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Abstract

The impact of changing the scale of observation on information dmtifrom forest inventories
is the basis of scale-related research in forest inventory amalysis (FIA). Interactions between
the scale of observation and observed heterogeneity in studigdhlas highlight a dependence
on scale that a ects measurements, estimates, and relatiopstbetween inventory data from
terrestrial and remote sensing surveys. This doctoral redeade nes"scale" as the divisions
of continuous space over which measurements are made, or higesrof discrete units of
study/analysis in space. Therefore, thscale of observation'(also known as support) refers
to that integral of space over which statistics are computed amdebt inventory variables
regionalized.

Given the ubiquitous nature of scale issues, a case study appreas undertaken in
this research (Articles I-1V) with the goal to provide fundantehunderstanding of responses
to the scale of observation for speci c FIA variables. The sedlforest inventory variables
are; forest stand structural heterogeneity, forest cover prdjpm and tree species identities.
Forest cover proportion (or simply forest area) and tree specee traditional and fundamental
forest inventory variables commonly assessed over large agag both terrestrial samples
and remote sensing data whereas, forest stand structurakr@eneity is a contemporary FIA
variable that is increasingly demanded in multi-resourceeimteries to inform management
and conservation e orts as it is linked to biodiversity, proctivity, ecosystem functioning and
productivity, and used as auxiliary data in forest inventor

This research has two overall aims:

1. To improve the understanding of the association between thdescd observation and
observed heterogeneity in inventory of forest stand structuraterogeneity, forest-cover
proportions, and identi cation of tree species from a combinationtefrestrial samples
and remote sensing data.

2. To contribute knowledge to the estimation of scale-dependenténiventory of forest
stand structural heterogeneity, forest-cover proportions, daddnti cation of tree species
from a combination of terrestrial samples and remote sensing data

Di erent scales of observation were considered across the foue sasdies encompassing
individual leaf, crown-part or branch, single-tree crowardst stand, landscape and global levels
of analysis. Terrestrial and remote sensing data sets from aetarof temperate forests in
Germany and France were utilized across case studies. Irs aglsere no inventory data were



available, synthetic data was simulated at di erent scalelsobservation. Heterogeneity in FIA
variable estimates was monitored across scales of observatiog estimators of variance and
associated precision. As too much heterogeneity is hardlyrpreded due to a low signal to noise
ratio, object-based image analysis (OBIA) methods were usethémage heterogeneity in high-
resolution remote sensing data before evaluating scale degrmrwl or scaling across observed
scales. Similarly, ensemble classi cation techniques wagsplied to address methodological
heterogeneity across classi ers in a case study on classi catibtwo physically and spectrally
similar Pinus species. Across case studies, a dependence on the scale of atfiserwas
determined by linking estimates of heterogeneity to their restive scales of observation using
linear regression and a combination of geo-statistics and MonteeCaplproaches. In order to
address scale-dependence, thresholds to scale domains desr éd so as to enable e cient
observation of studied FIA variables and scaling approachesgseg to bridge observations
across scales. For scaling, this research evaluated the pialeaftdi erent regression techniques
to map forest stand structural heterogeneity and tree spegigdl-to-wall from remote sensing
data. In addition, radiative transfer modelling was evaledtin the transfer between leaf and
crown hyperspectra, and a global sampling grid framework progdsee ciently link di erent
stages of survey sampling.

This research shows that the scale of observation a ected aldi#d FIA variables albeit
to varying degrees, conditioned on the spatial structure and aggtien properties of the
assessed FIA variable (i.e. whether the variable is extensntensive or scale-specic) and
the method used in aggregation on support (e.g. mean, variancentigaetc.). The scale
of observation a ected measurements or estimates of the studi@d variables as well as
relationships between spatially structured FIA variabl&ke scale of observation determined
observed heterogeneity in FIA variables, a ected parametdriegal from radiative transfer
models, and a ected variable selection and performance of gisdinking terrestrial and remote
sensing data. On the other hand, this research shows that fgassible to determine domains
of scale dependence within which to e ciently observe the sied FIA variables and to bridge
between scales of observation using various scaling methods.

The ndings of this doctoral research are relevant for the gemainderstanding of scale
issues in FIA. Research in Article I, for example, informsimjation of plot sizes for e cient
inventory and mapping of forest structural heterogeneity, aslivas for the design of natural
resource inventories. Similarly, research in Article Il ppléicable in large area forest (or general
land) cover monitoring from sampling by both visual interpratat of high resolution remote
sensing imagery and terrestrial surveys. This researchsis aseful to determine observation
design for e cient inventory of land cover. Research in Artidlé contributes in many contexts
of remote sensing assisted inventory of forests especially amagement and conservation
planning, pest and diseases control and in the estimation of bi@nikastly, research in Article IV
highlights scale-related e ects in passive optical remote seg®f forests currently understudied
and can ultimately contribute to sensor calibration and mdufeg) approaches.



Zusammenfassung

Der Ein uss von unterschiedlichen Beobachtungsskalen audrmftionen aus Stichprobeinven-
turen ist der Ausgangspunkt fiir skalen-bezogene Forschung inAdinventur.

Wechselwirkungen zwischen den Beobachtungsskalen und derabktdien Heterogenitat
der untersuchten Variablen zeigen eine Skalenabhangigkeicive Messungen, Schatzungen
sowie den Zusammenhang von terrestrischen Inventurdatemh Eernerkundungserhebungen
beein ussen.

Die vorliegende Arbeit de niert Skala als die Unterteilundes kontinuierlichen Raums,
oder Hierarchien von diskreten Einheiten des Studiengeliretdem Messungen oder Anal-
ysen im Raum durchgefihrt werden. Deshalb bezieht sich dieolehtungsskala (auch
als support bezeichnet) auf das Integral des Raumes, Ubes @atistiken berechnet und
Waldinventurvariablen regionalisiert werden.

Wegen der Omniprasenz der Skalenproblematik, wurde in ddregenden Arbeit ein Fallstu-
dienansatz (Fachzeitschriftenbeitrag I-IV) verwende$Ziel der Arbeit ist es das grundlegende
Verstandnis des Ein usses der Beobachtungsskala auf spezt Valdinventurvariablen und let-
ztendlich das generelle Verstandnis von Skalenproblemaiiketer Waldinventur zu verbessern.
Die betrachten Zielgroyen sind die Heterogenitét der Bestastiestur, die Wald ache, sowie
die Baumarten bestimmung. Waldbedeckungsgrad (Wald achefliBaumarten bestimmung
sind grundlegende Waldinventurvariable, die tblicherwéiser groye Gebiete durch terrestrische
Stichprobenpunkte oder Fernerkundungsdaten aufgenommen ever®ie Heterogenitat der
Bestandesstruktur dagegen ist eine neuere Waldinventimzée, die vermehrt in Inventuren
gefragt ist um Bewirtschaftungs- und Umweltschutzmaynahmenunterstitzen.

Die vorliegende Arbeit hat zwei Ubergreifende Ziele:

1. die Erforschung der Beziehung zwischen Beobachtungsskaldboenbachteter Heterogen-
itat der Bestandesstruktur, des Deckungsgrades und der Batenbestimmung durch
eine Kombination aus terrestrischen Stichprobenpunkten uednerkundungsdaten und

2. die Einfihrung von Methoden zur Schéatzung von Skalenabhandidieider Erfassung
der Strukturheterogenitat, des Deckungsgradess und der Baten@iestimmung durch
eine Kombination aus terrestrischen Stichpunkten und Feknedungsdaten.

In den vier Fallstudien wurden unterschiedliche Beobachaakalen berlicksichtigt. Sie um-
fassen Analyseebenen von einzelnen Blattern, Kronenteitksr Asten, einzelnen Baumkronen,
Waldbestanden, sowie die Landschafts- und GlobalebeneeirFalistudien wurden terrestrische



Inventurdaten und Fernerkundungsdaten verschiedener Wé&litkte der gemayigten Zone in
Deutschland und Frankreich verwendet. In den Féllen in dekeine Inventurdaten vorhanden
waren, wurden die Daten fir verschiedene Beobachtungsebsineuliert. Die Heterogenitét der
Schatzungen der Waldinventurvariablen wurde auf versameth Beobachtungsskalen durch
Varianzschétzer und entsprechende Genauigkeitsmaye teahgzt. Da zu hohe Heterogen-
itat aufgrund eines geringen Signal-zu-Rausch-Verhaltnigsesn interpretierbar ist, wurden
vor der Evaluierung der Skalenabhangigkeit oder der Skaligzwischen Beobachtungsskalen,
objekt-basierte Bildanalysemethoden verwendet um die Hegenitét in hochaufgeldsten Fern-
erkundungsdaten zu kontrollieren. Ensemble-Classi cationthbelen wurden in einer Fallstudie
zur Klassi kation von zwei physikalisch und spektral @hnéahKiefernarten angewendet, um die
methodische Heterogenitat zwischen Klassi zierungsverggzu verringern. In allen Fallstudien
wurde die Skalenabhangigkeit durch den Zusammenhang derrbigéaitatsschatzwerte und
ihrer jeweiligen Beobachtungsskala bestimmt. Hierfur wurdieeare Regressionen und eine
Kombination von Geostatistischen und Monte-Carlo-Verfahren argyadet. Zur Erforschung
der Skalenabhangigkeit wurden Grenzwerte der Skalenberaadnti ziert, um eine e ziente
Beobachtung der untersuchten Waldinventurvariablen undil8k-Verfahren zu ermdglichen.
Diese Forschungsarbeit evaluiert das Potential von versared Regressionsmethoden zur
Kartierung der Heterogenita der Bestandesstruktur und deruBearten mithilfe von Fern-
erkundungsdaten. Zudem wurde die Strahlungstransfermaatelhg evaluiert um zwischen
der hyperspektralen Ruckstrahlung des Blatts und der Kroneskalieren und ein globales
Stichproben-Bezugssystem entwickelt um e zient verschiedePhasen der Stichprobenerhe-
bung zu verbinden.

Diese Forschungsarbeit zeigt, dass die Beobachtungsskalaiatggsuchten Waldinventur-
variablen beein usst, wenngleich in unterschiedlichem mag. Dieses hangt von den Eigen-
schaften der raumlichen Struktur, der Aggregation der geschétiztvValdinventurvariable (z.B.
extensive, intensive oder skalen-spezi sche Variable)l dier unterstlitzenden Aggregation-
smethode (z.B. Mittelwert, Varianz, Quantil, etc.) ab. Die édbachtungsskala beein usste
Messungen oder Schéatzungen der untersuchten Waldinventialvlen ebenso wie das Ver-
haltnis zwischen raumlich strukturierten Waldinventuriagblen. Die Beobachtungsskala bes-
timmte die beobachtete Heterogenitat der Waldinventurvatiedn beein usste die Parameter
der Strahlungstransfermodelle, sowie die Variablenauswal die Modellanpassung von ter-
restrischen Inventurdaten und Fernerkundungserhebungéchtsidestotrotz zeigt diese Forschu-
ngsarbeit, dass es mdglich ist Bereiche der Skalenabhangigkeliestimmen in denen die
erforschten Waldinventurvariablen e zient beobachtet uriBieobachtungsskalen durch die Ver-
wendung verschiedener Methoden verbunden werden kdnnen.

Die Ergebnisse dieser Doktorarbeit sind hinsichtlich des gl Verstandnisses von
Skalenproblematiken in der Waldinventur relevant. Der Faeitschriftenbeitrag | ist fur die
Optimierung der Stichproben dchengréye fir eine e ziente lemtur und Kartierung der Het-
erogenitat der Waldstruktur, sowie fir das Design von Inventuratirlicher Ressourcen rel-
evant. Die Forschung aus Fachzeitschriftenbeitrag Il igti lgroy &chigem Monitoring der
Waldbedeckung bzw. generell der Bodenbedeckung, durch @titien aus visuell interpretierten



hochaufgelésten Fernerkundungsbildern als auch terresteiscAufnahmen, anwendbar. Der
Ansatz kann auch zur Optimierung des Beobachtungsdesignsengér Inventuren von Land-
nutzungsklassen angewendet werden. Fachzeitschrifterdgeit| ist fur viele Bereiche der fern-
erkundungsunterstitzten Waldinventur, insbesondere fumwBeschaftungs- und Naturschutz-
planung, Schéadlings- und Krankheitsbekampfung sowie died&thng von Biomasse relevant.
Die Ergebnisse des Fachzeitschriftenbeitrags IV heben dikeskezogenen E ekte der passiven
optischen Fernerkundung von Waldern hervor, welche bis jetssenschaftlich vernachlassigt
wurden und kénnen letztendlich zur Sensor-Kalibrierung wadModellierungsansatzen beitra-
gen.
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Chapter 1

Introduction

1.1 Scale in forest inventory and analysis

The core of forest inventory is to enumerate a population of tregsl associated variables
over a speci ed areagcott and Gove2002. A census is almost always impractical and thus
forest inventory requires @measuring tool; or "scale" (Marceau and Hay1999, through
which trees and associated variables are observed, enuettrand inference made on the
population characteristics. Aggregation (spatial or otherwisg)most commonly necessary to
create meaningful units for mensuration and analysgofway and Young2002. The units (or
support) represent that integral of space over which statistare computed and forest inventory
variables regionalizedalenovsky et al.2007). They are essentially the measurement/sample
scale, or measurement/sample unit (e.g. intervals, areasunws etc.) for data {Wu and Lj
2009 collected in forest inventory and analysis (FIA). The un{sr support) are what | refer
to here as the'scale of observation"

The general meaning of scale however, is not constrained to tladesof observation but
includes other notions. There is a scale of operation/action refggrio the level at which an
observed process operates, is supposed to operate, or is besteddMarceau and Hay1999
Malenovsky et al.2007); a cartographic/map scale referring to the ratio of the map disice
to the corresponding distance on the ground; a modelling scakedieing the scale of model
building (i.e. the support of model inputs) vis-a-vis modeadrtvation/application; a geographic
scale representing the coverage of pattern or analysis; and &ypsetale in reference to the
levels of decision making or policy implementatioVy§ and Li 2009 Marceau and Hay1999
Malenovsky et al.2007). Various other notions of scale may exist since the term is widelgd,
however, of the so far listed, the scale of observation is the mggtagent in FIA assisted by
remote sensing.

The scale of observation plays a very important role in FIA, egdbcin de nition of a
forest (Kleinn, 2001 Magdon et al, 2014), in estimation of forest areaNlagdon and Kleinn
2013 Fehrmann et al. 2019, in estimation of forest edge lengthK(leinn et al, 2011J), in
selection of samplesQzaplewski2003 Fehrmann et al. 2019, in measurement of trees, in
building of models to link eld to remote sensing dat&(kunda et al, 2019 for example), as



2 1. Introduction

well as, in inference on tree populationglégnussen et al.2016 McRoberts et al. 2016 Puliti

et al., 2018 Mauro et al, 2017. The integration of remote sensing into contemporary forest
inventories extends the role of the scale of observation in FIAnude, spectral, temporal,
directional, polarization, and radiometric dimensions to sc@léu and Li 2009 that together
with terrestrial observation design, in uence the precision dAvariables. In fact, understanding
the impact of changing the scale of observation on information dadifrom forest inventories,
forms the basis of scale-related research in FIA.

"Scale" primarily relates to the divisions of continuous space over whigasurements are
made, or to the hierarchies of discrete units of study/analyisisspace Wiens 1989 Levin
1992 Marceau and Hay1999 Schneider 2001, Malenovsky et al.2007 Gunton et al, 2014
Sandel 2015. This basic de nition of scale (Figure 1.1) su ces in all notions otale (i.e.
scale of observation, action/operation, modelling, policy, geographitd cartographic), albeit
re-projected into their respective spaces of conception or meswent. The core concept
of scale is illustrated in Figure 1.1 according @Gunton et al. (2014 in the spatial context.
Fundamentally, spatial scale is characterized by the aresugiport (commonly referred to in FIA
in terms of resolution, pixel size, plot size), the extent, ancthierarchies of discrete units of
study/analysis (Figure 1.1). As previously mentioned, the scalelsdervation in contemporary
FIA assisted by remote sensing includes spatial, specteahporal, directional, polarization and
radiometric dimensions. This thesis work focuses on the "spacale of observation” and will
refer to it simply as "scale of observation" in the succeedingt.tdable 1.1 illustrates how the
core meaning of the scale of observation is similar across di edémensions.

Figure 1.1: The basic concept of scale. The resolution/pixel, ploesand the extent are illustrated for a

simple case of contiguous coverage. Scale as a "level" is illetraith discrete, spatially-nested units

that can also be looked at as "support”. A simple illustration sEmpling across space with clusters of
points and xed area circular plots is integrated. This scheigats adapted afteiGunton et al.(2014).

For the reader unfamiliar with all the dimensions to scale ofefvation in remote sensing
(Table 1.1), the spectral dimension refers to the volume of supmaer which spectrometric
measurement is made. In a volume, the support considers masea ttvo dimensional space
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Table 1.1: De nitions of resolution and extent in the spatial, sped, temporal, directional, and ra-
diometric dimensions of the scale of observation as encountereliihe context of remote sensing
assisted inventory of forests.

Resolution

Spatial Smallest observable unit in space or the pixel of a remotely sensed
image or plot size in a sample-based study (Figure 11)

Spectral Smallest unit of distinction among spectral di erences in a speetl
sample (Figure 1.2).

Temporal Shortest time required to combine re ected energy into an imag
on the CCD array elemenf.

Directional Smallest angle of distinction among angular spectral re ectars®

Radiometric  Precision or sensor sensitivity to magnitudes of egg.

Extent

Spatial Total area encompassed by observations or analysis (Fed.1).
Spectral Range of wavelengths included in the spectral sample (Figur)L
Temporal Time between the rst and last observation at a given kation.
Directional Range of viewing directions.

Radiometric Range of values stored in bits.

aBy pixel re-sampling, the resolution of data representation cadre di erent from the resolution of measure-
ment.

bTemporal resolution was rede ned byMalenovsky et al.(2007) in order to make de nitions across dimensions
of the scale of observation coherent. Temporal resolution isramonly de ned as the sensor revisit rate at a
given geographic location - see for exampléhorram et al. (2012). However, the sensor revisit rate at a given
geographic location is in the strictest sense the temporal samgiinterval.

®The directional resolution is determined by the instantanesueld of view (IFOV), the size of the CCD
array, tilt, motion speed, and altitude of the sensorNlalenovsky et al, 2007).

described in Figure 1.1 to include spectra (i.e. wavelength aodesponding re ectances or
transmitances) in de ning space over which a spectral measgnt is made Malenovsky
et al,, 2007, see also Figure 1.2). Similarly, the temporal dimension dedth & volume of
support considering a combination of space, spectra, and time egéch measurement is made.
Directional scale, on the other hand, deals with the strong dii@tal behaviour of re ectances
reaching the sensor element as a result of the multi-angulagativity of the earth's surface and
scattering by atmospheric particles and gas€osjen et al.2018. It relies on bi-directional
re ectance distribution functions determined by sun-objesgnsor geometryW/u and Lj 2009
Malenovsky et al.2007 and optical properties of the observed objedélenovsky et al.
2007. Therefore, it combines space, spectra, time, and the soligla of the sensor in de ning
the support. Similar to the directional dimension for passiMgtical sensors, the polarization
dimension to support considers the solid angle or polarizatioedaion of SAR data on top
of space, signal and time. And lastly, the radiometric dimens®m@nalogous to the scale of a
diameter tape or caliper used in DBH measurements, and amrsithe translation of received
energy at the sensor element into image colours and thereforésagectly with accuracy in the
units of measurement. Even though the dimensions to the scale afmasion in remote sensing
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FWHM Sampling interval
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Figure 1.2: The basic concept of spectral scale. The spectral uéisol is equivalent to the Full-Width-
Half-Minimum (FWHM). The extent= max{ min,the di erence between the maximum and minimum
wavelength. Notice that the spectral sampling interval is @péndent of the spectral resolution (FWHM).
There is possible overlap between response functions of congeautivelength bands among consecutive
spectral sampling intervals. The schematic is adapted aftalenovsky et al(2007).

are often described independently, it is clear that the saditmensions are mutually inclusive
as sensor systems are integrated and therefore the volume gdf@tifor any observation scale
simultaneously relies on components from other dimensions.

On the other hand, the term scale is also used to mean a level nmeearchy of analysis
(Gunton et al, 2014 Figure 1.1). This scale de nition holds for FIA supported by rerasensing
as well as traditional terrestrial sampling schemes withpexs to the observation level vis-a-vis
the level of inference. While observations are made at poing, lor plot levels, inference is made
for regions larger than the observed areas. Multi-phase and rsttge sampling schemeKdhl
et al, 2006 Chapter 3), for example, and more recently hybridl¢Roberts et al, 2016 and
hierarchical estimation approacheR\{liti et al., 2018, underpin the application of hierarchical
scales of analysis in forest inventories.

1.2 Heterogeneity

The scale of observation and heterogeneity interact very clodady it is impossible to refer
one without reference to the othefHeterogeneity" primarily describes variability, complexity,
or diversity in structure, composition, and functionih@f any system in space-timeS¢ein and
Kreft, 2015. Heterogeneity is inherent in forest ecosystems and changesdperties relative to
the scale of observation and the variable (or aggregation propedfefe variable) in question.
Therefore, one needs scale to de ne heterogeneitg\in 1992, and properties of the observed
variable must be known a priori to achieve reasonable aggregdtisean, variance, etc.) on
support.

There are generally three categories of variables with respeaggregation properties;
(1) variables with extensive properties - also termé&ktensive variables'(e.g. number of

Iustructure” is the spatial-temporal arrangement of components of the egystem,"composition”, the spatial-
temporal identity and variety of ecosystem components, aritlinction", the underlying stochastic or deterministic
processes controlling realizations or states of population$ matural systems in space-time\(albueng 2015).
FIA seeks to enumeratéstructure” and "composition" whereas Ecology focuses on understanditfginction" .
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trees), whose quantities can be proportionally/simply summextoss extents, (2) variables
with intensive properties - also calléahtensive variables'(e.g. tree densities), whose quantities
are meaningless when simply summed across extents becaugartheverages or ratios, and
(3) variables that may vary with extent but not proportional to #.g. species richness - such
variables are also termédcale-speci ¢ variables'The distinction of variables by their properties
is essential in characterization of heterogeneiunton et al, 2014 and its dependence on
the scale of observation. In fact, it is not correct to ask, for exagle, whether a particular
measurement is dependent on the scale of observation without sp&eifying how we intend
to aggregate it on support$ande] 2015. In homogeneous systems, intensive variables remain
constant across space or time (they afscale invariant’), while extensive variables change
linearly across space or time. For the same examples in hetagmes systems, the opposite
is observed. However, extensive variables in a heterogenestensynay exhibit domains of
homogeneity related to a particular scale or scales of observatishen the spatial extent is
large enough relative to the resolution of heterogeneity. In factding this threshold between
heterogeneity and homogeneity or simply put 'managing heteroggheta key goal of data
preparation in remote sensing assisted FIA; since too muclaldity can hardly be interpreted.
For this reason, research on scale-dependence has been degeBpale-dependence research
seeks to address that trade o between detail (or heterogengifighin a group) and system
predictability (Levin 1992. Similarly, in the context of sampling studies in forest imtery, the
balance between cost, between- and within-plot heterogeneitd precision of estimation is
the basis of most decisions on optimal observation designs.

1.3 Scale dependence

The recognition of interactions between the scale of observation hetérogeneity highlights
a dependence on scale that, when ignored, may a ect both measeargs and relationships
between variables in FIA. Scale dependence primarily stéora the modi able areal unit
problem MAUP QOpenshaw 1977. The integral of support, especially the way borders are
drawn - i.e. how large the units are?, what shape?, where?, etrongly a ects the patterns
observed for speci c variables and the general outcome of datalyasim With the MAUP,
there is variation in characteristics of observations due to rajfiag the scale of observation
- also called the'scale e ect?” or sometimes also referred to as thecale problem," and
there is variation in characteristics of observations due tcealative aggregations of areas
of support at the same scale of observation - also called 'taggregation/zoning problem"
(Marceau and Hay1999. Similarly, apart from the category of the variable observeddan
the form of aggregation on support some other factors could result incales dependence.
For example, scale e ects could result from limitations of megsuent, or from di erences
in instrumentation applied in measurement. Scale e ects abwalso result from errors in
modelling - especially in relation to choice of an appropriatedsioof the underlying process,

2"Scale e ect" refers to the relative contrast/di erence in information and he respective characteristics of
observations or models made on di erent supportWu and Li, 2009
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or simply from the inherent heterogeneity and non-linearity iatural systems given the scale
of observation. Stemming from scale e ects, properties of systdrasome"scale-dependent"
However, conditioned on the variable observed and the means of ggtiom, a sensitivity
analysis across scales may yield patterns of scale depend®gstems may become less scale-
dependent or even scale-independent/scale-invariant itipaar scale regions'.Scale domains"
and "scale thresholds'tan be identi ed and'scaling" within the domain made relatively easier
(due to homogeneity/stability in the underlying process) - seean example research in Article
I. In this sense, the domain is the appropriate scale (or seofescales) of observation of a
given process and the threshold(s) is that tipping point of theakscof observation\(\Vu and
Li, 2009. Most research on scale-dependence ultimately aims at idgintj scale domains and
thresholds.

Several methods are proposed in the literature to quantitatjvdescribe scale thresholds
and domains. Among otherd/u and Li (2009 describe the following; the geographic variance
method (Moellering and Tobler1972), the wavelet transform methodRercival 1995, the local
variance method\(Voodcock and Strahlerl987), the semi-variogram based metho&arrigues
et al, 2006, and the fractals method Mandelbrot 1967). These methods determine the
threshold scale of observation based on progressive aggregation of mlajgace, hinged on
a given optimization criterion/criteria that generally rely on lakcco-variation metrics. For
the same purpose, in the last two-three decades, object-baseahe analysis (OBIA) has
gained traction in remote sensing assisted FBlgschke 2010. In the same way, the approach
emphasizes working within scale domains through iterative agatien of high resolution pixel
data into individual objects to identify speci c entities ispace. Altogether, methods describing
scale thresholds and domains share a common goal i.e. to manageogetegity in the studied
systems so as to increase predictability, interpretapiland scaling feasibility.

In forest ecosystems, the magnitude of the scale e ect is expdas a function of spatial
autocorrelation as site factors and growth conditions are hightyrelated for trees close
together than further apart. While comparing continuous surfaaef di ering spatial structure,
Sandel(2015 shows that indeed the magnitude of spatial auto-correlationtatenines the
magnitude of e ects from changing the scale of observation on estielaheterogeneity in
sample data. Heterogeneity follows the pattern of spatial awdgelation by increasing rapidly
over a short range in low spatial autocorrelation and graduallgroa longer range in high
spatial autocorrelation, in aggregation of areas of support at tteene resolution. For this
reason, plot design in FIA relies on spatial autocorrelation.

In addition, the e ect of changing the scale of observation, on r@atships between spatially
structured variable® is also of paramount interest. For example, whether a given nflede
relationship between variables (e.§.= f(X)+ ), is a ected by changing the resolution, extent,
or plot size of observation is of fundamental interest in FIA. Wt there are e ects from
changing the support on the coe cient(s) estimated from a moeel relationship, or e ects on
the variables included in the model, or e ects on the overallaeb t or model performance,
or even e ects on the functional form of the relationship, is of fiamental interest. If there

A spatially structured variable exhibits spatial dependenceiel to spatial autocorrelation.
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are scale e ects, what causes them? Are they real e ects c #iey artifacts of the modeling
process? For example, could there be a "perceived" scalerndkgree due to omission of a
co-varying variable in the model, or is it a true scale depammeSande] 2015? Are the scale
e ects a consequence of statistical inequalities arising frime process of nonlinear averaging
(Chesson2012? For non-linear relationships between variables, is it gdsasible that changing
the support (extent, plot size) changes the perceived shapenefrelationship $andel 2015?
Such questions (and perhaps many more) underpin analysesala s@cts on the relationships
between FIA variables and their respective predictors.

1.4 Scaling

Since observations are not always made within their respecin@e domains or with com-
plete coverage of the extent of study or analysis, scaling becoofegeat theoretical and
applied importance. Scaling primarily relates to bridging tcansferring information across
scales farceau and Hay1999. It is essentially a means to compensate for scale e ects, as
transfer of information across scales without consideration ofls@ects is susceptible to
artifacts in heterogeneous systems. The transfer from "local""targe" scales is known as
"up-scaling" whereas the reversédown-scaling' Figure 1.3 illustrates up- and down-scaling
concepts across space.

Figure 1.3: Various types of scalingeft: Up/Down scaling of coarser and ner resolutions depending
on the direction of transferRight: (1) Upscaling from a single small region (dashed region) to predict

guantity of a larger extent (solid enclosure), for example theseaf expansion factors in forest inventory
or scaling from leaf to crown levels in spectroscopy, and (2) Ualisg from a number of samples

(dotted regions) that have incomplete coverage to a target region (b@nclosure) e.g. the case of

remote sensing assisted inventory of forests. This schematadapted afterGunton et al.(2014).

Several methods have been proposed to deal with scaling of measunts, of structured
relationships between variables, of retrieval models e.gpatioscopy, and of di erent products
derived from remote sensing datasets e.g LAMu and Li(2009 and Malenovsky et al(2007)
provide a good starting point for a collection of scaling methodghva focus on remote sensing.
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On scaling of measurements in forest inventory, expansiotofacre for example, the simplest
and most common form of linear up-scaling or extrapolation, wherpixel re-sampling of remote
sensing imagery is the most common form of down-scaling with ressfedata representation
but not with respect to the resolution of measurements. Recentiiagnussen et al(2016
proposed a scaling method for proportions and quantiles per argt that respects the in uence
of spatial autocorrelation. Upscaling requires an estimatela spatial autocorrelation off
givenX at the scale of the original spatial support. Similarly, dient forms of interpolations
and area weighted approachekiy et al, 2006, model-based and model-assisted estimation
(McRoberts et al, 2013 Stahl et al, 2016, hybrid (McRoberts et al. 2016 and hierarchical
estimation (Puliti et al., 2018, provide alternatives to bridge measurements at di erentages
of observation to make estimates of small and large areas. On therottand, statistical
methods accounting for spatial structure of data like for exalm simulteneous autoregressive
models Gande] 2015 Example 3), geo-additive models-#dhrmeir et al, 2013, structural
eqguation models for dealing with spatial confoundingh@den and Kneip2018 etc., help to
account for spatial confounding e ects in spatially structutelata with changing of support.
The spatial regression models are however often computatiofignsive for high resolution or
large area remote sensing datasets. On scaling of retrievalaisoitt spectroscopyylalenovsky
et al. (2007 propose three scaling approaches including, radiative trangfodelling, spectral
unmixing, and data fusion. And lastly, for scaling remote sagsproducts,Wu and Li (2009
compiled the following, empirical regression between in-situestations and remote sensing
data, the Taylor series expansion method, the contextual paeter method, the statistical
fractal and self-similar method, and process simulation haets. They conclude that no single
scaling method is universal. The choice of methods is simpgecpeci c. However, increased
understanding of scale domains and thresholds would suppotidrpmpgress of research into
e ects from changing the scale of observation.

It is clear, therefore, that there remains a need for incre@dscienti ¢ understanding of
scale issues in FIA. However, given the ubiquitous nature amdrdity of scale issues in FIA,
it is di cult to tackle the scale topic as a whole.Sandel(2015 puts it well; "identifying
and focusing on specic challenges in case studies is likelyenproductive and provides
more fundamental understanding and improved generalizatidius, this thesis presents four
case studies written in article format and addressing deet scale challenges related to the
estimation of forest stand structural heterogeneity, generaldacover monitoring with examples
on the estimation of forest cover proportions by both visual intetation of high resolution
remote sensing imagery and terrestrial surveys, and the iiscation of tree species from
various high resolution remote sensing datasets.

1.5 Overview of the thesis

This chapter presented an introduction to the subjects of lecand heterogeneity. It clari ed
the terminologies involved in théscience of scale(Marceau and Hay1999, and presented
the relevance of scale-related analyses in FIA. In Chaptdre2aims of this thesis are speci ed.
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Chapters 3 compiles materials and methods used across ingivicase studies. Chapter 4
presents a summary of results from the research, Chapter Sudsgs the ndings and lastly,
Chapter 6 presents overall conclusions from the research andmacommendations for future
work.

As mentioned, four case studies were conducted and are repanteudlticles I-1V. Briey,
research in Article | considers the mapping of forest standatinral heterogeneity from airborne
LiDAR data at di erent spatial scales of observation. The studgt tackles the problem of
nding the scale domain to observe forest stand structural éetgeneity using three forest
stand structural heterogeneity indices in forests of di eremanagement types and continues
to assess the e ects of the observed scales on the relationshipsd®en the indices of forest
stand structural heterogeneity computed from in-situ data anidoarne LIDAR data describing
the vertical distribution of canopy heights and canopy cover. Thadings of this research are
relevant to determine observation design in the inventory oéfirstand structural heterogeneity.

Research presented in Article Il changes focus to exploreliadienge of optimizing sampling
and observation designs for land cover monitoring at local to glduales using both visual
interpretation of high resolution remote sensing imagery and tatnial surveys. The study
addresses the development of a dynamic grid - the global samplifty(@SG) - applicable
at di erent spatial scales of observation from local to global llssand with speci ¢ scaling
properties. Here we answer scale questions on how to lay a sgsiersampling grid on a
spherical approximation of the earth's surface ensuring thz total area of interest is evenly
covered and represented in a sample and that a de ned minimustadce between sampling
locations is xed. In a case study, the grid is tested in the gsition of proportions of forest
cover from clusters of points across landscapes of di ering spatiaicture highlighting the
e ects of observation design (scale of observation) on precision addoarea estimates.

The study presented in Article Ill proposes ways to manage thgh lwithin-class varia-
tion/heterogeneity in pixel values of high resolution satellite ipeay and airborne LIDAR data
using object-based image analysis (OBIA) for the discrimioatof spectrally and structurally
similar tree species at individual crown level. The studggents an approach that combines
OBIA and ensemble classi cation models in distinction of tweesprally and structurally similar
Pinus trees.

Lastly, research in Article IV delves into scale e ects iresfral re ectances of broadleaved
tree species collected at leaf and crown levels. This studgwams the questions on whether
there are di erences in spectral re ectance collected at dient heirrachical scales and whether
the observed scale-related di erences a ect clasi cation dfe spectral re ectances by species.
In addition, the study investigates factors contributing to absed variation in leaf and crown
spectral re ectances using a radiative transfer modelliagproach and identi es important
regions of the electromagnetic spectrum for separating leaf armva spectral re ectances by
species.
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1.6 Contribution of the thesis

The research presented in this thesis is of a quantitative apglied nature. The case studies
considered di erent scales of observation and di erent scaleitsp(e.g. heterogeneity, scale-
dependence, scaling), all within the general context of rematasing assisted FIA. In order to
emphasize the contribution of this thesis to the general framdwaf FIA, Figure 1.4 shows the

areas to which the case studies contribute knowledge and hgptdithe appearance of issues
on the scale of observation during the data analysis phase of tihedytle.

Figure 1.4: Contribution of individual case studies to FIA asgisby remote sensing. The case studies
focused on the e ects of the scale of observation on data collectenfithe eld, the e ects of the
scale of observation on data collected by remote sensing and thets ef the scale of observation in
the combination of eld and remote sensing data through modellingBI@ stands for Object Based
Image Analysis, RTM; Radiative Transfer Models and TSE; Tayeries Expansion.



Chapter 2

Aims of the thesis

The overall objectives of this cumulative thesis are; (1) to irope the understanding of the
association between the scale of observation and observed hetggiigén inventory of forest
stand structural heterogeneity, forest-cover proportions, daddnti cation of tree species from
a combination of terrestrial samples and remote sensing data, @) to contribute knowledge
to the estimation of scale-dependence in inventory of forestnst structural heterogeneity,
forest-cover proportions, and identi cation of tree species framcombination of terrestrial
samples and remote sensing data.

The speci ¢ objectives across the four case studies are:

To identify a threshold plot size to estimate forest stand sttural heterogeneity in stands
under di erent management systems and create wall-to-wallprat varying scales of
observation from terrestrial samples and airborne LiDAR data.

To develop and evaluate a sampling framework for land cover mmdng based on a
simple and scalable global grid system that allows for simpliand unbiased inference
and a straight forward observation protocol at di erent spatiataes of sampling.

To evaluate the potential of ensemble models and object-bassae analysis (OBIA) to
manage high within-class variability encountered in the disénation of structurally and

spectrally similar tree species at individual tree scat@rfrmultispectral satellite imagery
and airborne LiDAR.

To highlight the in uence of the scale of observation in analysis péstral re ectance
of tree foliage and individual tree crowns.

The technical research objectives for each case study areligigked in the respective
Articles (I-1V) appended to this thesis.



Chapter 3

Material and methods

3.1 Study areas

The case studies presented in Articles I, Il and IV were cateltl using eld inventory and
remote sensing data collected in a variety of temperate conifeyaleciduous and mixed forest
landscapes, and in stands undergoing a variety of managemeategfies, in Germany and
France. The study in Article Il, on the other hand, utilized $lgatic data at a global scale and
simulated forest/non-forest imagery at a regional scale as shawRigure 3.1.

The studies in Germany were conducted within the frameworkha Biodiversity Explorato-
ries (BE) project - www.biodiversity-exploratories.de, thie Hainich-Dun, Schorfheide-Chorin
and Schwabische Alb exploratories. The three study site&@mmany are distributed across the
country in regions of high biodiversity and nature conservatiorugahcluding two UNESCO
biosphere reserves (Schorfheide-Chorin and Schwéabisdi)eaftl a national park (Hainich Na-
tional Park in the Hainich-Din region). Scots pin®ihus sylvestris stands with parts of beech
(Fagus sylvatica 1), pine/beech and oak Quercus robuy forests dominate the Schorfheide-
Chorin area. In the Schwéabische Alb area, beech forests datmithe lower altitudes and
Norway spruce Ricea abie} dominates the higher altitudes, and the Hainich-Diin region is
dominated by beech stands. The forests in the BEs are of di ¢ngranagement type, history
and intensity as further elaborated in Article 1.

The study in Article 1l was conducted in a coniferous forest ivetSouth Eastern alpine
region of France, the district of Barcelonette. The area is domathby Pines Pinus sylvestris
L. and Pinus uncinata Mill. Ex Mirpp has a wide altitude range (1400 - 2020 m.a.s.l.), rough
terrain (slope gradients between 1@nd 70), and is prone to landslides. The forests in the
Barcelonette region were planted and left unmanaged for decadds the aim of stabilizing
surface soils against landslides. Trees fall often on the sWadloils at steep slopes making the
structure of the forest stands uneven in many parts.

Figure 3.1 shows the locations of study sites, highlighting th@spective case studies
in Articles I-1V. Further details on environmental and foreginditions at the study sites are
elaborated or referenced to in Articles I-1V in the appendix
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