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Abstract

The major aim of this PhD thesis is to explore the post-Early Mesozoic thermo-tectonic
evolution and provenance analysis of the area of satellite basins to the east of the Songliao
basin in NE China, covering a huge area, over 200,000 km?. Comparing with the Songliao
basin, the thermo-tectonic evolution of the basins and basement highs separating them is still
less understood. Therefore, an integrated evaluation of the thermal history of the basement
highs and the basin remnants was firstly performed using low-T thermochronology and
burial/thermal modelling based on vitrinite reflectance data. The studied Mesozoic sedimentary
formations and the basement are penetrated and partly covered by Cenozoic mafic volcanic
rocks. As supplementary research to the regional thermal evolution study, a case study was
performed on the thermally influenced substrate of a basalt lava flow. Raman spectroscopy and
zircon (U-Th)/He thermochronology were applied to detect the thermal effect of the lava flow
and determine the eruption age. Detrital zircon U-Pb age distributions from modern sands
provide useful insights to detect, verify or re-classify the ages of the zircon-bearing units in the
catchments. Moreover, combining the modern age data with a regional compilation of ages
from the basement units and some Mesozoic sedimentary formations allows for refining the
Cretaceous provenance history of the region. Finally, the inferred provenance evolution is
checked against the thermo-tectonic evolution. Sand samples from five modern rivers whose
catchments drain most of the currently elevated basement blocks of eastern NE China were
investigated with the detrital zircon U-Pb geochronology method. The Cretaceous supply's
temporal change is well discussed by carefully considering multiple influencing factors to the
modern sediments' provenance analysis and referring to the well-studied igneous basement
units. The supposed regional geological evolution model is mutually verified with our regional

thermo-tectonic evolution.

After a short introduction to the subject (Chapter 1), the new data from the study area is
presented and discussed in Chapters 2 to 4. In Chapter 2, apatite and zircon (U-Th)/He and
apatite fission-track results from most basement highs in eastern NE China are presented. The
low-T thermochronometers show mostly Late Cretaceous - early Paleogene apparent ages,
younger than the onset of the Early Cretaceous burial in the Songliao and related satellite basins.
These age constraints are in harmony with the thermal modelling of vitrinite reflectance data
from the basins, which indicates that the maximum burial depth occurred in mid-Cretaceous.

The following primary basin inversion leads to erosion from ca. 110 ca. 40 Ma. The modelling



indicated that in the Jiamusi Uplift, the central part experienced deeper erosion than the
marginal areas. Combining the above modelling results, we suggest a single united down-
warped basin which formed in the Early Cretaceous and covered the currently elevated western
Zhangguangcai Range and eastern Mishan Uplift at the time of its maximum extent. The Late
Cretaceous - Paleogene exhumation of the Jiamusi Uplift gradually destroyed the formerly
continuous, 1.6 to 4.8 km thick sedimentary cover. Only isolated, deeply eroded basin remnants

have been preserved.

Chapter 3 focuses on the dating of young mafic lava with an unconventional method. Mafic
lavas of the Cenozoic age are widely distributed in NE China and received much attention as
an important part of the Circum-Pacific volcanic belt. We present new zircon (U-Th)/He ages
obtained on the thermally overprinted sands directly underlying basaltic lava. This
thermochronometer is insensitive to weathering and cannot be biased by, e.g., excess argon;
thus, it can accurately express the age of the lava flow's thermal effect. As a regional cooling
age reference, three granite samples were dated from basement units away from the basalt lavas
at different distances. The reference granite samples revealed well-defined Cretaceous (U—
Th)/He-ages, while 20 zircon crystals from the sand below the basalt lava revealed a prominent
Miocene (U-Th)/He age component of 9.33 £+ 0.24 Ma. Raman spectroscopy of these zircon
crystals supports their thermally overprinted character. We infer that the sand sample has
experienced a significant thermal overprint by the overlying basalt lava, leading to most of the
detrital zircon crystals' thermal reset. The obtained age is thus interpreted as the eruption age
of the basalt lava. The dating results provide strict constraints on the thermal influence of the

regional volcanic units on reconstructing the study area's thermo-tectonic evolution history.

Chapter 4 provides detrital zircon U-Pb data from modern sand samples of five rivers draining
catchments of variable size (~500 to ~40.000 km?), dominated by Carboniferous to Jurassic
granitoids, Proterozoic to Early Paleozoic siliciclastic (meta-)sediments, and/or Jurassic to
Cenozoic volcanic rocks from the Lesser Xing'an-Zhangguangcai Range and the Jiamusi block.
Our results show low consistency between the age spectra and the potential source units' areas
in the catchment. A part of the differences can be explained by variation in fertility and
sediment yield among the source units. Additionally, we detected a consequent mismatch
between the obtained and expected ages. It can be explained only by re-considering some
igneous suites' emplacement ages and assuming that some metasedimentary units have much

younger depositional ages. Although the proportion of the identified age components is highly

Xl
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different from the areal proportions of the igneous suites in the catchments, the mean ages of
the age components in the modern sand samples and the age components isolated from the
compiled U-Pb ages of the former basement studies show excellent agreement. By including
the zircon U-Pb age patterns of the studied catchments and the region-wide compilation of the
basement ages, it is possible to refine the Cretaceous provenance of the Songliao Basin and its
strongly inverted eastern satellite basins. In the Early Cretaceous, the Songliao Basin mainly
received sediment from the Great Xing'an Range, North China Craton, and Zhangguangcai
Range. The Lesser Xing'an Range and Jiamusi block provided minor or no sediment as these
currently exhumed basement areas were buried at the time. In the early Late Cretaceous, the

Jiamusi block became the primary sediment provider for the eastern satellite basins.

To conclude, the low-temperature thermochronology studies on the currently exposed
basement areas in eastern NE China area revealed that late Early Cretaceous to Late Cretaceous
continuous subsidence primarily led to the reset of the thermochronometers from the basement
highs and basin sediments; the volcanic thermal influence was minor or negligible. Using the
detrital zircon U-Pb data from this study, both the thermal-tectonic evolution model and the
temporal change in Cretaceous sediment provide evidence for the forming of a huge Early
Cretaceous united down-warped basin that covered most of the current eastern satellite basins
and basement highs in the eastern NE China area. From ca. 110 to 40 Ma, the exhumation of
the Jiamusi Uplift has gradually destroyed the formerly continuous sedimentary cover, and
only basin remnants have been preserved. By the end of the major exhumation in the Eocene,
both the major uplift areas and the basin remnants developed towards a slow uplift and erosion

stage which continued until recent times.

Xl
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Introduction

Chapter 1 Introduction

1.1 Research background

Northeastern China is tectonically located in the area surrounded by the Siberian Craton to the
north, the North China Craton (NCC) to the south, and the western Pacific plate to the east,
composing the main part of the eastern segment of the Central Asia Orogenic belt (CAOB)
(Eizenhofer et al., 2014; Jahn et al., 2000; Sengor et al., 1993, 1996; Windley et al., 2007; Xiao
etal., 2009; see Figure 1.1). The tectonic evolution of the area was closely related to the Paleo-
Asian Ocean and Paleo-Pacific Ocean regimes during the Paleozoic-Early Mesozoic (Li, 2006;
Windley et al., 2007; Li et al., 2009, 2013; Han et al., 2012) and related to the western Pacific
Ocean and Mongol-Okhotsk Ocean regimes during and after the Mesozoic (e.g., Donskaya et
al.,, 2013; Xu et al., 2013). Since the Late Paleozoic, it has undergone long-term plate
subduction and continent-arc and/or microcontinent—continent collisions before the ultimate
collision between the North China-Mongolian Block and the Siberian Craton (e.g., Sengor et
al., 1993; Van der Voo et al., 1999; Jia et al., 2004; Li, 2006). Consequently, widespread
Phanerozoic granitoids were formed in NE China and along the northern margin of North China
Craton (e.g., Wu et al., 2002, 2003, 2005, 2011; Jahn et al., 2001; Meng, 2003). Since the
Mesozoic, its evolution is strongly influenced by the closure of the Mongolia-Okhotsk Ocean
in the north and the northwestward subduction of the Paleo-Pacific Plate in the east (Meng,
2003; Safonova et al., 2009; Li et al., 2012; Zhang et al., 2012; Xu et al., 2013). With the
lithosphere thinning during the Late Jurassic to Early Cretaceous and this stage’s Paleo-Pacific
plate’s fast subduction below the Eurasia continent, intense Mesozoic-Cenozoic tectonic
activities led to the northeastern extension of the major Tanlu fault that formed the Jiamusi-
Yitong and Dunhua-Mishan faults (Jia and Zheng, 2010; Sun et al., 2010; Figure 1.2b), the
development of a series of multi-stage sedimentary basins, exhumation of a metamorphic core
complex (Davis et al., 2002; Lin et al., 2008) and widespread magmatism (Zhang et al., 2000;
Zhou and Li, 2000; Wang et al., 2006). The unique geotectonic location and complex
geological evolution history make this area one of the hotspots studied by geologists to
understand the NE Asian tectonic evolution and its regime transition from the Paleozoic to

Mesozoic.
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Figure 1.1: (a) Schematic tectonic map of Asia indicating the position of the study area (modified after Kréner et
al., 2014; Liu et al., 2017). (b) Map of major terranes of NE China and adjacent areas (after Zhou et al., 2009,
Liuetal., 2017).

Since the Mesozoic, accompanied by the intense Mesozoic-Cenozoic tectonic activities, NE
China gradually developed one of the largest lacustrine basin systems in the world, including
the large Songliao basin and a series of smaller basins east and north-east from the major
depression (Tian et al., 1992; Ren et al., 2002; Meng et al., 2003). It is one of the regions with
abundant petroleum, natural gas, and coal resources in China, providing plenty of essential
information to understand the tectonic evolution of NE China. The oil-rich Cretaceous
Songliao basin with the size of ca. 260,000 km? is in the focus of petroleum exploration since
the first oil discovery in 1959. The geophysical exploration gradually revealed the tectonic
development of the Songliao basin (e.g., Wang et al.,, 2016a). However, with the
superimposition development of multi-stage basins, most of the eastern satellite basins areas
have complicated geological conditions, dense vegetation coverage, late-stage deformation,
transformation, etc. The level of knowledge on the evolution of the smaller basin groups to the
east of the Songliao basin is still insufficient. Previous studies of sedimentary strata and
structural features in these basins mainly rely on drill core and geophysical data, especially
seismic profiles. Multi-method studies, including thermochronology to reconstruct the east of

the Songliao basin area's thermal history, are scarce.
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Figure 1.2: (a) Schematic tectonic map of Asia indicating the position of the study area (modified after Li, 2006,
Safonova et al., 2009, 2011; Kréner et al., 2014, Liu et al., 2016). (b) Digital elevation map of NE China, showing
the major basins by green, and the borders of tectonic blocks (after Zhou et al., 2009, Liu et al., 2017). The base
digital elevation model is from the U.S. Geological Survey (2017).

This PhD thesis focused on the satellite basins and their associated basement areas, intending
to explore the post-Early Mesozoic thermo-tectonic evolution and provenance analysis of the
eastern Songliao basin in NE China. Therefore, an integrated evaluation of the thermal history
of both the basement highs and the basin remnants was performed using low-T
thermochronology and burial/thermal modelling based on vitrinite reflectance data,
respectively. The detrital zircon U-Pb dating on the modern river sand studies are further aimed
to reveal the temporal change in the Cretaceous sediment supply of the Songliao basin and its
strongly inverted eastern satellite basins, which is expected to verify with our regional thermal-

tectonic evolution model.
1.2 Review of the regional tectonic evolution
1.2.1 Composition of the blocks in NE China

The area of NE China mainly contains the Erguna block (EB), Xing’an block (XB), Songliao-
Xilinhot block (SXB), Bureya-Jiamusi-Khanka block and Sikhote-Alin accretionary complex
(Figures 1.1, 1.2). The Erguna block, Xing’an block and Songliao-Xilinhot block, belonging
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to the western NE China area, were separated by Xinlin-Xiguitu suture zone and Hegenshan-
Heihe suture zone in turn. The Buruaya-Jiamusi-Khanka block and the Nadanhada accretionary
terrane were separated from west to east by the Mudanjiang suture zone, Jiamusi-Yitong fault,
Dunhua-Mishan fault and Yuejinshan fault (Figure 1.2). The Okhotsk belt in the north recorded
the closure of the Mongol-Okhotsk Ocean which was located between the Siberia craton and
the combined North China block during the Late Paleozoic-Mesozoic (Figure 1.1b; Zorin, 1999;
Parfenov et al., 2001). The Solonker-Xar Moron-Changchun-Yanji suture zone in the south is
generally believed as the south boundary of the CAOB. In that case, the majority of the eastern
CAOB should be a broad collision-amalgamation belt between the Siberia craton and North

China craton (Figures 1.1, 1.2; Wilde, 2015).

1.2.2 Paleozoic basement amalgamation period in NE China

In the Paleozoic, the micro-blocks in the NE China gradually amalgamated as one united block.
Ge et al. (2005) reported 494 to 480 Ma zircon U-Pb age of the post-orogenic A-type granite
in the Erguna block (EB) that implied that the Erguna block was already connected Xing’an
block (XB) in the Early Paleozoic. Liu et al. (2017) carried out a provenance study of the Early
Carboniferous and Early Devonian sandstones in southeast EB by detrital zircon U-Pb dating
and Hf isotope methods, and got >780 Ma, ~540 Ma, ~ 500 Ma, ~ 450-480 Ma age peaks in
both sandstones and additional ~360 Ma age peak only in the Early Carboniferous sandstone.
These age groups and their Hf isotopic data suggest that the EB and XB had been connected
before deposition of the Early Devonian sandstones (Han et al., 2015).

Zhang et al. (2006) revealed the consistency of the Nd model ages (1.2 Ga to 500 Ma) between
the XB and the Songliao-Xilinhot block (SXB) and considering the deep reflection seismic
data, suggested a united Xing’an-Songliao block. Two subduction-related magmatic arc belts
(i.e., ~480-420 Ma and ~360-330 Ma) were identified along the eastern margin of the XB,
suggesting ca. 150 Myr. -long time episodic subduction/collision between the XB and SXB
(e.g., Ge et al., 2007; Guo et al., 2009; Wu et al., 2015; Shi et al., 2015; Feng et al., 2015a).
After the magmatic arc (360-330 Ma) along the eastern margin, the widely distributed
magmatic activities with the ages of 320-290 Ma occurred within the XB and the adjacent areas,
suggesting the final syn- and post-collision along with the HHS (e.g., Wu et al., 2011; Wang
et al., 2013; Feng et al., 2015b); the XB was finally amalgamated with SXB along with the
HHS in the late Early Carboniferous-early Late Carboniferous (Liu et al., 2017).
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Meng et al. (2010) reported a significant 551-489 Ma detrital zircon U-Pb age group from the
Early Devonian sedimentary units in the east segment of the Songliao-Xilinhot block that was
consistent with the age of the Mashan complex and the Early Paleozoic granitoids in the
Jiamusi block indicating the SXB and the JB were already connected in the Early Devonian.
Wang et al. (2008, 2009) also recognized the coeval and correlated Early Devonian strata in
both on the SXB and JB suggesting that the formation of the united Jiamusi-Mongolia block
was probably already took place in the Early Paleozoic (Figure 1.3). During the late Paleozoic
to early Mesozoic, the Jiamusi-Mongolia block amalgamated with the North China craton
along the Solonker-Xar Moron Changchun-Yanji suture zone (Liu et al., 2010, 2017; Zhou et
al., 2013).

Figure 1.3: The outline of the Jiamusi-Mongolia Block (after Liu et al., 2017).

Xu et al. (2012, 2019) revealed SN distributed 250-210 Ma bimodal volcanic rocks at the east
segment of SXB, indicating an extensional environment and suggesting a rifting event between
the JB and SXB in the Early Triassic. Zhou et al. (2009) and Wang et al. (2016b) reported 275
Ma tholeiite and 255-210 Ma OIB or E-MORB type basalts in the Heilongjiang complex from
the JB that are considered to have formed in a continental rift environment. This indicates
separation of the JB from the Jiamusi-Mongolia block in the Late Paleozoic and development
of the Mudanjiang Ocean between the JB and the Jiamusi-Mongolia block. The youngest
detrital zircon U-Pb age group (213-199 Ma) in the Heilongjiang complex also revealed the
oceanic basin’s existence between the SXB and JB during the Late Triassic-Early Jurassic

(Zhou et al., 2009; Li et al., 2011a). The formation of blueschists in the Heilongjiang complex
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recorded another subduction-collision process between the JB and SXB. Its polysilicon
muscovite *°Ar/*°Ar age limited the time of its peak metamorphic or the following tectonic
exhumation, revealing the final re-docking with the SXB occurred in the Jurassic (185-145 Ma;
Wuetal., 2007; Li et al., 2009, 2010; Zhao and Zhang, 2011; Zhu et al., 2017; Ge et al., 2017).
This westward drift of the combined Bureya-Jiamusi-Khanka blocks resulted from the onset of

Pacific plate subduction (Figure 1.4) in the Late Triassic—Jurassic (Wu et al., 2007).
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Figure 1.4: A cartoon showing the possible Late Triassic amalgamations of the micro blocks along the NE Asian
margin (after Zhou et al., 2013; Li et al., 2020). CAOB = Central Asian Orogenic Belt; JB = Bureya-Jiamusi-
Khanka block; EB= Erguna block; XB= Xing an block; SXB= Songliao-Xilinhot block; OB= Qaidam block; TB=
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Turpan terrance; TMB= Tuva-Mongol block; Suo= Japan Suo metamorphic belt; CY= Changchun-Yanji

metamorphic belt; HL= Heilongjiang metamorphic belt.

1.2.3 The closure of the Mongol-Okhotsk ocean and the influence of Paleo Pacific plate

subduction on NE China in the Mesozoic-Cenozoic.

Since the Mesozoic, the NE China area was mainly influenced by the orogeny triggered by the
closure of the Mongol-Okhotsk Ocean in the north and the Paleo Pacific plate subduction in
the east (Figure 1.4; Meng, 2003; Safonova et al., 2009; Li et al., 2012; Zhang et al., 2012; Xu
et al., 2013). The Mongol-Okhotsk Ocean existed in the Late Paleozoic to Early Mesozoic
between Siberian craton and the Jiamusi-Mongolia block (Safonova et al., 2009; Huang et al.,
2016). The geophysical data revealed the Mongol-Okhotsk ocean plate’s northward subduction
in the Mesozoic (Zorin et al., 2002). Evidence of the possibility of its southward subduction
was also confirmed by seismic tomography (Van der Woo et al., 1999) and igneous rock record
(Xu et al., 2013). The Mongol-Okhotsk Ocean’s closure was mainly followed by a scissor-like
movement from west to east (Figure 1.4; Donskaya et al., 2013; Huang et al., 2016). The
western part closed at the Early-Middle Jurassic according to magmatic, sedimentary and basin
evolution evidences (Fan et al., 2013; Meng, 2003; Wang et al., 2006), while the eastern part
was closed until the Late Jurassic-Early Cretaceous (Pei et al., 2011; Huang et al., 2016).

The Paleo-Pacific plate’s subduction beneath the eastern Eurasian continental margin generally
started at the late Late Triassic-Early Jurassic (Yu et al., 2012; Xu et al., 2013) and gradually
dominated NE China’s tectonic evolution (Xu et al., 2013). With the Late Jurassic-Early
Cretaceous fast subduction of the Paleo-Pacific Plate below the Eurasian continental plate
(Maruyama et al., 1997), the NE China area experienced extension. Further, it led to the
formation of a series of rift basins in NE China (e.g., Ren et al., 2002), the exhumation of a
metamorphic core complex (e.g., Davis et al., 2002) and the continuing magmatism events (e.g.,

Wang et al., 2006; Zhang et al., 2018).

In the early Late Cretaceous (ca. 90 Ma), with the Paleo-Pacific plate considerably changed its
subduction direction from NNW to WNW at high rates (23.5 cm/yr; Engebretson et al., 1985;
Maruyama et al., 1997), the approx. NW-ward subduction direction almost at a right angle with
the approx. NE-ward eastern Eurasian continental margin put east NE China and its adjacent
area under dextral compressional shear (Sun et al., 2010). In the Korean Peninsula,
southwestern Japan and Russia’s far east appeared plenty of subduction-related igneous rocks

(e.g., Nakajima et al., 1990; Kinoshita, 1995; Sato et al., 2002). The Early Cretaceous rift basins
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in NE China experienced compression, folding and erosion (e.g., Song et al., 2014; Zhang et

al., 2015; Chen, 2017).

Since the early Cenozoic the roll-back of the subducting Pacific Ocean plate has triggered the
extension of the eastern Eurasian continental margin (Maruyama et al., 1997). It developed
plenty of northeast-southwest oriented rift valleys, i.e., the Japan sea, Bohai bay, Donghai basin
and Baikal rift valley, forming the typical West pacific-type trench-arc-basin system
(Maruyama et al., 1997; Ren et al., 2002).

1.3 Mesozoic-Cenozoic basins in northeast China

Due to the extremely wide extent and their dominance on the region the development
Mesozoic-Cenozoic basins need special attention. The amalgamated Jiamusi block and the
Songliao-Xilinhot block form the basement of the Meso-Cenozoic basins in NE China (Zhang
etal.,2011; Liu et al., 2017). The Mesozoic-Cenozoic basins and mountain ranges in NE China
generally follow SW-NE trends, controlled by the primary NE trending strike-slip fault
structures (Figure 1.2). The Great Xing'an Range (GXR) borders the Songliao basin in the west,
the Lesser Xing'an Range (LXR) in the north, and Zhangguangcai Range (ZGC) and Jiamusi-
Yitong Fault in the east. Northeast of the Songliao Basin, in between the Jiamusi-Yitong strike-
slip fault and the Dunhua-Mishan fault further SE, a series of NE-SW oriented Mesozoic-
Cenozoic rift basins developed, such as the Sanjiang basin, Hulin basin, Boli basin, Jixi basin
and Hegang basin (see numbers II to VI in Figure 1.2). They all have remained as residual
basins and are mainly separated by the major uplift zone named as Jiamusi Uplift (Figure 1.2).
The basin group to the east of the Songliao basin is filled mainly by Mesozoic-Cenozoic
siliciclastic and volcanic formations (Figure 1.5). While in the central part of the Songliao basin,
the depositional record remained intact and the subsidence is interrupted by only a minor mid'
Cretaceous inversion event, the burial record of the eastern basin group terminates in Early or
Late Cretaceous due to the intense removal of the younger strata. In these basins the marginal
facies of the sediment fill are missing (Cao et al., 2003; Wen et al., 2008a). Jurassic shallow
marine to continental formations were documented only in the Sanjiang basin (Sha et al., 2003,
2009; Zhang et al., 2012). Mostly continental Lower Cretaceous sedimentary formations occur
in the study area with thicknesses varying from 2.2 km to 5.0 km. The upper part of the Lower
Cretaceous sequence contains volcaniclastic sediments indicating multiple volcanic events.

Remarkable that the Lower Cretaceous strata in the different basins can be well correlated
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(Figure 1.5). Starting from the early Late Cretaceous, tectonic inversion events lead to the
partly or entirely removal of the Upper Cretaceous sediments in the eastern basin group. The
preserved Upper Cretaceous continental sediments are mostly cover the Lower Cretaceous
formations unconformably, and their thicknesses vary from 1.2 km to 3.0 km. The Paleogene
sediments are only partly recorded in the eastern basin group with continental facies. Only
between the Jiamusi-Yitong fault and the Dunhua-Mishan fault zone, the Yilan-Yitong basin
and Ning’an basin contain relatively complete Paleogene sedimentary successions. The

Neogene continental sediments are widely distributed in the study area with thickness from 0.1

km to 0.7 km.
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Figure 1.5: Compilation of the stratigraphy of the basins in NE China (after Zhang et al., 2010, 2012; Qie, 2009;
Gao, 2010). Circled numbers indicate the major basing filling sedimentary and volcanic formations: 1 - Didao,

2 - Chengzihe, 3 - Muling, 4 - Dongshan and 5 - Houshigou. Zig-zag line: erosional unconformity.

The provenance studies of the eastern basin groups in east NE China are mainly focused on the
late Mesozoic formations. Wang et al. (2007) indicated that in Early Cretaceous the sediment

supply of the Hulin basin was mainly the Nadanhada Terrane in the north. Wang (2007)
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revealed the western Sanjiang basin mainly received sediment from southwestern and
northeastern source regions in the Late Jurassic-Early Cretaceous. While Wang et al. (2007)
further indicated the western Sanjiang basin’s provenance is mainly from the southern side of
the basin in Late Jurassic, and the Early Cretaceous provenance is mainly from the southeastern
side. Sun et al. (2014) indicated that the LXR and JB were the major sources of the Early
Cretaceous sediments in the Hegang basin, but the provenance from LXR is not detected in the
Late Cretaceous. Wang et al. (2006), Wen et al. (2008a) and Liu et al. (2010) analyzed the
Cretaceous provenance in the basins around the Jiamusi Uplift and suggested the Lesser
Xing’an range and Zhangguangcai Range as sources of the Lower Cretaceous Chengzihe and
Muling formations. Wen et al. (2008) further indicated the Lesser Xing’an Range,
Zhangguangcai Range and Jiamusi Uplift should supply the Upper Cretaceous Houshigou
formation. These studies suggested the presence of one united basin at the current Jiamusi
Uplift area. The later exhumed Jiamusi Uplift gradually destroyed the prototype basin, and only
isolated basin remnants have been preserved. Cenozoic provenance data from the study area
are still rare but with multiply views. Wang et al. (2007) suggested the Tangyuan fault
depression’s Paleogene sediments have derived mainly from the northwest and southeast.
While Wang (2007) preferred three major source areas, they are along the western, northeastern
and eastern sides. In general, the Cenozoic basin’s provenance is mainly dominated by local

uplifts, triggered by faults (Li et al., 2002; Chen et al., 2010; Sun et al., 2010; Zhao, 2011).

1.4 Low-temperature thermochronology studies in northeast China

For the identification, dating and quantification of exhumation events affecting the topmost
part of the crust and the inversion in sedimentary basins, the most useful and most widely
applied tool is the low-temperature thermochronology like apatite/zircon fission tracks and (U-
Th)/He. Numerous studies have applied apatite and zircon fission track (AFT, ZFT)
thermochronology in the Songliao basin (Figure 1.6). They revealed that the central depression
of the Songliao basin reached the maximum burial depth and highest paleotemperature at the
end of the Cretaceous, followed by an east to west migrating erosional event (Yang et al., 1995;
Huang et al., 1999; Fang et al., 2005; Xiang et al., 2007; Song, 2010). Cheng et al. (2018)
further suggested that the southern Songliao basin experienced two distinct, compression and
extension related uplift events with rapid cooling during the late Mesozoic-Cenozoic. Li et al.
(2011b) detected by AFT and ZFT thermochronology that the northern Great Xing’an range,

the western bordering basement high of the Songliao basin has experienced rapid cooling
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between 90 and 57 Ma. For the northern boundary of the Songliao basin, Li et al. (2011c)
concluded that the granites from the Lesser Xing’an range experienced cooling from 95 to 65

Ma.
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Figure 1.6: Compilation of the formerly published low-T thermochronological data of the study area (the ages
are in Ma, after Yang et al., 1995; Fang et al., 2005, Xiang et al., 2007, Fang et al., 2008; Li et al. 2011a, b; and
Chen, 2016, Cheng et al., 2018; Song et al., 2018).

Low-temperature thermochronological studies in the eastern basin group are still insufficient.
For the eastern segment of the Songliao basin, Fang et al. (2008) recognized by ZFT a thrust
event that happened after 62 Ma in the Lesser Xing’an Range, and two thrust events that
happened after 116 and 80 Ma in the west Jiamusi uplifted area. Chen (2016) analyzed both
granite and sandstone samples from two large scale, roughly E-W trending sections by AFT

and revealed different cooling and exhumation processes. The Lesser Xing’an range and
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Zhangguangcai range were uplifted in the Early Jurassic and the whole eastern Songliao basin

area experienced regional exhumation and denudation in the Late Cretaceous.

1.5 Scientific problems and aims of the study

During the field studies, we observed a large variety of Cretaceous sedimentary remnants on
basement highs, which suggested a widespread late- or post-Cretaceous basin inversion east of
the Songliao basin. There are also widespread Mesozoic-Cenozoic volcanic rocks, which may
have also some impact on the thermal evolution of the basins and basements (Figure 1.7). Both
the low-temperature thermochronometers and the maturation of the organic matter record the
last thermal event and the cooling after it, thus their sensitivity make them key methods for
studying the development of the thermal evolution during the inversion affecting the area east
of the Songliao basin.

On the other hand, the Songliao Basin, its eastern "satellite" basins and the associated sediment-
supplying basement highs form an excellent natural laboratory for detrital zircon U-Pb studies
as the currently exhumed basement areas are composed mostly of zircon-bearing igneous
formations having highly variable emplacement ages. This contrast in the sources generates
highly informative detrital age patterns. With the widespread and still growing application of
detrital zircon geochronology in sedimentary provenance analysis, the use of existing
geological data, such as regional geological maps to trace provenance, is common. However,
for some regions, such as densely-vegetated or poorly/not accessible areas, especially when
tracking large-scale provenance, the results may be misleading due to large uncertainties in the

geological maps and non-representative sampling of the region.

12



Introduction

122° 124° 126 128° 130° 132° 134° ,

48°

& Hegang

IR

46°

44°

Quaternary Mesozoic Cretaceous  Jurassic  Pre-Jurassic  Volcanic Granitoids  Basalt
: Rocks

[ ~] [&]

Fault Suture Rivers Basins

zone
Figure 1.7: Simplified geological map of the study area (modified after Ren et al., 2013).

Another approach to evaluate detrital age spectra can be the comparison to the age distribution
compiled from all available geochronological data from the basement. Such a comparison is
mostly biased by the uneven sampling of the basement and the different sediment yield of
individual tributaries and/or geological units. Modern river sand studies frequently analyze
catchments that include highly rugged mountains and low relief areas, like Himalayan rivers
or the Amazon (e.g., Mapes, 2009; Guo et al., 2020). In the case of such sediments, the
interpretation of the detrital age spectra is encumbered by two factors acting at poorly known
magnitudes: the sediment yield (relief & erodibility) and the zircon yield (fertility; e.g.,
Dickinson, 2008; Malusa et al., 2016). In NE China, the relief in the Lesser Xing’an Range
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(LXR), Zhangguangcai Range (ZGC) and the western Jiamusi block (JB), situated along the
eastern border of Songliao Basin in NE China, is moderate and can be considered as catchment-
wide relatively uniform, thus one could expect an aerial balanced sediment yield.

For this thesis, a whole range of magmatic rocks was investigated by low-temperature
thermochronology and geochronology, and this dataset was completed by vitrinite reflectance
data from the Cretaceous sediments. I also identified the detrital zircon U-Pb age populations
from modern river sands with variable compositions of the catchment areas, in order to achieve
the following primary scientific goals:

1) To clarify whether the Neogene-Quaternary basalt lavas have influenced the regional
ZHe cooling age pattern or they have only local contact-related thermal influence.

2) To reveal the thermal evolution of basement highs and the basins remnants. To
construct a coherent pattern for the entire region that was affected by burial and partial
exhumation by the integrated evaluation of the thermal histories of the structural blocks
obtained by different methods.

3) To evaluate the impact of the inferred thermo-tectonic evolution on the geodynamic
evolution in NE China.

4) To address how accurately and proportionally the detrital zircon age spectra of modern
river sediments reflect the Paleozoic-Cenozoic, igneous, metamorphic and sedimentary
formations of the catchments.

5) Toreveal the relationships among the detrital zircon U-Pb age patterns from the modern
river sediments, the basement units of the specific catchments and the wider area and
the available detrital ages from Cretaceous sediments in NE China.

6) To constrain the temporal change in the Cretaceous sediment supply of the Songliao
Basin and its strongly inverted eastern satellite basins and check this evolution against

the thermo-tectonic evolution developed under (2) and (3).

1.6 Methodological approach

Previous thermochronological studies used only a single method and revealed simplified
thermal evolution models for the eastern part of NE China. In this PhD thesis, therefore, multi-
method low-temperature thermochronology analysis including apatite fission-track (AFT),
apatite (U-Th)/He (AHe), and zircon (U-Th)/He (ZHe) were conducted in order to obtain more
details of the thermal histories and a denser information on the pattern of exhumation of the

area. Additionally, organic maturation data (Ro%) (collected from the literature and reports)
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were re-evaluated and beyond the basement highs the thermal history of the basin areas were
also modelled in order to constrain the distribution of the Late Cretaceous-Tertiary tectonic
inversion, quantify the thickness of the former burial and the temporal development of basin
inversion, affecting an area over 200,000 km? in NE China. What's more, the volcanic rock’s
thermal influence on its surrounding sediment and igneous rock units is also concerned. Using
zircon (U-Th)/He thermochronology and Raman spectroscopy, I detected the eruption age of
young basaltic lava. The granitoid basement in the region does not shows the Neogene age of
the basalt volcanism. This part of the study includes only one thermally overprinted sample,
but its consequence is relevant for the regional thermo-tectonic evaluations; I conclude that
regional ZHe ages reflect the exhumation history and the young lavas have only local effect,
like Blondes et al. (2007) quantified it in a former study. Lastly, modern river sediments whose
catchments drain most of the current elevated basement areas of eastern NE China were
detected with the detrital zircon U-Pb geochronology method. The Cretaceous supply's
temporal change is expected to be well discussed by carefully considering multiple influencing
factors to the modern sediments' provenance analysis and referring to the well-studied igneous
basement units.

The research content is as follows: Chapter 2 elucidated the thermal history of the basement
highs bordering the sub-basins with a multi-method approach including vitrinite reflectance Ro
values, apatite fission-track, and apatite/zircon helium thermochronology from an area of ca.
100,000 km? covering the eastern part of the NE China basin system broadly. Thermal
modelling is performed to quantify the former burial's thickness and the temporal development
of basin inversion. Chapter 3 discussed the basaltic lava's thermal influence on its surrounding
rocks. Zircon (U-Th)/He and Raman spectroscopy were inferred to test the zircon thermal reset
degree obtained on the thermally overprinted sands directly underlying basaltic lava and
granitic rocks far away from the basaltic lavas with different distances. Chapter 4 focuses on
modern river sands draining catchments of variable size to test the correlation between the area
proportion and age spectra, summarizing the available zircon U-Pb ages of the igneous rock
and detrital zircon U-Pb ages from the Cretaceous sediment to make the comparison and

discussion. Chapter 5 summarizes the PhD thesis and highlights the major conclusions.

15



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Chapter 2 Manuscript I: Late Cretaceous-Tertiary tectonic inversion of
northeastern Asian continental margin: insight from the low temperature

thermochronology in NE China

The following second article combines vitrinite reflectance value Ro, apatite helium, apatite
fission track, zircon helium and zircon U-Pb geochronology analysis to reveal the Post Early
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I. Late Cretaceous-Tertiary tectonic inversion of northeastern Asian continental margin: insight from the low
temperature thermochronology in NE China

2.1 Abstract

We studied a less understood area of basins and basement horsts to the east of the Songliao
basin, NE China. An integrated evaluation of the thermal history of both the basement highs
and the basin remnants was performed using low-T thermochronology and burial/thermal
modelling based on vitrinite reflectance data. We present new apatite and zircon (U-Th)/He
and apatite fission track results from an area of ca. 100,000 km? covering largely the eastern
part of the satellite basin system in order to elucidate the post Jurassic thermal history of the
basement highs bordering the sub-basins. The low-T thermochronometers show mostly Late
Cretaceous - early Paleogene apparent ages, younger than the Early Cretaceous sedimentary
record in the related satellite basins. These age constraints are in harmony with the thermal
modelling of vitrinite reflectance data from the basins, which indicates that the maximum burial
depth occurred in mid-Cretaceous. The following major basin inversion leads to erosion from
ca. 110 ca. 40 Ma. The modelling indicated that in the Jiamusi Uplift the central part
experienced deeper erosion than marginal areas. Combining the above modelling results, we
suggest a single united down-warped basin that formed in the Early Cretaceous, and covered
the currently elevated western Zhangguangcai Range and eastern Mishan Uplift at the time of
its maximum extent. The Late Cretaceous - Paleogene exhumation of the Jiamusi Uplift,
gradually destroyed the formerly continuous, 1.6 to 4.8 km thick sedimentary cover and only

basin remnants have preserved.
2.2 Introduction

Northeast China owns one of the largest lacustrine basin systems in the world, including the
large Songliao basin and a series of smaller basins east and north-east from the major
depression. The oil rich Cretaceous Songliao basin with the size of ca. 260,000 km? is in the
focus of petroleum exploration since the first oil discovery in 1959. The geophysical
exploration gradually revealed the tectonic development of the Songliao basin (e.g., Wang et
al., 2016a). However, the level of knowledge on the evolution of the group of smaller basins
to the east of the Songliao basin is still insufficient. The Mesozoic-Cenozoic rift basin system
includes sixteen basins larger than 200 km? and five basins larger than 3000 km? (Figure 2.1).
In the 20th century, accompanied by coal mining, the study of the eastern basin group was
focused mainly on the characterization and basic stratigraphic subdivision of the sedimentary

sequences filling the basins. In recent years, with the increasing requirements for oil and gas,
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even the medium and small basins received more attention, which has promoted in-depth
studies of the tectonic framework, stratigraphic correlation and thermal evolution of the basin
groups to the east of the Songliao basin. The current distribution pattern of the basin group east
of the Songliao basin is dominated by the major Huanan Uplift and the Mishan Uplift (Figure
2.1). These uplift areas are also called Jiamusi Uplift and the surrounding basins (Sanjiang
basin, Boli basin, Hulin basin and Jixi basin) are mainly located on the Jiamusi Block (JB; see

Figure 2.1).
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Figure 2.1: (a) Schematic tectonic map of Asia indicating the position of the Songliao basin (modified after Li,
2006, Safonova et al., 2009, 2011; Kroner et al., 2014, Liu, et al., 2016). (b) Digital elevation map of NE China,
showing the major basins by green, and the bordering faults of tectonic blocks (after Zhou et al., 2009; Liu et al.,
2017). Red line: fault; black dashed line: suture zone; gray dashed line: national boundary. The rectangle
represents the study area that covers most of the east NE China, see details in Figure 2. The shadowed areas
represent the major uplifts, and collectively referred to the Jiamusi Uplift. The base digital elevation model is
from the U.S. Geological Survey (2017).

The tectonic evolution of NE China is still intensely debated (e.g., BGMRHP, 1993; Liu et al.,
1994; Tang et al., 1995; Tian et al., 1993; Zhang et al., 1999), especially the exhumation age
and mechanism of the Jiamusi Uplift. One concept suggests that the Jiamusi Uplift belongs to
a long-term uplifting area since the Paleozoic. In the late Indo-Chinese epoch (ca. 250-205 Ma)
the peri-Pacific continental margin was tectonically activated by block faulting and a series of

Mesozoic-Cenozoic rift basins (BGMRHP, 1993). Another opinion argues for multiple uplift
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events (Wen et al., 2011), and the current roughly E-W trending basin-bordering system has
developed in the late Early Cretaceous-Late Cretaceous (Han et al., 2008; Wen et al., 2008a,
b).

The eastern basin group is considered as extensional rift basins by Tang et al. (1995), Liu et al.
(2000), Cao et al. (2003), Zhang et al. (2004, 2005) and Cheng et al. (2006). Other authors
assume a single united continental margin depression-type basin that has formed in the early
Cretaceous and, thereafter, experienced intense transformation by a series of eastwards thrusts
between the major Jiamusi-Yitong fault and the Dunhua-Mishan fault in the late Early
Cretaceous to Late Cretaceous (Wen et al., 2008a, b; Zhou et al., 2009; Zhang et al., 2010).
Previous studies of sedimentary strata and structural features in these basins mainly rely on
drillcore and geophysical data, especially seismic profiles. Multi-method studies including
thermochronology to reconstruct the thermal history of the Jiamusi Uplift area are scarce.

For the identification, dating and quantification of inversion events affecting sedimentary
basins low-temperature thermochronological methods are most useful and widely applied tools.
Previous thermochronological studies used a single method only and revealed simplified
thermal evolution models for the eastern part of NE China. In this contribution, we focus on
the low-temperature thermal history of the satellite basins and the exhumed basement highs to
the east of the Songliao basin. We apply a multi-method approach including organic maturation
data (Ro%), apatite fission track (AFT), apatite (U-Th)/He (AHe) and zircon (U-Th)/He (ZHe)
thermochronology in order to constrain the distribution of the Late Cretaceous-Tertiary
tectonic inversion of the east NE China area, quantify the thickness of the former burial and

the temporal development of basin inversion, affecting an area over100,000 km?.
2.3 Geological Setting

NE China is situated in the eastern segment of the Central Asian Orogenic Belt (CAOB), the
world’s largest accretionary orogen, lying between the Siberian Craton to the north, and the
North China Craton to the south (Eizenhofer et al., 2014; Jahn et al., 2000; Sengoér et al., 1993,
1996; Windley et al., 2007; Xiao et al., 2009; see Figure 2.1). Since the Phanerozoic, this area
experienced superposition and transformation from the Paleo-Asian Ocean tectonic domain to
the circum-Pacific tectonic domain. During the Paleozoic and the early Mesozoic, under the
control of the Paleo-Asian Ocean tectonic domain, NE China experienced multi stage
amalgamation of several microcontinents and finally formed one united block (i.e., Wang et

al., 2008; Liu et al., 2017). Since the Mesozoic, its evolution is strongly influenced by the
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closure of the Mongolia-Okhotsk Ocean in the north and the northwestward subduction of the
Paleo-Pacific Plate in the east (Meng, 2003; Safonova et al., 2009; Li et al., 2012; Zhang et al.,
2012; Xu et al., 2013). Intense Mesozoic-Cenozoic tectonic activities led to the northeast
extension of major Tanlu fault that formed the Jiamusi-Yitong fault and Dunhua-Mishan fault,
the development a series of multistage sedimentary basins (Tian et al., 1992; Ren et al., 2002;
Meng et al., 2003), exhumation of a metamorphic core complex (Davis et al., 2002; Lin et al.,
2008; Liu et al., 2017) and magmatism (Zhang et al., 2000; Zhou and Li, 2000; Wang et al.,
2006).

The Mesozoic-Cenozoic basins and mountain ranges in NE China generally follow SW-NE
trends, controlled by the main NE trending strike-slip fault structures (Figures 2.1, 2.2), and
consistent with the direction of the western Pacific continental marginal trench-arc-basin
system. The Songliao basin is surrounded by the Great Xing’an Range and Nenjiang-Balihan
Fault in the west, the Lesser Xing’an Range in the north and Zhangguangcai Range and
Jiamusi-Yitong Fault in the east. Northeast of the Songliao Basin, in between the Jiamusi-
Yitong strike-slip fault and the Dunhua-Mishan fault further SE, a series of NE-SW oriented
Mesozoic-Cenozoic rift basins developed, such as the Sanjiang basin, Hulin basin, Boli basin,
Yilan-Yitong basin and Jixi basin (see numbers II to VI in Figure 2.1b). They all have remained
as residual basins and are mainly separated by two major uplift zones named as the Huanan
uplift and Mishan Uplift (Figure 2.1b).

Several major faults in the study area deeply influenced the formation and evolution of the
Meso-Cenozoic basins including the NE trend Jiamusi-Yitong fault, Dunhua-Mishan fault;
near SN trend Mudanjiang fault and Yuejinshan fault (Figure 2.1). Especially the NE trending
faults, as the north extension of the major Tancheng-Lushan fault, greatly reactivated and
extension during the Cretaceous-Cenozoic was believed to control the subsidence and
exhumation of rift basins to the east of the Songliao basin (Zhang et al., 2005; Xie et al., 2009;
Sun et al., 2010).
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Figure 2.2: Geological map of the study area and the locations of the thermochronological samples indicated by
stars (map is simplified after Ren et al., 2013). The digital elevation model is taken from the U.S. Geological
Survey (2017).

With the final amalgamation between the Jiamusi block and the Songliao-Xilinhot block in the
Paleozoic-early Mesozoic, the united block composed the basement of the Meso-Cenozoic
basins in NE China (Zhang et al., 2011; Liu et al., 2017; Figure 2.1). The basin group to the
east of the Songliao basin is filled mainly by Mesozoic-Cenozoic siliciclastic and volcanic
formations (Figure 2.3). While in the central part of the Songliao basin the depositional record
remained intact and the subsidence is interrupted by only a minor mid' Cretaceous inversion

event, the burial record of the eastern basin group terminates in Early or Late Cretaceous due
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to the intense removal of the strata during the intense denudation events (Figure 2.4). In these
basins the marginal facies of the sedimentary sequences are missing (Cao et al., 2003, Wen et
al., 2008a). Jurassic shallow marine to continental formations were documented only in the
Sanjiang basin (Sha et al., 2003, 2009; Zhang et al., 2012). In the Lower Cretaceous, mostly
continental sediments occur in the study area with thicknesses varying from 2.2 km to 5.0 km.
The upper part of the Lower Cretaceous sequence contains volcaniclastic sediments indicating
multiple volcanic events. Remarkable that the Lower Cretaceous strata in the different basins
can be well correlated (Figure 2.3). Starting from the early Late Cretaceous, tectonic inversion
events leads to the partly or fully removal of the Upper Cretaceous sediments in the eastern
basin group. The preserved Upper Cretaceous continental sediments are mostly overlying
unconformably the Lower Cretaceous formations and their thickness vary from 1.2 km to 3.0
km. The Paleogene sediments are only partly recorded in the eastern basin group with
continental facies. Only within the Jiamusi-Yitong fault and the Dunhua-Mishan fault zone,
the basins like the Yilan-Yitong basin and Ning’an basin contain relatively complete Paleogene
sedimentary succession The Neogene continental sediments are widely distributed in the study

area with thickness from 0.1 km to 0.7 km.
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Figure 2.3: Compilation of the stratigraphy of the basins in NE China (after Zhang et al., 2010, 2012; Qie, 2009,
Gao, 2010). Roman numbers along with basin names refer to the numbering in Fig. 1b. Circled numbers indicate
the major basing filling sedimentary and volcanic formations: I - Didao, 2 - Chengzihe, 3 - Muling, 4 - Dongshan

and 5 - Houshigou. Zig-zag line: erosional unconformity.

Previous thermochronological studies

Numerous studies applied apatite and zircon fission track (AFT, ZFT) thermochronology in
the Songliao basin. They revealed that the central depression of the Songliao basin reached the
maximum burial depth and highest paleotemperature at the end of the Cretaceous, followed by
an east to west migrating erosional event (Yang et al., 1995; Huang et al., 1999; Fang et al.,
2005; Xiang et al., 2007; Song, 2010). Cheng et al. (2018) further suggested that the southern
Songliao basin experienced two distinct, compression and extension related uplift events with
rapid cooling during the late Mesozoic- Cenozoic. Li et al. (2011a) detected by AFT and ZFT
thermochronology that the northern Great Xing’an range - the western bordering basement

high of the Songliao basin - experienced rapid cooling between 90 and 57 Ma. For the northern
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boundary of the Songliao basin, Li et al. (2011b) concluded that the granites from the Lesser
Xing’an range experienced cooling from 95 to 65 Ma.

Low-temperature thermochronological studies in the eastern basin group are still insufficient.
For the eastern segment of the Songliao basin, Fang et al. (2008) recognized by ZFT a thrust
event that happened after 62 Ma in the Lesser Xing’an Range, and two thrust events that
happened after 116 and 80 Ma in the Huanan uplifted area. Chen (2016) analyzed both granite
and sandstone samples from two large scale, roughly E-W trending sections by AFT and
revealed different cooling and exhumation processes. The Lesser Xing’an range and
Zhangguangcai range were uplifted in the Early Jurassic and the whole eastern Songliao basin
area experienced regional compressive extraction and denudation in the Late Cretaceous

(Figure 2.5).
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Figure 2.4: Compilation of subsidence trends in the Songliao basin (Wang et al. 2016) and some representative
wells of the eastern satellite basins between 150 and 60 Ma. The question marks indicate the unknown termination
of the burial-exhumation histories of the studied boreholes. No younger stratigraphical information is available

from these sites, see discussion in the text.
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2.4 Samples and analytical methods

Granitoid, volcanic and siliciclastic samples were collected from basement and Mesozoic
sedimentary outcrops at the northeastern margin of the Songliao basin (Figure 2.2). The
majority of the twenty-three samples was collected from intrusions or dikes of Early Paleozoic
to Late Mesozoic age, and two more volcanic rocks were collected for extra zircon U-Pb dating
(Tablel). None of the 12 sandstone samples contain accessory apatite grains, presumably due
to the acid pore fluids from omnipresent coal seams of the studied sections. Thus, unfortunately
it was not possible to perform low-T thermochronology on the sedimentary successions.
Depending on the amount and quality of the accessory minerals, twenty-five samples were
selected from the igneous formations for apatite (U-Th)/He dating, eight samples for zircon
(U-Th)/He dating, fourteen samples for apatite fission track analysis, and two samples for
zircon U-Pb dating.

The heavy mineral concentrates were generated from ca. 5 kg samples by the physical
separation methods like crushing, wet-sieving, gravity separation by shaking table and Na-
poly-tungstate heavy liquid, and by Frantz magnetic separator. For AFT dating the apatite
crystals were embedded in epoxy resin mounts and polished. Etching the apatite crystals by
5.5% HNO:s at 21 °C for 20 s revealed the spontaneous tracks. The mounts were then covered
by low-U muscovite plates and irradiated in the thermal neutron facility of the reactor of
Oregon State University, USA. After the irradiation, each muscovite was etched by 40% HF
for 30 min to reveal the induced fission tracks. The AFT ages were calculated by the zeta
method (Hurford and Green, 1983) using the TRACKEY software (Dunkl, 2002). The zeta
value was determined to 322.3 + 16.9 by the Fish Canyon Tuff and Durango age standards.
For (U-Th)/He dating the crystals were hand-picked under stereo and polarizing microscopes.
The selected crystals are all euhedral and free of cracks and inclusions. Length, prismatic length
and width of the selected crystals were measured and recorded by microphotographs for
correcting the alpha-ejection (Farley et al., 1996). The crystals were placed in platinum
capsules for helium extraction, and the released gas was purified by an SAES Ti-Zr getter and
the remaining inert gas measured in a Hidden triple-filter quadrupole mass spectrometer
equipped with a positive ion-counting detector. After spiking with known amount of 2*°Th and
233U solutions, the degassed apatite crystals were dissolved in 4% HNQOj and the zircon crystals
in 48% HF and 65% HNOs in a pressurized Teflon bombs at the temperature of 220 °C for five

days. The amount of actinide elements was measured by the isotope dilution method and the

25



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Sm and the major matrix elements of the crystals (Ca, P and Zr) by external calibration using

an iICAP-Q ICPMS. The (U-Th)/He ages were calculated by the Taylor Expansion Method.

Laser ablation ICP-MS zircon U-Pb geochronology of two volcanic rocks were also conducted
at the GOochron Laboratories of the Geoscience Center, University of Gottingen, Germany.

The detailed experimental procedures can be found in Dunkl et al. (2019).
2.5 Results

The zircon (U-Th)/He ages obtained on the basements are presented in Table 3 and projected
on the study area (Figure 2.5). The ZHe ages range from the Valanginian to the Coniacian and
all are younger than the emplacement ages of the sampled igneous formations (Table 1). The
AFT ages obtained on fourteen basement samples are presented in Table 2 and projected on
the basement outcrops of the study area (Figure 2.5). In the samples 18 to 26 grains were
counted, except for the sample JB20, which had a poorish apatite yield. The central AFT ages
range from early Cretaceous to early Eocene (120.9 + 7.6 to 53.8 + 4.3 Ma), are on average
younger than the ZHe ages, and all ages are younger than the emplacement ages of the host
formations. Most of the samples have relatively low uranium concentrations and therefore low
spontaneous track densities and consequently a relative wide spread of single grain ages, but
all of sample passed the 2 -test (see radial plots in Appendix Figure 1). The mean track length
(MTL) of each sample varies from 12.2 to 14.3 um (Appendix Figure 2.2).

Twenty-five samples were dated by the AHe method, using 4 to 5 grains per sample (Table 3,
Figure 2.5). With a few exceptions the apatite (U-Th)/He ages are younger than the ZHe and
AFT ages measured in the same samples. Sample JB48 gave three single grain AHe ages
between 71.0 and 97.8 Ma with a mean age of 86.7 Ma, which is much older than its AFT
central age of 60.5 Ma. Six single grain AHe ages from sample JB51 are between 74.5 and
95.0 Ma with a mean age of 83.9 + 3.3 Ma, which is also much older than its corresponding
AFT central age of 59.5 Ma. Fitzgerald et al. (2006) and Spiegel et al. (2009) have shown that
a part of the "too old" AHe ages can be explained by helium implantation into low eU apatite
crystals from neighboring U-Th rich minerals or the inapplicable Ft correction due to strong
zonation of the alpha-emitting elements. In our case, the apatite crystals from both samples
with old AHe ages revealed strong fission track zoning. Thus, for samples JB48 and JB51 the
uncorrected AHe ages were used (52.9 £ 5.9 and 50.9 + 1.4 Ma, respectively).
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The single-grain apatite helium ages have little intrasample variation. Mean apatite helium ages
of all the basement samples range from 43 to 106.4 Ma, and most uncertainties (1s) are within
5%, with only two samples surpassing 6%. The apatite crystal sizes and the eU contents have
a relatively large variation (equivalent sphere radii are between 32 and 81 pum, the eU content
1s ranging from 6.2 to 166.4 ppm). There is no detectable correlation between the AHe ages

and other parameters, such as crystal size, altitude, eU content or geographic position.

Zircon U-Pb ages were determined on two volcanic rock samples collected from the northern
margin of the Jiamusi uplift (Appendix Table 2 and Appendix Figures 2.3 and 2.4). From the
andesite sample JB27 15 euhedral zircon crystals were measured and revealed a zircon U-Pb
concordia age of 94.3 + 0.6 Ma. Sample JB28 was collected from a dacite dyke and revealed a
U-Pb TuffZirc age of 99.1 & 0.4 (calculated by Isoplot software; Ludwig, 2012).

27



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

46°

44°

. q ¥/
"@ (‘P‘-' } 2% ‘%"J i)
7 gy

o e
Be S EmanC G

128° 130° 132°
Pre-Mesozoic Mesozoic volcanic - Cenozoic basaltic - Jurassic
basement vvvyvy rocks rocks sediments
Upper Cretaceous - Lower Cretaceous III Samples' E Boreholes
sediments sediments location

Fault ZHe ages in 7.3 AFT ages in 140 AFT ages from
this study = this study literature

AHe ages in 775 | Zircon U-Pb ages
this study —— | from literature

Figure 2.5: Map of low-T thermochronological data of the study area. The uncertainties and other analytical
details are listed in Tables 2.2 and 2.3. The compilation of the formerly published AFT results is from Li et al.
(2011a, b) and Chen (2016). The compilation of the formerly published igneous rock zircon U-Pb age results is
from Wu et al. (2011), Yu et al. (2012, 2013), Bi et al. (2014), Yang et al. (2014), Wang et al. (2016) and Dong et
al. (2017).
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insight from the low

I. Late Cretaceous-Tertiary tectonic inversion of northeastern Asian continental margin

temperature thermochronology in NE China
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I. Late Cretaceous-Tertiary tectonic inversion of northeastern Asian continental margin: insight from the low

temperature thermochronology in NE China
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I. Late Cretaceous-Tertiary tectonic inversion of northeastern Asian continental margin: insight from the low

temperature thermochronology in NE China

"SUOIIBUIULIDIOP 95 JO Joquinu=y pue sa3ed1dar a3e oy JO UOneIAdD plepuels=JS d1oym 7/1(1)/(dS) Se ‘10119 pIepuels | sI o3e a3eroae odwes oy Jo Ajurerraoun)
‘34 93 JO AJurelIdoun pajelinsd oy} pue Ajurerodoun [eonA[eue oy} Yioq SOpN[oul J1 pue BN UL S 7 Se USAIS s1 93k ure1d o[3uls ay3 Jo AJurepdoun)

“0/, JOLIO QATIR[QI UI “BWISIS | SB USALS 9IB SJUSIUOD JUSWI[D JATOROIPRI dY} PUB WNI[IY JO SILUTBIIIOUN

(S00T “Te 30 uB3LINOY PUe 9661 “Te 19 Ao11e 03 SuIp10ooe) uoroals-eyde 10J 10J0B] UOIOALIOD :(3,]) "SI091I00 UONIS(H

‘SweI30UuBU Ul UQAIS 98 SJUSII[S JANIOBOIPEI JO JUNOWY

-oanssaxd pue anjerodud) pIepuels ul Wo-0Iqno-ouBU UT USAIS SI WNI[AY JO JUNOWyY

€y Sell €l el S'16 8690 0oy G681 0 §¢ 0000 T€0 9¢ 14 o 9L1 6'l ¥€0 +O'T 10V wommw
4! 8'TCl 9'¥8 689°0 6¢€ VSLT 0 §C 000 6£0 9 14 o 191 61 €0 601 Lv'E wommw
I SoIl 6'€8 0CL0 (37 0°SLT 0 §C 0000 €£€0 129 14 o o1 6'l €€0 60T ¥9°¢ woﬁmw
ol YLyl 14! 90LI 9Iel ILLO €S 9Ppss 81 ¢9 TI'0 STO 0cl ¥'C 60 14 8T 0S¢ LI'l 6565 ¢€Z1vdl
dd
el [ewl Tewl el el 01 [ourri] [dd] [wdd] [2] [Su] oper [wdd] [op] [Su] [wdd] [o6] [Bu]l [%] [00u]
Jse Jse
ST ol Y4 ol U0d ST  ssew U0d S| ssewr  ‘du0d S| ssewr S| ‘loa  jonbie
93e-0H  ‘J99.10d  snIped Qrdueg
agderdAe . nd n/M4L
LI0uU()  uondRlyg duayds
pajySPMun 110D wnrewes wnroy L, wnruea) wnipPH
Jdureg

(panunuod) ¢ dqe],

39



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

2.6 Tandem modelling of the thermal and burial history to the east of the Songliao basin

In the study area, in a wide zone of basement highs east of the Songliao basin, small remnants
of the former Cretaceous sedimentary cover are preserved (Figure 2.2). These isolated,
sometimes tiny Cretaceous basin remnants indicate a former much wider extent of Cretaceous
basin fill and also widespread basin inversion events. In order to reconstruct the post-Jurassic
thermal history of this region, a series of one-dimensional subsidence/thermal modelling was
performed on the basement areas (relying on the ZHe, AFT, and AHe thermochronometers)
and also on the basin remnants relying on the available vitrinite reflectance data. Our modelling
is thus based on both subsidence analysis of the basin areas and thermal modelling on the
basement highs and has been performed in four main steps.
In the first step the PetroMod software (Schlumberger Inc.) is used for the modelling of the
subsidence history of selected wells, which contain proper stratigraphical and vitrinite
reflectance information and represent specific sub-basins. In the second step the AFT, AHe and
ZHe data obtained on the basement samples are used for thermal modeling by the software
HeFTy v.1.8.3 (Ketcham, 2005). For the modeling of AFT, AHe and ZHe ages the Ketcham et
al. (2007), Farley et al. (2000) and Reiners et al. (2004) algorithms were used, respectively. In
the third step PetroMod modeling was used for the basement highs in order to reconstruct the
burial-exhumation history of these formerly sediment-covered regions. This modelling
considered the thermochronological age constraints, and the stratigraphic evidence from the
sedimentation histories of the adjacent basins. The variables at this modeling stage were the
paleo heat flow (assumed in a range of 40-80 mW/m?), the thickness of the removed
sedimentary sequences and the timing of the removal. Each tested burial thickness and heat
flow setting generated a time-temperature curve, which serves as input for the calculation of
the modelled AFT, AHe and ZHe ages and for the modelled MTL value. In the final step, all
modelled results were compared to the measured results. The absolute residual error (RE) was
used to express the "goodness" of the individual modelling runs. The equation is followed by

RE = |Modelled results — Measured results|
For the borehole data, the modelled and measured Ro% values were compared and generated
the REx which is followed by

REx = Modelled Ro% value in depth x - Measured Ro% value in depth x
The sum of the REx values (SRE = | sum REx|) was determined on samples with different depths
and it was used to quantify the match of the modelling of organic maturation data. The

calculated RE of the basement samples and SRE of the boreholes with their corresponding
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different burial thickness and heat flow value were plotted on contour maps by the software
Surfer (Golden Software Inc.) and then overlapped with each other to similarity of each

methods’ smallest RE or SRE value trending band.
First step: modelling of the subsidence and exhumation history of the basins

Comparing with the well-studied Songliao basin, the eastern basin group has received less
attention up to now. The Ro% measurements have partly low quality or the wells are
represented by too low number of analyses to quantify accurately the downhole trend of organic
maturation. In this study, we selected five wells with relatively high-quality organic maturation
data from the Sanjiang basin, Boli basin, Hulin basin and Jixi basin for the thermal modelling
(the Ro% data are shown in Appendix Table 1; borehole locations are shown in Figure 2.2;
data from Daqing oil company). The vitrinite reflectance data and the modelling results are
shown in Figure 2.6.

The stratigraphic age and the thickness of the preserved sedimentary successions in the basin
fill are the input data for the reconstruction of the thermal history, while the paleo heat flow as
well as the thickness, the stratigraphic age and the time of removal of the eroded successions
are the variables. The paleo water depth and the sediment-water boundary temperature have
negligible influence on the modelling results; we kept them constant as the Lower Cretaceous
formations are mainly shallow marine to continental deposits (He et al., 2008, 2009; Figure
2.3). In the study area thickness and age of deposition of the basin filling sedimentary
formations are well known (i.e., Sun et al., 2000; Sha, 2002; Ren et al., 2005), however, very
few heat flow data are available from the region. In the entire eastern NE China area only five
measurements have been reported on the current heat flow, and the values vary from 35 to 70
mW/m? (Han, 1998; Jiang et al., 2016). For the modelling, the heat flow is treated as a variable
ranging from 40 to 80 mW/m? in eight intervals with a step of 5 mW/m?. To simplify the
modelling procedure and to reduce the number of variables the heat flow was considered
constant over time. The organic maturation and its downhole trend are the most important input
data for the thermal modelling of the burial history. In this study, the collected Ro% values
were determined mostly in the Lower Cretaceous formations, and usually the younger
sequences are underrepresented (except the borehole HuCanl, where Paleogene Ro% values
are also available; Figure 2.6, Appendix Table 1). The measured Ro%-depth plots indicate that
most of the Ro% values have relatively linear relationship with depth. The Ro% trends

extrapolated until the surface yield intersection values between 0.4 and 1.5%, and these values
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are always higher than the initial reflectance of the vitrinite implying denudation of former
post-Early Cretaceous cover sequences. Depending on the heat flow settings and the variable
assumptions on eroded thickness, some of the best-fit curves are shown in Figure 6.
Furthermore, when approaching the best-fit situation, the highest burial temperature of each
borehole is roughly constant and appeared in the late Early Cretaceous to Late Cretaceous
(approx. 110 to 70 Ma). The calculated maximum paleo burial temperatures in the deepest part
of the basin fill are ca. 240 °C for borehole Binl, ca. 200 °C for boreholes BinCanl, HuCan1
and BoD1 and ca. 135 °C for borehole Ji2 (Figure 2.6). The modelled maximum paleo burial
temperatures can be further used for the basement modelling in the second step.

Different heat flow value and eroded thickness combinations can result in good fit to the
measured organic maturation data. In order to visualize the interdependence of these variables
and to plot the field of scenarios with proper calculated VR data the Surfer software was used,
and the sum of residual error isolines were computed by the Kriging method (Figure 2.9). All
of the five boreholes revealed similar, negative correlation between the heat flow and erosion
thickness. However, the position of the "acceptance belt" is different in the basins. For instance,
a given heat flow value of 60 mW/m? and the corresponding "acceptance belt" indicates ca. 4.5
km eroded thickness in Binl well, while the same constraints indicate only ca. 1.6 km eroded
in Ji2 well. Thus, we can conclude that the different regions experienced highly different post-

Early Cretaceous burial and subsequent erosion.
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Figure 2.6: Overview of the available down-hole vitrinite reflectance values and the burial-exhumation modelling
results performed by PetroMod software on selected boreholes of the eastern basin group. The good match of the
calculated and measured Ro% data indicates the reliability of the modelling results. The presented burial curves
are only a selection of the burial scenarios that yielded good match to the measured vitrinite reflectance data.
The total eroded thickness and the paleo heat flow are used as variables for the modelling of different burial
scenarios, see text for details. Kld, Early Cretaceous Didao formation;, Klc, Early Cretaceous Chengzihe
formation; Kim, Early Cretaceous Muling formation,; Klds, Early Cretaceous Dongshan formation; K2, Upper
Cretaceous; Pg, Paleogene; N, Neogene. For the legend of the simplified geological map see Figure 2.5.

Second step: The time-temperature modelling of the basement samples

The time interval was set between 200 and 0 Ma to perform the thermal modelling. Using the
HeFTy software (Ketcham, 2005) random time - temperature paths were tested and the
calculated apparent low-T ages and track length distributions were compared with the
measured data. The modelled results were then categorized as good or acceptable according to
the goodness of fit parameter (Ketcham, 2005). Twelve samples dated by the AFT, AHe and/or

ZHe methods were chosen for the thermal modelling. Mostly both FT and helium ages were
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considered, except for samples JB28 and JB41 where only AHe and ZHe data are available.
Beyond the low-T age constraints the emplacement ages of the intrusions in the basement, the
age of the beginning of sedimentation in the adjacent basins and the organic maturation-based
maximum paleo temperatures (as derived from step 1) were considered. The formation of the
basement took place between Cambrian and early Mesozoic - according to the zircon U-Pb
geochronology of the granitoids (Bi et al., 2013; Yu et al., 2013; Yang et al., 2014; Dong et al.,
2017). The emplacement ages of the basement samples are considerably older than their ZHe,
AFT and AHe ages. For basement samples with >200 Ma emplacement age the first time-
temperature constraint was set to 190 + 10 Ma and 15-200 °C. For the basement samples with
<200 Ma emplacement ages, the first constraint was set slightly later than the crystallization
age and the temperature was set at >110 °C which is higher than the apatite fission track partial
annealing zone. For the following constraints the samples were separated into two groups.
Samples taken from the surface (JBO1, JB27, JB28, JB29 and JB30b) were only given a final
constraint with the annual mean temperature of 10 = 5 °C at 0 Ma. These samples are located
at the northern and southern margins of the Jiamusi Uplift. The rest of the basement samples
(JB25, JB36, JB39, JB41 and JB48) were collected from the neighborhood of unconformably
onlapping Mesozoic sediment remnants, and this indicates that these basement blocks
experienced a near surface temperature in the Late Jurassic - Early Cretaceous. The near surface
t-T (time-temperature) constraints for these four samples were placed at 130-115 Ma and 20 +
5°C. The samples JB15 and JB53 were close to the Upper Jurassic-Lower Cretaceous sediment
remnants which suggest a first near surface t-T constraint at 140 = 10 Ma and 20 + 5 °C (the
sedimentation ages are after HBGMR, 1993). The results of the basin modelling from the first
step indicate a Late Cretaceous maximum burial temperature of ca. 200 °C in the southwestern
part of the Sanjiang basin and the eastern Boli basin (Figure 6). This temperature was taken as
potential maximum value for the modelling of the basement area and thus t-T constraints of

200 °C and 110-80 Ma were applied for samples JB36, 39, 41and 48 (Figure 2.7).
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Figure 2.7: Results of the time—temperature modelling of the exhumed basement areas northeast of the Songliao

Basin. The input data were the apatite fission track ages and track length distributions, the apatite and zircon (U-

Th)/He ages, the actinide contents and dimensions of the dated crystals (AFT: apatite fission track; AHe or ZHe:

apatite or zircon (U-Th)/He). For each model, 100,000 random paths were generated or the modeling procedure

was stopped after 100 good paths. GOF': goodness of fit between the modelled and measured results. The numbers

of good (red, GOF >0.5) and acceptable (green, GOF >0.05) paths are indicated on the plots. Blue paths denote

the weighted mean paths of the good models. Black paths denote the best-fit paths for the models shown.
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The resulting models show different cooling patterns from different areas of the Jiamusi Uplift.
Except for the poorly constrained pre-Early Cretaceous thermal history, which only revealed
an approximate cooling process until the Early Cretaceous, the post-Early Cretaceous thermal
history is well constrained. Starting from 110-100 Ma, samples JB15, JB25 and JB53 from the
eastern and western margins of the Jiamusi Uplift first cooled below 40 °C with high cooling
rates (2.6 and 1.2 °C/Myr) until ca. 90-80 Ma. This is followed by a long-lasting period of much
slower cooling (0.3-0.5 °C/Myr) until present. The samples JB15 and JB25 from the east
exhumed earlier and experienced more post-Early Cretaceous erosion than the sample from the
western margin. The samples from the middle part of the Jiamusi Uplift (samples JB25, JB36,
JB39, JIB41 and JB48) revealed a slightly later exhumation than the eastern and western
margins. The early cooling rates between 90-80 and 60-40 Ma were high (ca. 2.4-5.4 °C/Myr).
After this period the cooling rates were considerably lower, ca. 0.1-0.7 °C/Myr (Figure 2.7).

Third step: modelling the heat flow and burial thickness over the re-exhumed basement areas

The modelling of the thermal evolution of the formerly buried and re-exhumed basement areas
needs assumptions on the following characteristics of the cover sequences: (1) the lithology of
the eroded sedimentary cover (2) the thickness of the burial, (3) the paleo heat flow, (4) the
onset of burial and (5) the onset of removal of the cover sequence.

(1) and (2): Lithology and stratigraphy of the cover sequences

The widely distributed Lower Cretaceous sediment remnants on the basement highs show
similarities to the contemporaneous strata in the surrounding basins (Zhou et al., 2009). We
thus assume similar sedimentary sequences covering formerly the basements. For the sake of
simplicity, we applied the petrophysical parameters of siltstone for the entire cover sequence.
The eroded thicknesses and the remaining sedimentary thicknesses from the satellite basins
were considered as potential total burial of the basement highs.

(3) Paleo heat flow

The HeFTy modelling of basement samples indicates a generally similar, rapid heating and
cooling process from the late Early Cretaceous to Eocene. The potential reasons of this
overprint could be the burial heating by the covering younger successions and its interplay with
the Late Cretaceous volcanic activity. Xu et al (2013) mentioned that the major volcanic
activity occurred between 131 and 106 Ma in the study area, thus the eruption ages in the
Songliao basin and its immediate surroundings are older than most of the measured apatite and

zircon low-T ages (Figure 2.5). It is remarkable that two new U-Pb ages of 99 and 94 Ma were
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measured on volcanic rock samples JB27 and JB28 collected along the Amur river at the
northern border of the study area (Figure 2.2, Appendix Figures 2.3 and 2.4). These data
highlight that the igneous activity lasted longer in the northernmost part of the basin system,
but the remote position of this dated younger volcanism makes a thermal influence on the
southern areas highly unlikely.

The Early Cretaceous igneous activity-triggered high heat flow likely decreased soon after the
cessation of the volcanism in the major part of the eastern basins, i.e. before 100 Ma. This
means that the post-volcanic burial has determined the climax of the thermal history in the
eastern basin group and in the currently exhumed basement highs, except for the northernmost
part. That is why high heat flow periods were not considered for the modelling of the low-T
ages that are considerably younger than the volcanic activity and the heat flow was treated to
be constant over time. In order to be consistent with the PetroMod modelling of the basins the
heat flow values for the basement modelling runs were set between 40 and 80 mW/m? in eight
steps of 5 mW/m?.

(4) Onset of burial and (5) onset of removal of the cover sequence

According to the sedimentary record the onset of burial for the modelling was set to the
beginning of Late Jurassic or to Early Cretaceous. The onset of removal of the cover sequence
was defined by the inflection points identified on the average mean thermal history paths

yielded by the HeFTy modelling (Figure 2.8).
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Figure 2.8: Overview of the PetroMod (Schlumberger) modelling results of the basement areas. For the legend
of the simplified geological map, see Figure 5. In the burial plots of each modelled well the gray parts represent
the accumulation-removal history of the missing cover sequences. All five plots reveal the situation where the

residual error has a minimum value, see details in text. KI, Lower Cretaceous, K2, Upper Cretaceous; Pg,

Paleogene; N, Neogene.

The results of the thermal modelling of basement areas

The modelling results obtained on basement samples are shown in Figure 2.10. The
interdependence (negative correlation) of the burial thickness and the paleo heat flow is well
reflected on all residual error plots. The width of the "acceptance belt" is variable; e.g., in case
of samples JB53 and JB15 the different criteria used for the acceptance belt yield a coherent
pattern, while in case of sample JB39 the acceptance threshold lines are less coherent and thus
the compiled "acceptance belt" is wider, less determined. Similar to results obtained on the
basins, the former burial thickness of the currently exhumed basement highs was variable
(Figure 10). See e.g., the intersection of the 60 mW/m? heat flow value and the white

"acceptance belt" in case of northern samples. The former indicates the maximum burial is
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between 2.5 and 4.8 km, while in the southern samples the corresponding thickness of the

paleo-cover is around 1.7 km (Figures 2.10, 2.11).

The usage the heat flow value of 60 mW/m? is a reliable approximation as Han (1998) and

Jiang et al. (2016) have determined this value as an average value of the whole NE China.

However, it is remarkable that heat flow data from the region are very rare.
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Figure 2.9: Residual error plots showing the interrelation of the paleo-heat flow and thickness of missing
sequences (eroded thickness) for the five wells where the burial history was modelled. The values on the isolines
represent the sum of the residual error (SRE) between the modelled vitrinite reflectance data and the measured
ones. The isolines on the plots were generated by the Surfer software according to the five PetroMod modelling
runs assuming different heat flow-burial combinations. The white band represents the smallest SRE. For the

legend of the simplified geological map, see Figure 2.5.
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Figure 2.10: Estimation of the thickness of the missing sequences (eroded thickness) and the paleo-heat flow at
the time of sedimentary cover for five selected basement sample sites. The residual error plots were generated by
a combined modelling using PetroMod (Schlumberger) and HeF Ty (Ketcham, 2005) software assuming different
thickness and heat flow values as input data. The lines of the different thermochronological parameters indicate
a kind of threshold of acceptance and the lighter colored side indicates the better match of the modelled values
and the measured values. The white belts represent the best fit conditions, when the burial and heat flow interplay
resulted in thermal histories that generated low-T thermochronological data close to the measured ones. AHe,
ZHe: apatite or zircon (U-Th)/He age, AFT: apatite fission track age, MTL: mean confined horizontal track
lengths in the apatite crystals. For the legend of the simplified geological map, see Figure 2.5.

2.7 Discussion
Post Jurassic thermal history reconstruction of the east NE China area

The stratigraphical record and the modelled thermal histories of the basement highs yielded
two exhumation periods in the study area, the first between ca. 200 Ma and ca. 130 Ma and the
second between ca. 110-90 Ma and ca. 60-40 Ma. The first exhumation is poorly constrained.

Former studies have indicated that the Jiamusi Block (JB) and Songliao-Xilinhot Block (SXB)
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have completed their amalgamation in the Late Jurassic (ca. 160 Ma), which lead to the rapid
exhumation alongside the major Mudanjiang-Yilan suture zone, (MYS, see Figure 1; Zhou et
al., 2009a, Lietal., 2010, Zhao and Zhang, 2010, Liu et al., 2017). With the final amalgamation
of JB and SXB, during the Late Jurassic-Early Cretaceous, the area was covered by marine-
continental alternating sedimentation (He et al., 2009, Zhou et al., 2009). The very similar Early
Cretaceous stratigraphy in the satellite basins indicate a, regional cover sequence that covered
uniformly the basement highs and the surrounding remnant basins including the Jixi basin, Boli
basin, Sanjiang basin and Hulin basin. At this stage, the continuous subsidence and
sedimentation has gradually increased the burial heat which led to the reset of the zircon and
apatite thermochronometers in the basement units.

Uplift, basin inversion and erosive removal of the basin fill has started between 110 and 80 Ma
and continued until the Eocene in the eastern NE China area. The eastern margin of the Jiamusi
Uplift (east Mishan Uplift and east Huanan Uplift) experienced slightly earlier exhumation
(starting from 110-105 Ma) and more erosion than the western margin of the uplift area
(Zhangguangcai Range). Among the exhumed areas, the west Huanan Uplift experienced most
erosion. Furthermore, a narrow NE-SW belt between the Jiamusi-Yitong fault and the Dunhua-
Mishan fault revealed a nearly consistent exhumation starting at ca. 90-80 Ma that matched
with the cessation of the fast-cooling period for both east and west sides of the Jiamusi uplift
margin area (Figure 2.7). The difference in the exhumation times might be controlled by the
Jiamusi-Yitong fault and Dunhua-Mishan fault systems.

The eastern satellite basins overall experienced thicker post-Early Cretaceous burial and deeper
erosion than the Songliao basin (Figure 11). The total thickness of the missing sequence is
variable for the different areas. We assume that the currently elevated western Zhangguangcai
Range and eastern Mishan Uplift were also covered by Late Cretaceous sedimentary
formations, and that these blocks probably formed the margin of the basin system at the time
of its maximum extent. Continuing from ca. 110 to 40 Ma, the exhumation of the Jiamusi Uplift
gradually destroyed the formerly continuous sedimentary cover and only the distributed,
sometimes tiny basin remnants have preserved part of it. Since the end of the major exhumation
in the Eocene, both the main uplift areas and the basin remnants experienced slow uplift and

slow erosion leading to the relatively low-relief, hilly landscape today. Only in some restricted
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areas subsidence and sediment accumulation took place in Paleogene times.
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Figure 2.11: Compilation of the thickness of the missing sequences calculated for the basement highs and basin
areas. The numbers represent the eroded thickness in km. The numbers in rectangles were determined by
modelling of low-T thermochronological data and express the total removed thickness (sedimentary pile + some
erosion of the basement). The numbers in ellipses are the modelling results based on vitrinite reflectance down-
hole trends and they express the thickness of the post-Early Cretaceous burial. The assumed paleo-heat flow is
60 mW/m?, that corresponds to the bulk average value of the region, see text for details. The estimated thickness
of the removed sedimentary formations in the central Songliao basin is taken from Lu et al. (2005), Liu et al.

(2013) and Wang et al. (2016). For the legend of the simplified geological map see Figure 2.5.
Geodynamic implications

The modelling results of this study revealed a widespread and significant exhumation phase
that affecting the eastern part of NE China, starting from the late Early Cretaceous - early Late
Cretaceous (ca. 110-80 Ma). This large scaled transformation of the tectonic environment
corresponds to the regional NW-SE compressional events at the northeastern continental
margin of Asia in the Late Cretaceous (Ratschbacher et al., 2003; Stepashko, 2006, 2008; Yang,
2013). Yang. (2013) mentioned that the Okhotomorsk continental block, currently residing
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below the Okhotsk Sea in Northeast Asia, following the west subduction of the Paleo-Pacific
plate, collided with Yangtze Block at ca. 100 Ma. The collision caused the regional NW-SE
compression and orogenic uplift in East Asia which could be related to the earlier exhumation
on both east and west margin of the major Jiamusi uplift. The plate motion study of the Paleo-
Pacific plate (Izanagi-Kula) indicated that, in the early Late Cretaceous (ca. 90 Ma), the
movement direction of the plate greatly changed from NNW to WNW with high rates (23.5
cm/a; Engebretson et al., 1985; Maruyama et al., 1997). The near NW subduction direction
almost at right angle with the near NE ward east Eurasia continental margin put the east NE
China into dextral compressor shear environment (Sun et al., 2010) and probable further
induced the long-lasting regional uplift in the study area.

The thermal modelling of the exhumed basement blocks in the east NE China indicates a
significant reduction of the cooling rate in the Cenozoic, ca. 60-40 Ma. The transition to much
slower exhumation might correspond to the slowing of the Pacific plate’s subduction rate and
the increasing subduction angle in the Eocene (Maruyama et al., 1997). The east Asia
continental margin then experienced extensional tectonics, influenced by of the roll-back effect
from the subduction of the Pacific plate (Ren et al., 2002). Triggered by this change,

the Jiamusi-Yitong fault and Dunhua-Mishan fault started the dextral strike-slip extension
activities that formed the narrow Yilan-Yitong basin and Ning’an basin filling with 3-5 km of
Paleogene continental deposits. With the weakening of the extensional activity, the Yilan-
Yitong basin and Sanjiang basin developed into the Neogene and Quaternary depression

sedimentation stage.
2.8 Conclusions

(1) New low-T thermochronological age constraints were determined by apatite FT and
apatite and zircon (U-Th)/He methods on the basement highs separating the small
basins situated NE of the Songliao basin in NE China. The apparent ages are mostly
younger than the major subsidence period of the Early Cretaceous sedimentation in the
adjacent basins.

(2) According to the thermal modelling the currently exhumed basement areas were
covered by Cretaceous successions. The thickness of the missing sequences were
calculated and assuming a reliable paleo-heat flow of 60 mW/m? the Mishan Uplift and

the Zhangguangcai Range were covered by ca. 1.6-1.7 km sediment, while the central
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Jiamusi Uplift experienced considerably deeper burial: the calculated cover is varying
from 2.5 to 4.8 km.

(3) During the basin inversion the eastern Mishan Uplift and the western Zhangguangcai
Range were exhumed first, between 110 and 100 Ma with cooling rates of 2.6 and 1.2
°C/Myr, respectively. Later the cooling rate has slowed down to 0.3-0.5 °C/Myr. In the
central Jiamusi Uplift the exhumation started slightly later, at ca. 90 Ma and with higher
cooling rates of ca. 2.4-5.4 °C/Myr, and continued until ca. 40 Ma.

(4) In the eastern satellite basins five representative boreholes were selected and the
thermal history modelling is based on stratigraphic and vitrinite reflectance data. The
thickness of the missing sequence that was removed mostly in Late Cretaceous time
varies strongly. Assuming 60 mW/m? paleo-heat flow in the western Sanjiang basin the
former burial was 2.4 km in the south and 4.5 km in the north. In the eastern Boli basin
and northern Hulin basin, the models suggest similar thicknesses of the missing
sequences: 4.3 and 4.5 km, respectively. However, in the south the Jixi basin revealed
a significantly smaller burial of ca. 1.6 km.

(5) The calculated thicknesses of the missing sequences revealed a coherent, large-scale
pattern, although different constraints and methods were applied for the basins and for
the exhumed basement areas. In general, the eastern satellite basins experienced higher
post-Early Cretaceous burial and subsequent erosion than the much larger Songliao
basin to the west.

(6) According to the integrated burial/thermal modelling and combining with previous
research results we postulate that the eastern basin group including the Jixi basin, Boli
basin, Sanjiang basin and Hulin basin belonged to a single united huge down-warped
basin in the eastern Asian continental margin. The current west Zhangguangcai Range
and east Mishan Uplift were probably also involved in this united basin. From ca. 110
to 40 Ma, the exhumation of the Jiamusi Uplift has gradually destroyed the formerly
continuous sedimentary cover and only basin remnants have been preserved. By the
end of the major exhumation in the Eocene, both the major uplift area and the basin

remnants came to the slow uplift and erosion stage until recent time.
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3.1 Abstract

Mafic lavas of Cenozoic age are widely distributed in northeast China and received much
attention as an important part of the Circum-Pacific volcanic belt. The age constraints for the
volcanic activity were determined mostly by K/Ar and 40Ar/39Ar methods. We present zircon
(U-Th)/He ages obtained on the thermally overprinted sands directly underlying a basaltic lava.
This thermochronometer is insensitive to weathering and not biased by excess argon, thus it
can express accurately the age of thermal effect of the lava flow. As a regional cooling age
reference, three granite samples were dated from basement units that have not been thermally
influenced by the basalt eruptions. The reference granite samples revealed well-defined
Cretaceous (U-Th)/He-ages, while 20 zircon crystals from the sand below the basalt lava
revealed a prominent Miocene (U-Th)/He age component of 9.33 + 0.24 Ma. Raman
spectroscopy of these zircon crystals supports their thermally overprinted character. We infer
that the sand sample has experienced significant thermal overprint by the overlying basalt lava
leading to thermal reset of the majority of the detrital zircon crystals. The obtained age is thus
interpreted as the eruption age of the basalt lava. The Huanan basalt flow thus belongs to

volcanics of the Laoyeling episode in NE China.
3.2 Introduction

Mafic lavas of Cenozoic age are widely distributed in northeast China. Despite the small size
of these occurrences, they represent an important part of the Circum-Pacific volcanic belt (Basu,
Wang, Huang, Xie, & Mitsunobu, 1991; Flower, Tamaki, & Hoang, 1998; Zou, Fan, & Yao,
2008; Xu et al., 2015). The age constraints of this volcanic activity were determined mostly by
K/Ar and “°Ar/*°Ar methods and range from Miocene to Pleistocene except for some Late
Cretaceous to Paleogene ages within and east of the Songliao Basin (Figure 1; Fan, Sui, Wang,
Li, & Sun, 2007; Hu et al., 1983; Liu, 1987; Liu, Chen, et al., 2017; Liu, Li, et al., 2017; Qiu
etal., 2007; Wang et al., 1983; Zheng, Xu, & Wang, 1999; Zhang et al., 2006).

In the last two decades, new geochronological techniques were introduced for dating young
mafic eruptions such as the U-Th disequilibrium method (Zou, Zindler, Xu, & Qi, 2000),
indirect dating of volcanics from the surrounding fallout organic material deposits by the 14C
method (Xu, Zhang, Qiu, Ge, & Wu, 2012; Yin et al., 2012), fission track dating of volcanic
glasses (Renne, 2000), and magnetite or zircon (U-Th)/He (ZHe) geo-thermochronology (e.g.,
Blackburn, Stockli, & Walker, 2007; Blondes, Reiners, Edwards, & Biscontini, 2007; Cooper,
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van Soest, & Hodges, 2011; Farley, 2002). The modern 40Ar/39Ar approaches may yield
precise ages of young volcanic rocks, but typically the age of young and/or low-K lava samples
have high errors due to minor proportions of radiogenic Ar (Blondes et al., 2007; McDougall
& Harrison, 1999). The magnetite (U-Th)/He method is also introduced to date mafic volcanic
rocks (Blackburn et al., 2007; Fanale & Kulp, 1962). However, this mineral is not suitable for
a wide range of applications due to its disadvantages. For example, (a) the Fe-oxide minerals
in mafic volcanic formations have frequently irregu- lar external morphology, thus the ejection
(FT) correction is hardly feasible and it would generate significant bias (Hernandez Goldstein,
Stockli, Ketcham, & Seman, 2014). (b) The interior of the magnetite grains in lavas are highly
heterogeneous, often penetrated by ilmenite and haematite lamellae and they contain apatite
inclusions. (¢) The U content is usually very low. The studies for example, Fanale and Kulp
(1962) and Blackburn et al. (2007) were dealing with pre- Cenozoic ages, with a few ppm or
even sub-ppm uranium content. In the case of Miocene—Pliocene lavas the uncertainties would
be much over the expectations for stratigraphical purposes. Furthermore, the Blackburn et al.
(2007) study was made on kimberlites, which has atypical actinide contents and distributions.
Zircon analysis has been proven a versatile tool for examining a wide range of geological
processes because zircon crystals have a lot of important features for geochronology and
thermochronology including high actinide concentrations, occurrence in variable lithologies
and resistance to physical and chemical weathering (Reiners, 2005). Like many other minerals,
zircon can also be dated by the (U-Th)/He method to reveal the low temperature (ca. 180—130
°C) thermal history (e.g., Farley, 2002; Reiners, Spell, Nicolescu, & Zanetti, 2004). Comparing
to the K/Ar and 40Ar/ 39Ar methods, zircon (U-Th)/ He method has the advantage of
performing relatively rapidly on selected zircon crystals without neutron irradiation, and high
accuracy on young volcanic rocks (Blondes et al., 2007). Even though mafic to intermediate
volcanic rocks rarely contain zircon crystals, the strata below lava flows or the host rocks in
contact with basaltic dykes, sills, or necks are often rich in zircon crystals. These zircons may
become thermally reset upon significant heating (temperature and time) and the (U-Th)/He age
obtained on these crystals then indicates cooling after the heating event. Assuming usual fast
cooling of lava flows, this age should reflect the eruption age (Blondes et al., 2007; Cooper et

al., 2011).

In this study, we report for first time zircon (U-Th)/He ages from a thermally overprinted basal

layer of a lava flow from the Huanan region in NE China. Additionally, Raman spectroscopy

58



II. Miocene age of the Huanan basalt lava flow (NE China) inferred by reset of zircon (U-Th) /He
thermochronometer in the underlying sand

was used to describe the crystalline state and confirm the thermal reset of the dated zircon

crystals.
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Figure 3.1: (a) Simplified geological map of NE China, modified after Ren et al. (2013) and HBGMR (1993). The
occurrences of basalt volcanoes and their age (in Ma) are taken from Fan, Sun, Li, and Wang (2006), Fan et al.
(2011), Fan, Zhao, Sui, Li, and Wu (2012), Liu (1987), Liu, Chen, Zhong, Lin, and Wang (2017), Liu et al. (2017),
Qiu, Liao, and Liu (1991), and Zhang, Xu, Ge, and Ma (2006). The digital elevation model is from the U.S.
Geological Survey, 2017. The two faults marked with (1) and (2) are the Jiamusi-Yitong and Dunhua—Mishan
faults, respectively, and belong to the eastward extension of the Tan—Lu Fault Zone in NE China. Dashed box
indicates position of Figure 2. (b) Schematic tectonic map of North Asia (modified after Liu, Chen, et al., 2017;
Liu, Li, et al., 2017)

3.3 Geological setting

NE China is enclosed by the Siberian Block in the north, the North China Block in the south
and the Pacific Plate in the east, tectonically situating in the eastern segment of the world’s

largest accretionary orogen, the Central Asian Orogenic Belt (CAOB) (Jahn et al., 2000;
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Sengor et al., 1993; Windley et al., 2007; Figure 3.1). This area was mainly dominated by the
Paleo-Asian Ocean tectonic domain in the Pre-Mesozoic period, and strongly transformed by
the circum-Pacific tectonic domain since the Mesozoic (Liu et al., 2010 and 2017). Since the
Late Mesozoic a large continental rift system developed in NE China, related to the subduction
of the Pacific plate and back-arc extension of the Japan Sea (Liu, 1988; Xu et al., 2015). This
rift system includes the Songliao basin, Jiamusi - Yitong fault zone, Dunhua - Mishan fault
zone and other adjacent basins (Figure 3.1). Contemporaneously about 690 volcanic cones and
craters and 50,000 square kilometers of basaltic lavas with small amounts of alkali trachyte
were formed in this area. The Cenozoic volcanism is mainly distributed alongside a series of
NE to NNE oriented rift basins and adjacent mountain ranges and on both sides of the Songliao
basin, but major volcanic activity occurred to the east (Liu, 1988, 1992; Figure 1). From west
to east, the distribution of the volcanic rocks can be divided into several zones, these are the
Great Xing’an Range, the Jiamusi - Yitong fault zone, the Dunhua - Mishan fault zone and the
Changbai Mountains. The borehole data from the Songliao basin reveals over 1 km thick
Paleogene basalt bodies of tholeiitic composition (Xu et al., 2015). The next volcanic activity
peak period appeared in Neogene and mainly follows the Jiamusi - Yitong fault zone and
Dunhua - Mishan fault zone. The youngest Quaternary volcanic rocks in NE China are
distributed around the Songliao basin with major occurrences in the Great Xing’an Range and
even more western areas, to the north of the Songliao Basin, and to the east in the Changbai
Mountains, mostly east of Dunhua-Mishan fault zone (Liu, 1987, 1992, 1998; Qiu, 1991; Fan
and Hooper, 1991; Fan et al., 1998, 1999, 2006, 2007, 2011, 2012; Zhang et al., 2000; Bai et
al., 2005, 2008 and Zhao et al., 2008; Figure 3.1). The Cenozoic basalts in NE China are
considered products of partial melting of the upper mantle, and mixing of depleted mantle and
enriched mantle type I components (Zou et al., 2000, Zhou, 2006 and Xu et al., 2015).

Even though numerous geochronological studies have been published from many occurrences
of mafic volcanic formations in NE China, high precision and weathering-insensitive
geochronology such as zircon U-Pb or (U-Th)/He dating has not yet been performed on the
young volcanic formations of the Huanan area. Previous studies in this area mainly rely on

constraints from lithostratigraphic and paleontological evidences (HBGMR.,1993).
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Sifangtai

Daxinggou

Qunli

Figure 3.2: Simplified geological map of the study area, modified after HBGMR (1993). The digital elevation
model is taken from the U.S. Geological Survey, 2017. Pt, Palaeoproterozoic strata; J, Jurassic strata; K1, lower
Cretaceous strata;, NI, Miocene strata; Q2-3, Middle to Upper Quaternary strata; Q4, Holocene strata; y:
Permian granite; . Cenozoic basalt; yellow star: sample locations in this article and the measured (U-Th)/He
age; black star: zircon U-Pb age of granitoids (Dong et al., 2017); Solid black lines: faults, dotted black lines:

unconformities.

3.4 Sample and analytical methods

A sand sample (JB40) was collected in an active basalt quarry close to Qunli village (Figure
3.2; N46.2983°, E130.7182°). A 2-3 m thick horizontal lava flow is exposed along the
excavation walls and the contact to the underlying sand is well preserved and accessible. In the
surroundings of the quarry the sand forms only a few meters thick layer; this young, alluvial
sediment covers the granitoid basement. The basal layer of the lava is amygdaloid, but the lava
shows low degree of alteration. We collected a loose sand sample from the topmost 3-5 cm,

immediately below the base of the basalt lava (Figure 3.3).
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Figure 3.3: Photographs illustrating the basalt lava outcrop and its base close to Qunli village. Thickness of the
lava flow in the upper left photo is 2-3 meter.

To discriminate the thermal influence imposed by the basalt lava to the underlying granite
basement at the sampling position and the untouched area, three granite samples were collected
for (U-Th)/ He dating from the wider area surrounding the basalt quarry (Figure 3.2; JB37,
N46.4320°, E131.09425° JB39, N46.3189° E131.0713°; JB41, N46.0767°; E130.6672°). The
zircon grains were separated from the 63-125 um fraction by shaking table, gravity separation
by Na-poly-tungstate, and magnetic separation.

The zircon crystals have variable shapes and colors, but they are mostly pinkish-brownish,
transparent-translucent and euhedral to slightly rounded. (U-Th)/He analyses were performed
at the GOochron Laboratory of the Geoscience Center, University of Gottingen. Twenty-eight
intact zircon crystals were selected by stereo and petrographic microscopes. The crystals were
photographed and their dimensions (length, width and prismatic length) were used for alpha-
ejection correction (Farley et al., 1996; Figure 3.4). The grains were wrapped in platinum

capsules for helium extraction and heated with an infrared laser. The extracted gas was purified
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by an SAES Ti-Zr getter at 450 °C. The remaining inert gas was measured by a Hidden triple-
filter quadrupole mass spectrometer equipped with a positive ion-counting detector.
Following degassing, the capsules were retrieved from the gas extraction line the zircon
crystals were extracted from the capsules and spiked with calibrated 230Th and 233U solutions
in 0.4 ml teflon vials. The crystals were dissolved for five days at 220 °C in pressurized bombs
using a mixture of double distilled 48% HF and 65% HNO3. Each sample batch was prepared
with a series of procedural blanks and spiked normals to check the purity and calibration of the
reagents and spikes. Spiked solutions were analyzed by a Thermo iCAP Q ICP-MS. Procedural
U and Th blanks by this method are usually very stable in a measurement session and below
1.5 pg. The ejection correction factors (Ft) were determined for the single crystals by a
modified algorithm of Farley et al. (1996) using an in-house spread sheet.

Raman spectroscopy was applied to all zircon samples to identify the thermal influence on the
lattice of the zircon crystals as additional information to interpret the (U-Th)/He chronological
data. Details of the laboratory procedure can be found in Liinsdorf and Liinsdorf (2016). The
IFORS software was used to evaluate the Raman spectra. Fitted peak widths were corrected
for the apparatus function after Irmer (1985) and Nasdala et al. (2001).

3.5 Results

3.5.1 Zircon (U-Th)/He ages

Twenty-eight euhedral or slightly rounded zircon crystals were dated (Figure 3.4 and Table
3.1). The crystal sizes with c-axis parallel and perpendicular dimensions range from 120 to 319
um and 55 to 98 um, respectively. The measured zircon crystals reveal radii ranging from 34
to 59 um and the effective uranium concentration (eU, where eU is calculated as [U ppm] +
0.235 * [Th ppm]; Gordon Gastil et al., 1967) covers a wide range from 145 ppm to 1883 ppm.
The Ft-corrected zircon ZHe ages of the dated crystals from the JB40 sand sample range from
5.7 Ma to 30.5 Ma (Figures 4, 5). Except for the youngest single zircon He age of 5.7 £ 0.5 Ma
and three older He-ages >20 Ma, the ages reveal a tight distribution between 8.3 and 15.6 Ma.
The Ft-corrected ZHe ages of the three granite samples from the region also reveal tight
clustering with unweighted ZHe mean ages of 94.1 + 3.2 Ma, 97.8 £4.7 Ma and 135.7 + 10.2
Ma for samples JB37, JB39 and JB41, respectively (Table 3.1). ZHe ages show no correlation
with eU concentrations (Figure 6) implying that the effect of radiation damage density on the
measured apparent (U-Th)/He ages is negligible (e.g., Cook et al., 2013; Flowers et al., 2009;
Reiners, 2005, Shuster et al., 2006).

3.5.2 Raman spectra of the zircon crystals
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ZHe ages are determined by the retentivity of He in zircon crystals, which is influenced by the
alpha-damage inflicted in its crystalline lattice due to self-irradiation (e.g., Guenthner et al.,
2013). Raman spectroscopy offers the opportunity to quantify the degree of metamictization in
zircon crystals (Nasdala et al., 1995) selected for (U-Th)/He analysis. The accumulated alpha-
damage is estimated from the position and the width of the v3(SiO4) Raman band, the
stretching vibration of the S104 tetrahedra about 1000 cm-1 (Dawson et al., 1971). In our case,
the four samples reveal distinct, narrow internal and external vibrational modes in the spectral
range from 972.1 to 1010.5 cm-1. All of the analyzed zircon crystals have tightly distributed
full width at half-maximum (FWHM) values ranging from 3.4 to 9.0 cm-1, with averages of
5.1 cm-1 (JB40), 5.5 cm-1 (JB37), 5.2 cm-1 (JB39) and 6.8 cm-1 (JB41), respectively (Table
3.2).

JB40 Z1 JB40Z2 JB40Z3 JB40Z5 JB40Z6 JB40 Z7 JB40Z8 JB40Z9  JB40Z10 JB40 Z11

470 ppm 442 ppm 984 ppm 913 ppm 208 ppm 658 ppm 1883 ppm 890 ppm 800 ppm 509 ppm
13.6x1.1Ma 10.1£0.7Ma 9.5£1.0Ma 8.8+0.9Ma 11.2£1.3Ma 29.0+0.8Ma 8.9£0.8Ma 8.5+0.7Ma 13.4+1.3Ma 15.6x1.4Ma

JB40Z12 JB40Z13 JB40Z14 JB40Z15 JB40Z16 JB40Z17 JB40Z18 JB40Z19 JB407Z20 JB40 721

292 ppm 651 ppm 1222 ppm 776 ppm 382 ppm 403 ppm 536 ppm 1003 ppm 161 ppm 145 ppm
8.3+0.8Ma 5.7+0.5Ma  30.5+2.9Ma 8.3:0.9Ma 14.2£1.3Ma 9.5:0.9Ma  9.0+0.7Ma 10.6:0.9Ma 22.7+1.8Ma 9.7+0.8Ma

JB37 Z1 JB37Z2 JB39Z1 JB39Z2 JB39Z3 JB3974 JB41 Z1 JB41 72

0 100 um
I

285 ppm 206 ppm 614 ppm 1356 ppm 667 ppm 831 ppm 410 ppm 529 ppm
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Figure 3.4: Microphotographs of the dated zircon crystals along with the effective U concentration (eU, where
eU is calculated as U + 0.235 * Th; Gastil et al., 1967) and the (U-Th)/He age.
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3.6 Discussion

3.6.1 Identification of the principal age component of the single-crystal ZHe data

Visualizing and interpreting the ages obtained on detrital zircon crystals forms a key part to
unravel the corresponding geological questions in detrital zircon geochronological and
thermochronological studies. The probability density plot (PDP) and the kernel density
estimate (KDE) are the most used methods for visualizing detrital age distributions (Hurford
et al., 1984; Silverman, 1986; Devroye, 1987; Vermeesch, 2012; von Eynatten and Dunkl,
2012). However, it has been pointed out that the PDP lacks any theoretical basis as a probability
density estimator, although it may serve as a data visualization tool (Galbraith, 1998, 2010;
Vermeesch, 2012).

The ZHe age distribution is visualized as KDE plot by the DensityPlotter v8.4 software (Figure
7; Vermeesch, 2012). The KDE age spectrum shows a typical left-hand asymmetry and the
mean of the dominating (about 75%) youngest age component is 9.33 £ 0.24 Ma (Figure 3.7).
To further corroborate the result, we also use the SIMPLEX method (Cserepes, 1989) to
perform a best-fit model to identify the age components by the Popshare software (Dunkl and

Szekely, 2002). This approach results in a similar best-fit model age at 9.2 + 0.8 Ma.
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Figure 3.5: Cumulative diagram of zircon (U-Th)/He ages obtained on 20 single crystals from the sand sample
(JB40; 20 error bars).

3.6.2 Zircon reset analysis

In the study area, most of the basalt lava overlies the basement dominated by granitoid rocks.
In our study site the lava covers alluvial sand. For the proper evaluation of the potential thermal
overprint, we should first review the cooling age pattern of the basement that experienced no
thermal overprint by young basalt eruptions. Zircon U-Pb studies indicate that the emplacement
ages of the granitoid rocks in Huanan and its adjacent areas are Pre-Mesozoic, mostly Early to
Middle Permian (Bi et al., 2014; Yang et al., 2015; Dong et al., 2017) (Figure 3.2). Low-
temperature thermochronology performed on basement samples far from basalt occurrences
yield Early Cretaceous to early Late Cretaceous ZHe ages (136 to 94 Ma; Figures 3.2, 3.4;
Table 1). These ages are considerably older than the ZHe age of sand sample from below the
basalt lava. The zircons in the loose sand layer overlying the granitoid basement thus do not
carry the regional cooling age signature, instead, their ZHe ages are mostly determined by the
thermal effect of the basalt lava.

Zircon He diffusion experiments on pristine crystals reveal that the closure temperature of the
ZHe thermochronometer is around 160 - 200 oC in case of duration of the thermal overprint in
the range of millions of years (Reiners et al., 2004). Even though the eruption temperature of
the overlying basalt lava could be variable, the temperature of basaltic lavas is mostly above
950 oC (Francis, 1993). Blondes et al. (2007) presented calculations on the necessary time and
temperature relations for reset of the ZHe thermochronometer in case of very short, shock-like
thermal events like contact with lava. The laboratory derived He-in-zircon diffusion
experiments indicated that partly or complete He loss in xenolithic zircon crystals should
happen in magmatic entrainment or contact time of less than one hour (Blondes et al., 2007).
The sample JB40 experienced proper temperature-time integral for complete reset as it situated
close enough to the basalt lava and the heat of the basalt lava could lead to the full removal of

the pre-eruption accumulated radiogenic helium from the majority of the zircon grains.
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Figure 3.6: Effective U concentration (eU) vs. zircon (U-Th)/He ages plot for the sand sample JB40 and the three

granitoid samples. Each symbol represents a single dated zircon crystal.
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Table 3.2: The v3(SiO4) Raman band of the zircon samples investigated

hwh corr
scale center  scale hwhm center

Samp m Fwhm

e Aliquote  intensi  shape area o intensi  shape area
ty ) [em] ty [em']  [em!] [em™]
IB40 P_00 13.4 0.9 636.0 3.1 976.2 91.8 0.8 4179.2 3.1 49 1009.3
P 01 12.9 1.0 6740 33 9762 84.7 0.8 4141.7 33 5.5 1009.5
P 02 12.9 1.0 7384 37 9762 90.3 0.8 4543.1 3.4 5.5 1009.3
P 03 12.1 0.7 459.7 27 9770 85.4 0.5 3145.4 2.7 39 1010.5
P_04 8.1 1.0 3129 24 9774 45.6 0.5 1615.6 2.6 3.6 1010.5
P_05 14.7 1.0 6269 27 9768 90.1 0.8 4189.7 32 5.1 1010.3
P 12 11.6 1.0 6083 34 9757 76.9 0.8 3961.2 3.5 5.8 1008.9
P 13 13.9 1.0 789.0 3.6 9753 89.8 0.9 4969.8 3.7 6.3 1008.1
P 14 10.0 0.9 6415 42 9755 67.5 1.0 43229 4.1 7.3 1008.3
P_15 14.3 0.9 5585 2.6 9762 91.5 0.6 3845.7 3.0 4.6 1009.5
P_16 7.7 1.0 3647 3.0 976.1 48.8 0.4 1900.1 3.1 4.8 1009.9
P 17 13.5 0.7 5263 27  976.1 93.2 0.7 3828.2 2.9 4.4 1009.3
IB41 P 21 13.0 0.9 563.8 29 9753 92.7 0.8 4212.5 3.1 4.8 1008.7
P 22 133 0.7 5541 29 9751 94.1 0.7 4279.8 3.1 5.0 1008.5
P 23 13.6 0.8 6107 3.0 9753 94.0 0.8 4529.1 33 5.3 1008.3
P 24 8.6 1.0 3419 25 9753 46.7 0.5 1933.9 3.1 49 1008.5
P 25 6.5 0.6 3195 35 9747 41.7 0.5 1753.1 32 5.1 1008.1
P 27 13.5 0.8 646.0 32 9749 90.2 0.9 4971.5 3.7 6.2 1008.1
P 28 13.1 0.8 5538 2.8 9749 88.2 0.7 4033.3 32 5.0 1007.7
P 29 13.9 0.9 6253 3.0 9749 92.5 0.9 4778.0 3.4 5.6 1008.1
P 30 5.0 1.0 380.5 5.0 9727 39.1 1.0 2682.4 4.4 7.9 1004.4
P 31 13.6 1.0 7944 38 9729 86.8 0.9 5506.9 4.1 7.3 1005.8
P 33 48.5 0.9 22(?7' 3.0 9749 75.4 0.8 3693.5 33 5.5 1007.9
1861.

P 35 46.7 0.7 4 28 9747 61.1 1.0 3015.7 32 5.1 1007.7
P 36 13.9 0.6 5424 28 9755 94.0 0.6 3838.0 2.9 4.4 1008.5
P 37 14.6 0.8 679.1 3.1 975.1 93.1 0.8 4548.8 33 5.3 1008.3
P 38 15.0 0.7 6420 29 9753 92.6 0.8 4196.5 3.1 49 1008.3
IB37 P 45 13.2 1.0 772.1 3.8 9747 923 0.9 5503.3 4.0 7.0 1007.9
P_46 12.7 0.9 8084 42 9739 90.2 0.8 6147.7 4.6 8.4 1006.5
P 47 13.0 1.0 866.0 43 9737 93.8 0.8 6372.3 4.6 8.4 1006.4
P_49 13.9 0.9 6469 3.1 975.1 95.1 0.8 4783.9 3.4 5.7 1008.1
P_50 133 0.9 610.0 3.0 9743 92.8 0.8 4488.4 33 5.4 1007.1
P 51 13.7 0.9 604.1 29 9757 92.6 0.8 4302.7 32 5.1 1008.9
P 52 133 0.7 527.0 2.8 9753 94.1 0.7 4112.2 3.1 4.8 1008.5
P 53 13.4 0.7 532.1 28 9755 92.6 0.7 4023.2 3.1 4.8 1008.7
P 54 12.3 0.6 480.8 2.8 9757 923 0.7 3591.1 2.8 4.0 1008.9
P 55 13.5 0.7 552.1 29 9753 90.7 0.7 4065.7 3.1 49 1008.5
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P_56 13.5 0.8 555.7 28 9755 92.3 0.7 3984.2 3.0 4.6 1008.5
P_57 13.2 0.9 640.5 32 9751 96.7 0.8 4915.7 34 5.7 1008.1
P_58 13.4 0.8 5583 28 9755 92.1 0.7 4142.0 3.1 49 1008.5
P_59 13.7 0.8 5478 27 9751 95.7 0.7 4089.5 3.0 4.6 1008.3
P_60 12.6 0.8 5213 28 9753 92.4 0.7 3779.4 29 43 1008.3
P_63 12.7 1.0 5741 29 9753 91.0 0.6 3440.7 2.8 4.0 1008.7
P_64 13.1 0.6 4877 2.7 9757 92.7 0.7 3721.2 29 42 1008.9
P_65 13.5 0.7 566.8 29  975.1 94.5 0.7 4270.5 32 5.1 1008.3
P_66 133 0.7 4913 2.6 9757 92.4 0.7 3723.4 29 43 1009.1
P_68 12.8 0.6 4383 25 975.7 93.9 0.6 3274.7 2.6 34 1008.9
2071.
JB39 P_69 40.3 1.0 3 33 9743 68.3 0.9 3608.7 35 5.8 1007.1
3654.
P72 69.6 1.0 ; 34 9741 68.9 1.0 3820.5 3.6 6.0 1006.9
P_78 12.8 1.0 7585 38 9733 82.5 1.0 4764.4 3.7 6.4 1005.8
P_80 13.0 1.0 6743 34 9739 86.7 0.9 4557.2 35 5.8 1006.7
P 84 514 1.0 36778. 46 9725 54.8 1.0 3892.7 4.6 83 1005.2
3584.
P_85 58.1 1.0 6 4.0 9731 573 1.0 3788.3 43 7.6 1005.6
P_86 532 1.0 3]697. 39 9731 513 1.0 3400.9 43 7.7 1005.8
P 87 12.8 0.8 6869 3.6 9729 91.0 0.9 5260.2 3.8 6.6 1005.6
P_88 11.9 0.9 776.6 44 9723 87.0 0.9 5882.4 44 7.9 1005.2
P_89 11.8 0.8 6939 40 9727 90.3 0.9 5953.3 43 7.8 1005.2
P 91 10.7 1.0 805.8 49 9721 71.1 1.0 54143 49 9.0 1004.4
P 92 13.4 1.0 789.8 38 9737 87.9 0.8 5001.4 3.8 6.6 1006.2

Abbreviation: FWHM, full width at half-maximum. HWHM, half

width at half maximum.

The Raman spectra of well-ordered zircon crystals show distinct, narrow vibrational modes in
the spectral range from 200 to 1010 cm-1. With increasing radiation damage, all of the main
Raman bands of the zircon crystals decrease in intensity and become increasingly broader
(Nasdala et al., 2001). The FWHM (the full width at half-maximum of the v3(S104) vibration)
of the v3(Si04) Raman band varies from <3 cm-1 in very well ordered ZrSi04 to more than
30 cm-1 in zircons of high amount of accumulated radiation damage. The position and the
width of the ~1000 cm-1 peak typically show a well-developed correlation. However, for heat-
treated zircons Geisler et al. (2001) and Nasdala et al. (2002) have found some miscorrelation
between the Raman bandwidths and positions. These annealed zircon crystals mostly plot
above the peak position-peak width trend established for zircons derived from unheated or

slowly cooled geological settings (Nasdala et al., 2001, 2002). In our case the Raman
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parameters obtained on sample JB40 plot somewhat off the trend constrained by the three
granite samples reflecting the regional cooling history (Figure 3.8). This property of the lattice
of the zircons from the sand sample below the lava flow supports their shock-like thermal reset.
In summary, we can conclude that the detrital zircon crystals have been heated and their ZHe
clock became fully reset at the contact with the basalt. The ZHe age of 9.33 £+ 0.24 Ma of the

sand sample is thus interpreted to represent the eruption age of the overlying basalt lava.

9.33 + 0.24 JB40 (n=20)
(74 £ 11%)
Gaussian 7;
9 J— —
8 — 'K Modeled age
component:
7 9.2 +£0.8 Ma
RMS = 0.02
6 K-S test = 0.614
5_
47
3 — — : ; ; ;
0 36 Ma
2 —
. /ﬂ
0 o @anaooo @O O o (e
‘IIII|III]|II]I|\III‘II||||\II{IIII|IIII‘IIII|
0 4 8 12 16 20 24 28 32 36 Ma

Figure 3.7: Kernel density plot of the measured zircon (U-Th)/He ages and the best fitted model between the
measured ages and calculated ages. Grey curve: kernel density plot of the 20 measured zircon crystals (calculated
by DensityPlotter, Vermeesch, 2012); cycles: single zircon crystals; inset shows cumulative plot of ZHe ages;
horizontal line in the insert: the real measured single detrital zircon crystals' He-ages, curve in the insert: the
best fit line between the real data and the calculated model; K-S test: the Kolmogorov—Smirnov test (method after
Press, Flannery, Teukolsky, & Vetterling, 1996); RMS: the goodness of fit between the calculated model and the
measured data, the lower the value the better (method after Cserepes, 1989); bins in the insert: the error of the

model.
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Figure 3.8: Plot of Raman shift versus the full width at half-maximum of the v3(SiOa) vibration (FWHM) for the
sand sample JB40 and the three granitoid samples.

3.6.3 Relation to other Miocene basalt lava occurrences

Liu (1988) distinguished ten Cenozoic volcanic episodes in NE China, which are listed in
Figure 9. According to the measured age, the Huanan basalt lava in this study belongs to the
Laoyeling volcanic episode (8N13, 11-7 Ma), which is characterized by alkali olivine basalt,
basanite, and basalt with ultramafic xenoliths. The magma of this volcanic episode mainly
originated from partial melting of the upper mantle caused by extension of the East Asian
continent, driven by the slab rollback of the Pacific plate’s westward subduction (Xu et al.,

2012, 2015).
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Figure 3.9: Age and major rock types of the ten Cenozoic volcanic formations in Northeast China (modified after
Liu, 1988). Green bar indicates the age of the basalt eruption dated by the JB40 sample of this study.

3.7 Conclusion

1. (U-Th)/He dating of detrital zircon grains from a sand layer directly below a basalt lava flow
in the Huanan region reveals a dominant age component of 9.33 + 0.24 Ma. This implies,
together with the Raman data that the reset of the ZHe thermochronometer was caused by the
thermal effect of the basalt lava, which erupted at this time.

2. The result also implies that the basalt in the Huanan area belongs to the Laoyeling volcanic
episode.

3. As a well-developed weathering insensitive geochronometer, the zircon (U-Th)/He method

provides a fast and high accuracy dating tool for young, mafic volcanic rocks.
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4.1 Abstract

We studied five modern river catchments of variable size (~500 to ~40.000 km?), dominated
by Carboniferous to Jurassic granitoids, Proterozoic to Early Paleozoic siliciclastic (meta-
)sediments and Jurassic to Cenozoic volcanic rocks in northeastern China. The Songliao Basin,
its eastern "satellite" basins and the associated sediment-supplying basement highs form an
excellent natural laboratory for detrital zircon U-Pb studies as the currently exhumed basement
areas are composed mostly of zircon-bearing igneous formations having highly variable
emplacement ages. This contrast in the sources generates highly informative detrital age
patterns. Our results show strong contrasts between the proportions of the zircon U-Pb age
components in the river sands and the areal proportions of the potential source units in the
catchments. The limited range of zirconium content of the granitoids does not support high
variations in zircon fertility between the magmatic suites having different emplacement ages.
The detected mismatch between the obtained and the expected ages can be best explained by
re-considering emplacement ages of some igneous suites of the region. We suggest that most
of the granitoids mapped as Permo-Carboniferous are actually belonging to the Jurassic
igneous suites. Some metasedimentary units with assumed Proterozoic protolith age have
probably much younger, Paleozoic sedimentation age. Despite the proportional contrast
between detrital age components and spatial coverage, the mean ages of the age components
in the modern sand samples and the age components of the published basement U-Pb data show
excellent agreement. The zircon U-Pb age distributions from modern sands thus provide useful
hints to detect, verify or re-classify the ages of the zircon-bearing units in the catchment. This
approach can be especially helpful at a reconnaissance prospecting on areas that are covered
by imprecise large-scale geological maps only.

The detrital age distributions in modern sediments also serve diagnostic information for the
provenance analysis of ancient sedimentary formations in the same areas, better than the simple
map-based evaluation of the areal proportions of basement units. In our case, combining the
zircon U-Pb age patterns of the studied modern catchments and the region-wide compilation
of the basement ages allows for refining the Cretaceous provenance history of the Songliao

Basin and its strongly inverted eastern satellite basins.
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4.2 Introduction

Zircon is an accessory mineral that forms mostly by crystallization in a variety of igneous
lithologies ranging from gabbros of oceanic crust to sediment-derived acid-intermediate melts,
and tectonic settings from subduction zones to continental rifts (Grimes et al., 2007; Lissenberg
et al., 2009; Hopkinson et al., 2017; Spencer et al., 2017, 2018). The typically high U content
and the low level of common Pb make zircon a robust geochronometer (Cherniak and Watson,
2001; Rubatto et al., 2001; Dickinson, 2008). Beyond dating igneous formations in order to
unmix the “source to sink” process, detrital zircon U-Pb geochronology has been widely
utilized in sedimentary provenance studies e.g., to approach the relationship between the
orogenic belts and their associated basins (e.g., Gehrels et al., 1995; Fedo et al., 2003; Andersen,
2005; Dickinson and Gehrels, 2009; Cawood et al., 2012; Saylor et al., 2013). For the proper
application of detrital zircon geochronology in sedimentary provenance analysis, the
consideration of the regional geological information is crucial. A commonly used way at the
interpretation of the obtained detrital ages is based on the evaluation of geological maps of the
catchments. However, for some regions like densely vegetated or poorly accessible areas,
especially when tracking large-scale provenance-, the results may be misleading due to large
uncertainties in the geological maps and non-representative sampling of the region. Another
way at the evaluation of the detrital age spectra can be the comparison to the age distribution
compiled from the basement geochronological data. Such a comparison is also biased by the
uneven sampling of the basement and also by the different sediment yield of the tributaries or
geological units. Modern river sand studies frequently analyze catchments that include highly
rugged mountains and low relief areas, like Himalayan rivers or the Amazon (e.g., Mapes, 2009;
Guo et al., 2020). In the case of such sediments, the interpretation of the detrital age spectra is
encumbered by two factors acting of even poorly known magnitudes: the sediment yield (relief
& erodibility) and the zircon yield (fertility; e.g., Dickinson, 2008; Malusa et al., 2016).

Our study focuses on the tributaries from the Lesser Xing’an Range (LXR), Zhangguangcai
Range (ZGC), and the western Jiamusi block (JB), situated along the eastern border of Songliao
Basin in NE China (Fig. 1). In the tested areas the relief is moderate and can be considered as
catchment-wide uniform, thus we can expect an aerial balanced sediment yield. Additionally,
as the region is dominated by granitoids and siliciclastic (meta-)sediments all eroded units are
zircon-bearing. The currently exhumed basement formations have highly variable

emplacement ages, and this contrast in the sources generates highly informative detrital age
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patterns. That why this part of NE China seems to be an excellent natural laboratory for detrital
zircon U-Pb studies.

We identified the detrital zircon age populations in modern river sands from five different
tributaries with variable compositions and catchment areas (Figures 4.1 and 4.2, Table 4.1).
We use these data to address how accurately and proportionally reflect the detrital zircon age
spectra of river sediments the Paleozoic-Cenozoic, igneous, metamorphic and sedimentary

formations of the catchments.
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Figure 4.1: (a) Schematic tectonic map of Asia indicating the position of the study area (modified after Li, 20006;
Safonova et al., 2009, 2011, Kroner et al., 2014, Liu, et al., 2017). EB, Erguna block; SXB, Songliao-Xilinhot
block; XB, Xing’an block; BJKB, Bureya-Jiamusi-Khanka block. (b) Geological map of the study area including
the locations of the river sand samples indicated by yellow stars. The contours of the sampled catchments are
indicated by white lines. JB, Jiamusi block. Detailed geological map of each sampled tributary sees in Fig. 2. The
map base is simplified after Ren et al. (2013) and the digital elevation model is taken from the U.S. Geological
Survey (2017).
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4.3 Bedrock geology of NE China

NE China consists of four major micro-continents of the eastern segment of the Central Asian
Orogenic Belt, which is a large E-W trending accretionary orogen locating between the North
China Craton and the Siberian Craton. This area experienced the most voluminous continental
accretion of the world in Phanerozoic time (Sengér et al., 1993; Jahn et al., 2000; Windley et
al., 2007; Eizenhofer et al., 2014, Figure 4.1a). Located on easternmost Eurasia, NE China was
successively dominated by the Paleo-Asian Ocean tectonic domain and the circum-Pacific
tectonic domain since the Phanerozoic (e.g., Li, 2006; Windley et al., 2007).

From the Paleozoic to the early Mesozoic, several microcontinents in NE China gradually
formed one united block after experiencing multi-stage amalgamation (e.g., Wang et al., 2008;
Liuetal., 2017). Since the Mesozoic, this area was the linking part between the Siberian Craton,
the North China Craton and the Paleo-Pacific Plate (Liu et al., 2017). The tectonic evolution
of this area was jointly influenced by the northwestward subduction of the Paleo-Pacific Plate
in the east and the closure of the Mongolia-Okhotsk Ocean in the north (e.g., Safonova et al.,
2009, 2011; Xu et al., 2013). More stages of oceanic subduction and block amalgamation in
the eastern segment of the Central Asian Orogenic Belt led NE China area exposed the
Proterozoic-Paleozoic metamorphic basements and generated immense volumes of
Phanerozoic granitic rocks (e.g., Wilde et al., 2010; Wu et al., 2011). The late-stage fast
subduction of the Paleo-Pacific Plate below the Eurasian continental plate in the Late Jurassic-
Early Cretaceous (Maruyama et al., 1997) further led to a series of rift basins in NE China (e.g.,
Ren et al., 2002; Meng, 2003), the exhumation of a metamorphic core complex (e.g., Davis et
al., 2002; Lin et al., 2008) and the continuing magmatic events (e.g., Wang et al., 2006; Zhang
et al., 2018).

The regional geological surveys indicated widespread Paleozoic granitic rocks occupying most
of the mountainous regions, such as the Lesser Xing’an Range in the north, the Great Xing’an
Range in the west and the Zhangguangcai Range in the east (Figure 4.1; JBGMR, 1988;
HBGMR, 1993; IMBGMR, 1991). Wu et al. (2001) further indicated that much of the basement
underneath the Songliao Basin is composed of Paleozoic to Mesozoic granitic rocks and some
Paleozoic sedimentary units. The majority emplacement ages of the granitoids in the
Zhangguangcai Range is Jurassic, but some Paleozoic bodies were also detected. In contrast,
in the Nadanhada Terrane from the eastern NE China, granitoids have slightly younger
emplacement ages (around 115 Ma). The Great Xing’an Range in the west contains widespread

Early Cretaceous (135-120 Ma) granitoids, and in the westernmost part of NE China, the
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granitoids of the Erguna Block were mainly emplaced in the Jurassic (190-160 Ma; Sun, 2013).
However, more and more Paleoproterozoic-Early Paleozoic (meta-) intrusions are also reported
in the study area in recent years; i.e., in the Erguna block, ~1.8 Ga granitic gneiss were reported
by Tang et al. (2013). Sun et al. (2013) and Zhao et al. (2016) both revealed ~927-737 Ma
intrusions. There is also a newly reported ~890 Ma granitic gneiss in the Songliao-Xilinhot
block (Wang and Liu, 2014). East of the study area, in the Jiamusi block, 530 and 515 Ma old
granitic magmatism has been recorded, that was associated with granulite/amphibolite facies
metamorphism (e.g., Zhou et al., 2009; Wu et al., 2011; Sun et al., 2013). Later granitic
magmatism took place in the Late Carboniferous- Permian (305-250 Ma) and between Late
Triassic and Late Cretaceous (223-88 Ma; Liu et al., 2017; Bi et al., 2018; Tang et al., 2018).
The sedimentary successions of NE China include Precambrian to Eocene carbonate and
siliciclastic sequences that contain detrital zircon grains that yield several U-Pb age clusters
between 800 and 100 Ma (e.g., Sun et al., 2004; Zhang et al., 2004; Li et al., 2012; Zhou et al.,
2019).

4.4 Samples and geological review of the sampled rivers’ catchments

Five modern river sand samples were collected from different tributaries of the Songhua River
(Figures 4.1 and 4.2). Sample JS1 was taken near the Huadan bridge, Jilin city, at the lower
reaches of the Mangniu river that dewaters the southwestern part of the Zhangguangcai Range.
JBGMR (1988) indicated that the area is dominated by Carboniferous-Jurassic granitoids and
few Permian siliciclastic rocks (Fig. 2; see percentages in Table 1). Sun et al. (2005) and Wu
etal. (2011) dated several Jurassic granitoid bodies exposed within the watershed and reported

zircon U-Pb ages varying from 190 to 173 Ma.

The southern Zhangguangcai Range is also represented by sample JS2, taken near Jiaohe city,
at the lower reaches of the Jiaohe river with a medium-sized catchment area. According to
JBGMR (1988) Carboniferous-Jurassic granitoids cover the majority of the catchment area.
Permian siliciclastic rocks and few Triassic acid-intermediate volcanic rocks occupy a part of
the upper catchment, and a few Late Jurassic to Cretaceous siliciclastic rocks are present
downstream. Sun et al. (2005) and Wu et al. (2011) published zircon U-Pb ages of 190 and 216

Ma from two Jurassic granitoid bodies within the watershed.

Sample JS7 was taken near Wuyi village, at the lower reaches of the Qihuli river. The HBGMR

(1993) map indicates for the catchment Proterozoic meta-sediments, Proterozoic granites,
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basaltic lavas, minor occurrences of Jurassic granites, and Late Cretaceous and Cenozoic

sediments (Table 4.1).

Sample JS8 was taken near Shuanghe village, at the lower reaches of the Tangwan river,
dewatering the Lesser Xing’an Range, which forms the northern border of the Songliao Basin
system. This sample represents the largest catchment, composed of a large area of Permo-
Carboniferous granitoids, some Jurassic granitoids, a few Proterozoic granitoids, some
Jurassic-Cretaceous volcanic rocks, some Proterozoic-Devonian meta-sediments, and minor
areas with Permian, Cretaceous, Cenozoic siliciclastic rocks (HBGMR, 1993). From the
catchment area a lot of published zircon U-Pb ages on granitoid bodies and dykes are available,
varying from 515 to 102 Ma (e.g., Wilde et al., 2003; Liu et al., 2008; Wu et al., 2011; Xu et
al., 2013; Wang et al., 2016).

Shnanglle

Holocene Cenozoic m Cenozoic siliciclasti 7] Cretaceous siliciclastic Cretaceous Jurassic siliciclastic
alluvium basalts sediments sediments volcanics sediments
Jurassic Triassic-Jurassic Triassic Permian siliciclastic - Permo-Carboniferous Devonian
volcanics granitoids volcanics sediment granitoids metasediments
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Figure 4.2: Geological maps of the sampled catchments (the geological units are simplified after JBGMR, 1988;
HBGMR, 1993; IMBGMR, 1991). The digital elevation model is from the U.S. Geological Survey (2017).

Sample JS9 was collected in Daluomi county, at the lower reaches of the Xiaoluomi river that

flows through the northern Zhangguangcai Range. This smallest catchment area includes
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Permo-Carboniferous granitoids and Silurian meta-sediments with few acid-intermediate
intrusions (HBGMR, 1993). Due to this region’s dense vegetation and deep weathering,
geochronological studies on the granitoids are still scarce. Wang et al. (2014) reported detrital
zircon U-Pb ages from schists and greywackes of the northern Zhangguangcai Range between

916 and 262 Ma and interpreted the Zhangguangcai Range as a tectonic mélange.

Table 4.1: Geographical coordinates of the sampling sites, area and composition of the catchments.

Sample code  JS1 JS2 JS7 JS8 JS9
River name Mangniu Jiaohe Qihuli Tangwang Xiaoluomi
) Modern river Modern river Modern river Modern river Modern river
Lithology
sand sand sand sand sand
Location Jilin Jiaohe Houyatun Shuanghe Daluomi
Latitude 43.9475367° N 43.704345° N 46.1485852° N 46.6791387° N 45.9682479° N
Longtitude 126.5482317° E 127.3051417° E | 130.5948444° E 129.7246004° E 129.2487435° E
Total
catchment 906 2884 873 41075 447
area
Total
catchment 716 2230 620 34895 310
area (2)
Proterozoic
o 162 516

granitoid
Proterozoic
meta- 327 774 77
sediment
Devonian
meta- 425
sediment
C-P granitoid | 193 1038 24683 233
Permian

) 78 443 1109
sediment
Triassic

) 58

volcanic
T-J granitoid | 445 510 5 1911
Jurassic

) 52
sediment
Jurassic

) 3584

volcanic
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Cretaceous

114 240
volcanic
Cretaceous

) 129 0 275

sediment
Neogene

12 1380
sediment

Total catchment area (2), The total catchment area without Holocene alluvium and Eocene basalt
C-P, Carboniferous-Permian
T-J, Triassic-Jurassic

area is in km?

4.5 Analytical methods

All unconsolidated modern river sand samples were collected from sand bars; approximately
5 kg of bulk sediment samples were collected. Visual inspection showed that the overwhelming
majority of sand grains were monomineralic quartz. The heavy mineral concentrates were
generated by wet sieving, gravity separation using Na-polytungstate, and magnetic separation
by Frantz magnetic separator. The details of the zircon U-Pb dating experimental procedure
can be found in Dunkl et al. (2019). To localize homogeneous areas in the polished zircon
crystals for the in-situ age determinations, we mapped them by cathodoluminescence images
using a JEOL JXA 8900 electron microprobe at the Geoscience Center Gottingen. Zircon U-
Pb geochronology was conducted by laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) at the GOochron Laboratories of the Geoscience Center Géttingen.
The measured U-Pb age distributions are represented as binned histograms superposed by
kernel density estimation curves (KDE; Vermeesch, 2012).

QGIS 3.14 (QGIS Development Team, 2020) software was used for digitizing the catchment
areas and determining the major units’ proportions according to the regional 1: 200,000
geological maps (JBGMR, 1988; HBGMR, 1993). The boundaries of the catchments were
identified by the Seamless Shuttle Radar Topography Mission (SRTM) "Finished" 1 Arc
Second digital elevation model (USGS, 2017). Quaternary alluvium and the Cenozoic basalt

occurrences were excluded from the calculations of the source areas (Figure 4.2, Table 4.1).
4.6 Results

The results of the zircon U-Pb analyses of the five sand samples are listed in Appendix Table
A1 and shown in Figure 4.3. Between 129 and 161 single-grain in-situ analyses were performed

per sample, and 96 to 122 of them were considered as concordant (90 to 110% of concordance).
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Most of the detrital zircons show oscillatory growth zoning and/or striped absorption pattern,
as observed by CL images. Th/U ratios are typically above 0.1, indicating magmatic origin
(Hoskin and Black, 2000; Figure 4.4). Only sample JS7 reveals a significant proportion of
zircon grains with Th/U ratios below 0.1, restricted to pre-Carboniferous ages. The age
components were identified and the kernel density plots were constructed using the
DensityPlotter software (Vermeesch, 2012).

Samples JS1 and JS2 represent the southern Zhangguangcai Range. The Mangniu River zircons
(JS1) are dominated by an Early Jurassic to Late Triassic age component (92%), complemented
by a small group of Late Archean to Early Proterozoic ages, while the neighboring Jiaohe River
sample (JS2) yields almost exclusively Mesozoic ages with a dominant Early Jurassic (82%)
and a minor Middle Triassic age component. The Archean signal is missing here (Fig. 3). In
the sample of the Xiaoluomi River representing the northern Zhangguangcai Range (JS9), the
majority of the zircon U-Pb ages reflect Late Triassic and Early Jurassic age components
(84%), roughly similar to the southern catchments of the Range. However, a minor Cambrian
to Ordovician age component is also present (Figure 4.3). Almost all zircons of the
Zhangguangcai Range have Th/U ratios >0.1 (Figure 4.4).

The zircon U-Pb age distribution obtained on the sample from Qihuli River (JS7), draining part
of the Jiamusi Uplift, is highly different from the samples of the Zhangguangcai Range. It is
dominated by a Cambrian to Early Ordovician age component (57%), followed by Late
Permian to Early Triassic, Early Devonian, and Neoproterozoic age components (Figure 4.3).
The first component shows a significant proportion (15 out of 61) of zircons with Th/U ratios
<0.1 (Figure 4.4).

The northernmost sample (JS8), whose catchment covers most of the Lesser Xing’an Range
represents the largest studied catchment. The zircon age distribution is characterized by a
dominant Late Triassic to Early Jurassic age component (59%), followed by Ordovician-
Silurian and Late Permian to Early Triassic age components. Only two single zircon ages are

falling into the Cretaceous (Figure 4.3).
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Figure 4.3: Detrital zircon U-Pb age spectra obtained on the river sand samples from NE China. The plots present

binned age histograms, kernel density estimation curves and the age components identified by the Density Plotter

software (Vermeesch, 2012). The age scales of the plots are different; n = number of U-Pb data with 90-110%

concordance. The discrete single ages which are not included in the age component calculation are excluded

from the percentage calculation.
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Figure 4.4: U-Pb ages versus Th/U ratios of detrital zircons from the five sand samples of the studied catchments.
The dashed line marks Th/U ratio of 0.1.

4.7 Discussion

We evaluate the new detrital zircon U-Pb age distributions in three contexts: (1) their relation
to the areal proportions of bedrock formations in the catchments as deduced from the published
geological maps, (2) their relation to the available zircon U-Pb ages determined in the basement
units of the specific catchments as well as the broader area including all basement exposures
in NE China, and (3) their relation to the available detrital ages from Cretaceous siliciclastic
formations.

4.7.1 Comparison of the obtained U-Pb age spectra with the composition of the catchment
areas

We use the regional geological survey results by HBGMR (1993) and JBRMR (1991) for
comparison. Table 1 and Figure 4.2 show the areal proportions of the geological units in the
catchments. Figure 4.5 visualizes the comparison of the proportions of the different units in the

catchments and the zircon U-Pb age spectra from the corresponding modern river sediments.
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According to the available geological maps, the catchment of sample JS1 is dominated by
Triassic-Jurassic and Permo-Carboniferous granitoids (62 and 27%, respectively),
complemented by 11% Permian siliciclastic rocks. In contrast, detrital zircon U-Pb data reveal
92% Jurassic and 8% Archean ages. The arrows marked by #1 to #4 in Figure 4.5 represent the
potential provenance of the detrital zircon grains from the different catchment units.

#1: Derivation of Jurassic detrital zircons from Triassic-Jurassic granitoids. The minor
overrepresentation may indicate a slightly higher zircon fertility of these igneous units.

#2: A part of the Precambrian zircons obtained in the detrital spectra (b, ¢c) may derive from
inherited xenocrysts in the Triassic-Jurassic granitoids.

#3: Another part of the Precambrian detrital zircons may derive from the Permian siliciclastic
sedimentary rocks.

#4: The Permo-Carboniferous granitoids are seriously under-represented in the detrital U-Pb
age spectrum; only two Permian grains were detected. There are two possibilities to
explain this contradiction between the exposed area and the detrital age proportions. (i)
These granitoids contain only low amount of accessory zircon crystals. (ii) The
granitoids indicated on the maps as Permo-Carboniferous have in fact Triassic-Jurassic

emplacement ages. See discussion on these options below.

The catchment area of sample JS2 comprises 47% Permo-Carboniferous granitoids, 23%

Triassic-Jurassic granitoids, 20% Permian siliciclastic rocks, and some Cretaceous siliciclastic

rocks and Triassic-Jurassic volcanic units. Similar to sample JS1, the determined detrital age

distribution, which are dominated by Jurassic and Triassic ages (82%), does not directly reflect

the areal composition of the catchment (Figure 4.5).

#5: The Cretaceous siliciclastic unit may contain zircons from the widespread Triassic-Jurassic
igneous units. Note that traces of the regionally widespread Cretaceous volcanic rocks
are hardly present in the modern sand sample. We detected a single Cretaceous U-Pb
age, although Wen et al. (2008), Zhang et al. (2012), and Sun et al. (2015) reported
Cretaceous zircon ages from the Cretaceous sediments. This discrepancy might be
explained by low zircon fertility of the Cretaceous igneous units, or the level of
Cretaceous strata exposed in the catchment has minor volcanogenic components.

#6: Both the Jurassic and Triassic age components can derive from the Mesozoic igneous units
of the catchment.

#7: Remarkable the lack of Permo-Carboniferous ages, as this age range is represented by only

two grains. These formations indicated by the geological maps are seriously under-
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represented in the age spectrum, especially because Ju (2018) documented such ages
from the Permian siliciclastic rocks. Here we confront the same problem like in case of
the obtained unclear derivation relation #4.

The Qihulin River catchment (JS7) includes Proterozoic metamorphic rocks and granitoids (53

and 26 %), Cretaceous and Neogene siliciclastic rocks (18 and 2%, respectively) and a minor

area of Triassic-Jurassic granitoids. The obtained detrital U-Pb age distribution again contrasts
the areal composition of the catchment by the dominance of an early Paleozoic age component

(57%; Figure 4.5). The potential derivation of the age components from source units can be

listed as:

#8: The Cretaceous and Neogene siliciclastic rocks can deliver grains of all older age
components detected in the sample (Proterozoic, Cambrian, Devonian, and Permo-
Carboniferous).

#9: Proterozoic ages are present only by 7 % despite the predominance (~80%) of Proterozoic
rocks in the catchment. This might be caused by low zircon fertility of the Proterozoic
units compared to the Cretaceous and Neogene clastic rocks. However, plenty of zircon
U-Pb studies on the metamorphic complex in the Southern Jiamusi block reported on
530-510 Ma granitoids which experienced granulite metamorphism between 510-490
Ma (Wilde et al., 2000, 2003; Zhou et al., 2010; Ren et al., 2012; Yang et al., 2014; Ge
et al., 2016; Li et al., 2020). We should also consider the possibility that the
metasedimentary units in the basement have actually younger, Paleozoic depositional
ages, and constitute the sources of the Cambrian to Devonian U-Pb ages in the modern
sand.

The sample JS8 from the Tangwang River represents the largest catchment in this study. The

area includes predominantly Permo-Carboniferous granitoids (71%), Proterozoic, Devonian,

Permian, and Neogene siliciclastic rocks (12%), Jurassic-Cretaceous volcano-sedimentary

formations (10%), and minor Triassic-Jurassic granitoids (5%), minor areas of Proterozoic

granitoids (2%; Table 4.1). However, the measured U-Pb age distribution reveals mostly Late

Triassic to Early Jurassic ages (59%) along with Late Permian to Early Triassic, and Cambrian

to Silurian age components (Figure 4.5).

#10: The Triassic-Jurassic and Cenozoic igneous and sedimentary units should contain
Jurassic-Cretaceous zircons and recycled zircons from the pre-Mesozoic granitoids and
(meta-)sedimentary units. The age spectrum reveals an obvious overproportion of the

Late Triassic to Jurassic age component relative to the pre-Mesozoic rocks.
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#11: The Late Permian age component is likely derived from the widespread Permo-
Carboniferous granitoids and minor Permian siliciclastic rocks. The Permo-
Carboniferous units may also contribute to the Ordovician age component by inherited
xenocrysts or detrital crystals. However, considering 71% of Permo-Carboniferous
granitoid and 3% of Permian siliciclastic, the Permian age component is seriously
underrepresented with 17% only. The recently published zircon U-Pb ages from the
basement (Wu et al. 2011) allow for re-considering the emplacement age of some
Paleozoic granitoid bodies to be Triassic-Jurassic (see also #4 and #7 and evaluation
below).

#12: The Ordovician age component may partly derive from the Devonian meta-sediments in
the catchment.

#13: The absence of ages from the Proterozoic meta-sediments and granitoids of the catchment
is considered statistically insignificant, as they cover only 4% of the entire catchment.
However, we cannot preclude that we face a stratigraphical age problem, i.e., the
Proterozoic units are actually Paleozoic.

The Xiaoluomi River (sample JS9) drains the smallest catchment area exposing only Permo-

Carboniferous granitoids (75%) and Silurian meta-sediments (25%). In contrast, the detrital

zircon U-Pb ages reveal Late Triassic-Early Jurassic (84%), and Early Ordovician age

components (Figures 4.3 and 4.5).

#14: Despite Permo-Carboniferous granitoid dominance in the catchment maps, only 2 zircon
grains yield such ages. Instead, 84% of the detrital U-Pb ages are Triassic and Jurassic.
Mesozoic igneous units were reported for a few small andesite occurrences (<1% of the
catchment area) by Xu et al. (2013; 209 £3 and 214+3 Ma). This may suggest that
Triassic-Jurassic igneous rocks are more widespread in the area, implying that most of
the granitoids mapped as Paleozoic have actually Mesozoic emplacement ages (see #4,
#7 and #11).

#15: The Ordovician age component mostly likely originates from the 25% Silurian meta-

sedimentary rocks.

90



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Catchment JS1 Keys

Siliciclastic
meta-

sediment

St Volcanic
Granitoid | .qiment

Cenozoic

b|

cl Cretaceous

Catchment JS2 Jurassic

| | Triassic

Permian

c| Carboniferious .

Catchment JS7
1 asiieiodts : = - Devonian -

a]

E—— ” Silurian
‘ —4 I - ﬂ
b 00— | S |Ordovician
c ‘ VICK .
Catchment JS8 Cambrian .

|
! Proterozoic
;_ — ~—~

w11

#1303V

a

co

Catchment JS9

0% 20% 40% 60% 80% 100%

Figure 4.5: Comparison of the areal proportions of the different units in the catchments and the proportions of
the obtained detrital zircon U-Pb ages. (a) Pre-Quaternary geological units, without the Cenozoic basalts, (b)
proportions of the modelled age components, and (c) proportions of the single-grain zircon U-Pb ages assigned
to the chronostratigraphic periods after Cohen et al. (2019). Arrows related to #1 to #15 indicate possible zircon
provenance as discussed in the text; numbers marked in black label represent units of the catchments that are not

detected in the detrital zircon U-Pb age spectra.

According to the geological maps, the Permo-Carboniferous magmatic suites constitute a
significant areal proportion in four out of the five studied catchments. However, this age range
is drastically underrepresented in the obtained detrital age spectra. The contrast can be assigned
to (1) variable fertilities of the source units, or to (ii) serious problems in the geological maps
regarding emplacement ages of the widespread igneous rock suites.

Let us investigate the first option. Dickinson (2008) reported that the zircon contents of
granitoid rocks could vary with zirconium contents to a certain extent. The differential zircon
fertility of granitoid rocks should be taken into account to estimate relative contributions from
multiple bedrock sources. We collected the available whole-rock Zr concentrations from the

granitoids of different types and ages of the study area (Figure 4.6). The Zr content shows
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variation between 5 and 785 ppm, but no systematic changes with respect to the emplacement
ages. Specifically, the range of the zirconium content in the Permo-Carboniferous granitoids
does not differ systematically from the other granitoids. Although the lowest Zr values appear
in the Triassic to Jurassic basement of JB and GXR, zircons of these ages are predominant in
most of the detrital age spectra. This indicates that the zircon fertility of granitoids exposed on
the catchments cannot be the main reason for the detected inconsistency between the
proportions of areas and the weights of age components.

The second opinion, implying that some of the granitoids and metasedimentary units have
younger emplacement or depositional ages than indicated in the maps is thus more likely. This
seems especially valid for the Permo-Carboniferous and Proterozoic units. Following the above
discussion of samples JS1, 2, 8, and 9, at least parts of the granitoids mapped as Permo-
Carboniferous actually belong to the Jurassic igneous suites, and the metasedimentary units
indicated as Proterozoic on the map are probably late Paleozoic or Mesozoic (sample JS7).
This result raises severe doubts on the applicability of the area ratios of the mapped lithological
units for the prediction of detrital age distributions, even in cases where corrections for fertility
and hydrodynamic effects can be applied (e.g., Mapes, 2009; Spencer et al., 2017). On the other
hand, the obtained empirical age spectra reflect the presence and/or lack of specific magmatic
and -more indirectly- sedimentary suites in the catchments. The new data thus allow for refined
evaluation of the crustal growth processes of the region. They again hint at the lower
contribution of the Permo-Carboniferous granitoids to the continental crust of the NE Songliao

area.
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study area, considering their emplacement ages. References provided in supplementary datafile in Appendix A3.

ZGC: Zhangguangcai Range area; LXR: Lesser Xing’'an Range area; JB: Jiamusi block.

4.7.2 Magmatic events reflected in the modern detrital zircon U-Pb age spectra

We compare now the age components obtained in the modern sands with the U-Pb age data
from the basement formations. This assessment gives hints on the reliability of the identified
age components - and throws light on what extent can we use them to resolve the Cretaceous
provenance pattern (Section 7.3). A compilation of the formerly published zircon U-Pb ages
on granitoid and volcanic units of the exhumed basement highs is given in Figure 4.7 and
Appendix Table A2, and the graphical comparison of bedrock and modern sediment ages are
plotted on the map of the region (Figure 4.8b). Note that the basement reference data were

generated according to different research concepts, mostly aiming to describe the
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petrographical, geochemical features of the units and their emplacement ages. We thus cannot
expect that such sampling yields an unbiased representation of the region. Consequently, the
goal of this section is rather to compare the mean ages of the characteristic age components
identified in the basement units and the modern sediments than to address the quantification of

the age components.

4.7.2.1 Drainage areas in the Zhangguangcai Range

Three tributaries (samples JS1, 2, and 9) drain different parts of the Zhangguangcai Range
(ZGC; Figure 4.8). The Late Triassic-Early Jurassic ages that dominate their age spectra are
consistent with the reported Triassic-Jurassic magmatic events in the Zhangguangcai Range
(Sun et al., 2005; Wu et al., 2002; Wu et al., 2011). The mean ages of the identified age
components are in excellent agreement (see table insets in Figure 4.7). In contrast with the
Mesozoic zircon ages, the formerly identified Permo-Carboniferous granitoids of the area were
not clearly revealed; only a very few grains yield such ages. Sample JS9 from the northern
Zhangguangcai Range area contains a ~478 Ma age component that corresponds to the Early
Paleozoic magmatic event in the northern Zhangguangcai Range; their mean ages are
indistinguishable (Figure 4.7). The age component of ~2500 Ma in sample JS1 hints to the
presence of Proterozoic units in the southern Zhangguangcai Range.

4.7.2.2 Drainage areas in the Lesser Xing’an Range

The age spectra of the Tangwang river sand (sample JS8) is dominated by a Triassic-Jurassic
age component, with similar mean age to the widespread Late Triassic-Early Jurassic magmatic
event in the Lesser Xing’an Range area (LXR, Figure 4.8; Wu et al., 2011). The Late Permian
ages nicely correspond to the Late Paleozoic magmatic event recorded in the Lesser Xing’an
Range (Meng et al., 2011; Wu et al., 2011; Wei et al., 2012). Recent studies have reported an
early Paleozoic magmatic event (~490-450 Ma) in the Lesser Xing’an Range (Liu et al., 2008;
Wang et al., 2016; Wang, 2017), which is well reflected in the Late Ordovician detrital age
component. The means of the three identified age components match well for all three igneous

suites (Figures 4.6 and 4.8 and Appendix Fig. A2).

4.7.2.3 Drainage areas in the Jiamusi block

In the Qihuli river sands (sample JS7), the two dominating age groups show excellent match
to the age distribution obtained on the units of the Jiamusi basement high (Figures 4.7 and 4.8
and Appendix Fig. A2). The emplacement ages of the Late Permian-Early Triassic magmatic

event on the Jiamusi block and its surrounding area were determined by Zhou et al. (2009),
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Zhao (2011), Lietal. (2011), and Ge et al. (2016). The Cambrian-Early Devonian detrital ages
can be associated with the Early Paleozoic magmatic event in the Jiamusi block and in the
Zhangguangcai Range-Lesser Xing’an Range (Liu et al., 2008; Wu et al., 2011; Bi et al., 2014;
Wang et al., 2016; Wang, 2017). Note that the detrital ages indicate a younger tail of this
igneous suite that was not recognized in the bedrock analyses (Figure 4.7). The Neoproterozoic
age component coincides with the newly found Neoproterozoic zircons (755-898 Ma) from the
Mashan complex on the southern Jiamusi block by Yang et al. (2017, 2018), which suggest a
Neoproterozoic magmatic event preserved in the region. It remains difficult to explain the lack
of Cretaceous zircon U-Pb ages in the modern sand sample, as the Cretaceous volcanic units
are widespread in the Jiamusi block, and this age group is also well represented in the available
bedrock age data which is similar to the ZGC (7.2.1), where the Lower Cretaceous age
component is also lacking in the modern sediment. (Figure 4.7).

In summary, four river sand samples from the Zhangguangcai Range-Lesser Xing’an Range
belt reveal the Jurassic-Triassic magmatic events, and the mean values of the detrital age
components are very consistent with reported igneous ages in this region. On the other hand,
the formerly considered widespread Permo-Carboniferous magmatic event appears only as a
scattered weak signal in our four sand samples, suggesting a much smaller distribution of the
late Paleozoic igneous suite in the area. Besides the lack of Permo-Carboniferous ages, the data
suggest a widespread Early Paleozoic magmatic event in the LXR-ZGC. (Figures 4.7 and 4.8).
The latter, although slightly older, is prominent in the Jiamusi Block as well and includes some
metamorphic event as supported by low Th/U ratios of the zircon grains (Figure 4.4). The age
spectrum of sample JS7 further reports magmatic events at ~849, ~414, and ~254 Ma, well
consistent with detrital zircon U-Pb age studies on the Heilongjiang complex (Zhou et al., 2009;
Li et al., 2010; Zhu et al., 2015, 2017). This implies that the catchment area belongs to the
Heilongjiang accretionary complex (Li et al., 2020).
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Figure 4.7: Comparison of the detrital zircon U-Pb age spectra of the modern river sediments (blue symbols) with
the compilation of the published bedrock U-Pb ages of the tectonic blocks that host the catchments (vellow
symbols, see sources of data in Appendix Table A2). The gray tables at the right show the age components
identified by the DensityPlotter software (Vermeesch, 2012).

4.7.3 Comparison of the basement and modern river zircon U-Pb signatures with different
Cretaceous Basins

Several studies have already been published on the provenance of the Cretaceous basin fill of
the Songliao Basin, and the suggested sediment transport patterns have a common feature: it is
assumed that the sediment was transported towards the basin from all directions, where
mountainous regions are currently exposed (Himeno et al., 2001; Li et al., 2012; Zhao et a.,
2013). Due to the different composition and age of the surrounding sediment source areas and
the temporal variation in the development of the sediment deltas within the basin a very
characteristic variation can be observed in the detrital zircon U-Pb age spectra. Figures 4.6 and
4.9 present the compilation of the available single-grain ages obtained in the Cretaceous
sediments in the southern and central parts of the Songliao Basin and in the eastern satellite
basins (Sanjiang, Boli and Hegang Basins). Characteristic differences are visible in the detrital
zircon U-Pb age spectra of the Cretaceous sediments. These differences are in harmony with
the age pattern of the basement - compiled from our river sand results and from the basement
U-Pb data (details in Appendix Fig. A2 and Appendix Table A2).

The Lower Cretaceous sediment samples from the southern Songliao Basin revealed a
significant proportion of Paleoproterozoic ages, including age components of 1.8 Ga and 2.5
Ga, which are typical for the North China Craton (Figure 4.9D; P. Li et al., 2009; H. Li et al.,
2009; Yang et al., 2006). Our river sand sample JS1 from the southern Zhangguangcai Range
also contains the ~2.5 Ga age component (Figure 4.9A), suggesting that the south
Zhangguangcai Range could be a part of the Precambrian sediment sources feeding the
southern Songliao Basin. On the contrary, the Lower Cretaceous sediments from the eastern
satellite basins are almost free of Precambrian ages, which implies that the drainages of the
North China Craton did not reach these eastern satellite basins. The scattered Early Paleozoic
ages are subordinate in the detrital data in the Lower Cretaceous sediments compared to the
basement area (especially JB and LXR; Figure 4.9B) and the modern sand (especially JS7 and

JS8). They are more common in the northeastern satellite basins compared to Songliao basin
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where they are almost absent. Thus, sediment from Early Paleozoic sources hardly reached the
central and southern Songliao Basin.

The complexity of the Cretaceous sediment supplying paleo-river network is well indicated by
the differences in the proportion of the Permo-Triassic age components (Figure 4.9). Although
this component is among the most characteristic ones, it is hardly present in the Cretaceous
samples of the central Songliao and Boli Basins. These two basins also share the presence of a
Lower Cretaceous (ca. 150-100 Ma) age component, which is less common in the other

Cretaceous sequences, and present only in the JB and GXR potential source areas.
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Figure 4.8: Pie-diagrams showing the simplified age spectra of the new detrital zircon U-Pb ages in the river
sand samples, the compiled zircon U-Pb ages of the igneous rocks of the exposed basement highs (with black rim),
and the compiled detrital age spectra determined in the Cretaceous siliciclastic formations (with white rim; data
after Wu et al., 2002, 2003, 2004a,b, 2011, Chen et al., 2009; Ge et al., 2005, 2007; Xu et al., 2008, 2012, 2013;
Y. B. Zhang et al., 2005; L. Zhang et al., 2009, Y. L. Zhang et al., 2008, 2010; Yu et al., 2012; Wang, 2017; Sun
etal., 2004, 2005, 2013; Wang et al., 2016; Zhou et al., 2005, 2015, Sui et al., 2006, 2007, Miao, 2003; Miao et
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al., 2004; Liu et al., 2008, 2009, Meng, et al., 2011, Wilde et al., 1997, 2000, 2003, Shi et al., 2003, 2004, She et
al., 2012; Cui et al., 2013; Yang et al., 2014, 2015, 2016, Bi et al., 2014, 2016; Dong et al., 2016, 2017; Ge et
al., 2018, Ma et al., 2019; Gao et al., 2007, Guo et al., 2016, Wei et al., 2012, Yu et al., 2012. See sources of data
in Appendix Table 2). Simplified geological map is after Wu et al. (2011). Black dots indicate the locations of the
igneous basement samples. Compilation of detrital zircon U-Pb ages from Cretaceous sediments: A: southern
Songliao Basin; B: middle Songliao Basin; C: Early Cretaceous in Hegang Basin, D: Late Cretaceous in Hegang

Basin; E: Early Cretaceous in Sanjiang Basin, F: Late Cretaceous in Sanjiang Basin; G: Boli Basin.

4.7.4 Temporal change in the Cretaceous sediment supply and its geodynamic triggers

The temporal change in the zircon U-Pb age spectra reflects well the modification of the
sediment supply pattern. In this context, the southern Songliao data play a less significant role,
as it was strongly influenced by a far-southern source region with Paleoproterozoic ages (North
China Craton). The Lower and Upper Cretaceous sediment samples from the central Songliao
Basin and eastern satellite basins reveal different U-Pb age patterns (Figure 4.9C, D). The most
relevant difference is the lack of the Jurassic ages in the Upper Cretaceous samples, except for
a minor proportion in the central Songliao Basin (see below). This difference cannot result
from simple incision (i.e., the Jurassic igneous units were removed by erosion between Early
and Late Cretaceous time), as these age components are present both in the currently exposed
basement and in the modern river sediments. A more reliable explanation for the lack of
Jurassic zircons is sedimentary burial of the widespread Jurassic igneous units at Late
Cretaceous time. To understand the geodynamic framework and implications of this

assumption, we have to consider the general geological evolution of the region.
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Figure 4.9: Compilation of zircon U-Pb ages from the five modern sand samples of this study (A4), from igneous
rocks of the basement highs of NE China (B) and from Upper (C) and Lower Cretaceous (D) siliciclastic
formations of the basins (see sources of data in Appendix Table A2). Note that the data of the basement reflect
mean ages of rock samples, not individual grain ages. Blue belts in A-D represent the durations of the three major
magmatic periods (Triassic-Jurassic, Permo-Carboniferous and Early Paleozoic) of the region. Green belts in C

and D indicate the sedimentation ages. S. Songliao: South Songliao Basin; C. Songliao: Central Songliao Basin.
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In eastern NE China the roll-back subduction of the Paleo-Pacific plate gradually developed
rift basins during Late Jurassic-Early Cretaceous, (Zhou et al., 2009). In the late Early
Cretaceous to early Late Cretaceous, at the time of its maximum extent, the currently elevated
eastern Lesser Xing’an Range, eastern Jiamusi block and western Zhangguangcai Range were
all covered by sedimentary formations (Zhou et al., 2020). During this stage, the southern
Songliao Basins received sediment from the North China Craton in the south, from the Great
Xing’an Range in the west and Zhangguangcai Range in the east. The Lesser Xing’an Range
and Jiamusi block provide minor contributions to the Songliao Basin. The provenance of the
eastern satellite basins was dominated by the Zhangguangcai Range and Lesser Xing’an Range.
The Jiamusi block and the North China Craton delivered a minor contribution to the sediment
budget (Figure 4.10).

In the early Late Cretaceous (ca. 90 Ma) the Paleo-Pacific plate considerably changed its
subduction direction from NNW to WNW at high rates, and the Paleo-pacific plate subducted
below the eastern Eurasian continental margin at almost a right angle (Engebretson et al., 1985
and Maruyama et al., 1997). The east NE China area was affected by dextral compressional
shear tectonics (Sun et al., 2010). As a consequence, the eastern part of NE China experienced
a widespread and significant exhumation from the late Early Cretaceous to Late Cretaceous
(ca. 110-80 Ma; Zhou et al., 2020). The thermal/burial history modelling revealed that the
eastern margin of the Jiamusi block firstly exhumed at ca. 110-100 Ma and was later followed
by the western Jiamusi block and the LXR (Zhou et al., 2020). The minor contribution of Late
Triassic-Jurassic ages in the Upper Cretaceous of the eastern basins along with typical JB
features such as pronounced Permo-Triassic age component (Figure 9B, C) suggest that in the
early Late Cretaceous, the northern ZGC and LXR were still partly buried and the sediment
contribution from these regions was subordinate. The most likely primary source of the Upper
Cretaceous sedimentary units was the exhumed eastern part of the Jiamusi block. The Late
Triassic-Jurassic ages in the Central Songliao Basin, different with the eastern satellite basins
(Figure 4.9C) reflect a larger and more complex drainage area, which still includes some
igneous units of this age and/or some recycling of Lower Cretaceous strata. In summary of this
stage, in the early Late Cretaceous, the regional exhumation greatly influenced the provenance
pattern, mostly for the eastern satellite basins. The Jiamusi block became the major source area.
The LXR and ZGC provided minor sediment contribution to the eastern basins. The central
Songliao Basin received sediment from the NCC in the south, LXR in the north, and JB in the
northeast but mostly from the ZGC in the east and the GXR in the west (Figure 4.10).
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Figure 4.10: General arrows reveal the temporal change in the Cretaceous sediment supply of the study area.

Green and blue arrows: sediment supplies from different areas in Early and Late Cretaceous times, respectively.

The width of the arrows symbolizes the proportion of the sediment yield.

4.8 Conclusion

1.

102

Modern river sand samples from five catchment areas of variable size dewatering
predominantly igneous and metasedimentary basement units in NE China were
characterized by detrital zircon U-Pb age distributions. The results show strong contrast
between the obtained detrital zircon U-Pb age spectra and the areal proportions of the
potential source units on the available geological maps of the catchments. Differences
in fertility and relief-controlled sediment yield cannot explain the huge deviations. Most
characteristic is the lack or substantial underrepresentation of zircon ages from the
Permo-Carboniferous igneous rocks in the modern sediments. We suggest that these

units or a part of them are not Paleozoic in age as indicated on the maps, but actually
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parts of the Jurassic igneous suites. Similarly, some metasedimentary units mapped as
Proterozoic have probably much younger sedimentation age.

2. The zircon U-Pb age distributions from modern sand can provide useful hints to detect,
verify or re-classify the ages of the zircon-bearing units in the catchment. This is
especially helpful for largely unknown areas, like in mineral prospection, and for large
areas with relatively crude geological maps. The modern sediment age distributions
may also provide useful hints for the provenance analysis of ancient sedimentary
formations in the same areas, better than the simple map-based evaluation of the areal
proportions of basement units.

3. Inthe Early Cretaceous, the southern Songliao Basins received sediment from the North
China Craton in the south, from the Zhangguangcai Range in the east, and the Great
Xing’an Range in the west. The Lesser Xing’an Range and Jiamusi block provide minor
contributions to the Songliao Basin. The provenance of the eastern satellite basins was
dominated by the Zhangguangcai Range and Lesser Xing’an Range. The Jiamusi block
and the North China Craton delivered a minor contribution to the sediment budget.

4. In the early Late Cretaceous, the regional exhumation greatly influenced the
provenance pattern, mostly for the eastern satellite basins. The Jiamusi block became
the major source area. The Lesser Xing’an Range and Zhangguangcai Range provided
minor sediment contribution to the eastern basins. The central Songliao Basin received
sediment from the North China Craton in the south, Lesser Xing’an Range in the north,
and Jiamusi block in the northeast but mostly from the Zhangguangcai Range in the

east and the Great Xing’an Range in the west.
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Chapter 5 Summary

In this PhD thesis, by detailed and widespread field geological survey and sampling, a multi-
parameter low-temperature thermochronology analysis including apatite fission-track dating,
apatite (U-Th)/He and zircon (U-Th)/He and was conducted on the current exhumed
Zhangguangcai Range, Lesser Xing’an range and Jiamusi Uplift area. By combining the
collected vitrinite reflectance data from the eastern satellite basins, including the Jixi, Boli,
Sanjiang and Hulin basin, we can reconstruct the east NE China area’s Mesozoic-Cenozoic
orogenic and basin’s uplift and exhumation history. By sampling the sands which directly
contacted with the basaltic lava and sampling granitic rocks with different distances to the
regional basaltic lava units, we verified the total thermal reset of the zircons from the sands
that experienced the basaltic lava’s heating process with (U-Th)/He and Raman spectroscopy.
The obtained zircon (U-Th)/He apparent age well represents the basaltic lava’s eruption age.
Lastly, we studied five modern river catchments of variable size (~500 to ~40.000 km?),
exposed in the Jiamusi block, Zhangguangcai Range and Lesser Xing’an Range with detrital
zircon U-Pb dating. The areal proportions of the potential source units are compared with our
dating result to reveal the modern sediments’ provenance features. By including and comparing
with the summarized the regional available zircon geochronological ages and zirconium
content from the igneous units and detrital zircon U-Pb geochronological ages from the
Cretaceous sediments from the NE China basin system, we further refined the Songliao Basin
and its strongly inverted eastern satellite basins’ Cretaceous provenance history. By
Summarizing the above knowledge, the geodynamic triggers that influenced the Mesozoic-
Cenozoic tectonic evolution of the eastern NE China area were also discussed. The main

conclusions gained is as follows:

1. New low-T thermochronological age constraints from 25 igneous rocks projecting the
majority basement east of the Songliao basin, NE China revealed mostly younger apparent
ages than the major subsidence period of the Early Cretaceous sedimentation in the adjacent
basins.

2. According to the thermal modelling the currently exhumed basement areas were covered
by Cretaceous successions. The thickness of the missing sequences was calculated by
assuming a reliable paleo-heat flow of 60 mW/m?. The boundary of the Jiamusi Uplift and

the Zhangguangcai Range were covered by ca. 1.6-1.7 km sediment, while the central

104



Summary

10.

Jiamusi Uplift experienced considerably deeper burial: the calculated cover is varying from
2.5t0 4.8 km.

During the basin inversion the eastern Jiamusi Uplift and the western Zhangguangcai
Range were exhumed first, between 110 and 100 Ma with cooling rates of 2.6 and 1.2
°C/Myr, respectively. Later the cooling rate has slowed down to 0.3-0.5 °C/Myr. In the
central Jiamusi Uplift the exhumation started slightly later, at ca. 90 Ma and with higher
cooling rates of ca. 2.4-5.4 °C/Myr, and continued until ca. 40 Ma.

Assuming 60 mW/m? paleo-heat flow in the western Sanjiang basin the former burial was
2.4 km in the south and 4.5 km in the north. In the eastern Boli basin and northern Hulin
basin, the models suggest similar thicknesses of the missing sequences: 4.3 and 4.5 km,
respectively. However, in the south the Jixi basin revealed a significantly smaller burial of
ca. 1.6 km.

The calculated thicknesses of the missing sequences revealed a coherent, large-scale pattern,
although different constraints and methods were applied for the basins and for the exhumed
basement areas. In general, the eastern satellite basins experienced higher post-Early
Cretaceous burial and subsequent erosion than the much larger Songliao basin to the west.
According to the integrated burial/thermal modelling and combining with previous research
results we postulate that the eastern basin group including the Jixi basin, Boli basin,
Sanjiang basin and Hulin basin belonged to a single united huge down-warped basin in the
eastern Asian continental margin.

The current west Zhangguangcai Range and east Mishan Uplift were probably also
involved in this united basin. From ca. 110 to 40 Ma, the exhumation of the Jiamusi Uplift
has gradually destroyed the formerly continuous sedimentary cover and only basin
remnants have been preserved. By the end of the major exhumation in the Eocene, both the
major uplift area and the basin remnants came to the slow uplift and erosion stage until
recent time.

(U-Th)/He dating of detrital zircon grains from a sand layer directly below a basalt lava
flow in the Huanan region reveals a dominant age component of 9.33 + 0.24 Ma. This
implies, together with the Raman data that the reset of the ZHe thermochronometer was
caused by the thermal effect of the basalt lava, which erupted at this time.

The result also implies that the basalt in the Huanan area belongs to the Laoyeling volcanic
episode.

Modern river sand samples from five catchment areas of variable size dewatering

predominantly igneous and metasedimentary basement units in NE China were
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11.

12.

13.

characterized by detrital zircon U-Pb age distributions. The results show strong contrast
between the obtained detrital zircon U-Pb age spectra and the areal proportions of the
potential source units on the available geological maps of the catchments. Differences in
fertility and relief-controlled sediment yield cannot explain the huge deviations. Most
characteristic is the lack or substantial underrepresentation of zircon ages from the Permo-
Carboniferous igneous rocks in the modern sediments. We suggest that these units or a part
of them are not Paleozoic in age as indicated on the maps, but actually parts of the Jurassic
igneous suites. Similarly, some metasedimentary units mapped as Proterozoic have
probably much younger sedimentation age. Thus, the modern sediment age distributions
may also provide useful hints for the provenance analysis of ancient sedimentary
formations in the same areas, better than the simple map-based evaluation of the areal
proportions of basement units.

In the Early Cretaceous, the southern Songliao Basins received sediment from the North
China Craton in the south, from the Zhangguangcai Range in the east, and the Great
Xing’an Range in the west. The Lesser Xing’an Range and Jiamusi block provide minor
contributions to the Songliao Basin. The provenance of the eastern satellite basins was
dominated by the Zhangguangcai Range and Lesser Xing’an Range. The Jiamusi block and
the North China Craton delivered a minor contribution to the sediment budget.

In the early Late Cretaceous, the regional exhumation greatly influenced the provenance
pattern, mostly for the eastern satellite basins. The Jiamusi block became the major source
area of the detrital sediments. The Zhangguangcai Range and Lesser Xing’an Range
provided minor sediment contribution to the eastern basins. The central Songliao Basin
received sediment from the North China Craton in the south, Lesser Xing’an Range in the
north, and Jiamusi block in the northeast but mostly from the Zhangguangcai Range in the
east and the Great Xing’an Range in the west.

The modelling results of this study revealed a widespread and significant exhumation phase
that affecting the eastern part of NE China, starting from the late Early Cretaceous - early
Late Cretaceous (ca. 110-80 Ma). This large scaled transformation of the tectonic
environment corresponds to the large-scale NW-SE compressional events at the
northeastern continental margin of Asia in the Late Cretaceous. The Paleo-Pacific plate
(Izanagi-Kula) greatly changed its subduction direction of the plate greatly changed from
NNW to WNW with high rates in the early Late Cretaceous (ca. 90 Ma). It is probable that
this movement and tension change in the crust induced the long-lasting uplift in the study

area.
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14. The thermal modelling of the exhumed basement blocks in the east NE China indicates a
significant reduction of the cooling rate in the Cenozoic, ca. 60-40 Ma. The transition to
much slower exhumation might correspond to the slowing of the Pacific plate’s subduction
rate and the increasing subduction angle in the Eocene. The east Asia continental margin
then experienced extensional tectonics, influenced by of the roll-back effect from the

subduction of the Pacific plate.

107



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Bibliography

Andersen, T., 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions
from statistics and numerical simulation. Chemical Geology, 216(3-4), 249-270.

Bai, Z.D., Tian, M.Z., Wu, F.D., Xu, D.B., and Li, T.J., 2005. Yanshan, Gaoshan-Two active
volcanoes of the volcanic cluster in Arshan, Inner Mongolia. Earthquake Research in
China, 19(4), 402-408 (in Chinese with English abstract).

Bai, Z.D., Wang, J.M., Xu, G.L., Liu, L., Xu, D.B., 2008. Quaternary Volcano Cluster of
Wulanhada, Right-back-banner, Chabaer, Inner Mongolia. Acta Petrologica Sinica,
24(11), 2585-2594 (in Chinese with English abstract).

Basu, A.R., Wang, J.W., Huang, W K., Xie, G.H., Mitsunobu, T., 1991. Major element, REE,
and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern
China: implications for their origin from suboceanic-type mantle reservoirs. Earth and
Planetary Science Letters, 105(1-3), 149-169.

BGMRHP., 1993. Bureau of Geology and Mineral Resources of Heilongjiang Province,
Regional geology of Heilongjiang Province. Beijing: Geological Publishing House (in
Chinese).

Bi, J.H., Ge, W.C., Yang, H., Wang, Z.H., Xu, W.L., Yang, J.H., Chen, H.J., 2016.
Geochronology and geochemistry of late Carboniferous—middle Permian I-and A-type
granites and gabbro—diorites in the eastern Jiamusi Massif, NE China: Implications
for petrogenesis and tectonic setting. Lithos, 266, 213-232.

Bi, J.H., Ge, W.C., Yang, H., Zhao, G.C., Yu, J.J., Zhang, Y.L., Tian, D.X., 2014.
Petrogenesis and tectonic implications of early Paleozoic granitic magmatism in the
Jiamusi Massif, NE China: geochronological, geochemical and Hf isotopic evidence.
Journal of Asian Earth Sciences, 96, 308-331.

Bi, J., Xing, D., Ge, W., Yang, H., Dong, Y., 2018. Age and tectonic setting of meta-acid
volcanic rocks from the North Liaohe Group in the Liaodong area: Paleoproterozoic
intracontinental rift or active continental margin? Earth Sci. Front., 25(3), 295-308.

Blackburn, T.J., Bowring, S.A., Perron, J.T., Mahan, K.H., Dudas, F.O, Barnhart, K.R., 2012.
An exhumation history of continents over billion-year time scales. Science,
335(6064), 73-76.

Blondes, M.S., Reiners, P.W., Edwards, B.R., Biscontini, A., 2007. Dating young basalt
eruptions by (U-Th)/He on xenolithic zircons. Geology, 35(1), 17-20.

108



Bibliography

Cao, C.R., Zheng, Q.D., 2003. Structural evolution features and its significance of
hydrocarbon exploration in relict basin group, eastern Heilongjiang Province. Jour.
Jilin Univ.: Earth Sci. Ed 33 (2), 167-172 (in Chinese with English abstract).

Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic
setting. Geology, 40(10), 875-878.

Chen, B., Jahn, B.M., Tian, W., 2009. Evolution of the Solonker suture zone: constraints
from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd—Sr isotope
compositions of subduction-and collision-related magmas and forearc sediments.
Journal of Asian Earth Sciences, 34(3), 245-257.

Chen, D., 2016. Mesozoic-Cenozoic Tectonic Evolution and Low Temperature
Thermochronological Study of Eastern Heilongjiang, NE China. Geology (in Chinese
with English abstract).

Chen, X., Han, X., 2010. Sedimentary evolution characteristics of 3D seismic areas in
Fangzheng fault. Marine Geology Letters, 6 (in Chinese with English abstract).

Cheng, S.Y., 2006. Regional Tectonic Characters and Meso-Cenozoic Basin Evolution in
Northeastern China. Doctoral dissertation, Dissertation for Ph.D. degree. China
University of geosciences, Beijing (in Chinese with English abstract).

Cheng, Y., Wang, S.,Li, Y., Ao, C., L1, Y., Li, J., Zhang, T., 2018. Late Cretaceous-
Cenozoic thermochronology in the southern Songliao Basin, NE China: New insights
from apatite and zircon fission track analysis. Journal of Asian Earth Sciences 160,
95-106.

Cherniak, D.J, Watson, E.B., 2001. Pb diffusion in zircon. Chemical Geology, 172(1-2), 5-
24,

Cohen, K.M., Harper, D.A.T., Gibbard, P.L, Fan, J.X., 2019. ICS International
Chronostratigraphic Chart 2019/05.

Cook, K.L., Royden, L.H., Burchfiel, B.C., Lee, Y.H., Tan, X., 2013. Constraints on
Cenozoic tectonics in the southwestern Longmen Shan from low-temperature
thermochronology. Lithosphere, 5(4), 393-406.

Cserepes, L., 1989. Numerical mathematics for geophysicist students.358 p., Tankdnyvkiado,
Budapest.

Davis, G.A., Darby, B.J., Yadong, Z, Spell, T.L., 2002. Geometric and temporal evolution of
an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia,

China. Geology, 30(11), 1003-1006.

109



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Dawson, P., Hargreave, M.M., Wilkinson, G.R., 1971. The vibrational spectrum of zircon
(ZrS104). Journal of Physics C: Solid State Physics, 4(2), 240.

Devroye, L., 1987. A Course in Density Estimation. Birkhauser Boston Inc., Cambridge,
MA, USA.

Dickinson, W.R., Gehrels, G.E., 2009. Use of U-Pb ages of detrital zircons to infer
maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic
database. Earth and Planetary Science Letters, 288(1-2), 115-125.

Dickinson, W.R., 2008. Impact of differential zircon fertility of granitoid basement rocks in
North America on age populations of detrital zircons and implications for granite
petrogenesis. Earth and Planetary Science Letters, 275(1-2), 80-92.

Dong, Y., Ge, W.C., Yang, H., Xu, W.L., Bi, J.H., Wang, Z.H., 2017. Geochemistry and
geochronology of the Late Permian mafic intrusions along the boundary area of
Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions,
northeastern China: Petrogenesis and implications for the tectonic evolution of the
Mudanjiang Ocean. Tectonophysics, 694, 356-367.

Dong, Y., Ge, W.C., Yang, H., Xu, W.L., Zhang, Y.L., Bi, J.H., Liu, X.W., 2016.
Geochronology, geochemistry, and Hf isotopes of Jurassic intermediate-acidic
intrusions in the Xing’an Block, northeastern China: Petrogenesis and implications for
subduction of the Paleo-Pacific oceanic plate. Journal of Asian Earth Sciences 118,
11-31.

Donskaya, T.V., Gladkochub, D.P., Mazukabzov, A.M., Ivanov, A.V., 2013. Late Paleozoic—
Mesozoic subduction-related magmatism at the southern margin of the Siberian
continent and the 150-million-year history of the Mongol-Okhotsk Ocean. Journal of
Asian Earth Sciences, 62, 79-97.

Dunkl, I., 2002. TRACKKEY: a Windows program for calculating and graphical presentation
of fission track data. Comput. Geosci 28, 3-12.

Dunkl, I., Székely, B., 2003, April. Component analysis with visualization of fitting-
Popshare, a freeware program for evaluation of mixed geochronological data. In EGS-
AGU-EUG Joint Assembly.

Dunkl, I., Farics, E., Jozsa, S., Lukacs, R., Haas, J, Budai, T., 2019. Traces of Carnian
volcanic activity in the Transdanubian Range, Hungary. International Journal of Earth

Sciences, 108(5), 1451-1466.

110



Bibliography

Eizenhofer, P.R., Zhao, G., Zhang, J, Sun, M., 2014. Final closure of the Paleo-Asian Ocean
along the Solonker suture zone: Constraints from geochronological and geochemical
data of Permian volcanic and sedimentary rocks. Tectonics, 33(4), 441-463.

Engebretson, D.C., 1985. Relative motions between oceanic and continental plates in the
Pacific basin (Vol. 206). geological Society of America.

Fan Q.C., Zhao, Y.W., Sui, J.L., Li, D.M., Wu, Y., 2012. Studies on Quaternary volcanism
stages of Nuomin river area in the Great Xing'an Range: Evidence from petrology, K-
Ar dating and volcanic geology features. Acta Petrologica Sinica, 28(4), 1092-1098
(in Chinese with English abstract).

Fan, Q.C., Liu, R.X., Zhang, G.H., Sui, J., 1998. The genesis and evolution of bimodal
volcanic rocks in Wangtian’e volcano, Changbaishan. Acta Petrologica Sinica, 14(3),
305-317 (in Chinese with English abstract).

Fan, Q.C., Sui, J.L., Wang, T.H., Li, N., Sun, Q., 2007. History of volcanic activity, magma
evolution and eruptive mechanisms of the Changbai volcanic province. Geological
Journal of China Universities, 13(2), 175-190 (in Chinese with English abstract).

Fan, Q.C., Sun, Q., Li, N., Wang, T.H., 2006. Holocene volcanic rocks in Jingbo Lake
Region-Diversity of magmatism. Progress in Natural Science, 16(1): 65-71 (in
Chinese with English abstract).

Fan, Q.C., Zhao, Y.W., Li, D.M., Wu, Y., Sui, J.L., Zheng, D.W., 2011. Studies on
Quaternary volcanism stages of Halaha River and Chaoer River area in the Great
Xing'an Range: Evidence from K-Ar dating and volcanic geology features. Acta
Petrologica Sinica, 27(10), 2827-2832 (in Chinese with English abstract).

Fan, Q., Hooper, P.R., 1991. The Cenozoic basaltic rocks of eastern China: petrology and
chemical composition. Journal of petrology, 32(4), 765-810.

Fang, S., Zhao, X.R., Liu, Z.J., Wang, H.Y ., Yang, J.G., 2008. Thrust event of the
provenances revealed by zircon fission track ages in Tangyuan Fault-Basin, NE
China. Radiation measurements 43, 324-328.

Farley, K.A., 2000. Helium diffusion from apatite: General behavior as illustrated by
Durango fluorapatite. Journal of Geophysical Research: Solid Earth 105 (B2), 2903-
2914.

Farley, K.A., Stockli, D.F., 2002. (U-Th)/He dating of phosphates: Apatite, monazite, and
xenotime. Reviews in mineralogy and geochemistry 48 (1), 559-577.

Farley, K.A., Wolf, R.A., Silver, L.T., 1996. The effects of long alpha-stopping distances on
(U-Th)/He ages. Geochimica et cosmochimica acta 60 (21), 4223-4229.

111



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Fedo, C.M., Sircombe, K.N, Rainbird, R.H., 2003. Detrital zircon analysis of the sedimentary
record. Reviews in Mineralogy and Geochemistry, 53(1), 277-303.

Feng, Z.Q., Jia, J., Liu, Y.J., Wen, Q.B., Li, W.M,, Liu, B.Q., Xing, D.Q., Zhang, L., 2015a.
Geochronology and geochemistry of the Carboniferous magmatism in the northern
Great Xing'an Range, NE China: constraints on the timing of amalgamation of
Xing'an and Songnen blocks. Journal of Asian Earth Sciences 113, 411-426.

Feng, Z.Q., Liu, Y.J., Liu, B.Q., Wen, Q.B., Li, W.M., Liu, Q., 2015b. Timing and nature of
the Xinlin-Xiguitu Ocean: constraints from ophiolitic gabbros in the northern Great
Xing'an Range, eastern Central Asian Orogenic Belt. International Journal of Earth
Sciences (Geol Rundsch) http://dx.doi.org/10.1007/s00531-00015-01185-z.

Fitzgerald, P.G., Baldwin, S.L., Webb, L.E., O'Sullivan, P.B., 2006. Interpretation of (U-
Th)/He single grain ages from slowly cooled crustal terranes: a case study from the
Transantarctic Mountains of southern Victoria Land. Chemical Geology 225 (1-2),
91-120.

Flower, M., Tamaki, K., Hoang, N., 1998. Mantle extrusion: A model for dispersed
volcanism and DUPAL-like asthenosphere in East Asia and the western Pacific.
Mantle dynamics and plate interactions in East Asia, 27, 67-88.

Flowers, R.M., Ketcham, R.A., Shuster, D.L., Farley, K.A., 2009. Apatite (U-Th)/He
thermochronometry using a radiation damage accumulation and annealing model.
Geochimica et Cosmochimica acta, 73(8), 2347-2365.

Francis, P., 1993, Volcanoes: a planetary perspective: Clarendon Press, 443 p.

Gao, Y.Z., 2010. Structural features and their relationship with the petroleum and gas in
Hulin basin. Master dissertation, Dissertation for master degree. China University of
geosciences, Beijing (in Chinese with English abstract).

Gastil, R.G., DeLisle, M., and Morgan, J., 1967. Some effects of progressive metamorphism
on zircons. Geol. Soc. Am. Bull. 78, 879-906.

Ge, M.H., Zhang, J.J., Li, L., Liu, K., 2018. A Triassic-Jurassic westward scissor-like
subduction history of the Mudanjiang Ocean and amalgamation of the Jiamusi Block
in NE China: Constraints from whole-rock geochemistry and zircon U-Pb and Lu-Hf
isotopes of the Lesser Xing'an-Zhangguangcai Range granitoids. Lithos, 302, 263-
277.

Ge, M.H., Zhang, J.J., Liu, K., Ling, Y.Y., Wang, M, Wang, J.M., 2016. Geochemistry and
geochronology of the blueschist in the Heilongjiang Complex and its implications in

the late Paleozoic tectonics of eastern NE China. Lithos, 261, 232-249.

112



Bibliography

Ge, W.C,, Sui, Z.M., Wu, F.Y., Zhang, J.H., Xu, X.C., Cheng, R.Y., 2007. Hf isotopic
character- istics and their implications of the Early Paleozoic granites in the northern
Da Hinggan Mts., northeastern China. Acta Petrologica Sinica 23, 423440 (in
Chinese with English abstract).

Gehrels, G.E., Dickinson, W.R., Ross, G.M., Stewart, J.H, Howell, D.G., 1995. Detrital
zircon reference for Cambrian to Triassic miogeoclinal strata of western North
America. Geology, 23(9), 831-834.

Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R. T., van Bronswijk, W., 2001. Leaching
and differential recrystallization of metamict zircon under experimental hydrothermal
conditions. Contributions to Mineralogy and Petrology, 141(1), 53-65.

Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J.,
Schwartz, J.J., 2007. Trace element chemistry of zircons from oceanic crust: A
method for distinguishing detrital zircon provenance. Geology, 35(7), 643-646.

Guenthner, W.R., Reiners, P.W., Ketcham, R.A., Nasdala, L., Giester, G., 2013. Helium
diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of
zircon (U-Th)/He thermochronology. American Journal of Science, 313(3), 145-198.

Guo, F., Fan, W.M., Li, C.W., Miao, L.C., Zhao, L., 2009. Early Paleozoic subduction of the
Paleo-Asian Ocean: geochronological and geochemical evidence from the Dashizhai
basalts, Inner Mongolia. Science in China Series D: Earth Sciences 52 (7), 940-951.

Guo, J.H., Sun, M., Chen, F.K, Zhai, M.G., 2005. Sm—Nd and SHRIMP U-Pb zircon
geochronology of high-pressure granulites in the Sanggan area, North China Craton:
timing of Paleoproterozoic continental collision. Journal of Asian Earth Sciences,
24(5), 629-642.

Han, G., Liu, Y., Neubauer, F., Bartel, E., Genser, J., Feng, Z., Zhang, L., Yang, M., 2015.
U-Pb age and Hf isotopic data of detrital zircons from the Devonian and
Carboniferous sandstones in Yimin area, NE China: new evidences to the collision
timing between the Xing'an and Erguna blocks in eastern segment of Central Asian
Orogenic Belt. Journal of Asian Earth Sciences 97, 211-228.

Han, G., Liu, Y., Neubauer, F., Genser, J., Zhao, Y., Wen, Q., Zhao, L., 2012. Provenance
analysis of Permian sandstones in the central and southern Da Xing'an Mountains,
China: constraints on the evolution of the eastern segment of the Central Asian

Orogenic Belt. Tectonophysics, 580, 100-113.

113



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Han, G.Q, Liu, Y.J., Liu, J.J., 2008. Uplifting time of Huanan uplift in the northeastern
Heilongjiang. China. Journal of Jilin University (Earth Science Edition) 38 (3), 389-
397 (in Chinese with English abstract).

Han, X.J., 1998. The Distribution of Heat Flow Data in the Continental Area of Northeast
and Statistic Studies. World Geology (4), 04 (in Chinese with English abstract).
HBGMR (Heilongjiang Bureau of Geology and Mineral Resources), 1993. Regional Geology
of Heilongjiang Province. Geological Publishing House, Beijing, pp. 347-418 (in

Chinese).

He, Z.H., Liu, Z.J., Zhang, X.D., 2009. Subdivisions of structural layers and tectonic-
sedimentary evolution of eastern basins in Heilongjiang in Late Mesozoic. Global
Geology 28 (1), 20-27 (in Chinese with English abstract).

He, Z.H., Liu, Z.J., Chen, X.Y., He, Y.P., Chen, Y.S., 2008. Sedimentary facies
characteristics and their evolution of the Early Cretaceous relict basins in eastern
Heilongjiang Province. Journal of Palacogeography 10 (2), 151-158 (in Chinese with
English abstract).

Himeno, O., Ohira, H., Liu, Z., Jin, X., Watanabe, K., 2001. Provenance ages of Cretaceous
strata in the Songliao Basin, northeast China inferred from fission track data.
International Geology Review, 43(10), 945-952.

Hopkinson, T.N., Harris, N.B., Warren, C.J., Spencer, C.J., Roberts, N.M., Horstwood, M. S,
Parrish, R. R., 2017. The identification and significance of pure sediment-derived
granites. Earth and Planetary Science Letters, 467, 57-63.

Hoskin, P.W.O, Black, L.P., 2000. Metamorphic zircon formationunit by solid-state
recrystallization of protolith igneous zircon. Journal of metamorphic Geology, 18(4),
423-439.

Hu, S.L., Wang, S.S., Liu, J.Q., Sang, H.Q., Q1u, J., Jiang, W.Y., 1983. K-Ar Ages and Some
Characters of Strontium, Oxygen Isotopes in Cenozoic Wudalianchi Basalts,
Northeast China. Petrology Research, 2, 22-31 (in Chinese with English abstract).

Huang, Q.H., Tan, W., Yang, H.C., 1999. Stratigraphic succession and chronosrata of
Cretaceous in the Songliao basin. Petroleum Geology and Oilfield Development in
Daqing 18, 15-17 (in Chinese with English abstract).

Huang, S.Q., Dong, S.W., Hu, J.M., Shi, W., Chen, X.H., Liu, Z.Q., 2016. The formation and
tectonic evolution of the Mongol-Okhotsk belt. Acta Geologica Sinica, 90, 2192-2205
(in Chinese with English abstract).

114



Bibliography

Hurford, A.J., Fitch, F.J., Clarke, A., 1984. Resolution of the age structure of the detrital
zircon populations of two Lower Cretaceous sandstones from the Weald of England
by fission track dating. Geol. Mag., 121, 269-277.

Hurford, A.J., Green, P.F., 1983. The zeta age calibration of fission-track dating. Chemical
Geology 41, 285-317.

IMBGMR (Inner Mongolian Bureau of Geology Mineral Resources)., 1991. Regional
Geology of Inner Mongolia. Geological Publishing House, 1-725 (in Chinese).

Irmer, G., 1985. On the influence of the apparatus function on the determination of scattering
cross sections and lifetimes from optical phonon spectra. Experimentelle Technik der
Physik, 33, 501-506.

Jahn, B.M., Wu, F.Y., Chen, B., 2000. Granitoids of the central Asian orogenic belt and
continental growth in the Phanerozoic. Transactions of the Royal Society of
Edinburgh Earth Science 91, 81-93.

JBGMR (Jilin Bureau of Geology and Mineral Resources)., 1988. Regional geology of Jilin
province.

Jia, C.Z., Zheng, M., 2010. Sedimentary history, tectonic evolution of Cretaceous Dasanjiang
Basin in Northeast China and the significance of oil and gas exploration of its residual
basins [J]. Journal of Daqing Petroleum Institute 6 (in Chinese with English Abstract).

Jia, D.C.,Hu, R.Z., Lu, Y., Qiu, X.L., 2004. Collision belt between the Khanka block and the
North China block in the Yanbian Region, Northeast China. Journal of Asian Earth
Sciences 23, 211-219.

Jiang, G.Z., Gao, P., Rao, S., Zhang, L..Y., Tang, X.Y., Huang, F., Wang, J.Y., 2016.
Compilation of heat flow data in the continental area of China. Chinese Journal of
Geophysics-Chinese edition 59 (8), 2892-2910 (in Chinese with English abstract).

Ju, G., 2018. Detrital-zircon geochronology from the Yangjiagou Formation Unit in southern
section of Zhangguangcai Range and their geological significance, Master thesis, Jilin
University (in Chinese with English abstract).

Ketcham, R.A., 2005. HeFTy: Forward and inverse modeling thermochronometer systems.
Computational Tools for Low-Temperature Thermocronometer Interpretation.
Mineralogical Society of America, Chantilly, VA.

Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J., Hurford, A.J., 2007. Improved
modeling of fission-track annealing in apatite. American Mineralogist 92 (5-6), 799-

810.

115



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Kinoshita, O., 1995. Migration of igneous activities related to ridge subduction in Southwest
Japan and the East Asian continental margin from the Mesozoic to the
Paleogene. Tectonophysics, 245(1-2), 25-35.

Kroéner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A, Sun, M.,
2014. Reassessment of continental growth during the accretionary history of the
Central Asian Orogenic Belt. Gondwana Research, 25(1), 103-125.

Li, J. Y., 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure
of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian
Earth Sciences, 26(3-4), 207-224.

Li, J.Y., Qu, J.F., Zhang, J., Liu, J.F., Xu, W.L., Zhang, S.H., Guo, R.Q., Zhu, Z.X., Li, Y.P.,
Li, Y.F., Wang, T., Xu, X.Y., Li, Z.P., Liu, Y.Q., Sun, L.X., Jian, P., Zhang, Y.,
Wang, L.J., Peng, S.H., Feng, Q.W., Wang, Y., Wang, H.B., Zhang, X.X., 2013. New
developments on the reconstruction of Phanerozoic geological history and research of
metallogenic geological settings of the Northern China Orogenic Region. Geological
Bulletin of China 32, 207-219 (in Chinese with English abstract).

Li, S.Q., Chen, F.K., Siebel, W., Wu, J.D., Zhu, X.Y., Shan, X.L., Sun, X.M., 2012. Late
Mesozoic tectonic evolution of the Songliao Basin, NE China: evidence from detrital
zircon ages and Sr—Nd isotopes. Gondwana Research 22 (3—4), 943-955.

Li, WM, Liu, Y.J., Zhao, Y.L., Feng, Z.Q., Zhou, J.P., Wen, Q.B., Liang, C.Y., Zhang, D.,
2020. Tectonic evolution of the Jiamusi Block, NE China. Acta Petrologica Sinica,
36(3):65-684, doi:10.18654/1000-0569/2020.03.03 (In Chinese with English
abstract).

Li, W.M., Takasu, A., Liu, Y.J., Genser, J., Zhao, Y.L., Han, G.Q., Guo, X.Z., 2011a. U-Pb
and 40Ar/39Ar age constrains on protolish and high-P/T type metamorphism of the
Heilongjiang Complex in the Jiamusi Massif, NE China. Journal of Mineralogical and
Petrological Sciences, 106: 326-31.

Li, W.M,, Takasu, A., Liu, Y.J., Guo, X.Z., 2010. Newly discovered garnet-barroisite schists
from the Heilongjiang Complex in the Huanan Massif, northeastern China. Journal of
Mineralogical and Petrological Sciences 105, 86-91.

Li, X.P., Jiao, L.X., Zheng, Q.D., Dong, X., Kong, F.M., Song, Z.J., 2009. U-Pb zircon
dating of the Heilongjiang complex at Huanan, Heilongjiang Province. Acta
Petrologica Sinica, 25, 1909—1916 (in Chinese with English abstract).

Li, X., Yang, X., Xia, B., Gong, G., Shan, Y., Zeng, Q., Sun, W., 2011c. Exhumation of the

Dahinggan Mountains, NE China from the Late Mesozoic to the Cenozoic: New

116



Bibliography

evidence from fission-track thermochronology. Journal of Asian Earth Sciences 42 (1-
2), 123-133.

Li, X.F., Chen, Q.M., Zhang, X.H., 2002. The Yitong Graben-the structural features and
evolution of a strike-slip fault basin. Petroleum geology and Experiment, 24(1), 19-24
(in Chinese with English abstract).

Li, X.M., Gong, G.L., 2011b. Late Mesozoic-Cenozoic exhumation history of the Lesser
Hinggan Mountains, NE China, revealed by fission track thermochronology.
Geological Journal 46 (4), 277-287.

Lin, W., Faure, M., Monié, P., Schérer, U, Panis, D., 2008. Mesozoic extensional tectonics in
eastern Asia: The South Liaodong Peninsula metamorphic core complex (NE China).
The Journal of Geology, 116(2), 134-154.

Lissenberg, C.J., Rioux, M., Shimizu, N., Bowring, S. A, Mével, C., 2009. Zircon dating of
oceanic crustal accretion. Science, 323(5917), 1048-1050.

Liu, C.Z., Ge, X.F., Q1, D.Y., 2013. Burial history of Wangfu fault depression in Songliao
Basin. Journal of Heilongjiang Institute of Science and Technology 23, 482-6 (in
Chinese with English abstract).

Liu, H.F., Liang, H.S., Li, X.Q., Yin, J.G., Zhu, D.F., Liu, L.Q., 2000. The coupling
mechanisms of Mesozoic-Cenozoic rift basins and extensional mountain system in
eastern China. Earth science frontiers 7 (4), 477-486.

Liu, J.F., Chi, X.G., Dong, C.Y., Zhao, Z., Li, G.R, Zhao, Y.D., 2008. Discovery of Early
Paleozoic granites in the eastern Xiao Hinggan Mountains, northeastern China and
their tectonic significance. Geological Bulletin of China, 27(4), 534-544.

Liu, J.Q., 1987. Study on geochronology of the Cenozoic volcanic rocks in Northeast China.
Acta Petrologica Sinica, 4(2). (in Chinese with English abstract)

Liu, J.Q., 1988. The Cenozoic volcanic episodes in northeast China. Acta Petrologica Sinica,
1(1). (in Chinese with English abstract)

Liu, J.Q., Chen, L.H., Zhong, Y., Lin, W.H., Wang, X.J., 2017. Petrological, K-Ar
chronological and volcanic geological characteristics of Quaternary Xunke high-Mg#
andesites from the Lesser Khingan Range. Acta Petrologica Sinica, 33(1), 31-40. (in
Chinese with English abstract)

Liu, J., Davis, G. A., Lin, Z, Wu, F., 2005. The Liaonan metamorphic core complex,
Southeastern Liaoning Province, North China: A likely contributor to Cretaceous
rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics, 407(1-2),

65-80.

117



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Liu, R.X., 1992. The K-Ar age and tectonic environment of Cenozoic rock in China. The age
and geochemistry of Cenozoic volcanic rock in China, 1-43 (in Chinese with English
abstract).

Liu, R., Fan, Q., Zheng, X., Zhang, M., L1, N., 1998. The magma evolution of Tianchi
volcano, Changbaishan. Science in China Series D: Earth Sciences, 41(4), 382-389 (in
Chinese with English abstract).

Liu, X.W., Shen N.H., Ge, X.H. 1994. Mesozoic collision tectonics in eastern Jilin and
Heilongjiang Provinces, Northeastern China. Journal of Changchun University of
Earth Sciences 24 (4):385-389 (in Chinese with English abstract).

Liu, Y.J., Zhang, X.Z., Jin, W., Chi, X.G., Wang, C.W., Ma, Z.H., Zhao, X.F., 2010. Late
Paleozoic tectonic evolution in northeast China. Geology in China, 37(4), 943-951 (in
Chinese with English abstract).

Liu, Y., Li, W., Feng, Z., Wen, Q., Neubauer, F, Liang, C., 2017. A review of the Paleozoic
tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, 43,
123-148.

Lu, S.F., Liu, X.Y., Wang, Z.P., Wang, Y.W., 2005. Denudation thickness and its
significance in the deep part of Songliao Basin. Petroleum Geology & Oilfield
Development in Daqing 24 (1), 20-22 (in Chinese with English abstract).

Ludwig, K.R., 2012. Isoplot/Ex, v. 3.75. Berkeley Geochronology Center Special Publication
5,75.

Liinsdorf, N.K., Liinsdorf, J.O., 2016. Evaluating Raman spectra of carbonaceous matter by
automated, iterative curve-fitting. International Journal of Coal Geology, 160, 51-62.

Ma, Y., Liu, Y., Wang, Y., Tang, Z., Qian, C., Qin, T., Zang, Y., 2019. Geochronology and
geochemistry of the Carboniferous felsic rocks in the central Great Xing'an Range,
NE China: Implications for the amalgamation history of Xing'an and Songliao—
Xilinhot blocks. Geological Journal, 54(1), 482-513.

Malkowski, M.A., Sharman, G.R., Johnstone, S.A., Grove, M.J., Kimbrough, D.L, Graham,
S.A., 2019. Dilution and propagation of provenance trends in sand and mud:
Geochemistry and detrital zircon geochronology of modern sediment from central
California (USA). American Journal of Science, 319(10), 846-902.

Malusa, M.G., Resentini, A, Garzanti, E., 2016. Hydraulic sorting and mineral fertility bias in
detrital geochronology. Gondwana Research, 31, 1-19.

Mapes, R.W., 2009. Past and present provenance of the Amazon River. Doctoral thesis,

University of North Carolina at Chapel Hill, 67-73.

118



Bibliography

margin of northeastern China. Island Arc 16, 156—172.

Maruyama, S., Isozaki, Y., Kimura, G., Terabayashi, M., 1997. Paleogeographic maps of the
Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island arc, 6(1),
121-142.

McDougall, I. and Harrison, T.M., 1999. Geochronology and thermochronology by the
40Ar/39Ar Method. Oxford University Press, New York.

Meng, E., Xu, W.L., Pei, F.P., Yang, D.B., Wang, F, Zhang, X.Z., 2011. Permian bimodal
volcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China:
zircon U-Pb—Hf isotopes and geochemical evidence. Journal of Asian Earth Sciences,
41(2), 119-132.

Meng, E., Xu, W.L., Pei, F.P., Yang, D.B., Yu, Y, Zhang, X.Z., 2010. Detrital-zircon
geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province,
NE China: implications for the tectonic evolution of the eastern segment of the
Central Asian Orogenic Belt. Tectonophysics, 485(1-4), 42-51.

Meng, Q.R., 2003. What drove late Mesozoic extension of the northern China—Mongolia
tract? Tectonophysics, 369(3-4), 155-174.

Meng, Q.R., Hu, J.M., Jin, J.Q., Zhang, Y., Xu, D.F., 2003. Tectonics of the late Mesozoic
wide extensional basin system in the China-Mongolia border region. Basin Research
15 (3), 397-415.

Moecher, D.P, Samson, S.D., 2006. Differential zircon fertility of source terranes and natural
bias in the detrital zircon record: Implications for sedimentary provenance analysis.
Earth and Planetary Science Letters, 247(3-4), 252-266.

Nakajima, T., Shirahase, T., Shibata, K., 1990. Along-arc lateral variation of Rb— Sr and K—
Ar ages of cretaceous granitic rocks in Southwest Japan. Contributions to Mineralogy
and Petrology, 104(4), 381-389.

Nasdala, L., Irmer, G., Jonckheere, R., 2002. Radiation damage ages: Practical concept or
impractical vision? - Reply to two comments on" Metamictisation of natural zircon:
Accumulation versus thermal annealing of radioactivity-induced damage", and further
discussion. Contributions to Mineralogy and Petrology, 143(6), 758-766.

Nasdala, L., Irmer, G., Wolf, D., 1995. The degree of metamictization in zircons: a Raman
spectroscopic study. European Journal of Mineralogy-Ohne Beihefte, 7(3), 471-478.

Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T., Kober, B., 2001. Metamictisation
of natural zircon: accumulation versus thermal annealing of radioactivity-induced

damage. Contributions to Mineralogy and Petrology, 141(2), 125-144.

119



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Pei, F., Xu, W., Yang, D., Zhao, Q., Liu, X, Hu, Z., 2007. Zircon U-Pb geochronology of
basement metamorphic rocks in the Songliao Basin. Chinese Science Bulletin, 52(7),
942-948 (in Chinese with English abstract).

Pei, J.L., Sun, Z.M., Liu, J., Liu, J., Wang, X.S., Yang, Z.Y., Zhao, Y., Li, H.B., 2011. A
paleomagnetic study from the Late Jurassic volcanics (155 Ma), North China:
implications for the width of Mongol-Okhotsk Ocean. Tectonophysics, 510(3-4),
370-380.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., 1996. Numerical recepies in
Pascal. 760 p., Cambridge University Press.

QGIS Development Team, 2020. QGIS Geographic Informationunit System. Open Source
Geospatial Foundation Project. http://qgis.osgeo.org

Qie, R.Q., 2009. Oil and gas geological condition and prospect evaluation in the peripheral
down- faulted basins group of Mesozoic and Cenozoic era, Daqing Exploration Area.
Doctoral dissertation, Dissertation for Ph.D. degree. Jilin University, Changchun (in
Chinese with English abstract).

Qiu, J.X., Liao, Q.A., Liu, M.H., 1991. Potassium-rich volcanic rocks in Wudalianchi—
Keluo—Erkeshan. China University of Geosciences Press, Wuhan, 85-95 (in Chinese).

Qiu, Z.L., Yang, J.H., Yang, S.F., Yang, S., Li, C., Wang, Y., Yang, X., 2007. Trace element
and Hafnium isotopes of Cenozoic basalt-related zircon megacrysts at Muffling,
Heilongjiang province. Northeast China. Acta Petrologica Sinica, 23(2), 481-492 (in
Chinese with English abstract).

Ratschbacher, L., Hacker, B.R., Calvert, A., Webb, L.E., Grimmer, J.C., McWilliams, M.O.,
Hu, J., 2003. Tectonics of the Qinling (Central China): tectonostratigraphy,
geochronology, and deformation history. Tectonophysics 366 (1-2), 1-53.

Reiners, P.W., 2005. Zircon (U-Th)/He thermochronometry. Reviews in Mineralogy and
Geochemistry, 58(1), 151-179.

Reiners, P.W., Spell, T.L., Nicolescu, S., Zanetti, K.A., 2004. Zircon (U-Th)/He
thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating.
Geochimica et cosmochimica acta, 68(8), 1857-1887.

Ren, F.H., Yang, X.P., Li, Y.C., Wang, Y., Zhou, X.F. 2005. Chronostratigraphic division of
the Jixi Group in eastern Heilongjiang Province and its geological significance.

Chinese Geology (1), 5 (in Chinese with English abstract).

120



Bibliography

Ren, J., Tamaki, K., Li, S., Junxia, Z., 2002. Late Mesozoic and Cenozoic rifting and its
dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344(3-4), 175-
205.

Ren, J., Tamaki, K., Li, S., Z, J.X., 2002. Late Mesozoic and Cenozoic rifting and its
dynamic setting in Eastern China and adjacent areas. Tectonophysics 344 (3-4), 175-
205.

Ren, J.S., Niu, B.G., Wang, J., He, Z.J., Jin, X.C., Xie, L.Z., Yang, F.L. 2013. 1: 5 million
international geological maps of Asia. Diqiu Xuebao (Acta Geoscientica Sinica) 34
(1), 24-30 (in Chinese with English Abstract).

Renne, P.R., 2000. K-Ar and 40Ar/39Ar dating. Quaternary geochronology, 77-100.

Rubatto, D., Williams, 1.S., Buick, 1.S., 2001. Zircon and monazite response to prograde
metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy
and Petrology, 140(4), 458-468.

Safonova, I.Y., Utsunomiya, A., Kojima, S., Nakae, S., Tomurtogoo, O., Filippov, A.N.,
Koizumi, K., 2009. Pacific superplume-related oceanic basalts hosted by accretionary
complexes of Central Asia, Russian Far East and Japan. Gondwana Research, 16(3-4),
587-608.

Safonova, I., Seltmann, R., Kroner, A., Gladkochub, D., Schulmann, K., Xiao, W., Sun, M.,
2011. A new concept of continental construction in the Central Asian Orogenic Belt.
Episodes 34 (3), 186-196.

Sato, K., Vrublevsky, A.A., Rodionov, S.M., Romanovsky, N.P., Nedachi, M., 2002. Mid—
Cretaceous Episodic Magmatism and Tin Mineralization in Khingan-Okhotsk
Volcano—Plutonic Belt, Far East Russia. Resource Geology, 52(1), 1-14.

Saylor, J.E., Knowles, J.N., Horton, B.K., Nie, J., Mora, A., 2013. Mixing of source
populations recorded in detrital zircon U-Pb age spectra of modern river sands. The
Journal of Geology, 121(1), 17-33.

Sengor, A.M.C., Natal'ln, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic collage
and Palaeozoic crustal growth in Eurasia. Nature, 364(6435), 299-307.

Sengor, A.M.C., Natal'in, B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In:
Yin, A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Cambridge University
Press, Cambridge pp. 486-641.

Sha, J.G., 2002. Major achievements in studying the Early Cretaceous biostratigraphy of
eastern Heilongjiang [J]. Earth Science Frontiers 9 (39): 95-101.

121



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Sha, J.G., Matsukawa, M., Cai, H., Jiang, B., Ito, M., He, C., Gu, Z., 2003. The Upper
Jurassic—Lower Cretaceous of eastern Heilongjiang, northeast China: stratigraphy and
regional basin history. Cretaceous Research 24 (6), 715-728.

Sha, J.G., Wang, J., Kirillova, G., Pan, Y., Cai, H., Wang, Y., Peng, B., 2009. Upper Jurassic
and lower cretaceous of Sanjiang-Middle Amur basin: Non-marine and marine
correlation. Science in China Series D: Earth Sciences 52 (12), 1873 (in Chinese with
English Abstract).

Shi, L., Zheng, C.Q., Yao, W.G., Li, J., Cui, F.H., Cao, F., Cao, Y., Xu, J.L., Han, X.M.,
2015. Geochronological framework and tectonic setting of the granitic magmatism in
the Chaihe-Mogugqi region, central Great Xing'an Range, China. Journal of Asian
Earth Sciences 113, 443-453.

Shuster, D.L., Flowers, R.M., Farley, K.A., 2006. Radiation damage and helium diffusion
kinetics in apatite. Geochimica et Cosmochimica Acta, 70(18), A590.

Silverman, B., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London.

Song, Y., Ren, J., Stepashko, A.A., Li, J., 2014. Post-rift geodynamics of the Songliao Basin,
NE China: Origin and significance of T11 (Coniacian) unconformity. Tectonophysics
634, 1-18.

Spencer, C.J., Kirkland, C.L., Roberts, N.M., 2018. Implications of erosion and bedrock
composition on zircon fertility: Examples from South America and Western Australia.
Terra Nova, 30(4), 289-295.

Spencer, C.J., Roberts, N.M.W., Santosh, M., 2017. Growth, destruction, and preservation of
Earth's continental crust. Earth-Science Reviews, 172, 87-106.

Spiegel, C., Kohn, B., Belton, D., Berner, Z., Gleadow, A., 2009. Apatite (U-Th-Sm)/He
thermochronology of rapidly cooled samples: the effect of He implantation. Earth and
Planetary Science Letters 285 (1-2), 105-114.

Stepashko, A.A., 2006. The Cretaceous dynamics of the Pacific Plate and stages of magmatic
activity in northeastern Asia. Geotectonics 40 (3), 225-235.

Stepashko, A.A., 2008. Spreading cycles in the Pacific Ocean. Oceanology 48 (3), 401-408.

Sun, D.Y., Gou, J., Wang, T.H., Ren, Y.S., Liu, Y.J., Guo, H.Y., Hu, Z.C., 2013.
Geochronological and geochemical constraints on the Erguna massif basement, NE
China—subduction history of the Mongol-Okhotsk oceanic crust. International

Geology Review, 55(14), 1801-1816.

122



Bibliography

Sun, D.Y., Wu, F.Y., Gao, S., Lu, X.P., 2005. Confirmation of two episodes of A-type
granite emplacement during Late Triassic and Early Jurassic in the central Jilin
Province, and their constraints on the structural pattern of Eastern Jilin-Heilongjiang
Area, China. Earth Science Frontiers, 12(2), 263-275.

Sun, D.Y., Wu, F.Y., Zhang, Y.B., Gao, S., 2004. The final closing time of the west Lamulun
River-Changchun-Yanji plate suture zone: Evidence from the Dayushan granitic
pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), 34(2), 174-
181 (in Chinese with English abstract).

Sun, G., Zheng, S.L., 2000. New proposal on division and correlation of Mesozoic from
northeastern China. Journal of Stratigraphy 24 (1), 60-64 (in Chinese with English
Abstract).

Sun, X.M., Wang, S.Q., Wang, Y.D., Du, J.Y., Xu, Q.W., 2010. The structural feature and
evolutionary series in the northern segment of Tancheng-Lujiang fault zone. Acta
Petrologica Sinica 26 (1), 165-176 (in Chinese with English Abstract).

Tang, J., Xu, W.L., Wang, F., Wang, W., Xu, M.J., Zhang, Y.H., 2013. Geochronology and
geochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China:
petrogenesis and implications for the breakup of the Rodinia supercontinent.
Precambrian Research, 224, 597-611.

Tang, J., Xu, W., Wang, F., Ge, W., 2018. Subduction history of the Paleo-Pacific slab
beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia.
Science China Earth Sciences, 61(5), 527-559.

Tang, K.D., Wang, Y., He, G.Q., 1995. Continental-margin structure of Northeast China and
its adjacent areas. Acta Geologica Sinica 69 (1):16-30 (in Chinese with English
Abstract).

Tian, Z.Y, Han, P., 1993. Analysis of the structures of Mesozoic and Cenozoic oil gas
bearing Basins in northeastern China and the mechanism of their production.
Petroleum Exploration and Development, 20(4), 2-4. (in Chinese with English
Abstract)

Tian, Z.Y., Han, P., Xu, K.D., 1992. The Mesozoic-Cenozoic East China rift system.
Tectonophysics 208 (1-3), 341-363.

U.S. Geological Survey, 2017, Digital Elevation, STRM 1 Arc-Second Global, accessed
March 22, 2018 at URL https://earthexplorer.usgs.gov/

Van der Voo, R., Spakman, W., Bijwaard, H., 1999. Mesozoic subducted slabs under Siberia.
Nature, 397(6716), 246-249.

123



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical Geology,
v.312-313, 190-194, doi: 10.1016/j.chemgeo.2012.04.021 0

von Eynatten, H., and Dunkl, 1., 2012. Assessing the sediment factory: the role of single grain
analysis. Earth-Science Reviews, 115(1-2), 97-120.

Wang, C.W., Jin, W., Zhang, X.Z., Ma, Z.H., Chi, X.G., Liu, Y.J., Li, N., 2008. New
understanding of the Late Paleozoic tectonics in northeastern China and adjacent
areas. Journal of Stratigraphy, 32(2), 119-136 (in Chinese with English Abstract).

Wang, F., Xu, W.L., Gao, F.H., Zhang, H.H., Pei, F.P., Zhao, L., Yang, Y., 2014.
Precambrian terrane within the Songnen—Zhangguangcai Range Massif, NE China:
Evidence from U—Pb ages of detrital zircons from the Dongfengshan and Tadong
groups. Gondwana Research, 26(1), 402-413.

Wang, F., Xu, W.L., Ge, W.C., Yang, H., Pei, F.P., Wu, W., 2016b. The offset distance of the
Dunhua-Mishan Fault; Constraints from Paleozoic-Mesozoic magmatism within the
Songnen-Zhangguangcai Range, Jiamusi, and Khanka massifs. Acta Petrologica
Sinica, 32(4), 1129-1140 (in Chinese with English Abstract).

Wang, F., Zhou, X.H., Zhang, L.C., Ying, J.F., Zhang, Y.T., Wu, F.Y., Zhu, R.X., 2006. Late
Mesozoic volcanism in the Great Xing'an Range (NE China): timing and implications
for the dynamic setting of NE Asia. Earth and Planetary Science Letters, 251(1-2),
179-198.

Wang, J., He, Z.H., Liu, Z.J., 2006. Geochemical characteristics of Cretaceous detrital rocks
and their constraint on provenance in Jixi Basin. Global Geology, 25(4), 380-384 (in
Chinese with English abstract).

Wang, J.J., 2007. Study on sedimentary facies from upper Jurassic series to Lower
Cretaceous series of the Suibing depression of Sanjiang area in Northeast China.
Master thesis, Beijing, China University of geosciences.

Wang, P.J., Mattern, F., Didenko, N.A., Zhu, D.F., Singer, B., Sun, X.M., 2016a. Tectonics
and cycle system of the Cretaceous Songliao Basin: An inverted active continental
margin basin. Earth-Science Reviews 159, 82-102.

Wang, S.T, Liu, B.S., 2014. Characteristics of U--Pb chronology and geochemistry of
Neoproterozoic granitic gneiss in Dongfengjingyingsuo of Yichun area. Global
Geology, 33(4), 780-786 (in Chinese with English abstract).

Wang, W.T., Liu, Z.J., He, Y.P., Chen, X., 2007. Provenance of Lower Cretaceous clastic
rocks in Suibin Depression Heilongjiang Province and its tectonic significance. Acta

Sedimentologica Sinica, 25(2), 201 (in Chinese with English abstract).

124



Bibliography

Wang, W.T., Liu, Z.J., Chen, X.Y., 2007. Tectonic setting and provenance analysis of
Mesozoic--Cenozoic clastic rocks in northern depression of Hulin Basin. Global
Geology, 26(1), 14-19 (in Chinese with English abstract).

Wang, X., Xu, D, Lv, X., Wei, W., Mei, W., Fan, X., Sun, B., 2018. Origin of the Haobugao
skarn Fe-Zn polymetallic deposit, Southern Great xing’an range, NE China:
Geochronological, geochemical, and Sr-Nd-Pb isotopic constraints. Ore Geology
Reviews, 94, 58-72.

Wang, Z.W., 2017. Petrology and geochemistry of early Paleozoic igneous rocks in the
Lesser Xing'an-Zhangguangcai Ranges: Constrains on the amalgamation history and
crustal nature of the massifs. Retrieved from http://lib. jlu. edu. cn/portal/index. aspx.
(in Chinese with English abstract).

Wang, Z.W., Xu, W.L., Pei, F.P., Wang, F., Guo, P., 2016. Geochronology and geochemistry
of early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China: implications
for the tectonic evolution of the eastern Central Asian Orogenic Belt. Lithos, 261,
144-163.

Wei, H.Y., Sun, D.Y., Ye, S.Q., Yang, Y C., Liu, Z.H., Liu, X.M., Hu, Z.C., 2012. Zircon U-
Pb ages and its geological significance of the granitic rocks in the Yichun-Hegang
region, southeastern Xiao Hinggan Mountains. Earth Science-Journal of China
University of Geosciences, 37, 50-59 (in Chinese with English abstract).

Wen, Q.B., Liu, Y.J., Li, J.J., Bai, J.Z., Sun, X.M., Zhao, Y.L., Han, G.Q., 2008b.
Provenance analysis and tectonic implications for the Cretaceous sandstones in the
Jixi and Boli Basins, Heilongjiang. Sedimentary Geology and Tethyan Geology,
28(3), 52-59 (in Chinese with English abstract).

Wen, Q.B, Liu, Y.J., Han G.Q., 2008a. Mesozoic and Cenozoic tectonic evolution of the
basin group in eastern Heilongjiang, China. Global Geology 27 (4): 370-377 (in
Chinese with English abstract).

Wen, Q.B., Liu, Y.J., Liu, B., Han, G.Q., Zhao, Y.L., Li, W.M., Liang, C.Y., 2011.
Exhumation time of Huanan-uplift of northeastern China constrained by ages of
detrital minerals. Geological Bulletin of China 30 (2/3), 250-257 (in Chinese with
English abstract).

Wilde S.A., Wu F.Y., Zhang X.Z., 2001.The Mashan Complex: SHRIMP U Pb zircon
evidence for a Late Pan-African metamorphic event in NE China and its implication
for global continental reconstructions. Geochimica,30(1): 35-50 (in Chinese with

English abstract)

125



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Wilde S.A., Wu F.Y., Zhang X.Z., 2003. Late Pan-African magmatismin northeastern China:
SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif. Precambrian
Research,12(1):31-327

Wilde S.A., Zhang X.Z., Wu F.Y ., 2000. Extension of a newly identified 500Ma
metamorphic ter rane in North East China: Further U-Pb SHRIMP dating of the
Mashan Complex, Heilongjiang Province, China. Tectonophysics,328(1-2):115-130

Wilde, S.A., Wu, F.Y., Zhao, G., 2010. The Khanka Block, NE China, and its significance
for the evolution of the Central Asian Orogenic Belt and continental accretion.
Geological Society, London, Special Publications, 338(1), 117-137.

Windley, B.F., Alexeiev, D., Xiao, W., Kroner, A., Badarch, G., 2007. Tectonic models for
accretion of the Central Asian Orogenic Belt. Journal of the Geological Society,
164(1), 31-47.

Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Sun, D.Y., 2003. Highly
fractionated I-type granites in NE China (II): isotopic geochemistry and implications
for crustal growth in the Phanerozoic. Lithos, 67(3-4), 191-204.

Wu, F.Y., Li, Z., Wen, Z.C., Zhou, N., Zhao, Y.F., Jiang, Y.B., 2002. A novel thiourea-based
dual fluorescent anion receptor with a rigid hydrazine spacer. Organic letters, 4(19),
3203-3205.

Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., Jahn, B.M., 2011.
Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian
Earth Sciences, 41(1), 1-30.

Wu, F.Y., Sun, D.Y., Li, H.M., Wang, X.L., 2001. The nature of basement beneath the
Songliao Basin in NE China: geochemical and isotopic constraints. Physics and
Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10), 793-803.

Wu, F.Y., Yang, J.H., Lo, C.H., Wilde, S.A., Sun, D.Y., Jahn, B.M., 2007. The Heilongjiang
Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific
margin of northeastern China. Island Arc, 16(1), 156-172.

Wu, G., Chen, Y.C., Sun, F.Y., Liu, J., Wang, G.R., 2015. Geochronology, geochemistry,
and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area,
NE China, and their geological significance. Journal of Asian Earth Sciences 97, 229—
250.

Xiang, C., Feng, Z., Pang, X., Wu, H., Li, J., 2007. Late stage thermal history of the Songliao

Basin and its tectonic implications: Evidence from apatite fission track (AFT)

126



Bibliography

analyses. Science in China Series D: Earth Sciences 50 (10), 1479-1487 (in Chinese
with English abstract).

Xiao, W.J., Kroner, A., Windley, B., 2009. Geodynamic evolution of Central Asia in the
Paleozoic and Mesozoic. International Journal of Earth Sciences 98, 1185-1188.

Xie, R.J., Qin, G., Li, X.Y., 2009. Study on sedimentary facies for Qingshankou Formation in
Qiangihao Area of Changling Sag in Songliao Basin [J] Special Oil & Gas Reservoirs
5 (in Chinese with English abstract).

Xu, W.L., Pei, F.P., Wang, F., Meng, E., Ji, W.Q., Yang, D.B., Wang, W., 2013. Spatial-
temporal relationships of Mesozoic volcanic rocks in NE China: constraints on
tectonic overprinting and transformations between multiple tectonic regimes. Journal
of Asian Earth Sciences 74, 167-193.

Xu, Y.G., Fan, Q.C., 2015. Cenozoic valcanism in Eastern China: Review and perspectives.
Bulletin of Mineralogy, Petrology and Geochemistry, 34(4), 682-689. (in Chinese
with English abstract)

Xu, Y.G., Zhang, H.H., Qiu, H.N., Ge, W.C., Wu, F.Y., 2012. Oceanic crust components in
continental basalts from Shuangliao, Northeast China: derived from the mantle
transition zone? Chemical Geology, 328, 168-184.

Xu, W.L., Sun, C.Y., Tang, J., Luan, J.P., Wang, F., 2019. Basement nature and tectonic
evolution of the Xing’an Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646
(in Chinese with English abstract).

Yang, F.P., Chen, F.J., Wang, Y.H., 1995. Apatite fission track analysis in the central
depression, Songliao Basin. Petroleum Exploration and Development 22, 20-25 (in
Chinese with English abstract).

Yang, H., Ge, W.C., Bi, J.H., Wang, Z.H., Tian, D.X., Dong, Y., Chen, H.J., 2018. The
Neoproterozoic-early Paleozoic evolution of the Jiamusi Block, NE China and its East
Gondwana connection: Geochemical and zircon U-Pb—Hf isotopic constraints from
the Mashan Complex. Gondwana Research, 54, 102-121.

Yang, H., Ge, W.C., Yu, Q., Ji, Z., Liu, X.W., Zhang, Y.L., Tian, D.X., 2016. Zircon U-Pb—
Hf isotopes, bulk-rock geochemistry and petrogenesis of Middle to Late Triassic I-
type granitoids in the Xing’an Block, northeast China: Implications for early
Mesozoic tectonic evolution of the central Great Xing’an Range. Journal of Asian
Earth Sciences, 119, 30-48.

Yang, H., Ge, W.C., Zhao, G.C., Bi, J.H., Wang, Z.H., Dong, Y., Xu, W.L., 2017. Zircon U—

Pb ages and geochemistry of newly discovered Neoproterozoic orthogneisses in the

127



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Mishan region, NE China: Constraints on the high-grade metamorphism and tectonic
affinity of the Jiamusi—Khanka Block. Lithos, 268, 16-31.

Yang, H., Ge, W.C., Zhao, G.C., Dong, Y., Bi, J.H., Wang, Z.H., Zhang, Y.L., 2014.
Geochronology and geochemistry of Late Pan-African intrusive rocks in the Jiamusi—
Khanka Block, NE China: petrogenesis and geodynamic implications. Lithos, 208,
220-236.

Yang, H., Ge, W.C., Zhao, G.C., Dong, Y., Xu, W.L., Ji, Z., Yu, J.J., 2015. Late Triassic
intrusive complex in the Jidong region, Jiamusi—Khanka Block, NE China:
Geochemistry, zircon U-Pb ages, Lu-Hf isotopes, and implications for magma
mingling and mixing. Lithos 224, 143-159.

Yang, Y.T., 2013. An unrecognized major collision of the Okhotomorsk Block with East
Asia during the Late Cretaceous, constraints on the plate reorganization of the
Northwest Pacific. Earth-Science Reviews 126, 96-115.

Ying, J.F., Zhou, X.H., Zhang, L.C., Wang, F., Zhang, Y.T., 2010. Geochronological and
geochemical investigation of the late Mesozoic volcanic rocks from the Northern
Great Xing’an Range and their tectonic implications. International Journal of Earth
Sciences, 99(2), 357-378.

Yu, J.J., Wang, F., Xu, W.L., Gao, F.H., Pei, F.P., 2012. Early Jurassic mafic magmatism in
the Lesser Xing'an—Zhangguangcai Range, NE China, and its tectonic implications:
constraints from zircon U-Pb chronology and geochemistry. Lithos, 142, 256-266.

Yu, J.J., Zhang, Y.L., Ge, W.C., Yang, H., 2013. Geochronology and geochemistry of the
Late Cretaceous granitoids in the northern margin of the Sanjiang basin, NE China
and its tectonic implications. Acta Petrologica Sinica 29 (2), 369-385 (in Chinese with
English Abstract).

Zhang, F.Q., Chen, H.L., Yang, S.F., Feng, Z.Q., Wu, H.Y ., Batt, G.E., Yang, J.G., 2012.
Late Mesozoic-Cenozoic evolution of the Sanjiang Basin in NE China and its tectonic
implications for the West Pacific continental margin. Journal of Asian Earth Sciences
49, 287-299.

Zhang, F., Chi, Y.L., Wang, D.P., 1999. Dynamic of Cenozoic-Mesozoic Basin Formation on
Northeast China-The mantle plume and its adjustment are the primary driving force
causing for basin formation. World Geology (4), 4.

Zhang, F.Q., Chen, H.L., Yu, X., Dong, C.W., Yang, S.F., Pang, Y.M., Batt, G.E., 2011.
Early Cretaceous volcanism in the northern Songliao Basin, NE China, and its

geodynamic implication. Gondwana Research 19 (1), 163-176.

128



Bibliography

Zhang, H.H., Xu, Y.G., Ge, W.C., Ma, J.L., 2006. Geochemistry of late Mesozoic-Cenozoic
basalts in Yitong-Datun area, Jilin Province and its implication. Acta Petrologica
Sinica, 22(6), 1579-1596 (in Chinese with English abstract).

Zhang, X.D., Wang, Y., Li, G.R., 2005. Formation, Evolution and Earth Dynamics of
Jurassic and Cretaceous Basins in Northern China. Petroleum Geology & Oilfield
Development in Daqing 5 (in Chinese with English Abstract).

Zhang, X.Z., Guo, Y., Zeng, Z., Fu, Q.L., Pu, J.B., 2015. Dynamic evolution of the
Mesozoic-Cenozoic basins in the northeastern China. Earth Science Frontiers 22 (3),
88-98 (in Chinese with English abstract).

Zhang, X.Z., Ma, Z.H., 2010. Evolution of Mesozoic-Cenozoic basins in the eastern
Heilongjiang province, northeast China. Geology and Resources 19 (3), 191-196 (in
Chinese with English abstract).

Zhang, Y.T., Sun, F.Y., Wang, S., Xin, W., 2018. Geochronology and geochemistry of Late
Jurassic to Early Cretaceous granitoids in the northern Great Xing'an Range, NE
China: Petrogenesis and implications for late Mesozoic tectonic evolution. Lithos,
312, 171-185.

Zhang, Y.Q., Zhao, Y., Dong, S.W., 2004. Tectonic evolution stages of the Early Cretaceous
rift basins in Eastern China and adjacent areas and their geodynamic background.
Earth Science Frontiers 11, 123-134.

Zhang, Z.C., Li, Z.N,, Li, S.C., Xin, Y., Li, Z.M., Wang, X.Z., 2000. Geochemistry of the
Jingpohu Holocene basaltic rocks, Hellongjiang province, and discussion on their
deep processes. Acta Petrologica Sinica, 16(3), 327-336 (in Chinese with English
abstract).

Zhao, B., Wang, C., Wang, X., Feng, Z., 2013. Late Cretaceous (Campanian) provenance
change in the Songliao Basin, NE China: Evidence from detrital zircon U-Pb ages
from the Yaojia and Nenjiang FormationUnits. Palacogeography, Palacoclimatology,
Palacoecology, 385: 83-94.

Zhao, D., Ge, W., Yang, H., Dong, Y., Bi, J., He, Y., 2018. Petrology, geochemistry, and
zircon U-Pb—Hf isotopes of Late Triassic enclaves and host granitoids at the
southeastern margin of the Songnen—Zhangguangcai Range Massif, Northeast China:
Evidence for magma mixing during subduction of the Mudanjiang oceanic plate.

Lithos, 312, 358-374.

129



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Zhao, G., Wilde, S.A., Cawood, P.A., Sun, M., 2001. Archean blocks and their boundaries in
the North China Craton: lithological, geochemical, structural and P-T path constraints
and tectonic evolution. Precambrian Research, 107(1-2), 45-73.

Zhao, L.L., 2011. The evidence of petrology and geochronology on tectonic evolution of
Heilongjiang Complex in eastern Heilongjiang Province, China. Ph.D. Dissertation.
Changchun: Jilin University (in Chinese with English summary).

Zhao, L., Zhang, X., 2011. Petrological and geochronological evidences of tectonic
exhumation of Heilongjiang complex in the eastern part of Heilongjiang Province,
China. Acta Petrologica Sinica 27 (4), 1227-1234 (in Chinese with English Abstract).

Zhao, S., Xu, W.L., Tang, J., L1, Y., Guo, P., 2016. Timing of formationunit and tectonic
nature of the purportedly Neoproterozoic Jiageda FormationUnit of the Erguna
Massif, NE China: Constraints from field geology and U-Pb geochronology of
detrital and magmatic zircons. Precambrian Research, 281, 585-601.

Zhao, X.Q., 2011. Features of Structure Deformation and Evolution of Mesozoic-Cenozoic
basins in Eastern Heilongjiang. Doctoral dissertation, Dissertation for Ph.D. degree.
Zhejiang University, Hangzhou (in Chinese with English abstract).

Zhao, Y.W., Fan, Q.C., Bai, Z.D., Sun, Q., Li, N., Sui, J.L., Du, X.X., 2008. Preliminary
study on Quaternary volcanoes in the Halaha River and Chaoer River area in
Daxing'an Mountain range. Acta Petrologica Sinica, 24(11), 2569-2575 (in Chinese
with English abstract).

Zheng, C.Q., Xu, W.L., Wang, D.Y., 1999. The petrology and mineral chemistry of the deep-
seated xenoliths in Mesozoic basalt in Fuxin district from western Liaoning. Acta
Petrologica Sinica, 25(4), 616 (in Chinese with English abstract).

Zhou, C.Y., Wu, F.Y., Ge, W.C., Sun, D.Y., Rahman, A.A., Zhang, J.H., Cheng, R.Y. 2005.
Age, geochemistry and petrogenesis of the cumulate gabbro in Tahe, northern Da
Hinggan Mountain (in Chinese with English abstract).

Zhou, J.B., Wang, B., Wilde, S.A., Zhao, G.C., Cao, J.L., Zheng, C.Q., Zeng, W.S., 2015.
Geochemistry and U-Pb zircon dating of the Toudaoqiao blueschists in the Great
Xing’an Range, northeast China, and tectonic implications. Journal of Asian Earth
Sciences, 97: 197-210.

Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Zheng, C.Q., Wang, Y.J., Zhang, X.H.,
2009. The onset of Pacific margin accretion in NE China: evidence from the

Heilongjiang high-pressure metamorphic belt. Tectonophysics, 478(3-4), 230-246.

130



Bibliography

Zhou, J., Liu, Y., Li, W., Wen, Q., Liang, C., Feng, Z., 2019. Eastern extension of the
Solonker-Xar Moron-Changchun-Yanji Suture Zone: Constraints from
thermochronology of sedimentary and mafic rocks in the Hunchun-Yanji area,
Northeast China. Geological Journal, 54(2), 679-697.

Zhou, J.B., Wilde, S.A., 2013. The crustal accretion history and tectonic evolution of the NE
China segment of the Central Asian Orogenic Belt. Gondwana Research 23, 1365—
1377.

Zhou, X.H., 2006. Major transformation of subcontinental lithosphere beneath eastern China
in the Cenozoic-Mesozoic: review and prospect. Dixue Qianyuan/ Earth Science
Frontiers, 13(2), 50-64. (in Chinese with English abstract)

Zhou, X.M., Li, W.X., 2000. Origin of Late Mesozoic igneous rocks in Southeastern China:
implications for lithosphere subduction and underplating of mafic magmas.
Tectonophysics, 326(3-4), 269-287.

Zhu, C.Y., Zhao, G., Sun, M., Eizenhofer, P.R., Han, Y., Liu, Q., Liu, D.X., 2017.
Subduction between the Jiamusi and Songliao blocks: Geochronological and
geochemical constraints from granitoids within the Zhangguangcailing orogen,
northeastern China. Lithosphere, 9(4), 515-533.

Zorin, Y.A., Mordvinova, V.V., Turutanov, E.K., Belichenko, B.G., Artemyev, A.A.,
Kosarev, G.L., Gao, S.S., 2002. Low seismic velocity layers in the Earth's crust
beneath Eastern Siberia (Russia) and Central Mongolia: receiver function data and
their possible geological implication. Tectonophysics, 359(3-4), 307-327.

Zou, H., Fan, Q., Yao, Y., 2008. U-Th systematics of dispersed young volcanoes in NE
China: asthenosphere upwelling caused by piling up and upward thickening of
stagnant Pacific slab. Chemical Geology, 255(1), 134-142 (in Chinese with English
abstract).

Zou, H., Zindler, A., Xu, X., Qi, Q., 2000. Major, trace element, and Nd, Sr and Pb isotope
studies of Cenozoic basalts in SE China: Mantle sources, regional variations and

tectonic significance. Chemical Geology, 171: 33-47.

131



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

Appendix

Manuscript I: Supplementary data

JBO01
Central: 72.3 +5.9 Ma Dispersion: 0.01
Chi-sq.: 18.63, P (%): 66.8

120

+
100
90

80

T
70 50 40 30
Rel. error [%]

JB17
Central: 82.1 +8.3 Dispersion: 0.02
Chi-sq.: 15.5 P (%): 83.99

Cryst.: 23

TT T T T T
70 50 40 30
Rel. error [%]

JB31
Central: 55.3 £ 5.4 Ma Dispersion: 0.01

Chi-sq.:14.34 P (%)85.45

Cryst.: 22
TTTT T T
70 50 40 30

JBS1
Central:53.8 +4.3 Ma Dispersion: 0,03
Chi-sq.: 22.6 P(%): 48.43 90

80

70

60

Cryst.: 24
TTT T T T
60 40 30

JB15
Central:106.4 + 8.4 Ma Dispersion: 0.03
12 21.03 P (%):69.12

hi-s
Chi-s 160

140

120

- 100
+

90

-2{Cryst.: 26 +
LLLUBLI T T
60 40 30 20
Rel. error [%)]

JB20
Central: 75.8 £ 11.5 Dispersion: 0.00
Chi-sq.: 3.78 P (%):58.11

+

1
Cryst.:6

TT T T T
80 60 50 40
Rel. error [%]

JB36
Central: 55,7+ 3.4 Ma Dispersion: 0.01

Chi-sq.: 18.47 P(%): 73.17

T T T T
60 40 30 20 15

JB53
Central: 119.5 £ 9.3 Ma Dispersion: 0.06
Chi-sq.:  24.24 P (%): 5622

Cryst.: 27 +
TTTT T T
70 50 40 30

JB27
Central: 80.2+6.5 Ma Dispersion: 0.00
Chi-sq.: 11.74 P (%):89.63

2 Cryst.: 20 +
TTTr T 7T T
70 50 40 30

JB25
Central; 120.9 = 7.6 MaDispersion: 0,05
Chi-sq.: 28.29 P (%):24.8

Cryst.: 25 +

mrrTT T T
60 40 30 20 15
Rel. error [%]

JB39
Central: 62.1 4.2 Ma Dispersion: 0.00

Cryst.:23
mrTT T T T
60 40 30 20 15

JB29
Central: 66.7 + 5.0 Ma Dispersion: 0.00
Chi-sq.: 13.47 P(%): 89.12

Cryst.: 22 +
LLEUL T T
60 40 30 20

JB30B
Central: 61.1 £4.8 Ma Dispersion: 0.09
Chi-sq.: 24.15 P (%): 33.96

LU T
60 40 30 20

JB48
Central: 60.5+4.2 Ma Dispersion: 0.01
Chi-sq.: 19.25 P(%

Cryst.: 24
mrTrT T T T
60 40 30 20 15

Appendix Figure 2.1: Radial plots generated from the AFT single-grain ages of 14 basement samples.

132



Appendix

44 13.8+ 1.2 um JBOL | 9.1+5. pum JB1S 14. £ 1.1 pm JB27
s.e.: 0.4 1 s.e:08 s.e.: 0.2
1 n: 10 1 n:38 n: 44
] 10
(ERERIT ) = J R T T
15 pm 15 pm 15 pm
| 13.0£1.9 um JB25 | 133+ 1.6pm IB29 | | 133+ 16pm JB30b
1 s.e:03 | s.e:04 s.e.:04
10 | n: 47 | n:22 | n:19
L a = S T 1
15 um 15 pm 15 pm
g 134+ 1.3 um JB36 | 132+1.8um JB39 JB48
| s.e.:0.1 | s.e:04 30 4 13.8+0.9 um
1 n:31 ] n:25 s.e.:0.1
20 | n: 80
| -
15 pm 15 um 15 pm
o | 136+ 1L1m JB53 13.1+£0.9 um JBS1
{ s.e.:0.2 s.e.: 04
5 | n2l
D
£
=
=

track length

| n:6
......... L

15 pm

15 pm

Appendix Figure 2.2: Distribution of confined horizontal fission track lengths measured in apatite of the

basement samples.
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Appendix Figure 2. 3: Concordia plot of laser ablation ICPMS zircon U-Pb data obtained on sample JB27.
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Appendix Figure 2.4: Single-grain U-Pb ages obtained on sample JB28.
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Appendix Table 2.1: Vitrinite reflectance values used for the thermal / subsidence modelling

Sanjiang basin BinCanl Sanjiang basin Binl Boli basin BoD1
Depth  Ro% Depth  Ro% Depth  Ro%
352 0.7 480 1.06 110 1.69
(D(I;;;an 562 2.15 603 1.36 147 1.7
formation) 608  0.66 Kim (Muling 770 1.62 189 1.71
732 0.74 formation) 886 1.72 205 1.76
1282 0.76 1012 1.87 219 17
1316  0.66 1016  1.82 255 178
1318 0.68 1146 1.91 310 1.85
Kim (Muling 1472 0.85 1203 1.95 328 195
formation) 1475 0.86 1206 1.95 356 2.42
1520 0.85 1208 1.96 379 3.67
1642 0.94 1230 1.99 423 221
1690 0.95 1529 218 493 0.83
Klc (Chengzihe
1807  1.03 formation) 1532 218 496  0.87
1910 1.08 1540  2.19 K1¢(Chengzihe) 510 09
1998 1.16 1541 2.19 516 1.03
2140 1.21 1544 2.19 519 1.05
2142 1.6 1591 2.1 523 1.08
2142 125 1877 227 526 1.19
2200 1.03 529 1.32
2210 127 534 1.44
2261 0.63 546 2.15
2266  2.44 606 22
2307 1.28 654 222
Kle 2320 0.62 691 241
(Chengzihe

formation) 2330 1.62 755 253
2334 25 777 217
2389 13 938 237

2456 1.13

2462 1.94

2511 1.38

2580  1.17

2761 1.38

2850  2.45

2854 1

2858  2.84

2905 1.51

3260 1.78

K1d (Didao 3273 1.88
formation) 3380 2.11

3380  1.93
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Appendix Table 2.1 (continued): Vitrinite reflectance values used for the thermal / subsidence modelling

Hulin basin HuCanl Jixi basin Ji2
Depth  Ro% Depth  Ro%
K1m (Muling
1936 0.65 formation) 240 0.48
K1 2006  1.67 344 049
2265  2.16 430 049
2401  2.19 528 0.61
2674 217 626  0.66
630 0.68
630  0.69
631 0.67
631 0.68
634 0.69
Klc (Chengzihe 762 0.72
formation) 831 0.74
837 0.74
840 0.77
840 0.8
952 0.79
1008  0.83
1009  0.81
1009  0.81
1019 0.83
1128  0.82
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Manuscript II1: Supplementary data
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Appendix Figure 4.1: Wetherill zircon U-Pb concordia plots from the modern sediments in this study.
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Appendix Figure 4. 2: Compilation of cited igneous rocks’ mean zircon U-Pb ages, Cretaceous sediments

distributions and sampled detrital zircon river sand sample in this study results shown as pie charts representing

age population. Simplified geological map is after Wu et al. (2011). Black dots indicate the cited igneous rock

samples’ locations. Red dots indicate the cited Cretaceous sediment samples’ locations. A, compilation of detrital

zircon U-Pb ages from Cretaceous sediments of southern Songliao Basin; B, detrital zircon U-Pb ages from the

middle Songliao Basin, C, detrital zircon U-Pb ages from eastern Basins. Igneous rocks’ mean zircon U-Pb ages

and Cretaceous sediments’ detrital zircon U-Pb ages are after the same citations shown in Figure 4.6.
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Appendix

Appendix Table 4.2: Cited Igneous rock Zircon U-Pb ages

Igneous rock in Zhangguangcai Range

sample

9718-1

9728-1
97SWO0
01
97SWO0
05
97SWO0
08
97SWO0
09
98SW1
01
98SW1
03
98SW1
04
98SW1
22
98SW1
24
98SW1
25
98SW1
26
DYO051
9-1
DYO052
8-1
DYO053
5-1
DY054
0-1
DY054
5-1
DYO055
6-1
DYO055
9-1

DY103-
2
DY104-
2
DY105-
2
DY118-
1

DY 144-
1
FWo02-
184
FWo02-
188

MG-7

SLSO1-
1

Latitude

43°50/54"

43°53'37"

45°12"14"

45°05'05"

44°55'49"

44°55'49"

45°47"26"

45°47'51"

45°47'51"

43°34'31"

43°58'10"

43°53'56"

43°53'56"

44°02'18"

44°11'43"

44°30'15"

44°31'33"

44°23"25"

45°23'03"

45°30'17"

44°26'01"

44°20'18"

44°1427"

43°05'06"

43°51'16"

43°3422"

43°38'49"

43°5(/54"

44°23"20"

Longtitud
e

126°58'50

"

127°46'13

"

127°48'13
128°07'32

128°54'38

"

128°54'38

"

128°30'13
128°30'21

128°30"21

"

127°34"22

"

126°43'44
126°55'01

126°55'01

"

128°39'52

"

128°50'40
129°15'19

128°48'19

"

129°03'38

"

127°41'45

128°17'02

126°46'30

126°53'13

"

126°54'28

"

126°45'03

"

126°31'31

127°34'30

"

127°44'52

"

126°58'50

"

126°16'55

"

Location

Tiangiaogan
g

Sandaohe
Wujimi
Yimianpo
Yimianpo
Hufeng
Yanshou
Yanshou
Yanshou
Baishishan
Jiangmifeng
Tiangang
Tiangang
Weicaohe
Xiaobeihu
Shihecun
Fahecun
Jiujiecun
Jijiadian

Xincuntun

Liangjiashan
Shulan
Xiangshui
Baishishan
Beishan
Baishishan
Baishishan
Tiangiaogan

g

Silengshan

Lithology
Alkali
feldspar
granite
Syenograni
te
Syenograni
te
Granodiorit
e

Felsic dyke
Monzogran
ite
Syenograni
te
Granodiorit
e

Felsic dyke
Granodiorit
e
Granodiorit
e
Monzogran
ite

Dioritic
enclave
Monzogran
ite
Monzogran
ite
Syenograni
te
Syenograni
te
Syenograni
te
Syenograni
te
Monzogran
ite

Alkali
feldspar
granite
Granodiorit
e
Monzogran
ite
Granodiorit
e
Syenograni
te
Granodiorit
e
Granodiorit
e

Alkali
feldspar
granite
Alkali
feldspar
granite

Method

TIMS
LA-
ICPMS

SHRIMP

SHRIMP

SHRIMP

SHRIMP

SHRIMP

SHRIMP

SHRIMP

SHRIMP

SHRIMP

SHRIMP

SHRIMP
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS

LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS

SHRIMP

TIMS

€rror

Reference

Wu et al.
(2002)
Sun et al.
(2005)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)

Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)

Sun et al.
(2005)

Wu et al.
(2011)
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127°23'05 21 Wuet al.
P4-5 43°15'36" " Piaohechuan  Pyroxenite =~ SHRIMP 7 3 (2004b)
Alkali
128°53"29 feldspar LA- 47 Chen et al.
Ycz-2 44°08'36" " Yingchengzi  granite ICPMS 7 6 (2009)
GW045 126°19'37 Granodiorit LA- 17 Ge et al.
30 43°2926" " Daheishan e ICPMS 0 3 (2007b)
GW045 126°18'34 Monzogran  LA- 17 Ge et al.
42 43°30'01" " Daheishan ite ICPMS 8 3 (2007b)
Alkali
Baishi- 126°05"23 feldspar 12 Wu et al.
1 43°28'50" " Baishileizi granite TIMS 3 3 (2002)
99SW1 126°2522 Leucogabb 21 Wu et al.
09 42°53'52" " Hongqiling o SHRIMP 6 5 (2004b)
126°01'19  Qingyangwa 12
HP2-2 43°20'46" " izi Gabbro TIMS 9 1 Xuetal. (2013)
126°01'02  Qingyangwa  Monzogran 12
HP4-1 43°21'37" " izi ite TIMS 4 4 Xuetal. (2013)
126°19'50 Granodiorit LA- 17
97103-1  43°06'05" " Yima e ICPMS 0 1 Xuetal. (2013)
124°48'30  Daduanshug  Monzogran LA- 17
9902-2  43°22'05" " ou ite ICPMS 6 3 Xuetal (2013)
124°47'00 Granodiorit 18
9903-1 43°19'50" " Shichangtun e TIMS 4 2 Xuetal. (2013)
124°47"20 Monzogran LA- 16
9905-1 42°59'56" " Tiande ite ICPMS 2 3 Xuetal (2013)
Gt-Mus
125°21'28  Xiangshuiyu = monzogran 18
9909-4  42°57'15" " anzi ite TIMS 4 3 Xuetal (2013)
126°28'05 Granodiorit 24
9923-1 43°07'55" " Dayushan e TIMS 8 4 Xuetal. (2013)
Gt-Mus
DY020- 125°17'12 monzogran  LA- 17
1 43°17'30" " Quanyangou ite ICPMS 8 4 Xuetal. (2013)
DYO018- 126°10'30 Monzogran  LA- 17
1 43°23'35" " Quchaihe ite ICPMS 7 2 Xuetal. (2013)
DY023- 125°16'40 Syenograni  LA- 17
2 43°14'48" " Qingniushan  te ICPMS 8 2  Xuetal. (2013)
DYO036- 124°2824 LA- 17
6 42°24"21" " Dasanjiazi Diorite ICPMS 8 3 Xuetal. (2013)
DY050 126°06'01 Syenograni  LA- 10
2-1 42°42'34" " Xujiajie te ICPMS 8 1 Xuetal. (2013)
DY050 126°27'20 Syenograni  LA- 18
4-2 42°4520" " Zhiancun te ICPMS 2 3 Xuetal. (2013)
DY050 126°31'46  Xingnongcu  Syenograni LA- 18
6-1 42°47"26" " n te ICPMS 5 2 Xuetal. (2013)
DY050 126°35'14 LA- 18
9-5 42°59'18" " Liushuhe Diorite ICPMS 2 1 Xuetal. (2013)
DYO051- 125°25'59 Granodiorit LA- 17
1 42°28'03" " Tuanshanzi e ICPMS 5 2  Xuetal. (2013)
DYO053- 125°29'39 Granodiorit LA- 16
2 42°27'36" " Hudingzi e ICPMS 7 3 Xuetal (2013)
DYO081- 124°45'37 Quartz 18
1 43°21122" " Shichangtun  diorite TIMS 4 2  Xuetal. (2013)
Alkali
DY123- 125°57'29  Dahongshila  feldspar LA- 25
4 43°06'40" " zi granite ICPMS 1 2 Xuetal. (2013)
Alkali
DY124- 125°50'52  Dahongshila  feldspar LA- 26
2 43°05'57" " zi granite ICPMS 0 3 Xuetal (2013)
DY126- 125°50"28 Syenograni  LA- 25
2 42°54"26" " Qingyang te ICPMS 9 3 Xuetal (2013)
DY141- 125°07'58 Monzogran  LA- 16
1 43°10'12" " Zumin ite ICPMS 3 1 Xuetal. (2013)
DY143- 125°06"22 Monzogran LA- 25
2 43°02'31" " Anyi ite ICPMS 2 2 Xuetal. (2013)

166



Appendix

FWO00- 125°51'48 Quartz 26
121 42°58'11" " Dakangshan  syenite SHRIMP 4 5 Xuetal. (2013)
125°12'14 Monzogran 17
MG-12  42°55'45" " Renao ite SHRIMP 1 6 Xuetal. (2013)
124°48'11 Monzogran 15
MG-13  42°59'40" " Tiande ite SHRIMP 8 3 Xuetal. (2013)
124°36'57 Quartz 17
MG-15  42°36'03” " Fangmu diorite SHRIMP 5 6 Xuetal. (2013)
124°33'31 Granodiorit 15
MG-16  42°36'34" " Liushugou e SHRIMP 8 4 Xuetal. (2013)
124°2824 17
MG-21  42°24'21" " Dasanjiazi Diorite SHRIMP 4 3 Xuetal (2013)
124°55'44 Granodiorit 24
MG-28  42°22'19" " Songshuzui e SHRIMP 3 5 Xuetal. (2013)
124°48'10 Monzogran 16
MG-32  42°30'46" " Helong ite SHRIMP 3 4 Xuetal. (2013)
125°04'35 Granodiorit 16
MG-36  42°20'46" " Tukouzi e SHRIMP 3 7 Xuetal. (2013)
125°31'18 Monzogran 16
MG-38  42°2921" " Hudingzi ite SHRIMP 5 9 Xuetal. (2013)
125°33'14 Monzogran 16
MG-40  42°26'00” " Heishantou ite SHRIMP 3 4 Xuetal. (2013)
Alkali
125°49'39 feldspar 12
MG-42  42°43"24" " Loushan granite SHRIMP 5 4 Xuetal. (2013)
125°11'14 Monzogran 24
MG-64  42°32'52" " Xiaosiping ite SHRIMP 2 7 Xuetal. (2013)
MG- 124°40'46 Granodiorit 24
103 42°25'11" " Jianshanzi e SHRIMP 3 5 Xuetal. (2013)
MG- 124°39'33 Granodiorit 16
108 42°24"13" " Jianshanzi e SHRIMP 3 2 Xuetal. (2013)
Quartz
MG- 124°45'41 monzodiori 12
109 42°20'33" " Lazishan te SHRIMP 3 2 Xuetal. (2013)
Alkali
MG- 124°45'41 feldspar 12
110 42°20'33" " Lazishan granite SHRIMP 7 3 Xuetal. (2013)
MG- 124°45'34 Monzogran 25
119 42°17'48" " Jianshanzi ite SHRIMP 4 8 Xuetal. (2013)
MG- 124°54'53 Granodiorit 16
139 42°19'55" " Tukouzi e SHRIMP 3 4 Xuetal. (2013)
2-mica
MG- 124°52'09 monzogran 17
142 42°10'19” " Hongshilazi  ite SHRIMP 2 3 Xuetal (2013)
Gt-Mus
MG- 124°46'52 monzogran 26
143 42°16'10" " Fangniugou ite SHRIMP 1 20  Xuetal. (2013)
MG- 124°32'18 Quartz 16
182 42°2523" " Erlingba diorite SHRIMP 9 3 Xuetal (2013)
SCS01- 126°08'30 Granodiorit LA- 17
1 42°59"25" " Shancheshan e ICPMS 5 3 Xuetal. (2013)
125°36"29 Monzogran LA- 16
CH11 43°37'47" " Wuxing ite ICPMS 2 2 Xuetal. (2008)
125°36'13 Syenograni  LA- 15
X13 43°36'05" " Wuxing te ICPMS 9 3 Xuetal. (2008)
123°25'53 Granodiorit 28 Zhang et al.
FK51 42°30'13" " Faku e SHRIMP 4 3 (2005)
123°15'45 Granodiorit 26 Zhang et al.
FK53 42°29'49" " Faku e SHRIMP 5 4 (2005)
123°29'32 24 Zhang et al.
FKO04-5  42°29'46" " Faku Gabbro SHRIMP 1 6 (2009)
HWC1- 127°14'01  Pingfang gabbro— LA- 18
1 45°0829.0" 7" pluton diorite ICPMS 3 1 Yuetal, 2012
HDL1-  Dongfenglin Meta- 20 Wuet al.
1 chang 45°43'56"  129°1721" Hongguang basalt 9 3 (2011)
HDL1-  Dongfenglin 21 Wuet al.
2 chang 45°43'56"  129°1721" Hongguang Rhyolite 4 3 (2011)
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HDY16  Xinxinglinch Basaltic 21 Wuet al.
-1 ang 45°04'54"  129°15'48" Hongguang andesite 1 2 (2011)
HDY21 Xinxinglinch Meta- 21 Wuet al.
-1 ang 45°04'54"  129°16'17" Hongguang andesite 8 1 (2011)
Heilonggon Basaltic 17 Wuet al.
HB38-1 Heilonggong 45°25'30"  127°53'21" g andesite 3 3 (2011)
Qinglongtu 22 Wuet al.
HB37-1 Qinglongtun = 45°22'42"  128°24'28" n Andesite 8 2 (2011)
17 Wu et al.
HB13-1 Hongxing 45°34'07"  127°08'18" Wudaoling  Basalt 4 2 (2011)
17 Wu et al.
HB10-1 Sandaogang  45°42'25"  127°19'33" Wudaoling  Rhyolite 5 1 (201D)
Wangjiaguan 19 Wu et al.
HB28-1 zi 45°3220"  127°47'36" Taiantun Dacite 0 1 (201D)
Ningyuanc 19 Wuet al.
HB4-1 Shisanhucun ~ 45°35'10"  127°41'46" un Rhyolite 0 1 (201D)
51
samplel  x X X X X 6 5 Wang 2017
50
sample2 x X X X X 2 5 Wang 2017
49
sample3 x X X X X 6 5 Wang 2017
48
sample4 x X X X X 2 5 Wang 2017
46
sample5 x X X X X 1 5 Wang 2017
46
sample6 X X X X X 2 5 Wang 2017
47
sample7 X X X X X 5 5 Wang 2017
45
sample8 x X X X X 1 5 Wang 2017
44
sample9  x X X X X 9 5 Wang 2017
samplel 45
0 X X X X X 3 5 Wang 2017
samplel 44
1 X X X X X 3 5 Wang2017
samplel 42
2 X X X X X 6 5 Wang 2017

Igenous rock in Grat Xing'an Range

Longtitud Ag
sample  Latitude e 1 Location Lithology Method e error Reference
Granodiorit LA- 11 Wuet al.
0066-5  50°40' 121°36' Yitulihe e ICPMS 8 1 (2011
Monzogran  LA- 30 Wuet al.
0071-3  50°41" 123°10' Ganhe ite ICPMS 4 5 (2011)
124°19"26 Granodiorit LA- 13 Y.L. Zhang et
0075-7  51°3623" " Xinlinzhen e ICPMS 2 3 al. (2008)
124°09"23 Granodiorit LA- 13 Y.L. Zhang et
0076-9  51°37'40" " Xinlinzhen e ICPMS 1 3 al. (2008)
Alkali
122°14'40 feldspar LA- 12 Wuet al.
0116-1 51°26'18" " Niuerhe granite ICPMS 5 2 (2011)
GW030 124°23'05 Monzogran  LA- 31 Wu et al.
08 51°29'49” " Tayuan ite ICPMS 8 4 (2011)
GWO030 124°23'05 LA- 32 Wau et al.
15 51°29'49” " Tayuan Gabbro ICPMS 2 5 (2011)
GWO030 124°16"27 Monzogran LA- 22 Wuet al.
17 51°23'17" " Tayuan ite ICPMS 0 3 (2011)
GWO030 124°47'48 LA- 49 Ge et al.
35 52°21'42" " Tahe Gabbro ICPMS 0 2 (2005a)
Alkali
GWO030 124°47'48 feldspar LA- 47 Ge et al.
36 52°21'42" " Tahe granite ICPMS 9 3 (2005a)

168



Appendix

GW030
4
GW030
44
GW030
57
GW030
61
GW030
70
GW030
85
GW030
90

GWO031
29
GWO031
33
GWO031
38
GWO031
77
GWO031
81

GWO031
93
GWO032
07
GWO032
20
GWO032
41
GWO032
51
GWO032
55
GWO032
58
GWO032
69
GWO032
85

GWO032
86
GWO032
90
GW040
38
GW040
39
GW040
47
GW040
54
GW040
61
GW040
67
GW040
69
GW040
77
GW040
88

52°07'47"

52°07'47"

52°26'33"

52°26'32"

52°21'16"

52°18'35"

52°18'09"

52°26'40"

52°25'13"

52°38"27"

52°38'58"

52°38'58"

52°27'59"

52°49'03"

52°50'59"

52°42'02"

52°38'14"

52°28'41"

52°5924"

52°07'36"

52°03"27"

52°03"27"

52°05'41"

51°20'40"

51°21'51"

51°40'07"

51°37'34"

51°50'52"

52°19'49"

52°25"28"

52°30'34"

52°53'40"

125°59'01

"

125°59'01

"

124°50'05

"

124°50"10

124°42'16

"

124°32'43

"

124°24'06

"

123°39'57

"

123°36'55

123°41'09

"

123°08'56

"

123°08'56

"

123°05'00

"

123°36'04

"

122°18'04

121°54'58

"

121°53"21

"

121°52"29
122°30'30

122°03'54

"

122°05'33

"

122°05'33

"

121°53'39

"

121°30'15

121°30'35

"

121°49'35

"

121°34'42

"

121°53'32

121°17'17

"

121°19'49

"

121°04'57

"

120°42'58

Xinghuaduk
ou
Xinghuaduk
ou
Zhualuogu
Zhualuogu
Tahe

Tahe

Tahe

Bishui
Bishui
Pangu
Lvlin

Lvlin

Lvlin
Xilinji
Mangui
Fukeshan
Fukeshan
Fukeshan
Mangui
Mangui

Mangui

Mangui
Mangui
Jinhezhen
Jinhezhen
Alongshan
Aluga
Awuni
Qigian
Manguixi
Manguixi

Guanhuzhan

Gneiss
Monzogran
ite
Leucogabb
o
Leucogabb
o
Syenograni
te

Quartz
monzonite
Syenograni
te

Alkali
feldspar
granite
Granodiorit
e
Monzogran
ite

Gneiss
Quartz
diorite
Alkali
feldspar
granite
Monzogran
ite
Monzogran
ite
Monzogran
ite
Monzogran
ite
Monzogran
ite
Syenograni
te
Syenograni
te

Dolerite
Alkali
feldspar
granite
Monzogran
ite
Syenograni
te
Syenograni
te
Monzogran
ite
Monzogran
ite

Diorite
Monzogran
ite
Monzogran
ite
Syenograni
te

Felsic dyke

LA-
ICPMS

ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS

ICPMS
LA-
ICPMS

LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS

ICPMS

LA-
ICPMS
LA-
ICPMS
LA-
ICPMS
LA-
ICPMS

ICPMS

84

47

32

33

49

48

49

79

79

18

20

19

18

19

48

18

18

19

48

18

13

92

18

20

19

45

20

20

81

19

22

24

Wu et al.
(2011)
Wu et al.
(2011)

Zhou et al.

(2005)

Zhou et al.

(2005)

Geetal.
(2005a)
Geetal.
(2005a)
Geetal.
(2005a)

Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)

Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)

Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)

169



Cretaceous-Cenozoic thermo-tectonic evolution and provenance analysis of the basement and some sedimentary
successions northeast of the Songliao Basin, NE China

GW040 120°51'01 Monzogran LA- 46 Wuet al.
92 52°40'58" " Guanhuzhan ite ICPMS 4 4 (2011)
GWO040 120°46'41 LA- 41 Wuet al.
96 52°38'01" " Guanhuzhan  Diorite ICPMS 7 6 (2011)
GW040 120°57'41  Guanhuzhan  Monzogran LA- 20 Wuet al.
98 52°33'39" " nan ite ICPMS 1 1 (2011)
GWO041 120°51'32  Guanhuzhan  Monzogran LA- 41 Wuet al.
05 52°0122" " nan ite ICPMS 6 4 (2011)
GWO041 120°39'56 Monzogran  LA- 19 Wuet al.
14 51°19'54” " Moerdaoga ite ICPMS 8 2 (2011)
GWO041 120°34'52 Quartz LA- 24 Wu et al.
23 51°19'51” " Kutiankan diorite ICPMS 4 4 (2011)
GWO041 120°22'03 Monzogran LA- 19 Wuet al.
26 51°19'08" " Bajianfang ite ICPMS 6 3 (2011)
GWO050 125°05'25 Monzogran LA- 48 Ge et al.
37 52°21'11" " Chalaban ite ICPMS 1 3 (2007a)
GWO050 125°05'53 Monzogran  LA- 49 Ge et al.
49 52°25'02" " Shijiuzhan ite ICPMS 9 2 (2007a)
GWO050 125°45'15 Monzogran  LA- 50
53 52°33'12" " Halabaqi ite ICPMS 0 2 Sui etal. (2006)
GWO050 125°52'33 Monzogran LA- 46 Geet al.
56 52°2328" " Shibazhan ite ICPMS 0 1 (2007a)
GWO050 125°49'53 Granodiorit LA- 46
58 52°2421" " Halabagqi e ICPMS 1 1 Suietal. (2006)
GWO050 126°0825 Granodiorit LA- 19
67 52°31'50" " Zhengqi e ICPMS 0 1 Suietal. (2007)
GWO050 125°38'40 LA- 18
99 52°02'43" " Hanjiayuanzi  Diorite ICPMS 8 2 Suietal. (2007)
GWO051 125°39"24 Monzogran  LA- 50 Ge et al.
04 52°00'42" " Hanjiayuanzi ite ICPMS 1 2 (2007a)
121°1227 Syenograni  LA- 33 Wuet al.
29  48°03'30" " Langfeng te ICPMS 7 8 (2011)
122°46'19 Syenograni  LA- 30 Wuet al.
9411-26  48°00'12" " Zhalantun te ICPMS 1 3 (2011)
121°42'11 Monzogran LA- 30 Wuet al.
9437  48°48'26" " Xing'an ite ICPMS 9 4 (2011)
Alkali
125°12'10 feldspar 28 Wuet al.
9801-2  49°05'30" " Xiaoshantun  granite TIMS 5 2 (2002)
125°24'45  Sizhanlincha  Syenograni 28 Wuet al.
9805-2  49°54'32" " ng te TIMS 2 4 (2002)
125°24'50 Syenograni 26 Wuet al.
9806-3  49°58'30" " Guguhe te TIMS 4 5 (2002)
127°18'15  Shangmacha  Syenograni 10 Wuet al.
9832-2  50°21'30" " ng te TIMS 6 2 (2002)
126°28'10 Syenograni 29 Wuet al.
9843-1 50°14'05" " Daheishan te TIMS 2 4 (2002)
126°50'00 Syenograni 26 Wuet al.
9849-1  49°33"20" " Songmushan  te TIMS 0 3 (2002)
FWo04- 123°45'44 Monzogran LA- 12 Wuet al.
403 49°33'41" " Longtou ite ICPMS 9 2 (2011)
FWo04- 123°21"29 Monzogran LA- 13 Wu et al.
405 49°33'03" " Dalaibin ite ICPMS 9 1 (2011)
FWo04- 123°46'04  Yilinongcha  Monzogran LA- 13 Wuet al.
407 49°14'31” " ng ite ICPMS 1 1 (2011)
FWO04- 124°04'18 Granodiorit LA- 14 Wuet al.
412 49°35'35" " Yili e ICPMS 2 1 (2011)
FWo04- 123°45'33 Monzogran LA- 13 Wu et al.
413 49°10'38" " Nuomin ite ICPMS 0 1 (2011)
2-mica
FWo04- 123°27'33 monzogran  LA- 16 Wu et al.
414 48°15'41" " Dechang ite ICPMS 6 2 (2011)
FwWo04- 123°26'00 Monzogran  LA- 17 Wu et al.
416 48°40'23" " Sanchahe ite ICPMS 9 1 (2011)
FWo04- 123°13"27 Monzogran  LA- 15 Wu et al.
417 48°37'57" " Sanchahe ite ICPMS 7 2 (2011)
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GW043 122°33'00  Caishichang ~ Monzogran LA- 12 Wuet al.
60 46°48"21" " xi ite ICPMS 0 1 (2011)
Alkali
GW043 122°0829 feldspar LA- 11 Wuet al.
64 46°54'43" " Shenshan granite ICPMS 9 1 (2011)
Alkali
GW043 121°13'11 feldspar LA- 13 Wuet al.
69 46°40'58" " Suolun granite ICPMS 4 2 (2011)
116°25"24 43
MXO01 43°51'06" " Xilingele Gneiss SHRIMP 7 3 Shietal. (2003)
Alkali
116°11'12 feldspar 27
MX16 43°52"24" " Xilinhot granite SHRIMP 6 2 Shietal. (2004)
21DW- 116°26'33 Granodiorit 24
25 44°51'41" " Hegenshan ic dyke SHRIMP 7 2 Miao (2003)
21INMG 116°30'02 Dongfangho = Monzogran 28
-96 45°26'18" " ng ite SHRIMP 8 6 Miao (2003)
21INMG 117°27'32 Monzogran 29
-105 45°40'29" " Baolige ite SHRIMP 6 7  Miao (2003)
117°49'48 Quartz LA- 32 J.F. Liu et al.
42-79 44°16'14" " Jinxing diorite ICPMS 2 2 (2009)
117°33'04 Quartz LA- 32 JF. Liuet al.
38-72 44°07'50" " Dagihundi diorite ICPMS 5 3 (2009)
123°10'53 Quartz LA- 23 Gao et al.
T6-1 45°29'07" " Drill hole diorite ICPMS 6 3 (2007)
Basaltic 18
ER18-1  Shanghulin 50°44'02"  120°11'57" Wanbao andesite 2 2 Xuetal., 2013
Pyroxene 16 Meng et al.,
MZ2-1 Western 49°17'44"  117°31'30" Shangkuzi  andesite 6 2 2011
14
ER17-1  Eastern 50°44'45"  120°11'19" Shangkuli Rhyolite 3 4 Xuetal., 2011
ZKX24 Trachydac 14 Meng et al.,
-04 Well 49°21'36"  117°33'28" Shangkuli ite 2 1 2011
Dacitic 14 Meng et al.,
MZ1-1 Western 49°17'33"  117°31'36" Shangkuli ignimbrite 1 1 2011
Tamulanto  Olivne 12 Meng et al.,
MZ21-1 Dashimo 49°26'42"  117°02'31" u basalt 9 2 2011
ZKX24 Basaltic 12 Meng et al.,
-00 Well 49°19'16"  117°32722" Shangkuzi  andesite 3 2 2011
Genheqiaobe Tamulango  Basaltic 12
ER3-1 i 50°19'57"  120°15'01" u andesite 5 2 Xuetal, 2011
Tamulanto  Basaltic 12
ER19-2  Shanghulin 50°42'37"  120°12'52" u andesite 7 1 Xuetal, 2011
ZKD2- Tamulanto  Basaltic 12
1 Well 50°46'32"  120°11'35" u andesite 8 3 Xuetal, 2011
Trachydac 12 Meng et al.,
MZ20-1 Dashimo 49°2527"  117°04'48" Shangkuzi ite 7 3 2011
Tamulanto 12
ER16-1  Eastern 50°45'57"  120°10'37" u Rhyolite 4 1 Xuetal, 2011
12 Meng et al.,
MZ5-3  Western 49°20'06"  117°30'33" Shangkuzi  Dacite 5 1 2011
12 Meng et al.,
MZ7-1 Western 49°21'16"  117°34'22" Shangkuli Andesite 5 2 2011
Trachyand 12
ERI-1 Genhe 49°59'57"  120°06'50" Meiletu esite 8 2 Xuetal, 2011
Trachydac 12
ER9-1 Eastern 50°47'12"  119°52'54" Shangkuli ite 5 1 Xuetal, 2011
Pyroxene 12 Meng et al.,
MZ10-1 Western 49°23'56"  117°2521" Shangkuzi  andesite 5 2 2011
Genheqiaobe Tamulango 11
ERS-1 i 50°26'14"  120°00'54" u Andesite 4 3 Xuetal, 2011

Jiamusi Block

err  metho
code place Lat Lon lithology age or d reference
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SHRI
MP
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MP
SHRI
MP
SHRI
MP

SHRI
MP
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ICPM
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ICPM

LA-
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ICPM

LA-
ICPM

LA-
ICPM

LA-
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Xuetal., 2013

Xuetal., 2013

Xuetal., 2013

Sun et al., 2013

Xuetal., 2013

Wu et al.,
2001a

Wu et al.,
2001a
Wilde et al.
(2000)
Wilde et al.
(2000)

Wu et al.,
2001a
Wilde et al.
(2003)
Wilde et al.
(1997)
Wilde et al.
(1997)
Wilde et al.
(2003)
Wilde et al.
(1997)

Wu et al.,
2001a

Yang et al.
2014

Bietal. (2014a)

Yang et al.
2014

Yang et al.
2014

Bi et al. (2014a)
Yang et al. -
2014

Bietal. (2014a)

Bietal. (2014a)
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LA-
11GWO0 N46 13 Monzogran 1ICPM
32 30.8 E1315102.8 ite 488 5 S Bi et al. (2014a)
LA-
12GW0 N45 25 ICPM  Yangetal
29 40.5 E1312751.4 Diorite 296 5 S (2015a)
LA-
15GW0 N46 26 Granodiorit ICPM  Dong et al.
73 08.4 E1303025.7 e 278 5 S (2017b)
LA-
15GW2 N46 14 Alkali ICPM  Dong et al.
35 20.8 E1304556.9 granite 276 5 S (2017b)
LA-
15GWO0 N46 23 Monzogran ICPM  Dong et al.
75 44.9 E1303908.5 ite 272 5 S (2017b)
LA-
15GW2 N46 37 Monzogran ICPM  Dong et al.
48 58.4 E1303740.6 ite 267 5 S (2017b)
LA-
15GW2 N46 30 Monzogran ICPM  Dong et al.
65 46.3 E1303831.8 ite 266 5 S (2017b)
LA-
15GW2 N46 31 Monzogran ICPM  Dong et al.
61 57.0 E1303844.4 ite 263 5 S (2017b)
LA-
11GWO0 N47 05 Monzogran ICPM  Bietal.
41 00.2 E13142329 ite 261 5 S (2014b)
LA-
10GW2 N47 02 Granodiorit ICPM Bietal.
51 02.5 E1314312.7 e 260 5 S (2014b)
LA-
11GW0 N46 20 Granodiorit ICPM  Yangetal.
22 19.1 E13157308 ¢ 257 5 S (2015a)
LA-
13HYL N46 02 Syenograni 1ICPM
3 46.5 E1294641.8 te 204 5 S Guo et al. -2016
LA-
15GW2 N46 05 Granodiorit ICPM  Dong et al.
40 57.0 E13041 09.0 e porphyry 123 5 S (2016¢)
Lesser Xing'an Range
Sample Longtitud AG
Code Latitude e area Lithology method E Error  references
HYCI1- 128°53'57 10 Wuet al.
1 47°56'37" " Youhao Rhyolite 2 1 (2011)
HTW4- 129°20'05 10 Wuet al.
1 48°44'09" " Ganhe Andesite 8 1 (2011)
128°17'51 Granodiorit LA- 17 Wuet al.
9777-1 46°56'17" " Shichang e ICPMS 5 2 (2011)
Alkali
DYO038 129°02'55 feldspar LA- 17 Wu et al.
5-1 47°38'48" " Chaoxiantun  granite ICPMS 6 2 (2011)
128°31°54 monzogran  LA- 18 Wuet al.
LM-01 47°22'08" " Luming ite ICPMS 0 0 (2011)
HYC10 128°2323  Xinhuo hornblende  LA- 18
-1 47°42'36.8" 3" pluton -gabbro ICPMS 2 2  Yuetal, 2012
HTW1- 129°12'51  Xincun hornblende = LA- 18
1 48°3224.1"  .0" pluton -gabbro ICPMS 5 1 Yuetal, 2012
HYC13 18
-1 Shashilu 47°33'47"  128°24'04" Wudaoling  Rhyolite 5 1 Xuetal, 2013
magnetite—
HTW6- 129°25'21  Shuguang olivine- LA- 18
1 48°29'35.3" 3" pluton gabbro ICPMS 6 2 Yuetal, 2012
magnetite—
HYLI1- 128°01'08  Liuzhonggou hornblendit LA- 18
1 46°20'54.0"  .8" pluton e ICPMS 6 2 Yuetal, 2012
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Xuetal., 2013
Wu et al.
(2002)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)
Wu et al.
(2011)

Yuetal., 2012

Wei et al., 2012
Wu et al.
(2011)

Wei et al., 2012

Wei et al., 2012

Yuetal., 2012
Wei et al., 2012

Sun et al.
(2004)

Wei et al., 2012
Wei et al., 2012
Wei et al., 2012
Wei et al., 2012
Wei et al., 2012
Wei et al., 2012

Wei et al., 2012
Wuet al.
(2011)
Wang et al.,
2016

Wang et al.,
2016

Wang et al.,
2016

Wang et al.,
2016

Wang et al.,
2016

Wang et al.,
2016

Wang et al.,
2016

Wang et al.,
2016

Liu et al. (2008)
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129°08'38 monzogran  LA- 47 Wang et al.,
14HT10 47°51'49" " Meixi ite ICPMS 1 2 2016
129°15'18 LA- 47 Wang et al.,
14HT13  48°04'58" " Wuying monzonite  ICPMS 2 2 2016
129°15'07 LA- 47 Wang et al.,
14HT14 48°00'37" " Wuying monzonite  ICPMS 2 2 2016
DYO038 129°08'30 Syenograni  LA- 47 Wu et al.
6-5 47°3822" " Chaoxiantun  te ICPMS 5 8 (2011)
14HYC 129°27'46 monzogran  LA- 47 Wang et al.,
6 46°54'16" " Chenming ite ICPMS 5 4 2016
14HYC 129°31"21 monzogran  LA- 47 Wang et al.,
4 46°50'42" i Chenming ite ICPMS 6 3 2016
128°51'06 monzogran  LA- 48 Wang et al.,
14HT6  46°57'31" i Langxiang ite ICPMS 6 5 2016
128°57'16 LA- 48 Wang et al.,
14HT7  46°59'34" " Langxiang monzonite  ICPMS 8 3 2016
128°30'31 LA- 49 Wang et al.,
14HT3 46°57'09" " Langxiang Monzonite  ICPMS 1 3 2016
128°38'05 LA- 49 Wang et al.,
14HT4  46°55"25" " Langxiang monzonite  ICPMS 1 2 2016
DY038 128°34'05 Granodiorit LA- 49 Wuet al.
7-6 47°01'52" " Jiling e ICPMS 2 8 (2011)
128°28'07 monzogran  LA- 49 Wang et al.,
14HT2  46°56'18" " Langxiang ite ICPMS 6 3 2016
15XH3 129°32°50 LA- 49
0 46°48'11" " Tadong Diorite ICPMS 6 11 Wang, 2017
128°40'38 Granodiorit LA- 49
YCI127  46°55'37" " Jiling e ICPMS 9 1 Liuetal. (2008)
14HYC 130°00'38 monzogran  LA- 50 Wang et al.,
18 47°12"20" " Chenming ite ICPMS 5 2 2016
129°5820  Dongfengsha Quartz 50
IMS136 47°12'34" " n monzonite ~ SHRIMP 8 15 Liuetal. (2008)
0SW20 129°59'35 Monzogran 51 Wilde et al.
4 47°12'17" " Luobei ite SHRIMP 5 8 (2003)
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Appendix Table 4.3: Cited whole-rock geochemistry zirconium
contents from igneous rock units

Szi)n(fe]e Location Age(Ma) (e]\r/r[(;; (pzn) references
13GW273 GXR 210 2 129.0  Yangetal., 2016
13GW348 GXR 244 3 91.5 Yang et al., 2016
13GW210 GXR 212 2 107.0  Yangetal.,, 2016
13GW219 GXR 216 2 108.0  Yangetal., 2016
13GW222 GXR 225 2 131.0 Yangetal., 2016
13GW228 GXR 214 3 96.5 Yang et al., 2016
13GW234 GXR 230 2 92.6  Yangetal., 2016
13GW237 GXR 226 3 93.7  Yangetal., 2016
13Gw255 GXR 206 2 99.4  Yangetal., 2016
13GW272 GXR 151 1 64.5 Dong et al., 2016
13GW276 GXR 177 2 34.6  Dongetal, 2016
13GW280 GXR 180 1 53.2 Dong et al., 2016
13GW284 GXR 171 1 34.0 Dong et al., 2016
13GW289 GXR 171 2 51.1 Dong et al., 2016
13GW297 GXR 170 2 439  Dongetal, 2016
granite-1 GXR 139 2 170.0 Wangetal., 2018
DHS-N3 GXR 161 3 149.0 Zhangetal., 2018
DHS-N1 GXR 133 3 138.0 Zhangetal., 2018
DHS-N2 GXR 132 3 144.0 Zhangetal., 2018
DHS-N4 GXR 131 3 159.0 Zhangetal., 2018
TWO5 GXR 345 3 1349 Maetal., 2019
Tw28 GXR 321 35 136.5 Maetal., 2019
TW25 GXR 310 4 173.1 Maetal.,, 2019
ER7-1 GXR 851 6 202.0 Tangetal., 2013
ER27-1 GXR 792 3 133.0 Tangetal., 2013
ER24-1 GXR 792 4 160.0 Tangetal., 2013
11ER23-1 GXR 792 7 236.0 Tangetal., 2013
ER13-1 GXR 737 5 216.0 Tangetal., 2013
JF04 GXR 306 8 50.0  Fengetal., 2015
JFO5 GXR 308 7 52.0  Fengetal, 2015
TYO02 GXR 315 2 126.0  Fengetal., 2015
TYO5 GXR 312 3 176.0  Fengetal., 2015
PMO002-18 GXR 130 3 213.0 Dongetal., 2014
D0570-5-2  GXR 131 1 251.0 Dongetal, 2014
D9832 GXR 162 2 10.0  Jietal, 2018
D9843 GXR 154 1 30.0 Jietal, 2018
D9845 GXR 157 1 350  Jietal, 2018
D9849 GXR 161 1 50.0  Jietal, 2018
D09-06 GXR 511 2 96.0  Zhouetal., 2015
D09-07 GXR 492 1 258.0 Zhouetal., 2015
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D09-8 GXR 511 5 291.0 Zhouetal., 2015
D09-8A GXR 517 17 287.0  Zhouetal., 2015
05MZL10 GXR 164 3 321.0 Yingetal., 2010
05MZL16 GXR 149.5 2 113.0  Yingetal., 2010
05THO8 GXR 129.7 1.6 299.0 Yingetal., 2010
05GH10 GXR 123.8 1.3 305.0 Yingetal., 2010
10GW240 Jiamusi  283.7 22 13.6 Yuetal., 2013

11GW070 Jiamusi  277.6 1.6 37.8 Yuetal.,, 2013

13GW148 Jiamusi 507
13GW150 Jiamusi 493
11GW037 Jiamusi 510
11Gw039 Jiamusi 506
13GW156 Jiamusi 497
11GW035 Jiamusi 493
12GW051 Jiamusi 530
11Gw032 Jiamusi 488
11GW034 Jiamusi 490
11GW029 Jiamusi 488
15GW073 Jiamusi 278
15GW235 Jiamusi 303
15GWO075 Jiamusi 272
15GW248 Jiamusi 267
15GW261 Jiamusi 263
15GW265 Jiamusi 266
18gw240 Jiamusi 123
11GW010 Jiamusi 516
11Gw011 Jiamusi 498
11GWO017 Jiamusi 499
12GW007 Jiamusi 501
12GW026 Jiamusi 541
12GW031 Jiamusi 513

242.0  Bimaster 2015
139.0  Bi master 2015
48.6 Bi master 2015
75.2 Bi master 2015
161.0  Bimaster 2015
175.0  Bi master 2015
210.0  Bimaster 2015
105.0  Bi master 2015
156.0  Bi master 2015
112.0  Bimaster 2015
50.0 Dong et al., 2017
12.0 Dong et al., 2017
19.0 Dong et al., 2017
60.0 Dong et al., 2017
33.0 Dong et al., 2017
35.0 Dong et al., 2017
108.0 Dongetal., 2016
101.0  Yangetal., 2014
209.0 Yangetal., 2014
213.0 Yangetal., 2014
56.0 Yang et al., 2014
247.0 Yangetal., 2014
110.0  Yangetal., 2014

AN N bR W0 W N W WD WD W W WL R0 W W WA

graodiorite-

01 Jiamusi 54 2 55.0 Wang ZH, 2016
2029 Jiamusi  275.9 1.8 168.0 Huaetal., 2016
4228 Jiamusi  298.8 3.6 188.0 Huaetal., 2016
12GW019 Jiamusi 213 2 5.0 Yang et al., 2015

13GWO010 Jiamusi 204
12GWO015 Jiamusi 208
13GWO018 Jiamusi 211
12GW016 Jiamusi 209
13GWO017 Jiamusi 211
12GW001 Jiamusi 213
13GW012 Jiamusi 210
13GW124 Jiamusi 270

6.0 Yang et al., 2015
9.0 Yang et al., 2015
11.0 Yang et al., 2015
9.0 Yang et al., 2015
21.0 Yang et al., 2015
15.0 Yang et al., 2015
25.0 Yang et al., 2015
163.0 Bietal., 2016
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13Gw110
13GW104
13GW564
13GW554
13GWS560
13GW096
13GW094
13Gw090
13GWO086
13Gw039
ZS pluton
TP pluton
H15-08-01
H15-11-01
H15-14-01
H15-16-01
H15-34-01
H15-35-01
H15-37-01
H15-38-01
H15-39-01
h15-40-01
15GW004
15Gw013
15GW026
15GW036
14GW516
13GW186
T03

T04
Hsw2-3
hsw2-6
hsw6-4
hsw6-12
131

9780
IMS136
IMS136
YC127
YCI113
14HYC18-1
14HYC16-1
13HYC6-1

Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
Jiamusi
LXR
LXR
LXR
LXR
LXR
LXR
LXR
LXR
LXR
LXR
LXR
LXR
LXR
LXR
LXR

275
272
267
301
302
282
287
281
302
293
256
259
181
178
191
195
210
220
251
242
246
241
272
273
260
264
279
279
264
268
175
239
183
185
310
222
500
508
498
471
505
468
460

W RN N AR N WD WD WN

A D LN NN W W

Ju—

W » AN NN W

N WD W

121.0
529.0
135.0
80.3
584
90.7
94.6
99.8
95.5
119.0
20.0
34.0
35.0
30.0
35.0
24.0
8.0
10.0
15.0
26.0
25.0
28.0
80.0
50.0
10.0
90.0
231.0
211.0
280.0
346.0
349.0
100.0
55.0
101.0
288.0
326.0
383.3
398.0
261.0
361.0
364.0
378.0
280.0

Bietal., 2016
Bietal., 2016
Bietal., 2016
Bietal., 2016
Bietal., 2016
Bietal., 2016
Bietal., 2016
Bietal., 2016
Bietal., 2016
Bietal., 2016
Dong et al., 2016
Dong et al., 2016
Geetal., 2018
Geetal., 2018
Geetal., 2018
Geetal., 2018
Geetal., 2018
Geetal., 2018
Geetal., 2018
Geetal., 2018
Geetal., 2018
Geetal., 2018
Yang et al., 2019
Yang et al., 2019
Yang et al., 2019
Yang et al., 2019
Bietal., 2016
Bietal., 2016
Cui et al., 2013
Cui et al., 2013
Xu mj, 2013

Xu mj, 2013

Xu mj, 2013

Xu mj, 2013
Quetal., 2015
Sun et al., 2004
Liu JF, 2008

Liu JF, 2008

Liu JF, 2008

Liu JF, 2008
Wang et al., 2016
Wang et al., 2016
Wang et al., 2016
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14HT2-1 LXR 496 3 131.0 Wangetal., 2016
14HT4-1 LXR 491 2 284.0 Wangetal., 2016
14HT5-1 LXR 488 2 243.0 Wangetal., 2016
14HT6-1 LXR 486 5 227.0 Wangetal., 2016
14HT7-1 LXR 488 3 260.0 Wangetal., 2016
14HT8-1 LXR 470 3 135.0 Wangetal., 2016
14HT9-1 LXR 469 2 149.0 Wangetal., 2016
14HT10-1 LXR 471 2 254.0 Wangetal., 2016
14HT14-1 LXR 503 4 315.0 Wangetal., 2016
14HT13-01 LXR 472 2 364.0 Wangetal., 2016
14HT22-1 LXR 450 2 244.0 Wangetal., 2016
1 LXR 432 1 157.0  Wei Lianxi, 2013
2 LXR 431 1 151.0  Wei Lianxi, 2013
Wang and Liu,
LXR 850 248.0 2014
15YL14-1 LXR 182 2 172.0  Zhuetal., 2017
15YL28-1 LXR 185 2 125.0 Zhuetal., 2017
15YL18-4 LXR 182.7 2 199.0 Zhuetal., 2017
15YL10-1 LXR 185 2 152.0 Zhuetal., 2017
15YL38-1 ZGC 163 2 170.0  Zhuetal., 2017
15YL36-5 ZGC 191 2 152.0 Zhuetal., 2017
15YL40-1 7GC 191 2 149.0 Zhuetal., 2017
11GWO03 ZGC 289 3 126.0  Yuqian, 2013
9718 ZGC 182 3 299.0  Sunetal., 2005
9728-1 ZGC 216 3 184.0  Sunetal., 2005
D2251 ZGC 850 2 273.0 Wang, Liu 2014
1111 7GC 443 5 39.0 Peietal., 2014
JS20 ZGC 360 2 152.0 Wangetal., 2015
12JS01 ZGC 360 2 171.0 Wangetal., 2015
12J84-1 ZGC 361 3 153.0 Wangetal., 2015
11LK19-1 7GC 342 4 162.0 Wangetal., 2015
JS4-1 ZGC 340 2 683.0 Wangetal., 2015
11HNA7 ZGC 516 5 60.0  Wang, 2017
16PH ZGC 502 3 47.0  Wang, 2017
ZGC 502 5 52.0  Wang, 2017
ZGC 496 4 179.0 Wang, 2017
ZGC 482 4 258.0 Wang, 2017
ZGC 475 4 155.0 Wang, 2017
HBI1-1 ZGC 294 6 396.0 Mengetal., 2011
HMD4-1 ZGC 286 5 347.0 Mengetal., 2011
HYSI1-1 ZGC 291 5 374.0 Mengetal., 2011
HYS2-1 ZGC 291 5 333.0 Mengetal., 2011
ZGC 248 4 160.0  Sunetal., 2004a
ZGC 182 3 250.0  Sunetal., 2005a
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16GW114
16GW121
16GW126
16GW110
16GW124
9757-4
9767-2
9718-1
baishi-1
9780
DWwW2
9715

ZGC
ZGC
ZGC
ZGC
ZGC
ZGC
ZGC
ZGC
ZGC
ZGC
ZGC
ZGC
7GC

188
215
217
219
221
221
213
197
191
123
196
229
190

NOA R~ LWOO NN

185.0
10.0
15.0
20.0
25.0
30.0
428.0
92.0
299.0
324.0
378.0
785.0
255.0

Sun et al., 2005a
Zhao et al., 2018
Zhao et al., 2018
Zhao et al., 2018
Zhao et al., 2018
Zhao et al., 2018
Wu et al., 2002
Wu et al., 2002
Wu et al., 2002
Wu et al., 2002
Wu et al., 2002
Wu et al., 2002
Wu et al., 2002
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