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Abstract

The impact of changing the scale of observation on information derived from forest inventories

is the basis of scale-related research in forest inventory and analysis (FIA). Interactions between

the scale of observation and observed heterogeneity in studied variables highlight a dependence

on scale that a�ects measurements, estimates, and relationships between inventory data from

terrestrial and remote sensing surveys. This doctoral research de�nes"scale" as the divisions

of continuous space over which measurements are made, or hierarchies of discrete units of

study/analysis in space. Therefore, the"scale of observation"(also known as support) refers

to that integral of space over which statistics are computed and forest inventory variables

regionalized.

Given the ubiquitous nature of scale issues, a case study approach was undertaken in

this research (Articles I-IV) with the goal to provide fundamental understanding of responses

to the scale of observation for speci�c FIA variables. The studied forest inventory variables

are; forest stand structural heterogeneity, forest cover proportion and tree species identities.

Forest cover proportion (or simply forest area) and tree species are traditional and fundamental

forest inventory variables commonly assessed over large areas using both terrestrial samples

and remote sensing data whereas, forest stand structural heterogeneity is a contemporary FIA

variable that is increasingly demanded in multi-resource inventories to inform management

and conservation e�orts as it is linked to biodiversity, productivity, ecosystem functioning and

productivity, and used as auxiliary data in forest inventory.

This research has two overall aims:

1. To improve the understanding of the association between the scale of observation and

observed heterogeneity in inventory of forest stand structuralheterogeneity, forest-cover

proportions, and identi�cation of tree species from a combination ofterrestrial samples

and remote sensing data.

2. To contribute knowledge to the estimation of scale-dependence in inventory of forest

stand structural heterogeneity, forest-cover proportions, andidenti�cation of tree species

from a combination of terrestrial samples and remote sensing data.

Di�erent scales of observation were considered across the four case studies encompassing

individual leaf, crown-part or branch, single-tree crown, forest stand, landscape and global levels

of analysis. Terrestrial and remote sensing data sets from a variety of temperate forests in

Germany and France were utilized across case studies. In cases where no inventory data were



available, synthetic data was simulated at di�erent scalesof observation. Heterogeneity in FIA

variable estimates was monitored across scales of observation using estimators of variance and

associated precision. As too much heterogeneity is hardly interpreted due to a low signal to noise

ratio, object-based image analysis (OBIA) methods were used tomanage heterogeneity in high-

resolution remote sensing data before evaluating scale dependence or scaling across observed

scales. Similarly, ensemble classi�cation techniques wereapplied to address methodological

heterogeneity across classi�ers in a case study on classi�cationof two physically and spectrally

similar Pinus species. Across case studies, a dependence on the scale of observation was

determined by linking estimates of heterogeneity to their respective scales of observation using

linear regression and a combination of geo-statistics and Monte-Carlo approaches. In order to

address scale-dependence, thresholds to scale domains were identi�ed so as to enable e�cient

observation of studied FIA variables and scaling approaches proposed to bridge observations

across scales. For scaling, this research evaluated the potential of di�erent regression techniques

to map forest stand structural heterogeneity and tree specieswall-to-wall from remote sensing

data. In addition, radiative transfer modelling was evaluated in the transfer between leaf and

crown hyperspectra, and a global sampling grid framework proposed to e�ciently link di�erent

stages of survey sampling.

This research shows that the scale of observation a�ected all studied FIA variables albeit

to varying degrees, conditioned on the spatial structure and aggregation properties of the

assessed FIA variable (i.e. whether the variable is extensive, intensive or scale-speci�c) and

the method used in aggregation on support (e.g. mean, variance, quantile etc.). The scale

of observation a�ected measurements or estimates of the studiedFIA variables as well as

relationships between spatially structured FIA variables.The scale of observation determined

observed heterogeneity in FIA variables, a�ected parameter retrieval from radiative transfer

models, and a�ected variable selection and performance of models linking terrestrial and remote

sensing data. On the other hand, this research shows that it ispossible to determine domains

of scale dependence within which to e�ciently observe the studied FIA variables and to bridge

between scales of observation using various scaling methods.

The �ndings of this doctoral research are relevant for the general understanding of scale

issues in FIA. Research in Article I, for example, informs optimization of plot sizes for e�cient

inventory and mapping of forest structural heterogeneity, as well as for the design of natural

resource inventories. Similarly, research in Article II is applicable in large area forest (or general

land) cover monitoring from sampling by both visual interpretation of high resolution remote

sensing imagery and terrestrial surveys. This research is also useful to determine observation

design for e�cient inventory of land cover. Research in ArticleIII contributes in many contexts

of remote sensing assisted inventory of forests especially in management and conservation

planning, pest and diseases control and in the estimation of biomass. Lastly, research in Article IV

highlights scale-related e�ects in passive optical remote sensing of forests currently understudied

and can ultimately contribute to sensor calibration and modelling approaches.



Zusammenfassung

Der Ein�uss von unterschiedlichen Beobachtungsskalen auf Informationen aus Stichprobeinven-

turen ist der Ausgangspunkt für skalen-bezogene Forschung in der Waldinventur.

Wechselwirkungen zwischen den Beobachtungsskalen und der beobachteten Heterogenität

der untersuchten Variablen zeigen eine Skalenabhängigkeit, welche Messungen, Schätzungen

sowie den Zusammenhang von terrestrischen Inventurdaten und Fernerkundungserhebungen

beein�ussen.

Die vorliegende Arbeit de�niert �Skala� als die Unterteilungdes kontinuierlichen Raums,

oder Hierarchien von diskreten Einheiten des Studiengebietsin dem Messungen oder Anal-

ysen im Raum durchgeführt werden. Deshalb bezieht sich die �Beobachtungsskala� (auch

als �support� bezeichnet) auf das Integral des Raumes, über das Statistiken berechnet und

Waldinventurvariablen regionalisiert werden.

Wegen der Omnipräsenz der Skalenproblematik, wurde in der vorliegenden Arbeit ein Fallstu-

dienansatz (Fachzeitschriftenbeitrag I-IV) verwendet, Das Ziel der Arbeit ist es das grundlegende

Verständnis des Ein�usses der Beobachtungsskala auf spezi�sche Waldinventurvariablen und let-

ztendlich das generelle Verständnis von Skalenproblematikenin der Waldinventur zu verbessern.

Die betrachten Zielgröÿen sind die Heterogenität der Bestandesstruktur, die Wald�äche, sowie

die Baumarten bestimmung. Waldbedeckungsgrad (Wald�äche) und Baumarten bestimmung

sind grundlegende Waldinventurvariable, die üblicherweiseüber groÿe Gebiete durch terrestrische

Stichprobenpunkte oder Fernerkundungsdaten aufgenommen werden. Die Heterogenität der

Bestandesstruktur dagegen ist eine neuere Waldinventurvariable, die vermehrt in Inventuren

gefragt ist um Bewirtschaftungs- und Umweltschutzmaÿnahmen zu unterstützen.

Die vorliegende Arbeit hat zwei übergreifende Ziele:

1. die Erforschung der Beziehung zwischen Beobachtungsskala und beobachteter Heterogen-

ität der Bestandesstruktur, des Deckungsgrades und der Baumartenbestimmung durch

eine Kombination aus terrestrischen Stichprobenpunkten und Fernerkundungsdaten und

2. die Einführung von Methoden zur Schätzung von Skalenabhängigkeit bei der Erfassung

der Strukturheterogenität, des Deckungsgradess und der Baumartenbestimmung durch

eine Kombination aus terrestrischen Stichpunkten und Fernerkundungsdaten.

In den vier Fallstudien wurden unterschiedliche Beobachtungsskalen berücksichtigt. Sie um-

fassen Analyseebenen von einzelnen Blättern, Kronenteilen oder Ästen, einzelnen Baumkronen,

Waldbeständen, sowie die Landschafts- und Globalebene. In den Fallstudien wurden terrestrische



Inventurdaten und Fernerkundungsdaten verschiedener Waldgebiete der gemäÿigten Zone in

Deutschland und Frankreich verwendet. In den Fällen in denen keine Inventurdaten vorhanden

waren, wurden die Daten für verschiedene Beobachtungsebenensimuliert. Die Heterogenität der

Schätzungen der Waldinventurvariablen wurde auf verschiedenen Beobachtungsskalen durch

Varianzschätzer und entsprechende Genauigkeitsmaÿe teingeschätzt. Da zu hohe Heterogen-

ität aufgrund eines geringen Signal-zu-Rausch-Verhältnisseskaum interpretierbar ist, wurden

vor der Evaluierung der Skalenabhängigkeit oder der Skalierung zwischen Beobachtungsskalen,

objekt-basierte Bildanalysemethoden verwendet um die Heterogenität in hochaufgelösten Fern-

erkundungsdaten zu kontrollieren. Ensemble-Classi�cation-Methoden wurden in einer Fallstudie

zur Klassi�kation von zwei physikalisch und spektral ähnlichen Kiefernarten angewendet, um die

methodische Heterogenität zwischen Klassi�zierungsverfahren zu verringern. In allen Fallstudien

wurde die Skalenabhängigkeit durch den Zusammenhang der Heterogenitätsschätzwerte und

ihrer jeweiligen Beobachtungsskala bestimmt. Hierfür wurdenlineare Regressionen und eine

Kombination von Geostatistischen und Monte-Carlo-Verfahren angewendet. Zur Erforschung

der Skalenabhängigkeit wurden Grenzwerte der Skalenbereiche identi�ziert, um eine e�ziente

Beobachtung der untersuchten Waldinventurvariablen und Skalen-Verfahren zu ermöglichen.

Diese Forschungsarbeit evaluiert das Potential von verschiedenen Regressionsmethoden zur

Kartierung der Heterogenitä der Bestandesstruktur und der Baumarten mithilfe von Fern-

erkundungsdaten. Zudem wurde die Strahlungstransfermodellierung evaluiert um zwischen

der hyperspektralen Rückstrahlung des Blatts und der Krone zu skalieren und ein globales

Stichproben-Bezugssystem entwickelt um e�zient verschiedene Phasen der Stichprobenerhe-

bung zu verbinden.

Diese Forschungsarbeit zeigt, dass die Beobachtungsskala alleuntersuchten Waldinventur-

variablen beein�usst, wenngleich in unterschiedlichem Ausmaÿ. Dieses hängt von den Eigen-

schaften der räumlichen Struktur, der Aggregation der geschätzten Waldinventurvariable (z.B.

extensive, intensive oder skalen-spezi�sche Variable) und der unterstützenden Aggregation-

smethode (z.B. Mittelwert, Varianz, Quantil, etc.) ab. Die Beobachtungsskala beein�usste

Messungen oder Schätzungen der untersuchten Waldinventurvariablen ebenso wie das Ver-

hältnis zwischen räumlich strukturierten Waldinventurvariablen. Die Beobachtungsskala bes-

timmte die beobachtete Heterogenität der Waldinventurvariablen, beein�usste die Parameter

der Strahlungstransfermodelle, sowie die Variablenauswahl und die Modellanpassung von ter-

restrischen Inventurdaten und Fernerkundungserhebungen. Nichtsdestotrotz zeigt diese Forschu-

ngsarbeit, dass es möglich ist Bereiche der Skalenabhängigkeit zu bestimmen in denen die

erforschten Waldinventurvariablen e�zient beobachtet undBeobachtungsskalen durch die Ver-

wendung verschiedener Methoden verbunden werden können.

Die Ergebnisse dieser Doktorarbeit sind hinsichtlich des generellen Verständnisses von

Skalenproblematiken in der Waldinventur relevant. Der Fachzeitschriftenbeitrag I ist für die

Optimierung der Stichproben�ächengröÿe für eine e�ziente Inventur und Kartierung der Het-

erogenität der Waldstruktur, sowie für das Design von Inventuren natürlicher Ressourcen rel-

evant. Die Forschung aus Fachzeitschriftenbeitrag II ist bei groÿ�ächigem Monitoring der

Waldbedeckung bzw. generell der Bodenbedeckung, durch Stichproben aus visuell interpretierten



hochaufgelösten Fernerkundungsbildern als auch terrestrischen Aufnahmen, anwendbar. Der

Ansatz kann auch zur Optimierung des Beobachtungsdesigns e�zienter Inventuren von Land-

nutzungsklassen angewendet werden. Fachzeitschriftenbeitrag III ist für viele Bereiche der fern-

erkundungsunterstützten Waldinventur, insbesondere für Bewirtschaftungs- und Naturschutz-

planung, Schädlings- und Krankheitsbekämpfung sowie die Schätzung von Biomasse relevant.

Die Ergebnisse des Fachzeitschriftenbeitrags IV heben die skalenbezogenen E�ekte der passiven

optischen Fernerkundung von Wäldern hervor, welche bis jetztwissenschaftlich vernachlässigt

wurden und können letztendlich zur Sensor-Kalibrierung undzu Modellierungsansätzen beitra-

gen.
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Chapter 1

Introduction

1.1 Scale in forest inventory and analysis

The core of forest inventory is to enumerate a population of treesand associated variables

over a speci�ed area (Scott and Gove, 2002). A census is almost always impractical and thus

forest inventory requires a"measuring tool", or "scale" (Marceau and Hay, 1999), through

which trees and associated variables are observed, enumerated, and inference made on the

population characteristics. Aggregation (spatial or otherwise) is most commonly necessary to

create meaningful units for mensuration and analysis (Gotway and Young, 2002). The units (or

support) represent that integral of space over which statistics are computed and forest inventory

variables regionalized (Malenovský et al., 2007). They are essentially the measurement/sample

scale, or measurement/sample unit (e.g. intervals, areas, volumes etc.) for data (Wu and Li,

2009) collected in forest inventory and analysis (FIA). The units(or support) are what I refer

to here as the"scale of observation".

The general meaning of scale however, is not constrained to the scale of observation but

includes other notions. There is a scale of operation/action referring to the level at which an

observed process operates, is supposed to operate, or is best observed (Marceau and Hay, 1999;

Malenovský et al., 2007); a cartographic/map scale referring to the ratio of the map distance

to the corresponding distance on the ground; a modelling scale describing the scale of model

building (i.e. the support of model inputs) vis-à-vis model derivation/application; a geographic

scale representing the coverage of pattern or analysis; and a policy scale in reference to the

levels of decision making or policy implementation (Wu and Li, 2009; Marceau and Hay, 1999;

Malenovský et al., 2007). Various other notions of scale may exist since the term is widelyused,

however, of the so far listed, the scale of observation is the most apparent in FIA assisted by

remote sensing.

The scale of observation plays a very important role in FIA, especially in de�nition of a

forest (Kleinn, 2001; Magdon et al., 2014), in estimation of forest area (Magdon and Kleinn,

2013; Fehrmann et al., 2019), in estimation of forest edge length (Kleinn et al., 2011), in

selection of samples (Czaplewski, 2003; Fehrmann et al., 2019), in measurement of trees, in

building of models to link �eld to remote sensing data (Kukunda et al., 2019, for example), as
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well as, in inference on tree populations (Magnussen et al., 2016; McRoberts et al., 2016; Puliti

et al., 2018; Mauro et al., 2017). The integration of remote sensing into contemporary forest

inventories extends the role of the scale of observation in FIA to include, spectral, temporal,

directional, polarization, and radiometric dimensions to scale(Wu and Li, 2009) that together

with terrestrial observation design, in�uence the precision of FIA variables. In fact, understanding

the impact of changing the scale of observation on information derived from forest inventories,

forms the basis of scale-related research in FIA.

"Scale" primarily relates to the divisions of continuous space over whichmeasurements are

made, or to the hierarchies of discrete units of study/analysisin space (Wiens, 1989; Levin,

1992; Marceau and Hay, 1999; Schneider, 2001; Malenovský et al., 2007; Gunton et al., 2014;

Sandel, 2015). This basic de�nition of scale (Figure 1.1) su�ces in all notions of scale (i.e.

scale of observation, action/operation, modelling, policy, geographic, and cartographic), albeit

re-projected into their respective spaces of conception or measurement. The core concept

of scale is illustrated in Figure 1.1 according toGunton et al.(2014) in the spatial context.

Fundamentally, spatial scale is characterized by the area ofsupport (commonly referred to in FIA

in terms of resolution, pixel size, plot size), the extent, and the hierarchies of discrete units of

study/analysis (Figure 1.1). As previously mentioned, the scale ofobservation in contemporary

FIA assisted by remote sensing includes spatial, spectral, temporal, directional, polarization and

radiometric dimensions. This thesis work focuses on the "spatial scale of observation" and will

refer to it simply as "scale of observation" in the succeeding text. Table 1.1 illustrates how the

core meaning of the scale of observation is similar across di�erent dimensions.

Figure 1.1: The basic concept of scale. The resolution/pixel, plot size and the extent are illustrated for a
simple case of contiguous coverage. Scale as a "level" is illustrated with discrete, spatially-nested units
that can also be looked at as "support". A simple illustration ofsampling across space with clusters of
points and �xed area circular plots is integrated. This schematic is adapted afterGunton et al.(2014).

For the reader unfamiliar with all the dimensions to scale of observation in remote sensing

(Table 1.1), the spectral dimension refers to the volume of support over which spectrometric

measurement is made. In a volume, the support considers more than two dimensional space
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Table 1.1: De�nitions of resolution and extent in the spatial, spectral, temporal, directional, and ra-
diometric dimensions of the scale of observation as encountered within the context of remote sensing
assisted inventory of forests.

Resolution

Spatial Smallest observable unit in space or the pixel of a remotely sensed
image or plot size in a sample-based study (Figure 1.1)a

Spectral Smallest unit of distinction among spectral di�erences in a spectral
sample (Figure 1.2).

Temporal Shortest time required to combine re�ected energy into an image
on the CCD array element.b

Directional Smallest angle of distinction among angular spectral re�ectances.c

Radiometric Precision or sensor sensitivity to magnitudes of energy.

Extent

Spatial Total area encompassed by observations or analysis (Figure 1.1).

Spectral Range of wavelengths included in the spectral sample (Figure 1.2).

Temporal Time between the �rst and last observation at a given location.

Directional Range of viewing directions.

Radiometric Range of values stored in bits.

aBy pixel re-sampling, the resolution of data representation canbe di�erent from the resolution of measure-
ment.

bTemporal resolution was rede�ned byMalenovský et al.(2007) in order to make de�nitions across dimensions
of the scale of observation coherent. Temporal resolution is commonly de�ned as the sensor revisit rate at a
given geographic location - see for exampleKhorram et al. (2012). However, the sensor revisit rate at a given
geographic location is in the strictest sense the temporal sampling interval.

cThe directional resolution is determined by the instantaneous �eld of view (IFOV), the size of the CCD
array, tilt, motion speed, and altitude of the sensor (Malenovský et al., 2007).

described in Figure 1.1 to include spectra (i.e. wavelength andcorresponding re�ectances or

transmitances) in de�ning space over which a spectral measurement is made (Malenovský

et al., 2007, see also Figure 1.2). Similarly, the temporal dimension deals with a volume of

support considering a combination of space, spectra, and time over which measurement is made.

Directional scale, on the other hand, deals with the strong directional behaviour of re�ectances

reaching the sensor element as a result of the multi-angular re�ectivity of the earth's surface and

scattering by atmospheric particles and gases (Roosjen et al., 2018). It relies on bi-directional

re�ectance distribution functions determined by sun-object-sensor geometry (Wu and Li, 2009;

Malenovský et al., 2007) and optical properties of the observed object (Malenovský et al.,

2007). Therefore, it combines space, spectra, time, and the solid angle of the sensor in de�ning

the support. Similar to the directional dimension for passiveoptical sensors, the polarization

dimension to support considers the solid angle or polarization direction of SAR data on top

of space, signal and time. And lastly, the radiometric dimensionis analogous to the scale of a

diameter tape or caliper used in DBH measurements, and considers the translation of received

energy at the sensor element into image colours and therefore deals directly with accuracy in the

units of measurement. Even though the dimensions to the scale of observation in remote sensing
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Figure 1.2: The basic concept of spectral scale. The spectral resolution is equivalent to the Full-Width-
Half-Minimum (FWHM). The extent = � max { � min , the di�erence between the maximum and minimum
wavelength. Notice that the spectral sampling interval is independent of the spectral resolution (FWHM).
There is possible overlap between response functions of consecutive wavelength bands among consecutive
spectral sampling intervals. The schematic is adapted after Malenovský et al.(2007).

are often described independently, it is clear that the scaledimensions are mutually inclusive

as sensor systems are integrated and therefore the volume of support for any observation scale

simultaneously relies on components from other dimensions.

On the other hand, the term scale is also used to mean a level in ahierarchy of analysis

(Gunton et al., 2014, Figure 1.1). This scale de�nition holds for FIA supported by remote sensing

as well as traditional terrestrial sampling schemes with respect to the observation level vis-à-vis

the level of inference. While observations are made at point, line, or plot levels, inference is made

for regions larger than the observed areas. Multi-phase and multi-stage sampling schemes (Köhl

et al., 2006, Chapter 3), for example, and more recently hybrid (McRoberts et al., 2016) and

hierarchical estimation approaches (Puliti et al., 2018), underpin the application of hierarchical

scales of analysis in forest inventories.

1.2 Heterogeneity

The scale of observation and heterogeneity interact very closely that it is impossible to refer

one without reference to the other."Heterogeneity"primarily describes variability, complexity,

or diversity in structure, composition, and functioning1 of any system in space-time (Stein and

Kreft, 2015). Heterogeneity is inherent in forest ecosystems and changes inproperties relative to

the scale of observation and the variable (or aggregation propertiesof the variable) in question.

Therefore, one needs scale to de�ne heterogeneity (Levin, 1992), and properties of the observed

variable must be known a priori to achieve reasonable aggregation(mean, variance, etc.) on

support.

There are generally three categories of variables with respectto aggregation properties;

(1) variables with extensive properties - also termed"extensive variables"(e.g. number of

1"structure" is the spatial-temporal arrangement of components of the ecosystem,"composition", the spatial-
temporal identity and variety of ecosystem components, and"function" , the underlying stochastic or deterministic
processes controlling realizations or states of populations of natural systems in space-time (Valbuena, 2015).
FIA seeks to enumerate"structure" and "composition" whereas Ecology focuses on understanding"function" .
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trees), whose quantities can be proportionally/simply summed across extents, (2) variables

with intensive properties - also called"intensive variables"(e.g. tree densities), whose quantities

are meaningless when simply summed across extents because they are averages or ratios, and

(3) variables that may vary with extent but not proportional to ite.g. species richness - such

variables are also termed"scale-speci�c variables". The distinction of variables by their properties

is essential in characterization of heterogeneity (Gunton et al., 2014) and its dependence on

the scale of observation. In fact, it is not correct to ask, for example, whether a particular

measurement is dependent on the scale of observation without alsospecifying how we intend

to aggregate it on support (Sandel, 2015). In homogeneous systems, intensive variables remain

constant across space or time (they are"scale invariant"), while extensive variables change

linearly across space or time. For the same examples in heterogeneous systems, the opposite

is observed. However, extensive variables in a heterogeneous system may exhibit domains of

homogeneity related to a particular scale or scales of observation- when the spatial extent is

large enough relative to the resolution of heterogeneity. In fact, �nding this threshold between

heterogeneity and homogeneity or simply put 'managing heterogeneity' is a key goal of data

preparation in remote sensing assisted FIA; since too much variability can hardly be interpreted.

For this reason, research on scale-dependence has been developed. Scale-dependence research

seeks to address that trade o� between detail (or heterogeneitywithin a group) and system

predictability (Levin, 1992). Similarly, in the context of sampling studies in forest inventory, the

balance between cost, between- and within-plot heterogeneity,and precision of estimation is

the basis of most decisions on optimal observation designs.

1.3 Scale dependence

The recognition of interactions between the scale of observation andheterogeneity highlights

a dependence on scale that, when ignored, may a�ect both measurements and relationships

between variables in FIA. Scale dependence primarily stemsfrom the modi�able areal unit

problem MAUP (Openshaw, 1977). The integral of support, especially the way borders are

drawn - i.e. how large the units are?, what shape?, where?, etc. - strongly a�ects the patterns

observed for speci�c variables and the general outcome of data analysis. With the MAUP,

there is variation in characteristics of observations due to changing the scale of observation

- also called the"scale e�ect2" or sometimes also referred to as the"scale problem", and

there is variation in characteristics of observations due to alternative aggregations of areas

of support at the same scale of observation - also called the"aggregation/zoning problem"

(Marceau and Hay, 1999). Similarly, apart from the category of the variable observed and

the form of aggregation on support some other factors could result in a scale dependence.

For example, scale e�ects could result from limitations of measurement, or from di�erences

in instrumentation applied in measurement. Scale e�ects could also result from errors in

modelling - especially in relation to choice of an appropriate model of the underlying process,

2"Scale e�ect" refers to the relative contrast/di�erence in information and the respective characteristics of
observations or models made on di�erent support (Wu and Li, 2009)
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or simply from the inherent heterogeneity and non-linearity in natural systems given the scale

of observation. Stemming from scale e�ects, properties of systemsbecome"scale-dependent".

However, conditioned on the variable observed and the means of aggregation, a sensitivity

analysis across scales may yield patterns of scale dependence. Systems may become less scale-

dependent or even scale-independent/scale-invariant in particular scale regions."Scale domains"

and "scale thresholds"can be identi�ed and"scaling" within the domain made relatively easier

(due to homogeneity/stability in the underlying process) - see as an example research in Article

I. In this sense, the domain is the appropriate scale (or seriesof scales) of observation of a

given process and the threshold(s) is that tipping point of the scale of observation (Wu and

Li, 2009). Most research on scale-dependence ultimately aims at identifying scale domains and

thresholds.

Several methods are proposed in the literature to quantitatively describe scale thresholds

and domains. Among othersWu and Li (2009) describe the following; the geographic variance

method (Moellering and Tobler, 1972), the wavelet transform method (Percival, 1995), the local

variance method (Woodcock and Strahler, 1987), the semi-variogram based method (Garrigues

et al., 2006), and the fractals method (Mandelbrot, 1967). These methods determine the

threshold scale of observation based on progressive aggregation of data in space, hinged on

a given optimization criterion/criteria that generally rely on local co-variation metrics. For

the same purpose, in the last two-three decades, object-based image analysis (OBIA) has

gained traction in remote sensing assisted FIA (Blaschke, 2010). In the same way, the approach

emphasizes working within scale domains through iterative aggregation of high resolution pixel

data into individual objects to identify speci�c entities inspace. Altogether, methods describing

scale thresholds and domains share a common goal i.e. to manage heterogeneity in the studied

systems so as to increase predictability, interpretability, and scaling feasibility.

In forest ecosystems, the magnitude of the scale e�ect is expected as a function of spatial

autocorrelation as site factors and growth conditions are highlycorrelated for trees close

together than further apart. While comparing continuous surfaces of di�ering spatial structure,

Sandel(2015) shows that indeed the magnitude of spatial auto-correlation determines the

magnitude of e�ects from changing the scale of observation on estimated heterogeneity in

sample data. Heterogeneity follows the pattern of spatial autocorrelation by increasing rapidly

over a short range in low spatial autocorrelation and gradually over a longer range in high

spatial autocorrelation, in aggregation of areas of support at the same resolution. For this

reason, plot design in FIA relies on spatial autocorrelation.

In addition, the e�ect of changing the scale of observation, on relationships between spatially

structured variables3 is also of paramount interest. For example, whether a given modelled

relationship between variables (e.g.Y = f(X)+ � ), is a�ected by changing the resolution, extent,

or plot size of observation is of fundamental interest in FIA. Whether there are e�ects from

changing the support on the coe�cient(s) estimated from a modeled relationship, or e�ects on

the variables included in the model, or e�ects on the overall model �t or model performance,

or even e�ects on the functional form of the relationship, is of fundamental interest. If there

3A spatially structured variable exhibits spatial dependence due to spatial autocorrelation.
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are scale e�ects, what causes them? Are they real e�ects or are they artifacts of the modeling

process? For example, could there be a "perceived" scale dependence due to omission of a

co-varying variable in the model, or is it a true scale dependence (Sandel, 2015)? Are the scale

e�ects a consequence of statistical inequalities arising fromthe process of nonlinear averaging

(Chesson, 2012)? For non-linear relationships between variables, is it alsopossible that changing

the support (extent, plot size) changes the perceived shape of the relationship (Sandel, 2015)?

Such questions (and perhaps many more) underpin analyses on scale e�ects on the relationships

between FIA variables and their respective predictors.

1.4 Scaling

Since observations are not always made within their respectivescale domains or with com-

plete coverage of the extent of study or analysis, scaling becomesof great theoretical and

applied importance. Scaling primarily relates to bridging or transferring information across

scales (Marceau and Hay, 1999). It is essentially a means to compensate for scale e�ects, as

transfer of information across scales without consideration of scale e�ects is susceptible to

artifacts in heterogeneous systems. The transfer from "local" to "large" scales is known as

"up-scaling" whereas the reverse,"down-scaling". Figure 1.3 illustrates up- and down-scaling

concepts across space.

Figure 1.3: Various types of scaling.Left : Up/Down scaling of coarser and �ner resolutions depending
on the direction of transfer.Right : (1) Upscaling from a single small region (dashed region) to predicta
quantity of a larger extent (solid enclosure), for example the case of expansion factors in forest inventory
or scaling from leaf to crown levels in spectroscopy, and (2) Up scaling from a number of samples
(dotted regions) that have incomplete coverage to a target region (solid enclosure) e.g. the case of
remote sensing assisted inventory of forests. This schematicis adapted afterGunton et al.(2014).

Several methods have been proposed to deal with scaling of measurements, of structured

relationships between variables, of retrieval models e.g. in spectroscopy, and of di�erent products

derived from remote sensing datasets e.g LAI.Wu and Li (2009) and Malenovský et al.(2007)

provide a good starting point for a collection of scaling methods, with a focus on remote sensing.
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On scaling of measurements in forest inventory, expansion factors are for example, the simplest

and most common form of linear up-scaling or extrapolation, whereas pixel re-sampling of remote

sensing imagery is the most common form of down-scaling with respect to data representation

but not with respect to the resolution of measurements. Recently, Magnussen et al.(2016)

proposed a scaling method for proportions and quantiles per unitarea that respects the in�uence

of spatial autocorrelation. Upscaling requires an estimate ofthe spatial autocorrelation ofY

givenX at the scale of the original spatial support. Similarly, di�erent forms of interpolations

and area weighted approaches (Liu et al., 2006), model-based and model-assisted estimation

(McRoberts et al., 2013; Ståhl et al., 2016), hybrid (McRoberts et al., 2016) and hierarchical

estimation (Puliti et al., 2018), provide alternatives to bridge measurements at di�erent scales

of observation to make estimates of small and large areas. On the other hand, statistical

methods accounting for spatial structure of data like for example simulteneous autoregressive

models (Sandel, 2015, Example 3), geo-additive models (Fahrmeir et al., 2013), structural

equation models for dealing with spatial confounding (Thaden and Kneib, 2018) etc., help to

account for spatial confounding e�ects in spatially structured data with changing of support.

The spatial regression models are however often computationallyintensive for high resolution or

large area remote sensing datasets. On scaling of retrieval models in spectroscopy,Malenovský

et al. (2007) propose three scaling approaches including, radiative transfer modelling, spectral

unmixing, and data fusion. And lastly, for scaling remote sensing products,Wu and Li (2009)

compiled the following, empirical regression between in-situ observations and remote sensing

data, the Taylor series expansion method, the contextual parameter method, the statistical

fractal and self-similar method, and process simulation methods. They conclude that no single

scaling method is universal. The choice of methods is simply case speci�c. However, increased

understanding of scale domains and thresholds would support rapid progress of research into

e�ects from changing the scale of observation.

It is clear, therefore, that there remains a need for increased scienti�c understanding of

scale issues in FIA. However, given the ubiquitous nature and diversity of scale issues in FIA,

it is di�cult to tackle the scale topic as a whole.Sandel(2015) puts it well; "identifying

and focusing on speci�c challenges in case studies is likely more productive and provides

more fundamental understanding and improved generalization". Thus, this thesis presents four

case studies written in article format and addressing di�erent scale challenges related to the

estimation of forest stand structural heterogeneity, general land cover monitoring with examples

on the estimation of forest cover proportions by both visual interpretation of high resolution

remote sensing imagery and terrestrial surveys, and the discrimination of tree species from

various high resolution remote sensing datasets.

1.5 Overview of the thesis

This chapter presented an introduction to the subjects of scale and heterogeneity. It clari�ed

the terminologies involved in the"science of scale"(Marceau and Hay, 1999), and presented

the relevance of scale-related analyses in FIA. In Chapter 2 the aims of this thesis are speci�ed.
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Chapters 3 compiles materials and methods used across individual case studies. Chapter 4

presents a summary of results from the research, Chapter 5 discusses the �ndings and lastly,

Chapter 6 presents overall conclusions from the research and makes recommendations for future

work.

As mentioned, four case studies were conducted and are reportedin articles I-IV. Brie�y,

research in Article I considers the mapping of forest stand structural heterogeneity from airborne

LiDAR data at di�erent spatial scales of observation. The study�rst tackles the problem of

�nding the scale domain to observe forest stand structural heterogeneity using three forest

stand structural heterogeneity indices in forests of di�erentmanagement types and continues

to assess the e�ects of the observed scales on the relationships between the indices of forest

stand structural heterogeneity computed from in-situ data and airborne LiDAR data describing

the vertical distribution of canopy heights and canopy cover. The �ndings of this research are

relevant to determine observation design in the inventory of forest stand structural heterogeneity.

Research presented in Article II changes focus to explore thechallenge of optimizing sampling

and observation designs for land cover monitoring at local to globalscales using both visual

interpretation of high resolution remote sensing imagery and terrestrial surveys. The study

addresses the development of a dynamic grid - the global sampling grid (GSG) - applicable

at di�erent spatial scales of observation from local to global levels and with speci�c scaling

properties. Here we answer scale questions on how to lay a systematic sampling grid on a

spherical approximation of the earth's surface ensuring thatthe total area of interest is evenly

covered and represented in a sample and that a de�ned minimum distance between sampling

locations is �xed. In a case study, the grid is tested in the estimation of proportions of forest

cover from clusters of points across landscapes of di�ering spatial structure highlighting the

e�ects of observation design (scale of observation) on precision of forest area estimates.

The study presented in Article III proposes ways to manage the high within-class varia-

tion/heterogeneity in pixel values of high resolution satellite imagery and airborne LIDAR data

using object-based image analysis (OBIA) for the discrimination of spectrally and structurally

similar tree species at individual crown level. The study presents an approach that combines

OBIA and ensemble classi�cation models in distinction of two spectrally and structurally similar

Pinus trees.

Lastly, research in Article IV delves into scale e�ects in spectral re�ectances of broadleaved

tree species collected at leaf and crown levels. This study answers the questions on whether

there are di�erences in spectral re�ectance collected at di�erent heirrachical scales and whether

the observed scale-related di�erences a�ect clasi�cation of the spectral re�ectances by species.

In addition, the study investigates factors contributing to observed variation in leaf and crown

spectral re�ectances using a radiative transfer modellingapproach and identi�es important

regions of the electromagnetic spectrum for separating leaf and crown spectral re�ectances by

species.
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1.6 Contribution of the thesis

The research presented in this thesis is of a quantitative andapplied nature. The case studies

considered di�erent scales of observation and di�erent scale topics (e.g. heterogeneity, scale-

dependence, scaling), all within the general context of remote-sensing assisted FIA. In order to

emphasize the contribution of this thesis to the general framework of FIA, Figure 1.4 shows the

areas to which the case studies contribute knowledge and highlights the appearance of issues

on the scale of observation during the data analysis phase of the FIA cycle.

Figure 1.4: Contribution of individual case studies to FIA assisted by remote sensing. The case studies
focused on the e�ects of the scale of observation on data collected from the �eld, the e�ects of the
scale of observation on data collected by remote sensing and the e�ects of the scale of observation in
the combination of �eld and remote sensing data through modelling. OBIA stands for Object Based
Image Analysis, RTM; Radiative Transfer Models and TSE; TaylorSeries Expansion.



Chapter 2

Aims of the thesis

The overall objectives of this cumulative thesis are; (1) to improve the understanding of the

association between the scale of observation and observed heterogeneity in inventory of forest

stand structural heterogeneity, forest-cover proportions, andidenti�cation of tree species from

a combination of terrestrial samples and remote sensing data, and (2) to contribute knowledge

to the estimation of scale-dependence in inventory of forest stand structural heterogeneity,

forest-cover proportions, and identi�cation of tree species froma combination of terrestrial

samples and remote sensing data.

The speci�c objectives across the four case studies are:

ˆ To identify a threshold plot size to estimate forest stand structural heterogeneity in stands

under di�erent management systems and create wall-to-wall maps at varying scales of

observation from terrestrial samples and airborne LiDAR data.

ˆ To develop and evaluate a sampling framework for land cover monitoring based on a

simple and scalable global grid system that allows for simpli�ed and unbiased inference

and a straight forward observation protocol at di�erent spatial scales of sampling.

ˆ To evaluate the potential of ensemble models and object-based image analysis (OBIA) to

manage high within-class variability encountered in the discrimination of structurally and

spectrally similar tree species at individual tree scale from multispectral satellite imagery

and airborne LiDAR.

ˆ To highlight the in�uence of the scale of observation in analysis of spectral re�ectance

of tree foliage and individual tree crowns.

The technical research objectives for each case study are highlighted in the respective

Articles (I-IV) appended to this thesis.



Chapter 3

Material and methods

3.1 Study areas

The case studies presented in Articles I, III and IV were conducted using �eld inventory and

remote sensing data collected in a variety of temperate coniferous, deciduous and mixed forest

landscapes, and in stands undergoing a variety of management strategies, in Germany and

France. The study in Article II, on the other hand, utilized synthetic data at a global scale and

simulated forest/non-forest imagery at a regional scale as shownin Figure 3.1.

The studies in Germany were conducted within the framework of the Biodiversity Explorato-

ries (BE) project - www.biodiversity-exploratories.de, atthe Hainich-Dün, Schorfheide-Chorin

and Schwäbische Alb exploratories. The three study sites inGermany are distributed across the

country in regions of high biodiversity and nature conservation value including two UNESCO

biosphere reserves (Schorfheide-Chorin and Schwäbische Alb) and a national park (Hainich Na-

tional Park in the Hainich-Dün region). Scots pine (Pinus sylvestris) stands with parts of beech

(Fagus sylvatica L.), pine/beech and oak (Quercus robur) forests dominate the Schorfheide-

Chorin area. In the Schwäbische Alb area, beech forests dominate the lower altitudes and

Norway spruce (Picea abies) dominates the higher altitudes, and the Hainich-Dün region is

dominated by beech stands. The forests in the BEs are of di�erent management type, history

and intensity as further elaborated in Article I.

The study in Article III was conducted in a coniferous forest in the South Eastern alpine

region of France, the district of Barcelonette. The area is dominated by Pines (Pinus sylvestris

L. and Pinus uncinata Mill. Ex Mirb), has a wide altitude range (1400 - 2020 m.a.s.l.), rough

terrain (slope gradients between 10° and 70°), and is prone to landslides. The forests in the

Barcelonette region were planted and left unmanaged for decadeswith the aim of stabilizing

surface soils against landslides. Trees fall often on the shallow soils at steep slopes making the

structure of the forest stands uneven in many parts.

Figure 3.1 shows the locations of study sites, highlighting their respective case studies

in Articles I-IV. Further details on environmental and forestconditions at the study sites are

elaborated or referenced to in Articles I-IV in the appendix.
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