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ABSTRACT 

Root colonizing beneficial microorganisms promote growth of host plants and protect them 

against biotic threats. These microbes are considered as sustainable replacements for the haz-

ardous chemical treatments in agriculture. Ectomycorrhizal fungi, a class of beneficial fungi 

colonizing trees of a certain genera, protects the host’s systemic tissue from herbivory by prim-

ing defense genes and metabolites. Whether host-symbiotic interaction is a requisite for in-

duced systemic resistance (ISR) has not been determined so far. This thesis aimed to investigate 

host specificity in ISR by studying the altercations in a non-mycorrhizal host, Arabidopsis tha-

liana (Col-0), against cabbage looper (Trichoplusia ni) after root treatment with an ectomycor-

rhizal fungus (L. bicolor).  

To find out if mycorrhization is essential for ISR, Col-0 roots were treated with L. bicolor and 

the foliar tissue was challenged with T. ni larvae. Though there was no visible penetration of 

L. bicolor in Col-0 roots, ISR was triggered by negatively affecting T. ni weight gain. The 

expression of defense genes (VSP, PDF1.2 or PR1) or phytohormone accumulation (JA, JA-

Ile, ABA, SA) in Col-0 leaves was not significantly influenced by L. bicolor. However, L. 

bicolor-triggered ISR was attributed by increasing the accumulation of the secondary metabo-

lite, camalexin, in systemic leaves. Further characterization of the ISR signalling pathway us-

ing Arabidopsis mutants, showed that L. bicolor-induced ISR is dependent on the CYP79B2/B3 

and CYP81F2 of the tryptophan pathway, jasmonic acid signalling via COI1 and salicylic acid 

signalling via SID2 and NPR3/4 and the iron homeostasis regulator, MYB72.  

Unlike other beneficial microbes that suppress basal plant defenses, L. bicolor induced oxida-

tive burst and activated the mitogen-activated protein kinase signalling cascade in Col-0. Also, 

Col-0 root treatment with heat-killed L. bicolor induced ISR against the larvae. These obser-

vations indicated that cell wall component(s) of L. bicolor can trigger ISR. The fungal cell wall 

component, chitin, when treated on Col-0 roots, reduced T. ni growth by 38% and L. bicolor-

triggered ISR was dependent on the chitin receptor, CERK1. Moreover, at the expense of trig-

gering ISR against herbivory, chitin induced susceptibility in Col-0 against the hemibiotrophic 

pathogen, Pseudomonas syringae. Data from this thesis highlights that host adaptability or 

symbiotic association is not necessary for altering systemic defense responses. Screening other 

microbial patterns with hosts and non-hosts can provide us answers whether ISR is a broadly 

conserved mechanism in systemic plant immunity. 
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1. INTRODUCTION 

1.1. Plant innate immunity 

Plants are constantly exposed to a diverse range of micro-organisms present in the natural 

environment. The invading microbes can either be pathogenic or beneficial to the plants. On a 

general basis, these microbes can be classified as biotrophic, hemi-biotrophic or necrotrophic 

organisms depending on their lifestyles (Laluk, 2011). The biotrophs depend on a living and 

intact host for their survival and reproduction. The necrotrophs kill the host cells and rely on 

dead matter to complete their life cycle. The hemi-biotrophic microbes engage in a biotrophic 

interaction with the host and then switch over to necrotrophy during their life cycle 

(Glazebrook, 2005). To counter all these kinds of microbes, plants have developed an innate 

immune system to detect these threats and activate appropriate defense mechanisms. Plants 

sense microbial presence by recognizing the conserved signatures termed microbe-associated 

molecular patterns (MAMPs) (Choi & Klessig, 2016) or the conserved patterns for disease 

causing pathogens called pathogen-associated molecular patterns (PAMPs) (Jones & Dangl, 

2006). The MAMPs/PAMPs are specific to microbes and are not present in plants (Zipfel et 

al., 2006). The most common MAMPs/PAMPs include flagellin (flg22), the highly conserved 

peptide of the bacterial motility structure flagellum; chitin and peptidoglycans, the cell wall 

components of fungi and bacteria respectively; elongation factor (Ef-Tu), the proteins involved 

in prokaryotic cell cycle and elongation (Mazzotta & Kemmerling, 2011). Plants utilize trans-

membrane proteins called receptor like kinases like LRR-RLK, to detect these 

MAMPs/PAMPs and activate various local defense responses (Swiderski et al., 2009). Some 

of the identified receptor domains for MAMPs/PAMPs include FLS2 which recognizes flg22 

(Chinchilla et al., 2005), EFR for Ef-Tu (Zipfel et al., 2006), CERK1 for chitin  (Miya et al., 

2007) and LYM1 LYM3 CERK1 for peptidoglycan (Lajunen et al., 2011). Perception of these 

patterns by the receptors lead to the activation of downstream defense responses called pattern-

triggered immunity (PTI) (Nürnberger et al., 2004). PTI signalling response is the plant’s first 

line of defense. Phosphorylation of the mitogen-associated protein kinase (MAPK) cascades, 

reactive oxygen species (ROS) production, calcium spiking, callose deposition, alkalization of 

the extracellular space are the basal PTI responses that are triggered after perception of mi-

crobes or pests (Mazzotta & Kemmerling, 2011; Wu et al., 2014; Zipfel, 2009).  
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To surpass PTI responses and successfully invade plants, microbes secrete effector proteins 

(Figure 1). These effectors target and weaken the plant defense components, thereby leading 

to effector-triggered susceptibility (ETS) (Jones & Dangl, 2006). Effectors usually target hor-

mone signalling or cell developmental processes to evade the basal defense responses (Boller 

& He, 2009). For example, pathogens like Xanthomonas campestris or Pseudomonas syringae 

secrete effector proteins to modulate plant immunity (Ossier et al., 1999; Schechter et al., 

2004). Not just pathogens, even beneficial microbes like Laccaria bicolor and Rhizhophagus 

irregularis secrete effectors MiSSP7, MiSSP8 or SP7 respectively, to target jasmonic acid and 

ethylene signalling pathways and plant developmental mechanisms for root colonization 

(Kloppholz et al., 2011; Pellegrin et al., 2019; Plett et al., 2014, 2011). In return, plants have  

evolved resistance (R) genes and proteins which directly or indirectly bind to these effectors to 

induce effector-triggered immunity by activating defense responses (ETI) (Dangl & Jones, 

2001; van der Hoorn & Kamoun, 2008). Most of the R proteins belong to the NB-LRR proteins 

with nearly 100 different TIR-NB-LRR class of R proteins found in Arabidopsis thaliana 

(Swiderski et al., 2009). ETI defense responses are much stronger than PTI responses and result 

in hypersensitive cell death (Jones & Dangl, 2006) (Figure 1). In this way, plants engage locally 

in either compatible or incompatible interactions with innumerable micro-organisms.  

 

 

Figure 1. Zig zag model of plant immunity.  

Plants recognize MAMPs/PAMPs (flagellin, chitin, Ef-Tu, peptidoglycan (and other diamond shaped 

PAMPs)) from invading microbes to mount PTI responses (marked in red arrow) like ROS burst, 

MAPK phosphorylation, calcium influx and callose deposition. Microbes suppress PTI defenses by 

secreting effectors (black and red circles) which can be perceived directly or indirectly by plant R pro-

teins to induce ETI. Image modified from Jones & Dangl (2006). 
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1.2. Phytohormones 

Both PTI and ETI responses depend on hormone signalling pathways to regulate the de-

fense gene expression (Pieterse et al., 2012). Phytohormones are mobile signals which influ-

ence plant development and immunity (Verhage et al., 2010). Some of the major phytohor-

mones involved in plant growth and development include auxin, cytokinin, gibberellin, abscisic 

acid (ABA) and brassinosteroid (BR) (Pieterse et al., 2012). Auxin is responsive to light, grav-

ity and plays an important role in vascular and root development (Woodward & Bartel, 2005). 

Cytokinins promote generation of shoot meristems while having a negative influence on auxin-

induced root branching and elongation (Riefler et al., 2006). Leaf unrolling, stem and pollen 

tube growth are influenced by BRs (Nakashita et al., 2003). While seed germination and flow-

ering are regulated by gibberellic acid (GA) (Willige et al., 2007), ABA controls seed matura-

tion and stomatal conductance (Leung & Giraudat, 1998). In addition to contributing to plant 

growth, ABA is also involved in plant response to abiotic stress (Ton et al., 2009). The major 

phytohormones which act against biotic stress include salicylic acid (SA), jasmonic acid (JA) 

and ethylene (Et) (Van Loon et al., 2006; Vlot et al., 2009). Wounding and leaf-chewing insects 

trigger JA responses, necrotrophic pathogens induce JA/Et signalling and SA is effective 

against biotrophic pathogens (Glazebrook, 2005; Howe et al., 2007; McConn et al., 1997; Vlot 

et al., 2009).  

Plants experience growth/defense trade-off, where investment of resources in plant immun-

ity compromises growth and vice versa (Conrath, 2011; Martinez-Medina et al., 2016). To 

mitigate the trade-off, plants must cautiously modulate or balance the developmental and de-

fense cues. Therefore, all the above mentioned phytohormones interact with each other in a 

synergistic or antagonistic manner to optimize plant fitness (Martinez-Medina et al., 2016). 

Hence, the growth and development-related hormones like ABA, auxin, GA, cytokinin, etc., 

have also been reported to be involved in plant defense (Bari & Jones, 2009). The most com-

mon examples for signal crosstalk are the SA-JA antagonism in biotic stress response and 

auxin-cytokinin interactions in root development (Leon-Reyes et al., 2010; J. Liu et al., 2017; 

Van der Does et al., 2013). Exogenous application of SA or infection by biotrophic pathogens 

suppresses JA signalling responses in the plant (Leon-reyes et al., 2009; Spoel et al., 2003). 

The SA receptor and positive regulator NON-EXPRESSOR OF PATHOGENESIS-RELATED 

GENES 1 (NPR1), regulates SA and JA antagonism under high SA concentration (Leon-Reyes 

et al., 2010; Pieterse et al., 2012). While SF2 is involved in the negative feedback loop of 
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cytokinin biosynthesis, it is also present in the auxin pathway as a signalling repressor (J. Liu 

et al., 2017). 

 

1.2.1. Jasmonate signalling pathway 

The phytohormone JA is synthesized by the octadecanoid pathway (Santino et al., 

2013). JA is an oxylipin, derived from the pre-cursor α-linolenic acid (Kazan & Manners, 

2008). α-linolenic acid undergoes multiple conversions in chloroplast and peroxisomes to pro-

duce JA from oxo-phytodienoic acid (OPDA). JA undergoes further conversion in the cytosol 

to functional derivatives like methyl jasmonate (MeJA) or jasmonoyl-isoleucine (JA-Ile) 

(Kazan & Manners, 2008). JA and its by-products are commonly called as jasmonates and JA-

Ile has been recognized as the mobile signal for activating the signalling processes in the 

jasmonate pathway (Thines et al., 2007). Genetic studies on the model plant species, Arabidop-

sis have identified several genes that perceive JA-Ile and are involved in regulating the 

jasmonate signalling pathway (Figure 2). CORONATINE INSENSITIVE 1 (COI1) is the 

jasmonate receptor of the SCF E3 ubiquitin complex consisting of JASMONATE INSENSI-

TIVE 1 (JIN1) which regulates transcription of other activators and repressors of the signalling 

cascade (Chini et al., 2007; Thines et al., 2007; Yan et al., 2009). Upon perception of JA-Ile, 

SCFCOI1 binds to the JASMONATE ZIM DOMAIN (JAZ) proteins which are negative regula-

tors of jasmonate signalling and ubiquitinates them for degradation (Chini et al., 2007; Pauwels 

& Goossens, 2011; Thines et al., 2007). All the twelve members of the JAZ protein family in 

Arabidopsis, play pivotal roles in repressing jasmonates, and thereby, modulate the plant 

growth-defence trade off. They maintain the equilibrium by recruiting the co-repressor, its re-

lated proteins and the adaptor proteins namely TOPLESS (TPL), TPL Related Proteins (TPRs) 

and NOVEL INTERACTOR of JAZ (NINJA), respectively (Pauwels et al., 2010). The degra-

dation of JAZ proteins pave way for the transcription of MYC, WRKY, MYB and other tran-

scription factors which independently result in the expression of defense related genes (Kazan 

& Manners, 2008). Transcription factor WRKY57 in A. thaliana and GbWRKY1 in cotton 

activate JAZ1 to promote Botrytis cinerea and Verticillium dahliae susceptibility (Jiang & Yu, 

2016; Li et al., 2014). Jasmonate response to herbivore attack is regulated by the ABA-medi-

ated MYC2 branch to express the VEGETATIVE STORAGE PROTEIN 2 (VSP2) gene (Figure 

2). On the other hand, pathogen attack triggers the ETHYLENE RESPONSE FACTOR (ERF) 

which mediates jasmonate and ethylene signalling. The ERF activates OCTADECANOID-
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RESPONSIVE ARABIDOPSIS 59 (ORA59) transcription factor, which in turn leads to the 

expression of PLANT DEFENSIN 1.2 (PDF 1.2) to defend against necrotrophic pathogens 

(Verhage et al., 2010, 2011) (Figure 2).  

In addition to their role in biotic stress responses, JA signalling also plays an important 

role in plant developmental and physiological processes. For instance, MYB108 transcription 

factor in the JA pathway which induces wounding-mediated cell death, also regulates stamen 

and pollen maturation in Arabidopsis (Mandaokar & Browse, 2009). It is also interesting to 

note that during wounding response, JA-Ile mediated JA signalling activation is accompanied 

by an inactivation pathway in parallel. The auxin-amidohydrolases IAR3 and ILL6 are triggered 

to deconjugate the JA-Ile to 12-hydroxyjasmonic acid (Widemann et al., 2013). Therefore, 

jasmonate derivatives are crucial plant signals for wounding response (Koo & Howe, 2009), 

defense against leaf chewing insects and nectrophic pathogens (Nickstadt et al., 2004). 

 

 

Figure 2. JA signalling pathway.  

dinor-OPDA synthesized in the plastids are converted to JA in the persoxisomes. The functional deriv-

ative of JA, JA-Ile, binds with SCFCOI1 receptor complex to degrade JAZ proteins. Herbivory or wound-

ing triggers the ABA branch of JA signalling leading to the expression of VSP. Necrotrophic pathogens 

trigger the Et branch leading to the transcriptional activation of PDF1.2. Phytohormones are mentioned 

in black boxes, JA derivatives are highlighted in yellow, transcription factors are indicated in grey cir-

cles, and defense marker genes are mentioned in red boxes. EIN3 is a positive regulator of JA/Et sig-

nalling which is also involved in repression of SA synthesis. Image modified from Santino et al., (2013). 
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1.2.2. Salicylic acid signalling 

The phenolic compound, SA is synthesized by two pathways in plants. In one pathway, 

isochorismate synthase (ICS) catalyzes chorismate from the shikimate pathway to the SA pre-

cursor, isochorismate, terming this the isochorismate (IC) pathway (Wildermuth et al., 2001).  

Phenylalanine ammonia-lyase (PAL) is the enzyme involved in SA biosynthesis from choris-

mate in the second pathway (Fu & Dong, 2013). During PTI response, SA biosynthesis is 

highly dependent on the ICS pathway in which chorismate is converted to IC and subsequently 

to SA in the chloroplasts (Garcion et al., 2008; Wildermuth et al., 2001). SA-mediated re-

sponses lead to transcriptional activation of PR gene expression. The transcriptional regulation 

of ICS is however controlled by the homologs CBP60g (CALMODULIN BINDING PRO-

TEIN 60g) and SARD1 (SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1) (Wang et 

al., 2011; Zhang et al., 2010). SA regulation of defense genes expression via ICS is dependent 

on the receptor and activator, NPR1 (Wu et al., 2012). NPR1 oligomers are localized in the 

cytosol when SA is absent (Figure 3). Higher SA in the cytosol alters the redox status, which 

reduces NPR1 to monomers and translocate the monomeric NPR1 to the nucleus (Tada et al., 

2013). The clade II TGA transcription factors (TGA2/TGA5/TGA6) bind to NPR1 in the pres-

ence of SA to induce the SA-responsive genes like PATHOGENESIS-RELATED GENE 1 

(PR1) (Gatz, 2013; Zhang et al., 2003). In the absence of SA, TGA2 may form a complex with 

NIMIN1 (NPR1/NIM1 INTERACTING PROTEIN 1) and TPL to repress the transcription of 

PR1 (Hermann et al., 2013; Seyfferth & Tsuda, 2014). SA antagonizes JA signalling via NPR1, 

acting downstream of ISOCHORISMATE SYNTHASE 1/SALICYLIC ACID INDUCTION DE-

FICIENT 2 (ICS1/SID2) (Spoel et al., 2003). NPR3 and NPR4 are further NPR proteins whose 

functions are not completely clear. 

 Wu et al., (2012) reported that SA binds to NPR1 and relieves the C-terminal transac-

tivation domain from the suppression of the N-Terminal BTB/POZ domain to regulate the tran-

scription of defense genes. Contrary to that, Fu et al., (2012) reported that NPR1 does not bind 

to SA whereas, NPR3 and NPR4 are adaptors for Cullin E3 ubiquitin ligase degrading NPR1 

under high and low concentrations of SA respectively. However, it was shown recently that 

NPR3 and NPR4 are also SA receptors which act independent of NPR1 (Ding et al., 2018). 

Ding et al (2018) also showed that unlike NPR1, both NPR3 and NPR4 are co-repressors of SA 

mediated transcription of defense genes.  
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Figure 3. SA signalling pathway.  

Upon infection by biotropic pathogen, SA (red circles) is accumulated in the tissue from the precursors 

chorismate (Ch) and phenylalanine (Phe) (both in pink circles). The redox potential reduces NPR1 and 

the oligomers are transported to the nucleus. NPR1 binds to the TGA transcription factors to activate 

transcription of defense genes. SA binds with NPR3 and NPR4 independent of NPR1, to repress the 

transcriptional activation of PR defense genes. Red box: transcription factors, blue box: positive regu-

lator, green box: negative regulator of SA signalling. Image modified from Pieterse et al., (2012). 

 

1.3. Secondary metabolites 

Secondary metabolites include low molecular weight antimicrobial compounds which are 

either synthesized constitutively (phytoanticipins) or upon sensing stimuli (phytoalexins) 

(Piasecka & Jedrzejczak-Rey, 2015; Van Etten et al., 2007). The functions of these defense 

compounds range from cell wall reinforcement to toxicity against invading pathogens or deter-

rence of pests (Bennett & Wallsgrove, 1994; Clay et al., 2009). The diversity of secondary 

metabolites involved in biotic stress responses among different species of even the same clade 

is huge (Ver et al., 2011). The biosynthesis of some major defense metabolites has been un-

covered for Arabidopsis thaliana (Piasecka & Jedrzejczak-Rey, 2015). These include cyano-

genic glucosides, aliphatic and indolic glucosinolates, saponins and benzoxazine glucosides 

(Piasecka & Jedrzejczak-Rey, 2015). Of which, sulphur containing compounds like indole-
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type phytoalexins and glucosinolates  are the most well characterized metabolites in Arabidop-

sis for plant defense (Bednarek, 2012). The sulphur-containing phytochemicals are synthesized 

by the tryptophan pathway. Cytochrome P450 monooxygenase enzymes like CYP79B2 and 

CYP79B3 metabolize tryptophan to indole-3-acetaldoxime.  Indole-3-acetaldoxime branches 

to synthesize camalexin via CYP71A13 and indolic glucosinolates by CYP81F2/PEN2 

(Bednarek, 2012; Piasecka & Jedrzejczak-Rey, 2015).  These tryptophan derived metabolites 

are activated in plants against infection by fungal pathogens and oomycetes (Bednarek, 2012; 

Bennett & Wallsgrove, 1994; Iven et al., 2012; Lipka et al., 2005).  

In addition to pre-/post-invasion responses, secondary metabolites also help restructuring 

the plant microbiome in the rhizosphere (Voges et al., 2019). Phenolic compounds called cou-

marins are synthesized in a MYB72 dependent manner and excreted in the rhizosphere by β-

glucosidase, BGLU42 (Zamioudis et al., 2014). Scopoletin, a coumarin secreted from the roots 

upon sensing beneficial microbes, specifically inhibits the growth of pathogens and not the 

beneficial microbes (Stringlis et al., 2018).  

 

1.4. Systemic defense in plants 

Along with local defense responses, plants mount immunity in distal tissues after encoun-

tering microbial interaction (Durrant & Dong, 2004; Pieterse et al., 2014). The systemic de-

fense mechanisms ensure that the entire plant is protected against invading pathogens and pests 

by a process called priming. The plant defense responses exhibit a significant increase upon 

perception of the priming stimulus. Upon sensing a challenge, the plant responds with a faster, 

stronger and sustained defense without compromising on the growth at a low fitness cost 

(Martinez-Medina et al., 2016). The two plant systemic defense mechanisms are systemic ac-

quired resistance (SAR) induced by pathogenic microbes and induced systemic resistance 

(ISR) triggered by beneficial microbes. Both these mechanisms involve sensitizing the phyto-

hormone signalling and defense genes expression to ward off pathogens and pests (Pieterse et 

al., 2014).  

 



 Introduction 

9 

 

1.4.1. Systemic acquired resistance 

Pathogen infection at the local tissue triggers a systemic defense in the distal issue, by 

depending on SA signalling (Conrath, 2006; Durrant & Dong, 2004). This process is called 

systemic acquired resistance (SAR) and leads to protection of plant’s distal tissue from subse-

quent attacks (Vlot et al., 2009). The local infection induces mobile signals which prime the 

distal tissues by the accumulation of more SA, thus, activating PR genes, specifically PR1, via 

the master regulator NPR1 (Durrant & Dong, 2004). The systemic defense can also be induced 

by exogenous application of SA leading to accumulation of PR proteins in the distal leaves (Fu 

& Dong, 2013). Hence, SA was assumed to be the mobile signal for triggering SAR, but graft-

ing experiments with tobacco did not support this assumption (Vernooij et al., 1994). Trans-

genic rootstock expressing bacterial SA-degrading enzyme translocated a signal to the non-

transgenic scions for resistance against a pathogen (Vernooij et al., 1994). Similarly, a lipid-

transfer protein DEFECTIVE IN INDUCED RESISTANCE 1 (DIR1) was proposed to be in-

volved in long distance signalling (Maldonado et al., 2002). DIR1 was expressed in sieve ele-

ments and companion cells (Champigny et al., 2013). However, dir1-1 mutants were occasion-

ally SAR-competent, thereby, ruling out the possibility of DIR1 forming a chaperone complex 

with the mobile signal in phloem (Champigny et al., 2013). FLAVIN-DEPENDENT 

MONOOXYGENASE 1 (FMO1) converts pipecolic acid to N-hydroxypipecolic acid, which 

accumulates in the systemic tissues after pathogen infection (Hartmann et al., 2018). Various 

other metabolites like methyl salicylic acid, jasmonic acid, azelaic acid and glycerol-3-phos-

phate were also proposed to be the mobile signals for SAR (Chanda et al., 2011; Jung et al., 

2009; Park et al., 2007; Truman et al., 2007). However, the actual mobile signal transported in 

SAR is still to be unraveled.  

 

1.4.2. Induced systemic resistance 

Induced systemic resistance (ISR) caused by beneficial microbe interaction with plants pro-

vides  a broad defense spectrum against diverse threats (Pangesti et al., 2016; Shoresh, Yedidia, 

& Chet, 2004). ISR was first reported by van Peer, Niemann, & Schippers (1991) in carnation 

treated with plant-growth promoting beneficial rhizobacteria (PGPR) Pseudomonas fluo-

rescens (now called Pseudomonas simiae) WCS417r. Similar reports emerged about other ben-

eficial microbes like other Pseudomonads, PGPR Bacillus species, Trichoderma species and 

mycorrhizal fungi inducing resistance against pathogens (Alstrӧm, 1991; Fernández et al., 
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2019; Haney et al., 2017; Martínez-Medina et al., 2017; Wei et al., 1996). In contrast to SAR, 

ISR by beneficial microbes was not dependent on accumulation of SA or activation of PR genes 

and proteins (Hoffland et al., 1995; Pieterse et al., 1996). It was observed that beneficial mi-

crobes trigger defense responses independent of SA but dependent on JA/Et signalling in sys-

temic tissues (Pieterse et al., 1996, 1998). However, some beneficial microbes like Pseudomo-

nas aeruginosa 7NSK2, Pseudomonas fluorescens SS101 or Trichoderma sp. have been ob-

served to depend on SA mediated SAR pathway for systemic protection (Audenaert et al., 

2002; Contreras-Cornejo et al., 2011; Mortel et al., 2012). Hence, there are no specific path-

ways which define ISR triggered by mutualists. Unlike SAR, the association with mutualists 

has not been reported to significantly enhance defense gene expression or hormone concentra-

tions in the systemic tissues (Pieterse et al., 2014). However, both SAR and ISR (in the case of 

P. simiae WCS417r) are dependent on the SA transcriptional regulator NPR1 for triggering the 

responses (Pieterse et al., 1998). It was reported by Spoel et al. (2003) that cytosolic NPR1 but 

not nuclear NPR1 is involved in modulation of JA signalling (Spoel et al., 2003).  

 

1.5. Beneficial microbes 

Plant-beneficial microbe interactions are predominantly confined to the rhizosphere. Plants 

exude their photosynthetically derived sugars in the rhizosphere to attract beneficial microbes 

(Bais et al., 2010). Soil inhabiting pathogenic microbes also sense the nutrient sink and tend to 

colonize the roots. On one hand, beneficial microbes inhibit pathogens by producing toxic 

compounds for pathogens to exert their dominance in root colonization (Lambert et al., 1987; 

Pieterse et al., 2014). On the other hand, the mutualists trigger plants to secrete metabolites 

which selectively inhibit pathogenic growth (Stringlis, Yu, et al., 2018). In this way, beneficial 

microbes directly or indirectly outcompete the pathogens to colonize the plant roots, and 

thereby establishing symbiosis. In addition to protection of the local tissue, they also engage in 

mutual nutrient transfer and systemic defense activation by ISR (Heijden et al., 2015). Hence, 

plant species were classified as hosts or non-hosts depending on their ability to engage in the 

above-mentioned associations with distinct symbionts. 
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1.5.1. Mycorrhizal fungi 

Mycorrhizal fungi are plant growth promoting fungi which are commonly found in the 

rhizosphere along with PGPR rhizobacteria and endophytes (Bais et al., 2010). These benefi-

cial fungal species engage in carbon-nutrient exchange with hosts by colonizing the roots and 

forming specialized structures called mycorrhiza (Heijden et al., 2015). The most common 

classes of mycorrhizhal fungi include arbuscular mycorrhiza, ectomycorrhiza, orchid mycor-

rhiza and ericoid mycorrhiza. Arbuscular mycorrhizal fungi (AMF), the most prominent my-

corrhizal fungi, colonize around 72% of land-use plants (Brundrett & Tedersoo, 2018). They 

provide water and nutrients like nitrogen and phosphorus to the hosts, in exchange for carbon 

(Kiers et al., 2011). However, there are contradictory views on mutual exchange of carbon-

nutrients with respect to other mycorrhizal fungi (Heijden et al., 2015).  

Mycorrhizal associations are established as a result of molecular crosstalk between the 

host plant and the beneficial fungi. Primary and secondary metabolites exuded by the plant 

roots promote proliferation of mycorrhizal fungi in the rhizosphere (Garcia et al., 2015). The 

volatile organic compounds from the fungi also initiate early signalling events in the plant roots 

including lateral root formation (Ditengou et al., 2015). The host plants possess a common 

symbiotic signalling pathway (CSP) which is activated upon perception of Nod or Myc or 

lipochitooligosaccharides (LCOs) or chitin oligomers from these beneficial fungi (Ehrhardt et 

al., 1996; Haney et al., 2011). The CSP consists of a leucine-rich repeat receptor kinase, cal-

cium- and calmodulin-dependent kinases (CASTOR and POLLUX) (Garcia et al., 2015). Un-

like vast majority of vascular plants, parasitic plants, stonecrops and plants belonging to Bras-

sicaceae and Proteaceae have lost the common symbiotic signalling pathway. Hence they can-

not undergo mycorrhization and are considered as non-host species for the mycorrhizal fungi 

(Lambers & Teste, 2013).  

 

1.5.2. Ectomycorrhizal fungi    

Ectomycorrhizal fungi (EMF), evolved from wood and litter decayers, predominantly 

colonize certain tree species which constitute 2% of the vascular plants (Brundrett & Tedersoo, 

2018; Heijden et al., 2015). There are evidences that the ectomycorrhizal fungi have evolved 

independently 200 times from ancestral brown saprotrophic fungi (Heijden et al., 2015). Dur-

ing this evolution, EMF lost their saprotrophic ability of lignocellulose decay mechanism but 



 Introduction 

12 

 

have evolved pathogenic effector secretion system for colonizing host roots (Martin et al., 

2016). Sesquiterpenes from the model EMF, L. bicolor, induces lateral root formation in both 

hosts and non-hosts, thereby initiating the mycorrhization event (Ditengou et al., 2015). LCOs 

produced by L. bicolor activate CSP in host plants for initiating root colonization (Cope et al., 

2019). Then the EMF colonize host root species by forming a fungal sheath around the roots 

(Smith & Read, 2008). Unlike AMF which penetrates the root cells, the hyphae of EMF grow 

between the root cells (Smith & Read, 2008). The hyphae of EMF grows in the root apo-plastic 

space to establish the Hartig net which is a characteristic feature of all EMF (Smith & Read, 

2008). Since the non-hosts are devoid of CSP, their roots cannot be mycorrhized by EMF. 

Plant hormones play a role in influencing ectomycorrhizal association. Auxin respon-

sible for root growth is involved in this signalling event (Felten et al., 2009). While root treat-

ment with salicylic acid did not affect colonization, jasmonic acid and ethylene prevented my-

corrhiza establishment (Plett et al., 2014). MiSSP7, a small protein secreted by the model EMF, 

L. bicolor, localizes in the nucleus of the poplar root cells to suppress JA-mediated degradation 

of PtJAZ6 and is necessary for Hartig net formation (Plett et al., 2014, 2011). Another effector, 

MiSSP8 secreted by L. bicolor, was observed to be involved in hyphal aggregation during ec-

tomycorrhizal symbiosis and could possibly be inherited from its ancestral saprotrophic life-

style (Pellegrin et al., 2019).  

The systemic altercations triggered by EMF in host plants have been studied by using plant 

growth and nutrient status as readouts. EMF colonization and fertilization had similar effects 

on the nitrogen levels in the foliar tissue of chestnut (Rieske et al., 2003). In most cases, EMF 

have not been reported to enhance the growth of the host plants like AMF (Gange et al., 2005; 

Garcia et al., 2015; Kaling et al., 2018). Phenolic compound synthesis was downregulated in 

poplar leaves after root mycorrhization by EMF (Kaling et al., 2018). In addition, the anti-

herbivore defense systems were also activated in the foliar leaves leading to reduced egg dep-

osition by the poplar leaf beetle, Chrysomela populi (Kaling et al., 2018). However, EMF effect 

on insect performance varies and depends on the infesting herbivore (Hartley & Gange, 2009). 

Though there are evidences about host protection against herbivory by EMF, the common host 

components involved in this ISR response have to be identified and validated. Insects trigger 

distinct defense responses in the host including volatile patterns and this variance is further 

enhanced by EMF root colonization (Clavijo Mccormick et al., 2014; Clavijo McCormick et 

al., 2012). Investigating EMF effects using alternative model plant species with abundant tools 

and resources can unravel the conserved ISR pathways induced by EMF.  
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1.6. Objectives 

While the outcome of EMF impact on host defense has been reported, the interaction be-

tween EMF and non-host species has not been studied so far. This research was aimed to in-

vestigate the influence of EMF treatment on a non-host species and correlate this effect on 

systemic protection against biotic stress in a tripartite interaction. The model EMF, L. bicolor 

and the model plant species, Arabidopsis thaliana (will be mentioned as Col-0) were used as 

our working models. In addition to not being mycorrhized, Col-0 offers great advantage for 

this study because of its shorter growth phase and the flexibility in trying many established 

pathogen assays. The genome sequence information available for both A. thaliana and L. bi-

color makes them a feasible model for genetic analyses. The system was challenged with Bras-

sicaceae generalist herbivore, Trichoplusia ni and the hemi-biotrophic pathogen, Pseudomonas 

syringae pv. Tomato DC3000 (Pst DC3000) as readouts for systemic resistance by EMF. In 

the context of the main goal of this thesis, the experiments were designed and performed to 

address the following questions: 

▪ Can L. bicolor induce systemic defense responses in Col-0? 

▪ Which components are altered in Col-0 systemic tissue by L. bicolor for ISR? 

▪ How does L. bicolor trigger the systemic defense responses in Col-0? 
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2. MATERIALS AND METHODS 

2.1. Chemicals and reagents 

Unless specified, all the chemicals were obtained from Carl Roth GmbH + Co. KG, 

Karlsruhe, Germany, with analytical grade specifications. The composition of media and buff-

ers are reported in this section alongside the description of the specific method.  

 

2.2. Preparation of Arabidopsis plants 

2.2.1. Plant materials 

Most of the Arabidopsis thaliana seeds were provided by Dr. Cara Haney, University 

of British Columbia, Canada. The Arabidopsis mutants analysed in this project include the JA 

biosynthesis mutant aos (Park et al., 2002) (provided by Prof. Dr. Ivo Feussner, University of 

Göttingen, Germany), the JA receptor mutant coi1-16 (Ellis & Turner, 2002), the SA biosyn-

thesis mutant sid2-2 (Dewdney et al., 2000), the SA positive regulator mutant npr1-1 (Cao et 

al., 1994), the SA negative regulator double mutant npr3-2 npr4-2 (Zhang et al., 2006), the 

tryptophan metabolism double mutant cyp79b2/b3 (Glawischnig et al., 2004), the camalexin 

biosynthesis mutant cyp71a13-1 (provided by Dr. Pawel Bednarek, Polish Academy of Sci-

ences, Poland), the indolic glucosinolates biosynthesis mutant cyp81f2 (provided by Prof. Dr. 

Volker Lipka, University of Göttingen, Germany), the iron deficiency response regulator dou-

ble mutant myb72/10 (Palmer et al., 2013) and the chitin receptor mutant cerk1-2 (Miya et al., 

2007). CYP7A12p-, MYB51p- and WRKY11p-GUS (Millet et al., 2010) were the reporter lines 

used for GUS analysis.  

 

2.2.2. Seed sterilization 

Seeds were surface sterilized by treating with 70% ethanol for 1 min. The tubes con-

taining seeds were mixed and centrifuged (5418R, Eppendorf AG, Hamburg, Germany) briefly 

before discarding ethanol. Seeds were then bleached with 10% DanKlorix (CP GABA GmbH, 
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Hamburg, Germany) for 2 min, followed by brief centrifugation. The bleach solution was dis-

carded, and the seeds were washed thrice with sterile ddH2O. Sterilized seeds were suspended 

in 500 µL of sterile ddH2O and cold stratified for two days in darkness at 4°C.  

 

2.2.3. Plant growth condition 

2.2.3.1. In vitro experiments 

Ten to twelve sterile Col-0 seeds were placed on square petri-dishes (Sarstedt AG & 

Co. KG, Nümbrecht, Germany) filled with ½ MS medium (concentration in g/L: MS medium 

with vitamins (Duchefa Farma B. V., Haarlem, Netherlands) 2.215, MES hydrate (Sigma-al-

drich, Steinheim, Germany) 1, phyto-agar (Duchefa Farma B. V., Haarlem, Netherlands) 10; 

pH = 5.7 to 5.8). Plates were sealed with micropore tape (3MTM MicroporeTM surgical tape, 

Minnesota, United States of America) and placed in acclimatized chamber (Percival Scientific, 

CLF Plant Climatics, Emersacker, Germany) in an upright position with 100 µEm-2s-1 light and 

80% relative air humidity for 16/8 hours at 22/20 °C day/night phase. 

 

2.2.3.2. Soil experiments 

Jiffy-7 (Jiffy Products International AS, Norway, Article number 789005) peat pellets 

with diameter 4.2 cm were used as substrate for growing plants. The culturable beneficial mi-

crobes for inducing ISR are less abundant in the jiffy-7 pellets (Haney et al., 2017). Hence, 

unsterile pellets were used for the entire set of experiments. Pellets were soaked in holder trays 

(1020 Greenhouse growing tray with no drain holes, Tennessee, United States of America) 

containing tap water for 15 to 20 min. The pellets sucked up the water and expanded to a height 

of 42 mm. The moist pellets were filled in the sockets of 50 pellet piece trays (Landmark Plastic 

Corporation, Akron, United States of America) mounted over a sieve tray (1020 Greenhouse 

nursery carry tray, Hendersonville, United States of America) and then placed above the flat 

holder tray (Figure 4). Surface sterilized seeds were suspended in sterile 0.1 % (w/v) Phyto-

agar solution to separate the seeds. Three seeds were placed/pellet using a glass pasteur pipette 

and the tray was covered with a Jiffy-7 dome (Jiffy Products International AS, Norway) to 

maintain humidity. The seeds germinated in the climate chamber (Kees Klima- und Kältetech-

nik GmbH, Ronnenberg, Germany) under short day conditions (8 hours) with 130 µEm-2s-1 

light and 80% relative air humidity at 22 °C (day) and 20 °C (night).  
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On day 7, excessively germinated seedlings in every pellet were reduced to one seedling 

and the humidity domes were removed. Plants were watered twice every week, by filling the 

holder trays containing pellets with tap water. After 15 min, the water from the holder trays 

was drained and the plant trays were swapped inside the climate chamber in a random manner.  

For Hyaloperonospora arabidopsidis experiments, 36 seeds were placed in every 

square disposable pots (Hermann Meyer KG, Rellingen, Germany) filled with peat (Typ N 

Erde, Hermann Meyer KG, Rellingen, Germany). On day 7, excess seedlings were thinned 

down to a total of 30 seedlings/pot. For the entire duration of the experiment, plants were grown 

under short day conditions (8 hours) with 130 µEm-2s-1 light and 80% relative air humidity at 

22 °C (day) and 20 °C (night).  

 

 

Figure 4. Tray set-up for growing Arabidopsis in Jiffy-7 pellets.  

(A) Holder tray at the bottom (B) Sieve tray in the middle (C) Pellet trays on top. 

 

2.3. Preparation of microbes and elicitors 

2.3.1. Fungal strains 

2.3.1.1. Laccaria bicolor 

The ectomycorrhizal fungus, Laccaria bicolor (monokaryotic strain CII-H-82, S238N) 

was propagated by subculturing from the stock culture. 0.3 cm2 fungal agar plugs from the 

stock culture were cut using a sterile scalpel in the biosafety cabinet (Thermo SCIENTIFIC 

SAFE 2020, Thermo Electron LED GmbH, Langenselbold, Germany). Three fungal plugs 
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were transferred and cultured on solid MMN medium (concentrations in g/L: glucose 10.0, 

ammonium tartrate 2.5, ammonium sulphate 0.25, potassium dihydrogen phosphate 0.5, mag-

nesium sulphate heptahydrate 0.15, calcium chloride dihydrate 0.05, sodium chloride 0.025, 

0.1% thiamine-hydrochlorate 0.1 mL and 1% ferric chloride hexahydrate 1mL; pH 5.2 to 5.4) 

in dark at 23 to 26°C for three weeks. Around 25 fungal agar plugs from a single colony were 

inoculated in conical flasks containing 200 mL of MMN medium and incubated on a shaker 

(GIGYROTORY® Shaker, New Brunswick Scientific Co., Inc, Edison, United States of Amer-

ica) at 120 rpm in dark at 23 to 26°C. When the fungi were three weeks old, the culture was 

transferred to 50 mL sterile FALCON® tubes (Sarstedt AG & Co. KG, Nümbrecht, Germany) 

and homogenized using an ULTRA-TURRAX T25 tissue disruptor (Janke & Kunkel GmbH 

& Co. KG, IKA®-Labortechnick, Staufen, Germany). The FALCON tubes with slightly un-

screwed caps were transferred back to the shaker and incubated at 23 to 26°C in dark for a 

week.  

Two days before root inoculation, 4 to 5 FALCON tubes containing the fungal myce-

lium were homogenized again and incubated as mentioned above. Homogenization was per-

formed to mildly wound L. bicolor because wounding increases the aggressiveness of the fungi 

(Kemppainen et al., 2005). On the day of inoculation, these FALCON tubes were centrifuged 

at 4500 rpm for 5 min at room temperature. The supernatant was discarded, and the pellet was 

re-suspended in 10 mM MgSO4. OD of the inoculum in a 10 x 4 x 45 mm polystyrene cuvette, 

was measured at 600 nm (Sarstedt AG & Co. KG, Nümbrecht, Germany) using a Bio-Photom-

eter (Eppendorf AG, Hamburg, Germany). 10 mM MgSO4 served as the blank for OD meas-

urement. Based on the OD value, L. bicolor suspension of OD600 = 1 was prepared using 10 

mM MgSO4. This solution was diluted with 10 mM MgSO4 to prepare the inoculum with OD600 

= 0.1. Inoculum of dead L. bicolor was prepared by heat killing L. bicolor suspension of OD600 

= 1, in a water bath for 20 min at 65-80°C. Higher concentration of dead L. bicolor was used 

to nullify the variance resulting from the growth of live L. bicolor in the pellets at the end of 

the experiment (as performed by Millet et al., 2010 with Pst and P. fluorescens WCS417r). 

The heat-killed fungal solution was also plated on MMN medium to check for growth recovery. 

Paxillus involutus, another EMF was also propagated and cultured like L. bicolor.  
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2.3.1.2. Hyaloperonospora arabidopsidis 

H. arabidopsidis Noco2 (Noco2) strain was provided by Prof. Dr. Volker Lipka (Uni-

versity of Göttingen, Germany). Col-0 seedlings were grown in a dense manner on 50 to 100 

mm pots (Hermann Meyer KG, Rellingen, Germany) under short day conditions with 10 hours 

of 130 µEm2s-1 at 22/18 °C of day/night phase. Noco2 strains were propagated on 2-week-old 

Col-0 seedlings by spraying an inoculum of 5x104 spores using a common hand sprayer. The 

inoculated plants were covered with a lid and transferred to climate chambers (Percival Scien-

tific, CLF Plant Climatics, Emersacker, Germany) with same short-day conditions as the 

growth chamber. On the next day, the pots containing infected plants were uncovered for 18 

hours to dry up the water droplets and covered again with the lid. After 6 days, the shoots of 

the infected seedlings were harvested, suspended in dH2O and sporangiospores were counted 

using a hemocytometer (Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen, Germany).  

 

2.3.2. Bacterial strains  

The bacterial strain Pseudomonas simiae WCS417r (WCS417r) was provided by Dr. 

Cara Haney (University of British Columbia, Canada) and Pseudomonas syringae pv. Tomato 

(Pst) was given as a gift by Prof. Xin Li (University of British Columbia, Canada). The strains 

were cultured on LB medium (concentrations in g/L: tryptone (Duchefa Farma B. V., Haarlem, 

Netherlands), yeast Extract, sodium chloride, bactoagar 15) at 28°C. A day before inoculation, 

an overnight culture was prepared by inoculating the strains in LB medium and the culture was 

incubated at 28°C on a shaker (Innova4330, New Brunswick Scientific Co., Inc, Edison, United 

States of America). The bacterial cells from the overnight culture were centrifuged, re-sus-

pended in 10 mM MgSO4 and OD600 value was measured using the Bio-Photometer (Eppendorf 

AG, Hamburg, Germany). Pst DC3000 solution with OD600 = 1 was prepared by diluting the 

suspension using 10 mM MgSO4 and the solution was further diluted to OD600 = 0.1. The Pst 

DC3000 final inoculum was adjusted to OD600 = 0.0002 using 10 mM MgSO4.   
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2.3.3. MAMP and PAMP stock solutions 

A 0.1mM flagellin stock solution was prepared by suspending flg22 peptide (Sigma-

aldrich, Steinheim, Germany) in sterile ddH2O. Chitin stock solution was prepared in two dif-

ferent ways for ISR and PTI response experiments using chitin from shrimp shells (Sigma-

aldrich, Steinheim, Germany). For ROS and MAPK experiments, 10 mg of chitin from shrimp 

shells was ground using IKA® RW20 digital mixer (IKA®-Werke GmbH & Co. KG, Staufen, 

Germany) with 1 mL distilled water for 12 min to prepare the stock. For ISR experiments, 10 

mg of chitin from shrimp shells was suspended in 1 mL of ddH20 and autoclaved for 20 min. 

After centrifugation at 4500 rpm for 5 min at room temperature, the supernatant was collected 

and used as stock for ISR experiments. Chitin and flg22 stock solutions were stored at 4°C and 

-20°C respectively until further use.  

 

2.3.4. Elicitor and microbial inoculation 

When Col-0 or other mutant seedlings were 9 days old, 2 mL of L. bicolor inoculum 

(OD600 = 0.1) was pipetted on the peat surface surrounding every seedling root. 2 mL of 

WCS417 (OD600 = 0.01) was inoculated/seedling for beneficial rhizobacteria treatment. Simi-

larly, 2 mL of heat-killed L. bicolor solution (OD600 = 2) was inoculated around the seedlings 

for dead L. bicolor treatment. Millet et al., (2010) showed that 500 µg/mL of chitin can trigger 

callose deposition in Arabidopsis. Hence for chitin treatment, 2 mL of 500 µg/mL chitin solu-

tion (final concentration = 1 mg/mL) was pipetted/plant. The control plants were mock inocu-

lated with 2 mL of 10 mM MgSO4.  

Since the PTI experiments were performed in controlled in vitro conditions with less 

volume, low elicitor concentrations were enough to induce a response. Flg22 and chitin were 

used at a final concentration 100 nM and 10 µg/mL respectively (Millet et al., 2010) for ROS 

and MAPK experiments. 
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2.4. Biotic stress experiments 

2.4.1. Caterpillar feeding assay 

Herbivore experiments on Arabidopsis were done as described by Haney et al., (2017). 

Eggs of the Brassicaceae generalist herbivore, Trichoplusia ni, were purchased from from nat-

ural sciences and engineering research council (NSERC) Canada (Roe et al., 2018). The pro-

viders were requested to ship the eggs collected over 24 hours without media for synchronous 

hatching (Ali & Agrawal, 2012). T. ni eggs were incubated in an airtight box with moist paper 

towels for 2 days under the plant growth conditions to synchronize the circadian cycle of T. ni 

with the plants. Diurnal variances between the plants and caterpillars can cause discrepancies 

in the plant anti-herbivore defenses resulting in altered feeding behavior (Jander, 2012). Hence, 

the circadian rhythm of the caterpillars was synchronized with that of the plants.  

A wet paper towel was placed inside the box to maintain humidity. When the eggs 

hatch, each larva was placed on a 4-week old Arabidopsis plant grown in a pellet and covered 

with a breathable nylon mesh net (Tech Textiles, Birmingham, United Kingdom) using a rub-

ber band. The plants with the larvae were maintained under 16/8 hours in light/dark phase as 

described under chapter 2.4.1. After 7 days of feeding, the caterpillars were weighed individu-

ally using a microbalance (Sartorius Lab Instruments GmbH & Co. KG, Göttingen, Germany), 

and the larval weight gain was recorded. Due to the negligible mass of the caterpillars after 

hatching, the initial weight was recorded as zero (Figure 5). After weighing, the caterpillars 

were killed by freezing them overnight at -20°C. 
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Figure 5. Trichplusia ni (or) the cabbage looper.  

(a) T. ni when freshly hatched from the egg and (b) T. ni after 7 days of feeding on Col-0.  

 

2.4.2. Biotrophic pathogen infection assays 

2.4.2.1. Pseudomonas syringae DC3000 

Pseudomonas syringae infection assays were performed as described by (Haney et al., 

2017). The Pst DC3000 inoculum (OD600 = 0.0002) was prepared from an overnight culture as 

described in chapter 2.3.2. A total of six 5-week old plants from each treatment was used in 

this experiment and the plants were placed in the trays as shown in Figure 6. The trays were 

half filled with water and covered with a dome for at-least an hour in the plant growth room to 

induce stomatal opening. The water from the trays were drained not completely and 2 

leaves/plant were marked with a permanent marker. Pst DC3000 inoculum (OD600 = 0.0002) 

was infiltrated into the marked leaves using a blunt (no needle) 1 mL syringe. The inoculum 

was forced into the entire leaf through the stomatal openings. Bacterial solution suspended on 

the leaf surfaces was dried using paper towels and the trays were covered again with lids. At 2 

days post inoculation, leaf disks (9 mm diameter) from the infiltrated leaves were collected and 

transferred individually to sterile 2 mL tubes. The leaf disks were homogenized with a metal 

bead (4 mm diameter) and 100 µL sterile ddH2O using a bead beater (Retsch GmbH, Haan, 

Germany) at 25 s-1 for 1.5 min. The homogenized suspension was serial diluted (1:10 incre-

ments) in a sterile 96 well round bottom plate (Sarstedt AG & Co. KG, Nümbrecht, Germany) 

filled with 90 µL of 10 mM MgSO4 in every well. 8 µL of the serial diluted samples were 

plated on omnitrays (Sarstedt AG & Co. KG, Nümbrecht, Germany) containing LB medium 
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with rifampicin (50 µg/mL). The plates were incubated at 28 °C in dark and colony forming 

units (CFUs) were counted after 2 days. 

 

 

Figure 6. Plant set-up for Pst DC3000 infection. 

Plants are arranged in this manner inside the trays for Pst DC3000 experiment to avoid damage or 

contact with other plants. 

 

2.4.2.2. Hyaloperonospora arabidopsidis 

Hyaloperonospora arabidopsis Noco2 (Noco2) strains were propagated on Col-0 seed-

lings as described in chapter 2.3.1.2. Two week old plants with or without L. bicolor were 

sprayed with freshly harvested Noco2 spores (5x104 spores/mL) and the pathogen assay was 

performed as described by (James, 2013). The trays were covered with lids and transferred to 

acclimatized chambers with 130 µE.m-2s-1 light and 80% relative air humidity for 8/16 hours 

at 22/18 °C in day/night phase for 5 days. Infected shoots from each pot were harvested and 

suspended together with ddH20 in a 50 mL FALCON tube based on their weight. After vortex-

ing for 30s, 10 µL of the suspension was pipetted into the counting chamber (Paul Marienfeld 

GmbH & Co. KG, Lauda-Königshofen, Germany) and spores were counted using a light mi-

croscope (Carl Zeiss Microimaging GmbH, Göttingen, Germany). Average of 4 counts from 

at-least 4 technical replicates/treatment was normalized per gram of plant tissue to calculate 

the number of Noco2 spores infecting the seedlings.  
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2.5. Gene expression analyses 

Eight 4-week-old Col-0 plants/treatment grown in jiffy pellets, were used for gene ex-

pression analyses. Two freshly hatched larvae were placed on every T. ni treatment plant and 

covered with mesh net. The control plants were mock covered with mesh nets without T. ni 

and all the plants were transferred to acclimatized chamber as explained in chapter 2.2.3.2. 

Visible T. ni feeding damages were observed in Col-0 leaves only after 24 hours. Hence, 24-

hour after T. ni feeding was the time point chosen for gene expression, phytohormone and 

metabolite analysis. After 24 hours of feeding, the larvae were removed and one leaf/plant was 

harvested. Only leaves with prominent caterpillar feeding damages were harvested for T. ni 

treatment samples. Leaves collected from the plants with same treatment were pooled, flash 

frozen in liquid nitrogen and stored in the -80°C freezer (Ewald Innovationstechnik GmbH, 

Rodenberg, Germany) until further use.  

 

2.5.1. qRT-PCR experiment 

Frozen samples collected as mentioned above, were homogenized twice using the bead 

beater (Retsch MM400, Retsch GmbH, Haan, Germany) at a frequency of 25 s-1 for 1 min.  

RNA was extracted from 100 mg of the homogenized samples using the Qiagen RNAeasy 

extraction kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. The RNA 

concentration in the extract was measured using a NanoDropTM Photometer (Thermo Fischer 

Scientific, Massachusetts, United States of America). DNA contaminants in the RNA samples 

were removed by treating 1 µg of extracted RNA with TURBO DNAse (AMBION GmbH, 

Kaufungen, Germany) in 1 30 µL reaction (34 ng/µL RNA) according to TURBO DNA-freeTM 

kit protocol. 27 µL of DNA-free RNA was reverse transcribed in a 40 µL reaction (16 ng/µL 

RNA) containing cDNA synthesis mix (50 µM Oligo dT primers, 10 mM dNTP mix, 10x re-

verse transcription buffer, 24 mM magnesium chloride, 0.1 M DTT and 200 U/µL Superscript 

III reverse transcriptase (Invitrogen, Carlsbad, United States of America)) to synthesize single 

stranded cDNA by incubating at 65 °C for 5 min, 50 °C for 50 min, 85 °C for 5 min and then 

stored at -20 °C. 1.5 µL of synthesized cDNA along with 2.5 µM forward and reverse primers 

and 2x PowerUpTM SYBRTM Green master mix (Thermo Fischer Scientific, Massachusetts, 

United States of America) (Final concentration = 8 ng RNA) was used to quantify the gene 

expression using 7500 Fast Real-time PCR system (Applied Biosystems®, Foster City, United 
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States of America). Expression of all candidate genes were tested using primers mentioned in 

Supplementary Table 1. The cycle threshold (CT) values of each gene was normalized to the 

cycle threshold of the house-keeping gene, EIF4A (Millet et al., 2010).  

 

2.5.2. Transcriptome analyses 

The extracted RNA (as described above in chapter 2.5.1) was also used for transcrip-

tome analyses. RNA quality of the samples was checked using a Bioanalyzer (Agilent 2100, 

Agilent, Santa Clara, United States of America) and the RNA integrity numbers (RIN) of the 

samples ranged between 6.8 and 8.2 (Table 2). Library construction and sequencing were con-

ducted at Chronix Biomedical (Chronix Biomedical, Inc., Göttingen, Germany). RNA libraries 

were prepared using the TrueSeq RNA Library Prep Kit (Illumina, San Diego, United States 

of America). Single-end reads were sequenced with a length of 75 bp using an Illumina 

HighSeq 2000 (Illumina, San Diego, CA, USA). 

The samples yielded 16 to 21 million reads (Table 1). Processing of the raw sequence 

data was performed by Dr. Dennis Janz (Department of Forest Botany and Tree Physiology, 

University of Göttingen, Germany) with the FASTX toolkit (http://han-

nonlab.cshl.edu/fastx_toolkit/). Using FASTQ Trimmer, all nucleotides with a Phred quality 

score below 20 were removed from the ends of the reads, and sequences smaller than 38 bp or 

sequences with a Phred score below 20 for 10% of the nucleotides were discarded by the 

FASTQ Filter; adapter sequences and primers were removed with the FASTQ Clipper 

(http://hannonlab.cshl.edu/fastx_toolkit/). Raw sequence qualities were high, therefore read 

numbers/sample after processing remained between 16 and 21 million (Table 1). The processed 

sequences were mapped against the Arabidopsis thaliana transcriptome and differential gene 

expression analyses was performed as mentioned in Vishwanathan et al., 2020. 
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Table 1. Processing and mapping information of every samples’ raw sequence data. 

Sample 

ID 

Treatment Sample 

number 

RIN 

Value 

Raw Trimmed Filtered Mapped % 

Mapped 

10A Col-0 + Buffer S20 7.50 18,323,659 18,318,236 18,087,530 17,175,563 94.96 

10B Col-0 + Buffer + T. ni S19 6.80 20,203,128 20,194,911 19,905,113 18,891,328 94.91 

13A Col-0 + Buffer S18 8.30 18,217,338 18,211,936 17,967,732 17,326,589 96.43 

13B Col-0 + Buffer + T. ni S17 7.60 19,716,705 19,707,668 19,428,965 18,724,741 96.38 

15A Col-0 + Buffer S16 7.50 19,706,504 19,697,626 19,414,133 18,621,357 95.92 

15B Col-0 + Buffer + T. ni S15 7.20 17,364,845 17,357,509 17,100,108 16,447,675 96.18 

17A Col-0 + Buffer S14 7.70 16,917,427 16,910,467 16,680,497 15,957,944 95.67 

17B Col-0 + Buffer + T. ni S13 7.70 17,223,761 17,217,803 16,970,427 16,345,331 96.32 

18A Col-0 + Buffer S12 7.90 19,157,737 19,149,695 18,878,821 18,195,574 96.38 

18B Col-0 + Buffer + T. ni S11 7.60 20,488,629 20,480,817 20,206,424 19,341,346 95.72 

20A Col-0 + L. bicolor S10 7.10 19,809,126 19,801,344 19,532,487 18,648,387 95.47 

20B Col-0 + L. bicolor + T. ni S9 7.30 20,883,945 20,875,671 20,587,068 19,616,510 95.29 

23A Col-0 + L. bicolor S8 8.20 17,267,981 17,262,882 17,029,735 16,397,067 96.28 

23B Col-0 + L. bicolor + T. ni S7 7.00 18,245,284 18,236,417 17,966,636 17,202,430 95.75 

25A Col-0 + L. bicolor S6 8.10 17,953,224 17,945,646 17,697,924 17,001,164 96.06 

25B Col-0 + L. bicolor + T. ni S5 7.20 20,835,382 20,824,065 20,517,536 19,653,407 95.79 

27A Col-0 + L. bicolor S4 7.90 19,920,333 19,910,035 19,606,826 18,731,911 95.54 

27B Col-0 + L. bicolor + T. ni S3 7.60 18,454,061 18,447,710 18,197,177 17,531,189 96.34 

28A Col-0 + L. bicolor S2 7.70 16,605,947 16,599,168 16,363,095 15,671,379 95.77 

28B Col-0 + L. bicolor + T. ni S1 7.80 17,832,755 17,824,806 17,580,314 16,905,795 96.16 

 

 

2.6. Metabolite measurements 

2.6.1. Preparation of plant extract 

Col-0 leaf samples were collected as described in chapter 2.5. Extraction was performed 

as described by Kusch et al., 2019. 100 mg of the leaf samples were homogenized using a bead 

beater (Retsch GmbH, Haan, Germany). Extraction was performed with 750 µL of methanol 

(LC-MS grade) containing internal standards and 2.5 mL of methyl-tert-butyl ether (MTBE) 

(Sigma-aldrich, Steinheim, Germany). The extracted solution was shaken for 1 hour at 200 



 Materials and Methods 

26 

 

rpm. 600 µL of water was added for phase separation and incubated for 10 min. After centrif-

ugation at 450xg for 15 min, the upper phase (non-polar) was transferred to another tube. The 

lower phase (polar) was extracted with 700 µL of methanol:water (3:2.5, v/v) and 1.3 mL 

MTBE solution. The lower phase was shaken, phase separated and centrifuged as described 

above. Both the upper phases were pooled for targeted analysis of metabolites and phytohor-

mones. The extracted lower and upper phases were pooled together for untargeted analysis of 

metabolites. The pooled phase solutions were evaporated using streaming nitrogen. The dried 

residue was suspended in solvent containing 100 µL acetonitrile:water (20:80, v/v) with 0.3 

mmol L-1 ammonium formate (pH 3.5).  

 

2.6.2. Targeted analysis of hormones  

Phytohormone analysis was done by Dr. Krzysztof Zienkiewicz from the Goettingen 

Metabolomics and Lipidomics Laboratory, Göttingen Center for Molecular Biosciences 

(GZMB), and Department of Plant Biochemistry, University of Goettingen, according to the 

method described below. 

The extraction of samples was performed as described in chapter 2.6.1. Reversed phase 

separation of constituents was performed as previously described (Kusch et al., 2019) using an 

ACQUITY UPLC® system (Waters Corp., Milford, MA, USA) equipped with an ACQUITY 

UPLC® HSS T3 column (100 mm x 1 mm, 1.8 µm; Waters Corp., Milford, MA, USA). Nano-

electrospray (nanoESI) analysis was carried out as described by Kusch et al., (2019) and phy-

tohormones were ionized in a negative mode and determined in a scheduled multiple reaction 

monitoring mode with an AB Sciex 4000 QTRAP® tandem mass spectrometer (AB Sciex, 

Framingham, MA, USA). Mass transitions were as described by Iven et al., 2012, with some 

modifications specified in Supplementary Table 2. 

 

2.6.3. Non-targeted metabolome analysis  

Metabolite analysis was done by Dr. Kirstin Feussner from the Goettingen Metabolom-

ics and Lipidomics Laboratory, Göttingen Center for Molecular Biosciences (GZMB), and De-

partment of Plant Biochemistry, University of Goettingen, according to (Feussner & Feussner, 

2019). 
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Two-phase extraction of samples was performed with MTBE, methanol and water as 

described in chapter 2.6.1. The metabolome analysis was done using LC-high resolution-MS 

(LC-HR-MS). The polar and non-polar extraction phase was ionized by positive and negative 

electrospray ionization (ESI). The metabolites in the samples were separated by using an Ac-

quity UPLC system with UPLC eLambda 800 mm PDA detector equipped with Acquity UPLC 

BEH SHIELD RP18 column (1 x 100 mM, 1.7 µm particle size, Waters Corporation, Milford, 

USA). Sample raw data values were processed with Markerlynx 4.1 software resulting in two 

indices. The data was further processed by ANOVA with multiple corrections using Benjamin-

Hochberg. The feature identities were confirmed by co-eluting with authentic standards.  

 

2.7. Microscopic analysis 

L. bicolor mycelium and dead root tissue were stained with Lactophenol trypan blue 

(LTB) (Koch & Slusarenko, 1990) and visualized using an inverted microscope (Carl Zeiss 

Microimaging GmbH, Göttingen, Germany). Col-0 seeds were sterilized and germinated on ½ 

MS media in petri dishes as described in chapter 2.2.3.1. When the seedlings were 5 days old, 

10 µL of L. bicolor suspension in 10 mM MgSO4 (OD600 = 0.1) was inoculated on every seed-

ling root. Petri-plates were sealed with micropore tape and the root portion of the plate was 

covered with aluminium foil. The plates were placed back in the acclimatized chamber in an 

upright position as mentioned in chapter 2.2.3.1. When the seedlings were two weeks old, roots 

of 5 plants were harvested and immersed in a 2 mL reaction tube (Eppendorf AG, Hamburg, 

Germany) containing LTB solution (10 mL lactic acid, 10 mL glycerol, 10 mL ddH20, 10 g 

solid phenol, 10 mg trypan blue) diluted in 1:1 ratio with 100% ethanol. The tubes were boiled 

in a water bath for 2 mins with their lids open. LTB solution was discarded, and the samples 

were de-stained with chloral hydrate solution (2.5 g chloral hydrate/mL of ddH2O) for 2 to 3 

hours at room temperature on an orbital shaker (Eppendorf AG, Hamburg, Germany). The so-

lution was replaced with fresh chlorate hydrate solution and de-staining was performed over-

night on the shaker at room temperature. On the next day, chloral hydrate solution was dis-

carded, and the samples were treated overnight with 70% glycerol. Root samples were mounted 

on a glass slide using 70% glycerol, fixed and examined using the inverted microscope (Axio 

Observer Z1, Carl Zeiss Microimaging GmbH, Göttingen, Germany). The microscopic images 

were analysed using Zen Lite software.  
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2.8. MAPK activation experiment 

Two sterilized and cold stratified Col-0 seeds were placed in every well of a 24-well 

plate (Sarstedt AG & Co. KG, Nümbrecht, Germany) containing 500 µL of 1MS solution with 

0.5% (w/v) sucrose. The seeds were germinated under 100 µE light condition for 16/8 hours at 

22/20°C in day/night phase. The medium was replaced by fresh 1MS medium containing 0.5% 

(w/v) sucrose on day 7 and day 14. On day 15, the entire seedlings were treated with 500 µL 

of 1MS medium containing 0.5% (w/v) sucrose, together with elicitors or dead or live L. bi-

color (OD600 = 0.1). flg22 and chitin were used at a final concentration of 100 nM and 10 

µg/mL respectively per well. After treatment time of 15 min, seedlings from 2 wells of the 

same treatment were removed, briefly dried in a paper towel and collected in a 1.5 mL reaction 

tube. The tubes with samples were flash frozen in liquid nitrogen and stored at -20 °C until 

further use.  

 

2.8.1. Protein quantification 

The frozen samples were ground with 200 µL of CERK1 extraction buffer (250 mM 

sucrose, 100 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulphonic acid potassium salt (Sigma-

Aldrich, St. Louis, United States of America) pH 7.5, 5% glycerol, 1 mM sodium molybdate 

dihydrate, 25 mM sodium fluoride, 50 mM sodium pyrophosphate decahydrate, 10 mM eth-

ylenediaminetetraacetic acid, 1mM 1,4-dithiothreitol, 0.5% triton x-100) containing 500 µL 

protease inhibitor cocktail (4-2-aminoethyl benzene sulfonyl fluoride 1 g, bestatin hydrochlo-

ride (Serva Electrophoresis GmbH, Heidelberg, Germany) 5 mg, pepstatin A (Serva Electro-

phoresis GmbH, Heidelberg, Germany) 10 mg, leupeptin hemisulphate (Serva Electrophoresis 

GmbH, Heidelberg, Germany) 100 mg, E-64 (trans-epoxysuccinyl-L-leucylamido-(4-guani-

dino)butane (Serva Electrophoresis GmbH, Heidelberg, Germany) 10 mg, 1-10-phenanthroline 

monohydrate (Sigma-aldrich, Steinheim, Germany) 10 g dissolved in 200 mL of dime-

thylsuphoxide) and sea sand with IKA® RW20 digital mixer for 30 s. After homogenization, 

400 µL more CERK1 extraction buffer was added and the tubes were centrifuged at 13000 

rpm, 4°C for 10 min. The supernatant was transferred to new tube and kept on ice. Protein 

concentration in the extract was quantified after mixing 3 µL of the extract with 1 mL BRAD-

FORD solution ((Roti® - Quant, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) diluted to 
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1:5 ratio with milliQ water). Absorbance was measured after 5min using a photometer (Bio-

chrom GmbH, Berlin, Germany, Biowave II) at 595 nm. BSA was used as the standard for 

protein quantification. The samples were normalised to 1 µg/mL protein concentration using 

CERK1 buffer and were later stored at -20°C. For SDS-PAGE and western blot, the normalised 

extracts were mixed with 4x SDS buffer (200 mM Tris pH 6.8, 400 mM 1,4-dithiothreitol, 8% 

sodium dodecyl sulphate, 40% glycerol, 0.1% (w/v) bromophenol blue (Sigma-aldrich, Stein-

heim, Germany)) and stored at -20°C.  

 

2.8.2. SDS-PAGE 

10% SDS gels were used for MAPK assay and the compositions of resolving and stack-

ing gels are mentioned in Table 2. The gels were prepared in 1.5 mm Bio-Rad gel set-up (BIO-

RAD Laboratories, Hercules, United States of America) with 10 well combs, covered with wet 

paper towels and stored at 4°C until use. Before loading the samples, the extracts with SDS 

loading buffer were heated at 98°C for 5 mins and briefly centrifuged at 13000 rpm. Combs 

were removed from the stacking gel and the gel was placed in the PAGE apparatus filled with 

1x SDS running buffer (diluted from 10x SDS running buffer; concentration in g/L: Tris base 

– 30.4 g, glycine – 144.2 g, 1% (w/v) SDS dissolved in milliQ water). 6 µL of protein ladder 

(BIO-RAD Laboratories, Hercules, United States of America) and 15 µL of the samples were 

loaded in the respective wells. The gel was run at 30 mA in a PowerPacTM HC (BIO-RAD 

Laboratories, Singapore) until bromophenol blue reaches the end of the gel (for 1.5 hours). 

After the run, the apparatus was disassembled, and the stacking gels were removed. 

Table 2. Composition of separating and stacking gel for SDS-PAGE. 

Chemicals and buffers  10% Resolving gel (mL) Stacking gel (mL) 

Tris buffer (1.5 M, pH 8.8) 33 - 

Tris buffer (0.5 M, pH 6.8) - 20.4 

30% Acrylamide 16.5 4.15 

10% APS 0.5 0.125 

TEMED 0.02 0.0125 

Total volume 50 25 
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2.8.3. Western blot 

The PVDF membranes (Roti®-PVDF, Carl Roth GmbH + Co. KG, Karlsruhe, Ger-

many) which will be blotted with proteins were activated by placing the membranes in metha-

nol for a few seconds. The western blot apparatus with the PVDF membrane, whatman papers 

(WhatmanTM, GE Healthcare UK Limited, Buckinghamshire, United Kingdom), sponge foam 

pads (Tran-Blot®, (BIO-RAD Laboratories, Hercules, United States of America) was assem-

bled as shown in Figure 7. The set up was clamped and blotted at 80 V in BIO-RAD Trans-

Blot® cell (BIO-RAD Laboratories, Hercules, United States of America) filled with transfer 

buffer (diluted from 20x transfer buffer stock: 1M Tris-base, 1 M boric acid, pH = 8.3). After 

2 hours, the apparatus was disassembled, and the gels were discarded. The membrane was 

blocked with 4% MP (Milk powder) in 1xTBS-T buffer (diluted from 20x TBS-T buffer: 3M 

sodium chloride, 200 mM Tris pH 8.0, 1% (v/v) Tween-20) for 1 hour on a shaker at room 

temperature. The membrane was subsequently incubated overnight with the primary antibody, 

αpMPK (p44/42) (Bio-Rad Immunstar AP, Cell Signalling Technology, Massachusetts, United 

States of America) (diluted 1:5000 with 4% MP in 1xTBS-T) at 4°C on a shaker. The primary 

antibody solution was discarded on the next day, and the membrane was washed 5 times for 12 

min with 4% MP in 1xTBS-T buffer. Then the membrane was incubated with anti-rabbit sec-

ondary antibody (Sigma A3687, Sigma-Aldrich, St. Louis, United States of America) (diluted 

1:5000 with 4% MP in 1xTBS-T) for 2 hours on a shaker at room temperature. The antibody 

solution was discarded, and the membrane was washed 6 times for 5 min with 1x TBS-T buffer 

on a shaker at room temperature. Final washing of the membrane was done with 10 mL of AP 

buffer (100 mM Tris pH 9.5, 100 mM sodium chloride, 50 mM magnesium sulphate) for 5 

mins, before transferring it to a plastic foil with 500 µL of the substrate (Phospho-MAPK/CDK 

substrate Rabbit mAb #2325, Cell Signalling Technology, Massachusetts, United States of 

America). The membrane was incubated briefly (2-5 min) in dark and then later developed 

using the ChemiDocTM Touch imaging system (BIO-RAD Laboratories, Hercules, United 

States of America). After visualization, the proteins in the membrane were stained with Pon-

ceau S staining solution (0.1 % (w/v) Ponceau S (Sigma-aldrich, Steinheim, Germany) (in 5% 

(v/v) acetic acid) for 15 min.   
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Figure 7. Western blot apparatus set-up.  

Proteins separated by the SDS-PAGE was transferred to the PVDF membrane by performing western 

blot. The gel and membrane are arranged as shown in the figure. 

 

2.9. Oxidative burst analysis 

2.9.1. Local tissue response 

ROS burst experiments with entire Col-0 seedlings was performed as described by 

(Cheng et al., 2015). A sterile Col-0 seed was placed in every well of a white 96-well plate 

(Sarstedt AG & Co. KG, Nümbrecht, Germany), filled with 200 µL of 1MS medium containing 

0.5% (w/v) sucrose. The seeds were germinated under 100 µE light for 16/8 hours at 22/20°C 

in day/night phase. For suppression of ROS burst by L. bicolor, media in the wells were re-

placed with sterile ddH20 on day 9 and the treatment wells were inoculated with live or dead 

L. bicolor (final OD600 = 0.1 in the plate). Oxidative burst reagent was prepared by adding 

luminol derivative L-012 (final concentration of 100 µM) and horseradish peroxidase (final 

concentration of 20 µg/mL) to 24 mL of milliQ water. On the next day, ddH20 in the wells with 

or without dead or live L. bicolor were replaced with 200 µL of the oxidative burst reagent 

with or without elicitors in the corresponding wells. Luminescence was immediately measured 

in a TECAN infinite M200 plate reader (TECAN, Männedorf, Switzerland) for 60 cycles with 

kinetic interval of 1 min and integration time of 350 ms. For ROS induction by L. bicolor, 

seedlings were treated with freshly prepared live and dead L. bicolor (final OD600 = 0.1) in the 

respective wells before adding the oxidative burst reagent.   
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2.9.2. Systemic tissue response 

Col-0 plants were grown and treated with L. bicolor as described in chapters 2.2.3.2 

and 2.3.1.1. When the plants were 5 weeks old, a single leaf from 8 plants/treatment were 

harvested. Leaf disks were collected from the harvested leaves using a biopsy punch (0.4 mm 

diameter) and placed in a white 96-well plate filled with 100 µL of tap water. The plate was 

covered with a lid and placed on the lab bench overnight. On the next day, water was removed 

from the wells and replaced with oxidative burst reagent with or without elicitors. Lumines-

cence was measured immediately in the TECAN infinite M200 plate reader as described in 

chapter 2.9.1. 

 

2.10. GUS expression analyses 

GUS expression analyses was performed as described by (Millet et al., 2010). The 

GUS-reporter lines with promoters for CYP71A12, WRKY11 and MYB51 were placed in 96 

well flat-bottomed plates (Sarstedt AG & Co. KG, Nümbrecht, Germany) containing 100 µL 

of 1MS with 0.5% (w/v) sucrose. The seeds were germinated for 8 days in a growth room under 

100 µE. m-2s-1 for 16/8 hours at 22/20 °C day/night phase. Media in the wells were replaced 

with sterile ddH2O on day 9 and live or dead L. bicolor was inoculated (Final OD600 = 0.1 in 

the plate) into the corresponding treatment wells. On day 10, flg22 (final concentration = 100 

nM) was added to the elicitor treatment wells. After 4 hours, the wells filled with ddH2O with 

or without live or dead L. bicolor and flg22 were replaced with GUS staining solution (50 mM 

sodium phosphate buffer (pH = 7), 10 mM EDTA, 0.5 mM potassium ferricyanide, 0.5 mM 

potassium ferrocyanide, 0.5 mM x-gluc (Thermo Fischer Scientific, Massachusetts, United 

States of America), 0.01% triton X-100). The seeds were stained with GUS solution for 3 hours 

at 37°C and later washed thrice with water. The seedlings were de-stained with 95% ethanol 

overnight at 4°C. On the next day, ethanol was removed and GUS expression in the seedling 

roots (Figure 8) was observed under a light microscope (Carl Zeiss Microimaging GmbH, Göt-

tingen, Germany).   
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Figure 8. Flg22 induced GUS expression in the roots of CYP71A12p-GUS reporter line.  

9-days old seedlings were treated with flg22 for 3 hours and later stained with GUS solution. flg22 

treatment induces CYP71A12 expression in the root elongation zone. Similarly, GUS expression anal-

yses was recorded using MYB51p- and WRKY11p-GUS lines. 

 

2.11. Statistical analyses 

Statistical analyses for T. ni feeding, Pst DC3000, phytohormone, metabolite quantifi-

cation and gene expression experiments was performed as described in (Vishwanathan et al., 

2020). The relative luminescence units (RLU) data from all ROS experiments for different 

treatments was analyzed for statistical difference by two-way ANOVA. Tukey’s HSD test was 

performed for multiple comparison analysis of the data. Significant effect of L. bicolor treat-

ment for ISR against Noco2 was determined by performing Student’s t-test. 
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3. RESULTS 

3.1. L. bicolor induces systemic resistance in Col-0 against T. ni 

3.1.1. L. bicolor affects larval weight gain 

The systemic effect of L. bicolor treatment on a non-host species like Col-0 was deter-

mined by challenging this system with T. ni. The outcome was determined by weighing the 

larvae after feeding on buffer-treated and L. bicolor-treated Col-0 plants for 7 days. Caterpillars 

feeding on L. bicolor treated Col-0 plants had 22% less weight gain than those feeding on the 

control plants (p < 10-7; Figure 9; Vishwanathan et al., 2020). Though Col-0 is a non-host, L. 

bicolor triggered ISR by negatively affected the weight gain of caterpillars. 

   

 

Figure 9. L. bicolor treatment induces systemic resistance in Col-0 against T. ni.  

Col-0 plants were inoculated with L. bicolor and later fed by T. ni larvae. Caterpillar weight gain was 

measured after 7 days of feeding. Data show that L. bicolor treatment negatively affected the weight 

gain of the larvae. n = 20 experiments with at least 20 caterpillars/treatment (Vishwanathan et al., 2020). 

ANOVA was performed for determining statistical significance with different letters indicating signif-

icant differences between treatments at p < 0.05 and the error bars representing SE. 
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3.1.2. L. bicolor does not influence the transcriptome in systemic tissue 

To test if L. bicolor inoculation activated systemic defenses to protect the plant against 

leaf chewing caterpillars, the expression of well-characterized defense marker genes as out-

lined in the introduction was determined. The expression of JA markers genes like VSP1, VSP2 

and MYC2; JA/Et marker genes like PR4, ERF1 and PDF1.2; Et marker gene, EIN3; SA marker 

genes like GST6, PR1, PR2; Transcription factors like WRKY70, MYB51 and the camalexin 

biosynthesis CYP71A13 in Col-0 in response to L. bicolor inoculation and T. ni feeding, were 

analyzed by performing qRT-PCR. The CT values obtained for the candidate genes were nor-

malized to that of the house keeping gene EIF4A. The data showed that VSP1, VSP2, MYC2, 

and ERF1 gene expressions were significantly upregulated after T. ni feeding (p < 0.05; Figure 

10; Vishwanathan et al., 2020). VSP1, VSP2 and PDF1.2 defense gene expressions were sig-

nificantly increased in response to combined effect of L. bicolor and T. ni (p < 0.05; Figure 10; 

Vishwanathan et al., 2020). However, no significant effect was observed for L. bicolor treat-

ment on Col-0 (p < 0.4; Figure 10; Vishwanathan et al., 2020).  

Since L. bicolor treatment did not significantly influence the candidate marker gene 

expression as described above, transcriptomic analysis was performed. Leaf samples were col-

lected from Col-0 plants treated with or without L. bicolor and T. ni (chapter 2.5) to extract 

RNA and identify significantly differentially expressed genes (DEGs) (chapter 2.5.2). Though 

genes were differentially regulated in response to T. ni, not even a single gene was significantly 

affected by L. bicolor treatment with or without T. ni (https://wwwdev.ebi.ac.uk/gxa/experi-

ments/E-MTAB-8523/Results?accessKey=d8c24ec5-2a19-4372-9d11-bb2966a4b418). Both 

qRT-PCR and transcriptome analysis were performed using samples collected from 6 inde-

pendent experiments. The single time point considered for the analyses and the variance asso-

ciated between the samples collected from soil-grown plants could be reasons for not identify-

ing candidate genes primed by L. bicolor. Gene expression analyses of leaf samples collected 

from plants grown and treated under axenic conditions can identify the genetic determinants of 

L. bicolor-triggered ISR. 

 

https://wwwdev.ebi.ac.uk/gxa/experiments/E-MTAB-8523/Results?accessKey=d8c24ec5-2a19-4372-9d11-bb2966a4b418
https://wwwdev.ebi.ac.uk/gxa/experiments/E-MTAB-8523/Results?accessKey=d8c24ec5-2a19-4372-9d11-bb2966a4b418
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Figure 10. Defense gene expression in Col-0 leaves in response to L. bicolor and T. ni.  

RNA was extracted from Col-0 leaves after root treatments with or without L. bicolor and later with or 

without T. ni feeding. Marker defense gene expression was analyzed by performing qRT-PCR. CT val-

ues of target genes were normalized to the house keeping gene EIF4A. Data show log2 relative fold 

change (log2 (2-ΔΔCT)) values in leaf samples collected from 6 independent experiments (n = 6) normal-

ized to mock-inoculated control plants (Vishwanathan et al., 2020). Statistical significance was per-

formed for log2 (2-ΔΔCT) values using two-way ANOVA with Tukey’s HSD test. (* p < 0.05, ** p < 0.01, 

*** p < 0.001). 

 

3.1.3. Phytohormone levels were not primed by L. bicolor 

To check if any of the major phytohormones accumulated for L. bicolor treatment, con-

centrations of JA-, SA- and ABA- derivatives were determined in the leaf samples of Col-0 

plants as described in chapter 2.6. Like gene expression analyses, there were no significant 

changes in phytohormones’ or their derivatives’ concentration in the leaf samples in response 

to L. bicolor (Supplementary table 6.2.1). L. bicolor had no significant effect on the concen-

tration of the active form of JA, JA-Ile (p = 0.95; Figure 11). Similarly, other phytohormones 

were also not responsive to L. bicolor but had increased concentrations upon T. ni feeding 

(Supplementary Figure 6.2.1). However, the concentration of the glycosylated jasmonate de-

rivative, 12-OH-JA-Ile, increased 40-fold in Col-0 leaves when inoculated with L. bicolor and 
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fed by T. ni (p < 0.01; Figure 11). These results show that L. bicolor treatment in Col-0 roots 

did not significantly alter the phytohormone accumulation profile in the systemic leaves at 24 

hours after T. ni feeding. However, priming of phytohormones cannot be excluded because 

analysis was performed from samples of only one time point. On the other hand, pooling leaves 

from plants grown in soil conditions can also contribute to the disparity between replicates. 

Hormone quantification of in vitro samples with considerable homogeneity and different time 

points could have determined whether the dynamics associated with metabolite synthesis and 

accumulation influences ISR by L. bicolor against caterpillar feeding. 

 

 

Figure 11. Influence of L. bicolor and T. ni treatment on (a) JA-Ile and (b) 12-OH-JA-Ile 

levels in Col-0 leaves.  

Phytohormone concentrations were quantified in Col-0 leaves harvested from plants treated with or 

without L. bicolor and T. ni. Data show absolute mean of JA-Ile and concentration of 12OH-JA-Ile 

relative to the endogenous concentration in the buffer treated plants. n = 6 experiments with 8 

plants/treatment. Two-way ANOVA and Fisher’s LSD test was used for determining statistical signif-

icant with different letters indicating significant differences between treatments at p < 0.05 and the error 

bars representing SE.  

 

3.1.4. L. bicolor is dependent on JA and SA signalling pathways for regulating ISR 

To test whether phytohormone signalling pathways were activated by L. bicolor, T. ni 

feeding experiments were performed (as described in chapter 2.4.1) with various hormone sig-

nalling mutants.  
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The JA receptor mutant, coi1-16 was treated with L. bicolor as described in chapter 

2.3.1.1 and challenged with T. ni larvae. Although not significant, coi1-16 which is insensitive 

to endogenous JA-Ile promoted weight gain of T. ni caterpillars (p = 0.056; Figure 12). Unlike 

Col-0, the T. ni larvae feeding on L. bicolor-treated coi1-16 plants did not record less weight 

gain than the control (p = 0.995; Figure 12; Vishwanathan et al., 2020). Therefore, the ISR 

phenotype triggered by L. bicolor was abolished when COI1 a member of the JA receptor 

complex was knocked out. This shows that L. bicolor triggered systemic defense in Col-0 is 

dependent on COI1.  

To further characterize the JA signalling pathway, the JA biosynthesis mutant, aos, was 

treated with L. bicolor and fed by T. ni. Results based on a single individual experiment showed 

that L. bicolor treatment did not significantly affect T. ni larval weight gain in both Col-0 and 

aos (p = 0.07; Supplementary figure 6.2.2). Hence, independent experiments are required to 

determine if L. bicolor depends on jasmonate biosynthesis for triggering ISR. Ethylene which 

can be synergistic or antagonistic to JA could also play a role in this ISR signalling process.  

The ethylene signal transduction mutant ein2-1 was checked for its role in leaf protection by 

L. bicolor against T. ni. Like the aos experiment, L. bicolor treated Col-0 did not have a sig-

nificant negative influence on T. ni larval growth (p = 0.54; Supplementary figure 6.2.3) in the 

experiment performed. More replicates are necessary to test whether L. bicolor-triggered ISR 

depends on EIN2. 

Another major phytohormone in induced systemic defenses and biotic stress responses 

is SA. SA signalling mutants were also tested for L. bicolor triggered ISR by performing cat-

erpillar feeding experiments. SA had a strong antagonistic effect on JA. This observation was 

evident in Figure 12, where T. ni caterpillars after feeding on sid2-2 and npr1-1 mutants had 

significantly less weight than those feeding on Col-0 (p < 0.001). L. bicolor treatment did not 

significantly influence the T. ni larvae weight gain in the SA biosynthesis mutant, sid2-2 (p = 

0.89; Figure 12; Vishwanathan et al., 2020). Though not statistically significant, L. bicolor 

treatment reduced the larvae weight gain by approximately 30% in SA positive regulator mu-

tant, npr1-1 (p = 0.1; Figure 12; Vishwanathan et al., 2020). More independent caterpillar feed-

ing experiments on npr1-1 with and without L. bicolor can indicate whether the ISR pathway 

is also dependent on NPR1. These results show that L. bicolor triggered resistance is dependent 

on JA-and SA-signalling pathways.   
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Figure 12. L. bicolor-triggered ISR is dependent on JA and signalling pathways.  

JA receptor mutant, coi1-16, SA biosynthesis mutant, sid2-2 and SA positive regulator mutant, npr1-1 

were inoculated with L. bicolor and fed by T. ni. Data show the ISR response against T. ni triggered by 

L. bicolor is dependent on JA signalling via COI1 and SA signalling via SID2 and maybe NPR1. n = 4 

experiments for coi1-16, npr1-1 and n = 3 experiments for sid2-2 with at least 20 caterpillars/treatment 

(Vishwanathan et al., 2020). Two-way ANOVA with Tukey’s HSD test was performed for determining 

statistical significance with different letters indicating significant differences between treatments at p < 

0.05 and the error bars representing SE. 

 

3.1.5. Negative regulators of SA play a role in L. bicolor induced ISR 

L. bicolor-triggered ISR seems to be partially dependent on or independent of NPR1, 

which regulates JA antagonism (Spoel et al., 2003). NPR3 and NPR4 are negative regulators 

of SA signalling and acting independent of NPR1 (Ding et al., 2018). Hence, it was hypothe-

sized that the negative regulators of SA might be involved in this ISR response. To check this, 

L. bicolor inoculated npr3/4 double mutant was tested for its role in affecting T. ni feeding. 

Instead of promoting resistance, L. bicolor treatment significantly increased T. ni larval weight 

gain by 25% in npr3/4 double mutants (p < 0.01; Figure 13). Therefore, L. bicolor-triggerd ISR 

was dependent on negative regulators of SA signaling for protecting the plants against T. ni.   
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Figure 13. NPR3 and NPR4 are involved in L. bicolor-triggered ISR against herbivory.  

npr3/4 mutants were inoculated with L. bicolor and fed by T. ni. Data show that unlike Col-0, L. bicolor 

treatment has a positive effect on T. ni caterpillars feeding on npr3/4 mutants. n = 3 experiments with 

at least 20 caterpillars/treatment (Vishwanathan et al., 2020). Two-way ANOVA with Tukey’s HSD 

test was performed for determining statistical significance with different letters indicating significant 

differences between treatments at p < 0.05 and the error bars representing SE. 

 

3.2. Other key players in ISR by L. bicolor 

3.2.1. MYB72 is a component of L. bicolor-triggered ISR 

ISR in many cases, has been reported to be dependent on the iron homeostasis responses 

in plants (Romera et al., 2019). It is also shown that the iron deficiency response regulator, 

MYB72, is necessary for ISR (Martínez-Medina, Van Wees, et al., 2017; Van Der Ent et al., 

2008). To check if this is the same for ISR by L. bicolor, caterpillar feeding experiments (chap-

ter 2.4.1) were performed with myb72-1. The T. ni larvae feeding on L. bicolor treated myb72-

1 plants did not record significant difference in weight gain when compared with buffer treated 

plants (p = 0.51; Figure 14). MYB72 and MYB10 had been shown to have redundant roles in 

iron stress response (Palmer et al., 2013). Hence, the myb72/10 double mutant was also tested 

to study the influence of MYB10 in ISR. Like myb72-1, L. bicolor treatment did not negatively 

influence the weight gain of T. ni larvae, feeding on myb72/10 plants (p = 0.77; Figure 14). 

Like in other reported beneficial microbial systems, ISR by L. bicolor also depended on MYB72 

for triggering systemic resistance. Since volatiles from Trichoderma spp. can also trigger ISR 
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by activating iron deficiency responses (Martínez-Medina, Van Wees, et al., 2017), L. bicolor 

volatiles could also be the stimuli for the systemic response in Col-0 against herbivore attacks. 

 

 

Figure 14. L. bicolor depends on MYB72 for ISR against T. ni.  

Iron stress response mutant roots, myb72-1 (a) and myb72/10 (b) were inoculated with L. bicolor and 

the leaves were fed by T. ni. Data show that L. bicolor-induced ISR response against T. ni larvae is 

dependent on iron homeostasis regulator, MYB72. n = 2 experiments for myb72-1 and n = 5 experiments 

for myb72/10 with at least 20 caterpillars/treatment. Two-way ANOVA with Tukey’s HSD test was 

performed for determining statistical significance with different letters indicating significant differences 

between treatments at p < 0.05 and the error bars representing SE. 

 

3.2.2. Camalexin accumulation in Col-0 leaves was increased by L. bicolor  

Untargeted metabolite analysis was performed (chapter 2.6.1) to identify secondary 

metabolites which could be synthesized by the Col-0 leaves in response to L. bicolor and neg-

atively affect caterpillar feeding. The data obtained from the analyses hint to a possible in-

volvement of indolic glucosinolates in the defense regulation of L. bicolor with Col-0 (Supple-

mentary figure 6.2.4). This observation was validated by performing T. ni feeding experiment 

with the indolic glucosinolate biosynthesis mutant, cyp81f2. The cyp81f2 mutant cannot syn-

thesize indolic glucosinolates and is devoid of callose deposition (Iven et al., 2012). Unlike 

Col-0, T. ni larvae feeding on L. bicolor inoculated cyp81f2 plants had no significant growth 

reduction than control (p = 0.92; Figure 15). Indolic gluosinolates can thereby negatively in-

fluence the weight gain of T. ni caterpillars resulting from L. bicolor inoculation. 
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Metabolite analysis was performed again with a targeted approach to check for accu-

mulation of important metabolites, which have already been reported to function in plant de-

fense. The targeted approach showed that camalexin was significantly primed by L. bicolor 

treatment (p < 0.05; Figure 15). It was observed that this phytoalexin accumulated in a signif-

icantly higher concentration when challenged with caterpillars (p < 0.001; Figure 15). Concen-

trations of other phytoalexins like glucobrassicin or raphanusamic acid were not affected by L. 

bicolor treatment (Supplementary figure 6.2.6). The mutant cyp71a13-1 which cannot synthe-

size camalexin was treated with L. bicolor to confirm that camalexin is involved in this ISR. 

Preliminary results obtained from a single experiment showed that L. bicolor treatment did not 

have a significant influence on T. ni larval weight gain in cyp71a13-1 mutants (p < 0.98; Sup-

plementary figure 6.2.5). 

Both camalexin and indolic glucosinolates are synthesized via the tryptophan pathway 

(Glawischnig et al., 2004; Ver et al., 2011). cyp79b2/b3 double mutant cannot synthesize 

camalexin or indolic glucosinolates. The role of this secondary metabolite biosynthesis path-

way in L. bicolor triggered ISR was determined by performing caterpillar feeding experiments 

with cyp79b2/b3 double mutant. L. bicolor inoculation did not affect the larval feeding in 

cyp79b2/b3 double mutant and had no significant impact on T. ni weight (p = 0.07, Figure 15; 

Vishwanathan et al., 2020). These results support that L. bicolor depends on the tryptophan 

pathway to prime camalexin to make the plants more robust against herbivory attacks. 
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Figure 15. L. bicolor induced ISR against herbivory is dependent on the tryptophan 

pathway.  

(a) Col-0 leaves from plants inoculated with buffer or L. bicolor and later challenged with or without 

T. ni. Data show camalexin levels in Col-0 systemic leaves collected from 4 independent experiments 

with 8 plants/treatment (n = 4). Two-way ANOVA with Fischer’s LSD test was performed for deter-

mining statistical significance with different letters indicating significant differences between treat-

ments at p < 0.05 and the error bars representing SE. (b) L. bicolor-induced ISR against caterpillar 

feeding is lost in (b) cyp79b2/b3 and (c) cyp81f2 mutants. Data show caterpillar weight gain from n = 

3 experiments for cyp79b2/b3 and n = 4 experiments for cyp81f2 with at least 20 caterpillars/treatment. 

Two-way ANOVA with Tukey’s HSD test was performed for determining statistical significance with 

different letters indicating significant differences between treatments at p < 0.05 and the error bars 

representing SE.  

 

3.3. Chitin perception triggers systemic resistance to herbivory 

3.3.1. L. bicolor induces oxidative burst in Col-0 

Like other plant invading microbes, the beneficial EMF, L. bicolor was expected to 

suppress the PTI responses to successfully colonize Col-0 roots. For determining the local tis-

sue response, entire Col-0 seedlings were treated with L. bicolor as described in chapter 2.9.1. 

On the next day, the seedlings were treated with elicitors (chitin and flg22) and ROS production 

was measured. L. bicolor treatment significantly enhanced ROS generation in Col-0 seedlings 

compared to mock inoculated plants (p < 0.001; Figure 16). L. bicolor treatment did not sup-

press chitin or flg22 triggered ROS burst in the Col-0 seedlings (Figure 16). However, prior L. 

bicolor exposure significantly enhanced ROS production after chitin treatment (p < 0.001; Fig-

ure 16).  

Suppression of elicitor triggered ROS burst was also analyzed in systemic tissues as 

explained in chapter 2.9.2. Leaf disks examined for ROS production showed that there was no 
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significant ROS generation in L. bicolor inoculated plants (p = 0.99; Figure 16). Elicitor treat-

ment generated identical ROS burst in buffer- and L. bicolor-treated Col-0 plants (p < 0.9; 

Figure 16). 

 

 

Figure 16. ROS burst responses in Col-0 seedlings to L. bicolor and elicitor treatments.  

Experiment was performed using (a) entire seedlings (b) systemic leaf disks as described in chapter 2.9. 

Data show averages of RLU values of at least 2 independent experiments (n = 2) with 8 seedlings or 

leaf disks/treatment. Error bars are not included for easier visualization of the plots. Plots with error 

bars are shown in supplementary figure 6.2.7. Statistical analysis was performed as described in chapter 

2.11. Different letters near the legends denote significant differences at p < 0.05. 
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3.3.2. L. bicolor activates MAPK signaling cascade in Col-0 

Phosphorylation of MAPKKK activates the signalling cascade leading to phosphoryla-

tion of MAPKK and finally, MAPK6 and MAPK3, which are the common markers for PTI 

responses. The role of L. bicolor in suppressing or inducing the activation of the MAPK cas-

cade was tested by performing MAPK experiments using entire seedlings as described in chap-

ter 2.8. Fresh inoculation with live L. bicolor resulted in the phosphorylation of MAPK6 and 

MAPK3 (Figure 17; Vishwanathan et al., 2020). As expected, MAMPs present in dead L. bi-

color also activated MAPK cascades leading to phosphorylation of MAPK6, MAPK3 and 

MAPK4 (Figure 17; Vishwanathan et al., 2020). Co-treatment of the seedlings with elicitors 

and live L. bicolor, did not result in suppression of MAPK6, MAPK3 and MAPK4 phosphor-

ylation (Figure 17). Therefore, both live and dead L. bicolor activated MAPK cascades and 

also did not suppress elicitor-induced MAPK phosphorylation in Col-0. 

 

 

Figure 17. L. bicolor activates the MAPK signalling cascade in Col-0.  

(a) Col-0 seedlings grown under axenic conditions, were treated with elicitors and L. bicolor for 15 min. 

Proteins were extracted and phosphorylation of MAPK6, MAPK3 and MAPK4 in the samples were 

identified using α-p44/42-ERK antibody. Experiment was repeated at least 3 times with 4 seed-

lings/treatment. Lanes: [1] marker, [2] empty, [3] buffer, [4] L. bicolor, [5] dead L. bicolor, [6] buffer 

+ chitin, [7] L. bicolor + chitin, [8] dead L. bicolor + chitin, [9] buffer + flg22, [10] L. bicolor + flg22 

and [11] dead L. bicolor + flg22 were observed with substrate exposure time of 240s. (b) Proteins sep-

arated and blotted in PVDF membrane were stained with Ponceau reagent.  
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3.3.3. Live and dead L. bicolor did not trigger GUS expression in Col-0 roots 

Flg22 and chitin can induce the expression of MAMP responsive genes like CYP71A12, 

WRKY11 and MYB51 in the roots of Col-0 (Millet et al., 2010). The transgenic lines with GUS-

responsive promoters for these candidate genes were analyzed for induction or suppression of 

PTI responses by L. bicolor as described in chapter 2.10. As shown in Figure 8, flg22 as the 

positive control induced GUS expression of these genes in the roots of CYP71A12p-GUS seed-

lings (Supplementary Table 6.1.3). Both live and dead L. bicolor treatment did not induce GUS 

expression (Supplementary Table 6.1.3). Ideally, dead L. bicolor solution which is supposed to 

contain a cocktail of fungal MAMPs, should induce GUS expression. Chitin (500 µg/mL) pre-

pared by both autoclaving and grinding chitin oligomers from shrimp shells (chapter 2.3.3) was 

tested for the GUS expression in the reporter line. Contrary to Millet et al., 2010, even chitin 

treatment did not show GUS staining in reporter lines (Supplementary Table 6.1.3). The GUS 

expression analyses of MAMP responsive reporter lines did not respond to L. bicolor or dead 

L. bicolor or chitin.  

 

3.3.4. L. bicolor does not penetrate Col-0 roots 

To check L. bicolor can penetrate the non-host roots, Col-0 seedlings were grown and 

inoculated with L. bicolor as explained in chapter 2.7. When the seedlings were 2 weeks old, 

roots were harvested and stained with LTB solution (chapter 2.7). When visualized under mi-

croscope, there was no penetration of L. bicolor inside the Col-0 roots (Figure 18). The hyphae 

of L. bicolor were observed to be around but not infiltrating inside the plant roots. Therefore, 

L. bicolor is imparting systemic defense in Col-0 without penetrating the roots. 
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Figure 18. Lactophenol trypan blue staining of Col-0 roots without (a) and with L. bi-

color (b).  

L. bicolor colonies were inoculated on Col-0 roots. The roots were harvested and stained with Lacto-

phenol trypan blue solution. The staining shows no visible penetration of L. bicolor into Col-0 roots. n 

= 2 experiments with 5 Col-0 roots/treatment.  

 

3.3.5. Perception of chitin from L. bicolor triggers systemic resistance against herbivory 

Since L. bicolor induces PTI responses instead of suppressing them, MAMPs from L. 

bicolor are probably triggering ISR. To test this hypothesis, heat-killed L. bicolor was inocu-

lated on Col-0 roots as mentioned in chapter 2.3.1.1. The plants were later challenged with T. 

ni as described before (chapter 2.4.1). Like live L. bicolor, dead L. bicolor treatment signifi-

cantly reduced caterpillar weight gain by 35%, compared to the control (p < 0.0001; Figure 19; 

Vishwanathan et al., 2020). This shows that MAMPs from L. bicolor can also induce systemic 

resistance. 

The majorly studied MAMP from fungal cell walls is chitin. Chitin was chosen as the 

primary candidate for checking the role of fungal MAMPs in ISR. Chitin solution was prepared 

and pipetted onto the roots of Col-0 as explained in chapter 2.3.3. When the larvae were 

weighed after 7 days of feeding, it was observed that chitin treatment also significantly reduced 

T. ni weight gain by 38% (p < 0.0001; Figure 19; Vishwanathan et al., 2020). These data show 

that chitin can trigger systemic protection against herbivores in non-hosts. T. ni feeding exper-

iments were also performed by inoculating Col-0 with another EMF, P. involutus. Though an 

ISR effect by the EMF is visible, more independent experiments are necessary to confirm the 

statistical significance (Supplementary figure 6.2.9). 
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If chitin perception is triggering the ISR in Col-0, then the chitin receptor, should also 

be involved in this ISR. Caterpillar feeding experiment was performed with cerk1-2 mutant 

treated with live L. bicolor. The systemic protection phenotype against T. ni by L. bicolor treat-

ment, which was observed in Col-0 was lost in the chitin receptor mutant cerk1-2. L. bicolor 

inoculation had no effect on the T. ni caterpillars feeding on cerk1-2 plants (p = 0.92; Figure 

19; Vishwanathan et al., 2020). Hence, chitin from L. bicolor was perceived by the CERK1 

receptor kinase domain leading to the activation of ISR against T. ni caterpillars in the systemic 

leaves. 

To further characterize the role of other receptor domains in L. bicolor induced ISR, 

caterpillar feeding experiments were performed in flg22 co-receptor mutants, bak1-5 (impaired 

in immunity signalling) and bak1-4 (impaired in immunity and BR signalling). L. bicolor in-

oculation on both bak1 mutant lines did not result in reduced weight gain of T. ni larvae (p = 

0.82 for bak1-4 and p = 0.15 for bak1-5; Supplementary figure 6.2.10). The data indicates that 

the L. bicolor triggered negative effect on caterpillar growth is also dependent on flg22 co-

receptors. 

 

Figure 19. Chitin triggers systemic resistance in Col-0 against T. ni.  

(a) Col-0 roots were inoculated with chitin, live or heat-killed L. bicolor and leaves were fed by T. ni. 

Data show that L. bicolor, heat-killed L. bicolor and chitin negatively affect T. ni weight gain. n = 4 

experiments with at least 20 caterpillars/treatment (Vishwanathan et al., 2020). ANOVA was performed 

for determining statistical significance. (b) Chitin receptor mutant, cerk1-2 roots were inoculated with 

L. bicolor and leaves were fed by T. ni larvae. Data show that ISR triggered by L. bicolor is dependent 

on CERK1. n = 3 experiments with at least 20 caterpillars/treatment (Vishwanathan et al., 2020). Two-

way ANOVA with Tukey’s HSD test was performed for determining statistical significance with dif-

ferent letters indicating significant differences between treatments at p < 0.05 and the error bars repre-

senting SE.  
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3.4. Chitin triggers ISR against herbivory at the cost of susceptibility to 

biotrophic pathogen 

3.4.1. Chitin and L. bicolor trigger ISS against Pst DC3000 

Crosstalk between SA and JA pathways leading to antagonistic responses in biotic 

stress responses has been well documented (Leon-Reyes et al., 2010; Liu et al., 2016; Spoel et 

al., 2003; Van der Does et al., 2013). Chitin from L. bicolor depends on JA and SA signalling 

for negatively affecting T. ni weight (Figure 12). The SA-signalling transcriptional co-re-

pressors, NPR3 and NPR4 significantly promoted T. ni larvae weight gain under L. bicolor 

treatment (Figure 13). These results hint to a stronger inhibition of SA responses by chitin. 

Therefore, it was hypothesized that L. bicolor or chitin treatment should make Col-0 plants 

more susceptible against the leaf foliar pathogen, Pst DC3000. To test this, Col-0 plants were 

treated with L. bicolor and challenged with Pst DC3000 as described in chapter 2.4.2.1. L. 

bicolor or chitin treatment in the roots resulted in significantly more Pst DC3000 CFU com-

pared to the control (p < 0.05; Figure 20; Vishwanathan et al., 2020). This shows that chitin 

induces ISS against Pst DC3000 at the expense of triggering ISR against T. ni. 

 

Figure 20. Chitin induces ISS against P. syringae DC3000.  

(a) Pst DC3000 infected leaves from buffer and L. bicolor inoculated Col-0 plants. (b) Col-0 roots were 

inoculated with buffer, both live and heat-killed L. bicolor or chitin and leaves were infected with Pst 

DC3000. Chitin, live and heat-killed L. bicolor treatment in the roots increases colony count of Pst 

DC3000 in the systemic leaves.  Data show log10 (Pst DC3000 (CFU/cm2)) from n = 4 experiments 

with 12 leaves/treatment (Vishwanathan et al., 2020). Two-way ANOVA with Tukey’s HSD test was 

performed for determining statistical significance with different letters indicating significant differences 

between treatments at p < 0.05 and the error bars representing SE.  
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3.4.2. L. bicolor treatment did not influence ISR against Noco2 

To elucidate the function of L. bicolor in defending Col-0 against biotrophic pathogen, the 

system was also challenged with Noco2 as described in chapter 2.4.2.2. The experiment was 

performed four times in an independent manner using pots filled with peat-soil substrate. L. 

bicolor was inoculated to the roots of Col-0 and the shoots were later infected with Noco2.  The 

oomycete spores were counted after 5 days to determine the degree of infection. However, no 

significant difference was observed in Noco2 virulence between the control and L. bicolor 

treated seedlings (Supplementary figure 6.2.11).  
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4. DISCUSSION 

4.1. Hosts and non-hosts in ISR: a paradox? 

Even before 460 million years ago, symbiotic associations existed in the ecosystem 

(Martin et al., 2016). The origin of land plants led to the evolution of microbial communities 

for adaptive colonization (Martin et al., 2016). The diversification of symbioses altered the 

genetic architecture of both partners by gaining and losing certain traits. For instance, ectomy-

corrhizal clades emerged from saprotrophic ancestors by losing their ability to degrade plant 

cell walls (Bonfante, 2018). Adaptation of plants to diverse environmental conditions, also 

resulted in a few plant families to lose the common symbiotic signalling pathway for respond-

ing to symbiotic interactions with rhizobacteria and mycorrhizal fungi (Cope et al., 2019; 

Ehrhardt et al., 1996; Garcia et al., 2015). This paved the way for the plants to be closely 

associated with a certain class of microbes and also be characterized as host and non-hosts 

depending on the ability to engage in mutual symbiosis with a distinct microbe. Since majority 

of the land plants undergo symbiosis, secondary growth promotion and protection of a plant 

are majorly attributed to its interaction in the mycorrhizosphere (Giovannini et al., 2020). Com-

patibility of the host and the beneficial microbe was considered important for advantageous 

physiological traits of a plant including ISR. To test whether symbiosis is a requisite for ISR, 

Col-0-L. bicolor system was challenged with T. ni. The negative effect of this interaction on 

caterpillar weight gain showed that beneficial microbes can exert ISR phenotype independent 

of host adaptability (Figure 9). 

 

4.2. MAMP-triggered systemic immunity 

Plant roots have evolved to differentiate between beneficial microbes and pathogens in 

the rhizosphere. Nod factors from beneficial rhizobacteria is a key component in facilitating 

the molecular crosstalk during the initial stages of colonization (Stacey et al., 2014). Nod fac-

tors are the acylated form of chito-oligosaccharides (CO) called LCOs (Stacey et al., 2014). 

LCOs are also found in AMF and EMF as Myc factors and they too function as signalling 

molecules for mycorrhization of the host roots. Perception of Nod or Myc factors or LCOs is 
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a crucial component of the symbiotic toolkit as it facilitates differentiating mutualists from 

pathogens by the plant species (Fernández et al., 2019). Recognition of mutualists prevents the 

hosts from mounting basal PTI responses as observed with Pseudomonas spp. (Millet et al., 

2010; Yu et al., 2019). However, L. bicolor did not suppress but rather activated MAPK cas-

cades and oxidative burst in Col-0 (Figure 16 and 17).  

The role of MAMPs/PAMPs in triggering local defense responses have been well char-

acterized (Daudi et al., 2012; Millet et al., 2010; S. Wu et al., 2014). The overlapping genetic 

responses of Col-0 for WCS417r and MAMPs treatment suggests that conserved microbial 

patterns can also influence systemic defense (Stringlis, Proietti, et al., 2018). Lipopolysaccha-

rides from the cell wall of ISR inducing P. simiae WCS417r can protect Col-0 foliar tissues 

against Pst DC3000 (van Peer & Schippers, 1992). But the influence of other MAMPs/PAMPs 

and the mechanism by which its perception in the roots can activate systemic immunity has not 

yet been clearly explained in detail. Chitin constitutes 15% of the fungal cell wall components, 

while the major cell wall component is β-1,3-glucan (Fesel & Zuccaro, 2016). Chitin is the 

most well characterized fungal cell wall MAMP/PAMP and its receptor kinase, CERK1 was 

also identified in Col-0 (Erwig et al., 2017; Lajunen et al., 2011; Miya et al., 2007). In addition 

to its role of chitin perception for triggering local PTI, AMF symbiosis in rice is also dependent 

on CERK1 (X. Zhang et al., 2015). Consistent with the speculation about MAMPs from L. 

bicolor in triggering ISR, chitin negatively affected T. ni larvae feeding and the ISR signaling 

pathway by the EMF was also dependent on CERK1 (Figure 19). Since chitin from L. bicolor 

is triggering ISR via CERK1, it was expected that L. bicolor treatment does not activate MAPK 

cascades in cerk1-2 mutant. In contrast, the EMF treatment phosphorylated MAPK markers in 

cerk1-2 seedlings (Supplementary figure 6.2.8). The three phosphorylated MAPKs are impli-

cated in pathogen triggered resistance where MAPK6 is vital for elicitor-induced defense re-

sponse, MAPK3 is involved in basal resistance against pathogens and MAPK4 negatively reg-

ulates ROS and SA accumulation (Galletti et al., 2011). Probably, other MAMPs present in the 

cell wall of L. bicolor can activate MAPK cascades and trigger ISR independent of CERK1. 

Supporting this hypothesis, T. ni feeding on flagellin co-receptor mutants, bak1-4 and bak1-5 

inoculated with L. bicolor did not show a significant difference compared to mock inoculated 

plants (Supplementary figure 6.2.10). Therefore, other MAMPs in L. bicolor can also ISR re-

sponses against herbivory, independent of CERK1. 

Unlike the single interaction system used in this research, plants are associated with a 

diverse microbial community in the natural environment. Constant local and systemic defense 
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activation after chitin perception in the rhizosphere will exert immense pressure on plant fit-

ness. However, plants have developed mechanisms like priming to circumvent and balance 

growth-defense tradeoffs (Conrath et al., 1989; Martinez-Medina et al., 2016; Stringlis, Yu, et 

al., 2018). Also, plant-microbe and microbe-microbe interactions reduce pathogenic microbial 

load and restructure the mycorrhizosphere (Durán et al., 2018; Hacquard et al., 2017). In this 

way, plants have developed methods to control the microbial load it is exposed to in the soil. 

During this co-evolution, plants have also evolved receptors for recognizing beneficial symbi-

onts (Stacey et al., 2014). Hence, it is rationale that plants may have also adapted to a specific 

microbial assemblage and dosage of MAMPs, which sets a threshold stimulus for activating 

ISR or SAR. 

 

4.3. ISR seems to be a conserved mechanism of plants 

JA/Et pathway is the major signalling pathway for ISR by most of the beneficial mi-

crobes (Martínez-Medina et al., 2013; Pangesti et al., 2016; Pieterse et al., 1998, 2014). L. 

bicolor-triggered ISR dependence on JA-Ile receptor, COI1 and SA biosynthesis, SID2 was 

also observed with the beneficial rhizobacteria P. simiae WCS417r (Figure 12) (Haney et al., 

2017; Oosten et al., 2008; Pozo et al., 2008; Verhagen et al., 2004; Zamioudis et al., 2013). 

SID2 encodes an isochorismate synthase which is required for generating the SA precursor 

isochorismate upon pathogen infection (Wang et al., 2011; Wildermuth et al., 2001) and it 

restricts the colonization of microbes in the roots  

The antagonistic feature of SA on JA and vice versa has been well documented in biotic 

stress response (Kazan & Manners, 2008; Leon-Reyes et al., 2010; Millet et al., 2010; Pieterse 

et al., 2012; Vlot et al., 2009). The crosstalk between SA and JA is mediated endogenously by 

NPR1 and also by exogenous application of ethylene (Leon-reyes et al., 2009; Spoel et al., 

2003). The crosstalk was evident in the T. ni feeding experiments with SA, JA mutants and 

also in L. bicolor-triggered ISS against Pst DC3000 (Figure 12 and Figure 20). (Martínez-

Medina et al., 2017). NPR1 is the master regulator of SA mediated SAR pathway and is also 

involved in WCS417r triggered ISR pathway (Haney et al., 2017; Pieterse et al., 1998; Pozo et 

al., 2008; Verhagen et al., 2004; Zamioudis et al., 2013). However, the ISR signaling pathway 

triggered by L. bicolor looks partially dependent on or independent of NPR1 (Figure 12). NPR3 

and NPR4 are constitutively expressed in the plant to monitor and control the levels of SA by 
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suppressing NPR1-activated pathogenesis-related gene expression (Ding et al., 2018). In addi-

tion to relying on JA signaling, L. bicolor imparts ISR against T. ni by depending on the SA 

receptors and negative regulators, NPR3 and NPR4 (Figure 13). Rather than depending on 

NPR1, the SA-JA tradeoffs are modulated by L. bicolor for ISR against T. ni and ISS against 

Pst DC3000 by involving the SA negative regulators.   

Poplar hosts upon perception of the volatiles from L. bicolor, reprogram its rooting 

mechanism by increasing lateral root density (Ditengou et al., 2015). This pre-colonization 

response by L. bicolor was also observed with the non-host Col-0 (Ditengou et al., 2015). Mi-

crobial or volatile perception activates iron deficiency responses necessary for triggering ISR 

(Martínez-Medina, Van Wees, et al., 2017; Zamioudis et al., 2014). Iron deficiency differen-

tially regulates the transcriptome profile in the roots. Among all the differentially regulated 

genes, FIT, bHLH38/39, FRO2, IRT1, BGLU42, MYB72, MYB10, F6’H1 are the genes neces-

sary for iron homeostasis (Romera et al., 2019; Zamioudis et al., 2013). Of which, MYB72 was 

also identified to be necessary but not sufficient for ISR triggered by beneficial micro-organ-

isms (Martínez-Medina et al., 2017; Van Der Ent et al., 2008). The iron stress response regu-

lator MYB72 is also involved in L. bicolor- or chitin-triggered ISR (Figure 14). Hence, multiple 

stimuli from the invading beneficial microbe can exert ISR in plants. But it can be a possibility 

that the ISR signalling pathways triggered by volatiles or MAMPs/PAMPs or symbiotic mutu-

alists could be the same. 

 

4.4. Priming of defenses by L. bicolor 

The primed defense responses are unleashed in a faster and stronger fashion to defend 

the plant against subsequent stresses (Martinez-Medina et al., 2016). Unlike SAR, minimal 

priming effect by beneficial microbes was observed only when challenged with a pathogen or 

herbivore and under controlled in vitro conditions (Haney et al., 2017; Mortel et al., 2012; 

Stringlis et al., 2018; Verhagen et al., 2004). Priming by L. bicolor was investigated with re-

spect of defense gene expression, phytohormones and secondary metabolites.  

Downstream of signalling pathways are defense genes which get transcriptionally acti-

vated upon biotic threats. The marker gene PDF1.2 of the JA-ERF branch is stimulated not just 

against nectrorophic pathogens like Alternaria brassicicola, Botrytis cinerea, and herbivores 

like Mamestra brassicae, but also against the hemi-biotrophic pathogen Pst DC3000 (Leon-
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Reyes et al., 2010; Pangesti et al., 2015; Spoel et al., 2003). Similarly, the expression of VSP2 

from the JA-MYC branch is enhanced when the plant is countered with wounding damage, 

herbivory and also infection by Pst DC3000 (Spoel et al., 2003). SA sensing by NPR1 triggers 

the expression of the encoded PR1 protein which in addition to act against biotrophs, also ex-

hibit limited antifungal properties (Maldonado et al., 2002; Pieterse et al., 1996). PR1 genes 

are expressed via NPR1 even when the plants are exogenously sprayed with functional analogs 

of SA (Hermann et al., 2013). Considering the ISR signaling pathway, the above mentioned 

defense marker genes should have been differentially regulated by L. bicolor treatment. Sample 

collection from a single time point post T. ni feeding and the variance associated with pooling 

samples from soil-grown plants restricted the thesis in identifying the defense gene transcripts 

contributing to ISR. Also, the moderate priming associated with ISR (~2.5 fold) (N. Pangesti 

et al., 2015b), renders it difficult to validate the priming effect in this multi-partite system.  

Accumulation of plant hormones and secondary metabolites also contributes to inhibit 

pathogen infection or pest infestation (Durrant & Dong, 2004). In the case of SAR, SA levels 

are dramatically increased in the local and distal tissue upon pathogen infection (Wang et al., 

2011; Zhang et al., 2010). ISR by beneficial rhizobacteria have not recorded an increase in 

concentration of any specific plant defense hormone (Pieterse et al., 2012). While T. ni had a 

strong effect on JA and its derivatives, L. bicolor treatment like other beneficial microbes, did 

not increase the concentrations of JA, SA, ABA and its derivatives (Figure 11; Supplementary 

figure 6.2.1). However, the analyses dropped a hint about the potential role of indolic glucos-

inolates in the ISR response (Supplementary figure 6.2.4). Glucosinolates constitute the major 

class of secondary metabolites against biotic stress in the Brassicaceae family (Bednarek, 

2012; Ver et al., 2011). Aliphatic glucosinolates derived from methionine have been reported 

to defend the plants against Pseudomonas syringae and the pathogenic oomycete Sclerotonia 

sclerotiorum (Piasecka & Jedrzejczak-Rey, 2015). Indolic glucosinolates synthesized by the 

tryptophan pathway provide the host with broad spectrum resistance against various pathogens 

(Lipka et al., 2005). CYP81F2/PEN2, involved in the formation of indolic glucosinolates, are 

also involved in resistance against many fungal and oomycete pathogens like Verticillum long-

isporum, Botrytis cinerea, Phytophthora brassicae, Plectoshpaerella cucumerina, Blumeria 

graminis f. sp. hordei (Bednarek, 2012; Iven et al., 2012; Lipka et al., 2005; Piasecka & 

Jedrzejczak-Rey, 2015). Camalexin, the most abundant phytoalexin in Arabidopsis, is also syn-

thesized in response to both biotic and abiotic stress (Glawischnig et al., 2004; Ver et al., 2011). 

Colonization of plant roots by beneficial and pathogenic microbes and also phosphorylation of 
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MAPK6/MAPK3 cascade leads to the accumulation of camalexin (Contreras-Cornejo et al., 

2011; Iven et al., 2012; Ren et al., 2008). Similar to priming of camalexin by L. bicolor (Figure 

15), JA/Et signalling triggered by WCS417r modulates camalexin and aliphatic gluosinolates 

synthesis in Col-0 (Pangesti et al., 2016). These reports and observations are therefore empha-

sizing a stronger role of the tryptophan pathway in ISR. 

 

4.5. Conclusions & Outlook 

The research experiments mentioned in this thesis were an effort taken to differentiate 

host and non-host interactions for ISR. The model system developed including A. thaliana, L. 

bicolor, T. ni and Pst DC3000 was beneficial in providing evidence that symbiotic association 

is not necessary for triggering systemic responses. The vast genetic resources available in Ar-

abidopsis thaliana aided in the characterization of ISR signalling pathway triggered by L. bi-

color or chitin. Plant genetic determinants in this ISR mechanism can be elucidated by screen-

ing other important mutants from different metabolite and phytohormone pathways. Charac-

terization of the signalling pathway against Pst DC3000 infection can reveal information about 

the regulation of phytohormone crosstalk during ISR and ISS. A comparative analysis between 

ISR by L. bicolor in non-host Col-0 and the host poplar can clear our thoughts about the biased 

host/non-host classifications reported so far with respect to systemic defenses.  

The scientific findings from this research work also highlights the role of chitin in mod-

ulating systemic defenses. However, the role of BAK1 in ISR also suggests that other MAMPs 

could also be involved in protecting systemic tissues from biotic threats. Testing other MAMPs 

can also help us determine whether induction of systemic immunity is conserved between a 

certain class of MAMPs or all MAMPs. Characterization of different MAMPs/PAMPs and 

their receptors for triggering ISR and ISS against diverse pathogen or insect model systems 

will unravel more information about this unexplored mechanism of plant immunity. Testing 

the potential of MAMPs and PAMPs in triggering ISR with other plant species will validate 

the consistency in this proposed mechanism.  

Damage-associated molecular patterns (DAMPs) are endogenous plant cell wall break-

down products. Like MAMPs and PAMPs, DAMPs are perceived by receptors as danger sig-

nals leading to the activation of defense responses in the local tissue (Choi & Klessig, 2016; 

Ferrari et al., 2013; Mélida et al., 2018; Tanaka et al., 2014). Pathogen invasion, insect feeding 
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and root colonization or penetration by mutualists can trigger DAMPs synthesis and lead to 

perception by the intracellular receptors. Plant roots also secrete antimicrobial secondary me-

tabolites like coumarin in a MYB72-dependent manner, upon colonization by beneficial rhizo-

bacteria (Stringlis et al., 2018). Coumarins have also been reported to be secreted upon treat-

ment of plant roots by chitosan (Conrath et al., 1989).  These metabolites structure the micro-

biome in the rhizosphere by inhibiting pathogen growth without affecting beneficial mutualists 

(Schultheiss et al., 2019; Voges et al., 2019). With the gaining importance about DAMPs and 

our claim that ISR is a conserved mechanism of plants, it will be interesting to test the role of 

DAMPs and coumarin (specifically scopoletin) in triggering ISR in various plant systems.  
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6. APPENDIX 

6.1. Supplementary tables 

Supplementary table 6.1.1. List of defense marker genes and their primer sequences used 

for gene expression analyses (Vishwanathan et al., 2020). 

Candidate 

gene 

Functionality Forward and reverse primers Reference 

EIF4A House-keeping gene 5′-GCAGTCTCTTCGTGCTGACA-3′ and   

5′ TGTCATAGATCTGGTCCTTGAA-3′ 

(Mammarella et al., 2015) 

PR1 SA pathway 5′-ACACCTCACTTTGGCACATC-3′ and 

5′-GAGTGTGGAAAACGCAAAGA-3′ 

(Mammarella et al., 2015) 

PR2 SA pathway 5′-CCTTCTCGGTGATCCATTCT-3′ and 

5′-AGTGTGGAAAACGCAAAGACT-3′ 

(Mammarella et al., 2015) 

GST6 SA pathway 5′-CCATCTTCAAAGGCTGGAAC-3′ and 

5′-TCGAGCTCAAAGATGGTGAA-3’ 

(Mammarella et al., 2015) 

MYC2 JA pathway 5’-AGATAAAACCGCCGGAGAAT-3’ and 

5’-TACCGTTTGCTGGCTTTCTT-3’ 

(Haney et al., 2017) 

VSP1 JA pathway 5′-CTCAAGCCAAACGGATCG-3’and 

5′-TTCCCAACGATGTTGTACCC-3’ 

(Mammarella et al., 2015) 

VSP2 JA pathway 5’-TCAGTGACCGTTGGAAGTTGTG-3’ and 

5’-GTTCGAACCATTAGGCTTCAATATG-3’ 

(N. Pangesti et al., 2015a) 

ERF1 JA/Et pathway 5’-ATTCTTTCTCATCCTCTTCTTCT-3’ and 

5’-CGAATCTCTTATCTCCGCCG-3’ 

(Mao et al., 2016) 

ORA59 JA/Et pathway 5’– AAGGGATAAGAGTGTGGCTTGGGA-3’ and 5’- CTTTCAAA-

GCGAAAGCCGCCTGAT-3’ 

(G.-B. Zhang et al., 2014) 

PR4 JA/Et pathway 5’-GAGAATAGTGGACCAATGCAG-3’ and 

5’-GTAGACCGATCGATATTGACCT-3’ 

(Xue & Yi, 2018) 

PDF1.2 JA/Et pathway 5’-AATGAGCTCTCATGGCTAAGTTTGCTTCC-3’ and  

5’-AATCCATGGAATACACACGATTTAGCACC-3’ 

(Naznin et al., 2014) 

MYB51 MAMP induced signaling 5′-CTTGTGTGTAACTGGATCAA-3’ and 

5′-ACAAATGGTCTGCTATAGCT-3′ 

(Mammarella et al., 2015) 

CYP71A13 MAMP induced signaling 5’-GCCCCGGGATA ATCTTG CT-3’ and 

5’-TGTTGCATAGCATAACAAGGTGA-3’ 

(Lemarié et al., 2015) 
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Supplementary table 6.1.2. Mass transitions and corresponding conditions used for de-

termination of phytohormone and secondary metabolite concentrations in Col-0 leaves 

(Vishwanathan et al., 2020). 

MRM Transitions 

Analyte 
DP [declustering poten-

tial] 

EP 

[entrance potential] 

CE 

[collision energy] Q1 Q3 

137 93 SA -25 -6 -20 

141 97 D4-SA -25 -6 -22 

153 109 2,3-DHBA -25 -9 -18 

160 116 ICA -40 -6.5 -22 

162 58 RA -15 -6 -14 

174 130 IAA -35 -9 -14 

179 135 D5-IAA -35 -9 -14 

207 137 Chorismat-H2O -20 -9 -16 

209 59 JA -30 -4.5 -24 

214 62 D5-JA -35 -8.5 -24 

225 59 11,12-OH-JA -35 -9 -28 

237 165 OPC4 -45 -6 -24 

263 153 ABA -35 -4 -14 

263 165 dinor-oPDA -40 -5 -20 

293 179 D6-ABA -80 -10 -42 

296 170.2 D5-oPDA -65 -4 -28 

299 137 SAG -30 -4 -18 

305 97 12-HSO4-JA -30 -4 -32 

308 116 JA-Val -45 -5 -28 

322 130 JA-Ile/Leu -45 -5 -28 

325 133 D4-JA-Leu -80 -4 -30 

324 116 12OH-JA-Val -45 -10 -30 

338 130 12OH-JA-Ile -45 -10 -30 

352 130 12COOH-JA-Ile -45 -10 -30 

387 59 12-O-Gluc-JA -85 -9 -59 

425 263 ABA-GE -30 -10 -16 

447 97 Glucobrassicin -45 -7 -40 

477 97 4-M-glucobrassicin -55 -5 -38 
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Supplementary table 6.1.3. GUS expression analyses of MAMP reporter lines after treat-

ment with MAMPs, live and heat-killed L. bicolor.  

CYP71A12p-, MYB51p-, WRKY11p-GUS seedlings were treated with flg22, chitin, live and heat-killed 

L. bicolor and later stained with GUS solution. Except flg22, other treatments did not induce defense 

expression in the roots. n = 3 experiments with 12 seedlings/treatment. (+ presence of GUS expression, 

- absence of GUS expression) 

CYP71A12p-, WRKY11p-, MYB51p-GUS GUS expression 

10 mM MgSO4 -  

flg22 + 

Chitin - 

L. bicolor (OD600 = 0.1) - 

L. bicolor (OD600 = 0.1) + flg22 + 

L. bicolor (OD600 = 0.1) + chitin - 

L. bicolor (OD600 = 0.2) - 

L. bicolor (OD600 = 0.2) + flg22 + 

L. bicolor (OD600 = 0.2) + chitin - 

Heat killed L. bicolor (OD600 = 1) - 

Heat killed L. bicolor (OD600 = 1) + flg22 + 

Heat killed L. bicolor (OD600 = 1) + chitin - 
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6.2. Supplementary figures 

 

Supplementary figure 6.2.1. Accumulation of phytohormones in Col-0 leaves in re-

sponse to L. bicolor inoculation and T. ni feeding.  

Phytohormone levels in Col-0 leaves were quantified after root inoculation with/without L. bicolor and 

with/without foliar damage by T. ni. Data show absolute mean or concentrations of phytohormones and 

their derivatives relative to the endogenous concentration in the buffer treated plants. n = 6 experiments 

with 8 plants/treatment. Two-way ANOVA with Fisher’s LSD test was performed for determing statis-

tical significance (** p < 0.01, ns not significant).  
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Supplementary figure 6.2.2. T. ni feeding assay with JA biosynthesis mutant, aos, 

treated with and without L. bicolor.  

aos mutant roots were inoculated with buffer or L. bicolor and leaves were fed by T. ni. Data show 

mean of at-least 20 T. ni larvae/treatment. Two-way ANOVA with Tukey’s HSD test was performed 

for determining statistical significance with different letters indicating significant differences between 

treatments at p < 0.05 and the error bars representing SE. 

 

 

 

Supplementary figure 6.2.3. Influence of L. bicolor treatment and subsequent larval 

feeding on ein2-1 mutant.  

Roots of ethylene signalling mutant, ein2-1 was inoculated with buffer or L. bicolor and leaves were 

fed by T. ni. Data show mean of at-least 20 T. ni larvae/treatment. Two-way ANOVA with Tukey’s 

HSD test was performed for determining statistical significance with different letters indicating signif-

icant differences between treatments at p < 0.05 and the error bars representing SE. 
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Supplementary figure 6.2.4. Non-targeted metabolite analysis of Col-0 leaves in re-

sponse to L. bicolor root inoculation and caterpillar feeding.  

Col-0 roots were inoculated with buffer or L. bicolor and leaves were fed by T. ni larvae. Leaves were 

harvested after 24 hours of T. ni feeding. Metabolome analysis of the samples was performed by Dr. 

Kirstin Feussner (Department of Plant Biochemistry, University of Goettingen). Data show (a) 1D-

SOM representation of 309 feature (p < 0.01) (b) Selected features with tentative identities (obtained 

by data base search with exact mass information). n = 4 experiments with 8 leaves/treatment.   
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Supplementary figure 6.2.5. Effect of L. bicolor treatment on ISR against T. ni in 

camalexin biosynthesis mutant, cyp71a13-1.  

cyp71a13-1 mutant roots were inoculated with buffer or L. bicolor and leaves were fed by T. ni. Data 

show mean of at-least 20 T. ni larvae/treatment. Two-way ANOVA with Tukey’s HSD test was per-

formed for determining statistical significance with different letters indicating significant differences 

between treatments at p < 0.05 and the error bars representing SE. 

 

. 

 

Supplementary figure 6.2.6. Influence of L. bicolor treatment and larval feeding on sec-

ondary metabolite concentrations in Col-0 leaves.  

Leaf samples were harvested from Col-0 plants, inoculated with/without L. bicolor and exposed 

with/without T. ni. Targeted metabolite analysis was performed to quantify the accumulation of sec-

ondary metabolites in the samples as described in chapter 2.6.2. Data show concentrations of (a) 

Raphanusamic acid (RA) (b) Glucobrassicin (c) 4M-Glucobrassicin relative to the endogenous levels 

in buffer treated plants. n = 4 experiments with 8 leaves/treatment. Two-way ANOVA with Tukey’s 

HSD test was performed for determining statistical significance with different letters indicating signif-

icant differences between treatments at p < 0.05 and the error bars representing SE.  
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Supplementary figure 6.2.7. ROS burst responses in Col-0 seedlings to L. bicolor and 

elicitor treatments.  

Experiment was performed using (a) entire seedlings (b) systemic leaf disks as described in chapter 2.9. 

Data show averages of RLU values of at least 2 independent experiments (n = 2) with 8 seedlings or 

leaf disks/treatment. Statistical analysis was performed as described in chapter 2.11 and error bars in-

dicate the standard error. Different letters near the legends denote significant differences at p < 0.05. 
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Supplementary figure 6.2.8. L. bicolor induced MAPK activation in cerk1-2 mutant.  

(a) Phosphorylation of MAPK6, MAPK3 and MAPK4 was analyzed in Col-0 and cerk1-2 entire seed-

lings after treatment with chitin, flg22, live and dead L. bicolor for 15 min. Lanes: [1] marker, [2] empty 

[3] Col-0 + buffer, [4] Col-0 + L. bicolor, [5] Col-0 + dead L. bicolor, [6] Col-0 + chitin, [7] Col-0 + L. 

bicolor + chitin, [8] Col-0 + dead L. bicolor + chitin, [9] Col-0 + flg22, [10] Col-0 + L. bicolor + flg22, 

[11] Col-0 + dead L. bicolor + flg22, [12] cerk1-2 + buffer, [13] cerk1-2 + L. bicolor, [14] cerk1-2 + 

chitin, [15] cerk1-2 + L. bicolor + chitin. n = 2 experiments with 4 seedlings/treatment. (b) Proteins 

separated and blotted in PVDF membrane were stained with Ponceau reagent.  

 

 

Supplementary figure 6.2.9. Effect of Paxillus involutus on ISR against T. ni in Col-0.  

Col-0 roots were inoculated with P. involutus and later challenged with T. ni. Data show means of T. ni 

caterpillar weight gains from two independent experiments (n = 2) with at least 20 caterpillars/treat-

ment. ANOVA was performed to determine statistical significance and different letters indicate signif-

icant differences at p < 0.05. 
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Supplementary figure 6.2.10. L. bicolor-triggered ISR depends on BAK1.  

BAK1 mutants (a) bak1-4 and (b) bak1-5 were root inoculated with buffer or L. bicolor and leaves were 

fed by T. ni. Unlike Col-0, L. bicolor treatment did not negatively influence caterpillar weight gain in 

bak1-4 and bak1-5. n = 2 experiments for bak1-4 and n = 3 experiments for bak1-5 with at least 20 

caterpillars/treatment. Two-way ANOVA with Tukey’s HSD test was performed for determining sta-

tistical significance with different letters indicating significant differences between treatments at p < 

0.05 and the error bars representing SE. 

 

 

Supplementary figure 6.2.11. Challenging Col-0-L. bicolor system with Noco2.  

Col-0 roots were inoculated with buffer or L. bicolor and leaves were infected with Noco2. Data show 

means of Noco2 sporangiospores from n = 4 independent experiments with at least 90 Col-0 seed-

lings/treatment. Student’s t-test was performed to determine statistical significance at p < 0.05.  


