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Abstract 

 

This dissertation deals with the reconstruction of pre-eruptive magmatic processes with respect to 

their timescales. Deep recharges of mafic magma into shallower reservoirs and subsequent magma 

mixing are assumed to play a key role in triggering eruptions. The timespan between mixing and 

eruption is therefore a crucial factor to answer the question how fast magmatic systems can 

reactivate and erupt. Timing of magmatic processes and chemical composition of interacting 

magmas are archived in the zoning of crystals. This study uses zoned olivine crystals as a tool to 

track pre-eruptive recharge and mixing events of magmas and characterize the interacting magmas 

with respect to their composition for three different volcanic settings: (1) the subduction-related 

basaltic volcanism at Shiveluch, Kamchatka, (2) the basaltic hot-spot volcano Piton de la Fournaise 

on La Réunion, and (3) the alkaline intraplate volcanic field of the Eifel in western Germany with 

basanitic to phonolitic magma compositions. 

Olivine crystals in clasts from a maar deposit of Shiveluch volcano, Kamchatka, were analyzed 

with line profiles at the electron microprobe to track crystal histories. High-Fo olivine cores (Fo86-

91) show complex zoning with a normal zoned core, a dissolution boundary, and a rim overgrowth 

(Fo90). The normal zoned cores are interpreted as result from magma mixing, subsequent 

dissolution, and partial re-equilibration, whereas the overgrowths represent crystallization 

subsequent to magma mixing and during ascent. Diffusion modeling of Mg-Fe and Ni reveal times 

of 100-2000 days for the partial equilibration of olivine cores, but only 1-10 days since the rim 

overgrowth formed indicating that the ascent of mafic arc magmas can occur quite fast.  

At Piton de la Fournaise, La Réunion, olivine crystals were analyzed in basaltic samples from three 

small and one large eruption occurring during the eruptive cycle 2014-2015 after nearly four years 

of inactivity. Magmas erupted during the small eruptions in June 2014, February, May, and July 

2015 were evolved basalts and became increasingly more mafic during the large August-November 

2015 eruptions. Olivine cores show variable compositions (Fo73.2-85.1), whereas the rims have similar 

compositions in every sample, which are in equilibrium with the host melt in which the crystals 

were erupted. Olivine crystals from small eruptions in June 2014 and May 2015 have only short 

diffusion times of days to few months. Combined with the more evolved magma compositions and 

associated shallow seismicity, this indicates that the small eruptions were fed from more shallow 

magma batches after recharge. In contrast, olivine crystals in lavas from the large August-



 

  

November 2015 eruption started re-equilibration during three distinct episodes days up to seven 

months prior to the eruptions in June 2014, February 2015, and in the time between the eruptions 

in July and August-November. The correlation to deep seismic signals and the eruption of 

increasingly more mafic magmas during the large August-November eruption indicate that mafic 

magmas intruded periodically into the central reservoir of Piton de la Fournaise since the beginning 

of 2014. These deep recharges and the associated mixing and diffusion are simultaneous to the 

smaller eruptions of more evolved magmas from shallow levels. However, these deeper stored, 

more mafic magmas themselves were not erupted until during the large August-November eruption. 

The Eifel Volcanic Fields in the western part of Germany formed by Quaternary, alkaline intraplate 

volcanism, with the most voluminous eruption taking place at 12.900 yrs BP at Laacher See. We 

analyzed olivine crystals in nine samples from the mafic phonolite of the Upper Laacher See tephra. 

The mafic phonolite is deemed to be a hybrid resulting from magma mixing and mingling between 

the more evolved phonolite of the Laacher See magma chamber and an intruding basanite. Diffusion 

profiles of Mg-Fe, Mn, Ca, and Ni were modeled in olivine from Laacher See and two basanite 

samples from Rothenberg and Eppelsberg. Furthermore, olivine crystals in basanite and nephelinite 

samples from the East and West Eifel were analyzed with point measurements to determine 

chemical similarities to the basanite, which acted as Mg-rich mixing endmember during the magma 

mixing at Laacher See volcano. Olivine from hybrid clasts of the Upper Laacher See tephra show 

reverse zoning with variable core compositions (Fo83-89) overgrown by uniform and more forsteritic 

(Fo87.5-89) rims. The olivine crystals from the East Eifel basanite samples have a similar zoning 

pattern and core compositions (Fo80-88) but less forsteritic rims (Fo83-88). This indicates that the 

basanite intruding into the Laacher See magma chamber was Mg-richer than any other basanite that 

were erupted from basanitic scoria cones in the East Eifel. In contrast, olivine crystals in the 

nephelinite samples from the West-Eifel are normal zoned, have Fo-richer cores (Fo86-92) and 

similar rim compositions as olivine from Laacher See hybrid clasts (Fo87.5-91.5). 

Diffusion times for olivine from the Laacher See samples are less than 50 days to max. 410 days 

for the time between basanite-phonolite hybridization and eruption. Our approach to diffusion 

modeling is a maximum estimate. This implies that a long-lived, highly differentiated magmatic 

system such as Laacher See magma reservoir can be reactivated and erupt within months. In 

contrast, diffusion times of olivine from the basanitic samples are remarkably longer with up to 490 

days. 

 

  



 

  

 

 

Zusammenfassung 

 

Diese Dissertation behandelt die Rekonstruktion magmatischer Prozesse vor einer Eruption im 

Hinblick auf ihre zeitlichen Abläufe. Der Aufstieg von tief gespeicherten Magmen in flachere 

Reservoire und damit verbundene Magmenmischungen spielen wahrscheinlich eine Schlüsselrolle 

bei der Auslösung von Eruptionen. Die Zeit zwischen Magmenmischung und Eruption ist daher ein 

wichtiger Faktor bei der Beantwortung der Frage, wie schnell sich magmatische Systeme 

reaktivieren und eruptieren können. Die Zeitspannen magmatischer Prozesse und die chemischen 

Zusammensetzungen der beteiligten Magmen sind in zonierten Kristallen erhalten. Wir nutzen 

zonierte Olivinkristalle, um Nachschübe und Mischungen von Magmen nachzuweisen und die 

beteiligten Magmen hinsichtlich ihrer Zusammensetzung zu charakterisieren. Diese Technik wird 

auf drei verschiedene vulkanische Settings angewandt. (1) den durch Subduktion hervorgerufenen, 

basaltischen Vulkanismus am Shiveluch, Kamchatka, (2) den basaltischen Hot-Spot-Vulkan Piton 

de la Fournaise auf La Réunion und (3) das alkaline Intraplatten-Vulkanfeld der Eifel im westlichen 

Deutschland mit basanitischen bis phonolitischen Magmenzusammensetzungen. 

Olivine in Klasten aus einer Maar-Ablagerung am Shiveluch, Kamchatka, wurden mithilfe von 

Linienprofilen an der Elektronenmikrosonde untersucht, um ihre Geschichte zu rekonstruieren. 

Forsterit-reiche Olivinkerne (Fo86-91) zeigen komplexe Zonierungen mit einem normal zonierten 

Kern, einer Resorbtionsfront und einem Aufwachssaum am Rand (Fo90). Die normal zonierten 

Kerne werden als Folge einer Magmenmischung und darauffolgender Auflösung sowie teilweiser 

Reequilibrierung interpretiert, wohingegen die Aufwachssäume den Aufstieg des Magmas 

repräsentieren. Diffusionsmodellierungen von Mg-Fe und Ni ergeben Zeitspannen von 100-2000 

Tagen für die Equilibrierung der Olivinkerne, jedoch nur 1-10 Tage für den Aufwachssaum am 

Rand, was darauf hindeutet, dass der Magmenaufstieg sehr schnell ablaufen kann. 

Am Piton de la Fournaise, La Réunion, wurden Olivine aus basaltischen Proben von drei kleinen 

und einer großen Eruption analysiert, die sich während des Eruptionszyklus 2014-2015 nach einer 

beinahe vierjährigen inaktiven Phase ereignet haben. Bei den Magmen, die während der kleinen 

Eruptionen gefördert wurden, handelte es sich um höher differenzierte Basalte, deren 

Zusammensetzung während der großen August-November 2015 Eruption zunehmend mafischer 

wurde. Die Olivinkerne zeigen variable Zusammensetzungen (Fo73.2-85.1), wohingegen die Ränder 

in jeder Probe eine ähnliche Zusammensetzung haben, die mit der eruptierten Schmelze im 



 

  

Gleichgewicht steht. Olivine, die während der kleinen Eruptionen im Juni 2014 und Mai 2015 

eruptiert wurden, haben nur kurze Diffusionszeiten von Tagen bis wenigen Monaten. Zusammen 

mit den höher differenzierten Magmenzusammensetzungen und der verbundenen, flachen 

Seismizität deutet dies darauf hin, dass die kleinen Eruptionen wahrscheinlich aus weniger tief 

gelegenen Magmentaschen gespeist wurden. Im Gegensatz dazu begannen die Olivine in der Lava 

der August-November Eruption ihre Reequilibrierung während drei unterschiedlicher Episoden 

wenige Tage bis sieben Monate vor den Eruptionen im Juni 2014, Februar 2015 sowie der Zeit 

zwischen den Eruptionen im Juli und August-November. Die Korrelation zu tiefen seismischen 

Signalen sowie die Eruption zunehmend mafischerer Magmen während der großen August-

November Eruption lassen darauf schließen, dass es bereits Anfang 2014 periodisch magmatische 

Intrusionen in das zentrale Reservoir des Piton de la Fournaise gab. Diese tiefen Intrusionen und 

die damit verbundene Magmenmischung und Diffusion sind zeitlich verbunden mit den simultan 

ablaufenden, kleinen Eruptionen höher differenzierter Magmen aus flacheren Leveln. Diese tiefer 

gespeicherten, mafischeren Magmen wurden selbst jedoch erst während der großen August-

November Eruption eruptiert. 

Die Eifel im westlichen Deutschland ist geprägt durch quartären, alkalinen 

Intraplattenvulkanismus, dessen prominenteste Eruption sich vor 12.900 Jahren am Laacher See 

ereignet hat. Neun Proben des mafischen Phonoliths aus dem Oberen Laacher See Tephra wurden 

untersucht. Der mafische Phonolith gilt als Hybrid einer Magmenmischung zwischen höher 

differenziertem Phonolith in der Magmenkammer des Laacher Sees und einem eindringenden 

Basanit. Diffusionsprofile von Mg-Fe, Mn, Ca und Ni wurden in Olivinen vom Laacher See sowie 

zwei Basanit-Proben vom Rothenberg und Eppelsberg modelliert. Desweiteren wurden Olivine aus 

Basanit- und Nephelinit-Proben der Ost- und Westeifel mit Punktmessungen analysiert, um 

chemische Ähnlichkeiten zu dem Basanit festzustellen, der als Mg-reiches Mischungsendglied 

während der Magmenmischung am Laacher See Vulkan fungiert hat. Die Olivine in Klasten aus 

dem Oberen Laacher See Tephra zeigen reverse Zonierungen mit variablen 

Kernzusammensetzungen (Fo83-89) überwachsen von einheitlichen und forsterit-reichen Rändern 

(Fo87.5-89). Die Olivine aus den Basanit-Proben der Osteifel haben ähnliche Zonierungen und 

Kernzusammensetzungen (Fo83-88), aber weniger forsterit-reiche Ränder (Fo80-88). Das deutet darauf 

hin, dass der Basanit, der in die Magmenkammer des Laacher Sees intrudiert ist, Mg-reicher war 

als die, die von den basanitischen Aschekegeln in der Osteifel eruptiert wurden. Im Gegensatz dazu 

sind die Olivine aus den Nephelinit-Proben der Westeifel normal zoniert, forsterit-reicher im Kern 

(Fo86-92) und ähneln in ihrer Randzusammensetzung den Olivinen aus den Hybrid-Klasten des 

Laacher Sees (Fo87.5-91.5). 

Die Diffusionszeiten von Olivinen aus den Proben vom Laacher See ergeben weniger als 50 Tage 

bis maximal 410 Tage zwischen Basanit-Phonolith-Hybridisierung und Eruption. Unser Modell zur 



 

  

Diffusionsmodellierung ergibt maximale Zeiten. Dies zeigt, dass sich ein langlebiges, 

hochdifferenziertes, magmatisches System wie das des Laacher Sees innerhalb von Monaten 

reaktivieren und eruptieren kann. Dagegen sind die Diffusionszeiten von Olivinen aus den 

basanitischen Proben mit bis zu 490 Tagen deutlich länger.  
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1 Introduction 

 

Volcanoes have always been part of human life as a source for risk and fascination. Since early 

times, humans chose volcanic areas for their settlements due to the fertile soils, either 

underestimating or unknowing the risks of dormant but still active volcanoes. The dense population 

of many volcanic areas (e.g. the Gulf of Naples or the Eifel, western Germany) necessitate a better 

forecasting for explosive silicic eruptions. Their eruptions occur relatively rare in the time 

perception of humans, but are potentially disastrous to human life, infrastructure, and economy. 

The eruption of Laacher See in western Germany at 12.9 kyr BP, which is part of this dissertation, 

produced 6.3 km3 of tephra (DRE; van den Bogaard and Schmincke 1985) that can still be found in 

northern Italy and southern Sweden (van den Bogaard and Schmincke 1985; van den Bogaard 

1995). The eruption affected a recently densely populated area including cities as Coblenz, 

Cologne, Bonn, and Frankfurt (Leder et al. 2017; Park and Schmincke 2020). 

However, the threat of basaltic volcanoes (e.g. Kilauea on Hawaii or Piton de la Fournaise on La 

Réunion) is often underestimated due to their less violent, mostly effusive eruptions, but they 

remain nevertheless unpredictable and dangerous for inhabitants and tourists. Such are the 1783 

eruption of Laki, Iceland, whose immediate and long-term consequences caused the death of more 

than 10.000 people (Thordarson and Self 1993), or more recently the large eruptions of Piton de la 

Fournaise in 2007 (e.g. Staudacher et al. 2009; Di Muro et al. 2014) and Kilauea in 2018 (Patrick 

et al. 2018; Neal et al. 2019). 

Due to their potential to threaten human life, volcanoes are focus of extensive research with respect 

to their geological history, plumbing systems, structures, eruptions, and magmatic compositions 

(e.g. Blundy and Cashman 2008; Cashman and Giordano 2014; Magee et al. 2018). However, many 

processes within magmatic plumbing systems, especially those that potentially trigger eruptions 

(e.g. magma mixing; Sparks et al. 1977; Murphy et al. 2000; Rae et al. 2016; Viccaro et al. 2016; 

Oeser et al. 2018), are still not completely understood. In the last 20 years, the timing of magmatic 

processes with respect to the duration between their occurrence and eruption became a focus of 

interest (e.g. Costa and Chakraborty 2004; Costa and Dungan 2005; Kahl et al. 2011, 2013; 

Chamberlain et al. 2014; Albert et al. 2015, 2016, 2019; Ferguson et al. 2016; Hartley et al. 2016 

Iovine et al. 2017). How long do magmas need to ascent from mantle to surface? How fast can 

magmatic systems reactivate from dormancy and erupt?  
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The tools that have been established to constrain times and ages are radiometric dating and diffusion 

modelling (Turner and Costa 2007; Cooper and Kent 2014; Dohmen et al. 2017). Although both 

methods allow the determination of times, they differ in the type of provided information. 

Radiometric dating, giving the absolute ages of crystals, does not reveal information about 

processes into which crystals might have been involved during their history (Turner and Costa 

2007). Absolute ages do not reflect the duration of magmatic processes and the dated crystals may 

be much older than the processes immediately related to an eruption (Turner and Costa 2007). 

However, zoned crystals act as an archive preserving information about (1) magmatic composition 

and (2) the timescales of the crystal-melt contact like fingerprints in their zoning pattern (e.g. Kahl 

et al. 2011, 2013; Druitt et al. 2012; Bradshaw et al. 2018; Gordeychik et al. 2018). The zoning 

pattern can be used to model the duration of magmatic processes, which is related to the diffusive 

equilibration of zoned crystals (Chakraborty 2008; Dohmen et al. 2017). 

Diffusion of elements in zoned crystals has been widely used in the last two decades to constrain 

timescales of processes in various magmatic settings as basaltic (e.g. Costa et al. 2010; Hartley et 

al. 2016; Gordeychik et al. 2018; Brenna et al. 2018; Lynn et al. 2018; Oeser et al. 2018; Albert et 

al. 2019) and silicic systems (e.g. Druitt et al. 2012; Matthews et al. 2012; Iovine et al. 2017; Rout 

and Wörner 2018). Given an excellent monitoring record, timescales can be additionally related to 

seismic events, variations in gas emissions, or ground deformation prior to the eruption of a volcano 

to eventually link the timing of magmatic processes to depth information (e.g. Saunders et al. 2012; 

Kahl et al. 2011, 2013; Kilgour et al. 2014; Albert et al. 2019). 

 

1.1 Scope and structure of the thesis 

The research of this thesis aims at the reconstruction of pre-eruptive magmatic processes, whose 

timing and compositional information are preserved in zoned crystals. Olivine crystals were chosen 

due to their abundance in many volcanic systems and their ability to preserve short-time processes 

via fast Mg-Fe diffusion. This dissertation consists of two published and one submitted manuscript, 

which are presented as separate chapters. They comprise three distinct volcanic settings, which 

include intraplate and arc volcanism. Piton de la Fournaise, La Réunion, and Shiveluch, Kamchatka, 

are frequently active basaltic volcanoes, whereas the phonolitic Laacher See volcano belongs to a 

suite of alkalic volcanic centers in the Eifel volcanic field, Germany. 

The first chapter introduces to the mechanisms of diffusion and the available modeling techniques, 

which can be used to calculate timescales from zoned crystals. It also outlines the applicability and 

limits of diffusion modeling and their use in geosciences. A detailed description of analytical 

methods, measurement conditions, and modeling parameters used in the distinct studies is included 

in the following chapters. 



Introduction 

 3 

The second chapter addresses the basaltic Shiveluch volcano, which is part of the Kamchatka 

magmatic arc. The study attempts to reconstruct deep storage times and ascent rates of magmas 

from combined Mg-Fe and Ni diffusion modeling in olivine crystals from a maar deposit. Olivine 

crystals were analyzed with electron microprobe using a highly sensitive trace element program to 

track major (Si, Mg, Fe), minor (Ca, Mn, Ni), and trace elements (P, Al, Cr, Co, Zn) precisely. 

Diffusion profiles of four populations of complex zoned olivine crystals were modeled in different 

steps using analytical approaches. 

The third chapter covers the 2014-2014 eruptive cycle at the basaltic, hot-spot triggered Piton de la 

Fournaise volcano on La Réunion, Indian Ocean. Due to the excellent monitoring record, this study 

focuses on the link of calculated timescales from Mg-Fe diffusion in olivine crystals to geophysical 

monitoring data during the entire eruptive period and geochemical data on erupted lava 

compositions. We reconstructed magmatic activity in a transcrustal magmatic system during an 

eruptive cycle, that started after 41 months of quiescence and culminated after 1.5 yrs in one of the 

largest eruptions observed at Piton de la Fournaise (Sundermeyer et al. 2020). Line profiles in 

olivine crystals from the four small eruptions in June 2014, February, May, and July 2015 and the 

large August-November eruption were analyzed to constrain diffusion timescales using a numerical 

model. Given the end of diffusion with the cooling after the eruption, these timescales were used to 

calculate the dates, when the olivine crystals were reactivated by ascending mafic magmas. 

Compared to the monitoring record of seismicity at different depths, CO2 degassing, and ground 

deformation during 2014-2015, these episodes of olivine reactivation could be used to track the 

activity of magmas at different depths of the volcanic plumbing system with time. 

The fourth chapter adresses the phonolitic Laacher See volcano in the East Eifel volcanic field, 

western Germany. Using the analytical methods of Gordeychik et al. (2018), line profiles in olivine 

were measured focusing on minor and trace elements. Diffusion times of Mg-Fe, Mn, Ca, and Ni 

in olivine were calculated for samples from Laacher See hybrid rocks and two basanites from 

Rothenberg and Eppelsberg to track pre-eruptive basanitic recharges and discuss the role of 

recharge and mixing as potential eruption trigger at Laacher See volcano. Further point analyses 

were carried out on olivine from basanitic and nephelinitic maar deposits and scoria cones in the 

East and West Eifel volcanic field in order to characterize potential basanitic mixing endmembers. 

The last chapter summarizes the results of this dissertation. 

 

1.2 Author contributions 

Since this dissertation consists of three manuscripts, the contributions of the authors are listed in 

this chapter.  
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The paper “Growth of, and diffusion in, olivine in ultra-fast ascending basalt magmas from 

Shiveluch volcano” was published on August 06 2018 in Scientific Reports. The version given in 

this dissertation is identical to the published version. Author contributions were taken from 

Gordeychik et al. (2018): B.G. and T.C. performed the fieldwork and sampling. T.C. and G.W. 

performed the petrographic description. B.G., T.C. and A.K. performed measurements on the 

electron microprobe. T.C. and C.S. performed the orientation analyses. T.C. estimated the P-T-fO2 

conditions. B.G., T.C. and A.S. performed the mathematical modelling and computations. B.G., 

T.C., A.S., and G.W. discussed the interpretation to guide the modeling approach. B.G., T.C. and 

G.W. prepared the manuscript with all components of text and figures. All authors prepared the 

Supplementary Materials and participated in discussions related to topics of this manuscript. 

The paper “Timescales of magmatic processes during the eruptive cycle 2014-2015 at Piton de la 

Fournaise, La Réunion, obtained from Mg-Fe diffusion modelling in olivine” was published online 

on November 16 2019 in Contributions to Mineralogy and Petrology. The version given in this 

dissertation is identical to the published version. Samples were collected by Andrea Di Muro and 

the team of the OVPF during the eruptions in 2014 and 2015. The initial version of the manuscript 

was written by me. I performed the petrographic analyses, chemical analyses at the electron 

microprobe, and crystal orientation measurements at the scanning electron microscope.  Andrea Di 

Muro’s knowledge on the structure of Piton de la Fournaise helped to improve especially the chapter 

Geological setting and all aspects regarding the monitoring data and magma movement in the 

transcrustal plumbing system. Boris Gordeychik developed the analytical diffusion model that was 

used in the early phase of the study. He also gave strong support to mathematical questions and the 

theoretical background of diffusion modeling. Gerhard Wörner contributed mainly to the 

interpretation of the data, structure of the manuscript, figure-layout, and writing of the final version 

of the manuscript text. All other co-authors also commented and improved the manuscript.  

The manuscript “Timescales from magma mixing to eruption in alkaline volcanism in the Eifel 

volcanic fields, western Germany” was submitted to Contributions to Mineralogy and Petrology 

on March 13 2020. The version given in this dissertation is identical to the submitted version except 

of the correction of a few typing errors. EBSD measurements and electron microprobe analyses of 

all samples except of the line profiles, thermometry, and element distribution maps of the EPB19 

samples were done by me. Line profiles, spinel and olivine analyses for the thermometry, and the 

element distribution maps of the EPB19 samples were measured by Lena Weimann and Jochen 

Gätjen as part of a “Geochemistry Project” guided by me and Gerhard Wörner. The raw first version 

of the manuscript was written by me. Gerhard Wörner greatly contributed to the interpretation of 

the data as well as the structure and writing of the manuscript. All other authors also commented 

and improved the manuscript. 
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1.3 Introduction to elemental diffusion in crystals 

The analytical methods and diffusion models used in the distinct studies are described in detail in 

chapters 2.8, 3.4, and 4.4. This chapter will outline the general mechanisms of diffusion in crystals, 

available models, and the application of diffusion modeling to natural systems. 

 

1.3.1 Mechanisms of chemical diffusion 

The term “chemicial diffusion” describes the random movement of atoms (Crank 1975) along 

gradients of chemical potential. In a crystal lattice, ions are able under certain conditions to move 

to near vacant positions due to point defects in the crystal lattice, either created by ions occupying 

interstitial spaces (Frenkel defect) or by unoccupied places in the crystal lattice (Schottky defect; 

Balluffi et al. 2005; Zhang 2010). How fast and many ions are able to move by diffusion depends 

in general on temperature and the number of vacancies that are available for the ions to move to 

(Zhang 2010; Costa and Morgan 2011; Kohn and Penniston-Dorland 2017).  

The diffusive flux J depends on diffusivity D (diffusion coefficient) of an element and a 

concentration gradient according to Fick’s first law (e.g. Crank 1975, Eq. 1.1; Balluffi et al. 2005; 

Eq. 3.1; Costa et al. 2008, Eq. 2; Zhang 2010, Eq. 1; Costa and Morgan 2011): 

J = −D
∂C

∂x
          (1), 

where D is the diffusion coefficient, 
∂C

∂x
 is the gradient of either an element concentration C or a 

chemical potential for a distance x (Costa et al. 2008).  

The rate of diffusion is positively correlated to temperature, because a defined amount of energy 

(the activation energy) is required to induce the diffusion process (Chakraborty 2008). The 

temperature-dependent diffusion coefficient is described by the equation (Costa and Morgan 2011): 

D = D0exp (
−E−ΔV(P−105)

RT
)        (2), 

with D0 as diffusion coefficient at infinite temperature, E as activation energy, Δ𝑉 as activation 

volume, P as pressure, R as the ideal gas constant, and T as temperature. The activation energy E 

is the energy allowing an ion to move from one position to the next and the activation volume Δ𝑉 

corresponds to the crystal volume change during the movement (Ganguly 2002). 

The diffusion process can be subdivided into several types based on (1) the diffusing particle and 

(2) the surrounding medium (Zhang 2010). Diffusion along chemical gradients is used for 

timescale-modeling due to the measurable chemical differences and is termed as interdiffusion 

(Balluffi et al. 2005; Chakraborty 2010; Zhang 2010). Diffusion can occur in binary systems 

(known as binary diffusion), where two elements A and B diffuse along a chemical gradient 
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between a zone with a high concentration of A and a zone with high concentration of B, e.g. Mg-

Fe (forsterite / fayalite content, respectively) in olivine (Costa et al. 2008; Chakraborty 2010; Zhang 

2010). Diffusion over a chemical gradient is induced by different chemical potentials between both 

components, e.g. two endmember mineral compositions (Costa and Morgan 2011). In order to 

minimize the free energy, both components start to mix until the reach an equilibrium (the 

lowermost free energy possible for the whole system with both components; Costa and Morgan 

2011). Interdiffusion must be distinguished from diffusion of e.g. isotopes that occurs without any 

chemical concentration gradients (self-diffusion, tracer diffusion; Balluffi et al. 2005; Chakraborty 

2010; Zhang 2010). 

The simplest form of diffusion is one-dimensional diffusion, which can be expressed by Fick’s 

second law (e.g. Crank 1975, Eq. 7; Chakraborty 2008; Costa et al. 2008, Eq. 11a; Zhang 2010, Eq. 

5; Costa and Morgan 2011): 

∂C

∂t
=

∂

∂x
(D

∂C

∂x
)          (3). 

Eq. 3 considers a dependency of D on chemical composition, which is the case for elemental 

diffusion in many crystals, e.g. Mg-Fe, Mn, and Ni in olivine depend on the Fo-content (see Eq. 5, 

6). If diffusion is independent on composition, the Eq. 3 can be converted to a simpler form (Crank 

1975, Eq. 1.4; Zhang 2010, Eq. 2): 

∂C

∂t
= D

∂2C

∂x2          (4). 

Depending on the temperature, the diffusion process can be subdivided into several types, which 

distinguish by their dependency on P, T, fO2, and chemical composition: intrinsic, transition metal 

extrinsic domain (TaMED), and purely extrinsic (PED; Chakraborty 2008, 2010). At high 

temperatures, vacancies in the crystal lattice are dominantly intrinsic and diffusion depends merely 

on P and T (Ganguly 2002; Chakraborty 2010). At intermediate temperatures, diffusion is 

influenced additionally by oxygen fugacity (TaMED), and at low temperatures, diffusion becomes 

independent of oxygen fugacity, but is influenced by trace element contents (Chakraborty 2010). 

Within the temperature range, where diffusion in olivine is modeled, diffusion occurs mostly within 

the transition metal extrinsic domain (Chakraborty 2010). 

 

1.3.2 Diffusion in olivine 

Olivine is one of Earth’s most abundant minerals, it forms a prominent component in the upper 

mantle and is common in primitive, mantle-derived magmas. Olivine is a nesosilicate crystallizing 

in the orthorhombic system with the general formula X2SiO4 that has a solid solution series between 

the Fe-endmember fayalite (Fe2SiO4) and the Mg-endmember forsterite (Mg2SiO4; Brown 1982). 
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The octahedral position X in the crystal structure of common Mg-Fe-olivine can also be occupied 

by low amounts of Ca, Mn, and Ni (Brown 1982). Olivine usually also contains traces of Co, Cr, 

as well as P (up to 0.4 wt. %, Milman-Barris et al. 2008; mostly <0.1 wt %, Jankovics et al. 2019; 

<0.09 wt. %, this study) and Al (Milman-Barris et al. 2008). Other chemical endmembers occur 

only rarely (Mn-, Ca-Fe-, Ca-Mg-endmembers; Brown 1982). 

The diffusive exchange of Mg-Fe in olivine studied here belongs to the binary interdiffusion (Costa 

et al. 2008). In the olivine crystal structure, Mg2+ and Fe2+ are placed on the M1 and M2 positions 

within the octahedra (Brown 1982). The M1 octahedra have a chain-like order along the c-axis, 

which allows diffusing cations to move faster in c-direction and therefore creates a strong 

anisotropic effect of diffusion that must be considered for diffusion modeling (Chakraborty 2010). 

The difference in diffusion coefficients of Mg-Fe is given as 6*Da = 6*Db = Dc (Costa and 

Chakraborty 2004) with Da, b, c as diffusion coefficients along the crystallographic axes. 

Olivine belongs, together with feldspars and pyroxenes, to the most studied silicate minerals with 

respect to the diffusion coefficients of their elements (Brady and Cherniak 2010). Diffusivities of 

the divalent cations in olivine have been experimentally dertermined (e.g. Morioka 1981; Nakamura 

and Schmalzried 1984; Jurewicz and Watson 1988b; Petry et al. 2004; Coogan et al. 2005a; 

Dohmen et al. 2007; Dohmen and Chakraborty 2007, Holzapfel et al. 2007). Several studies 

investigated diffusivities of Cr (Ito and Ganguly 2006; Spandler and O’Neill 2010; Jollands et al. 

2018; Oeser et al. 2018), Ti (Spandler and O’Neill 2010; Jollands et al. 2016a), Al (Jurewicz and 

Watson 1988b; Zhukova et al. 2017; Oeser et al. 2018), Si (Houlier et al. 1990; Dohmen et al. 

2002), and H (Houlier et al. 1988; Mackwell and Kohlstedt 1990; Dohmen et al. 2002; Demouchy 

et al. 2006; Demouchy and Mackwell 2006). Diffusivities of P have been determined by Watson et 

al. (2015). Spandler and O’Neill (2010) performed additional experiments on diffusion coefficients 

of several other elements (Na, Sc, V, Co, Zn, Y, Zr, Eu, Gd, Lu, and Hf) in San Carlos olivine. 

However, it must be noticed that the diffusivities for trace elements that are given by distinct authors 

can differ by orders of magnitude (Spandler and O’Neill 2010; Cherniak and Liang 2014; Tollan et 

al. 2015). 

Similar to Mg and Fe, other divalent cations within the olivine crystal structure are suitable for 

diffusion modeling, e.g. Ni (Nakamura 1995; Lynn et al. 2017; Gordeychik et al. 2018), Ca, and 

Mn (Costa and Dungan 2005). However, Ca and Mn are mostly combined with Mg-Fe diffusion 

modeling (e.g. Costa and Dungan 2005). Other studies have shown that timescales can be obtained 

from diffusion of H (Demouchy et al. 2006), Li (Dohmen et al. 2010; Lynn et al. 2018), Be (Jollands 

et al. 2016b), Cr (Oeser et al. 2018), and P (Albert et al. 2019).  

Diffusion modeling in olivine crystals allows covering a broad range of timescales depending on 

the storage conditions of the crystals (temperature) and the elements that are chosen for modeling. 
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The most common are the divalent cations (Mg-Fe, Mn, Ca, Ni), that allow to track processes in 

the range of days / weeks and months up to (tens of) years (e.g. Costa and Dungan 2005). Modeling 

Li diffusion allows to constrain even shorter timescales in the range of hours to tens of minutes 

(Lynn et al. 2018). 

This dissertation focuses on major and minor elements (Mg-Fe, Mn, Ca, and Ni) whose diffusivities 

are described below. The diffusion coefficients of Mn and Ni depend not only on T, P, fO2, and 

crystal orientation but also on the Fo content (Girona and Costa 2013). The equations for the 

composition-dependent diffusion coefficients (m2 s-1) of Mg-Fe, Mn, and Ni are summarized by 

Chakraborty (2010): 

DMg−Fe,Mn = 10−9.21 (
𝑓O2

10−7)

1

6
103(XFe−0.1)exp (−

201000+(P−105)(7∗10−6)

RT
)  (5), 

DNi = 3.84 ∗ 10−9 (
𝑓O2

10−6)

1

4.25
101.5(XFe−0.1)exp (−

220000+(P−105)(7∗10−6)

RT
)  (6), 

with fO2 as oxygen fugacity (Pa), XFe as fayalite content (mol), and P as pressure (Pa). Eq. 5 and 6 

describe diffusion coefficients for Mg-Fe and Ni along c-axis. Diffusivity of Ca is independent of 

Fo-content and has a distinct anisotropic behavior as Mg-Fe, Mn, and Ni (Coogan et al. 2005a; 

Chakraborty 2010): 

DCa (100) = 16.59 ∗ 10−12 (
𝑓O2

10−7)

1

3.2
exp (−

19300

RT
)     (7), 

DCa (010) = 34.67 ∗ 10−12 (
𝑓O2

10−7)

1

3.2
exp (−

201000

RT
)     (8), 

DCa (001) = 95.49 ∗ 10−12 (
𝑓O2

10−7)

1

3.2
exp (−

207000

RT
)     (9). 

 

1.4 Application to natural systems 

Diffusion modeling is used in geosciences to calculate timescales from chemically zoned crystals. 

In the following, explanations focus on diffusion modeling in crystals from volcanic settings, 

although this technique is not restricted to magmatic systems. However, magmatic and 

metamorphic systems are predestinated for diffusion modeling in crystals due to the high 

temperatures required for measurable diffusion. 

Crystal zoning is created when a crystal enters a new environment, in which its composition is no 

longer in equilibrium with the host medium. The equilibrium between a mineral and its environment 

(i.e. the melt) is defined by the partition coefficient Kd =
Ccrystal

i

Cmelt
i , where Ci terms the concentration 

of an element i in the crystal and the melt, respectively (e.g. Roeder and Emslie 1970; Toplis 2005; 
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Matzen et al. 2011). Any changes of the melt composition, T, P, or fO2 due to e.g. ascent, magma 

mixing, or cooling create a new crystal equilibrium composition (Toplis 2005). If a crystal of a 

distinct composition is transferred into a new environment, it will start to change its composition 

by diffusion until it reaches a new equilibrium. The crystal may dissolve, may continue to crystallize 

or may resume crystallization after dissolution. If it does crystallize, it forms an overgrowth that is 

compositionally in equilibrium with the new melt (Oeser et al. 2015). The crystal core and rim are 

then separated by an initially step-like gradient, that smoothes with time due to diffusive 

equilibration between the “old” crystal core and the new overgrowth (Sundermeyer et al. 2020). 

Alternatively, the crystal may start to homogenize directly with the melt (Oeser et al. 2015; Fig. 1).  

 

 

Fig. 1 Schematic drawing of possible crystal evolution with time (modified after Kahl et al. 2011 and Dohmen 

et al. 2017). (a) Formation of an overgrowth (II) on an initially unzoned crystal core (I) and diffusion between 

both zones (III). With time, the step-like gradient smoothes until the crystal is completely homogenized or 

diffusion is interrupted (Gordeychik et al. 2018; chapter 2.4; chapter 4.4.4). (b) Example of an initially 

unzoned crystal equilibrating in direct contact with the melt without an overgrowth. The characteristic s-

shape of the gradient as formed in (a) is absent (Gordeychik et al. 2018; Fig. 6; Sundermeyer et al. 2020; Fig. 

3). 

 

Elemental diffusion in crystals covers a broad range of timescales depending on the mineral and 

the chosen elements. Li and H diffusion in olivine occur within minutes to hours (Demouchy et al. 

2006; Dohmen et al. 2010; Lynn et al. 2018), whereas the coupled NaSi – CaAl diffusion in 
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plagioclase takes place in the range of millions of years (Turner and Costa 2007; Chakraborty 

2008). The diversity of suitable minerals and elements, which can be analyzed with common 

techniques at sufficient precision and spatial resolution (e.g. electron microprobe), enables to track 

the rates of magma ascent (e.g. Demouchy et al. 2006; Ferguson et al. 2016), timing of recharge 

and mixing (e.g. Kahl et al. 2011, 2013; Matthews et al. 2012; Chamberlain et al. 2014; Rae et al. 

2016; Sundermeyer et al. 2020) and melt-mush interaction (e.g. Costa et al. 2010) in different 

volcanic systems. 

Common pairs of major / trace elements in abundant minerals have been established for diffusion 

modeling in volcanic systems: Mg-Fe in olivine (Costa and Chakraborty 2004; Costa and Dungan 

2005; Albert et al. 2015, 2019; Hartley et al. 2016; Viccaro et al. 2016; Bradshaw et al. 2018; 

Brenna et al. 2018; Gordeychik et al. 2018; Mutch et al. 2019; Sundermeyer et al. 2020), Mg-Fe in 

pyroxene (Morgan et al. 2004; Chamberlain et al. 2014; Krimer and Costa 2017), Sr-Ba in 

plagioclase (Zellmer et al. 1999, 2003b; Costa et al. 2003, 2010; Druitt et al. 2012), K-Na and Sr-

Ba in sanidine (Morgan and Blake 2006; Chamberlain et al. 2014; Iovine et al. 2017; Rout and 

Wörner 2019), and Ti in quartz (Matthews et al. 2012; Chamberlain et al. 2014; Seitz et al. 2018).   

In the last ten years, several studies investigated the link of diffusion modeling, chemical analysis, 

and geophysical and geochemical monitoring (e.g. Saunders et al. 2012; Kahl et al. 2011, 2013; 

Kilgour et al. 2014; Rae et al. 2016; Rasmussen et al. 2018; Ubide and Kamber 2018; Albert et al. 

2019). Frequently active volcanoes are well monitored regarding e.g. seismicity, gas emission, and 

ground deformation. It is, however, difficult to explicitly relate processes that occurred in erupted 

magmas to geophysical evidence of prior magmatic activity at depth, because monitored signals 

may be also induced by unerupted magmas or may simply be volcano-tectonic. For example, 

ascending and underplating triggered shallow magma batches to erupt during the May 2015 

eruption at Piton de la Fournaise, La Réunion, without significant mixing (Sundermeyer et al. 

2020). This gap can be closed when using the full temporal and compositional information from 

zoned crystals from many eruption cycles for reconstructing pre-eruptive processes during periods 

of unrest. The link of monitored data to compositional and temporal information improves the 

understanding of crustal magmatic activity, but is suitable only for eruptions for which a monitoring 

record exists, which restricts its applicability to frequently active basaltic to andesitic volcanoes 

(e.g. Mt. Etna, Sicily, Kahl et al. 2011, 2013; Ubide and Kamber 2018; Kilauea, Hawaii, Rae et al. 

2016; Piton de la Fournaise; La Réunion, Albert et al. 2019; Sundermeyer et al. 2020; Mt. Ruapehu, 

New Zealand, Kilgour et al. 2014). 
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1.5 Diffusion modeling 

1.5.1 Applicability and restrictions 

Diffusion modeling is an appropriate tool to constrain timescales in natural systems. However, one 

must be aware of the applicability and the limitations of this technique. First, diffusion modeling 

provides crystal residence times that can be significantly different from direct radiometric dating 

(e.g. U-Th-disequilibria, Ar-Ar-dating; Turner and Costa 2007; Cooper and Kent 2014). This 

implies that the type of timescales obtained from both techniques, i.e. what was actually dated, can 

be quite different. Radiometric dating detects the absolute total ages of the analyzed crystals from 

their crystallization to the present day (Cooper and Kent 2014). In contrast, diffusion times reports 

only on relative periods of time that the crystal spend in disequilibrium with the surrounding melt 

at temperatures high enough to allow re-equilibration (e.g. after entrainment by a new magma from 

a crystal mush or mixing of two magmas; Chakraborty 2008; Kahl et al. 2011, 2013). Any periods 

of “cold storage” are not recorded in estimated diffusion times (Cooper and Kent 2014). Timescales 

of diffusion are preserved in the crystal zoning after cooling regardless of the sample age 

(Chakraborty 2008). Since crystal zoning marks only distinct events, the times obtained from 

diffusion modeling do not provide any absolute information on crystal age. Direct dating, e.g. by 

U-Th isotope measurements, only records the time of crystallization, not necessarily the age or 

residence time of magma. 

Further, diffusion timescales can be only retrieved from crystals, whose re-equilibration remained 

incomplete due to cooling e.g. during the eruption. It must be considered that the crystal history is 

often longer and more complex than can be extracted from the zoning of major elements (e.g. 

Bouvet de Maissoneuve et al. 2016). Chemical zoning in crystals is sensitive to heating / re-

equilibration and any information is lost when the crystal completely re-equilibrates during a later 

heating event. However, the growth history of crystals can be partially reconstructed by analyzing 

slow- or non-diffusing trace elements as e.g. P and Al in olivine (Milman-Barris et al. 2008; Bouvet 

de Maissoneuve et al. 2016; Manzini et al. 2017). 

The commonly used major element diffusion modeling (e.g. Mg-Fe in olivine) is applicable only 

for certain time spans of days to years / decades (Costa and Dungan 2005) depending on 

temperature at which diffusion occured. It is restricted at low temperatures and short timescales (< 

days) due to narrow diffusion profiles and analytical limitations (Bradshaw and Kent 2017) and at 

long timescales and high temperatures due to complete re-equilibration of the crystal. This requires 

either the usage of faster (Li, H in olivine; Demouchy et al. 2006; Lynn et al. 2018) or slower 

diffusing elements (e.g. Cr in olivine; Ito and Ganguly 2006; Oeser et al. 2018) but this requires the 

availability of more sensitive analytics with higher spatial resolution (e.g. Nano SIMS for short 
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diffusion profiles or LA-ICPMS / SIMS for trace elements, if a lower spatial resolution is 

acceptable; Bradshaw and Kent 2017). 

A major disadvantage of diffusion time estimates is their large relative error. Apart from analytical 

uncertainty, the influence of many parameters such as T, P, fO2, chemical composition, crystal 

orientation, and uncertainties of the model itself (goodness of fit; Girona and Costa 2013) results in 

uncertainties that can easily reach 50 to >100% of the calculated time scale values (chapter 4.5.5). 

Temperature uncertainties have the largest impact due to the exponential dependency of D on T, 

even if the calculated temperatures are in a narrow range and only the statistical uncertainty of the 

thermometers is considered (e.g. ±10 °C, Mg in glass thermometer from Helz and Thornber 1987; 

chapter 3.5). 

 

1.5.2 Modeling parameters 

This chapter briefly outlines the basics of diffusion modeling with respect to the required 

parameters and the different modeling approaches. Detailed descriptions of the used models and 

conditions in the distinct studies are given in the chapters 2.8, 3.5, and 4.4.4.  

Several parameters must be constrained to calculate diffusion times:  

1. chemical composition of the crystal 

2. crystal orientation 

3. storage conditions (P, T, fO2) 

4. initial conditions at t0 (core and rim composition) 

5. changing conditions with time (moving boundaries, temperature and pressure changes). 

(1) Compositional profiles of zoned crystals can be obtained from measuring line profiles at e.g. 

electron microprobe, which has a variable spatial resolution of few microns depending on 

measurement conditions, the element analyzed, and the mineral studied. If the crystal zoning is only 

created by a diffusing element pair, such as Mg-Fe, accumulated backscattered electron images are 

also suitable to determine the composition, because the electron backscatter intensity (i.e. grey-

value in BSE images) is directly and only correlated to the compositional zoning (i.e. the mass 

contrasts). In this case, the BSE grey value can be calibrated for composition (e.g. Ginibre et al. 

2002; Chamberlain et al. 2014; Hartley et al. 2016; Iovine et al. 2017; Bradshaw et al. 2018; Rout 

and Wörner 2018). Based on BSE grey values, the spatial resolution is much higher compared to 

quantitative measurements with lower spatial resolution, whose modeling will result in 

overestimated timescales (Costa and Morgan 2011). An identical effect can arise from oblique 

crystal cuts, which may broaden one site of the zoning pattern (Costa and Morgan 2011; Shea et al. 

2015a). The analyzed crystals should be selected carefully to avoid oblique cuts. They are indicated 
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e.g. by asymmetrical zonation with respect to the crystal shape (Costa and Morgan 2011; Shea et 

al. 2015a). Selecting only crystals with symmetrical zoning patterns and cuts along the 

crystallographic axes as it can be estimated from the crystal shape help to reduce the risk of 

significant influence of diffusion in more than one direction (Costa and Dungan 2005; Shea et al. 

2015a). We additionally searched for grain boundaries perpendicular to the sample surface to ensure 

that the line profiles are mostly perpendicular to the zoning.  

(2) Since crystals in thin sections are mostly randomly cut, the determination of crystal orientation 

(i.e. the angle between the measured line profile and the crystallographic axes) is required, when 

diffusive behaviour in the measured crystal is anisotropic. Due to the anisotropy of diffusion in 

olivine along the c-axis, the angle between profile and a- / b-axis is less important. Crystal 

orientation can be roughly estimated from the crystal shape, but it must be considered that a tilt of 

the crystal (i.e. the c-axis) into or out of the sample, respectively, cannot be easily detected and may 

be significant (>10°) even if the crystal is apparently cut parallel to c-axis (Fig. 2).  

 

 

Fig. 2 BSE images of two olivine crystals from the August-November eruption at Piton de la Fournaise 

(Sundermeyer et al. 2020), which are apparently cut parallel to the c-axis. Whereas the angle between the 

measured profile (red line) and c-axis in the left crystal is indeed 89°, the angle is only 79° degrees for the 

right crystal that is cut nearly perpendicular to c-axis as determined by EBSD measurements.  

 

A common tool to determine crystal orientation is EBSD (electron backscatter diffraction; Prior et 

al. 1999), which can be done at a scanning electron microscope. Less precise alternatives to 

determining crystal orientation via EBSD is to either estimate the orientation from the crystal shape 

as described above or calculate maximum and minimum diffusion times for diffusion along c- and 

a- / b-axis. This, however, results in large, possibly inadequate uncertainties. For short timescales 

and already large errors due to e.g. temperature uncertainties, it may be advised to aim at maximum 
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timescales. This was applied to olivine crystals from Laacher See (Chapter 4.5.5) with maximum 

times of 50 days and up to 100 % uncertainty. 

(3) The storage conditions of the magma at which the crystal re-equilibrated must be determined 

due to the dependence of diffusivity dominantly on temperature, but also on pressure, fO2, and 

possibly H2O-content (Chakraborty 2010; Dohmen et al. 2017).  

(4) Before the measured profile can be modeled, the initial conditions at the compositional interface 

prior to onset of diffusion must be constrained (Dohmen et al. 2017). This includes the shape of the 

initial profile, the composition of the crystal core and the rim at the beginning of diffusion (see Fig. 

3a in chapter 3.5). Such information can be derived from the shape of the diffusion profile, where 

e.g. a s-shaped profile indicates an initial step-like zoning between two growth zones, whereas a 

simple gradient may originate from an unzoned crystal that equilibrated in direct contact with the 

melt (Costa et al. 2008; Dohmen et al. 2017; Sundermeyer et al. 2020; see Fig. 1 in chapter 1.4). 

The profiles of other elements (e.g. minor elements as Mn, Ca, and Ni in olivine) of different 

diffusivities should be checked to distinguish diffusion and growth. Profiles formed by diffusion 

will show narrower / steeper gradients for more slowly diffusing elements (chapter 3.5, Fig. 3b-e). 

It is also useful for minerals with anisotropic diffusion to analyze line profiles in different 

crystallographic directions, which should give similar timescales (e.g. along a- and c-axis in olivine; 

e.g. Costa and Chakraborty 2004; Costa and Dungan 2005; Costa et al. 2008; Shea et al. 2015b). It 

must be further considered that diffusion is a 3D-process, which causes the simple 1D-models to 

potentially overestimate timescales (Costa and Chakraborty 2004; Costa and Dungan 2005; 

Chakraborty 2008; Shea et al. 2015a). However, the effect of diffusion in different dimensions is 

difficult to estimate, because most samples are thin sections, where the crystals are randomly cut 

(Shea et al. 2015a).  

(5) It must be examined, if the diffusion profiles where influenced by non-diffusion processes such 

as growth or dissolution. Neglecting these possibilities may lead to timescales to be significantly in 

error, because they shorten or lengthen the profile during diffusion (moving boundaries; Costa et 

al. 2008). If the rate and the amount of growth / dissolution are known, which is particularly difficult 

to determine, their influence can be expressed by a modification of Eq. 1 (Costa et al. 2008):  

J = −D
∂C

∂x
+ 𝜈𝐶          (10), 

with 𝜈 as rate of growth or dissolution. 

 It must be also defined if the boundary compositions changed with time or remained fixed (closed 

or open system; Chakraborty and Ganguly 1991; Dohmen et al. 2017). The latter can be assumed 

if diffusion took place at the direct contact of crystal and melt. For such diffusion between crystal 

and melt, it is often simplified assumed that the melt behaves – ideally – as infinite reservoir, whose 
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composition does not change at the melt-crystal interface during the diffusion process (Spandler 

and O’Neill 2010; Kahl et al. 2011; Oeser et al. 2015; chapter 3.5). This assumption necessitates in 

theory that the elements leaving the crystal immediately diffuse away from the crystal surface and 

that, on the other hand, elements entering the crystal are not depleted in the surrounding melt. Since 

diffusion should always be much faster in melts compared to solids (e.g. in basaltic melt compared 

to olivine; Spandler and O’Neill 2010), this is a valid assumption. 

Changing storage conditions that are related to temperature changes (e.g. cooling) should be 

considered. They can be either incorporated in an appropriate numerical model (see chapter 1.5.3) 

or estimated by using an average, or maximum / minimum values, respectively. However, it must 

be taken into account that the relationship between D and T is non-linear. Most of diffusion will 

occur at temperatures close to the peak temperature, and an effective temperature for the diffusion 

modeling may be expressed by Teffective = 0.95*Tpeak for elements with an activation energy ~ 200 

kJ mol-1 (Chakraborty and Ganguly 1991; Costa et al. 2008; chapter 4.4.3).  

 

1.5.3 Analytical and numerical modeling approaches 

Since the diffusion process depends on time and measurable parameters, the time of diffusion can 

be calculated using distinct models (Costa et al. 2008). Two main modeling approaches can be 

applied to diffusion profiles using an analytical or a numerical solution. The solutions are presented 

below for Mg-Fe diffusion in olivine. A semi-infinite and an infinite analytical approach are 

detailed described in Gordeychik et al. (2018; chapter 2.6). Detailed descriptions of a finite 

numerical solution are given in Sundermeyer et al. (2020; chapter 3.5), chapter 4.4.4 and Girona 

and Costa (2013). 

Analytical approaches can be used when the diffusivity remains constant with time (i.e. the 

diffusion coefficient is independent of chemical composition). The diffusion profile can then be 

fitted using an error function (modified from Chakraborty 2008, Fig. 3a): 

𝐶𝐹𝑜 = 𝑚 ∗ 𝑒𝑟𝑓 (
𝑥

2√𝐷𝑀𝑔−𝐹𝑒𝑡
) + 𝑏       (11) 

where CFo is the forsterite content (Fo (mol%) = MgO/(MgO+FeO)*100), x is the distance, and m 

and b are the slope and intersection with the y-axis, respectively. 

Since in olivine, the diffusion coefficients for major and minor elements depend on Fo content of 

the olivine (Chakraborty 2010), the analytical solution gives different timescales compared to the 

numerical solution which can be large. An analytical approach is valuable for high-Fo olivine due 

to the decreasing dependency of D on composition with increasing Fo-content (Eq. 5, 6) or when 
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the compositional difference between core and rim is small. D can then be calculated based on the 

average Fo composition of core and rim (Oeser et al. 2015). 

Utilizing a more complex numerical model allows to consider the composition dependency of D 

(Girona and Costa 2013). Numerical models use series of space- and time-steps to find the best-fit 

for the measured profiles (Girona and Costa 2013). They also allow to simulate changing magmatic 

conditions with time by implementing e.g. cooling rates or pressure changes. The numerical model 

calculates D for every spatial step and recalculates D for every time-step considering the changing 

composition with time (Girona and Costa 2013). This makes the numerical model more precise for 

especially longer timescales and large compositional differences between core and rim (i.e. larger 

variations in D). If the modeled profiles are high in Fo (>90 mol%; Gordeychik et al. 2018) and 

have low compositional differences between core and rim (Oeser et al. 2015), an analytical solution 

is also applicable, because the uncertainties arising from the model are small compared to those due 

to temperature uncertainty (Gordeychik et al. 2018). 
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2.1 Abstract 

Complex core-rim zoning of Mg-Fe-Ni-Ca-Cr-Al-P in high-Mg olivine crystals from a tuff ring of 

Shiveluch volcano, Kamchatka, enables reconstruction of the entire olivine crystallization history 

from mantle conditions to eruption. Bell-shaped Fo86-92 and Ni profiles in crystal cores were formed 

by diffusion after mixing with evolved magma. Diffusion proceeded to the centres of crystals and 

completely equilibrated Fo and Ni in some crystals. Diffusion times extracted from Fo and Ni core 

profiles range from 100 to 2000 days. During subsequent mixing with mafic mantle-equilibrated 

melt, the cores were partially dissolved and overgrown by Fo90 olivine. Times extracted from Fo 

and Ni diffusion profiles across the resorption interface between the core and its overgrowth range 

within 1-10 days, which corresponds to the time of magma ascent to the surface. The overgrowth 

shows identical smooth Fo-Ni decreasing zoning patterns for all crystals towards the margin, 

indicating that all crystals shared the same growth history after last mixing event prior to eruption. 

At the same time, Ca, and to an even greater extent Cr, Al, and P have oscillatory growth patterns 

in the crystals overgrowth. Our data show that magma ascent can be extremely short during 

maar/tuff ring eruption. 
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2.2 Introduction 

We have a good understanding of the principal processes of compositional differentiation and 

mixing of magmas prior to their eruption. However, the duration of these magmatic processes 

preceding eruption, i.e. differentiation, storage, mixing, and rejuvenation of melts from crystal 

mush, as well as amalgamation of distinct magma batches, are yet to be understood1-7. Also, our 

understanding of how fast mantle-derived magmas transit through the crust to surface is limited. 

Diffusion speedometry is one method to extract residence times of zoned crystals at given P-T-fO2 

conditions, i.e. following recharge and mixing processes. Zoning in olivine has the potential to 

directly link recharge by new input of mafic melts into resident magmas, which is an eruption 

trigger, and ascent times from deep magma sources1,5,8. Many studies of zoned minerals focus on 

olivine and the shallow parts of magma systems in an attempt to find a link with such processes as 

degassing and seismic events before the eruption9-11. Olivine hosts a range of elements, such as Li, 

Al, Ca, Cr, Mn, Co, Ni, which have different diffusion coefficients. Information about zoning of 

multiple elements in one crystal offers the possibility of simultaneous modelling of diffusion1,8,12-

16. Diffusion of Mg-Fe and Ni in olivine is relatively fast and therefore different stages of ascent, 

crystallization and mixing of mantle-derived magmas are generally obliterated during the extended 

history of olivine crystals. Based on Ni diffusion modeling of olivine crystals from Irazú volcano, 

Costa Rica, it was suggested that magmas can rise from mantle depth during a period ranging from 

a hundred days to a few years prior to eruption5. Even such short periods were sufficiently long to 

erase any Fo zoning in olivine. Thus, the earlier record of the deeper history of olivine crystals is 

difficult to constrain. 

We document olivine crystals from a basaltic maar deposit at Shiveluch volcano (Kamchatka) that 

preserve rich records of the full history of growth and diffusion from the deep mantle source of the 

magmas to the Earth’s surface. Fo92 cores were formed from primary magmas and suffered from 

diffusional exchange to various extents in evolving host magmas. Recharge caused partial 

dissolution and renewed growth of Fo90 olivine and resulted in the formation of identical 

overgrowths on a variety of olivine cores. Subsequently, a next stage of diffusion smoothed out the 

compositional interface between cores and overgrowth. The overgrowths have distinct growth 

bands for slow diffusing Cr, Al, P, despite smooth Fo-Ni zoning. Based on Fo and Ni diffusion, we 

demonstrate that these olivine crystals had been growing at mantle depths for about 100 to 2000 

days before their final ascent to the surface in only 1-10 days. 
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2.3 Shiveluch volcano, Kamchatka: geology and sampling 

Kamchatka is one of the most active magmatic arcs in the world with abundant mafic lavas that 

contain high-Mg olivine phenocrysts. We studied here high-Mg middle-K basalts from a 

phreatomagmatic maar deposit in order to constrain the residence and ascent times for basalts 

feeding one of the most active volcanoes in Kamchatka – Shiveluch17, located near the northern 

edge of the subducting Pacific Plate18. The volcano is located about 90 km above the slab that 

descends at an angle of 35° (e.g.19,20). Petrological and geophysical studies suggest that a slab 

window beneath Shiveluch was formed by a transform fault between the Pacific and Bering Plates21-

23 and the slab edge became heated and partially melts to import a slab-melt signature to resultant 

magmatism18. The abundance of peridotite xenoliths24 indicates that the magma system is fed by 

fast-ascending mantle-derived magmas. Shiveluch volcano erupted mainly high-Mg andesites18,25,26 

during Holocene times, however, previous tephrochronological studies25,27 described two high-Mg 

tephra layers dated at 3600 yr BP and 7600 yr BP, respectively (14C dating). Our samples were 

derived from deposits of a phreatomagmatic maar that was recently discovered at the SW end of 

the Baidarny ridge28 and is likely the source of the 7600 yr BP tephra layer29. Sample SHIV-08-05 

is a weakly-vesiculated ol-cpx-pl basaltic andesite bomb and sample SHIV-08-07 was collected 

from fine-grained scoria of the phreatomagmatic tephra deposit. Euhedral olivine grains can reach 

up to 8 mm in size with inclusions of chromium spinel up to 0.05 mm. These basaltic andesites 

have SiO2=52-54 wt. %, MgO=8-8.5 wt. %, and K2O=0.85-0.95 wt. %28. The composition of 

different mineral phases (olivine, spinel, clinopyroxene, plagioclase) in our samples can be found 

in Supplementary Materials (SM) Tables SM2-A, SM3-A, and SM3-B. 

 

2.4 Compositional profiles and zoning types 

Compositional zoning in high-Mg olivine is documented by 27 profiles across 19 grains for 

elements with different diffusivities (Mg, Fe, Ni, Ca, Cr, Al, P; Fig. 1-3, supplement SM2, and 

Tables SM2-A, SM2-C). Olivine crystals show distinctly different Mg-Fe distributions: normal 

zoning (Fig. 1b), complex reverse zoning (Fig. 1d), and complex repetitive zoning (Fig. 1c), 

indicating different growth-diffusion histories. An example of an unusual Fo-Ni zoning in SHIV-

08-05 17 Ol-8-2 profile is analysed in detail in supplement SM2.1. 

We define different zones (Fig. 1a) to aid the data presentation and discussion. The core includes 

the area from the centre of a crystal to a prominent resorption surface. This smoothly curved 

interface with abundant melt/fluid inclusions occur in all crystals (Fig. 1) and all element maps, 

indicative of partial dissolution prior to further growth. The analysis shows that the resorption 

interface is also represented in the profiles as a point of NiO inflection, referred to as the Ni-kink 
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here. Cores of olivine grains have bell-shaped (Fig. 1b, c) to flat (Fig. 1d) forsterite and nickel 

distributions. Fo varies from 92 to 86 mol. % in the core and we distinguish between the inner core 

with minor Fo-Ni variations and the outer core with steeper compositional gradients. An 

overgrowth is formed on the cores after the resorption event and extends from the Ni-kink to the 

crystal margin. We term the area between core and overgrowth, i.e. around of Ni-kink, the 

transition zone. Points of inflection at the dissolution interface also occur in the Fo-profiles, but 

are not as clearly expressed as for NiO. The transition zones are variable in width in different grains 

but do not exceed 0.02 mm for NiO and 0.04 mm for Fo. The rim is defined as an outer part of the 

overgrowth which is characterized by a sharp drop in Ni and Fo close to the margin of the crystal 

(Fig. 1). 

The Fo-Ni diagram (Fig. 2a) shows individual Fo-Ni profiles and their schematic representation 

(Fig. 2b). To understand the continuous evolution of olivine compositions, dissolution, growth and 

subsequent diffusion, we distinguish four groups, from a high-Mg-high-Ni group 1 to the low-Mg-

low-Ni group 4 (Fig. 2b). Centres of cores (red points in Fig. 2) and their corresponding groups 

(grey circles in Fig. 2b) form a gentle concave downwards trend in the Fo-Ni diagram. The parts of 

profiles from the centre across the cores and transition zones are represented by green lines in Fig. 

2a and show irregular tangled trajectories, depicted schematically in Fig. 2b. These compositional 

trajectories originate at distinct core compositions but all meet at a common composition of about 

Fo89 and NiO 0.4 wt. %. From this point, the compositions in the overgrowths and rims (blue lines 

in Fig. 2a) unite and all follow identical paths of smoothly decreasing Fo and NiO (represented by 

a single blue line in in Fig. 2b). This means that the last stage of evolution in terms of Fo and Ni 

was similar for all crystals. 

To better compare profiles for many olivine crystals of different sizes, we used dimensionless 

spatial coordinates in Fig. 3a. The margin, the Ni-kink, and centre of each crystal are allocated 

coordinates of -1, 0, and 1, respectively. The transformations are linear in both intervals inside and 

outside of the Ni-kink. Such normalized profiles of Fo and NiO (Fig. 3a) for every group of olivine 

allow us to more clearly define distinct cores and transition zones, as well as common overgrowths 

and their rims. The shapes of the core Fo and Ni profiles vary continuously from bell-shaped to flat 

from group 1 to 4; Fo and Ni level differences increases in the transition zone from group 1 to 4, 

while zoning of the Fo and Ni in the overgrowth beyond the transition zone is similar in all groups. 

Group 1 cores have well-defined bell-shaped distributions for forsterite and nickel (Fig. 3). These 

zoning patterns are reminiscent of diffusion profiles. All inner cores have identical high Fo91.6-92.2 

and NiO=0.45-0.5 wt %. Their rims indicate equilibrium with less mafic and lower-Ni melt. These 

cores with bell-shaped Fo and Ni distributions contrast strongly with group 4 cores, which have 

low and flat Fo and NiO distributions inside the core (Fo86.5-87.8, NiO=0.22-0.31 wt. %). Groups 2 

and 3 are intermediate and their cores are successively lower in Fo and NiO (group 2: Fo89.9-90.8, 
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NiO=0.39-0.45 wt. %; group 3: Fo87.7-89.2, NiO=0.34-0.39 wt. %) and their zoning patterns become 

flat. Even though the Fo contents and zoning patterns of these various cores (1 – 4) are different, 

the trace element concentrations of slowly-diffusing elements (Ca, Al, P) are similar, indicating a 

common origin. 

The Fo-Ni composition of different inner cores in Fig. 2 shows a distinctly concave trend that is not 

consistent with fractional crystallization. By contrast, the overgrowth shows convex downwards 

Fo-Ni trends, which is consistent with fractional crystallization5,30-33. These observations indicate 

that (1) the cores had a similar origin but different history that has affected the Fe-Mg distribution, 

(2) the cores and their overgrowths were formed by distinct processes from different magmas and 

(3) after dissolution of the cores the crystals continued to grow from increasingly differentiated 

magma. While Fo and Ni smoothly decrease in the overgrowth, all slow diffusing elements (Ca, 

Cr, Al, P) show sharp oscillatory growth patterns (Fig. 3b, 4). 
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Fig. 1. (a) Schematic representation of core-rim zoning defining the descriptive terms used here. (b-d) Fo, 

NiO and Cr2O3 distributions in representative olivine crystals and their BSE images from high-Mg middle-K 

Shiveluch basalt. Olivine crystals show variable zoning patterns: (b) – normal, (d) – complex reverse, and (c) 

– complex repetitive. The profiles are marked by red dots on the BSE-images. All profiles were measured 

from the margin of the crystal to the most central part. Forsterite values (red) are shown on the left axis, NiO 

(blue) and Cr2O3 (green) values are shown on the right axis. Red square in Fig. 1c denotes detail shown in 

Fig. 4. 

 

 

Fig. 2. Fo-Ni variations along compositional profiles: (a) – measured olivine crystals and (b) – schematic 

representation emphasizing growth and diffusion histories. Measurements show distinct core compositions 

(red dots) and complex and irregular trajectories from the centres to transition zones (green lines) all coming 

to a common composition (blue circle). Fo-Ni depletion trend starts from this common composition and 

compositional zoning towards the crystal margins is similar for all crystals (blue lines). RI – resorption 

interface, TZ – transition zone. 
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2.5 P-T-fO2 conditions of olivine crystallization 

Pressures determined from cpx-melt equilibria range from 6 to 10 kbar (18-30 km) consistent with 

the results of cpx-only barometry (6 kbar)34. These are in good agreement with previous estimates35 

(7-9 kbar). Olivines with Fo86-92 were formed at similar or even greater depths. The rationale for 

this is: (1) pyroxene crystals were formed after olivine and are invariably smaller grading into cpx 

of the fine-grained matrix, (2) pyroxene Mg# varies from 87 to 68 (Table SM3-B) indicating 

crystallization from more evolved melt than that of the olivines, and (3) pyroxene lacks overgrowths 

on resorbed cores unlike the more complex zoning observed in the olivine crystals. 

Temperature estimates are based on Al-in-olivine thermometry36, which utilizes the Al-Cr 

distribution between olivine and spinel. We used the composition of the local spinel inclusion 

adjacent to the host olivine for every zone (Fig. 1a). Temperatures for the inner cores of olivines 

range from 1230 to 1260 °C and are lower in outer cores (1170-1190 °C; Table SM3-C). 

Temperatures vary from 1150-1220 °C in the transition zone to 1160-1200 °C and 1130-1155 °C 

in the overgrowth towards the rim, respectively. Pre-eruption temperatures of around 1100 °C in 

Shiveluch lavas35 are similar to the temperatures estimated from the rim of our olivine crystals. The 

relatively high pressures and temperatures suggest that the cores and overgrowth of the olivine 

crystals were formed under mantle conditions. 
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Fig. 3. (a) Olivine crystals with Fo and Ni zoning are divided into four groups. Spatial axes along the profiles 

are in dimensionless coordinates: the margin, the Ni-kink, and centre of each crystal are allocated coordinates 

of -1, 0, and 1, respectively. Grey fields show all data for reference. The shapes of gradients in the cores 

change from bell-shaped to flat from group 1 to 4. Forsterite and nickel contents in the centre of the cores 

decrease with increasing diffusive equilibration to a more evolved melt (“advanced core diffusion”, white 

arrows) (b) Representative compositional maps of crystals for four different groups of cores for elements of 

different diffusivities. The spectrum colors from red to violet correspond to element concentration from 

maximum to minimum. Note the smooth compositional variations for Fe-Mg distributions. Ni shows more 

structure and clearly defines the dissolution interface (Ni-kink) between outer core and subsequent 

overgrowth. Cr is an element with slow diffusivity and defines the dissolution boundary between the core 

and the overgrowth more clearly than Fe, Mg, and Ni. Cr also has retained delicate oscillatory growth zoning 

in the overgrowth on the cores. The high-chromium inclusions in olivine are chromite. 
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Numerical simulation of the temperature distribution in the mantle wedge under Shiveluch37 

provide indirect evidence of the maximum depth of origin for the olivine cores. Temperatures that 

we estimated for olivine core crystallization are 1130-1260 °C and such temperatures are predicted 

at a depth of 55-80 km. 

Oxygen fugacity is ΔQFM=+1.04±0.26 at a pressure of 6 kbar and ΔQFM=+0.90±0.26 at 10 kbar 

(Table SM3-A), both being somewhat lower than previously estimated35 for similar lavas 

ΔQFM=+1.8±0.15. 
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Fig. 4. (a) Fe-, Mg-, Ni-, Ca-, Cr-, Al-, and P-distribution maps in the olivine crystal showing distinct growth 

zones. Here we show only a small part of crystal SHIV-08-05 17 Ol-8 that is marked by a red frame in Fig. 

1c. The spectrum of colors from red to violet corresponds to element concentration from maximum to 

minimum. Many other crystals that we analyzed have similar zoning patterns. (b, c) – detailed profile with 

steps of 0.001 mm, marked by white arrows on Fig. 4a, shows variable widths of the high-concentration 

zones, which depend on their relative diffusivities (P<Al<Cr<Ca<Fe-Mg). For example, the half-widths of 

Al peaks are only 2-3 microns. Ca and Ni profiles are increasingly smoother and Fe-Mg profiles show almost 

equilibrated profiles across peaks for P, Al, Cr. This clearly indicates that the overgrowths of the olivine 

crystals were initially zoned in all these elements during crystallization but subsequent diffusion has partially 

erased Mg/Fe and, less so, Ni zoning patterns. 

 

2.6 Discussion: growth and diffusion history 

The olivine crystals record two distinct stages of crystallization for core and overgrowth, which are 

separated by a dissolution interface. With respect to diffusion in the core, we distinguish two stages 

(Fig. 3a): (1) outer core diffusion that does not reach the centres of the crystals, preserving initial 

Fo and Ni values in their inner cores (group 1); (2) advanced core diffusion smoothed out the 

gradients and also decreased the Fo and Ni in the centres of the cores forming olivine groups 2-3 

with partial and olivine group 4 with complete equilibrium with a more evolved melt. A third stage 

of diffusion (3) occurs across the dissolution interface between core and its overgrowth that formed 

after recharge by a more mafic magma. A last diffusion stage (4) affected the overgrowth towards 

the crystal margin. We will now discuss these four diffusion stages and try to assess time scales by 

modeling their gradients. 

Outer core diffusion has not affected the maximum values of Fo and NiO in the inner core. Initial 

compositions of the flat core38-40 Focore=92 mol. % and NiOcore=0.5 wt. % indicate that these crystals 

were formed in a mantle-derived magma41. Subsequently, due to mixing with more evolved melt, 

the composition of the outer cores equilibrated with a new melt to values of Fodm and NiOdm. Here 

“dm” refers to the original (now dissolved) margin of the crystals (now cores) that have been 

modified by dissolution and overgrowth. The analytical solutions for one-dimensional diffusion can 

be formulated for both, Fo and Ni and describe the profiles from the margin with coordinate xdm 

into the core: 

𝐹𝑜 = 𝐹𝑜𝑑𝑚 + (𝐹𝑜𝑐𝑜𝑟𝑒 − 𝐹𝑜𝑑𝑚)𝐸𝑟𝑓 (
1

2√𝐷𝐹𝑜
∙

(𝑥−𝑥𝑑𝑚)

√𝑡
),     (Eq. 1) 

𝑁𝑖𝑂 = 𝑁𝑖𝑂𝑑𝑚 + (𝑁𝑖𝑂𝑐𝑜𝑟𝑒 − 𝑁𝑖𝑂𝑑𝑚)𝐸𝑟𝑓 (
1

2√𝐷𝑁𝑖
∙

(𝑥−𝑥𝑑𝑚)

√𝑡
).    (Eq. 2) 
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Where: Erf – error function, t – time, x – spatial along the diffusion profile, DFo and DNi – the 

diffusion coefficients for Fo and Ni, respectively. The values with the index “core” refer to the 

centre of a crystal. 

Elimination of (x-xdm)/t1/2 from the analytical solutions gives equation 3 linking Fo and Ni variations 

through the inverse error function Erf-1 along the diffusive profiles independent of diffusion time 

and xdm position: 

𝐸𝑟𝑓−1 (
𝑁𝑖𝑂−𝑁𝑖𝑂𝑑𝑚

𝑁𝑖𝑂𝑐𝑜𝑟𝑒−𝑁𝑖𝑂𝑑𝑚
) = √

𝐷𝐹𝑜

𝐷𝑁𝑖
𝐸𝑟𝑓−1 (

𝐹𝑜−𝐹𝑜𝑑𝑚

𝐹𝑜𝑐𝑜𝑟𝑒−𝐹𝑜𝑑𝑚
).     (Eq. 3) 

This simple formula represents diffusive Ni and Fo co-variations by a linear relation where the 

slope only depends on the relative values of the diffusion coefficients. Fig. 5 shows three examples 

from outer core diffusion profiles. Fig. 5c with Fodm=88.7 and NiOdm=0.23 wt. % documents a 

linear correlation between left and right sides of eq. 3 for three crystals which directly confirms the 

diffusive nature of the compositional gradients. From the slope of the regression line, the relative 

diffusions coefficients are determined to be DNi/DFo=0.86. 

We modeled diffusion times as explained in Methods section and supplement SM4. Table SM4-A 

contains the results for 5 profiles on 3 grains from group 1 olivine cores, an example of our 

modeling can be found in Fig. 6a. The diffusion time estimated for outer core diffusion ranges from 

400 to 1800 days (Fig. 7, blue line). 

Advanced core diffusion was the next stage of outer core diffusion. Advanced core diffusion not 

only smoothed the gradients, but also decreased the Fo and Ni in the inner cores. This suggests 

diffusive equilibration of olivine cores with a more evolved melt that was incomplete in groups 2 

and 3 but complete in group 4 (Fig. 3). 

The centres of the four groups of olivine cores (red dots in Fig. 2) exhibit a low-sloping, scattered 

Fo-Ni trend with a concave downwards shape that contrasts with typical convex fractionation 

crystallization trends. Such a concave trend has not been previously described for olivines from arc 

rocks. To interpret this finding we consider the problem of Fo and Ni decrease by diffusion with 

respect to different diffusion coefficients for DFo and DNi. Focore and Nicore are the initial values in 

the crystal at time 0, Fodm and Nidm are compositions for olivine in equilibrium with more evolved 

surrounding melt on the dissolved margin of the crystal. By analogy with heat conduction, it is 

possible (e.g.42) to describe chemical diffusion and the change of Fo and NiO in the crystals as a 

function of time using Newton’s cooling law43: 

𝐹𝑜 = 𝐹𝑜𝑑𝑚 + (𝐹𝑜𝑐𝑜𝑟𝑒 − 𝐹𝑜𝑑𝑚) ∙ exp(− 𝑡 𝜏𝐹𝑜⁄ ),     (Eq. 4) 

𝑁𝑖𝑂 = 𝑁𝑖𝑂𝑑𝑚 + (𝑁𝑖𝑂𝑐𝑜𝑟𝑒 − 𝑁𝑖𝑂𝑑𝑚) ∙ exp(− 𝑡 𝜏𝑁𝑖⁄ ).     (Eq. 5) 
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Here τ is relaxation time, which depends on the size and form of the crystals and is inversely 

proportional to the diffusion coefficient. By cancelling out time and using the relation between 

relaxation times and diffusion coefficients, the dependency of Fo and NiO on time (Eq. 4-5) can be 

reduced to a function that describes the dependence of NiO from Fo as expressed in Eq. 6. This 

equation gives the dependence of Ni from Fo for a high-Mg and high-Ni crystal that was exposed 

to a low-Mg and low-Ni melt: 

𝑁𝑖𝑂 = 𝑁𝑖𝑂𝑑𝑚 + (𝑁𝑖𝑂𝑐𝑜𝑟𝑒 − 𝑁𝑖𝑂𝑑𝑚) ∙ (
𝐹𝑜−𝐹𝑜𝑑𝑚

𝐹𝑜𝑐𝑜𝑟𝑒−𝐹𝑜𝑑𝑚
)

𝐷𝑁𝑖
𝐷𝐹𝑜.    (Eq. 6) 

 

 

Fig. 5. Fo (a) and NiO (b) profiles across Mg-rich olivine cores from group 1 show diffusion after the mixing 

event with a more evolved melt (which is in equilibrium with Fomargin=88.7 mol. % and NiOmargin=0.23 wt. 

%). Diffusion only affected the outer cores, the inner cores remained at maximum values of about Fo92. (с) 

The plot shows the correlation between inverse error function for Fo-values and inverse error function for 

Ni-values. The slope of the dashed line shows the DNi/DFo ratio of 0.86 for the outer core diffusion. 
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Using the values Fodm=86.4 mol. % and NiOdm=0.22 wt. % from group 4 olivine, the DNi/DFo 

relation was determined to be 0.74 by least squares fitting of the observed core compositions, which 

are represented by red points in Fig. 2b. The dependence of Fo is quantitatively represented in Fig. 

2b by the violet line. In our case DNi/DFo<1 therefore the violet line has a concave curvature, which 

is distinctly opposite to the convex trend for fractional crystallization represented by the blue line 

in Fig. 2b. 

However, Newton’s cooling law and its diffusion analogy have a number of limitations: (1) the 

crystal is treated as a point object, (2) the law is not applicable to partial diffusion that does not 

reach the centre of the core and so does not describe the complete process from its starting point in 

time, and, finally (3) anisotropic properties of the crystal are not considered. 

On the other hand, these limitations do not affect the curvature of the modeled diffusion trend. The 

problem regarding component concentration in a diffusion sphere with a finite radius at any time is 

accurately solved by equation 6.18 from ref.44. Calculations using this complex formula with an 

exponential series instead of Newton’s cooling law (Eq. 4-5) and the detailed numerical simulation 

of anisotropic diffusion in crystals of various shapes and size also all yield a concave shape for the 

Ni-Fo relation at DNi<DFo. The details of these analyses, however, are beyond the scope of this 

paper. 

The use of Newton’s cooling law as an analogue for diffusion provides a simple analytical 

explanation for the concave trend for high-Mg high-Ni olivines undergoing diffusion and re-

equilibration after being exposed to a low-Mg, low-Ni melt at DNi<DFo (violet line, Fig. 2b). In 

other words, the concave trend shows that the crystal exchanges Fo faster than Ni with the new melt 

as long as DNi<DFo. Thus, concave trends in Ni-Fo space in olivine that run contrary to typical trends 

during fractional crystallization can be taken as solid evidence for diffusion. 
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Fig. 6. Three representative profiles with model approximations of the observed data used for the diffusion 

time estimates: (a) – outer core diffusion, (b) – advanced core diffusion, and (c) – diffusion between core and 

overgrowth. Fo profiles are shown in red (left axis), and NiO profiles shown in blue refer to the axis on the 

right. Only data points with filled circles were considered in the modeling. The solid lines show the calculated 

model result based on an analytical approximation (described in Methods section and supplements SM4-

SM6). Red and blue arrows are the widths of diffusion zones ΔFo and ΔNi, respectively. Dashed lines are the 

calculated positions of the dissolved margin of the cores before their resorption. Dash-dotted lines are the 

positions of crystal’s centre. Red and blue dotted lines are the positions of the resorption interface across 

which diffusion occurs between core and overgrowth for Fo and Ni, respectively. 
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Fig. 7. Results of individual diffusion time calculations for many measured gradients of the different diffusion 

stages in the form of a frequency diagram: for outer core diffusion (blue line), advanced core diffusion (green 

line) and diffusion across the resorption boundary (red line). Ranges for diffusion time values are defined by 

the half-width of the distributions.  

 

The Methods section and supplement SM5 document the model fits by equation 6.18 from ref.44 

for 18 profiles on 15 grains from which diffusion times were extracted, except for the fully 

equilibrated cores of group 4. Examples of such model fits can be found in Fig. 6b. Based on the 

entire data set, we conclude that the time scale of diffusion that modified the outer cores of the 

crystals range from 100 to 2000 days (Fig. 7, green line). Since outer core diffusion is only a 

particular case of advanced core diffusion for the largest grains, both diffusion time estimates 

should be similar, which is indeed the case (400 to 1800 days for outer core diffusion vs. 100 to 

2000 days for advanced core diffusion). 

Such complexly Fo- and Ni-zoned cores of olivine crystals have not been documented before and 

is most likely due to fast Fo-Ni diffusivity and magmatic residence times at high temperatures 

during and/or after ascent are typically much longer. This observation and our modeling then 

implies that most mafic magmas have transfer times from source to surface that would normally be 

>2000 days or longer. Instead, our olivine crystals from Shiveluch must have had unusually fast 

ascent times, as discussed in more detail below. Another conclusion we made is that concave Fo-

Ni trends reflect a diffusion process with DNi<DFo (Fig. 2b). Such concave compositional trends 
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have previously been documented in olivine crystals from komatiites and kimberlites45-51 and 

probably indicate similar diffusion process. 

Diffusion between crystal core and overgrowth followed after mixing with, and growth from, a 

more mafic higher-temperature recharge magma into the reservoir where the olivine crystals resided 

in a more evolved melt. The diffusion interface is clearly marked by the sharp breaks in 

concentrations of slowly diffusing elements (Cr, Al and/or P, Fig. 1, 3, 4, Tables SM2-A, SM2-C), 

as well as by Ni-kink between outer cores and overgrowth (Fig. 1, 3, 4, Tables SM2, SM2-C). The 

Fo and NiO profiles from group 4 olivines (Fig. 3a) are the best for diffusion modeling as the 

initial/boundary conditions allow the application of the analytical solutions. 

As an alternative interpretation to the origin of the four groups of olivine cores, low-Mg olivine 

could also form after fractional crystallization in a more evolved melt, rather than exchange by 

diffusion with an evolved melt after magma mixing. Irrespective of the origin of group 4 olivine 

cores, a magma mixing event is clearly indicated by the resorption interface and so we can use the 

width of the transition zone to determine the time elapsed since the mixing event. As emphasized 

above, there are continuous transitions from core group 1 to group 4, which would not be expected 

if there had been two distinct processes and two distinct magmas that formed these cores. Therefore, 

we prefer the interpretation of diffusive exchange to explain the different core types. 

We measured and modeled diffusion of both Fo and NiO across the resorption interface (the 

analytical solutions of the diffusion equations and comparison with observed gradients are 

described in Methods section and supplement SM6). The width of the diffusion zones for Ni are 

consistently narrower than that for Fo, suggesting DNi<DFo. In previous studies, such diffusion 

modeling was performed separately either for forsterite38 or for nickel5 and modeling of olivine 

profiles with simultaneous exchange Fo and NiO has only been described previously for the rims 

of crystals1,52. However, as we show in this study, such rims may be affected by both diffusion and 

crystal growth and comparing results for Ni and Fo may not be reasonable in this case. However, 

the measured data and our modeling across the resorption interface allows us, for the first time, to 

directly assess the contribution of each diffusion component. 

The modeling of diffusion time is documented for 8 profiles on 3 grains across the transition zone 

for group 4 cores in Table SM6-A. An example of a model fit to the data can be found in Fig. 6c. 

The diffusion times range from 1 to 10 days (Fig. 7, red line). Thus, the time of diffusion between 

core and overgrowth is orders of magnitude shorter than the time of diffusion that had affected the 

cores prior to their resorption. 

Zoning and diffusion in the overgrowth must have postdated the resorption event and at least partly 

the subsequent overgrowth. All profiles outside the transition zone towards the margin show the 

same compositional Fo-Ni trends (blue lines in Fig. 2). This and oscillatory growth bands in Cr, Al, 
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and P (Fig. 3, 4) clearly demonstrates that (1) all crystals had a common history after the mixing 

event and (2) this history was dominated by crystallization from the current host melt. The widths 

of the Fo and Ni gradients in this growth zone are significantly wider than widths across the 

resorption interface. This indicates that smoother gradients within the overgrowth cannot result 

from diffusion, because the time of diffusion within cannot be longer than for diffusion further 

inside the crystal. Thus, the formation of the overgrowth reflects olivine growth in a progressively 

evolving melt. Repeated excursions to more mafic compositions (high Cr) are inferred to reflect 

minor recharge events during the fractional crystallization process. However, these high Cr growth 

zones are also enriched in Ca, Al, and P. Slow-diffusing P can be strongly affected by slow kinetics 

during fast crystal growth13,53-55. Therefore we ascribe the narrow oscillatory growth bands to 

kinetic effects rather than growth from changing melt compositions. In any case, diffusion after 

growth has partially smoothed out variations in Mg, Fe, Ni and – less so – Ca, but not for Cr, Al 

and P. 

 

2.7 Conclusions 

Successive stages of olivine growth and diffusion history are schematically shown in Fig. 8 and 

described below: 

1. Olivine cores were formed from a high-Mg and high-Ni melt and initially had a uniform Fo and 

Ni composition (Fo92 and NiO~0.5 wt. %; Fig. 8a). 

2. These olivine crystals encountered a more evolved melt in which they diffused to different 

extents towards an equilibrium composition of Fo86,4 and NiO~0.22 wt. % at their rims (Fig. 8b). 

When the diffusion process did not reach the inner cores (group 1) this indicates times scales 

ranging from 400 to 1800 days (Fig. 7, blue line). The inner cores of olivine of groups 2 and 3 were 

affected by diffusion to variable degrees with diffusion times ranging from 100 to 2000 days (Fig. 

7, green line). Some olivine crystals completely equilibrated with this evolved melt (group 4). 

3. The next event in the history of these olivine crystals was magma mixing with a new high-Mg 

and high-Ni melt. Due to the high temperature of this melt, the rims of olivine cores were partly 

dissolved creating a prominent resorption interface between cores and their overgrowths (Fig. 8c). 

4. Subsequent cooling resulted in new high-Fo and high-Ni olivine growths over the resorption 

interface that formed the overgrowth of the crystals (Fig. 8d). Newly grown olivine in this zone is 

enriched in Cr2O3 up to 0.3-0.4 wt. %. Further crystallization produced olivine down to Fo80 towards 

the rims of crystals and concentric, oscillatory and correlated growth bands of slow-diffusing 

elements (Cr, Al, P; Fig. 4) that most likely formed by kinetic effects during fast crystal growth. 
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5. While Cr, Al, and P show sharp growth bands in the overgrowth, Fo and NiO variations were 

partly smoothed out by diffusion at the same time during which diffusion modified the resorption 

interface (Fig. 8e). The duration of this last growth and diffusion stage is only 1-10 days (Fig. 7, 

red line). This suggests a very short time between the last recharge event (core resorption) and 

surface eruption. 

Thus, high-Mg high-Ni overgrowths on the cores were formed only a few days after the last mixing 

event and this mixing event likely triggered the eruption. The composition of recharging melt at the 

resorption interface has Mg#=64-6528, i.e. it is close to a mantle-derived melt and from this we 

conclude that mixing took place close to mantle levels which is in accord with the P-T-fO2 

conditions of olivine crystallization (18-30 km). Therefore, ascent from such depths should have 

taken place within 1 to 10 days, implying ascent rates of 80 to 1200 m/h. By contrast, the formation 

of the cores, their storage and magma mixing and diffusion must have all occurred at mantle levels 

around 100 to 2000 days before eruption. 
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Fig. 8. The schematic evolution of the complex growth, dissolution and diffusion history of olivine crystals 

from high-Mg middle-K Shiveluch basalt is depicted in simplified centre-to-margin Fo-profiles. (a) The high-

Mg olivine with a flat Fo-distribution were formed first. (b) High-Mg cores were exposed to a low-Mg melt 

after magma mixing. As a result, olivine crystals were affected by diffusion to differing extents and 

decreasing Fo is observed. (c) Recharge with a hot high-Mg melt dissolved outer parts of the zoned olivine 
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crystals, and (d) high-Mg overgrowths were formed over the different types of resorbed cores. (e) Finally, 

diffusion across the resorption interface and across the overgrowth started. Compare these final Fo-profiles 

to the measured profiles in Fig. 1 and Fig. 3. Blue dotted line indicates the position of the resorption interface. 

 

Fast ascent may be more frequent than previously thought because slow cooling during the late 

stages of ascent and cooling in lava flows or recharge into larger shallow magma reservoirs within 

volcanic edifices, generally erases zoning records like those described here. One possibility for 

preserving records of fast ascent of mafic magmas from great depth is the nature of the maar 

eruption which has formed the 7600 BP Shiveluch tephra deposit. Such phreatomagmatic eruptions 

in general tend to (1) be derived from basalts that ascend relatively fast, possibly driven by deep 

CO2-degassing and (2) therefore often carry abundant xenoliths 

Relatively short timescales of hundred days to a few years were documented for ascent of mafic 

magmas from mantle depths5. However, in these olivine crystals Fo-zoning had already been erased 

by diffusion processes and the width of the Ni-diffusion zone was about 100 μm, i.e. much wider 

than the width of the Ni-diffusion zone of 3-13 μm that we observe here (Table SM6-A). The time 

scales for ascent of magmas and olivine crystals in lavas of the Shiveluch 7600 BP eruption 

apparently rose to the surface by orders of magnitude faster. 

Our research shows that crystal growth, mixing and diffusion processes on the way from mantle 

source to surface may be quite complex and the time of ascent can be fast – just a few days before 

the eruption. 

 

2.8 Methods 

2.8.1 Microprobe analyses 

All measurements were conducted with a JEOL JXA 8900RL electron microprobe at the GZG 

(Geowissenschaftliches Zentrum Göttingen), Göttingen University. We used specifically designed 

high-precision methods based on increased current and increased voltage56. The electron 

microprobe was configured at accelerating voltage of 20 kV, beam current of 300 nA, and focused 

beam of 0-5 μm in diameter. The methods allowed us to analyse olivine profiles for major and trace 

elements, to conduct precision microelement measuring for thermobarometry, and to build 

elemental maps. All methods including standards and references are described in the supplements 

SM1.1-SM1.2. 
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2.8.2 Crystal orientation 

The crystal orientation was determined via electron backscatter diffraction57 (EBSD) on a Quanta 

200 F instrument at the Crystallography Department at the GZG, Göttingen University. For EBSD 

analysis, the thin sections were polished in addition to the normal procedure for EMS to a final 

polishing fineness of 0.05 μm Al2O3. Every sample was covered with a very thin carbon layer to 

minimize electrostatic charge due to the high vesicularity of the samples. Several points were 

measured along the compositional profile of every grain to ensure that crystal orientation does not 

change within the crystal due to cracks or deformation. All details are included in supplement 

SM1.3, the results of measurements are shown in Tables SM2-B and SM2-C. 

 

2.8.3 P-T-fO2 conditions 

Temperature estimates for olivine crystallization are based on Al-in-olivine thermometry36, which 

utilizes the Al-Cr distribution between olivine and spinel (Table SM3-A). Oxygen fugacity was 

estimated by using the improved Ballhaus-Berry-Green ol-opx-sp oxybarometer58. To calculate the 

pressure, we use H2O estimates in the melt as 4%59. Pressure was determined from cpx-melt 

compositions and cpx-only barometry34. The details of the P-T-fO2 estimates are included in 

supplement SM3, mineral microprobe analyses used for P-T-fO2 estimates and individual values 

are shown in Tables SM3-A, SM3-B, SM3-C. 

 

2.8.4 Diffusion coefficients 

Diffusion coefficients were calculated using estimated P-T-fO2 conditions with correction for 

crystal orientation (Table SM2-B), as described in supplement SM3. Table SM3-C contains 

diffusion coefficients for all zones of the crystals, calculated4 with P-T-fO2 conditions and Fo 

content in these zones. In our calculations for every profile we selected the values of the slowest 

and fastest diffusion coefficients. For modelling of diffusion inside the cores we used external P-

T-fO2 conditions determined for the transition zones. For modeling of diffusion in the transition 

zone we used P-T-fO2 conditions determined for the overgrowth. 

 

2.8.5 Analytical approximations of diffusion profiles 

For the approximation of the measured profiles by the least square method in the case of outer core 

diffusion we used the analytical solution of the one-dimensional problem for diffusion in a semi-

infinite medium (Eq. 3.13 in ref.44). For the initial conditions and the boundary condition at infinity 

we used the values of Fo and Ni in the centres of a olivine cores. For the boundary conditions of 
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the dissolved margin of the cores we used the estimate (Fig. 5c) values Fodm=88.7 and NiOdm=0.23 

wt. %. Simultaneous adjustment for Fo and Ni solutions allowed to find the diffusion times and the 

position of the dissolved margin for every profile. All details are included in supplement SM4 and 

Table SM4-A. An example of the approximation between data and the model is given in Fig. 6a. 

For the approximation of the measured profiles by the least squares method in the case of advanced 

core diffusion we used the analytical solution of the spherically symmetric problem for diffusion in 

a sphere (Eq. 6.18 in ref.44). For the initial conditions we used the composition of the most 

magnesian core SHIV-08-05 17 Ol-7 from group 1, Focore=92.16 and NiOcore=0.48 wt. %. For the 

boundary condition on the margin of the sphere we used the average composition of the olivine 

from group 4, Fodm=86.4 and NiOdm=0.22 wt. %. Simultaneous adjustment for Fo and Ni solutions 

allowed us to find the diffusion time and the position of the dissolved margin for every profile. All 

details are included in supplement SM5 and Table SM5-A, an example for the model fits can be 

found in Fig. 6b. 

For the approximation of the measured profiles by the least squares method in the case of transition 

zones we used the analytical solution of the one-dimensional problem for diffusion in an infinite 

medium (Eq. 3.13 in ref.44). The initial and boundary conditions on both sides of the diffusion zones 

were automatically determined by parameter fitting of the analytical solution. The solutions for Fo 

and Ni were approximated independently. All details are included in supplement SM6 and Table 

SM6-A, an example for the model approximation can be found in Fig. 6c. 
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3.1 Abstract 

Piton de la Fournaise started a new eruptive cycle in June 2014 after 41 months of quiescence. The 

small eruptions in June, February 2015, May, and July produced evolved basalts, whereas magmas 

of the large August-November eruption became increasingly mafic. Compositional zoning of 

olivine crystals was analysed to model diffusion times representing residence times between magma 

mixing and eruption. These correlate to the geophysical and geochemical records. Olivine crystals 

of various core compositions (Fo73.2-85.1) were periodically reactivated days to seven months prior 

to June 2014 and February 2015 eruptions and during July and August-November by different 

magmas (in equilibrium with Fo77.7-84.5). June 2014, February, and May eruptions were fed from the 

top of the reservoir as shown by the eruption of evolved magmas and olivine crystals with short 

diffusion times. At the same time, olivine crystals were reactivated probably from mush by 

recharging basalt during the formation of hybrid magmas (in equilibrium with Fo80.1-84.5) in the 

central reservoir. These hybrids remained unerupted (> 235 days) until October 2015. However, 

products of July 2015 eruption bear already olivine crystals with long diffusion times, which is a 

strong similarity to those of the August-November eruption 2015. This eruption marks the transition 

between earlier small eruptions fed from shallow levels to those fed from the central reservoir. 
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Such linking of magma mixing and activation processes and geophysical signals helps for a better 

understanding of the process and timescale of eruption at Piton de la Fournaise and basaltic hotspot-

related magma systems in general. 

 

3.2 Introduction 

Modelling of elemental diffusion profiles in zoned crystals from basaltic lavas is an important 

technique to constrain chemical compositions of crystals and their relative timescales of residence. 

These can be linked to magmatic processes such as ascent, recharge and mixing of magmas that 

govern a sequence of eruptions at active basaltic volcanoes (Zellmer et al. 1999, 2003; Costa et al. 

2003, 2010; Costa and Chakraborty 2004; Morgan et al. 2004; Costa and Dungan 2005; Oeser et 

al. 2015, 2018; Cooper et al. 2016; Viccaro et al. 2016; Albert et al. 2019). Distinct populations of 

olivine compositions allow the identification of variable magma batches, whereas diffusion times 

after reservoir recharge and magma mixing can constrain times of magma residence and 

“reactivation” of older crystals. Such reactivation occurs when olivine crystals that were previously 

stored in crystal mush are entrained by new magma or are displaced into a hybrid magma after 

mixing. This reactivation initiates diffusive equilibration of the crystals with the new host magma. 

For well-documented eruptions, the timing of these processes and eventual eruption of their 

magmatic products can be related to monitoring data (seismicity, ground deformation and gas 

composition and fluxes) recorded over similar timescales (e.g. Kahl et al. 2011, 2013, 2015; 

Saunders et al. 2012; Rae et al. 2016; Ruth et al. 2018; Albert et al. 2019).  

Diffusion of Mg and Fe in olivine crystals allows to extract timescales of days to a few years which 

has been shown to be applicable to magmatic processes that govern active basaltic magma plumbing 

systems (e.g. Costa and Chakraborty 2004; Costa and Dungan 2005; Kahl et al. 2015; Hartley et al. 

2016; Rae et al. 2016; Viccaro et al. 2016; Gordeychik et al. 2018). Our understanding of active 

basaltic magma plumbing systems changed in recent decades from that of a single (often spherical) 

magma chamber filled with melt to the concept of a network of sills and dykes, partly filled with 

older magma batches and their heterogeneous crystal mushes in a transcrustal magma system 

(Marsh 2006; Kahl et al. 2011; Cooper and Kent 2014, Cooper et al. 2016; Gordeychik et al. 2018) 

that is fed by deep magmatic recharges from the mantle. This model is derived from the observation 

of frequent and complex interactions between melts and crystals of different compositions and ages 

in shallow systems, the disaggregation of crystal cumulates, and incorporation of older antecrysts 

into new recharging magmas (Costa et al. 2010; Salaün et al. 2010; Cashman and Giordano 2014; 

Cooper et al. 2016). 

The interaction of different magma batches and the recharge of shallow stored reservoirs with mafic 

magma can occur months to only days prior to eruptions in basaltic systems, as shown by previous 



Timescales of magmatic processes during the eruptive cycle 2014-2015 at Piton de la Fournaise, La Réunion, obtained 

from Mg-Fe diffusion modelling in olivine 

 61 

studies on e.g. Tatara San Pedro, Chile (Costa and Dungan 2005), Llaima, Chile (Ruth et al. 2018), 

Kilauea, Hawai’i (Rae et al. 2016), Laki, Iceland (Hartley et al. 2016), and Mt. Etna, Sicily (Kahl 

et al. 2011, 2013, 2015; Ubide and Kamber 2018). In contrast, longer timescales and multi-step 

mixing are documented for several arc volcanoes, which can range from months and few years (e.g. 

Irazú, Costa Rica; Oeser et al. 2018; Shiveluch, Kamchatka; Gordeychik et al. 2018) to decades 

(Volcán San Pedro, Chile; Costa and Chakraborty 2004). Although many basaltic volcanoes such 

as Piton de la Fournaise, La Réunion (Fig. 1), are well monitored and studied due to their frequent 

activity, many details of processes within the plumbing system and their link to ground-based 

geophysical and geochemical monitoring data remain poorly constrained.  

In this study, the elemental diffusion in olivine crystals from June 2014, May, July, and August-

November 2015 eruptions at Piton de la Fournaise was modelled in order to identify magmatic 

recharge and mixing after an unusually long phase of volcano quiescence in 2010-2014. We choose 

Mg-Fe to track magmatic processes at timescales of weeks to months before and during the 

eruptions. The olivine crystals studied here originate from both, crystal mushes stored in the shallow 

system and entrainment by new and more mafic olivine-bearing basaltic magmas rising from deeper 

levels. We relate the composition of olivine crystals and their diffusion times after reactivation to 

the well-documented timing of individual eruption episodes and to the monitoring signals of unrest 

that were recorded during and prior to each eruptive event between June 2014 (i.e. six months 

before the eruption) and the final climactic activity of Piton de la Fournaise between August and 

November 2015. 

 

3.3 Geological setting 

Piton de la Fournaise (PdF) in the south-eastern part of La Réunion Island, Indian Ocean, is one of 

the most active volcanoes in the world. The plumbing system of PdF consists of a shallow reservoir 

at + 0.5 to – 1.5 km below sea level (Nercessian et al. 1996; Peltier et al. 2009, 2016; Prôno et al. 

2009) and a network of sills and dikes above sea level extending beneath the Enclos Fouqué caldera 

(Di Muro et al. 2014, 2015) and a set of rift zones. A prominent rift zone extends to the NW towards 

the older Piton de Neiges edifice and represents pathways for the deep magmas feeding the central 

magma conduits and the shallow system that is periodically refilled by magmas from deeper levels 

(Lénat and Bachèlery 1990; Bureau et al. 1999; Di Muro et al. 2015; Boudoire et al. 2017, 2019). 

Decade long cycles have been recently identified by Vlastélic et al. (2018) in the composition of 

PdF lavas. New magma inputs can bear olivine crystals from deeper reservoirs (e.g. from the central 

reservoir in the oceanic crust or from below the crust-mantle boundary, Bureau et al. 1999) or may 

be disaggregated from cumulative olivine-rich crustal bodies the magmas pass during ascent 

(Albarède et al. 1997; Salaün et al. 2010; Di Muro et al. 2014). These earlier studies of olivine 



Timescales of magmatic processes during the eruptive cycle 2014-2015 at Piton de la Fournaise, La Réunion, obtained 

from Mg-Fe diffusion modelling in olivine 

 62 

crystals at PdF suggest that many generations of magmas left a crystal mush in the plumbing system 

which hosts olivine crystals of various ages and histories (Albarède et al. 1997; Bureau et al. 1999; 

Boivin et al. 2009; Di Muro et al. 2014). Olivine crystals can be entrained and erupted during 

subsequent volcanic activity to represent a cognate crystal cargo (antecrysts) in olivine-rich 

(“oceanitic”) lava flows with up to 60 % accumulated olivine crystals (Albarède et al. 1997; Bureau 

et al. 1998a, 1999; Di Muro et al. 2014). 

 

 

Fig. 1 Satellite image of Piton de la Fournaise and the Enclos Fouqué caldera (image source: Google Earth 

Pro). Coloured lines mark the eruption fissures in 2014-2015 (Coppola et al. 2017). Except for July 2015, the 

activity during the eruptive cycle 2014-2015 concentrated close to the summit and on the southern flanks 

 

3.3.1 Eruptive activity during June 2014-July 2015 

Despite its frequent eruptive activity since 1998 (Peltier et al. 2009; Roult et al. 2012), PdF fell into 

a phase of quiescence for 41 months after December 2010 that was characterized by a continuous 

deflation of the volcano’s surface, low-level of shallow volcano-tectonic seismicity, and water-

vapour dominated low-temperature gas emissions by the summit intracaldera fumaroles 

(Staudacher and Peltier 2015; Peltier et al. 2016; Coppola et al. 2017; Gurioli et al. 2018). An 

increase in soil CO2 emission on the distal western flank of the PdF edifice together with eccentric 

deep (mantle level) seismicity from March to April 2014 indicated the eventual rise of new deep 

magma and heralded a new eruptive cycle (Liuzzo et al. 2015; Boudoire et al. 2017). This deep 
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reactivation was then followed by a short and weak phase of inflation of the summit cone starting 

on June 9 only 11 days before the first small June 2014 eruption (0.4 * 106 m3, Peltier et al. 2016; 

Gurioli et al. 2018). The June 20-21 eruption was the start of a new and still ongoing eruptive cycle 

and was followed by three short eruptions in February, May, and July 2015 (0.82, 6.54 and 1.63 * 

106 m3; Coppola et al. 2017). These eruptions are characterized by an exponential decrease of the 

initially strong output rate, which indicates a fast reduction of the source overpressure (Coppola et 

al. 2017). Erupted lavas are olivine-poor cotectic (cpx + plag +/- ol) basalts that were slightly more 

evolved than the typical products erupted at PdF, the so-called “steady state” basalts (SSB; 

Albarède et al. 1997).  

The four small eruptions were preceded by shallow seismicity interpreted to be due to the re-

opening of magmatic pathways (Peltier et al. 2016). Low rate of inflation preceded the eruptions of 

June 2014 and February 2015. Lavas erupted from June 2014 to May 2015 became increasingly 

more evolved, which indicates a differentiation process in the shallow system (Coppola et al. 2017). 

In April 2015, strong seismic unrest was monitored at PdF (Peltier et al. 2016; Coppola et al. 2017) 

and an unusually deep earthquake swarm was recorded in mid-April rising from 7.5 km below sea 

level (bsl) to ~ 2.5 km bsl towards the end of April (Lengliné et al. 2016; Peltier et al. 2016). 

Simultaneously, the onset of shallow seismicity at sea level (asl) depth was observed. Deep 

seismicity and an increase in distal soil CO2 flux are related to magma rising from depth, causing 

shallow seismicity and continuous inflation of the volcano’s surface, whose acceleration started 

during mid-April (Peltier et al. 2016). The acceleration of surface inflation that accompanied this 

elevated CO2-discharge just before May 2015 eruption was interpreted to be caused by the intrusion 

of new, deeply derived, mafic magmas into the shallow crustal plumbing system below the central 

vent area of PdF (Peltier et al. 2016). 

 

3.3.2 August-November 2015: Phase I (August 24 – September 11)  

The final and main eruption lasted 65 days from August to November 2015 and is divided into three 

phases based on eruptive volume, ground deformation and seismicity. It produced 45 * 106 m3 of 

basaltic lava and was one of the largest observed at PdF (Coppola et al. 2017). Activity started on 

August 24 at the south-western flank of PdF with high lava output rates (60 m3/s; Fig. 2; Coppola 

et al. 2017) and the eruption of clinopyroxene- and plagioclase-bearing evolved basalts. After 

strong precursory seismic activity recorded at shallow (asl) and intermediate levels (~ 1.5 km bsl, 

Lengliné et al. 2016) in mid-August, the number of seismic signals decreased significantly in Phase 

I. Output rates and surface deformation also decreased towards September 11. 
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3.3.3 Phase II (September 11 – October 16)  

A slight increase in lava flux, deflation of the volcano's surface, and an increasing olivine content 

of erupted products introduced Phase II that culminated in a strong pulse of lava output on October 

16 (22 m³/s, Fig. 2). Phase II is characterized by low seismicity until October 16, when deep and 

shallow seismic signals were again recorded as precursors to Phase III. The renewal of deep 

seismicity and the change in lava composition were associated with enrichment in CO2 of the 

summit fumarole emissions (Coppola et al. 2017). 

 

3.3.4 Phase III (October 16 – November 02)  

Two new eruptive pulses of Phase III followed on October 24 (32 m³/s) and October 31 (20 m³/s) 

with an intervening week of inactivity (Fig. 2). Each pulse was accompanied by rapid inflation prior 

to, and deflation during each pulse. Deep and shallow seismic signals together with enrichment in 

CO2 of the summit fumaroles were recorded during the pulses of strong eruptive activity (Coppola 

et al. 2017). This final phase emitted the lavas with the highest olivine content since the beginning 

of the new eruptive cycle. 

 

 

Fig. 2 Lava output rate (TADR – Time Averaged Lava Discharge Rate) and total erupted volumes during the 

August-November 2015 eruption (drawn after Coppola et al. 2017). Dashed red lines mark the three phases 

of the eruption. Stars represent the samples from August-November eruption analysed in this study. After 

strong lava output at the beginning of Phase I, the erupted rates remained nearly constant during Phase II until 

October 16, when Phase III was introduced by the first of three final lava pulses that occurred at the same 

crater and were interrupted by days of inactivity 

 

3.4 Samples and analytical methods 

Nine quenched lava and tephra samples were analysed here. Three samples cover the small 

eruptions on June 21, 2014 (REU 140624-12), May 18 (REU 150518-1), and July 31 2015 (REU 
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150731-7b). No olivine crystals suitable for analysis were found in the mostly aphyric February 

2015 sample (REU 150204-2). Representative samples of the August-November eruption cover the 

early Phase I (August 28, REU 150828-6), Phase II (September 15 and October 07, REU 150915-

1, REU 151007-3), and the three strong lava pulses of Phase III (October 16, 24, and 31, REU 

151016-1, REU 151026-1a, REU 151031-1). All samples were collected at eruption temperature 

and immediately quenched in water except sample REU 151026-1a, which are quickly cooled partly 

glassy lapilli sampled two days after eruption. Lavas erupted during 2014-2015 sequence are all 

olivine-poor, slightly evolved SSB within MgO = 6.1-6.6 wt.% for June 2014 to May 2015 and 6.6-

11.0 wt.% for the large August to November eruption (Coppola et al. 2017) that characterise typical 

and most common eruptive products from the central vent area of PdF. 103 olivine crystals from 

these samples were analysed by electron microprobe. Analysed crystals are euhedral to subhedral 

and show no resorption except of slightly rounded olivine crystals embedded in July 2015 lava and 

one strongly resorbed crystal that was erupted on October 31 (REU 151031-1-1). 

Chemical compositions were analysed with the JEOL JXA 8900 electron microprobe at the 

Department of Geochemistry at the Geoscience Center (GZG), Georg-August-University 

Göttingen. Line profiles were measured from rim to core, using step sizes from 5-10 μm in the core 

down to 2 μm at the narrow outermost rims and a focused beam (diameter ~ 2 μm) to optimize the 

spatial resolution for narrow diffusion gradients (Bradshaw and Kent 2017). Major (Si, Fe, Mg, 

Mn) and trace elements (Al, Ca, Ni) were analysed with 15 keV and 20 nA. Counting times were 

15/5 s for peak / background of Si, Al, Fe, and Mg, 40/20 s for Ni, and 60/30 s for Ca and Mn. All 

analyses of olivine line profiles are listed in Online Resource 1. 

Melt inclusions (MI) in olivine crystals and glassy groundmass (GM) were analysed for Mg-

thermometry using 15 keV, 15 nA, and a spot size of 20 μm. Counting times were 15/5 s for Si, Al, 

Ca, Mg, Mn, Ni, K, and Na, whereas Ti, Cr, Co, and Fe were measured for 30/15 s. 

The Mg-in-glass thermometer from Helz and Thornber (1987), modified by Putirka (2008, Eq. 13) 

was used to obtain temperatures from glassy groundmass and melt inclusions in olivine. The 

chemical data and calculated temperatures can be found in Online Resource 2. The calculated 

temperature range for magmas from August-November 2015 eruption is 1125-1161 ± 10 °C from 

GM and 1112-1173 ± 10 °C from MI in olivine. These temperatures correlate to those calculated 

for the June 2014 products (1115-1148 °C; Gurioli et al. 2018). As the MI compositions were not 

recalculated for post-entrapment crystallization, the temperatures are similar to those calculated 

from the groundmass (< 10 °C difference) except for the samples REU 151007-3 and REU 151016-

1 (16-20 °C difference). We used temperatures obtained from MIs for diffusion modelling to avoid 

a potential underestimation of real equilibration temperatures due to magma cooling and degassing. 
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Pressures of crystallization are likely to be low (< 1 kbar) for magmas residing in the shallow 

plumbing system as indicated by fluid inclusion and glass inclusion analyses by Di Muro et al. 

(2014, 2016). A range of oxygen fugacities was calculated for PDF lavas in several studies, ranging 

from NNO + 0.7 to NNO – 1.8 (Bureau et al. 1998b; Boivin and Bachèlery 2009; Pichavant et al. 

2016). To evaluate the effect of variable oxygen fugacities, we used the published average of NNO 

– 0.5 (Pichavant et al. 2016) for diffusion modelling, but tested also for NNO + 0, resulting in ~ 15 

% variation of calculated diffusion times. This effect is small compared to the effect of temperature 

uncertainty, as discussed below.  

The Fe3+/Fetotal of the magmas from PdF is given as  0.11 (Bureau et al. 1998b; Di Muro et al. 

2016; Gurioli et al. 2018). For the samples from Phase III of August-November eruption, this value 

results in a good fit of calculated olivine equilibrium composition and measured composition at 

olivine diffusion margins. However, the samples from the earlier eruptions fit better assuming a 

slightly higher Fe3+/Fetotal of 0.18 for June 2014 to Phase I and 0.14 for Phase II.  

Crystal orientation is crucial for diffusion modelling due to strongly anisotropic Mg-Fe diffusion 

in olivine, which can be described as 6Da = 6Db = Dc, with Da, Db, Dc as Fo diffusion coefficients 

along the a-, b-, and c-axis (Costa and Chakraborty 2004). Crystal orientation was determined via 

electron backscatter diffraction (EBSD, Prior et al. 1999) using the FEI Quanta 200 F scanning 

electron microscope at the Department of Crystallography at the Geoscience Center and a FEI Nova 

NanoSEM 650 (only sample REU 140624-12) at the Institute of Material Physics (IMP), Georg-

August-University Göttingen. The EBSD measurements have been carried out using a DigiView V 

camera of EDAX-Ametek and the data collection software TSL OIM. The measurement conditions 

were 15-20 keV, 150 μA, and a spot size of 4-5 μm. Sample surfaces were polished with 0.05 μm 

Al2O3 corundum powder for 90 s. Every thin section was covered with a thin carbon coating (6 s 

coating time at 4.6 V) and connected with conductive silver to the holder to avoid electrostatic 

charge of highly porous tephra samples. The carbon layer must be as thin as possible being a 

compromise to avoid electrostatic charge without weakening the signal during measurements. 

Glassy samples with low porosity (REU 151007-3) were therefore analysed without coating. 

We used Kernel density estimations (KDE) to visualize the crystal size distribution of olivine 

crystals with respect to their zoning type and diffusion time. The advantages of KDE’s compared 

to common histograms are the continuity of the function, resulting in a smoothed curve, and a less 

strong dependency on parameters, that must be defined for histograms, as bin-width and the position 

of the bins, which can change a histogram significantly (Wand and Jones 1995). 
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3.5 Diffusion modelling 

Residence times were obtained from modelling diffusion profiles from core to the diffusive margin 

(Fig. 3 a) in olivine crystals from each of the individual eruptions during the June 2014 to November 

2015 activity. In this study we use the term margin for the outer composition, which represents the 

equilibrium with the host melt, in which the olivine crystals started to homogenize after reactivation 

(Fig. 3 a). Diffusive equilibration resulted in a compositional gradient between core and this margin 

that was modelled to constrain the residence times of olivine cores under changing magmatic 

conditions. The comparison of Fo-content and trace elements such as Ca and Ni allows 

distinguishing growth and diffusive zoning. Due to their slower diffusion, Ca and Ni show a steeper 

gradient and shorter profile than Fo (Fig. 3 b, c). Other crystals are almost unzoned for these 

elements except at the outermost narrow rim (Fig. 3 d, e). Therefore, compositional zoning of the 

olivine crystals is caused by diffusion rather than crystal growth. 

Diffusion follows after the reactivation of olivine crystals (either phenocrysts from resident magma 

batches or older cumulates) due to ascent and mixing with new, more mafic magma. This process 

causes re-equilibration of the “old” olivine cores with the new hybrid melt.  Normal zoning of Fo-

rich cores and low-Fo rims (Fig. 4 a, c-i; 5 a) and reverse zoning with low-Fo cores and Fo-richer 

rims (Fig. 4 b, c, e, i; 5 b) originate typically from “simple” mixings of two compositional distinct 

magmas, which is a common process in shallow and frequently refilled reservoirs of many basaltic 

systems (e.g. Hawaii, Rae et al. 2016). Complex zoned crystals constrain a multi-step history that 

may include several mixing events during ascent (Gordeychik et al. 2018). Only one crystal with a 

weak wavy change in Fo-content from core to rim (normal-reverse-normal) was found in the present 

study (REU 151026-1a). 

During magma mixing, the “old” reactivated olivine cores start to homogenize to the new magmatic 

composition. This results in a smoothing of compositional gradient between core and diffusive 

margin with diffusion rates depending on storage conditions such as temperature, oxygen fugacity, 

and pressure. Given the rapid quenching during eruption, which interrupts the diffusion process, 

the compositional gradient can be used to model the duration of diffusion and partial re-

equilibration in the new magma (Fig. 5). Since the eruption date is known for each sample, this 

relative time information can be cast into the date of reactivation. This date can be compared to 

geophysical and geochemical monitoring datasets. 
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Fig. 3 (a) Representative compositional olivine profile to show the different crystal sections we modelled in 

this study. (I) is the unzoned crystal core. (II) represents the compositional gradient between core and the 
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diffusive margin (= equilibrium composition within the melt the olivine was entrained to after mixing; green 

dashed line). The transition of (I) and (II) was defined as the first data point that differed > 0.2 mol. % (2σ 

error of forsterite) from the average core composition. We modelled diffusion time using the gradient (II) to 

obtain the residence time in the hybrid melt after mixing. (III) is considered to be a late overgrowth which 

was caused by cooling during or after the eruption. (b-e) Profiles of Fo-content compared to CaO and NiO to 

distinguish growth and diffusion zoning. The slower diffusion of CaO and NiO results in steeper gradients 

(b, c) or the lack of any zoning (d, e). Uncertainties of Fo are within the symbols 

 

We selected olivine crystals, where both core and margin compositions and the gradient between 

them were clearly constrained by measurements to ensure correct initial/boundary conditions for 

modelling. A fixed boundary concentration was used assuming that the olivine rims remained in 

contact with the new melt during the diffusion process. The compositional profiles give further 

evidence of the lack of an overgrowth due to the absence of a compositional plateau at the outer 

cores (Fig. 3, 4, 5) except of two crystals (150915-1-2 and 150915-1-3). The profiles were modelled 

based on the assumption of an initially unzoned crystal as indicated by the unzoned trace elements 

as Ca and Ni (Fig. 3 d, e) at the time t0, when the olivine was entrained into a new magma. The 

crystal started to equilibrate a timespan ∆t until the time t1, when the diffusion process ended due 

to cooling of the melt at eruption (Fig. 5). The narrow outermost rim (< 3 μm), which can be seen 

in most profiles, is interpreted as result of late cooling and depressurization during ascent and 

eruption and subsequent cooling of the lava at the surface. The linear correlation of Fo and NiO 

contents of the outermost rims. Also, outermost rims are generally in equilibrium with the matrix 

glass (Fig. 4). Both observations indicate that these rims indeed represent a late crystallization 

process related to eruption. 
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Fig. 4 Line profiles of all olivine crystals analysed in this study. Normal, reverse, complex and non-zoned 

olivine grains were found. Three groups of olivine cores can be generally distinguished by their composition: 

Fo-rich (Fo>84), intermediate (Fo80-83), and Fo-poor (Fo<80). (i) Strongly resorbed olivine cores that were 
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erupted on October 31 can be very Fo-poor (Fo73). Grey bars mark the olivine equilibrium composition based 

on the calculation with whole rock composition assuming a Fe3+/Fetotal of 0.18 for June 2014 to Phase I, 0.14 

for Phase II, and 0.11 for Phase III. We suggest that outermost narrow rims formed by crystallization during 

late ascent and eruption due to the equilibrium with matrix glass (brown bars). The black dashed line marks 

prominent diffusion margins. All olivine cores equilibrated to (or were already in equilibrium with) 

intermediate compositions that were lowest during (a) June (Fo80.8-82.2) and (c) July (Fo80.1-80.8). Olivine 

crystals from (b) May and (d) August samples show no clear equilibrium composition due to the occurrence 

of two nearly unzoned olivine groups (May) and a large compositional scattering of unzoned olivine (August). 

(e-i) During Phases II and III of the large August-November eruption, the compositions at diffusion margins 

of analysed olivine grains increased systematically from Fo80.5-83.4 (Phase II) to Fo82.1-84.5 (Phase III) 

 

Diffusion times can be calculated via modelling of Mg-Fe exchange along the measured 

compositional gradients in Fo-content in zoned olivine crystals. All input parameters used for 

modelling are given in Online Resource 3. We used the software DIPRA (Diffusion Process 

Analysis) by Girona and Costa (2013) for diffusion modelling. The software provides a one-

dimensional, numerical approach, that allows to model the diffusion profiles as a series of spatial 

and time-steps and take into account the compositional dependency of the diffusion coefficient 

(Girona and Costa 2013): 

 

∂𝐶𝑖

∂t
=

∂

∂x
(Di

∂𝐶𝑖

∂x
)       (1) 

 

with Ci as concentration C of the diffusing element i (here: Mg-Fe), x as distance, Di as diffusion 

coefficient D of the element i, and t as time. The software calculates diffusion times by searching 

the best fit of the measured data with all modelled curves within a time range defined by the user 

with using the root mean square method (Girona and Costa 2013): 

 

rms =  √
1

N
∑ N(Ci

xn − Ci
x)2      (2) 

 

with N as the number of data, 𝐶𝑖
𝑥𝑛 as modelled concentration C of the element i at a distance x after 

n time steps and 𝐶𝑖
𝑥 as measured concentration of the element i at distance x. 

The basic diffusion coefficient Dc for diffusivity of Mg-Fe along the c-axis is calculated based on 

the equation of Chakraborty (2010) and specified as a Dprofile due to the strong anisotropic diffusion 

in olivine (Carslaw and Jaeger 1959): 
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Dprofile = Da(cosα)2 + Db(cosβ)2 + Dc(cosγ)2     (3) 

 

with α, β, and γ as angles between measured profile and a-, b-, and c-axis, and 6Da = 6Db = Dc 

(Costa and Chakraborty 2004). 

 

 

Fig. 5 Modelled diffusion profiles of representative normal (a) and reverse zoned (b) olivine crystals erupted 

on September 15 (Phase II) and October 31 (Phase III) which equilibrate to intermediate compositions of 

Fo81.8 and Fo82.8, respectively. Back-scattered electron images (BSE) are on the left. Blue lines show the initial 

compositional profiles at t0, which changed due to diffusive Mg-Fe exchange to the measured profiles at t1 

(unfilled circles). The time of diffusion Δt was modelled to constrain the reactivation dates of the olivine 

crystals 

 

The use of a one-dimensional model may lead to the overestimation of calculated diffusion times, 

because the compositional gradients may have been affected by diffusion in more than one 

direction. The crystals were selected carefully with respect to symmetrical diffusion profiles and 

growth faces perpendicular to the profile direction. However, the random orientation of olivine 

crystals in natural samples does not allow to completely exclude any influence of two-dimensional 
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diffusion. Therefore, the diffusion times modelled in this study are always only maximum 

timescales. The uncertainties used for the modelling were ± 10 °C in temperature and ± 0.2 % in 

Fo-content. Temperature has the largest impact on uncertainties of t, whereas pressure and fO2 have 

only a minor influence. Uncertainty in Fo-content has a larger impact when the compositional 

difference between core and diffusion margin is small. All profiles were modelled with 1 kbar 

pressure, which corresponds to the pressure at the bottom of the shallow plumbing system (~ 1.5 

km bsl), but models were also tested for 0.5 and 2 kbar to consider that diffusive equilibration could 

have occurred in the shallow sills and dykes or deeper in the central reservoir as indicated by deep 

seismic signals recorded during April 16-25 2015 (~ 7.5 – 2 km bsl, Lengliné et al. 2016). Using 

0.5 and 2 kbar result in a difference in modelled times of -2 to -8 % and 4 to 9 % compared to the 

diffusion times at 1 kbar. This shows clearly, that uncertainties in pressure have a negligible effect.  

DIPRA calculates uncertainties based on uncertainties in T and Fo-content, but also includes all 

modelled curves, that theoretically fit the measured profile and have the same discrepancy as the 

best fit curve (see below; Girona & Costa, Eq. 10.). The uncertainties obtained from diffusion 

modelling with DIPRA are in the range of 12-46 % for most crystals, but reach up to 64-93 % for 

two crystals with very short diffusion times and a small compositional difference between core and 

diffusion margin. 

Additionally, DIPRA provides a discrepancy term of the fitted curve. The discrepancy is a value 

for the difference between the best fit modelled curve and the measured concentrations including 

the analytical uncertainties and is therefore a term for the goodness of fit (Girona and Costa 2013). 

It is defined as the ratio of modelled points, that are off the measured concentration ± uncertainty 

at this distance, to the total number of points (Girona and Costa 2013). The discrepancies of the 

profiles modelled in this study are < 15 %, except of the crystal 151031-1-1 (32 %), and are mostly 

due to scattering of Fo-content in several crystal cores.  

 

3.6 Results and discussion 

3.6.1 Olivine zoning and compositions 

Four types of compositional zoning were found in olivine grains: (1) normal, (2) reverse, (3) rare 

complex zoning, and (4) unzoned crystals. Additionally, rare normal zoned olivine crystals with 

stepwise zoning were found (Fig. 4; 6 a). Normal zoned olivine crystals are the main species found 

in this study (45 % of all analysed crystals), followed by reverse and unzoned crystals (28 and 26 

%, respectively). Normal zoned olivine crystals are dominant in the samples from June 2014 (80 

%), July 2015 (83 %), and September 15 (77 %), October 07 (56 %) and 16 (62 %) during the 

August-November eruption, whereas olivine crystals embedded in May lavas show no or only a 
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weak reverse zoning. On August 28, both normal and reverse zoned olivine crystals occur with a 

similar percentage of 40 %. During the final phase on October 24 and 31, the amount of normal 

zoned crystals decreases to 19 / 8 %, whereas reverse (31 / 62 %) and unzoned crystals (44 / 31 %, 

respectively) become more abundant. 

Olivine crystals with sizes from < 100 μm to 1500 μm were found in the analysed samples (Fig. 6). 

Normal zoned olivines have a dominant size range from 200 to 700 μm, but single crystals reach 

750 – 1000 μm, 1200 μm, and 1500 μm (Fig. 6 a). Reverse zoned crystals show a serial size 

distribution from < 100 μm to 1200 μm with two more prominent groups at < 200 μm and 800 – 

1100 μm. Unzoned olivine crystals are restricted to small sizes < 400 μm except of two crystals 

with 600 μm and 750 μm. However, the distribution of crystal sizes within the samples is random 

except of small olivine crystals (< 200 μm) with weak or no zoning, which occur exclusively in 

analysed products of May 2015, Phase I and late Phase III (October 31) of August-November 

eruption. 

 

 

Fig. 6 Kernel density estimations (KDE) of olivine crystal sizes related to (a) zoning type and (b) crystal 

reactivation times. Normal zoned olivine crystals span a wide size range from 200 to 1500 µm and are the 

dominant type that was reactivated during Episodes 1 and 2. Reverse zoned olivine crystals are found in all 

size ranges (< 100 to 1200 µm) and occur in all episodes. Similar to the small unzoned olivine crystals (mostly 

< 100 µm, but up to 700 µm) small reverse zoned crystals become more abundant in the samples from August-

November 2015 eruption (Phases II and III) 
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We found that REU 140624-12 from June 2014 contains dominantly high-Fo olivine cores (Fo83.7-

84.9) but low-Fo at the diffusive margins (Fo80.8-82.2) except of one large resorbed olivine (REU 

140621-12-1), which has a core with Fo82.1 and a margin with Fo83.1. No olivine crystals sufficient 

for line profiles analysis were found in the aphyric material from the February 2015 eruption (REU 

150204-2). REU 150518-1 from the May eruption contains only unzoned olivine crystals of two 

different core compositions (Fo77.6-77.9 and Fo79.3-79.7). Variable core compositions (Fo79.1-84.4) were 

found in olivine crystals from REU 150731-7 from the July eruption, whereas compositions at the 

diffusion margins are uniform and more evolved than the most cores (Fo80.1-80.8). 

For the main August-November 2015 eruption, core compositions range from Fo79.6-85.1. Fo-

contents at diffusion margins (Fig. 4 d-i) increase with ongoing eruption from Fo79.6-81.1 (REU 

150828-8) to Fo80.5-81.9 (REU 150915-1), Fo81.5-83.4 (REU 151007-3), Fo82.1-82.6 (REU 151016-1), 

Fo82-84.1 (REU 151026-1a), and Fo82.5-84.5 (REU 151031-1). 

 

3.6.2 Magma compositions 

Fo-contents of olivine crystal cores which are unaffected by diffusion and the equilibrated margins 

should directly reflect the different compositions of the magmas from which the cores initially 

crystallized and to which they partially equilibrated later by diffusion, respectively. The core 

compositions reflect the magma in which the crystal resided until the moment when reactivation 

occurred and diffusion began. The composition of the margin then reflects the equilibrium 

composition of the hybrid, which formed from mixing with the magma by which the olivine was 

reactivated. Fig. 7 a shows Fo-contents of olivine crystals (cores and margins) with respect to the 

time when diffusion started at the margins.  

The compositions of the outermost diffusive margins indicate rather variable melt compositions 

that are always intermediate (Fo80.1-84.5) between the mafic recharge (with Fo85.1) and erupted 

magmas with evolved ~ Fo77-79 during June 2014 to August/early September 2015 (Phase I). Such 

compositions dominate the intermediate magmas present at depth. During the final stages of activity 

(Phases II and III) the erupted products are in equilibrium with more forsteritic olivine (Fo80.5-84.5). 

The last stage of eruption (Phase III, October 16 to 31 2015) produced the most forsteritic olivine 

cores (Fo85.1) that are in equilibrium with their host melt. The mafic endmember in equilibrium with 

up to ~Fo86 that was erupted at the end of Phase III document decreasing degrees of interaction with 

the resident magma batches. This implies that this mafic magma composition represents the 

principal magma type that feeds into the crustal magma system of Piton de la Fournaise from mantle 

depths. The documented compositional range of magmas present in the plumbing system is 

consistent with the model of a complex transcrustal magma plumbing system with a vertical 
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arrangement of magma batches of different compositions where the degree of differentiation 

increases with decreasing depth (Bureau et al. 1998a; Coppola et al. 2017; Gurioli et al. 2018). 

 

3.6.3 Diffusion times and olivine reactivation episodes 

Calculated diffusion times vary from 4 +1 / -1 to 680 +300 / -150 days for most olivine crystals of 

the studied eruptions during the June 2014 to November 2015 activity (Fig. 7). Only a large 

resorbed crystal REU 140621-12-1 gave longer diffusion times of at least 1330 days corresponding 

to the time prior to the long quiescence phase between 2010 and 2014. With the known eruption 

date and the modelled diffusion times in olivine crystals, each olivine crystal can be placed along 

the time line of the 2014-2015 eruptive cycle with respect to the onset of the diffusion process for 

this particular crystal (Fig. 7 a). This allows us to relate diffusion times for a particular crystal to 

events of eruption and/or seismicity that occurred prior to the eruption of that crystal. The record 

of these reactivation events is documented in olivine crystals that have residence times from 165 

+47 / -42 to 337 +85 / -77 days and 430 +69 / -95 to 680 +300 / -153 days before their eruption 

during July and August-November 2015. When the whole data set is viewed in context (Fig. 7 a), 

our results show that such earlier events tend to cluster in distinct “episodes of reactivation” and 

mixing: one from December 2013 to June 2014 (Episode 1) and a second from November 2014 to 

May 2015 (Episode 2). Thus, the initiation of the 2014-2015 eruption sequence may have been 

preceded by recharge and possibly mixing already about several months prior to the eruptions in 

June 2014 and February 2015. A third, late episode of reactivation (Episode 3) occurred only 9 days 

prior to and during Phase I of the August-November 2015 eruption (August 17 to September 13). 

An even more recent diffusion event is recorded in crystals erupted at the end of Phase II to Phase 

III with only 15 +14 / -10 to 24 +7 / -6 days (October 01 to 09). The eruption in May 2015 is 

unusual, this eruption is not connected to strong olivine reactivation. May 2015 eruptions emitted 

the most evolved lavas of the studied period (Coppola et al. 2017). The olivine crystals found in the 

sample from May 2015 eruption are mostly unzoned and also compositionally quite evolved and in 

equilibrium with the host bulk rock (Fo77.6-79.7). Only two olivine crystals erupted in July 2015 with 

core compositions of Fo79.1 and Fo84.4 have diffusion times that can be related to the May eruption 

(reactivation on May 14 +21 / -19 days and May 31 +9 / -13 days). This observation is surprising 

given the strong ground deformation and the unusual combination of strong deep and shallow 

seismicity signals that were registered just before this eruption (Lengliné et al. 2016; Boudoire et 

al. 2017; Fig. 7 b). 
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Fig. 7 Reactivation times and Fo-content of olivine cores (filled squares) and their corresponding diffusion 

margins (non-filled squares) erupted in 2014/2015 compared to (b) seismicity, (c) ground deformation (distal 
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baseline between GNSS-stations GITG-PRAG; Boudoire et al. 2017), and (d) CO2 soil flux on the distal 

western volcanic flank (PCRN; Boudoire et al. 2017). Grey bars mark the eruptions in June 2014, February, 

May, July, and August-November 2015. The diffusive equilibration of olivine crystals is related to distinct 

Episodes 1 – 3 (grey double-headed arrows) of mafic recharge and magma mixing. Most olivine crystals were 

reactivated in intermediate hybrid magmas, which erupted in October 2015. Olivine crystals started to 

equilibrate as early as December 2013 to June 2014 (Episode 1) and November to May 2015 (Episode 2). 

Both episodes correlate with deep CO2 degassing and occur prior to the deep seismic swarm in April 2015 

(7.5 – 2.5 km bsl; Lengliné et al. 2016) and may therefore indicate the formation of hybrids at deeper crustal 

levels until their ascent into the shallow reservoir prior to May eruption. Although May eruption occurred 

after a deep seismic swarm and during a phase of intense inflation, olivine crystals from the products of May, 

July or August -November eruption do not record a reactivation event that can be related to April-May 2015. 

Olivine crystals with short diffusion times were reactivated and erupted from June 2014 to August-November 

2015 (Phase I), whereas the products of July 2015 and Phases II / III contain “older” olivine crystals. After 

the magma batches in the shallow dykes erupted during June 2014 to May 2015, the central system emptied 

during Phases II and III of August-November eruption 

 

Episode 1 correlates to a deep eccentric seismic swarm and an increase in soil CO2 recorded in 

March-April 2014 which indicate magmatic ascent from deep mantle levels below the volcano's 

western flank (Boudoire et al. 2017). However, the geophysical record shows no ground 

deformation and seismicity in the shallow system except of the two weeks prior to June 2014 

eruption. For Episode 2 and 3 we document a clear coincidence of (1) ground deformation that is 

(2) directly correlated to increased seismicity, and (3) recharge and mixing of magma batches at the 

same time as recorded in the diffusion times of olivine crystals that were erupted later. Apparently, 

the magmatic system was successively charged up with increasing intensity and frequency during 

June 2014 to May 2015. During this time, only small volumes of magmas leaked from the shallow 

plumbing system. We did not find olivine crystals that would have been affected by a massive 

recharge event related to the May 2015 eruption, which was preceded by a deep seismic swarm in 

April (Peltier et al. 2016). The eruption of this evolved magma containing unzoned crystals might 

have been triggered by change in the volcano stress field due to deeper magma pressurization, 

without physical interaction (mixing) between residing magma and ascending magma batches.  The 

increasing recharge frequency resulted in increasingly more mafic magmas erupted and, finally, the 

recharging magmas themselves were erupted later during the most productive, final eruption in 

October 2015 (Coppola et al. 2017). 
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3.6.4 Process and timing of renewed activity during the 2014/2015 eruptive cycle  

The beginning of the 2014/2015 eruptive cycle in June 2014 was preceded by a long period of 41 

months of quiescence and slow recharge of mafic magma into the central plumbing system between 

December 2013 and June 2014. The recharge initiated mixing and hybridization between intruding 

magnesian magmas (~ Fo86) and more evolved resident melts and created a range of intermediate 

hybrid magmas (in equilibrium with Fo80-84.5, Fig. 4; 8; 9). However, neither these hybrids nor the 

mafic recharge magmas are present in the eruptive products during the subsequent activity until 

Phase II of August-November eruption. On the other hand, the lack of erupted melts in equilibrium 

with > Fo84.5 (except for the very end of the eruptive cycle) suggests that such mafic magmas were 

either completely consumed during the hybridization processes or did not ascent into the shallow 

system.  

All olivine crystals with long diffusion times, that were reactivated during Episode 1 and 2, 

equilibrated to Fo>80. These compositions are too forsteritic to be in equilibrium with the evolved 

magmas erupted in the same period of time (Fo~77-79, olivine-melt equilibrium calculated from bulk 

rock composition; Fig. 7 a). The observation that the magmas that actually did erupt during most 

of the 2014/2015 activity are generally more evolved than magmas represented by their older crystal 

cargo indicates that only the evolved magmas were activated and erupted during the recharge, 

mixing and hybridization process. Therefore, the small eruptions in June 2014, February, and May 

2015 were likely fed only from the shallow sill and dyke system, which contained differentiated 

magma batches (Coppola et al. 2017). The differences of the erupted products in composition and 

crystal content indicate that the olivine-poor June 2014 and May 2015 and aphyric February lavas 

origin from independent small magma batches. The presence of evolved olivine crystals (Fo<80) 

only in the evolved magmas of May 2015 that were picked up immediately prior to their eruption 

suggests that at least parts of the shallow sills and dykes remained largely unaffected by mixing 

processes, at least compositionally. Deeper hybridization and mixing processes are more truly 

recorded only in the olivine crystals with long diffusion times and various core compositions. The 

relative high abundance of forsteritic olivine crystals in the products of June 2014 might have been 

caused by reactivation from older residual cumulates and mush emplaced by magma intrusion in 

2010-2011 before the quiescence phase (Gurioli et al. 2018; Fig. 8). The entrainment with mafic 

magmas entering the shallow system is unlikely due to the absence of shallow seismicity and 

inflation that would indicate a mafic recharge.  

The reactivation of olivine crystals by intermediate hybrids in Episodes 1 and 2 occurred after a 

seismic swarm at mantle depths in March-April 2014 (Boudoire et al. 2017) and prior to the onset 

of deep crustal seismicity in April 2015 (7.5 km bsl, Lengliné et al. 2016) and correlates with 

periodical increase of distal CO2 soil emissions (Boudoire et al. 2017; Fig. 7 c, e). Therefore, we 

suggest that the hybrids were initially formed and stored in the central system (> 7.5 km) during 
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Episode 1 and 2. The eruption of evolved magma batches in May 2015 was likely triggered by these 

rising hybrids pressurizing the shallow crustal system during April-May 2015 (as evidenced by the 

deep seismic signals, that rose from 7.5 to 2.5 km bsl; Lengliné et al. 2016). This is consistent with 

the diffusive margin of the olivine we found to be reactivated in May (Fo80.2-80.8), which is close to 

equilibrium with the early Phase II magmas (~ Fo81, Fig. 7 a). 

After the eruption of olivine crystals with short diffusion times in June 2014 and May 2015, the 

products of July 2015 eruption bear some of the “oldest” olivine crystals found in this study (up to 

547 +96 / -67 days). The abrupt occurrence of “old” olivine crystals and the accelerating inflation 

rate after the deep seismic swarm in April mark the transition between the eruptions in June 2014 - 

May 2015 that were exclusively shallow fed and the more deeply fed August-November 2015 

eruption. The eruption of olivine crystals with long diffusion times only peaks at the transition of 

Phases II and III (237 +32 / -152 to 680 +300 / -153 days) and then decreases conversely to the 

increasingly more mafic composition of erupted magmas.  

Residence times show that at least two distinct recharge pulses occurred during the final eruption 

and are reversely correlated to lava output rate. The eruption of olivines with short diffusion times 

in Phase I and III is connected to high output rates. All analysed olivine crystals from August 28 

(Phase I) are either unzoned or show reverse zoning and a short diffusion time of 20 +12 / -9 days. 

This correlates with deep seismic signals recorded during August 13 to 25 that indicate a new 

recharge into the shallow system (Coppola et al. 2017). Whereas the sampled products from 

September 15 to October 16 bear dominantly “old” olivine crystals, the samples from October 24 

and 31 carry olivine crystals with short diffusion times again that were reactivated during the late 

Phase II (October 01 +7 / -6 days to 09 +14 / -10 days). The onset of new seismicity on October 15 

after the mostly aseismic Phase II and the strong increase in eruption intensity on October 16 mark 

the intrusion of mafic magma into the shallow system that triggered the three intense eruptive pulses 

in Phase III. The correlation of deep, vertically extended seismicity and the increasing amount of 

reverse zoned olivine crystals in the final products may mark a transcrustal “break-through” of 

mafic magmas (Saunders et al. 2012; Magee et al. 2018). The absence of olivine crystals starting 

diffusion after October 13 and the occurrence of small newly grown, unzoned olivine indicate that 

the magnesian magmas which erupted during the final pulses on October 24 and 31 flushed the 

almost emptied shallow system with only few residuals of previously erupted magmas (Fig. 6 a, b; 

7 a, Phase III). 
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Fig. 8 Schematic drawing of the plumbing system beneath Piton de la Fournaise. The volcano is underlain 

by a sill and dyke system with batches of evolved magma down to sealevel. The plumbing system is periodical 

refilled by less evolved magmas that arise from depth and mix with shallower stored residuals. During 2014 

– April 2015, this led to the formation of hybrid magmas and two reactivation episodes of olivine crystals 

from cumulates or crystal mush in the central plumbing system (~ 7.5 km bsl). These hybrids erupted after 

their ascent in mid-April 2015 during the large August-November 2015 eruption 

 

In contrast to the decadal cycles identified by Vlastélic et al. (2018) in the signature of source 

magmas, our results show that the timescales of replenishment and magma transfer into the crustal 

plumbing system (as evidenced by deep eccentric seismicity in March-April 2014) up to the shallow 

system (mid-April 2015) can be significantly shorter (< 2 yrs). Similar residence and mixing times 

and the documented links between compositional variations in olivine and their episodic 

reactivation from older crystal mushes in the magma reservoirs have also been observed for the 

major 2007 caldera-forming eruption at Piton de la Fournaise (Albert et al. 2019). However, the 
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distinct difference to this preceding 2007 eruption is that deep fissures allowed the escape and 

eruption of large magma volumes on the lower flanks of Piton de la Fournaise as olivine-rich lava 

flows that contained 50% of olivine. Many of them crystallized at shallow depths just before ascent. 

Such massive lateral eruptions apparently can bypass resident, older shallow magma reservoirs and 

their crystal mushes through eruptions at the lower flank of the volcano. By contrast, the lower-

intensity recharge before and during the eruptions of the 2014-2015 cycle studied here did mix and 

hybridize with older magmas stored in the central plumbing system. 

 

3.7 Conclusions 

The compositions, sequence and processes of magmas and their evolution in the magma plumbing 

system that fed the recent eruptions (2014/2015) at Piton de la Fournaise volcano have been 

reconstructed through time from compositions and diffusion modelling of zoned olivine crystals. 

After 41 months of quiescence, a new eruptive cycle at PdF in June 2014 led up to the large August 

to November 2015 eruption. The broad compositional range of cores of olivine crystals analysed in 

this study (Fo73.2-85.1) shows that magma recharge reactivated crystals from various older shallow 

reservoirs of different composition and probably variable crustal depths. This recharge triggered 

diffusive exchange and related zoning of the olivine crystals. The delay times between reactivation 

and eventual eruption in hybrid magmas was estimated from diffusion profiles: Olivine crystals of 

various core compositions were reactivated in at least two main episodes: (1) December 2013 to 

June 2014 and (2) November 2014 to May 2015. A third late reactivation episode is linked to the 

August-November 2015 eruption (Phases I and III).  

Although the erupted products became increasingly evolved from June 2014 to May 2015, the 

olivine crystals that were erupted during July 2015 and August-November homogenized to more 

forsteritic compositions at the same time. The distinctly short diffusion times and evolved 

equilibrium composition of olivine crystals erupted during June 2014 and May 2015 indicate that 

the initially small eruptions at the beginning of an eruptive cycle primarily affect shallow stored 

evolved residual magmas and were possibly triggered by stress change related to deep magma 

ascent. The deep seismic crisis in April 2015 marks the transcrustal ascent of more mafic hybrid 

magmas that were stored over longer times in the central system (up to two years) and became 

reactivated only during larger and more intense eruptions (as during August-November 2015, 

Phases II and III). However, products from the eruption in July 2015 already contain olivine crystals 

with a large range of compositions and long diffusion times similar to the following voluminous 

August-November eruption and unlike the earlier smaller eruptions. Therefore, the July eruption 

represents the transition from early small eruptions of only shallow evolved magmas to the large 

August-November eruption, when more mafic magmas from the deeper central plumbing system 
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were erupted. Phase I of August-November eruption started with evolved products that contained 

exclusively olivine crystals with short diffusion times that were reactivated immediately prior to 

the eruption. The eruption continued with olivine crystals that document long diffusion timescales 

in Phase II and the eruption of the “oldest” olivines at the beginning of Phase III that homogenized 

since December 2013. With the on-going final eruption, increasingly more mafic hybrids contained 

increasingly “younger” olivine crystals that had started to homogenize from July to October 2015. 

Finally, the three eruptive pulses of Phase III (October 16, 24, and 31) were completely dominated 

by the mafic recharge magma. These last eruptive pulses represent a “break-through” regime where 

new recharge magma has (almost) completely flushed the shallow plumbing system and erupts with 

little interaction with resident older magma batches and their contained crystals. 

Our modelling of diffusion times in zoned olivine crystals allows to reconstruct magmatic activity 

within a plumbing system by linking timescales and chemical compositions of stored magmas to 

monitored geophysical and geochemical signals. The compositions of cores and diffusive margins 

of olivine crystals identify both magmas that are involved into and hybrid magmas resulting from 

mixing processes, which can be related via diffusion time modelling to the arrival of mafic recharge 

(CO2 surface flux) and depth information (seismicity). Linking these techniques improves the 

understanding of periodically refilled plumbing systems in highly active basaltic systems like Piton 

de la Fournaise. 
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4.1 Abstract 

Diffusion profiles in olivine crystals from the final mafic eruption products of the compositionally 

zoned tephra deposit were measured to identify recharge and eruption-triggering events prior to the 

eruption of the Laacher See volcano (12.9 kyr). These products represent the hybrid of mixing 

between phonolite and intruding basanite at the bottom of the reservoir, which is likely related to 

the eruption-triggering event. Additionally, olivine crystals from ten basanitic scoria cones and 

maar deposits (East Eifel) and two nephelinites (West Eifel) were analyzed to constrain histories of 

olivine in Quaternary basanite magmas. Olivine crystals from the Laacher See hybrids vary in core 

composition (Fo83-89) and show reversely zoned rims with relatively high Fo87.8-89 compared to 

olivine in East Eifel basanites erupted in nearby, older scoria cones. Towards the crystal margin, 

olivine in the hybrids develop a normally zoned overgrowth (Fo86.5-87.5). Olivine from East Eifel 

basanites show similar zonation and core compositions (Fo80-88) but less forsteritic rims (Fo83-88) 

indicating that these basanites are less primitive than those recharging the Laacher See reservoir 

(>Fo89). Olivine in the West Eifel nephelinites show rims similar to those from Laacher See (Fo87.5-

90), but have normal zoning and high-Fo cores (Fo88-92). This indicates that olivine in the Laacher 

See hybrids originate from cumulates entrained by a near-primary basanite before hybridization 

with the phonolite. Diffusion modeling indicate timescales between entrainment and eruption of 

Laacher See of only months. These timescales are remarkably shorter than those calculated for 

olivine from basanitic cones (up to 500 days). 
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4.2 Introduction 

The mitigation of potentially violent eruptions of evolved magmatic systems necessitate a better 

understanding of the pre-eruptive processes, how fast magmas ascend, and how fast resident 

magmatic systems can reactivate and erupt. Many recent studies focus on linking the chemical 

evolution of magmatic systems to the related timescales (e.g. Albert et al. 2015, 2016, 2019; Kahl 

et al. 2011, 2013; Viccaro et al. 2016; Rasmussen et al. 2018; Ubide and Kamber 2018). It was 

shown that the interaction of ascending mafic magmas with more evolved melts and crystal mush 

are a common process in many volcanic systems (e.g. Bachmann and Bergantz 2004; Marsh 2006; 

Hildreth and Wilson 2007). Mafic recharges and subsequent magma mixing are major factors in 

destabilizing magmatic systems and potentially triggering eruptions (e.g. Sparks et al. 1977; 

Murphy et al. 2000; Eichelberger et al. 2006; Wark et al. 2007; Ruprecht and Plank 2013; Cashman 

and Giordano 2014). These processes are preserved in chemically zoned crystals, either phenocrysts 

from the recharging magmas or antecrysts disaggregated from older crystal mush. Crystal zoning 

provides information about chemical compositions of the interacting magmas and the timescales 

between this interaction and eruption. After the entrainment by a foreign magma, the crystals start 

to homogenize with the new composition to reach equilibrium. This diffusion process will endure 

until (1) the crystal is completely homogenized or (2) the process is interrupted by cooling (e.g. 

eruption). If diffusion remains incomplete, the compositional gradient between crystal core and rim 

(in equilibrium with the new melt) can be modeled to constrain the timescales of diffusion, to track 

the relative periods of time between distinct magmatic events (e.g. magma mixing and eruption; 

e.g. Costa and Dungan 2005; Cooper and Kent 2014) and reconstruct the temperature history of 

crystal residence (Rubin et al. 2017; Rout and Wörner 2018). Diffusion of major and trace elements 

in olivine occurs in the range of hours to years and is therefore useful to identify processes that are 

directly connected to eruptions (e.g. Costa and Chakraborty 2004; Costa and Dungan 2005; Kahl 

et al. 2011, 2013; Lynn et al. 2018; Bradshaw et al. 2018; Gordeychik et al. 2018; Albert et al. 2015, 

2016, 2019; Mutch et al. 2019; Sundermeyer et al. 2020). 

Magma ascent is often connected with the disaggregation of older, but cognate crystal mushes 

and/or mixing with more evolved magmas stored at shallower levels (e.g. Cooper et al. 2016). 

Recent studies show that mixing and eruption in basaltic magma systems can occur within days to 
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months (e.g. Viccaro et al. 2016; Brenna et al. 2018; Lynn et al. 2018; Albert et al. 2019; 

Sundermeyer et al. 2020). Even large and compositionally evolved, silicic systems can also yield 

timescales of only a few years between recharge events and eruption, which is an exceedingly short 

time for reactivation of these long-lived systems (Cooper and Kent 2014; Cooper et al. 2016; Druitt 

et al. 2012, 2016). 

In this study, diffusion times of olivine crystals from the Laacher See in the East Eifel volcanic 

field (western Germany) are calculated to track the timing of pre-eruptive processes and recharge 

times in a phonolitic magma chamber prior to eruption. The olivine crystals analyzed here are 

antecrysts released from basanitic crystal mush before mafic recharge and mixing with a phonolite 

magma. Major (Mg-Fe) and trace elements (Mn, Ca, Ni) were chosen to model residence times in 

the hybrid phonolite + basanite mingled/mixed magmas that formed at the bottom of the magma 

chamber within the upper crust (Wörner and Wright 1984). Furthermore, in order to constrain 

ascent rates of such basanite magmas from deep to shallow reservoirs, olivine crystals from 

basanitic scoria cones of the East Eifel and, for comparison, nephelinitic maar deposits of the West 

Eifel, were also analyzed to determine their magmatic history before eruption and, by analogy, with 

respect to mixing with the phonolite magma reservoir at Laacher See volcano. 

 

4.3 Geological setting 

4.3.1 Eifel volcanic field 

The Quaternary Eifel alkaline intra-plate volcanic fields are located in the Rhenish Massif, western 

Germany. The Eifel belongs to the Central European Volcanic Zone, a belt of Cenozoic volcanic 

centers, that extends in SW-NE direction from the Massif Central and the Rhine Graben towards 

the Rhenish Massif (Michon and Merle 2001; Nowell et al. 2006). In the Eifel, a first phase of 

volcanism occurred at 44-40 / 38-34 Ma in the Hocheifel (Fekiacova et al. 2003; Jung et al. 2006), 

where alkaline magmas as basanites, nephelinites, and alkali basalts were erupted (Jung et al. 2006). 

A second phase of younger volcanic activity took place during the Quaternary and can be related 

to a thermal anomaly of 150-200 °C higher than ambient temperatures in the asthenospheric mantle 

(Ritter et al. 2001; Nowell et al. 2006). The regions of Quaternary volcanism subdivide into the 

older West Eifel and the younger East Eifel volcanic field (WEVF and EEVF; Fig. 1a). The WEVF 

consists of 240 eruptive centers, mostly scoria cones and maars (Duda and Schmincke 1985; Mertes 

& Schmincke 1985). In the WEVF, eruptive activity lasted from 0.7 Ma to 0.01 Ma (Mertes and 

Schmincke 1985). Volcanism in the EEVF started at 0.46 Ma, the most recent eruption occurred at 

Ulmener Maar at 11 kyr BP (Schmincke 2007). West Eifel volcanic products are dominated by 

high-K magmas such as leucitite, nephelinite and basanite (Mertes and Schmincke 1985). The East 

Eifel is divided into two subfields: a north-western part close to the oldest volcanic center Rieden 
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(~430-460 kyr; Schmincke 2007) that produced phonolitic, leucititic and nephelinitic magmas and 

a younger, south-eastern field (starting at 215-190 kyr at Wehr volcano, Wörner et al. 1988; 

Schmincke 2007). The SE field is dominated by basanitic and tephritic scoria cones and maars 

(Duda and Schmincke 1978; Bednarz and Schmincke 1990; Schmincke 2007). More evolved 

phonolitic products were erupted at three main locations: Rieden, Wehr, and Laacher See 

(Schmincke 2007; Wörner et al. 1988). 

 

 

Fig. 1 (a) Map of the Eifel Volcanic Field (redrawn and modified after Mertes 1983). Black dots show 

eruptive centers, red dots mark sample locations. (b) Stratigraphy of the Laacher See Tephra (modified after 

Ginibre et al. 2004). The samples origin from the finally erupted mafic hybrids at the top of the ULST (>1088) 

marked by the red box. Inset show location of the volcanic fields in relation to the uplifted Rhenish Shield 

and the Upper and Lower Rhine Graben (URG, LRG).  

 

4.3.2 Laacher See volcano – chemical evolution and eruption 

Laacher See volcano is located in the center of the East Eifel volcanic field to the west of the 

Neuwied Basin (van den Bogaard and Schmincke 1984; Schmincke et al. 1999; Schmincke 2007). 

The magmatic reservoir of Laacher See consists of a magma chamber with its top located at ~3-6 

km depth as indicated by pressure estimates based on experimental phase equilibria (Berndt et al. 

2001; Harms et al. 2004; Wörner 1982; Wörner and Schmincke 1984b) and xenolith evidence 

(Wörner et al. 1982; van den Bogaard and Schmincke 1984). The magma chamber is interpreted to 

be embedded in cumulates (Tait et al. 1989) and a carapace of cogenetic syenitic rocks that contain 
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interstitial phonolitic melt (Rout and Wörner 2018). This magmatic system is emplaced into 

sedimentary country rocks of the Lower Devonian and reaches down to phyllites and metamorphic 

schists (Wörner et al. 1982; van den Bogaard and Schmincke 1984).  

The eruption of Laacher See occurred 12.880 ± 0.040 kyr BP (tephra in varved lake sequences, e.g. 

Brauer et al. 1999a; Lane et al. 2015; Bronk Ramsey et al. 2015), an age that overlaps with a 14C 

age of 12.934 ± 0.165 kyr BP (Baales et al. 2002). The eruption was one of the last recorded in the 

EVF except of the younger eruption of Ulmener Maar at 11 kyr BP (Schmincke 2007). Within days 

to weeks, the volcano released about 6.3 km3 (DRE) of volcanic products (van den Bogaard and 

Schmincke 1985). It was the largest eruption in Europe during the late Quaternary and dispersed 

over 20 km3 of pumice and ash over >230 000 km2 of central Europe (van den Bogaard and 

Schmincke 1985; Baales et al. 2002; Engels et al. 2015). The Laacher See tephra (LST) was 

deposited to the east-northeast, south and, at the very end of the eruption, south to west of the 

volcano (van den Bogaard and Schmincke 1985; van den Bogaard 1995). Evolution and structure 

of the magmatic reservoir are well constrained by numerous studies on the erupted volcanic 

products (Wörner and Schmincke 1984a, b; Wörner and Wright 1984; Wörner et al. 1985; Tait et 

al. 1989; Bourdon et al. 1994; van den Bogaard 1995; Harms and Schmincke 2000; Berndt et al. 

2001; Ginibre et al. 2004; Schmitt 2006; Schmitt et al. 2010; Rout and Wörner 2018). The 

compositionally and texturally stratified LST deposits as described by Wörner and Schmincke 

(1984a) are subdivided into three main units: Lower, Middle, and Upper Laacher See tephra (LLST, 

MLST, and ULST, based on Schmincke 1977; Fig. 1b). The LLST and MLST are characterized by 

highly evolved and crystal-poor (<10 %) phonolite. Towards the top of the deposit, crystal content 

increases to up to >50% in the uppermost layers. Simultaneously, magmatic compositions become 

less evolved towards a more mafic phonolite at the uppermost ULST. These observations indicate 

that the LST represents the content of an inversely erupted, chemically zoned magma chamber. 

Mass balance arguments based on major and trace element modeling of magmatic differentiation 

suggest that the ≈ 6 km3 of zoned phonolite magma formed from about ten times the volume of 

parent basanite by crystal fractionation (Wörner and Schmincke 1984a, b). The formation times of 

the Laacher See phonolite are still discussed. Bourdon et al. (1994), based on U-Th disequilibria, 

document a two-step formation over a period of ~100 kyr by differentiation from an originally 

primitive basanite to mafic phonolite and additional 10-20 kyr towards a more evolved phonolite 

after emplacement in the shallow crust. The chemical zonation within the phonolite magma 

reservoir formed likely as result of convective fractionation within the differentiating magma body, 

as evidenced from studies on the composition of cumulate nodules (Tait et al. 1989) and zoned 

sanidine (Ginibre et al. 2004). The timescales necessary to produce the compositional layering are 

within a range of ~ 3 kyr (Tait et al. 1989) which is largely consistent with the 10-20 kyr of total 
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residence time for phonolite magmas in the Laacher See magma system (Bourdon et al. 1994; 

Schmitt 2006; Schmitt et al. 2010).  

The eruption of crystal-rich mafic phonolite towards top of the ULST represents the lower parts of 

the magma chamber. The last material in the eruption sequence are compositionally heterogeneous 

mafic clasts with a disequilibrium mineralogy of olivine, Mg-rich clinopyroxene megacrysts, 

phlogopite sanidine, and the entire range of phenocrysts also observed in the crystal-rich phonolite. 

These hybrids are interpreted to have formed by mixing and mingling between phonolite magma, 

cumulate minerals and an intruding basanite (Wörner and Schmincke 1984a, b; Wörner and Wright 

1984, Wörner et al. 1985). The event of basanitic recharge was suggested to have been immediately 

prior to the eruption, as indicated from the incomplete mixing and the occurrence of hybrid magmas 

only in the lowermost part of the reservoir and thin post-mixing overgrowths on resorbed basanitic 

clinopyroxene crystals (Wörner and Wright 1984). These authors interpret the mixing therefore as 

a result rather than the trigger of eruption. 

 

4.4 Samples and analytical methods 

4.4.1 Sample description 

This study focuses on olivine in samples from the most mafic hybrid products (phonolite + basanite) 

from the uppermost part of the Laacher See tephra deposit (Fig. 1a, b) in order to constrain the time 

scale of mixing/mingling to eruption of the phonolite magma reservoir. The analyzed material 

covers 47 olivine crystals from nine samples from the mafic hybrids of the ULST (Upper Laacher 

See hybrids, ULSH). To further study the ascent times for such mafic magmas from their sources 

at deep (upper mantle / lower crustal) levels towards the shallow crust and to the surface, 21 samples 

from ten basanitic scoria cones and maar deposits in the East Eifel (Alte Burg = AB, Dachsbusch 

= HDA, Eppelsberg = EPB, Nastberg = NAS, Nickenicher Sattel =NISA, Plaidter Hummerich PLH, 

Rothenberg = E41, Sattelberg = SAT, Tönchesberg =TÖN, and Veitskopf =VEI), and five samples 

from two locations in the West Eifel (Meerfelder Maar at Deudesfeld = DEU, Pulvermaar = PUL) 

were also analyzed (Fig. 1a). 

 

4.4.1.1 Laacher See hybrids 

Upper Laacher See hybrid clasts represent sample 1089 to the most mafic 1101-3 with MgO-

contents of 1.0 to 6.9 wt. % (whole rock sample numbers and data from Wörner and Schmincke 

1984a; Wörner and Wright, 1984). The samples were obtained from the last, uppermost section of 

the ULST (Fig. 1b) and cover (1) relatively homogeneous pumiceous hybrids which are similar to 

ULST phonolites with respect to their mineral content dominated by sanidine and plagioclase, with 
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minor amounts of amphibole, clinopyroxene, phlogopite, magnetite and sphene. However, these 

samples also contain forsterite-rich olivine with Cr-spinel inclusions (LSH-1, -2, -3).  More mafic 

hybrids (2) are less vesicular, often compositionally heterogeneous on a cm scale with crystal-rich 

schlieren in dark dense mafic clasts that contain olivine and clinopyroxene megacrysts (LS-A, LS-

B, ULSH-1, -2; Wörner and Wright, 1984; Wörner and Schmincke 1984a). Olivine either occur as 

euhedral crystals up to 8 mm in size, with some having resorption with a late skeletal overgrowth 

(Fig. 2a). Groundmass olivine (<50 µm) are observed in all Laacher See hybrid lava samples and 

show either resorption similar to the macrocrysts or a reaction corona of clinopyroxene.  

 

4.4.1.2 Mafic magmas from scoria cones and maar deposits in the East and West Eifel 

Basanite and nephelinite samples include lava and dikes (E41, EPB-D, and SAT-3) as well as 

agglutinates from Eppelsberg, Plaidter Hummerich, and Sattelberg scoria cones that cover their 

eruptive sequence and compositional variations from the base to the last erupted products. The 

samples have a low-vesicular to dense (<10 Vol.% vesicles, except of PLH-3 with ~20 Vol.%), 

porphyric texture with brownish zoned clinopyroxene (<15 Vol.%), olivine (up to 5 Vol.%) and 

rare phlogopite as main phenocrysts. Olivine phenocrysts are euhedral to subhedral, but have 

commonly resorbed outer grain boundaries (Fig. 2b). Rare olivine-rich mantle-derived xenoliths, 

partially with a clinopyroxene reaction corona, occur in samples from Rothenberg, Nickenicher 

Sattel, Sattelberg, and Tönchesberg. From the West Eifel, we also collected a mafic crystal 

cumulate (PUL-2) and mantle-derived peridotite nodules as well as juvenile melilite-nephelinite 

clasts from, respectively, the Pulvermaar and Meerfelder Maar tephra deposit (see Mertes and 

Schmincke 1985; Duda and Schmincke 1985 for bulk lava compositions). 
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Fig. 2 Back-scattered electron (BSE) images of representative olivine crystals from the samples from Laacher 

See (a), Rothenberg (b), Eppelsberg (c), and Meerfelder Maar (d-f). Olivine from Rothenberg and Eppelsberg 

show the complex reverse zoning (reverse-normal) that is typical for all olivine crystals from the East Eifel 

samples. Yellow lines mark measured line profiles (see Fig. 4a, b). Olivine from Meerfelder Maar samples 

reveal the normal zoned high-Fo cores that dominate the samples from the West Eifel. Red arrows mark the 

rarely observed normal-normal zoning with two steps. DEU-2-17 shows a rare reverse-normal zoning as 

usually found in olivine crystals from the East Eifel samples. 

 

4.4.2 Mineral analyses 

Electron microprobe analyses were performed using the JEOL JXA 8900RL instrument at the 

Geoscience Center, Georg-August-University, Göttingen. Major (Si, Mg, Fe) and trace elements 

(P, Al, Cr, Mn, Ca, Ni, Co, and Zn) were measured at conditions similar to those described in 

Gordeychik et al. (2018): Counting times were set to 15/5 s for peak/background of the major 

elements, 60/30 s for Mn, 120/60 s for Ca, Cr, and Zn, 180/90 s for Co, 260/130 s for Ni and Al, 

and 300/150 s for P. Accelerating voltage was set to 20 keV with a beam current of 300 nA and a 

beam focused to 1 μm. The extended counting times and high beam current result in 2σ-

uncertainties of <1 % for the major elements, <2 % for Ca, Mn, and Ni, and <4 % for Al. 
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Uncertainties for are 9-12 % for Co and 6-10 % for P, but can reach up to 20 % in olivine crystals 

with P <0.01 wt.%. Zn and Cr have uncertainties of 10-40 % and 10-70 % due to their low 

concentration close to the detection limits (0.006 wt.% and 0.004 wt.%, respectively). Reference 

materials for calibration are San Carlos olivine (Si, Mg), hematite (Fe), rhodonite (Mn), 

wollastonite (Ca), NiO (Ni), anorthite (Al), ScPO4 (P), Cr2O3 (Cr), Co metal (Co), and gahnite (Zn). 

All standards were measured before and after every measurement session, San Carlos olivine and 

hematite were additionally analyzed after every line profile measured.  

Quantitative line profiles were measured from rim to core (2-5 μm step size) to document chemical 

zonation in olivine at high spatial and analytical resolution. Additionally, single point analyses 

(cores and rims) were performed on 30 olivine crystals from the ULST, 147 olivine crystals from 

the East Eifel basanite samples and 82 olivine crystals from West Eifel nephelinite samples. Two 

to three measurement points were set on every olivine grain to obtain representative core and rim 

compositions. Our analyses focus on olivine macrocrysts but include also olivine crystals in the 

matrix as well as olivine-rich xenoliths. All analytical data is given in Online Resource 1 and 2.  

Element distribution maps for Ni, Ca, P, Al, and Cr were measured for two olivine grains (240*240 

μm and 240*416 μm) of a complexly zoned crystal from Eppelsberg basanite (EPB19-1-3id8). 

Measurement conditions during mapping were 20 keV at high 600 nA to detect trace elements more 

precisely.  

 

4.4.3 Constraints on temperature, pressure, and crystal orientation 

Temperature is the major factor that controls elemental diffusion and must be therefore carefully 

constrained for diffusion modeling. Temperatures were calculated based on the Al-in-olivine/spinel 

- thermometer (Coogan et al. 2014) based on 20 olivine-spinel-pairs in samples from Laacher See 

Tephra, six in samples from Eppelsberg (EPB), and three in samples from Rothenberg (E41) using 

same measurement conditions for olivine as described above. A special analytical set-up was 

applied to measure spinel inclusions (20 keV, 20 nA, a focused beam). Counting times were set to 

30/15 s for Ti and Cr, and 15/5 s for Si, Al, V, Mg, Fe, Mn, Ni, Zn. The analyses encompass Cr-

spinel inclusions from all compositional zones of olivine crystals. The spinels have #Cr of 0.05-

0.50, which match the calibration range of the thermometer (0 < #Cr < 0.69; Coogan et al. 2014). 

The complete dataset is given in Online Resource 3. 

 

4.4.3.1 Temperature constraints for Laacher See hybrids 

Olivine-spinel pairs from Laacher See hybrids give 1047-1145 °C (average: 1106 ± 43 °C) for Fo86-

87 cores and 1162-1218 °C (average: 1172 ± 32 °C) for Fo89 rims. These temperatures for Fo86-87 
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olivine-spinel pairs are only slightly above the temperature of 1060 °C for hybrids estimated by 

Wörner and Wright (1984) for the equilibrium of olivine inclusions (Fo85) in clinopyroxene in the 

same rock types from the same stratigraphic ULST section (their sample 1099-12). Olivine-spinel 

temperatures calculated here reflect crystallization temperatures at the time when the spinel was 

enclosed into the growing olivine crystals. The thermometer is not sensitive to re-equilibration 

during cooling of the lavas or after mixing with lower temperature phonolite due to the very slow 

diffusion of Al in olivine (Coogan et al. 2014). These temperatures therefore represent the 

maximum temperatures of the basanite magmas during olivine crystallization. After ascent, cooling 

and hybridization with relatively “colder” mafic phonolite magma (880°C, Wörner and Schmincke 

1984; Berndt et al. 2001), the temperature at which the olivine cores started to equilibrate to the 

new equilibrium composition must have been significantly lower, i.e. between 1170 and 880 °C. 

Since the hybrid samples show a large range of compositions along a mixing trend (Wörner and 

Wright 1984), the relative proportions of basanite to phonolite, and thus the temperatures after 

hybridization, were highly variable, which must be considered in the modeling. Because the cooling 

rate and temperature distribution is unknown, an effective temperature was estimated for every 

sample. We defined Teffective = 0.95*Tcalculated (Chakraborty and Ganguly 1991; Costa et al. 2008). 

This relationship is defined for element diffusion with activation energies Ea = 200 kJ mol-1 

(Chakraborty and Ganguly 1991; Costa et al. 2008). This is in the range of the activation energies 

for diffusion in olivine used in the software DIPRA (Diffusion Process Analysis) by Girona and 

Costa (2013): EFo = 201 kJ mol-1, EMn = 201 kJ mol-1, ENi = 220 kJ mol-1, and ECa = 193-207 kJ mol-

1 depending on the crystallographic orientation. The estimation of an effective temperature close to 

the maximum temperature is based on the exponential dependency of the diffusion coefficient on 

T. Therefore, the major part of diffusion occurred at the beginning of the diffusion process, when 

temperatures are still high (Costa et al. 2008). This estimation results in an effective temperature 

Teffective ~ 1114 ± 32°C for Fo89. 

Taking the calculated temperatures for the basanite (1172 °C) and the maximum temperature of 

~880 °C for the mafic phonolite, the temperatures for the mafic phonolite can be estimated using 

the 40 / 60 % ratio of phonolite/basanite mixing proportions by Wörner and Wright (1984) as ~1055 

°C. Using mixing proportions calculated by Tomlinson et al. (2020) with minimum 30 % basanite 

results in a minimum temperature T = 940-968 °C. However, the proportions of basanite / phonolite 

cannot be assumed to be the same for all hybrid samples. Considering the uncertainty of the Coogan 

et al. (2014) thermometer and the 30 % basanite component being a minimum value, we estimate a 

minimum temperature of T = 1000 °C for the temperature of the hybrid lavas. Calculating 

timescales of olivine equilibration with this low temperature results in maximum diffusion times 

that are ~seven times longer than those calculated for the Teffective of 1114 °C. 
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4.4.3.2 Temperature constraints for mafic lavas erupted at the scoria cones 

Temperatures were constrained from spinel inclusions in olivine for the mafic samples from the 

Rothenberg dyke and the Eppelsberg basanite. In the basanite samples, spinel inclusions with an 

adequate size for analysis and compositions within the calibration range of the thermometer are 

rare. Within the sample from Rothenberg, some of the inclusions were compositionally close to Ti-

bearing magnetite and only crystallization temperatures for Fo84-86 could be constrained (1152-1170 

°C, average: 1159 ± 23 °C). For the sample from Eppelsberg basanite, crystallization temperatures 

of 1157-1202 °C (average: 1183 ± 26 °C) are constrained only for less forsteritic olivine 

compositions (Fo83-84). 

 

4.4.3.3 Pressure and crystal orientation 

For Laacher See hybrid clasts we took a minimum pressure of 2 kbar for diffusion modeling based 

on the depth of the magma chamber constrained by previous workers (Wörner & Schmincke 1984a; 

Berndt et al. 2001; Harms et al. 2004). The error caused by uncertain pressure values is negligible 

with respect to the uncertainty of temperatures. 

Elemental diffusion in olivine is strongly anisotropic and can be described as 6Da = 6Db = Dc 

(Dohmen et al. 2003; Costa and Chakraborty 2004) with Da, b, c as diffusion coefficients along the 

crystallographic axes. Diffusion modeling therefore requires the knowledge of crystal orientation 

with respect to the direction of the measured profile. For oblique cuts, the orientation of the olivine 

crystals was determined via EBSD (electron backscatter diffraction; Prior et al. 1999) at the FEI 

Quanta 200 F scanning electron microscope at the Geoscience Center, Georg-August-University, 

Göttingen. The thin sections were not coated to avoid signal weakening. 10-15 measurement points 

were set along the analyzed line profiles to exclude heterogeneities in crystal orientation using a 

DigiView V camera (EDAX-Ametek) and TSL OIM software for data collection (measurement 

conditions: 15 keV, 150 µA, and 4 µm spot size). 

 

4.4.4 Our approach to diffusion modeling 

Olivine crystals from the final products of the Laacher See eruption were used to constrain residence 

times of olivine crystals in the late mafic, hybrid clasts. As a complement, olivine from basanite 

lavas (bombs, lapilli and dikes) from several nearby (but significantly older) basanite scoria cones 

were also analyzed to constrain ascent times from mantle or lower crustal depths. Since we 

concentrate on the outer diffusion boundaries between core and crystal margins, these diffusion 

times should represent the timespan between when olivine crystals were entrained into a new 

magma and their rapid cooling after eruption to the surface. We term this point of entrainment as 
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reactivation time of older olivine crystals (Sundermeyer et al. 2020). Olivine crystals can be 

reactivated from prior storage in a crystal mush or cogenetic cumulates, or from a resident, more 

evolved magma by a newly ascending more mafic magma. On the other hand, olivine crystals may 

be carried up in mafic magmas from depth into shallower reservoirs where they mix with evolved, 

olivine-free magma. The compositional relations between olivine (Fo-content) and hybrid magmas 

(Mg#) will depend on which of these processes was operating. In any case, the magma mixing event 

initiates diffusive re-equilibration of olivine cores to the new equilibrium composition determined 

by the composition of the new hybrid host magma. Given a sufficiently long time, which mostly 

depends on temperature and size of the crystals, the core may completely homogenize with the new 

surrounding magma. However, if this process remains incomplete (e.g. due to fast eruption or 

cooling during the eruption), the compositional gradient between rim and core can be used to 

determine the timescales of equilibration and the original core compositions can constrain parent 

magma compositions. In our samples, the olivine crystals often show an additional very thin (few 

microns) zoned overgrowth at the outermost grain boundary, which is the product of a late, short 

crystallization from the hybrid host and/or diffusion event that reflects a final phase in the history 

of the crystals. In this study, the term grain boundary is used for this outermost zone to clearly 

distinguish it from the diffusion boundary between the core and rim.  

 

 

Fig. 3 Backscattered electron image (BSE) showing mass contrasts (dark = Mg-rich; bright = Fe-rich) and 

elemental distribution mappings of Mg, Fe, Ni, Ca, and P in olivine (EPB19-1-3-id5). Red squares mark the 

mapped areas. Element concentrations increase from blue over green to reddish colors. Reverse-normal 

zonation is clearly visible by the high-Mg rim and low-Mg grain boundary. P is highly concentrated in the 

rim, but shows also zoning in the olivine core, which is already re-equilibrated in other elements. 
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Zones of growth and diffusion, both forming compositional gradients, and growth during diffusion 

must be identified for diffusion modeling (Shea et al. 2015b). Neglecting the amount of growth will 

result in an overestimation of the modeled timescales (Costa et al. 2008). However, there are several 

ways to distinguish diffusion from growth zoning. Compositional maps that focus on sharp crystal 

apexes show different zoning patterns for growth and diffusion: while growth zoning will produce 

compositional zones strictly parallel to the crystal faces, thus mimicking the crystal apexes, 

diffusion will produce smooth rounded zonation haloes across the apexes. Fig. 3 shows an example 

of such diffusive smoothing around crystal apexes and thus suggests that zoning in these olivine 

crystals from Laacher See hybrids result from diffusion. The comparison of fast (Mg-Fe) and more 

slowly diffusing elements (Ni, Al, P) is an additional tool to distinguish whether compositional 

gradients are induced by diffusion or growth. Line profiles for Ni, Al, and P show significantly 

steeper and narrower gradients compared to the Fo-content between both core / rim and rim /grain 

boundary (Fig. 4). Therefore, this is solid evidence that the Mg-Fe gradients are the result of a 

diffusion-dominated process. Further, the relationship between Fo-content and NiO also allows to 

distinguish growth and diffusion due to the different diffusion of Mg-Fe and Ni (Gordeychik et al. 

2018, 2020). For normal zoned olivine, growth results in a convex trend from core to rim in a NiO-

Fo diagram (Fig. 5). Diffusion is characterized by generally shallower trends (concave in normal 

zoned crystals and convex in reverse zoned crystals) due to the faster interdiffusion of Mg-Fe 

compared to the diffusion of Ni. The core-to-rim gradients in olivine from East Eifel mafic lavas 

and Laacher See hybrids show a shallow trend from core to rim and rim to grain boundary, which 

indicate that these gradients are dominated by diffusion.  
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Fig. 4 Major and trace element concentrations in selected olivine crystals from (a, d) Laacher See, (b, e) 

Rothenberg, and (c, f) Eppelsberg. For Fo, MnO, CaO, and NiO 2-uncertainties are within the symbols. 

Olivine from basanitic samples show at least two additional growth zones in trace elements at distances of 

~40 and ~100 m from the grain boundary. These zoning is absent in major element concentrations due to 

re-equilibration. This zonation is absent in olivine from ULST samples.  

 

The distinct compositional zones may have formed at different times and temperatures. These 

processes can be modeled using e.g. the non-isothermal diffusion model NIDIS (Non-Isothermal 

Diffusion Incremental Step model) from Petrone et al. (2016), which was recently modified by Rout 

et al. (2020). This model allows the stepwise modeling of diffusion in complex zoned crystals at 

different temperatures. The core started diffusive equilibration to the rim composition at a time t1 

and a temperature T1 and equilibrated for a timespan ∆t1. After that time, the grain boundary is 

formed and the rim started equilibration to the grain boundary composition (at a time t2 and a 

temperature T2). During the time span ∆t2 the rim equilibrates, but simultaneously the core 

equilibration continues diffusive exchange at the different temperature T2. The sum of the times ∆t1 
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and ∆t2 represent the time the whole crystal equilibrated (Petrone et al. 2016). However, our 

modeling shows that the time ∆t1 of core diffusion can only be very short (days) and also suffers 

from uncertainties introduced by the stepwise non-isothermal modeling approach. Therefore, we 

decided to model the entire profile (core / rim and rim / grain boundary) with only one intermediate 

temperature Teffective, that accounts for cooling during the diffusion process. Additionally, we 

calculated the maximum diffusion times of olivine crystals from Laacher See assuming that 

diffusion took place at the minimum temperature of T = 1000 °C. We used a step model between 

the core with an initial composition C1 and the rim with a composition C2. The rim evolves to the 

composition C3 of the grain boundary. It is difficult to constrain whether the outermost overgrowth 

already existed at the beginning of diffusive rim equilibration or if the diffusion took place in direct 

contact between rim and melt before the overgrowth has formed. Therefore. it cannot be excluded 

in the case of the resorbed grain boundaries, that an overgrowth existed and that it developed a s-

shaped diffusion profile that was later (partly) removed by dissolution. Therefore, we tested both, 

a model based on diffusion between rim and overgrowth as well as between rim and melt. We found 

that due to the narrow gradients (<15 μm), the difference in calculated timescales is negligible and 

within the overall uncertainties of the model (see discussion below). The gradient between the 

narrow overgrowth rim and the grain boundary was not modeled for olivine from Eppelsberg and 

Rothenberg basanite, because the gradients of Fo and slowly diffusing trace elements are similar 

and thus indicate a growth-dominated formation. 

The time obtained from the modeling represents the period between reactivation (= mafic recharge) 

and cooling (= eruption). Note, however, that the timescales presented here only constrain 

maximum times because (1) the Laacher See eruption lasted several days with the hybrid ULST 

material being erupted towards the very end and the duration of the eruption would be part of the 

calculated diffusion times. Also, (2) for basanite lava and dike samples from scoria cones it cannot 

be excluded that diffusion continued after the eruption due to non-instantaneous cooling. Both 

would result in an overestimation of timescales between reactivation and the onset of eruption.  

Diffusion profiles were modeled using the software DIPRA (Diffusion Process Analysis) by Girona 

and Costa (2013). The calculation of timescales is based on a finite 1-dimensional, numerical 

modeling approach that considers the change of Fo content in the olivine with time due to diffusion 

and thus the compositional dependence of changing diffusion coefficients (Girona and Costa 2013). 

In all analyzed olivine crystals, the diffusion of Mg-Fe, Mn, Ca, and Ni was modeled separately. A 

detailed overview of all modeling parameters is given in Online Resource 4. The software uses the 

root-mean-square-method (rms) to find the best-fit model curve (Girona and Costa 2013). For this, 

the initial concentrations C1, C2, and C3 must be defined. Within a number of steps dt and dx in time 

and space, which must be provided, DIPRA searches the best-fit between the measured profile and 

the model curves for every time and space step.  
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𝑟𝑚𝑠 = √1

𝑁
∑ 𝑁 (𝐶𝑖

𝑥,𝑗
− 𝐶𝑖

𝑥)
2
    (1), 

 

with N as the number of data points, 𝐶𝑗
𝑥 being the measured concentration C of an element i at a 

distance x, and 𝐶𝑖
𝑥,𝑗

 being the modeled concentration C of an element i at a distance x after j time 

steps (Girona and Costa 2013). The software automatically adjusts the diffusion coefficient Dc to 

account for crystal orientation, when the angles between crystallographic axes and measured profile 

are added. This follows the equation by Carslaw and Jaeger (1959), 

 

Dprofile = Da(cosα)2 + Db(cosβ)2 + Dc(cosγ)2   (2), 

 

where Da, b, c are diffusion coefficients along the measured profile, a-, b-, and c-axis, and α, β, and 

γ are angles between a profile and the crystallographic axes.  

DIPRA provides two types of uncertainties. One is a simple error of diffusion times based on the 

uncertainty of composition, temperature and the range of different model curves, which match the 

measured data within compositional uncertainty but are not the best-fit. The second is called 

discrepancy and represents the goodness of fit. It is calculated based on the number of data points 

of the best-fit modeled curve, which do not match the corresponding data point at the same distance 

x (Girona and Costa 2013). We used the 2σ-uncertainties obtained from the analytical 

measurements (Fo = 0.2 mol%, Mn = 0.004 wt.%, Ca = 0.003 wt.%, and Ni = 0.003 wt.%), and the 

standard deviations from the calculation of Teffective that include the uncertainty given for the 

thermometer (± 20 °C, Coogan et al. 2014). The uncertainties for T are ± 32 °C for Laacher See 

hybrid samples, ± 23 °C for Rothenberg, and ± 26 °C for Eppelsberg. Temperature is the dominant 

parameter controlling diffusion and therefore uncertainties of diffusion times. The uncertainties for 

T used here result in time uncertainties that are mostly in the range of 26-78 % for diffusion 

modeling of Mg-Fe, 32-119 % for Mn, 29-104 % for Ca, and 30-130 % for Ni, but can reach up to 

300 % for crystals with very short diffusion times (days) and a low compositional contrast between 

C1, C2, and C3. 
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4.5 Results and discussion 

4.5.1 Chemical composition of olivine crystals from Laacher See hybrids 

1. Typical olivine crystals from Laacher See hybrids are between 100 and 500 µm in size and are 

clearly in disequilibrium with the "phonolitic" minerals (e.g sanidine, plagioclase, amphibole, 

titanite) in the mingled rocks. As such, these olivine crystals are xenocrysts to the phonolite but 

could be phenocrysts with respect to the basanite. Compositionally, these "macrocrysts" can be 

divided into three zones: (1) core compositions that are variable between different crystals (Fo83.1-

89.1, NiO = 0.07-0.24 wt.%, Fig. 6) but uniform within a particular crystal. (2) All crystals show a 

high-Fo rim (Fo87.8-89, NiO= 0.15-0.2 wt.%), which is rather uniform for all crystals, and (3) a thin 

(<10 μm) overgrowth at the outer grain boundary back to Fo84.7-86.8 and NiO = 0.12-0.15 wt.% (Fig. 

3, Fig. 4a-c). This results in complex (reverse-normal) zoning forming peculiar "inverse loops" in 

Ni-Fo diagrams (Fig. 5). It is apparent that these olivine crystals must have had a prolonged history 

during which they encountered different melt compositions from which they grew and, respectively, 

with which they exchanged by diffusion.  

2. Olivine megacrysts (up to 8 mm) differ profoundly from these strongly zoned olivine crystals 

described above: megacrysts are compositionally homogeneous throughout their cores and are only 

zoned at the outermost <50 µm of the crystals. However, the composition and inverse looped pattern 

of the outermost zoning are similar to the macrocrysts. Minor and trace elements in general show 

zoning patterns similar to Fo at the rims and are unzoned in the olivine cores. The trend of zoning 

pattern for NiO differs from those of Fo in several crystals (Fig. 7). Whereas Fo is reversely zoned, 

NiO shows normal zonation and a rim is absent (NiOcore = 0.19-0.23 wt.%). This NiO-concentration 

is intermediate, but higher compared to other olivine cores with the same Fo content.  

3. Matrix olivine (Fo87.4-89.2, NiO = 0.17-0.2 wt.%) are small (less than 30 μm) and distinctly more 

Mg-rich than the outer grain boundaries of the olivine crystals described above, but similar to the 

rim composition (Fo86.3-89.1, NiO = 0.14-0.2 wt.%).  

4. Xenoliths: Olivine from xenoliths in the Laacher See hybrid samples were not analyzed in this 

study. Three types of ol-bearing xenoliths are distinguished: cpx-rich and ol-bearing wehrlites, 

mantle-derived peridotites, and ol-rich, dense cumulate clasts with olivine compositions of Fo84-86 

(Wörner and Schmincke 1984a; Wörner and Wright 1984). 
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Fig. 5 Measured NiO and Fo concentrations along line profiles in zoned olivine crystals from Laacher See 

phonolite, and Rothenberg and Eppelsberg basanite. Olivine crystals show exclusively reverse-normal 

zoning. Olivine cores can be divided into distinct groups based on NiO/Fo distribution along the profile. This 

allows to distinguish growth- and diffusion-formed zonation due to the faster diffusion of Mg-Fe compared 

to NiO. 

 

Origin of the different olivine types: All olivine crystals in Laacher See hybrid lavas are clearly 

related to the basanite magma that intruded and intermingled with the resident phonolite before 

eruption. Olivine macrocrysts are considered to represent the phenocrysts of the basanite magma. 

Their cores and rim zonation reflect the ascent and compositional history of the basanite before 

intruding and mingling into the Laacher See phonolite magma. Olivine megacrysts occur together 

with large (>1.5 cm) compositionally homogeneous clinopyroxenes and equally homogeneous 

megacrystic phlogopites (>1 cm) and therefore are likely derived from the same sources. Probably, 

these megacrysts represent crystal cargo that was picked up by the basanite during ascent from 

older basanitic intrusive bodies.   

Since the rims of the macrocrysts and microcrystic olivine in the matrix are of the same 

composition, the crystallization of matrix olivine probably occurred contemporary with the high-

Fo rim formation of the macrocrysts. Both also show resorbed crystal shapes. Therefore, we argue 

that the matrix olivine must have been formed before the basanite-phonolite mingling event. 

In essence, this means that the basanite magma intruding into the Laacher See phonolite reservoir 

prior its eruption must itself have had a history of mixing and zoned growth before mingling with 

the crystal-rich mafic phonolite. As we will demonstrate below, this prior history of the Laacher 

See basanite is distinct from the history of basanite lavas that erupted in near-by scoria cones.  
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Fig. 6 NiO-Fo diagrams for (a) cores, (b) rims, and (c) grain boundaries of all olivine crystals analyzed in 

this study. Bright grey and reddish fields mark the measured core compositions from West and East Eifel 
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samples in all diagrams. The yellow field marks the common composition with Fo86.5-87.5 that is present in all 

samples. Core compositions of olivine crystals clearly differ between high-Fo compositions for the West 

Eifel nephelinite and more evolved compositions found in the East Eifel basanite samples. 

 

4.5.2 Chemical composition of olivine phenocrysts in East Eifel basanites 

The olivine phenocrysts analyzed in samples from the basanitic East Eifel scoria cones that formed 

close to the Laacher See eruptive center also share a complex-reverse zoning pattern similar, but 

not identical to those of the olivine crystals from the Laacher See hybrids. A common feature is the 

homogeneous core at variable Fo and a relatively Fo-richer rim (Figs. 4, 5, 7). However, the 

maximum rim compositions of phenocrysts in basanites are always below Fo88 and thus never reach 

the maximum Fo in rims observed in Laacher see hybrid samples (Fo89). One olivine crystal from 

an EPB sample shows a distinct zoning pattern for NiO and Fo similar to the megacrysts from 

Laacher See hybrid samples. 

Line profiles of trace elements (P, Al) in olivine crystals from E41 and EPB samples also reveal a 

more complex history with distinct growth zones (Fig. 3; Fig. 4e, f). P has a low diffusivity (Watson 

et al. 2015) and can therefore preserve compositional growth zonation, while Mg-, Fe-, Mn-, and 

Ni will be equilibrated by diffusion (Milman-Baris et al. 2008; Bouvet de Maissonneuve et al. 

2016). Several correlated peaks in P- and Al-contents show at least two distinct growth zones in 

olivine from the Rothenberg basanite (E41) at ~40 µm and ~100 µm distance inwards from the 

grain boundary (Fig. 4e, f).  

Olivine core compositions are rather variable and range from Fo80.7-88.4 (Fig. 6a) with compositional 

variations being similar for all basanites: Fo82.5-87 (AB), Fo83-87.2 (EPB), Fo83.1-83.8 (E41), Fo83.7-86.8 

(HDA), Fo83.3-86.4 (NAS), Fo84.2-88 (NISA), Fo82.7-88.4 (PLH), Fo80.9-88.2 (SAT), Fo80.7-88.2 (TÖN), and 

Fo81.1-87.9 (VEI). NiO-contents in olivine cores are also variable in all basanite samples between 

~0.05 and 0.21 wt.%. 

Overall, the rim compositions of olivine crystals from the basanite samples show a range similar to 

the cores (Fo80.4-87.8, NiO = 0.07-0.21 wt.%). However, the compositional variability between 

different rims (up to 7 mol% Fo) is large, but for each crystal always higher in Fo than the core. 

This results in typical "humped" concentration profiles (e.g. Figs. 5, 7) were the maximum Fo 

content is generally different. The high average Fo contents of the rims clearly indicate that the 

maximum is formed by olivine crystals interacting with basanite magma that is generally more 

mafic than the host melt from which the olivine cores have grown (but not as mafic as for the olivine 

rims found in Laacher See hybrid lavas, see above).  
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Fig. 7 Olivine in ULSH and EPB samples show rarely distinct zoning patterns in NiO compared to other 

elements as Mg-Fe, Mn, and Ca. Commonly, element distribution of Ni along the measured profiles is similar 

to Fo. Lynn et al. (2017) interpret this phenomenon as result of diffusion-triggered zoning due to heating or 

magma mixing, which changed only the faster diffusing Mg-Fe. 

 

The large compositional range of rim compositions may be taken as evidence that the mafic basanite 

melts from which the rims have grown are rather different in compositions. This may be unexpected 

because the rims should represent equilibrium with a new, most mafic basanitic melt and should 

therefore expected to be similar in all samples. However, the rims do not show a flat compositional 

plateau, rather the concentration profiles always form a sharp maximum (Fig. 4a-c), which may not 

represent the original equilibrium composition. A possible explanation is resorption of the crystal 

surface that has cut to variable depth into the compositional gradient extending from a uniform 

high-Fo rim. In that case the original rim composition would have been variably “eroded” by 

resorption and overprinted later by diffusive equilibration towards a new, less mafic equilibrium 
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composition. If so, only the maximum Fo-rich rim composition (~Fo86-88) in a sample can be 

assumed to be close to the original equilibrium composition of the new melt. 

Fo-contents at the grain boundaries are generally low but cover a wide range (Fo68.6-87.2). This may 

be partly caused by analytical limitations due to the steep gradients and the narrow zoned grain 

boundary overgrowth (<10 µm) which could not safely be measured to the very boundary of all 

crystals (Fig. 6c).  

Matrix olivine (<50 µm) were analyzed only in basanite samples from EPB (Fo73.8-79.6, NiO = 0.04-

0.08 wt.%). They are even more evolved than the grain boundary of the phenocrysts (Fo79.4-87.2, NiO 

= 0.07-0.21 wt.%), which again may be due to the limited spatial resolution of the analysis at the 

crystal boundary 

 

4.5.3 Chemical composition of olivine crystals from West Eifel nephelinites 

Olivine phenocrysts from the West Eifel samples are dominantly normal zoned with a high-Fo core 

and a low-Fo rim (Fig. 2d). Olivine crystals with three compositional zones are also rarely found 

and show either a normal-normal zoning with a two-step decrease of Fo-content towards the rim or 

a reverse-normal zoning as observed for olivine from the East Eifel samples (Fig. 2 e, f). 

Olivine cores are more primitive with Fo86.1-92.2 (DEU) and Fo85.2-91.8 (PUL) and NiO = 0.1-0.39 

wt.%. Olivine rims are less forsteritic with Fo87.3-89.9 (DEU) and Fo86.3-91.6 (PUL). 

Matrix olivine were analyzed in DEU (Fo86.5-88.4, NiO = 0.05-0.22 wt.%) and PUL (Fo74.9, NiO = 

0.05 wt.%). The compositions of matrix olivine from DEU correlate with the grain boundaries of 

the phenocrysts and are also close to the common composition (Fo86.5-87.5, NiO = 0.1-0.2 wt.%), to 

which the grain boundaries of all analyzed olivine compositions tend to converge (Fig. 6c). It is 

notable that this common composition is the same as for the crystal boundaries of olivine crystals 

in Laacher see hybrids. 

 

4.5.4 Ol-rich xenoliths 

Small peridotite xenoliths (less than 2 cm) occur rarely in basanite samples of the East Eifel but are 

abundant in more primitive West Eifel centres. Analyses were performed on 14 xenolithic olivine 

from four East Eifel basanite lavas and one West Eifel nephelinite. In the East Eifel, two types were 

identified based on their olivine composition: (1) one type is low in Fo and NiO (Fo79.3-80.9, NiO = 

0.11-0.19 wt.%; samples NISA and E41), and (2) a high-Fo and high-NiO type (Fo88.6-90.1, NiO = 

0.27-0.38 wt.%; NISA, SAT and TÖN). However, one analysis from SAT matches none of the 

compositions (Fo87.4, NiO = 0.14 wt.%). Olivine from a small xenolith found in the E41 basanite 
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dike have low Fo83-84.1, but a high NiO = 0.23-0.3 wt.%. This xenolith shows a cpx-reaction rim 

with the basanite host. Its interior shows equilibrated grain textures and therefore probably represent 

older dunitic cumulates from basanite magmas unrelated to the Laacher See eruption. The distinct 

high-Fo / high-NiO type can be clearly identified as olivine from mantle xenoliths. Such low-Fo / 

high-NiO olivine compositions fall distinctly above the general Fo-Ni trends (Fig. 5, 6) and their 

rims show increasing Fo at constant Ni. Following the interpretation of Gordeychik et al. (2020), 

such olivine core compositions are strongly affected by extended diffusion with an evolved host 

magma, reflecting the faster Mg-Fe interdiffusivity compared to Ni. These cores have later again 

been overprinted by diffusive exchange with more mafic magma, thus creating the horizontal trend 

between core and rims in Fo-NiO space (Fig. 5).  

The xenolithic olivine of the sample DEU (14 analyses) from the West Eifel show exclusively the 

high-Fo / high-NiO composition (Fo88.7-89.1, NiO = 0.3-0.4 wt.%), but these compositions are still 

more evolved than some of the phenocrysts analyzed in West Eifel nephelinite. 

 

4.5.5 Calculated diffusion times 

Diffusion times were calculated from modeling compositional gradients measured for Mg-Fe, Mn, 

Ca, and Ni across olivine crystals from the Laacher See hybrids and from lavas erupted from two 

basanitic scoria cones (E41 and EPB) (Fig. 8).  

For olivine from the Laacher See hybrids, the timescales obtained from olivine core-rim-grain 

boundary zoning range from 1± 1 to 49 +35/-20 days based on Mg-Fe diffusion at Teffective = 1114 

°C (Fig. 9; Tab. 1). Diffusion times for Mn, Ca, and Ni vary between 1-34 (+25 / -12), 1-30 (+18 / 

-13), and 1-36 (+41 / -28) days, respectively, and show a good agreement for trace elements and 

Fo-content. To also estimate the maximum possible timescales, diffusion was modeled at the 

reasonable minimum temperature of 1000 °C, which gives diffusion times between 10 and 410 

days. 

 



Timescales from magma mixing to eruption in alkaline volcanism in the Eifel volcanic fields, western Germany 

 114 

 

Fig. 8 Diffusion modeling of (a) Mg-Fe, (b) Ca, (c) Mn, and (d) Ni in a representative olivine crystal (LSH-

1-1). Green lines show the estimated initial zoning at the time t0, when the olivine is reactivated and starts 

diffusive equilibration for a timespan t until diffusion is interrupted at the time t1 (red line) by cooling (e.g. 

eruption). The time obtained by modeling a curve best-fitting the measured profile represents the residence 

time in the basanitic magma and subsequently the hybrid magma of the ULST until Laacher See eruption. 

 

Diffusion times calculated for olivine from the basanite samples E41 and EPB are generally longer 

(up to 490 days). Olivine from E41 gave a range of timescales between 47 (+18 / -14) and 406 

(+238 / -126) days for Mg-Fe diffusion. Mn, Ca, and Ni gave comparable results, except for crystal 

E41-4-3, with tFo = 406 days and tNi = 154 (+64 / -82) days. However, given the uncertainties these 

diffusion times still overlap. 
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Fig. 9 Diffusion times of Mg-Fe, Mn, Ca, and Ni in olivine from Laacher See, Rothenberg, and Eppelsberg. 

Diffusion times of analyzed olivine crystals from Laacher See are exceedingly short (<50 days) indicating 

the phonolitic magma chamber was reactivated only months prior to eruption. Olivine from the basanitic 

samples show diffusion times, which vary from tens of days up to 500 days. Large uncertainties are mainly 

caused by temperature uncertainties. Modeling of major and trace elements within one crystal gave 

comparable diffusion times within the uncertainties except of one crystal from Eppelsberg, where diffusion 

of Fo differs by a factor of 10 from trace elements. 

 

Olivine from EPB gave Mg-Fe diffusion times of 64 (+42 / -42) to 490 (+327 / -330) days 

(maximum times along a-axis). These samples have both the largest uncertainties and the largest 

scatter retrieved from Mg-Fe and trace element modeling (Tab. 1). By contrast, diffusion times for 

trace elements range between 25 and 88 days for Mn, 29 to 77 days for Ca, and 12 to 83 days for 

Ni (excepting EPB19-1-3id4). These diffusion times for trace elements are in agreement with each 

other (within uncertainties; Fig. 9; Tab. 1). Thus, even for the same crystal crystals, the diffusion 

times for Fo are up to ~10 times longer than those estimated for trace elements. Such systematically 

shorter diffusion times indicate a problem with the simple model set up: For several crystals, 

additional compositional steps are observed in the trace element profiles, which indicate a multi-

step growth between core and rim rather than a single event. These steps are absent in Fo-profiles, 

because they were likely already erased by diffusion. Therefore, modeling the Fo-content with a 
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single step between core and rim, but two or more steps for the trace elements results in the observed 

deviation and an overestimation of Mg-Fe diffusion times. However, it is not possible to identify 

and model the initial multi-step profiles for Fo. Therefore, the shorter diffusion times for trace 

elements are likely to be more realistic than those obtained from Mg-Fe modeling.  

 

Tab. 1 Diffusion times of olivine crystals from Laacher See mafic phonolite-basanite hybrid clasts (LS-

samples) and Rothenberg (E41) and Eppelsberg (EPB) basanite. Diffusion times from EPB are maximum 

times calculated for diffusion along a-axis. 

Crystal No.   Mg-Fe     Mn     Ca     Ni   

  Time - + Time - + Time - + Time - + 

LS-A-2 7 4 4 4 3 4 9 4 5 12 6 11 

LS-A-7 22 8 14 14 14 22 30 13 18 17 9 10 

LS-B-1 1 1 1 1 1 3 1 1 1 1 1 1 

LS-B-2 28 13 23 22 20 36 17 7 10 22 11 18 

LSH-1-1 16 9 9 12 5 13 25 11 14 5 4 4 

LSH-1-5 6 4 5 6 4 6 - - - 2 2 4 

LSH-2-3 5 3 4 1 1 3 9 8 6 6 3 4 

LSH-2-9 11 6 7 10 5 8 13 6 12 3 2 3 

LSH-3-2 18 6 10 21 10 25 20 8 16 23 14 27 

LSH-3b-2 14 9 10 - - - - - - - - - 

1101-3-3 9 3 6 5 2 4 9 3 7 5 3 3 

1101-3-5 49 20 35 - - - - - - 36 28 41 

1101-3-6 26 14 16 34 12 25 - - - 24 10 14 

E41-4-1 291 213 103 211 61 159 182 80 77 254 167 346 

E41-4-3 406 126 238 343 297 252 340 97 151 154 82 64 

E41-4P-1 153 66 78 156 61 63 102 38 59 142 43 84 

E41-4P-2 47 14 18 42 14 15 74 32 31 22 11 10 

E41-4P-4 123 55 52 85 55 65 85 48 34 41 14 23 

E41-4P-6 187 57 67 200 54 71 183 59 67 151 56 116 

EPB19-1-2xc2 78 33 33 64 27 30 35 18 16 21 8 10 

EPB19-1-3id1 235 71 129 25 9 23 29 30 22 - - - 

EPB19-1-3id2 64 42 42 62 38 63 52 16 37 19 19 37 

EPB19-1-3id4 490 330 327 - - - 84 28 77 219 100 125 

EPB19-1-3id5 101 53 67 34 25 24 31 13 23 83 40 40 

EPB19-1-3id8 72 26 33 44 26 26 69 37 28 16 14 12 

EPB19-2-2id3 125 52 50 88 67 40 77 24 42 12 8 12 

EPB19-2-2id4 70 28 39 - - - 46 26 26 81 79 92 

 

4.6 Implications for magmatic evolution and eruption  

Olivine compositions and zoning patterns show that basanite from the East and nephelinite magmas 

from the West Eifel volcanic field are distinct in their origin and histories. They are again different 

from the basanite magma that intruded into the Laacher See magma system and most likely 

triggered its eruption 12.9 kyr ago. The observation that olivine from the East Eifel basanite samples 

are less forsteritic (corresponding to more evolved magmas) than those from the West Eifel, 

correlates with the generally more evolved volcanic products in the East Eifel compared to the West 
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Eifel (Schmincke 2007) and the scarcity of mantle. Our analyses of olivine crystals reveal two 

distinct trends for East and West Eifel volcanic products with respect to their Fo- and NiO-

relationship (Fig. 6a). Olivine core compositions from the West Eifel nephelinite samples fall on a 

steep crystallization trend of mantle-derived melts starting from an equilibrium composition with 

>Fo90 and high NiO (>0.3 wt.%). The near primary nature of these nephelinite magmas is also 

indicated by the abundance of mantle-derived peridotite xenoliths (Meerfelder Maar; Witt-

Eickschen et al. 2003) and high-pressure cumulates from the base of the crust (Pulvermaar; Lloyd 

1987; Duda and Schmincke 1985). 

The reverse zoning pattern commonly found in olivine from East Eifel basanite samples indicate a 

common history for most olivine crystals and their host magmas, which is different from that of the 

nephelinites. The compositional range of their cores results from mixing of variably evolved 

basanitic melts with equilibrium olivine of <Fo88 and low NiO (<0.2 wt.%). The typical reverse-

loop zonation starting from these cores towards a relatively uniform, more forsteritic rim (Fo86.5-

87.5) indicate that these magmas and their olivine crystals were entrained/mixed after previous 

storage by new ascending, more mafic basanite magmas. Note that this history appears to be 

repeated in all basanite-derived olivine crystals. The uniform rim composition (~Fo86.5-87.5, NiO = 

0.1-0.2 wt.%) corresponds (1) to the maximum Fo-content found in olivine cores from East Eifel 

basanite and (2) marks the common rim composition, to which all cores equilibrated. This 

composition also is equivalent (3) to the common composition of olivine grain boundaries from 

Laacher See hybrids. Moreover (4), this common composition is also the minimum Fo- and NiO-

content found in olivine rims / grain boundaries in West Eifel nephelinite samples, whose 

magnesian cores represent primary magma compositions (Fig. 6a-c). Thus, this composition is 

common to all samples that we studied and is intermediate between more evolved basanite (cores) 

and primary mantle-derived melts.  

 

4.6.1 History and composition of the Laacher See recharge magma 

It was previously assumed that the basanite recharging into the Laacher See magma chamber is 

equivalent to magmas previously erupted in older basanitic scoria cones surrounding the Laacher 

See volcano (Wörner and Wright 1984). However, the cores of olivine macrocrysts in Laacher See 

hybrids show a large compositional range that extends from Fo83 to >Fo88 (Fig. 6a) and their rim 

compositions even reach up to Fo89.1 and NiO = 0.24 wt.%. Such olivine composition is neither 

observed in East Eifel basanite nor West Eifel nephelinite and extends the trend of olivine cores 

from basanites towards a more magnesian composition (Fig. 6a). These magnesian olivine 

macrocrysts in the Laacher See hybrids then indicate that the recharging basanite had a different 

history and composition from basanites that erupted in scoria cones (Fig. 5, 6b, 10b I). The large 
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range in core compositions, however, also at least partly overlaps with cores observed in basanites 

und therefore indicate that some olivine crystals in the recharging basanite initially had similar 

histories compared to those in the basanites erupted in scoria cones. However, before the basanite 

recharge entered the Laacher See magma chamber, it was in equilibrium with ≥Fo89, it contained 

magnesian microcrysts now found in the hybrid matrix and also carried (rare) mantle-derived 

peridotites. There are two important conclusions from these observations: (1) Just prior to recharge 

and mixing with the phonolite, this new magma had entrained olivine crystals with a range of 

compositions that were stored either in a crystal mush or contained in basanite magma in the crust 

at the time when the Laacher See volcano erupted, and (2) this new basanite magma was 

significantly more mafic than any of the basanites erupted from the nearby scoria cones. The outer 

grain boundaries of olivine crystals from the hybrids are uniform in composition (Fo86.5-87.5, Fig. 6c) 

and thus reflect the composition in equilibrium with the hybrid matrix that formed after basanite-

phonolite mixing.  

 

4.6.2 Origin and mixing history of basanite magmas in the East Eifel 

Distinct growth zones in olivine crystals from the basanite samples shown by P- and Al-content are 

evidence for several heating events (Milman-Barris et al. 2008) that may reflect frequent recharges 

as documented also from products of several eruptive centers in the WEVF (Shaw et al. 2002; Shaw 

2004). The basanite magmas from the scoria cones are either products of mixing between mafic 

magmas with variable, slightly more evolved magmas or they entrained cumulate crystals of 

variable composition from a residual crystal mush. In both cases, a compositional range of low-Fo 

olivine cores is observed. Since no magnesian olivine cores >Fo88 are found in basanite lavas, the 

mafic endmember of mixing cannot have been a primary magma which would be expected to carry 

olivine >Fo90 as is recorded in West Eifel nephelinites. Except for the recharge magma that formed 

the Laacher See hybrids, there is no evidence for (near-) primary basanite magmas erupted to the 

surface in the East Eifel. However, both the basanites and the Laacher See hybrids may share a 

similar magnesian endmember (Fo89). The common composition Fo86.5-87.5 can be produced by 

mixing of more evolved basanite magma (represented by the variable olivine cores with Fo80-86) 

and a recharge in equilibrium with Fo89. 

If the recharging basanite from the Laacher See is compositionally different (Fo89), this brings up 

the question why this composition is absent in olivine crystals from the "regular" basanite samples 

from scoria cones. Whatever the reason is for this difference, it must be related to a particular 

character of the basanite magma that mixed with and triggered the eruption of the Laacher See 

phonolite. 
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The different diffusion times calculated for olivine from Laacher See and the basanite samples 

indicate that time may be a significant factor in explaining the differences. Although only olivine 

from two basanitic samples (EPB and E41) were modeled and their diffusion times and these may 

not be representative for the East Eifel basanite eruptions in general, we note that the timescales for 

mixing and diffusion are up to 10 times longer than those obtained from the basanite involved in 

the formation of the Laacher See hybrids. Possibly, the olivine crystals from the basanite samples 

equilibrated during longer diffusion times at high temperatures (~1100 °C) to “erode” initially Fo-

rich compositions towards the common composition found in the basanites. To test this hypothesis 

further studies on olivine diffusion times from many more basanitic cones would be needed. 

Alternatively, we suggest that differences in the magmatic plumbing and ascent time are crucial 

factors.  

This implies that (1) scoria cones are fed from basanite magmas with an extended history (weeks 

to > one year) of residence and basanite-basanite mixing and (2) the Laacher See eruption involved 

mixing and mingling with a more mafic basanite magmas that must have risen directly from mantle 

magma reservoirs in much shorter time (months). If true, this would have profound implications 

for assessing precursor activity of potential future eruptions in the region. 

 

4.6.3 What happened prior to the eruption of the Laacher See volcano? 

The pre-eruptive processes, eruption triggering events and the timescales of reactivation of the 

Laacher See magmatic system have long been subject to study, but details remain unclear. U-Th 

isotope dating of minerals that crystallized from the Laacher See phonolite magma has clearly 

shown that evolved phonolitic magmas resided for more than 20.000 years below the Laacher See 

volcano before it eventually erupted (Bourdon et al. 1994; Schmitt 2006; Schmitt et al. 2010). This 

naturally begs the question why phonolite magmas did not erupt earlier and what was the final 

triggering event. It is known from other volcanic settings that mafic recharge events and subsequent 

magma mixing may cause precursor geophysical activity (e.g. Kahl et al. 2011, 2013; Sundermeyer 

et al. 2020) and eventually trigger eruptions (Sparks 1977; Murphy et al. 2000; Eichelberger et al. 

2006; Wright et al. 2011; Ruprecht and Plank 2013; Cashman and Giordano 2014; Wolff et al. 

2015; Wiebe 2016). Therefore - with respect to the Eifel Volcanic fields, it is important to 

understand ascent and mixing time scales for mafic magmas. To this end, diffusion times of olivine 

were already calculated for several primitive eruptive centers in the West Eifel such as Baarley, 

Gemündener Maar, and Meerfelder Maar (Shaw and Klügel 2002; Shaw 2004). Zoned olivine in 

xenoliths document fast ascent times from the mantle and probably several recharge events only 

years prior to the eruption (Shaw 2004) with only months to hours between the last mixing and 

eruption (Shaw and Klügel 2002; Denis et al. 2013; Shaw et al. 2018).  
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Fig. 10 (a) Schematic drawing of the chemically zoned Laacher See magma chamber (after Wörner and 

Schmincke 1984b; Tait et al. 1989; Ginibre et al. 2004; Schmitt et al. 2010). (b) shows a zoom of the lower 

part of the magma chamber and the processes of recharge, crystal reactivation, and mixing, which are detailed 

shown in (c). (I) An ascending basanite in equilibrium with Fo89 partially disaggregates a crystal mush below 

the phonolitic Laacher See magma chamber. Olivine cores were reactivated from the mush and start to 

equilibrate to Fo89. At the same time, small olivine crystals from in the groundmass. (II) The basanitic 

recharge enters the lower part of the magma chamber and mixes with the crystal-rich phonolite producing the 

mafic phonolite-basanite hybrids. Due to cooling and changing melt composition, the olivine antecrysts form 

an outermost overgrowth and equilibrate to Fo86.5-87.5 within up to 50 days. (III) The grain boundaries of 

olivine crystals are partially resorbed by a late dissolution event. 

 

Diffusion times of olivine crystals analyzed in this study indicate similar timescales (within months) 

for the basanite magma that intruded into the Laacher See phonolite magma system just before the 

cataclysmic eruption 12.9 kyr ago. Earlier recharge events that did not result in eruptions of 

phonolite magmas were constrained by Rout and Wörner (2020) to have occurred frequently every 

1500 to 3000 years during the 20.000 years history of phonolite magma residence. Using diffusion 

modeling of zoned sanidine phenocrysts from carbonatitic syenites representing the top of the 

magma chamber (Fig. 10a), Rout and Wörner (2018) proposed a final heating and destabilization 

event within years prior to the eruption. This event is not preserved in the olivine crystals likely due 

to re-equilibration. However, Rout and Wörner (2018) also modeled diffusive re-equilibration of 

exsolution lamellae in sanidines, that formed during a period of relatively cold storage in the 
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syenitic, crystal-rich carapace surrounding the magma reservoir that indicate heating above the 

solvus of 725 °C within 15-50 days prior to the eruption. These timescales are consistent with short 

olivine diffusion times calculated in this study at T = 1114 °C. The temperatures estimated for the 

syenites surrounding the phonolite are ~325-400 °C lower than those calculated here for from 

olivine-spinel pairs in the basanite intruding into the base of the magma system. A strong 

temperature gradient must have existed between the LLST syenites, the evolved phonolite at the 

top to the mafic phonolite, phonolitic crystal mush and the intruding basanite at the bottom. Such a 

temperature gradient was already estimated by Wörner and Wright (1984) between the LLST to 

ULST phonolite (800-860 °C) and the mafic hybrids (1060 °C). This also supports the hypothesis 

that magma mixing / heating was restricted to the bottom of the reservoir as also indicated by the 

occurrence of hybrid components only in the uppermost ULST (i.e. the lowermost part of the 

magma chamber; Wörner and Wright 1984; Tait et al. 1989; Berndt et al. 2001; Ginibre et al. 2004). 

As outlined above, the olivine macrocrysts in the hybrid magmas had a history distinct from those 

found in basanitic scoria cones and were entrained into the basanite magma only shortly before 

mixing and eruption (stage I in Fig. 10). However, it is unconstrained whether these olivine crystals 

were stored before entrainment in a crystal mush at the bottom of the Laacher See magma chamber, 

i.e. resulted from the previous intrusions of basanite documented by Rout and Wörner (2020) or 

whether these olivine crystals were derived from a deeper reservoir below (and not directly 

connected to) the Laacher See magma reservoir. We can, however, speculate that the previous 

basanite intrusions were not able to enter the Laacher See magma chamber directly due to the 

nearly-rigid crystal mush functioning as a temporary barrier (Pallister et al. 1992) until a particularly 

strong recharge event brought new, near-primary magma from deep (mantle) levels. This caused 

destabilization of the Laacher See magma reservoir and eruption after 20.000 years of residence in 

the shallow crust. At this point in time, things were happening rather fast: The recharging basanite 

mixed with the phonolite, the olivine crystallized the outermost grain boundaries during cooling 

(normal zoning of olivine) and the rim-grain-boundary started to equilibrate by diffusion towards a 

less forsteritic composition of the hybrid matrix (Fo86.5-87.5) at a lower temperature ~1100 °C (see II 

in Fig. 10b). Diffusion times show that this process of intrusion and mixing occurred months prior 

to eruption and therefore is very likely the final eruption trigger. These diffusion times are 

maximum estimates for a temperature of 1100°C and the period between mixing and the onset of 

eruption might have been even shorter.  

The narrow range of timescales indicate that the recharge was a single event rather than an extended 

phase of continuous intrusions. Previous studies (Folch and Martí 1998; Snyder 2000; Wark et al. 

2007) showed that mafic recharge events can trigger silicic eruptions within months even without 

wholesale magma mixing, simply due to overpressurization caused by volatile exsolution from the 

cooling and crystallizing recharge magma. A similar scenario is assumed to have triggered the 1991 
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Pinatubo eruption (Pallister et al. 1992; Kress 1997; Folch and Martí 1998) and may be also 

reasonable for Laacher See.  

Our results show that the phonolitic magma chamber can be activated and brought to eruption 

within months after an extended storage time of up to 20 kyr of differentiated phonolite magma in 

the upper crust. Given the uncertainties in such diffusion modeling, this timescale is in accordance 

with estimates by Rout and Wörner (in press) based on diffusion modeling of Ba in sanidines from 

the same rocks that also gave diffusion times of months after phonolite-basanite mixing. 

 

4.7 Conclusions 

Magmatic processes prior to the phonolitic Laacher See eruption (12.9 kyr) have been reconstructed 

with respect to their timescales and the composition of involved magmas using compositions and 

diffusion modeling in olivine crystals from the hybrid phonolite-basanite tephra clasts that were 

produced at the very end of the eruptive sequence. These hybrids were interpreted to have formed 

after intrusion of basanite magma into the lowermost part of a chemically zoned phonolite magma 

chamber.  

The composition and zonation of olivine crystals constrain the pre-eruptive history of the evolved 

Laacher See magma reservoir after 20 kyr of storage: 

1. Laacher See hybrids that formed from basanite-phonolite mixing and mingling contain olivine 

crystals that show complex reverse zonation with variable cores (Fo83-89). and more magnesian 

rims with Fo87.8-89.  

2. Compositional mapping and measured profiles show that the smooth compositional gradients 

between core and rims formed by diffusion and partial equilibration after entrainment by a 

more mafic basanite magma.  

3. The basanite that intruded into the resident Laacher See phonolite reservoir was more mafic 

than basanites erupted in nearby scoria cones. This unusually mafic basanite contained olivine 

crystals that were entrained from older intrusions during ascend just before entering the 

Laacher See magma system. 

4. Mixing of mafic basanite and the crystal-rich phonolite magma at the base of the Laacher See 

magma chamber resulted in hybrids that are in equilibrium with Fo86.5-87.5 as shown by the 

outermost olivine grain boundary compositions. 

5. Basanite lavas erupted from the older scoria cones surrounding Laacher See volcano represent 

slightly more evolved compositions as represented by their less forsteritic olivine cores (Fo80-

88) compared to the basanite recharging the Laacher See reservoir (Fo89). These cores 
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equilibrated after mixing, but again with less mafic basanite hybrid magmas (in equilibrium 

with Fo86.5-87.5).  

6. We document short diffusion times within the range of only months for the compositional 

zonation in olivine crystals from the Laacher See hybrids. The olivine crystals started diffusive 

equilibration with the mafic basanite (Fo89) before entering the Laacher See magma chamber. 

Subsequently the crystals further exchanged by diffusion to the new hybrid host (Fo86.5-87.5) 

after phonolite-basanite mixing. The calculated diffusion timescales encompass both, the time 

after entrainment of olivine by the mafic basanite and the mixing event just before eruption of 

Laacher See and are in close agreement with Ba-diffusion modeling on sanidine crystals from 

the same suite of hybrid rocks from Laacher See volcano by Rout and Wörner (parallel 

submission to CMP). 

Our results for diffusion modeling of olivine in hybrid lava clasts from the Laacher See volcano 

give time scales that show that the Laacher See magma chamber erupted after 20 kyr of crustal 

residence within a few to a maximum of 14 months after the intrusion of a new mafic basanite 

magma. This recharge event likely triggered the eruption by overpressurization due to intrusion, by 

cooling and crystallization of, and volatile exsolution from the recharge magma.  
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5 Conclusions 

 

5.1 Final conclusions 

This dissertation investigates the timing of pre-eruptive magmatic processes using the 

compositional and temporal information that is preserved in zoned olivine crystals. The zonation 

of olivine crystals cannot be only used to obtain timescales related to diffusive equilibration with 

the surrounding melt but is also a valuable tool to identify the compositions of interacting magmas 

that can be ideally linked to monitoring data of active volcanoes. 

The results of this study show that the eruptions at each of the studied volcanoes were preceded by 

mafic recharges and magma mixing, during which olivine crystals were entrained either from a 

crystal mush by the ascending magmas or through magma mixing in newly formed hybrids. Olivine 

crystals show partially complex histories that include distinct growth intervals with eventual events 

of dissolution as documented by the zoning of slow diffusing elements as P, Al, or Cr. Diffusion 

times show that the timing of the last events prior to eruptions is on a scale of days to months. This 

clearly supports the theory that recharge events are potentially able to trigger eruptive activity. 

These short timescales were retrieved from each of the volcanic settings studied here, including 

both the frequently active hot-spot and arc volcanoes Piton de la Fournaise and Shiveluch, 

respectively, but also the long-lived phonolitic system of Laacher See volcano.  

 

5.1.1 Shiveluch 

Clasts from a maar deposit from Shiveluch contain four types of zoned olivine crystals identified 

in the study of Gordeychik et al. (2018). These are distinguished by their core compositions and the 

degree to which cores have been affected by diffusion during equilibration with a more evolved 

melt. Originally, the cores had a uniform high-Fo composition of Fo92, which is either preserved 

(group 1) or modified by diffusive exchange with a more evolved melt in equilibrium with Fo86.4 

(group 2-4). After this entrainment of the Fo-rich cores into more evolved melt, growth of high-Fo 

rims (Fo90) resumed from a more magnesian melt after partial dissolution due to temperature 

increase. Finally, olivine crystallized an outermost overgrowth with Fo80 that shows oscillatory 

trace element zoning. Diffusion modeling was applied to the gradients between core and Fo-rich 

rim, and for the outermost gradients towards the crystal surface. The first diffusion step gave 
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timescales between 100-2000 days, whereas the outermost parts diffused only 1-10 days. This last 

event is related to magmatic ascent after a mixing event producing the hybrid in equilibrium with 

Fo90. The short timescales indicate rather fast ascent rates and suggest that the mixing acted as a 

trigger for subsequent eruption. 

 

5.1.2 Piton de la Fournaise 

Piton de la Fournaise on La Réunion belongs to the most active volcanos on earth. The eruptive 

cycle in 2014-2015 provided the chance to track magmatic activity in a complex transcrustal 

plumbing system. In the study of Sundermeyer et al. (2020), diffusion times and compositional 

information from zoned olivine crystals are linked to the monitoring record of geophysical activity 

and rates of degassing at the surface. 

The small eruptions in June 2014 and May 2015 produced low volumes of evolved basalts. The 

reactivation of Fo-poor olivine in evolved melts only days to few months prior to their eruption and 

correlating to shallow seismic activity and ground deformation indicates that these small eruptions 

were only fed from magma batches stored at shallow levels. The eruption of increasingly more 

mafic magmas during July 2015 and the following large August-November eruption imply that 

progressively more deeply stored magmas were activated. Although the intensity and erupted 

volumes during the July eruption are comparable to the small eruptions before, their products – by 

contrast – already contain olivine with long diffusion times such as those of the subsequent, much 

larger August-November eruptions. The July eruptions therefore mark a “transition” between 

shallow and deeply fed eruptions. Interestingly, the comparison of our results and monitoring data 

implies that the more mafic magmas had already arrived in the transcrustal plumbing system as 

early as before 2014. The diffusion in olivine antecrysts contained in these magmas started after a 

swarm of mantle seismicity at the end of 2013, which shows that the mafic magmas were likely 

stored in the deeper crust until their ascent into the shallow system in April 2015. The most mafic 

melts of the entire eruptive sequence occurred at the end of October 2015 and likely ascended 

directly from the mantle after the eruptible magma from the shallow plumbing system was nearly 

emptied.  

The August-November 2015 eruption was rather not triggered by a single recharge event, but more 

likely by periodical recharges from the mantle underplating causing an increase of the volume of 

magma and thus pressurizing and destabilizing the plumbing system progressively since the 

beginning of 2014. The compositional zoning of olivine crystals erupted during the August-

November events and the timescales calculated for their residence in the more mafic melts allowed 

detecting at least three recharge events prior to the June 2014, February, and August-November 

2015 eruptions. 
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5.1.3 Laacher See 

It is unusual to apply olivine diffusion modeling to a phonolitic system such as Laacher See due to 

the absence of olivine crystals in more differentiated magmas. The Laacher See magma reservoir 

is insofar quite special, because the last erupted products are hybrids from a phonolite-basanite 

mixing and contain xenocrystic olivine from the basanite along with minerals typical for more 

evolved alkaline magmas such as sanidine, plagioclase, hauyne, amphibole, and sphene. Despite of 

their resorbed surfaces, olivine crystals show complex reverse-normal zonation that document their 

involvement into two distinct processes. Chemical composition of distinct sections of the zoning 

pattern allows to reconstruct magmatic compositions. The compositions of olivine cores show that 

they originate from a range of basanites in equilibrium with Fo83-89. The rather uniform rim 

compositions with Fo87.8-89 represent a more mafic basanite (≥Fo89), which entrained the olivine 

crystals from deeper cumulates or mush before ascent towards and mixing with the phonolite at 

more shallow levels. By contrast, the outer, less forsteritic grain boundaries (Fo86.5-87.5) likely 

formed after the basanite intruded into the Lacher See magma chamber and mixed with the 

phonolite. 

We modeled Mg-Fe diffusion between the distinct zones at an intermediate temperature, assuming 

that the time the olivine spent in the basanite was rather short. Diffusion times of <50 days to <410 

days, depending on the chosen temperature of 1100 °C or 1000 °C, show that the resident phonolite 

magma within the Laacher See magma chamber was activated and erupted within the range of only 

months after a basanitic recharge. The composition of this basanite (Fo89) is close to a primary, 

mantle-derived composition. 

Interestingly, the recharging basanite at Laacher See was found to be more mafic than the basanites 

that erupted at the studied East Eifel scoria cones (represented by olivine rims with Fo86.5-87.5) and 

also more mafic than every basanite from which the compositional variable olivine cores 

crystallized (Fo80-88).  Only some studied nephelinites from the West Eifel (Pulvermaar and 

Meerfelder Maar) crystallized olivine with similar core compositions of >Fo90. The reasons for the 

absence of olivine more magnesian than Fo89 in the basanites from scoria cones and the resulting 

question, whether a more mafic basanite in equilibrium with Fo89 was possibly involved in the 

formation of these more evolved basanites prior to their eruption to the surface, cannot be answered 

with our data. However, the observed differences between scoria cone basanites and the basanite 

triggering the Laaacher See eruption must be due to differences in the plumbing systems or to 

different rates and mechanisms of ascent as implied by the different olivine diffusion times. 

Aparently, the ascent of the mafic basanite that lead to a critical recharge and eruption of the 
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Laacher See magma chamber was unique in its near-primary composition compared to the basanites 

erupted at East Eifel scoria cones. 
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