to take a large number of experimental results

into account, but can be performed within a few days on a computational cluster such as the one

I had access to. We can therefore conclude that for “ideal” molecules such as GS-repeats, we have

solved the task we set out to tackle. However, the model has failed in matching experimental

results for FG-proteins – an inhomogeneous amino acid sequence which may include secondary

structures and/or internal friction. It remains to be seen just how ideal proteins need to be in
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order to be successfully investigated with the current method. We have further demonstrated

that the model is not at all limited to being applied to a combination of PET-FCS and 2fFCS

experiments – it also delivers quantitative and testable predictions for the outcome of dynaMIET

experiments. Possible directions of future work are discussed in the next chapter.

Determining persistence lengths and hydrodynamic properties of proteins is not a novelty, and

neither is studying scaling exponents in polymer theory. Our achievement here was that we have

built a link between these topics and state-of-the-art single molecule experiments by combining

them with modern hydrodynamics, statistical mechanics and differential geometry, thereby

exploiting the full potential of theory, simulation and experiment working hand in hand.
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7
OUTLOOK

Follow up work to this thesis should go in five directions, which will now be discussed.

7.1 Dynamics in generalized coordinates

One of our model chains consisting of N beads with N −1 inextensibility constraints effectively

has 2N +1 degrees of freedom. Nonetheless, our inherently Cartesian description of the chain

paired with introducing one Lagrangian multiplier per constraint results in 4N −1 variables

whose values must be determined in each numerical time step. The routine for solving the

constraints includes the inversion of an N−1×N−1 matrix, as does evaluating the entropic force
~∇SC. Furthermore, determining the diffusion matrix D requires the evaluation of ∝ N2 terms,

after which its Cholesky decomposition must be calculated (time ∝ N ln N). Physically, the mean

time between contact events grows as N1.5−2.0. Taken together, these scaling laws severely limit

the maximum chain length for which we can realistically simulate sufficiently long trajectories to

around ≈ 60. It is therefore desirable to describe the polymer dynamics in a lower-dimensional

phase space. This can be achieved in two ways.

Firstly, the dynamics itself can be modeled in a simplified manner, e.g. in a one-dimensional

picture where the only degree of freedom is the polymer’s end-to-end distance. This path we should

not take because it contradicts the purpose of our model – we want to learn about molecular

properties and have at hand the full dynamics of the polymer, regardless of which observables are

compared with experiments. For example, the tail effect cannot emerge from a one-dimensional

picture – it would need to be encoded in the model by hand which undermines our philosophy of

modeling: the model’s behavior should be observed, not dictated.
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Secondly, lowering the effective number of degrees of freedom can be attempted within our

polymer model without altering its physics. The idea should be completely analogous to the

equivalence between the Lagrange I and Lagrange II formalism in classical mechanics: instead

of imposing constraints on a Cartesian system by using Lagrangian multipliers, the dynamics

may be described in terms of generalized coordinates which automatically satisfy the constraints.

The set-out task would be to derive an equivalent Langevin equation not for the beads’ Cartesian

coordinates, but for a suitable parametrization of their tangent vectors (indicatrix). In practice,

spherical coordinates (φi,θi) could be used, although I suspect that the variables (φi,cosθi) yield a

more practical description because they are uniformly distributed in absence of a bending energy

and are “properly aligned” in its presence (see also pages 94 and 28). While in regular calculus

transformations between variables are easily executed by using the chain rule, in stochastic

calculus the rules for such transformations depend on whether the Itô or Stratonovich formalisms

are used. Within either of them, some version of Itô’s lemma [1] must be employed. For the Itô

formalism we used in this thesis and a Langevin equation dx = adt+ bdW, it states that the

Langevin equation for a function f (x) reads

(7.1) d f =
(
a∂x f + 1

2
b2∂2

x f
)
dt + b∂x f dW ,

which does not simply equal ∂x f dx as would be expected from regular calculus. Applying this

lemma to our (Cartesian) Langevin equation carries over the terms including the Lagrangian

multipliers as well as the entropic pseudoforce into the generalized coordinates’ dynamics. Since,

like the Cartesian description, the generalized description must be able to distinguish between

a freely swimming chain and a chain with one end bound to a surface, it is impossible that the

terms including constraining forces are simply “projected out” by the variable transformation.

The information about one chain end being bound (or not) must be preserved upon translation to

generalized coordinates. Another useful test for correctly preserved dynamics is the tail effect –

as explained before, it is a dynamical property which does not follow from correct conformational

statistics. Moreover, the diffusion matrix is a function of the Cartesian coordinates, which may be

tedious to evaluate in generalized coordinates, and the same holds true for the stochastic force

term as its autocorrelation is given by the diffusion matrix.

It should be subject to future work to investigate whether or not these challenges can be overcome

in such a way that numerical integration of our Langevin equation is made significantly more

efficient by using generalized coordinates. To a reader pursuing this goal, I would like to point

out that literature extending my knowledge on constrained Brownian motion (also in generalized

coordinates) is available and may prove helpful [63, 65–67, 149–151].
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7.2 Investigating dynaMIET

As soon as experimental results become available, a more thorough investigation of the polymer

dynamics near a surface can be performed within our model. For instance, I have not yet studied

the influence of the model parameters on the reconfiguration time and the shape of the autocorre-

lation function, or the scaling behavior with chain length, but in principle all this can already

be achieved without altering the model. Like in PET-FCS, the molecules studied via dynaMIET

can already be subjected to 2fFCS measurements, and the measured hydrodynamic radius be

taken into account by the model. In the future, a combination of all three methods may be used

in order to test the model’s overall consistency, or to estimate the strength of internal friction,

which influences the reconfiguration (dynaMIET) and the contact rate (PET-FCS), but not the

hydrodynamic radius (2fFCS).

7.3 Internal friction

Generally speaking, internal friction is a relevant dissipative mechanism in the dynamics of

IDPs [145, 146]. It is currently not known, however, what exact microscopic mechanisms cause

it, or how to implement it in a coarse-grained polymer model such as ours. A commonly used

heuristic approach is that chosen in the Rouse-model with internal friction (“RIF”) [70] whose

Langevin equation reads

(7.2) γdt~rn = (κ+ζidt) (~rn−1 −2~rn +~rn+1)+~ξ .

The novel term here is the time-derivative on the right-hand side. It describes a force which is

opposed to the relative velocity between the monomer~rn and its two neighbors. It is a linear term

such that the Rouse model remains analytically solvable. The prefactor ζi tuning the strength of

internal friction is analogous to the friction coefficient γ doing so for solvent friction. Heuristically

adapting this force term into our nonlinear, geometrically constrained Langevin equation leads to

(7.3)

d~r i =T−1
N∑

j=1
Di j ·

[−~∇ j(E−TSC)+λi+1~ti+1 −λi~ti +ζi (dt~r j−1 −2dt~r j +dt~r j+1)
]
dt

+
p

2
N∑

j=1
Bi j ·d~Wj .

These updated equations of motion are not yet well-suited for numerical integration, because they

are not explicitly solved for the increment d~rn. Fortunately, the increments enter the right-hand

side in a linear manner, such that the Langevin equation (in 3N-dimensional vector notation)
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can be rearranged as follows:

(7.4)

dt~r =D · (~F +ζiM ·dt~r)

⇔ (1−ζiD ·M) ·dt~r =D ·~F
⇔ dt~r = (1−ζiD ·M)−1 ·D ·~F
⇔ d~r =: T−1D̂ ·~Fdetdt+

p
2 B̂ ·d~W

where M consists of blocks Mi,i+1 =Mi,i−1 = 13×3, Mii =−213×3 and is zero elsewhere, and ~Fdet

denotes the collection of all deterministic forces. Following this approach, one finds that the

fluctuation-dissipation relation D̂ = B̂ · B̂T is not fulfilled. This is not surprising because the

fluctuation-dissipation theorem [152] states that any source of friction also causes thermal

fluctuations (random forces), and here we have only heuristically added a friction force but

no additional source of noise. To correct for this, I suggest replacing the matrix B̂ above with

the Cholesky decomposition of D̂ such that the detailed balance condition is fulfilled and the

Boltzmann distribution is sampled.

This updated model possesses the additional free parameter ζi which quantifies the strength

of internal friction. Note that without internal friction, the viscosity η only entered our model’s

dynamics via the time scale t0 ∝ η (see section 4.1, page 85), and thus all simulated times were

automatically proportional to it. This no longer holds true in presence of internal friction, and

thus it is common practice in literature to infer the parameter ζi from the viscosity dependence of

time-related quantities. Within the RIF model, for instance, it is known that the reconfiguration

time τR of a Gaussian chain with internal friction is given by the sum of two terms – the first is

proportional to η, and the other to ζi. Hence, the offset of lim
η→0

τR(η) yields information about the

strength of internal friction, and is also experimentally accessible.

I suggest that we utilize the same sort of trick and estimate ζi from experimental measurements

of the mean loop formation time k−1+ as a function of solvent viscosity η. Its offset should then be

compared to a model-derived prediction in terms of ζi.

7.4 Secondary structures and twist

Our polymer model may be expanded by taking into account possible remnants of secondary

structures in the measured proteins. To do so, the constrained Langevin equation does not need

to be altered at all – only the energy function E does. As was explained in section 2.3.2 on page 61,

we use an energy function from within the framework of discrete differential geometry. It is

capable of encoding an arbitrary energetic minimum of the modeled elastic rod, which can be

chosen to e.g. resemble an α-helix. It should be noted that, by doing so, one does not model the

microscopic mechanisms (interactions between the amino acids’ side chains) which result in
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secondary structures at all. Instead, one inserts the result of these mechanisms into the model

without specifying why there is e.g. an α-helix. Such a procedure is obviously questionable at the

level of microscopic physics, but it does serve a meaningful purpose: It allows us to investigate

the impact of secondary structures on experimentally accessible observables; in particular on

the function k+(s), i.e. the internal-to-end contact rate as a function of quencher position. In

the absence of secondary structures the energetic minimum of the model polymer is a straight

line, as it has been throughout this thesis. This led to k+(s) being a power law as long as s is

not too close to the free chain end such that the tail effect plays a role (see figure 5.6, page 114)

and at least a few persistence lengths away from the fluorophore. In the presence of secondary

structures, however, the functional form can be expected to be altered, and we currently lack

a link between the two. During his doctoral work [130], my colleague Man Zhou worked with

a short protein called the FSFG-protein and experimentally measured its function k+(s) (see

figure 7.1). Its amino acid sequence is

Atto655-CENSKTGFSFAPKSSDSDKKEDSKAGFSFAPKSADGDKKEDSKAGFSFAPK

where the amino acids marked in red where replaced with tryptophan one at a time, or tryptophan

was attached to the chain end.
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Figure 7.1: The internal-to-end contact rate measured in FSFG-proteins as a function of
quencher position.

Interestingly, the measured function k+(s) is not strictly decreasing, but has a local maximum

which cannot be explained with the current model. As a proof of principle, I have simulated
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k+(s) for a number of model chains with varying bending stiffness. All their reference curvatures

encode two loops of a planar, circular ring such that the chain ends coincide with its center. The

results as well as technical details of the simulations can be found in appendix G, where we

also show that the influence of twisting elasticity on the end-to-end contact rate is very weak.

It turns out that k+(s) can indeed have a local maximum when nonzero reference curvatures

are introduced into our model. A detailed, quantitative analysis linking the shape and energetic

stiffness of realistic secondary structures to the internal-to-end contact rates of the investigated

proteins should be subject to future work, especially considering the unique vantage point which

presents itself to us. As soon as such an analysis becomes available, it may become possible

to combine our method with results of complementary methods quantifying the existence of

secondary structures (circular dichroism [153] or Ramachandran plots [154]), or the free energy

landscape (atomic force microscopy [155] or molecular dynamics simulations) in proteins.

7.5 Repeat current protocol

As explained in the previous two sections, our model can be extended to be more realistic, which

comes at the cost of introducing additional fit parameters. However, the potential of the current

model has not yet been fully exploited. The successful method of combining PET-FCS and 2fFCS

experiments of end-to-end labeled homogeneous IDPs with our polymer model should be applied

to other proteins. The amino acid sequences of those proteins should obviously differ from that

of GS-repeats, but still be homogeneous. As a future goal, one may thereby obtain a list of best-

fitting persistence lengths and hydrodynamic bead radii associated with different amino acids.

Firstly, such a list would yield interesting insights, e.g. about which amino acid (or what chemical

properties of amino acids) make proteins stiffer or diffuse faster than others do. Secondly, it would

potentially allow us to tackle even inhomogeneous amino acid sequences by simulating a model

polymer with parameters a and σ which vary along its contour according to a given experimental

amino acid sequence.

Two prerequisites for our current method to be successful are that (i) the investigated protein

does not fold but is intrinsically disordered, and (ii) that the amount of internal friction in it is

negligible. As explained in the previous two sections, both criteria can be experimentally checked

before the proteins are further investigated.

An ambitious future goal would be to have at hand a combined method of performing PET-FCS

and 2fFCS experiments and numerical simulations within an extended polymer model, which

not only delivers the measured proteins’ persistence lengths and hydrodynamic properties, but

also detects secondary structures and takes into account internal friction.
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OTHER CONTRIBUTIONS

During my doctoral dissertation, I have worked on a number of side projects which I consider

too unrelated to the main text of this thesis to be embedded into it. Nevertheless, all

main and side projects share a common feature: They treat one-dimensional curves in three-

dimensional space. In the following, four projects will be presented in the following way: Firstly,

the abstract of the published manuscript is presented, and the project’s publication status and

scientific context are briefly explained. Secondly, it is made clear what my own contribution to

the project was, and selected parts of the published manuscript which are related to my own

contribution are presented. The latter were slightly altered to better fit into this thesis, and are

not meant as complete reproductions or summaries of the manuscripts.
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8.1 Geometric constraints in protein folding

Abstract: The intricate three-dimensional geometries of protein tertiary structures

underlie protein function and emerge through a folding process from one-dimensional

chains of amino acids. The exact spatial sequence and configuration of amino acids,

the biochemical environment and the temporal sequence of distinct interactions yield

a complex folding process that cannot yet be easily tracked for all proteins. To gain

qualitative insights into the fundamental mechanisms behind the folding dynamics

and generic features of the folded structure, we propose a simple model of struc-

ture formation that takes into account only fundamental geometric constraints and

otherwise assumes randomly paired connections. We find that despite its simplicity,

the model results in a network ensemble consistent with key overall features of the

ensemble of Protein Residue Networks we obtained from more than 1000 biological

protein geometries as available through the Protein Data Base. Specifically, the dis-

tribution of the number of interaction neighbors a unit (amino acid) has, the scaling

of the structure’s spatial extent with chain length, the eigenvalue spectrum and the

scaling of the smallest relaxation time with chain length are all consistent between

model and real proteins. These results indicate that geometric constraints alone may

already account for a number of generic features of protein tertiary structures.

This project was published in PLOS ONE on February 27th 2020 [156], and is a collaboration

with Nora Molkenthin, Antonia Mey and Marc Timme.

A well-known paradigm in biophysics is the protein-folding problem, which was described in the

introduction of this thesis (see page 5) and the abstract above. In this work, we take a step back

and identify universal features of folded protein structures which result from simple geometric

constraints: any successful protein folding process has to (i) obey excluded volume interactions,

while (ii) the backbone stays connected. To this end, we disregarded the heterogeneous nature

of the protein’s amino acid sequence and developed a simple geometric model which follows the

same constraints: a chain of touching spheres. We repeatedly pull together two randomly chosen

spheres of the chain, and permanently link them together if they could successfully be brought

into contact while fulfilling the geometric constraints (including the maintenance of previously

formed links). This process was repeated until no more links could be formed.

My contribution was to design, implement and run the simulation algorithm. What follows is the

part of the published manuscript in which this algorithm is described.
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Selected part of published manuscript We have simulated the process modifying the chain

geometry in 3D and tested the geometric constraints according to an algorithm consisting of

repeated cycles of:

1. A pair (i∗, j∗) of non-adjacent spheres is randomly chosen from the uniform distribution

among the set of untried pairs.

2. The two spheres are attempted to be connected by switching on a force of unit strength

pointing towards each other (see figure 8.1), under the geometric constraints:

(i) the backbone spheres stay together

(ii) no spheres overlap

(iii) spheres connected previously stay together.

3. If the selected spheres touch, a new link between them forms and we update the adjacency

matrix1 by setting the elements Asim
i∗ j∗ = Asim

j∗ i∗ = 1. Alternatively, if the spheres move less

than a velocity threshold ∆R/∆t, the link is discarded and marked geometrically impossible

(see below for details).

This process is repeated until no further link remains untried. During each cycle, to emulate the

direct motion of spheres towards each other and to continuously match all geometric constraints,

we change the spheres’ positions xi, i ∈ {1, . . . , N}, according to simple overdamped dynamics

dtxi = ζFi(x) ,

where x = (x1, . . . , xN )T is the collection of all positions and Fi(x) is the sum of all constraint forces

acting on sphere i and, if i ∈ {i∗, j∗}, the unit force of magnitude 1. The space and time scale were

chosen such that all quantities are dimensionless, the single-sphere friction coefficient ζ is set to

1 and a distance of x = 1 corresponds to a bond length between neighboring spheres.

The constraints are approximated by taking the total force

(8.1) Fi(x)=−∇iV (x)+Fconnect
i (x)

as the sum of the forces inducing the connection attempt as

(8.2) Fconnect
i (x)= (

δi,i∗ −δi, j∗
) x j∗ − xi∗

|x j∗ − xi∗ |
.

and the constraint forces that are gradients of summed potentials

(8.3) V (x)= K
2

N∑
n,m=1

1
2

(dn,m −1)2(
Asim

nm +Θ(1−dn,m)
)

,

1The N ×N adjacency matrix A of a chain consisting of N spheres has elements A ji . These elements equal one if
spheres i and j are linked together or are neighbors along the chain, and are zero otherwise.
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which are quadratic in the distances dn,m = |xn − xm|. Here the Heaviside step function is defined

as Θ(y) = 0 if y < 0 and Θ(y) = 1 if y ≥ 0. The first term in the final parenthesis in equation 8.3

ensures keeping neighboring units along the chain in contact as well as all other pairs of spheres

linked so far during the process. The second term causes overlapping spheres to repel each other.

K is an elastic constant chosen large enough for the constraints to be virtually fulfilled and the

final chain statistics being invariant of choosing larger values for K , but small enough in order

not to limit the allowed numerical time steps unnecessarily. The value K = 50 was found to meet

these conditions and is used in simulations throughout the manuscript.

The initial configuration of the chain was drawn from a Boltzmann distribution with probability

p = Z−1 exp(−EBend/kBT) with kBT = 1 and energy

(8.4) EBend =−κ
N−1∑
n=2

cos(θn)

where Z is a normalization constant and θn is the bending angle at the nth unit of the chain,

defined as the angle between the adjacent tangential vectors through the scalar (dot) product

cosθn = (xn − xn−1) · (xn+1 − xn), noting that the sphere diameter equals unity. Initially generated

chains were rejected if any constraint was violated. The prefactor κ can be interpreted as bending

stiffness and determines the persistence length of the initial chains. It was set to κ= 5 such that

initial chains are slightly bent (see figure 8.1 for an example).

Figure 8.1: Model folding process at different times. Starting from an initial chain with
N = 60, randomly picked units connect if geometrically possible. Shown here are examples
after l = 0, 2, 7, 14 and 140 successful connection attempts.

During a cycle started by selecting the spheres i∗ and j∗ to be pulled together, we monitored

their decreasing distance di∗, j∗ . As soon as di∗, j∗ ≤ 1, the cycle is considered successful and a

new link is formed. We have also periodically checked at intervals ∆T whether di∗, j∗ has shrunk

by less than a threshold distance ∆R =∆T ·χ ·2/(N/2). If this is the case, the cycle is discarded

as unsuccessful, because the pair of units cannot make contact due to geometric constraints.

The configuration at the beginning of that cycle is then restored. The last factor in ∆R is the

relative velocity of the spheres i∗ and j∗ in case both – in order to move – have to drag half the

other spheres (N/2) along. This lower velocity threshold was further decreased by introducing
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Figure 8.2: Final model aggregates. The final aggregates of the simulation for N ∈ {5,60,100}
display the expected compactness.

the factor χ= 0.3 because the final chain statistics weakly varied for larger values but remained

the same for smaller values. We have found ∆T = 0.15 to be small enough in order not to waste

computational time on unsuccessful cycles, but large enough to not abort cycles in which di∗, j∗

shrinks slowly only temporarily.

The excluded volume forces are nonzero only for pairs of spheres whose distance is less than

one. To speed up the simulation, they were only evaluated for spheres that are elements of

each others neighbor list listing all spheres within a distance 1+ε. We initially generated these

lists, then integrated the maximum velocity of all spheres over time and updated the neighbor

lists whenever the resulting value exceeded ε. The value ε = 0.2 provided the best speed-up.

At each integer multiple of 100 cycles, all untried links to a sphere i with
∑N

j=1 Asim
i j =: ki ≥ 12

were discarded. This measure was taken to accelerate the simulations as further bonding trials

including this sphere are geometrically impossible.

As the next step, the simulated final configurations’ network structures as well as their radii of

gyration were compared with those of real proteins extracted from the Protein Data Base. For

further reading, we refer to the published manuscript.
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8.2 Multiplane imaging of flagellar motion

Abstract: Cilia and flagella are whip-like cellular appendages found from micro-

organisms to large animals. Motile ciliary structures are mainly responsible for

cell locomotion and generation of fluid flow across surfaces of cells and tissues.

Considerable efforts have been invested to elucidate the mechanics and dynamics of

cilia and flagella. But only recently it became clear that three-dimensional models

and corresponding experiments are required for understanding their motion and

mechanics. Flagella of micro-organisms such as Chlamydomonas reinhardtii are

small (length ∼10 µm, diameter ∼0.15 µm) and beat rapidly (∼50 Hz). This makes

the recording of their three-dimensional dynamics difficult. Here, we use a new

multi-plane phase-contrast microscope for observing the three-dimensional beating

behavior of unlabeled Chlamydomonas flagella with diffraction-limited resolution and

several hundred frames per second. We find two types of flagellar motion: one type

swims in counter-clockwise circles close to an interface and exhibits negative torsion

values at their basal end. The much rarer second type shows reversed swimming

direction and positive torsion values. We explain the signature of the torsion by the

structural chirality of the axoneme, and thus directly connect axonemal structure with

macroscopic swimming behavior. Our study is important for theoretical modeling of

axoneme mechanics, and calls for future structural studies of the predicted connection

between structure and swimming dynamics.

This project was submitted to Physical Review X on May 27th 2020, and is a collaboration

with Soheil Mojiri (experimental work + data analysis), Azam Gholami (sample preparation),

Sebastian Isbaner (tracking + data analysis), Hongje Jang (data deconvolution + analysis), Jörg

Enderlein (project coordination + data analysis) and Ingo Gregor (help with experiments).

We studied the three-dimensional dynamics of flagella. Flagella are whip-like appendices of cells

(both bacteria and eukaryotic cells) whose major biological function is that of swimming, but

they also serve other purposes such as sensing outside chemicals or temperature. They may be

thought of as the “arms” with which bacteria swim, and are essentially one-dimensional with

a contour length of around 10 µm and a diameter around ∼0.15 µm. Their cross section is a

pillar-like structure which consists of two central fused-pairs of microtubules and nine outside

pairs, between which dyneins are assembled. Dyneins are motor-proteins which convert chemical

energy into physical work2 and can be thought of as the “engines” driving flagellar motion.

2They convert adenosintriphosphat (ATP) into adenosindiphosphat (ADP) – an exothermal reaction which allows
them to assume conformational states of higher free energy (thus performing “a step”).

162



CHAPTER 8. OTHER CONTRIBUTIONS

This inner structure of flagella (also called the “axoneme”) is highly preserved throughout

evolution and well-understood today. The relationship between dynein activity and flagellar

motion is less well-understood, and here we study the latter from a purely descriptive point of

view. The main novelty is that we can study the flagella in three spatial dimensions and can thus

test whether their beat patterns are planar or not.

My contribution I have fitted continuous curves to experimentally tracked 3D data points

which were provided to me, and thereby reconstructed axonemal shapes from noisy experimental

data.

Based on the experimentally measured intensity profile (measured by Soheil Mojiri), a tracking

routine (performed by Sebastian Isbaner) yielded N = 30 data points~r i = (xi, yi, zi) which approx-

imate an axoneme as a polygonal chain in three dimensions. The tracking routine was applied

to all time frames in all measured axonemes, and thus we have at hand movies of discretized

axonemes. Due to the presence of noise in the experimental data, these discrete shapes are

far from “smooth” and are nontrivial to analyze: discrete curvature values as well as torsion

estimators often yield extreme noise-dominated values. In order to retrieve and analyze the

axonemes’ shapes, we fit continuous, smooth curves to the polygonal chains. This is done as

follows: The continuous curve~r(s), where s is its arc length, is described by a Bishop frame as we

have introduced in section 2.3.1 (see page 55) of this thesis. Their shape is hence fully described

by the complex curvature Ψ(s). We represent both the real and imaginary part of Ψ as a sum of

M modes of base functions zk(s) and, by introducing the complex mode coefficients ck, write

(8.5) Ψ(s)=
M∑

k=1
ckzk(s) .

We have chosen Chandrasekhar modes [157] for the base functions zk(s). They fulfill the differen-

tial equation ∂4
s z ∝ z, the boundary conditions z|0,1 = ∂sz|0,1 = 0 and are orthonormal with respect

to the standard L2 norm. The first few Chandrasekhar modes are displayed in figure 8.3 and

their functional form is given by equation 8.8, which we remark on by the end of this section.

These boundary conditions (BC) are those of a freely swimming elastic rod [78], but we emphasize

that we only use them for the practical purpose of curve fitting and do not make assumptions

about the axonemes’ mechanics. The used BC make the fitted curve’s curvature and its derivative

vanish at its ends. Therefore the fitted curve cannot overfit single data points at the polygon’s two

ends. Using Fourier modes instead (thereby not imposing any boundary conditions at all) yielded

occasional overfitting artifacts at the boundaries but otherwise similar results. Additionally, we

observed a better fit quality for Chandrasekhar modes than for Fourier modes when the same

number of free parameters was used. For BC reflecting the full, active mechanics of axonemal

motion, we refer to reference [158].
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Figure 8.3: The first four Chandrasekhar modes.

For the initial conditions of the Bishop frame at s = 0 only 2 additional free parameters are

required due to the orthonormality of the frame. They determine the direction of the tangent

vector (e.g. in spherical coordinates). The rotational angle of the initial triad around its tangential

direction is redundant with globally changing the complex phase of Ψ, and hence it does not

constitute another fit parameter. We chose the initial point~r0 =~r(s = 0) where the fitted curve

starts such that the centers of mass of the fit curve and that of the 30 tracked data points always

coincide, thereby eliminating the components of~r0 as free parameters. The last fit parameter

is the curve’s contour length L, and hence the total number of free parameters is 2 ·M+3. The

number of modes, M, was chosen such that the axoneme’s shape dictated by the tracked data

points was well captured, but not overfitted. Furthermore, because Chandrasekhar modes zk(s)

are alternatingly even and odd functions with respect to the axoneme’s center, M should be an

even number in order to capture the symmetric and asymmetric parts of the true Ψ equally well.

These requirements were met by using M = 4 complex modes. The collection of fit parameters, ~p,

was chosen such that the error function

(8.6) E(~p)=
30∑
i=1

(
~r(s = i−1

29
L)−~r i

)2

was minimized. In figure 8.4, two representative fits are shown. The fit quality could be further

increased by increasing the number of modes M. This would result in overfitting of experimental

noise, however, and the whole point of fitting continuous curves was to “smooth” out outliers from

individual data points.
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Figure 8.4: Two representative fitted axonemes. The blue data points result from applying a
tracking routine to the experimentally measured 3D intensity profile. The red curves are
the reconstructed shapes from our fitting routine. The black shape in the x-y-plane is a
projection (shadow) of the fitted curve.

Next, the fitted shapes’ curvature and torsion were analyzed as functions of arc length and time.

For further reading, we refer to the submitted manuscript.
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About Chandrasekhar functions An important result one finds when analyzing the re-

sponse of an elastic rod to bending is that boundary conditions apply to the complex curvature Ψ.

In order to briefly demonstrate the boundary conditions’ origin, let us calculate the variation of

the elastic bending energy E (see section 2.3.1, page 54):

(8.7)

δE = δα
2

∫
|Ψ|2ds′ = δα

2

∫
|∂2

s~r|2 ds′

=
∫
α (∂2

s~r ·δ∂2
s~r)ds

=
∫
α (∂2

s~r ·∂2
sδ~r)ds

=
∫
α (∂4

s~r ·δ~r)ds .

The force density −δE/δ~r thus equals the fourth spatial derivative of~r. In the last line we have

partially integrated twice and thereby made use of the boundary conditions ∂2~r/∂s2 = ∂3~r/∂s3 = 0

which immediately leads to Ψ=Ψs = 0. In the calculation above, we have assumed inextensibility

of line segments (δds = 0). A more thorough treatment is available in literature [78, 112].

A set of functions zk(s) which completely spans the space of functions satisfying zk(0)= ∂szk(0)=
zk(L)= ∂szk(L)= 0 are called the Chandrasekhar functions [157] and they read

(8.8) zk(s)=



cosh
(
λp (s/L−0.5)

)
cosh

(
λp

) − cos
(
λp (s/L−0.5)

)
cos

(
λp/2

) for even k

sinh
(
µq (s/L−0.5)

)
sinh

(
µq/2

) − sin
(
µq (s/L−0.5)

)
sin

(
µq/2

) for odd k

where p = k/2, q = (k+1)/2 and the coefficients λ and µ are the solutions of tanh(λ/2)+tan(λ/2)= 0

and tanh(µ/2)− tan(µ/2)= 0 respectively. The Chandrasekhar functions satisfy the characteristic

equation

(8.9) ∂4
s zk ∝ zk ,

and are thus eigenfunctions of the fourth-derivative differential operator. The first few Chan-

drasekhar modes are shown in figure 8.3.
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8.3 Electric field lines of an arbitrarily moving point charge

Abstract: Generation of electromagnetic fields by moving charges is a fascinating

topic where the tight connection between classical electrodynamics and special rela-

tivity becomes particularly apparent. One can gain direct insight into the fascinating

structure of such fields by visualizing the electric field lines. However, the calculation

of electric field lines for arbitrarily moving charges is far from trivial. Here, we derive

an equation for the director that points from the retarded position of a moving charge

towards a specific field line position, which allows for a simple construction of these

lines. We analytically solve this equation for several special but important cases: for

an arbitrary rectilinear motion, for the motion within the wiggler magnetic field of a

free electron laser, and for the motion in a synchrotron.

This project was published in the American Journal of Physics on December 23rd 2019 [159]. The

research for it was done by Jörg Enderlein and Daja Ruhland.

I have merely helped by revising the manuscript, double-checking calculations and making the

presented line of arguments more consistent.

Selected part of published manuscript Electric and magnetic fields generated by arbi-

trarily moving point charges are a fascinating topic where relativistic physics meets classical

electrodynamics. In particular, accelerated point charges are the generators for almost all elec-

tromagnetic radiation, such as that emitted by oscillating electric dipoles, synchrotrons, or free

electron lasers. As is well known, the electric field ~E of an arbitrarily moving point charge q can

be found with the help of Liénard-Wiechert potentials and has the explicit form [160, 161]

(8.10) ~E (~r, t)= q

 ~R−R~β

γ2
(
R− ~R ·~β

)3 +
~R×

[(
~R−R~β

)
× ~̇β

]
c
(
R− ~R ·~β

)3


t′

where the three-dimensional vector ~R is the spatial part of the four-dimensional null-vector

(8.11)
{
c(t− t′),~r−~r0(t′)

}
.

This null-vector defines the retarded time t′ < t via

(8.12) t− t′ = R
c
=

∣∣~r−~r0(t′)
∣∣

c

at which the right hand side of equation 8.10 has to be evaluated. Here,~r0(t) is the particle’s

trajectory as a function of time t. Furthermore, the symbol ~β(t) = c−1dt~r0(t) is the particle’s

velocity divided by the speed of light c, γ is the usual Lorentz factor γ = 1/
√

1−β2 , and a dot

denotes differentiation with respect to time. For finding the electric field at a given position~r and
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Figure 8.5: A point charge moving along an arbitrary trajectory~r0(t) (red solid line) generates
an electromagnetic field throughout space. The field at any given position ~r at time t
originates from the charge when it is at retarded position~r0(t′). Green circles are lines of
constant retarded time t′. The vector ~R = c(t− t′)~̂λ is the spatial part of the null-vector of
equation 8.11 which connects the space-time events

{
ct′,~r0(t′)

}
and {ct,~r}, so that ~̂λ is a unit

vector.

time t, one has firstly to solve the retarded time equation 8.12, and then secondly to evaluate the

right hand side of equation 8.10 at time t′, which is typically a numerically demanding task.

Another way of visualizing an electric field is to use electric field lines – continuous lines tangential

to the electric field vector. Visualization of field lines can help in better understanding complex

field configurations generated by non-trivial particle trajectories, and knowledge of field lines

can also be used to estimate the electric field strength, due to the interconnection between

local field line density and field strength as embodied by the zero divergence of the electric

field in source-free space. Thus, the question how to efficiently calculate and draw field lines

for arbitrarily moving point charges has been repeatedly considered in the literature [162–169].

Here, we present an efficient and relatively simple way of how to find and draw electric field

lines of an arbitrarily moving charge by deriving a compact auxiliary equation for a unit vector

pointing from the retarded position of the charge to a specific field line position. We then find

analytic solutions of the problem for several important cases.

Let us describe a field line at time t by a parametric three-dimensional curve ~p (s) which is

parametrized by the variable s. Along all its positions, it has to be parallel to the electric field

vector, which means that it has to obey the differential equation

(8.13)
d~p (s)

ds
∝ ~E

[
~p (s)

]
.
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Taking into account the non-trivial form of the electric field as given by equation 8.10, finding

analytic solutions to this equation seems to be a formidable task. Note that any Cartesian position

~r can geometrically be referenced to the retarded position~r0(t′) by~r =~r0(t′)+ ~R(t′), where t′ is

the retarded time of the particle’s position when it contributes to the electric field at position~r,

see also figure 8.5. In particular, this holds true also for positions~r =~p(s) on a field line. Our core

idea is to use the retarded time t′ to parametrize a field line, by setting s = t′. Thus, the time t′

has a double meaning: it denotes the retarded time t′ and it parametrizes the field line, and we

find for the field line positions the relation

(8.14) ~p(t′)=~r0(t′)+ ~R(t′)=~r0(t′)+ c(t− t′)~̂λ(t′)

where we have used the fact that the length of the vector ~R(t′) is c(t− t′), so that the vector ~̂λ(t′)
on the right hand side of equation 8.14 is a unit vector pointing from the retarded position~r0(t′)
of the point charge to a position ~p(t′). Now, let us consider equation 8.13. Because we require that

vector d~p/ds ≡ d~p/dt′ and vector ~E have only to be parallel at all positions ~p(t′), we can choose

any proportionality factor in equation 8.13 between these two vectors. Let us thus set d~p/dt′

equal to −cγ2R2
(
1− ~̂R ·~β

)3
~E/q so that we find the field-line determining equation

(8.15)
d~p

(
t′
)

dt′
=−c

(
~̂R−~β

)
−γ2~R×

[(
~̂R−~β

)
× ~̇β

]
where a hat over a vector symbolizes normalization (unit vector). Now, by inserting equation 8.14

into the last equation, we find the following auxiliary equation for the unit vector ~̂λ(t′)= ~̂R

(8.16)
d~̂λ
dt′

= γ2
[(
~̂λ−~β

)
× ~̇β

]
×~̂λ .

This equation is the core result of our paper: When we can solve this equation and determine
~̂λ(t′) for all times t′ < t, then we can use equation 8.14 to find the full field line. Thus, t′ plays

the role of a line parameter and does not have to be found a priori from an implicit retarded

time equation such as equation 8.12, as has to be done when calculating the electric field. The

final condition of equation 8.16, i.e. the direction ~̂λ(t′ = t), defines into which direction a field line

starts from a point charge at time t.

Although we cannot present a general solution of equation 8.16 for an arbitrary motion~r0(t′),
we consider in the next chapters several important and quite general cases for which analytical

solutions can be found.

As a first application of equation 8.16 we consider the well-known classical example of a uniformly

accelerated charge [170] which is at rest at time zero, then (relativistically) accelerates along the

(horizontal) x-direction with constant acceleration to the speed c/
p

2 within one unit of time, and

then continues to move uniformly with that constant velocity.
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Figure 8.6: Electric field (density plot) and electric field lines (red) for an accelerated point
charge. Its position along the horizontal axis (x-axis) is given by equation 8.17. The shown
picture refers to time t = 4, and the unit of length is chosen in such a way that the numerical
value of the speed of light is one. The coloring encodes the decadic logarithm of the electric
field amplitude |~E| in arbitrary units. Here, we show field lines that start, in the particle’s
rest frame, from its position at angles φ= 15◦ to φ= 360◦ with respect to the horizontal axis
in steps of 15◦.

For such a motion, the particle’s x-position as a function of time is given by

(8.17) x0(t)=


0, if t ≤ 0

c
(p

1+ t2 −1
)
, if 0< t ≤ 1

c
(p

2 −1+ (t−1)/
p

2
)
, if t > 1

.

The resulting field line structure is displayed in figure 8.6. More applications – i.e. field lines

resulting from different point charge trajectories than the one above – can be found in the

published manuscript.
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8.4 Kinetics of loop closure in disordered proteins

Abstract: We study intrachain dynamics of intrinsically disordered proteins, as man-

ifested by the time scales of loop formation, using atomistic simulations, experiment-

parametrized coarse-grained models, and one-dimensional theories assuming Markov

or non-Markov dynamics along the reaction coordinate. Despite the generally non-

Markov character of monomer dynamics in polymers, we find that the simplest model

of one-dimensional diffusion along the reaction coordinate (equated to the distance

between the loop-forming monomers) well captures the mean first passage times to

loop closure measured in coarse-grained and atomistic simulations, which, in turn,

agree with the experimental values. This justifies use of the one-dimensional diffu-

sion model in interpretation of experimental data. At the same time, the transition

path times for loop closure in longer polypeptide chains show significant non-Markov

effects; at intermediate times, these effects are better captured by the generalized

Langevin equation model. At long times, however, atomistic simulations predict long

tails in the distributions of transition path times, which are at odds with both the

one-dimensional diffusion model and the generalized Langevin equation model.

This project was published in the Journal of Physical Chemistry B on April 7th 2020 [171]. The

research for it was done by Rohit Satija and Dmitrii Makarov. My contribution was to run and

make available end-to-end trajectories extracted from the polymer model developed in this thesis,

and to help in revising the manuscript (as did Jörg Enderlein and Atanu Das). Atanu Das has

further made available end-to-end trajectories from MD simulations of GS-repeats.

In this project, the end-to-end dynamics in GS-repeats are compared from different viewpoints:

Experimentally measured loop formation rates and trajectories from Brownian dynamics (BD)

and molecular dynamics (MD) simulations are compared with (i) one-dimensional Markovian

diffusion and (ii) one-dimensional non-Markovian diffusion. Trajectories from our Brownian

dynamics model are particularly valuable in this context because – unlike other coarse-grained

polymer models – it is specifically parametrized to match experimental data for GS-repeats and –

unlike experimental results – yields complete trajectories and not just contact rate values.

From the perspective of this thesis, the most interesting result of this project is that one-

dimensional descriptions fail in reproducing certain dynamical features of the end-to-end dy-

namics described by the BD and MD simulations. Nevertheless, the mean first passage time

(inverse contact rate) is reasonably well captured by the one-dimensional picture. This match

is in agreement with our finding that SSS-theory (which assumes one-dimensional Markovian

end-to-end dynamics, see page 142) correctly predicts the scaling behavior of the contact rate as a

function of chain length. For further reading, we refer to the published manuscript [171].
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A
CONVERGENCE OF DISCRETE CURVATURES TO

THE WORM-LIKE CHAIN

The context of this appendix is explained in section 2.3.2 on page 60. Here, we consider the

convergence of the end-to-end distance’s probability distribution in discretized worm-like chains

towards the continuous limit. This convergence is being compared between three definitions of

discrete curvature, which are

(A.1)

κ1 = 2tanθ/2
∆s

,

κ2 = 2sinθ/2
∆s

and κ3 = θ

∆s
where θ is the bending angle at the considered chain vertex and ∆s is the arc length associated

with it. For all chains considered here, the contour length equals 1, and the persistence length

equals 1/3. The corresponding bending stiffnesses of the discrete chains were chosen according to

equations 2.181 and 2.182 (page 68) for all discretizations and curvature definitions respectively.

The probability distributions were obtained as histograms using MC sampling. An analytical

approximation for the “true” end-to-end probability distribution in a continuous worm-like chain

was taken from reference [172] whose author’s made available a Mathematica notebook, which I

have used. The following three figures show this analytical approximation and the numerically

sampled probability distributions for chains consisting of N ∈ {5,10,20,40} vertices.

It turns out that the tangent-based curvature definition yields the fastest convergence towards

the continuous worm-like chain limit.
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Figure A.1: The calculated end-to-end probability distribution for the tangent-based curva-
ture for chains consisting of 5, 10, 20 and 40 vertices. The black curve shows an analytical
approximation of the continuous worm-like chain limit.
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Figure A.2: The calculated end-to-end probability distribution for the sine-based curvature
for chains consisting of 5,10,20 and 40 vertices. The black curve shows an analytical
approximation of the continuous worm-like chain limit.
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Figure A.3: The calculated end-to-end probability distribution for the θ-based curvature
for chains consisting of 5,10,20 and 40 vertices. The black curve shows an analytical
approximation of the continuous worm-like chain limit.
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B
PAWULA’S THEOREM

Proofs of Pawula’s theorem, similar to the one presented here, can be found in references [97]

and [104]. The context of this appendix is explained in section 2.2.3 on page 36. There, we found

that the jump moments αk(x) uniquely define a Markov process from the Kramers-Moyal expan-

sion (in orders of k) of its Master equation. Now we proof that the Kramer-Moyal expansion either

ends after one term, two terms, or it never ends. This fact is known as Pawula’s theorem [104].

The generalized Schwartz inequality reads

(B.1)
(∫

f (z)g(z)ρ(z)dz
)2

≤
(∫

f 2(z)ρ(z)dz
)
·
(∫

g2(z)ρ(z)dz
)

where ρ(z) is some nonnegative function and f (x) and g(x) are arbitrary functions. In the context

of section 2.2.3, we choose ρ(z)= p(z, t+τ|x, t) which is by definition nonnegative, f = (z− x)n and

g(z)= (z− x)n+m for an arbitrary, fixed x and n,m ∈N0. Inserting these choices into the Schwartz

inequality yields

(B.2) (Ψ(2n+m))2 ≤Ψ(2n) ·Ψ(2n+2m)

where

(B.3)
Ψ(k) =

∫
(z− x)n p(z, t+τ|x, t)dz

=α(k)τ + O (τ2) .

As we found in the main text, this relation between Ψ(k) and α(k) only holds for k ≥ 1. For

n = m = 0, as well as for m = 0 while n ≥ 1, the inequality above is trivially fulfilled.
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For n = 0 and m ≥ 1 we have

(B.4)

(Ψ(m))2 ≤ 1 ·Ψ(2m)

⇔ [α(m)τ + O (τ2)]2 ≤α(2m)τ + O (τ2) | : τ , lim
τ→0

0≤α(2m)

which is interesting but also clear from the definition of the jump moments. In conclusion, we

only need to consider n,m ≥ 1, for which the last line of equation B.3 holds true. Inserting it into

the inequality, then dividing by τ2 and considering the limit τ→ 0, we arrive at

(B.5) (α(2n+m))2 ≤α(2n) ·α(2n+2m) for n,m ≥ 1 .

From this inequality follow two conclusions:

(B.6)
α(2n) = 0 ⇒ α(2n+m) = 0

and α(2n+2m) = 0 ⇒ α(2n+m) = 0 .

This means that if one finds some even moment α(2r)(x) = 0, r ∈ N , all higher moments also

vanish (first line).

Furthermore, since we may choose any combination (n,m) ∈ {(1, r−1), (2, r−2), . . . , (r−1,1)} in the

second line such that n+m = r, we learn that αr+1(x),αr+2(x) . . . ,α2r−1(x) also vanish. Among

these latter moments, there might then be more even moments which we now know to equal

zero as well, and hence the whole argument can be repeated. The reader is highly encouraged to

e.g. assume α8 = 0 and see what follows. It turns out that only three scenarios are possible: The

Kramers-Moyal expansion (ii) ends after the first term (deterministic dynamics of the Liouville

equation), (ii) ends after the second term (diffusive dynamics) or (iii) has an infinite number of

nonzero terms including all even moments (discontinuous jump processes).
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C
ENTROPIC PSEUDOFORCE

The physical context of this appendix is explained in section 2.2.6 on page 48. Here, we consider

the statistical properties of a stochastic process whose dynamics is governed by an unconstrained

Langevin equation in 3N dimensions which reads

(C.1) dt~r = T−1D · [−~∇E
] + p

2 B ·~ξ .

The Boltzmann distribution p ∝ exp(−E/T) is sampled as long as the relation D = B ·BT is

fulfilled. For convenience, we choose the unity matrix D = T13N×3N (absorbing the physical

dimension into the time scale). The dynamics shall closely approximate the constraints

(C.2) gk(~r)= 0 where k = 1, . . . , M

due to the presence of strong restoring forces −~∇E acting on the system. Fluctuations around

the minimum of E are very small such that it becomes a quadratic function of the (infinitesimal)

deviations δgk from the constraints. The resulting Langevin equation then reads

(C.3) dt~r =−α
M∑
j=1

δg j~∇g j + . . .

where the abbreviated terms remain constant as the elastic constant α→∞. According to the

chain rule, the dynamics of each of the k = 1, . . . , M deviations satisfies

(C.4)

dtδgk =~∇gk ·dt~r

=~∇gk ·
(
−α

M∑
j=1

δg j~∇g j + . . .

)

=−α
M∑
j=1

~∇gk ·~∇g j ·δg j + . . . .
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Rewriting this set of equations in vector notation δ~g = (δg1, . . . ,δgM) yields

(C.5)
dtδ~g =−αG ·δ~g + . . .

where Gk j = ∂i gk ·∂i g j .

Next we transform this equation into the eigensystem of matrix G by multiplying both sides

(from the left) with the orthonormal matrix S= (ST )−1 containing its eigenvectors:

(C.6)

dt~v =−αĜ ·~v + . . .

where ~v =S ·δ~g
and Ĝ=S ·G ·ST .

Since Ĝ is diagonal, the dynamics of the components of~v occur independently, all experiencing

harmonic potentials

(C.7) Ek =
α

2
λkv2

k

where the λk are the eigenvalues (diagonal entries) of Ĝ. The probability (Boltzmann) distribution

for vk is hence a Gaussian with zero mean and variance

(C.8) σ2
k ∝

1
λk

.

The entropy of a Gaussian with variance σ2 equals
1
2

ln(2πeσ2), and therefore the entropy Sk of

the fluctuations of vk are

(C.9) Sk =−1
2

ln(λk) + const. .

It follows that the total entropy SC of the fluctuations of the vector~v is

(C.10)

SC =∑
k

Sk

=−1
2

∑
k

ln(λk) + const.

=−1
2

ln(
∏
k
λk) + const.

=−1
2

ln(detĜ) + const.

=−1
2

ln(detG) + const. .

For the constrained Langevin equation (main text) we only require the gradient of this entropy

with respect to the Cartesian coordinates~r. For this reason the neglected terms (including α and

T) in the calculation above are indeed inconsequential as they vanish upon differentiation.

180



APPENDIX C. ENTROPIC PSEUDOFORCE

The matrix G does depend on~r, however, because the constraints gk themselves do, and therefore

the force term

(C.11) ~∇SC =−1
2
~∇ ln detG

is all we need to report back to the main text.

Inextensibility constraints The constraint entropy’s gradient can be evaluated for specific

constraints. In this thesis in particular, we consider inextensibility constraints for a discrete

chain consisting of N beads:

(C.12)
gk = |~rk+1 −~rk|−1= 0

such that ~∇i gk(~x)= ~rk+1 −~rk

|~rk+1 −~rk|
· (δi+1,k −δi,k)=~tk · (δi+1,k −δi,k)

where k = 1, . . . , N −1. The matrix elements of G then read

(C.13) Gk j =
N∑

i=1

~∇i gk ·~∇i g j =
N∑

i=1
~tk ·(δi+1,k−δi,k) ·~t j ·(δi+1, j−δi, j)=


−~tk ·~t j if | j−k| = 1

2 if j = k

0 otherwise

.

Making use of the fact that only the gradients of the next diagonals of G are nonzero, the gradient

of ln detG can be calculated using the following identity [66]:

(C.14)

~∇i ln detG=
M∑

j,k=1

1
detG

· ∂detG
∂G jk

·~∇iG jk =
M∑

j,k=1
(G−1) jk ·~∇iG jk =

M−1∑
j=1

(G−1) j, j+1 ·~∇iG j, j+1 .

The last factor can easily be evaluated analytically, and the first factor (of the final sum) requires

knowledge of the next diagonal elements of the inverse matrix G−1, whose numerical evaluation

is straightforward (but unfortunately depends on the Cartesian coordinates~r).

Bound-end constraint Binding one end of a chain to a fixed point in space (the origin) can be

achieved by implementing the constraint

(C.15) g0(~r)= |~r1|−1= 0 .

For a chain consisting of N beads, this additional constraint turns the N −1×N −1-dimensional

matrix G into an N ×N-dimensional matrix. Apart from its size, it is almost identical to the

matrix for the inextensibility constraints alone. The only difference is that its first element is

G1,1 = 1, and the first “tangent vector” must be taken to be~r1/|~r1| (assuming the chain end is

bound to the origin of our coordinate system).
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D
ANGULAR CORRELATIONS IN WORM-LIKE

CHAINS

The context of this appendix is explained in section 2.4 on page 66. The following calculation can

also be found in the textbook by Doi and Edwards [115].

For a discrete WLC with a bending energy present, the average cosine of a bending angle θ can

be directly calculated from the Boltzmann distribution via

(D.1) 〈cosθ〉 =

∫ 1

−1
y ·exp

(
− σ

2d

(
2tan

(arccos y
2

))2
)
dy∫ 1

−1
exp

(
− σ

2d

(
2tan

(arccos y
2

))2
)
dy

where y := cosθ. Let us now consider the direction of a tangent vector~ti. Since no energy is

associated with rotations of~ti around~ti−1, all such rotational (torsion) angles are equally probable

and we have

(D.2) 〈~ti〉 = 〈cosθ〉~ti−1 .

Multiplying both sides with~tk, and then averaging over its orientations yields

(D.3) 〈~ti ·~tk〉 = 〈cosθ〉〈~ti−1 ·~tk〉 .

This is a recursion rule for the vectorial correlations 〈~ti ·~tk〉 where k is fixed and i is the variable

index.
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Together with the initial condition 〈~t2
k〉 = 1, the recursion rule is solved by

(D.4) 〈~ti ·~tk〉 = 〈cosθ〉|i−k| ,

which is an exponential decay along the chain. Defining the persistence length lP =− d
ln〈cosθ〉 ,

we may alternatively write

(D.5) 〈~t1 ·~tk+1〉 = exp
(
−kd

lP

)
where d is the bond length of the discrete WLC.

The analogous behavior of the continuous WLC immediately follows from this result by consider-

ing the limit d → 0 while holding lP fixed, in which case k ·d turns into the continuous variable s

called arc length.
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SOLVING CONSTRAINTS

The context of this appendix is explained in section 4.2 on page 87. Here, we merely insert the

equations of motion

(E.1) d~r i =
N∑

j=1
Di j ·

[
~Fuc

j +λ j~t j −λ j−1~t j−1

]
dt

where

(E.2) ~Fuc =−~∇(E−SC)+D−1 · (~∇T ·D)+
p

2 (BT )−1d~W /dt

into the constraints

(E.3)
0 !=~tT

0 ·d~r1

0 !=~tT
µ · (d~rµ+1 −d~rµ+1

)
, µ= 1, . . . , N −1 ,

with the goal of rewriting them in the simple form

(E.4)
N−1∑
ν=0

Mµνλν = vµ µ= 0, . . . , N −1 .

Before we start, let us define the following 3×3-matrices:

(E.5)

Gµν :=Dµν−Dµ,ν+1, µ= 1, . . . , N, ν= 1, . . . , N −1

Hµν :=Dµ+1,ν−Dµν, µ= 1, . . . , N −1, ν= 1, . . . , N

Cµν :=Hµν−Hµ,ν+1, µ= 1, . . . , N −1, ν= 1, . . . , N −1

and remark that µ counts the constraints and ν counts the corresponding Lagrangian multipliers

λ.
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The first constraint (bound-end, µ= 0) reads

(E.6)

0 !=~tT
0 ·d~r1

=
N∑

j=1
~tT

0 ·D1 j ·
[
~Fuc

j +λ j~t j −λ j−1~t j−1

]
=

N∑
j=1
~tT

0 ·D1 j ·~Fuc
j +

N−1∑
j=1
~tT

0 ·D1 j ·λ j~t j −
N∑

j=1
~tT

0 ·D1 j ·λ j−1~t j−1

=
N∑

j=1
~tT

0 ·D1 j ·~Fuc
j +

N−1∑
j=1
~tT

0 ·D1 j ·λ j~t j −
N−1∑
j=0
~tT

0 ·D1, j+1 ·λ j~t j

=
N∑

j=1
~tT

0 ·D1 j ·~Fuc
j +

N−1∑
j=1
~tT

0 · (D1 j −D1, j+1
) ·λ j~t j −~tT

0 ·D11 ·λ0~t0

=
N∑

j=1
~tT

0 ·D1 j ·~Fuc
j +

N−1∑
j=1

(
~tT

0 ·G1 j ·~t j

)
λ j −

(
~tT

0 ·D11 ·~t0

)
λ0

and the remaining N −1 of the constraints (inextensibility, µ= 1, . . . , N −1) are

(E.7)

0 !=~tT
µ · (d~rµ+1 −d~rµ+1

)
=~tT

µ ·
N∑

j=1

(
Dµ+1, j −Dµ j

) ·[~Fuc
j +λ j~t j −λ j−1~t j−1

]
=

N∑
j=1
~tT
µ ·Hµ j ·

[
~Fuc

j +λ j~t j −λ j−1~t j−1

]
=

N∑
j=1
~tT
µ ·Hµ j ·~Fuc

j +
N−1∑
j=1
~tT
µ ·Hµ j ·λ j~t j −

N∑
j=1
~tT
µ ·Hµ j ·λ j−1~t j−1

=
N∑

j=1
~tT
µ ·Hµ j ·~Fuc

j +
N−1∑
j=1
~tT
µ ·Hµ j ·λ j~t j −

N−1∑
j=0
~tT
µ ·Hµ, j+1 ·λ j~t j

=
N∑

j=1
~tT
µ ·Hµ j ·~Fuc

j +
N−1∑
j=1
~tT
µ · (Hµ j −Hµ, j+1

) ·λ j~t j −~tT
µ ·Hµ,1 ·λ0~t0

=
N∑

j=1
~tT
µ ·Hµ j ·~Fuc

j +
N−1∑
j=1

(
~tT
µ ·Cµ j ·~t j

)
λ j −

(
~tT
µ ·Hµ,1 ·~t0

)
λ0 .

Hence we can read off that

(E.8)

v0 =−
N∑

j=1
~tT

0 ·D1 j ·~Fuc
j ,

vµ =−
N∑

j=1
~tT
µ ·Hµ j ·~Fuc

j , µ= 1, . . . , N −1 ,

M00 =−~tT
0 ·D11 ·~t0 ,

M0ν =~tT
0 ·G1ν ·~tν, ν= 1, . . . , N −1 ,

Mµ0 =−~tT
µ ·Hµ,1 ·~t0, µ= 1, . . . , N −1

and Mµν =~tT
µ ·Cµν ·~tν, µ,ν= 1, . . . , N −1 .
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APPENDIX E. SOLVING CONSTRAINTS

The most general case of inextensibility as well as bound-end constraints being present is thus

treated. The case of a freely swimming, inextensible chain immediately follows from the line of

reasoning above – one must only set λ0 = 0 and ignore the corresponding constraint (µ= 0) such

that µ = 1, . . . , N −1 in equation E.4. Therefore, all entries with an index which is zero can be

discarded from equation E.8 and the inextensibility constraints may be written as

(E.9)
N−1∑
ν=1

Mµνλν = vµ

where µ,ν= 1, . . . , N −1,

(E.10)
vµ =−

N∑
j=1
~tT
µ ·Hµ j ·~Fuc

j

and Mµν =~tT
µ ·Cµν ·~tν .

187





A
P

P
E

N
D

I
X

F
DIFFUSION COEFFICIENT – BENCHMARKS

The context of this appendix is explained in section 4.7 on page 101. Here, we show mean square

displacements (MSD) as functions of time for simulated model chains. These chains have two

different chain lengths; N = 5 and N = 16. For both chain lengths, we investigate the three cases

of (i) no hydrodynamic interactions (HI) (a = 0), (ii) strong HI (a = 1), and (iii) strong HI (a = 1)

with a fluorophore attached. The latter fluorophore mimics the real fluorophore Atto655 and has

hydrodynamic radius a1 = 6/3.8 and a fixed bond length of d1 = 7/3.8. The bending stiffness of

all chains is set to σ = 1 and the excluded volume radius to REV =p
2 /4. For each simulation,

we display the MSD of the chain’s center of mass, as well as that of the first bead (which is the

fluorophore if applicable).

We observe again that hydrodynamic interactions make the beads fluctuate more cooperatively.

Here, this fact is reflected by the offset between the first bead’s MSD and the diagonal line being

smaller in case of hydrodynamic interactions. In general, the center of mass of a simulated chain

also undergoes weak intrachain dynamics, as all beads are weighted equally in the center of

mass, but some are more mobile than other (the free ends for instance). Hence the offset between

the center of mass’ MSD and the diagonal line is also allowed.

All simulated MSDs were divided by the theoretically predicted diffusion coefficient (see equa-

tion 4.22, page 96). Their slope is thus supposed to converge towards 1. “BD” stands for Brownian

dynamics, i.e. simulated values, and “MC“ stands for Monte-Carlo sampling, i.e. calculated values.
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Figure F.1: N = 5, a = 0. Top: Simulated MSDs from Brownian dynamics simulations (BD)
of the chain’s first bead (blue) and its center of mass (black), as well as the theoretically
predicted long-term behavior (red), over time. Bottom: slopes of top plot.
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Figure F.2: N = 5, a = 1. Top: Simulated MSDs from Brownian dynamics simulations (BD)
of the chain’s first bead (blue) and its center of mass (black), as well as the theoretically
predicted long-term behavior (red), over time. Bottom: slopes of top plot.
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Figure F.3: N = 5, a = 1, fluorophore included. Top: Simulated MSDs from Brownian dynam-
ics simulations (BD) of the chain’s first bead (blue) and its center of mass (black), as well as
the theoretically predicted long-term behavior (red), over time. Bottom: slopes of top plot.
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Figure F.4: N = 16, a = 0. Top: Simulated MSDs from Brownian dynamics simulations (BD)
of the chain’s first bead (blue) and its center of mass (black), as well as the theoretically
predicted long-term behavior (red), over time. Bottom: slopes of top plot.
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Figure F.5: N = 16, a = 1. Top: Simulated MSDs from Brownian dynamics simulations (BD)
of the chain’s first bead (blue) and its center of mass (black), as well as the theoretically
predicted long-term behavior (red), over time. Bottom: slopes of top plot.
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Figure F.6: N = 16, a = 1, fluorophore included. Top: Simulated MSDs from Brownian
dynamics simulations (BD) of the chain’s first bead (blue) and its center of mass (black), as
well as the theoretically predicted long-term behavior (red), over time. Bottom: slopes of top
plot.
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SECONDARY STRUCTURES AND TWIST

ELASTICITY

In this appendix, we elaborate on extending our polymer model to take into account secondary

structures and twist elasticity. The context for this is explained in section 7.4 on page 154.

Throughout this thesis, the elastic energy only took into account bending effects in an isotropic

manner. Now, we utilize the most general discrete elastic energy (as described in section 2.3.2,

page 61) which reads

(G.1) E =
N−2∑
i=1

(α
2

(Ω(1)
i − Ω̄(1)

i )2 + α

2
(Ω(2)

i − Ω̄(2)
i )2 + c

2
(Ω(3)

i )2
)
∆si .

Twist elasticity Let us first investigate the effect of twist elasticity. To this end, we set the

reference curvatures Ω̄ to zero, but do consider a finite twist elasticity c. The simulation algorithm

for c 6= 0 is that described in the main text, but please note that now the material frame needs to

be kept track of during the simulation. Interestingly, the influence of twist elasticity does not alter

the Boltzmann distribution for the chain’s vertex position. That is because the new energy term

concerns only variables which can take on values independently of the chain’s centerline: the twist

angles. Therefore, the joined probability distribution for the vertex positions (i.e. bond angles)

and twist angles factorizes. Statistically speaking, they are thus entirely independent. I have

successfully checked that the simulated twist angle distribution indeed follows its Boltzmann

distribution (data not shown). The twist gradient with respect to the vertex positions does not
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vanish (out-of-plane bending induces twist), however, and thus the vertex and twist dynamics

are coupled. It may therefore be expected that finite twist elasticity c influences dynamical

observables of the chain dynamics, but not the vertices’ statistical properties. For this reason,

let us simulate chains with varying twist elasticity and study its influence on (i) the end-to-end

contact rate and (ii) the end-to-end reconfiguration time (time scale on which its autocorrelation

decays mono-exponentially). We simulated chains with parameters N = 10, σ = 1, a = 0 and

c ∈ {1,3,5,7}, where c is measured in units of T ·d in the same way that σ is. The result is shown

in figure G.1. We observe that both the reconfiguration and the loop formation time scale increase

with c. This increase is relatively weak, however, considering that a value of c = 7 makes a

twist angle of one exp(7) times less probable than a twist angle of zero! We must conclude that

twist elasticity would be very difficult to detect experimentally using PET-FCS or dynaMIET

experiments.
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Figure G.1: The simulated end-to-end contact rate (black) and end-to-end reconfiguration
time (red) in presence of twisting stiffness.

Reference curvature Next we turn on the reference curvatures Ω̄, starting with the arguably

easiest non-straight reference shape: a circular arc, which refers to a constant reference curvature.

Again, this makes keeping track of the material frame necessary, and thus a choice must be made

concerning the value of the twisting stiffness. Turning off thermal fluctuations, the simulated

chain must minimize its energy and thus converge towards the circular arc. I have numerically

observed that this behavior cannot be observed when c is set to zero – the material frame does
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not converge towards a Bishop frame, with respect to which the reference curvatures are defined.

To avoid multiple new fit parameters, we thus consider the limit c → ∞ in which the chain

immediately reduces its twist. In practice, this can be achieved as follows. Starting at zero twist,

a numerical time step for the chain’s vertices is performed, which results in nonzero (but very

small) twist angles Ω̄(3)
i . Assuming a separation of time scales between vertex and twist dynamics,

the material frames are then allowed to relax to zero (while keeping the chain vertices fixed) by

rotating them around their tangent vectors. This relaxation works as follows: Each summand

in the twist energy is the square of a twist angle associated with a vertex. The gradient of this

summand with respect to the two adjacent material frames’ orientations is linear, but of opposite

signs. Therefore, the relaxation of all twist angles obeys an “actio-reactio” principle: The total sum

of angles between Bishop frames and material frames along the chain is a preserved quantity.

Since the energetic minimum the relaxation converges towards is a Bishop frame, the final result

of the untwisting dynamics of the material frames is easily constructed: we (i) construct a Bishop

frame which coincides with the material frame at one chain end, (ii) calculate the average angle

Φ between this Bishop frame and the material frame, (iii) globally rotate the Bishop frame by the

angle Φ and (iv) the replace the material frame with the rotated Bishop frame.

Following this integration procedure, we simulated the dynamics of chains with the following

reference geometry. They consist of N = 20 beads with a = 0 and REV = 0 and form two loops of a

planar circle. In the reference state, the first and least bead overlap with each other and with the

chain’s center position, while the bond length equals 1. This situation corresponds to reference

curvatures Ω1
i ≈ 0.65 and Ω(2)

i = 0. The bending stiffness was altered between simulations and its

values were chosen such that they would correspond to persistence lengths lP ∈ {0,2,5,10,20} in

absence of reference curvatures. From each of these 5 simulations, we calculated the internal-to-

end contact rates k+(s), which are displayed in figure G.2.

For lP =σ= 0, no energy term is present, and we obtain the monotonically decreasing functional

form which we know from the main text. For increasing bending stiffness, the functional form

changes. The stiffest chain shows the other extreme case: The contact rate increases with arc

length because the energetic barrier which must be overcome for loop formation shrinks with

loop length. In between these two extreme cases (lP = 10), we observe a local maximum in the

middle of the chain.

We conclude that reference structures introduced by the reference curvatures Ω̄ can indeed lead

to nontrivial, non-power-law functional forms of k+(s). They are even capable of reproducing

experimentally observed local maxima (see figure 7.1, page 155), and are thus worthwhile to

investigate in the future.
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