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1 Introduction

Algebraic topology means to use algebraic tools to answer topological ques-
tions. We take some description of a topological space, often in combinatorial
or geometrical terms, and turn it into an algebraic structure. That structure
tends to be large and unsightly at first, but the algebraic machinery will even-
tually distill it down to succinct statements about the topology of our space.
And hopefully, the result will be independent of the choice of the description
we gave in the beginning or the algebraic detours we took in between.

Homology theory is one of the two most important such machines.1 Most
topological spaces can be considered as cell complexes: they can be built up
from vertices (0-cells), edges (1-cells), faces (2-cells), etc. Let EjX be the set
of j-cells of a space X, and C[EjX] be the abstract vector space they generate.
Then, the geometric description of X translates into a series of boundary maps

. . .→ C[E3X]
∂3−−→ C[E2X]

∂2−−→ C[E1X]
∂1−−→ C[E0X]

where ∂j sends each j-cell to the sum (or, depending on the orientations, the
difference) of the (j − 1)-cells that make up its boundary.

Let us combine the boundary maps into Laplacian operators :

∆j = ∂∗j ∂j + ∂j+1∂
∗
j+1 : C[EjX]→ C[EjX].

The kernels of these operators are the homology groups of X:

Hj(X;C) = ker ∆j.

These are not only much smaller than the vector spaces C[EjX], but also inde-
pendent of the precise geometric description of the space – they only measure
topological properties. Their dimensions are the Betti numbers of X:

βj(X) = dimCHj(X;C) = dimC(ker ∆j).

L2-invariants are an approach to homology for spaces with infinitely many
cells. Completing the vector spaces C[EjX] yields Hilbert spaces `2(EjX),
and the Laplacians extend (under certain conditions) to bounded operators
on these spaces. Unlike in the finite case, these new Laplacians usually have
a continuous spectrum, and it turns out that the entire spectrum – not just
the size of the kernel – can carry topological information. To measure this, we
require a spectral density function2, which, for any λ ≥ 0, quantifies the size
of the largest subspace on which the operator’s norm is bounded by λ.

Defining such a function poses one main challenge: to describe the size of
infinite-dimensional spaces with finite numbers.

1The other being homotopy theory.
2Often also called the integrated density of states.
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Periodic spaces

Let us call a complex X periodic if there are a finite subcomplex K and a
group G acting freely and cellularly on X such that G · K = X. Then the
infinitely many cells of X form finitely many G-orbits, and each `2(EjX) can
be identified with a space (`2G)n for some n ∈ N.

For any G-equivariant operator T ∈ B(`2(EjX)), the value of 〈σ, Tσ〉 (for
σ ∈ EjX) is constant along any G-orbit! Taking the trace over only one
representative per orbit yields the von Neumann trace

trN (G)(T ) =
∑

[σ]∈(EjX)/G

〈σ, Tσ〉 .

The Laplacian is G-equivariant, since it only depends on the geometric struc-
ture of the space that is preserved by the G-action. Furthermore, the G-
equivariant operators form a von Neumann algebra (that is, a weakly closed
C∗-algebra), so any spectral projections χ[0,λ](∆j) are G-equivariant as well,
and we can define the desired spectral density function as

F (∆j)(λ) = trN (G)

(
χ[0,λ](∆j)

)
.

Especially, its value at zero measures the size of the kernel of ∆j, and consti-
tutes the j-th L2-Betti number of X:

b
(2)
j (X) = F (∆j)(0) = trN (G)(projker ∆j

).

This is the starting point of the theory of L2-invariants, invented by Atiyah
[Ati76].

Novikov and Shubin [NS86] found a topological invariant that quantifies
the “almost-kernel” (the part of the spectrum very close to zero):

αj(X) = lim
λ→0

log(F (∆j)(λ)− F (∆j)(0))

log(λ)
.

Finally, the spectral density function allows to define a determinant in the
sense of Fuglede and Kadison [FK52] for such operators.

L2-invariants have been studied in great detail (see [Lüc02] for an extensive
treatment, and [Kam19] for an overview). However, their construction relied
heavily on the existence of a suitable group action on the space – in other
words, on periodicity.

However, there is a completely different approach to these invariants, in
which the group structure fades into the background: approximation.

Let us again write X = G · K with a compact subcomplex K. At first,
the L2-Betti numbers of X have little to nothing in common with the Betti
numbers of K or the quotient space X/G: Evaluating the Laplacian on a cell
near the boundary of K will produce drastically different results depending
on whether crossing that boundary will lead into another copy of K (when
we are working on X), or back into K itself (when we are working on X/G),
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or into nothingness (when we are working just on K). Thus, if we want to
“approximate” X by a finite subcomplex K, the boundary of K will be where
the similarities end. Consequently, K will only show similar properties to X
if its boundary is insignificant compared to its interior!

This is one of the many definitions of amenability : A space X is amenable
if there is a Følner sequence of finite subspaces

K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ . . . ⊆ X,
⋃
m

Km = X,

such that, in some suitable measure, the share of points in Km that are close
to its boundary converges to zero.

In such an amenable periodic space, Dodziuk and Mathai [DM98] proved
that the L2-Betti numbers can indeed be obtained from ordinary Betti numbers
of larger and larger subspaces: If nm counts how many representatives of each
G-orbit lie in Km, then

b
(2)
j (X;G) = lim

m→∞

βj(Km)

nm
, (∗)

and their proof can be extended to approximate not just L2-Betti numbers,
but whole spectral density functions.

In this final formula, the group structure barely appears any more (only in
the normalization factor nm, which could be replaced by e. g. the number of
cells in Km). Thus, we can begin to ask the question: Can this limit exist if
there is no group action on X?

Aperiodic spaces

The existence of the limit (∗) depends mainly on two factors. On the one
hand, it needs amenability: For example, any d-regular tree with d ≥ 3 has
a positive first L2-Betti number, while each finite subtree of it has β1 = 0.
On the other hand, it requires that finite subcomplexes are in some sense
“representative” for the whole space: any structure that can be found in the
space must be found at a similar frequency in every sufficiently large finite
subspace. Periodic spaces certainly satisfy this condition – but they are not
the only ones.

A first such observation was made by Geerse and Hof [GH91], who studied
self-similar tilings of Rn (such as the decidedly non-periodic Penrose tilings)
in an effort to model the physical properties of quasicrystals, and proved the
existence of various thermodynamic means.

Kellendonk [Kel95] studied the same tilings from a mathematical point
of view. He used the geometry of the tiling itself to define a C∗-algebra of
operators, and established the existence of a spectral density function for such
operators.

Cipriani, Guido and Isola [CGI09] constructed self-similar complexes :
Beginning with a finite CW-complex K0, define a sequence of complexes

Km, where each Km is the union of several copies of Km−1, glued together
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along a small number of overlapping cells. Identifying each Km with one part
of Km+1, one then obtains the self-similar space as the union

X =
∞⋃
m=0

Km.

Under the condition that (Km) is a Følner sequence in X, Cipriani, Guido
and Isola were able to define traces for “geometric” operators on such spaces.
However, geometric operators do not form a von Neumann algebra, and their
spectral projections are not geometric. Thus, with no access to spectral density
functions, Cipriani, Guido and Isola defined Betti numbers as

β(∆) = lim
t→∞

tr(e−t∆)

and Novikov–Shubin invariants as

α(∆) = 2 lim
t→∞

log(tr(e−t∆)− β(∆))

− log(t)
.

They proved that the Euler characteristics of Km converged to that of X, and
calculated Novikov–Shubin invariants for certain complexes.

Meanwhile, Elek [Ele06] gave a precise definition for aperiodic order on
general graphs (that is, one-dimensional complexes): In a graph, let the r-
pattern of a vertex v be the isomorphism class of the (rooted) graph spanned
by all the vertices that are at most r steps away from v. Then a graph has
aperiodic order if every such pattern appears at a well-defined frequency: in
any Følner sequence, the share of vertices with this pattern converges to the
same number.

Elek then defined the algebra of pattern-invariant operators on the space
`2(vertices), whose values on a vertex only depend on the pattern of the vertex,
and proved that their spectral density functions can be obtained as a uniform
limit over finite subgraphs – provided that the graph has aperiodic order. (The
pattern-invariant operators do not form a von Neumann algebra either; Elek
avoided this problem by passing to the Gelfand–Naimark–Segal construction
– an abstract algebra based on the representation of an algebra on “itself”.)

In a second paper [Ele08], Elek found a large class of graphs that actually
satisfy this condition by relating it to Benjamini–Schramm convergence of the
graphs themselves.

Content and results of this thesis

In this thesis, we combine and expand the ideas of Elek and Cipriani–Guido–
Isola to define and study L2-invariants for self-similar complexes.

In Chapter 2, we extend Elek’s framework of aperiodic order to higher-
dimensional complexes. This includes the existence of a trace for geometric
operators on such complexes, and the extension of the trace to a suitable von
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Neumann algebra, which allows us to define spectral density functions for any
such operators.

In Chapter 3, we show that Cipriana–Guido–Isola’s self-similar complexes
always have aperiodic order, and prove the approximation theorem for spectral
density functions:

Theorem (3.5 and 3.11). Let X be a self-similar complex with Følner sequence
(Km), and let T ∈ B(`2(EjX)) be any geometric operator. Then the renor-
malized spectral density functions of T |Km converge uniformly to the spectral
density function of T .

In Chapter 4, we define L2-Betti numbers and Novikov–Shubin invariants
for self-similar complexes, and we study their properties. Especially, we show
that the L2-Betti numbers of a self-similar complex are approximated by those
of its subcomplexes and discuss this possibility for Novikov–Shubin invariants,
and we prove that both of these are indeed invariant under self-similar homo-
topies:

Theorem (4.13 and 4.14). Let X and Y be self-similar complexes that are
self-similarly homotopy equivalent. Then we have

b
(2)
j (X) = c · b(2)

j (Y ) and αj(X) = αj(Y ) for all j,

where the constant

c = lim
m→∞

|EjLm|
|EjKm|

adjusts for the number of cells used in the specific cell structure of each complex.
It is independent of the choice of self-similar Følner sequences (Km) for X and
(Lm) for Y, as long as they fulfill Km ' Lm for all m ∈ N.

In Chapter 5, we discuss Fuglede–Kadison determinants of geometric op-
erators. We can prove that these determinants in general share many of the
properties of their classical equivalents, especially multiplicativity, and that
the Laplacians of self-similar complexes are of determinant class; this lets us
also define L2-torsion for self-similar complexes. Whether the determinants or
the torsion can be approximated in general remains an open question, but we
can show convergence for the Laplacians of some self-similar CW-complexes.

In Chapter 6, we show that the cartesian product of self-similar com-
plexes is again such a complex, and we prove product formulas for all three
L2-invariants:

Theorem (6.3, 6.5 and 6.6). Let X and Y be self-similar complexes, and
normalize every trace by the numbers of vertices. Then we have:

(a) L2-Betti numbers fulfill the Künneth formula:

b
(2)
` (X × Y ) =

∑
j+k=`

b
(2)
j (X) · b(2)

k (Y ).
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(b) If X and Y have the limit property, then so does X×Y , and in this case,
the Novikov–Shubin invariants fulfill

α`(X × Y ) = min

(
{αj(X) + αk(Y ) | j + k = `}

∪
{
αj(X)

∣∣∣ b(2)
`−j(Y ) > 0

}
∪
{
αk(Y )

∣∣∣ b(2)
`−k(X) > 0

})

(c) Let ρ(2) denote L2-torsion and χ(2) denote the L2-Euler characteristic.
Then

ρ(2)(X × Y ) = χ(2)(X) ρ(2)(Y ) + χ(2)(Y ) ρ(2)(X).

Finally, a short appendix summarizes the most important facts about the
Borel functional calculus that is necessary to define and work with spectral
density functions.
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2 Pattern-invariant operators and traces

Throughout this thesis, we aim to use geometrical (or topological) properties
of spaces to ensure the analytical convergence of algebraic properties. In this
chapter, we will lay the groundwork for all of that.

First, we will look at the geometric structure of regular CW-complexes and
how it translates into algebra. Then, we will define the concept of geometric
operators , that is, operators on the L2-chain groups whose values only depend
on the geometric patterns of the space.

The most important geometric operators are the Laplacians of the space,
and every L2-invariant will later be derived from their spectra. We therefore
turn to functional analysis to construct a tool that measures these spectra,
namely, the spectral density function (or integrated density of states). This
function is usually defined as the trace of the spectral projections of the op-
erators – which poses two challenges: There is a priori no trace on the set
of operators on an infinite-dimensional space, and spectral projections of geo-
metric operators are in general not geometric.

Constructing a trace for the geometric operators themselves requires to take
a mean over the infinite set of cells. To ensure such a mean is well-defined, we
will make use of the concept of aperiodic order : We will consider only spaces
where every pattern appears with a well-defined frequency. (We will show in
the next chapter that self-similar complexes do indeed have this property.)
In that situation, the defining property of geometric operators ensures the
existence of the trace.

The trace is unfortunately not weakly continuous, and it therefore does not
simply extend to the weak closure of the algebra of geometric operators (which
would contain the spectral projections we are interested in). Instead, we will
construct a different von Neumann algebra containing all geometric operators
to which the trace can be extended. This will finally allow us to define the
desired spectral density functions.

2.1 Preliminaries

As a compromise between the algebraically simple, but rigid structure of sim-
plicial complexes and the flexible, but algebraically complicated structure of
CW-complexes, we will be using regular CW-complexes . Let us briefly look at
their definition and most important properties.

Unless otherwise noted, every map of topological spaces will be assumed
to be continuous.

2.1 Definition. Let X be a CW-complex, and denote by EjX the set of j-cells
of X. As a special case, if X is one-dimensional, it is a graph with vertex set
E0X and edge set E1X.

X is the disjoint union of its cells. Denote by X(j) the j-skeleton of X,
that is, the union of all cells of dimension ≤ j.
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For any cell σ ∈ EjX, let fσ : Sj−1 → X(j−1) be the attaching map. It

extends to a map Fσ : Dj → X such that Fσ(Dj) = σ. Denote by ∂σ =
fσ(Sj−1) the topological boundary of σ in X.

A subcomplex K ⊆ X is called full if, whenever K contains the boundary
of a cell σ of X, it also contains σ.

The complex X is regular if for each cell σ, the extended attaching map
Fσ : Dj → σ ⊆ X is a homeomorphism onto its image.

The complex X is bounded if there is a constant C > 0 such that each cell
σ ∈ EjX (for arbitrary j) fulfills

|{ρ ∈ Ej−1X | ρ ⊆ ∂σ}| ≤ C

and
|{τ ∈ Ej+1X |σ ⊆ ∂τ}| ≤ C.

Regularity is a rather strong restriction for CW-complexes. On the one
hand, it can necessitate much more complicated cell structures: For example,
the n-sphere has a CW-structure with only two cells (a 0- and an n-cell) but its
smallest regular CW-structure consists of 2n + 1 cells (two of each dimension
between 0 and n).

On the other hand, regularity allows to treat the cells in a much more
intuitive way: For example, it allows us to say that the boundary of a cell σ
consists of certain other cells, and it ensures that the closure of every cell is a
subcomplex:

2.2 Lemma. Let X be a regular CW-complex. Let ρ ∈ Ej−1X and σ ∈ EjX.
Then either ρ ⊆ ∂σ or ρ ∩ ∂σ = ∅.

Proof. Assume the contrary and choose a point

x ∈ ρ ∩ ∂σ ∩ ρ \ ∂σ.

(The intersection is nonempty because ρ is connected.) Since ∂σ is closed in
X, we have x ∈ ∂σ.

Using the attaching map fσ : Sj−1 → ∂σ ⊆ X, define Ur = fσ(Br(f
−1
σ (x))),

where Br(ξ) means the open r-ball around ξ in Sj−1 ⊆ Rj. Each of the Ur is
by definition homeomorphic to Dj−1 and contained in ∂σ.

If there were an r > 0 such that Ur ⊆ ρ, then this Ur would also be an
open neighborhood of x in ρ (since ρ itself is homeomorphic to a disc Dj−1).
But then x could not be contained in ρ \ ∂σ – contradiction.

Thus, there is a sequence of points yr ∈ Ur that are not contained in ρ.
Since it is compact, ∂σ intersects only finitely many cells, so we can assume
that all yr are contained in the same k-cell ρ′ (for some k ≤ j−1), and therefore
x ∈ ρ′. However, by construction of the CW-complex, the open cell ρ must be
disjoint from the closure of any other cell of dimension ≤ j− 1, so this, too, is
a contradiction.

2.3 Corollary. If S ⊆ X is a union of cells of X, then its closure S is a
subcomplex of X.
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Note that both this lemma and its corollary are false for general CW-
complexes: For example, given a one-dimensional CW-complex X, one could
attach a 2-cell by mapping its entire boundary to a single point of X that is
not a 0-cell. Then the boundary of this cell contains one point of a 1-cell, but
not the rest of that cell, and its closure in X is not a subcomplex.

2.4 Remark. In fact, regular CW-complexes are relatively close to simplicial
complexes. Allen Hatcher describes their relations as follows ([Hat02], p. 534):

“A CW complex is called regular if its characteristic maps can be chosen
to be embeddings. The closures of the cells are then homeomorphic to closed
balls, and so it makes sense to speak of closed cells in a regular CW complex.
The closed cells can be regarded as cones on their boundary spheres, and these
cone structures can be used to subdivide a regular CW complex into a regular
∆-complex, by induction over skeleta. [...] The barycentric subdivision of a
regular unordered ∆-complex is a simplicial complex.”

Therefore, working in a category of regular CW-complexes is very close
to working in the simplicial category. Compared to simplicial complexes, the
main advantage of regular CW-complexes is their compatibility with product
spaces, as the product of two regular cells is again a regular cell, while the
product of two simplices is almost never a simplex.

For regular CW-complexes, the cellular chain complex takes a particularly
simple form: Write the chain groups as C[EjX] and the differential as

∂j : C[EjX]→ C[Ej−1X], σ 7→
∑

ρ∈Ej−1X

[σ : ρ] ρ

with incidence numbers [σ : ρ] ∈ Z. Then we have:

2.5 Lemma. Let X be a regular CW-complex, σ ∈ EjX and ρ ∈ Ej−1X. Then

[σ : ρ] =

{
±1, if ρ ⊆ ∂σ,

0, otherwise

Proof. See [Suc16], Lemma 1.5.

As our goal is to consider L2-invariants, we will soon pass to the Hilbert
space completion of the chain groups, namely, `2(EjX). The properties of
boundedness and regularity together will ensure that the differentials extend
to bounded operators on these spaces.

2.6 Definition. Let X be a regular CW-complex.
Define the combinatorial distance of two j-cells σ, σ′ ∈ EjX as follows:

� dcomb(σ, σ′) = 0 if and only if σ = σ′.

� dcomb(σ, σ′) = 1 if σ 6= σ′ and there is a (j−1)-cell ρ such that ρ ⊆ ∂σ∩∂σ′
or if there is a (j + 1)-cell τ such that σ ∪ σ′ ⊆ ∂τ .
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� dcomb(σ, σ′) = n if n is the smallest integer for which there are
σ = σ0, σ1, . . . , σn = σ′ such that dcomb(σi, σi+1) = 1 for all i.

For σ ∈ EjX define

Br(σ) = {σ′ ∈ EjX | dcomb(σ, σ′) ≤ r} .

This turns EjX into a discrete metric space, except that the distance of
two cells might be infinite if there is no “path” of adjacent cells connecting
them.

If X is connected, then dcomb is a metric on E0X and E1X, but it might not
be a metric on EjX for j ≥ 2. See Figure 1 for an example.

2.7 Definition. In analogy to simplicial complexes, and to simplify language,
a k-cell ρ contained in the boundary of a j-cell σ will sometimes be referred
to as a (k-)face of σ. Then, two (distinct) j-cells are adjacent to each other if
they share a (j − 1)-face or if both of them are faces of the same (j + 1)-cell.

2.8 Lemma. If X is bounded with constant C (compare Def. 2.1), then

|Br(σ)| ≤
(
2C(C − 1)

)r
.

Especially, there is a bound on the size of r-balls around cells of X depending
only on r.

Proof. By induction on r: For r = 1, note that ∂σ contains at most C cells of
dimension j − 1, and each of those is contained in the boundaries of at most
C − 1 other j-cells; and analogously, σ is contained in the boundaries of at
most C cells of dimension j + 1, each of which contains at most C − 1 other
j-cells. For r > 1, simply use Br+1(σ) ⊆

⋃
σ′∈Br(σ) B1(σ′).

Local isomorphisms and patterns

To find some kind of order in infinite complexes, we require a way to compare
small parts of the complex to each other, that is, a notion of local isomorphism.
However, in order to translate these topological similarities into algebraical
ones, we are interested in something significantly stronger than an isomorphism
of CW-complexes:

2.9 Definition. An (orientation-preserving) regular isomorphism between two
regular CW-complexes K and L is a map γ : K → L such that for each j-cell
σ of K, the image γ(σ) ⊆ L is a j-cell of L and γ : σ → γ(σ) is an orientation-
preserving homeomorphism.

A local isomorphism of a regular CW-complex X is a regular isomorphism
γ : K → L between two (finite) subcomplexes K,L ⊆ X.

This definition of a local isomorphism is explicitly about preserving a par-
ticular cell structure, not just a topological shape. Nonetheless, it appears
very often when we build cell structures for infinite CW-complexes – simply
put, local isomorphisms describe a copy-and-paste approach to putting cell
structures on larger spaces by some kind of “tiling”, periodic or not.
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Figure 1: The combinatorial distance. In this complex, edge 0 is adjacent to
edge 1, as they share a vertex, and edge 1 is adjacent to edge 2 for the same
reason. Edge 2 is adjacent to edge 3 since they are both contained in the same
2-cell (the hexagon). Thus, the edges 0 and 3 have combinatorial distance
three. Meanwhile, the triangle and the hexagon have combinatorial distance
∞, since they are neither adjacent to each other nor to any other 2-cell.

2.10 Definition. Let σ be a j-cell of X. Let B̂r(σ) be the smallest full
subcomplex of X that contains Br(σ) = {σ′ ∈ EjX | dcomb(σ, σ′) ≤ r}, and σ̂
be the subcomplex given by the closure of σ in X. Then the r-pattern of σ is
the regular isomorphism type of the pair

(
B̂r(σ), σ̂

)
.

Denote by Patj,r(X) the set of all r-patterns of j-cells in X.

2.11 Lemma. If X is a bounded regular CW-complex, the set Patj,r(X) is
finite.

Proof. Since X is bounded, Lemma 2.8 ensures that there is an upper bound
for the number of cells in any subcomplex B̂r(σ).

Using Hatcher’s argument (see Remark 2.4), we can turn every finite regular
CW-complex K into a finite simplicial complex Ksimp, and two complexes
K1, K2 are regularly isomorphic if and only if there is a simplicial isomorphism
Ksimp

1 → Ksimp
2 . Furthermore, we obtain a new bound for the maximal number

of simplices in such a complex.
In this process, a cell σ ∈ EjX turns into one or several simplices; its closure

will be a simplicial subcomplex.
For obvious combinatorial reasons, there are only finitely many simplicial

pairs
(
B̂r(σ)simp, σ̂simp

)
, and the claim follows.

Frontiers

Local isomorphisms show the similarity between two parts of a complex, but
this similarity inevitably ends somewhere – presumably at the boundary of
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Figure 2: Patterns. The two vertices marked black have clearly different
1-patterns (top row). In their 2-patterns (bottom row), the complexes B̂2(σ)

are isomorphic, but the pairs
(
B̂2(σ), σ̂

)
are not, so the 2-patterns are also

different. (For any other vertex in this complex, the patterns are identical to
one of these two.)

these subcomplexes. When we look at the algebraic side of things, it turns out
that this affects not just the cells that form the topological boundary of such a
subcomplex; instead, we need to consider every cell “adjacent” to the outside
of the subcomplex with regard to the combinatorial distance. To distinguish
these cells from those in the actual boundary, we will call them frontiers :

2.12 Definition. The original j-frontiers of a subcomplex K ⊆ X are the
j-cells adjacent to X \K. The set of original j-frontiers is denoted Forig

j K, so

Forig
j K =

{
σ ∈ EjK

∣∣ dcomb

(
σ, (EjX \ EjK)

)
= 1
}
.

It is desirable that local isomorphisms preserve frontiers, that is, γ(FjK) =
Fj(γK). Unfortunately, this definition does not deliver that property: If a cell
σ ∈ EjK lies “at the margin” of X itself, then it will often not be a frontier
of K, but many local isomorphisms γ : K → L will map σ to a frontier of L.
For example, consider the simplicial complex X = [0,∞), with E0X = N0 and
E1X = {(n, n+ 1) |n ∈ N0}, and the subcomplex K = [0, 5]. By definition,
Forig

0 K = {5}; but for any n > 0, the local isomorphism γ : [0, 5]→ [n, n+ 5],
x 7→ x+ n will also map 0 to a frontier.

To remedy this problem, let us extend the definition of frontiers:

2.13 Definition. The (generalized) j-frontiers of a subcomplex K ⊆ X are
given by

FjK =
⋃

γ∈Γ(K,?)

γ−1
(
Forig
j (γK)

)
where Γ(K, ?) is the set of all local isomorphisms γ : K → γK ⊆ X.

17



Figure 3: Frontiers. All 1-frontiers of the dark blue subcomplex are marked
in orange. Note that not all frontiers are part of the topological boundary of
the subcomplex.

Figure 4: Generalized frontiers. The original 1-frontiers of this subcomplex
are only those marked in orange. However, as there is a local isomorphism
mapping this complex to the one from Figure 3, the 1-cells marked in red are
generalized frontiers.

2.14 Lemma. If γ : K → γK is a local isomorphism, then γ(FjK) = Fj(γK).

Proof. Let σ ∈ FjK. Then there is a local isomorphism γ′ : K → γ′K such
that γ′σ ∈ Forig(γ′K). As γ′ ◦ γ−1 : γK → γ′K is also a local isomorphism
and (γ′ ◦ γ−1)(γσ) = γ′σ ∈ Forig(γ′K), one obtains γσ ∈ Fj(γK). This proves
γ(FjK) ⊆ Fj(γK).

Applying the same argument to the local isomorphism γ−1 : γK → K
shows γ−1

(
Fj(γK)

)
⊆ FjK. Since γ : EjK → Ej(γK) is a bijection, this

implies Fj(γK) ⊆ γ(FjK).

18



From now on, generalized frontiers will simply be called “frontiers”.3

2.15 Remark. The set of generalized frontiers can be rather large: For any cell
in K, there could be some local isomorphism mapping it to a frontier. The
easiest way to prove that a cell is not a frontier is to use the boundedness of
the complex: Any cell σ ∈ EjK whose combinatorial neighborhood B1(σ) ⊆ K
already has the maximal possible size cannot be a generalized frontier of K.
Namely, for any local isomorphism γ : K → γK, the cell γσ already has the
maximal number of neighbors in γ(B1(σ)) ⊆ γK, so it cannot also be adjacent
to a cell outside of γK.

2.16 Lemma. Let K ⊆ X be a full subcomplex and σ ∈ EjK. Let γ : K → γK
be a local isomorphism.

(a) dcomb(σ,FjK) = dcomb(γσ,Fj(γK)).

(b) If dcomb(σ,FjK) ≥ r, then σ and γσ have the same r-pattern.

Proof. (a) Let dcomb(σ,FjK) = r. Write σ = σ0 and choose cells σ1, . . . , σr ∈
EjX such that dcomb(σi, σi+1) = 1 for all 0 ≤ i ≤ r − 1 and σr ∈ FjK.
Note that all σi actually lie in EjK since otherwise dcomb(σ,FjK) would
be smaller than r. Since γ(FjK) = Fj(γK) by Lemma 2.14, we have
γσr ∈ Fj(γK).

Furthermore, dcomb(γσi, γσi+1) = 1 for all i: If σi and σi+1 share a face
ρ ∈ Ej−1X, then ρ lies in K and γσi and γσi+1 share the face γρ. If σi
and σi+1 are both faces of a cell τ ∈ Ej+1X, then τ must lie in K: If any
other j-face of τ were not contained in K, then σi would already be a
frontier of K, which it is not; so all j-faces of τ lie in K; as K is full,
this implies that τ lies in K. Consequently, γτ exists and has both γσi
and γσi+1 as faces.

Thus, we obtain

dcomb

(
γσ,Fj(γK)

)
≤ dcomb(γσ, γσr) ≤ r = dcomb(σ,FjK).

Applying the same argument to γ−1 yields

dcomb

(
γσ,Fj(γK)

)
≥ dcomb(σ,FjK).

(b) By part (a), dcomb(σ,FjK) ≥ r implies dcomb(γσ,Fj(γK)) ≥ r, and thus

Br(γσ) ⊆ Ej(γK), which implies B̂r(γσ) ⊆ γK. Thus, γ : K → γK
restricts to an isomorphism

γ :
(
B̂r(σ), σ̂

)
→
(
B̂r(γσ), γ̂σ

)
,

so the patterns are the same.

3In [Suc16], the original frontiers were denoted FjK and the generalized frontiers FG
j K.
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2.2 Aperiodic order and the trace

With the stage set, we can now begin to tame infinite complexes.

2.17 Definition. An amenable exhaustion or Følner sequence of a regular
CW-complex X is a sequence of finite full subcomplexes Km ⊆ X such that

� K1 ⊆ K2 ⊆ K3 ⊆ . . . ⊆ X and
⋃
m∈N

Km = X (exhaustion),

� lim
m→∞

|FjKm|
|EjKm|

= 0 for all j with EjX 6= ∅ (amenability).

Note that if X is finite, then there must be an m0 ∈ N such that Km = X for
all m ≥ m0.

The following definitions are a generalization of those given in [Ele06]
(where they were only used for graphs).

2.18 Definition. An (regular and bounded) CW-complex X has aperiodic
order if for every j, r ∈ N there is a function

Pj,r : Patj,r(X)→ [0, 1]

such that every amenable exhaustion (Km)m∈N satisfies

lim
m→∞

∣∣Eαj Km

∣∣
|EjKm|

= Pj,r(α),

where Eαj Km is the set of cells σ ∈ EjKm whose r-patterns are equal to α ∈
Patj,r(X).

Pj,r(α) is called the frequency of the pattern α. The definition immediately
implies ∑

α∈Patj,r(X)

Pj,r(α) = 1.

Note that if X is finite, then every amenable exhaustion is eventually con-
stant, and the complex automatically has aperiodic order.

2.19 Example. The property that any amenable exhaustion produces the
same pattern frequencies is far from automatic. As a simple counterexample,
define a CW-complex X as follows: Let E0X ∼= Z with 0-cells σn for n ∈ Z.
Connect σn to σn+1 by one edge if n < 0, and by two edges if n ≥ 0:

· · · // σ−2
// σ−1

// σ0
**
55 σ1

**
55 σ2

**
55 σ3

**
44 · · ·

The 0-cells of this complex have three different 1-patterns: For σn with n < 0,
the pattern is ◦ // • // ◦ , for σ0 it is ◦ // • ((

66 ◦ , and for σn with
n > 0 it is ◦ ((

66 • ((
66 ◦ .
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For any positive integers a, b ∈ N, the full subcomplexes
(
K

[a,b]
m

)
m∈N spanned

by E0K
[a,b]
m = {σn | −am ≤ n ≤ bm} form an amenable exhaustion, and in that

exhaustion, we find the pattern frequencies

P[a,b]
1,1 ( ◦ // • // ◦ ) = lim

m→∞

am− 1

am+ bm+ 1
=

a

a+ b
,

P[a,b]
1,1 ( ◦ // • ((

66 ◦ ) = lim
m→∞

1

am+ bm+ 1
= 0,

P[a,b]
1,1 ( ◦ ((

66 • ((
66 ◦ ) = lim

m→∞

bm− 1

am+ bm+ 1
=

b

a+ b
,

which clearly depend on the choice of the exhaustion. Thus, this complex does
not have aperiodic order.

2.20 Definition. The propagation of an operator A ∈ B
(
`2(EjX)

)
is given by

prop(A) = max {dcomb(σ, σ′) |σ, σ′ ∈ EjX and 〈σ,Aσ′〉 6= 0} .

An operator A ∈ B
(
`2(EjX)

)
is called r-pattern-invariant if prop(A) ≤ r

and the following commutativity condition holds: If γ : K → L is a local
isomorphism and σ ∈ EjK such that Br(σ) ⊆ K and Br(γσ) ⊆ L, then
Aγσ = γAσ and A∗γσ = γA∗σ.

An operator is called geometric if it is r-pattern-invariant for some r ∈ N.
Denote by Ageo

j (X) the set of all geometric operators in B
(
`2(EjX)

)
.

2.21 Definition and Lemma. Let X be a regular and bounded CW-complex.

(a) For each j ∈ N0, let ∂j : `2(EjX) → `2(Ej−1X) be the operator induced
by the differential of the cellular chain complex of X.

That is, for any cells σ ∈ EjX and ρ ∈ Ej−1X, the value of 〈ρ, ∂jσ〉 is
given by the degree of the map

Sj−1 fσ // X(j−1) proj // X(j−1)
/(
X(j−1) \ ρ

) ≈ // ρ/∂ρ
gρ // Sj−1,

where fσ is the attaching map of σ and gρ is induced by the inverse of
the attaching map of ρ.

Each ∂j is a bounded operator.

(b) Define the j-th combinatorial Laplacian of X by

∆j = ∂j+1∂
∗
j+1 + ∂∗j ∂j.

Each ∆j is a positive 1-pattern-invariant operator on `2(EjX), and thus
geometric.

Proof. By definition of the combinatorial distance and Lemma 2.5, each ∆j

has propagation ≤ 1 and is indeed 1-pattern invariant. For a proof that ∂j
and ∆j are bounded, see [Suc16], Lemma 2.2 / Def. 2.5 / Remark 2.6.
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2.22 Lemma. Ageo
j (X) is a ∗-algebra.

Proof. If A is r1-pattern-invariant and B is r2-pattern-invariant, then clearly
A+ cB is max(r1, r2)-pattern-invariant for every c ∈ C.

The composition AB is (r1 + r2)-pattern-invariant: Given γ : K → L and
σ ∈ EjK such that Br1+r2(σ) ⊆ K and Br1+r2(γσ) ⊆ L, we can write Bσ =∑

σ′∈Br2 (σ) bσ′σ
′ (since prop(B) ≤ r2) and thus obtain

ABγσ = AγBσ =
∑

σ′∈Br2 (σ)

bσ′Aγσ
′ =

∑
σ′∈Br2 (σ)

bσ′γAσ
′ = γABσ

using that for all σ′ ∈ Br2(σ) we have Br1(σ
′) ⊆ Br1+r2(σ) ⊆ K and Br1(γσ

′) ⊆
Br1+r2(γσ) ⊆ L. (The latter follows from Lemma 2.16.)

Finally, if A is r-pattern-invariant, then so is A∗; this follows directly from
the definition.

2.23 Definition and Lemma. Let X be a complex with aperiodic order and
(Km) an amenable exhaustion of X. Then the following defines a tracial state
on Ageo

j (X):

trA(T ) = lim
m→∞

1

|EjKm|
∑

σ∈EjKm

〈σ, Tσ〉 (1)

This is independent of the choice of (Km), and if T ∈ Ageo
j (X) is r-pattern-

invariant, then

trA(T ) =
∑

α∈Patj,r(X)

Pr(α)〈σα, Tσα〉 , (2)

where σα ∈ EjX is any j-cell with r-pattern α.

Proof. Well-definedness: Let T ∈ Ageo
j (X) be r-pattern-invariant. If two

j-cells ρ, σ ∈ EjX have the same r-pattern, then there is a local isomorphism

γ : B̂r(ρ)→ B̂r(σ) such that γρ = σ. Thus,

〈σ, Tσ〉 =〈γρ, Tγρ〉 =〈γρ, γTρ〉 =〈ρ, Tρ〉

because supp(Tρ) ⊆ Br(ρ). Therefore, 〈σ, Tσ〉 only depends on the r-pattern
of σ, and we obtain

1

|EjKm|
∑

σ∈EjKm

〈σ, Tσ〉 =
∑

α∈Patj,r(X)

∣∣Eαj Km

∣∣
|EjKm|

〈σα, Tσα〉
m→∞−−−→

∑
α∈Patj,r(X)

Pr(α)〈σα, Tσα〉 .

This proves that the limit in Equation (1) exists and does not depend on the
choice of amenable exhaustion, and it proves Equation (2).

Linearity is clear from the definition.
State: The Cauchy–Schwarz inequality and the convention ‖σ‖ = 1 yield

|〈σ, Tσ〉| ≤ ‖T‖ for all σ ∈ EjX, and thus |trA T | ≤ ‖T‖ for all T ∈ Ageo
j (X).

Conversely, trA(id) = 1 = ‖id‖.
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Trace property: Let S, T ∈ Ageo
j (X) be r-pattern-invariant. (If S is r1-

pattern-invariant and T is r2-pattern-invariant, simply let r = max(r1, r2).)
Define the the set of “r-frontiers” of Km

F r
j Km = EjKm ∩Br−1(FjKm) =

{
σ ∈ EjKm

∣∣ dcomb

(
σ, (EjX \ EjKm)

)
≤ r
}
.

Note that by boundedness of X there is C > 0 (depending on X and r, but
not on m) such that

∣∣F r
j Km

∣∣ ≤ C |FjKm| for all m.∑
σ∈EjKm

〈σ, STσ〉 =
∑

σ∈EjKm\FrjKm

〈σ, STσ〉+O(|FjKm|)

=
∑

σ∈EjKm\FrjKm

∑
ρ∈EjKm

〈σ, Sρ〉〈ρ, Tσ〉+O(|FjKm|)

=
∑

σ∈EjKm\FrjKm

∑
ρ∈EjKm\FrjKm

〈σ, Sρ〉〈ρ, Tσ〉+O(|FjKm|)

In the first line, at most
∣∣F r

j Km

∣∣ terms are left out; in the third line, at most

C
∣∣F r

j Km

∣∣ terms are left out: For each ρ in F r
j Km, there are at most C cells

σ for which 〈ρ, Tσ〉 6= 0. Each of the dropped terms is bounded by ‖S‖ ‖T‖.
Thus, the O-constants depend on S and T , but not on m.

The same computation yields∑
ρ∈EjKm

〈ρ, TSρ〉 =
∑

ρ∈EjKm\FrjKm

∑
σ∈EjKm\FrjKm

〈ρ, Tσ〉〈σ, Sρ〉+O(|FjKm|) .

Thus,
1

|EjKm|
∑

σ∈EjKm

〈σ, (ST − TS)σ〉 = O
(
|FjKm|
|EjKm|

)
m→∞−−−→ 0.

2.3 The algebra of pattern-invariant operators

The ∗-algebra Ageo
j (X) can easily be extended to a C∗-algebra:

2.24 Definition. Let Aj(X) be the operator-norm closure of Ageo
j (X) in

B
(
`2(EjX)

)
. As the norm trA is norm-continuous, it immediately extends

to a trace on Aj(X).

This allows us to define a functional calculus f(T ) for every geometric op-
erator T ∈ Ageo

j (X) and every continuous function f , and to take the trace
trA(f(T )). However, we are aiming to define spectral projections for these op-
erators, that is, χ[0,λ](T ) with the clearly discontinuous characteristic functions
χ[0,λ]. This requires a von Neumann algebra!

The obvious next step would be to take the weak closure of Ageo
j (X) in

B
(
`2(EjX)

)
, and extend the trace by weak continuity. Unfortunately, the

trace fails to be weakly continuous:
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2.25 Example. Consider X = [0,∞) with the standard CW-structure given
by E0X = N0 and E1X = {(n, n+ 1) |n ∈ N0}. Here, every vertex has degree
two, except for {0}, which has degree one.

For each r ∈ N, define an operator Pr ∈ B(`2(E0X)) by

Prσ =

{
σ, if every vertex in Br(σ) has degree two,

0, otherwise.

Clearly, Pr is r-pattern-invariant and thus contained in Ageo
j (X), and for every

r we have trA(Pr) = 1 because Prσ = σ for almost all σ ∈ E0X.
But on the other hand, (Pr)r∈N is a decreasing sequence of projections that

weakly (even strongly) converge to zero! As trA(Pr)
r→∞−−−→ 1 6= 0 = trA(0), the

trace is not weakly continuous.

To obtain a more suitable algebra, we employ the Gelfand–Naimark–Segal
construction.

First of all, the trace on Aj(X) defines a scalar product on the algebra
itself:

2.26 Definition. Define a hermitian form and the corresponding seminorm
on Aj(X) by

〈S, T 〉H = trA(S∗T ), ‖T‖H =
√

trA(T ∗T ).

2.27 Lemma. Let S, T ∈ Aj(X). Then we have:

(a) ‖T‖H ≤ ‖T‖

(b) ‖T‖H = ‖T ∗‖H
(c) ‖ST‖H ≤ ‖S‖ · ‖T‖H
(d) ‖ST‖H ≤ ‖S‖H · ‖T‖

(e) The set Kj(X) = {T ∈ Aj(X) | ‖T‖H = 0} is a closed ideal of Aj(X).

(f) Kj(X) = {0} if and only if for every r ∈ N and every σ ∈ EjX, the
r-pattern of σ has positive frequency. Then, ‖ ‖H is a norm on Aj(X).

Proof. (a) This holds since trA is a state (and by the C∗-property):

‖T‖2
H = trA(T ∗T ) ≤ ‖T ∗T‖ = ‖T‖2 .

(b) This follows directly from the trace property:

‖T‖2
H = trA(T ∗T ) = trA(TT ∗) = ‖T ∗‖2

H .

(c) ‖ST‖2
H = lim

m→∞

1

|EjKm|
∑

σ ∈EjKm

‖STσ‖2 ≤ lim
m→∞

1

|EjKm|
∑

σ ∈EjKm

‖S‖2 ‖Tσ‖2

= ‖S‖2 · ‖T‖2
H.
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(d) This follows from (b) and (c) combined.

(e) The triangle inequality for seminorms gives ‖S + λT‖H ≤ ‖S‖H+|λ| ‖T‖H
for all λ ∈ C, so Kj(X) is a linear subspace. By (c), it is a left ideal,
and by (d) it is a right ideal. Finally, it is closed (in the original norm
topology) because trA and thus ‖ ‖H are norm-continuous.

(f) Assume there are a j-cell σ ∈ EjX and an r ∈ N such that the r-pattern
α of σ has Pj,r(α) = 0. Then the operator given by Tρ = ρ if ρ has the
same r-pattern as σ and Tρ = 0 otherwise is clearly r-pattern-invariant
and non-zero, but its H-norm vanishes. Thus, Kj(X) is nontrivial.

Conversely, assume that every pattern of every j-cell in the complex has
positive frequency. Let T ∈ Aj(X) and σ ∈ EjX such that Tσ 6= 0. By
definition of Aj(X), there is S ∈ Ageo

j (X) such that ‖T − S‖ ≤ 1
3
‖Tσ‖,

and S is s-pattern-invariant for some s ∈ N. Let ασ be the s-pattern of
σ. By assumption, Pj,s(ασ) > 0, and every ρ ∈ EjX with this pattern
fulfills

‖Sρ‖ = ‖Sσ‖ ≥ ‖Tσ‖ − ‖Tσ − Sσ‖ ≥ 2

3
‖Tσ‖

=⇒ ‖Tρ‖ ≥ ‖Sρ‖ − ‖Sρ− Tρ‖ ≥ 1

3
‖Tσ‖

This implies

‖T‖2
H = trN (T ∗T ) ≥ Pj,s(ασ) ‖Tσ‖2

9
> 0.

2.28 Remark. It should be noted that the H-norm is not submultiplicative:
Consider a complex with just three cells, and let

T =

1 1 1
1 1 1
1 1 1

 .

On Mat3(C), we have trA = 1
3

tr, and we obtain ‖T‖2
H = 3 < 3

√
3 = ‖T 2‖H.

With the newly constructed scalar product, we can complete Aj(X) into a
Hilbert space and have it act on this extended version of itself:

2.29 Definition and Lemma. Define a Hilbert space Hj(X) as the comple-
tion of the pre-Hilbert space

(
Aj(X)/Kj(X), 〈 , 〉H

)
.

Then the action of Aj(X) on Hj(X) by left multiplication yields a ∗-homo-
morphism Aj(X) → B(Hj(X)). If Kj(X) = 0, this map is isometric (with
respect to the operator norms on each side).

Define the von Neumann algebra Nj(X) as the weak closure of Aj(X) in
B(Hj(X)).

When the space X is clear, simply write Aj,Hj and Nj instead of Aj(X),
Hj(X) and Nj(X).
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Proof. Note first that the statements of Lemma 2.27 (b), (c) and (d) still hold
if T (in (b) and (c)) respectively S (in (d)) are replaced by elements of Hj.
This shows that for every T ∈ Aj, the map Hj → Hj,Ξ 7→ T ·Ξ is well-defined
and has B(Hj)-operator norm less than or equal to ‖T‖. (In particular, if we
change the representative of Ξ by something of H-norm 0, then the result will
also change by something of H-norm 0.)

To see that Aj → B(Hj) is a ∗-homomorphism, note that for A,B, T ∈ Aj,

〈A, TB〉H = trA(A∗TB) = trA
(
(T ∗A)∗B

)
=〈T ∗A,B〉H ,

where T ∗ denotes the adjoint of T in Aj. Since Aj/Kj is dense in Hj (w.r.t.
the H-norm), this proves 〈Ξ, TΥ〉H =〈T ∗Ξ,Υ〉H for all Ξ,Υ ∈ Hj, as desired.

Finally, if Kj = 0, then the map Aj → B(Hj) is injective (because id ∈ Hj,
and T 6= 0 =⇒ T · id 6= 0), and every injective ∗-homomorphism between
C∗-algebras is isometric.

2.30 Example. Let X be a finite complex, fix some j ∈ {0, . . . , dimX}, and
let n = |EjX|. Then B(`2(EjX)) ∼= Matn(C), and the trace on Ageo

j (X) ⊆
Matn(C) is given by the normalized matrix trace. The H-norm is given by the
normalized Frobenius norm

‖T‖H =

√√√√ 1

n

n∑
i,j=1

|tij|2,

and obviously Kj(X) = {0}. As the spaces are all finite-dimensional, all norms
are equivalent, and we obtain Hj(X) = Aj(X) = Ageo

j (X). Furthermore,
B(Hj) is finite-dimensional, and thus Aj(X) ⊆ B(Hj) is closed, so we also
obtain Nj(X) = Aj(X) = Ageo

j (X).

2.31 Example. Let X = R with the standard CW-structure, so E0R ∼= Z ∼=
E1R. In this case, every local isomorphism extends to a global isomorphism,
and the group of global isomorphisms is generated by Z-translations and the
reflection at zero.

Let us determine the geometric operators on E0R. Since they must be
Z-equivariant, we can use the standard Fourier isomorphisms `2Z ∼= L2(S1)
and B(`2Z)Z ∼= L∞(S1). Here, the reflection at zero corresponds to

R : L2(S1)→ L2(S1), f(z) 7→ f(z−1).

Thus, if a geometric operator T on `2(E0R) is given by a function t ∈ L∞(S1),
that function must fulfill

t(z) · f(z−1) = TRf(z) = RTf(z) = (t · f)(z−1) = t(z−1) · f(z−1)

for any f ∈ L2(S1), and thus t(z) = t(z−1).
On the other hand, a Z-equivariant operator of propagation r must be a

linear combination of shifts by distances ≤ r, so its corresponding function in
L∞(S1) is a Laurent polynomial of degrees between −r and r.
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Consequently, Ageo
0 (R) corresponds to symmetric polynomials in z and z−1,

or equivalently, to polynomials in Re(z) = 1
2
(z + z−1). By the Weierstrass

approximation theorem, the norm closure is given by

A0(R) ∼= C([−1, 1]).

The H-norm on A0 is clearly equivalent to the L2-norm on [−1, 1], and thus

H0(R) ∼= L2([−1, 1]),

which immediately implies

N0(R) ∼= L∞([−1, 1]).

In both examples, Nj can be identified with a linear subspace of Hj. This
holds in general:

2.32 Lemma. The map Nj(X) → Hj(X), T 7→ T [id] is injective and has
dense image. Thus, Nj(X) can be identified with a dense subspace of Hj(X).

Proof. By Lemma 2.27 (d), right multiplication by an element of Aj is also a
bounded operator on Hj, and it certainly commutes with any operator given
by left multiplication with an element of Aj.

By the double commutant theorem, that means that right multiplication
by an element of Aj also commutes with every operator T ∈ Nj. Therefore, if
[A] is the element of Hj represented by A ∈ Aj, we have

T [A] = T ([id] · A) = T [id] · A,

so the restriction of T to Aj/Kj ⊆ Hj is uniquely determined by the value
of T [id]. As Aj/Kj is dense in Hj, this implies that Nj → Hj, T 7→ T [id] is
injective. Finally, the image of this map certainly contains Aj/Kj, which is
dense in Hj.

2.33 Corollary. The trace on Aj(X) extends to a weakly continuous faithful
trace on Nj, namely by

trN : Nj(X)→ C, T 7→〈[id], T [id]〉H .

Proof. The functional trN is by definition weakly continuous on B(Hj).
For A ∈ Aj, we have

trN (A) =〈[id], A[id]〉H = trH(id∗A id) = trH(A) = trA(A),

so this indeed coincides with the original trace when applied to Aj.
If P ∈ Nj is a non-zero projection, then

trN (P ) = trN (P ∗P ) =
∥∥P [id]

∥∥2

H 6= 0

by Lemma 2.32. Thus, trN is faithful.
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It remains to prove the trace property on Nj. Given S, T ∈ Nj, find nets
(Ai)i∈I , (Bk)k∈K ⊆ Aj such that S = limi∈I Ai and T = limk∈K Bk in the
weak operator topology. As trN is weakly continuous, multiplication is weakly
continuous in each factor, and the trace property holds on Aj, we obtain

trN (ST ) = lim
i∈I

trN (AiT ) = lim
i∈I

lim
k∈K

trN (AiBk)

= lim
i∈I

lim
k∈K

trN (BkAi) = lim
i∈I

trN (TAi) = trN (TS).

2.34 Remark. For completeness, let us show that the mapNj → Hj, T 7→ T [id]
is in general not surjective. One such example is given in 2.31, where we show
Nj ∼= L∞([−1, 1]) $ L2([−1, 1]) ∼= Hj.

Here is a second example: Assume that in the complex X there are patterns
αn ∈ Patrn,j(X), with 0 = r0 < r1 < r2 < . . ., such that each σ ∈ EjX with
rn-pattern αn also has rm-pattern αm for all m ≤ n, but only half of these cells
also have rn+1-pattern αn+1. Then αn has frequency 2−n. Now define An ∈ Aj
by

Anσ = 2m/3σ, where m = min (n, max {k |σ has rk-pattern αk}) .

This is a Cauchy sequence in H:

‖An − Am‖2
H = trH

(
(An − Am)2

)
=

n∑
k=m+1

2−(k+1) ·
(
2k/3 − 2m/3

)2
+

∞∑
k=n+1

2−(k+1) ·
(
2n/3 − 2m/3

)2

≤
n∑

k=m+1

2−(k+1) · 22k/3 +
∞∑

k=n+1

2−(k+1) · 22n/3

=
n∑

k=m+1

2−k/3−1 + 2−(n+1) · 22n/3

≤ 1

2

∞∑
k=m+1

2−k/3 + 2−n/3−1 m,n→∞−−−−→ 0.

Thus, Ξ = limn→∞An exists in Hj. Assume that there were T ∈ Nj such that
T [id] = Ξ. Then, by the argument from the proof of Lemma 2.32, we would
have T [Am] = T [id] ·Am = Ξ ·Am for every m ∈ N. Since T is by assumption
continuous, this gives TΞ = limm→∞ Ξ·Am. Conversely, as right multiplication
by Am is continuous, Ξ · Am = limn→∞An · Am.

For all m ≤ n, we have

‖AmAn‖2
H = trH(AnA

2
mAn)

≥ trH(A4
m) =

m∑
k=0

2−(k+1) · 24k/3 + 2−(m+1) · 24m/3

=
m∑
k=0

2k/3−1 + 2m/3−1 m→∞−−−→ ∞.

Thus, TΞ cannot be an element of Hj. Contradiction!
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2.4 Dimensions

In the finite-dimensional world, every dimension of a vector space can be ex-
pressed as the trace of the projection to that space. With the trace on Nj(X)
developed above, we can apply the same concept to define finite dimensions
for certain subspaces of Hj(X):

2.35 Definition. A closed subspace V ⊆ Hj(X) is called geometric, if the
orthogonal projection to V lies in Nj(X). For every such subspace, define
dimN (V ) = trN (projV ).

Let us collect some basic properties of this dimension:

2.36 Lemma. (a) If V,W ⊆ Hj(X) are geometric subspaces, then so are
V ⊥, V ∩W and V +W .

(b) If V ⊥ W , then dimN (V ⊕W ) = dimN (V ) + dimN (W ).

(c) If T ∈ Nj(X), then ker(T ) and im(T ) are geometric subspaces, and

dimN
(
im(T )

)
= dimN

(
Hj(X)

)
− dimN

(
ker(T )

)
.

(d) If V,W ⊆ Hj(X) are geometric subspaces, then

dimN (V +W ) = dimN (V ) + dimN (W )− dimN (V ∩W ).

Proof. (a) If PV is the orthogonal projection to V ∈ Nj(X), then id − PV ∈
Nj(X) projects to V ⊥, so V ⊥ is geometric.

By a theorem of von Neumann [von50], the projection to V ∩W is given
by

PV ∩W = lim
n→∞

(PV PW )n

in strong operator topology. This is clearly contained in Nj(X), so V ∩W is
geometric.

Since (V + W )⊥ = V ⊥ ∩W⊥, the third statement follows from the first
two.

(b) This follows directly from PV⊕W = PV + PW .
(c) Since χ{0}(T ) ∈ Nj(X) projects to ker(T ), the kernel is geometric, and

as im(T ) = ker(T ∗)⊥, it follows from (a) that im(T ) is also geometric.
Write T = U |T | with |T | =

√
T ∗T and U unitary. Clearly, U, |T | ∈ Nj(X)

and ker(T ) = ker |T |. If Q projects to im |T |, then UQU∗ projects to im(T ),
so we get

dimN
(
ker(T )

)
= dimN

(
ker |T |

)
, dimN

(
im(T )

)
= dimN

(
im |T |

)
.

Finally, as |T | is self-adjoint, we have

Hj(X) = ker |T | ⊕ im |T |,

so the statement follows from (b).
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(d) Let W̃ = (id − PV )W be the projection of W to V ⊥. This gives the

orthogonal decomposition V + W = V ⊕ W̃ , and by (b), dimN (V + W ) =

dimN (V ) + dimN (W̃ ). Note that W̃ is geometric by (c), because it is the
image of (id−PV )PW . Furthermore, ker

(
(id−PV )PW

)
= W⊥⊕ (V ∩W ), and

so (b) and (c) yield

dim W̃ = dimN
(

im((id− PV )PW )
)

= dimN
(
Hj(X)

)
− dimN (W⊥)− dimN (V ∩W )

= dimN (W )− dimN (V ∩W )

This completes the proof.

2.37 Corollary. If V,W ⊆ Hj(X) are two geometric subspaces such that
dimN (V ) < dimN (W ), then W ∩ V ⊥ 6= {0}.

Proof. Apply Lemma 2.36 to PV PW . We have ker(PV PW ) = W⊥⊕ (W ∩V ⊥),
and im(PV PW ) ⊆ V . Therefore,

dimN (V ) ≥ dimN
(
im(PV PW )

)
= dimN

(
Hj(X)

)
− dimN

(
W⊥)− dimN

(
W ∩ V ⊥

)
= dimN (W )− dimN

(
W ∩ V ⊥

)
=⇒ dimN

(
W ∩ V ⊥

)
≥ dimN (W )− dimN (V ) > 0.

As a zero space would have dimension zero, this completes the proof.

2.5 Spectral density functions

We are now, finally, ready to define and discuss the spectral density functions
(or “integrated densities of states”) of geometric operators:

2.38 Definition. Given a positive operator T ∈ Nj(X) and λ ∈ [0,∞), define
the spectral projections of T by

ET (λ) = χ(−∞,λ](T ) = χ[0,λ](T ) ∈ Nj(X)

and the spectral density function of T by

F T : [0,∞)→ [0, 1], λ 7→ trN
(
ET (λ)

)
.

In general, for any operator T ∈ Nj(X), define

ET (λ) = ET ∗T (λ2) and F T (λ) = F T ∗T (λ2).

(This is well-defined, as Lemma A.8 proves the equality ET (λ) = ET ∗T (λ2) for
self-adjoint T .)
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2.39 Lemma. Let T ∈ Nj. Then its spectral density function F T fulfills the
following:

(a) F T (0) = dimN (ker T ).

(b) F T is increasing.

(c) F T is right-continuous.

(d) F T (λ) = dimN (Hj) = 1 for every λ ≥ ‖T‖.
Proof. All of this follows from the definition and Theorem A.6.

2.40 Lemma. For any T ∈ Nj(X) and all λ ≥ 0, we have F T (λ) = F |T |(λ) =
F T ∗(λ).

Proof. By definition,

F T (λ) = trN E
T ∗T (λ) = trN E

|T |2(λ) = F |T |(λ)

and F T ∗(λ) = trN E
TT ∗(λ). Since spec(T ∗T ) ⊆ [0,∞), we have ET ∗T (λ) =

χ[0,λ](T
∗T ) and the same for TT ∗. Choose a sequence of polynomials (pm)m∈N

that converge pointwise to χ[0,λ]. Then Theorem A.3 implies that pm(T ∗T )
converges weakly to ET ∗T (λ), and as the trace is weakly continuous, we get
F T (λ) = limm→∞ trN pm(T ∗T ) and F T ∗(λ) = limm→∞ trN pm(TT ∗).

On the other hand, the trace property implies trN
(
(T ∗T )k

)
= trN

(
(TT ∗)k

)
for all k, so (by linearity of the trace) those two limits are equal.

2.41 Remark. If EjX is finite, every self-adjoint operator T ∈ Nj(X) cor-
responds to a hermitian (n × n)-matrix, and there is an orthonormal basis
of Cn with respect to which T has the form diag(λ1, . . . , λn) with eigenvalues
λ1 ≤ . . . ≤ λn. Then the spectral projection ET (µ) is given by the projection
to the first k basis vectors, where k is given by λk ≤ µ < λk+1, and F T (µ) =
trN (ET (µ)) = k/n. Especially, the spectral density function of an operator on
a finite-dimensional space is always a right-continuous step function.

The idea of spectral density functions is that F (λ) measures the size of the
maximal subspace on which T is bounded by λ:

2.42 Lemma. Let T ∈ Nj(X) be self-adjoint and µ ≥ 0. Then

F T (µ) = max {dimN V |V ⊆ Hj(X) geometric, ‖T |V ‖ ≤ µ} .

(Here, T |V is considered as an operator T : V → Hj(X).)

Proof. By definition, F T (µ) = trN (ET (µ)) = dimN
(
imET (µ)

)
, and the space

imET (µ) is geometric. Lemma A.9 gives ‖Tv‖ ≤ µ ‖v‖ for all v ∈ imET (µ),
and thus

F T (µ) = dimN (imET (µ)) ≤ max {dimN V |V geometric, ‖T |V ‖ ≤ µ} .

Conversely, let V ⊆ `2(EjX) be a geometric subspace such that dimN V >
F T (µ). By Corollary 2.37, this implies that there is a nonzero vector x ∈
V ∩

(
imET (µ)

)⊥
. Then, Lemma A.9 yields ‖Tx‖ > µ ‖x‖, and therefore

‖T |V ‖ > λ.
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Finally, it should be noted that the spectral density function of an operator
T contains all necessary information to determine the trace for any operator
that can be obtained from T through functional calculus:

2.43 Lemma. For any self-adjoint T ∈ N (X) and any function f ∈ L∞(R),
we have

trN
(
f(T )

)
=

∫
R
f(λ) dF T (λ),

where the measure dF T (λ) is given by dF T
(
(a, b]

)
= F T (b)− F T (a).

Proof. Using the definition of F and Theorem A.6, we obtain:

trN
(
f(T )

)
=〈[idX ], f(T )[idX ]〉H =

∫
R
f(λ) d

〈
[idX ], ET (λ)[idX ]

〉
H

=

∫
R
f(λ) d

(
trN
(
ET (λ)

))
=

∫
R
f(λ) dF T (λ).

2.44 Remark. If one is interested solely in the spectral density functions of
geometric operators, but not in their von Neumann algebra, Lemma 2.43 can
serve as an alternative definition:

For any bounded continuous function f : spec(T )→ C, we have f(T ) ∈ Aj,
so trA(f(T )) is immediately defined. Especially, this defines a positive linear
functional

Cc(spec(T ))→ C, f 7→ trA(f(T )).

By the Riesz–Markov–Kakutani representation theorem (see [Els11], p. 358),
this implies the existence of a unique locally finite inner regular measure µT

on spec(T ) such that

trN
(
f(T )

)
=

∫
spec(T )

f dµT

holds for every f ∈ Cc(spec(T )). One can then define the spectral density
function by

F T (λ) =

∫
spec(T )

χ[0,λ] dµ
T ,

obtaining the same function as in our Definition 2.38 (and, of course, dF T =
µT ). The author would like to thank Ralf Meyer for pointing out this approach.
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3 Self-similar complexes and uniform conver-

gence

In the previous chapter, we have been using spaces with aperiodic order , that
is, spaces where every pattern of cells appears at a frequency that becomes
approximately constant on a large scale. Now, we shall discuss a way to
actually construct such spaces using self-similarity.

In short, a self-similar space is obtained through an iterative process: We
start with a finite cell complex and glue several copies of it together. We can
then use the resulting (still finite) complex and repeat the process ad infinitum,
eventually obtaining the self-similar complex as the union of all iteration steps.

It is intuitively clear that patterns that are present in the finite subcom-
plexes will repeat infinitely often in the final complex. On the other hand,
whenever two subcomplexes are glued together, new patterns can be created.
This lets the whole complex be more than the sum of its parts, but it also holds
potential for instability and divergence. To keep this variation in check, we
need amenability : The number of cells at which different subcomplexes meet
each other must be small compared to the total number of cells.

Under these conditions, we will show first that the self-similar structure
indeed implies the aperiodic order required in the previous chapter. Then,
we will come to the centerpiece of this thesis: We will prove that, on a self-
similar complex, the spectral density function for any geometric operator can
be approximated uniformly by the spectral density functions of the finite sub-
complexes that form the self-similar structure.

3.1 Definition. A self-similar complex is a bounded regular CW-complex X
for which there is a self-similar exhaustion, that is, an amenable exhaustion
K1 ⊆ K2 ⊆ K3 ⊆ . . . ⊆ X by connected4 subcomplexes as in Def. 2.17, such
that for each m ∈ N there is a finite set G(m,m + 1) of local isomorphisms
γ : Km → γKm ⊆ X that fulfills

Km+1 =
⋃

γ∈G(m,m+1)

γKm,

Ej(γ1Km) ∩ Ej(γ2Km) = Fj(γ1Km) ∩ Fj(γ2Km) for all γ1 6= γ2.

Thus, each subcomplex Km+1 consists of “copies” of the next-smaller subcom-
plex Km that overlap only at their frontiers. Write

G(m,m+ k) = {γm+k−1 ◦ . . . ◦ γm+1 ◦ γm | γj ∈ G(j, j + 1)} ,

G(m) =
∞⋃
k=0

G(m,m+ k).

4Connectedness in the topological sense implies that any two vertices in Km have a finite
combinatorial distance; this is relevant for the proof of Theorem 3.4. On the other hand, it
does not imply that any two j-cells for j ≥ 2 have finite combinatorial distance, and that is
not needed for any proofs.
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Then we obtain

Km+k =
⋃

γ∈G(m,m+k)

γKm and X =
⋃

γ∈G(m)

γKm,

where the various copies of Km still only overlap at their frontiers.

Note that the self-similar exhaustion (Km) and its local isomorphism sets
G(m,m+ 1) are not a fixed part of the structure – they only need to exist.

3.2 Example. Rd with the standard CW-structure (that is, E0Rd = Zd, etc.)
is self-similar. For example, let Km = [−3m, 3m]d for all m ∈ N0, where the
3d local isomorphisms in G(m,m + 1) are given by shifts by 2 · 3m ·

∑d
i=1 εiei,

where εi ∈ {−1, 0, 1} and ei are the standard basis vectors in Rd.
Check that these Km are indeed a Følner sequence: for the top-dimensional

cells, we have
|FdKm|
|EdKm|

=
2d · (2 · 3m)d−1

(2 · 3m)d
=

d

3m
m→∞−−−→ 0,

in other dimensions, we get terms of the same order of magnitude.
An entirely different self-similar exhaustion of R2 is shown in Figure 5.

Here, every Km+1 consists of only four copies of Km (instead of nine as in the
first structure).

Figure 5: Another self-similar structure on R2. In order to cover the entirety
of R2, new “corners” have to be attached on alternating sides: K1 (orange)
and K3 (purple) extend to the top right of K0 (yellow), while K2 (red) and
K4 (blue) extend to the bottom left. Note that each subcomplex includes its
predecessors, so K4 is actually the entire picture (and not just the blue parts).
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Figure 6: Subcomplexes K0 to K4 of Sierpiński’s triangle. K0 is the yellow
triangle on top, K1 consists of the yellow and orange parts, K2 adds the red
parts, etc. The whole space would extend infinitely towards the bottom of the
page.

3.3 Example (Sierpiński’s triangle). Let K0 be a triangle and form Km+1

from three copies of Km each connected at their “corners” (see Figure 6).
In this case, amenability is trivial: each Km has |F0Km| = 3, |F1Km| = 6,

|F2Km| = 0, regardless of m. (There are two slightly counterintuitive aspects
to this: First, the top corner is not an original frontier, but it is a generalized
frontier, as it gets mapped to a frontier by many local isomorphisms. Second,
any two 2-cells have combinatorial distance ∞, as they can only border each
other at a vertex, not along an edge.)

The top corner has a unique 1-pattern: It is the only vertex of degree two,
all other vertices have degree four. Thus, this is an example of a space where
a pattern has frequency zero. Consequently, an operator P ∈ B(`2(E0X)) that
projects to the space spanned by vertices of degree two would of course be
geometric, but have trA(P ) = 0.

To avoid this, we can instead use the “twin triangle” (see Figure 7). Here,
every pattern has positive frequency. (It will be shown in the next section that
the pattern frequencies indeed exist.)
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Figure 7: The “twin triangle”. K0 now consists of two triangles (yellow),
but every Km for m > 0 still consists of three copies of Km−1. Unlike the
original triangle, the twin triangle has no “special vertex”: For any r, the r-
neighborhood of the “central vertex” (the one between the two yellow triangles)
looks no different than the r-neighborhood of infinitely many other points.
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3.1 Self-similarity implies aperiodic order

Let us now prove that self-similar complexes do indeed have aperiodic order.
This is not surprising, as their construction has clearly a “repetitive” nature,
but it is not completely obvious either, since we need to check that the fre-
quency of patterns converges not just along a given self-similar exhaustion, but
along any Følner sequence, self-similar or not.

3.4 Theorem. Every self-similar complex has aperiodic order.

Proof. Let (Km) be a self-similar exhaustion of X. Fix j, r ∈ N0 and a pattern
α ∈ Patj,r(X).

For any subcomplex K ⊆ X, consider the “r-interior”:

IrjK = {σ ∈ EjK | dcomb(σ,X \K) > r} ,
Ir,αj K =

{
σ ∈ IrjK

∣∣σ has r-pattern α
}
.

By Lemma 2.16, we have

�

∣∣Ir,αj (γKm)
∣∣ =

∣∣Ir,αj Km

∣∣ for every γ ∈ G(m,n),

� Irj (γ1Km) ∩ Irj (γ2Km) = ∅ whenever γ1, γ2 ∈ G(m,n) with γ1 6= γ2,

�

∣∣∣∣EjKn \
⊔

γ ∈G(m,n)

Irj (γKm)

∣∣∣∣ ≤ Cr |G(m,n)| |FjKm|,

where Cr = max
σ ∈EjX

|Br(σ)|. (Cr is finite since X is bounded.)

Therefore, the number of times the pattern α appears in Kn is given by∣∣Eαj Kn

∣∣ =
∑

γ ∈G(m,n)

∣∣Ir,αj (γKm)
∣∣+O(|G(m,n)| |FjKm|)

= |G(m,n)|
∣∣Ir,αj Km

∣∣+O(|G(m,n)| |FjKm|)
= |G(m,n)|

∣∣Eαj Km

∣∣+O(|G(m,n)| |FjKm|)

where the last line follows from |EjKm| −
∣∣IrjKm

∣∣ ≤ Cr |FjKm|.
On the other hand, the total number of j-cells in Kn is

|EjKn| =
∑

γ ∈G(m,n)

∣∣I1
j (γKm)

∣∣+O(|G(m,n)| |FjKm|)

= |G(m,n)|
∣∣I1
jKm

∣∣+O(|G(m,n)| |FjKm|)
= |G(m,n)| |EjKm|+O(|G(m,n)| |FjKm|)

One obtains the pattern frequency:∣∣Eαj Kn

∣∣
|EjKn|

=
|G(m,n)|

∣∣Eαj Km

∣∣+O(|G(m,n)| |FjKm|)
|G(m,n)| |EjKm|+O(|G(m,n)| |FjKm|)

=

∣∣Eαj Km

∣∣+O(|FjKm|)
|EjKm|+O(|FjKm|)
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Now fix any ε > 0. Choose m large enough that for all n ≥ m, the O-terms
are less than ε |EjKm|, which gives:

1− ε
1 + ε

∣∣Eαj Km

∣∣
|EjKm|

≤
∣∣Eαj Kn

∣∣
|EjKn|

≤ 1 + ε

1− ε

∣∣Eαj Km

∣∣
|EjKm|

Thus, the sequence of frequencies
( |Eαj Km|
|EjKm|

)
is convergent, and it has a limit

Pj,r(α) = lim
m→∞

∣∣Eαj Km

∣∣
|EjKm|

.

It remains to show that if (Lk) is a different amenable exhaustion of X,

then
( |Eαj Lk|
|EjLk|

)
converges to the same limit.

Again, fix ε > 0. Let
Cr = max

σ ∈EjX
|Br(σ)| .

Choose m large enough that∣∣∣∣∣Pj,r(α)−
∣∣Eαj Km

∣∣
|EjKm|

∣∣∣∣∣ ,
∣∣∣∣∣Pj,r(α)−

∣∣I1,α
j Km

∣∣
|EjKm|

∣∣∣∣∣ and
Cr |FjKm|
|EjKm|

are all smaller than ε.
Let5

bm = max
ρ,ρ′ ∈E0Km

dcomb(ρ, ρ′)

(note that this is always finite) and

Dm = max
ρ∈E0X

|Bbm(ρ)| .

Then choose k0 large enough such that for all k ≥ k0,

|FjLk|
|EjLk|

<
ε

Dm

.

For m ∈ N, let

Gin(m, k) = {γ ∈ G(m) | γKm ⊆ Lk} ,
Gout(m, k) = {γ ∈ G(m) | γKm ∩ Lk 6= ∅} ,
Gfront(m, k) = Gout(m, k) \ Gin(m, k).

Then the frequency of the pattern α in Lk can be estimated by

|Gin(m, k)|
∣∣I1,α
j Km

∣∣
|Gout(m, k)| |EjKm|

≤
∣∣Eαj Lk∣∣
|EjLk|

≤
|Gout(m, k)|

(∣∣Eαj Km

∣∣+ Cr |FjKm|
)

|Gin(m, k)|
∣∣I1
jKm

∣∣
5Unlike Cr, which counts the j-cells in r-patterns, the constant Dm always counts 0-cells.

This is necessary because we will soon use that any two 0-cells in the complex are connected
by a “path” of adjacent cells, which does not hold for general j-cells.
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where the term |Gout(m, k)|Cr |FjKm| estimates the number of cells whose
r-pattern in Lk may stretch across multiple copies of Km.

By choice of m, we already know

(1− ε)Pj,r(α) ≤
∣∣I1,α
j Km

∣∣
|EjKm|

and

∣∣Eαj Km

∣∣+ Cr |FjKm|∣∣I1
jKm

∣∣ ≤ 1 + 2ε

1− ε
Pj,r(α).

It remains to bound the ratio of |Gin(m, k)| and |Gout(m, k)|.
If γ ∈ Gfront(m, k), then γKm contains a vertex in Lk and a vertex in

X \ Lk; since Km (and thus γKm) is connected, it must also contain a vertex
ρ ∈ F0Lk. Therefore, ⋃

γ ∈Gfront(m,k)

E0(γKm) ⊆ Bbm(F0Lk)

and thus ∣∣∣∣∣∣
⋃

γ ∈Gfront(m,k)

E0(γKm)

∣∣∣∣∣∣ ≤ Dm |F0Lk| .

Conversely, as the different copies of Km only overlap at their frontiers, we
have

|Gfront(m, k)| · (|E0Km| − |F0Km|) ≤

∣∣∣∣∣∣
⋃

γ ∈Gfront(m,k)

E0(γKm)

∣∣∣∣∣∣ .
Combining the previous two equations yields the estimate

|Gfront(m, k)| · (|E0Km| − |F0Km|) ≤ Dm |F0Lk| ,

and if m is large enough to ensure |F0Km| ≤ 1
2
|E0Km|, we obtain

|Gfront(m, k)| ≤ Dm |F0Lk|
|E0Km| − |F0Km|

≤ 2Dm
|F0Lk|
|E0Km|

On the other hand,

Lk ⊆
⋃

γ ∈Gout(m,k)

γKm =⇒ |Gout(m, k)| ≥ |E0Lk|
|E0Km|

,

which implies
|Gfront(m, k)|
|Gout(m, k)|

≤ 2Dm
|F0Lk|
|E0Lk|

< 2ε

and therefore
|Gin(m, k)|
|Gout(m, k)|

≥ 1− 2ε.

Thus, we finally end up with

(1− 2ε)(1− ε)Pj,r(α) ≤
∣∣Eαj Lk∣∣
|EjLk|

≤ 1 + ε

(1− 2ε)(1− ε)
Pj,r(α).

As ε was arbitrary and this holds for all k ≥ k0, the limits indeed coincide.
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3.2 Approximating spectral density functions

We now come to the main theorem about spectral density functions of geo-
metric operators on self-similar complexes.

Given any geometric operator T on a self-similar complex X, we form a
sequence of “restricted” operators Tm on the finite subcomplexes Km.6

These operators Tm can always be obtained by Tm := PmTIm, where
Im : `2(EjKm) → `2(EjX) is the inclusion and Pm : `2(EjX) → `2(EjKm) is
the orthogonal projection.

However, as the proof of convergence extensively uses that the frontiers
of Km are negligible compared to its interior, the behavior of Tm near these
frontiers is equally negligible. Thus, our choice of Tm is rather flexible. In the
most interesting case, when T = ∆

(X)
j is the Laplacian on X, we can choose

Tm = ∆
(Km)
j to be the Laplacian on Km (which ignores the existence of all

cells in X \ Km), even if that operator takes significantly different values on
frontiers of Km.

Firstly, in Theorem 3.5, we will show that the spectral density functions of
the operators Tm are uniformly convergent (without yet specifying the limit).
Then, in Theorem 3.11, we will show that their limit is actually the spectral
density function of T as defined in Def. 2.38.

This is remarkable in so far as the function from 2.38 measured the sizes
of subspaces of Hj(X) (the abstract Hilbert space formed from the geometric
operators themselves), while the spectral density functions of the Tm actually
measure subspaces spanned by cells in Km. Furthermore, it proves that the
choice of (Km) does not matter at all – the spectral density functions will
always converge to the same limit!

3.5 Theorem. Let X be a self-similar CW-complex with self-similar exhaus-
tion (Km)m∈N, and let T ∈ Ageo

j (X) be a positive r-pattern-invariant operator.
Choose a sequence of positive operators Tm ∈ B(`2(EjKm)) such that, for

all m, ‖Tm‖ ≤ C for some constant C, prop(Tm) ≤ r, and Tσ = Tmσ for
every σ ∈ Ir+1

j Km.
Let Fm be the spectral density functions of Tm, that is,

Fm(λ) =
1

|EjKm|
max

{
dimCW

∣∣∣∣W ⊆ `2(EjKm) linear subspace such that

‖Tmv‖ ≤ λ · ‖v‖ for all w ∈ W

}
.

Then the sequence of functions Fm converges uniformly, and the limit does not
depend on the choice of the sequence (Tm).

Before we begin the actual proof, some elementary lemmas:

3.6 Lemma. Let A,B be finite-dimensional vector spaces and C ⊆ A⊕ B be
a subspace. Then

dim(A ∩ C) ≥ dim(C)− dim(B).

6The exhaustion (Km) is not fixed, and it will become clear later that its choice does not
matter.
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Proof. We have A⊕B ⊇ A+ C and thus

dim(A⊕B) ≥ dim(A+ C)

=⇒ dim(A) + dim(B) ≥ dim(A) + dim(C)− dim(A ∩ C)

=⇒ dim(B) ≥ dim(C)− dim(A ∩ C)

=⇒ dim(A ∩ C) ≥ dim(C)− dim(B).

3.7 Lemma. Let T : Cn → Cn be a self-adjoint operator and µ ≥ 0. Assume
that exactly k of the eigenvalues of T (counted with multiplicity) have absolute
value ≤ µ. Let V ⊂ Cn be a subspace such that ‖Tv‖ ≤ µ ‖v‖ for all v ∈ V .
Then:

(a) dimV ≤ k.

(b) If dimV < k, there is a subspace W ⊃ V such that ‖Tw‖ ≤ µ ‖w‖ for
all w ∈ W and dimW = k.

Proof. Let (ei)
n
i=1 be an ONB of eigenvectors of T , and (λi)

n
i=1 be the cor-

responding eigenvalues. Without loss of generality we have

|λ1| ≤ . . . ≤ |λk| ≤ µ < |λk+1| ≤ . . . ≤ |λn| .

(a) Assume dimV > k. Then the spaces V and span(ek+1, . . . , en) must have
a nontrivial intersection (since their dimensions add up to more than n). But
any nonzero vector x =

∑n
i=k+1 xiei fulfills

‖Tx‖2 =
n∑

i=k+1

λ2
i |xi|

2 >
n∑

i=k+1

µ2 |xi|2 = µ2 ‖x‖2 ,

so it cannot lie in V . Contradiction!
(b) Assume dimV < k. It suffices to construct a space W ⊃ V such that

‖Tw‖ ≤ µ ‖w‖ for all w ∈ W and dimW = dimV + 1. If that dimension is
not yet equal to k, simply repeat the process a finite number of times.

Let Eig(µ) = {x ∈ Cn |Tx = µx} be the eigenspace of µ. (This will often,
but not always, be {0}.)

Case 1: Eig(µ) 6⊆ V . Define W = V + Eig(µ). Then any vector v + x,
where v ∈ V and x ∈ Eig(µ), fulfills

‖T (v + x)‖2 = ‖Tv‖2 + 2 Re〈Tv, Tx〉+ ‖Tx‖2

= ‖Tv‖2 + 2 Re
〈
v, T 2x

〉
+ ‖Tx‖2

= ‖Tv‖2 + 2µ2 Re〈v, x〉+ µ2 ‖x‖2

≤ µ2 ‖v‖2 + 2µ2 Re〈v, x〉+ µ2 ‖x‖2

= µ2 ‖v + x‖2 .

Case 2: Eig(µ) ⊆ V . (This includes the case |λk| < µ, when Eig(µ) = {0}.)
Define

B =
√
|T 2 − µ2id| : Cn → Cn.
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(That is, Bei =
√
|λ2
i − µ2| · ei for all 1 ≤ i ≤ n.) Let P : Cn → Cn be the

orthogonal projection to span(e1, . . . , ek). Note that P and B commute and
that ker(B) = Eig(µ) = span {ei | |λi| = µ} ⊆ im(P ). Then

dim(PBV ) ≤ dim(BV ) = dim(V )− dim Eig(µ) < rank(P )− dim Eig(µ),

and therefore, there is a nonzero vector

y0 ∈ im(P ) ∩ (PBV )⊥ ∩ Eig(µ)⊥.

SinceB = B∗ and everything is finite-dimensional, we have Eig(µ)⊥ = ker(B)⊥ =
im(B), so there is a pre-image x0 = B−1y0. Now define W = V ⊕ Cx0.

We have

T 2 − µ2id = −
∣∣T 2 − µ2id

∣∣P +
∣∣T 2 − µ2id

∣∣ (id− P ) = −B2P +B2(id− P )

and so, for any vector z ∈ Cn,

‖Tz‖2 − µ2 ‖z‖2 =
〈
T 2z, z

〉
−
〈
µ2z, z

〉
=
〈
(T 2 − µ2id)z, z

〉
= −

〈
B2Pz, z

〉
+
〈
B2(id− P )z, z

〉
= −‖PBz‖2 + ‖(id− P )Bz‖2 .

Therefore, for v ∈ V and x ∈ Cx0, we obtain

‖T (v + x)‖2 − µ2 ‖v + x‖2 = −‖PBv + PBx‖2 + ‖(id− P )Bv + (id− P )Bx‖2

= −‖PBv‖2 − ‖Bx‖2 + ‖(id− P )Bv‖2

≤ −‖PBv‖2 + ‖(id− P )Bv‖2

= ‖Tv‖2 − µ2 ‖v‖2

≤ 0,

where we used that PBx = Bx ⊥ PBv and (id−P )Bx = 0. Thus, we obtain
indeed ‖T (v + x)‖ ≤ µ ‖v + x‖.

3.8 Definition. Let H be an (at most countably infinite-dimensional) Hilbert
space, J ⊆ H a closed subspace, T ∈ B(H) and λ ≥ 0. Then define

L(T, λ,J ) = {V ⊆ J closed subspace | ‖Tv‖ ≤ λ ‖v‖ for all v ∈ V } .

A subspace W ′ ∈ L(T, λ,J ) is called of maximal dimension if

dimCW
′ = max {dimCW |W ∈ L(T, λ,J )} .

Note: With this notation, the spectral density functions from Theorem 3.5
can be written as Fm(λ) = 1

|EjKm| ·max {dimCW |W ∈ L(Tm, λ, `
2(EjKm))}.
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3.9 Lemma. Let H be an (at most countably infinite-dimensional ) Hilbert
space, J ⊆ H a finite-dimensional subspace, T ∈ B(H) self-adjoint and λ ≥ 0.
Let V ∈ L(T, λ,J ). Then there is a subspace W ∈ L(T, λ,J ) of maximal
dimension such that V ⊆ W .

Proof. Let S : H → H be a unitary operator such that STJ ⊆ J . (This
exists because dim(TJ ) ≤ dim(J ).) Then consider the restriction ST |J as
an operator J → J and let ST |J = UA be its polar decomposition, that
is, U : J → J is unitary and A : J → J is positive. By construction, every
x ∈ J fulfills

‖Ax‖ = ‖U∗STx‖ = ‖STx‖ = ‖Tx‖ .
Therefore, L(T, λ,J ) = L(A, λ,J ), and A is self-adjoint. Now the claim
follows from Lemma 3.7.

3.10 Lemma. Let T ∈ B(Ck) be positive and λ ≥ 0. Let W ⊆ Ck and
V ∈ L(T, λ,W ) be maximal. For n ∈ N define

T⊕n = T ⊕ T ⊕ . . .⊕ T : Ckn → Ckn,

V ⊕n = V ⊕ V ⊕ . . .⊕ V,
W⊕n = W ⊕W ⊕ . . .⊕W.

Then V ⊕n is a maximal element of L
(
T⊕n, λ,W⊕n).

Proof. To see that V ⊕n ∈ L
(
T⊕n, λ,W⊕n), write v ∈ V ⊕n as v =

⊕n
i=1 vi with

vi ∈ V . Then

∥∥T⊕nv∥∥2
=

∥∥∥∥∥
n⊕
i=1

Tvi

∥∥∥∥∥
2

=
n∑
i=1

‖Tvi‖2 ≤
n∑
i=1

λ2 ‖vi‖2 = λ2

∥∥∥∥∥
n⊕
i=1

vi

∥∥∥∥∥
2

= λ2 ‖v‖2 .

As in the proof of Lemma 3.9, there is a self-adjoint operator A : W → W
such that ‖Aw‖ = ‖Tw‖ for every w ∈ W , and thus A⊕n : W⊕n → W⊕n fulfills
‖A⊕nw‖ = ‖T⊕nw‖ for every w ∈ W⊕n.

Let k be the number of eigenvalues of A (counted with multiplicities) that
have absolute value ≤ λ. Clearly, A⊕n has nk such eigenvalues. Thus, by
Lemma 3.7, every maximal element of L(T, λ,W ) is k-dimensional and every
maximal element of L(T, λ,W⊕n) is nk-dimensional.

Finally, V is maximal in L(T, λ,W ), so dimV = k, thus dimV ⊕n = nk,
and thus V ⊕n is maximal in L(T, λ,W⊕n).

Proof of Theorem 3.5. Fix m ∈ N large enough that
|FjKm|
|EjKm| ≤

1
2
.

Decompose EjKm into an interior part and a part close to the frontier:

I r+1
j Km = {σ ∈ EjKm | dcomb(σ,X \Km) > r + 1} ,
F r+1
j Km = {σ ∈ EjKm | dcomb(σ,X \Km) ≤ r + 1} .

(Especially, F1
jKm = FjKm.) We obviously obtain

`2(EjKm) = `2(I r+1
j Km)⊕ `2(F r+1

j Km)
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and
Tm|`2(I r+1

j Km) = T |`2(I r+1
j Km).

Choose a subspace

Vm(λ) ∈ L(Tm, λ, `
2(I r+1

j Km)) = L(T, λ, `2(I r+1
j Km))

of maximal dimension. Clearly, L(Tm, λ, `
2(I r+1

j Km)) ⊆ L
(
Tm, λ, `

2(EjKm)
)
.

Thus, by Lemma 3.9, there is a subspace

Wm(λ) ∈ L
(
Tm, λ, `

2(EjKm)
)

of maximal dimension such that

Vm(λ) ⊆ Wm(λ).

By definition, we get

Fm(λ) =
dim(Wm(λ))

|EjKm|
.

Since Wm(λ)∩`2(I r+1
j Km) is an element of L(Tm, λ, `

2(I r+1
j Km)) and contains

Vm(λ), we must have Wm(λ)∩`2(I r+1
j Km) = Vm(λ) (otherwise Vm(λ) wouldn’t

be of maximal dimension). By Lemma 3.6, this implies

dim(Vm(λ)) ≥ dim(Wm(λ))− dim
(
`2(F r+1

j Km)
)
,

and therefore∣∣∣∣Fm(λ)− dim(Vm(λ))

|EjKm|

∣∣∣∣ ≤ dim(`2(F r+1
j Km))

|EjKm|
≤ Cr

|FjKm|
|EjKm|

,

where again Cr = maxσ∈EjX |Br+1(σ)|. Since the exhaustion is amenable, this
error term will go to zero for large m; note that it depends neither on λ nor
on the choice of Tm. On the other hand, on the “interior part” `2(I r+1

j Km),
T and Tm coincide, so dim(Vm(λ)) does not depend on the choice of Tm.

Now let n ≥ m. Then there is a set G(m,n) of local isomorphisms such
that

Kn =
⋃

γ ∈G(m,n)

γKm.

Decompose EjKn into “images of interiors” and the rest:

I(m,n)r+1
j Kn :=

⊔
γ ∈G(m,n)

I r+1
j (γKm),

F(m,n)r+1
j Kn :=

⋃
γ ∈G(m,n)

F r+1
j (γKm)

Note that the first union is disjoint (while the second one is not). We get

`2(EjKn) = `2
(
I(m,n)r+1

j Kn

)
⊕ `2

(
F(m,n)r+1

j Kn

)
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and

dim(`2
(
I(m,n)r+1

j Kn

)
) = |G(m,n)| · dim(`2(I r+1

j Km)),

dim(`2
(
F(m,n)r+1

j Kn

)
) ≤ |G(m,n)| · dim(`2(F r+1

j Km))

≤ |G(m,n)| · Cr+1 · |FjKm| .

We also have
`2
(
I(m,n)r+1

j Kn

)
⊆ `2

(
I r+1
j Kn

)
and thus

Tn|`2(I(m,n)r+1
j Kn) = T |`2(I(m,n)r+1

j Kn).

(Proof of this fact: It suffices to show that FjKn ⊆
⋃
γ γ(FjKm). So assume

σ ∈ FjKn. Then there is γ ∈ G(n) such that d(γ(σ), X \ γKn) = 1. On the
other hand, there must be σ′ ∈ EjKm and γ′ ∈ G(m,n) such that σ = γ′(σ′).
Thus, γ◦γ′ ∈ G(m) and d(γ◦γ′(σ′), X \(γ◦γ′)Km) = 1 (because γ′Km ⊆ Kn),
so σ′ ∈ FjKm, so σ ∈ γ′(FjKm).)

Define
Vm,n(λ) =

⊕
γ ∈G(m,n)

γ(Vm(λ)) .

By Lemma 3.10, Vm,n(λ) is indeed a maximal element of L
(
T, λ, `2

(
I(m,n)r+1

j Kn

))
.

We have

L(T, λ, `2
(
I(m,n)r+1

j Kn

)
) = L(Tn, λ, `

2
(
I(m,n)r+1

j Kn

)
) ⊆ L(Tn, λ, `

2(EjKn)),

so by Lemma 3.9 there is Wn(λ) ∈ L(Tn, λ, `
2(EjKn)) of maximal dimension

such that Wn(λ) ⊇ Vm,n(λ), and

Fn(λ) =
dim(Wn(λ))

|EjKn|
.

As above, we have Wn(λ) ∩ `2
(
I(m,n)r+1

j Kn

)
= Vm,n(λ) and thus, by Lemma

3.6,
dim(Wn(λ))− dim(Vm,n(λ)) ≤ dim(`2

(
F(m,n)r+1

j Kn

)
).

Since Kn =
⋃
γ ∈G(m,n) γKm and the different copies of Km overlap only at

their frontiers, we have

|EjKn| ≥ |G(m,n)| · (|EjKm| − |FjKm|) ≥
1

2
|G(m,n)| · |EjKm|

(since m is large enough to fulfill
|FjKm|
|EjKm| ≤

1
2
). This gives∣∣∣∣Fn(λ)− dim(Vm,n(λ))

|EjKn|

∣∣∣∣ ≤ dim(`2
(
F(m,n)r+1

j Kn

)
)

|EjKn|

≤ |G(m,n)| · Cr+1 · |FjKm|
1
2
|G(m,n)| · |EjKm|

≤ 2Cr+1
|FjKm|
|EjKm|

.
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Again, the term dim(Vm,n(λ)) does not depend on the choice of Tn, and the
error term does not depend on λ.

We can also express the denominator in terms of |EjKm|:∣∣∣∣ 1

|EjKn|
− 1

|G(m,n)| · |EjKm|

∣∣∣∣ =
|G(m,n)| · |EjKm| − |EjKn|
|EjKn| · |G(m,n)| · |EjKm|

≤ |G(m,n)| · |FjKm|
|EjKn| · |G(m,n)| · |EjKm|

=
|FjKm|

|EjKn| · |EjKm|

We certainly have dim(Vm,n(λ)) ≤ |EjKn|, so this gives∣∣∣∣dim(Vm,n(λ))

|EjKn|
− dim(Vm,n(λ))

|G(m,n)| · |EjKm|

∣∣∣∣ ≤ |FjKm|
|EjKm|

.

It remains to compute∣∣∣∣dim(Vm(λ))

|EjKm|
− dim(Vm,n(λ))

|G(m,n)| · |EjKm|

∣∣∣∣ .
But this term equals zero, since Vm,n(λ) =

⊕
γ γ(Vm(λ)) !

Finally, we can combine all the estimates to obtain

|Fm(λ)− Fn(λ)| ≤
∣∣∣∣Fm(λ)− dim(Vm(λ))

|EjKm|

∣∣∣∣
+

∣∣∣∣dim(Vm(λ))

|EjKm|
− dim(Vm,n(λ))

|G(m,n)| · |EjKm|

∣∣∣∣
+

∣∣∣∣ dim(Vm,n(λ))

|G(m,n)| · |EjKm|
− dim(Vm,n(λ))

|EjKn|

∣∣∣∣
+

∣∣∣∣dim(Vm,n(λ))

|EjKn|
− Fn(λ)

∣∣∣∣
≤ Cr+1

|FjKm|
|EjKm|

+ 0 +
|FjKm|
|EjKm|

+ 2Cr+1
|FjKm|
|EjKm|

≤ (3Cr+1 + 1) · |FjKm|
|EjKm|

m→∞−−−→ 0.

The error in the end depends neither on λ nor on n, so the sequence (Fm)m∈N
is uniformly Cauchy, and thus uniformly convergent.

Now, we come to the second part of the main result: The limit of the
spectral density functions Fm of the “restricted” operators Tm indeed coincides
with the spectral density function of T defined in 2.38.

3.11 Theorem. Let X, (Km) and T ∈ Ageo
j (X), Tm ∈ B(`2Km) be as in

Theorem 3.5, and denote again by F and Fm the spectral density functions of
T respectively Tm. Then the sequence (Fm) converges uniformly to F .
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3.12 Definition. To simplify notation, write

trm(T ) :=
1

|EjKm|
∑

σ∈EjKm

〈σ, Tσ〉 .

as long as the exhaustion (Km) is fixed. This makes sense both for “global”
operators T ∈ B(`2X) and for “local” operators Tm ∈ B(`2Km).

3.13 Lemma. Let f : R→ R be continuous and T, Tm as in 3.5. Then

trN f(T ) = lim
m→∞

trm (f(Tm)) .

(Here, f(T ) is intended as functional calculus in Aj(X), and f(Tm) as func-
tional calculus in B(`2(EjKm)).)

Proof. As f is continuous, we have indeed f(T ) ∈ Aj(X), so the trace can
be computed by trN f(T ) = limm→∞ trm

(
f(T )

)
. If f is a polynomial, then

f(Tm)σ = f(T )σ for every σ ∈ Inrj Km, where r is the propagation of T and n
is the degree of f . As the nr-neighborhood of the frontier is negligible for the
trace, the claim follows.

For general f , note that (by assumption) the norms {‖Tm‖op |m ∈ N} are
bounded, and T and all Tm are positive. Thus, there is D > 0 such that
[0, D] contains all spectra of T and Tm, and by the Weierstrass approximation
theorem there is a polynomial p with |f(λ)− p(λ)| < ε for all λ ∈ [0, D].

Then, using that both trN and trm have norm one, we obtain∣∣∣trN f(T )− lim
m→∞

trm (f(Tm))
∣∣∣ ≤ |trN f(T )− trN p(T )|

+
∣∣∣trN p(T )− lim

m→∞
trm (p(Tm))

∣∣∣
+
∣∣∣ lim
m→∞

trm (p(Tm))− lim
m→∞

trm (f(Tm))
∣∣∣

≤ ε+ 0 + ε.

As ε was arbitrary, the claim follows.

3.14 Lemma. For all δ > 0 and λ ∈ R define the continuous function

fλ,δ(x) =


1, x ∈ (−∞, λ],

1− x−λ
δ
, x ∈ [λ, λ+ δ],

0, x ∈ [λ+ δ,∞).

Then for every ε > 0 there is δ > 0 (independent of m) such that

|F (λ)− trN fλ,δ(T )| < ε and |Fm(λ)− trm fλ,δ(Tm)| < ε

for all m ∈ N.
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Proof. First, note that

trN fλ,δ(T ) =

∫
R
fλ,δ(x) dF (x),

trm fλ,δ(Tm) =

∫
R
fλ,δ(x) dFm(x).

Note that it suffices to let the integrals run over
[
0, ‖T‖op

]
.

From now on, focus on the first integral, the second one actually works the
same.

The Lebesgue–Stieltjes integral fulfills the following version of integration
by parts (due to Hewitt, [Hew60]): If in each point either f or g is continuous,
then ∫ b

a

f dg +

∫ b

a

g df = f(b+)g(b+)− f(a−)g(a−),

where f(b+) = limx→ b+ f(x), etc. In our case, fλ,δ is everywhere continuous,
so the condition is fulfilled. With a = 0 and b = ‖T‖op we have

fλ,δ(b+)F (b+)− fλ,δ(a−)F (a−) = 0 · 1− 1 · 0 = 0.

Thus,

trN fλ,δ(T ) =

∫ b

0

fλ,δ(x) dF (x) = −
∫ b

0

F (x) dfλ,δ(x)

= −
∫ b

0

F (x)
dfλ,δ
dx

dx =
1

δ

∫ λ+δ

λ

F (x) dx.

(Note: While fλ,δ is only almost everywhere differentiable, it is everywhere
continuous, and thus, no single point has positive measure in dfλ,δ, and we can
leave out the two non-differentiable points λ and λ + δ. On the rest of the
interval, df = df

dx
dx holds.) The same argument applied to Fm yields

trm fλ,δ(Tm) =
1

δ

∫ λ+δ

λ

Fm(x) dx.

Every spectral density function is right-continuous and non-decreasing.
Thus, there is δ∞ > 0 such that |F (λ)− F (x)| < ε for all x ∈ [λ, λ+ δ∞].

By Theorem 3.5, the functions Fm are uniformly convergent to some func-
tion Flim, so there is M such that |Fm(x)− Flim(x)| < ε/3 for all m ≥M . As a
limit of right-continuous functions, Flim is right-continuous. Thus, there is δlim

such that |Flim(λ)− Flim(x)| < ε/3 for all x ∈ [λ, λ+ δlim], and that implies

|Fm(λ)− Fm(x)|
< |Fm(λ)− Flim(λ)|+ |Flim(λ)− Flim(x)|+ |Flim(x)− Fm(x)| < ε

for all m ≥M and all x ∈ [λ, λ+ δlim].
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Finally, for each of the functions F1, F2, . . . , FM−1, there is a δm > 0 such
that |Fm(λ)− Fm(x)| < ε for all x ∈ [λ, λ+ δm].

Setting δ = min(δ1, . . . , δM−1, δlim, δ∞), we get indeed

|F (λ)− trN fλ,δ(T )| < ε and |Fm(λ)− trm fλ,δ(Tm)| < ε

for all m ∈ N and all x ∈ [λ, λ+ δ].

Proof of Theorem 3.11. First show pointwise convergence.
Fix ε > 0. By Lemma 3.14, there are δ > 0 and a continuous function fλ,δ

such that

|F (λ)− trN fλ,δ(T )| < ε

3
and |Fm(λ)− trm fλ,δ(Tm)| < ε

3

for all m ∈ N.
By Lemma 3.13, the function fλ,δ satisfies

trN fλ,δ(T ) = lim
m→∞

trm (fλ,δ(Tm)) ,

so there is M ∈ N such that for every m ≥M ,

|trN fλ,δ(T )− trm (fλ,δ(Tm))| < ε

3
.

Thus, for every m ≥M ,
|F (λ)− Fm(λ)| < ε.

This proves pointwise convergence, and thus, F (λ) = Flim(λ) for all λ ∈ R. As
we already know that Fm → Flim uniformly, uniform convergence follows.

3.3 Different normalizations

From an algebraical point of view, it is natural to normalize the trace on
B
(
`2(EjKm)

)
by the dimension of that space, that is, by |EjKm|. (This turns

the normalized trace into a state, that is, a linear functional of norm one. In
particular, it leads to dimN (Hj) = trN (id) = 1.) Topologically, however, this
is not the most useful normalization:

First, it causes problems when we want to compare L2-invariants of different
dimensions, e. g. when computing Euler characteristics. For this, it is desirable
to divide all traces on B

(
`2(EjKm)

)
(for the various values of j) by the same

number.
Second, it is unsuitable for comparing different self-similar CW-complexes.

For example, different CW-structures on the same complex will often result in
different numbers of cells (in any dimension), but they should not change the
topological invariants.

Third, it proves to be unfortunate for product spaces, where we need the
normalizations on X, Y and X × Y to be compatible, but |EjKm| · |EjLm| 6=
|Ej(Km × Lm)| for any j ≥ 1.
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There are several possibilities for this normalization factor – one might
choose the number of vertices, or of top-dimensional cells, or even the number
of local isomorphisms in G(1,m) (that is, how many copies of K1 are needed to
“build” Km). To show that all of these normalizations are indeed equivalent
(in so far as they only produce a constant prefactor to the trace), let us show
that their ratios converge:

3.15 Lemma. (a) For every j ∈ N0, the limit lim
m→∞

|EjKm|
|G(1,m)|

exists.

(b) If EjX 6= ∅, then lim
m→∞

|EjKm|
|G(1,m)|

> 0.

Proof. (a) We have Km+1 =
⋃
γ ∈G(m,m+1) γKm and therefore |EjKm+1| ≤

|G(m,m+ 1)| · |EjKm|, while |G(1,m+ 1)| = |G(1,m)| · |G(m,m+ 1)|. Thus,

|EjKm+1|
|G(1,m+ 1)|

≤ |G(m,m+ 1)| · |EjKm|
|G(1,m)| · |G(m,m+ 1)|

≤ |EjKm|
|G(1,m)|

for all m. Hence, the sequence
( |EjKm|
|G(1,m)|

)
m

is non-increasing (and bounded from

below by 0), so it converges.
(b) If X contains any j-cell, then amenability demands that there is m0 ∈ N

such that |EjKm| > |FjKm| for all m ≥ m0. Then, we have for all m ≥ m0

and thus also for the limit m→∞,

|EjKm|
|G(1,m)|

≥ |G(m0,m)| · (|EjKm0| − |FjKm0|)
|G(1,m0)| · |G(m0,m)|

≥ 1

|G(1,m0)|
> 0.

3.16 Remark. We can define the shorthand

|EjX|
|G(1,∞)|

= lim
m→∞

|EjKm|
|G(1,m)|

.

Note, however, that this depends on the choice of (Km): For example, if a
second exhaustion were given by Lm = Km+1 with the local isomorphisms
G ′(m,n) = G(m+ 1, n+ 1), then we would obtain

lim
m→∞

|EjLm|
|G ′(1,m)|

= lim
m→∞

|EjKm+1|
|G(2,m+ 1)|

= |G(1, 2)| · lim
m→∞

|EjKm|
|G(1,m)|

.

In contrast, the ratio of cell numbers is an intrinsic property of X itself:

3.17 Definition and Lemma. For any j, k ∈ N0 such that EkX 6= ∅, the
limit

|EjX|
|EkX|

:= lim
m→∞

|EjKm|
|EkKm|

exists and is independent of the exhaustion (Km). If EjX 6= ∅, the limit is
positive.
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Proof. The existence follows directly from Lemma 3.15; it remains to show the
independence of (Km). A general proof is given in [Suc16] (Lemma 4.12); as
an illustration, let us give the (much shorter) proof for the simplicial case here:

Consider specifically k = 0 and define T ∈ Ageo
0 (X) as

Tρ =
|{σ ∈ EjX | ρ ∈ σ}|

j + 1
ρ.

As every j-simplex contains exactly j + 1 vertices, this immediately yields

trm T =
1

|E0Km|
∑

ρ∈E0Km

1

j + 1

∑
σ∈EjKm
ρ∈σ

1 =
1

|E0Km|
∑

σ∈EjKm

1

j + 1

∑
ρ∈E0Km
ρ∈σ

1

=
1

|E0Km|
∑

σ∈EjKm

1 =
|EjKm|
|E0Km|

.

Now the claim follows from Theorem 3.4, as trA(T ) = limm→∞ trKm(T ) is
independent of the choice of (Km). Finally, for k > 0, simply use

lim
m→∞

|EjKm|
|EkKm|

=
lim
m→∞

|EjKm|
|E0Km|

lim
m→∞

|EkKm|
|E0Km|

.

For the positivity of the limit, combine this result with Lemma 3.15 (b).
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4 L2-Betti numbers and Novikov–Shubin in-

variants

Let us now turn towards the actual L2-invariants that can be derived from the
spectral density functions of Laplacians. First among these are the L2-Betti
numbers, which simply measure the sizes of the kernels of the Laplacians, or
the amount of “harmonic chains” on the complex. Second, we will consider
Novikov–Shubin invariants, which look at the spectrum near (but not at) zero;
one might say that they measure the amount of “almost harmonic chains” on
the complex.7

For both of these invariants, we will look at two main questions:

(a) We will justify the name “invariants” by proving that they are indeed
invariant under suitable homotopies. This, of course, requires to first con-
struct the notion of a self-similar homotopy compatible with the structure
of the spaces.

(b) We will attempt to approximate the invariants by their equivalents on
finite subcomplexes. For L2-Betti numbers, this turns out to be a sim-
ple corollary; for Novikov–Shubin invariants the situation is much more
complicated.

4.1 Approximation of L2-Betti numbers

The L2-Betti numbers of an operator measure the size of its kernel – although,
strictly speaking, the “kerT” in the following definition is a subspace of Hj,
not of `2(EjX), so we do not directly measure how many chains in `2(EjX) get
mapped to zero!

Nonetheless, L2-Betti numbers measure a “failure to be injective”, and the
approximation result below shows that their values are very much correlated
with the behavior of the operator on `2(EjX).

4.1 Definition. Given a positive operator T ∈ Nj, the L2-Betti number of T
is

b(2)(T ) = F T (0) = dimN (kerT ).

Given a self-similar complex X, define its j-th L2-Betti number as

b
(2)
j (X) = b(2)

(
∆

(X)
j

)
.

In this chapter, dimN is normalized such that the total space has dimension
one. As mentioned in 3.3, it is occasionally useful to use other normalizations;
we will use a different one in Chapter 6.

7The third main invariant (L2-torsion and the Fuglede–Kadison determinants necessary
to construct it) will be considered in the next chapter.
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As L2-Betti numbers are simply the values of the spectral density functions
at zero, their approximation follows directly from the work done in the previous
chapter:

4.2 Corollary. Let X be a self-similar CW-complex with self-similar exhaus-
tion (Km)m∈N. Denote by

βj(Km) = dimCHj(Km;C)

the classical Betti numbers of Km, and by

b
(2)
j (X) = dimN

(
ker ∆

(X)
j

)
the L2-Betti numbers of X. Then

b
(2)
j (X) = lim

m→∞

βj(Km)

|EjKm|
.

Proof. In Theorem 3.11, put T = ∆
(X)
j and Tm = ∆

(Km)
j . Then b

(2)
j (X) = F (0)

and
βj(Km)

|EjKm| = Fm(0), and convergence follows.

In the classical case, L2-Betti numbers over (elementary) amenable groups
can often only take certain rational values.8 For our version of self-similar
complexes, we cannot expect such a restriction:

4.3 Example. Given any number y ∈ [0, 1], write y =
∑∞

j=1 yj2
−j with yj ∈

{0, 1}, and define complexes (Km)∞m=0 as follows:
Let K0 = [0, 1]2 be a square with the standard CW-structure. If ym = 0,

define Km as the union of two copies of Km−1 that are glued together along
an edge. If ym = 1, instead define Km as the union of two copies of Km−1 that
are glued together only at the two endpoints of an edge. (See Figure 8.)

With β1(K0) = 0 and |E1K0| = 4, we obtain

β1(Km) = 2 · β1(Km−1) + ym =
m∑
j=1

2m−jyj,

|E1Km| = 2 · |E0Km−1|+ ym − 1 = 2m · 4 +
m∑
j=1

2m−j(yj − 1)

= 3 · 2m − 1 +
m∑
j=1

2m−jyj.

Thus, if we set X =
⋃∞
m=0Km,

b
(2)
1 (X) = lim

m→∞

β1(Km)

|E1Km|
=

y

y + 3
,

and therefore any number between 0 and 1/4 appears as the first L2-Betti
number of such a complex.

8This is a special case of Atiyah’s conjecture, compare [DLM+03].
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Figure 8: K0 to K4 for the complex of Example 4.3. In the picture for Km, the
places where the two copies of Km−1 are glued together are marked in black:
two vertices in K1, K3 and K4, and an entire edge in K2. Thus, this complex
encodes the number y = (0.1011 . . .)2.

4.2 Novikov–Shubin invariants

The Betti numbers of a space measure the size of the kernel of its Laplacian;
in a way, they count how many “harmonic” chains of cells exist on that space.
For finite complexes, the Laplacian is invertible whenever there are no such
harmonic chains, and if that happens in all dimensions greater zero, the chain
complex is contractible. (Note that the space itself need not be contractible,
as the homology with complex coefficients does not “see” all topological pro-
perties. The contractibility of the chain complex is thus more of an algebraic
statement than a topological one.)

In infinite complexes, this simple statement is no longer true, as an injec-
tive Laplacian is not always invertible. Thus, it becomes necessary to consider
“almost harmonic” chains: elements Ξ ∈ Hj(X) for which ∆jΞ is not zero, but
arbitrarily small. This “almost-kernel” is measured by the Novikov–Shubin in-
variant, which is defined as the doubly-logarithmic slope of the spectral density
function at zero:

4.4 Definition. Given a non-decreasing function F : [0,∞) → [0,∞), define
its Novikov–Shubin invariant by

α(F ) =

lim inf
λ→0+

log(F (λ)− F (0))

log(λ)
, if F (λ) > F (0) for all λ > 0,

∞+, otherwise,

where ∞+ is understood as a new symbol meaning “more than ∞”.
For an operator T ∈ Nj(X), define α(T ) = α(F T ), where F T is the spectral

density function of T .
For a self-similar complex X, define αj(X) = α

(
∆

(X)
j

)
. (This is a deviation

from the literature standard, where αj(X) is defined as αj(∂
(X)
j ) instead; we

prefer using the Laplacian as ∂
(X)
j is not a self-adjoint operator.)
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Novikov–Shubin invariants can take any value in [0,∞] as well as the addi-
tional value∞+, which indicates a spectral gap around zero: α(F ) is set to∞+

whenever F is constant on an interval [0, ε) for some ε > 0; if F is the spectral
density function of some operator T , this implies that spec(T ) ∩ (0, ε) = ∅. If
T is injective, this implies that it is bounded from below by ε, and conversely,
every operator that is bounded from below will exhibit this spectral gap. As
being bounded from below is equivalent to invertibility, this shows:

4.5 Lemma. An operator T ∈ Nj(X) is invertible if and only if ker(T ) = {0}
and α(T ) =∞+.

4.6 Remark. A space X is said to have the limit property if the limit inferior
in 4.4 is a true limit. Lück notes that every G-CW-complex known to him has
the limit property ([Lüc02], page 92, Remark 2.42).

It is not hard to write down a function that does not fulfill the limit prop-
erty; for example, let

F (0) = 0 and F (λ) = 2−k if λ ∈ [2−2k, 2−k) for k ∈ N.

Then clearly

α(F ) = lim inf
λ→0+

log(F (λ)− F (0))

log(λ)
=

1

2
but lim sup

λ→0+

log(F (λ)− F (0))

log(λ)
= 1.

However, it is unclear whether such a counterexample could occur as the spec-
tral density function of a Laplacian of a self-similar complex.

Let us quickly note some obvious properties of Novikov–Shubin invariants of
functions. Most of these follow trivially from the definition; compare [Lüc02],
p. 77 ff.

4.7 Lemma. Let F,G : [0,∞) → [0,∞) be non-decreasing and r > 0. Then
(using r · ∞ =∞ and r · ∞+ =∞+)

α(r · F (λ)) = α(F (λ)),

α(F (r · λ)) = α(F (λ)),

α(F (λr)) = r · α(F (λ)),

α(F +G) = min
(
α(F ), α(G)

)
,

and, if F (0) = G(0), then

F ≤ G =⇒ α(F ) ≥ α(G).

4.8 Definition and Lemma. Two non-decreasing functions F,G : [0,∞)→
[0,∞) are dilatationally equivalent , written F ' G, if there are ε, C > 0 such
that

F (λ) ≤ G(Cλ) and G(λ) ≤ F (Cλ) for all λ ∈ [0, ε).

In that case,
α(F ) = α(G).
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Proof. This is a direct consequence of Lemma 4.7.

4.9 Corollary. Let X be a self-similar complex. For any two operators S, T ∈
Nj(X) we have the following properties:

(a) α(T ∗T ) = α(TT ∗) = 1
2
α(T ∗) = 1

2
α(T ).

(b) If S is invertible, then α(ST ) = α(TS) = α(T ).

Proof. (a) This follows from Lemmas 2.40 and 4.7.

(b) If S is invertible, there is a constant C > 0 such that C−1 ‖Ξ‖ ≤ ‖SΞ‖ ≤
C ‖Ξ‖ for all Ξ ∈ Hj. Therefore, if V ⊆ Hj is a subspace fulfilling
‖T |V ‖ ≤ λ, then ‖ST |V ‖ ≤ Cλ, so Lemma 2.42 yields F (ST )(Cλ) ≥
F (T )(λ).

Conversely, if W ⊆ Hj is a subspace fulfilling ‖ST |W‖ ≤ C−1λ, then
‖T |V ‖ ≤ λ, so Lemma 2.42 yields F (T )(λ) ≥ F (ST )(C−1λ).

Now α(ST ) = α(T ) follows from Lemma 4.8, and since S∗ is also invert-
ible, part (a) gives α(TS) = α((TS)∗) = α(S∗T ∗) = α(T ∗) = α(T ).

Even though we mostly work with the Laplacians ∆j, we will sometimes
need to refer back to the boundary operators ∂j. To this end, we use the
following relation:

4.10 Corollary. Let X be a self-similar complex, and ∂j : `2(EjX)→ `2(Ej−1X)
the differential in its L2-chain complex. Then

αj(∆j) = min

(
α(∂j)

2
,
α(∂j+1)

2

)
.

Proof. Define ∆j− = ∂∗j ∂j and ∆j+ = ∂j+1∂
∗
j+1, so the Laplacian takes the

form ∆j = ∆j− + ∆j+. (Of course, both of the operators ∆j± are geomet-
ric.) By definition, F (∂j)(λ) = F (∆j−)(λ2), and by Lemma 2.40 we also have
F (∂j+1)(λ) = F (∂∗j+1)(λ) = F (∆j+)(λ2). Therefore, Lemma 4.7 gives

α(∆j−) =
α(∂j)

2
and α(∆j+) =

α(∂j+1)

2
.

It is a well-known fact that on every finite CW-complex, the chain complex
can be decomposed into the orthogonal sum

C[EjX] = ker(∆j)⊕ im(∂∗j )⊕ im(∂j+1),

and that w. r. t. this decomposition, the Laplacian takes the form

∆j =

0 0 0
0 ∆j− 0
0 0 ∆j+

 .
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Therefore, the (renormalized) spectral density function on every finite subcom-
plex Km ⊆ X fulfills

F
(
∆

(Km)
j

)
= F

(
∆

(Km)
j−

)
+ F

(
∆

(Km)
j+

)
.

By Theorem 3.11, the same holds on X:

F
(
∆

(X)
j

)
= F

(
∆

(X)
j−
)

+ F
(
∆

(X)
j+

)
.

Now the claim follows from Lemma 4.7.

4.3 Homotopy invariance of L2-Betti numbers

The name L2-invariant refers to homotopy invariance. However, this can-
not mean invariance under any homotopy: For example, all of the complexes
defined in Example 4.3 (except for the one corresponding to y = 0) are ho-
motopy equivalent, yet their L2-Betti numbers take many different values.
Namely, each of these complexes has countably many holes, but their density
is different – something that a conventional homotopy cannot account for.

Thus, a homotopy of self-similar complexes must in some way preserve
the self-similar structure to have any chance of preserving our version of L2-
invariants. It is important to note that the self-similar structure on a complex
is not part of the space itself – rather, a complex is self-similar as soon as there
is at least one such structure, and the invariants are independent of its choice.
Therefore, it should suffice that a self-similar map is compatible with some
self-similar structure on each space:

4.11 Definition. Let X and Y be self-similar complexes. A map f : X → Y
is a self-similar map if there are self-similar structures

(
Km,G(m,m + 1)

)
on

X and
(
Lm,G ′(m,m+ 1)

)
on Y such that for all m:

(a) f(Km) ⊆ Lm,

(b) there is a bijection ϕm : G(m,m+ 1)→ G ′(m,m+ 1),

(c) and the map is “equivariant” with respect to these local isomorphisms;
that is, the following diagram commutes for each γ ∈ G(m,m+ 1):

Km
γ //

f

��

γKm

f
��

Lm
ϕm(γ) // ϕm(γ)Lm

A homotopy equivalence requires four such maps (one in each direction
and a homotopy in each space), and it appears necessary that all of them use
the same structure:
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Figure 9: A self-similar homotopy. The Sierpiński triangle is self-similarly
homotopy equivalent to a 1-dimensional complex.

4.12 Definition. Let X and Y be self-similar complexes. A pair of maps
f : X → Y and g : Y → X is a self-similar homotopy equivalence if there are
self-similar structures

(
Km,G(m,m + 1)

)
on X and

(
Lm,G ′(m,m + 1)

)
on Y

such that:

(a) f(Km) ⊆ Lm and g(Lm) ⊆ Km,

(b) the homotopy h1 : gf ' idX restricts to h1|Km : (g|Lm)(f |Km) ' idKm ,

(c) the homotopy h2 : fg ' idY restricts to h2|Lm : (f |Km)(g|Lm) ' idLm ,

(d) there is a bijection ϕm : G(m,m+ 1)→ G ′(m,m+ 1),

(e) and both maps and homotopies are “equivariant” with respect to these
local isomorphisms; that is, all of the following diagrams commute for
each m, each γ ∈ G(m,m+ 1) and each γ′ ∈ G ′(m,m+ 1):

Km
γ //

f

��

γKm

f
��

Lm
ϕm(γ) // ϕm(γ)Lm

Km × [0, 1]
γ×id //

h1
��

γKm × [0, 1]

h1
��

Km
γ // γKm

Lm

g

��

γ′ // γ′Lm

g

��
Km

ϕ−1
m (γ′) // ϕ−1

m (γ′)Km

Lm × [0, 1]
γ′×id//

h2
��

γ′Lm × [0, 1]

h2
��

Lm
γ′ // γ′Lm

Let us now turn to L2-Betti numbers. By definition, a homotopy equi-
valence between two self-similar complexes X and Y implies that there are
self-similar structures (Km) on X and (Lm) on Y such that Km ' Lm for
all m, and thus the classical Betti numbers of these subcomplexes are equal:
βj(Km) = βj(Lm).
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By Corollary 4.2, the L2-Betti numbers of X and Y can be approximated
by βj(Km) and βj(Lm), but only after normalization – and our usual normali-
zation factor is the number of cells (of some dimension) in each subcomplex,
which is certainly not homotopy invariant.

By Lemma 3.15, the limits lim
m→∞

|EjKm|
|G(1,m)| and lim

m→∞
|EjLm|
|G′(1,m)| exist, and by

property 4.12 (d) we have |G(1,m)| = |G ′(1,m)|. Thus, the limit lim
m→∞

|EjKm|
|EjLm|

exists as well, and we can write

b
(2)
j (X) = lim

m→∞

βj(Km)

|EjKm|
= lim

m→∞

βj(Lm)

|EjKm|
= lim

m→∞

|EjLm|
|EjKm|

· lim
m→∞

βj(Lm)

|EjLm|

= lim
m→∞

|EjLm|
|EjKm|

· b(2)
j (Y ).

This already proves that if b
(2)
j (X) = 0, then also b

(2)
j (Y ) = 0.

If the j-th Betti numbers are non-zero, it remains to show that the normal-
ization factor lim

m→∞
|EjLm|
|EjKm| does not depend on the choices of (Km) and (Lm):

Assume (K ′m) and (L′m) are other self-similar exhaustions of X and Y such
that K ′m ' L′m for every m. Again, we obtain βj(K

′
m) = βj(L

′
m). From

Corollary 4.2 we see that

lim
m→∞

βj(Km)

|EjKm|
= b

(2)
j (X) = lim

m→∞

|βj(K ′m)|
|EjK ′m|

,

lim
m→∞

βj(Lm)

|EjLm|
= b

(2)
j (Y ) = lim

m→∞

|βj(L′m)|
|EjL′m|

.

Therefore, using Km ' Lm and K ′m ' L′m,

lim
m→∞

|EjK ′m|
|EjKm|

= lim
m→∞

βj(K
′
m)

β(Km)
= lim

m→∞

βj(L
′
m)

β(Lm)
= lim

m→∞

|EjL′m|
|EjLm|

,

and thus indeed

lim
m→∞

|EjK ′m|
|EjL′m|

= lim
m→∞

|EjKm|
|EjLm|

.

This yields the following statement:

4.13 Theorem. If two self-similar complexes X and Y are homotopy equiv-
alent in the sense of Definition 4.12, then their L2-Betti numbers are related
by the formula

b
(2)
j (X) = lim

m→∞

|EjLm|
|EjKm|

· b(2)
j (Y )

where the factor lim
m→∞

|EjLm|
|EjKm| is the same for any two self-similar exhaustions

(Km), (Lm) that fulfill Km ' Lm for every m.
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4.4 Homotopy invariance of Novikov–Shubin invariants

Unlike L2-Betti numbers, Novikov–Shubin invariants are not affected by nor-
malization factors: Since they only use the logarithm of the spectral density
function, any constant factor becomes negligible. That allows us to obtain
“true” invariance under self-similar homotopy equivalences:

4.14 Theorem. If two self-similar complexes X and Y are homotopy equiv-
alent in the sense of Definition 4.12, then their Novikov–Shubin invariants
are equal. More precisely, we have both α

(
∂

(X)
j

)
= α

(
∂

(Y )
j

)
and α

(
∆

(X)
j

)
=

α
(
∆

(Y )
j

)
for all j.

In order to work with self-similar maps, we first need to prove that they
indeed induce bounded operators on the L2-chain complex:

4.15 Lemma. Let f : X → Y be a self-similar map. Then the induced chain
maps fj : C[EjX]→ C[EjY ] are bounded, and thus extend to bounded operators
fj : `2(EjX)→ `2(EjY ).

Proof. Use the same notation as before: (Km) is a self-similar exhaustion of X
with local isomorphisms G(m,m+1), and (Lm) is the corresponding self-similar
exhaustion of Y with local isomorphisms G ′(m,m+ 1)

Choose m large enough that Lm has a non-frontier cell. Then there is a
constant D such that every γLm (for γ ∈ G ′(m)) overlaps at most D other such
copies of Lm. Namely, let r be the maximal combinatorial distance between
vertices in Lm (this is finite, as we assume Lm to be connected). Then, for any
vertex ρ ∈ E0(γLm), the 2r-ball around ρ contains an interior vertex of every
other copy γ′Lm that intersects γLm. As different translates only overlap at
their frontiers, all these interior vertices are distinct, and as the complex Y is
bounded, B2r(ρ) is finite. Thus, we can set D = |B2r(ρ)|.

Write x ∈ C[EjX] as a sum
∑

γ∈G(m) xγ, where the xγ ∈ C[Ej(γKm)] are
mutually orthogonal and only finitely many xγ are nonzero. By assumption,
fj(xγ) ∈ C[ϕ(γ)Lm] for some ϕ(γ) ∈ G ′(m), but since the translates of Lm can
overlap at their frontiers, the fj(xγ) are not necessarily mutually orthogonal.

Enumerate the γ ∈ G(m) with xγ 6= 0 as γ1, . . . , γN such that

‖fj(xγ1)‖ ≥ ‖fj(xγ2)‖ ≥ . . . ≥ ‖fj(xγN )‖ .

Then, in the sum

‖fj(x)‖2 =
N∑

i,k=1

〈fj(xγi), fj(xγk)〉

there are at most 2D nonzero terms containing f(xγ1), because supp(f(xγ1)) ⊆
ϕ(γ1)(Lm) and ϕ(γ1)Lm intersects at most D other translates ϕ(γk)Lm. Each
of those terms fulfills∣∣〈fj(xγ1), fj(xγk)〉∣∣ ≤ ‖fj(xγ1)‖ · ‖fj(xγk)‖ ≤ ‖fj(xγ1)‖2 .
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Thus,

‖fj(x)‖2 ≤ 2D ‖fj(xγ1)‖
2 +

N∑
i,k=2

〈fj(xγi), fj(xγk)〉 ,

and by induction we obtain

‖fj(x)‖2 ≤ 2D
N∑
i=1

‖fj(xγi)‖
2 .

Finally, since f commutes with local isomorphisms, so does fj, and thus

‖fj(xγi)‖ ≤
∥∥fj|C[EjKm]

∥∥ · ‖xγ‖
for all γ. We conclude

‖fj‖ ≤
√

2D
∥∥fj|C[EjKm]

∥∥ ,
and

∥∥fj|C[EjKm]

∥∥ is finite because EjKm is finite.

4.16 Remark. Given a self-similar homotopy h : X × [0, 1] → Y between two
maps X → Y , the induced chain homotopy ηj : C[EjX] → C[Ej+1Y ] can be
obtained as (−1)j times the restriction of

hj : C
[
Ej+1

(
X × [0, 1]

)]
→ C[Ej+1Y ],

using the Künneth isomorphism

Ej+1

(
X × [0, 1]

) ∼= Ej+1X t Ej+1X t EjX.

(Compare [Lüc05], page 61.) Applying Lemma 4.15 to hj therefore also proves
that ηj is bounded.

As a preparation for the proof of homotopy invariance, let us show that
if two finite CW-complexes are homotopy equivalent, then the spectral den-
sity functions of their differentials are dilatationally equivalent in a precisely
controlled way:

4.17 Lemma. Let K
f // L
g
oo be a homotopy equivalence between two finite

CW-complexes with homotopies h1 : gf ' idK and h2 : fg ' idL, and let
η1,j : C[EjK] → C[Ej+1K] and η2,j : C[EjL] → C[Ej+1L] be the chain homo-
topies induced by h1 and h2.

Denote by Fnn(∂j) the non-normalized spectral density functions of the dif-
ferentials, and let F⊥nn(∂j)(λ) = Fnn(∂j)(λ)− Fnn(∂j)(0). Then

Fnn(∂Kj )⊥(λ) ≤ Fnn(∂Lj )⊥(2 ‖fj−1‖ ‖gj‖λ)

Fnn(∂Lj )⊥(λ) ≤ Fnn(∂Kj )⊥(2 ‖gj−1‖ ‖fj‖λ)

for all

0 < λ < min

(
1

2 ‖η1,j−1‖
,

1

2 ‖η2,j−1‖

)
.
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Proof. Fix j and λ and let V ⊆ C[EjK] be the vector space spanned by all
eigenvectors of (∂Kj )∗∂Kj with eigenvalues ≤ λ2. (In other words, this is the
image of the spectral projection E(λ) for the operator ∂Kj .)

Furthermore, let

Pj : C[EjK]→ ker(∂Kj )⊥, Qj : C[EjL]→ ker(∂Lj )⊥

be the orthogonal projections. Thus, the non-normalized spectral density func-
tion of ∂Kj takes the values

Fnn(∂Kj )(λ) = dim(V ),

Fnn(∂Kj )⊥(λ) = Fnn(∂Kj )(λ)− Fnn(∂Kj )(0) = dim(PjV ).

Define
W = QjfjPjV.

Let x ∈ PjV and write fj(x) = y + z with y = Qjfj(x) ∈ W and z ∈ ker(∂Lj ).
By definition of the chain homotopy, we have

x = gj(y) + gj(z) + η1,j−1∂
K
j (x) + ∂Kj+1η1,j(x).

However, g∗ commutes with the differentials, so ∂Kj gj(z) = gj−1∂
L
j (z) = 0.

Thus, both the second and the fourth summand lie in ker(∂Kj ) ⊥ x, and we
obtain

x = Pjx = Pjgj(y) + Pjη1,j−1∂
K
j (x).

By choice of x and λ, we have

‖x‖ ≤ ‖Pjgj(y)‖+
∥∥Pjη1,j−1∂

K
j (x)

∥∥
≤ ‖gj(y)‖+ ‖η1,j−1‖

∥∥∂Kj (x)
∥∥

≤ ‖gj‖ ‖y‖+ ‖η1,j−1‖λ ‖x‖

≤ ‖gj‖ ‖y‖+
1

2
‖x‖

=⇒ ‖x‖ ≤ 2 ‖gj‖ ‖y‖ .

This proves that Qjfj : PjV → W,x 7→ y is bounded from below and therefore
injective, so

dim(PjV ) = dim(W ).

Elements of W are trivially orthogonal to the kernel of ∂Lj , and furthermore,∥∥∂Lj (y)
∥∥ =

∥∥∂Lj fj(x)
∥∥ =

∥∥fj−1∂
K
j (x)

∥∥
≤ ‖fj−1‖

∥∥∂Kj x∥∥ ≤ ‖fj−1‖λ ‖x‖
≤ 2λ ‖fj−1‖ ‖gj‖ ‖y‖ ,

so the finite-dimensional analogue of Lemma 2.42 shows that

Fnn(∂Lj )⊥(2 ‖fj−1‖ ‖gj‖λ) ≥ dim(W ) = dim(PjV ) = Fnn(∂Kj )⊥(λ).

This proves the first estimate. To prove the second estimate, simply swap K
with L, f with g, and η1 with η2.
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Now we can use approximation of spectral density functions to prove 4.14:

Proof of Thm. 4.14. Use all notation from Def. 4.12.
The maps f, g and the homotopies h1, h2 induce chain maps and chain

homotopies

fj : C[EjX]→ C[EjY ] gj : C[EjY ]→ C[EjX]

η1,j : C[EjX]→ C[Ej+1X] η2,j : C[EjY ]→ C[Ej+1Y ]

on the cellular (non-L2) chain complexes of X and Y . By assumption, the
maps can be restricted to Km and Lm, and thus the same applies to their
induced maps on the chain complexes, yielding

fj : C[EjKm]→ C[EjLm] gj : C[EjLm]→ C[EjKm]

η1,j : C[EjKm]→ C[Ej+1Km] η2,j : C[EjLm]→ C[Ej+1Lm]

On the other hand, Lemma 4.15 and Remark 4.16 show that all these chain
maps are indeed bounded operators. Thus, they extend to the L2-chain com-
plexes `2(EjX) resp. `2(EjY ), and we can estimate

∥∥fj|C[EjKm]

∥∥ ≤ ‖fj‖, and
the same for gj, η1,j and η2,j. Especially, these norms are bounded uniformly
in m.

Apply Lemma 4.17 to Km and Lm to get

Fnn(∂Kmj )⊥(λ) ≤ Fnn(∂Lmj )⊥
(√

C · λ
)

Fnn(∂Lmj )⊥(λ) ≤ Fnn(∂Kmj )⊥
(√

C · λ
)

for all λ ∈ (0, ε), where

√
C = max

(
2 ‖fj−1‖ ‖gj‖ , 2 ‖gj−1‖ ‖fj‖

)
ε = min

(
1

2 ‖η1,j−1‖
,

1

2 ‖η2,j−1‖

)
and neither ε nor C depend on m.

Remember that Fnn(∂j)
⊥(λ) = Fnn(∆j−)⊥(λ2). Therefore, we have

Fnn(∆Km
j− )⊥(λ) ≤ Fnn(∆Lm

j− )⊥
(
C · λ

)
Fnn(∆Lm

j− )⊥(λ) ≤ Fnn(∆Km
j− )⊥

(
C · λ

)
and furthermore, ∆X

j− and ∆Y
j− are geometric operators, they are approximated

by ∆Km
j− and ∆Lm

j− , and Theorem 3.11 is applicable. However, in order to apply
it, we have to renormalize:

Recall from Lemma 3.15 that the limits

lim
m→∞

|EjKm|
|G(1,m)|

and lim
m→∞

|EjLm|
|G ′(1,m)|

exist and are nonzero whenever EjX 6= ∅ 6= EjY . We are assuming that

|G(1,m)| = |G ′(1,m)|
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for all m. Thus, the limit

r = lim
n→∞

|EjLm|
|EjKm|

exists, and we get from 3.11 that for every λ ∈ (0, ε),

F (∆X
j−)(λ) = lim

m→∞

Fnn(∆Km
j− )(λ)

|EjKm|
≤ lim

m→∞

Fnn(∆Lm
j− )⊥(Cλ)

|EjKm|

= r · lim
m→∞

Fnn(∆Lm
j− )⊥(Cλ)

|EjLm|
= r · F (∆Y

j−)(Cλ)

and, by the same argument,

r · F (∆Y
j−)(λ) ≤ F (∆X

j−)(Cλ).

Now, Lemmas 4.7 and 4.8 yield

α
(
F (∆X

j−)
)

= α
(
r · F (∆Y

j−)
)

= α
(
F (∆Y

j−)
)

and thus
α(∂

(X)
j ) = 2α(∆X

j−) = 2α(∆Y
j−) = α(∂

(Y )
j ).

Finally, the statement for ∆ follows from Corollary 4.10.

4.5 Novikov–Shubin invariants, random walks and
growth

Betti numbers have a clear topological meaning (“counting holes in a space”),
and their approximation carries that meaning over to L2-Betti numbers (count-
ing the “frequency of holes”). It is significantly harder to ascribe such meaning
to Novikov–Shubin invariants, especially since they are completely trivial for
finite subspaces. (The spectral density function of any operator on a finite
complex is always a step function, giving it α =∞+.)

For the classical Novikov–Shubin invariants of (Laplacians on) spaces with
a suitable group action, there is indeed a geometrical (though not truly topo-
logical) meaning of at least the zeroth Novikov–Shubin number:

4.18 Definition. Let G be a finitely generated infinite group and C its Cayley
graph with regard to some finite generating set S. Let d be the combinatorial
distance of vertices of C (or, equivalently, the word metric of G with respect
to S), and

Br(e) = {g ∈ G | d(e, g) ≤ r} .

G has polynomial growth, if there is a number d > 0 such that

|Br(e)| ∼ rd,

and in that case, d is called the degree of growth of G. (It turns out that d
does not depend on the choice of S.)
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All infinite virtually nilpotent groups have polynomial growth ([Gro81]),
and the degree of growth is closely linked to the first Novikov–Shubin invariant.
This theorem is originally due to Lott ([Lot92]); we cite the fully generalized
version from Lück ([Lüc02], Lemmas 2.45 and 2.46):

4.19 Theorem. Let G be a finitely generated group and X a connected free
G-CW-complex of finite type.

(a) If G is finite or not amenable, α1(X) =∞+.

(b) If G is infinite and amenable, but not virtually nilpotent, α1(X) =∞.

(c) If G is infinite and virtually nilpotent, α1(X) equals the degree of growth
of G.

However, the proof of this theorem, as given by Lück, makes it clear that
α and the degree of growth are not directly related to each other. Rather,
they are both connected to a third quantity: the return probability of random
walks.

For any vertex ρ ∈ E0X, let S1(ρ) = {σ ∈ E0X | dcomb(ρ, σ) = 1} (this is
the set of all neighboring vertices of ρ), and define the transition operator

P : `2(E0X)→ `2(E0X), ρ 7→ 1

|S1(ρ)|
∑

σ∈S1(ρ)

σ.

Then 〈σ, P nρ〉 is the probability that a simple random walk starting at ρ will
be at σ after exactly n steps. In particular, the probability that the random
walk will return to ρ after exactly n steps is given by

pρ(n) =〈ρ, P nρ〉 .

As vertices of X can have very different neighborhoods, pρ(n) does indeed
depend on ρ, or, more precisely, on the n-pattern of ρ. However, as the operator
P n is clearly pattern-invariant, we can take the average value

p(n) = lim
m→∞

1

|E0Km|
∑

σ∈E0Km

〈σ, P nσ〉 = trA(P n).

(On a homogenous space – a space with a transitive group action – there is
only one pattern, and pρ(n) does not depend on ρ.)

These return probabilities are closely linked to α0(X), and this holds for
G-CW-complexes as well as for spaces with aperiodic order:

4.20 Lemma. If there are constants C > c > 0 and a > 0 such that c na ≤
p(n) ≤ C na, then α0(X) = a.

Proof. Let Θρ = 1
deg(ρ)

ρ. As X is a bounded complex, Θ is bounded from
below and thus invertible, and it fulfills

∆0Θ = (id− P ).
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Thus, Lemma 4.9 yields

α0(X) = α(∆0) = α(id− P ).

The rest of the proof carries over verbatim from [Lüc02], p. 95f.

The second half of the proof of Theorem 4.19 follows from a theorem of
Varopoulos:

4.21 Theorem ([Var87]). Let G be a finitely generated group.

(a) If G does not have polynomial growth, then for every a > 0 there is C > 0
such that p(n) ≤ C n−a.

(b) G has polynomial growth of degree 2a if and only if there are C > c > 0
such that c n−a ≤ p(n) ≤ C n−a for every even n ∈ N.

This, however, does not hold for spaces with aperiodic order, and not even
for self-similar spaces. The Sierpiński triangle is actually a counterexample, as
proven by Woess ([Woe00], p. 171):

“... we have seen that under certain conditions (quasi-homogeneity), poly-
nomial growth with degree r and decay of order n−r

′/2 for transition probabilities
occur with the same exponents r′ = r. In this section we shall study a class
of graphs with polynomial growth, where r′ is strictly smaller than r. These
are the simplest “fractal” graphs, strongly related to the Sierpiński fractals in
d ≥ 2 dimensions.”

Thus, for self-similar spaces like the Sierpiński triangle, the zeroth Novikov–
Shubin invariant is indeed related to return probabilities, but it is not tied to
growth.

4.6 Approximation of Novikov–Shubin invariants

As mentioned above, the Novikov–Shubin invariants of finite subcomplexes
always take the value ∞+, since the spectral density function of an operator
on a finite-dimensional space is always constant around zero. Thus, αj(X) will
usually not be the limit of αj(Km). However, there is still a possibility that
αj(X) might be computable as the limit of some number derived from Km.

For G-CW-complexes, Kammeyer [Kam17] explored the possibility of ap-
proximating αj(X) by the “alpha numbers” of approximating step functions:

4.22 Definition. Let F : [0,∞)→ [0,∞) be a non-decreasing right-continuous
step function with finitely many steps. Then let λ+ = min {λ ∈ R |F (λ) > F (0)}
and define the alpha number of F by

αdiscrete(F ) =
log(F (λ+)− F (0))

log(λ+)
.
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Kammeyer finds that for a G-CW-complex with virtually cyclic group G,
the lim sup of the alpha numbers9 indeed converges to the Novikov–Shubin
invariants of X, but the lim inf does not. However, his methods make extensive
use of the specific group structure and cannot carry over to the self-similar case.

It would be appealing to assume that if a sequence of step functions con-
verges uniformly to a continuous function, then their alpha numbers converge
to its Novikov–Shubin invariant. Unfortunately, this is false in general: Let10

Gm : [0,∞)→ [0,∞), λ 7→


0, if x ∈ [0, e−m),
1
m
, if x ∈ [e−m, 1),

1, if x ∈ [1,∞).

Each Gm is non-decreasing, and the sequence (Gm) converges uniformly to

G : [0,∞)→ [0,∞), λ 7→

{
0, if x ∈ [0, 1),

1, if x ∈ [1,∞).

Then the alpha numbers of the Gm are

αdiscrete(Gm) =
log(1/m)

log(e−m)
=

log(m)

m

m→∞−−−→ 0,

while clearly
α(G) =∞+,

yielding the maximal possible difference between the Novikov–Shubin invariant
and its “approximation”.

Thus, the alpha numbers could only be guaranteed to converge if we could
reliably control the smallest eigenvalue of the Laplacian on Km. This is clearly
not possible, as we know very little about the frontiers (and have consistently
ignored their contributions in the previous approximations). Consequently, it
appears unlikely that the alpha numbers would yield a reliable approximation
for Novikov–Shubin invariants on self-similar complexes.

9Kammeyer considers finite subcovers of the covering X → X/G, instead of amenable
subcomplexes of X itself.

10This counterexample will appear again in Remark 5.10.
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5 Fuglede–Kadison determinants and torsion

The Fuglede–Kadison determinant is, for the most part, a generalization of the
usual determinant to operators on infinite-dimensional spaces, and it preserves
several important properties of the determinant.

However, it deviates from the classical determinant in two regards: First,
as its definition relies on the spectral density function of an operator, it only
depends on the “absolute value” of the operator, and will never carry a sign.

Second, and most importantly, the Fuglede–Kadison determinant of an
operator ignores the operator’s kernel – especially, it does not become zero
whenever the operator is not injective! The determinant can become zero, but
this instead requires a large amount of very small spectral values. Thus, a zero
determinant indicates a large “almost-kernel” instead of a non-trivial kernel.11

In the first part of this chapter, we will show that the Fuglede–Kadison
determinants in our setting show most of the properties of their classical coun-
terparts, especially multiplicativity. In the second part, we discuss whether
these determinants can be approximated by finite-dimensional analogues. The
third and last part of the chapter defines and briefly discusses the third L2-
invariant, L2-torsion, that is constructed from the Fuglede–Kadison determi-
nants of Laplacians.

5.1 Definition and properties

5.1 Definition. Given an operator T with spectral density function F T , define
the Fuglede–Kadison determinant of T by

detFK(T ) = exp

∫
(0,∞)

log(λ) dF T (λ),

where we set exp(−∞) = 0 and the measure dF T is given by

dF T
(
(a, b]

)
= F T (b)− F T (a).

T is called of determinant class if detFK(T ) > 0, that is, if the integral in the
definition is finite.

5.2 Remark. (a) As the definition of detFK(T ) only depends on the spectral
density function of T , one can also speak of “the determinant of F” for
any non-decreasing right-continuous function F : [0,∞)→ [0,∞).

(b) If T has eigenvalues, F T can have jump discontinuities, and thus the
measure dF T can have atoms. Especially, if T is not injective, it can
happen that dF T ({0}) > 0, so it is important to note that the domain
of integration does not contain the point 0.

11Large “almost-kernels” correspond to small Novikov–Shubin numbers, and indeed
α(T ) > 0 implies detFK(T ) > 0. See [Lüc02], Theorem 3.14 (4).
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(c) On the other hand, the upper bound of the domain of integration is
irrelevant: For any λ > ‖T‖op, we have F T (λ) = trN (ET (λ)) = 1, so

dF T
((
‖T‖op ,∞

))
= 0. Thus, the Fuglede–Kadison determinant can be

computed as

detFK(T ) = exp

∫
(0,‖T‖op]

log(λ) dF T (λ).

For the practical computation of the Fuglede–Kadison determinant, the
following lemma is most useful:

5.3 Lemma ([Lüc02], Lemma 3.15). If
∫

(0,b]
log(λ) dF (λ) > −∞, then∫

(0,b]

log(λ) dF (λ) = log(b)
(
F (b)− F (0)

)
−
∫ b

0

F (λ)− F (0)

λ
dλ.

To simplify notation, let

F⊥(λ) = F (λ)− F (0).

Then we obtain∫
(0,b]

log(λ) dF (λ) = log(b)F⊥(b)−
∫ b

0

F⊥(λ)

λ
dλ.

5.4 Remark. If T : Cn → Cn is a positive self-adjoint operator, then

detFK(T ) = n

√∏
{λ eigenvalue of T |λ > 0}.

Especially, the Fuglede–Kadison determinant of an operator on a finite-dimen-
sional space is never zero. (The determinant of the zero operator is given by
an empty product, and thus it equals 1.)

Many properties of the Fuglede–Kadison determinant, most importantly
their multiplicativity, carry over from the classical case.

In the following theorem, most statements and proofs follow Lück ([Lüc02],
Theorem 3.14 and Lemma 3.15), except for 5.5 (b):

5.5 Theorem. Always let S, T ∈ Nj(X).

(a) detFK(T ) = detFK(T ∗) =
√

detFK(T ∗T ) =
√

detFK(TT ∗).

(b) If T is self-adjoint, then T + P kerT is injective and

detFK(T + P kerT ) = detFK(T ).

(c) If T is positive and injective, then

detFK(T ) = lim
ε→0+

detFK(T + ε id).
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(d) If T is invertible, then

detFK(T ) = exp

(
1

2
trN
(
log(T ∗T )

))
.

(e) If S, T are injective and positive, then

S ≤ T =⇒ detFK(S) ≤ detFK(T ).

(f) If S is injective and T has dense image, then

detFK(ST ) = detFK(S) detFK(T ).

Proof. (a) By Lemma A.8, every self-adjoint operator fulfills F T (λ) = F T 2
(λ2),

and for every other operator T , the spectral density function is defined
by F T (λ) = F T ∗T (λ2). Therefore, we get

dF T ∗T ((a, b]) = F T (
√
b)− F T (

√
a) = dF T ((

√
a,
√
b])

and thus

detFK(T ∗T ) = exp

∫
(0,∞)

log(λ) dF T ∗T (λ)

= exp

∫
(0,∞)

log(λ2) dF T (λ) = detFK(T )2

The same argument shows detFK(T ∗) =
√

detFK(TT ∗), and applying
Lemma 2.40 yields detFK(T ) = detFK(T ∗).

(b) Write T̃ = T + PkerT . Given a vector z = x+ y ∈ ker(T )⊕ ker(T )⊥, we

have T̃ z = x+ Ty and 〈x, Ty〉 =〈Tx, y〉 = 0. Therefore,∥∥∥T̃ z∥∥∥2

= ‖x‖2 + ‖Ty‖2 ,

and this implies that the spectral density function of T̃ is given by

F T̃ (λ) =

{
F T (λ)− F T (0) if λ ∈ [0, 1),

F T (λ), if λ ∈ [1,∞).

Thus, the resulting measure on (0,∞) is given by

dF T̃ = dF T + F T (0) · δ1,

and as log(1) = 0, this implies

detFK(T ) = exp

∫
(0,∞)

log(λ) dF T (λ) = exp

∫
(0,∞)

log(λ) dF T̃ (λ) = detFK(T̃ ).
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(c) This follows from F T+εid(λ) = F T (λ − ε) and Beppo Levi’s monotone
convergence theorem.

(d) If T and thus T ∗T are invertible, they are bounded from below, so
spec(T ∗T ) ⊆ (0,∞) and log(T ∗T ) ∈ Nj. Applying part (a) and Theorem
A.6 gives

log detFK(T ) =
1

2
log detFK(T ∗T )

=
1

2

∫
(0,∞)

log(λ) dF T ∗T (λ)

=
1

2
trN

∫
(0,∞)

log(λ) dET ∗T (λ)

=
1

2
trN
(
log(T ∗T )

)
.

(e) From ∥∥∥√Sx∥∥∥2

=〈x, Sx〉 ≤〈x, Tx〉 =
∥∥∥√Tx∥∥∥2

and Lemma 2.42, we get F
√
T (λ) ≤ F

√
S(λ) for all λ ∈ [0,∞), and with

part (a), this yields F T (λ) ≤ F S(λ) for all λ ∈ [0,∞). Using Lemma 5.3
with b = max

(
‖S‖ , ‖T‖

)
, we have

log detFK(S) = log(b)F S(b)−
∫ b

0

F S(λ)

λ
dλ

and the same for T . (Note that S, T are injective, so F S(0) = 0 = F T (0).)
As F S(b) = dimN (`2(EjX)) = F T (b), this implies the result.

(f) Show first: If A,B are both positive and invertible, then

detFK(ABBA) = detFK(A)2 detFK(B)2.

Use Lemma 3.18 from [Lüc02]: If the operator-valued functionX : [0, 1]→
B(H) is differentiable (in the sense that there is X ′(t) ∈ B(H) such that
1
ε
‖X(t+ ε)−X(t)− εX ′(t)‖op

ε→0−−→ 0), and if
⋃
t spec(X(t)) lies in the

interior of the domain of a holomorphic function f , then

trN

(
d

dt
f
(
X(t)

))
= trN

(
f ′
(
X(t)

)
◦X ′(t)

)
.

Lück proves this for the von Neumann trace on N (G), but the only prop-
erty of the trace his proof requires is that it commutes with integration,
which holds for trN , too, as every integral

∫ 1

0
X(t) dt fulfills by definition〈

ξ1,

∫ 1

0

X(t) dt ξ2

〉
=

∫ 1

0

〈ξ1, X(t)ξ2〉 dt for all ξ1, ξ2 ∈ H.
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As A,B > 0 are invertible, their spectra are contained in [ε,∞) for
some ε > 0, so log(A), log(B) and log(ABBA) are defined and bounded.
Applying the previous lemma gives

d

dt
trN

(
log
(
A ◦

(
tB2 + (1− t)id

)
◦ A
))

=
d

dt
trN

(
log
(
tB2 + (1− t)id

))
.

As for t = 0 we have

trN
(
log
(
A ◦

(
0 ·B2 + 1 · id

)
◦ A
))

= trN
(
log(A2)

)
,

trN
(
log
(
0 ·B2 + 1 · id

))
= 0,

this yields

trN
(
log(A ◦B2 ◦ A)

)
− trN

(
log(A2)

)
=

∫ 1

0

d

dt
trN

(
log
(
A ◦

(
tB2 + (1− t)id

)
◦ A
))
dt

=

∫ 1

0

d

dt
trN

(
log
(
tB2 + (1− t)id

))
dt

= trN
(
log(B2)

)
− trN (log(id))

= trN
(
log(B2)

)
.

Together with part (d), this implies detFK(ABBA) = detFK(A)2 detFK(B)2

for invertible A,B.

Now extend this statement to any injective A,B ≥ 0. Choose C > 0
such that for all ε ∈ [0, 1],

ABBA ≤ A (B + ε id)2A ≤ ABBA+ C ε id.

Since ABBA ≥ 0 is injective, we can then use part (e) to get

lim
ε→0+

detFK

(
A (B + εid)2A

)
= detFK(ABBA).

Setting X = BA in detFK(X∗X) = detFK(XX∗), we get det(ABBA) =
det(BAAB), and so,

detFK(ABBA) = lim
ε→0+

detFK

(
A (B + ε id)2A

)
= lim

ε→0+
detFK

(
(B + ε id)A2 (B + ε id)

)
= lim

ε→0+
lim
δ→0+

detFK

(
(B + ε id) (A+ δ id)2 (B + ε id)

)
.

Now apply the previous result, as B + ε id and A+ δ id are positive and
invertible. This gives, for any injective A,B > 0,

detFK(ABBA) = lim
ε→0+

detFK (B + ε id)2 lim
δ→0+

detFK (A+ δ id)2

= detFK(B)2 detFK(A)2.
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Finally, return to the original statement. Let S be injective and T have
dense image. Write S = V B and T = AU with U, V unitary and B =√
S∗S, A =

√
TT ∗ positive. Note that since T ∗ is injective, the operators

A and B are both injective. Thus, we can conclude

detFK(ST ) =
√

detFK(T ∗S∗ST )

=
√

detFK(U∗ABV ∗V BAU)

=
√

detFK(U∗ABBAU)

=
√

detFK(ABBA)

=
√

detFK(A)2 detFK(B)2

= detFK(A) detFK(B)

= detFK(S) detFK(T ).

5.6 Remark. Even in the finite-dimensional case, properties (c), (e) and (f) fail
without injectivity: Simply consider S, T ∈ Mat2(C), where the trace is given
by

trN

(
a b
c d

)
=
a+ d

2

and thus the Fuglede–Kadison determinant is the square root of the product
of the absolute values of the non-zero singular values of a matrix.

(c) Let T =

(
1 0
0 0

)
. This is positive but not injective, and detFK(T ) = 1.

On the other hand, detFK(T + ε id) =
√

(1 + ε) · ε ε→0−−→ 0.

(e) Let S =

(
1 0
0 0

)
and T =

(
2 0
0 1/4

)
. Then we have S ≤ T , but

detFK(S) = 1 ≥ 1/
√

2 = detFK(T ).

(f) Using the same example matrices as for (e), we have

detFK(ST ) =
√

2 6= 1 · 1√
2

= detFK(S) · detFK(T ).

To show that the “essential surjectivity” of the second operator (i. e.
dense image) is also necessary, consider

detFK(TS) =
√

2 6= 1√
2
· 1 = detFK(T ) · detFK(S).

If T ∈ Nj(X) is positive but not injective, 5.5 (c) can be generalized as
follows:

5.7 Corollary. Assume T ∈ Nj(X) and T ≥ 0, and let β := dimN (ker T ).
Then

detFK(T ) = lim
ε→0+

ε−β detFK(T + ε id).
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Proof. Write P = PkerT for the orthogonal projection to ker(T ) ⊆ H. Abbrevi-
ate β = dimN (ker T ) and η = dimN (Hj). (Under the standard normalization,
η = 1, but the statement still holds for other normalizations.)

Combining 5.5 (b) and (c), we have

detFK(T ) = lim
ε→0+

detFK(T + P + ε id).

Since TP = 0, we have (T + ε id)(ε−1P + id) = T + P + ε id, and as both
T + ε id and ε−1P + id are invertible for every ε > 0, we get from 5.5 (f)

detFK(T ) = lim
ε→0+

(
detFK(T + ε id) · detFK(ε−1P + id)

)
.

Finally, note that the spectral density function of ε−1P + id is given by

F ε−1P+id(λ) =


0 for λ ∈ [0, 1),

dimN (ker(T )⊥) = η − β for λ ∈ [1, 1 + ε−1),

dimN (Hj) = η for λ ∈ [1 + ε−1,∞),

which yields

detFK(ε−1P + id) = exp

∫
(0,∞)

log(λ) dF ε−1P+id(λ)

= exp
(
(η − β) log(1) + β log(1 + ε−1)

)
= (1 + ε−1)β.

For ε→ 0+, this is asymptotically equal to ε−β, and therefore,

detFK(T ) = lim
ε→0+

(
detFK(T+ε id) detFK(ε−1P+id)

)
= lim

ε→0+
ε−β detFK(T+ε id).

The most interesting determinants are those of Laplacians. In the classi-
cal case, Dodziuk and Mathai ([DM98]) showed that Laplacians on G-CW-
complexes are always of determinant class, and their proof can be adapted to
the self-similar case as well:

5.8 Theorem. The Laplacians ∆
(X)
j of a self-similar CW-complex X are of

determinant class.

Proof. Show first that detFK

(
∆

(Km)
j

)
≥ 1 for every m.

Let k = dimC ker
(
∆

(Km)
j

)
and let λ1, . . . , λr be the eigenvalues of ∆

(Km)
j ,

where λi = 0 for i ≤ k and λi > 0 for i > k. As mentioned in Remark 5.4,

detFK

(
∆

(Km)
j

)
= r

√√√√ r∏
i=k+1

λi > 0.

74



The characteristic polynomial of ∆
(Km)
j is

χ(x) =
r∏
i=1

(λi − x) = xk ·
r∏

i=k+1

(λi − x) =: (−x)k · ψ(x).

Note that
ψ(0) = detFK

(
∆

(Km)
j

)r
> 0.

Since this can also be computed as

χ(x) = det
(

∆
(Km)
j − x · id

)
and ∆

(Km)
j is an integer matrix, we know that χ(x) has integer coefficients,

and so the same must hold for ψ(x)! Therefore, ψ(0) > 0 implies ψ(0) ≥ 1,
and this proves the claim.

Now let Fm be the normalized spectral density function of ∆
(Km)
j . Choose

b > 0 large enough that
∥∥∥∆

(X)
j

∥∥∥ ≤ b and
∥∥∥∆

(Km)
j

∥∥∥ ≤ b for all m. (This is

possible since the bound on the norm of the Laplacian only depends on the
number of “neighbors” a cell can have, which is bounded throughout X.) We
get for all m

log detFK(Fm) = log detFK

(
∆

(Km)
j

)
≥ 0.

On the other hand,

log detFK(Fm) = log(b)F⊥m(b)−
∫

(0,b]

F⊥m(λ)

λ
dλ,

so for all m

log(b)F⊥m(b) ≥
∫

(0,b]

F⊥m(λ)

λ
dλ.

Since Fm converges pointwise12 to F = F
(
∆

(X)
j

)
, there is M ∈ N such that for

all m ≥M ,

log(b)F⊥(b) ≥
∫

(0,b]

F⊥m(λ)

λ
dλ.

Now, Fatou’s lemma gives

log(b)F⊥(b) ≥
∫

(0,b]

F⊥(λ)

λ
dλ,

and therefore

log detFK(F ) = log(b)F⊥(b)−
∫

(0,b]

F⊥(λ)

λ
dλ ≥ 0.

12Even uniformly, but we don’t need that here.
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5.2 Approximation

Let us explore under which circumstances the Fuglede–Kadison determinants
of geometric operators can be approximated by finite-dimensional restrictions.13

By Theorem 3.11, the spectral density function of an operator T on a self-
similar complex is approximated uniformly by those of restrictions of T to finite
subcomplexes Km. Recalling Lemma 5.3, we can express the determinants as
follows (with F⊥(λ) = F (λ)− F (0) and b ≥ ‖T‖):

log detFK(F ) = log(b)F⊥(b)−
∫

(0,b]

F⊥(λ)

λ
dλ.

However, as 1/λ is unbounded on (0, b], even uniform convergence Fm → F
will not ensure convergence of these integrals.

This problem can of course be avoided if the domain of integration is
bounded away from zero. This is satisfied when T has a spectral gap at zero:

5.9 Theorem. Let X be a self-similar complex with Følner sequence (Km).
Assume that T ∈ Aj(X) is positive and has a spectral gap at zero, that is,
spec(T ) ∩ (0, ε) = ∅ for some ε > 0. (This is equivalent to T being invertible
when restricted to ker(T )⊥.)

Define Tm := PmTIm, where Im : `2(EjKm)→ `2(EjX) is the inclusion and
Pm : `2(EjX)→ `2(EjKm) is the orthogonal projection. Then

detFK(T ) = lim
m→∞

detFK Tm.

Proof. Note first that the spectrum of T does not depend on whether we
consider it as an element of B(`2(EjX)) or an element of B(Hj(X)).

By assumption, there is ε > 0 such that

〈v, Tv〉 ≥ ε ‖v‖2 for all v ∈ ker(T )⊥ ⊆ `2(EjX).

Using P ∗m = Im, we have

〈w, Tmw〉 =〈w,PmTImw〉 =〈w, Tw〉 for all w ∈ `2(EjKm),

so ker(Tm) = ker(T ) ∩ `2(EjKm), and we obtain

〈w, Tmw〉 =〈w, Tw〉 ≥ ε ‖w‖2 for all w ∈ ker(Tm)⊥ ⊆ `2(EjKm).

Consequently, both F T and every F Tm are constant on [0, ε). Furthermore,
note that ‖Tm‖ ≤ ‖T‖ for all m. As the function λ 7→ 1/λ is bounded on
[ε,∞), uniform convergence F Tm → F T implies convergence of the integrals∫

[ε,‖T‖]

F Tm(λ)

λ
dλ

m→∞−−−→
∫

[ε,‖T‖]

F T (λ)

λ
dλ.

By Lemma 5.3, the claim follows.

13In the classical case, the approximation of Fuglede–Kadison determinants of any oper-
ator T ∈ Matr,s(QG) is known if G is an infinite virtually cyclic group. For G = Zn it is
known that detFK(T ) = lim supm detFK(Tm). See [Lüc16], Remark 6.5.
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In this lemma, we have used that a spectral gap of T directly implies that
the restrictions of T to smaller subcomplexes have the exact same spectral
gap. This would not necessarily work with the more general “approximating
operators” in Theorem 3.11, as a single “rogue eigenvalue” getting too close
to zero can destroy the convergence:

5.10 Example. Define a sequence of functions

Gm : [0,∞)→ [0,∞), λ 7→


0, if x ∈ [0, e−m),
1
m
, if x ∈ [e−m, 1),

1, if x ∈ [1,∞).

Each Gm is non-decreasing, and the sequence (Gm) converges uniformly to

G : [0,∞)→ [0,∞), λ 7→

{
0, if x ∈ [0, 1),

1, if x ∈ [1,∞).

Yet, one clearly has for all m ∈ N

log detFK(Gm) = log(1)Gm(1)−
∫ 1

0

Gm(λ)

λ
dλ

= 0−
∫ 1

e−m

1

mλ
dλ

= − log(1)− log(e−m)

m
= −1,

log detFK(G) = log(1)G(1)−
∫ 1

0

G(λ)

λ
dλ

= 0,

and thus

detFK(Gm) =
1

e
6−→ 1 = detFK(G).

More generally, for any bounded non-decreasing function F : [0,∞)→ [0,∞),

define a sequence of functions F̃m = F +Gm. Then each F̃m is non-decreasing,
the sequence (F̃m) converges uniformly to the function F̃ = F +G, and, since
log detFK(F ) is linear in the function F ,

lim
m→∞

log detFK(F̃m) = log detFK(F )− 1.

If the functions in counterexample 5.10 were indeed the spectral density
functions of a sequence of operators, the lowest “eigenvalue” of those operators
would have to decay exponentially in m, while their normalized multiplicity
decayed only polynomially (indicating that the number of cells in Km increased
polynomially in m). This indicates that the convergence of determinants might
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be achievable in cases where the smallest positive eigenvalues of the restrictions
Tm can be controlled:

Assume that T ∈ Aj(X) is of determinant class but without spectral gap,
and let Tm, Fm and F be as above. Abbreviate εm = ‖Fm − F‖∞ and let µm
be the smallest positive eigenvalue of Tm. Since T has no spectral gap and Fm
approximates F , we know that

lim
m→∞

εm = 0 = lim
m→∞

µm.

Since F⊥m(λ) = 0 for λ < µm, we obtain the estimate∣∣∣∣∫ b

0

F⊥(λ)− F⊥m(λ)

λ
dλ

∣∣∣∣ ≤ ∫ µm

0

F⊥(λ)

λ
dλ+

∫ b

µm

εm
λ

dλ

≤
∫ µm

0

F⊥(λ)

λ
dλ+ εm · (log(b)− log(µm)) .

Since F is of determinant class, we know that∫ µm

0

F⊥(λ)

λ
dλ

µm→0−−−→ 0,

and obviously
εm log(b)

m→∞−−−→ 0.

Therefore, detFK(Tm) will converge to detFK(T ) if

εm log(µm)
m→∞−−−→ 0.

This would be satisfied if µm were bounded from below by any power of εm.
The proof of 3.11 shows that

εm := ‖Fm − F‖∞ = O
(
|FjKm|
|EjKm|

)
.

Thus, εm falls faster if the complex is “more amenable”.
The problem of bounding this smallest positive eigenvalue has been studied

extensively for the Laplacians of graphs. However, the answer points in the
wrong direction for our purpose: The smallest positive eigenvalue becomes
“large”, when the graph is a magnifier , that is, all subsets of the graph have
“large” neighborhoods. In other words, we obtain a better bound on the
smallest eigenvalue if the complex is less amenable! More concretely, consider
the following result by Alon:

5.11 Lemma ([Alo86], Lemma 2.4). If K is a finite graph such that every
vertex subset A ⊆ E0K with |A| ≤ 1

2
|E0K| fulfills

|{σ ∈ E0K | dcomb(σ,A) = 1}| ≥ c |A|

for some constant c > 0, then the smallest positive eigenvalue of ∆
(K)
0 is at

least c2/(2c2 + 4).
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For well-chosen Følner sequences (Km), these two properties can sometimes
be reconciled. Essentially, this requires an exhaustion (Km) such that no Km

has a proper subset that is “much more amenable” than Km itself:

5.12 Theorem. Let X be a self-similar complex and assume there is a self-
similar Følner sequence (Km) for which there are constants c, e > 0 such that
for every vertex subset Am ⊆ E0Km with |A| ≤ 1

2
|E0Km|,

|{σ ∈ E0Km | dcomb(σ,A) = 1}|
|A|

≥ c ·
(
|FjKm|
|EjKm|

)e
.

Then
lim
m→∞

detFK

(
∆

(Km)
0

)
= detFK

(
∆

(X)
0

)
.

Proof. Use the same notation as above. (Note, however, that unlike in The-

orem 5.9, ∆
(Km)
0 is not the restriction of ∆

(X)
0 to Km.) By Alon’s lemma and

Theorem 3.11, we have µm ≥ d c2ε2e
m , where d > 0 combines the factor 4 from

5.11 with the O-constant of εm = O
(
|FjKm|
|EjKm|

)
, and that gives

|εm log µm| ≤
∣∣εm · (log(dc2) + 2e log(εm)

)∣∣ m→∞−−−→ 0.

5.13 Example. (a) Consider the Laplacian on one-cells of Rd with the stan-
dard CW-structure (compare Example 3.2), and choose a Følner se-
quence consisting of cubes, Km = [−3m, 3m]d. We obtain

εm ∼
|FjKm|
|EjKm|

∼ 1

3m

On the other hand, among subsets A ⊆ E0Km with |A| ≤ 1
2
|E0Km|, the

one with the fewest frontiers in Km will simply be a half-cube, containing
1
2
· (2 · 3m)d vertices, of which (2 · 3m)d−1 are frontiers, so 5.11 yields a

lower bound

µm ≥
( c

3m

)2

for some constant c > 0. This easily suffices to ensure convergence of
determinants.

(b) For Sierpiński’s triangle (see Example 3.3), there are numerous sub-
complexes of any size with exactly three frontiers (namely, large sub-
triangles). Thus, the constant c in 5.11 frequently takes values pro-
portional to 1/ |A|, but one can also choose (Km) in such a way that
εm ∼ 1/ |E0Km|. Again, we obtain µm ∼ ε2

m, which suffices for conver-
gence.
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5.3 L2-torsion

The Fuglede–Kadison determinants of Laplacians of a space are not homotopy
invariants by themselves.14 However, they give a rise to another L2-invariant,
the L2-torsion.

Classically, L2-torsion is defined as the logarithm of the alternating product
of Fuglede–Kadison determinants of the differentials ∂

(X)
j . This is easily shown

to be equal to the following expression in terms of the Laplacians, which shall
serve as our definition:

5.14 Definition. The L2-torsion of an aperiodically ordered CW-complex X
is

ρ(2)(X) = −1

2

dimX∑
j=0

(−1)j · j · log detFK

(
∆

(X)
j

)
,

provided every ∆
(X)
j is of determinant class.

This definition makes sense for any self-similar complex, as their Laplacians
are always of determinant class (see 5.8).

Whether the L2-torsion is in fact a homotopy invariant remains a difficult
question. In the classical case, this can be proven for G-CW-complexes that
are “det-L2-acyclic”, that is, where every Laplacian is of determinant class and
all L2-Betti numbers vanish:

5.15 Theorem ([Lüc02], Theorem 3.93 and Lemma 13.6). Let X and Y be
finite free G-CW-complexes, where G is an amenable group. If X and Y are
G-homotopy equivalent and one of the two is det-L2-acyclic, then both of them
are det-L2-acyclic and ρ(2)(X) = ρ(2)(Y ).

Unfortunately, proving an analogous statement for the self-similar case is
beyond the scope of this thesis: In the classical case, the L2-torsion of X and Y
will a priori differ by a term related to the Whitehead torsion of the homotopy
equivalence between the two; the classical proof then relies on properties of
the group G to ensure that this term (always) vanishes. In the aperiodical
case, no such Whitehead torsion exists; it remains to be determined if there is
a suitable analogue.

As an additional complication, even if the L2-Betti numbers vanish, the
L2-chain complex of a self-similar complex may not be truly L2-acyclic, since
some Laplacians may have (small) kernels in `2(EjX) even if the induced op-
erators on Hj(X) are injective. Finally, there can be no finite-dimensional
analogue that carries over to the whole space by approximation, as the usual
(non-L2) chain complex of a finite CW-complex cannot be acyclic.

14Finite example: In a circle formed from three 0-cells and three 1-cells, we have
detFK(∆1) = 3

√
9 ≈ 2.08, while in a circle with four 0-cells and four 1-cells, detFK(∆1) =

4
√

16 = 2.
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6 Product spaces

Intuitively, the cartesian product of two self-similar spaces should again be a
self-similar space. That is indeed the case (although it takes a nonzero amount
of work to prove amenability), and thus, it makes sense to try and express the
L2-invariants of such a product space through those of its factors. In this final
chapter, we will derive such formulas for L2-Betti numbers, Novikov–Shubin
invariants and L2-torsion.

In doing so, we hope to demonstrate once more how the approximation
theorem for spectral density functions allows us to gain information about
L2-invariants, even when those invariants themselves cannot be approximated
by finite-dimensional analogues.

6.1 Products of self-similar complexes are self-similar

6.1 Theorem. Let X and Y be self-similar CW-complexes with self-similar
exhaustions (Km) respectively (Lm). Then X×Y is a self-similar CW-complex
with self-similar exhaustion (Km × Lm).

Proof. Note first that the product of regular CW-complexes is again regu-
lar: For any two cells σ ∈ EjX and τ ∈ EkY , the extended attaching maps

fσ : Dj → σ ⊆ X and fτ : Dk → τ ⊆ Y are by assumption homeomorphisms,

so the product attaching map fσ×τ : Dj+k ≈ Dj ×Dk fσ×fτ−−−→ σ × τ ⊆ X × Y
is again a homeomorphism.

Second, the product of bounded complexes is bounded: The topological
boundary of a product cell is ∂(σ × τ) = ∂σ × τ ∪ σ × ∂τ , and thus we get

|{κ ∈ Ej+k−1(X × Y ) |κ ⊆ ∂(σ × τ)}|

=
∑

a+b=j+k−1

|{λ× µ ∈ EaX × EbY |λ ⊆ σ, µ ⊆ τ)}|

≤ |{λ ∈ E∗X |λ ⊆ σ}| · |{µ ∈ E∗Y |µ ⊆ τ)}|

and analogously

|{κ ∈ Ej+k+1(X × Y ) | (σ × τ) ⊆ ∂κ}|
≤
∣∣{λ ∈ E∗X ∣∣σ ⊆ λ

}∣∣ · |{µ ∈ E∗Y | τ ⊆ µ)}|

where E∗X =
⋃
j EjX is the set of all cells of X. As X and Y are bounded,

these numbers are bounded, showing that X × Y is bounded.
To show that (Km×Lm) is again a Følner sequence, we need to understand

the frontiers in a product space:

6.2 Lemma. Let X, Y be regular CW-complexes. Let σ1 ∈ Ej1X, σ2 ∈ Ej2X,
τ1 ∈ Ek1Y and τ2 ∈ Ek2Y such that j1 +k1 = d = j2 +k2. Then the cells σ1× τ1

and σ2× τ2 are adjacent in Ed(X×Y ) if and only if one of the following holds:
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(a) (j1, k1) = (j2, k2), σ1 is adjacent to σ2 in X and τ1 = τ2.

(b) (j1, k1) = (j2, k2), σ1 = σ2 and τ1 is adjacent to τ2 in Y .

(c) (j1, k1) = (j2 + 1, k2 − 1), ∂σ1 ⊇ σ2 and τ1 ⊆ ∂τ2.

(d) (j1, k1) = (j2 − 1, k2 + 1), σ1 ⊆ ∂σ2 and ∂τ1 ⊇ τ2.

Proof. [⇐=] follows immediately from ∂(σ × τ) = (∂σ × τ) ∪ (σ × ∂τ).
[=⇒]: Assume that σ1 × τ1 and σ2 × τ2 share a (j1 + k1 − 1)-face σ3 × τ3:

σ3 × τ3 ⊆ ∂(σ1 × τ1) ∩ ∂(σ2 × τ2)

= ((∂σ1 × τ1) ∪ (σ1 × ∂τ1)) ∩ ((∂σ2 × τ2) ∪ (σ2 × ∂τ2))

= ((∂σ1 × τ1) ∩ (∂σ2 × τ2)) ∪ ((∂σ1 × τ1) ∩ (σ2 × ∂τ2))

∪ ((σ1 × ∂τ1) ∩ (∂σ2 × τ2)) ∪ ((σ1 × ∂τ1) ∩ (σ2 × ∂τ2))

= ((∂σ1 ∩ ∂σ2)× (τ1 ∩ τ2)) ∪ ((∂σ1 ∩ σ2)× (τ1 ∩ ∂τ2))

∪ ((σ1 ∩ ∂σ2)× (∂τ1 ∩ τ2)) ∪ ((σ1 ∩ σ2)× (∂τ1 ∩ ∂τ2))

By Lemma 2.2, σ3×τ3 must be fully contained in one of the four “∪-summands”.
For purely dimensional reasons (and because any two open cells are either iden-
tical or disjoint),

σ3 × τ3 ⊆ (∂σ1 ∩ ∂σ2)× (τ1 ∩ τ2) implies case (a),
σ3 × τ3 ⊆ (∂σ1 ∩ σ2)× (τ1 ∩ ∂τ2) implies case (c),
σ3 × τ3 ⊆ (σ1 ∩ ∂σ2)× (∂τ1 ∩ τ2) implies case (d),
σ3 × τ3 ⊆ (σ1 ∩ σ2)× (∂τ1 ∩ ∂τ2) implies case (b).

Conversely, assume there is a (j1 +k1 +1)-cell σ4×τ4 whose boundary contains
both σ1 × τ1 and σ2 × τ2:

(σ1 × τ1) ∪ (σ2 × τ2) ⊆ (∂σ4 × τ4) ∪ (σ4 × ∂τ4)

Using Lemma 2.2 again, each of the two σi× τi must be contained in ∂σ4× τ4

or in σ4 × ∂τ4. We obtain the following cases:
(σ1 × τ1) ∪ (σ2 × τ2) ⊆ ∂σ4 × τ4 implies case (a),
(σ1 × τ1) ∪ (σ2 × τ2) ⊆ σ4 × ∂τ4 implies case (b),
σ1 × τ1 ⊆ ∂σ4 × τ4 and σ2 × τ2 ⊆ σ4 × ∂τ4 implies case (d),
σ1 × τ1 ⊆ σ4 × ∂τ4 and σ2 × τ2 ⊆ ∂σ4 × τ4 implies case (c).

Proof of Theorem 6.1, continued. Let G(m,m + 1) and G ′(m,m + 1) be the
sets of local isomorphisms for X resp. Y associated to the Følner sequences
(Km) and (Lm). It is clear that

Km+1 × Lm+1 =
⋃

γ ∈G(m,m+1)

δ ∈G′(m,m+1)

(γ × δ)(Km × Lm).

It remains to show that the exhaustion (Km × Lm) is amenable (i. e. a Følner
sequence).
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Let σ1 ∈ EjX and τ1 ∈ EkY such that σ1 × τ1 is a frontier of Km × Lm.
Let σ2× τ2 be a cell of (X × Y ) \ (Km×Lm) adjacent to it and apply Lemma
6.2. Case (a) implies σ1 ∈ FjKm and case (b) implies τ1 ∈ FkLm. In case
(c), σ2 ⊆ ∂σ1 ⊆ Km, so τ2 6⊆ Lm. As Lm is a full subcomplex, τ2 must have
a face outside Lm, and that face is adjacent (via τ2) to τ1, so τ1 ∈ FkLm.
Analogously, we get σ1 ∈ FjKm in case (d). Thus, we obtain indeed

|Fd(Km × Lm)|
|Ed(Km × Lm)|

≤
∑

j+k=d |(FjKm × EkLm) ∪ (EjKm ×FkLm)|∑
j+k=d |EjKm × EkLm|

≤
∑
j+k=d

|(FjKm × EkLm) ∪ (EjKm ×FkLm)|
|EjKm × EkLm|

≤
∑
j+k=d

(
|FjKm × EkLm|
|EjKm × EkLm|

+
|EjKm ×FkLm|
|EjKm × EkLm|

)
=
∑
j+k=d

(
|FjKm|
|EjKm|

+
|FkLm|
|EkLm|

)
m→∞−−−→ 0.

6.2 L2-Betti numbers of product spaces

If K and L are finite CW-complexes, then K×L is a finite CW-complex whose
`-cells are given by

E`(K × L) ∼=
⋃

j+k=`

EjK × EkL.

And in perfect analogy, their (non-normalized) Betti numbers are given by the
Künneth formula

β`(K × L;C) =
∑
j+k=`

βj(K;C) · βk(L;C).

Until now, we have usually normalized the trace on `2(EjX) = C[EjX] by the
number of j-cells themselves (such that the trace becomes a state). Unfortu-
nately, this normalization is incompatible with the Künneth formula:

β`(K × L;C)

|E`(K × L)|
=

∑
j+k=` βj(K;C) · βk(L;C)∑

j+k=` |EjK × EjL|
6=
∑
j+k=`

βj(K;C)

|EjK|
· βj(K;C)

|EkL|

Getting the Künneth formula to work with our approximation therefore re-
quires a different normalization. The easiest solution is to always normalize
by the number of vertices instead: As a zero-cell in K×L must be the product
of two zero-cells of K and L, we have

|E0(K × L)| = |E0K| · |E0L| ,

and thus the renormalized Künneth formula holds:

β`(K × L;C)

|E0(K × L)|
=
∑
j+k=`

βj(K;C)

|E0K|
· βj(K;C)

|E0L|
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Now, the approximation theorem for L2-Betti numbers yields a Künneth
formula for self-similar complexes:

6.3 Theorem. Let X and Y be self-similar complexes, and normalize every
trace by the numbers of vertices. Then L2-Betti numbers fulfill the Künneth
formula:

b
(2)
` (X × Y ) =

∑
j+k=`

b
(2)
j (X) · b(2)

k (Y ).

Proof. Let (Km) and (Lm) be Følner sequences for X resp. Y . By Theorem
6.1, (Km × Lm) is a Følner sequence for X × Y , and Corollary 4.2 together
with Lemma 3.17 gives us

b
(2)
` (X × Y ) = lim

m→∞

β`(Km × Lm)

|E0(Km × Lm)|
=
∑
j+k=`

lim
m→∞

βj(Km)

|E0Km|
· lim
m→∞

βk(Lm)

|E0Lm|

=
∑
j+k=`

b
(2)
j (X) · b(2)

k (Y ).

6.3 Novikov–Shubin invariants of product spaces

While there is no approximation theorem for Novikov–Shubin invariants, we
can make use of the approximation theorem for the spectral density functions
themselves to obtain a formula for the Novikov–Shubin invariants of a product
space.

For any two finite subcomplexes K,L, the Laplacian of the product is given
by

∆
(K×L)
` =

⊕
j+k=`

(
∆

(K)
j ⊗ id`2(EkL) + id`2(EjK) ⊗∆

(L)
k

)
,

and for the non-normalized spectral density functions of operators on finite-
dimensional spaces, we have

Fnn(f ⊕ g) = Fnn(f) + Fnn(g)

and (compare [Lüc02], Lemma 2.31)

Fnn(f)(λ/2) ·Fnn(g)(λ/2) ≤ Fnn(f ⊗ id + id⊗ g)(λ) ≤ Fnn(f)(λ) ·Fnn(g)(λ).

Therefore, the non-normalized spectral density function of ∆
(K×L)
` fulfills

Fnn

(
∆

(K×L)
`

)
'
∑
j+k=`

Fnn

(
∆

(K)
j

)
· Fnn

(
∆

(L)
k

)
,

where the dilational equivalence only dilates by a factor of 2.
This still holds if we normalize with the number of vertices, as |E0(K × L)| =

|E0K|·|E0L|, and as the dilatational equivalence uses the same constant (namely,
2) for every subcomplex, the approximation theorem 3.11 yields

F
(
∆

(X×Y )
`

)
'
∑
j+k=`

F
(
∆

(X)
j

)
· F
(
∆

(Y )
k

)
.
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Finally, Lemma 4.7 gives α(F+G) = min
(
α(F ), α(G)

)
, and therefore we arrive

at the following statement, analogous to [Lüc02], Lemma 2.35 (1):

6.4 Lemma. Let X and Y be self-similar complexes. Then

α`(X × Y ) = min
j+k=`

α
(
F
(
∆

(X)
j

)
· F
(
∆

(Y )
k

))
.

It remains to express α(F · G) in terms of α(F ) and α(G). Recalling the
notation F⊥(λ) = F (λ)− F (0), we have

α(F ·G) = α
(
F⊥ ·G⊥ + F⊥ ·G(0) + F (0) ·G⊥ + F (0) ·G(0)

)
= min

{
α(F⊥ ·G⊥), α(F⊥ ·G(0)), α(F (0) ·G⊥), α(F (0) ·G(0))

}
The constant function F (0) ·G(0) has α =∞+, so the last term is irrelevant.
The middle terms can be relevant, depending on F (0) and G(0):

α(F⊥ ·G(0)) =

{
α(F⊥) = α(F ) if G(0) > 0,

∞+ if G(0) = 0.

α(F (0) ·G⊥) =

{
α(G⊥) = α(G) if F (0) > 0,

∞+ if F (0) = 0.

The first term is always relevant, but not always obvious: We have

α(F⊥ ·G⊥) = lim inf
λ→0

log(F⊥(λ) ·G⊥(λ))

log(λ)
= lim inf

λ→0

log(F⊥(λ)) + log(G⊥(λ))

log(λ)
,

but a limit inferior, unlike a true limit, does not necessarily commute with
addition!

Thus, the final theorem about Novikov–Shubin invariants of product spaces
is only guaranteed to be true if the complexes fulfill the limit property (see
Remark 4.6). Fortunately, the arguments outlined above also show that if X
and Y have the limit property, then so does X × Y .

6.5 Theorem. Let X and Y be self-similar complexes satisfying the limit
property. Then

α`(X × Y ) = min

(
{αj(X) + αk(Y ) | j + k = `}

∪
{
αj(X)

∣∣∣ b(2)
`−j(Y ) > 0

}
∪
{
αk(Y )

∣∣∣ b(2)
`−k(X) > 0

})
Unlike in Theorems 6.3 and 6.6, the choice of normalization does not ac-

tually matter in this theorem, since replacing a spectral density function F by
r · F for any constant r > 0 does not change the Novikov–Shubin invariant of
F (compare Lemma 4.7).
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6.4 L2-torsion of product spaces

Finally, we aim to prove the following formula for the L2-torsion of a product
space:

6.6 Theorem. Let X and Y be self-similar complexes, and normalize every
trace by the numbers of vertices. Then

ρ(2)(X × Y ) = χ(2)(X) ρ(2)(Y ) + χ(2)(Y ) ρ(2)(X),

where χ(2) denotes the L2-Euler characteristic.

Although the torsion of X × Y is not necessarily equal to the limit of the
torsions of Km × Lm, it is worth it to prove this formula for finite complexes
first – every lemma in the following subsection will be needed for the proof of
Theorem 6.6.

Torsion in the finite-dimensional case

6.7 Definition. Let (C∗, c∗) be a finite-dimensional chain complex of C-vector
spaces (i. e. all but finitely many Cp are 0, and the non-zero ones are finite-

dimensional). Define the Laplacians of C∗ by ∆
(C)
p = cp+1c

∗
p+1 + c∗pcp, and let

F
(
∆

(C)
p

)
be their (non-normalized) spectral density functions.15 Then define

the torsion of C∗ by

ρ(C∗) = −1

2

∑
p

(−1)p · p · log detFK F
(
∆(C)
p

)
.

6.8 Theorem. Let C∗ and D∗ be chain complexes as above. Then

ρ(C∗ ⊗D∗) = χ(C∗) ρ(D∗) + χ(D∗) ρ(C∗).

The proof of this builds on two main lemmas. The first one explains why
the Euler characteristic appears in the formula:

6.9 Lemma. Let C∗ be a chain complex as above. Then∑
p

(−1)pF
(
∆(C)
p

)
= χ(C∗) · χ[0,∞).

Proof. We have an orthogonal decomposition

Cp = ker ∆C
p ⊕ im(cp+1)⊕ ker(cp)

⊥.

Define c⊥p : ker(cp)
⊥ → im(cp) as the restriction of cp. Then the Laplacian

decomposes as
∆(C)
p = 0⊕ c⊥p+1(c⊥p+1)∗ ⊕ (c⊥p )∗c⊥p

15While we are dealing purely with the finite-dimensional case, the non-normalized spec-
tral density functions will simply be denoted F instead of Fnn.
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Therefore, and because F (f ∗f) = F (ff ∗),

F
(
∆(C)
p

)
= dim

(
ker ∆C

p

)
· χ[0,∞) + F

(
c⊥p+1(c⊥p+1)∗

)
+ F

(
(c⊥p )∗c⊥p

)
= βp(C∗) · χ[0,∞) + F

(
(c⊥p+1)∗c⊥p+1

)
+ F

(
(c⊥p )∗c⊥p

)
.

This gives∑
p

(−1)pF
(
∆(C)
p

)
=
∑
p

(−1)pβp(C∗) · χ[0,∞) +
∑
p

(−1)pF
(
(c⊥p+1)∗c⊥p+1

)
+
∑
p

(−1)pF
(
(c⊥p )∗c⊥p

)
= χ(C∗) · χ[0,∞) −

∑
p

(−1)pF
(
(c⊥p )∗c⊥p

)
+
∑
p

(−1)pF
(
(c⊥p )∗c⊥p

)
= χ(C∗) · χ[0,∞).

The second main lemma expresses spectral density functions of the product
complex via spectral density functions of the two “factors”:

6.10 Lemma. Let C∗ and D∗ be chain complexes as above. Then

F
(
∆(C⊗D)
n

)
=
∑
p+q=n

d

dλ
F
(
∆(C)
p

)
∗ F
(
∆(D)
q

)
,

where ∗ denotes convolution.

Proof. Note first:

χ[µ,∞) ∗ χ[ν,∞)(λ) =

∫ +∞

−∞
χ[µ,∞)(ξ) · χ[ν,∞)(λ− ξ) dξ

=

∫ +∞

−∞
χ[µ,∞)(ξ) · χ(−∞,λ−ν](ξ) dξ

=

{
λ− µ− ν, if λ ≥ µ+ ν,

0, if λ ≤ µ+ ν,

and therefore, for almost all λ,

d

dλ
χ[µ,∞) ∗ χ[ν,∞)(λ) =

{
1, if λ > µ+ ν,
0, if λ < µ+ ν,

}
= χ[µ+ν,∞)(λ).

By definition, the tensor product of chain complexes has the form

(C ⊗D)n =
⊕
p+q=n

Cp ⊗Dq

and it is known that

∆(C⊗D)
n =

⊕
p+q=n

(
∆(C)
p ⊗ idDq + idCp ⊗∆(D)

q

)
,
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which immediately implies

F
(
∆(C⊗D)
n

)
=
∑
p+q=n

F
(
∆(C)
p ⊗ idDq + idCp ⊗∆(D)

q

)
.

Define mp = dim(Cp) and nq = dim(Dq). Let (µp,i)
mp
i=1 be the eigenvalues

of ∆
(C)
p and (νq,j)

nq
j=1 be the eigenvalues of ∆

(D)
q . Then the eigenvalues of

∆
(C)
p ⊗ idDq + idCp ⊗∆

(D)
q are exactly (µp,i + νq,j)i,j, and we obtain

∑
p+q=n

d

dλ
F
(
∆(C)
p

)
∗ F
(
∆(D)
q

)
=
∑
p+q=n

d

dλ

(
mp∑
i=1

χ[µp,i,∞) ∗
nq∑
j=1

χ[νq,j ,∞)

)

=
∑
p+q=n

mp∑
i=1

nq∑
j=1

d

dλ

(
χ[µp,i,∞) ∗ χ[νq,j ,∞)

)
=
∑
p+q=n

mp∑
i=1

nq∑
j=1

χ[µp,i+νq,j ,∞)

=
∑
p+q=n

F
(
∆(C)
p ⊗ idDq + idCp ⊗∆(D)

q

)
= F

(
∆(C⊗D)
n

)
.

Now we are ready for the proof of Theorem 6.8. Unlike the lemmas, this
proof will not be needed to prove Theorem 6.6; but it uses the same methods
and can largely serve as a blueprint for the proof of that theorem.

Proof of Theorem 6.8. Choose b > a > 0 such that b > µp,i + νq,j hold for
all p, q, i, j and µp,i > a, νq,j > a holds whenever µp,i > 0, νq,j > 0. (This is
possible since C∗ and D∗ are finite-dimensional.)

Start by using the linearity of the determinant:

ρ(C∗ ⊗D∗) = −1

2

∑
n

(−1)n · n · log detFK

(
∆(C⊗D)
n

)
= −1

2
log detFK

(∑
n

(−1)n · n · F
(
∆(C⊗D)
n

))

(Note that only finitely many terms in the sum are non-zero.)
Now compute this sum of spectral density functions using Lemma 6.9:∑

n

(−1)n · n · F
(
∆(C⊗D)
n

)
=
∑
n

(−1)n · n ·
∑
p+q=n

d

dλ
F
(
∆(C)
p

)
∗ F
(
∆(D)
q

)
=

d

dλ

∑
p

(−1)pF
(
∆(C)
p

)
∗
∑
q

(−1)q · q · F
(
∆(D)
q

)
+

d

dλ

∑
p

(−1)p · p · F
(
∆(C)
p

)
∗
∑
q

(−1)qF
(
∆(D)
q

)
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=
d

dλ

(
χ(C∗) · χ[0,∞)

)
∗
∑
q

(−1)q · q · F
(
∆(D)
q

)
+

d

dλ

∑
p

(−1)p · p · F
(
∆(C)
p

)
∗
(
χ(D∗) · χ[0,∞)

)
As in the proof of Lemma 6.10, we have

d

dλ
χ[µ,∞) ∗ χ[0,∞)(λ) =

d

dλ
χ[0,∞) ∗ χ[µ,∞)(λ) = χ[µ,∞)(λ)

for all µ and almost all λ (namely, λ 6= µ). Since F
(
∆

(C)
p

)
and F

(
∆

(D)
q

)
are

linear combinations of such step functions, we get for almost all λ∑
n

(−1)n · n · F
(
∆(C⊗D)
n

)
= χ(C∗) ·

∑
q

(−1)q · q · F
(
∆(D)
q

)
+ χ(D∗) ·

∑
p

(−1)p · p · F
(
∆(C)
p

)
.

Again by linearity of log detFK, we obtain the claim:

ρ(C∗ ⊗D∗) = −1

2
log detFK

(∑
n

(−1)n · n · F
(
∆(C⊗D)
n

))
= χ(C∗) ·

(
−1

2

)∑
q

(−1)q · q · log detFK F
(
∆(D)
q

)
+ χ(D∗) ·

(
−1

2

)∑
p

(−1)p · p · log detFK

(
F
(
∆(C)
p

))
= χ(C∗) ρ(D∗) + χ(D∗) ρ(C∗).

Torsion in the infinite case

We are now moving towards the proof of Theorem 6.6. To carry over as much
as possible from the previous subsection, we need some analytical preparations:

6.11 Lemma. Let fm, gm : R→ R be two sequences of functions such that

0 ≤ fm ≤ 1, 0 ≤ gm ≤ 1 and fm(λ) = 0 = gm(λ) for all λ ≤ 0

hold for all m. Assume that fm
m→∞−−−→ f and gm

m→∞−−−→ g uniformly.
Then fm ∗ gm

m→∞−−−→ f ∗ g, and the convergence is uniform on any compact
interval.

Proof.

|fm ∗ gm(λ)− f ∗ g(λ)| ≤ |(fm − f) ∗ gm(λ)|+ |f ∗ (gm − g)(λ)|

≤
∫ λ

0

|fm(ξ)− f(ξ)| |gm(λ− ξ)| dξ

+

∫ λ

0

|f(ξ)| |gm(λ− ξ)− g(λ− ξ)| dξ

≤ |λ| ‖fm − f‖∞ ‖g‖∞ + |λ| ‖f‖∞ ‖gm − g‖∞ .
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By assumption, the last line converges to 0 for m → ∞. On any compact
interval, |λ| is bounded and the convergence is uniform.

We also need to make sure that even in a sequence of only almost every-
where differentiable functions, limit and derivative can be exchanged:

6.12 Theorem ([Heu09], Theorem 104.3, slightly generalized). Let fm : [a, b]→
R be a sequence of continuous almost everywhere differentiable functions, such
that lim

m→∞
fm(λ0) exists for at least one λ0 ∈ [a, b] and the sequence of deriva-

tives f ′m is almost everywhere uniformly convergent (that is, there is a set
N ⊂ [a, b] of measure zero such that f ′m converges uniformly on [a, b] \N).

Then the sequence fm is uniformly convergent, its limit is almost every-
where differentiable, and lim

m→∞
dfm
dλ

= d
dλ

lim
m→∞

fm almost everywhere.

Proof. Let fm be differentiable on [a, b] \ Nm, where Nm has measure zero.
Define N =

⋃∞
m=1Nm; this is again a set of measure zero.

Fix ε > 0. By assumption there is n0 ∈ N such that for all m,n ≥ n0 we
have

|fm(λ0)− fn(λ0)| < ε

2
,

|f ′m(λ)− f ′n(λ)| < ε

2(b− a)
for all λ ∈ [a, b] \N.

Since all fm are continuous, the mean value theorem still applies: For all
a ≤ α < β ≤ b,

fm(β)− fm(α) =

∫
[α,β]\N

f ′m(λ) dλ

=⇒ |fm(β)− fm(α)| ≤ (β − α) · sup
λ∈[α,β]\N

|f ′m(λ)| .

Therefore, for all m,n ≥ n0 and all λ, µ ∈ [a, b],∣∣(fm(λ)− fn(λ)
)
−
(
fm(µ)− fn(µ)

)∣∣ < |λ− µ| · ε

2(b− a)
.

On the one hand, putting µ = λ0, this implies

|fm(λ)− fn(λ)| < |fm(λ0)− fn(λ0)|+ ε |λ− µ|
2(b− a)

< ε,

so the sequence fm is uniformly convergent.
On the other hand, we can re-order this to get∣∣(fm(λ)− fm(µ)

)
−
(
fn(λ)− fn(µ)

)∣∣ < |λ− µ| · ε

2(b− a)

and, after division by |λ− µ|,∣∣∣∣fm(λ)− fm(µ)

λ− µ
− fn(λ)− fn(µ)

λ− µ

∣∣∣∣ < ε

2(b− a)
.
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Therefore, the sequence of functions (λ, µ) 7→ fm(λ)−fm(µ)
λ−µ converges uniformly.

Now let λ ∈ [a, b] \ N . Then f ′m(λ) = limµ→λ
fm(λ)−fm(µ)

λ−µ exists for all m,
and therefore the limits

lim
m→∞

dfm
dλ

= lim
m→∞

lim
µ→λ

fm(λ)− fm(µ)

λ− µ
and

d

dλ
lim
m→∞

fm = lim
µ→λ

lim
m→∞

fm(λ)− fm(µ)

λ− µ
both exist and are equal (compare the same book by Heuser, Theorem 104.1).

Now we can prove an analogue of Lemma 6.10 for self-similar complexes.

6.13 Lemma. Let X and Y be self-similar CW-complexes as above. Then

F
(
∆(X×Y )
n

)
=
∑
p+q=n

d

dλ
F
(
∆(X)
p

)
∗ F
(
∆(Y )
q

)
,

where the sum runs over all (p, q) ∈ Z2 such that p+ q = n.

Proof. By Lemma 6.10, we get for each m

Fnn

(
∆(Km×Lm)
n

)
=
∑
p+q=n

d

dλ
Fnn

(
∆(Km)
p

)
∗ Fnn

(
∆(Lm)
q

)
,

where Fnn

(
∆(...)

)
are the non-normalized spectral density functions. Normal-

izing by the number of vertices, we obtain

F
(
∆(Km×Lm)
n

)
=
Fnn

(
∆

(Km×Lm)
n

)
|E0(Km × Lm)|

=
∑
p+q=n

d

dλ

Fnn

(
∆

(Km)
p

)
|E0Km|

∗
Fnn

(
∆

(Lm)
q

)
|E0Lm|

for all m.
By Theorem 3.11, the normalized spectral density functions converge uni-

formly, so we know

F
(
∆(X×Y )
n

)
= lim

m→∞

∑
p+q=n

d

dλ

Fnn

(
∆

(Km)
p

)
|E0Km|

∗
Fnn

(
∆

(Lm)
q

)
|E0Lm|

and, using Lemma 6.11,∑
p+q=n

d

dλ
lim
m→∞

Fnn

(
∆

(Km)
p

)
|E0Km|

∗
Fnn

(
∆

(Lm)
q

)
|E0Lm|

=
∑
p+q=n

d

dλ
F
(
∆(X)
p

)
∗ F
(
∆(Y )
q

)
.

It remains to show that the limit commutes with the derivative. That follows
from Theorem 6.12 applied to the function

fm =
∑
p+q=n

Fnn

(
∆

(Km)
p

)
|E0Km|

∗
Fnn

(
∆

(Lm)
q

)
|E0Lm|
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Namely, we know that this function is almost everywhere differentiable, we
know that its derivative is uniformly convergent to F

(
∆

(Km×Lm)
n

)
, and we

know that fm(λ) = 0 for all λ ≤ 0.

Next, we need an analogue of Lemma 6.9 for X, and a last technical result:

6.14 Lemma. Let X be a self-similar chain complex as always. Then∑
p

(−1)pF
(
∆(X)
p

)
= χ(2)(X) · χ[0,∞).

Proof. Applying Lemma 6.9 to C∗(Km) yields∑
p

(−1)pFnn

(
∆(Km)
p

)
= χ(Km) · χ[0,∞).

Divide by |E0Km| and take limm→∞. By previous results, the claim follows.

6.15 Lemma. Let F : R→ R be continuous at λ ∈ R. Then d
dλ

(F∗χ[0,∞))(λ) =
d

dλ
(χ[0,∞) ∗ F )(λ) = F (λ).

Proof. For any λ, µ ∈ R, we have

F ∗ χ[0,∞)(λ)− F ∗ χ[0,∞)(µ)

=

∫
R
F (ξ)χ[0,∞)(λ− ξ) dξ −

∫
R
F (ξ)χ[0,∞)(µ− ξ) dξ

=

∫ λ

−∞
F (ξ) dξ −

∫ µ

−∞
F (ξ) dξ

=

∫ λ

µ

F (ξ) dξ.

Since F is continuous at λ, the last line tends to (λ− µ) · F (λ) as µ tends to
λ, and we obtain

d

dλ
(F ∗ χ[0,∞))(λ) = lim

µ→λ

F ∗ χ[0,∞)(λ)− F ∗ χ[0,∞)(µ)

λ− µ
= F (λ).

By commutativity of convolution, the same holds for χ[0,∞) ∗ F .

Now we can prove the main result:

Proof of Theorem 6.6. Start by using the linearity of the determinant:

ρ(2)(X × Y ) = −1

2

∑
n

(−1)n · n · log detFK

(
∆(X×Y )
n

)
= −1

2
log detFK

(∑
n

(−1)n · n · F
(
∆(X×Y )
n

))

(Note that only finitely many terms in the sum are non-zero.)
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Insert the result of Lemma 6.13, then use Lemma 6.14:∑
n

(−1)n · n · F
(
∆(X×Y )
n

)
=
∑
n

(−1)n · n ·
∑
p+q=n

d

dλ
F
(
∆(X)
p

)
∗ F
(
∆(Y )
q

)
=

d

dλ

∑
p

(−1)pF
(
∆(X)
p

)
∗
∑
q

(−1)q · q · F
(
∆(Y )
q

)
+

d

dλ

∑
p

(−1)p · p · F
(
∆(X)
p

)
∗
∑
q

(−1)qF
(
∆(Y )
q

)
=

d

dλ

(
χ(2)(X) · χ[0,∞)

)
∗
∑
q

(−1)q · q · F
(
∆(Y )
q

)
+

d

dλ

∑
p

(−1)p · p · F
(
∆(X)
p

)
∗
(
χ(2)(Y ) · χ[0,∞)

)
From Lemma 6.15, we have

d

dλ

(
χ[0,∞) ∗ F

(
∆(Y )
q

))
= F

(
∆(Y )
q

)
,

d

dλ

(
F
(
∆(X)
p

)
∗ χ[0,∞)

)
= F

(
∆(X)
p

)
at each point where those spectral density functions are continuous. F

(
∆

(Y )
q

)
and F

(
∆

(X)
p

)
can have at most countably many discontinuities16, so these

equalities hold almost everywhere. Inserting this into the previous calculation
gives ∑

n

(−1)n · n · F
(
∆(X×Y )
n

)
= χ(2)(X) ·

∑
q

(−1)q · q · F
(
∆(Y )
q

)
+ χ(2)(Y ) ·

∑
p

(−1)p · p · F
(
∆(X)
p

)
,

again almost everywhere. Finally, log detFK(F ) is defined via an integral over
F (λ)/λ and the value of F at a sufficiently large b ∈ R. Choosing b large

enough, each F
(
∆

(Y )
q

)
and F

(
∆

(X)
p

)
will be constant around b, while the

almost-everywhere equality yields an equality of the integrals. Thus,

ρ(2)(X × Y ) = −1

2
log detFK

(∑
n

(−1)n · n · F
(
∆(X×Y )
n

))
= χ(2)(X) ·

(
−1

2

)∑
q

(−1)q · q · log detFK F
(
∆(Y )
q

)
+ χ(2)(Y ) ·

(
−1

2

)∑
p

(−1)p · p · log detFK F
(
∆(X)
p

)
= χ(2)(X) ρ(2)(Y ) + χ(2)(Y ) ρ(2)(X).

16Proof: Every F (∆(Km)) has at most finitely many discontinuities. If all F (∆(Km))
are continuous at λ, then so is F (∆(X)) (because of uniform convergence). Thus, the set of
discontinuities of F (∆(X)) is contained in the union of the sets of discontinuities of F (∆(Km)),
and thus countable.
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A Borel functional calculus

For the reader’s convenience, this appendix summarizes the definition and
some properties of the Borel functional calculus for self-adjoint operators. It
mostly follows [RS72] and [Lüc02].

Most of these results do not require the operator to be bounded, and they
will be stated here in full generality, even though this thesis in general only
deals with bounded operators.

In the following, let T : dom(T ) ⊆ H → H a densely defined (possibly
unbounded) self-adjoint operator on a separable Hilbert spaceH. In particular,
the word “self-adjoint” implies that dom(T ) = dom(T ∗) and that T is closed.

A.1 Theorem. There are a measure space (X,µ), with µ a finite measure,
a real-valued function t ∈ L2(X,µ) and a unitary operator U : H → L2(X,µ)
such that

v ∈ dom(T ) ⇐⇒ Uv ∈
{
f ∈ L2(X,µ)

∣∣ t · f ∈ L2(X,µ)
}

and the following diagram commutes:

H T //

U
��

H
U
��

L2(X,µ)
Mt // L2(X,µ)

where Mt is given by multiplication by t, that is,

(Mtf)(x) = t(x) · f(x).

Proof. See [RS72], Theorem VIII.4.

A.2 Lemma. Under the notation and conditions of Theorem A.1, the spec-
trum of T is equal to the essential range of t.

Proof. Since ‖Uv‖2 = ‖v‖H for al v ∈ H and (T − λidH) = U∗Mt−λ U , it is
clear that specT = specMt.

Let t(X)ess be the essential range of t; that is, the set of all r ∈ R such that
µ
(
{x ∈ X | |r − t(x)| < ε}

)
> 0 for all ε > 0.

Assume λ ∈ t(X)ess, and for any n ∈ N pick a measurable set An ⊆ X such
that |t(x)− λ| < 1

n
for all x ∈ An and µ(An) > 0. Let χAn be the indicator

function of An. Then χAn ∈ L2(X,µ) (since the measure is finite), and

‖(t− λ) · χAn‖
2
2 =

∫
X

|(t− λ) · χAn|
2 dµ <

1

n2

∫
X

|χAn|
2 dµ =

1

n2
‖χAn‖

2
2 .

As n was arbitrary, Mt−λ = Mt − λ id is not bounded from below, and thus
cannot be invertible. It follows that λ ∈ spec(Mt) = spec(T ).

94



Conversely, assume λ /∈ t(X)ess. Then there is an ε > 0 and a set B ⊆ X
such that |t(x)− λ| ≥ ε for all x ∈ B and µ(B) = µ(X). Hence, every function
f ∈ L2(X,µ) satisfies

‖(t− λ) · f‖2
2 =

∫
B

|(t− λ) · f |2 dµ ≥ ε2

∫
B

|f |2 dµ = ε2 ‖f‖2
2 ,

so Mt−λ = Mt − λid is bounded from below, and thus invertible. It follows
that λ /∈ spec(Mt) = spec(T ).

A.3 Theorem (Borel functional calculus). Under the notation and conditions
of Theorem A.1, the map

L∞(R)→ B(H), h 7→ h(T ) := U∗Mh ◦ tU

does not depend on the choice of (X,µ) and has the following properties:

(a) It is a ∗-homomorphism of algebras.

(b) It is norm-continuous. More precisely, ‖h(T )‖op ≤ ‖h‖∞.

(c) If the sequence (hn) ⊆ L∞(R) converges pointwise to h ∈ L∞(R) and the
sequence

(
‖hn‖∞

)
is bounded, then

(
hn(T )

)
converges to h(T ) in strong

operator topology.

(d) If Tv = λv for some λ ∈ C and v ∈ H, then h(T )v = h(λ)v.

(e) If h ≥ 0, then h(T ) ≥ 0.

Proof. See [RS72], Theorem VIII.5.

A.4 Corollary. The operator h(T ) only depends on the values of h on spec(T ),
so functional calculus can be considered as a map L∞(spec(T ))→ B(H).

Proof. By definition, h(T ) only depends on the function h ◦ t ∈ L∞(X,µ).
If two functions h, h′ agree on t(X)ess, then h ◦ t and h′ ◦ t agree µ-almost
everywhere on X, and thus represent the same element of L∞(X,µ).

A.5 Corollary. (a) If h(λ) ∈ {0, 1} for all λ ∈ R, then h(T ) is a projection.

(b) If |h(λ)| = 1 for all λ ∈ R, then h(T ) is unitary.

Proof. Since h 7→ h(T ) is an algebra homomorphism, we have
(
h(T )

)∗
=

h∗(T ), where ∗ : L∞(R)→ L∞(R) is given by pointwise complex conjugation.
This gives:

(a) If h(λ) ∈ {0, 1} for all λ ∈ R, then |h(λ)|2 = h(λ) for all λ ∈ R, and thus

h(T )∗h(T ) = (h∗h)(T ) = |h|2 (T ) = h(T ).
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(b) If |h(λ)| = 1 for all λ ∈ R, then 1/h(λ) = h(λ) = h∗(λ) for all λ ∈ R,
and thus

h(T )−1 = (1/h)(T ) = h∗(T ) = h(T )∗.

A.6 Theorem. For any measurable subset Ω ⊆ R, define a projection ET
Ω :=

χΩ(T ) (where χΩ is the characteristic function of Ω). This defines a projection-
valued measure on R:

(a) ET
∅ = 0

(b) ET
R = id

(c) Ω =
⊔∞
n=1 Ωn =⇒ ET

Ω =
∑∞

n=1E
T
Ωn

(The sum converges in strong operator topology.)

(d) ET
Ω∩ Ω̃

= ET
ΩE

T
Ω̃

This implies that for any v, w ∈ H, the map Ω 7→
〈
v, ET

Ωw
〉

defines a real-valued
measure on R, and the functional calculus of Theorem A.3 can be computed as

〈v, h(T )w〉 =

∫
R
h(λ) d

〈
v, ET (λ)w

〉
,

where ET (λ) := ET
(−∞,λ]. In short, write

h(T ) =

∫
R
h(λ) dET (λ).

Proof. See [RS72], pp. 262f.

Finally, if the operator in question lies in a particular sub-algebra, it is
highly desirable that the same holds for the results of its functional calculus.
That is indeed the case:

A.7 Corollary. Assume that T is bounded. Let A ⊆ B(H) be a C∗-algebra
and N ⊆ B(H) a von Neumann algebra such that T ∈ A ⊆ N .

(a) If h ∈ L∞(spec(T )) is continuous, we have h(T ) ∈ A.

(b) For any h ∈ L∞(spec(T )), we have h(T ) ∈ N .

Proof. (a) As T is bounded, there is a compact interval I containing spec(T ).
By the Weierstrass approximation theorem, there are polynomials (pn)n∈N
such that ‖h− pn‖∞

n→∞−−−→ 0. Clearly, pn(T ) ∈ A for all n (because A
is an algebra), and ‖h(T )− pn(T )‖op

n→∞−−−→ 0 (by A.3 (b)). As a A is
norm-closed, this proves the claim.
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(b) Show first that for all λ ∈ R the spectral projection ET (λ) = χ(−∞,λ](T )
lies in N : Setting

fn(r) =


1, if r ∈ (−∞, λ],

1− n(r − λ), if r ∈ [λ, λ+ 1
n
],

0, if r ∈ [λ+ 1
n
,∞),

we obtain fn(T ) ∈ A for all n (because the fn are continuous) and
fn

n→∞−−−→ χ(−∞,λ] pointwise. Clearly, ‖fn‖∞ = 1 for all n.

Thus, fn(T )
n→∞−−−→ ET (λ) in strong (and thus weak) operator topology

by A.3 (c). As N is weakly closed, this proves ET (λ) ∈ N .

Now let h ∈ L∞(spec(T )) be any measurable function. By A.6, the
integral h(T ) =

∫
spec(T )

h(λ) dλ is the weak limit of finite sums of spectral

projections ET (λ), and therefore lies in N .

In the definition of spectral density functions (2.38), operators that are not
positive or map a Hilbert space to a different Hilbert space are treated by
considering T ∗T instead of T . To ensure consistency with the usual definition,
one needs to check what this does to an operator that is already positive:

A.8 Lemma. Let T ≥ 0 as above. Then ET 2
(λ2) = ET (λ).

Proof. The commutative diagram of Theorem A.1 can be expanded to

H T //

U
��

T 2

&&
H T //

U
��

H
U
��

L2(X,µ)
Mt //

Mt2

66
L2(X,µ)

Mt // L2(X,µ)

Thus, using Theorem A.3, we obtain

ET 2

(λ2) = χ(−∞,λ2](T
2) = U∗Mχ(−∞,λ2] ◦ t2U,

and for all r ∈ R we have (note t(r) ≥ 0):(
χ(−∞,λ2] ◦ t2

)
(r) =

{
1 if t(r)2 ≤ λ2

0 otherwise

}
=

{
1 if t(r) ≤ λ
0 otherwise

}
=
(
χ(−∞,λ] ◦ t

)
(r)

Thus, indeed,

ET 2

(λ2) = U∗Mχ(−∞,λ2]◦t2 U = U∗Mχ(−∞,λ]◦t U = ET (λ).

(It therefore makes sense to define F T (λ) := F T ∗T (λ2) for any not self-
adjoint operator T ∈ Nj(X). It would not make sense to define ET (λ) that
way, because that would yield

∫
λ dET (λ) = |T | in contradiction to A.6.)
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Finally, let us note the following “interpretation” of the spectral projec-
tions: Simply speaking, the image of ET (λ) is a maximal subspace on which
T is bounded by λ.

A.9 Lemma. Assume the conditions and notation of Theorem A.1, and let
v ∈ H be nonzero. Then

ET (λ) v = v =⇒ ‖Tv‖ ≤ λ ‖v‖ ,
ET (λ) v = 0 =⇒ ‖Tv‖ > λ ‖v‖ .

Proof. Either see [Lüc02], Lemma 2.2, p. 73, or consider the following:
Using Theorems A.1, A.3 and A.6, we have the commutative diagram

H ET (λ) //

U
��

H
U
��

L2(X,µ)
Mχ // L2(X,µ)

where χ = χ(−∞,λ] ◦ t ∈ L∞(X) is the characteristic function of the set
{x ∈ X | |t(x)| ≤ λ}. (Thus, 1 − χ is the characteristic function of the set
{x ∈ X | |t(x)| > λ}.) Fix v ∈ H and let Uv be given by the function f ∈
L2(X,µ). Then we have:

‖Tv‖2
H = ‖UTv‖2

2 =

∫
X

|t · f |2 dµ

=

∫
X

|t · f |2 · χdµ+

∫
X

|t · f |2 · (1− χ) dµ

If ET (λ)v = v, then χ · f = f (and thus (1− χ) · f = 0), so

‖Tv‖2
H =

∫
X

|t · f |2 · χdµ =

∫
{x | |t(x)|≤λ}

|t · f |2 dµ

≤ λ2

∫
X

|f |2 dµ = λ2 ‖Uv‖2
2 = λ2 ‖v‖2

H .

Finally, if ET (λ)v = 0, then χ · f = 0, so

‖Tv‖2
H =

∫
X

|t · f |2 · (1− χ) dµ =

∫
{x | |t(x)|>λ}

|t · f |2 dµ

> λ2

∫
X

|f |2 dµ = λ2 ‖Uv‖2
2 = λ2 ‖v‖2

H .

(Of course, the “greater than” requires that the integral is nonzero; that is the
case since ‖f‖2 = ‖v‖H > 0.)
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