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Abstract 

Information-based health systems aimed at improving clinical decision-making are appealing as they 

are able to cope with the rising amount of information that clinicians are experiencing and provide a 

framework for incorporating validated expertise in health care. Such systems need biomedical analytical 

expertise, patient-specific data, and a system for reasoning that incorporates data and knowledge to 

produce and provide clinicians with valuable information during care delivery. Biomedical research has 

been developed to exploit high-throughput data profiles that provide insights into human disease 

pathogenesis and diagnosis. The interpretation of high-throughput data involves the comparison of data 

and knowledge from heterogeneous resources, whether in the biomedical field or in genomics. 

Enrichment analysis is commonly used for the functional study of gene lists detected by high-

throughput techniques like expression microarray experiments. It utilizes statistical methods to detect 

biological characteristics that are expressed more than expected by chance in a gene set under study. 

Additionally, healthcare is also seeking closer integration with biomedical data to boost personalized 

medicine and to provide better treatments. Ontologies, which identify entities and relations used in a 

domain, play a key role in the automated integration of patient data with relevant knowledge to support 

clinical research and drug discovery. Moreover, biomedical literature provides valuable insights into 

the identification of potential treatments, and it can support biomedicine researchers on their way to 

new findings. With the enormous amount of biomedical literature and the rapid growth of the number 

of new publications, the wealth of scientific knowledge represented in free text is increasing 

dramatically. Extracting relevant information and analyzing text data is helpful to discover relationships 

between biological entities and answer biological questions.  

In this thesis, I developed applications that exploit biomedical knowledge represented in different forms 

and existing in different resources to deliver helpful information in Systems Medicine. The first 

application is a Java-based enrichment analysis tool which is based on an enrichment function 

developed in a recent study that uses the logistic regression approach to identify significant categories. 

I developed a Java command-line interface that uses the logistic regression function in R to integrate 

the tool into a Java-based platform and to ease its usability by Java users.  

Moreover, to facilitate the interoperability between clinical and molecular data existing in biomedical 

resources, I developed a lexical mapping module in Java to facilitate the mapping of biomedical 

concepts. I used the module to map the International Classification of Diseases (ICD) terms that 

represent the names of disease phenotypes in clinical systems to disease concepts in the National Cancer 

Institute Thesaurus (NCIT) and the Medical Subject Heading (MeSH®) vocabulary. In addition, to 

deliver the pathway and molecular information integrated into the NCIT ontology, I developed a plugin 

for the NCIT ontology using the OBA service which is a service that facilitates access to ontologies 

structures. Using this plugin, I implemented functions that can model disease pathways based on genes.  



Furthermore, I used the word2vec implementation in two approaches to generate biomedical 

embeddings. The word2vec is one of the most widely used implementations of word embeddings due 

to its training performance. For the first approach, I used the Dis2Vec model, a vocabulary driven 

word2vec model, to extract disease-drug associations, and I was able to capture visually validated 

associations. For the second approach, I created and processed a corpus using different preprocessing 

strategies to obtain embeddings for further comparison. E.g., one passage substituted synonymous terms 

by their preferred terms in biomedical databases and assigned type labels to words in order to filter 

similarities for entity types like genes, drugs, or human diseases. To ease the exploration of biomedical 

concepts and their relations in the embedding, I developed a web service that uses functions to query 

the embeddings. I validated similarities between entities in obtained embeddings using existing 

knowledge in biomedical databases. Comparisons showed that relations between entities such as known 

protein-protein interactions (PPIs), common pathways and cellular functions, or narrower disease 

ontology groups correlated with higher vector cosine similarity. Word representations as produced by 

text mining algorithms like word2vec, therefore capture biologically meaningful relations between 

entities. Furthermore, I extracted gene-gene networks from two embedding versions and used them as 

prior knowledge to train Graph-convolutional neural networks (CNNs) on breast cancer gene expression 

data to predict the occurrence of metastatic events. Performances of resulting models were compared 

to Graph-CNNs trained with protein-protein interaction networks or with networks derived using other 

word embedding algorithms. Graph-CNNs trained with word2vec-embedding-derived networks 

performed best for the metastatic event prediction task compared to PPI or other text mining-based 

networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung 

Informationsbasierte Gesundheitssysteme zur Verbesserung der klinischen Entscheidungsfindung sind 

attraktiv, da sie mit der steigenden Menge an Informationen, die Kliniker erfahren, umgehen können 

und einen Rahmen für die Einbeziehung validierter Fachkenntnisse in die Gesundheitsversorgung 

bieten. Solche Systeme benötigen biomedizinisches Analysewissen, patientenspezifische Daten und ein 

Argumentationssystem, das Daten und Wissen enthält, um Kliniker während der Leistungserbringung 

wertvolle Informationen zu liefern. Die biomedizinische Forschung wurde entwickelt, um Datenprofile 

mit hohem Durchsatz zu nutzen, die Einblicke in die Pathogenese und Diagnose von Krankheiten beim 

Menschen liefern. Die Interpretation von Hochdurchsatzdaten beinhaltet den Vergleich von Daten und 

Wissen aus heterogenen Ressourcen, sei es im biomedizinischen Bereich oder in der Genomik. Die 

Anreicherungsanalyse wird üblicherweise zur funktionellen Untersuchung von Genlisten verwendet, 

die mit Hochdurchsatztechniken wie Expressionsmikroarrays nachgewiesen wurden. Es verwendet 

statistische Methoden, um biologische Eigenschaften nachzuweisen, die in einem untersuchten Gen-Set 

mehr als zufällig ausgedrückt exprimiert werden. Darüber hinaus strebt das Gesundheitswesen eine 

engere Integration mit biomedizinischen Daten an, um die personalisierte Medizin zu fördern und 

bessere Behandlungen anzubieten. Ontologien, die Entitäten und Beziehungen identifizieren, die in 

einer Domäne verwendet werden, spielen eine Schlüsselrolle bei der automatisierten Integration von 

Patientendaten mit relevantem Wissen, um die klinische Forschung und die Wirkstoffentdeckung zu 

unterstützen. Darüber hinaus bietet die biomedizinische Literatur wertvolle Einblicke in die 

Identifizierung potenzieller Behandlungen und kann biomedizinische Forscher auf ihrem Weg zu neuen 

Erkenntnissen unterstützen. Mit der enormen Menge an biomedizinischer Literatur und dem rasanten 

Wachstum der Zahl neuer Veröffentlichungen nimmt der Reichtum an wissenschaftlichen 

Erkenntnissen im Freitext dramatisch zu. Das Extrahieren relevanter Informationen und das 

Analysieren von Textdaten ist hilfreich, um Beziehungen zwischen biologischen Einheiten zu 

entdecken und biologische Fragen zu beantworten. 

In dieser Arbeit entwickelte ich Anwendungen, die biomedizinisches Wissen nutzen, das in 

verschiedenen Formen dargestellt wird und in verschiedenen Ressourcen vorhanden ist, um hilfreiche 

Informationen in der Systemmedizin zu liefern. Die erste Anwendung ist ein Java-basiertes Tool zur 

Anreicherungsanalyse, das auf einer Anreicherungsfunktion basiert, die in einer kürzlich 

durchgeführten Studie entwickelt wurde und den logistischen Regressionsansatz verwendet, um 

signifikante Kategorien zu identifizieren. Ich habe eine Java-Befehlszeilenschnittstelle entwickelt, die 

die logistische Regressionsfunktion in R verwendet, um das Tool in eine Java-basierte Plattform zu 

integrieren und die Benutzerfreundlichkeit für Java-Benutzer zu vereinfachen. 

Um die Interoperabilität zwischen klinischen und molekularen Daten in biomedizinischen Ressourcen 

zu erleichtern, habe ich außerdem ein lexikalisches Mapping-Modul in Java entwickelt, um das 



Mapping biomedizinischer Konzepte zu erleichtern. Ich habe das Modul verwendet, um die Begriffe 

der Internationalen Klassifikation von Krankheiten (ICD), die die Namen von Krankheitsphänotypen 

in klinischen Systemen darstellen, auf Krankheitskonzepte im National Cancer Institute Thesaurus 

(NCIT) und im Vokabular des Medical Subject Heading (MeSH®) abzubilden. Um den in die NCIT-

Ontologie integrierten Pfad und die molekularen Informationen bereitzustellen, habe ich ein Plugin für 

die NCIT-Ontologie entwickelt, das den OBA-Dienst verwendet, der den Zugriff auf 

Ontologiestrukturen erleichtert. Mit diesem Plugin habe ich Funktionen implementiert, die 

Krankheitswege basierend auf Genen modellieren können. 

Darüber hinaus habe ich die Implementierung von word2vec in zwei Ansätzen verwendet, um eine 

biomedizinische Einbettung zu generieren. Das word2vec ist aufgrund seiner Trainingsleistung eine der 

am häufigsten verwendeten Implementierungen von Worteinbettungen. Für den ersten Ansatz 

verwendete ich das Dis2Vec-Modell, ein vokabulargesteuertes word2vec-Modell, um Krankheit-

Arzneimittel-Assoziationen zu extrahieren, und konnte visuell validierte Assoziationen erfassen. Für 

den zweiten Ansatz habe ich einen Korpus mit verschiedenen Vorverarbeitungsstrategien erstellt und 

verarbeitet, um Einbettungen für den weiteren Vergleich zu erhalten. Beispielsweise ersetzte eine 

Passage synonym Begriffe durch ihre bevorzugten Begriffe in biomedizinischen Datenbanken und wies 

Wörtern Typbezeichnungen zu, um Ähnlichkeiten für Entitätstypen wie Gene, Medikamente oder 

menschliche Krankheiten zu filtern. Um die Erforschung biomedizinischer Konzepte und ihrer 

Beziehungen in der Einbettung zu vereinfachen, habe ich einen Webdienst entwickelt, der Funktionen 

zum Abfragen der Einbettung verwendet. Ich habe Ähnlichkeiten zwischen Entitäten in erhaltenen 

Einbettungen unter Verwendung des vorhandenen Wissens in biomedizinischen Datenbanken validiert. 

Vergleiche zeigten, dass Beziehungen zwischen Entitäten wie bekannten PPIs, gemeinsamen Pfaden 

und Zellfunktionen oder engeren Krankheitsontologiegruppen mit einer höheren Ähnlichkeit des 

Vektorkosinus korrelierten. Wortdarstellungen, wie sie von Text Mining-Algorithmen wie word2vec 

erzeugt werden, erfassen daher biologisch bedeutsame Beziehungen zwischen Entitäten. Darüber 

hinaus extrahierte ich Gen-Gen-Netzwerke aus zwei Einbettungsversionen und verwendete sie als 

Vorwissen, um Graph-Convolutional Neural Networks (CNNs) auf Brustkrebs-Genexpressionsdaten 

zu trainieren, um das Auftreten metastatischer Ereignisse vorherzusagen. Die Leistungen der 

resultierenden Modelle wurden mit Graph-CNNs verglichen, die mit Protein-Protein-

Interaktionsnetzwerken oder mit Netzwerken trainiert wurden, die unter Verwendung anderer 

Worteinbettungsalgorithmen abgeleitet wurden. Graph-CNNs, die mit von word2vec-Einbettung 

abgeleiteten Netzwerken trainiert wurden, zeigten im Vergleich zu PPI oder anderen auf Text Mining 

basierenden Netzwerken die beste Leistung für die Aufgabe zur Vorhersage metastatischer Ereignisse. 
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1 Introduction  

Systems biology is rapidly changing the scope of modern healthcare from the diagnosis and 

treatment of symptom-based diseases to the precision medicine in which patients are the basis 

of their unique features. Elucidating molecular mechanisms behind diseases is an important 

field of clinical genomics research, in order to enhance our core understanding of such diseases. 

This may potentially lead to new targets for diagnosis or treatment. The goal of modern 

approaches in Systems Medicine is to explore the even more complex interactions of signaling 

pathways so that individual treatment decisions can be more comprehensive. The need to 

extend the emphasis on personalized medicine is justified by individualized care decisions and 

recently invented specialized drugs. Biomedical research seeks to clarify the processes by 

which a particular disease develops, for which gene expression studies have proven to be a 

great resource. Gene expression profiling has recently been at the forefront of advancements 

in personalized medicine, particularly in the cancer domain. The development of high-

throughput techniques has allowed scientists to investigate omics data (biological sciences) 

such as genomes, transcriptomes, proteomes, metabolomes in unprecedented detail [1]. These 

omics data results in a global health and disease profile and offers new strategies for 

personalized health surveillance and preventive medicine [1]. Examining the differences 

between diseased and healthy conditions helps us to understand the disease pathology and to 

eventually treat it. Detection of differentially expressed genes in disease helps to understand 

the basic mechanism of disease occurrence. 

Moreover, experimental data interpretation generally also demands that clinicians and 

biologists assess their data to existing knowledge and data sets. A significant trend in 

biomedical research has recently been the translation of knowledge from basic research into 

practice. Comprehensive clinical features should be defined in a way that leverages current 

biomedical knowledge to advance precision medicine. Translational research aims at 

improving health using a vast variety of biomedical resources, the use of information from 

experimental data at the diagnosis stage and guiding basic research with patient-finding issues. 

A crucial challenge for translational medicine informatics is the effective exploitation of 

multiple types of omics data collected from patient cohorts in studies of human diseases, to 

develop a more comprehensive picture of the disease, in particular an explanation of how 

disease mechanisms and disease pathways are linked to changes at the molecular level. Usually, 



2 
 

biomedical knowledge is not very well structured in a unified framework. However, it is 

dispersed across many biomedical databases as well as scientific literature and might be 

heterogeneous and complicated. Furthermore, many biomedical systems are not unified a 

common framework since they have been independently developed, and therefore do not to 

ease navigation across resources. Given these difficulties, there has been recently an evolution 

towards developing novel approaches for biomedical knowledge representation and developing 

explicit domain models such as curated and annotated datasets, ontologies, vocabularies, and 

knowledge bases. An ontology is a systematic knowledge representation within a domain that 

provides a unified framework of structured concepts and the relationships between them. 

Ontologies are used to record new information gathered from almost every aspect of today’s 

biomedical research, from conventional biochemical experiments that elucidate particular 

molecular actors in disease processes to experiments at the omics level that provide systemic 

tissue-based gene regulation information [2]. Ontological annotations link biological entities 

to corresponding classes in ontology. Enrichment analysis is a common approach for the use 

of ontological-based annotations in major knowledge bases of genes and gene products. Using 

these annotations, enrichment analysis methods determine whether ontology classes have a 

significant over or under-representation of entities. The efficient use of such annotations 

involves inferring semantic connections, known as relations, by tracing paths across edges. 

Biomedical ontologies namely Gene Ontology (GO) [3] are essential methods that use 

annotation terms for systematic annotation of genes and gene products [2]. An important 

application of GO is to investigate the functional effect of gene expression in biological and 

disease processes using gene set enrichment analyses [4]. There are several different methods 

that use GO annotations in enrichment analyses such as Categorizer [5], GOATOOLS [6], and 

Map2Slim [7]. 

Besides, there is an increasing need for the integration and exploitation of heterogeneous 

biomedical knowledge to support interoperability with healthcare applications for better 

clinical practice, scientific research, and personalized healthcare. Biomedical ontologies, 

terminologies, and controlled vocabularies have been commonly used (e.g. MeSH® [8], UMLS 

[9], etc.), in particular, for the integration of various scientific databases with The International 

Classification of Diseases (ICD) [10] data. The ICD relies on clinical features that facilitate the 

understanding of molecular mechanisms of diseases, requiring methods that integrate 

biomedical data for the classification of diseases in order to meet the needs of precision 

medicine. As these biomedical resources grow in number and size, redundancy and 
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inconsistency are increasing between vocabularies. Redundancy occurs when similar terms 

exist in different vocabularies. However, inconsistency refers to the presence of different terms 

that represent the same entity in multiple vocabularies. The rapid growth in biological data and 

information has contributed to understating the utility of ontological approaches in biology 

and, subsequently, to further efforts to exploit them. One significant potential advantage of 

these approaches is to bridge the gap between basic biological research and medical 

applications. The common sense given by ontologies allows the integration of biomedical data 

formats easier. 

In addition to developing biomedical tools for structured data, researchers have been targeting 

the automated incorporation and use of unstructured data, i.e. biomedical literature, to capture 

novel findings. Information obtained from semantic-driven literature mining needs to be 

integrated into established knowledge repositories, thus becoming an integral part of a 

completely defined and interconnected space for biomedical research knowledge. Many studies 

have concentrated on extracting knowledge from scientific literature using natural language 

processing (NLP) methods to promote the discovery and the exploitation of this knowledge 

[11][12][13][14], which entails large hand-labeled training datasets. One of the most important 

techniques of NLP is assigning high-dimensional vectors to words, also known as word 

embeddings, in a text corpus by preserving the syntactic and semantic relationships between 

words [15]. Many word embedding models and pre-trained word embeddings have been 

recently published online and applied to several biomedical tasks of NLP [15][16][17]. Wang 

et al. [18] evaluated the performance of word embeddings that were generated using four 

different corpora namely biomedical literature, clinical notes, Wikipedia, and news articles. 

Smalheiser et al. [19] presented a novel unsupervised method to represent words, text, or 

phrases as low dimensional vectors based on the word co-occurrence frequency and the 

similarity between words. Most of the word embeddings are usually trained in the word2vec 

[15] or GloVe [16] model. These models use information about the co-occurrence of each word 

to represent it in a distinct vector. Word2vec [15] is one of the most popular word 

representation implementations, that can capture the meaning of words and similarities 

between words based on the context. 

Knowledge gained from scientific literature can supplement newly obtained experimental data 

in helping researchers understand the pathological mechanisms underlying diseases. Apart 

from the semantic incorporation of heterogeneous information sources, the usability of the 

integrated resource by scientists depends on the availability of knowledge visualization and 
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exploration tools. Additionally, the integration methods must be modular and must be easy to 

be used by bench scientists and effective to help them gain new insights from the integrated 

knowledge bases. The ultimate goal of such interconnected sources of knowledge and 

exploration tools is to allow scientists to generate novel hypotheses from the knowledge they 

explore. There are several tools that have been made available and provide the ability to explore 

the literature for specific information but they are not based on word embedding techniques 

such as MetaMap [20], MedEvi [21], WhatIzIt [22], Gimli [23], iHOP [24], cTAKES [25], 

Open Biomedical Annotator [26].  

The work of this thesis is part of a consortium project that aims to provide more efficient data 

use in Systems Medicine by integrating patient clinical and genomics data with pathway 

knowledge. In particular, the approach is to generate a knowledge base and methods to generate 

context-specific pathways like patient-specific and disease-specific. The main aim of my thesis 

work is to tackle the challenge of delivering relevant biomedical knowledge to healthcare 

applications that help to uncover molecular mechanisms of diseases to promote treatment and 

drug discovery. This was established by developing applications for biomedical knowledge 

integration, representation, and exploration. The first application I developed is an enrichment 

analysis tool that uses the logistic regression method to determine predefined gene sets that are 

biologically related and enriched with genes differentially expressed. This approach was 

introduced in a recent study and showed an outperformance by comparing it to other 

enrichment analysis methods. I developed a Java command interface that integrates the logistic 

regression function that was originally implemented in R and uses GO and Reactome categories 

annotated with ENSEMBL gene identifiers as predefined data sets to test significant genes. 

The tool is a standalone Java application that was developed to be integrated into a Java 

platform and be available to be used by researchers and clinicians. It was tested with a data 

sample and the analysis was successfully performed.  

Furthermore, in order to promote the comparison of clinical and biological data to reference 

knowledge bases and to already existing data sets, I mapped ICD codes, used in clinical systems 

to define disease phenotypes, to disease concepts in the NCIT and the MeSH® vocabulary. I 

developed a lexical mapping module to establish the mapping between concepts in different 

resources and by using other mapping strategies. The lexical mapping approach is based on 

matching two concepts lexically using string similarity metrics. To provide molecular and 

pathway information related to diseases, I used the NCIT ontology structure to develop 

functions that help to model disease pathways. The functions were implemented into a plugin 
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in the Ontology-Based Answers (OBA)  [27] service that provides access to ontology structures 

using specific functions for specific ontologies.  

Further, extracting relevant information and analyzing text data is helpful to discover 

relationships between biological entities and answer biological questions. Making use of the 

word2vec approach, I generated word vector representations based on a corpus consisting of 

over 16 million PubMed abstracts. Preprocessing techniques were applied to generate 

embedding similarities for comparison purposes. I annotated a number of biological entities to 

get more insights into the embedding information and to facilitate the extraction of entities of 

a particular type. To ease the processing of other text corpora and the development of word 

embedding, I developed a pipeline based on the implemented methods. Additionally, I 

developed a web service that provides both a graphical web interface as well as a RESTful API 

to explore the resulting embedding. To derive biological interpretations and explain the 

variation of the similarities between entities, I performed computational analyses using existing 

knowledge in biomedical databases. The analysis results showed that relations between entities 

such as known PPIs, common pathways and cellular functions, or narrower disease ontology 

groups correlated with higher vector cosine similarity. In addition, I assessed the effect of 

corpus size on the variability of word representations. Moreover, created a gene-gene network 

and used it as prior knowledge to structure gene expression data of breast cancer patients in 

order to predict the occurrence of metastatic events. Graph-CNNs trained with word2vec-

embedding-derived networks performed best for the metastatic event prediction task compared 

to PPI or other text mining-based networks.  

 

1.1. Thesis Structure 

This thesis is organized as follows. In chapter 2, I introduce the biological facts and techniques 

that help to understand the molecular mechanisms of diseases by presenting basic biological 

information related to the subjects detailed in the following chapters. In chapter 3, I present the 

bioinformatics techniques that can be used to interpret the functions of genes that play a role 

in disease development. Further, I introduce the biomedical resources used to represent 

biomedical knowledge and are essential keys in biomedical translational research. Moreover, I 

hereby present the role of literature information in knowledge representation and discovery. To 

present the main topics of my work, each of the following chapters is structured into four 

sections: a short introduction describes the specific problems addressed in the chapter, the 
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specific materials and methods used to solve these problems, the results obtained and a 

discussion. In chapter 4, I present the enrichment analysis tool I developed that uses the logistic 

regression approach. The chapter starts by describing the study approach that introduced the 

logistic regression function, followed by describing the Java-based tool I developed. Chapter 

5 depicts the need for biomedical knowledge integration to bridge the gap between clinical 

systems and existing biomedical knowledge resources. This is followed by presenting the 

lexical mapping approach I used to map The ICD terms to disease concepts in the NCIT and 

the MeSH® vocabulary accompanying other strategies. Further, I present the functions I 

developed to model disease pathways. In chapter 6, I describe the process of developing word 

embedding from biomedical literature. Besides, I present the pipeline I developed to process 

text corpus and to generate word embedding, and the web service that aims to ease the 

exploration of biomedical concepts in the embedding. Eventually, the results of this chapter 

comprise the statistical analyses I performed to evaluate the biological meanings of the 

similarities between entities in the embedding. In addition, the results of training graph CNN 

using the gene-gene embedding are presented to evaluate the biological utility of the 

embedding.  Finally, concluding remarks and future works are presented in chapter 7. 
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2 Biological Background 

2.1. Cellular Organization of Genome 

Cells are the essential components of any living thing. Bodies are made up of trillions of cells 

that provide the body with a structure, absorb nutrients from food to convert them into energy, 

and perform specialized functions. Every cell comprises various organelles, all of which have 

a significant role as a part of the cell cycle, such as waste decomposition or energy 

production. The cell nucleus is the most important organelle that houses the cell’s hereditary 

material, or DNA (deoxyribonucleic acid), and coordinates its growth and reproduction. In 

humans and nearly every other organism, DNA is the hereditary substance. The complete set 

of the DNA in each cell is called its genome. DNA has a double helix structure, that is, two 

long strands appear twisted around each other (Figure 1). Each of the two strands is made up 

of a sequence of entities called nucleotides. Each of these nucleotides is made of a phosphate 

molecule, a nitrogen base, and a sugar molecule. The nitrogen bases are of four types: adenine 

(A), guanine (G), thymine (T), and cytosine (C) (Figure 1). The two strands of the DNA 

molecule are joined by hydrogen links between the bases, with a base pair formed by adenine 

with thymine, and another base pair formed by cytosine with guanine. The orders of these four 

bases along a strand determine the genetic code which is the biological instructions. Human 

DNA contains around 3 billion bases and over 99% of these bases are shared across all humans. 

The DNA of almost each human body cell exhibits the same nucleotide sequence. DNA is 

present in all the body cells, except those that do not have a nucleus, such as mature red blood 

cells or cornified nail and skin cells. DNA does more than determining the structure and 

characteristics of living things, it is also the hereditary material that is passed to the next 

generation in organisms of all types. 

The DNA molecule is packed into threaded structures called "chromosomes" inside the nucleus 

of every cell. Every chromosome consists of DNA wrapped up around proteins known as 

histones that maintain their structure (Figure 1). The number of chromosomes is constant in 

each cell in the body (except sex cells which only have half sets) and constant for all members 

of a species.  Every human cell consists of 46 chromosomes and each of them contains highly 

condensed and coiled DNA comprising millions of gene sequences. Each cell nucleus contains 

3 × 109 base pairs of the DNA distributed over 23 chromosome pairs. DNA contains all the 

information needed for making proteins (molecules that organisms need to survive). Each 

protein is encoded by a gene. A gene is the fundamental physical and functional component of 



8 
 

heredity which is a specific sequence of DNA nucleotides that specify how a single protein is 

to be made. There are two copies of each gene in every individual. One of which is inherited 

from each parent. The majority of genes in all humans are the same, although there is a minor 

variation in a small number of genes among humans (< 1 % of the total). 

 

 

Figure 1. The basic hierarchy within a cell. 

 

 

2.2. Gene Expression  

Genes encode proteins and proteins control the function of cells. Thus, the thousands of genes 

that are expressed in a specific cell decide what this cell will do. An organism cannot use the 

genes themselves. Gene expression is the procedure that uses genetic instructions to synthesize 

gene products that carry on important functions such as enzymes, hormones, and receptors.  

Gene expression requires two steps: transcription and translation. The transcription process 

changes the information in DNA to an RNA molecule, which in the case of a protein-coding 

gene is messenger RNA (mRNA) (Figure 2). The DNA of a gene acts as a basis 

for complementary base-pairing, and an enzyme known as RNA polymerase II catalyzes the 

formation of a pre-mRNA molecule, that is subsequently transformed into mature mRNA. The 

https://www.nature.com/scitable/topicpage/RNA-Transcription-by-RNA-Polymerase-Prokaryotes-vs-961
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‘RNA polymerase’ enzyme separates the two DNA strands of a double helix. An mRNA is a 

single-stranded copy of a gene sequence. Subsequently, the translation process translates the 

mRNA molecule sequence into a sequence that consists of amino acids during protein synthesis 

(Figure 2). Furthermore, the cell has a control point for its functions, by changing the quantity 

and type of proteins it generates, in any stage of the information flow from DNA to RNA to 

protein. Thus, the expression of many genes can be determined by measuring mRNA 

(messenger RNA) levels using multiple techniques and gene expression data can give 

information about the function of previously uncharacterized genes. 

 

Figure 2. Transcription and translation processes. 

 

2.3. DNA Microarray  

Numerous genes and their roles have been established in genetic experiments over the last few 

decades. In addition, it is expected that the human genome project will be completed in the 

next few years. As genetic data are increasingly available, biological studies have started to 

move from characterizing only individual components within a biological system to the actions 

of the biological system in its entirety[28]. 

Thus, analysis of gene expression has been provided a complementary view of the primary goal 

in biological and molecular studies in understanding the cell molecular machinery and has been 

taken an important role in many fields of biological research since changes in the physiology 

of an organism or a cell will be accompanied by changes in the pattern of gene expression [29]. 
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Science can use many techniques to analyze gene expression by finding out how high or low 

the expression of a gene is. On the other hand, a significant number of genes cannot be 

investigated by conventional methods. DNA microarray is one of these proven tools that 

provide a new approach to the large-scale study of the molecular mechanisms in a cell, or even 

every gene in an organism, in one single experiment quickly and in an efficient manner. With 

the extensive technology in DNA chips, they have been used in many areas of biological 

research such as gene expression profiling, diagnostics, genetic engineering, functional 

genomics, and DNA sequencing. Typical aims of DNA microarray studies include a diagnostic 

comparison of the genes that are expressed in different types of cells such as prostate epithelium 

versus cardiac muscle, as well as in cells subjected to a number of situations, such as, for 

instance, physical conditions (e. g. temperature, radiation) [30].  

DNA microarrays are generated by robotic machines which organize tiny amounts of many 

gene sequences on a single microscope slide. DNA microarrays often consist of glass slides. 

The glass slide includes many spots of immobilized DNA (targets) (hundreds to thousands), 

which could be hybridized at the same time with two samples (probes) of multiple fluorescent 

coloration colors [28]. The DNA fragments act as probes for specific sequences in a sample, 

each sequence represents a single gene. In all experiments, RNA is isolated from experimental 

samples. Note that it is often beneficial to operate with more stable complementary DNA 

(cDNA) made by reverse transcription at intermediate steps due to the inherent chemical 

instability in RNA [30]. Experimental RNA samples are converted by reverse transcription 

(RNA to DNA) into cDNAs labeled with two fluorescent dyes. Before the array is made, 

however, the cDNA is denatured in order to allow the hybridization of the array. The sample 

that represents a special condition set up by the experimenter is labeled with a red fluorescent 

dye (Cy5) and mixed with the reference sample that is labeled with a green fluorescent dye 

(Cy3). The complementary DNAs (cDNAs) are hybridized with the DNA on the chip (Figure 

3). The labeled DNA is only connected to the additional DNA. Microarray is washed and 

scanned for the two fluorescently labeled cDNAs. In ratio-based analyses, relative intensities 

of every fluorophore can be used to identify upregulated and downregulated genes [31]. The 

mRNA value attached to any site in the array indicates the level of expression of the different 

genes [31]. All data are gathered and a gene expression profile in the cell is established. 
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Figure 3. Process flow for gene expression profiles on the DNA microarray. 

 

A sequence of n level ratios is the product of an experiment on n DNA samples on one chip 

[32]. Microarray data from a series of n separate experiments can be interpreted as a matrix for 

gene expression with each row consisting of a vector of n expression values for one gene. 

 

2.4. Biological Pathway 

For the human body to develop properly and remain healthy, all parts of the body, from individual 

cells to cells to entire organs, must work together at many different levels. This biological 

teamwork is made possible by a number of complex and interconnected pathways that promote 

communication between genes, molecules, and cells.  A biological pathway is a sequence of 

actions between molecules in a cell that results in a certain product or a change in that cell. A 

pathway can activate the assembly of new molecules, switch genes on and off, or trigger a cell to 

move. The molecules forming biological pathways interact with each other, as well as with signals, 

in order to perform their assigned tasks. Biological pathways play significant roles in the 

development of complex disorders, like cancers, are generally caused by a variety of genetic changes 

which render pathways not working properly. Analyzing pathways by integrating several types of 

high-throughput data, like genomics and proteomics, has become one of the key challenges in 

understanding the mechanisms of complex diseases. Biological pathways exist in several types. 
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Pathways involved in metabolism, gene regulation, and signal transduction are among the most 

well-known.  

• A metabolic pathway is a chain of linked chemical reactions that occur in human bodies and 

feed one another. The process by which cells break down glucose molecules in food into 

energy molecules that can be retained for later use is an example of a metabolic pathway. 

Other metabolic pathways aid in the formation of molecules. 

• Gene regulation involves a wide variety of mechanisms that are used by cells to control 

which genes, out of the many genes in its genome, are expressed (turned on), or 

repressed (turned off). Gene regulation also enables cells to rapidly react to changes in 

their environment. Regulation of genes can happen at any time during gene expression, 

but most frequently at the transcription level when the gene’s DNA is converted to 

mRNA. Environmental or other cells’ signals trigger proteins known as transcription 

factors. Transcription factors are proteins transcribed by genes and controlled by one 

or more other transcription factors. Such proteins bind to a gene’s regulatory regions 

and increase or decrease the transcription level. By regulating the transcription level this 

process can determine the number of protein products produced at any given time by a gene.  

• Signal transduction pathway involves the binding of extracellular signaling molecules and 

ligands that are generated and released by signaling cells, to receptors located on the target 

cell surface or inside it. The signal moves into the cell after interacting with these receptors, 

where its message is conveyed by specialized proteins that activate events inside the cell to 

evoke a specific response. Figure 4 shows an illustration of the WNT signaling pathways. 

Over the last 15 years, academic and commercial groups have developed an extensive collection of 

databases. The information in these databases is extracted from scientific literature or from 

systematic experiments [33]. Examples are KEGG [34], Reactome [35], WikiPathways [36], 

NCIPathways [37], Pathway Commons [38], and TRANSPATH [39]. However, these 

databases vary in terms of their average number of pathways and molecules in each pathway, 

the biochemical interaction types they involve, and the pathway subcategories [40][41].  
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Figure 4. WNT signaling pathways control a wide range of developmental and adult processes 

in metazoans including cell proliferation, cell fate decisions, cell polarity and stem cell 

maintenance. (Source https://reactome.org/content/detail/R-HSA-195721) 
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3 Bioinformatics Background  

3.1. Enrichment Analysis 

In many genomic, proteomic, or metabolic analyses, the final phase consists of generating a 

list of biomolecules of interest. Common examples are gene lists ranked by differential or co-

expression examined in microarray studies, lists of Single Nucleotide Polymorphism (SNP) 

genes identified by a genetic link to a particular phenotype in the genome-wide association 

study and ranked by p-values [42]. These lists usually have no structure and lack meaning. 

Determining whether the genes interact with others or affect the biological processes being 

studied is difficult. Vast literature and databases must be examined to answer basic questions 

like: what is the function of a gene? Does a gene have an interaction with other genes or 

proteins? Does it behave differently in the process of diseases or treatment? Manual 

examinations of genes are often unfeasible tasks and time-consuming, particularly on large 

gene lists. It is not only more biologically intuitive to focus on a set of interesting genes or 

proteins in its entirety but also has the potential to improve the statistical power [42]. Therefore, 

it is a crucial task to understand the functional significance of these gene lists. 

Enrichment analysis has grown in its potential to give useful insights into the common 

biological mechanism that underlies a gene list and has become the secondary study of genes 

from high-throughput genomic techniques. By mapping genes and proteins to their 

corresponding biological annotations and comparing the distribution of their annotated terms 

to the background distribution of these terms, enrichment analysis can statistically determine 

within a list under study the over or under-represented terms which may be associated with 

disease phenotypes [42]. These enriched terms are assumed to describe some significant 

biological underlying processes or behavior. Enrichment tools were classified by Huang et al. 

[43] into three classes based on their algorithms: singular enrichment analysis (SEA), gene set 

enrichment analysis (GSEA) [4], and modular enrichment analysis (MEA). SEA is the most 

conventional method. It checks on an iterative basis the annotation terms one by one compared 

to a list of genes that are interesting for enrichment. SEA methods calculate enrichment p-value 

for each term where the detected frequency of the annotation term is compared with the 

frequency expected by chance using common statistical methods namely Chi-square [44], 

Fisher's exact test [45], Binomial probability, or Hypergeometric distribution [46]. Annotation 

terms are considered enriched when they are beyond a p-value threshold (P-value ≤0.05). Tools 
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of this category such as Onto-Express [47], GOStat [48], and EasyGO [49], rely mainly on the 

Gene Ontology terms as annotation terms. However, as the SEA independently takes each term, 

it lacks the hierarchical relationships between relevant GO terms. Such a method often results 

in lists of hundreds of enriched terms since similar terms are viewed as unique and result in 

redundancy. Semantic redundancy dilutes the focus on relationships between relevant 

biological terms among hundreds of other terms. Moreover, a disadvantage of a method that 

depends on one source of annotation is that it would inherit its limitations. With respect to GO, 

the annotations are still incomplete and biased against genes that are well-studied. 

GSEA-based methods are similar to SEA, however, they include all genes in the study without 

selecting genes that are considered significant by a threshold. A maximum enrichment score 

(MES) is computed based on the order of the rank of all members of the gene within a given 

annotation category [43]. Given a predefined set of genes that share a particular annotation 

(e.g., genes encoding products in a metabolic pathway), GSEA determines whether those genes 

are distributed at random over the larger list of ranked genes or primarily appear to be over-

represented in the upper or lower section of the longer list of ranked genes [42]. Sets that show 

the latter distribution, indicate an association with the phenotypic distinction. 

MEA uses the same strategy as SEA and considers the term-to-term relationships which may 

appear during enrichment between annotation terms. The key advantage of this method is that 

redundancy is reduced, and biological concepts can be prevented from being diluted. Many 

tools such as Ontologizer [50], topGO [51], and GENECODIS [52], have been recently claimed 

to enhance sensitivity and specificity by taking into account the relationships between GO 

terms during enrichment calculations.  

In human disease-associated gene or pathway discovery, there are plenty of effective gene set 

enrichment analysis approaches. Drier et al. (2013) [53], for instance, have shown that 

enriched gene sets could be used as biomarkers to predict survival time in patients with 

glioblastoma and colorectal cancer. Zhao et al. [54] combined information of gene set 

enrichment analysis and microRNA target gene set to identify microRNAs associated with 

cancer. Lee et al. [55] used gene set enrichment analysis and transcriptional data to identify the 

driver mutation behind the metastasis of breast cancer. The identification of the enriched gene 

set would provide valuable knowledge on the molecular functions and underlying mechanisms 

of various diseases. 
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3.2. Network Biology 

Cellular life is a complex network of biological reactions and molecular interactions between 

active proteins that can be described and explored as the “interactome”. Network 

representations were used to define interactions in different areas among entities of interest and 

they are helpful for the analysis and the visualization of complex biological activities [56]. 

Biological networks are interconnected, as opposed to biological pathways which are series of 

molecular interactions leading to a final outcome. Network biology is a fast-growing field in 

biomedical research which reflects the current opinion that complex phenotypes, for example, 

disease susceptibility, are not triggered by individual gene mutations behaving in isolation but 

rather the result of the disruption of the gene network. A key to understanding complex systems 

is to understand the topology of these molecular interaction networks and to recognize 

molecules that play a key role in structure and regulation. Several different types of 

relationships can be evaluated in a biological context, like interactions among proteins or genes 

identified by mutational combinations. Analysis of these networks offers new insights into 

understanding fundamental mechanisms that regulate normal cellular processes and disease 

pathologies. The development of high-throughput techniques has allowed components and 

their biochemical interactions to be established on a large scale. Data obtained from such 

experiments are often incomplete and contain errors, although useful for the generation of large 

amounts of biological information. However, valuable information can be given about 

individual component functions and unexpected interactions between components and cellular 

processes. The development of high-throughput technologies has established large-scale 

networks that are accessible from different public databases. Generally, such databases 

facilitate web-based searches and include rough molecule pair datasets. For protein-protein 

interactions (PPIs), the most common databases for protein function prediction are BioGRID 

[57], MIPS [58], and STRING [59]. STRING includes functional interactions of proteins that 

are identified and predicted with functional similarity scores, thus it provides weighted 

networks [56]. 
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3.3. Biomedical Knowledge Representation and Discovery 

3.3.1. Ontologies for Biomedical Knowledge Representation  

Recently, there has been a significant growth of research in the biomedical informatics field, 

and a huge amount of research data in the fields of clinical, biomedical, gene research, and 

patient records has been collected. Simultaneously various biomedical tools have been 

developed to perform the management of biomedical and clinical research data. The bulk of 

research data is spread over different databases. These databases are built independently of 

each other and generated in a wide variety of formats for implementation. Database systems 

describe objects without giving general concepts and their relations between them. Because of 

this inconsistency among the research data formats, it has been difficult for clinical researchers 

to interpret and gather the required data. At this stage, researchers need to represent the 

knowledge of their domain in a way that defines a common vocabulary of all the relevant 

concepts and their contexts, in order to share it and reuse it. For this domain, the problem can 

be solved by semantic technology. An ontology represents semantic knowledge, which 

provides a common framework for structured concepts, concept definitions, relationships, and 

axioms in a common language. The design of ontology is a significant task of medical computer 

science, to interpret the data and acquire inferred knowledge. The use of ontologies started with 

the development of the Gene Ontology (GO) [3] in around 1998 [60]. Numerous biomedical 

ontologies have been established in recent years in many domains such as anatomy, medicine, 

and molecular biology.   

▪ Ontology Structure 

An ontology is a formal representation of controlled structured vocabularies that describe 

concepts (entities) in a certain field of knowledge and their relations. An ontology O = (C, R, 

A) consists of defined concepts C which are interconnected by direct relationships R (e.g., is-

a, part-of...), and described by further attributes a Є A. Each concept c Є C is used to reference 

the concept and has a unique identifier (e.g., id: GO:0000001 from Gene Ontology). A relation 

r Є R has a specific type and represents a semantic relation that directly connects two concepts 

c1 and c2. The concepts of an ontology are typically structured as trees or acyclic graphs, where 

the concepts represent the nodes and the relations represent the edges (Figure 5). 
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Figure 5. A simple graph represents an ontology with 3 concepts, that are interconnected by 

two relations (e.g., r1= is-a, r2= part-of). 

 

In an ontology, the concepts of the domain are also defined as classes. The classes can be 

described in a more specific way as sub-classes. The individuals related to the same class are 

defined as instances. The attributes that describe the features of a class or an instance are 

represented and defined as properties (Figure 6). 

 

 

Figure 6. A simple representation of ontology components. 

 

In computer science, an ontology is the working model of entities and relationships in general 

or in a specific knowledge or practice area, for example, biology or bioinformatics [61]. 

Ontologies promote data retrieval by enabling annotation grouping and allowing data to be re-
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usable according to standards that offer common terminology and structure. The unifying aim 

of ontologies is “data integration”, either within and across domains, across various species, 

across granularity levels (organ, organism, cell, molecule), or across different perspectives 

(medical, biological, clinical).  

BioPortal [62] and OBO Foundry [63], are two leading repositories that provide access to a 

growing number of different biomedical ontologies. These ontologies are classified into 

different groups: classifications and nomenclatures, phenotype, disease-specific, clinic, 

anatomy, patient-related data, epidemiology, pharmacy, and health indicators. The ontologies 

are primarily used in the semantic annotation of different kinds of data objects such as proteins, 

genes, or literature to achieve a better information exchange. Often different ontologies from 

one domain containing overlapping or related information are interlinked by ontology 

mappings (e.g., UML (Unified Medical Language System) [9]). Different powerful ontologies 

in biomedical and clinical domains are developed by various medical centers, researchers and 

industries, etc.  

Many tools and methods have been developed that allow the use of ontologies and promote 

their use. These tools often concentrate on one or two of the features of ontologies. Since 

different, disconnected databases can use the same identifiers, standard identifiers for classes 

and relations in ontologies have been a key aspect for the integration of data across multiple 

databases. One of the first applications for which biological ontologies have been created, in 

particular GO, was making biological sense of the large data sets emerging from the expression 

array technologies [60]. Particularly, ontologies have allowed the assignment of functions to 

gene products and their computational comparison within and between organisms. 

Moreover, ontologies provide vocabularies that define the concepts and relationships used to 

represent a field of interest. In the field of health care application, ontologies are used by 

medical professionals to represent knowledge about diseases, symptoms, and treatments; and 

by pharmaceutical companies to represent information about drugs. Ontology class labels and 

relationships allow access to annotated data with these ontologies. For this application type, 

the integration of this knowledge from the medical and pharmaceutical domain with patient 

data by an established link provides a way for users to access the information associated with 

the ontology class. This link then provides the users of an ontology with a way to access the 

information related to the ontology class and allows a wide variety of applications like decision 

support tools to look for possible treatments and tools for promoting epidemiological studies. 
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Ontologies can also help to tackle a challenge facing machine learning and data mining 

approaches. The use of ontologies can promote the combination of text, structured data, or 

molecular data in knowledge bases. This can be established by extracting the relevant features 

from each information type and describing findings using one single ontology that incorporates 

the information used to train a classifier [60].  

 

3.3.2. Text Mining for Biomedical Knowledge Discovery 

Medical and biological studies have evolved to an unprecedented level in recent decades, 

opening gates to the mechanisms that underlie health and disease in living organisms. It is a 

major challenge to the research community to incorporate these insights into a unified 

framework to improve our understanding and decision-making. Effective discovery and 

development of drugs demand methods to integrate patient data with clinical data, as well as 

efficient literature mining, to estimate the effectiveness and safety effects of new molecules 

and treatment strategies. Text mining enables users to update their knowledge on the latest 

literature, review a wider range of publications, and search for contextual factors that might 

have become important after the creation of databases. Crucial information on evidence of 

clinical use of genomic abnormalities is largely reported in biomedical literature. Biocurators, 

clinicians and oncologists are becoming prohibited from keeping up with the rapidly growing 

amount of information, particularly the therapeutic implications of biomarkers and therefore 

relevant for treatment selection. The potential to access the most in-depth information for gene-

disease and genotype-phenotype associations is a key factor of precision medicine. 

Nevertheless, many of the sources required to understand the relationships between genotype 

and phenotype include unstructured text which is difficult to analyze. 

Text mining, also known as text data mining, is the process of analyzing vast amounts of data 

from unstructured text, in order to convert it into structured data, derive valuable insights and 

mine knowledge. In a nutshell, it is to mine within the text for something valuable and bring 

text into a form that is analyzable.  

A common definition of text mining is provided by Hearst [64]: 

“Text Mining is the discovery by computer of new, previously unknown information, by 

automatically extracting information from different written resources. A key element is the 

linking together of the extracted information to form new facts or new hypotheses to be 

explored further by more conventional means of experimentation.” 
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Text mining uses various computational technologies, including machine learning, natural 

language processing (NLP) [65], named entity recognition, relationship extraction, and 

hypothesis generation, to find outcomes hidden in unstructured text. Artificial intelligence (AI) 

is a computer science field that reveals the need for machine learning (ML) methods in our 

daily life [66]. Machine learning is the most common approach in the context of text analytics. 

It is based on a set of statistical and mathematical techniques to identify different aspects of 

text. Machine learning approaches can automatically analyze data and can recognize hidden 

patterns from big data, which a human being cannot find [67].  

Biomedical research focuses on studying biological processes and investigating the causes of 

underlying diseases. It is an interdisciplinary domain bridging molecular biology, genetics, and 

biochemistry with medicine. The study of how various chemical substances control biological 

processes helps to develop treatments and find new ways to diagnose diseases. 

Literature is an essential way to report and publish experimental results, which makes it rich in 

a large amount of valuable knowledge. With the enormous amount of biomedical literature and 

the rapid growth of the number of new publications, a huge wealth of scientific knowledge is 

scattered in multiple biomedical repositories of textual data and research articles. Typically, 

biomedical knowledge is largely represented in text using natural language. Extracting relevant 

information and analyzing text data is helpful to discover relationships between biological 

entities such as gene-to-disease and disease-to-drug associations and to generate new 

hypotheses.  

The quest for literature is also a core component of finding relevant information in any new 

scientific discovery process. Due to its exponentially growing scale and interdisciplinary 

existence, biomedical literature is unique. It is not only a tool to find the newest answers but is 

also a record of what researchers have concerned themselves with over the decades [68]. 

Access to biomedical literature is crucial for multiple user types particularly clinicians, 

bioinformaticians, and biomedical researchers. The biomedical field has been greatly supported 

by the efforts of the US National Library of Medicine in order to provide bibliographic material 

for most journal papers, particularly abstracts [69]. PubMed [70] has been the most commonly 

available research method devoted to life sciences and biomedical literature [71]. PubMed does 

a thorough job of covering this vast literature, as it contains citations from all around the world. 

PubMed is managed by the National Library of Medicine (NLM), which belongs to the US 

National Institutes of Health (NIH) [72]. 

The volume of biomedical literature in electronic format is growing with the ease of Internet 

access [73]. PubMed/MEDLINE® includes millions of citations from MEDLINE®, life 
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science journals and online books for biomedical literature (Figure 7) [74]. MEDLINE® [75] 

is the National Library of Medicine (NLM) journal citation database. PubMed has been the key 

resource for searching and retrieving biomedical literature electronically since its foundation 

[76][77].  

A large number of biomedical text-mining studies have focused solely on processing abstracts 

from PubMed. It is advantageous to work with abstracts, since they are publicly and freely 

available, and summarize the main points of their associated articles, which makes them rich 

in information content. MeSH® (Medical Subject Headings) [78] is the controlled vocabulary 

system used to index PubMed articles. The MeSH® terms provide constancy for biomedical 

literature indexing which facilitates the retrieval of relevant articles. It contains distinct types 

of terms that help to improve the search results. Additional state-of-the-art biomedical search 

tools are available that provide indexing biomedical articles such as Embase (Excerpta Medica 

dataBASE) [73], a database of biomedical citations for multipurpose use, and others that are 

not commonly used. 

 

Figure 7. The number of indexed1 citations that have been added to MEDLINE since 1995 in a 

fiscal year [77]. 

 

 
1 “Indexed citations are those citations selected for MEDLINE that have completed processing and 

indexing with current MeSH® (Medical Subject Headings®). Indexed citations have a status of 
MEDLINE” [77].  
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4 Enrichment Analysis Tool 

4.1. Introduction 

A common statistical method to interpret the function of the genes that are differentially 

expressed is to assign biological meaning to them and determine which predefined sets of genes 

are statistically significant among a list of ranked genes. Enrichment analysis methods were 

introduced in section 3.1. 

LRpath is a logistic regression-based method that was introduced and implemented by Sartor 

et al. [79] with the motivation of finding an optimal approach to identify predefined gene sets 

that are biologically related and enriched with genes that are differentially expressed. The 

LRpath function works by detecting the variation of the probability of a gene that belongs to a 

predefined set of genes (dependent variable) compared to the significance of differentially 

expressed genes (independent variable) [79]. LRpath's primary question is whether “the odds 

of a gene belonging to a predefined gene set increase as the significance of differential 

expression increases” [79]. The approach models the probability of a randomly selected gene 

that belongs to a particular category given the level of significance of that gene. For categories 

significantly affected by the experimental condition, the probability increases as the statistical 

significance increases. Comparisons were made with other similar approaches using 

experimental and simulated breast cancer datasets. Based on all criteria, LRpath has performed 

better than the other tested approaches.  More information about the functionality of LRpath 

can be found in the original paper [79]. LRpath is implemented as an R function. The method 

is designed to assess GO terms and KEGG pathway categories using ENTREZ gene identifiers, 

but it can be modified for other categories. Using the novelty of this function, we implemented 

a Java tool that integrates the function in R with a Java interface in order to integrate it into the 

geneXplain platform [80], which is a Java-based software platform, and to make it accessible 

for Java users.  Moreover, we used our own data sets that include GO terms and Reactome 

pathways, mapped to Ensembl [81] gene identifiers to test categories. We used the Biomart 

[82] interface to extract the mappings of Ensembl IDS and GO/Reactome identifiers. The GO 

terms in the mappings are only the terms that are at the lowest level of the ontology, and 

enrichment analysis tools generally use all the terms in the Gene Ontology to test categories. 

Therefore, we used the Ontology-Based Answers (OBA) [27] service to access the ontology 
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structure and map the Ensembl IDs to all the terms in the ontology. We will describe in more 

detail in the following sections the processing methods we applied.  
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4.2. Materials and Methods 

4.2.1. Logistic Regression Approach 

Logistic Regression is a statistical method for predicting a binary outcome using the log of 

odds as a dependent variable and one or more independent variables. Logistic regression fits 

data to a sigmoid function that takes real-valued numbers and returns a probability value 

between 0 and 1. According to a given cutoff, the output can be classified as positive or true if 

it is above the cutoff value, or as negative or false if it is less than the cutoff value. 

4.2.2. Gene Ontology 

Gene ontology (GO) [3] is an ontology that represents the knowledge of the biological domain. 

It is a structured, controlled terminology of ‘terms’ describing gene product properties across 

all organisms. Gene Ontology is the primary source of information on the function of a gene, 

the biological processes in which it plays a role and the location of the cell in which it is located. 

It consists of sub-ontologies that cover three domains which are: cellular component, molecular 

function, and biological process [3].  

• Cellular component: describes the parts of a cell where gene products are located.  

• Molecular function: describes a gene product's essential activities at the molecular 

level.  

• Biological process: describes pathways and sets of molecular events made up of the 

activities of multiple gene products. 

The concepts in the ontology are related to each other with three types of relationships: “is_a” 

(a subtype of), “part_of”, and “regulates”.  

• “is_a”: A “is_a” B means term A is a subtype of term B. 

• “part_of”: A “part_of” B means B (parent) is a broader term, and A (child) is a more 

specific term. And all instances of A exist as part of instances of B. 

• “has_part”: means that the subject of the assertion must necessarily have the parts 

referred to by the relationships. 

The three listed sub-ontologies are “is_a disjoint” which means there is no “is_a” relationship 

between every node in the three ontologies. Nevertheless, other relations like “regulates,” may 

link nodes from different sub-ontologies [2].  
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The GO provides two main resources: the GO itself [83] and the GO annotations [84]. The GO 

ontology structure can be represented as a hierarchical directed acyclic graph (DAG) of GO 

terms and the relationships between them. Each term of the GO graph is a node, and the 

relationships between the nodes are edges. A descendant (child) term is more specialized than 

its ancestors (parents) and can have more than one ancestor (Figure 8). Whereas the descendent 

may have only one ancestor in the hierarchal layout.  

 

Figure 8. A simple representation of a couple of GO terms related by the "is_a" relationship. 

 

A GO annotation is a description of a particular gene function. A GO annotation is generated 

from an association between a term from the ontology and a gene or a gene product; and the 

evidence which supports the association. Expert curators assign GO annotations either from 

experimental annotations or from curated annotations. Experimental annotations are based on 

primary literature experimental evidence. Curated annotations are based on evidence of 

sequence similarity, review papers, and database entries. GO has become the most common 

annotation source and the main widely source to perform enrichment analysis on gene sets and 

functionally interpret experimental data. Moreover, GO provides mappings that consist of GO 
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terms that are cross-referenced to related concepts from a range of external vocabularies such 

as KEGG, Reactome pathways, and Wikipedia. 

4.2.3. Ontology-Based Answers Service (OBA)  

The Ontology-Based Answers service (OBA) [27] is an application that offers the user access 

to hosted ontologies and functions to answer ontological queries based on the structure of the 

ontologies. There are many tools that process ontologies, e.g. OntoCat [85], Bioportal [86], and 

Protégé [87]. Nevertheless, they share two common aspects: addressing access to ontologies in 

a generic way, and ignoring the unique roles of individual ontologies, dismissing the encoded 

information ignored in the various relationships [27].  

The OBA service uses a client-server architecture. The OBA server is responsible for loading 

ontologies in OBO and OWL formats. It uses special ontologies’ functions implemented in 

plugins, called ‘Semantic Functions’. The server uses already existing plugins such as the 

Tribolium plugin for the Tribolium anatomical ontology (TrOn) [88]. The service can be 

extended with new plugins by implementing new semantic functions related to specific 

ontologies.  

Besides the provided Java client, the client can be a web browser, a command-line client or 

any custom client. Using one of these clients, the OBA service can be embedded into any 

custom application. Existing projects already use the service such as EndoNet [89] and iBeetle 

[90] projects.  

The server communicates with the client using the Representational State Transfer (REST) 

interface and produces the answer in three different formats: “text/plain”, “text/HTML” and 

“application/JSON” (MIME types). 

The OBA service is available at http://www.bioinf.med.uni-goettingen.de/resources/oba/. 

4.2.4. Reactome 

Reactome [91] is a curated human pathway data resource that offers a computational 

infrastructure across the biological reaction network. Reactome knowledgebase provides an 

organized molecular transformation network that includes descriptions of signal transduction, 

DNA replication, metabolism, and other cellular processes in one consistent data model [92]. 

It also provides mapping lists that consist of tables of external protein, gene or small molecule 

http://www.bioinf.med.uni-goettingen.de/resources/oba/
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identifiers in a source database, e.g. UniProt [93], Ensembl [81], NCBI Gene [94], or ChEBI 

[95], which are mapped to Reactome pathway and reaction annotations. 

4.2.5. Ensembl 

Ensembl [81] is a well-known database source to retrieve annotated genome information. It 

provides a rational way of organizing genes, transcripts, and proteins. Ensembl uses stable IDs 

to label the features, such as genes, transcripts, exons, or proteins. The stable identifiers (IDs) 

are generated from species annotation for the first time. Unlike gene names, which can change 

as a result of improvements in scientific knowledge, stable identifiers should continue to refer 

to the same genomic features [96]. A stable ID is composed of four parts:  

➢ The “ENS” prefix is a standard for all IDs.  

➢ A “species prefix”: refers to what species they are in, e.g. “MUS” for mouse species. 

For the human species, it is only “ENS”.  

➢ “feature type prefix”: refers to feature type e.g. for gene it is “G” and for transcript it is 

“T”.  

➢ A unique eleven-digit number: that identifies the entity.  

A full Ensembl ID example: “ENSG00000162367”. 

 

4.2.6. Biomart 

BioMart [82] is a generic interface that enables scientists to perform advanced queries via a 

broad number of biological databases. BioMart is a generic and scalable system that is easy to 

operate and is thus integrated with major data resources such as Ensembl, HapMap, UniProt, 

MSD, PRIDE, Dictybase, and Reactome [82].  

Biomartr [97] is an R package that enables direct access to retrieve a large amount of data 

without referring to the complex schemas of the databases. The Biomartr package provides 

easy functions for the collection of all or selected genomic, proteomic data [97]. It also provides 

the access functions to retrieve the mappings of databases between each other. BioMart 

provides functional access to the mappings of Ensembl gene IDs to GO and Reactome 

identifiers using different datasets e.g. Humans, Mouse, and Rat. The terms are actually 

mapped to Ensembl IDs on the transcript level and through the UniProt IDs. 
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4.2.7. Data Sets Processing 

Enrichment analysis methods are mainly dependent on gene/protein annotations provided by 

knowledge bases such as Gene Ontology (GO) to identify which annotations are enriched and 

to assign functions to a list of genes/proteins obtained from high-throughput analysis. In the 

LRpath study, they used the ENTREZ [98] gene identifiers that are annotated to Gene Ontology 

and KEGG [99] identifiers. In our tool, we used the Ensembl gene identifiers. For the 

annotation sources, we used Gene Ontology and Reactome. Using the “attributes” feature from 

Biomart in R ("ensembl_gene_id", "go_id" and 'reactome'), we extracted the mappings of 

GO/Reactome IDs and Ensembl gene IDs. For each database mapping, we selected three 

species datasets: Human (Hs), Rat (Rn), and Mouse (Mm). 

One Ensembl gene identifier is mapped to multiple GO or Reactome identifiers since a gene 

can play a role in multiple biological processes/pathways and can be located in different 

cellular components (Figure 9). 

 

                  

Figure 9. The mappings of Ensembl gene identifiers and GO/Reactome identifiers for Human 

species. The “R-HSA” prefix in Reactome identifiers represents identifiers that are specific to 

Human species. 

 

In order to prevent the delivery of data through Biomart every time a user gets access to the 

application; we stored the mapping tables in a MySQL [100] database. We connected the 

database to the R functions using the ‘RMySQL’ (Database Interface and 'MySQL' Driver for 
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R) [101] library in R to fetch the mapping data. The mappings were saved in tables, where each 

table corresponds to one species and one annotation source (Figure 10).  

 

Figure 10. The workflow of extracting and storing the mappings. 

 

In order to enable the integration of the enrichment function into the geneXplain platform, a 

Java-based platform, and other Java-based applications, we implemented a Java wrapper 

interface. The Java interface allows the user to interact with the tool as a Java application. We 

connected arguments between R and Java using the “RCaller” [102] (a software library for 

calling R from Java) library in Java. We will show the tool functionality in the ‘Results’ section 

4.3.  

 

4.2.8. GO Plugin in OBA 

Another main feature for an enrichment tool that uses an ontology as an annotation source, is 

to use all the concepts which are in the ontology structure. However, the mappings of the 

Ensembl and Gene ontology identifiers extracted from Biomartr, cover genes that are annotated 

to the most specific terms or which are at the lowest level of the ontology graph. To address 

this issue, we needed to extend the mappings to the terms that are at higher levels so that we 

cover all the terms in the ontology.  

The OBA service can load plugins that allow applying specific functions to specific ontologies. 

By using this feature, we implemented a new GO plugin that provides access to Gene Ontology 

and retrieves ontologies’ specific information. Figure 11 depicts the process of how we used 

the GO plugin in OBA to generate mappings at all the ontology levels. 
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Figure 11. The process of generating mappings of Ensembl/Gene ontology identifiers extracted 

from Biomartr at all the GO levels using the GO plugin in OBA. 

 

The plugin was used to calculate for each GO term all the ancestors, on all paths to root. The 

ancestors are calculated using special semantic methods built in the OBA server that can walk 

over the classes of an ontology in downstream or upstream search. After calculating these 

ancestors for each GO term in the database, the ancestors should also be mapped with Ensembl 

Gene IDs, so they can be used later as predefined datasets in the enrichment tool. Each term of 

the ancestor is mapped to the same Ensembl gene ID mapped to its descendant (the GO term 

to which we have calculated the ancestors) (Figure 12), and the mapping result will be added 

to the corresponding database species table.   
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Figure 12. Each Ensembl gene ID mapped to a GO term is mapped to all its ancestors. 

 

After applying this process for all available GO terms in our database, and for the three species 

(Human, mouse, and rat), we ended up with a database that contains mappings between the 

Ensembl Gene IDs and all GO terms of the Gene Ontology. The stored mappings were used in 

our enrichment tool as predefined datasets. 

 

4.3. Results 

• LRpath Java Tool Architecture 

An application user interface should be characterized by being simple, straightforward, and 

provides easy access to common features or commands. We implemented a Java interface that 

uses the logistic regression function in R in the background by bridging Java and R functions. 

The interface allows the user to interact with the tool as a Java application that can be used in 

two different ways: a command-line interface and a Java-point project. With a command-line 

interface, the user can communicate with the application by typing commands. The user starts 

the application by running the jar file of the project. When the jar file is compiled successfully, 

the user will be asked to enter the input parameters progressively (Figure 13).  

 



33 
 

 

Figure 13. Command-line interface. 

 

A Java-point project can be imported with the source code into any Java IDE (integrated 

development environment) platform such as Eclipse [103], NetBeans [104], and IntelliJ IDEA 

[105]. The project should be set up by adding the required libraries. Once the project is 

configured, the user can compile it and the project will be ready to be run or debug in the IDE. 

The application features provide the ability to integrate it into any Java-based platform.  

The application uses the terms of a database and their annotations as predefined gene sets. It is 

available for GO and Reactome databases and for three different species (human, rat, and 

mouse), but it can be extended to include more or different databases and species. 

To perform the analysis, the user should define the following variables:  

▪ The species of the data set (human, rat, or mouse)  

▪ The database (GO or Reactome), 

▪ The input file contains the list of gene IDs (the gene IDS should be Ensembl gene IDs) 

with continuous significance values (i.e. p-values). 

The input file should be an excel file that consists of two columns, one for the gene IDs and 

one for the p-values, as shown in Figure 14. 
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Figure 14. Input file sample. 

 

The tool then retrieves the mappings of the given Ensembl gene IDs to the terms belonging to 

the given species in the corresponding database. Only the gene IDs with mappings existing in 

the database are used. After that, the tool connects to R to apply the logistic regression function. 

LRpath checks for gene sets (termed concepts) that have significantly higher values of 

significance (for differential expression) than expected at random [106]. Once LRpath has 

completed an analysis, a new p-value for the significant terms and the significant gene IDs 

belonging to each term is produced. These p-values are used to identify the most enriched 

genes, for example, the terms having a value less than the commonly used thresholds ‘0.05’ or 

‘0,01’, are considered as the most significant terms. The architecture of the whole application 

is shown in Figure 15. 

 



35 
 

 

Figure 15. LRpath Java Tool Architecture. 

 

We applied the tool to a data sample to test its functionality. The data were tested with Gene 

Ontology terms. The analysis was performed successfully, and it generated the results shown 

in Figure 16. The results are provided in a tabular format. They include the concept names, the 

concept type, the number of genes making up the concepts, the coefficient, odds ratio, p-value, 

FDR (false discovery rate), and a list of the significant genes.  
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Figure 16. A results sample of the LRpath Java tool. 
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4.4. Discussion 

The detection of predefined sets of genes that are enriched with DEGs has become a standard 

aspect of microarray analysis and gives more biological insights to investigators than just 

significant gene lists. The method developed by Sartor et al., LRpath, uses the logistic 

regression model to relate the membership and the differential expression of gene sets in 

respect of enrichment probability ratios [79]. The fundamental question, LRpath answers, is 

that the odds of a gene that belongs to a predefined group of genes increase with the increase 

in the significance of differential expression. In comparison to χ2-type approaches, the method 

enables data arising from experiments of differential expression to stay on a constant scale. In 

this way, the requirement for the selection of significance cutoff is eliminated and has the 

benefit of considering the significance level distribution for genes that do not belong to or 

belong to the gene set under study. If the experiment affects gene expression that occurs in a 

particular biological pathway, it would be expected that genes with significant P-values are 

most probably to be part of this pathway than genes with less significant P-values, even it might 

not be known precisely where a line has to be drawn between the differential expressions: non-

significant and significant [79]. In-depth comparisons were made with other related approaches 

using simulated and experimental breast cancer datasets. On the basis of all criteria, LRpath 

has overall better performance than the other tested methods. LRpath was implemented as an 

R function. The function is implemented to check the GO terms and KEGG pathway categories. 

However, it can be changed to be used with other categories specified by users. We used the 

function to develop a Java-based tool. The tool is designed to be used using a Java interface. 

We integrated the LRpath function in R using a Java library that facilitates the exchange of 

parameters from R to Java and the other way around. The original function uses the ENTREZ 

gene identifiers for the gene list to be examined and for the predefined gene sets. In our tool, 

we used the Ensembl gene identifiers. For the categories, we used GO terms and Reactome 

pathways. We obtained the mappings of Ensembl gene IDs with GO/Reactome IDs for 3 

different species: human, mouse, and rat, from the Biomart interface in R. We stored the 

mappings in a MySQL database and implemented functions in R to call the database and fetch 

data. The analysis result is a list of the enriched categories with more information about these 

categories (p-value, genes in these categories…) saved in an excel file. The tool is a standalone 

Java application that is implemented as a command-line interface and as a Java project that can 

be imported into Java platforms. This facilitates the integration of the tool into any other Java 
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platforms. The user still has the option to use the categories he wants by getting the mappings 

of the gene IDs with any other category source and save them in the database.  

Enrichment analysis tools are diverse in their analysis methods and their accessibility (web 

tools, R functions…). Providing tools with different categories, different gene identifiers, and 

diverse ways of use, can also help researchers to give them more analysis options and to 

facilitate the enrichment analysis in the way they prefer.  
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5 Biomedical Knowledge Integration 

5.1. Introduction 

In general, biologists and physicians generally need to compare their biological and clinical 

data to existing knowledge in databases in order to interpret experimental data. For example, 

users might want to get information about a disease from a gene that is involved in a pathologic 

condition or about the pathways that the gene plays role in. Such information is often found in 

biomedical resources available online.  

Biomedical vocabularies differ in scope and multiple vocabularies are often required at the 

same time, to cover concepts that are relevant to a particular biomedical application [107]. 

Nevertheless, manually collecting information is inefficient and susceptible to error. The 

identification of similar resource elements consumes time and energy and can also be a 

technical move that limits the rate of integration of different resources.  

Patient mobility influences individual care continuity and the exchange of information are often 

needed for effective patient treatment. The semantic heterogeneity of the concepts in the 

databases often prevents the retrieval and sharing of information between biomedical 

databases. Biomedical resource integration was suggested as a way to promote access to 

various diverse resources. The integration of different biomedical concepts is gaining 

significance as the link between clinical medicine and biological science is growing. Speedy 

technological developments that have resulted in the improved analysis of complex biological 

systems have made cooperation and integration between the fields even more necessary 

[108][109]. The majority of biomedical systems have been built separately with no common 

framework. The database schema heterogeneity and the inconsistency of system-wide data 

elements are the main obstacles to the integration of data sources. A standard framework for 

knowledge representation could boost interactions between biological scientists and 

physicians, leading to better collaboration and potentially more rapid scientific discovery. The 

technical means for data exchange and data integration is a key issue in the management of 

biomedical data. Data integration can occur at many levels and semantic integration is the 

second to last level of integration. Ontologies form an important part of existing semantic 

integration approaches. These approaches can benefit from the structural properties of 

ontologies to map vocabularies between different sources. A lot of mapping techniques have 

been developed for mapping concepts between ontologies, e.g. LogMap [110], Align API 
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[111], and COMA++ [112]. Bioportal, the largest repository of biomedical ontologies provides 

mappings that associate terms between different ontologies [113]. The mappings are of 

different types, for example, mappings generated by the LOOM lexical matching algorithm 

[114], or mappings that are based on similar terms from different vocabularies in the UMLS 

(The Unified Medical Language System) which is a repository of many controlled biomedical 

vocabularies that provides a framework for mapping between these vocabularies and their 

relations. 

Mapping biomedical vocabularies between different resources provide the ability to get from 

one domain to another which facilitates the integration of biomedical knowledge. Clinical data 

from patient care represents records of patients that harbor certain phenotypes. To cross-link 

between the clinical domain and molecular network domain, we need to map the concepts that 

represent the phenotype to their corresponding terms in biomedical databases. The mapping 

can be performed by comparing the similarity of the two terms. There are many techniques for 

vocabulary mapping. However, the most used technique is the terminological mapping 

approach. In this chapter, I will introduce the methods of the terminological mapping 

technique. 
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5.2. Materials and Methods 
 

5.2.1. Terminological Mapping 

The terminological mapping technique, also called lexical mapping, is based on the entities’ 

names. It relates the concepts that have two similar names and produces a decimal value as 

output. This decimal value is called ‘Similarity Score’. Lexical mapping techniques use 

similarity calculators called ‘String Similarity Metrics’. They can be divided into two 

categories based on their calculation: character-based metrics and word-based metrics. 

Character-based metrics are more sensitive to character change, while word-based metrics are 

sensitive to word variation. Each similarity metric takes into account certain aspects or 

characteristics of similarity; hence ontology alignment systems need different measures to 

achieve greater accuracy. It should also be mentioned that string metrics differ in their output. 

We can define two different types: distances where the score is a positive decimal, and 

measures where the score is a decimal in the interval [0; 1]. Distances describe the similarity 

in a reversely proportional relation, where 0 means that the two strings are identical, and as the 

number increases, the strings are less similar to each other. For the measures, it is the opposite 

case. The maximum score is 1 and indicates that the strings are identical, and when the score 

approaches 0, the strings are less similar. In this section, I will introduce some string similarity 

metrics we used to lexically map biomedical vocabularies and how each one works [115] [116].  

 

▪ Jaro-Winkler  is a string metric used to calculate the edit distance between two strings 

that was proposed by Winkler in 1990 [117] as a variation of the Jaro distance metric 

[118]. The Jaro distance is the minimum number of single-character transpositions 

between two terms needed to transform one word into another. The calculation depends 

on how many matching characters the string has and the number of transpositions. 

The calculation is according to the following formula:  

 

𝑱𝒂𝒓𝒐(𝒔𝟏, 𝒔𝟐) =
𝟏

𝟑
 × (

|𝒄𝒐𝒎(𝒔𝟏, 𝒔𝟐)|

|𝒔𝟏|
+
|𝒄𝒐𝒎(𝒔𝟏, 𝒔𝟐)|

|𝒔𝟐|
+
|𝒄𝒐𝒎(𝒔𝟏, 𝒔𝟐)| − |𝒕𝒓𝒂𝒏𝒔𝒑(𝒔𝟏, 𝒔𝟐)|

|𝒄𝒐𝒎(𝒔𝟏, 𝒔𝟐)|
) 
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 Where, 

▪ s1 and s2 are the two strings to compare 

▪ |s1| is the length of the first string 
▪ |s2| is the length of the second string 
▪ com (s1, s2) are the matching characters between s1 and s2 
▪ transp (s1, s2) are the characters in com (s1, s2) with different orders in s1 and 

s2 (transpositions) 

 

The Jaro-Winkler similarity gives a boost for equal prefixes to high Jaro similarity 

values: 

𝑱𝒂𝒓𝒐𝑾𝒊𝒏𝒌𝒍𝒆𝒓(𝒔𝟏, 𝒔𝟐) = 𝑱𝒂𝒓𝒐(𝒔𝟏, 𝒔𝟐) + 𝒍𝒑(𝟏 − 𝑱𝒂𝒓𝒐(𝒔𝟏, 𝒔𝟐)) 

 

▪ l is the common prefix length at the beginning of the string which could be 

up to 4 characters maximum. 

▪ p is a constant factor of scaling for the upward adjustment of the score to 

be prefixed. In the work of Winkler p=0.1 is the default value of this 

constant. 

The resulting value is between 0 and 1. The distance calculated is 1 −Jaro-

Winkler similarity [119]. 

 

▪ ISUB [120]: This similarity metric was designed for ontology alignment. It is a 

character-based measure. It is based on commonalities as well as differences between 

two strings being compared. It is calculated according to the following formula:  

  

𝑰𝑺𝑼𝑩(𝒔𝟏,𝒔𝟐) = 𝑪𝒐𝒎𝒎(𝒔𝟏,𝒔𝟐) − 𝑫𝒊𝒇𝒇(𝒔𝟏,𝒔𝟐) + 𝑱𝒂𝒓𝒐𝑾𝒊𝒏𝒌𝒍𝒆𝒓(𝒔𝟏,𝒔𝟐) 

 

Where,  

 

▪ The Comm(s1, s2) detects the longest common substring first, removes it 

then and constantly looks for the next longest common substring until 

there is no one retain. The sum of the lengths of ‘i’ iterations’ substrings is 

then scaled by the length of original strings: 

 

𝒄𝒐𝒎(𝒔𝟏, 𝒔𝟐) =
𝟐 ∙ ∑ |𝒎𝒂𝒙𝑪𝒐𝒎𝑺𝒖𝒃𝒔𝒕𝒓𝒊𝒏𝒈𝒊|𝒊

|𝒔𝟏| + |𝒔𝟐|
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▪ 𝐽𝑎𝑟𝑜Winkler(s1, s2) is the Jaro-Winkler similarity metric added for extra 

improvement. 

▪ Diff is defined as: 

 

𝑫𝒊𝒇𝒇(𝒔𝟏, 𝒔𝟐) =
𝐮𝐋𝐞𝐧(𝐬𝟏) × 𝐮𝐋𝐞𝐧(𝐬𝟐)

0.6 +  0.4 × (𝐮𝐋𝐞𝐧(𝐬𝟏) + 𝐮𝐋𝐞𝐧(𝐬𝟐) − 𝐮𝐋𝐞𝐧(𝐬𝟏) × 𝐮𝐋𝐞𝐧(𝐬𝟐))
 

 

 

▪  𝑢𝐿𝑒𝑛 is the distance from the original strings of the unmatched substring. 

  

▪ N-gram [121]: This metric is a character-based similarity metric. It breaks a string or a 

sentence down into a set of n-grams or “shingles”. An n-gram is a sequence of n objects 

of a certain text or language sample. Depending on the application the items may be 

phonemes, syllables, letters, words or base pairs [122]. The measure between two 

strings is calculated based on the proportion of the number of n-grams that are shared 

between two strings and the aggregate n-grams number in both strings.  

 

𝒏‐𝒈𝒓𝒂𝒎(𝑿,𝒀 ) =   
𝟐 ×  |𝒏‐𝒈𝒓𝒂𝒎𝒔(𝑿) ∩  𝒏‐ 𝒈𝒓𝒂𝒎𝒔(𝒀 )| 

|𝒏‐𝒈𝒓𝒂𝒎𝒔(𝑿)|  +  |𝒏‐𝒈𝒓𝒂𝒎𝒔(𝒀 )|
 

            Where, 

▪ n-grams(X) is the set of multiple letter sequence of n-grams in X. 

▪ n-grams(Y) is the set of multiple letter sequence of n-grams in Y. 

 

▪ Levenshtein [123]: It is an edit distance metric. It represents the minimum number of 

single-character deletions, insertions or replacements, 

needed for converting one word to another. 

 

𝒍𝒆𝒗𝒂,𝒃 (𝒊, 𝒋) =

{
 
 

 
 𝒎𝒂𝒙(𝒊, 𝒋)              𝒊𝒇𝒎𝒊𝒏(𝒊, 𝒋) = 𝟎,

𝒎𝒊𝒏{

𝒍𝒆𝒗𝒂,𝒃 (𝒊 − 𝟏, 𝒋) + 𝟏

𝒍𝒆𝒗𝒂,𝒃(𝒊, 𝒋 − 𝟏) + 𝟏

𝒍𝒆𝒗𝒂,𝒃(𝒊 − 𝟏, 𝒋 − 𝟏) + 𝟏(𝒂𝒊≠𝒃𝒊)

    𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆.
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where , 

▪ 1(𝑎𝑖≠𝑏𝑖) is the function of the indicator which is equals to 0 if ai = bi and 1 

otherwise 

▪ 𝑙𝑒𝑣𝑎,𝑏 (𝑖, 𝑗)  is the distance between the first characters i of a and the first 

character j of b. i and j are 1-based indices. 

 

▪ Normalized Levenshtein [124]: It is calculated by dividing the distance of Levenshtein 

by the length by the longest string. It results in a non-metric value between [0, 1]. Then, 

1 − normalized distance, is the calculated similarity [119]. 

 

▪ Damerau Levenshtein [125][126]: This metric calculates the minimum number of 

operations needed for the conversion of one string into another. An operation is based 

on the single character addition, deletion or replacement, or a transposition of two 

adjacent characters [119].  

𝒅𝒂,𝒃(𝒊, 𝒋) = 𝒎𝒊𝒏

{
 
 

 
 

𝟎                                                    𝒊𝒇 𝒊 = 𝒋 = 𝟎

𝒅𝒂,𝒃(𝒊 − 𝟏, 𝒋) + 𝟏                             𝒊𝒇 𝒊 > 𝟎 

𝒅𝒂,𝒃(𝒊, 𝒋 − 𝟏) + 𝟏                             𝒊𝒇 𝒋 > 𝟎

𝒅𝒂,𝒃(𝒊 − 𝟏, 𝒋 − 𝟏) + 𝟏(𝒂𝒊≠𝒃𝒊)       𝒊𝒇 𝒊, 𝒋 > 𝟎

𝒅𝒂,𝒃(𝒊 − 𝟐, 𝒋 − 𝟐) + 𝟏       𝒊𝒇 𝒊, 𝒋 > 𝟏 𝒂𝒏𝒅 𝒂[𝒊] = 𝒃[𝒋 − 𝟏] 𝒂𝒏𝒅 𝒂[𝒊 − 𝟏] = 𝒃[𝒋]

 

where , 

▪ 1(𝑎𝑖≠𝑏𝑖)  is the indicator function equal to 0 when ai = bi and equal to 1 

otherwise. 

 

▪ Longest Common Subsequence (LCS) [127]: It is a distance that works by identifying 

the common longest subsequence present in two or more sequences. This varies from 

the issues of identifying common substrings: as opposed to subsequences are not 

needed to take sequential positions in the initial sequences [119]. It is calculated 

according to the following formula where n and m are the respective lengths of s1 and 

s2:  

𝑳𝑪𝑺𝒖𝒃(𝒔𝟏, 𝒔𝟐) = 𝒏 +𝒎− 𝟐|𝑳𝑪𝑺(𝒔𝟏, 𝒔𝟐)| 

 



45 
 

If no replacement exists and only insertion and removal is permitted, or if the substitute cost is 

twice the insertion or deletion cost, the LCS distance is equivalent to the Levenshtein distance 

[128].  

 

▪ Pre-computed Cosine [129]: This is a normalized distance where the similarity is the 

cosine of the angle between two vector representations, and is computed as:   

  

𝑷𝒓𝒆𝑪𝒐𝒔(𝒗𝟏, 𝒗𝟐) =
𝒗𝟏 ∙ 𝒗𝟐

|𝒗𝟏| ∗ |𝒗𝟐|
 

 

▪ Jaccard Index [130]: This metric is a word-based distance. It is defined as the two-

word set intersection divided by the union of them. If A and B represent respectively 

the sets of words of s1 and s2, then  

 

𝑱𝒂𝒄𝒄𝒂𝒓𝒅(𝒔𝟏, 𝒔𝟐) =
|𝑨 ∩ 𝑩|

|𝑨 ∪ 𝑩|
 

   

▪ Sorensen-Dice Coefficient [131]: This metric is similar to the Jaccard index metric, 

but it is calculated according to the following formula:  

 

𝑫𝒊𝒄𝒆(𝒔𝟏, 𝒔𝟐) = 𝟐 ∗  
𝒗𝟏 ∩ 𝒗𝟐

|𝒗𝟏| + |𝒗𝟐|
 

 

 

▪ String Kernel: is a metric that calculates a similarity between two words, based on 

counts of common subsequences of characters by using a kernel function. It has been 

presented for text classification by Lodhi et al. [132]. String kernels can be understood 

as functions that calculate similarity between string pairs: the more similar are two 

strings a and b, the greater the value of a string kernel K (a, b) will be [133]. 
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5.2.2. International Classification of Diseases (ICD)  

Clinical data from patient care represents records of patients that harbor certain phenotypes. 

The International Disease Classification (ICD) [10] system is the diagnostic classification 

standard that provides disease codes used in clinical records to identify these phenotypes. It is 

published, copyrighted, and updated regularly by the World Health Organization (WHO) [10]. 

ICD-10 codes are alphanumeric codes used by doctors, health insurance companies, and public 

health organizations all over the world to report diseases and health conditions. Each disease, 

disorder, injury, infection, or symptom is assigned by its own ICD-10 code. The codes are used 

to process health insurance claims, monitor disease epidemics and compile global mortality 

statistics [134]. The codes can be used to mine the administrative data associated with clinical 

records in order to apply some data analysis on clearly identifiable phenotypes. ICD defines 

the universe of clinical terms described in a hierarchical manner that allows health information 

to be easily stored, retrieved, and analyzed. It is used to share and compare health information 

between regions and countries, and to compare data in the same location over various time 

periods. The latest version (2016) of ICD-10 structure is available online by the World Health 

Organization (WHO) [10] (Figure 17) and by BioPortal [135], but it cannot be exported. In our 

work, we used the ICD10 Ontology which is formalized in OWL-DL of the 10th edition of the 

International Classification of Diseases published in 2004 by the World Health Organization 

(WHO) [136]. We downloaded the ontology and exploited the ontology structure. 
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Figure 17. A screenshot for the hierarchy of the International Classification of Diseases and 

Related Health Problems 10th Revision (Source https://icd.who.int/browse10/2019/en) 

 

5.2.3.  Medical Subject Headings (MeSH®)  

The Medical Subject Headings (MeSH®) thesaurus is a controlled vocabulary established by 

the US National Library of Medicine (NLM) that provides hierarchically-structured concepts 

[137]. It is commonly used for indexing articles for the MEDLINE®/PubMed [138] database 

and other databases. MEDLINE® is the largest online database containing nearly all articles 

published in the field of biomedicine. With PubMed, these published articles can be accessed 

on the web for free [139]. The indexing of MEDLINE® citations by MeSH® terminology 

https://icd.who.int/browse10/2019/en
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allows a reliable means to identify citations, even if different terms for the same concept are 

used by authors [140]. 

The MeSH® vocabulary can be explored using the online MeSH® browser [141]. Every 

MeSH® term in the vocabulary represents a biomedical concept being used in literature [8]. 

MeSH® terms help to focus the search for more relevant articles. Each term in the thesaurus is 

represented by a MeSH® heading term, a unique ID, and entry terms (Figure 18). The entry 

terms, also known as "cross-references", are synonyms, alternative forms, and other closely 

related terms in a certain MeSH® record, usually used interchangeably with the preferred 

descriptor term for indexing or retrieval purposes [142].  

 

Figure 18. 'Parkinson Disease' term in MeSH® vocabulary. 

 

5.2.4. National Cancer Institute Thesaurus (NCIT) 

The National Cancer Institute Thesaurus (NCIT) [143] is a reference terminology that 

extensively covers the cancer field, including diseases, findings, and abnormalities related to 

cancer. This resource displays definitions and linked information related to over 10000 cancers 

and 8000 single agents and combination therapies. The terminology can be explored online 

[143] and can be downloaded as an OWL or OBO ontology from several sources such as OBO 

Foundry [144] and BioPortal [86] (Figure 19). The National Cancer Institute’s Thesaurus 

(NCIT) was developed to provide a standardized language for experts in various subdomains 

of oncology. This is intended for annotation purposes so that data and information derived from 
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these different sub-domains are integrated and thus more efficient cross-domain inferences can 

be supported [145]. 

 

 

Figure 19. The NCIT ontology top-level structure in BioPortal. 

 

5.2.5. HumanPSD (Human Proteome Survey Database) 

The HumanPSD [146] is a database of diseases, signaling pathways, biomarkers, drugs, and 

drug targets. It is a trademark of QIAGEN, distributed by geneXplain GmbH [80]. It is a rich 

information resource of over 2,500 diseases including information about clinical trials ongoing 

and ended around the globe. All information in HumanPSD is manually curated from scientific 

literature or extracted from clinical trial catalogs. HumanPSD has a wealth of molecular 

function information that can help to uncover biologically relevant connections between sets 

of genes and proteins to disease and drugs. HumanPSD contains TRANSPATH [147][39], a 

database of mammalian signaling and metabolic pathways and networks with manually curated 

information. TRANSPATH reports individual reactions with all experimental information in a 

precisely mechanistic manner including all reaction partners as reported in the publication. This 

helps to build the most realistic model of the intracellular pathways acting in various diseases. 

HumanPSD with the TRANSPATH database allows the connection of signaling pathways with 

targets, drugs, and clinical trials. 
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5.3. Results 

5.3.1. Lexical Mapping Module Implementation 

We developed a lexical mapping module that integrates all the similarity metrics mentioned 

before to evaluate the lexical similarity between two concept names. The module is 

implemented in Java and the similarity metrics are implemented and wrapped into Java 

libraries.  

Before the lexical mapping calculation starts, there is a pre-processing phase to improve the 

calculation. Some concepts can have minor character differentiation because they might have 

been written by two different groups of scientists, which induces a necessary variation in the 

naming standards. For instance, the underscore symbol (_) can exist in some concepts to 

separate words of a concept, while it’s replaced with a space in another concept. Other 

preprocessing techniques can be applied such as lowercasing, removing stop words, replacing 

British/US spelling letters, and lemmatization (reducing words into their lemma) (Figure 20). 

The differences between these characters can lower the scores of two exact or similar concepts. 

The pre-processing phase eliminates naming standards’ variation in both concepts. 

 

Figure 20. The preprocessing techniques. 
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The lexical calculation is computed using the String Similarity Metrics, and since every metric 

solves one problem, we chose the metrics introduced before and combined them to produce 

one score. Every metric is assigned by weight to give importance to a metric that can solve a 

particular problem according to the purpose. Moreover, in some cases, the concepts to compare 

can be large and produce a long list of mapping results and the valuable results are above a 

certain score value, therefore a threshold is used. The weights and the thresholds can be 

modified by the user. The score of every metric is calculated according to the following 

formula: 

𝒔𝒄𝒐𝒓𝒆 = 𝒔𝒊𝒎𝒌 (𝒔𝟏, 𝒔𝟐) × 𝒘 

Let ω be the set containing the weights for all string metrics, and sim is the set containing the 

scores of all the metrics. The final score is called the aggregated similarity score and is 

calculated using the following formula: 

𝒔𝒊𝒎𝒂𝒈𝒈(𝒔𝟏, 𝒔𝟐) =
∑ 𝝎𝒌 ∙ 𝒂𝒅𝒋(𝒔𝒊𝒎𝒌(𝒔𝟏, 𝒔𝟐))𝒌=𝟏..𝒏

∑ 𝝎𝒌𝒌=𝟏..𝒏
 

 

Where adj (score) is a function used to unify the forms of the scores, when using different 

types of metrics, like distances and measures. 

The lexical mapping is relatively simple and works as follows: for each concept in one source, 

the similarity score is calculated with every concept in another source, and the result is stored 

in a new instance of a class called “Candidate” containing both concepts and the similarity 

score. The candidate for one concept of the first source having the highest score is chosen. 

However, for example, if a source has 1008 concepts, and the other source has 9998 classes. 

Consequently, around 107 candidates are calculated. 

The concepts that have similar names will have higher scores than concepts with different 

names. The resulting scores are positive decimals less than ‘1.0’. A score of ‘1.0’ means the 

concepts have exact matching names. 

The module takes as input two lists of terms with their codes, each list corresponds to one 

source. A score is calculated for each metric, and then the aggregated score is calculated (Figure 

21).  
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The output is a table that includes the terms, the codes, and the score values. The module can 

be used as a standalone Java tool or it can be integrated into other applications such as ontology 

tools to perform ontology alignment (Figure 21). 

 

Figure 21. The lexical mapping module architecture. 

 

5.3.2. Link Clinical Data to Biomedical Data 

More efficient data use in Systems Medicine can be provided by integrating patient clinical 

and genomics data with pathway knowledge. It has become evident that genes do not function 

alone inside a cell. They interact with each other in a way to create pathways or complexes to 

conduct biological functions and contribute to the etiology of complex diseases such as Cancer. 

In certain disorders, the disease candidate genes have been shown to be functionally linked as 

biological pathways or protein complexes [148]. Combining molecular biology and genetics 

has made it much easier to classify candidate genes associated with human disease. Therefore, 
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discovering relationships among human diseases and biological pathways, through overlapping 

genes, could provide new insights into the etiology of diseases. 

The need for molecular and clinical information within a unified framework has long figured 

as a grand challenge in biomedical informatics. Discovering relationships between human 

diseases and biological pathways, based on genes, gives new insights into disease etiology. 

Mapping of biomedical vocabularies in different resources provides the ability to get from one 

domain to another which facilitates the integration of biomedical knowledge. To cross-link 

between the clinical domain and molecular network domain, we need to map the concepts that 

represent phenotypes to their corresponding concepts in biomedical databases. The link 

provides the ability to explore molecular information through clinical data. 

 

5.3.2.1. Link ICD Concepts to NCIT Concepts  

As a first step to explore molecular data and pathways that affect certain clinical phenotypes is 

to have a link from the clinical data to molecular knowledge frameworks. Our work focuses 

mainly on neoplasms as phenotypes. ICD-10 codes from the clinical data represent disease 

names that are assigned to every patient who has a certain disease. The ICD hierarchy consists 

of multiple chapters, based on the subject of the ICD codes each chapter contains. The 

neoplasm chapter provides codes for benign and malignant neoplasms. NCIT a crucial cancer-

related reference terminology. To integrate clinical phenotype concepts with molecular data 

space, a cross-link can be provided by mapping the ICD concepts to disease concepts in the 

NCIT. To limit our work to neoplasms, we used only the sub-concepts under the “Neoplasms” 

chapter in the ontology hierarchy of the ICD classification (Figure 22), and the disease concepts 

that have “neoplastic process” as a semantic type which is a class property in the NCIT 

ontology. 



54 
 

 

Figure 22. The “Neoplasms” chapter in the ICD 10 classification hierarchy. 

 

We applied a lexical automatic mapping to compare every ICD term with a disease concept 

(preferred term) and its synonyms in the NCIT. For ICD-10, to extract only the terms that are 

classified as neoplasms, we need to get access to the hierarchy of the classification. Under 

certain circumstances is ICD only published by the WHO itself, so that the classification is not 

available for public use. However, one can get it anyway from the WHO by reading through 

their contract. Therefore, we used the ICD-10 ontology from Data & Knowledge Management 

(DKM). It is a formalized ICD10 Ontology in OWL-DL of the 10th edition of the International 

Classification of Diseases, published in 2004 by the World Health Organization (WHO) [149]. 

We used the OBA service to get access to the ontology structure and to extract the concepts 

that are at two levels in the hierarchy. The first level is the lowest level that includes the most 

concrete concepts, e.g. “Malignant neoplasm: Anterior floor of mouth”, and we consider it as 

“low level”. The second level is the next higher level than the lowest one, and we consider it 

as “high level” (Figure 23). 
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Figure 23. Part of the ICD hierarchy that shows the levels we used. 

 

To limit the data in NCIT to neoplasms, we used the OBA service as well to get access to the 

ontology and to extract the terms that have the “neoplastic process” semantic type property. 

Figure 24 shows an example of the “Malignant_Breast_Neoplasm” class with the code 

“C9335” in its properties in the ontology while it is loaded in the OBA service. The “P366” 

property is the class label and the “P90” is the class synonym which is more than one. The 

semantic type is represented by the “P106” property in the ontology. Using functions that were 

specifically developed for the NCIT ontology, we extracted the concepts that have the 

“Neoplastic Process” property with their labels and their synonyms.  
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Figure 24. The “Malignant Breast Neoplasm” class in the NCIT ontology loaded in the OBA 

service. P106 is the semantic type property. 

 

Using all the filtered data, we applied a mapping between the ICD 10 terms and NCIT terms 

that works by matching the terms using the lexical matching approach we developed. 

We applied the mapping at first, at the “high level” (parents) from the ICD under the neoplasms 

chapter, and by adjusting our methods we got around 43% of the ICD terms that can be exactly 

mapped with a score equal to 1. Then the same methods have been applied to the terms at the 

“low level” (children) and as a result, we got around 30% of ICD terms that can be exactly 

mapped to the NCIT terms. The mapping works by comparing each ICD term to a preferred 

term from the NCIT and its synonym. If the matching between an ICD term and one of the 

synonyms produces a score equal to 1, then the preferred term is used to be mapped to the ICD 

term (Figure 25).   
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Figure 25. An exact lexical mapping that is based on the string matching of an ICD term that 

matches a term’s synonym in the NCIT.   

 

The more the ICD terms are concrete, the less efficient the lexical mapping is. To improve our 

mappings and try to map terms from the ICD as much as possible, human intervention and 

other mapping strategies are needed. Since the lexical mapping can give exact mappings for 

some terms, we can use it as one mapping strategy and combine other strategies that can help 

to improve the results. Many of the concrete terms from the lowest level in the ICD cannot 

have exact mapping, so we can use the mappings of their parents as alternatives since the 

children describe part of their parents. For the highest level in the ICD, the remaining terms 

(other than the 43%) can be mapped manually to have valid mappings and to use them for 

structural mapping. Once we have these mappings, we can apply a semi-automatic mapping. 

The semi-automatic mapping was applied to the terms at the “lowest level”. For these terms, 

since their parents can already have mappings whether automatically or manually, they can be 

mapped to the same terms that their parents are mapped to by using a structural mapping 

strategy. In this case, we will be able to produce more mappings. 

Our semi-automatic approach is restricted to the ICD and the NCIT as input, but it can be 

adjusted to be applied to other data. It is applied to one level in the ICD, the lowest one that 

includes the most concrete terms. It starts by applying and comparing the ICD terms and the 

preferred terms that belong to the “neoplastic process” in the NCIT using a lexical mapping. 

And then the same strategy is applied to the synonyms of the same terms in the NCIT, but by 

using the preferred terms as mapping terms. The results produced from both steps are combined 

and the mappings which have a score equal to 1 are kept. For the results below of score = 1, 

we perform a manual mapping to match the terms at the highest level of the ICD with NCIT 

terms. Then a structural mapping is applied, and every term will be mapped to the term that its 
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parent is mapped to (Figure 26). In the end, the results are divided into two sections, the first 

one that includes the manual mapping of the highest level, and the second one of the semi-

automatic mapping applied to the lowest level.  

 

Figure 26. Semi-automatic mapping module. 

 

The results we produced are available on the web page of the project that this work is part of 

(http://mypathsem.bioinf.med.uni-goettingen.de/research/workpackage-4). Figure 27 gives a 

glimpse of the results of the ICD mapped terms at the “low level”. They are in a tabular format 

and include the ICD terms, their codes, their matched NCIT terms, the codes of the NCIT terms, 

and the mapping technique name.   

 

 

 

http://mypathsem.bioinf.med.uni-goettingen.de/research/workpackage-4


59 
 

 

Figure 27. A glimpse of the ICD-NCIT mappings results. 

 

5.3.2.2. NCIT Plugin in the OBA service 

Pathway information is not directly connected to disease information in the NCIT ontology. A 

gene in the NCIT has the “Gene_Associated_With_Disease” relation which is used to assert a 

link between a gene and a disease when the association is considered to have clinical relevance. 

This relation allows us to get the diseases that are associated with genes. Moreover, exploration 

of the gene-interaction pathways involved in disease is a rapidly growing area of research in 

cancer. KEGG [99] and Biocarta [150] are two well-known maintainers of the pathway 

information in the NCIT. The pathways that play a role in such diseases can be supported by a 

role relationship that links the disease to the gene hierarchy, and from there to the pathway 

hierarchy (Figure 28). 

A gene has the “Gene_Is_Element_In_Pathway” relation that relates it to a biochemical pathway 

in which its encoded gene product participates. Therefore, the gene entities can be used to link 

diseases to pathways.  

 

Figure 28.  Part of the semantic model in the NCIT. 
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We developed a plugin for the NCIT ontology in the OBA service to implement specific 

functions that can allow us to model disease pathways using the ontology structure and the 

relations between its entities. To explore pathways associated with a certain disease, we need 

to have a query that starts with a disease term. To get genes associated with diseases, we 

extracted all the gene entities with their names (which correspond to gene symbols) from the 

ontology and stored them as a list in a database. For each gene and by using the 

“Gene_Associated_With_Disease” relation, we implemented the 

“GenesAssociatedWithDisease” function to get a list of diseases associated with a certain gene 

using a gene name (gene symbol) as query input. Figure 29 shows an example of the disease 

classes that are returned using the “GenesAssociatedWithDisease” query we developed, and 

they are related to the ‘CHEK2’ gene in the OBA service while the NCIT ontology is loaded. 

The disease classes can be queried by using a string query with a gene name in the URL. Figure 

30 shows the labels of the returned disease classes in the OBA console. 

 

 

 

Figure 29. A screenshot of the disease classes associated with CHEK2 gene in the OBA service.  

 

 

Figure 30. The diseases associated with the CHEK2 gene in the console. 
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The function was applied to every gene extracted from the ontology and the results were stored 

as gene-disease associations in a database with a many-to-many relation. 

Using these associations, we implemented the DiseaseHasAssociatedGenes(disease) function 

to get genes associated with a certain disease by using the disease name as input (Figure 31).  

(http://localhost:9998/ncit/functions/ncit/DiseaseHasAssociatedGenes/breast%20neoplasm) 

 

 

Figure 31. The genes associated with Breast neoplasm. 

 

Using the “Gene_Is_Element_In_Pathway” relation that relates a gene with a pathway in the 

ontology, a function was implemented to get the pathways that a certain gene is an element in. 

The allele or the gene product of the gene is related to the pathways, not the gene. Hence, an 

association between the gene and the associated pathways must be done. Using this association 

and the “Gene_Is_Element_In_Pathway” relation, we implemented the “GeneInPathway” 

function to get the pathways that a gene is an element in using the gene name (gene symbol) 

as input (Figure 32) 

(http://localhost:9998/ncit/functions/ncit/GeneInPathway/PPM1D) 

 

Figure 32. The pathways that the gene PPM1D is element in. 

 

We used this function to implement another function that takes a list of genes as input and gets 

the pathways that all genes in this list are elements in. The gene list should be provided as a 

CSV file. The other way around can be also done, which is getting the genes that are elements 

in a certain pathway given by the user. 

http://localhost:9998/ncit/functions/ncit/DiseaseHasAssociatedGenes/breast%20neoplasm
http://localhost:9998/ncit/functions/ncit/GeneInPathway/PPM1D
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Role relationships support the retrieval of information on a pathway of interest, the 

identification of a gene of interest in that pathway, and the discovery of any cancers known to 

be linked to that gene or its products. We used some other ways around to retrieve pathway 

information and to get to pathways from diseases (Figure 33). We stored data from NCIT in a 

MySQL database to retrieve information that was used differently to complete the functionality 

of the implemented functions. The database is connected to the NCIT plugin in the OBA 

service.  

 

 

Figure 33. Extracting the disease/pathways associations through genes. 

 

Using all the implemented functions, we were able to develop the 

“DiseaseHasAssociatedpathways(disease)” function that can provide the possible pathways 

that have associations with a certain disease based on genes and by using a disease label as 

input).  

Example query: 

(http://localhost:9998/ncit/functions/ncit/DiseaseHasAssociatedpathways/breast%20carcinom

a) 

Due to some missing implemented functions in the OBA functionality, we were not able to 

extract all the existing pathways through this relation. Once this problem is solved, we can get 

all the other possible pathways. Figure 34 shows an example where the 

“DiseaseHasAssociatedpathways(disease)” function is applied to “breast carcinoma” and 

returns two associated pathways.  

http://localhost:9998/ncit/functions/ncit/DiseaseHasAssociatedpathways/breast%20carcinoma
http://localhost:9998/ncit/functions/ncit/DiseaseHasAssociatedpathways/breast%20carcinoma
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Figure 34. The pathways associated with Breast Carcinoma. 

The OBA service with the developed plugin, the connected database, and all the libraries and 

other dependencies were packaged up into a Docker container. Docker [151][152] is a tool 

designed to simplify the process of creating, deploying and running applications by using 

containers. It provides a lightweight environment to run an application code. A container makes 

it easier to deploy the application as one package and to run it on any Linux machine regardless 

of any customized settings that machine might have. The MySQL server uses the port 3306 

and the OBA server runs on port 9998. Docker maps the ports to the container port 80 and then 

it exposes it to the host port 8080 to run the container (Figure 35). The Docker container of this 

application is available on our project server. 

 

Figure 35. The architecture of the packaged application in Docker. 
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5.3.2.3. Link ICD Concepts to MeSH® Concepts 

To provide more efficient data use in Systems Medicine, HumanPSD was another option to 

enable further medical and pharmaceutical insights. A link from patient clinical codes (ICD) 

to molecular and pathway information, and clinical trials in HumanPSD, can be enabled 

through diseases. Diseases reported in HumanPSD are represented by MeSH® identifiers and 

labels. A mapping between ICD terms and MeSH® terms can facilitate the use of such 

information in decision-making systems. Resources like Bioportal and UMLS provide 

mappings between ICD and MeSH® that are based on different strategies. Bioportal mappings 

[113] are relations between two or more concepts in different ontologies that represent a degree 

of similarity. We got 2,697 ICD-MeSH® mappings from Bioportal by using the Rest API 

service. These mappings represent around 20% of the ICD terms. 

In UMLS, a MeSH® term and an ICD 10 term share the same concept under the same UMLS 

code. Using this strategy, we got the mappings between ICD and MeSH® which represent 10% 

of the ICD terms. Providing as many as possible mappings between resources can provide more 

connectivity between them. Therefore, we applied the mapping strategies we used before to 

map ICD terms to MeSH® terms. We started with the same strategy we did before, which is 

limiting the ICD terms to the terms that belong to the “Neoplasms” category and dividing them 

into two levels “high level” and “low level”. By applying the lexical mapping approach, we 

got around 10% of the ICD terms at the “high level” and around 3% at the “low level” that can 

be exactly mapped. To improve the results, we relied on the methodology we considered 

before, which is by considering the synonyms or entry terms in MeSH®, performing a manual 

mapping for the terms at the “high level” and then applying a semi-automatic mapping to the 

terms at the “low level”. The semi-automatic mapping strategy compares a MeSH® term with 

an ICD term from the “low level” by applying a lexical matching, and if an ICD term can match 

a MeSH® term, it will be mapped to the same MeSH® term its parent was mapped to (Figure 

36). Using this strategy, the results can cover approximately all the ICD terms. Moreover, by 

considering the synonyms in MeSH®, we were able to get mappings that are not included in 

Bioportal mappings nor in UMLS mappings. An example of these mappings is the ICD term 

“Intrauterine synechiae” which was mapped to the synonym of the MeSH® term “Gynatresia” 

by an exact lexical mapping (Figure 37). 
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Figure 36. An ICD term is mapped to the MeSH® term that its superclass is mapped to. 

 

 

Figure 37. An ICD term matches an entry term (synonym) of a MeSH® term. 

 

The results of ICD-MeSH® mappings were saved in tabular format files and they are also 

available on the web page of the project. Figure 38 shows a glimpse of the ICD terms as well 

at the “low level” mapped to MeSH® terms. 
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Figure 38. A glimpse of the ICD terms at the "low level" mapped to MeSH® terms. 
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5.4. Discussion 

The key objective of modern medical research applications is to provide clinicians and 

researchers access to prior molecular information existing in biological databases in order to 

promote the investigation of molecular mechanisms of diseases. In clinical care systems, 

diseases are defined by diagnostic codes using the International Classification of Diseases 

(ICD) system to study disease patterns. Understanding pathway and molecular information 

underlying diseases provide insights into disease etiology. This information is distributed 

across several biomedical databases and resources. Diseases in such resources are sometimes 

named differently than in clinical systems. Matching disease names defined by the ICD and 

biomedical resources facilitates the integration of the clinical and biomedical domains. 

In general, the interpretation of experimental data typically involves the comparison of clinical 

and biological data by physicians and biologists with existing datasets and reference knowledge 

bases [153]. This integration is supported in its logic-based characterization of cancer types, 

but also in drugs, molecular pathways, and the comparative anatomy of experimental 

organisms [154]. Mapping disease names in clinical codes to their corresponding names in the 

NCIT provides a bridge to link clinical data to pathway information in the NCIT. We started 

to map ICD terms to NCIT terms using a lexical matching approach. Therefore, we developed 

a lexical mapping module. The approach of this module is based on comparing and matching 

two words and the characters that constitute the words using string similarity metrics. Each 

metric solves one problem and calculates a score. To cover the issues that can be solved by 

each metric, we integrated these metrics to calculate one aggregated score. The score value is 

in the range between 0 and 1. A score =1 corresponds to an exact matching between words. 

The lexical mapping can provide exact mappings but only for a small fraction of the ICD terms 

and mostly the ones that are classified at the highest level/abstract levels. Since our work 

focuses on cancers and mapping terms more efficiently, we limited the data in the ICD and the 

NCIT to disease terms that are classified as neoplasms. In the ICD, the neoplasms are classified 

under the “Neoplasms” chapter at multiple levels. We used the OBA service to extract the 

terms that are at the two lowest levels. We considered the lowest level as “low level” 

(descendants) and the higher level as “high level” (ancestors). In addition, we exploited the 

structure and the properties of the NCIT ontology to limit the terms to the terms that have the 

“Neoplastic Process” property using the OBA functionality. Hence, we tried to improve the 

results by using additional approaches. The second approach was to use synonyms since in 

some cases an ICD term can be exactly mapped to a synonym term instead of a preferred term 
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in NCIT. The third approach we applied was the structural strategy. The ICD terms of the “low 

level” are concrete terms which makes it hard to lexically match them with other terms. The 

overall approach we applied is defined in two steps. In the first step, we map the ICD terms of 

the “high level” to NCIT preferred and synonym terms, we keep the mappings of the terms that 

are lexically exactly mapped, and we perform a manual mapping for the remaining terms. The 

second step considers the mapping of terms of the “low level” using a semi-automatic mapping 

approach. We start by applying a lexical mapping between the ICD terms and NCIT preferred 

terms and their synonyms, we keep the mappings that have a score value = 1 which denotes 

exact matching. For the terms that have a score below 1, we apply a structural mapping by 

considering the mappings of the ancestors. A child term in the ICD is mapped to the NCIT term 

that its parent was mapped to. 

Moreover, using the rich relations between the entities of different domains in the NCIT 

provides the ability to create functions that can fulfill our aim of associating possible pathways 

that affect certain diseases. We used the NCIT ontology structure to develop specific functions 

that can model disease pathways. We implemented these functions into a plugin in the OBA 

service that provides access to the NCIT ontology structure. Using these functions, we were 

able to create queries that can return possible pathways associated with diseases based on 

genes. We started by extracting gene-disease associations using a relationship between genes 

and diseases that exists in ontology. We implemented a function that queries the genes 

associated with a certain disease. Using another relationship between gene and pathways, 

which also exists in the ontology, we extracted the gene-pathway associations. These 

associations and the implemented functions allowed us to develop a function to query the 

possible pathways associated with a certain disease.  

Furthermore, using diverse molecular and pathway information resources can offer more 

biological insights and extensive molecular information since data is curated differently in 

different databases. The Human Proteome Survey Database (HumanPSD) is a catalog that 

provides associations of human proteins with diseases, and clinical trials. The diseases in 

HumanPSD are defined by MeSH® terms. To link ICD terms to MeSH® terms we tried at first 

to get existing mappings provided by some resources such as Bioportal and UMLS. Each 

resource uses a different mapping strategy that covers a small fraction of mappings between 

ICD and MeSH® terms. To provide more possible mappings and try to have our own 

mappings, we applied our mapping strategies. We used the same approach that we applied to 

map ICD and NCIT terms. We applied a lexical mapping to the terms of the “high level” of the 
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ICD terms in the “Neoplasms” chapter. Then we performed a manual mapping to complete the 

mapping of the terms that didn’t exactly match MeSH® terms and their synonyms. After that, 

we applied the semi-automatic approach to the ICD terms of the “low level”. Using these 

strategies, we were able to map most of the ICD terms that cover the “Neoplasms” chapter.  

Terminological mapping is a task that is essential to integrate biomedical information between 

different resources and to enable queries to different biomedical data sources. The challenge of 

terminological mapping approaches is that no method is optimal. Additionally, applying one 

mapping strategy is not enough sometimes to get efficient results and to map every term in a 

particular data source. In some resources, data is represented in a hierarchical structure such as 

ontologies. These structures are helpful for data integration. Therefore, using the structural 

strategy is useful to improve mapping results. Human intervention is also required since the 

machine cannot recognize some terms that have various definitions. Consequently, combining 

several strategies can provide more efficient results. We made our mapping results available 

on the web page of our project to be used elsewhere to integrate ICD data with any other 

biomedical resources, other than the NCIT ontology and the HumanPSD, that include pathway 

information and use the NCIT and MeSH® terms to define diseases. Moreover, comparing and 

combining mappings from different resources could also provide more valuable results such as 

mappings from Bioportal and UMLS. We could not yet benchmark the results because 

benchmarking needs an intervention of specialists like clinicians, to validate them but we didn’t 

have the chance to get any intervention. 
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6 Biomedical Word Embedding 

6.1. Introduction 

With the enormous amount of biomedical literature and the rapid growth of the number of new 

publications, the wealth of scientific knowledge represented in free text is increasing 

remarkably.  There has been much interest in developing techniques that are capable of 

identifying, extracting, managing, integrating, and utilizing this knowledge from unstructured 

data and discovering hidden or implicit information. This ‘’hidden’’ information can be used 

for predicting function and discovering new biological mechanisms in particular when it is 

combined with experimental data analysis [69]. 

The task of identifying biological entity terms like genes, diseases, drugs; is a fundamental step 

to make use of the information reported in biomedical literature. When bio-entities are 

recognized, the next step would be the identification of potential relations between them. 

Uncovering potential relationships can have a gigantic impact on health care decisions. For 

example, two different genes reported in two different texts but in a similar context, a functional 

association might suggest between the corresponding genes within the same pathway or the 

same phenotype.  

Biomedical text articles are rich with valuable information that is written in human natural 

language. Natural language is complex and entails ambiguous semantics that exists at all levels. 

One challenge in language comprehension is the ability to interpret the meaning of words in a 

sentence in a way that is consistent with the context. 

Text mining is the commonly used process for analyzing and exploring vast amounts of data 

from unstructured text, in order to convert it into structured data, derive valuable insights, and 

mine knowledge. A lot of text mining techniques have been used in the field of biomedicine. 

Several studies have concentrated on using supervised natural language processing to extract 

knowledge from scientific literature and to improve the use of this knowledge such as GENIES 

[11], Textpresso [12], and ChemDataExtractor [13], which requires extensive manually labeled 

datasets for training. Text data is considered to be high-dimensional data. The term 

“dimensionality” refers to the number of unique terms in a set of documents. The more unique 

terms in a text document we have, the higher the dimensionality will be. 
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Deep learning has demonstrated superior performance on a wide variety of text mining tasks. 

One of the most important techniques of NLP is the representation of words in a text corpus as 

high-dimensional vectors (word embeddings) by preserving the syntactic and semantic 

relationships between them [15]. Word Embedding is one of the fundamental applications that 

transform human language meaningfully into a numerical form so that computers can handle 

it. Word Embedding is a feature learning technique in natural language processing that reduces 

the dimensionality of textual data by mapping words into distributed representations in an n-

dimensional space. Hence, words with similar meanings will have representations that are close 

together in the embedding vector space. 

Various word embedding models and pre-trained models have been recently published online 

and applied to several biomedical tasks of NLP [15][16][17]. Wang et al. [18] evaluated the 

performance of word embeddings trained using four different corpora types namely biomedical 

literature, clinical notes, Wikipedia, and news articles. Smalheiser et al. [19] presented a novel 

unsupervised method to represent words or phrases as low dimensional vectors based on the 

word co-occurrence frequency and the similarity between words. Most of the word embeddings 

are usually trained in the word2vec [15] or GloVe [16] model, which uses information about 

the co-occurrence of each word with its surrounding words, its contexts, to represent it in a 

distinct vector and disregards the word redundancy and synonymy. word2Vec [15] is one of 

the most popular word representation implementations, that can capture the meaning of words 

and similarities between words based on the context. 

Some studies [155][156] have recently suggested that the integration of text corpora with 

domain knowledge can be advantageous in improving the word embedding quality. There is 

ample biomedical knowledge data in the biomedical domain, such as the medical subject 

headings (MeSH®), which could be examined to supplement the literature’s textual data. Using 

such biomedical domain knowledge would intuitively enhance word embedding quality in such 

a way to help to capture the semantics of specific concepts. 

Moreover, one of the main NLP applications in biomedical research is extracting biomedical 

entities and their relations. A biological system is made up of multiple interdependent 

functional components like genes, diseases, medicines, cells, etc. Biological networks are used 

extensively to explain the interactions between these components. Biological network analysis 

focuses on network development, network-learning representation and making predictions 

about biological networks. Deep learning-based approaches have recently been developed to 
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solve various biomedical problems, such as classification of skin cancer, cell structure, and 

function modeling, prediction of the transcription factor, and prediction of DNase 

hypersensitivity. Research has shown that deep learning models can learn arbitrarily complex 

relationships with existing integrated knowledge from heterogeneous data sets.  

In this thesis, we used the word2vec technique to generate biomedical word embeddings in two 

approaches. The first approach was to generate a biomedical embedding from a preprocessed 

text corpus to extract disease-drug associations. The second approach was to build and process 

our corpus from PubMed. I developed a pipeline to process a text of any domain using text 

cleaning procedures and to generate word2vec embeddings. Using the pipeline, I applied 

different preprocessing strategies for comparison purposes. In addition, I developed a web 

service to facilitate the exploration of biomedical concepts. Besides, we have demonstrated that 

the relationships between entities that have a similar representation in the embedding are 

biologically meaningful by comparing their relationships to existing knowledge in biomedical 

databases. I assessed the effect of corpus size on the variability of word representations. We 

trained Graph-CNN on breast cancer gene expression data with gene networks derived from 

the generated embeddings in order to predict the occurrence of metastatic events. Our results 

showed that the gene embedding network is biologically meaningful and performs well when 

using it as integrated knowledge in machine learning tasks. We then explained predictions of 

Graph-CNN by deriving subnetworks with relevant genes.  

 

6.1.1. Natural Language Processing Techniques and Challenges 

Natural language processing (NLP) goes back to the principles identified in Turing’s classic 

1950 paper about “Computing machinery and intelligence” [157][69]. 

Natural language is a human language, as opposed to computer language [158]. It is complex 

and entails ambiguous semantics that exists at all levels. NLP allows the computer to interact 

with the human language naturally in order to infer meaning from it. NLP techniques 

are used on various issues from speech recognition, translation of languages, classification of 

documents to extraction of information [159]. 

Semantics usually refers to the sense of language [69]. Semantic ambiguity occurs when a word 

or phrase has more than one and unrelated meanings (polysemy). This can be a crucial issue in 

text mining. For example, TP53 can refer to a tumor protein that is essential for regulating cell 

division and preventing tumor formation, or to a gene that provides instructions for making this 
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protein. Or a related phenomenon when different words have similar meanings (synonymy). 

For the same gene example, TP53 can also be known as P53 in biomedical literature.  

Another challenge in language comprehension is the ability to interpret the meaning of words 

in a sentence that is consistent with the context. It is very crucial to take into consideration that 

the term meaning is highly context-dependent. In a statement, if two terms are reported 

together, that doesn’t always imply a connection between them. For instance, a statement like 

“The risk of diseases, including diabetes and leukemia, was investigated.” [69] does not 

indicate a functional relationship between diabetes and leukemia.  

Computers cannot understand intuitively natural language as humans do [72]. They can deal 

with structured data like database tables and ontologies, but it is impossible for them to 

understand what the language is really saying. Sure, computers can tell whether two words are 

the same or not but dealing with these diverse linguistic phenomena makes it hard for them to 

distinguish between words or understand their real meanings.  

Natural Language Processing (NLP) is a branch of Artificial Intelligence in computer science 

that is used to enable computers to understand human language, process it, and make sense of 

it in a valuable manner. It is a set of methods that enables computers to interact with humans, 

and understand natural languages spoken by them. 

Natural Language Processing techniques typically rely on Machine Learning, specifically deep 

learning, to model human language and resolve the ambiguity. They consist of algorithms to 

analyze large blocks of text and perform computations to infer relevant information. The 

Natural Language Processing components include general tasks including sentence 

segmentation, tokenization, lemmatization, and named entity recognition. Natural languages 

are generally composed of sentences, and each sentence is a sequence of tokens, where each 

token represents a word or a punctuation mark. The initial step of natural language processing 

is identifying words. 

NLP addresses the issues of identifying the relevant terms keywords that after validation enter 

the standardized data and improve it in order to promote clinical decision-making. 

Natural Language Processing (NLP) methods, for example, parsers and part-of-speech taggers, 

have been used to identify biological entities and dynamic interactions between them from text 

[160].  

NLP is being used in many fields, including medicine. The utilization of NLP in the medical 

field is very significant, as it provides a new level of functionality for health care applications 

[161]. NLP systems are used for various purposes, including support for decision making, 
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infectious disease monitoring, automatic encoding, quality control, and patient data indexing 

[161]. Another important benefit of NLP technology is that it can be used to standardize reports 

from different organizations and applications since the same automated framework encodes 

clinical data in heterogeneous reports in a consistent manner that promotes interoperability 

[161]. 
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6.2. Materials and Methods 

6.2.1. Word Embedding 

Since machine learning techniques play a major role in the world of text processing and text 

analysis, it is crucial to make the learning models deal with text data in an advanced 

computational way. Deep learning has demonstrated superior performance on a wide variety 

of text mining tasks. Deep learning models are designed to learn from numerical data to 

perform any sort of job.  

In various tasks of NLPs such as information retrieval, the ability to maintain semantic or 

syntactic similarities between words has been shown to be very helpful [162]. 

Word Embedding is one of the fundamental applications that transform human language 

meaningfully into a numerical form so that computers can handle it. Word Embedding is a 

feature learning technique in natural language processing that reduces the dimensionality of 

textual data by mapping words into distributed representations in an n-dimensional space. 

These representations are vectors of real numbers and they are called “Embeddings”. Each 

word in a vocabulary is represented by a real-valued vector in a predefined vector space. A 

vocabulary is a set of unique words forming a particular document. In addition to the 

dimensionality reduction of textual data, it is important to make computers understand the 

meanings of words and how different words are related to each other. The word embedding 

technique is able to capture a word context in a text fragment, its semantic relationships, and 

syntactic similarity to other words that have a similar context. That makes words with similar 

meanings have similar vector representations in the embedding space. 

The benefit of word embedding is the use of dense low-dimensional vectors that are learned in 

a way that resembles a neural network. A wide variety of applications are available to map 

words to informative vector representations. Word2vec [163][15], the famous model, learns 

word representation based on each word’s context that is formed from the surrounding words. 

Glove [16], uses word-word co-occurrence matrix factorization techniques, and the co-

occurrence is also defined upon local context-based learning. 

Word embeddings have been applied in several NLP tasks like named entity recognition [164], 

information extraction (IE) [165][166], machine translation [167], and sentiment analysis 

[168][169]. 
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6.2.2. Word2vec 

There has been quite a development over the last couple of decades in constructing word-

embedding representations. Word embeddings are distributed word representations where each 

word is assigned by a real-valued vector. 

Word2vec [163][15] is one of the most powerful and computationally efficient implementations 

to create word embeddings, due to its performance and training speed. It was developed by 

Mikolov at Google in 2013 [15]. It is a shallow neural network that uses two distinct models: 

‘CBOW’ and ‘Skip Gram’. It is an unsupervised way to generate word vectors from a raw text 

corpus by learning syntactic and semantic representations of words. The word2vec model uses 

information about the co-occurrence of each word with its surrounding words to represent it in 

a distinct vector in a vector space and it detects mathematically their contextual similarity 

(Figure 39).  

 

Figure 39. Word2vec converts unique words in a document to distinct real-valued vectors. 

 

Words with similar contexts occupy close spatial positions. The number of context words for 

a target word is defined by a “window size” which is the maximum distance between a target 

word and words that surround the target word (default =5) [170]. The similarities between 

words are estimated using the cosine similarity metric that calculates the cosine of the angle 

between two words vectors (Figure 40) with the following formula:  

 

similarity (A,B) = cos(𝜃)=
A × B

‖A‖ × ‖B‖
=

∑ 𝐴𝑖 × 𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1 ×√∑ 𝐵𝑖
2𝑛

𝑖=1

 

Where,  

▪ A and B are two vectors.  

▪ Ai and Bi are components of vectors A and B.  
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▪ The similarity varies between -1 to 1. -1 means least similar, 1 means most similar, and 

0 indicates orthogonality.  

▪ In-between values suggest an intermediate similarity or dissimilarity 

 

The cosine distance is defined as:  1 − similarity(A,B) 

If two vectors are exactly the same the angle between them is equal to 0, thus the similarity is 

1 and the distance is 0. 

 

 

 

 

 

Figure 40.  Visual representation of Euclidean distance (d) and cosine similarity (θ) between 

word1 and word2. 

 

The model takes as input a large text and creates a vocabulary V of unique words in a text. 

Each word in the vocabulary V is represented as a one-hot encoded vector (binary vector) 

according to its position in the vocabulary. For example, if we have the vocabulary V (word1, 

word2, word3, word4, word5) “1” is placed in the corresponding position of each word in the 

vocabulary (Figure 41). The model consists of a two-layer neural net that processes text. The 

input vector of each word is a hot-encoded vector with dimensions 1×V, where V represents 
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the number of words in the vocabulary. The hidden layer contains N neurons and has a 

dimension that corresponds to the size of the word embedding or the neurons (default = 300). 

An embedding vector is calculated from the input vector using a matrix of weights for inputs 

(V×300) with V rows and 300 columns (one for every hidden neuron). Then, the output vector 

is a probability distribution that is calculated from the embedding vector and another matrix of 

weights for outputs. The output neurons use a Softmax regression classifier to generate an 

output between 0 and 1 and the sum of all these output values will add up to 1 [171]. 

 

 

 

Figure 41. Word2vec Architecture. 

 

The architecture of the two models that word2vec is built with is the same, but the prediction 

motif for the similarity between words is different.  

The continuous Bag-of-Words model (CBOW) learns to predict a target word from source 

context surrounding words (Figure 42). It calculates a probability vector of a target word from 

the output vector. 

Each element of vocabulary-dimensional vector v is a probability that a word in the vocabulary 

becomes a target word. The probability can therefore be calculated by a dot product of the one-

hot vector that represents the output vector word and the target center. 

Contrary, the Skip-gram model 's training aim is to find word representations in a sentence or 

a document that are useful to predict the surrounding words [15]. It calculates the probability 

of the vector of a context word. Each element of the vocabulary-dimensional vector is the 

probability that the word in the vocabulary appears to be a context word in position c. Thus, 

the probability can be calculated by a dot product of the one-hot vector that represents a context 

word at a particular position and the output vector. 
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CBOW treats the entire context as one observation and it tends to be an efficient approach for 

smaller datasets. On the contrary, every context-target pair is treated by skip-gram as a new 

observation, which makes it better suited for larger datasets. 

 

Figure 42. The model architectures of CBOW and Skip-gram [172]. 

 

In both CBOW and Skip-Gram, word2vec has two types of algorithms: Hierarchical Softmax 

and Negative Sampling. Word2vec uses Hierarchical Softmax and Negative Sampling to 

optimize output layer computation and to accelerate the model training [173]. 

▪ Hierarchical Softmax 

CBOW and skip-gram use the softmax operation to compute the conditional probability for 

generating the context word or the target word. Softmax is a function that transforms a K float 

number vector into a distribution of probabilities by first 'squashing' the values to be in a range 

of [0.0,1.0] [173], to normalize them after that in a way to make the sum equal to 1 (Figure 43). 

All this is done by Softmax while keeping the relative order of the input float number, thus big 

input numbers always have a high probability mass for the output distribution [174].  
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Figure 43. Calculating the probability of the output neuron for a word. 

 

Nevertheless, the training time for the softmax increases linearly with the number of potential 

outcomes, rendering the approach inappropriate for broad vocabularies [175]. In addition, it is 

computationally costly for each iteration to measure the softmax likelihood for each word with 

a vocabulary of a large number of words [176].  

In the context of the language models, Hierarchical softmax was proposed by Morin and 

Bengio [177] to accelerate training,  following Goodman's previous work (2001) [178]. The 

idea is to break down the softmax layer into a binary tree with the vocabulary words at its 

leaves, such that the probability of a word given a context can be decomposed into probabilities 

of selecting the right child at each node from the root node to that leaf along the path. This 

reduces the number of necessary updates from a linear to a logarithmic term in the 

vocabulary size [175]. By using hierarchical softmax the training complexity is reduced from 

O(V) to O(log(V)) where V is the number of words in a vocabulary. 

▪ Negative Sampling  

In Skip-Gram, for each training sample, weight matrices of the neural network are updated to 

correctly predict the output. The Skip-gram neural network has a large number of weights, 

which are all slightly modified by each of the trillions of samples. 

Assuming there are 10,000 unique words in the vocabulary of a training corpus (V = 10,000) 

and the hidden layer is of 300 dimensions (N = 300). Thus, the output weight matrix contains 

3,000,000 neurons (Woutput) which can be changed for each training sample. As the corpus size 

is very large, it is not realistic to update 3 M neurons in terms of computational efficiency for 
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each training sample. Negative sampling tackles this by updating for each training sample only 

a small part of the output neurons. 

In negative sampling, random K negative samples are selected using a “unigram distribution”, 

where more common words are likely to be chosen as negative samples. K is an empirically 

tunable hyper-parameter with a typical range of [5,20] [179]. K negative samples are randomly 

chosen from a Pn(w) noise distribution, for each training sample with a positive pair: word and 

positive context (w, cpos), then in the output matrix of weights (Woutput), the model 

updates (K+1)×N neurons. N represents the hidden layer (h) dimension or the word vector 

size. +1 is for a positive sample [180]. 

If K=9 is specified, (9+1)×300=3000 neurons are updated by the model, which is only 0.1% of 

the 3M neurons in Woutput  according to the above assumption [180]. It is much cheaper in 

computational terms than the original Skip-Gram, and yet it retains word vectors consistency. 

 

6.2.3. Word Embedding Generated using a Preprocessed Text 

Corpus 

Traditional word2vec methods are by design unsupervised and do not require domain 

knowledge. 

In a recent study, Ghosh et al. [181] motivated Dis2Vec, a vocabulary driven word2vec 

approach to generate word embeddings that are disease-specific from an unstructured text 

corpus.  

Dis2Vec was developed to add information on disease vocabulary as prior knowledge with the 

aim of generating disease specific word embeddings. They demonstrated the outperformance 

of the Dis2Vec model by comparing it to other conventional word2vec approaches on tasks for 

disease characterization. In a study which has been lately conducted in Rzhetsky’s lab [182] at 

the University of Chicago, they developed a new Named Entity Recognition Ontology (NERO) 

primarily to describe entities in biomedical text. The ontology considers various ambiguity 

levels and bridges several scientific sublanguages such as biochemistry, molecular biology, 

genetics and medicine). A large biomedical corpus was annotated using this ontology in order 

to facilitate tasks of biomedical natural language processing and machine learning. The Named 

Entity Recognition Ontology (NERO) and the annotated corpus aim to cover all entity types 

that might exist in biomedical literature.  

By using the implementation of Dis2Vec, we developed a word embedding trained on the 

corpus they developed that covers sentences from MEDLINE®, Reuters and Wikipedia 
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referenced articles or abstracts. We integrated a disease vocabulary generated from the entities 

annotated to the ‘disease’ class in the ontology. We visualized disease and drug embeddings to 

capture meaningful associations. 

 

6.2.4. Biomedical Embeddings Generated from 

PubMed/MEDLINE® Abstracts 

We used the word2vev implementation to generate a biomedical embedding using MEDLINE® 

abstracts that are linked to the HumanPSD database components. The process of generating 

embeddings that represent biomedical concepts in a low dimension consists of several steps. 

We started at first with a pre-processing phase to clean and normalize the text before feeding 

it into the training model. We generated two embedding versions for comparison purposes. The 

process of our word embedding is shown in Figure 44. We developed a pipeline to process the 

text corpus and to generate word2vec embedding. The implementation methods are based on 

Gensim [183] which is a Python library for unsupervised topic modeling and natural language 

processing. Moreover, we developed functions to query and explore biomedical concepts and 

their relations in the resulting embedding. Based on these functions, we developed a web 

service to facilitate the exploration using an interactive user interface. We describe in more 

detail the steps of this work in the following sections. 

 

Figure 44. Embedding development workflow. Text processing starts by reading the abstracts 

as sentences. Preprocessing strategies are applied during a preprocessing phase. The 

preprocessed corpus is used for training. The output of the training model consists of the word 

vectors and the vocabulary of pretrained unique words in the corpus. 
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6.2.4.1. Text Preprocessing 

Text data needs to be cleaned and normalized before being fed into machine learning models. 

This process is known as ‘Text Pre-processing’. The pre-processing phase of our work consists 

of multiple steps. It starts by reading text files from a directory, where a directory is given as 

input/argument. 

We used 166 files containing in total 16,558,093 abstracts. An abstract is a summary that 

provides readers with a quick and direct overview of an article. It is framed from the key 

statements of the introduction, methods, results, and discussion sections. So, it should entail 

the important information that can help the reader to learn about a topic of his interest and to 

infer relevant information.  

 

Each file consists of several abstracts, one abstract per line. The directory of all the files should 

be the input of the preprocessing phase. The directory can only contain files with format: .bz2, 

.gz, and text files. The model in Gensim requires that the input must provide sentences 

sequentially. This means that there is no need to keep everything in memory: we can provide 

one sentence, process it, forget it, and load another sentence. Then instead of loading 

everything into an in-memory list, the input is processed file by file, and line by line. This is 

called an iterator. Any further preprocessing procedures can be done inside the iterator. Words 

must be already preprocessed, separated by whitespace, and form a corpus that consists of a 

bunch of word lists to be fed into the word2vec model.  

Each abstract is considered one sentence. A sentence is divided into a list of tokens/words. This 

process is known as ‘Tokenization’. Tokenization is a crucial part of converting text to 

numerical data that machine learning models need to be trained and make a prediction. The 

output of “word tokenization” is a list of words for each sentence, it is a format for better 

understanding and processing text in machine learning applications. The word lists are then 

provided as input for further cleaning steps. We used the module ‘word_tokenize’ from the 

NLTK library [184] to split the sentences. NLTK stands for Natural Language Toolkit. It is 

one of the most powerful Python packages that consists of a set of the most common natural 

language algorithms like part-of-speech tagging, tokenization, named entity recognition, and 

sentiment analysis. 

 

The ‘word_tokenize’ module breaks a text fragment by white space and treats punctuation as 

a separate token as well, which facilitates the removal of punctuation later if desired.  
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Example (sentence source: https://www.tocris.com/cell-

biology#:~:text=Cell%20biology%20is%20the%20study,to%20understanding%20many%20

disease%20states): 

• >>> [‘Cell biology is the study of the formation, 

structure, function, communication and death of a cell’]  

•   

• >>>[‘Cell’, ‘biology’, ‘is’, ‘the’, ‘study’, ‘of’, ‘the’, 

‘formation’, ‘,’, ‘structure’, ‘,’, ‘function’, ‘,’, 

‘communication’, ‘and’, ‘death’, ‘of’, ‘a’, ‘cell’]   

 

After this step, the normalization procedures start, and they are mainly lowercase 

transformation and lemmatization. Changing words to lowercase prevents considering the 

same word as two different words during training. Lemmatization reduces a word to its 

morphological root, which is known as the lemma, by removing inflectional endings and 

considering the context. 

In biomedicine, main terms are often represented by several words like ‘zinc finger protein’. 

To create a distributed representation for words that captures their meanings, it is important to 

identify not just single words but also phrases (multi-word). 

It is a fundamental step to generate phrases from sentences. In Gensim [183], the ‘Phrases’ 

module uses a model that is a simple statistical analysis, where phrases are created based on 

relative counts (n-grams counts) using the following formula: 

 

𝑠𝑐𝑜𝑟𝑒(𝑤𝑖,𝑤𝑗)  =  
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖,𝑤𝑗)  − 𝛿

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖)  ×  𝑐𝑜𝑢𝑛𝑡(𝑤𝑗)
 

 

Where, 

 

▪ count(wi,wj) is the number of co-occurrences for phrase “wi_wj” 

▪ count(wi) is the number of occurrences for word wi 

▪ count(wj) is the number of occurrences for word wj 

▪ 𝛿 is used as discounting coefficient which avoids the formation of phrases 

composed of very rare words. 
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It is a scoring function that detects words that appear frequently together using some tunable 

thresholds to decide some token-pairs (Figure 45). The bigrams (two-word phrases) with a 

score that exceeds a chosen threshold, are used as phrases. Example: 

 

 

Figure 45. Bigram identification example. “Bigram” is a function in Gensim to create phrases. 

“sentences” is a list of 3 sentences. “min count” is the minimum value of the total collected 

count of bigrams. “threshold” is the minimum score for a bigram to be taken into account. 

“lung cancer” is the identified bigram/phrase which appeared in the 3 sentences. 

 

Subsequently, further cleaning is done by filtering out useless forms and words like stop words, 

punctuation, and numerical forms (Figure 46). All these filtrations are optional and depend on 

the purpose of the embedding.  

Stop words like “am, a, is, are, this, an, the, etc.” are commonly used words that appear more 

frequently in text without adding much meaning to a sentence context. Considering them might 

lead to noisy data and take up memory and time. They can be easily removed by storing a list 

of these stop words. The NLTK (Natural Language Toolkit) library in python has already a list 

of stop words stored in different languages.  
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Figure 46. Preprocessing procedures. 

 

Usually, stop words are removed before identifying phrases. In biomedical text, it is a bit 

challenging when dealing with some stop words since some words can form a part of compound 

words. For Example, “Vitamin A” is an open compound word where the stop word ‘A’ is an 

essential stem for the meaning of the word. “Vitamin A” is the name of a group of fat-soluble 

retinoids that are stored in the liver, including retinol, retinal, and retinyl esters [185][186]. It 

has its specific roles in maintaining some body functions. Removing ‘A’ leads to a general 

organic molecule without specifying its type and makes the model classify its context according 

to the word ‘Vitamin’. In our processing, we considered this procedure as a sensitive case and 

we dealt with it by changing the conventional chronological preprocessing steps. In order to 

keep the meaning of the composition of such words, we identified them by generating phrases.  

Another case we tackled which is also limited to the intended purpose, is the synonymy. Since 

one of our aims is to get the biological entities that are similar to other entities in order to derive 

biological meanings from the relationships between them based on the context, and to uncover 

hidden relationships, we substituted the synonyms of biological entities of multiple types (gene, 

disease, drugs, and pathways) by their preferred (main) terms using external resources. This 

procedure was done during the preprocessing phase before training to narrow the similarity 

between the words that share a similar context and are not synonyms. For genes, we used 

HUGO [187], for diseases we used MeSH® [137] preferred terms, and for drugs, we used 
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DrugBank [188][189] terms. This was done for one of the versions. Hence, we generated an 

embedding version that covers synonyms of biomedical concepts (Embedding_v1), and 

another version in which synonymous terms of biological entities were excluded 

(Embedding_v2). 

 

6.2.5. Web Service Development 

We used the same implemented methods introduced in previous sections to generate word 

embeddings based on a larger corpus consisting of 17,719,608 PubMed abstracts. The number 

of unique words in the output vocabulary is 3,221,627. We annotated biomedical entity terms 

in the output vocabulary to filter similarities for the entity type. We used HUGO [187], MeSH® 

[137] and DrugBank for genes, diseases, and drugs respectively. In addition, we also used the 

vocabularies provided by the Comparative Toxicogenomics Database (CTD) [190] to annotate 

more entities from the output vocabulary namely genes, diseases, and chemicals. 

To provide access to the embedding information and to facilitate the exploration of biomedical 

entities, we developed the embedding of biomedical concepts (eBioMeCon) web service. In 

this section, I present the materials used for building the back end of the web application. The 

access to embedding information was supplied with functions implemented in Python. The 

functionality includes searches for the nearest neighbors of an input word, their distances in 

the vector space, or extraction of the vectors that represent the words, which can be filtered for 

a concept type of interest (disease, drug, gene, or pathway). The functions are presented in 

section 6.3.5.  

6.2.5.1. REST API 

REST is for Representational State Transfer, and API stands for Application Programming 

Interface. The REST API approach is used in web services development. An API is a set of 

rules that allows programs to communicate with one another. The API is created by a software 

developer creates on a server to enable various clients including browser applications to talk to 

it. REST is an architectural style that defines a set of rules that determine how the API looks 

like. 

The REST API approach uses the basic HTTP (Hypertext Transfer Protocol) methods to 

request data. The common methods of HTTP are GET, POST, PUT, and DELETE. HTTP is a 

protocol that enables documents to be transmitted back and forth on the web. Such protocol 

http://ctdbase.org/;jsessionid=F8F15B39FC9FC0C80DD36B886FF9E12C
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includes rules that specify the messages that should be transmitted, and are proper responses to 

others [191]. 

GET: retrieves search information results. This request type is the most common type. We can 

use it to obtain the data we are looking for, which is ready to share the API [192]. 

POST: collects new data to add it to the server. For instance, a new item may be added to your 

list using this request type [192]. 

PUT: changes current data. For instance, the color of an existing item may be modified. 

by using this type of request [192]. 

DELETE: deletes existing information [192]. 

URL (Uniform Resource Locator) is the endpoint where a service can be accessed by a client 

application to get a piece of data. A URL is called a request and the retrieved data is called 

a response [193]. A response is conditional to API architecture, technology, and other aspects. 

It can be in HTML, XML, JSON, or another format. In Python, there are various frameworks 

or libraries for creating REST API such as Cherrypy [194], webpy [195], Bottle [196], Flask 

[197] and Django [198]. We used the Flask web framework written in Python to build our web 

API which enables users to fetch data from a server.  

6.2.5.2. PubTator Central (PTC) 

PubTator Central (PTC) is a web service that provides automated annotations of biomedical 

concepts in PubMed abstracts and full text articles of PubMed Central (PMC) [199][200]. The 

annotations are based on text-mining systems and they are of several types for genes, diseases, 

genetic variants, chemicals, cell lines, and species[199]. The Web interface of PTC allows 

users to create complete sets of text in any document and to display annotations. The web 

interface design supports full-text annotation and features semantic search. The annotations are 

provided in different formats and can be downloaded via the web interface and a RESTful web 

service. PTC comprises millions of abstracts and full-text articles. With new articles being 

published every day, PTC synchronizes with PubMed and PMC-TM. To automatically 

annotate biomedical concepts presented in the PubMed abstracts, we used the RESTful API 

provided in the web application. We were able to annotate diseases, genes, chemicals, species 

and cell lines in 16,493,738 PubMed abstracts.  
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6.2.5.3. Cytoscape.js  

Cytoscape [201] is an open-source tool that is widely used for visualizing molecular interaction 

networks and analyzing network biology. Cytoscape.js is a JavaScript-based featured graph 

library. It is highly optimized and compatible with all modern browsers. It can be used in 

JavaScript environments to analyze and render interactive graphs in a web browser. It has been 

used to visualize molecular interaction networks. It can be easily integrated into an application. 

The library includes many valuable features in graph theory. To provide interactive access to 

the web service, we visualized the results of some functions as networks.  

6.2.6. Validation of Word Embeddings 

To provide an expedient tool for biological research, relative locations of terms within the 

vector space of the embedding should exhibit agreement with existing biological knowledge. 

Our validation addressed protein-protein interactions, signaling pathways and biological 

processes, drug targets and human diseases, which have been and continue to be of interest in 

many biomedical research projects. The conducted validation experiments, therefore, 

examined whether vectors of members within groups defined by respective biological 

databases featured increased cosine similarities compared to randomly sampled entities. This 

section and the following subsections are mainly based on our paper [202]. 

6.2.6.1. Signaling pathways, biological processes and human 

diseases 

Reactome 72 [203] and TRANSPATH® 2020.2 [147][39] pathway-gene assignments as well 

as Gene Ontology (GO, release 2020-03-25) [2] biological process-gene assignments were 

extracted from the geneXplain platform [80] version 6.0. Disease terms covered by the 

embedding were mapped to 139 groups of the Human Disease Ontology version 2019-05-13 

[204] with more than 5 and less than 1000 member diseases. We calculated medians, lower and 

upper quartiles of cosine similarities for gene pairs within pathways and biological processes 

with at least 10 and not more than 3000 genes as well as for disease pairs within the 139 disease 

groups. In addition, we calculated medians, lower and upper quartiles for 2000 randomly 

sampled gene pairs and for 700 randomly sampled disease pairs that were not contained in 

selected groups. 
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6.2.6.2. Protein-protein interactions 

Known protein-protein interactions were extracted from Reactome 63 for 4254 genes (16727 

interactions) with vector presentations in the embedding. For the purpose of comparison, we 

sampled 10000 random gene pairs and the same number of gene pairs with known interactions. 

6.2.6.3. Drug-gene associations 

The DrugBank [188] database combines detailed drug information with comprehensive drug 

target information. We extracted genes associated with each drug reported in DrugBank with 

type target. By considering 5234 drugs and their target genes, we created drug pairs based on 

the common genes that two drugs share in each pair. Drug-gene associations were obtained 

from DrugBank release 4.5.0 and cosine similarities of 50000 drug pairs with at least one 

shared target gene were compared to 50000 drug pairs without common target genes. 

Moreover, to examine the variability of the similarity distribution of drug pairs based on the 

number of genes they share, we visualized the distribution of three drug pair groups (group1: 

no genes, group2: <=5 genes, group3: <=9 genes). In addition, we examined the drug-drug 

similarities by comparing drugs sharing common pathways of Reactome and TRANSPATH® 

databases based on genes. Each pathway in both databases was mapped to one or more genes 

reported that they play a role in such pathways. 

 

6.2.7. Examination of Biomedical Embedding Utility 

To further demonstrate the utility of the word-embedding derived networks, I used the same 

PPI network employed in [209][216] and created other text-mining-based networks. This 

section and the following subsections are mainly based on our paper [202]. 

 

6.2.7.1. Breast Cancer Data  

Graph-CNNs were trained on a breast cancer data set compiled by Bayerlová et al. [205]. The 

data consisted of 10  microarray data sets measured on Affymetrix Human Genome HG-U133 

Plus 2.0 and HG-U133A arrays which are provided online by the Gene Expression Omnibus 

(GEO) [206] under the following accession numbers GSE25066, GSE20685, GSE19615, 

GSE17907, GSE16446, GSE17705, GSE2603, GSE11121, GSE7390, and GSE6532. The 

algorithm of the RMA probe summary [207] was applied to normalize each data set separately 

after which they were combined and further normalized using quantile normalization applied 
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on all datasets. If more than one probe was associated with a gene, the probe with the highest 

average value of expression was chosen, leading to 12179 genes on which the GCNN was 

trained. Training set classes consisted of 576 patients with no metastasis between 5 and 10 

years after biopsy and 393 patients with metastasis developed during the first 5 years (similarly 

in [216]). 

 

6.2.7.2. Graph Convolutional Neural Network and Multilayer 

Perceptron  

The graph CNN [208] captures a graph signal’s localized patterns via convolution and pooling 

operations performed on a graph. The convolution operation is formulated based on the theory 

of spectral graph utilizing the convolution theorem and graph Fourier transform. The graph 

convolutional filter can be approximated by a parameterized expansion of Chebyshev 

polynomials of graph frequencies [208]. Such a filter of polynomial degree localizes the signal 

pattern in K-hop neighboring nodes. For the pooling operation, the graph is coarsened 

exploiting a graph clustering technique. Chereda et al. [209] applied the graph CNN with the 

following hyperparameters for learning. Two convolutional layers were used with 32 

convolutional filters and polynomial degree 8 per layer. Maximum pooling of size 2 applies to 

both of the convolutional layers. Two fully connected layers have 512 and 128 units 

consequently. ReLU (rectified linear unit) activation function was used, and cross-entropy loss 

was minimized. The application of usual CNN is not straightforward for gene expression data 

since it is not spatially ordered. Therefore, we applied deep Multi-layer Perceptron 

implemented in Keras [210], on the same set of genes but without prior knowledge structuring 

the data. The hyperparameters of our deep neural network are the following: 4 hidden layers 

and each of them consists of 1024 units with ELU (exponential linear unit) activation function. 

Cross entropy loss was minimized. 

6.2.7.3. Study Approach 

The approach of Chereda et al. [209] is to structure gene expression data by applying it to prior 

knowledge on molecular interactions and to feed this structured data as input for the graph 

CNN deep learning method (Figure 47). The endpoint is to predict the occurrence of a 

metastatic event for a patient and classify him into metastatic or non-metastatic. The first group 

corresponds to patients with metastasis developed during the first 5 years and the second 

concerns patients who are metastasis-free within the first 5 years.  
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Figure 47. Approach workflow: 1. Patients’ microarray data is preprocessed. 2. Genes are 

mapped to the vertices of the PPI network. 3. Graph CNN processes gene expression data as 

graph signals. 4. Graph CNN predicts whether the patient is getting metastases during the first 

5 years or not. The figure is based on the approach workflow of Chereda et al. represented in 

[209]. 

 

6.2.7.4. PPI Networks  

A broad range of machine learning models has been developed to analyze high-throughput 

datasets with the aim of predicting gene interaction and identifying prognostic biological 

processes. Recently, biomedical research has shown the ability of deep learning models in 

learning arbitrarily complex relationships from heterogeneous data sets with existing integrated 

biological knowledge. This biological knowledge is often represented by interaction networks. 

The high data dimensionality and the complexity of biological interaction networks are 

significant analytical challenges for modeling the underlying systems biology. In this section, 

we present the PPI networks derived from different sources and used as prior knowledge to 

structure gene expression data. 

 

6.2.7.4.1. Human Protein Reference Database 

Chereda et al. [209] employed the Human Protein Reference Database (HPRD) protein-protein 

interaction (PPI) network [211] to structure gene expression data of breast cancer patients. 

Genes from gene-expression data were mapped to the vertices of the PPI network yielding an 

undirected graph with 7168 matched vertices consisting of 207 connected components. The 

main connected component had 6888 vertices, whereas the other 206 components each 

contained 1 to 4 vertices (similarly in [216]). Since the approach of utilizing prior network 
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information in Graph CNNs required a connected graph [211] training was carried out on the 

gene set of the main connected component  

 

6.2.7.4.2. STRING-derived Network 

The STRING database [212] is a collection of protein-protein associations which can be 

derived from one or more sources such as gene neighborhoods, gene co-occurrence, co-

expression, experiments, databases, text-mining, and whose confidence is expressed by an 

aggregated score computed from scores of the individual interaction sources. We considered 

the text-mining score as well as the combined score to build weighted protein-protein 

interaction networks. This way, the classification performance of Graph CNNs trained on the 

STRING text-mining network could be compared to Graph CNNs with prior knowledge from 

word2vec embedding-based networks. Likewise, the HPRD PPI, we mapped the genes to the 

two constructed STRING networks and supplied their main components to the training process. 

Score thresholds were chosen to obtain a comparable number of vertices as in the HPRD PPI. 

 

6.2.7.4.3. Word2vec-embedding-based Networks 

We created two gene-gene networks (Embedding_net_v1 and Embedding_net_v2) from the 

embedding version that excluded synonyms (Embedding_net_v1) and another 

(Embedding_net_v2) where word synonyms were considered. Both networks consisted of gene 

pairs with edges weighted by their cosine similarity values. The cosine similarity threshold was 

set to 0.65 yielding the Embedding_net_v2 network with 10729 genes in 4399 components 

with the main component covering  6106 vertices and the Embedding_net_v1 network with 

10730 genes in 4397 connected components with the main component of 6092 vertices. The 

main connected components of Embedding_net_v1 and Embedding_net_v2 networks shared 

5750 genes, therefore the majority of vertices overlapped. 

 

6.2.7.4.4. BERT-embedding-derived Network 

BERT (Bidirectional Encoder Representations from Transformers) [213] is a model that has 

been recently developed for contextualized word representations. The main technical 

innovation of Bert is the use of bidirectional transformers. BERT was pre-trained in English 

Wikipedia and Books Corpus as a general language representation model. BioBERT [214] is a 

language representation model based on BERT and designed for biomedical text mining tasks. 
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It was initialized with the BERT model provided by Devlin et al. in 2019 [213] and pre-trained 

on PubMed abstracts (PubMed) and PubMed Central full-text articles (PMC). We used the pre-

trained BioBERT weights of ‘BioBERT-Base v1.0’ that was trained using the same vocabulary 

of BERT base (12-layer, 768-hidden, 12-heads, 110M parameters) on English text and 200k 

PubMed abstracts in addition. We converted the pre-trained TensorFlow checkpoint model to 

Pytorch [215], extracted the numerical vectors of 768 dimensions each, and calculated the 

cosine similarities between entities to eventually extract a gene-gene network.  

6.2.7.5. Graph-CNN trained with PPI Networks 

One of the approaches for validation of the embedding networks is to analyze how the 

underlying molecular network influences the performance of the machine learning method 

utilizing prior knowledge. In recent studies [209][216] the Graph-CNN method was applied to 

the breast cancer dataset introduced in section 6.2.7.1. In order to retain gene expression values 

non-negative, we subtracted the minimum data value (5.84847) for each cell in the gene 

expression matrix. If GE data was initially in [5.84847, 14.2014] now it is in [0.0, 8.3529]. The 

classification accuracy of Graph-CNNs was compared for different sources of network prior 

information. We compared the influence of several prior knowledge networks on performance: 

HPRD, Embedding_net_v1, Embedding_net_v2, String, and BioBERT-based networks. As for 

embedding networks, we utilized weighted and unweighted (taking into account only the 

topology) versions. The vertices were mapped to the genes of gene expression data and 

weighted edges were filtered according to a threshold value. We considered thresholds higher 

than 0.5 for cosine similarity between vertices. The main connected component of the 

underlying graph was used to structure the data. The performance was assessed by 10-fold 

cross-validation. For each of the data splits the model was trained on 9-folds and the 

classification was evaluated using the 10th fold as a validation set. For each underlying 

molecular network, the architecture and hyperparameters of Graph-CNN remained the same. 

For the majority of the cases, Graph-CNN was trained with 100 epochs, but for some versions 

of prior knowledge, a smaller number of epochs showed better results since the convergence 

of gradient descent was happening faster. The most common evaluation metrics were used: 

AUC (Area Under the Curve) ROC (Receiver Operating Characteristics) curve, accuracy, and 

F1-weighted score. We averaged the metrics over folds and evaluated the means' standard 

errors.  
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6.2.7.6. Explaining decisions of Graph Convolutional Neural 

Networks 

In order to generalize a machine learning model well, it is important to ensure that its decisio

ns are validated by relevant patterns in input data. Deep learning approaches, like CNNs, are 

frequently criticized for being “black-box”. Deep Neural network decisions are notoriously 

hard to interpret. Layer-wise Relevance Propagation (LRP) is a common method used to 

explain deep neural network predictions. LRP aims at providing an explanation of an output of 

the neural network in its input domain. LRP establishes back-propagation of the output through 

the network up until the input layer using the weights of the network and activations produced 

by the backward. 

Cherera et al. [216] presented a new method, Graph Layer-wise Relevance Propagation 

(GLRP), to explain Graph-CNN’s decisions. The method was applied on the breast cancer gene 

expression data introduced in section 6.7.1, structured by HPRD PPI. GLRP provided patient-

specific molecular subnetworks on the PPI basis. We applied the same approach to explain the 

results of Graph-CNNs trained on the gene expression data structured by the embedding-

derived network Embedding_net_v1 and to assess how an underlying network affects the 

explanations.  

The architecture of Graph-CNN consists of 2 convolutional layers. Two convolutional layers 

were used with 32 convolutional filters. Maximum pooling of size 2 applies to both of the 

convolutional layers. Two fully connected layers have 512 and 128 nodes consequently. 

Graph-CNN was trained on 90% of data (872 patients) and 10% was saved as a test set (97 

patients). The predicted patient data were classified into two groups: metastatic and non-

metastatic. The probability of each class is shown by an output neuron of the neural 

network. We selected from the test set subnetworks of 4 breast cancer patients with a correctly 

predicted class: 2 metastatic and 2 non-metastatic. GLRP was used to propagate the relevance 

from the output node of Graph-CNN corresponding to the label that was predicted correctly. 

For each patient, the relevance for each gene out of 6092 genes in the embedding network was 

calculated according to the following relevance propagation rule: 

 

𝑅𝑗 =∑
𝑎𝑗   𝑤𝑗𝑘

∑ 𝑎𝑗0,𝑗 𝑤𝑗𝑘
 𝑅𝑘

𝑘 
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Where, 

▪ j and k are two neurons in each successive layer 

▪ a is for the respective neuron activation 

▪ w denotes for the weight between the two neurons 

 

The genes were ranked by relevance value and the most relevant genes were selected from the 

embedding network to create the subnetworks. Two variants of patient-specific subnetworks 

were generated by the selection of the embedding network vertices with the highest relevance 

values: 140 and 200 top-relevant vertices.  
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6.3. Results 

In this section, I present the results of the generated word embeddings and the computational 

analysis performed. The results are divided into two parts, one for the results we produced 

using a preprocessed corps and mainly based on our paper [217] (section 6.3.1), and the other 

part is for the results of the embeddings generated using a corpus that we created and processed. 

The validation and evaluation results in sections 6.3.3, 6.3.6, 6.3.7, and 6.3.8 are mainly based 

on our paper [202]. The methods of both parts are based on Gensim. 

6.3.1. Disease-drug Associations 

The result of the generated embedding using the Dis2Vec implementation presented in section 

6.2.3, is a vector space representation that positions words that tend to occur in similar contexts 

of other words more closely to each other. The vocabulary of the resulting embedding 

encompasses 5,656,455 unique words. Each word has a distinct vector of 300 dimensions. The 

embedding covers all types of biomedical concepts. The similarities between words are 

estimated using the cosine similarity metric. These similarities can uncover valuable 

relationships between biomedical entities from different perspectives such as synonymy 

relationships, relationships between entities that belong to the same system in case of diseases, 

or between entities that share the same gene family in case of genes. For example, for the 

disease entity “eczema” the most similar words are “dermatitis” (similarity value= 0.863) and 

“atopic dermatitis” (similarity value= 0.858) which are exact synonyms of “eczema”. 

Moreover, other types of relationships can be revealed by visually detecting entities. By 

representing the embedding entities into a visualized three-dimensional space, we were able to 

capture visible disease-drug associations. To capture validated disease-drug associations, we 

used the 5-min consult data [218] that includes information about disease names that are related 

to free-text drug information. We processed the free-text information and extracted drugs 

related to diseases. We mapped the disease and drug names to corresponding words in the 

embedding by using our lexical developed mapping module introduced in section 5.2.1. We 

were able to match 174 diseases and 242 drugs. We annotated the diseases and drugs by 

systems, to be able to capture associations that are within the same systems. For diseases, we 

used a list of diseases annotated in Rzhetsky’s lab. For drugs, we used the Anatomical 

Therapeutic Chemical (ATC) classification system [219] to assign systems. The ATC system 

is a system for classifying drugs based on their active ingredients depending on the system or 

organ they act on as well as their chemical pharmacological and therapeutic properties [220]. 

By graphically representing high-dimensional embeddings, we can better visualize, understand 
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the embedding layers, and highlight words that are nearby in the embedding space. We added 

the vectors of the annotated diseases and drugs into one array. The labels and the classes were 

assigned as metadata. The visualization was implemented using Maya [221], a 3D graphics 

tool, which is used to create assets for interactive visual effects. We visualized the vectors in 

3D using principal component analysis (PCA) which is used as a dimensionality reduction 

technique. This visual representation shown in Figure 48 allowed us to identify some examples 

of drug-disease associations. Figure 48 displays the representation of diseases (prisms) and 

drugs (spheres) in different colors that correspond to systems. Figure 49 and Figure 50 illustrate 

diseases and related drugs in the ‘neoplastic process’ and ‘central nervous’ systems. Figure 51 

shows an example of ‘Zollinger-Ellison syndrome’ with related drugs. Figure 53 shows an 

example of the ‘Amphotericin B’ drug and related diseases. The related diseases and drugs 

were identified in the 5-min clinical consult. The entities that are visualized and recognized in 

the 5-min clinical consult are highlighted in Figure 52 and Figure 54. These results are part of 

a paper entitled “NERO: a biomedical Named Entity (Recognition) Ontology with Large 

Annotated Corpus Reveals Meaningful Associations Through Text Embedding”, which is 

under review and it is available as a preprint under the following link: 

https://www.biorxiv.org/content/10.1101/2020.11.05.368969v1.full.  

To evaluate the generated word embeddings based on NERO (Named Entity Recognition 

Ontology), the newly developed ontology introduced in this chapter (see section 6.2.3), the 

projections of diseases and related drugs were then compared into the embedding dimensions 

for severity and gender as disease properties, and for toxicity and expense as drug properties. 

The properties are not explicitly present in text; however, they are relevant for diagnosis and 

treatment. The embedded meanings were compared with ground truth data about diseases and 

drugs. The arithmetic mean of word vectors that represents antonyms in a dimension was taken 

to construct meaningful dimensions which were used to diagnose their meanings [217]. For 

more details about the method and the results of the word embeddings’ evaluation based on 

NERO, please check our preprint paper [217].  
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Figure 48. The figure depicts a projection of text embedding into three-dimensional space, with 

prisms and spheres correspond to named entities referring to diseases and drugs, respectively. 

The distance between entities is calculated based on the similarity between two-word vectors 

of 300 dimensions. (Figure from [217]). 

 

 

Figure 49. Projection of diseases and drugs embeddings of the 'neoplastic process' system. 

Prisms and spheres correspond to to diseases and drugs, respectively. 
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Figure 50. Projection of diseases and drugs of the 'central nervous' system. Prisms and spheres 

correspond to to diseases and drugs, respectively. 

 

Figure 51. ‘Zollinger-Ellison syndrome’ and related drugs. The 3 drugs shown in this projection 

(spheres) are the same drugs identified as drugs related to ‘Zollinger-Ellison syndrome’ (prism) 

in the 5-min clinical consult. 
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Figure 52. Drugs related to ‘Zollinger-Ellison syndrome’ in the 5-min clinical consult. The 

highlighted drug terms are the same terms identified in the embedding projection of Zollinger-

Ellison syndrome and their similar drugs illustrated in Figure 48. 

 

 

Figure 53. ‘Amphotericin B’ and related diseases. The diseases shown in this projection 

(prisms) are the same diseases identified as diseases related to ‘Amphotericin B’ (sphere) in 

the 5-min clinical consult. 
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Figure 54. Diseases related to ‘Amphotericin B’ in the 5-min clinical consult. The highlighted 

disease terms are the same terms identified in the embedding projection of ‘Amphotericin B’ 

and their similar diseases illustrated in Figure 50. 

 

Uncovering valuable biological relationships between entities extracted from text embedding 

can be helpful to populate an empty ontology structure by contents. Moreover, relationships 

extracted from the embedding could add more relationships that were not captured in manual 

annotations.  

 

6.3.2. Generated Word Embeddings  

Figure 55 shows the results of the nearest neighbors of the “wnt4” gene and “breast_cancer” in 

the two embedding versions. The results on the left are from the embedding that covers 

synonyms (Embedding_v1). While the ones on the right are from the embedding where the 

synonyms were substituted (Embedding_v2). It is observable that the first nearest neighbor of 

“wnt4” in Embedding_v1 is “wnt-4” which is an exact synonym, while in Embedding_v2, it is 

another gene “wnt7a” that has a biological association with “wnt4” (Figure 55). Similarly, for 

“breast cancer”, which was substituted by “breast neoplasms”, the first nearest neighbor was 

also an exact synonym in Embedding_v1, however, it is another neoplasm 

“ovarian_neoplasms” in Embedding_v2 (Figure 55). These similarities between biological 

entities can uncover hidden relationships that might not have been yet reported in existing 

databases such as gene-gene interactions, disease comorbidities, and more types of 

relationships.  
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Figure 55. The first 10 nearest neighbors of 'wnt4' and 'breast neoplasms' obtained using the 

resulting Embedding_v1 and Embedding_v2. The similarity between terms is computed using 

the cosine similarity metric. The similar terms are ranked by the cosine similarity value from 

highest to lowest.  

 

In order to be able to access the embedding information and to get more insights into biological 

relationships, we annotated entities of multiple types from the generated vocabulary using the 

main terms and their synonyms from the same databases we used to substitute synonyms, of 

which 17,128 genes, 2,628 diseases, 3,380 drugs, 43 pathways, respectively, are currently 

covered. 

In this part, we present the results of the biomedical embedding we generated. Table 1 shows 

the numbers of words before and after processing and the number of words in the vocabulary 

after training. Each word in the vocabulary has a real-valued vector of 300 dimensions. It is 

remarkable that the number of words after processing is reduced due to the applied 

preprocessing procedures that remove useless words and merge words into pairs to form 

phrases where each phrase is considered one word.  
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Table 1. Embedding results. 

Number of words before processing 2,947,203,961 

Number of words after processing 1,478,317,457 

Words in vocab (unique words) 

 

2,468,093 

 

 

Figure 56 shows the most frequent words in the embedding based on the number of their 

occurrences in the biomedical text. It is obvious that ‘gene’ and ‘neoplasms’ are two of the 

most frequent words in biomedical literature which is not surprising since the main focus of 

current biomedical research is to report findings related to neoplasms. 

 

Figure 56. Each word in the output vocabulary has a count property of its frequency in the 

trained corpus. The frequency of a word is the number of times that a certain word appears in 

text. In this figure only the most frequent words are displayed. They are ordered from most-

frequent to least-frequent. 
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6.3.3. Computational Pipeline for Biomedical Embeddings  

For the purpose of pre-processing the text corpus, we implemented a pipeline that conducted 

the steps depicted in Figure 57. Firstly, in the pre-processing phase, traditional strategies such 

as lowercasing, lemmatization, and removal of punctuation and numerical forms are applied. 

Additionally, the “Phrases” function in Gensim is used to detect phrases. We assumed replacing 

synonymous terms with their main terms can affect the similarity between words in a way to 

better capture functional relationships between biomedical entities. Thus, for the training 

phase, we added an optional step in which a dictionary file of terms and their synonyms can be 

provided in order to update the corpus with substituted terms before using it for the training. In 

our work, we employed this pipeline to generate two representations of word2vec embeddings 

for analysis and comparison purposes. For both representations, the same preprocessing 

strategies were applied to generate the text corpus used for training. However, for one of the 

representations, we substituted synonymous terms of genes, diseases, drugs, and pathways by 

their preferred terms in biomedical databases. For training, we used the word2vec 

implementation in the Gensim [183] Python library with context window size 5, minimum 

count 5, and 300 neurons which is also the number of generated vector dimensions.  

 

Figure 57. Workflow of the developed computational pipeline.  

 

▪ Preprocessing  

The preprocessing phase of this pipeline consists of multiple steps. It starts by reading text files 

from a directory, where the directory is given as input/argument. Each text will be divided into 
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sentences by blank lines, where each line is considered one sentence. After converting the text 

into a corps of word lists, cleaning procedures are applied, such as lowercase transformation, 

useless forms removing (stop words, punctuation, and numerical forms), and lemmatization, 

etc. Subsequently, the identification of phrases starts based on a tunable threshold and the 

number of token-pairs occurrence in the text that the system uses to identify phrases. For 

example, if this number =3, the system will identify word pairs that appear together 3 times or 

more in text. All these filtration procedures are optional and depend on the purpose of the 

embedding. 

In this pipeline, the user has the option to remove stop words during the preprocessing or the 

training phase. The output of this processing phase is one text file that contains the preprocessed 

corpus. Figure 58 shows the preprocessing steps as a workflow.  

 

Figure 58. Preprocessing workflow. 
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▪ Training  

 

Training the word2vec model is straightforward. Once the corpus is preprocessed, it can be 

passed to the model as a sequence of sentences. Before training, a vocabulary of unique words 

in the corpus is automatically created. The training is applied to the words of the vocabulary 

by considering the model arguments that can be assigned by the user, otherwise, the arguments 

are assigned by default values. Word2vec accepts several parameters that affect both training 

speed and quality. The parameters of the model are tunable such as the “window size” of a 

word context (default=5), the number of vector dimensions which is the number of neurons 

that the model uses in the hidden layer (default=300), and the “minimum count” parameter 

which is the number of times a word needs to appear in the text to be considered in the 

vocabulary (default=5). The output is the pre-trained model which can be loaded later. Figure 

59 shows the training phase steps as a workflow. 

 

 

Figure 59. Training workflow. 

 

 

6.3.4. Assessment of our generated Biomedical Word Embedding  

Embedding is the projection of data into a distributed representation in a space. Visualizing 

high-dimensional data can help to understand the embedding results and assessing the 

association of related words in the vector-space. We used TensorBoard Embedding Projector 
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[222] from TensorFlow [222] to interactively visualize the high-dimensional embeddings. The 

Embedding Projector provides two widely used data dimensional reduction techniques that 

facilitate the visualization of complex data: PCA, and t-SNE. PCA is very useful in exploring 

the internal structure of the embeddings and reveals the most effective dimensions in the data. 

On the other hand, t-SNE [223] is helpful to discover nearby neighborhoods and to identify 

clusters, which allows ensuring that the embedding retains the meaning of the data.  

In our work, we used the annotated biomedical concepts to select 17128 genes, 2628 diseases, 

and 3380 drugs, and to visualize the principal components of their embeddings. Figure 60 

shows a 3D representation of the embeddings in TensorBoard. Different colors result from 

metadata (label and class) embeddings. The colors illustrate how clusters are formed. In the 

visualization, one can click on any point to show the list of its nearest points and their 

corresponding distances, which illustrates which words the algorithm has learned to be 

semantically related. It is observable in Figure 60 how the points of the same entity type are 

grouped closely together. This property provides the ability to identify synonyms or functional 

relationships. Moreover, in the middle few points from the different types are mixed up. This 

is useful to capture associations between the different biomedical entities such as disease-gene, 

disease-drug, gene-drug. Additionally, one can also isolate points that belong to the same class. 

Figures 61,62,63 show the isolated points of genes, diseases, and drugs with labels, 

respectively. This isolation permits us to check visually the points of the same class altogether 

by labels. 

 



109 
 

 

Figure 60. The representation of selected genes, diseases and drugs in the embedding space. 

Each data point represents the learned embedding for a given word. The distance between a 

data point and its neighbors is the cosine distance. The colors correspond to the 3 classes: gene, 

diseases and drugs. The red represents genes, the blue is for diseases, and the purple represents 

drugs.   

 

Figure 61. The representation of isolated genes with their respective labels. 
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Figure 62. The representation of isolated diseases with their respective labels. 

 

Figure 63. The representation of isolated drugs with their respective labels. 
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We created a list of 120 randomly selected genes, diseases, and drugs. We employed 

hierarchical clustering by utilizing the linkage method ‘ward’ in order to examine how good is 

the Euclidean distance in identifying similar terms. The Ward method tries to minimize the 

variance within each cluster. It aims to minimize the total variance around cluster centroids. In 

Figure 64, the dendrogram illustrates how the points are allocated to the clusters. The 

illustration shows which items belonging to different entity types are clearly grouped together. 

Similar drugs are grouped in green. Similar genes are in red. Diseases are grouped into one 

cluster formed by the light blue and the purple sub-clusters.  
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Figure 64. The x-axis consists of the biomedical concepts and y-axis consists of the 

Euclidean distance between the clusters. Horizontal lines represent merges of clusters. 

Vertical lines show the clusters formed a new cluster as part of the merge. Horizontal line 

heights lines indicate the distance needed to be bridged in order to create a new cluster. 
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6.3.5. eBioMeCon: a web service for querying and exploring 

biomedical concepts and their relations  

We developed the embedding of biomedical concepts (eBioMeCon) web service that provides 

access to the embedding information and facilitates the exploration and the querying of 

biomedical concepts in the embedding in an interactive way. It offers several ways to explore 

inferred contextual similarities between diseases, drugs, genes, and pathways through graphical 

and programming interfaces. The data of the web service is based on the embedding version 

that excludes synonyms. Querying and exploration of this embedding are enhanced by the 

annotation of entities using biomedical databases and PubTator (see section 6.2.5.2). Our work 

focused on relations between diseases, drugs, genes, chemicals, cell lines, species, and 

pathways of which 87,860 genes, 32,314 diseases, 1,198 drugs, 448,539 chemicals, 2,701 cell 

lines, 32,526 species, 102 pathways respectively, are currently covered by eBioMeCon. The 

back-end of the web service is implemented in Python and the Flask-RESTful [197]  

framework for the API (Figure 65). The front-end uses the Bootstrap framework that is based 

on HTML, JavaScript, and CSS for the presentation and layout (Figure 65). The eBioMeCon 

provides both a graphical web interface as well as a RESTful API to explore the resulting 

embedding (Figure 68). The functions of the application can also be accessed 

programmatically. The functionality includes searches for the nearest neighbors of an input 

word, their distances in the vector space, or extraction of the vectors that represent the words, 

which can be filtered for a concept type of interest (disease, drug, gene, chemical, cell line, 

species or pathway, so that one can focus on relations between, for instance, genes that are 

related to a particular disease (Figure 66). A user can also create a list of weighted edges from 

a given list of terms, e.g. gene names, which can be used as a network for further analysis such 

as prior knowledge in machine learning tasks.  



114 
 

 

The eBioMeCon is available at https://ebiomecon.genexplain.com/.  

The source code is available at https://github.com/genexplain/eBioMeCon. 

 

 

Figure 65. eBioMeCon architecture. The back end of the web service is implemented in Python 

and the Flask-RESTful framework for the API. The front-end uses the Bootstrap framework 

that is based on HTML, JavaScript, and CSS for the presentation and layout 

(https://github.com/genexplain/eBioMeCon).  

 

 

 

 

  

 

http://platform2.genexplain.com:5000/
http://platform2.genexplain.com:5000/
https://github.com/genexplain/eBioMeCon
https://github.com/genexplain/eBioMeCon
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Figure 66. A screenshot of the home page of eBioMeCon. The functions are listed as boxes.
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6.3.5.1. Web Service Functions 
All the functions can be queried using the interactive user interface or URL string queries by 

providing the corresponding parameters. Both types of queries return responses in HTML. An 

API query can also be used, and it returns a response in JSON format. 

▪ Nearest Words 

This function returns the nearest neighbors that share a similar context in text with a particular 

word. The result is represented as a network consisting of the input word and its nearest 

neighbors (Figure 67). 

Example string query: /page_nearest?word=mdm2&size=6 

Example API query: /page_nearest/api?word=mdm2&size=6 

 

 

Figure 67. The first 5 nearest neighbors of the 'MDM2' gene. The central node is the input 

word. The surrounding nodes are its neighbors. The edges are the similarities. 

http://platform2.genexplain.com:5000/page_nearest?word=mdm2&size=6
http://platform2.genexplain.com:5000/page_nearest/api?word=mdm2&size=6
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Figure 68. The nearest neighbors of the 'MDM2' gene with the API response in JSON format. 

 

▪ Word Similarity 

This function calculates the cosine similarity of two given words or a word and a list of words 

with a similarity value between 1 and -1 (Figure 69). Cosine similarity is a measure that 

calculates the cosine of the angle between two-word vectors. More detailed explanation about 

cosine similarity can be found in section 6.2.2. 

Example string query: /page_similarity?word=MDM2&simwords=MDM4 

Example API query: /page_similarity/api?word=MDM2&simwords=MDM4 

https://ebiomecon.genexplain.com/page_similarity?word=MDM2&simwords=MDM4
https://ebiomecon.genexplain.com/page_similarity/api?word=MDM2&simwords=MDM4
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Figure 69. The similarities between a given word (e.g. TP53 gene) and a list of words (e.g. 

genes: MDM2,CHEK2,TP73,CDKN1A). The similar words are sorted by similarity value in a 

descending way. 

 

▪ Word Analogy 

This function checks the semantic analogy between terms. It is used to get a target word "Term 

4" that is similar to a particular word "Term 3" according to the semantic similarity between 

two other words "Term 1" and "Term 2". It performs vector arithmetic: adding the positive 

vectors (Term 1 and Term 3), subtracting the negative (Term 2), then from that resulting 

position, listing the known-vectors closest to that angle. ([Term 1 – Term 2] + Term 3 ~ Term 

4) (Figure 70). Word Analogy can solve analogy questions by calculating the syntactic 

relationships between word vectors. 

Example string 

query: /page_analogy?word1=disease&word2=neoplasms&word3=drug&size=5 

Example API 

query: /page_analogy/api?word1=disease&word2=neoplasms&word3=drug&size=5 

 

https://ebiomecon.genexplain.com/page_analogy?word1=disease&word2=neoplasms&word3=drug&size=5
https://ebiomecon.genexplain.com/page_analogy/api?word1=disease&word2=neoplasms&word3=drug&size=5
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Figure 70. Similar terms produced by the word analogy "[disease - neoplasms] + drug =? " The 

most similar word = "anticancer drug". The similar terms are sorted by similarity value in a 

descending way. 

 

▪ Word Annotation and Word List Annotation 

These functions work as the "Nearest Words" function, but the user is able to specify the output 

type of the similar words by choosing one of the biomedical entity types (diseases, drugs, 

genes, chemicals, cell lines and species) (Figure 71). These functions were developed based on 

annotating concepts using external biomedical resources. 

Example query string: /word_annotate__list_page?words=MDM2,TP53&type=gene&size=5 

Example API query: /word_annotate_list_page/api?words=MDM2,TP53&type=gene&size=5 

 

https://ebiomecon.genexplain.com/word_annotate__list_page?words=MDM2,TP53&type=gene&size=5
https://ebiomecon.genexplain.com/word_annotate_list_page/api?words=MDM2,TP53&type=gene&size=5


 

120 
 

 

Figure 71. The first 6 nearest neighbors of the 'TP53' gene with 'gene' output type. The central 

node is the input word. The surrounding nodes are its neighbors. The links are the similarities. 

 

▪ List of Nearest Words 

This function takes as input a list of words and returns the combined nearest neighbors to all 

words (Figure 72) according to the following criteria: 

➢ Number of nearest neighbors = 0 and cosine similarity cutoff = 0 

The result is the combined similar words of the first 10 nearest neighbors of each 

word. 

➢ Cosine similarity cutoff = 0 
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The result is the first combined nearest neighbors to each word according to the 

chosen number of nearest neighbors. 

➢ Number of nearest neighbors = 0 

The result is the first combined nearest neighbors to each word according to the 

chosen similarity value cutoff. 

Example query 

string: /word_annotate_list_vector?words=BRCA1,BRCA2,TP53&size=5&cutoff=0.6 

Example API 

query: /word_annotate_list_vector/api?words=BRCA1,BRCA2,TP53&size=5&cutoff=0.6 

 

Figure 72. The combined nearest neighbors of the gene list 'BRCA1,BRCA2,TP53' with 

number of nearest neighbors=3 and a cosine similarity cutoff= ‘0.6’. 

https://ebiomecon.genexplain.com/word_annotate_list_vector?words=BRCA1,BRCA2,TP53&size=5&cutoff=0.6
https://ebiomecon.genexplain.com/word_annotate_list_vector/api?words=BRCA1,BRCA2,TP53&size=5&cutoff=0.6
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▪ Similarities between Words 

This function returns the similarity between words within a list as network edges (Figure 73). 

Only the word pairs that have a similarity value >= '0.4' are returned. If a word is not in the 

vocabulary of the embedding, its similarity to other words cannot be calculated, so it won't be 

in the output list. 

Example query string: /list_edges_page?words=TP53,TP73,MDM2,MDM4,TP63 

Example API query: /list_edges_page/api?words=TP53,TP73,MDM2,MDM4,TP63 

 

Figure 73. The similarities between entities in a gene list.  

 

https://ebiomecon.genexplain.com/list_edges_page?words=TP53,TP73,MDM2,MDM4,TP63
https://ebiomecon.genexplain.com/list_edges_page/api?words=TP53,TP73,MDM2,MDM4,TP63
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▪ Word Vector 

This function returns the numerical vector generated by the trained model in 300 dimensions 

(Figures 74,75). Word vectors can be represented as numerical descriptors for biomedical 

concepts. 

Example query string: /word_vector_page?word=MDM2 

Example API query: /word_vector/api?word=MDM2 

 

Figure 74. The 'Word Vector' function that returns a vector/vectors of a word/words in 300 

dimensions. 

 

 

Figure 75. A glimpse of the numerical vector representation generated by the 'Word Vector' 

function. 

https://ebiomecon.genexplain.com/word_vector_page?word=MDM2
https://ebiomecon.genexplain.com/word_vector/api?word=MDM2
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All functions that have an input field for the number of nearest neighbors, if the number of 

nearest neighbors is not given, the first 10 nearest neighbors will be returned. 

 

6.3.6. Computational Analysis Results  

To demonstrate the utility of our Word2Vec embedding in data analytical applications, we 

examined the agreement of cosine similarities between words according to their vector 

representations with information extracted from biomedical knowledge bases (see section 

6.2.6). Each word in the resulting embedding is represented by a 300-dimensional numerical 

vector which is the default number of hidden layers used to train a Word2Vec model.  As a 

result, pairs of genes with known interactions in the Reactome database showed higher cosine 

similarities than gene pairs without known interactions in the same database (Figure 76). 

Similarly, cosine similarities of drugs with overlapping target gene sets were on average higher 

than similarities between drugs without common target genes. Furthermore, cosine similarities 

within Reactome and TRANSPATH® pathways as well as within GO biological processes 

were increased compared to median cosine similarities of randomly sampled gene pairs (Figure 

76). Regression curves estimated for the medians moreover revealed a correlation between the 

number of pathway or GO category members and the median similarity, with higher values for 

smaller gene sets. We think  that gene pairs in smaller pathway networks or biological processes 

were more likely to correspond to direct molecular interactors which share a close functional 

context than in  pathway or functional categories with a higher number of members and that 

the embedding in many cases indeed captured these relations. While disease-disease cosine 

similarities within HDO groups also revealed such a trend for groups with less than 25 

members, median similarities within groups were often smaller than for randomly chosen 

disease pairs (Figure 76). Disease-disease relations captured by broader HDO groups, 

therefore, did not correspond well with vector presentations of the embedding. Better 

correspondence was observed for narrower disease groups but did not exceed similarities of 

random disease pairs. 

Additionally, for drug-drug similarities based on gene groups, the estimated median in each 

group increased as the number of genes in a group increased (median: group 1= 0.192, group 

2= 0.318, group 3= 0.396) (Figure 77).  



 

125 
 

 

 

Figure 76. Validation of the Word2Vec embedding with existing knowledge from biomedical 

resources. Reactome pathways, TRANSPATH® pathways, GO biological processes and 

Human disease ontology present median cosine similarities as well as their lower and upper 

quartiles within groups of given number of members (genes or diseases, respectively) and for 

random samples (Material and methods). Mean estimates were computed by fitting the decay 

function to medians, with the exception of the Human disease ontology comparison where a 

non-parametric local regression (Loess) was applied. Reactome protein-protein interactions 

and drug-gene associations show histograms of genes with or without known PPIs and of drugs 

with or without shared target genes, respectively. (Figure used in [202]) 
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Figure 77. Boxplot of drug- drug cosine similarity distributions with shared genes of given 

number in DrugBank. Drug-drug groups were estimated by counting the number of shared 

genes between two drugs presented in the embedding. Group1 (no genes: lower quartile = 

0.108, upper quartile = 0,286), group2 (genes ≤ 5: lower quartile = 0.229, upper quartile = 

0,411), group3 (genes ≤ 9: lower quartile = 0.292, upper quartile = 0,516). (Figure used in 

[202]) 

 

6.3.7. Text Corpus Size Effect 

We generated four embeddings trained with corpora of different sizes to examine the variability 

of cosine similarity values depending on the amount of training data. Figure 78 illustrates the 

results for selected terms of different types and their nearest neighbors. The cosine similarities 

are varying between the terms. For example, the similarity value between the “breast 

neoplasms” and “ovarian neoplasms” had increased slightly as follows: 0.851 (4M), 0.855 

(8M), 0.861 (12M), 0.862 (~16M). Breast neoplasm is one of the most frequent diagnosed 

neoplasms reported in biomedical literature. Many studies have also reported similarities 

between breast and ovarian cancer since they share similar mutations (tumor suppressors). On 

the other hand, the similarity between "brca1" and "brca2" is almost the same in the four 

embeddings (0.898, 0.893, 0.891, 0.898 for 4M, 8M, 12M, and ~16M, respectively) with a very 

high similarity compared to the other nearest neighbors of "brca1". BRCA1 and BRCA2 genes 

are the most common genes defined in literature with certain mutations and lead to an increased 
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risk of breast and ovarian neoplasms. Similarly, for “schizophrenia” and “bipolar_disorder”, 

their similarity has changed slightly (0.822, 0.825, 0.828, 0.829 for 4M, 8M, 12M, and ~16M, 

respectively). An overlap between schizophrenia and bipolar disorder has been commonly 

reported in the literature. 

In contrast, the similarity between "eczema" and "atopy" had changed differently. It had 

decreased from 0.713 in the embedding with the corpus of size 4M to 0.669 in the one with 

8M, to continue increasing again to 0.691 (12M) and 0.701 (~16M) while staying lower than 

their similarity in the embedding pre-trained with the smallest corpus.  

Overall, we observed that the nearest neighbors of selected terms were assigned similarity 

values as well as a similar ranking that were varying slightly in the four embeddings for the 

majority of the selected terms. However, for common terms such as breast neoplasms, BRCA1, 

and schizophrenia and their nearest neighbors with which they tend to appear more frequently 

in biomedical literature, the similarity was more robust. 
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Figure 78. Assessment of similarities between selected terms and their nearest neighbors 

present in 4 embeddings. The selected terms are the genes brca1, psen1 and egf, the medical 

terms breast neoplasms, eczema, sleep and schizophrenia, and the molecular compounds 

ranitidine, lactose, and cocaine; and their nearest neighbors present in 4 embeddings trained on 

a text corpus of different sizes. Each numbered subplot represents the cosine similarities 

between a selected term and its nearest neighbors from the four embeddings. Each plotted line 

represents one embedding and each dot on a line is the similarity between a selected term and 

one nearest neighbor. A point on the line is the similarity value between a selected term and 

one nearest neighbor. Nearest neighbors are arranged according to decreasing cosine similarity 

for the 4M corpus. (Figure used in [202]) 
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6.3.8. Graph-CNN Performance Evaluation 

Graph-CNN models were trained on the breast cancer data from section 2.3 to predict an 

occurrence of a metastatic event, utilizing different prior knowledge. The models with gene-

gene networks derived from the embeddings showed the best performance compared to HPRD 

PPI, STRING-derived networks, BioBERT-derived network, and random network, in 

classifying patients into two groups, metastatic and non-metastatic. The networks were 

compared based on the similarity threshold and the number of vertices included. The 

architecture of Graph-CNN consists of 2 convolutional layers. Two convolutional layers were 

used with 32 convolutional filters. Maximum pooling of size 2 applies to both of the 

convolutional layers. Two fully connected layers have 512 and 128 nodes, consequently. The 

training was performed on 90% of data (872 patients) and 10% was saved as a test set (97 

patients). The predicted patient data were classified into two groups: metastatic and non-

metastatic. 

Table 2 presents the performance of Graph-CNNs trained with the word2vec-embedding 

networks (Embedding_net_v1 and Embedding_net_v2) and STRING derived networks 

incorporating the edge weights. For STRING, the edge weights are the scores computed based 

on text-mining techniques (see Materials and Methods). We didn’t consider a weighted 

BioBERT-derived network since the minimal weight was already 0.938 for around 6000 

vertices, which is not that much different from 1.0. We can see that Embedding_net_v1 

demonstrated a better performance than Embedding_net_v2 for almost the same number of 

vertices and better than the text-mining-based STRING network. 

 

 

 

 

 

 

 

 



 

130 
 

Table 2. The results of how weighted underlying networks influence the performance of Graph 

CNN on the same data. The networks were compared based on the similarity threshold and 

number of vertices included. ‘Vertices’ are the vertices in the main connected component. 

‘Similarity Threshold’ is the minimum weight value to keep connections between genes. AUC, 

Accuracy, and F1 weighted are the evaluation metrics used. ‘Epochs’ is the number of passing 

the entire dataset through the neural network. 

 

Network 

Vertices Similarity 

Threshold 

AUC 

% 

Accuracy 

% 

F1-

weighted 

% 

Epochs 

Embedding

_net_v1 

(weighted) 

6092 0.65 83.09±0.97 76.67±1.14 76.45±1.14 100 

Embedding

_net_v2 

(weighted) 

6086 0.68932 82.05±1.08 75.03±0.70 74.74±0.76 100 

Embedding

_net_v1 

(weighted) 

6775 0.63 82.53±1.46 75.62±1.72 75.29±1.73 100 

Embedding

_net_v2 

(weighted) 

6774 0.6774 81.87±1.39 75.33±1.22 75.16±1.28 40 

STRING 

(text- 

mining) 

weighted 

6840 0.744 81.76±1.95 75.97±1.99 75.63±2.02 100 

 

 

In Table 3, we compared how unweighted network topologies influence the classifier’s 

performance depending on the similarity threshold and the number of vertices included. The 

baseline performance corresponds to HPRD PPI prior knowledge. STRING (combined) and 

BioBERT-based networks were considered only as unweighted since the weight thresholds to 

reach a comparable number of vertices were close to 1, 0.938, and 0.952, respectively.  

The embedding networks have a threshold value allowing to change the strength of similarity 

between vertices. Change of threshold for Embedding_net_v1 from 0.63 to 0.65 increased the 

classification result in weighted and unweighted cases. We can also observe that for embedding 

networks, the incorporation of weight’s edges increased slightly, although not substantially, 

the classification performance. Meanwhile, STRING and BioBERT-based networks do not 

bring any improvements compared to HPRD PPI or the random network. Thus, Graph-CNNs 

showed the best results on our dataset, incorporating weighted Embedding_net_v1 with a 

threshold of 0.65. 
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Table 3. Influence of unweighted underlying networks on the performance of Graph CNN on 

the same data. The networks were compared based on the similarity threshold and number of 

vertices included. ‘Vertices’ are the vertices in the main connected component. ‘Similarity 

Threshold’ is the minimum weight value to keep connections between genes. AUC, Accuracy, 

and F1 weighted are the evaluation metrics used. ‘Epochs’ is the number of passing the entire 

dataset through the neural network. 

Network Vertices Similarity 

Threshold 

AUC 

% 

Accuracy

% 

F1-

weighted 

% 

Epochs 

HPRD 6888 - 82.57±1.25 76.07±1.30 75.82±1.33 100 

Embedding

_net_v1 

6092 0.65 83.02±1.09 76.38±1.44 76.14±1.47 40 

Embedding

_net_v1 

6775 0.63 82.41±1.20 76.03±1.53 75.69±1.53 100 

Embedding

_net_v2 

6874 0.675 82.37±1.36 75.04±1.25 74.84±1.17 40 

STRING 

(text 

mining) 

6840 0.744 81.67±2.01 76.07±1.50 75.61±1.57 25 

STRING 

(combined) 

6862 0.938 81.77±1.17 74.62±1.56 74.33±1.64 100 

BioBERT_

v1.0 

_PubMed 

6865 0.95245 82.26±1.27 74.81±1.53 74.61±1.50 40 

Random 

network 

6888 - 81.89±0.109 75.65±0.99 75.43±0.99 40 

 

 

6.3.9. GLRP for delivering patient-specific subnetworks with 

Embedding-based Network 
 

The established graph layer-wise relevance propagation (GLRP) method was applied to explain 

the predictions of Graph-CNNs trained on the breast cancer gene expression data introduced in 

section 6.2.7.1. We selected four breast cancer patients that were correctly predicted and 

visualized individualized PPI subnetworks delivered from the data set of the microarray (Table 

4). Two subnetworks were assigned with luminal A (LumA), a common subtype. While the 

other two subnetworks were for patients with luminal B (LumB) and basal-like subtypes which 

are highly aggressive. The created PPI subnetworks are shown in Figures 79,80,81,82. We used 

the same web service technique [224] employed in [216] to visualize the subnetworks. The 
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node colors in the displayed subnetworks are based on 25% and 75% quantiles gene of 

expression levels with blue= low expression, yellow= normal expression, and red= high 

expression. The vertex size is based on the relevance of the scores within a subnetwork. The 

generated subnetworks for all correctly predicted patients are available and can be explored at: 

http://mypathsem.bioinf.med.uni-goettingen.de/MetaRelSubNetVis/Embedded/ 

The subnetworks from the embedding network showed explanations that were different from 

the ones provided with the HPRD PPI [216]. By comparing the visualized subnetworks, we 

can easily see that the underlying molecular network has affected the explanations of Graph-

CNN. 

 

Table 4. Four breast cancer patients that were correctly predicted. Two patients are with the 

luminal A (LumA) subtype. The other two are for patients with the basal-like and luminal B 

(LumB) subtypes. Metastatic event is the predicted event. (This table is based on a similar 

selection of subnetworks from [216]). 

Patient’s ID Breast 

cancer 

subtype 

Metastatic 

predicted 

event 

Time of Metastases, 

years 

Last follow-up, 

years 

GSM615195 Basal 1 0.76 - 

GSM615233 LumA 1 0.79 - 

GSM150990 LumA 0 - 9.93 

GSM282406 LumB 0 - 7.08 
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Figure 79. PPI subnetworks with the 140 most relevant genes for metastatic patient 

GSM615233 with Luminal A subtype. 
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Figure 80. PPI subnetwork with the 140 most relevant genes for metastatic patient GSM615195 

with Basal subtype. 
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Figure 81. PPI subnetwork with the 140 most relevant genes for non-metastatic patient 

GSM150990 with Luminal A subtype. 
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Figure 82. PPI subnetworks with the 140 most relevant genes for non-metastatic patient 

GSM282406 with Luminal B subtype. 

 

The subnetworks generated by GLRP contained common oncogenes in the four patients, which 

may therefore be drivers that are common for the initiation and development of breast cancer. 

Examples are the actin-binding protein cofilin (CFL1) which regulates the invasiveness and 

motility of cancer cells [225] and the thymosin beta-10 (TMSB10) that plays a crucial role in 

the sequestration of G-actin and in the motility of breast cancer cells [226] (CFL1 and TMSB10 

are highlighted by green in Figures 79,80,81,82).  

In addition, a comparison of non-metastatic and metastatic patient subnetworks uncovered 

certain patient-specific genes which could provide useful knowledge on specific tumorigenesis 

pathways and help to identify therapeutic vulnerabilities for a specific patient. Each subnetwork 

contained specific cancer-related genes of high relevance in both metastatic and non-metastatic 
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patients. The metastatic patient subnetworks contained genes known to be implicated in the 

development of aggressive tumors. It was interesting that the metastatic subnetwork 

“GSM615233” (same subnetwork in [216]) included the genes: LPL and FABP4 (highlighted 

by black in Figure 79), which were shown to interact with CD36 to prevent apoptosis and to 

promote cell proliferation [227][228][229]. Also, LGALS1 (Galectin‐1) is one of the most 

relevant genes in the patient metastatic subnetwork GSM615233 with Luminal A. Galectin‐1 

has been found to be active in multiple cancer cell invasion steps and metastasis. It regulates 

both cell migration and cell adhesion. It also interacts with extracellular matrix (ECM) 

molecules like fibronectin, laminin, integrin, and 90 K (MAC‐2BP), which makes it play 

another vital role in cancer progression. By interacting with these molecules, galectin‐1 

regulates cell‐ECM adhesion and modifies the aggregation and motility of cells. These 

interactions are essential steps in the metastasis and invasion of cancer cells [230][231]. 

Moreover, CHCHD2 and SDCBP are overexpressed and highly relevant in the metastatic 

patient subnetwork GSM615195 (highlighted by black in Figure 80). Overexpression of 

CHCHD2 in breast cancer patients is known to be related to distant metastasis and poor 

prognosis. Through upregulation of MMP2, CHCHD2 can induce the proliferative and 

migratory capacity in Docetaxel-resistant breast cancer cell lines [232]. SDCBP is an adapter 

protein that contains domains of PDZ. It leads to tumorigenicity and plays an important role in 

metastasis in many malignant tumors. It has also been documented that SDCBP is responsible 

for cell invasion, and the development of pseudopodia, which are associated with tumor 

metastasis [233]. In contrast, the non-metastatic subnetworks contained genes that are known 

to be related to tumor suppression. SCUBE2 and KRT19 are highly relevant and over-

expressed in the non-metastatic patient subnetwork GSM150990 with luminal A (highlighted 

by black in Figure 81). SCUBE2 has a crucial role in suppressing the mobility and invasiveness 

of breast cancer cells. It promotes the increase of the development of epithelial E-cadherin 

which contains adhesive junctions in order to facilitate epithelial differentiation and epithelial-

mesenchymal transition (EMT) reversal [234]. KRT19 has been shown to be involved in cancer 

progression regulation by acting as an oncogene or tumor suppressor gene [235]. It was shown 

that aggressiveness like cell proliferation and drug resistance, may be inhibited by the 

overexpression of KRT19 which suppresses the expression of the genes known to be associated 

with these phenotypes [235]. In GSM282406, COL3A1 has also shown high relevance while 

it is upregulated (highlighted by black in Figure 82). COL3A1 has been reported in breast 

cancer, with a poor prognosis association between COL3A1 and P4HA2 [236]. Col3 has also 



 

138 
 

been shown to suppress triple-negative breast cancer cell metastatic pathways, and tumor 

metastasis in mice [237]. 

 

6.4. Discussion 

Biomedical and life sciences literature is increasing exponentially in volume while having an 

interdisciplinary nature. [71]. For many users, particularly clinicians and biomedical 

researchers, access to biomedical literature is fundamental. However, it is challenging to 

explore the huge amount of information available in natural language. Word embeddings have 

been a key technique in the biomedical domain used to represent words as vectors of real values 

in a predefined vector space. The evaluation of word embeddings has always been a continuous 

research question. In this work, we focused on demonstrating the validity and utility of 

biomedical word embeddings. We used the word2vec implementation in two approaches to 

investigate functional relations between biomedical entities. In the first approach, we trained 

the word2vec model by using disease vocabulary information as prior knowledge to generate 

disease-specific embeddings. Graphically displaying the embeddings of selected diseases and 

drugs in 3D space has helped to explore disease-drug associations and disease clusters. Firstly, 

it has been shown how diseases and drugs formed two respective clusters in the space by 

displaying them all together as well as within one particular category. We clearly showed the 

clusters by displaying diseases and drugs of the ‘neoplastic process system’ and ‘central 

nervous system’. On the other hand, we were able to depict related diseases and drugs. We 

identified 3 drugs related to Zollinger-Ellison syndrome and 7 diseases related to 

“Amphotericin B”. The number of identified terms was limited to the validated relations 

extracted from the medical resource “5 min consult”.  Even though the number of identified 

relations was limited to two examples, it was able to validate relations between diseases and 

drugs from two perspectives (diseases related to drugs, drugs related to disease). Validated 

relations are useful to populate an empty ontology with entities and relationships. On the other 

hand, visualizing embedding can help capture information visually for just a limited number 

of entities. However, the larger is the embedding to visualize, the harder it would be to detect 

information.  

For the second approach, we generated two representations of biomedical word embeddings 

using word2vec based on a text corpus consisting of PubMed abstracts. The two representations 

were generated for the purpose of comparison. One representation included synonymous terms 

that were substituted by their preferred terms. Validating semantic relationships between 
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biomedical entities represented in word embeddings has the potential to enhance the clarity of 

word embeddings and the interpretability of downstream tasks using them. We performed a 

computational analysis to validate similarities between biomedical entities namely, genes, 

diseases, and drugs using existing knowledge in biomedical databases. Comparisons showed 

that relations between entities such as known PPIs, common pathways and cellular functions, 

or narrower disease ontology groups correlated with higher vector cosine similarity. Gene pairs 

with known PPIs in Reactome have shown generally higher cosine similarities. Gene 

embeddings seem to be rich with semantic information about gene function. On the other hand, 

gene pairs with high cosine similarities shown without known interactions in Reactome or any 

other biomedical database would lead to new investigations of uncovering hidden functional 

relationships. In addition, gene pairs sharing common pathways in Reactome and 

TRANSPATH®, as well as common biological processes in GO, showed increased cosine 

similarities compared to the median of randomly sampled gene pairs. Moreover, similarities 

were increased with smaller group sizes which more likely represent direct molecular 

interactions. Disease pairs also showed increased cosine similarities within smaller HDO 

terms/groups e.g. <= 20 diseases, which likely represent more specific disease classes. 

However, disease embeddings did not correspond well on the basis of median random 

similarity. This is an interesting case to further investigate why semantic relations between 

diseases differ from the HDO, although it would contribute to new insights.  

Corpus size effect assessment showed that similarities between selected terms were 

substantially affected by the corpus size. In general, we noticed that the first nearest neighbor 

for most terms was not strongly influenced by the corpus size even though it was not changing 

proportionally with the corpus size. The highest and strongest similarities were observed 

between "breast_neoplasms" and "ovarian_neoplasms" as well as between "brca1" and "brac2". 

This might be justified by the fact that these terms are very common in the present literature 

and words in each pair tend to occur more frequently in the same context. This could validate 

the ability to extract meaningful functional relationships between biomedical terms. 

Additionally, in order to demonstrate the utility of the embedding in machine learning, we 

assumed that the similarities between biological entities might help to create networks of 

specific types. The results of Graph-CNN showed that the embedding-based networks are 

topologically meaningful. Weighted and unweighted Embedding_net_v1 allowed to increase 

the classification performance to predict the metastatic event in breast cancer according to the 

mean AUC, accuracy, and F1 measure. This can be explained by the fact that the integrated 
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information in the embedding is based on biological facts. The change of similarity threshold 

of edge weights from 0.63 to 0.65 led to increasing in performance, it can be due to the fact the 

network contained fewer vertices, and “weak genes” were filtered out. Random network-based 

demonstrated lower performance, although it is still to be investigated how simulated networks 

with different degree distributions would influence classification error rate. It was also shown 

that the model trained with the embedding_net_v1 network has performed better than with the 

embedding_net_v2. The former was produced from the embedding in which we replaced 

synonymous terms with their main terms. Such procedure has surely influenced the embedding 

information and in particular the semantic relations between terms. For example, considering 

the gene WNT4 and its nearest neighbor WNT7a, the cosine similarity between them has 

increased from 0.798 to 0.811, in Embedding_v1 and Embedding_v2 respectively. Although 

the increase in similarity was small, this has led to change it from being its third neighbor to 

becoming its first neighbor. Knowing that our examination was based only on gene-gene 

relations, it can, however, be extended to cover other types of relations e.g. disease-disease, 

gene-disease, etc. Moreover, our validation analysis was performed based on Embedding_v2 

while the similarities between biomedical entities can also be evaluated by checking the 

influence of Embedding_v1.  

The influence of embedding-based networks can be further examined by considering text-

mining-based networks other than STRING and Bio-BERT. One could also derive networks 

from Bio-BERT using different hidden layers. For our Bio-BERT-derived network, the vectors 

of words were extracted from the last hidden layer. The BERT authors extracted vector 

combinations extracted from different layers. They tested the strategies of word-embedding by 

feeding those vector combinations to a BiLSTM (bidirectional long short-term memory) 

applied in a named entity recognition task and the resulting F1 scores were observed [213]. 

The best results on this task were provided by the concatenation of the last four layers. 

Therefore, for your particular application, it is best to compare different versions: the results 

may differ.  

Our validation and evaluation analysis results will be published in a journal paper entitled: 

“Text Mining-Based Word Representations for Biomedical Data Analysis and Machine 

Learning Tasks”. The paper is based on our materials and methods in sections 6.2.6 and 6.2.7 

and their sub-sections, as well as on our results in sections 6.3.3, 6.3.6, 6.3.7, and 6.3.8 

including their sub-sections.  A preprint of the paper is available under the following reference 

[202]:  
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▪ Alachram, Halima, Hryhorii Chereda, Tim Beißbarth, Edgar Wingender, and Philip 

Stegmaier. 2020. “Text Mining-Based Word Representations for Biomedical Data Analysis 

and Machine Learning Tasks.” BioRxiv, January, 2020.12.09.417733. 

https://doi.org/10.1101/2020.12.09.417733. 

The individual patient-specific subnetworks generated from the Embedding_v2 network have 

further demonstrated the biological utility of the embedding information. The subnetworks 

included common possible oncogenic drivers which suggest that they are capable of extracting 

important cancer pathways. They also included oncogenes observed in all four patient 

subnetworks and may be common drivers of the development and initiation of breast cancer. 

Moreover, both non-metastatic and metastatic patient subnetworks uncovered certain genes 

that are patient-specific, which could provide useful information on specific tumorigenesis 

pathways and therapeutic limitations in the respective patient. This would also demonstrate the 

biological utility of the embedding-based networks in molecular biology. 

The developed “eBioMeCon” web service provides functions to explore similarities of 

biomedical concepts including the possibility to extract vertices using the function “Similarities 

between words”. Currently, the web service uses the embedding version we developed that 

excluded synonyms. However, the data can be extended by adding another embedding version 

and by providing the user with the option to select one of the embedding versions. Furthermore, 

specific embeddings can be generated for a specific domain such as an embedding using text 

articles that include information about a particular entity type like molecules or a particular 

disease type. 
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7 Conclusion 

7.1. Summary 

In this thesis, I developed applications that integrate, represent, and extract biomedical 

knowledge. The applications are useful to integrate patient clinical and genomics data with 

pathway knowledge in order to provide efficient data use in Systems Medicine. Enrichment 

analysis is an essential step to identify gene function and biological pathways related to 

differentially expressed genes in disease. The first application I developed is an enrichment 

analysis tool that utilizes a logistic regression-based method to identify predefined gene sets 

that are biologically related and enriched with genes that are differentially expressed. This 

approach was developed in a recent study as an R function. I adjusted the function by 

integrating the GO and Reactome categories annotated with Ensembl gene identifiers as 

predefined data sets. To use all the GO terms existing in the ontology graph which is essential 

for enrichment analysis tools that use GO annotations, I implemented functions by using the 

OBA service to access the ontology structure and to map genes annotated to descendants at the 

lowest level to all their ancestors. The tool is a Java-based application that can be easily used 

as a standalone application or it can be integrated into Java platforms. 

My second application approach was to exploit molecular information available in existing 

resources that can be delivered to clinicians in order to help them modeling disease pathways. 

This can be established by linking clinical terms to concepts in biomedical databases. 

Therefore, I developed a lexical mapping module that works by comparing two concepts from 

two different resources using word-based and character-based metrics. The module includes a 

preprocessing phase that can be adjusted by the user to normalize texts. Using this module, I 

mapped ICD terms to disease concepts in the NCIT and the MeSH® vocabulary. To improve 

the results, I limited the information in the ICD and the NCIT ontologies to neoplasm concepts 

and I used other mapping strategies and mainly manual mapping as well as a structural strategy. 

The combination of these strategies was able to produce efficient mappings results. 

Furthermore, I exploited the NCIT ontology structure to develop functions to model disease 

pathways based on genes by using the relationships between the ontology concepts and their 

properties. I implemented these functions using the functionality of the OBA service. Using 

these functions, I developed a query that takes a disease name as input to return possible related 

pathways. 
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The scientific literature is a primary source from which such connections can be drawn and of 

special importance when aiming at newly discovered and experimentally confirmed relations. 

Approaches to extract novel knowledge from scientific literature using NLP and how the NLP 

results can be made accessible to downstream analysis are active research subjects. I used the 

word embedding technique, namely word2vec in two approaches to extract biological 

information. In the first approach, I used the Dis2vec, a modified word2vec model with a 

preprocessed text corpus to extract disease-drug associations. By visually representing the 

embedding results, I identified validated disease-drug association examples. The second 

approach was developing an embedding from a corpus I created and processed. To process the 

corpus, I applied different preprocessing strategies for comparison purposes. In addition, I 

developed a pipeline to process a text corpus and to generate word2vec embedding. Moreover, 

I developed functions to query information in the resulting embedding that can help to extract 

knowledge and to uncover hidden relationships. To facilitate the exploration of biomedical 

concepts in the embedding, I developed the eBioMeCon (embedding of biomedical concepts) 

web service. The service offers several ways to explore inferred contextual similarities between 

diseases, drugs, genes, and pathways through graphical and programming interfaces. To 

validate similarities between biomedical entities, I performed computational analyses using 

existing knowledge in biomedical databases. The analysis results showed that relations 

between entities such as known PPIs, common pathways and cellular functions, or narrower 

disease ontology groups correlated with higher vector cosine similarity.  In addition, I assessed 

the effect of corpus size on the variability of similarities between selected terms and their 

nearest neighbors. To demonstrate the biological utility of the embedding information, I created 

gene-gene networks from two embedding versions and used them as prior knowledge to train 

Graph-Convolutional Neural Networks (CNNs) on breast cancer gene expression data to 

predict the occurrence of metastatic events. Performances of resulting models were compared 

to Graph-CNNs trained with protein-protein interaction networks or with networks derived 

using other word embedding algorithms. Graph-CNNs trained with word2vec-embedding-

derived networks performed best for the metastatic event prediction task compared to PPI or 

other text mining-based networks. Word representations as produced by text mining algorithms 

like word2vec, therefore, capture biologically meaningful relations between entities. Our 

results demonstrated that high-throughput data interpretation can profit from the semantic 

relations to infer molecular interactions that play a role in disease development and therapeutic 

responses by using them as prior knowledge in machine learning tasks. 
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7.2. Outlooks 

All the methods implemented in this manuscript are eligible to be extended and adjusted 

according to the intended purposes. For the LRpath enrichment tool, the categories in the 

datasets used to be tested can be extended by adding other annotation resources than GO and 

Reactome. Especially resources that include detailed information about pathways to promote 

studying the pathways that play a role in diseases. One more feature that can be added to the 

tool is the same feature presented in the original method, which is integrating LRpath results 

from multiple experiments and comparing the results in clustering analysis. 

For the lexical mapping module, the application can be easily used by Java users. To make it 

more user-friendly, the module can be extended by developing an interactive interface and 

giving the user the ability to specify the threshold of the similarity score between two concepts. 

On the other hand, the implementation could be extended to tackle more specific cases during 

the preprocessing phase.    

Representing biomedical concepts, which exist in literature, as numerical vectors was a 

fundamental task to explore relationships between entities. Neural network models always 

perform better when trained on larger datasets. The embedding I generated was based only on 

PubMed/MEDLINE® abstracts, however, it could be extended to include data from different 

biomedical text sources like PMC full text biomedical and life sciences articles, biomedical 

books, and other scientific literature. Another idea would be to develop embeddings that cover 

information about specific entity types such as proteins, or diseases. We have demonstrated 

that the embedding derived networks are biologically meaningful. Therefore, other networks 

of other entity types can also be created such as disease networks and drug networks. Such 

networks could also be tested in downstream applications or could be used to create knowledge 

bases. The developed web service based on the embedding data is already featured by functions 

that enable the exploration of biomedical concepts. However, it can be extended to include 

multiple embedding versions and give the user the choice to choose between them.  
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