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Investigation of the CP properties of VBF Higgs
production in hadronic final states of H — 77 decays with
the ATLAS detector

Abstract

A test of CP invariance of the VBF Higgs production process is presented in the 77
final state. For this, a profile likelihood fit using a matrix-element observable method is
employed to test whether a CP-odd component is present in the coupling. The analysis
is carried out using 36.1 fb~! of proton-proton collision data recorded at a centre-of-
mass energy of 13 TeV with the ATLAS detector at the LHC. It constrains the value
of the CP violation inducing parameter d to [—0.090,0.035] at the 68% confidence level.
This result is compatible with the Standard Model expectation of d = 0 and no CP
violation. Particular emphasis is put on the final state including two hadronically-
decaying 7 leptons.

Additionally, a measurement of the efficiencies of 7-lepton triggers is presented. These
triggers are necessary to collect the data on which the measurement of d is based. Lastly,
an ongoing measurement of Higgs-boson production cross-sections in the 77 final state
using 139 fb~! of data is discussed, including an improved method of estimating back-
ground contributions in the final state with two hadronically-decaying 7 leptons.
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CHAPTER 1

Introduction

The Higgs boson was the last particle in the Standard Model (SM) to be discovered
experimentally, which happened in 2012 [1,2]. With this, all SM particles have
been discovered, and the focus of the ATLAS physics program is shifted towards
understanding the shortcomings of the SM. One of these shortcomings is the extent
of baryon-antibaryon asymmetry predicted by the SM, which is too low to explain
the observed asymmetry [3-7]. One of the Sakharov conditions for producing such
an asymmetry is the presence of processes that are not invariant under charge
conjugation (C) and its combination with parity (CP) [8]. This strongly suggests
the presence of CP-violating processes that are not part of the SM.

As the only CP-violating SM process, the quark mixing [9,10] and weak decay,
is in the electroweak sector, it is natural to probe other electroweak processes as
well. For this reason, this thesis focuses on an analysis that probes the Higgs boson
couplings to electroweak bosons (HV'V couplings) for CP-odd contributions, using
H — 77 events [11]. To that end, the analysis is restricted to events with two jets,
which enhances the contribution of vector-boson fusion (VBF) Higgs production
events, featuring the desired HV'V vertex.

The other analysis covered in this thesis is the measurement of Higgs-boson
Simplified Template Cross-Sections (STXS), the standardized cross-section mea-
surement strategy in all Higgs decay channels within the ATLAS collaboration.
The STXS framework was devised in order to effectively decorrelate deviations of
Higgs-boson production cross-sections from the SM prediction in different phase-
space regions. This allows to compare predictions from different beyond-Standard-
Model (BSM) theories to experimental results in a more straightforward way.

The thesis is ordered as follows. Chapter 2 summarizes the theoretical concepts



1 Introduction

behind the Standard Model of particle physics, while Chapter 3 describes which
aspects of it are investigated throughout the thesis. Chapter 4 gives an overview
of the experimental setup at CERN that makes all the presented studies possible.
In Chapter 5, the methods employed to reconstruct particles and other objects
from charge and energy deposits in the detector are described. The efficiency
measurement of 7-lepton triggers will be discussed in Chapter 6. This measurement
is one of the pre-requisites for conducting a test of CP violation (CPV) in fully
hadronic final states of VBF H — 77 events, which is the topic of Chapter 7.
Chapter 8 covers the ongoing efforts to improve the background estimation in
fully hadronic H — 77 events using the full ATLAS dataset recorded from 2015 to
2018. Finally, Chapter 9 gives an outlook for future direct measurements of CPV
in Higgs-boson couplings.



CHAPTER 2

The Standard Model

The Standard Model of particle physics represents our current understanding of
elementary particles and their interactions. It is known to be incomplete, as it
makes no statement on the gravitational force and is missing a dark matter can-
didate, but it has been very successful in predicting phenomena that were later
experimentally observed with very high precision. This chapter gives an overview
of the structure and mathematical foundations of the SM, as well as the phe-
nomenological implications these have for the Higgs boson and the 7 lepton, the
two particle types that are covered most thoroughly in this thesis.

2.1 Gauge Symmetries

Mathematically, the SM [12-14] is a quantum field theory (QFT) which character-
izes matter with fermionic spin-1/2 spinor fields and interactions with integer-spin
bosonic fields. The physical particles arise from excitations of these fields. The
starting point for a QFT is the Lagrangian £ of the model, which is constructed
by calculating the difference between kinetic energy 71" and potential energy V:

L=T-V.

By integrating £ over time, the action is constructed. This quantity is used to
derive equations of motion for the fields by applying the variation principle. In
particle physics, this allows to examine the kinematic properties of particles and
their interactions by deriving Feynman rules.



2 The Standard Model

This section introduces the different components of the SM Lagrangian and how
gauge symmetries can be utilized to construct models of interacting particles start-
ing from a sterile theory.

2.1.1 Electroweak theory
The Lagrange density £ of a free spin-1/2 particle ¢(z) with mass m is:

L= (49, — m) ¥ (2.1)

with the Dirac matrices 4* where u € {0,1,2,3} and the Einstein summation is
applied, i. e. repeated indices are always summed over. This theory only contains
a single type of fermion with mass m that does not partake in any interactions.

A convenient way to introduce interactions to this theory is to require the La-
grangian to be invariant under a group of transformations of v, called gauge trans-
formations. It is easily verified that £ is already symmetric under global U(1)
gauge transformations, meaning that 1 — e~ 4 will not change the value of £,
for any C' € R and the coupling constant ¢’ > 0. However, making C' dependent on
the space-time coordinate x, also called promoting the global gauge transformation
into a local one, breaks this symmetry:

L(e7 W)y = L) + gpy"p0,C (z) -

To recover the U(1) symmetry, an additional field B, called a gauge field, is
introduced to the theory. This field is chosen to transform as

B, (z) = B,(x) +0,C(x) .

under the gauge transformation to restore the symmetry.
This field enters the Lagrangian by expanding the partial derivative 9, to con-
struct the covariant derivative

D,=0,+1i¢B, .

With this, the expanded Lagrangian has regained its U(1) symmetry, since the
derivatives in C(x) cancel when transforming ¢ and B, simultaneously. This
time, however, it is a local symmetry. To achieve this, a term of the form QZVNBuw
had to be introduced to the theory, meaning that the fermion v can interact with
the gauge boson B. But for B, to be a realistic field, it needs to have a free
dynamic term. This term takes the form F,, F'*” with F,, = 0,8, — 0,B,..

Applying the variation principle to the thus constructed Lagrangian reproduces
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the Maxwell equations. The U(1) symmetric model containing one fermion can
therefore be interpreted as the quantum theory of electrodynamics.

This procedure can be generalized to other symmetry groups, such as SU(2).
In this case, the object ¥ in Eq. (2.1) is reinterpreted as a doublet of two fermion
fields of the same mass m, which is equivalent to adding the free Lagrangians
of two fermion fields. The main differences compared to the U(1) case are that
SU(2) has more than one generator, and that it is a non-Abelian group. Since it
has three generators, the covariant derivative contains more terms and more gauge
fields, one for each generator:

(DMD)i = Outhi — i(gWﬁTa)ijwj . (2.2)

Here, g > 0 is the coupling constant of the SU(2) group, W are three gauge fields
(a € {1, 2, 3}) and T* = 30 with the Pauli matrices 0, which are the generators
of SU(2). The dynamic terms of each gauge field W* again take the form F, F"¢,
but due to the group being non-Abelian, the tensor F}, has an additional term:

Fp, = 0, W — 0,Wi + geane Wi, . (2.3)

The last term contains the Levi-Civita tensor €., because these are the structure
constants of SU(2). It leads to the presence of terms of higher than quadratic
order in the gauge fields, which represent interactions of the gauge fields among
each other.

This SU(2) theory describes the weak nuclear interaction, albeit with a few
caveats. The described theory alone cannot account for the observed non-zero
masses of the three corresponding gauge bosons W~, Z and W+. Also, the two
components of the ¢ doublet cannot have different masses, unlike the known SU(2)
doublets. The procedure to mitigate these inconsistencies in modern theories is
discussed in Sec. 2.2.

2.1.2 QCD

Reusing this procedure with the gauge group SU(3), one can describe the strong
nuclear force. This time the object ¥ in Eq. (2.1) has three components, repre-
senting three colours of quarks of the same flavour, all with the same mass m. The
global SU(3) transformations U acting on ¢ are of the form

8
U — elas agl Cala ’
with a coupling strength parameter ag > 0, C, € R and the eight Gell-Mann
matrices \,, which are the generators of the SU(3) group. Making the C, space-
time-dependent breaks the global symmetry in the same way as it did in the other
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examples, and again this can be solved by introducing one gauge field for each
generator of the gauge group into the theory via the covariant derivative:

(Dyth)a = 0utha — i(s G} Si)apths -

This has the same structure as Eq. (2.2), but this time there are eight gauge fields
G, and the group generators are represented through S, = %)\a. Choosing the
gauge fields to transform as

GZ — GZ + 8uC’a + ZQSfabchGZ

makes the Lagrangian invariant under local gauge transformations. This is anal-
ogous to the U(1) example except for the last term, which contains the SU(3)
structure constants f,,. and arises from the fact that it is a non-Abelian gauge
group. The presence of these terms implies gluon self-interactions. The free term
of the G, fields has the same structure as in Eq. (2.3). The only differences are
the structure constant and coupling constants.

The fields GG, in this model represent the eight gluons of QCD, the bosons that
allow to transition from one colour state of the v triplet to another.

2.2 Electroweak Symmetry Breaking

As described in Sec. 2.1, adding mass terms of gauge fields to the Lagrangian of
a theory makes it inconsistent, as the terms break the symmetry that the gauge
fields were introduced to restore. Thus, the procedure outlined in Sec. 2.1 to
introduce particle interactions to a quantum field theory can only describe the
real world if there are no massive gauge bosons. This is in conflict with the
observation of massive W and Z bosons by the UA2 and UA1 collaborations at
CERN [15-18]. This section presents the Higgs mechanism, a solution to this
apparent contradiction.

2.2.1 Masses of Bosons

Approaches to solve the problem of massive gauge bosons (before observing it)
were first introduced in 1964 [19-21]. The first step is assuming the presence of
an SU(2) complex spin-0 doublet

b= <¢+> _ 1 (¢1 + Z¢2>
¢’ V2 \@3+ids)

The Lagrangian of this field is
L= (9,0)"(0"¢) = V(9) (24)
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with the Higgs potential

V(¢) = 1?61 + Mg 9)” . (2.5)

It can be easily verified that this Lagrangian £ is invariant under global SU(2)
transformations of ¢ and U(1) transformations of its components ¢ and ¢°, which
is known as SU(2) x U(1) symmetry.

In the case p? < 0, the potential has an infinite number of minima. Every field
configuration that satisfies

PR B S S

P S ') W
minimizes the potential and thus is a ground state of the system. The quantity
v that is introduced here is called the vacuum expectation value of ¢. In the
considered case p? < 0, spontaneous symmetry breaking occurs, as the system
will gravitate towards one of the ground states and, expanded around this specific
ground state, it will not exhibit the SU(2) x U(1) symmetry that it has when
expanded around the origin. This can be seen in Fig. 2.1, where the potential is

symmetric around the origin but not around any of the minima of the potential.

Figure 2.1: Graphic representation of the Higgs potential in the case of 2 < 0.

The ground state of ¢ is chosen to be

This choice is based on the photon being observed to be massless even when the
W and Z bosons are massive, meaning that one symmetry of the potential must
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remain unbroken despite a non-trivial ¢y. The state ¢y is invariant under the
application of

Y

This equation connects the electric charge ) of a particle to its hypercharge Y
and the third component T of its weak isospin. It also shows how the symmetry
group of the Lagrangian transforms when inserting ¢:

SU2) x U(l)y 2 U(1)g

reducing the number of group degrees of freedom from four to one.
Expanded around ¢q, the doublet ¢ takes the form

¢ — i ¢1 + Z¢2
V2 \v+H+ig,)
Using the SU(2) x U(1) gauge freedom, the contributions from ¢;, ¢» and ¢, can
be removed, so that

0= 7o)

with the physical Higgs field H. This choice is called the unitary gauge.

With the same procedure as in Sec. 2.1, interactions to gauge bosons can be
introduced to this model by imposing local gauge symmetry. Since both SU(2)
and U(1) symmetry are required, the covariant derivative takes the form

D, =9, +igWiT" +i¢' B, .
With this, it follows that
1 1 ) .
(D,®)'(D"¢) = §(aMH)T(8“H) + ggz(W; + W) (W —iW?) (v + H)?
1
8

This term from the Lagrangian in Eq. (2.4) contains terms proportional to v

+ < (gW + ¢'Bu)(gW™ — ¢'B*) (v + H)* .

UQ

This expression contains mass terms of gauge fields of the form $m?*F,F*. Using

the expressions
gW?3 —¢'B A_g’W3+gB

JETg NoEr

Wi:E(quEz’VW) Z =
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Eq. (2.6) can be rewritten to make these appear explicitly:

2
1 /vg\2, 1 (v\/g?+ g”?
L =5 () Wowr s wiwe) 4 o (L) 7 70

2\ 2 U i )+ 2 2 :
This shows that, by assuming the existence of a complex scalar SU(2) doublet
with a non-vanishing vacuum expectation value v and allowing it to couple to
the SU(2) and U(1) gauge fields, mass terms for those fields can be incorporated
without breaking the imposed gauge symmetries. The mass that the W bosons

vg

gain through the Higgs mechanism is my = 3/ and the mass of the Z boson is

my = U—Vg;ﬂ]lz. The field A still has no mass term and is identified with the
photon.

The terms of (D,¢)"(D"¢) proportional to H or H? give rise to couplings be-
tween the Higgs boson and the gauge bosons. The terms containing the states W*

and W~ are
L, —1r7 i Lo +upr2
ég oW, W™ H + Zg W, WT™H". (2.7)

Therefore, the coupling strength ggww of the HWW vertex is

1 2
gaww = 59 V= gMmw

2
Similarly, the coupling strength of the HZZ vertex is gyzz = mz+/g? + ¢’*. Cou-
pling terms for A do not appear, which is another example of the coupling strength
of the Higgs boson to gauge bosons being proportional to the mass of the bosons.
After expanding ¢ around ¢y, the form of its potential in Eq. (2.5) also changes:

V(H) = %2(1; + H)* + %(v + H)*.

With 2 = —Av?, this becomes
2 772 5, A
V(H) = "H"+ \H +ZH .

The first term represents a mass term of H with the mass m? = 2\v?. The second
and third term are self-coupling terms of the Higgs boson.

The gluon introduced in Sec. 2.1.2 is the gauge boson of the SU(3) symmetry,
which is not broken in the SM. As such, the gluon remains massless. This concludes
the introduction of the SM bosons. Their properties are summarized in Tab. 2.1.
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Table 2.1: Summary of the properties of the bosons predicted by the SM. Mass
values taken from Ref. [22].

Particle Symbol Charge Spin Mass [GeV/c?] Interaction

W= W +1 1 80.4 Weak

A A 0 1 91.2 Weak

Photon ~ 0 1 0 Electromagnetic
Gluon ¢ 0 1 0 Strong

Higgs H 0 0 125.1 -

2.2.2 Masses of Fermions

A similar theoretical issue also exists regarding mass terms for the SM fermions.
The mass term for a spin—% particle ¢ with mass m; has the form —m 1. The
SM SU(2) symmetry, however, does not apply to the full spinors, but only to
the left-handed part ¢, = %(1 — ~°)¢. The left-handed fermions are grouped in

doublets ¢ = (ZZ;“) , which are transformed as described in Sec. 2.1.1. Right-
a/r

handed projections 1g = 3(147°)¢ remain as SU(2) singlets and are not affected
by SM SU(2) gauge transformations. Since ¥g + 1, = 1, the mass term of ¢ can
be decomposed as:

—quﬁgb = —mf(%ER@/)L + YrR) .

Here it becomes apparent that the presence of a mass term would break gauge
invariance.

Much like in Sec. 2.2.1, this can be remedied by inserting the scalar SU(2)
doublet ¢ into the model. Since ¢ is an SU(2) doublet like ¢y, they transform in
the same way. This also means that gauge-invariant terms can be constructed by
combining 17, and ¢. One such combination is:

Lf=—9y, (&L(bwdpg + h.c.) )

Inserting ¢ = \/% (v -I(—) H) as before leads to

L= —%v (Vapthap + Yaptar) — g—\}%H (Yartar + Yaptar) - (2.8)

The left term has the structure of a mass term for the lower component 14 of the
SU(2) doublet (also called down-type fermion) 1, while the right one introduces

10



2.2 Electroweak Symmetry Breaking

a coupling between the fermion and Higgs field. The parameter gy, is called the
Yukawa coupling of 14. It modifies the strength of the coupling to the Higgs boson
as well as the mass of the fermion.

For up-type fermions, a gauge-invariant construction of a mass term can be
achieved in a very similar fashion. The gauge-invariant expression to start from is

Gy, (&L¢T¢u}z + h-C-)

and the calculation results in an expression of the same structure as Eq. (2.8). In
both cases, the relation between the Yukawa coupling and the fermion mass is

g5 = ﬁ% . (2.9)

The Yukawa couplings are proportional to the fermion masses.

The SM fermions are grouped in two fermion classes and three generations, the
members of which differ only in their masses. A generation of the lepton class con-
sists of a charged lepton, which can interact electromagnetically and weakly, and
a neutrino, which can only interact weakly. The SM leptons and their properties
are listed in Tab. 2.2.

The second class of fermions are the quarks. These can interact strongly, weakly
and electromagnetically. Due to their colour charge and the size of the QCD cou-
pling constant, they do not appear as free particles in nature, but form compounds
known as hadrons. The two types of hadrons are the mesons comprising a quark
and an anti-quark, and the baryons consisting of three quarks. The six SM quarks
are listed in Tab. 2.3.

Table 2.2: Properties of the SM leptons [22].

Particle Symbol Charge Spin Mass [MeV/c?]
Electron Neutrino Ve 0 1/2 0511

Electron e -1 1/2 <1.1-10°°¢
Muon Neutrino Vy 0 1/2 106

Muon I -11/2 <1.1-1078
Tau Neutrino vy 0 1/2 1777

Tau Lepton T -1 1/2 <1.1-107°

11
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Table 2.3: Properties of the SM quarks [22].

Particle Symbol Charge Spin Mass [GeV/c?]

Up w o 2/3 1/2 0.0022
Down d  -1/3 1/2 0.0047
Charm c 2/3 1/2 1.27
Strange s -1/3 1/2 0.093
Top t2/3 1/2 173
Bottom b -1/3 1/2 4.18

2.3 Properties of Higgs Bosons

This section describes some of the observed Higgs-boson properties that are the
most relevant for the studies described throughout this thesis. These are the main
production and decay processes of the SM Higgs boson in high-energy proton
collisions as well as its spin and CP properties.

2.3.1 Production and Decay

The leading-order Feynman diagrams of the four most prevalent production pro-
cesses are shown in Fig. 2.2. Their respective cross-sections as a function of the
proton-proton centre-of-mass energy /s can be seen in Fig. 2.3a, and the values at
Vs =13 TeV and my = 125 GeV are listed in Tab. 2.4. The gluon-gluon fusion
(ggF) process has the highest cross-section. As shown in Fig. 2.2a, it is initiated
by two gluons which, via a virtual-quark loop, produce a Higgs boson. Due to
the Yukawa coupling scaling with the quark mass, see Eq. 2.9, the cross-section
contribution from a particular type ¢ of quark is proportional to mg. Therefore,
the main contribution comes from virtual top quarks.

Vector-boson fusion (VBF) has the second largest cross-section, and this process
is very interesting experimentally due to its unique signature. As can be seen in
Fig. 2.2b, it produces two jets in addition to a Higgs boson. These are likely to
have a large momentum and propagate close to the direction of the proton beams.
This also makes it unlikely to find more jets in the central detector region, since
no other particles with colour charge are produced. Since few other processes
produce such event topologies, VBF Higgs production is more easily separated
from background processes than ggF.

The third most prevalent Higgs-boson production process is the associated pro-
duction with a vector boson (V H), also called Higgs-strahlung, depicted in Fig. 2.2c.

12



2.3 Properties of Higgs Bosons

c) Associated production with d) Associated production with
vector boson (V H) top quarks (ttH)

Figure 2.2: Leading-order (LO) Feynman diagrams of the dominant Higgs-boson
production processes in proton collisions at /s = 13 TeV.

This process is only possible for V' = W, Z but not for photons or gluons, since
these are massless and do not couple to the Higgs boson.

The associated production with a pair of top quarks (ttH) is depicted in Fig. 2.2d.
The Higgs boson is not a stable particle, and can thus only be detected by
reconstructing its decay products. Due to its coupling to all massive SM particles,
it has many decay channels. The most important decay for this thesis is the
H — 77 channel. At leading perturbative order, the analytic expression for the
partial decay width of a Higgs boson into a pair of 7 leptons is:

g>mpm? 4m2\ 2
I'H —717) = Sy — (1 o ) :
W H

Based on the partial widths for all Higgs-boson decay channels, the branching ratio
for each channel can be calculated. These calculations at the highest available

precision have been conducted using HDECAY [24] and PROPHECYA4F [25]. The
results as a function of the Higgs-boson mass are summarized in Fig. 2.3b.

13
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Figure 2.3: (a): Production cross-section of the Higgs boson in proton-proton scat-
tering for various production mechanisms as a function of the centre-
of-mass energy +/s. (b): Higgs-boson branching ratios as a function of
the Higgs-boson mass. The energy of /s = 13 TeV and the observed
Higgs-boson mass of 125 GeV have been marked with vertical orange
lines [23].

The currently most precise calculation of the H — 77 branching ratio based on
PROPHECY4F and HDECAY yields:

BR(H — 77) = 0.0627 4 0.0014 .

2.3.2 Spin and CP properties

The SM predicts the Higgs boson to be a spin-0 scalar particle with even parity.
Since the Landau-Yang theorem [47,48] forbids decays of massive spin-1 particles
to two photons, but the H — v~ decay channel has been observed, it follows that
the observed Higgs boson is not a spin-1 particle.

To distinguish between other spin hypotheses, the ATLAS collaboration exam-
ined Higgs-boson events in different bosonic final states [49]. The measurement
strongly supports the SM prediction of a CP-even scalar, while excluding many
other spin hypotheses at over 99% confidence level, as shown in Fig. 2.4. One of
the excluded scenarios is the purely CP-odd Higgs boson, but no strong statement

14



2.3 Properties of Higgs Bosons

Table 2.4: Production cross-sections of the SM Higgs boson assuming a mass of
125 GeV in proton-proton collisions with a centre-of-mass energy of 13

TeV [26-46].

Process cross-section [pb] Order QCD  Order EWK
ggF  48.587¢ 5% (theory) T32%(PDF + ag) N3LO NLO
VBF  3.78270%% (theory) "2 1% (PDF + ag) NNLO NLO
WH  1.380M7%(theory) 22¢(PDF + as) ~ NNLO NLO
ZH  0.8696155%(theory) 22 (PDF + ag) ~ NNLO NLO
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Figure 2.4: Overview of observed test statistic values ¢ to differentiate between
the SM Higgs spin/CP prediction and several alternative hypotheses,
obtained from measurements in bosonic Higgs-boson final states [49].
The SM expectation is shown in blue, while the alternative hypotheses
are marked in red.
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2 The Standard Model

is made on the scenario of a mainly CP-even mass eigenstate with a smaller CP-
odd contribution. dedicated measurement to test this possibility was performed in
2016 [50], using the Optimal-Observable method described in Sec. 3.4. The result
is shown in Fig. 2.5, where the first constraints on the CPV inducing parameter d
are shown. The analysis presented in this thesis expands on the method applied
to obtain a more sensitive result.

ANLL

T

2.2 ATLAS
2F Vs=8TeVv, 203"

T T T 7
—e— Combined (Obs.)
""" ® T Thag (OPS)

.- T\eprlep

(Obs.)

F Fit to Optimal Observable

18

- -e- - Expected (E:O, pu=1.55) —

Figure 2.5: Observed (black) and expected (blue) ANLL curves for the parameter
d that induces CPV in VBF Higgs production, obtained in the H — 77
final state. The ANLL value is a measure of the goodness of the fit of
a hypothesis to the observed data, with ANLL= 0 marking the best-
fitting scenario. The two observed subchannel results for events with
two leptonically decaying 7 leptons (green) and only one leptonically
decaying 7 lepton (red) are shown.

2.4 Properties of 7 Leptons

Since Higgs bosons are unstable, they are experimentally only accessible through
their decay products. In the analyses presented in Chap. 7 and Chap. 8, Higgs-
boson decays into 7 leptons are investigated. This section provides an overview of
their phenomenological properties.

With a mass of

m, = 1776.86 £ 0.12 MeV ,
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2.4 Properties of T Leptons

7 leptons are the heaviest of the three types of charged SM leptons [22]. They
can only decay by emitting a virtual W boson and producing a 7 neutrino, which
cannot be directly observed. The W boson can decay leptonically into an electron
or muon and the corresponding neutrino, but it can also decay into an up and a
down quark, more rarely also a strange quark.

In 7-lepton decays to quarks, these further hadronize to produce colour-neutral
mesons, primarily pions. In most cases, the resulting mesons include either one or
three charged particles. Decays to five or more charged mesons are possible but
rare. The branching fractions of 7 leptons are shown in Fig. 2.6a. The procedure
with which ATLAS reconstructs hadronically-decaying 7 leptons is described in
Sec. 5.4. One important feature in the reconstruction is that 7 leptons have a
proper decay length of ¢7 = 87.03 pm, which means that they can traverse a
measurably large distance within the detector before decaying. Also, the jet formed
by a 7-lepton decay is more collimated than quark- or gluon-initiated jets, as
depicted in Fig. 2.6b.

M one charged hadron
O three charged hadrons

O electron
[J muon

(a)

Figure 2.6: (a): Branching fraction of a 7 lepton to experimentally distinguished
decay channel classes [22]. (b): Sketch of a 7-lepton decay to a neu-
trino, three charged and one neutral pion. The drawn cones indicate
the larger width of jets initiated by a quark or a gluon instead of a 7
lepton, which helps to differentiate these processes.
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CHAPTER 3

CP Violation and Anomalous HV'V' Couplings

In 1932, Carl Anderson discovered particles with the same mass as electrons, but
the opposite electric charge [51]. This was the first experimental observation of
antimatter as predicted by Dirac’s equation [52], with the same properties as its
matter counterpart, except for reversed additive quantum numbers. CP symmetry
states that a physical system evolves in the same way when containing matter as
when containing antimatter (charge conjugation, C) and being mirrored (parity,
P). It also implies that, whenever matter is created or destroyed, the same thing
must occur to the same amount of antimatter. This is in conflict with the fact
that almost no antimatter has been observed in the universe.

The main topic of this thesis is a test of CP violation in the coupling of the Higgs
boson to vector bosons, also referred to as “HV'V couplings.” This chapter covers
the CP-violating processes within the SM and explains why more such processes
are expected outside of the SM and how CP conservation in particle interactions
can be tested.

3.1 CP Violation in the Standard Model

The only interaction that is known to break CP symmetry in the SM is the weak
force. In 1964, CPV was observed in the decay of neutral kaons [53]. This showed
that CPV is possible in weak interactions of quarks. To incorporate this prop-
erty into the theory, the Cabibbo-Kobayashi-Maskawa (CKM) matrix was intro-
duced [9,10]. This section covers the theoretical description of CPV in the SM
and its implications for the asymmetry between baryons and antibaryons in the
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3 CP Violation and Anomalous HV'V Couplings

universe.

The introduction of CPV was combined with the observation that the mass
eigenstates ¢ of the quarks, i.e. the physical particles, are not the same as the
weak eigenstates ¢’, which are the states that couple to W bosons. If these are not
the same, a unitary matrix V' can be introduced to describe the mixing of mass
eigenstates and weak eigenstates as follows:

d/ Vud Vus Vub d
sl =1V Ves Va s
b Via Vis Vi b

This matrix V' is known as the CKM matrix, and in the Wolfenstein parametriza-
tion the entries take the following form [54]:

1—X%/2 A AX3(p —in)
V= A 122 AN
AN (1 —p—in) —AN 1

The latest measurements for the four parameters yield [22]:
A =0.22650 £0.00048 , A =0.790T0017, p=0.14175015, n=0.3574£0.011.

The source of CPV in a theory including quark mixing with the CKM matrix is
the parameter 7, since it causes the quark states in W exchanges to have different
complex phases. Due to interference between the contributions from different
quark flavours to electroweak loop diagrams, the presence of different complex
phases can lead to a discrepancy between the rates of particle and anti-particle
reactions and thus violate CP symmetry.

Since this is the only mechanism in the SM that is known to break CP conservation,
the impact it has on the baryon-antibaryon asymmetry of the universe has been
studied in great detail [3-7]. It was concluded that the amount of asymmetry

np —nNg ng

Ty Ty

generated through the CKM matrix is below 107, meaning roughly that for every
10" antibaryons produced, there are 10! + 1 baryons produced. But compared
to the observed value of 6-1071° from measurements of the cosmic microwave
background conducted in Ref. [55], the baryon asymmetry from the CKM matrix
is negligible. This is one of the main reasons why it is expected that CP-violating
processes beyond the SM exist.
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3.2 Effective Field Theories

3.2 Effective Field Theories

The Effective Field Theory (EFT) framework [56] was devised to probe new physics
without assuming a specific extension of the SM. This framework does not intro-
duce any specific BSM particles, but adds new Lorentz-invariant operators to the
SM Lagrangian that consist of combinations of the SM fields. Each one of these
operators has a prefactor f, known as Wilson coefficient, and a power of the hy-
pothetical energy scale A corresponding to the mass of the lightest BSM particle.
Thus, Lagrangians of EF'T models have the following structure:

5 6
Lerr = Lsm + Z %Of + Z %O? + ...

The superscript of the operators O; indicates their mass dimension. Since La-
grangians are of mass dimension 4, all dimension-5 operators are suppressed by
1/A, while dimension-6 are suppressed by 1/A? etc. As A is typically assumed to
be of the order of 1 TeV or greater since current experimental results show no sign
of new particles up to this scale, this serves as a way to regulate the contribution
from the more complicated higher-order operators, making EFT models theoret-
ically and computationally more feasible. The Wilson coefficients are a way to
access these operators experimentally. Finding the value of any of the f; to be
incompatible with zero would be a sign of BSM physics.

The lowest-order CP-odd EFT operators that contribute to HV'V couplings are
of dimension 6. No such operators with mass dimension 7 can be constructed, and
as contributions from dimension-8 operators are much more strongly suppressed,
only the dimension-6 operators will be considered. The main goal of this thesis
is to measure the Wilson coefficients of such dimension-6 operators, since their
interference with the CP-even SM HV'V operators defined in Eq. (2.7) can lead
to different rates between VBF with quarks or anti-quarks in the initial state.

3.3 Parametrization of Anomalous HV'V Couplings

There are 76 Lorentz-invariant possibilities to combine SM fields into dimension-6
operators. When taking the SM equations of motion of the fields into account,
it becomes apparent that some of these operators are linearly dependent, and
only 59 independent operators remain. Which set of 59 operators to use is up to
preference. Depending on the focus of an analysis, one specific choice of operators
can simplify the calculations compared to other choices. Therefore, different EFT
bases have been used in different contexts. The one used for the VBF H — 77
CP analysis is described in the following.
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3 CP Violation and Anomalous HV'V Couplings

A big simplification regarding the basis choice for the presented analysis is that
its scope is limited to CP-odd extensions of the HV'V couplings. Out of the 59
independent operators of dimension-6 EFTs, only 3 contribute to these. Since the
analysis is not sensitive to any other operators, the Wilson coefficients of these
operators are assumed to be equal to zero, making their corresponding terms in
the Lagrangian irrelevant in the context of this thesis.

The simplified EFT Lagrangian for the H — 77 analysis, including the remain-
ing three operators, can be written as [57]:

I

Lepr = Lsu + fﬁogs + D Oww + 42

v ) 0.

In terms of SM fields, the three dimension-6 operators are defined as:

Opp = B BuBY® Oy = W, WS 0 = (D,8) B D,® .

Here, BW = i%/BW and WW = % gJaW5y with the Pauli matrices . The covariant
derivative in the SU(2) x U(1) theory is D, = 9, + £¢'B, +i$0°W, and the dual
field strength tensors f/,“, is defined as f/,w = €upo V7 with the antisymmetric
Levi-Civita tensor € and V*? as defined in Sec. 2.1.

The operator Oz, in addition to HV'V couplings, also contributes to CP-odd
triple gauge-boson couplings, which have already been experimentally accessible
at the LEP collider. The L3 [58] and OPAL [59] collaborations have strongly
constrained these couplings and with them the Wilson coefficient fz. For this
reason, the operator O is omitted in the following.

The remaining two operators can be rewritten after electroweak symmetry break-

ing in the mass basis of the W, Z and ~ bosons:
Lopp = Lo + GuaaHAA™ + GrazHALZ" + GruzgH 2, 2" + Guww HW, LW

Of the four anomalous coupling strengths ggyy, only two are independent. There-
fore, they can be expressed in terms of two dimensionless parameters d and dpg:

Gran = —2—(dsin® Oy + dp cos®Ow)  Grag = —0— sin 20y (d — dp)
2myy 2y

~ g 53 oo ~ g 5
guzz = —(dCOS2 HW + dB SlIl2 ew) gaww = —d s
2mW mw
with the weak mixing angle Oy, = arctan(%). Relating d and dg to the Wilson
coefficients yields
PR Iy =~

—Ffww = —W tan2 GWf];,B .
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3.4 The Optimal-Observable Method

This makes it apparent that d and dp quantify the specific contributions of different
vector bosons to the CP-odd HV'V coupling, which are difficult to distinguish from
one another in an experiment. Therefore, the choice to simplify the parametriza-
tion of CP-odd HVV couplings further by assuming dg = d is adopted. This
results in the following simplified expressions for the anomalous HV'V couplings:
. . 1. g s .
JHAA = GHZZ = S9HWW = 2—d and graz = 0. (3.1)
mw
Hence, this EFT ansatz allows to characterize CP-odd contributions to HVV
couplings with only the parameter d.

3.4 The Optimal-Observable Method

This section describes the Optimal-Observable method [60-63] employed to probe
the value of d experimentally, under the aforementioned assumptions.

The strengths of the anomalous couplings in Eq. 3.1 are all proportional to
d. This implies that the matrix element M of VBF Higgs production including
anomalous couplings can be decomposed as follows into the SM contribution Mgy
and the CP-odd contribution Mcp_oqq:

M = Mgy 4+ dMcp_oad -

Squaring this equation yields an expression proportional to the differential pro-
duction cross-section:

IMP* = [Msm]” + 2dR(MgMcp-oaa) + d*[Mcp-oaal” - (3.2)

The first and third contribution are both CP-even, but the interference term be-
tween CP-odd and CP-even matrix elements is CP-odd, making it a source of
CPV not accounted for in the SM. Since it is CP-odd, integrating the interference
term over a CP-even part of the phase-space will yield zero, i.e. it has no influ-
ence on the total VBF cross-section. The third term, however, is CP-even and
will therefore lead to an increase of the total Higgs-boson production cross-section
proportional to d2. This offers a possibility to probe d through the observed num-
ber of Higgs-boson events, which is however not exploited in this thesis for reasons
discussed in Sec. 3.5.

Instead, the focus is placed on the interference term. The first-order Optimal
Observable O,y is defined as:

R(MEMep-oda)

0. —
Opt |MSM|2
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3 CP Violation and Anomalous HV'V Couplings

With this definition, O,y combines the information of the seven-dimensional VBF
phase-space into a single variable, making it very sensitive to the properties of
the HV'V vertex. It is calculated using the dependence of the matrix elements
on the four-momenta of the involved particles: the initial-state partons that emit
the vector bosons, the final-state quarks after this emission, and the Higgs boson.
But in data, these are not directly accessible and must therefore be approximated.
Instead of the two final-state quarks, the two jets with the highest transverse
momentum, also called “tagging jets,” are used. The Higgs-boson four-momentum
is estimated from its decay products with the Missing Mass Calculator [64]. The
initial-state parton momenta, being part of the colliding beams of protons with
four-momenta pg, are known to be of the form

Pi = Z1/2PB

with the momentum fraction w1/, of the proton that is carried by the matrix-
element parton. This can be reconstructed from the mass m and rapidity y =

% In (gjﬁ :: ) of the summed four-momenta of the final-state tagging jets and recon-

structed Higgs boson:

Tijg = Mfinal eTYfnal

s
The quantity p of a particle is the projection of its momentum three-vector on
the proton-beam direction.

The matrix elements are evaluated at leading order from these inputs using
HAWK [33] to obtain the value of O,y But the matrix element also depends on
the flavour of the incoming and outgoing partons, which can also not be deter-
mined experimentally. Instead, the matrix elements for all possible parton-flavour
combinations are calculated and added up, weighted with the product of the corre-
sponding CT10 [65] parton distribution function (PDF) values of the initial-state
partons.

Example O,y distributions in VBF H — 77 events are shown in Fig. 3.1.
This figure illustrates the analysis strategy for the test of CP conservation. By
comparing the shape of the O, distribution in data to the predictions for different
d values, one can find the d value that best describes the observation. Finding this
measured d value to be incompatible with zero would be a sign of CPV.

The predictions of the distribution in the case of d # (0 are obtained with an
event-level reweighting algorithm. For this, CP-odd and CP-even matrix elements
are calculated for each event at truth level, directly accessing the four-momenta
of the matrix-element partons and the Higgs boson. The matrix elements are
calculated at LO for events with two and three final-state partons to construct
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Figure 3.1: Distribution of Oy in VBF H — 77 events assuming different HVV
coupling scenarios in the Higgs-boson production vertex. A non-zero
value of d shifts the observed mean of Op¢ [11].
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Applying these weights to the events of a sample of simulated SM VBF Higgs-
boson production events replaces their SM cross-section with the cross-section of
arbitrary hypotheses with d # 0. This makes it possible to make predictions
of data distributions in the presence of anomalous couplings without having to
generate signal samples of such hypotheses.

The reweighting method was validated using MadGraph5_aMC@NLO [66]. For
this, a SM VBF sample and several non-SM VBF samples were created at NLO
precision in QCD. For the non-SM samples, different d hypotheses were assumed.
To test the validity of the reweighting, the weights were applied to the SM sam-
ple. Afterwards, distributions of different variables were compared between the
reweighted SM and a BSM sample generated with the same d value as the weights
applied to the SM sample. Such a test of the O, distribution is shown in Fig. 3.2,
and the two samples are well compatible over the whole O,y range, showing that
the reweighting algorithm can be used in order to avoid generating additional
samples.
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Figure 3.2: Distribution of the Optimal Observable OO in a VBF sample generated
with d = 0.1 (red) and a SM sample that was reweighted to d = 0.1
(black) [50].

The dependence of O, on d can be investigated by calculating its mean value:

f Oopt<dUSM + Ci dgCP—odd + JQ dUCP—even)
[(dosy + d docp.oaa + A2 docpcven)

<00pt> -

The separation of the differential cross-section into three parts is based on the three
parts of the squared matrix element |[M]|? in Eq. (3.2), since these quantities are
proportional. As O,y is @ CP-odd observable, its mean will vanish when integrated
over a CP-even cross-section term. Similarly, the integral over the CP-odd cross-
section term will vanish if it has no CP-odd prefactor. Thus, the expression can
be simplified to

(Zf Oopt dUCP—odd
deSM +d? deCP-even .

<00pt> -

This shows that, for small d values, the mean value of O rises linearly, while for
larger d values, the d? term in the denominator becomes dominant and the mean
value decreases with 1/d. As the dependence of (Ogpt) 1s linear around d =0, the
Ogpt distribution changes strongly for varying values of d close to zero, while the
change is smaller for high d values.
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3.5 Model Dependence of CP Tests

This section discusses the implicit assumptions that go into a test of CP conserva-
tion using the Optimal-Observable method, and what can be done to reduce the
model dependence.

Firstly, to conduct a pure test of CP conservation, the estimate of the total
observed signal yield should be independent from the measurement of the best-
fit value of the CPV inducing parameter d. The reason is that there can be
contributions to the differential cross-section from CP-even EFT operators, which
would have the same form as in Eq. (3.2). In the case of a CP-even contribution,
the interference term as well as the last term would be CP-even, which means
that they impact the total production cross-section. As this effect cannot be fully
disentangled from the cross-section change introduced by d # 0, this information
should not be used for a test of CPV. The shape of the O,y distribution can
be used instead, since its mean will not be shifted in the presence of CP-even
anomalous couplings. The disadvantage is that a pure shape analysis is not as
sensitive as an analysis that takes the total signal event yield into account, since
not all the information in the data is used.

It is also worth noting that the gq¢’ initial state of VBF is not a C eigenstate.
Therefore, a CP-odd observable which gives a non-zero expectation value only in
case of CPV in VBF cannot be constructed [67]. The probability distribution
of the ¢¢' state is, however, P-invariant. This means that, when ignoring the
experimentally inaccessible spin configurations of the involved particles, it is also
invariant under the “naive time reversal” operator T as defined in Ref. [68]. This
operator transforms a single-particle state |¢(p, s)) of momentum p and spin s into

TN|¢(pv S)> = |¢(_p7 _S)> )

whereas

Plo(p, s)) = nolo(=p, s))

with the intrinsic parity 7, of the field. As an alternative to a CP-odd observable,
one can define a Tv-odd observable, such as Oy, instead to perform a CP test,
when no CP-odd observables can be constructed.

This difference becomes important in the presence of BSM particles with masses
below the EFT scale A of new physics that enter the VBF process via loop cor-
rections. Such on-shell loop corrections are also referred to as rescattering. With
rescattering, the VBF transition amplitude can incur contributions that are not
Tn-symmetric, which can shift the mean value of Oy, without necessarily violating
C'P conservation.

To conclude, measuring a significantly asymmetric O, distribution would imply
either rescattering or CPV in VBF. Both of these are BSM phenomena, but in order
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3 CP Violation and Anomalous HV'V Couplings

to claim an observation of CPV based on an O, measurement, the absence of
rescattering, or only a negligible effect from it, must either be assumed or proven
in a separate study. This assumption can be argued to be well-motivated, since
no evidence of particles that could cause rescattering has been observed yet.

Despite not being the same as CP-odd observables, T-odd observables are also
referred to as CP-odd throughout this thesis, since negligible rescattering effects
are assumed in the interpretation of the obtained results.
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CHAPTER 4

The ATLAS experiment at the LHC

In this chapter, the experimental setup used to produce the data used in the
presented analyses is described. An important part of this setup is the Large
Hadron Collider (LHC), the largest high-energy particle accelerator in the world,
which is located at CERN near Geneva. The collision events produced by the LHC
synchrotron are reconstructed with different detectors. In the case of this thesis,
data reconstructed with the ATLAS detector are used. The following sections
describe the components of these machines, what purpose they fulfill and how
they performed in the data-taking period from 2015 to 2018, also referred to as
Run 2.

4.1 The LHC Accelerator

The LHC is a collision ring with a 27 km circumference, constructed within a
tunnel that is about 100 m underground [69]. Its main purpose is to accelerate
particles to very high energies and making them collide. For the data used in this
thesis, the accelerated particles were protons, but the LHC also accelerates lead
ions.

Its main constituents are two nearly circular beam pipes, containing beams that
rotate in opposite directions, and superconducting dipole magnets producing an
8.3 T field to control the beams. The protons are obtained by removing the elec-
trons from hydrogen atoms and injecting them into the LHC at a beam energy of
450 GeV. Before injecting the protons into the LHC, they pass through smaller
pre-accelerators. The CERN accelerator complex is depicted in Fig. 4.1. It also
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Figure 4.1: Sketch of the CERN accelerator complex, including the LHC, its pre-
accelerator chain and the positions of the four largest detectors.

shows the beam-crossing points, where particle detectors have been built to exam-
ine the collisions. The most important one for this thesis is the ATLAS detector,
designed to discover the Higgs boson, measure the properties of SM particles and
find evidence for BSM physics [70].

The luminosity L is a measure of the beam intensity. It connects the cross-
section o of a specific process to its event rate %—];’ via

AN
S S
a7

Thus, in order to record as many events as possible, L needs to be maximized. The
goal during the construction of the LHC was to reach L = 103 cm~2s7!. This goal
was reached in 2016, and even doubled in 2017. To describe the size of a dataset,
the time-integrated luminosity is often used. This is a measure of the total number
of produced proton-proton interactions, often given in units of fb=!, where 1 b =
1072 m2. The evolution of the integrated luminosity throughout Run 2 is shown
in Fig. 4.2. The full Run-2 dataset that can be used for physics analyses amounts
to 139 fb~L.

Increasing the luminosity to large values comes at a cost. If, during the same
crossing of proton bunches from the two beams, multiple protons collide, the scat-
tering particles will reach the detector at the same time. This leads to overlapping
detector signals, making a correct reconstruction of events more difficult. The
number of proton-proton interactions per bunch-crossing is named pile-up u, and
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Figure 4.2: Time-integrated luminosity throughout the LHC Run-2 data-taking
period [71]. The overall recording efficiency of the ATLAS detector as
well as temporary technical problems of subdetectors lead to a slight
decrease of data usable for physics analyses with respect to the pro-
duced amount.

its distribution in Run 2 is shown in Fig. 4.3.

4.2 The ATLAS Detector

The ATLAS detector [70] is a multi-purpose detector, originally designed to dis-
cover the SM Higgs boson, measure its properties and those of other SM particles,
and find hints for BSM physics. It has a cylindrical shape with a length of 44 m
and a diameter of 25 m, covering almost a 47 solid angle around the interaction
point at its centre. The central part of the detector is called barrel, and at its
ends, the end-caps are positioned. A picture of the detector is shown in Fig. 4.4.

The ATLAS collaboration uses a right-handed coordinate system, with the z axis
pointing in the beam direction. The x — y plane is perpendicular to the z axis,
with the z axis pointing to the centre of the LHC and the y axis pointing upwards
from the interaction point. More commonly, a spherical coordinate system is used,
with the azimuthal angle ¢ describing angles in the x — y plane. The polar angle
f gives the deviation from the beam direction. Instead of directly using 6, the
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Figure 4.3: Pile-up profile during Run-2 data-taking [71]. The profile of 2017 shows
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two peaks, since two different proton-bunching schemes were used in
that year.
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Figure 4.4: Illustration of the ATLAS detector in cut-away view [70].



4.2 The ATLAS Detector

rapidity y and pseudorapidity 7 are often used:
y=—In
2 E+p,
In{t 0
=—In(tan | =
n 9 )

where p, is the momentum of a particle in z direction and F is its energy. The
difference between the y values of two particles is invariant under Lorentz boosts
in z direction. The pseudorapidity n is equivalent to y in the case of massless
particles, and a good approximation if p > m. It is often preferred over the usage
of y since it only depends on the polar angle €, which is easier to measure than F
and p, for highly relativistic particles. To describe angular distances between two
particles, it is common to use

AR = /BP + By .

To be able to identify different types of processes, the detector comprises several
subsystems that fulfill different tasks: The inner detector (InDet), the electromag-
netic calorimeter (ECal), the hadronic calorimeter (HCal), the forward calorimeter
(FCal) and the muon spectrometer (MS). The coverage of these subdetectors as
well as their energy/momentum resolution for incoming particles are summarized
in Tab. 4.1. In the following sections, a brief description of the different parts of
the detector, as well as their subcomponents, is given.

Table 4.1: Energy and momentum resolutions of the ATLAS detector’s subsys-
tems. The coverage of the detector parts in 7| is also given [70,72-74].
The resolution given for the ECal describes electromagnetic showers,
while for the HCal and FCal the resolutions on energies of hadronic
showers are given.

Component Resolution (pr/E in GeV) |n| range
Inner detector % = 0.04% - pr & 2% 0,2.5]
Electromagnetic calorimeter = % oL 1% 0,3.2]
Hadronic calorimeter & = \07% @& 3% [0, 3.2]
Forward calorimeter = = \/LE @ 10% (3.1,4.9]
Muon spectrometer ‘;LTT =10% at pr =1 TeV  [0,2.7]
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4.2.1 Inner Detector

The ATLAS inner detector is closest to the beam pipe, and uses silicon sensors
to reconstruct interaction vertices and trajectories of charged particles. It consists
of three subsystems: The pixel detector, the semiconductor tracker (SCT) and
transition radiation tracker (TRT'). These parts are shown in Fig. 4.5. They contain
sensors that are ionized by incoming charged particles. This ionization produces
an electric signal often named a “hit.” Since the InDet is structured in layers, the
hits in different detector layers can be used to reconstruct particle tracks.

21m

" End-cap semiconductor tracker

Figure 4.5: Cut-away view of the ATLAS inner detector [70].

To measure the momentum of incoming charged particles, the InDet is immersed
in a 2 T solenoid magnetic field that bends their trajectories. From the measured
curvature, the ratio ¢/p of charge and momentum of an incoming particle can be
obtained.

The innermost part of the InDet is the pixel detector, containing over 80 million
pixels that are 50 x 400 pm? in size. It is designed to give very good spatial resolu-
tion of the incoming particles, and consists of three cylindrical layers. Since Run 2,
an additional pixel layer named Insertable B-Layer (IBL) was placed closest to the
beam pipe, further improving the vertex reconstruction and thus the identification
of b quarks and 7 leptons which produce secondary vertices when decaying.

The pixel detector is surrounded by the SCT, which is composed of four layers
of silicon microstrips. The positional resolution achieved by the SCT is around
20 pm in r — ¢ direction and 600 pm in z direction.
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4.2 The ATLAS Detector

The TRT is made of straw tubes which are positioned parallel to the beam
pipe in the barrel and orthogonal to it in the end-caps. In addition to providing
further tracking information, the signal amplitude of the TRT tubes is sensitive
to the Lorentz boost factor 7 of incoming particles [75]. Therefore, the TRT hits
in the 36 layers a particle traverses on average are separated in low-threshold and
high-threshold hits depending on the measured ionization. High-threshold hits are
much more likely to originate from ultra-relativistic particles with high ~ factor,
which helps distinguish electrons from hadrons such as pions. Moreover, the TRT
has a positional resolution in r — ¢ direction of 13 pm.

4.2.2 Calorimeters

The ATLAS detector relies on three calorimeters for the energy measurement of
photons, electrons and hadrons: The ECal, the HCal and the FCal. All of them are
sampling calorimeters, meaning that they consist of two types of materials which
are layered alternatingly: an active material and a passive absorber material. The
calorimeters stop incoming particles by absorbing them in the absorber material
and initiating particle showers, while their energy is measured through the signal
that the showers leave in the active material. The layout of the calorimeters is
shown in Fig. 4.6.

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr eleciromagnetic

LAr electromagnetic
barrel

Figure 4.6: Schematic representation of the ATLAS calorimetry system [70].

The ECal has passive layers made of lead, while liquid argon (LAr) is used for
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the active layers. It is split into a barrel part covering |n| values up to 1.475 and
two end-caps (EMEC) covering |n| € [1.375,3.2]. The depth of the barrel part is
over 22 radiation lengths X,. This is a material-independent measure of how far
a particle can traverse the material before reducing its energy by a factor of 1/e
due to electromagnetic interactions with the material. The end-caps are over 24
X deep. The positional resolution is 0.025 x 0.1 in Ay x A¢ in the barrel and
0.025 x 0.025 for the EMEC. To correct for particles starting showering before the
first lead layer, a presampler LAr layer is installed inside of the ECal.

The HCal is built around the ECal. Its barrel part, covering |n| < 1.7, has steel
absorber layers and scintillator tiles as active material. The hadronic end-cap
calorimeter (HEC) covers the range || € [1.5,3.2] and uses copper as absorber
and LAr as active material. The HCal has a granularity of 0.1 x 0.1 for |n| < 2.5
and 0.2 x 0.2 for larger |n| values.

The FCal is built very closely around the beam pipe, to cover forward-scattered
particles with |n| € [3.1,4.9]. It has three absorber layers. The first one is made of
copper, which is well-suited for absorbing electromagnetically interacting particles.
The other two are made of tungsten, intended for hadrons. The active material of
the FCal is LAr.

4.2.3 Muon Spectrometer

Muons leave tracks in the InDet, but pass through the calorimeters while retaining
most of their energy, since they are minimally ionizing particles. To identify muon
tracks, the muon spectrometer is built around the calorimeters, with 4 T toroid
magnets to bend the muon trajectories. The MS consists of four subdetectors, as
shown in Fig. 4.7.

For high-precision spatial resolution, the Monitored Drift Tube (MDT) chambers
are used in the range |n| < 2.7. The tubes in these chambers contain a gas that
is ionized by traversing muons, achieving a spatial resolution of about 35 pym. In
the innermost MS layer, the MDTs only cover |n| < 2.0. Cathode-Strip Chambers
(CSC) are used instead for 2.0 < |n| < 2.7. These have better time resolution and
rate capability, but the spatial resolution is slightly reduced.

In addition to these very precise subdetectors, the MS also contains two sub-
detectors designed to process muon signals as quickly as possible. The Resistive
Plate Chambers (RPC) cover the area |n| < 1.05, the Thin Gap Chambers (TGC)
1.05 < |n| < 2.4, and they can deliver track information within a few tens of
nanoseconds.
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Thin-gap chambers (T&GC)
F i Cathode strip chambers (CSC)

Resistive-plate
chambers (RPC)

| End-cap toroid
Monitored drift tubes (MDT)

Figure 4.7: Muon system of the ATLAS detector [70].

4.2.4 Trigger System

The LHC operates at a nominal collision rate of 40 MHz. This high rate makes it
impossible to store all collision events for physics analyses. Therefore, the trigger
system was introduced. This system comprises a variety of fast algorithms search-
ing for specific properties in the events, to decide whether to keep or discard the
event information permanently.

In Run 2, this system was split into the hardware-based Level-1 (L1) trigger
and the software-based Higher-Level Trigger (HLT) [76]. Any event that does not
pass both of these levels is discarded. The L1 trigger has the goal to reduce the
accepted event rate from 40 MHz to 100 kHz. The HLT examines the remaining
events and reduces the event rate to a manageable 1 kHz which are then recorded
for further analysis.

To process events as quickly as possible, the L1 does not use information from
the InDet, since the reconstruction of tracks from hits is too computationally
intensive. In order for events to pass the L1 trigger, they must exhibit either
large energy deposits in the calorimeters or distinct tracks in the RPCs and TPCs.
The detector parts that show these features are identified as regions of interest
(ROIs), which are then used as inputs for the HLT algorithms to further classify
the event. There are different groups of HLT algorithms designed to detect the
presence of specific objects in an event. The HLT tests events for signatures of
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electrons, photons, muons, hadronic 7-lepton decays, jets, b-quark-induced jets,
missing transverse momentum, and decays of hadrons containing b or ¢ quarks.
An event is discarded by the trigger system if none of these signatures is found.
The algorithms that identify hadronically-decaying 7 leptons are described in more
detail in Sec. 6.1, since they are used to select the events analyzed in Chap. 7 and
8.

4.3 Simulation of Proton-Proton Collisions

In order to compare the predictions of the SM and other theories to observed data
distributions, proton-proton collisions are commonly simulated assuming certain
interaction properties for the involved particles. This section outlines the proce-
dure applied to generate Monte-Carlo (MC) simulated collision events.

4.3.1 Description of Protons

In the SM, protons are described as particle compounds of three valence quarks:
two u quarks and a d quark. But due to the valence quarks strongly interact-
ing with each other, other particles, such as gluons or s quarks, are transiently
produced. Therefore, the interacting particles in proton-proton collisions are not
necessarily u or d quarks.

This phenomenon is quantified with parton distribution functions (PDFs), which
give the probability f, to find a parton of the species a in an interacting proton.
The PDFs depend on the fraction x of the total proton energy carried by the
parton as well as the energy scale p that quantifies the order of magnitude of
momentum transferred during the investigated interaction. Example collections
of PDF's for all parton species, named PDF sets, are shown in Fig. 4.8. While for
high x values, the valence quarks have the highest PDF values, they become less
important as x decreases. It is also worth noting that with increasing energy scale
i, the PDF values of the gluons increase considerably.

These PDFs can be used to calculate cross-sections ¢ in proton-proton collisions
as combinations of partonic cross-sections o;;:

1 1
CT:Z/diﬁl/d$2f¢($17#F)fj(9327#F)Uij- (4.1)
b0 0

This equation is based on the factorization theorem, stating that low-momentum
and high-momentum interactions can be calculated separately [78]. This implies
that the low-momentum interactions within the proton can be described through
the PDF's independently from the high-momentum scattering described with oy;.
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NNPDF3.1 (NNLO) ] E
xf(x,u2=10 GeV?) ]

0.9¢ xf(x,u2=10* GeVz)é
0.8f -
0.75
o.ei
0.55

0.4F

Figure 4.8: Values of the NNPDF set for different partons in the case of u? =
10 (GeV)? (left) and p? = 10* (GeV)? (right) [77].

To achieve this separation, an energy scale ur named factorization scale must be
introduced.

4.3.2 Simulation of Parton Interactions

The coupling strength ag introduced in Sec. 2.1 is often treated as effectively
energy-dependent. This is due to the regularization and renormalization of the SM,
which are conducted to remove unphysical divergent cross-sections. The divergent
parts can be absorbed into the SM coupling strengths, which gain a dependence on
the renormalization scale g that was introduced to the theory for this procedure.

After introducing g, the partonic cross-section encoded in the expression o;;
in Eq. (4.1) can be evaluated perturbatively in ag. Depending on the number
of orders of ag that are included in this calculation, starting from the lowest
possible order, it is referred to as a leading-order (one order of ag), next-to-leading
order (2 orders), next-to-next-to-leading order (3 orders) etc. To obtain the oyj,
the transition amplitudes are calculated. Afterwards, events with the according
distribution of particles are generated using MC simulation. Events at this stage
of simulation are named “parton-level” or “generator-level” events.

In addition to the products of the hard scattering process, or also as part of them,
proton-proton collisions will in most cases produce partons that are not bound in
colour-neutral states. These will, if they have a sufficiently high momentum, split
into more colour-charged particles via the modes ¢ — qg, g — qq or g — gg. By
splitting into numerous particles, the average energy per particle decreases and a
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QCD jet is formed from the parton. In simulation, this typically ends when the
particle energies reach values of around 1 GeV [79]. At that point, the particles
merge to form colour-neutral bound states. This hadronization step cannot be
simulated perturbatively, as «ag is large at low energy scales. Instead, different
simplified models are devised to describe it, and are implemented in programs
known as parton showers. These models come with a number of parameters that
were measured in dedicated experiments, and complete sets of values for these
parameters are known as “tunes.” The generation of hadrons from remnants of
the colliding protons is named “underlying event” and, like the hadronization
of final-state partons of the hard scattering process, is simulated using parton
showering programs. A summary of all steps in the simulation chain up to this
point is shown in Fig. 4.9.

Figure 4.9: Pictorial representation of a simulated proton-proton collision event.
The hard interactions are marked by red blobs, while hadronization
and decay of the resulting hadrons are marked in dark and light green.
The remnants of the beam are marked in light blue, and the underlying
event activity is marked in purple. Photon radiation is marked in
yellow [80].

The effects of pile-up collisions that arise in the investigated bunch-crossing ( “in-
time pile-up”) and the previous and following bunch-crossings (“out-of-time pile-
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up”) are included in the simulation by overlaying simulated minimum-bias events
which do not contain the signatures of a hard scattering process to the simulated
events of the desired process. To make the simulated collisions more comparable
with the ones produced by the LHC, a detector simulation [81] based on the
program GEANT4 [82] is performed. Using a model of the detector geometry, the
detector response on the MC-generated events is simulated. Fully simulated events
before the detector simulation step are named “truth-level” events, while after it
they are named “reconstruction-level” events. Only events at reconstruction level
are directly comparable to data.
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CHAPTER b

Object Reconstruction

This chapter describes the methods used within the ATLAS collaboration to iden-
tify different types of particles based on ionization in the InDet and MS and
energy deposits in the calorimeters, which is necessary to classify collision events
and reconstruct the underlying interactions. These methods are based on combin-
ing InDet tracks, MS tracks and calorimeter energy clusters. The InDet tracks are
reconstructed from hits in the pixel detector, the SCT and the TRT. Pattern recon-
struction algorithms are employed to combine hits to tracks, and multiple tracks
sharing a common origin are used to reconstruct vertices [83,84]. Calorimeter
energy clusters are constructed with a topological grouping of individual calorime-
ter cells where incoming particles deposited energy using a pattern recognition
algorithm [85].

5.1 Electrons and Photons

Electrons are reconstructed in the central region |n| < 2.47 by matching InDet
tracks to clusters in the ECal, which is done by comparing their  and ¢ values [86].
If matching pairs of tracks and clusters are found, the electron energy is taken from
the cluster, while the direction is taken from the InDet information, to use the most
exact information.

To identify electrons among the thus reconstructed candidates, a likelihood-
based discriminator is defined. This discriminator has numerous input variables,
to separate electrons from light-flavour jets initiated by wu, d or s quarks, pho-
tons or heavy-flavour jets initiated by ¢ and b quarks. Some of the most relevant
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variables are the signal in the TRT, the transverse impact parameter of the elec-
tron’s associated track with respect to the beam line and the shower profile in
the ECal. The transverse impact parameter is the projection on the transverse
plane of the distance between the track and the beam line at their point of closest
approach. Three cuts of varying strictness are applied on this likelihood-based
electron identifier to define the loose, medium and tight identification working
points. The analyses described in Chap. 7 and 8 both use electrons passing the
medium identification.

To separate prompt electrons from those produced from decays of heavy-flavour
quarks or within jets, isolation criteria are applied, since the former tend to have
little detector activity around the candidate. Calorimeter-based and track-based
isolation criteria are defined, measuring either the deposited energy around the
ECal cluster of the electron or the summed pr of tracks around the electron track,
checking the detector region up to AR = 0.2 to the cluster barycentre and the
track. The barycentre of a calorimetric cluster is defined as the average direction
of all clustered cells weighted by the deposited energy measured in them.

The FCLoose isolation working point, applied in Chap. 8, is defined by requiring
that the energy in the ECal isolation region, subtracting the electron cluster, be
below 20% of the estimated pr of the electron, and additionally that the sum of
the pr of all tracks with AR < 0.2 be below 15% of the electron pr. The gradient
isolation working point used for the electrons in the analysis in Chap. 7 has varying
isolation energy thresholds to achieve an efficiency of 90% for 25 GeV electrons
that rises linearly to 99% for electrons with 60 GeV.

Since photons share similar signatures in the ECal as electrons, the reconstruc-
tion of electrons and photons are conducted in parallel [87]. Separate reconstruc-
tion algorithms for converted and unconverted photons are applied, where con-
verted means that the photons split into an electron-positron pair before reach-
ing the ECal. While unconverted photons are reconstructed as ECal clusters for
which no matching tracks are found, the converted photons require two matching
oppositely-charged tracks originating from the same vertex.

5.2 Muons

Muons are reconstructed from tracks in the InDet and the MS [88]. Additionally,
calorimeter information is used in the region || < 0.1 where the read-out cables
of the InDet require a gap in the MS.

Different types of reconstructed muons are distinguished. The most relevant
ones for the analyses presented in this thesis are the combined muons, which are
reconstructed from InDet tracks and MS tracks that could be matched to one
another due to similar 7 and ¢ values. Other types are defined for cases where
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either the track quality is not sufficient in the MS or InDet due to a low number
of hits, or in || < 0.1 using energy deposits in the calorimeters that match InDet
tracks and are compatible with minimally ionizing particles.

The identification of muons among these reconstructed candidates is based on
three variables:

e significance of ¢/p, which compares the two independent measurements of
(¢/P)inpes—(a/P)Ms
\/UI2nDet+a'l%/[S
InDet/MS describes the detector subsystem in which the ¢/p measurement

was conducted and o is the uncertainty on each of the two measurements.

the matched InDet and MS tracks:

, where the subscript

e o/, the absolute value of the difference between the transverse momentum®
pr in the InDet and MS, divided by the value measured from the combined
track.

e normalized x? of the combined track fit described in Ref. [89)].

Loose, medium and tight identification criteria for muons are defined by placing
requirements of varying strictness on these three variables.

Similarly to the electrons, isolation criteria are defined to distinguish muons
produced within QCD jets from promptly produced muons. The FixedCutTight-
TrackOnly working point, used in Chap. 6 and 8, requires pireone39/pf. < 0.06.
The variable py°m®3Y is the sum of pr of tracks with pr > 1 GeV in a cone of
size AR = min(10 GeV/pk,0.3). The gradient isolation working point, used in
Chap. 7, has varying requirements for the energy found around the muon calorime-
ter deposit and the sum of pr of tracks around the muon to ensure an isolation

efficiency that rises linearly from 90% for 25 GeV muons to 99% for 60 GeV muons.

5.3 Jets

Jets induced by colour-charged particles leave energy in both the ECal, HCal and
FCal, and their charged constituents additionally produce tracks in the InDet.
To form jets from the topological clusters in the calorimeters, the anti-k; algo-
rithm [90,91] is used with the radius parameter R = 0.4. Before applying the
anti-k; algorithm, the “particle flow” algorithm is used for the jets measured in
Chap. 8. Such particle-flow jets do not include the calorimeter energy clusters
that can be associated to InDet tracks in the calculation of the total energy. In-
stead, the momentum measurements of the tracks is utilized for these, reducing

IThe transverse momentum pr of a particle is the projection of its momentum on the = — y
plane which is perpendicular to the beam axis.
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the uncertainty on the part of the total jet energy that originates from charged
particles.

Since the ECal, HCal and FCal are sampling calorimeters, not all the energy of
incoming particles is deposited in active detector material. To estimate the total
jet energy from its measured fraction, a calibration in multiple steps is applied [92].
The calibration corrects the jet direction by shifting its origin from the centre of
the detector to the reconstructed vertex. Then it corrects for effects from pile-up
contributions that arise in the investigated bunch-crossing (“in-time pile-up”) and
the previous and following bunch-crossings (“out-of-time pile-up”). Corrections
are also applied to account for a dependence of the measured energy on 7 and the
shower shape, which differs for quark- and gluon-initiated jets and is correlated to
the measured energy fraction. Lastly, a comparison between responses measured
in multi-jet data events and MC simulated events is conducted to account for
insufficiencies in the simulation.

In order to suppress the contribution from pile-up jets to the jets produced in
the scattering processes with the largest momentum transfer (“hard” interactions),
the jet-vertex tagger (JVT) is used [93]. The JVT combines the information of
the corrJVF and R, variables:

trk; r
Zpr (PVo) Zl)p%kl(PVo)
F— -
corrJV > Zp;fkl (PV,) RPT pJTet
prfkl(PVO) + = lk.nPU
l

trk

The sums over j and [ iterate over tracks associated to PV, or PV,,, which are the
reconstructed primary vertex candidates in the event. The variable nlY gives the
total number of tracks not associated to PV, and k = 0.01. These two variables
are the inputs for likelihood-based JVT discriminator which helps separate pile-up
jets from hard-scattering jets with 20 GeV < pr < 50 GeV, but due to the used
track information, it is limited to the central detector area || < 2.4. For jets with
2.5 < |n| < 4.5, an alternative algorithm named forward JVT is utilized [94].

Dedicated multivariate algorithms to identify b-quark-initiated jets (b-jets) among
these jets have been developed. The MV2c10 algorithm [95] mostly relies on the
relatively long lifetime of hadrons containing b quarks, which leads to a secondary
vertex in the detector. This algorithm is used in the analysis described in Chap. 6,
while the DL1r identifier [96] is used in Chap. 8. In both analyses, b-jet identifi-
cation is only used to ensure orthogonality to other analysis channels and is not
expected to have a significant impact on the obtained results.
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5.4 Hadronic 7-Lepton Decays

Leptonic 7-lepton decays, apart from the neutrinos, leave the signatures of muons
or electrons in the detector and are thus reconstructed as such. To identify the
jets that originate from hadronic decays of 7 leptons, a dedicated set of algorithms
has been developed. As these decays contain neutrinos which cannot be directly
observed, the focus of the reconstruction algorithms is placed on the remaining
decay products, which are denoted with the symbol 7j,,4.vis in the following.

5.4.1 Candidate Reconstruction

Candidates for 7.q.vis Objects are based on anti-k; jets with radius parameter R =
0.4 [97]. Unlike the previously described jets, the “local hadronic calibration” [98]
(LC) is applied to Thad-vis seed jets. They are required to have pr > 10 GeV and
In| < 2.5, while vetoing the transition region |n| € [1.37,1.52] between the detector
barrel and the end-caps. Selection and calibration algorithms are then applied to
these seed jets to increase the purity of true 7y.q.vis Objects and adapt the LC
energy estimation. True Tha.q.vis Objects are identified in the simulation with a
geometrical matching of 7,,4.vis candidates at reconstruction and truth level.

The vertex associated to the m,.q.vis candidate is chosen to be the one with the
largest fraction of track momenta with AR < 0.2 to its barycentre. Based on this
vertex, the impact parameters and directions of the 7j,.q.vis are recalculated.

Only the Thaqvis candidates that have either one (“l-prong”, 1p) or three (3p)
tracks with pr > 1 GeV with AR < 0.2 to its barycentre, which also fulfill quality
criteria on the track impact parameter and number of hits in the pixel and SCT
detectors, are kept. The efficiency of this reconstruction procedure, defined as the
fraction of true m.q.vis Objects that are selected, is shown in Fig. 5.1 as a function
of the truth-level pr of the 7.q.vis Object.

5.4.2 Calibration and ldentification

A boosted regression tree (BRT) is trained to adapt the energy calibration to
Thadvis Objects [97]. This BRT combines basic calorimeter and InDet information,
as well as a technique similar to the previously described particle-flow for charged
hadron energy estimation and a simpler calorimeter-based calibration technique,
to estimate the total 7,,q.vis €nergy.

As the last step of the 7j,.4.vis Object definition, an identification algorithm sepa-
rates true Thaq.vis Objects from the most prominent background processes that can
mimic the described detector signatures. These contributions are often referred to
as “fake Thaq.vis candidates” or simply “fakes.”
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Figure 5.1: Reconstruction efficiency of 7y,,4.vis, sSeparated in 1p and 3p candidates,
as a function of the truth-level pr of the m.q.vis object [99].

The main source of fakes are QCD jets initiated by gluons or quarks. To dis-
tinguish between these and true 7.q.is Objects, multivariate techniques called
identification (ID) algorithms are applied. At the start of Run 2, a boosted deci-
sion tree (BDT) was used, which was later replaced by a recurrent neural network
(RNN) [100]. The input variables for these mainly exploit the displaced vertex and
the stronger collimation of the 7 decay products, which results in charged tracks
and calorimeter energy clusters being closer to one another than in the case of
QCD jets.

Both methods were trained separately for 1- and 3-prong candidates using sim-
ulated v* — 77 events. As background sample, di-jet events were used. The
training was carried out using only T.q.vis candidates with pr > 20 GeV and
In| < 2.5 while omitting the transition region |n| € [1.37,1.52] between the barrel
and the end-caps. The performance of the resulting discriminators is summarized
in Fig. 5.2, which shows the rejection of fake 7,.4.vis candidates in dependence of
the efficiency on true 7,.q.vis objects of the two methods. The BDT algorithm was
used the analysis presented in Chap. 7, while the RNN ID is applied in Chap. 8.
The measurement in Chap. 6 was conducted with BDT as well as RNN ID to
study the effect of these on the results.

In the case of 1p Thaavis candidates, a sizable fake contribution from electrons
is observed [99]. Therefore, an additional BDT was trained to separate the Tjaq.vis
signal obtained in simulated v* — 77 events from electrons in Z — ee samples.
The main rejection power comes from the TRT, which obtains much larger signal
for electrons than charged pions [75]. A cut on the score of this BDT, corresponding
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Figure 5.2: Rejection of quark- and gluon-initiated jets as a function of the true
Thadvis efficiency [100]. The rejection is defined as the reciprocal value
of the efficiency. The marked working points of the ID are named
tight, medium, loose and very loose in the order of increasing Taq.vis
efficiency.

to a signal efficiency of 95%, was applied in Chap. 7, but not in Chap. 6 and 8,
since the number of events containing true electrons that pass the event selections
is low.

5.4.3 Reconstruction of the Di-+ Final State

To investigate fully hadronic di-7 decays in Chap. 7 and 8, the invariant di-7 mass
is estimated by the Missing Mass Calculator (MMC) algorithm [64]. It aims at
reconstructing the invariant mass of a particle decaying into two 7 leptons. A
full reconstruction of the decay requires the estimation of six to eight unknown
quantities, depending on the number of leptonic 7 decays. But since there are only
four equations connecting these, it is impossible to identify them unambiguously.

The MMC uses the probability distribution of the AR between the visible 7
decay products and the associated neutrino(s) to build a likelihood function for
all possible decay topologies. Thus, weights can be assigned to the different decay
scenarios and consequently also the mass of the mother particle of the two ob-
served 7 leptons. The EX resolution is also taken into account in the likelihood
function to reduce the impact of E¥*5 mismeasurement on the result. By adding
up the weights of different decay topologies with the same invariant di- mass and
finding the mass with the highest sum of corresponding weights, an estimate for
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5 Object Reconstruction

the invariant mass is constructed.

5.5 Missing Transverse Momentum

Since neutrinos cannot be observed directly, the conservation of momentum has
to be taken into account to be able to estimate their momenta. But this approach
can only be employed in the directions transverse to the beam pipe, due to the
partonic nature of the colliding protons and the unknown z component of the
initial state partons that follows from it.

The missing momentum in x and y direction is calculated as

Eimiss _ <p§oft + ZZﬁ)

for i € {z,y}, where the sum of momenta of all reconstructed objects r, these being
photons, electrons, muons, jets and Taqd.vis, i considered [101]. The contribution
ps° is the sum of contributions from InDet tracks that could not be assigned to
any of these objects.

Instead of E™ss and E;“iss, the quadratic sum EX referred to as missing

transverse momentum or energy, and the angle ¢™5 are often used:

B =\ J(Bri)? 4 (Epis)2 ¢ = arctan( B}/ E2)

5.6 Overlap Removal

A geometric overlap between different reconstructed objects can create ambigu-
ity and possible double-counting of energies. Overlap can occur since all recon-
struction algorithms apart from electrons and photons run independently. These
overlaps are removed after object reconstruction by applying the following rules.

Overlap between different objects is defined using AR thresholds. As a first step,
jets within AR = 0.2 of a Tyaq.vis candidate are removed, since Ty.q.vis candidates
are based on jets with further requirements applied. Jets within AR = 0.4 of a
muon or electron are also removed, since the reconstruction efficiency is higher for
leptons than for jets, so the lepton candidate reconstruction is relied upon. Using
the same argument, any Tyaq.vis candidates within AR = 0.2 of an electron or muon
is removed, as well as electrons within AR = 0.2 of a muon.
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CHAPTER 6

Measurement of 7-Lepton Trigger Efficiencies

A large part of the ATLAS physics program relies on the efficient reconstruction of
hadronically-decaying 7 leptons. To gain access to events that contain final-state
Thad-vis Objects, T-lepton trigger algorithms were developed. This chapter covers
the method employed to trigger on 7 leptons as well as the measurement conducted
to estimate the efficiencies of 7-lepton triggers in Z — 77 events in ATLAS.

Investigating the trigger efficiencies € is useful to locate and quantify the data
loss. But the main goal of the analysis is to compare the efficiencies in data
and MC simulated events. In case of a mismodelling of the trigger efficiency in
the simulation, the trigger requirement leads to a mismatch between data and
prediction. To account for this effect, “trigger efficiency scale factors” SF are
calculated as:

Data — Bkg)

_
St = €(MC) ’

where Bkg represents the background events with fake 7,,4.vis candidates and MC
stands for simulated signal events containing true 7y.q.vis Objects. These scale
factors are intended for use within ATLAS, to be applied as additional event
weights to MC events in all analyses that apply 7 triggers.

6.1 The ATLAS 7-Lepton Trigger System

As with all other Run-2 trigger algorithms, 7-lepton triggers are separated in L1
and HLT parts, the combinations of which are called trigger chains. The HLT part
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6 Measurement of T-Lepton 'Trigger Efficiencies

itself applies several cuts on different properties of T,,q.vis candidates. A schematic
overview of the full sequence of applied cuts is given in Fig. 6.1.

As the reconstruction of tracks takes too long to be used at L1, the L1 7-trigger
items are limited to using calorimeter information. They select narrow energy
deposits in the ECal and HCal and apply cuts to the total energy [102]. In some
cases, an isolation requirement is also applied, placing an upper threshold on the
energy measured in the ECal isolation region. Some L1 items also apply topological
requirements such as angular separation or overlap removals between different L1
objects.

The events that pass the L1 requirements are processed by the HLT, which
has access to more accurate position and energy measurements. After topological
clusters are formed from the calorimeter deposits, the total transverse energy Fr =
E/cosh(n) of the Taqvis candidate is estimated either based on a simple pile-
up subtraction method or with a BRT, and candidates must pass different cut
thresholds. Information from the InDet tracks is only used after this Et cut.
Using a fast two-stage track-finding (FTF) algorithm, tracks associated to the
calorimeter 7,,4.vis candidate are reconstructed. Candidate events only pass if there
are between 1 and 3 tracks in the core region with AR < 0.2 to the direction of the
calorimeter cluster and at most one track in the isolation region 0.2 < AR < 0.4.

The remaining events are processed with more time-consuming and accurate al-
gorithms, and the track reconstruction is repeated with a more precise algorithm
named “EF” [103] after the “event filter” stage of the three-level trigger system
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' s —— 1prong
- ; . sl 4
o Et and iso cut 1 0% == 3prongs
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o -
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Figure 6.1: Graphical representation of the composition of an ATLAS 7-trigger
chain [102].
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6.2 Event Selection

of Run 1, for which it was originally developed. At the start of Run 2, the can-
didates were required to also have 1-3 associated core EF tracks and no more
than one isolation EF track. These trigger chains were named “tracktwo” triggers.
Throughout Run 2, alternative chains named “tracktwoEF” were introduced that
omitted the cut on the FTF tracks but kept the EF track requirement.

The last step of the trigger chain is the identification. Following the development
in the offline 7,,q.vis reconstruction, a BDT was used for this and later replaced
with an RNN. The tracktwo and tracktwoEF triggers use the medium working
point of the BDT ID, which consists of two separately trained BDTs for 1-prong
and multi-prong candidates, where the multi-prong BDT was used if 2 or 3 core
EF tracks were found. This ID method is named “mediuml.” The triggers that
use the RNN ID skip the cut on FTF tracks and pass events with 0-3 core EF
tracks, which is named the “tracktwoMVA” track selection. Additionally, they are
the only triggers to utilize the BRT for energy calibration, as it was developed late
in Run 2. The RNN is trained separately for the cases of 0, 1 and 2 or 3 core EF
tracks, and since for the default triggers only the medium working point of the
RNN is used, its application is marked with the expression “mediumRNN.”

The naming scheme of 7-trigger chains summarizes these event processing steps.
The names have the form:

HLTtauXX_medium{1, RNN} _tracktwo(EF, MVA)_ LITAUYY(I, IM) .

The values XX(YY) give the HLT(L1) energy requirement in units of GeV. The
“medium” is appended either by “1”7 or “RNN” depending on the applied 1D
algorithm, and either “EF” or “MVA” is added to the part “tracktwo” if no cut is
placed on the FTF tracks. Finally, the ending “I” or “IM” is added if an isolation
criterion is applied to the ECal energy distribution at L1. The “IM” variant is a
slightly tighter version of the “I” isolation criterion, which is used to reduce the
rate of accepted QCD jets.

6.2 Event Selection

For the measurement of the efficiency of 7-trigger chains, a tag-and-probe strategy
is applied. It is based on the assumption that the efficiency of the 7 trigger is
only dependent on the properties of specific T.q.vis candidates and that there
are only negligible correlations to the other objects that are present in an event.
The ATLAS 7-trigger group conducts two orthogonal analyses to measure the
efficiencies of their triggers which are combined into a single efficiency estimate
using the “best linear unbiased estimater” (BLUE) method [104]. The first analysis
selects Z — 77 events and is most sensitive to lower-momentum 7,,4.vis candidates,
while the second one selects tt events with T,.4.vis candidates in the final state and
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6 Measurement of T-Lepton 'Trigger Efficiencies

is more sensitive at higher momenta. The following sections will focus on the
Z — 771 analysis, with the signal process Z — 77 — UThad.vis3V that is illustrated
in Fig. 6.2.

probe

Figure 6.2: Feynman diagram of the Z — 77 — pu7haq.vis3V decay chain, indicating
the tagging muon and the 7,,4.v;s candidate that is to be probed.

The purpose of the tag-and-probe selection is to acquire a large and pure set
of events containing 7.q.vis Objects without biasing the selection of these objects,
thus avoiding cuts that are correlated with the 7-trigger algorithms. Therefore,
the events are selected with a muon trigger. Furthermore, the absence of any
other “light leptons” (= muons or electrons, symbol ) is required, to increase the
contribution from the Z — 77 — pmaq.vis3V process.

The analysis is conducted with the 135.7 fb=! recorded by ATLAS in 2016,
2017 and 2018. In order to compare the observed data distributions to the SM
prediction, the analysis relies on MC simulated event samples. These samples are
summarized in Tab. 6.1.

The event preselection contains cuts on the reconstructed objects that are ap-
plied in all analysis regions. These cuts are necessitated by detector acceptance,
energy thresholds at trigger level and the requirement of orthogonality to the
complementary measurement using tf events, and are listed in Tab. 6.2. As the
analysis is repeated applying different ID requirements on the 7,,4.vis candidates,
no specific ID working point can be given. But in order to give a coherent picture,
all results shown in this chapter are obtained applying the loose RNN-based 1D
criterion unless explicitly stated otherwise.

All events in this analysis are selected by a combination of two muon trig-
gers [118]. The first one targets muons with lower pr and requires a value of
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6.2 Event Selection

Table 6.1: Summary of simulated event samples used in the 7-trigger efficiency
measurement using Z — 77 events. The label “V+jets” covers both
W-and Z-boson production, including the signal, while the label “Top”
summarizes sample information for ¢¢ and single-t production [65, 105-

117].
Process Generator PDF set Tune Order
ME PS ME PS
V+jets POwWHEG PyTHIA 8 CT10 CTEQ6L1  AZNLO NLO

Top PowHEc PyTHIA 8 NNPDF3.0nlo NNPDF2.3lo Al4 NLO

Table 6.2: Preselection cuts for the Z — 77 trigger efficiency measurement, applied
at all stages of the analysis.

Muons Thad-vis Jets
Medium ID Varying 1D Npjets = 0
Trigger matched In| < 2.47
In| < 2.5 In| ¢ [1.35,1.52]

pr > 28 GeV pr > 25 GeV

26 GeV at the HLT level. It also imposes an isolation requirement on the muon
candidates. The second trigger has a higher pr threshold of 50 GeV and omits
the isolation requirement. The reasons for not requiring isolation are that there
are fewer background objects that can mimic high-pt muons and that highly en-
ergetic muons can emit enough particles to spoil their isolation by themselves.
This reduces the efficiency of the isolation requirement at higher energies, and it is
therefore not used. An event is required to pass either the 26 GeV or the 50 GeV
muon trigger to be included in this analysis.

Distributions of different kinematic variables at preselection, requiring the m,aq.vis
candidate to fulfill the loose RNN-based ID working point, are shown in Fig. 6.3.
These show only the distributions observed in data and the predicted contributions
from the MC samples listed in Tab. 6.1. Consequently, there is no estimation of the
contribution from QCD multi-jet events where both the muon and the 7,,4..is are
faked by QCD jets. Thus, an underestimation of data yields over the prediction
is expected at this stage, which can be accounted mostly to the missing QCD
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6 Measurement of T-Lepton 'Trigger Efficiencies

estimate. The transverse mass mr shown in Fig. 6.3(a) is defined as

e, E3%) = \/2pr () B (1 — cos(Ag(, BE™)))

and the sum of the azimuthal angles of the muon and the 7y,,4.yis With the missing
energy shown in Fig. 6.3(c) is calculated as

Z cos (A¢) = COS(A¢(M’ E”I[I‘liss)) + COS<A¢(7—had—vis’ E”I[I‘liSS» .

For the Z — 77 and top-quark samples, a geometrical truth matching is applied
as follows: If the reconstructed m,.4-vis candidate cannot be matched to a truth-
level Thadvis Object, it is considered a “fake” event (red and orange histograms),
otherwise it is counted as a signal event containing a true Thaq.vis object (blue and
teal histograms).

The distributions shown in Fig. 6.3 can be used to separate signal and back-
ground contributions and motivate the final event selection for the trigger efficiency
measurement. In addition to the shown kinematic distributions, the product of
the electric charges of the muon and the 7,,4.vis candidate as well as the isolation
of the muon are considered. As the signal process Z — 77 at leading order should
always produce muons and 7.q.vis candidates of opposite charge, adding this re-
quirement helps increase the relative signal contribution. Non-isolated muons are
often produced within QCD jets, while the muons in the signal process are more
likely to be isolated.

A signal region (SR) enriched in Z — 77 events is defined, as well as three control
regions (CRs) enriched in either W — pr or QCD multi-jet production events, the
two largest background contributions. The definitions of the SR, same-sign (SS)
CR, the QCD CR and the W+jets CR are shown in Tab. 6.3.

6.3 Background Estimation

The main backgrounds to this measurement are QCD multi-jet production and
W — pv + jets where a jet is misidentified as Thadqvis (J = Thadvis). In a small
fraction of events, the selected probe is a light lepton (¢ — Thadvis). A combina-
tion of data-driven and simulation-based approaches exploiting the strong charge-
correlation between the tag muon and the 7.4.vis probe is used to model these
backgrounds. The background estimation separates events where the muon and
the Thaq.vis candidate have the same charge (“same-sign”, SS) and those where they
are of opposite charge (“opposite-sign”, OS). As the signal process is expected to be
mainly present in OS events, the signal region (SR) where the 7-trigger efficiency
is measured contains only OS events.
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Figure 6.3: Distribution of (a) my(u, ER), (b) myis(it, Thadvis), (¢) D cos (Ag)
and (d) EXss after the preselection cuts of the Z — 77 trigger efficiency
measurement. The grey band indicates the statistical uncertainty on

the yield prediction.

The full estimate of the background in the SR can be written as

fake SS
Nos® = Ros/ssNpawa + Nz20 0

OS—-SS OS—SS OS—-SS
+ NW—)[}.V + N

top ’

where each term is detailed in the following. The “OS—SS” superscript indicates
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6 Measurement of T-Lepton 'Trigger Efficiencies

Table 6.3: Selection cuts applied after the preselection step to define the signal and
control regions of the Z — 77 trigger efficiency measurement. A dash
means that no cut is placed.

Variable SR SS CR  QCD CR W+jets CR
Muon isolation Yes Yes Inverted Yes
q(11) - 4(Thad-vis) —1 +1 ~1 —1

mr(u, EX) [GeV] < 50 < 50 < 50 > 60

Meis (1, Thadvis) [GeV] € [45,80] € [45,80] € [45,80] -
> cos (Ag) >—-05 >-05 > —0.5 -
EXiss [GeV] - - - > 20

the subtraction that is used to determine the charge-asymmetric contribution of
the various background processes.

The term Ros/ssNia, accounts for the multi-jet background and the charge-
symmetric components of the other background processes, such as W+jets, Z —
pi + jets and processes involving ¢ quarks, mainly ¢t production. It is modelled
using data in the SS control region where the charge-product between the tag and
the probe is positive and a negligible Z — 77 — fThaq.vis3V contamination is found,
which is subtracted from the data to construct the final template of the charge-
symmetric background estimate. As the expected number of background events
depends on the charge-product between the tag and the probe, the normalization
of the SS data is corrected by the Rog/ss factor. This factor is measured in a multi-
jet enriched control region defined by inverting the isolation requirement around
the tag muon. The Rog/ss factor is the ratio of the number of events in OS and
SS data, and is parametrized using the track multiplicity of the T,.q.vis candidate
and the ID criterion applied to it, as well as the muon pr, and it is independently
measured with and without applying 7 triggers. Example distributions in the QCD
CR are shown in Fig. 6.4, showing the pr(u) distributions needed to calculate the
Ros/ss factors for 1-prong 7hadvis candidate events without an applied 7-lepton
trigger. The corresponding pr(Thadvis) 1-prong template distribution from the SS
CR is shown in Fig. 6.5, along with the 3-prong template distribution.

The “OS—SS” terms account for the charge-asymmetric component of the back-
grounds, which are added to the charge-symmetric component included in the
Ros/ssNiaia term. They are estimated as

OS—SS __ 71.0S A70S _1.88 SS OS o SS
N _ kW Njﬁﬁrhad—vis kW ROS/SSNj‘”’had—vis + Nf‘”’had»vis ROS/SSN[HThad—Vis ’

where NO5755 ¢ {Ngi;is,Nv?,ﬁSS,Nfg?SS . The kw corrections account for
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possible mismodellings of the fraction of jets that are mislabelled as 7Tyaq.vis Ob-
jects (“fake-rate”) in simulation, and are measured in the W+jets CR defined
6.3. This correction is the ratio between the observed data and the
W — pv+jets and top-quark production events expected from simulation. As
an approximation, all W — pr+jets and top-quark production events without

in Tab.
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6 Measurement of T-Lepton 'Trigger Efficiencies

truth-matched 7Ty,.q.vis Object are treated as j — Thaavis backgrounds, while all
Z — pup events are treated as ¢ — Thaq.vis backgrounds. For the simulated charge-
asymmetric component of the £ — 7,,4.vis background, no data-driven correction is
applied as this contribution is found to be small. The ky, factors are parametrized
using the track multiplicity of the 7y,,4.vis candidate, the ID criterion applied to it
and pr(7) as well as ¢(u) - ¢(7), and is independently measured with and without
applying 7 triggers. The calculation is illustrated in Fig. 6.6, which shows the
P1(Thadvis) distributions used to calculate the ky, factors for OS and SS 3-prong
Thad-vis candidate events. The obtained Ay and Rog/sg factors together with their
statistical uncertainties are given in Tab. 6.4.
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Figure 6.6: Distributions of pr(7Thadavis) in the (a) OS and (b) SS QCD CRs for
3-prong Thad-vis candidates. The factor needed to scale the sum of the
W +jets and fake t-quark contribution such that the normalizations of
data and MC processes coincide is named kyy.

The contribution from top-quark production events with true 7,q.vis Objects is
estimated from simulation, and is also excluded from the top-quark production
background contributions and is subtracted from data in all the control regions.
The contribution of Z — 77 — pThaq.vis3V events where the selected Ty,,4.vis probe is
a misidentified jet is found to be negligible, and is added to the Z — ¢/ contribution
in plots of the SR. The resulting modelling is displayed in Fig. 6.7, which shows
the pr(Thadvis) distribution in the SR, separated in 1-prong and 3-prong Tad.vis
candidates.

A discrepancy is found at values of p(Thad.vis) above 50 GeV. This was found to
be caused by events with A¢(p, Thadvis) < 2.4, as evidenced by the distributions
shown in Fig. 6.8.

The low values of |A@(Thadvis, )| contain a disagreement between data and
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6.3 Background Estimation

Table 6.4: Overview of the ky and Ros/gs factors derived for the SR background
estimation. The separating pr values are pr(Thadis) = 35 GeV for ky
and pr(p) = 50 GeV for Rog/ss. The number in parentheses is the
statistical uncertainty on the last given digit.

without 7-lepton trigger with 7-lepton trigger
Factor 1-prong 3-prong 1-prong 3-prong
low-pr  high-pr low-pr high-pr low-pr high-pt low-pr high-pr

Rog/ss 1.23(3) 1.28(5) 1.40(5) 1.37(8) 1.25(4) 1.27(7) 1.43(9) 1.3(1)
KOS 1.14(1) 1.12(1) 1.26(1) 1.26(2) 1.15(1) 1.15(1) 1.25(3) 1.32(2)
ESS 0 1.23(1) 1.36(2) 1.29(2) 1.49(4) 1.31(2) 1.43(3) 1.29(5) 1.62(6)
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Figure 6.7: Distribution of the pr of the m,4.vis candidate in the SR applying the
loose RNN-based ID working point, for (a) 1-prong and (b) 3-prong
candidates. The red band indicates statistical as well as systematic
uncertainties on the predicted distributions.

prediction in Fig. 6.8a, and removing these events leads to a better agreement
between data and prediction at high pr(Thadvis) values. Despite this observation,
the cut A@(p, Thadvis) > 2.4 was not applied for the final measurement because
the obtained efficiencies were found not to be biased by these events. Therefore,
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Figure 6.8: Comparison of > cos(A¢) and pr(Thadvis) distributions in the SR for
1-prong maq.vis candidate events for (a & c) the default selection and (b
& d) when adding the cuts > cos(A¢) > —0.15 and |AP(i, Thad-vis)| >
2.4 to the selection, requiring medium RNN-based ID for the mja4.vis
candidate. The grey band indicates the statistical uncertainty on the

prediction.

in order to keep the available dataset as large as possible, the baseline selection

was kept.
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6.4 Systematic Uncertainties

In this section, the estimation of systematic uncertainties on the estimated event
yields and subsequently the trigger efficiencies is discussed. The sources of these
uncertainties can be separated into two groups. The first are the uncertainties on
the object and event reconstruction as well as the energy calibration of objects, also
referred to as experimental uncertainties in the following. The second uncertainty
group covers the uncertainties on the applied background estimation techniques.

The impact of systematic uncertainties on the signal processes containing true
Thad-vis Objects on the measured efficiencies was found to be negligible compared
to the background estimation uncertainties. Therefore, these uncertainties are not
evaluated.

The impact of an uncertainty is quantified by varying the predicted yields accord-
ing to the given uncertainty and computing the difference between the variation
and the nominal result.

6.4.1 Experimental Uncertainties

The experimental uncertainties are estimated separately for the different physics
objects utilized in the analysis. Apart from muons and 7,.q.vis candidates, the
uncertainties related to jets and EM* must also be taken into account, since a cut
on the number of b-tagged jets as well as multiple cuts involving ER are placed.

Muon-related uncertainties. The efficiencies for trigger selection, offline recon-
struction and identification of muon objects are measured in Z/v* — pu and
J/¥ — pp events [88]. The derived correction factors for MC are varied within
their respective uncertainties to assess their impact on the efficiency measure-
ment. Moreover, the muon momentum calibration measurement is also conducted
in Z/v* — pp and J/¢b — pp events. Based on this measurement, scale and res-
olution uncertainties are applied. Finally, uncertainties on the isolation efficiency
correction factors, derived in Z — pup events, are applied.

Thad-vis-related uncertainties. Uncertainties on the offline identification efficiency
for Thaq.vis candidates and their momentum scale, measured in Z — 77 events [97],
are applied. Additionally, uncertainties on the reconstruction efficiency are con-
sidered.

Jet-related uncertainties. Numerous sources of uncertainty are considered for
the jet calibration procedure outlined in Sec. 5.3. For the n-intercalibration, a
technique with which the calibration derived for central-n jets is extrapolated to
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high-n jets, five variations are applied. Eight additional variations are applied
for the energy scale and energy resolution estimation of jets, respectively. The
uncertainty on the pile-up corrections applied during calibration is covered with
four variations. To account for the different detector responses for jets initiated by
quarks and gluons as well as the limited knowledge of the jet flavour composition,
three more variations of the calibration are introduced. The modelling of “punch-
through” jets, which pass through the calorimeter system without depositing all
their energy, and jets initiated by very high-pr partons requires the inclusion of one
additional variation each. The efficiency of the b-jet classification is assigned eleven
sources of uncertainty. Finally, one variation each is included for the efficiencies
of the JVT and fJVT cuts.

For 2018 data-taking, the calibration of energy deposited in the tile calorimeter
was updated [119]. Therefore, an additional systematic variation limited to 2018
data is taken into account.

ET-related uncertainties. The estimation of EF* is separated into hard and
soft terms, as described in Sec. 5.5. The variations on the reconstructed objects in
the event are propagated into ER variations through changes of the hard term.
The soft term, which contributes exclusively to the EX'* measurement, is assigned
three sources of uncertainty, measured in events with one Z boson and one jet in
the final state [101]. The scale of the soft term projected on the direction of the
hard contribution, as well as the resolution of the soft term measured parallel or
perpendicular to the direction of the hard contribution are varied.

Pile-up reweighting uncertainties. In order to have compatible pile-up activity
in data and simulation, a scaling factor is applied to the number of pile-up inter-
actions observed in data. This is necessary since the current MC simulation of
the effect of a given number of pile-up interactions on the event reconstruction is
too large. The scaling factor for the number of interactions is varied within its
uncertainty to assess the effect on the measurement.

Luminosity-related uncertainties. The uncertainty on the measured integrated
luminosity of data included in this analysis is applied as an uncertainty on the
measurement, affecting the scaling of the MC simulated events.

6.4.2 Uncertainties on the Background Estimation Method

The assignment of an uncertainty on the estimation of the charge-symmetric back-
ground using Rog/ss and the correction of the charge-asymmetric background using
kw are described in this section.
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Two sources of uncertainty regarding the application of ky factors are consid-
ered. The first is the statistical uncertainty on the factor itself, propagated from
the uncertainties on the yields in the W+jets CR used to calculate them. The
other is an uncertainty on the shape of the j — Thaq.vis background contribu-
tion. For this, the shapes of the pr distributions of simulated W +jets and t-quark
production events are compared to that of data after subtracting all other sim-
ulated contributions in the W+jets CR. The resulting ratio is then applied to
the signal region contribution of W+jets and top events while keeping the total
yield unchanged. This procedure is applied separately for OS and SS events with
separately derived shape variations.

Similarly, there are also two sources of uncertainty considered for the Rog/ss
factor. Apart from its statistical uncertainty, a shape variation on the NS5, con-
tribution is applied while keeping its total yield unchanged. The variation is based
on the ratio of OS over SS data events in the QCD CR after subtracting all signal
contributions expected from simulation.

All described shape variations are independently derived with and without ap-
plying a 7 trigger, and separately for 1- and 3-prong 7y.q4.vis candidates. Like the
Ros/ss and kyy factors themselves, the shape variations are separately derived and
applied in a low-pr and a high-pr region. To retain the largest number of events
from which to construct the variations, the shape variations are derived using
the loose ID criteria but also applied to the medium and tight working points.
This is done separately for BDT and RNN ID working points. The impact of the
variations on the efficiencies is symmetrized to have a two-sided estimate of the
uncertainty. Example pr distribution comparisons illustrating the construction of
background shape variations for the 1p kys factor and the 3p Rog/ss factor are
shown in Fig. 6.9.

Tab. 6.5 reports the observed data and expected signal and background contri-
butions in the SR.

6.5 Efficiency Extraction

In order to estimate the 7-lepton trigger efficiency, a Bayesian approach is used,
with an assumed uniform prior probability distribution for efficiencies between 0
and 1. The nominal value of the resulting efficiency e is taken as

Ny (ID & trigger)
N, . (ID)

Thad-vis

€ =
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Figure 6.9: Shape uncertainty construction for (a) the OS ky, factor application
for 1-prong Thaqwis candidates in the high-pr region (pr(Thadvis) >
35 GeV), and (b) the Rog/ss factor application for 3-prong Thag-vis
candidates in the low-pr region (pr(n) < 50 GeV). The bottom pan-
els show the ratio between numerator (black) and denominator (red)
distributions, which are applied as shape variations. Only statistical
uncertainties are shown.

The statistical uncertainty band on € is constructed by determining the shortest
interval [a, b] such that

b
/P(e [, N de = 0.683

a

with the Bayesian posterior probability density P on the efficiency € given k events
passing both the trigger and offline ID criteria and N events passing the offline ID
criterion.

The efficiency is measured separately in simulation for true hadronically-decaying
7 leptons and in data after the subtraction of the estimated backgrounds. The ef-
ficiencies are calculated as functions of the pr of the offline 7,,4.vis probe and its
track multiplicity. The obtained efficiencies for different versions of the HLT tau25
trigger, the trigger with the lowest HLT energy threshold, are shown in Fig. 6.10.
The measurement for tracktwoEF triggers is restricted to 2018 data, since it was
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Table 6.5: Expected and observed yields in the 7-trigger efficiency measurement
using Z — 77 events. Data recorded in 2016, 2017 and 2018 amounting
to a total integrated luminosity of 135.7 fb~! are used.

Contribution Yield (£ stat uncert. £ syst uncert.)
Ros/ssNSS,, 110000 = 390 - 3700
WOS-58 34660 + 1240 + 1190
70555 5480 + 160 + 280
topP5—58 140 £ 20 £ 10
True Thad-vis 401000 £ 700 £ 26000
Total expected 552000 = 1500 =4 26000
Data 564261
Data/Exp 1.02
Purity of true Thaq.vis probes 72.6%

only then introduced and the previously recorded data were not reprocessed emu-
lating these triggers. The same applies to the tracktwoMVA triggers, but they were
introduced only after “technical stop 17 (TS1), well within the 2018 data-taking
period. Accordingly, only 37.6 fb~! of data can be included in the measurement of
their efficiencies. Hence, the efficiency measurement for tracktwo triggers includes
the full dataset, but their usage is only recommended before 2018. The tracktwoEF
trigger efficiency is derived using the full 2018 dataset but is recommended for use
in analyses only for pre-TS1 data. For post-TS1 data, the logical OR between
tracktwoEF and tracktwoMVA triggers is recommended. This is done instead of
recommending only the use of the tracktwoMVA trigger to ensure consistency in
the definition of 7,.q.vis Objects, which is important for constructing a background
estimate.

The leading, and in almost all cases the only relevant, systematic uncertainty
is the shape variation for the Ros/ss factor. At low pr values, the ky shape
variation can also have a significant impact. All other systematic uncertainties
have a negligible impact on the efficiency.

From the efficiency calculation, the SFs intended for correction of simulated
events can be obtained. The upward and downward uncertainties on the scale
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Figure 6.10:

68

Efficiencies on 1- and 3-prong Tha.q.vis objects for three versions
of tau25 triggers: The mediuml_ tracktwo trigger (a & b), the
medium]1_tracktwoEF trigger (¢ & d) and the logical OR between
the medium]1_tracktwoEF and the mediumRNN_tracktwoMVA trig-
gers (e & f). The bottom panels show the “scale factor,” the ratio of
efficiencies in data and simulation.



6.5 Efficiency Extraction

factor are given as:

2 2 2
A 1) 0 1
Osp = \/(UData, stat) + (OData, sys) + (UMC, stat)
2 2 2
L \ s 0
Osp = \/(UData7 stat) + <O-Data, sys) + <JMC, stat) )

where the arrows indicate the direction of the uncertainty. The usage of the inverse
direction of the MC stat uncertainty stems from the fact that it is used as the
denominator of the SF, anti-correlating it with the SF.

In most cases, the measured SF is compatible with unity. The region where
a discrepancy is most apparent is at low pr in the 3-prong case for the tau2b
trigger. This was found to be primarily due to mismodelling of the L1 selection
efficiency. A breakdown of the efficiencies for the individual cuts that comprise the
tau2b_mediuml _tracktwo trigger is shown in Fig. 6.11. This discrepancy can be
explained with the distribution of the “tauClus” value of LITAU ROIs matched
to offline T,,4.vis candidates, which can be seen in Fig. 6.12. This value is the sum
of energies measured in the ECal and HCal in the core of the 7,.4.vis candidate
energy deposit, and thus describes the energy of the 7,.q4.is candidate reconstructed
at L1. The L1TAU12IM item cuts on tauClus > 12 GeV. Fig. 6.12 shows clear
modelling problems, especially in the 3-prong case. These modelling problems
translate into inconsistencies between efficiencies in data and simulation, and thus
into SFs deviating from one.

A final systematic uncertainty was introduced to cover the dependence of the
efficiency on the number of pile-up interactions p. This uncertainty was derived
after the derivation of SFs as a function of pr(Thaqvis) had been concluded, and
the procedure is illustrated in Fig. 6.13. As a first step, the newly derived SF's are
applied to the measurement itself, making all deviations between efficiencies in data
and MC vanish by construction, when shown as a function of pr(madvis). Next,
the efficiencies and scale factors are calculated as functions of p. The resulting
residual dependency of the SF on pu after cancelling all pr(Thaq.vis) dependency is
used as a systematic variation.

This procedure was only derived using tau2b triggers and is also used for triggers
with higher L1 and HLT energy thresholds. This is done since the p-dependence
mainly comes from the track and ID cuts of the trigger, which do not change
between lower- and higher-threshold triggers. Thus, in order to avoid introducing
statistical fluctuations, the result obtained using tau2b triggers is also applied to
higher-threshold triggers.

A significant deviation from 1 is only seen in the efficiencies of the tracktwo
trigger. A reduced p-dependence for the tracktwoEF and tracktwoMVA triggers
recommended to be used in 2018 is expected since these were explicitly designed to
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Figure 6.11: Breakdown of the HLTtau25_medium1_tracktwo trigger-chain efficien-
cies shown in Fig. 6.10 (a) and (b). The efficiencies measured in data
are shown using black circles, while the efficiencies in simulated events
are indicated using red triangles. Subfigures (a) and (b) show the ef-
ficiency of the LITAU12IM selection. The efficiency of the 25 GeV
energy requirement at the HLT is shown in (c) and (d), while the
FTF track cut efficiency is shown in (e) and (f). The efficiency of
the EF track cut and identification is shown in (g) and (h). As the
described cuts are applied successively in the trigger chains, the prod-
uct of efficiencies shown in the left column corresponds to the 1-prong
trigger efficiency shown in Fig. 6.10 (a), while the right column gives
the 3-prong efficiencies corresponding to Fig. 6.10 (b).
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Figure 6.12: SR distributions of the L1 tauClus energy distribution for (a) 1-prong
and (b) 3-prong Thaq.vis candidates.

be more robust with respect to pile-up effects. In addition to this, the ;1 dependence
of the SF is negligible in 2016 data, as the spectrum does not often reach values
i > 50 in that year, see Fig. 4.3. As a result, the derived p variation is only
recommended for usage in 2017 data with the tracktwo triggers, using the variation
measured in 2016, 2017 and 2018 data.

The obtained trigger efficiencies and scale factors are used within the ATLAS
collaboration. All analyses using 7-lepton triggers to select their dataset apply
the scale factors as additional event weights to their simulated events containing
true Thag.vis Objects. This is done in order to counteract the difference in 7-trigger
efficiency between the simulated and observed events and make them more com-
parable.
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Figure 6.13: Estimation of the impact of y on the SFs of tau2b triggers for 1-
Subfigures (a) and (c) show the efficiency
for the OR of the mediuml_tracktwoEF trigger and the medium-
RNN_tracktwoM VA trigger in post-TS1 2018 data, as functions of
P1(Thadvis) and p, respectively. Subfigures (b) and (d) are obtained
by repeating the measurement and applying the already determined
SFs binned in pr(Thadvis) t0 true-haqvis MC events that pass the
trigger requirement. Subfigures (e) and (f) show the efficiencies de-
pending on p without and with applying SFs binned in pr(Thad.vis) for
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CHAPTER [/

VBF H — 77 CP Analysis in the 7,,q7haq Final State

This chapter describes a test of CP violation in VBF Higgs-boson production in
the H — 77 decay channel [11]. For this, a direct measurement of the parameter
d that introduces CPV to HV'V couplings, defined in Sec. 3.3, is performed using
the Optimal-Observable method. The analysis is based on the measurement of the
Higgs-boson production cross-section in H — 77 events documented in Ref. [120].

Decays to two 7 leptons are classified in four different final states: The TiepTiep
same-flavour (SF) channel, the nep7ep different-flavour (DF) channel, the TiepThad
channel and the 7j,,97h.q channel. The subscript “lep” or “had” specifies whether
the 7 lepton decays leptonically or hadronically, and the specification same-flavour
or different-flavour compares the flavours (electron or muon) of the two final-state
leptons in the TiepTiep channel. By combining the branching fractions shown in
Fig. 2.6a, the relative branching fractions in Fig. 7.1 are obtained for these four
channels.

While the signal processes are the same in the four channels, the background
composition varies greatly depending on the investigated decay channel. Therefore,
they are treated separately. The following sections detail the analysis of T.qThad
events and also describe the statistical combination of the four channels.

7.1 Simulated Event Samples
To estimate the contributions of signal and background processes to the observed

data, the analysis relies on MC simulated samples. This section gives an overview
of the used samples, which is summarized in Tab. 7.1.
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Figure 7.1: Branching fractions of di-7 final states into the four analysis channels
of the VBF H — 77 CP analysis.

Gluon-gluon fusion Higgs-boson production events are generated at NLO ac-
curacy in QCD using the PowHEG NNLOPS program [105-107,121,122]. The
events are reweighted to NNLO precision using the Higgs-boson rapidity spectra
of Hj-MiNLO [123-125] and HNNLO [126]. The PDF4ALHC15nnlo PDF set [127]
is used for the matrix element calculation and the AZNLO tune [111] with the
CTEQ6L1 PDF set [110] is used within PyTHIA 8 [113]. The gluon fusion pre-
diction from the Monte Carlo samples is normalized to the N3LO cross-section in
QCD plus electroweak corrections at NLO [26-31].

Vector-boson fusion events are generated at NLO using POWHEG [128] and the
NNPDF3.0nlo PDF set [114]. For the parton showering and the underlying event
modelling, PyTHIA 8 is used with the CTEQ6L1 PDF set and the AZNLO tune.
The events are reweighted to the NNLO cross-section in QCD plus electroweak
corrections at NLO [34-36].

Higgs-boson production in association with a vector boson is simulated using
POWHEG and interfaced with PYTHIA 8 for the simulation of parton showering and
non-perturbative effects. The POWHEG prediction is accurate to NLO for the V H
plus one jet production. The PDF4ALHC15nlo PDF set [127] and the AZNLO tune
of PyTHIA 8 are used. The Monte Carlo prediction is normalized to cross-sections
calculated at NNLO in QCD with NLO electroweak corrections [37-40].

The normalization of the ggF, VBF and V H samples accounts for the decay
branching ratio calculated with HDECAY [24] and PROPHECY4F [25]. In ad-
dition to the described samples, signal events are also generated with Herwig
7 [129,130] to evaluate the impact of the choice of parton shower on the result.

To simulate the production of Higgs bosons in association with a pair of top
quarks at leading order, MadGraph5_ aMC@NLO [66] is used together with the
NNPDF3.0lo PDF set [114]. For parton showering and the simulation of the
underlying event, PYTHIA 8 is used with the A14 tune [116] and the NNPDF2.3lo
PDF set [115]. The total prediction is normalized to the NLO cross-section in
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QCD including NLO electroweak corrections [41-46].

The V+jets and di-boson production is simulated with SHERPA [131] using
NLO matrix elements for up to two (one for di-boson) additional partons, and LO
matrix elements for up to four (three) partons calculated with Comix [132] and
OpenLoops [133-135]. They are matched with the SHERPA parton shower [1306]
using the MEPS@QNLO prescription [137-140] with a set of tuned parameters de-
veloped by the SHERPA authors. The NNPDF3.0nnlo set of PDF's [114] is used and
the V+jets samples are normalized to an NNLO prediction [141]. An additional
Z+jets sample generated with MadGraph5_ aMC@QNLO and PYTHIA 8 was used
to evaluate the impact of the choice of parton shower on the predicted yield. The
electroweak production of Z with 2 or 3 jets is simulated at LO, but its predicted
cross-section has been multiplied by 1.7 to reflect the findings in Ref. [142]. The
paper summarizes a differential cross-section measurement of the electroweak Z-
boson production process, and the factor 1.7 is the approximate ratio of the result
of the analysis and the LO cross-section obtained from SHERPA.

The tt and single-top production is simulated at NLO with POWHEG interfaced
with PYTHIA 6 [143]. The Perugia2012 tune [144] was used, and the total ¢t
prediction is normalized to an NNLO calculation [145]. The decays of bottom and
charm hadrons are performed by EvtGen [117].

7.2 Event Selection

For the T,.qThaqa channel of the VBF H — 77 CP analysis, events are required to
contain two Tpaq.vis candidates. These need to pass the tight BDT-based ID crite-
rion. To ensure orthogonality to the other analysis channels, which are described
in more detail in Ref. [11], events with reconstructed muon or electron candidates
are rejected. Moreover, to target VBF production events, the presence of two ad-
ditional jets with a large separation in 7 is required. The definition of the inclusive
signal region is given in Tab. 7.2. It is based on the VBF signal region selection
in Ref. [120].

Only two regions are used for the basic event selection. The cuts on the leading
jet in the more inclusive QCD fit region are motivated by the trigger selection.
For 2015 data, the di-7 trigger

HLT_tau35_medium]l_tracktwo_tau25_mediuml_tracktwo L1TAU20IM _2TAU12IM

is used, which requires a HLT tau35 and a HLT tau25 chain to be active in the
same event with no overlap between the triggering objects.

1)



7 VBF H — 77 CP Analysis in the T,,qThaq Final State

O'IN VAUdIHS 0" €AAdNN VdUdHS AA

O'IN g1ozeisndg  TT90HLD 0TLD 9 VIHLAJ  DIHMOJ doy-or3urg
O'INN grogesnog - TT90HLO 0TLD 9 VIHLAJ  DIHMOJ #
01 VAdUdHS 0" CAAINN VAdUdHS ] < M MIMA
01 VAUIHS 0'€AAdINN VAdUIHS 11 < Z SIMA
O'INN VAdITHS 0'€AAdNN VAdUaTHS ) < M
O'INN VJdUdTHS 0'€AAINN VAdIdTHS Nz
MMA OIN+TDD O1IN VIV CCIAINN 0 CAAANN 8 VIHLAJ QOTINDDIN® HN
MMA OIN+ADO OINN  OINZV TTO0ALD  SIDHTPAAd 8 VIHLAJ — DIHMOJ HA
MMA OIN+AOO OINN  OINZV TTOOALD  0CAdANN 8 VIHLAJ — DIHMOJ AdA
MMAA OIN+ADD OTN O'INZV TTOOHALD  SIDHTPAdd 8 VIHLAJ — DIHMOJ 88
Sd HIN Sd HIN
M@Upo m:Z @QSH HICH) MQ& HOud.H@Q@U ww@oocﬁm

{119} 57 o1 ‘suoyde] padreyd
[Te syuesaidal ) [oquuAs oy ], ‘SISATeue J0) 1L < I A 97} Ul pasnh sojdures jUoAd poje[nUIS Jo ATewtung :1°), 9[qe],

76



7.2 Event Selection

Due to the rising instantaneous luminosity, the trigger used in the 2016 data-
taking includes a requirement for an additional L1 calorimeter trigger jet with
pr > 25 GeV and |n| < 3.2 (L1.J25). To avoid biases due to turn-on effects of
the jet leg of the trigger and to ensure a consistent kinematic selection between
the 2015 and 2016 datasets, the leading jet in the event is required to be matched
within AR < 0.4 with the jet ROI that fulfilled the L1 jet leg of the trigger
criteria. In addition, to avoid modelling issues observed in a study similar to the
one discussed in Sec. 8.2, the leading jet in the event is required to fulfill offline
pr > 70 GeV and |n| < 3.2 for both 2015 and 2016 data.

Table 7.2: Summary of the event selection for the 7j,,qaq channel.
Nleptons = 07 NT =2

had-vis
both Thaqvis: tight BDT ID, OS
pT(Thad—Vis) > 40, 30 GeV
both Thaqvis: 1 or 3 prongs
leading jet pr > 70 GeV, |n| < 3.2
sub-leading jet pr > 30 GeV
Emiss > 20 GeV

0.8 < AR(1,7) <25

VBF inclusive region |An(r,7)] < 1.5
(additional cuts) m;; > 300 GeV, |An(j,7)| > 3

QCD fit region

The two Thaqvis candidates are matched to the respective legs of the di-tau
trigger using the individual single-7 trigger objects. The offline pt thresholds are
chosen such that the selected 7y.4.vis candidate pr lies mostly in the plateau of
the respective trigger efficiency curve, beyond the HLT threshold region where the
efficiency still rises.

The EM cut is used to remove signal-free phase-space, as in most H — 77
events, the produced neutrinos cause a significant E2 to be measured. The cut
AR(1,7) > 0.8 is needed to ensure that the jets seeding the T.q.is candidates
do not overlap. Since L1TAU ROIs are objects of Anp x A¢ = 0.4 x 0.4, these
could overlap when loosening this requirement, leading to modelling problems in
the simulation. The region with AR(7,7) > 2.5 is excluded since it is dominated
by QCD multi-jet events containing jets that fake 7,,4.vis 0bjects.

To define the tighter VBF inclusive region, the cut |An(r,7)| < 1.5 is applied,
which removes mostly multi-jet production events, similarly to the AR(7,7) > 2.5
cut. The two last cuts m;; > 300 GeV and |An(j,j)| > 3 are highly correlated
and both increase the relative contribution of VBF events, which characteristically
feature two jets with a large difference in 77 and thus often also a large invariant
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mass.

7.3 Background Estimation

The MC samples described in Sec. 7.1 are used to estimate all contributions from
processes with one or two true final-state 7j,.q.vis 0Objects. The contribution from
processes with two fake 7,.4.vis candidates, named “Fake” contribution, mainly
stems from QCD multi-jet production, but also W — ¢¢’ events. To estimate
this contribution, a method named “nOS” (non-opposite sign) was introduced,
which inverts the SR criterion ¢(m) - ¢(m2) = —1 to construct a region enriched in
multi-jet events. Moreover, the track requirement on 7y.q.vis Objects is loosened
to also accept Thaqvis candidates with two associated core tracks. By subtracting
all MC contributions in this nOS region from the measured data distribution, a
template of the QCD multi-jet contribution is constructed. The event yields in
the SR with nOS charge requirement as a function of the MM C-reconstructed di-7
mass, described in Sec. 5.4.3, is shown in Fig. 7.2.
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Figure 7.2: Data and MC event distributions in the nOS signal region of the invari-
ant mass mMMC of the full di-7 system as estimated with the MMC.
The difference between data and MC is used as a template to estimate
the contribution of QCD multi-jet events in the SR.
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In order to validate the modelling of the jet kinematics in the Z — 77 samples,
an analysis region selecting a dataset very pure in Z — ¢/ is introduced. The
event selection for this validation region is summarized in Tab. 7.3. As the Z — ¢/
samples are simulated in the same way as Z — 77, apart from the Z-boson decay,
the modelling of jet-related variables is assumed to be the same in the Z — ¢/
region as in the 7,,q7haq channel. The modelling of the jet-related variables C'(7y),
C(72), mj; and p'R*(E¥™s 77, 57), further described in Sec. 7.4, was checked in
the validation region. In this study, it was found that the invariant mass m;;
of the system of the two jets leading in pr was mismodelled in the simulation.
Fig. 7.3 shows the distribution of m;; in the Z — ¢¢ validation region as well as
the ratio between the distributions in data and simulation after scaling the two
to the same integral. This shape difference between data and simulation is used
as an additional weight on the Z — 77 contribution to correct for the observed
mismodelling in m;.

Table 7.3: Event selection for the Z — ¢/ validation region.

Leptons Jets
== 2 leptons, OS and SF >= 2 jets
pr(f1) > 40 GeV, pr(ly) > 30 GeV  pr(j1) > 70 GeV, pr(j2) > 30 GeV
0.8 < ARy < 2.5, |Ang| < 1.5 |An(7,7)| > 3, mj; > 300 GeV

mee > 80 GeV, ERiss < 55 GeV no b-tagged jet with pr > 25 GeV

While the nOS procedure gives an estimate of the shape of the distribution of
the Fake contribution, it is not expected that the overall number of Fake events
is the same in nOS and OS events. A scaling factor, rqcp, is applied to account
for this difference. This factor is derived in the QCD fit region, using the RooF'it
toolkit [146]. The maximum-likelihood method is applied to conduct a simulta-
neous fit of the normalization factors rqcp and rz of the Fake template and the
Z — 77 prediction to the An(r,7) distribution observed in data. The resulting
distributions are shown in Fig. 7.4.

The resulting values, with their statistical uncertainties, are rqcp = 0.75 £ 0.02
and rz = 0.89£0.02. The value of rqcp is used as the initial normalization factor
for the Fake template in the statistical analysis described in Sec. 7.6. The r4
factor is not used, since the normalization of the Z — 77 background is correlated
across the four analysis channels. Instead, the starting value r; = 1 is chosen in
all channels.

In the following, separately measured values r; = 0.766 and rqcp = 0.757
are applied for pre-fit yields and plots, where “pre-fit” describes all results not
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Figure 7.3: (a) Distribution of m;; in the Z — ¢¢ validation region mimicking the
event selection of the T,,qThaa channel. (b) Weights for the Z — 77
contribution to correct for the observed mismodelling in m;;.

obtained from the profile likelihood fit described in Sec. 7.6. These values are
chosen to reproduce the yields of Z — 77 and the Fake background obtained from
a fit in the low-BDT control region introduced in Sec. 7.4.

7.4 Event Categorization

A BDT for further signal separation is trained in the VBF inclusive region. Its
properties as well as the results of the training are presented in this section. The
training procedure is documented in Ref. [147].

7.4.1 Properties of the BDT

A BDT is trained with event samples labelled as either signal or background.
In order to achieve a separation of the VBF signal, simulated VBF H — 771
events were used as signal and the sum of Z — 77 and Fake events were used
as background. Other background contributions are much less prevalent in the
VBEF inclusive region and therefore ignored in the BDT training. To distinguish
signal and background events, the BDT must be given distributions of variables
that differ for signal and background. The distributions of the variables that were
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Figure 7.4: Event yields as a function of An(7,7) in the QCD fit region. The nor-
malization factors rqcp and rz of the Fake and Z — 77 contributions
are fitted to the data simultaneously. The usage of AR(7,7) instead
of other variables is motivated by the purity of the Fake contribution
at values AR(T,7) > 1.5.

found to achieve the greatest separation in the VBF inclusive region are shown in
Fig. 7.5.

The MMC-estimated di-7 mass mMMC is included to reconstruct the Higgs-
boson mass. The centrality variables C};(7) and C};(71) describe how central the
considered Ty.q.vis candidate is with respect to the two leading jets in the event:

—4 n(jr) + ﬂ(j2))2]

ij (Thad-vis) = eXp [<7](]1> — 77(j2))2 (U(Thad-vis) - 5

In order to identify VBF events based on the jet activity in the event, the di-
jet invariant mass m;; is included, which typically reaches high values in signal
events. For similar reasons, the pr of the combined state of the 7,,4.vis candidates,
the jets and the ER'S estimation named p%® is included in the BDT. Since addi-
tional resolvable jets apart from the two tagging jets are rare in VBF events, C};
is expected to have values close to 0 in signal events. To construct the E¥* cen-
trality C'(E™s%), the transverse plane is transformed such that the direction of the
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Figure 7.5: Distributions of the BDT input variables in the VBF inclusive region.
The hatched band indicates statistical uncertainties and all systematic
uncertainties apart from the Z — 77 scale variations.

Thad-vis candidates are orthogonal, and that the smaller ¢ angle between the 7y,.4-vis
candidates defines the positive quadrant of the transformed plane. Then C/(ERis)
is defined as the sum of the z and y components of the EX unit vector in this
transformed plane. If the 7-lepton decays are the only source of E through the
production of neutrinos, ¢™* should in many cases be in between ¢(7y) and ¢(7),
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leading to values of C'(ER*®)/v/2 close to 1. The pp(r, 7, EX®), also referred to
as pif, is included to further discriminate against the Fake background. While in
processes with true 7.q.vis Objects, adding the four-vectors often increases the pr
value due to the collimation of the objects, stronger cancellations are expected in
Fake events, where the correlation between the 7,,4.vis candidates and the E%ﬁss is
smaller. For similar reasons, the variables An(r, 7) and AR(7, 7) are included. In
processes with true hadronic 7-lepton decays, large values are unlikely, while the
expected spectrum is more flat for the Fake background.

In the training algorithm, cuts are applied on the variables that achieve the
largest separating power between signal and background. The separating power is
quantified using the “Gini impurity”

B 2sb
I= Gt

which a cut needs to minimize for a maximal separation of signal contribution
s and background contribution 0. By applying consecutive cuts on individual
variables, the given dataset is split into different subsets named “leaves.” If the
signal contribution is below 50%, the leaf is labelled background-like, else signal-
like. An event from a signal-like leaf receives the tree score +1, background-like
events receive the score —1.

This describes the structure of a single decision tree. A BDT is an ensemble of
trees that are constructed consecutively through a procedure named “boosting.”
The “GradientBoost” algorithm assigns a weight greater than 1 to all misclassified
events of a tree, in order to increase their importance in the construction of the
next tree [148]. When a pre-set number of trees is reached, the BDT training is
concluded. The “BDT score” of an event is the average score of +1 or —1 from
the individual trees. In this analysis, a cut is applied to the BDT score in order
to define the final signal and control region selection.

A two-fold cross-evaluation scheme is employed for training and evaluation of
the BDT performance. All datasets involved in the training are split into two
subsets of equal size. By performing two separate trainings on these subsets, two
BDTs are constructed. To evaluate the performance of these without being biased
by using the same events as in the training, each BDT is tested on the training
set of the other one. This procedure is illustrated in Fig. 7.6. The distribution of
the BDT score in the VBF inclusive region is shown in Fig. 7.7.

7.4.2 Signal Region Construction

The BDT is used to construct a signal-enriched subregion of the VBF inclusive
region, in order to maximize the sensitivity to the CP properties of the signal
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Figure 7.6: Illustration of the cross-evaluation scheme applied for the BDT-based
event categorization in the VBF' inclusive region. The signal included
in the training of the BDT used in this analysis was only VBF H —
7T [147].

process. In order to find the cut value on the BDT score that maximizes the signal
sensitivity, a scan of the Asimov significance

Zoz\/2<(s+b)ln<1+§>—s>,

with s and b being the estimated signal and background yields, for all BDT score
values in steps of 0.01 is performed. The maximal Z; was found when cutting
at BDT score > 0.89, but in order to avoid statistical fluctuations in the Fake
background estimation, the cut was loosened to 0.87 instead. This is the highest
cut value for which all considered systematic variations of the Fake background
gave a positive total yield, increasing the stability of the likelihood fit described
in Sec. 7.6. The yields in the VBF inclusive region as well as the low-BDT control
region (BDT score < 0.87) and the high-BDT signal region (BDT score > 0.87)
are summarized in Tab. 7.4.
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Figure 7.7: BDT score distribution in the VBF inclusive region. The vertical or-
ange line indicates the separation between low-BDT CR and high-BDT
SR. The hatched band indicates statistical uncertainties and all sys-
tematic uncertainties apart from the Z — 77 scale variations.

The low-BDT CR is included in the likelihood fit to improve the estimation of the
Fake and Z — 77 backgrounds. The variable that was found to be most suitable
for this purpose is the mass mMMC of the di-7 system. As shown in Fig. 7.8a, it
exhibits a peak at around 90 GeV which helps to constrain the normalization of
the Z — 77 background contribution. Moreover, the events with mMMC < 60 GeV
are found to be mostly Fake events.

For the test of CP conservation, the Optimal Observable is used in the SR.
Fig. 7.8b shows that its distribution is well-modelled in the CR, giving confidence
in the simulation.

The Fake background estimation in the SR is statistically very limited, due to
only few events in the nOS region passing the BDT score requirement. In order
to make the estimate of the Fake contribution more robust, the ID requirement
on the Fake template is loosened to the medium BDT-based ID instead of using
the default tight ID. Since the yield of the Fake background depends on the ID,
this procedure involves scaling the medium ID Fake template to reproduce the
overall normalization of the default prediction. This is only done in the high-BDT
SR, and only for the Fake template. A comparison of the predicted shapes of the
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Table 7.4: Event yields in the T,.qThaqa channel for the VBF inclusive region, the
low-BDT region and the high-BDT signal region. Normalization factors
are applied to the Z — 77 and Fake backgrounds. Uncertainties are

statistical only.

Process VBF inclusive Low-BDT CR High-BDT SR
VBF 28.0+0.3 14.3£0.3 13.74 +0.21
Top 43.3£4.3 43.0+4.4 0.36 + 0.36
W 19.0£4.0 17.7£3.9 1.4+1.0
Z — U 1.0+ 0.7 1.0+ 0.7 0.0£+0.0
Z =TT 826 + 19 817+ 19 94423
Fake 630 &+ 24 627 + 24 3.24+18
Diboson 13.7£1.3 134+1.3 0.27 +£0.07
(ggF/VH/ttH) 17.0£ 0.6 14.4+£0.5 2.7+0.2
Sum of backgrounds 1550 + 31 1533 + 31 17.2+£3.1
Data 1516 1479 37
S/B 0.02 0.009 0.75

Optimal Observable distribution for the Fake background depending on the 1D
working point is shown in Fig. 7.9a. The O, distribution in the SR, including
the shape prediction of the Fake background with the medium ID working point,
is shown in Fig. 7.9b.

Before using the high-BDT SR for a test of CP conservation, it must be verified
that the BDT score is not correlated with the Optimal Observable, since this
would cause a biased measurement in the SR. A possible correlation is tested by
comparing the mean values of the O,y distribution in different bins of the BDT
score. The result is shown in Fig. 7.10. No significant trend of the mean value with
the BDT score is observed. Other effects, such as the shapes of the input variables
depending on the CP scenario, can impact the sensitivity of the measurement, but
they cannot bias the CP measurement. Therefore, they have not been studied in
detail.

7.5 Systematic Uncertainties

The systematic uncertainties for this analysis can be split into three types: experi-
mental uncertainties, theoretical uncertainties and uncertainties on the background
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Figure 7.8: Distribution of (a) mMM® and (b) the Optimal Observable in the low-
BDT control region. The number of entries in each bin is divided by
the width of the specific bin. The hatched band indicates statistical
uncertainties and all systematic uncertainties apart from the 27 — 77

scale variations.

estimation technique. The experimental uncertainties applied are the same as de-
scribed in Sec. 6.4, except that muon-related uncertainties are not considered in
the ThaqThaa channel and that the uncertainty related to the jet-energy resolution
is estimated using a scheme of eleven different variations instead of eight.

7.5.1 Theoretical Uncertainties

Uncertainties on the theory prediction are included for the H — 77 processes and
the main simulated background, Z — 77. No theoretical uncertainties have been
evaluated for the other simulated backgrounds, since their contributions are much
smaller than that of Z — 77.

Theoretical Uncertainties on the Simulation of H — 77

The theoretical uncertainties on H — 77 processes can be attributed to three
sources. First are the QCD scales ugr and pp, accounting for missing higher orders
of QCD corrections. Second are non-perturbative parts of the simulation, such as
the underlying event and hadronization. Third are uncertainties on experimentally
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Figure 7.9: (a) Comparison of the Fake background prediction using the default
tight ID criterion (red) and loosening it to the medium working point
(blue). The distributions are both normalized to a total integral of
one. The prediction for the rightmost bin is not visible for the tight
ID since no event from the nOS region with O,y € [5, 15] passes the
BDT cut. (b) Distribution of the Optimal Observable in the high-BDT
SR. The number of entries in each bin is divided by the width of the
respective bin. Only statistical uncertainties are shown in both plots.

measured parameters that are included in the event generation, such as PDF's and
ag.

These impact the total production cross-section of a process, the detector ac-
ceptance as well as the shape of the simulated distributions of different variables.
The impact on the total cross-section is treated separately, while the acceptance
and shape uncertainties on the mﬂMC and Oy distributions are correlated for
the same source of uncertainty. The cross-section uncertainties, which arise from
H — 77 branching ratio, QCD scale, PDF and ag uncertainties, are documented
in Ref. [23]. These are not taken into account for the VBF signal, since the focus
of the analysis is the measurement of d. For the reasons described in Sec. 3.5,
this measurement is independent of the cross-section and no assumptions on it are
taken into account.

The QCD scale uncertainties are estimated by varying the nominal values of ug
and pp by multiplying different combinations of the factors 2 and 0.5 to them,
with the restriction 1/2 < pg/pur < 2. These variations are compared and in each
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Figure 7.10: Mean value of O,y in different bins of the BDT score for (a) the
sum of all backgrounds, (b) the SM VBF signal, (c¢) the VBF signal
assuming d = —0.4, (d) the VBF signal assuming d = 0.3. Only
statistical uncertainties are shown.

bin of the final discriminant, the largest discrepancy between the nominal and the
varied distribution is kept as the final estimate of the QCD scale uncertainty.

This procedure is applied for all H — 77 processes except for ggF, since it
can lead to an underestimation of uncertainties for this process. Instead, the LHC
Higgs Cross-Section Working Group recommends using a set of nine variations that
cover the effect of uncertainties on the QCD scales, the population of the VBF
phase space, the Higgs-boson pr distribution and the cross-section dependence on
the mass of the top quark [149].

The uncertainties related to parton showering and the underlying event sim-
ulation are evaluated by comparing the predictions of samples generated with
PyTHIA 8 and Herwig 7. In accordance with Ref. [127], the total PDF uncertainty
is estimated from 30 independent variations. Additionally, two ag variations are
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included.

Theoretical Uncertainties on the Simulation of Z — 77

For the Z — 77 contribution, the QCD scale and PDF uncertainties are evaluated
in the same way as for H — 77. Since the Z — 77 sample is composed of
multiple exclusive jet multiplicity categories, a jet-to-parton matching following
the CKKW procedure is conducted [138]. A variation of the introduced scale is
applied through a truth-level parametrization in pp(Z) and the number of jets.
The QSF scale for resummation of soft collinear radiation in the parton shower is
varied using the same parametrization.

The cross-section of vector-boson fusion or electroweak production of Z bosons
is not measured very accurately, and therefore an additional uncertainty is applied
on the fraction of Z+jets events produced via this mechanism. To reflect the
uncertainty on the m;; reweighting, the full difference between the integral of
Z — 771 with and without weights is applied as an uncertainty. The impact
on the shape of the mMM® and O, distributions was found to be negligible. The
uncertainty on the m;; reweighting is correlated in the low- and high-BDT regions.

To evaluate the uncertainty introduced by the parton shower, an alternative
Z — 71 sample generated with MadGraphb5_aMCQNLO and PYTHIA 8 was used.
To reduce the impact of statistical fluctuations, the relative difference between
the MadGraph and SHERPA prediction in each bin of the SR O,y distribution is
derived in the VBF inclusive selection. The same is done for the uncertainties on
the QCD and CKKW scales.

Another set of variations is introduced to cover the possibility that the theo-
retical uncertainties cause a migration of Z — 77 between the low-BDT CR and
high-BDT SR. This is done in multiple steps. In the first step, the yields after
varying any of the theory predictions in both fit regions are calculated. These are
then simultaneously scaled such that the sum of yields equals the nominal yield
prediction. By correlating the resulting relative yield changes from the last step
between the low-BDT CR and the high-BDT SR, the final migration uncertainty
is constructed. This procedure is applied independently for each of the introduced
theoretical uncertainties. In combined fits of all decay channels, analogously de-
fined migration uncertainties between the decay channels are also included.

7.5.2 Uncertainties on the Background Estimation Method

Two sources of uncertainties are considered for the construction of the nOS Fake
template. The first one covers the MC contamination in the nOS control region
and the fact that it contains 2-prong 7y.q.vis candidates, for which no central perfor-
mance measurements are performed in ATLAS. To account for missing efficiency
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scale factors on the MC subtraction term, the MC contribution is varied within its
total statistical uncertainty in the QCD fit region and the relative difference, in
bins of mMMC is applied as an uncertainty on the Fake template in the low- and
high-BDT regions.

In addition, an uncertainty to account for the loosened ID criterion applied to
the Fake template in the high-BDT SR is constructed by comparing the O, shape
in the VBF inclusive region for the medium and tight BDT ID working points.
The comparison is shown in Fig. 7.11, and the resulting ratio between tight and

medium O,y distributions is applied as an uncertainty on the SR Fake template.
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Figure 7.11: Comparison of the shape of the O, distributions in the VBF inclusive
selection, using either the tight (green) or the medium (blue) ID work-
ing point. In order to only assess shape differences, the medium-ID
distribution is scaled to match the total yield of the tight-1D distribu-
tion. The ratio shown in the lower panel is applied as an uncertainty
on the shape of the Fake template in the high-BDT SR.

A summary of all included systematic uncertainties is given in Tab. 7.5.

7.6 Template Likelihood Fit

The comparison of the estimated signal and background contributions to the ob-
served data, including the measurement of d, is performed via a template likelihood
fit. This fit includes not only the 7T,q7haq channel, but also three more channels
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Table 7.5: Summary of considered systematic sources of uncertainty with the num-
ber of variations per source. The column “Type” specifies the number
of components that impact the shape (S) or normalization (N) of the
input distributions in the 7,,q7haq low-BDT CR and high-BDT SR after
applying the simplification procedure described in Sec. 7.6.2.

Source Components Type
Jets 36 N(28) S(17)
Thadvis candidates 8 N(8) S(3)
Emiss 3 N(3) S(2)
Theory H — 77 47 N(18) S(2)
Theory Z — 77 11 N(10) S(4)
Fake estimate 2 N(1)
Luminosity 1 N(1)
Pile-up reweighting 1 N(1) S(1)

covering leptonic decays of 7 leptons, which are described more closely in Ref. [11].
An overview of the maximum-likelihood method as well as its application to the
analysis at hand is given in this section.

7.6.1 Likelihood Construction

From the TyaqThaa channel, the distribution of mMMC in the low-BDT control region

and O,y in the high-BDT signal region are used to measure the value of d. Using
the distributions of the same variables, similarly defined regions are also used from
the TiepTiep SF, TiepTiep DF and TiepThaa channels. Since top-quark backgrounds are
an important background in the 7,7, channels, top-quark control regions defined
by requiring the presence of b-tagged jets are included in these channels. In the
TiepTiep OF channel, the Z — (¢ process also contributes significantly. Therefore, a
dedicated control region is defined by requiring 80 GeV < my, < 100 GeV for the
invariant mass myy of the two leptons. Only the total event yield is considered in
the top-quark and Z — ¢¢ CRs. The regions included in the fit are summarized
in Fig. 7.12.

A statistical model is introduced to fit the estimated signal contribution s and
background contribution b to the observed data distributions. These contribu-
tions make up the total expected contribution n®¥®, which, in each bin ¢ of the
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Thad Thad|low-BDT CR(MMC)SR(Oypt)

low-BDT CR(mMMC)

Tiep Tlep Top CR (tot. yield)
DF___low-BDT CR(M<"9)ISR(Oop0)

Z—-{{ CR (tot. yield)

‘Sf';p“ep Top CR (tot. yield)
low-BDT CR(MMMC)SR(Oyp1 )

Figure 7.12: Sketch of all analysis regions included in the likelihood fit. Apart from
a low-BDT CR and a high-BDT SR, the 7ie,7iep channels also include
CRs to better constrain the normalization of the Top and Z — £/
backgrounds. The variable included in the fit in each region is given
in parantheses.

distributions entering the fit, can be expressed as
n P = usi(0) + b;(9) .

The symbol 0 describes a set of parameters 6, describing the considered sources
of uncertainty on the measurement. These 6, are called “nuisance parameters”
(NPs). The factor p scaling the signal contribution is called signal strength, and
it is introduced in order not to be biased by the SM expectation on the total
production cross-section of the signal process ody". The signal strength can be
expressed as

VBF
_ Oobs
H = 5 VBF

SM

with the observed production cross-section o%B¥ and it is a free parameter to be

determined by the fit.
Using these quantities, a simple likelihood function L for a comparison of a pre-
dicted binned distribution to the data distribution (nq,ng,...,ny) can be written
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as [150]:

L(.0) ﬂ (1055(0) +55(0))™ (s, 0)45,00))
=1 "
The likelihood is constructed by multiplying the probabilities to observe n; events
in bin j for all N bins included in the measurement, given a specific value of u
and the NPs 0. The probability in each bin is described by a Poisson distribu-
tion, which leads to the given functional form of L. The best-fit result is defined
when L is maximal, or equivalently, when n:™ is as close as possible to n; in all
bins. The likelihood function is constructed using “HistFactory” [151] and “Roo-
Stats” [152], while the maximization and uncertainty estimation are conducted
using “RooFit” [146] and “Minuit” [153].

The uncertainty on the best-fit value 0, of a specific parameter 6, obtained
from likelihood maximization can be estimated using a Taylor expansion. For
convenience, the expansion is conducted on the logarithm of the likelihood, which,

due to being monotonic, is maximal for the same set of fit parameter values as the
likelihood itself:

In(L(6,)) = In(L(0,)) + <%) =i

. (a? In(L(6;))

920, )Gkék (O — 01)* + O((0 — 61)*) . (7.1)

The derivative in the second term vanishes, since it is evaluated at the maximum
of L. For evaluating the last term, it is assumed that In(L(6x)) has a parabolic
dependence on 6 around its maximum, as in the limit of large sample sizes, the
likelihood has a Gaussian dependence on ;. This leads to:

o - (a? 1rgZLgiek)))1 |

With this, Eq. (7.1) reduces to:

In(£(60)) = n(£(00)) — P
and thus:
. N2
(L (6 + Now,)) = (L) — = (7.2)
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Therefore, the 1o confidence level (CL) interval on 0y, can be constructed by iden-
tifying the value of 6 where the logarithm of the likelihood is reduced by 1/2.
The CLs used throughout this chapter are 68% (N = 0.99) and 95% (N = 1.96),
constructed by determining a difference to the maximum of In(L) of 0.49 and 1.92,
respectively. The assumption of a parabolic dependence is fulfilled in the limit of
very large sample sizes. In the VBF H — 77 CP analysis, however, the sample
sizes are not large. A study to estimate the error introduced by this assumption
is presented in Sec. 7.8.

It is possible to improve the accuracy of the fit by incorporating external knowl-
edge on the sources of systematic uncertainty. An example for this is the measure-
ment of the 7-trigger SF measured in Chap. 6. The SF, measured along with its
uncertainty, is included in the likelihood function by extending it with a Gaussian
constraint term for the NP 6, related to the trigger SF:

G(6,) = \/%_Wexp (62/2) .

The nominal SF is represented by 6; being equal to zero. The upward and down-
ward variations of the SF are set to 6, = +1 and 6, = —1, respectively. A com-
bination of linear and exponential interpolations is used to estimate which mMM¢
and Oy distributions are expected for other SF values, i.e. when 6, is neither
—1, 0 nor +1. Including G(¢;) in the likelihood function correlates the per-bin
agreement between data and prediction, described by L, with the result of the SF
measurement in Chap. 6.

Following this procedure, NPs are introduced for all considered sources of uncer-
tainty. To include statistical uncertainties on the predicted number of entries in a
specific bin, the constraint term of the associated NP is not Gaussian distributed.
Instead, a Poissonian distribution of the effective number m; = (b;/d;)* of simu-
lated events is included using the total statistical uncertainty d; on the background
contribution [151]:

(i)™ o
N :

7.

P(m;|yim;) =

The nominal value of the associated NP ; of bin ¢ is 1. Since statistical fluctuations
are independent from bin to bin, an NP ~; is introduced for each bin ¢ of the
distributions included in the fit.

In addition to the nuisance parameters associated to specific sources of uncer-
tainty, normalization factors (NFs) are included in the fit. Apart from the NF
i that scales the signal contribution, NF's for the Z — 77 background and the
Fake background are introduced. These have no dedicated constraint terms, and
in combined fits including all decay channels, the Z — 77 NF is correlated across
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all channels, while the Fake NF is only applied in the 7,,q7h.q channel. This setup
reflects the property that the Z — 77 production cross-section does not depend
on the subsequent 7-lepton decay mode and that the probed phase-space is very
similar in all decay channels. Moreover, a top-quark background NF is applied in
the two TiepTiep channels. The 7 7iep SE channel also applies an NF to the Z — ¢/
background.

In order to measure the best-fit value of d, the described fit is performed mul-
tiple times. The only parameter varied in the input distributions of the fits is
the assumed value of J, which changes the shape of the signal distribution. For
cach assumed d value, the initial yield of VBF H — 77 events is set to the SM
prediction.

By comparing the minimized values of the negative logarithmic likelihood NLL
— —In(L) between these fits, a dependence of NLL on d can be measured. The best
estimate of d is the one with the lowest associated NLL value. For convenience, the
value of ANLL = NLL—NLL,;,, where NLL,,;,, is the minimal NLL value obtained
from all fits, are shown instead of the NLL values themselves. The advantage is
that the difference from the minimum of the function NLL(d) can be read off
directly, which simplifies the construction of CL intervals according to Eq. (7.2).

7.6.2 Statistical Model Implementation

An iterative algorithm was developed to construct a binning of these distributions
that maximizes the amount of bins while keeping the background and signal pre-
diction stable from statistical fluctuations. The algorithm was applied to the SR
Ogpt distribution shown in Fig. 7.9b based on a pre-binning of width 0.05 from
—15 to 15, with a pre-set final bin border at O, = 0. Pre-bins are added up
in positive and negative O, directions until the expected yields of all consid-
ered groups of processes are positive for all considered variations. The groups
of processes are VBF H — 77, non-VBF H — 77, Z — 77, Fake background
and “Others”, combining di-boson, W+jets, Z — ¢¢ and top-quark production
events. After two symmetric bins are constructed, the procedure is repeated start-
ing where the last bins ended, until the full range of the O, distribution is cov-
ered. The resulting binning for the O,y distribution in the 7,,q7haa channel is:
[15,4.95,2.4,0,2.4,4.95,15], giving six bins in the SR.

For the mMMC binning in the T,47haq CR, shown in Fig. 7.8a, the algorithm was
adjusted to start from mMM® = 0 and only construct bins in positive direction,
while functioning in the same way otherwise. The pre-bin width was 10 GeV, from
which the algorithm constructed the binning (in GeV):

[0, 60, 80,90, 100, 110, 120, 130, 140, 200].

A number of simplifications are applied to the distributions entering the fit. This

is done in order to reduce the number of degrees of freedom of the fit and thus
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increase its stability. For this, the variations of the input distributions with negli-
gible impact are identified and removed before conducting the fit, which is named
“pruning.” Additionally, the effect of statistical fluctuations on the measurement
is reduced by applying smoothing and symmetrization algorithms.

As a first step, the effect of all systematic variations is separated into two cor-
related effects. One affects the normalization of the considered histogram, and
one affects the shape. The following steps are applied sequentially to assess the
importance of the shape variations:

e A symmetrization is applied to all variations that are defined only in one
direction, such as the JER variations. It is also applied in cases where the
upward and downward variation both change the expected contribution in
the same direction, which is known as one-sided variations. In such cases,
the larger deviation from the nominal bin content is symmetrized. In case
this procedure leads to negative bin contents, these are set to 1076 instead.
The same is done for negative bins in all input distributions.

o [f the statistical uncertainty on the total yield of a histogram is greater
than 10%, all shape variations are pruned. This is done since these shape
variations are expected to be dominated by statistical fluctuations.

o A 2 test is conducted between both the upward variation and the nominal
distribution and the downward variation and the nominal distribution. If the
reduced y? is below 0.1 in both cases, the shapes are considered compatible
and the variation is pruned. This step is not applied to variations obtained
from changes in event weights, such as the 7-trigger SFs.

e The “353QH twice” smoothing algorithm [154] implemented in ROOT [155]
is applied to reduce statistical fluctuations in the varied distribution. This
algorithm first flattens peaks and valleys, then applies a quadratic interpo-
lation in resulting flat regions and as a last step replaces each bin content
with the mean value of it and its two neighbouring bins. It is applied twice
to the ratio of variation and nominal histogram, which is multiplied to the
nominal histogram after the smoothing to obtain the smoothed variation.

e As a last step, the significance S; = |n;® — n{o"®|/nf°® of the variation of

a single process group with respect to the total background prediction is
computed in each bin ¢. If §; < 0.1 for all bins 4, the shape variation is
pruned.

Additionally, normalization variations are only considered in the fit if either the
upward or the downward fluctuation changes the total integral of a histogram by
more than 0.5% and by more than the statistical uncertainty on the integral.
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7.7 Fit Results

The result of the likelihood scan for d is shown in Fig. 7.13a. Four different types
of fits are conducted. In pre-fit expected fits, the dataset to approximate with the
input distributions is the expected distribution for the SM expectation of d=0
and p = 1, which is named the Asimov dataset. Therefore, the agreement is perfect
in the fit using the VBF H — 77 distribution with d = 0, and the minimum of the
ANLL curve is at d = 0 by construction. Also, the best-fit 1 in the d = 0 fit has
to be equal to 1 by construction, which is verified in Fig. 7.13b, where the signal
strength is shown in dependence of the d value. It shows that, since the SR Ogpt
histogram that is approximated with the signal and background templates has the
highest entries around zero, the best-fit 1 is low when using a strongly asymmetric
signal template corresponding to a large ]cﬂ
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Figure 7.13: Dependence of (a) the minimized NLL and (b) the VBF signal
strength © on the assumed d value. The pre-fit expected, expected
and observed results are shown. The horizontal red lines in (a) mark
the 68% and 95% CL thresholds in ANLL according to Eq. (7.2) [11].

However, the agreement of the pre-fit expectation to the data is not very good
around the peak at 90 GeV in mMMC in the low-BDT CR. This has been traced
back to the measurement of the scale factors related to the efficiency of the BDT-
based Thad-vis ID algorithm. The recommended correction factors are 1.074 + 0.06
for 1-prong and 1.11 4+0.07 for 3-prong maq.vis candidates. Tests conducted for the
H — 77 production cross-section measurement documented in Ref. [120] suggested
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that the 1-prong correction factor was slightly overestimated in the phase-space of
the VBF H — 77 CP analysis, leading to an overestimation of the contribution
from the Z — 77 process. For this reason, the observed NF for the Z — 77 process
is slightly below unity. The measured values of all NF's are listed in Tab. 7.6. Apart
from the TiepTiep NF for top-quark backgrounds, all are compatible with the SM
expectation of 1 within 1o.

Table 7.6: Measured NF values in the combined fit assuming d = 0 with total
uncertainties.

Process VBFH Z =17 Z =l (TiepTiep SF)  Top (TiepTiep)  Fake (ThadThaa)

NF 0.73+0.47 0.93 +=0.08 1.0+0.4 1.16 £ 0.06 0.99 = 0.09

In order to incorporate corrections to the 7,,4.vis ID SF into the estimation of the
expected sensitivity, the blue curve “Expected (d =0, p=1)" and the red curve
“Expected (cz =0, = 0.73)” in Fig. 7.13a are constructed in two steps. At first, a
fit to the observed data distribution is conducted, but only in the CRs. After this,
the obtained best-fit values 0¢ of all fit parameters except u, to which the CRs do
not give any sensitivity, are used in the creation of the Asimov dataset to reflect the
knowledge on the data distribution in the CRs. In order to base the expected result
fully on the CR fit and not be biased towards the pre-fit expectation, the likelihood
function is also adjusted for obtaining the expected result. The constraint term
of each NP 6; is changed such that the central value represents the best-fit value
0¢ from the CR fit. For NPs with a Gaussian distribution, the constraint term is
changed to

G (0;) =

1 2
exp ((0; —67)°/2) .
The Poisson distributions of an NP ~; associated with the statistical uncertainty
on the background estimate in bin ¢ is changed to
i)™ i
Pe(m;|yvim;) = %6 K
mg! ()™
to shift the mean value of 7; from 1 to 7. Normalization factors remain free
parameters of the expected fit, and the constraint terms for NPs that are present
in the complete fit but not the CR-only fit, e.g. due to pruning, are left unchanged.
As the sensitivity is clearly lower than the pre-fit expected, two different ex-
pected ANLL curves were constructed to identify the origin of this behaviour. In
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7 VBF H — 77 CP Analysis in the T,,qThaq Final State

both cases, the described procedure is followed, to base the expectation on the
combined CR-only fit. In the case of the cyan curve, the Asimov dataset was
constructed assuming p = 1, while for the red curve u = 0.73, the best-fit value
in the observed d = 0 fit, was used. Fig. 7.13b shows that the observed signal
strength was lower than expected in all conducted fits, reducing the sensitivity to
the signal process and thus to d. Thus, the difference between the grey curve and
the cyan curve shows the impact of best-fit NP values that deviate from the pre-fit
expectation. The difference between the cyan and the red curve shows the loss in
sensitivity due to a smaller than expected observed signal strength. The difference
between the red and black curves is due to additional shifts in best-fit NP values
due to the SR data distributions as well as slightly asymmetric data Oy, distribu-
tions. This shows that the low observed signal strength of p = 0.73 £ 0.47 is the
main reason for the lower than expected sensitivity to d.

The observed results are obtained in the same way as the pre-fit expected ones.
The only difference is that, instead of the Asimov dataset, the measured data
distribution is used. The best-fit value of d obtained is —0.01, with the 68% CL
interval d € [—0.089,0.035]. As this covers the SM expectation of d = 0, no sign of
CPV was found. The resulting observed and expected 68% and 95% CL intervals
on d are summarized in Tab. 7.7.

Table 7.7: Measured 68% and 95% CL intervals for the combined fit of all decay
channels.

CL  Pre-fit expected Expected, y =1 Expected, p = 0.73 Observed

68% [—0.032,0.031]  [—0.035,0.033] [—0.050,0.046]  [—0.089,0.035]
95% [-0.121,0.102]  [~0.212,0.149] - -

The post-fit distributions for the d = —0.01 fit in all four SRs are shown in
Fig. 7.14, and the mean values of the data distributions are listed in Tab. 7.8.
These mean values can be used for a simpler, less model-dependent test of CPV,
since no assumption on the contribution to the data from specific processes is
made. Assuming no rescattering effects, a significant deviation of the mean values
from zero would mean CP violation. The conclusion for this test is the same as
for the d scan: The measured values are consistent with the SM expectation and
CP conservation in HV'V couplings.

To estimate how the individual channels contribute to the sensitivity of the
combined fit to d, modified fits are conducted. In these fits, only yield information
is used in the SR distributions of three channels, while the O, distribution is still
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Figure 7.14: Post-fit O,y distributions in the SR of (a) the Tie,7ep SF channel,
(b) the TiepTiep DF channel, (c) the TiepThaa channel, (d) the ThadThad
channel for the combined fit with d = —0.01. The number of entries
in each bin is divided by the width of the respective bin. The best-fit
value p = 0.73 is used to scale the signal [11].

used in the fourth SR. This is done to keep the yield information from all channels
and thus have a setup as close to the default combined fit as possible, but only
exploit the sensitivity to d through a single channel. The resulting ANLL curves
are shown in Fig. 7.15.

The deviations of the best-fit d values from zero in these fits are correlated with
the mean values of O,y observed in the SRs of the different decay channels. The
negative mean Ogp value in the T,qThaa leads to a best-fit d of —0.13 and a 68%
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7 VBF H — 77 CP Analysis in the T,,qThaq Final State

Table 7.8: Observed mean values of the Ogp distributions in the SRs of the four
decay channels with statistical uncertainties [11].

Channel (Oopt)

TepTlep SF —0.54 £0.72
TepTlep DF 0.71 £0.81

~* ThadThad

TepThad 0.74 +£0.78

Thad Thad —1.13 £ 0.65
_I C T T T ‘ T T T ‘ T T T T T T ‘ T T T ‘ T T T ]
2‘ 3 ATLAS -»-Combined ]
< L 1 TiepTiep SF ]
© Vs=13TeV,36.1fb" + ronoDF |
2.5 ¥ TigpThad -

Figure 7.15: Curves of ANLL obtained from the fits to estimate the contribution
of individual decay channels. Only information on the total yield is
included in the SRs of all channels but the considered one [11].

CL interval of d € [—0.47,0.037).

To study the effect of the NPs on the sensitivity to d, a number of fits to the
Asimov dataset has been conducted. In these fits, the groups of NPs associated to
jets, MC sample sizes, Thaqvis Or simply all NPs are fixed to their pre-fit value, so
that they do not affect the minimization of the NLL. The results in Fig. 7.16 show
that the jet-related uncertainties are the most important for this measurement.
The statistical uncertainty on the background estimate and the 7j,.q.vis-related
uncertainties also have a visible impact on the ANLL curve. Other uncertainty
sources, such as those related to muons or electrons or the theoretical predictions
on the modelling of physics processes, have a smaller impact and are not shown.

To conclude, the obtained 68% CL interval d € [—0.089, 0.035] covers the SM
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Figure 7.16: Comparison of pre-fit expected ANLL curves for the combination
of all decay channels in the absence of different sources of uncer-
tainty [11].

prediction of d = 0, and thus no sign of CPV (or rescattering) has been found.
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7.8 Coverage Probability Study

As mentioned in Sec. 7.6, the correspondence between ANLL values and CL inter-
vals described in Eq. (7.2) is only exact in regions where the NLL curve shows a
parabolic dependence in the considered parameter 6;. As evidenced by the ANLL
curves shown in Sec. 7.7, this assumption holds around the minimum, but the
curve becomes flatter at high values of |d|. This behaviour is a consequence of
using the Oy distribution in the SR. As described in Sec. 3.4, it allows for a clear
distinction between the cases d = 0 and d # 0, but different values of high |d|
produce similar O, distribution, which causes the ANLL curve to flatten out.

As the assumption for Eq. (7.2) does not hold over the total range of d that was
investigated, a test was performed to directly study the coverage probability of the
derived 68% and 95% CL intervals assuming d = 0. The test aims at the expected
intervals assuming p = 1 for the combined fit, i.e. the ones obtained from the cyan
curve in Fig. 7.13.

The method involves two steps. At first, pseudo-data are generated to obtain
representative datasets on which to perform the study, always assuming d = 0.
In the second step, fits to the datasets generated in step one are performed to
find the d value that best fits the pseudo-dataset generated with d = 0. The fits
are conducted for numerous datasets and the distribution of best-fit d values is
compared to the expected 68% an 95% CL intervals obtained in Sec. 7.7.

7.8.1 Generation of Pseudo-Data

The goal at the generation stage is to produce pseudo-datasets in which the aver-
age content of each contribution in every bin is the same as in the post-fit expected
d = 0 distribution. The utilized pseudo-datasets are Asimov datasets generated
with parameters that are varied according to pre-defined probability density func-
tions for each dataset. For the normalization factors, including p, a Gaussian
distribution was chosen, centred around their respective post-fit values and with
the width according to their post-fit uncertainty. The NPs associated to statistical
uncertainties in individual bins are Poisson-distributed, such that the mean value
of the NP is the post-fit value obtained in the expected d = 0 result. All other
NPs are sampled from Gaussian distributions of unit width around the expected
post-fit value.

The unit width is chosen to reflect that pre-fit uncertainties are used to sample
the fit parameters. Since no pre-fit uncertainties are defined for the free NF's, the
post-fit uncertainties are used instead. To correct for this inconsistency, Gaussian
constraint terms are included in the likelihood for this study. The ANLL curve
obtained with the thus changed likelihood function is displayed in Fig. 7.17. The
difference is small since the normalization factors are not the leading sources of
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uncertainty in the fit. Therefore, the expected sensitivity to d is largely unchanged.
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Figure 7.17: Comparison of expected ANLL curves obtained from combined fits
with and without the inclusion of constraint terms on the NFs in-
cluding pu.

7.8.2 Coverage Probability Measurement

Fits are conducted to all pseudo-datasets. After scanning the whole considered d
range, a best-fit value is determined for each of the 854 generated pseudo-datasets.
Since the scan in d is discrete but the expected limits are not, an interpolation
is applied to more accurately determine the best-fit d value. An example of the
procedure is shown in Fig. 7.18a. The three neighbouring points in each direction
of the minimum of the NLL curve are considered. A parabola is fitted to these six
points and the minimum of the best-fit parabola is taken as best-fit d value.

The distribution of best-fit d values of the pseudo-datasets is shown in Fig. 7.18b.
To test the validity of the expected 68% and 95% CL intervals on d obtained using
Eq. (7.2), the fraction of pseudo-datasets with a best-fit d covered by these intervals
is calculated.

The obtained fractions are 77.9% for the 68% CL interval and 95.7% for the
95% CL interval. The deviation from the expected coverage is found to be greater
for the 68% CL interval despite the expected ANLL curve being approximately
parabolic in that region, unlike the region around \(ﬂ = 0.1 which is included in the
95% CL interval. An explanation for this has not been found. But in both cases,
the deviation is towards higher coverage, i.e. the uncertainty on d is overestimated.

105



7 VBF H — 77 CP Analysis in the T,,qThaq Final State

ANLL
T

0.6 —

2
3
l

0.5—

s : o2 2
s
l

®
3
l

0.4—

s
38
T

03—

®
3
l

0.2—

Number of pseudo-datasets
T

N
8
l

0.1—

N
S
l

o

0.2

0.4 ~
Best-fit d

Figure 7.18: (a) Example interpolation of an NLL curve to mitigate the limitations
of the discrete scan of d values. (b) Distribution of best-fit d values
measured for the generated pseudo-datasets.

Therefore, the study shows that using Eq. (7.2) to obtain limits on d may not be
optimal, but is safe.
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CHAPTER 8

Measurement of the H — 77 Production Cross-Section with
the Full Run-2 Dataset

A measurement of Higgs-boson production cross-sections for different production
mechanisms using H — 77 events in the full Run-2 dataset is currently being
prepared. Instead of including the data taken in 2017 and 2018 and repeating
the analysis presented in Ref. [120], many aspects of the analysis have been re-
designed. As the analysis is still ongoing, no final results can be shown in this
chapter. Instead, the focus is put on the developments in the 7j,,q7haq channel.

8.1 Analysis Overview

To a large extent, the simulated event samples used for the full Run-2 H — 77
coupling analysis are produced in the same way as in the VBF H — 77 CP
measurement, which is described in Sec. 7.1. This applies to the simulation of
geF, VBF and VH H — 77 events as well as V+jets and di-boson events. For
the simulation of processes including top quarks, the method has changed.

The production of ttH, tt and single-top events is modelled using POWHEG [105-
107, 156-159] at NLO with the NNPDF2.3nlo [114] PDF set. The events are
interfaced to PyTHIA 8 [113] using the A14 tune [116] and the NNPDF2.3nlo
PDF set. Additionally, this analysis includes samples of ttV, 4-top and 3-top
production events. These events are generated using MadGraph5_aMC@QNLO [66]
at NLO with the NNPDF3.1nlo PDF [114]. The events are interfaced with PyTHIA
8 [113] using the A14 tune and the NNPDF2.3lo [114] PDF set. The decays of
bottom and charm hadrons in all samples are performed by EvtGen [117].
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8 Measurement of the H — 77 Production Cross-Section with the Full Run-2 Dataset

The goal of the analysis is to measure the ggF, VBF and V H Higgs-boson
production cross-section. Additionally, a signal region aimed to measure the ttH
cross-section is included only in the 7j.q97haq channel. The event pre-selection in
the ThaqThaa channel is summarized in Tab. 8.1.

Table 8.1: Summary of the event selection for the 7,,q7Thaq channel. The selection
in the Boost, VBF and V' H regions is applied in addition to the prese-
lection. The jet requirements of the t¢H region replace the orthogonal
requirements in the preselection definition.

Nleptons =0, N’Fhad-vis =2
Thad-vis With medium RNN ID and OS
pT(Thad_ViS) > 40, 30 GeV
Thad-vis candidates with 1 or 3 prongs

leading jet pr > 70 GeV, |n| < 3.2

Preselection B 5 90 GeV
0.6 < AR(7,7) < 2.5

An(r,7) < 1.5

0l<z1<14,01l<29<14

Not (Njets > 5 and Ny jets > 2) and not (Negs > 6 and Ny jers > 1)
ttH category (Njets > 5 and Npyjets > 2) or (Niegs > 6 and Npjers > 1)

mj; > 350 GeV, |An(j,j)| >3

VBEF inclusive n(71) - 1(j2) <0

sub-leading jet pr > 30 GeV
1(Thadvis) between n values of leading two jets

60 GeV < mj; < 120 GeV

V H inclusive sub-leading jet pr > 30 GeV

Not VBF inclusive
Boost inclusive Not V H inclusive
])T(Tl, T2, E%liss) > 100 GeV

The definition of the variables x; and x5 is based on the collinear approximation
for 7-lepton decays. With the notation [p(a) x p(b)], = p.(a)p,(b) — py(a)p.(b) for
the momenta of the objects a and b, they can be written as:

- [p(11) % pl72)]:
V2T (50m) X pr)ls + BB X o))

They describe the fraction of the pr of the decaying 7 lepton carried by the pro-
duced neutrino, under the assumptions that both the neutrino and the 7yaq.vis
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object propagate in the same direction as the 7 lepton that produced them and
that the measured EX* only originates from the neutrinos produced in 7-lepton
decays. As very low values or values of = greater than 1 indicate that the Emiss
does not originate from neutrinos produced in T,.q.vis decays, events with such
values are rejected.

The trigger selection is listed in Tab. 8.2. In all years apart from 2015, the
presence of a J25 object is required at L.L1. The expression “03dR30” in the names of
the chains used in 2017 and 2018 describes a requirement on both 7j,,4.vis candidates
at HLT to have 0.3 < AR < 3.0, which is introduced to further reduce the trigger
rates without losing many H — 77 signal events. Similarly, the expression “L1DR”
specifies that the cut (AR(TAU, J))? > 2.0 for both L1 Tyaq.vis candidates with
respect to the L1 jet candidate. This requirement is used to select events in which
the mother particle of the two 7,.q.vis candidates is produced in association with a
QCD jet, which often leads to a large angular separation between the jet and the
Thad-vis candidates to cancel the pr of the total final state. The RNN-based triggers
are not used in 2018 despite slightly better efficiency on true my.q.vis objects. This
decision is made to ensure a uniform identification of 7,,4.vis candidates, which
simplifies the estimation of the Fake background described in Sec. 8.3.

Table 8.2: Trigger selection in the T,.q7Thaq channel.

Year Trigger chain name

taudb_mediuml_tracktwo_tau25_mediuml _tracktwo
_L1TAU20IM_2TAU12IM
2016 tau3b_mediuml _tracktwo_tau25_medium1_tracktwo
9017 taudb_mediuml_tracktwo_tau25_mediuml _tracktwo
_03dR30_L1DR_TAU20ITAU12I_J25
taudb_mediuml_tracktwoEF _tau25_medium]l_tracktwoEF
_03dR30_L1DR_TAU20ITAU12I_J25

2015

2018

The three inclusive signal regions Boost, VBF and V H each target different
Higgs-boson production mechanisms. The Boost selection targets ggF' Higgs-boson
production in association with at least one jet. The increased pr of the Higgs boson
due to it recoiling against jets in the production helps separate it from background
sources. Selecting an additional jet is also a necessity due to the trigger selection,
which includes the presence of a jet candidate at L1. But the expected loss in
sensitivity related to the absence of ggF events without any QCD jets is small.

The VBF inclusive selection is similar to how it was defined in Sec. 7.2. The VH
inclusive selection targets V H events in which the vector boson decays hadronically
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8 Measurement of the H — 77 Production Cross-Section with the Full Run-2 Dataset

and produces two jets, which leads to the applied cut on m;; to cover both the
Z-boson and W-boson mass windows. Events of VH production with leptonic
decays of the vector bosons are not covered by the event selection of this analysis.

Additionally, a ttH region is defined with almost the same cuts as the preselec-
tion. The only difference is that a requirement on the number of b-tagged jet is
applied using the 70% efficient working point of the DL1r b-jet tagger:

(]Vjets 2 5 and Nb-jets 2 2) or (A]Vjets 2 6 and Nb-jets 2 1) .

To avoid overlap, the inverse requirement is applied in the 7y,q7Thaq preselection.
The event distribution in dependence of mMMC at preselection is shown in Fig. 8.1.
As no estimation of the contribution from quark- or gluon-initiated jets misiden-

tified as Thaqvis Objects is included, an underestimation of data is expected.
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Figure 8.1: Event distribution in dependence of mI;/ITMC at the ThaqThaa preselection.

The data in the range 100 GeV < mMMC < 150 GeV have been blinded.
The contribution from misidentified 7,,4.vis candidates has not been

taken into account.
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8.2 L1 Jet-Trigger Efficiency Measurement

As mentioned before, the di-7 triggers utilized in the 7,,q7Thaq channel require the
presence of a jet in addition to the two Ty.q.vis candidates at L1. This is done
to reduce the amount of candidate events passing the L1 threshold of the di-7
trigger chains without strongly reducing the efficiency on SM H — 77 events.
The modelling of jet energies at L1 is, however, not well-modeled. Therefore, a
cut of 70 GeV has been applied on the pr of the leading jet in Chap. 7, to remove
the kinematic region in which the L1 jet trigger is not very efficient. As a first
estimate, this cut value has been kept, but its validity has to be verified on the full
Run-2 dataset and with varying trigger chains. This section describes the method
employed to achieve this goal.

For practical reasons, the study of L1 jet-trigger efficiencies is based on the
analysis presented in Chap. 6. For this, u + 7 triggers with the same L1 jet
requirement as the di-7 triggers used in the 7,,qThaa channel of the H — 77
analysis are investigated. The trigger chains used in the 7y,q7haq channel in 2016,
2017 and 2018 have the same L1_J25 requirement as the p + 7 chain

HLT_mul4_ivarloose_tau25_mediuml_tracktwo_LIDR-MU10TAU12I_TAU12I-J25.

Using the p+7 chain to probe the efficiency of the J25 requirement allows to re-use
the infrastructure of the Z — 77 analysis described in Chap. 6. These chains were
only introduced in 2016, to counteract the rising instantaneous luminosities and
reduce the rates of events passing the trigger chains. Therefore, 2015 data are not
included in this study.

The event selection from Sec. 6.2 is slightly modified to allow for a measure-
ment of jets instead of Taq.vis candidates. The adjustments to the selection are
summarized in Tab. 8.3. Only events passing the HLT _tau25_medium1_tracktwo
trigger as well as the already utilized combination of the HLT mu26_ivarmedium
and HLT mub50 triggers are considered. Only the loose RNN-based 7-trigger 1D
working point is used, which increases the available event sample sizes without
biasing the jet properties. Additionally, the offline 7,,4.vis candidate is required
to be geometrically matched to the HLT 7,,4.vis Object that fulfills the trigger re-
quirements. The last change is that the presence of a jet with pr > 30 GeV is
required.

The background estimation is not changed with respect to that described in
Sec. 6.3. The only change in the measurement of the efficiency € is that it is
calculated with respect to jets in this study:

Niets(pr > 30 GeV, matched to L1_J25 ROI)
€= )

]\fjets (pT > 30 GeV)
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Table 8.3: List of adjustments made to the event selection described in Sec. 6.2 in
order to conduct a measurement of the LL1_J25 trigger leg. The symbol
“7 is used when an additional requirement is placed for the L1_.J25
efficiency measurement, since no cut had been replaced previously.

T-trigger efficiency measurement L1 jet-trigger efficiency measurement

Varying Tyaq.vis 1D criteria Loose RNN ID
- HLT _tau25_medium1_tracktwo(EF')
- pT(jl) > 30 GeV

The true-m MC is still treated as signal, while other contributions are subtracted
from the data before calculating the efficiency of the trigger on data. This back-
ground subtraction is motivated by the original purpose of the analysis framework,
which is to measure 7-trigger efficiencies, and likely not necessary for the estima-
tion of jet efficiencies. It is, however, not expected that this procedure introduces
a bias to the measurement.

The regions used for the numerator and denominator of the efficiency calculation
are shown in Fig. 8.2, for events containing 1-prong 7y.q.vis candidates. Given the
good agreement between data and expectation in the denominator region shown
in Fig. 8.2a, the sizable discrepancy between the yields in data and expectation at
low jet pr in Fig. 8.2b shows that the efficiency of the L1_J25 requirement is not
modelled accurately.

As the efficiency of the L.1_25 leg should not depend on the number of associated
tracks of the m.q.vis candidate, the event yields in both of these cases are combined.
The background estimation is still conducted separately for 1- and 3-prong events,
as described in Sec. 6.3, but the resulting yields are added up before calculating
the jet efficiencies. As a dependence on the pr as well as the n of the jet candidate
is expected, the efficiencies are estimated as a function of both these quantities.
The results are shown in Fig. 8.3. Subfigure (a) shows a strong dependence on
the offline jet pr, including a slow turn-on. Due to the poor energy resolution at
L1, where no energy calibration can be applied, the efficiency does not reach 90%
for pr values below 80 GeV. Moreover, the deviation of the LL1_J25 scale factor
shown in the bottom panel of Fig. 8.3a from unity shows that the simulation does
not reproduce the efficiencies measured in data events at low jet pp. Subfigure (b)
shows the dependence of the L.1_J25 efficiency on the n value of the jet candidate,
which is not as strong. The efficiency decreases for |n| > 3.0, which is due to the
In| < 3.2 requirement at L1 introduced by the L1_J25 leg.

The goal of the study is not to provide scale factors for the L1 leg of the u + 7
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Figure 8.2: Event distribution as a function of pr of the leading reconstructed jet
measured in the study of L1 jet-trigger efficiencies, for events contain-
ing 1-prong Thagvis events. The distribution in (a) shows the distri-
bution after requiring single-object muon and 7-lepton triggers, while
the events shown in (b) are additionally required to pass the multi-leg
i+ 7 trigger with the J25 requirement at LL1. The distributions in
these regions are used to calculate the efficiency of the jet leg of the
trigger.

and di-7 chains, which would require the evaluation of systematic uncertainties on
the measurement. Instead, only the estimation of plateau cuts to recommend to
analyses using such triggers is intended. These cuts on pt and n are introduced to
avoid the regions where the efficiencies measured in data and simulation diverge
strongly.

Since the efficiencies in pr and 7 are correlated, the plateau cuts need to be
determined iteratively by applying a cut on the first variable and determining an
appropriate cut on the other. The final efficiency estimates from which the plateau
cuts are obtained are shown in Fig. 8.4.

Based on these efficiencies, the final plateau cuts of pr > 70 GeV and |n| < 3.2
are derived. Despite not being fully efficient in the remaining phase-space, the
deviation between the L.1_J25 efficiencies in data and MC simulation is considered
sufficiently small. This confirms the plateau cuts found for the previous iteration
of the analysis documented in Ref. [120].

113



8 Measurement of the H — 77 Production Cross-Section with the Full Run-2 Dataset

> F - - —— - P L B B B B B I R

5 - HLT_mul4_tau25_L1J25 trigger b S HLT_mul4_tau25_L1)25 trigger b

K — ——e——| S — —

ﬁ - _‘_-o-¢ ? - :LE— L -

C S ] C ]

0.8— - — 0.8— —

L —_ J L 4

0.6/~ - — 0.6— _ —

L i [ L A——— |

L J L == . %_,__‘_ 4

0.4 o ] ol T s -]

C == ] - . + 1

- 135.7 o™, Vs = 13 TeV, loose RNN ID E H 185.7 b, Vs = 13 TeV, loose RNN ID E

0.2— — 0.2— —

B _, ® Data1617,18 & MCZ>tr N L # # e Data16,17,18 4 MCZ>tr * |

r [ ] Data Stat. —— MC Stat. Error 7 ; [ ] Data Stat. —— MC Stat. Error# i:

C . — . J Cov b b b b by b o 10, 79
§1-4 T T T LI T :é1-4H\wxHwwHWHHMHWHHMHWN\H

IRE — 8 12 T oo |

T -~ PR i S @-oneeees *--— R S LR Rt -~ B =

3 A ° ® e

0.8 ° . — 08— @ ° oo
06 1 1 L ® L L 1 | 1 06 Ll 1| ‘ Ll 1l ‘ Ll 1l ‘ L1l | ‘ Ll 1l ‘ Ll 1l ‘ L1 | ‘ [

: 30 40 50 60 70 80 100 ~ 200 300 4 -3 2 — 0 1 2 3 4

Offline jet P [GeV] Offline jet n

(a) (b)

Figure 8.3: Measured L1_J25 trigger leg efficiencies in dependence of (a) the pr
and (b) the n value of the leading reconstructed offline jet. The lower
panels show the ratio of efficiencies measured in data and simulation.

8.3 Background Estimation in the 71,,qm.aq Channel

With the event selection confirmed, an estimation method for the Fake background
contribution can be developed. As a baseline, the nOS method used in Chap. 7
is implemented, with slight modifications. In order to improve upon this method,
the usage of a fake-factor method is investigated. This section details the two
methods and compares them with each other.

8.3.1 nOS Method

As described in Sec. 7.3, the nOS method is based on scaling a template for
the distribution of fake events in dependence of the investigated variable. This
template is obtained from a region with ¢(m)-q(m2) # —1. Additionally, the
requirement on the number n of associated tracks is loosened with respect to the
SR selection to n € {1,2,3}. The construction of the Fake template for the
MMC distribution in the nOS preselection region is illustrated in Fig. 8.5. All
MC-estimated contributions, excluding H — 77 processes, are subtracted from
the data. This is done in order not to bias the cross-section measurement for the
Higgs-boson production by inserting the SM assumption into the measurement.
However, due to the small signal cross-sections, the omission of these processes is
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Figure 8.4: Measured L1.J25 trigger leg efficiencies in dependence of (a) the pr
and (b) the n value of the leading reconstructed offline jet. The lower
panels show the ratio of efficiencies measured in data and simulation.

not expected to strongly affect the Fake background estimation.

This method is used to estimate the contribution from events where both Ta4.vis
candidates are misidentified quark- or gluon-initiated jets, also named “double-
fake” events. This contribution is attributed mainly to QCD multi-jet events, but
other processes such as W — gq¢’+jets production can also give a minor contribu-
tion. In the nOS method, the contribution from processes with a true and a fake
Thad-vis Object, named “single-fake” events, are estimated together with the events
containing two true T,aq.vis 0Objects using the MC simulation. Such events can be
produced, for instance, from the W — 7v,. process with radiation of additional
jets or processes involving top-quark production.

In order to find an appropriate scaling factor, named rqcp, to estimate the
absolute number of Fake events in the SR, the SR cut An(r,7) < 1.5 is loosened
to An(7,7) < 2, which increases the relative contribution of double-fake events.
In this selection, the scaling factor is determined to be

(Npata — Nmc)os 89032 — 68172.8

= = 0.62
(Nbata — Nyvc)nos 41689 — 8101.8

rQcp =

The comparison of the distribution of mMMC values in data and expectation
based on the nOS method is shown in Fig. 8.6. As the analysis is still ongoing,

the distribution of data in the window mMMC [GeV] € [100, 150] are not shown.
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Figure 8.5: Event distribution in the nOS preselection in dependence of the mMM¢
mass estimate. The Fake template is constructed by subtracting the
contribution from events containing at least one true 7y.q.vis Object as
estimated by MC simulation from the measured data distribution. In
order to better visualize the shape of the resulting Fake template his-
togram, it is not stacked on top of the contributions from the simulated
event samples.

This procedure, named “blinding,” is introduced to avoid biasing the definition
of analysis regions. The modelling in mMMC is mostly good, apart from the re-
gion mMMC < 70 GeV, where the data yleld is underestimated. For these low
mMMC values, the relative Fake contribution is the largest, which suggests that the
deviation is caused by an imperfect Fake estimation.

8.3.2 Fake-Factor Method

Several shortcomings of the nOS method have been observed in this analysis.

MM

e Mismodelling at low mMMC values at preselection.

e The template for the Fake background is constructed inclusively for 1-prong
and 3-prong Taq.vis candidates from the nOS region, and cannot be split into
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Figure 8.6: Event distribution in the SR preselection in dependence of the mMM®

mass estimate with the Fake contribution estimated with the nOS
method. The data with mMMC values in the range [100,150] have
been blinded.

1-prong and 3-prong contributions due to the presence of 2-prong candidates
in the nOS region.

e Sizable contamination of true 7,.q.vis Objects in the nOS selection.

e No standardized measurements of the performance of simulated samples for
2-prong Thadvis candidates with results provided for all ATLAS analyses,
which complicates the treatment of systematic uncertainties on the method.

e Small sample size in the nOS selection, leading to statistical fluctuations in
the bin contents of the template constructed to estimate event distributions
of the Fake contribution in the SRs.

In order to improve on as many of these shortcomings as possible, the usage of a
method based on fake-factors has been investigated.
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Introduction to Fake-Factors

The main feature of a fake-factor method is the usage of a region with inverted
Thad-vis-candidate ID to construct a template of the event distribution of the Fake
background in dependence of different variables in the SR. By scaling the events in
this region with the appropriate fake-factors, the Fake contribution is estimated.
The ID requirement in the SR is the medium RNN-based working point, which
is applied to both Ty.q.vis candidates. This requirement is inverted by requiring
one of the two Thaq.vis candidates to fail the medium ID requirement, which defines
the “anti-ID” region. Due to a central pre-processing step of the available samples
provided by ATLAS, no events are available in which both 7,,4.v;s candidates fail
both the BDT-based and the RNN-based loose 1D criteria. Therefore, in order not
to rely on the obsolete BDT-based ID criteria, the minimal cut of at least one of
the Thada-vis candidates passing the loose RNN ID is added to the definition of the
anti-ID region. The mMMC distribution in the anti-ID region is shown in Fig. 8.7.
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Figure 8.7: Event distribution in the anti-ID preselection region in dependence of
the mMMC mass estimate.

For a comparison with the nOS region, the value corresponding to rqcp using
the anti-ID region is calculated at preselection with the loosened cut An < 2.0, to
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be consistent with the previous calculation of rqcp:

anti-ID (Npata — Numc)sr 89032 — 68172.8
. _ _

= = —0.039 .
QD T (Npaa — Nuc)amitnp 571657 — 30702.1

This comparison shows that the fraction of true m,.q.vis Objects in the anti-ID
region is smaller than in nOS, and that the available number of events is much
larger. Additionally, no 2-prong m.q.vis candidates are included in the anti-ID
region, making this region a promising candidate for usage in the Fake estimate.

However, the T.q.vis ID is known to bias the pr distribution of rejected T,ad-vis
candidates. This is demonstrated in Fig. 8.8, where the ratio of rejected over
accepted fake-7y.q.vis candidates by the medium BDT and RNN ID requirement
is shown in dependence of pr. As the ratio increases with pr, a template of the
pr distribution of fake-7,.q.vis candidates obtained from the anti-ID region will
have a lower mean than the fake-7,,4.vis distribution to be estimated in the SR. In
order to counteract this bias, the scaling factors applied to the anti-ID template
to construct the SR Fake-background estimate must be dependent on pr.
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Figure 8.8: Number of rejected fake-7,.4.vis candidates with 1 or 3 associated tracks
per fake-7.q.vis candidate passing the medium working point of either
the BDT-based or RNN-based ID algorithm, in dependence of the pr
of the candidate. The higher the pr value is, the higher the rejection
power is. This effect is enhanced for the RNN-based ID [100].

Fake-Factor Measurement

The fake-factors are derived in a region enriched in W+jets events, named TiepThad
W+jets CR. For practical reasons, the dataset used in Sec. 8.2 is re-used for the
fake-factor measurement. Thus, only events with a muon and a 7y,q.vis candidates
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in the final state are included. The event selection is given in Tab. 8.4. The cut
that enhances the relative contribution of W+jets events is mt > 70 GeV, as for
the W+jets CR in the Z — 77 trigger efficiency measurement in Sec. 6.2.

Table 8.4: Summary of the event selection for the W+jets CR in the TiepThaa chan-
nel used for the measurement of fake-factors applied in the 7,,qThaa
channel.

Nu =1, NThad,Vis =1, Q(:u) ’ (J(Thad-vis) =-1
Thad-vis 1D: medium RNN
1 ID: medium
pr(p) > 21 GeV, threshold depending on year
pT(Thad—vis) > 30 GeV
mr > 70 GeV
W+jets CR Thad-vis candidates with 1 or 3 prongs
leading jet pr > 40 GeV
Nb—jets =0
ERs > 20 GeV
0.6 <AR, <25
Anur < 1.5
0.1 <z1<14,01<29<1.2

Single-muon triggers are utilized in this region. As the HLT pr thresholds
of these have changed throughout Run 2, the offline pr cut on the muon is also
adjusted. In 2015, the HLT threshold was at 20 GeV, while for the rest of the Run-2
dataset, it was at 26 GeV. Therefore, the offline plateau cuts are at 21 GeV in 2015
and at 27.3 GeV in 2016 through 2018. In addition, the single-7 trigger requirement
HLT _tau25_mediuml _tracktwo is applied for 2015, 2016 and 2017 events, while the
HLT tau25_mediuml _tracktwoEF trigger is applied for 2018 events. This is done
in order to make the selection of 7,,4.vis candidates more similar to that in the SR
of the TaqThaq channel.

To increase the sample size in the control regions, the leading jet pr cut in the
TiepThad Channel was kept at 40 GeV despite being at 70 GeV in the 7,,q7Thaqa channel.
The |n| < 3.2 cut on the leading jet was applied and later removed for the same
reason. This was only done after verifying that it does not bias the fake-factor
calculation, which was done by calculating fake-factors with and without applying
the additional pr and |n| cuts and confirming the compatibility of the results.

For deriving the fake-factors, different 7y,.q4.vis ID criteria are applied to the
W+jets CR. The two types of fake-factors used for the 7,,q7Thaq channel Fake-
background estimation are named “not-medium” (nm) fake-factor F™™ and “loose-
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not-medium” (Inm) fake-factor F'™™. They are defined as follows:

F = (NData - NMC)W oR /(NData - NMC>W oRr

medium 7 not—medium 7

Flnm = (NData - NMC)W (R (NData - NMC)W OR

medium 7 loose—not—medium 7 *

The symbol Ny represents the contribution from simulated processes that include
a Thad-vis candidate that has been matched to a truth-level 7,,4.vis Object, again with
the exception of H — 77 events. In order to derive the fake-factors, the medium
working point is applied in the numerator. For the denominator of F™, the ID
requirement is inverted, while for the denominator of F™™ it is also inverted but an
additional minimum requirement of the 7,,q4.yis candidate passing the loose working
point is applied. The pr(Thad.vis) distributions in these three regions are shown in
Fig. 8.9. The two types of fake-factors are necessary due to the aforementioned
minimum ID cut in the 7,,q7haq anti-ID region, as will be further detailed later on
in this section.
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Figure 8.9: Event distributions in dependence of pr(Thad.vis) in the W4jets CR of
the TiepThaa channel. The RNN-based ID requirement applied to the
Thadvis candidate is (a) medium, (b) loose-not-medium and (c¢) not-
medium.

By calculating the ratios of event yields in the W+jets CR with different 1D
criteria applied, the fake-factors are determined. The fake-factors are separated
between 1-prong and 3-prong Thaq.vis candidates. A dependence on the pr of the
Thad-vis candidate is expected based on Fig. 8.8, but an additional dependence on
the absolute value of its pseudorapidity |n| has been observed. Therefore, a two-
dimensional parametrization is employed, with three bins in pr(Thad.vis) and two
in [1(Thadvis)|- The resulting fake-factors are shown in Fig. 8.10. The falling trend
of F™ with pr shown in Fig. 8.10a counteracts the rise in rejection power of the
medium ID working point shown in Fig. 8.8.
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Figure 8.10: Fake-factors measured in the TiepThaa W-jets CR, with (a) not-
medium (nm) or (b) loose-not-medium (Inm) ID requirement in the
denominator region. The calculation is separated in fake-factors for
Thadvis candidates in the barrel of the detector (|n| < 1.37) and fake-
factors for end-cap (|n| > 1.52) Thad.vis candidates.

Fake-Factor Application

The fake-factors can be applied to estimate the number of fake 7,.4.vis candidates
passing the SR selection in the 7,,qThaq channel. For this, the number of events
passing (P) the Taq.vis candidate selection in the SR is decomposed into all possible
combinations of true (7") and fake (F') Thaq.vis candidates:

PP __ _T_T T_F F_T F_F
TV Ty =Ty Ty +T1 Ty +74 Ty +7, Ty . (8.1)

Here, the indices 1 and 2 specify the leading and sub-leading 7.4.vis candidates
in pr. The nOS method covers only the last contribution 7{'7f" from double-fake
events, while the single-fake contributions are estimated from simulation.

In order to estimate the double-fake contribution with fake-factors, candidates
failing the medium ID working point (anti-ID, A) are used. Given the definition
of the fake-factor F* associated with the Thaq.vis candidate i, the quantity TiF can
be estimated from the anti-ID selection by applying the appropriate fake-factor,
i.e. 7F' = Firt. This leads to

o = U

Analogously, fake-factors also allow for the estimation of the single-fake contribu-
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tion:
1 F_F T_F
F'r 2 =Ty Ty T T1 Ty
2 F_F F_T
FT1 7'2 =7 7'2 +T1 Ty
2 1

—F2T1 3+ Flritef 2F1F27'1 o

With these expressions, Eq. (8.1) can be rewritten as:

T1PT2P = 7'1 7'2 + F27'1 7'2 + FIT1 7'2 FlF27'1 7'2 . (8.2)

The contribution to the SR from events containing two true 7j,,q.vis Objects, TlT 7'2T , 18
estimated using the simulated event samples described in Sec. 8.1. To avoid double-
counting between the samples and the data-driven fake-factor estimate, both
Thad-vis candidates in simulated events are required to be geometrically matched to
a truth-level 7y,,4.is Object. The application of fake-factors based on Eq. (8.2) is
visualized in Fig. 8.11.

Due to the removal of events with two Tad-vis candidates failing the loose ID
working point, the region for the estimation of the term 7{7§' has to be divided
into two subregions in which either the leading or the sub-leading 7j,.q.vis Satisfies
the loose RNN ID working point. The events in these subregions are then scaled by
either F'"™ (1) - F™(7y) if they are part of the region marked in orange in Fig. 8.11
or F"™(7y) - F™m(1,) if they are part of the subregion marked in green. Given their
definition, however, the product F™@ (7). F™(7,) will scale the region with loose-
not-medium leading and not-medium sub-leading 7y.q.vis candidates, marked in
orange in Fig. 8.11, to the full expected fake yield in the SR, while the product
Fro(r) - F''m(1y) will do the same for the region marked in green. This would
result in an overestimation of this part of the Fake contribution by a factor of
two, which is resolved by multiplying the applied product of two fake-factors by
%. Events from the anti-ID region where both 7,.q4.vis candidates fulfill the loose
ID criterion are scaled by £(F™ (1) - F™(73) + F™(7y) - F™™(73)) to account for
these events being part of two template regions: the ones marked in green and
orange in Fig. 8.11.

The modelling of m "> in the SR preselection based on the fake-factor method
is displayed in the event distribution shown in Fig. 8.12. Comparing it to the anal-
ogous Fig. 8.6 obtained with the nOS method shows that the mismodelling at low

mMMC values is reduced. Moreover, the statistical uncertainty on the prediction of

the Fake background is also reduced. This shows that all weaknesses of the nOS
method listed at the start of this section are improved upon with the fake-factor

method.

MMC
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Figure 8.11: Pictorial representation of the fake-factor application for the Fake
background estimate in the 7,,q7haq channel. The opposite-sign events
are separated into four subregions based on whether the leading and
sub-leading Thaq.vis candidate in an event passes the medium (m), the
loose but not the medium (Inm) or not the loose (nl) ID working
point. Short arrows represent F'™™ while long arrows represent F™™.
Positive contributions to the SR are represented by solid arrows, while
negative contributions are represented by dotted arrows.

8.4 Systematic Uncertainties on the Method

Three sources of uncertainty are considered for the fake-factor estimation: the
statistical uncertainty on the measured fake-factors, the effect of the choice of
parametrization and possible differences in composition of the Fake background in
the SR and the CR used to derive the fake-factors. This section describes how the
impact of these sources on the final Fake estimate is assessed.

8.4.1 Statistical Uncertainty on the Fake-Factors

The first type of uncertainty covers the statistical uncertainties on the fake-factors
calculated in the W+jets CR. They are implemented by varying the fake-factors by
one standard deviation of the statistical uncertainty originating from the limited
sample size in the W+jets CRs. The F,, and F},, are varied separately, as well
as the fake-factors for 1-prong and 3-prong Tyaq.vis candidates, so there are four
systematic variations in total to cover for statistical uncertainties from the W+jets
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Figure 8.12: Event distribution in the SR preselection in dependence of the mMM®

mass estimate with the Fake contribution estimated with the fake-
factor method.

CRs. They are named “hh_fake ff_stat_(1p/3p)_(nm/Inm)” depending on the event
selection in the calculation region, and their impact on the predicted fake-7y,.q-vis
contribution is shown in Fig. 8.13, only containing the impact of increasing the
fake-factor by its uncertainty. The evaluations of the various sources of uncertainty
are based on the mMMC distribution, which is also planned to be included in the
likelihood fit for the cross-section measurement As for the estimation of the other
uncertainties, the impact of the opposite variation is obtained by symmetrizing the
variation with respect to the nominal estimate. Since the Fj,, are only applied
in the part of the template that is subtracted in the fake estimation according to
Eq. (8.2), increasing them leads to a decrease in the estimated fake contribution.

The impact is around 10% for the 1-prong and 5% for the 3-prong fake-factors.

8.4.2 Parametrization Uncertainty

The second type of uncertainty covers the limitations of the parametrization of
the fake-factors. The first step to quantify these limitations is using the same
coarse binning applied in the W+jets CR to derive fake-factors in the same-sign
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Figure 8.13: Impact of the statistical uncertainty of the fake-factor measurement
on the estimated mMMC distribution of the Fake contribution in the
SR preselection. The statistical variations are evaluated separately for
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signal region, which is chosen due to its large sample size. These fake-factors
are calculated in control regions with one 7,.q4.vis candidate passing and the other
failing the medium ID working point. The following calculations are made to
obtain separate fake-factors for the leading and sub-leading 7y,,4.vis candidate in an
event from the same-sign region:

F™ = (Npata — Nuc)> g 1/ (Npata — IV, MC) ot medium n |medium ™

F3™ = (Npata — Natc) i 7/ (Nata — NuC)Sok mediuan 7 | medium

F™ = (Npata — Muc)™S g 1/ (Npata — V) MO) laose—not—medium 1 |medium 2

F3™ = (Npata — MM ) mectium 7/ (NData — NMC)ise—not —medtium 7 | medium oo (83)

Since the parametrization of the fake-factors from the TiepThaa W+jets CR can-
not distinguish between leading and sub-leading 7y,.q4.vis candidate, F} and F; are
combined by adding up the numerator and denominator events of the leading and
sub-leading Th.q.vis CR before calculating the ratio. This is done to emulate the
parametrization of the nominal fake-factors as accurately as possible.

The same-sign CR fake-factors are then applied to the same-sign anti-ID region
using the same binning as the 7iepThaa WHjets CR fake-factors. These fake-factors
are shown in Fig. 8.14, and they are used to produce a fake estimate in the same-
sign region and test the closure of the mMMC distribution in the same-sign region.

Again, the mMM€ distribution is chosen, and the ratio of data over prediction is
applied as an additional weight for the fake events to construct the parametriza-
tion uncertainty variation. This is meant to cover the uncertainty of the fake-
factor method that arises from limitations in the fake-factor parametrization. The
weight distribution and the resulting variation (“hh_fake_ff_param”) are shown in
Fig. 8.15. The impact is small, showing that the six bins used in the default
parametrization take most of the dependence of the fake-factors on the properties
of an event and its objects into account.

8.4.3 Composition of the Fake Background

The last type of systematic variation aims at covering the uncertainty that stems
from differences in the background composition between the regions where the
fake-factors are measured and applied. Since the fake-factors vary for 7m.q.vis can-
didates faked by light quarks (u, d, s), gluons and heavier quarks (¢, b), a different
background composition in the control regions can lead to over- or underestima-
tion of the Fake background in the signal region. To account for this, fake-factors
are derived in three different fake-enriched regions: the 7iepThaa W+jets CR and
the ThadThad Digh-An(Thadovis, Thadvis) and same-sign regions. The high-An region
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Figure 8.14: Fake-factors measured in the 7,,qThaq Same-sign preselection CR, with
(a) not-medium and (b) loose-not-medium ID requirement in the
denominator, using the same parametrization as the nominal fake-
factors. The calculation is separated in fake-factors for m,.q.vis can-
didates in the barrel of the detector (|n| < 1.37) and fake-factors for
end-cap (|n| > 1.52) Thaq.vis candidates.

is constructed by requiring 1.5 < An(7,7) < 2.0, while the same-sign region is
defined with ¢(71)g(m2) = +1. Apart from these cuts, the event selection for these
regions is the same as for the signal region.

Since all these regions have different sample sizes, each set of fake-factors is
parametrized differently. The W +jets CR parametrization has been shown before.
The fake-factors from the ThaqThaa channel are derived using Eq. (8.3). In the
same-sign case, F&m and Ffm for the leading and sub-leading 7y.4.vis candidate
were found to be compatible and thus combined. This was not the case for Fi,m,
but the dependence on pr was found to be small, so a 1D binning in || is applied
for these. None of the fake-factors measured in the high-An region were combined
and they are all parametrized in pr as well as |n|. The resulting fake-factors can
be seen in Fig. 8.16.

These fake-factors are applied in the same way as in the nominal case, except
that in the cases where leading and sub-leading 7y,,q.vis fake-factors are not com-
bined, which are applied then only to the appropriate candidates. The impact of
changing the fake-factor source region from the 7ie,maq Wjets CR to either the
Thad Thad Same-sign (“hh_fake ff_composition_ss”) or high-An region
(“hh_fake_ff_composition_highdeta”) at preselection is shown in Fig. 8.17.

The usage of fake-factors from the high-An region instead of the TiepThaa W+jets
CR does not impact the estimated mMMC distribution strongly, showing that the
composition of Fake backgrounds is similar in these two regions. Using the same-
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Figure 8.15: (a) Same-sign mMMC distribution at preselection, estimated with

same-sign fake-factors in the same parametrization as the nominal
ones from the TiepThaa W-jets CR. The values of the “Data/Bkg.”
ratio in the lower panel are applied as event weights to the Fake back-
ground to construct the parametrization uncertainty variation. (b)
Impact of the parametrization uncertainty on the predicted MMC
distribution of the Fake contribution in the SR preselection.

sign region, however, leads to a strongly reduced predicted overall yield for the Fake
contribution. This shows that the effect of changing the fake-factor source region
is larger than the effect of switching between the nOS and fake-factor method,
which is also evidenced by Fig. 8.18, where the same-sign fake-factors were used
to estimate the Fake contribution in the SR preselection. The main improvement
in the lower part of the mMMC spectrum comes from the fake-factors being higher
in the 7iepThaa W+jets CR due to a different composition of the Fake background
in that region. This difference is presumably related to the presence of processes
such as W — ¢q’ production with additional jets, where the two jets produced
from the W-boson decay are more likely to be reconstructed with the same charge
than jets in QCD multi-jet events. The fraction of such processes is different in the
same-sign and opposite-sign selection, which changes the composition of objects
faking m.q.vis candidates and thus the fake-factors themselves.
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Figure 8.16: Fake-factors used for evaluating the composition uncertainty, mea-
sured in the same-sign and the high-An region at preselection. The
only fake-factors with a one-dimensional parametrization are the
same-sign Fj,, shown in (b). The legend entries for the other of
fake-factors give the |n| range in which they were measured.
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Figure 8.17: Impact of the composition uncertainty of the fake-factors on the pre-
dicted MMC distribution of the fake contribution in the SR preselec-
tion.

8.5 Analysis Outlook

The Higgs-boson production cross-section measurement in the H — 77 channel
based on the full Run-2 dataset follows the “Simplified Template Cross-Section”
(STXS) scheme. It has been developed to provide a more detailed measurement of
Higgs-boson production cross-sections while decorrelating systematic uncertainties
that are most impactful in different phase-space regions. The STXS scheme entails
a splitting of the H — 77 signal into different production modes and phase-space
regions independent of the decay channel. A splitting into nine signal categories
based on the production mechanism and truth-level event features, named “STXS
bins,” is planned. These STXS bins are named:

1. EWHqq, > 2 jet, 60 GeV < m,;; < 120 GeV
2. EWHqq, > 2 jet, m;; > 350 GeV

3. ttH

4. ggF, > 2 jet, m;; > 350 GeV

5. ggF, (1 jet, 60 GeV < pf <120 GeV) or (> 2 jet, m;; < 350 GeV)
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Figure 8.18: Event distribution in the SR preselection in dependence of the mMM¢

value. The Fake contribution is estimated with the fake-factor

method, using the fake-factors measured in the same-sign region
shown in Fig. 8.16 (a) and (b).

6. ggF, 1 jet, 120 GeV < pi < 200 GeV

7. ggF, > 2 jet, 120 GeV < pf < 200 GeV, m;; < 350 GeV
8. geF, 200 GeV < pi < 300 GeV

9. ggF, pH > 300 GeV .

The events in each STXS bin are assigned a free normalization factor in the likeli-
hood fit that determines the production cross-sections. Thus, each bin represents
a parameter of interest (POI) of the fit, which is measured separately from the
others. Higgs-boson production events that are not covered by these STXS bins
are not assigned a normalization factor, and are treated as background for this fit.

The first bin targets electroweak production of a Higgs boson in association with
two quarks. Given the range of m;;, which covers the masses of W and Z bosons,
this bin contains mainly V' H production events with hadronically-decaying vector
bosons. The second bin contains mostly VBF events, since the jets produced in
these often reach very high invariant masses. The ttH process is not split, since

132



8.5 Analysis Outlook

the estimated sensitivity to this process is not high. Splitting it into different
subprocesses would further reduce the significance of each of them.

For the ggF process, six bins are introduced based on the number of jets that
are produced in association with the Higgs boson, the pr of the Higgs boson and
the invariant mass m;; of the two leading jets. This splitting is based on the STXS
binning scheme for the ggF process, which is shown in Fig. 8.19.

Stage 1.2 _

py [0,200] pt! [200, 00|

, 200
> 2-jet
300

| mjj [0 350] [ 75 [350 o] 450

mjj
350 650
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1000 0.15
i
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Figure 8.19: Splitting of ggF Higgs-boson production events recommended by the
latest version of the STXS framework, named STXS stage 1.2. Each
of the blue boxes represent a proposed truth-level split of the ggF
process. The numbers around the blue boxes together with the num-
bers in the white boxes specify the STXS bin definitions. The dashed
lines within the blue boxes represent a suggestion for a finer splitting
if the sensitivity of the analysis allows for it.

While the analysis is highly sensitive to ggF, the sensitivity does not suffice to
split this process into the 16 bins proposed in Fig. 8.19. Instead, bins are merged
where it was found that the estimated sensitivity is too low.

To minimize the correlation between the nine POlIs, the truth-level splitting
must be closely matched with the reconstruction-level SR definitions. Therefore,
the Boost region is split into eight SRs. To approximate the truth-level cut on
plf, the pr of the combined system of the 7-lepton decay products and the Fmiss
is used. The subregions are named Boost 0 (100 GeV < pf < 120 GeV), Boost 1
(120 GeV < pH < 200 GeV), Boost 2 (200 GeV < pif < 300 GeV) and Boost 3
(300 GeV < pi). Moreover, a splitting in the jet multiplicity Njes is conducted, to
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separate events with exactly one jet (1J) from events with at least two jets (ge2J).
Only jets with pr > 30 GeV are taken into account. The construction of the eight
ThadThad Boost SRs is visualized in Fig. 8.20.
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Figure 8.20: Event distribution in the 7,,q7haq Boost region in dependence of (a)

p4 and (b) Njes. The vertical orange lines indicate the SR splitting.
The resulting mMMC distributions are shown in Fig. 8.21 for the SRs with only
one jet and Fig. 8.22 for those with at least two jets. The relative contribution
of Fake events is very low in the regions with pZ > 200 GeV. This is due to a
softer pr spectrum of the jets in QCD multi-jet production events and low angular
correlation between the jets. This makes it rare for a system of two jets that fake
Thad-vis candidates and the E%‘iss to reach such high pr values.

While the signal purity in the VBF SR is very high, the total number of events is
not. Moreover, the theoretical uncertainties on the VBF production cross-section
are significantly lower than those on the ggF production. For these reasons, the
sensitivity to the VBF cross-section is limited more strongly by statistical uncer-
tainties than in the case of ggF. Therefore, no splitting of the VBF process into
STXS bins is performed. Instead, it is treated in a similar way as the V H and
ttH regions. The plan for these regions is to design BDT's in order to construct a
highly sensitive subregion in each of the VBF, VH and ttH regions, following a
similar event categorization strategy as the one described in Sec. 7.4 for the VBF
inclusive region. The mMMC distributions in the ttH and V H regions are shown

TT

in Fig. 8.23, while the mMMC distribution in the VBF region is shown in Fig. 8.24.
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Figure 8.21: Event distributions in the 7,,q7haq Boost 1J SRs in dependence of
mMMC " The data in the range 100 GeV < mMMC < 150 GeV have
been blinded.

The agreement of data and prediction is good in the unblinded parts of all
SRs, showing that the fake-factor method is applicable in each SR despite the
fake-factors being derived inclusively at preselection.
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Figure 8.22: Event distributions in the 7,,q7h.q Boost ge2J SRs in dependence of
mMMC " The data in the range 100 GeV < mMMC < 150 GeV have

been blinded.

After the measurement of the Higgs-boson production cross-sections is con-
cluded, the VBF SR can be used as a baseline for a new test of CPV in HVV

couplings.

Since the same couplings also appear in V H events, it is possible to

include the V H SR as well, although it will likely not increase the sensitivity to d
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Figure 8.23: Event distributions in the Th.a7haa (a) VH and (b) t¢tH SRs in depen-
dence of mMMC. The data in the range 100 GeV < mMMC < 150 GeV

TT

have been blinded.

in such a measurement very much.
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CHAPTER 9

Conclusion

In this thesis, three measurements were presented, which all build upon each other.
The measurement of T-trigger efficiencies is needed to reliably predict data distri-
butions in the 7,.q7Thaq channel of H — 77 events. Such events can be investigated
to measure the Higgs-boson production cross-section. Once an analysis with sen-
sitivity to Higgs-boson production events is set up, other analyses such as the
presented test of CPV in VBF production can also be conducted.

The 7-lepton triggers are, among many measurements, necessary for the analysis
of the fully hadronic channel of H — 77 decays, when no electrons or muons are
available for triggering. Therefore, identifying what leads to data loss is impor-
tant for a large part of the ATLAS physics program. By developing a selection
to utilize Z — 77 events, the efficiencies as well as the related correction factors
for simulated samples could be measured. Moreover, the main source of the mis-
modelling in simulation has been identified as the sum of energies in ECal and
HCal deposited by a Thaqvis candidate measured at L1. While the results of the
efficiency measurement shown in Sec. 6.5 are final for Run 2, the analysis could be
improved in the future by conducting a likelihood fit instead of the simpler subtrac-
tion of background processes to obtain the efficiencies in data, which would allow
for constraining overestimated systematic uncertainties. Regarding the trigger al-
gorithm itself, substantial improvements have been made on the L1 processing
of events, which is the main limitation of the trigger chains. At the same time,
the RNN-based identification is optimized to be less susceptible to pile-up effects.
Therefore, despite the increase in instantaneous luminosity planned for Run 3, it
can be expected that 7-lepton triggers will be able to improve in performance.

The measurement of the CP properties of HV'V couplings covered in Chap. 7 can
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9 Conclusion

give insights on the mechanisms that led to the observed baryon asymmetry in the
universe. The presented analysis used BDTs to isolate the signal process and the
distribution of the Optimal Observable in VBF H — 77 events was investigated
to measure the parameter d that introduces CPV in HVV couplings.

Its observed best-fit value is

d=—0.013+3018
which is consistent with the SM expectation of d = 0 and CP conservation in
HVV couplings. No 95% CL interval could be set on d due to the observed signal
strength © = 0.73+0.47 being lower than expected. The expected 68% CL interval
on d is [—0.035,0.033], which represents the strongest expected 68% limit from a
single decay channel. The expected 95% CL interval is d € [—0.21,0.15].

While the improvement with respect to the Run-1 68% CL limit [50] of d €
[—0.11,0.05] is sizable, the goal of setting limits on d at 95% CL has not been
reached. A new analysis including the full Run-2 dataset will likely achieve this
goal. Apart from the obvious increase in available data, the new H — 77 cross-
section measurement, which the next VBF H — 77 CP analysis could be based
on, already features significant improvements to the analysis techniques. Having
access to the fake-factor method for the Fake estimation will greatly benefit the
ThadThad Channel, since the limitations of the nOS method reduced its sensitivity.
Due to its statistical limitations, the optimal BDT cut for the definition of the
SR was loosened, lowering the signal-to-background ratio in the SR. Moreover,
fluctuations of the Fake template were the main limiting factor for the algorithm
that determined the SR binning, despite the loosened ID requirement. These
problems should be greatly reduced with the fake-factor estimation, allowing for a
better signal sensitivity and more bins in the SR for a higher sensitivity to shape
variations.

The cross-section measurement also promises great improvements with respect
to the latest published result documented in Ref. [120]. This is best evidenced by
the increase of resolvable STXS bins from three to nine. In addition to the more
accurate measurement of production cross-sections, the increased sensitivity will
allow for setting stronger constraints on the 7-lepton Yukawa coupling.

The STXS analysis can serve as a baseline for several measurements of Higgs-
boson properties, such as a test of CPV in HV'V couplings and a complementary
test of CPV in H77 couplings, a test of lepton-flavour violation in Higgs-boson
decays, and possibly a differential cross-section measurement in pp(H) or a CP-
odd variable. This ties in with the overall plans of the ATLAS collaboration of
how to solidify our knowledge of the Higgs boson. To conclude the Run-2 studies,
a combined measurement of CPV in HV'V couplings using different Higgs-boson
decay channels, such as H — vy, H — V'V or H — bb in addition to H — 77, has
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been proposed. This measurement would offer new possibilities and might be able
to simultaneously measure two of the three dimensions of the EFT parameter space
of CP-violating HV'V couplings, instead of simplifying the model to one dimension,
and would bring us one step closer to an explanation of the baryon asymmetry of
the universe and to understanding the full nature of the Higgs boson itself.
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