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I. Introduction 
 

I.1. Motivation  

Studying human biology has been a subject of interest for many decades. With discoveries and new 

technologies, new findings and knowledge about the inner-workings and functionalities of cells are 

acquired. Cell networks are highly complex, due to the many players and molecules interacting 

continuously to achieve a certain task. To study these networks, it is essential to consider the smallest 

biological detail level, consisting of DNA, RNA, proteins, and metabolites. More importantly, a great 

interest has been shown in the manners in which these molecules interact, which form biological 

networks [1].  For instance, protein-protein interaction (PPI) networks describe functional or physical 

relationships between two or more proteins [2,3]. In this work, we are interested in cell networks, or 

pathways, which describe very complex interactions between the different levels of the aforementioned 

molecules. This complex interplay between molecules is modelled using graphs, which allows the 

generation of machine-readable formats that can be queried, interpreted, and managed by computer-

associated tools [4]. In an abstract formulation of a biological graph, the molecules form the nodes, and 

their interactions form the edges. A typical example is a PPI network, in which the proteins are 

represented by the nodes and their multiple interactions by the edges. Such graphical representation can 

help to systematically predict new information on the topology and functionality of these networks, and 

thus formulating new hypotheses on new connections and functions. In the omics field, this also provides 

opportunities to build data integration tools to study these networks at the systems level [4]. 

Nevertheless, this representation is oversimplified and does not consider the multiple aspects a complex 

biological network can have. Considering a traditional mathematical graph model does not provide the 

possibility to explore the various groups of nodes individually or the multiple types of connections 

between the same vertices. This imposes the need to go beyond and employ a more sophisticated 

formulation.  

The aim of this work is to build a multilayer model defined by an n-layer graph, which can accommodate 

biological pathways while considering the different biological natures of their constituents. The 

generated model consists of n layers, to which the molecules participating in a given pathway are 

assigned. Furthermore, knowledge influencing these pathways is integrated as additional layers to 

provide a wholist, more accurate perspective. The implementation of this model also requires the 

definition of operations and standard procedures to transform the model. The model with the provided 

operations is used to generate multiple views by deleting or adding additional layers, nodes, or edges, 

which helps condense the knowledge in a specific area of interest and remove any erroneous or irrelevant 

information. Existing tools and parsers are automatically used to obtain and parse the data that will be 

transformed to generate the multilayer models. 

The Multipath project addresses two main challenges faced when studying biological pathways, which 

are data integration and reproducibility. 

 

I.1.1. Data Integration and Interoperability 

The explosion of interest shown in this field resulted in a great number of tools and resources that contain 

highly interrelated knowledge. Currently, there is a multitude of databases, each containing a single 

biological aspect, such as protein databases, or types of biological pathways, or even redundant 

information on the same elements. The main idea is to switch from a reductionist into a wholist 

perspective, by inspecting system-level interaction. Since biology, unlike physics and chemistry, is a 

lawless science, dealing with highly interplaying, constantly evolving actors [1], the inclusion of 
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critically relevant information into a single model is advantageous. It eases the process called, inference, 

which is transforming experimental results into hypotheses [5].  

Typically, multiple databases and analysis tools are needed to perform a single bioinformatics query [6]. 

Pathway diagrams in particular are considered complex due to many factors, including their size. One 

of these important factors is the information influencing these pathways that has to be included in the 

diagrams. Examples of this relevant information are expression and experimental data, literature 

citations, and drug knowledge [5]. The challenging aspect of this problem also originates from the 

different incompatible standards and formats used by the knowledge sources [6]. Consequently, 

implementing tools that allow integration of knowledge and interoperability between these knowledge 

sources is required.  

I.1.2. Reproducibility 

In cell-biology, most papers study and focus on individual molecules, and the results and findings 

formulated by the investigator become hard to reproduce since they are his private property [7]. In 

bioinformatics and biostatistics, empirical investigation research is based on data and computer 

algorithms [8]. The normally conducted revision procedure ensures the validity and novelty of the 

experimental parts of a publication, but rarely the simulations. In fact, the policy of publishing the data 

alongside the articles was recently adapted by the majority of the journals. From a biologist’s 

perspective, it is not always realistic to have high bioinformatical skills, especially in the field of 

visualization. The main problem in most existing tools is the complexity of their implementations, which 

does not motivate non-experts to spend a significant amount of time learning their usage [5]. 

In [9], four terms related to reproducibility were defined: reproducibility is the ability to obtain the same 

results using the same data and code, robustness in which the results are achieved using a different code, 

replicability using the same code but a different set of data, and generalizability using a completely 

different code and data. Kim et al. also show that this process does not only depend on the availability 

of the code and data but also many factors including the language, file format, readability, references, 

parameter option, and version. 

When contributing to the academic field, it is always crucial to publish findings and results that can be 

replicated and easily used by fellow-researchers. A big challenge faced in the field of pathways is the 

automation of the construction of pathway diagrams [10], which differ from one publication to the other. 

In Reactome, a single pathway file contains multiple versions of the same pathway, published in 

different articles. Although these publications present the parts of a pathway, they do not provide any 

documentation or guidance on the derivation of the presented version from the original. In fact, a study 

realized by Hothorn et al. [11] showed that 69.6% of the articles published in the 50th volume of the 

Biometrical Journal present simulation studies, of which only 30.4% (17 out of 56 papers) published 

the data, and 14.3% (8 out of 56 papers) presented the code. In another publication by the same authors 

[8], a workshop was organized where 34 participants with a degree in statistics or a related field were 

grouped and asked to reproduce results from two publications, a trivial one with all needed materials 

and an impossible one with non-published source code. It showed that most groups were able to 

understand and reproduce some of the findings in the first publication, but none of them were capable 

to reproduce the second. 

In this work, I present a tool that allows the tracking of all modifications applied to a pathway model, 

with the possibility to invert these steps, in order to re-obtain the original input. Hence, when a certain 

pathway illustration is used in a publication, the list of applied steps can be published alongside, 

providing scientists the opportunity to follow-up on the findings of their fellow-scientists.   



 

   

Zaynab Hammoud 

13Introduction 

I.2. Graphs 

I.2.1. Monolayer Graphs 

A graph 𝐺 =  (𝑉, 𝐸) is mathematically a non-empty set of nodes 𝑉 called vertices, connected with a set 

of relations 𝐸 called edges, defined by a pair (𝑣𝑖  , 𝑣𝑗)  ∈ 𝑉 × 𝑉 as the end-vertices of the edge 𝑒𝑘 [12, 

13]. In a normal graph diagram, the vertices are represented with circular nodes or points, and the edges 

with lines or arrows between the nodes. A graph is called directed when the relations between the 

adjacent vertices, i.e. incident to a common edge, have a certain direction in which the relationship can 

be traversed, while in an undirected graph, the edges represent a two-way relationship. The graph can 

also be weighted, i.e. the edges are assigned weights to indicate the importance or value of certain 

connections over others. In computer science, graphs are normally represented with adjacency matrices, 

where the nodes form the columns and rows, and a binary value is assigned to each cell, namely 0 in 

case the nodes are not adjacent, and 1 in the other case, or the weight of the edge in case of a weighted 

graph. A subgraph 𝐻 of a certain graph 𝐺 consists of a sub-set of vertices and edges, where 𝑉(𝐻)  ⊆

 𝑉(𝐺) 𝑎𝑛𝑑 𝐸(𝐻) ⊆ 𝐸(𝐺). 𝐺 is called the supergraph of 𝐻 [14]. 

Graphs are mostly used to describe real-world situations. Directed graphs, for instance, can be used to 

represent a network of roads, to describe the traffic flow and the orientation of travel. Undirected graphs 

can be used to represent social relationships in a population of individuals. The relationships can be 

friendships, neighbourhoods, co-workships, etc., where the direction of edges is immaterial.  

This graphical representation shows many inconveniences when the number of nodes and edges 

becomes relatively huge. When visualizing big networks, a typical problem faced is the hairball effect 

(Figure 1A), in which the overlapping of nodes and edges becomes considerably high, and results in a 

highly tangled ball. In this case, the classification of the entities and elements of the graph helps reduce 

this entanglement, by upgrading the model to support what is called colouring, or layers (Figure 1B). 

The oversimplified traditional model is thus transformed from mono- to a multilayer model. 

I.2.2. Multilayer Graphs 

A multilayer graph is defined by a tuple (𝑉, 𝐸, 𝐶), where the new set 𝐶 is introduced as the colours or 

layers [15]. This concept is employed in many fields and has many interpretations and definitions. 

Multilayer graphs differ from traditional graphs by the set of layers that groups the nodes, the edges, or 

both. They provide a better modelling and graphical visualization, by considering the heterogeneity in 

a given complex network.  

Figure 1 Signaling by Wnt Mono- vs. Multilayer Graphs with Hairball effect. The graph was parsed from Signaling by Wnt 
BioPAX Level 3, and visualized using the igraph function tkplot (Fig A), and plot3d function in mully (Fig B). 

(A)                                                                                                  (B) 
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I.2.2.1. Abstract Formulation 

Multilayer graphs can mainly be classified into two categories, node-coloured and edge-coloured, 

depending on the chosen definition of layers. 

I.2.2.1.1. Node-Coloured Graphs (NCG) 

Node-coloured graphs (NCG) are graphs in which the layers represent the various types of nodes. This 

representation is used to model systems with heterogeneous nodes or entities (Figure 2).  

An NCG is defined by a tuple (𝑉, 𝐸, 𝐶) where 𝑉 is the set of nodes, 𝐸 is the set of edges and 𝐶 is the set 

of colours or layers.  

GN = (𝑉, 𝐸, 𝐶) , V𝛼 ∈ 𝑉 × 𝐶, E𝛼𝛽 ∈ 𝑉𝛼 × 𝑉𝛽  𝑤ℎ𝑒𝑟𝑒 𝛼, 𝛽 ∈  𝐶  

We call an edge connecting two nodes with the same colour intra-edge, and with two different colours 

inter-edge. The nodes in NCGs are layer-disjoint or in other words mostly assigned one colour. 

I.2.2.1.2. Edge-Coloured Graphs (ECG) 

In an edge-coloured graph (ECG), the connections between the nodes are heterogeneous. Each aspect 

of these connections is translated using a colour.  

In most ECGs, the nodes are replicated over the layers (node-aligned), and the edges are distributed over 

the layers based on their colours (Figure 3).  

An ECG is hence defined by a tuple (𝑉, 𝐸, 𝐶) in the same manner as an NCG. Each layer contains a 

subset of edges and a subset of or the complete set of nodes. 

𝐺𝐸 = (𝑉, 𝐸, 𝐶)  

 {𝐺𝛼}𝛼=1
𝑏 = {(𝑉𝛼, 𝐸𝛼)}𝛼=1

𝑏  ,  ∀𝛼, 𝛽 ∈ 𝐶    V𝛼 = 𝑉𝛽 ,         

  E𝛼 ∈ 𝑉𝛼 × 𝑉𝛼 × 𝐶          

I.2.2.2. Implementations 

The usage of a multilayer networks requires understanding more sophisticated and specific forms and 

implementations. The abstract model of NCG or ECG can be upgraded to support specific applications. 

Following are the main existing implementations. 

Figure 2 Node-coloured Graphs. 

Figure 3 Edge-coloured Graphs. 
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Multiplex and Multilevel networks 

These networks are ECG; in a Multiplex graph, each layer contains the complete set of nodes, with 

subsets of the edges (Figure 4). Multilevel networks are a sub-type of the Multiplex one, with the 

possibility to assign only certain nodes to the layers (Figure 5). 

Interconnected/interacting networks 

Interconnected networks consist of multiple networks that are interacting. They are considered NCG 

since each network contains a different set of nodes, which constitutes the corresponding layer (Figure 

6). 

Multi-hypernetworks 

Multi-hypernetworks also called hypergraphs, are multiple sets of fully connected nodes. Each set 

contains several nodes that are connected with a hyper-edge, which is a relation between multiple nodes. 

The multilayer model is built by creating the various layers that represent the sets and assigning the 

vertices to their corresponding set. Edges are then added between all the vertices belonging to the same 

layer (Figure 7). 

Figure 6 The mono- and multilayer representations of Interconnected networks. 

Figure 7 The mono- and multilayer representations of Hypergraphs. 

Figure 4 Multiplex Graph. Figure 5 Multilevel Graph. 
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I.2.2.3. Application in Biomedicine 

The multilayer framework has been used in recent years to model complex biomedical networks. This 

usage is justified by the large number of biological elements and relationships in a single biological 

network, which can be summarized and grouped into layers to allow a better understanding of the 

structure and dynamics. The layering of biological networks has been employed in different frameworks 

and for different applications. In my review paper in Appendix A [16], I conducted a literature research 

on this topic, and I summarized the applications for different types of biological networks. These range 

from PPI and gene co-expression networks, which are multilayered by respectively grouping the proteins 

and genes interacting in different settings, such as cells or species, to cell networks, where the layers 

can represent the multiple molecular types of nodes. Other applications include brain neural networks 

which can be modelled using Multiplex graphs with different spatial or temporal factors, or frequency 

bands as layers. The multilayer models have been mostly used in epidemiology and the study of disease 

spreading, which combines social and biological networks. A typical model is the multiplex SIR model, 

which consists of 3 layers, namely susceptible, infected and removed.  
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I.3. Knowledge  

I.3.1. Relevant Biological Knowledge 

The suffix –omics is normally assigned to a technique used to study, identify and measure a set of 

biological molecules, such as proteomics for proteomes and genomics for genomes [1]. The interactions 

between these sets are analysed with network methodologies, used to predict and generate hypotheses. 

However, the density and complexity of the data constitute the first obstacle in the creation of these 

networks.  

Biological pathways are networks of biological reactions describing how biological molecules interact 

to accomplish a certain biological function [5]. The main biochemical compounds involved in pathways 

are proteins, protein complexes, genes, and metabolites. Pathways can be metabolic, developmental, 

signal-transduction pathways or genetic regulatory circuits. All of these pathways can interact and 

overlap, by having similar compounds involved in different processes. 

There exist over 300 pathway databases that can be grouped into four categories: metabolic pathways, 

signalling pathways, protein interaction, and gene regulation [17]. 

Metabolic pathways study the chemical reactions and transport interactions occurring in a cell at 

different time points, producing energy for vital processes and synthesis of new material [18]. They 

mainly focus on the chemical transformations of small molecule substrates of enzymes, which are 

proteins that catalyse chemical reactions [17]. This collected information and how these events correlate 

is represented by so-called metabolic networks. On the other hand, signalling pathways are regulatory 

pathways representing one part or sub-process between multiple cells, by propagating series of protein 

covalent modifications. These databases focus on eukaryotes, which are more complex and diverse [17].  

One of the most known pathway databases is the WikiPathways open platform, in which the pathways 

are presented and curated as wiki models that can be modified collaboratively by the entire community. 

The pathways in WikiPathways dispose of separate wiki pages containing the diagram, description 

references, version history, and components’ lists (genes, metabolites, and proteins) [19]. They are 

encoded in the XML-based format GenMAPP Pathway Markup Language (GPML), dedicated to storing 

graphical information on the pathway diagrams. 

PathGuide is a meta-database that displays a pathway resource list with over 700 web-accessible 

biological pathway and network databases including metabolic and signalling pathways, transcription 

factor targets, gene regulatory networks, genetic interactions, and PPI and protein-compound 

interactions in 24 organisms [20]. The data is represented using the BioPAX, SBML PSI-MI, and CellML 

standards. The list currently contains 133 signaling pathway databases, and 166 metabolic pathway 

databases. Pathway Commons is one of the metabolic pathways databases that collects biological 

pathway data from databases through a partnership. The data is represented using the BioPAX standard 

[21]. One of the main partners is Reactome.  

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a series of 19 databases that contain systems 

information such as pathway maps in KEGG PATHWAY, genomic information such as organisms in 

KEGG GENOME, and chemical information such as drugs in KEGG DRUG [22]. The metabolic 

pathway maps in KEGG PATHWAY are represented using the KEGG XML+SVG (KGML+) format and 

can be exported in BioPAX level 2 format [23]. The map contains different pathway modules, in which 

the reactions and orthologs are represented by boxes, nodes or molecules are drawn using circles and 

connected using straight and curved lines.  

An example of a signalling network database is TRANSPATH®, which is a database system that offers 

encyclopaedic information and analysis and visualization tools on signal transduction pathways [24]. It 
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also provides cross-references to commonly used databases [25] such as Ensembl [26], RefSeq [27], 

UniProt [28], HGNC [29], and GO terms [30]. It is an extension module to the database system 

TRANSFAC® that contains transcription factors, their genomic binding sites, and DNA-binding profiles 

[31]. The data can be exchanged using the XML and Document Type Definition (DTD) format. Pathways 

are considered bipartite graphs, in which the nodes are the molecules and reactions, linked through edges 

that signify their involvement and participation in one another. They can be visualized using a tool called 

PathwayBuilder®. The latest release of the database is 2020.3, which contains more than 298,000 

molecules, 80,000 genes, 98,000 transcription factors, 489,000 reactions, and about 1720 experimentally 

verified pathways and chains. The number of reactions was also increased by adding 15,202 new binding 

reactions between human proteins [32].  

I.3.2. Knowledge Representation 

Creating an abstraction of pathways helps understand their structure and topology and answer questions 

regarding their functions and organization. Using a pathway standard reduces the time needed to 

translate the needed knowledge, thus distributing the effort between scientists [17]. In this context, many 

coding and graphical standards have been implemented to represent the multiple types of knowledge.  

Petri nets were extensively used to model biological pathways. In these models, the components of the 

pathways represent the places, the modification processes represent the transitions or the process nodes, 

and the interactions are translated using the directional edges or arcs of the Petri net [33].  

Another graphical representation is the mEPN [33], which offers a set of graphical notations to draw 

pathways and divides the pathway components into four categories:  

- Entity representing 12 different types of nodes contained in a pathway such as Protein Complex, 

Protein, Gene, RNA, and Drug 

- Process to describe the interactions between the components such as Binding, Cleavage, 

Catalysis, Transcription, etc. 

- Interaction denoting 6 types of directional edges between the Entity and Process nodes, such as 

Inhibition, Action Potential, and Catalysis 

- Cellular Compartment to indicate the location in which the pathway occurs, such as Cell 

Membrane, Cytoplasm, Nucleus, and Mitochondrion. 

The Systems Biology Graphical Notation (SBGN) offers a set of graph semantics to be used in the 

pathway visualization. Three types of diagrams are provided to allow a broader view of the overall 

system instead of inspecting smaller portions [34]. 

- SBGN process diagram (SBGN PD) describes the changes in the form of biochemical entities 

during a molecular process. The nodes can be entity pool, process, container, and reference 

nodes connected through arcs and logical operators. A single node can appear multiple times 

if it disposes of different states. 

- SBGN entity relationship diagram is used to describe the influences between the entities. The 

connections are independent and the entities appear only once. The components of the diagram 

can be entity nodes, statements, or influences. An example would be a gene regulatory network. 

- SBGN activity flow diagram is a model with additional rules to eliminate ambiguity and allow 

a single interpretation of the interactions between the activities instead of the biochemical 

entities. The idea is to ignore processes and entity states, which are the details that cause the 

complexity of the processes. This type is usually used for signalling pathways. 

Systems Biology Markup Language (SBML) is a standard to represent and exchange general machine-

readable models between analysis tools, first developed in 2000 and is being thenceforth improved. It 
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aims to provide a common intermediate format to acknowledge the diversity of computational methods, 

rather than define a universal language [35]. The Unified Modeling Language (UML) is used to define 

it and create an eXtensible Markup Language (XML) representation [34]. The model contains the 

following types of components: Compartment, Species, and Parameter as attributes to single 

components or the whole model, Unit definition, and Rule which are the constraints.  

The Proteomics Standards Initiative’s Molecular Interaction (PSI-MI) is an XML-based format 

developed by the Proteomics Standards Initiative (PSI) to exchange molecular interactions and 

experimental details. Its goal is to capture and describe information on interactions between 

biomolecules, including metabolites, proteins, protein complexes, and DNA. Other open community 

standards are also offered by PSI, for instance, MITAB, mzidentML, mzQuantML, and qcML [36]. 

Cell Markup Language (CellML) is also an XML-based standard that can be used to model metabolic 

and signal transduction pathways. The model consists of components that contain named entities called 

variables and equations, connections between variables in the components, groups, which represent the 

named relationships between the components (encapsulation and containment), and units. The 

pathways’ components are then translated as follows: the reaction is stored as a component, which 

involves a set of variables with roles like reactants, product, catalyst, and inhibitor, and finally the rate 

of the equation of the reaction [37]. 

Another standard in the same field is the Chemical Markup Language (CML) for XML-based chemical 

annotations [38].  

I.3.2.1. Biological Pathway Exchange (BioPAX) 

Biological Pathway Exchange (BioPAX) is an ontology to represent the different aspects of metabolic 

and signalling pathways and their annotations [10]. It defines a set of terms and descriptions that allow 

the processing of pathway knowledge by a computer, and the exchange of the pathway data, based on 

the Web Ontology Language (OWL). This allows the easier exchange of data by storing classes and 

individuals in a single file in the XML format. The PSI-MI representation scheme is also followed [10].  

BioPAX comprises many pathway abstractions including metabolic pathways, signalling pathways, gene 

regulatory networks, and genetic and molecular interactions. The first three abstractions are temporally 

ordered and process-oriented, while the others are static relations. BioPAX also includes cross-references 

to external databases and links to controlled vocabularies, chemical structure, experimental forms of 

molecules, and sequence feature locations.  
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Classes, properties, and restrictions are defined to represent the pathways. In the BioPAX standard, the 

individual entities are classified into 6 class types: Gene, Protein, DNA, RNA, Complex and Small 

Molecule, with the latter 5 being sub-classes of the pool of molecules PhysicalEntity (Figure 8). 

BioPAX helps translate pathway knowledge into a machine-readable format, which allows an easier 

usage of data retrieval, analysis, and visualization tools. The language is now supported by many big 

databases like Reactome 77, KEGG, and Pathway Commons, and important tools such as the 

visualization tool Cytoscape [39] and PaxTools [40]. 

  

Figure 8 The BioPAX Classes. Adapted from [10]. 
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II. Material and Methods 
 

II.1. DrugBank 

DrugBank is a comprehensive, freely accessible online database that combines detailed drug data (i.e. 

chemical, pharmaceutical, and pharmacological) with comprehensive drug targets (i.e. sequence, 

structure, and pathway) [41]. 

DrugBank was first published in 2005 [42] as a fully searchable web-enabled, dual-purpose 

bioinformatics-cheminformatics database, and has been growing since. The first release of DrugBank 

contained more than 4,100 drug entries. An online browser that allowed the browsing of DrugCards, in 

which the drug entries’ information is stored, as well as hyperlinks to external databases were offered. 

This version was intended to facilitate the discovery of in-silico drug targets, prediction of drug 

interactions, and metabolism. 

Later on, other versions were made available and were published. In 2007 DrugBank was expanded and 

DrugBank 2.0 was released, containing ~4,900 drug entries and more detailed content [43], followed by 

three more updates, namely DrugBank 3.0 in 2010 [44], DrugBank 4.0 in 2013 [45], and DrugBank 5.0 

being the most recent in 2017 [46]. The latest version of DrugBank contains 215 fields per DrugCard 

compared to 88 in the first release in 2005 (Figure 9). 

 

Figure 9 DrugBank Database Structure. The nodes connected to Drugs are the associated information, with their sub-levels.  

All drug data entries in DrugBank are assigned one of the following groups: approved, vet-approved, 

experimental, withdrawn, nutraceutical, illicit and investigational. Drug targets are also stored as four 

different types: protein complexes targets, metabolizing enzymes inhibited/induced or involved in 

metabolism by drugs, transporters that move drugs into and around the cell, and carriers, which move 

drugs around the body. 

DrugBank is freely accessible through the DrugBank Website on drugbank.ca and can be fully and freely 

downloaded on the aforementioned link. 

II.2. Universal Protein Resource (UniProt) 

UniProt is a comprehensive resource for protein sequences and annotation data. It combines the effort 

of the European Bioinformatics Institute (EMBL-EBI), the Swiss Institute of Bioinformatics (SIB), and 

drugbank.ca
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the Protein Information Resource (PIR) as a long-term collaboration to preserve the UniProt databases 

and provide different tasks, like maintenance, database curation and support [28]. 

UniProt is a collection of three different databases: UniProt Knowledgebase (UniProtKB), UniProt 

Reference Clusters (UniRef), and UniProt Archive (UniParc). 

II.2.1. UniProt Knowledgebase (UniProtKB)  

UniProtKB is an expertly and richly curated protein database combining information obtained from two 

projects: the manually annotated and reviewed project Swiss-Prot with over 560,000 reviewed 

sequences, and the automatically annotated and not reviewed project TrEMBL currently containing over 

200 million unreviewed sequences. UniProtKB contains information on proteomes, currently at 

~290,000 proteomes, and protein sets expressed by over 84,000 species [28].  

The database is being updated regularly. In their last update in 2019, UniProt deprecated a large number 

of protein sequences based on a redundancy removal process introduced earlier in 2015. The number of 

entries in all parts of UniProt, i.e. UniProtKB/Swiss-Prot, UniRef, and UniParc has increased 

exponentially, with ~ 120 million entries in UniProtKB/TrEMBL, compared to ~ 60 million in 2017 

[28]. 

II.2.2. UniProt Reference Clusters (UniRef) 

UniRef is a series of databases, which provide sets of sequence clusters at several resolutions, namely 

100%, 90%, and 50%. These clusters aim at organizing UniProtKB sequences and reducing redundancy 

in sequences representing the same space [47]. The sequence sets are generated from UniProtKB and 

UniParc consisting of all entries from UniProtKB, splice variants from UniProtKB/Swiss-Prot entries, 

and certain entries conforming to certain conditions from UniParc.  

UniRef100 clusters are generated from sequences at 100% similarity resolution. The longest sequence 

in a cluster is called seed sequence, and all other sequences belonging to the same UniRef100 cluster are 

sub-sequences of the seed sequence. The UniRef90 clusters are then created from the seed sequences in 

UniRef100, with a similarity of 90%. Similarly, the UniRef50 clusters are generated from the seed 

sequences in UniRef90 at an identity of 50%. The clustering is conducted using the CD-HIT algorithm 

with the different identity thresholds of 100%, 90%, and 50%. This computation was updated in 2015 

to include an 80% sequence length overlap threshold with the seed sequence at 90% and 50%. This 

helped reduce the database size of 2014 against 2007 to 54% compared to 5% for UniRef100, 73% 

compared to 42% for UniRef90, and 88% compared to 70% for UniRef50 [48]. 

II.4.3. UniProt Archive (UniParc) 

UniParc is the archive of new, revised, and obsolete sequences in UniProt, which contains sequences 

loaded daily from the main publicly available protein sequence databases, like EMBL/GenBank/DDBJ, 

Ensembl [26], RefSeq [27], PDB, and MODs [49]. The archive helps reduce redundancy in storing 

protein sequences, by assigning a unique, stable UniParc identifier to each sequence, which can be used 

to identify these sequences in external databases. The entries also contain active and retired cross-

references to external databases to which the entries are linked.  

II.3. Reactome 

Reactome is a curated open-source database of metabolic and signalling pathways and reactions in 

human biology, first released in 2003 [50]. The data is manually annotated and curated by a team of 

researchers and biologists. It contains cross-references to other resources, such as UniProt for proteins 

[28], ChEBI for small molecules [51], GO for catalytic activity, cellular compartment and biological 

processes [30], PubMed, and Ensembl [26]. Reactome also contains putative orthologous reactions in 

different species, projected electronically from human pathways. 
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Reactome provides bioinformatics tools. It offers the Pathway Browser, which is a tool to view, browse 

and interact with pathways, as well as analysis tools supporting pathway enrichment and expression 

analysis [52] such as Analysis Data, Analysis Gene Expression, Species Comparison, and Tissue 

Distribution. 

Reactome uses reactions as a basic unit, in which reactants and products are various and can be proteins, 

nucleic acids, complexes, small molecules, etc. The reactions contain information on the sub-cellular 

location in which the reaction takes place, species, and literature evidence supporting them. A group of 

reactions forms a single pathway [50], which in turn form processes. Each reaction and pathway entry 

in Reactome is specie-specific and contains a tree and a visual map as a part of the Pathway Browser 

displayed at the top of the entry’s web page. The page also displays the list of literature references of 

the reaction or pathway, the participants, and the orthologous events occurring in other species. 

Disease annotations were added to the database in the 46th release by adding a disease attribute to the 

entities and events associated with this disease [53]. The database that was stored in a relational MySQL 

database switched to a non-relational Neo4j graph database [54] in Reactome version 57 [55]. Reactome 

75 is the latest version of the database, released on December 7th, 2020. It contains a total of 2,477 

human pathways, 13,534 reactions, 10,929 proteins, 1,854 small molecules, 414 drugs, and 32,493 

literature references [56], compared to 896 human pathways, 5261 reactions, and 5462 proteins in the 

10th release in 2005 [50]. 

The content is available as diagrams and descriptions. The pathway data can be visualized using the 

Pathway Browser provided by Reactome analysed and downloaded in different formats, such as BioPAX 

level 2 and 3, SBML diagrams, and PDF.  

II.4. R 

R is one of the most popular free, open-source softwares for data analysis and visualization, currently 

available for Windows, Mac OS X, and Linux operating systems [57]. It is a powerful language and 

environment to analyse massive data with huge graphics capabilities. It also supports the retrieval of 

data from multiple data sources, ranging from text files, statistical packages to database management 

systems. It can be downloaded from the Comprehensive R Archive Network (CRAN) at http://cran.r-

project.org.  

R programming is functional with implicit iterative behaviour that does not encourage coding loops. 

Hence is the code clearer, and the execution significantly faster and more efficient [58]. Statements are 

composed of assignments and functions, using the symbol <- to assign values to variables, used bi-

directionally, equivalent to the equal sign =.  Comments are added using the # symbol [57]. Various data 

types and structures are included, such as data frames, matrices, vectors, lists, etc. Classes can be defined 

using S3 and S4 classes and methods. For instance, S3 classes are primitive R objects with assigned 

attributes and class name [59]. 

An R module is called a package, which is a collection of related functions, compiled code, and help 

and data files [57], similar to libraries in C/C++ and modules in Perl [59]. A set of basic-feature 

packages is included in R such as utils and base, and others are optional to download with more 

sophisticated graphics, frequently used functions, and statistical modelling methods [59].  These 

packages are implemented by many contributors and provide different services and functionalities. Most 

packages are well documented by their developers, which allows an easier and smoother usage. A 

package is installed to a system or user-defined library, from which it should be loaded before usage. 

Packages can be downloaded from multiple online repositories, such as CRAN, Bioconductor, and 

GitHub. 

http://cran.r-project.org/
http://cran.r-project.org/
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R is updated regularly, with the latest version being R version 4.0.3 (Bunny-Wunnies Freak Out), and 

version 4.0.4 (Lost Library Book) planned to be released in February 2021. 

II.4.1. rBiopaxparser 

rBiopaxparser is an R package to parse, view and modify level 2 and 3 BioPAX-encoded pathway data 

[60]. It is available on GitHub and Bioconductor. It uses other data processing and visualization tools 

such as RCurl, XML, Rgraphviz, graph, and igraph. The data is parsed using the function readBiopax() 

and stored in a data frame in a biopax object (data.table format), which is used as an argument passed 

to different functions to extract any information concerning the parsed data.  This data.table object 

contains components of different classes from the BioPAX file, such as pathway, complex, protein, etc. 

that have different properties and annotations stored conjointly.  

Figure 10 Regulatory Network generated from the Signaling by Wnt BioPAX level 3 file. A red arrow represents an inhibition 
relation and a green arrow an activation. The nodes are the genes represented with small black points. 



 

   

Zaynab Hammoud 

25Material and Methods 

Pathways can be transformed to adjacency matrices and regulatory networks (Figure 10) using 

pathway2AdjacencyMatrix() and pathway2RegulatoryGraph() respectively. Most importantly, a 

pathway can be converted to a graph object using pathway2Graph(), which transforms it into a 

monolayer network. In Figure 11, a plot of the generated graph object from Signaling by Wnt is shown. 

II.4.2. dbparser 

dbparser is an R package to parse downloaded XML data from the DrugBank website. The data is parsed 

using the function read_drugbank_xml_db(), which returns a list of data frames, some of which listed 

below:  

- general_information: contains the general information about the drug entries, including the 

primary DrugBank key (ex. DB00001), the name, state, and type of the drug and date of creation 

and last modification. 

- pharmacology: contains pharmacological information about the drugs, including their 

pharmacodynamics, toxicity, metabolism, and protein binding. 

- interactions: contains drug-drug interactions, including the name of the drugs and description 

of the interaction. 

- Small Molecule Pathways (SMP) information and connections to drugs and proteins in the data 

frames pathway, pathway_drugs, and pathway_enzyme. 

- groups: contains information on the drug groups, i.e. approved, experimental, investigational, 

etc. 

- Drug-Protein relations are distributed into four categories, namely carriers, transporters, targets, 

and enzymes. Each of this category has many corresponding data frames, such as the main one 

containing the drug-protein relations (carriers, transporters, enzymes, targets), actions (e.g. 

carriers_actions) with the corresponding action (binder, inhibitor, agonist, etc.), and 

information on the polypeptides (carriers_polypeptides, carriers_polypeptides_ex_ident, 

carriers_polypeptides_syn, carriers_polypeptides_pfams, and carriers_polypeptides_go). 

The package also disposes of functions to parse parts of the downloaded XML file, which is relatively 

big, and its parsing is a slow process. The package is available in CRAN at https://cran.r-

Figure 11 Signaling by Wnt graph model generated from biopax object. 

https://cran.r-project.org/web/packages/dbparser/index.html
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project.org/web/packages/dbparser/index.html and in the following GitHub repository 

https://github.com/ropensci/dbparser. 

II.4.3. UniProt.ws 

UniProt.ws is a collection of functions in R that allow querying the UniProt server to fetch and process 

the information on UniProt entries and cross-referenced data from other databases, namely connections 

to DrugBank drug entries. It provides a select interface to fetch information for various species. The 

default species is Homo sapiens with the NCBI taxId 9606. This taxonomy can be changed upon the 

creation of the UniProt.ws object using the constructor UniProt.ws(), which is the base class to interact 

with the server and is passed to all other functions. The retrieval of the information is based on 

combinations of arguments passed to select(). UniProt.ws offers a list of columns, keytypes, and keys. 

The first argument specifies the columns of the returned data frame. The keys are the IDs of the databases 

contained in UniProt, with the default being UniProtKB, and their types can be retrieved using keytypes. 

The keytypes include DRUGBANK, ENSEMBL, ENTREZ_GENE, HGNC, KEGG, PHARMGKB and, 

REACTOME. Most of the keys are also included in the columns, which also contain GO, INTERACTOR, 

KEYWORDS, etc. For instance, to retrieve the information of the protein entry P14384 and its DrugBank 

mappings, the following statement is called after initiating the UniProt.ws object:  

 

select(UniProt.ws_object, keys="P14384",columns=c("UNIPROTKB","DRUGBANK")) 

 

This will return a data frame with two columns, the first one with the UniProtKB IDs and the second 

with the DrugBank IDs of the drugs related to this protein entry. The package is available on 

Bioconductor at https://www.bioconductor.org/packages/devel/bioc/html/UniProt.ws.html.  

https://cran.r-project.org/web/packages/dbparser/index.html
https://github.com/ropensci/dbparser
https://www.bioconductor.org/packages/devel/bioc/html/UniProt.ws.html
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III. Cumulative part of the dissertation 
 

III.1. Multilayered Networks: Aspects, Implementation and Application in 

Biomedicine 

 

This paper was already published in BMC Big Data Analytics in July 2020. 

Hammoud, Z*., Kramer, F. Multilayer networks: aspects, implementations, and application in 

biomedicine. Big Data Anal 5, 2 (2020). doi:10.1186/s41044-020-00046-0 

*Corresponding author 

 

III.1.1. Summary and discussion 

This is a review paper, in which I summarized my findings of multilayered networks and their usage in 

Biomedicine. This work was inspired by the challenges that I faced at the beginning of my Ph.D. to 

learn more about this graphical representation, which goes beyond my knowledge in Graph theory, and 

monoplex graphs. In the process, I discovered many types and implementations of Multilayered 

Networks, such as Multiplex, Multilevel, Interdependent Networks, etc. I also faced two challenges: the 

first one in the terminology of this field, given its young age, and the multiple names the graphs can 

have, and the second in its application in the different fields of Network Biology. The use of specific 

implementations in specific applications requires a great amount of research and certainty. Therefore, I 

presented in this article the state-of-the-art publications that used a multilayer representation to solve a 

problem in Biomedicine, including epidemiology, PPI networks, neuronal networks, gene expression 

networks, and cell networks. All information and results that I gathered and obtained are summarized in 

the introduction in Chapter I.2.2. 

III.1.2. Declaration of my contributions 

I initiated the literature research about Multilayered Networks with the papers recommended to me by 

Prof. Dr. Frank Kramer. I conducted this research over 5 months at the beginning of my doctoral thesis 

to enrich my knowledge in this field, and determine the best design to use for the modelling of pathways 

in my project. I investigated over 200 papers to assemble this knowledge about multilayer networks. 

The publications that I read were interdisciplinary and were not all purely biological. Some of these 

studied social networks, geographical models, and games. These papers also helped me understand how 

multilayer graphs work and can be used in all fields. The second type of paper is mathematical, in which 

the models and their formulation were described. I was able to collect many equations that I combined 

in this review. The last type is bioinformatical and biological articles, which resulted in the last part of 

the review. This was also a critical phase since it was the base of my model. The projection and 

comparison of how previous multilayer graph-based research was conducted, led me to the current 

formulation that I chose, which I consequently implemented in my R package mully. I summarized all 

the results that I obtained and wrote this review paper. Prof. Dr. Kramer has read and proved it for 

publication. 
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III.2. mully: an R package to create, modify and visualize multilayered graphs 

 

This paper was already published in MDPI Genes in October 2018. 

Hammoud Z*, Kramer F. mully: An R Package to Create, Modify and Visualize Multilayered 

Graphs. Genes (Basel). 2018;9(11):519. Published 2018 Oct 23. doi:10.3390/genes9110519 

*Corresponding author 

 

III.2.1. Summary and discussion 

In this paper, I present an R package that I implemented called mully, which stands for multilayer graphs. 

The package aims to provide a tool to create graphs with layers, modify them using standard operations, 

and visualize them. During the literature research phase, I encountered many tools that use a multilayer 

framework, none of which serves the aim of my thesis. The main problem that I faced was that the tools 

are case-specific, and cannot be used in other settings. The type of multilayer graphs that I decided to 

use is the node-coloured abstract definition (Figure 12). I decided to implement a tool that can be used 

for any use-case, and the structure of the graphs can be modified. The only restriction in mully is that 

the layers are based on the nodes, not the edges. However, the implementation does not specify that the 

nodes should be layer-disjoint, which means the user can replicate a set of nodes over different layers, 

which would generate for instance a multiplex network. Thus, I consider this tool a contribution to the 

Graph Theory field, rather than Bioinformatics or Medical Informatics. 

The package extends the R package igraph [61] and modifies the graph’s attributes by adding layers. 

Upon addition of any node, the layer’s name must be specified and the node’s name on this layer must 

be unique. The mully object is an S3 class, containing the name of the graph, the direction, the layers’ 

information, the list of nodes 𝑉 and edges 𝐸 with their attributes. The package provides the user with a 

set of standard operations, which are the addition and removal of nodes, edges, and layers (Figure 13). 

The package also disposes of other features. In the original paper, I presented the track and undo feature 

as a future idea to be implemented. Later on, the feature was implemented in the package Multipath, 

since I realized it is only an application-specific feature for the Multipath project.  

Figure 13 Standard Procedures in mully. Figure 12 Generic mully Model. 
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Transitivity 

The transitivity is one of the most important features mully offers. It allows the user to preserve routes 

and connections between a chain of nodes, by offering the option to add transitive edges upon deletion 

of certain nodes or layers. Figure 14 shows how the deletion of the node Protein 3 adds a transitive 

connection between Gene 1 and Metabolite 3 represented by the dotted arrow. 

Visualization 

mully objects can be visualized in two ways. The layouts of the graphs are calculated automatically to 

create the multilayer form. Using the 2D visualizer, a regular plot is generated, with a random or scaled 

layout (Figure 15). Each layer is given a fixed coordinate y, and the nodes over the layers are distributed 

over the x-axis. The function uses the igraph plot function and passes random colours and the layout as 

arguments. 

The 3D visualizer is a more advanced one that creates interactive rotatable plots (Figure 16). The igraph 

package provides a primary rgl plot function to create these plots. I extended this function by providing 

a pre-calculated 3D layout based on the positioning of the nodes within the layers. The layout was 

recently updated to calculate better placements of nodes in big networks. The positioning can be circular 

or random. The vertices’ and edges’ sizes and colours can also be specified. 

Figure 14 Transitivity Feature in mully. 

Figure 16  mully 3D Visualizer with a Circular Layout. Figure 15 mully 2D Visualizer with Scaled Layout 
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Merge 

Another feature in the mully package is the possibility to merge two multilayer models based on their 

layers (Figure 17). As aforementioned, the only restriction in mully is the uniqueness of the nodes within 

single layers. Upon merging two models, nodes belonging to similar layers in both models are combined 

into one multilayer model. 

III.2.2. Declaration of my contributions 

Prof. Kramer and I designed the model that has to be built. I implemented the R Package, with the 

supervision of Prof. Kramer, who followed the detailed modelling step-by-step. After finishing the 

implementation, I uploaded mully to the GitHub repository and wrote this paper. I then submitted it to 

MDPI Genes. The original draft was written by me, and revised and corrected by Prof. Kramer.  

Throughout my work, I faced many problems, which required me to update the package and reconsider 

some of the methods used in the implementation. The most important update since the publication is the 

3D visualizer, to which I added visual planes to represent the layers.  

Another important update is the possibility to pre-assign colours to some nodes and edges before the 

visualization. The origin for this update was a project I was working on, which aimed at annotating 

mully models of breast cancer pathways using TCGA gene and protein expression data. 

The package is still being maintained and improved until this day, to adapt to new requirements. Lately, 

in 2020, I added two vignettes (PDF and HTML) to the package and modified the package to upload it 

to the CRAN repository. The vignette was not published with the paper, but is attached to the mully 

publication in Appendix B. The current version of mully is 2.1.31 compared to 1.0 at the date of the 

publication.  

Figure 17 The merge function in mully. 
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III.3. Multipath: an R package to generate integrated reproducible models 

 

This paper was already published in MDPI Biology in December 2020. 

Hammoud Z*, Kramer F. Multipath: An R Package to Generate Integrated Reproducible Pathway 

Models. Biology. 2020 Dec;9(12):483. doi:10.3390/biology9120483 

*Corresponding author 

 

III.3.1. Summary and discussion 

This was the third part of my Ph.D., in which I implemented an R package I called Multipath. The aim 

of Multipath is to generate reproducible multilayer pathway models.  

Multipath has two major features; the first feature is the transformation BioPAX-encoded pathways into 

multilayer graphs, where other influencing knowledge can be added. The package uses multiple other 

packages previously implemented (Figure 18).  

For parsing the data, I used the R package implemented by Prof. Kramer called rBiopaxparser, which 

transforms the parsed data into monolayer graph objects using the package graphNEL. I implemented a 

function to extract the classes of the nodes from these graphs and use them as colours or layers. The 

resulting multilayer graph is node-coloured and the nodes are layer-disjoint. The multilayer models 

generated by Multipath contain hence up to 6 layers, with the PhysicalEntity preserved as a class type, 

and the Gene and DNA as a single layer.  

Figure 18 Package dependencies in Multipath. 
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On the other hand, the second feature of Multipath is the documentation of all modifications applied to 

a certain multilayer pathway model and the generation of different views. After transforming a BioPAX-

encoded pathway into a multilayer model, a pathwayView object can be created, in which the 

modifications applied to the pathway are stored. The pathwayView stores the list of steps, as well as the 

original and modified version of the graph. These steps can be reversed to re-obtain previous versions 

of the same graph. The aim of this feature is to realize the possibility to reproduce specific forms of a 

given pathway. This workflow is summarized in Figure 19. 

Further information on specific nodes can be added using other Multipath functions. Multipath currently 

offers functions to fetch information on proteins from UniProt using the R web service package called 

UniProt.ws. The diagram in Figure 20 shows the order of steps that have to be followed to extract this 

information. 

Multipath also offers similar functions to extract DrugBank drug information and connections to 

UniProt protein entries from parsed DrugBank data using the R package dbparser. Both connections are 

then integrated and added to a given multilayer graph. It is also important to mention that all 4 types of 

proteins in DrugBank are considered drug targets and extracted to be added to the model. The types are 

assigned as attributes to the connections. The edges also include the name of the database from which 

the connection was retrieved, i.e. DrugBank, UniProt, or both (Figure 22). 

Figure 19 The workflow to generate multilayer reproducible graphs from BioPAX-encoded pathways. 



 

   

Zaynab Hammoud 

33Cumulative part of the dissertation 

To demonstrate the usage of the package, a demo code was presented in the paper using the Signaling 

by Wnt pathway. The model was built from BioPAX level 3, and the drug information was integrated 

from DrugBank (Figure 21). 

 

Figure 20 Workflow Diagram to fetch protein data from UniProt. 
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III.3.2. Declaration of my contributions 

Prof. Kramer designed the parser called rBiopaxparser that I used in this package to parse the BioPAX-

encoded pathways. I implemented all the functions to get pathways from the Reactome database and 

transform the mono-layered graphs generated by rBiopaxparser to mully models, as well as the functions 

to integrate the relevant knowledge from DrugBank and UniProtKB. I also implemented the 

pathwayView objects, which store the modifications applied to the multilayer pathway models. I used 

the Signaling by Wnt pathway as a demonstration of the usage of the package and applied different 

changes to the multilayer Wnt model. I wrote the original draft of the manuscript and Prof. Kramer 

approved it.  

  

Figure 21 The Signaling by Wnt Multipath Model. 
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Figure 22 Workflow Diagram to extract drug data from DrugBank. 
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III.4. Identification of potential therapeutic targets for host-directed Leishmaniasis 

treatment and repositioning drugs using network-based approaches 

 

This paper has not been submitted to a journal yet, and the presented version is a ready-to-submit 

draft. 

J. Eduardo Martinez-Hernandez, Zaynab Hammoud, Frank Kramer, Rubens Monte-Neto, Vinicius 

Maracaja Coutinho, Alberto J. M. Martin* 

*Corresponding Author 

 

III.4.1. Summary and discussion 

This work was a collaboration between our institute and the Faculty of Science at the Major University 

in Santiago, Chile, initiated after J. Eduardo Martinez-Hernandez showed a great interest in the mully 

poster I presented at the ISMB/ECCB 2019 Conference in Basel, Switzerland. His goal was to find a tool 

that can integrate omics knowledge from multiple sources into one model. After a discussion about the 

mully package and the future work of Multipath, we decided to collaborate on a project that aims to 

determine which changes in gene regulation of the host (macrophage) occur during the infection, to 

identify novel, potential drug targets for host-directed Leishmaniasis treatment.  

Leishmaniasis is a complex of tropical diseases caused by an intracellular parasite called Leishmania 

transmitted by the bite of a sandfly. It is estimated to infect 1.5-2 million new cases with ~70,000 deaths 

per year, and 350 million prone to infection [62]. The two most known manifestations of Leishmaniasis 

are the visceral and cutaneous forms, with the latter being neglected by public and private funding 

organizations due to its low fatality rate [63]. The main symptoms of Cutaneous Leishmania are swelling 

and high temperature. The motivation of this project is the small number of known efficient treatments 

for this disease, which dispose of many disadvantages, some of which are the high toxicity and costs, 

and their resistance to the parasite [64]. 

The analysis started with the publicly available RNA-seq data derived from Leishmania major infected 

macrophage, which comprises four different time points, namely at 4, 24, 48, and 72 hours post-infection 

(hpi). The tool FastQC was used to apply quality control and eliminate low-quality reads, followed by 

the HTSeq-count 0.7.2 to calculate the gene expression values. After normalization and testing, 

differentially expressed genes with a p-value ≤ 0.5 and |log fold change| ≥ 0.5 were filtered. The final 

list of potential genes in interest was obtained by selecting only immune response, stress response, or 

host-pathogen interaction related genes based on the GO enrichment analysis. The genes were selected 

from the filtered gene regulatory network of DoRothEA using the RNA-seq data, and comparing infected 

and non-infected models at the different time points (Figure 23).  
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This resulted in a list of 113 genes, of which the corresponding HGNC symbols were used to obtain 

UniProt IDs of their gene products (Figure 24). This mapping was conducted using the UniProt.ws 

package, followed by a mapping of the resulted 909 unique UniProt IDs to 313 pathways in the 

Reactome database. Using the package Multipath, the pathways’ BioPAX level 3 files were downloaded 

and modelled as mully graphs. The proteins obtained in our gene-mapping were mapped to their internal 

IDs in each graph and filtered by deleting all non-protein layers (Complex, Small Molecules, RNA …), 

followed by all non-mapped protein nodes. The drug targets were then extracted from the downloaded 

DrugBank data, parsed using the package dbparser and added as new layers to each mully object. This 

addition includes drug-drug interactions, which can also play a major role in the prediction of potential 

drug targets. The interactions between the drugs and proteins were combined from UniProt and 

DrugBank. It is also important to mention that the drug targets obtained from DrugBank are of four 

types (see Chapter DrugBank). The additional information to each drug entry was also extracted, such 

as the group (approved, investigational, withdrawn, vet-approved, etc.), names, type (biotech, small 

molecule, etc.), state (liquid, solid), etc. 

Figure 23 Pipeline to identify potential therapeutic target for Leishmaniasis treatment in macrophage from RNA-seq data. 
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III.4.2. Declaration of my contributions 

J. Eduardo Martinez-Hernandez realised the pipeline to identify the list of genes of interest. He 

conducted the gene expression analysis on public RNA-seq data, alongside the GO enrichment analysis. 

He compared regulatory networks between infected and non-infected, looking for the difference, and 

recovering the nodes or the genes only present in the infected macrophage, and related to an immune 

response I received a list of HGNC symbols of the genes, which I mapped to gene products from 

UniProt, in order to identify the corresponding pathways. I used the packages that I implemented to 

fetch and map the data, build the multilayer graphs from the obtained pathways, and filter the results to 

identify the drug targets. The additional information on the obtained list of drugs was fetched from 

DrugBank, and the result was sent to Eduardo Martinez, who studied and researched each single drug 

target on the list to determine which drug targets present the highest possibility to be proposed as a 

treatment. Rubens Monte-Neto, a member of the laboratory team in Brazil also carried a set of 

experiments, in order to select the set of drugs to check if they have a therapeutic effect, by infecting 

some macrophage with the parasite and injecting them with the drugs to observe the immunity response. 

The paper was written by Eduardo Martinez and me, and my part was revised by Prof. Kramer. 

  

Figure 24 The workflow Diagram to identify the list of drug targets. 
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IV. Summary and Outlook 
 

In this dissertation, four publications were presented. In the first publication, thorough literature research 

was conducted to undermine the concept of multilayer networks. I presented the different mathematical 

formulations of multilayer graphs, starting from a generalized classification into two abstract categories, 

being node- and edge-coloured. I described the difference between them and showed the different 

practical implementations, ranging from Multiplex to Interconnected, to Hypergraphs. Most 

importantly, I summarized the research that has been conducted employing a multilayer representation, 

and I categorized each one into the aforementioned aspects. This helped me project previous 

implementations and employments of multilayer graphs into my project in order to decide which 

implementation and aspect advantageously serve my goals. 

In the second paper, I present my mully R package as a realisation of this literature research. The package 

was implemented independently in order to address multiple users. It allows the creation, modification, 

and visualization of node-coloured multilayer graphs. It offers a set of standard procedures, such as the 

addition and deletion of elements, as well as more advanced features, such as 3D visualization, 

transitivity, and merging. The package was updated multiple times in the past years and was recently 

uploaded to the CRAN repository. The package has received remarkable attention from many scientists 

and researchers in the different conferences that I attended, and is being used by many users. This 

attention led me particularly to meet the researcher, with whom I collaborated to produce and realize the 

work of the fourth publication. 

The R package Multipath was presented in the third publication, being the heart of my Ph.D. The 

different publications presented so far were small puzzle pieces to achieve a bigger milestone being this 

package. In this package, I implemented functions based on state-of-the-art tools and packages to 

transform BioPAX-encoded pathways into multilayer graphs. The outstanding feature of these models 

is their reproducible and integrated nature. Multipath allows generating multiple views of a given mully 

pathway model, while documenting all applied changes, thus helping to reproduce the original or 

previous versions of the model. Furthermore, it comprises functions that retrieve additional related and 

relevant information on the nodes in the graph. The supported databases are currently Reactome for 

pathways, UniProtKB for proteins, and DrugBank for drugs. 

The last article is the result of a fruitful collaboration between my institute and the Major University in 

Santiago, Chile. Its aim was to identify potential drug targets in the host-directed treatment of a neglected 

disease called Cutaneous Leishmania. The main role that I had in this collaboration was to extract drug 

relations of a given set of genes. To do so, the package Multipath was used to map the genes to their 

gene products in UniProt, hence allowing the retrieval of the corresponding pathways in which they 

play a role. The identified pathways were modelled and the relevant drug layers were added. Filtering 

was required to obtain the final list of potential drugs that were researched by my collaborator. The 

drugs are also being tested in vitro and the biological results will be published soon.  

Although I believe my work contributes generously in addressing big challenges and problems faced in 

the field of Bioinformatics, I am also certain that many more contributions are still needed. This work 

will not be terminated with the end of my Ph.D.  

I am currently working on further evaluating my packages, using TCGA cancer data. Specifically, I am 

interested in the HTSeq-FPKM gene expression data of the breast cancer studies brca of the TCGA 

project. The models of the pathways involving the genes BRCA1 and BRCA2 are modelled using 

Multipath. The patients in the studies will be added as nodes to an additional layer. Furthermore, the 
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models will be annotated accordingly using the gene expression data, by connecting the patients to the 

corresponding genes or proteins. 

I am continuously working to maintain, improve and update both of my packages with new findings and 

better frameworks. The package mully will be updated to support more concrete implementations of the 

multilayer networks that I presented. I am also planning on allowing multiple aspects of one network in 

the same mully graph, for instance, merging node- and edge-coloured aspects. More specifically, gene 

regulatory networks created and extracted from the parsed pathways can be also modelled as edge-

coloured graphs, by integrating co-expression data. The model can then be merged with the original 

pathway, by adding the multiple gene layers. Regarding the package Multipath, and as mentioned in the 

publication, the package is to be updated with version 2.0 supporting more databases to be integrated 

into the same model. For instance, a great addition would be ChEBI information added to the nodes on 

the small molecule layer, and Ensembl [26] for the gene information.  

Another related work is the implementation of a Reactome online catalog that is planned to be available 

by the end of September of 2021. The catalog will contain generated mully models of all available 

pathways in Reactome, ready to be fetched from a Neo4j Graph Database.  The ready models are planned 

to include a considerable number of relevant information. 

Finally, the main result that I obtained from this dissertation is that the field of knowledge has no limit. 

Although I believe that seeking perfection in every task is a necessity, it can never in the least be reached 

easily. Research requires a great deal of creativity and innovation in order to contribute adequately to 

the finding of new solutions. The greatest lesson that I learned is that every solution solves a problem, 

and reveals many more. This is the heart and soul of research, which allows continuous birth cycles of 

new ideas and theories.  
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Abstract

Modeling and analyses of complex systems using network theory have been an
object of study for a long time. They have caught attention in many disciplines such
as sociology, epidemiology, ecology, psychology, biology, biomedicine, and other
fields. Network theory is especially an efficient tool to model biological networks
such as gene co-expression networks, protein-protein interaction networks, or
pathways. Considering the enhanced resolutions of complex real-world systems, the
interest has been directed to multilayered networks. However, despite this surge of
recent attention, the use of the multilayer framework in the biological field is still in
its youth. In this paper, we review the different aspects and terminologies of
multilayered networks. We also briefly discuss the variant applications of the
multilayer framework, and finally, we give an overview of various existing
applications of the multilayer model in network biology.

Keywords: Multilayered graphs, Graph theory, Network biology

Background
In this review, we address the lack of a terminology convention in the field of multi-

layered networks, by distinguishing their different abstract formulation and aspects.

For each aspect, we distinguish the appropriate applications, based on its structure and

the state-of-the-art articles. We also describe and illustrate the different implementa-

tions of these aspects, with their assets and usage in previous research. In addition, we

enumerate the various published state-of-the-art articles, in which the authors used a

multilayer framework to model networks in Biomedicine, and solve different biomed-

ical problems. We discuss the convenience of this usage and the reasons to choose spe-

cific implementations to solve specific problems.

Introduction
Network theory has been used for many years in the modeling and analysis of complex

systems. As the data evolves and becomes more heterogeneous and complex,
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monoplex networks become an oversimplification of the corresponding systems [1, 2].

In the case of biological networks, the represented systems are complex as well as the

problems studied, and exploiting information from a new perspective might improve

the understanding of biological structure and functionality [3]. In fact, the classical net-

work representation used for years seems to fail against the heterogeneity of the objects

and the relations. This imposes a need to go beyond traditional networks into a richer

framework capable of hosting objects and relations of different scales [4], called Multi-

layer Network.

The term Multilayer Networks has been used by many scientists over the years.

These networks have many definitions and implementations. One of these definitions is

presented by Allard et al. [5], who define a Multilayer or a Multitype Network by a net-

work with a set of N Nodes each assigned a type from a set of M types. However, the

definition of a Multilayer Network is much broader. The simplest definition of a multi-

layer network is a set of nodes, edges, and layers, where the interpretation of the layers

depends on the implementation of the model. One of the main problems faced when

studying these graphs is the absence of a terminology and a nomenclature convention.

In their review of Multilayer Networks, Kivelä et al. [4] summarize the different naming

of these networks in a table of 26 different names. We have come to learn that some of

the names are representing the same structure and framework, but others depend on

the type of the graph.

Multilayer Networks provide better modeling for complex networks, like biological

networks. These networks are heterogeneous in different manners since any biological

function is rarely depending on just one element or type of interaction between the ele-

ments. The importance of their usage in the domain of biomedicine was briefly dis-

cussed by some researchers [1], but to our knowledge, it was never assimilated and

reviewed. With this review, we aim at summarizing the different state-of-the-art articles

that used a multilayer framework in biomedicine. This article is divided into 3 sections.

In the first one, we present an abstract formulation of a multilayer graph and the differ-

ent criteria for choosing layers. We explain the transformation from a monolayer to a

multilayer framework. The second section explores the implementation of the multi-

layer framework, as well as usage examples. In the third section, we summarize some

of the state-of-the-art articles that have been published in different fields of biomedi-

cine and are all using one of the different implementations of multilayer networks.

Multilayered networks: aspects and terminologies
The multilayer nature of graphs has been a subject of study for multiple years. Consid-

ering that this framework has many applications in various fields, its interpretation and

implementation depend on the subject it is serving. The main difference between the

types is the criteria to link a node to a layer. It is indeed crucial to determine how the

layers should be assigned when converting from a monoplex to a multilayer model [4].

In this context, two types of networks can be distinguished.

Node-colored graphs

Node-colored graphs (Fig. 1) are representations of systems with heterogeneous nodes.

Nodes have different aspects or types, defined by colors. The graph GN (Eq. 1) is a tuple
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defined by a set of nodes V, a set of edges E, and a set of layers C, where layers repre-

sent the color of the nodes [4]. Two nodes on layers α and β are connected with an

edge Eαβ.

GN ¼ V ; E;Cð Þ; Vα∈V � C; Eαβ∈V α � V β; where α; β∈C ð1Þ

In such graphs, the focus is exploiting the topology of the system from a node-based

perspective. In most of the cases, the graph is layer-disjoint, i.e. the node can only be-

long to one layer, having only one color.

Edge-colored graphs

Edge-colored graphs (Fig. 2) are representations of systems with heterogeneous connec-

tions between the nodes. The graph GE (Eq. 2) is a tuple defined by a set of nodes V, a

set of colors C with length b, and a set of edges E, each assigned a type or aspect de-

fined by the color. Edges of the same color belong to the same layer. Each layer can

contain a subset or the complete set of nodes.

GE ¼ V ; E;Cð Þ
Gαf gbα¼1 ¼ V α; Eαð Þf gbα¼1; ∀α; β∈C Vα¼V β;

Eα∈V α � V α � C
Gαf gbα¼1 ¼ V α; Eαð Þf gbα¼1

ð2Þ

The graph is node-aligned, i.e. the same node can belong to different layers simultan-

eously. In such graphs, the focus is on the dynamics of the network and the interactions

between its components. It is very efficient to use when studying different aspects of

the same system. Two nodes can only connect using one edge of each color. In case

the same type of connection should be established between two nodes, this framework

can be combined with another one to reach this purpose [4].

Implementations of multilayered networks
In this section, we present to you the main types and implementations of the multilayer

framework. For each implementation, we enumerate some of their applications in dif-

ferent fields.

Fig. 1 Node-colored Graphs. Nodes having similar colors are grouped in the same layer. The edges are the
same as in the original network
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Multiplex networks

Multiplex Networks (Fig. 3) are edge-colored graphs, where the nodes connect with

edges belonging to M different aspects (Eq. 3). The edges are embedded based on their

type in different layers all containing the complete set of nodes X of length n [4, 6–8].

Multiplex networks explore and incorporate the interconnectivity of the same system

in multiple channels represented by the layers [9].

Mlayers; fGα; α∈f1;⋯;Mgg; Gα ¼ ðXα;EαÞ; withXα

¼ fx1;⋯; xNg ð3Þ

A perfect example of a multiplex network is a social network, where different social

interactions between individuals are studied, for example, friendship, vicinity, kinship,

membership of the same cultural society, partnership or co-workership, etc. [8, 10].

The nodes, in this case, are the individuals, and the edges are the interactions between

them. These networks were studied thoroughly over the past years since they are of

great importance in affecting our daily lives. The study of these networks is particularly

important for social media companies like Facebook, which helps them establish con-

nections between their users and improve their services, including family connections,

friendships, social interests, political views, etc., based on the information provided by

the users, like backgrounds, demographics, etc. [11].

Another application presented by Cardillo et al. [12] introduces The European Air

Transportation Multiplex Network, consisting of 37 layers representing the European

airlines, N number of nodes representing the airports in Europe, and links between the

nodes representing the direct flights.

Multilevel networks

Multilevel networks (Fig. 4) are edge-colored graphs. They are similar to multiplex net-

works, with a difference being that layers can contain not only a subset of edges but a

subset of nodes as well. The graph (Eq. 4) is a tuple defined by the sets of nodes X,

edges E, and layers S with length p.

Fig. 2 Edge-colored Graphs. The nodes of the original networks are replicated over the different layers. The
layers represent the different aspects of relationships in the network. Edges are divided among the layers
based on their colors
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M ¼ X;E; Sð Þ
S ¼ S1;…; Sp

� �
sub−graphs

With S j ¼ X j; E j
� �

; j ¼ 1;…; p

X ¼ ∪
p

j¼1
X j E ¼ ∪

p

j¼1
E j

ð4Þ

An example of the application of this framework is the Urban Transportation

Network modeled by Aleta et al. [13]. In their paper, the authors present a multi-

level model, representing various transportation methods in nine cities in Europe.

The nodes are the different stops, while the layers are the different modes of trans-

portation. This network is multilevel because the nodes or the stops do not exist

on all the layers.

Multi-hypernetworks

Multi-Hypernetworks or hypergraphs (Fig. 5) are node-based graphs [1, 4],

formed by different intersecting communities or sub-networks. A Multi-

hypergraph (Eq. 5) is defined by a pair (X, H), X being the set of nodes, and H a

multi-set of subsets of X being the edges [14]. These graphs focus on the nodes

belonging to the same group rather than the connections between them. Nodes

in the same subset are mapped to a layer with fully connected nodes. The notion

Fig. 3 A Multiplex Graph. The nodes of the network are replicated over layers, and each layer represents a
particular aspect of connection between the nodes
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of edges here differs from normal networks; edges in these networks are called

hyperedges and can connect multiple nodes at the same time [4, 15–17]. Each

hyperedge is then mapped to a single layer. Multi-Hypernetworks are not layer-

disjoint, but node-aligned since one node can be assigned to multiple layers,

based on the intersection of the subsets.

Fig. 4 Multilevel Graph. Each layer of the graph is a subset of the original network (nodes and intra-edges).
The inter-edges only connect the same nodes on different layers

Fig. 5 Hypernetwork. Adapted from [1]. a The network in a monoplex view; b The network in a multilayer
view. Nodes belonging to the same ensemble are assigned the same layer. All the nodes on one layer are
intra-connected. The same nodes on different layers are interconnected (dotted edges)
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φ ¼ X;Hð Þ
H ¼ H1;…Hp

� �
sub−sets

Eαβ ¼ x; xð Þ; x∈Xα∩Xβ
� �

;where α; β∈H
ð5Þ

Hypernetworks are optimal representations of networks with n-ary relationships since

they allow hyperedges connecting more than 2 nodes at the same time [18]. They have

been mainly used in Folksonomy, where a semantic structure is created by a collabora-

tive annotation. An example of this application is Flickr, used to share multimedia be-

tween users, who are allowed to tag them. The network here can be viewed as a

tripartite Hypernetwork consisting of three types of nodes being the users, the re-

sources and the tags, and hyperedges connecting those three, meaning a user annotat-

ing a resource with a tag [1, 4, 16, 19].

Another application is presented by Chan and Hsu [20], where they discuss how the

usage of hypernetworks in the service science can reveal hidden social structures in hu-

man networks, and therefore provide a better understanding of them.

Hypernetworks are also used in team sport networks. As presented by Ramos et al.

[18], these networks can be used to study multiple aspects of interactions between the

players, like spatiotemporal interactions, which inspects the dynamics of the game at

different times and spots.

Interacting/interconnected/interdependent networks and networks of networks

This framework (Fig. 6) is a set of monoplex networks interacting with each other.

Nodes can have intra-edges as well as inter-edges connecting them. The inter-edges E

define the interactions between the L different monoplex networks G (Eq. 6), but a de-

pendency in interdependent networks, i.e. some of the nodes in each network are

dependent on nodes from others [1, 4, 21, 22]. The multilayer model of these networks

is node-colored, layer-disjoint formed by embedding the different monoplex networks

each into a single layer, then connecting them with their inter-edges. These networks

help achieve global synchronization between different sub-systems [1].

G1;G2;…GLf g
Eαβ ¼ interaction between Gα and Gβ

ð6Þ

Examples of such networks are transportation, telecommunication, electrical grids

[23], and social networks [24]. The infrastructure network, in particular, is a perfectly

fitting example, since it relies on electricity to function. This dependency between the

networks makes this framework vulnerable since a failure in one part can cascade to

affect the whole network. This problem has caught a lot of attention and many scien-

tists are still studying it [22, 23, 25–28].

Multilayered networks and biology
Biological networks are difficult to explore because they contain a mass number of

nodes connected in myriad ways. The best way to obtain information from these net-

works is to summarize the information about the nodes and links conveniently [29].

This summarization follows the criteria which we discussed in our first section but de-

pends on the biological domain. Some domains require edge-colored methodologies to
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explore the different interactions between the molecules, like gene co-expression net-

works, or protein-protein interaction networks, or different behavior in cross-species

networks. Others require node-colored frameworks, like cell networks to integrate in-

terconnected and interdependent networks.

This usage is still in its infancy in some domains, like gene-expression networks, but

very thriving in others, like epidemiology.

In this section, we summarize the usage of the multilayer framework in Biology with

state-of-the-art work on this topic.

Protein-protein interaction networks

Protein-protein interaction (PPI) networks are collections of interactions between two

or more proteins binding to carry a certain function [30], where nodes are the proteins

and edges are physical or functional interactions between them [31]. These networks

are heterogeneous in regard to the different types of interactions between them. The

network could be seen as an edge-colored Multiplex or Multilevel network inspecting

diverse aspects of interactions.

OhmNet [32] is an algorithm that transforms monoplex networks into a multilayer

model. This algorithm aims at studying proteins in different tissues and learning their

features. In this model, the tissues act as layers, and the proteins act as nodes. The

model implemented by OhmNet was used in a recent publication by Kapadia et al. [33]

to predict features of a multi-layer blood cell PPI network.

Multilayer PPI networks have also been used to study the life stages in species. In

[34], the life stages in Caenorhabditis elegans are modeled in a node-colored multilayer

network, where protein interactions are collected from various bioinformatics reposi-

tories, and then proteins occurring in different life cycles are distributed over six layers

representing the different life stages.

Another Multilayer model introduced by Zhao et al. [35] aims at integrating PPI net-

work, protein domain information, and protein complexes. The authors present a

Multiplex edge-colored model consisting of three layers: the physical interaction layer

(PIL), containing the protein-protein interactions, sharing domain layer (SDL), with

Fig. 6 Interacting/Interconnected Networks. Adapted from [1]. a The network in a monoplex view; b The
network in a multilayer view. Nodes belonging to the same system are assigned the same layer. Inter- and
intra-edges are kept the same
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proteins connected in case they share the same domain, and sharing complex layer

(SCL), in case they are contained in the same complex. The nodes are the proteins rep-

licated over the three layers (Fig. 7).

In addition, the High-Throughput data integration method implemented by Liang

et al. [36] used an edge-colored Multiplex framework. The base of the graph is PPI net-

works from yeast and human interactomes which form the two layers, weighted with

transcriptional data, and combined with biomedical knowledge.

Cell networks

Cell networks or pathways represent complex functions and reactions that occur in the

cell. They describe interactions between genes, proteins, and metabolites [37]. To under-

stand the cell structure, one needs to investigate not only these molecules and their intra-

connectivity in isolation, but also their inter-connectivity. Gligorijević and Pržulj in [38]

illustrate the cell network as an interdependent network of five layers: phenotypes, gen-

ome, proteome, metabolome, and transcriptome. The study of these different substrates

results in a heterogeneous network formed of different types of nodes and interactions.

An example of a cell network is implemented by Liu et al. in [37], where they use a

node-colored multilayer consisting of a gene-regulatory layer, PPI layer, and a metabol-

ite layer. The genes are connected to their gene products on the PPI layer directly, and

proteins are connected to metabolites in a many-to-many relation when they associate

or participate in the same chemical reaction.

In [39], Rai et al. demonstrate how the usage of a multilayer framework helps to under-

stand the behavior of cancer cells. In their paper, the authors study seven different cancer

types (breast, oral, ovarian, cervical, lung, colon, and prostate), using a multilevel network

model. Their model consists of seven layers for two networks, the normal and the disease

networks, in which each layer reflects a cancer type. The nodes are the proteins in PPI

networks, chosen based on their expression in normal and cancer cells. The common pro-

teins are then extracted in three different sets: common in all normal cells, common in all

cancer cells, and common in normal and disease cells (Fig. 8).

A similar work by Yu et al. [40] employs a multiplex network of three layers, for PPI

networks in three different tissues: breast, prostate, and blood. They study the overlapping

between the genes under the action of the drug trichostatin A (TSA) in three diseases it

treated, leukemia, breast cancer, and prostate cancer. They identified two drug-target

modules of TSA (M17, M18) as the potential treatment patterns of TSA.

Another paper by Li et al. [41] aims at identifying frequent coupled transcription-

splicing modules. They build a two-layer interconnected model of gene co-expression

networks and exon co-splicing networks. The layers contain respectively genes and

exons, inter-connected if there is a relationship between them, and intra-connected if

they are respectively co-expressed and co-spliced.

A tool also addressing data integration in Biology using a multilayer approach is Syn-

ergy Landscapes by Kuzmin et al. [42]. The tool constructs a multilayer model to con-

nect researchers with resources through molecular interactions. The model integrates

three networks: bio-medical co-authorship collaboration networks, molecules interact-

ing in bioprocesses and papers describing them, and networks of bioprocesses involved

in various diseases.
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As an initiative for pathway data integration, we presented in a previous work a tool

called mully [43]. The tool is an R package to create, modify, and visualize multilayer

graphs. We aim at collecting pathway knowledge from different databases and embed

the different elements into a node-colored multilayer model (Fig. 9).

One of the pathway databases is Reactome, which is manually curated, open-source,

and fully downloadable [44]. Reactome contains BioPAX-encoded pathways that could

be parsed using the R package rBiopaxParser implemented by Kramer et al. [45]. An-

other pathway resource is ndex, which is an online commons where scientists are able

to upload and share networks [46]. The ndex servers can be queried using the R pack-

age ndexr implemented by Auer et al. [47], in order to download, modify, and upload

networks.

Fig. 7 Multilayer Protein Network. Adapted from [35]. The figure shows the edge-colored multiplex graph
implemented by Zhao et al. [35], with three layers representing different interactions between the proteins
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Gene expression networks

The complexity in genetic networks lies in the diversity of interactions between genes. A gene

network is a collection of gene-gene regulatory connections [48]. It contains information on

genes affecting each other with their expression levels. These networks can be inspected from

a multiplex or a multilevel framework, with layers representing co-expression profiles in dif-

ferent settings including different time points, diseases, cells, or organisms, as well as from a

Hypernetwork framework, with edges connecting more than two genes [48, 49].

In [50], Li et al. use a multiplex framework to illustrate co-expression networks to

identify heavy recurrent subgraphs. The networks are extracted from microarray data-

sets, and each network is assigned to a layer.

In the paper describing the software muxViz [3], the authors also use genetic net-

works as an example to demonstrate their tool, used to visualize multiplex networks.

In another publication [51], Klosik et al. use an interdependent framework to study

interactions between metabolites and genes. Their model consists of three layers: the

gene regulatory layer, the protein-interface layer, and the metabolic layer.

Human neural networks

Neural networks are one of the most complex networks in the human body. A brain network

is a structural network where nodes represent neural elements, i.e. the neurons or neuronal

regions, and edges represent the physical connection between them, i.e. synapses or axonal

projections. The connections in these networks are also affected by spatial factors, which

means that the location and distance between the elements play a role in the probability of

them being connected [52]. The modeling of brain networks on multiple levels is an evocative

application, since they are continuously evolving, and different factors should be considered,

such as temporal and spatial factors or different frequency bands. This model has been

reviewed and adapted by many scientists to study the human brain in recent years [53–59].

Fig. 8 Multilayer Cancer Cells’ Network. Adapted from [39]. The Figure shows two graphs, normal and
disease. The nodes in these graphs are the proteins, assigned to seven layers reflecting seven cancer types
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Jérémy Guillon presents in his Ph.D. thesis [60] a multiplex network of the human

brain with Alzheimer’s disease containing information from the brain at different fre-

quency bands [61]. This model combines structural and functional connectivity in the

brain and is used to detect core-periphery organizations [62].

Similarly, Dang et al. [63] present in their paper the Multivariate Time-Frequency

Multilayer (MTFM) network, which is an edge-colored model to study the dynamics of

two complex systems, namely oil-water flow, and driving fatigue in the brain. The

model explores these dynamics by dividing the key frequency over L layers, each of

which contains nodes representing the channel time-series, and edges representing mu-

tual information connections. The driving fatigue in the brain MTFM network shows

the changing of state in the brain during driving from alert to mental fatigue.

A similar model was also introduced by Brookes et al. [64] to study magnetoencepha-

lography (MEG) data connectivity.

Spreading processes and disease behavior networks

Epidemiology is one of the biological fields in which the multilayer framework is used

extensively. It is used to study the transmission and spreading of diseases between indi-

viduals, which is based on heterogeneous factors, like age, geographical locations, social

status, and sexual behavior. These factors are used to assign the individuals of the

population classes or types [65].

Examples of spreading networks are the epidemic models, SIR and SIS. In SIR, the in-

dividuals are assigned one of three traits: susceptible, meaning not yet infected but sus-

ceptible to infection, infected, meaning already carry the disease and can transmit it,

and removed, meaning previously infected and do not transmit anymore. The infection

Fig. 9 A mully multilayer model. Each layer reflects a single type of the pathways’ elements. The graph
is node-colored
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starts with some individuals called seeds, and get transferred to adjacent or neighbor

individuals at a certain time. So the nodes can go from susceptible to infected, or when

cured to removed. In SIS, the individual only goes from infected to susceptible [65–69].

Although these models can be seen as node-colored graphs at different timestamps

[70], they are mainly implemented as edge-colored. In [71] the authors use a two-layer

interconnected model to study the interaction between two SIR-epidemics. Kivelä et al.

[4] list a significant number of references on these implementations. An immunization

strategy is also presented in [72] using the multiplex two-layer SIR model.

An adaptation of the SIR model is used by Riad et al. [73] to assess the risk of spreading

of Ebola in Uganda. The authors propose a combination of SIR concept with a social net-

work. Their model consists of two layers representing the interactions between the people,

a permanent layer being family relations, and a temporal layer being the other general con-

nections. The nodes, which are the individuals, can have either of two types (active and in-

active) depending on if they carry the disease or not, and they are distributed in 23 districts.

In their publication [5], Allard et al. discuss some of the difficulties and problems

faced in epidemiology when using simple models, like the iid hypothesis, and state the

advantages of transforming them into multitype networks, using HIV as an example.

Mao and Yang [74] present another approach using multilayer networks, in which

they use a two-layer multiplex model to demonstrate that infections and preventive be-

havior are transmitted simultaneously and affect each other. The individuals are repli-

cated over both layers. The first layer contains the transmission relationships, and the

second contains the interactions of influencing preventive behavior. Later the same au-

thor presents a similar model with an extra layer called Information, signifying whether

the person was informed or uninformed of the disease [75] (Fig. 10). A similar ap-

proach is later used by Carnell et al. [76].

Fig. 10 A Multilayer Triple-diffusion Network. Adapted from [75]. The layers illustrate three diffusion
processes. The nodes have different colors based on the state of the individuals in each network. The
dotted lines connect the same nodes on the three layers. The arrows between the layers denote a positive
(green) and negative (red) effect between the processes
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dbNEI is a web-based knowledge resource that collects information related to the

neuro-endocrine-immune systems (NEI) [77]. The database was later updated to

dbNEI2.0, by adding new molecules and information. dbNEI2.0 builds a multilayer net-

work for drug-NEI-disease. The model is node-colored, consisting of three layers, dis-

eases, drugs, and NEI genes layers [78].

In other work, scientists were interested in disease-disease interactions and connec-

tions. Halu et al. present in [79] a two-layer model of diseases. On the genotype layer,

Table 1 Classification of the references based on the used implementation

Aspect Implementation Application Field Reference

Node-colored Interconnected Cell Networks [37, 41–43]

Epidemiology [78, 80]

Interdependent Cell Networks [38]

Gene Expression Networks [51]

Multitype Epidemiology [5, 34, 70]

Edge-Colored Multiplex PPI Networks [35, 36]

Cell Networks [40]

Gene Expression Networks [3, 50]

Human Neural Networks [60–62]

Epidemiology [71–76, 79]

Multilevel PPI Networks [32, 33]

Cell Networks [39]

Human Neural Networks [63, 64]

Fig. 11 Multiplex disease-disease interaction network. Adapted from [79]. The graph consists of two layers.
The nodes are the diseases, connected on the first layer if they share a phenotypic interaction, and on the
second if they share a genotypic one
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the diseases are linked in case they share a disease gene, while on the phenotype layer,

they are linked if they share a symptom (Fig. 11).

Moreover, in [80], Yu et al. construct a four-layer similarity model of four disease in-

terconnected networks: Human Disease Network Based on Protein Interaction Network

(PIDN), Human Disease Similarity Network Based on Symptoms (DSDN), Gene Ontol-

ogy- and Disease Ontology-Based Disease Similarity Networks (GODN and DODN).

They aim at getting more accurate conserved disease modules and find potential

disease-disease relationships.

In Table 1, the references are listed for each aspect, implementation and biomedical

application of multilayered graphs.

Conclusions
The usage of Multilayer Graphs has proven to be very promising and prosperous in dif-

ferent fields of application, especially in Biology. Multilayer Graphs allow better inspec-

tion and representation of the topology and dynamics of heterogeneous systems

compared to monoplex models [1]. In the case of biological networks, the heterogeneity

lies in the diversity of interacting substrates, as well as in the various channels of inter-

actions between them. Many scientists have adapted the multilayer model to solve

complex biomedical problems in recent years, by using particular implementations for

different situations. For instance, muxViz can be used to visualize edge-colored multi-

layer networks, such as multiplex or multilevel networks for gene expression data. Our

tool mully can be used to create, modify, and visualize multi-omics data, like pathways,

drugs, and diseases in a node-colored multilayer model [43].

The multilayer framework has many other applications yet to be discovered. Another

approach is to mix different implementations in one model. For instance, a node-

colored multilayer model built to integrate different omics data can contain five layers:

protein, genes, metabolites, diseases, and drugs. However, it can be extended by divid-

ing the protein and the gene layers to exploit gene co-expressions in multiple tissues or

environment, and different protein-protein interactions from different experimental

protocols [4]. This indeed helps reduce the loss of data and obtaining misleading results

[3], detect patterns and correlations, and avoid hairball effects, resulting from the high

number of interactions between the nodes.
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Abstract: The modelling of complex biological networks such as pathways has been a necessity for
scientists over the last decades. The study of these networks also imposes a need to investigate
different aspects of nodes or edges within the networks, or other biomedical knowledge related to it.
Our aim is to provide a generic modelling framework to integrate multiple pathway types and further
knowledge sources influencing these networks. This framework is defined by a multi-layered model
allowing automatic network transformations and documentation. By providing a tool that generates
this model, we aim to facilitate the data integration, boost the reproducibility and increase the
interoperability between different sources and databases in the field of pathways. We present mully R
package that allows the user to create, modify and visualize graphs with multi-layers. The package is
implemented with features to specifically handle multilayered graphs.

Keywords: multilayered graphs; modelling in systems medicine; pathway modelling; pathway data
integration; network visualization

1. Introduction

Network theory has been used for many years in the modelling and analysis of complex
systems, as epidemiology, biology and biomedicine [1,2]. As the data evolves and become more
heterogeneous and complex, monoplex networks become an oversimplification of the corresponding
systems [1]. This imposes a need to go beyond traditional networks into a richer framework capable
of hosting objects and relations of different scales and attributes [3,4], called Multilayered Network.
These complex networks have contributed in many contexts and fields [5], although they have been
rarely exploited in the investigation of biological networks, where their application seems very
convenient [2].

In order to fill this gap, we present a multilayer framework that can be applicable in various
domains, especially in the field of network modelling.

Our idea is to integrate pathways and their related knowledge into a multilayer model, where each
layer represents one of their elements. The model offers a feature we call “Selective Inclusion of
Knowledge”, as well as a collection of related knowledge into a single graph, like diseases and drugs.

The final aim is to provide a reproducible approach to integrate prior biomedical knowledge
about networks in personalized medicine algorithms [1].

In this paper, we present an R software that we call mully (multilayered graphs) that serves
our objective by generating a generic model used for data integration. mully implements the
multi-layer models within R and will subsequently be extended to parse various databases and
further knowledge sources.
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This paper consists of 3 main sections: in the first section, we give an overview on multilayered
graphs and their implementation, a description of the model implemented in this package, as well as
brief explanation about the implementation process of the package. The second is the Result section,
where we highlight the most important features offered by the mully Package. Finally, in the third
section we conclude.

2. Materials and Methods

2.1. Multilayered Graphs

Multilayered graphs are the new trend in Graph Theory used by a large number of scientists
nowadays. They are employed in the modelling of big networks, with heterogeneous nodes (vertices)
or relations (edges). Considering that this framework has many applications and in different fields,
its interpretation and implementation depend on the subject that it’s serving. The main difference
between these types is the criteria to link a node to a layer. In this context, two main types of
networks can be distinguished: Node-colored graphs (NCGs) and edge-coloured graphs (ECGs) [1].
The following figures (Figure 1a,b) explain how to derive layers from regular graphs. On the left
(Figure 1a) is an ECG, which is a graph with heterogeneous relations between the vertices. To transform
this type of graphs into multilayered graphs, the nodes are replicated over all the layers, and each
layer contains a subset of relative edges.

On the other hand, NCGs (Figure 1b) are graphs where nodes have aspects or types defined
by colours. In order to build the multilayered graph from a NCG, the nodes are mapped to layers,
leading to a network of networks, i.e., nodes having the same colours are grouped in the same layer.
These graphs are usually layered-disjoint, i.e., the nodes can only be mapped to a single layer.
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The general model implemented in mully is a layered-disjoint NCG, and can be either directed or
undirected. The following figure (Figure 2) gives an example of the generic model implemented in our
package, which constitutes of n layers of nodes, connected with inter- and intra-layer edges.
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1 
 

 

Figure 2. Generic Model of the Multilayered Graph implemented in our package.

2.2. Dependencies

The mully package is an R package that inherits the igraph object from the igraph R package [6]
and adds additional information concerning the layers and other needed attributes. This package
consists of a set of functions for nodes, edges, layers, graphs and visualization. The package is also set
with a demo function that creates a sample graph used in order to try it.

It uses functions from other packages, for instance the 3D visualization is generated using
the rgl R package [7], with some modifications applied concerning the layouting. It also refers to
the RCX/ndexr package [8] to export the mully graph in Cytoscape Cyberinfrastructure Network
Interchange Format (CX) [9] using its constructor.

3. Result and Features

The mully R package provides all the functionalities to work with graphs, which we call Standard
Operations (Figure 3). In addition, we implemented special features to ease this work and the handling
of big data import.
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The main features are: transitivity, smart merging, undoing, visualization and converters.

3.1. Transitivity

One of the important functionalities offered by mully is the transitivity. When choosing to delete
one or a set of nodes (a whole layer for example), the user can select to add the transitive edge before
removing the incident ones. This feature is required in order to preserve the routes, especially when
working with structured networks. In the following figure (Figure 4), we show an example of the
impact of removing a node after choosing the transitive option.
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3.2. Merging

In order to provide an easy use of our package, we provide a smart merging function to create a
single valid mully graph out of two inputs. The merge is based on the layers, i.e., the nodes from both
input graphs are combined based on their assigned layers. This merging prevents the replication of
data, for example in multiple sources, by monitoring the nodes and edges with same attributes (name,
labels, etc.). Figure 5 shows a 2D visualization of two mully graphs, and the result of their merging.
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3.3. Undoing

Using mully, the user is allowed to create multiple views from the same graph, where views are
defined by the result of the application of a set of modifications to a graph. Since the views are derived
from the same graph and data, we provide the undo function in order to help the user avoid repetitive
actions. Undoing helps the user to fetch the original or previous states of the mully graph without
having to recreate it. This feature is considered the most important in this package, since it serves
one of our critical aims. Undoing helps the user to document all the steps that he followed to obtain
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the current version of the network that he possesses. The documentation of these steps of generating
views will contribute to solving the reproducibility problem, observed mostly in the research field.
It will guide researchers and scientists to obtain snapshots and fragments of networks and reproduce
others generated in other research.

3.4. Visualization

The mully package also offers a visualizer for multilayered graphs. In this visualizer, we generate
layouts based on the layers, by assigning different coordinates for the nodes, where the nodes belonging
to the same layer are assigned coordinated in a range of similar numbers. The user can choose between
two different layouts, the random and the scaled layouts. By choosing the random layout, the nodes
within a layer are displayed on random points on the display screen, while choosing a scaled layout
divides the layer area display between the nodes, always making sure to avoid any overlapping vertices
in both cases. We also provide the user with two visualization options: 2D and 3D visualization. The 3D
visualization is generated using the rgl R package [7] which is dedicated for interactive visualization.
The visualization of the same graph is shown in Figure 6 in 2D Scaled layout and in 3D.
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with a Scaled layout (b) 3D visualization.

3.5. Data Exchange

Cytoscape Cyberinfrastructure Network Interchange Format (CX) is a format for encoding
network’s data, developed in conjunction with the Cytoscape group [9]. It is used as a standard
for network interchange by Cytoscape [10], NDEx [11], and the services in the Cytoscape Infrastructure.
As this format becomes one of the standards to exchange graphs, we believe that it is essential to
include it in our package. The converter provided by mully aims to export mully graphs in a CX format
by using the RCX/ndexr R package [8]. By exporting the graph as a CX object, the user can then import
it and use it into other tools supporting the CX format such as Cytoscape.

In this package we also provide the feature to export the graph as a CSV file. In order to export
the graph, three CSV files are generated; a file containing the information about nodes, a file containing
the information about edges and another for layers. This export function can also contribute in the
import of a mully object into mully or other packages and tools supporting multilayered models.
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4. Discussion

Multilayered graphs are currently widely used by scientists for the manipulation of big
heterogeneous networks, like Social Networks, Information Networks, Technological Networks and
Biological Networks [12,13]. Despite this usage, the number of tools dedicated for these graphs are
still insufficient such as Arena3D [14,15], muxViz [2], etc., while we have a rich collection of tools
to handle and visualize big networks on a monoplex level, of which we mention Cytoscape [10],
Cell Ilustrator [16], igraph [6], Cell Designer [17], RGraphviz [18], RCytoscape [19] and many
others [20].

mully is an R package that allows the user to create, modify and visualize multilayered graphs.
It is implemented with special features to ease the modification and the handling of graphs by the user.
It is available for free usage on Github [21].

For us, mully will be the stepping stone to integrate different knowledge sources and provide a
reproducible knowledge network to be integrated in systems medicine approaches.
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Introduction

Network theory has been used for many years in the modeling and analysis of complex systems, as epi-
demiology, biology and biomedicine . As the data evolves and becomes more heterogeneous and complex,
monoplex networks become an oversimplification of the corresponding systems. This imposes a need to go
beyond traditional networks into a richer framework capable of hosting objects and relations of different
scales, called Multilayered Network Mully, multilayer networks, is an R package that provides a multilayer
network framework. Using this package, the user can create, modify and visualize graphs with multiple
layers. This package is an extension to the igraph package that provides a monolayer graph framework. The
package is implemented as a part of the Multipath Project directed by Dr. Frank Kramer . ## Publication
More information and references can be found in the mully paper:

https://www.mdpi.com/2073-4425/9/11/519

Installation

Installation via Github

require(devtools)
install_github("frankkramer-lab/mully")

Load the package

library("mully")
#> Loading required package: igraph
#>
#> Attaching package: ’igraph’
#> The following objects are masked from ’package:stats’:
#>
#> decompose, spectrum
#> The following object is masked from ’package:base’:
#>
#> union
#> Loading required package: rgl
#> Loading required package: randomcoloR
#> Loading required package: shape
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#>
#> Attaching package: ’mully’
#> The following object is masked from ’package:rgl’:
#>
#> plot3d
#> The following object is masked from ’package:utils’:
#>
#> demo
#> The following object is masked from ’package:base’:
#>
#> merge

Test the package

In this section, we provide a demo to test the package by calling some of the function. After running this
script, you will have a graph g with 3 layers and 8 nodes. the graph can also be modified by calling other
functions. Please refer to help to see the available functions. ### Create new mully graph

g=mully("MyFirstMully",direct = F)

Add Layers

g=addLayer(g, c("Gene", "Drug", "Disease"))

Add/print Nodes

g=addNode(g,"d1","disease",attributes=list(type="t1"))

g=addNode(g,"d2","disease",attributes=list(type="t1"))

g=addNode(g,"d3","disease",attributes=list(type="t1"))

g=addNode(g,"dr1","drug",attributes=list(effect="strong"))

g=addNode(g,"dr2","drug",attributes=list(effect="strong"))

g=addNode(g,"dr3","drug",attributes=list(effect="moderate"))

g=addNode(g,"g1","gene",attributes=list(desc="AF"))

g=addNode(g,"g2","gene",attributes=list(desc="BE"))

#See vertices attributes
print(getNodeAttributes(g))
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Add/print/remove Edges

g=addEdge(g,"dr1","d2",list(name="treats"))
g=addEdge(g,"dr1","d2",list(name="extraEdge"))
g=addEdge(g,"d2","g1",list(name="targets"))
g=addEdge(g,"g2","dr3",list(name="mutates and causes"))
g=addEdge(g,"dr3","d3",list(name="treats"))

print(getEdgeAttributes(g))

removeEdge(g,"d2","dr1",multi=T)

Merge two graphs

#Create a Second graph
g1=mully()

g1=addLayer(g1,c("protein","drug","gene"))

g1=addNode(g1,"dr4","drug",attributes=list(effect="strong"))
g1=addNode(g1,"dr5","drug",attributes=list(effect="strong"))
g1=addNode(g1,"dr6","drug",attributes=list(effect="moderate"))

g1=addNode(g1,"p1","protein")
g1=addNode(g1,"p2","protein")
g1=addNode(g1,"p3","protein")

g1=addNode(g1,"g3","gene")
g1=addNode(g1,"g4","gene")

g1=addEdge(g1,nodeStart = "p2",nodeDest = "p3",attributes = list(name="interacts"))
g1=addEdge(g1,nodeStart = "dr6",nodeDest = "g4",attributes = list(name="targets"))

#Merge both graphs
g12=merge(g,g1)

#Print the graph
print(g12)

Visualization

plot(g12,layout = "scaled")

plot3d(g12)

Available Functions

mully functions are divided into different files depending on their functionnality range: Constructor , Layers
Functions , Node Functions , Edge Functions , Merge Function , Visualization Functions , Import Functions
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, Export Functions , Demo.

Function Description
mully(name,direct) Constructor Function, Create an empty

multilayered graph
print(g) Print function
addLayer(g, nameLayer) Add a layer or a set of layers to a graph
removeLayer(g, name,trans) Delete a layer or a set of layers from a

graph
isLayer(g, name) Verify if the layer exists in a graph
getLayersCount(g) Get the number of layers in a graph
getLayer(g, nameLayer) Get the nodes on a layer in a graph
getNode(g,nameNode) Get a node from a graph
getIDNode(g,nameNode) Get the id of a node
addNode(g, nodeName, layerName, attributes) Add a node with assigned layer and

attributes to a graph
removeNode(g, name,trans) Delete a node or a set of nodes from a

graph
getNodeAttributes(g,nameNode) Get the attributes of one or all nodes
addEdge(g, nodeStart, nodeDest, attributes) Add an edge
removeEdge(g, nodeStart, nodeDest,attributes,
multi)

Delete an edge

getEdgeAttributes(g,nodeStart,nodeDest) Get the attributes of the edges connecting
two nodes or all the edges in the graph

getIDEdge(g,nodeStart,nodeDest) Get the ids of the edges connecting two
nodes

merge(g1,g2) Merge or unite two graphs
plot(g,layout) Plot the graph in 2D
plot3d(g) Plot the graph in 3D using rgl
importGraphCSV(name,direct,layers,nodes,edges) Import a mully graph from csv files
importLayersCSV(g,file) Import layers to a mully graph from a

CSV file
importNodesCSV(g,file) Import nodes to a mully graph from a

CSV file
importEdgesCSV(g,file) Import edges to a mully graph from a

CSV file

addEdge

Add an edge

The function is used to add an edge to a given mully graph. mully supports multi-edges, i.e. two nodes can be
connected with multiple edges. The uniqueness of the edges is based on the connection with the attributes.
When adding a new connection between two nodes that are already cnnected, the new edge should have
different attributes. The function needs the following arguments:

• g - The input graph
• nodeStart - The first endpoint of the edge
• nodeDest - The second endpoint of the edge
• attributes - A named list, the attributes to assign to the edge

The function returns the graph, with the added edge.
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Example

g=demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
addEdge(g,"dr3","g2",attributes=list(name="newEdge"))
#> mully -- MyFirstMully
#> 3 Layers:
#> ID Name NameLower
#> 1 1 Gene gene
#> 2 2 Drug drug
#> 3 3 Disease disease
#>
#> 8 Nodes:
#> name n type effect desc
#> 1 d1 3 t1 <NA> <NA>
#> 2 d2 3 t1 <NA> <NA>
#> 3 d3 3 t1 <NA> <NA>
#> 4 dr1 2 <NA> strong <NA>
#> 5 dr2 2 <NA> strong <NA>
#> 6 dr3 2 <NA> moderate <NA>
#> 7 g1 1 <NA> <NA> AF
#> 8 g2 1 <NA> <NA> BE
#>
#> 5 Edges:
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats

addLayer

Add a layer or a set of layers to a graph

The function is used to add a new layer to a given mully graph. The layer name should be unique and
should not already exist in the graph. The names are not case-sensitive. the function has an internal count,
and assigns new IDs to new layers. The internal counr number only increases, i.e. it does not change after
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deleting a lyer. Therefore the ID of the last added layer is not necessarily the number of layers in the mully
graph. The function needs the following arguments:

• g - The input graph
• nameLayer - The name or the list of the names of the layers to be added. The layer names must be

unique

The function returns the graph, with the layers added.
Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
addLayer(g,"Complex")
#> mully -- MyFirstMully
#> 4 Layers:
#> ID Name NameLower
#> 1 1 Gene gene
#> 2 2 Drug drug
#> 3 3 Disease disease
#> 4 4 Complex complex
#>
#> 8 Nodes:
#> name n type effect desc
#> 1 d1 3 t1 <NA> <NA>
#> 2 d2 3 t1 <NA> <NA>
#> 3 d3 3 t1 <NA> <NA>
#> 4 dr1 2 <NA> strong <NA>
#> 5 dr2 2 <NA> strong <NA>
#> 6 dr3 2 <NA> moderate <NA>
#> 7 g1 1 <NA> <NA> AF
#> 8 g2 1 <NA> <NA> BE
#>
#> 5 Edges:
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
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addNode

Add a node with assigned layer and attributes to a graph

The function is used to add a node to a given mully graph. The layer to which this node should be added is
required. Nodes on single layers should be unique, but can not be on different layers. Layer Names are not
case-sensitive. The function needs the following arguments:

• g - The input graph
• nodeName - The name of the node to add
• layerName - The name of the layer to be assigned to the node
• attributes - The attributes of the node to add. This argument must be a named list

The function returns the graph, with the new node.

Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
attributes=list("specie"="Homo Sapiens")
addNode(g = g,nodeName = "g3",layerName = "Gene",attributes = attributes)
#> mully -- MyFirstMully
#> 3 Layers:
#> ID Name NameLower
#> 1 1 Gene gene
#> 2 2 Drug drug
#> 3 3 Disease disease
#>
#> 8 Nodes:
#> name n type effect desc
#> 1 d1 3 t1 <NA> <NA>
#> 2 d2 3 t1 <NA> <NA>
#> 3 d3 3 t1 <NA> <NA>
#> 4 dr1 2 <NA> strong <NA>
#> 5 dr2 2 <NA> strong <NA>
#> 6 dr3 2 <NA> moderate <NA>
#> 7 g1 1 <NA> <NA> AF
#> 8 g2 1 <NA> <NA> BE
#>
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#> 5 Edges:
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats

exportCSV

Export mully into CSV files

The function is used to export a given mully graph in the CSV Format. Three files will be generated, respec-
tively containing the layers’, nodes’ and edges’ information. The function needs the following arguments:

• g - The input graph
• target - The target file in which the files will be generated. By default the WD.

Example

g=mully::demo()
exportCSV(g)

getEdgeAttributes

Get the attributes of the edges connecting two nodes

The function is used to obtain information on the edges in a given mully graph. The information can be on
a single edge or all the edges in the graph. The function needs the following arguments:

• g - The input graph
• nodeStart - The first endpoint of the edge
• nodeDest - The second endpoint of the edge

The function returns a dataframe containing the edges with their attributes. If both nodes’ arguments are
missing, it returns the complete information on edges and their attributes.

Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
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#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
##Print all Edges
getEdgeAttributes(g)
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
##Get a Single Edge
getEdgeAttributes(g,"d2","g1")
#> V1 V2 name
#> 3 d2 g1 targets

getIDEdge

Get the ids of the edges connecting two nodes

The function is used to get the internal ID of an edge in a given mully graph. The function needs the
following arguments:

• g - The input graph
• nodeStart - The first endpoint of the edge
• nodeDest - The second endpoint of the edge

The nodes passed to this function as arguments should be the unique names assigned to the nodes upon
addition. mully supports multi-edges, therefore this function may return a list of edges connecting two nodes.
The function returns a list containing the ids of the edges connecting the nodes.

Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
getIDEdge(g,"d2","dr1")
#> [1] 1 2
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getIDNode

Get the id of a node

The function is used to get the internal ID of a given node in a given mully graph. The function needs the
following arguments:

• g - The input graph
• nameNode - The name of the node

The function returns the id of the specified node.

getLayer

Get the nodes on a layer in a graph

The function is used to get the nodes on a given layer in a given mully graph. The layer name is not
case-sensitive. The function needs the following arguments:

• g - The input graph
• nameLayer - The name of the layer

The function returns a List of the nodes on the given layer.

Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
getLayer(g,"gene")
#> + 2/8 vertices, named, from aa24447:
#> [1] g1 g2

getLayersCount

Get the number of layers in a graph

The function is used to get the number of layers in a given mully graph. The function needs the following
arguments:

10



• g - The input graph

The function returns the count of the layers.
Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
getLayersCount(g)
#> [1] 3

getNode

Get a node from a graph

The function is used to get a node from a given mully graph as an igraph.vs object. The function needs the
following arguments:

• g - The input graph
• name - The name of the node

The function returns the node as igraph.vs.

getNodeAttributes

Get the attributes of a node

The function is used to get a node or a list of nodes with corresponding attributes from a given mully graph.
If the node name is missing, the complete node information is extracted. The function needs the following
arguments:

• g - The input graph
• nameNode - The name of the node
• layerByName - A boolean to specify whether to export the layers by name or by ID

The function returns a dataframe containing the attributes of the specified node.
Example
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g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
getNodeAttributes(g,layerByName = TRUE)
#> name n type effect desc
#> 1 d1 Disease t1 <NA> <NA>
#> 2 d2 Disease t1 <NA> <NA>
#> 3 d3 Disease t1 <NA> <NA>
#> 4 dr1 Drug <NA> strong <NA>
#> 5 dr2 Drug <NA> strong <NA>
#> 6 dr3 Drug <NA> moderate <NA>
#> 7 g1 Gene <NA> <NA> AF
#> 8 g2 Gene <NA> <NA> BE

importEdgesCSV

Import Edges to a mully graph from a CSV file

The function is used to import edges to a mully graph. The function reads a CSV file and adds edges between
existing nodes to the graph. The graph should already contain layers and nodes. The function needs the
following arguments:

• g - The mully graph to which the nodes will be added. The graph should already have the layers and
the nodes.

• file - The path to the CSV file containing the edges’ information

The function returns the mully graph with the added edges.

importGraphCSV

Import a mully graph from CSV files

The function is used to create a graph from CSV files. To create the graph, three files are needed: the layers,
nodes and edges. mully also offers functions to import individual files containing nodes’, edges’ and layers
information. See Functions importLayersCSV(), importNodesCSV() and importEdgesCSV(). The function
needs the following arguments:

• name - The name of the graph

12



• direct - A boolean to indicate if the graph is directed or not
• layers - The path to the CSV file containing the layers’ information
• nodes - The path to the CSV file containing the nodes’ information
• edges - The path to the CSV file containing the edges’ information

The function returns a new mully graph.

importLayersCSV

Import Layers to a mully graph from a CSV file
The function is used to add layers to a mully graph. The function reads a CSV file and adds the layers to
the graph. The file should contain the layers’ names. Layer IDs are assigned automatically. The function
needs the following arguments:

• g - The mully graph to which the layers will be added. If missing, a new mully graph is created
• file - The path to the CSV file containing the layers’ information

The function returns the mully graph with the added layers.

importNodesCSV

Import Nodes to a mully graph from a CSV file
The function is used to import nodes into an existing mully graph. The function reads a CSV file and adds
the nodes with the attributes to the graph. The graph should already contain layers, and the nodes in the file
should have an attribute n referring to the layer assignment. The function needs the following arguments:

• g - The mully graph to which the nodes will be added. The graph should already have the layers
• file - The path to the CSV file containing the nodes’ information
• name - The name of the column containing the names of the nodes

The function returns the mully graph with the added nodes.

is.mully

Is this a mully graph?
The function check if a given graph is a mully graph. The function needs the following arguments:

• g - The input graph

The function returns a boolean indicating whether the graph is or not a mully object. ### isLayer Verify
if the layer exists in a graph
This function is used to check if a given mully graph contains a given layer. The layer name is not case-
sensitive. The function needs the following arguments:

• g - The input graph
• name - The name of the layer

The function returns a boolean value.
Example
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g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
isLayer(g,"Gene")
#> [1] TRUE
isLayer(g,"Complex")
#> [1] FALSE

merge

Merge or unite two graphs

The function is used to merge two mully graphs. The merge is layer based, i.e. nodes belonging to similar
layers in both graphs will be combined in the returned graph. The node names are unique on single layers
but can be redundant over different layers. The merge is based on the first arguments, therefore all elements
of the second argument will be added to the first. The function needs the following arguments:

• g1 - The first graph to merge. This is the base of the merge.
• g2 - The second graph to merge. All of its elements are added to the first graph.

The function returns the merge of the two graphs. The merge is based on the first given graph.

Example

#Create First Graph
g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
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#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats

#Create Second Graph
g1 <- mully("MySecondMully",direct = F)

g1 <- addLayer(g1, c("gene", "Protein", "Drug"))

g1=addNode(g1,"p1","Protein",attributes=list(type="t1"))

g1=addNode(g1,"p2","Protein",attributes=list(type="t1"))

g1=addNode(g1,"p3","Protein",attributes=list(type="t1"))

g1=addNode(g1,"dr6","drug",attributes=list(effect="strong"))

g1=addNode(g1,"dr7","drug",attributes=list(effect="strong"))

g1=addNode(g1,"dr8","drug",attributes=list(effect="moderate"))

g1=addNode(g1,"g3","gene",attributes=list(desc="AF"))

g1=addNode(g1,"g9","gene",attributes=list(desc="BE"))

g1=addEdge(g1,"dr8","g9",list(name="targets"))

g1=addEdge(g1,"p3","p2",list(name="interactWith"))

#Merge Graphs
merge(g,g1)
#> Warning in addLayer(g1, g2$layers$Name): Layer gene Already Exists and will be
#> skipped
#> Warning in addLayer(g1, g2$layers$Name): Layer Drug Already Exists and will be
#> skipped
#> mully -- MyFirstMully
#> 4 Layers:
#> ID Name NameLower
#> 1 1 Gene gene
#> 2 2 Drug drug
#> 3 3 Disease disease
#> 4 4 Protein protein
#>
#> 8 Nodes:
#> name n type effect desc
#> 1 d1 3 t1 <NA> <NA>
#> 2 d2 3 t1 <NA> <NA>
#> 3 d3 3 t1 <NA> <NA>
#> 4 dr1 2 <NA> strong <NA>
#> 5 dr2 2 <NA> strong <NA>
#> 6 dr3 2 <NA> moderate <NA>
#> 7 g1 1 <NA> <NA> AF
#> 8 g2 1 <NA> <NA> BE
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#>
#> 5 Edges:
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats

mully

Create an empty multilayered graph

The function create an empty mully graph. The function needs the following arguments:

• name - The name to be assigned to the graph.
• direct - A boolean value, if the graph is directed or not. By default TRUE.

The function returns the created multilayered graph. ### plot,mully Plot the graph in 2D

The function is used to plot the mully graph. It uses the plot function from igraph. We do not recommend
using this function to plot big graphs, and use plot3d instead. The function needs the following arguments:

• g The input graph
• layout The layout. Can either be random or scaled

plot3d

Plot the graph in 3D using rgl

The funstion is used to generate 3D interactive plots of a mully graph. The 3D plot is generated using the R
Package rgl, and uses some of the arguments passed to the igraph function rgl.plot. Most of the arguments
are set to default values, but can be changed. The layout is calculated internally based on the layers. The
function needs the following arguments:

• g The input graph
• layers A boolean whether to add the layers or not
• vertex.label The vertices’ labels
• vertex.label.color The vertices’ colors. If not specified, the colors will be chosen randomly
• vertex.plac The placement form of the vertices on the layer. Can either be “circle” which will place

them on a circle, or “disc” which will place them randomly on a disc. The default is “circle”
• edge.color The edges’ colors.If not specified, inter-edges are black, and intra-edges have the same

color as the nodes on the layer
• edge.width The edge width. Default set to 5.
• edge.arrow.size The edges’ arrow size. Default set to 10
• edge.arrow.width The edges’ arrow width. Default set to 1

The function can take the following arguments supported and not ignored by rglplot}: vertex.label, ver-
tex.label.color, edge.color, edge.width, edge.arrow.size,edge.arrow.width.
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print,mully

Print a mully graph

The function prints a mully graph. The function needs the following arguments:

• g - The input graph

Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
print(g)
#> mully -- MyFirstMully
#> 3 Layers:
#> ID Name NameLower
#> 1 1 Gene gene
#> 2 2 Drug drug
#> 3 3 Disease disease
#>
#> 8 Nodes:
#> name n type effect desc
#> 1 d1 3 t1 <NA> <NA>
#> 2 d2 3 t1 <NA> <NA>
#> 3 d3 3 t1 <NA> <NA>
#> 4 dr1 2 <NA> strong <NA>
#> 5 dr2 2 <NA> strong <NA>
#> 6 dr3 2 <NA> moderate <NA>
#> 7 g1 1 <NA> <NA> AF
#> 8 g2 1 <NA> <NA> BE
#>
#> 5 Edges:
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
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removeEdge

Delete an edge

The function is used to remove an edge from a given mully graph. Since mully supports multi-edges, a
boolean multi is needed to specify whether to delete multiple edges or a single edge. In case one edge should
be deleted, the named list of attributes of the edge is required. The function needs the following arguments:

• g - The input graph
• nodeStart - The first endpoint of the edge
• nodeDest - The second endpoint of the edge
• attributes - The attributes of the edge to delete. Required if the nodes are multi-connected
• multi - A boolean. Specifies whether to delete multiple edges or not, in case they exist.

The function returns the graph with the deleted edges.

Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
removeEdge(g,"dr1","d2",multi=TRUE)
#> mully -- MyFirstMully
#> 3 Layers:
#> ID Name NameLower
#> 1 1 Gene gene
#> 2 2 Drug drug
#> 3 3 Disease disease
#>
#> 8 Nodes:
#> name n type effect desc
#> 1 d1 3 t1 <NA> <NA>
#> 2 d2 3 t1 <NA> <NA>
#> 3 d3 3 t1 <NA> <NA>
#> 4 dr1 2 <NA> strong <NA>
#> 5 dr2 2 <NA> strong <NA>
#> 6 dr3 2 <NA> moderate <NA>
#> 7 g1 1 <NA> <NA> AF
#> 8 g2 1 <NA> <NA> BE
#>
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#> 5 Edges:
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats

removeLayer

Delete a layer or a set of layers from a graph

The function is used to remove a layer from a given mully graph. Removing a layer results deleting all nodes
assigned to the layer, and the edges connecting these nodes to other nodes in the graph. Transitive edges
between nodes can be added by setting trans to TRUE. The function needs the following arguments:

• g - The input graph
• name - The name or the list of the names of the layers to be deleted
• trans - A boolean whether to insert transitive edges or not

The function returns the graph, with the given layer and its corresponding nodes and edges removed.

Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
removeLayer(g,"gene",trans=TRUE)
#> mully -- MyFirstMully
#> 3 Layers:
#> [1] ID Name NameLower
#> <0 rows> (or 0-length row.names)
#>
#> 8 Nodes:
#> name n type effect desc
#> 1 d1 3 t1 <NA> <NA>
#> 2 d2 3 t1 <NA> <NA>
#> 3 d3 3 t1 <NA> <NA>
#> 4 dr1 2 <NA> strong <NA>
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#> 5 dr2 2 <NA> strong <NA>
#> 6 dr3 2 <NA> moderate <NA>
#> 7 g1 1 <NA> <NA> AF
#> 8 g2 1 <NA> <NA> BE
#>
#> 5 Edges:
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats

removeNode

Delete a node or a set of nodes from a graph

The function is used to remove a node from a given mully graph. Removing a node results removing the
edges connecting this node to other nodes in the graph. Transitive edges can also be added after deletion by
setting trans to TRUE (a->b, b->c, removing b with trans=TRUE will add a->c). The function needs the
following arguments:

• g - The input graph
• name - The name or the list of names of the nodes to be deleted
• trans - A boolean whether to insert transitive edges or not

The function returns the graph, with the nodes deleted.

Example

g=mully::demo()
#> Warning in addLayer(g, c("Gene", "Drug", "Drug", "Disease")): Layer Drug Already
#> Exists and will be skipped
#> [1] "Node d1 added as disease"
#> [1] "Node d2 added as disease"
#> [1] "Node d3 added as disease"
#> [1] "Node dr1 added as drug"
#> [1] "Node dr2 added as drug"
#> [1] "Node dr3 added as drug"
#> [1] "Node g1 added as gene"
#> [1] "Node g2 added as gene"
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
removeNode(g,"dr1",trans=TRUE)
#> mully -- MyFirstMully
#> 3 Layers:
#> ID Name NameLower
#> 1 1 Gene gene
#> 2 2 Drug drug
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#> 3 3 Disease disease
#>
#> 8 Nodes:
#> name n type effect desc
#> 1 d1 3 t1 <NA> <NA>
#> 2 d2 3 t1 <NA> <NA>
#> 3 d3 3 t1 <NA> <NA>
#> 4 dr1 2 <NA> strong <NA>
#> 5 dr2 2 <NA> strong <NA>
#> 6 dr3 2 <NA> moderate <NA>
#> 7 g1 1 <NA> <NA> AF
#> 8 g2 1 <NA> <NA> BE
#>
#> 5 Edges:
#> V1 V2 name
#> 1 d2 dr1 treats
#> 2 d2 dr1 extraEdge
#> 3 d2 g1 targets
#> 4 dr3 g2 mutates and causes
#> 5 d3 dr3 treats
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Simple Summary: In biological terms, the term "pathway" is used to describe a collection of
processes within a cell that lead to one or more actions. The graphical representation of these
processes enables the reader to understand complex relationships and interactions much more easily
compared to free-text descriptions. While there is usually agreement on the existence and function
of these high-level processes, the specific molecules and their interactions are often disputed and
a matter of current research. A standardized computational representation of biological networks
has become desirable, especially with the recent surge in new knowledge generation in biology and
medicine. Our work is influenced by challenges emerging from previous work on biological pathways,
knowledge encoding, and visualization as well as pathway databases. Our main motivation is the
difficulty of reproducing pathway knowledge used within publications, even in top-tier journals.
We propose a new way of integrating and modeling pathways and other influencing knowledge,
such as drugs, and documenting their modifications using multilayered networks. We provide a tool
that transforms encoded pathway data to multilayered graphs, with the possibility to modify them,
and integrate other knowledge from external databases.

Abstract: Biological pathway data integration has become a topic of interest in the past years.
This interest originates essentially from the continuously increasing size of existing prior knowledge
as well as from the many challenges scientists face when studying biological pathways. Multipath
is a framework that aims at helping re-trace the use of specific pathway knowledge in specific
publications, and easing the data integration of multiple pathway types and further influencing
knowledge sources. Multipath thus helps scientists to increase the reproducibility of their code and
analysis by allowing the integration of numerous data sources and documentation of their integration
steps while doing so. In this paper, we present the package Multipath, and we describe how it can be
used for data integration and tracking pathway modifications. We present a multilayer model built
from the Wnt Pathway as a demonstration.

Keywords: multilayer networks; data integration; biological pathways; reproducibility; visualization

1. Introduction

Deciphering the inner workings of cells fascinates researchers all over the world. However, these
processes are highly complex and heterogeneous, with countless players constantly interacting via
biochemical reactions, signaling cascades and feedback loops. Knowledge about these processes can
be organized into so-called pathways by grouping sets of interactions, which share a common goal or
function [1]. Over the course of the last decades, an enormous amount of knowledge on molecular
interactions within cells has been accumulated, with a plethora of methods and algorithms using this
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knowledge. Consequently, two problems are currently faced: the integration of the different pathways’
types and the irreproducibility of pathway illustrations used within journals.

Our aim is to provide a generic modelling framework to integrate multiple pathway types and
further knowledge sources influencing these pathways. This framework is defined by a multi-layered
model allowing automatic pathway transformations and documentation. By providing a tool that
generates this model, we aim to facilitate the data integration, boost the reproducibility and increase the
interoperability between different sources and databases in the field of pathways. The transformation
of the pathway models helps structuring and condensing knowledge in specific areas of interests,
e.g., removing layers with irrelevant information, coupling expression and pathway knowledge,
and connecting drug-target and mutation layer connections, while documenting every step of
this process.

In this paper, we present the R package Multipath that creates these multilayer extendable
models from BioPAX-encoded pathway files [2], and extract influencing knowledge from external
databases. We show the multilayer model and the views that we generated from the Signaling by Wnt
Signaling pathway.

This package uses freely available data sources like Reactome or other ontology-encoded pathway
databases, using our R Packages rBiopaxParser [3] and mully [4]. Furthermore, we integrate open source
tools like dbparser [5] and UniProt.ws [6] to retrieve information from the databases DrugBank [7] and
UniProt [8].

2. Materials and Methods

Multipath is an R package that aims at creating reproducible pathway models. It allows the user
to transform BioPAX encoded pathways into multilayered graphs, using the R packages mully [4] and
rBiopaxparser [3]. Mully is an R package that allows the creation, modification, and visualization of
multilayered graphs [4], while rBiopaxparser is an R package to parse, modify, and visualize pathway
data encoded in the BioPAX standard [3]. It allows the user to parse the data and create a monolayered
graph from it. The package mully is then used to transform this monolayered graph into a multilayered
mully model. The elements of the pathways—which represent the nodes—are divided into groups
based on their class, for example complexes, proteins, DNAs, RNAs, small molecules, etc. Each group
of nodes is embedded into one layer of the resulting graph. The edges connecting the nodes are the
interactions extracted from the BioPAX file.

To build the BioPAX mully model, the user has to follow the following steps (Figure 1):

1. Read the BioPAX file using the rBiopaxparser function readBiopax() and provide the path to the
BioPAX file containing the pathway information as an argument. The file can be downloaded
manually or using the function downloadPathway().

2. Fetch the pathway’s internal ID using the function getPathwayID() from the BioPAX object
returned in step 1 which might contain multiple pathways.

3. Provide the pathway’s ID alongside the BioPAX object as arguments to the Multipath function
pathway2Mully() which returns the mully graph created from the parsed pathway information
in the BioPAX object.

The processing time depends on the size of the BioPAX file being imported. A larger pathway may
require a larger memory space and a longer time to be parsed, and transformed into a mully object.

We currently offer the function downloadPathway(), to download a pathway from the database
Reactome [9] in BioPAX level 2 and 3. However, the user can download the pathways manually. A list
of available repositories for pathways encoded in the BioPAX standard can be found in the pathway
resource list Pathguide [10].
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Figure 1. Reproducibility Workflow Diagram. The diagram shows the steps that have to be followed
to generate reproducible multilayer pathway models. The Signaling by Wnt pathway was used as
an example.

The generated mully graph is modifiable and retraceable. All modifications applied to the model
can be stored in a view object and tracked using the feature track and undo. The view object contains
different information concerning the modifications, including the timestamp of creation and last
modification, the original graph and its final modified version, as well as the list of applied steps.

To track the modification, the user has to call the function addStep(), to which a list of arguments
should be provided: the action (add or remove), the element (node, edge or layer), the name of the
element, and more arguments depending on the type of the element. It returns the view with the
added steps. Removing a layer results removing a list of nodes and edges, which are all considered a
single step.

The function undo(), which reverses the latest changes applied to the graph, requires the view
and the number of steps to undo. The steps are reversed based on their id in the view. For instance,
undoing a deletion of a node, will re-add the node and all its connections, and of a layer will re-add
the layer, the nodes of this layer, and all their connections.

Multipath also offers data integration functions to extract any additional information needed
from DrugBank [7] and UniProt [6]. These functions, that need the list of proteins’ and drugs’ IDs
respectively as input, return integrated information existing in both databases.

Functions querying other databases such as ChEBI [11] and PubChem [12] using the R Package
webchem [13], KEGG [14], and ENSEMBL [15] are also being implemented and will be available soon.

3. Results

3.1. Pathway Data Integration

We present functions in Multipath that fetch information from external databases. Essential
information on each node are taken from the original database of the given IDs; for example, information
on proteins with UniProtKB/Swiss-Prot IDs are extracted from UniProt. The interactions are proved
from different databases, and the source of the interactions added to the graph is assigned as an
attribute to the edges.
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3.1.1. DrugBank

DrugBank is an online freely accessible database for drug data and drug products [7]. The complete
data can be downloaded from the official DrugBank website [16] in the XML format. To parse this data,
the function loadDBXML() uses the R package dbparser [5]. This function should be called before using
any other function related to DrugBank, since it returns the object containing the parsed information,
and needed as an argument in all the related functions (Figure 2). The parsed data contain information
on the drugs, as well as interactions between the drugs and between drugs and proteins. The latter
is divided into four types: transporters, carriers, enzymes, and targets. All four types are combined
and arranged into a protein layer, which will be connected to the drug layer. The type is added as an
attribute to the nodes.
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Figure 2. DrugBank Workflow Diagram. The Diagram shows the steps to get Drug Information from
DrugBank using Multipath and the R Package dbparser.

After calling loadDBXML(), the functions getDBDrug() and getDBInteractions() can be called to
fetch respectively the drug entries’ information and the interactions between them from DrugBank,
using the parsed DrugBank object, and the list of DrugBank IDs. The addition of a Drug Layer to an
existing mully graph can be achieved using the function addDBLayer(), with the mully graph, the
parsed DrugBank object, and the list of DrugBank IDs as arguments.

The connections to the protein nodes on the protein Layer are returned by the function
getDBtoUPKB(), which combines the results of the four following functions: getDBTargets(),
getDBTransporters(), getDBCarriers(), and getDBEnzymes().

3.1.2. UniProt

The Multipath package uses the R interface UniProt.ws [6] to query the UniProt database.
UniProt.ws contains functions for retrieving, processing and repackaging the UniProt web services.
We use the package to get information on proteins, their interactions, and their connections to DrugBank.
The information extracted from UniProt is used to add a Protein Layer to a mully graph, with the
interactions between the proteins, and the connections to the drugs on the Drug Layer, if contained
in the graph. All functions related to UniProt require the UniProt.ws object obtained by calling
UniProt.ws() (Figure 3).
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To add the protein layer, the information on a list of proteins can be extracted using addUPKBInfo(),
with the UniProt.ws object, the list of UniProt IDs and the columns’ names representing the attributes
as an input. To get the list of possible columns, the UniProt.ws function columns() can be called. To get
the edges between the protein nodes, the function getUPKBInteractions() can be called, returning the
list of edges, needed alongside the list of nodes to build the protein layer. This task can be accomplished
using the function addUPKBLayer(), with the mully graph, the UniProt.ws object, the list of UniProt
IDs, and the list of attributes as arguments.

The connections to the Drug Layer can be obtained by calling the function getUPKBtoDB().
The addition of the Protein and Drug Layers can also be automatically achieved by calling

the function multipath(), with the following arguments: the name of the returned mully graph,
the UniProt.ws object, the list of UniProt IDs, the DrugBank parsed object, and the list of DrugBank IDs.

3.2. Pathway Models’ Reproducibility

The main feature of Multipath is the possibility to track modifications applied to the multilayered
graph built from the pathway BioPAX file. The user can apply a set of standard procedures,
i.e., the addition or removal of nodes, edges, and layers. Every modification is stored in a pathwayView
object, which can be used later to undo these modifications, retrace the transformation of the original
graph, apply further modifications or compare to other views generated from the same pathway.

4. Discussion

4.1. Wnt Multipath Model

The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial
aspects of cell fate determination, cell migration, cell polarity, neural patterning, and organogenesis during
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embryonic development [17]. We generated a multilayered model (Figure 4) of the Signaling by Wnt
pathway (BioPAX level 3) [18] from the Reactome Database [9].
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Figure 4. Signaling by Wnt mully model. The model was built using the BioPAX level 3 Signaling by
Wnt from Reactome. The model has 6 layers, 311 nodes, and 539 edges.

To build the model and generate the views, we used the R Script in Figure 5.
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Figure 5. The script to generate and plot the model and the views. The function pathway2Mully()
transforms the pathways parsed in the Biopax object into mully graphs. To plot the graph, we used the
function plot3d() from the mully package, and finally, we generated the views using pathwayView()
and modified them using the functions addStep() which applies a modification step to the graph.

The downloaded pathway file (4.19 MB) was parsed in 24.56 s and occupies ~5.05 MB of memory
space. The transformation to a mully graph was conducted in 19.23 s, and the resulted graph’s size is
121.744 KB.

We applied different changes to the model and generated three different views from the model
(Figure 6), by deleting the RNA (Figure 6a), Physical Entity (Figure 6b), and Complex (Figure 6c)
layers respectively. Upon deletion of the layers, transitive edges derived from the deleted nodes were
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added. All deleted information can be reversed from the view. The original model (Figure 4) can be
reproduced from either of these three views using the function undo.
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Figure 6. Views generated from the Signaling by Wnt mully model. (a) View1 generated by deleting
the RNA layer. The graph has 5 layers, 309 nodes, and 533 edges. (b) View2 generated by deleting the
PhysicalEntity layer. The graph has 5 layers, 308 nodes, and 522 edges (521 edges from the original
graph and 1 transitive). (c) View3 generated by deleting the Complex layer. The graph has 5 layers,
153 nodes and 800 edges (93 edges from the original graph and 707 transitive).

4.2. Adding a Drug Layer

After creating the Signaling by Wnt Pathway model, we retrieved the Drugs targeting the
proteins on the protein layer. We extracted the mappings of the internal IDs to UniProt using the
function getExternalIDs(). We obtained the list of Drugs targeting these proteins using getUPKBtoDB().
These IDs were used to add a Drug layer to our model using addDBLayer(), which automatically
adds the Drugs and their interactions to the graph. To get the merged Drug–Protein targets from both
databases, we used the function getUPKBDBRelations() using the list of external Protein IDs and the
list of DrugBank IDs. The edges were added then one by one (Figure 7).
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(a)                                      (b)                             

Figure 7. The Signaling by Wnt model with the added Drug Layer. (a) The model after adding the
Drug layer. The layer contains 83 drugs and 260 Drug Interactions. (b) The model after adding the
connections between the drugs and proteins’ nodes, merged from DrugBank and UniProt. The Drug
targets obtained are 97, many of them added as multi-edges, since a single internal protein ID was
mapped to multiple UniProt entries.

To retrieve drug information from DrugBank, parsing the downloaded data from DrugBank
is required, which is a relatively slow process, fortunately needed only once before calling any
drug-related functions. The parsed data is a large list occupying ~553MB of memory space. However,
extracting the drug information and interactions, as well as their targets is fast. On the other hand,
the retrieval of protein information is accomplished by means of the UniProt.ws R Package. This process
does not require any memory space, but we faced a very slow response from the UniProt server
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multiple times, with no detection of response speed patterns, i.e. specific time of the day, or the amount
of information to be retrieved. The web service also recommends querying using a maximum number
of 50 UniProt entries’ IDs in each single query. Multipath could be updated in the future to support a
better API/Tool for this process.

5. Conclusions

Multipath is an R package to generate multilayered models from BioPAX encoded pathway
knowledge. The models are modifiable, and all modifications are tracked to allow the reproduction of
the graphs. Multipath can also be used to query influencing knowledge databases such as UniProt
and DrugBank and integrate them into a multilayered graph. In this paper, we presented the different
features of Multipath. We described how to use our package to generate multilayered models from
BioPAX files, and integrate different pathway knowledge. We used the Signaling by Wnt pathway as a
demonstration, and displayed three different views derived from it. Multipath is open source, and
can be downloaded from our GitHub Repository [19]. The reference manual and the vignette of the
package were added as Supplementary Materials, respectively as Files S1 and S2.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, File S1: The package’s
vignette in the PDF format, File S2: The package’s Reference Manual.
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Multipath - an R package to create integrated reproducible
multilayered pathway models

true

2020-11-04

Introduction

Biological pathway data integration has become a topic of interest in the past years. This interest origi-
nates essentially from the continuously increasing size of existing prior knowledge as well as from the many
challenges scientists face when studying biological pathways. Multipath is a framework that aims at helping
re-trace the use of specific pathway knowledge in specific publications, and easing the data integration of
multiple pathway types and further influencing knowledge sources. Using Multipath, BioPax-encoded path-
ways can be parsed and embedded into multilayered graphs. Modifications can be applied to these graphs
to generate different views. The package is implemented as a part of the Multipath Project directed by
Dr. Frank Kramer .

Installation

Preinstallation

Multipath depends on multiple packages. The packages are the following: UniProt.ws, dbparser, rBiopax-
Parser, mully, TCGAretriever, stringr, stringi, svMisc, uuid, dplyr, crayon Please make sure to install the
packages UniProt.ws,rBiopaxParser and mully before using the package.

To install the UniProt.ws package:

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install("UniProt.ws")

To install the mully package:

require(devtools)
install_github("frankkramer-lab/mully")
library(mully)

To install the rBiopaxParser package:

require(devtools)
install_github("frankkramer-lab/rBiopaxParser")
library(rBiopaxParser)
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Installation via Github

require(devtools)
install_github("frankkramer-lab/Multipath")
library(Multipath)

Available Functions

addDBLayer

Add a drug layer to a mully graph

This function is used to add a DrugBank layer to an existing mully model. The function needs the following
arguments:

• g - The mully graph
• drugList - The list of DrugBank Ids of the drugs to be added. This argument can be either a string

(one drug) or a list of strings (multiple drugs)
• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained

using the function loadDBXML(DrugBankFile)

The function returns a mully graph with the added drug layer

Example

g=mully("DrugBank",direct=T)
data=loadDBXML("DrugBank.xml")
g=addDBLayer(g,data,c("DB00001","DB06605"))

addStep

Track a modification of a graph

The function saves a modification applied to a mully graph. It applies the step to the graph and saves the
modification step in the pathwayView Object. Not all of the arguments are mandatory, they depend on the
step that has to be applied. The function needs the following arguments:

• v - The input view in which the modification should be saved
• action - The type of action to be applied. Can either be “add” or "remove
• element - The type of the element to be modified. Can either be “node”, “edge”, or “layer”
• name - The name of the element to be modified. This argument is only mandatory for nodes and

edges
• layername - The layer name. This argument is only mandatory for action “add” and element “node”
• V1 - The start node of an edge. This argument is only mandatory for element “edge”
• V2 - The end node of an edge. This argument is only mandatory for element “edge”
• attributes - The named list of attributes of the element. This argument is required only for action

“add”. It is optional for both elements “node” and “edge”, but mandatory if the edge alread exists
• multi - A boolean whether to select multi-edges or not. This is only mandatory for action “remove”

and element “edge”. By default set to FALSE, in which case the attributes of the specified edge should
be given
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• trans - A boolean whether to add transitive edges upon removal of nodes or layers

The function returns the view with the added step. Example

g=mully:::demo()
view=pathwayView(g,"View1")
view=addStep(view,"remove","layer","disease")

addUPKBLayer

Add a protein layer to a mully graph

This function is used to add a UniProt protein layer to an existing mully model. The function needs the
following arguments: - g - The mully graph - up - The UniProt.ws Object - proteinList - The list of
UniProt Ids of the proteins to be added - col - The list of attributes associated to the UniProtKB Entries
to be retrieved

The function returns the mully graph with the added UniProt layer The function should be preceded by
UniProt.ws() to get the UniProt.ws Object

Example

up=UniProt.ws()
g=mully("UniProt")
g=addUPKBLayer(g,up,proteinList=c("P02747","P00734","P07204"),col=c("UNIPROTKB","PROTEIN-NAMES"))

downloadPathway

Download Reactome Pathways in BioPAX level 2 and 3

This function is used to download one or a list of pathways, encoded in BioPAX level 2 or 3. The function
needs the following arguments:

• pathwayID - The Reactome ID or list of IDs of the pathways to be downloaded. The ID should start
with R-HSA-.

• biopaxLevel - The BioPAX Level, 2 or 3. By default set to 3.
• destDirectory - The Directory in which the Pathway Files should be saved. If missing, the files are

saved in the working directory. The Reactome IDs are used to name the files.
• overwrite - A Boolean whether to overwrite existing files with the same name.

The function returns the path to the directory in which the files are downloaded.

Example

downloadPathway(c("R-HSA-195721","R-HSA-9609507"),biopaxLevel=3,overwrite=T)

getAllUPKB

Get all proteins’ entries from UniProt

The function is used to fetch all protein entries from UniProt. The function needs the following arguments:
- up - The UniProt.ws Object
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The function returns a dataframe containing the Protein’s entries with the ID and Name.

Should be preceded by UniProt.ws() to get the UniProt.ws Object

Example

up=UniProt.ws()
allProteins=getAllUPKB(up)

getDBCarriers

Get the Carriers Protein Targets of given DrugBank drugs

Protein Targeted by Drugs are divided in DrugBank into 4 types: Targets, Enzymes, Carriers and Trans-
porters. This function is used to extract the carriers from the dataframe containing the information on the
drugs parsed from the DrugBank XML File.

The function needs the following arguments:

• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained
using the function loadDBXML(DrugBankFile)

• drugList - The list of DrugBank Ids of the drugs. This argument can be either a string (one drug) or
a list of strings (multiple drugs)

The function returns a dataframe containing all information on the carriers targeted by the given drug list.

Example

data=loadDBXML(DrugBankFilePath)
getDBCarriers(data,"DB00001")

getDBDrug

Get DrugBank drug entry

This function extracts infromation on one or a list of Drugs from the dataframe parsed from the DrugBank
XML file. The function needs the following arguments:

• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained
using the function loadDBXML(DrugBankFile)

• drug - The ID or list of IDs of the DrugBank drug entries starting with “DB”

This function returns a dataframe containing the DrugBank entry with its information

Example

data=loadDBXML(DrugBankFilePath)
getDBDrug(data,"DB00001")
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getDBDrugInteractions

Get DrugBank Drug to Drug Interactions This function is used to extract Drug Interactions from the
dataframe containing the information on the Drug in DrugBank, parsed from the downloaded XML File.

The function needs the following arguments:

• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained
using the function loadDBXML(DrugBankFile)

• drug - The ID of the DrugBank drug entry starting with “DB”. This argument can be either a string
(one drug) or a list of strings (multiple drugs).

The function returns a dataframe containing the DrugBank interactions in which the given drug is involved
Example

data=loadDBXML("DrugBank.xml")
getDBDrugInteractions(data,"DB06605")

getDBEnzymes

Get the Enzyme Protein Targets of given DrugBank drugs

Protein Targeted by Drugs are divided in DrugBank into 4 types: Targets, Enzymes, Carriers and Trans-
porters. This function is used to extract the enzymes from the dataframe containing the information on the
drugs parsed from the DrugBank XML File.

The function needs the following arguments:

• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained
using the function loadDBXML(DrugBankFile)

• drugList - The list of DrugBank Ids of the drugs. This argument can be either a string (one drug) or
a list of strings (multiple drugs)

The function returns a dataframe containing all information on the enzymes targeted by the given drug list.

Example

data=loadDBXML(DrugBankFilePath)
getDBEnzymes(data,"DB00001")

getDBTargets

Get the Target Protein Targets of given DrugBank drugs

Protein Targeted by Drugs are divided in DrugBank into 4 types: Targets, Enzymes, Carriers and Trans-
porters. This function is used to extract the targets from the dataframe containing the information on the
drugs parsed from the DrugBank XML File.

The function needs the following arguments:

• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained
using the function loadDBXML(DrugBankFile)

• drugList - The list of DrugBank Ids of the drugs. This argument can be either a string (one drug) or
a list of strings (multiple drugs)
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The function returns a dataframe containing all information on the targets of the given drug list.

Example

data=loadDBXML(DrugBankFilePath)
getDBTargets(data,"DB00001")

getDBTransporters

Get the Transporters Protein Targets of given DrugBank drugs

Protein Targeted by Drugs are divided in DrugBank into 4 types: Targets, Enzymes, Carriers and Trans-
porters. This function is used to extract the transporters from the dataframe containing the information on
the drugs parsed from the DrugBank XML File.

The function needs the following arguments:

• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained
using the function loadDBXML(DrugBankFile)

• drugList - The list of DrugBank Ids of the drugs. This argument can be either a string (one drug) or
a list of strings (multiple drugs)

The function returns a dataframe containing all information on the transporters targeted by the given drug
list.

Example

data=loadDBXML(DrugBankFilePath)
getDBTransporters(data,"DB00001")

getDBtoUPKB

Get DrugBank Drugs to UniProt Proteins Relations from DrugBank

This function is used to extract Drug Targets from the dataframe containing the information on the drugs
parsed from the DrugBank XML File. It merges the targets returned by 4 functions: enzymes, targets,
transporters and carriers. The function needs the following arguments:

• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained
using the function loadDBXML(DrugBankFile)

• drugList - The list of DrugBank Ids of the drugs. This argument can be either a string (one drug) or
a list of strings (multiple drugs)

• proteinList - The list of UniProt Ids of the proteins

The function returns a dataframe containing the connections between DrugBank drugs and UniProt proteins
retrieved from DrugBank.

Example

data=loadDBXML("DrugBank.xml")
getDBtoUPKB(data,c("DB00001","DB00002","DB00006"),c("P02747","P00734","P07204","P05164"))
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getPathwayID

Get internal pathway ID in a BioPAX file

This function is used to get the internal ID of a pathway in a parsed BioPAX object. A BioPAX file can
contain multiple pathways, indexed internally using ID starting with “Pathway” followed by the number of
the pathway. Each pathway in the file has a Reactome and an internal ID. The latter can be extracted using
this function. This should be preceded by readBiopax(filepath) to obtain the biopax object The function
needs the following arguments:

• biopax - The biopax object
• reactomeID - The Reactome ID of the pathway

The function returns the internal ID of the pathway in the parsed BioPAX object.

Example

biopax=readBiopax("pi3k.owl")
id=getPathwayID(biopax,"R-HSA-167057")
pi3kmully=pathway2mully(biopax,id)

getUPKBDBRelations

Get Protein and Drugs relations from UniProt and DrugBank

The function is used to obtain drug targets from UniProt and DrugBank. It combines the returned relations
from both functions getDBtoUPKB and getUPKBtoDB. The function needs the following arguments:

• up - The UniProt.ws Object
• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained

using the function loadDBXML(DrugBankFile) -proteinList - The list of UniProt Ids of the proteins
• drugList - The list of DrugBank Ids of the drugs. This argument can be either a string (one drug) or

a list of strings (multiple drugs)

The function returns a dataframe containing the connections between DrugBank drugs and UniProt proteins
retrieved from DrugBank and UniProt. The function should be preceded by:

1. UniProt.ws() to get the UniProt.ws Object
2. loadDBXML(DrugBankFile) to get the argument data

Example

up=UniProt.ws()
data=loadDBXML("DrugBank.xml")
relations=getUPKBDBRelations(up,data,proteinList=c("P02747","P00734","P07204","P05164"),drugList=c("DB00001","DB00002","DB00006"))

getUPKBInfo

Get Proteins from UniProtKB

The function is used to fetch information on a list of protein entries from UniProt. The function needs the
following arguments: - up - The UniProt.ws Object - proteins - The list of UniProtKB Proteins ID to be
retrieved - col - The list of attributes associated to the UniProtKB Entries to be retrieved
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The function returns a dataframe containing the protein entries with the selected attributes. To get the list of
possible columns, you can call columns(UniProt.ws()). The function should be preceded by UniProt.ws()
to get the UniProt.ws Object.

Example

up <- UniProt.ws()
getUPKBInfo(up,c("Q6ZS62","P14384","P40259"),c("PROTEIN-NAMES","DRUGBANK","GO","REACTOME"))

getUPKBInteractions

Get the interactions of given proteins from UniProt

The function is used to fetch interactions between proteins from the UniProt Database. The function needs
the following arguments:

• up - The UniProt.ws Object
• proteins - The list of proteins of which the interactions should be retrieved

The function returns a dataframe containing the interactions between the given proteins. The function
should be preceded by UniProt.ws() to get the UniProt.ws Object.

Example

up=UniProt.ws()
interactions=getUPKBInteractions(up,c("P02747","P07204","P00734"))

getUPKBtoDB

Get UniProt Proteins to DrugBank Drugs relations from UniProt

This function is used to fetch relations between a list of proteins and a list of drugs from the UniProt
Database. The function needs the following arguments:

• up - The UniProt.ws Object
• proteinList - The list of UniProt Ids of the proteins
• drugList - The ID of the DrugBank drug entry starting with “DB”. This argument can be either a

string (one drug) or a list of strings (multiple drugs).

The function returns a dataframe containing the connections between UniProt proteins and DrugBank drugs
retrieved from UniProt. The function should be preceded by UniProt.ws() to get the UniProt.ws Object.

Example

up=UniProt.ws()
getUPKBtoDB(up,c("P02747","P00734","P07204"),c("DB00001","DB00002"))

loadDBXML

Load DrugBank XML file

This function is used to read and parse the file downloaded from the DrugBank Database containing the
complete information on the drug entries. The function needs the following argument:

8



• file - The path to the DrugBank XML file. This can be downloaded from the DrugBank official Website
(drugbank.ca). An account with an institutional e-mail is required.

This function returns a dataframe containing the parsed information from DrugBank. This can be used to
extract any additional information on the DrugBank entries

This function should be called before using any function to query the DrugBank database. Since the parsing
of DrugBank takes time, this function should only be called once.

Example

data=loadDBXML("DrugBank.xml")

multipath

Generate Multipath Graph from General Data

This function is used to generate a mully graph from a list of drugs and proteins. The function creates a
multilayered graph with a drug and protein layer, and adds the inter- and intractions to it. The function
needs the following arguments:

• name - The name of the graph to be generated
• up - The Uniprot.ws() object
• proteinList - The list of proteins of which the interactions should be retrieved
• data - The dataframe containing the parsed information of DrugBank. This argument can be obtained

using the function loadDBXML(DrugBankFile)
• drugList - The list of DrugBank Ids of the drugs. This argument can be either a string (one drug) or

a list of strings (multiple drugs)

The function returns a mully graph with the added data. The function should be preceded by:

1. UniProt.ws() to get the UniProt.ws Object
2. loadDBXML(DrugBankFile) to get the argument data

Example

up=UniProt.ws()
data=loadDBXML("DrugBank.xml")
g=multipath(name="MyMultipath",up=up,proteinList=c("P02747","P00734","P07204","P05164"),data=data,drugList=c("DB00001","DB00002","DB00006"))

pathway2Mully

Build a mully graph from a given pathway This function builds a multilayered mully graph of a
BioPAX encoded pathway. To run this function, the user needs to parse the file. It should be preceded by
readBiopax(filepath) to obtain the biopax object. The function needs the following arguments:

• biopax - The BioPaX object containing the parsed data from an OWL file. This can be obtained
using readBiopax(filepath)

• pathwayID - The internal ID of the pathway in the biopax object. To obtain the internal ID, the
function getPathwayID(biopax,reactomeID) can be called
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The function returns a mully graph built from the given pathway.
Example

biopax=readBiopax("pi3k.owl")
pi3kmully=pathway2mully(biopax,"pathway1")

pathwayView

Create an empty view
The function is used to create a pathwayView in order to track the modifications applied to a mully graph.
The ocject pathwayView contains different information on the View, including the timestamp of creation and
last modification, the original and final version of the graph, and the dataframe containing the modification
steps. The function needs the following arguments:

• g - The input graph
• name - The name of the view

The function returns an empty pathwayView Object.
Example

view=pathwayView(mully("myMully",T),"View1")

print,pathwayView

Print Function
The function is used to print the pathwayView Object. The function needs the following arguments:

• v - The input pathwayView to be printed

undo

Undo a modification step in a view
The function reverses changes applied to a mully graph, saved in a pathwayView Object. The function needs
the following arguments:

• v - The input view
• stps - The number of steps to undo. This number referes to the number of unique steps’ IDs to be

removed, i.e. entries of steps in the view with similar stepID count as 1

The function returns The view with the undone modifications. ## wntpathway Demo function for Wnt
Pathway Views The function is a demo function that create a pathway mully graph from a BioPAX
encoded file of the Signaling by Wnt Pathway. The function reads and parses the file, creates the mully
graph, and generates 3 different views from the graph by deleting the RNA, Complex, and Physical Entity
Layers. The function needs the following arguments:

• file - The link to the Wnt Pathway bioPAX file

Example
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wntpathway("wnt_reactome.owl")
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addDBLayer Add a drug layer to a mully graph

Description

Add a drug layer to a mully graph

Usage

addDBLayer(g, data, drugList)

Arguments

g The mully graph

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drugList The list of DrugBank Ids of the drugs to be added. This argument can
be either a string (one drug) or a list of strings (multiple drugs)

Value

A mully graph with the added drug layer

Examples

## Not run:
data=readDBXML(DBXMLFilePath)
g=mully("DrugBank",direct=T)
g=addDBLayer(g,data,c("DB00001","DB06605"))

## End(Not run)
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addStep Track a modification of a graph

Description

Track a modification of a graph

Usage

addStep(
v,
action,
element,
name = NA,
layername = NA,
V1 = NA,
V2 = NA,
attributes = NA,
multi = F,
trans = T

)

Arguments

v The input view in which the modification should be saved

action The type of action to be applied. Can either be ”add” or ”remove

element The type of the element to be modified. Can either be ”node”, ”edge”,
or ”layer”

name The name of the element to be modified. This argument is only mandatory
for nodes and edges

layername The layer name. This argument is only mandatory for action ”add” and
element ”node”

V1 The start node of an edge. This argument is only mandatory for element
”edge”

V2 The end node of an edge. This argument is only mandatory for element
”edge”

attributes The named list of attributes of the element. This argument is required
only for action ”add”. It is optional for both elements ”node” and ”edge”,
but mandatory if the edge alread exists

multi A boolean whether to select multi-edges or not. This is only mandatory
for action ”remove” and element ”edge”. By default set to FALSE, in
which case the attributes of the specified edge should be given

trans A boolean whether to add transitive edges upon removal of nodes or layers

Value

The View with the added step



4 addUPKBLayer

Examples

## Not run:
g=mully:::demo()
view=pathwayView(g,"View1")
view=addStep(view,"remove","layer","")

## End(Not run)

addUPKBLayer Add a protein layer to a mully graph

Description

Add a protein layer to a mully graph

Usage

addUPKBLayer(
g,
up,
proteinList,
col = c("UNIPROTKB", "PROTEIN-NAMES", "ORGANISM")

)

Arguments

g The mully graph

up The UniProt.ws Object

proteinList The list of UniProt Ids of the proteins to be added

col The list of attributes associated to the UniProtKB Entries to be retrieved

Value

The mully graph with the added UniProt layer

Note

Should be preceded by UniProt.ws() to get the UniProt.ws Object

Examples

## Not run:
up=UniProt.ws()
g=mully("UniProt")
g=addUPKBLayer(g,up,proteinList=c("P02747","P00734","P07204"),col=c("UNIPROTKB","PROTEIN-NAMES"))

## End(Not run)
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downloadPathway Download Reactome Pathways in BioPAX level 2 and 3

Description

Download Reactome Pathways in BioPAX level 2 and 3

Usage

downloadPathway(pathwayID, biopaxLevel = "3", destDirectory, overwrite = F)

Arguments

pathwayID The Reactome ID or list of IDs of the pathways to be downloaded. The
ID should start with R-HSA-.

biopaxLevel The BioPAX Level, 2 or 3. By default set to 3.

destDirectory The Directory in which the Pathway Files should be saved. If missing,
the files are saved in the working directory. The Reactome IDs are used
to name the files.

overwrite A Boolean whether to overwrite existing files with the same name.

Value

The Directory in which the files are saved.

Examples

## Not run:
downloadPathway(c("R-HSA-195721","R-HSA-9609507"),biopaxLevel=3,overwrite=T)

## End(Not run)

getAllUPKB Get all proteins’ entries from UniProt

Description

Get all proteins’ entries from UniProt

Usage

getAllUPKB(up)

Arguments

up The UniProt.ws Object

Value

a dataframe containing the Protein’s entries with the ID and Name
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Note

Should be preceded by UniProt.ws() to get the UniProt.ws Object

Examples

## Not run:
up=UniProt.ws()
allProteins=getAllUPKB(up)

## End(Not run)

getDBCarriers Get the carrier proteins involved in movement of given drugs
across biological membranes

Description

Get the carrier proteins involved in movement of given drugs across biological membranes

Usage

getDBCarriers(data, drugList)

Arguments

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drugList The list of DrugBank Ids of the drugs. This argument can be either a
string (one drug) or a list of strings (multiple drugs)

Value

A dataframe containing all information on the carrier proteins involved in movement of the
given drugs across biological membranes

getDBDrug Get DrugBank drug entry

Description

Get DrugBank drug entry

Usage

getDBDrug(data, drug)

Arguments

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drug The ID or list of IDs of the DrugBank drug entries starting with ”DB”
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Value

A dataframe containing the DrugBank entry with its information

Examples

## Not run:
data=loadDBXML(DrugBankFilePath)
getDBDrug(data, "DB00001")

## End(Not run)

getDBDrugInteractions Get DrugBank Drug to Drug Interactions

Description

Get DrugBank Drug to Drug Interactions

Usage

getDBDrugInteractions(data, drug)

Arguments

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drug The ID of the DrugBank drug entry starting with ”DB”. This argument
can be either a string (one drug) or a list of strings (multiple drugs).

Value

A dataframe containing the DrugBank interactions in which the given drug is involved

Examples

## Not run:
data=loadDBXML(DBXMLFilePath)
getDBDrugInteractions(data,"DB06605")

## End(Not run)



8 getDBTargets

getDBEnzymes Get the enzymes inhibited/induced or involved in metabolism by
given DrugBank drugs

Description

Get the enzymes inhibited/induced or involved in metabolism by given DrugBank drugs

Usage

getDBEnzymes(data, drugList)

Arguments

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drugList The list of DrugBank Ids of the drugs. This argument can be either a
string (one drug) or a list of strings (multiple drugs)

Value

A dataframe containing all information on the enzymes inhibited/induced or involved in
metabolism by the given drug list

getDBTargets Get the targets of given DrugBank drugs

Description

Get the targets of given DrugBank drugs

Usage

getDBTargets(data, drugList)

Arguments

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drugList The list of DrugBank Ids of the drugs. This argument can be either a
string (one drug) or a list of strings (multiple drugs)

Value

A dataframe containing all information on the targets of the given drug list
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getDBtoUPKB Get DrugBank Drugs to UniProt Proteins Relations from Drug-
Bank

Description

Get DrugBank Drugs to UniProt Proteins Relations from DrugBank

Usage

getDBtoUPKB(data, drugList, proteinList)

Arguments

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drugList The list of DrugBank Ids of the drugs. This argument can be either a
string (one drug) or a list of strings (multiple drugs)

proteinList The list of UniProt Ids of the proteins

Value

A dataframe containing the connections between DrugBank drugs and UniProt proteins
retrieved from DrugBank

Examples

## Not run:
data=readDBXML(DBXMLFilePath)
getDBtoUPKB(data,c("DB00001","DB00002","DB00006"),c("P02747","P00734","P07204","P05164"))

## End(Not run)

getDBTransporters Get the transporter proteins involved in movement of given drugs
across biological membranes

Description

Get the transporter proteins involved in movement of given drugs across biological mem-
branes

Usage

getDBTransporters(data, drugList)

Arguments

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drugList The list of DrugBank Ids of the drugs. This argument can be either a
string (one drug) or a list of strings (multiple drugs)
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Value

A dataframe containing all information on the transporter proteins involved in movement
of the given drugs across biological membranes

getExternalIDs Get External Database IDs of nodes

Description

Get External Database IDs of nodes

Usage

getExternalIDs(biopax, nodes, database)

Arguments

biopax The biopax object

nodes The list of internal IDs of the nodes

database The name of the database

Value

A dataframe with the mappings between the internal and external IDs

Examples

## Not run:
biopax=readBiopax(pi3k.owl)
getExternalIDs(wntBiopax,c("Protein1","Protein2"),"UniProt")

## End(Not run)

getPathwayID Get internal pathway ID in a BioPAX file

Description

Get internal pathway ID in a BioPAX file

Usage

getPathwayID(biopax, reactomeID)

Arguments

biopax The biopax object

reactomeID The Reactome ID of the pathway
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Value

The internal ID of the pathway in the parsed BioPAX object

Note

This should be preceded by readBiopax(filepath) to obtain the biopax object

Examples

## Not run:
biopax=readBiopax(pi3k.owl)
id=getPathwayID(biopax,"R-HSA-167057")
pi3kmully=pathway2mully(biopax,id)

## End(Not run)

getUPKBDBRelations Get Protein and Drugs relations from UniProt and DrugBank

Description

Get Protein and Drugs relations from UniProt and DrugBank

Usage

getUPKBDBRelations(up, data, proteinList, drugList)

Arguments

up The UniProt.ws Object

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

proteinList The list of UniProt Ids of the proteins

drugList The list of DrugBank Ids of the drugs. This argument can be either a
string (one drug) or a list of strings (multiple drugs)

Value

A dataframe containing the connections between DrugBank drugs and UniProt proteins
retrieved from DrugBank and UniProt

Note

Should be preceded by: 1. UniProt.ws() to get the UniProt.ws Object 2. loadDBXML(DrugBankFile)
to get the argument data

Examples

## Not run:
up=UniProt.ws()
data=readDBXML(DBXMLFilePath)
relations=getUPKBDBRelations(up,data,c("P02747","P05164"),c("DB00001","DB00006"))

## End(Not run)
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getUPKBInfo Get Proteins from UniProtKB

Description

Get Proteins from UniProtKB

Usage

getUPKBInfo(up, proteins, col)

Arguments

up The UniProt.ws Object

proteins The list of UniProtKB Proteins ID to be retrieved

col The list of attributes associated to the UniProtKB Entries to be retrieved

Value

a dataframe containing the protein entries with the selected attributes

Note

Should be preceded by UniProt.ws() to get the UniProt.ws Object To get the list of possible
columns, you can call columns(UniProt.ws())

Examples

## Not run:
up <- UniProt.ws()
getUPKBInfo(up,c("Q6ZS62","P14384"),c("PROTEIN-NAMES","GO"))

## End(Not run)

getUPKBInteractions Get the interactions of given proteins from UniProt

Description

Get the interactions of given proteins from UniProt

Usage

getUPKBInteractions(up, proteins)

Arguments

up The UniProt.ws Object

proteins The list of proteins of which the interactions should be retrieved
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Value

A dataframe containing the interactions between the given proteins

Note

Should be preceded by UniProt.ws() to get the UniProt.ws Object

Examples

## Not run:
up=UniProt.ws()
interactions=getUPKBInteractions(up,c("P02747","P07204","P00734"))

## End(Not run)

getUPKBtoDB Get UniProt Proteins to DrugBank Drugs relations from UniProt

Description

Get UniProt Proteins to DrugBank Drugs relations from UniProt

Usage

getUPKBtoDB(up, proteinList, drugList)

Arguments

up The UniProt.ws Object

proteinList The list of UniProt Ids of the proteins

drugList The ID of the DrugBank drug entry starting with ”DB”. This argument
can be either a string (one drug) or a list of strings (multiple drugs).

Value

A dataframe containing the connections between UniProt proteins and DrugBank drugs
retrieved from UniProt

Note

Should be preceded by UniProt.ws() to get the UniProt.ws Object

Examples

## Not run:
up=UniProt.ws()
getUPKBtoDB(up,c("P02747","P00734","P07204"),c("DB00001","DB00002"))

## End(Not run)
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loadDBXML Load DrugBank XML file

Description

Load DrugBank XML file

Usage

loadDBXML(file)

Arguments

file The path to the DrugBank XML file. This can be downloaded from the
DrugBank official Website (drugbank.ca). An account with an institu-
tional e-mail is required.

Value

A dataframe containing the parsed information from DrugBank. This can be used to extract
any additional information on the DrugBank entries

Note

This function should be called before using any function to query the DrugBank database.
Since the parsing of DrugBank takes time, this function should only be called once.

multipath Generate Multipath Graph from General Data

Description

Generate Multipath Graph from General Data

Usage

multipath(
name = "Multipath",
up = NA,
proteinList = NA,
data = NA,
drugList = NA

)
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Arguments

name The name of the graph to be generated

up The Uniprot.ws() object

proteinList The list of proteins of which the interactions should be retrieved

data The dataframe containing the parsed information of DrugBank. This
argument can be obtained using the function loadDBXML(DrugBankFile)

drugList The list of DrugBank Ids of the drugs. This argument can be either a
string (one drug) or a list of strings (multiple drugs)

Value

A mully graph with the added data

pathway2Mully Build a mully graph from a given pathway

Description

Build a mully graph from a given pathway

Usage

pathway2Mully(biopax, pathwayID)

Arguments

biopax The BioPaX object containing the parsed data from an OWL file. This
can be obtained using readBiopax(filepath)

pathwayID The ID of the pathway in the biopax object

Value

A mully graph built from the given pathway

Note

This should be preceded by readBiopax(filepath) to obtain the biopax object

Examples

## Not run:
biopax=readBiopax(pi3k.owl)
pi3kmully=pathway2mully(biopax,"pathway1")

## End(Not run)



16 print.pathwayView

pathwayView Create an empty view

Description

Create an empty view

Usage

pathwayView(g, name)

Arguments

g The input graph

name The name of the view

Value

An empty view

Examples

## Not run:
view=pathwayView(mully("myMully",T),"View1")

## End(Not run)

print.pathwayView Print function

Description

Print function

Usage

## S3 method for class 'pathwayView'
print(x, ...)

Arguments

x The input View to be printed

... any other parameteres passed to print
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undo Undo a modification step in a view

Description

Undo a modification step in a view

Usage

undo(v, stps = 1)

Arguments

v The input view

stps The number of steps to undo. This number referes to the number of
unique steps’ IDs to be removed, i.e. entries of steps in the view with
similar stepID count as 1

Value

The view with the undone modifications

wntpathway Demo function for Wnt Pathway Views

Description

Demo function for Wnt Pathway Views

Usage

wntpathway(file)

Arguments

file The link to the Wnt Pathway biopax file
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Research Article 1 

Identification of potential therapeutic targets for host-directed 2 

Leishmaniasis treatment and repositioning drugs using network-3 

based approaches 4 

 5 

J. Eduardo Martinez-Hernandez1,2,3,4, Zaynab Hammoud5, Frank Kramer5, Rubens Monte-6 
Neto6, Vinicius Maracaja-Coutinho3,4, Alberto J. M. Martin4* 7 
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Santiago, Chile. 9 
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5 IT-Infrastructure for Translational Medical Research, University of Augsburg, 86159 Augsburg, 16 
Germany 17 
6 Instituto René Rachou - Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil. 18 

 19 

Abstract 20 

Leishmania parasites are the causal agent of several diseases called Leishmaniasis. Host-directed 21 
therapies present an alternative that promises to be useful for antileishmanial therapy. We aimed to 22 
identify potential novel therapeutic target genes for host-directed treatment and to get their target-drug 23 
interaction in order to obtain new drugs that can be repositioned for their use as antileishmanial 24 
therapies. We employed context-specific gene regulatory networks to model the regulation dynamics of 25 
Leishmania major infected human macrophages in four time series that allow us to identify several genes 26 
as new targets. The pathway mapping and drug-target multilayered analysis reveal the presence of 5 27 
genes that can be proposed as potential new therapeutic targets for host-directed therapies. Also, we 28 
identified the potential of repositioning 11 drugs that target our proposed genes. This work constitutes 29 
an effort to characterize novel antileishmanial therapies by a combination of network-based approaches, 30 
demonstrating that our proposed targets and drugs can be used as a new alternative for Leishmania major 31 
infection treatment. 32 

1. Introduction 33 

Leishmaniasis is a group of vector-borne neglected tropical diseases caused by Leishmania parasites 34 
(Burza, Croft, and Boelaert 2018). The clinical manifestations range from self-healing skin ulcerations 35 
for cutaneous Leishmaniasis (CL) to splenomegaly and hepatomegaly in visceral Leishmaniasis (VL), 36 
which is the most deadly form of Leishmaniasis (Henry W. Murray et al. 2005).  According to the last 37 
report for Leishmaniasis emitted by WHO, it is estimated that annually there are about 1 million 38 
infections for CL and 90,000 for VL  (“Leishmaniasis” n.d.). In fact, a small number of drugs are used 39 
for Leishmaniasis treatment (Roatt et al. 2020). Although these conventional therapies have some 40 
advantages, such as their efficacy, and have been used for several years, problems and disadvantages in 41 
their current usage have been documented, ranging from high costs, toxicity, and resistance by the 42 
parasite (Matos et al. 2020). This scenario leads us to the need to find more effective treatment 43 
mechanisms that present the least amount of disadvantages and problems to the patient due to their use. 44 
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Host-directed therapies (HDTs) are a group of strategies that interfere in the host mechanism that is 45 
necessary for pathogen survival, and stimulate the immune response in order to respond to pathogens 46 
mediated by the host, to eliminate them bypassing existing problems with conventional treatments, such 47 
less chance of developing resistance  (Varikuti et al. 2018; Kaufmann et al. 2018). Recently HDTs have 48 
been proposed for the treatment of diverse bacterial, viral, and parasitic diseases (Zumla, Rao, Wallis, 49 
et al. 2016), such as tuberculosis (Zumla, Rao, Dodoo, et al. 2016), malaria (Smith et al. 2015), HIV 50 
infections (Ylisastigui et al. 2004; Matalon, Rasmussen, and Dinarello 2011), and most recently for the 51 
treatment of SARS-CoV-2 (Zumla et al. 2020). 52 

To this day, a variety of strategies has been developed in order to identify new host-directed therapies 53 
for Leishmaniasis treatment (Varikuti et al. 2018; Kumar et al. 2017). Many of these strategies are 54 
focused on the improvement of the immune response of the host (Kumar et al. 2017). In a previous 55 
work, Murray and colleagues demonstrated that a combination of IL-12 and typical treatment with 56 
pentavalent antimony (Sbv) helped in the recovery of animals infected with Leishmania donovani, 57 
proving that a joint therapy between drugs that improved the host's immune response and conventional 58 
therapies can be useful for Leishmaniasis treatment (H. W. Murray et al. 2000). Another study 59 
discovered that imatinib, an anti-cancer drug, was useful for reducing the severity of lesions caused by 60 
Leishmania amazonensis (Wetzel, McMahon-Pratt, and Koleske 2012). Other studies were focused on 61 
promoting the production of INF-𝜸 (Dubovsky et al. 2013), NO and IL-12 (Saha et al. 2011), ROS 62 
(Kyriazis et al. 2016) resulting in the improvement of immune response and promoting the healing and 63 
elimination of Leishmania parasites.   64 

Networks are a form of knowledge representation used to structure relations between entities or objects. 65 
In biomedicine, the knowledge that is being represented and studied involves a high number of players 66 
with multiple connections. Biological networks are complex and very heterogeneous and contain a 67 
myriad of knowledge that has to be taken into consideration while analysing these networks. A perfect 68 
example of this complexity is cell networks, which consist of multiple sorts of biological molecules, 69 
connected in different means. To overcome this problem, the concept of multilayered graphs was 70 
introduced and employed in the field of biomedicine in the past years. This concept consists of layering 71 
the components of the network, nodes, or edges, by grouping them. The layering is based on the 72 
heterogeneity of the nodes of the network, or the relations between them. Colors or layers are assigned 73 
consequently to these elements, which results in two categories: node-colored graphs and edge-colored 74 
graphs, in which layers represent respectively the colors of the nodes and the edges. These aspects are 75 
employed in many fields in biomedicine, such as protein-protein interaction (PPI), gene regulatory 76 
networks (GRNs), and epidemiology (Hammoud and Kramer 2020a). Recently the use of network-based 77 
approaches to determine non-obvious biological interactions and their relationship to disease has been 78 
increasing (Conte et al. 2020). Gene Regulatory Networks (GRNs), are a type of networks which 79 
represent regulatory events, between regulatory elements, such as transcription factors (TFs) or non-80 
coding RNAs (ncRNAs)  and genes (Walhout 2011). GRNs in combination with expression data can be 81 
used to infer condition-specific networks, which can be compared with control contexts or steady states, 82 
allowing the identification of possible disease markers or that can serve as possible targets for a 83 
pharmacological treatment (Sonawane et al. 2019).  84 

Here we present a combination of GRNs based on transcriptomic data to model Leishmania infection 85 
dynamics in human macrophages and multilayered networks approach for the pathway mapping and 86 
drug-target identification approach in order to determine potential therapeutic targets for host-directed 87 
antileishmanial therapies. We identify five genes that have the potential as novel therapeutic targets. In 88 
addition to these potential targets, we describe the direct connection of 11 drugs, which could be 89 
repositioned to be used as host-directed antileishmanial therapy. 90 

  91 
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2. Materials and Methods 92 
 93 

2.1. RNA-seq dataset of Leishmania infected macrophages 94 

A set of RNA-seq derived from Leishmania major infected macrophage with bioproject accession 95 
PRJNA290995 was downloaded. This data set is composed of 4 point times, 4 hours post-infection (hpi), 96 
24 hpi, 48 hpi, and 72 hpi.  In Figure 1, we resume the methods explained below. 97 

2.2. RNA-seq data analysis  98 

Raw data quality control was performed using FastQC  (“Babraham Bioinformatics - FastQC A Quality 99 
Control Tool for High Throughput Sequence Data” n.d.) v0.11.8, low-quality reads were removed with 100 
Trimmomatic 0.36 (Bolger, Lohse, and Usadel 2014) with a Phred cut-off value of 𝑄 =  30. Then, we 101 

mapped the remaining high quality reads with Hisat2 version 2.1.0 (Kim, Langmead, and Salzberg 2015) 102 
to human genome version GRCh38.  Expression values were calculated using HTSeq-count 0.7.2 103 
(Anders, Pyl, and Huber 2015). The resulting count reads were normalized and tested to identify the 104 
differentially expressed genes using DESeq2 (Love, Huber, and Anders 2014). Genes with adjusted 𝑝 −105 

𝑣𝑎𝑙𝑢𝑒 ≤  0.5 and 𝑎𝑏𝑠𝑜𝑙𝑢𝑡 𝐿𝑜𝑔 𝑓𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 ≥  0.5 were considered as differentially expressed. 106 

2.3. Gene regulatory network analyses 107 

A human reference gene regulatory network (GRN) was obtained from DoRothEA (Garcia-Alonso et al. 108 
2019) using only high-quality connections.  This reference GRN was filtered using RNA-seq normalized 109 
data, as described before by Santander and cols. (Santander et al. 2018) with the following 110 
modifications:  interaction between transcription factor (TF) and their target were only saved if 111 
normalized reads value for TF were at least 10.  After we obtained filtered networks for all conditions, 112 
we applied a pairwise comparison based on infected against non-infected for all four serial times, using 113 
LoTo (Martin et al. 2017). Once these comparisons were obtained, we evaluated the F1 values of all TFs 114 
and non-TFs genes. This value ranges from 0 to 1, when 1 represents a higher similarity of X node in 115 
both networks. After the evaluation of this metric, we saved only nodes and edges that appeared in the 116 
infected but not in non-infected networks.  A preliminary list of interest genes was filtered using an 117 
absolute logFC of 0.5 and genes were selected only if they participated in processes related to immune 118 
response, response to stress, or host-pathogen interaction.  119 

2.4. Gene-protein and protein-pathway mapping and drug-target interaction  120 

Multipath is an R package to generate integrated reproducible pathway knowledge (Hammoud and 121 
Kramer 2020b). Using Multipath, BioPAX-encoded pathways can be modelled into multilayered graphs, 122 
where the biological pathways’ components are embedded into different layers based on their biological 123 
type. The built graphs are reproducible, i.e. all modifications applied to the graphs are stored. Multipath 124 
is also used to integrate influencing pathway knowledge from external databases like drugs from 125 
DrugBank (Wishart et al. 2018). We used this package to query pathway knowledge databases and fetch 126 
relevant information needed in our computational analysis. To map the gene set of interest to their gene 127 
products from UniProt, Multipath uses UniProt.ws to fetch the UniProt IDs of the corresponding 128 
proteins, mapped to our list of 113 HGNC symbols. Then we got a list of biological pathways from 129 
Reactome (Jassal et al. 2020) in which these proteins participate. These Reactome IDs were downloaded 130 
to generate mully (Hammoud and Kramer 2018) multilayered graphs. Next, we filtered all proteins that 131 
were not included in our gene list. Finally, we extracted the drug targets from UniProt and DrugBank, 132 
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and added a drug layer to each filtered pathway graph, and only preserved gene products to which direct 133 
drug connections were identified. 134 

 135 
3. Results 136 

 137 
3.1. Global expression patterns in Leishmania major infected macrophages 138 

A global gene expression analysis was performed using a publicly available set of RNA-seq data 139 
comprising four time points (4, 24, 48, 72 hpi) of L. major infected human macrophages previously 140 
reported by Fernandes and cols. (Fernandes et al. 2016).   141 

Transcriptomic analysis reveals a high number of differentially expressed genes (DEGs) in paired-142 
sample analysis (health against infected macrophage) at the first hours after infection (Figure 3). At 4 143 
hpi we observed a higher number of DEGs, at this time post-infection 4709 genes were identified as 144 
DEGs based on 𝐹𝐷𝑅 ≤  0.05 and −0.5 >  𝐹𝐶 >  0.5. For this set of DEGs we obtained that 2521 145 
were upregulated and 2188 downregulated in the infected macrophage compared to the health 146 
macrophage. On the other hand, we showed that DEGs decreased in order to hours post-infection 147 
increase, presenting a lower number of DEGs at 72 hpi with a total of 953 DEGs of which 413 was 148 
downregulated and 540 upregulated (Figure 3).  149 

Based on the set of DEGs, we applied a GO enrichment analysis to identify biological processes 150 
associated with host-pathogen interaction, response to stress, and immune response. Enriched GO 151 
categories obtained for up- and downregulated DEGs from health against infected macrophage 152 
comparison are listed in Supplementary data set 1. Interestingly, three GO categories were upregulated 153 

Figure 1. Pipeline to identify potential therapeutic target for Leishmaniasis host-directed treatment 

in human macrophage from RNA-seq data. 
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at the 4 hpi related to response to cytokine (GO:0034097), cellular response to cytokine stimulus 154 
(GO:0071345), and cytokine-mediated signaling pathway (GO:0019221). Moreover, regulation of 155 
response to stress (GO:0019221), Regulation of response to stress, Negative regulation of response to 156 
stimulus, Positive regulation of response to stimulus, also was upregulated at 4 hpi. On the other hand, 157 
we didn’t find any enriched GO term downregulated related to immune response, host-pathogen 158 
interaction, or response to stress (Supplementary data set 1).  Similar to 4 hpi, we identified that cytokine 159 
related terms were upregulated in 24 hpi, likewise, the stimulus terms also were identified as upregulated 160 
(Supplementary data set 1). At 48 hpi we only obtained response to cytokine (GO:0034097), cellular 161 
response to cytokine stimulus (GO:0071345)  as upregulated, and any other term related to stress or 162 
response to stimulus were identified as enriched. Finally, our enrichment analysis showed that Response 163 
to cytokine (GO:0034097) but no other cytokine related term was enriched (Supplementary data set 1). 164 
Additionally, terms related to ncRNA metabolism, such as ncRNA processing (GO:0034470), ncRNA 165 
metabolic process (GO:0034660),  were consistently enriched in 24, 48, and 732 hpi (Supplementary 166 
data set 1). This corresponds with the higher number of lncRNA and antisense RNAs differentially 167 
expressed (Supplementary Figure 1).  168 

Due to the low number of enriched GO terms in roles of immune response or host-pathogen interaction, 169 
we performed a functional analysis in order to find those genes that had some annotation related to 170 
immune response processes and host-pathogen interaction.  As we showed in Supplementary Table 1 171 
and Figure 2, we identified between 183 to 801 upregulated genes and related to immune response, host-172 
pathogen functional categories, and between 95 to 516 downregulated genes annotated with these 173 
functional categories. The identity of these genes was deposited in the supplementary data set 2. 174 

Figure 2. Global transcriptomic profiles of Leishmania infected human macrophages and genes 

related to immune response and host-pathogen interaction. Distribution of DEGs between 

different specific time post-infection. The box width indicates the number of DEGs  downregulated 

(blue) and upregulated (red) at adjusted p-value 0.05 and -0.5 > FC > 0.5. The color shading indicates 

DEGs that are involved in host-pathogen interaction and immune response according to GO functional 

analysis. The numbers at the end of each bar correspond to total DEGs obtained after paired-samples 

analysis. 
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Interestingly as we found for DE the number of related genes with immune response and host-pathogen 175 
interaction decreases with the passing of the hours after infection. 176 

3.2. Context-specific gene regulatory networks of Leishmania infected macrophage reveal 177 
potential new therapeutic targets 178 

The TF-gene reference human gene regulatory network (GRN) obtained after filter high-quality 179 
connections are described in table 1. After that, we used the normalized reads obtained from our previous 180 
expression analysis to filter this gold standard GRN. We obtained eight time-specific GRNs (four of 181 
infected and four of non-infected macrophages) that illustrate the dynamics of gene regulations at the 182 
first 72h after the infection process of Leishmania parasites begins. Each context-specific network 183 
presents a different number of nodes and connections described in table 1. The larger network for 184 
infected macrophage was obtained at 4 hpi that includes 19750 total nodes and 343072 connections with 185 
990 TFs as regulatory nodes. Besides, the smaller network of infected macrophage corresponding to 72 186 
hpi made up with 19718 nodes, of which 974 nodes were identified as TFs and recovered a total of 187 
339390 connections.  188 

We compare each network with their corresponding for the same time period. The F1 values that we 189 
obtained from these comparisons ranged between 0.96 to 0.98, indicating that in general there are few 190 
alterations in the genetic regulation networks that are affected in the first hours after the infection of 191 
human macrophages.  192 

We also analyze all TF that have a significant change of regulation according to F1 values, for this, we 193 
use 0.95 F1 value as cutoff (Table 2). These results indicate that many TFs related to immune response 194 
shows alterations in their regulations, besides not all these TFs were differentially expressed according 195 
to our expression analysis. Therefore, we selected all nodes and edges that were present in the infected 196 
macrophage networks but not in the health macrophage networks (Figure 2A, Supplementary Figure 197 
2A, Supplementary Figure 3A, Supplementary Figure 4B). Figure 2B shows the subnetwork after 198 
filtering all the edges only present in the infected network at 4 hpi where we identified 160 connections 199 
and 63 nodes of which 11 were TF. On the other hand, we found 244 nodes for 24 hpi network 200 
comparison (Supplementary Figure 2B), 155 for 48 hpi (Supplementary Figure 3B), and 52 for 72 hpi 201 
(Supplementary Figure 4B). In table 3 we resume all these findings.  202 

All genes recovered from these comparisons were evaluated in order to select all those genes that were 203 
differentially expressed and related to the functions that we have previously described. A total of 373 204 
genes were finally selected of which 113 passed all filters that we applied. Interestingly we identified 205 
several TF that act in the activation of immune response such as JUN or the negative regulation of 206 

 Total genes Edges TFs 

Reference GRN (DOROTHEA) 20244 486751 13950990 

4 h post infection  19750 343072 990 

24 h post-infection 19750 343201 987 

48 h post-infection 19725 341608 987 

72 h post-infection 19718 339390 974 

4 h non-infected 19760 344812 999 

24 h non-infected 19748 342770 993 

48 h non-infected 19595 342732 992 

72 h non-infected 19610 345596 998 

Table 1. Description of the reference network and context-specific GRNs of Leishmania major 

infected macrophages and non-infected macrophages. 
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immune response such as MYC. On the other hand, we determine that some effectors of immune 207 
response such as IL16, that act as pro-inflammatory were present in our list of possible therapeutic 208 
targets. In Supplementary data set 3, we summarise all the identities, expression values, and functions 209 
of all 113 genes. 210 

We used these 113 genes to obtain the biological pathways, which the product of this set of genes 211 
participates. We obtained a list of 909 UniProt IDs of protein entries in UniProt mapped to 313 212 
Reactome IDs of Reactome pathway entries, which we downloaded and used to generate 313 mully 213 
multilayered graphs. After mapping the proteins on the protein layers to our list of proteins, the mully 214 

Comparison TF F1 Function 

4 h MEF2B 

PROX1** 

KLF1** 

E2F2** 

FLI1** 

STAT4* 

TCF3 

 

0 

0 

0.339 

0.611 

0.931 

0.934 

0.935 

- 

Regulation of developmental process 

Immune system process 

Regulation of developmental process 

Immune system process 

- 

Immune system process/Leukocyte activation 

24 h MEF2B 

NFE2 

PROX1** 

POU5F1 

TCF7** 

ATF6 

CEBPD** 

NCOA2** 

TCF3 

ZEB1 

RUNX3 

FLI1** 

FOXO3 

EPAS1 

 

0 

0 

0 

0.019 

0.078 

0.536 

0.850 

0,853 

0.899 

0.907 

0.918 

0.930 

0.937 

0.949 

- 

Immune system process 

Regulation of developmental process 

Response to stress 

Immune system process/Leukocyte activation 

Response to stress 

Immune system process 

Response to endogenous stimulus 

Immune system process/Leukocyte activation 

Immune system process/Leukocyte activation 

Immune system process/Leukocyte activation 

Immune system process 

Immune system process 

Immune system process 

48 h MEF2B 

POU5F1 

TBX21 

SOX6 

TP73** 

CEBPD** 

FLI1** 

ZEB2 

STAT4 

TCF3 

TCF4 

 

0 

0.019 

0.245 

0.412 

0.478 

0.854 

0.929 

0.930 

0.935 

0.935 

0.942 

- 

Response to stress 

Immune system process/Leukocyte activation 

Immune system process 

Immune system process 

Immune system process 

Immune system process 

Response to stress 

- 

Immune system process/Leukocyte activation 

Regulation of response to stimulus 

72 h MEF2B 

POU5F1 

TCF7** 

TBX21 

ELF3 

SOX6 

CEBPD 

RUNX3 

IKZF1 

ZEB2 

STAT4 

TCF3 

 

0 

0.019 

0.021 

0.245 

0.335 

0.362 

0.849 

0.912 

0.917 

0.932 

0.934 

0.936 

- 

Response to stress 

Immune system process/Leukocyte activation 

Immune system process/Leukocyte activation 

Response to stress 

Immune system process 

Immune system process 

Immune system process/Leukocyte activation 

Immune system process/Leukocyte activation 

Response to stress 

- 

Immune system process/Leukocyte activation 

Table 2. TFs with higher changes in their regulations in Leishmania major infected macrophages. 
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graphs were filtered by deleting all non-protein layers, while adding the transitive edges to preserve the 215 
connections.  216 

We also deleted the proteins that are not included in our list. We extracted the drug targets from UniProt 217 
and DrugBank and added a drug layer to each filtered pathway graph. We combined all drug-protein 218 
connections from the different graphs to obtain the final list of possible drug targets (Figure 4). A final 219 
set of 21 gene-pathway-drug interactions were obtained (Supplementary data set 4). We identified 124 220 
different biological pathways and 331 different drugs that have direct connections with these 21 genes. 221 
In order to reduce the number of gene-drug interactions, we filtered these interactions, using as selection 222 
criteria those drugs that were approved, as well as any of the following combinations: approved-223 
investigational and approved-vet-approved. A total of 195 approved drugs were finally selected, these 224 
drugs directly interact with 13 different genes.  225 

After this selection, we evaluate these 13 genes in order to identify their relationship with Leishmania 226 
infection. Interestingly we found 8 genes that were literature confirmed as genes involved in Leishmania 227 
infection (Veras, Ramos, and de Menezes 2018; Osorio et al. 2014; Barrera et al. 2017; Islamuddin et 228 
al. 2016; Sellau, Groneberg, and Lotter 2019). In Supplementary table 2, we include all 8 final genes of 229 
potential candidates to host-directed therapeutic targets. We found that these 8 genes have a direct 230 
connection to 145 different drugs. This information was crossed with our expression data, toxicity and 231 

Comparison Edge Total nodes Nodes as TFs 

4 hpi 160 63 11 

24 hpi 246 244 21 

48 hpi 154 155 20 

72 hpi 50 52 9 

Table 3. Nodes and edges only present in Leishmania major infected macrophage specific context 

networks. 

Figure 4. Workflow Diagram to identify the Drug Targets using the Multipath package. 
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previous used to determine the best set of different drugs that could be repositioned for use as host-232 
directed therapy for the treatment of leishmaniasis.  233 

Finally, we obtained five genes with a high potential to be a new therapeutic target, genes such as 234 
Androgen receptor (AR) or Prostaglandin-endoperoxide synthase 2 (PTGS2) or Vascular endothelial 235 
growth factor A (VEGFA) have at least three drugs each that could be used as host-directed therapies 236 
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Table 4. Potential therapeutic targets for host-directed Leishmaniasis treatment and their best drug 

connection. 
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for Leishmaniasis treatment (Table 4). Interestingly some of these drugs such as Clascoterone and 237 
Adapalene have previously been used as drugs to treat skin conditions such as acne.  238 

 239 

Figure 3. Network comparison of non infected against infected macrophage at 4 hours post 

infection. A. The network shown is formed by 942 nodes (167 TFs) and 3847 edges colored 

according to their existence in the non-infected network, infected network or in both networks. B. 

Subnetwork represents all edges presented only in the 4 hpi network. Colors of edges and nodes are 

the same as the upper network. 
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On the other hand, anti-inflammatories like Tolfenamic acid and Flufenamic acid are also potential drugs 240 
for the treatment of Leishmaniasis. Our results indicated that several new therapeutic targets could be 241 
identified from the changes in gene regulation that occur during the infective process of Leishmania 242 
major to human macrophages and the integration of data related to pathways and gene-drug direct 243 
connections. 244 

4. Discussion 245 

Conventional therapies for Leishmaniasis treatment typically are composed of only a few numbers of 246 
drugs (Sundar and Singh 2018; Chakravarty and Sundar 2019). Moreover, these therapies present a great 247 
variety of problems mainly in the efficiency, toxicity, and the ability of parasites to generate resistance 248 
to them (Matos et al. 2020). Recently, different approaches for the treatment of several parasitic diseases 249 
were focused on the host-directed therapies (Varikuti et al. 2018) and the repositioning of drugs used 250 
previously for another disease (Andrews, Fisher, and Skinner-Adams 2014). Here, we demonstrated that 251 
the use of network-based approaches is a powerful tool to identify new therapeutic targets for host-252 
directed Leishmaniasis treatment. 253 

In this study, we found 5 genes with the potential to be new therapeutic targets. We identified that these 254 
genes have direct connections with eleven FDA-approved drugs (Table 4). Many of these drugs have 255 
previously been used to treat skin diseases such as acne, anti-inflammatory drugs, or antineoplastics. 256 
Drugs such as Clascoterone act as antagonists for androgen receptor (AR). Previous reports have shown 257 
that AR has a very important role in the immune response derived from parasitic infections (Sellau, 258 
Groneberg, and Lotter 2019).  Interestingly, in two different works reported by Sanchez-Garcia and 259 
colleagues and Qiao and colleague discovered that hormones such DHT and testosterone that interact 260 
with the androgen receptor, can alter the development and the survival of the parasite, or inhibit the 261 
apoptosis of Leishmania-infected macrophages (Sánchez-García et al. 2018; Qiao et al. 1999). This 262 
suggests that androgen receptor is a very promising target and their blocking by some an antagonist 263 
drug plus the implementation of conventional treatments could be of help as a treatment for Leishmania 264 
infections. 265 

In an effort to know more about our selected potential new therapeutic targets, we found that 266 
prostaglandin endoperoxide synthase 2 (PTGS2) previously was reported as a biomarker in response to 267 
infections for L. major (Veras, Ramos, and de Menezes 2018). Our results show a consistent 268 
misregulation of this gene consistently with these previous studies. Also, we identified a great number 269 
of direct connections with different kinds of drugs, such as Tolfenamic acid a NSAID that can be used 270 
effectively for the treatment of schistosomiasis (Lago et al. 2019). This indicates that possibly the 271 
repositioning of this drug could be useful as an antileishmanial. However, an in vivo testing needs to be 272 
done in order to confirm that this repositioning would be useful.   273 

Antitumoral drugs previously were used to treat Leishmaniasis; miltefosine was developed as an 274 
anticancer drug, but today is a choice for visceral Leishmaniasis treatment (Andrade-Neto et al. 2018). 275 
Ripretinib was described as a promising drug for the treatment of gastrointestinal stromal tumors and 276 
more recently, their drug family has been proposed to be repositioned for COVID-19 treatment (Catalano 277 
et al. 2021).  The repositioning of Ripretinib will be useful for Leishmaniasis treatment. This is because 278 
Ripretinib acts as a kinase inhibitor and presents an inhibition activity over platelet derived growth 279 
factor receptor (PDGFRA) a te tyrosine kinase receptor that has been targeted for antileishmanial 280 
therapies, presenting a significant reduction in parasitic survival (Sanderson, Yardley, and Croft 2014).   281 

Vascular endothelial growth factor-A (VEGFA) is induced during Leishmania major infection 282 
(Weinkopff et al. 2019, 2016). Their expression promotes lymphangiogenesis that was implicated in the 283 
inflammatory response and lesion healing (Weinkopff et al. 2019). VEGFA was used as a target in 284 
antiangiogenesis therapies in order to reduce the vascularization of tumors (Ferrara 2005). Minocycline 285 
is an antibiotic from the tetracycline family that interacts with the VEGFA and inhibits angiogenesis 286 
(Jung et al. 2014). This antibiotic was proposed to be used for parasitic infection in the late 80’s mainly 287 
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for the treatment of Giardia lamblia where a potent activity was observed to reduce the survival of the 288 
parasite in vitro (Edlind 1989). On the other hand in a more recent study, a patient diagnosed with 289 
Leishmaniasis was treated with Minocycline, however, the treatment was stopped shortly after, and no 290 
conclusive results were obtained (Cargnelutti et al. 2016).  291 

JUN gene encodes a c-Jun protein that is a central part of AP-1 transcription factor. This transcription 292 
factor is crucial for the inactivation of macrophages during Leishmania infection (Contreras et al. 2010). 293 
Adapalene is a retinoid mainly used for acne treatment and interacts with c-JUN via AP-1 transcription 294 
factor (Liao et al. 2020). Interestingly, Adapalene was used as an antitumoral drug in an in vitro assay 295 
promoting the apoptosis of colorectal cells (Ocker et al. 2003). However, its antiparasitic activity has 296 
not been proven yet, thus requiring an experimental validation to trace its effectiveness as an 297 
antileishmanial drug. 298 

Our approach for the search of new therapeutic targets for host-directed antileishmanial strategy 299 
provides a significant number of novel potential targets. This strategy helps to bypass the problems 300 
arising from conventional antiparasitic therapies. Furthermore, we demonstrate in this study that many 301 
drugs could be repositioned for Leishmaniasis treatment. However, all drugs selected in our work remain 302 
to be experimentally tested to know their potential as host-directed antileishmanial therapies. Finally, 303 
our approach shows great potential for the identification of therapeutic targets from genomic information 304 
and data analysis derived from biological information, which can be applied not only to parasitic 305 
diseases but also to a great variety of infectious diseases. 306 
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